
CARNEGIE-IVIELLON UNIVERSITY

DEPARTMENT OF COl\1PUTER SCIENCE

SPICE PROJECT

User Manual for Mint -

The Spice Document Pr~paration System

Peter Hibbard

3 April 83

This document describes version 2A(21) of Min('the S"piCeDoctitricnfFotmatter,. This is an early'diaf(iand
not all the facilities of :Mint are accurately described. The whole of the document has been produced by
Mint and DP, executing on a Perq under POS.

Spice.OoeuriienfS153

Keywo'rds and index categories: ~0rte

Location, ofmachiIie-readable ,file: refi,nan.mss

Copyright © 1983 'Peter Hi])bard '

This is an internal working document of the Computer Science,'Department, Carnegje"Mel1onUni"e~ity,
Schenley Park, Pittsburgh, PA 15213. Some of the ideasexpress~Qin this document maybe.ohl'y:partla11y
developed, or may be erroneous. Distribiition ofUlisd'ooument outside the immediate working comtrilmity
is discouraged; publication of this document is forbidden.'

1 Getting Started
1.1 Mint and Scribe
1.2 Getting Started

Table of Contents

1.2.1 Loading Mint onto a Perq
1.2.2 Running Mint

1.3 What to do in case of trouble
1.3.1 Reporting Errors

1.4 The Future

2 Design Philosophy
2.1 Introduction
2.2 Three Scenarios

2.2.1 Interactive document creation and editing
2.2.2 Second Scenario
2.2.3 Third Scenario
2.2.4 Discussion

2.3 Model
2.4 Structure and Implementation
2.5 Status
2.6 Acknowledgements

3 Overview of Mint features
3.1 Major Omissions
3.2 Environments

3.2.1 Box Environments
3.2.2 Modification of Box Environment Parameters
3.2.3 Slug Environments

3.3 Tabulations
3.4 Labels and Tags
3.5 Page Layout
3.6 Document Types
3. 7 Other Features

3.7.1 Include and Value
3.7.2 Plot and DP
3.7.3 Macrogenerator
3.7.4 Bibliographies
3.7.5 Running Mint

3.7.5.1 Cross-Proofing
3.7.5.2 Error Reporting
3.7.5.3 Performance

3.7.6 Examples

4 Reference Section
4.1 Input conventions
4.2 Document syntax

1
1
2
2
2
4
4
5

7
7
8
8
8
9
9

10
11
13
14

15
15
16
16
18
18
18
18
19
19
19
19
19
20
21
21
21
21
21
22

23
24
25

ii

4.2.1 Syntactic metalanguage
4.2.2 Pseudo-Syntactic properties
4.2.3 Nonterminals
4.2.4 Production rules common across several document types

4.2.4.1 Document environment syntax
4.2.4.2 Terminal environment syntax
4.2.4.3 Heading environment syntax
4.2.4.4 Section environment syntax
4.2.4.5 Chapter environment syntax
4.2.4.6 Itemization environment syntax
4.2.4.7 Title page environment syntax
4.2.4.8 Galley environment syntax
4.2.4.9 Page environment syntax

4.2.5 Document Syntax
4.2.6 Altering the syntax

4.3 Galleys
4.3.1 Defining galleys
4.3.2 Procedure Families
4.3.3 Font Families
4.3.4 Installing a galley
4.3.5 Dominating environments

4.4 Standard Galley Properties.
4.4.1 Procedure families

4.4.1.1 Terminal procedures
4.4.1.2 Heading procedures
4.4.1.3 Chapter procedures
4.4.1.4 Section procedures
4.4.1.5 Itemization procedures
4.4.1.6 Title page procedures
4.4.1.7 Document type procedures
4.4.1.8 Footnote procedures
4.4.1.9 Annotation procedures
4.4.1.10 Contents procedures
4.4.1.11 Miscellaneous proced.ures

4.4.2 Font families
4.4.3 Prefixes and postfixes

4.4.3.1 PrefixesOChapters
4.4.3.2 Prefixes1Chapters
4.4.3.3 PrefixesOSections
4.4.3.4 PrefixesOItems
4.4.3.5 PrefixesOTitleEnvs
4.4.3.6 PostfixesOTenninals

4.4.4 Standard styles
4.4.5 The galley parameters for the document types

4.4.5.1 Text, form 0
4.4.5.2 Text, form 1
4.4.5.3 Report, form 0
4.4.5.4 Article, form 0
4.4.5.5 Thesis, form 0
4.4.5.6 Slides, form 0

25
26
26
29
30
30
30
31
31
31
31
31
32
32
32
33
34
34
35
35
35
36
36
36
37
37
37
37
37
38
38
38
38
38
38
41
41
41
41
41
42
42
42
42
42
43
43
44
44
45

4.4.5.7 Manual, form 0
4.4.5.8 Manual, form 1

4.5 Box Environment Parameters
4.5.1 Standard attributes
4.5.2 Additional parameters

4.5.2.1 Style parameters for document types
4.5.2.2 Additional parameters for title pages
4.5.2.3 Itemize and Enumerate
4.5.2.4 Maths

4.6 Units oflength
4.6.l Absolute units
4.6.2 Raster lengths
4.6.3 Relative lengths
4.6.4 Modifying environment parameters

4.7 The standard values for the environment values
4.8 Slug Environments

4.8.l Face Codes
4.8.2 Font Sizes
4.8.3 User Face Codes
4.8.4 Underlines, Overlines and Eraselines
4.8.5 Raster Functions
4.8.6 Scripting
4.8.7 Overprinting

4.9 Fonts
4.9.l Associating Fonts with a galley
4.9.2 Modifying fonts
4.9.3 Icons
4.9.4 New fonts
4.9.5 The mathematics fonts
4.9.6 Character information

4.l0 Colours
4.l0.1 Defining colours
4.l0.2 Associating colours with objects

4.10.2.1 Associating colours with page areas
4.l0.2.2 Associating colours with boxes
4.l0.2.3 Associating colours with borders
4.10.2.4 Associating colours with characters and lines

4.l0.3 The order of overlaying
4.11 Computations

4.11.1 Standard computations
4.l1.2 Arbitrary computations

4.l2 Box procedures
4.l3 Devices

4.l3.1 Device table information
4.14 Presentations

4.14.1 The structure of a presentation
4.l4.2 Defining layout procedures
4.l4.3 Defining new presentations
4.l4.4 Making representations
4.l4.5 Printing a presentation

45
45
46
46
48
49
50
50
51
51
51
51
52
52
52
60
60
60
61
61
61
62
62
63
63
63
64
65
66
66
67
67
68
68
68
69
69
70
70
71
71
72
74
75
75
75
76
76
77
77

iii

iv

4.15 Standard presentations and printing
4.15.1 Standard presentations
4.15.2 Printing the standard presentation

4.16 Layout procedures
4.l6.1 Sorting the slugs and boxes
4.l6.2 Page areas

4.l6.2.1 Page parameters
4.l6.2.2 Area parameters
4.16.2.3 Values of the page area parameters

4.l6.3 Actions of the layout procedures
4.16.3.l The Defaul to layout routine
4.l6.3.2 The Tit 1 e P ag e 0 layout routine
4.16.3.3 The Contents 0 layout routine

4.l7 Macrogenerator
4.l7.1 Input conventions
4.17.2 Defining macros
4.17.3 Access to system values
4.17.4 Deferred Macros

4.18 Standard Macrogenerator Facilities
4.l8.1 Predefined Macros

4.18.1.1 Special macros
4.l8.1.2 Bibliographic macros
4.18.1.3 Counter macros
4.18.1.4 Galley macros
4.18.1.5 Presentation macros
4.18.1.6 Syntax macros
4.18.1.7 Computation macros
4.18.1.8 Index macros
4.18.1.9 Maths macros

··4.18.1.10 Border and colour macros
4.18.1.11 Extra macros

4.l8.2 System attributes accessed via @Va 1 u e
4.l9 Bibliographies

4.19.1 Citation collections
4.l9.2 Citations
4.19.3 Causing the bibliography to appear

4.20 Indexes
4.20.1 Index collections
4.20.2 Index entries
4.20.3 Causing the index to appear

4.20.3.l The S til e 1 indexing routine
4.21 Prefixes and postfixes

4.21.1 Standard prefixes
4.22 Counters and Labels

4.22.1 Overview of Counters
4.22.2 Counter manipulations
4.22.3 Labels
4.22.4 Referring to labels
4.22.5 Conversions
4.22.6 Undefined labels

78
78
78
78
79
79
79
80
80
81
81
82
82
83
83
84
85
85
87
87
87
88
88
88
89
89
89
89
90
90
90
90
91
91
92
92
93
93
93
94
95
96
96 .
98
98
99

100
100
101
102

v

4.23 Standard Conversions and Counters 102
4.23.1 Conversions 102
4.23.2 Pseudo-counters 103
4.23.3 Non-basic conversions 103
4.23.4 Counters 104

4.23.4.1 Counters common to all document types 104
4.23.4.2 Counters in document types with footnotes and annotations 104
4.23.4.3 Counters in document types that have chapters 104
4.23.4.4 Counters in document types that have sections 104

4.24 Miscellaneous layout statements 105
4.24.1 Spacing statements 105
4.24.2 Page commands 105

4.24.2.1 Page headings and footings 105
4.24.2.2 Page offsets 106
4.24.2.3 Page skips 106

4.24.3 Tabulations 106
4.24.4 The Ali gn environment 107
4.24.5 The De s c rib e environment 108

4.25 Cross proofing 109
4.26 Borders and Border Styles 110

4.26.1 Border Styles III
4.26.1.1 Lines III
4.26.1.2 Patterns III
4.26.1.3 Border Styles III

4.27 Mathematical Typesetting 112
4.27.1 Basic Concepts 112
4.27.2 Simple formulae 114
4.27.3 More complex formulae 115

4.27.3.1 Formula types 115
4.27.3.2 Labelled equations 117

4.27.4 Advanced concepts 118
4.27.4.1 Mathematical fonts 118
4.27.4.2 Changing fonts 118
4.27.4.3 Defining symbols 119
4.27.4.4 Inflected symbols 120
4.27.4.5 Grouping subformulae 121
4.27.4.6 Controlling the style 121
4.27.4.7 Mathematical environment parameters 121
4.27.4.8 Tabular layout of formulae 123
4.27.4.9 Equation counters 125

4.27.5 Really advanced features 126
4.27.5.1 Mathematical layout vectors 126
4.27.5.2 Styles 127
4.27.5.3 Types 128
4.27.5.4 Spacings, etc. 128
4.27.5.5 Mathematical font parameters 129

4.28 DP and Plot 130
4.29 Errors 131
4.30 Quirks and Oddities 131

Part One
Getting Started

This document describes version 2A(21) of Mint, a document preparation system that has been written
as part of the Spice project. Mint has been written as a research vehicle for exploring document preparation,
and interactive document preparation in particular. However, I feel that the current version of Mint,
although it does not have interactive features, is nonetheless a usable tool, and therefore that it is suitable to
release it for evaluation and use by a widcr community. In making this release, I am making a commitment
to providing a stable and maintained system« + disclaimers about improvements»

111c document is organized as follows. The introduction provides an overview of the system and gives
operating information; the information provided here should be sufficient to allow the casual user to
prepare documents on the Perq of the same quality as those produced by Scribe. The next section is a copy
of the first part of a paper that was prepared for the November 1982 Spice Industrial Affiliates meeting
[Spice document S148]. It reviews the goals of the document preparation research project, and is included
here to provide a context for understanding the naturc of Mint, and to indicate the likely direction of future
developments. Thc third section contains a review of the design and features of Mint: this section should be
read by anyone wishing to make extensive use of the system. Finally, the last section contains reference
material.

1.1 Mint and Scribe

At a superficial level, Mint resembles Scribe - it takes as input a . M s s file, and produces a formatted
document for some device. Most . M s s files that just use the basic Scribe commands - those in sections 1 to
6 of the Scribe manual - will be accepted by Mint, and will produce results that resemble very closely those
from Scribe. In addition, there are Mint equivalents for most of the rest of the Scribe facilities, though these
are obtained in different ways.

The simplest way of using Mint then is to treat it as though it is Scribe, and, if it doesn't produce the
expected output, to read the more detailed description in section 3, or look up the description of the
feature in section 4. In this way you will discover the subset of the facilities that are common to both
Scribe and .Mint. However, you won't get the best out of Mint if you simply treat it as Scribe, so you ought
to read section 3 anyway.

intro.mss

2

1.2 Getting Started

Getting Started Peter Hibbard
Mint User Manual

I assume that you already have an account on a Perq, and are sufficiently familiar with the machine to
boot Pas on it, run programs, create and edit files, etc. If not, get in touch with David Nason, x2585. He will
give you an account and introductory documentation.

1.2.1 Loading Mint onto a Perq

Normally Mint will be on the Perq, and there will be no need to reload it. If, however, Mint has not yet
been installed, or the version currently available on the Vax is a more recent version than that on the Perq,
then you should load it as follows:

@update <RETURN>
Special options?: [n] <RETURN>,
Remote directory: lusrlspice/pos/mint/seg <RETURN>

(when complete, Update will display the Mint change log). If the Update command file update. cmd

cannot be found the Perq will return an error message:

** Command file not found: Update

If that happens, you must retrieve a new version of Update as follows:

cmuftp r lusrispice/pos/gsUPD10 gsUPDATE
cmuftp @gsUPDATE

and then start again. (If your Perq is on the 3 Mbit EtherNet, replace 9 s UPO 1 a by 9 sUP03)

1.2.2 Running Mint

To invoke Mint, type

If the Perq responds with

** Loader-F-Mint.RUN not found

then Mint has not been loaded, and you should start again at section 1.2.1. If Mint is loaded, two windows
will appear on the screen. The upper one is used by Mint when it outputs a formatted document to the
screen, and also when it is being run in debug mode (normally this will not be the case); the lower window
contains the dialogue and error messages.

intro.mss

Peter Hibbard
Mint User Manual Getting Started 3

Mint asks for the name of the file to be formatted. If you have just been editing a file, Mint will assume
that this file is to be used as the default. The file name can be typed in as a full path name or just as the file
itself, in which case lVlint will search for the file on the current search list. The extension . M s s may be
omitted.

After it has asked for the file, Mint will ask for which device the output is intended. Currently there are
two devices available - the Perq itself, and the Dover. Mint then asks a couple of questions about debug
output - respond with carriage return to both questions. Mint then goes about its business. As it formats
the document it places the current file and line number in the banner of the lower window, but as it only
does this on each change of environment, there may be periods of several seconds when the screen does not
change. If the output device has been specified to be the Perq, the document galleys are written into the top
window. Section numbers will appear as question marks, and several galleys may get overlaid. Do not worry
about this - what you are seeing is only an intermediate version of the document. Error messages appear in

the lower window and are written off to an error file. More details are given in the next section.

When the document has been completely formatted, Mint will ask the question

Printing Device: Perq, Dover, Report, Quit:

You now have the option of choosing the device on which to view the document. If you specify the Dover,
then a press file will be created, with extension. Press, which can be shipped to the Dover for printing. If
you specify the Perq, the message

Which page «integer>, All, Dover, Quit, <CR> for next):

will appear. Typing in a page number will cause that page to be displayed on the screen, typing upper or
lower case a will cause all the pages to be displayed, and typing a carriage return will cause the next page to
be displayed. You may exit by typing Q or q, when the question

Printing Device: Perq, Dover, Report, Quit:

will reappear. If you type R or r then a bug report will be prepared for the maintainer (Le., me); more
details are given in section 1.3.

Note that the viewing device may differ from the target device given in the first request. This allows you
to "cross-proof' a document intended for one device on another. Normally you would want to view Dover
output on the Perq screen in order to save the delay in shipping a Press file to the Dover; if it is satisfactory
you can create the Press file without reformatting the document. If you are cross-proofing on the Perq, you
can also select which page you want to incorporate into the Press file by typing the characters 0 or d when
Mint asks for which page to print.

In cross-proofing mode, each character appears on the viewing device in the position that it will have on
the target device, and diagrams are scaled appropriately. However, the fonts used on the two devices will not
be identical, so that the output will not be an exact representation. See section 4.25 to see how to map
different device fonts to improve the appearance of cross-proofed documents.

intro.mss

4 Getting Started Peter Hibbard
Mint User Manual

1.3 What to do in case of trouble

Error messages generated by Mint fall into four classes.

Warning

Error

Heresy

Fatal Error

Mint issues a warning if it finds something suspicious in the input, but which is
quite legal. The output from Mint may be satisfactory, but you should investigate
the reason for the warning, as it may indicate some misunderstanding.

Errors occur when Mint is not able to process the text as you ask, but it is able to
take some corrective action and continue. It is unlikely that the output will be
what is desired. though.

A heresy indicates that there is some serious problem that Mint is not able to fix
in a reasonable way. In general these are caused by internal problems, and
usually indicate Mint bugs, though improper use of the advanced facilities
described in section 4 also can cause them. As in all organizations, one can
continue after a heresy, though subsequent actions by the system cannot be
predicted.

These occur when Mint has discovered an internal error that will cause it to fail if
it continues. Usually these are caused by overflow of internal tables, and can be
fixed fairly easily in future releases.

In all cases, the error message is written in the lower window, and sent off to a file with the extension
. E r ro r, with an indication of the location of the error. In the case of a warning or an error, Mint continues;
in the case of a heresy or fatal error it halts with the message

Quit, Continue, Report or Alter Flags (Q, C, R, A) [R]:

Unless you are a Mint maintainer (and you are not) you should type Q or q (or R or r, which under these
circumstances have the same effect).

After a fatal error or a heresy, copies of the . Mss file and the . E r ro r file are taken, and you are invited
to report the problem to the maintainer. Please do this unless you don't want me to see the . M s s file. For
more details, see the next section.

You can halt Mint at any time by typing 1'e. The message

Quit, Continue, Report or Alter Flags (Q, C, R, A) [C]:

appears. Quit, continue or report, as you wish. (You can alter the Debug Flags also, but then you are out on
your own). Note that 1'$ and tQ do not work for output into the upper window.

1.3.1 Reporting Errors

Even though it is written with all the usual attention to detail, and with the needs of the consumer always
in mind, Mint does have bugs, as well as several exotic and unusual features. It will only be possible to tame

intro.mss

Peter Hibbard
Mint User Manual Getting Started 5

the beast if unusual occurrences and bugs are reported. Please (please, please) adopt the following
procedure.

If Mint exhibits unusual behaviour, exit from Mint by typing R or r to the message

Printing Device: Perq. Dover. Report. Quit:

or, if you want to halt Mint, type t C and then R or r to the message

Quit, Continue, Report or Alter Flags (Q, C, R, A) [C]:

Mint will enter a phase that asks for various pieces of infonnation to help me find the error. To do this a
copy of the . M s s file has to be (automatically) taken; if you do not want me to see the . M s s file, exit from
this phase by typing Control-Shift-C. Horrible things will happen, but your confidential . Ms s file will be
secure. A somewhat more graceful way of exiting is to type Control-Shift-D to enter the debugger, and then
to quit from the debugger.

1.4 The Future

There is one. It still exists.

intro.mss

2.1 Introduction

Part Two
Design Philosophy

In our present time-shared systems, document preparation occupies a significant position. The tools that
are used are editors of various kinds, document formatters such as Scribe and lEX, and several related tools
such as drawing packages. There is every reason to believe that the use of computers for preparing
documents will increase, and that document preparation tools will play a significant role in personal
computing environments. However, I believe that we need to make significant improvements in the tools
before we can take full advantage of personal machines, both by making use of our increasing
understanding of how to do document production, and by integrating the tools we have.

I believe that now is the right time to start looking at these issues. We need to be able to integrate text
and graphics in a coherent fashion, allowing editing of both text and drawings from within the same editor.
We need to be able to provide better tools for specialized typesetting needs, such as mathematical
typesetting, advertising typesetting, tabulations, etc. We need to allow multiple authors to work on a
document, and provide them with the tools necessary to review changes and annotations. We need to be
able to make better use of high quality printing devices. Finally, we need to reconsider what is the most
appropriate way of presenting information, and the relations that exist between those pieces of information.
This presentation should also provide an interactive environment that allows rapid redisplay, formatted and
tailored to the needs of the user.

In this paper I will try to address some of these issues from the standpoint of the Spice Project. I will do
this with the attitude of mind in which practicality is important - that the ideas expressed must be
implementab1e in the software technology framework we have now, and that the tools that are produced
must be attractive and usable by the Spice community.

The paper is laid out as follows. Section 2.2 gives three scenarios in which interactive document
preparation tools are used, in order to illustrate some of the facilities I regard as important. Section 2.3
then describes a model for document production by introducing a set of abstractions and operations on
these abstractions that allow good quality documents to be created. In section 2.4 I describe the
implementation structure of the system, both as it now exists and as it may develop. Finally, in section 2.5
I describe the current status and plans for the future.

philo.mss

8

2.2 Three Scenarios

Design Ph ilosophy Peter Hibbard
Mint Cser Manual

These scenarios cover increasingly complex situations in document preparation, and illustrate the range
of facilities that are required. !

2.2.1 Interactive document creation and editing

The user is sitting at a personal computer, creating and editing a piece of text. As the text is typed in, the
interactive document preparation tools format it - they fill out the lines, adjust the margins, add additional
information such as section numbers, and switch automatically to the appropriate type face for headings,
programs, etc. While typing the text, the author can call on a number of other tools - spelling checkers and
bibliography t90ls, for example. At any time he can display the document's structure, possibly presented as a
table of contents, or as a tree structure. He can, if he wishes, create the document stnlcture first, and then
use the document preparation tool to fill in the section stubs. ·The editing that he can perform is not only on
a character and line basis. He cart also use the tool's understanding of the structure to edit whole sentences,
paragraphs or sections.

When the document is complete, the user may store it, together with the internal formatting
information, send it to a colleague, or print it. At no time is the internal formatting information seen.

2.2.2 Second Scenario

The author now wants to create a more complex document than the text document created in the first
scenario. He wants to incorporate tables and mathematical formulae, graphs and line drawings, and he
wants to have a more elaborate page layout than the one provided by default. Some of the graphs and line
drawings exist in preprocessed form in libraries, and these he needs to be able to incorporate into the
document; others he wants to create and edit along with creating the text. The document preparation tools
must allow any part of the document to be edited, by providing the appropriate editing primitives for each
type of information -line editing primitives for the graphs and line drawings, text editing primitives for the
text. Some sorts of information have properties of both text and line drawings: mathematical formulae and
tables, for example, consist of predefined symbols that can be laid out using simple rules of formatting, but
the result is usually not entirely satisfactory, and the positions of the symbols need to be adjusted, or
alternative layouts used, depending on taste and requirements. To do this the author uses editing primitives
similar to those for graphical editing. However, there is a compensation: having finely tuned some particular
formula, the system now uses that same finely-tuned layout for all similar formulae.

A similar situation arises with page layout. A default set of rules may be able to layout a page in a
satisfactory fashion for non-archival documents, but be incapable of producing output satisfactory for books,
for example. In this latter case, the user is prepared to spend effort in organizing the pages. The document
preparation tools allow him to move diagrams on the page, causing text to flow round tables, expand or
contract the spacings between words and . lines to avoid pages with too much blank space at the end of

philo.mss

Peter Hibbard
Mint User Manual Design Philosophy 9

paragraphs, or design a page layout in the way a graphical artist or advertising copywriter might. In all cases,
the author specifies the relevant features of the appearance, and then relies on the document preparation
tools to refonnat the rest of the document to meet those constraints. For example, it may move inforntation
from page to page, or choose similar page layouts for all the other corresponding pages in the document.

2.2.3 Third Scenario

In this scenario, a paper is being written by several co-authors. Each of them plays the roles of author by
adding original text, and of editor by adding annotations and suggesting amendments for review by othersl .

The document preparation system now has to function as a medium of exchange of information between the
authors, allowing suggestions to be pencilled in, proposed rewordings to be made, and significant
modifications of the structure to be suggested. The author makes his annotations in several different ways­
sometimes by using a style similar to text insertion in a text editor, sometimes using a pointing device to
simulate proof readers' marks. At any time the author can examine the document as it would appear with his
suggested rewordings, or go back to some previous version and see that. The annotations are classified by
author, so he can also see the annotations of any particular author. If the author agrees with a suggested
change, then he accepts it, and the 'delayed.edits' implicit in the annotation get made.

2.2.4 Discussion

The first scenario assumes a collection of tools that already exists in several systems, so proposes nothing
novel. However, I would like to draw an analogy between this scenario and a similar one that would involve
interactive programming. In both cases the users of such systems are concerned with high-level
specifications of the behaviour of the systems, rather than the details of how that behaviour is to be
obtained. In both cases the tools understand the structure of the input - the document and the program -
and use their understanding to deterntine how far changes to the high-level representation need to be
propogated through the low-level representation. Finally, in both cases, high-level specification languages
are used to reduce the amount of detail the user requires to use the tools: in the case of the interactive
programming environment the high-level specification language is the programming language; in the case
of the document preparation system it is the implicit language given in the formatting commands.

The second scenario shows that while high level specifications of document appearance may satisfy the
majority of requirements, there still needs to be a facility for fine-grained control. However, it is important
that this fine-grained control is not given by providing direct access to the lowest-level formatting primitives
used by the system (which is equivalent to providing a high~levellanguage and compiler for writing the
programs, and DDT for doing the optimization), but that there are several distinct levels of abstraction, each
providing a suitable collection of abstract objects and operations.

1 Although the task described here involves several authors. even a single author has several perspectives on a paper he has written.
and will go through a style of interaction with the document similar to that described here.

philo.mss

10 Design Philosophy Peter Hibbard
Mint User Manual

. The third scenario shows that interactive document preparation potentially needs the same range of tools
that multi-programmer projects require. These tools however must be more supportive of the 'drunkard's
walk' technique of converging on a document satisfactory to its authors and audience. The basis of this is
that all amendations and annotations should be saved with the document, which must form the medium of
interchange for the evolving ideas. In addition any set of annotations should be able to be reviewed using a
number of different styles of physical presentation, and finally constraints on the relationships between
items of information in the document should be checked as a part of the document preparation action when
changes are made2. Finally, this scenario indicates that a document should properly be considered as a

collection of items of information, together with a record of the relations between these pieces of
information, and that there may be several different presentations of the document, rather than a single
snapshot, each tuned to the reader's needs and the capabilities of the output device.

2.3 Model

Having presented above a view of the document preparation task that was unconstrained by issues of
implementab·ility, I now wish to reiterate that my purpose is to build a collection of document preparation
tools that have a practical value within the Spice project. Since the field of computer-aided document
prepartaion is relatively new, well understood models and techniques are not available. I have therefore
drawn on my experience in other areas for generating a model. It is quite clear to me that the particular
model I have chosen will need a lot of refinement to be able to achieve the goals implied above; however, I
believe that we need the experience now, and that the time is ripe to experiment with interactive document
preparation tools.

The model below has been derived from two areas. My (very imperfect and incomplete) knowledge of
traditional typesetting technology has led me to a set of abstractions that I believe capture the concerns for
efficient representation of documents without sacrificing ease and flexibility of editing, My experience as a
language designer and implementer has given me an appreciation of the power of the abstraction
mechanism, and an understanding of the importance of choosing the right information to bind and the right
time to bind it

There are three basic abstractions that are used: the galley, the box and the slug. In the printing trade, a
slug is a collection of pieces of type that form a single printed line. Slugs are bound together into boxes that
represent a collection ofHnes in a single textual unit - a paragraph, heading, caption, etc. Gaps are inserted
between the slugs to adjust the line spacing, and at the left and right hand sides to adjust the margins.
Finally, the boxes are laid out into galleys - long trays the width of a printed page, which represent the
appearance of the document before it is broken into pages. Typically there are several different kinds of
galley. For example there will be different galleys for footnotes and for block diagrams.

2 Thus trivially, if a section is deleted, then the user should be infonned that there are references in the rest of the document to the
deleted section. Less trivially, there are implicit relations between parts of the document that are more subtle than such explicit
cross-references, and a document preparation system should keep a record of them as a part of the structure of the document

philo.mss

Peter Hibbard
Mint User Manual Design Philosophy 11

It is from the galleys that galley proof copies are obtained. The cost of making editorial changes to the

galley is generally the cost of making changes to a single slug, or at worst, several slugs in a single box. The

final stage of typesetting is that of page layout: the boxes in the galleys are laid out into page boxes by

collecting the slugs and boxes from several galleys (such as the footnotes galley and the line drawing galley),

if necessary splitting boxes apart to place some of the slugs on one page and the rest on the next page.

Headings and footings are also added. Editorial corrections at the page proof stage are potentially much

more expensive than at the galley proof stage since they can cause several pages to be remade. Printers

frequently will employ extraordinary strategies to allow an editorial change to be made without disturbing

the page layout (even to the exten t of rewriting sentences to alter their length if that allows the changes to be

localized on one page).

Partly because traditional printing technology has evolved to meet a similar set of concerns present in

computer document production, the techniques form a basis for the abstractions that are suitable for a

computer based system. The traditional techniques provide a range of representations of information, with a

similar range of costs for modifying the representations. Wi~in each representation (the slug, the box, the

galley and the page) a different piece of knowledge is encapsulated and a different set of techniques needs to

be applied to alter and manipulate these representations. The galleys contain information that has implicit

relations with information in other galleys; when page layout is performed these relations are made explicit,

either by the relative positions of the boxes, or by explicit footnotes, for example.

The model I have adopted is closely based on this one. The system is divided into two parts: the

low-level part and the high-level part. The low-level part comprises facilities for interpreting the input and

creating slugs from it, and for displaying the slugs on request. Since a document comprises several sorts of

information, each of which needs different interpretation - text, line drawings, halftone pictures, etc. -

there are several independent low-level interpreters. One of the responsibilities of the front end of the

formatter is to determine which interpreter has to be fed the input; thereafter the slug interpreter operates

independently. The high-level part of the system is responsible for manipulating the boxes and slugs, and

does not need to examine their content. This part needs information about the size of the boxes, whether a

particular box can be split into individual slugs for performing page layout, and whether a box can be

floated in the document, for example. Finally, pages are created from the boxes in the galleys by several

page layout modules.

2.4 Structure and Inlplementation

. Because the goal of producing good quality interactive document production tools is open-ended, I

established a major subgoal - that of building a working non-interactive document preparation system of

capability comparable to Scribe, but with the appropriate internal structure to allow experimentation and

incorporation of other document preparation tools. Since feed-back from users will be important, I have

chosen as an input language to the system the same language as is used by Scribe. However, even though the

system operates like Scribe in terms of its input and output, its internal structure is very different.

philo.mss

12 Design Philosophy

Input (Scribe. DP. Plot)

Error correcting
Parser

/ J
Gall ey 1 Galley 2

Pages

Galley n

Presentation
m

Pages

Figure 1. The structure of Mint.

Peter llibbard
Mint User Manual

The principal components of the system are shown in the figure. Since the Scribe language is somewhat
context-sensitive, and only loosely defined, it is first converted into a context-free language, rich enough to
express the structure of the document, by means of a parser that uses traditional techniques of syntactic
error-correction to convert the input into an appropriate representation. The techniques that are used are
sufficiently general purpose that arbitrary context-free document structures can be defined (the parser is
table driven), and other front-ends could be substituted to allow other input languages.

philo.mss

Peter Hibbard
Mint User Manual Design Philosophy 13

Depending on the node type of the each of the nodes, the node contents are sent to the appropriate

galley, where the contents are formatted according to global style parameters associated with the galley. The

node also carries information about which interpreter is to be used to create and display the slugs that are

created. The interpreters are responsible for creating the slugs, placing them into the boxes, and displaying

them when requested.

After the galleys have been created, page layout is performed. The controlling abstraction is the

presentation: a collection of rules and procedural knowledge which specify which boxes and slugs from

which galleys are to be collected together into the pages, how the pages are to be laid out, and how the

relationships between the information in the pages is to be displayed. Each presentation is independent, and

several can exist simultaneously. The pages of a presentation can be converted into Press files, displayed on

the Perq screen, or turned into compact representations which have had the structural information

eliminated, for use as non-editable messages.

2.5 Status

The first usable version of the non-interactive version of the formatter is now operating. In designing and

implementing it I have made a balance between the usefulness of the features I have been adding, and their

use in illustrating and testing design decisions. Thus while the system is not complete, it is now able to

replace Scribe competitively for about 90% of Scribe use. With the exceptions noted in the appendix,

bringing the non-interactive version up to Scribe class is reasonably mechanical.

There are two particular areas, however, where the value of the internal structure of the formatter has

been apparent. First. new environments can be defined by programming at an appropriate level of

abstraction: that of the manipulations on the slugs and the boxes. As an example, I wished to have an

environment that would allow me to place a commentary on a piece of text at the side of the text, using a

different, smaller font. Although the slugs in the text on which I am commenting are independent of the

slugs of the commentary, the boxes are not, and need to be placed side by side. An example of such a

commentary is on page 16. The core of the· system that produces this output is the routine that gets called

by the galley to create the box. The routine is listed below.

procedure BoxCommentaryO (BP: IBoxPtr; M: IModListPtr);
var

E: IEnvPtr;
B: IBoxPtr;

begin

philo.mss

AllocBoxPtr (B);
AllocEnvPtr (E);
CreateEnvRecord (Commentary. E. M. BP);
StartLoop;

RepeatUnt i 1 (Box Ended);
GetNewBox (B. BP. E);
ParseBox (Commentary, B);
If True (HaveEnv (Gloss»;

ParseBox (Commentary. B);
Endlf;

14

end;

SetBoxYSize (B);
EndLoop

Design Philosophy Peter Hibbard
Mint User Manual

While I do not expect casual users of the system to program it, it will be necessary to have document
designers who can maintain and improve the library of layouts that are available. The level of abstraction
implied by this routine is a suitable one.

The second example of the capabilities of the system came during a couple of experiments that were
performed recently. In order to test my assertion that independent interpreters could be incorporated easily
into the system, without need for any more than the most casual programming on each side of the interface,
Ivor Durham and I integrated Plot into the formatter, and Dario Giuse and I integrated DP. The total
amount of time needed was little more than a man week, and now both Plot diagrams and DP drawings can
be brought totally under the control of the formatter's high-level manipulations. Examples are given in later
sections.

