

=t=
Burroughs

XE 500
CENTIX™
Operations
Reference
Manual
Copyright © 1986. Burroughs Corporation. Detroit. Michigan 48232

TMTrademark of Burroughs Corporation

Volume 4: System
Operations, Part 2

Relative To Release Level 6.0
Priced Item
November 1986

DlstlibutlOn Code SA
Printed In U S America
1207891

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and subject
to the terms and conditions of a duly executed Program Product License or Agree­
ment to purchase or lease equipment. The only warranties made by Burroughs, if any,
with respect to the products described in this document are set forth in such License
or Agreement. Burroughs cannot accept any financial or other responsibility that may
be the result of your use of the information or software material, including direct,
indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the Product
Improvement Card at the back of this manual, or remarks may be addressed directly
to Burroughs Corporation, Corporate Product Information East, 209 W. Lancaster
Ave., Paoli, PA 19301, U.S.A.

About This Manual

Purpose
The purpose of the XE 500 CENTIX Operations Reference
Manual is to provide a comprehensive reference for the
XE 500 CENTIX operating system.

Scope

v

This manual describes the commands, system calls, libraries,
data files, and device interfaces that make up the CENTIX
Operating System running on the XE 500 computer.

Audience
Volumes 1 and 2 of this manual are intended for all users of
the CENTIX operating system. CENTIX system programmers
are the primary audience for Volumes 3 and 4.

Prerequisites
General users of the CENTIX system should be familiar with
the particular environments in which they will be working. A
section called Getting Started, preceding the Shell Command
descriptions in Volumes 1 and 2, provides a generic CENTIX
tutorial.

Programmers should have an understanding of the CENTIX
operating system structure and should be experienced at
writing programs in the C programming language.

1207891

vi About This Manual

How to Use This Manual
Use this manual as a starting point to find the documentation
for a CENTIX feature with which you are unfamiliar. To find
the entry you need, refer to the following:

D Permuted Index. This indexes each significant word in each
entry's description. A complete Permuted Index for the
whole manual is in each volume.

D Contents Listing. Included in the Contents Listing is an
alphabetical list of entries, under the appropriate sections,
together with the entry descriptions. Each volume contains
the Contents Listing.

D Related Shell Command Entries. This section, for Volumes
1 and 2 only, groups together related shell command
entries that are in Section 1.

Organization
This manual consists of six sections:

Section 1, Shell Commands, describes programs that are
intended to be invoked directly by the user through the
CENTIX System shell.

Section 2, System Calls, describes the entries into the
CENTIX kernel, including the C language interfaces.

Section 3, Library Functions, describes the available
library functions and subroutines.

Section 4, Special File Formats, documents the structure
of particular kinds of files.

Section 5, Miscellaneous Facilities, includes descriptions
of macro packages, character set tables, and so on.

Section 6, Device Files, describes various device files
that refer to specific hardware peripherals and CENTIX
System device drivers.

About This Manual

Related Product Information
XE 500 CENTIX Administration Guide

XE 500 CENTIX centrEASE Operations Reference Manual

XE 500 CENTIX C Language Programming Reference Manual

XE 500 CENTIX Programming Guide

XE 500 CENTIX Operations Guide

1207891

vii

ix

Contents
Volume 1: Shell Operations, Part 1

Section 1: Shell Commands 1-1

intra

accept

adb

admin

allrc

apnum

ar

as

at, batch

awk

banner

basename

batch

bc

bcheckrc

bcapy

bdiff

bfs

brc

cal

calendar

cancel

cat

cb

cc

cd

cdc

1207891

introduction to shell commands

allow lP requests

absolute debugger

create and administer sees files

system initialization shell script

print Application Processor number

archive and library maintainer for portable object code archives

mcS8D 1 D assembler

execute commands at a later time

pattern scanning and processing language

make posters

deliver portions of path names

execute commands at a later time

high-precision arithmetic language

system initialization shell script

interactive block copy

big diff

big file scanner

system initialization shell script

print calendar

reminder service

cancel requests to an LP line printer

concatenate and print files

e program beautifier

C compiler

change working directory

change the delta commentary of an sees delta

x Contents

centreCAP function key shell for unskilled users

centreWINDOW window management

cflow generate e flow graph

chgrp change group

chmod change mode

chown change owner

chroot change root directory for a command

clear clear terminal screen

clri clear inode

cmp compare two files

col filter reverse line-feeds

comb combine sees deltas

comm select or reject lines common to two sorted files

conrc system initialization shell script

console control Application Processor pseudoconsole

convert convert object and archive files to common formats

cp copy files

cpio copy file archives in and out

cpp the e language preprocessor

cpset install object files in binary directories

cron clock daemon

crontab user crontab file

crup create file system partition

csplit context split

ct spawn getty to a remote terminal

etrace e program debugger

cu call another computer system

cut cut out selected fields of each line of a file

exref generate C program cross reference

date print and set the date

de desk calculator

Contents xi

dcopy copy file systems for optimal access time

dd convert and copy a file

delta make a delta (change) to an sees file

devnm device name

df report number of free disk blocks

diff /differential file comparator

diff3 3-way differential file comparison

dircmp directory comparison

dimame deliver portions of path names

disable disable LP printers

du summarize disk usage

dump dump selected parts of an object file

echo echo arguments

ed, red text editor

edit text editor

egrep search a file for a pattern

enable enable LP printers

env set environment for command execution

ex, edit text editor

expr evaluate arguments as an expression

factor factor a number

false false

ff list file names and statistics for a file system

fgrep search a file for a pattern

file determine file type

fine fast incremental backup

find find files

fold fold long lines for finite width output device

fpsar File Processor system activity reporter

free recover files from a backup tape

1207891

xii Contents

fsck file system consistency check and interactive repair

fsdb file system debugger

fwtmp manipulate connect accounting records

gat get a version of an sees file

gatopt parse command options

gatty set terminal type, modes, speed, and line discipline

grap search a file for a pattern

grpck group file checker

gtdl RS-232-e terminal download

halt terminate all processing

hd hexadecimal and ASCII file dump

haad give first few lines

halp ask for help for sees commands

hyphan find hyphenated words

icoda process control initialization

id print user and group IDs and names

init process control initialization

install install commands

ipcrm remove a message queue, semaphore set or shared memory id

ipcs report inter-process communication facilities status

join relational database operator

kaystata print XE 550 front panel keyswitch setting

kill terminate a process

kill all kill all active processes

labalit file system label checking

Id link editor for common object files

lex generate programs for simple lexical tasks

lina read one line

link exercise link and unlink system calls

lint a e program checker

Contents

In link files

login sign on

logname get login name

lorder find ordering relation for an object library

Ip send requests to an LP line printer

Ipadmin configure the lP spooling system

Ipmove move lP requests

Ipr line printer spooler

Ipsched start the lP request scheduler

Ipset set parallel line printer options

Ipshut stop the lP request scheduler

Ipstat print LP status information

Is list contents of directories

Volume 2: Shell Operations, Part 2

Section 1: Shell Commands (Cont.)

m4

machid

mail

make

mesg

mkboot

mkdir

mkfs

mklost + found

mknod

more

mount

mv

mvdir

1207891

macro processor

mc68k, pdp 11, u3b, vax, iAPX286 - processor type

send or read mail

maintain, update, and regenerate groups of programs

permit or deny messages

reformat CENTIX kernel and copy it to BTOS

make a directory

construct a file system

make a lost + found directory for Isck

build special file

text perusal

mount and dismount file system

move files

move a directory

xiii

1-283

xiv· Contents

mvtpy move PT /GT local printer device files

neheek generate names from i-numbers

newform change the format of a text file

newgrp log in to a new group

news print news items

nice run a command at low priority

nl line numbering filter

nm print name list of common object file

nohup run a command immune to hangups and quits

od octal dump

oleli command line interpreter for interactive BTOS Jel

olcopy copy to or from the BTOS file system

Died edit BTOS files

otis list BTOS files and directories

ofvi edit BTOS files

pack compress and expand files

page text perusal

passwd change login password

paste merge same lines of several files or subsequent lines of one file

path locate executable file for command

pbuf print the kernel print buffer

perc describe BTOS error return code (erc)

pg file perusal filter for soft-copy terminals

pmon display statistics for an Application Processor

pr print files

prfdc operating system profiler

prfld operating system profiler

prfpr operating system profiler

prfsnap operating system profiler

prfstat operating system profiler

Contents xv

prof display profile data

profiler operating system profiler

prs print an SCCS file

ps report process status

pstat ICC statistics for processor

ptdl RS-232-C terminal download

ptx permuted index

pwek password file checker

pwd working directory name

re system initialization shell script

red restricted version text editor

regemp regular expression compiler

reject prevent LP requests

renice alter priority of running process by changing nice

rm remove files

rmdel remove a delta from an SCCS file

rmdir remove directories

rsh shell, restricted command programming language

sa1 system activity reporter

sa2 system activity reporter

sact print current SCCS file editing activity

sade system activity reporter

sadp disk access profiler

sag system activity graph

sar system activity reporter

sarpkg system activity report package

secsdiff compare two versions of an sees file

script make typescript of terminal session

sdb symbolic debugger

sdiff side-by-side difference program

1207891

xvi

sed

setmnt

setuname

sh

shutdown

size

sleep

sort

spawn

spawnsrv

spell

split

strip

stty

su

sum

sync

tabs

tail

tar

tdl

tee

telinit

test

tic

tidc

time

timex

touch

tput

stream . editor

establish mount table

set name of system

Contents

shell, the standard/restricted command programming language

terminate all processing

print section sizes of common object files

suspend execution for an interval

sort and/or merge files

execute a process on a specific Application Processor

service spawn execution requests

hashmake, spellin, hashcheck - find spelling errors

split a file into pieces

strip symbol and line number information from a common object file

set the options for a terminal

become super-user or another user

print checksum and block count of a file

update the super block

set tabs on a terminal

deliver the last part of a file

tape file archiver

RS-232-C terminal download

pipe fitting

process control initialization

condition evaluation command

term info compiler

display decompiled version of term info entry

time a command

time a command; report process data and system activity

update access and modification times of a file

query terminfo data base

Contents xvii

tr translate characters

true provide truth values

tset set terminal, terminal interface, and terminal environment

tsort topological sort

tty get the terminal's name

umask set file-creation mode mask

umount dismount file system

uname print name of system

unget undo a previous get of an sees file

uniq report repeated lines in a file

units conversion program

update provide disk synchronization

uuclean uucp spool directory clean-up

uucp copy files between computer systems

uulog query a summary log of uucp and uux transactions

uuname list uucp names of known systems

uupick accept or reject files transmitted by uuto

uustat uucp status inquiry and job control

uusub monitor uucp network

uuto public computer system-ta-computer system file copy

UUX computer system to computer system command execution

val validate sees file

vc version control

vi screen-oriented (visual) display editor

view visual editor

volcopy copy file systems with label checking

wait await completion of process

wall write to all users

we word count

what identify sees files

1207891

xviii

who

whodo

wm

write

wtmpfix

xargs

yacc

Volume 3:

who is on the system

who is doing what

window management

write to another user

manipulate connect accounting records

construct argument list(s) and execute command

yet another compiler-compiler

System Operations, Part 1

Contents

Section 2: System Calls. 2-1

intro

access

acct

alarm

brk

chdir

chmod

chown

chroot

close

creat

dup

exAllocExch

exCall

exchanges,

exCheck

exCnxSendOnDealioc

exCpRequest

exCpResponse

exDeallocExch

introduction to system calls and error nubmers

determines the accessibility of a file

enable or disable process accounting

set a process alarm clock

change data segment spaced allocation

changes the current working directory

change mode of file

changes the owner and/or group of a file

change the root directory

close a file descriptor

create a new file or rewrite an existing one

duplicate an open file descriptor

allocate exchange

send a request and wait for the· response

obtain and abandon exchanges

examine an ICC message queue

make final requests

remove a request from an exchange

remove a response from an exchange

deallocate exchange

Contents xix

exDiscard remove a response from an exchange

exec execute files

execl execute files

execle execute a file

execlp execute a file

exeev execute a file

exeeve execute a file

execvp execute a file

exfinal make final requests

exit terminate process

exReject remove a request from an exchange

exRequest send a message to a server

exRespond send a message toa client

exSendOnDealioc make final requests

exServeRq appropriate a request code

exWait examine an ICC message queue

fentl file control

fork create a new process

fstat get fne status

getegid get effective group ID

geteuid get effective user ID

getgid get real group ID

getpgrp get process group ID

getpid get process, process group, and parent process IDs

getppid get ~arent process ID

getuid get real user, effective user, real group, and effective
group IDs

ioctl control device

kill send a signal to a process or a group of processes

link link to a file

locking exclusive access to regions of a file

1207891

xx Contents

Iseek move read/write file pointer

mknod makes a directory, or a special or ordinary file

mount mount a file system

msgctl message control operations

msgget get message queue

msgop message operations

nice change priority of a process

open open a file for reading or writing

pause suspend process until signal

pipe create an interprocess channel

plock lock process, text, or data in memory

profil execution time profile

ptrace process trace

read read from a file

sbrk change data segment space allocation

semctl semaphore control opeations

semget get set of semaphores

semop semaphore operations

setgid get group 10

setp!)rp set process group 10

setuid set user 10

shmctl shared memory control operations

shmget get shared memory segment

shmop shared memory operations

signal specify what to do upon receipt ota signal

stat get file status

stime set time

swrite synchronous write on a file

sync update super-block

syslocal special system requests

Contents xxi

time get time

times get process and child process times

ulimit get and set user limits

umask set and get the file creation mask

umount unmount a file system

uname get name of current CENTIX system

unlink remove directory entry

ustat get· file system statistics

utime set file access and modification times

wait wait for a child process to stop or terminate

write write on a file

Section 3: Library Functions . 3-1

intro introduction to libraries and subroutines

a641 convert between long integer and base-64 ASCII string

abort generate an lOT fault

abs return integer absolute value

assert verify program assertion

atol convert ASCII string to floating-point number

Bessel Bessel functions

bsearch binary search a sorted table

clock report CPU time used

cony translate characters

crypt generate DES encryption

ctermid generate file name for terminal

ctime convert date and time to string

ctype classify characters

curses CRT screen handling and optimization package

cuserid get character login name of the user

dial establish and release an out-going terminal line connection

1207891

xxii Contents

drand48 generate uniformly distributed pseudo-random numbers

ecvt convert floating-point number to string

end last locations in programs

ert error function and complementary error function

exp exponential, logarithm, power, square root functions

felosa close or flush a stream

ferror stream status inquiries

floor floor, ceiling, remainder, absolute value functions

fopen open a stream

fread binary input/output

fraxp manipulate parts of floating-point numbers

fsaek reposition a file pointer in a stream

ftw walk a file tree

gamma log gamma function

getc get character or word from a stream

gatewd get the path-name of the current working directory

getanv return value for environment name

gatgrant get group file entry

gadogin get login name

getopt get option letter from argument vector

gatpass read a password

gatpw get name from UIO

gatpwant get password file entry

gats get a string from a stream

gatut access utmp file entry

hsaarch manage hash search tables

hypot Euclidean distance function

13tol convert between 3-byte integers and long integers

Idahraad read the archive header of a member of an archive file

Idclosa close a common object file

Contents

Idfhread

Idgetname

Idlread

Idlseek

Idohseek

Idopen

Idrseek

Idshread

Idsseek

Idtbindex

Idtbread

Idtbseek

loeld

logname

lsearch

malloe (fast
version)

malloc

matherr

memory

mktemp

monitor

nlist

oeurse

of ere ate

ofDir

of Open File

of Read

of Rename

of Status

perror

1207891

xxiii

read the file header of a common object file

retrieve symbol name for common object file symbol table entry

manipulate line number entries of a common object file function

seek to line number entries of a section of a common object file

seek to the optional file header of a common object file

open a common object file for reading

seek to relocation entries of a section of a common object· file

read an indexed/named section header of a common object file

seek to an indexed/named section of a common object file

compute the index of a symbol table entry of a common object file

read an indexed symbol table entry of a common object file

seek to the symbol tsble of a common object file

record locking on files

return login name of user

linear search and update

fast main memory allocator

main memory allocator

error-handling function

memory operations

make a unique file name

prepare execution profile

get entries from the name list

optimized screen functions

allocate BTOS files

BTOS directory functions

access BTOS files

input! output on a BTOS file

rename a BTOS file

BTOS file status

system error messages

xxiv Contents

popen initiate pipe to/from a process

printf print formatted output

pute put character or word on a stream

putenv change or add value to environment

putpwent write password file entry

puts put a string on a stream

qsort quicker sort

quAdd add a new entry to a BlOS queue

quRead examine BlOS queue

quRemove take back a BlOS queue request

rand simple random number generator

regemp compile and execute regular expression

seanf convert formatted input

setbuf assign buffering to a stream

setjmp non-local goto

sinh hyperbolic functions

sleep suspend execution for interval

spawn execute a process on a specific Application Processor

spud access long integer d'ata in a machine-dependent fashion

spwait wait for a spawned process to terminate

ssignal software signals

stdio standard buffered input/output package

stdipc standard interprocess communication package (ftok)

string string operations

strtod convert string to double-precision number

strtol convert string to integer

swab swap bytes

swapshort translate byte orders to Motorola/Intel

system issue a shell command

termcap terminal independent operations

Contents xxv

tmpfile create a temporary file

tmpnam create a name for a temporary file

trig trigonometric functions

tsearch manage binary search trees

ttyname find name of a terminal

ttyslot find the slot in the utmp file of the current user

ungetc push character back into input stream

vprintf print formatted output of a varargs argument list

wmgetid get window 10

wmlayout get terminal's window layout

wmop window management operations

wmsetid associate a file descriptor with a window

Volume 4: System Operations, Part 2

Section 4: Special File Formats 4-1

intro introduction to special file formats

a,out common assembler and link editor output

ar common archive file format

checklist list of file systems processed by fsck

core format· of core image file

cpio format of epio archive

dir format of directories

filehdr file header for common object file

fs format of file system

fspec format specification in text file

gettydefs speed and terminal settings used by getty

group group. file

inittab script for the in it file

in ode format of an i-node

issue issue identification file

1201891

xxvi Contents

Idfen common object file access routines

linenum line number entries in a common object file

master master device information table

mnttab mounted file system table

passwd password file

profile setting up an environment at login time

reloe relocation information for a common object file

seesfile format of sees file

senhdr section header for a coman object file

syms common object file symbol table format

term format of compiled term file

termcap terminal capability data base

terminfo terminal capability data base

utmp utmp and wtmp entry formats

Section 5: Miscellaneous Facilities 5-1

intro introduction to miscellany

environ user environment

fentl file control options

math math functions and constants

modemeap smart modem capability data base

pilt performance improvement in large files and direct I/O

prof profile within a function

regexp regular expression compile and match routines

stat data returned by stat system call

term conventional names for terminals

types primitive system data types

values machine-dependent values

varargs handle variable argument list

Contents xxvii

Section 6: Device Files 6-1

intro introduction to device files

console console terminal

dsk winchester, cartridge, and floppy disks

fp winchester, cartridge, and floppy disks

Ip parallel printer interface

mem core memory

mt interface for magnetic tape

null the null file

prf operating system profiler

termio general terminal interface

tp controlling terminal's local RS-232 channels

tty controlling terminal interface

window window management primitives

1207891

Tables
1-1
1-2
1-3
1-4
1-5
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
4-2
4-3
5-1
5-2
6-1
6-2
6-3

1207891

ex Command Names and Abbreviations
Determination of SCCS Identification String
Identification Keywords and Their Values
SCCS Files Data Keywords
Octal Codes and Statuses
Library Functions
Curses Routines
Terminfo Level Routines
Termcap Compatibility Routines
Video Attributes
Curses Function Keys
Default Error Handling Procedures
BTOS File Status Codes
Standard Terminal Capabilities
Terminal Name Suffixes
Capnames and I.codes
Errors and Meanings
Terminal Names
Naming Conventions for Built-In Disk Drives
Naming Conventions for SMD Disk Drives
Naming Conventions for Tape Drives

xxix

1-171
1-207
1-209
1-373
1-522

3-4
3-39
3-43
3-44
3-44
3-45

3-136
3-160
4-65
4-76
4-77
5-17
5-24

6-3
6-4
6-6

Section 4

Special File Formats

intro

Name
intro - introduction to special file formats

Description
This section outlines the formats of various files. The C
struct declarations for the file formats are given where
applicable. Usually, these structures can be found in the
directories /usr/include or /usr/include/sys.

1207891

4-1

4-2 Special File Formats

a.out

Name
a.out - common assembler and link editor output

Description
The file name a.out is the output file from the assembler as
and the link editor Id. Both programs will make a.out
executable if there were no errors in assembling or linking
and no unresolved external references.

A common object file consists of a file header, an operating
system header, a table of section headers, relocation
information, (optional) line numbers, a symbol table, and a
string table. The order is given below.

File header.
Operating System header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts (line numbers, symbol table and string
table) may be missing if the program was linked with the -s
option of Idor if they were removed by strip. Also note that if
there were no unresolved external references after linking,
the relocation information will be absent. The string table
exists only if the symbol table contains symbols with names
longer than eight characters ..

Special File Formats 4-3

a.out
The sizes of each section (contained in the header, discussed
below) are in bytes and are even.

When an a.out file is loaqed into memory for execution,
three logical segments are set up: the text segment, the data
segment (initialized data followed by uninitialized, the latter
actually being initialized to all O's), and a stack. The text
segment begins at location OxOOOO in the core image. The
header is never loaded, except for magic 041 3 files created
with the -F option of Id. If the magic number (the first field in
the operating system header) is 407 (octal), it indicates that
the text segment is not to be write-protected or shared, so
the data segment will be contiguous with the text segment.
If the magic number is 410 (octal), the data segment and the
text segment are not writable by the program; if other
processes are executing the same a.out file, the processes
will share a single text segment. Magic number 413 (octal) is
the same as 410 (octal), except that 413 (octal) permits
demand paging. Both the -z and -F options of the loader Id
create a.out files with magic numbers 0413. If the -z option
is used, both the text and data sections of the file are on
1024-byte boundaries. If the -F option is used, the text and
data sections of the file are contiguous. Loading a single
4096-byte page into memory requires 4 transfers of 1024
bytes each for -z, and typically one transfer of 4096 bytes
for -F. Thus, a.out files created with -F can load faster and
require less disk space.

The stack begins at the end of memory and grows towards
lower addresses. The stack is automatically extended as
required. The data segment is extended only as requested by
the brk system call.

The value of a word in the text or data portions that is not a
reference to an undefined external symbol is exactly the
value that will appear in memory when the file is executed. If
a word in the text involves a reference to an undefined
external symbol, the storage class of the symbol-table entry
for that word will be marked as an Hexternal symbol, Hand
the section number will be set to O. When the file is
processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added to
the word in the file.

1207891

4-4 Special File Formats

a.out

File Header
The format of the filehdr header is

struct '1Iehdr
{

unsigned short '_magic; ,·mag I c number·,
unsigned short '_nscns; ,·number 0' sections·,
long '_t Imdat; ,·t Ime and date stamp·,
long ,_sympt r; ,., lie ptr to symtab·,
long ,_nsyms; ,. , symtab entries·,
unllgned short '_opthdr; ,·slzeof(opt hdr)·,
unllgned short ,_, lags; ,·flags·,

} ;

Operating System Header
The format of the operating system header is

typedef struct aouthdr
{

short
Ihort
long
long
long
long
long
long

AOUTHDR:

magic:
Yltamp;
tllze;
dll ze;
bllze;
entry;
tell t_lta r t;
da ta_1 ta r t ;

,:maglc number·!
, verllon Itamp ,
,·tellt Ilze In byte" padded·,
,·Inltlallzed data (~data) *,
,*unlnlnltlal Ized data C.bSS)*'
,:entr y polnt*,
, base 0' test used for 'lie·,
'*base of data used for '11e*,

Section Header
The format of the section header is

struct scnhdr
{

char l_name(SYMNMLEN);,*sectlon name·,
long s-paddr; ,·physlcal addresl·'
long
long
long

s_vaddr; ,:vlrtual addr:ss*,
I_size; ,.sectlon size, •
1_lcnpt r; ,file pt r to raw data ,

long ,_relptr; ,·flle ptr to relocation·,
long s _I n n 0 p t r ; ,. , I I e p t r toll n e numb e r I· ,
unsigned short
unsigned shor t

s_nreloc; ':" reloc entrle,*' •
,_nlnno; , , line number entries,

long ,_'lags; '·'Iags·,
} ;

Special File Formats

a.out

Relocation
Object files have one relocation entry for each relocatable
reference in the text or data. If relocation information is
present, it will be in the following format:

struct reloc
{

};

long
long
short

r_vaddr;
r _symndx,
r _type;

':(Vlrtual) address 01 reI.·,
,.Index Into symb~1 table·,
, relocation type'

4-5

The start of the relocation information is s-relptr from the
Section Header. If there is no relocation information, s-relptr
is o.

Symbol Table
The format of the symbol table header is

#deflne SYMNMlEN 8
#d.flne FllNMlEN 14

#dellne SYMESZ 18

st ruct tym.nt
{

union ,* •. I ways to get I symbol name-,
{

chlr _n_name[SYMNMlEN); ,·name of symbol·,
It rue I
{

long
long

Ln_n;
char

L";

_"_z.roes;
_"_of I set;

·_"_"ptr[2);

':--Ol" In string tabl.·!
, loc.tlon In strl"g tlble ,

,·allows overllylng·,

unsigned long n_value;
short "_scnum;
un. I gned shor I n_t ype;

':Vllue of ,ymbol·'
! s.ctlon number, •

, tIP' and derlve~ Iype ,

} ;

chlr
chlr

#dellne "_"Ime
#deflne "_zeroe.
#deflne "_ollset

"'_npt r

1207891

n_scllss; I.slorlge ellss I •
n_numaux; I number 0' lUX entries I

"."_"eme
". -n_n._"_zeroes

"."_n._"_ol's.t
"."_"ptr[1)

4-6 Special File Formats

a.out
Some symbols require more information than a single entry;
they are followed by auxiliary entries that are the same size
as a symbol entry. The format is as follows:

union auxenl {
SIr ue I {

} ;

long x_Iagndx;
union {

sIr ue I {
unsigned shorl x_lnno;
unsigned shorl x_size;

} x_I nsz;
long x_'slze;

}x_mlse;
union {

It rue I
long
long

Ix_'en;
struet {

x_lnnoplr;
x_endndx;

unsigned short x_dlmen(OIMNUM);
} X_1r y;

}x_'enary;
unsigned short x_tvndx;

} x_sym;

struel {
char

}x_'I Ie;
x_'name(FILNMLEN);

s true I

lx_sen;

s t rue I

long x_senlen;
unsigned short x_nreloe;
unsigned short x_nllnno;

long x_tv"";
unsigned shorl
unsigned .horl

x_tvlen;
x_tvran(2) ;

Indexes of symbol table entries begin at zero. The start of
the symbol table is Lsymptr (from the file header) bytes from
the beginning of the file. If the symbol table is stripped,
Lsymptr is O. The string table (if one exists) begins at
Lsymptr + (f.J7syms • SYMESZ) bytes from the beginning of
the file.

Special File Formats

a.out

See Also
as, ee, Id in Section 1; brk in Section 2; filehdr, Idfen,
linenum, relDe, senhdr, syms in Section 4.

