REFERENCE MANUAL

Burroughs

L/TC
BASIC ASSEMBLER

REFERENCE MANUAL

$5.00

Burroughs Corporation
. Detroit, Michigan 48232

INTRODUCTION

CODING
FORM

'GP 300
INSTRUCTIONS

SYMBOLIC
PROGRAMING
PROCEDURES

PROGRAMING
EXAMPLE

ASSEMBLERS

OBJECT
PROGRAM
LOADING

APPENDIX

COPYRIGHT e 1970 BURROUGHS CORPORATION

Burroughs Corporation believes the program described herein to be
‘accurate and reliable, and much care has been taken in its preparation.
However, the Corporation cannot accept any responsibility, financial or
otherwise, for any consequences arising out of the use of this material.
The information contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

TABLE OF CONTENTS
SECTION TITLE

INTRODUCTION
1 ASSEMBLER CODING FORM .

Program Identification

Page Number and Heading .
Sequence .

Label

Operation Code

Field Length

A Parameter — Label .

A Parameter + Increment

B Parameter.

C Parameter.

Constant Data (Numenc) .
Alphanumeric Data or Print Mask .
Remarks .

2 GP 300 INSTRUCTIONS

Introduction .
Memory Orgamzatlon .
Memory Word Organization
Program Execution .
Accumulator
Flags . .
Keyboard Instructlons . .
Enable Numeric Keyboard Instructlons .
Numeric Keyboard Instructions Examples .
Operation Control and Program Keys.
Operation Control Keys .
Enable Program Keys Instructions .

Load Program Key Base Register Instruction .

OCK and PK Examples
Typewriter Keyboard Instructions . ..
Load Keyboard Base Register Instruction .
Type Instruction .
Type into Memory Instructlon
Enter Alpha into Memory Instruction
Print Instructions
Modes for Printing
Load Print-Numeric Base Reglster Instructlon
Mask Word . .
Table of Mask Control Codes
Table of Mask Flags
Mask Word Examples . .
Load Position Register Instruction .
Print Alphanumeric from Memory Instructlon
Numeric Printing Instructions .

PAGE

xiii
1-1
1-1
1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-4

2-1
2-1
2-1
2-2
2-3
2-3
2-4
24
2-6
2-7
2-7
2-7
2-8
2-9
2-9
29
2-10
2-10
2-11
2-12
2-12
2-12
2-13
2-13
2-14
2-14
2-15
2-16
2-16

iii

TABLE OF CONTENTS (continued)
SECTION TITLE

2 (cont’d) Print Numeric .
Print Numeric, Shift Rlbbon 1f Mlnus
Print Numeric, Shift Ribbon if Plus
Single Character Print Instructions .
Print Character .
Print Character Previous R1bbon
Print Character if Accumulator Minus Prekus R1bb0n
Print Character if Accumulator Plus Previous Ribbon
Ribbon Shift Instruction.

Forms Control Instructions. .
Forms Transport — Open and Close Instructlon
Platen Control Register Instructions .

Load Left Count Register

Load Left Limit Register

Load Right Count Register .

Load Right Limit Register .
Line Advance Instructions .

Advance Left Platen

Advance Right Platen .

Advance Left and Right Platens

Advance Left Platen to

Advance Right Platen to .

Arithmetic and Data Movement Instructlons .
Add Constant to Accumulator Instruction .
Addition Instructions .

Add to the Accumulator.
Add to Memory .
Clear Instructions
Clear Memory Word
Clear Accumulator and Insert Constant
Insert Constant in Accumulator Instruction
Multiplication and Division Instructions .
Load Shift Register . . .
Computing the Value of the Shlft Reglster
Multiply Instruction
Multiply and Round Instructlon
Divide Instruction
Subtract Instructions .
Subtract from Accumulator .
Subtract Constant from Accumulator.
Subtract from Memory
Transfer Instructions .
Transfer to the Accumulator .
Transfer to Memory
Transfer Remainder to Accumulator .
Shift Accumulator Instructions .

iv

PAGE

2-16
2-17
2-17
2-18
2-18
2-18
2-18
2-18
2-19
2-20
2-20
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-24
2-24
2-24
2-24
2-24
2-25
2-25
2-25
2-26
2-27
2-27
2-27
2-28
2-29
2-29
2-30
2-30
2-30
2-30

. 231

2-31
2-31
2-32
2-32

TABLE OF CONTENTS (continued)
SECTION TITLE

2 (cont’d) Shift Off .
Shift Off with Sign .
Flag Instructions . .o
Change Flags Instruction. .
Load Flags Instruction
Reset Flags Instruction
Set Flags Instruction
Index Register Instructions . .
Add to Index Register Instruction .
Decrement Index Register Instruction
Increment Index Register Instruction .
Load Index Register Instruction . .
Transfer Accumulator Contents to Index Reglster
Modify by Index Register Instruction
Instructions in which only A Parameter can be Modlfled
Instructions in which only B Parameter can be Modified .

Instructions in which A and B Parameters can be Modified .

A. One Parameter can Specify One or more Items
B. Each Parameter can Specify only One Item .
Unmodifiable Instructions .
Modification of Print Character .
Modification of Modify Instruction
Branch and Decision Instructions
Branch Unconditional Instructions . .
Subroutine Jump and Return Instructions .
Compare Alphanumeric Instruction
Skip and Execute Instructions .
Accumulator Skip and Execute Instructlons .
" Execute if Accumulator Zero .
Skip if Accumulator Zero .
Execute if Accumulator Digit less than Constant .
Skip if Accumulator Digit less than Constant
Flag Execute and Skip Instructions
Execute Flag Instructions
Skip Flag Instructions .
Miscellaneous Instructions .
Alarm Instruction
No Operation Instruction
Stop Program Instruction
Check Digit Instructions .
Check Digit Compute Instructlon
Check Digit Verify Instruction
Load Check Digit and Print Mask Table
Check Digit Table Construction .
Data Communications Instructions .
Receive Ready State

PAGE

2-32
2-33
2-33
2-33
2-34
2-35
2-35
2-36
2-36
2-36
2-37
2-37
2-37
2-37
2-38
2-39
2-40
2-40
2-41
2-43
243
2-44
2-44
2-44
2-45
2-47
2-47
2-48
2-48
248
2-49
2-49
2-50
2-50
2-50
2-53
2-53
2-53
2-53
2-54
2-54
2-55
2-57
2-57
2-62
2-62

SECTION

2 (cont’d)

vi

TABLE OF CONTENTS (continued)
TITLE

Transmit Ready State .

Receive Buffer.

Transmit Buffer .

USASCII Code
Establish Record Areas . .
Alternate Method to Establish Record Area .

Transferring Data from one Memory Address to Another .

Load Receive Buffer Register .
Set Receive Character Pointer.
Increment Receive Character Pointer .
Load Keyboard Base Register .
Set Send Character Pointer .
Unpacking Messages Received .
Transfer Receive Buffer .
Transfer to Accumulator as Numerlc .
Transfer Alpha .
Print Alpha from Memory .
Preparing Messages for Transmission .
Transfer Send Record Area.
Transfer Accumulator to Last LKBR
Transfer Alphanumeric Data .
Transfer Character .
Type to Memory .
Field Identifier Codes and Vanable Length Flelds
D Flag Group . . .
Other Data Commumcatlons Instructlons .
Retrieve Send Address
Load Send Address .
Retrieve Receive Address
Load Receive Address .
Retrieve Send Transmission Number .
Load Send Transmission Number
Retrieve Expected Transmission Number
Load Expected Transmission Number
Retrieve Transmission Number
Retrieve Character Pointer Register
Retrieve Polled Flags Register.
Polled Flags Register . .
Retrieve Two/Four Wire Reglster

Input with Punched Paper Tape/Edge Punched Card Reader .

Paper Tape Reader Instructions .
Paper Tape/Edge Punched Card Input Instruct1ons
Read Alpha and Print . .
Read Alpha into Memory and Pnnt
Read Alpha into Memory Non-print .
Read Alpha Print and Punch .

PAGE

2-63
2-64
2-64

.- 2-65

2-66
2-66

. 2-67

2-67
2-67
2-67
2-68

. 2-68

2-68
2-68
2-69

2-70

2-71
2-71
2-72

. 272
. 273

2-73
2-74
2-74

. 279

2-79
2-80

. 2-80

2-82
2-82
2-83

. 2-83
. 2-83

2-84
2-84

. 2-84

2-85
2-85
2-86
287
2-87
2-88
2-88

. 2-88

2-88
2-89

TABLE OF CONTENTS (continued)

SECTION TITLE PAGE
2 (cont’d) ' Read Alpha into Memory Print and Punch 289
Read Numeric into Accumulator 2-89
Release Media Clamp . . . e e e e e 290
Output with Paper Tape/Edge Punched Card Perforator e e e e e s 291
Paper Tape/Edge Punched Card Output Instructions 291
Type Punch and Print. . . . S
Type into Memory Punch and Prmt e e e e e s 292
Enter into Memory and Punch 292
Print Alpha and Punch. . . . e e e e e e s s s 292
Punch Alpha from Memory Non-pnnt e e e e s L2292
Punch Special Code.293
Print and Punch Numeric. .293
Ribbon Shifts e e e e e e e e e s s s 2294
Punch Numeric Non—prmt S 2
Load Punch Count Register.29
Modify by Punch Count Register 294
PunchFeed Codes295
Reader and Punch Flags [X 1.1
ReaderFlags295
Punch Flags. T B 1)
80-column Punched Card Instructlons e e e e e e e e o296
80-column Card Input Instructions. 296
Read Object Program Card . 296
Read Card. e e e e e e s s e e s s s 297
Load Card Format Reglster e e e e e e e e s s s 297
Print Alpha from Card Read Area e e e ... 298
Print and Punch Alpha from Card Read Area e e e e e e e 298
Punch Alpha from Card Read Area, Non-print 299
Transfer Card Field to Accumulator as Numeric . . . e 299
Example of Printing Alpha Data from the Card Read Area 2100
Transfer Card Columns to Memory as Alpha 2102
Input Indicator Lights and Flags 2102
Invalid Code Indicator 2102
Reader Condition Indicator. 2102
Flag Instructions .. .2102
Program Keys e e e e e e e e e s e s 21102
. 80-column Card Output Instructlons Y 0 X
Type and Punch . . . e e e e e e ... 2108
Type into Memory Punch and Prmt . S 0
Enter Alpha into Memory and Punch Non-prmt S 0 2
Print Alpha and Punch . . . o N0 2
Punch Alpha from Memory Non—prmt A L)
Punching Numeric Data from the Accumulator 2-105
Print and Punch Characteristics of Mask Codes 2-106
Print and Punch NumericData 2107
Ribbon Shift 2107

vii

TABLE OF CONTENTS (continued)
SECTION TITLE PAGE

2 (cont’d) Punch Numeric Non-print . 2108
Other Card Output Instructions 2-108
Punch Special Codes e e e 2108
Card Column Synchronization with the Punch Count Reglster e e ... 2109
Load Punch Count Register 2109
SkipCard Column « « « v « . . o2109
Duplicate Through Column 2y B {4
Card Release2 O {0
Selection of Card Stackmg Pocket 2 B O |
Output Indicator and Flags. 2111
Punch Off Indicator211
Card not Present Indicator 2112
Error Indicatoro e e 2-112
Flag Instructions ... 2112
Progtam Keys o000 2112
Assembler Pseudo Instructions 2112
Advance Line 0 e e e e 2112
Alphanumeric Constant .2112
Reserve Card Buffer2113
Card Format « . . e e e e e e oo 2-105
Code e e e e e e e e e e e s 2-105
Define « « v i e e e e e e e e e e e s 21106
Documentation 0 e e e e e e e 22117
Establish Buffer« ... 2017
End0 o 27118
Equate. « « « . .« o o o o oo e e e e e e 2-118
Mask o v e e e e e e e e e e e e e e e e e 2109
NOte . . v v v o e e e e e e e e e e e e e e e e e e 2109
Number & & v v e e e e e e e e e e e e e s 027120
Origin v « v v v i e e e e e e e e e e e e e 2120
Region.«o e e e e e e 27121
Word e e e e e e e e e e s 2122

3 SYMBOLIC PROGRAMING PROCEDURES31

Program Definition v e e e e e 34
Program Writing03
Program Debugging i v v e e .. 33

Data Comm Debugging « .«33

4 PROGRAMING EXAMPLE.41

Problem e e e e e e e e e e s e e e
Solution e e e e e e e e e s e A
Solution Index . . . T S |
General Systems Flowchart Y < 2
Program Definition Worksheets43
Program Definition Charts44
Sample Coding Forms. « o . . AT

viii

TABLE OF CONTENTS (continued)
SECTION TITLE

4 (cont’d) Assembler III Listing .
Sample Output.
Cross Reference Table .

5 ASSEMBLERS.

Functional Description of Basic Assemblers |
Assembler I L/TC Paper Tape Version
Equipment Required
Phase I. ..
Phase I — Input .
Phase I — Operating Instructlons

Phase I — Condensed Operating Instructlons and Reference L1st .

Phase I — Diagnostic Facilities
Phase I — Output
Phase I — Print-out .
Phase I — Output Tape
Phase 11 .
Phase II — Input . . .
Phase II — Operating Instructlons .
Phase II — Condensed Operating Instructlons
Phase II — Error Detection .
Phase II — Output .
Phase II — Print-out
Phase II — Output Tape . .
Assembler II L/TC 80-column Card I/O
Environment
Input .
Control Cards .
- Operating Instructions.
Readying the System .
Pass I
Pass I Errors,
Pass IT .
Pass IT — Errors . . .
Assembler III B 3500 Versmn
Environment . . .
MCP Control Cards .
Option Control Cards .
Operating Instructions.
Error Detection .
Output. .. .
L/TC Assembler IV B 5500 Versmn .
Environment .
MCP Control Cards .
Operating Instructions.
Operation.

PAGE

. 433
. 469
470

. 51

5-1

5-1

. 5-1
. 5-1
. 52

. 59

5-11

. 5-11

5-11
5-13
5-13

5-13

5-13

. 5-14

5-16
5-16

5-16

5-17
5-17

. 517

5-17
5-18
5-18
5-18
5-18

5-20

5-20

5-22

5-22
5-23
5-23
5-25
5-28
5-32
5-35
5-35
5-35
5-37
5-38

- SECTION

5 (cont’d)

6

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

TABLE OF CONTENTS (continued)

TITLE

Error Detection
Output . . .
L/TC Assembler V B 300 Vers1on .
Environment
Input
Output. .
Control Cards .
Operating Instructions.
Programed Halts .
Error Detection .
Assembler VI Series L 40 Track Vers1on
Equipment Required
Phase I. ..
Phase I — Input .
Phase I — Operating Instructlons

Phase I — Condensed Operating Instructlons and Reference L1st .

Phase I — Diagnostic Facilities

Phase I — Output

Phase I — Print-out .

Phase I — Output Tape

Phase II .

Phase II — Input . . .

Phase II — Operating Instructlons .

Phase II — Condensed Operating Instructlons
Phase II — Error Detection .

Phase II — Output Tape .

OBJECT PROGRAM LOADING.
Memory Loader Device .
A 581 Paper Tape Reader .

Memory Load (80-column Card).
The Program Card Format .

80-column Card Memory Load Operatmg Instructlons .

Reading Program Cards .
Operating Instructions.
Punched Paper Tape Object Tape Code

Glossary .
GP 300 Instructions to Machine Language .
Assembler Pseudo Instructions

Series L/TC Character Sets .

Table of Mask Codes .

Error Messages for B 3500 Assembly .
Error Messages for B 5500 Assembly .
Error Messages for B 300 Assembly

PAGE

. 5-38
. 5-38
. 5-39

5-39
5-39

. 539

5-39
5-41

. 5-44

5-45

. 5-50

5-50
5-50

. 5-50
. 5-50

5-57
5-59

. 5-60

5-60
5-62
5-62
5-62
5-62
5-63

. 563
5-65
. 61
. 61
. 61
.61
. 62
. 63
. 63
. 64
. Al
. Bl
. C1
. D1
. Bl

. F-1
. F-2
. F2

SECTION

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J
APPENDIX K

APPENDIX L

TABLE OF CONTENTS (continued)
TITLE

Instructions for Keypunching Symbolic Cards
Symbolic Card Format e
A 142/A 150 Keypunching Instructions.
024/026/029 Keypunching Instructions .

Character Sets .
USASCII .
BCL. . .
EBCDIC .

Table of Input Code Assignments . .
Input Functions for 6, 7, 8 Channel Tape .
Field Identifier Codes . .
Table of Output Code Assignments

GP 300 Timings .

Modifications to this Manual Necessary for Programing the 40-track Style

Series L

Modifications to this Manual Necessary for Programing the TC 700 .

ALPHABETICAL INDEX

PAGE

. G-1
. G-1
. G2

. H-1
. H-2
. H-2
. H-2

I-1

. Il
. I3
. 14

J-1

. K-1

L-1

. One

xi

INTRODUCTION

This manual will provide the information necessary for the L/TC user to write and assemble symbolic
programs using the GP 300 Basic Language. In Section 1 the coding form is analyzed by column. It is
suggested that the reader remove the coding form sample on page xiv and locate each specific area on
the form as he reads the text. In Section 2 each of the GP 300 series firmware instructions is presented.
Individual instructions are discussed in a narrative section followed by an example which illustrates the
capabilities of the instruction. The instructions (Op Codes) are presented alphabetically by a category
which relates to machine function.

Section 3 defines the rules and techniques used in symbolic program writing and debugging. To the
non-experienced user it is suggested that he read pages 3-1—3-2 of Section 3 before attempting the other
materials contained in this manual.

A typical billing problem is discussed in Section 4. The analysis begins with-the program definition and
carries through to the sample output on an invoice. Section 5 is a functional description of the Basic
Assemblers. Operating instructions are included.

The methods of object program loading are discussed in Section 6.

Users are provided a means of quickly referencing selected areas of the manual by coded boxes placed in
the upper corner of key pages. The information contained within the box is indicative of the material
on that page. In Section 2 the symbolic OP code is placed in these boxes along with a symbol to
indicate the type of firmware set to which the instruction applies. These are: CD—check digit add-on
firmware sets, CRD-80—column card firmware sets, DC—data communications firmware sets, and
PT—paper tape firmware sets.

Boxes which do not contain a firmware code apply to the basic instructions which are generally
common to all firmware sets.

The information provided in this manual applies to the 32-track styles of the Series L/TC. The
modifications necessary to utilize this manual for the 40-track styles of the Series L are provided in
Appendix K.

Xiii

AIX

BURROUGHS ASSEMBLER CODING FORM PAGE,
PROGRAM 1D CUSTOMER
56‘70910

BRANCH
PARAMETER PROGRAMMER
i‘g—? A] c

SEQUENCE LABEL OP. CODE ({GTH LABEL bR L REMARKS
|"I12|13|14||s ISI‘I7|18|19lZ)|21 22|23|24|5I2527I28 slaolu[szlsal:u 35[5]37[38 39'40l4||42 43 44145}46|47 48]49[50|51I5253]54|55|56|57TsS1591®l61|62l63|64|65IGSIG7|68|69]7017I]72|73I74|75l78[77
||0.|| |||;1 [| S N N N S | | L1t 111 1l 4.1t R Y T O I I |) I S N S N S N I T T B |
02 1 b b b e b EAT I NS N ST N NN A NN N O O O B B PRI B N U O O A B
1 10,3 | | | | | S O S I | 11l 1 11 1 114 [| I N N T OO S N A W | S T (N N Y W N N O O A |
llolq’l | I | | S S N N O I N OO TS N IO A | | [| N T N A U T TN I (N T IO Y | | I T S N T R A B I O |
; 1015 114 1} [| I A WA U T I N N B I | [111 SRS N TN SN A WY SN TONN TN N AN Y B W | T T T T N N T N T Y O
1 10,6, L1t 11 T B B | L1 L1y L1 11 I T T W O I I PR S O Y A S T I N N A
1 1047 I I | I 1 L1 1§ 1 11 1t 1 L1 111 [S I N T S S Y O | T SO0 WO TS W A O A O Y |
1 10481] 414ty [[T B A B | 141 L1 1 114 NI B N B A | TS U O T T U W B S |
1 1019 | I T | | I 1 (I N J I | || 111 | I .| S S N N T U Y T B |) ISR T WO N TN T VR TR W T A |
L1 b0 FINE B 114t D S T T A O | 11 L1y [[T T W A O S O B A | 1N VO T S T VO I O B |
L el [D Lt 11] I T B | L1l L1 [[B T Y S T B O | [N O W O T N N T N T |
P2y [| [T RO I B B L1 L1] 1 14 TS W O S W O O I | T S T N T I S O O |
L 1113 [| 1114 | I I I O | P14 1t S | T A T I O I B TSR I I T N S O O |
Lo hith [T I TS T O U T W I O T A O O B L1 [| B A N B A P WO T O T OO W N B A N |
11 115) [I T 1O N N T Y N T T T A T | NS N A N TS W W S T T T S (O T T I | P N N K T N N N I I O
L1116 [| I N S U S T Y Y Y W O I | 11 TN 1 T N TN DU S N T O T N O B | N T C T W N T Y I I
11 h7) 1144 I T O T T O I RV | 11 1] L 111 T N T A WO | I U S S N O T O B
1 11181 [I | S W S T T T T T T 0 I A A 1 1 [T S T N TS T T Y O | PN B A N W N N A
1 149 || | T N N N T U T TN T N N I | | 111 N 1 N Y T O T N T Y T | T U U (S U TR W N S
L1210 [| A | O T T I | 1 ¢ 1 1 11 [| I I S O I | [W W T S N B A I B |

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6][7,8 ls,wo[nnzlEquI|e,'7,|s,|9]zz:qzt,zzlzsut

EON0E00332a0s0a0EaTE Do a e B S e e S N s a2 daaas

R AR

PRINTED IN U S AMERICA

Burroughs Assembler Coding Form

PORM MK TG 2208 (7/08)

SECTION
'ASSEMBLER CODING FORM

PROGRAM 1D
s{6|7|8f9 |10

PROGRAM IDENTIFICATION
DEFINITION — Identifies a specific program.

FIELD DEFINITION — One through six alphanumeric characters entered in columns 5-10. Right or left
justified. Automatically reproduced on succeeding cards with punched card source program.

PAGE OF

CUSTOMER

BRANCH

PROGRAMMER

PAGE NUMBER AND HEADING
DEFINITION — Identifies and sequentially locates coded pages of a program.

FIELD DEFINITION — The page number is determined by the sequential order number of the page and
the total number of pages. The remaining information is filled in accordingly. '

CODE] SEQUENCE

' 11112 13 14| 15
1 10,1,
1 Jol2l
L 10,3

. 1]o""’|
| L 10,5

SEQUENCE

DEFINITION — Identifies the sequential order of the operation codes. Applies only to punched card
source programs.

FIELD DEFINITION — With a keyboard or paper tape source program the Basic Assembler assigns a
sequence number to each line in increasing numerical sequence.

1-1

CODING
FORM

LABEL

DEFINITION — A symbolic designation utilized by the assembler to describe a parameter for a memoryb
location or other parameter value.

FIELD DEFINITION — A label consists of 1-6 alpha or numeric characters. The first character must be
an alpha character. A label may be the same as a mnemonic operation code of any GP 300 instruction
or assembler pseudo instruction. The label is entered in columns 16-21 and must be left justified.

OP. CODE

22)23}24 | 25| 26

OPERATION CODE
DEFINITION — The applicable symbolic instruction is entered in this field.

FIELD DEFINITION — Op. Code is entered in columns 22-26 and left justified.

CODING
FORM

FIELD|

FIELD LENGTH

DEFINITION — Indicates the number of characters or digits in the constants associated with certain
instructions. Applies to punch card source programs only.

FIELD DEFINITION — Number of characters contained in required constant entered in columns 27-28
and right justified.

PARAMETER
A B c
+ OR -
LABEL INC/REL

29(30131}32|33134|35|36|37(38(39 |40 (41| 42| 43

A PARAMETER — LABEL
DEFINITION — The applicable label or parameter is contained in this field.

FIELD DEFINITION — Label entries consist of 1-6 alpha or numeric characters and the first character
must be an alpha character. The parameter or label is entered in columns 29-34 and left justified.

A PARAMETER — + INCREMENT

DEFINITION — A signed numeric entry may be made in this field to denote a plus or minus value for
incrementing or relative addressing with the label in columns 29-34 as a base. If a label is not used when
using a branch instruction, the syllable location of the same instruction is used for the base address.

FIELD DEFINITION — If the field has a negative value, the “-” must be entered in column 35. For a
positive value the “+” is optional. The increment is entered in columns 36-38 and right justified.

1-3

CODING
FORM

B PARAMETER

DEFINITION — The applicable alphanumeric entry is made in this field.
FIELD DEFINITION — Entry is made in columns 39-42 and left justified.
C PARAMETER

DEFINITION — The appliéable ’numeric entry is entered in this field.

FIELD DEFINITION — Entry is made in column 43.

N N S N U N T T I Illl‘lllv

[T S VO T N A S VO S A I T T I O T I

[N N Y T NN N TN O S O N I T T A T B I |

[W S I I T T I I | A T T
CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK
1,2,3;4,5,6 l7 ,alsliolnpz,wlml 15 |16|17|18119120|21122123 24

20|30 |31]32133 |34 | 35|36 |37| 3839 [40 |41|42| 43 |44}45 |46 |47 48| 49|50 {51152

CONSTANT DATA (NUMERIC)
DEFINITION — Location of constant data for certain instructions.

FIELD DEFINITION — The constant is entered in columns 29-47 and is left justified.

ALPHANUMERIC DATA OR PRINT MASK
DEFINITION — Location of alphanumeric data for certain instructions.

FIELD DEFINITION — If the data is greater than 24 characters in length in a punched card source
program, the excess characters are continued on ‘the next line beginning in column 29 and preceded by a
“CC” in columns 27. The continuation card must also contain the appropriate instruction in the Op
Code field and a sequence number. Data is entered in columns 29-52 and left justified.

REMARKS

53|54 | 55|56 |57 | 58] 59|60 |61]62|63]|64]65 |66 |6716869 |70 |71|72 73 } 74| 75| 761 77

REMARKS
DEFINITION — Remarks may be entered in this field, and will appear in the printed doéumentation.

FIELD DEFINITION — Remarks are entered in columns 53-77 and left justified.
1-4

SECTION
GP 300 INSTRUCTIONS

INTRODUCTION

General Purpose Language (GP 300) is a programing language, consisting of machine instructions to
control system operation, and is used. for Series L/TC. For ease of programing the Series L/TC, the
programmer can write his programs in symbolic language and can convert them to machine language
through the use of an assembler program. By using an assembler program, the programmer is not
burdened with keeping track of the memory location used, or the actual machine language for the
symbolic instructions being used.

The GP 300 instruction list is implemented in the system by various Firmware Sets; the number of
different instructions implemented is dependent on the particular Firmware Set used in the system.
Firmware is defined as a control program, and is stored in a designated area of the systems memory.
The firmware performs some of the logic and control functions, programmatically, that are usually
- performed by hardware electronic circuits in larger computer systems.

Firmware consists of *“MICRO-programs” which implement each instruction of GP300. A
MICRO-program consists of a “string” of MICRO instructions, each performing a step to accomplish the
function of the GP 300 instruction (referred to as MACRO instructions). Thus, in the execution of an
applicational program, the firmware identifies each MACRO instruction used by the programmer, and
selects the proper “MICRO string” to perform the function of the instruction.

MEMORY ORGANIZATION

Memory in the L/TC consists of 1,280 words of 64 bits each, and is organized into 5 blocks of 8 tracks
each, or a total of 40 tracks. Each track containing 32 words. Main Memory is subdivided into two
sections: The Control area and the Normal area.

The Control area contains the firmware which determine the system control functions and which
implement the GP 300 instruction list. The Normal area is used to store the user’s programs which are
written with the MACRO instructions. The MACRO instructions are used by the programmer to exercise
all of the capabilities of the L/TC such as arithmetic, logical comparisons, printing, input/output (paper
tape or 80-column cards), and data transmission. The Normal area is also used for storing constant data,
messages, and for accumulating totals. The amount of Normal area available to the user is dependent
upon the firmware in the Control area (some firmware requires more memory than others).

MEMORY WORD ORGANIZATION

Each word of memory contains 16 digits (64 bits) and may be used to store one of the following:
1. NUMERIC WORD '

15 digit positions
1 flag position

FLAGS I4113f12f11(10f9 (8|76]|5]a43|2]11]o0

2-1

2. ALPHA WORD

8 alphanumeric characters, left justified.

3. PROGRAM WORD

4 MACRO instructions per word.
4 Hexadecimal digits per instruction.

4. PRINT FORMAT WORD

15 control codes
1 flag position

FLAGS 14131211109 | 8|7|6]5]|4|3]2]|1]0

The words are addressed by a word number. The word number is an integer which lies between 0 and
the highest available word to the user. The word number is sometimes referred to as memory address or
memory location. If a word contains program, it is divided into four syllables, each syllable containing
one instruction. The syllables are numbered 0, 1, 2, 3 as shown above within the word.

PROGRAM EXECUTION

When the system is activated and the program mode is entered by depression of the START key,
execution of the program instructions begins in word 0, syllable 0. Execution continues sequentially by
incrementing the syllable value by 1 (certain instructions can modify this procedure, i.e., a branch
instruction). When the syllable value attains 3, the next increment will cause the word number to be
incieased by 1 and the syllable counter to be set back to 0. The current word number and syllable value
are contained in the Program Counter.

The following example shows only word numbers and syllable values within those words. The arrows
show how the values in the program counter are changed. ‘

Syllable 0 ‘
Word 0 Syllable 1 §
Syllable 2 ¢
Syllable 3 *
Syllable O '
Word 1 Syllable 1§ N
Syllable 2 ¢
Syllable 3 ¢ Syllable 0
Syllable 0§ Word 79 Syllable 1
Word 2 Syllable 1 laml— — — - —— Syllable 2 —y
“Branch to 79-2” | Syllable 3 *
Syliable O *
Word 80 Syllable 1 ¢/
N Syllable 2 ¢
TN e e e

Sequenti:gl Program Execution and the effect of using the branch instruction

After the “START” key is depressed and program execution begins, the program counter always starts
at word 0, syllable O, it continues to be incremented until the execution of the instruction in word 2,
syllable 1 (Branch instruction). After execution of this instruction causes the program counter to change
value from word 2, syllable 1 to word 79, syllable 2, the program counter continues to increment until
another path is selected.

ACCUMULATOR

Set aside from the Normal area of memory, is one word called the Accumulator. It, like other numeric
words, contains 15 digits and a flag position. It is not addressed by a word number, but rather, access to
it is a function of certain instructions. It is a working memory location for the movement of data from
one area to another. It receives all numeric data entered through the keyboard including the keys that
set the Accumulator flags [RE(-), C, M]; it must contain any numeric data to be printed; it can sum up
several amounts and store the result in another word; it receives the product or quotient of
computations; it must be used to accumulate one word of data into another; and it can be used to move
alphanumeric information from one word to another.

When the Accumulator contains 0, the minus flag is reset (i.e., the Accumulator is positive).

Certain instructions will destroy the prior contents of the Accumulator (ie., clear the Accumulator
before the instruction is executed). This frees the programmer from clearing the Accumulator through
instruction before moving data.

FLAGS

Instructions are provided to “‘test” whether or not certain conditions exist during the execution of the
program, so that alternate paths of program may be selected, depending on the state of the condition
being tested. In GP 300 the user has 28 “Flags” divided into 7 groups, each of which can be tested.

2-3

NK NKCM
NKR NKRCM

There are flags for testing the condition of the Accumulator, flags to test the condition of tape or card
readers and tape or card punches, flags for the OCK Keys which the operator will use, flags for forms
limits, index registers used to control loops, plus general purpose flags which the user can assign for his
own particular needs.

Each flag consists of 1 “bit.” When the bit is “ON,” the flag is “Set”; when the bit is “off,” the flag is
“Reset.”” The program can interrogate a flag to test whether or not it is set or reset, and select a path of
program accordingly.

A graphic explanation below of the Accumulator which has 4 flags will show how each flag is assigned
one bit. ' ‘

Molsklilu|13|1zlllllol9|817|6lslulslzlllo

8L 2 —
et — .
BITS L bits
Accumulator (M) Per Thousand (S) Special
Flags (C) Per Hundred (-) Minus or Negative
If we were to examine the bit configuration for the flags, they would be represented as follows:
8 o) 0 0 o
. L o 0 . o
Bits 2 (-) o (8) ¢ (©) o (M) o
1 ° o} o} 0
KEYBOARD INSTRUCTIONS
ENABLE NUMERIC KEYBOARD INSTRUCTIONS
OPCODE A B
NUMERIC KEYBOARD NK 0-15 0-15
NUMERIC KEYBOARD, PERMIT REVERSE ENTRY NKR 0-15 0-15

NUMERIC KEYBOARD, PERMIT C AND M KEYS NKCM 0-15 0-15

NUMERIC KEYBOARD, PERMIT REVERSE ENTRY,

C AND M KEYS NKRCM 0-15 0-15

The four numeric keyboard instructions provide for the entry of a maximum of 15 digits of numeric
information into the Accumulator digit positions 0-14. The Accumulator digit position 15 contains 4
flags designated “minus” (), “special” (S), “per hundred” (C) and “per thousand” (M). These four flags
are always reset at the start of any numeric keyboard or numeric entry instruction. The Reverse Entry
Key (RE) allows for the entry of negative data into the Accumulator. The C, M Keys set the
appropriate flag when depressed. ‘ :

2-4

The “-,” “C,” “M” flags will be set if the particular keyboard instruction enables the use of their related
keys (RE, C, M respectively) and the operator depresses these keys during the instruction. The special
flag “S” cannot be set by the depression of any keyboard key. Control of this flag is accomiplished by
other means (see flag set/reset instructions).

The settings of the four flags transfer with the data from the Accumulator to memory and from
memory back to the Accumulator and thus can be retained for future use in the program.

The A field specifies the maximum number of digits permitted to the left of the decimal point. The
parameter values range from 0-15.

The B field specifies the maximum number of digits permitted to the right of the decimal point. The
parameter values range from 0-15. The sum of the A and B parameter cannot exceed 15.

If either the A or B limits are exceeded, the Keyboard Error Indicator is turned on and the alarm bell
sounds, halting the program. When the Keyboard Error Indicator is lit, all keys are disabled from
performing their functions except the reset or ready push button. The entire entry must be re-indexed
following the use of the reset key.

Other conditions which will cause the Keyboard Error Indicator to turn on:

1. The RE, C, M Keys are depressed during a numeric keyboard instruction that does not permit
their use.

2. A typewriter key is depressed (other than 0-9, open/close key, line advance key or typewriter
OCK’s) during a numeric keyboard instruction.

3. A non-enabled program key has been depressed.

4. A numeric keyboard instruction is initiated when the capacity of the keyboard buffer has
been exceeded and when the valid codes in the buffer do not terminate the instruction.

Under control of the A field the programed number of digits enter the Accumulator. Although the B
field specifies how many digits can be entered to the right of the decimal point, it also determines the
digit position where the whole number enters the Accumulator. The entry of each whole number causes
the previously indexed digits to shift left one digit position permitting the newly indexed digit to enter
the vacated digit position. A zero key depression counts as a digit even if used as the most significant
digit entry. Double and triple zero keys act in the same manner counting two or three digits
respectively.

Under control of the B field (following recognition of the decimal point key), the first digit is entered
- to the right of the phantom decimal point and the second digit in the second position with the
remaining digits entered accordingly. A zero counts as a digit even if entered as the last digit after the
decimal point key. It is not necessary to depress the Decimal Point Key if there are no decimal entries,
even though the B field permits decimals. When the B field is zero, the error light will not become
activated if the decimal point key is depressed without ensuing digit keys.

Example:

Suppose the Accumulator digit positions 0-14 contain 0. Examine the instruction.

22123(24 125|2627{28| 29(30|31| 32| 33/34 | 35|36 |37|38(39 [40 (41| 42| 43

1_~|K||l llllll]|lglll

The operator wishes to index the number 5432.10.

The most significant digit “5” is indexed first and enters the Accumulator at digit position 2. The next
digit “4” is indexed and enters the Accumulator at digit position 2 and shifts the 5 to digit position 3.
This process continues until we have 000000000543200 in the Accumulator.

The decimal key is now used, and the digit 1 enters the first position to the right of the phantom
decimal point. The next digit indexed enters in the next Accumulator digit position to the right of the

previous entry. We now terminate the instruction with an appropriate OCK (i.e., according to program
instructions).

The Accumulator now contains:

15114131211]10]l9|8|76|514|3]|2]1]|0 |Accumulator Digit Position

Flojo|lo]ojJo]lo]|o|lofo}S5|4]3|2]1]|0] Contentof Accumulator

Numeric Keyboard Instructions Examples

Example 1: Illustrates the use of the NK instruction.

PARAMETER
FIELD ' ;
o . + OR . <
LABEL P. GTH -
oP. CODE LABEL o L

16 |17 (181920121 |22(23|24 {25| 26|27 |28 29|30|3 1] 32| 3334 | 35|36 |37| 38|39 |40 [41| 42| 43

||1|y1W|Klll l‘llllllllilll

OP CODE A

jw

REMARKS

NK 6 5 Will allow for 11 characters to be entered into the
Accumulator. No printing occurs. 6 to the left of
digit position 5 and 5 to the right of it.

Example 2: Illustrates the use of the NKR instruction.

PARAMETER
FIELD
o —= + OR 2 <
LABEL OP. COI GTH -
DE LABEL INC/REL

16 {17 (18| 1920 |21 2223124 25|26(27]28]29(30131|32{ 33|34 35|36|37{3839 |40{41}42] 43

l‘llyllu]_&kll 1| {1) | 1 1 |1l;5.||l

OP CODE A B REMARKS

NKR 6 5 Will permit use of negative numbers (set minus
" flag).

PKA
PKB

Example 3: Illustrates the use of the NKCM instruction.

PARAMETER .
FIELD
pa . + OR . <
LABEL OP. COD GTH | -
CODE LABEL INC/REL

16 (1718119 (20 121 | 22| 23|24 |25(26|27 (28] 29|30{31| 32| 3334 | 35|36 |37|38]39 {40 |41]| 42| 43
lllllL&L‘L‘.“lqlllljlllé[ll

If the operator indexes 123456789 then the decimal point and 654321 the Accumulator contains in
digit positions 0-14

123456789654321

If in addition the operator depresses the C or M key, the C or M flag will be set. Both keys can be used
during the same instruction. Both flags will be set.

OPERATION CONTROL AND PROGRAM KEYS
Operation Control Keys (OCK'S) 1, 2, 3, 4

Depression of any of the Operation Control Keys (on either the numeric or typewriter keyboard)
terminates the numeric or typewriter keyboard, sets the corresponding OCK flag, resets the other OCK
flags, and causes the next instruction in the program to be executed. All program keys are turned off.

Enable Program Keys (PK) Instructions

OP CODE A E
ENABLE PROGRAM KEY GROUP A PKA 12345678
ENABLE PROGRAM KEY GROUP B PKB 12345678
ENABLE PROGRAM KEY GROUP C PKC 12345678

The function of a Program Key is to select and execute one instruction programed and stored in an area
of memory called a Program Key Table. It also will terminate a keyboard instruction instead of an OCK,
in which case all OCK flags are reset.

Program Key Group A refers to Program Keys A1-A8. Program Key Group B refers to Program Keys
B1-B8. Program Key Group C refers to Program Keys C1-C8. The allowable Program Key Groups are
dependent upon the machine style. The A parameter can include any number of the program keys 1-8
for a specific group (A, B or C).

All PK’s that are desired must be specified by the PK command for that group, as a later command
calling for that group will void the effect of an earlier command for the same group.

When in the ready mode PK: Al, A2, A3 (Start, Load, Utility respectively) have specially assigned
functions and are always enabled. In the ready mode the functions take precedence over any functions
programed for these keys. »

After an enable program key instruction the program will not stop automatically to allow the operator
time to exercise a decision. This must be done by the programmer with an instruction such as TK.

2-7

LPKR

Load Program Key Base Register Instruction

OP CODE A

LOAD PROGRAM KEY BASE REGISTER LPKR LABEL

The instruction Load Program Key Base Register is used to establish the first word of a four-word
Program Key Table.. (4 syllables per word). The A parameter is a label addressing the first word of the
table.

The table must begin in Syllable 0 of a word. Each PK has one instruction in the table. They are
arranged thusly:

BASE WORD 0 OP CODE for PKAI
1 OP CODE for A2
3 OP CODE for A3
OP CODE for A4
BASE WORD +1 OP CODE for A5
1 OP CODE for A6
2 OP CODE for A7
3 OP CODE for A8
BASE WORD +2 0 OP CODE for B1
1 OP CODE for B2

2 OpCODE for B3

w

OP CODE for B4
BASE WORD +3

o

OP CODE for BS
1 OP CODE for B6
2 OP CODE for B7

3. OP CODE for B8

There may be more than one PK table in memory at a time. The LPKR instruction must be used prior
to changing the functions of the PK’s in order to locate the base address of the new table.

2-8

LKBR

OCK and PK Examples

Example:
PARAMETER
FIELD
LEN- . + OR > <
GTH -
LABEL OP. CODE LABEL INC/REL

16 (17 |18(19(20 121 |22|23]24 (25| 26 (2728|2930 |31| 32| 33/34 | 35| 36 (37| 38|39 |40 |4 1| a2 43

T S S | Ml |'l2|31_Ll|1| L1 1
Ll NK O |y e

This example illustrates the use of an NK instruction to halt the program and allow the operator to
select a PK key.

TYPEWRITER KEYBOARD INSTRUCTIONS

Load Keyboard Base Register Instruction

OP CODE A B
LOAD KEYBOARD BASE REGISTER LKBR LABEL

The LKBR instruction specifies the starting memory location into which information will be transferred
for all succeeding TKM and EAM instructions. That is, until another LKBR instruction is executed. The
A parameter addresses the starting word location in which the alpha characters will be stored.

The keyboard base register contains the location that is loaded into it until a subsequent LKBR
instruction loads a new location into it.

This instruction is somewhat modified in firmware sets containing data communications capability. See
Page 2-68.

Example:
PARAMETER
FIELD
ey : + OR . <
H . -
LABEL OP. CODE GT| LABEL INC/REL

16 |17 |18 193)212223'242526272883)313233343536373839404142 43

| I I | : ITIYI&E»JIII 11]
L [TKM |28 0 L

The instructions above will allow 25 alpha characters to be stored sequentially beginning in the memory
location addressed by the label TYPE.

29

T™®
TKM

Type Instruction

OP CODE A
TYPE TK 0-150 15” forms transport
TK 0-255 26” forms transport

The type instruction provides for typing and printing as a maximum the number of alphanumeric
characters as specified in the A field. The A parameter ranges from 0 to 150 for 15 inch forms
transports, while 26 inch forms transport styles provide for a 0 to 255 range. This instruction is
terminated by depression of an OCK or an enabled PK.

Printing of the first character will begin at the position of the print head. If printing in a specified area
is required, the print head must be prepositioned to the beginning left-hand position of the print area
before the typewriter instruction is reached in the program.

If typing of more than the number of characters specified in the A field is attempted, the Error
Indicator is lit, and further typing is prevented. The error condition can be corrected by depression of
the Reset Key. If the Reset Key is depressed during a TYPE instruction without an error condition, the
instruction will be re-initiated and the print head will return to the beginning typing position. ‘

Example:

PARAMETER

FIELD
A B
LEN- + OR <
GTH | -
LABEL OP. CODE LABEL INC/REL

16 |17]18]19]20|21] 22| 23|24 | 25| 26 |27|28| 29|30|31 32| 33|34 | 35|36 37| 38|39 |40 |41|42] 43

lllIHKIIlqlllllllllLl

The above coding will allow the computer to act as a typewriter for 9 alpha characters.

Type into Memory Instruction

oP CQDE _l__
TYPE INTO MEMORY PRINT TKM 0-150 15” forms transport
TKM 0-255 26” forms transport

The Type into Memory instruction differs from the Type instruction in that in addition to printing
alphanumeric information, the characters are also stored in memory. The space character is considered a
print character and stores a code in memory. The codes for Backspace, Open/Close, Line Advance,
OCK’s and Program Keys are not stored in memory. '

2-10

EAM

Example:

) PARAMETER
FIELD A 5 c
LEN- + ORr -
W
LABEL oP. CODE | 6T LABEL h L

|16 |17 |18(19120 121 {22]23(24 | 25| 26|27 |28| 29 (30|31 32| 33|34 | 35| 3637|3839 |40 |41|42| 43

lllllTIKlMI l:]'llll 111 L1

A maximum of 31 alpha characters will be entered into memory and typed. See LKBR instruction page
2-9.

This instruction is somewhat modified in firmware sets containing data communications capability. See
Page 2-74.

The code, for each key depressed before instruction termination, is stored in memory with the first
character stored in the most significant character location of the word specified by the keyboard base
register. A single word can store 8 characters. :

ALPHA WORD — (8 characters)

The depression of the backspace key effectively removes the last typing key code from memory.
Backspacing will not occur past the first typing position.

On a TKM instruction each word is cleared before any characters are entered. The unused portion of the
word remains clear. If no typing is done and the TKM instruction is terminated by an OCK, the word is
clear. If exactly 8 characters were entered and then an OCK was used, the next sequential word in
memory would be cleared. If a TKM is used again, without another LKBR, the data will enter memory
at the first position of the last LKBR.

Note this is modified when used with Data Comm firmware. See SCP Page 2-68.

Enter Alpha into Memory Instruction

OPCODE A
ENTER ALPHA INTO MEMORY EAM 1-150 15> forms transport
EAM 1-255 26” forms transport

This instruction is identical to the TKM instruction except that printing does not occur. The print head
does not escape.

2-11

LPNR

PRINT INSTRUCTIONS
MODES FOR PRINTING

Instructions are provided to print in three modes:

1. Alphanumeric printing of data either from keyboard entry or from memory. When printing in
this mode, the field is left justified. :

Printing of numeric data from Accumulator. In this mode printing is right justified.
Printing of a single character with the actual character specified by the instruction. A single
character prints in the position indicated.

LOAD PRINT-NUMERIC BASE REGISTER INSTRUCTION

OP CODE A

LOAD PRINT-NUMERIC BASE REGISTER LPNR LABEL

The Print Numeric Base Register is loaded with the value of the “A” field to designate the word number
of the base address for the print mask table. All succeeding print instructions reference this table until
another LPNR instruction is executed. The “A’ parameter designates the base address of the print mask
table.

Mask words are grouped into a .table in memory. A Print Numeric Base Register contains the base
address or starting word of the table. The location of a mask word is the specified mask number relative
to the base address contained in the register.

Example:

PARAMETER
FIELD
s . + OR . <
LABEL P. C . |ceTH -
o] ODE LABEL INC/REL

1617181920212223]2425262’728 35136(37(38(39 (40 |41]|42] 43

29130(31]32|33]34
Lo WPNR L Flnﬂmﬂ' Lo L1
[T |

The Print-Numeric Base Register is loaded with the word number of the label (FORMAT). Mask number
0 would be DD.D. Mask number 1 would be ZZZ.DD, etc.

2-12

MASK
CONTROL
CODES

A maximum of 16 different masks can be referenced relative to the base address value in the Print
Numeric Base Register. If more than 16 masks are required, the register must be reloaded with a new
value before referencing the masks in the second table (by use of LPNR instruction), and then reloaded
with the original value before reusing any of the first set of 16 masks. If fewer than 16 masks are
required, those words of memory never referenced as mask numbers may be used for any other purpose.

MASK WORD (PRINT FORMAT)

The mask enables printing in varied formats. The mask word consists of control codes and control flags.
The control codes are entered into the mask word in digit positions 0-14. They control the printing (or
non-printing) and punctuation of each corresponding Accumulator digit. Mask flags are entered into digit
position 15 of the mask word, and are used to modify the effects of the control codes.

TABLE OF MASK CONTROL CODES

L\IA_ME. ‘@E PRINTING RESULT
Digit D Accumulator Digit prints unconditionally.
Decimal Point and Digit .D Decimal Point and Accumulator Digit
print unconditionally.
Digit and Decimal Point D: Accumulator Digit and Decimal Point

print unconditionally.

Digit and Comma
Leading Zero Suppress

Leading Zero Suppress
and Decimal Point

Leading Zero Suppress
and Comma

Units of Cents

Tens of Cents

Accumulator Digit and Comma print
unconditionally. ‘

Accumulator Digit prints if non-zero, or if
a previous digit to the left was non-zero.

Accumulator Digit and Decimal Point
print if digit is non-zero or if previous
digit to the left was non-zero.

Accumulator Digit and Comma print if
digit is non-zero or if previous digit to the
left was non-zero.

Accumulator Digit prints if non-zero, if a
previous digit to the left was non-zero, or
if there is a non-zero digit in this terminal
zero suppression field.

Ignore if digit is zero and if significance is
not established by either a preceding digit
or a digit in this terminal zero suppression
field.

Decimal Point and Digit print if digit
non-zero, or if significance is established
by either a preceding digit or a digit in
this terminal zero suppression field.

2-13

MASK
FLAGS

TABLE OF MASK CONTROL CODES (Continued)

NAME

Terminal Zero Suppress
Decimal Point and Terminal

Zero Suppress

Ignore Digit
Ignore Digit End

Single Digit Zero Suppress

NAME

Safeguard
Suppress Punction

Punch Leading Zeros

Mask Word Examples

The usage of a mask word will be demonstrated by examples:

CODE

PRINTING RESULT

Ignore if digit is zero, and if significance
is not established by either a preceding
digit or a digit in this terminal zero
suppression field.

Accumulator Digit prints if non-zero, or if
any digit to the right in this terminal zero
suppression field is non-zero.

Decimal Point and Digit print if digit or
any succeeding digits in this terminal zero
suppression field are non-zero.

Ignore if the digit and all digits to the
right in the terminal zero supbression field
are zero. .

Digit is ignored, printer does not escape.
Digit is ignored, the print instruction is
terminated, printer does not escape.

Digit prints if non-zero. Escape if zero.
Digits to the right and left have no effect.

TABLE OF MASK FLAGS

CODE

F

PRINTING RESULTS

When the Safeguard flag is set, the
safeguard symbol (8) is printed to the left
of the most significant digit printed.

Print positions where commas or decimal
points wOuLd normally be inserted are
replaced by spaces.

No effect on printing, causes preceding
zeros to punch even though they may not
print, starting at the pointer.

1. The Accumulator contains 000000009713456 in digit positions 0-14.

a. To obtain the printed result 000000009713456 a mask of DDDDDDDDDDDDDDD in
mask positions 0-14 can be used because the mask character D will unconditionally print
the digit in the corresponding Accumulator digit position.

2-14

2.

3.

POS

To eliminate the leading zeros in Accumulator digit positions 7-14 the printed mask can
be ZZZ777777777777 as the Z mask character will cause a non-print of a leading zero.
The printed result will be 9713456.

The Accumulator contains 000000067010359 in digit positions 0-14.

a.

Print the Accumulator with a decimal point and the appropriate commas. A possible
mask is ZZZ,ZZZ.DD which prints 670,103.59. Another possibility for the print mask is
Z77,277.77 which gives the same printed result (provided the Accumulator is not zero
in every digit position).

Characters are also provided to permit monetary punctuation. To print the contents of
the Accumulator with the format $670,103.59 a mask composed of FZZZ,ZZZ.CC could
be used or FZZZ,ZZZ.DD would provide the identical results for this case (provided the
Accumulator is not zero in every digit position).

Allow the Accumulator to contain 000000380502267 in digit positions 0-14.

a.

To format the printed result in the form of a social security number the Suppress
Punctuation Flag (+) can be set. +DDD,DD,DDDD would allow the printed result
380 50 2267 as the Suppress Punctuation Flag replaces the commas and periods with
spaces.

The mask ZZZZZZDDIDIDDDD would format the print thusly 3852267. The I character
ignores the digit in the corresponding Accumulator digit position and the printer does not
escape.

As we will see due to the PN instruction, the mask need not fill the entire mask word.

LOAD POSITION REGISTER INSTRUCTION

OP CODE A
LOAD POSITION REGISTER POS 1-150 15 forms transport

POS 1-255 26” forms tfansport

The Position Register is loaded with the value of the A field. The A field ranges from 1 to 150 for 15
inch forms transports and 1-255 for 26 inch forms transports. The position loaded in the position
register corresponds with the actual position at which the printer will print. The print ball does not
move until the program reaches an instruction which specifies that a character is to be printed, or until
a keyboard instruction is reached. The print head escapes in 1/10 inch increments.

PARAMETER
FIELD
FIELE A 8 c
SEQUENCE LABEL OP. CODE | GTH LABEL + OR -
INC/REL

11

12

13

14

15|16 {17 |18|19|20 21 2223]24&526272883)31323334355373839404142 43 {4445 |46 |47

ilolll lllllPl‘l‘ll lllolllll L1 L1 | L1 |

||°|2. I ILIIII,IIIIIIJI L] 1 1]

1 10,3, Lo K rlLéLlnlanl L1 | [

The above instruction will position at position 101 or 10 inches from position 1.

2-15

PA
PN

PRINT ALPHANUMERIC FROM MEMORY INSTRUCTION

OP CODE A

PRINT ALPHANUMERIC PA LABEL

The Print Alphanumeric instruction prints alphanumeric ‘information from memory beginning with the
first character in the memory location specified by the “A” field. Printing continues until an end of
alpha code is encountered, regardless of the number of words used.

For the PA instruction, the ribbon will be in the normal (generally black) position, although it can be
changed to the reverse position by other instructions.

Example:

Suppose the alpha characters MESSAGE (and an end alpha code) are stored in memory location SAVE
and we desire to print the contents of this memory location.

Initially, we position the print head. The second step is to provide for the actual printing. These two
steps are programed.

PARAMETER
FIELD
A
LEN- + OR - = <
H
LABEL OP. CODE GT! LABEL INC/REL

16 {17 |18[19]20 |21 |22|23|24 (25|26 |27|28| 20{30]|31|32| 33|34 |35|36|37(38|39 [40 |41(42] 43 |44 |45 46 |47]48

Jl|||P|¢$:| |?|$1llllll L1 | I I W |
|I1||PIA1|l$|R|Q|_€11||l Lt 1 Y T |

The printed message would appear at print position 95, left justified and read MESSAGE.

NUMERIC PRINTING INSTRUCTIONS

Numeric values to be printed must be contained in the Accumulator and can have a maximum of 15
digits. It is not possible to print numeric data directly from memory.

Print Numeric

OP CODE A B
PRINT NUMERIC PN 0-14 : 0-15

The Print Numeric instruction prints the contents of the Accumulator with the ribbon in the normal
(generally black) position regardless of sign. (Unless previously shifted by the RR instruction.)

The “A” field contains the Accumulator digit position number for the most significant digit to be
printed. This is independent of the print mask. All positions higher than the digit position specified are
igrored and lost from printing. Since the Accumulator digit positions start with O, to print out a
maximum of 5 digits the “A” parameter should contain a 4.

2-16

PNS—
PNS+

The “B” field of this instruction identifies the print mask to be used during printing. There is a
maximum of 16 print masks per LPNR instruction so the B field contains a value from 0-15. The value
referenced in the B field is a function of the mask table. (See LPNR instruction).

OP CODE A B
PRINT NUMERIC, SHIFT RIBBON PNS— 0-14 0-15
IF MINUS
PRINT NUMERIC, SHIFT RIBBON PNS+ 0-14 0-15
IF PLUS \

The PNS— and PNS+ instruction are similar to the PN instruction, the difference being:
1. The PNS— instruction shifts the ribbon if the sign of the Accumulator is negative.

2. The PNS+ instruction shifts the ribbon if the sign of the Accumulator is positive.

Examples:
a)
PARAMETER
FIELD A B c
o LN~ + OR —
GTH
COD;i SEQUENCE LABEL OP. CODE LABEL INC/ REL

| {11]12]13[14] 15|16 |17 118]19|20(21 2212324 (2526127 (28| 29|30|31| 32| 33|34 | 35|36 |37|38(39 {40 |4a1| 42| 43 |44 |45 ja6 |a7

{ lol '1 | N | ~ 1 1 | § I N O | [31 | .|
L 10,2 Ll PN 8 e L1
LABEL OP CODE A E REMARKS

NK 5 3 Enable Numeric keys

PN 8 0 Print Accumulator contents

The contents of the Accumulator are printed beginning with digit position 8 and with the format
dictated by print mask O.

PARAMETER
FIELD
DE] LEN- A —— B C
col SEQUENCE LABEL . GTH -
Q B OP. CODE LABEL INC/REL

l 111121 13[14} 15|16 [17 [18[1920 |21 | 22| 23|24 {25| 26|27 |28

lI0||| IlllllNI‘zl‘ll_SIIIIJ |1|31|| L1 1
L 10,2 [IZIM‘|°| 13

1 10,3, L 110 RN S N I N S N i L | L4

30(31132133(3435|36{37)38(39 (40{41{42| 43 |44|45 p6 |47

llolul | T | [| N T T N I I A | L | 11 |

l|015! | N I ORI W N | N SN WO I S NN N N T I | [§ I |

2-17

PC PC-
PCP PC+

LABEL OP CODE I_\. E REMARKS
NKR 5 3 Enable Reverse Entry
PNS— 8 0 Print Shift if negative

Printing will occur as in the above example, but the ribbon will Shift if the Accumulator “minus” flag is
_set. - v

SINGLE CHARACTER PRINT INSTRUCTIONS
OP CODE A
PRINT CHARACTER PC Character to be printed

This instruction unconditionally prints the character specified in the “A” field. If the “A” field is blank,
the instruction causes a single printer space operation. The PC instruction prints with the ribbon in the
normal position (unless previously shifted. See RR instruction).

OP CODE _ﬁ
PRINT CHARACTER PREVIOUS RIBBON PCP Character to be printed

The PCP instruction will print a character with the same ribbon position that was used on the last print
operation.

OP CODE é_
PRINT CHARACTER IF ACCUMULATOR PC— Character to be printed
MINUS, PREVIOUS RIBBON
PRINT CHARACTER IF ACCUMULATOR PC+ Character to be printed

PLUS, PREVIOUS RIBBON

Printing of these instructions is dependent upon the Accumulator sign flag (+ or —). The character
specified in the “A” field is printed according to the following conditions:

1. PC-— Print if Accumulator negative (i.e., sign flag set); do not print if plus.

2. PC+ Print if Accumulator positive (i.e., sign flag reset); do not print if negative.

Example:
PARAMETER
FIELD
e . + OR > <
SEQUENCE LABEL P. CODE GTH . -
OP. C LABEL INC/REL

111121 13[14]1 15116 |17 {18|19]20 |21 | 22| 23|24 {25|26|27|28| 29|30]31{32| 33|34 {35(36|37|38|39 |40 {41/42] 43 44|45 {46 |47

IIOI'J lllllNIKIRII18illlllll3lll L1 1
||°|2. |Il||PC+1A| I"';lalllll Pt]

1 10,3, L1 Pi= L™ L] |

2-18

RR

LABEL OP CODE A B REMARKS
NKR 8 3 Allow negative entry
PC+ + Print if positive
PC— - Print if negative

If the Accumulator contains a positive quantity, a ‘4> character will be printed. A negative content
would produce a “~’ character.

RIBBON SHIFT INSTRUCTION

Printing of data normally is with the ribbon color black, except for certain print instructions that cause
minus amounts to print in red. However, a ribbon shift instruction is provided to change the normal
color of printing.

|w

OP CODE A

RED RIBBON RR

The RR instruction is used to change the ribbon color of only the next printing instruction. The ribbon
color will be opposite to the color normally expected from the data and type of the next print
instruction.

Examples:
a)
PARAMETER
FIELD
a LEN- A + OR — > <
H
COoD SEQUENCE LABEL OP. CODE GT LABEL INC/REL

| 11]12113[14] 15|16 |17 (181920 |21|22|23]|24 | 25| 26|27 |28| 29|30 (31| 32| 33{34 | 35/ 36 [37[38|39 |40 |41|42| 43 |44|45 46 |47

L0 INKR |8|||11114.3..1 L1

||o|21 llllllalklll N S S NS WO N N A N 1 11 1+ |

1 10,3, ||1||[P|M|| - TERE AN R | TR L4
Ilolu’la T | 1] [T [}lll 11|
LABEL OP CODE A E REMARKS

NKR 8 3 Allow negative entry

RR Reverse Ribbon

PN 5 3

PN 5 3

The Accumulator contents would print according to the PN 5 3 instruction but the ribbon would change
to the opposite color. The second PN 5 3 would not be affected by the RR ‘instruction.

ocC

CcC
PARAMETER
Tg—? ‘ A B c
cobe] SEQUENCE LABEL OP. CODE | GTH . LABEL TNg?R-;ZL
| 11[12}13]14| 15{16 (17 |18|19]20 |21 |22|23]|24 |25|26|27|28| 29|30|31|32(33]34|35]36|37|38|39 40 |a1|42] 43 44145 |46 |47
| |0||1 | S I ~|x|R| 1 1 } I I I | [31 [1 1
1 |042. I T I | RIRI L1] [R O S S I | Lt | 11
11008 |y PV L e 1
] 101"1 | I | EIR 1 | Y I Lo | [L4 1
1 10,5 144y |91”|$|+1 1 b, . L 1@ L1l
LABEL OP CODE A B REMARKS
NKR 8 3 Allow negative
RR Reverse Ribbon
PNS— ' Shift Ribbon “->
RR Reverse Ribbon
PNS+ . Shift Ribbon “+

The effects of the PNS— and PNS+ instruction are nullified.
FORMS CONTROL INSTRUCTIONS

FORMS TRANSPORT — OPEN AND CLOSE INSTRUCTION

OP CODE A
OPEN FORMS TRANSPORT ocC 0-255 rear feed transport
ocC BLANK front feed transport

The OC instruction is used to open the forms transport mechanism in order to permit the insertion or
removal of a completed unit document. The A parameter is blank for front feed styles. For rear feed
styles of the L/TC the A parameter of the OC instruction specifies the number of lines the left forms
mechanism will advance when the transport mechanism is next closed.

This closing may be from any of the following sources:
1. The execution of a PN or PA instruction of any type.

2. The entering of alpha information at a TK instruction. If a TK instruction were terminated by
an OCK without the entering of alpha data, the transport mechanism would not close.

3. A CC instruction.
Manual depression of the open/close key on the keyboard.

OP CODE

CLOSE FORMS TRANSPORT CcC

2-20

LLCR LLLR
LRCR LRLR
AL AR ALR
ALTO ARTO

The CC instruction closes the forms transport. This instruction generally is not required since execution
of any print instruction or depression of a typing key during a type instruction will automatically close
the forms transport.

If the transport is open as the result of executing an OC instruction, when the CC instruction is
executed, the Left Forms mechanism will advance the number of times specified by the OC instruction.

PLATEN CONTROL REGISTER INSTRUCTIONS

OP CODE A
LOAD LEFT PLATEN COUNT REGISTER LLCR 0-255
LOAD LEFT PLATEN LIMIT REGISTER LLLR 0-255
'LOAD RIGHT PLATEN COUNT REGISTER LRCR 0-255
LOAD RIGHT PLATEN LIMIT REGISTER LRLR 0-255

The programmer is provided with four platen control registers to control vertical spacing. These are the
Left and Right Forms Count Registers, and the Left and Right Limit Registers. In addition, there is a
Forms Limit Flag.

A forms count register is associated with each platen advance mechanism. This register is automatically
incremented by 1 each time the respective (left or right) platen is advanced a line.

A forms limit register is also associated with each platen advance mechanism. This register contains a
limit to which the forms count register can be compared.

The LLLR and LRLR preset the forms limit registers to a specified line. The count register will be set
to 1 (not 0) on the next line advance after the respective limit and count registers are equal.

On the line advance following when the count register equals the corresponding limit register, the forms
limit flag is set. The limit flag becomes reset on the next line advance.

The execution of a LLCR or LRCR will reload the appropriate count register. The count register is not
incremented when the platen is advanced by the platen twirlers.

The LLLR and LRLR instructions load the Left and Right Platen Limit Registers respectively with the
contents of the “A” field.

The LLCR and LRCR instructions load the Left and Right Platen Count Registers respectively with the
contents of the “A” field.

LINE ADVANCE INSTRUCTIONS

OP CODE A
ADVANCE LEFT PLATEN AL 0-255
ADVANCE RIGHT PLATEN AR 0-255
ADVANCE BOTH PLATENS : ALR 0-255
ADVANCE LEFT PLATEN TO ALTO 1-255

ADVANCE RIGHT PLATEN TO ARTO 1-255

2-21

The AL, AR, and ALR instructions advance the form the number of lines specified by the “A”
parameter. These provide a single line advance with a maximum advance of 255 lines. The vertical spaces
occur in the 1/6 inch increments. The respective count register is incremented by 1 for each single line
advance. '

The ALTO and ARTO instructions advance a form until the associated count register is equal to the
value of the “A” field. If the Count Register equals the line number specified in the ALTO or ARTO
instruction prior to its execution, no advance occurs. Specifying “0” or an integer larger than the
contents of the Limit Register in the “A” parameter of the ALTO/ARTO instruction is a programing
error. This will result in a continuous search for a line number that does not exist.

1. The use of LLCR and LLLR
LLLR 50
LLCR 50

On the next line advance the left count register equals 1 and the Forms Limit Flag will be set.
The next line advance (2nd after LLCR = LLLR) resets the flag. '

2. To determine the number of lines which will be advanced, subtract the Count Register from
the value of the “A” parameter in the ALTO or ARTO instruction. If positive, this will be the
number of lines advanced. If negative, assume this number is positive, then subtract from the
value of the Limit Register to ascertain the number of lines advanced.

a. OP CODE A REMARKS

LLLR 2_5.5 Load Left Limit Register
LLCR 20 Load Left Count Register
ALTO 3 Advance to line 3
Value of ALTO parameter — Value of Count Register
3 - 20 = -17

Since negative assume positive (i.e., —17 = 17)

Value of Limit Register — 17 =

255 — 17 = 238
There will be an advance of 238 lines.
b. OP CODE A REMARKS
LLLR 255 Load Left Limit Register
LLCR 20 Load Left Count Register
ALTO 25 Advance to Line 5
Value of ALTO parameter — Value of Count Register =
25 — 20 = 5
Since resultant is positive, there will be 5 line advance.
3. OP CODE _A_
LLLR 30
ALTO 5

Assume contents of Left Count Register = 20, when ALTO command is executed. This is an example of
the type of programing employed when using pin fed continuous forms with the requirement that the
program automatically advance from the last line on one form to the first line of a new form.

2-22

The form advances 10 lines, then the LLLR = LLCR, on the next line advance the Count Register is set
to 1. Advancing continues for 4 more lines to line 5 of the new form. In this case, the last line on the
form would be line 30.

Another method of continuous forms programing utilizes the forms limit flag.
Example:

Suppose we have the following form:

The following programing will advance the form automatically when the forms limit flag is set.

OP CODE A B c
LLLR 40
LLCR
AL 1
EX T L 2
ALTO 17
LLLR 6

4. When programing for automatic alignment of rear-fed unit documents, the number that must
be placed in the OC parameter must be 3 greater than the line number of the first actual line
of print.

To align a unit document to line number 14

OP CODE A REMARKS
ocC 17 Will align to 14

Although the form aligns to line 14, the Count Register contains 17. Thus, it may be desirable
to reload the Count Register with 14 before any further vertical spacing is performed.

a. Use of the Limit Register to enable the program to know when 40 lines have been filled
on the invoice. The. total length of the invoice is 8% inches (8.5 x 6 = 51 lines). The first
print line is 14 as measured from the top of the form.

OP CODE A
LLLR 40
LLCR 37

oC 17
TK 10

2-23

ADK
ADA ADM

When the forms transport is closed, the form will advance 17 lines. The first three lines
increment the Count Register to 40, the next advance will set the Count Register to 1.
After an advance of the remaining 13 lines, the Count Register will be at 14. This is the
actual first line number, and the number wanted in the Count Register.

5. AL — AR — ALR

The AL, AR, or ALR instructions advance the form the exact number of lines specified by
the parameter field. The most common use is to advance 1 line.

OP CODE A
AL 1

The form will advance 1 line. The Count Register will be incremented by 1.
ARITHMETIC AND DATA MOVEMENT INSTRUCTIONS

ADD CONSTANT TO ACCUMULATOR INSTRUCTION

OP CODE A B
ADD CONSTANT TO ACCUMULATOR ADK 0-14 0-9

The ADK instruction provides algebraic addition of the digit éontained in the B field to the digit in the
Accumulator position specified by the A field, with carries propagated in succeeding high order digits.

The Special (S), per thousand (M) and per hundred (C) flags are unconditionally reset.
The sign flag is reset (+) if the result is positive or set (—) if negative.

The overflow flag is set if an overflow occurs and reset if there is no overflow.

Example:
PARAMETER
neo A B c
LABEL ~ OP. CODE |GTH | = LasEL Tug?ra-en_
16 [17[18|19|20]21 2223124 25{26|27|28] 29{30|31| 32| 33(34 | 35| 3637|3839 |40 [41| 42| 43 |44 a5 la6 a7
.||11AHK|| I‘Illll |1|3111 |
OP CODE A B REMARKS
ADK 6 3 Add 3 to digit position 6 in the Accumulator.
ADDITION INSTRUCTION
OP CODE A
ADD TO ACCUMULATOR ADA LABEL
ADD TO MEMORY ADM LABEL

2-24

CLM
CLA

‘The ADA instruction provides for adding the contents of a memory location, specified by the A field to

the contents of the Accumulator. The resultant sum is placed in the Accumulator leaving the memory
location undisturbed.

The ADM instruction provides for adding the contents of the Accumulator to the contents of the
memory location specified in the A field. The resultant sum is placed in memory location A leaving the
Accumulator undisturbed.

The ADA and ADM commands cannot be used to move alpha data, even if the receiving location is
clear.

Example:
P ARAMETER
FIELD
v : + OR . <
LABEL OP. CODE GTH | LABEL INC/REL
16 (17 [18(19(20{21 |22(23|24 |25|26|27|28| 29|30|31| 32| 3334 | 35|36 {37|38|39 |40 |41| 42| 43 |44{45 jas
JlllIAIDIAII iAInglnll T | [
OP CODE A B REMARKS
ADA AREA Add to Accumulator the contents of Area, content
of Area is unchanged. :
Example:
PARAMETER
FIELD
LEN- . + OR - > <
LABEL OP. CODE GTH LABEL INC/REL
16 {17 |18{19(20 |21 2223[24 25|26|27(|28{29|30]31] 32| 33|34 |35|36(37|38|39 {40 [41|42]| 43 |44|45
Illllj_AlDlMI IAJ_RMIIII(I - 1 i
OP CODE A B REMARKS

ADM AREA Add to memory location Area contents of
Accumulator leaving Accumulator unchanged.

CLEAR INSTRUCTIONS

OP CODE A B
CLEAR MEMORY WORD CLM LABEL

CLEAR ACCUMULATOR AND INSERT CONSTANT CLA 0-15 0-15
The CLM instruction will clear the 16 digits of the memory location specified in the A field.
The CLA instruction sets all 16 digits of the Accumulator to zero, thus resetting the four Accumulator

flags (M, C, special, and sign); it places the digit specified by the B field in the digit position of the
Accumulator specified by the A field.

2-25

INK

It is important to notice that the B parameter although expressed as 0-15 on the coding form, is placed
in the Accumulator as a hexadecimal digit (0-F) rather than two decimal digits.

Arithmetic operations can only use the values from 0-9 in any digit position. Any values over 9 would
be lost during arithmetic.

Example:
PARAMETER
FIELD
N A — B c
LABEL OP. CODE GTH . LABEL INC/REL
16 {17 {18(1920 (21 |22]|23[24 [25|26|27|28| 29|30131|32]33(34 135{36(37{38|39{4041|42] 43 |44|45 (46 |47
111||£|L|M| IAIRIEIAII . I - L1 1
OP CODE A B REMARKS
CLM AREA The Memory location called Area will contain all
Zeros.
Example:
PARAMETER
FIELD
FIELE , A — B c
LABEL OP. CODE GTH LABEL INC/REL
16 [17 18[19|20 |21 |22| 23|24 |25|26|27 28| 29|30|31| 32(33|34 {35{36(37|38|39 |40 ;41{42] 43 {4445 46 |47
JllllclLlAIl Iollllllllolll 1 1
OP CODE B REMARKS
CLA 0 0 The Ac¢cumulator contains zeros in positions 0-15.

INSERT CONSTANT IN ACCUMULATOR INSTRUCTION

OP CODE A B
INSERT CONSTANT IN ACCUMULATOR INK 0-15 0-15

The INK instruction places the digit specified by the B field in the digit position of the Accumulator
specified by the A field. The remaining digit positions are unaffected. The overflow flag is not changed.

Similar to the CLA instruction the B parameter field in this instruction also permits entry of a value
from 0-15. Again this is a hexadecimal value rather than a decimal value.

Arithmetic operations can only use the values 0-9 in any digit position. Any values over 9 (i.e., A-F)
would be lost during arithmetic.

2-26

LSR

Example:
PARAMETER
FIELD
i A p— 8 c
LABEL OP. CODE GTH | LABEL INC/REL
1617181920212223242526272829%313233343536373839404142 43 |44 45 446 |47
lluanMKnn IaIIIIJ III3L11 11 1
OP CODE A E REMARKS
INK 0 3 The digit 3 will be placed in Accumulator digit

position 0 replacing the previous contents of
Accumulator digit position O.

MULTIPLICATION AND DIVISION INSTRUCTIONS

Load Shift Register Instruction

OPCODE A B
LOAD SHIFT REGISTER LSR 0-15

The LSR instruction provides for loading the multiply-divide shift register with the contents of the A
field. The shift register must be loaded prior to the execution of a Multiply or Divide instruction. The
shift register will contain the value loaded until a subsequent load shift register command is executed.
For multiplication, the shift register designates the number of places the product is shifted right after
multiplication. The shifted off digits are lost, the remaining digits set in the Accumulator as the product.
Division will be carried out to the number of places specified in the shift register. These operations take
into account the shift register even though it is not loaded immediately preceding each MUL or DIV

instruction. The contents of the shift register must be changed only when the shift requirements are
changed.

PARAMETER

FIELD

o : + OR . <
ABE : GTH -
LABEL oP. CODE LABEL hoaEL

16 |17 (18/19120 |21 122| 23|24 |25| 26 |27]28| 29|30|31| 32| 33|34 | 35|36 (37| 38(39 |40 (41| 42| 43 |44 a5 a6 |47

| R | lRIl |3l||J|11| T | L1]

OP CODE A REMARKS
LSR 3 Load shift register with 3

Computing the Value of the Shift Register

FOR MULTIPLICATION-To compute the value which must be loaded in the shift register, subtract the

desired number of decimal places in the final result from the sum of decimal places in the multiplier and
multiplicand.

2-27

MUL

Number of places + Number of places _ Desired Number _ Value of
in multiplier in multiplicand of places Shift Register
100.00 25
2 + 2 - 1 = 3

. Accumulator contains 250 digit positions 0-2, when printed with one decimal this becomes 25.0.

FOR DIVISION—The value to be loaded into the Shift Register can be determined with a knowledge of
the assumed decimal places needed in the quotient as well as the divisor and dividend.

Assumed decimal + Assumed decimal _ Assumed decimal _ Value of
places in divisor places quotient places dividends Shift Register
25 100.00 25.0
2 + 2 — 1 = 3

Multiply Instructions

OP CODE A
MULTIPLY MUL LABEL

The multiply instruction provides for multiplying the contents of the Accumulator by the contents of
the memory location specified in the A parameter. The product is shifted right the number of places
specified in the multiply — divide shift register, causing the shifted off digits to be lost. The next 15 low
order digits are placed in the Accumulator as the product.

'If the Accumulator and the memory location in the A parameter have identical signs, the sign of the
product is positive [Accumulator sign flag is reset (+)]. With unlike signs, the product is assigned a
negative sign [Accumulator sign flag is set (—)].

Both the Accumulator and the memory location can contain a maximum of 15 digits each. If the
product contains more than 15 digits after shifting occurs, the excess number of digits are lost and the
overflow flag is set. The flag is reset otherwise. (In the event of an overflow there is not an indication

light).

If the possibility of an overflow condition exists, the program should provide for interrogating the flag
to determine if a corrective routine should be employed.

The number of significant digits in the multiplier (memory location in the A field) determines the length
of time for the execution of the multiplication instruction. The number of digits in the multiplicand
(Accumulator) has no effect on the timing.

Example:
PARAMETER
FIELD ’
LEN- - + OR . <

LABEL OP. CO GTH | -

DE LABEL INC/REL

16 |17 118{19:20121|22}23|24 |25]26|27|28{29{3031|32|33|34|35{36{37]38(|39{40(41}42| 43 [44{45 46 |47
Lol lﬂ.”lln | |PRTCE | . | Ly B

2-28

MULR

DIV
OP CODE A REMARKS
MUL PRICE Multiply Accumulator by PRICE
Multiply and Round Instruction
OP CODE A
MULTIPLY AND ROUND INSTRUCTION MULR LABEL

The MULR instruction is the same as the MUL instruction except that a 5 is added to the last digit
which was shifted off in the product. The product contained in the Accumulator is increased by 1
(decreased if —) if the last digit shifted off was greater than or equal to 5. If the shift register value is
zero, there will be no rounding.

Divide Instruction

op copE A
DIVIDE DIV LABEL

The DIV instruction divides the contents of the Accumulator by the contents of the memory location
specified in the A field. The quotient is placed in the Accumulator. After division has been carried out,
the number of decimal places specified in the shift register, any remainder is placed in working memory
(in the control area). (See REM instruction.)

Both the Accumulator and the memory location can contain a maximum of 15 digits each. If the signs
of the Accumulator and memory location are the same, the sign of the quotient is positive
(Accumulator sign flag is reset +). With unlike signs, the quotient is negative (Accumulator sign flag is
set —). A remainder is positive.

If the quotient after final shift exceeds 15 digits, the overflow flag is set; otherwise, the flag is reset.
When an overflow occurs, the division is halted and the result in the Accumulator is meaningless. The
size of the quotient can be estimated and a prediction of possible overflow made if the following rule is
used: . :

“Add the MAXIMUM size DIVIDEND (Accumulator) to the Value of the SHIFT REGISTER plus
1, subtract the MINIMUM size Divisor and that equals the MAXIMUM size Quotient possible.”

An attempt to divide a number by zero sets the overflow flag and produces an undeterminable answer.
Division of zero by any number results in a zero quotient.

Example:

PARAMETER
FIELD
i . + OR . <
LABEL OP. CODE GTH -
co LABEL INC/REL

16 117 (18| 19[20|21|22]23|24 25| 26|27 |28

30131|32(33(34|35(3637|38{39 (40 |41|42| 43 |a4las las|a7]|as 49
{

I_IIIIQII&II nTnéJ'ﬂaL. [[B O |

OP CODE A REMARKS
DIV ‘ TOTAL Divide Accumulator by TOTAL

2-29

SUA
SUK

SUBTRACT INSTRUCTIONS

OPCODE A B
SUBTRACT FROM ACCUMULATOR SUA LABEL
SUBTRACT CONSTANT FROM ACCUMULATOR SUK 0-14 0-9

The SUA instruction provides for subtracting the contents of the memory location specified by the A

field from the contents of the Accumulator. The difference is placed in the Accumulator leaving
memory location A undisturbed.

The SUK instruction provides algebraic. subtraction of the digit contained in the B field from the digit in
the Accumulator position stated in the A field with carries propagated in succeeding high order digits.
(The special (S), per thousand (M), and per hundred (C) flags are unconditionally reset.)