2.6 Acknowledgements

Many people have contributed to the development of Mint. Special mention must be made of Ivor
Durham, Dario Giuse and John Renner, who have contributed ideas and comments, and have assisted in
the implementation; and of Rob Witty of the Science and Engineering Research Council, for generously
providing me with a working environment in England during which many of the ideas of Mint were
developed. In addition, everyone working on the Spice project has contributed, either directly or indirectly,
by providing the stimulus necessary to drive this effort. Finally, lowe a debt of gratitude to Brian Reid, the
author and implementer of Scribe, who steadfastly maintained that document preparation was a legitimate
scientific pursuit, and who paved the way for many of the ideas I have incorporated into Mint

philo.mss

Part Three
Overview of Mint features

I have used two guiding principles in designing and implementing Mint.

• Although I have adopted the notions of environments and environment parameters from Scribe,
and I have attempted to keep close to the same semantics that Scribe has, the internal structure of
Mint is very different from that of Scribe. This means that there are many places where similar
effects are achieved differently. In some cases I have not felt it worth my while (at this stage)
disguising these differences from the user, though I am sure they could be hidden .

• I have chosen to implement a subset of the features that will eventually be needed, in order to
spread my effort across all the design issues. Extending the capabilities of Mint to include these
omitted features should be a fairly mechanical task.

The description below is not intended to be a User's Guide, though users with a knowledge of Scribe and
some patience should be able to make use of the system from this description.

3.1 Major Omissions

The following facilities have not been implemented in Mint.

Indexes

Exotic devices

Definitions

Tables of Contents

details.ffiss

I do not see any difficulty in providing these. The index for the reference section
was produced semi-automaqcally, so I am confident that the mechanisms work
satisfactorily; all that is now required is to make the mechanisms available to
users.

Mint generates output suitable for the Perq, and Press files for the Dover.
Extending Mint to generate Press files for any other device that takes Press files is
trivial, and I will do that shortly. I also have a grubby interface to the Canon
printers that you don't want to know about.

To make life easier for myself, I programmed the calls to the style-setting
routines into the code, rather than use a definitions file as Scribe does. I have
extended Mint's prescanner to accept definitions in documents, and it is now
possible to alter most of the defaults that I selected. As I get more familiarity with
users' requirements, I will write a set of definitions files to modify Mint's actions.
However, this isn't the document to describe these facilites; read the reference
manual to find the information.

I do not see any difficulty in providing these.

16

3.2 Environnlents

Overview of l\1int features Peter Hibbard
Mint User Manual

In Mint environments are classified into two sorts - those that control the general appearance of boxes,

and those that control the appearance of slugs. They will be termed box environments and slug environments
respectively. (As it turns out, slug environments correspond to the Scribe environments that have

TabExport set to a default value ofT rue.)

3.2.1 Box Environments

The following are implemented: Display, Centre3
, Example, FlushLeft, FlushRight,

Verbatim, Format,Quotation, Itemize,Enumerate,Description,MajorHeading,Heading,

SubHeading,Section,SubSection, Paragraph, Figure, Caption, Report, Thesis,Article,

Manual, Slides, Foot, TitlePage, TitleBo~x, ResearchCredit, Abstract. In addition,

environments particular to Mint are DP and Plot, which are described in section 3.7.2, and Commentary

and G los s, which allow text to have a gloss against it, as the following example shows:

For the elaboration of a discriminant constraint, the
expressions given in the discriminant associations are
elaborated in some order that is not defined by the language;
the expression of a named association is evaluated once for
each named discriminant

This rule and the rules defining the
elaboration of an object declaration
ensure that the discriminants always
have a value. In particular, if a
discriminant constraint is imposed on
an object declaration, each
discriminant is initialized with the
value specified by the constraint

A complete list is given on page 26. Box environments take a number of parameters that are set up

with the defaults you would expect from Scribe. The environment parameters are as follows.

Parameters similar to those of Scribe

Width, Above, Below, Need.

Parameters that differ slightly from those of Scribe

Line spacing

Justification

Gap specifies the distance between the bottom of one line and the top of the
next. Used instead of Spac i ng.

Justification in Mint is done with four parameters that take values from (T rue,
Fa 1 5e). The parameters are Just i fyLeft; Just i fyR i 9 ht which control the
justification of all except the last slug of a box, and Just ifyLeftLast,
Just i fyR ig htLast which control the justification of the last slug.

3 I use this spelling to revenge myself for all those times in the past that I have had to re-Scribe documents for misspellings. If you
don'twanttouseit,youcanwrite@define (center = centre)

The art of good reproduction

Peter Hibbard
Mint User Manual

Margins

Underlining

Page layout

Overview of :Mint features 17

These are controlled by LeftMarg in and Ri ghtMarg i n. The indentation of
the first line is controlled by the document style parameter in de n t that can only
be set in the @make command.

It is possible to simultaneously and separately underline, overline and draw
delete lines through text, spaces and punctuation. The parameter Un de r 1 i n e
takes values from the set (None, NonBlank, All, AlphaNumeric,
OverNonBlank, OverAll, OverAlphaNumeric, EraseNollBlank,
E raseA 11, E raseA 1 p haNume ric). Several non-conflicting values may be set
simultaneously.

Page layout is controlled by the parameter PageStyl e. It takes values from
(Sk i p, Def au 1 t, Tit 1 eP ag e). You probably shouldn't fiddle with this yet.

Parameters that differ significantly from those of Scribe

Fonts

Tabulations

Borders

Rasters

Colours

With each galley is associated a two dimensional array of fonts, indexed by
~_ F antS i ze, taking values (11, 1, n, s, ss), for extra large down to extra small,

and by FaceCode, taking values from (r, i, b, c, g, t, p, z, a, fO, fl, f2, f3,
f4, f5, f6, f7, f8, f9). Fonts are associated with (a subset ot) the elements of
the array, and are selected by independent use of FontS i ze and F aceCode.

Tabulations are a part of the box environment. TabSet takes a distance as
parameter, and sets (another) tab at that point, TabD i v i de divides up the width
of the box into some number of tabs, and TabCl ear clears all the tabs. Defaults
are inherited from the parent environment in the usual way. Tabs can also be set
dynamically, see page 18.

Mint allows you to draw borders round a box. Two parameters are used:
Bo rde r sets the width of the frame around the box, and Bo rde rStyl e
specifies the pattern drawn in the frame. (You can draw borders which are wider
than the frame, but then the border may overprint some of the box contents.)
Border styles can be defined to satisfy the most exotic of tastes, but the details are
beyond this document. However, one border style that is freely available is
Wi dth 1, which draws a boring narrow line around a box.

If the device you have can paint using one of several raster functions,
R a s t e r Fun c t ion specifies which it will be. Since the functions are
device-dependent, I have specified the ones for the Perq, Dover and Canon
printer only. For the Perq and Canon, use (RRp 1, RNot, RAnd, RAndNot, ROr,
ROrNot, RXOr, RXNo r), for the Dover use only ROr (the default anyway).

There are two parameters: Imag eCo lou rand BackG roundeo lou r. These are
not a great deal of use at the moment, since both the Perq and Dover are not very
good at colours. Currently they take values from the set (Wh i te, Grey), and
allow backgrounds to be filled in.

Begins with clever seduction

18 Ovcnicw of l\1int features

3.2.2 Modification of Box Environment Parameters

Peter Hibbard
Mint User Manual

The box parameters can be altered locally, or can be altered globally using Oef i ne and Mod i fy. Mint
nests modifications and definitions. Length parameters can be set to absolute lengths, using in, ins, inch,
in che s, cm, cms, po in t, po i n ts, mi ca, mi cas. They can also be set relative to existing values using +,

-. *. I, or using Raste r, Ras te rs which are device-specific, or Em, Ems and Line, Lines which
are font-specific. During page layout, PageHei ght and PageWi dth can be used.

3.2.3 Slug Environments

These are generally identical to those of Scribe, but they cannot be modified. The environments are:

Face codes

. Font sizes

SomeScripts

Raster functions

Overprinting

Underlining

3.3 Tabulations

r, i, b, c, g, t, p, Z, a, fO ••. f9 .

11, 1, n, s, s s.

+, -.

RRp1, RNot, RAnd, RAndNot, ROr, ROrNot, RXOr, RXNor.

Ovp.

u, ux, un, 0, OX, on, e, ex, en.

Mint supports both @\ and @t. The other tabulation facilities of Scribe are incorporated into more
general facilities for laying out tables. (See, for example, the tables in section 4.4.2.)

3~4 Labels and Tags

Mint currently treats both of these in the same way. Unlike Scribe, a label simply defines some position
in the document. This position can be displayed in a number of ways, depending on how the label is
referred to. In general, a counter needs to be specified; these are similar to those of Scribe, but a detailed
description is outside the scope of this document. The casual user can assume the following are defined:

@ref (Labe 1) Yields the section/subsection number, as Scribe.

@pageno(Labe 1) Yields the page number of the label.

It is possible to change the conversion style of counters (e.g. to Roman or alphanumeric); see the
reference manual for details.

A versatile tool

Peter Hibbard
Mint User Manual

3.5 Page Layout

Overview of lVlint features 19

Currently there are two page layouts available in the standard presentation; one for title pages, organized
similar to that of Scribe; and the default layout, which places footnotes at the bottom of the page, numbered
from 1. Headings and footings are included by using the box environments PageHead i ng and
Pag e Foot i ng. The slugs in these boxes are placed consecutively at the head and foot of the page, until the
slugs run out, when the box is restarted. You get alternating headings or footings on opposite pages by
having two boxes in the environment; alternatively the cycle length can be longer. See, for example, the
footing that starts on page 16.

3.6 Document Types

Mint supports the following document types.

Text

Report

Article

Thesis

Slides

Manual

This is the default document type. It provides a simple, unsectioned document
type, with wide spacing between lines.

This document type has numbered sections.

Similar to Repo rt.

This document type has numbered chapters as well as numbered sections.

This lays out slides using fonts that are suitable for view-graphs.

Similar to The sis. This document is a manual.

3.7 Other Features

3.7.1 Include and Value

Include takes a file name or full path name; Value takes one of (Date, Time, TimeStamp,
Version,SourceFile,Device,DocumentType~

3.7.2 Plot and DP

The output of both Plot and DP can be incorporated directly into a document by using the appropriate
environment, without the need to go through a PressEdit cycle. To include a DP drawing, use:

@begin(Figure, Width = 3inches)
@DP[@include(Mouse.DP}]
@Caption[Example of a DP drawing]
@end(Figure)

Makes the customers drool

20

which produces the following result.

Overview of lVlint features

Figure 2. Example of a DP drawing

Peter Hibbard
Mint User Manual

Similarly, to incorporate a plot, run Plot with its output formatted for the device "generic" and use:

@begin(Figure, Width = 3inches)
@Plot[@include(MyPlot.Plot)]
@Caption[Example of a Plot]
@end(Figure)

The results will look best if the raster size specified for the generic device is the same as that for the
target output device, and if the size specified is the same as that required. However, Mint will scale the
diagram ifnecessary. It is possible to use the Plot and DP environment in all the usual places4

•

3.7.3 Macrogenerator

Mint supports a general-purpose macrogenerator, which allows all the usual facilities. It is used mainly
as a front-end to Mint, to help implement several commands; it shouldn't be used like the Scribe
macrogenerator, since many of the features that that macrogenerator provides are built into Mint

4 For example, it is quite easy to include a diagram in a footnote, as below, thereby relieving the tedium of what are usually
unnecessary annotations.

Figure 3. A very
small mouse

At the resulting exotic production

Peter Hibbard
Mint User Manual

3.7.4 Bibliographies

O,'crview of l\1int features 21

Mint supports a general bibliography feature, which is a specialized form of a note facility. However, this
document is not the place to describe it. Refer to the reference manual for details.

3.7.5 Running Mint

The user interface has changed considerably since the first version of this document was prepared, and it
is not possible to describe all the facilities in detail. The simple mechanics of running Mint can be found in
section 1; other features are described later. However, the following should be noted.

3.7.5.1 Cross-Proofmg

Mint will cross-proof from one device to another, and allow individual pages of a document to be
viewed or printed. For example, the whole of this document has been cross-proofed on a Perq before being
shipped to the Dover. This has allowed me to fine-tune the layout quickly and easily.

3.7.5.2 Error Reporting

Mint includes a facility for reporting bugs to the maintainer. If it recognizes an internal error, it invites
the user to create a bug report. This then is shipped automatically to me.

3.7.5.3 Performance

This is not the place to go into a detailed analysis of the performance of ·Mint, though some figures will
be of value to users. There are two issues involved - the perfonnance for small documents, and the way the
perfonnance degrades as the size of the document increases. Measurements on version 2A(8) gave the
following times per page, and percentages of time spent in swapping, for. Mss files converted all the way to
• Press files.

Size 24 pages. Time per page 25.2 secs. Swapping 9.3%
Size 108 pages. Time per page 37.0 secs. Swapping 17.8%
Size 152 pages. Time per page 36.6 secs. Swapping 21.8%
Size 196 pages. Time per page 38.9 secs. Swapping 24.6%
Size 264 pages. Time per page 44.9 secs. Swapping 27.2%

These are figures for a version with many debugging hooks installed, and with no performance tuning,
compiled using a dumb compiler. A guess for the improvement in performance produced by simple tuning
is a factor of two; the improvement that might occur if a better compiler were used is less clear, though an
additional factor of two seems reasonable.

- Cynthia Hibbard

22

3.7.6 Examples

Overview of l\tlint features Peter Hibbard
Mint User Manual

The reference section contains many examples of Mint input, and you can browse through it to see what
is possible. Also, the files that were used to create the whole of this document are available on line. To
retrieve them, use the up d ate command, as follows.

@update <RETURN>
Special options?: en] <RETURN>
Remote directory: lusrlspice/pos/mint/refman <RETURN>

Part Four
Reference Section

The reference section is intended to provide all the infonnation that is required by the aspiring Mint
expert. Many of the parts of this section have been culled directly from the listings, so are still in tabular
fonn. The organization of this section is fairly haphazard.

Input conventions 24
Document syntax 25
Galleys 33
Standard galley properties 36

.Box environment parameters 46
Units of length 51
Standard values for the environment parameters 52
Slug environments 60
Th~ ~
Colours 67
Computations 70
Box procedures 72
Devices 74
Presentations 75
Standard presentations and printing 78
Layout procedures 78
Macrogenerator 83
Standard macro generator facilities 87
Bibliographies 91
Indexes 93
Prefixes and postfixes 96
Counters and labels 98
Standard conversions and counters 102
Miscellaneous layout statements 105
Cross proofing 109
Borders and border styles 110
Mathematical Typesetting 112
D P and Plot 130
Errors 131

Quirks and Oddities 131

Index ****

reference.mss

24 Reference Section Peter Hibbard
Mint User Manual

4.1 Input conventions

Mint allows several front-ends to coexist, and it will take lexemes from which ever one of them is needed
for the current environment. At present there are four front-ends: that for Scribe-like text, that for DP, that
for Plot, and that for mathematics. It is likely that others will be added shortly. The input conventions for
DP and Plot are described in section 4.28, and the input conventions for the mathematical environments is
described in section 4.27; this section describes the Scribe-like text input.

As far as has been possible, I have made the Mint input conventions for text the same as those for
Scribe; however, there ar~ some differences which have been caused by the very different internal structures
of Mint and Scribe. Rather than go into a detailed comparison, I will itemize the principal features of Mint's
conventions.

• Environment identifiers (such as Item; ze and ovp), macro identifiers (such as Incl ude), and
Mint commands (such as beg; n) are case-free, as are the attribute identifiers used to modify
environments (such as Nee d and w; d t h).

• Attributes which take a length as their value must have the units explicitly specified (for example
Need 1 ; nCh). The parameter identifier can be separated from the value by either a space or an
equals. Alas, macro parameter identifiers must be followed by an equals, introducing a regrettable
lack of consistency.

• In many situations a blank line is interpreted as completing one environment and starting another
of the same type. Generally whether this occurs or not is determined by the syntax of the
document, and not by environment parameters, as is the case with Scribe. Since the syntax is not
easily accessible to the user, you have to live with what I have chosen; however, other facilities in
Mint provide you with similar features.

• If two paragraphs have another environment separating them, and there are no blank lines
between, as for example in the case of

If two paragraphs have another environment separating them, and there are
no blank lines between, as for example in the case of
@begin(example)
This illustrates the continuation feature
@end(examp1e)
then the last paragraph will be treated as a continuation of the first.
If however a blank line separates the environments, the last paragraph
will start with an indented line (provided that the document type has
indentations for the first line).

then the last paragraph will be treated as a continuation of the first. If however a blank line
separates the environments, the last paragraph will start with an indented line (provided that the
document type has indentations for the first line).

• Make, Ente r and Beg; n are synonyms, as are Leave and End. Document environments do not
need to have an end.

• In environments that are filled Mint will expand or contract spaces to fill out the lines. The rate of
expansion or contraction is determined by the type of the space, with spaces after the end of a
sentence expanding faster than those between words. If a fullstop, exclamation mark or question
mark has two or more spaces after it, or is followed by a newline, then the space is regarded as an
end-of-sentence space, otherwise as a between-word space. Always start a sentence on a new line,

reference.mss

Peter Hibbard
Mint User Manual Reference Section 25

or precede it by two spaces; follow a fullstop used for an abbreviation with one space only. Spaces
after commas, semicolons and colons also expand at different rates. They can be converted to
between-word spaces by using @# •. Non-expanding spaces are obtained using @w in the same way
as Scribe, or by using @ (@ followed by a space) .

• Mint does not number pages automatically. See section 4.24.2.1 to find how to include page
numbers .

• New environments can be defined in terms of current ones by using Def i ne, which is similar to
the Define and Equate commands of Scribe; environments can also be modified by using
Mo d i f y. Both of these statements understand the block structure of a document, and at the end
of the environment in which they occur the definitions and modification are popped.

4.2 Docunlent syntax

Mint has a more rigid notion of the syntax of a document than do other document preparation systems.
The syntax is enforced by a parser that acts as the front end to the system; this parser performs
error-correction, so that in general it is not necessary to specify the complete structure of the document -
this can usually be inferred. However. not all general nesting of environments that are possible with Scribe
are possible with Mint, so there may be occasions where the structure of a document needs to be changed
somewhat. Facilities exist for the disciplined hacker to alter the syntax; see section 4.2.6.

Each document type has a different syntax; however there are similarities between them, and it is
convenient to describe the syntactic structure of all document types together.

4.2.1 Syntactic metalanguage

The syntax is described by a simplified version of BNF. A production rule is written as

Notion = [Notionl' Notion2 •...• Notionn]

or

Notion = []

The first rule is an abbreviation for the production rules

Notion = Notiona*
Notiona = Notionl I Notion2 I ... I Notionn

and the second rule specifies that Not ion generates a terminal string.

In addition to the production rules, the input language to Mint is described by the. error-correcting rules .
. Currently these are somewhat crude (which reflects in the parser occasionally misguessing the correct parse
when a trivial amount of analysis would yield it). The error-correction is driven by supplying each

reference.mss

26 Reference Section Peter Hibbard
Mint User Manual

production rule with a set of default Not; ons, from which one is selected if the standard syntax is violated.
These defaults are written as

{Notionl' Notion2 •...• Notion n},

An empty set of defaults implies that the parser will not take corrective action if the parse fails; in general
there is at most one default.

4.2.2 Pseudo-Syntactic properties

In addition to the formal syntax, several other properties are associated with the not; ons of a
document. Pack takes a boolean value, and specifies whether the environment causes typographical display
features (such as a blank line, or several consecutive spaces) to be interpreted as a horizontal gap of the
appropriate size needed for normal typographical text layout. B 1 an k 1 ; n e s takes a value from (k e p t,
i 9 no red, ; n val i d), and specifies whether consecutive blank lines in an environment are to be
compressed into a single one or not. The interaction between these two values is somewhat subtle, and will
not be described in this version of the document. The other pseudo-syntactic properties are described
elsewhere; they are: dom; nat; ng, which is described in section 4.3.5, and auto; nc rement i ng, which is
described in section ?*? It was found to be useful to make these values a part qf the syntax, because the
error-correcting parser uses this contextual information to interpret the meaning the input. For this reason it
is not meaningful to change these values during a parse.

4.2.3 Nonterrninals

The following are the inbuilt not; 0 n s. They are used to specify the formatting rules that get applied to
the input, and they are used in the same way as they are in Scribe. For example

. @begin(exarnple, tabclear, tabset 8erns, tabset 14ems, tabset 22erns)

The brief description states informally how they are intended to be used. More details are given in section
4.7.

Abstract

Align

Annotation

Appendix

Append;xSection

Article

This places a paragraph of text in the position occupied by an abstract

An environment like ve rba tim, which treats tabulations in a way that is useful
for laying out tables. It is described more fully in section 4.24.4.

An annotation is similar to a footnote, though at present it will not appear in the
pages.

An appendix is similar to a chapter, except for the numbering that is used.

An appendix section is similar to a section, but is used in appendices.

A document type with numbered sections, subsections, etc., and no table of
contents.

reference.mss

Peter Hibbard
Mint User Manual

Caption

Centre

Chapter

Commentary

Contents

CopyrightNotice

Default

Describe

Description

Display

Dltem

DP

Enumerate

Example

Figure

FlushLeft

FlushRight

Foot

Format

Gloss

reference.mss

Reference Section 27

A caption occurs under a figure, or over a table. It is preceded by the figure or
table number.

An environment which centres the text within the margins, breaking the lines at
! the same places as in the manuscript. It uses the normal roman font.

A chapter has a number in front of it; the style depends on the document type.
The chapter heading is centred, and uses a large bold typeface.

A commentary environment is used to place two pieces of text side-by-side. The
left side is in the normal size of font, the right side in a smaller font

This is used to create tables of contents. You will never need to use this
environment directly.

This places a copyright notice, preceded by the copyright symbol.

The default environment type for all documents except s 1 ide s. It fills the lines,
and uses the normal roman font.

The describe environment can be .used for laying out tables. It is described more
fully in section 4.24.5.

This environment produces a list of paragraphs, with the first line outdented.
This environment is being used to produce this text.

An environmerit that narrows the margins, and breaks the lines in the same
places as in the manuscript. It uses the normal roman font.

An d i t e m is what each of the paragraphs is in an de $ c rip t ion environment.
You usually won't need to use this environment explicitly.

This is used for DP drawings. Section 4.28 describes how to use this
environment.

Similar to item i z e, except that each paragraph is numbered.

An environment that narrows the margins, and breaks the lines in the same
places as in the manuscript. It uses a fixed width font.

A figure comprises a paragraph of text (using the textpart environment), or a
diagram produced by Plot or DP, followed by a caption.

An environment that narrows its margins, and breaks the lines at the same places
as in the manuscript. Lines are flushed up against the left margin. It uses the
normal roman font.

Similar the flu s h 1 eft, except that the lines are flushed up against the right
margin.

This is used for a footnote. The footnote appears at the bottom of the page in
which the text that refers to it appears, and it uses a smaller typeface.

An environment that breaks the lines in the same places as in the manuscript. It
does not narrow the margins. It uses the normal roman font.

A gloss is the right-hand environment of a commentary. -You have to explicitly
specify an environment as being a 9 los $, otherwise it will be ;assumed to be a
textpart.

28

Heading

Item

Itemize

MajorHeading

Manual

Maths

Multiple

Notice

PageCommand

PageHeading

PageFooting

PageOffset

Paragraph

Plot

PrefaceSection

ProgramExample

Quotation

Report

ResearchCredit

Reference Section Peter Hibbard
Mint User Manual

This produces a centred heading in a bold typeface that is smaller than that used
for maj orheadi ng.

An item is what each of the paragraphs is in an itemize and enumerate
environment. You usually won't need to use this environment explicitly.

This produces a list of paragraphs, each preceded by a bullet. (Paragraph is used
here in the infonnal sense, not the sense defined above.)

This produces a centred heading in a large bold typeface.

A document type with numbered chapters, sections, subsections, etc.,and a table
of contents.

This environment uses special processing of its body to do high-quality
mathematical typesetting. Details are given in section 4.27.

An environment that groups together other environments within it. It narrows
the margins and the line spacing.

This environment allows you to put other paragraphs on the title page. Their
positions are detennined by the tit 1 e p ag e environment.

The pagecommand environment is used for several actions concerned with page
layout. Nonnally you will never use this environment directly.

This environment is used for creating page headings. The environments that are
nested within it are placed at the top of the pages. It is described in more detail in
section 4.24.2.1.

This environment, similar to the page head i ng environment, places footings on
the pages. It is described in more detail in section 4.24.2.l.

You need this environment if you want to offset the text on pages to the left or
right, or up or down. It is described in more detail in section 4.24.2.2.

A paragraph is the lowest level of section heading. It has a number, and is
flushed left.

This environment is used to introduce a diagram produced by the Plot program.
Section 4.28 describes how to use this environment.

A preface section will start a new page, and produce the heading in a large bold
typeface.

This environment is currently identical to examp 1 e. In the future it will be used
for examples of program text, and will apply conventional program formatting
rules.

An environment that narrows the margins and line spacing, and fills the lines. It
uses the normal roman font.

A document type with numbered chapters, sections, subsections, etc., and a table
of contents.

This environment places a paragraph of text in the usual position occupied by a
research credit.

reference.mss

Peter Hibbard
Mint User Manual

Section

Slides

SubHeading

SubSection

Table

Text

TextPart

Thesis

Tit1ePage

Tit1eBox

Verbatim

Verse

Reference Section 29

A section has a number, and is flushed left. It uses the same typeface as that used
for chapte r.

A document type without number ed sections, with spacings and fonts suitable
for making overhead transparency slides.

A subheading is in a bold typeface, and is flushed left

A subsection has a number, and is flushed left. It uses a bold typeface that is
smaller than that used for chapte r and sect ion.

A table comprises a caption. followed by a paragraph of text (using the ali 9 n
environment), or a diagram produced using Plot or DP.

The default document type. It has no numbered sections, and has wide-spaced
lines.

The textpart environment is the left-hand environment of a commentary.
Nonnally you will not need to use this explicitly.

A document type with numbered chapters, sections, subsections, etc., and a table
of contents.

This environment is used for laying out title pages. It controls the positions of the
environments which nest within it.

The environments that are allowed within the title box are maj 0 rhead i ng,
head i ng and cent reo

This environment narrows the margins, breaks the lines in the same positions as
in the manuscript, and uses a fixed width font

This environment breaks lines in the same position as they are brocken in the
manuscript, unless the line is too long to fit within the margins, in which case it
indents the brocken line.

In addition to these environments, there are the environments document, mfoot, mannnotat ion
moddsand,sods and mcontents, which are inaccessible to you. They control the creation of the galleys.

Note that there is no equation environment, as there is in Scribe. The maths environment plays a
similar role.

4.2.4 Production rules common across several document types

In the description below, the nontenninal is followed by the notions it produces, the default notions, the
value of Pack and the value ofB1 ankL i nes.

The following abbreviations are used.

StdEnvs =

reference.mss

Ce-ntre, Display, Example, ProgramExample, FlushLeft.
FlushRight, Verbatim, Format, Quotation, Align, Default.
Itemize, Enumerate, Description, Commentary, Plot. DP.
Figure, Table, Verse, Maths, Multiple, Describe

30 Reference Section Peter Hibbard
Mint User Manual

StdTerminals Centre, Display, Example, ProgramExample. FlushLeft,
FlushRight, example, Format, Quotation, Align, Default.
Plot, DP, Align, Verse, Maths

StdHeadings MajorHeading, Heading. SubHeading, TitlePage

StdSections Section, SubSection. Paragraph, Appendix,
AppendixSection, PrefaceSection

StdChapters = Chapter. Section, SubSection, Paragraph, Appendix,
AppendixSection, PrefaceSection

StdTitleEnvs = TitleBox, ResearchCredit, Abstract, CopyrightNotice.
Notice

4.2.4.1 Document environment syntax

Document [Text. Report, Thesis. Article, Slides. Manual]

Text = [StdEnvs
Report [StdEnvs

Article = [StdEnvs

Thesis [StdEnvs

Slides [StdEnvs
Manual [StdEnvs

4.2.4.2 Terminal environment syntax

Align = []
Centre = []
Default []
Display = []
DP = []
Example = []
FlushLeft []
FlushRight []
Format = []
Maths = []
Plot = []
ProgramExample []
Quotation = []
Verbatim []
Verse = []

4.2.4.3 Heading environment syntax

MajorHeading
Heading =
Subheading =

[]
[]
[]

{Text}
+ StdHeadings] {Default}
+ StdHeadings + StdChapters]

{Default}
+ StdHeadings + StdSections]

{Default}
+ StdHeadings + StdChapters]

{Default}
+ StdHeadings] {Verbatim}
+ StdHeadings + StdChapters]

{Default}

{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}

{}
{}
{}

Skip
Skip

Skip

Skip

Skip
Skip

Skip

False
False
True
False
True
False
False
False
False
False
True
False
True
False
False

False
False
True

Invalid
Invalid

Invalid

Invalid

Invalid
Invalid

Invalid

Kept
Kept
Invalid
Kept
Ignored
Kept
Kept
Kept
Kept
Kept
Invalid
Kept
Invalid
Kept
Kept

Kept
Kept
Invalid

reference.mss

Peter Hibbard
Mint User Manual Reference Section

4.2.4.4 Section environment syntax

PrefaceSection [] {}
Section = [] {}
SubSection = [] {}
Paragraph = [] {}
Appendix = [] {}
AppendixSection [] {}

4.2.4.5 Chapter environment syntax

PrefaceSection [] {}
Chapter = [] {}
Section = [] {}
SubSection [] {}
Paragraph = [] {}
Appendix = [] {}
AppendixSection [] {}

4.2.4.6 Itemization environment syntax

Itemize = [StdEnvs + Item] {Item}
Item = [] {}
Enumerate [StdEnvs + Item] {Item}
Description [StdEnvs + Dltem] {DItem}
Describe = [StdEnvs] {FlushLeft}
DItem = [] {}
Commentary [TextPart, Plot, DP, Gloss]

{TextPart}
TextPart [] {}
Gloss = [] {}
Figure = [TextPart, Plot, DP, Caption]

{Text Part}
Table = [Align, Plot, DP, Caption]

{Align}
Caption [] {}
Multiple = [StdEnvs] {Default}

4.2.4.7 Title page environment syntax

TitlePage = [StdTitleEnvs] {Notice}
TitleBox = [MajorHeading, Heading. Centre]

{Centre}
ResearchCredit [StdEnvs] {Default}
Abstract.= [StdEnvs] {Default}
CopyrightNotice [] {}
Notice = [StdEnvs] {Default}

4.2.4.8 Galley environment syntax

Foot = [StdEnvs] {Default}
MFoot = [Foot] {Foot}
Annotation [StdEnvs] {Default}
MAnnotation = [Annotation] {Annotation}

reference.mss

31

False Kept
True Invalid
True Invalid
True Invalid
True Invalid
True Invalid

False Kept
False Kept
True Invalid
True Invalid
True Invalid
False Kept
True Invalid

Skip Invalid
True Invalid
Skip Invalid
Skip Invalid
Skip Invalid
True Invalid

Skip Invalid
True Invalid
True Invalid

Skip Invalid

Skip Invalid
True Invalid
Skip Invalid

Skip Invalid

Skip Invalid
Skip Invalid
Skip Invalid
True Invalid
Skip Invalid

Skip Invalid
Skip Invalid
Skip Invalid

Skip Invalid

32 Reference Section Peter Hibbard
Mint User Manual

Contents =
MContents =

[StdEnvs, StdHeadings]
[Contents]

4.2.4.9 Page environment syntax

[StdTerminals]
[StdTerminals]
[StdTerminals]
[]

{Align}
{Contents}

Skip
Skip

Invalid
Invalid

{Centre} Skip Invalid
{Centre} Skip Invalid
{Centre} Skip Invalid
{} True Invalid

PageHeading =
PageFooting =
PageOffset =
PageCommand =
MOddsandSods = [PageHeading. PageFooting, PageOffset, PageCommand]

{} Skip Invalid

4.2.5 Document Syntax

Each document type has a different syntax. The sets of rules, defaults, and values for Pack and
B 1 an k Lin e s are given in the previous section.

Tenninals + Headings + Items + Pages + Galleys Text Syntax

Report Syntax

Article Syntax

Thesis Syntax

Slides Syntax

Manual Syntax

Tenninals + Headings + Chapters + Items + Title pages + Pages + Galleys

Tenninals + Head~ngs + Sections + Items + Title pages + Pages + Galleys

Tenninals + Headings + Chapters + Items + Title pages + Pages + Galleys

Tenninals + Headings + Items + Pages

Tenninals + Headings + Chapters + Items + Title pages + Pages + Galleys

4.2.6 Altering the syntax

Sometimes it will be found that the Mint syntax is too restrictive to allow some layouts that you want.
For example, you might want an ali 9 n environment in a titlebox, or a commentary in a figure. Mint
provides a means of altering the syntax from within the . Mss file, using the statements AddRu 1 e, which
adds a new right hand side to a production rule; RemRul e, which removes a right hand side; AddDefaul t,

which adds a default to be used by the error correcting parser; and RemOe f au 1 t, which removes a default.
Of these, only AddRu 1 e is likely to be used by any but the most fearless Minter, and even then, I will not be
responsible for the havoc that can arise from inappropriate use of the statement.