1207891

4-7

Special File Formats

ar

Name
ar - common archive file format

Description
The archive command ar is used to combine several files into
one. Archives are used mainly as libraries to be searched by
the link editor Id.

Each archive begins with an archive file header, made up of
the following components:

.deflne ARMAO

.deflne SARMAO

s t , u c tar_" d, {

.. It <a,>

ells, a,_msglc(SARMAO];
,*arcllive IIeader·,
,·maglc number·,
,*arcllive name·, ells, a,_name(tS];

ella, a,_date(4];
ella, a'_lyml(4];

} ;

,:date of la.t a,. mOd.:,
, no. of a'_lym Int,I •• ,

Each archive that contains common object files (see a.out,
above) includes an archive symbol table. This symbol table is

. used by the link editor Id to determine which archive
members must be loaded during the link edit process. The
archive file header described above is followed by a number
of symbol table entries. The number of symbol table entries
is indicated in the ar-syms variable. Each symbol table entry
has the following format:

• t , u eta, _s ym {
ella, sym_naml(S];
c II If S ym_p t , (4) ;

} ;

,·archlve .ymbol table Intry·,
,·symbol naml, ,ecog. by Id .,
,·arcllivi position of symbOl·,

The archive symbol table is automatically created and/or
updated by the ar command.

Special File Formats 4-9

ar
Following the archive header and symbol table are the
archive file members. Each file member is preceded by a file
member header which is of the following format:

.truct ar I_hd r (
char arl_nama(18);
char arl_data(4);
char arl_uld(4);
char erf_Qld(4);
char arf_moda(4);
char arf_.lza(4);

};

,. arc h I ya f I I a mamb a r h a a dar • ,
,·fl la mambar nam.·, ':'1 la mambar dlt.·, •
, fila membar user 10 , ':'1 la mambar grou~ 10·,
'.fl I. mambar mOda.,
, Ilia mambar slza ,

All information in the archive header, symbol table and file
member headers is stored in a machine independent fashion.
All character data is automatically portable. The numeric
information contained in the headers is also stored in a
machine independent fashion. All numeric data is stored as
four bytes and is accessed by the special archive I/O
functions described under sputl in Section 3. Common format
archives can be moved from system to system as long as
the portable archive command ar is used.

Each archive file member begins on a word boundary; a null
byte is inserted between files if necessary. Nevertheless the
size given reflects the actual size of the file, padding excluded.

Notice there is no provision for empty areas in an archive file.

See Also
ar and Id in Section 1; sputl in Section 3.

1207891

4-10 Special File Formats

checklist

Name
checklist - list of file systems processed by fsck

Description
Checklist resides in directory letc and contains a list of at
most 15 special file names. Each special file name is
contained on a separate line and corresponds to a file
system. Each file system will then be automatically
processed by the fsck shell command ..

See Also
fsck in Section 1.

Special File Formats 4-11

core

Name
core - format of core image file

Description
CENTIX writes out a core image of a terminated process
when any of various errors occur. See signal in Section 2 for
the list of reasons; the most common are memory violations,
illegal instructions, bus errors, and user-generated quit
signals. The core image is called core and is written in the
process's working directory (provided it can be; normal
access controls apply). A process with an effective user 10
different from the real user 10 will not produce a core image.

The first section of the core image is a copy of the system's
per-user data for the process, including the registers as they
were at the time of the fault. The size of this section
depends on the parameter USIZE, which is defined in
/usr/include/sys/param.h. The remainder represents the
actual contents of the user's core area when the core image
was written. If the text segment is read-only and shared, or
separated from data space, it is not dumped.

The format of the information in the first section is described
by the user structure of the system, defined in
/usr/include/sys/user.h. The important things not detailed
therein are the locations of the registers, which are outlined
in /usr /include/sys/reg. h.

See Also
crash in Section 1; setuid and signal in Section 2.

1207891

4-12 Special File Formats

.
CplO

Name
cpio - format of cpio archive

Description
The header structure, when the -c option of cpio is not used, is:
.. ruel {

} Hdr;

ushor I h_1 no,
h_modl,
h_uld,
h_gld;

shorl h_nllnk,
h_rdlv,
h_mt Iml(2),
h_naml.lzl,
h_'IIIIIZI(2);

char h_naml[h·naml.lzi rounded 10 word);

When the -c option is used, the header information is
described by:

•• ean'(Chdr,·~8~80~80~80~80~8o~80~80~1110~80~1110~S" ,
&Hdr.h_mlgle, &Hdr.h_dlv, &Hdr.h_lno, &Hdr.h_mOde,
&Hdr.h_uld, &Hdr.h_gld. &Hdr.h_nllnk, &Hdr.h_rdlv,
&Longtlml, &Hdr.h_naml.lzl, &Long"II,Hdr.h_naml);

Longtime and Longfile are equivalent to Hdr.hJntime and
Hdr.hJilesize, respectively. The contents of each file are
recorded in an element of the array of varying length
structures, archive, together with other items describing the
file. Every instance of h.Jnagic contains the constant 070707
(octal). The items h_dev through h.Jntime have meanings
explained in Section 2, under stat. The length of the
null-terminated path name h-name, including the null byte, is
given by h-namesize.

The last record of the archive always contains the name
TRAILER!!!. Special files, directories, and the trailer are
recorded with hJilesize equal to zero.

Special File Formats 4-13

.
CplO
In PILF files, h.Jdev contains the cluster size exponent. This
should not cause any portability problems, as h.Jdev is
otherwise ignored, except for device special files.

See Also
cpio and find in Section 1 ; stat in Section2; pilf in Section 5.

1207891

4-14 Special File Formats

dir

Name
dir - format of directories

Format
#Include <sys/dlr.h>

Description
A directory behaves exactly like an ordinary file, save that no
user may write into a directory. The fact that a file is a
directory is indicated by a bit in the flag word of its i-node
entry (see fs later in this section). The structure of a directory
entry as given in the include file is:

#Ifndef DIRSIZ
#deflne DIRSIZ14
#endlf
struct d I r ec t
{

I no_t d_1 no;
char d_name[DIRSIZ] ;

} ;

By convention, the first two entries in each directory are .
and .. The first is an entry for the directory itself. The second
is for the parent directory. The meaning of .. is modified for
the root directory of the master file system; there is no
parent, so .. and. have the same meaning.

See Also
fs in Section 4.

Special File Formats 4-15

filehdr

Name
filehdr - file header for common object files

Format
#Include <fi lehdr.h>

Description
Every common object file begins with a 20-byte header. The
following C struct declaration is used:

II ruc I Illehdr
(

unllgned Ihort '_magiC; ,·maglc number·,
unllgned short '_n.cn.; ,. no. 0' lecllonl·'
long '_lImdat; ,. time • date Itamp·,
long '_.ympt r; ,·11 Ie pt r to Iymtab·,
long '_nlyms; ,. fI .ymlab enlrles·,
unllgned short '_opthdr; ,·slzeol(opt hdr)·,
un.lgned Ihort '_'lag.; ,·lIags·,

} ;

F -symptr is the byte offset into the file at which the symbol
table can be found. Its value can be used as the offset in the
fseek library function to position an I/O stream to the symbol
table. The operating system optional header is always 36
bytes. The valid magic numbers are given below. The first
three apply to an Application Processor.

flde'lne MC8S~AGIC 0520 ,·wrltable te.t .egmenta·,
flde'lne MC8SKROMAGIC 0521 ,·readonly Ihareable text .egs.·,
fldellne MC8SKPGMAGIC 0522 ,·demand paged text .egment.·,

fldellne N3BMAGIC 0550 ,*3B20S·,
fldellne NTVMAGIC 0551 '*3B20S·'

fldellne VAXWRMAGIC 0570 ,·VAX writable texl legment.·,
fldellne VAXROMAGIC 0575 ,:VAX readonIY:hareable·,

, texllegmenll ,

1207891

4-16 Special File Formats

filehdr
The value in f_timdat is obtained from the time system call.
Flag bits currently defined are:

#deflne F_RELFLG 00001
#deflne F_EXEC 00002
#deflne F_LNNO 00004
#deflne F_LSYMS 00010
#deflne F_MINMAL 00020
#deflne F_UPDATE 00040
#deflne F_SWABD 00100
#deflne F_ARI6WR 00200
#deflne F_AR32WR 00400
#def Ine F_AR32W 01000
#deflne F_PATCH 02000

See Also

<relocation entrle'.strlp·ped*'
,*fl Ie Is executable, *
, line numbers stripped,
,*Iocal symbols strlpped*'
,:mlnlmal ob/ect flle*, *
, update file, ogen produced,
• " "* , file Is pre·swabbed ,

'*16 bit DEC host*'
'*32 bit DEC host*,

<~on.DE~ host*'
, patch list In opt hdr*,

time in Section 2; fseek in Section 3; a.out.

Special File Formats

Is

Name
fs - format of file system

Format
#Include <sys/fllsys.h>
#Include <sys/types.h>
#Include <sys/param.h>

Description

~17

Every file system has a common format for certain vital
information. Every such file system is divided into a certain
number of 512-byte long sectors. Sector 0 is unused and is
available to contain a bootstrap program or other
information.

Sector 1 is the super-block. The format of a super-block is:
,.

• Structur. 0' the .up.r·block .,
• truct III.y •
{

u.hort
d.ddr_t
.hor t
d.ddr:....t
.hor t
Ino _t
ch.r
ch.r
ch.r
ch.r
t Im._t
.hor t
d.ddr_t
Ino t -
ch.r
ch.r
long

1207891

._I.lz.; ,·.Iz. In block. 0' 1-II.t·,

._,.Iz.; ,·.Iz. In block. of 'II •• y •• ,

._n'r.,; ,·no. of .ddr ••••• In ._" ••• ,
'_'re.[NICFREE); ,·'r .. block lilt·,
,_nlnod,; ,·numb.r 0' l-nod.1 In ._Inod.·,
._lnod'INICINOD); ,·'r •• I-nod. lilt·,
1_'loCk; ,·IOCk during 'r •• II.t m.nlp.·,
._lloCk; ,·Iock during 1-II.t m.nlpul.·,
._'mod; ,·.up.r block modl'l.d ,I.g·,
I_ronly; ,·mount.d r •• donly 'I.g·,
._tlm.; ,·I"lt lup.r blOCk UPd.t,·,
._dln'o(4); ,"d.vIC. Inform.tlOn·,
I_tire.; '*tOtli 'rea biOCkl·'
I_tlnod'; ,*tot.I fr •• I-nod •• ·,
1_'n.m'le); ,.,"' ,y.tem n.m.·,
'_'p.ckle); ,., II •• y.tem p.Ck n.m.·,
._'"1(11); ,·ADJUST; m.k. lize 0' lillY'·' ,·512·,

4-18

fs

} ;

short
short
long
long

long

#deflne F.MAGIC

#deflne Fa1b
#de'lne FI2b
#deflne FIPILF

s_dunmy;
I_C I uSler;
I_b I IS I ze;
._maglc;

Special File Formats

,*reserved lor lulur. us.*,
,·cluSler size (PILF only)·,
'·llze of free block bit map·,
,:maglc no. t~ Indicate new·,
, • I I Ie .. y 1 t em , •
, type of new f lie system,

Ox fd187e20

Ox10000

,:512 byte blOCk·!
, 1024 byte block,
,·PILF IIle sy.tem·,

CENTIX recognizes three kinds of file systems, specified by
s_type:

o Oriented to 512-byte I/O. Identified by an s_type equal to
Fs 1 b. This type is also assumed if sJnagic is not equal to
FsMAGIC. (This type was originally the only type
supported by UNIX Systems; CENTIX does not currently
support this type.)

o Oriented to 1024-byte I/O. Identified by an s_type equal to
Fs2b. This is essentially the standard file system for
CENTIX and UNIX System V.

o PILF (Performance Improvement In Large Files) file system.
Identified by an s_type equal to FsPILF. A PILF file system
can be used like a standard file system, but is substantially
more efficient when used with direct cluster I/O (see pill in
Section 5).

In the following description, the size of a logical block is
determined by the file system type. For the original 512-byte
oriented file system, a block is 512 bytes. For the 1024-byte
oriented file system and the PILF file system, a block is 1024
bytes or two sectors. The operating system takes care of all
conversions from logical block numbers to physical sector
numbers.

Special File Formats 4-19

fs
S~size is the address of the first data block after the i-list;
the i-list starts just after the super-block, namely in block 2;
thus the i-list is s~size -2 blocks long. SJsize is the first
block not potentially available for allocation to a file. These
numbers are used by the system to check for bad block
numbers; if an "impossible H block number is allocated from
the free list or is freed, a diagnostic is written on the on-line
console. Moreover, the free array is cleared, so as to prevent
further allocation from a presumable corrupted free list.

The free list is provided on 512-byte and 1024-byte file
systems, but not on PILF file systems. It is maintained as
follows. The sJree array contains, in sJree[1], ... ,
sJree[s.J1free-1], up to 49 numbers of free blocks. SJree[O]
is the block number of the head of a chain of blocks
constituting the free list. The first long in each free-chain
block is the number (up to 50) of free-block numbers listed in
the next 50 longs of this chain member. The first of these
50 blocks is the link to the next member of the chain. To
allocate a block: decrement s.J1free, and the new block is
sJree[s.J1free]. If the new block number is 0, there are no
blocks left, so give an error. If s.J1free became 0, read in the
block named by the new block number, replace an s.J1free by
its first word, and copy the block numbers in the next 50
longs into the sJree array. To free a block, check if s.J1free is
50; if so, copy s.J1free and the sJree array into it, write it
out, and set s.J1free to O. In any event set sJree[s-nfree] to
the freed block's number and increment sJlfree.

S_tfree is the total free blocks available in the file system.

S.J1inode is the number of free i-numbers in the s~node array.
To allocate an i-node: if s.J1inode is greater than 0,
decrement it and return s-.inode[s.J1inode]. If it was 0, read
the i-list and place the numbers of all free i-nodes (up to 100)
into the s-.inode array, then try again. To free an i-node,
provided s.J1inode is less than 100, place its number into
s-.inode[s.J1inode] and increment s.J1inode. If sJlinode is
already 100, do not bother to enter the freed i-node into any
table. This list of i-nodes is only to speed up the allocation
process; the information as to 'whether the i-node is really
free or not is maintained in the i-node itself.

1207891

4-20 Special File Formats

fs
S_tinode is the total free i-nodes available in the file system.

SJlock and s_ilock are flags maintained in the core copy of
the file system while it is mounted and their values on disk
are immaterial. The value of sJmod on disk is likewise
immaterial; it is used as a flag to indicate that the
super-block has changed and should be copied to the disk
during the next periodic update of file system information.

SJonly is a read-only to indicate write-protection.

S_time is the last time the super-block of the file system was
changed, and is the number of seconds that have elapsed
since 00:00 Jan. 1, 1970 (GMT). During a reboot, the s_time
of the super-block for the root file system is used to set the
system's idea of the time.

SJname is the name of the file system and sJpack is the
name of the pack.

On a PILF file system, s_cluster is the default cluster size
exponent, used by a process that creates a file on the file
system without specifying a default cluster size (see syslocal
in Section).

I-numbers begin at 1, and the storage for i-nodes begins in
block 2. I-nodes are 64 bytes long. I-node 1 is reserved for
future use. I-node 2 is reserved for the root directory of the
file system, but no other i-number has a built-in meaning.
Each Lnode represents one file. For the format of an i-node
and its flags, see inode (later in this section).

On a PILF file system, the bit map serves the function of the
free list by showing which blocks are allocated to files. It is
at the very end of the file system. S.JJitsize is the number of
blocks in the bit map. Each bit in the bit map is 0 if the
corresponding 1 K data block is allocated to a file.

Special File Formats

fs

Files
/usr /include/ sys/filsys. h
/usr /include/sys/stat. h

See Also
fsck, fsdb, mkfs in Section 1; inode; pi If in Section 5.

1207891

4-21

4-22 Special File Formats

fspec

Name
fspec - format specification in text files

Description
It is sometimes convenient to maintain text files on CENTIX
with non-standard tabs, (that is, tabs that are not set at
every eighth column). Such files must generally be converted
to a standard format, frequently by replacing all tabs with the
appropriate number of spaces, before they can be processed
by CENTIX commands. A format specification occurring in
the first line of a text file specifies how tabs are to be
expanded in the remainder of the file.

A format specification consists of a sequence of parameters
separated by blanks and surrounded by the brackets <: and
:>. Each parameter consists of a keyletter, possibly followed
immediately by a value. The following parameters are
recognized:

ttabs

ssize

mmargin

The t parameter specifies the tab settings for the file. The
value of tabs must be one of the following 1) A list of
column numbers separated by commas, indicating tabs set
at the specified columns; 2) A - followed immediately by an
integer n, indicating tabs at intervals of n columns; or 3) A
- followed by the name of a "canned" tab specification.
Standard tabs are specified by t-8, or equivalently, t1, 9,
17, 25, and so on. The canned tabs that are recognized are
defined by the tabs shell command (see tabs, Section 1).

The s parameter specifies a maximum line size. The value of
size must be an integer. Size checking is performed after
tabs have been expanded, but before the margin is prepended.

The m parameter specifies a number of spaces to be
prep ended to each line. The value of margin must be an integer.

Special File Formats

fspec

d

8

4-23

The d parameter takes no value. Its presence indicates that
the line containing the format specification is to be deleted
from the converted file.

The 8 parameter takes no value. Its presence indicates that
the current format is to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not
supplied, are t-8 and mO. If the s parameter is not specified,
no size checking is performed. If the first line of a file does
not contain a format specification, the above defaults are
assumed for the entire file. The following is an example of a
line containing a format specification:

<:t5,10,15 872:>

If a format specification can be disguised as a comment, it is
not necessary to code the d parameter.

Several CENTIX commands correctly interpret the format
specification for a file.

See Also
ed, newform, tabs in Section 1.

1207891

4-24 Special File Formats

gettydefs

Name
gettydefs - speed and terminal settings used by getty

Description
The /etc/gettydefs file contains information used by the getty
shell command to set up the speed and terminal settings for
a line. It supplies information on what the login prompt
should look like. It also supplies the speed to try next if the
user indicates the current speed is not correct by typing a
<break> character.

Each entry in /etc/gettydefs has the following format:
label# Initial-flags # final-flags # login-prompt #next label

Each entry is followed by a blank line_ The various fields can
contain quoted characters of the form Ib, In, Ie, and so on,
as well as I nnn, where nnn is the octal value of the desired
character. The various fields are:

label

initial-flags

This is the string against which getty tries to match its
second argument. It is often the speed, such as 1200, at
which the terminal is supposed to run, but it need not be
(see below).

These flags are the initial iocd system call settings to
which the terminal is to be set if a terminal type is not
specified to getty. The flags that getty understands are the
same as the ones listed in /usr/include/svs/termio.h (see
termio in Section 6). Normally only the speed flag is
required in the initial-flags. getty automatically sets the
terminal to raw input mode and takes care of most of the
other flags. The initial-flag settings remain in effect until
getty executes login.

Special File Formats

gettydefs

final-flags

login-prompt

next-label

4-25

These flags take the same values as the initial-flags and are
set just prior to getty executes login. The speed flag is
again required. The composite flag SANE takes care of most
of the other flags that need to be set so that the processor
and terminal are communicating in a rational fashion. The
other two commonly specified final-flags are TAB3, so that
tabs are sent to the terminal as spaces, and HUPCl, so that
the line is hung up on the final close.

This entire field is printed as the login-prompt. Unlike the
above fields where white space is ignored (a space, tab or
new-line), they are included in the login-prompt field.

If this entry does not specify the desired speed, indicated by
the user typing a <break> character, then getty will
search for the entry with next-label as its label field and set
up the terminal for those settings. Usually, a series of
speeds are linked together in this fashion, into a closed set;
for instance, 2400 linked to 1200, which in turn is linked
to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first
entry of /etc/gettydefs is used, thus making the first entry of
/etc/gettydefs the default entry. It is also used if getty cannot
find the specified label. If /etc/gettydefs itself is missing,
there is one entry built into the command that will bring up a
terminal at 9600 baud.

It is strongly recommended that after making or modifying
/etc/gettydefs, it be run through getty with the check option
to be sure there are no errors.

Files
/etc/gettydefs

See Also
getty, login in Sec. 1; ioetl in Sec. 2; termio in Sec. 6.

1207891

4-26 Special File Formats

group

Name
group - group file

Description
Group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each
group is separated from the next by a new-line. If the
password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted
passwords, it can and does have general read permission
and can be used, for example, to map numerical group IDs to
names.

Files
/etc/group

See Also
newgrp and passwd in Section 1; crypt in Section 3; passwd
in Section 4.

Special File Formats 4-27

inittab

Name
inittab - script for the init process

Description
The inittab file supplies the script to init's role as a general
process dispatcher. A separate inittab is required for each
processor; the last two characters of the name are the
processor number. The process that constitutes the majority
of init's process dispatching activities is the line process
/etc/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position
dependent and have the following format:

Id:rstate:actlon:process

Each entry is delimited by a new-line, however, a backslash
(\) preceding a new-line indicates a continuation of the entry.
Up to 512 characters per entry are permitted. Comments
may be inserted in the process field using the sh command
convention for comments. Comments for lines that spawn
gettys are displayed by the who command. It is expected that
they will contain some information about the line, such as the
location. There are no limits (other than maximum entry size)
imposed on the number of entries within the inittab file. The
entry fields are:

id This is one to four characters used to uniquely identify an entry.

1207891

4-28

inittab

rstate

action

Special File Formats

This defines the run-level in which this entry is to be
processed. Run-levels effectively correspond to a
configuration of processes in the system. That is, each
process spawned by init is assigned a run-level or
run-levels in which it is allowed to exist. The run-levels are
represented by a number ranging from 0 through 6. As an
example, if the system is in run-levell, only those entries
having a 1 in the ,state field will be processed. When init
is requested to change run-levels, all processes that do not
have an entry in the ,state field for the target run-level will
be sent the warning signal (SIGTERM) and allowed a
20-second grace period before being forcibly terminated by a
kill signal (SIGKlll). The ,state field can define mUltiple
run-levels for a process by selecting more than one run-level
in any combination from 0-6. If no run-level is specified,
then the process is assumed to be valid at all run-levels
0-6. There are three other values, I, b, and c, which can
appear in the ,state field, even though they are not true
run-levels. Entries that have these characters in the ,staie
field are processed only when the telinit (see init in
Section 1) process requests them to be run (regardless of
the current run-level of the system). They differ from
run-levels in that init can never enter run-level a, b or c.
Also, a request for the execution of any of these processes
does not change the current run-level. Furthermore, a
process started by an I, b, or c command is not killed
when init changes levels. They are only killed if their line in
/etc/inittab is marked off in the action field, their line is
deleted entirely from /etc/inittab, or init goes into the
single-user state.

Key words in this field tell init how to treat the process
specified in the process field. The actions recognized by init
are as follows:

respawn If the process does not exist,
start the process; do not wait for
its termination (continue scanning
the inittab file). When it dies,
restart the process. If the process
currently exists, do nothing and
continue scanning the inittab file.

Special File Formats

inittab

wait

once

boot

bootwait

powerfail

1207891

4-29

Upon init's entering the run-level
that matches the entry's rstate,
start the process and wait for its
termination. All subsequent reads
of the inittab file while init is in
the same run-level will cause init
to ignore this entry.

Upon init's entering a run-level
that matches the entry's rstate,
start the process; do not wait for
its termination. When it dies, do
not restart the process. If upon
entering a new run-level, where
the process is still running from a
previous run-level change, the
program will not be restarted.

The entry is to be processed only
at init' s boot-time read of the
inittab file. init is to start the
process, not wait for its
termination, and when it dies, not
restart the process. In order for
this instruction to be meaningful,
the (state should be the default
or it must match init's run-level
at boot time. This action is useful
for an initialization function
following a hardware reboot of
the system.

The entry is to be processed only
at init's boot -time read of the
inittab file. init is to start the
process, wait for its termination
and, when it dies, not restart the
process.

Execute the process associated
with this entry only when init
receives a power fail signal
(SIGPWR). See signal, Section 2.

4-30

inittab

powerwait

off

ondemand

initdefault

Special File Formats

Execute the process associated
with this entry only when init
receives a power fail signal
(SIGPWR) and wait until it
terminates before continuing any
processing of inittab.

If the process associated with
this entry is currently running,
send the warning signal
(SIGTERM) and wait 20 seconds
before forcibly terminating the
process via the kill signal
(SIGKlll). If the process is
nonexistent, ignore the entry.

This instruction is really a
synonym for the respawn action.
It is functionally identical to
respawn but is given a different
keyword in order to divorce its
association with run-levels. This
is used only with the a, b, or c
values described in the (state field.

An entry with this action is only
scanned when init is initially
invoked. init uses this entry, if it
exists, to determine which
run-level to enter initially. It does
this by taking the highest.
run-level specified in the (state
field and using that as its initial
state. If the (state field is empty,
this is interpreted as 0123456,
causing init to enter run-level 6.
Also, the initdefault entry can
use s to specify that init start in
the single-user state. Additionally,
if init doesn't find an initdefault
entry in /etc/inittab, then it will
request an initial run-level from
the user at reboot time.

Special File Formats

inittab

process

Files

4-31

sysinit Entries of this type are executed
before init tries to access the
console. It is expected that this
entry will be only used to
initialize devices on which init
might try to ask the run-level
question. These entries are
executed and waited for before
continuing.

This is a sh command to be executed. The entire process
field is prefixed with exec and passed to a forked sh as
sh -c • exec command. For this reason. any legal sh syntax
can appear in the process field. Comments can be inserted
with the ; # comment syntax.

/etc/inittab?? (last two characters specify the Application
Processor)

See Also
getty, init, sh. who in Section 1; exec, open. signal in Section 2.

1207891

4-32

inode

Name
inode - format of an i-node

Format
#Include <sys/types.h>
#Include <sys/lno.h>

Description

Special File Formats

An i-node for a plain file or directory in a file system has the
following structure defined by <sys/ino.h>.

,*Inode structure •• It .pp •• r. on • dl.k block.*,
Slruet dlnod.
{

};
,*
*Ihe
*

* ,

ushort dl_mode;
S h 0 rId I _n I Ink;
ushort dl_uld;
ushort dl_gld;
011_1 d 1_.1 z.;
ehar dl_addr(39);
Chi r d I_c I;

,:mode .nd type 0' '1Ie*,*
, numb. r 0' I Ink. to' I Ie'
*' * , own. r • u •• rid ,
*' * ~ own.r • group Id ,

,:numb.r 0' byt •• In '!Ie*,
, dl.k block addr ••• e. ,
,*PILF clu.t.r .Iz •• xponent*'
, * tim. I •• t • e c e s •• d * , Ilm._t d 1_. 11m.;

Ilme_t dl_mt Ime;
t Im._t dl_ct Ime;

",*tlm. I •• t mOdlfl.d*'

40

39
of

addre •• byt •• :
us.d; 13 .ddr •••••
3 bytes •• ch.

,* t I me 0' I •• t fI I. • II t c h. n g e * ,

For the meaning of the defined types o''-t and time_t, see
types in Section 5.

In a PILF file, addresses are organized as in a standard 1 K file
system, with identical use of blocks of additional addresses.
Data addresses, however, do not point to individual 1 K
blocks; instead, each points to the first block of a contiguous
cluster of blocks, each of which is 2n 1 K blocks long, where
n is the value in the dLcl field.