Example:
PARAMETER
ey A B c
LABEL OP. CODE | GTH LABEL Tng?n_a.
16 [171{18]19]20|21]22|23|24 |25| 26|27|28| 29130|31| 32| 33|34 | 35136 |37|38(39 {40 |41|42| 43 |44(45 |46 |47
IIlllSlulAIl :ianﬂgnﬂul [| | [|
OP CODE A B REMARKS |
SUA AREA Subtract the contents of the memory location
called Area from the Accumulator.
Example:
» PARAMETER
FL‘S"-_D A B c
LABEL OP. CODE | GTH . LABEL ~ TNg?R—EL
16 |17 |18|19}20 |21 2223|24 25| 26127]28] 29(30|31] 32| 33{34 | 35|36 |37|38{39 {40 [41| 42| 43 |44)45 46|47
L1 |SuK L O L R !
OP CODE A B REMARKS
SUK 0 2 Algebraic subtraction of the integer 2 from the 0
digit position in the Accumulator
OPCODE A B
SUBTRACT FROM MEMORY SUM LABEL

The SUM instruction provides for subtracting the contents of the Accumulator from the contents of the
memory location specified in the A parameter.

2-30

TRA
TRM

The difference is placed in the given memory location, leaving the Accumulator unchanged.

Example:
PARAMETER
FIELD
LEN- - + OR — 2 <
LABEL OP. CODE GTH . LABEL INC/REL
16 117 {18/ 19}20 (21 |22]{ 23|24 |25| 26 |27 |28] 29|30|31 32|33134|35(36{37|38({39[|40141|42]| 43 4445 @6 |47
L1 |SOM | |AREA RN R 1
OP CODE A B REMARKS
SUM AREA Subtract the contents of the Accumulator from

the memory location called Area.

TRANSFER INSTRUCTIONS

OP CODE A B
TRANSFER TO THE ACCUMULATOR TRA LABEL
TRANSFER TO MEMORY TRM LABEL

- The TRA instruction provides- for transferring the contents of the memory location specified in the A
field to the Accumulator, keeping the contents of the memory location unchanged.

The TRM instruction provides for transferring the contents of the Accumulator to the memory location
specified by the A field. There is no change in the contents of the Accumulator.

Example:
PARAMETER

FIELD

LEN- 2 + OR — 2 <

LABEL OP. CODE GTH LABEL gy
16 |17 }18]19{20 |21 2223|24 25262723|33031 32(33/34(35/36(37|38|39 |40 |a1]|a2| 43 |4a|as a6 |47
IllIITIRIAII LMJA[_I»I!I»I[IV |
OP CODE A B REMARKS

TRA AREA Transfer the contents of memory location Area to
Accumulator. Memory location unchanged.

2-31

SLRO

Example:
PARAMETER
Tg—? A ; B c
LABEL OP. CODE | GTH LABEL TNg?R—EL
16 |17 18] 19|20 121 1 22| 23|24 | 25| 26 |27} 28] 20| 30|31| 32 33|34 | 35| 36 |37| 38| 39 |40 |4 1] 42] 43 |44 |45 a6
1|1||TLQLM| I“JMII [| [| [|
I N T N S U T VN T T N N I T U O Lt | L1l
OP CODE _li _B_ REMARKS
TRM AREA Transfer the contents of Accumulator to memory
location addressed by label area. -
OP CODE A
TRANSFER REMAINDER TO ACCUMULATOR REM

The REM instruction transfers the remainder of a division operation to the Accumulator from the
control area. The transfer will reset all Accumulator flags. '

Example:
PARAMETER
FIELD
e . + OR — . <
H
LABEL OP. CODE GTI LABEL INC,/REL

16 |17]18] 19|20 |21 | 22| 23|24 | 25| 26|27 28| 29{30|31| 32| 33|34 | 35|36 |37| 38|39 |40 |41{42] 43 |44(45 K6

SHIFT ACCUMULATOR INSTRUCTIONS

OP CODE A B

SHIFT OFF SLRO 0-14 0-14

The SLRO instruction first causes the 15 digits of the Accumulator to be shifted left the number of
positions specified by the A field. Any non-zero digits shifted off causes the overflow flag to be set. If
the digits shifted off are zero, the flag is reset.

The 15 Accumulator digit positions are then shifted right the number of positions specified by the B
field. Any non-zero digit shifted off does not set the overflow flag. Rounding is not. performed. The
shifted off digits are lost.

Example:

The Accumulator contains

151413 |12}11{10]9 |8 |7 |6 |5]|4|3]2|1}0 ACCUMULATORDIGITPOSITION

Fl1]2]3|4|5]|6]7]|8]|9}|8]7|6]5]4]3 ' VALUE

2-32

SLROS
CHG

Examine the results when we execute the following instruction:

PARAMETER
FIELD
e A B c
LABEL OP. CODE | GTH . LABEL + OR -

INC/REL

16 {17 (18119120 [21 |22 23|

27|28| 29 (30131 32(33|34 | 35)36 {37|38(39 |40 |41{42| 43 |a4|as ja6 |47

T I | ILIRILISJ-LIII lllﬁ_pll_ |11

OP CODE A B
SLRO 5 6

After the 5 in the A parameter is executed the Accumulator contains

1511413 |12|11|10 |9 | 8|76 |54 |3]|2]|1]|0]|ACCUMULATOR DIGIT POSITION

F678987654300000 VALUE

The overflow flag is set.

Then the contents are shifted right

15|14 (13|12(11}10]9 |8 |7 |6 |54 |3 |2] 1] 0| ACCUMULATOR DIGIT POSITION

FlOo]Jo]Jo]jojo|o|6]7]|8]|9]|8]7]6]|5]|4 VALUE

SHIFT OFF WITH SIGN INSTRUCTION |

OP CODE A B
SHIFT OFF WITH SIGN SLROS 0-15 0-15
The SLROS instruction is the same as the SLRO instruction except that the sign position is also shifted.
This instruction may be used to shift alpha information.

FLAG INSTRUCTIONS

CHANGE FLAGS INSTRUCTION

OP CODE A B
CHANGE FLAGS CHG AKX 1234
YRP -SCM

The CHG instruction reverses the condition (set or reset) of selected flags of any one flag group. A set
flag is reset, a reset flag is set.

2-33

LOD

The flag group is designated in the A field and represented as:
DESIGNATION FLAG GROUP

Accumulator Flags (—, S, C, M)

Operation Control Key Flags (1, 2, 3, 4)
General Purpose Flags (1, 2, 3, 4)

General Purpose Flags (1, 2, 3, 4)

Reader (Paper Tape or Card) Flags (1, 2, 3, 4)
Punch (Paper Tape or Card) Flags (1, 2, 3, 4)

=R KRR D

The flags to be changed are represented as symbols or numbers in the B field. Any or all of the four
flags of a flag group may be changed; all other flags in the group not changed are left unaltered.

Example:

PARAMETER
FIELD
LEN- A — B C
H -
LABEL OP. CODE GT LABEL INC/REL

16 |17 18] 19|20 |21 |22]23|24 | 25| 26 |27 |28] 29|30 | 31| 32| 33|34 | 35[36 {37| 38|39 (40 |41| 42| 43 |44]45 |46 |47

I I I - 11 1 KI I S | I - . lz__L | 11 1
LOAD FLAGS INSTRUCTION
OP CODE A B
LOAD FLAGS LOD AKX 1234
YRP -SCM

The LOD instruction provides for setting selected flags of any one flag group. The A field designates the
flag group to be set (refer to CHG instruction). The flags to be set are designated by numbers or
symbols in the B field. Any or all of the four flags in a group may be set. All other flags in the group
not set, are reset.

Example:

i PARAMETER
FIELD
i A B c

LABEL OP. CODE | GTH LABEL TNg/RR’EL

16 |17 181920 |21 2223]24 25|26|27]28} 29|30]3 1} 32{ 33|34 | 35{36(37{38{39 |40 |41]{ 42| 43 |44 45 |46 |47
) T I T | L]Q_DI] I_xl I T | | z|31| Lt |
OP CODE A B REMARKS
LOD - X 2,3 General purpose (group X) flags 2,3 are set, the

other X flags are reset.

2-34

RST

SET
RESET FLAGS INSTRUCTION
OP CODE A B
RESET FLAGS RST AKX 1234
YRP -SCM

An RST instruction resets selected flags of any one flag group. The flag group is designated in the A
field. (See CHG instructions for flag group designation.) The flags to be reset are specified by numbers

or symbols in the B field. Any or all of the four flags may be reset. All other flags not reset are left
unaltered. '

Example:
PARAMETER
FIELD

LEN- . + OR — 2 <

LABEL OP. CODE GTH . LABEL INC/REL
16 |17 (18(1912021 22|23|24 | 25| 2627 |28| 29130]31| 32| 3334 | 35|35 |37!3839 |40 41| a2 43 |44i45 47
||1||R1§|r|| ||A||n|| I el BN | L1 1
OP CODE A B REMARKS
RST A - The “minus” flag of the Accumulator flag group

is reset. ALL others are left unaltered.

SET FLAGS INSTRUCTIONS

OP CODE A B
SET FLAGS SET AKX 1234
YRP -SCM

The SET instructions sets selected flags of any one flag group. The flag group is designated in the A
field. (Ref. to CHG instruction for flag group and designation.) The flags to be set are designated by
number or symbols in the B field. Any or all of the four flags of a group may be set. All other flags in
the group not set, are left unaltered.

Example:
, PARAMETER
FIELD

LEN- . + OR — = =

LABEL OP. CODE GTH . LABEL INC/REL
16 |17 18| 19]|20 |21 2223|24 25126|27]28| 29(30}31} 32| 33|34 353637_3839404142 43 44145 46 |47
L1 SEPC |y KR 18 L1
OP CODE A B REMARKS
SET K 3 The OCK flag 3 is set, other flags are unaltered.

235

ADIR
DIR

INDEX REGISTER INSTRUCTIONS

ADD TO INDEX REGISTER INSTRUCTION

OPCODE A B

ADD TO INDEX REGISTER - ADIR 1-4 0-255

The number contained in the B field is added to the contents of the index register (1, 2, 3 or. 4)
indicated by the A parameter. The B field contents and the index register contents are always positive.
If the sum of the index register contents and the B field number equal 256, the register is reset to 0. If
the sum is greater than 256, only the overflow is retained in the index register. In both cases, the
overflow causes the Index Register Flag to be set. If the sum is less than 256, the flag is reset.

Example: Index Register 1 contains 225.

PARAMETER
'FIELD A
LEN- + OR — > <
LABEL OP. CODE GTH . LABEL NG/ REL

16 |17 18] 1920 |21|22| 23|24 | 25| 26|27 | 28| 29|30|3 1] 32| 33(34 | 35|36 |37|38|39 |40 |41]42| 43 14445 |46 |47

Illll'AlDIIIRl I'llll_i |||3_|51| I S T

OP CODE A

ADIR | 35

After execution of the above command, the contents of Index Register 1 is equal to 4 (225+ 35 —
256 = 4). The Index Register Flag is set.

DECREMENT INDEX REGISTER INSTRUCTION

OPCODE A B

DECREMENT INDEX REGISTER DIR 1-4 0-255

The DIR instruction decreases by 1, the contents of the index register designated by the A field. If the
index register contains 0, a decrement causes the value 255 to be entered into the register. The B field
designates a value which is compared to the contents of the index register.

If the contents of the index register, designated by the A field, is equal to the value of the B field
before decrementing is effected, the Index Register Flag is set after execution. If an unequal condition
exists, the flag is reset after execution. Thus, if the flag is set during one decrementing, it will be reset
during the next. For that reason, it becomes necessary to test this flag after each decrementing.

The value of the B field does not halt decrementing or turn the register back to 0, once decrementing
has reached that limit.

2-36

I
LIR
TAIR
MOD
INCREMENT INDEX REGISTER INSTRUCTION
OPCODE A B
INCREMENT INDEX REGISTER IIR 1-4 0-255

The IIR instruction increases by 1, the contents of the index register denoted by the A field. If the
index register contains 255, incrementing causes the register to become 0. The B field designates a value
which is compared to the contents of the index register.

The Index Register Flag is set and reset as in the DIR instruction.
Example: Use of Index Registers to terminate a loop (see SK instruction).

LOAD INDEX REGISTER INSTRUCTION

OP CODE A _B_
LOAD INDEX REGISTER ' LIR 1-4 0-255

The LIR instruction loads the value contained in the B field into the index register indicated in the A
parameter (1, 2, 3 or 4). The B parameter can be any positive value from 0 to 255. The prior contents
of the index register are destroyed. :

TRANSFER ACCUMULATOR CONTENTS TO INDEX REGISTER

OP CODE A

TRANSFER ACCUMULATOR TO INDEX REGISTER TAIR 1-4

The TAIR instruction transfers the contents of the Accumulator to the register indicated by the A field.
The prior contents of that index register are destroyed. The value of the Accumulator is treated as an
absolute number, regardless of any “assumed” decimal places during entry in the Accumulator, and
regardless of the setting of the Sign Flag.

Since an index register has a capacity of 255, an Accumulator value greater than 255 that is transferred
to an index register will be accepted as that amount that exceeds the nearest multiple of 256 (maximum
of 1024).

Example: ’
If the Accumulator contains 258, then 2 is transferred (258 — 256 = 2).
If the Accumulator contains 525, then 13 is transferred (525 — (2 x 256)) = 13).

MODIFY BY INDEX REGISTER INSTRUCTION

OP CODE A B
MODIFY BY INDEX REGISTER MOD 1-4

2-37

The MOD instruction provides for adding the value in the index register designated by the A field to the
parameter (or parameters) of the next instruction in program sequence following the MOD instruction.
“The instruction following MOD is then executed in accordance with the combined parameter values.

The MOD instruction does not change the instruction stored in memory. Modification occurs during the
execution of the instruction, as the parameter is extracted from the instruction and placed in a special
register. The MOD instruction affects the execution of only the one instruction immediately following.

Example:
PARAMETER
FIELD
LEN- 2 + OR — 2 <
SEQUENCE LABEL OP. CODE GTH . LABEL INC/REL

11|12 13| 14| 15|16 {17 |18 19|20 |21 | 22]23|24 25| 2627 |28{ 29|30|31| 32| 33(34 | 35|36 |37|38|39 (40 |41|42| 43 [44145 46 |47

llol|l lIlIlnlA’Il |’l|||| TR | 11 P11
102 | PSP L1l

Assume Index Register Number 1 contains 50

OP CODE A
MOD 1
POS 7

The index register value of 50 combined with the value of the A parameter for the POS instruction
causes the printer to position to 57 (7 + 50).

Although the MOD instruction is most generally used to modify those instructions which address word
locations in memory, it may also be used to modify the parameters of most other instructions. The
contents of the index register are added to the parameter field to modulo 256. Modulo 256 means that
if the index register (maximum capacity of 256) when added to the parameter field (also a maximum
capacity of 256 in machine language), exceeds 256, a “carry” of 1 is generated and the excess value
starts back to O.

Example:

An index register with a value of 150, when added to an AL 200, generates a “carry” of 1 and a
remaining parameter of 94 (350 — 256 = 94). The carry is propagated to machine language operation
code. Because of this, caution must be used in modifying most instructions since a ‘“carry” may
improperly modify the Op Code. '

Different types of instructions will have the A parameter, or the B parameter, or both the A and B
parameters modified. Some instructions cannot be modified.

Instructions in which only the A Parameter can be Modified

The contents of the index register specified by the MOD instruction are added to the A parameter. If
the combined value exceeds the range shown for each instruction parameter, either a “carry” will
generate a new instruction, or the instruction will otherwise be improperly modified:

2-38

TABLE

Instructions in which only the A parameter is modifiable.
OP CODE A OP CODE A OP CODE A
ADA LABEL* LRLR 0-255 SUA LABEL*
ADM LABEL* LSR 0-15 SUM LABEL*
AL 0-255 LXC 0-255 (1) TAIR 1-4
ALR 0-255 MUL LABEL* TK 0-150
ALTO 0-255 MULR LABEL* TKM 0-150
AR ‘ 0-255 oC 0-255 TRA LABEL*
ARTO 0-255 PA LABEL* TRAB 0-15
BRU LABEL* PAB 0-150 TRB 1-15
CLM LABEL* PBA 1-16 TRBA 0-16
CPA LABEL* POS 1-150 TRCA 1-16
DIV LABEL* RCP 1-255 TRCM 1-16
DUP 1-80 REAM 0-150 TRF 0-255
EAM 0-150 RTK 0-150 TRM LABEL*
IRCP 0-255 RTKM 0-150 TSB 1-15
LCD 0-255 RXEAM 0-150 XA LABEL*
LCFR LABEL* RXTK 0-150 XB 0-255
LKBR LABEL* RXTKM 0-150 XBA 1-16
LLCR 0-255 SCP 1-255 XEAM 0-150
LLLR 0-255 SKP 1-80 XMOD 0-255
LPKR LABEL* SRJ LABEL* XPA LABEL*
LPNR LABEL* SRR 1-4 XPBA 1-16
LRBR LABEL* XTK 0-150
LRCR 0-255 XTKM 0-150
*The memory address referenced by the LABEL will be incremented by the value of the index register.
(1) The card punch instruction LXC is not modifiable.

Instructions in which only the B Parameter can be Modified

In the following instructions, only the B parameter field is modified; other parameter fields are
unmodified. The contents of the index register is added to the B parameter of the instruction. If the
combined value exceeds 255, either a “carry” will create a different instruction, or the instruction will
otherwise be improperly modified.

TABLE
Instructions in which only the B parameter can be modified.
OP CODE A B
ADIR 1-4 0-255
DIR 1-4 0-255
IIR 1-4 0-255
LIR 1-4 0-255

2-39

Instructions in which A and B Parameters can be Modified

A. ONE PARAMETER CAN SPECIFY ONE OR MORE ITEMS. For some instructions the A and B
parameters represent a binary pattern to the machine. The PKA, PKB instructions as well as the LOD,
SET, RST and CHG flag instructions are programed by listing the digits 1-8 (in the case of the PK
instructions) and 1-4 (in the case of the flag instructions) in the A, B or A and B parameters for the
desired pattern.

The EX, EXE, SK and SKE instructions are programed by listing the digits 1-4 in the B parameter to
designate the particular flag pattern desired. ‘

To modify this binary pattern, it is necessary to find the decimal equivalent of the pattern desired and
add it to the Index Register used in the MOD instruction. The value table below may be used to
determine the number necessary to obtain the desired pattern.

TABLE
Value Table
Decimal Equivalent
No. in A, B or PKA Flag Instructions
A & B Fields PKB
A & B field { B field only A fieid
1 1 2 Punch = 0
2 2 4 Read = 16
3 4 8 X = 64
4 8 1 Y = 80
5 16 ‘ , T = 128
6 32 K = 144
7 64 A = 192
8 128

For PK’s, add together all of the equivalent values for the PK’s specified in the A field, to determine the
total value which must be loaded in the index register.

For Flag instructions (Set/Reset and Skip/Execute), add together the equivalent values for the flags
specified in the B parameter. If the flag group is also to be modified, add its value to the total value for
the individual flags, and the resulting sum is the value to be loaded in the index register. ‘

To modify these instructions it is essential to originate them with O in the parameter fields and the
desired pattern in the index register.

If these instructions are originated with some significant value in the parameter fields, an attempt to
modify the parameters can propagate a carry which will be added to the Op Code, changing it to
another Op Code.

2-40

TABLE

Instructions in which A and B parameters can be modified.
ONE PARAMETER CAN SPECIFY ONE OR MORE ITEMS.
OP CODE A B c
PKA 12345678
PKB 12345678
LOD AKX 1234
YRP
SET AKX 1234
YRP
RST : AKX 1234
YRP
CHG AKX 1234
YRP
EX ATKX 1234 1-4
YRP
EXE ATKX 1-4
SK ATKX 1234 14
YRP
SKE ATKX 1234 1-4
YRP

B. EACH PARAMETER CAN SPECIFY ONLY ONE ITEM. In these instructions, either or both, the A
or B parameter can be modified. The C parameter, if one exists, is not modified. The A and B
parameters combined cannot exceed 256. The sixteen possibilities in the B parameter requires a value
from O to 15 in the index register for modification. The sixteen possibilities in the A parameter field
require a value expressed in multiples of 16 (reflecting the digit position value of the A parameter in the
instruction format).

The following table illustrates the proper values to be loaded in the index register to achieve the desired
values for the A and B parameters.

2-41

TABLE FOR VALUES

‘Gm“ “n’9
Number desired Value to be Number desired Value to be
in A field contained in in B field contained in
Index Reg. ' Index Reg.
0 0 0 0
1 16 1 1
2 32 2 2
3 48 3 3
4 64 4 4
5 80 5 5
6 96 6 6
7 112 7 7
8 128 8 8
9 144 9 9
10 160 10 10
11 176 11 11
12 192 12 12
13 208 13 13
14 224 14 14
15 240 15 15
“m” + “n” = total value to be contained in register.

Example: Modify NK 0 O to provide 8 whole numbers and 3 decimal fractions:

Parameters required: Index Register value required:
A=8 = 128
B=3 = 3

131 (total value)

Thus: LIR 1 131
MOD 1
NK 0 0

The index register value of 131 modifies the NK instruction to permit 8 whole numbers and
3 fractions.

Any time that the modification of the B parameter results in a carry (exceeds 15), the carry will add to
the A parameter changing its specification. A carry resulting from modification of the A parameter
(exceeds 255) will add to the Op Code causing an improper modification.

2-42

EACH PARAMETER CAN SPECIFY ONLY ONE ITEM
OP CODE A B c OP CODE A B
ADK 0-14 0-9 PN 0-14 0-15
CLA 0-15 0-9 PNS+ 0-14 0-15
EXL 0-15 0-15 1:4 PNS— 0-14 0-15
INK 0-14 0-9 TRCB 0-15 0-15
NK 0-15 0-15 XC 0-15 0-15
NKCM 0-15 0-15 XN 0-14 0-15
NKR 0-15 0-15 XPN 0-14 - 0-15
NKRCM 0-15 0-15 XPNS+ 0-14 0-15
SKL 0-15 0-15 1-4 XPNS— 0-14 0-15
SLRO 0-14 0-14
SLROS 0-15 0-15
SUK 0-14 0-9
RNK 0-15 0-15
UNMODIFIABLE INSTRUCTIONS
The following instructions cannot be modified:
TABLE
Instructions which are not modifiable.
OP CODE A OP CODE OP CODE A
ALARM LSN RPR
ALTP LTN RR
CC LXC RRA
EXZ 1-4 NOP RSA
LPF RCD RSN
LPR REL RTH
LRA REM RTN
LSA RPF SKZ 14
STOP

MODIFICATION OF PRINT CHARACTER

The character in the A parameter of a PC instruction may be modified to obtain a different character.
The MOD instruction will add the contents of the index register to the internal code of the character in
the A parameter of the PC instruction. ~

2-43

BRU

Example:
PARAMETER
FIELD '
LEN- . + OR - > <
LABEL OP. CODE GTH . LABEL INC/REL
16 |17 18] 19|20 |21 | 22| 23|24 | 25| 26|27 |28| 20 |30|31| 32| 33|34 | 35| 36 |37| 38|39 |40 |4 1| 42} 43 |44|4s @6 |47
I T N I | [lllllll [111 |
|Il!|P|4L1| IR.“H 11 L1 111
OP CODE A
MOD 1
PC A

If PC A (A = index value of 65) is to be modified to print M (M = index value of 77), a value of 12
(77-65 = 12) is loaded into the index register #1. Index values are contained in Appendix D. The above
remarks also apply to PC+, PC— and PCP.

MODIFICATION OF A MODIFY INSTRUCTION

A MOD instruction may be used to modify another modify instruction with the same or different index
register. The total amount of modification equals the sum of the MOD instructions, and should not
exceed 255. When the total exceeds 255, only the difference between the total and 255 remains in the
index register.

BRANCH AND DECISION INSTRUCTIONS

BRANCH UNCONDITIONAL INSTRUCTIONS

OP CODE A +/— REL
BRANCH UNCONDITIONAL BRU LABEL + N

The BRU instruction provides the ability to branch unconditionally to a different segment of the
program. This instruction does not automatically provide for return to the branched from segment of
the program.

The A parameter contains the label which identifies the memory address to where the program will
branch. The A parameter can be incremented by an integer (N, positive or negative) located in the +/—
REL field.

2-44

SRJ
SRR

Example:
PARAMETER
FIELD
EN- A e B c
" :
LABEL OP. CODE GT LABEL INC/REL

116 (17 (18| 19(20 21| 22| 23|24 |25|26|27 |28} 2930131/ 32{33[34|35|36{37(38|39 |40 (41|42] 43 |44|45 |6 (47|48

N I T 2@11’1 1 1 X! Lt 11 111 zl Ll
I I Al | l ZA | L1 1 L |
L BRV, | [SHERTE |
L1 1| Y 40 | I A I L1 L1

| | I i [IR W N B S | [[|

As 1“;I|P|T|¢|_Bas|] 1 WH;&D;-,P' L1l L1
| TK

I | (] Il'lllllll 1 11

lllllﬂ!LlLl l_'}leL'ull [

When the BRU instruction is executed program execution continues with the Op Code contained in the
memory location referenced by the label. In this case the label is SHIPTO and the Op Code is POS.

SUBROUTINE JUMP AND RETURN INSTRUCTIONS

OP CODE A +/— INC
SUBROUTINE JUMP SRJ LABEL +N
SUBROUTINE RETURN SRR 1-4

The SRJ and SRR instruction facilitate branching to, and returning from a subroutine. The A parameter
of the SRIJ instruction contains the label of the memory location to where the jump will occur. The A
parameter can be +/— incremented from 1 to 255. ‘

The SRJ and SRR instructions utilize the Subroutine Return Stack which appears thusly:

LOCATION ADDRESS
1 MEMORY LOCATION
2 MEMORY LOCATION
3 MEMORY LOCATION
4 MEMORY LOCATION

This example illustrates the use of these instructions and explains the A parameter of the SRR
instruction.

2-45

WORD/SYLLABLE LABEL OP CODE ﬁ _B_ REMARKS

25 0 NKR 10 4 Allow Numeric Entry.
1 AL 1 Advance 1 line.
2 POS 63 Position to print.
g SRJ I;RNC : SRT to print.

48 0 PRNC PI?IS— 14 0
1 PC—- -
2 PC+ +
3 SRJ TKMAD
3 , ? ki

50 0 TKMAD POS 95 Positions for type.
1 TK 31 Type 31 characters.
2 SRR 1 Subroutine return.
3

When the SRJ instruction in word 25 syllable 3 is executed, the program counter is increased by 1
syllable. The new program counter content, word 26 syllable O is stored in Subroutine Return Stack
“location 1. The value of the A parameter in the SRJ instruction is inserted in the program, execution
now begins at word 48, syllable 0. The Subroutine Return Stack would appear:

LOCATION ADDRESS
1 26 0
2 ; UNKNOWN-1
3 UNKNOWN-2
4 UNKNOWN-3

When the SRIJ instruction in word 48, syllable 3 is reached, the contents of the Return Stack are shifted
down 1 location. The memory address in location 4 is lost. Execution continues in word 50 syllable 0.
The stack now contains:

LOCATION ADDRESS
1 49 0
2 26 0
3 UNKNOWN-1
¢ 4 UNKNOWN-2

If the process is repeated 5 times, the original address entered (word 25 syllable 3) is lost from program
control. Each additional repetition loses another memory address. It is recommended to limit the nesting
of subroutines to 4.

The execution of the SRR instruction in word 50 syllable 2 will cause the program counter to be loaded
with a value from the Subroutine Return Stack. The value loaded is a function of the A parameter for
the SRR instruction.

If the A value is 1, the memory address in location 1 is inserted in the program counter. A value of 2
would select location 2. A value of 3 would select location 3. A value of 4 would select the fourth
location.

2-46

CPA

Since in our example we have a value of 1, word 49, syllable O is inserted into the program counter.
Program execution begins with that value. The Return Stack would appear:

LOCATION ADDRESS
1 26 0
2 UNKNOWN-1
3 UNKNOWN-2
4 UNKNOWN-4

If the A value had been 2, word 26, syllable 0 would have been inserted in the program counter. All

addresses with location numbers less than the selected location are lost. The remaining values are pushed
to the top of the stack.

In this case the Subroutine Return Stack would appear:

LOCATION ADDRESS
1 UNKNOWN-1
2 UNKNOWN-2
3 UNKNOWN-4
4 UNKNOWN-5

Program execution begins at word 26, syllable 0.

COMPARE ALPHANUMERIC INSTRUCTION

OP CODE A

COMPARE ALPHANUMERIC CPA -LABEL

The CPA instruction compares the contents of the memory word, referenced by the label contained in
the “A” field, to the contents of the Accumulator. The outcome:

1. Execute the next instruction if contents are equal.

2. Execute second if memory word content is less than Accumulator content. Skip the first in
sequence and begin execution.

3. If memory location content is greater than the Accumulator content, skip the first two in
sequence and execute the third.

Refer to Appendix for collating sequence of character set.

2-47

EXZ

sSKz
Example:
PARAMETER
FIELD
I A e B C
LABEL OP. CODE GTH LABEL INC/REL

16 |17]18] 19120121 | 22| 23|24 | 25| 26 |27 |28} 29{30131| 32| 33|34 | 35(36{37{38|39 |40 (41|42| 43 44|45 46 (47

1‘ 11] ql N | L1 ol - L1 1
i CPA L TEST || Ly
I W I | ~ Pl | 1 I I T | L1 [[
T N | BIR!UI | l IR R 4 .2. Ly I .
I I B | UI |] T IOV N B +|] 3 - I B
N I B B ALlﬁl'" 1 [T T B | | 11 11
L 1 BRV | MAR [L1

This routine will allow the operator to index a value less than the value contained in the memory
location TEST.

SKIP AND EXECUTE INSTRUCTIONS
Accumulator Skip and Execute Instructions
OP CODE A
EXECUTE IF ACCUMULATOR ZERO EXZ 1-4

If the content of the Accumulator is zero, the EXZ instruction will cause the next instruction to be
executed. If it is not zero, the next “A”’ instructions will be skipped.

OP CODE A
SKIP IF ACCUMULATOR ZERO SKZ 1-4

The SKZ instruction will cause the next 1-4 instructions (as specified in the “A” field) to be skipped
when the Accumulator content is zero. Otherwise, the next instruction is executed.

Example: Routine to enforce a non-zero keyboard listing

PARAMETER
FIELD
o : + OR s <
. GTH -
LABEL OP. CODE LABEL INC/ REL

16 |17 [18{ 192021 | 22| 23|24 | 25| 26 |27 | 28| 29{30|31| 32(33|34 | 35{36{37(38(39 |40 [41{42] 43 44|45 46 (47

[| ISIQILI |1|l|||” L1t
EREE . A N A ST A L1
L1111 BRV, | INVMRIC | | L1
1.111‘?1"4};‘: - B -~ B L1

2-48

EXL

SKL
LABEL OP CODE A B REMARKS
NUMRIC NK 5 1 Enable numeric keyboard.
EXZ 1 Execute 1 instruction if
NUMRIC Accumulator zero.
BRU 5 Branch to numeric keyboard.
PNS- 0 Print shift ribbon (-).

If an OCK is depressed without a numeric keyboard entry, the Accumulator contains zero. In the above
example, whenever the Accumulator contains zero the BRU instruction is executed and the program
branches to the NK command. This occurs until a numeric keyboard listing is made and the
Accumulator is not zero; the BRU instruction is then skipped.

Example: Do not print if the Accumulator is zero.

P ARAMETER
FIELD
A
LEN- ¥ OR 2 <
N =
LABEL oP. CODE | GT LABEL TNCOREL

16 {17 (18| 19]20|21 22| 23]|24 |25| 26|27 [28{ 29({30|31{32] 33{34|35(36{37|38|39 |40 |41}42| 43 44|45 46 |47

Illllr&All I_I!leﬂlllll 11 |

cia o SRR L L
L1 1SRT |, IPRINT I L1t

OP CODE _A_ _B_ REMARKS
TRA AREA Transfer to Accumulator.
SKZ 1 Skip 1 instruction if zero.
SR} PRINT Branch to print routine.

If Accumulator Digit less than Constant, Execute Instruction

OPCODE A B c
EXECUTE IF DIGIT LESS THAN CONSTANT EXL 0-15 0-15 1-4

The EXL instruction causes the next instruction to be executed if the digit in the Accumulator digit
position specified in the “A” field is less than the constant contained in the “B” field, otherwise the
next “C” are skipped. The Accumulator is undisturbed.

If Accumulator Digit less than Constant, Skip Instruction

OPCODE A B I3
SKIP IF DIGIT LESS THAN CONSTANT SKL 0-15 0-15 1-4

The SKL instruction causes the next 1-4 instruction (as specified by the “C” field) to be skipped if the
digit in the Accumulator digit position specified in the “A’ parameter is less than the constant
contained in the “B” field. Otherwise, the next instruction is executed. The Accumulator is undisturbed.

2-49

EX

FLAG EXECUTE AND SKIP INSTRUCTIONS

Execute Flag Instructions

OP CODE A B c

EXECUTE IF ANY FLAG - EX ATK OLIU 1-4
XYRP 1234
-SCM

The EX instruction causes the next instruction in sequence to be executed if any of the flags specified
in the “B” field (of the flag group designated in “A” field) are set. Otherwise, the next “C” instructions
are skipped. (See SK instruction for flags and flag groups.)

Example: Use of OCK to choose alternate branch of program

PARAMETER ;
':_'g-? A B c
4+ OR —
LABEL OP. CODE GTH . LABEL INC/REL

16 |17]18(19120121(22|23]24 (25] 26|27 |28(23|30 31| 32| 33]34 | 35|36 |37}3839 |40 |41]42] 43 |44(45 46

Ll 1 K | Tl*lplel ' L1 P
I S T I T.lM. 1] 251 L1t L1 (| |
Lo €k | K (2
Lo o) BRY | ISTART [| Lo

l‘la;nJEJ_Allj ITJYIPLclI L 11 L1 L1

OP CODE A B c REMARKS
LKBR TYPE Load Base Register.
TKM 25 Type into memory.
EX K 12 1 Execute 1 if OCK 1, 2
BRU START Branch -

PA TYPE

In the above example the program will branch if OCK 1 or 2 was used. OCK 3 or 4 would cause a
print.

Example: Load the Shift Register with 2 if the C key is used and with 3 if the M key is used:

2-50

EXE
SK

PARAMETER
FIELD
LEN- . + OR — 2 <
H
LABEL oP. CODE | GT LABEL o aEL

16 |17 1181920 |21 2212324 (2512612728 29|30|31(32|33(34 | 35(36|37(38|39 |40 |41|42| 43 |44(45 46

| N | LISLRJ 1 | ol I T | | - [1 1
E IX 1! LA L 16 / [
i I M R L i 1 gL 111 1 b1 L | [
I Eix L | Al

I S W L |R| 1 ! 31 T | 11 L1 | | .

OP CODE A B c REMARKS
LSR 0 Test if “C” key used.
EX A C 1 Load shift register with 2.
LSR 2 Test if “M” key used.
EX A M 1 Load shift register with 3.
LSR 3
OP CODE A B c
EXECUTE IF EVERY FLAGS EXE ATK OCIU 1-4
XYRP 1234
—SCM

The EXE instruction causes the next instruction to be executed if all the flags specified in the “B” field
(of flag group designated by the “A’ field) are set. Otherwise, the next “C” instructions are skipped.

PARAMETER
FIELD A B c
LEN- e
LABEL OP. CODE GTH . LABEL +

INC/REL

16 |17 (18| 19|20 |21 2223]24 25126127 28| 29(30131{32|33{34|35|36(37{38|39 |40 |41{42| 43 |44 (45 46

lllllwlm] SIIIII L1t ZJII |
| O O T ' | |LALII|AI | |n| ! 14
nlllliﬂll-nﬂn(lﬁ]l AR ER RN RN AR L1

If the operator indexes both C and M keys, the alarm will sound.

Skip Flag Instructions

OP CODE i B _C_

SKIP IF ANY FLAGS SK ATK OLIU 1-4
XYRP 1234
-SCM

2-51

The SK instruction causes the next “C” instructions (1-4) to be skipped if any of the flags specified in
the “B” field, (flag group specified in “A” field) are set. Otherwise, the next instruction is executed.
The flags and flag groups are designated thusly: ‘

FLAG SYMBOL

Group A - Accumulator Flags

Sign —

Special S

Per hundred (C) C

Per thousand (M) M
Group T - Test Flags

Accumulator Overflow (0]

Forms Limit L

Index Register I

Unassigned U
Group K - Operator Control Keys Flags 1234
Group X - General Purpose X Flags 1234
Group Y - General Purpose Y Flags 1234
Group R - Reader Flags 1234
Group P - Punch Flags 1234

Example: To terminate a loop
PARAMETER
o A B c

LABEL OP. CODE | GTH LABEL TNg?R—EL

16 |17 (18] 19|20|21 |22|23}24 |25| 26 {27 28] 2030 (31| 32| 33|34 | 35{36|37|38|39 {40 |41|42| 43 |44|45 46 |47

INUVMRZCILIR, | [0 v 0 | @ L1

~ K |
111119:ﬂ$1| Y A N T L1

I | H;Ln L | 3| 111 L | P |
I T T W | PIM [1 q; IS TN T VS N | ol (| L1
[T Mgl 1 b [% i1 I
1 | SIKI 1 | .rl I | 111 & 1 | J [
i1 |BRY, | NUMRTE] L | L1l

2-52

SKE
ALARM
NOP
STOP
LABEL OP CODE A _B_ E REMARKS
NUMRIC LIR 1 0 Load Index Register.
NK 2 3 Enable numeric keyboard.
POS 121 Position printer.
AL 3 ~ Advance 3 lines.
PN 4 0
IIR 1 4 Increment Index Register.
SK T I 1 Skip 1 instruction if T set.
BRU NUMRIC Branch to NUMRIC.
OP CODE A B c
SKIP IF EVERY FLAGS SKE ATK OLIU 1-4
XYRP 1234
-—SCM

The SKE instruction will cause the next “C” instructions to be skipped if all the flags specified in the
“B” field (of the flag group specified) are set. Otherwise, the next instruction is executed.

MISCELLANEOUS INSTRUCTIONS

ALARM INSTRUCTION OP CODE
ALARM ALARM

The ALARM instruction will sound the Error Alarm once. The system does not go into the error state.
Example: Notify operator an error has been made. See the EXE instruction.

NO OPERATION INSTRUCTION
OP CODE

NO OPERATION NOP
The NOP instruction performs no operation, but 10 milliseconds are expended when this instruction is

used. Program execution continues, sequentially, uninterrupted.

STOP PROGRAM INSTRUCTION
OP CODE

STOP STOP

The STOP instruction halts the execution of a program and returns the computer to the Ready Mode.

2-53

CDC
(CD)

CHECK DIGIT INSTRUCTIONS

Macro instructions to compute and verify check digits are available for use on the L/TC by
incorporating a CDC-CDV Add-On Firmware Set with the Basic Main Memory Firmware Set being
utilized. CDC-CDV Add-On Firmware Sets occupy the highest track of user memory provided by the
main memory firmware set.

CHECK DIGIT COMPUTE INSTRUCTION

OPCODE A B

CHECK DIGIT COMPUTE CDC 1-15 0-9

The CDC instruction, when used in conjunction with a check digit table, will generate a check digit for
a number located in the Accumulator. The check digit will be generated for the number which begins in
the Accumulator digit position indicated by the A parameter and ending in Accumulator digit position
1. The generated check digit will be inserted in Accumulator digit position 0, remaining Accumulator
digit positions are not disturbed.

The B parameter specifies the constant remainder that is to be used when computing the check digit.

Example:

PARAMETER
FIELD
el : + OR > <
ol =
LABEL op. cope | 6T LABEL NG /REL

16 {17 |18{ 19|20 |21 2223l24 2s|26l27]28| 29]|30|31} 32| 33]34 | 35|36 {37]|38]39 |40 |41]|42] 43 |44|45 M6 |47

|l|ll£1_0_|_CL1l‘l|||111{,|‘|l | |

OP CODE A

|m

CDC 6 |

If the Accumulator contains:

15014131211]10]l9 | 8|76]|5|4]|3}|2]1]0

Fle|lo|8|4]2|9|6|3|8}|4]2]|9]6]|3]0

the check digit will be calculated for the number beginning in Accumulator digit position 6 and ending
in Accumulator digit position 1; in this case 842963.

The remainder factor used will be 1.

2-54

Ccbv
(cD)

Example:
LABEL . OP CODE A | E E REMARKS
INI'%"IL LPNR T?BLE LO‘?D CD & P I\'ZIASK TABLE
{
TRA BAL RD NEW BALANCE
SLRO 1 0 POSITION FOR DC
EX A - 1 TEST IF MINUS BALANCE
CDC 8 3 COMPUTE CD ON MINUS USING REM 3
SK A —- 1 SKIP IF MINUS BALANCE
CcDC 8 2 COMPUTE CD ON PLUS USING REM 2
PNS— 8 2 PRINT NEW BALANCE
PNS— 0 3 PRINT CHECK DIGIT
NOTE ALTERNATE COL DOUBLE ADD DOUBLE
NOTE MOD 10 CD TABLE & P MASKS
TABLE ~-NUM 166009753186420 1ST WORD CD TABLE
NUM 066009876543210 LAST WORD CD TABLE
MASK 222,2727.DDE P MASK BALANCE
MASK +D P MASK CHECK DIGIT
CHECK DIGIT VERIFY INSTRUCTION
OPCODE A B
CHECK DIGIT VERIFY CDV 1-15 0-9

The CDV instruction will verify the check digit of a number located in the Accumulator. The number
begins in the Accumulator digit position specified by the A parameter and ends in Accumulator digit
position 1. Any significant digits located to the left of the Accumulator digit position specified by the A
parameter are ignored by the CDV instruction.

The check digit must be located in Accumulator digit position 0.

The B parameter specifies the constant remainder that is used in computing the check digit. If the check
digit is not equal to the computed check digit, the Accumulator S Flag is set and a Keyboard Error
Corndition occurs at the next keyboard instruction. The programmer should provide the required
instructions to check the S Flag after verification.

The checking method is determined by the table designated in the A parameter of the last executed
LPNR instruction.

2-55

Example:

PARME*ER

FIELD
LEN-}—

+ OR—

LABEL OP. COQDE GTH | INC/REL

16 1718192)2!2223]24-52627 136|37138}39 |40 {41]42] 43 144145 46 |47

I S I N | IVII

If the Accumulator contains:

|>
jm

15114 13|12 |11 }10

Flojo|joj]jo}]oO

the number to be verified begins in Accumulator digit position 8 and ends in Accumulator digit position

1, in this case 23568924,

The remainder factor is 0. The check digit is 5.

Example: The CDV Instruction in conjunction with a Modulus 11 weighted system could be utilized in

the user program in the following manner.

LABEL OP CODE A
INI;[IL LP;\IR TABLE
ACCTNO \veM 4
NOTE
EX A
SLRO 1
INK 0
CDV 6
EX A
BRU ACCTNO
PN 6
4 l
NOTE
TABLE NOTE
NUM 355003692581470
MASK +DDDDDD,D
MASK 777.777.DD
NUM 455007418529630
NUM 055009876543210

2-56

noPon

REMARKS
LOAD CD & P MASK{ TABLE

INDEX ACCT NO. & CHECK DIGIT
USE “C” FOR C.D. VALUE OF “A.”
TEST FOR “A”

POSITION NUMBER

INSERT CHK DIGIT “A”

VERIFY

EX IF NOT VERIFIED

BR TO REINDEX
PRI(NT ACCT I\iO.

1, 3, 7 MODULUS 11 CHK DIGIT
TABLE AND PRINT MASKS

WT. 7 VALUES 1ST WORD CD TABLE
ACCT. NO. PRINT MASK

AMOUNT PRINT MASK

WT. 3 VALUES 2ND WORD CD TABLE
WT. 1 VALUES 3RD WORD CD TABLE

LPNR

(cD)
LOAD CHECK DIGIT AND PRINT NUMERIC TABLE INSTRUCTION
OP CODE A
LOAD CHECK DIGIT AND PRINT LPNR LABEL

NUMERIC TABLE

The LPNR instruction is used to locate the check digit and print mask tables when check digit firmware
is used. The first entry of the table must be a check digit entry. The table can vary in size from 2 to
256 words. The reader should reference CHECK DIGIT TABLE CONSTRUCTION.

CHECK DIGIT TABLE CONSTRUCTION

The table(s) that are utilized by the CDC-CDV instruction determine the checking method to be used.
The table(s) can be located anywhere within user memory and are referenced by the A Parameter of the
LPNR instruction. The table can vary in size from 2 words to 256 words and the individual entries
within the table do not have to be stored in consecutive order. However, the first entry in the table
must be labeled so that it can be referenced by the LPNR instruction.

Each entry (word) in the table is divided into three sections. These divisions are as follows:
1. Location of the next table entry to be referenced (digit positions 15 & 14).

2. Modulus used (digit positions 13 & 12).
3. Digit values (digit positions 0-9).

L.ocation

The CDC & CDV instructions start with the table entry specified by LPNR. The location of the next
table entry to be referenced by the CDC or CDV instruction is determined by the Hexadecimal value of
digit positions 15 & 14 of the table entry. This location is relative to the base word of the table (the
beginning word of the table which is referenced by the A parameter of the LPNR instruction).

Example:
HEXADECIMAL VALUE RELATIVE LOCATION OF
IN 15 & 14 NEXT TABLE ENTRY

0 1 Base Word + 1

0 2 | , Base Word + 2

1 1 Base Word + 17

0 0 | Base Word + 0O
Modulus

Digit positions 13 & 12 specify the modulus to be used in the verification scheme. The values in both
digit positions within the word must be identical and the value in positions 13 & 12 in each table entry
must be identical. The table assumes a base modulus of 16.

2-57

Therefore, to determine the entry for positions 13 & 12 the decimal values of the modulus desired must
be subtracted from the base modulus of 16. For example, if a modulus 10 scheme is to be used a 6
would be entered in digit positions 13 & 12 of every table entry (16-10 = 6).

Digit Values

Each digit position of an integer (to be checked/computed) has 10 possible values (0 to 9). Each table
entry word represents certain digit positions in the integer.

Example: A table with 3 entries (words) is used to check/compute a check digit for a 6-digit integer.
The 1st table entry is used for digits 1 and 4.
The 2nd table entry is used for digits 2 and 5.
The 3rd table entry is used for digits 3 and 6.

~ The Digit Values section of each table entry contains the weighted or assigned values for the digit
positions that the table entry represents. The weighted or assigned values are located within the digit
values section (Digit Positions 0-9) in order according to the possible value that it represents. For
example, the weighted or assigned values for the possible digit position value of 7 on the integer is
stored in digit position 7 of the table entry.

A simple alternate column Double-Add-Double Check Digit scheme would require a two-word table with
the following values in digit positions 0-9 (Digit Values Section) of the table entries.

Integer Digit Value and
Table Entry Digit Position 9 8 7 6 5 4 3 2 1 0
1st Table Entry Values 9 7 5 3 1 8 6 4 2 O
2nd Table Entry Values 9 8 7 6 5 4 3 2 1 0

Examples:

1. Alternate Column, Double-Add-Double

Modulus 10

Remaindér O

Integer (Acct No.) 4 3 2 2 5 17

Assigned Values From Table 4 +6 +2 +4 +5 +5 = 26

Remainder , 0

Total Sum of Assigned Values 2640 = 26
 Next High Multiple Of Modulus (10) 30

Check Digit ' 30-26 = 4

The values assigned in computing the check digit for the above integer (Acct No.) are as follows: The
assigned values for the digits located in positions 1, 3 & 5 of the integer are taken from the 1st table
entry. The assigned values for the digits located in positions 2, 4 & 6 of the integer are taken from the
2nd table entry.

2-58

COMPLETE TABLE

POSITIONS
15 14113 12|11 10|19 8 7 6 5 4 3 2
Next
Word Mod Digit Values
LocC
TABLE ENTRY 1 0 1 6 6 9 7 5 3 1 8§ 6 4
TABLE ENTRY 2 0 6 6 9 8 7 6 5 4 3 2

2. 1,3,7 MODULUS 11 METHOD

In this method the assigned value for each digit is obtained by assigning weights of 7, 3, 1, 7,
3, 1,... continuously; starting with the least significant digit of the number. A three-word

table is required.

Integer 4 3 2 2 71 7
Assigned Value From Table 4+9+3+2+A+5=33
Remainder 1
Total Sum of Assigned Values 33+ 1 =34
Next Higher Multiple of Modulus 44
Check Digit 44-34 = A
TABLE
POSITIONS
15 14113 1211 10]9 8 7 6 5 4 3 2 1 0
Next
Word Mod Digit Values
LOC
O 1115 5 8 1 5 9 2 6 A 3 7 0
0O 215 5 5. 2 A 7 4 1 9 6 3 0
0O 0|5 5 9 8 7 6 5 4 3 2 1 0

2-59

The table for the example of the 1, 3, 7 Modulus 11 Method was derived in the following manner.

"Ist Table Entry (Weighted 7).

x 0=

»
—
]

7
7
7
7
7
7 x
7
7
7
7

O o N N AW N
|

' 63 56 49 42 35 28 21 14 7

Minus Next Lowest
Multiple of Modulus -55 =55 —-44 -33 33 =22 -11 —11 -0

Ist Table Entry = 8 1 5 9 2 6 A 3 7

2nd Table Entry (Weighted 3).

W W W W W w W W W W
e

O 0o ~N O W A W N = O
1]

27 24 21 18 15 12 9 6 3

Minus Next Lowest :
Multiple of Modulus -22 =22 -

2nd Table Entry = 5 2

> |12
[
L

2-60

3rd Table Entry (Weighted 1).

—
»

O 00 N N 1AW
I

Minus Next Lowest
Multiple of Modulus -0 -0 -0 -0 -0 -0 -0 ~ ~ 2

3rd Table Entry = 9 8 7 6 5 4 3 2 1 0

CDC & CDV of Alphanumeric Fields

A check digit can be accurately computed and verified on fixed length alphanumeric fields that do not
exceed 7 characters in length. The check digit would make the 8th character.

Example:

The following example illustrates how a check digit could be computed on a 5-character fixed length
alpha field (check digit is entered as the 6th character) using a 1, 3, 7 Modulus 10 Method.

SEQ LABEL OP CODE A B C REMARKS
1 INITAL LPNR TABLE ~ LOAD CHECK DIGIT TABLE
2 CMPCD POS 10 : POSITION PRINTER
3 LKBR PARTNO SET KB BASE REGISTER
4 TKM 5 ENTER PART NUMBER
5 TRA PARTNO READ ALPHA TO ACCUMULATOR
6 SLROS 0 4 RIGHT JUSTIFY ALPHA NUMBER
7 INK 1 3 INSERT 3 COL 1
8 NOTE THE 3 IS INSERTED SO THAT THE CD
9 NOTE NUMBER CAN BE ENTERED THROUGH
10 NOTE THE ALPHA KEYBOARD AS A COL 3
10.1 ; NOTE USASCII NUMERAL.
11 ADK 0 0 DECIMAL CORRECT ALPHA

2-61

DATA COMMUNICATIONS INSTRUCTIONS

Recognizing and responding to Polls and Selections from the data center, and the control of
transmission of messages from the TC 500 and the receipt of messages directed to the TC 500 are
automatic functions of the Data Communication Processor firmware. The user program in the TC 500 is
responsible for the preparation of messages to be sent to the data center and for the use of any message
data that has been received from the data center.

The Data Communication Processor memory has two buffers of 256 characters capacity each; one is the
Receive Buffer, the other is the Transmit (Send) Buffer. Associated with each buffer is a flag and
indicator light:

RECEIVE SEND
Flag: R2 R3
Indicator: Input Light 3 Input Light 4
Set by: Firmware User Program
Reset by: User Program Firmware

The user program seldom sets the Message Received flag — in an on-line environment, that job belongs
to firmware. Conversely, the user program seldom RESETS the Transmit Ready flag. It is possible,
however, for the macro instruction RST to turn off the Transmit Ready flag, and it is possible for the
macro instruction SET to turn on the Message Received flag. However, these situations seldom arise and
the following rule is reliable: the user program SETS the Transmit Ready flag and RESETS the Message
Received flag.

All messages are received from the data center into the Receive buffer, and all messages are transmitted
to the data center from the Transmit buffer. When a message has been received, the user program must
provide for transferring the message data from the Receive buffer into the Accumulator and/or Normal
memory for printing, accumulation, processing, etc. When a message is to be transmitted, the user
program must provide for transferring the message data from Normal memory and/or from the keyboard
into the Transmit buffer. The Receive and Transmit instructions covered in this section permit the
transfer of an entire Receive or Transmit buffer to or from the Data Communication Processor memory,
or permit the message to be broken apart or assembled in small sections directly in the Data
Communication memory. The frequency of transmissions and the availability of Normal memory will
determine which method should be used.

The TC 500 Data Communication processor may be in both a Receive Ready state and a Transmit
Ready state simultaneously, and responds to whichever (Select or Poll) occurs first; upon responding to
the first occurrence, it is then immediately ready to respond to the second, and in the meantime, the
user program in Normal memory may proceed with other work.

RECEIVE READY STATE

The TC 500 is placed in a Receive Ready State by programing a RESET instruction to reset the Message
Receive Flag (Reader flag 2). This indicates to the Data Communication processor that the user program
has finished with the last message received, and thus, the Receive buffer may accept another message.
This permits the Data Communication processor to respond with an ACK (acknowledge) to the next
Selection from the data center (after checking the parity of each character of the Selection message); it
responds with a NAK when it is not receive ready. After receiving the ACK response, the data center
transmits the message to the TC 500.

2-62

The Data Communication processor parity checks each character, places it in the Receive buffer, checks
the Block Check Character for longitudinal parity accuracy, checks the Transmission number, sets the
Message Received flag (R2) and turns on the Message Received indicator (Input indicator 3). The user
program can determine that a message has been received by interrogating the flag using SKIP and
EXECUTE instructions, and can then perform any necessary operations with the message data.

Once a message has been received and the Message Received Flag is turned on, the Data Communication
processor does not permit the receipt of other messages until the flag is turned off by the user program.
Thus, the message may remain in the Receive buffer indefinitely, and the user program may continue to
operate on other work (such as preparing a message for transmission) until it is convenient to use the
received message data.

The receipt of a valid message while in the Receive Ready state causes the automatic transmission of an
ACK to the data center. The receipt of a message that has character or longitudinal parity errors causes
the automatic transmission of a NAK to the data center. If the TC 500 does not receive a message from
the data center following acknowledgement to the data center of a Selection, no response is made by
the TC 500. This is treated in the same manner as failure of the data center to receive a transmitted
ACK or NAK. It causes a “time out” at the data center and the Selection message must be
re-transmitted.

If the message transmitted to the TC 500 from the data center contains more than 255 characters of
text, the TC 500 will respond with a negative acknowledgement (NAK).

TRANSMIT READY STATE

Messages to be transmitted are prepared and stored in the Data Communications Transmit buffer by the
user program. When the message is complete, or when it is known that all positions available in the
buffer have been filled, the user program sets the Transmit Ready Flag (R3) by means of a SET
instruction. The Data Communication processor then sets the remote in the transmit state so that when
the next poll is addressed to this remote, automatic transmission will occur. In the meantime, the user
program may commence with preparation of the next message to be transmitted or it may begin
processing a message that has been received.

When the Poll is received from the data center and each character of the poll message has been parity
checked, the Data Communication processor initiates the transmission of the message. It automatically
inserts the Communication Control Codes and Transmission number (SOH, AD1, AD2, TR#, STX,
ETX), generates a parity bit for each character, generates a longitudinal parity character (BCC), placing
it after the ETX, and transmits the message.

Following transmission of the message, the Data Communication processor is in a Polling Message
Response state and awaits receipt of an acknowledgement (ACK) from the data center; after receiving
the ACK, it transmits an EOT character. If the data center responds with a NAK, the Data
Communication processor automatically retransmits the message. Failure of the data center to transmit a
recognizable character while the Data Communication processor is in the Polling Message Response state
will not affect the remote. It is still output ready and the message can be re-transmitted when this
address is repolled. Failure of the data center to receive EOT may cause a “time out” at the data center
indicating that the TC 500 must be repolled.

When transmission of the message is successful, the Data Communication processor automatically
increments the Transmission number, turns off the Transmit Ready light, and resets the Transmit Ready
Flag (R3). This permits the user program to determine that the Transmit buffer is available to receive
data from the keyboard or Normal memory for the next message.

2-63

RECEIVE BUFFER

The Receive Buffer has a capacity of 256 characters (32 words of 8 characters each, each character
occupies 8 bits). However, the maximum text length is 255 characters, since the ETX must also fit into
the buffer. When a message is received, only the text of the message and ETX are placed in the Receive
Buffer; that is, all of the Heading, including the Start of Text character (STX) and the Block Check
character (BCC) are striped off of the message. The End of Text character (ETX) will be placed in the
Receive Buffer immediately following the last character of the actual text. If the text is greater than
255 characters, the Data Communication Processor will return a Negative Acknowledge (NAK) to the
data center. :

When a message has been correctly received, the Message Received Flag (R2) is set and the Message
Received Indicator light is turned on. The user program determines that a message has been received by
interrogating flag R2 using Skip or Execute instructions and branching to an appropriate routine to
break apart or “unpack” the message data for printing, processing, etc. This “unpacking” may be done
directly from the Receive buffer, or the entire contents of the Receive buffer may first be transferred
into a Normal memory working area of 32 words which is then referred to as a “Receive Record Area”
and which may be in any available section of Normal memory (except words O to 31). Several such
Receive Record areas may be used if desired. When a message has been transferred from the Receive
buffer to a Receive Record area (prior to unpacking), it permits receipt of another message while the
first message is being processed.

The message data is contained in the Receive buffer or Receive Record area without regard to word
boundaries, but rather as one continuous string of characters. The instructions used to unpack the
message automatically keep track of word boundaries and the character position location in the buffer
or record area so that the program may access one character or any size group of characters, thus
providing complete character addressability.

When more than one terminal is connected to the same line, it is recommended to move messages to a
normal memory working area before unpacking the data. This will improve throughput since the D.C.
processor must examine each poll and select on the line, during which data transfer instructions will be
delayed, if they go directly from the Receive Buffer.

TRANSMIT BUFFER

The Transmit Buffer also has a capacity of 256 characters (32 words of 8 characters each, each
character occupies 8 bits). In preparing a message for transmittal to the data center, only the text of the
message needs to be assembled and may be up to 255 characters in length. The heading, STX, ETX and
BCC characters are automatically inserted in the message during transmission. The ETX is automatically
placed after the last actual character of text and the remainder of the buffer capacity is ignored during
transmission. If the text is more than 255 characters, only 255 characters are accepted and ETX is
inserted as the 256th character. The Transfer instruction is terminated and the Overflow Test flag is set
when an attempt is made to place more than 255 characters in the buffer or record area. The user
program may take corrective action after having interrogated this test flag.

The Transmit Buffer is available to receive data for the next transmission once the Transmit Ready Flag
(R3) has been Reset (by the Data Communication processor). The user program makes this
determination by interrogating flag R3 with Skip or Execute instructions and branching to an
appropriate routine to load data into the Transmit buffer.

The message may be constructed directly in the Transmit Buffer, or it may first be assembled in a
Normal memory working area of 32 words which is then referred to as a “Send Record Area” and

2-64

which may be in any available section of Normal memory (except words O to 31). Several such Send
Record areas may be used if desired. When the message has been completed, one instruction permits the
entire contents of the Send Record area to be transferred to the Transmit buffer.

The instructions used to construct a message include the capability to place the message data in the
buffer or record area sequentially without regard to word boundaries, as one continuous string of
characters. As the message is assembled, the instructions automatically keep track of word boundaries
and the character position location of the last character entered, thus providing complete character
addressability.

It is not possible to construct a message non-sequentially; that is if a message consists of fields A, B, C,
D, and E in that relative order, field A must be moved into the message before B, B before C, etc.

UNITED STATES OF AMERICA STANDARD CODE FOR INFORMATION INTERCHANGE

The United States of America Standard Code for Information Interchange is the internal code of the
TC 500.* In addition, the characters that are transmitted via data communications are USASCII with an
even parity bit. The parity bit will never be seen by a programmer in the transmit buffer, however,
because it is added to each character as each character is being transmitted to the central processor.
Characters in the receive buffer do have the parity bit, however. The following chart depicts graphically
how these characters would look as they traveled on-line.**

CH CD CH CcDh CH cD CH cDh
S A0 |oO 3,0 @ G0 P 5,0
! 2, 1 1 B, 1 A 4, 1 Q D, 1
“ 2,2 2 B, 2 B 4,2 R D, 2
A3 |3 3,3 C C 3 S 5,3
$ 2,4 4 B, 4 D 4, 4 T D, 4
% A5 5 3,5 E G5 U 5,5
& A6 |6 3,6 F C 6 \ 5,6
’ 2,7 7 B, 7 G 4,7 W D, 7
(2, 8 8 B, 8 H 4,8 X D, 8
) A9 |9 3,9 I C, 9 Y 5,9
* AA | 3,A |7 CA |z 5 A
+ 2,B ; B, B K 4, B 3/4() D,B
, AC | h) 3,C L CC | ¢() 5¢C
: 2,D | = BBD | M 4D | CR({) DD
. 2,E %() BE | N 4E |[° (™ DE .
/ AF | 2 3,F 0 C F N 5, F
DEL F,F | <>~ 7.E

Notice these bit configurations are the same as the USASCII chart except for the addition of an upper
8-bit (parity) in some cases.

** The upper 8-bit is turned on by firmware if the sum of the bits already on is odd. (Firmware adds
one bit to make it even.)

* See Appendix H.

2-65

ESTB
(DC)

ESTABLISHING RECEIVE/TRANSMIT RECORD AREAS

Establish Record Areas

LABEL OP CODE A B
ESTABLISH RECEIVE RECORD AREA RECEIV ESTB
ESTABLISH SEND RECORD AREA SEND ESTB

It is sometimes desirable to use a receive record area to unpack messages while freeing the data comm
receive buffer to accept more data. These receive record areas have a counterpart in the transmit record
areas, used to prepare a message for transmission while another message is in the transmit buffer
awaiting a poll from the central processor.

These record areas are always thirty-two words (1 track) in length and are assigned space in memory by
the assembler according to two things:

1. Memory size — as specified by the option card “$ MEMORY X ”?
2. and by the use of the pseudo instruction ESTB.

The first use of the ESTB pseudo instruction will cause the assembler to assign the record area to the
highest thirty-two words of memory available (as indicated by the memory size option card) in user
memory. The second use of the ESTB instruction will cause the record area to be established in the
next 32 words of user memory available. For example, if user memory is 384 words, (0-383), the first
record area will be in words 352-383. The second use of ESTB will establish the record area in words
320-351.

The ESTB pseudo instruction has no parameter, but it must always be labeled.

So far, we have only established receive and transmit record areas. The use of them will be discussed
later.

NOTE: If the last user word is specified in assembly rather than the total number of user words of user
memory (example: 383 rather than 384), the assembler will select the next lower track available
(example: words 320 to 352). This would cause the last 32 words to be inaccessible to the assembler
for other use. 4

An alternate, but less compact and less frequently used method of reserving main memory buffer areas
is to specify a word value as in the following examples which assume 384 words of memory:

Alternate Method to Establish Record Areas

LABEL OP CODE A
ORG 352
RECEIV REG 32

In this example, Receive would be assembled with a starting word of 352. The word number must be
the first word of a track. Track O is not a valid entry.

2-66

LRBR
RCP
IRCP

(DC)

Any number of transmit or receive record areas may be used. The number is determined by programing
requirements and memory availability.

TRANSFERRING DATA FROM ONE MEMORY ADDRESS TO ANOTHER MEMORY ADDRESS

The unpacking of messages received and the constructing of messages to be transmitted usually involves
moving data FROM one memory location TO another. The transfer can be from a record area to the
transmit buffer, from the receive buffer to a memory location, or from one memory address to another
memory address. There are other combinations. The point is, the memory address that data is being
transferred FROM and the memory address that data is being transferred TO must be designated. The
next two sections explain this procedure.

Load Receive Buffer Register

LABEL OP CODE A

LOAD RECEIVE BUFFER REGISTER ' LRBR BLANK OR LABEL

The LRBR instruction designates the starting memory address from which data will be transferred until
the next LRBR is encountered. It is the origin address. The A parameter is the label of a memory
address, often a record area which has already been established. The A parameter may be blank,
however, in which case the data will be transferred directly from the Receive Buffer. Each time the
LRBR instruction is executed, the character pointer for that “record area or buffer is set to 1. This
means the first character transferred will be the high order character of the first word in the designated
memory location.

Set Receive Character Pointer
LABEL OP CODE A

SET RECEIVE CHARACTER POINTER RCP 1-255

Each use of the LRBR instruction sets the associated character pointer to one. For each character
transferred or printed from the track, this character pointer is incremented serially. However, the RCP
instruction permits transfer of data starting from any of the 255 character positions in the buffer,
record area, or memory address.

This instruction would allow serial transfer of characters starting with character designated by A.

Increment Receive Character Pointer

OP CODE A
INCREMENT RECEIVE CHARACTER POINTER IRCP ' 0-255

The IRCP instruction increments the receive character pointer by the number of character positions
designated in the A field, or until the next field indentifier code is encountered.* The pointer is
incremented for the field identifier code also. This instruction permits by-passing a data field in a
message containing variable length fields.

*See page 2-74. .

2-67

LKBR
scp

(DC)

Load Keyboard Base Register
OP CODE » A

LOAD KEYBOARD BASE REGISTER LKBR BLANK OR LABEL

The LKBR instruction designates the starting memory address to which data will be transferred, until
the next LKBR is encountered. It is the destination address. (The A parameter is the label of a memory
address, often a record area.) The A parameter may be blank however, in which case the data will be
transferred directly to the transmit buffer. Each time the LKBR instruction is executed, the Send
Character Pointer for that memory address, record area or buffer is set to 1. This means the first
character transferred will be placed in the high order digit positions of the first word of the designated
memory location.

Set Send Character Pointer
OP CODE A

SET SEND CHARACTER POINTER SCP 1-255

Fach use of the LKBR instruction sets the associated character pointer to one. For each character
transferred to this track, the character pointer is incremented serially, and the current position of the
send pointer designates the position to which data will be transferred when the next transfer instruction
is implemented. The SCP instruction permits transfer of data to the designated buffer or transmit record
or work area beginning at the character position shown in the A parameter.

UNPACKING MESSAGES RECEIVED

Normally, when transferring the contents of a word in the Accumulator, the whole word is transferred.
Likewise, when printing the alpha contents of a word, the entire contents (up to an end alpha code) are
printed. The data comm instructions used to unpack messages pay no attention to word boundaries in
the receive buffer or receive record area. In Data Communication programing, it is possible to transfer
any number of digits up to 16 to the Accumulator and it is possible to move alpha characters from one
location to another regardless of the number of word boundaries crossed.

Transfer Receive Buffer

The TRB instruction will transfer the entire contents of the receive buffer into the receive record area as
described by the A parameter.

OP CODE A
TRANSFER RECEIVE BUFFER TO RECORD AREA TRB » LABEL

The use of the TRB instruction assumes that a receive record area has been established by one of the
routines previously described in this section. (It is possible to use the TRB instruction with a label in
the A parameter that references a memory address other than an established receive record area.
However, the entire 32 word receive buffer will be transferred, overlaying the 32 words following the
base address referenced by the LRBR.) There can be several such record areas, depending upon user
memory available and the program requirements and any of them may be accessed by the A parameter.

2-68

Transfer to Accumulator as Numeric

TRANSFER TO ACCUMULATOR AS NUMERIC

TRBA
(DC)

OP CODE A
TRBA 0-16

Since the Accumulator has a maximum of 16 digit positions available, 16 digits is the maximum number
permissible in the A parameter of this instruction. This instruction is terminated before the-““A” number

of digits are transferred if a field identifier code is encountered.

The TRBA instruction moves characters from some memory address. As was discussed earlier, when
moving data from memory, the LRBR instruction indicates from where. So, the last LRBR instruction,
at the current RCP position, will indicate from which buffer or record area and from which position in

that buffer the transfer will take place.

No matter, however, where the digits are being transferred from, they will be placed in the Accumulator
as numeric digits. This deserves some special consideration.

Example:

TRANSFER TO ACCUMULATOR AS NUMERIC

Result in Accumulator:

E8O0O3EEO0O1EBS5SEDO]1

t Digit Pos. 15

Digit Pos. 0

OP CODE A
TRBA 16

In this instance, the “E’s,” “B’s,” and “D’s” in the Accumulator resulted from a 3,E,and a 3,B, and a
3,D in memory which are valid codes for the TRBA instruction. The “E” in the Accumulator is, in
reality, a hexadecimal 14, the “B” a hexadecimal 11, and the “D” a hexadecimal 13.

NOTE: Let's say the contents of the Accumulator were moved to a memory location, e.g., word 30.

Word 30 would then look like this:

syllable 0 :

syllable 1

syllable 2 :
syllable 3 :

These are the machine codes for these mnemonics:

LABEL OP CODE A
AL 1
POS 55
AR 1
ocC 3

E301
EB55
EEO01
E803

o

REMARKS
Advance left 1
quition to 55
Advance right

Open carriage, advance 3
2-69

TRF
(DC)

It is important to remember that the TRBA instruction, while designed to transfer one character at a
time into the Accumulator, must “scoop up”’ two digit positions from the memory location indicated by
the current LRBR and RCP instruction in order to determine the digit being transferred. Look at the
USASCII chart again page 2-65 Every code in the table is represented by a row and column and must
occupy 8 bits. The “numbers” in the table are located in column three. Since there are 16 rows in the
table, column 3 has 16 entries: 0-9 and the hexadecimal digits (A, B, C, D, E, and F) “:», <« “<”,
“=> 5> and “?”. This information is useful when, for instance, an A% is desired in the Accumulator
as a result of a TRBA instruction. The central processor would send to the TC 500 the USASCII
equivalent of a colon (:). In USASCII code, it is “3,A.” When the TRBA instruction encounters the 8
bit representation of a colon (3,A), the upper four bits are pared off and the lower four bits are placed
in the Accumulator.

Used this way, the TRBA instruction is an instrumental tool for loading programs in the TC 500 using
codes sent from a central processor.

Transfer Alpha
OP CODE A

TRANSFER ALPHA TRF 0-255

The TRF instruction transfers alphanumeric (8 bit) characters from the memory location specified by
the last LRBR instruction beginning at the current RCP position to the memory location specified by
the last LKBR instruction beginning at the current SCP position. The number of characters to be
transferred is specified by the A parameter of the TRF instruction; the instruction is terminated by the
transferring of the exact number of characters specified or by encountering a field identifier code. When
the instruction is terminated, no matter how it is terminated, (by reaching the number of characters
specified or by encountering a field identifier code) an end of alpha code will be inserted in the next

character position of the memory address indicated by the LKBR. The SCP is not incremented for that
code, however.

The following example attempts to show how several product codes, which have come from a central
processor, can be stored in TC 500 user memory:

First word of Receive Buffer:

“ITEM# ”
419|5]4l4]5]4|D|2]3
? Digit Pos. 15 ‘
Digit Pos. 0 ’
Example:
LABEL OP CODE A

LOAD RECEIVE BUFFER REGISTER LRBR STORE
LOAD KEYBOARD BASE REGISTER LKBR STORE
TRANSFER ALPHA TRF 5
RESERVE REGION STORE REG 1

2-70

PAB
{DC)

This is what “STORE” would look like after the transfer:

“ITEM# »
419151414 |5|4{Dj|2|3]0]|0]|0|O]|O]O
3
Digit Pos. 15 I
Digit Pos. 0 .

The RCP and SCP are incremented for each character transferred; the RCP will also be incremented for
a field identifier code if one is present. The overflow flag will be set if either pointer is incremented past
255, or if ETX is received.

Print Alpha From Memory Location Designated By Last LRBR Instruction

OP CODE A

PRINT ALPHA RECEIVE BUFFER PAB 0-150

The PAB instruction usually is used with a receive buffer or record area but will print from any memory
location designated by the last LRBR instruction beginning with the current RCP position. The printing
will continue until the exact number of characters have been printed, or until a field identifier code is
encountered. For each character printed, the RCP will be incremented by 1. If the RCP is incremented
past 255, the overflow flag will be set.

Example:
LABEL OP CODE A
LOAD RECEIVE BUFFER REGISTER LRBR RECEIV
PRINT ALPHA PAB 15
ESTABLISH RECEIVE RECORD AREA ESTB RECEIV

NOTE: It is also possible to print from memory using the PA instruction. The distinction is the
flexibility of the PAB instruction since it allows the programmer to designate a starting character
position within a word (done by setting RCP) and to designate the exact number of characters to be
printed. The PA instruction simply prints from the first character position of the word specified by its
A parameter until it encounters the end alpha code.

PREPARING MESSAGES FOR TRANSMISSION

Remember from the discussion of unpacking messages received that instructions which transferred
characters and printed characters were not limited by word boundaries. The transfer is guided by a
character pointer (RCP). Likewise, in preparing a message for transmission, those instructions dependent
on a character pointer (SCP) and an LKBR instruction are not limited by word boundaries.

2-71

TSB
TRAB

(DC)

If any of these instructions are used to transfer data to the transmit buffer while the transmit ready flag
is set, the instruction is held up from being cxecuted. Normally, the transmit ready flag is interrogated
before information is moved into the transmit buffer.

Transfer Send Record Area

A message may be prepared for transmission in a user memory send record area and then be transferred
to the transmit buffer. This transfer will move the entire 32 words of a send record area to the transmit
buffer. The send record area is determined by the A parameter of the TSB instruction. The A parameter
is the label of a record area established by one of the routines using ESTB. The End of Text Character
will be automatically inserted after the last character of the message.

OPCODE A

TRANSFER SEND RECORD AREA TSB LABEL

Transfer from the Accumulator into the Memory Address Specified by the Last LKBR
OP CODE A B

TRANSFER ACCUMULATOR TO “LKBR” TRAB 0-15 Oorl

The TRAB instruction will transfer up to 15 numeric digits (4 bits) from the Accumulator into the
memory location designated by the last LKBR instruction, placing the digits into memory as 8 bit alpha
characters beginning with the current position of the SCP.

The digit position of the Accumulator from which digits are to be transferred is designated by the A
parameter. The B parameter must be either a zero or one: A “1” meaning leading zeros will be
transferred and a “0” meaning leading zeros will not be transferred.

Example:

LABEL OP CODE A B
LOAD KEYBOARD BASE REGISTER LKBR ADRES
TRANSFER ACCUMULATOR TRAB 10 1
ESTABLISH 2 WORD REGION ADRES REG 2

The transfer could also have been to the send buffer or send record area.

Example:
OP CODE A_ B
LOAD KEYBOARD BASE REGISTER LKBR
TRANSFER ACCUMULATOR TO LAST “LKBR” TRAB 10 0

2-72

TRF
TRCB

(DC)

If the Accumulator looks like this prior to execution of TRAB:

316121718]19]1]5]4]0]6
~——— - Digit Position 15 l
Digit Position O

then the first and second words of the transmit buffer would look like this after the execution:

Ist word 3131316131213171318]3]9]3}1}3{5

Digit Position 15
Digit Position 0

2nd word 314131011316

If the Accumulator looked like this prior to execution of the same instructions:

11814]5(12]0]0|9|6(8]9]1]|5]4]|0]6

A /
Digit Position 15

Digit Position 0

then the first and second words of the transmit buffer, would look like this:

1st word 3191316138393 |1}3]5]3|4]3]0

Digit Position 15
Digit Position 0

2nd word 3|6

Those digits occupying positions in the Accumulator higher than the digit position specified by the A
parameter were ignored, and, since preceding zeros were not transferred, the first digit moved was the
“9” in digit position 8.

Transfer Alphanumeric Data

OP CODE A
TRANSFER ALPHA TRF 0-255
Refer to Page 2-70 for complete discussion of this instruction.
Transfer Character to Memory Address Specified by the Last LKBR
OPCODE A B
TRANSFER CHARACTER TO TRCB 0-15 0-15

2-73

TKM
(DC)

The TRCB instruction transfers the USASCII code designated by the decimal value in the “A” and “B”
parameters into the memory address specified by the last LKBR instruction, with the first character
being transferred to the position indicated by the current position of the SCP. For each character
transferred, the SCP is incremented by one.

To use this instruction, it is necessary to know the USASCII row and column designation of the
character to be transferred. The A parameter indicates the column number from the USASCII table, and
the B parameter is the row number.

For example, if an asterisk (*), USASCII column 2, row 10, is to be placed in the buffer, then the
instruction to accomplish this is:

OP CODE A B
TRANSFER CHARACTER TO TRCB 2 10

Type to Memory
OP CODE A B

TKM 0-150

The TKM instruction allows the operator to enter data directly into the memory address specified by
the last LKBR beginning with the current position of the SCP. The SCP will be incremented for each.
character entered and an end of alpha code will be placed in memory after the last character ended.
However, the SCP is not incremented for this character.

The use of the backspace key will cause the SCP to be decremented for each depression. However, the
SCP cannot be decremented beyond the position held when the TKM instruction was encountered.

LABEL OP CODE ‘:A_
LOAD KEYBOARD REGISTER LKBR AREA
TYPE INTO MEMORY TKM 16
ESTABLISH 4 WORD REGION AREA REG 4

The instruction may have been used to enter data into the transmit record area:

LABEL OP CODE A
LOAD KEYBOARD BASE REGISTER ' LKBR SEND
TYPE INTO LAST “LKBR” TKM 25
ESTABLISH SEND RECORD AREA SEND ESTB

FIELD IDENTIFIER CODES AND VARIABLE LENGTH FIELDS

Imagine a situation where a customer’s name, street address, city and state are being transmitted to the
TC 500 to be printed on 3 different lines of an invoice. Further, let’s assume the message is in the

2-74

Receive Buffer and the programmer wishes to use the PAB instruction to print the name on the ship-to
portion of the invoice. What should the programmer put in the A parameter of the PAB instruction? If
the name is “Acme Printing,”” the A parameter should be 13 characters. Names are of variable length,
however, and there is a convention in GP 300 that allows for varying length fields. This convention is
called a “field identifier code.” Whenever a field identifier code is encountered by any of the following
data comm instructions, execution is terminated and the next instruction will begin. These instructions
are:

LABEL OP CODE A B E REMARKS
TRBA 0-16 Transfer as numeric
TRF 0-255 Transfer alpha
PAB 0-150 Print from buffer

Valid field identifier codes are in columns O and 1 of the USASCII Chart. The two charts below show
the codes, their 4 bit hexadecimal value and their accompanying flag patterns.

The codes from column O present problems if the Y flags are used in the TC 500 user program. After
reading a column O field identifier code, all four Y flags are either set, set or reset and the appearance
of these Y flags could seriously upset the logic of the TC 500 program if the Y flags are interrogated
and acted upon without knowledge of these additional flag settings. This same problem could arise when
reading column 1 codes and when interrogating the K flags. Therefore, the use of these field identifier
codes must be given careful consideration and their use must be coordinated with the central processor.

NO FLAGS SET Y FLAGS SET* K FLAGS SET* TEST FLAGS SET
3214 3214 UILO
NUL SOH 0001 DC1 0001 ETX 0001
STX 0010 DC2 0010
DC3 0011
DC4 0100
ENQ 0101 NAK 0101
ACK 0110 SYN 0110
BEL 0111 ETB 0111
BS 1000 CAN 1000
HT 1001 EM 1001
LF 1010 SUB 1010
VI 1011 ESC 1011
FF 1100 FS 1100
CR 1101 GS 1101
SO 1110 RS 1110
SI 1111 Uus 1111

*Y and K flags designated are set if “1” and reset if “0”

It is generally agreed that many of the above USASCII codes should never appear in a’ text. EOT is
specifically filtered out by the Data Communications Processor. NUL does serve as a field identifier but,
as indicated in the chart above, it terminates the instruction but does not set any flags; neither does it

2-75

reset any previous flags. It merely terminates the instruction. ETX has special significance in that when
ETX is detected during a transfer instruction, the Overflow flag will be set and the instruction
terminated.

Many of the above codes should not appear in a text but if they do, the TC 500 will accept them and
set the flag pattern indicated above. The chart below shows the codes that normally can be a part of a
text message. Some codes from the above chart may be excluded by Central Processors or by Line
Adapters. Applicational programing should consider these as termination and flag setting codes rather
than the entire range listed in the above table.