The form of these statements is

@AddRule (LHS, RHS)
@RemRule (LHS, RHS)
@AddDefault (LHS, RHS)
@RemDefault (LHS, RHS)

where in all cases the production rules for the LHS are modified by adding or removing the RHS.

reference.mss

Peter I libbard
Mint User Manual Reference Section 33

For example, assume that you want to incorporate a Commentary environment into a figure. The

statements

@addrule(figure, commentary)
@begin(figure, width = 6in, borderstyle width1, border
@begin[commentary]

0.1 in)

@begin[dp, width = 3 in]@include[bargraph.dp]@end[dp]

@begin[gloss, fontsize = n]
Total execution times for the three parsers (for two Lambda output
files). The three bars at the left show the execution times for the
simpler Lambda file (59 lines of text); the three bars at the right
correspond to the more complex file (211 lines of text).
The lower part of each bar indicates the user time; the upper part is the
system time.
'C' indicates the hand-written C program.
@end[gloss]

@end[commentary]
@caption[A performance comparison of the three methods.@label[bargraph]]
@end(figure)

produce the following:

t (sec)/"
8.0 -

7.0 -

6.0 -

5.0 -
awk

awk Total execution times for the three parsers (for
two Lambda output files). The three bars at
the left show the execution times for the
simpler Lambda file (59 lines of text); the

4.0 _
yacc + lex

yacc + lex three bars at the right correspond to the more
complex file (211 lines of text). The lower part
of each bar indicates the user time; the upper
part is the system time. 'C' indicates the

chand-written C program. 3.0 -

2.0 -

1. 0 -

4.3 Galleys

c
nTII '-- -

Figure 4. A perfonnance comparison of the three methods.

Galleys are the principal data structures within Mint. They specify the fonnatting rules that will be

applied for the various environments, they specify the fonts that will be used, and they specify the devices

for which the infonnation in the galley will be targetted. In addition to carrying passive information used

internally by Mint. and the contents of the manuscript, they also are fo~atting processes, the interactions

between which help create the relationships that exist between pieces of the manuscript - the text and a

floating figure, or the text and a footnote, for example.

reference.ross

34 Reference Section Peter I I ibbard
Mint User Manual

In the following section I describe the principal properties of galleys; section 4.4 describes the default
properties of the galleys set up automatically when Mint starts.

4.3.1 Defining galleys

A new galley may be defined, and its properties specified, from the manuscript file. The statement
NewGa 11 ey creates a new, inactive galley. For example,

@NewGalley (FloatingFigures, Dover)

creates a new galley with identifier F 1 oa tin 9 Fig u re s that will contain information formatted for the
Dover. To be useful, the galley needs other properties: a Procedure Family and a Font Family.

4.3.2 Procedure Families

The procedure family associated with a galley determines which information the galley will receive from
the manuscript, and how it will format the information. Basically the procedure family of a galley specifies a
top-down parser and semantic analyser that takes the output of the error-correcting parser, and performs the
transformations on it necessary to produce the formatted text. Whether a galley receives the output from the
error-correcting parser is determined by two factors - whether the galley has a formatting procedure for the
particular environment being currently treated by the error-correcting parser, and whether a Dominating
Environment has excluded the galley or not. See section 4.3.5 for a description of dominating environments.

The procedure family of a galley is maintained as a vector, indexed by the environment identifier -
Itemi ze, Capt i on, etc. An entry in the vector comprises two parts, a Procedure Indicator and an
Environment Indicator. The procedure indicator specifies which (recursive) procedure will be used to parse
and analyse the input; the environment indicator specifies which set of box environment parameters will be
used for this analysis. There are fewer procedures than environment parameter sets, because several
environments can be parsed using the same procedure. For example, analysing the F1 ushLeft, the
Ve r bat i m and the G los s environments is done by the same procedure, because the differences between
these environments are captured completely by the differences in the environment parameters. See section
4.l2 for a description of the procedures, and see section 4.5 for a description of the box environment
parameters.

A procedure is associated with some entry in the procedure family vector by the statement AssocProc,
which takes the name of a galley, the external identifier of the environment, the identifier of the procedure,
and the identifier of the environment parameters. For example

@AssocProc (FloatingFigures. DP. BoxStandardO. EnvOPO)

specifies that the F10atingFigures galley is able to handle the DP environment, using the procedure

reference.mss

Peter Hibbard
Mint User Manual Reference Section 35

BoxStandardO and the environment parameters EnvDPO. If the entry was already occupied, it is
overwritten.

A word of caution. By placing entries in the procedure vector, you are (meta-) programming a parser and
semantic analyser. There are many ways that you can make mistakes, and there are only a limited number of
checks it is reasonable for me to do to help you out. You are probably in good shape adding tenninal
environments, though.

4.3.3 Font Families

A font family is a two dimensional array of Font Indicators that indicates the fonts to use in the box
environments. Font Families are described in more detail in section 4.9, which explains how to add fonts
to the font family, and how to manufacture fonts from existing ones.

When a galley has been created, using NewGa 11 ey, the font family is empty. Fonts should be associated
with the family before the galley receives input, otherwise Mint will use a default font.

4.3.4 Installing a galley

In addition to maintaining passive infOlmation, a galley is an active process, which has associated with it
an execution context and the stack of acti,(ation records of the procedures of the parser and analyser that
have been entered and not yet left. When a galley is first created, it has no execution context, and its stack is
empty. A galley is given a context and made to play an active role in formatting by installing it, using the
statement InstallGal1ey (basically, the galley is placed on the Mint scheduler queue).
Ins t a 11 G a 11 ey takes two parameters: the name of the galley, and the name of the procedure family
entry that is at the bottom of the execution stack for the galley .

. @InstallGalley (FloatingFigure. DP)

The galley will be suspended, and will become active only when the error-correcting parser finds the
appropriate environment in the manuscript. Thereafter the error-correcting parser will feed information to
the galley until the environment ends, at which time the galley will suspend. In order to be useful, therefore,
the lowest invocation in the galley's execution context should be a procedure that loops, and calls other
procedures to format specific environments. Because the error-correcting parser handles the input first, the
looping procedure need not have an explicit environment identifier available to the user. More details are
beyond the scope of the reference manual; but see how the Footnotes galley is constructed for a model.

4.3.5 Dominating environments

As mentioned' above, two factors determine whether a galley will receive the output from the
error-correcting parser: first, whether the galley has a procedure for the current environment, and second,

reference.mss

36 Reference Section Peter Hibbard
Mint User Manual

whether a dominating environment has excluded other galleys. It is necessary to be able to exclude galleys
that are eligible by the first rule, since many galleys may be able to format a default environment, for
example; however, if this environment occurs within a footnote, only the galleys handling footnotes should
receive the output of the error-correcting parser.

In order to restrict the set of galleys, environments can be made dominating. If a dominating
environment is current, then only those galleys that have the dominating environment in their procedure
family will receive input, and all the others will remain blocked until the environment terminates. The
specification of whether an environment is dominating or not is made during the specification of the syntax.
The fonowing environments are specified as dominating in the current system.

Foot
PageOffset

Annotation
PageCommand

4.4 Standard Galley Properties

PageHeading PageFooting

This section describes the properties of the standard galleys that are made available by default in the
current version of Mint. In order to simplify the description, I introduce several collections of procedure
families, font families, prefixes and styles before showing in section 4.4.5 how each of the galleys is
composed. See section 4.3 for a description of procedure families and font families, section 4.21 for a
description of prefixes, and section 4.4.4 for a description of galley styles.

The current version of Mint uses five galleys - the rna in galley, into which most of the document is
placed; the footnotes galley, which is used to receive footnotes; the annotat ions galley, which
receives annotations; the oddsandsods galley, which receives page layout information; and the
contents galley which receives the table of contents. At present DP and Plot drawings go into the main
galley.

4.4.1 Procedure families

TIle following procedure collections are defined. The· name of the environment is followed by the
procedure indicator and environment indicator that the environment uses. See section 4.3.2 for the
meanings of these terms.

4.4.1.1 Terminal procedures

Align
Centre
Default
Display
DP
Exa.mpl e
FlushLeft
FlushRight

BoxStandardO
BoxStandardO
BoxStandardO
BoxStandardO
BoxStandardO
BoxStandardO
BoxStandardO
BoxStandardO

EnvAlignO
EnvCentreO
EnvDefaultO
EnvDisplayO
EnvDPO
EnvExampleO
EnvFlushLeftO
EnvFlushRightO

reference.mss

Peter Hibbard
Mint User Manual

Format
Maths
Plot
ProgramExample
Quotation
Verbatim
Verse

4.4.1.2 Heading procedures

Heading
MajorHeading
SubHeading

4.4.1.3 Chapter procedures

Appendix
AppendixSection
Chapter
Paragraph
PrefaceSection
Section

'SubSection

4.4.1.4 Section procedures

Appendix
AppendixSection
Paragraph
PrefaceSection
Section
SubSection

4.4.1.5 Itemization procedures

Caption
Commentary
Describe
Description
Dltem
Enumerate
Figure
Gloss
Item
Itemize
Multiple
TextPart
Table

4.4.1.6 Title page procedures

Abstract
CopyrightNotice
Notice
ResearchCredit

reference.mss

Reference Section 37

BoxStandardO EnvFormatO
BoxMathsO EnvMathsO
BoxStandardO Env Pl otO
BoxStandardO EnvProgramExO
BoxStandardO EnvQuotationO
BoxStandardO EnvVerbatimO
BoxStandardO EnvVerseO

BoxStandardO EnvHeadingO
BoxStandardO EnvMajorHeadingO
BoxStandardO EnvSubHeadingO

BoxSectionEnvO EnvAppendixO
BoxSectionEnvO EnvAppendixSecO
BoxSectionEnvO EnvChapterO
BoxSectionEnvO EnvParagraphO
BoxStandardO EnvPrefaceSecO
BoxSectionEnvO EnvSectionO
BoxSectionEnvO EnvSubSectionO

BoxSectionEnvO EnvAppendixl
BoxSectionEnvO EnvAppendixSecl
BoxSectionEnvO EnvParagraph,O
BoxStandardO EnvPrefaceSecO
BoxSectionEnvO EnvSectionO
BoxSectionEnvO EnvSubSectionO

BoxCaptionO EnvCaptionO
BoxCommentaryO EnvCommentaryO
BoxDescribeO EnvDescribeO
BoxMultipleO EnvDescriptionO
BoxStandardO EnvDltemO
BoxEnumerateO EnvEnumerateO
BoxFigureO EnvFigureO
BoxStandardO EnvGlossO
BoxStandardO EnvltemO
BoxItemizeO EnvltemizeO
BoxMultipleO EnvMultipleO
BoxStandardO EnvTextPartO
BoxTableO EnvTableO

BoxMultipleO EnvAbstractO
BoxSectionEnvO EnvCopyrightNO
BoxMultipleO EnvNoticeO
B-oxMultipleO EnvResearchCrO

38

TitlePage
TitleBox

4.4.1.7 Document type procedures

Article
Document
Letter
Manual
Report
Slides
Text
Thesis

4.4.1.8 Footnote procedures

Foot
MFoot

4.4.1.9 Annotation procedures

Annotation
MAnnotation

4.4.1.10 Contents procedures

Contents
MContents

4.4.1.11 Miscellaneous procedures

MOddsandSods
PageCommand
PageHeading
PageFooting
PageOffset

4.4.2 Font families

Reference Section

BoxMultipleO
BoxMultipleO

BoxDocTypeO
BoxDocumentO
BoxDocTypeO
BoxDocTypeO
BoxDocTypeO
BoxDocTypeO
BoxTextO
BoxDocTypeO

BoxCrossRefO
BoxGalleyO

BoxCrossRefO
BoxGalleyO

BoxMultipleO
BoxGalleyO

BoxGalleyO
BoxCRTermO
BoxCrossRefO
BoxCrossRefO
BoxCrossRefO

The following font collections are defined.

Peter Hibbard
Mint User Manual

EnvTitlePageO
EnvTitleBoxO

EnvArticleO
EnvDocumentO
EnvLetterO
EnvManualO
EnvReportO
EnvSlidesO
EnvTextO
EnvThesisO

EnvFootO
EnvMFootO

EnvAnnotationO
EnvMAnnotationO

EnvContentsO
EnvMContentsO

EnvMOddsandSodsO
EnvPageCommandO
EnvPageHeadingO
EnvPageFootingO
EnvPageOffsetO

reference.mss

Peter Hibbard
~1int User Manual

Face
code

r
i
b
c
9
t
p
z

Face
code

r
i
b
c
9
t
p
z

55

-
-
-
-
-
-
-
-

ss

Time5Roman6
-
-
-
-
-
-
-

Reference Section

Table 1. Perq fonts 0 (Main galley)

Font size
5 n 1

Gacha9 TimesRoman12 -
- TimesRoman12i -

Gacha9 TimesRoman12b TimesRoman14
- - -
- - -

Gacha9 Gacha12 -
- - -
- - -

Table 2. Dover fonts 0 (Main galley)

Font size
5 n 1

TimesRomanS TimesRomanlO TimesRomanll
TimesRomanSi TimesRomanlOi -
TimesRoman8b TimesRomanlOb TimesRomanllb

- CapsFonta) -
- HippolO -

Gacha8 GachalO -
- TimesRomanlObi -
- ZFontlO -

a) This is constructed from TimesRomanlO and TimesRoman8.

Table 3. Perq fonts 1 (Annotations and Footnotes galleys)

Face Font size
code ss s n 1

r - Gacha9 -
i - - - -
b - - - -
c - - - -
9 - - - -
t - - - -
p - - - -
z - - - -

Table 4. Dover fonts 1 (Annotations and Footnotes galleys)

Face Font size
code ss s· n 1

r - TimesRoman6 TimesRornan8 -
i - TimesRornan6i TimesRoman8i -
b - TimesRoman6b TimesRomanSb -
c - - - -
9 - - - -
t - - - -
p - - - -
z - - - -

reference.mss

39

11

-
-

TimesRomanlS
-
-
-
-
-

11

TimesRoman14
-

TimesRoman14b
-
-
-
-
-

11

-
-
-
-
-
-
-
-

11

-
-
-
-
-
-
-
-

40

Face
code

r
i
b
c
9
t
p
z

Face
code

r
i
b
c
9
t
p
z

Face
code

r
i
b
c
9
t
p
z

Face
code

r
i
b
c
9
t
p
z

Reference Section

Table 5. Perq fonts 2 (OddsandSods galley)

Font size
ss s n 1

- Gacha9 TimesRoman12 -
- - TimesRoman12i -
- - TimesRoman12b -
- - - -
- - - -
- - Gacha12 -
- - - -
- - - -

Table 6. Dover fonts 2 (OddsandSods galley)

Font size
ss s n 1

- TimesRoman8 TimesRomanlO -
- - TimesRomanlOi -
- - TimesRomanl0b -
- - - -
- - - -- - - -
- - - -
- - - -

Table 7. Perq fonts 3 (Slides· Main galley)

Font size
ss s n 1

TimesRoman12 TimesRoman12 TimesRoman14 TimesRoman18
- - - -
- Gacha9 TimesRoman12b TimesRoman14
- - - -
- - - -
- - TimesRoman14 -
- - - -
- - - -

Table 8. Dover fonts 3 (Slides Main galley)

Font size
ss s n 1

Helvetica12 Helvetica14 Helvetica18 -
- Helvetica14i Helvetica18i -
- Helvetica14b Helvetica18b Helveticad24
- - - -
- - - -
- - Helvetica18 -
- - - -
- - - -

Peter Hibbard
Mint User Manual

11

-
-
-
-
-
-
-
-

11

-
-
-
-
-
-
-
-

11

TimesRoman18
-

TimesRoman18
-
-
-
-
-

11

-
-

Helveticad30
-
-
-
-
-

reference.mss

Petcr Hibbard
Mint Uscr Manual

Face
code

Table 9.

ss

Reference Section 41

Perq fonts 4 (Slides OddsandSods galley)

Font size
s n 1 11

r TimesRoman12 TimesRoman12 TimesRoman14 TimesRoman18 TimesRoman18
i - - - - -
b - - - - -
c - - - - -
9 - - - - -
t - - - - -
p - - - - -
z - - - - -

Table 10. Dover fonts 4 (Slides OddsandSods galley)

Face Font size
code ss s n '1 11

r Helvetica12 Helvetica12 Helvetica14 Helvetica18 Helvetica18
i - - - - -
b - - - - -
c - - - - -
9 - - - - -
t - - - - -
p - - - - -
z - - - - -

4.4.3 Prefixes and postfixes

These are collected into the following. See section 4.21 for a description of these prefixes and postfixes.

4.4.3.1 PrefixesOChapters

Chapter
SubSection
Appendix

PrefixChapterO
PrefixSubSectionO
PrefixAppendixO

4.4.3.2 PrefixeslChapters

Section
Paragraph
AppendixSection

PrefixSectionO
PrefixParagraphO
Pref1xAppendixSecO

These are the same as for Pref;xesOChapters, expect that the Chapter prefix is
Pref;xChapter1.

4.4.3.3 PrefixesOSections

Section
Paragraph
Append1xSection

4.4.3.4 PrefixesOItems

reference.mss

PrefixSectionO
PrefixParagraphO
Pref1xAppendixSecO

SubSection
Appendix

PrefixSubSectionO
PrefixAppend;xl

42

Figure PrefixFigureO

4.4.3.5 PrefixesOTitleEnvs

CopyrightNotice PrefixCopyrtNO

4.4.3.6 PostfixesOTerminals

Maths PostfixEqnO

4.4.4 Standard styles

Reference Section

Table

Peter Hibbard
Mint Cscr Manual

PrefixTableO

Styles are parameters that control the general appearance of a document, and are set by default, or
altered when the document is made. See section 4.5.2.l for a description of their actions. The following two
collections of style parameters are specified. Let XW i d t h be the width of the page on the target device, and
YHeight be the height of the page. Also let XIne be equal to XWidth/40, and VIne be equal to
YHe; 9 ht/50. The style parameters are as follows.

StylesO
Width
RLM
NLM
RRM
NRM
Indent
JustifyLeft
Jus t ifyLeftLast
ImageColour
RasterFunetion

Styles1
Width
RLM
NLM
RRM
NRM
Indent
Jus t ifyLeft
JustifyLeftLast
ImageColour
RasterFunction

XWidth*3/4
o
XIne
o
XIne
XIne
True
True
Black.
ROr

XWidth*3/4
o
XIne
o
XIne
o
True
True
Black
ROr

4.4.5 The galley parameters for the document types

4.4.5.1 Text, form 0

RAbove
NAbove
RBelow
NBelow
RGap
NGap
HGap
JustifyRight
JustifyRightLast
Baek.groundColour

RAbove
NAbove
RBelow
NBelow
RGap
NGap
HGap
JustifyRight
JustifyRightLast
BaekgroundColour

The following galleys, prefixes and postfixes are defined.

Main galley, invoked with Document
Fonts: FontsO

VIne
VIne div 2
VIne
VIne div 2
VInc div 4
VIne d iv 10
VIne div 10
True
False
Transparent

VIne * 2
VIne
VIne * 2
VIne
VIne div 2
VIne div 3
VIne div 10
True
False
Transparent

reference.mss

Peter I libbard
~int User Manual Reference Section

Procedures: Terminals + Headings + Itemizations + DocTypes
Styles: Stylesl

FootNotes galley, invoked with MFoot
Fonts: Fontsl
Procedures: Terminals + Itemizations + FootNotes
Styles: StylesO

Annotations galley, invoked with MAnnotation
Fonts: Fontsl
Procedures: Terminals + Itemizations + Annotations
Styles: StylesO

OddsandSods galley, invoked with MOddsandSods
Fonts: Fonts2
Procedures: Terminals + Miscellaneous
Styles: Stylesl

Prefixes and postfixes
PrefixesOItems + PostfixesOTerminals

4.4.5.2 Text, form 1

43

Document type Text, form 1 is identical to Text, form 0 except that Styl esO is used for the main
galley, instead of Styl as 1.

4.4.5.3 Report, form 0

The following galleys, prefixes and postfixes are defined.

Main galley, invoked with Document
Fonts: FontsO
Procedures: Terminals + Headings + Chapters + Itemizations + TitleEnvs
Styles: StylesO

FootNotes galley, invoked with MFoot
Fonts: Fontsl
Procedures: Terminals + Itemizations + FootNotes
Styles: StylesO

Annotations galley, invoked with MAnnotation
Fonts: Fontsl
Procedures: Terminals + Itemizations + Annotations
Styles: StylesO

OddsandSods galley, invoked with MOddsandSods
Fonts: Fonts2
Procedures: Terminals + Miscellaneous
Styles: StylesO

Contents galley, automatically invoked
Fonts: FontsO
Procedures: Terminals + Headings + Itemizations + Contents
Styles: StylesO

Prefixes and postfixes
PrefixesOChapters + PrefixesOItems + PrefixesOTitleEnvs + PostfixesOTerminals

reference.mss

44 Reference Section

4.4.5.4 Article, form 0

The following galleys, prefixes and postfixes are defined.

Main galley. invoked with Document
Fonts: FontsO
Procedures: Terminals + Headings + Sections + Itemizations + TitleEnvs
Styles: StylesO

Fo~tNotes galley, invoked with MFoot
Fonts: Fontsl
Procedures: Terminals + Itemizations + FootNotes
Styles: StylesO

Annotations galley, invoked with MAnnotation
Fonts: Fontsl
Procedures: Terminals + Itemizations + Annotations
Styles: StylesO

OddsandSods galley, invoked with MOddsandSods
Fonts: Fonts2
Procedures: Terminals + Miscellaneous
Styles: StylesO

Prefixes and postfixes

Peter Hibbard
Mint User Manual

PrefixesOSections + PrefixesOItems + PrefixesOTitleEnvs + PostfixesOTerminals

4.4.5.5 Thesis, form 0

The following galleys, prefixes and postfixes are defined.

Main galley, invoked with Document
Fonts: FontsO
Procedures: Terminals + Headings + Chapters + Itemizations + TitleEnvs
Styles: StylesO

FootNotes galley, invoked with MFoot
Fonts: Fontsl
Procedures: Terminals + Itemizations + FootNotes
Styles: StylesO

Annotations galley, invoked with MAnnot~tion
Fonts: Fontsl
Procedures: Terminals + Itemizations + Annotations
Styles: StylesO

OddsandSods galley, invoked with MOddsandSods
Fonts: Fonts2
Procedures: Terminals + Miscellaneous
Styles: StylesO

Contents galley, automatically invoked
Fonts: FontsO
Procedures: Terminals + Headings + Itemizations + Contents
Styles: StylesO

- Prefixes and postfixes
PrefixesOChapters + PrefixesOItems + PrefixesOTitleEnvs + PostfixesOTerminals

reference.mss

Peter IIibbard
Mint User Manual

4.4.5.6 Slides, form 0

Reference Section

The following galleys, prefixes and postfixes are defined.

Main galley, invoked with Document
Fonts: Fonts3
Procedures: Terminals + Headings + Itemizations
Styles: Stylesl

OddsandSods galley, invoked with MOddsandSods
Fonts: Fonts4
Procedures: Terminals + Miscellaneous
Styles: Stylesl

Prefixes and postfiies
PrefixesOItems + PostfixesOTerminals

4.4.5.7 Manual, form 0

The following galleys, prefixes and postfixes are defined.

Main galley, invoked with Document
Fonts: FontsO
Procedures: Terminals + Headings' + Chapters + Itemizations + TitleEnvs
Styles: StylesO

FootNotes galley, invoked with MFoot
Fonts: Fontsl
Procedures: Terminals + Itemizations + FootNotes
Styles: StylesO

Annotations galley, invoked with MAnnotation
Fonts: Fontsl
Procedures: Terminals + Itemizations + Annotations
Styles: StylesO

OddsandSods galley, invoked with MOddsandSods
Fonts: Fonts2
Procedures: Terminals + Miscellaneous
Styles: StylesO

Contents galley,-automatically invoked
Fonts: FontsO
Procedures: Terminals + Headings + Itemizations + Contents
Styles: StylesO

Prefixes and postfixes
PrefixesOChapters + PrefixesOltems + PrefixesOTitleEnvs + PostfixesOTerminals

4.4.5.8 Manual, form 1

45

Document type Manu a 1, fo rm 1 is identical to Manua 1, fo rm 0 except that P ref i xe s lChapte rs is
used for the main galley, instead ofP ref i xes OChapte rs.

reference.mss

46 Reference Section Peter Hibbard
Mint User Manual

4.5 Box Environnlent Parameters

The attributes of a box detennine "the appearance of the box and the way that the information in the box
is laid out. The attributes are set to standard values on entering an environment, but they may be changed
using environment parameters, or globally using def i ne and mod i fy. Several related environments, such
as centre, flushleft, etc., differ only because they use different values of some of the environment
parameters. For a complete list of the standard values for all the environments, see section 4.7. In general
the environment parameters do not affect the appearance of a box directly, but instead they do it by being
parameters to computations, which generate the values needed by the low level Mint formatting routines.
Since the Minter has control over which computations will get applied, it is a little misleading to say, for
example, that the wi dth parameter specifies the width of a box. However, there is usually a direct relation
between an environment parameter and the value generated for the low level routines, so this distinction can
be ignored by the casual user. In the description below I am assuming the the standard computations will be
applied.

Environment parameters are of two classes: the standard ones, which are defined for all the
environments (though they are not necessarily always meaningful), and additional environment parameters,
which are usually specific to a particular environment.

4.5.1 Standard attributes

The following are the standard attributes, and the type of the values they may be set to. See section 4.6
for a description of these types, and how values of them are represented.

Width

Above, Below

LeftMarg in

ExtraLeftMarg i n

This defines the width of the external dimensions of the box that encloses the
information in an environment. See figure *** for the meaning of these terms.
The width is specified in units of horizontal length, for example

@begin(plot, width 3.25 inches)

Note that the height of a box relative to its width is determined by its contents.

These specify the minimum sp"ace above and below a box (this statement applies
to the standard environments; see section 4.11 for more details on this). The gap
between two boxes, A followed by B is computed as the maximum of the be low
of A and the above of B. The values of above and be low are specified in units
of vertical length, e.g.

@begin(Heading, Above = 3 lines, Below = 1.3 lines)

This specifes the horizontal distance of the slug's left margin from the internal
dimension of the box. It is specified in horizontal length units, e.g.

@begin(itemize, leftmargin = 5.5 ems)

This specifies the horizontal distance of the slug's left m~rgin from the internal "
dimension of the box for continuation lines in the ve rse environment. It is
specified in horizontal length units, e.g.

reference.mss

Peter Hibbard
Mint User Manual

RightMargin

Continue

Reference Section 47

@begin(verse, extraleftmargin = 4 quads)

This specifics the horizontal distance of the slug's right margin from the internal
dimension of the box. It is specified in horizontal length units, e.g.

@begin(itemize, rightmargin = 20 picas)

This determines how the computations for the margins should be performed in
the case where two boxes have a third box of a different kind between them. If
this parameter has the value allow, and there are no blank lines separating the
three boxes, then the margin computations for the third box are performed as
though the third box is a continuation of the first~ if the value is dis a 11 ow, then
the margins of the third box are computed independently of the context in which
it occurs; and if it is t rue the margins are treated as if the box is a continuation
of the previous box of this kind.

Gap This parameter specifies the gap that will be placed between the slugs in the box.
It takes units that are vertical lengths.

JustifyLeft And JustifyRight, JustifyLeftLast, JustifyRightLast. These
specify the nature of the justification actions taken when formatting text slugs.
Jus t i fyLeftLas t and Just i fyR i 9 h tLas t control the justification of the
last line of a box; Jus t i fyLeft and Ju s t i fyR i 9 h t control the justification
of the other lines in the box. They take values from (T ru e, Fa 1 s e). Suitable
combinations of these values are used to produce most of the different box
formats; for example, if all are fa 1 s e the information in a box is centred, if
Just i fyLeft and Just i fyRig ht only are true, then the information in the
box is flushed left

ImageCo lou r This· determines the colour of the image; that is, the colour of the characters
which are put into boxes or the lines that are· drawn in diagrams. See section 4.10
for a description of how to use this parameter.

B ackG roundCo lou r BackG roundCo lou r determines the colour of the background of a box. See
section 4.10 for a description of how to use this parameter.

F 0 n tS i z e This determines the default font size used for the fonts in the box. It takes values
from (11, 1, n, S, s s). See section 4.8.2 for the meanings of these values.

F aceCode This specifies the default face code of the box. It takes values from (r, i, b, C, g,
t, p, z, mO, mt, m2, fO, ... , ft). See sections 4.8.l and 4.8.3 for the meaning of
these values.

Un de r Lin e This determines whether slugs in the box will be underlined. It takes values from
the set (None, NonB1ank, All, Alphanumeric, EraseNonBlank,

. EraseA11, EraseA1phaNumeric, OverNonBlank, OverAll,
OverAlphaNumeric). Due to an oversight, it is only possible to set one of
these values, rather than several non-conflicting ones. It will get fixed.

Raste rFunct ion This determines the raster function used to draw the characters in the slugs. It
can assume values from the set specified in the device properties, see section
4.13.

PageStyl e This determines the page style that will be used to display the contents of the box
when pages are made. It takes values from (Sk i p, De f au 1 t, Tit 1 e Pag e). See
section 4.14 for more details on how choices of this parameter affect the page
layout

reference.mss

48

Need

Border

Bo rde rStyl e

CompLM

CompRM

CompGap

CompXPosn

CompYPosn

CompWidth

CompFont

TabSet

TabClear

TabDivide

Reference Section Peter Hibbard
Mint User Manual

The need of a box is the amount of space that should be available at the bottom
of a page area for slugs from this box to be placed in the page; if the space
remaining is less than this amount, a new page is started. It takes a signed vertical
distance as its value, or it takes the value 9 roup, which is interpreted to mean
that the box must not be spilt across pages. (But no 9 roup yet).

This determines the width of the border that exists between the outer edge of the
box and the inner edge; see figure *** for a clarification of these terms. It takes
values that are distances.

The border style detennines the appearance of the border drawn around the box.
Two border styles are predefined - NoBo rde r, which leaves the border empty,
and Wi dth 1 which draws a border of width 1/100th inch around the box. See
section 4.26 for more details about creating border styles.

This determines the computation that will be used to obtain the left margin of the
slugs. Several standard computations are provided to handle the nonna! cases of
indented text, verse, etc., but the hacker can also go in and provide his own, for
all sorts of exotic purposes. The p~ameter takes small integer values. See section
4.l1 for more details.

In a similar way, this specifies the computation for the right margin.

This specifies the computation for the gaps separating the slugs.

This specifies the computation to be used to determine the X-position of the box
relative to its neighbours; that is, its horizontal position in the galley.

This specifies the compu tation to be used to determine the Y-position of the box
relative to its neighbours; that is, its vertical position in the galley.

This specifies the computation to detennine how the width of the box is derived.

This specifies the font for each of the slugs in the box.

This parameter takes a horizontal distance, and sets a tabulation at that point
(measured from the exterior of the box). This parameter can be used several
times for a single box; each use sets a different tabulation. Up to 10 tabulations
can be set

., This does not take a value. It clears all the tabulations that have been set so far.
Since the parameters are processed from left to right, the T abC 1 ea r should
precede any uses ofTabSet.

This takes an integer value. It sets up that number of equidistant tabulations
across the inner border of the box, with the last one on the right inner border.
Any previous tabulations are destroyed.

4.5.2 Additional parameters

Additional parameters to those above may be passed to an environment. Facilities exist, buried within
Mint, to extract the parameter identifiers and their values, and act upon them. If an additional parameter
has not been used at the end of the environment, an error massage is produced. Thus misspelled attributes
will be indicated at the end, rather than the beginning, of an environment

reference.mss

Peter Hibbard
Mint User Manual Reference Section 49

Several of the standard environments take additional parameters - the document type environments,
the ma t h s environment, and the Tit 1 e P ag e environment.

4.5.2.1 Style parameters for document types

The following parameters alter the values of an additional set of environment parameters that are
associated with each box, and from which the default values of the attributes above are sometimes derived.
Since these additional parameters are only interpreted by the document type environments, they have been
designed to cause global changes in the "style" of the document. They are tenned style parameters. If you
wish to change the appearance of a document, you should change these parameters, since it is from these
that the box environment parameters are inherited. It is no use changing, for example, the gap parameter of
a document if you want to change the inter-line gap. Change the value of RGap or NGap.

RLM

NLM

RRM

NRM

RAbove

NAbove

RBelow

NBelow

RGap

NGap

HGap

Indent

Filler

reference.mss

This sets the size of the regular left margin of the document It takes a horizontal
distance for its value.

This sets the size of the narrow left margin of the document It takes a horizontal
distance for its value.

This sets the size of the regular right margin of the document It takes a
horizontal distance for its value.

This sets the size of the narrow right margin of the document. It takes a
horizontal distance for its value.

This sets the size of the regular above leading. It takes a vertical distance for its
value.

This sets the size of the narrow above leading. It takes a vertical distance for its
value.

This sets the size of the regular below leading. It takes a vertical distance for its
value.

This sets the size of the narrow below leading. It takes a vertical distance for its
value.

This sets the size of the regular gap leading. It takes a vertical distance for its
value.

This sets the size of the narrow gap leading. It takes a vertical distance for its
value.

This sets the size of the "heading gap", an extra gap used to compute the gaps for
heading and section environments. It takes a vertical distance for its value.

This sets the size of the indent, used by the Comp LM computations to detennine
the indentation for the first lines of boxes. It takes a horizontal distance for its
value.

This sets the filler lexeme that is placed in a slug in place of a cross reference to a
label should the label not yet be defined. It takes an arbitrary string.

50

CiteStyle

IndexStyle

Reference Section Peter Hibbard
Mint User Manual

This sets the citation style for the document. It takes the value s tdn ume r; c,
s tda 1 ph abe tic, cacm or ieee; its default value is s tdn ume ric. See section
bibs for a description of the bibliography facility.

This sets the style in which the index will appear. It take the value mac ro or
sty 1 e 1; the default is sty 1 e 1. See section 4.20 for a description of the index
facility.

4.5.2.2 Additional parameters for title pages

The T; t 1 e P ag e envioronment takes a set of additional parameters that allow the default positions of
the various boxes on the title page to be changed. See section 4.l6.3.2 for the way in which the title page
layout procedure works. All these additional parameters take vertical distances for their values - these are
the distances of the top external border of the corresponding box from the top of the page. The default
values are shown in parenthesis, and are measured in units of P age H e i 9 h t for the target device.
Unfortunately, due to an oversight, you cannot use pagehe i 9 ht units if you want to set these yourself, you
must use one of the other vertical units.

Tit 1 e Box This specifics the position of the title box. Inside the title box other environments
may be nested - the relative positions of these environments are not altered
(0.18).

Rese a rchC red; t This specifies the position of the research credit box (0.80).

CopyR i 9 h tNot ice This specifies the position of the copyright notice box (0.75).