Special File Formats

inode

Files
/usr /include/sys/ino. h

See Also
stat in Section 2; fs; pilf, types in Section 5.

1207891

4-33

4-34 Special File Formats

.
Issue

Name
issue - issue identification file

Description
The file /etc/issue contains the issue or project identification
to be printed as a login prompt. This is an ASCII file that is
read by program getty and then written to any terminal
spawned or respawned from the lines file.

Files
fete/issue

See Also
login in Section 1.

Special File Formats 4-35

Idfen

Name
Idfcn - common object file access routines

Format
#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

Description
The common object file access routines are a collection of
functions for reading an object file that is in common object
file form. Although the calling program must know the
detailed structure of the parts of the object file that it
processes, the routines effectively insulate the calling
program from knowledge of the overall structure of the
object file.

The interface between the calling program and the object file
access routines is based on the defined type LDFILE, defined
as struct Idfile, declared in the header file Idfcn.h. The
primary purpose of this structure is to provide uniform
access to both simple object files and to object files that are
members of an archive file.

The library function Idopen allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling
program. The fields of the LDFILE structure may be accessed
individually through macros defined in Idfcn.h. They contain
the following information:

LDFILE *Idptr;
TYPE (Idptr)

OPTR(ldptr)

1207891

The file magic number, used to distinguish between archive
members and simple object files.

The file pointer returned by fopen and used by the standard
input/output functions.

4-36

IdfeD

OFFSET(ldptr)

HEADER(ldptr)

Special File Formats

The file address of the beginning of the object file; the
offset is non-zero if the object file is a member of an
archive file.

The file header structure of the object file.

The object file access functions themselves may be divided
into four categories:

Functions that open or close an object file.

o Idopen and Idaopen open a common object file.

o Idelose and Idaelose close a common object file.

2 Functions that read header or symbol table information.

o Idahread reads the archive header of a member of an
archive file.

o Idfhread reads the file header of a common object file.

o Idshread and Idnshread read a section header of a common
object file.

o Idtbread reads a symbol table entry of a common object file.

3 Functions that position an object file at (seek to) the start
of the section, relocation, or line number information for a
particular section.

c Idohseek seek to the optional file header of a common
object file.

c Idsseek and Idnsseek seek to a section of a common
object file.

c Idrseek and Idnrseek seek to the relocation information for
a section of a common object file.

c Idlseek and Idnlseek seek to the line number information
for a section of a common object file.

c Idtbseek seek to the symbol table of a common object file.

4 The function Idtbindex, which returns the index of a
particular common object file symbol table entry

Special File Formats

Idlen
These functions are described in detail in their respective
manual pages in Section 3.

4-37

All the functions except Idopen, Idaopen and Idtbindex return
either SUCCESS or FAILURE, both constants defined in
Idfcn.h. Idopen and Idaopen both return pointers to an LDFILE
structure.

Macros
Additional access to an object file is provided through a set
of macros defined in Idfcn.h. These macros parallel the
standard input/output file reading and manipulating functions,
translating a reference of the LDFILE structure into a
reference to its file descriptor field.

The following macros are provided:

LDFILEOldptr;

GETC (I d P t r)
FGETC(I dpt r)
GETW(ldptr)
UNGETC(c, Idptr)
FGETS (s, n, I d P t r)
FREAD«charO) ptr, slzeof (Optr), nltems, Idptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(I dpt r)
FILENO(Idptr)
SETBUF(I dpt r, buf)

See the manual entries for the corresponding standard
input/output library functions for details on the use of these
macros.

The program must be loaded with the object file access
routine library libld.a.

1207891

4-38 Special File Formats

Idfen

Caution
The macro FSEEK defined in the header file Idfcn.h translates
into a call to the standard input/output function fseek. FSEEK
should not be used to seek from the end of an archive file
since the end of an archive file may not be the same as the
end of one of its object file members!

See Also
fseek, Idahread, Idclose, Idfhread, Idlread, Idlseek, Idohseek,
Idopen, Idrseek, Idlseek, Idshread, Idtbindex, Idtbread, Idtbseek in
Section 3.

Special File Formats 4-39

linenum

Name
linenum - line number entries in a common object file

Format
#Include <llnenum.h>

Description
Compilers based on pee generate an entry in the object file
for each C source line on which a breakpoint is possible
(when invoked with the -g option; see ee in Section 1). Users
can then reference line numbers when using the appropriate
software test system. The structure of these line number
entries appears below.

struct Iineno
{

} ;

1207891

union
{

long I_symndx;
long I_paddr;

'_addr;
unsigned short ,_,nno;

4-40 Special File Formats

linenum
Numbering starts with one for each function. The initial line
number entry for a function has Llnno equal to zero, and the
symbol table index of the function's entry is in L.symndx.
Otherwise, Llnno is non-zero, and I~addr is the physical
address of the code for the referenced line. Thus the overall
structure is the following:

Laddr

function symtab index
physical address
physical address

function symtab index
physical address
physical address

See Also
cc in Section 1; a.out.

l..Jnno

o
line
line

o
line
line

Special File Formats 4-41

master
Name

master - master device information table

Description
This file is used by the config program to obtain device
information that enables it to generate the configuration files.
Do not modify it unless you fully understand its construction.
The file consists of 3 parts, each separated by a line with a
dollar sign ($) in column 1. Part 1 contains device
information; part 2 contains names of devices that have
aliases; part 3 contains tunable parameter information. Any
line with an asterisk (*) in column 1 is treated as a comment.

Part 1 contains lines consisting of 6 or 7 fields, with the
fields delimited by tabs and/or blanks:

Field 1:
Field 2:

Field 3:

Field 4:
Field 5:
Field 6:
Field 7:

1207891

device name (S chars. maximum).
device mask {octal)-each "on" bit indicates that the handler
exists:

000100 initialization handler
000040 power-failure handler
000020 open handler
00001 0 close handler
000004 read handler
000002 write handler
000001 ioctl handler

device type indicator (octal):
000200 allow only one of these devices
000100 suppress count field in conf.c file
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
000001 fixed vector

handler prefix (4 chars. maximum).
major device number for block-type device
major device number for character-type device
(optional) maximum serial devices on system

4-42 Special File Formats

master
Part 2 contains lines with 2 fields each:

Field 1:
Field 2:

alias name of device (8 chars. maximum).
reference name of device (8 chars. maximum; specified in
part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1:

Field 2:

Field 3:

See Also

parameter name (as it appears in description file; 20 chars.
maximum)
parameter name (as it appears in the conf.e file; 20 chars.
maximum)
default parameter value (20 chars. maximum; parameter
specification is required if this field is omitted)

config in Section 1.

Special File Formats

mnttab

Name
mnttab - mounted file system table

Format
#include <mnttab.h>

Description
Mnttab resides in directory /etc and contains a table of
devices, mounted by the mount shell command, in the
following structure as defined by <mnttab.h>:

struct

} ;

mnttab
char
char
short
t ime_t

mt_dev[32];
mt_f i I sys[32];
mt_ro_flg;
mt_t ime;

4-43

Each entry is 70 bytes in length; the first 32 bytes are the
null-padded name of the place where the special file is
mounted; the next 32 bytes represent the null-padded root
name of the mounted special file; the remaining 6 bytes
contain the mounted special file's read/write permissions and
the date on which it was mounted.

The maximum number of entries in mnttab is based on the
system parameter NMOUNT located in /usr/src/uts/cf/conf.c,
which defines the number of allowable mounted special files.

See Also
mount and setmnt in Section 1.

1207891

4-44 Special File Formats

passwd

Name
passwd - password file

Description
Passwd contains for each user the following information:

login name

encrypted password

numerical user ID

numerical group ID

a field with no standard use

initial working directory

program to use as Shell

This is an ASCII file. Each field within each user's entry is
separated from the next by a colon. The fifth field exists for
historical reasons; it is often used to hold the user's name
and address. Each user is separated from the next by a
new-line. If the password field is null, no password is
demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory fete. Because of the encrypted
passwords, it can and does have general read permission
and can be used, for example, to map numerical user IDs to
names.

The encrypted password consists of 13 characters chosen
from a 54-character alphabet (., f, 0-9, A-Z, a-z), except
when the password is null, in which case the encrypted
password is also null. Password aging is effected for a
particular user if his or her encrypted password in the
password file is followed by a comma and a non-null string
of characters from the above alphabet. (Such a string must
be introduced in the first instance by the super-user.)

Special File Formats 4-45

passwd
The first character of the age, M say, denotes the maximum
number of weeks for which a password is valid. A user who
attempts to login after his or her password has expired will
be forced to supply a new one. The next character, m say,
denotes the minimum period in weeks that must expire
before the password may be changed. The remaining
characters define the week (counted from the beginning of
1970) when the password was last changed. (A null string is
equivalent to zero.) M and m have numerical values in the
range 0-63 that correspond to the 64-character alphabet
shown above (that is, f = 1 week; z = 63 weeks). If m = M
= 0 (derived from the string. or ..) the user will be forced to
change his password the next time he or she logs in (and the
u age" will disappear from the entry in the password file). If m
> M (signified, for example, by the string .f) only the
super-user will be able to change the password.

Files
fetcfpasswd

See Also
login, passwd in Section 1; a641, crypt, getpwent in Section 3;
group.

1207891

4-46 Special File Formats

profile

Name
profile _. setting up an environment at login time

Description
If your login directory contains a file named .profile, that file
will be executed (via the shell's exec .profile) before your
session begins; .profiles are handy for setting exported
environment variables and terminal modes. If the file
/etc/profile exists, it will be executed for every user before
the .profile. The following example is typical (except for the
comments):

Make .ome environment variable. global
export MAIL PATH TERM
Set Ille creat Ion ma.k
uma.k 22
Tell me when new mall come, In
MAIL· luar/mail/myname
Add my Ibln directory to the ,hell .earch .equence
PATH· SPATH:$HOME/bln
Set terminal type
export TERM
wh I Ie true
do

echo 'terminal: IC'
read TERM
II tSl t

then
break

II

done

Files
$HOME/ . profile
/etc/profile

See Also
tset, env, login, mail, sh, stty, su in Section 1; environ, term in
Section 5.

Special File Formats 4-47

reloc

Name
reloc - relocation information for a common object file

Format
#Include <reloc.h>

Description
Object files have one relocation entry for each relocatable
reference in the text or data. If relocation information is
present, it will be in the following format:

.truet
{

} ;

,*

reloe

long
long
.hort

r_vaddr; ,*(vlrtual) addr ••• 01 re!erence*,
r_.ymndx; <Index Into symb~1 Uble ,
r_type; , relocation type,

: All generic.
reloc. already perlormed to symbol In the same .ectlon

*,

,*
*38 gener Ic
• 24·blt direct relerence

24·blt "relative" relerenee
1a·blt optimized "Indirect" TV relerence
24·blt "Indirect" TV relerence
32·blt "Indirect" TV relerence

*,
.dellne R_DIRU 04
.dellne R_REl24 05
,dellne R_OPT18 014
.dellne R_IND24 015
.dellne R_I ND32 018

£* DEC Proce •• ors VAX 1,,780 and VAX ",750
:AISO Motorola Proce.sor. 88000, 88010, and 66020

*,
.dell ne R·RElBVTE 017
.dell ne R_RElWOAD 020
'de'lne R_AELLONG 021
'deflne R_PCABVTE 022
.de' I ne R_PCRWORD 023
'dellne R_PCRlONG 024

1207891

4-48 Special File Formats

reloc
As the link editor reads each input section and performs
relocation, the relocation entries are read. They direct how
references found within the input section are treated.

IUBS

R..DlR24

R..REL24

R..OPT16

R..IND24

R..IND32

R..RELBYTE

R..RELWORD

R-RELLONG

R-PCRBYTE

R-PCRWORD

R-PCRLONG

The reference is absolute, and no relocation is necessary .
The entry will be ignored.

A direct, 24-bit reference to a symbol's virtual address.

A "PC-relative," 24-bit reference to a symbol's virtual
address. Relative references occur in instructions such as
jumps and calls. The actual address used is obtained by
adding a constant to the value of the program counter at
the time the instruction is executed.

An optimized, indirect, l6-bit reference through a transfer
vector. The instruction contains the offset into the transfer
vector table to the transfer vector where the actual address
of the referenced word is stored.

An indirect, 24-bit reference through a transfer vector. The
instruction contains the virtual address of the transfer
vector, where the actual address of the referenced word is
stored.

An indirect, 32-bit reference through a transfer vector. The
instruction contains the virtual address of the transfer
vector, where the actual address of the referenced word is
stored.

A direct a-bit reference to a symbol's virtual address.

A direct l6-bit reference to a symbol's virtual address.

A direct 32-bit reference to a symbol's virtual address.

A ''PC-relative,'' a-bit reference to a symbol's virtual address.

A "PC-relative," l6-bit reference to a symbol's virtual address.

A ''PC-relative,'' 32-bit reference to a symbol's virtual address.

On the VAX processors, relocation of a symbol index of -1
indicates that the relative difference between the current
segment's start address and the program's load address is
added to the relocatable address.

Other relocation types will be defined as they are needed.

Special File Formats 4-49

reloc
Relocation entries are generated automatically by the
assembler and automatically utilized by the link editor. A link
editor option exists for removing the relocation entries from
an object file.

See Also
Id, strip in Section 1; a.out, syms.

1207891

4-50 Special File Formats

sccsfile

Name
sccsfile - format of sees file

Description
An sees file is an ASCII file. It consists of six logical parts:
the checksum, the delta table (contains information about
each delta), user names (contains login names and/or
numerical group IDs of users who may add deltas), flags
(contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and
the body (contains the actual text lines intermixed with
control lines). .

Throughout an sees file there are lines that begin with the
ASCII SOH (start of heading) character (octal 001). This .
character is hereafter referred to as the control character and
will be represented graphically as @. Any line described
below which is not depicted as beginning with the control
character is prevented from beginning with the control
character.

Entries of the form 00000 represent a five-digit string (a
number between 00000 and 99999).

Each logical part of an sees file is described in detail below.

Checksum
The checksum is the first line of an sees file. The form of
the line is:

@hDDDDD

The value of the checksum is the sum of all characters,
except those of the first line. The @h provides a magic
number of (octal) 064001.

Special File Formats 4-51

sccsfile

Delta table
The delta table consists of a variable number of entries of
the form:

@s DDDDD/DDDDD/DDDDD
@d <type><SCCS ID> yr/mo/da hr:ml:se <pgmr> DDDDD DDDDD

@I DDDDD ...
@x DDDDD .. ,
@g DDDDD ...
@In <MR number>

@c <comments> ...

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line
(@d)) contains the type of the delta (currently, normal: 0, and
removed: R), the sees 10 of the delta, the date and time of
creation of the delta, the login name corresponding to the
real user 10 at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

The @i, @x, @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number
associated with the delta; the @c lines contain comments
associated with the delta.

The @e line ends the delta table entry.

1207891

4-52 Special File Formats

sccsfile

User names

The list of login names and/or numerical group IDs of users
who may add deltas to the file, separated by new-lines. The
lines containing these login names and/or numerical group
IDs are surrounded by the bracketing lines @u and @U. An
empty list allows anyone to make a delta. Any line starting
with a I prohibits the succeeding group or user from making
deltas.

Flags
Keywords used internally (see admin in Section 1 for more
information on their use). Each flag line takes the form:

@f<flag> <optional text>

The following flags are defined:

@ft <type of program>
@fv <program name>
@fi <keyword string>
@fb
@fm
@ff
@fc
@fd
@fn
@fj
@fl
@fQ
@fz

<module name>
<floor>
<ceiling>
<default-sid>

< lock-releases>
<user defined>
<reserved for use in interfaces>

Special File Formats 4-53

sccsfile
The t flag defines the replacement for the %Y% identification
keyword. The v flag controls prompting for MR numbers in
addition to comments; if the optional text is present it
defines an MR number validity checking program. The i flag
controls the warning/error aspect of the "No id keywords"
message. When the i flag is not present, this message is
only a warning; when the i flag is present, this message will
cause a "fatal" error (the file will not be gotten, or the delta
will not be made). When the b flag is present, the -b keyletter
may be used on the get command to cause a branch in the
delta tree. The m flag defines the first choice for the
replacement text of the %M% identification keyword. The f
flag defines the "floor" release (the release below which no
deltas may be added). The c flag defines the "ceiling" release
(the release above which no deltas may be added). The d flag
defines the default SID to be used when none is specified on
a get command. The n flag causes delta to insert a "null" delta
(a delta that applies no changes) in those releases (for
example, when delta 5.1 is made after delta 2.7, releases 3
and 4 are skipped). The absence of the n flag causes skipped
releases to be completely empty. The j flag causes get to
allow concurrent edits of the same base SID. The I flag
defines a list of releases that are locked against editing (get
with the -e keyletter). The q flag defines the replacement for
the %Q% identification keyword. The s flag is used in certain
specialized interface programs.

Comments

Arbitrary text is surrounded by the bracketing lines @t and
@T. The comments section typically will contain a description
of the file's purpose.

1207891

4-54 Special File Formats

sccsfile

Body
The body consists of text lines and control lines. Text lines
do not begin with the control character, control lines do.
There are three kinds of control lines: insert, delete, and end,
represented by:

@I 00000
@D 00000
@E 00000

respectively. The digit string is the serial number
corresponding to the delta for the control line.

See Also
admin, delta, get, prs in Section 1.

Special File Formats 4-55

scnhdr

Nam,e
scnhdr - section header for a common object file

Format
#Include <scnhdr.h>

Description
Every common object file has a table of section headers to
specify the layout of the data within the file. Each section
within an object file has its own header. The C structure
appears below.
Itruct Icnhdr
{

char l_name[SYMNMLEN); ,*sectlon name*,
long I_paddr; ,*physlcal address*,
long s·vaddr; ,*vlrtual address·,
long s_llze; ,*sect Ion slze*,
long I_scnptr; , •• I Ie ptr to raw data*'
long I_rei pt r; ,*. I Ie ptr to relocat.·,
long s_lnnoptr; ,*. I Ie ptr to I I ne #s*,
unsigned Ihort I_nreloc; ,.# reloc entries*,
unsigned Ihort s_nlnno; ,.# II ne no. entries·,
long s_. lags; ,·.Iags·,

} ;

File pointers are byte offsets into the file; they can be used
as the offset in a call to fseek (see Section 3). If a section is
initialized, the file contains the actual bytes. An uninitialized
section is somewhat different. It has a size, symbols defined
in it, and symbols that refer to it. -But it can have no
relocation entries, line numbers, or data. Consequently, an
uninitialized section has no raw data in the object file, and
the values for s....scnptr, sJe/ptr, s-'nnoptr, sJ1re/oc, and
sJ1/nno are zero.

See Also
Id in Section 1; fseek in Section 3; a.out.

1207891

4-56 Special File Formats

syms

Name
syms - common object file symbol table format

Format
#Include <~yms.h>

Description
Common object files contain information to support symbolic
software testing (see sdb in Section 1). Line number entries
(see linenum), and extensive symbolic information permit
testing at the C source level. Every object file's symbol table
is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

F I I e name 2.
Function 1.

Local symbols for function 1.
Funct Ion 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The
members of the structure hold the name (null padded), its
value, and other information.

Special File Formats

syms
The C structure is given below.

#deflne SVMNMLEN
#dellne FILNMLEN 14
#deflne DIMNUM

sIr u c I ,yme n I
{

union
{

char
'I rue I
{

long
long

l_n_n;
char

Ln;

,*al I way, 10 gel symbol name·,

_n_name[SVMNMLEN); ,*,ymbol name·,

_n_zeroe,; ,:""OL when In ,Iring lable:,
_n_offsel; , locallon of name In lable,

·_n_nplr(2); ,*allows overlaying·,

long n_value; ,:value of SymbO!·,
shor I n_scnum; ,.,ecllon number, •
unsigned shorl n_lype; '.Iype and derl:ed type,

1;

char
char

Ide fine n_name
Ideflne n_zeroes
Ideflne n_off,et
Ideflne n_nptr

n_scla,,;
n_numaull;

,.stora ge class' •
, number of aUll entries,

_no_n_name
_no_n_no_n_zeroes
_no_n_no_n_offset
_no_n_npt r (1)

4-57

Some symbols require more information than a single entry;
they are followed by auxiliary entries that are the same size
as a symbol entryo The format followso

1207891

4-58

syms
union aUllanl
{

};

slruel
{

long x_Iagndx;
union
{

sir ue I
{

unsigned short x_lnno;
unsigned short x_size;

}x_lnu;
long x_I size;

x_ml se;
union
{

struel
{

long x_lnnoptr;
long x_endndx;
x_len;

struet
{

unsigned short x_dlman[DIMNUM);
x_a ry;
x_lenary;

unslgnad shorl x_Ivndx;
x_Iym;

s I rue I
{

char
} x-II I a;
I t rue I
{

long x-Ienlan;
unsigned short x_nraloe;
unsigned shorl x_nl inno;
x_len;

I I rue I
(

long x_Ivllll;
unsigned short
unsigned short
X_IV;

x_Ivlen;
x_Ivran(2);

Indexes of symbol table entries begin at zero.

Special File Formats

Special File Formats 4-59

syms

Cautions
CENTIX Clongs are equivalent to ints and are converted to
ints in the compiler to minimize the complexity of the
compiler code generator. Thus, the information about which
symbols are declared as longs and which symbols are
declared as ints does not show up in the symbol table.

See Also
sdb in Section 1; a.out, linenum.

1207891

4-60 Special File Formats

term

Name
term - format of compiled term file.

Format
te rm

Description
Compiled terminfo descriptions are placed under the
directory /usr/lib/terminfo. In order to avoid a linear search of
a huge directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the
terminal, and c is the first character of name. Thus, act4 can
be found in the file /usr/lib/terminfo/a/act4. Synonyms for
the same terminal are implemented by multiple links to the
same compiled file.

The format has been chosen so that it will be the same on all
hardware. An 8 or more bit byte is assumed, but no
assumptions about byte ordering or sign extension are made.

The compiled file is created with the compile program, and
read by the routine setupterm. Both of these pieces of
software are part of curses (see Section 3). The file is divided
into six parts: the header, terminal names, Boolean flags,
numbers, strings, and string table.

The header section begins the file. This section contains six
short integers in the format described below. These integers
are (1) the magic number (octal 0432); (2) the size, in bytes,
of the names section; (3) the number of bytes in the Boolean
section; (4) the number of short integers in the numbers
section; (5) the number of offsets (short integers) inthe
strings section; (6) the size, in bytes, of the string table.

Special File Formats 4-61

term
Short integers are stored in two 8-bit bytes. The first byte
contains the least significant 8 bits of the value, and the
second byte contains the most significant 8 bits. (Thus, the
value represented is 256*second + first.) The value -1 is
represented by 0377, 0377; other negative values are illegal.
The -1 generally means that a capability is missing from this
terminal. Note that this format corresponds to the hardware
of the VAX and PDP-11. Machines where this does not
correspond to the hardware read the integers as two bytes
and compute the result.

The terminal names section comes next. It contains the first
line of the terminfo description, listing the various names for
the terminal, separated by the "I H character. The section is
terminated with an ASCII NUL character.

The Boolean flags have one byte for each flag. This byte is
either 0 or 1 as the flag is present or absent. The capabilities
are in the same order as the file <term.h>.

Between the Boolean section and the number section, a null
byte will be inserted, if necessary, to ensure that the number
section begins on an even byte. All short integers are aligned
on a short word boundary.

The numbers section is similar to the flags section. Each
capabililty takes up two bytes, and is stored as a short
integer. If the value represented is -1, the capability is taken
to be missing.

The strings section is also similar. Each capability is stored
as a short integer, in the format above. A value of -1 means
the capability is missing. Otherwisf;, the value is taken as an
offset from the beginning of the string table. Special
characters in AX or· \c notation are stored in their interpreted
form, not the printing representation. Padding information
$<nn> and parameter information %x are stored intact in
un interpreted form.

The final section is the string table. It contains all the values
of string capabilities referenced in the string section. Each
string is null terminated.

1207891

4-62 Special File Formats

term
Note that it is possible for setupterm to expect a different set
of capabilities than are actually present in the file. Either the
database may have been updated since setupterm has been
recompiled (resulting in extra unrecognized entries in the file)
or the program may have been recompiled more recently
than the database was updated (resulting in missing entries).
The routing setupterm must be prepared for both possibilities -
this is why the numbers and sizes are included. Also, new
capabilities must always be added at the end of the lists of
Boolean, number .. and string capabilities.

As an 'example, an octal dump of the description for the
Microterm ACT 4 is included:

mlcrot.rmjlct4jmlcrot.rm let lv,
cr.~M, cud1.~J, Ind·~J, b.I·~O, 1m, cubf.AH,
.d·~_, .I·~~, CI.lr.~L, cup·~T%P1%c%p2%c,

COII#80, I In •• #24, cuf1·~X, cuu1·~Z, hom •• ~),

000 032 001 \0 025 \0 \b \0 212 \0 • \0 m I c r
020 0 t • r m j let 4 j m I c r 0

040 t • r m let I v \0 \0 001 \0 \0
080 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
100 \0 \0 P \0 377 377 030 \0 377 377 377 377 377 377 377 377
120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 008 \0
140 \b \0 377 377 377 377 \n \0 028 \0 030 \0 377 377 032 \0
180 377 377 377 377 034 \0 377 377 038 \0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 .
520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377 377 007 \0 \r \0 \f \0 038 \0 037 \0
580 024 % P 1 % c % P 2 % c \0 \n \0 035 \0
800 \b \0 030 \0 032 \0 \n \0

Some limitations: total compiled entries cannot exceed 4096
bytes. The name field cannot exceed 128 bytes.

Files
/usr /Iib/terminfo!*!* - compiled terminal capability data
base

See Also
curses in Section 3; terminfo.

Special File Formats 4-63

termcap

Name
termcap - terminal capability data base

Format
/etc/termcap

Description
This entry describes terminal-independent programming
conventions that originate at UC Berkeley. UNIX System V
initially borrowed termcap but has since changed to the
terminfo convention. CENTIX continues to support termcap
so as to be compatible with the Berkeley version of the UNIX
System, but use term info in new programs.

Termcap programs work from information supplied through
the TERM and TERMCAP environment variables. The location
of the description depends on the value of TERMCAP.

o If TERMCAP is not set or is empty, TERM is the name of a
description in /etc/termcap.

o If TERMCAP has a value that begins with ·a /, TERM is the
name of a description in the file named by TERMCAP.

o IF TERMCAP begins with any character except /,
TERMCAP contains the description . ..

A description begins with a list of its names, separated by
vertical bars. The rest of the description is a list of
capabilities, separated by colons. If you use more than one
line, precede each new-line except the last with :\. Here's a
simple example.

d5 vt50 dec vt5:\
:bs:cd-\EJ:ce-\EK:cl-\EH\EJ:co#80: I i#12:nd-\EC:pt:up-/EA:

1207891

4-64 Special File Formats

termcap
There are three kinds of capabilities:

o Boolean. These indicate the presence or absence of a
terminal feature by their presence or absence. Boolean
capabilities consist of two characters (the capability name).

o Numeric. These indicate some numeric value for the
terminal, such as screen size or delay required by a
standard character. Numeric capabilities consist of two
characters (the capability name), followed by a #, followed
by a decimal number.

o String. These indicate a sequence that performs some
operation on the terminal. String capabilities consist of two
characters (the capability name), optionally followed by a
delay, followed by a string.