NO FLAGS Y FLAGS K FLAGS TEST FLAGS
3214 3214 UILO
NUL : ETX 0001
DCI 0001
DC2 0010
DC3 0011
DC4 0100
BS 1000
HT 1001
LFE 1010
VT 1011
FF . 1100 FS 1100
GS 1101

Now let’s look at some examples in which we will attempt to show proper use of field identifier codes.
Example 1:

An invoice ship-to region has been defined as consisting of from 2 to 4 lines of not more than 25
characters per line. In addition, the last line of the ship-to address will determine if the sold-to address is
“SAME” or if it requires a separate address.

PROBLEM: The TC 500 programmer must program for variable length fields and for variable number of
fields. He must also make a decision whether to print “SAME” in the sold-to address area or to begin
printing a new sold-to address.

DECISION: After each field or line of the ship-to address a field identifier code will be inserted by the
central processor. Let’s make this “DC1,” except for the last line of the ship-to address which will be
“DC2” if the sold-to address is “SAME” or a “DC4” if sold-to address is another distinct address. A
“CAN” code will terminate the last line of the sold-to address.

Here are some programing suggestions that will accomplish the necessary invoice addressing routine.
(Assume the necessary steps have been taken to establish a receive record area, to establish alpha
constants, etc.)

2-76

This routine is very flexible. Each line printed can be of any length up to 25 characters. If the field
(line) is less than 25 characters*, the field identifier will terminate the instruction and set a K flag
pattern. Also, there may be any number of lines to an address since either K1 or K2 will mark the end

of the last line of the address.

LABEL OP CODE é. # _B_ 2 REMARKS

PRTLIN LRBR RECEIV Load Receive Buffer Register
AL 2 | Advance left 2 lines
RST K 1234 Reset K flags
POS 5 Position to print
PAB 26 ' Print on address line
EX K 4 1 K4 — means more lines
BRU PRTLIN Print another line
EX K 1 3 K1 — ship-to = sold-to
AL 5 : Advance to sold-to area
PA SAME Print “SAME”
BRU ouT Exit the routine
EX K 2 2 K2 — means sold-to address
AL 5 Advance to sold-to area
BRU PRTLIN #1 Base to print new address
EX K 3 1 K3 — end of address routine
BRU OouT Exit the routine

Example 2:

This example shows how field identifier codes may be helpful while constructing messages for
transmission to the central processor.

Assume we are in a file maintenance routine and wish to send the name and number of a customer to
the central processor. Every name has a corresponding number.

*Notice the A parameter of the PAB instruction is 26. The problem definition permits only 25
characters per line. In the event, however, the field is exactly 25 characters long, the extra character in
the A parameter will allow the PAB instruction to pick up the field identifier code. Otherwise, the
character pointer will be pointing at the 26th character at the time of execution of the next PAB
instruction since it is not incremented when reading an F.l. This PAB instruction would read the field
identifier and terminate, instead of reading the next field.

2-717

PROBLEM: The TC 500 programmer must allow for several such combinations of names and numbers
and also must distinguish between the names and numbers.

DECISION: Every name will be followed by the field identifier “DC2.” Every customer number will be
identified by a trailing “DC4” if there are more names and numbers to follow or a “CAN” if the
current customer number is the last one. After indexing a name, the operator terminates with OCK 1.
After indexing a number, the operator terminates with OCK 2 if there are more names and numbers and
OCK 3 or OCK 4 if there are no more.

LABEL OP CODE i_ # E 9_ REMARKS

LODBUF LKBR XMIT Load transmit buffer
AL 2 Advance to type
POS 5‘ Position to print
TKM 25 Index name/number
EX K 1 2 K1 — means name
TRCB 1 1 ’ 1,2=DC2=0CK 1
BRU LODBUF #1 Index again
EX K 2 2 K2 — means number
TRCB 1 2 1,4 =DC4 = OCK 2
BRU LODBUF #1 ~ Index again
EX K 34 3 K3,4 — last number
TRCB 1 8 1,8 = CAN = OCK 3
SET R 3 Set transmit flag
BRU AWAY Exit routine

The point was made earlier in this section that many data communications instructions involve moving
data from one memory address to another. Most of the instructions moving data from a memory address

2-78

have a counterpart for moving data to a memory address. The following chart depicts these
characteristics: '

CAPABILITY (TO) * INSTR INSTR (FROM) CAPABILITY
Transfer All Data to “N” LKBR LRBR Transfer All Data From “N”
“To” Character Pointer SCP RCP “From” Character Pointer
Transfer Alpha To “N” TRF TRF Transfer Alpha From “N”
Transfer Numeric To “N” TRAB TRBA Transfer Numeric From “N”
(usually Transmit Buffer) (usually Receive Buffer)
Transfer “N” To Transmit Buffer TSB TRB Transfer From Receive Buffer
(N usually Send Record Area) ' (usually Receive Record Area)
Type to “N” TKM PAB Print From “N”

(N usually Receive Buffer)
Transfer Character To “N” TRCB None
(N usually Transmit Buffer)
None IRCP Increment “From” Character
Pointer

When the TKM instruction is terminated by the use of an OCK or a PK, an end of alpha code is
automatically inserted behind the last character indexed. However, the SCP is not incremented for that
character. Therefore, unless a field identifier code is inserted or unless the SCP is changed, the next
TKM or TRCB instruction will begin immediately after the last text character.

When the central processor reads the field identifier codes, it will be able to determine the next
appropriate action depending on the code read.

“D”" FLAG GROUP

In addition to the message received (R2) and transmit ready (R3) flags, there is a corresponding pair of
flags — the data comm processor transmit ready (D3) flag and the data comm processor message
received (D2) flag — that give the programmer a faster indication of the status of the transmit and
receive flags. Since R2 and R3 are set or reset, respectively, by firmware only after D2 and D3 have
been interrogated, it might be faster for a programmer, for example, to interrogate the D3 flag with a
standard SKIP or EXECUTE instruction and programmatically reset R3 (as opposed to waiting for
firmware to do it). A new message could then be transferred to the transmit buffer and the transmit
ready light could again be set.

OTHER DATA COMMUNICATION INSTRUCTIONS

'GP 300 has a group of instructions that allows the programmer to assume some firmware responsibilities.
An example is the transmission number that is part of the header portion of a message. This number is
usually calculated by firmware and is not an important programing consideration. However, there are
two instructions in GP 300 that allow the programmer to transfer the transmission number to the
Accumulator and also to assign any 1, 2, or 3 digit number to the transmission number.

*N signifies a memory location

2-79

RSA
LSA

(DC)

The following section will discuss several similar instructions and their proper use.
Transmit Address

1. Retrieve Send Address

OP CODE

RETRIEVE SEND ADDRESS RSA

After this instruction has been executed, the four most significant digit positions of the Accumulator
will contain the two-character machine send address. These are alpha characters and each character will
occupy two digit positions in the Accumulator. For example, if the send address is 1A, then the
Accumulator will look like this after execution of the RSA instruction.

3{1]4]1]0{0]j0|0|O]O|OjO]OjO}O]O
L——Digit Position 15 |
Digit Position 0

It is then up to the programmer to manipulate, store, print, or change the machine address.

2. Load Send Address

OP CODE

LOAD SEND ADDRESS LSA

Upon execution of this instruction, the four high order digit positions of the Accumulator will be
committed to memory as the Send Address for the TC 500.

These are 8 bit alpha characters, (refer to preceding examples) and, since they must occupy the high
order positions of the Accumulator, the numeric keyboard instructions are not best suited to arrange the
data in the Accumulator as required. This is particularly true since the operator must know the
USASCII chart to accomplish the data format. For example, if the desired Send Address is “XY,” then
“5.8” and “5,9” (the USASCII equivalent of XY) would be entered.

All characters in the transmit buffer are USASCII coded. They are 8 bit characters. When the characters
are placed in the Accumulator as numeric digits, they are 4 bit. Thus, they lose the upper four bits. This
is true of any character in the receive buffer or record area, whether it is a USASCII alpha character or
numeral. Therefore, the only valid characters which may be correctly transferred from the memory
address indicated by the last LRBR into the Accumulator are from column 3 of the USASCII chart, any
of the field identifier codes and also the “+” and “— characters from column 2. If an invalid code is
transferred into the Accumulator, the S flag will be set, the RCP will be incremented, and the transfer
will continue. Here are some examples:

2-80

Rec. Record Area

“RECEIV”
13l0[3]1]3]2[3[3]3]4[3[5[3]6[3[7[4]1[42[4]3]4[4B[E B[S B[0 B RREREBC B BERBRI R
A " J\. J\. J/

1st Word 2nd Word 3rd Word
Rcv. Buff. or Rev. Rec. Area , BIE[3]3]3] 031 XIXIXIXIX[X[X]X]
~ 4th Word /
Example 1
| OP CODE A
LOAD RECEIVE BUFFER REGISTER LRBR RECEIV
TRANSFER TO ACCUMULATOR AS NUMERIC TRBA 8

Result in Accumulator:

0]1)2]3]4]|5]l6|7

Digit Pos. 15 T
Digit Pos. 0

At this point, the RCP is at 9. Note that it will not be necessary to again designate where digits will be
transferred from if “RECEIV” is going to be the donor address. The next example is intended to show
the result when invalid characters are transferred into the Accumulator, using the current RCP position.

Example 2
OP CODE A
TRANSFER TO ACCUMULATOR AS NUMERIC TRBA 4

Result in Accumulator:

11213]4

f Digit Pos. 15 T
' Digit Pos. O

In this instance, the characters in the buffer were respectively, A, B, C, and D. They were alphabetic
characters, and, when transferred into the Accumulator as numeric using the TRBA instruction, the
upper four bits were pared off, leaving the lower four bit representation. Also, the Accumulator S flag
was set, which could have been interrogated and acted upon.

Look at a USASCII chart. Notice that the lower four bits of the USASCII representation of any of the
codes from column 3 are the same as the numeral depicted, e.g., a “3” in the USASCII chart is 3,3 and
a “7” is 3,77. When the TRBA instruction acts upon a 3,7 in memory, the result is a “7” in the
Accumulator.

2-81

RRA

LRA
(DC)

An easier approach utilizes alpha keyboard entries. The suggested sequence of instructions follows:

LABEL OP CODE _li REMARKS
LKBR WORK Designate memory area
TKM 2 Enter 2 character address
TRA WORK Transfer to Accumulator
LSA Load Send Address
WORK REG 1 Reserve one word

Receive Address

1. Retrieve Receive Address

OP CODE

RETRIEVE RECEIVE ADDRESS RRA

This instruction performs like the Retrieve Send Address instruction except it is the Receive Address that
is brought into the four high order digit positions of the Accumulator. The Accumulator format is the
same. Again, the program must provide for doing something with the contents of the Accumulator.

2. Load Receive Address

OP CODE

LOAD RECEIVE ADDRESS LRA

The Accumulator is transferred to the Receive Address Register by this instruction. The programing
steps to get the Receive Address in the required Accumulator positions are the same as those outlined
for the Send Address. (Refer to the Load Send Address instruction.)

NOTE: In addition to the Receive Send Addresses, the TC 500 has a permanent machine address. It is
focated in word 1064 and is substituted for the Receive and Send Addresses every time the power is
turned on the TC 500 or when the program halt button is used. The Ready Button does not reload the
Send and Receive Addresses. This address may only be accessed by unprotecting the 2nd track of Data
Comm memory and using memory modify to change the permanent address.

Send Transmission Number

The TC 500 maintains a transmission number that accompanies every message it sends to a central
processor. It may be a one, two, or three digit number. Upon receipt of an “ACK” from the central
processor resulting from a successful transmission, the TC 500 increments the number by one. If the
transmission number is one digit only, it will return to zero every ten transmissions. If it is a two digit
number, it will return to zero after each one hundred transmissions; for a three digit number, it becomes

2-82

RSN
LSN
RTN

(DC)

zero every one thousand transmissions. The number is not incremented, however, until the ACK has
been received. ‘

1. Retrieve Send Transmission Number

OP CODE

: RETRIEVE SEND TRANSMISSI'ON NUMBER RSN

This instruction transfers the 1, 2, or 3 digit USASCII Send Transmission Number from its register into
the 2, 4, or 6 most significant digit positions of the Accumulator. The balance of the Accumulator will
contain zeros. The programmer must decide what to do with the Send Transmission Number once it is
in the Accumulator. Perhaps it will be printed, stored in memory, or incremented or decremented. It
depends on the program requirements.

2. Load Send Transmission Number

OP CODE

LOAD SEND TRANSMISSION NUMBER LSN

Execution of this instruction will cause transfer of the Accumulator to the Send Transmission Number
Register. Only the 2, 4, or 6 high order digit posmons may contain significant digits. The rest must
contain zeros. (The number of positions in the Accumulator that may contain significant d1g1ts is
determined by the length of the Send Transmission Number — 1, 2, or 3 digits.)

Expected Transmission Number

The TC 500 maintains an Expected Transmission Number that it compares against the actual
transmission number sent by the central processor. If the two numbers are equal, the TC 500 will
increment the Expected Transmission Number. This number will return to zero, after 10, 100, or 1,000
transactions depending upon the length of the number chosen.

If the numbers do not compare, the Transmission Failure Flag will be set (D2) but the message is still
received.

In most cases, the central processor will simply turn around the Send Transmission Number it receives
from the TC 500 and send it back to the TC 500. In this way, the TC 500 is able to synchronize the
sequence of messages it sends and receives. The messages the TC 500 receives are usually a response to
the last message it transm_ltted Synchronization is not a problem, then. Transmission number checking
and manipulating may be desirable, however, whenever the TC 500 program is not receiving and
transmitting messages one-for-one. The use of the RSN, LSN, and the following two mstructmns is left
to the discretion of the programmer.

1. Retrieve Expected Transmission Number

OP CODE

RETRIEVE EXPECTED TRANSMISSION NUMBER RTN

1 2-83

LTN
RTH
RPR

(DC)

This instruction transfers the 1, 2, or 3 digit USASCII numeric character “Expected Transmission
Number” from its register into 2, 4, or 6 most significant digit positions of the Accumulator. The
balance of the Accumulator will contain zeros. Just like the other “Retrieve” instructions, the
programmer must decide how he will handle the data in the Accumulator; i.e., print, store, increment,
etc.

2. Load Expected Transmission Number

OP CODE
LOAD EXPECTED TRANSMISSION NUMBER LTN

TMS instruction transfers the contents of the Accumulator in the Expected Transmission Number
Register for messages received. Only the 2, 4, or 6 most significant digit position of the Accumulator
may have significant characters. The balance of the Accumulator must contain zeros.

The data in the Accumulator must be represented by USASCII code. It is therefore suggested that the
same approach used in loading the Send Address be used in loading the Expected Transmission Number.
Retrieve Transmission Number
‘ OP CODE
RETRIEVE TRANSMISSION HEADER RTH

Execution of this instruction transfers into the Accumulator the contents of word 1184. This word
contains the last transmission number received from the central processor. The transmission number is
USASCII coded and occupies the 2, 4, or 6 high order digits of the Accumulator. The next 2 digit
positions reveal the type of Select Character (since this word refers to the last message received) used
during the last transmission. A broadcast select would be represented by a “t” (7/4); a fast select would
be represented by a “s” (7/3); a group select is a “u” (7/5); and a select is a “p” (7/0).

This information will be in digit positions 13 and 12, or 11 and 10, or 9 and 8 depending upon the
length of the transmission number.

Retrieve Character Pointer Register

OP CODE
RETRIEVE POINTER REGISTER RPR

This instruction will transfer the contents of the Character Pointer Register ihto the Accumulator. All
digits in the Accumulator will be hexadecimal and the format of the Accumulator will be as follows:

B B B B

vV W L L W W W W L L W W

o O O 0O 0O O O O O O O O

R R C ¢ R R R R Cc C R R

D D K K D D D D K K D D
digit positions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 -0

RCP SCP
BASE LRBR BASE LKBR
WORKING LRBR WORKING LKBR

2-84

RPF
 (DC)

There is more information stored in the Character Pointer Register than just the character pointers. The
Keyboard Base Register and the Receive Base Register have both their base address and their working
address maintained in the Character Pointer Register. The meaning of the Accumulator format can best
be explained with an example.

Let’s say the Accumulator looked like this after execution of the RPR instruction:
digit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hexadecimal val. 6 2 0 ¢C 1 1 6 1 4 3 1 3 1 1 A 1

Digit positions 8, 9, and 10 reveal the LRBR base position — word 96 of block 1 (351). Digit positions
12 and 13 are the current position of the Receive Character Pointer — 12. Digit positions 11,14, and 15
reveal the current word of memory being used as the Receive Base Register — word 97 of block 1
(352). This makes sense because the receive character pointer has been incremented 11 times. Since each
word may contain 8 USASCII characters, the information transfer will be from LRBR base address plus
1 — word 352. The same logic applies to determining the status of the Send Character Pointer and the
Keyboard Base Register.

Polled Flags Register
1. Retrieve Polled Flags Register

OP CODE
RETRIEVE POLLED FLAGS REGISTER RPF

This instruction transfers into the Accumulator the contents of the Polled Flags Register. This register is
really only one digit (4 bits) in which each bit has significant meaning. Since this digit is transferred into
the Accumulator sign position, the Accumulator flags may be tested and acted upon. Here is how the
flags function, with their associated Accumulator flag shown:

POLLED FLAG ACCUMULATOR FLAG MEANING
3 M This TC 500 has been polled or selected.
2 ‘ C Another TC on the line has been polled or

selected. This flag will be set when there is
any polling or selecting for any other TC on
the line.

1 S There is a break in the communication line.
The carrier drops from the CPU while the
TC 500 is transmitting. This function pertains
only to 4 wire systems.

Notice the Accumulator “—” flag is not represented. There is no corresponding Polled Flag.

2-85

LPF
RTF

(DC)

After execution of the RPF instruction, the program should interrogate the Accumulator flags and
perform according to the program requirements.*

2. Load Polled Flags Register

OP CODE

LOAD POLLED FLAGS REGISTER LPF

To load the Polled Flags Register, the Accumulator must be cleared and the Accumulator flags set or
reset, depending upon the Polled Flags status required by the program. Then, execution of the LPF will
load the Polled Flags Register with the flags set.

Two Wire/Four Wire Register

The TC 500 may be connected to a central processor two ways. When using a data set to establish
connection with the central processor, the transmission media is known as ““2 wire.” When the data set
is not used, and the TC 500 is on a “direct connect™ line to the central processor, then the transmission
media is known as “4 wire.”

The Data Communications Processor contains a special register to enable two or four wire transmission
mode. One bit in this register is used to determine which mode is active.

1. Retrieve Two Wire/Four Wire Register

OP CODE

RETRIEVE TWO/FOUR WIRE REGISTER RTF

Execution of this instruction will transfer the contents of the two wire/four wire register into the
Accumulator. When the Accumulator M Flag is on, the mode is two wire; when it is off the mode is
four wire. Like other “Retrieve” instructions, the user program must then interrogate the Accumulator
flag and perform according to program requirements.

2. Load Two Wire/Four Wire Register

LABEL OP CODE A B Cc REMARKS
LTF Load Two/Four Wire Register

*This instruction is most useful in debugging a new system. It will at least reveal if a poll or select from
the central processor is getting through to the TC 500.

2-86

Execution of this instruction will transfer the contents of the Accumulator into the Two or Four Wire
Register. The mode will then be 2 or 4 wire depending upon the status of the Accumulator M flag at
the time of execution.*

INPUT WITH PUNCHED PAPER TAPE/EDGE PUNCHED CARD READER

Instructions are provided to read punched paper tape or edge punched cards, using a Burroughs Style A
581 Paper Tape/Edge Card Reader as the input adjunct. All subsequent reference to ‘“paper tape”
applies both to punched paper tape and to edge punched cards, unless indicated otherwise.

Tape reading is serial, one character at a time, at a speed up to 40 characters per second (when no
printing accompanies it). When reading paper tape and printing, the reading speed is up to 20 characters
per second; when reading and punching only (no printing), reading speed is up to 40 cps.

The Series L/TC internal character code is USASCII; however, any 5, 6, 7, 8 channel paper tape code
can be read and interpreted by utilizing a Table of Input Code Assignments for conversion of the paper
tape code into the internal USASCII code. The functional codes in a code set may be used as field
identifier codes to terminate tape reading and set flag patterns, or may be ignored (refer to the Table of
Input Assignments in Appendix I). The scheme of character parity checking for a particular code set is
also a function of the Table of Code Assignments. Firmware for 5 channel code is different than that
for 6, 7, or 8 channel “table look-up” firmware or for USASCII No Table firmware.

PAPER TAPE READER INSTRUCTIONS

The Paper Tape Reader instructions are designed to function both as “read” instructions and as
“keyboard” instructions.

When all tape reading conditions exist, i.e., the reader is on, the photo-electric light is on, and media is
present, reading of the paper tape will occur according to the specifications of the instruction.

If any of the above conditions do not exist, then the reader is not operable (a “reader condition” has
occurred). The read instruction now reverts to its keyboard counterpart**, and the keyboard buffer is
cleared so that the operator may now manually index that data required by the altered read instruction.
Note that any data resident in the keyboard buffer is lost when the read instruction fails to execute. It
follows that the reader instruction must be reached before a manual entry is made in its place. Because.
if the operator anticipates this condition and indexes data before the program halts, the data will be
lost.

The mnemonic representations of the read instructions are the same as selected keyboard instructions
with the addition of a prefix letter “R.”

Instructions that involve punching paper tape along with reading of paper tape will inhibit the punch
part of the instruction if the tape perforator is turned off. In addition, the Punch Off Indicator light is
turned on and Punch Off Flag is set (refer to Page 2-95).

*The user should set the mode of transmissi'on after firmware is loaded into the machine. The mode
only needs to be set once; thereafter, unless firmware is reloaded, the mode will remain the same until
set by another LTF instruction.

**EXCEPTION: RNK reverts to a NKRCM (see Page 2-4).

2-87

RTK
RTKM
REAM

(PT)

PAPER TAPE/EDGE PUNCHED CARD INPUT INSTRUCTIONS

Read Alphanumeric Data and Print Instruction

; OPCODE A
READ ALPHA AND PRINT = = RTK 0-150 15” forms transport

RTK 0-255 26” forms transport

The RTK instruction reads from tape (i.e., paper tape or edge punched card) and prints the number of
alphanumeric characters specified by the “A” field. The instruction will be terminated upon reading a
field identifier code or upon completion of reading the number of alphanumeric characters as denoted
by the “A’’ parameter. ‘

The flag patterns to be set by the field identifier codes are determined by the Table of Input Code
Assignments (see Appendix I).

When a “reader condition” exists, the RTK instruction reverts to a TK instruction and the keyboard
buffer is CLEARED in anticipation of manual input.

Read Alphanumeric Data into Memory and Print Instruction

OP CODE A
READ ALPHA INTO MEMORY AND PRINT RTKM 0-150 15” forms transport

RTKM 0-255 26 forms transport
The RTKM instruction reads from tape into memory and prints the number of alphanumeric characters
specified by the “A” field. The RTKM should be preceded by an LKBR instruction to indicate the
starting word location in memory for character storage. (See 2-9.).

The word of entry is incremented to the next higher word after each eight characters have been read.
The instruction will be terminated upon reading a field identifier code or completion of reading the
number of alphanumeric characters specified in the “A’ field. The flag patterns to be set by the field
identifier codes are determined by the table of input code assignments. (See Appendix I).

If a reader condition exists, the RTKM instruction will revert to a TKM instruction. (See RTK
instruction).

Read Alphanumeric into Memory with Non-print Instruction
OPCODE A
READ ALPHA INTO MEMORY, NON-PRINT REAM 0-150 15 forms transport
"REAM 0-255 26” forms transport

The REAM instruction reads from tape into memory the number of alphanumeric characters specified in
the “A” parameter; no printing occurs. The REAM instruction should be preceded by an LKBR
instruction to denote the starting word location in memory for character storage. The word of entry is
incremented to the next higher order word after each set of eight characters has been read. The
instruction will be terminated upon reading a field identifier code or completion of reading the number
of alphanumeric characters specified in the “A” field. The flag patterns to be set by the field identifier
codes are determined by the Table of Input Code Assignments.

2-88

RXTK
RXTKM
RNK

(PT)

If a reader condition exists, the REAM instruction reverts to an EAM instruction. (See RTK
instruction).

Read Alphanumeric Data, Print and Punch Instruction
OP CODE A
READ ALPHA, PRINT AND PUNCH RXTK 0-150 15” forms transport
| RXTK 0-255 26 forms transport

The RXTK instruction reads from tape, and simultaneously prints and punches the number of characters
specified in the A parameter. The instruction is terminated after reading the specified number of
characters or upon reading a field identifier code.

The ﬂag patterns to be set by the field 1dent1f1er codes are determined by the Table of Input
Assignments. (See table in Appendix I).

The RXTK instruction can revert to an XTK instruction if the tape reader is not operable. If the paper
tape punch is off, the RXTK will revert to a RTK instruction; or to a TK instruction if both a reader
and perforator condition exist. (See RTK instruction).

Read Alphanumeric Data into Memory with Print and Punch Instruction
OP CODE A

READ ALPHA INTO MEMORY, PRINT AND PUNCH RXTKM 0-150 15” forms transport
RXTKM 0-255 26” forms transport

The RXTKM instruction is the same as the RTKM instruction, except that tape punchmg occurs
simultaneously.

The RXTKM instruction can revert to an XTKM instruction if the tape reader is not operable. If a
perforator condition exists, the RXTKM will revert to a RTKM instruction; or to a TKM instruction if
both a reader and perforator condition exist.

Read Numeric Data into Accumulator Instruction

OPCODE A B
READ NUMERIC INTO ACCUMULATOR , RNK 0-15 | 0-15

The RNK instruction reads from the tape into the Accumulator the total number of characters specified
by the sum (maximum of 15) of the A and B parameters. The instruction is terminated after the total
number of characters specified have been read (fixed field) or upon reading a field identifier code
(variable fields). The paper tape characters enter the Accumulator as digits, from low to high order digit
positions. NOTE: No printing occurs.

A number may be read into the Accumulator as either a fixed field or a variable field.

With a fixed field, the tape must contain as many codes as the total number of digits required by the
instruction. This may require that preceding zeros be included in the tape in order to obtain the fixed
field size. Because the codes enter the low order position, reading a decimal number into the
Accumulator requires that the maximum number of decimal places to the right of the decimal point be

2-89

REL
(PT)

filled with digits or zeros. Note that the separation of the fields into whole and decimal dyigits is
‘provided to permit keyboard flexibility when a reader condition occurs (see use of NK, Page 2-4).

Example: Read 12.25 into the Accumulator, allow for 3 decimal places, fixed field of 9.

'OP CODE) A B
RNK ‘ 6 3
Tape must contain: 000012250 (no field 1.D. code)

Manual entry must be: 12250 (left to right)

Manual entry format: 1, 2, decimal, 2, 5, and 0

Variable fields eliminate the “preceding zeros” requirement of fixed fields. Instead, a “field identifier
code” immediately follows the number in the tape causing termination of the RNK. With variable fields,
the ‘A parameter must be 1 greater than the maximum dlglts allowed for that quantity so that the field
identifier code may be read.

Example: Read 12.25 into the Accumulator, allow for 3 decimal places with maximum of 9 digits.

OP_CODE A B

RNK . 6+tFS =17 ‘ 3

Tape contains 12250 FS (FS denotes field 1.D. code)

Example: Read 4000 into the Accumulator. Maximum of 4 digits.

OP CODE A
~RNK 5 0
Tape contains 4000FS
Release Media CIamp4 Instruction
OP CODE
RELEASE MEDIA CLAMP - : REL

The REL instruction will cause the media clamp for paper tape or edge punched cards to open, thus
halting any further reading until the operator places new material in the reader.

This 1nstruct10n is useful when using edge punched cards, to release the card after necessary 1nformat10n
has been read, -and to prevent any additional information on the card from enabhng the read 1nstruct10n
for the next entry. :

2-90

XTK ‘
PT)

OUTPUT WITH PAPER TAPE/EDGE PUNCHED CARD PERFORATOR

The instructions described in this section provide the means to output data into punched paper tape
and/or edge punched cards by using a Style A 562 Paper Tape/Edge Punched Card Perforator as the
output adjunct. All subsequent reference to “‘paper tape” applies both to punched paper tape and to
edge punched cards, unless indicated otherwise.

Tape punching is serial at a speed up to 40 characters per second when no printing accompanies it.
When printing accompanies punching paper tape, the punching speed is up to 20 characters per second.

The Series L/TC internal character code is USASCII and output to paper tape will normally be in this
code. However, any 5, 6, 7, or 8 channel paper tape code can be punched by utilizing a Table of
Output Code Assignments for conversion of the internal code into a different paper tape code (refer to
Appendix I). The firmware for 5 channel code is different than that for 6, 7, or 8 channel “table
look-up” firmware or for USASCII No Table firmware.

The Paper Tape Punch Instructions provide the ability to print and punch data from the Accumulator,
print and punch alphanumeric data from memory, and to type or type into memory while punching. In
addition, a register is provided which counts the number of codes punched. This enables the use of
continuous edge punched cards by making it possible to determine when one continuous card has been
filled or when to fill any unused portion of a continuous card with feed codes before aligning the next
continuous card to the first sprocket hole.

The Paper Tape Punch Instructions are designed to function in three ways:

1. When proper tape punching ¢0nditions éxist’, punching will occur according to the
specifications of the instruction.

2. If the perforator is not connected or is turned off, the punch portion of the instruction is
inhibited and the instruction is executed in accordance with its counterpart keyboard or print
instruction. Thus, although the program may provide for punching, the perforator may be
turned off or discontinued without affecting the operation of the rest of the system.

3. If the perforator is turned on but does not have media loaded, execution of the punch
instruction is held up until the condition is corrected.

The mnemonic representations of the punch instructions are the same as selected keyboard and print
instructions with the addition of a prefix letter “X.”

PAPER TAPE/EDGE PUNCHED CARD OUTPUT INSTRUCTIONS

Type, Punch and Print Instruction

OPCODE A

TYPE,‘ PUNCH XTK 0-150 15” forms transport
‘ XTK 0-255 26” forms transport

The XTK instruction allows typing, printing and punching up to the number of characters specified in

the A field. The instruction functions like a TK instruction except that punching occurs with it. The
termination of this instruction with an OCK or PK does not cause a code to punch.

291

XTKM
XEAM
XPA
XA

(PT)

If the perforator is turned off or disconnected, the XTK instruction will operate only as a TK
instruction.

Type into Memory, Print and Punch Instruction
‘ OPCODE A
TYPE INTO MEMORY, PUNCH AND PRINT XTKM 0-1—50 15” forms transport
XTKM 0-255 26 forms transport

The XTKM instruction allows typing into memory, printing and punching up to the maximum number
of characters specified in the A field. This instruction should be used in conjunction with the LKBR
instruction to denote the entry position in memory for the characters typed. (See Page 2-9.)

The XTKM instruction functions like a TKM instruction except that punching also occurs. The
termination of this instruction with an OCK or PK places an End Alpha code in memory but does not
cause a code punch.

If the perforator is turned off, or disconnected, the XTKM instruction functions as a TKM instruction.

Enter into Memory and Punch Instructions

OPCODE A
ENTER INTO MEMORY AND PUNCH XEAM 0-150 15” forms transport
XEAM 0-255 26” forms transport

The XEAM instruction functions exactly like the XTKM instruction except that printing does not occur.
If the perforator is turned off, or disconnected, XEAM will operate only as an EAM instruction.

Print Alpha and Punch Instruction

OP CODE A
PRINT ALPHA AND PUNCH XPA LABEL

The XPA instruction prints and punches the alphanumeric data stored in the memory location
designated by the A field. The instruction is terminated upon reaching an End of Alpha code in the
data; the End of Alpha code is not punched. This instruction operates like a PA instruction in every
respect except that punching occurs.

With the perforator turned off or disconnected, the XPA will operate as a PA instruction.

Punch Alpha from Memory, Non-print Instruction

OP CODE A

PUNCH ALPHA FROM MEMORY, NON-PRINT XA LABEL
The XA instruction functions exactly as an XPA instruction except that printing does not occur.

If the perforator is turned off or disconnected, the XA functions as a No Operation (NOP) instruction.

292

. XC

XPN
(PT)
Punch Special Code Instruction
OP CODE é_ E
PUNCH CODE XC 0-15 0-15

The XC instruction punches into tape the bit pattern specified by the parameter fields. The A parameter
indicates the decimal value of the high order 4 bits (bg, b, bgs b5, having decimal values of 8, 4, 2, 1
respectively); the B parameter represents the decimal value of the low order 4 bits (by, b3, by, by,
having decimal values of 8, 4, 2, 1 respectively) in the bit configuration of the desired code. The parity
bit must be included in the appropriate bit position when applicable.

In the case of USASCII code the column number of the desired code in the table represents the A field
(parity bit must be added when applicable); the row number of the desired code represents the B field.

Printing does not occur with this instruction. If the perforator is turned off or disconnected, the XC will
function as a “No Operation” (NOP) instruction.

Example: Punch the USASCII code “RS”

b8 b7 b6 bS b4 b3 b2 bl

Bit pattern (“X” = hole in tape) 0 0 0 X X X X o0
Decimal value 8 4 2 1 8§ 4 2 ‘ 1
Parameter value A = (0+0+0+1) = 1

B = (8+4+2) = 14

This corresponds to the USASCII table location of RS in column 1, row 14.

Print and Punch Numeric Instruction

OPCODE A f B
PRINT AND PUNCH NUMERIC XPNV - 0-14 0-15

The XPN instruction prints and punches the contents of the Accumulator, beginning with the high order
digit position specified in the A parameter and with the print mask designated by the B parameter. The
print mask is relative to the mask table established by the last LPNR instruction. (See 2-12)

There will be no affect on the Accumulator flags position or any other data in Accumulator positions to
the left of the digit position specified by the A parameter.

This instruction functions like the PN instruction except that punching occurs.

If the perforator is turned off, or disconnected, the XPN instruction will operate only as a PN
instruction. '

2-93

XPNS— XPNS+

XN
LXC
XMOD

(PT)

Print and Punch Numeric Data, Shift Ribbon Instructions

OP CODE A B

PRINT AND PUNCH NUMERIC, SHIFT RIBBON IF MINUS XPNS— 0-14 0-14

PRINT AND PUNCH NUMERIC, SHIFT RIBBON IF PLUS XPNS+ 0-14 0-15

The XPNS— instruction is the same as the XPN instruction except that the ribbon color is changed if
the Accumulator Sign Flag is set (minus).

The XPNS+ instruction is the same as the XPN instruction except that the ribbon color is changed
(opposite to the normal operating color of black, is red) if the Accumulator Sign Flag is reset (plus).

If the perforator is turned off or disconnected, the XPNS— and XPNS+ function as PNS— and PNS+
instructions respectively.
Punch Numeric Data, Non-print

OP CODE A _B.
PUNCH NUMERIC, NON-PRINT XN 0-14 0-15

The XN instruction is the same as the XPN instruction except that printing does not occur. A mask
word is used with this instruction since it controls the punching. (See 2-14.) The mask word selected
may be the same as is used with other Print Numeric Instructions since it would not affect the non-print
function of this instruction.

If the perforator is turned off or disconnected, the XN will operate as a “No Operation” (NOP)
instruction.
Load Punch Count Register Instruction

- OP CODE A

LOAD PUNCH COUNT REGISTER LXC 0-255

The Punch Count Register is provided to count the number of holes punched. This enables the use of
continuous edge punched cards by making it possible to determine when one edge punched card has
been filled or to fill any unused portion of a continuous card with feed codes before aligning the next
continuous card to the first sprocket hole.

The LXC instruction will load the number contained in the A field, into the punch count register. The
instruction is normally used at the start of each new continuous edge punched card to reset the count.
The punch count register is incremented by one for each code punched from any punching instruction.
If the register is equal to 255, incrementing causes the register to become 0.

Modify by Punch Count Register Instruction

- OP CODE

MODIFY BY PUNCH COUNT REGISTER : XMOD

2-94

XB
(PT)

The XMOD instraction will modify the parameter field of the next instruction by the contents of the
punch count register. This modification occurs as in the MOD instruction. The XMOD cannot be
changed by the Index Register instructions. (i.e., IIR, ADIR, etc.)

- Punching Feed Codes Instructions

op cone A

PUNCH FEED CODES ‘ XB 0-255

The XB instruction causes feed (sprocket) holes to be punched. The number of codes punched will be
the difference between the number in the A field and 255.

If the perforator is turned off, XB will operate as a “No Operation” (NOP) instruction.

When edge punched cards are the media present, punching of sprocket holes is inhibited. Therefore, the
card is just advanced without sprocket hole punching.

READER AND PUNCH FLAGS
Reader Flags
Two reader flags are provided to enable program control over the tape reader.

Reader flag R1 is set when a reader condition exists. A reader condition exists if any of these
contingencies arise:

1. The Paper Tape Reader is not turned on.

2. Media (paper tape or an edge punched card must be positioned in the reader).
3. The media clamp must be closed.
4.

The photo-electric device must be illuminated.

When the reader condition exists, along with the R1 flag being set, the keyboard buffer is cleared, and
the instruction is held up from execution pending operator action. The action depends on two
conditions:

1. The reader is intended to be used: Turn on the reader and then depress the Read Key. This
reinitiates the read instruction and causes the media to be read. The R1 flag is reset.

2. The reader is not intended to be used: The operator may make an entry through the
keyboard. (At this point, remember, the reader instruction has reverted to its keyboard
instruction). The Reset Key will reinitiate the tape read instruction, but it must be indexed
prior to the use of an OCK or PK.

Once the operator has taken either course of action, the indicator light is turned off and reader ﬂag R1
is reset.

NOTE: The keyboard buffer is cleared every time a reader instruction reverts to its keyboard
counterpart. If the operator has anticipated this and indexed data prior to the halt in the program when
the reader instruction becomes a keyboard instruction, then that data will be lost. The operator would
have to index the data again.

2-95

LCD
(crD) |

Reader flags R2, R3 are reserved for Data Communication operations. (See 2-62.)

Reader Flag R4 is set when an invalid tape code is read. Reading is not halted on the invalid tape-'codé.
The next read instruction will reset the R4 flag.

The Reader flag settings can be manipulated by use of the Flag instructions.
Punch Flags
Four Punch Flags are provided to alert the operator of the perforator condition.

The Punch Flag P1 is set if media is not present in the perforator and the program attempts to execute
a punch instruction. The instruction is halted. Correction of the situation will cause the system to
resume execution of the punch instruction. ' o o

The Punch flag P2 is set if incorrect punching has occurred during a punch instruction. The echo check
indicator light is lit. The punching is not terminated; the flag remains set.

The program should provide for checking flag P2 at least after each line of punching. When the flag is
set, a Skip or Execute instruction would enable performing the necessary instruction to sound the alarm,
punch a tape error code, or to take other corrective action. ' ' ' ‘

The Punch flag P3 is set if reel tape is being used and the supply is nearly exhausted (approximately 20
feet remaining). The Tape Supply indicator is lit. Placing a new roll of tape in the supply reel will turn
off the indicator and reset the flag on the next punch instruction. This condition does not halt program
execution nor inhibit punching.

The Punch Flag P4 is set if the paper tape perforator is “OFF.” The instruction will be executed, but
the punching will be inhibited. Switching the perforator to the “ON” condition causes the P4 flag to be
reset on the next instruction. However, the data to be punched on the first “punch” instruction would
be missing from the output tape. Therefore, it is recommended that a punch instruction be used during
the program initialization routine with subsequent testing of the Punch Flags (especially the P4 flag)
since the perforator condition is only apparent once a punch instruction is initiated. All punch flags may
be examined by use of the flag instructions. ’ ‘

80-COLUMN PUNCHED CARD INSTRUCTIONS

With the A 595 Card Reader and the A 142 Card Punch used as peripherals to either the Series L or
TC 500, 80-column punched cards can be used as input and 80-column punched cards can be punched
as output. The programing instructions required to use these two peripherals as part of a program will
be explained in two sections. The first section will deal with card input instructions, the second will
explain card output instructions. ‘ o ' ' ‘ ' o

80-COLUMN CARD INPUT INSTRUCTIONS
Read Object Program Cards

OP CODE A

LOAD MEMORY FROM CARD . | LCD 0-255

2-96

RCD
LCFR

(CRD)

The LCD instruction causes the reading of object program cards and stores the new object program
instructions into memory locations specified in the program cards. The A parameter specifies the
number of cards to be read. This instruction utilizes and requires that the Card Reader Memory Load
Routine be present in the Utility Track.

LCD allows programmatic control of program overlays. After reading the designated number of program
cards, the program execution continues on to the next instruction in accordance with the program
counter. Thus, caution must be exercised to ensure that a program does not overlay the same memory
area occupied by the LCD instruction. The program cards must be of the same format as required for
regular program loading with the Card Reader. (Refer to Section 6 Object Program Loading, for card
format required to load object program by card.)

After execution of this instruction, a “Hash Total” of the program data read in, is in the Accumulator.

If the specified number of program cards are not read, the instruction is held up, the Reader Condition
light is turned on and the R1 flag is set.

Placing the remaining cards to read in the Card Reader and depressing the Restart switch on the Card
Reader, or depressing the Ready push button to return the machine to Ready mode, are the only two
alternatives available to complete the LCD instruction.

Reading Punched Cards

OP CODE A B

READ CARD RCD

The RCD instruction reads a single 80-column punched card into words 1 through 10 of memory. All
80 columns are read and placed in memory including blank card columns.

During the execution of each RCD instruction, the contents of the Accumulator are destroyed and the
Accumulator is not cleared. Any number in the Accumulator prior to a RCD instruction which is to be
used later in the program, should be transferred to a memory location to save it, else it will be
destroyed in the Accumulator.

If a card is not present in the Card Reader, when a RCD instruction is to be executed, the Reader
Condition indicator light is turned on, flag R1 is set, and the instruction is held up.

Placing a card in the Card Reader and depressing the Restart switch on the Card Reader will enable the
instruction to be completed and allow the program to continue to the next instruction. The other
alternative would be to depress the Ready push button, to return the machine to Ready mode.

Defining Card Field Formats

OP CODE A B
LOAD CARD FORMAT REGISTER LCFR LABEL

2-97

PBA
"XPBA

(CRD)

The LCFR instruction loads into the Card Format Register the word number associated with the Label
name. A Card Format Table may contain up to 16 different card field fofm_ats. If more than 16 are
required, another table location (i.e., another LCFR instruction with a different label) must be
established before any formats can be referenced in the second table. Only one table can be referenced
at one time, and that table referenced is dependent upon the last LCFR instruction.

The label in the A parameter must reference the beginning of a word. The Pseudo Instructlon “WORD”
should be used preceding the label of the first CDF pseudo instruction, so that it starts at the begmmng

Qf a word.

Example:
LABEL OP CODE _A_ _E
LCFR CRDTAB
~ WORD
CRDTAB ~ CDF 1 ‘ 2
CDF 3 5
Printing Alphanumeric Data from Card Read Area
OP CODE é E.
PRINT ALPHA FROM CARD READ AREA PBA - 1-16

The PBA instruction prints from the card read area, the field, .specified by the format number, as
alphanumeric data.

The format number, references the format table last identified by the LCFR instruction.

Example:
" LABEL OP CODE ; A E REMARKS o
LéFR CRDTAB |
PBA 2 | , Print -second field on card.
NOTE | Card cols. 3-10
CRDTAB CDF B 2 Card cols. 12
: CDF ; 3 8 . Card cols. 3-10.
Printing and Punching Alphanume;'ic Data from the Card Read Area
OPCODE A B
PRINT & PUNCH ALPHA FROM CARD READ AREA | XPBA : 1-16

2-98

XBA
TRCA
__(CRD)

The XPBA instruction prints from the card read area, the field specified by the format number, as
- alphanumeric data, and punches the data into an output card in the A 142 Card Punch. The instruction
is terminated after printing and punching the number of characters spe01f1ed by the field length in the
format. The status of OCK flags is not affected.

If the Punch is off, XPBA is executed as a PBA instruction.

If there are no cards in the card hopper and the Punch is on and on-line, the XPBA instruction will be
held up until cards are placed in the card hopper and the auto feed button depressed on the Punch.

Punching Alphanumeric Data from the Card Read Area, Non-printing

OP CODE A

PUNCH ALPHA FROM CARD READ AREA, NON-PRINT XBA 1-16

The XBA instruction punches into an output card, from the card read area, the field specified by the
format number, as alphanumeric data. The data is not printed. The instruction is terminated after
punching the number of characters specified by the field length in the format.

If the Punch is off, XBA is executed as a NOP instruction.

If no cards are in the card hopper and the Punch is on card on-line, the XBA instruction will be held up
until cards are placed in the card hopper and the auto feed button depressed on the Punch.

Transferring Card Input Data to the Accumulator as Numeric Data

OP CODE _& E
TRANSFER CARD FIELD TO ACCUMULATOR AS TRCA 1-16

NUMERIC

The TRCA instruction transfers the field of data, specified by the format number in the A parameter,
from the Card Read Area into the Accumulator. The digits in that field are right justified when
transferred into the Accumulator. The instruction is terminated by transferring the number of card
columns specified in the format. The status of the OCK flags is not changed by this instruction.

If an “11” overpunch is present in any of the card columns of the field being transferred (denoting a
‘negative field), the Minus Flag in the Accumulator is set.

If a “12” or “0” overpunch is present in any of the card columns of the field being transferred the
Invalid Code Flag (R4) and the corresponding indicator light is turned on if the lower 4 bits are
anything other than 0, and a digit will be transferred to the Accumulator. The flag is reset and the
indicator is turned off at the beginning of the next Card Input Transfer instruction; therefore, this flag
must be examined immediately in the program (with the SK or EX instructions) when it is necessary to
detect illegal codes in a given field. The characters “+” (card codes 12 ,0) and “&” (card code 12) will
not affect the Minus flag nor set the Invalid Code flag, but will transfer as the digit “0” in accordance
with their position in the field. The hyphen character (minus sign) “—”’ (card code 11) and “X” (minus
zero — card code 11,0) set the Minus flag, do not set the Invalid Code flag, and are transferred as the

- 2-99

digit “0” in accordance with their position in the field. The letters A through I and S through Z, as well
as all other special characters, will set the Invalid Code flag and a digit transferred. The letters J through
R are the same as numerals with an “11” overpunch. The space code (blank card column) is treated as
the numeral “0.”

An invalid code can be used to advantage to indicate special conditions, such as the last card in an input
file. For example, a “12” overpunch with a transaction type number would permit the program to
determine when to stop reading cards. This would not require a separate card column for this purpose,
and would not affect the usability of the transaction number.

Example of Printing Alpha Data from the Card Read Area

The programing below is an example of minimizing the length of alpha print time by examining certain
positions of a description field in the card read area to determine the amount of significant data, and
selecting a field format length accordingly; thereby eliminating some of the trailing space codes in the
unused portion of the field when printing or transferring to memory.

The diagram below illustrates a card with a description field of 42 characters (col’s. 13 to 54). On the
premise that most descriptions are less than 21 characters, some are less than 29, only a few use the
maximum field capacity, and that no more than 6 consecutive space codes are permitted within the
description, then three formats are defined for the description field to permit the program to select the
shortest length; thus, considerably reducing print time and/or transfer time (42 characters require
approximately 2100 ms print time vs. approximately 1000 ms using a 20 character length format).

13 DESCRIPTION 54

8| 16! 24: 32i 40, 48| 56i 64: 721 80
! 1] |] ! | ‘ 1

| ! ! 1] - | | |
WORD 1 WORD 2 WORD 3 iVVORD 4 :WORD 5 ;\VORD 6 I;WORD 7 WORD 8 :WORD 9 iWORD 10
————~—~— L~ U TN~ s A T T

LABEL INSTR A B REMARKS
FIELDS ' CDF 13 20 SHORT DESCRIPTION
CDF 13 28 MEDIUM DESCRIPTION
CDF 13 42 MAXIMUM DESCRIPTION

For simplest programing, the positions in the field to be examined for space codes must be defined
taking into account the word boundaries of the card read area. The 21st through 28th positions in the
description field are card columns 32 to 40 and are in word 5 (base word +4). If word 5 contains all
zeros (8 space codes), then significant data is presumed to not extend beyond col. 32 (20th field
position). If word 5 contains any significance, then word 6 is examined. If word 6 has all zeros, then
data does not extend beyond col. 40 (28th position). If word 6 contains data, the infrequency of
occurrence suggests that no further tests should be made and a maximum field size is used. The card
read area is reserved with REG instead of CDB to permit a label for referencing specific words.

2-100

Program Segments:

LABEL INSTR A _B_ REMARKS
START LPNR PMASKS |
LPKR PKEYS
LLLR 51
BRU BEGIN |
CARDIN REG 10 RESERVE CARD READ AREA
BEGIN V ‘ Note that Card Read area is reserved
‘ _ ‘ with REG to permit labeling; but
-_ ' ‘ must be sequenced to assure assem-
—_— bly in words 1-10.

RCD : READ A CARD
LCFR FIELDS SELECT FORMAT TABLE
LKBR DESCRP SELECT DESCRIP TANK
TRA CARDIN + 4 READ COLS 33 TO 40
SLROS 0 | 2 MOVE FLAG POSITION
EXZ 3 EXAMINE FOR SPACES
a PBA 1 PRINT SHORT FIELD
a TRCM 1 TRANSFER SHORT FLD
a , BRU +9 ;
bec TRA CARDIN + 5 READ COLS 41 TO 48
bc - SLROS 0 2 MOVE FLAG POSITION
bec EXZ 2 EXAMINE FOR SPACES
b - PBA 2 PRINT MEDIUM FIELD
b TRCM 2 TRANSFER MED FLD
bec SKZ 2 EXAMINE FOR DATA
c PBA 3 PRINT LONG FIELD
c TRCM 3 TRANSFER LONG FLD
-——\/\/\,)\/__,_\/\/\/_’/h

 DESCRP REG 6 | DESCRIPTION WORK AREA

Note: The key along the left margin indicates the program path selected depending on field size; “a’" =
short field, “b’”" = medium field, "¢ = long field. Statements without a key are executed by all three
paths. ' '

2-101

TRCM

(CRD)

Transferring Alphanumeric Data from the Card Read Area to Memory

OP CODE A B

TRANSFER CARD COLUMNS TO MEMORY TRCM 1-16
AS ALPHA

The TRCM instruction transfers the field specified by the format number in the A parameter to a
memory location starting with the word designated by the prior use of the LKBR instruction. The
instruction is terminated after transferring the number of characters specified by the field length in the
format. An “End of Alpha” code is placed in memory following the last code transferred. The status of
OCK flags is not affected.

- Space codes (blank columns) are transferred and translated as Space Codes; in subsequent printing of
this data from memory (not the card read area) with the PA instruction, the space characters will cause
the printer to escape rather than increment the position register. This condition would be common in
the unused portion of a description field such as name or address, when the card input data has to be
retained for further processing while additional cards are being read. Escaping through space codes can
be reduced, by programmatically examining certain points in the card read field and using a smaller field
format when transferring the field to memory. This may be desirable when the field must be designed
with a large capacity to accommodate all transactions, but which may have many transactions with small
entries of data (see example, above).

An indication of Invalid Code is not provided if an incorrect combination of punches has been read into
the Card Read Area. Invalid Code indication is only included with the TRCA instruction.

Input Indicator Lights and Flags

The two Series L keyboard input indicator lights advise the operator as to whether the Card Reader is
operable, and, under certain conditions, whether invalid codes have been read. Also, the associated
'Reader flags enable the program to provide alternate procedures in the event of a Reader Condition or
invalid code.

INPUT
INVALID READER MESSAGE TRANSMIT
CODE CONDITION RECEIVED READY P

O O O O

Input Indicator Lights

INVALID CODE INDICATOR — The Invalid Code Indicator is turned on and its associated flag (R4) is
set, when, during the execution of the TRCA (Transfer to Accumulator) instruction, a code is sensed
that represents an invalid combination as described in the TRCA instruction. This flag is reset and the
Indicator turned off at the beginning of the next transfer instruction.

2-102

XTK
(CRD)

READER CONDITION INDICATOR — The Reader Condition Indicator is illuminated and flag R1 set
when a card read instruction (RCD) is being executed and any of the following conditions exist:

1. The reader is not on
2. The reader is out of cards

3. Burned out bulb in reader

The read instruction is held up pending operator action as follows:

1. If the Reader is out of cards, the placing of cards ih the feed hopper and depression of the
Restart Switch on the reader will then cause the card read instruction to be executed.

2. If the Reader is not on, the Reader power on switch must first be turned on and then the
Restart momentary switch depressed.

3. The use of the Ready push button, at this point will return the program to the READY
mode.

The R1 flag is set only while waiting to read a card, and is reset when the instruction is executed.
Therefore, only the Indicator light can be used to notify the operator of this condition.

The R2 and R3 flags are set or reset by Data Comm instructions and are not controlled by card
instructions. See page 2-62.

FLAG INSTRUCTIONS (LOAD, SET, RESET, CHANGE) — The execution of a LOD, SET, RST, or
CHG Flag instruction involving the Reader Flags will also cause their associated indicator lights to either
be turned on or off depending on the instruction used.

Program Keys

Program Keys that have been enabled prior to a Card Read instruction or any of the Card Transfer
instructions will be ignored during those instructions. If a Reader Condition occurs and the Card Read
instruction is held up, use of a PK will have no immediate affect except to place the PK code in the
keyboard buffer pending the next keyboard instruction where it will be recognized.

80-COLUMN CARD OUTPUT INSTRUCTIONS
Punching Alphanumeric Data

The following instructions provide for punching alphanumeric data during keyboard entry or directly
from storage in memory. Each use of one of these instructions punches one field, or a portion thereof,
depending on the number of characters and the field size. Therefore the SKP (see page 2-109) instruction
should normally be used following each of these instructions to by-pass unused trailing positions in the
field and to position the card to the first column in the next field.

Type and Punch

OP CODE _A_
TYPE AND PUNCH XTK 0-150 15” forms transport

XTK 0-255 26” forms transport

2-103

XTKM
XEAM
XPA

(CRD)

The XTK instruction combines typing, printing and punching up to the maximum number of characters
specified in the A parameter. This instruction functions like a TK instruction in most respects with the
additional function of punching the data into an 80-column card. However, the use of the Backspace
Key is disabled, since a code would already have punched. The termination of this instruction with an
OCK or PK does not cause a code to punch.

If the punch is off-line, XTK will be executed only as a TK instruction.

The use of the Backspace Key has been prohibited; therefore, if it is depressed, an error state occurs
which requires depression of the Reset Key. Caution must be exercised with use of the Reset Key since,
if in the middle of a keyboard entry but not in an error state, use of the Reset Key re-initiates the
instruction and sets the LXC Register back to the start of the field. This puts the card out of step since
part of the field has already punched. These considerations also apply to XTKM and XEAM following.

Type into Memory Punch and Print
OP CODE A

TYPE INTO MEMORY, PUNCH AND PRINT XTKM 0-150 15” forms transport
XTKM 0-255 26 forms transport

The XTKM instruction combines typing, printing, entering the data into memory and punching up to
the maximum number of characters specified in the A parameter. The prior use of LKBR designates the
starting word for storing the data. The XTKM instruction functions like the TKM instruction in every
respect with the additional function of punching into an 80-column card. However, the use of the
Backspace Key is disabled (see XTK) since a code would already have punched. The termination of this
instruction with an OCK or PK does not cause a code to punch, but does place an End of Alpha code
in memory.

If the Punch is off-line, XTKM is executed only as a TKM instruction.
Entering Alpha into Memory and Punch Non-print

OPCODE A

ENTER ALPHA INTO MEMORY AND PUNCH,‘ XEAM 0-150 15” forms transport
NON-PRINT '
XEAM 0-255 26 forms transport

The XEAM instruction functions exactly like the XTKM instruction except that printing does not occur.
If the Punch is off-line, XEAM is executed only as an EAM instruction.

Print Alpha from Memory and Punch

OP CODE A B

PRINT ALPHA AND PUNCH XPA LABEL
The XPA instruction prints and punches the alphanumeric data stored in the memory location

designated by the A parameter. The instruction is terminated upon reaching an End of Alpha code in
the data; the End of Alpha code does not punch. This instruction functions like a PA instruction in

2-104

XA |
(CRD)

every respect with the additional function of punching into an 80-column card. If the Punch is off-line,
the XPA instruction is executed only as a PA instruction.

Punch Alpha from Memory, Non-print

OP CODE A

PUNCH ALPHA FROM MEMORY, NON-PRINT XA LABEL

The XA instruction functions exactly like the XPA instruction except that printing does not occur. If
the Punch is off-line, XA is executed as a NOP instruction.

Punching Numeric Data from the Accumulator

The following instructions provide for printing and punching, or just punching, numeric data from the
Accumulator. The Pointer designates the high order digit position of the Accumulator at which printing
and punching begin; the printing format and punching are controlled by the Mask word selected. The
instruction is terminated after punching and printing through digit position zero or when an “E” (End)
Mask code is encountered in the Mask word. A Mask word is used for all punch numeric instructions
even though printing may not be a function of a given instruction. It serves to right justify the numeric
data in the card field, filling in preceding zeros or blank columns. Therefore, a fixed field length results
and the use of SKP subsequently is not needed.

The Punch Flag (P) in the Mask word, when set, causes leading zeros to punch even though leading zero
suppression Mask codes (Z,Z) prevent their printing. If the Punch Flag is not set, a blank card column
results for each leading zero suppressed by a Z (or Z,) Mask code; however, if the Punch Flag is not set
and if an Unconditional Print Mask code is used (D D, etc.), all leading zeros will punch into the card
(refer to the following table). The Punch Flag has no effect on the print characteristics of the Mask
codes. : ’

2-105

Print and Punch Characteristics of Mask Codes

MASK CODE PRINTING PUNCHING
F Print $ No Effect
+ Suppress Punctuation No Effect
P No Effect Leading zeros punch if P
flag set, blank card column
if reset
D
D, Print Character regardless
of significance
.D
D:
X Trailihg Zero suppression Punch Character regardlesé
- ' of significance '
X ‘
-C Leading zero & trailing
Zero suppression
.C
Y/ Print if: Punch if:
(1) Accum digit not (1) P is Set ’
Z, Zero (2) Accum digit not
(2) A non-zero digit Zero
Z: has been printed (3) A non-zero digit
has been punched
S Print only if Accum digit '
not zero
I Ignore Ignore
E . Terminate, Non-print Terminate, Non-punch

If an Ignore (I) Mask code is used, the correspbnding digit in the Accumulator does not print or punch.
If the End (E) Mask code is used, the corresponding digit neither prints nor punches and the instruction

TABLE

is terminated. All other Mask codes cause the corresponding digit to punch.

The punctuation' provided by some of the Mask codes during printihg does not punch.

2-106

XPN
XPNS—
XPNS+

(CRD)

In a numeric field on the output card, if only significant digits are to be interpreted along the top of
the card, then leading zeros of the numeric word in the Accumulator must be represented by blank card
columns in the output card (P Flag must be reset and “Z” mask codes used in order for this to occur).

Print and Punch Numeric Data

OP CODE i_ _B_
PRINT & PUNCH NUMERIC XPN 0-14 0-15

The XPN instruction prints and punches the contents of the Accumulator, starting at the high order
digit position designated by the A parameter, in accordance with the print mask designated by the B
- parameter. The print mask value is relative to the mask table base word established by the last LPNR
instruction. This instruction functions like a PN instruction in every respect with the additional function
of punching. ‘ ‘

If the Accumulator Minus Flag is set, an “11” overpunch is punched with the least significant digit of
the Accumulator (digit 0); if minus, and if the mask word terminates printing/punching prior to digit O,
(with an “E”) or ignores digit O (with an “I””), and “11” overpunch does not purich. If the “11”
overpunch is not desired in the field, the Minus flag must first be reset.

All Accumulator digits of a higher order position than the A parameter are ignored.

When it is necessary to punch a plus “+” or minus “—”’ sign into a separate card column, or when the
value of the other Accumulator flags (S, C, M) must be punched, this can be accomplished by testing
the individual flag settings (SK or EX) and punching an appropriate code in the card column(s) with the
XC (Punch Code) instruction prior to or after punching the numeric field with the XPN instruction. If
the sign column must follow the numeric field, a set Minus flag must first be reset before punching the
data; this usually requires separate program paths, after testing for a minus condition, to both punch the
data and punch the correct sign code.

If the Punch is off-line, XPN is executed only as a PN instruction.

Ribbon Shift Print and Punch Numeric Data, Shift Ribbon if Minus

OP CODE A B
PRINT & PUNCH NUMERiC, SHIFT RIBBON IF MINUS XPNS— 014 0-15

The XPNS— instruction is the same as the XPN instruction except that the ribbon color is changed if
the Accumulator Sign Flag is set (Minus). If the Punch is off-line, XPNS— is executed only as a PNS—
instruction. - : :

Print and Punch Numeric Data, Shift Ribbon if Plus

OP CODE A B
PRINT & PUNCH NUMERIC, SHIFT RIBBON IF PLUS XPNS+ 0-14 0-15

2-107

XN
XC

(CRD)

The XPNS+ instruction is the same as the XPN instruction except that the ribbon color is changed if the
Accumulator Sign Flag is reset (Plus). If the punch is off-line, XPNS+ is executed only as a PNS+
instruction.

Punch Numeric Data, Non-print

OP CODE A B

PUNCH NUMERIC, NON-PRINT XN 0-14 0-15

The XN instruction is the same as the XPN instruction except that no printing occurs. A mask word is
used with this instruction since it controls punching, and may be the same mask word used with other
Print Numeric instructions as there would be no affect on the non-print characteristic of XN. If the
punch is off-line, XN is executed as a NOP instruction. '

Other Card Output Instructions

The following instructions provide the ability to punch special codes in a card column, and give the
program the ability to control the card for such functions as skipping or duplicating fields or portions of
fields, releasing cards, and selecting the stacking hoppers.

Punching Special Codes

OP CODE A B

PUNCH CODE XC 0-15 0-15

The XC instruction permits outputting any desired single card code (without it being resident in
memory) or any special punch pattern in a card column (except only one punch can be created in rows
1 to 7 in a card column although any punch combination in the other rows can be obtained). The A
paraineter controls punching in card rows 12, 11, 0, and 9; the B parameter controls punching in card
rows 1 through 8.

Printing does not occur with this instruction. If the Punch is off, XC is executed as a NOP instruction.

ROWS ROWS
12, 11,0, 9 8, 1-7

A Parameter Value 8 421
B Parameter Value : 8 1-7

To punch an “A”” (Row 12, 1) the XC instruction would be

OP CODE

| >
[+2]

XC 8 1

2-108

LXC
SKP

(CRD)

To punch Rows 12, 11, 0, 8, 6 the XC instruction would be

OP CODE A ' B
XC 14 14

Refer to Appendix H to find A and B parameter values of various characters to be punched.
CARD COLUMN SYNCHRONIZATION WITH THE PUNCH COUNT REGISTER

A Punch Count Register is used by firmware to count the card columns either punched or escaped in
order to control the location of the card and maintain synchronization. When the system is turned on,
the value in this register is indeterminable, and therefore it must be loaded with the value “1° at the
start of a program.

Load Punch Count Register

OP CODE A

jm

LOAD PUNCH COUNT REGISTER LXC 1

The LXC instruction loads the value specified in the A parameter into the Punch Count Register. The
parameter value must be “1” to synchronize the register with the card in the punch station (card must
be registered in the punch station at card column one).

The LXC instruction is normally used only once in a.program, during the initialization routine. Once
into the program, firmware resets the Punch Count Register to 1 whenever a card is released in the
punch and another card registered at column 1. However, it is recommended that a provision be
included in the program for the operator to reset the register to 1 in the event a card becomes out of
step. This condition could occur from the improper use of the keyboard Reset Key during a keyboard
entry, or from inadvertent manipulation of the control keys on the card punch (which should not be
necessary once a program is in operation). Note that if the keyboard Reset Key is used during a
keyboard entry and the system is not in an error state, the keyboard instruction is re-initiated
(repositioning the printer and permitting a complete new entry) and the Punch Count Register is set
back to the beginning column of that field; thus, the card must be backspaced to the same card column,
using the Backspace control on the card punch, to regain synchronization.

Skipping Card Columns

OP CODE A

SKIP TO COLUMN ~ SKP 1-80

The SKP instruction causes the card to skip to the card column specified in the A parameter. A skip to
card column 1 causes the card to be released and a new card registered at column 1. This is the
prescribed manner in which the Series L program releases a card. If the card is presently on the card
column specified by the SKP instruction, no skipping occurs. An exception to this is a skip to 1 when
the card is already on column 1; this results in the card being released and another card registered.

2-109

Dup
CRD)

Once the skip function has been initiated, the program resumes execution while the skipping is being
completed, except for skips of up to 3 columns. If the program reaches another punch instruction while
skipping is occurring, the program is held up until skipping has been completed. Skips of 3 columns or
less are actually treated as Punch Blanks (XC 00, blank card columns), and in this situation, program
execution is held up until the skip is completed.

A skip to a lesser numbered column than the present card location will cause the release of the card and
the registration of a new card; however, the count register will be in error for the newly registered card.

If the punch is off-line, the SKP instruction is executed as a NOP instructiot.

The SKP instruction should normally be used after each punch instruction where unused card columns
could remain, such as with XTK, XTKM, XPA, etc. It is normal for these instructions to be terminated
before punching the total number of characters specified in the parameter; therefore, a SKP instruction
must be used to ensure that the card is properly positioned to the start of the next field.

Duplicating Data from one Card to Another

OP CODE A

DUPLICATE THROUGH COLUMN DUP 1-80

The DUP instruction causes data from the card in the Read Station to be punched (duplicated) into the
corresponding columns of the card in the punch station. The duplication function starts at and includes
the card column at which it is initiated, and continues through the card column specified in the A
parameter. A DUP through 80 will cause the card to be duplicated through column 80, released, and a
new card registered at column 1. A DUP through the same card column number as the present location
of the card results in no duplication.

Once the duplication function has been initiated, the program resumes execution while the duplication is
being completed. If the program reaches another punch instruction while duplication is occurring, the
program is held up until the duplication has been completed.

A DUP through a lesser numbered card column than the present location of the card will cause a
duplication through column 80, release of the card and registration of a new card; however, the count
register will be in error for the newly registered card. '

If the punch is off-line, the DUP instruction is executed as a NOP instruction.
Card Release

Cards are released from the punch station by the Series L program with the use of a Skip to Column 1
instruction (SKP 1) or a Duplicate Through Column 80 instruction (DUP 80). Use of the card punch
manual controls, during program operation, or any other type of program release will in most cases
cause the newly registered card to be out of synchronization with the Punch Count Register.

2-110

ALTP
(CRD)

Selection of Card Stacking Pocket

The Regular Card Stacker is selected automatically is the program has not specified otherwise for the
card being released. The Alternate Stacker is selected by executing the following instruction:

OPCODE A B

ALTERNATE STACKING POCKET ALTP

The ALTP instruction causes the card in the Punch Station to be routed to the Alternate Stacking
Pocket after it has been released from both the Punch Station and the Read Station. The ALTP
instruction must be executed while the card is still in the Punch Station, and prior to any instruction
that will cause the card to be released from the Punch Station, in order to affect that card when it is
finally released from the Read Station.

This instruction can be used to advantage in many ways, such as to segregate two groups of transactions,
or to out-sort special information cards from standard transaction cards (such as low quantity alerts,
etc.) or to collect reject cards from error entries.

If the punch is off-line, the ALTP instruction is executed as a NOP instruction.
OUTPUT INDICATOR LIGHTS AND FLAGS

Three of the Output Indicator Lights on the Series L keyboard are used to advise the operator of the
operating status of the card punch.

OUTPUT

PUNCH
OFF MEDIA ERROR

O O O O

Output Indicator Lights

Punch Off Indicator

The Punch Off Indicator Light is turned on and Punch Flag P4 is set if the card punch “On-Line”
switch is not on, or if the On/Off switch is not on while a card punching instruction is attempted. The
punch portion of the instruction is inhibited and the instruction is executed in the manner of its
counterpart keyboard or print instruction. The program does not halt. An instruction involving no other
functions but punching is executed as a NOP instruction. The correction of the condition by turning on
the punch and placing it in the On-Line mode will cause the indicator to be turned off and Punch Flag
P4 to be reset on the next punch instruction.

To avoid the possibility of the operator failing to turn on the punch when beginning an operation, it is
recommended that during the program initialization a card be released (SKP 1) and the Punch Off Flag
P4 be examined. If P4 is set, the program can warn the operator (with the Alarm or by printing a
warning message) and in addition may prohibit further processing or halt to allow an operator decision
as to whether the following group of transactions requires card output.

2-111

ADVL
ALF

(PS)

Card not Present Indicator (Media)

If the program attempts to execute a punch instruction and a card is not registered in the punch station,
the instruction is held up, the Media Indicator. light is turned on, and Punch Flag P1 is set. Correction
of the condition by registering a card in the punch station permits the instruction to be executed, at
which time the Indicator light is turned off and Punch Flag P1 is reset. Only the Indicator light can be
used to notify the operator that a card is not present in the punch station since the P1 flag is set only
while the punching instruction is held up and is reset after the punching instruction is executed.

Error Indicator (Echo Check)

The Error Indicator Light is turned on and Punch Flag P2 is set if a card punch malfunction or
misoperation occurs. If this condition occurs, the card punch is not operative, the RESET key
(switch-light) on the card punch is turned on, and the program is held up on the punch instruction. A
depression of the RESET key removes the error condition and permits execution of that instruction to
be completed and the program to continue; Punch Flag P2 and the Indicator light are turned off.

Depression of the RESET key does not change the fact that mis-punching may have occurred,or that a
newly registered card may be out of synchronization with the punch count register.

Flag Instructions (Load, Set, Reset, Change)

The execution of a LOD, SET, RST, or CHG Flag instruction involving the Punch Flags will also cause
their associated indicator lights to either be turned on or off depending on the instruction used.

Program Keys

Program Kkeys that have been enabled prior to a card punch instruction involving a keyboard entry
(XTK, XTKM, XEAM) may be used to terminate that instruction. If the instruction is terminated with
an OCK, such PK’s as were enabled will be disabled.

ASSEMBLER PSEUDO INSTRUCTIONS

ADVANCE LINE INSTRUCTION

OP CODE A
ADVANCE LINE ADVL 1-4

The ADVL pseudo instruction will advance the assembler output form the number of lines specified in
the A parameter. No machine language instruction is assembled.

ALPHA CONSTANT INSTRUCTION

OP CODE

ALPHANUMERIC CONSTANT ALF

2-112

CDB
(PS)

The ALF pseudo instruction permits alphanumeric data, up to 24 characters, to be stored in memory as
constant data during program loading. Any character on the keyboard, including space, is a valid
character. (Except for Assembler I, a CC in columns 27 and 28 will allow a second line of 24 characters
to be entered.)

If the syllable counter is not O at the beginning of the ALF, “STOP” instructions are inserted until the
counter is 0. The alphanumeric constant is then assembled starting in the next full word.

The alpha data is identified by placing a label in the label field, unless reference will be made by + or —
incrementing from another entry.

Example:
PARAMETER
FIELD
LEN- 2 + OR — 2 =
LABEL OP. CODE GTH . LABEL INC/REL
16 |17 [18(19§20 |21]22| 23|24 | 25| 26|27 |28] 29|30 {31| 32| 33|34 | 35|35 (37| 38|39 |40 |41]| 42| 43 |aa|as h6 |a7
| I N T | PlAj {1 1 MAMI 1 [| P4 Lt 1
I T I [,] [B I | L1 | o L1
| I I | | 11 1 S I I O | 11 | [|
| T | | |] [O O | | | L1
INJM‘J i lAnéﬁ 1 1 ”N D L1 N 11
LABEL OP CODE A
PA NAME
NAME ALF JOHN DOE

When the PA instruction is executed, the alphanumeric characters JOHN DOE would be printed
(including the space).

RESERVE CARD BUFFER INSTRUCTION

OP CODE

RESERVE CARD BUFFER CDB

The CDB pseudo instruction inserts the instruction “BRU to word 11, syllable 0” in word 0, syllable 0.
This causes the assembler to reserve words 1-10 as the card read-in buffer area. If the assembly word
counter is not at word 0, syllable 0, an error message will print. (When using Assembler I, the assembly
will halt; with Assembler III or IV it will not halt, but 10 words will not be reserved.)

Accordingly, the CDB instruction must be the first instruction in the program except for pseudo
instructions which do not affect memory allocation such as “Note.”

When the card input data is no longer needed, the 10-word read-in area may be referenced as working
memory by other parts of a program. This is accomplished by providing the CDB instruction with a
label.

2-113

Example:

PARAMETER
FIELD
A
LEN- ¥ orR 2 <
LABEL OP. CODE | GTH | LABEL o EL

16 {17 {18|19|20 |21 |22|23[24 |25| 26

27|28

29(30(31]32(33{34|35|36|37|38|39 |40 (41|42]| 43 (4445 46 |47

.C.A.B.D.L%QE_& !
R\c_LDI 1

Ll L TeM | !
LABEL ’ OP CODE A
CARDIN ‘ CDB
RCD
TRM CARDIN+2

B REMARKS
Reserve Card Buffer,
Read 1 card.

Use 3rd word of card
read buffer as a working
memory location.

The card input area can be reserved by using the “REG” pseudo instruction. In this circumstance the
programmer must include his own provision to by-pass the 10-word buffer area.

Example:

PARAMETER
it A B c
LABEL OP. CODE | GTH L ABEL Tugjp'ﬂ_
16 |17]18| 1920121]22123|24 | 25| 26 |27(28| 20]30|31|32{33{34 | 35|36 |37|38|39 (40 |41;42| 43 |44}45 |46 |47
[N B | LIPINIR | PIM a‘IK 11 .| | |
Ll kPKR | (|PKEYS | | Loy
L] LbbR | S0 L1
[. elv| |] IEGIIINI 11 | |
| I 1 | QIEIQI] | ' lol | { | J] [| I | | [
Eﬁ_&&ﬂ an l] 1 I B L1 L1l L1
LABEL OP CODE _/__ E REMARKS
LPNR PMASK Assembles in word 0
LPKR PKEYS Assembles in word O
LLLR 51 Assembles in word 0
BRU BEGIN Assembles in word 0
REG 10 Assembles in words 1-10
BEGIN RCD Assembles in word 11, syl-

2-114

lable O

CDF

CODE
(PS)
CARD FORMAT INSTRUCTION
OPCODE A B
CARD FORMAT CDF 1-80 1-80

The CDF pseudo instruction is used to define each field for 80-column card input. The A parameter
denotes the beginning card column of the field. The B parameter indicates the number of card columns
in the field. The values entered are assembled into one syllable as part of the card format table.

The field formats defined in the table may pertain to one or several types of input cards, and may be in
any sequence in relation to the card.

LABEL OP CODE i_ E REMARKS
LCFR FIELDS Load Card Format Register
WORD

FIELDS CDF 1 1 1 - type of card
CDF 2 7 2 - Acct. No.
CDF 9 6 3 - Product Codes
CDF 15 36 4 - Product Description
CDF 51 6 5 - Gross Weight
CDF 57 8 6 - Price No. 1
CDF 65 8 7 - Price No. 2
CDF 73 8 8 - Cost
CDF 9 24 9 - Name
CDF 33 24 10 - Address
CDF 57 24 11 - City-State

CODE INSTRUCTION
OP CODE A
CODE | ~ CODE 4 hexadecimal digits

The CODE pseudo instruction permits the insertion of 4 hexadecimal digits into a syllable of a word of
memory. The value designated by the 4 digits in the A parameter is inserted into the same syllable of
memory. Other instructions may precede or follow its use in the same word of memory, or it may be
used successively to insert a full word or several words.

2-115

DEF

DEFT
(PS)
Example:
PARAMETER
FIELD
B A _ B c
LABEL OP. CODE | GTH LABEL Tugjzm-l

16 |17 18| 19(20 121 22| 23|24 |25 26|27 |28] 29[30|31] 32| 33|34 [35|36 [37{ 38|39 |40 |4 1] 42| 43 |44 |45 6

IIIIICDEIICJ_Q&__Sllnllll [

N U T I T N N Y O YO O T L] L1
OP CODE L-\. , REMARKS
CODE : C925 Print word 293 as alpha.

C925 is the machine language code for PA Word 293. It may sometimes be convenient to use the CODE
instruction in this manner to have access to memory locations or program routines which have been
loaded with another program.

DEFINE INSTRUCTIONS

OP CODE A B
DEF 0-256
DEFT 0-15 0-15

The DEF pseudo instruction is used to assign a numeric value to a label. This applies to labels which
name something other than a memory location.

Example:
PARAMETER
FeD A B c
+ OR -
LABEL OP. CODE GTH . LABEL INC/REL

16 |17 181920 |21 | 22| 23|24 |25| 26|27 |28} 2930 31| 32| 33|34 | 35|36 |37|38]39 |40 |41| 42| 43 |44 (45 46

1||||P|41$|| L S PTY . L L1

[T T T T A 2 RO [I N N O I L1 L1
| I T P11 i I T O | [1 1 | 11
MQHIFI [ETENTATER BN L1
I TS N W § [1 TR N B | 111 [: 1
LABEL OP CODE i E
POS SHIPTO
?
SHIPTO DEF 35

2-116

DOC
ESTB

(PS)

The print ball positions at position 35.

The DEFT pseudo instruction is the same as the DEF instruction except that entry in both the A and B
parameters is allowed. Values between 0 and 15 are permitted in each parameter.

Example:
PARAMETER
FIELD .
e A - B c
A . GTH . -
- LABEL OP. CODE LABEL INC/REL

16 |17 |18 1920121 |22 23|24 |25{26|27 |28

30]31{32/33[3435136{37|38[39 (40 (41|42 43 {4445 446

L.t 11 1 1glllﬂgpﬁlklall Lt | I

Ll > MR I AR A A Lo L1

A > BN BT N A N B B L1l L1

E _D_jglFlnllllljlllall L1

I AN T I N N N O L1 1 1]

LABEL OP CODE A B
NK ORDER

ORDER DEFT 6 0

The DEF or DEFT instruction must be used in conjunction with a label (in columns 16-21) to denote
the item being defined.

DOCUMENTATION INSTRUCTION (USED ONLY FOR ASSEMBLY ON B 2500/3500/5500.)
OP CODE }__ E
DOC

The DOC pseudo instruction permits more extensive narrative to be included in programs and in the
subroutine library. Remarks of up to 49 characters are entered (beginning in card column 29) which
print on the assembly documentation from the B 3500, but which do not punch into the program tape
(or card deck).

ESTABLISH BUFFER INSTRUCTION

OP CODE

ESTB

The ESTB pseudo instruction is used for reserving main memory buffer areas in connection with the
data communications message handling instruction. This is required when it is desired to move a message
from the Data Communications Message Received Buffer into main memory before unpacking the
message, or to build a message in main memory and then transfer it (completely formatted) to the Data
Communications transmit buffer.

2-117

END
EQU

(PS)

The ESTB instruction reserves a 32 word area (256 characters) or 1 track in user memory. It selects the
highest track of user memory that is available, reserving 32 words starting with the first word of that
track.

For example, if 384 words of user memory (0 to 383) are designated in the program assembly, the first
use of ESTB would reserve words 352 through 383; the second use of ESTB would reserve words
320-351. ESTB has no parameters, but it must be labeled.

Example:
PARAMETER
FIELD
e A _ 8 c
LABEL OP. CODE | GTH LABEL Tng?nEL
16 |17 |18 19|20 |21 | 22| 23|24 | 25| 26 |27 |28| 29|30 | 31| 32| 33|34 | 35| 36 | 37| 38} 39 [a0 41| 42| 43 |as]as
RECEINEST B N Lo L1 L
SEND | |g|$1!|ﬂ [TN BN S AN AN B AN AT !
NN NN R U [N U N S NN O TN N T NN DO O N N | | |
LABEL OP CODE
RECEIV ESTB
SEND ESTB

In the above example, RECEIV would be assembled with a word number of 352 and SEND would be
assembled with a word number of 320.

END INSTRUCTION
OP CODE

END

The END pseudo instruction terminates the assembly program and must be used as the last line of code
in the program.

EQUATE INSTRUCTION
OP CODE

EQU

The EQU pseudo instruction will permit one label to be given the identical value of another label. The
label coded in columns 16-21 will be equated to the label in columns 29-34. The label contained in the
parameter field (column 29-34) must have been previously used or defined.