Ab s t r ac t This specifies the position of the slug that is created with the heading; a suitable
gap is inserted to separate it from the abstract box (0.55).

Not ice This specifies where the (first or only) notice will appear (0.39).

Not i cel ... Not i ce6 These specify where the corresponding notices will appear, counting in
lexographic order of appearance of the notices in the original manuscript.

4.5.2.3 Itemize and Enumerate

The itemize and enumerate environments take two parameters that allow you to control the
position of the margin against which the bullets and counters are flushed, and the width of the box in which
the bullets and counters are placed.

BulletPosn

LeftMPosn

This specifies the horizontal distance of the bullets or numbers from the left
margin. Its default value is 0.05 of the width of the box.

This specifies the horizontal distance of the left margin of the text in an
item i z e and en ume rat e environment. Its default value is 0.0625 of the width
of the box.

reference.mss

Peter I1ibbard
Mint User Manual

4.5.2.4 Maths

Reference Section 51

The rna t h s environment takes a number of additional paremeters. These are described in section 4.27.

4.6 Units of length

Unlike Scribe, Mint has a fairly precise notion of units oflength, and will require you to specify the units
wherever a distance is required. There are three classes of units of length - absolute units, measured in
lengths of platinum, lengths of Saxon kings' beards, etc; device relative units, measured in units such as
rasters; and layout relative units, measured in terms of the sizes of pages, or characters in some font, etc.

Because many devices have different resolutions in the horizontal and vertical directions, Mint classifies
device relative and layout relative units into horizontal and vertical measures. Wherever it says, in this
manual, that "Mint expects a vertical unit" then Mint will require the unit of length to be an appropriate
vertical unit In addition, during galley creation it is not appropriate to talk about the size of a page, and
during page layout there is no default font to use for deriving the size of a character. Mint checks that the
appropriate relative units are being used. (Actually, Mint isn't quite consistent here, and this part of the
implementation needs to be tidied up. You will be safe using absolute units everywhere.)

The units are as follows.

4.6.1 Absolute units

The units are expressed in ratios relative to one inch (remember the Saxon king?). They may be used for
both horizontal and vertical distances.

inch

point

pica

em

micas

4.6.2 Raster lengths

Also inc h e s, in, ins. Just as you would expect

Also poi n t s. Printers' units of measure, appropriate for fonts.
1 point = 0.013837 inches.

Also picas. Ditto. 1 pica = 0.166044 inch.

Also cms. 1 cm = 0.3937 inch.

Also ml cas. 1 mica = 0.001 cm = 0.0003937 inch.

Mint assumes that there is some device-dependent unit of distance, the raster, which may not necessarily
be the same in absolute units in the x and y directions. Mint uses raster units internally, and converts all
other units into raster units. In fact the size of the raster is just some convenient unit for the device; it may
have no relation to the way the device lays down its image (and in particular, the raster size for the Dover is
5 micas),

reference.mss

52

4.6.3 Relative lengths

Reference Section Peter Hibbard
Mint User Manual

There are two sets of these. During galley preparation, the unit of measure is the em, the size of the letter

M in the default font for the box. Units in this measure can be expressed as em or ems, or as quad or quads.

These units should be able to be used in both horizontal and vertical directions, but it's here that I made a

mistake, and you can only use them in the horizontal direction at present. During page layout, the relevant

measure is pagewi dth, the width of the page for the target device.

In the vertical direction, the appropriate measures are 1 i n e and 1 i n e s , and p age h e i 9 h t

respectively. The size of a line is considered equal to the height of the bounding box for the default font­

not an admirable choice, but at least precise.

4.6.4 Modifying environment parameters

In addition to setting environment parameters using the appropriate units, the current value may be

modified. For example,

@begin(multiple, width -lin, above *2, below 12, need +3cms}

will decrease the value of the wi dth parameter by one inch, double the above parameter, halve the be low

parameter, and increase the need parameter by three centimeters.

4.7 The standard values for the environment values

Below are the tables of the standard values for the environment parameters that are associated with the

environment when the box rountine is invok~d. Environment parameters typically are derived in three ways

-:- they are inherent properties of the environment (for example, a centred environment has

JustifyLeft, JustifyRight, JustifyLeftLast, JustifyRightLast all False); they are

inherited from the parent's environment parameters (for example the width is nonnally inherited in this

way); and they are inherited from the extra style parameters (for example, the Above, Be low and Gap are

normally inherited from the style parameters). In addition to these three ways, the parameters may be set

using parameter modifiers specified by the Def i ne or Mod i fy commands, or specified at the point of

invoking the environment.

The interpreter associated with the environment is one of T ext, D P, P lot or Ma t h s. The computation

values are listed in the order CompLM, CompRM, CompGap, CompXPosn, CompYPosn, CompWidth,

CompFont. The width of the box is abbreviated to W; one eigth of the width is abbreviated to WB. Ifexplicit

constant values are given, the environment sets the parameters to these values; otherwise parameters are
inherited from the parent environment. Justifications inherited from the parent are written as JL, JR, JLL,

JRL; a face code inherited from the parent is written as FC, and a font size as FS; a border style inherited

reference.mss

Peter Hibbard
Mint User Manual Reference Section 53

from a parent is written as BStyl e. Be warned that these tables do not yet show all t'1e inheritances of the
environments.

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Just ificat ions
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulatio.ns

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

reference.mss

EnvCentreO

Text
Width

NAbove, NBelow
RlM, RRM

Disallowed
NGap

F, F, F, F
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvProgramExO

Text
Width

NAbove, NBelow
NlM, NRM

Disallowed
NGap

T, F, T, F
ImageColour

BackgroundColour
Normal, Algol

Off
RasterFunction

Skip
Box Y size

° NoBorder
0, 0, 0, 0, 0, 0

7

EnvFormatO

Text
Width

NAbove, NBelow
RLM, RRM

Disallowed
NGap

T, F, T, F
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvDisplayO

Text
Width

NAbove, NBelow
NLM, NRM

Di sall owed
NGap

T, F, T, F
ImageColour

BackgroundColour
Norma 1, Roman

Off
RasterFunction

Skip
RAbove·2

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvEquationO

Text
Width

NAbove, NBelow
NLM, NRM

Disallowed
NGap

T, F, T, F
ImageColour

BackgroundColour
Normal, Typewriter

Off
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, 0, O. O. 0
7

EnvPageCommandO

Text
Width

NAbove, NBelow
RlM, RRM

Oi sa 11 owed
NGap

T, F, T. F
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
RAbove·2 .--.

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvExampleO

Text
Width

NAbove, NBelow
NLM, NRM

Disallowed
NGap

T, F, T, F
ImageColour

BackgroundColour
Normal, Typewriter

Off
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvFlushLeftO

Text
Width

NAbove, NBelow
RLM. RRM

Disallowed
NGap

T, F, T, F
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

O. O. 0, 0, O. 0
7

EnvVerbatimO

Text
Width

NAbove, NBelow
RlM, RRM

Disallowed
NGap

T, F, T, F
ImageColour

BackgroundColour
Normal, Typewriter

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

.0, 0, 0, 0, O. 0
7

54

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border styl e
Computations
Tabulations

Reference Section

EnvAlignO

Text
Width

NAbove, NBelow
RLM, RRM

Disallowed
NGap

T, F, T, F
ImageColour

BackgroundColour
Normal, Typewriter

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvOefaultO

Text
Width

Rabove, RBelow
RlM, RRM
Allowed

RGap
Justifications

ImageColour
BackgroundColour

Normal, Roman
Off

RasterFunction
Skip

RAbove*2
o

NoBorder
1, 0, 0, 0, 0, 0

7

EnvHeadingO

Text
Width

RA+3*RG, RB+RG
-RlM, RRM
Disallowed
RGap+HGap

F, F, F, F
ImageColour

BackgroundColour
Large, Bold

Off
RasterFunction

Skip
RAbove*4

o
NoBorder

O. 0, 0, O. 0, 0
7

EnvFlushRightO

Text
Width

NAbove, NBelow
RLM, RRM

Disallowed
NGap

F, T, F, T
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

O. 0, 0, 0, 0, 0
7

EnvVerseO

Text
Width

NAbove, NBelow
RlM, RRM

Disallowed
NGap

T, F, T, F
ImageColour

BackgroundColour
Normal. Roman

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

2, 0, 0, 0, 0, 0
7

EnvSubHeadingO

Text
Width

RA+RG. RBelow
RlM. RRM

Disallowed
RGap-HGap

T, F. T. F
ImageColour

BackgroundColour
Normal. Bold

Off
RasterFunction

Skip
RAbove*3

o
NoBorder

O. O. O. O. O. 0
7

Peter Hibbard
Mint User !Vlanual

ErivQuotationO

Text
Width

NAbove, NBelow
NLM, NRM
A 11 owed

NGap
Justifications

ImageColour
BackgroundColour

_No rma 1, Roman
Off

RasterFunction
Skip

RAbove*2
o

NoBorder
1, 0, 0, 0, 0, 0

7

EnvMajorHeadingO

InterpreterText
Width

RA+4*RG, RB+2*RG
RlM, RRM

Disallowed
RGap+2*HGap
F, F, F, F
ImageColour

BackgroundColour
Extra large, Bold

Off
RasterFunction

Skip
RAbove*5

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvChapterO

Text
Width

RA+4*RG. RB+2*RG
RlM, RRM

Disallowed
RGap+2*HGap
F. F. F. F
ImageColour

BackgroundColour
Extra large. Bold

Off
RasterFunction

DefaultPS
RAbove*5

o
NoBorder

O. O. 0, 0, O. 0
7

reference.mss

Peter Hibbard
Mint User Manual

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

reference.mss

Reference Section

EnvPrefaceSecO

Text
Width

RA+4*RG, RB+2*RG
RLM, RRM

Disallowed
RGap+2*HGap
F, F, F, F
ImageColour

BackgroundColour
Extra large, Bold

Off
RasterFunction

DefaultPS
RAbove*5

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvAppendixSecO

Text
Width

RA+4*RG, RB+2*RG
RLM, RRM

Disallowed
RGap+2*HGap
T, F, T·, F
ImageColour

BackgroundColour
Extra large, Bold

Off
RasterFunction

Skip
RAbove*S

o
NoBorder

3, 0, 0, 0, 0, 0
7

EnvAppendixSecl

Text
Width

RA+3*RG, RB+RGap
RlM, RRM

Disallowed
RGap+HGap

T, F. T, F
ImageColour

BackgroundColour
Large, Bold

Off
RasterFunction

Skip
RAbove*4

o
NoBorder

3, 0, 0, 0, 0, 0
7

EnvAppendixO

Text
Width

RA+4*RG, .RB+2*RG
RLM, RRM

Disallowed
RGap+2*HGap
F, F, F, F
ImageColour

BackgroundColour
Extra large, Bold

Off
RasterFunction

DefaultPS
RAbove*S

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvAppendixl

Text
Width

RA+4*RG, RB+2*RG
RLM, RRM

Disallowed
RGap+2*HGap
T, F. T, F
ImageColour

BackgroundColour
Extra large. Bold

Off
RasterFunction

Skip
RAbove*S

o
NoBorder

3, 0, 0, 0, O. 0
7

EnvParag raphO

Text
Width

RA+RGap, RBelow
RLM, RRM

Disallowed
RGap-HGap

T, F, T, F
ImageColour

BackgroundColour
Normal, Bold

Off
RasterFunction

Skip
RAbove*3

o
NoBorder

3, 0, 0, 0, 0, 0
7

EnvSectionO

Text
Width

RA+4*RG, RB+2*RG
RLM. RRM

Di sall owed
RGap+2*HGap
T, F, T. F
ImageColour

BackgroundColour
Extra large, Bold

Off
RasterFunction

Skip
RAbove*S

o
NoBorder

3, 0, 0, 0, 0, 0
7

55

EnvSubSectionO

Text
Width

RA+3*RG, RB+RG
RLM, RRM

Disallowed
RGap+HGap

T. F. T, F
ImageColour

BackgroundColour
Large, Bold

Off
RasterFunction

Skip
RAbove*4

o
NoBorder

3, 0, 0, 0, 0, 0
7

EnvltemizeO

Text
Width

RAbove, RBelow
NLM+W8/3.5, NRM

Disallowed
o

JL, JR, JLL, JRL
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

0, 0, 0, 0, 0, 0 o .

56

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Reference Section

EnvEnumerateO

Text
Width

RAbov!!. RBelow
NLM+W8/3.5. NRM

Disallowed
o

JL. JR. JLL. JRL
ImageColour

BackgroundColour
Normal. Roman

Off
RasterFunction

Skip
RAbove·Z

o
NoB order

O. O. O. O. O. 0
o

EnvDltemO

Text
Width

NAbove, NBelow
RLM. RRM

Disallowed
NGap

JL, JR. JLL, JRL
ImageColour

BackgroundColour
Font size.Face code

UnderLine
RasterFunction

Skip
Need

o
NoBorder

4, 0, O. O. 0, 0
Tabs

EnvTextPartO

Text
Wd • 3/5

NAbove, NBelow
RLM, RRM + W8/S

Di sa 11 owed
NGap

Jl, JR, JLL, JRL
ImageColour

BackgroundColour
FS, FC

UnderLine
RasterFunction

Skip
Need

o
NoBorder

0, 0, 0, 0, 0, 0
3

EnvltemO

Text
Width

NAbove. NBelow
O. 0

Disallowed
NGap

JL. JR. JLL. JRL
ImageColour

BackgroundColour
Font size. face code

Underline
RasterFunction

Skip
Need

o
NoBorder

O. O. O. O. 0, 0
7

EnvMultipleO

Text
Width

RAbove. RBelow
0, 0

EnvContinue
RGap

JL. JR. JLl. JRL
ImageColour

BackgroundColour
FS. FC

Underline
RasterFunction

Skip
Need

Border
BStyle

0, 0, 0, O. 0, 0
Tabs

EnvGlossO

Text
W - W(siblings)
NAbove, NBelow

RLM + Wa/S, RRM
Disallowed

NGap
Jl, JR, JLL. JRL

ImageColour
BackgroundColour

Succ (FS). FC
Underline

RasterFunction
Skip
Need

o
NoBorder

0, O. O. O. 0, 0
3

Peter Hibbard
Mint User Manual

EnvDescriptionO

Text
Width

NAbove. NBelow
O. 0

Disallowed
NGap

JL. JR. JLL, JRL
ImageColour

BackgroundColour
Normal. Roman

Off
RasterFunction

Skip
RAbove·Z

o
NoBorder

0, 0, O. 0, 0, 0
6

EnvCommentaryO

Text
Width

RAbove, RBelow
RLM + W8/4, RRM + W8/4

Disallowed
NGap

JL, JR, JlL, JRl
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvPlotO

Plot
Width

RAbove. RBelow
RLM, RRM

0; sall owed
RGap

JL, JR, JlL. JRl
ImageColour

BackgroundColour
Norma 1. Roman

Off
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, O. O. 0, 0
None

reference.mss

Peter Hibbard
Mint User Manual

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Styl e
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Just ificat ions
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

reference.mss

Reference Section

EnvOPO

DP
Width

RAbove, RBelow
RLM, RRM

Di sa 11 owed
RGap

JL, JR, JLL, JRL
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, 0, 0, 0, 0
None

EnvAnnotationO

Text
Width

NAbove, NBelow
RLM, RRM

Disallowed
NGap

JL. JR, JlL, JRL
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

O. 0, O. O. 0, 0
None

EnvPageFootingO

Text
Width
0, 0

RLM, RRM
Disallowed

NGap
Jl, JR, JLl, JRl

ImageColour
BackgroundColour

Normal, Roman
Off

RasterFunction
Skip

o
o

NoBorder
0, 0, 0: o. 0, 0

None

EnvFigureO

Text
Wd * 3/5

RAbove, RBelow
RLM, RRM

Disallowed
NGap

JL, JR, JLL. JRl
ImageColour

BackgroundColour
FS. FC

Underline
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, 0, 0, 0, 0
3

EnvFootO

Text
Width

NAbove, NBelow
RlM, RRM

Disallowed
NGap

Jl, JR, Jll, JRL
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
RAbove*2

o
NoBorder

O. 0, 0, 0, 0, 0
None

EnvPageOffsetO

Text
Width

Above,Below. O. 0
RlM, RRM

Disallowed
NGap

Jl, JR. JLl, JRl
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
o
o

NoBorder
0, 0, 0, 0, O. 0

None

EnvCaptionO

Text
Width

NAbove, NBelow
RlM. RRM

Disallowed
NGap

Jl, JR, Jll, JRl
ImageColour

BackgroundColour
FS, FC

Underline
RasterFunction

Skip
Need

o
NoBorder

0, 0, O. 0, 0, 0
3

57

EnvPageHeadingO

Text
Width

A~ove,Below, 0, 0
RlM. RRM

Di sa 11 owed
NGap

Jl, JR, Jll. JRl
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
o
o

NoBorder
0, 0, 0, 0, 0, 0

None

EnvResearchCrO

Text
Width

RA, RBelow
RLM, RRM

Disallowed
NGap

JL, JR. JlL, JRL
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, 0, O. O. 0
7

58

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Reference Section

EnvAbstractO

Text
Width

RAbove, RBelow
RlM, RRM

Di sa 11 owed
NGap

Jl, JR, JlL, JRL
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvTitleBoxO

Text
Width

RAbove, RBelow
RLM, RRM

Disallowed
RGap

Jl, JR, JlL, JRL
ImageColour

BackgroundColou'r
Normal, Roman

Off
RasterFunction

Skip
o
o

NoBorder
0, 0, 0, 0, 0, 0

None

XLabelO

Text
LM

0, 0
RLM, 0

Disallowed
o

T, F, T, F
ImageColour

BackgroundColour
FS, FC

UnderLine
RasterFunction

Skip
o
o

NoBorder
0, 0, 0, 0, 0, 0

None

EnvNoticeO

Text
Width

RA, RBelow
RlM, RRM

Disallowed
NGap

JL, JR, Jll, JRl
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, 0, 0, 0, 0
7

EnvTitlePageO

Text
Width

RAbove, RBelow
RlM, RRM

Disallowed
RGap

Jl, JR, Jll, JRl
ImageColour

BackgroundColour
FS, FC

Underline
RasterFunction

TitlePS
o
o

NoBorder
0, 0, 0, 0, 0, 0

none

XLMarginO

Text
W8

RAbove, RBelow
RlM, RRM

Oi sall owed
RGap

JL, JR, JlL, JRl
ImageColour

BackgroundColour
FS, FC

Underline
RasterFunction

Skip
o
o

NoBorder
0, O. 0, 0, 0, 0

None

Peter Hibbard
Mint User Manual

EnvCopyrightNO

Text
Width

RAbove, RBelow
RlM, RRM

Disallowed
NGap

F, F, F, F
ImageColour

BackgroundColour
Normal, Roman

Off
RasterFunction

Skip
Box Y size

o
NoBorder

0, 0, O. 0, 0, 0
7

XltemO

Text
W - lM - RM

NAbove, NBelow
0, 0

Dlsallowed
NGap

Jl, JR, JlL, JRl
ImageColour

BackgroundColour
FS, FC

UnderLine
RasterFunction

Skip
Need

o
NoBorder

0, 0, 0, O. 0, 0
None

XRMarginO

Text
W8

RAbove, RBelow
RlM, RRM

Disallowed
RGap

Jl, JR, Jll, JRL
ImageColour

BackgroundColour
FS, FC

Underline
RasterFunction

Skip
o
o

NoBorder
0, 0, 0, 0, 0, 0

None

reference.mss

Peter I Iibbard
Mint User Manual

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour'
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

Interpreter
Width
Above and Below
Margins
Continue
Gap
Justifications
Image Colour
Background Colour
Font
Underlining
Raster Function
Page Style
Need
Border size
Border style
Computations
Tabulations

reference.mss

Reference Section

EnvTextO

Text
Width

RAbove. RBe10w
RLM. RRM

Disallowed
RGap

JL. JR. JLL. JRL
ImageCo10ur

BackgroundCo1our

Underline
RasterFunction

Skip
o
o

NoBorder
O. 0, 0, 0, 0, 0

None

EnvThesisO

Text
Width

RAbove. RBelow
RLM, RRM

Disallowed
RGap

JL. JR. JLL, JRL
ImageCo1our

BackgroundCo1our

UnderLine
RasterFunction

Skip
o
o

NoBorder
0.0 •. 0.0,0.0

None

EnvMFootO

Text
Width

RAbove, RBe10w
RlM, RRM

Disallowed
RGap

Jl, JR. JlL. JRL
ImageCo10ur

BackgroundCo10ur

UnderLine
RasterFunction

Skip
o
o

NoBorder
O. 0, 0, 0, 0, 0

None

EnvReportO

Text
Width

RA. RBe10w
RLM. RRM

Disallowed
RGap

JL. JR. JLL. JRL
ImageCo1our

BackgroundCo1our

UnderLine
RasterFunction

Skip
o
o

NoBorder
O. O. O. O. O. 0

None

EnvSlidesO

Text
Width

RAbove, RBelow
RLM. RRM

Disallowed
RGap

JL. JR. JLL, JRL
ImageColour

BackgroundColour

UnderLine
RasterFunction

Skip
o
o

NoBorder
O. O. O. O. 0, 0

None

EnvMAnnotationO

Text
Width

RAbove, RBelow
RlM, RRM

Disallowed
RGap

JL, JR, JLl, JRl
ImageCo1our

BackgroundColour

UnderLine
RasterFunction

Skip
o
o

NoB order
0, 0, 0, 0, 0, 0

None

EnvArticleO

Text
Width

RA. RBe10w
RLM. RRM

Disallowed
RGap

JL. JR. JLL. JRL
ImageCo1our

Back groundCo lour

UnderLine
RasterFunction

Skip
o
o

NoB order
O. O. O. O. O. 0

None

EnvManualO

Text
Width

RA. RBelow
RLM. RRM

Disallowed
RGap

JL. JR. JLL, JRL
ImageCo1our

BackgroundCo1our

UnderLine
RasterFunction

Skip
o
o

NoBorder
O. O. O. 0, O. 0

None

59

EnvMOddsandSodsO

Text
Width

RAbove, RBe10w
RlM, RRM

Disallowed
RGap

JL. JR. JlL, JRL
ImageColour

BackgroundCo1our

Underline
RasterFunction

Skip
o
o

NoB order
O. 0, 0, 0, O. 0

None

60

4.8 Slug Environnlents

Reference Section Peter Hibbard
Mint User Manual

Slug environments define the appearance of the items within a box. For example, they specify the font
size and face codes to be used for characters, whether underlining is to be used, etc. Slug environments may
be nested, for example @b(@+(3)). A slug environment must finish in the same box as it starts.

For the purpose of description, it is convenient to classify the slug environments, as follows.

4.8.1 Face Codes

The following are available:

The roman (non-italic, non-bold) face.

The italic face.

The bold face.

@r[roman]

@i[italic]

@b[bold]

@c[Small Caps] The . SMALL CAPS face. Note that upper-case produces LARGE CAPITALS,
lower case SMALL CAPITALS. To see how this effect is achieved, see section 4.9.4.

@g[greek]

@t[typewriter]

@p[bold italic]

@z[symbols]

The "'(peeK type face.

The typewr i te r face.

The hold italic face.

A collection of mathematical ul/;m/J 0 AU.

@rnO [rna t h s f on to] The maths font 0 used in the maths environment.

@m 1 [rna t h s f 0 n t 1] The maths font J used in the maths environment.

@m2[maths font 2] The]--lU(J +-{Vl:l.U+-E used in the maths environment.

Using a face code slug environment causes the text within it to use the specified face code in the current
size of font. Note that the a font is no longer available, and that the z font is only retained for compatibility
with old . M s s files: the maths fonts now provide the facilities of the z font.

4.8.2 Font Sizes

The following font sizes are available:

@ll [ext ra 1 arge] An extra large font.

@l[large] A large font.

@n[norma 1] The normal font size.

@s[sma 11] A small font.

reference.mss

Peter Hibbard
~1int User Manual

@ss[extra small] An extra small font.

Reference Section 61

The font sizes are not absolute - in a galley that specifies its default font size to be 8 point (for
example), then 1 may specify a font of point size 11, which could be the normal font size for some other
environment.

If some combination of font size and face code has not been defined for the galley (see section 4.3.3),
then Mint will supply some default font.

4.8.3 User Face Codes

In addition to the face codes above, which usually have a fixed meaning in each environment, there are
ten other face codes (in each of the font sizes) that are free for theuser to bind to specific fonts as he wishes.
These face codes are fO, fl, f2, ... , f9. Section 4.9.1 describes how to associate specific fonts with these face
codes.

4.8.4 Underlines, Overlines and Eraselines

The following are available:

@u[phrase]

@ux[phrase]

@un[phrase]

@o[phrase]

@ox[phrase]

@on[phrase]

@e[phrase]

@ex[phrase]

@en[phrase]

Underlines non-blank characters.

Underlines all characters.

Underlines alphanumeric ~ ~ digits) only.

Overlines non-blank characters.

Overlines all characters.

Overlines alphanumeric (letters & digits) only.

lliaselines nOll blank eharaetefs.

Efaselines all ehareetefS.

Eraselines alphafiumerie (letters & digits) oolr.

Several non-conflicting combinations can be used Me this).

4.8.5 Raster Functions

The raster function used to display information within a box determines how the pixels of the new
information are combined' with the pixels of the information that is already in the box at the position the
information is being placed. The implied operation is

reference.mss

62 Reference Section Peter IIibbard
Mint User Manual

Destination := Destination RasterOp Source

where Raste rOp is a bitwise operation. The facility is device dependent: each device specifies in its device
characteristics (see section 4.13) which RasterOps are available. The following are available in Mint

RRpl

RNot

RAnd

RAndNot

ROr

ROrNot

RXOr

RXNor

Replace Destination by Source.

Replace Destination by the inverted pixels of the Source.

Replace the Destination by the conjunction of the Destination and the Source.

Replace the Destination by the conjuction of the Destination and the inverted
Source.

Replace the Destination by the disjunction of the Destination and the Source.

Replace the Destination by the disjunction of the Destination and the inverted
pixels of the Source.

Replace the Destination by the exclusive 0 r of the Destination and the Source.

Replace the Destination by the exclusive nor of the Destination and the Source.

All these raster functions are available on the Perq; only ROr is available on the Dover. All the
environments have RO r as their default RasterOp.

4.8.6 Scripting

The following scripting slug environments are available:

@+(phrase)

@-(phrase)

Superscripts the phrase.

Subscripts the phrase.

The amount of the baseline shift is determined by the font size of the text, and is not currently able to be
altered by the Minter. In general you should use the rna th s environment for superscripting and
subscripti'ng. See section 4.27.

4.8.7 Overprinting

The @ovp environment remembers the current position in the slug, and then backs the slug up to that
point again when the environment finishes. @Ovp may be used for hacking new symbols, such as t, or for
primitive mathematics, such as X~. Ov p environments can be nested.

reference.mss

Peter Hibbard
Mint User Manual

4.9 Fonts

Reference Section 63

Mint can handle several different font representations (simultaneously if needed - this occurs when
cross-proofing, or if a document is being sent to several galleys, each with a different associated device).
Fonts are accessed by a galley by indexing into the rectangular array of Font Indicators associated with each
galley. The rectangular array is indexed by Font Size and Face Code; see sections 4.8.1 and 4.8.2 for more
information about these terms. A font indicator must be written into the appropriate position in the array for
the galley to be able to use the given font size and face code. Some font indicators are written into the font
arrays when the standard galleys are created; see section 4.4.2 for which ones are put there. If a position is
accessed which does not have a font indicator, Mint will supply a (device specific) default font.

It is possible to associate font indicators with the elements of the array, and to overwrite the ones that are
loaded there initially. This section describes how to do this, and how to tailor fonts by selectively replacing
some characters by characters from other fonts.

4.9.1 Associating Fonts with a galley

A font is associated with some element of the font array for some galley by using the statement
As soc F 0 n t. This takes a galley identifier, the element position, and the name for the font. Mint can accept
both Xerox and 1BX font names.

@assocfont(main, n, z, zfontlO)

AssocFont does not cause the font to be loaded (or the fonts width information to be loaded). Only
when information from the font is needed is a check made to see if the font information is already available,
and if not, it is loaded into memory. Note that Mint uses the device that has been associated with the font to
determine the location of the font information, and understand its representation. If the document is being
prepared for several devices simultaneously, Mint will use the device identifier to disambiguate the font
identifiers Oust as you would expect).

4.9.2 Modifying fonts

It is frequently desirable to substitute a character in one font by a character from another font. This saves
frequent changes of slug environment, for example. In general, though, merely replacing one character by

another is not sufficient. You may want to introduce into your document an icon, which is some picture
created by (say) a drawing package, and have the picture displayed instead of some character. In this way
you can build up new characters that are not found in the fonts available on the target device, without
having to go to the labour of creating a whole new font (using, for example, MetaFont).

Mint provides a general mechanism for replacing a character in one font by a character in another,. for
replacing a character by a blankspace of some user-specified size, and for replacing a character by an icon.

reference.mss

64 Reference Section Peter Hibbard
Mint User Manual

The only restrictions are that the fonts and icons have all been created for the same device (naturally); the
substitution process is transitive, so that it is possible to substitute a character which has itself already been
substituted.

Four facilities are provided.

• A single character can be su bstitutcd by the statement

@substitutechar(dover,timesr.omanl0r,@char(#17),symboll2.@char(#12»

which replaces character #17 in Dover font Time s Roman lOr by character #12 from font
Symbo 112 (a fairly eccentric thing to do, but there's no accounting for lack of taste).

• A range of characters can be substituted using Subst i tuteRange which takes a range of
characters in the destination font, and a starting character in the source font. It acts in the same
way as repeated use of Subs t i tuteCha r. For example,

@substituterange(Dover, TimesRomanl0i, A, Z, TimesRomanl0b, a)

will cause all upper case letters in T i m.e s Roman 10; to appear as lowercase bold letters ..

• A character can be replaced by a gap of some specified size by Subst ituteGap. This will cause
the output of a gap of the specified size instead of the character. This feature is of use for creating
narrow gaps, for italic corrections, for example.

@SubstituteGap (Perq. Gachag, @char(sp), 5 rasters)

The gap can be specified in rasters, ems or quads, or absolute units.

• A character can be replaced by an icon by the statement Sub s tit ute I con. Icons are dealt with
in the next section. .

4.9.3 Icons

One way of looking at a font is to regard it as a collection of representations of characters, which are
displayed by an interpreter (let's call it the text interpreter) when the character is to be displayed. Usually the
same interpreter is invoked for all the characters of the font. We are not usually concerned with the way the
interpreter works, or how the representations of the characters are stored. For example, the characters may
be stored as bit-maps, or as splines, and the interpreter may determine where in the page the pixels should
be placed; alternatively, the characters may be stored as raised pieces of metal on a daisy wheel, and the
interpreter works by selecting the appropriate leaf, and bashing it against the paper.

The interpreters above have the luxury of being able to work the same way for all characters. Life in the
real world is seldom so simple, though. Sometimes it is not possible to find the glyph that you would like in
some font; for example, you might want to use a small picture of the mouse buttons, with one of the buttons
blackened, to allow you to say "press button <t>" instead of "press the yellow button on the mouse". Mint
allows you to associate an arbitrary glyph with a character in a font, using the Makelcon and
Subst itutelcon statements. These allow you to invoke an arbitrary interpreter to display information in
the document; currently you will have to read "DP" for "arbitrary" in this sentence, but that will change
shortly.

reference.mss

Peter Hibbard
Mint User Manual Reference Section 65

An icon must first be prepared using DP - since the icon will normally be greatly reduced in size when

it is printed, the icon should be made very simple. An icon is then associated with an identifier with the

Make I con statement

@Makelcon (DP, Mouse, SimpleMouse.DP)

which associates the DP drawing in file Simp 1 eMouse. DP with the identifier Mouse. Mint will store the.

representation of the drawing, with information about the aspect ratio. To substitute the icon for some

character, Mint requires several pieces of information - the size that the icon will be drawn; the X and Y
positions of the top left-hand corner of the bounding box, relative to the current position in the slug that is

being made; and the width of the icon. These four pieces of information allow you to adjust the icon

horizontally and vertically relative to the other characters on the line. Note, however, that it does not cause

the line to be thicker in the vertical direction, becuse Mint assumes that the nominal height is the same as

the height of the font in which the icon has been substituted.