The delay is the number of milliseconds the program must
wait after using the sequence; specify no more than one
decimal place. If the delay is proportional to the number of
lines affected, end it with a·.

The string is a sequence of characters. The following
subsequences are specially interpreted.

\E Escape Character
I\x Control-x
\n Newline
\r Return
\t Tab
\b Backspace
\f Formfeed
\xxx Octal value of xxx
\072 in string
\200 null (\000 doesn't work)

Octal numbers must be three digits long.

Some strings are interpreted further, such as em. See below.

Special File Formats 4-65

termcap
You can follow any capability name with @ to indicate that
the terminal lacks the capability. This is only useful in
conjunction with the te capability; see "Similar Terminals,"
below.

Table 4-1 is a list of standard capabilities. (P) indicates a
string that might require padding: (P*) indicates a string that
might require proportional padding.

Table 4-1 Standard Terminal Capabilities

Name Type

ae str
al str
am bool
as str
bc str
bs bool
bt str
bw boo I
CC str
cd str
ce str
ch str
cl str
cm str
co num
cr str
cs str
cv str
da bool
dB num
db bool
dC num
dc str
dF num
dl str
dm str
dN num

1207891

Pad? Description

(P) Ends alternate character set.
(P*) Adds new blank line.

Terminal has automatic margins.
(P) Starts alternate character set.

Backspace if not control-h.
Terminal can backspace with control-h.

(P) Back tab.
Backspace wraps from column 0 to last column.
Command character in prototype if terminal is settable.

(P*) Clears to end of display.
(P) Clears to end of line.
(P) Moves cursor horizontally to. specified column.
(P*) Clears screen.
(P) Moves cursor to specified row and column.

Number of columns in a line.
(P*) Carriage return if not control-m.
(P) Change scrolling region.
(P) Moves cursor vertically to a specified row.

Display can be retained above. .
Delay after backspace, in milliseconds.
Display can be retained below.
Delay after carriage return, in milliseconds.

(P*) Delete character.
Delay after form feed, in milliseconds.

(P*) Deletes line.
Enters delete mode.
Delay after new-line, in milliseconds.

4-66 Special File Formats

termcap
Table 4-1 Standard Terminal Capabilities (Cont.)

Name Type Pad? Description

do stl' Goes down one line.
dT num Delay after tab, in milliseconds.
ed str Ends delete mode.
ei str Ends insert mode; give an empty string if you've

defined ic.
eo str Can erase overstrikes with a blank.
ff str (P*) Hardcopy terminal page eject if not form feed.
hc bool Hardcopy terminal.
hd str Half-line down (forward 1/2 linefeed).
ho str Move cursor to upper left corner (home).
hu str Half-line up (reverse 1/2 linefeed).
hz str Hazeltine or other terminal that can't print -so
ic str (P) Insert character.
if str Name of file containing terminal initialization.
im bool Starts insert mode; give an empty string if you've

defined ic.
in bool Insert mode distinguishes nulls on display.
ip str (P*) Pad after insertion.
is str Terminal initialization.
kO-k9 str Sent by special (usually numeric) function keys. If

programmable, set with is, if, vs, or ti.
kb str Sent by backspace key.
kd str Sent by terminal down arrow key.
ke str Ends keypad transmit code.
kh str Sent by home key.
kl str Sent by terminal left arrow key.
kn num Number of special function keys.
ko str Terminal capabilities that have keys.
kr str Sent by terminal right arrow key.
ks str Begin keypad transmit mode.
ku str Sent by terminal up arrow key.
10-19 str labels on special function keys.
Ii str last line, first column.
rna str Command key map; used by ex version 2.
mi bool Safe to move while in insert mode.
ml str Memory lock on above cursor.
ms bool Safe to move while in standout or underline mode.
mu str Memory unlock (turn off memory lock).
nc bool No correctly working carriage return.
nd str Non-destructive space (cursor right).
nl str (P*) Begin a new line if not new-line.
ns bool A video terminal that doesn't scroll.
as bool Terminal overstrikes.

Special File Formats 4-67

termcap
Table 4-1 Standard Terminal Capabilities (Cont.)

Name Type

pc str
pt boo I

se str
sf str
sg num
so str
sr str
ta str
tc str

te str
ti str
uc str
ue str
ug num

ul boo I

up str
us str
vb str
ve str
vs str
xb bool
xn bool
xr boo I

xs bool

xt boo I

Pad? Description

Pad character if not null.
Has hardware tabs; if they need to be set, put
sequence in is or if.
Ends stand out mode.

(P) Scrolls forward.
Number of blank characters left by so or se.
Begins stand out mode.

(P) Scroll reverse (backwards).
(P) Tab if not control-i or with padding.

Name of terminal that has some of the same
capabilities; tc must be the last capability.
Ends programs that do cursor motion.
Initializes programs that do cursor motion.
Underscores and moves past one character.
Ends underscore mode.
Number of blank spaces that surround underscore
mode.
Terminal underlines automatically even though it
can't overstrike.
Upline (cursor up).
Start underscore mode.
Visible bell (must not move cursor).
Ends open and visual modes.
Initializes open and visual modes.
Beehive (tl-escape, f2-ctrl C).
Terminal ignoresc new-line after wrap (Concept).
Returns clears to end of line and goes to beginning
of next line (Delta Data).
Writing on standout mode text produces standout
mode text (HP 2641)
Destructive tabs, magic standout character (T eleray
1061).

Pointers on Preparing Descriptions
D You may want to copy the description of a similar terminal.

D Build up a description gradually, checking partial
descriptions with ex.

D Be aware that an unusual terminal may expose bugs in ex
limitations in the termcap convention.

1207891

4-68 Special File Formats

termcap

Basic Capabilities

The following capabilities are common to most terminals.
The eo capability gives the number of columns per line. The Ii
gives the number of lines on a video terminal. The am
capability indicates that writing off the right edge takes the
cursor to the beginning of the next screen. The cl capability
tells how the terminal clears its screen. The bs indicates that
the terminal can backspace; but if the terminal doesn't use
control-h, specify be instead of bs. The os capability indicates
that printing a character at an occupied position doesn't
destroy the existing character.

A couple of notes on moving off the edge. Programs that
use this convention never move the cursor off the top or the
left edge of the screen. On the other hand, they assume that
moving off the bottom edge scrolls the display up.

These capabilities suffice to describe hardcopy and very
dumb terminals.

Cursor Addresses and Other Variables

If a string capability includes a variable value, use a % escape
to indicate the value. By default, programs take these values
to be zero origin (that is, the first possible value is 0) and
that the em capability specifies two values: row, then column.
Use the %r or %i capability if either assumption is incorrect.

These are the valid % escapes.

%d
%2
%3
%.
%+x
%>xy

Print the values as a decimal number.
Print the values as a two-digit decimal number.
Print the values as a three-digit decimal number.
Print the value in binary (but see below).
Add ASCII value of x to value, then print in binary.
If the next value is greater than the ASCII value of x, add
the ASCII value of y before using the value's % escape.

Special File Formats

termcap

%r
%i
%%
%n

%B

%D

Row is the first value in this em.
Values are l-origin.
Print a %.

4-69

In this capability, exclusive or the values with 01400 before
using the values' % escapes (DM2500).
Change the next value to binary coded decimal ((16*(x/10))
+ (x% 10) where x is the value) before interpreting it.
The next value is reverse-coded (x-2*(X% 16) where x is
the value; Delta Data)

A program should avoid using a em sequence that includes a
tab, new-line, control-d, or return, because the terminal
interface may misinterpret these characters. If possible, use
the em sequence to move to the row or column after the
destination, then use local motion to get to the destination.

Here are some examples of em definitions. To position the
cursor of an HP2645 on row 3, column 12, you must send
the terminal "\E&a 12c03Y," followed by a 6 millisecond
delay; the HP2645 description includes
:cm=6\E&%r%2c%2Y:. To position the cursor of an ACT-IV,
you send it a control-t, followed by the row and column in
binary; the ACT-IV description includes :cm=!\ T%.%.:. The
LSI ADM3a uses the set of printable ASCII characters to
represent row and column values; its description includes
:cm\x=%+%+:.

Local and General Cursor Motions

Most terminals have short strings that trigger
commonly-used cursor motions. A non-destructive space (BR
nd) moves the cursor one position right. An upline sequence
(up) moves the cursor one position up. A home sequence (ho)
moves the cursor to the upper left hand corner. A lower-left
(II) goes to the other left hand corner. The II capability may
be a sequence that moves the cursor home, then up; but
otherwise programs never do this.

1207891

4-70 Special File Formats

termcap

Area Clears

Some terminals have short sequences that clear all or part of
a display. Clear (cl) clears the screen and homes the cursor; if
clearing the screen does not restore the terminal's normal
modes, cl should include the strings that do. Clear to end of
line (ce) clears from the current cursor position to the right.
Clear to end of display (cd) clears from the current cursor
position to the bottom of the display; programs always move
the cursor to the beginning of the line before using cd.

Insert/Delete Line

Many terminals have strings that shift text starting at the
current cursor position. Programs always move the cursor to
the beginning of the line before using these strings. Add line
(a I) shifts the current line and all below it down a position
leaving the cursor on the newly-blanked line. Delete line (dl)
deletes the line the cursor is on without moving the cursor. If
a terminal description has an al capability, you do not really
need to specify sb.

If deleting a line might produce a non-blank line at the bottom
of the screen, specify db. If scrolling backwards might
produce a non-blank line at the top of the screen, specify da.

Insert/Delete Character

The term cap convention recognizes two kinds of terminal
insert/delete string.

o The first convention is by far more common. Using insert
or delete modes only affect characters on the current line.
Inserting a single character shifts all characters, including all
blanks, to the right; the character on the right edge of the
screen is lost. No special capability is required to describe
this kind of terminal.

Special· File Formats 4-71

termcap
o The second convention is rarer and more complicated. The

terminal distinguishes between blank spaces created by
output tabs (011) or spaces (040) from all other blanks;
other blanks are known as nulls. Inserting a character
eliminates the first null to the right of the cursor; deleting a
character doubles the first null. If there are no nulls on the
current line, inserting a character inserts the line's
rightmost character at the beginning of the next line. Use
the in capability to describe this kind of terminal.

A simple experiment shows what type you have. Set the
terminal to its "local" mode. Clear the screen, then type a
short sequence of text. Move the cursor to the right several
spaces without using the space or tab characters. Type a
second short sequence of text. Move the cursor back to the
beginning of the first text. Start the terminal's insert mode
and begin tapping the space bar. If you have the first kind of
terminal, both sequences of text will move at once; whatever
character is at the right edge of the screen will be lost. If you
have the second kind of terminal, at first only the first
sequence of text will move; when the first sequence hits the
second sequence, it will push the second onto the next line.

A terminal can have either an insert mode or the ability to
insert a single character. Specify insert mode with im and ei.
To specify that the terminal can insert a single character,
specify ie and specify empty strings for im and ei. If you must
delay or output more control text after inserting a single
character, specify ip.

If a terminal has both an insert mode and the ability to insert
a single character, it is usually best not to specify ie.

Some programs operate more quickly if they are allowed to
move the cursor around randomly while in insert mode. For
example, vi has to delete a character when you insert a
character before a tab. If your terminal permits this, specify
move on insert mi. Beware of terminals that foul up in subtle
ways when you do this.

Delete mode (dm), end delete mode (ed), and delete character
(de) work like im, ei and ie.

1207891

4-72 Special File Formats

termcap

Highlighting, Underlining, and Visible Bells
Specify the terminals most distinctive display mode with so
se. Half intensity is usually not a good choice unless the
terminal is normally in reverse video.

The convention provides for underline mode and for single
character underlining. Specify underline mode with us and ue.
Specify a way to underline and move past a character with
Uc; if your terminal can underline a single character but
doesn't automatically move on, add a nondestructive space
to the uc string.

Some terminals can't overstrike but still correctly underline
text without special help from the host computer. If yours is
one, specify ul.

If your terminal spaces before and after entering standout
and underline mode, specify ug.

Programs leave standout and underline mode before moving
the cursor or printing a new-line.

If the terminal can flash the screen without moving the
cursor, specify vb (visual bell).

If the terminal needs to change working modes before
entering the open and visual modes of ex and vi, specify vs
and ve, respectively. These can be used to change, for
example, from an underline to a block cursor and back.

If the terminal needs to be in a special mode when running a
program that addresses the cursor, specify ti and teo This
may be important if a terminal has more than one page of
memory. If the terminal has memory-relative cursor
addressing but not screen relative cursor addressing, use ti
to fix a screen-sized window into the terminal.

If a terminal can overstrike, programs assume that printable
spaces don't destroy anything, unless you specify eo.

Special File Formats 4-73

termcap

Keypad
Some terminals have keypads that transmit special codes. If
the keypad can be turned on and off, specify ks and ke; if you
don't, programs assume that the keypad is always on.
Specify the codes sent by cursor motion keys with kl, kr, ku,
kd, and kh. If there are function keys, specify the codes they
send with f1, f2, f3, f4, f5, f6, f7, f8, and f9. If these keys have
labels other than the usual "fO through f9," specify the labels
11, 12, 13, 14, 15, 16, 17, 18, and 19. If there are other keys that
transmit the same code that the terminal expects for a
function, such as clear screen, mention the affected
capabilities in the ko capability. For example, u:ko=cI,lI,sf,sb:"
says that the terminal has clear, home down, scroll down,
and scroll up keys that transmit the same thing as the cI, II,
sf, and sb capabilities.

Terminal Initialization
If a terminal must be initialized, on login for example, specify
a short string with is or a file containing initialization strings
with if. Other capabilities include is, and initialization string for
the terminal, and if, the name of a file containing long
initialization strings. If both are given, is is printed before if. If
the terminal has tab stops, these strings should first clear all
stops, then set new stops at the 9 column and every 8
column thereafter.

Similar Terminals
If a new terminal strongly resembles an existing terminal, you
can write a description of the new terminal that only
mentions the old terminal and the capabilities that differ. The
te capability describes the old terminal; it must be the last
capability in the description. If the old terminal has
capabilities that the new one lacks, specify an @ after the
capability name.

1207891

4-74 Special File Formats

termcap
The different entries you create with tc need not represent
terminals that are actually different. They can represent
different uses for a single terminal, or user preferences as to
which terminal features are desirable.

The following example defines and describes a variant of the
2621 that never turns on the keypad.

h n 262 1 n I : k s@: k e@: t c • 262 1 :

Files
/etc/termcap - standard data base

Known Problems
The ex command allows only 256 characters for string
capabilities, and the routines in the termcap library function
do not check for overflow of this buffer.

The total length of a single description (excluding only
escaped new-lines) may not exceed 1024 characters. If you
use tc, the combined description may not exceed 1024
characters.

The vs, and ve entries are specific to the vi program.

Not a" programs support all entries. There are entries that
are not supported by any program.

The ma capabifity is obsolete and serves no function in our
database; Berkeley includes it for the benefit of systems that
cannot run version 3 of vi.

See Also
ex, tset, vi, ul, more in Section 1 ; curses, termcap in Section 3.

Special File Formats 4-75

terminfo

Name
term info - terminal capability data base

Format
/usr/I ib/terminfo/"/"

Description
Terminfo is a data base describing terminals used, for
example, by the vi command and the curses library function.
Terminals are described in terminfo by giving a set of
capabilities that they have, and by describing how operations
are performed. Padding requirements and initialization
sequences are included in terminfo.

Entries in terminfo consist of a number of ',' separated fields.
White space after',' is ignored. The first entry for each
terminal gives the names that are known for the terminal,
separated by 'I' characters. The first name given is the most
common abbreviation for the terminal, the last name given
should be a long name fully identifying the terminal, and all
others are understood as synonyms for the terminal name.
All names but the last should be in lower case and contain
no blanks; the last name may well contain upper case and
blanks for readability.

Terminal names (except for the last, verbose entry) should be
chosen using the conventions shown in Table 4-2. The
particular piece of hardware making up the terminal should
have a root name chosen, thus "hp2621. II This name should
not contain hyphens, except that synonyms may be chosen
that do not conflict with other names. Modes that the
hardware can be in, or user preferences, should be indicated
by appending a hyphen and an indicator of the mode. Thus,
a vt 100 in 1 32 column mode would be vt 1 OO-w. The
following suffixes should be used where possible:

1207891

4-76 Special File Formats

terminfo
Table 4-2 Terminal Name Suffixes

Suffix

-w
-am
-nam
-n
-na
-np
-rv

Meaning

Wide mode (more than 80 columns)
With auto. margins (usually default)
Without automatic margins
Number of lines on the screen
No arrow keys (leave them in local)
Number of pages of memory
Reverse video

Example

vt100-w
vt100-am
vt100-nam
aaa-60
c100-na
c100-4p
c100-rv

Capabilities
The variable is the name by which the programmer (at the
terminfo level) accesses the capability. The capname is the
short name used in the text of the database, and is used by
a person updating the database. The Lcode is the two letter
internal code used in the compiled database, and always
corresponds to the old termcap capability name.

Capability names have no hard length limit, but an informal
limit of 5 characters has been adopted to keep them short
and to allow the tabs in the source file caps to line up nicely.
Whenever possible, names are chosen to be the same as or
similar to the ANSI X3.64-1979 standard. Semantics are
also intended to match those of the specification. For the
capnames and Lcodes listed in Table 4-3:

(P) Indicates that padding may be specified.

(6) Indicates that the string is passed through tparm withparms as
given (#i).

(*) Indicates that padding may be based on the number of lines affected.

(#/) Indicates the ith parameter.

Special File Formats 4-77

terminfo
Table 4-3 Capnames and I.codes

Variable Booleans Cap- t Description
name code

auto_lefLmargin, bw bw cub 1 wraps from column 0 to
last column

autoJighLmargin, am am Terminal has automatic margins
beehivLglitch, xsb xb Beehive (f1 =escape, f2=ctrl

C)
ceoLstandouLglitch, xhp xs Standout not erased by

overwriting (hp)
eaLnewlinLglitch, xenl xn new-line ignored after 80 cols

(Concept)
erasLoverstrike, eo eo Can erase overstrikes with a

blank
generic-type, gn gn Generic line type (such as

dialup, switch)
hard-copy, hc hc Hardcopy terminal
has-metLkey, km km Has a meta key (shift, sets

parity bit)
haLstatuLline, hs hs Has extra "status line"
inserLnulLglitch, in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above

the screen
memory-helow, db db Display may be retained below

the screen
move.Jnserl-mode, mir mi Safe to move while in insert mode
movLstandouLmode, msgr ms Safe to move in standout

modes
overJtrike, os os Terminal overstrikes
statuLline_esc-ok, eslok es Escape can be used on the

status line
teleray_glitch, xt xt Tabs ruin, magic so char

(T eleray 1061)
tildLglitch, hz hz Hazeltine, can not print -s
transparenLunderline. ul ul underline character overstrikes
xOLXoff. xon xo Terminal uses xon/xoff

handshaking

Numbers:
columns. cols co Number of columns in a line
iniLtabs. it it Tabs initially every # spaces
lines. lines Ii Number of lines on screen or page

1207891

4-78 Special File Formats

terminfo
Table 4-3 Capnames and I.codes (Cont.)

Variable 800leans Cap- I. Description
name code

lineLoLmemory, 1m 1m lines of memory if > lines. 0
means varies.

magiLcookiB-glitch, xmc sg Number of blank characters left
by smso or rmso

padding.jJamLrate, pb pb lowest baud where cr/nl
padding is needed

virtuaLterminal, vt vt Virtual terminal number
(CENTIX system)

widtlLstatuLline, wsl ws Number of columns in status line

Strings:
baclLtab, cbt bt Back tab (P)
bell, bel bl Audible signal (bell) (P)
carriageJeturn, cr cr Carriage return (P*)
changB-scroIIJegion, csr cs change to lines # 1 through # 2

(vt100) (PG)
cleaLalLtabs, tbc ct Clear all tab stops (P)
cleaLscreen, clear cl Clear screen and home cursor

(P*)
clr-Bol, el ce Clear to end of line (P)
clLeos, ed cd Clear to end of display (P*)
columlLaddress, hpa ch Set cursor column (PG)
commanLcharacter, cmdch CC . Term. settable cmd char in

prototype
cursoLaddress, cup cm Screen reI. cursor motion row

1 col #2 (PG)
cursoLdown, cud1 do Down one line
cursor .-home, home ho Home cursor (if no cup)
cursor.Jnvisible, civis vi Make cursor invisible
cursoLieft, cub1 Ie Move cursor left one space
cursoLmenLaddress, mrcup CM Memory relative cursor

addressing
cursor -"ormal, cnorm ve Make cursor appear normal

(undo vs/vi)
cursorJight, cufl nd Non-destructive space (cursor

right)
cursor_to_ll, II II last line, first column (if no cup)
curSOLUp, cuu1 up Upline (cursor up)
cursoLvisible, cvvis vs Make cursor very visible
deletB-character, dehl de Delete character (P*)
deletB-line, dl1 dl Delete line (P*)

Special File Formats 4-79

terminfo
Table 4-3 Capnames and I.codes (Cont.)

Variable Boolean5 Cap- t Description
nama code

diLstatuLline, dsl ds Disable status line
dowlLhalLline, hd hd Half-line down (forward 1/2

linefeed)
enteLalLcharseLmode, smacs as Start alternate character set (P)
enter .JllinlLmode, blink mb Turn on blinking
enter .JlohLmode, bold md Turn on bold (extra bright) mode
enter _ca..J11ode, smcup ti String to begin programs that

use cup
enter _delete-ffiode, smdc dm Delete mode (enter)
enteLdinunode, dim mh Turn on half-bright mode
enter--inserLmode, smir im Insert mode (enter)
enter -protecteuode, prot mp Turn on protected mode
enter Jeverse-ffiode, rev mr Turn on reverse video mode
enter-securLmode, invis mk Turn on blank mode (chars

invisible)
enter_standOULmode, smso so Begin stand out mode
enteLunderline-ffiode, smul us Start underscore mode
erass-chars, ech ec Erase # 1 characters (PG)
exiLalLcharseLmode, rmacs ae End alternate character set (P)
exiLattribute-ffiode, sgrO me Turn off all attributes
exiLCa..J11ode, rmcup te String to end programs that

use cup
exiLdelete-ffiode, rmdc ed End delete mode
exiLinserLmode, rmir ei End insert mode
exiLstandoutJnode, rmso se End stand out mode
exiLunderline-ffiode, rmul ue End underscore mode
flash-screen, flash vb Visible bell (may not move

cursor)
forffi-feed, ff ff Hardcopy terminal page eject (P*)
from-statuLline, fsl fs Return from status line
iniL 1 string, isl il Terminal initialization string
iniL2string, is2 i2 Terminal initialization string
iniL3string, is3 i3 Terminal initialization string
iniLfile, if if Name of file containing is
inserl-character, ichl ic Insert character (P)
inserl-line, ill al Add new blank line (P*)
inserl-Padding, ip ip Insert pad after character

inserted (P*)
key_backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC Sent by clear screen or erase key

1207891

4-80 Special File Formats

terminfo
Table 4-3 Capnames and I.codes (Cont.)

Variable 800leans Cap- t Description
name code

key_ctab, kctab kt Sent by clear-tab key
key_de, kdchl kD Sent by delete character key
key_dl, kdll kl Sent by delete line key
key_down, kcudl kd Sent by terminal down arrow key
key_eic, krmir kM Sent by rmir or smir in insert

mode
key_eol, kel kE Sent by clear-to-end-of-line key
key_eos, ked kS Sent by clear-to-end-of-screen

key
key_fO, kfO kO Sent by function key fO
key_fl, kfl kl Sent by function key f1
key_flO, kflO ka Sent by function key f1 0
key_f2, kf2 k2 Sent by function key f2
key_f3, kf3 k3 Sent by function key f3
key_f4, kf4 k4 Sent by function key f4
key_fS, kfS kS Sent by function key f5
key_f6, kf6 k6 Sent by function key f6
key_f7, kf7 k7 Sent by function key f7
key_f8, kf8 k8 Sent by function key f8
key_f9 kf9 k9 Sent by function key f9
key-home, khome kh Sent by home key
key.Jc, kichl kl Sent by ins char/enter ins

mode key
key.Jl, kill kA Sent by insert line
key_left, kcubl kl Sent by terminal left arrow key
key_II, kll kH Sent by home-down key
key-"page, knp kN Sent by next-page key
key-ppage, kpp kP Sent by previous page key
keYJight, kcufl kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward /down key
key_sr, kri kR Sent by scroll-backward /up key
key_stab, khts kT Sent by set-tab key
key_up, kcuul ku Sent by terminal up arrow key
keypaLlocal, rmkx ke Out of "keypad transmit" mode
keypad...xmit, smkx ks Put terminal in "keypad

transmit" mode
lab_fO, IfO 10 labels on function key fO if not fO
laLfl, Ifl 11 labels on function key f1 if not fl
lab_flO, IflO la labels on function key f1 0 if

not flO

Special File Formats 4-81

terminfo
Table 4-3 Capnames and I.codes (Cont.)

Variable Booleans Cap- t Description
name code

lab_f2, If2 12 Labels on function key f2 if not f2
lab-f3, If3 13 Labels on function key f3 if not f3
lab-f4, If4 14 Labels on function key f4 if not f4
lab_f5, If5 15 Labels on function key f5 if not f5
lab_f6, If6 16 Labels on function key f6 if not f6
lab_f7, If7 17 Labels on function key f7 if not f7
lab_fS, IfS IS labels on function key fS if not fS
lab-f9, If9 19 labels on function key f9 if not f9
metLon, smm mm Turn on "meta mode" (Sth bit)
metLoff, rmm mo Turn off "meta mode"
newline, nel nw New-line (behaves like cr

followed by If)
pad-char, pad pc Pad character (rather than null)
parm-dch, dch DC Delete # 1 chars (PG*)
parm-deletB-line, dl Dl Delete # 1 lines (PG*)
parm-dowLcursor, cud DO Move cursor down # 1 lines

(PG*)
parnLich, ich IC Insert # 1 blank chars (PG*)
parnLindex, indn SF Scroll forward # 1 lines (PG)
parnLinserLIine, iI Al Add # 1 new blank lines (PG*)
parffi-lefLcursor, cub lE Move cursor left # 1 spaces (PG)
parmJighLcursor, cuf RI Move cursor right # 1 spaces

(PG*)
parmJindex, rin SR Scroll backward # 1 lines (PG)
parm-up_cursor, cuu UP Move cursor up # 1 lines (PG*)
pkey.Jtey, pfkey pk Prog funct key # 1 to type

string #2
pkey_local, pfloc pi Prog funct key # 1 to execute

string #2
pkey-xmit, pfx px Prog funct key # 1 to xmit

string #2
prinLscreen, mcO ps Print contents of the screen
prtLoff, mc4 pf Turn off the printer
prtLon, mc5 po Turn on the printer
repeaLchar, rep rp Repeat char # 1 # 2 times

(PG*)
reseL 1 string, rsl r1 Reset terminal completely to

sane modes
reseL2string, rs2 r2 Reset terminal completely to

sane modes

1207891

4-82 Special File Formats

terminfo
Table 4-3 Capnames and I.codes (Cont.)