2-118

MASK
NOTE

(PS)

MASK INSTRUCTION

OP CODE

MASK

The MASK pseudo instruction is used to enter the table of mask words. An entry of up to 24 print
format characters is accepted.

If the syllable counter is not O at the beginning of the Mask instruction, “Stop” instructions are inserted
until the counter reaches 0. The Mask Characters are then assembled in the next full word.

The appearance of any character other than those listed in the Mask Character Table (see Appendix E)
results in an error condition.

The mask table must be identified by placing its label in the label field (columns 16-21) on the line of
the first mask word entry. For Assemblers other than the Assembler I, the number of mask characters
must appear in the field length.

Example: See page 2-12.

NOTE INSTRUCTION

OP CODE

NOTE

The NOTE pseudo instruction will permit the entry of up to 25 characters in the REMARKS field
(columns 53-77). No machine language instruction is assembled. No parameter field entry is required. If
one is given, it will be ignored.

Example:
PARAMETER
FIELD
o . + OR . <
H | -
OP. CODE GT LABEL INC/REL) REMARKS

2223|24 25(26(27 (28] 2030131 32| 33(34 | 35|36 |37{ 38|39 [40 |4 1]| 42| 43 53|54 |55|56 |57 | 58]59|60 {61]62{63|64|65 {66 {67|68|69|70 |71 [72|73

weTE | BEGTIN TETALS RIVTINE

OP CODE REMARKS
NOTE Begin total routine.

2-119

NUM
ORG

(PS)

NUMBER INSTRUCTION

OP CODE

NUM

The NUM pseudo instruction permits a word of numeric data to be stored as constant data in memory
during program loading.

A numeric constant of from O to 15 digits (Assembler I will allow only 14 digits) consisting of the digits
0-9 is accepted. In addition, the “—,” “C” and “M’’ codes, preceding the digit position of the constant
are accepted, once set their respective flags in the flag positions of the word.

If the syllable counter is not 0, “Stop” instructions are inserted until the counter is 0. The numeric
constant is then assembled in the next full word, right justified.

The number must be identified by placing its name label in the label field (columns 16-21) of the
coding form, unless reference will be made to it by +/— incrementing from another entry. '

Example:
PARAMETER
FLISI? 2 4+ OR — = <
LABEL OP. CODE GTH . LABEL INC/REL
16 [17]18] 192021 2223|24 25| 26127|28] 2913031} 32| 33|34 | 35|36 [37|38|39 |40 |41]42] 43 |44|45 W6 |47
11111“1UJL|| 1?1:111 [| | L 1 |
PL Ma L 314.059265238589219) 1
LABEL OP CODE ﬁ _E REMARKS
MUL PI Multiply by PI
PI NUM 314159265358979 PI to 15 places.

ORIGIN INSTRUCTION

OP CODE

|>

ORG

2-120

REG
(PS)

The ORG pseudo instruction will assemble the next instruction in syllable O of the word specified in the
parameter field. If the specified word has already been assigned by the assembler, an error message will
be printed and entry assignment will start at the same sequence.

No machine language instruction is assembled.

PAGE INSTRUCTION OP CODE A
PAGE

The PAGE pseudo instruction will cause the assembler output to be spaced to the top of a new form.

REGION INSTRUCTION

OP CODE A
REG 1-255

The actual memory address is assigned by the assembler. If the syllable counter is not 0, “Stop”

The REG pseudo instruction sets aside the number of words of memory specified by the A parameter. I
instructions are inserted until the counter equals zero.

The word counter is advanced by the amount in the A parameter field. If the word counter exceeds the

highest order word available, an error message is printed and entry assignment will start at the same
sequence number.

No machine language instruction is assembled. The region must be identified by placing its name label in
the label field (columns 16-2 1) of the coding form. This region is not cleared.

Example:
PARAMETER
ey T e T
LABEL OP. CODE GTH LABEL INC/REL
16 |17]18] 19120 |21 2223]2425262728183)3132333435%373839404142 43 [44)45 B6
| I I I I | Lm ! AI ‘ i L1 1 | 1
L1 TEM 1S L
T A S A AR A A AN I A L] 11
1 1 11 | | L1 1 1 | /| L1
MEJA_)_MJ ! 4. [111 L1} |
LABEL OP CODE A E REMARKS
LKBR AREA Load keyboard
TKM 25 Type 25
AREA REG 4 Save 4 words

2-121

WORD
' (PS)

WORD INSTRUCTION

OP CODE

1>

WORD

The WORD pseudo instruction causes the assembler to assign the next instruction at the beginning
syllable of the next word.

If the syllable_ counter is not 0, it will be incremented and *“Stop” instruction inserted into each syllable
until the counter reaches O.

This instruction should immediately precede the entry of a Program Key Table.

Example:

PARAMETER
FIELD
FIELD . A __ 8 c
LABEL OP. CODE | GTH LABEL + OR

INC/REL

16 |17 {18/ 19}20 121 2223]2425%27288%3132333435%373839404!42'43 4445 |6 147

Ll Rl |ekeYs: | . |1 L1

IR T T I | ||$1|~11||l111| 14| I
B T T T I | 119 1 {0 N N WO T A T N N I L1 [

| 1 N [P11

vs. gev, . | . sTtAeT || |, .0

LABEL OP CODE A

A B REMARKS
LPKR PKEYS
WORD
PKEYS BRU SRT

2-122

SECTION
SYMBOLIC PROGRAMING PROCEDURES

PROGRAM DEFINITION

A program definition is a set of specifications used for the efficient development of the application
software needed for a machine-oriented data processing system. The program definition procedure is:

1. Systems Analysis.
Defining the output.
Defining the processing.
Defining the input.
Evaluating the system and,

A S

Defining for programing — or — reanalyzing and repeating the procedure.

When the program definition procedure is used to design an acceptable system, the system specifications
are recorded in the form of:

1. A general systems flow chart of the complete data processing system.
2. Completed Program Definition Worksheets, MKTG 2366, illustrating the required output from
each program in the system. - : : ‘

3. Complete Program - Definition Charts, MKTG 2402, explaining the input, processing, and
output requirements of each program in the system.

The necessary applicational software will then be developed from this information.
PROGRAM WRITING

After the program definition specifications are completed and given to the programmer, the process of
writing the program begins. o

The first step the programmer should take, is to thoroughly analyze the program definition
specifications. This will serve two basic purposes. First, it will enable the programmer to ask questions
about any area or steps in the definition, that are unclear. This can save later reprograming on steps the
programmer incorrectly understood. Second, it will give the programmer an opportunity to develop a
general idea of what the program will contain when completed, how much memory it is going to take
(this evaluation becomes more accurate with experience) and to look for possible use of any routines,
already written, which can be used in the program.

After the definition is thoroughly analyzed and all questions answered, the writing of symbolic
instruction begins. '

Every program generally has three separate sections, initialize, main body, and definition section. Coding
forms should be set aside for each section. This enables. the programmer to add pages to any section
without interrupting the order.

An explanation of each section using the programing example in Section 4 follows.

3-1

The initialize portion of a program is generally the shortest portion of a program (in terms of numbers
of instructions). In its narrowest sense, this portion will be executed before an NK or TK instruction,
halts the internal program execution for the first operator action. In the example Seq. No.’s 20, 30, 40
loads the base register for the PK table, the print mask table, and the line limit register for the form
being used in the machine. Even though its instructions are few in number, without them the
programmer could not control the program. For example program execution stops at Seq. 90, if the
operator selected PKA 5 without having the LPKR instruction at Seq. No. 20, the base register for the
PK Table would contain the word number for the LPKR instruction of the previous program in the
machine. Therefore selecting PKA 5 would not have caused the execution of the BRU INCOST
instruction.

A broader description of the initialize section would be to include routines in the program which are
not part of the main program. Seq. steps 1 through 5 on the Program Definition Chart in Section 4
could be included under this broader definition. These sequence steps are not -concerned with the
mainline function, i.e., creating the invoice, but rather prepare the system for invoice writing.

The second section of a program, the main body, is the area of the program which accomplishes the
task assigned to the program. In the programing example, sequence steps 6 through 32, are concerned
with creating an invoice. Each sequence step should be completely programed before going to the next.
In the example, sequence steps 8 through 14, are accomplished by Sequence Numbers 430 to 570. Since
these sequence steps are concerned with the ribbon line on the invoice, the programmer has labeled
Sequence No. 430 RIBBON. The use of descriptive labels gives the program added readability. This
enables others who read the program documentation to follow the logic with a better understanding.
Using the REMARKS field on each instruction to explain the purpose of the instruction also increases
the readability of a program. These comments in the REMARKS field also help the programmer when
debugging the program.

While programing the sequence steps from the Program Definition Chart, the programmer will generally -
make use of three techniques, straight line, loops, and subroutines. The straight line method is exactly as
its name implies, it is a series of instructions, without any branches which solves the given problem.
Sequence numbers 110 through 230 are an example of this method. This sequence accomplishes the task
of storing the page number, positioning the printer, printing the customer name, storing it, advancing
the form, etc., without the use of loops or subroutines. The looping technique uses a counter to execute
the same series of instructions a desired number of times. The routine which clears 11 words of memory
labeled CLRMEN uses the looping technique. An index register value is incremented each time the loop
is executed, up to a maximum number of times, when this limit is reached the program branches out of
the loop. The subroutine technique is like the straight line method except that in the series of
instructions we branch out to execute another series of instructions and when finished with these the
program returns to the instruction following where we left the series. This allows writing a routine,
which is to be executed a number of times during a program, only once; and going to it any time and
returning to where it branched from. An example is sequence number 560 where we leave the straight
line to print the date and invoice number and when finished, return to sequence number 570.

The last section of the program, the define section, is actually written along with the initialize and main
body. This area contains all PK Tables, Print Masks, storage regions, numeric constants, alpha constants,
etc. An example of how this section is completed would be to look at Sequence Number 30. The LPNR
instruction has in its A parameter the label MASKTB. Right after this instruction is written, the
programmer codes the first MASK instruction with the label MASKTB in the definition section. This
process is repeated for all storage locations, numeric constants, alpha descriptions, etc., as the program is
written.

3-2

After the program is written, the last step is to assemble it and debug the program when it is loaded in
the machine.

PROGRAM DEBUGGING

Generally, program debugging is completed in two steps. The first step is to correct Assembler errors,
these are invalid conditions which the Assembler finds in the symbolic instructions, these errors are
corrected by removing the invalid conditions in the symbolic instructions. The second step is to find the
logic errors, i.e., areas of the program which are not giving the desired results.

When the Assembler detects an error in the source program, the invalid instruction is replaced by a
NO-OP instruction. Thus the object program contains the correct instructions and the Assembler inserted
NO-OP’s. It is possible to load the object program and replace the NO-OP’s with the correct machine
language code for the desired instruction, through the use of the Memory Modify service routine.

Logic errors can be found by analyzing the sequence of instructions or by using one of three available
Trace service routines. When a logic error is found, its proposed solution should be tested before
re-assembly. This is accomplished by inserting the appropriate machine language codes for the symbolics
in place of the incorrect codes. If the new solution cannot be placed within the area of the incorrect
codes, a branching out of that area to an area not used by the program (usually starting at the word
location following the last word of the program) placing the rest of codes and then branching back into
the program at the appropriate place. If the new solution is correct, then it can be written in symbolics
and inserted in the program before re-assembly. Once debugging is completed, the corrected program can
be obtained, by the Punch from Memory service routine.

As mentioned before, during debugging the Trace routines will sometimes be used. In general they are
useful for (1) reading the program execution sequence (especially for conditional branches), (2) to check
when the flags are being set or reset, (3) to read the values of the index registers (especially when used
as counters in loops), (4)to read the value in the Accumulator (to debug shift and arithmetic
instructions).

DATA COMM DEBUGGING

Debugging a TC 500 on-line program can be expensive if a central processor remains on demand while
the TC 500 operator is detecting and correcting errors on the TC. It is possible to debug off-line by
using the memory modify utility routine, especially the selective start feature.

The first word of the receive buffer in Data Comm Memory is located in word 1245. The second word
is 1216 and the remaining words follow serially to word 1246. Knowing this, it is possible to access
these words using memory modify and index from the keyboard the USASCII code representation of
the characters of any message the operator is anticipating, thus doing the work of data comm memory
by placing the message in the receive buffer. Then, using the selective start feature of memory modify,
access the word and syllable of the instruction immediately after the receive flag (R2) has been
interrogated and determined to be set. The object program will begin executing from that word and
syllable. This routine allows the operator to proceed as if a message had been received from the central
processor and allows testing of those parts of the object program that unpack messages.

Likewise, the transmission of messages can be tested off-line. The first word of the transmit buffer is
located in word 1249 and the next 30 words proceed serially to word 1279. The last word is 1248.
After programmatically packing a message into the transmit buffer, the operator should depress the

program halt button after the transmit ready flag (R3) is set (evidenced by the transmit ready light
being on) and then use memory modify to read these words and determine if the message was assembled

in the buffer correctly.

The word locations of transmit or receive record work areas are determined by the Assembler and would.
be accessed accordingly.

SECTION
~ GP 300 PROGRAMING EXAMPLE

PROBLEM

Examine the Program Definition Chart and Worksheet located on pages 4-3 through 4-6.

SOLUTION

The proposed solution is located from page 4-7 to page 4-32.

SOLUTION INDEX

General Systems FIOWCHATtvvuuervuneeeneeeneeeseseessooooeooooooooeoooooooon 4-2

Program Definition WOrksheet..............u..eereveevereremrreeosoooooooooooooooooo 4-3
Program Definition ChArts...........eeveeevuenrveeneeeneennsesreesssseoooooooooooooooooooo 4-4
Sample Coding FOMMS...........cceeeumervumereieeeeeeeeeeees oo 4.7
Assembler III Program Listing ceeeeeeneeveveeeeeeennn ettt e e e e bt e eeeaneaeeennnas 4-33
Sample Oﬁtput .. 4-69

Cross Reference between Assembler III Output and
Program Definition CRarto.ueveeeneeveemsresresesoooeooooooooooooe 4-70

4-1

SAMPLE BILLING PROGRAM
GENERAL SYSTEMS FLOWCHART

INVOICE
AND

PRODUCT! - L 2000
DATA |
I) REPORT |

4-2

€

15 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 75 8 85 9 9.5 10 10.5 11 11.5 12 12,5 13 13.5 14 145 15 15.5 16 16.5
i L4 1 1. Il\ |I i 111 1
Z
D [
S RAD E d | | |
L] LT /
99
. L6 Ll d
BN RS RN NS ARy] i
Vik, .
T 3
A A O o e
.................. L] k| o [HREN | N
. - 1 - *TTE g -(
NN 2] I VTN
N T DTE T i i n
ERENEN INRRRNERE]
S SOOI SORRAARIA I T
T | i B i] ENREN I ARERN AEENREANRN)
/ [L pli 20)] REEEN NENRENRNANEANND)
V. A
J | NENNNEEE] EANERRRNANNN NN)
L‘P ’-;‘ 4 T
7]] NENNENEN NRRRNENERN
o) T \J
T '\ T LT LT]
0 | ARREN NN HW% px
TR AY TH ANNANE LT)
A | RENENEN RERENERENN =
» - i
(x5) |
) | NNNENNEN] ERRRRENNNE 1
¢ | HH \§AYJ
 RENNRREN NN 1h)
T /

PROGRAM DEFINITION WORKSHEET

v

INPUT } PROCESSING OUTPUT
: Bl ety s oureuroeralL
g nArAng:cmmou u | £ nem':epztmmon s,’:ﬁ"”x:gﬁ mﬁm ::wm REQUIREMENTS 1484 nsn.%se‘:::mou mrﬂ:ﬁ:&ﬁ 1
5 OPERATION B Punched Card (PC); Formules; a8 Punch: Specify Adjunct, Format, u
b ™M (N Edge Punched Card (EPC) Extensions; TIH! Special codes, etc.; ¢
€ £ w&:«m‘ Storefor et uee Wi Striped Ledger: 1
) [Varisble Specify Reader: Formatting for output. Fi Varisble Deta Com Transmit. N
A#ALI Size | Min | Max Memory (M); Data Com Receive. Size | Min | Max [Norm) S
LIINVOlICE NUMBER | N olel|s KB . _lsToRE _FOR AUTOMATIC PRINT [/| | |0|6i5
_ . __INDEX ZERO IF NOT AUTOMATIC | '
2./ DATE A 6 li2|1 KB STORE FOR AUTOMATIC PRINT |/} .| 1612
z!rax RATE N | 0|4 KB ISTORE FOR CALCULATION _ |/| | l0l4.2
4| cLEAR DAILY TOTALS PK_SELECTION B
CHOICE OF INVOICE P
A) COST AND SELL S -
B)STANDARD Y. . |SELL EXTENSION ONLY [| . 1 -
6./SoLn-TO INFORMATION | A o1 | KB _ -4 LINES, STORE NAME WVl | 031
DFOR POSSIBLE | |
CONTINUATION PAGE |
7. ISHIP-TO IN A o 31 KB -4 LINES_OR AUTOMATIC |
SAME" SELECTED BY OCK | . |
IN *6 :
8| TERMS v A olinin KB W ol
9] ORDER NUMBER A 1 {1010 KB v/ 1110
olcusToMER NUMBER A HE KB _
i./SoLD BY A oljl2 KB v oli2
12{ SHIP VIA A L9 KB v 1 |
DATE M. Ve 6121 | |
| INVOICE NUMBER) vl]l lolels |
A) IF_STORED M . olels N
B) IF_NOT STORED |A 0l6|5 KB .]]
PRODUCT NUMBER N 0|44 KB UST BE LESS THAN 5000 ¥ 044
(PROVIDE ERROR INDICATION) | - 1
16 QUANTITY N o773 KB , [ENABLE RE KEY ; OPTION ED AND *-* IF MINUS
. T
iZ/PRODUCT DESCRIPTION A | ORsi5| KB Il | |o2ahs |23 cHARACTER MAXIMUM. | |
PER LINE Ll
CUSTOMER APPLICATION o __x
oo — . @ PROGRAM DEFINITION CHART
Printed in U. S. Americs 389 1040060

S

INPUT = PROCESSING OWﬁT
s f’l INPUT SOURCE ' ' 1]
§ OATA DESCRIPTION ‘E‘ E :e;: FIELD DEFINITION W{gﬁ?ﬁ"ﬁ" :Loim REQUIREMENTS E g FIELD DEFINITION %::‘E:;:;m g I
] OPERATION & Eoigs Punched Cart (EPC) Eveanstors: AR P el oy onct. Former, ¢
‘ £ Sl i g — Pt b
‘l: : % v-rI:u mmmm Formatting for output. s:.-thV'M-:* Data Com Transmit. 'sq
LL PRICE N olr|3 KB ENABLE ¢’ *M" KEYS = |/ 217
v ALnliELALEIII:LEBLgEuLS _ 4
_JoR CENTS AND MILLS nE _
. - __|PROVIDE TEST TO SELECT _
. |MASK AND SCALE ARITHMETIC
.|ACCORDINGLY - |
NIT
E *C*,*M",EA" M__. . . _|AUTOMATIC PRINT o2/l ['e",*M" or “EA* PRINT | |
PRICING o _
|_{B) OTHERWISE A oi4i2 kKB 0ol4
 GROSS M - _IGROSS = PRICE XQUANTITY _ 2.8 RED AND “~" IF MINUS
| DISCOUNT (IF SELECTED
AT #)6) N 114 |1 kKB . |SCALE AT 99.99 o4 v [!
AMOUNT M INET 26R08S ~[DISCOUNT: RED AND *=*IF MINUS | .
OST PRICE o . i
IE SELECTEDAT *5) |N | |o|7]3 KB JCENTS oR CENTS AND MILLS || | |2]7]3]
T _AMOUNT |
(IF APPLICABLE) M] = x Y v 285 1
[UBTOTAL o _?
) SELL M v 2.8 5 |RED AND *-" IF MINUS | |
_TB)_cgsr (IF APPLI!)ES) M : 4wl | 12185 |RED AND *~"IF MINUS |
AX % (OPTIONAL :
) AUTOMATIC
L_| B INDE XED N | [0]4]) KB] v | o4z |
ZITAX AMOUNT ; I
(IF_APPLICABLE) M __[TAX_AMOUNT = SUBTOTALX TAX % v 12815 o
L) ___|INDEFINITE NUMBER 1]
RIPTION A ol KB v o|I8l6 |
AMOUNT N KB v 0(8|4 |RED AND *-" IF MINUS | |
AMOUNT | N 055 KB |Vl o555]
B .
CUSTOMER APPLICATION J
EQUIPMENT
SALeswAN _ oare 3 PROGRAM DEFINITION CHART

9-v

INPUT { PROCESSING - OUTPUT
§ "; 'y INPUTSOURCE e OUTPUT DETAIL ,'ﬂ'
DE! ON eyboe A PROCESSING RE! Print: Specify Printer and F: S
g DATA ngs:mmon 3 : 'E" F'ELD'"::.:““ mﬁo&ﬁmﬁ,m A:mml':“:‘ﬂ QUIREMENTS % ‘E.FIELI)O‘D’E.’:::!“ON . (U)..Ummmm ; '
N OPERATION S & B e Cart (€PC); Eomatona: ARy P ot enthunct, Formet, ¢
E [Punched Tape (PT); Store for later use; Whjtv) Striped Ledger: 'll' !
B Foad v | oy Formating Fixed _ varistie %
¢ fy Roader: Formatting for output. > . 0 Dats Com Transmit. N
| [Sixs [Win [Mex Memory (M); Dats Com Receive. Size | Min [Max [Norm| S
| INVOICE TOTAL . _ _ S e
A) SELL . I [TOTAL =SUBTOTAL *TAX+ADDONS |} | { .-
PP LE « |coST TOTAL= SUBTOTAL +ADDONS | | | | —
] £ IS BEYOND ONE = .| |
PAGES R OW_FOR INDEFINITE | |
__INUMBER B
oLD TO NAME olz 1 M _ |
R M _|AUTOMATIC INCREMENT OF | |
C)INVOICE NUMBER [S — R
i) STORED L S N
i olr!s KB _
PROFIT M. |PROFIT=NET —=COST AMOUNT | |
M WITH PK, IDENTIFY | .
— FIGURES WITH | .
~ |ALPHA MESSAGE
_ —_— S |
_DISCOUNTS _ . RN I
C. NEY L : B
TS 1
_ | SR J
CUSTOMER B . APPLICATION . T
EQUIPMENT »
sour — — — Q PROGRAM DEFINITION CHART
Printed in U. S. Americe 369 . 1040060

BURROUGHS ASSEMBLER CODING FORM

PAGE | OF _iﬁ__

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2 3‘4|5|6|7 8,9

110 [11)12 (13,18] 15 l15|‘7|'8|‘912°IZ1122123124

5 P:O(;ﬂ‘: ;D 2 BRANCH

AMIPILIE
PARAMETER PROGRAMMER

CODd SEQUENCE LABEL OP. CODE LABEL : TNg/RR_EL = REMARKS

| 11!12' ‘3"4' 15|16 l17l181‘9lm]2| 22,23'24 Iglx BI$|31I32[33134 35]%]37[38 39 140,4114? 43 44’45 l46I47 48 '49,50'51‘52 53,54,55’56 |57’58l59 60 ,61]62l63[64,65 GG’G7,GBIGQI7OI71I7ZI73 ,74,75'75 77|
0L0 Lo 1 INGTE RN B L1 Lt BIASILIG BILLLITING PROGRAM | | |
01920 | 1, LPKR PIKTAIL NI A L b JLGAD IPIKE BASE REGLSTER |4,
QL0310 1 [LIPNR MASKITIBl 1] 1, Lo bl GADC PRINT NUM. . BASIE REG
all0%wel o IR I T Lt beeon W@GAD LERT LIMIT REGLS TER
OlllolleIthInTIArL PIKIAI 1 l|2|5|8'| t L1 Lo | 141 [| EINIAIRILIEI IP]KI/‘\III ILI@'IAIDI lDlAITIEI L 1 1
Q10,60 1 e ce e gy Lo b IDNWV s N TAX, PKAS PIRLINT,
QL0ZOl 111 1 INEBTIE NI SRR AN Lt DALY TOTALS, PKAS C@ST, |
Q110,810 1 11 1, INGTE I R R O A A A IlNu\/l@l[IClEl L PIKAS CLEAR (TATAL
O 1090l 4 11 INIK L Qv 10 Lo XKOAINLYG |®C|K| W) ISITIAJRITI IIIN:VIQAIIk,lI:
OLihoQl gy ISET Yool 130 L b IET SITA Dyl
ob b LoBIEGTINVIBC | SILDT@ 1 117 Lt ADVIAINGE JT@ W INE O 1
o h20 4,0 IRSTL) (NI I | o L ISIET Y L CDONT L PAGE 1
ol ol 1+ 1y ICLAL Qv a0 21 Lot JOLIEAR GAGG . INSERTZ 1 1 L
(@F FE IL o) T I | TIRIMI | kPIAIG!M L 11 L1l L1 L1)] SIT|@RIE| |F|®rR1 |PIAIG|E| .N:@..na. I |
OLnsiof 11111 [PIKA A N Lo b e BIRANGH (T@ (IINDTILALLZEES | 4
oLueo |, JLKBR CUSTINM 0 | L b LGAD IKEYBGARD IRASE, REGH
O 720l 10 PAS Di=Ply oy 1 L b PASHTLON (0@ SAGLD T L 11
O 810l 11 1 [TIKML ST N Lo Lo XTYRE (GUSITGMER INAME, Lg]y
Ol 9ol 1y JAIL 1 T AT Lo Lo ADMANGE LEET @NEC LINE
QL1200 4) LLICIR SILDITI] ¢ 11] 4, L b o JL@ADE WETIHG SGLD To da LN

L

JH l12l13

|4|15

Pl R R R R I o

[P R R Fee s R R

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

BURROUGHS ASSEMBLER CODING FORM

ol 26
PAGE c oF _ &

PROGRAM 1D CUSTOMER
5 RALALRL BRANCH
SIAMPILIE
PARAMETER PROGRAMMER
FL'gf A 8 c
CoDE] SEQUENCE LABEL oP. CODE | GTH LABEL Tng?r:ﬂ. REMARKS
| |‘l12\|3l ‘4[15 16 ‘17'18[19'&'21 22I23|24 lﬁ‘zs 27‘8 Elwl31‘32l33l34 35I$l37l38 39 ‘w|51l42 43 “Ias |46‘47 48l49l5°l$“52 53|54I55|56 l57153|59|m|6“52|53l64|55|65|67l$5l69lm|71]72‘73l74|75|-5l77
020, L0l 3 11 LRl 4 v b 100 Lol BEGLIN TGP DING WGP 1
0202 i ILDIR B 1 O I B EX REGLSITER 131 11 ¢
020,30 1 i BRSTo e X v b 2 NI B RIEISIIIITI Xe FLAG e
20,4 0SHLPTBP@AS, « |+ NMAD=PL b1 1) NI I PRINTG 01111
C&a0|5101||11T|K||1 |3|||11| [[[IIIIXI'TIYlPlEII‘LNLtjgllII|l||llll|1
CIE’JOIGIO | T S | |Ll § 1 1 ll | S D | [| 1.1 14 | S |) I O | /XlDllelNlclEl IL-]EIFITI IQNEI__LL_LLLNL&LJ_J_—L—
02070 1 1 DR L v b1 21 1 Do Ll IMEST G DE (T LIRD DIME 10
02,080 1 1o 1 B e DX b1l S 1l b ENTIER OIF, S IP T 0 v i1
020,90 o DIDIR Gy P 1S v b1 LI Lo e MESIT F@PR CoOMPLETLGN 111 1]
o0l L Sk i b T b Pl b IMERMINATE L@@ v
O ol L BRW L SIHITP NIRRT Dl REPEAT v b 11l
o2 1,20 L BRU L RIBBANG 11 L1 Lol UMPe (T RLIABRON AREA 1+ 11 11
o2 30l 111 L ISIK 1 IFEE s O AN U N SO U T T 1 I O Y B TERMLNATE (LAAP 11 111111 k
O, Lm0l 1 BRI L SHIPT@ + 1 v 11 il REPEAT L@GP o 11
ST e INIRR RO =1 R UN N AU | SN BB & X (HEN 1 N S A BRANCIH T PRINT SIAME 111
w2 el 0y B N A . JEN L. . B Ll BXLT LGP e 11
2070 L SIET b K i bl 21 Lol BET TG ENTER SHILIPTIG)%)
S a0l L AL e e per i L Coa L ADVANCIE (T LDNES 00 11 1
02 190 1 o BRW Ly ISHILIP IR B Ll RETURN T L@G@P 1111
02,200 | i WAL b2 p e b bt Vol ADVIANCIE Twg LDINES 300111
CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,8,5,6[7,8,9,10[1112 [13,14] 15 16,17 1819 |20|21)22/23|24

r IH ‘12’13|14|15|16 ll?lla 119 IE lZilulBlZﬁ‘ﬁl&‘27 |28 Ialao]3!]32{33134

SRR P R EEFF R FR R

R

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

BURROUGHS ASSEMBLER CODING FORM PAGE 3 or 26
PROGRAM ID CUSTOMER
ALIRALILEL BRANCH
S PILIE
PARAMETER PROGRAMMER
cooe] sEquENcE LABEL OP. CODE Er%-? LABEL : TN(OZ?R_EL : . REMARKS
| ‘1| |2|\134];|4] 15|16]'7'18] ‘STZ)Jz'l 22|2le4125|25 Z7lm B[m|31l 32[33!34 35}5'37|38 39 |40|4|I42 43 44|45146147 48 l49‘50|5ll$2 53|54|55|55 l57|58159Jw lellﬁglsslﬂlssI66|67IGBIGQI'K)]71]72]73 I74'75I75|77
01510:'|O||||1P|¢h5|| L INMAD- Pl L N T T T T Y O A A A Y
G3920 v PA s I ISIAME L L Lol PRONTC ALPHA MESSAGE 1 111 |
Q303 CRIBBENALTG | RIBBRL |00 | 10 crr e ADMANCIE (T2 RIDBBON LDINE 14
GA30.%0 vy PGSy | TERM-PL] Ll aa P T2 TERMS) 00001y
G3,0,50 4 1, T 1 1 I PR AR L1 L1l o IWDYWPE O TERMS: 0000 1))y
(30,60 1 1 PBS | FRONGSP! 11| coa oy PESIETION T8 SROER NG 4
03078 v 1 TR s L O L g coc b TYMPE GRDER N@ay o 0 010050
(030,80 1 111 POS)) | ICUSINGP| L Lo b PeSIITII@N T2 CUSTGMER NG |
(30,90 | 1y T v v S v b coa b XTYRPIE G GQUSITGMER NUMBER 14
Q30100 + v 11 P@ASI | SILDBYPL 0 Lol PESITTITGN (T S@ibbD BiYr 111
O3 b 0 T e 2 s b L Py INTIYEPIE SIALES NAMES 001
Q31,20 0 P@&S L SHPVIP L1l P T SIHIP VDAL
CHATEIC I . AN - R N Lo XTYPE SIHLPVIDA v)
CARIL8O O™ L JIDNVINGEITT Lo ey CILEAR GDINVGTICE NET, T@TAL |
Q305 v Ca 1 L JDINVIGSIT Lo b CILEAR I LGE T T
O3 160 1 1y SIBT) IDATE ST L L Lt g PRIDNT DATIE, 1.CE
O3 L2, 1 BB P g R 2] 1 cec L BIRU GSIKILP GLDINE S DINCGREMEINT, |
O5|I|8|OB|@1D|Y:[1VS|PJ| Ll JCRGLIINIE] o g Loty JDINGRIEME E iC
3 v BX Y b el L ITEST F@R CHNTL PAGE 1) |
032000 3 1 ISIRT] ISUBTT 110§ Lttt PRINT SUB-IT@GTAL 011 111
CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
102,314,5 ,6[7,8,9,10][11,12/13;1a] 15 161718 19| 20,21, 22,2324

| '11

D D D e 0 g e D e B B R e D S D D e e B e e r e R e T S

A

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

ol-v

BURROUGHS ASSEMBLER CODING FORM Prce 4 or 26
PROGRAM 1D CUSTOMER
s 617181910 BRANCH
SIAMPILIE
PARAMETER PROGRAMMER
';'_';-E’ A 8 c
SEQUENCE LABEL oP. CODE [GTH LABEL TNg?R—EL REMARKS
l ‘1||2L13I‘4l 15|16 “7]13'19'20]2‘ 22|23|24 IE\ZS 27|28 Elw|‘3|‘32|33l34 35‘%‘37!38 39]40‘41]42 43 44|45 lﬂs |47 43]49]50|5‘|52 53|54‘5§ISG l57l$8159lm 161l52|63[64l65lﬁé|G7|68l69|m‘7|]72173]74|ﬁ|n 77|
O40. LG 1 111 SRTIL 1 |1 IC@BNTPG| « 1+ Ll Lo b IBEIGITING CoNTLNUATISN PAGE
o020 L RST L Xe i b 13 Dol RESET DILSC@UNT FILAG 111
40,3 111 TE v v v e b bl Lol i ADD@BING FdaAG e e b bl
Q404 1 PiKAL | YIRS N SATE N R oo e e (ENABLE (SIUBE TBTAL P11
C/\q‘lo] 5|C) | I T T | PI@]SI | i PIR|DIC|DIID 1 1 1 | | 1 1 1 I | IG|SIL 1 | II. M_JEBIQIDMEAL-‘QQD@_
4,0 6,0MAX 1 INK vy L M v e L1 ST Lo b JDINDEERK wﬂﬂm
40,700 1 11 ICGPAC) L MRS T o b e b ol loHECH T MALTDE 1
408 NP L b e s b Laa o EQUALL i, N2, PERATION 1 1 |
o090 L BRU Ll a2l e Lol IiNvALID G vt
oo L BRU Ll M a8l Lol vAL I PRINT v vy v i1 11
O4 e L ALARME G L e b bl b lINvAL LD D2 N@T PRINT 1
O 1,200 L 1 BRUS L MAXE o e b ool Te e NEXTE CBDE 11
Chnact L EX o L Yo pr e e IS b1 TEST F@R A CONT. PAGE 1
OOl L ISRT [SUBT@IT] v Lo il PRINT SUBT@TAL 1 11 11
o4 nsOl a1 JSIRT | TG 1 Lol BEGIN CONTINUAT LGN PAGE 1 |
o et 1 BRW DY IVH 8] b BRANCH (T G LNDIEX PRAD- NG,
o el A e b e P L o AbvANCE EFT @GNE L DINEY 1)
O el L 1SRG L b Ly O Lol SHILET O F@R PRINTING 5101 1
O 9] v PN b B b ST Lo b g PRINT PRODUCT: IN@ L tooyo1 1)
O420¢] 1 INKR T v b O L IDNDEX QUANTILTY o0 0 011111
CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5,6]7,8,9,10]11,12 (13,14] 15 | 16,17 1819 [20/21,22/23) 2

[T

DD ERe N R A R e D e e e e e e el e

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

I

BURROUGHS ASSEMBLER CODING FORM PAGE S] or 26 =
PROGRAM 1D CUSTOMER
5|6|7|819 {10 -
slaMPlLE -
e APARAMETER - - PROGRAMMER
cooe’ SEQUENCE LABEL OP. CODE g’u- LABEL Tng/RR-EL) REMARKS
l 1‘]12' 13[14] 15116]|7'18' 19[3)'21 22|Z3124 125125 27|28 a]wj31l32[33‘34 35]%]37 38§39 I4DI41JQ2 43 44145 '46[47 48 ’49|50|5452 53]54‘55]55 I57|58I59Iw|61IGZIG3|54]65]55J67|53|59Inl7|[ﬂ]n I74l75‘,;6]’77
0500 v EX v LK s s e b b IMSIT FEIR |D|'[1S|C1_1®|C|Klln NG DISC
05020\ a ISIET L P X 13 Lol ISIET X310 NG DILSCAUNT FILAGH ¢
23 PAS TP L Lot PGSLTIION T8 QUANLTY 101,
O50%0 1 i 1 PNSH 1S v v O Lot PRIDNT WHGWLE NG, QUANTIITY: |
C50,50 1 11 PG ' R A B BRI L1 L1l L1 RINT o GLFE MINUSE L e 010,
050600 1 14 1, SR A I ¢ L1 L1101 RIEIPI@ISIIITIII@INL_J]Z@BLLELXIILNI_U_J__L_J_
0150,7,0 1 1 ITRM G 1 QT v [Ly a1y STORE QUANITY o0 vt 141]
Q508 QTIKDESCIBAS, 1+ |+ DESC-Pl 11 | (1 Lo L P@SIOTIIEN (T DESCRIOPTIIGN | |
Q50,900 v 1 TIK s L @B Lol XTVWPIE DESCRIPTION 00 14y]
OS5 00 1y SK s L K e v Al s MESTIOIE @CKIEL WUSIED 11
OS L Ol 1y 1 ISIRT) | OKILTINE] 3 v |y Lt Lo [TINCGRIEMENT LI NiE CGUNT 10 11|
05620 v SK s e o e e g g oo IMEST G LE LASIT O LNV@TCE LT INE
OS0!l v AL v L v ey b Lo JADVANCE (LEFT @GNE L INE 3 1]
Q5 L0l 4 BRW | TIKDESICL o0 0 |y Lo a1 BRANCH T0O (TYPE DESC.1i 114
OS5 LsICMPRICERP@S 1+ | SPRC=P] 00 |41 Ly o P@GSOTIT@GNG T SELL (PRICE 1 |
G5 1600 1 1 INKCM [S v e L IXNIINDIEX PRICE: v 0 b1
OS5 LW7CL g [EIXEL | e IOl s L mESITODE B TH G M MSED) i |
OS5 01800 11111 JALARML L i g Lol e WARNG PROCGE ERRGR 1 1011111
Q5190 1 1 BRI IMPIRIGE] 1 00 |1 Lo a1y BRANGH (Ti@ G IINDIEX PIRICIE: 11
G5200 g ISIRT L M o L ey DIEMERMINE (DiFE MILLS G DINDIE
ALPRANUMERIC DATA OF AINT HAE
1,2,3,4,5,6]7,8,9,10][11,12,13)1a] 15 [1617 (18 18 | 20,21 22(23) 24
| I" |2]'3||4]15|‘6]171‘8]19 |m |2‘|22|23|24 |Zl$]27‘23]2|”|3|l3433l34|35'$l37]38|39]40]4|‘|42| 43 |“|45 |46]47|48|49 50]5‘]52[53]54'55156'57]58I59]m|6‘]62!53[64]65I66167158I69lm 71 ,72]73'74!75'75!77'

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

(444

BURROUGHS ASSEMBLER CODING FORM Pace __© or 26
PROGRAM 1D A CUSTOMER
5 6171819119 BRANCH
SIAMPILIE
i PARAMETER PROGRAMMER
f_'g—_" A B c
OODd SEQUENCE LABEL OP. CODE GTH LABEL TNg’/‘R-EL REMARKS
l 111 |2| |3|14l 1516 |17|18v‘ |9|Z)IZ| 22|23le125|25 27|8 Blwl31l32[33l34 35]%137|38 39 iw[4‘l42 a3 MJf;AGI47 a8 |49‘50|5‘|52 53|54|55I56 l57|SBISSIm l6||62|63|64[55}66]57l65[69|nI?‘{n]ﬂ'74'75!75 77
060G L EX A b b e L TIESIT DR MIDINUS G FILAG SIET 1
06020 10 BRU L MPIRDCGEF 1 13] 10 Lol v BRANCH (T@ (DNDEXT IPIRIICIE 11 |
00,3100 1 1) ISIRT L | IPTERPRCE 1 Ll PRINT S PRICGCE 1030010
Q04O L v PSP PERUEPE 0]y Lol POSTTIGN (T PER UNTT (CoLN|
06 1 1y 0 E|X| [CAL L G 4 L1} L1 4 TIEISlTl |I|Fl |C| lFlLl/‘\xGl ISIEITI [I S I |
0606 1 PG v P G Ll Ll PRINT G v vy
0607 1 TIRACL L IQTY v b Lol TRANSFER QUANITY 10 4111
O608C 111 1 SILROE L O b 2 1 Lol SIIDET FOR PER WG PIRIGCE 4 11|
O610,9C 1 1 s ITRBM Ll QY o o L Lol i ISTORE QUANITYy v 11 60311
Ceo Lol 1 1y IEX i |y gt o ™Mool b mESTLULE M OKEYT USED 1111
GeELLS v ar PCS b Mo b b Loty PRINTEM oo v b b
OH L2000 1 v TIRALL L IQTYY o P el IMRANSFEFER QUANTIY 1 v 1 a1 1
O 1130l 111 JSILRG L 0 i L B Lo Lo ISHDEIT PR PER M PRICE 111 |
OO WOl v TIRM L QITY e Lol SITORE QUANIITY: vov v v 00y 1
OO 510l 1 1 ITIRALL L PROGE [vv e L1 Cia b ITRANSIFER (SIELL PRICE 1114
cenec! L EX ol A s b cleMe s Pl b TESTOLE EILTHER CGM O USED 1
Qo 7ol v BRW LD GRSAMT o 1 Lo e BRANCGH (T 1IGROSISE AMGUNT 1
O6ueol L T EX v K e b W 13 e IMEST (LF BCOKA USIED g a0 1
o9 v PG v B e L b Lol PRINT B v v v e br oty
CE200 v PCe o Ly At v b b Pttt PRINT A b v et
CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5,6]7,8,9,1011,12,13,1a] 15 16,17 1819 20,21,22/23|24

MOCC

D EOgRDa R R S aE Rt N e D aE D N e e e e e d B S S S 2 E D A n

PRINTED IN U S. AMERICA

FORM MK TG - 2206 (7/688)

BURROUGHS ASSEMBLER CODING FORM

PAGE i OF _a_.____6

PROGRAM (D CUSTOMER

24647183 110 BRANCH

SIAMPILIE

. APARAMETER - S PROGRAMMER

cood] sEquENce LABEL OP. CODE lé‘?o:— LABEL ‘:’Ng?n’;l_ REMARKS

l ||J12J 13114] 15 16||7|18‘|9|m]21 22I23lz415l25 27'8 3133131[32[33!34 35}5'37{33 39]40'41]42 43 4ﬂ45]46147 48[49'50]5‘[53!54,55'56'5 lSBlSQla)IS1|62]53|64|65]65]67|65|69l7ul7|lnln[74,ﬁ|75|ﬂ
70N oy BRUGG L IGRSAMTL L L Ll L BIRANCH (T GRASS AMBUNT, |
Q%290 v Tk v a4 o b L Lo by XITYRE PER GUNIDT, CGHARACTER. |
O7030GRSAMTILSR + 119 v v b Lo f e @ADL WSHIET REGISTER | 11
CYANTe NN LR 0 QT o Lo |y L MULTC PRIGE X QUANTTY: 11
Q71015|O | S O N | P@S] 1 i 6|RISI-IPI .| | J I | | | PQ MIL_
OY[OIGIO | I B SlRJI 1 1 PINJUIIWRIC L1 [| | . ' PIRI.[INITl |GIRQSSI aAM@MNjT] | I I
QLo v TIRM | WRKREG! 0 | Laa L STARE GROSIS AMDUNT: 11 11 4
07080 1 11 ADM L TERBSS! L |1, Lo AR T GRAND, GRGSS T3 TAL |
Q70,90 v v v v BEX oy | K s B b L ITEST (JIE DILSCAUNTE JAPPILCARBL.
QG HoO[v+ 1y BRUI | INETAMTL L 10 |1 Lo oy IBRANCH (T@ NET AMBUNT (1 1 1|
QLU Lol 1y 1y P@SI) | DIDSCmPl L L Loy POSIOTLIGON T@ DILSC@UNT, 1 1 |
Q2O v N s v s by 2 ety ATONDEX DILSICBUNT 1 0 1 a 1
G TMTKTe| NI ~0.¢ <2 W I RN Lo oo MEST LF AERG (IINDEXED 1 1
O L0l 1y 1 BRU | INETAMIT! o010 |40 Lo L BRANGH (T NET AMGUNT: 1 4
QbSO v v v T PINC v L T v L 3 L Lo PIRENTE DIDSIC@UNT JASE SA % o
O7 160 v 0 PG L P o b L Lra s PIRINTE S v v 0 L
O h7 QL v v v 1 LSIRE g o v o cea L N@ADG G SIHILET REGLSITER | 11 1
Q7 L8O 1 vy MULIR | WRIKREG 11 | 1 Lo ey MUBLT GDILSC@GUNT. Xi QRSS! 1 1
OTi 9 10 3 ISUM L WRKREGE (L Lo Loy (SUBT (DIDSICAUNT:, FROM GR@ISIS |
07200 v JADML L TIDILSICT o0] 1 L b A (T T@TAL DILSCAUNTSE |

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6]7,8,9,10]11,12 (13,14] 15 [1611718 19 [20,21,22/23| 24

I O B) e D e) B Y e e R e B S D e D e e D e R DR R

PRINTED IN U S. AMERICA

FORM MK TG - 2206 (7/68)

vi-v

BURROUGHS ASSEMBLER CODING FORM PAGE & or 26
PROGRAM ID CUSTOMER
sief 7|89 |10 BRANCH
S PiLIE
PARAMETER PROGRAMMER
f_'g;? A B c
SEQUENCE LABEL OP. CODE | GTH | LABEL TNg?R_EL REMARKS
l 11[‘2[13] ‘4l 1516 I|7|18||9|m121 22|23I24 Izlx 27|ZB 8|w‘3“32|33!34 35|£137|39 39140‘41!42 43 44145]46|47 48 |49150|5‘152 53|54l$5]55|57|58|59l63 lG‘lGZlG?‘&lss]ﬁls7‘68l691ml71 172]73 |74I75|ﬁ 77]
80, LONETAMTITRAL 1+ |+ WRKREG[+ v |+ 11 Lol TIRANSIEER NET AMBIUNT + 0010
Q&O.ZO I I | P@IS; 1] NlEtTl"lpl 11 [1t i | I PWM@LIAM@_J—J—
GiE08 ¢ L 1 1 1 ISR L PNUMRCE 0] gl PRINT NET AMBUNT: 11114 11
o&0b o o JADM g L IIINVINGET s Ly e e JADD il NE NET T@ T2T Al NET]
G&E0:5¢] a1 JADM L ITNET Ll R Lo L1 DDy lTMﬂLAd_J_JN‘tlL_J;‘IALLLEJ&LJ_I_
0806 L 1 i BX s Y v a1 13 i B L MESITLE CosT APPLTCARLIE |
08070 111 1 BRG] DY IV e L Lol BRANGH (T@ NEXT LNk 100
C&0:80L 1 1 1 WaSRE L O v b P Lol beaAD SHIET REGISTHER 1+ 4011
G810,9C 1111 PSS L ICPRC-PL Lt Lt Ll1d MM@_.QM_LEBLLQEL_LJ—
Of LOOICASTIVINK 1 |1 13y 1@y Lol IDNDEX CsT PRICE o1 11
Q&L 1 v SIRT L ICGTMTLEL v e L Ll DETERMINE (TFE MTLLS (LNDEX |
e 1,200 L EX r b A v e e e e b TEST (LF CoST PRICE ERRSR: |
Cién 1130l 111 BRUG STV L L Lol RRANCH (T@ (IINDEX (CSIT 11|
Q& LmOl v 1111 SR L PToPRCH 0 [l L 11 L1 PIRIINT (CBST, PRICE + 11111
O& 1510l v 1 N Lo L v b bl Lol SHDET F@R MLLLIS v a1
O& L6l (1 MULR [QTYr e 1 pr Lol MULT CASTE X QUANTITY: 1111
Q& LTl 1 g S ol CSTX-PL s L Lol P@SIITI@N (T (CSITL AMIUGNTI |
e g0l L I SRT s L IPNUMRC 1 Pl IPRINT, CasT AMBGIIINT: ¢ 1+ 11 1
Q& 190l v ADME | MICDSTISE L 1) I R R T)
G&200 L ADMO L INveSTE e] Ll ADIDE TG DINVIDICIE (CoST TGTIAL
CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5,6]7,8,9,10]11,12,13,14] 15 [16/17)1819]20)21,22)23)2

I—Ill l12

PR FE R PP R Fre] = FERF = PP R FR PR EEL

71 l72]73|74l75|76|77]

PRINTED IN U S. AMERICA

FORM MK TG - 2298 (7/68)

BURROUGHS ASSEMBLER CODING FORM ;

PAGE 9 OF _aﬁ_

PROGRAM ID CUSTOMER

5 81718910 BRANCH

SIAMPILIE

PARAMETER ‘ PROGRAMMER
f_'g‘_’ A B Cc.

CoDe| SEQUENCE LABEL OP. CODE | GTH LABEL ':'Ng%’ﬂ_' ' REMARKS

l 1‘]‘2]13"4!15 15]17]18]19]2&]21 22[23'24‘5]3 2715 Blwl31l32|33|34 35|5|.37|3B 39|40|41142 43 44|45l45l47 48|49|5°]5$l§2 53'54] [IS7ISS|59‘@|5||62163l64|65]66|57]65169lml71]72|73|74I75'ﬁl:’7
090,01 1 BRUN L IB@DY IV L L bt BRANCH (T@ NEX T baDINE: 040 o
0990, 20 NVTOTIPKAL « | 214600 10§ oo |1 Lo ENABILIE (TAX & (T@TAL PKE 11 |
39030 1 1 CLM g | WRKREG| 1 |1 L a1 JGLiBAR WBIRKITNIG: MEMBIRY: 14 14 |
C)lglolq'lo [T T | LlSle]] 41 [| 11| Lo 14 [A L!QIALDJ_J&LH_LL_LEJI_L_LBLEJ@L[JSJLELB[_L_L_L_I_I_
09|0|5|O | N R | SJRlJJ 1 1 SJUIBnTﬂnT [R [[| PRII:N:T: ISIUBlT@LA_LLI_L_A_A_L_I_I_J__L_I_L_
0906 1 1 ! DS i D@N-Fl | 1 L1l [L 11 ST TN T AL TAX 11110
090,70 111 11 (SIRT 0 Lo JCKILIDINE] + 100 |11 coa e IINCGREMENT: WIINE CAUNT 4)
0908 4 410 INK v L2 v L P Lo b NONDIEX MIDLSICr TAX PERCENT |
090,90 1 vy IEXZ o L v v b Lol DEST (LiE AERS INDIEXED 1 4
O HoC 1 111 IBRW L IADDSINS] 0 L ter g BRANGH T8 ADDSNS: 1+ ¢ 1110014
OSSO o EXe N v b e Pl by TESTE F@GRLAST LWIINE 1 10
090200 vy 0y SR [ICONTPGE L 10 Lol BEGTING CANTILNUATILEN PAGE | |
OS99 130l vt IBEXe v b Yr v fv o i b b e e ca [TESTE F@GIR GLWASIT SiDixe i DLINEIS o
OS LG 111 SIRT L JADILNCIK] 1y L L1 f i JIINCREMENT (LINE CAUNT 10
O LSOl 1 v e SIET L X L1 Lo o ISET) F@R ADDOINSE 11 1 111
09 16Ol 1y AL v b e e g L b ADVAINCIE JLWEE T @GNE LIIINEL 11
OO W7l 11 1 PGS | ADBNEIPL 1 Lo bt P@SIDTIEGN (T AL TAXE 1111
GO n8ol 1 PG o L T b g b o PRINT STAX 0 b v 111
O 190l vy s PG L A L g SN S TN TSN N N N T A N 0 A U N W O A
09200 PG b e b b R I B T A N B N O A N A B E A Y S N N A A B A O

. CONSTANT DATA (ﬂUMERlC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5 ,6]7,8,9,10]11,12,13,1a] 15 [16,17,18,18|20/21,22/23|24
' |" llzl‘Sl 14|15]'5]17I‘8]|9 Im lzi‘lzzlzﬁlz‘ |5l$]27 |8 Ialm l31l3433|34|35l$]37l38]39 lw]41|42! 43 IM‘45 |46 '47]48'49 50|51|52]53'54 I55]56|57 lse |59 |w|5| |52|63l64|65|56|67|55|68l70 71]72]73'74]75]76[77]

PRINTED IN U S. AMERICA

FORM MK TG - 2206 (7/68)

91-¥

BURROUGHS ASSEMBLER CODING FORM e 1O or 26
PROGRAM D CUSTOMER
5 ej71eo o BRANCH
S e ;
) PARAMETER PROGRAMMER
FIELD A B c
SEQUENCE LABEL OP. CODE I&ﬁ:- LABEL TNg?R—EL REMARKS
l 1‘112!13'14] 15116 l|7]18} |9Jml21 22[23!24 IS]% 27| Blw|31|32L33|34 3SI$|37]38 39]40 4‘]42 43 44|45}46|47 48[49!50'5"52 53|54|55]55 l57156l59lw|61|62|63|64[55lﬁlG7|68]69|m]7‘]72]73 I74l'ﬁ:l75]77
oot v PN b L 13 Lol g PRINT (TAX AS A PERCENT 1
1000920 v PG L i Lo Lol PRINT 10700 4 0 0 0y 1 by 11y
1030 ¢+ v 1 PGS P INET =P |00 | a Lot i P@SE T NET (C@BLUMING 1 18 11y
10 %C gy UbR o JDNVNET, o Lol e MUILT O TAX A 4 NET v 004 a0
1,005 1 v s ISRT L IPNUMRCT 1 Lyl L1 v PRIDNT DAY D@LLAIRSE 101114y
11600,60 1 11 ADM L ITTAXES] 1 L L1 L ADID T@ TATAL TAX D@ILILARS, |
G701 ADM g L JDINVINGENTE o f Lo by JADID T T NET GIINVIGTCIE))]
100810 1 1 ITIRMI | 1 WRKIREG] + 11 | 111 Lol i IST@ORE TAX DOLLARS) 301 4 41 |
120,90 1 1 1 ISIRT s L ICGKIGEINE]L g oo i IDINCREMENT: daINE COUMNTL 4 1|
aneol i EX Ll b s v b MESTOILE LAST (DINVATICE L TINE]
Lol i ISRT L SUBT@T s Lol i PRINT SUB-T@TAL 0 1101
O L2OADDONSIPIKAL 1 [ll6r v o v Ly L Ll e IENABRLE T@TALL ILNVGTCE PKi |
106Gzl vy PGS | IAD@N-IP] 1 [Lot a g P@SILITILGNG T@ ADDGN AL 111
QLo i sk o by b ey el e ey MEST LR GELRST ADD L1
onsel o ac Exe Yoo v b W b bec oy (MESTODE LASIT G DINVGTGE LLINE]
Qe | 1 i L ISR L ICANTIPGL 1 10 L Ll BEGLIN CAONT INUAT LGN PAGE | |
anzol s Sk by e b e et v L IMEST ODIE FIDIRSITE ADD@ING 1 111
loneol v llmXx e b c s s b IMESH G DF (BETTOM GF LINVTICE]
Lo, v ISIRT L IADLINGIKE 3 0 Lo b o IENCREMENT (LIINET C@IUINIT 11 1
1020 0 CISIET b X vt b 141 Lo b ISIET X (DINVBILCE (HAS IADDBINGS
CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5,6]7,8,9,10]11,12,13/14] 15 |16)1718 19]20,21,22/23)24

[T R R R R = = R R PR FREEE R R

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

BURROUGHS ASSEMBLER CODING FORM

PAGE l I OF _EL

PROGRAM 1D CUSTOMER

L BRANCH

ISIAMIPILIE

i PARAMETER i PROGRAMMER

cood] sequence LABEL OP. CODE 21%-? LABEL 2 Tug’/‘a‘ﬂ_ = <) REMARKS

l "] 12[‘3'14' 15116 ll7||8|19|mlz| 2él23l24lB|25 27]3 BI@I31!32[33I34 35]5'37!33 39]40'41]42 43 Ml45]46|47 48]49]50'5‘!52 53]54]55]56 |57l$3l59l@ IG’ISZIG?I“'SSPls?lsﬁlwlml7l]72‘|;3]7‘|75|K|77
o b v v JEX v L Y v s v e 2 s Loy TIEISITY A LE b ArSITy I DINVIGTICIE L LINE
(00200 4 1y SR L SUBTIBT 01 |1 Lol PRINTIISIVBT@TAL 8401110
100308 v 11 1 1 ISRT 1 | JCANTPG] 0 01] 1y ol BEGLING ICONTILINUATI@EN PAGE | |
1100l v v AL o L v b cr Loy JADMIAINCGE JLEE T BINE LIINE) 4 14|
l|'||0|51o I O T I | mS. 1 1 A.Dn®|N|" |P 111 [[T T I | |®|S|I|T|ILQIN| JTI@I IAIDIDIQN IAILIFA | |
10,0060 + v v 4 o ITIK v L B v L Ly raoa b XTYPE ADD@NG DIESICIP.y 11 414 4
L0720 1011 PGS L INEITI—iR L1 L1 Ll L 11 PM&NMMLMMN 1|
11,080 4 1 10 NIKR 0 |0 7 v v v 0 by O Lt XTYRPE ADD@GING C@BS T AMAUNT: |
10000,90] 4 v 1 1 ISRT | IPNUMRIC] 00]y taoa ey IPRTNT ADD@GN AMOGUNT 1+ 411
bhhoOf v v vy B v P A v L =y g by MEST OLE MINUS L L
Lot 0@ vy g g JADIME L | [TTIAIDGINIM] 1 3 L1 Lt by JADID TS ADDGINGT MIINWS v 00010]
b2t v S P A s e = s oy TIEST GTE PSS L ay g
b3l v o1 JADM | TAD@NIPL + 0 |11 b b JADID T JADD@GING PLIUSISIES) | 1)
L %Gl v g 0 JADIME | DINWINEIT] 1 10 0 Er e IAIDIDD T T@OT INET (DINV@ITICE
Lt v Exe L i g 13 e b ITIEST ULE SITANDARD (TINVI@ITICIE |
bdineof v v BRW oy [y v R B Lo a1 IBRANCH Ti@ CHECK L DINE (ICT |
bhbzOf vy 00 PSS L IGSITIXNEP] g L L POSIHLIGN T C@OSIT (CALUMN
Db bigiol v g 1 NIKR L S g L O Loa Loy ODNDIEX ADD@N CASITI AMBUNT, |
Pl 190 vy 0 s ISRT | PNUMRCE Y 1 1 Lo Lo PRIENT ADID@N (C@SiTI AMOUNT |
101200 4 1 1 ADM o L JIINVCSTT e L b JADDE T (T T G LNV ToT (C@SiTL

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6[7,8,9,10[11,12,13,14] 15 [16,1718 ,19 | 20,21 2223 |24

R

D B D D G D e e e e e e e e e e D B

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

8I-v

BURROUGHS ASSEMBLER CODING FORM Pace 120 or 26
PROGRAM 1D CUSTOMER
L BRANCH
SIAMIPILIE
PARAMETER PROGRAMMER

cooe’ SEQUENCE LABEL OP. CODE T(.:‘E:'E-D LABEL : b REL : : REMARKS -

l llllzl 13] |4‘ 1516 !17|1B\19]m|2| 22|23l24[25125 Z7|28 EJ3)131‘32[33|34 35!3]37‘38 39|40|41|42 43 “|45 |55|47 43‘49|50|51l52 53|54|55|56 |57l58]59|m ISIIGZ]63IG4|65IGSIG7|53|69IWI7‘I72173l74|75|ﬁl77
12000 o aaEmEXx o b e e b b ITESIT G DE MINGS 1
1229020 s 1 ADM o L ITADNCME 00 Ly Coa o ADD (T COSIT T TAL MONUS 4+ |
132,03 Sk oA e b = b b TESTCIFEC PSS e 1
120%0 01 JADM G [ITIADNCPL 4 o | Pt JADDG TR COST TATAL PLIS 1]
1,.20,50 1+ v 4y SR LG TINES 4 L1 L1 L IDNCGREMENT (L INE CAUNT 4 11
1206 1000 BRU |1 IADDDOINS] 1 1 Ll Coa b, BRANGCH (T@ NEX T ADD@N v 11 1]
12,0, 7.0 TAOTALTIEX o Lo o b el o ITEST DE ADDGNST AN 1 TNVGTCIE]
1208 (1 1 SRIV L SUBT@T o L Lot PRINT T@TALS 1y a1
ool L EX Lo v e B e Py TEST GE SITANDARD TNV TCE |
Lehool 111 BRW G L BEGINVE 1 | Lol i, BRU T NEXT: JIINV@ICE 111
L2l v TIRAC L JDINVINET v v by Ll ITIRANSFER (TS TAL NET I iNVIet
121,200 1 v SUAY T WRKREGE - 10 L1 Lol SuBT TAX FFIRSM NETE 0000 1]
213! a0 SUAL L Loy IINVICISITE 10 | a1 Lo e SUBT WC@STe FiRd™M NET 10100)
L2 L0l 1 v 1 P@S) L PRTZPL L 10) Lol PRSIOTIEN (T2 PRINT PROETT
L2 5Ol v 1 (SIRT L PINUMRCT oy Lol PRINT PROEIT AMSUNT 1+ 111
L2 6Ol oy [BRU L BEGIMNV] 100 |11 Ll BRANCH (T@0 NEXT JINV@GTCIE 1
L2 L 7O I NV~ NBISIRTY + | JAR=P@S| 1 |11 Lol er e ADIVAINCE F@RM P@GISILTIIAING 1 1
2ol i PA v | ERSTIDING o L Lo b PRINT ALEA FRSTIIN 101
29l v AR v i e b g Loa oo ADVIANCE IREGHT (Twd (LINES |
1202000 v PSR e b b Ll P@STTTIGN F@dR PRINT 111

CONSTANT DATA (NUMERIC)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5,6]7,8,9,10]11,12,13)14] 15 [16/171819]20,21 222328

OO OO0 e e e a e e e e e g D A e R B el F A e S e E s S B A DR

PRINTED IN U S. AMERICA FORM MK TG - 2296 (7/68)

61-v

13 ___or 26

BURROUGHS ASSEMBLER CODING FORM PAGE

PROGRAM |D CUSTOMER

sS{6]7]18]9 |10 AANCH

slaMPlLE)

e APARAMETER B c PROGRAMMER

CODJ SEQUENCE LABEL OP. CODE ‘G—Ta:- LABEL TNgTR_EL REMARKS

l |‘I|2I13'14l15 16]17|15119I2¢3[21 22]23'24!5’5 27]@ Blw|31|32l33]34 35|$]37I3B 39]40!41]42 43 44'45}46|47 48]49]50 5’]52 53'54'55[IS7|58]59|®|$‘]62|53l54'55|65'67[53‘[69Jml71]72] I74,75|76I77
L300l v N e o L Loy DATINDIEX (DINWVIITCaET Ny 1 1 0
13920 v i PN [B L o Lo p oy PIRONT G DINV@ITCE NUMBER + 144
10330, ¢ v 13 [TIRM 0 | JIINWVINGY |3 00 |y 0 Lot ST@RE INVLCE NS+ 0 11101
10300 1 vy 1 1 ISRT 0 [JAR-PAS L Lt b oo IADIVIAINGE F@ORM PRSITTIEON 1y]
1L,30,850 + v PAL L ! D.AlI_1T| i L1 L1 raa o PRIDNT ALFEA DATTE 010010 1
01306 v 100 AR L Ry b taa ey ADVIANCGE RIGHT (TWwe daDINESE o
133070 v 1 0 PGS s Lo @i L Lol P@SITTIGN F@iR PRINTL L1100
123080 | v 1 LIKBR I IDATE b0 | Lo Py WGADE IDIATE BASIEI MoAe 11
10130090 1 4y oy TKM oy foo e o b L P Py XTYWPE DATE o v
L3100l + 1 ISIRT) | JAR-P@ES] 0 |y P bea o IANDMANCE F@RM PSS TIION 1o |
3 v PAC L TTXRT b Lra oy IPRENT CALFEA TXRT 0100
3620 v v P@S L 200 L | Lo b P@STHTIT@N F@R PRINTL 11 1
131130l 1 v AR v LR v e by Lo ot ADVANCE RIGHT (TWd (LIIINES |
L3 Ol 44y KL 1 L2 1 L1200 L1 L1 ILNDIEX O TAXe RATE 0 v v 0 014
350l r vy PN L T Ly 1301 il PRINTCOTAX GRATE 3010 00 114
1306690 1 L TIRM) | [TAXCST v o0 |11 L a1 ISIT@IRE FILRSIT (TAXE RATE L1 1

=13 L7010 IBRUG [JDNDTAL] 0 caa e BRWGTE GDINDTDALTZE 0y 1 11
L3 L8 ODULVMT@AITIP@GS | N2 00 [v Loy Lia g P@S (SUMMARY D HEADITNGE 11
b3 0h9Ol v vy AR 1t L S o e by Lo e ADVANCE IRIGHT ELVIE (L ILINES
13120000 4 g PAL 1 |1 HEADINGE 110 g Ll PRINT ALIEA MESSAGE 1 11 1

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5 67,8 9,10]11,12,13,14] 15 [1611718,19]20,21,22/23 24

[T

O D 2 D S e R D B B e D D D A e e e B e r e R e e D

TR

PRINTED IN U S. AMER

IcA

FORM MK TG - 2296 (7/68)

oc-v

BURROUGHS ASSEMBLER CODING FORM prce 14 or_26

PROGRAM (D CUSTOMER
S 17(819 110 BRANCH
PiLIE
e AF'ARAMETER B . PROGRAMMER
SEQUENCE LABEL OP. CODE ;?:‘- LABEL ':’Ng;*R’EL REMARKS
l 1’1" ‘2l‘3||4l 15|16 [17]18'19'@]21 22|23!24 lzlx Z7|25 8lw|31|32| 33[34 35|£|37|38 39140‘41]42 43 M|45|46|4.7 48|49!50I51k:2 53|54I55|56|57158|59Iml61|62l53|64|65 l65‘67|68i69|m|71l72|73|74'75|75]T’

14000 v P@SI oy Lo Wl o by b PRI YT NN U N T T N U N NS U N YO S T T T T O
14920 11 1 v RR o b by r o b b Lot i PRINT DATE SN REDE 00 11y
134030l t v IPAC v Lo IDATE v L fr gl r i PRIONT CGURRENT: DATE 111111
L4080l v v AR o L@ v v b bl L b a g IADVMANCGE ROGHT (TW@h (LDNES 1]
Ilq'|o| slo | N T R | Plélsl 1 1 I |ElO| 1§ 1 11 | | L1 1 | I | Plg|5l l‘r IQ'VI IF@R] IP R‘I IN.LTI | 1 P 1l
14060 (0 PA L L TEGRAS! L] caa g PRINT ALEA MESSAGIE 11110]
140700 v i1 AR v b e v e b P Lo b IAbvANGE RUGHT, @NE L DNE 0
14080 | 11 1 P@S oy L 36 ol L Lol Pesi TN F@R PRLNT 0001
11410,90 1110 ITRA 1 | [TGRGSS] 1 1 L1 Lol TIRANSIFER (T@TAL GRASS 1y
L4000l 111 ISRI L PINUMRICT 10 |1 Lol PRINT (TATAL GIRGSIS 1+ 11 1111
4ol v v DR b e e e b 40 g ol @ADL INDEX REGLSTER 11y
{4200 v DR b l2e e e b 16 Lol bead JONDIEX REGLSTER 011
L4 oD YINETITIR Ly e v e b 12481 Lot TEST F@iz TiHE (7 LGSR 1
tamwol L Ex s b b e e e e e JEXECAULTHE I @R ol v
4uso (i BRG L IBINALS Lo L1 Lt BT @R vt by
(4 e0f v 1 ADTIR L v L By AN AR IlNlClP.lEIMIl:anTl BY F@UR 01101
t 7ol o v AR Ly e v e P cea e e JADIVIAY IHT (F LiDivE
8ol 1 IPOS L 2 b e L Lol PesShTleN F@R PraliNTe o001y
4090 1 v M@y Ll v P L Lol oo MeDlEY BY) REGLHSTER #2114
14120000 v g IPA 1 T TINGs g b= i1 L by PRONT ALIEA |EI|I=|§|S,A|Q|L| N

CONSTANT DATA (NUMERI.C)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,8,5,6]7,8,9,1011,12,1314] 15 [1617,18,19|20|2122/23|24

B0 ODCEE0na e e A g e N e e e e P e A A SR e e S e e e A T o e

T

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

1C+v

BURROUGHS ASSEMBLER CODING FORM

PAGE _ lﬁ OF _a___b

PROGRAM 1D CUSTOMER

5 s{7189 1o BRANCH

1SIAMPILIE

PARAMETER PROGRAMMER

CO‘A SEQUENCE LABEL OP. CODE ETS"‘:? LABEL : TNg?H—EL . < . REMARKS

I 1‘|12]Jﬂ14l 15|16 l‘7||el'9lm|21 22[23124 |5]25 27'8 Elwl31|32|33l34 35,%'37|38 39 |w|41142 43 “,45'46'47 w'49]50l5‘|52 53'54155|55 |57lsalssleol61]62|63164|65l66[67lsalssl70|71]72]73 I74,75"EJ77
1500 4 v s MOD Ll L L R B A A DiILEY BY, REGLSTER Ml 1.
59020 4 1 TRAC L INET |y Lot} 14 IxRAlN@DLBLJNLEL,J_L@AS_MMQLMMI
135030 1 v AR v [@i v v b Lot ADVANCE RDGHT Twe L DINEST |
1S0%e , v v PSS L UE6e L Lty g POSTETI@N FE@&R PRINT L1111
|15|°|5IO | S O W N | IN,LSJ_I 1 9: T | 1t | ‘I b L1 | | S]Hl.[nlrlTn IIIFlF IMMUI\SI | I N Y T A I I
115060 v PG e v b b Lo by PERONT S G TFE MIINGS
190070 v v vy JADIR [0 e v b ca b [DNCIREMENT (JINDEX REG BY: il
150,80 \ , 14 BRU | DILYINETL 00 | Lot REPEAT @GP v v v 00
150, 90F INALL IAR v | v @8 v v v o e L con e ADIVANCE RIGHT F@UR LT INES, |
LSioo] v v P@S 0 [2o vl b Lot POSETII@GN F@R PRIINT 1101
LSSl v v vy PAC g L TIOESS L (WU RS R I N IO B T A B A B B A A S A A S A A A A A A I
S22l v v AR e b L Lt o JADVIAINKCIE, RIDGIHIT @S L LINEEL 1
DS 130l v PBDS L 36 L L Lot o P@S LTI F@R PRIINTG L1 1
LSOl 4y ITIRAC |0 TIDLSCT | Lot TTAL DILSCGUNTS: o0 v 0 1 1
LS 0sio] vy i1 ¢ ISIRT 0 | PNUMRICT o0 |1 Lo o PIRINMT G T@TALL DILSICAUNTSE |1
Seol vy AR ey o b L L Lo JADMANGIE RIDGHT Twe L UNIESE
Lbihzol v P@S L 20 L et P@STITIBON E@R PRIDNT 11101
LS80l 11 v 1 PA 0 L AT L o L Lo by AILIBAL MESISIAGIE + 1 1 0oL
LbSneel v v v AR s L v L b Lo e ADVANGE RILGHT @NEr L LINE |
152000 1 vy JADAL L L TIAD@INME 10 0 | g Lt o ADIDyr MIDNIS ADDBINS 11

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5 ,6]7,8,9,10[11,12 (13,14] 1 I16|171|B|19120121422123|24

(TG FFEFERRER

S T B D Y D D D e e S S e D e S D e

A

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

v

BURROUGHS ASSEMBLER CODING FORM

PAGE I @ OF _&Q__

PROGRAM (D CUSTOMER

5 6171819410 BRANCH

SIAMIPILIE!