To substitute an icon, use

@substituteicon (Dover, TimesRomanl0, 0, Mouse, 0.16in, Oin, 0.20in, 0.12in)

which specifies that a in Time s·Roman 10 on the Dover will be replaced by the mouse icon, scaled to

O. 16 i n, with X and Y positions a in and a . 20 i n, and the nominal width a. 12 i n. I leave it as a simple

exercise to work out how the tail of the mouse has been drawn.

~~~~~~~~~~ 

4.9.4 New fonts 

The statements SubstituteChar, SubstituteRange, SubstituteGap and Substitutelcon 
cause changes to the copy of the font stored internally. Since normally only one copy of the font information 

is kept, and a font can occur at several positions in the font arrays of the galleys, these statements can cause 

surprising side-effects. The well-disciplined hacker will take a private copy of any font that he is about to 

modify; this is done using CopyFont. 

@CopyFont (Dover, MyDirtyFont, Sailal0) 

In this case the font substitutions should be made on MyDi rtyFont, which can then be associated with 

some element in the font array. Any substitutions that have been made to Sa i 1 ala before the copyfont 
statement will be copied into mydi rtyfont. 

The c slug environment has been created using 

@copyfont(Dover, CapsFont, TimesRomanl0) 
@substituterange(Dover, CapsFont, a, z, TimesRoman8. A) 
@assocfont(Main, n, c, Caps~ont) 

reference.mss 



66 Reference Section Peter Hibbard 
Mint User Manual 

Sometimes it is not meaningful to start with some existing font when doing the char, gap and icon 
substitutions; you simply want to start off with an empty font, and place all the characters, gaps and icons 
there yourself. The EmptyFont statement creates a new, empty font. This font has to be specified to be 
used with some device, and has to have its height and baseline given, using the Dover font conventions. 
After it has been created, characters can be filled in using the substitute statements. 

The statement 

@EmptyFont (Dover, MyFont, 12points, -lpoint) 

creates a new empty font, of height 12 points, with the baseline one point below the origin. 

4.9.5 The mathematics fonts 

The mathematical fonts are treated in more detail in section 4.27.4.1; here I will just describe the 
statements for manipulating the maths extension font, which contains several characters useful for doing 
high-quality mathematical typesetting. 

The statement createmfont creates a new maths extension font from some standard (Xerox or 'lEX) 

font. The object that is created has additional infonnation that is needed for mathematical typesetting. 

@CreateMFont (Device=Dover, DFont=MintMexFont, SFont=CMathXl0S10) 

This font can now be associated with galleys using assocrnfont: 

@AssocMFont (Galley=Main, FontName=MintMexFont) 

when it becomes available for use in the rna t h s environment. 

Sometimes the information associated with a character in the maths extension font is not suitable or 
accurate enough to do refined maths typesetting; if this is the case, the infonnation can be altered using 
setmexchar. For example 

@SetMexChar (Device = Dover, DFont MintMexFont, DChar = @Char(.#130). 
YO = -493 micas, YY = 0 micas, YRel = 357 micas) 

alters the infonnation for the large sigma character, to lift it slightly above the position it occupies normally, 
in order to avoid a slight bottom-heaviness that mars its use in 1EX. Nonnally you will not be concerned 
with these refinements, since they are all available in the Maths. Fnt ; ncl ude file. 

4.9.6 Character information 

Sometimes it is the case that you need infonnation about a character, such as its width, to feed into 
another statement. For example, you might want to find the width of a space in one font, so as to place a gap 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 67 

of that size in some other font. The statements c h a r i n f 0 and me xc ha r in f 0 extract the information as a 
string, so that they can be used as arguments to other statements. 

The fonn of these statements is 

@CharInfo (Dev = Dover, Font = TimesRomanl0. C @Char(Sp). Info = XSize) 
@MexCharlnfo (Dev = Dover, Font = MintMexFont, C = @Char(Sp), Info = XS;ze) 

which will extract the information in the form 18raster. The in f 0 parameter takes the values x 0, yO, xx, 
y y, x s i z e and y s i z e. X 0 and y a measure the distance of the bottom left-hand corner from the origin of 
the character; xx and yy measure the distance of the top right-hand corner from the origin of the character; 
xs i ze and ys i ze are the sizes of the bounding box of the character. 

4.10 Colours 

Although the majority of devices allow only two clours - black and white - Mint provides a general 
mechanism for producing coloured output; whether these facilities will be useable on any particular device 
will depend upon the device's characteristics, and upon whether the driver for the device is able to accept 
Press Files having colour information encoded within them. Note that the Grinnell driver takes only a 
subset of the facilities that Mint provides, and that anyone wanting to produce coloured output (e.g. for 
slides) should consult me before doing so. 

Mint's facilities work by providing a means of overlaying objects of one colour by objects of another 
colour. Objects are either completely colourless and transparent, so that objects beneath them show through 
without any change in the colour; or they are completely opaque and coloured, and obscure totally the 
objects beneath them. To determine the appearance of a document requires, therefore, a knowledge of the 
order in which objects are laid down. 

. In this section I first describe how to specify colours, and how to specify how to colour objects, and then 
describe the order of overlaying. 

4.10.1 Defining colours 

Mint uses a widely accepted colour encoding known as the Munsell colour encoding. In this encoding a 
colour is described by three values: the colour's hue, which specifies ... ; the colour's saturation, which 
specifies its ... ; and the colour's brightness, which specifies its .... In terms of these parameters, white has the 
values (0, a , 255) and black has the values (0 , a , 0). Full saturated red has the values (p, q , r); full 
saturated green has the values (p , q , r) ; and full saturated blue has the values ( p , q , r )~ 

Within Mint an identifier is associated with every colour. To associate a colour with an identifier use the 

statement 

reference.mss 



68 

@NewColour (BrightRed, x, y, z) 

Reference Section Peter Hibbard 
Mint User .Manual 

This specifies that the identifier BrightRed will have the corresponding hue, saturation and 
b rig h t n e s s (in that order). If the same identifier is used more than once, the most recent definition is 
used. 

Three colours are predefined within Mint. They correspond to the following definitions. 

@NewColour (Black, 0, 0, 0) 
@NewColour (White, 0, 0, 255) 
@NewColour (GreyHT, 0, 0, 155) 

G reyHT is a grey that is recognised by the Dover driver; an object that is coloured 9 reyh t will be 
shaded using the grey dover font. The effect is not too satisfactory, because the object has to be filled in by 
a mosaic of characters which may not totally fill the area being coloured, and because the xerographic 
copying technology is very bad at colouring areas. 

In addition to the colours above, a special colour, t ran spa r en t, is defined. Objects that are specified 
to be t ran spa r en t will allow the underlying objects to show through (though images are not allowed to 
be transparent; see below). 

4.10.2 Associating colours with objects 

Colours can be associated with page areas, with box backgrounds, with box and area borderstyles, and 
with lines and characters drawn within boxes. Information about how to specify colours for these objects is 
given in the relevant sections; it is collected here for convenience. 

4.10.2.1 Associating colours with page areas 

A colour can be associated with each page area. Transparent is associated by default; the colour is 
changed by the statement 

@PageArea (Default, Main, Red, Width1) 

which specifies that all pages made by the de f au 1 t page layout routines will have their rna in area 
coloured re d, and have a border that is specified by wid t h 1. The layout routines that can be used in this 
way are de fau 1 t, tit 1 epage and pas teup; the corresponding page areas are given in section *77*. 

4.10.2.2 Associating colours with boxes 

The box environment parameter baekg roundeo lou r sets the colour of the background. For example 

@modify(Figure, BackgroundColour = Yellow) 

refcrcnce.mss 



Peter IIibbard 
Mint User Manual Reference Section 69 

will set the background colour of all figures to be whatever the colour ye 11 ow has been defined to be. The 
background colour is inherited in the same way as other box environment parameters; so that after the 
statement above, the statements 

@begin(figure) 
@dp(@include(mouse.dp» 
@caption(A cowardly mouse) 

@end(figure) 

will cause both the DP drawing and the caption to have yellow backgrounds. 

4.10.2.3 Associating colours with borders 

Each of the lines ofa pattern that is created using the statement newpatte rn can be drawn a different 
colour, allowing multi-coloured borders to be created. For example 

@NewPattern (Patriotic, 8, 1, Red, 8, 1, White, 8, 1, Blue) 

will draw a border pattern that has a line that is 8/100th inch red, 8/100th inch wh i te, and 8/100th inch 
blue. The default colour is black, and the colour specified for a line style of 0 is ignored, allowing the 
background colour to show through. 

4.10.2.4 Associating colours with characters and lines 

Objects that are drawn within boxes can be coloured in two ways: First, the box environment parameter 
imageco lou r can be used to detennine the colour of all the objects draw in the box (for example, 
characters from any font, lines drawn by DP, and by Plot): second, colours can be used in the same way as 
slug environments to cause local colour changes. Images cannot be specified to be t ran sparent. 

For example 

@begin(caption. imagecolour=green) 

will cause all the colours in the caption to be coloured green, and (since image co 1 OU r is inherited in 
the usual way) 

@make (slides, imagecolour blue) 

will cause all the object drawn in boxes (and in particular, the lines drawn by DP and Plot, and the 
characters in all the other boxes), to be coloured b 1 ue. The imageco lou r is inherited in the usual way; if 
it is not otherwise specified in the style parameters it is set to black. 

If you just want to coloUl~a few characters a different colour from the current imageco lou r, you can 
use any of the colours that you have defined in the same way as a slug environment. ~or example 

@begin(description, imagecolour brown) 
@red(Red)@\is used for the polysilicon layer 

reference.mss 



70 Reference Section 

@blue(Blue)@\;s used for the metal conductors 
@end(descr;pt;on) 

Peter Hibbard 
Mint User Manual 

will cause the word Red to be coloured red, the word Blue to be coloured blue, and the rest of the letters 
to be coloured brown. (If you define a colour to usc the same identifier as a slug environment, the slug 
environment will take precedence.) 

4.10.3 The order of overlaying 

All objects are completely opaque, unless they have been specified to be transparent, in which case 
they allow the colour of the objects beneath them to show through without modification. 

The order in which objects are laid down is as follows: First, each page area is laid down with its border, 
in the order shown in section 4.16.2.3; next, each box is laid down with its border, in the inverse order of 
nesting (thus a f i gu re box is laid down before a plot box and a capt i on box); finally, the images 
within the box are laid down. I'm not willing to specify the order that images get laid down in the case 
where one image overlays another one. 

4.11 Computations 

During the proc(!ssing of the text in a galley, several pieces of information are required by the slug layout 
routine in order for it to be able to format the slugs and boxes. For example, the sizes of the margins, the 
fonts to use, and the sizes of the boxes are needed. Usually, for technical documents, the information can be 
presented to the slug layout routine in a straightforward way - the margins are generally fixed, the same 
font is used throughout, and the size of the box is simply determined from the size of its parent The 
complexity that is needed for advertising copy, where baselines of slugs may not be straight, where the size 
of characters may change along the line, and where text may wrap around diagrams, is not needed for 
technical documents. However, occassionally you do need more control over these parameters than is 
usually supplied. 

Mint gives you this control, though in a fairly crude way since I am not certain yet what is needed. Each 
of the parameters required by the layout routine is obtained by calling a computation, a Pascal procedure 
built into Mint. One of the parameters to these procedures is the computation number provided through the 
environment parameters of the box in which the slug will be placed. The computations that are built in 
handle the standard cases, for example the crooked left margin for the de sc r i pt i on environment; further 
built-in routines can be added as needed. The computation numbers are specified by passing small integer 

, values to the computation parameters (Co.mPLM, CompWi dth, etc.) in the environment parameters. There is 
also an escape mechanism that provides the fearless document formatter the freedom to supply arbitrary 
computations without having to take the code of Mint apart; this mechanism is described below. 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 71 

4.11.1 Standard computations 

Computations are provided to set left and right margins, the gaps between the slugs, the positions of 
boxes relative to their neighbours, the width of boxes, and the fonts to be used in the slugs. Each in-built 
computation is specified by a value less than 8; values greater or equal to 8 are used to specify arbitrary 
computations. 

CompLM 

CompRM 

CompGap 

CompWidth 

CompXP,osn 

CompYPosn 

CompFont 

o specifies a straight left margin; 1 specifies a margin that indents on the first 
line; 2 specifies a margin that indents a further distance if a line is continued into 
the next slug - this is used for the ve rs e environment; 3 specifies a margin 
that indents all lines except the first, which is needed for multi-line section 
headings; 4 specifies a margin that indents to the first tab setting for allUnes 
except the first, which is used for the des c rip t ion environment. 

Only one computation is provided: O. This sets up a straight right margin. 

Only one compu tation is provided: O. This sets the gap between slugs to be the 
value of the gap parameter in the environment 

Only one computation is provided: O. This sets the width of the box to be the 
width in the environment parameters. 

Three computations are provided. Computation 0 centres the box within the 
surrounding box; computation 1 flushes the box left against the border of the 
surrounding box; and computation 2 flushes it right 

Two computations are provided. Computation 0 computes the y position of the 
box from its above and the be low of the previous box; computation 2 places 
the box directly under the previous box. 

Only one computation is provided: O. This sets the font to the font in the 
environment parameters. 

4.11.2 Arbitrary computations 

In the most general case, you might want to determine the size of a character, its font, and some arbitrary 
transformations on it, as a function of the position of the character within the box. Doing this with 
reasonable efficiency is not feasible; however, I do provide a limited facility which is at a sufficiently low 
level that many useful (and many more useless) effects can be obtained, without reducing the efficiency of 
the normal text layout. 

Four statements are provided. They allow arbitrary values to be yielded by the computation routines, 
based on the slug number, which is the number of the slug in the box counting from zero. These 
computations are associated with a computation number, so that several can be installed and used. The 
statements take the general form 

@setcompxx (computation number, slug number, value) 

reference.mss 



72 Reference Section Peter Hibbard 
Mint User Manual 

which specifies that if you have specified computat i on numbe r, and the slug you are processing is slug 

numbe r, then you should pass the va 1 ue to the layout routine. 

More specifically, to set the left margin to some value, you write 

@setcomplm (8, 0, lin) 

Then, if you specify comp 1 m to be 8 for some environment, a left margin of 1 inch will be used when 
creating the zeroth slug (the first to be put into the box). You should always have a computation specified 
for slug number -1 - this is used if no other explicit value is found. If you specify several values for some 
computation, the most recent value is the one that will be used. 

Currently you have available setcomp 1 m, setcomp rm, setcompgap, which all take parameters as 
described above, and set c omp f 0 n t, which takes parameters as follows 

@setcompfont(dover, 8, 0, TimesRoman12) 

Each of the computations operates independently, thus it is possible to 

achieve a variety of effects, not all of which seem to be useful, but 

which nevertheless illustrate the ability of Mint to handle 

strange and unusual type-setting situations. It should be 

quite easy, after this description, for even the casual 

4.12 Box procedures 

Mint user to obtain the effect that I am using to layout 
this paragraph. While I cannot maintain that the 

effect that you are seeing here is so very useful, it 
is the case that it has been achieved without 
any extra-ordinary effort. This is good news 

for those who have the need for unusual 
effects. Look out for even better effects in 
the future; in particular, I will be able to 

alter the baseline, and change the size, slope 
and thickness of characters along a line. 

The box procedures form the basis of the semantic analysers associated with a galley. It is the box 
procedures that create the boxes, load them with slugs, and associate the boxes together in the appropriate 
way. They operate together as a collection of recursive routines, which call each other in a way partly 
determined by themselves, and partly by the document syntax. Since they are tied fairly closely to the 
syntax, and operate right in the guts of Mint, you should generally leave them well alone unless you are an 
expert. However, Mint has been designed to allow box procedures to be added by the system maintainer, so 
a description of them is not out of place. 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 73 

A box procedure is written in a stylized form of Pascal, and is compiled into Mint. (There are facilities, 
currently disabled, for reading box procedures into Mint during document formatting.) In order to write a 
box procedure, you must understand the conventions of the stylized Pascal- this document isn't the place 
to these conventions5

. They operate in conjunction with the environment indicators that get passed to them 
by the galley, and together they determine the layout and appearances of the boxes. 

Since examining the code is not likely to yield too much information, the procedures are described 
informally. 

BoxStandardO 

BoxSectionEnvO 

BoxltemizeO 

BoxEnumerateO 

BoxCRTermO 

BoxCrossRefO 

BoxMultipleO 

This box procedure simply reads input into slugs, and places the slugs into the 
boxes, until the end of the environment is reached. This procedure (like most of 
the others) is indifferent to which interpreter analyses the input to determine 
how to layout the slug. For example it is used for most of the standard 
environments, and also for DP and Plot input. 

This procedure is similar to BoxStandardO, except that it injects a prefix for 
the environment into the first slug .that is made. 

This procedure creates two boxes that are beside each other. The left-hand one is 
used to contain the bullets, the right hand one is used to contain the i terns. The 
procedure iterates until the last item of the environment is read. The 
environment parameters adjust the margins appropriately so that nested 
item i z e s have the correct indentations. There are two levels of bullets: solid 
black and open circles. 

This procedure is very similar to the previous one, except that it generates a 
sequence of labels. These nest three deep; the first level counts through the 
integers, the second through the letters, and the third through lower case roman 
numerals. Deeper nesting will cause the counter styles to repeat. You will need to 
take a crow-bar to Mint if you want to change the order or styles. 

This is a specialized procedure used by the PageCommand environment. It sets 
up a cross reference before scanning in its body in a manner similar to 
BoxStandardO. 

This procedure is used by all the environments that need to leave pointers from 
one galley into another galley. A cross reference is placed in the galley, and the 
routine then recursively calls some other box routine. It is used by Foot, -
Annotate and the page heading and footing environments. 

This routine is another general-purpose routine, which, instead of reading in 
slugs, as does BoxStandardO, recursively invokes other box routines, as 
determined both by the syntax and by the input from the . M s s file. It is used by 
many of the non-terminal environments (and by Mu 1 tip 1 e in particular). 

5 Because the galleys operate as independent processes, conventional Pascal is not usable. Since the amount of sharing between the 
processes is large, it was not appropriate to use processes provided by the operating system. The solution used by Mint is to implement 
a simple multi-process interpreter which executes the recursive analysers. The interpreter operates on the code that is generated from 
the box routines, which are se/fcompiling: when executed, they generate the code which will perform the anaylsis. And that is why they 
are written in a stylized Pascal. 

reference.mss 



74 

BoxCommentaryO 

BoxDescribeO 

BoxFigureO 

BoxTab1eO 

BoxCaptionO 

BoxMathsO 

BoxGa11eyO 

BoxTextO 

BoxDocTypeO 

BoxDocumentO 

4.13 Devices 

Reference Section Peter I Hbbard 
Mint User Manual 

This was written originally to illustrate how the notion of box procedures allowed 
you to create environments not easily obtained in other ways. It turned out to be 
reasonably useful. The routine operates by invoking a sub-environment, and 
then checking to see if a 9 los s follows, and if so, placing it in a box adjacent to 
the first enviroment. 

This is a generalization of BoxCommentaryO. It places several inner boxes side 
by side; the number of boxes that are placed adjacent to each other is determined 
by the number of tabulations within the environment passed to the procedure. 
The procedure can be used for a variety of display purposes - for the 
description environment and the commentary environment. 

This procedure repeatedly accepts the bodies of the figures, and places a caption 
below each figure if there is such an environment in the . Ms s file. Thus several 
figures can be collected together into one box. 

This procedure repeatedly accepts the bodies of the tables, and places a caption 
above each table if there is such an environment in the . M s s file. Thus several 
tables can be collected together into one box. 

This environment is very similar to the BoxSect i on E nvO environment, 
differing only because it places the prefix of its parent environment (which will 
be either tab 1 e or fig u r e) at the beginning of its first slug. 

This environment is similar to the BoxStandardO, but it invokes some special 
processing to handle the maths environment 

This is the driving procedure for each of the galleys. Basically, it sits and loops 
over other non-terminals procedures. This is the procedure that usually gets 
interrupted when the inner environment ends - for example when a footnote or 
annotation has ended. Because the procedure loops, it is always ready to accept 
input, and so gets awoken whenever the galley manager provides it with lexemes. 

This procedure is used to fire up the text document type. It differs from the 
procedure used by the other environments because text is the default 
environment. It calls the BoxGa 11 eyO box procedure. 

This is the procedure that is invoked by all the document types except for Text. 
After ensuring that the style parameters have been appropriately dealt with, it 
invokes the BoxGa 11 eyO box procedure. 

This is the grand-daddy of them all. It sits right at the bottom of the invocation 
stack of the principal galley, and causes everything else that is needed to create 
galleys to occu~. 

Mint uses information about devices to determine how it is to format a document. This information is 
stored in device tables, and it describes the physical and abstract properties of the device. In general, the 
information is inaccessible to' the casual user, but since access to the information, or the possibility of 
altering it, may prove useful to someone, it is described. here. 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 75 

4.13.1 Device table information 

The following information is stored in the device tables: 

Device identifier 

Raster Operations 

Page Size 

Raster Size 

For example, Pe rq, Dove r. 

The set of raster operations that the device can use. The Perq has all eight 
available, the Dover only RO r. 

The size of the page, in 1/100th inch. 

The size of the page in rasters (these rasters need not correspond to physical 
characteristics of the device). For the Perq the raster size is the same as the 
physical raster size (about 1/100th inch); for the Dover the raster size is 5 micas. 

From the above it should be quite clear that the device table information needs to be rethought. I'm sure 
it will be a refreshing experience. 

4.14 Presentations 

The purpose of Mint is to take a manuscript _ and prepare from it a number of presentations. A 
presentation comprises a collection of document parts, each of which comprises some number of pages. The 
information in the pages comes from the original manuscript, of course, but the manner in which the 
information is presented - the appearance of the pages, the way that cross-references are indicated, and 
even which portions of the original manuscript get displayed, is a property of the presentation. Some of the 
flexibility of having different presentations is lost because all presentations that are created during an 
execution of Mint come from the same set of galleys; however, the user can select which galleys will 
contribute to a presentation, so that this loss of flexibility may be disguised. It is possible, for example, to 
have two separate Ma; n galleys, each receiving the document, but having different style parameters, 
d~fferent procedures, different fonts, and different target devices. The only restriction, in fact, is the obvious 
one that all the galleys that contribute to a presentation must use the same target device. 

Note, however, that some of the implied richness in selecting and designing presentations is not possible 
with the- non-interactive version of Mint, and will only be able to be exercised in the interactive version. 

In this section I describe the structure of a presentation, and the means by which the default presentation 
can be modified. 

4.14.1 The structure of a presentation 

A presentation has two components: a vector that maps between page layouts and collections of 
formatting rules that layout pages; and a collection of document parts, which are the pages which have been 

- produced using the particular layout rules. Different page layouts are specified for different portions of the 
document through the use of box environment parameters. For example, the T; t 1 e P ag e, environment 

reference.rnss 



76 Reference Section Peter Hibbard 
Mint User Manual 

specifics the page layout parameter of its environment to be Ti t 1 ePS. Consequently, when a presentation 
comes to be made, the particular collection of rules in the Tit 1 e P S entry of the layout mapping vector of 
the presentation will be used. 

Also associated with each of the possible page layouts is a part. The part receives the pages as they are 
created by the formatting rules, and pages can get sent to the parts in any order; within the part, though, 
they are placed consecutively by order of arrival. TIle printing order of the pages in a presentation is quite 
arbitrary, since all the pages are created before any printing is perfOlmed. 

As I understand page layout requirements more, I may be able to bind more of the page layout rules as 
declarative information, but at present the major burden of defining the appearance of a page according to 
some formatting rules is specified by procedural knowledge. However it is possible to change several of the 
parameters the layout routines use, such as those specifying the size of the page, the style of the borders 
around areas, and the background colours of areas. These are dealt with in section 4.l6.2.3. 

4.14.2 Defining layout procedures 

Well, of course, you have to write the routines that perform the page layouts, which means you need to 
know all the grubby ~etai1s of Mint's page layout mechanisms. In order to make effective use of the 
parameters which the layout procedures use, it is necessary to describe the general mechanisms that specify 
which layouts are associated with the presentation mapping vector. 

Each layout procedure has an identifier; currently Mint has three layout procedures: Tit 1 e P ag eO, 
which understands how to layout title pages, ContentsO which helps layout tables of contents, and 
De f au 1 to, which lays out everything else. More details of these are given in section 4.16. Soon there will 
be layout procedures for letters, multi-column pages, etc. 

4.14.3 Defining new presentations 

A new presentat.ion is created by the NewPresentation statement. This creates a new presentation, 
and sets the elements of its layout mapping vector to undefined values. Layout procedures are associated 
with the elements and (empty) parts created, by the AssocPart statement. 

For example, 

@NewPresentation (MyPres) 
@AssocPart (MyPres, TitlePage. TttlePS. TitlePageO) 
@AssocPart (MyPres, MainBody. DefaultPS. DefaultO) 

creates a presentation named My Pre s, and associates two parts with it. TIle first part, named Tit 1 ePa 9 e, 
is associated with the Tit 1 ePS element of the mapping vector, and specifies that the layout will be 
performed using Ti t 1 ePageO. The second part, named Ma inBody, is associated with the Defaul tPS 
element of the mapping vector, and specifies that the layout will be performed using Defau 1 to. 

reference.mss 



Peter Hibbard 
Mint User Manual 

4.14.4 Making representations6 

Reference Section 77 

A representation of the man~script is finally made from the galleys, by giving a presentation a collection 
of galleys. Each galley given to the presentation must have the same target device, but there are no other 
restrictions. One of the galleys in the collection is specified to be the principal galley; it is from this galley 
that slugs and boxes will be drawn initially to make the representation. The other galleys of the collection 
are associated galleys: if there are cross-reference relations from the principal galley into an associated galley, 
then the page layout routines will combine the boxes and slugs from the associated galley into the pages 
according to the routine's rules. Currently the only way this can be done is by placing the cross-referenced 
material into footnotes, so that the usual way of making a representation is to have the principal galley be 
the Ma; n galley, and the associated galleys be that subset of the Footnote and Annotat; on galley from 
which it is desired to extract notations. 

To make a representation, the statement MakeRep is used. This statement takes a principal galley, a 
collection of associated galleys, and a presentation: 

@MakeRep {Main. @"(Footnote. Annotation). MyPres) 

Note that the second parameter must be quoted. It is picked apart by the macro. (At present you cannot use 
this statement.) 

4.14.5 Printing a presentation 

After a presentation has been made, it may be printed in whole, or page by page. or part by part. There 
is no requirement that the printing device be the same as the target device of the galleys that went in to 
make the presentation. If they are not the same, they will be printed on the viewing device in cross-proofing 
mode; see section 4.25. 

The following illustrate the methods of causing printing to occur. 

@PrintPage (MyPres. Dover, TitlePage, 1) 

will cause page 1 of the T; t 1 e P ag e part of presentation My Pre s to be printed on the Dover, 

@PrintRange(MyPres, Perq. Ma;nBody, 1, to} 

will print pages 1 to 10, and 

@Pr;ntPresentat;on (MyPres. Dover) 

6 Although this section is describing facilities that are right at the edge of the Mint design, they are sufficiently well developed that it 
is reasonable to program Mint at this level. 

reference.mss 



78 Reference Section Peter Hibbard 
Mint User Manual 

will print the whole presentation. (None of these statements can be used directly at present, though they are 
used implicitly when Mint interacts with you when it has formatted a document.) 

4.15 Standard presentations and printing 

In this section the standard presentations, parts and layout routines are described, together with the 
standard printing action with which Mint finishes its execution. 

4.15.1 Standard presentations 

The fonowing layout routines are specified. Their actions are described in section 4.16. 

DefaultO ContentsO TitlePageO 

The fonowing is the standard presentation. 

@NewPresentation (Standard) 
@AssocPart (Standard. TitlePage. TitlePS. TitlePageO) 
@AssocPart (Standard, Contents. ContentsPS, ContentsO) 
@AssocPart (Standard. MainBody. DefaultPS, DefaultO) 

The table of contents is created only if there is an entry in the Con ten t s P S entry of the page layout of 
the presentation, and if there is a galley named Contents. Infonnation is sent to the Contents galley 
automatically, and it finally comes to be laid out using the layout routine in the De f au 1 t P S entry of the 
vector. See section **** for more details about tables of contents. 

4.15.2 Printing the standard presentation 

Mint creates the following representation after it has created the galleys. 

@MakeRep (Main, FootNote, Standard) 

After creating the presentation, Mint interacts with the user, calling P r i n t P age and 
P r in tP resentat i on, as requested. 

4.16 Layout procedures 

Layout procedures are used by Mint to take the slugs and boxes from the galleys and place them into the 
pages. I am still a long distance from being able to formalize this activity as well as I can formalize the 
activity of creating the slugs and boxes in the galleys: Thus the description of the action of the page layout 
procedures is less precise than I desire. Nonetheless, the current page layout procedures app~ar to operate 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 79 

fairly well, though I can imagine that they will collapse in horrible ways if presented with pathological 
layout problems. 

In the sections below I first describe the sorting action which precedes page layout, and then describe 
informally the action of each of the two procedures in Mint. 

4.16.1 Sorting the slugs and boxes 

The galleys have a rich, detailed representation of the structure of a document; this structure is produced 
by a parse of the manuscript. The task of page layout is to create another structure, based on the galley 
structure, but which selectively ignores some of the structural information (since this is normally deduced by 
the reader from the representation of the document), and has imposed upon it another structure, caused by 
the constraints of the two-dimensional pages. One such piece of information which is hidden in the galleys 
but which is vital for page layout is the ordering of the slugs and boxes along the Y-axis. Two slugs which 
need to appear adjacent to each other on a page may be separated in the galley into different leaves of the 
structure. An example occurs with the bullets that introduce items in an itemized list - unlike Scribe, they 
are not in the same slug. 

To assist the page layout routines a second structure is created. This is a list of all the slugs and boxes, 
sorted by Y-value. This sorted list is used to help find which slugs and boxes are intended for which layout 
routine. This is done by creating severa] collections of sorted slugs. Each collection is passed to one of the 
page layout procedures for processing; severa] consecutive collections may be passed to the same page 
layout procedure, but each collection will result in initializations occurring in the layout procedures that 
affect the appearance of the presentation (which is why each chapter reinitializes the headings and footings). 

There are a few esoteric properties of the PageStyl e environment parameters that control the general 
appearance of documents, but here is not the place to discuss them. 

4.16.2 Page areas 

Each layout procedure regards the page as being divided into a number of nested areas; the sizes, 
positions, border widths, border styles and background colours of these areas are determined by parameters 
that are used by the layout routines. There two sorts of parameter: parameters which set the size of the page 
for all the layout routines, and parameters which modify how areas appear, and which are specific to each of 
the layout routines. 

4.16.2.1 Page parameters 

The page height, page width and border width of the pages can be set. The border width is used to 
compute the size of the border around the text on the page, according to the tables given below (4.16.2.3). 

reference.mss 



80 ]~cference Section 

The following statement sets the page parameters. 

@PageParams (PageHt = 10 inches, PageWd = 8 inches, BorderWd 

All the parameters must be set, and they must be in absolute units. 

Peter Hibbard 
Mint User Manual 

1 inch) 

If the width of the main text area is changed (the area into which the slugs are placed), then the width of 
the galley should also be changed to be the same, otherwise page layout will give unpredicatble results. 

4.16.2.2 Area parameters 

It is possible to change the border width, border style, and background colour of each of the areas for 
each of the layout routines. The parameters affect all the pages that are made by the routine. To alter the 
parameters, use, for example 

@PageArea (Layout TitlePage, Area = Main, BackgroundColour Red, 
Border 0.05in, BorderStyle = Widthl) 

This will draw a wi dth 1 border round the main area of all the pages made by the tit 1 epage layout 
routines (there's only one at present: titlepageO), leave a border of width 0.05 inches, and colour the 
background of the area red. The layout parameter can be default or titlepage; the area parameter 
should be the identifier of one of the areas in the pages used by that layout routine. The 1 ayout and area 
parameters cannot be omitted; other parameters that you don't want to change can be omitted. 

If you put a border round the main area, then you will need to alter the width of the galleys, since the 
slugs are placed into the main area within the inner borders of the area. 

4.16.2.3 Values of the page area parameters 

The following are the areas specified by the current layout routines. The parameters are presented in the 
order: parent area, within which this area is nested; the sibling area, whi~h the next area with the same 
parent; the son area, which is one of the areas into which the considered area is divided; and then four 
distances: the coordinates of the top left-hand corner relative to the parent, and the x and y sizes of the area. 

The values of PH, PW and BW are set by the pageparams statement; their default values are the page 