Variable Booleans Cap- I. Description
name code

reseL3string, rs3 r3 Reset terminal completely to
sane modes

reseLfile, rf rf Name of file containing reset
string

restore-cursor, rc rc Restore cursor to position of
last sc

row_address, vpa cv Vertical position absolute (set
row) (PG)

save_cursor, sc sc Save cursor position (P)
scrolLforward, ind sf Scroll text up (P)
scrolLreverse, ri sr Scroll text down (P)
seLattributes, sgr sa Define the video attributes

(PG9)
seLtab, hts st Set a tab in all rows, current

column
seLwindow, wind wi Current window is lines # 1-# 2

cols #3-#4
tab, ht ta Tab to next 8 space hardware

tab stop
to_status-line, tsl ts Go to status line, column # 1
underline-char, uc uc Underscore one char and move

past it
up.JJaILline, hu hu Half-line up (reverse 1/2

linefeed)
iniLprog, iprog iP Path name of program for init
key_al, kal Kl Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key_cl, kcl K4 lower left of keypad
key_c3, kc3 K5 lower right of keypad
prtr_non, mc5p pO Turn on the printer for # 1 bytes

Special File Formats

terminfo

A Sample Entry
The following entry, which describes the Concept-1 00, is
among the more complex entries in the terminfo file as of
this writing.

conceptl00 I cl00 I concept I cl04 I cl00-4p I concept 100,
am,belaAG,blanka\EH,bl Ink a \EC,clear- ALS<2*>,cnorma \Ew,
COls#80,craAMS<9>,Cubl-AH,cudlaAJ,culla\E,
cup-\Ea%pl%' '%+%c%p2%' '%+%c,
cuul a \E;,cvVIS-\EW,db,dChl a \E AAS<18*>,
dlm a \EE,dll a \EABS<3*>,

ed-\EACS<18*>,el-\EAUS<18*>,eo,llaSh a \EkS<20>\EK,
ht a \tS<8>,
Illa\EARS<3*>, In, Ind-AJ, Ind- AJS<9>, Ip-S<16*>,

Is2-\EU\EI\E7\E5\E8\EI\ENH\EK\E\200\Eo&\200\Eo\47\E,
kbs- Ah,kcubl-\E>,kcudl-\E<,kcull a \E-,kcuUl-\E;,

kll a \E5,kI2-\E6,kI3-\E7,khome-\E? "*
I I nes#24 ,ml r, pb#9800, pr 0 t -\E I, r ep-\Er%pl%c%p2% %+%cS<. 2 >,
reva\ED,rmcup-\Ev $<8>\Ep\r\n,rmlr-\E\200, rmkx-\Ex,
rmso-\Ed\Ee,rmul a \Eg,rmul-\Eg,sgrO a \EN\200,
smcup-\EU\Ev 8p\Ep\r,lmlr-\EAP,SmkX-\EX,lmso-\EE\ED,
smul-\EG,tabs,ul,vt#8,xenl,

4-83

Entries may continue onto mUltiple lines by placing white
space at the beginning of each line except the first.
Comments may be included on lines beginning with "#."
Capabilities in terminfo are of three types: Boolean
capabilities, which indicate that the terminal has some
particular feature; numeric capabilities giving the size of the
terminal or the size of particular delays; and string
capabilities, which give a sequence that can be used to
perform particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the
Concept has automatic margins (that is, an automatic return
and linefeed when the end of a line is reached) is indicated
by the capability am. Hence the description of the Concept
includes am. Numeric capabilities are followed by the
character '#' and then the value. Thus cols, which indicates
the number of columns the terminal has, gives the value '80'
for the Concept.

1207891

4-84 Special File Formats

terminfo
Finally, string valued capabilities, such as el (clear to end of
line sequence) are given by the two-character code, an ' =,'
and then a string ending at the next following ','. A delay in
milliseconds may appear anywhere in such a capability,
enclosed in $< .. > brackets, as in el=\EK$<3>, and padding
characters are supplied by tputs to provide this delay. The
delay can be either a number (such as '20'), or a number
followed buy ,*, (such as '3*'). ,*, indicates that the padding
required is proportional to the number of lines affected by
the operation, and the amount given is the per-affected-unit
padding required. (In the case of insert character, the factor
is still the number of lines affected. This is always 1 unless
the terminal has xenl and the software uses it.) When ,*, is
specified, it is sometimes useful to give a delay of the form
'3.5' to specify a delay per unit to tenths of milliseconds.
(Only one decimal place is allowed.)

A number of escape sequences are provided in the string
valued capabilities for easy encoding of characters there.
Both \E and \e map to an ESCAPE character, /\x maps to a
control-x for any appropriate x, and the sequences
\n\l\r\t\b\f\s gives a neW-line, linefeed, return, tab,
backspace, formfeed, and space. Other escapes include \/\
for /\, \ \ for \, \, for comma, \: for:, and \0 for null. (\0 will
produce \200, which does not terminate a string but
behaves as a null character on most terminals.) Finally,
characters may be given as three octal digits after a \.

Sometimes individual capabilities must be commented out.
To do this, put a period before the capability name. For
example, see the second ind in the example above.

Special File Formats 4-85

terminfo

Preparing Descriptions
We now outline how to prepare descriptions of terminals.
The most effective way to prepare a terminal description is
by imitating the description of a similar terminal in terminfo
and to build up a description gradually, using partial
descriptions with vi to check that they are correct. Be aware
that a very unusual terminal may expose deficiencies in the
ability of the terminfo file to describe it or bugs in it in vi. To
easily test a new terminal description, you can set the
environment variable TERMINFO to a pathname of a directory
containing the compiled description you are working on and
programs will look there rather than in /usr/lib/terminfo. To
get the padding for insert line right (if the terminal
manufacturer did not document it) a severe test is to edit
/etc/passwd at 9600 baud, delete 16 or so lines from the
middle of the screen, then hit the 'u' key several times
quickly. If the terminal messes up, more padding is usually
needed. A similar test can be used for insert character.

Basic Capabilities
The number of columns on each line for the terminal is given
by the cols numeric capability. If the terminal is a CRT, then
the number of lines on the screen is given by the lines
capability. If the terminal wraps around to the beginning of
the next line when it reaches the right margin, then it should
have the am capability. If the terminal can clear its screen,
leaving the cursor in the home position, then this is given by
the clear string capability. If the terminal overstrikes (rather
than clearing a position when a character is struck over) then
it should have the os capability. If the terminal is a printing
terminal, with no soft copy unit, give it both he and os. (os
applies to storage scope terminals, such as TEKTRONIX
4010 series, as well as hard copy and APL terminals.) If
there is a code to move the cursor to the left edge of the
current row, give this as cr. (Normally this will be carriage
return, control M.) If there is a code to produce an audible
signal (bell, beep, and so on) give this as bel.

1207891

4-86 Special File Formats

terminfo
If there is a code to move the cursor one position to the left
(such as backspace) that capability should be given as cub1.
Similarly, codes to move to the right, up, and down should
be given as cull, cuul, and cudl. These local cursor motions
should not alter the text they pass over (for example, you
would not normally use 'cun =' because the space would
erase the character moved over).

A very important point here is that the local cursor motions
encoded in terminfo are undefined at the left and top edges
of a CRT terminal. Programs should never attempt to
backspace around the left edge, unless bw is given, and
never attempt to go up locally off the top. In order to scroll
text up, a program will go to the bottom left corner of the
screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of
the screen and sends the ri (reverse index) string. The strings
ind and ri are undefined when not on their respective corners
of the screen.

Parameterized versions of the scrolling sequences are indn
and rin, which have the same semantics as ind and ri except
that they take one parameter, and scroll that many lines.
They are also undefined except at the appropriate edge of
the screen.

The am capability tells whether the cursor sticks at the right
edge of the screen when text is output, but this does not
necessarily apply to a cun from the last column. The only
local motion that is defined from the left edge is if bw is
given, then a cubl from the left edge will move to the right
edge of the previous row. If bw is not given, the effect is
undefined. This is useful for drawing a box around the edge
of the screen, for example. If the terminal has switch
selectable automatic margins, the terminfo file usually
assumes that this is on; that is, am. If the terminal has a
command that moves to the first column of the next line,
that command can be given as nel (newline). It does not
matter if the command clears the remainder of the current
line, so if the terminal has no cr and If it may still be possible
to craft a working nel out of one or both of them.

Special File Formats 4-87

terminfo
These capabilities suffice to describe hardcopy and glass-tty
terminals. Thus the model 33 teletype is described as

33 tty33 tty model 33 teletype,
bel. AG, col s # 72, cr. AM , cud 1 • A J, h c, i n d • A J, 0 S ,

while the Lear Siegler ADM-3 is described as

adm3 3 lsi adm3,
am, bel.AG, clear.AZ, cols#80, cr-AM, cub1. AH, cud1. AJ,
I nd.AJ, I I nes #24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in
the terminal are described by a parameterized string
capability, with printf like escapes %x in it (see Section 3). For
example, to address the cursor, the cup capability is given,
using two parameters: the row and column to address to.
(Rows and columns are numbered from zero and refer to the
physical screen visible to the user, not to any unseen
memory.) If the terminal has memory relative cursor
addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes
to manipulate it. Typically a sequence will push one of the
parameters onto the stack and then print it in some format.
Often more complex operations are necessary.

The % encodings have the following meanings:

%%
%d
%2d
X3d
%02d
%03d
%c
%s
%p[1-9]
%P[a-z]
%g[a-z]
%'c'
%{nn}
%+%-%*%/%m

1207891

outputs '%'
print pop() as in printf
print pop() like %2d
print pop() like %3d

as in printf
print pop() gives %c
print pop() gives %s
push i th parm
set variable [a-z] to pop()
get variable [a-z] and push it
char constant c
integer constant nn
arithmetic (%m is mod): push (pop() op pop())

4-88

terminfo

%&%1%/\
%=%>%<
%1%-
%i
%? expr %t
thenpart %e
elsepart %;

Special File Formats

bit operations: push (pop() op popO)
logical operations; push (pop() op pop())
unary operations push (op popO)
add 1 to first two parms (for ANSI terminals)
if-then-else, %e elsepart is optional.
else-if's are possible ala Algol 68:
%? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %;
cj are conditions, bj are bodies.

Binary operations are in postfix form with the operands in the
usual order. That is, to get x-5 you use "%gx%{5}%-".

Consider the HP2645, which, to get to row 3 and column
12, needs to be sent \E&a12c03Y padded for 6
milliseconds. Note that the order of the rows and columns is
inverted here, and that the row and column are printed as
two digits. Thus its cup capability is
cup=6\E&%p2%2dc%p1 %2dY.

The Microterm ACT-IV needs the current row and column
sent preceded by a /\ T , with the row and column simply
encoded in binary, cUP=/\ T%p1 %c%p2%c. Terminals that
use %c need to be able to backspace the cursor (cub1), and
to move the cursor up one line on the screen (cuu1). This is
necessary because it is not always safe to transmit \n /\0
and \r, as the system may change or discard them. (The
library routines dealing with terminfo set tty modes so that
tabs are never expanded, so \t is safe to send. This turns
out to be essential for the Ann Arbor 4080.)

A final example is the LSI AOM-3a, which uses row and
column offset by a blank character, thus
cup=\E=%p1%"%+%c%p2%"%+%c. After sending '\E=',
this pushes the first parameter, pushes the ASCII value for a
space (32), adds them (pushing the sum on the stack in
place of the two previous values) and outputs that value as a
character. Then the same is done for the second parameter.
More complex arithmetic is possible using the stack.

Special File Formats 4-89

terminfo
If the terminal has row or column absolute cursor addressing,
these can be given as single parameter capabilities hpa
(horizontal position absolute) and vpa (vertical position
absolute). Sometimes these are shorter than the more
general two parameter sequence (as with the hp2645) and
can be used in preference to cup. If there are parameterized
local motions (for example, move n spaces to the right) these
can be given as cud, cub, cut, and cuu with a single parameter
indicating how many spaces to move. These are primarily
useful if the terminal does not have cup, such as the
TEKTRONIX 4025.

Cursor Motions
If the terminal has a fast way to home the cursor (to very
upper left corner of screen), then this can be given as home;
similarly a fast way of getting to the lower left-hand corner
can be given as II; This may involve going up with cuu1 from
the home position, but a program should never do this itself
(unless II does) because it can make no assumption about the
effect of moving up from the home position. Note that the
home position is the same as addressing to (0,0): to the top
left corner of the screen, not of memory. (Thus, the \EH
sequence on HP terminals cannot be used for home.)

Area Clears
If the terminal can clear from the current position to the end
of the line, leaving the cursor where it is. this should be
given as el. If the terminal can clear from the current position
to the end of the display, then this should be given as ed. Ed
is only defined from the first column of a line. (Thus, it can
be simulated by a request to delete a large number of lines if
a true ed is not available.)

1207891

4-90 Special File Formats

terminfo

Insert/Delete Line
If the terminal can open a new blank line before the line
where the cursor is, this should be given as il1; this is done
only from the first position of a line. The cursor must then
appear on the newly blank line. If the terminal can delete the
line that the cursor is on, then this should be given as dll;
this is done only from the first position on the line to be
deleted. Versions of il1 and dl1 which take a single parameter
and insert or delete that many lines can be given as il and dl.
If the terminal has a settable scrolling region (like the vt 100),
the command to set this can be described with the csr
capability, which takes two parameters: the top and bottom
lines of the scrolling region. The cursor position is undefined
after using this command. It is possible to get the effect of
insert or delete line using this command; the sc and rc (save
and restore cursor) commands are also useful. Inserting lines
at the top or bottom of the screen can also be done using ri
and ind on many terminals without a true insert/delete line,
which is often faster even on terminals with those features.

If the terminal has the ability to define a window as part of
memory, which all commands affect, it should be given as
the parameterized string wind. The four parameters are the
starting and ending lines in memory and the starting and
ending columns in memory, in that order.

If the terminal can retain display memory above, then the da
capability should be given; if display memory can be retained
below, then db should be given. These indicate that deleting
a line or scrolling may bring non-blank lines up from below or
that scrolling back with ri may bring down non-blank lines.

Special File Formats 4-91

terminfo

Insert/Delete Character
There are two basic kinds of intelligent terminals (with
respect to insert/delete character) that can be described
using terminfo. The most common insert/delete character
operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals,
such as the Concept 100 and the Perkin Elmer Owl, make a
distinction between typed and untyped blanks on the screen,
shifting upon an insert or delete only to an untyped blank,
which is either eliminated, or expanded to two untyped blanks.

You can determine the kind of terminal you have by clearing
the screen and then typing text separated by cursor motions.
Type abc def using local cursor motions (not spaces)
between the abc and the def. Then position the cursor
before the abc and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and
characters to fall off the end, then your terminal does not
distinguish between blanks and untyped positions. If the abc
shifts over to the def, which then move together around the
end of the current line and onto the next as you insert, you
have the second type of terminal; you should give the
capability in, which stands for insert null. While these are two
logically separate attributes (one line vs. multi-line insert
mode, and special treatment of untyped spaces) we have
seen no terminals whose insert mode cannot be described
with the single attribute.

Terminfo can describe both terminals that have an insert
mode, and terminals that send a simple sequence to open a
blank position on the current line. Give as smir the sequence
to get into insert mode. Give as rmir the sequence to leave
insert mode. Now give as ich1 any sequence needed to be
sent just before sending the character to be inserted. Most
terminals with a true insert mode will not give ich1; terminals
that send a sequence to open a screen position should give
it here. (If your terminal has both, insert mode is usually
preferable to ich1. Do not give both unless the terminal

1207891

4-92 Special File Formats

terminfo
actually requires both to be used in combination.) If post
insert padding is needed, give this as a number of
milliseconds in ip (a string option). Any other sequence that
may need to be sent after an insert of a single character may
also be given in ip. If your terminal needs both to be placed
into an 'insert mode' and a special code to precede each
inserted character, then both smir/rmir and ich1 can be given,
and both will be used. The ich capability, with one parameter,
n, will repeat the effects of ich1 n times.

It is occasionally necessary to move around while in insert
mode to delete characters on the same line (for example, if
there is a tab after the insertion position). If your terminal
allows motion while in insert mode you can give the
capability mir to speed up inserting in this case. Omitting mir
will affect only speed. Some terminals (notably Datamedia's)
must not have mir because of the way their insert mode works.

Finally, you can specify dch1 to delete a single character, dch
with one parameter, n, to delete n characters, and delete
mode by giving smdc and rmdc to enter and exit delete mode
(any mode the terminal needs to be placed in for dch1 to work).

A command to erase n characters (equivalent to outputting n
blanks without moving the cursor) can be given as ech with
one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes,
these can be represented in a number of different ways. You
should choose one display form as standout mode,
representing a good, high contrast, easy-on-the-eyes, format
for highlighting error messages and other attention getters. (If
you have a choice, reverse video plus half-bright is good, or
reverse video alone.) The sequences to enter and exit
standout mode are given as smso and rmso, respectively. If
the code to change into or out of standout mode leaves one
or even two blank spaces on the screen, as the TVI 912 and
Teleray 1061 do, then xmc should be given to tell how many
spaces are left.

Special File Formats 4-93

terminfo
Codes to begin underlining and end underlining can be given
as smul and rmul, respectively. If the terminal has a code to
underline the current character and move the cursor one
space to the right, such as the Microterm Mime, this can be
given as uc.

Other capabilities to enter various highlighting modes include
blink (blinking), bold (bold or extra bright), dim (dim or
half_bright), invis (blanking or invisible text), prot (protected),
rev (reverse video), sgrD (turn off all attribute modes), smacs
(enter alternate character set mode), and rmacs (exit alternate
character set mode). Turning on any of these modes singly
mayor may not turn off other modes.

If there is a sequence to set arbitrary combinations of
modes, this should be given as sgr (set attributes), taking 9
parameters. Each parameter is either 0 or 1, as the
corresponding attribute is on or off. The 9 parameters are, in
order: standout, underline, reverse, blink, dim, bold, blank,
protect, alternate character set. Not all modes need be
supported by sgr, only those for which corresponding
separate attribute commands exist.

Terminals with the "magic cookie" glitch (xmc) deposit special
"cookies" when they receive mode-setting sequences, which
affect the display algorithm rather than having extra bits for

- each character. Some terminals, such as the HP2621,
automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout
mode should exit standout mode before moving the cursor
or sending a new-line, unless the msgr capability, asserting
that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an
error quietly (a bell replacement), this can be given as flash; it
must not move the cursor.

1207891

4-94 Special File Formats

terminfo
If the cursor needs to be made more visible than normal
when it is not on the bottom line (to make, for example, a
non-blinking underline into an easier to find block or blinking
underline) give this sequence as evvis. If there is a way to
make the cursor completely invisible, give that as eivis. The
capability enorm should be given, which undoes the effects of
both of these modes.

If the terminal needs to be in a special mode when running a
program that uses these capabilities, the codes to enter and
exit this mode can be given as smeup and rmeup. This arises,
for example, from terminals like the Concept with more than
one page of memory. If the terminal has only memory
relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into
the terminal for cursor addressing to work properly. This is
also used for the TEKTRONIX 4025, where smeup sets the
command character to be the one used by terminfo.

If your terminal correctly generates underlined characters
(with no special codes needed) even though it does not
overstrike, then you should give the capability ul. If
overstrikes are erasable with a blank, then this should be
indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the
keys are pressed, this information can be given. Note that it
is not possible to handle terminals where the keypad only
works in local (this applies, for example, to the unshifted
HP2621 keys). If the keypad can be set to transmit or not
transmit, give these codes as smkx and rmkx. Otherwise the
keypad is assumed to always transmit. The codes sent by
the left arrow, right arrow, up arrow, down arrow, and home
keys can be given as keub1, keuf1, keuu1, keud1, and khome,
respectively. If there are function keys such as fa, f1, ... ,
f10, the codes they send can be given as kfO, kf1, ... , kf1 O. If
these keys have labels other than the default fO through f1 0,
the labels can be given as If 0, 1f1, ... , 1f10. The codes
transmitted by certain other special keys can be

Special File Formats 4-95

terminfo
given: kll (home down), kbs (backspace), ktbc (clear all tabs),
kctab (clear the tab stop in this column), kclr (clear screen or
erase key), kdch1 (delete character), kdl1 (delete line), krmir
(exit insert mode), kel (clear to end of line), ked (clear to end
of screen), kich1 (insert character to enter insert mode), kil1
(insert line), knp (next page), kpp (previous page), kind (scroll
forward/down), kri (scroll backward/up), khts (set a tab stop
in this column). In addition, if the keypad has a 3 by 3 array
of keys including the four arrow keys, the other five keys can
be given as ka1, ka3, kb2, kc1, and kc3. These keys are useful
when the effects of a 3 by 3 directional pad are needed.

Tabs and Initialization
If the terminal has hardware tabs, the command to advance
to the next tab stop can be given as ht (usually control I). A
"backtab" command, which moves leftward to the next tab
stop, can be given as cbt. By convention, if the teletype
modes indicate that tabs are being expanded by the
computer rather than being sent to the terminal, programs
should not use ht or cbt even if they are present, since the
user may not have the tab stops properly set. If the terminal
has hardware tabs that are initially set every n spaces when
the terminal is powered up, the numeric parameter it is given,
showing the number of spaces the tabs are set to. This is
normally used by the tset command to determine whether to
set the mode for hardware tab expansion, and whether to
set the tab stops. If the terminal has tab stops that can be
saved in nonvolatile memory, the terminfo description can
assume that they are properly set.

Other capabilities include is1, is2 and is3, initialization strings
for the terminal; iprog, the path name of a program to be run
to initialize the terminal; and if, the name of a file containing
long initialization strings. These strings are expected to set
the terminal into modes consistent with the rest of the
terminfo description. They are normally sent to the terminal,
by the tset program, each time the user logs in. They will be
printed in the following order: is1, is2; setting tabs using tbc
and hts; if; running the program iprog; and finally is. Most
initialization is done with is2. Special terminal modes can be
set up without duplicating strings by putting the common

1207891

4-96 Special File Formats

terminfo
sequences in is2 and special cases in isl and is3. A pair of
sequences that does a harder reset from a totally unknown
state can be analogously given as rsl, rs2, rf, and rsJ,
analogous to is2 and if. These strings are output by the reset
program, which is used when the terminal gets into a
wedged state. Commands are normally placed in rs2 and rf
only if they produce annoying effects on the screen and are
not necessary when logging in. For example, the command
to set the vt 100 into aD-column mode would normally be
part of is2, but it causes an annoying glitch of the screen and
is not normally needed since the terminal is usually already in
ao column mode.

If there are commands to set and clear tab stops, they can
be given as tbc (clear all tab stops) and hts (set a tab stop in
the current column of every row). If a more complex
sequence is needed to set the tabs than can be described by
this, the sequence can be placed in is2 or if.

Delays
Certain capabilities control padding in the teletype driver.
These are primarily needed by hard copy terminals, and are
used by the tset program to set teletype modes
appropriately. Delays embedded in the capabilities cr, ind,
cubl, fI, and tab will cause the appropriate delay bits to be set
in the teletype driver. If pb (padding baud rate) is given, these
values can be ignored at baud rates below the value of pb.

Miscellaneous
If the terminal requires other than null (zero) character as a
pad, then this can be given as pad. Only the first character of
the pad string is used.

Special File Formats 4-97

terminfo
If the terminal has an extra "status line" that is not normally
used by software, this fact can be indicated. If the status line
is viewed as an extra line below the bottom line, into which
one can cursor address normally (such as the Heathkit h19's
25th line, or the 24th line of a vt100 that is set to a 23-line
scrolling region), the capability hs should be given. Special
strings to go to the beginning of the status line and to return
from the status line can be given as lsi and fsl. (fsl must leave
the cursor position in the same place it was before tsl. If
necessary, the sc and rc strings can be included in tsl and fsl
to get this effect.) The parameter tsl takes one parameter,
which is the column number of the status line the cursor is to
be moved to. If escape sequences and other special
commands, such as tab, work while in the status line, the
flag eslok can be given. A string that turns off the status line
(or otherwise erases its contents) should be given as dsl. If
the terminal has commands to save and restore the position
of the cursor, give them as sc and rc. The status is normally
assumed to be the same width as the rest of the screen
(cols). If the status line is a different width (possibly because
the terminal does not allow an entire line to be loaded), the
width, in columns, can be indicated with the numeric
parameter wsl.

If the terminal can move up or down half a line, this can be
indicated with hu (half-line up) and hd (half-line down). This is
primarily useful for superscripts and subscripts on hardcopy
terminals. If a hardcopy terminal can eject to the next page
(form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given
number of times (to save time transmitting a large number of
identical characters), this can be indicated with the
parameterized string rep. The first parameter is the character
to be repeated and the second is the number of times to
repeat it. Thus, tparm (repeaLchar, 'x', 10) is the same as
.. xxxxxxxxxx' .

1207891

4-98 Special File Formats

terminfo
If the terminal has a settable command character, such as
the TEKTRONIX 4025, this can be indicated with cmdch. A
prototype command character is chosen which is used in all
capabilities. This character is given in the cmdch capability to
identify it. The following convention is supported on CENTIX:
The environment is to be searched for a CC variable, and if
found, all occurrences of the prototype character are
replaced with the character in the environment variable.

Terminal descriptions that do not represent a specific kind of
known terminal, such as switch, dialup, patch, and network,
should include the gn (generic) capability so that programs
can complain that they do not know how to talk to the
terminal. (This capability does not apply to virtual terminal
descriptions for which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control,
give xon. Padding information should still be included so that
routines can make better decisions about costs, but actual
characters will not be transmitted.

If the terminal has a "meta key" that acts as a shift key,
setting the 8th bit of any character transmitted, this fact can
be indicated with km. Otherwise, software will assume that
the 8th bit is parity and it will usually be cleared. If strings
exist to turn this "meta mode" on and off, they can be given
as smm and rmm.

If the terminal has more lines of memory than will fit on the
screen at once, the number of lines of memory can be
indicated with 1m. A value of Im#O indicates that the number
of lines is not fixed, but that there is still more memory than
fits on the screen.

If the terminal is one of those supported by the CENTIX
virtual terminal protoco\' the terminal number can be given as vt.

Special File Formats 4-99

terminfo
Media copy strings that control an auxiliary printer connected
to the terminal can be given as meO: print the contents of the
screen; me4: turn off the printer; and rne5: turn on the printer.
When the printer is on, all text sent to the terminal will be
sent to the printer. It is undefined whether the text is also
displayed on the terminal screen when the printer is on. A
variation me5p takes one parameter and leaves the printer on
for as many characters as the value of the parameter, then
turns the printer off. The parameter should not exceed 255.
All text, including me4, is transparently passed to the printer
while an me5p is in effect.

Strings to program function keys can be given as pfkey, pfloe,
and pfx. Each of these strings takes two parameters: the
function key number to program (from 0 to 10) and the
string to program it with. Function key numbers out of this
range may program undefined keys in a terminal dependent
manner. The difference between the capabilities is that pfkey
causes pressing the given key to be the same as the user
typing the given string; pfloe causes the string to be executed
by the terminal in local; and pfx causes the string to be
transmitted to the computer.

Similar Terminals

If there are two very similar terminals, one can be defined as
being just like the other with certain exceptions. The string
capability use can be given with the name of the similar
terminal. The capabilities given before use override those in
the terminal type invoked by use. A capability can be
cancelled by placing xx@ to the left of the capability
definition, where xx is the capability. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx
capabilities, and hence does not turn on the function key
labels when in visual mode. This is useful for different modes
for a terminal, or for different user preferences.

1207891

4-100 Special File Formats

terminfo

Files
/usr /Iib/terminfo/? /* - files containing terminal
descriptions

See Also
curses, printf in Section 3; term in Section 5.