Tg‘--n APARAMETER S . PROGRAMMER

oooe’ SEQUENCE LABEL oP. CODE | GTH LABEL TNgf/{R-EL REMARKS

I ‘1||2l 13‘14] 15|16 l17||8l‘9‘z’|2| 22]23‘24 |25|5 27|28 B|$l3‘l 32| 33'34 35]5137|38 39]40‘41]42 43 44145 }46‘47 48.|49]50|51|52 53|54155I55|57l58|59lw IG‘IGZIG3I64‘65|ﬁ$|67|68]691m|71]72|73|74|75|75I77
16010 111 ADA L [TADGNPL o v | vy Lol ADDr s PSS ADDGINSE 1 1
1,660,200 ; 111 ADA L L TNETE v fv v | ora Locl i ADDE PRSDUC T NIET 11011111
160,30 1 v 11 SRT [PINUMRCE 3 0] Ll i PRINT ACCT REC NET 114 414
16O OL L v AR v e e b Lol e laAbDviaNCE RDGHT (TWS b DINES 1|
L6O0SC! vy IPDS C 20 L1 L1 L1l L PoSITION F@OR PRINTE 3 11 11
16060 1 0 PA 0 L ITING c b b Lol PRINT ALEA MESSAGE: 1111
1607¢t (v AR v e e e P e P Lo iy JADVANCE RLGHT, @NE (LIIINE 1 1 |
160,88 1+ 11 1 PAS, | 136 v | L Lol i PesITIIoN FOR PRINT 0001
160,9¢ | 11 1 ITRA LV ITCAOSTS! 10 |10y Lol TRANSFER (T@OTAL CASTS 11
16000l 1 c 1 JADA L L TTADNCPL v 0 |y Lol i ADD L PLIUS CRSITI ADDGNS! 1 41 1
1ol v JADACL L ITADNCGME 10 |y Lol iy ADIDE IMIINUS (C@ST ADDBINS 11 1
16020 vy (SIRT s [IPNUMRICE 1 | Lol ooy PRINT (T@TAL NET C@STIS 11
1ol v AR 2O Lol IADVIAINCE 20O L INES v 101
l|6| LWHOl o1 1 BIRIUI] | IINl[th/’ﬂ || [111 [RIRIUI ITlQl |I|N|IITIIIA|L|I|ZIE| N N I N B |
1161 1151GAR- |P|®|S | ST BV ER < N N N O DA IRN A N O Lol ADVAINICE RIDGHT 1 TW@ b LINES |
16! 110 P@S L 1SMEHDIP L bt PSS PRIINT v v v 4
enhzel o SRR L W s b i o e SUBROUTINE RETWUWRN 114114
L6 L8 OPINUMRCIPNS = |+ &0 v b g Lia e PRINT MBNTERY: VALUE 11 1)
16hee] v PO s b B e e b g Lol PRINT malFr MINMUS 0000110
1620l 1 g SRRy L s b b Lt SUBRAUTINE RETURN 1 1 1111

CONSTANT DATA (NUMERIC)

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6]7,8,9 1‘°]”|'2«‘3|‘4l 15 [16,17 18 19| 20 21,2223 24

EOCD0E 0000 S 00 dE e s N e e N e S Y G e e S R s s d e B e S R

e[

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

€

BURROUGHS ASSEMBLER CODING FORM

PAGE l z OF .J—ﬁ_.p

ALPHANUMERIC DATA OR PRINT MASK

1)2,3/4,5 16]7,8,9,10][11,12,13,14] 15 [16,17,18,19 20,21 22/23|24

$ F:OiRA: ;D 10 BRANCH
SIAMPILIE
i PARAMETER PROGRAMMER
';'_'EBN-? A B8 [

cooe] sEquence LABEL OP. CODE | GTH . LABEL Tng/RR-EL REMARKS

I llllzl |3['14l 15|16 |17|‘B] 19[@’21 22|Z3l24 IEIE 27|28 ”|$l31]32133l34 35|$]37|38 39]40‘!4||42 43 44|45 I46l47 48’|49|50|5‘|52 53|54155’56 |57|58[59[60 |61162I6§|64J65]66‘[67l68169|70|7II72I73 |74|75|75177
||7101||O PITI—IPIRIC PQSl 1 1 S]P;RCF‘:P | (| [[| PI@ISIIITII@MM@LM_IELBJ.L&_J_L_
P7O200 v iy SIK v A s b Sivn 2t by TEST PRICE F@GR MILLS 111
17030 v v 1 IPNC vy L 7 s v oy toa by PRINT WITH GENTS MASIKE 11
LW,O0%O v ISR L2 v L O L g ISIHILGET WEAT TNG POSITTILONS |
l¢7|0|510 . I | Ele Ll VAL L 1S] 1 T TlEjSlTl IPIRII ICIEI thlRl MI II_IL_ISI I
1,0,060 y 143 PN vy P T e 120 Lo g IPRINTG WILTH MLLLS MASKE 4o
170720 v i TIRM G | IPRTGCE § 000 |10 caa by TRANSIFER GSELL PRICE 40001]
1,7,0,80] , I SlRlRl 1 c T | [| L1 11 SIUIBIRJQ[UJILLNLEI_[BLEJIIQLBIN_I_L_]_L._I_J_
1,70, 90ICANTPGETRM 1+ |+ WRKREGHH 1 | 1, o e [MEMP@RARY S TEIRE AMGUNT, 1 |
Lol v 10 B o | ISLDT@LHE T toa e IADMANCE T2 CGUST@MER NIAME |
OOl T o O v v g o gy ICGHANGE IINV@TCE o0 001
L6200 000 P@S L INMADEPL L Loy PESTTIAN T PRINT 1101
WOl v a0 PA s [IGUSTINME 0 L1 Lo v PRINT GUSTEMER NAMEL 1 10
||7|||‘llo | I | LILICIRI | SILIDITglL 11 [| I L.I(ZAlDI ISIQIL.ADI ITIQI |L|I |N1E| |NQ|.| 11 1
WO usiol v vy o AT | ISHPT@W] 0 Lt IADVANCE, T SHTP (T LITINE) |
16l v vy P@S) L IONTR-PL o | Loy POSTTIAN T8 PRINT 1 0 1 Ly
Wzl v PG i P L L b PIRINT MPAGE ey
LTiusol v vy PG [A [A AR A A R A R A N A A A B A A Y A S A I
Loueol v v PG b & v L by B N T T Y T O A O T O A T WU N A S A MO WO O O B
L7200 vy v IPC v L B v by g [0 I T I N N A N0 B A A B NS B A A A A A A AN BN B IR I O

CONSTANT DATA (NUMERIC)

l I1” ||2113|14I15116]i7lla ,19 lm |21 '22]23]24 |E|5 |27 |28 la]ao |3| |3433]34 |35l$!37]38]39 !40]41 |62| 43 |44|45 |46|47l48|49’50l51l_5.2|53]54 |55|56I57 lSB |59]60|6|]62l63l64|65|66l67|88]69l70 '71 |72 l73|74|75’76|;'

PRINTED IN U S. AMER

1CA

FORM MK TG - 2296 (7/68)

(%7

BURROUGHS ASSEMBLER CODING FORM e L& or 0.6
PROGRAM 1D CUSTOMER
5 {71819 10 BRANCH
SIAMPILIE
PARAMETER PROGRAMMER
) FIELD A B c
col SEQUENCE LABEL OP. CODE '{;—E:‘ LABEL TNS?R.EL : REMARKS
l l‘]12| ‘q14l 15|16 l‘7J18L‘9‘ml2| 22IZ3|24 l%‘zﬁ 27]28 311)'31'32[33[34 ‘35[%!37}38 39 Iw[41l42 43 MJ“]QG|47 48|49|50|5‘L52 53|54l$5|56 Is7l58159|& |6||62|63l64I55]66 |67l68|59|70|7’]72]73 |74|75|7G|77
L0l v ITRAC L IPAGENG] L Lt L ITIRANSIEFER |P|/~\16|E| NUMBER 111
[, 8020 v PN b v L 08 Lol PRINT PAGE NGB 110 11110
L&03C! v vy ADUK L O e e b e Lot JADID L T PAGE: NG 1111110
180%e! | v TRM L PAGEND Ll g IST@BRE PAGE NG00 a0 1y
180,58 10 4 TRA, | IuNlVN& Lol L1 L1 Lo ITRANSFEER, nllNMJQILLJNQL.J_L_j_LI_
1,800,600 401 [SKZ ' AT R T B Lt L1 L TDEST JIF AERG a1
180760 v 1 1 (SUK G T IO v b Ja L o JSUBC L FEROM DINVEATCET NGBy 11
[840:81C] 1 11 ITHIRM L IDINWVNGDL | 1 Lt Lol ISTORE IINVEILCE NGiuy 0 10y
(640,90 v v ooy ALTEG [IRIBBLL | 00 |1y Lol oo, ADVMANCE (T RIBBBN LINE 1
L& o, v v v SR [IDATE-T v g | Ll PRIDNT DATE & (LIINVGLCE NG o
L& nnel o vy TRALL | WRIKREGI 1 b 41 Lol MRANSFER (SITORED AMBUNT, | 4 |
P& L200 vy SIRR P e v v P e b Lo b g SUBR@GUT NG RETURNG 1114 11
L& e SIUBTATITRM ¢+ |+ WRIKREIGH 1 d] 11 Coai a1 TEMP@RARILY (S TORE AMOUINT |
L& LS, o IP@S | NIET- P R0 13 01 [0 T A I I PIQSII‘III@JM@B]_I_MIEBMEL_L_
P& usiol v v PAC L JUNDIERISE o [Lo IPRENTE DNDERSC@IRE 01111
&6 | o Sk v el e ba v B2t g TESTE FIGROIINVGTLCGE ({COSTIING |
b7l Ly P@S L ICSTIXEP] 1 a3 1 Caoa i PESIITIEN FOR UNDERSCOIRE | |
e s 1o IPAC L UINDERSE o Lol PIRDNT (UNDERSCRE 110010111
D& U9l v v Ay o by e v v e b Lo oo ADVANCE (LEFT @NE LINE 11
1842000 1 IP@SI Ly INIET -2 g o L Lot b PoSITTITHIHEGN (T INET AMBUINT 11
CONSTANT DATA (NUMERIC) .
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5 ,6]7,8,9,10][11,12,13,14] 15 [161718 19]20,21,2223| 24

[TRFE

e))) e e e e R e) e e) e R e S R SR R A R R

PRINTED IN

U S. AMERICA

FORM MK TG - 2296 (7/68)

St

BURROUGHS ASSEMBLER CODING FORM

PAGE I 9 OF _3_6__

ALPHANUMERIC DATA OR PRINT MASK

112,3;4,5,6]7,8,9,10]11,12,13,14] 15 [1617 18,19 20,21 22,23 |2

PROGRAM 1D CUSTOMER
516|7{8(9 |10 RANCH
SIAMPILE ,)
S APARAMETER - . PROGRAMMER
cooe] sequence LABEL OP. CODE |<-:TE:- LABEL TN‘C’;R'EL REMARKS
l ‘l||2||3|‘4||5 16l17]16|19’20|21 22[23|24|5[25 27|28 8'@'31[_32'33]34 35]$|37|38 391 I l 43 44|45}45|47 48'49'50'5‘]52 53'54]55[55ls7|58l59]wIGII62]63|64|65|$|67|58J69lm]7|l72|73’74|75,El77
190,10 + v\ 1\ ITRAL L CJDNVNET] Ll L g TIRANSEER |T|®1TIA1L| MNET AMOUNT
189020, 14 SRT L IPNUMRE! 0 L o Lo PRINT T@TAL NET AMOUNTL 1
19030 v vy ISK P Y B 13 L TEST, FOR G IINV@ICE COSTI NG
190%0 v vy P@S, 1 | ICSTX-PL L, L re by P@SEHTION (T6 CHST AMBGUNT | |
I.9.0.5|O I T T | TIRIAI] 1 INIV!CISIT 111 11} 1 1] I I | T]RIAIN!S l‘ll:lRl ITIQITI i JC@]S.II[_IAIMM
19069 vy, ISRI | PNUMRCS! 1 |1y, oy PRINT OTOTAL COST AMBGUNT.L L |
190,20 114 11 [TIRA L | REG+ 1 1] 4 Lo b [DRANSEER ST@GRED AMGUNT, | |
190,80 1+ 1, SRR | 1 A L1 IR I SUBLBLQIU_[ILLLNLEJ_BELIMRM_LIII.Iu
| 910, 90 ADLNCKADIR | 4 |, | I AR A cea e oADMY 20 T IINE COUNT
Qe v v v EXe v o T b dna el L TEST FOR LAST LINE 01
OO vy SRT | ICONTIPGEL L cea b PRINT T@TAL & CONTL 1L PAGE: |
19620 v 0 SRR v v baa g L t s ISUBRGUTINE RETURN 1 111 1
1S3 0 DR M L 23y L e (SBT L FRGMOLINE COUNT 11
19Ol 1 v SRR v b L tea Lo ISIVBRAGUIMINE RETURN 1 1411,
1S s OCLRMEMLILIR ¢ [1 3 v v v Lo Lt LoAD FGR COUNTER | 1 11111
Q160 |, DTN B & T RN BN R L by MODIDIEYT WIHTH CAUNTER 1 11
1OQu70 vy JCILM LNMNEIT AR A e L (COLIBAR MEMGRY: LACATILON [1
1 08O v DR L B e L O EEE IR Cn@NILBQL_NMdﬁBLB]_@E]_Lm_,_
FCAIETe I =) AN N RS NN e I T L DEST IFE LAST TI@TALL L1 111
Q200 vy JCLALL v L o Ll CGLEBAR ACCUMULATOR 11 111
CONSTANT DATA (NUMERIC)

I D O O D) B D D o B e e e A e e e

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

9T

ALPHANUMERIC DATA OR PRINT MASK

BURROUGHS ASSEMBLER CODING FORM e 20 or 20

Tl T e

S PLIE
SEQUENCE LABEL) OP. CODE '&?': LABEL TN27R_EL " REMARKS

l |l|12| |3|14| 15{16 ||7|18l19|wl21 2'23]24]25‘5 27|8 8'@13“32‘33[34 3515‘37‘33 39]40'41[42 43 MI“IAG‘47 48|49|5°l5‘|52 53154]55[56 ‘57‘58'59'@|61162|63I64|65IGG|67|58|59‘m‘71]72‘73|74|75|75l77
£.O|°1|1 [S I | SIRIJI 1 ! IRl'lPl@lS [[| 1 1 lk tDIVI/-\INICIE.I |Fl®lRlMJE|@_|§LL|ILLQINJ__I__L_J_
Z.an.z.o I O T | NI 11 | | FEEE 111 llvl 111 [T PlPuIINITI ‘Z|FIR|(ZI1II|IIIII|III
200,30 (1 BRUG P IINDTALL v L Ll BRU T INTIALLZEE a1
20040 ;1 BRU L ICLRMEM+S L4 Lo b BRI TI0. CLEAR NEXT JTOTALL 1]
2|Olol5l lAlTIEl—lJPmISl 1 1 DIAITIEI-IP 1 |.| [1 1) [| Pl@lS;IlTnI JZ)aN. 1T_@| |D|A|T!E| S N T S T I T |
210101610 [T I | P[A: 1 1 1 DIAITIEI 1 [131 111 | T | PIRILNlTl IClU]RlRIElNITl IDIA[TIEI S |
200700 111 P@S o L IINUINGPL v 0 L1 A A Pl@lSlIlTMNMMM&J_L_
20080 | 1t [TIRALL NVNG |1 v Lol TRANSFER (JIINV@AIICE NGBt 010 |
200,90 | L SKZ 0 LB c e b P Lol ITEST FOR ZER@ 0 10 v
D000l L PNy B b Qe Lol iy IPRINT INVOLCE NUMBER 1111
OO L ADIK G L e ey Lol ADD W T INVTCE: Ny 1011
P 1,20 0 TRM LNNnN:Q IR BRI Lol oy IST@RE, LLLNM@LLQ@_ANﬂl AR B A
o301 L EXZE o e ey b i Ll TEST FOR ZER@ v 0 1 v 10
20 Lol | o T v b e b L1 Lo b IXmYlPiE _|IlNan®|I|C|E|_1N@h. I
2o s 1 IR P M b 2314: Lo Lo LGADC FGR LINE, COUNT v 111]
>0 160 L L IRST o LY e b Ml Ll IRESET Y & GANDy oby v v v s 111
SO L7l L ALTIG | IBODY e L ool ADMVANCE T@ INV@LCE BODY: |

Pongol i SRR v e b b Lol (SUBRGUTTNE RETURN 1111111
20 LOOICKILINESK 1§ o Yo 1 b 4, 141 0l oo MEST IFE LASTL ST i ILINES 1
202000 v v IR 1 4 b P48 N IINLCIRIEIM_EJ_)]L_JE@B]_LLLLLNLEJ_IQIQIUJNII_

. . CONSTANT DATA (NUMERIC)

1,2,3,4,56]7,8,9,10][11,1213,14] 15 [1617 1819 [20/21/2212324

(FFE T FFRFRRFEEF e R R s MR PP FRR PR

PRINTED IN

U S. AMERICA

FoRM MK TG - 2208 (7/68)

LT

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,45,6]7,8,9,10]11, 12,13,14] 15 [16117 18 19 20,21, 22,2324

BURROUGHS ASSEMBLER CODING FORM Pce L1 or C6
STl Te]s o
JAMPLE ’
PARAMETER PROGRAMMER
f_'g-? A B c :

cooe] sEqueNce LABEL OP. CODE | GTH LABEL TNg?R—EL REMARKS

l "]12' 13“4! 15 |GJ'7I|8||9|Z’IZ1 22'23'24 |E|E 27!8 Bl3013|[32|33|34 35‘%]37[38 39J40I41l42 a3 Ml“kﬁlﬂ‘/ 48] |] ’I 53,54]55'56 l§7[58l59w16‘|52163I64'65}56l67lsa|69]m]7|]72"5 |74l75|76]77
ed 0y S T e e b 1 L TIEST @R LT L IINES
2|||0|2,O I I | SJRan B [| PR [| L1 1 114 SI%EJQILLIILL[NJEL IREITURIN [I T
216030 1 3 o INGTE | v vy by Lot SET Y IFGROLASIT O L DINES (LN
2040 vy SET Y e 4 L b B@DY @F INV@ICE REACHED: 4 |
2.|.0|5|O | I R | I.I;Rn 1 I 4. [| N 2:551 L1 [| IINICRIEIMtINIlI IL .[MJ lCl@IUINlTI I .
2110600 1, LARM L0 L1 L1 L1 L WARN GRPER nA]I@BL_lBJQLLMML_JLLML_
2100070 g B Lo T L P by TEST F@AR LAST WINE 111y
2080 v SIET LY v b Lo JSET N F@ROCONT. PAGE, L 1
21110,90] | | SRR v | e v by by Lo b4 5|U|BlBlQIUJILLNL|:1_BI:JLLLBN A !
2111 110,01CT IMIILILTIRIMI L WRKREG] 10 | 11 tre g MRANSEFER PRICE (T@ MoAL o
el ol v ISERG T B o L [SHIDET, @FF D@LLARS & CENTS
20,00,200 vy EXE 030 Lo Lo vy MEST LE ZIER@ MILLS L1 1
20l 1 TRAC | WRKREG! 0 0 |11 Lo o TRANSEFER PRICE v 1011
Sl 4O [| SILIR@ o) [| L1 a. [1 1 1 | RIE P.Q)nS I | II l@lNl_LE@lBLlQL:JNJLMLl
2 usol a3y SRR v s L L Lo f o (SUBRUTINE RETURN 11 111
200600 1y [TRA | WRKREGL 1011 Lo TRANSFER PRICE a0 11
200700 1y ISILRG L IO o L T cea L SIHIDET @FF 7 DTS 1
8l 1 INTE Ly b Lo b TEST GJIE M@RE THAN SEVEN ||
290l vy SIKE G | B b L Lo Lo PIIGHTS WERE IINDEXED 11 1
2200 v ISIET T A v A A YlElSl;rQJ_EuTI L ELAG 5 g

CONSTANT DATA (NUMERIC)

! IH IIZI!3

MIIS

B O g D D e e D e B e e D O S R e e

JoEoEag

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

8T+

BURROUGHS ASSEMBLER CODING FORM Poe 22 or 00
STel3Tel T)
SAM'DLE BRANCH
PARAMETER PROGRAMMER
’:_‘g? A s - |c
COD4 SEQUENCE LABEL OP. CODE GTH LABEL . TN27R‘EL REMARKS
l |l|12|13!14| 15|16 l 118|19|20]2! ?2|23[24‘25l26 27‘28 Blw|31i32133|34 35{5‘37‘38 39|40|4‘l42 43 44|45 |46147 48‘49‘50]51'52 53|54‘55|55 |57|58]59I60IG!|62|63l64‘65]66]67|68|59]70|71I72l73 |74|75|75 77
22000 o ALARM b e b b Lol IMARNE @PERAT@GR ERRBR PRICE
22020 i SRR L v e v r e Pe e b ool ISUBROUITIINE, RETURMN 1 1111
22030 L ITRA L WRKREIGE w0 0] 10) Lol ITRANSFER PRIGCE v 110108
2'2.0.“10 | OO T I G | Nl@lTlEl | | S N | >| [L | | 11 11 SIElTl IF|L|A|G| lMIDIIICIAITIEI 1 1.1 1
2208500 1 11 4 B LA L1 S, L4 L1t CENTS, ALN& MILLSE 1 bp a1t
212.10:6,0 Lo SRR | PN AN R B R A Lt L4 11 SIUIBB]MLNLE[_BLE}IMRLNLI I s
21210,7,0 IlVrCl@SlTR:S;Tu) FEN A AN IR AR A & TR L b [RESET STANDARD TNV FiLAGH
520,80 1 111 IBRU ;| IBEGIMNNVE v |10 Lo Lt |BRU T INV@ICE RAUTINE o+ o]
2|2|0|9|O N S O | WleDl t [I B | Ll L4 1 L1 1 1 111 PlRQlC‘.HRlAlM |K|E|Y| |T|A|BILIE| | I O I S T I |
22 10 OPKTABLIBRU 1+ | TINNV-N@ 11 |11 Lot BRU MBID._DLALE_LLN]M_LNMQSL_
221,10l L BRW | DILYTOT o1 Ca Ll BRU TS PRINT, DALLY, L@ TALS
221,20 1 a1 BRU L IINVIT@T 00 Lo caal i, BRU T SUBTATALL 011011
22,1130 111 CTRAL L [ITTAXGOIT] + 1 1 Lol IMRANSFER (TAX PERCENT: 111
o2 wol v BRU Ly INVGASITE L 10] Lol BRU T@ CoSTI INVATCE 1 100
22,150 1111 BRU L T@TALIL v e Lol BRUOTE D TOTAL IINVOLCE: 11
221,60 1 12 BRU L IDNDTAL] v] el BRUC T GV INT DAL AEE v 111
22170l L BRU L CLRMEM 0 L Lol i BRU T CLEAR MEMARY! 11111
22 18I0} 14 AGE TS [N T T O N O I ST TN T NN W U O T T T I T O T O B O I B
2.2 19OMAISIKTIBMAISIK 'ISZJ?JZI;IZI Z1, 12 ZigZZIZ L)) ' AR UMERIC 10 i v v v ey by i1l
222000 111 IMASK 161, 1 ZZZ ZZZ, [ZZZ. 1D DI | I A ' P
S nUMEmc DATA OR PHINT MASK
1,2,3,4,5,6]7,8,9,0[11,12) 13,18] 15 16,1718 19 [20/21,22,23|24

[FEEEEEFEFE FEEFEE PR R = FEEF e R FFF PP R R

PRINTED IN U S.

AMERICA

FORM MK TG - 2206 (7/68)

BURROUGHS ASSEMBLER CODING FORM

PAGE a ,5 OF _.E_Q_

67

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6]7 18,910 [11,12,1314] 15 |15,17,13119[zo|z1,22,23|24

el
slamplilE
FED APARAMETER . - PROGRAMMER

CODEI . SFOUENCE LABEL OP. CODE '65:- LABEL TN(OZ?R—EL REMARKS

I ‘lllzl |3l|4l15 ‘6,17]'5'19'&]2‘ ?2'23'24[5]5 27|28 B|m|3||32|33,34 35]5]37'39 39|40|41l42 43 44]45 l46I47 45]49,50'5"52 53'5’]55!55'57]53'59w'61!62163[64'55]65'67J55]69|70l7|]72'73 l74|75]75177
230,00 , 1 SK |SZ|£L,1Z:ZIZ,.—ZIZ|Z.|C;C|CC L1 Lo MMLAMLLTIHI MILLS
23920 4, 11 O N6ZZZZIEZZZ2 221222 xS 1 L HIUNDRIEDIS, PERCENT 8 NS 1 |
2150 30MRKREGIREGY 1 | 1 120 by Lo (GENERAL MWDGIRK REGLSITIER 14 |
2|5|°1u|OMV1N@I REIC‘M | | ll Lt 1 1 1 1| 11 | | IIMM_JMMLBIEIRI U N U N O N O |
2:3001510 PnAnGuE|N|®R1E|6| 1 L l- 1 1] 1 L1 L1 1 4 1 [PlAIG;En INIUIMBQEIRI T I I SO T Y Y I I A
23060DATE « REG , |20 L tooc s JGURRENT DATIE g 111
21310, 7,QICIUISIT) EGo Lo g coa e CUSIT@MER NAME 0 0001010
23080 TAXCISTIREG + | v o0l L1 Lo L TAX (CBNSTANT 0 vy
21310, 90IQT\Y: 1 | (CTRNT I | PN AT I coa ey IINV@ITCE QUANDTY: L0 1 i1 141,
23 10 OPRICE REG |4 111, Ll Lo v IDNVBLCE PRICE v a1
2SS L WOITNVINETIREG ¢+ | v v vl |y e b IDNVIECE NET T@TALL 1 1 1
23 L2O0INVIGSTIREG « | ooy v a Loy, o by (DINVRITICE (CAST TAOTALL L L 11
3 BOIINET REG |0 vl Lo Jovg g Ty S SALES g
23 LOITAD@NPIREG + | v U v Lol Lo b T@eTAL PLUS ADDONS, | L 4 . L
203 WSIOTADGNMREG 3 |0 vl Lo Lo o MgTALL MINUST ADDSINS 1 1 11 1
253 e O TADNCPIREG) o | v v v o Lo Ly, Lo e M@MALL IPLUST C8STE ADD@INGS |
23 LZOTADNCGMREG « | v v Lo Ly, tao v o (T | NN
23 LsOTTAXESIREG 1 | Wi v Lo Ly, Lo Loy o TATAIL TAXES 0 00 111
23 WOITCHOSTSIREG + | v Uy ovv v Lol bo g [TET SIS Ly
23200 TORGSSIREGH 1 | v Wi g 1., Lty T ALES) 001

CONSTANT DATA { NUMERIC)

I B D D D D e D e D e B D e e e S e S e e e e

A

PRINTED IN U S. AMERICA

FORM MK TG - 2206 (7/68)

0€-v

race _C 4 . OF c6

BURROUGHS ASSEMBLER CODING FORM

Selole]o [0
S M‘DLE BRANCH
. PARAMETER PROGRAMMER
co SEQUENCE LABEL OP. CODE E?b:- LABEL : Tug/Ra—a_ : : REMARKS
l 1]“2| ‘31141 15|16 ||7|18l‘9lml21 22|23‘24125126 2712 Blw|31|32l33l34 35[%!37]38 39‘40‘41142 43 Ml45 |46‘47 48 |49l50l51|52 53|54|55|56 |57|58|59|60‘61‘52‘63‘6&'65|66|67|68l69l70l7ll72!73|74|75|75 77
240 LOTDLSCTIREG + v [y v v v v b b1l NI AR T TAL DILSCOUNTS v 1
240 20 TESTL L INUM | | 450001 1 [11 [Ll mEST vALIME SOI00 11 1) 11
2,4,0,30SAME + IALF 0 | 4ISAME L | I N N Y T N T O U T T N T R B B
24,0, % OUNDERSIALE | {W=—T 05555~ T Ll UNDERSC@IRE: o 11l
2|4;015IOHIE|A|D| (]AlLlFl i 214' |D|A|[|L|Y lle'i‘T AILISI |R|.I elal 1 1 P T TN WA TR T TR T SR NN O S B N S [N N Y I I
24,06 0ACT 1+ IALF 12l ACC RIEC: NIET, 1 |} IR U T T Y T T T W R B B e
2.4,0,7,0TNC 1 1 IALE 1 {16] 1 1 TBITALL NET C@ls v b b v e e il
240,80 TINSI 11 JALFE SATETAL NET SALES v Ly L bt L IR AR B I B AR
240900 0 JALFL b 4iTT AL PLUS, ADDI@ NS L1 v pr o e i e il I I A A BN
24, 1,000 1 11 ALFL L RPETOTALL INUS ADDBING | v vy P e rr e bt
240000l v ALIE L P4 TALL PLAUS| CASIT S Y T U U T T T T T B B R
24, 1,200 1 ALF L 124 M LNV ST ADD@NS, | 1 v v e vt bt il
2 el 1o ALIECy 124 DAL TAXES | I [T T YV T N W S N S
24 Lol 1o LiF PAT@TALL COSTIS: 1 T (N O U TN U T T T T OV B B B B
24 1510 T slaF 1 L4 TeTALL GRIBSIS, T T U U T U T T T T T (S B O T
24 LeoTDLSCH ALE L P4 T@TAL DIDSICAUNIT S v vy Pt 111
24, 1L 1o ERSTLNALE o+ 24l STARTING LN [ICE; P YT YO T T UV O N B
a0 Lol TIXRT L JALF 1 1241 TTAX RATE | 1 T DY T T Y U N T Y T T T T T B A
24 9 olDIALT o« JALE 24 \CURRENT: DATIE I (U Y Y U Y Y T T U T Y N T Y O
2.4 2,0,0SILDTBLIDIEF | o RN R AR A A A A I A ' I I R I I I
CONSTANT DATA (NUMERIF)
ALPHANUMERIC DATA OR PRINT MASK
1,2,3,4,5,6]7,8 (9 10]11,1213,14] 15 [16,17 18 19 [2021, 22/23] 24

(TR

OoDaEEnE 0 It Sr e R A A A EC R S d e H A S S e g e e A Ba

PRINTED IN U S. AMERICA

FORM MK TG - 2296 (7/68)

|§ %4

BURROUGHS ASSEMBLER CODING FORM e _ 2D o 26
5 P:O(;R!A: '90 —
SIAMPEILE e
PARAMETER PROGRAMMER
cooe] sequence LABEL OP. CODE ‘t;'rmu- LABEL i Tng?n—n : . REMARKS
' ",121'3’14‘ 15{16 I17}18‘|9,20J21 %2,23]24 IE'Z& 27[2 3]”]31'32[33’34 35,5,37!38 39'40'4‘]42 43 “l45 ,46‘47 48,49'50'5"52 53‘54!55,55,57]58,59]&)l51l52l6‘3]54]55}66IG7|65I69IEI71]72'73|74,75'76 77
{250 LOISHPTGLDER, | | | IS TATEEE B L Lo L s JSIHILP G T@ LWENE L L1
259 20RIBRBL DEF, . || CO L L Loty RIBBEN LINE L1 TR B
25030B@DIYIL DEF |22 ol L b IBEDY @F DINVTCE INE 1L
250 YONMAD-PDIEF, 113, 1 L |, MR R Ll [PASL T NAME, | ADDRESS 1 4 41
E.&O.&OTERM';PD.E.F. { 1 61 T L1} L1 T T | P|@|S| |T|EIR|MIS| N Y T Y T I T '
215,06, QiRlDlNﬁPDIEnF! 1 L 119 11 | 11| | L1 I | PI@ISI J@lBlDlEdBA__N]L!LM,B{E]R[I IO T R O I
2:5:10:7, OICLISINSPIDEF 1 | 0 1301 000 a0 |y Loy IPES QUSITGMER NUMEBE R, | L
25108 0/S\ILDBYIPIDEE, | | | 4.2, I R N R Lol PAS S@LD BY 0 NAME: 1Ly
250, 9O0ISHPVIPIDEF, + | 1560 1, 1|, .. L1 ot PSS SHIP VLA L1
25 HOODATE=PDES 1 | 1 &6, 0|, Lot PES DATE L gy
25 0 LOILINVINGSPIDEF T 1 | 4 180 v 0l a |y Lo b P@S IINVLGE NUMBERL | L 1y 4
?_151||2|OP|R|D|CID:PDIE|F| | 1 5| [| L1 | [L 1) Lt 1 3 MD]U]CATI NIU:MBEIR | T O I |
25 NB0RQTYIZIP PIEF L [7 v ol L Lot PSS QUANDTY . v g |
25 LODESCTIPIDER, | 22 v v Lo L PSS DESCRIPTIGN | L 1y L
205 LBIOSPRC=PDEF, 1 | 430 0l 0], Lot PSSl PRICE Ly 111
25 L6 CPERUSPDEF | | 55 1 |, ., L1 Lo e PSS PER UNLT COLUMN 1y 1
25 L 70GQRS=P IDIEF | Sior 0 g g0 L Lo 1 PSS 1SS AMOUINT 11y 1
25 LsoDILSC-PREE | 68 1|, L1 Lo |11y BQ.SL_LDJ_L&]Q@IUINIT] L IPERCENT L1
20 HQOINET =P IDIEF ¢ |4 760 v v iy |, Lot PES INET AMOUNT 1 1 14
251200 0CRPRC-IPIDEF I 1 | 1190 v iy, L1l PeS C CHSTI PROIGE 13100 40
ACPHANMERIC DAsa. on PmINT MA
112,345 ,6[7,8,9,10]11,12,13,14] 15 16,1718 119 [20,21,22,23] 24

14115

LI

PRINTED IN U S. AMERICA FORM MKTG - 2296 (7/68)

12]13

B B 2 B DD S A S p e e e s S aTa

R

(454

BURROUGHS ASSEMBLER CODING FORM

PAGE a Q OF {__6_7 S

ALPHANUMERIC DATA OR PRINT MASK

1,2,3,4,5,6]7,8,9,10[11,12) 13,14] 15 | 16,17 1819 [20,21,22,23 24

SPZOG:AZ ;D 10 .
SAMPLE BRANCH
e APAF?AMETER - - PROGRAMMER

SEQUENCE LABEL oP. CODE o LABEL el REMARKS

| HllZl\3l14l|5 16[17118‘19'@121 22‘23'24|25]25 2712 Sl!)]31132]33|34 35l$|37l»38 39]40]41'42 43 44‘45|06147 48]49|50‘5$15253|54l$5|56]57ISBlSQla’)161]62|63‘64|65]66|67|68‘69l70l71]72|73[74|75|7677
560, L olCSTX-PDEF 1 | 198 v v v 1 L AN A 4] CiS Teo v v vt
.anblonzoAlDQM'lPDlElFl 1 | 5|9| 11 | [L1 1 | i @'SI lAILIPIHIA| |/‘\|D|DL@|N@)I W I S |
2560 30PRIZ-PDEF | & T v v p v Ll S PRGELTALGSIS, Za 111 141
2.6.0.“.OC|NT|P|‘1PD|E1F1 i o)t TR [Py 11| [| P@|S| 1T|®| ICI@INTI] lPlAi(]Lt. 1 I I . |
2:610|5|OS|M1'1H|D|P DlEIFl 1 1 I.E.O. JE 111 1+ [[@ISI 1M|I|SC| |EIN| IR LLIE)l IRIC'.I|H||| 1 11
2161016.051"’\1"|C1T1PDnE.FI] L 36 L1 L1 | L 11 STty 111
210,70 11111 TEC bbb e L1 llulxﬁllNg_ﬂLu_@LhNuJ_A_LhNLtL__J_J_u_
260,80 111 11 IN@TIE ! [B L1 Pyl 111 L XAA lDlD@NLS_]_@LN_LI_INMI_ILAEL—L—J—L—l—
260,90 L 11 NGTE J v [v v b L b il SITART C@NTLe PAGE 1 :
26100 1 1111 A I =T N R W EE T T T A A O Lo b N3 STANDARD (L NVEBLCIEL L 1141]
?_16||| LOl 1 v 1 11 Tltl 1 111 111 [Ll 1 I O | qu’l |LIA|S|T| 16| II NlVI@lI»Cltl lLl[tNI‘:|SI
261,20 1+ 1111 TEL Ly by v e b b 1 Lo b O DNDIDICATES MANUAL (TINDEX |
261130l L JBEINDy e b v b b pr b il END @ TR 1 |
L [[I N O T T O T L1 N T S I I 1N WAV N T TN NN T YT N R A
11 1B I [A NN N (N N T L1 A T I I VR U T U T T A N O T N N S B
L1 i) I S N T N T O T Y L1 ' R YR T N YN S U T T T T T T I T N N Y s e
L 17y I I I | 1 YO N U Y O Y I T O S A S SN T T N Y T N T N U O N Y O
TN - VIR T T T AN T VT A T N N T N N BN S AT N N R U T T T T T T U VO T A R I
1119 [T T T I A T O |1||V||1|1 L1 I I O ' |1||:11|||||'||t11|1||||1
Y 2N+ TN T N YR N U N T O A T T Y U N N U T T P T I R O

CONSTANT DATA (NUMERIC)

(TR RREFRRRE P

|35l36l37138139 lAO‘MIAZ‘ 43 IMI:%S ‘46|47148]49|50 I51|52|53154 |55[56|57‘56 ‘59!60]61162|63|64[65|66|67|68|69|70l71 |72|73|74|75I76‘Td

PRINTED IN U S. AMERICA

rOoRM MK TG - 2206 (7/68)

PROGRAM D, =

WORD

SYL

[]
OBJEC
D]

T

NDATE RUN

MEMORY SIZE NOT ENTERED (512 A?SSMED)

2% 4

0

W N - O

w - O w N - O

W N o= O

[=]

FC69
FR6B
Ea33
F693

AROO
6758
EROF
6552

8F02
inr2
FA40
Fo7s

EROC
ADLF
gEnoil
E0OR

5000
5300

U & w N

D N >

11
12

13
14
15
16

17
18
19
20

21

S O O O S 9 22 2 O © O S O o O

2 O o O

2

22 0

INITAL

BEGINV

3/726/70

ne
CODE

NOTE
LPKR
LPNR
LLLR
PKA

NOTE
NOTE
NOTE
NK

SET

RST

CLA
TRM
PKA
LKBR

POS
TKM
AL
LLCR

LIR
LIR

F
L

TIME = 12148

D,
N,

"PAGEND

A=PARAMETER
LAREL INC

PKTABYL
MASKTR
51
1258

105
107

0 0

Y 3
SLNTOL + 7 15
Y 1

0 ?
114
7

CUSTNM

NMAD=p 13
31
1

sLhTOL 8

4
3

VERSION 02+01«70

8 ¢ LABEL
PAR PAR DEC EQU

PAGE 001

REMARKS

BASIC BILLING PROGRAM
LOAD PK BASE REGISTER
LOAD PRINT NuyM, BASE REG,
LOAD LEFT LIMIT REGISTER
ENABLE PKA 1 LOAD DATE

INV., NO, TAX, PKA2 PRINT
DAILY TOTALS, PKAS COST
INVOICE, PKAR CLEAR TOTL
XANY NCK TO START INvVOICE
SET STANDARD INVOICE FLAG
ADVANCE TO LINE 10

SFT Y 1 CONT, PAGE

CLEAR ACC, INSERT 2
STORE FOR PAGE NN, 2
BRANCH TO INITIALIZE
LOAD KEYRNARD BASE RFG,

POSITION YO sNLD YO
XTYPE CUSTOMER NAME
ADVANCE LFFT ONE LINF
LOAD wITH SOLD TO LINE

BEGIN TYPING LOOP
LNAD INDEX REGISTER 3

 PROGRAM D, = DATE RUN 3/26/70 TIME = 12:48 VERSINN 02=01=70 PAGE 002

(:J
®iworp ORJECT SEQ, QYM, NP FD, A=PARAMETER B C LAREL RFMARKS
SYL CNDE -~ NO, LOC., cNDE LN, LAREL INC PAR PAR DEC EQU
65064 23 0 RST X 2 RESET X FLAG
EROC 24 0 SHIPTN POS NMAD=P 13 PNSTTION TO PRINT
5 0 AC1F 25 0 TK 31 XTYPE INFN
1 ENO1L 26 0 AL 1 ANDVANCF LEFT NNE LINE
2 5802 27 0 TIR 4 2 TEST 1F THIRD TIME
3 n444 28 0 E'X X ? 4 ENTER IF SHIPTD
6 0 5R03 29 0 TIR 3 3 TFST FNOR COMPLETION
1 4184 30 0 SK T 1 1 TERMINATE LOOP
2 7C04 31 0 BRU SHTPTN 4 3 RFPEAT
3 7809 32 0 BRU RTRRON 9 2 JUMP TD RTIBBNN AREA
70 4184 33 0 8K T 1 1 TERMINATE LODP
1 7C04 34 0 BRRU SHIPTO 4 3 RFPEAT LOOP
2 4599 35 0 FX K 34 1 BRANCH TN PRINT SAME
3 7C08 36 0 BRRU + a4 8 3 EXIT LOonp
80 6744 37 0 SFT X 2 SET TN ENTER SHIPTO LOOP
1 ENO2 38 0 AL 2 _ ADVANCE TWO LINES
2 7004 39 n BRU SHIPTN 4 3 RETURN TN LNNP
3 ENO2 40 0 AL 2 ANDVANCE TwO LINES
9 0 EROC 41 0 POS NMAD=P 13
1 CR88 42 0 PA . SAME 136 PRINT ALPHA MESSAGE
2 £914 43 0 RIRRON ALTN RYRRL 20 ADVANCE TN RTBBON LINE
3 ERDS 44 0 PNS TFRM=p 6 PNSTTTION TO TERMS

PROGRAM ID, = DATE RUN 3726/70 TIME = 12:48 VERSINN 02=01=70 . o PAGE 003

WORD OBJECT SEQ. SYM, 0P FD, A=PARAMETER B C LAREL RFMARKS
SYL CNDE NO . Loc. CODE LN. LARFL INC PAR PAR DFC FQU
10 0 ACOB 45 0 TK 11 XTYPE TERMS
1 ER1? 46 n POS ORDNOP 19 PNSITION TO NRDER NO,
2 ACOA 47 0 TK 10 TYPE NRDFR NO.
3 FR1E 48 N PNS CHsNNe 31 PNSITION TO CUSTOMER NO,
11 0 ACO9 49 0 TK 9 XTYPE CUSTOMER NUMBER
1 ER29 50 0 POS SLDRYP 42 POSITION TN sOLD BY
2 ACOC 51 0 TK 12 XTYPE SALFS NAMES
3 EB37 52 n POS SHPVIP 56 POSTTION TO SHIP VIA
12 0 ACO9 53 0 TK 9 XTYPE SHIPVTYIA
1 D87C 54 0 CLM INVNET 124 "CLEAR INVOICF NET TOTAL
2 DR70 55 0 CLM INVEST 125 CLEAR INVNICF C€OST TNTAL
3 2R5F 56 0 SRJ DATE= 94 2 PRINT DATF & INVAICE NO
13 0 780D 57 0 BRU + 7 13 2 BRU SKIP LINFE INCREMENT
1 2062 S8 O BODYTV SRJ CKIINF ' 98 0 INCREMENT & CHECK LINE CT
2 4652 59 0 £ X v 1 2 TEST FOR CONT, PAGE
3 2856 60 0 SRJ SURTOT 86 2 PRINT SUB=TOTAL
14 0 2850 61 0 SRJ CONTPG 80 2 REGIN CONTINUATION PAGE
1 6549 62 0 RST X 34 RESET DISCOUNT FLAG
63 0 NOTF , ADDON FLAG
2 F&04 64 0 PKA 1 3 ENABLE SUB=TNTAL PK
ERO4 65 0 POS PRNCDP 5 PNSITION TO PRODUCT CODE
15 0 AR40 66 0 MAX NK 4 0 INDEX NO., LESS THAN 5000

SE

£ PROGRAM 1D, -

(¥%)
S WORD
SYL

16

17

la

19

20

0

0

0

0

0

OBJECT
cn

DE

DARY
0800
7410

7C10
0980
700F
4752

2896

2”50

7COE
£notl

0280
DAE3
AB40
4592

6748
ERBO6
N190
cs2D

0270
3N7A
ER1S

SEQ,
Nl

a7
68
69

70
71
72
73

(]
’5
76
77

&)
79
/g0
81

B2
B3
B4
B85

A6
87
88

NATE RUN

(5]

0
0

0

0

SYM,

Loc,

TKDESC

3/26/70Q

ne
CODE

CPA

- NOP

RRU

RRU
ALARM
RR1J
£X

SR
SR.J
RRU
Al

SLRO
PN
NKR
EX

SFT
PNS
PNS=
PCw=

SLRN
TRM
POS

TIME =

172:48

A=PARAMETER
LARFL INC

TEST
+ 2
+ 3
MA Y
Y
SURINT
CAONTPH

BANDYIY + &
1

11
14

QTY
DESC=P

- o w D

VERSINN 02=01=70

¢ LAREL

B B
PAR PAR DEC EQU

135

16 1

16 3

15 0

86
80 2
14

PAGE 004
RFMARKS

CHECK IF 'VALID
FQUAL TO, NO OPERATINN
INVALID CNDE \

VALID PRINT

INVALTID DN NNT PRINT
TR INDEX NEXT CODE
TFST FOR A CONT, PAGF

PRINT SUBTOTAL

REGIN CONTINUATION PAGE
RRANCH TN INDEX PROD=NO,
ADVANCE LEFT ONE LINE

SHIFT FNR PRINTING

PRINT PRNONUCT NO,

INDEX QUANTITY

YST FAR DTSC OCK1 NO DISC

SET X3 N0 DISCAUNT FLAG
PNSTTTION TH. QUANTTY
PRINT WHOLE NO. QUANTITY
PRINT = IF MINUS

REPOSTTION FNR EXTN

STORFE QUANITY

PNSITION TO DESCRIPTION

PROGRAM ID, = NATE RUN 3/26/70 TIMF = 12:48 VERSINN 02=01=70 PAGE 005

WORD OBJECT SEQ, SYM, npe FR, A=PARAMETER R c LAREL REMARKS
SYL CNOE ND. LOC, CADE LN, LAREL INC PAR PAR DEC EQU :

X 23 | XTYPE DESCRIPTION

3 AC17 89 0
21 0 4092 90 0 SK K 1 4 TEST IF 0CK1 “USED
1 2062 91 0 SRJ CKI TNE 98 0 INCREMENT LINF COUNT
2 4252 92 o SK Y 1) TEST TF LAST INVOICE LINE
3 £N01 93 0 AL 1 ADVANCE LFFT ONE LINF
22 0 7814 94 0 BRU TKDFSC 20 2 BRANCH TN TYPE DESC.,
1 ER2A 95 0 MPRICE POS SPRC =P 43 POSITION TO SELL PRICE
2 AP52 96 0 NKCM 5 2 XINDEX PRICE
3 4FCC 97 0 EXE A CM 2 TEST IF BNTH € M USEN
23 0 0980 98 0 ALARM WARN PRICF ERROR
1 7416 99 0 BRU MPRICE 22 1 RRANCH TN INDEX PRICF
2 2864 100 0 SR.J CTMILL 100 » DETERMINE IF MILLS INDEX
3 45C1 101 0 £ X A - 1 TEST IF MINUS FLAG SFT
24 0 7017 102 0 RRU MPRICE + 3 23 0 BRANCH TO INDEX PRICF
2R4F 103 0 SRJ PT=PRC 78 2 PRINT SELL PRICE
2 ER36 104 0 PNS PERU=P 55 PNSITION TO PFR UNIT COLN
3 44C4 105 0 EX A ¢ 4 TEST IF C FLAG SFT
25 0 €043 106 0 PE ¢ PRINT ¢
1 3874 107 0 TRA OTY 122 TRANSFER QUANTTY
2. 0202 108 0 SLRO 0 2. | SHIFT FOR PFR C PRICF
3 3074 109 0

TRM ATY 122 STORE QUANTITY

LEY

£ PROGRAM 10. = NATE RUN 3/26/70 TIMF = 12:48 VERSINN 02=01=70 PAGE 006
® WORD 0BJECT - SEQ, SYM, 0P FN, A=PARAMETER 8 C LABEL RFMARKS
sYL CNDE NG, Lac. cODE LN, LAREL INC PAR PAR DEC EQU
26 0 4acsy 110 0O EX A M 4 TFST 1F M KFEY USED
1 co4an 111 0 PC : M PRINT M
2 3RT7A 112 0 TRA QOTY 122 TRANSFER QUANITY
3 0203 113 0 SLRO 0 3 SHIFT FOR PER M PRICF
27 © 3074 114 0 TRM QTy 122 STORE QUANITY
1 3878 115 0 TRA PRTCE 123 TRANSFER SELL PRICE
2 45CC 116 0 F X A eM 1 TFST IF ETTHER C M USED
3 741D 117 0 RRU GRSAMT 29 1 BRRANCH TO GRNSS AMOUNT
28 0 4791 118 0 E£X K 4 3 TEST TF OCK& USED
1 cO4% 119 0 PC ¥ PRINT E
2 cnaut 120 0 PC A PRINT A
3 741D 121 0 BRU GRSAMT 29 1 BRANCH TN GRDSS AMOUNT
29 0 ACOY 122 0 TK 4 XTYPE PER UNTT CHARACTER
1 6429 1723 0 GRSAMT LSR [¢) LNAD SHIFT REGISTER
2 8CT7A 124 0 MULR OTY 122 MULT PRICFE X QUANITY
3 ER37 125 0 POS GRS=P 56 POSITION TO GROSS AMOUNT
30 0 204D 126 0 SRJ PNUMRC 77 3 PRINT GRNSS AMOUNT
1 3N6F 127 0 TRM WRKRE G 111 STORE GRNSS AMOUNT
2 8085 128 0 ADM TARNSS 133 AND TN GRAND GROSS TNTAL
3 4548 129 0 £ X X 3 1 TEST TF DISCOUNT APPYCABL
31 0 7¢21 130 BRU NETAMT 33 3 BRANCH TN NET AMOUNT

£R43 131 0 PNS DISCm=P 68 PNSITION TO NTSCOUNT

PROGRAM [D, = - DATE RUN 3/26/70 TIME = 12:48 VERSION 02=01=70 PAGE 007

WORD 0OBJECT SEQ, SYM, 0P FD, A=PARAMETFR B C LABREL RFMARKS
SYL CADPE ND . Loc. CODE LN, LAREL INC PAR PAR DEC FQU
2 A622 132 o NK ? 2 XINDEX DISCOUNT
3 4500 133 0 EXZ 1 TEST IF ZFRO INDEXED
320 7C21 134 0 BRU NETAMT 33 3 BRANCH TO NET AMNUNT
1 nar3 135 0 PN 7 3 PRINT DISCOUNT AS 1As %
2 cn2s - 136 0 PC ¥ PRINT wgw
3 6424 137 0 LSR 4 LDAD SHIFT REGISTER
33 0 BC&F 138 0 ~ MULR WRKREG 111 MULT DISCOUNT X GROSS
1 906F 139 0 SUM WRKRE G 111 SUBT DISCNUNT FROM GROSS
2 8086 140 0 ADM TDTSCT 134 ADD TN TNTAL DISCOUNTS
3 386F 141 0 NETAMT TRA WRKRE G 111 TRANSFER NET AMOUNT
34 0 ER4B 142 0 POS NETwP 76 PNOSITION TO NET AMOUNT
1 2040 143 0 SRJ PNUMRE 77 3 PRINT NET AMDUNT
2 807¢C 144 0 ADM INVNET 124 ADD LINE NET TO TOTAL NET
3 807F 145 0 ADM TNFT 126 ADD Tn TOTAL NET SALES
35 0 4558 146 0 £ X ¥ 3 1 TEST IF CNST APPLICARLE
1 740D 147 0 BRU BANYTY 13 1 BRANCH TO NEXT LINE
2 6429 148 0 LSR 9 LNAD SHIFT REGISTER
3 FR59 149 0 POS CPRC=p 9n PNSITION TO ¢NST PRICE
36 0 A632 150 0 COSTIV NK 3 2 INDEX CNST PRICE
1 2R64 151 0 SRJ CTMILL 100 ? DETERMINE IF MILLS INDEX
& 2 45C1 152 o FX A : - 1 TEST IF €NST PRICE ERROR
-t 3 7024 153 0 BRU CNSTIvV 36 0 BRANCH TN INDEX €OST

£ PROGRAM 10, = DATE RUN 3/26/70 TIME = 12:48 VERSINN 02=01=70 : PAGE 008

évﬂ”ﬁ) OBJECT SEW, SYM, NP FN, A=PARAMETER R C LAREL RFMARKS
sYL CNDF NG LOC. cNNF LN. LAREL INC PAR PAR DEC EQU
37 0 2C4E 154 0 SR.J PT=PRC + 1 78 3 PRINT COST PRICE
155 © NOTE SHIFT FOR MILLS
1 BCTA 156 0 MULR QY 122 MULT €OST X QUANITY
2 ER61 157 0 PNS CSTX=P 98 PNSITION TO COST AMOUNT
2640 158 0 SRJ PNIIMRC 77 3 PRINT COST AMDUNT
38 0 RNRY 159 0 ADM T€NSTS 132 ADD LINE €DST TD TOT COST
1 807N 160 0 ADM INVCST 125 ADD TN INVOICE .CNST TOTAL
2 740D 161 0 RRU BADYIY 13 1 RRANCH TO NEXT LINE
3 Fh28 162 0 INVINT PKA 2 46 ENABLF TAX & TOTAL PK
39 0 DRAF 163 0 CLM NRKREG 111 CLEAR WORKING MEMORY
1 6424 164 0 LSR 4 LOAD SHIFT REGTSTER
2 2856 165 0 SRJ SURTOT 86 2 PRINT SUBTOTAL
ER3A 166 0 PNS ADAN=P 59 PNSITION TO ALF TAX
40 0 2062 167 0 SRJ CKILINE 98 0 INCREMENT LINE COUNT
1 A622 168 0 NK 2 ? XINDEX MISC TAX PERCENT
2 4500 169 0 EXZ 1 TFST 1F 2ERD INDEXED
3 7u2e 170 0 RRU ADDONS | 46 1 RRANCH TD ADDONS
41 0 4552 171 0 EX Y 1 1 TEST FOR LAST LINE
1 2850 172 0 SRJ CONTPG 80 2 REGIN CONTINUATIONN PAGE
2 4551 173 0 E X Y 4 1 TEST FOR LAST SIX LINES
3 285A 174 0 SRJ ADLNCK 90 2 INCREMENT LINE COUNT

42 0 6741 175 0 SET X 4 SET X FOR ADNONS

PROGRAM 1D

WORD

v

43

44

45

46

4r

SYL

w N - O w N = O W N - O w N

w N == O

- O

0

BJEC
CODE

EDO1
EB3A
co54

Co41
co58
D443
co25

ER4B
8c7c
2C40
8083

807¢C
306F
2062
4552

2856
F620
ER3A
4241

4552
2850

4241

T

176

DATE RUN

177 o

178

179
180
181
182

183
184

=/

185 0
186 0

187
188
189
190

191

192

193
194

195

O O O 00

[l B - B |

[

196 0

197

SYM,
Lac,

ADDONS

3/726/70

apP
CODE

AL
POS
PC

PC
PC
PN
PC

POS
MULR
SRJ
ADM

ADM
TRM
SRJ

SRJ
PKA
POS
K
£X

SRJ
SK

FD,
LN,

TIME - 12348

LAREL

1
ADNN=~P
T

A
X
4
%

NET=P

INVNET
PNUMRC
TTAXES

INVNET
WRKRE G
CKLINE
Y

SURTOT
6,
ADNN=p

Y
CONTPG
X

A=PARAMETER
INC

VERSION 02=01=70

B ¢ LARE
PAR PAR DEC E

59

76
124
r7
131

124
i
98

86

59
2
1

80
2

PAGE 009
RFMARKS

ADVANCE LEFT ONE LINF
POSITION TO ALF TAX
PRINT "TAy™

PRINT TAX AS A PERCENT

PRINT %

POS TN NFT CNLUMN
MULT TAX % X NET
PRINT TAX DOLLARS
ADD TN TOTAL TAX DOLLARS

ADD TO TOT NET INVOICE 8
STORE TAX DOLLARS
INCREMENT LINE COUNT

TFST IF LAST INVOICE LINE

PRINT SUR=TOTAL

ENABLE TOTAL INVOICE PK
POSITION TO ADDON ALF
TEST IF FIRST ADDON

TEST TF LAST INVOICE LINE
BEGIN CONTINUATION PAGE
TEST IF FIRST ADDON

+ PROGRAM 10, =
EN

™ WORD OBJECT
SYL CNDE

3 4551

48 0 2R5A
6741

4652

3 2856

49 0 2850
1 ENO1

2 ER3A
AC12

50 0 ER4R
1 ALTO

2 2c4D
3 4501

51 0 8080
1 41C1

2 BOTF

3 807¢C

52 0 4558
1 7836

2 ER61

3 A450

SEQ,
ND.,

198

199
200
201 .
202

203
204
205
206

207
208
209
210

211
212
213
214

215
216
217
218

DATE RUN

f TR o Bt B | fo B o B B | 20D D D

jo o B -

SYM,
Loc.

3/726/70

ne
CNOF

EX

SRJ
SET
EX

SRJ -

SR
AL

POS

TK

POS
N¥KR
SRJ
EX

ADM
SK

ADM
ADM

£X

RRU
POS
NKR

F
L

TIME =

0.
N

12348

A=PARAMETER
lLAREL INC

ANDLNCK
X
Y
SURTOT

CANTPG
1
ADNN=p
1R

NFT=P
7
PNUMRC
A

TADNNM
A

TADANP
TNVUNET

Y

CSTX~P

VERSINN 02=01~-70

c LAREL

R
PAR PAR DEC EQU

90 2

86 2

80 2

59
76
77 3

128

127
124

54 2
98

PAGE 010
RF MARKS

TEST IF BOTTNM OF INVOICE

INCREMENT LINE COUNT

SFT X4 INVOICE HAS ANDONS
TEST TF LAST INVOICE LINE
PRINT SUBTOTAL

RFGIN CONTINUATION PAGE
ADVANCE LFFT ONE LINF

POSITION TO
XTYPE ADDON

PNSITION TO
XTYPE ADDNON
PRINT ADDON

ADDON ALF
NESCP,

NET COLUMN
COST AMOUNT
AMOUNT

TEST TF MINUS

AND TO ADDONS MINUS
TEST IF PLUS
ADD TN ADDONS PLUSSES

CADD TN TOT NET INVOICE $

TEST TF STANDARD INVNICE
RRANCH TO CHFCK LINE CT
PNSITION TO €OST COLUMN
XINDEX ADDON COST AMNUNT

PROGRAM 1D, = DATE RUN 3/26/70 TIMFE = 12:48 VERSION 02«01=70 PAGE 011

ECT SEQ, SYM, ne FD, A=PARAMETER B ¢ LABEL RFMARKS
1DE NO . Lac, CNODE LN, 3

YL LAREL INC PAR PAR DEC EQU
53 0 264D 219 0 SR PNUMRC 77 3 PRINT ADDON ¢OST AMOUNT
1 807D 220 0 ADM INVCST 125 ADD TO TOT INV TOT €NST
2 45C1 221 0 EX A - 1 TEST IF MINUS
3 8082 222 0 ADM TADNCM 130 ADD Tn €NST TOTAL MINUS
54 0 41c1 223 0 SK A - 1 | TEST IF PLUS
1 8081 224 0 ADM TANNCP 129 ADD Tn COST TOTAL PLUS
2 2062 225 0 SRJ CKLINE 98 0 INCREMENT LINF COUNT
3 742E 226 0 BRU ADDONS 46 1 BRANCH TN NEXT ADDON
55 0 4541 227 0 TOTALI EX X 4 1 TEST IF ANDONS ON INVOICE
1 2856 228 0 SRJ SURTOT 86 2 PRINT TOTALS
2 4558 229 0 EX Y 3 1 TEST TF STANDARD INVNICE
3 7801 230 0 BRU BEGINY 1 2 BRU TN NEXT INVOICE
56 0 387¢C 231 0 TRA INVNET 124 TRANSFER TOTAL NET INV,
1 986F 232 0 SUA WRKREG 111 SURT TAX FROM NET
2 9870 233 0 SiIA INVCST 125 SUBT €OST FROM NFT
3 ER56 234 0 POS PRT%=p A7 PNSITTON TO PRINT PROFIT
57 0 2040 235 0 SRJ PNUMRC 77 3 PRINT PROFIT AMOUNT
1 7801 236 0 ARU REGINY 12 BRANCH TN NEXT INVOICE
2 2040 237 0 INV=ND SRJ AR=PIIg 77 0 ADVANCE FNRM POSTTION
3 C886 238 0 PA FRSTIN 182 PRINT ALFA FRSTIN
58 0 EF02 239 0 AR 2 | ADVANCE RIGHT Twn LINES
1§ ERT7 240 0 POS 120 PASITION FOR PRINT
w

»

148

PROGRAM 1D, =

WORD

59

60

61

62

63

SYL

w N = O w N = O w N e O w N = D

N o= O

w

0B JE

C
cNDE

N

A660
Naso

3071
204D
CRBE
EFO2

FR77
FN73
ADOC
2040

CARBA
ER77
EF02
AR22

pa73
3079
7€C00
ER77

EFOS5
CA88
ER8C
0700

T

SEQ,
NQ o

251
252
253
254

255

NATE RUN

0

2 2D D D > 0 D D

fo]

256 0
257 0

258

259
260
261
262

5 5 o D

SYM,
LOC.

pLYTOvY

3/26/70

npP
CODE

NK
PN

TRM
SRJ
PA
AR

POS
LKBR
TKM
SRJ

PA
POS
AR
NK

PN

TRM
RRY
POS

AR
PA
P0S
RR

TIMF = 12:48
A=PARAMETER

FD.
LN,

LAREL

INVND
AR=POS
DATT

12n
DATE
12
AR=POS

TXRT
120
2

2

7
TAYXCST

INTTAL
120

5
HFADNG
141

B
PAR

VERSION 02=01=-70

¢ LAREL
PAR DEC EQU

113

r7
190

115

77

186

121

139

| PAGE 012
RFMAREKS

XINDEY INVOICE NM.
PRINT INVOICE NUMBER

STORE INVNICE NO
ADVANCE FDRM POSITION
PRINT ALFA DATT

ADVANCE RTGHT TwO LINES

PNSITION FOR PRINT
LNAD DATE BASE M.A,
XTYPE DATE

ADVANCE FNRM POSTITION

PRINT ALFA TXRT
PNSITION FOR PRINT
ADVANCE RIGHT TWw0O LINES
XTNDEX TAX RATE

PRINT TAX RATE

STORE FIRST TAX RATE
RRU TN INTTIALIZE
POS SUMMARY HEADING

ADVANCE RIGHT FIVE LTINES
PRINT ALFA MESSAGE

PRINT DATF IN RED

PROGRAM 1D, = NDATE RUN 3/24K/70 TIMF = 12:48 VERSINN 02=01=70 PAGE 013

WORD DBJECT SEQ, SYM, 0P FD, A=PARAMETER B C LABREL RFEFMARKS
SYL €NOE N, Loc, CNDE LN, LAREL INC PAR PAR DEC EQU
64 0 CR73 263 0 PA DATE 115 PRINT CURRENT DATE
1 EFO02 264 0 AR 2 ADVANCE RTGHT Tw0D LINES
2 ERTT 265 0 POS 120 PNSITION FOR PRINT
3 C880 266 0 PA T=GROS | 176 PRINT ALFA MESSAGE
65 0 EFO1 267 0 AR 1 ADVANCE RIGHT NNE LINE
1 ERBT 268 0 POS 136 PNSITION FOR PRINT
2 3885 269 0 TRA T6ROSS 133 TRANSFER TOTAL GROSS
3 264D 270 0 SRJ PNUMRC | 77 3 PRINT TOTAL AROSS
66 0 5100 271 0 LIR 1 LNAD INDEX REGISTER
1 5200 272 0 LIR - 2 LOAD INDEX REGISTER
2 SA1C 273 0 DLYNET TIR 2 28 TEST FOR THE 7 LOOP
3 4584 274 0 EX T 1 1 | EXECUTE IF LnoOP 7
67 0 7R46 275 0 BRU FINAL 70 2 EXIT LOOP
1 5603 276 0 ADIR 2 3 INCREMENT BY FOUR
2 EFO4 277 0 AR 4 ADVANCE RIGHT FOUR LINES
3 ERTT 278 0 POS 120 PNSITION FOR PRINT
68 0 6200 279 0 MOD 2 | MODIFY BY REGISTER #2
1 C890 280 0 PA - TNS - 4 144 PRINT ALFA MFSSAGE
2 6100 281 0 MOD 1 MNDIFY BY REGISTER #1
3 3R7F 282 0 TRA TNET 126 TRANSFER NET, COST AMOUNT
a 690 EFO02 283 0 AR 2 | . ADVANCE RTIGHT TWO LINES
& ER87 284 0 POS 136 POSITION FOR PRINT

& PRUGRAM 1D, =
A

S WORD

70

71

72

73

74

SYL

w N . O W N = O w N = O

w N = O

w N = O

OBJECT
CNDE

D191
€520

5501
7842
EFEO4
ER77

c8B2
EFO1
ERB7
3886

2040
EFN2
ER77
CRBF

EFO1
8880
8R7F
8ATE

2C4D
EFO02
ER77
ca91

285
286

287
288
289
290

291
7292
293
294

295
296
297
298

299
300
301
302

303
304
305
306

NATE RUN
SYM,
LocC,

0

)

n

0

0 FINAL

0

0

0

0

0

0

0

0

0

0

0

0

0

0

n

0

0

3726770

PNS=
PC=

ADIR
BRU
AR
PNS

PA
AR
POS
TRA

SRJ
AR
PNS
FA
AR
ADA

ADA
ADA

SRJ
AR
PNS
PA

TIME = 12348

A=PARAMETER
LAREL INC

1
DLYNET
4

120

TDTSC
1

134
TDISCY

PNIIMRC
2

120
ACT

1
TADONM
TADONP
TNFT

PNUMRC
2

120
TNC

VERSION 02=01=70

B
PAR

C LAREL
PAR DEC EQU

66 2

178

134

77 3

143

128
127
126

77 3

145

PAGE Ot4
RFEFMARKS

SHIFT IF MINUS
PRINT = TIF MINUS

INCREMENT INDEX REG RY i
REPEAT LOOP

ADVANCE RIGHT FOUR LTNES
PASITION FOR PRINT

ADVANCE RTIGHT NNE LINE
PNSITION FOR PRINT
TOTAL DISCOUNTS

PRINT TOTAL DISCOUNTS
ADVANCE RIGHT Tw0 LINES
POSITION FOR PRINT

ALFA MESSAGE

ADVANCE RIGHT ONF LINE
ADD MINUS ADDONS
ADD PLUS ADDONS

ADD PRODUCT NET

PRINT ACCT RFC NET
ANDVANCE RTGHT TWn LINES
PNSITION FOR PRINT
PRINT ALFA MFSSAGE

PROGRAM ID, = DATE RUN 3/26/70 TIME = 12:48 VERSION 02=01=70 PAGE 015

WORD OBJECT SEQ, SYM, 0P FD, A=PARAMETER B C LABEL RFEFMARKS
sYL CNDE NO, Loc. cODE LN, LAREL INC PAR PAR DEC EQU
75 0 EFO1 307 0 AR 1 ADVANCE RTGHT ONE LINE
1 FRB7 308 0 PNS 136 POSITION FOR PRINT
2 3884 309 0 TRA TCNSTS 132 TRANSFER TOTAL COSTS
3 8881 310 0 ADA TADNCP 129 ADD PLUS CNST ADDONS
76 0 8882 311 0 ADA TADNCM 130 ADD MINUS CDST ANPDONS
1 2C4D 312 0 SRJ PNUMRC 77 3 PRINT TOTAL NET COSTS
2 EE14 313 0 AR 20 | ANVANCE 20 LTNES
3 7€00 314 0 RRU INTTAL 03 BRU TN INTTIALIZE
77 0 EF02 315 0 AR=POS AR 2 ADVANCE RIGHT TWD LINES
1 ER77 316 0 POS SM=HDP 120 POS PRINT
2 0400 317 0 SRR 1 ' ‘ SUBROUTINE RETURN
3 D191 318 0 PNUMRC PNS= 9 1 PRINT MONTERY VALUE
78 0 cs2h 319 0 PC= - PRINT = IF MINUS
1 0400 320 0 SRR 1 SUBROUTINE RETURN
2 ER2A 321 0 PT=PRC P0OS SPRC=P | 43 POSITION TO SELL PRICE
3 42C2 322 0 SK A S 2 TEST PRICE FOR MILLS
79 0 D471 323 0 PN 7 1 PRINT WITH CENTS MASK
1 0220 324 0 SLRN ? 0 SHIFT LEFT Twn POSITTIONS
2 45¢2 325 0 EX A 3 1 TEST PRICFE FAR MILLS
3 nar2 326 0 PN 7 2 PRINT WITH MILLS MASK
80 0 3078 327 0 TRM PRYCE 123 TRANSFER SELL PRICE

Ly

$ PROGRAM 1D, =
H

® WORD

81

82

83

84

85

SYL

w N = O

<

OBJEC
CNDE

0400
3070
EROF

ACOO
EROC
CAR7S
£E008

£90D
ER3F
€050
coal

coar
cna4s
3872
D420

8F01
3n72
3R71
4200

9F 01
3071
£914

T

328
329
330

33
332
333
334

335
336
337
338

339
340
341
342

343
344
345
346

347

DATE RUN

0

>]

[T B © e 2 00 2 2 D o 2D

[B BN« B |

]

348 0
349 0

.

SYM,
LocC.,

CONTPG

3/26/70

opP
CODE

SRR
TRM

nc

TK
POS
PA
ILLCR

ALTO
POS
PC
PC

pC
PC
TRA
PN

ADK
TRM
TRA
SKZ

SUK
TRM
ALTO

F
L

TIMF = 1?72:48
A=PARAMETER

N

LAREL

1
WRKREG +

SLNTOL +

0

NMAD=P
CUSTNM
sLNTOL

SHPTOL
CNTP=P
P

A

G

" E

PAGEND

2

0
PAGEND
INVND
2

0
INVND
RIRRBL

INC

1
7

VERSINN 0?2=01=70

B ¢ LAREL
PAR PAR DEC EQU

112
15

13
117

13
64

114

114
113

113
20

PAGE 016
RFMARKS

SUBROUTINF RETURN
TEMPORARY STORE AMOUNT
ADVANCE TN CUSTOMER NAME

CHANGE INVOICE
POSITION TO PRINT
PRINT CUSTOMER NAME
LNAD sSOLD TO LINE NO,

ADVANCE TD SHIP TO LTINE
POSITYION TO PRINT
PRINT ®"PAGE"™

TRANSFER PAGF NUMBER
PRINT PAGE NN,

ADD 1 T0O PAGF NGO,
STORE PAGE Nn,
TRANSFER INVQICE NO,
TEST IF ZERD

SUBT 1 FROM INVOICE NO,
STORE INVATCE NO,
ADVANCE TN RIBRON LINE

PROGRAM 1D, = DATE RUN 3/26/70 TIME = 12:48 VERSION 02=01=70 PAGE 017

[]
WORD 0BJECT SEQ, SYM, NP FD, A=PARAMETER) ¢ LAREL RFEFMARKS
sSYL CNDE NO . LoC. CODF LN, LARFL INC PAR PAR DFC EQU
3 2R5E 350 0 SRJ DATE=y 94 2 PRINT DATE & INVAICE NO
86 0 3870 351 0 TRA ' WRKREG + 1 112 TRANSFER STORED AMOUNT
1 0400 352 0 SRR 1 » SUBROUTINFE RETURN
2 3070 353 0 SUBTNT TRM WRKREG + 1 112 TEMPORARILY STORF AMNUNT
3 ER4E 354 0 POS NET=P 4+ 3 79 PNSITION FOR UNDERSCNRE
R7 0 CRB9 355 0O PA UNNERS 137 PRINT UNDFRSCORE
1 4?58 356 0 SK Y _ 3 2 TFST FOR INVDICE COSTING
2 ER64 357 0 PNS CSTX=P + 3 101 POSITION FOR UNDFRSCNRE
3 889 358 0 PA UNPERS 137 PRINT UNDERSCORFE
88 0 ENO1 359 0 aL 1 ADVANCE LEFT ONE LINE
1 ER4B 360 0 PNS NFT=P 76 PNSITINN TO NFT AMOUNT
2 3R7C 361 0 TRA INVUNET 124 TRANSFER TOTAL NET AMDUNT
3 2€40 362 0 SRJ PNUMRC 77 3 PRINT TOTAL NET AMOUNT
89 0 43586 363 0 SK Y 3 3 TEST FOR INVOICE COSTING
1 ER61 364 0 POS CSTX=P 98 PNSITINN TO COST AMOUNT
2 387D 365 0 TRA INVCST ' 125 TRANSFER TOT, COST AMOUNT
3 204D 366 0 SRJ PNUMRC 77 3 PRINT TOTAL COST AMOUNT
90 0 3870 367 0 TRA WRKREG + 1 112 TRANSFER STORED AMOUNT
1 0400 368 0 SRR 1 SUBROUTINE RETURN
2 5402 369 0 ADLNCK ADIR 4 ? ADD 2 TO LINF COUNT
3 4684 370 0 £X T 1 2 . TEST FOR LAST LINE
H) ‘
391 0 2850 371 0 SRJ CONTPG 80 2 PRINT TOTAL & CONT, PAGE

& PRUGRAM 1D, =
o

© WORD

92

93

94

95

SyL

W N e

[andiR e

N

0

w N - O

96 0

0B JE
cno

c
E
0400
5CF8
0400

5300
6300
Da7ce
SROA

4484
8F00
204D
Da1l

7€00
745¢
FRG 1
C873

ERUF
3871
4300
D450

8FO01
3071
4500

T

SF .
NG

DATE RUN

372 0O
373 0

374

375
376
3rz
378

379
380
381
382

383
3R4
385

2

386 0

387
388
389
390

391

0

0

392 0
393 0

SYM,
LOC.

CLRMEM

3/26/70

np
CNNE

SRR
DIR
SRR

LIR
MOD
CLM
TIR

EX
CLA
SRJ
PN

BR
BRY
pPNs
Pa

POS
TRA
SK2
PN

ADK
TRM
FX2Z

¢
L

TIMF =

D.
N.

12:48

A=PARAMETER

LAREL

3
3
INVNET
3

AR=R(OS
1

INTTAL
CL.RMEM
DATE=pP
DATE

INVNOP

“INVND

3
5

0
INVND
1

INC

VERSINN 02=01=70

B ¢ LAREL
PAR PAR DEC EQU

232

124
10

4

77 0

92 1
66
115

P
—
w

PAGE 018
RF MARIKS

SUBROUTINE RETURN
SUBT 1 FROM LINE COUNT
SUBROUTINF RETURN

LAAD FOR COUNTER

MODTFY WITH GOUNTER
CLEAR MEMNRY | OCATION
CONTROL NIUMBER OF LONPS

TEST TF LAST TOTAL
CLEAR ACCUMULATOR
ADVANCE FNRM PNSTTION
PRINT ZERN

BRU TN INTIALTZE

BRU TN CLEAR NEXT TDTAL
PNSTITTION TO NATE

PRINT CURRENT DATE

POSITTON TO INVOICE NO,
TRANSFER TNVNICE NO,
TEST FOR 7EROD

PRINT INVNICE NUMBER

ADD 1 TOD INVAICE NGO,
STORE INVNICE NO
TEST FOR ZERD

1S

PROGRAM 1D, =

WORD 0BJECT
SYL CNDE

3 ACOT7

97 0 SOEA
1 6553

2 £916

3 0400

98 0 4081
1 S8F8

2 4184

3 0400

99 0 6751
1 S5RFF

2 0980

3 4584

100 0 6752
1 0400

2 306F

3 0200

101 0 4700
1 386F

2 0202

3 0400

394

395
396
397
398

399
400
401
402

403
404
405
406
407

408
409
410
411

412
413
414
415

NATE RUN
SYM,
LacC.

0

0

0

0

0

0 CKLINE

0

0

0

0

0

0

0

0

0

0

) CTMILL

0

0

0

0

0

3/726/70

np
CNDE

TK

LIR
RST
ALTO
SRR

SK
IIR
SK
SRR

NOTE
SET
IIR
ALARM
EX

SET
SRR
TRM
SLRO

EXZ
TRA
SLRO
SRR

F
L

TIMF = 12348

D, A=PARAMETER
N, LAREL INC

BANYL

- - & <

WRKREG
0
1 .

B ¢ LABEL
PAR PAR DEC EQU

234
41

248

VERSION 02~01=70

22

111

111

PAGE 019
RF MARKS

XTYPE INVNICE NO,

LOAD FOR LINE COUNT
RESET Y 4 AND 1

ADVANCE TO INVOICE BNDY
SUBROUTINE RETURN

TEST TF LAST SIX LINES

INCREMENT FOR LINE COUNT
TEST FOR 17TH LINE
SUBROUTINE RETURN

~SET Y FOR LAST 6 LINES IN

BODY NF INVOTCE REACHED
INCREMENT LINE COUNT

WARN NPERATOR BOTTOM INV,
TEST FOR LAST LINE

SET Y1 FOR CONT,
SUBROUTINE RETURN
TRANSFER PRICE TO M,A,
SHIFT OFF DOLLARS & CENTS

PAGF

TEST IF ZERO MILLS
TRANSFER PRICE
REPOSITION FNR CENTS ONLY

-SUBROUTINE RETURN

S PROGRAM 1D, = NATE RUN 3/26/70 TIME = 12:48 VERSION 02=01=70 PAGE 020
W

S W0RD 0BJECT SEQ, SYM, NP FN, A=PARAMETER R C LAREL RFMARKS
SYL CNDE NO Loc. CODF LN, LAREL INC PAR PAR DEC EQU \
102 0 3R6F 416 0 TRA WRKRE G 111 TRANSFER PRICFE
0207 417 0 SLRO 0 : 7 SHIFT OFF 7 DIGITS
418 0 NNTE TEST TF MORE THAN SEVEN
4300 419 0 SK2Z 3 DIGITS WERE TNDEXED
3 67C1 420 0 SET A - YFS, SET = F|AG
103 0 0980 421 0 AL ARM WARN NPERATOR ERROR PRICE
0100 422 0 . SRR 1 ' SUBROUTINF RETURN
2 386F 423 0 TRA WRKRF G " 111 TRANSFER PRICE
424 0 NDTF ' SFT FLAG TD INDICATE
3 67C2 425 0 SET A S CENTS AND MILLS
104 0 0400 426 0 SRR 1 SUBROUTINE RETURN
1 6558 427 0 IVCOGST RST Y -3 RESET STANDARD INV, FLAG
2 7R01 428 0 RRU BFGINY 1 2 BRU Tn INVOICFE ROUTINE
3 0000 STOP #+ INSERTED BY ASSEM, ##
429 0 WORD PROGRAM KFY TABLF
105 0 7R39 430 0 PKTARL HRU INV=ND : 57 2 BRU LNAD DATF INV NO TAX
1 7C3E 431 0 BRRU DLYTOT 62 3 RRU TN PRINT DAILY TNTALS
2 7C26 432 0 BRU INVTOT . 38 3 BRU TN SURTOTAL
3 3879 433 0 TRA TAXCST 121 TRANSFER TAX PFRCENT
106 0 7068 434 0 8RU Iveost 104 1 BRU Tn COST INVODICE
1 7037 435 0 HRU TNTALY 55 0 BRU TN TOTAL INVOICE

7€00 436 0 HRU INTTAL 03 BRU TN INITIALIZE

N

139 4

PROGRAM 1D, =

WORD O0BJECT
SYL CODE

3 705C

NATE RUN
SEQ, SYM,
N, nc,
437 0
438 0

3/726/70 TIME = 12:48

ne FD, A=PARAMETER
CODE LN, LAREL INC
BRU CLRMEM

PAGE

VERSION 02=01<70

B ¢ LABEL
PAR PAR DEC EQU

92 0

PAGE 021
RFMARKS

BRU TN CLEAR MEMORY

» PROGRAM ID, =
W

WORD
S

107
107

108
108

109
109

110
110

111

w N - O

YL

0
0

1
2
3

0
0

N

w N -

113 0
- 1t4 0

OBJEC
CNDE

EA6H
6F66
66E6
0333

6697
66E6
E66E
0333

8000
£h66
6F K6
0333

64C2
6A66
6166
0666

T

NDATE RUN
NE . Loc.
439 0 MASKTB
440 0
441 0
an2 0
443 0 WRKRFG
444 0 INVND
445 O PAGEND

3/726/70

ne
cNDF

MASK

MASK

MASK

" MASK

REG
REG
REG

TIMF = 1?2:48

FD,
LN,

15

16

15

)

A=PARAMETER) C LAREL
LARFEL INC PAR PAR DEC EQU

177,272,272,21712

2:722,7222,222,DD

77,227,227,CCCC

2777F 727227272727 ,%S

RF MARKS

NUMERTC

«x INSERTED BY ASSEM,
x+ INSERTFD BY ASSEM,
«+ INSERTFD BY ASSEM,
«+ INSERTED RY ASSEM,

MONETARY 7ERO PRINT

«#% INSERTED BY ASSEM,
++ INSERTED RY ASSEM,
xx INSERTED RY ASSEM,
++ INSERTED BY ASSEM,

MONETARY WITH MILLS

*% [NSERTED BY ASSEM,
*# INSERTFD RY ASSEM,
*% INSERTED RY ASSEM,
*%x INSERTED RBRY .ASSEM,

HUNDREDS PERCENT § Nn,
«+ INSERTED BY ASSEM,
#x INSERTFD RY ASSEM,
v« INSERTED BY ASSEM,
++ INSERTFD BY ASSEM,

GFNERAL WNRK REGISTER
INVOICE NUMBFER
PAGE NUMRBER

VERSINN 02=01=70 : PAGE 022

* W

*h

* &

L2 3

* %

* %

* &

*®

* &

* &

* &k

* %

L2

*k

* &

L 2 4

PRUGRAM D . DATE RUN 3/26/70 TIME = 12148 VERSION 02=01=70 PAGE 023

MO CBBET BT B oBBe R ERRTMEIRE ol ofe obfFh, M EMARKS
115 0 446 0 DATE REG 2 CURRENT DATE
1170 447 0 CUSTNM REG . CUSTOMER NAME
121 0 448 0 TAXCST REG 1 TAX CONSTANT
122 .0 449 0 QTY REG 1 INVOICE QUANITY
123 o 450 0 PRICE REG 1 INVOICE PRICE
124 0 451 0 INVNET REG 1 INVOICE NET TDTAL
125 0 452 0 INVCST REG 1 INVOICE COST TOTAL
126 0 453 0 TNET REG 1 TOTAL NET SALES
127 o 454 0 TADONP REG 1 TOTAL PLUS ADDONS
128 0 455 0 TADONM REG 1 TOTAL MINUS ADDONS
129 © 456 0 TADNCP REG 1 TOTAL PLUS COST ADDONS
130 0 457 0 TADNCM REG 1 TOTAL MINUS ADDONS
131 0 458 0 TTAXES REG 1 TOTAL TAXES
132 o 459 0 TCOSTS REG 1 TOTAL COSTS
133 0 460 0 TGROSS REG 1 TNTAL GROSS SALES
134 0 461 0 TDISCT REG 1 TNTAL DISCOUNTS
135 0 462 0 TEST NUM -~ 4 5000 L TEST VALUFE S000
135 0 5000 ' f : ' #* INSERTED BY ASSEM, ww
1 0000 . , #*+ INSERTED BY ASSEM, w##
2 0000 . | | «% INSERTED RY ASSEM, #%
3 0000 IR : | *% INSERTFD RY ASSEM, #+#
136 0 | 463 0 SAME ALF 4 SAME |
£ 136 0 0000 o ~ ’ ’ *+ INSERTED RY ASSEM, ##
W

et 1 0000 _ i : *% INSERTED BY ASSEM, #x

& PROGRAM 1D, =

wn

S WORD
SYL

137
137

138

139
139

140

141

w N O

0

N

w N = O

(=]

0BJEC
CNOE

4n4s
5341

5F5F
5F5F
SF5F
5FSF

0000
0000
SFO0
 SFSF

2054
4659
4149
2044

464F
5320
414¢
4F54

2020
2F20

T

DATE

SEQ,
ND,

464 0

465 0

RUN

SYM,
toc.