height and width, as specified by the device characteristics, and one eighth of the page width, respectively. 
The border widths, styles and background colours are set by the pagearea statement; their default values 
are zero, noborder and transparent, respectively. 

Default 

Page 
NoArea NoArea Heading 0 o PW PH 

Heading 
Page Body LeftMargin 0 o PW BW 

Body 
Page Footing NoArea 0 BW PW PH-2*BW 

Footing 

reference.mss 



Peter Hibbard 
Mint user Manual 

Page 
LeftMargin 

Body 
Middle 

Body 
RightMargin 

Body 
Main 

Middle 
FootNote 

Middle 

TitlePage 

Page 
NoArea 

Heading 
Page 

Body 
Page 

Footing 
Page 

LeftMargin 
Body 

Middle 
Body 

RightMargin 
Body 

Reference Section 

NoArea NoArea 0 

Middle NoArea 0 

RightMargin Main BW 

NoArea NoArea PW-BW 

FootNote NoArea 0 

NoArea NoArea 0 

NoArea Heading 0 

Body LeftMargin 0 

Footing NoArea 0 

NoArea NoArea 0 

Middie NoArea 0 

RightMargin NoArea BW 

NoArea NoArea PW-BW 

4.16.3 Actions of the layout procedures 

81 

PH-BW PW BW 

0 BW PH-2*BW 

0 PW-2*BW PH-2*BW 

0 BW PH-2*BW 

0 PW-2*BW PH-2*BW 

PH-2*BW PW-2*BW 0 

0 PW PH 

0 PW BW 

BW PW PH-2*BW 

PH-BW PW BW 

0 BW PH-2*BW 

0 PW-2*BW PH-2*BW 

0 BW PH-2*BW 

In addition to the parameters described above, the layout procedures also. read a small number of 

parameters which modify their behaviour. Both of the procedures read the value of Fin i shonEven, which 

takes a boolean value. The parameter determines whether a blank page will be generated after a layout 

procedure has been called, in order to ensure that each portion of the document starts on an odd page. The 

parameter is set by the statement 

@Layout (FinishonEven = True) 

The default value is true. Other parameters are specific to the layout procedures, and are described in the 

corresponding section. 

4.16.3.1 The 0 e f au 1 to layout routine 

This procedure can be passed a number of parameters, which determine the way it operates. The 

statement 

@Default (HeadingFirst False, Expand False) 

ref erence.rnss 



82 Reference Section Peter Tlibbard 
Mint User Manual 

specifics that the procedure will not place a heading on the first page that it produces, and that it will not 
stretch the leading between lines to get the lines to fill the Ma inA rea. These are the default settings of the 
parameters. (There are other parameters taken by the statement, but these are experimental at present, so 
you should use named parameters only.) The procedure operates by extracting slugs and boxes in sequence 
from the principal galley, and forming them into collections. All the slugs of a collection must be placed into 
the same page. Normally only one slug occurs in a collection; however, several slugs will occur if it is 
necessary to avoid a widow or orphan, or if an annotation or footnote is associated with a slug, and the galley 
in which the annotation or slug occurs is in the associated galleys. In this latter case the slugs of the 
annotation or footnote are placed at the bottom of the page, and the boundaries of the Ma i n area and 
FootNote area are adjusted. The procedure makes two attempts to fit a box with a negative Need 
parameter into a page: first it tries to fit the box into the current page; and if this fails, it tries to fit the box 
into a new page. If this also fails, the box is treated as though Need had been set to O. 

When a page is full, the next box from the PageHead i ng and Page Foot i ng are placed into the 
Heading area and the Footing area, except on the first page if HeadingFi rst is true, when only the 
page footing box is placed. Thus if you are' using alternating titles and footings on even and odd numbered 
pages, you must remember that the footing starts on the odd numbered page, the heading of the even 
numbered page. I oUght to fix that. 

4.16.3.2 The Tit 1 ePa 9 e 0 layout routine 

This procedure produces a page laid out according to information that is passed to the procedure in the 
extra environment parameters of the Tit 1 e P ag e environment; see below for details. Each of the boxes that 
occurs in the Tit 1 e P ag e is placed at a specified position on the page, and no attempt is made to shift 
boxes around to make them all fit on the page without overlapping. If there are .cross references into other 
galleys, these are ignored (almost a matter of principle - I dislike footnotes in titles). If an abstract occurs, a 
heading slug containing the centred word Abstract is created. 

The position of each of the boxes is specified in the environment parameters of the Tit 1 e P ag e 
environment. "These values, measured as vertical distances from the top of the page, are placed in the 
Tabulations entries of the environment, and picked out by the Tit 1 e P ag e 0 procedure. The values can be 
changed by passing parameters to the environment. See section 4.5.2.2 for details. 

(There is also a tit 1 e pag e statement, but the parameters it takes invoke features which are still 
experimental.) 

4.16.3.3 The Content sO layout routine 

This routine is used to layout the table of contents; it is parasitic on the layout routine in the 
De f au 1 t P S position of the layout vector, which it calls when it has loaded up the Con ten t s galley with 
information extracted from the representation. Thus any par~eters that are applied to the de f au 1 t 
routines will also apply the pages created for the table of contents. More details are given in section ****. 

reference.mss 



Peter I Iibbard 
\tlint Cser Manual 

4.17 lVlacrogenerator 

Reference Section 83 

Mint has a macrogenerator front-end which feeds the lexical scanner. The macrogenerator is intended to 
be used for simple textual replacements and not as a general computational facility - other facilities in 
Mint provide the features obtained using the macro generator in Scribe. 

The macrogenerator is modeled on that described by Strachey [Computer Journal, 1963], though many 
cosmetic changes have been made. These are described below. 

In addition to the straightforward textual replacements, the macrogenerator plays three other essential 
roles: it is used to access system information, such as the time of day, or the current source input file; it is 
used to pre-process several statements that change the actions of Mint, for example AssocFont, 
NewGa 11 ey etc; and finally it is used as an integral part of the Note facility, within which the bibliography 
facility acts as a subset 

One word of warning. The balance between the macroprocessor and the error-correcting parser has been 
a little delicate in the past, and it may well still be so. 

4.17.1 Input conventions 

A macrogenerator command has the following appearance: 

@IsEq (abed, efgh) 

with the command identifier preceded by @, and ·the parameters enclosed in brackets and separated by 
commas. In agreement with the conventions, any pair ofbracketting characters may be used: ( and), [ and 
J, { and}, < and>, " and ", ' and " and ' and'. Spaces may follow the macro identifier (but not the @), 

and may precede and follow the arguments. The sequence of characters @ .... will cause the macrogenerator to 
ignore all characters up to the end of the line, or to the end of the input 

A macro that takes no arguments may be written as, for example 

@newline() 

Alternatively, if the next character after i~tervening spaces is a comma, or an equal, or the current closing 
bracket of a surrounding macro call, or is the end of file, newline or newpage, then the call can be 
abbreviated to 

@newline 

This convention catches most of the lax macro call conventions of Scribe, but some do get past. 

reference.ross 



84 Reference Section Pctcr Hibbard 
Mint User Manual 

Note that the parameters do not need to be quoted. If not quoted, the macrogenerator will interpret 
commas, equals, @ symbols, and the close bracket of the surrounding macro call, so the argument should not 
normally contain any of these; to quote a string the quote used is @" (argh!) with the string to be quoted 
enclosed in any of the nonnal brackets. The only interpretation that is performed on a quoted string is to 
look for the closing bracket; thus some care is needed when using nested quotations. The macrogenerator 
strips off the quote; subsequent rescanning during macro expansion will cause the control characters (@, 

comma, equals, etc.) to be acted upon. You need to be aware of how frequently a string will be scanned 
internally, therefore, before the macrogenerator emits its characters to the lexical scanner -: a good reason 
not to use the macrogenerator as a general computational tool. 

In addition to providing for positional parameters, the macrogenerator also provides named parameters, 
for example 

@AssocFont (Galley = Main, FontSize = N, FaceCode = FO, FontName = Noniel0i) 

Named and positional actual parameters can be mixed; parameters are bound from left to right, with the 
parameter number of positional parameters being detennined by which parameter it is in the argument list 
It is possible to assign several values to the same formal parameter; the last one bound is the value passed to 
the macro expander. Leading and trailing spaces are stripped from both the formal and actual arguments 
(even if quoted, alas; I should fix that), "and the case of the characters of the formal parameters is not 
significant. 

Default values for arguments that are omitted from the parameter list may be specified at the time the 
macro is defined. See section 4.17.2 for more details. 

In order to model quite closely the Scribe conventions about text macros, which do not interpret any 
characters except for the closing bracket, the Mint macrogenerator adopts the following rigid conventions. If 
the identifier before the equals symbol is not a formal parameter of the macro, then it is incorporated as a 
part of the actual parameter, together with the equals symbol and any surrounding lexographic display 
symbols. In addition, if a positional convention is used for expressing the actual parameters, then all the 
characters that remain in the actual parameter list after prior parameters have been satisfied are incorporated 
into the last actual parameter. Thus, given that Comment is a one parameter macro, the macro call 

@comment(This is a string that contains an = symbol, in addition to a comma) 

will place the whole of the argument string into the only parameter. 

4.17.2 Defining macros 

Macros are defined in one of two ways - using Form, which creates the macro template, and using 
Defe r, which allows a variety of forms to be associated with a macro. Discussion of De fe r will be deferred 
to section 4.17.4. (There is a third way, using ED e f, but that can only be used in the rna t h s environment, so 
it will be discussed there.) 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 85 

Form is a macro that takes three arguments: the identifier of the macro to be defined; the parameter lis4 
with default values if needed; and the body. 

@form(id = MyMacro, params = X, body = Just output this string) 

This defines a macro MyMac ro, that takes one parameter, X, whose body comprises the string Just 

output this string. This macro does not use the value of its parameter, so it will Just output 

th i s st ring for all the following calls 

@MyMacro() @MyMacro(X = Foo) @MyMacro(Bah) 

To access the value of a parameter. the macro call 

@Value(Id = X) or @Value(X) 

is used. Va 1 u e performs an inside-out search down, the . static chain (in good old algebraic language 
tradition) to find a macro definition with a formal macro parameter with identifier X. Thus you could write 

@Form(MyMacro, X, @"{Just output @value(X}}} 

(Note the careful choice of brackets). 

The Params parameter of the Form macro takes a string which is then picked apart to find the 
identifiers of the formal parameters, and the default values. Normally this string contains commas and 
equals, so it is necessary to quote it. Its general form is 

@Form(MyMacro, Params = @"(Pl. P2 = defaultl, P3 = default2), SomeBody} 

The Params argument is analysed in the same way as a macro call. Thus this call specifies a'macro with 
three parameters, whose formal identifiers are Pi, P2 and P3, with the second and third parameters having 
defaults defaul tl and defaul t2. The defaults will be used if MyMac ro is called without a P2 or a P3 

parameter. 

4.17.3 Access to system values 

The ~ a 1 u e call provides access to macro parameters down the static chain. At the end of the static chain 
are the parameters of a macro call within which Mint can be considered to have been invoked. The actual 
parameters of this macro call are various useful system values, for example the time of day and version 
number. Section 4.18.2lists the values accessible in this way. 

4.17.4 Deferred Macros 

Macros may be defined so that calls of the macro occur immediately, or they may be defined in such a 
way that calls are deferred. When a macro call is deferred, it is not evaluated immediately, but instead it is 

reference,mss 



86 Reference Section Peter Hibbard 
Mint User Manual 

saved, and can later be reinvoked. This subsequent reinvocation may use any (non-deferred) macro 
definition to interpret the call. 

To specify that macro calls on macro Boo k are to be delayed, the call 

@defer(Book) 

is made. Any subsequent call on the Book macro.will result in the call being parcelled up and placed on a 
list (which, for reasons which will become apparent later, is called the Plagiary List). Calls of the Book 
macro will normally have several parameters; one of them must be a CodeWord parameter, written either as 
an explicit named parameter, or as the first actual parameter. 

@Book(CodeWord = Knuth68a. 
Key = Knuth. 
Author = D.E. Knuth. 
Title = Fundamental Algorithms. 
Year = 1968) 

As many other parameters as one wishes may follow the codeword; they are not interpreted at this stage. 

Mint will place this call, without evaluating it, on the Pl a9; ary L; st. The Pl a9; ary L; st is a 
heavy duty data structure, intended to store many hundreds or thousands of delayed macro calls. In 
particular, it is used to store the bibliographic entries used by the bibliography feature (which can be seen 
now to use just a general-purpose feature): however, it is also of value in saving the random card-index of 
notions, notes, quotations, plagiarized cuttings from papers, etc, that make up a part of any academic's 
intellectual property. 

To invoke a delayed macro, the call Re Invoke is used, with ~ codeword as parameter. Assume we have 
a macro OutBook, that takes parameters Key, Autho r, T; t 1 e, and Year, then the call 

@OutBook (@Relnvoke(Knuth68a» 

will be equivalent to 

@OutBook(Key = Knuth, Author D.E. Knuth, Title Fundamental Algorithms, 
Year = 1968) 

In this way the notes, comments, etc., can be stored in a free format, to be retrieved when needed using a 
specific format suitable for the current document The bibliography feature uses this facility, by generating 
the reinvocations for the delayed macro calls in the bibliographic database. The macros used for these 
expansions are specific to the reference style. 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 

4.18 Standard lVlacrogenerator Facilities 

87 

This section lists the predefined macros. We have called predefined macros statements elsewhere, and 
you should look in the relevant sections to see what they do. The only predefined macros described here are 
those tenned special macros, which are concerned with macro expansion . 

. 
4.18.1 Predefined Macros 

Predefined macros are conveniently divided into several classes - special macros, which are used to 
control macro expansion; bibliographic macros, which interact with the bibliography feature; counter 
macros, which are used to access counters; galley macros, which are used to alter the properties of galleys; 
and page macros, which interact with page layout and presentations. 

Following each macro identifier is the list of parameters it takes. The default value of these parameters is 
the empty string. 

4.18.1.1 Special macros 

form 
value 
defer 
reinvoke 
char 
cond 
iseq 
include 
isdefined 
message 
andm 
orm 
notm 
w 
device 

id, params, body 
id 
macro 
dm 
ch 
if, then, else 
x, y 
file 
param 
msg 
<up to 16 parameters> 
<up to 16 parameters> 
x 
word 
dev 

Form, Value, Defer, and Relnvoke have been dealt with in section 4.17. Char takes an integer in 
decimal or octal notation (octal being indicated by a leading # symbol), or a character preceded by a quote 
(for example @c h a r ( , , ) or the string s p for space or the string 1 n for newline. It creates a character of 
that value. This character is specially quoted so that it cannot be interpreted by the macrogenerator; thus 
any character can be created using this macro. (Actually, this is not quite so, but you should regard this. as a 
special feature.) 

Cond is a macro that returns its then parameter or its el se parameter, according to whether its if 
parameter is a non-empty string or an empty string, respectively. Note, however, that both parameters are 
evaluated (sigh!). IsEq returns a non-empty string if its two arguments are the same, after case-folding; 
IsDefined returns a non-empty string if its argument is non-empty. Andm, Orm and Notm perfonn the 
logical operations on their arguments. 

reference.mss 



88 Reference Section Peter Hibbard 
Mint User Manual 

Incl ude causes input into the macrogenerator to come from the specified file. The standard search list 
is used to find the file; if the search fails, Mint will try again with . Ms s appended, and finally with . Min t 
appended. Includes can be nested arbitrarily deeply. Note that an Inc 1 u de does not cause the 
macrogenerator to start taking input from the file immediately; if it happens to be scanning some macro 
body when it evaluates the Incl ude, it will continue to evaluate the body, until it again needs input from 
the file, when it will then take input from the new file. 

W causes any spaces within its parameter to be treated as words, thus preventing line breaks, and 
inhibiting the expansion or contraction of the spaces. It turns out that W can have anomolous effects on 
characters created by C h a r, and on certain strings created by NCo n v . That's a bug. 

Dev i ce does nothing except to issue a warning that the statement does nothing. 

Message outputs a message onto the screen, in the lower window. 

4.18.1.2 Bibliographic macros 

(See section 4.l9.) CiteInCollection, Cite and Biblnclude take an arbitrary number of 
parameters. 

newcitecollection 
citeincollection 
cite 
bibinclude 

4.18.1.3 Counter macros 

(See section 4.22.) 

newcounter 
next 
set 
alter 
bind 
bindcurval 
setnext 
nconv 
assocconv 
1 abel 
tag 

4.18.1.4 Galley macros 

(See sections 4.3 and 4.9.) 

assocfont 
substitutechar 
substitutegap 
substituterange 
substituteicon 

collection 
collection, <up to 16 citations> 
<up to 16 citations> 
<up to 16 citations> 

id, within, start 1, change 
id 
id, value 
id, by 
id, value, binding 
id, binding 
id 
conv, counter, 1 abel 
conv, nstyle 
id 
id 

+1 

galley, fontsize. facecode. fontname 
device, dfont, dchar, sfontschar 
device, dfont, dchar, size 
device, dfont, from, to, sfont, schar 
device, dfont, dchar, icon, s, x, y, w 

reference.mss 



Peter Hibbard 
Mint User Manual 

makeicon 
copyfont 
emptyfont 
assocproc 
put char 
putline 
moveto 
charinfo 
mexcharinfo 
setmexchar 
createmfont 
assocmfont 

4.18.1.5 Presentation macros 

(See sections 4.15 and 4.16.) 

crossproofingdefault 
crossproofingfont 
newline 
hsp 
vsp 
zsp 
1 ayout· 
default 
titlepage 
pageparams 
pagearea 

4.18.1.6 Syntax macros 

(See section 4.2.) 

Reference Section 

slugtype, id, file 
device, dfont, sfont 
device, dfont, height, baseline 
galley, environment, boxroutine, parameters 
dev, c, font, x, y 
dev, x, y, w 
dev, x, y 
dev, font, c, info 
dev, font, c, info 
device, dfont, dchar, yO, yy, yrel 
device, dfont, sfont 
galley, fontname 

targetdevice, viewingdevice, font 
targetdevice, targetfont, viewingdevice, viewingfont 
lines 
length 
length 
page 
finishoneven 
pasteup, headingfirst, expand 
pasteup 
pageht, pagewd, borderwd 
layout, area, backgroundcolour, border, borderstyle 

addrule 
remrule 
adddefault 
remdefault 

nterm, rhs 
nterm, rhs 
nterm, def 
nterm, def 

4.18.1.7 Computation macros 

(See section 4.11.) 

setcomplm 
setcomprm 
setcompgap 
setcompfont 

4.18.1.8 Index macros 

(See section 4.20.) 

cno, 
cno, 
cno, 
dev, 

sno, va·l 
sno, val 
sno, va 1 
cno, sno; val 

index key,.seckey, rest 
indexincollection collection, key, seckey, rest 
newindexcollection collection 

reference.mss 

89 



90 Reference Section Pcter Hibbard 
Mint Uscr Manual 

indexinclude 
indexparams 

4.18.1.9 Maths macros 

(See section 4.27.) 

mdef 
edef 
mathsparams 

<up to 16 collections> 
params 

slex, dlex, stype, fcode 
id, body 
fl, f2, f3, pl, p2, p3, bl, b2, b3, b4, el 

4.18.1.10 Border and colour macros 

(See sections 4.26 and 4.10.) 

newpattern 

newborderstyle 
newcolour 

4.18.1.11 Extra macros 

id, wO, so, cO, wl, 51, cl, w2, 52, c2, w3, 53, c3, 
w4, 54, c4 

id, mtl, mtr, mbr, mbl, patt: patr, patb, patl 
colour, hue, saturation, brightness 

These macros are defined in terms of other macros; they are here for convenience. 

@form (comment, body,) 
@form (ref, lab, @"[@nconv(placestyle,place,@value(lab»]) 
@form (pageno, lab, @"[@nconv(pagestyle,pageno,@value(lab»]) 
@form (eqn, lab, @"[@nconv(equationstyle,equation,@value(lab»]) 
@form (newpage, n, 

@"[@pagecommand(@zsp(@cond(@isdefined(n),+@value(n),+l»)]) 
@form (libraryfile, file, @"[@include(@value(file)~lib)J) 

Note that the comment macro is a crock: . it does not stop the scanning of its arguement, or its 
interpretation. You can be very surprised by what happens when you use it. I'll fix it soon. 

Because of an undesirable feature of the zsp statement, the newpage macro inserts two new lines 
before and after its body. 

The Lib r a ry File macro is included to help make Mint more compatible with Scribe; there are not 
yet any library files. 

4.18.2 System attributes accessed via @Val ue 

The following values are available by using Va 1 ue. 

Date Yields the current date, as provided by the Perq. There are not yet any 
transformations on the format of the date. 

reference.mss 



Peter Hibbard 
~'1int User Manual 

Time 

TimeStamp 

Version 

SourceFi1e 

Manuscript 

Device 

DocType 

BibSty1e 

IndexSty1e 

Reference Section 91 

Yields the current time of day, as yielded by the Perq. The same comments as 
those for D ate apply. 

The time stamp, comprising the date and time. 

The current version number of Mint. 

The current source file from which input is being taken. The string returned by 
this value is the string passed to Inc1 ude, or specified on invoking Mint, not the 
full path name. 

The root file for the manuscript. The same comments as for Sou rce F i 1 e apply. 

The device identifier. 

The document type. This appears as a string with the basic document type 
followed by a digit, which is the form of the document (zero if none was 

. specified). 

The current bibliography style. 

The·current index style. 

4.19 Bibliographies 

Mint supplies a general bibliography feature, similar to that of Scribe, but obtained using delayed and 

reinvoked macros. Since these are general facilities, Mint has much more ability to handle unusual reference 

formats, to add additional reference types, and to place references in line. 

The principle facilities of the Bibliography feature are provided through other mechanisms. The use of 

delayed macros has already been mentioned; in addition the citations are introduced into the text using the 

general cross reference facility (so that if a presentation omits some references, the reference numbers of the 

references that are present will be changed without having to re-Mint the document). 

The bibliography feature is still being polished, so it is not appropriate here to describe all its features. 

However, the general facilities will be described. 

4.19.1 Citation collections 

When a citation is made, the keyword of the delayed macro is noted in some collection; when the 

bibliography comes to be placed into the document, it is necessary to specify which collections will 

contribute to the bibliographic listing. Thus it is possible to send citations to several collections, and place 

the collections where appropriate - at the end of each chapter, with a general collection at the end of the 

document, for example. A new citation collection is created by the NewC i teCo 11 ect i on statement: 

@NewCiteCollection (EndofBook) 

reference.mss 



92 

creates a collection. 

Reference Section Peter Hibbard 
Mint User Manual 

There is a collection created by Mint: its identifier is Standard. Citations will be placed in this 
collection if it is not specified that they should go into other collections. 

4.19.2 Citations 

To place citations in the Standa rd collection, use the Cite statement: 

@cite(knuth68a, knuth68b) 

To place citations in some specific collection, use 

@CiteinCollection(EndofBook, knuth68a, knuth68b) 

There is no mechanism yet for including citations in a collection without a reference to them appearing 
at the point of citation; I'll fix that shortly. 

4.19.3 Causing the bibliography to appear 

The citations that have been placed in a number of collections can be introduced into the document 
using the Bib Inc 1 u de statement. This takes up to 16 collection identifiers, and constructs the properly 
sorted bibliography from them. 

@Biblnclude (EndofChapter, EndofBook) 

The style of the citations, and the appearance of the bibliography, is determined by the citation style. 
The value of the style is set using the C i teStyl e parameter in the make statement for the document; for 
e~ample 

@Make (Report, CiteStyle IEEE) 

It takes values from StdNume r; c, StdA 1 phabet; c, CACM and I EEE. The default value is StdNume ri c. 

At the moment the bibliographic macros are still being written. A reasonably complete set exists for 
StdNumeric, but not for any of the others. Given the pressure of other tasks, I'll probably produce them 
only on demand, and encourage the requester to implement them himself. 

reference.mss 



Peter Hibbard 
Mint User Manual 

4.20 Indexes 

Reference Section 93 

The indexing facility in Mint is similar in design to the bibliography feature. In particular, it allows 
arbitrary parameters to be associated with an index entry, and it allows an arbitrary macro to be used for 
laying out the entry. In this way it is possible to include notes in the index entry, to provide cross references 
to other index entries, and to display the location of the entry in any of the conversions available in Mint, as 
well as to build multi-level indexes. Because the appearance of the index does not need to be detennined 
until it is laid out, the facility provides a useful degree of flexibility for creating the indexes for complex 
documents. I expect to provide a number of standard macros for laying out index entries in the future. 

Now it turns out that the platitudes penned in the paragraph above would be inoffensive if it weren't for 
the fact that writing useful index macros were very difficult. The difficulties arise because you need to 
maintain global state between macro calls, and to use a general algorithmic control flow facility, neither of 
which can be done easily in a macro language. Since there probably will only be a small number of different 
styles of index needed in Mint documents, it seems reasonable to build a few of them directly into Mint, and 
provide an extension mechanism to cover unusual cases. The language I have chosen to allow this is Pascal 
- there is a module in Mint that can be hacked if the facilities I have provided don't suit you. However, I 
think that the indexing routine I have supplied will satisfy most requirements, and the masochist can still 
use the macro-driven facility. 

Below I will describe the general facilities, and then the indexing routine I have provided in more detail. 

4.20.1 Index collections 

When an index entry is made, it is associated with a collection; when the index entries come to be placed 
in the document, it is necessary to specify which collections of entries are to be included. Thus it is possible 
to send entries to several collections, and include the entries selectively throughout the text - at the end of a 
section, at the end of a chapter or at the end of the whole document, for example. Collections can also be 
used to classify the index entries if several indexes are needed. 

A new index collection is created by the New In d e xC 0 11 e c t ion statement: 

@NewlndexCollection (Acyclic Organic Compounds) 

A default index collection is created by Mint: its identifier is Standard. Index entries are placed in this 
collection if it is not specified that they should go into other collections. 

4.20.2 Index entries 

There are two statements for placing index entries into collections - In de x, which places the entry into 
the S tan dar d collection; and In de x inC 011 e c t ion, which places the entry in some specified collection. 
In both cases two keys can be provided: a primary key and a secondary key, together with any number of 

reference.mss 



94 Reference Section Peter Hibbard 
Mint User Manual 

additional parameters. TI1e keys are used for sorting the index entries; the additional parameters are stored, 
and are made available when the index finally comes to be made. 

The simplest form of index entry just has a primary key. Its form is 

@index(apples) 

which will place the entry in the standard collection; and 

@indexincollection(fruit. apples) 

which will place the entry in the F ru i t collection. A secondary key can also be included. For example 

@index(apples. granny smith) 

As many more parameters as desired can follow the primary and secondary key parameters (or the 
collection, primary key and secondary key parameters in the case of Index i nCo 11 ect i on); these are not 
interpreted at this stage, but are saved along with the index entry, in a manner similar to a delayed macro 
call. For example, if you want to have a "see also" and a "notes" parameter with an index entry, you can 
write 

@Index(Key = Apples. SecKey = Granny Smith. 
SeeAlso = Uncle Ben, Notes = Green and firm) 

(My advise is to include the formal parameter identifiers if you are using this extended form of Index 

statement. They are co 11 ect i on for the collection identifier, key for the primary key, and seckey for 
the secondary key.) 

4.20.3 Causing the index to appear 

The index entries that have been placed in a number of collections can be introduced anywhere in the 
document using the In d e x Inc 1 u d e statement. This takes up to 16 collection identifiers; for example 

@Indexlnclude (Fruit, Vegetables) 

The entries in the collections are first sorted using the primary key. If several entries have the same 
primary key. they are then sorted using the secondary key. Finally, if several entries have the same primary 
and secondary keys, they are sorted using the order of appearance of the entries in the document. 

After sorting has been performed Mint will then take one of two action~ depending on the value of the 
style parameter i ndexs ty1 e which is set in the parameters to the document's make statement. 

• If the style parameter i ndexstyl e has been set to mac roo then a call of the macro OutIndex 
is created for each entry, and is injected into the input stream. Outlndex is passed all the 
parameters in the In de x statement, together with a label parameter (whose formal identifier is 
Lab). The label parameter gives the identifier of the label that was attached to the document at 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 95 

the point where the in de x statement was made. It is expected that a definition of Ou tIn de x will 
have been provided by the Mint user; the macro has complete freedom to handle the call as it 
wishes. 

For example, one of the macro calls that will be generated by the In'dexlncl ude statement 
above will be 

@outindex(key=Apples, seckey=Granny Smith, lab=ix0008, 
seealso=Uncle Ben, notes=Green and firm) 

(The label identifier is created by Mint; the Minter should avoid creating labels comprising the 
letters i x followed by four digits.) 

• If the style parameter indexstyle has been set to style1, Mint will instead call the Pascal 
indexing routine that I have provided. This routine acummulates a number of items of 
information that are passed to it, transfonns the information, and finally emits it in a style 
appropriate for making two-level indexes. I describe the actions of the routine in more detail in 
the next section. 

(For those who are interested, I expect eventually to have styl e2, styl e3, etc., each providing 
different forms of index.) 

The default index style is sty 1 e 1. 

4.20.3.1 The Styl e 1 indexing routine 

This routine expects the index entries to have a key, seckey and styl e parameter; other parameters 

are ignored. The output comp'rises an entry for each primary key, in alphabetical order, with the entries for 

each secondary key associated with a particular primary key set out in alphabetic order, and with the 

document locations following the secondary key in reference order. The ve rse environment is used to set 

out each primary index entry, so that the second and subsequent lines that an entry occupies are indented 

more than the first; a new verse environment is started for each change of initial letter. In this way it is 

possible to control the amount of space between entries, and between collections of entries that differ by 

their initial letter. The index for this document was produced using the sty 1 e 1 index routine. 

The s tyl e parameter determines how the reference to the entry will appear in the index. Mint 

generates a call. to a macro taking one parameter to perform the conversion. For example, if the styl e 

parameter is pageno, then the entry will appear as a page number; if it is, ref it will appear as a section 

number. You can provide your own conversion macros if you wish. For example, I obtained the bold page 

number entries by defining 

@form (BoldPageNo. X. @""@,b{@pageno(@value(X»}") 

and then specifying my index entry like 

@Index (Box Parameters. Definitions. Style = BoldPageNo) 

'If there is no styl e parameter, Mint uses pageno to do the conversion. 

reference.mss 



96 Reference Section Peter Hibbard 
Mint User Manual 

In general you will want to set the box environment parameters of the verse environment, to change its 

size or change the fonts used. The statement 

@IndexParameters (@""Width 3in, TabClear, TabSet 1.75in, 
ExtraLeftMargin 2.25in") 

will set the appropriate parameters (these were the ones used for the index in this manual; there was also a 

rno d i f Y operating). 

4.21 Prefixes and postfixes 

The first slug of a box can have a prefix string generated for it. This prefix string appears in the slug 

before any of the input from the manuscript. Normally it consists of numbering information that gets 

generated by Mint, though there is no need for this to be so. In the current version of Mint, prefixes are 

bound fairly tightly into the system, and are specified with the syntax, though there is no reason for this, and 

a more appropriate place would be to specify the prefixes along with the procedures and the environment 

parameters in the procedure family of a galley. This change will be made shortly. The rna th s environment 

has a postfix string generated for it, but I'll call all inserted string prefixes to avoid confusion. 

Prefixes are not source strings introduced early in the processing of the input for a (box) procedure; the 

reason why this is not so is because Mint keeps a tight control over the processing of the input - the need 

-for a prefix can only be recognized after syntactic analysis has been performed, and introducing an arbitrary 

string at this point could destroy the formal properties of the output from the parser. While this implies a 

lack of generality as compared to Scribe, the counter facility in Mint appears to allow all the meaningful 

uses of prefixes (or at least all those I can think ot). The loss is a certain flexibility, since the prefixes 

essentially have'to be programmed into the system using a language different from that used for the 

manuscript. I've worried about this for some time, and see a way of hacking a route out, but I need to put 

more thought into it. 

Since prefixes are not programmable by the casual user, this section simply presents those that are 

available. Eventually it will be possible to read prefixes in from some data base, thereby overcoming much 

of the inflexibility. 

4.21.1 Standard prefIXes 

Several prefixes are defined in Mint. A general description of them follows. 

Place Prefix Place prefixes are used for the standard section environments. They comprise a 
definition of a new cross reference point (see section 4.22), followed by an 
applied occurrence of the appropriate counter (Section, SubSection, 
Parag raph), using the Pl aceStyl e conversion style. When the cross 

reference.ffiss 



Peter Hibbard 
Mint User Manual 

Figure Prefix 

Table Prefix 

Chapter Prefix 

Appendix Prefix 

Copyright Prefix 

Equation Postfix 

Reference Section 97 

reference is resolved (at page layout time), the applied occurrence will appear in 
the current Pl aceStyl e, in the font size and face code of the section slug. 

A figure prefix is used to create the numbers for the captions of figures. It 
comprises a definition of a new cross reference point (see section 4.22), the word 
Fig u re, followed by an applied occurrence of the Fig u r e counter, using the 
FigureStyle conversion style. The prefix string appears in the prevailing b 
face code. 

A table prefix is used to create the numbers for the captions of tables. It 
comprises a definition of a new cross reference point (see section 4.22), the word 
Tab 1 e, followed by an applied occurrence of the Tab 1 e counter, using the 
Tab 1 eSty 1 e conversion style. The prefix string appears in the prevailing b face 
code. 

The chapter prefix is used to create the chapter prefix for those document styles 
that have chapters in their section environments. It comprises a definition of a 
new cross reference point (see section 4.22), the word Chapter or the word 
Part, followed by an applied occurrence of the Chapter counter, using the 
Chap t e r Sty 1 e conversion style. The chapter title follows on the next line. 

The appendix prefix is used to create the appendix prefix for those document 
styles that have appendices in their section environments. It comprises a 
definition of a new cross reference point (see section 4.22), the word Ap pen d i x, 
followed by an applied occurrence of the Ap pen d i x counter, using the 
Appe n d i xStyl e conversion style. The appendix title follows on the next line. 

The copyright prefix is used to create the copyright notice on title pages. It 
comprises the word Copyright, followed by the copyright symbol, followed by 
the year. Eventually a counter will be set with the year value, and a conversion 
style associated with the counter, so that the year can be output in any of the 
conversion styles. 

The equation postfix is appended to the end of a formula created by the rna t h 5 

environment if it has a label parameter. It comprises an equation number (see 
section 4.27.3.2) enclosed within parentheses. 

The prefixes that are available are as follows. The counter associated with the prefix is given in the 
second column. 

PrefixChapterO ChapterNo A chapter prefix using Chapter 
PrefixChapterl ChapterNo A chapter prefix uSlng Part 
PrefixAppendixO AppendixNo A appendix prefix 
PrefixSectionO SectionNo A place prefix 
PrefixSubSectionO SubSectionNo A place prefix 
PrefixParagraphO ParagraphNo A place prefix 
PrefixAppendixl AppendixNo A place prefix 
PrefixAppend;xSecO AppendixSecNo A place prefix 
PrefixFigureO FigureNo A figure prefix 
PrefixTableO TableNo A table prefix 
PrefixCopyrtNO <none> A copyright prefix 
PostfixEqnO Equation An equation postfix 

reference.mss 