Special File Formats

utmp

Name
utmp, wtmp - utmp and wtmp entry formats

Format
#include <sys/types.h>
#include <utmp.h>

Description

4-101

These files hold user and accounting information for such
commands as who, write, and login. Each Application
Processor has its own utmp and wtmp files; the two digit AP
number is appended to the file name.

The files have the following structure as defined by
<utmp.h>:

"de I I ne
"de I I ne
"del I ne

UTMP_FILE
WTMP_FILE
uI_nama

" letc/utmp"
" letc/wlmp"
u t_use r

s t ruc t u tmp
char ut_user(8); I*User login name*1
char ut_ld[.); 1:/etc/lnlttab Id*1
c h a rut _II n e [1 2); I * dey Ice n am: (c 0 n sol e , I n x x) * I
short ut_pld; I process Id I
short ut_type; I*type 01 entrY*1
struct exit_status {

short e_termlnetlon; I*Proc. termlnat. status*1
short e_exlt; <process exit status*1

u t _e x It; 1* The e x Its tat us 0 I apr ~ c e s s
*marked as OEAO_PROC;SS. I

tlme_t ut_tlme; I time entry was made I
} ;

'*Oeflnltlons lor uI_type*,
#dellne EMPTY 0
#dellne RUN_LVL 1

#deflne BOOT_TIME
#deflne OLD_TIME
#dellne NEW_TIME

2

3

•
#dellne INIT_PROCESS
#dellne LOGIN_PROCESS

5 ,:pr~cess !pawned by "Inlt"*'
,A getty process waiting
Ior logln,

1207891

4-102

utmp
7

8

9

Special File Formats

'*A user process*, #dellne USER_PROCESS
#dellne DEAD_PROCESS
#dellne ACCOUNTING
Ndellne UTMAXTYPE ACCOUNTING ,*Largast legal value

01 uI_type,

,* S p e c I a I sIr I n g s 0 rIo r rna I sus e din I he" u t _" n e" ": I d *,
,. when accounting lor somelhlng other Ihan a process !
,. No sIring lor the ut_line."eld can be more Ihan 11 ,
,* chars + a NULL In length ,
Ndellne RUNLVL_MSG "run-level%C"
Ndellne BOOT_MSG "system boot
Ndellne OTIME_MSG :Old lime:
Ndellne NTIME_MSG new time

Files
/usr /include/utmp. h
/etc/utmp??
/etc/wtmp??

See Also
login, who, write in Section 1; getut in Section 3.

Section 5

Miscellaneous Facilities

intro

Name
intro - introduction to miscellany

Description

5-1

This section describes miscellaneous facilities such as macro
packages, character set tables, and so on.

1201891

5-2 Miscellaneous Facilities

.
environ

Name
environ - user environment

Description
An array of strings called the H environment" is made
available by the exec system call when a process begins. By
convention, these strings have the form Hname=value." The
following names are used by various commands.

PATH The sequence of directory prefixes that sh, time, nice,
nohup, and so on, apply in searching for a file known by an
incomplete path name. The prefixes are separated by colons(:).
login sets PATH-:/bin:/usr/bin.

HOME Name of the user's login directory, set by login from the
password file passwd.

TERM The kind of terminal for which output is to be prepared. This
information is used by commands such as mm, which may
exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz where xxx is
standard local time zone abbreviation, n is the difference in
hours from GMT, and zzz is the abbreviation for the
daylight-saving local time zone, if any; for example,
EST5EDT.

Further names may be placed in the environment by the
export command and Hname=value" arguments in sh, or by
exec. It is unwise to conflict with certain shell variables that
are frequently exported by .profile files: MAIL, PS1, PS2, IFS.

See Also
env, login, sh in Section 1; exec in Section 2; getenv in
Section 3; profile in Section 4; term.

Miscellaneous Facilities 5-3

lentl

Name
fcntl - file control options

Format
#Include <fcntl.h>

Description
The fcntl function provides for control over open files. The
include file describes requests and arguments to fcntl and open
(see Section 2).

,·Flag values accessible to
,·(The first three can only
#deflne O_RDONLY 0
#deflne O_WRONLY 1
#deflne O_RDWR 2
#deflne O_NDELAY 04
#deflne O_APPEND 010

#deflne O_SYNC 020
#deflne O_DIRECT 020000
#deflne O_NODIRECT 040000

open and fcntl·,
be set by open)·,

j·Non-blocklng 1,0·,
'·append (writes guaranteed·,
,·at the end)·,
,·synchronous write option·,
,·perform direct 1,0·,

,"Flag values accessible only to open·,
#deflne O_CREAT

#deflne O-TRUNC
#deflne O_EXCL

,·fcntl requests·,
#deflne F_DUPFD
#deflne F_GETFD
#deflne F_SETFD
#deflne F_GETFL
#deflne F_SETFL
#deflne F_GETLK
#deflne F_SETLK

#deflne F_SETLKW

1207891

00400

01000
02000

0
1
2
3
4
5
6

7

'·open with file create·,
'·uses third open arg)·,
,·open with truncation·,
,·excluslve open·,

,·Dupllcate flldes",
,·Get flldes flags",
,·Set flldes flags·,
,·Get file flags·,
,·Set file flags·,
'"Get blocking file locks",
,·Set or clear fl Ie locks·,
,"and fal I on busy",
,·Set or clear fl Ie locks",
,·and walt on busy"'

5-4 Miscellaneous Facilities

tentl
'"fj Ie segment locking control structure",
struct flock {

short
sho rt
long
long
j n t

I_type;
I_whence;
I_star t ;
I_I en;
I_pld;

,"If 0 then unti I EOF",
,"returned with F_GETLK",

,"fl Ie segment locking types",
#deflne F_RDLCK 01
#deflne F_WRLCK 02
#deflne F_UNLCK 03

See Also
fentl, open in Section 2.

'"Read lock",
,"Write lock",
, " R emo vel 0 C k s " ,

Miscellaneous Facilities 5-5

math

Name
math - math functions and constants

Format
#Include <math.h>

Description
This file contains declarations of all the functions in the Math
Library, as well as various functions in the C Library (see
Section 3, Library Functions) that return floating-point values.

It defines the structure and constants used by the math err
error-handling mechanisms, including the following constant
used as an error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user
convenience:

M_E

M_lOG2E

M_lOG10E

UN2

M-lNl0

MYI

The base of natural logarithms (e).

The base-210garithm of e.

The base-l 0 logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

The ratio of the circumference of a circle to its diameter.
(There are also several fractions of its reciprocal and its
square root.)

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent
"constants," see the description of the <values.h> headerfile.

1207891

5-6

math

Files
/usr/include/math.h

See Also
intro, matherr in Section 3; values.

Miscellaneous Facilities

Miscellaneous Facilities 5-7

modemcap

Name
modemcap - smart modem capability data base

Format
Ius r I I I b I u u c p I mo d emc a p

Description
Modemcap describes the call placing protocol of smart
modems. CENTIX uucp and dial accept a reference to a
modemcap entry in place of an automatic call unit reference
in /urs/lib/uucp/L-devices. Each entry describes a single
modem in a specific configuration.

Modemcap is a text file. Lines that begin with a pound sign
(#) are ignored. Other lines make up descriptions.

Each description begins on a new line. The beginning of the
description is a list of its names, separated by vertical
bars(I). Any of the names, which must not begin with cua,
can be used in place of the call unit name in
/usr/lib/uucp/L-devices.

The rest of the description is a list of capabilities, separated
by colons(:). If a description extends over more than one line,
each line except the last must end with a backslash(\). (The
continuation is normally entered as
colon-backslash-newline-tab-colon: this produces a single
invalid capability, which is ignored.) Here is an example:

#blzcomp 1012 - option switch 9 down
b z I biz c omp biz c omp 1 0 1 2 :
:al-NO ANSWER:b1-NO DIAL TONE:b2-NO ANSWER:c1-1:c2-2:\
:c7-7:d1#1:d5#5:eh-\r:ph-\02D:ps-\02:pw-72:\
:sa-A:sq-Q:sv-V:sx-X:sz-Z:wp-\r:\
:pl-szd5wpd1svwpsqwpsxwpd1phwpc7b1wpc2a1c1b2d1:

1207891

5-8 Miscellaneous Facilities

modemcap
Each capability has three parts:

1 The two-character name of the capability.

2 A pound sign (#) or equal sign (=). A pound sign indicates
a numeric capability. An equal sign indicates a string
capability.

3 The capability value. For a numeric capability, the value is
the number that immediately follows the pound sign. For a
string capability, the value is the string of characters,
including blanks, between the equal sign and the colon that
ends the capability. (If a colon is part of the value, it must
be expressed as an octal sequence; see below.) In a string
capability, the following sequences stand for single
characters:

\xxx (where xxx is one to three octal digits) The character
whose octal value is xxx.

\072 Colon (:).
\200 Null (\000 doesn't work).
\E Escape (\033).
\n Newline (\012).
\r Return (\015).
\t Tab (\011).
\b Backspace (\OlD).
\f Formfeed (\014).
"x Control-x.

There are four kinds of capabilities: the piace call capability,
basic features capabilities, the send phone number capability,
and send/receive capabilities. Only the place call capability is
mandatory.

Place Call Capability

pi String capability. Controls the use of the other capabilities. The
value of the string is a procedure made up of the other
capabilities. A communication program works through pI's value,
using each capability as it is encountered; a limited control of
execution flow is provided by some special capabilities.

Miscellaneous Facilities 5-9

modemcap

Basic Features Capabilities
Basic features capabilities specify strings used to command
basic features of the modem. These capabilities never appear
in the pi value, but are implied by other capabilities. The
capability descriptions indicate which capabilities use basic
features capabilities and what happens when basic features
capabilities are undefined.

ps Primary command start; string capability. The ps capability
specifies the characters that precede modem commands, if
required. Used by 5X capability.

PI Primary command end; string capability. The pI capability specifies
the characters that must follow modem commands, if required.
Used by sx capability.

eh End phone number; string capability. Used by ph capability.

pa Pause in phone number; string capability. Used by ph capability.

pw Pause in phone number and wait for dial tone; string capability.
Used by ph capability.

Send Phone Number Capability

ph String capability. In a single write system call, send a string with
three parts:

1207891

1 The ph capability's own value.

2 The phone number as ASCII digits. Whenever the modem should
pause, send the value of the pa capability, if defined. Whenever
the modem should pause and wait for a dial tone, send the
value of the pw capability, if defined.

3 The value of the Ih capability, if defined.

5-10 Miscellaneous Facilities

modemcap

Send/Receive Capabilities
Send/receive capabilities are different from other capabilities
in their naming convention. The first character of the
capability name tells the kind of capability. The second
character of the name is chosen arbitrarily from the
lowercase letters and digits and identifies the particular
capability from others of the same kind.

tx String capability. Send the value to the modem.

sx String capability. In a single write, send a command to the
modem. The command has three parts:

The value of the ps capability, if defined.

2 The sx's capability's own value.

3 The value of the pe capability, if defined.

dx Numeric capability. Delay for the number of seconds specified in the value.

wx String capability; value must be a single character. Wisk through input
from modem until the value is read. Put input, up to but not including
the terminating character, in the wisk buffer, replacing the previous contents.

ex String capability. Compare value with contents of the wisk buffer. Set
the comparison flag to EQUAL if they match, NOT_EQUAL otherwise. Do
not modify the comparison flag until you execute another ex.

mx Numeric capability. Skip on EQUAL. If the comparison flag is EQUAL, the
next n instructions in the pi value are skipped, where n is the value of
mx.

nx Numeric capability. Skip on NON...EQUAL. If the comparison flag is
NOT_EQUAL, the next n instructions in the pi value are skipped, where
n is the value of nx.

ax String capability. Abort on EQUAL. If the comparison flag is EQUAL,
abort the phone call. It debug output is specified, print the value of the
ax capability.

bx String capability. Abort on NOT_EQUAL. If the comparison flag is
NOT_EQUAL, abort the phone call. If debug output is specified, print the
value of the bx capability.

Miscellaneous Facilities 5-11

modemcap

Example
The Bizcomp 1 01 2 example above assumes that the
modem's switch 9 (configuration: TERMINAL/COMPUTER) is
down (COMPUTER). With this setting, the modem has the
following characteristics:

o Commands to the modem must be preceded by an STX
(\002) and followed by a CR (\r). This prevents normal
data transmissions from being taken for modem
commands.

o The modem's messages to the computer are terse. The
following two-character sequences are diagnostics.

1 CR connection made
2 CR no connection or no answer
7 CR dial tone detected

A CR is a command prompt. A communication program
that uses the Bizcom 1 01 2 modemcap entry follows the
following procedure:

(szd5wpd1) Send an STX-Z-CR, resetting the modem.
Wait five seconds, then read the resulting CR. Wait
another one second.

2 (svwpsqwpsxwpd1) Send an STX-V-CR (select tone
dialing); read the resulting CR. Send an STX-Q-CR (toggle
busy detection); read the resulting CR. Send an
STX-X-CR (select transparent data mode); read the
resulting CR. Wait one second.

3 (ph) Send an STX-D, then the phone number. The phone
number should include a colon (:) whenever the modem
should pause to listen for another dial tone. The
description lacks a pa capability, so there is no way to
pause without waiting for a dial tone.

4 (wpc7b1) Read until the next CR. If the input isn't "7,"
abort with the debug message "NO DIAL TONE."

1207891

5-12 Miscellaneous Facilities

modemcap
5 (wpc2a 1 c 1 b2) Read until the next CR. If the input is "2,"

abort with the debug message "NO ANSWER."
Otherwise, if the input isn't "1," abort with the debug
message "NO ANSWER."

6 (d1) Wait one second. The connection is established.

See Also
dial in Section 3; uucp in Section 1.

Miscellaneous Facilities

pilf

Name
pilf, dio - performance improvement in large files and
direct I/O

Description

5-13

A PILF file system supports the input or output of large
amounts of data with a single physical read or write. This
requires special strategies for I/O; when standard I/O
operations are applied to a PILF file system, it behaves like a
standard 1 K file system. A PILF file system is created with
the -P option of mkfs (see Section 1).

A file on a PILF file system is allocated by clusters, each of
which is equal in size and consists of contiguous blocks.
Performance improvement is seen when the 010 (Direct
Input/Output) mechanism is used and no read or write
crosses a cluster boundary.

A field in the i-node determines the file's cluster size. A
cluster consists of 2c 1 K blocks, where c is the value in the
i-node. The process that creates a PILF file specifies its
cluster size using the sysloeal system call; if a process has not
yet specified a cluster size, the default cluster size, in the
superblock, is used. A file's cluster size is determined when
it is created; it cannot be changed.

010 transfers data directly between the process's address
space and the disk, bypassing the kernel buffer cache. It is
specifically meant to be used on PILF files. 010 is
automatically used for reads or writes of multiples of 1 K to
regular files that are greater than 2K and word aligned.

Caution
A buffer used for 010 must be on an even address. This is
the same degree of alignment as a short.

See Also
ep, mkfs, fsek, fsdb in Section 1; fentl, fork, open, syslocal in
Section 2; fs, inode in Section 4; fentl.

1207891

5-14

prof

Name
prof - profile within a function

Format
#de fine MARK
#include <prof.h>
void MARK (name)

Description

Miscellaneous Facilities

MARK will introduce a mark called name that will be treated
the same as a function entry point. Execution of the mark will
add to a counter for that mark, and program-counter time
spent will be accounted to the immediately preceding mark,
or to the function if there are no preceding marks within the
active function.

Name may be any combination of up to six letters, numbers
or underscores. Each name in a single compilation must be
unique, but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be
defined before the header file <prof.h> is included. This may
be defined by a preprocessor directive as in the synopsis, or
by a command line argument, such as:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may
be left in the source files containing them and will be ignored.

Miscellaneous Facilities 5-15

prof

Example
In this example, marks can be used to determine how much
time is spent in each loop. Unless this example is compiled
with MARK defined on the command line, the marks are ignored.

#include <prof.h>

fool
{

in t i. j;

MARK(I oop1);
for (I - 0; u < 2000; 1++) {

MARK(loop2);
for (j - 0; j <2000; j++) {

See Also
prof in Section 1; profil in Section 2; monitor in Section 3.

1207891

5-16 Miscellaneous Facilities

regexp

Name
regexp - regular expression compile and match routines

Format
#deflne INIT <declarations>
#deflne GETC() <getc code>
#deflne PEEKC() <peekc code>
#deflne UNGETC(c) <ungetc code>
#deflne RETURN(polnter) <return code>
#deflne ERROR(val) <error code>

#Include <regexp.h>

c h a r * c omp I I e (I n s t r I n g, ex p b u f, end b u f, eo f)
char *Instrlng, "expbuf, "endbuf;
Int eof;

Int step (string, expbuf)
char *strlng, "expbuf;

extern char *loc1, *loc2, "toes;

extern Int elrcf, sed, nbra;

Description
This page describes general-purpose regular expression
matching routines in the form of ed, defined in
/usr/include/regexp.h. Programs such as ed, sed, grep, bs, expr,
and so on, which perform regular expression matching, use
this source file. In this way, only this file need be changed to
maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs
that include this file must have the following five macros
declared before the "#include <regexp.h>" statement. These
macros are used by the compile routine.

Miscellaneous Facilities

regexp

GETC()

PEEKC()

UNGETC(c)

RETURN (pointen

ERROR(va~

5-17

Return the value of the next character in the regular
expression pattern. Successive calls to GETC() should return
successive characters of the regular expression.

Return the next character in the regular expression.
Successive calls to PEEKC() should return the same
character (which should also be the next character returned
by GETC()).

Cause the argument c to be returned by the next call to
GETC() (and PEEKC()). No more that one character of
push back is ever needed and this character is guaranteed to
be the last character read by GETC(). The value of the
macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine.
The value of the argument pointer is a pointer to the
character after the last character of the compiled regular
expression. This is useful to programs that have memory
allocation to manage.

This is the abnormal return from the compile routine. The
argument val is an error number (see Table 5-1, below, for
meanings). This call should never return.

Table 5-1 Errors and Meanings

Error Meaning

11 . Range endpOint too large.
16 Bad number.
25 ,digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than 2 numbers given in \ { \}.
45 } expacted after \.
46 First number exceeds second in \ { \}.
49 [] imbalance.
50 Regular expression overflow.

1207891

5-1.8 Miscellaneous Facilities

regexp
The syntax of the compile routine is as follows

compile (instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the
compile routine but is useful for programs that pass down
different pointers to input characters. It is sometimes used in
the INIT declaration (see below). Programs that call functions
to input characters or have characters in an external array
can pass down a value of ((char *) 0) for this parameter.

The next parameter, expbuf, is a character pointer. It points
to the place where the compiled regular expression will be
placed.

The parameter endbuf is one more than the highest address
where the compiled regular expression may be placed. If the
compiled expression cannot fit in (endbug-expbuf) bytes, a
call to ERROR(50) is made.

The parameter eof is the character that marks the end of the
regular expression. For example, in ed, this character is
usually a I.
Each program that includes this file must have a #define
statement for INIT. This definition will be placed right after
the declaration for the function compile and the opening
brace({). It is used for dependent declarations and
initializations. Most often it is used to set a register variable
to point to the beginning of the regular expression so that
this register variable can be used in the declarations for
GETCO, PEEKCO, and UNGETC(). Otherwise, it can be used to
declare external variables that might be used by GETCO,
PEEKC(), and UNGETC(). See the example below of the
declarations taken from the grep shell command.

Miscellaneous Facilities

regexp
There are other functions in this file that perform actual
regular expression matching, one of which is the function
step. The call to step is as follows:

step(string, expbuf)

5-19

The first parameter to step is a pointer to a string of
characters to be checked for a match. This string should be
null terminated.

The second parameter, expbuf, is the compiled regular
expression that was obtained by a call of the function compile.

The function step returns non-zero if the given string matches
the regular expression, and zero if the expressions do not
match. If there is a match, two external character pointers
are set as a side effect to the call to step. The variable set in
step is lac 1. This is a pointer to the first character that
matched the regular expression. The variable loe2, which is
set by the function advance, points to the character after the
last character that matches the regular expression. Thus if
the regular expression matches the entire line, lac 1 will point
to the first character of string and loe2 will point to the null
at the end of string.

Step uses the external variable eiref which is set by compile if
the regular expression begins with ". If this is set, step will try
to match the regular expression to the beginning of the string
only. If more than one regular expression is to be compiled
before the first is executed, the value of eiref should be_
saved for each compiled expression, and eiref should be set
to that saved value before each call to step.

The function advance is called from step with the same
arguments as step. The purpose of step is to step through the
string argument and call advance until advance returns non-zero,
indicating a match, or until the end of string is reached. If you
want to constrain string to the beginning of the line in all
cases, step need not be called; simply call advance.

1207891

5-20 Miscellaneous Facilities

regexp
When advance encounters a * or \ { \} sequence in the regular
expression, it will advance its pointer to the string to be
matched as far as possible and will recursively call itself,
trying to match the rest of the string to the rest of the
regular expression. As long as there is no match, advance will
back up along the string until it finds a match or reaches the
point in the string that initially matched the * or \ { \}. It is
sometimes desirable to stop this backing up before the initial
point in the string is reached. ·If the external character pointer
loes is equal to the point in the string at some time during the
backing up process, advance will break out of the loop that
backs up and will return zero. This is used by ed and sed for
substitutions done globally (not just the first occurrence, but
the whole line) so, for example, expressions like s/y* / /g do
not loop forever.

The additional external variables sed and nbra are used for
special purposes.

Examples
The following is an example of how the regular expression
macros and calls look from the grep command:

#deflne IN IT register char ·sp • Instrlng;
#deflne GETC() (*sp++)
#deflne PEEKC() (* s p)
#deflne UNGETC(c) (- s p)
#deflne RETURN(c) return;
#deflne ERROR(c) regerr{)

#Include <regexp.h>

(vOid) compile(*argv, expbuf. &expbuf[ESIZEJ,'\O');

If (step(1 inebuf, expbuf»
succeed();

Miscellaneous Facilities 5-21

regexp

Files
/usr /include/regexp. h

Known Problems
The handling of eiref is kludgy.

The actual code is probably easier to understand than this
manual page.

See Also
bs, ed, expr, grep, sed in Section 1.

1207891

5-22 Miscellaneous Facilities

stat

Name
stat - data returned by stat system call

Format
#Include <sys,types.h>
#Include <sys,stat.h>

Description
The system calls stat and 'stat return data, the structure of
which is defined by this include file. The encoding of the field
stJrlode is defined in this file also.

,*
·Structure of the relult of stat . ,
struct stat
{

dev_t I t_dev:
Ino_t It_lno;
ulhort It.J11ode;
short I t_n I Ink;
ulhort I t_u I d;
ushort I t_g I d:
dev_t I t_rdev;
of f_t s t_s I %e;
t Ime_t s t_a time;
t Ime_t I t_mt Ime;
t Ime_t s t_c time;

J ;

#de fine S_I FMT 0170000 ,*type of f I Ie * ,
#de fI ne S_I FDI R 0040000 '*dl rectory·'
#deflne S_I FCHR 0020000 ,*character spec i a I .,
#deflne S_IFBLK 0060000 ,·block special·,
#deflne S_I FREG 0100000 ,*regular·,
#deflne S_I FI FO 0010000 ,·flfo·,
#deflne S_I SUI 0 04000 '·58 t user Id on execution·,

#deflne S_I SGI 0 02000 '·58 t group Id on executione,

#de fI ne S_ISVTX 01000 ,·save Iwapped text aft. r us. e
,

Miscellaneous Facilities

stat
#deflne S_IREAD
#deflne S_IWRITE
#def Ine S_IEXEC

Files

00400
00200
00100

/usr /include/ sys/types. h

/usr /include/sys/ stat. h

See Also
stat in Section 2; types.

1207891

5-23

,·read permission. owner·'
,·write permission. owner·,
,·execute,search permission.

·owner·,

5-24 Miscellaneous Facilities

term

Name
term - conventional names for terminals

Description
The names shown in Table 5-2 are used by certain shell
commands (for example, tabs is maintained as part of the
shell environment) in the variable $TERM:

Table 5-2 Terminal Names

Name

pt
gt
freedom
1520
1620
1620-12
2621
2631
2631-c
2631-e
2640
2645
300
300-12
300s
382
300s-12
3045
33
37
40-2
40-4
4540
3270
4000a
4014
43
450
450-12
735

Description

Burroughs/Convergent Technologies Programmable Terminal
Burroughs/Convergent Technologies Graphics Terminal
Liberty Freedom 100
Datamedia 1520
DIABLO 1620 and others using the Hy T ype II printer
Same as above, in 12-pitch mode
Hewlett-Packard HP2621 series
Hewlett-Packard 2631 line printer
Hewlett-Packard 2631 line printer - compressed mode
Hewlett-Packard 2631 line printer - expanded mode
Hewlett-Packard 2640 series
Hewlett-Packard HP264n series (other than the 2640 series)
DASI/DTC/GSI 300 and others using the HyType I printer
Same as above, in 12-pitch mode
DASI/DTC/GSI 300s
DTC 382
Same as above two entries, in 12-pitch mode
Datamedia 3045
TELETYPE Model 33 KSR
TELETYPE Model 37 KSR
TELETYPE Model 40/2
TELETYPE Model 40/4
TELETYPE MOdel 4540
IBM Model 3270
Trendata 4000a
TEKTRONIX 4014
TELETYPE Model 43 KSR
DASI 450 (same as Diablo 1620)
Same as above, in 12-pitch mode
Texas Instruments TI735 and TI725

Miscellaneous Facilities 5-25

term

Name

745
dumb

sync

hp
Ip
tn1200
tn300

Description

Texas Instruments TI745
Generic name for terminals that lack reverse line-feed and other
special escape sequences; likely to work when the real terminal
type is not known to the program
Generic name for synchronous TELETYPE 4540-compatible
terminals
Hewlett-Packard (same as 2645)
Generic name for a line printer
User Electric T ermiNet 1200
User Electric T ermiNet 300

Up to 8 characters, chosen from -, a-z, and/or 0-9, make up
a basic terminal name. Terminal sub-models and operational
modes are distinguished by suffixes beginning with a -.
Names should generally be based on original vendor, rather
than local distributors. A terminal acquired from one vendor
should not have more than one distinct basic name.

Commands whose behavior depends on the type of terminal
should accept arguments of the form -Tterm where term is
one of the names given above; if no such argument is
present, such commands should obtain the terminal type
from the environment variable $TERM, which, in turn, should
contain term.

See Also
mm, sh, stty, tabs in Section 1; profile in Section 4; environ.

1207891

5-26 Miscellaneous Facilities

types

Name
types - primitive system data types

Format
#include <sys/types.h>

Description
The data types defined in the include file are used in CENTIX
code; some data of these types are accessible to user code:

typedef struct { in t r[1);}· physadr;
ty~edef long daddr_t;
typedef char· caddr_t;
typedef unsigned In t ulnt;
typedef unsigned s ho r t ushort;
typedef ushort I no_t;
typedef s ho r t en t_t ;
typedef long t Ime_t;
typedef Int label_t[13);
typedef short dev_t;
typedef long off _t;
typedef long paddr_t;
typedef long key_t;

The form daddLt is used for disk addresses except in an
i-node on disk. see fs in Section 4. Times are encoded in
seconds since 00:00:00 GMT, January 1, 1970. The major
and minor parts of a device code specify kind and unit
number of a device. Offsets are measured in bytes from the
beginning of a file. The labeLt variables are used to save the
processor state while another process is running.