UNDERS

HEADNG

3/26/70

ne
CODF

ALF

ALF

TIME = 12:48
FD, A=PARAMETER B C L
LN, LAREL INC PAR PAR DE
24 NATLY TOTALS FOR,44

AREL

ARE
cE

Qu

VERSINN 02=01=70

a &

LA

PAGE 024

RFMARKS

INSERTED
INSERTED

UNDERSCNRE

* &

* *

LE

* b

*

* &

LR

* &

*

* &

%* o

* %

* &

* %

LA

INSERTED
INSERTED
INSERTED
INSERTED

INSERTED
INSERTED
INSERTED
INSERTED

INSERTED

INSERTFD

INSERTED
INSERTED

TNSERTED
INSERTED
INSERTED
INSERTED

INSERTED
INSERTED

RY
BY

BY
BY
BY
RY

RY
RY
BY
RY

BY
RY
RY
RY

RY
RY
RY
RY

RY
RY

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,

ASSEM,
ASSEM,

ASSEM,

ASSEM,

ASSEM,
ASSEM,

ASSEM,
ASSEM,

L X

* %

* W

*

LA

* &
ASSEM, **
*h

LA

* %k
ASSEM,
ASSEM,
ASSEM,

LR 4
* W

* &

ASSEM, »#
* %
ASSEM,

ASSEM,

W *

LA

* %

w

PROGRAM ID, = DATE RUN 3/26/70 TIME = 12:48 VERSION 02«01=70 PAGE 025

WORD OBJECT SFQ, SYM, 0P FD, A=PARAMETER B C LABEL REMARKS
SYL CNDE NG, Loc. CODE LN, LAREL INC PAR PAR DFec FQU
2 2F2E : *% INSERTED BY ASSEM, ##
3 522E | 4 ++ INSERTFD RY ASSEM, #«
142 0 0000 *#% INSERTED RY ASSEM, #x
1 0000 *% INSERTED BRY ASSEM, #%
2 0000 *+ INSERTED BY ASSEM, #4
3 0000 *% INSERTED RY ASSEM, ##
143 0 466 0 ACT ALF 12 ACC REC NET
143 0 4543 % INSERTED BY ASSEM, ##
1 2052 , *+ INSERTED RY ASSEM, #w
2 4343 ' *+ INSERTED BY ASSEM, #+
3 2041 *+ INSERTEDQ RY ASSEM, w#+
144 0 0000 *% INSERTED RY ASSEM, ##
1 0000 *+ INSERTED BY ASSEM, ##
2 4554 #+ INSERTED BY ASSEM, ##
3 204E ' #+ INSERTED RY ASSEM, ##
145 0 467 0 TNC ALF 16 TOTAL NFT COST
145 0 4620 *% INSERTED BY ASSEM, ##
1 5441 *% INSERTED BY ASSEM, w#+
2 544F : *+ INSERTED BY ASSEM, #+
3 2020 ' *+ INSERTED RY ASSEM, ##
p146 0 5354 ' #% INSERTED BY ASSEM, #»
3 1 434F *% INSERTED BY ASSEM, w+

& PROGRAM ID, =
w

% WORD

147

148
148

149

150"

151

SYL

w N ~ O O w N = O w N

w N = D

- O

w N = O

0BJEC
CNDE

5420
4F 45

0000
0000
6000
0000

4F 45
420
5441
S544F

5320
4Cc4as
5341
5420

2020
2020
2020
2020

0000
0000
oeoo0

T

NATE RUN
SEQ SYM,
NO, LOC.
468 0 TNS

3/26/70

ne
cNDE

ALF

TIMF = 12:48
FN, A=PARAMETER R
LN, LAREL INC PAR
24 TOTAL NET SALFS

c LABEL
PAR DEC EQU

VFRSION 02=01~=70

* &

* ok

* %

* ok

LE

* &

2

* &

L X

* &

* %

LX]

* &

w

* %

L8

o

W

* o

* &

R F MA

INSERTED
INSERTED

INSERTED
INSERTFED

"INSERTED

INSERTED

INSERTFD
INSERTED
INSERTED
INSERTED

INSERTED
INSERTED

"INSFRTED

INSERTED

INSERTFD
INSERTFED
INSERTED
INSERTFD

INSERTED
INSERTFD
INSERTED

BY
BY

RY

BY

BY
RY

BY
BY
BY
RY

RY
BY
BRY
RY

RY
RY
BY
RY

RY
BY
BRY

PAGE 026
R K S

ASSEM,

ASSEM,

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,

ASSEM,

ASSEM,
ASSEM,

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,
ASSEM.
ASSEM,
ASSEM,

ASSEM,
ASSEM,
ASSEM,

* ok
* %
*k

-k

**
LA
&

*

& *
Tk
L 2]

¥

* &
*h
')

*h

* W

*®

*

PROGRAM 1D
WORD

65¥

152
152

153

154

155

156
156

w NN = O

SYL

W N = O D

W N = O

w N = O

N = © o

0

JECT
NOE

0000

504C

4c20
5441
S44F

4F 4E
B4uy
2041
5553

2020
2020
2020
5320

0000
0000
0000
0000

4049
4c20
5441

DATE RUN
SEGQ, SYM,
NG, Loc,
469 0
470 0

3/26/70

np
coDE

ALF

ALF

TIME = 12:48

FD.,
LN,

24

2h

A=PARAME TER B
LAREL INC PAR

TNTAL PLUS ADDONS

TNTAL MINUS ADDONS

VERSINN 02=01=70

¢ LABEL
PAR DEC EQU

*

* %
*
* ¥

*

* W
* %

W

o

Iy

L2
*w

LR

LE
LE
* &

*H

* &

L2

REMARKS

INSERTED

INSERTED
INSERTED
INSERTED
INSERTED

INSERTED
INSERTED
INSERTED
INSERTED

INSERTED
INSERTED
INSERTFED
INSERTED

INSERTED
INSERTED
INSERTED
INSERTFD

INSERTFD
INSERTFD
INSERTED

BY

BY
BY
RY
RY
RY
BRY
BY
By

BY
RY
Ay
RY

BRY
RY
BY
RY

RY
BRY
BY

ASSEM,

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,
ASSEM,
ASSEM,

PAGE 027

b

LS

* &
LEd

*&

£ 2]

W
¥

*h

* &
'y
&

&

*h
L L
&k

* %

£ PROGRAM 1D, - NATE RUN 3/26/70 TIME = 12:48 VERSION 02=01=70 PAGE 078

© WORD DBJECT SEQ, SYM, 0P FD, A=PARAMETER B C LABREL REMARKS

sYL CNOE ND Loc, cNDF LN, LABFL INC PAR PAR DEC FQU » |
. 4« INSERTED RY ASSEM, #+
157 0 auuf ‘ww INSERTED RY ASSEM, #w
1 4144 *% INSERTED BY ASSEM, #w
2 5320 x+ INSERTED RY ASSEM, #w
3 4F55 #% INSERTED RY ASSEM, ##
158 0 2020 ++ INSERTED BY ASSEM, s
1 2020 #% INSERTED RY ASSEM, ##
2 2020 +% INSERTED RY ASSEM, #w
3 4E53 #+ INSERTED RY ASSEM, #w
159 0 0000 ++ INSERTED RY ASSEM, ##
1 0000 #% INSERTED RY ASSEM, #
2 0000 «+ INSERTED RY ASSEM, we
3 0000 #+ INSERTED RY ASSEM, #+

160 0 0 ALF TNTAL PLUS COST ADDONS |

160 0 504C +% INSERTED BY ASSEM, #w
1 4€20 x+ INSERTED BY ASSEM, w#
2 5841 #% INSERTFD BY ASSEM, ##
3 S44F «% INSERTFD RY ASSEM, ##
161 0 5420 ww INSERTFED BY ASSEM, ##
1 4F53 *+ INSERTED BY ASSEM, w#+
2 2043 ** INSERTFED RY ASSEM, w#
3 5553 % INSERTED RY ASSEM, w#

19

PROGRAM 1D, = NDATE RUN 3726/70 TIME = 12:48 VERSION 02=01=70 PAGE 029

WORD 0BJECT SEQ, SYM, NP FN, A=PARAMETER B C LABEL RF MARKS
SYL CNDE NG, LOC, - ¢ODF LN, LAREL INC PAR PAR DFf EGU
162 0 2020 #% INSERTED RY ASSEM, ww
1 4F53 | *%« INSERTED RY ASSEM, #+
2 444F ' , *% INSERTFD BY ASSEM, w##
3 6144 ’ o *« INSERTED RY ASSEM, ##
163 0 0000 ' - *%« INSERTED RY ASSEM, w#
1 0000 | #+ INSERTED BY ASSEM, ww
2 0000 4 INSERTED RY ASSEM, ww
3 0000 | #+ INSERTED BY ASSEM, wa
164 0 472 0 ALF 24 TNTAL MINUS COST ADDONS

164 0 4n49 #+ INSERTED RY ASSEM, ##
1 4c20 #+ INSERTED. BY ASSEM, #s
2 sa4n x+ INSERTED BY ASSEM, #+
3 544F *« INSERTED RY ASSEM, #+
165 0 5354 - | »« INSERTED BY ASSEM, w#
1 438F #x INSERTED BY ASSEM, w#
2 5320 #% INSERTED BY ASSEM, %+
3 4FS5 «+ INSERTED BY ASSEM, +#
166 0 5320 | +% INSERTED BY ASSEM, #4
1 4F4F *+ INSERTED BY ASSEM, =2
2 4644 *% INSERTED RY ASSEM, #«
3 2041 %% INSERTED BY ASSEM, #+

£
o
(]

PROGRAM 1D, =

wORD

167

168
168

169

170

171

172

SYL

0

w N = O O W

N e O

Ww N = O W

w N = O

5441
4C20
5441
S44F

2020
2020
5320
5845

2020
2020
2020
2020

0000
0000
0000
0000

473

474

NATE RUN
SYM,
Loc,

0

0

3726/70

opP
CODE

ALF

ALF

Fn,
LN

24

24

TIME = 12348

A=PARAMETER
LAREL INC

TOTAL TAXES

TNTAL COSTS

VERSINON 072=01=~70

B
" PAR

c LAREL
PAR DEC EQU

o &

LE]

* &

LR

*x

* &

LA

INSERTED
INSERTFD
INSERTED
INSERTFD

INSERTED
INSERTFD
INSERTED
INSERTED

INSERTFD
INSERTED
INSERTED
INSERTED

INSERTED
INSERTFD
INSERTFD
INSERTED

INSERTED
INSERTFD
INSERTFD
INSERTED

BY
BY
2 4
BY

BY
RY
BY
BY

BY
RY
BY
BY

BY
BY
RY
RY

BY
Ry
BRY
BY

_ PAGE 030
REMARKS

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,
ASSEM,
ASSEM,
ASSEM,

ASSEM,

ASSEM,

ASSEM,
ASSEM,

* &
* &
*h

* &

*
e
*&

*k

*®
*w
*&

*d

L2
*%
L 24

&

€9v

PROGRAM 1D
WORD
SYL

172

173

174

175

176
176

177

0
1
2

W N e O W N = O W N e O

w N = O O

4Cc20

5441

SH4F
2020

0000

NDATE RUN
SEQ ' SYM,
NO) , LocC,
475 0 T=GRNS

3/726/70

np
cOneE

ALF

14

TOTAL GROSS

VERSION 02-01=70

B
PAR

¢ LABEL
PAR DEC EQU

* &

* %

LA

* &

&

* %

LEJ

LR]

* %

L4 3

* %

LX

* %

Tk

* o

* %

* %

* &

LX

* &

PAGE 031

REMARKS

INSERTED
INSERTED
INSERTED
INSERTED

INSERTED
INSERTED
INSERTFD
INSERTED

INSERTED
INSERTED
INSERTED
INSERTFD

INSERTFD
INSERTFED

INSERTED

INSERTFD

INSERTFD
INSERTED
INSERTED
INSERTED

INSERTED

BY
BY
BY
RY

BY
BY
RY
BY

BY
BY
BY
RY

BY
BY
RY
RY

RY
BY
RY
BY

Y

ASSEM, #«

ASSEM, #x
ASSEM, #«
ASSEM, #«

ASSEM, #»
ASSEM, #+

ASSEM, w#w
ASSEM, #»

ASSEM, *»
ASSEM, =«
ASSEM, »*
ASSEM, ++

ASSEM, »%
ASSEM, *w
ASSEM, #»
ASSEM, #+#

ASSEM, w#
ASSEM, #w
ASSEM, »»
ASSEM, #*

ASSEM, #x»

$ PROGRAM 1D, =

(=)
H

WORD

178
178

179

180

181

SYL

W N e

N

W N = O

182 0
182 0

OBJECT
CNOE

5320
4F53
4752

2n44
414C
4F54
2054

. 5453

SR4F
434F
4953

2020
2020
2020
2020

0000
0000
0000
0000

494E

SEGQ.

NG,

476

4r7

NATE RUN
SYM,
Lnc,

0 TDISC

0 FRSTIN

3726/70

0P
CODF

ALF

ALF

FD,
LN

24

24

TIME = 12348

A=-PARAMETER R ¢

R LAREL
LAREL INC PAR

PAR DEC EQU

TOTAL DISCOUNTS

STARTING INVNICE ND,

VERSINN 02=01=70

* %

LE

LR

* &

* %

& &

* &

* &

*

e ok

L

* W

LR

¥ e

* ¥

*

LR

L2

* W

PAGE 032

RF MARKS

INSERTED
INSERTED
INSERTED

INSERTED
INSERTED
INSERTED
INSERTFD

INSERTED
INSERTED
INSERTED
INSERTED

INSERTED
INSERTED
INSERTED
INSERTED

INSERTED
INSERTED
INSERTED
INSERTED

INSERTFED

RY
BY
BY

RY
BY
RY
BY

RY
RY
RY
RY

BY
RY
RY
BY

RY
RY
RY

BY

RY

ASSEM,

ASSEM,

ASSEM, w+
ASSEM,

ASSEM,

* &

we

ASSEM,
ASSEM,
ASSEM,
ASSEM,

e
* %
* %

* *

ASSEM, »=#
ASSEM,
ASSEM,

ASSEM,

L X
* *

* %

ASSEM,
ASSEM,

* %
* W
LA

ASSEM, #w

ASSEM, we
ASSEM,
ASSEM,

ASSEM,

**

* &

* %k

* %

PROGRAM 1D, = NATE RUN 3/26/70 TIMF = 12:48 VERSION 02<01=70 | PAGE 033
WORD 0BJECT SEQ, SYM, 0P FD, A=PARAMETER R C LABEL RFMARKS
SYL CODF NO, LOC. CODE LN, LAREL INC PAR PAR DFC FQU
1 5254 *% INSERTED RY ASSEM,
2 5441 *x INSERTFD RY ASSEM,
3 2053 *% INSERTED BY ASSEM,
183 0 4943 *% INSERTFED RY ASSEM,
1 S64F *x INSERTFD BY ASSEM,
2 L94F *+ INSERTFD RY ASSEM,
3 4720 *%« INSERTFD RY ASSEM,
184 0 2020 #+ INSERTED BY ASSEM,
1 2F20 *% INSERTED BRY ASSEM,
2 4E4F *+« INSERTFD BRY ASSEM,
3 4520 W & INSERTED BY ASSEMQ
185 0 0000 *+ INSERTED RY ASSEM,
1 0000 *+ INSERTED BRY ASSEM,
2 0000 *+ INSERTED RY ASSEM,
3 0000 *%+ INSERTED RY ASSEM,
186 0 478 0 TXRT ALF 28 TAX RATE
186 0 4154 *+ INSERTED BY ASSEM,
1 2052 ++ INSERTED BY ASSEM,
2 4158 *+« TNSERTED RY ASSEM,
3 2054 *+ INSERTED BY ASSEM,
187 0 2020 #+ INSERTFD RY ASSEM,
1 2020 *+ INSERTED BY ASSEM,

S9v

* %
* ¥

* %

* &
**
* &

* %

* ¥
* %
w &

* %

* *
L2]
* W

* &

&
L2
* &

* %

*

LE

£
o
&

P
W

ROGRAM 1D, =~

ORD

188

189

190
190

191

192

SYL

W N eSO WwWN e D W N = O

W N = o

(=]

usJEC
CNDE
2020
4520

2020
2n20
2n20
2020

0000
0000
0000
0000

4F54
5245
5592
'20“3

2020
4520
4154
2044

2020
2020
2020

1

NATE RUN
SEQ, SYM,
NA, Luc,
479 0 DAIT

3/726/70

op
cODE

ALF

FD,
LN,

24

TIMF = 12148

A=PARAMETER
LAaRFEL INC

CURRFNT DATE

VERSTION 02=01=70

R
PAR

¢ LAREL
PAR DEC EQU

* ¥

* &

* &

¥* d

* &

* %

* %

LA

* %

* %

* ¥

PAGE 034

RFMARWKS

INSERTED
INSERTED

INSERTED
INSERTED
INSERTED
INSERTED

INSERTED
INSERTED

INSERTED

INSERTED
TNSERTED
INSERTED

INSERTED

INSERTED
INSERTED
INSERTFD
INSERTED

INSERTED
INSERTFD
INSERTED

RY
RY

RY
RY
RY
BY

RY
RY
RY
BY

RY
RY
RY

RY

RY
RY
RY
RY

RY
RY
RY

ASSEM,

ASSEM,
ASSEM,

W &

ASSEM, #w
ASSEM,
ASSEM,

ASSEM,

* *®
* %k

& *

ASSEM,
ASSEM,
ASSEM,
ASSEM,

* ok
* &
**

* &

ASSEM, ##
ASSEM,
ASSEM,

ASSEM,

* %
* &

* &

ASSEM., *#%
ASSEM,
ASSEM,

ASSEM,

* *
L2

"+

ASSEM,
ASSEM,

%k &
* *

T

PRUGRAM 1D, =
WORD

L9 P

SYL

0BJEC
CNDE

2020

0000
0000
0900
0000

T

SEQ,

480
481
482
483
Y
4Rs
LAA
487
488
489
490
491
492
493
494
495
496
ug97
498

DATE RUN

DD 0 D 2 D O DS S D o9 oD o o

SYM,
.ocC.

SLDTOL
SHPTOL
RIBRL

BODYL

NMAN=P
TERM=P
ORDNOP
CUSNOP
SLDBYP
SHPVIP
DATE=P
INVNOP
PRDCOP
QTY=p

DESC=P
SPRC=P
PERU=P
GRS=p

DISC=P

3/726/70

npe
CODE

NEF
DEF
NEF
NEF
DEF
NEF
DEF
DEF
DEF
NEF
DEF
DEF
DEF
NEF
DEF
DEF
DEF
DEF
DEF

F
L

TINE =

D,
N.

A=pPAR
LAREL

13
20
2?7
13

19
31
42
54
656
80

22
43
5%
54
68

12:48
AMETER
INC

VERSION 02=01=70

8 ¢ LABEL
PAR PAR DEC EQU

Y %

* &
* &
LXK

* %

SoL

PAGE 035

REFMARKS

INSERTED BY ASSEM,

INSERTED
INSERTED
INSERTED
INSERTED

BY
RY
BY
BY

ASSEM,
ASSEM,
ASSEM,
ASSEM,

D TD LINE

SHIP TO LINE
RTBBON LINE

BOD
Pns
POS
PNS
POS
POS
PNS
P0S
POS
POS
PNS
PNS
POS
POS
POS
POS

Y OF INVOICE LINE
. NAME ADDRESS
TERMS

ORDER NUMBER
CUSTOMER NUMRER
SOLD BY NAME
SHIP VIA

DATE

INVOTCE NUMBER
PRODUCT NUMBER
QUANTTY
DESCRIPTION

SFLL PRICE

PER UNIT COLUMN
GROSS AMAUNT
DISCOUNT PERCENT

$ PROGRAM 1D,

o
00

WwORD

SYL

0

B
C

JECT
NDE

ZWn

jam Fag |
>

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

NDATE RUN
SYM,
Lac,

0 NET=P

0 CPRC=P

0 CSTX=P
ADON=P

0 PRT%=P

0 CNTP=P

0 SM=HDP

D SM=CTP

0

0

0

0

0

0

0

3/26/70

ne
COOF

NEF
NEF
DEF
DEF
NEF
DEF
DEF
NEF
NOTF
NOTE
NOTE
NOTF
NOTE
NOTE
END

TIME =

. A-pARAMETFR
N. LARFL

76
90
94
59
87
64
120
134

12248

INC

VERSINN 02=01=70

PAR DEC EQU

PAGE 036
RFEFMARKS

PNS NFT AMOUNT

PNS COST PRICE

PNS COST AMOUYNT

PNS ALPHA ADDONS

PNS PROFIT/LNSS %

PNS TN CONT, PAGE

PNS MTSC FNTRIES RGHT
PNS SUMMARY €0OST

X3 NO DISCOUNT LTNE

x4 ADNONS ON TNVOICE

Y1 START CONT, PAGE

Y3 STANDARD TNVOICE

Y4 LAST 6 INYOTCE LINES
X INDYTCATFS MANUAL INDEX
END OF JOR

69+

INVOICE
Burroughs 9

DEMONSTRATING FORM

soLp

To : ACME TOOL AND DIE
LLLh MAIN STREET
BAKEWELL, QHIO

234867890 PRINTED IN U.S. AMERICA 1033681

48122 |
SHIP SAME I
TO :
|
|
TERMS ORDER NO. CUSTOMER NO. SOLD BY SHIP VIA DATE INVOICE NO. '
cop 23-467 ATD-900 MLS RAIL 15 1970 105 |
CODE QUANTITY DESCRIPTION PRICE uNIT GROSS DISCOUNT NET I COST PRICE COST EXTENSION
|
6 10 [ASST NUTS AND BOLTS
WITH WASHERS 1.00| EA 10,00 10,00 | .10 1.00
12 5 |REVERSIBLE RATCHETS 11,50 EA 57.50 57.50 4,50 22,50
121 100 |ASST SIZES SOCKETS 1.20| EA 120,00 120,00 ! .67 67.00
205 6 |TOOL CHESTS 4,75 EA 28,50 28,50 1 2,18 13.08
99 5,000 |NONLEAK RUBBER
RUBBER-GASKETS 2,00| ¢ 100,00| 23 % 77.00 | .02 1,00
75 25.000 [COLD CHISELS 60,00| ¢ 15,000,00| 12 % 49,00 _12,250.00
13,493,00 12,354,583
TAX. 9.12% 1,230,56 !
—
1&.723.55| 1,138,42| 12,354,585
|
|
!
|
|
!
!

CROSS REFERENCE TABLE BETWEEN
PROGRAM DEFINITION CHART SEQUENCE NUMBER AND
ASSEMBLER |11 OUTPUT SEQUENCE NUMBER

PROGRAM DEFINITION ASSEMBLER 111
CHART SEQUENCE OUTPUT SEQUENCE

FUNCTION NUMBERS NUMBERS
Invoice 1. 2410 - 2430
Date 2. 2480 - 2490
Tax Rate 3. 2540 - 2550
Cléar Daily Totals 4, 3750 - 3840
Choice of Invoice 5. 50-100
Sold-to and Ship-to Information 6. 7. 160 - 420
Terms 8. 440 - 450
Order Number 9. 460 - 470
Customer Number 10. 480 - 490
Sold-by-Information 11. 500-510
Ship-via-Information 12. 520- 530
Print Date 13. 560, 3850 - 3860
Print Invoice Number 14. 3870 - 3940
Product Number 15. 650-1720
Quantity 16. 800 - 820
Product Description 17. 880 - 890
Sell Price 18. 950-1220
Unit , 19. 1060, 1110, 1220
Gross 20. 1230 - 1240
Discount 21. 1290 - 1350
Net Amount 22. 1410 - 1430
Cost Price 23. 1490 - 1500
Cost Amount 24. 1560- 1580
Invoice Subtotal 25. 1620 - 1650
Tax Per Cent 26. 1666 - 1682
Tax Amount 217. 1840
Add Ons 28. 1920 - 2060
Cost Add On 29. 2070 - 2260
Invoice Total 30. 1620 -
Automatic Continuation Pages 31. 3290 - 3520
Calculate and Print Profit 32. 2310 - 2350
Print Totals 33. 2580 -3140

4-70

SECTION
ASSEMBLERS

FUNCTIONAL DESCRIPTION OF BASIC ASSEMBLERS

An assembler is a program or system of programs which prepares a machine language program from a
symbolic language program by substituting absolute operation codes for symbolic operation codes and
absolute or relocatable addresses for symbolic address.

Versions of the Series L/TC Assembler are available for several of Burroughs Computer systems. The
processing time and operation is different in varying degrees from one version to the other although the
functions of all versions are basically the same. These functions include error detection, preparation of
object program media, symbolic and object program listings, and other operating and debugging aids.
Input to each version of the L/TC Assembler consists of GP 300 instructions in the format specified by
the Burroughs Assembler Coding Form (MKTG 2296) (See Section 1 of this manual).)

ASSEMBLER | — SERIES L/TC PAPER TAPE VERSION

Assembler I is a two phase (two pass) version of the Series L/TC Assembler which operates .on Series
L/TC equipment. Each phase is a separate program and must be loaded prior to its operation. The Series
L/TC keyboard is used for Phase I input. The output consists of a Phase I listing as well as a symbolic
paper tape. This symbolic paper tape is then used as input for Phase IL. Phase II output consists of a
Phase II assembler listing and an object program tape.

EQUIPMENT REQUIRED

Series L/TC with full user memory — Style A 581 Paper Tape Reader and Style A 562 Paper Tape
Punch. Firmware Set No. 2100100100 or No. 2100100200. The assembler is designed to function with
the above standard Firmware Sets, which implement the GP 300 language with paper tape input/output.

Phase I of the assembler overlays the multiply and divide inicros, and Phase II restores them.

If only Phase I of the assembler program is used, Phase II must be loaded to restore the original
firmware micros before’ attempting to run application programs.

PHASE |

Phase 1 of Assembler I operates under 3 modes: 1) Keyboard Mode, 2) Correction Mode, and
3) Continuation Mode. Under Keyboard Mode, the symbolic instructions are entered on the Series L/TC
keyboard, a Label Table is built up in memory, a Phase I listing is prepared on the printer, and a
symbolic paper tape is punched. Under Correction Mode, instructions may be changed, added, or deleted
in the symbolic paper tape. Correction Mode allows the Phase I assembly process to be resumed after an
interruption. Phase I also has diagnostic facilities for the detection and indication of errors.

PHASE | — INPUT

The input of Phase I of the assembler program is comprised of the labels, symbolic operation codes,
parameters and remarks which are entered sequentially via the keyboard or the tape reader (in the case
of continuation mode or correction mode).

ASSEMBLER |

PHASE | — OPERATING INSTRUCTIONS

In operating Assembler I, pin fed continuous forms, a minimum of 11-3/4 inches in width, must be
used. The left edge of the pin fed form should be at position 5 on the scale and the positioned forms
are visible along the bottom form bail. Both Pass I and Pass II object program tapes include their own
firmware. Therefore, when loading the assembler programs, all 32 tracks of main memory (words
0-1023) must be unprotected.

1.

Start

Via Memory Loader Device: Load in normal manner. (See Section 6 of this manual for
specific instructions.)

Via Paper Tape Reader:

a.
b.

Load “Memory Load P.T. Reader” into Utility Track with normal load procedure.

From Ready Mode, depress PKA 3 — Utility — and load Pass 1 of Assembler 1 through
tape reader.

Execute Assembler Pass 1. See below.

Upon completion of all Pass 1 assemblies, depress PKA 3 from Ready Mode to load
Assembler Pass 2. Pass 1 assembly does not destroy the Reader Load Routine in the
Utility Track. '

Execute Assembler Pass 2. See below.

Upon completion of all Pass 2 assemblies depress PKA 3 from Ready Mode to load in
appropriate Main Memory Firmware through Tape Reader, prior to loading and éxecuting
any user programs.*

Depress PKA 1, the “START” Key.

The program will stop at a Numeric Keyboard (NK) instruction with three PK’s enabled.

The three enabled PK’s are:

PKA 2
PKA 3
PKA 4
OCK’s

KEYBOARD MODE OF OPERATION
CORRECTION MODE OF OPERATION
CONTINUATION MODE

The use of any OCK will allow 15 inches of leader tape (sprocket holes) to be punched
and an automatic return to the initial keyboard (NK) instruction.

When “MEMORY” prints, enter the number of words of user memory. No entry assumes 512
words.

When “EXTMEM”’ prints, depress OCK 2, 3, 4.

When “PAGE 51” prints, depress OCK 1 for 51 lines/page or OCK 2, 3, 4 if 66 line/page are
desired. '

*Keyboard Modifiers for the Commercial Keyboard may be loaded immediately after loading Pass I.

5-2

ASSEMBLER |

Keyboard Mode

Depress PKA 2 to enter the keyboard mode. The program will stop with the mimeric keyboard enabled
to allow the operator to enter the total words of memory intended for the object program.

Use any OCK to terminate the instruction. The program will then stop in the INSTRUCTION FIELD
with the Alpha Keyboard enabled. Failure to enter the total words of memory will inhibit the operator
from continuing at the INSTRUCTION FIELD position.

Instruction Field
Type the Mnemonic Op Code or Pseudo Op Code, listed on the symbolic program form.
The following choices are available to the operator:

OCK 2 — Program will return to and stop in the LABEL FIELD. This may be done before or after the
entry of the Mnemonic. ’

OCK 4 — Program will stop in the parameter field, but a stop in the remarks field will be enforced
before the entry of the instruction is completed.

OCK 1-3 — Program will stop in the parameter field without an enforced stop in the remarks field.

PKA 1 — Partial Phase I Halt. The use of PKA 1 will permit Phase I to be halted at any time. A special
code is punched in the source tape instead of the pseudo operation code END. The label table is printed
and punched in the source tape at each stop or “breakpoint.” The label table punched at the conclusion
of each segment of assembly is updated and all inclusive to that point. In addition, the last operation
sequence number is printed and punched. There are two possibilities of continuing the assembly of the
program. The first possibility is that the next section of the program will be assembled before the status
of the assembler program in the machine has been disturbed. In this case, it is only necessary to enter
the continuation mode and proceed. The second possibility is that the continuation will be at some later
date when all current information in the system has certainly been destroyed.

In this case, it is necessary to load the Phase I assembler program and the label table along with the
ending sequence number, both of which were printed and punched at the time of the “breakpoint,”
enter the continuation mode and proceed.

‘The pai'tial Phase I halt, or breakpoint makes it possible to assemble large programs in sections.

The special code used for the breakpoint makes it possible to use small sections of Phase I source tape
for input to Phase II. The breakpoint code will halt Phase II at a keyboard instruction, as described in
Phase II operation, and the use of any OCK will permit Phase II to continue.

PKA 8 — Will print “ERROR” in red at left of sequence number column, the form will space and the
program will stop in the Instruction Field for re-entry.

The entry of an Invalid Mnemonic will function in the same manner as the depression of PKA 8.

The typing of the Pseudo-Op word END will cause the program to enter a routine where the label table
will be printed and punched out. The program will then allow the system to return to the READY
MODE.

53

ASSEMBLER |

Label Field

Type in the Label — a maximum of 6 characters is permissible. The first character must be an Alpha
character. A maximum of 139 labels may be used.

OCK’s — Use of any OCK to terminate the field will cause the program to skip to the PARAMETER
FIELD IF THE INSTRUCTION FIELD has been previously entered. If not, the program will stop in the
INSTRUCTION FIELD.

" Use of OCK 4 will also enforce a stop in the REMARKS FIELD before the line is completed.

PKA 8 — Will print “ERROR” in red at left of sequence number column, the form will space the
program and the program will stop in the Instruction Field for line re-entry.

If a duplicate label is entered, the same function will occur as if PKA 8 had been depressed.
Parameter Field

The Parameter Field may actually be a 1, 2 or 3 field entry, depending on the Mnemonic ehtered in the
Instruction Field. Either the Alpha Keyboard or the Numeric Keyboard will be enabled at this time, also
depending on the Mnemonic.

OCK’s — Use of OCK 2 before the entry will change the entry mode from ALPHA to NUMERIC or
from NUMERIC to ALPHA; however, the program will allow this switch only if the Mnemonic permits
it. (i.e., some Mnemonics may only have a LABEL).

ALPHA ENTRY — Enter the appropriate Alpha Characters. A maximum of 6 characters is permitted on
labels. k

NUMERIC ENTRY — Enter appropriate numeric digits. Where a zero entry is not permitted or where
the numeric entry exceeds the value permitted by the Mnemonics, the program validation routine will
re-initiate a numeric keyboard instruction until the operator indexes a valid entry.

OCK 1 — The program will stop in the next PARAMETER FIELD if the Mnemonic calls for another
field entry. If the parameter field entry is the ending parameter field entry, the program will print the
sequence number, the form will space and the program will stop in the INSTRUCTION FIELD for the
next entry. If OCK 4 had been used in any previous entry position, after printing the sequence number, .
the program will stop in the REMARKS FIELD before ending the line entry.

OCK 2 — Depression of OCK 2 will activate the alternate keyboard when the instruction allows both
absolute and symbolic parameter entries. For example, if the numeric keyboard is active, depression of
OCK 2 will cause the alphanumeric keyboard to become active if the choice is available. In all other
instances the key will function the same as OCK 1.

OCK 3 — The program will stop to permit entry of a +/— increment (numeric).

OCK 4 — On the ending Parameter Field entry, after printing the sequence number, the program will
stop in REMARKS FIELD before ending the line entry.

5-4

ASSEMBLER |

PKA 8 — Use of this PK will print “ERROR” in red at the left of the sequence number column, the
form will space and the program will stop in the INSTRUCTION FIELD for re-entry.

If an Invalid Alpha key has been used, the same function will occur as if PKA 8 had been depressed.
+/— Increment |

The numeric keyboard is enabled. The numeric entry may be up to 255. Use of the RE key prior to
termination, will permit a MINUS value; otherwise, the entry will be positive.

OCK 1, 2,3 —These OCK’s will print the sequence number, space the form and stop in the
INSTRUCTION FIELD for the next line entry. If OCK 4 has been used previously, at any time in the
symbolic entry, the sequence number will be printed and the program will stop in the REMARKS
FIELD. :

OCK 4 — Enforces a stop in the REMARKS FIELD.

PKA 8 — This PK will print “ERROR” in red at left of the sequence number column, the form will
space and the program will stop in the INSTRUCTION FIELD for re-entry.

Remarks Field

Typing of up to 25 Alpha characters for remarks is permitted. The entry of a 26th character will result
in a keyboard Error condition. The program will be halted. The RESET key must be used to correct the
error condition and an OCK used to terminate REMARKS FIELD correctly. Remarks are not punched
into the output tape until all typing is completed and the instruction terminated by the use of an OCK.
The form will space and the program will stop in the INSTRUCTION FIELD for the next entry.

Alf Pseudo-Instruction

The entry of the pseudo-op ALF will permit the entry of up to 24 alpha characters as a constant. The
entry of from 1 to 23 characters followed by OCK termination will cause the program to allocate the
correct number of words for the message. The program will then stop in the INSTRUCTION FIELD for
the next entry. The entry of exactly 24 characters and termination will cause the program to allocate

. the words and, in addition, the program will automatically print ALF in the INSTRUCTION FIELD on

-the next line and then stop for an additional alpha constant entry. The entry of a 25th character will
result in a keyboard error condition. The RESET key must be used to correct the error condition and
permit the proper termination by an OCK. However, the word ALF will still print in the
INSTRUCTION FIELD with a stop to allow for an additional alpha-constant entry.

Continuation Mode

In addition to loading the Assembler program tape Phase I, using the standard program load procedures,
the label table must also be loaded into memory. The tape perforator must be turned on and sufficient
leader tape (sprocket holes only) punched. The RESET KEY will return the machine to the READY
MODE.

PKA 4 — This will cause the sequence number printed out with the first line of entry and to be in
proper sequence with the last sequence number from the previous section of tape, prior to the

5-5

ASSEMBLER |

breakpoint. The program will then enter the KEYBOARD MODE portion of the Assembler program,
Phase 1 for continuation.

Correction Mode

Depression of PKA 3 will cause the CORRECTION MODE of operation to be entered. The program will
stop at a NUMERIC KEYBOARD instruction. At this point, enter the memory size for which the object
program is being assembled. Depress any OCK. The program will then stop at a NUMERIC KEYBOARD
instructions with three (3) PK’s enabled. At this point, the source tape must be loaded in the A 581
Tape Reader and the A 562 Tape Perforator must be on. The enabled PK’s determine the following
functions: '

PKA 5 ADD TO
PKA 6 CHANGE
PKA 7 DELETE

Add to Sequence Number — PKA 5

At the numeric keyboard entry which is reached via PKA 3, prior to depressing PKA 5, index the
sequence number of the symbolic entry, from Phase I documentation, that precedes the area in which
instructions are to be added. “ADD TO’’ will print followed by the sequence number.

The program will automatically read the source tape, punch out a new tape, and will build a label table
in memory. When the sequence number indexed has been read and punched, the program will print the
sequence number plus .1 (XX.1). This provides the ability to add one symbolic instruction in the
position following the sequence number indexed (XX) with a sequence number of XX.1. Following the
entry of this added symbolic operation, the program will return to the Correction Mode. To successively
add a group of instructions, PKA 5 must be depressed prior to each added instruction. Re-entry of the
sequence number isn’t required. The added instruction will be automatically inserted and numbered in .1
increment. The number of “ADD TO” instructions is not limited, but when .9 is exceeded, duplicate
sequence numbering will result.

Example:

If instruction sequence number 23 is incremented by ten .1 increments, the result would be a duplicate
sequence number 24.0. Further “ADD TO” instructions would cause this sequence number to in turn be
incremented (24.1, 24.2, etc.). The original instruction listed as 24.0 will appear in the output tape
immediately following the last instruction added.

Re-entry of the original instruction is not required, however, duplicate sequence numbering can lead to
difficulty in later correction of the source program; therefore, the original 24.0 sequence number should
be “deleted” then a new sequence number “added.” See Delete From Source Tape paragraph.

Change Source Tape — PKA 6

At the numeric entry reached by depressing PKA 3, prior to the depression of PKA 6, index the
sequence number from the Phase I documentation that is to be changed. When the instruction is
terminated by PKA 6, “CHG” will print followed by the number indexed.

5-6

ASSEMBLER I

The program will automatically read the source tape, punch out a new tape and will build a label table
in memory. When the sequence number indexed has been read, it will not be punched out. The program
will enter the Keyboard Correction Mode to permit entry of a line of coding following the entry of the
changed symbolic operation, the program will return to the Correction Mode described under correction
mode.

The assembler program permits instructions to be changed and new instructions immediately added to
the program.

Depression of PKA 6 without a sequence number being indexed, will cause the very next instruction on
the source tape to be read in but not punched out. If this is not the sequence number that was to be
changed, the instruction would have to be entered via the keyboard.

Delete From Source Tape — PKA 7

At the numeric entry reached by the use of PKA 3, prior to the depression of PKA 7, index the
sequence number, from the Phase I documentation that is to be deleted. When the instruction is
terminated by the use of the PKA 7, “DEL” will print followed by number indexed. The program will
automatically read the source tape, punch out a new tape and will build a label table in memory. When
the sequence number indexed has been read, it will be ignored and not punched. Once deleted on first
correction pass, that sequence number is gone and will never be found on any subsequent correction
pass. The Assembler permits instruction deletion immediately followed by the addition of a new
instruction. The program will return to the Correction Mode described under correction mode.

Depression of PKA 7 without a sequence number being indexed, will delete the next sequence in the
tape and print out the sequence number deleted. This would of course result in an incorrect object
program since an instruction was deleted that should not have been deleted.

Source Tape Interrupt Procedures

After indexing a sequence number and depressing any of the PK’s described above, if the operator
~ realizes that the wrong sequence number was entered, PKA 8 may be depressed. At the end of the line,
the program will print out, “NOW AT” followed by the last sequence number read in and the program
will stop at the Keyboard entry with the three (3) PK’s enabled.

End' Procedure

When the last “ADD TO,” “CHANGE” and “DELETE” has been entered, the entry of any sequence
number larger than the END sequence number, from Phase I documentation, will read the source tape
and punch a new one. When the word END is read, it will cause termination of the Phase I correction
routine and will then follow the END pseudo instruction procedure.

PHASE | — CONDENSED OPERATING INSTRUCTIONS AND REFERENCE LIST

1 Turn on tape perforator.

2. Be in READY MODE.

3. Depress PKA 2 (Load).

4. Depress MEMORY LOAD switch.

ASSEMBLER |

0 0N

10.
11.

12.
13.

Read Phase 1 tape in PROGRAM LOADER.

After tape is read in, depress MEMORY LOAD switch.
Depress RESET key to return to READY MODE.
Depress PKA 1.

Depress PKA 2 for Keyboard Mode.

Type total words of memory you intend to use.

Depress any OCK and it will space correctly and stop for you to type the Op code of the first
instruction. (Col. 22-26 on coding forms.)

Type OP Code.
Use one of the following 3 lists of instructions:

a. No remarks (Col. 53)
No label (Col. 16)

1)
)

(3)

Depress OCK 1 or 3.

If parameters are required, it will stop in each necessary parameter field. Type
parameter. Depress OCK 1 or 3 after each parameter entry.

The final OCK will space for next Op Code entry.

b. No label (Col. 16)
Remarks present (Col. 53)

1)
2)

(3)

Depress OCK 4.

If parameters are required, it will stop in each necessary parameter field. Type
parameter. Depress OCK 1, 2 or 4 after each parameter entry.

Final OCK will space to remarks field. Type remarks.
Depress OCK 1 to space to next OP code entry.

c¢. Label present (Col. 16)

(1)
2

3
@
5

Typing Error

Depress OCK 2.

If parameters are required, it will stop in each necessary parameter field. Type
parameter. Depress OCK 2 after each parameter entry. ~

Final OCK will space to label field. Type label.
If no remarks, depress OCK 1 to space to next Op code entry.

If remarks present, depress OCK 4. Type remarks. Depress OCK 1 to space to next
Op code entry.

If mistake made, depress PKA 8 before an OCK. It will print ERROR and will stop in Op code field
for re-entry of instruction.

Correction Mode

1.

Turn on perforator and put Source Tape in reader.

ASSEMBLER |

2. Bein READY MODE.
3. Depress PK 1.
4. Depress PK 3.
5. Type memory size and OCK 1.
Add To
1. Type sequence number before area to be added.
2. Depress PKA 5.
3. Program will read source tape, punch new tape, build label tapes.
4. When indexed sequence number has been reached, .1 will be printed beside it.
5. Add new instruction as other original instruction.
6. If there are additional instructions, depress PKA 5 and type next instruction.

Changing Source Tape

Typé number to be changed.
Depress PKA 6.

Sequence number will not be punched.

b e

Enter new instructions as original instructions.
Delete from Source Tape

1. Type sequence number.
2. Depress PKA 7.

Sequence Number Typing Error

1. Depress PKA 8.
2. Depress PKA 5, 6 or 7 again.

To Terminate any Correction

1. Enter any sequence number ‘larger than the END sequence number then depress PKA 5, 6 or
7. . ')

2. It will read source tape and punch a new one. This will give new symbolic tape and new label
table.

PHASE | — DIAGNOSTIC FACILITIES

Provision is made for the detection and printed indication of errors that may occur in the Assembler
program.

Error Detection and Indicétion

The entry of the symbolic language in Phase I, as previously stated, is via the keyboard or paper tape
reader. Errors are detected as the symbolic entry is made.

5-9

ASSEMBLER |

MNEMONIC ERROR DETECTION — The mnemonic is entered first in sequence. If the mnemonic is
invalid, the OCK used to terminate the entry will initiate an error sequence that will space the print
head to position 10, print ERROR, align the form 1 space, and re-position the print head so that the
invalid mnemonic may be corrected.

LABEL ERROR DETECTION — The next sequential operation, in the entry sequence of the program,
is the entry of a label if required. The label error detection consists of determining if the label has been
used previously and/or if the total number of labels exceeds the maximum of 139.

Duplicate label validation occurs after the specific symbolic operation has been entered. If the label is
invalid, the print head is positioned to 10, ERROR is printed, and the printer document is aligned 1
space and a corrected entry must be made. »

If the maximum of 139 labels is exceeded, the printer document advances to the next form (over fold),
prints and punches out the contents of the label table up to that point. The assembler program will
return the system to the ready mode and the correction routine must be used.

PARAMETER ERROR DETECTION — The parameters are also validated following the termination of
their entry. Label-type parameters are not validated in Phase I. Separate error detection is used for
numeric parameters and alpha parameters.

NUMERIC PARAMETER ERROR DETECTION - Two numeric parameter conditions are validated in
Phase 1. :

1. Parameter exceeds specified limits (maximum or minimum) value.
2. Parameter is required and has not been entered.
“In both cases, the validation routine will, upon recognizing the invalid condition, re-initiate the

parameter entry sequence. However, if a zero parameter is acceptable, it is not necessary to index a
zero, Leaving the parameter area blank will force the zero entry.

ALPHA PARAMETER ERROR DETECTION — An alpha parameter error is detected upon termination
of the entry. In an invalid situation, such as entering an invalid alpha character, or no entry where an
alpha entry is required, the print head will be positioned to 10, ERROR is printed, the printer
document aligned 1 space and the entire symbolic operation sequence must be re-entered.

MEMORY ERROR DETECTION — Memory error conditions are:

1. The program exceeds the maximum memory available.

2. A specific point in the program is reached where sufficient memory has been occupied such
that specifying a REG instruction, with a large parameter, will exceed the maximum memory
available. ' .

In both of the above error conditions, the assembler program will return the system to the
Ready Mode. This condition can only be corrected by use of the correction routine, (See
correction mode.)

Error Detection — Correction Mode

The correction mode features error detection similar to that previously discussed.

5-10

ASSEMBLER |

MNEMONIC ERROR - If an invalid mnemonic is encountered, the validation routine will print the
sequence number, label — if any — and the mnemonic as it appears in the input tape, align the form 1
space, print INSTR ERROR, punch a NOP instruction in the output tape and continue assembly.

LABEL ERROR — If an invalid label is encountered, the validation routine prints the sequence number,
label and instruction as it appears on the input tape, aligns the form 1 space, prints LABEL ERROR,
removes the invalid label, but punches the rest of the instruction in the output tape and continues
assembly.

PARAMETER ERROR — If an invalid ALPHA parameter is encountered, (PK, LOD’s, SK’s or MASKS)
the validation routine prints the sequence number, label, instruction and parameters, aligns the form 1
space, prints PARMTR ERROR, punches the instruction in the output tape and continues assembly.

PHASE I — QUTPUT
The output of Phase I of Assembler I consists of a print-out and a punched paper tape (source tape).
PHASE | — PRINT-OUT

The Phase I Print-Out is in the same format as the Phase I output tape. It is in two sections, the first is
a listing of the Symbolic operations and the second a listing of the label table with memory addresses,
as illustrated in Exhibit I.

PHASE | — OUTPUT TAPE

The output tape is created in two sections. The first section is the symbolic operation codes, complete
with parameters and remarks, with the addition of a sequence number and the decimal equivalent of the
actual location of the instruction in memory, punched in USASCIL

The format is:
Sequence Number
Decimal equivalent of the actual memory location of the operation.
Label (if entry is labeled)
Symbolic Operation Code
Parameters

Remarks

The second section of output tape is separated from the first section by approximately ten inches of
unpunched tape. This is the label table and is punched in compact format hexadecimal which is the
same format punched for the object program.

The format is:
Label
Memory Location

511

CI-s

NOWMIEWN=—=O0OUWONoOUVI FWN —

N N it e
- O &

WRNMNNNNNDNDN
OW RN Wi

wwww
FW N —

TOGTAL
STAR
START

ZERQ
ENTER

NOTE
BRU
ORG
NUM
ALF
LPNR
LPKR
CLM

POS
PKA
NKRCHM

PNS-

PRINT
KEYS
PRTSUB

PRTTOT

COMR

ADM
EX
PQS
PC
BRU
MASK
WORD
BRU
BRU
SRJ
PC
BRU
SRJ

BRU
TRA
PNS-
PQS
SRR
END

START
10

0
PRINT
KEYS
TOTAL
1

10

12

15

14

K
TOTAL
K

30

ENTER
22727272Z17722.0D

N NOO

PRTSUB
PRTTOT
COMR

¥
ENTER
COMR
STAR
ZEROQ
TOTAL
14 0
30

i

Exhibit 1
Basic Assembler |
Phase |

ADDING MACHINE EXAMPLE
BYPASS PSEUDU INSTRCT

INITIALIZE AT ZERO
SYMBOL FOR TOTAL
LOAD PRINT MASK AREA
LOAD PROGRAM KEYS
CLEAR MEMORY TOTAL
ADVANCE FORM A LINE
POSITION TO PRINTER
ENABLE PROGRAM KEYS
INDEX QPERANDS

PRINT OPERAND

USE OCK2 IF ERROR
ADD TO TOTAL

PRINT # FOR ERROR AMT
PUSITION TG PRINT
PRINT CHARACTER

RETURN TO INDEX OPERAND

PRINT FORMAT

PKA1 TO SUBTOTAL
PKA2 TO TOTAL

TO SIGNIFY SUBTOTAL
TO SIGNIFY TOTAL

GO TO CLEAR TUTAL
COMMON TOTAL ROUTINE
PRINT TOTAL '

SUBROUTINE RETURN

I 4379N3sSSVY

ASSEMBLER 1

PHASE Il

Phase Il of Assembler I uses a symbolic (source) paper tape as input and provides an object program
tape which operates on a Series L/TC computer. It also provides a program listing with the object code
as well as the symbolic code for each instruction and the absolute memory assignment. Phase II is also
equipped with diagnostic facilities for the detection and indication of Phase II errors.

PHASE 11 — INPUT

The input to Phase II of the assembler program is the label-table tape, which has been separated from
the symbolic tape and loaded via the program loader and the symbolic operation tape (source tape)
which is mounted on the optional A 581 paper tape reader and entered under assembler program
control.

PHASE 1l — OPERATING INSTRUCTIONS

The Phase II Assembler program must first be loaded into memory using the standard program load
procedure. In addition, the same type of continuous pin feed forms must be used, with the forms
positioned with left edge at position 5. If Phase II is being run immediately after running Phase I, it is
not necessary to load the LABEL TABLE into memory. If Phase II is being run at any other time, it
will be necessary to load the LABEL TABLE. This table is at the end of the source tape which is the
output from Phase I. The table is separated from the source tape (sprocket holes only), is punched in
compact hexadecimal format and must, therefore, be loaded via the program loader. When this
procedure is complete, the RESET KEY must be depressed to return the machine to the READY
MODE.

Start

PKA 1 — The program will stop at an Alpha Keyboard entry position to permit the typing of up to 6
alpha characters for any identification purposes desired.

At this point, the Symbolic output (source) tape from Phase I must be loaded on the A 581 tape reader
and both the tape reader and tape punch switches turned on.

Depression of any OCK will cause the program to enter the automatic mode. This mode reads the
source tape. Complete documentation is printed out, including the hexadecimal object program coding
and all remarks. An object program will also be punched out.

The Assembler program Phase I will automatically put the machine into the READY MODE, when the
Pseudo-Op END at the end of the source tape is read.

PKA 8 — This PK effects an interrupt. Operation can be resumed by the use of any OCK.
PHASE Il — CONDENSED OPERATING INSTRUCTIONS AND INDEX

1. Turn on tape perforator.
2. Bein READY MODE.
3. Depress PKA 2 (Load).

5-13

ASSEMBLER |

Depress memory load switch.

Read Phase II tape in PROGRAM LOADER.

After tape is read in, depress MEMORY LOAD switch.
Depress RESET key to return to READY MODE.

At this point, if Phase I has not been run immediately prior to this, it will be necessary to
load the label-table into memory using the same load procedure as in loading Phase II above.
Then return to READY MODE.

9. Depress PKA 1.
10. Type up to 6 alpha characters for program identification and then OCK 1.

© NN R

11. Insert symbolic tape into reader and depress READ switch.
12. This will give you a complete program listing and object tape.

13. If you have error in program it will be necessary to go to Phase I documentation for changes
or to hexadecimally change program.

PHASE Il — ERROR DETECTION AND INDICATION
As stated previously, the input to Phase II is the output tape, or source tape, from Phase L

Error detection in Phase II is supplemental to the error detection in Phase I and is designed to validate
the assignment of actual machine language, which is function of Phase II, plus the provision to indicate
the possibility of machine-inflicted error, and the possibility of remote combination of programs vs.
machine logic which could cause misinterpretation of the symbolic entries.

MNEMONIC ERROR DETECTION — The mnemonic is validated again in Phase II. At this particular
point in assembler program progression, the potential error possibility is the misreading of the mnemonic
as a result of a mispunch, some internal system failure or reader failure. In any event, an invalid
mnemonic in Phase I is an irrecoverable error and will cause the validation sequence to return the
system to the ready mode.

PARAMETER ERROR DETECTION — Parameters are again validated in the same manner as described
under Phase I diagnostic facilities. In addition, if a label is used to define a parameter, the actual value
of the label is validated.

For all parameter errors, except label errors, the word ERROR is printed starting in position 45, the
printer escapes one space and PARMTR (parameter) is printed. :

In the event of a parameter-label error, the word ERROR is printed starting in position 45, the printer ‘
escapes one space and LABEL IS printed.

For all instructions that are in error, a NOP instruction is substituted, printed out in the instruction
sequence, and punched in the object program tape. The end result is that the object program tape
contains NOP instructions instead of invalid instructions; plus, the program provides documentation
which defines the location and type of parameter error.

5-14

SIS

34

35

52
53

54
55
56

57

58

WK —O WN —O WN-—O

O, 0 O oo

33366797
03333333

66E66797
03333333

33333679
03333333

66E66797
0333336E

188
189
190
191
192

193
194

POS

MASK
MASK
MASK
MASK
ORDRNO REG
WDSAME ALF
WwDoPP ALF
WDCOD ALF
WDFGHT ALF

Exhibit 2
Basic Assembler I
Phase H

220,00
Z222.210,DD
ZD.D
27,777,170,00
1

SAME*

PP

coox
MTFGHT®

77
73

79

74
73

OVERFL

V—’—/\) .

I 4379IN3SSVY

ASSEMBLER 1

Correction Routine Phase 11

Phase II errors are corrected by using the Source tape (tape output from Phase I) and the Assembler
Phase I correction routine, or correcting the Symbolic language and restarting the entire program.
Corrections in the object program can be made by using the Memory Modify service routine with a
corrected object tape generated with the Punch from Memory service routine, (See Section 3). R

PHASE |l — OUTPUT
The output from Phase II of Assembler I.consists of a print-out and an object program tape.
“ PHASE 11 — PRINT-OUT

The Phase II print-out is a complete print-out of the object program along with explanatory information.
The format is illustrated by Exhibit 2.

PHASE I — OUTPUT TAPE

The Assembler program Phase II output tape is the object program tape and is punched in compact
hexadecimal format. It contains the complete program, in machine language, ready to be loaded directly
into the Series L/TC computer. '

5-16

ASSEMBLER 1|

ASSEMBLER Il — 80-COLUMN CARD 1/0 — L/TC VERSION

Assembler I is a two pass version of the Series L/TC Assembler which operates on Series L/TC
equipment with card I/O. Unlike Assembler I, Assembler II consists of only one program and is loaded
only once. GP 300 symbolic punched cards are used as input, through the Card Reader. Pass I reads the
symbolic deck, validates mnemonics, creates a label table, sequence checks the cards if requested, and
prints certain errors. Pass I reads the symbolic deck again, produces a complete listing print-out
including error messages and punches an object deck.

ENVIRONMENT

Series L/TC with full user memory
1 A 595 Card Reader
1 A 142 Keypunch

Assembler II Object Program, No. 1-1001-011-01
Firmware I.D. No. 2-1004-001-03

INPUT

Assembler II uses as input, GP 300 symbolic cards as defined in Section 1 and the desired control cards
as described below.

CONTROL CARDS

The control cards specify the input and output of the Assembler II program. Each control card must
contain a § in card column one and the name of that control card starting in card column 16.

The control cards allowable are as follows:

$ DATA

This control card tells the system that the symbolic card deck is punched in EBCDIC code.
$ DATAB

This control card tells the system that the symbolic card deck is punched in BCL code. BCL code does
not include some special characters available with EBCDIC,

$ SEQ-CK

This control card enables the checking of sequence numbers in the symbolic card deck. The sequence
number of the current card is compared to the sequence number of the preceding card and if the value
of the current card is less than or ‘equal to the previous card, the error message SERR is printed and the
program continues.

$ MEMORY

Firmware sets vary in memory requirements, which controls the amount of user memory available. If
the size of object memory is other than 512 words, the Assembler II program may be informed by the

5-17

ASSEMBLER II

control option $ MEMORY followed by the memory size, stated as a 3-digit integer value, starting in
card column 29.

$ PAGE51

This control card tells the system that the Assembler listing is being printed on a form 82" x 11". If
the above option is not used, the system assumes a form size of 11" x 14".

$ LABELS

This control card generates a list of labels along with the word and syllable location that each label
represents. A maximum of 139 labels are allowed. :

OPERATING INSTRUCTIONS

Readying the System

1.

Pass |

Unprotect (jumper) all tracks of main memory — words 0 to 1023 (do not jumper the utility
track — Block 2 Track 2 — or any tracks that have been permanently jumpered by a Field
Engineer.)

From the Ready Mode, load the Utility routine “Memory Load, Card Reader” LD. No.
1-1001-054-00. Firmware LD. No. 2-1004-001-03 must be in main memory before loading
Assembler II.

Turn on Card Reader and depress Feed key. Place Assembler II object program deck in Card
Reader and depress PKA 3 from the Ready Mode. After all cards have been loaded, depress
any OCK or keyboard character to print the hash total, the system then returns to Ready
Mode.

Preparation of Card Punch:
a. Depress the POWER ON SWITCH and place blank cards in the feed hopper.

b. Place a blank card around Program Drum No. 1. Around Program Drum No. 2 (left
drum) place a card containing alternate “12” and “11” punches in card columns 1
through 80. These punches may start with either “12” or “11” so long as they alternate
through all 80 columns.

c. Place drums on the Card Punch and place brush assemblies in contact with drums, the
Program Switch on the Card Punch keyboard may be set in any position.

d. If it is desired to interpret the punch cards, the Print button should be depressed.
Miscellaneous characters will be printed if the Card Punch is interpreting object program
being punched. ‘

e. Depress the Auto Feed button to place a card in the punch station, depress the ERR.
REL. key to position a blank card in the read station.

f. Depress the Punch-On-Line button, the card punch is now under control of the Series
L/TC. Halts on punch instruction if not on-line.

Place control cards and symbolic deck in the Card Reader, depress PKA 1 from Ready Mode.

5-18

ASSEMBLER Il

When it is necessary to temporarily halt assembly to add or remove cards in the Card Reader, three
choices are available.

1. Depress Feed switch to OFF. To restart assembly, depress Feed switch to ON and depress
Restart switch.

2. Depress RESET key, the program halts and the Numeric keyboard light is lit. Depression of
any OCK will resume the assembly of the program.

3. The system halts on a Reader condition if there are no cards in the Reader and the last card
read was not the END card. Placing cards in the Reader and depressing the Restart switch will
cause the assembly to continue.

Pass I is completed when the symbolic END card is read. The system will halt on an NK instruction
following the print-out of the label table, if a § LABELS card was used.

Pass | Errors

During Pass I the only thing printed are the symbolic cards containing errors (card columns 11 through
77) preceded by a description of the error.

The following messages are used on the print-out to indicate detection of errors. These messages are
printed in red.

Sequence Error

SERR — If the current card being checked at the request of the control card $ SEQ-CK has a lower or
equal sequence number than the previous card, then that card is out of sequence.

Previously Used Label

LERR — The label in card columns 16 through 21 has been previously used. That instruction is not
assigned a label, in PassI or Pass II. The symbolic deck must be run again through Pass I, with a
different label if the instruction is to have one.

Label Limit Exceeded

ELERR — A maximum of 139 labels are allowed, those labels beyond 139 are not put in the label
table. The instruction is assembled without a label assigned to it.

Invalid Mnemonic

IERR — The mnemonic in the op code field is invalid. This card or a corrected card must be used in
Pass II. It is assigned a syllable in memory. ‘

Word Length Exceeded

No message is used when either the NUM or MASK instruction is too long to be translated into one
word. The overflow is ignored and processing continues.

5-19

ASSEMBLER 1l

Memory Assignment Error

MERR — This tells the user that the specified memory has been previously assigned. This could occur
for example if an ORG instruction is used and specifies a word number already assigned by the
Assembler. :

Assumed Memory

No message is used. Memory of 512 is assumed by the Assembler unless a $ MESSAGE specifies
memory other than 512.

‘Memory Capacity Exceeded

MERR — This tells the user that the symbolic program is too large for the specified object memory size.
The Assembler does continue to process.

End Card

No message is printed and the Assembler halts on a reader condition. The symoolic deck must have as
its last card the mnemonic END card. To correct place END card in Reader and depress Restart key on
Reader. Pass I cannot be completed without the END card.

Pass I
Place the control cards and all or part of the symbolic deck in the Card Reader and depress any OCK.
A complete listing print-out including error messages and an object deck is produced.

After Pass II is completed, it is necessary to reload main memory firmware before executing any
assembled object program.

Pass Il Errors
The description prints next to the field in error.
Undefined A Parameter Label

PERR — The label in the A parameter was never used as a label to a mnemonic instruction. A NOP is
generated and Pass II continues. ‘

Invalid Parameter Range

PERR — The value in the parameter is not within the limits allowed by the mnemonic. A NOP is
generated z_md Pass II continues.

Invalid Increment Field

PERR — The value in the increment field is not within 255 or an invalid character is located within the
field. A NOP is generated and Pass II is continued.

5-20

ASSEMBLER 1

No Label or Increment Error

PERR — There is no label or the increment field is in error. A NOP is generated and PassII is
continued.

Invalid Mnemonic

IERR — The mnemonic is not in the language specifications. The mnemonic is ignored and a NOP is
generated. Pass II is continued.

Word Length Exceeded

No message is used when either the NUM or MASK instruction is too long to be translated into one
word. The overflow is ignored and processing continues.

Memory Capacity Exceeded

MERR — The symbolic program is too large for the specified object memory size. Pass I processing
continues. '

End Card

No message is printed and the Assembler halts on a Reader condition. Place END card in Card Reader
and depress Restart switch. The symbolic deck must have as its last card the mnemonic END card.
Pass II cannot be completed without the END card.

After the reading of all cards in PassII, the last object program card is released. This completes
Assembler II. The user may now reload main memory firmware, protect memory and run the object
program just produced.

5-21

ASSEMBLER I

L/TC ASSEMBLER I11 B 3500 VERSION

The Assembler III Program operates on a B 3500 system and prepares an object program for Series L/TC
systems. It accepts symbolic input directly from cards or will accept a symbolic punched paper tape if it
is loaded on disk via a utility program prior to the execution of the assembler and the appropriate
control card is included in the source media.

All references in this document to Assembler I or Basic Assembler I refer to the Series L/TC keyboard
version of the Series L/TC Assembler.

ENVIRONMENT

The following system hardware is required for Assembler III:
B 3500 — 60 KB Bytes Core
1 Module Disk (800 segments, 100 bytes each)
1 Tape Unit (7 or 9 channel)
Card Reader
Paper Tape Punch
Paper Tape Reader (Optional for Symbolic Paper Tape Input)
Card Punch (Optional for Symbolic or Object Card Output)
Line Printer

LIBRARY TAPE INPUT

The input for Assembler III is the Group II Software Library Tape and the source media which is either
a card deck that included both the symbolic program and the appropriate control cards, or the symbolic
paper tape output from Phase I of the Basic Assembler I Program for Series L/TC systems.

Library Tape

The tapes contain the following programs:
ASSEMB This is the assembler program.
QCONV This produces the object program on paper tape.

LCNVRS This converts input symbolic paper tape code to card image and stores it on disk. This
must be executed first if symbolic tape input is specified. It creates a disk file which is
used as the source file for input to the ASSEMB program.

CRDCVR This produces a symbolic paper tape for input to Assembler L

XREF This is the cross-reference program. It produces a cross-reference listing of labels.
OBJCRD This produces the object punched card deck.
LIBTAP This is the maintenance program for the Library Tape created by the Assembler.

The following files are used internally in the Assembler III Program:
COND Used in error detection.
OPTBL The operation code file.

5-22

ASSEMBLER 111

MCP CONTROL CARDS

The following MCP Control Cards are used in the assembly process; the 1-2-3 indicates a multi-punch in
card column 1 for the specified cards:

Execute Card
The execute card initiates program execution. It must be punched in the following format:

1
2 EXECUTE ASSEMB
3

Data Card

The data card specifies the type source media. It must be punched in the following format:

1 1
2 DATA SOURCE or 2 DATAB SOURCE
3 3

This tells the system that the source media is cards, punched in either EBCDIC or BCL code,
respectively. BCL does not include some special characters available with EBCDIC.

Dollar Sign Card

The dollar sign card specifies an option which controls the input and output during the assembly
process. It must be punched in the following format:

$ (LIST OPTION HERE)
The options available on Assembler III are discussed below.
Data Deck
The symbolic deck to be assembled._
End Card
The end card must follow any card deck. It is punched in the following format:

1
2 END
3

It tells the system that the input from the Card Reader is complete. This card is used in addition to the
GP 300 END card.

OPTION CONTROL CARDS

There are several options which control the input and output of the Assembler III Program. The options,

5-23

ASSEMBLER |11

specified in the succeeding sections, must be preceded by a ($) dollar sign and may either be coded on
individual cards, or may be coded free-form serially on one or more cards.

SEQ-CK, Sequence Checking

The format on the control card is SEQ-CK. When a sequence number has been punched into column 11
through 15 of the source cards, sequence checking may be desired. If this control option is used, the
sequence number of the current card is compared to the sequence number of the preceding card and, if
the value is less or equal to, the error comment “SEQUENCE ERROR” will print. Execution of the
program continues. Code generation is not ensured when sequence errors occur.

RESEQ, Resequencing

The format of the control card is RESEQ. If this control option is used, any sequence numbers punched
in columns 11 through 15 of the source cards are ignored. Resequencing is initialized at 10 and
incremented by 10 for each succeeding card.

MEMORY, Memory Size

Since different firmware sets vary in memory requirements, the size of user memory also varies. If the
size of user memory is other than 512 words, the Assembler III Program may be informed by the
control option MEMORY followed by the memory size, stated as an integer value. If this option is
omitted, memory of 512 words is assumed and appropriate warning message is printed.

SYM-CD, Symbolic Card Output

If output, in symbolic BCL code, is required on punched cards, the symbolic-card control option
SYM-CD is used. This will provide a symbolic card source deck, resequenced if the RESEQ option is
used. If a program identification is punched in card columns 5-10 of the first symbolic card, it will be
punched in every card of the output symbolic deck.

SYM-CN, Symbolic Card Output

This option is the same as SYM-CD with the exception that the output symbolic deck is punched in
EBCDIC code. ’

SYM-PT, Symbolic Paper Tape Output

If symbolic paper tape output is required, the SYM-PT control option is used. This provides an input
symbolic paper tape for Phase I of the Basic Assembler I Program.

LABELS, Printed Table of Labels

The entry of the control option LABELS provides a print-out of Assembler III generated table of labels.
The list of labels is printed in the order in which they were programmatically defined along with the
location that each label represents.

DOC, Documentation Punch and Print

If the psuedo-op DOC is used in a program and it is necessary to reproduce it in a symbolic card, the

5-24

ASSEMBLER |11

control option DOC is used. $ DOC will retain the psuedo-op and print and punch it in its proper
programmatic sequence.

PUNCH, Paper Tape Object Code

If the output of the Assembler III Program must be a Series L/TC object program punched in paper
tape, the control option PUNCH is used. (See Section 6, Page 6-6 for a discussion of the object tape
format.)

OBJ-CD, Object Card Output

If object card output in hexadecimal object code is required on punched cards, the control option
OBJ-CD is used. This will provide an object card deck for input to a Series L/TC card system. (See
Section 6, Page 6-2 for a discussion of the object card format.)

DISK-IN, Paper Tape Input

If the symbolic paper tape output from Phase I of the Basic Assembler I Program is to be used as input
to the Assembler III Program, it is required that the conversion program, LCNVRS be executed prior to
the execution of the Assembler III Program (discussed on Page 5-27. It also requires the control option
DISK-IN which must be entered as the last control option in the control option deck. The DISK-IN card
must be followed by an end card: ? END.

The Assembler III Program will use the information transferred from the symbolic paper tape to the disk
by the conversion program, as source media.

XREF, Cross Reference of Labels

If a cross reference listing of labels is desired, control option XREF is used. The labels are printed in
alphabetical order with their sequence number and the sequence numbers of those statements
referencing that label.

LINES, Specifying Number of Lines Per Page

This option will permit the programmer to specify the number of lines desired on each page below the
heading. It is possible to use any two-digit integer for the number of lines per page. If this option is not
used, the maximum of 60 is assumed, which provides 7% inches of text at 8 lines per inch.

SAVE XXXXXX

This will cause the Assembler to retain the object program upon the disk. Punching of paper tape or
80-column card does not occur. XXXXXX represents a 6 alpha character disk file-name. It must be used
in conjunction with $ PUNCH or $ OBJICD.

OPERATING INSTRUCTIONS

Operation of the Assembler III Program involves the setting up of peripherals as a major function as
opposed to Basic Assembler I Program operation whiph requires manual intervention as a major function.

5-25

ASSEMBLER Hi

Equipment Setup

To exercise all the control options of the program, 1 magnetic tape unit, 1 card reader, 1 card punch, 1
paper tape reader, 1 paper tape punch, and a line printer are required.

1.

Operation

Magnetic Tape Units

Mount the Library Tape. Choose an MTU with the proper channel (7 or 9) and set the
appropriate density. Both of these are marked on the library tape reel label. Load the tape
reel.

Card Punch (If symbolic or object card-out is required)
Load the hopper on the card punch with sufficient cards and ready the punch.
Paper Tape Reader (If symbolic paper tape-in is desired)

Wire the channel select board, inside the front doors on the upper left of the reader in the
following manner.

Turn the three control code switches off. Depress the Parity on-off switch to off. Depress the
High-low switch to low. Depress the Strip-Reel switch to strip or reel, depending on input
type.

Paper Tape Punch

Wire the channel select board, inside the front doors on the upper left of the punch, in the
following manner:

Turn the Control Code Switch off. Set the LEVEL Designator Switch to 8-LEVEL. Ready the
punch.

Line Printer

Equip the printer with an 8 lines per inch control tape and ready the printer.

Loading the Library Tape: The loading of the magnetic library tape may be initiated by either a control
card or a control input message via the supervisory printer (SPO). If a control card is used, the card
would read

5-26

1

2 LOAD FROM GRPII < list of programs and files to be loaded >
3

ASSEMBLER 111

The control card would load the programs specified from the list of available programs and files. For
example:

1
2 LOAD FROM GRPII ASSEMB QCONV CRDCVR OPTBL COND OBJCD XREF

3

In either case the card must be passed through the card reader by itself. When the tape has been loaded, an
output message to this effect will be typed on the SPO, after which the Assembler may be executed.

If the library tape load is initiated via the SPO, the input message
CC LOAD FROM GRPII < list of programs and files to be loaded >
would load only the specified programs and files.

Assembling with Card Input: If symbolic punch card input is used, the following cards must be read in
through the card reader in the order specified:

1
1. 2 EXECUTE ASSEMB
3
1 1
2. 2 DATA SOURCE (or 2 DATAB SOURCE if BCL is used)
3 3

3. § Option Cards specifying any or all of the options defined.
4. The symbolic source deck.

1
5. 2END
3

Assembling with Symbolic Paper Tape: If symbolic paper tape input is used, the paper tape must first
be loaded via the paper tape reader, converted to card format, and placed on disk using the LCNVRS
program (which must have previously been loaded). After mounting the symbolic tape on the paper tape
- reader, the following card must be read in through the card reader in the order specified:

1
2 EXECUTE LCNVRS
3

When the symbolic paper tape has been loaded, the procedure discussed above for punch card input
would be followed with the exception that the DISK-IN option must be the last option specified and
must be followed immediately by the END card (since no symbolic deck is used).

5-27

ASSEMBLER 111

ERROR DETECTION

The Assembler III Program in processing the input, or source, data makes several passes tnrough the
information. These passes may be divided into 2 major categories:

1. PassI — the processing of data prior to the assignment of object code to the symbolic
program.

2. PassII — the processing of the data, the major function of which is the assignment of object
code. :

Both passes incorporate editing functions and the resultant error detection.
Pass | Error Detection

Pass I errors are printed out prior to the program listing. Each error comment will be followed by the
print-out of the symbolic operation which is determined to be in error.
LABEL ERRORS — Several types of label errors are detected in Pass I:
1. Duplicate Label
If a label has been previously used, the error comment printed starts with the label followed
by:
... HAS ALREADY BEEN ENTERED AS A SYMBOLIC IDENTIFIER
the duplicate label is not entered, processing continues.
2. Invalid Label

Labels for the Assembler Il Program must begin with an alphabetic character. If the first
character of the label is not an alphabetic character, the error comment is:

LABEL MUST BEGIN WITH AN ALPHABETIC CHARACTER
Blanks are not allowed in a label. If the label contains a blank, the error message is:
LABEL MUST NOT CONTAIN BLANK CHARACTER
The label is not entered, processing continues.
3. Label Limit Exceeded

The Assembler I Program allows a limit of 139 labels. This limit is not significant to the
Assembler III Program, but the possibility exists that a symbolic paper tape, generated by the
control option $ SYM-PT could be used as input to the Assembler I Program for Series L.

The error comment is:
NUMBER OF LABELS EXCEEDS LABEL LIMIT WHEN USING ASSEMBLER I
The error is ignored and processing continues.
4. Card Field Definition Label Error

Labeling of the CDF table is allowed only on the first syllable of a word. If the label is not
on the first syllable of a word, the error message is:

LABEL NOT AT START OF WORD

A NOP is inserted and processing continues.

SEQUENCE ERROR — As described in Option Control Cards, if $ SEQ-CK is used, and the sequence
5-28

ASSEMBLER 111

number in columns 11 through 15 of the current card is less than the sequence number on the previous
card, the error comment is:

SEQUENCE ERROR

This is followed by a print-out of the information on the current card and processing continues.

EXCEEDS MEMORY CAPACITY — If the symbolic program is too large for the specified object
memory size, or if an erroneous ORG instruction has been entered, the error comment is:

STORAGE EXCEEDED BY INSTRUCTION

followed by a print-out of the instruction that exceeded memory. Processing continues.

REGION .ERROR - If a REG instruction is entered with either a O parameter or a parameter exceeding
255, the error message is: :

REGION MUST HAVE SIZE 1-255

A memory location is not reserved and processing continues.

BACKWARD ORGANIZATION ERROR — If an ORG instruction is entered that attempts to assign
memory that has been previously assigned, or at a memory location sequence number that is lower than
the current instruction address, the error message is:

BACKWARD ORG NOT ALLOWED ON ASSEMBLER I
Memory is assigned and assembly continues.
CONTINUATION CARD ERROR — If a card with a numeric field length follows either an ALF or

MASK instruction with a field length greater than 24, a continuation card was expected. The error
message consists of a print-out of the current card followed by:

PREVIOUS CARD HAS INVALID FIELD LENGTH
In an ALF instruction a missing field length will result in the error message:
EMPTY FIELD-LENGTH FIELD

In either case the instruction assigns 1 word which is not filled and processing continues.

INVALID MASK ENTRY — If an invalid mask character has been entered, the character will be printed
followed by:

-ISNOT A VALID MASK ENTRY
the character is ignored and processing continues.
MASK LENGTH ERROR — If an erroneous mask length has been specified, the mask will be printed
followed by:
MASK LENGTH RECALCULATED TO BE . . .

and the correct length. The mask is corrected and processing continues.

INVALID OPERATION CODE — If an invalid op code is entered, the invalid code will be printed
followed by:

... IS AN INVALID INSTRUCTION OP CODE

A NOP (no operation) instruction is generated and processing continues.

5-29

ASSEMBLER 11l

PARAMETER ERRORS — The parameter errors detected in Phase I are defined in the following

sections.
1.

5-30

No Label

Some of the instructions specified in Series L Assembler Language, required a label in the
parameter field. If a label has not been entered, the error message is:

MISSING SYMBOLIC LABEL
The instruction is ignored, a NOP is assembled and processing continues.
Increment Exceeds Limit
If the increment exceeds the limit of 255, the error message:

INCREMENT GREATER THAN 255 NOT ALLOWED ON ASSEMB I
is printed.
This does not affect Assembler III or IV, processing continues.
Invalid Numeric Entry £y

If a non-numeric character is entered in the numeric portion of a NUM instruction, the error
message is: '

INVALID NUM ENTRY
A word of zeros is assembled and processing continues.
Parameter Length Exceeded

If the parameter length of either a MASK or NUM instruction is too long to be translated into
1 word, the error message:

PARAMETER TOO LONG
is printed, a word of zeros is assembled and processing continues.
Invalid Define Parameters . v
If the entry in the parameter field of a DEF is invalid, the error message is:
A-ENTRY MUST BE NUMERIC AND LESS THAN 767
If either one or both entries in the parameter fields of a DEFT are invalid, the error message
is:
DEFT PARAMETERS MUST BE NUMERIC AND 0-15
In either case memory is not assigned and processing continues.
Code Parameter Error

If entries in the CODE instruction parameter field are not O through 9 and A through F, the
error message is:

ILLEGAL DIGIT ENTERED IN CODE INSTRUCTION
A NOP is inserted and processing continues.
Card Field Definition Error

If the total length of the fields defined in the CDF instruction exceeds the maximum number

- ASSEMBLER 1}

of characters allowed on a card, the error meésage is:
SUM OF CDF PARAMETERS MUST NOT BE > 80

A NOP is inserted and processing continues.

CARD BUFFER DECLARATION ERROR — A CDB instruction must be the first card in the symbolic
source deck. If it is not the first card, the error message is:

CDB MUST BE FIRST INSTRUCTION IN DECK

The instruction is ignored and processing continues.
Pass Il Error Detection
At the beginning of the second pass, the printer will skip to the starting position on the next page.

LABEL ERRORS — Label error detection includes the re-evaluation of the label limit and validation of
labels in the parameter field.

1. Label Limit Exceeded
This is identical to Pass I and uses the same error comments.
2. Label Parameter Error

If the label entered as an A parameter has not been recorded as a label identifier, the error
comment prints the label followed by:

... HAS NOT BEEN ENTERED AS A LABEL
A NOP is generated and processing continues.
3. Label Increment Error
If a label is valid but the increment is invalid, the error message is:
ILLEGAL ENTRY IN INCREMENT FIELD

The increment is ignored and processing continues.

INVALID OPERATION — The validity of the operation code is rechecked in Pass II and if invalid, the
entry is printed followed by:

... NOT A VALID OP-CODE

A NOP is generated and processing continues.

PARAMETER ERRORS — The parameters are edited for validity and content in Pass II.
1. Label Parameter Error
' See above.
2. No Parameter Entry
If a required parameter has not been entered, the error comment will be:
EMPTY

followed by the specific field in which the error occurred, A PARAMETER, B PARAMETER
or C PARAMETER. The program assumes a value of zero and processing continues.

5-31

ASSEMBLER I

3. Illegal Parameter Entry
For a parameter entry in a field that should be empty the error comment is:
JLLEGAL PARAMETER ENTRY IN . . . '

followed by; A PARAMETER, B PARAMETER or C PARAMETER, depending upon which
parameter contained the error. Processing continues.

4. Invalid Parameter Entry

For an entry that is invalid in either size or type, a listing of the valid parameter entries for
that specific instruction is printed including an indication of which parameter(s) is/are in error.

Example:
oP A B C
ADIR I 32

In the above instruction a keypunch error has been made in the A parameter field.
The error message is:
A PARAMETER — MUST HAVE NUMERIC VALUE 1-4
B PARAMETER - MUST HAVE NUMERIC VALUE 0-255
If a symbolic entry is allowed the error message is:
SYMBOLIC ENTRY ALLOWED
5. Flag Instruction Parameter Error
If the flag designated in the parameter is not valid for the flag group specified, the error
message is:
INVALID FLAG ENTRY PAIR OF

The entry is ignored and processing continues.
OUTPUT

The output of the Assembler III Program may be any, or all, of the output options described under
Control Options. In addition to the paper tape or card media produced as output, a print-out, which
lists the symbolic input, object code developed, and any error comments is produced at the completion
of the program. An example of a symbolic listing (with or without Control Options) is illustrated on the
following page. The word and syllable of the instruction is listed along with sequence number, object
code, expanded print-out of the source card, and decimal equivalent for each label used within a source
statement.

If the control option PUNCH is used, a separate print-out of the object code will be produced.
Similarly, a card listing is produced if the option OBJ-CD is used. Examples of these as well as the Label
Table (LABELS option) and the Cross Reference Listing (XREF option) are provided.

5-32

PRUGRAM 1D,

WORD

Y

W N e D Ww N e O w N e O

w N = O

0BJECT
CNLE

5R03
4184
7C04
7809

4184
7C04
4599
7co08

6744
ENO2
7€C04
Enoz

EROC
cAa8s
Fol4
EROS

Notice in sequence number 420 the actual memo
In sequence number 390 the unconditional bran
In sequence number 410 the actual value associ

SEQ,

NO

29 0
30 0
31 0
32 0

33 0
34 0
35 n
36 0

37 0
38 o
39 0
40 0

41 o
42 0
43 0
44 0

DATE RUN 3/26/70 TIME = 1213148
COC: chbe [N ERRFFAMEIRE

1R 3 3
SK T 1
RRU SHIPTO
BRUY RTIBRON
SK T 1
RRU SHIPTN
F X K 34
RRU + 4
SFET X ?
AL 2
RRU SHIPTD
AL 2
POS NMAD=p
PA SAMF

RIBRNON ALTH RTRRL
PNS TFRM=p

ry location being referenced by label SAME is 136.
ch to SHIPTO is actually a branch to word 4 syilable 3.
ated with label NMAD-P is 13.

VFRSION 072=01«70 PAGE 002

R o LAREL RFMARKS
PAR PAR DFEC EQU

TEST FOR COMPLETION

1 TERMINATFE LDnP
4 3 RFPEAT
9 2 © O JUMP TO RIBBAN AREA
1 TERMINATE LONP
4 3 ~ RFPEAT LONP
1 RRANCH TN PRINT SAME
8 3 EXIT | 0oP

SET Tn ENTER SHIPTO LOOP
ANDVANCE TWO LINES

4 3 RETURN TO Lnnp
ADVANCE Tw0O I_TNES

13

136 PRINT ALPHA MESSAGE

20 ADVANCE TN RIBRON LINE
3 PASITINN TO TERMS

1l 4379N3sSsSY

ASSEMBLER II1

Labels Listing:

N) =

L 2 N X N B W

LABEL
INITAL
BEGTINV
SHIPTO
RIBBON
BODY IV
MAYX

TKDFESC
MPRICE
GRSAMT

VALUE
000 03
001 02
004 03
009 02
013 01
015 o@
020 02
02?2 01
029 01

Hiustration |

The value of a label refers to the word number associated with the label in defined memory (regions,
numeric constants, etc.). Value refers to the word number and syllable number associated with the label
in program memory. The list is in the order in which the labels were programmatically defined.

Labels Cross Reference Listing:

NE

NE

NE
0466,0
0192.,0
0369,0
0502,0

PKAGK

PKAT

PKAB
ACT
ADNDONS
ADLNCK
ADNN=P

N1620
00150
00050
02980
01700
01740
01660

01920

02260

01990
01770

Hlustration 11

01930 02050

Associated with each label, listed alphabetically, is the sequence number of the instruction where the
label was defined as well as the list of sequence numbers of instructions that reference the label.

5-34

ASSEMBLER IV

L/TC ASSEMBLER IV B 5500 VERSION

The Assembler IV Program operates on a B 5500 system and prepares an object program for Series L/TC
systems. It accepts symbolic input directly from cards and will accept a symbolic punched paper tape if
the appropriate control card is included in the source media.