98 Reference Section 

See section 4.4.3 for the standard associations. 

4.22 Counters and Labels 

Peter Hibbard 
Mint User Manual 

In order to cross reference one part of a document from another part, tags need to be attached to parts of 
the document, and a mechanism provided to refer to the tag. (The term tag is not being used here in the 
sense that Scribe uses it. Consider a tag as a defining occurrence of some internal label, that causes Mint to 
record the location of the tag - the slug or box in which the definition of the tag occurs). 

Internal tags are a poor facility to help the reader of a document find his way around it, since he 
generally has a notion of different classes of information in the document, such as chapters, sections, figures, 
formulae, etc. It is helpful to have each of these use distinct labelling schemes, so that one can refer to 
chapter one, figure five, etc., independently of the numbering of the other classes of information. 

Several labelling schemes could be conceived; however, to generate label values automatically, it is 
useful to employ counters, each associated with a different class of information. Thus the chapter counter, 
used to generate chapter numbers, can be independent of the page counter, used to generate page numbers. 

Mint provides a general scheme to allow counters to be created, and associated with classes of 
information. In addition the values of the counters can be displayed in a variety of different styles. This 
section describes the facilities provided. 

4.22.1 Overview of Counters 

Assume that several counters have been defined (more details are given below on how to define a new 
counter; several are predefined in Mint). A counter has an integer value, that can be changed (usually 
si~ply incremented) during the processing of the manuscript. This may occur automatically (such as is the 
case with the counter associated with figures), or it may be changed explicitly. Every counter, at some point 
in the processing of the manuscript, has some value, and the collection of values of the counters is called the 
Counter Contour at that point in the document. 

A snapshot of the contour is taken when a label is defined, using the Labe 1 statement. It is possible to 
extract the value of any of the counters in the contour, and to introduce its value, converted in any of a 
number of conversion styles, by referring to the label in the appropriate way. This is the case not only for the 
standard counters used by Mint, but also for any of the counters declared by the user. Furthermore, the 
applied occurrences of counters are only resolved at page layout time, so that forward references to labels 
can be handled without having to re-Mint the document7• 

7 Even better, the style with which the counter value is converted need not be specified until page layout time, so that different 
presentations can use different conversions. Mint re-evaluates the contour for each presentation, on the expectation that the 
presentations may not have the same contents, and hence the same counter-changing statements. 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 99 

Since several copies of slugs that define labels may get taken during page layout, Mint has mechanisms 
to ensure that the final appearance of a document is as though several (unique) labels have been defined. 

In addition to counters from which it is possible to extract a single value, you need to have 
pseudo-counters, which yield a composite value, for example the value of the chapter counter fonowed by 
the value of the equation counter. Several such counters are built into Mint, with the hope that they provide 
all the standard needs. If they don't satisfy your requirements, you will have to hack new ones using macros. 

In review, then, Mint's facilities comprise a means of specifying counters, defining labels, and extracting 
the values of the counters from the contour associated with a label, in a variety of styles. We consider each of 
these in more detail below. 

4.22.2 Counter manipulations 

A new counter is defined by the statement NewCounte r. This takes a counter identifier, another 
counter within which the counter will count, and an initial value and increment value. For example 

@newcounter(TheoremCounter, ChapterNo, 1, +1) 

defines TheoremCounter to start at 1, and be incremented in steps of +1. TheoremCounter will be 
reset back to 1 each time ChapterNo is changed. Ifa counter is required to count independently of other 
counters, the second parameter should be empty. Counters can start at any positive or negative value, and 
the increment can be any positive or negative value. 

It is possible to set a counter to some arbitrary value at any point in the manuscript by the statement 
Se t, and to cause it to be incremented by the increment value using the statement Ne x t. For example, after 

@Set (TheoremCounter, 5) 
@Next (TheoremCounter) 

TheoremCounter will have the value 6. The value of a counter can be altered by the statement 
A 1 te r. For example, after the statements above, the statement 

@Alter (TheoremCounter. -3) 

will assign the value 3 to TheoremCounter. 

Mint rescans a presentation after it has made it, in order to find all the occurrences of Set, A 1 te rand 
Next, and only then does it remake the slugs that refer to the counters. It is for this reason that a 
presentation can omit parts of the galleys that have incremented counters using Next, but Mint will still 
cause all the applied occurrences.of counters to be consecutively numbered. The only way you can avoid this 
happening is if you explicitly set a value using Se t - in this case Mint will cause the counter to have the 
specified value. You sometimes need to increment a counter and also set it (especially when using the 
Bi ndi n9 conversion); in this case you should use the statement SetNext; for example 

reference.mss 



100 

@setnext (authorcounter) 

Reference Section Peter Hibbard 
Mint User Manual 

If you do not understand this section, then you should always use ne x t for counters that are converted 
using the numeric conversions, and set n ext for those that use the bin din 9 conversion, or that need to 
have the same value in several different presentations. 

4.22.3 Labels 

A label is defined by the statements Labe 1 and Tag; these take a snapshot of the counter contour, and 
associates it with the label. The label identifier can be any valid macrogenerator string8. For example 

@Label(Current position) 

Labels may be defined in any of the galleys. When printing the galleys, the contours associated with 
them are the contours appropriate for scanning the galleys in some canonical order (the order in which the 
galleys have been defined); when performing page layout, the contour associated with a label is that 
appropriate for a sequential scan of the slugs and boxes in the pages. Thus the contours may change, 
depending. on how page layout is performed, and how counters have been incremented in each of the 
galleys. 

4.22.4 Referring to labels 

The macrogenerator provides a basic operation for recovering the value of a counter from the contour 
associated with a label: NCo n v. This statement takes a conversion, a counter or pseudo-counter, and a label, 
and returns the value of the counter in the contour, converted according to the specified conversion. 
(Conversions are dealt with in more detail below; assume for the moment that we have conversions such as 
Roman UC, to convert to upper case roman, and Arab i c to convert to arabic numerals). 

For example 

@nconv(Arabic, PageNo, Your Label) 

will produce the value of the PageNo counter in the contour of Your Labe1. Note that this value will 
depend upon the way that page layout is done, and may differ from one presentation to another. 

It is frequently the case that you want to use the current value of a counter, rather than the value at some 
label. This frequently occurs with the page number that is placed in the heading or footing of a page. It is 
tedious to have to declare a new label every time, and then refer to it, as follows. 

·@label(Yet_Another_Label)@nconv(Arabic, PageNo, Yet_Another_Label} 

8 Not, it seems, for labels defined in the maths box parameters. Sigh! 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 101 

Sometimes it isn't even possible to do this. To get over the problem, Mint allows the label field in NConv to 
be empty. It then effectively generates a defining occurrence of a unique label automatically, and uses it as 
an argument to NCon v. Thus 

@NConv (Arabic, PageNo, 

will produce the current page number converted to arabic numerals. 

4.22.5 Conversions 

Mint provides a number of in-built basic conversions, such as RomanUC, a complete list of which is given 
in section 4.23.1. One of the conversions, Bind i ng, allows the user to set up an arbitrary binding between 
the values a counter can assume and strings. 

The identifier that occurs in the NConv statement can be either the identifier of a basic conversion, or an 
identifier that has been associated with a basic conversion by the As socConv statement. For example 

@AssocConv(TableStyle, RomanLC) 

specifies that Tab 1 eSty 1 e is currently Ro"man LC. Thus we can also write 

@NConv (TableStyle, TableNo, ) 

If you do this, you can change the binding between Tab 1 eSty 1 e and the basic conversion at any time 
(again using Ass 0 C Con v) and thereby change the appearance of the references. It is to allow this flexibility 
that the standard prefixes are defined in terms of non-basic conversions. 

Most of the conversions supplied by Mint are standard conversions from the internal counter value to an 
external representation of it, in roman numerals, arabic numerals, etc. The Bin ding conversion allows the 
Minter to establish an arbitrary mapping between internal values and external strings, which can be used to 
maintain section headings, for example. Every counter has a bind i ng conversion that is independent of the 
bindings of other counters. The statement Bind allows an arbitrary string to be bound to some value of a 
counter. For example 

@Bind (AuthorCounter, 4, Peter Hibbard) 

specifies that the Bind i ng conversion, applied to counter Autho rCoun te r, will yield the string Pete r 
Hi bbard if the value of the counter is 4. The value is retrieved using the NConv statement. For example, if 
the current value of AuthorCounte r is 4, then 

@NConv (Binding, AuthorCounter, 

will yield Peter Hibbard. 

reference.mss 



102 Reference Section Peter I libbard 
Mint User Manual 

Usually you do not want to specify some explicit value for the counter - you are content to bind to the 
current value of the counter. This is done by 

@BindCurVal (AuthorCounter, Harry Q. Bovik) 

You should also be aware of the exhortation in the previous section, about the use of SetNext. 

4.22.6 Undefined labels 

Since Mint is intended to be an interactive system, it must be possible to define labels at any time while 
the document is being created. When a label that has been used is finally defined, Mint will patch up the 
references to it automatically. Since the philosophy of Mint is that there may always be a label definition 
coming along later, it does not regard an unresolved label as an error. However, in the non-interactive 
version this means that warnings are not generated. Since this is somewhat surprising to the casual user, I 
will fix Mint soon. 

When Mint is making slugs that contain counter conversions that it is not yet able to resolve, it places a 
filler lexeme into the slug. The lexeme is normally? When the value becomes known, the slug is remade. In 
general, Mint's guess for the size of the final counter conversion is close enough that only one slug needs to 
be remade; however, if several consecutive slugs need to be remade, Mint will do this. Should it be the case 
that replacing the filler lexeme by the counter conversion causes the number of slugs in the box to change, 
Mint will throw up its hands and adn1it defeat. The problem is that if a box changes its size, the page layout 
may need to be redone, and I'm not prepared to do that in the current non-interactive version. You will 
know that Mint has problems, since it will tell you. and it will then proceed to overlay the new slug on top of 
the last one in the box. All is not lost, though; the extra style parameter F i 11 e r is a (crude) way of 
changing the size of the filler to be closer to the size of the finallexeme. Try something like 

@make(Thesis, Filler ***) 

if you run into the problem, and Mint the document again. 

4.23 Standard Conversions and Counters 

The following section describes the standard conversions, counters and pseudo-counters that are 
available in Mint. 

4.23.1 Conversions 

The following basic conversions are available. 

reference.mss 



Peter Hibbard 
Mint User Manual 

RomanLC 

RomanUC 

Arabic 

AlphaLC 

AlphaUC 

LetterLC 

LetterUC 

Binding 

4.23.2 Pseudo-counters 

Reference Section 

Converts a value into lower case Roman numerals. e.g. vii, xx i v. 

Converts a value into upper case Roman numerals, e.g. MCMX L 1. 

103 

Converts a value into arabic numerals. Both negative and positive values can be 
converted. 

Converts a number into cardinal English numbers, e.g. one hund red and 
th ree. 

Converts a number into cardinal English numbers in which the first letter of each 
word is a capital letter, e.g. F i f ty F i v e. 

Converts a number into a lower case letter, 1 = a,2 = b, etc. 

Converts a number into an upper case letter, 1 = A, 2 = B, etc. 

Retrieves the arbitrary binding associated with the counter. The binding can be 
any string. 

Pseudo-counters are refered to in the same way as other counters; however, they cannot be set, 
a 1 t ere d, or used in any statement except nco n v. The following are the pseudo-counters. 

Place 

EnvType 

citation 

Equation 

This pseudo-counter yields the location of the label as a sequence of counter 
values, for example 4.23.2. Each individual value is converted according to the 
style in the nco n v statement in with the pseudo-counter occurs, except possibly 
for the first value, which will appear as a letter if the label is in an appendix. 

This counter yields the environment type of box in which the label occurs, 
irrespective of the conversion style applied to it. I tried fairly hard to give this 
pseudo-counter a natural interpretation, given that the Mint error-correcting 
parser is generating new environments all over. I wasn't too successful; for 
example, @nconv{ arab i c, envtype, pscount) @ref( pscount) yields 
default 4.23.2. 

I must confess I've forgotten what this does. 

This yields the equation number, represent~d as a chapter number, followed by 
the equation number within the chapter. See section 4.27.3.2 for more details. 

4.23.3 Non-basic conversions 

The following conversions are defined for the use of the standard counters. Their initial bindings are 

shown. 

AnnoteStyle 
PartStyle 
PageStyle 
PlaceStyle 
ChapterStyle 

reference.mss 

Arabic 
Arabic 
Arabic 
Arabic 
AlphaUC' 



104 

SectionStyle 
SubSectionStyle 
ParagraphStyle 
TableStyle 
FigureStyle 
AppendixStyle 
Append;xSecStyle 

4.23.4 Counters 

Arabic 
Arabic 
Arabic 
Arabic 
Arabic 
LetterUC 
Arabic 

Reference Section Peter I Iibbard 
Mint User Manual 

The following counters are defined for use in the standard prefixes (section 4.4.3, 4.21), the standard 
annotations (section ***), and in the standard presentation (section 4.23.1). The counter identifier, the 
counter within which it counts (if any), the initial value and the increment are shown. 

4.23.4.1 Counters common to all document types 

PartNo 
PageNo 
FigureNo 
EquationNo 

PartNo 

4.23.4.2 Counters in document types with footnotes and annotations 

AnnoteNo 

4.23.4.3 Counters in document types that have chapters 

ChapterNo 
SectionNo ChapterNo 
SubSectionNo SectionNo 
ParagraphNo SubSectionNo 
AppendixNo 
AppendixSecNo AppendixNo 
EquationNo ChapterNo 

4.23.4.4 Counters in document types tha! have sections 

SectionNo 
SubSect;onNo SectionNo 
ParagraphNo SubSectionNo 
AppendixNo 
Append;xSecNo AppendixNo 
EquationNo SectionNo 

1 
1 
1 
1 

1 

1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
l' 
1 

+1 
+1 
+1 
+19 

+1 

+1 
+1 
+1 
+1 
+1 
+1 
+1 

+1 
+1 
+1 
+1 
+1 
+1 

9 In document types with sections or chapters, the equat ;onno counter counts within the corresponding counter., 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 105 

4.24 Miscellaneous layout statenlents 

This section describes several slug, page and document layout commands that are not conveniently 

described elsewhere. 

4.24.1 Spacing statements 

@hsp 

@vsp 

newline 

This takes a single parameter, which is a horizontal distance. If the statement 
occurs in an environment other than @pageoffset the specified amount of 
space is left in the slug in which it occurs. If the distance is negative, backspacing 
within the slug occurs, and overprinting may occur. 

This takes a single parameter, which is a vertical distance. If the statement occurs 
in an environment other than @pageoffset then a slug of the specified size is 
inserted into the box; the slug is otherwise empty. The distance may be negative, 
in which case lines may overwrite each other. This statement will produce 
unusual results if it occurs on a line that contains other characters. 

This takes a single parameter, which is the number of slugs to terminate. If the 
parameter is absent or is empty, then the current slug is terminated. @* has the 
same effect at @newl ine( 1). Newl i ne is a macro which calls Zsp, which is 
the basic statement controlling the generation on new pages. Newl i ne is defined 
in section 4.l8.1.11. 

The effects of Hsp and Vsp, if they cause the slug or box to exceed its normal size, are unpredicatable 

(or rather, I don't know what will happen). 

4.24.2 Page commands 

Commands are passed to the page layout procedures via the OddsandSods galley, which basically 

allows several commands to be delayed. These commands allow for running headings and· footings to be 

inserted on pages, for pages to be offset to allow binding margins, and for page skips to be made: 

4.24.2.1 Page headings and footings 

The PageHeading and PageFoot ing environments allow any of the standard terminal environments 

to be nested inside them. The cross references that these environments leave in the Ma i n galley are picked 

up by the Defaul to layout procedure, and the boxes within them are then placed in the heading and 

footing area of the page as it is completed. The boxes are selected sequentially, and the Page Head i ng and 

Page Foot i ng box is restarted after it is complete. In this way several headings and footings can alternate 

at any cycle length. 

Note that if a slug contains a definition of a label (either explicitly, or implicitly through using NConv 

reference.mss 



106 Reference Section Peter Hibbard 
Mint User Manual 

with an empty label parameter), Mint will create new, unique labels to ensure that cross references are 
correct. Thus, to obtain a page number at the bottom of each page, the statement 

@pagefooting(@pageno(» 

suffices. 

4.24.2.2 Page offsets 

The PageOffset environment feeds slugs to the layout procedures in a manner similar to that for 
PageHead; ng and PageFoot i ng. Each slug is scanned for Vspand Hsp statements. If either is found, 
the page is offset by that amount. Thus it is possible to shift pages either horizontally or vertically, and to set 
up cycles. For example, pages that are to be reproduced back-to-back, and stapled in the top left-hand 
corner, can by adjusted by 

@begin(PageOffset) 
@Hsp(+O.25in)@Vsp(+O.25in) 
@Hsp(-O.25in)@Vsp(+O.25in) 

@end(PageOffset) 

4.24.2.3 Page skips 

The PageCommand environment is a general way of passing information to the layout procedures. 
Currently they only recognize one item in the s~ugs within the environment, the Zsp statement. Zsp takes 
one parameter, which is either an unsigned number, or a signed number. If an unsigned number, the layout 
procedure will skip to that page number in the current part, if the page has not already been finished; if a 
signed number, the layout procedure will skip that number of pages. To skip one page, the statement 

@PageCommand (@Zsp (+1» 

is used. The Newpage macro provides a convenient way of using this statement 

4.24.3 Tabulations 

Tabulations are a part of the Mint environment parameters, and are set and cleared when the 
environment starts; thus the casual use of tabulations that Scribe encourages is not permitted. 

To clear the standard tabulations of an environment, the T abCl ea r environment parameter is used. 
Tabulations are set using Tab set followed by a horizontal distance. Alternatively tabulations can be set 
equidistant along the box by T abO; vi de, which clears all previous tabulations. The environment 
parameters are scanned from left to right, so that to set a pair of tabulations, one does 

@begin(description, tabclear, tabset 8 ems, tabset 18 ems) 

reference.mss 



Peter Hibbard 
Minl User Manual Reference Section 107 

Tabulations can be set dynamically by the use of @t; this adds another tabulation to the collection for 
the enviroment. To move to a tabulation stop, @\ is used. 

At most 10 tabulations can be set for an environment in the box parameters. Any number of additional 
tabulations can be set using @t. 

4.24.4 The Ali g n environment 

The Al ign environment treats @\ differently from the way other environments treat it. (The maths 
environment treats tabulations in a similar way the the ali g n environment; see 4.27.) On encountering a 
@\, rvIint searches backwards in the slug until it finds a space, and it then stretches the space so that the 
tabulation occurs at the correct position. Thus if the tabulation occurs in the middle of a sequence of 
characters, all the characters are shifted to the right. This allows vertical lists to be aligned around arbitrary 
points. For example, 

@newpattern(line2,2.1) 
@newbordersty1e(width2,n,n,n,n,line2,line2, 1ine2, 1ine2) 
@begin(tab1e, width 5.5in, bordersty1e width2) 
@begin(caption, border O.lin, bordersty1e widthl) 
Personal Expenses Claimed against Income 
@end(caption) 
@begin(align, tabclear,· border O.lin) 

@u(Nature of exp@~ense claimed) @u(Amount c@~laimed) 

@w(Depreciation @\- Fabric) $125@\ 
@w(Oepreciation @\- Furnishings) $95@\.50 
@w(Heating @\- Gas) $26@\.25 
@w(Heating @\- Electricity) $57@\.O 
@end(align) 
@end(table) 

produces the following effect 

Table 11 .. Personal Expenses Claimed against Income 

Nature of expense claimed 

Depreciation - Fabric 
Depreciation - Furnishings 

Heating - Gas 
Heating - Electricity 

Amount claimed 

$125 
$95.50 
$26.25 
$57.0 

The Ali g n environment also allows you to centre text around some tabulation. The marker @< causes 
Mint to search backwards in the slug to find the preceding tabulation, and it then adjusts the spacing so that 
the the text between the two is centred about the tabulation. To help in the visual appearance of the .Mss 

. file, I have provided the tabulation mark @>, which has the same effect as @\. Thus you would normally 
write 

reference.mss 



108 

@>Text to be centred@< 

Reference Section Peter Hibbard 
Mint User Manual 

In order to simplify the use of @< and @\ in the ali 9 n environment, ~1int inserts a space of width zero 
after them; this allows you to write @) x@<y@\. 

A comprehensive example of the use of the Al ign environment is provided by the PageHeading and 
Page Foot i ng environments that have been used for the heading and footing of this manual. They are 

@form (chap,x.@""@Chapter(@value(x» 
@begin(pageheading) 

@begin(align,border=O.lin.borderstyle=widthl.tabdivide 2) 
@pageno() @>@b(@value(x»@< @ovp( @+(@w(Peter Hibbard»@\)@-( @w(Mint 

User Manual»@\ 
@end(align) 
@begin(align.border=O.lin,borderstyle=widthl,tabdivide 2) 

@ovp(@+(@w(Peter Hibbard»)@-(@w(Mint User Manual» @>@b(@value(x»@< 
@pageno()@\ 

" ) 

@end(align) 
@end(pageheading) 
@begin(pagefooting) 

@begin(align,tabdivide 1) 
@s(@value(sourcefile» 

@end(align) 
@begin(align.tabdivide 1) 

@s(@value(sourcefile»@\ 
@end(align) 

@end(pagefooting) 

4.24.5 The Des c rib e 10 environment 

Sometimes it is necessary to place two or more environments side by side. The commentary facility 
provides one such example. Mint provides a general facility for laying out environments adjacent to each 
other, so that you can select the widths of each of the environments. The c omme n t a ry feature is, in fact, a 
degenerate case of the describe environment, and the default values of the several parameters that 
descr i be takes allow it to be used for the desc r i pt i on environment as well. 

The number of environments that are placed adjacent to each other, and their widths, are determined by 
the tabulations of the describe environment. For example, if you wanted to place three DP drawings next 
to each other, you could do 

@begin(describe, tabclear. tab set 2.75in. tabset 4.75in, border 0.15in, 
borderstyle widthl) 

@dp(@include(mouse.dp» 
@dp(@include(mouse.dp» 
@dp(@include(mouse.dp» 
@end(describe) 

10 Pronounce it as des'cribe. or de'scribe, as you wish. 

reference.mss 



Peter Hibbard 
Mint user Manual 

which produces the following 

But there is no need 
for the environments 

to be the same. 
For example, 

you can flush one 
environment 

to the right 
and another 

Reference Section 

to the left 
In fact, I could 
have used an 
itemi ze, 
enume rate, 
or even another 
describe 
here, to produce a 
number of effects. 

109 

. One particular use of the des c rib e is to layout tables; those in section 4.4.2 have been produced in 
this way. 

If you do not specify the tabulations explicitly, the de s c rib e environment provides one tabulation 
only, at a quarter of the distance across the box. This is the same distance as the items occur in a 
de sc r i pt ion environment. 

4.25 Cross proofing 

Mint provides a general mechanism for viewing the output intended for one device (the target device) 
on another device (the viewing device). It does this by scaling the page size for the target device so that it fits 
on the viewing device's page. It then computes where to place each character and line intended for the target 
device on the scaled image of the page on the viewing device. 

reference.mss 



110 Reference Section Peter Hibbard 
Mint User Manual 

For lines generated as box outlines, or by the Plot and DP environments, the scaling can be done with 
reasonable accuracy; however, Mint is not able to scale fonts, and for this reason must select a font on the 
viewing device to replace that on the target device. In general, the result will not be as pleasing or readable 
as it would be if the document were printed on the target device, but since each character is in the 
appropriate relative position, cross proofing can be of great value in reducing the turn-round time for 
documents, especially where the layout must be carefully controlled. 

Mint selects a font to replace the target device font based on choices made by me; however, these choices 
can be changed by the user. Currently I use Gacha9 on the Perq to view ali fonts for the Dover, and 
Gacha 12 on the Dover to view all the fonts for the Perq. 

The following statements may be used to alter this meagre state of affairs. The statement 
eros s Proof i ngOef au 1 t will alter the default font: 

@CrossProofingOefault (Perq, Dover, TimesRomanlO) 

specifies that when the Perq, as target device, is viewed on the Dover, as viewing device, then 
Time s Roman 10 will be used as the default font A specific replacement can be made also: 

@CrossProofingFont (Perq, Gacha9, Dover, Gacha8) 

specifies that if some character for the Perq, as target device, is in G a c h a 9 font on the Perq, then it is to 
appear as Gac h a8 on the Dover. (This cross proofing replacement occurs after all character substitutions). 
One can build up a reasonable collection of cross proofing font pairs. 

4.26 Borders and Border Styles 

Mint provides a facility for drawing a border round any box and any page area. This facility may be used 
to set off pieces of text, to frame diagrams, and to contain tables. 

There are two abstractions provided - the border and the border style. Every box has a border between 
the outside of the box and the inside; the margins of the slugs coincide with the inside of the box; see figure 
***. The size of the border is specified in the environment parameters, and normally is zero. To set it 
non-zero the environment parameter bo rde r is used: 

@begin(figure, border = O.5cms) 

The border style of a box specifies the appearance of the border; it is possible to construct different 
border styles. The border is drawn on the inside of the box; if the width of the border is not enough to 
contain the border style, then part of the box contents may be overwritten. The border style is specified as an 
environment parameter. Normally it is equal to NoBo rde r, but it may be set to other values: 

@define(boxed = description, border = O.05inches. borderstyle = widthl) 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section III 

Border styles are built up using lower level abstractions. 1bese are described below. 

4.26.1 Border Styles 

To create a new border style you first of all create some patterns by collecting together several lines; then 

you collect the patterns together to create the border style. Below I describe how you go about this task. 

4.26.1.1 Lines 

Line styles are built into Mint (at present). There are four styles provided; you refer to these patterns by 

their number: 

Line style 0 

Line style 1 

Line style 2 

Line style 3 

4.26.1.2 Patterns 

This is an empty line. 

This is a solid black line. 

This is a dashed line in which long black and short blank spaces alternate. 

This is a dashed line, in which a long and a short black line are alternated, and 
separated by a short blank space. 

From the primitive line styles you build up a pattern, using the statement NewP at te rn. This takes up 

to five triplets of parameters, which specify the width of the line style, the line style number, and the colour 

of the line to be used to create the pattern. Thus a pattern comprises up to five different adjacent line 

patterns. The NewPat te rn statement associates an identifier with the pattern. 

@newpattern(baroque.8.1.black.2.0.transparent.l,1.black,2,3.black.l.1,black) 

This specifies the pattern B a ro que, comprising of 8/100th inch of solid black, 2/100th inch that are blank, 

and a 2/100th inch of dashed line encased by two 1/100th inch black lines. The pattern specifies the 

appearance of a pattern, from the outside towards the inside of the box. (See section 4.10 for a description of 

colours.) 

4.26.1.3 Border Styles 

A border style is built up from four patterns, one for each edge of the box, starting at the top and 

working round in a clockwise direction; and four mitring modes (which take parameters Y and N). These 

modes specify how the corners will be mitred, starting at the top left, and working round in a clockwise 

direction. The border style is specified and associated with an identifier with the statement 

NewBorderStyle. The following example shows how a border style has been created, and the effect of 

drawing it around the box. 

reference.mss 



ll2 Reference Section Peter Hibbard 
Mint User Manual 

@newpattern(baroque, 
8,l,black,2,O,transparent,l,l,black,2,3,black,l,1,black) 

@newpattern(line3,3,1,black) 
@newborderstyle(myborder,n,n,y,n,line3,baroque,baroque,linel) 
@begin(example, width -O.4in, border O.2in, borderstyle myborder) 
@@newpattern(baroque, 

8,1,black,2,Q,transparent,l,1,black,2,3,black,1,1,black) 
@@newpattern(line3,3,1,black) 
@@newborderstyle(myborder,n,n,y,n, line3,baroque,baroque,linel) 
@end(example) 

Etc -- it's recursive. 

4.27 Mathenlatical Typesetting 

Mint provides a range of mathematical typesetting facilities which are similar to those provided by lEX 
- namely semi-automatic choice of the fonts and of the positions of the characters for a wide variety of 

common mathematical formulae, and the automatic generation of special characters. Also, in a manner 

similar to lEX, Mint allows the rules to be overridden when necessary. 

The principal aim in implementing these features in Mint has not been to explore issues about which 

language facilities are appropriate for mathematical typesetting; but instead it has been to provide a means 

of obtaining good quality mathematical formulae in Mint documents. For this reason the input language has 

been chosen for ease of implementation, rather than elegance; however, the semantics that are applied to 

the input, whereby the fonts and positions of characters are chosen, are intended to be the same as those for 

1F)(, so that "(potentially, at least) any formula that can be typeset using 1EX can be done with comparable 

effort using Mint, and it will produce identical, or better~ output. 

A word of caution. Mint's mathematical typesetting facilities are still being developed, and are far from 

complete or robust. What is available now should satisfy many requirements, but I would appreciate hearing 

from users who have particular requirements that the current facilities do not satisfy. 

In the description below I will be assuming that you have a superficial understanding of1£X. In the first 

section I will review briefly the main ideas of mathematical typesetting, and then describe the features in 

Mint in increasing detail. 

4.27.1 Basic Concepts 

This review is not intended to be a mathematical typesetting handbook, and many of the concepts are 

treated superficially. The material here is essential for an understanding of Mint's facilities, though. 

reference.ffiSS 



Peter Hibbard 
Mint User Manual Reference Section 113 

Mathematical formulae occur in documents and papers in a wide variety of styles. However, two major 
classes can be distinguished - formulae that occur in-line, such as sin2 () + cos2 () = 1, and formulae that 
occur out-of-line, such as 

(P) 2 p- 2 1 1 x y ------
2 1- x1- x2 

(4-1) 

Depending on the class of the formula, different rules need to be applied to determine the choice of 
fonts and the placing of characters. These rules are subtly different according to whether the formula is 
in-line or out-of-line, and also whether the text being formatted is within a fraction, etc. For example, notice 
in equation 4-1 that the widths of the gaps around a minus sign differ according to whether the sign occurs 
in a superscript or not, and that the distance that superscripts are raised differs according to whether the 
subscript is in a denominator of a fraction or not. Not all the differences are as subtle as tllese, though. 
Fractions that occur in-line should be typeset as -b a , whereas if they occur out-of-line they should be 

+c . 
typeset as 

a 
b+c 

In accordance with 1EX the collection of rules that need to be applied is determined by the style of the 
formula; in-line formulae are in text style (Sty leT), and out-of-line formulae are in display style (Styl eD). 

Several other styles occur in fOlIDulae - script style (Styl eS) uses a smaller font size for superscripts, and 
script script style (Styl eSS) uses a still smaller font size in superscripts of superscripts. In addition there are 
four other styles that differ in certain finely tuned details. 

In addiqon to chosing the fonts and positions of superscripts, good quality mathematical typesetting 
requires judicious selection of the amount of space between symbols; for example in 

x + y = max{x,y} + min{x,y} 

the spacings between the characters has been chosen according to the class of the symbols: whether they are 
operators, brackets, punctuation, etc. Furthermore note that the gap between the y and the close brace has 
been increased by the so-called italic correction. Without these subtle choices, the formula would have 
looked like 

x+y = max{x,y}+min{x,y} 

which is probably the best you can do with naive use of slug environmentsll. The different classes of symbol 

11 Incidentally, the two examples have been produced as follows: 

@maths[x+y=max{x.y}+min{x.y}] 

and 

@centre[@;(x)+@i(y) = max{@i(x).@i(y)}+min{@i(x).@i(y)}] 

showing that you do not always have to work hard to get good quality output 

reference.mss 



114 Reference Section Peter Hibbard 
Mint User Manual 

are ordinary (corresponding to variables), operators (such as E), binary operators (such as + and 
-), rel at ;onal operators (such as = and <), open backets, close brackets, and punctuat ion. You 
will occassionally need to chose a class for a new symbol that you want to introduce into a formula; if so, 
read Knuth's description [lEX, Chapter 18]. 

Finally, mathematical formulae frequently require large parentheses to be constnlcted. For example in 
the case of the matrix 

L= 
1 +.x (~~) 

x+y 

1 
3.14159 a+ __ 1 __ 

a+b 

4 + 5 + 6 sin x siny 

the braces need to be constructed from simplerJragments. 

An effective mathematical typesetting system will automatically decide on which rules to apply, without 
the need for the user to be aware of them. For example, the first four formulae in this section were obtained 
by typing 

@m{@sup(sin.2) @g(q) + @sup(cos.2) @g(q) = 1} 
@begin{maths. label lEX-p68} 

@paren[@atop(p.2)]@sup(x.2)@sup(y.p-2)-@fract[1,1-x]@fract[l,l-@sup(x,2)] 
@end{maths} 
@m{@fract(a,b+c)} 
@maths{@fract(a,b+c)} 

4.27.2 Simple formulae 

To place a mathematical formula in line, use the m environment. This acts like a slug environment, but it 
invokes special processing of its body. Spaces and blank lines are ignored (with the exception noted below), 
and Mint automatically places the appropriate amount of space between symbols. For example,both 
@m ( x = y) and @m (x = y) produce x = y. The only time you will need spaces will be to separate operators 
from variables in cases where there is otherwise an ambiguity. For example @m( s; nx) produces sinx, 
whereas @m( sin x) produces sin x. Note that you do not need to specify that sin should be in the regular 

.face, or that x should be in the italic face; Mint uses tables to find out this information. (These tables are 
loaded as a part of Mint's initialization. You can load other entries into the tables if you wish; see below.) 
Occassionally you will need to select a font within the m environment: tllis is done using slug environments 
in the normal way. For example @m{ s; n @g (q) ) produces sIn O. Only face codes and font sizes can be 
altered in this way - you cannot (for example) use @+ or @-. 

Always use the m environment for variables. Even though it is superficially like the i environment, it 
places the italic correction after the identifier, which makes the output much more pleasing. For example, 
@ i ( j ) produces j; and @m( j ) produces j; the first j is too close to the semicolon. 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 115 

Mint will place the whole of the formula on one line; sometimes this may not produce pleasing layout. If 
you feel that better layout can be obtained by breaking the formula across two lines, you can indicate to 
Mint where the best place to do this is by using cb reak; this has no effect if the formula does not need to 
be broken12. 

A formula is displayed out of line using the rna th s box environment13
. The rna th s box environment, 

apart from processing its contents usipg special formatting rules, is otherwise like any other box 
environment: it takes all the same box environment parameters (though not all of them are used), and it can 
be incorporated into other box environments (figures, tables, etc.) or placed into headings or footings, in just 
the same way as any other box environment. 

00 1 ( 4 ) ( b - a) 2j Tl,k=J-~3 22j - 1 aj T 
This equation states that, if we perform the 
trapezoidal rule to approximate J using a spacing 
hI = (b - a)/2k+ I and h2 = (b - a)/2k then 
the resulting approximation has a leading term in 
the error of the order of hi. The approximation 
TI,k is, in fact, precisely the parabolic rule for 2k 

. subintervals14• 

Figure 5. Example of a mathematical formula in a figure 