See Also
fs in Section 4.

Miscellaneous Facilities 5-27

values

Name
values - machine-dependent values

Format
#include <values.h>

Description
This file contains a set of manifest constants, conditionally
defined for particular processor architectures.

The model assumed for integers is binary representation
(one's or two's complement), where the sign is represented
by the value of the high-order bit.

BITS(type)

HIBITS

HIBllL

HIBITI

MAXSHORT

MAXLONG

MAXINT

MAXFLOAT,
IN_MAXFLOAT

MAXDOUBLE,
lrLMAXDOUBlE

1207891

The number of bits in a specified type (for example, int).

The value of a short integer with only the high-order bit set
(in most implementations, Ox8000).

The value of a long integer with only the high-order bit set
(in most implementations, Ox80000000).

The value of a regular integer with only the high-order bit
set (usually the same as HIBITS or HIBITl).

The maximum value of a signed short integer (in most
implementations, Ox7FFF == 32767).

The maximum value of a signed long integer (in most
implementations, Ox7FFFFFFF = 2147483647).

The maximum value of a signed regular integer (usually the
same as MAXSHORT or MAXlONG).

The maximum value of a single-precision floating-point
number, and its natural logarithm.

The maximum value of a double-precision floating-point
number, and its natural logarithm.

5-28

values

MINFlOAT,
IN_MINFlOAT

MINDOUBlE,
IN_MINDOUBlE

FSIGNIF

DSIGNIF

Files

Miscellaneous Facilities

The minimum positive value of a single-precision
floating-point number, and its natural logarithm.

The minimum positive value of a double-precision
floating-point number, and its natural logarithm.

The number of significant bits in the mantissa of a
single-precision floating-point number.

The number of significant bits in the mantissa of a
double-precision floating-point number.

jusr jinclude/values.h

See Also
intro in Section3; math.

Miscellaneous Facilities

varargs

Name
varargs - handle variable argument list

Format
#Include <varargs.h>

void va_start(pvar)
va_list pvar;

type va_arg(pvar. type)
va_list pvar;

void va_end(pvar)
va_list pvar;

Description

5-29

This set of macros allows portable procedures that accept
variable argument lists to be written. Routines that have
variable argument lists (such as the printf library function) but
do not use varargs are inherently nonportable, as different
machines use different argument-passing conventions.

va_a list is used as the parameter list in a function header.

va_del is a declaration for va_alist. No semicolon should
follow va_dcl.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by
pvar. Type is the type the argument is expected to be.
Different types can be mixed, but it is up to the routine to
know what type of argument is expected, as it cannot be
determined at runtime.

1207891

5-30 Miscellaneous Facilities

varargs
va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end, are
possible.

Example
This example is a possible implementation of the execl
system call.

#Include <varargs.h>
#deflne MAXARGS 100

'" excel Is called by
excel(fl Ie, arg1, arg2, ... , (char ·)0);

" ,
exec I (va_a I 1st)

va_I 1st ap;
char "file;
char "args[MAXARGS);
Int argno • 0;

va_start(ap);
f I Ie. v a_a r 9 (a p, c h a r ") ;
while «args[argno++) • va_arg(ap, char"» 1- (char")0)

va_end(ap);
return execv(file, args);

Known Problems
It is up to the calling routine to specify how many arguments
there are, since it is not always possible to determine this
from the stack frame. For example, execl is passed a zero
pointer to signal the end of the list. Printf can tell how many
arguments are there by the format.

It is non-portable to specify a second argument of char,
short, or float to va_arg, since arguments seen by the called
function are not char, short, or float. C converts char and
short arguments to int and converts float arguments to
double before passing them to a function.

Miscellaneous Facilities

varargs

See Also
exec in Section 2; printf in Section 3.

1207891

5-31

Section 6 6-1

Device Files

intro

Name
intro - introduction to device files

Description
This section describes various device files that refer to
specific hardware peripherals and CENTIX System device
drivers. The names of the entries are generally derived from
names for the hardware, as opposed to the names of the
files themselves. Characteristics of both the hardware device
and the corresponding device driver are discussed where
applicable.

To be configured into the CENTIX operating system, each
peripheral (or I/O) device must be represented in the overall
CENTIX file system by a device file, located in the /dev
directory. The contents of a device file point to the device
driver, located in the CENTIX kernel, for the device.

When you send data to, for example, a disk, you send the
data to the device file in the /dev directory that has been
created for that disk. The data, however, is not actually
stored in the device file (in the CENTIX file system), but at
the disk itself. In the same way, when you load data from a
tape, you call it from the device file for the tape device, but
the data is actually loaded from the tape itself.

There are two types of CENTIX device files:

o Block device files are used for devices that handle I/O data
in 1024 bytes (1 kB) blocks. The I/O size is controlled by
the operating system's buffer size and is independent of
the user's I/O size. Disk and tape devices can be
configured as block devices.

o Character device files are used for devices that handle raw
data streams. The size of I/O transfers in raw data streams
are determined either by the software design of the device
itself (for terminals and printers) or by the program
controlling the device (for disks and tapes).

1207891

6-2 Device Files

intro
For those devices that can be used as either block or
character, the difference between the two is in performance.
One or the other type of device may be necessary for special

53pplications.

With the CENTIX 6.0 system software release, the device
file naming conventions for tapes and disks have changed.
(Device names for printers and terminals have not changed.)
The system now supports both the old and new naming
conventions. Old names are linked to the new names internally.

In CENTIX systems before the 6.0 release, the disk devices
are named as follows:

Idev/[r]xplddn

where:

o [r] is an optional field that defines the disk as a character
- rather than block - device.

o xp is fp if the disk device is connected to an FP; dp if the
disk device is connected to a DP.

o dd represents the disk number. CENTIX disk numbers are
the same as the BTOS disk device numbers, except that
you must add a 0 in front of a one-digit BTOS disk number
for CENTIX. That is, if a built-in disk is named d4 in BTOS,
dd is 04 in CENTIX. Or, if an SMD disk is named s1 in
BTOS, dd is 01 in CENTIX. (Do not add a zero in front of a
two-digit BTOS disk number. For BTOS disk s 10, ddis 10.)

o n represents the disk partition. Each disk has a maximum
of eight partitions (0 through 7).

With the CENTIX 6.0 release, the disk devices on your
system are named as follows:

I dev I[r]dskl cndnnsn

where:

o [r] is an optional field that defines the disk as a character
- rather than block - device.

o cn represents the controller number. The controller number
is always cO if the controller is a file processor (FP). The
controller number is always c 1 if the controller is a disk
processor (DP).

Device Files 6-3

intro
D dnn represents the disk number. CENTIX disk numbers are

the same as the BTOS disk sevice numbers, except that
you must add a 0 in front of a one-digit BTOS disk number
for CENTIX. That is, if a built-in disk is named d4 in BTOS,
nn is 04 in CENTIX. Or, if an SMD disk is named s 1 in
BTOS, nn is 01 in CENTIX. (Do not add a zero in front of a
two-digit BTOS disk number. For BTOS disk s 10, nn is 10).

D sn represents the disk partition. Each disk has a maximum
of 8 partitions (0 through 7).

Table 6-1 shows the correlation between the old (pre-6.0
release) and new (6.0 release) naming conventions for built-in
disks connected to FPs. Table 6-2 shows the correlation
between the old and new naming conventions for storage
module device (SMD) drives connected to DPs. Note that in
both tables, n represents the partition number. Each disk can
have up to eight partitions (0 through 7).

Table 6-1 Naming Conventions for Built-In Disk Drives

Pre-SO S.O Release and later Bl0S Disk Device
Release Name

FIRST FP
/dev/[r]fpOOn /dev/[r]dsk/cOdOOsn dO [disk cartridge]
/dev/[r]fpOl n /dev/[r]dsk/cOdOl sn dl
/dev/[r]fp02n /dev/[r]dsk/cOd02sn d2
/dev/[r]fp03n /dev/[r]dsk/cOd03sn d3

SECOND FP
/dev/[r]fp04n /dev/[r]dsk/cOd04sn d4
/dev/[r]fp05n / dey /[rdsk/ cOd05sn d5
/dev/[r]fp06n /dev/[r]dsk/cOd06sn d6
/dev/[r]fp07 n /dev/[r]dsk/cOd07sn d7

THIRD FP
/dev/[r)fpOBn / dey / [r]dsk/ cOdOBsn dB
/dev /[r)fp09n / dey / [r]dsk/ cOd09sn d9
/dev/[r]fpl0n /dev/[r]dsk/cOdl0sn dl0
/dev/[r]fpll n /dev/[r]dsk/cOdll sn dll

and so on.

1207891

6-4 Device Files

intro
Table 6-2 Naming Conventions for SMD Disk Drives

Pre-60 6.0 Release and Later BTOS Disk Device
Release Name

FIRST DP
/dey/[r]dpOOn /dey/[r]dsk/cldOOsn sO
/dey/[r]dpOl n /dey/[r]dsk/cld01 sn sl
/dey/[r]dp02n / dey /[r]dsk/ c 1 d02sn s2
/dey/[r]dp03n / dey / [r]dsk/ c 1 d03sn s3
/dey/[r]dp04n / dey /[r]dsk/ c 1 d04sn s4
/dey/[r]dp05n / dey / [r]dsk/ c 1 d05sn s5

SECOND DP
/dey/[r]dp06n / dey /[r]dsk/ c 1 d06sn s6
/dey/[r]dp07 n /dey/[r]dsk/c1d07sn s7
/dey/[r]dp08n /dey/[r]dsk/c1d08sn s8
/dev/[r]dp09n /dey/[r]dsk/c1d09sn s9
/dev/[r]dp10n /dey/[r]dsk/c1 d1 Osn s10
/dey/[r]dp11 n /dey/[r]dsk/c1d11sn s11

THIRD DP
/dev/[r]dp12n /dey/[r]dsk/c1 d12sn s12
/dev/[r]dp13n /dey/[r]dsk/c1 d13sn s13
/dev/[r]dp14n /dev/[r]dsk/c1d14sn s14
/dev/[r]dp15n / dey /[r]dsk/ c 1 d 15sn s15
/dev/[r]dp16n /dev/[r]dsk/c1d16sn s16
/dev/[r]dp17 n /dev/[r]dsk/c1 d17sn s17

and so on.

With the CENTIX 6.0 release, the conventions for naming
tape drives have also changed.

In CENTIX systems before the 6.0 release, the tapa drives
are named as follows:

/dev/[n][r]mtn

where:

o [n] indicates that the tape is not to rewind a tape file
closes. The default is that the tape automatically rewinds.

o [r] indicates that the tape device will handle raw data
streams rather than one kB blocks of data.

Device Files 6-5

intro
D n represents the tape drive in the system. n is 0 for the

first half-inch tape drive on the system, 1 for a quarter-inch
cartridge (Ole) tape drive, 2 for the second half inch tape
drive on the system, 3 for the third, and so on.

With the 6.0 release, the tape drives on your system are
named as follows:

/dev/[r]mt/cndn[n]

where:

D [r] indicates that the tape device will handle raw data
streams rather than one kB blocks of data.

D cn represents the controller number. For a ole tape drive,
cn is always O. For a half-inch tape drive, cn is always 1.

D dn represents the tape drive on the controller. You can
have only one ole drive on your system; it is dO. The first
half inch tape drive is dO, the second is d1, and so on.

D [n] indicates that the tape is not to rewind when a-tape file
closes. The default is that the tape automatically rewinds.

Table 6-3 Naming Conventions for Tape Drives

First half-inch drive
Ole drive
Second half -inch tape
drive
Third half-inch tape drive

and so on.

1207891

Pre-60 Release

/dev/[n][r]mtO
/dev/[n][r]mtl
/dev/[n][r]mt2

/dev/[n][r]mt3

6.0 Release and Later

/dev/[r]mt!cl dO[n]
/dev/[r]mt/cOdO[n]
/dev/[r]mt!cl dl [n]

/dev/[r]mt/cl d2[n]

6-6 Device Files

console

Name
console - console terminal

Description
The special file console designates a standard destination for
system diagnostics. The kernel writes its diagnostics to this
file, as does any user process with messages of
system-wide importance. If console is associated with a
physical terminal, then console messages also appear on that
terminal; it is not necessary to have console associated with
a physical terminal.

Note that inittab (see Section 4) does not normally post a
getty process on console. This is because console might
become associated with a terminal that is already a login
terminal. Each Application Processor has its own console,
which can be associated with any terminal or with no
terminal at all. Whether or not the console is associated with
a terminal, the most recent console output is saved in a
circular buffer.

I/O operations on console by a process running on an AP
affect the console for that AP. The exact meaning depends
on whether or not the console is associated with a terminal.

o If the console is associated with a terminal, all I/O
operations to console, including ioctl system calls, have the
same affect as if applied directly to the terminal, except
that the output is duplicated on the console buffer.

o If the console is not associated with a terminal, all
attempts to read the console return an end of file
condition, all writes to the console go only to the console
buffer, and ioctl operations have no effect on any terminal.

If the kernel debugger is enabled, a CODE-b on the terminal
associated with the console activates the kernel debugger.
The command go to the kernel debugger resumes normal
processing.

The console shell command and syslocal system calls control
terminal association and print the buffers of AP consoles.

Device Files

console

Files
Jdev /console

Caution
The kernel debugger is not a supported product and may
disappear without warning. Normal system processing is
suspended while the kernel debugger is active.

See Also
console in Section 1: syslocal in Section 2.

1207891

6-7

6-8 Device Files

dsk

Name
dsk - winchester, cartridge, and floppy disks

Description
The files /dev/[r]dsk/cndnnsn refer to slices on winchester,
cartridge, and floppy disks, where:

o [r] is an optional field that you include when you are
loading the file system to a raw memory device. A device
that is defined as raw handles raw data streams (one
character at a time) rather than one kB blocks of data.

o cn represents the controller number. The controller number
is always cO if the controller is a file processor (FP). The
controller number is always c 1 if the controller is a disk
processor (DP).

o dnn represents the disk number. CENTIX disk numbers are
the same as the BTOS disk sevice numbers, except that
you must add a 0 in front of a one-digit BTOS disk number
for CENTIX. That is, if a built-in disk is named d4 in BTOS,
nn is 04 in CENTIX. Or, if an SMD disk is named sl in
BTOS, nn is 01 in CENTIX. (Do not add a zero in front of a
two-digit BTOS disk number. For BTOS disk s 10, nn is 10).

o sn represents the disk partition. Each disk has a maximum
of 8 partitions (0 through 7).

In the XE 500 CENTIX System architecture, BTOS manages
disk initialization and low-level input/output; CENTIX only
accesses the disks to store and retrieve data. A disk special
file is a reference to a BTOS disk file set aside specially for
CENTIX's use. The BTOS file is called a file system partition
and is created using the crup shell command (see Section 1).
The relationship between file system partitions and CENTIX
special files is controlled by the BTOS file system
configuration file, [Sys]<Sys>ConfigUFS.sys. For more
information on using disk devices, see the XE 500 CENTIX
Administration Guide.

Device Files

dsk

Files
/dev/dsk/
/dev/rdsk/
/dev/dump?
/dev/boot?

See Also
crup, mknod, of copy in Section 1; ioctl in Section 2; intro.

1207891

6-9

6-10 Device Files

fp

Name
fp - winchester, cartridge, and floppy disks

Description
This entry describes disk device naming conventions prior to
the CENTIX 6.0 release. It is included for compatibility with
earlier versions of CENTIX. If your CENTIX system is release
6.0 or later, refer to the entry for dsk, earlier in this section.

The files /dev/fpOOO through /dev/fp64n and rfpOOO through
rfp64n refer to slices on winchester, cartridge, and floppy
disks. An r in the name indicates the character (raw)
interface. The three hexadecimal digits are the file processor
number, disk number, and slice number. The cartridge drive
is disk 0 on file processor O.

XE 500 CENTIX System architecture greatly simplifies the
CENTIX disk interface: BTOS manages disk initialization and
low-level input/output; CENTIX only accesses the disks to
store and retrieve data. A disk special file is a reference to a
BTOS disk file set aside specially for use by CENTIX. The
BTOS file is called a file system partition and is created by
the crup shell command. The relationship between file system
partitions and CENTIX special files is controlled by the BTOS
file system configuration file, [Sys]<Sys>ConfigUFS.sys.

See Also
crup, mknod, of copy in Section 1; ioctl in Section 2.

Device Files 6-11

Ip

Name
Ip - parallel printer interface

Description
Lp is an interface to the parallel printer channel. Bytes written
are sent to the printer. Opening and closing produce page
ejects. Unlike the serial interfaces (termio), the Ip driver never
prepends a carriage return to a new line (line feed). The Ip
driver does have options to filter output, for the benefit of
printers with special requirement. The driver also controls
page format. Page format and filter options are controlled
with the ioetl system call:

#Includa <sys/lprlo.h>
I 0 c t I (f I I d as, comma n d, a r 9)

where command is one of the following constants:

LPRSET

LPRGET

1207891

Set the current page format from the location pointed to by
arg; this location is a structure of type Iprio, declared in the
header file:

struct Ipr 10 {
short Ind;
short col:
short Ilna;

Arg should be declared as follows:

struct Iprlo *arg;

Ind is the page indent in columns, initially 4. Col is the
number of columns in a line, initially 132. Line is the number
lines on a page, initially· 66. A new-line that extends over
the end of a page is output as a formfeed. Lines longer than
the line length minus the indent are truncated.

Get the current page format and put it in the Iprio structure
pointed to by argo

6-12

Ip

lPRSOPTS

Device Files

Set the filter options from arg, which must be of type int.
Arg should be the logical or of one or more of the following
constants, defined in the header file:

Constant

lPNOBS

lPRAW

lPCAP

lPNOCR

lPNOFF

Value

4

8

16

32

64

Meaning

No backspace. Set this
bit if the printer cannot
properly interpret
backspace characters.
The driver uses carriage
return to produce
equivalent overstriking.
Raw output. Set this bit
if the driver must not
edit output in any way.
The driver ignores all
other option bits in the
minor device number.
Capitals. This option
supports printers with a
''half-ASCII'' character
set. lowercase is
translated to uppercase.
No Carriage Return. This
option supports printers
that do not respond to a
carriage return (character
00 hexadecimal).
Carriage returns are
changed to new-lines. If
No Newline is also set,
carriage returns are
changed to form feeds.
No Form Feed. This
option supports printers
that do not respond to a
form feed (character OC
hexadecimal). Form feeds
are changed to
new-lines. If No Newline
is also set, form feeds
are changed to carriage
returns.

Device Files

Ip

LPRGOPTS

Files
/dev/lp

See Also

LPNON 12

6-13

No Newline. This option
supports printers that do
not respond to a
new-line (character OA
hexadecimal). New-lines
are changed to carriage
returns. If No Carriage
Return is also set,
new-lines are changed
to form feeds.

Setting all three of No Carriage Return, No Newline, and No
Form Feed has the same effect as setting none of them.

Get the current state of the filter options and put them in
arg, which must be an int.

Ipr, Ipset in Section 1.

1207891

6-14 Device Files

mem

Name
mem, kmem - core memory

Description
Mem is a special file that is an image of the core memory of
the CENTIX-based processor board. It may be used, for
example, to examine, and even to patch the system.

Byte addresses in mem are interpreted as memory
addresses. References to non-existent locations cause errors
to be returned.

Examining and patching device registers is likely to lead to
unexpected results when read-only or write-only bits are
present.

The file kmem is the same as mem except that kernel virtual
memory rather than physical memory is accessed.

Caution
When reading and writing memory in other processes, reads
and writes are done in mUltiples of 1 K. As a result, the data
may actually change between 1 K reads and writes.

Files
/dev /mernxx, /dev Ikmernxx, where xx is the two-digit
processor number.

Device Files 6-15

mt

Name
mt - interface for magne'tic tape

Description
This interface provides access to all magnetic tape drives.

mtx is the block device with rewind on close for drive x. To
get the no-rewind device, prepend n; to get the raw
(character) device, prepend r; and to get the no-rewind on
close, raw device, prepend nr.

There can be up to four drives, any of which can be built-in
quarter-inch cartridge (OIC) drives or external drives
controlled by a Storage Processor. The connection between
drives and drive numbers is in the file system configuration
file, under BTOS.

Tape files are separated by tape marks, also known as EOFs.
Closing a file open for writing writes one tape mark on a OIC
drive and two tape marks on other drives; if the device was
no-rewind, the tape is left positioned just after the single
OIC tape mark or between the two marks. If the file was a
no-rewind file, reopening the drive for writing overwrites the
second mark, if there is one, and creates another tape file.
Thus on a OIC drive, a single tape mark separates the tape
files and ends the tape; on other drives, a single tape mark
separates the tape files and a double mark ends the tape.

Here are summaries of block and character device features:

o The block devices read and write only 1024-byte physical
blocks; reads and writes of other sizes are resolved into
1 K physicalljO. Seeks are ignored on OIC drives. On other
drives seeks are allowed, but once the file is opened,
reading is restricted to between the last write and the next
tape mark. Reading the tape mark produces a zero-length
read and leaves the tape positioned after the tape mark; if
the file is a no-rewind file, the program can access the next
tape file by closing the device and then reopening or
opening another device for the same drive.

1207891

6-16 Device Files

mt
o On the raw devices, each read or write reads or writes the

next physical block. A read must match the size of a
normal tape block. The size of a write determines the size
of the next block; Write sizes must be a multiple of 51 2
on OIC drives, a mUltiple of 2 on other drives. Read/write
buffers must begin on an even address; this is the same
alignment as short. Seeks are ignored. Reading a tape mark
produces a zero-length read and leaves the tape positioned
after the mark; the program can, without closing the
device, read the next tape file.

Files
/dev/mt/*
/dev/nmt/*
/dev/rmt/*
/dev /nrmt/*

Caution
A nondata error cannot be recovered from except by closing
the device.

A OIC tape has no special mark for end of tape, as opposed
to end of file.

Device Files

null

Name
null - the null file

Description
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

Files
jdevjnull

1207891

6-17

6-18 Device Files

prf

Name
prf - operating system profiler

Description
The prf file provides access to activity information in the
operating system. Writing the file loads the measurement
facility with text addresses to be monitored. Reading the file
returns these addresses and a set of counters indicative of
activity between adjacent text addresses.

The recording mechanism is driven by the system clock and
samples the program counter at line frequency. Samples that
catch the operating system are matched against the stored
text addresses and increment corresponding counters for
later processing.

The file prf is a pseudo-device with no associated hardware.

Files
/dev/prf

See Also
profiler in Section 1 .

Device Files 6-19

termio

Name
termio - general terminal interface

Description
CENTIX systems use a single interface convention for all
RS-232 and cluster (RS-422) terminals, although cluster
terminals do not use all the features of the convention. The
convention is almost completely taken from the UNIX
System V interface for asynchronous terminals.

Two kinds of terminals use this convention:

o RS-232 terminals connected to channels on the XE 500 itself.

o PT 1 500 cluster terminals. Generally a cluster channel
supports more than one PT 1500; some terminals are
indirectly connected through other terminals. Cluster
terminals use the same interface as directly connected
RS-232 terminals, except that hardware control operations
are meaningless on cluster terminals. (Note that U cluster
terminal" refers to the way the terminal is used, not to the
terminal itself; a PT 1500 terminal can serve as an RS-232
terminal or as a cluster terminaL)

A single naming convention applies to regular RS-232 and
cluster terminals. A direct RS-232 or cluster terminal has a
name of the form ttyxxx, where xxx is the terminal's number
expressed in three digits.

When a terminal file is opened, it normally causes the
process to wait until a connection is established. In practice,
users' programs seldom open these files; they are opened by
getty and become a user's standard input, output, and error
files. The very first terminal file opened by the process group
leader of a terminal file· not already associated with a process
group becomes the control terminal for that process group.
The control terminal plays a special role in handling quit and
interrupt signals, as discussed below. The control terminal is
inherited by a child process during a fork system call. A
process can break this association by changing its process
group using the setpgrp system call.

1207891

6-20· Device Files

termio
A terminal associated with one of these files ordinarily
operates in full-duplex mode. Characters may be typed at
any time, even while output is occurring, and are only lost
when the system's character input buffers become
completely full, which is rare, or when the user has
accumulated the maximum allowed number of input
characters that have not yet been read by some program.
Currently, this limit is 256 characters. When the input limit is
reached, all the saved characters are thrown away without
notice.

Normally, terminal input is processed in units of lines. A line
is delimited by a new-line (ASCII LF) character, an end-of-file
(ASCII EDT) character, or an end-of-line character. This
means that a program attempting to read will be suspended
until an entire line has been typed. Also, no matter how
many characters are requested in the read call, at most one
line will be returned. It is not, however, necessary to read a
whole line at once; any number of characters may be
requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. By
default, the character generated by a PT 1 500 BACKSPACE
key (ASCII BS, Control-H on most terminals) erases the last
character typed, except that it will not erase beyond the
beginning of the line. By default, the character @ kills
(deletes) the entire input line, and optionally outputs a
new-line character. Both these characters operate on a
keystroke basis, independently of any backspacing or
tabbing that may have been done. Both the erase and kill
characters may be entered literally by preceding them with
the escape character (\). In this case the escape character is
not read. The erase and kill characters may be changed.

Device Files 6-21

termio
Certain characters have special functions on input. These
functions and their default character values are summarized
as follows:

INTR

OUIT

ERASE

Kill

EOF

Nl

EOl

STOP

START

1207891

(Rubout of ASCII DEL; generated by a PT 1500 DelETE
key) generates an interrupt signal that is sent to all
processes with the associated control terminal. Normally,
each such process is forced to terminate, but arrangements
may be made either to ignore the signal or to receive a trap
to an agreed-upon location; see signal in Section 2.

(Control-lor ASCII FS; generated by a PT 1500
CODE-CANCel key) generates a quit signal. Its treatment is
identical to the interrupt signal except that, unless a
receiving process has made other arrangements, it wiil not
only be terminated but a core image file (called core) will
be created in the current wurking directory.

(Control-H or ASCII BS; generated by a PT 1500
BACKSPACE key) erases the preceding character. It will not
erase beyond the start of a line, as delimited by an Nl,
EOF, or EOl character.

(@) deletes the entire line, as delimited by an Nl, EOF, or
EOl character.

(Control-D or ASCII EOT; generated by a PT 1500 FINISH
key) may be used to generate an end-of-file from a terminal.
When received, all the characters waiting to be read are
immediately passed to the program, without waiting for a
new-line, and the EOF is discarded. Thus, if there are no
characters waiting, which is to say the EOF occurred at the
beginning of a line, zero characters will be passed back,
which is the standard end-of-file indication.

(ASCII IF) is the normal line delimiter. It cannot be changed
or escaped.

(ASCII NUL) is an additional line delimiter, like Nl. It is not
normally used.

(Control-S or ASCII DC3) can be used to temporarily
suspend output. It is useful with CRT terminals to prevent
output from disappearing before it can be read. While output
is suspended, STOP characters are ignored and not read.

(Control-a or ASCII DC1) is used to resume output that has
been suspended by a STOP character. While output is not
suspended, START characters are ignored and not read. The
start/stop characters cannot be changed or escaped.