All references in this document to Assembler I or Basic Assembler I refer to the Series L/TC keyboard
version of Assembler I.

ENVIRONMENT

The following system hardware is required for the TC 500, Basic Assembler Program:
B 5500 — 4 memory modules utilizing MCP
1 Module Disk (300 segments, 240 characters each)
1 Tape Unit (7 or 9 channel)
Line Printer
Card Reader
Paper Tape Punch
Paper Tape Reader (Optional for Symbolic Paper Tape Input)
Card Punch (Optional for Symbolic or Object Card Output)

MCP CONTROL CARDS

The following MCP Control Cards are used in the assembly process:

Execute Card

The execute card initiates program execution. It must be punched in the following format:

1
2 EXECUTE ASSEMB/TC500
3

Data Card
The data card specifies the source media. It must be punched in the following format:

1
2 DATA SOURCE (Only BCL card code is accepted.)
3

Library Tape Input

The input for Assembler IV is the library tape labeled “TC 500,” and the source media which is either a
card deck that includes both the symbolic program and the appropriate control cards, or the symbolic
paper tape output from Phase I of the Basic Assembler I Program for Series L/TC systems.

535

ASSEMBLER 1V

Library Tape/TC500

The tapes contain the following programs:

ASSEMB/TC500 This is the assembler program.

XREF/B55TC This is the cross-reference program. It produces a cross-reference listing of
labels at the end of assembly.

The following files are used internally in the Assembler IV Program.

" 0000000/COND Used in error detection.

0000000/OPTBL The operation code file.

Dollar Sign Card
The dollar sign card specifies an option which controls the input and output during the assembly

process. It must be punched in the following format:
$ (LIST OPTION HERE)

Data Deck
The symbolic deck to be assembled.
End Card

The end card must follow any card deck. It is punched in the following format:

1
2 END
3

It tells the system that the input from the Card Reader is complete.

OPTION CONTROL CARDS
The following options available with Assembler III (B 3500 version) are available with ASsembler IV and
function identically.
SEQ-CK, Sequence checking
RESEQ, Resequencing
MEMORY, Memory size
SYM-PT, Symbolic paper tape output
LABELS, Printed table of labels
DOC, Documentation — punch and print
XREF, Cross reference listing
LINES, Specifying number of lines per page
SYM-CD, Symbolic card output |

The following options available with Assembler III function differently with Assembler IV.

5-36

ASSEMBLER IV

PUNCH, Paper Tape Object Code

This option is different in that the object program is punched in ASCII code and must be converted to
internal Series L/TC format. See Section 6, Page 6-3, for this conversion procedure.

OBJ-CD, Object Code Card Output

This option is different in that the object program is punched in BCL and must be converted to internal
Series L/TC format. See Section 6, Page 6-3, for this conversion procedure.

The option PT-IN is used with Assembler IV in a manner identical to that of DISK-IN with
Assembler III. That is, PT-IN is used for symbolic paper tape input.

The option SYM-CN, available with Assembler III, is not available on Assembler IV.
OPERATING INSTRUCTIONS

Operation of the Assembler IV Program is identical to that of Assembler III (B 3500 version) with the
following exceptions.

Equipment Setup

The only differences in equipment setup are found with the paper tape reader and paper tape punch.
The setup procedure for each is therefore given here.

PAPER TAPE READER — (If symbolic paper tape-in is desired.) The Paper Tape Reader must have an
Input Code Translator Board, wired as illustrated in Figure 5-2. (Wire 1 for 1: A-1 to A-1, B-1 to B-1,
etc.) Wire the channel select board, inside the front doors on the upper left of the reader in the
following manner:

A
s L1 1 |
Turn the three control code switches off. Depress the Parity on-off switch to Off. Dépress the High-Low

switch to Low. Depress the Strip-Reel switch to Reel.

The input paper tape must have an opaque strip approximately 1% long attached at a minimum of 2%’
prior to the first data frame and 2%’ after the last frame.

Depress Load Switch. Position tape under the Read Head to the frame preceding the first data frame.

Depress Ready Switch then set Remote/Local Switch to Remote. When the first paper tape read
instruction is encountered, the Supervisory Printer will respond with an ‘“‘unlabeled paper tape file”
message. The operator must respond with the appropriate corrective procedure. :

PAPER TAPE PUNCH — The Paper Tape Punch must have an Output Code Translator Board, wired as

5-37

ASSEMBLER 1V

illustrated in Figure 5-1. (Wire 1 for 1: A-1 to A-1, B-1 to B-1, etc.) Wire the channel select board,
inside the front doors on the upper left of the punch, in the following manner:

1 2 3 4 5 6 7 8 9 0

Turn the Control Code Switch off. Set the LEVEL Designator Switch to 8-LEVEL.
OPERATION

There are a few differences between Assembler IV and Assembler III with respect to the operation of
the system. These differences are as follows.
Loading the Library Tape: The SPO message which loads the magnetic library tape is:
CC LOAD FROM TC500 =/=. ’
If the tape is loaded by card, the necessary control card would be:

1
2 LOAD FROM TC500 =/=.
-~ 3 .
Assembling with Card Input: The first card in the deck must be:

1
2 EXECUTE ASSEMB/TC500.
3

The rest of this procedure is identical to that of Assembler IIL

Assembling with Card Input: The option card PT-IN with an Assembler IV replaces the option card
DISK-IN of Assembler III. The rest of this operation is the same.

ERROR DETECTION

The editing functions and error messages pfovided by Assembler IV are identical to Assembler III
(B 3500 version).

OUTPUT

The output from Assembler IV is the same as that from Assembler III with a few exceptions.
1. With Assembler IV, no card listing is provided with object card output (OBJ-CD option).

2. The object paper tape output code with Assembler IV is USASCII rather than the compact
hexadecimal provided by Assembler III. Thus, the object code provided by Assembler IV must
be converted to compact hexadecimal in order to operate on a Series L/TC System. See
Section 6 for this procedure.

3. Object card from Assembler IV is punched in BCL as opposed to compact hexadecimal output
from Assembler IIL. Thus, an output program deck from Assembler IV must be converted prior
to attempting to operate on an L/TC System. See Section 6 for this operation.

5-38

ASSEMBLER V

L/TC ASSEMBLER V — B 300 VERSION

The Assembler V program operates on a B 300 system and prepares an object program for Series L/TC
Systems. The program accepts symbolic input directly from cards and will accept a symbolic punched
paper tape if the appropriate control card is included in the source media.

ENVIRONMENT

The following system hardware is used for Assembler V.
B 283 or equivalent having a minimum 9.6K core memory configuration.

3 — Tape Storage Units

Line Printer

Card Reader

Card Punch

Paper Tape Reader (optional)
Paper Tape Punch (optional)

A Central Processor with punch binary capability is required if object cards in Series L internal code are
required.

INPUT

The input for Assembler V is the Assembler V Program object deck and the source media which is either
a card deck that includes both the symbolic program and the appropriate control cards, or the symbolic
paper tape output from Phase I of Assembler I with appropriate control cards. Symbolic cards are
punched as defined in Section 1.

OUTPUT

The output of the Assembler V Program may be any one of the output object options and/or any one
of the output symbolics described under control cards.

CONTROL CARDS

Data Cards formulate the option control deck and specify the options which control the input and
output of the Assembler V Program. Each card is punched with a ($) sign in card column 1 and the
option information coded starting in column 16.

The control cards allowable are:

$ Date

This control card is used to express the date. Ten (10) characters are reserved starting in column 29.
$ 1/P Card

This control card is used to tell the system that the source media is cards punched in BCL code.

5-39

ASSEMBLER V

$ PT-IN

This control card is used if the symbolic paper tape output from Phase I of the Assembler I Program is
used as input to the Assembler V Program.

$ SEQ-CK

This control enables sequence checking of the sequence number punched in card columns 11
through 15.

$ RESEQ

When this control card is used, any sequence numbers punched in columns 11 through 15 of the source
cards are ignored. Resequencing is initialized at 10 and incremented by 10 for each succeeding card. If
both sequence checking and resequencing are specified, sequence checking will be ignored.

$ MEMORY

If the size of the object memory is other than 512 words, the desired size may be inserted by the
option § MEMORY followed by the memory size stated as a 3-digit integer value, starting in card
column 29.

$ SsYm-cb

This option provides a symbolic card source deck, resequenced when the § RESEQ control option is
used.

$ SYM-PT
This option provides an input symbolic paper tape for Phase I of Assembler I.
$ OBJCD

This control option is used when the output of the Assembler V Program is to be an object progrém on
punched cards in 80-column card compact hexadecimal format.

$ O/P OBJECT CARD BCL

This control option is used when the output of the Assembler V Program is to be an object program on
punched cards in BCL format.

$ PUNCH

This control option is used when the output of the Assembler V Program is to be an object program in
punched paper tape, USASCII format. '

$ LABELS
The entry of this control option provides a print-out of the label table generated by the Assembler V

Program. The list of labels is printed in the order in which they were programmatically defined, along
with the location, or value, that each label represents.

5-40

END

ASSEMBLER V

The system is informed that the input from the Card Reader is complete by use of the mnemonic END
card included at the end of the source deck; or by actuation of the END OF FILE button on the

Reader.

OPERATING INSTRUCTIONS

Operation of the Assembler V Program involves the setting up of peripherals as a major function as
opposed to Assembler I which requires manual intervention as a major function.

Equipment Setup

1.

Magnetic tape units

Set the 3 magnetic tape units, designated as stations 1, 2, 3, for remote operation. Make sure
that all other magnetic tape units, set for remote operation, are addressed by station numbers
other than 1, 2 or 3.

Line Printer

Equip the printer with a 6 lines per inch control tape and press the READY button.
Card Reader

See Operation.

Paper Tape Reader (if required).

The paper tape reader uses an Input Code Translator Board wired as illustrated in Figure 1.
Wire 1 for 1: A-1 to A-1, B-1 to B-1, etc.

The Channel Select Plugboard is wired one to one:
1 2 3 4 5 6 7 8 9 0 |

S N P N O T B

C
Card Punch (if required).

Load the hopper of the card punch with sufficient cards and press the READY button.
Paper Tape Punch (if required). '

The paper tape punch uses an Output Code Translator Board wired as illustrated in Figure 2.
Wire 1 for 1: A-1 to A-1, B-1 to B-1, etc. '

The Channel Select Plugboard, inside the front doors on the upper left of the punch, is wired
in the following manner:

12 3 4 5 6 7 8 9 0

5-41

0000000000000 0000000000000000:00000
0000000000:09000000000000000000:00000
000000000565 35066006000600000000000
00000000000072000000000600000000000:°
00000000000000000000000:-00000000000:
0 0000(060000:00000000000000000000000:
100000(0000(66:06006660606060006-dble0e00000e’
"0 0000000000:090000000000:00000000000,
500000°000006000000000000:0060606000000¢
500000/000000:0000000006000:00/000000000"
£000.0:06000/000000000060000:00/000000000;
moo)-0/0-080.00-00000000000 00 0|0-0-0-<¢ o0
w..!&&@boogoio@000000@0@60_p. oo’
moo??ﬁ'd.cooiao@oooo@0@0300009§6000m
m?oo%%&mmm005®0@000o®0@oéoooooooooom
.do0$‘3oo.oo&o®ooooooao?ooooo%?booon
ooo?wfﬁooo!i&oaoooaw.&?o%ooo?ooooom
| Qfﬁmwuwooéo@oowuuo@o@immmwm’boooo
00600(00560600060666006008000000000
-0/000000-000600000000-00/000000000

FIGURE 1

5-42

® OUTPUT CODE TRANSLATOR TEMPLATE ®
000000000060000000000
00000000000000000000
00000000000000000000
00000000000000000000
1 2 C 1 2 3 C 1 ORS (of 1 2 3 C 1 2 3 C
0000000000006 000000060
STOP CTRLS SHIFT EMITTER UNSHIFT EMITTER
tflzsm+++w&cewt&'-~
1 2 1 2 3 4 5 6 7 8 1 2 3 4
0900000000600
SHIFT CODE SELECTOR
1292129999999 999
X B OO XX XXX
20 0¢C|0o0c000000000®
0 3 16:1 2 3 4 5 6 7 8 9 10 11 1
20:09(0:C2 020002000
9202000000000 020:
99000C000002300260060

230V TOGO0D0220086232303609
2350920000 000000000 000
D2C'TT|00D2000000000000
2303/ 00:000000000000:00
D22TC|00O0CCO0O0000000 0600
DT P00020202002202 000
2223020000000 00303:00
29:00/120:0202320200220 2 00
?@??9”@9???@??9@9?@?
292:90/00000000600000 0:00
@@m@ovs&&& oooooogmo

803300838880 8t oees
10§0$684882488098 P

000000000000 OC0OCGCOGOOCGBOGROCGPOTO
00000000O0OCOCOOOGOOOONONOO
00000000000 OCBOGBOGOOOGIOIOGTS
000000000 0O0OCOGBOGCOGOGOOOONOTS
0000000000000 00900000

@ Burroughs Corporation PRINTED IN USA. @

FIGURE 2

5-43

ASSEMBLER V

Turn the Stop and Delete Switch Off.
Set the Level Switch to 8-Level.

Operation

After the peripherals are set up as described above, proceed with the following operations:
Press the CLEAR Switch on the console of the Central Processor.

2. Load the first 160 cards of the Assembler V object deck into the card reader hopper and press
the RESET and START switches on the card reader.

—

3. Press the LOAD switch on the processor and the object cards will begin to read in.
4. After the 160 cards have been read, press the processor CLEAR switch.
5. Place the remainder of the object deck, the control cards and the GP 300 source deck, when

used, in the card reader hopper and press the RESET and START switches on the card reader.

6. Press the processor CONTINUE switch and the card reader will read the remaining cards.

NOTE: If the source deck does not end with a GP 300 END pseudo card, press the END OF FILE
switch on the card reader after the card reader has read the last card.

7. When the paper tape is used in place of the source deck, the control card deck should be
concluded with any card not having a $ in card column 1. The RESET, START and
CONTINUE switches are then pressed to read the remainder of the object deck and control
cards.

NOTE: If the control deck of cards is not concluded with a card not having a $ in card column 1, the
END OF FILE and START switches on the card reader must be pressed after the card reader has read
the object deck and control cards.

Once the object deck and first control card have been read, the Assembler V Program can be
reinitialized automatically by pressing the CLEAR, then CONTINUE switches on the processor console.
This means the user can start over at any point of processing without reloading the object card deck.

Programed Halts

The Assembler performs a number of automatic edits of the input data. Programed halts inform the
operator of conditions requiring immediate attention. The halt indicator on the central processor is
illuminated and the digit 9 is displayed in the O position of the INSTRUCTION register. The M and N
positions of the register identify the specific programed halt that is encountered. See table 1.

5-44

PROGRAMED HALTS

ASSEMBLER V

INSTRUCTION REGISTER CAUSE REMEDY

o M N

9 2 0 Invalid control card Correct the last card read,

reinsert and press CONTINUE
switch on the central processor.

9 2 2 End of magnetic tape Rerun on a larger reel of tape.

9 2 4 No input control card entered Insert card, press CONTINUE.

9 2 8 Paper Tape punch out of paper Reload paper tape punch, press

: CONTINUE.

9 2 9 End of assembly Press CONTINUE to start next

assembly.

9 6 0 Paper tape read error Press CONTINUE. If unable to

' read, space past the bad record
and press CONTINUE again.

9 6 1 Paper tape reader out of paper Reload paper tape reader, press

CONTINUE.

9 6 4 Paper tape field greater than 26 Press CONTINUE to bypass the
characters. Tape or reader is in entry and resume the
er7ot. processing.

9 6 5 NUM on paper tape with wrong Press CONTINUE to bypass the
sign character. Tape or reader in sign and resume the processing.
error.

9 7 0 Paper tape punch out of paper Reload paper tape punch, press

CONTINUE.
9 7 N Magnetic tape read error. Press CONTINUE. If unable to

Station number is indicated by
N.

Table 1

read, restart with new tape and
reload the Assembler from
cards.

Error Detection

The Assembler V Program, in processing the input, or source data, makes three basic passes through the
information. '

Pass 1 accepts input from punched cards or punched paper tape, validates mnemonics and adds
control information creating a resultant symbolic output on magnetic tape.

5-45

ASSEMBLER V

Pass I updates the output or source tape from Pass I, generating a new symbolic tape and creating a
magnetic tape label table.

Pass III processes the outputs of Pass 1 assigning the object code to the symbolic program and
supplying a complete listing. ‘

Each error message or group of error messages is followed on the next line of print-out by the symbolic
operation which is determined to be in error.

ERROR MESSAGES
No Operation Inserted

NOP INSERTED

This message is used only in conjunction with another error message. The detected error is identified by
its specified message followed by NOP INSERTED on the next line. The NOP instruction is inserted in
the program by the assembler and processing continues.

No Input Control Card
NO I/P CTL
. This is one of the programed halts listed in Section 7.

The user has failed to enter either the $ I/P CARD or $ PT IN control card. One or the other has to be
inserted in the program and the CONTINUE switch on the central processor activated for continuation
of the processing.

Invalid Control Card
INVALID CTL CARD

This programed halt indicates the entered card is not one of the specified control cards. The invalid card
is read and printed but must be corrected, reinserted, and the processor CONTINUE switch activated
before processing can continue.

Sequence Error

SEQUENCE

The current card being checked at the request of control card $ SEQ-CK has a lower sequence number
than the preceding card and is therefore out of sequence. Processing continues.

No Object
NO OBJECT

This warning message indicates the user failed to specify the type of object output. Processing continues
without an object output.

5-46

ASSEMBLER V

No Symbolic Output
NO O/P SYM

This warning message indicates the user failed to specify the type of symbolic output. Processing
continues without a symbolic output.

Invalid Instruction Label
INSTR LABEL INVALID

The instruction label in columné 16 through 21, which must be left justified, begins with an alpha
character and contains no blanks, is in error. The label is not entered; processing continues.

Duplicate Instruction Label

INSTR LABEL DUPLICATED -
This instruction label has been previously assigned; The label is not entered; processing continues.
Label Limit Exceeded

LABEL LIMIT

More than 139 labels have been assigned and the Assembler V Program therefore cannot be used as
input to the Assembler I Program. Processing continues.

Invalid Field Length
INVALID FLD LENGTH

The field length coded in columns 27 and 28, following an ALF instruction, is other than 0-99 or CC.
The entry is bypassed and processing continues.

Previous Invalid Field Length
PRE INV FLD LENGTH

Based upon the contents of the field length of the previous ALF instruction, the followmg entry should
have had a field length marked CC. Processmg continues.

Invalid A Parameter Label
A-PAR LABEL INVALID

The A parameter label in columns 29 through 34, which must be left justified, begins with an alpha
character and contains no blanks, is in error. A NOP is generated and processing continues.

Undefined A Parameter Label
A-PAR LABEL UNDEFINED

This label in the A parameter was never declared as an instruction label. A NOP is generated and

processing continues.
5-47

ASSEMBLER V

Itlegal Entry

ILLEGAL
The A parameter, which should be blank, contains an entry. Processing continues.
Invalid Parameter Range

X PARAMETER INVALID RANGE XXX-XXX

The A, B, or C parameter is indicated with its specified permissable range. Comparison of the print-out
following the message to the specified range in the error message shows the detected invalidness. A NOP
is generated and processing continues.

Invalid Parameter Character

X PARAMETER INVALID X

This message is used with instructions referring to flags. The A or B parameter with the detected invalid
flag is specified in the error message. A NOP is generated and processing continues.

Invalid Increment Field
INVALID INCREMENT FLD

Contents of columns 35 through 38, which should be blank or contain the sign in column 35 and 0-255
in columns 36 through 38, are in error. A NOP is generated and processing continues.

No Label or Increment Error
MUST HAVE LBL OR INC

This message is used with BRU mnemonics only. If the label field is empty, the + or — relative address
is assumed as the label. A NOP is generated and processing continues.

Invalid Mnemonic
INVALID MNEMONIC

This mnemonic does not appear in the language specification. The instruction is ignored, a NOP is
entered and processing continues.

Invalid Sign
INVALID SIGN RESULT

This message is used with a NUM instruction. The user has used an invalid combination of sign
characters. The sign portion of the instruction is ignored whereas the rest is printed. Processing
continues.

5-48

ASSEMBLER V

Invalid Character
INVALID CHARACTER(X)

The detected invalid character of the NUM or MASK parameter is indicated in parentheses. Processing
continues.

Word Length Exceeded
WORD LENGTH EXCEEDED

This message is used when either a NUM or MASK :instruction is too long to be translated into one
word. The overflow is ignored and processing continues.

Memory Assignment Error
MEMORY OVERLAYED ERR

This message informs the user that the specified memory has been previously assigned. Processing
continues.

Assumed Memory
MEMORY 512

No memory card has been used to specify the memory size. The assembler assumes a memory of 512
and processing continues.

Memory Capacity Exceeded
STORAGE EXCEEDED

The symbolic program is too large for the specified object memory size. Processing continues with the
location counter reset to zero.

End Card
LAST LINE NOT “END”

The user failed to use the mnemonic END card to complete the deck file. Processing continues. |

5-49

ASSEMBLER VI

ASSEMBLER VI — SERIES L/TC (40 TRACK) PAPER TAPE VERSION

Assembler VI is a two phase (two pass) version of the Series L/TC Assembler which operates on
40 Track Series L/TC equipment. Each phase is a separate program and must be loaded prior to its
operation. The Series L/TC keyboard is used for Phase I input. The output consists of a Phase I listing
as well as a symbolic paper tape. This symbolic paper tape is then used as input for Phase II. Phase 11
output consists of a Phase II assembler listing and an object program tape.

EQUIPMENT REQUIRED

Series L/TC with 40 tracks of user memory—Style A 581 Paper Tape Reader, Style A 562 Paper Tape
Punch. Firmware Set 2110100100. The assembler is designed to function with the above standard
Firmware Set, which implement the GP 300 language with paper tape input/output.

After the assembly is completed, the desired firmware set must be reloaded before attempting to run
applicational programs.

PHASE |

Phase I of Assembler I opérates under 3 modes: 1) Keyboard Mode, 2) Correction Mode, and 3)
Continuation Mode. Under Keyboard Mode, the symbolic instructions are entered on the Series L/TC
keyboard, a Label Table is built up in memory, a Phase I listing is prepared on the printer, and a
symbolic paper tape is punched. Under Correction Mode, instructions may be changed, added, or deleted
in the symbolic paper tape. Correction Mode allows the Phase I assembly process to be resumed after an
interruption. Phase I also has diagnostic facilities for the detection and indication of errors.

PHASE 1 — INPUT

The input of Phase I of the assembler program is comprised of the labels, symbolic operation codes,
parameters and remarks which are entered sequentially via the keyboard or the tape reader (in the case
of continuation mode or correction mode).

PHASE | — OPERATING INSTRUCTIONS

In operating Assembler VI, pin fed continuous forms, a minimum of 11-3/4 inches in width, must be
used. The left edge of the pin fed form should be at position 10 on the scale and the positioned forms
are visible along the bottom form bail. Both Pass I and Pass II object program tapes include their own
firmware. Therefore, when loading the assembler programs, all 40 tracks of main memory (words
0-1023) must be unprotected.

1. Via Memory Loader Device: Load in normal manner. (See Section 6 of this manual for
specific instructions.)

2. Via Paper Tape Reader:
a. Load “Memory Load P.T. Reader” into Utility Track with normal load procedure.

b. From Ready Mode, depress PKA 3 — Utility — and load Pass 1 of Assembler 1 through
tape reader.

c. Execute Assembler Pass 1. See below.

5-50

ASSEMBLER VI

d. Upon completion of all Pass 1 assemblies, depress PKA 3 from Ready Mode to load
Assembler Pass 2. Pass 1 assembly does not destroy the Reader Load Routine in the
Utility Track.

e. Execute Assembler Pass 2. See below.

Upon completion of all Pass 2 assemblies depress PKA 3 from Ready Mode to load in
appropriate Main Memory Firmware through Tape Reader, prior to loading and executing
any user programs.*

Start
Depress PKA 1, the “START” Key.
The program will stop at a Numeric Keyboard (NK) instruction with three PK’s enabled.

The three enabled PK’s are:
PKA 2 KEYBOARD MODE OF OPERATION
PKA 3 CORRECTION MODE OF OPERATION
PKA 4 CONTINUATION MODE

OCK’s The use of any OCK will allow 15 inches of leader tape (sprocket holes) to be punched
and an automatic return to the initial keyboard (NK) instruction.

When “MEMORY” prints, enter the number of words of user memory.
When “EXTMEM” prints, depress OCK 2, 3, 4 for 32 track; OCK 1 for 40 track.

When “PAGE 51 prints, depress OCK 1 for 51 line/page or OCK 2, 3 4 if 66 line/page are
desired.

KEYBOARD MODE

Depress PKA 2 to enter the keybovard mode. The program will stop with the numeric keyboard enabled
to allow the operator to enter the total words of memory intended for the object program. (Maximum
(736). If OCK 1 is depressed 512 will be entered automatically.

Use any OCK to terminate the instruction. The program will then stop in the INSTRUCTION FIELD
with the Alpha Keyboard enabled. Failure to enter the total words of memory will inhibit the operator
from continuing at the INSTRUCTION FIELD position.

EXTMEM is printed. If a 40 track assembler (OCK 1) is selected, YES is printed. PAGE 51 is printed on
the next line. If 51 lines per page is desired, use OCK 1; YES is printed.

Instruction Field

Type the Mnemonic Op Code or Pseudo Op Code, listed on the symbolic program form. See Section 1.

*Keyboard Modifiers for the Commercial Keyboard may be loaded immediately after loading Pass 1.

5-51

ASSEMBLER VI

The following choices are available to the operator:

OCK 2

OCK 4

OCK 1-3

PKA 1

PKA 8

Program will return to and> stop in the LABEL FIELD. This may be done before or after the
entry of the Mnemonic.

Program will stop in the parameter field, but a stop in the remarks field will be enforced
before the entry of the instruction is completed.

Program will stop in the parameter field without an enforced stop in the remarks field.
Partial Phase I Halt

The use of PKA 1 will permit Phase I to be halted at any time. A special code is punched in
the source tape instead of the pseudo operation code END. The label table is printed and
punched in the source tape at each stop or “breakpoint.” The label table punched at the
conclusion of each segment of assembly is updated and all inclusive to that point. In addition,
the last operation sequence number is printed and punched. There are two possibilities of
continuing the assembly of the program. The first possibility is that the next section of the
program will be assembled before the status of the assembler program in the machine has been
disturbed. In this case, it is only necessary to enter the continuation mode and proceed. The
second possibility is that the continuation will be at some later date when all current
information in the system has certainly been destroyed.

In this case, it is necessary to load the Phase I assembler program and the label table along
with the ending sequence number, both of which were printed and punched at the time of the
“preakpoint,” enter the continuation mode and proceed.

The partial Phase I halt, or breakpoint makes it possible to assemble large programs in
sections.

The special code used for the breakpoint makes it possible to use small sections of Phase I
source tape for input to Phase Il. The breakpoint code will halt PhaseII at a keyboard
instruction, as described in Phase II operation, and the use of any OCK will permit Phase II to
continue. ‘

Will print “ERROR” in red at left of sequence number column, the form will space and the
program will stop in the Instruction Field for re-entry.

The entry of an Invalid Mnemonic will function in the same manner as the depression of PKA 8.

The typing of the Pseudo-Op word END will cause the program to enter a routine where the label table
will be printed and punched out. The program will then allow the system to return to the READY

MODE.

Label Field

Type in the Label — a maximum of 6 characters is permissible. The first character must be an Alpha
character. A maximum of 256 labels may be used.

5-52

OCK’s

PKA 8

ASSEMBLER VI

Use of any OCK to terminate the field will cause the program to skip to the PARAMETER
FIELD IF THE INSTRUCTION FIELD has been previously entered. If not, the program will
stop in the INSTRUCTION FIELD.

Use of OCK 4 will also enforce a stop in the REMARKS FIELD before the line is completed.

Will print “ERROR” in red at left of sequence number column, the form will space the
program and the program will stop in the Instruction Field for line re-entry.

If a duplicate label is entered, the same function will occur as if PKA 8§ had been depressed.

Parameter Field

The Parameter Field may actually be a 1, 2 or 3 field entry, depending on the Mnemonic entered in the
Instruction Field. Either the Alpha Keyboard or the Numeric Keyboard will be enabled at this time, also
depending on the Mnemonic.

OCK’S

ALPHA
ENTRY

MERIC

ENTRY
OCK 1

OCK 3
OCK 4

PKA 8

Use of OCK 2 before the entry will change the entry mode from ALPHA to NUMERIC or
from NUMERIC to ALPHA; however, the program will allow this switch only if the
Mnemonic permits it. (i.e., some Mnemonics may only have a LABEL).

Enter the appropriate Alpha Characters. A maximum of 6 characters is permitted on labels.

Enter appropriate numeric digits. Where a zero entry is not permitted or where the numeric
entry exceeds the value permitted by the Mnemonics, the program validation routine will
re-initiate a numeric keyboard instruction until the operator indexes a valid entry.

The program will stop in the next PARAMETER FIELD if the Mnemonic calls for another
field entry. If the parameter field entry is the ending parameter field entry, the program will
print the sequence number, the form will space and the program will stop in the
INSTRUCTION FIELD for the next entry. If OCK 4 had been used in any previous entry
position, after printing the sequence number, the program will stop in the REMARKS FIELD
before ending the line entry. ‘

The program will stop to permit entry of a +/— increment (numeric).

On the ending Parameter Field entry, after printing the sequence number, the program will
stop in REMARKS FIELD before ending the line entry.

Use of this PK will print “ERROR” in red at the left of the sequence number column, the
form will space and the program will stop in the INSTRUCTION FIELD for re-entry.

If an Invalid Alpha key has been used, the same function will occur as if PKA 8 had been depressed.

+/— Increment

The numeric keyboard is enabled. The numeric entry may be up to 255. Use of the RE key prior to
termination, will permit a MINUS value; otherwise, the entry will be positive.

5-53

ASSEMBLER Vi

OCK 1, These OCK’s will print the sequence number, space the form and stop in the INSTRUCTION
2,3 FIELD for the next line entry. If OCK 4 has been used previously, at any time in the symbolic
entry, the sequence number will be printed and the program will stop in the REMARKS FIELD.

OCK 4 Enforces a stop in the REMARKS FIELD.

PKA 8 This PK will print “ERROR” in red at left of the sequence number column, the form will
space and the program will stop in the INSTRUCTION FIELD for re-entry.

Remarks Field

Typing of up to 25 Alpha characters for remarks is permitted. The entry of a 26th character will result
in a keyboard Error condition. The program will be halted. The RESET key must be used to correct the
error condition and an OCK used to terminate REMARKS FIELD correctly. Remarks are not punched
into the output tape until all typing is completed and the instruction terminated by the use of an OCK.
The form will space and the program will stop in the INSTRUCTION FIELD for the next entry.

Alf Pseudo-Instruction

The entry of the pseudo-op ALF will permit the entry of up to 24 alpha characters as a constant. The
entry of from 1 to 23 characters followed by OCK termination will cause the program to allocate the
correct number of words for the message. The program will then stop in the INSTRUCTION FIELD for
the next entry. The entry of exactly 24 characters and termination will cause the program to allocate
the words and, in addition, the program will automatically print ALF in the INSTRUCTION FIELD on
the next line and then stop for an additional alpha constant entry. The entry of a 25th character will
result in a keyboard error condition. The RESET key must be used to correct the error condition and
permit the proper termination by an OCK. However, the word ALF will still print in the
INSTRUCTION FIELD with a stop to allow for an additional alpha-constant entry.

CONTINUATION MODE

In addition to loading the Assembler program tape Phase I, using the standard program load procedures,
the label table must also be loaded into memory. The tape perforator must be turned on and sufficient
leader tape (sprocket holes only) punched. The RESET KEY will return the machine to the READY
MODE.

PKA 4 This will cause the sequence number printed out with the first line of entry and to be in
proper sequence with the last sequence number from the previous section of tape, prior to the
breakpoint. The program will then enter the KEYBOARD MODE portion of the Assembler
program, Phase I for continuation.

CORRECTION MODE

Depression of PKA 3 will cause the CORRECTION MODE of operation to be entered. The program will
stop at a NUMERIC KEYBOARD instruction. At this point, enter the memory size for which the object
program is being assembled. Depress any OCK. The program will then stop at a NUMERIC KEYBOARD
instructions with three (3) PK’s enabled. At this point, the source tape must be loaded in the A 581

5-54

ASSEMBLER VI

Tape Reader and the A 562 Tape Perforator must be on. The enabled PK’s determine the following
functions:

PKA 5 ADD TO
"PKA 6 CHANGE
PKA 7 DELETE

Add to Sequence Number — PKA 5

At the numeric keyboard entry which is reached via PKA 3, prior to depressing PKA 5, index the
sequence number of the symbolic entry, from Phase I documentation, that precedes the area in which
instructions are to be added. “ADD” will print followed by the sequence number.

The program will automatically read the source tape, punch out a new tape, and will build a label table
in memory. When the sequence number indexed has been read and punched, the program will print the
sequence number plus .1 (XX.1). This provides the ability to add one symbolic instruction in the
position following the sequence number indexed (XX) with a sequence number of XX.1. Following the
entry of this added symbolic operation, the program will return to the Correction Mode. To successively
add a group of instructions, PKA 5 must be depressed prior to each added instruction. Re-entry of the
sequence number isn’t required. The added instruction will be automatically inserted and numbered in .1
increment. The number of “ADD TO” 1nstruct10ns is not limited, but when .9 is exceeded, duphcate
sequence numbering will result.

Example: If instruction sequence number 23 is incremented by ten .1 increments, the result would be a
duplicate sequence number 24.0. Further “ADD TO instructions would cause this sequence number to
in turn be incremented (24.1, 24.2, etc.). The original instruction listed as 24.0 will appear in the
output tape immediately following the last instruction added.

Re-entry of the original‘ instruction is not required, however, duplicate sequence numbering can lead to
difficulty in later correction of the source program; therefore, the original 24.0 sequence number should
be “deleted” then a new sequence number “added.” See Deletes From Source Tape paragraph.

Change Source Tape — PKA 6

At the numeric entry reached by depressing PKA 3, prior to the depression of PKA 6, index the
sequence number from the Phase I documentation that is to be changed. When the instruction is
terminated by PKA 6, “CHG” will print followed by the number indexed.

The program will automatically read the source tape, punch out a new tape and will build a label table
in memory. When the sequence number indexed has been read, it will not be punched out. The program
will enter the Keyboard Correction Mode to permit entry of a line of coding as described in section 3.2
following the entry of the changed symbolic operation, the program will return to the Correction Mode.

The assembler program permits instructions to be changed and new instructions immediately added to
the program.

Depression of PKA 6 without a sequence number being indexed, will cause the very next instruction on
the source tape to be read in but not punched out. If this is not the sequence number that was to be
changed, the instruction would have to be entered via the keyboard.

5-55

ASSEMBLER VI

Delete From Source Tape — PKA 7

At the numeric entry reached by the use of PKA 3, prior to the depression of PKA 7, index the
sequence number, from the Phase I documentation that is to be deleted. When the instruction is
terminated by the use of the PKA 7, “DEL” will print followed by number indexed. The program will
automatically read the source tape, punch out a new tape and will build a label table in memory. When
the sequence number indexed has been read, it will be ignored and not punched. Once deleted on first
correction pass, that sequence number is gone and will never be found on any subsequent correction
pass. The Assembler permits instruction deletion immediately followed by the addition of a new
instruction. The program will return to the Correction Mode.

Depression of PKA 7 without a sequence number being indexed, will delete the next sequence in the
tape and print out the sequence number deleted. This would of course result in an incorrect object
program since an instruction was deleted that should not have been deleted.

Source Tape Interrupt Procedures

After indexing a sequence number and depressing any of the PK’s described above, if the operator
realizes that the wrong sequence number was entered, PKA 8 may be depressed. At the end of the line,
the program will print out, “NOW AT” followed by the last sequence number read in and the program
will stop at the Keyboard entry with the three (3) PK’s enabled.

End Procedure

When the last “ADD TO,” “CHANGE” and “DELETE” has been entered, the entry of any sequence
number larger than the END sequence number, from Phase I documentation, will read the source tape
and punch a new one. When the word END is read, it will cause termination of the Phase I correction
routine and will then follow the END pseudo instruction procedure.

Label Table Option

When the END Psuedo instruction has been entered, the program will print:

PRINT LABEL TABLE
The use of OCK 2, 3 or 4 will terminate the program without either printing or punching a label table.

If OCK 1 is depressed, the program will print:

YES
PUNCH LABEL TABLE

If OCK 1 is depressed the label table is both listed on the printer form and punched in the output tape.

If OCK 2,3 or 4 is used, the label table will be listed on the printer form, but will not be punched in
the output tape.

5-56

ASSEMBLER VI

PHASE | — CONDENSED OPERATING INSTRUCTIONS AND REFERENCE LIST

—
-0
. b

12.
13.

e e I S

Turn on tape perforator.

Be in READY MODE.

Depress PKA 2 (Load).

Depress MEMORY LOAD switch.

Read Phase I tape in PROGRAM LOADER.

After tape is read in, depress MEMORY LOAD switch.
Depress RESET key to return to READY MODE.
Depress PKA 1.

Depress PKA 2 for Keyboard Mode.

Type total words of memory you intend to use.

Depress any OCK and it will space correctly and stop for you to type the Op code of the first
instruction. (Col. 22-26 on coding forms.)

Type OP Code.
Use one of the following 3 lists of instructions:

a. No remarks (Col. 53)
No label (Col. 16)

1)
2)

3)

Depress OCK 1 or 3

If parameters are required, it will stop in each necessary parameter field. Type
parameter. Depress OCK 1 or 3 after each parameter entry.

The final OCK will space for next Op Code entry.

b. No label (Col. 16)
Remarks present (Col. 53)

1)
2)

3)

Depress OCK 4.

If parameters are required, it will stop in each necessary parameter field. Type
parameter. Depress OCK 1, 2 or 4 after each parameter entry.

Final OCK will space to remarks field. Type remarks.
Depress OCK 1 to space to next OP code entry.

¢. Label present (Col. 16)

1)
2)

3)
4)
5)

Depress OCK 2.,

If parameters are required, it will stop in each necessary parameter field. Type
parameter. Depress OCK 2 after each parameter entry.

Final OCK will space to label field. Type label.
If no remarks, depress OCK 1 to space to next Op code entry.

If remarks present, depress OCK 4. Type remarks. Depress OCK 1 to space to next
Op code entry.

5-57

ASSEMBLER Vi

Typing Error

If mistake made, depress PKA 8 before an OCK. It will print ERROR and will stop in Op code field
for re-entry of instruction.

+ and — Increment

Correction Mode

1. Turn on perforator and put Source Tape in reader.
2. Be in READY MODE.
3. Depress PK 1.
4. Depress PK 3.
5. Type memory size and OCK 1.
Add To
1. Type sequence number before area to be added.
2. . Depress PKA 5.
3. Program will read source tape, punch new tape, build label tapes.
4. When indexed sequence number has been reached, .1 will be printed beside it.
5. Add new instruction as other original instruction.
6. If there are additional instructions, depress PKA 5 and type next instruction.

Changing Source Tape

1 Type number to be changed.

2. Depress PKA 6.

3. Sequence number will not be punched.
4

Enter new instructions as original instructions.
Delete from Source Tape

1. Type sequence number.
2. Depress PKA 7.

Sequence Number Typing Error

1. Depress PKA 8.
2. Depress PKA 5, 6 or 7 again.

To Terminate any Correction

1. Enter any sequence number larger than the END sequence number then depress PKA 5, 6 or
7.

5-58

ASSEMBLER VI

2. It will read source tape and punch a new one. This will give new symbolic tape and new label
table.

PHASE | — DIAGNOSTIC FACILITIES

Provision is made for the detection and printed indication of errors that may occur in the Assembler
program.

ERROR DETECTION AND INDICATION

The entry of the symbolic language in Phase I, as previously stated, is via the keyboard or paper tape
reader. Errors are detected as the symbolic entry is made.

Mnemonic Error Detection

The mnemonic is entered first in sequence. If the mnemonic is invalid, the OCK used to terminate the
entry will initiate an error sequence that will space the print head to position 10, print ERROR, align
the form 1 space, and re-position the print head so that the invalid mnemonic may be corrected.

Label Error Detection

- The next sequential operation, in the entry sequence of the program, is the entry of a label if required.
The label error detection consists of determining if the label has been used previously and/or if the total
number of labels exceeds the maximum of 256.

Duplicate label validation occurs after the specific symbolic operation has been entered. If the label is
invalid, the print head is positioned to 10, ERROR is printed, and the printer document is aligned 1
space and a corrected entry must be made.

If the maximum of 256 labels is exceeded, the printer document advances to the next form (over fold),
prints and punches out the contents of the label table up to that point. The assembler program will
return the system to the ready mode and the correction routine must be used.

Parameter Error Detection

The parameters are also validated following the termination of their entry. Label-type parameters are not
validated in Phase L. Separate error detection is used for numeric parameters and alpha parameters.

Numeric Parameter Error Detection

Two numeric parameter conditions are validated in Phase I.
1. Parameter exceeds specified limits (maximum or minimum) value.
2. Parameter is required and has not been entered.

In both cases, the validation routine will, upon recognizing the invalid condition, re-initiate the
parameter entry sequence. However, if a zero parameter is acceptable, it is not necessary to index a
zero. Leaving the parameter area blank will force the zero entry.

5-59

ASSEMBLER VI

Alpha Parameter Error Detection

An alpha parameter error is detected upon termination of the entry. In an invalid situation, such as
entering an invalid alpha character, or no entry where an alpha entry is required, the print head will be
positioned to 10, ERROR is printed, the printer document aligned 1 space and the entire symbolic
operation sequence must be re-entered.

Memory Error Detection

Memory error conditions are:
1. The program exceeds the maximum memory available.
N

2. A specific point in the program is reached where sufficient memory has been occupied such
that specifying a REG instruction, with a large parameter, will exceed the maximum memory
available.

In both of the above error conditions, the assembler program will return the system to the
Ready Mode. This condition can only be corrected by use of the correction routine.

ERROR DETECTION — CORRECTION MODE
The correction mode features error detection similar to that previously discussed.
Mnemonic Error

If an invalid mnemonic is encountered, the validation routine will print the sequence number, label — if
any — and the mnemonic as it appears in the input tape, align the form 1 space, print INSTR ERROR,
punch a NOP instruction in the output tape and continue assembly. '

Label Error

If an invalid label is encountered, the validation routine prints the sequence number, label and
instruction as it appears on the input tape, aligns the form 1 space, prints LABEL ERROR, removes the
invalid label, but punches the rest of the instruction in the output tape and continues assembly.

Parameter Error

If an invalid PSEUDO Instruction parameter is encountered, the validation routine prints the sequence
number, label, and instruction, aligns the form 1 space, prints PARMTR ERROR, punches the
instruction in the output tape and continues. o

PHASE | — OUTPUT
The output of Phase I of Assembler I consists of a print-out and a punched paper tape (source tape).
PHASE | — PRINT-OUT

The Phase Print-Out is the same format as the Phase I output tape. It is in two sections, the first is a
listing of the Symbolic operations and the second a listing of the label table with memory addresses, as
illustrated in Exhibit I.

5-60

19-¢

ERROR

od and wed wwd ovd b b

17

CVIEFEWN=0 WVONOWVMEWN -

~ MEMORY 512

EXTMEM YES
PAGE51 YES
NOTE
LPNR
LPKR
START CLM
' - AL
POS

PRTSUB SRJ
PRTOT SRJ

COMR TRA

PKEYS BRU

PMASK MASK
TOTAL REG
AMOUNT DEFT
PRINT DEFT
LIST DEF
SYMBOL DEF

PMASK
PKEYS

TOTAL

1

LIST

12

AMOUNT

PRINT

J

K 2
TOTAL

K 2

START +1

COMR

c

S

START +1
COMR '
o

. wte

START
TOTAL
PRINT
SYMBOL

1

PRTSUB

PRTOT
Z,221,212,7111,2ZZ.0D
1

15 0

14 0

10

32

BASIC ASSEMBLER Vi — PHASE | — EXHIBIT 1

ADDING MACHINE

TO SUBTOTAL AND TOTAL
LIST OCK 1 = AMOUNT

- 0CK 2 = NUMBER

PRINT SUBTOTAL

PRINT TOTAL

COMMON TOTAL ROUTINE

IA H319IN3aSSY

ASSEMBLER VI

PHASE | — OUTPUT TAPE

The output tape is created in two sections. The first section is the symbolic operation codes, complete
with parameters and remarks, with the addition of a sequence number and the decimal equlvalent of the
actual location of the instruction in memory, punched in USASCIL

The format is:
Sequence Number
Decimal equivalent of the actual memory location of the operation.
Label (If entry is labeled)
Symbolic Operation Code
Parameters

Remarks

The second section of output tape (if specified by option) is separated from the first section by
approximately ten inches of unpunched tape. This is the label table and is punched in compact format
hexadecimal which is the same format punched for the object program.

The format is
Label
Memory Location

PHASE i

Phase IT of Assembler I used a symbolic (source) paper tape as input and provides an object program
tape which operates on a Series L/TC computer. It also provides a program listing with the object code
as well as the symbolic code for each instruction and the absolute memory assignment. Phase 11 is also
equipped with diagnostic facilities for the detection and indication of Phase II errors.

PHASE 1I — INPUT

The input to Phase II of the assembler program is the label-table tape, which has been separated from
the symbolic tape and loaded via the program loader and the symbolic operation tape (source tape)
which is mounted on the optional A 581 paper tape reader and entered under assembler program
control.

PHASE I — OPERATING INSTRUCTIONS

The Phase II Assembler program must first be loaded into memory using the standard program load
procedure. In addition, the same type of continuous pin feed forms must be used, with the forms
positioned with left edge at position 5. If Phase II is being run immediately after running Phase I, it is
not necessary to load the LABEL TABLE into memory. If Phase II is being run at any other time, it
will be necessary to load the LABEL TABLE. This table is at the end of the source tape which is the
output from Phase I. The table is separated from the source tape (sprocket holes only), is punched in
compact hexadecimal format and must, therefore, be loaded via the program loader. When this

procedure is complete, the RESET KEY must be depressed to return the machine to the READY
MODE.

5-62

PKA 1

PKA 8

ASSEMBLER VI

The program will stop at an Alpha Keyboard entry position to permit the typing of up to 6
alpha characters for any identification purposes desired.

At this point, the Symbolic output (source) tape from Phase I must be loaded on the A 581
tape reader and both the tape reader and tape punch switches turned on.

Depression of any OCK will cause the program to enter the automatic mode. This mode reads
the source tape. Complete documentation is printed out, including the hexadecimal object
program coding and all remarks. An object program will also be punched out.

The Assembler program Phase II will automatically put the machine into the READY MODE,
when the Pseudo-Op END at the end of the source tape is read. ‘

This PK effects an interrupt. Operation can be resumed by the use of any OCK.

PHASE Il — CONDENSED OPERATING INSTRUCTIONS AND INDEX

9.
10.
11.
12.
13.

SN A i S R

Turn on tape perforator.

Be in READY MODE.

Depress PKA 2 (Load).

Depress memory load switch.

Read Phase II tape in PROGRAM LOADER.

After tape is read in, depress MEMORY LOAD switch.
Depress RESET key to return to READY MODE.

At this point, if Phase I has not been run immediately prior to this, it will be necessary to
load the label-table into memory using the same load procedure as in loading Phase II above.
Then return to READY MODE.

Depress PKA 1.

Type up to 6 alpha characters for program identification and then OCK 1.
Insert symbolic tape into reader and depress READ switch.

This will give you a complete program listing and object tape.

If you have error in program it will be necessary to go to Phase I documentation for changes
or to hexadecimally change program.

PHASE il — ERROR DETECTION AND INDICATION

As stated previously, the ihput to Phase II is the output tape, or source tape, from Phase I.

Error detection in Phase II is supplemental to the error detection in Phase I and is designed to validate
the assignment of actual machine language, which is function of Phase II, plus the provision to indicate
the possibility of machine-inflicted error, and the possibility of remote combination of programs vs
machine logic which could cause misinterpretation of the symbolic entries.

5-63

" WORD
I SYL

w
—-0O WN=0 WN=0O WNh—~0 WN—=O WN~-=O WwWh=O0O

OBJECT

CODE

F808
FCO7
D809
EDO1

EBOY
F603
ACFO
D1EO

4294
8009
€520
L4594

c123
7C00
2805
C543

CL53
7C00
2805

C55D

CL2A
7800
3809
D1EO

EBIF

0400

7803
7804

SEQ
NO.

~ QO WVWONO UVITPFEFWN -

B R R)
w N

LSRR [T S -
- QWO ~NowunipgE

DR DN
O~ VI FWN

wWWwWN
- O\0

SYM.
LoC.

START

PRTSUB

PRTOT

COMR

PKEYS
PMASK

MNEM
OP.CODE

NOTE
LPNR
LPKR
CLM
AL

POS
PKA
NKRCM
PNS-

SK
ADM
PC-
EX

PCP
BRU
SRJ
PC-

PC+
BRU
SRJ

PC-

PC+
BRU
TRA
PNS-

POS
SRR
WORD

BRU
BRU
MASK

A-PARAMETER B=- C- LABEL
LABEL INC PAR PAR ADDR.
PMASK 8
PKEYS 7
TOTAL 9

1

LIST 10
12

AMOUNT 15 0
PRINT 14 0
K 2 2

TOTAL 9

K 2 1

START +1 03
COMR 5 2
c

S

START +1 0 3
COMR 5 2
R

START 02
TOTAL 9
PRINT 14 0
SYMBOL 32

1

PRTSUB 32
PRTOT 4 2
2,222,222,22Z,22Z.DD

BASIC ASSEMBLER VI — PHASE 11 — EXHIBIT 2

PAGE 1
REMARKS

ADDING MACHINE

IA H319IN3SSY

TO SUBTOTAL AND TOTAL
LIST OCK 1 = AMOUNT

OCK 2 = NUMBER

PRINT SUBTOTAL

PRINT TOTAL

COMMON TOTAL ROUTINE

ASSEMBLER VI

Mnemonic Error Detection

The mnemonic is validated again in Phase IL At this particular point in assembler program progression,
the potential error possibility is the misreading of the mnemonic as a result of a mispunch, some
internal system failure or reader failure. In any event, an invalid mnemonic in Phase II is an irrecoverable
error and will cause the validation sequence to return the system to the ready mode.

Parameter Error Detection

Parameters are again validated in the same manner as described in Pages 5-xx through 5-xx. In addition,
if a label is used to define a parameter, the actual value of the label is validated.

For all parameter errors, except label errors, the word ERROR is printed starting in position 45, the
printer escapes one space and PARMTR (parameter) is printed.

In the event of a parameter-label error, the word ERROR is printed starting in position 45, the printer
escapes one space and LABEL is printed.

For all instructions that are in error, a NOP instruction is substituted, printed out in the instruction
sequence, and punched in the object program tape. The end result is that the object program tape
contains NOP instructions instead of invalid instructions; plus, the program provides documentation
which defines the location and type of parameter error.

CORRECTION ROUTINE PHASE II

Phase II errors are corrected by using the Source tape (tape output from Phase I) and the Assembler
Phase I correction routine, or correcting the Symbolic language and restarting the entire program.
Corrections in the object program can be made by using the Memory Modify service routine with a
corrected object tape generated with the Punch from Memory service routine.

PHASE Il — OUTPUT
The output from Phase II of Assembler I consists of a print-out and an object program tape.
PHASE 11 — PRINT-OUT

The Phase II print-out is a complete print-out of the object program along with explanatory information.
The format is illustrated by Exhibit II.

PHASE Il — OUTPUT TAPE

The Assembler program Phase II output tape is the object program tape and is punched in compact
hexadecimal format. It contains the complete program, in machine language, ready to be loaded directly
into the Series L/TC computer. :

5-65

SECTION
OBJECT PROGRAM LOADING

MEMORY LOADER DEVICE

The memory loader is a special purpose paper tape reading device which automatically loads programs
into memory. The memory loader is located at the lower left-hand corner of the keyboard. It contains a
self-threading paper tape cartridge (removable), a feeding device, and a tape reader to read program tape
into memory. This device is under control of the Memory Load Switch (enabled by PK2-(load) — in the
Ready Mode).

The Memory Loader is capable of reading program tape at a rate of 15.5 codes per second. Program
tape (8 channel) is inserted into the lower slot of the self-threading tape cartridge with the reference
edge (three punched holes below the feed holes) of the tape to the right. The tape is ejected through
the upper slot.

This device is used only to load object tapes for the initial loading of memory.
A 581 PAPER TAPE READER

Load the Reader Memory Load Service Routine using the procedure outlined under Memory Loader
Device. The Reader Memory Load Service Routine permits the loading of an object program paper tape
with the paper tape reader.

If the machine is “off,” depress Power-On Button (30 seconds to Ready Mode) or if machine is on,
depress READY button to return to READY mode.

Turn the tape reader on. Load the object program paper tape to be read. Depress Read Key on Tape
Reader. Depress PKA 3 (utility key). The tape will be read and the object program loaded into memory.
The loading will stop when the tape has been completely read. Depress the ready button to exit the
routine,

When the paper tape reader is used to read in object tapes assembled on the B 5500, a special L/TC 500
utility program must be used instead of the Reader Memory Load Service Routine. See the section
entitled “L/TC 500 Assembler IV for B 5500 Systems.”’

MEMORY LOAD (80-COLUMN CARD)

This Memory Load Utility Routine permits program to be loaded from 80-column cards. This routine
resides in the Utility Track (Track 2, Block 2 beginning with word number 578) and hence cannot be
resident in memory along with any other Utility Routine that would also occupy the same memory
space.

NOTE: This routine must be resident in the Utility Track to permit use of the LCD instruction.

THE PROGRAM CARD FORMAT

Card Column

1- 6
9
11-10
11-15
16

17-24
25-32
33-40
41-48
49 - 56
57-64
65-172
73 -80

Program Identification (Alpha)
Beginning Word Number (hexadecimal value for word 0 to 255)
Number of Program Words on Card (Decimal 1 to 8)
No Significance — but are included in “hash total”
Block Number
Block 0 = blank card column
Block 1 = decimal 1

Up to 8 words of program
Each word occupies 8 card columns.
FEach card column contains binary value for 2 hexadecimal digits of
word.

The Memory Load Program will accumulate a ‘“hash total” of all cards read. This “hash total” and the
Program Identification (ID) may be printed out at the end of the load routine if the operator so desires.

The program cards will load

into memory at the rate of approximately 102 cards per minute. Each

program card may contain from 1 to 8 words of program.

80-COLUMN CARD MEMORY LOAD OPERATING INSTRUCTIONS

1. The Card Memory
Device as explained

Load Routine must be loaded into memory using the Memory Loader
previously.

2. From a READY mode, depress PKA 3. If the program deck has already been placed in the
Card Reader supply hopper and the RESTART button depressed, the cards will be read and
loaded into memory. When the last card is read and the supply hopper is empty, the Reader
Condition Indicator on the Series L will be turned on. The operator has the following choices:

a. If more cards are to be loaded, place them in the hopper and depress RESTART Key.
b. If the Program ID and Hash Total are to be printed, depress ANY key on either

keyboard. The

Hash Total will print followed by the Program ID and then the machine

will return to the READY mode.

c. Depress the READY push button and the machine will return to the READY mode
immediately without printing either the Hash Total or the Program ID.

NOTE:

1. This routine destroys the contents of the Accumulator.

2. The program ID is

stored in word 01 during loading. Thus, if program data must be loaded in

word 01, that program card must be placed as the last card in the deck.

READING PROGRAM CARDS

OP CODE A B
LOAD MEMORY FROM CARD LCD 0-255

See Page 2-96.

BCL CARD MEMORY LOAD OR TRANSLATE BCL CARD FORMAT TO L CARD LOAD FORMAT
(B 5500/B 300 ASSEMBLER OUTPUT)

This program will permit memory to be loaded from cards created on a B 5500 or a B 300, or will
permit these cards to be read and new cards punched in the Series L Card Memory Load format
(compact hexadecimal).

This Utility program occupies the Utility Track (Track 2, Block 2) and hence cannot be resident in
memory along with any other Utility Routine that also would occupy the same memory space.

In addition it occupies words 192 to 223 (Track 6 of Block 0). If the Memory Load portion of this
Utility program is used, Track 6 will be overlayed with any program being loaded into this part of
memory. :

A Card Reader Style A 595 and a Card Punch Style A 142 are required. The Card Punch is only
required if the translation from BCL card to Series L hexadecimal card format is needed.

OPERATING INSTRUCTIONS

1. After loading Utility Program, use PKA 3 from the READY Mode. Program will stop on a
Numeric Keyboard. The following choices are available. BCL Card Deck must be loaded in
Card Reader.

OCK 1,2o0r3 — MEMORY LOAD
OCK 4 — PUNCH IN L CARD FORMAT

A card with a zero punched in card column 12 will cause the machine to return to the
READY Mode.

2. If the Card Punch is used, a card must be positioned under the Read Station as well as the
Punch Station. The print switch should be in the off position.

3. The card with the zero punch in row 12 will be created by the B 5500 or B 300 Assembler. If
it is lost, it should be replaced before running this Utility Program. A manual return to the
READY Mode may cause loss of data.

If cards are not present in the Card Reader, the Reader Condition Indicator light is turned on, flag R1 is
set, and the instruction is held up pending operator action.

The 12 positions of each card column are compressed into 8 bits during reading to permit placing that
code into 2 digits of memory; however, that 8 bit format does not conform to the internal code set.

Therefore, the code undergoes translation when accessed by the other instructions described in this
section. The card codes are compressed into 8 bits in the following manner:

Character Position in Card Read Area

Ca;l(in((ﬁl;rgnn Upper Digit Bits Lower Digit Bits
8 4 2 1 8 4 2 1
12 X
11 X
0 X
1 X
2 X
3 X X
4 X ‘
5 X X
6 X X
7 X X X
8 X
9 X

PUNCHED PAPER TAPE OBJECT TAPE CODE

An object tape generated by Phase II of an assembly will look like the example on Page 6-5. Each
channel on the tape is made up of eight bits — four upper bits and four lower bits. Each element
containing instructions consist of eleven columns.

The first column contains the start of message indicator; an eight and two bit, in the upper four bits
and the block number in the lower four bits. The block number is zero for words 0-255 and one for
words 256-512.

The second column contains the word number and may use all eight bits or just a couple of the bits.
For example, word 21 would be represented by:

8 76 5 4 3 2 1 channels; word 255by 8 7 6 5 4 3 2 1 channels.

The next eight columns contain the four syllables of the word, with one instruction per syllable. Each
character of an instruction occupies four bits so that one instruction takes up two columns. The first
syllable of a word, the “0” syllable, follows the word number, so that the sequence of syllables on the
tape is 0, 1, 2 and 3 in that order. :

The last column of the element contains an end of message code in the upper four bits and parity bits
in the lower four bits. The end of message code, a four and one bit, is used most often as the code in
the last column of the element. But sometimes an end of word code, an eight, four and two bit, is used
as the code in the last channel instead of the end of message code. Either one or the other of the two
codes will be used as terminating codes on a tape; but both codes are not used on the same tape due to
the nature of the tape generator.

The lower four bits of the last column contain parity bits. Parity is even on the TC and L series. If a bit
is punched in the third channel, binary value four, of the tape, that means that the total number of
punches in the two channels with a binary value of four (i.e., channels three and seven) is odd. For
example, look at the example on the next page, word 261. There is a parity punch in the binary value

6-4

PUNCH PAPER TAPE COMPACT OBJECT CODE

SPROCKET FEED HOLES

N/\i/\ DIRECTION OF
CHANNEL 8 76 5 4 3 2 1 TAPE FEED
START “i“—j‘&r{““-‘——)—- BLOCK 1
MESSAGE e & | e o | —
T T T WORD 5
| o O) ——
0 o | BN 3
_SYoe| @ 0 @ ® o O [b
261
8 [)) 2
.__?.1.1_':_ . . . ‘ g . . . 7 A610 EB1B F782 EDO3
1 ® 0 o o0 B
SY2E o 0 o K o0 B
1 o ® 0
SY3A [o e 00 6
ENDOF [.= —-——— T T T T T
WORD — & e 0 _4___._.______ <«— PARITY
START — @ o | ° ® < BLOCK 1
MESSAGE | —=——— e e
] WORD 6
e e 1__ 900 |
o e o e ° 0
S¥o4 [o 00 6
262
0 ® 0
SY 1 ® o ° 9
D405 7505 0900 46D0
0 o @ o 5
—S8Y27 | BN A) e 0 | 5
0 LA ()
SY3D ® o) "3) 4
END OF - T ———— mm s
MESSAGE > o 0_:_:_._ 0 | e PARITY
‘)
b4t + * ’ f BINARY VALUE
8 4 2 1 8 PY 4 2 1 <+
e ——)
| 1 1 i
| I
UPPER LOWER

PUNCH PAPER TAPE COMPACT OBJECT CODE PUNCHED FROM MEMORY

CHANNEL ___
START
MESSAGE

0
SYOE
8
SY1F
1
SY2E
1
SY3 A
END OF
WORD
D
Sy 04
0
Sy 10
0
Sy 27
0
SY3D
END OF

MESSAGE —>

' SPROCKET FEED HOLES

|

DIRECTION OF
TAPE FEED

BLOCK 1
WORD 5

261

A610 EB1B F782 EDO3

. PARITY
0
0 262
9
5 D405 7505 0900 46D0

4
< PARITY

» BINARY VALUE

four of the four lower bits. Add up the punches in channels three and seven, including the punches in
the block number and the word number. There are seven punches which is odd so the one punch in the
parity block makes it even. :

An object tape created by using the Punch from Memory Utility Routine will look like Example 2.
(Example 2 is basically the same as Example 1 except for three items. The differences in Example 2 are:
(1) There is only one word number punched — the number of the first word punched from memory;
(2) Each word will have an End of Word code (an 8,7 and 6 punched in the upper four bits of the
column) except for the last word which will have an End of Message (a 4 and 1 punch in the upper four
bits of the column.) (3) Example 2 does not contain two columns — the start of message, block column
and the column containing the word number.

ACCESS TIME

ACCUMULATOR

ALPHA CHARACTER
ALPHANUMERIC CHARACTER

ASSEMBLER

BASE WORD

BINARY CODE
BLOCK
BRANCH
BUFFER
CARD FIELD

CHARACTER
CLEAR MEMORY WORD
CODING FORM

COMPUTER

CONSTANT
CONTROL AREA

APPENDIX A

GLOSSARY

The amount of time required for a computer to locate and
transfer a character of data from its storage position and
make it available for processing.

A working numeric memory location containing 15 digit
positions and a flag position.

A character chosen from A-Z.

A character chosen from A-Z or 0-9 and other specially
designated characters.

A program written to convert a symbolic program to a
corresponding program in machine language. Principally
designed to relieve the programmer of the problem of
assigning actual storage locations to instructions and data
when coding a program and to permit the use of mnemonic
operation codes rather than numeric.

The first word in a table.

A coding system in which successive digits reading from right
to left are interpreted as successive powers of two.

A memory block consists of 256 words.

The point in a program at which the machine will proceed
with one or two or more existing possible routines according
to existing conditions and instructions.

A temporary storage area used to hold data until the data
can be accepted for processing.

A set of card columns fixed in number and position into
which the same classification of information appears.

A graphic symbol of any sort.
A memory word consisting of zero.
A form upon which coding is placed.

A machine for carrying out calculations and performing
specified transformations of data.

A magnitude which does not change its value.

The area which contains the firmware which determines
system control functions.

APPENDIX A (cont’d)

DEBUGGING

DIGIT
DOCUMENTATION

ERROR

FIRMWARE

FLAG

FORMAT
HARDWARE

INPUT

INSTRUCTION

INTEGER

KEYBOARD BASE REGISTER
LABEL

LEAST SIGNIFICANT DIGIT

POSITION

LEFT JUSTIFY
LOGIC

The process of removing problems from the program so as to
meet the program specifications.

~ Any of the figures 0-9.

The explanatory remarks included by a good programmer.

The amount of precision lost in a quantity. The difference
between an accurate quantity and its calculated
approximation. Errors occur in numerical methods; mistakes
occur in programs, coding, data transcription, and operation;
malfunctions occur in computers.

A control program, stored in the systems memory. The
firmware identifies each instruction used by the program and
selects the proper “micro string” to perform the functions of
the instruction.

An indicator which is set or reset upon execution of certain
instructions, which provides a test factor to determine
whether or not the conditions specified by the program exist,
so that alternate paths of the program may be selected.

An arrangement of information on a form or into storage.
Physical equipment.

The information fed into a computer system, in the form of
numbers or letters, from punched paper tapes, punched
cards, keyboard, etc.

The information which tells a machine where to obtain the
operands, what operations to perform, what to do with the
result, and sometimes, where to obtain the next instruction.

A whole number. .

Specifies the starting memory location in which succeeding
information will be stored.

A set of characters identifying an absolute machine address.

The O position of an Accumulator word or a memory word,

if the word is numeric. In an alpha word, the O position is
the most significant character position.

To position a field to begin at the left-most margin.

A reasonable analysis of the procedures followed in solving a
problem.

LOGICAL COMPARISON

LOGICAL OPERATION
LOOP

MACHINE LANGUAGE
MACRO INSTRUCTION

MAIN MEMORY

MASK
MASK WORD

MEMORY LOCATION
MICROSECOND

MILLISECOND

MNEMONIC OPERATION CODE

MOST SIGNIFICANT DIGIT
POSITION

MULTIPLICAND
MULTIPLIER

NANOSECOND
NEGATIVE VALUE

NORMAL AREA

OBJECT PROGRAM

APPENDIX A (cont'd)

The consideration of two things with regard to some
characteristic, to obtain a yes if they are the same, or a no if
they are different.

A computer operation of comparing, sélecting, or taking
alternative action.

A number of instructions which occur sequentially, a given
number of times.

A code that the computer can recognize and execute.

A main memory instruction which serves to activate a series
of micro instructions contained in firmware.

1,024 words subdivided into the control area and the normal
area.

A print format for numeric values.

A word of memory containing mask codes which define print
format.

A component of the computer in which memory is stored.
A millionth of a second (.000001 = ms.)

A thousandth of a second (.001 seconds).

See operation code.

The highest digit position of an Accumulator word or a -
memory word, if the word is numeric. In an 31_1113 word, the
highest position or the > position is the least significant
character position.

The quantity which is multiplied by each digit of the
multiplier in the operation of multiplication.

The operand which controls the repetitive addition of the
multiplicand in the operation of multiplication.

A billionth of a second.
A value less than zero.

An area in memory used to store the users programs which
are written with the macro instructions. It is also used to
store constant data, messages, and for accumulating totals.

A program in machine language resulting from the translation
of a source program by an assembler.

A-3

APPENDIX A (cont'd)

OPERATION CODE

OUTPUT

PAPER TAPE

PAPER TAPE SOURCE PROGRAM

PARAMETER

PARITY CHECK

PRINT HEAD

PROGRAM COUNTER

PROGRAM KEY

PROGRAM KEY BASE REGISTER

PROGRAM KEY TABLE

POSITIVE VALUE

PSEUDO INSTRUCTION

PUNCH CARD SOURCE PROGRAM
READ IN
RIGHT JUSTIFY

ROUTINE

SAFEGUARD SYMBOL
SEQUENCE NUMBER

SHIFT

A symbolic abbreviation for a machine code which controls a
computer function.

The results of computer operations in the form of punched
cards, punched paper tape, or printing, etc.

A specially treated strip of paper in which a pattern of holes
is punched, which in combination with blank spaces
represent numbers and letters.

A source program punched on paper tape.
A quantity which may be assigned different values.

A summation check in which the bits, in a character or word
are added and the sum checked against a single previously
computed parity digit.

The print ball.

A special register which contains the memory address being
executed.

A key which allows insertion of an arbitrary instruction in
the program.

A register containing the first word of the word program
key table.

An area of memory containing instructions assigned to
Program Keys. '

A value greater than zero.

An instruction designed to provide information to an
assembler program.

A source program punched on cards.
To place data in storage at a specified address.
To position a field to terminate at the right most margin.

A set of instructions arranged in proper sequence to cause a
machine to perform a desired operation.

Commonly referred to as the dollar sign (§).
A number identifying the desired order of operations.

To move an ordered set of characters one or more places to
the right or left.

SIGNIFICANT DIGIT

SOFTWARE

SOURCE PROGRAM

STORE

SYMBOLIC PROGRAM

TRACK
TRANSFER
TRANSLATE

UNPACK

UTILITY PROGRAM

VARIABLE LENGTH FIELD

WORD LENGTH

WORD NUMBER

WORD OF MEMORY
WORKING STORAGE AREA

ZERO

ZERO SUPPRESSION

APPENDIX A (cont’d)

Any digit (except a zero in places higher than the highest
order non-zero digit) in the expression of a quantity.

The material supplied by a computer manufacturer along
with the actual equipment (Hardware) i.e., programs, service
routines, and operating manuals.

A program written in other than machine language, intended
for automatic translation into machine language.

To transfer information to a place from which the unaltered
information can be obtained at a later time.

The use of arbitrary symbols to represent addresses in order
to facilitate programing.

A track consists of 32 words.
To convey information from one location to another.

To convert information from one language to another
without significantly affecting the meaning.

To separate a machine word into parts according to fields of
information.

A program which has a use in common to a number of
different and unrelated ,programs, yet is not integral to any
program, i.e., trace. ‘

A field in which the number of characters within the record
are not restricted to a given number of positions.

The number of symbols that constitute a word.
A memory address or memory location.
16 digits (64 bits) used to store information.

A portion of storage in which a data item may be processed
or temporarily stored. The term often refers to a place in
storage used to retain intermediate results of calculations
which will not appear as direct output from the program.

The integer represented by the character 0, having the
property that 0 multiplied by any number and O divided by
any number is O.

The elimination of non-significant zeros to the left of the
integral part of a quantity before printing is begun.

APPENDIX B

GP 300 INSTRUCTIONS TO MACHINE LANGUAGE

Appendix B provides the hexadecimal machine language code for each GP 300 instruction and an
alphabetical listing for the GP 300 instruction.

Table B-3 of Appendix B provides hexadecimal values for decimal numbers between 0 and 511.

If a table is not available, the desired value (for values between 0 and 255) may be calculated with the
following chart and two simple procedures.

If the value is between 0-15, convert by this chart:

0

1121314151678 |9 |10}11|12113]14]15 decimal

0

1121314 |5}6|]718]|]9|A|B|C|D]|E]PF |hexadecimal

1.

Decimal to hexadecimal conversion:
Divide the decimal value by 16.

Insert the hexadecimal equivalent from above chart as the left most digit of the two digit
number.

Insert the hexadecimal equivalent of the remainder as the right most digit of the two digit
number.

Example: What is the hexadecimal equivalent of the decimal value 255?
255 + 16 = 15 with 15 remainder

So 255 must be represented as FF in hexadecimal notation.
Hexadecimal to decimal conversion:

Multiply the decimal equivalent of the left most digit of the two digit hexadecimal number by
16.

Add the decimal equivalent of the hexadecimal value in the right most position to the
previous sum.

Example: What is the hexadecimal value 2A equivalent to in decimal notation?
2 x 16 = 32

A = 10 (see above chart)

32 + 10 = 42

The machine language code for a GP 300 instruction consists of 4 hexadecimal digits. These digits are
identified as Op Code Upper, Op Code Lower, Parameter Upper, and Parameter Lower.

Example:

The machine language code for AL 5 is EDOS.
E is the Op Code Upper.
D is the Op Code Lower.
0 is the Parameter Upper.

5 is the Parameter Lower.

In some cases the Op Code Lower is incremented by 1 for word locations above 255 (See Table B-1).

B-1

APPENDIX B (cont’d)

TABLE B-1
MACHINE LANGUAGE CODE
INSTRUCTION OP CODE ' PARAMETER REFERENCE
UPPER LOWER UPPER LOWER
ADA 8 3 0-F O-F 1
ADIR 5 4 O-F O-F 2
ADK 8 F 0-E 09
ADM 8 0 0-F 0-F 1
AL E D O-F 0-F
ALARM 0 9 8 0
ALR E F 0-F O-F
ALTO E 9 0-F 1-F
ALTP E 5 0 0
AR E E 0-F 0-F
ARTO E A O-F 1-F
BRU 7 0 0-F 0-F 3
CcC E C 0 -
CDC B 2 1-F 0-9
CDhV B 3 1-F 0-9
CHG 6 6 - - 5
CLA 8 E 0-E 09
CLM D 8 0-F 0-F 1
CPA D A O-F O-F 1
DIR 5 C O-F 0-F 2
DIV 9 A O-F 0-F 1
DUP E 1 0-5 0-F
EAM A 9 09 O-F 8
EX 4 - - - 4,5
EXE 4 - - - 4,5
EXL 6 - 0-F 0-F 4
EXZ 4 - - - 4,5
IIR 5 8 0-F O-F 2
INK 9 E 0-E - 0-F:
IRCP 1 A 0-F 1-F
LIR 5 0 0-F O-F
LCD C D 0-F 0-F 1
LCFR D C 0-F 0-F
LKBR F 0 0-F 0-F
LLCR E 0 O-F O-F 1,10

B-2

APPENDIX B (cont'd)

MACHINE LANGUAGE CODE

INSTRUCTION OP CODE PARAMETER REFERENCE
UPPER LOWER UPPER LOWER
LLLR E 4 0-F 0-F
LOD 6 4 - - 5
LPF 3 4 A D
LPKR F C 0-F 0-F 1
LPNR F 8 0-F 0-F 1
LPR 3 2 4 A
LRA 3 4 B 1 /
LRBR 1 8 0-F 0-F 1
LRCR E 2 0-F 0-F
LRLR E 6 0-F 0-F
LSA 3 4 B 2
LSN 3 4 A 7
LSR 6 4 2 0-F
LTN 3 4 A 6
LXC C D 0-F 0-F
MOD 6 0 0 0 2
MUL 8 A 0-F 0-F 1
MULR 8 C 0-F 0-F 1
NK A 6 O-F 0-F
NKCM A 2 O-F 0-F
NKR A 4 0-F 0-F
NKRCM A 0 0-F 0-F
NOP 0 8 0 0
ocC E 8 0-F 0-F
OFF 0 9 1 0
PA C 8 O-F 0-F 2
PAB 1 D 09 O-F 8
PBA B C - -
PC C 0 - - 6
PC+ C 4 - - 6
PC- C 5 - - 6
PCP C 1 - - 6
PKA F 6 O-F 0-F 7
PKB F 7 0-F 0-F 7
PN D 4 0-E 0-F
PNS+ D 0 0-E 0-F
PNS- D 1 0-E 0-F
POS E B 0-9 0-F 8

B-3.

APPENDIX B (cont’'d)

B-4

MACHINE LANGUAGE CODE

INSTRUCTION OP CODE PARAMETER REFERENCE
UPPER LOWER UPPER LOWER
RCD C C 0 0
RCP 1 C O-F 0-F
REAM B 9 0-9 0-F 8
REL 0 1 0 0
REM 3 A 4 1
RNK B 0 0-F O-F
RPF 3 C A D
RPR 3 A 8 A
RR 0 7 0 0
RRA 3 C B 1
RSA 3 C B 2
RSN 3 C A 7
RST 6 5 - . 5
RTH 3 C A 0
RTK B C 09 0-F 8
RTKM B D 0-9 0-F 8
RTN 3 C A 6 ,
RXEAM B B 0-9 0-F 8
RXTK B E 0-9 O-F 8
RXTKM B F 0-9 O-F 8.
SCP 1 4 O-F 0-F \
SET 6 7 - O-F 5
SK 4 - - - 45
SKE 4 . - - 4,5
SKL 6 - 0-F O-F 4
SKZ 4 - - . 45
SKP E 3 0-5 0-F
SLRO 0 2 0-E 0-E
SLROS 0 3 0-F O-F
SRJ 2 0 0-F O-F 3
SRR 0 4 0 0-3 9
STOP 0 0 0 0
SUA 9 8 0-F O-F 1
SUK 9 F O-E 0-9
SUM 9 0 O-F O-F 1
TAIR 9 C 0 0-3
TK A C 09 O-F 8
TKM A D 09 0-F 8
TRA 3 8 0-15 0-F 1
TRAB 1 5 0 0-F
TRB 1 E 0 1-F
TRBA 1 B 0 1-16
TRCA B 8 0 ~ O-F

APPENDIX B (cont'd)

MACHINE LANGUAGE CODE
INSTRUCTION OP CODE PARAMETER REFERENCE
UPPER LOWER UPPER LOWER
TRCB 1 6 0-F 0-F
TRCM B 9 0 0-F
TRF 1 7 0-F O-F
TRM 3 0 0-F 0-F

TSB 1 F 0 1-F

XA C 6 O-F 0-F 1

XB 0 C 0-F O-F

XBA B A - .

XC C 2 - - 11
XEAM A B 0-9 0-F 1,8
XMOD 0 A 0 0

XN D 7 0-E O-F

XPA C A 0-F 0-F 1
XPBA B E - -

XPN D 6 0-E 0-F
XPNS+ D 2 0-E 0-F
XPNS- D 3 0-E 0-F

XTK A E 09 0-F 8
XTKM A F 09 O-F 8
REFERENCES

1. For word number 256-511 add 1 to the Op Code Lower
9+1=A A+1=B B+1=C C+1=D D+1=E E+I=F

2. Modify Op Code Lower as follows:
INDEX REG. NO. 4 1 2
ADD TO OP LOWER o 1 2

3. Modify Op Code Lower as follows:

Syllable WD. NO. OP LOWER
0 0-255 0
1 0-255 4
2 0-255 8
3 0-255 C
0 256-511 1
1 256-511 5
2 256-511 9
3 256-511 D

B-5

APPENDIX B {(cont’d)

B-6

4.

5.

"Op Code Lower is derived from table below.

NUMBER OF INSTRUCTIONS

TO BE EXECUTED OR

INSTRUCTION SKIPPED OP LOWER
SK 4 0
or 1 1
SKZ 2 2

3 3
EX 4 4
or 1 5
EXZ 2 6
: 3 7
SKE 4 8
1 9
2 A
3 B
EXE 4 C
1 D
2 E
3 F
SKL 4 8
1 9
2 A
3 B
EXL 4 C
1 D
2 E
3 F

Parameter Upper Digit is determined as follows:

FLAG TYPE

PUNCH
READ

TEST
OCK’s
ACCUM

Keyboard B (Buffer)
Data Comm D (Buffer)

SKZ
"EKZ

P
R
X
Y
T
K

A

PARAMETER UPPER

DO »WOOVoOUNAO~

APPENDIX B (cont'd)

Parameter Lower Digit is determined as follows:

FLAG GROUP MACHINE LANGUAGE
A T P,R,X,Y,K,B,D CODE VALUE
- 0 4 |
S L 1 2
C I 2 4
M U 3 8

Example: If test flag L is being tested, the lower digit parameter is 2. If test flag L and U are
being tested, the lower digit parameter is the sum of the representative code values 2 and 8 =
10. Since the hexadecimal representative of 10 is A, the parameter lower digit is A.

PC character codes are determined from Appendix D.

Program Key Parameter Designation is determined as follows for Upper and Lower Digit
Parameters.

UPPER LOWER
8 7 6 5 4 3 2 1
PROGRAM KEY
WEIGHT 8 4 2 1 8 4 2 1

Example: To determine upper and lower parameter values for keys 7 and 4. Key 7 value is 4,
key 4 value is 8. The Upper and Lower parameter digits are then 4,8.

Example: To determine Upper and Lower Parameter values for keys 8 and 5. Key 8 value is 8
and 5 value is 1. Both are within the Upper parameter giving an Upper parameter digit of 9
(8 +1) and Lower parameter digit of 0.

8. PARAMETER LIMIT 0-150
SUBROUTINE RETURN LEVEL 1 2
MACHINE CODE : 0o 1 2 3
FOOTNOTE

10. Use upper and lower parameter of 0 (zero) to indicate data communication processor send or
receive buffer.

11. Column number (stick number) from USASCII table is upper parameter. Row number (level
number) from USASCII table is the lower parameter.