If you want several formulae together in the same box, separate them by at least one blank line: the 
distances between the formulae will be the same as the current line gap. 

4.27.3 More complex formulae 

4.27.3.1 Formula types 

To obtain formulae more complex than simple algebraic equations, it is necessary to tell Mint about the 
type of the formula. This is done using a statement of the form 

@FormulaType (Paraml, Param2, •.. , Paramn) 

Several fOIDlUla types are built into Mint, which understands which formatting rules to apply to the whole 
formula, and to each of the parameters. These formula types are only understood within the in-line and 
out-of-line mathematical environments. 

There are formula types to describe most of the commonly occurring situations, and others can be added 

12 Console yourself that it is easy to check your text using cross-proofing. 

13 rna this also allowed. 

14 From Ralston, A First Course in Numerical Analysis. McGraw-Hill. 

reference.mss 



116 Reference Section Peter Hibbard 
Mint User Manual 

on requestl5. For example, to obtain an in-line fraction, you write @m( @f ract ( a , b+c) ). Mathematical 
formula types can, of course, be nested arbitrarily, and the change of formatting rules for each formula type 
is made automatically. Currently the following formula types are defined. 

@sup( a, b) This superscripts the first argument; for example abo The amount the superscript 
is raised is a function of the style of the formula. 

@sub( a, q) This subscripts the first argument; for example abo The amount the subscript is 
lowered is a function of the style of the formula. 

@supb( a, b, c) This both superscripts and subscripts; for example a~. 

@ f r act ( n urn , den) This creates a fraction. The numerator and denominator are centred, and the 
divisor line is placed on the same horizontal line as a - -sign. @a top ( a, b) is 
similar to @f ract, but there is no divisor line, and the formula rests on the 
reference line (***). 

@sum(from, to, arg) In in-line formulae the limits are placed after the sigma, in out-of-line formulae 
they are placed below and above the sigma. Either or both the limits can be 
omitted; you should do this by using ski p in place of the parameter, e.g. 
@surn(skip,skip,@sup(i,2». @prod, @union and @inter produce 
products, unions and intersections. 

@int(frorn,to,arg) The limits are placed after the integral sign in both in-line and out-of-line 
formulae. Either or both of the limits can be omitted, by replacing them by 
skip. 

@p are n ( a rg ) This encloses the argument in parentheses that are just larger than the argument. 
. First several standard parenthesis characters are examined, to determine whether 
any of them are large enough; if not, Mint constructs parentheses from simpler 
fragments. For example, in 

[(((:)))) 
the outer x parentheses are constructed from fragments. In addition to 
parentheses, Mint allows brackets (@b racket ( a rg», braces (@brace ( a rg», 
diamond brackets (@d i arnond ( a rg », floor symbols (@fl 00 r ( a rg», ceiling 
symbols (@ceiling(arg», single bars (@bar(arg», and .double bars 
(@dbar( arg ». 

15 And after paying a suitable fee. 

reference.mss 



Peter Hibbard 
Mint User Manual 

@matrix{arg} 

@lbrace{arg} 

Reference Section 117 

This allows matrices to be constructed. The argument must be either several 
@mrows or @mcol s; for example @matrix( @mrow{ 1 , 2) ,@mrow( 3,4) } will 
construct a 2 X 2 matrix. There can be up to 8 elements in each of the rows and 
columns, and it is required that the rows (or columns) have the same number of 
elements. Mint will create a matrix in which each clement is centred horizontally 
and vertically, and with the spacing between the rows and columns equal to one 
quad. @mrow and @mcol should only be used within @matrix. 

This creates a left brace that is just bigger than the argument, as for example in 

{

X, 

Ixi = _ X, 

if x;::: 0; 

if X < o. 
RB race places a right brace after its argument 

@l imop{ op, subs, arg )This is used for operators which have expressions placed beneath them, as in the 
case of 

. sinx 
max log2Pn and hm -- = 1 

l$n$m x-o x 
The 0 p must be a single lexeme; otherwise there are no restrictions on it. 

4.27.3.2 Labelled equations 

Some mathematical formulae in documents require labels, whereas others may not require them. Mint 
provides a means of attaching labels to selected formulae through the use of counters; these labels have all 
the properties of other labels: they can be used to extract any counter value from the contour associated with 
them, and they can be converted using any style. To associate a label with a fOlmula, include the optional 
parameter 1 abe 1 in the environment parameters of the maths box environment. For example 

@begin(maths, label = Newton-Raphson) 
@sub(x,i+l) @sub(x,i) - @fract{f(@sub(x,i»,f'(@sub(x,i»} 
@end(maths) 

will cause Mint to append an equation number to the end of the equation, as follows: 

_ !(Xi) 
Xi+l - Xi - f(Xi) (4-2) 

The equation can then be referred to by the label. The In:acro e q n produces the equation number; 
however, the label can be referred to in any other way. For example 

equation @eqn(Newton-Raphson) on page @pageno(Newton-Raphson) is the familiar 
Newton-Raphson iteration formula 

tells you that equation 4-2 on page 117 is the familiar Newton-Raphson iteration formula. 

reference.mss 



118 Reference Section Peter Jlibbard 
Mint User Manual 

The equation number in the rna th s environment is centred vertically about the equation it labels {not 
yet}; if several formulae occur in a rna th 5 environment, only the last one is labelled. 

4.27.4 Advanced concepts 

In this section I describe several advanced features that allow fine tuning of formulae. Not all the notions 
expressed in this section are quite firmly grounded. 

4.27.4.1 IVlathematical fonts 

When performing mathematical typesetting, Mint assumes that there are 10 fonts associated with each 
galley. These are fonts mO, m1 and m2, in each of the sizes n, 5 and 55, and an extension font mex. Mint 
uses characters from these fonts to construct its output; it assumes that face code mO will contain regular 
characters to be used for operators like sin; . that face code m 1 will contain itali~ .. characters to be used for 
variables like x; that face code m2 will contain special characters for operators, etc.; and that me x will 
contain a collection of special symbols for constructing large parentheses, etc. Font size n is used for 
Sty, eT and Sty' eD; font size 5 is used for Sty, eS; and font size 55 is used for Sty' eSS. 

With the exception of me x, these fonts are handled in the same way as any others - they are associated 
with the galley in the same way as other fonts, and they can have other characters, gaps or icons substituted 
for characters in them. mO, m1 and m2 are slug environments like r, i, etc. Note that the fonts mO, m1, m2 

and mex need to be associated with each galley that is to be used for mathematical formulae16
. 

The me x font is not like other fonts and a special set of statements is provided to manipulate it. Mint 
assumes that the font will contain a variety of characters drawn from other fonts, in character positions that 
allow it to construct large parentheses, etc. (It may also contain icons.) The sizes of the· characters in it is 
determined by the font from which the character is borrowed, rather than by information contained in the 
me x font itself. 

The statements to manipulate the font are: CreateMFont, which creates a new empty mex font; 
A550cMFont, which associates the font with some galley; and SetMexChar, which alters the parameters 
associated with a mex character. Normally you will never need to use these statements. They are described 
in section 4.9.5. 

4.27.4.2 Changing fonts 

Normally Mint will make the appropriate choice of font size and face code for formulae; these choices 
can be overridden by using slug environments within the m and math5 environments. If you use a face code 
slug environment, this will override the automatic face code changes, but not the automatic font size 

16 In particular, you cannot put fonnulae into footnotes and page headings and footings unless you have associated the fonts with the 
appropriate galley. 

reference.mss 



Peter I Iibbard 
Mint user Manual Reference Section 119 

changes; similarly if you use a font size slug environment, this will override the automatic font size changes. 

but not the automatic face code changes. For example 

@maths{@sub(a,1)+@fract(l,@sub(a,2)+@fract(l,@sub(a,3)+@fract(l,b»)} 

produces 

whereas 

@maths{@n[@sub(a,1)+@fract(1,@sub(a,2)+@fract(l,@sub(a,3)+@fract(l,b»)]} 

produces 

(Both rather nasty.) 

1 
al + 1 

a2+--
a3+! 

b 

If you use both font size and face code slug environments, Mint's automatic choice is completely 

overridden. 

Spaces and other typographical layout characters become significant if you use a slug environment 

within @m or@maths. For example 

x + a constant greater than zero 

. 4.27.4.3 Defining symbols 

Mint's spacing rules are applied by classifying each symbol that occurs in a formula, and then selecting 

the gaps needed between two symbols according to their classification. There are basically no in-built rules; 

instead symbols are placed in a table with their class, and this table is examined when needed. Several 

symbols are placed in the table when Mint starts; others can be added as needed. The statement 

@MDef (Source, Destination. SymbolClass. FaceCode) 

specifies that if Source occurs in the input, then it is to be replaced by Dest i nat ion in face code 

Fa c e Cod e, and that for the purposes of determining the spacings, it is to be regarded as a S ymb ole 1 ass. 

The spacing classes are re lop, which is used for relational operators; b i nop, which is used for binary 

operators such as +; op, which is used for operators such as sin; ord, which is used for variables; open. 

which is used for left parentheses and other left delimiters; c 1 os e, which is used similarly for right 

delimiters; and pun c t, which is used for punctuation. «Monop, Num» Symbols can also be defined as 

reference.mss 



120 Reference Section Peter Hihbard 
Mint User Manual 

o v e r, un d e r and aft e r; these are described in the next section. For example, to cause Mint to recognize 
Max as an operator, to be output in rnO, do 

@MDef (max, max, op, mO) 

and to allow e q v to be used in fOlTIlulae such as @rn (x e q vb) , do 

@MDef (eqv, @ehar(#21), relop, m2) 

when you will obtain x = b. 

If Mint cannot find a symbol in its table, it will assume that it is either a variable (and output it in face 
code rnl), or a number (and output it in face code rnO), in the current font size. These are the only 
assumptions that Mint makes which concern the maths fonts. 

4.27.4.4 Inflected symbols 

Symbols, such as variables and operators, can be inflected. If a symbol is inflected it has an accent above 
it, below it, or after it. For example, X, ~, and x' are all inflected. Mint provides a general means of 
inflecting symbols, and allows several simultaneous inflections, as in 1'; up to seven accents can be 
associated with a symbol, though generally·you will need only one. 

To be able to use an accent it must first be defined. An accent belongs to a symbol class, in just the same 
way as an operator, open and close does; the classes are above, below and after (others will be 
added later), and rndef is used in the same way to define one. For example, 

@MDef (Vee, -, Under, MO) 
@MDef (OTilde, -, Over, MO) 
@MDef (OBar, -, Over, MO) 

specifies that vec will be an accent that will appear as a tilde in font rnO under the inflected symbol. Also, 
o til de and 0 bar will cause the corresponding accent over the symbol. 

To inflect a symbol, it is simply followed by the accent; if there are several accents they will be placed 
above each other, below each other or after each o~her, in the order in which they appear. For example 
@m(x obar odot) produces X. Note that you don't need to be concerned about the positioning of the 
accent; Mint has enough infOlmation about the characters to place the accents in the correct place. 

The following accents are defined in Mint. OT il de, OBar, OHa t, OVec and OOot place accents over 
the symbol; UT i 1 de, UBar, UVec and UOot place accents under the symbol; and Tick places a tick after 
the symbol. You may choose better identifiers if you wish. For example, the definition 

will allow you to write @rn( X1'+yt) to obtain 1 + ,. 

reference.mss 



Peter Hibbard 
Mint User Manual 

4.27.4.5 Grouping subformulae 

Reference Section 121 

Within the m and math s environments it is sometimes necessary to group together the symbols of a 
sub formula: the exp r environment performs this grouping action. This is frequently required when there is 
a comma in a formula: for example @m( @ sub ( K , @exp r ( i , j ) ») produces K i,); other examples occur 
when it is wished to cause some of the mathematical environment parameters described below to apply to a 
subset of the symbols in a formula. 

4.27.4.6 Controlling the style 

Sometimes Mint's automatic choice of styles is not appropriate. There are several ways that the choice 
can be overridden; for example, the use of font size slug environments has some of the effect of controlling 
the style, though as was seen in the continued fraction example, defining only the font size may not always 
produce pleasing results. Mint allows fine control over the style, however, without preventing automatic 
style changes from occurring subsequently. 

If a style different from Styl eT is needed for in-line formulae, the environments md, ms and mss (as 
well as mt, which is the same as m) can be used in place ofm. For example, @md( @fract( a, b» produces 
~. If a style different from Styl eO is needed for out-of-line formulae, the additional box environment 
parameter sty 1 e can be used with the rna th s environment: 

@begin(maths. style=stylet) 

4.27.4.7 Mathematical environment parameters 

The appearance of a formula that is within a formula type is determined in part by several mathematical 
. environment parameters, which control the style and positions of symbols. Mathematical environment 
parameters are inherited from the parent formula type, and are modified in accordance with formatting 
rules built into the formula type, in a manner very similar to that for box environment parameters. The user 
can change the values that are inherited using similar techniques. For example, you can write 

@begin(fract, style = stylet} 
1, b+c 
@end(fract} 

inside both in-line and out-of-line formulae. The syntax for mathematical environment parameters is the 
same as that for box environment parameters - they may occur in any order; they are separated by 
commas; and the argument may be preceded by an equals. 

The parameters are as follows. 

Style 

reference.mss 

This takes values from Styl eT, Styl eD, Styl eS arid Styl eSS. The specified 
style is imposed on the formula type. See below for easier ways of using this style 
parameter. 



122 

Xposn 

Yposn 

Xgap, Ygap 

Type 

Reference Section Peter Hibbard 
Mint User Manual 

This takes values from Left, Centre17 and Right. It specifies how the 
mathematical formula will be positioned inside the parent formula: Left flushes 
the formula to the left; Rig h t flushes it to the right; and Ce n t re centres it. This 
only has an effect in those environments where a sub formula has this degree o( 
freedom - in particIar, this is so with fractions. See below for easier ways of 
using this style parameter. 

This takes values from Relative. Above, Centre (Center) and Below. 
Re 1 at i ve causes the reference point of the subformula to line up with that of 
the parent formula; Above and Be low cause the subformula to be positioned 
above and below the position of a - -sign, and C en t r e centres the fonnula 
about this line. See below for easier ways of using this style parameter. 

These specify the gaps that will occur between rows and columns of matrices; 
they are specified in quads. Their default values are 1 quad; the inner matrix in 
the example in section *** had Xgap and Ygap specified to be O. 5quad. 

This takes one of the values re lop, b i nop, op, 0 rd, open, close, punct, 
(and, because I can't easily prevent it, over, under and after, although these 
won't have any effect), and coerces the sub formulae to be of the specified 
spacing type. The value of this is when you want a composite object, such as -S 
not to be regarded as an 0 rd, which it normally would be. For example, assume 
that you want.s to be a re lop; then you write 

A @bagin(col,typa=ralop) a, @vsp(-O.3am). rarrow @and(col) B 

The effect is 

whereas if you simply write 

A @bagin(col) a, @vsp(-O.3am), rarrow @and(col) B 

you get 

A-SB 

Some people are concerned about the difference. See below for easier ways of 
using this style parameter. 

Since instances of@begin(expr, style = s), @begin(expr, type = t), @begin(expr, 
xpos n = x) and @beg i n (exp r, ypo's n = y) occur frequently, Mint provides abbreviations. In each 
of these cases you can write, for example, @styles( ... ), @ord( ... ), @left( ... ), and 
@b e low ( ... ). In all cases the identifier you use is the same as the sty Ie, type, xposn or yposn you require; 
alas, since centre is both a xposn and yposn parameter, you must write @xcentr~( ... } or 
@ycentre( ... ) (or xcenter, ycenter). You can modify any of the maths environment parameters, 
using @begin( ... ), in the usual way. (However, if you use write, for example, @begin(stylet, 
style=styled), you will get styled.) 

17 also Center. 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 123 

A comprehensive example of the use of these parameters is provided by the following continued 
fraction. First, I wanted to override the sty Ie changes associated with @f rae t, but I did not want to use the 
@n slug environment, since I wanted style changes to occur in the subscripts. Second, I wanted the 
numerators to be flushed to the left, rather than being centred. The box 

@maths{@sub(a,l) + 

} 

@begin(fract. style styled) 
@left(l), @sub(a.2) + 

@begin(fract, stJle styled) 
@left(l). @sub(a,3) + 
@begin(fract, style styled) 

l,b 
@end(fract) 

@end(fract) 
@end(fract) 

(I never said it was going to be elegant) produces 

4.27.4.8 Tabular layout of formulae 

Tabulations may be used in the rna th s environment to position several independent formulae on one 
line, and to position formulae on several lines one above another. The rna t h s environment responds to 
tabulations in much the same way as the ali 9 n environment; that is, @1' lays down a tabulation, @\ drags 
the lexemes to its left up to the next tabulation, and @) and @< centre the text between them around the 
next tabulation. They can only occur outside formula types, and each of them causes the current formula to 
end and a new one to start on the same line (I really should alter that some time). For example, 

. @maths{a+b+c@\+d+e} 

produces two formulae, and 

@maths{@fract(a+b+@\c+d,x+y)} -

is illegal. 

The maths environment is defined to have justifyleft and justifyleftlast both true, 
justifyright and justifyrightlast both false, and t9 have its tabulations initially set up by 
tabdivide 2. Formulae are centred by default because the maths environment places a @) at the 
beginning of its body, and @< at the end; and the equation number is flushed right because the string which 
is injected into the rna t h s body is terminated by @\. If you are controlling the layout yourself, you probably 
do not want the @) or the @<; to prevent them occurring, use the-extra environment parameter autotab, 

which takes values on and off. For example 

reference.mss 



124 Reference Section Pctcr Hibbard 
Mint User Manual 

@begin(maths, tabdivide 9, autotab off, label Aho-Hopcroft-Ullman-p238) 
@\@\@>E = @bracket(@matrix(@mrow(1,O),imrow(O,2»)@< 
@>@r(and)@< 
@>F = @bracket(@matrix(@mrow(O,O),@mrow(O,O»)@<@\@\@\ 
@end(maths) 

produces 

E = [~~] and F= [~ ~] 
and 

@begin(maths, tabclear, tab set 1.5in, tabset 2.75in, tabset 4.0in, autotab 
off) 
@>@sub(s,1)=@sub(a,21)+@sub(a,22)@>@sub(m,1)=@sub(s,2)@sub(s,6) 
@>@sub(t,1)=@sub(m,1)+@sub(m,2) 

@>@sub(s,2)=@sub(s,1)-@sub(a,11)@>@sub(m,2)=@sub(a,11)@sub(b,11) 
@>@sub(t,2)=@sub(t,1)+@sub(m,4) 

@>@sub(s,3)=@sub(a,11)-@sub(a,21)@>@sub(m,3)=@sub(a,21)@sub(b,21) 

@>@sub(s,4)=@sub(a,12)-@sub(s,2)@>@sub(m,4)=@sub(s,3)@sub(s,7) 
@end(maths) 

produces . 

Sl = a21 + a22 

s2 = sl - au 

s3 = an - a21 

S4 = au - S2 

ml = s2 s6 

m2 = allbll 

m3 = a21b21 

m4 = s3 S7 

t1 = ml + m2 

t2 = t1 + m4 

(4-3) 

In fact there is a subtle difference between @) and @\ in the maths environment. The tabulation @) 

places an empty separator before the tabulation, whereas the tabulation @\ doesn't. The effect of this is that 

the @) tabulation always moves the input that follows up to the next tabulation, or centres it about the 

tabulation, whereas the @\ tabulation may act as a normal tabulation, and shift all the lexemes that follow it 

out to the next tabulation. It turns out that the rules are difficult to remember, so I have prepared the 

following tables which show the effect of the various tabulations. 

Input ] 

123@>456 123 456 
123@>456@< 123 456 
123@>456@\ 123 456 
123@\456 123456 
123@\456@< 123456 
123@\4S6@\ 123 456 

reference.mss 



Peter Hibbard 
Mint User Manual 

Input 

@>123@<456 
@>123@<456@< 
@> 123@<456@\ 
@>123@>456 
@>123@>456@< 
@>123@>456@\ 
@>123@\456 
@>123@\456@< 
@>123@\456@\ 

Input 

@\123@<456 
@\123@<456@< 
@\123@<456@\ 
@\123@>456 
@\123@>456@< 
@\123@>456@\ 
@\123@\456 
@\123@\456@< 
@\123@\456@\ 

4.27.4.9 Equation counters 

Reference Section 

123456 
123456 

123 
123 
123 
123 

123456 
123456 

123 
123 
123 
123 

125 

456 
456 

456 
456 

123456 
123456 

123 456 

456 
456 

456 
456 

123456 
123456 

123 456 

The counter associated with equations is EquationNo; it has no parent counter in document types 
without sections or chapters (for example text and s 1 ides) - in such documents it counts sequentially. 
In document types with sections or chapters its parent counter is Sect i on No or Ch apte rNo, respectively; 
thus in a thesis, for example, it is reset to 1 at the start of every chapter. Mint also defines a pseudo-counter, 
Equat ion, which yields a reference comprising the chapter (or section) number, followed by the equation 
number. This is used for numbering equations in the maths environment, and is also used by the eqn 
macro. 

The best way of understanding these statements is by example. The macro eqn is defined as 

@form (eqn, lab, @""@nconv (equationstyle, equation. @value (lab»") 

and if we define a macro bareeqn as 

@form (bareeqn, lab, @""@nconv (equationstyle, equationno, @value (lab»") 

then we will get for 

@Eqn (TEX-p68) is the full reference, and @BareEqn (TEX-p68) is the number 
of the equation within the chapter 

the statement that 4-1 is the full reference, and 1 "is the number of the equation within- the chapter. 

reference.mss 



126 Reference Section Peter Hibbard 
Mint User Manual 

(Beware: in appendices the equation numbering will appear like A - 5, for example; however, the counter 
E qua t i onNo is not reset to 1 at the start of each appendix. I should fix it, but it's messy; on the other hand, 
if you have read so far, you should know how to reset the counter back to 1 yourself.) 

4.27.5 Really advanced features 

The features that have been described above should allow most Minters to produce high quality 
mathematical output. However, it seems to be a characteristic of those who wish to produce really high 
quality output that they are not satisfied until they understand all the inner workings of the tools they are 
using. It is for these people, and also incidentally for those for whom the above facilities are not sufficien~ 
that this section has been written. Unless you are a fanatic, you should stop reading this now. 

Well, so you are a fanatic. Several of the features I am about to describe are repetitions, in more detail, of 
what has been said before. In addition I will describe two other mathematical environments and some more 
environment parameters. 

4.27.5.1 l\lathematicallayout vectors 

Every object in the mathematical envitonments in Mint is characterized by three vectors. These vectors, 
together with the font and characters making up the object, are sufficient to describe any formula that is laid 
out using Mint. Understanding how the values of the vectors are computed should, then, be sufficient to 
understand how Mint will treat each formula. 

Each object (single character, or sequence of characters making up a single lexeme, such as sin or +), is 
assumed to sit within a rectangular bounding box and to have an origin, which is used for determining how 
to place characters next to each other. The position of the bounding box from the origin is described by two 
of the three vectors: (X 0, YO), the vector to the bottom left corner of the bounding box, and (X X, YY), the 
vector to the top right hand corner of the bounding box. These vectors are intrinsic to the symbol; that is, 
they are independent of the context in which the symbol occurs. (Just which symbol corresponds to a 
particular sequence of characters in the manuscript file is determined by the style - part of the context - in 
which the symbol occurs.) The third vector, (X Re 1, YRe 1 ), determines the position of the origin relative to 
the origin of the enclosing parent mathematical environment. Each environment applies different rules for 
determining this last vector; these rules describe, to a large extent, the differences between the different 
mathematical environments. One important characteristic of this description is the placing freedom - the 
freedom to shift the object in the X or Y plane according to environment specifications given by the user. 
Two classes of freedom are recognized by Mint: weak freedom, which can be overruled by Mint's internal 
rules, and s t ro n 9 freedom, which Mint always responds to. An example of weak freedom, which is 
overruled, occurs in the formula 

@m{A @begin(expr, xposn=left) B @end(expr) C} 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 127 

since in this case B will simply be placed in the same position that it would be if there were no specification 
of the xposn. An example ofa strong freedom occurs in the fonnula 

@m{A @begin(expr. xposn=3.5quads) B @end(expr) C} 

since in this case the origin of B will be placed 3.5 quads from the origin of the parent environment. All 
freedoms specified in section 4.27.4.7 are weak; those described below are strong. 

Even in this really advanced section, it isn't appropriate to give all the details of the computations Mint 
perfonns. Instead I will summarize them, omitting details of how italic corrections are incorporated. 

Expr 

Fract 

Sum 

Sup 

Paren 

Matrix 

Row 

Col 

4.27.5.2 Styles 

And m, etc. The bounding box of the first object is set flush with the bounding 
box of the parent; subsequent objects are placed such that the X-part of the 
origins are coincident with the light-hand edge of the bounding box of the 
preceding object; Y -freedoms are honoured, though if not otherwise specified the 
Y -part of the origins lie on the same horizon tal line as the Y -part of the origin of 
the bounding box of the parent. The size of the bounding box of the parent is 
such that it just encloses all the symbols within it. There are, however, details of 
italic correction calculation which have been omitted from this description. 

Etc, etc. 

And P rod, I nte r, Un i on. Etc. 

And Sub, Supb. Etc. 

Etc. 

Lots of goodies here. 

This environment is superficially similar to the ex p r environment and to the 
mrow environment. It takes up to eight subfonnulae, and places them next to 
each other. Each subfonnula can be strongly shifted in the X-plane, and weakly 
and strongly shifted in the Y -plane, and are otherwise placed flush with each 
other in the X -plane, and with the Y origins on the same horizontal line. A 
subfonnula that has its X -pOSition specified will push to the right all the 
subfonnulae that are on its right. 

This environment is similar to the row environment. It places formulae above 
each other, such that the Y -origin of one box sits on the top of the bounding box 
of the subforrnula beneath it, and with the boxes centred in the X-direction. The 
environment responds to both weak and strong shifts in the X -plane, and strong 
shifts in the Y -pl~ne. 

The style of a formula determines various appeafances of the formula, for example the fonts to use, the 
positions of limits in summations, and the positions of superscripts and subscripts. The description given by 
Knuth is complete. 

refercnce.mss 



128 

4.27.5.3 Types 

Reference Section Peter Hibbard 
Mint User Manual 

The type of a symbol detennines the space that is placed between the symbol and its neighbours. A 
two-dimensional array is needed to describe the spacings; in addition, the spacings are a function of the 
current style. The description by Knuth is barely adequate. To obtain high quality output it has been 
necessary to make many modifications to the spacings, and it has been necessary to introduce two new types. 
These are: Num, the type of a number, which allows a different space to be placed between the 2 and the x 
in 2x than between the y and x in yx (note how this differs from x2); and fl ush, which causes no space to 
be placed between such a symbol and its neighbours (for example, @m( x ;) produces x;, and 
@m{@fl us h (x) ; ) produces x;). All spac i ng s are of type Fl ush. 

4.27.5.4 Spacings, etc. 

Fanatics frequently have need to control precisely the layout of a formula. Mint provides several 
facilities for this: spacings; the row and co 1 environments; and positioning parameters. These are all 
described in this section. 

You can put an arbitrary amount of space between two symbols using v s p and h s p. These effectively 
generate empty lexemes of zero width and the specified height, and of zero height and the specified width, 
respectively. In both cases the symbols belong to the type fl ush, so there is no extra space added by Mint. 
As in other contexts, the parameters to v s p and h s p can be absolute units, font-relative or page-relative. 
For example, assume you want precisely a quarter of an inch of space between A and the equals symbol in a 
fonnula.Youwrite@m{A @hsp(O.25 inches) = B) and get A = B. 

The row and co 1 environments playa similar role in the mathematical environments as do the 
desc r i be and mu 1 tip 1 e environments when manipulating boxes; that is, they allow you to create 
composite objects in which inner objects are placed side by side, or stacked on top of each other. Row places 
objects side by side; each of its parameters is placed flush with each other. For example 

@maths(@row (A,' +, B» 

produces 

A+B 

Note the difference between this and 

@maths(A + B) 

which produces 

A+B 

The co 1 environment places objects on top of each other; there is an example in section *** above. 
Note tha.t the parameter to hsp and vsp can be negative. 

reference.mss 



Peter Hibbard 
Mint User Manual Reference Section 129 

The xposn and yposn environment parameters take, in addition to the values specified in section 
4.27.4.7, both explicit values. and label values. An explicit value is given as a value of some length, for 
example 3 inc h e s or 4ems. These specify the distance the object will be placed from the origin of the 
parents bounding box. A label value is used for aligning equations within a single mathematical 
environment, or across several environments. In order to use a label, it must first be declared - either in the 
same m or maths environment as it is being used, or in some previous environment. The environment 
parameter 1 abe 1 declares the label; for example 

@beg;n(expr, label here) a + b @end(expr) 

defines the label here. Labels can be used as values for the x p 0 s nand y p 0 s n environment parameters; 
for example 

@beg;n(expr, xposn here) p + q @end(expr) 

will strongly set the xpos n of the second exp r to the same value (relative to the origin of the enclosing 
box) as the first expr. 

4.27.5.5 Mathematical font parameters 

There are several parameters that control the spacings between the components of mathematical 
formulae; these have been carefully chosen by your implementer to give the most pleasing appearance to 
formulae. You can alter some of them. using the statement MathsParams, but my advice is to leave them 
alone, unless you find you really need to do so. The statement 

@MathsParams(F1 
Pi 
B1 
El 

O.3Dems, F2 = O.07ems, F3 = O.05ems, 
O.17ems, P2 = O.14ems, P3 = O.Ogems, 
-O.Dgems, B2 = -O.07ems, B3 = -O.07ems, B4 -O.08ems, 
O.D4ems) 

will set the values of those parameters that are accessible; there are many other parameters that can only be 
set by taking apart Mint. The choice of which can be altered and which cannot has been determined in part 
by reading the 1EX book; however, I regard Knuth's choice as fairly arbitrary, and I have not hestitated to 
choose other values for parameters where I feel that more pleasing output can be achieved. The parameters 
that can be altered have the following effect. 

Fi 

F2 

F3 

Pi 

reference.mss 

The height of the divisor line in a fraction above the base line. 

The height of the bottom of the numerator of a fraction above the divisor line. 
Twice this value is used to separate the top of the denominator from the divisor 
line. 

The amount that the divisor line is shorter at the left than the larger of numerator 
and denominator. 

The extra height of a superscript in DMode above the position it would have with 
style parameter YPosn equal to Be low. 



l30 Reference Section Peler Hibbard 
Mint User Manual 

P2 

P3 

81 

82 

83 

84 

El 

The extra height of a superscript in TMode, SMode and SSMode above the 
position it would have with style parameter YPosn equal to Be low. 

The extra height of a superscript in numerators and denominators above the 
position it would have with style parameter YPosn equal to Be low. 

The extra height of a subscript in DMode above the position it would have with 
style parameter YPosn equal to Above. 

The extra height of a subscript in TMode, SMode and SSMode above the 
position it would have with style parameter YPosn equal to Above. 

The extra height of a subscript in numerators and denominators above the 
position it would have with sty Ie parameter Y P 0 s n equal to Abo v e. 

An additional height to add to subscript positions in the case that there is a 
superscript present. (Note that all the 8 parameters are negative.) 

The size of the gap to leave between a superscript or subscript and the expression 
being scripted. This gap is in addition to any italic comection that may be 
applied. 

The values shown in the MathsParams statement are the values that the parameters take by default 

4.28 DP and Plot 

«Information on how to incorporate DP and Plot output into Mint will be given later. The following 
has proved to be of use to those who already have used DP and Plot. 

Mint provides two environments, DP and Plot, that have their interpreters set so that they accept and 
interpret input appropriate for DP and Plot 

The input to the DP environment should be a file as produced by DP; it is normally included as 
follows 

@begin(DP, width = 3in) 
@Include (Mouse.Dp) 
@end(DP) 

Mint will perform the appropriate scaling, both for the target device and for the viewing device, should cross 
proofing be requested. 

The input to the Plot environment should be a file as produced by Plot, with the device specified as 
9 e n e ric. Mint will perform the appropriate scaling, as in the case of DP, but the quality of the output is 
much more dependent on having the resolution and size close to that finally needed.» 

reference.mss 



Peter Hibbard 
Mint User ~1anua1 

4.29 Errors 

Reference Section 131 1. 

There are four classes of error: Warnings, Errors, Heresies and Fatal Errors, in increasing severity. 

\Varnings are given if Mint detects suspicious input that is not otherwise incorrect and that can be fonnatted 

appropriately; Error messages are given if the input cannot be formatted, but where it is possible to continue 

formatting the rest of the document. Heresies generally indicate problems inside Mint, where there is doubt 

about its ability to continue; and Fatal Errors indicate serious problems that prevent Mint from continuing. 

After a Warning or Error Mint continues; after a Heresy or Fatal Error it halts. It may be resumed, but the 

effects are unpredictable. You should report heresies and fatal errors to me using the report mechanism 

described in section 1.3.1. 

En'or messages appear in the lower window on the Perq screen, and are written off to a file with 

extension. Error. The message gives the input file location, and the reason for the error. If Mint hasn',tyet 

been able to read any input, the part of the file name before the dot will be empty (thus you will find the 

errors listed in a file named .error. There is no complete list of error messages available, but they should 

be self-explanatory. 

4.30 Quirks and Oddities 

Mint has only just emerged from its shell into the light of day, so it still needs shaking dpwn. In general, 

I have found it reasonably bug-free for my particular style of . Ms s file, but others who have a different style 

have unearthed bugs. In addition it is not yet very robust, and the error messages it gives are sometimes 

misleading. The main problems are as follows - they will be fixed as soon as possible. 

• The mu 1 tip 1 e environment is not like Scribe's. It is a fully-fledged environment, in which nest 
other environments; thus it can be used with the des c rib e environments for the architectural 
design of box layouts. When used with item i z e and en urne rat e it works as expected; with 
des c rip t ion it reveals all too clearly that des c rip t ion is a nasty hack, which should be 
replaced by desc r i be. . 

• The macrogenerator has on occassion been found to be leaking an internal marker. The only 
effect of this is to produce on the Dover cover sheet a note that an illegal character has been 
detected, but the output should otherwise be correct. I know where it is coming from, but the 
macrogenerator is the least-loved module in the whole of Mint, and I hate delving into it. Later 
note: I think this is now fixed. 

• The clipping algorithm for box borders clips to page boundaries, not page area boundaries, so that 
a box which gets split between two pages and which has a visible border will appear very strange. 
Since you probably didn't want the box split over two pages anyway, you could regard th~ 
appearance of the page as a quaint Mint warning message. 

• Comments are handled by the macrogenerator, not the rest of the system. Since th~ 
macrogenerator's command conventions differ from 'those of the rest of the system (= is 
mandatory, and @beg i n (x) is not permitted) you have to be careful when commenting out t~xt.' 

reference.mss 



132 Reference Section Peter Hibbard, 
Mint User Manual ' 

• Because there is no bullet in the Perq fonts, item i z e environments are stripped of this necessary 
adornment. 

• There seems to be a problem with the @zsp environment; or rather it has well defined fonnal 
properties, but these are not the properties expected by the unprepared user. Always place several 
newlines around the command, and then the new page may occur where you expect it The 
definition of the NewPage macro has been fixed so that it adds the necessary newlines. 

• Because the W statement rescans its argument, surprising results sometimes occur. 

• The rna t h s environment seems to work satisfactorily if it is fed the correct input; feed it incorrect 
input and it will corrupt the rest of Mint. If you use this environment and you get an unusual 
error message, it's worth while looking at your rna ths input carefully. 

• The macrogenerator is a whole can of worms. 

reference.mss 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132