TABLE B-2
MASK WORD
MASK POSITION 0-14
HEX. CODE o 1 2 4 5 6 7 8 9 A B C D E F
MASK CHAR. C E S I X Z D C D Z: D: X Z, D,

B-7

APPENDIX B (cont’d)
MASK POSITION 15

HEX CODE 0 12 3 8 9 A B

SAFEGUARD NO NO NO NO YES YES YES YES
SUPPRESS PUNCTUATION NO YES NO YES NO YES NO YES
PUNCH NO YES YES YES NO NO YES YES

NUMERIC DATA WORD
The codes for decimal digit are directly equivalent to the Hexadecimal Codes (0-9).
CODES FOR FLAG POSITION 15 OF ACCUMULATOR OR WORD

HEX. CODES 0O 1 2 3 4 5 6 7 8 9 A B C D E F
FLAGS - o 1 0 1 o0 1 o0 1 o0 1 0 1 0 1 0 1
S o o 1 1 0 o0 1 1 o0 O 1 1 0 O 1 1
C o o o o 1 1t 1 1 o O O O 1 1 1 1
M o o o 0o 0 0 0 0O 1 1 1 1 1 1 1 1

1 in the above chart indicates the flag is set.

B-8

APPENDIX B (cont'd)

TABLE B-3

DECIMAL TO HEXADECIMAL CONVERSION TABLE
o
w
HD 0123456789ABCDEF0123456789ABCDEF
= 4
< w
c o
g 66666666666666667777777777777777
[a]
o o
O_W_ 00OOOOOOOOOOOOOOOO00000000000000
s 67890123456789012345678901234567
o 2 99990000000000111111111122222222
MU 1111111111111111111111111111
g
i
o o
o CTANNTVOE 0 ATARUVALN MO~ Mt nOEwa <m0 A ML
w n
=
< w
T4
MF 44444444444444445555555555555555
9
S o 00OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
o
&N 45678901234567890123456789012345
Dw 666666777777777700008008008000000999999
it
m 0123456789ABCDEF0123456789ABCDEF
=
w o
s I
g u
MF 22222222222222223333333333333333
o
Ww 00OOOOOOOOOOOOOOOO00000000000000
w
o
o 2 23456789012345678901234567890123
_._D._U 33333333444444444455555555556666
(@)
w
[
ﬁ 0123456789ABCDEF0123456789ABCDEF
w
s 3
g W
o o ,
o
- 9
S o 0000000000000000000OOOOOOOOOOOOO
T .
G =
oS 01234567890123456789012345678901
a3 HTE A A L, S, S RN AN AAdN QR QS .
w

B-9

or-d

DEC. OP. | PARAMETER DEC. OP. PARAMETER DEC. OP. PARAMETER | DEC. OP. PARAMETER
EQUIV. |FIELD FIELD EQUIV. FIELD FIELD EQUIV. | FIELD FIELD EQUIV. | FIELD FIELD
L U L L U L L U L L U L
128 0 8 0 160 0 A 0 192 0 C 0 224 0 E 0
129 0 8 1 161 0 A 1 193 0 C 1 225 0 E 1
130 0 8 2 162 0 A 2 194 0 C 2 226 0 E 2
131 0 8 3 163 0 A 3 195 0 C 3 227 0 E 3
132 0 8 4 164 0 A 4 196 0 C 4 228 0 E 4
133 0 8 5 165 0 A 5 197 0 C 5 229 0 E 5
134 0 8 6 166 0 A 6 198 0 C 6 230 0 E 6
135 0 8 7 167 0 A 7 199 0 C 7 231 0 E 7
136 0 8 8 168 0 A 8 200 0 C 8 232 0 E 8
137 0 8 9 169 0 A 9 201 0 C 9 233 0 E 9
138 0 8 A 170 0 A A 202 0 C A 234 0 E A
139 0 8 B 171 0 A B 203 0 C B 235 0 E B
140 0 8 C 172 0 A C 204 0 C C 236 0 E C
141 0 8 D 173 0 A D 205 0 C D 237 0 E D
142 0 8 E 174 0 A E 206 0 C E 238 0 E E
143 0 8 F 175 0 A F 207 0 C F 239 0 E F
144 0 9 0 176 0 B 0 208 0 D 0 240 | O F 0
145 0 9 1 177 0 B 1 209 0 D 1 241 0 F 1
146 0 9 2 178 0 B 2 210 0 D 2 242 0 F 2
147 0 9 3 179 0 B 3 211 0 D 3 243 0 F 3
148 0 9 4 180 0 B 4 212 0 D 4 244 0 F 4
149 0 9 5 181 0 B 5 213 0 D 5 245 0 F 5
150 0 9 6 182 0 B 6 214 0 D 6 246 0 F 6
151 0 9 7 183 0 B 7 215 0 D 7 247 0 F 7
152 0 9 8 184 0 B 8 216 0 D 8 248 0 F 8
153 0 9 9 185 0 B 9 217 0 D 9 249 0 F 9
154 . 0 9 A 186 0 B A 218 0 D A 250 0 F A
155 0 9 B 187 0 B B 219 0 D B 251 0 F B
156 0 9 C 188 0 B C 220 0 D C 252 0 F C
157 0 9 D 189 0 B D 221 0 D D 253 0 F D
158 0 9 E 190 0 B E 222 0 D E # 254 0 F E
159 0 9 F 191 0 B F 223 0 D F 255 0 F F

(p,au02) g XIAN3ddV

R

DEC. OP. | PARAMETER DEC. OP. PARAMETER DEC. OP. PARAMETER DEC. oP. PARAMETER
EQUIV.| FIELD FIELD EQUIV. |FIELD FIELD EQUIV. |FIELD FIELD EQUIV. | FIELD FIELD
L U L L u L L U L L u L
256 1 0 0 288 1 2 0 320 1 4 0 352 1 6 0
257 1 0 1 289 1 2 1 321 1 4 1 353 1 6 1
258 1 0 2 290 1 2 2 322 1 4 2 354 1 6 2
259 1 0 3 291 1 2 3 323 1 4 3 355 1 6 3
260 1 0 4 292 1 2 4 324 1 4 4 356 1 6 4
261 1 0 5 293 1 2 5 325 1 4 5 357 1 6 S
262 1 0 6 294 1 2 6 326 1 4 6 358 1 6 6
263 1 0 7 295 1 2 7 327 1 4 7 359 1 6 7
264 1 0 8 296 1 2 8 328 1 4 8 360 1 6 8
265 1 0 9 297 1 2 9 329 1 4 9 361 1 6 9
266 1 0 A 298 1 2 A 330 1 4 A 362 1 6 A
267 1 0 B 299 1 2 B 331 1 4 B 363 1 6 B
268 1 0 C 300 1 2 C 332 1 4 C 364 1 6 C
269 1 0 D 301 1 2 D 333 1 4 D 365 1 6 D
270 1 0 E 302 1 2 E 334 1 4 E 366 1 6 E
271 1 0 F 303 1 2 F 335 1 4 F 367 1 6 F
272 1 1 0 304 1 3 0 336 1 5 0 368 1 7 0
273 1 1 1 305 1 3 1 337 1 5 1 369 1 7 1
274 1 1 2 306 1 3 2 338 1 5 2 370 1 7 2
275 1 1 3 307 1 3 3 339 I 5 3 371 1 7 3
276 1 1 4 308 1 3 4 340 1 S 4 372 1 7 4
277 1 1 5 309 1 3 5 341 1 5 5 373 1 7 5
278 1 1 6 310 1 3 6 342 1 5 6 374 1 7 6
279 1 1 7 311 1 3 7 343 1 S 7 375 1 7 7
280 1 1 8 312 1 3 8 344 1 5 8 376 1 7 8
281 1 1 9 313 1 3 9 345 1 5 9 377 I 7 9
282 1 1 A 314 1 3 A 346 1 5 A 378 1 7 A
283 1 1 B 315 1 3 B 347 1 5 B 379 1 7 B
284 1 1 C 316 1 3 C 348 1 5 C 380 | 1 7 C
285 1 1 D 317 1 3 D 349 1 5 D 381 1 7 D
286 1 1 E 318 1 3 E 350 1 5 E 382 1 7 E
287 1 1 F 319 1 3 F 351 1 5 F 383 1 7 F

(P,3u0d) g XIANIddV

APPENDIX B (cont'd)

PARAMETER
FIELD

OP.

DEC.
EQUIV. | FIELD

480
481
482
483
484
485
486
487
488
489

490
491
492
493

494
495
496
497

498
499

500
501

502
503

504
505

506
507

508
509

510
511

PARAMETER
FIELD

OP.

DEC.
EQUIV. | FIELD

448
449
450
451
452
453
454
455

456
457

458

459
460
461

462
463

464
465

466
467
468
469
470
471

472
473

474
475

476

477 -
478

479

PARAMETER
FIELD

opP.
FIELD

DEC.
EQUIV.

416
417

418
419
420
421
422
423
424
425

426
427
428

429 -

430
431
432
433

434
435

436
437
438
439

440
441
442
443

444
445
446
447

PARAMETER
FIELD

OP.

DEC.
EQUIV. |FIELD

384
385
386
387
388
389
390
391

392
393

394
395

396
397
398
399
400
401
402
403

404
405

406

*407
408

409
410

411

412
413

414
4135

B-12

APPENDIX B (cont'd)

INSTRUCTION OP CODE A B c

Add to Accumulator ADA LABEL

Add to Index Register ' ADIR 1-4 0-255

Add Constant to Accumulator ADK 0-14 09

Add to Memory » ADM LABEL

Advance Left Platen AL 0-255

Alarm ALARM

Advance both platens , ALR 0-255

Advance left platen to ALTO 1-255

Select Alternate Stacker v ALTP

Advance right platen : AR 0-255

Advance right platen to ‘ ARTO 1-255

Branch unconditionally BRU LABEL

Close forms transport . cc

Check Digit Compute CDC 1-15 09

Check Digit Verify ‘ CDhV 1-15 09

Change Flags CHG AK,R,P, 1,2,3,4,-,

XY S,CM

Clear Accumulator and insert constant CLA 0-15 0-15

Clear Memory Word CLM LABEL

Compare alphanumeric CPA LABEL

Decrement Index Register DIR 1-4 0-255

Divide DIV LABEL

Duplicate thru column DUP 1-80

Enter Alpha into Memory EAM LABEL

Execute if any Flag EX {A,T,K,P, -SCM 1-4

Execute if every Flag EXE RX)Y { 12340LIU 14

Execute if digit less than constant EXL 0-15 0-15 1-4

Execute if Accumulator zero EXZ 1-4

Increment Index Register IIR 1-4 0-255

Insert Constant in Accumulator INK 0-15 0-15

Load Index Register LIR 1-4 0-255

Load Memory from Card LCD 0-255

Load Card Format Register LCFR LABEL

Load Keyboard Base Register LKBR LABEL

Load Left Count Register LLCR 0-255

Load Left Limit Register LLLR 0-255

Load Flags LOD AK,R,P, 1,2,3,4,-,
, X,Y S,CM

Load Program Key Base Register LPKR LABEL

Load Print Numeric Base Register LPNR LABEL

Load Right Count Register LRCR 0-255

Load Right Limit Register LRLR 0-255

Load Shift Register LSR 0-15

B-13

APPENDIX B (cont’d)

INSTRUCTION OP CODE A B C
Load Punch Count Register LXC 1
Load Punch Count Register LXC 0-255
Modify by Index Register MOD 1-4
Multiply MUL LABEL
Multiply and Round MULR LABEL
Numeric Keyboard NK 0-15 0-15
Numeric Keyboard Permit C, M Keys NKCM 0-15 0-15
Numeric Keyboard Permit Reverse Entry NKR 0-15 0-15
Numeric Keyboard Permit Reverse Entry, NKRCM 0-15 0-15
C, M Keys
No-Operation NOP
Open forms transport ocC 0-255
Print Alphanumeric PA LABEL
Print Character PC CHARACTER
Print Character if Accumulator plus, PC+ CHARACTER
Previous Ribbon
Print Character if Accumulator minus, PC- CHARACTER
Previous Ribbon :
Print Character Previous Ribbon PCP CHARACTER
Enable Program Key Group A PKA 1-8
Enable Program Key Group B PKB 1-8
Enable Program Key Group C PKC 1-8
Print Numeric PN 0-14 0-15
Print Numeric Shift Ribbon if plus PNS+ 0-14 0-15
Print Numeric Shift Ribbon if minus PNS- 0-14 0-15
Load Position Register POS 1-255
Read Card RCD
Enter Alpha into memory, punch non-print REAM 0-150
Release Media Clamp REL
Transfer Remainder to Accumulator REM
Read Numeric into Accumulator RNK 0-15 0-15
Red Ribbon RR
Reset Flags RST A,K,R,P, 1,2,3,4,-,
: XY S,CM
Read Alpha and Print RTK 0-255
Read Alpha into Memory and Punch, RXEAM 0-255
non-print
Read Alpha, print and punch RXTK 0-255
Read Alpha into memory, print and punch RXTKM 0-255
Set Flags SET AK,RP, 1,2,3,4,-,
XY S,.C.M
Skip if any Flag SK AK,R,P 1,2,3,4,-, 1-4
XY S,C.M
0,C,ILU

B-14

APPENDIX B (cont'd)

INSTRUCTION OP CODE A B C

Skip if every Flag SKE AK,R,P, 1,2,3,4,-, 1-4
XY S,C,M

O,C,LU

Skip if digit less than Constant SKL 0-15 0-15 1-4

Skip to card column SKP 1-80

Skip if Accumulator Zero SKZ 14

Shift Off SLRO 0-14 0-14

Shift Off with Sign SLROS 0-15 0-15

Subroutine Jump SRJ LABEL

Subroutine Return SRR 1-4

Stop STOP

Subtract from Accumulator SUA LABEL

Subtract Constant from Accumulator SUK 0-14 0-9

Subtract from Memory SUM LABEL

Transfer Accumulator to Index Register TAIR 1-4

Type TK 0-255

Type into Memory TKM 0-255

Transfer to Accumulator TRA LABEL

Transfer Card Field to Accumulator TRCA 1-16

as Numeric

Transfer Card Column to Memory as TRCM 1-16

Alpha

Transfer to Memory TRM LABEL

Punch Alpha from Memory, Non-Print XA LABEL

Punch Feed Codes XB 0-255

Punch Alpha fromCard Read Area, XBA 1-16

Non-Print

Punch Code XC 0-15 0-15

Enter Alpha into Memory and Punch, XEAM LABEL

Non-Print

Modify by Punch Count Register XMOD

Punch Numeric, Non-Print XN 0-14 0-15

Print Alpha and Punch XPA LABEL

Print and Punch Alpha from Card XPBA 1-16

Read Area

Print and Punch Numeric XPN 0-14 0-15

Print and Punch Numeric Shift Ribbon XPNS+ 0-14 0-15

if Plus

Print and Punch Numeric Shift Ribbon XPNS- 0-14 0-15

if Minus

Type Punch and Print XTK 0-255

Type to Memory Punch and Print XTKM

0-255

B-15

APPENDIX B (cont’d)

DATA COMMUNICATION INSTRUCTIONS

INSTRUCTIONS OP CODE A B C
Change Flags CHG R - 23
Execute if any Flag EX RBD 1234 1-4
Execute if every Flag EXE RBD 1234 1-4
Increment Receive Character Pointer IRCP 0-255
Load Flags LOD R 23
Load Polled Flags Register LPF -
Load Receive Address Register LRA -
Load Receive Buffer Register LRBR LABEL or
BLANK
Load Send Address Register LSA -
Load Send Transmission Number LSN -
Load Expected Transmission Number LTN -
Register
Power Off OFF
Print Alpha from Receive Buffer PAB 0-150
Set Receive Character Pointer RCP 1-255
Retrieve Polled Flags RPF -
Retrieve Character Pointer Register RPR -
Retrieve Receive Address RRA -
Retrieve Send Address RSA -
Retrieve Send Transmission Number RSN -
Reset Flags RST
Retrieve Header Transmission Number RTH -
Retrieve Expected Transmission Number RTN -
Set Send Character Pointer SCp 1-255
Set Flags SET R 23
Skip if Flag SK RBD 1234 1-4
Skip if every Flag SKE RBD 1234 1-4
Transfer Accumulator to Send Record Area TRAB 0-15 Oorl
Transfer Receive Buffer TRB LABEL
Transfer to Accumulator as Numeric TRBA 0-16
Transfer Character TRCB 0-15 0-15
Transfer Alpha TRF 0-255
Transfer Send Record Area TSB LABEL

B-16

ASSEMBLER PSEUDO INSTRUCTIONS

APPENDIX C

OP CODE A B FUNCTION PAGE REFERENCE
ADVL 1-4 To space the Assembler output form 2-112
the number of lines specified in the
A parameter.
ALF To store alphanumeric constants. 2-112
CDB To reserve words 1-10 as card read- 2-113
in buffer, automatic branch to word
11, syllable O.
CDF 1-80 1-80 A parameter indicates the beginning 2-115
card column of a field, B parameter
defines the number of card columns
in the field.
CODE 4 hexa- To allow insertion of 4 hexadecimal 2-115 -
decimal digits into a syllable of memory.
digits
DEF O-N * To assign a value to a label. 2-116
DEFT 0-15 0-15 To assign a value to a label in both 2-116
A and B fields.
DOC For documentation when assem- 2-117
blingon B 2500, B 3500, B 5500 49
characters beginning in column 29.
END To terminate the Assembler pro- 2-118
gram, the last line of code in the
program.
EQU To equate the label in label field to 2-118
the label in the A parameter.
ESTB To reserve 32 words in high order 2-117
’ memory for receive)send buffer.
MASK Allow entry of mask word 24 print 2-119
format characters are accepted.
NOTE For documentation will allow entry 2-119
of 25 characters, beginning in col-
umn 53.
NUM To store numeric constants. 2-120
ORG O-N#*#* To assemble the instruction follow- 2-120

ing ORG in the word location speci-
fied in the A parameter.

APPENDIX C (cont'd)

OP CODE A FUNCTION PAGE REFERENCE
PAGE To space Assembler output to the 2-121
first line of the next page.
REG 1-255 To reserve the number of words 2-121
specified in the A parameter for
working-storage.
WORD To cause the Assembler to assign the 2-122
next instruction in syllable O of the :
next word.

*The upper limit is variable depending upon which Operation Code the label will be used.

#*The upper limit is variable depending upon the amount of user memory.

APPENDIX D

SERIES L/TC CHARACTER SETS

The USASCII and Commercial character sets for the Series L/TC Systems are listed below in their
collating sequence in ascending order. Each character set consists of 64 graphic characters, the Space
code, and the End of Alpha code. The USASCII character set consists of the USASCII characters in
columns 2, 3, 4, and 5 of the USASCII table, plus End of Alpha (NUL) and Overline. Those
Commercial characters that differ from the USASCII characters are shown in parentheses.

The internal or machine language code for each character is given; this code consists of two hexadecimal
digits which correspond to the column and row number of the character in the USASCII table (A=row
10, B=11, C=12, D=13, E=14, F=15). In addition, the decimal value of each character is given as
required when using Index Registers for modification.

5 _ on 5 - ap 5 ap 5 a0
§ g E © g g S o § Té E’ o § § § o
5|28 |83 E |28 | 82| E| &% |22 E |2 |82
O S0 | S>> O =0 = > Ol S0 [|E> O |EO = >
End of
Alpha
(NUL) |0 O 0
Space 2 0] 32 0 3 0| 48 @14 0] 64 P 5 0 80
! 2 1 33 1 3 1 49 Al 4 1 65 Q 5 1 81
” 2 2 34 2 3 2 50 B | 4 2 66 R 5 2 82
2 3 35 3 3 3 51 cCl4 3 67 S 5 3 83
$ 2 4] 36 4 3 4| 52 D} 4 4| 68 T 5 4| 84
% 2 5 37 5 3 5 53 E|4 5 69 U 5 5 85
& 2 6| 38 6 3 6 54 F|{4 6] 70 \' 5 6 86
’ 2 7 39 7 3 7 55 G|4 7 71 w 5 7 87
(2 81 40 8 3 8 56 H|{4 8 72 X 5 8 88
) 2 9] 41 9 3 9 57 I 14 9 73 Y 5 9 89
* 2 Al 42 : 3 Al 58 J 4 Al 74 Z 5 Al 90
+ 2 B} 43 ; 3 B| 59 K| 4 B| 75 [Gh) |5 B{ 91
, 2 C| 44 < ()| 3 C| 60 Lt4 C| 76 \@H |5 Cl| 92
- 2 D| 45 = 3 D| 61 M| 4 D| 77 J(CR)}5 D{| 93
. 2 E| 46 > %) 3 E{ 62 N4 E| 781~ (°)]|5 E| 94
/ 2 F| 47 ? 3 F} 63 O|4 F| 79 — |5 F}] 95
~ ()7 E|126
DEL |7 F | 127

D-1

APPENDIX E

TABLES OF MASK CODES
TABLE E-1 MASK CONTROL CODES

CONTROL CODES PRINT FUNCTION PUNCH FUNCTION
F Print § No effect
+ Suppress Punctuation No effect
P No effect Leading zeros punch in P flag set blank
card column in 80 column card if P
flag reset.

TABLE E-2 MASK FLAG CODES

FLAG CODES PRINT FUNCTION PUNCH FUNCTION
D Print digit regardless ofsignif- | Punch character regardless of signif-
icance. icance.
D, Print digit and comma regard-

less of significance.

.D Print decimal point and digit
regardless of significance.

D: Print digit and decimal point
regardless of significance.

Suppress Terminal Zeros

Decimal point and terminal
Zero suppression.

C Units of cents leading and ter-
minal zero suppress.

.C Tenths of cents decimal point
with leading and terminal zero
suppression.
Z Leading zero suppression. Punch if:
1. P is set.
2. Accumulator digit not zero.
3.A non-zero digit has been
punched.
Z, Leading zero suppressionand
comma.
Z: Leading zero suppression and

decimal point.

E-1

APPENDIX E (cont'd)

FLAG CODES PRINT FUNCTION PUNCH FUNCTION
S Print only if Accumulator digit
non-zero.
I Ignore digit Ignore
E Terminate, non-print Terminate, non-print

E-2

APPENDIX F

ERROR MESSAGES

PAGE
MESSAGE REFERENCE
Assembler 11l — B 3500 Error Messages and Warnings 5-28
A PARAMETER — MUST HAVE NUMERIC VALUE 1-4 5-32
B PARAMETER — MUST HAVE NUMERIC VALUE 0-255 5-32
A — ENTRY MUST BE NUMERIC AND LESS THAN 767 5-30
BACKWARD ORG NOT ALLOWED ON ASSEMBLER I 5-29
CDB MUST BE FIRST INSTRUCTION IN DECK 5-31
DEFT PARAMETERS MUST BE NUMERIC AND 0-15 5-30
EMPTY 5-31
EMPTY FIELD — LENGTH FIELD 5-29
HAS ALREADY BEEN ENTERED AS A SYMBOLIC IDENTIFIER . 5-28
HAS NOT BEEN ENTERED AS A LABEL 5-31
ILLEGAL DIGIT ENTERED IN CODE INSTRUCTION 5-30
ILLEGAL ENTRY IN INCREMENT FIELD 5-31
ILLEGAL PARAMETER ENTRY IN . . . 5-32
INCREMENT GREATER THAN 255 NOT ALLOWED ON ASSEMB I 5-30
INVALID FLAG ENTRY PAIR OF - - 5-32
INVALID NUM ENTRY 5-30
... IS AN INVALID INSTRUCTION OP CODE 5-29
... IS NOT A VALID MASK ENTRY 5-29
LABEL MUST BEGIN WITH AN ALPHABETIC CHARACTER 5-28
LABEL MUST NOT CONTAIN BLANK CHARACTER 5-28
LABEL NOT AT START OF WORD 5-28
MASK LENGTH RECALCULATED TO BE . . . 5-29
MISSING SYMBOLIC LABEL 5-30
... NOT A VALID OP CODE 5-31
NUMBER OF LABELS EXCEEDS LABEL LIMIT WHEN USING ASSEMBLER I 5-28.
PARAMETER TOO LONG 5-30
PREVIOUS CARD HAS INVALID FIELD LENGTH 5-29
REGION MUST HAVE SIZE 1-255 5-29
SEQUENCE ERROR) 5-28
STORAGE EXCEEDED BY INSTRUCTION 5-29
SUM OF CDF PARAMETERS MUST NOT BE > 80 5-31
SYMBOLIC ENTRY ALLOWED 5-32
Assembler IV — B 5500 Error Messages and Warnings
The messages are identical to those printed by Assembler III. See above.
Assembler V — B 300 Error Messages and Warnings
A-PAR LABEL INVALID 5-47
A-PAR LABEL UNDEFINED 5-47
ILLEGAL . ‘ 5-48

F-1

APPENDIX F (cont'd)

MESSAGE

INSTR LABEL DUPLICATED
INSTR LABEL INVALID
INVALID CHARACTER
INVALID CTL CARD
INVALID FLD LENGTH
INVALID INCREMENT FLD
INVALID MNEMONIC
INVALID SIGN RESULT
LABEL LIMIT

LAST LINE NOT “END”
MEMORY 512

MEMORY OVERLAYED ERR
MUST HAVE LBL OR INC
NO I/P CTL

NO O/P SYM

NO OBJECT

NOP INSERTED

... PARAMETER INVALID X
... PARAMETER INVALID RANGE XXX-XXX
PRE INV FLD LENGTH
SEQUENCE

STORAGE EXCEEDED
WORD LENGTH EXCEEDED

F-2

PAGE
REFERENCE

5-47
5-47
5-49
5-46
5-47
5-48
5-48
5-48
5-47
5-49
549
5-49
5-48
5-46
5-47
5-46
5-46
5-48
5-48
5-47
5-46
5-49
5-49

INSTRUCTIONS FOR KEYPUNCHING

SYMBOLIC CARD FORMAT

SYMBOLIC CARDS

APPENDIX G

CARD COLUMNS DESCRIPTION
5-10 Program ID

11-15 Sequence

16 - 21 Label

22 -26 Op Code

27 - 28 Field Length

29 - 34 Label “A” Parameter

29 - 47 Constant Data (Numeric)

29 - 52 Alphanumeric Data or Print Mask

35-38 + or — inc/rel

39-42 “B” Parameter

43 “C” Parameter

55-77 Remarks

///]]]] i1 1P 1 1 1

i (1]]]] (1]]] i
ﬂﬂlllllﬂll[lﬂﬂllﬂnﬂﬂlll)ﬂ00000000000000000000000llﬂﬂ'l]ﬂll0l]000000lll]llll00000000000003300000“
R LTI T T T T T LT L L LU LT B

22220222
33333333330M0M333333333333033333333333MBM033333333333333333333333333333333333333
A4 04044444 08000040840 84480404004 00440 040040440448 44044444004444444444444444
5555555555555555555555555555555555556555555555555555555565555655555556555555555555
666G66866
AR R R RN RN R RN R RN R RN R R RN N RN R RN R R RN R R RN RN R AR AR R R RN R e R0
8888888868808888888886888886888868088888088888888888868888886808668880B888888886888
999999999999999999999999999999999999999 99999% 9 3 99999399999 9
345618 W . w

56 101012 13 14 th Tb 17 18 19 20 2122 23 24 25 26 2/ 78 29 30 31 32 33 34 35 36.37 38 39 40 41 4743 44 45 45 47 43 49 50 51 52 53 54 55 56 5/ 5B 59 60 61 62 63 64 65 66 67 68 63 /0 /1 712 73 /4 75
5081 BSC

Drum Card for Burroughs A 142/A 150 Keypunch

G-1

l

APPENDIX G (cont‘d)

ol A

©w

N o

10.
11.
12.
13.

14.

15.

‘16.

17.
18.

A 142/A 150 KEYPUNCHING INSTRUCTIONS
Insert drum card — position 1.
Lower drum card brushes.
Turn Power switch ON.
Turn PRINTER switch ON.
Turn AUTO FEED switch ON.
Turn Program switch 1 (P1) ON.

First card stops in CC 5. ERR REL light turns on. Depress ERR REL switch.

Must punch Program I.D. CC ’5-10 in 1st card*. Thereafter, CC 5-10 will automatically duplicate.

CC 11-15. Sequence Number — numeric (right justified).

CC 16-21. Label. If no Label, depress SKIP key.

CC 22-26. Op Code. If OP CODE less than § characters, depress SKIP key.
CC 27-28. Field Length (right justified). If no field length, depress SKIP key.

CC 29-34. ““A”’ Parameter. If less than 5 characters, depress SKIP key. If numeric, hold NUMERIC
key down while punching numeric character.

CC 35-38. + or — Increment field. If —, enter — in CC 35 (if CC 35 is blank, + is assumed) Enter
numeric in CC 36-38. If no + or — Increment, depress SKIP key.

CC 3942. “B” Parameter. If numeric, hold NUMERIC key down while punching numeric character.
If no “B” parameter, depress SKIP key.

CC 43. “C” Parameter. Numeric only. If no “C” parameter, depress SKIP key.
CC 53-77. Remarks columns — alphanumeric. If no Remarks, depress SKIP or REL key.

When numeric is to be punched, other than sequence field, hold numeric key down while punching
that field.

*If Program 1.D. is not required, the user may modify the existing drum card thusly:

G-2

1. Eliminate the 2 punch in card column 5. This will allow the detail card to duplicate blank
columns 5 through 10.

or

2. Eliminate the 12 punch in card column 4. This will allow a skip over columns 5-10.

10.

11.

12.

13.
14.
15.

APPENDIX G (cont'd)

024/026/029 KEYPUNCHING INSTRUCTIONS
Insert front drum card — star wheels down.
Turn Power switch ON.
Turn PRINT switch ON.

Turn AUTO DUP-AUTO SKIP switch OFF - first card only.

Must punch Program L.D. CC 5-10*. Turn on AUTO DUP-AUTO SKIP after punch of sequence

field, so that CC 5-10 will automatically duplicate on all subsequent cards.
CC 11-15. Sequence Number — numeric (right justified).

CC 16-21. Label. If no Label, depress SKIP key.

CC 22-26. Op Code. If OP CODE less than 5 characters, depress SKIP key.

- CC 27-28. Field Length (right justified). If no field length, depress SKIP key.

CC 29-34. “A”’ Parameter. If less than 5 characters, depress SKIP key. If numeric, hold NUMERIC
key down while punching numeric character.

CC 35-38. + or — Increment field. If —, enter — in CC 35 (if CC 35 is blank, + is assumed). Enter
numeric in CC 36-38. If no + or — Increment, depress SKIP key.

CC 39-42. “B” Parameter. If numeric, hold NUMERIC key down while punching numeric character.
If no “B” parameter, depress SKIP key.

CC 43. “C” Parameter. Numeric only. If no “C” parameter, depress SKIP key. |
CC 53-77. Remarks columns — alphanumeric. If no Remarks, depress SKIP or REL key. . ‘

Whenever numeric punching is required, other than sequence field, numeric key must be held down
while punching that field.

* If Program 1.D. is not required in detail card, insert a 12" punch in CC 5 of program card. This will
allow skip CC 5 through 10 in detail card. AUTO DUP/AUTO SKIP key can be turned on from the
very first card.

G3

APPENDIX G (Cont'd)

/m

] 1

ooooMoo00000G0000000U000000000000000000000D000O0O0OD0O0O0O00DO000O0000030000000000000000
123456 7891011 121314151617 181920 2122 23 24.25 2 27 28 28 30 31 32 33 34 35 36 37 36 33 40 4142 43 46 4545 47 43 49 50 51 52 53 54 55 56 57 58 50 60 61 62 63 64 6566 6/ 6863 70 /1 12 73 14 7576 77 78 73 80
(RBRT I [LRRRRRT [LD LN R LR R L L L LR LRI LIl RO

2222222220000 222222222220 22222222222 0222222222222222222222222222222222222121
33
A4 00 0400004000000 00 044080448400 000004 40400044040 00004444048444404444044404
55
[66
1111111170110 00 It I i i1 i i i i1 111 111111111111
| 8888886888888888888868888088888688880888888800868688808888608088888888088888888880888

3919 999999 993349939
123 6 189

45 10 1112 13 ¥ 15 36 1) 1813 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 8 940414?434445484]4849505157535455%5733596061876}858305576859/0” 727131475176 77 1813 80
508! BSC

Front Drum Card for 024/026/029

APPENDIX H

USASCII CHART AND CHARACTER SETS

]
7qu5'UVWXVIZ{|I}~rn>UL
o |sjolalolo | ofw]| o | | =} x|=]| €| €] o
v lalOlelunl- 12> 2| X]| > Nl—]/|—|<
< |®|«<|ojUlo|w|u]o]l x| =]] ¥|=] ZZ]|0O
O [O|l—~|Njm |t |0n] O] N| o] & ~v] on| A
VI - el B S D (X IR I I SN 0 B BN Y B AN

P y4
—_ =] N = Zl Zl ol Oln| 2 nw]w
2SIV LS B <| &) Sf A| 2| o] 2D
ola|lojla|lo|Z]lhlw|u Al w
P B o — | O] <
XX '} — - x| O
o |2 (@) 7] w w -
NwﬂﬂmmA%BHLVFCSS
c
£
=
rw|'01.23456789012345
3
o
[-4
a ®To|—jel—~|lo| ~|o} ~|lo|~|o] —~|o] ~|o}~
o~
o0 *Mo|o|~|~|co|lo]l~} —|o]|lo}l~] —|o] of -]~
oo |lo|lo|loj~| ~|~] ~lolol ol o]~ -] ~]|~
|D4 olojojolojololol~~l ~l —~]l—] =] ~] —

USA Standard Code for Information Interchange

USASCIT EBCDIC BCL
' 80 COL
USASCII INTRNL L/TC PAPER INDEX | GRAPHIC K || GRAPHIC CARD CARD PAPER
CHAR _CODE |GRAPHIC| TAPE CODE | REG. CHAR CARD CODE E CHAR CODE INTRNL TAPE
UP | LOW VALUE Y BUFFER CODE
L _ up_|tow | uP | Low
NUL 0 0 . 0 NUL 12- 0-9-8-1 |[M 0 0
SOH 0 1 . 1 SOH 12 -9 -1 |M 8 1
STX 0 2 c e 2 STX 12 - 9- 2 |M 8 2
ETX |0 3 T ee| 3 ETX |12 - 9 - 3 |M 0 3
EOT |0 4 ‘e 4 EOT 9 - 7 |M 8 4
ENQ |0 5 e 0| S ENQ 0 - 9 - 85|M 0 5
ACK |0 6 5.. 6 ACK 0 - 9 - 86|M 0 6
BEL 0 7 cece| 7 BEL 0 - 9 - 87|M 8 7
BS 0 8 oo 8 BS 11 -9 - 6 |M 8 8
HT |0 9 oc o 9 HT |12 - 9 - 5 |M 0 9
IF 0 A o o 10 IF 0 -9 -5 |M 0 A
VT |0 B os oo| 11 VI |12 - 9 - 83|M 8 B
FF |0 C oce 12 FF 12 - 9 - 84|M 0 C
CR |0 D oo o] 13 CR 12 - 9 - 85|M 8 D
so |o E eco0 14 SO |12 - 9 - 86|M 8 E
SI 0 F ec00e| 15 SI 12 - 9 - 8-7 M 10 F
DLE 1 0 o - 16 DLE 12-11-9-8- M 9 0
DC1 1 1 o+ o 17 DC1 11- - 9-1 M 1 1
DC2 1 2 . e s ® 18 DC2 11- - 9-2 M 1 2
DC3 1 3 (o o < oo 19 DC3 11 - 9-3 M 9 3
DC4 1 4 o o 20 DC4 9-8-4 |M 1 4
NAK |1 5 o s0 o 21 NAK 9-8-5 |M 9 5
SYN 1 6 ‘e o cee 22 SYN 9-2 M 9 6
ETB 1 7 i o co0e| 23 ETB 0 - 9-6 M 1 7
CAN 1 8 ooe 24 CAN 11 - 9-8 M 1 8
EM |1 9 e eec o 25 EM | 11 - 9-8-1 {M 9 9
SUB 1 A o oo: o 26 SUB 9-8-7 |M 9 A
ESC 1 B oo oeo| 27 ESC 0 - 9-7 M 1 B
FS |1 C o oo:e 28 FS |11 - 9-8-4 |M 9 C
GS 1 D eece o 29 GS 11 - 9-8-5 |M 1 D
RS 1 E PPN 30 RS 11 - 9-8-6 |M 1 E
Us 1 F o oe.e0e| 3l US 11 - 9-8-7 |[M 9 F
Key: M Multipunch on 026, 029, A 142, and A 150

(p,u0d) H XIAN3ddV

S13S H310VHVHO

€-H

USASCII EBCDIC _ BCL
USASCIl | INTRNL L/TC INDEX [|GRAPHIC CARD K|l GrapHic K
CHAR _CODE_ | GRAPHIC | _ :P‘:sngos REG CHAR CODE E CHAR CARD CODE | E || BUFFER TAPE
UP | LOW VALUE » Y Y| ur Low |uP LOW
SP 2 0 SP ¢ e 32 SP BLANK | * SP BLANK * 0y 0 |A 0
! 2 1 ! ¢ : o 33 ! 11-0 I X 110 Mijl 6| O 2 1
> 2 2 ” ¢ o 34 i 8-7 i i 0-8-7 Mil 2 F (2 2
2 3 # ¢ o ¢ oo 35 # 8-3 * # - 83 * 0 B |A 3
$ 2 4 $ o o 36 $ 11-8-3 * $ 11-8-3 * 4 B |2 4
% 2 5 % ¢ e <000 37 % 0-8-4 * % 0-8-4 * 21 C JA 5
& 2 6 & oo oo 38 & 12 * & 12 * 81 0 [A 6
’ 2 7 ’ o coee 39 C 7 8-5 # > 8-7 M| O| F |2 7
(2 8 (oo 40 (12-8-5 | # (12-8-5 #/| 8| D |2 8
) 2 9) e o e o 4) 11-8-5 | #) 11-8-5 #il 4| DA 9
* 2 A * ® 0 00 42 * 11-8-4 * * 11-8-4 * 4|1 C |A A
+ 2 B + e e oo 43 + 12-0 1 + 12-0 | Al O 2 B
s 2 C s ® & oo 44 R 0-8-3 * s 0-8-3 * 2] B |A C
- 2 D - o o : L 45 - 11 * - 11 * 4 0 2 D
. 2 E ; e o : L L 46 . 12-8-3 * . 12-8-3 * 8 B |2 E
/ 2 F / 0 oc000 47 / 0-1 * / 0-1 * 2 1 A F
0 3 0 0 oo o 48 0 0 * 0 0 b 2 0 3 0
1 3 1 1 e o0 - o 49 1 1 * 1 1 * 0 1 B 1
2 3 2 2 00 -0 50 2 2 * 2 2 * 0 2 |B 2
3 3| 3| 3 °e - o0 | 5] 3 3 13 3 o] 3 |3 | 3
4 3 4 4 ¢ o0 o0 52 4 4 * 4 4 * 0| 4 B 4
5 3 5 5 (I o0 53 5 5 * 5 5 * 0 5 3 5
6 3 6 6 e 00 54 6 6 * 6 6 * 0] 6 |3 6
7 3 7 7 o oo ce00| 55 7 7 * 7 7 «{ ol 7 |B | 7
8 3 8 8 | e eees 56 8 8 * 8 8 «lol 8 |B | 8
9 3 9 9 ocoz o| 57 9 9 * 9 9 * 1] 0 |3 9
: 3 A : e00 o 58 : 8-2 # : 8-5 Mi| 6| D |3 A
: 3 B : o eoe: oo 59 ; 11-8-6 |# ; 11-8-6 #1 4| E |B B
< 3 Cl| <or% ceece 60 < 12-8-4 | # < 12-8-6 M| 8| E |3 C
= 3 D = o eoece o 61 = 8-6 |# = 0-8-5 M|{ 2| D |B D
> 3 E|>or% |e eeecee 62 > 0-8-6 |# > 8-6 M O E |B E
? 3 F ? ec0-000 63 ? 0-8-7 # ? ALL OTHER | M 3 F
Key: * Keyson 026, 029, A 142 and A 150 Punch Correct Code. # Keyson 029, and A 160 punch correct code; multipunch on 026 and A 142.

M Muitipunch on 026, 029, A 142 and A 150,

| Keys on 029 and A 150 punch invalid code; muitipunch on 026, 029, A 142 and A 150.

(p,uod) H XIAN3ddV -

vH

USASCII) EBCDIC BCL

USASCH INTRNL L/TC INDEX || GRAPHIC K GRAPHIC K BUFFER TAPE

CHAR CODE GRAPHIC PAPER REG CHAR |CARD CODE| E CHAR |CARD CODE| g

, UP | LOW TAPE CODE |/ g , v v | up Low |ur Low
@ 4 0 @ °e 64 @ 84 * @ 84 *| 0 C |C 0
A 4 1 A e =+ el 65 A 12-1 * A 12-1 «l 8 1 |4 1
B 4 2 B o =+ o 66 B 12-2 * B 1222 I8 2 |4 2
C 4 3 C e + oo | 67 C 12-3 * C 12-3 +1 8 3 |cC 3
D 4 4| D o <o 68 D 12-4 * D 12-4 *Il8 4 |4 4
E 4 5 E oo se o 69 E 12-5 * E 12-5 +18 5 |C 5
F 4 6 F oo 00 | 70 F 12-6 * F 12-6 *| 8 6 |C 6
G 4 7 G e ceee| 71 G 12-7 * G 12-7 (8 7 |4 7
H 4 8 H o os 72 H 12-8 * H 12-8 I8 8 |4 8
I 4 9 I o0 o: o] 73 I 129 * I 129 1o o |C 9
3 4 A J o0 0s o 74 J 11-1 * J 11-1 (a4 1 |C A
K 4 B K e o ool 75 K 11-2 * K 11-2 (a4 2 |4 B
L 4 C L oo oce 76 L 11-3 * L 11-3 [a 3 |C C
M 4 D M L e eve o 77 M 11-4 * M 11-4 1 4 4 |4 D
N 4 | E N o eocee 78 N 11-5 * N 11-5 a4 5 |4 ‘E
0 4 F| o (00 eco0e| 79 o 11-6 * 0 11-6 +1 4 6 |C F
P 5 0 p ° o o 80 P 11-7 # P 11-7 1l a 7 |5 0
Q 5 1 Q o0 o - o 81 Q 11-8 % Q 11-8 +| 4 8 |D 1
R 5 2 R oo o o | 82 R 119 * R 119 +1s o0 |D 2
S 5 3 S ® o : 00 33 S 0-2 * S 0-2 12 2 |5 3
T 5 4 T (00 o <o 84 T 0-3 ¢ T 0-3 = 2 3 |D 4
U 5 s| U o s0 0 g3;5 U 0-4 * U 0-4 #0102 4 |5 5
\Y 5 6 \Y @ o +00 86 A 0-5 * \Y 0-5 *I2 5 |5 6
w 5 7 W o0 o -000 | g7 w 0-6 * w 0-6 *1 2 6 |D 7
X 5 8 X oo oo 88 X 0-7 * X 0-7 *fl2 7 |D 8
Y 5 9 Y ® o0: o 39 Y 0-8 * Y 0-8 [2 8 |5 9
z 5 A Z o oo: o 90 Z 0-9 * y4 09 (3 0 |5 A
[5 B |[or% ®e oo 00| 9] [12-8-2 M 1284 |M|| 8 C |D B
\ 5 C |\ord ® oece 92 - 11-8-7 # \ 11-8-7 M 5 C
] 5 D|lorcr [ee eese o 93] 11-8-2 M 0-8-6 M| 2 E |D D
A 5 E|Aor?® eo oco-00 94 + 12-8-6 # D E
- 5 F - ® o0c00e| 95 - 0-8-5 # - 0-8-2 M|| 2 A |5 F
~ 7 E|~or{ evce.0e | 126 / 12-8-7 # 1287 |M| 8 F |7 E
DEL. |7 F eeeesceee | 127 | DELETE | 1297 M F F

Key: * Keyson 026, 029, A 142 and A 150 punch correct code.
M Multipunch on 026, 029, A 142 and A 150.

Keyson 029 and A 150 punch correct code; multipunch on 026 and A 142.

| Keyson 029 and A 150 punch Invalid code; multipunch on 026, 029, A 142 and A 150.

(p3u03) H XIAN3ddV

APPENDIX |

TABLE OF INPUT CODE ASSIGNMENTS

A Table of Input Code Assignments provides the means by which any type of paper tape code (BCL,
etc.) may be read and interpreted into the Series L/TC internal code (USASCII). The table not only
permits any type of code (from any 5, 6, 7, or 8 channel tape), but also enables assigning any desired
character or certain functions to be interpreted from a particular code. Tables are available for such
common code sets as BCL, IBM 046, Friden and 5 Channel Teletype (Baudot); however, any other code
set (up to 8 channels or bits) may be incorporated.

Input tape that contains USASCII code does not require a table for conversion, but may use a table if
special functions are desired from certain codes. ‘

The conversion table, where required, is stored in the Normal (or user) area of memory and occupies up
to 16 words. Each code (character) in the tape is represented by a pattern of punches in one position
(or frame) which constitutes a unique configuration of “bits.” As codes are read from tape, each code
references its own character position in the conversion table based on its “bit” configuration. In other
words, the bit configuration of the code serves as an “address” to a specific position in the table. The
‘way in which that code is interpreted is determined by the internal code value that the programmer has
+placed in that position of the table. The tables available represent “standard” interpretations of characters
and functional codes. The internal code representing an input code may be changed in the table to suit a
user’s particular need and give any desired interpretation as outlined in the following paragraphs.

INPUT FUNCTIONS FOR 6, 7, or 8 CHANNEL TAPE BASED ON THE TABLE OF CODE ASSIGNMENTS

An input code is interpreted in any one of the following ways depending on the internal code placed in
its position in the table (does not apply to 5 channel code):
1. Interprets the incoming code as one of the Series L/TC printable (graphic) characters when the
internal code for that character is contained in that position of the table.
2. Ignores the incoming code when the Series L/TC internal code for Ignore is contained in that
position of the table.

3. Interprets the incoming code as an invalid character when a forced parity error is contained in
that position of the table. This turns on the Invalid Code Indicator Light and sets Reader
Invalid Code flag.

4. Causes the incoming code to set any or all of the flags of one flag group (the Y or K flag
groups). The flags can then be tested as part of the user program, to provide alternate results.
Codes that set the Y or K flags also terminate the read instruction. Incoming codes interpreted
in this manner serve as Field Identifier codes and do not provide a printable Series L/TC
character. '

5. Causes the incoming code to set any or all of the Accumulator (A) Flags during a Read
Numeric instruction. This permits numeric data to be read as minus and/or identified uniquely
(as per hundred, etc.). The flags can then be tested to cause alternate results as part of the
user program. Codes that set the Accumulator Flags do not terminate the Read instruction;
therefore, they can be located in any character position in the data field on the tape. They do
not provide a printable character during read-in, but as in the case of the Sign flag, subsequent

Print Numeric instructions can be affected.

The codes described in paragraphs 4 and 5 above may or may not correspond to those codes that are
normally considered “control” or ‘“functional” in a given code set, depending on the interpretation value
given to them in the table by the programmer.

APPENDIX | (cont'd)

FIRMWARE SUBSETS FOR THE TABLE OF CODE ASSIGNMENTS

Specific GP 300 Firmware subsets are provided with paper tape input/output capability. However, the
Table of Code Assignments is usually loaded into memory as part of the user program load procedure.
This permits using various code sets at different times with the same user program, or permits use of a

different code set with each separate user program without changing the firmware, with certain
exceptions:

1. Input with any code set requiring conversion to the internal code (USASCII), with a table of
code assignments, requires a firmware subset that provides ‘“‘table look-up.” Input with
USASCII does not require “table look-up” firmware since no conversion is necessary.
However, various code sets can be used as input to the same system, along with USASCII, so

long as “table look-up” firmware is used and a table of code assignments is provided for each
code set including USASCIIL.

2. Firmware for 5 channel code includes “table look-up” capability; however, it is different than
firmware for 8, 7, or 6 channel code, or for USASCII (no table look-up).

USASCII PAPER TAPE CODE WITHOUT TABLE LOOK-UP FIRMWARE

When USASCII is the paper tape input code, a table of code assignments is not required, and a separate
Firmware subset is provided.

The following chart shows the code that represents each of the USASCII characters on tape (even
parity). Each character is represented by two hexadecimal digits: the left for the upper four bits, the
right for the lower four bits. As the tape is read and after parity checking, the parity bit (b8) is set to
zero before the character is stored in memory; therefore, if a tape code’s upper four bits are A, B, C, or
D, they would become 2, 3, 4, or 5 memory respectively. (See Appendix D.)

Sp A0 0 3,0 @ C 0 P 5,0
! 2,1 1 B, 1 A 4,1 Q D, 1
« 2,2 2 B, 2 B 42 | R D, 2
A3 3 3,3 C C 3 S 53
$ 2, 4 4 B, 4 D 4, 4 T D, 4
% A,S 5 3,5 E G S U 55
& A6 6 3,6 F C 6 \Y% 5,6
’ 2,17 7 B, 7 G 4,17 w D, 7
(2,8 8 B, 8 H 4,8 X D, 8
) A, 9 9 3,9 I C 9 Y 5,9
* A A : 3,A J C A zZ 5 A
+ 2,B ; B,B | K 4, B 3/4() D,B
, A, C B 3,C L C C ¢) 5,C
- 2,D = B,D M 4,D CR() D,D
) 2,E %“(>) B,E N 4, E ° ("™ D,E
/ A F ? 3,F o} CF _ 5, F

DEL F,F <>(~) 71,E

APPENDIX | (cont'd)

FIELD IDENTIFIER (TERMINATION) CODES: The following chart shows the paper tape USASCII
control codes which cause tape read instructions to be terminated, and some of which set a specified
flag pattern. Each code is represented by two hexadecimal digits. Codes in column 1 of the table set the
“K” flags. These codes do not enter into memory.

USASCII COLUMN 0 FIELD IDENTIFIER CODES** USASCII COLUMN 1 FIELD IDENTIFIER CODES
FLAG PATTERN FLAG PATTERN
SET BY CODE* PAPER TAPE SET BY CODE*
PAPER TAPE Y FLAG NUMBER VALUE OCK FLAG NUMBER
CODE VALUE 3 2 1 4 CODE a, b 3 2 1 4
NUL 0,0 0 0 0 o DLE 9,0 0 0 0 o0
SOH 8,1 0 0 0 1 DC1 1,1 0O 0 o 1
STX 82 0 o0 1 0 DC2 1,2 0 o 1 0
ETX 0,3 0 0 1 1 DC3 9,3 0O o0 1 1
EOT 8,4 0 1 0 o0 DC4 1,4 0 1 0 O
ENQ 0,5 0 1 0 1 NAK 9,5 0O 1 o0 1
ACK 0,6 0 1 1 0 SYN 9,6 0 1 1 0
BEL 8,7 0 1 1 1 ETB 1,7 0 1 1 1
BS 8,38 10 0 0 CAN 1,8 1 0 0 o
HT 0,9 1 0 o0 1 EM 9,9 1 0 0 1
IF 0,A 1 0 1 0 SUB 9,A 1 0 1 0
VT . 8,B 1 0 1 1 ESC 1,B 1 0 1 1
FF 0,C 1 1 0 o0 FS 9.C 1 1 0 0
CR 8,D 1 1 0 1 GS 1,D | D | 0 1
SO 8,E 1 1 1 0 RS 1,LE 1 1 1 0
SI. O,F 1 1 1 1 UsS 9.F 1 1 1 1

*0 = flag is reset; 1 = flag is set

**Firmware sets are available which prevent the setting of the Y flags when these codes are read.

The NUL code is the same as a sprocket feed code in that no channels are punched in a frame, and
thus, it functions differently than the other field identifier codes. During a read tape instruction, it is
ignored (treated like a delete code — DEL) until the first significant character of data is read. If
encountered after the first significant character, it will then be treated as a field identifier code and will
terminate the read instruction. It should not be used for a field identifier code if a variable field of data
would ever contain no significant data but only a field identifier code. This would cause the NUL code
to be ignored, since a significant character was not read, and it would not serve its intended function to
terminate the instruction. This would result in the paper tape getting out of step with the program.

The END OF ALPHA (code 0,0) is the same as the NUL code.

The DEL (Delete) code is completely ignored by all paper tape read instructions, and does not count as
a character read. It consists of a punch in all 8 channels in a frame of tape.

APPENDIX | (cont'd)

TAPE CODES ACCUMULATOR
FLAGS*

M C S -

A0 C,0 5,0 0 0 0 O
21 4,1 D, 0 0 0 1
2,2 4,2 D,2 0 0 1 0
A3 C,3 5,3 o 0 1 1
2,4 4,4 D,4 0 1L 0 0
A5 C5 5,5 0o 1 0 1
A6 C,6 5,6 o 1 1 0
2,7 4,7 D,7 0o 1 1 1
2,8 4,8 D,8 1 0 0 0
A9 C,9 5,9 i 0o o0 1
AA 3A CA 5A 1 0 1 O
2,B B,B 4B D,B 1 0o 1 1
AC 3¢ CC 5,C 1 1 0 0
2,D B,D 4D D,D 1 1 0 1
2,E B,E 4E D.E 7,E 1 1 1 0
AF 3F CF 5.F 1 1 1 1

TABLE OF OUTPUT CODE ASSIGNMENTS

When a code set other than USASCII is desired in the output tape, or when certain variations may be
desired in the USASCII set, a Table of Output Code Assignments may be used. This permits output into
any 5, 6, 7, or 8 channel code without modification to the Perforator. Output in USASCII code does
not require a table. ‘

The table is loaded into a Normal memory area and occupies up to 16 words.. The loading may
accompany regular loading of user programs. This table is a separate table from the Table of Input Code
Assignments described above. Each Series L/TC internal character selects a particular character position
in the output table. The 8-bit code that is put in each character position of the table is the code that
‘will be punched into the output tape.

Normally, the Punch Code (XC) instruction will be used to punch field identifier (functional) codes.
However, since any of the Series L/TC internal characters, through the table, can cause any 8-bit code
to be punched, field identifier codes may be punched in this manner also.

14

APPENDIX I (cont'd)

The programmer may construct an output table to achieve any desired output code. However, tables are
available that contain “‘standard” values for the following code sets:

BCL/IBM 8 channel
Friden ‘ 8 channel
USASCII 8 channel
Teletype 5 channe] (Baudot)

The bit configuration of most Friden tape codes is the same as BCL. However, many of the functional -
code names given to the various codes are different, and for that reason a table is provided for ease in
interpretation.

FIRMWARE SUBSETS FOR THE TABLE OF CODE ASSIGNMENTS

The firmware which includes “table look-up” for conversion of the internal code to the output code is
different than firmware which does not use “table look-up” (output in USASCII). Thus, a USASCII
table is available for use in systems that require “table look-up” firmware due to varying output code
requirements. r :

NOTE: Output in 5-channel tape code requires firmware that is different from either 8-channel ““table
look-up’ firmware or for output in USASCI} without ‘‘table look-up.”

APPENDIX J

GP 300 TIMINGS

This section contains the timings for GP 300 instructions as recorded by tests on Firmware Set
2-1002-001-02. The timings are averages depending upon two factors:

1. The Firmware Set being used.

2. The context in which the particular macro instruction appears, in particular fetch time and
other disk position considerations.

TIMINGS

The following instruction timings were measured on firmware set 2-1002-001-02, with the instruction
placed in syllable zero. When an instruction is placed in syllable three (3) or the execution of the
instruction causes a word boundary to be crossed, an additional 10 to 20 milliseconds will be required
for a new instruction word access.

When the keyboard extension buffers are full and the hardware buffer (A3) contains at least three (3)
characters an additional 10 ms must be added to every macro instruction.

This condition could occur with 13 entries in the buffers. The following is a typical example of this
condition.

EXT. BUF 1 EXT. BUF 2 EXT. BUF 3 EXT. BUF 4
901 234 OAB CDE
C C
K

|
PREVIOUSLY PROCESSED

HARDWARE BUFFER

FGH

The 9 and one OCK were processed on the last keyboard instruction. Extension buffer 1 now contains 1
entry to be processed. Extension buffers 2, 3, and 4 each contain 3 entries.

When the hardware buffer receives 3 or more entries an attempt will be made to unload the hardware
buffer. Since the extension buffers are full the unloading cannot take place. Thus, an additional 10 ms
cycle will occur with each new instruction fetched, until at least one buffer is emptied and the hardware
buffer is unloaded.

MACRO INSTRUCTION EXECUTION TIME IN MS
ADA 50
ADIR ’ 20
ADK 30
ADM 70
BRU 20
CHG 20

APPENDIX J (cont’d)

MACRO INSTRUCTION

CLA
CLM
CPA
DIR
DIV
EX
EXE
EXL
EXZ
IR
INK
LIR
LKBR
LLCR
LLLR
LOD
LPKR
LPNR
LRCR
LRLR
MOD
MUL
MULR
NOP
PKA
PKB
POS
REM
RR
RST
SET
SK
SKE
SKL
SKZ
SLRO
SLROS
SRJ
SRR

SUA
SUK
SUM
TAIR
TRA
TRM

Stack address
Stack address
Stack address
Stack address

EXECUTION TIME IN MS

[OS I S Il e

20
40

.60

20
*
20
20
20

20

20
20
20
20
30
30
30
30
30
30
30

30

*
%

10
20
20
10
30
20
20
20
20
20
20
20

%
%

40

= 50
= 60

70
80
50
30
70
50
30
30

SEE NOTE 2

SEE NOTE 3
SEE NOTE 3

SEE NOTE 4

SEE NOTE 1
SEE NOTE 1

APPENDIX J (contd)

The following instructions are variable, since mechanical synchronization is required. These may vary
from machine to machine. The minimum and maximum execution times shown were measured on
machine serial #Q1001P.

MACRO INSTRUCTION FORMS COMMANDS EXECUTION TIME IN MS
ALARM 20-50
AL 1 LINE 60-80
10 LINES 480-520
AR 1 LINE 60-80
10 LINES 480-520
ALR 1 LINE 60-80
ALTO 10 LINES 550-590
ARTO 10 LINES 550-590
CC 210-280
OoC 210-280
PRINT COMMANDS *SEE NOTE 4
PA Per character 50 ms
PC 30-70
PC+ a) If no print occurs 10
PC— b) If print occurs 30-70
PN a) First digit or punctuation

printed is 90-120 ms; all
succeeding places are 50

ms each

b) 10 ms per digit or
punctuation suppressed.

An additional 250 ms will be required for the first printing instruction encountered after exiting the
READY MODE unless the carriage is closed prior to executing one of the following instructions.

PA PN

PC PNS+
PC+ PNS—
PC—- TK
PCP TKM

KEYBOARD COMMANDS

NK
40 ms per digit
80 ms per OCK
110 ms per PSK
*SEE NOTE 5
*SEE NOTE 6

J-3

APPENDIX J (cont'd)

TK
BASE = 20-50 ms (due to mechanical Timing)
CHARACTER = 50 ms
OCK = 100 ms — from hardware buffer
OCK = 110 ms — from extension buffer
PSK = 130 ms — from hardware buffer
PSK = 140 ms — from extension buffer
*SEE NOTE 5
*SEE NOTE 6
TKM
BASE = 20-50 ms
CHARACTER = 50 ms
OCK = 100 ms — from hardware buffer
OCK = 110 ms — from extension buffer
PSK = 130 ms — from hardware buffer
PSK = 140 ms — from extension buffer
*SEE NOTE 35
*SEE NOTE 6
30 ms required to load each word to
memory. This will occur every
8 characters or upon receiving
a termination code.
EAM
CHARACTER = 40 ms
OCK = 100 ms — from hardware buffer
OCK = 110 ms — from extension buffer
PSK = 130 ms — from hardware buffer
PSK = 140 ms — from extension buffer

30 ms required to load each word to
... memory. This will occur every
8 characters or upon receiving
a termination code.

*SEE NOTE 5
*SEE NOTE 6

J4

APPENDIX J (cont'd)

NOTE 1
Shift Timing
SLRO
SLROS
Base = 30ms
0-3 shifts = 10ms
4-6 shifts = 20ms
7-9 shifts = 30ms
10-12 shifts = 40ms
13-15 shifts = 50 ms
Compute number of shifts left
and number of shifts right.
NOTE 2
Divide

1. a. Set down dividend (15 digits) followed by 15 zeros.
Subtract divisor from dividend and repeat until dividend is smaller than divisor.

c. Using the number of successful subtractions:

Forno. = 0 to 3 set down 10 ms
Forno. = 4 to 8 set down 20 ms
For no. =9,10,11 . set down 30 ms

d. Shift divisor one place to the right and repeat steps a, b, ¢, d for 15 times.
e. Add base timing of 70 ms to total obtained above.
Multiply scale factor by 10 ms and add to total obtained in e.

NOTE 3
Multiply

1. Set down scale factor.
2. When scale factor is not equal to zero:
a. Examine the accumulator contents for timing purposes.
b. For each accumulator digit starting least significant digit.
Oto6 set down 10 ms

For digit

For digit = 6 to 9 set down 20 ms
c. Subtract 1 from scale factor and repeat steps 2 a, b, ¢ until scale factor becomes zero.

APPENDIX J (cont'd)

3. When scale factor = zero ‘
Oto3 set down 10 ms

a. For digit =
For digit = 4t0 8 set down 20 ms
For digit = 9 set down 30 ms

b. Repeat step 3a for each digit of accumulator until most significant digit of accumulator
contents is reached.

c. Add base timing of 70 ms to total obtained above.
NOTE 4
Positioning

Carrier positioning time must be added to the following instructions.

TK PA
TKM PC+
PC-
PN
Positioning Timings:
0-6 positions - 300 ms ,
6-150 positions - 300 ms + 5 ms for each position beyond 6

NOTE 5

When the extension buffers each contain entries, the buffer full flag will be set. When the first
extension buffer word is completely processed, an additional 10 ms is required to reset the buffer
full flag. ‘

NOTE 6

10 ms must be added to the last entry when processed from each of the extension buffers or the
hardware buffer. |

APPENDIX K

MODIFICATIONS NECESSARY TO THIS MANUAL FOR PROGRAMING
THE 40 TRACK STYLE SERIES L

Previously presented information in this manual applies only to 32 Track Styles of the Series L except
for Assembler VI which utilizes the 40 track styles of the Series L. This appendix details all the
additional information needed to utilize this assembler manual when programing the Extended Memory
Styles.

An object program which was assembled for a 32 track system will operate on a 40 track system using
40 track firmware, except for the REM instruction. An object program which was assembled for a 40
track system will operate only on a 40 track system.

GP 300 OPERATION CODE MODIFICATIONS

Forty track systems allow the use of any GP 300 instruction explained in this manual except for the
- Data Communications Message Handling instructions, see pages 2-62 to 2-87. All user memory may
contain program data or any other desired data. However, certain instructions do not permit referencing
memory locations above word 511. These instructions are listed in Table K-1 below:

INSTRUCTIONS
ADA
CLM
CPA

DIV
MUL
MULR
SUA
XA

Table K-1

Instructions which only can reference words O to 511 of user memory

It is essential that the instructions contained in Table K-1 be borne in mind when moving or
accumulating data in memory. Generally, the machine language codes are the same for either 32 track or
40 track systems. Examine Appendix B, Table 1 for the 32 track system machine language codes. Table
K-2 contains the machine language codes for 40 track systems. '

MACHINE LANGUAGE CODE

INSTRUCTION FOR WORDS OP CODE PARAMETER REFERENCE
UPPER LOWER | UPPER LOWER

ADM ' 0-255 8 0 O-F O-F
256-511 -8 1 O-F O-F
512-767 8 2 O-F O-F

BRU 0-255 7 0 O-F O-F 1
256-511 7 1 O-F O-F 1
512-767 7 2 O-F - O-F 1

APPENDIX K (cont’'d)

MACHINE LANGUAGE CODE

INSTRUCTION FOR WORDS OP CODE PARAMETER REFERENCE
UPPER LOWER UPPER LOWER -
LCFR 0-255 D C O-F OF
256-511 D D O-F O-F
512-767 D E OF OF
LKBR 0-255 F 0 O-F OF
256-511 F 1 O-F O-F
512-767 F 2 O-F O-F
LPKR 0-255 F C O-F OF
256-511 F D OF OF
512-767 F E O-F O-F
LPNR 0-255 F 8 O-F O-F
256-511 F 9 O-F O-F
512-767 F A O-F O-F
PA 0-255 lorC 8 O-F O-F 1
256-511 lorC 9 OF O-F 1
512-767 A OF O-F 1
REM 0-767 3 B 4 1
SRJ 0-255 2 0 O-F O-F 1
256-511 2 1 O-F O-F 1
512-767 2 2 O-F OF 1
SUM 0-255 9 0 OF OF
256-511 9 1 O-F O-F
512-767 9 2 OF O-F
TRA 0-255 3 8 O-F OF
256-511 3 9 O-F OF
512-767 3 A O-F O-F
TRM 0-255 3 0 O-F OF
256-511 3 1 OF OF
512-767 3 2 OF OF
XPA 0-255 1 C O-F O-F
256-511 1 D OF O-F
512-767 1 E O-F O-F
OR
0-255 C A O-F O-F
256-511 C B O-F O-F
Table K-2

APPENDIX K (cont'd)

REFERENCE:
1. OP code lower digit requires modification according to word syllable.
Modify thusly:

Syllable 0 add O to previous value
Syllable 1 add 4 to previous value
Syllable 2 add 8 to previous value
Syllable 3 add 12 to previous value

Example:
What is the machine language code for the instruction “Branch to word 625 syllable 2°*?
Examine table K-2.

The OP code upper and lower for a branch to word numbers between 511 and 676 are 72. Reference 1
indicates add 8 to OP code lower (2+8=A) resulting in 7A.

The hexadecimal value for the difference between word 625 and word 511 (625-511=114) is 72.
The machine language code becomes 7A72.
ASSEMBLING PROGRAMS FOR 40 TRACK SYSTEMS

The information below is the only material which is needed in addition to Section 5 when attempting to
assemble a symbolic program whose object program will function in an environment which allows
extended memory macro programs.

Assembler | pages 5-1 to 5-16
L/TC (32 track) Environment Paper Tape 1/O version

When EXTMEM prints on the journal, depress OCK 1 to indicate this is an assembly for a 40 track
Style L. See page 5-1.

Assembler 11 pages 5-17 to 5-21
L/TC (32 track) Environment 80 Column Card I/O version

The control card $§ EXTMEM indicates that the object pfogram will utilize firmware which allows a
macro program of 767 words.
See page 5-17.

Assembler 111 pages 5-22 to 5-34
B 3500 Environment

The option EXTMEM will indicate that the size of user memory is 767 words.
See page 5-22.

APPENDIX K (cont'd)

Assembler 1V pages 5-35 to 5-38
B 5500 Environment

The option EXTMEM will indicate that the size of user memory is 767 words
See page 5-35.

Assembler V pages 5-39 to 5-49
B 300 Environment

The control card $ EXTMEM signals the assembler that the object program will operate in a system
which allows 767 words of user memory.

Assembler Vi pages 5-50 to 5-65
L (40 Track) Environment

This is the Papér Tape 1/O, Series L Keyboard Assembler for a 40 Track Style L. Reference the pages
indicated above.

PROGRAMING CONSIDERATIONS

Due to the fact that some instructions cannot reference user memory locations above word 511, it is
necessary that all constant data and working data be assembled in memory locations below word 511.
The remaining memory is then used for program instructions.

The following example illustrates a generally used programing principle to obtain the results described
above.

Example:

The three rectangles above illustrate a technique to have the working and storage area of the program
assembled below memory word 511.

K-4

APPENDIX K {(cont’d)
Rectangle 1 represents word 0. The first three syllables (0, 1, 2) contain programing. Syllable 4 contains
a branch around rectangle 2 to rectangle 3.
Rectangle 2 contains the working-storage area.
Rectangle 3 contains further programing as required for data manipulation.

The following sample program illustrates the technique described above.

LABEL OP CODE A B C
LLLR 35
LRLR 15
LPKR PKEYS
BRU BEGIN
TOTALS nglG 200
ZERO NUM 0
STORE REG 150
BEGIN NK 5 1

With the expanded memory size it may become necessary to clear a memory area larger than 255 words.
This cannot be accomplished, easily, in a single loop since Index Registers have a maximum value of

255.

The following technique is recommended:

OP CODE A +/— INCREMENT B c
LIR 1 0
MOD 1
CLM TOTAL
MOD 1
CLM TOTAL + 200
IR 1 : 199
SK T I |
BRU - 6

The above programing clears 400 words of memory beginning with the word number referenced by
TOTAL.

Example:

This example illustrates a method to reference an array of memory larger than 255 words. Controlling
such an array of memory must be accomplished by examining the indexing value and changing the base
address for values over 255.

Problem: Accumulate sales by 500 product codes (in words 1 to 500).

APPENDIX K (cont’d)

The programing segment below utilizes the fact that Index Registers have a capacity of 255. When a
value transferred to an Index Register exceeds 255, only the difference between that value and 256
remains in the Index Register. See page 2-37. :

LABEL OP CODE A B C_ REMARKS
SRJ CLEAR
LPNR PMASKS
BRU BEGIN
ORG 1

TOTAL 1 REG 500

BEGIN AL 1
POS 10
NK 3 0 Enter Product Code
SKL 2 5 Valid Code 0-499
ALARM
BRU -3
TRM CODE Store Valid Code
PN 2 0 Print Code
POS 16
NKR 8 0 Enter Amount
PNS— 7 1 Print Amount
TRM AMOUNT Store Amount
TRA CODE
TAIR |
SUA LIMIT Compare Code to 256
EX A —
TRA AMOUNT Under 256
MOD 1
ADM TOTAL 1
SK A -
TRA AMOUNT
MOD 1
ADM TOTAL 1 Use Base of 1
SK A — Equal to or above 256
MOD 1
ADM TOTAL 2 Use Base of 257
BRU BEGIN

TOTAL 2 DEF 257

APPENDIX L

MODIFICATIONS NECESSARY TO THIS MANUAL FOR PROGRAMING THE TC 700

Appendix L defines the additional information required to program the TC 700 utilizing this manual.
This information includes two classes of flags to be interrogated with the basic SKIP and EXECUTE
macro instructions and a condensed numeric printing ability implemented by the basic PRINT
NUMERIC instructions.

FLAG INSTRUCTIONS

The lock flags and passbook signal flags may be interrogated using the SKIP and EXECUTE instructions
(see page 2-48). They cannot be referenced with the SET, RESET, LOAD or CHANGE macro
instructions.

Lock Flags (V flag group)

Three flags are provided which test the status of the Teller 1 lock, Teller 2 lock and Supervisor lock.
These are: :

Flag V1 for the Teller 1 flag

| Flag V2 for the Teller 2 flag
Flag V3 for the Supervisor Override Flag
Flag V4 is not used

When the Teller 1 key is inserted in its lock and turned, the Teller 1 flag will be set. When the key is
removed from its lock, the Teller 1 flag will be reset. The same applies to the Teller 2 key and the
Supervisor key.

INSTRUCTION OP CODE _A B C
Skip if any flags SK \"/ 123 1-4
Skip if every flag SKE \" 123 1-4
Execute if any flags EX A" 123 1-4
Execute if every flag EXE A" 123 1-4

Passbook Signal Flags (W flag group)
Three flags test the sensors in the passbook alignment area. These are:
| Flag W4 for 1st Print Line
Flag W1 for Passbook Fold
Flag W2 for Last Line
Flag W3 not used

When the Passbook is inserted to the fixed rear limit, the 1st Print Line Flag will be set. It will be reset
at all other times. When the Passbook is so situated in the alignment area that the current print line will
fall within the passbook fold area, the Passbook Fold Flag will be set. It will be reset when this
condition does not exist.

-1

APPENDIX L (cont'd)

When the Passbook is so aligned that the current print line is below the last printing line of the
Passbook, the last Print Line Flag will be set. It will be reset when the passbook is aligned to any of the
actual printing lines of the book.

A separate Passbook Present Flag does not exist. This condition can be determined by testing for the
NOT SET condition of the Last Line Flag. This result occurs because if a passbook is present in the
alignment mechanism and is aligned to any of the possible posting lines of the passbook, the Last Line
Flag will be reset. The flag will be set if the passbook is aligned to the line below the last print line or if
there is no passbook in the mechanism at all.

INSTRUCTION OP CODE A B C
Skip if any flags SK \' 124 1-4
Skip if every flag SKE W 124 1-4
Execute if any flag EX W 124 1-4
Execute if every flag EXE W 124 1-4

Machine language code for V and W flag groups.
Reference the appropriate SKIP or EXECUTE instruction in Appendix B.
Use the weights:
Parameter upper position:
V flags use E
W flags use F

Parameter lower position:

_FLAG WEIGHT
W1 or V1 2
W2 or V2 4
W3 or V3 8
W4 or V4 1

PRINT IN PLACE CAPABILITY

The ability to print in place is actuated by the insertion of a dash (-) in digit position 15 of the mask
word. This will print the comma (,) and period (.) without letting the printer actually escape the 1/10
inch normally permitted.

L-2

ALPHABETICAL INDEX

A Execute Instructions — 2-48
Accumulator — 2-3 F

Add Constant to Accumulator — 2-24 -

Add to Accumulator — 2-24 Field Identifier Code — 2-74
Add to Index Register — 2-36 Field Length — 1-3

Add to Memory — 2-24 Flags — 2-3; 2-33

Advance Left Platen — 2-21 Flag Instruction — 2-33

Advance Left and Right Platen — 2-21 Forms Control Instructions — 2-20
Advance Left to — 2-21 Forty Track Style Series L — K-1
Advance Right Platen — 2-21

Advance Right to — 2-21 ' G

Alarm Instruction — 2-53 -

Alphanumeric Data — 1-4 H

Alphanumeric Printing from Memory — 2-16

Alpha Word - 2-2; 2-11 1
A Parameter — Label — 1-3 -
A Parameter — +/- Increment — 1-3 Increment Index Register — 2-37
Arithmetic and Data Movement Instructions — 2-24 Increment Receive Character Pointer — 2-67
Assembler — 5-1 Insert Constant in Accumulator — 2-26
Assembler I — Paper Tape Version — 5-1
Assembler IT — 80-Column Card Version — 5-17 J
Assembler III — B 3500 Version — 5-22 -
Assembler IV — B 5500 Version — 5-35 K
Assembler V — B 300 Version — 5-39 -
Assembler VI — 40 Track L Version — 5-40 Keyboard Error Indicator — 2-5
B L
B Parameter — 1-4 Label — 1-2
Branch — Decision Instructions — 2-44 Line Advance Instructions — 2-21
Branch Unconditional — 2-44 Load Expected Transmission Number — 2-84
Load Flags Instruction — 2-34
C Load Index Register — 2-37
B Load Keyboard Base Register — 2-9; 2-68
Card Instructions (80 Column) — 2-96 Load Left Count Register — 2-21
Change Flags Instructions — 2-33 Load Left Limit Register — 2-21
Check Digit Instructions — 2-54 Load Memory from Card — 2-96
Clear Accumulator and Insert Constant — 2-25 Load Polled Flags Register — 2-86
Clear Memory Word — 2-25 Load Position Register Instruction — 2-15
Close Carriage Instruction — 2-20 Load Print Numeric Base Register — 2-12; 2-57
Coding Form Heading — 1-1 Load Program Key Base Register — 2-8
Coding Form Page Number — 1-1 Load Punch Count Register — 2-94
Compare Alphanumeric Instruction — 2-47 Load Receive Address — 2-82
Computing Shift Factor — 2-27 Load Receive Buffer Register — 2-67
Constant Data — 14 Load Right Count Register — 2-21
Control Cards — Assembler II — 5-17 Load Right Limit Register — 2-21
Control Cards — Assembler III — 5-23 Load Send Address — 2-80
Control Cards — Assembler IV — 5-35 Load Send Transmission Number — 2-83
C Parameter — 1-4 Load Shift Register — 2-27
Cross Reference Table Between Program Definition Chart L/TC Character Set — D-1
and Assembler III Output Sequence Number ~ 4-70
M
D >
Mask Control Code — 2-13
Data Communications Instructions — 2-62 Mask Flags — 2-14
Decrement Index Register — 2-36 Mask Word - 2-13
D Flag Group — 2-79 Memory Load — 80-Column Card — 6-1
Division Instruction — 2-29 Memory Organization — 2-1
Memory Word Organization — 2-1
E Miscellaneous Instructions — 2-53
. Modify by Index Register — 2-37
Enter Alpha into Memory Instruction — 2-11 Multiplication Instruction — 2-28
Establish Record Areas — 2-66 Multiply with Rounding —~ 2-29
Execute if Accumulator Zero — 2-48
Execute if Any Flag — 2-50 N
Execute if Digit Less than Constant — 2-49 -
Execute if Every Flag — 2-51 NOP Instruction — 2-53

One

ALPHABETICAL INDEX (continued)

Numeric Keyboard Instructions — 2-4 Skip if Digit Less Than Constant — 2-49
Numeric Printing Instruction — 2-16 Skip if Every Flags — 2-53
Numeric Word — 2-1 Skip Instructions — 2-48

Stop Instruction — 2-53
Y] Subroutine Jump — 2-45

Subroutine Return — 2-45
Object Program Loading — 6-1 : Subtract Constant from Accumulator — 2-30
Open Carriage Instruction — 2-20 Subtract from Accumulator — 2-30
Operation Assembler III — 5-25 Subtract from Memory — 2-30
Operation Code — 1-2 Symbolic Programing Procedures — 3-1

Operation Control Keys — 2-7 ‘
Option Control Cards — Assembler III — 5-23

Option Control Cards — Assembler IV — 5-36 T
ion Control Cards — A, V - §-
Option Control Cards ssembler 5-39 TC 700 — L-1
P Transfer Accumulator to Index Register — 2-37

- Transfer Character to Memory Instruction — 2-73
Paper Tape Instructions — 2-87 Transfer ReceiYe Buffer to Record Area — 2-68
Phase I Assembler I — 5-1 ' Transfer Remainder to Accumulator — 2-32
Phase II Assembler I — 5-13) Transfer Send Record Area to Memow Instruction — 2-72
Transfer to Accumulator as Numeric — 2-69
Transfer to Memory — 2-31

Transfer to the Accumulator — 2-31

Transmit Buffer — 2-64

Transmit Ready State — 2-63

Type Instruction — 2-10

Type into Memory Instruction — 2-10

Platen Control Register Instructions — 2-21

Print Alpha from Memory (D.C.) — 2-71

Print Alpha from Memory Instruction — 2-16; 2-92
Print Format (Mask) Word — 2-13

Print Format Word — 2-2

Print Instructions — 2-12

Program Execution — 2-2

Program Identification — 1-1 U
Program Keys — 2-7 : -
Program Word — 2-2 v
Program Wiiting — 3-1 -
Programing Example — 4-1
Punch Feed Codes — 2-95
Punch Flags — 2-95

Variable Length Field — 2-74

v
2 X
: y
Read Alpha and Print — 2-88 z

Reader Flags — 2-95

Reading Punched Cards — 2-97

Receive Buffer — 2-64

Receive Ready State — 2-62

Remarks — 1-4

Reset Flags — 2-35

Retrieve Expected Transmission Number — 2-83
Retrieve Pointer Register — 2-84

Retrieve Polled Flags Register — 2-85
Retrieve Receive Address — 2-82

Retrieve Send Address — 2-80

Retrieve Send Transmission Number — 2-83
Retrieve Transmission Header — 2-84
Retrieve Transmission Number — 2-84
Retrieve Two/Four Wire Register — 2-86
Ribbon Shifts — 2-17; 2-18; 2-19

S

Sequence Number — 1-1

Set Flags — 2-35

Set Receive Character Pointer — 2-67

Set Send Character Pointer — 2-68

Shift Off Instruction — 2-32

Shift Off with Sign — 2-33

Single Character Print Instruction — 2-18
Skip if Accumulator Zero — 2-48

Skip if Any Flag — 2-51

Two

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	013
	014
	1-01
	1-02
	1-03
	1-04
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-01
	C-02
	D-01
	E-01
	E-02
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	L-01
	L-02
	X-01
	X-02
	xBack