6-22 Device Files

termio
The character values for INTR, QUIT, ERASE, Kill, EOF, and
EOl may be changed to suit individual tastes. The ERASE,
KILL, and EOF characters may be escaped by a preceding \
character, in which case no special function is done.

When the carrier signal from the data-set drops, a hangup
signal is sent to all processes that have this terminal as the
control terminal. Unless other arrangements have been made,
this signal causes the processes to terminate. If the hangup
signal is ignored, any subsequent read returns with an
end-of-file indication. Thus programs that read a terminal and
test for end-of-file can terminate appropriately when hung up on.

When one or more characters are written, they are
transmitted to the terminal as soon as previously-written
characters have finished typing. Input characters are echoed
by putting them in the output queue as they arrive. If a
process produces characters more rapidly than they can be
typed, it will be suspended when its output queue exceeds
some limit. When the queue has drained down to some
threshold, the program is resumed.

Several ioetl system calls apply to terminal files. The primary
calls use the following structure, defined in <termio.h>:

#deflne Nee 8
struct termlo {

unsigned sho r t c_1 flag; ,-Input modes-,
unsigned short c_of lag; ,-output modes-,
unsigned short c_cf lag; ,-control modes-,
unsigned shor t c_1 flag; ,-local modes-,
char c_11 ne; ,- I I ne dlsclpllne-,
unsigned char c_cc [NCe] ; ,-control chars-,

} ;

Device Files 6-23

termio
The special control characters are defined by the array c_cc.
The relative positions for each function are as follows:

a INTR
1 QUIT
2 ERASE
3 Kill
4 EOF
5 EOl
6 reserved
7 reserved

The c..J"ag field describes the basic terminal input control:

IGNBRK
BRKINT
IGNPAR
PARMRK
INPCK
ISTRIP
INlCR
IGNCR
ICRNl
IUClC
IXON
IXANY
IXOFF

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400
0001000
0002000
0004000
0010000

Ignore break condition.
Signal interrupt on break.
Ignore characters with parity errors.
Mark parity errors.
Enable input parity check.
Strip character.
Map NL to CR on input.
Ignore CR.
Map CR to Nl on input.
Map upper-case to lower-case on input.
Enable start/stop output control.
Enable any character to restart output.
Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing
error with data all zeros) is ignored, that is, not put on the
input queue and therefore not read by any process.
Otherwise, if BRKINT is set, the break condition will
generate an interrupt signal and flush both the input and
output queues. If IGNPAR is set, characters with other
framing and parity errors are ignored.

If P ARMRK is set, a character with a framing or parity error
which is not ignored is read as the three character
sequence: 0377, 0, X, where X is the data of the character
received in error. To avoid ambiguity in this case, if ISTRIP
is not set, a vaJid character of 0377 is read as 0377, 0377.
If P ARMRK is not set, a framing or parity error which is not
ignored is read as the character NUL (0).

1207891

6·24 Device Files

termio
If INPCK is set, input parity checking is enabled. If INPCK is
not set, input parity checking is disabled. This allows output
parity generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to
7 -bits, otherwise all a-bits are processed.

If INLCR is set, a received NL character is translated into a
CR character. If IGNCR is set, a received CR character is
ignored (not read). Otherwise if ICRNL is set, a received CR
character is translated into an NL character.

If IUCLC is set, a received upper-case alphabetic character is
translated into the corresponding lower-case character.

If IXON is set, start/stop output control is enabled. A
received STOP character will suspend output and a received
START character will restart output. All start/stop characters
are ignored and not read. If IXANY is set, any input character
will restart output that has been suspended.

If IXOFF is set, the system will transmit START/STOP
characters when the input queue is nearly empty/full.

The initial input control value is all bits clear.

The c_of/ag field specifies the system treatment of output.

OPOST
OLCUC
ONLCR
OCRNL
ONOCR
ONLRET
OFILL
OFDEL
NLDLY
NLO
NL1
CRDLY
CRO
CRl
CR2
CR3

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400
o
0000400
0003000
o
0001000
0002000
0003000

Postprocess output.
Map lower case to upper on output.
Map NL to CR-NL on output.
Map CR to NL on output.
No CR output at column O.
NL performs CR function.
Use fill characters for delay.
FiJI is DEL, else NUl.
Select new-line delays:

Select carriage-return delays:

Device Files

termio

TABDLY
TABO
TABl
TAB2
TAB3
BSDLY
BSO
BSl
VTDLY
VTO
VTl
FFDLY
FFO
FFl

0014000
o
0004000
0010000
0014000
0020000
o
0020000
0040000
o
0040000
0100000
o
0100000

Select horizontal-tab delays:

Expand tabs to spaces.
Select backspace delays:

Select vertical-tab delays:

Select form-feed delays:

'6-25

If OPOST is set, output characters are post-processed as
indicated by the remaining flags, otherwise characters are
transmitted without change.

If OLCUC is set, a lower-case alphabetic character is
transmitted as the corresponding upper-case character. This
function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL
character pair. If OCRNL is set, the CR character is
transmitted as the NL character. If ON OCR is set, no CR
character is transmitted when at column 0 (first position). If
ONLRET is set, the NL character is assumed to do the
carriage-return function; the column pointer will be set to 0
and the delays specified for CR will be used. Otherwise the
NL character is assumed to do just the line-feed function; the
column pointer will remain unchanged. The column pointer is
also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow
for mechanical or other movement when certain characters
are sent to the terminal. In all cases a value of 0 indicates no
delay. If OFILL is set, fill characters will be transmitted for
delay instead of a timed delay. This is useful for high baud
rate terminals that need only a minimal delay. If OFDEL is set,
the fill character i$ DEL, otherwise NUL. .

If a form-feed vertical-tab delay is specified, it lasts for about
2 seconds.

1207891

6-26 Device Files

termio
New-line delay lasts about 0.10 seconds. If ONLRET is set,
the carriage-return delays are used instead of the new-line
delays. If OFILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current
column position, type 2 is about O. 10 seconds, and type 3 is
about 0.18 seconds. If OFILL is set, delay type 1 transmits
one or two fill characters, and type 2 and 3, two fill characters.

Horizontal-tab delay type 1 is dependent on the current
column position. Type 2 is about 0.04 seconds. Type 3
specifies that tabs are to be expanded into spaces. If OFILL
is set, delay type 1 transmits zero or two fill characters and
delay type 2 transmits 1 fill character.

Backspace delay lasts about 0.05 seconds. If OFILL is set,
one fill character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c_cf/ag field describes the hardware control of the
terminal (not used on cluster terminals):

C8AUD
80
850
875
8110
8134
8150
8200
8300
8600
81200
81800
82400

0000017
o
0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000010
0000011
0000012
0000013

8aud rate:
Hang up
50 baud
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud

Device Files

termio

B4800
B9600
EXTA
EXTB
CSIZE
CS5
CS6
CS7
CS8
CSTOPB
CREAO
PARENB
PARODD
HUPCL
CLOCAL

0000014
0000015
0000016
0000017
0000060
o
0000020
0000040
0000060
0000100
0000200
0000400
0001000
0002000
0004000

4800 baud
9600 baud
19200 baud
External clock.
Character size:
5 bits
6 bits
7 bits
8 bits
Send two stop bits, else one.
Enable receiver.
Parity enable.
Odd parity, else even.
Hang up on last close.
Local line, else dial-up.

6-27

The C8AUD bits specify the baud rate. The zero baud rate,
80, is used to hang up the connection. If 80 is specified, the
data-terminal-ready signal will not be asserted. Normally,
this will disconnect the line. For any particular hardware,
impossible speed changes are ignored. EXT8 specifies
external clocking.

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include the
parity bit, if any. If eSTOPS is set, two stop bits are used,
otherwise one stop bit. For example, at 110 baud, two stops
bits are required.

If PARENS is set, parity generation and detection is enabled
and a parity bit is added to each character. If parity is
enabled, the PARODD flag specifies odd parity if set,
otherwise even parity is used.

1207891

6-28 Device Files

termio
If CREAD is set, the receiver is enabled. Otherwise no
characters will be received.

If HUPCL is set, the line will be disconnected when the last
process with the line open closes it or terminates. That is,
the data-terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct
connection with no modem control. Otherwise modem
control is assumed.

The initial hardware control value after open is 89600, CS8,
CREAD, HUPCL.

The c"'/flag field of the argument structure is used by the line
discipline to control terminal functions. The basic line
discipline (0) provides the foJlowing:

ISI6 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill

processing).
XCASE 0000004 Canonical upper flower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo Nl after kill character.
ECHONl 0000100 Echo Nl.
NOFlSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the
special control characters INTR and QUIT. If an input
character matches one of these control characters, the
function associated with that character is performed. If ISIG
is not set, no checking is done. Thus these special input
functions are possible only if ISIG is set. These functions may
be disabled individually by changing the value of the control
character to an unlikely or impossible value (for example, 0377).

Device Files 6-29

termio
If ICANON is set, canonical processing is enabled. This
enables the erase and kill edit functions, and the assembly of
input characters into lines delimited by Nl, EOF, and EOL. If
ICANON is not set, read requests are satisfied directly from
the input queue. A read will not be satisfied until at least MIN
characters have been received or the timeout value TIME has
expired. This allows fast bursts of input to be read efficiently
while still allowing single character input. The MIN and TIME
values are stored in the position for the EOF and EOl
characters respectively. The time value represents tenths of
seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is
accepted on input by preceding it with a \ character, and is
output preceded by a \ character. In this mode, the following
escape sequences are generated on output and accepted on
input:

for. use:

\'
\!
\A

{ \(
} \)
\ \\

For example, A is input as \a, \n as \ \n, and \N as \ \ \n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are
possible. If ECHO and ECHOE are set, the erase character is
echoed as ASCII BS SP BS, which will clear the last character
from a CRT screen. If ECHOE is set and ECHO is not set, the
erase character is echoed as ASCII SP BS. If ECHOK is set,
the Nl character will be echoed after the kill character to
emphasize that the line will be deleted. Note that an escape
character preceding the erase or kill character removes any
special function. If ECHONl is set, the NL character will be
echoed even if ECHO is not Set. This is useful for terminals
set to local echo (so-called half duplex).

1207891

6-30 Device Files

termio
Unless escaped, the EDF character is not echoed. Because
EDT is the default EDF character, this prevents terminals that
respond to EDT from hanging up.

If NDFLSH is set, the normal flush of the input and output
queues associated with the quit and interrupt characters will
not be done.

The initial line-discipline control value is all bits clear.

The primary ioctl system calls have the form:

10 c t I (f I Ide s, c onma n d, a r g)
struct termlo °arg;

The commands using this form are:

TCGETA

TCSETA

TCSETAW

TCSETAF

Get the parameters associated with the terminal and store
in the termio structure referenced by argo

Set the parameters associated with the terminal from the
structure referenced by argo The change is immediate.

Wait for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

Wait for the output to drain, then flush the input queue and
set the new parameters.

Additional ioctl calls have the form:

loctl (fildes, conmand, arg)
Int arg;

The commands using this form are:

TCSBRK

TCXONC

TCFLSH

Wait for the output to drain. If arg is 0, then send a break
(zero bits to 0.25 seconds).

Start/stop control. If arg is 0, suspend output; if 1, restart
suspended output; if 2, transmit XOFF; if 3, transmit XON.

If arg is 0, flush the input queue; if 1, flush the output
queue; if 2, flush both the input and output queues.

Device Files

termio

Files
/dev/tty??? /dev/tp????

Caution
The default value for ERASE is backspace rather than the
historical #.

Known problems

6-31

Local RS-232 terminals do not currently provide hangup (80),
draining, flushing, or delay.

See Also
stty, ioetl in Section 2; tp, tty.

1207891

6-32 Device Files

tp

Name
tp - controlling terminal's local RS-232 channels

Description
The tp devices access the RS-232 channels on the
controlling terminal. The terminal must be a cluster terminal
configured to permit use of the local RS-232 channels (see
termio). Just as /dev/tty permits a process to conveniently
access its process group's controlling terminal (see tty),
/dev /tp 1 and /dev /tp2 access the controlling terminal's
RS-232 channels without reference to the terminal number.
This is convenient for accessing the user's local hardware,
such as a telephone with an RS-232 interface.

See Also
tty.

Device Files 6-33

tty

Name
tty - controlling terminal interface

Description
The file /dev/tty is, in each process, a synonym for the
control terminal associated with the process group of that
process, if any. It is useful for programs or shell sequences
that wish to be sure of writing messages on the terminal no
matter how output has been redirected. It can also be used
for programs that demand the name of a file for output,
when typed output is desired and it is tiresome to find out
what terminal is currently in use.

If the terminal is under window management, a process
group is controlled by a specific window, and I/O on /dev/tty
is directed to that window. A terminal can control one
process group in each window. See window.

Files
/dev/tty

See Also
tp, window.

1207891

6-34 Device Files

window

Name
window - window management primitives

Format
#include <sys/window.h>

Description
Window management (see wm in Section 1) provides a
superset of windowless terminal features. This entry
describes terminal· file features special to window
management. Window management features are designed
not to interfere with programs that do not know about
window management. Such design includes simple
extensions to the CENTIX System's standard concepts of file
descriptor and control terminal.

o Each terminal file descriptor has an associated window
number, a small positive integer that identifies a window.
A window number is the most primitive way to refer to a
window, and should not be confused with the window ID
used by window management sub-routines. A new
window gets the smalled window number not already in
use. Closing a window frees its number for possible
assignment to a later window. Output and control calls on
the file descriptor apply only to the descriptor's window;
input calls succeed only when the window is active.

A file descriptor created by a dup system call or inherited
across a fork system call inherits the original descriptor's
window number. All the file descriptors in such a chain of
inheritance, provided they belong to processes in the same
process group, are affected when ioctl changes the
window number of any of them.

Device Files 6-35

window
o When a process group's control terminal is under window

management, the process group is actually controlled by a
particular window. Such can have more than one process
group, each controlled by a different window.
Keyboard-generated signals (interrupt and quit) go to the
process group controlled by the active window.

When the user creates a new window by using the SPLIT
key, the window manager forks a process for that window.
The new process inherits file descriptors for standard input
(0), standard output (1), and standard error (2) that are
associated with the new window. The new process is leader
of a process group controlled by the new window.

Programs that create and use windows use window
management ioctl calls. Such calls take the form

loct I (f Iides, command, arg)
struct wloctl *arg;

Fildes is a file descriptor for terminal and window affected,
command is a window management command (see below),
arg is a pointer to the following structure, declared in
<sysjwindow.h>:

#deflne NWCC 2

struct wloctl {

} ;

wi _d fit wn dw ;
wndw_t wl_wndw;
slot_t wl_mycpuslot;
slot_t wl_destcpuslot;
po r t _ t w I _b po r t ;
char wi_dummy;
unsigned char wl_cc[NWCC);

Window management ioctl calls get (WIOCGET) and set
(WIOCSET and WIOCSETP) terminal attributes described in
the wioctl structure:

wLdfltwndw

1207891

The window number for the process's default window. If
the process does an open on /dev/tty. the new file
descriptor is associated with the default window.

6-36

window

wLwndw

wLmycpuslot

wLdestcpuslot

wLbport

wLcc

Device Files

The window number for the window that fildes (ioctl's first
parameter) is associated with.

The slot number of the process's host processor. (Not settable.)

The slot number of the processor that drives the terminal.
(Not settable.)

The terminal's Cluster Processor or Terminal Processor
channel number. (Not settable.)

Not used by the CENTIX kernel. A value supplied by a
WIOCSET or WIOCSETP is stored in a place associated with
window wp_wndw. A subsequent WIOCGET on the same
window retrieves the information.

Here are the window management ioctl commands:

WIOCGET

WIOCSET

WIOCSETP

WIOCCLRP

Get information on calling process and file descriptor fildes.
Fill in argo

Set values for calling process and file descriptor fildes from
information in argo Has no effect on process group-control
terminal relationship.

Set values for calling process and file descriptor fildes from
information in argo The window specified in arg- >
wLwndw becomes the process's group's controlling
terminal provided the following:

The calling process is the process group leader.
The process group is not currently controlled by
another window on this or any other terminal.
The specified window is not already a control window.

Only valid executed by process group le~r. Th~ ~rocess
group ceases to have a control terminal or window and the
control terminal/window ceases to control any process
group. The process group is free to find another control
terminal/window, and the old control terminal/window is
free to become the control terminal/window for another
process group.

Device Files 6-37

window

WIOCCLUSTER

WIOCDlRECT

WIOCUNDIRECT

loctl returns 1 if and only if the terminal is a cluster terminal.

Enable direct sending of terminal IPC requests.

Disable direct sending of terminal IPC requests.

An open on a terminal special file other than /dev/tty (for
example, /dev /ttyOOO) produces a file descriptor for the
lowest-numbered open window. loctl can move this file
descriptor to any window.

An open can also obtain a controlling terminal/window. The
requirements are the same as for WIOCSETP.

Files
/dev/tty - control terminal
/dev/tty??? - terminals

Cautions
WIOCDIRECT and WIOCUNDIRECT are required by the
operating system. Their use by user programs is inadvisable.

Use these features in as standard and conservative a way as
possible. The best way to enforce standards is to use
window managem'ent through the library calls described in
Section 3.

See Also
stty, wm in Section 1; dup, fork, ioctl, open in Section 2;
wmgetid, wmlayout, wmop, wmsetid in Section 3; termio, tty.

1207891

Index-1

Permuted Index
This index includes entries for all pages of all four volumes of
this guide. The entries themselves are based on the one-line
descriptions or titles found in the· Name portion of each
manual entry; the significant words (keywords) of these
descriptions are listed alphabetically down the center of the
index.

The permuted index is a keyword-in-context index that has
three columns. To use the index, read the center column to
look up specific commands by name or by subject topics.
Note that the entry may begin in the left column or wrap
around and continue into the left column. A period (.) marks
the end of the entry, and a slash (f) indicates where the entry
is continued or truncated. The right column gives the manual
entry under which the command or subject is described;
following each manual entry name is the section number, in
parentheses, in which that entry can be found.

Iltol3: convert between 3-byte integers and 13tol(3)
longl

comparison. diff3: 3-way differential file diH3(1)

between long integer 1 a641, 164a: convert a641(3)

lobtain and abandon exchanges. exchanges(2)

fault. abort: generate an lOT abort(3)

absolute value. abs: return integer abs(3)

adb: absolute debugger adb(1)

abs: return integer absolute value. abs(3)

ceiling, remainder, absolute valuel Ifloor, floor(3)

allow Iprevent LP 1 accept, reject: accept(1)

times of 1 touch: update access and modification touch(1)

times. utime: set file access and modification utime(2)

10fCloseAIIFiles: Access BTOS files ofopenfile(3)

accessibility of al access: determine access(2)

in al sputl, sgetl: access long integer data sputl(3)

1207891

Index-2

sadp: disk access profiler. sadp(1)

common object file access routines. Idfcn: Idfcn(4)

file systems for optimal access time. /copy dcopy(1)

locking: exclusive access to regions of a/ locking(2)

/endutent, utmpname: access utmp file entry. getut(J)

access: determine accessibility of a file. access(2)

or disable process accounting. /enable acct(2)

/manipulate connect accounting records. fwtmp(l)

process accounting. acct: enable or disable acct(2)

sin, cos, tan, asin, acos, atan, atan2:/ trig(J)

kill all: kill all active processes. killall(1)

sag: system activity graph. sag(1)

sa 1, sa2, sadc: system activity report package. sar(1)

File Processor system activity reporter. fpsar(1)

sar: system activity reporter. sar(l)

sees file editing activity. /print current sact(1)

process data and system activity. /report timex(1)

adb: absolute debugger adb(1)

BTOS queue. quAdd: add a new entry to a quadd(J)

putenv: change or add value to/ putenv(3)

administer sees files. admin: creat~ and admin(1)

admin: create and administer sees files. admin(1)

alarm: set a process alarm clock. alarm(2)

alarm clock. alarm: set a process alarm(2)

Index-3

for sendmail. aliases: aliases file aliases(5)

sendmail. aliases: aliases file for aliases(5)

/ofDelete: allocate BTOS files. ofereate(3)

data segment space allocation. /change brk(2)

calloc: main memory allocator. /realloc, malloe(3)

fast main memory allocator. /mallinfo: malloe(3) (fast
version)

accept, reject: allow/prevent LP I aeeept(1)

brc, bcheckrc, rc, allrc, conrc: system/ bre(1)

running processl renice: alter priority of reniee(1)

sort: sort and/or merge files. sort(1)

and link editor output. a.out: common assembler a.out(4)

Processor number. apnum: print Application apnum(1)

number. apnum: print Application Processor apnum(1)

console: control Application Processor / eonsole(1)

I a process on a specific Application Processor. spawn(1)

I a process on a specific Application Processor. spawn(3)

Ito commands. and application programs. intro(1)

code. exServeRq: appropriate a request exserverq(2)

maintainer for portablel ar: archive and library ar(1)

format. ar: common archive file ar(4)

arithmeticl bc: arbitrary-precision be(1)

maintainer fori ar: archive and library ar(1)

epio: format of cpio archive epio(4)

ar: common archive file format. ar(4)

1207891

Index-4

header of a member of an archive file. /archive Idahread(3)

/convert object and archive files to common/ convert(1)

Idahread: read the archive header of a/ Idahread(3)

tar: tape file archiver. tar(1)

maintainer for portable archives. land library ar(1)

cpio: copy file archives in and out. cpio(1)

varargs: handle variable argument list. varargs(S)

/ output of a varargs argument list. vprintf(3)

xargs: construct argument list(s) andj xargs(1)

/get option letter from argument vector. getopt(3)

expr: evaluate arguments as anI expr(1)

echo: echo arguments. echo(1)

bc: arbitrary-precision arithmetic language. bc(1)

expr: evaluate arguments as an expression. expr(1)

as: assembler. as(1)

ascii: map of ASCII character set. ascii(S)

hd: hexadecimal and ascii file dump. hd(1)

character set. ascii: map of ASCII ascii(S)

long integer and base-64 ASCII string. /between a641(3)

atof: convert ASCII string to/ atof(3)

date/ /Ioealtime, asctime, tzset: convert ctime(3)
gmtime,

sin, cos, tan, asin, aeos, atan, atan2:/ trig(3)

help: ask for help. help(1)

Index-5

editor / a.out: common assembler and link a.out(4)

as: assembler. as(1)

assertion. assert: verify program assert(3)

assert: verify program assertion. assert(3)

setbuf, setvbuf: assign buffering to a/ setbuf(3)

wmsetid, wmsetids: .. associate a file/ wmsetid(3)

commands at a later I at, batch: execute at(1)

cos, tan, asin, acos, atan, atan2: sin, trig(3)

tan, asin, acos, atan, atan2: trigonometric/ trig(3)

string tot atof: convert ASCII atof(3)

strtod, atof: convert string to/ strtod(3)

integer. strtol, atol, atoi: convert string to strtol(3)

string to/ strtol, atol, atoi: convert strtol(3)

process. wait: await completion of wait(1)

and processing/ awk: pattern scanning awk(1)

request. quRemove: take back a BTOS queue quremove(3)

ungetc: push character back into input stream. ungetc(3)

finc: fast incremental backup. fine(1)

recover files from a backup tape. frec: frec(1)

banner: make posters. banner(1)

modem capability data base. modemcap: smart modemcap(5)

terminal capability data base. termcap: termcap(4)

terminal capability data base. terminfo: terminfo(4)

1207891

Index-6

between long integer and base-64 ASCII string. a641(3)
/convert

(visual) display editor based on ex. vi(1)
/ screen-oriented

portions of path names. basename, dirname: basename(1)
deliver

at a later time. at, batch: execute commands at(1)

arithmetic language. bc: arbitrary-precision bc(1)

system intialization/ brc, bcheckrc, rc, allrc, conrc: brc(1)

copy. bcopy: interactive block bcopy(1)
copy.

bdiff: big diff. bdiff(1)

cb: C program beautifier. cb(1)

jO, jl, jn, yO, yl, yn: Bessel functions. bessel(3)

bfs: big file scanner. bfs(1)

/install object fi/es in binary directories. cpset(1)

fread, fwrite: binary input/output. fread(3)

bsearch: binary search a sorted bsearch(3)
table.

tfind, tdelete, twalk: binary search trees, tseareh(3)
manage tsearch,

bcopy: interactive block copy. beopy(1)

sum: print checksum and block count of a file sum(1)

sync: update the super block. sync(1)

df: report number of free blocks. df(1)
disk

conrc: system brc, bcheckrc, rc, alire, bre(1)
initialization/

spare allocation. brk, sbrk: change data brk(2)
segment

Index-7

compiler /interp bs: a bs(1)
reter/

sorted table bsearch: binary search a bsearch(3)

/ofDIDir, BTOS directory functions. ofdir(3)
ofReadDirSector:

ofWrite: Input/output on a BTOS file. of Read, ofread(3)

of Rename: rename a BTOS file. ofrename(3)

of Set FileS tat us: BTOS File Status. ofstatus(3)

of copy: copy to or from the BTOS file system. ofeopy(1)

directories. of Is: list BTOS files and ofls(1)

/ofDelete: Allocate BTOS files. ofereate(3)

of ed, ofvi: edit BTOS files. ofeditors(1)

ofCloseAIIFiies: Access BTOS files. /ofCloseFile. ofopenfile(3)

interpreter for interactive BTOS JCl. ofcli: ofcli(1)
command line

CENTIX kernel and copy BTOS. mkboot: reformat mkboot(1)
it to

quAdd: add a new entry BTOS queue. quadd(3)
to a

quReadKeyed: examine BTOS queue. quread(3)
quReadNext.

quRemove: take back a BTOS queue request. quremove(3)

stdio: standard buffered input/output stdio(3)
package.

setbuf, setvbuf: assign buffering to a stream setbuf(3)

mknod: build special file. mknod(1)

swapshort, swap long: byte orders to swapshort(3)
translate Motorola/Intel.

swab: swap bytes. swab(3)

1207891

Index-8

cc: C compiler. cc(1)

cflow: generate C flowgraph. cflow(1)

cpp: the C language preprocessor. cpp(1)

cb: . C program beautifier. cb(1)

lint: a C program checker. Iint(1)

cxref: generate C program cross cxref(1)
reference.

ctrace: C program debugger. ctrace(1)

cal: print calendar. cal(1)

dc: desk calculator. dc(1)

cal:print calendar. cal(l)

service. calendar: reminder calendar(1)

CO: call another computer cu(1)
system.

data returned by stat call. stat: stateS)
system

malloc, free, realloc, calloc: main memory malJoc(3)
allocator.

fastj maUoc, free, calloc, maUopt, mallinfo: malJoc(3) (fast
realloc, version)

intro: introduction to calls and error number. intro(2)
system

link and unlink system calls. link, unlink: Iink(1)
exercise

to an lP line printer. Ip,. cancel: send/cancel Ip(1)
requests

modemcap: smart modem capabililty data base. modemcap(S)

termcap: terminal capability data base. termcap(4)

terinfo: terminal capability data base. terminfo(4)

disks. dsk: winchester, cartridge, and floppy dsk(6)

(variant of ex for casual users). /editor edit(1)

Index-9

files. cat: concatenate and eat(1)
print

beautifier. cb: C program eb(1)

cc: C compiler. ee(1)

directory. cd: change working ed(1)

commentary of an SCCS cdc: change the delta edc(1)
delta.

ceiling, remainder,/ floor, ceil, fmod, fabs: floor, floor(3)

/ceil, fmod, fabs: floor, ceiling, remainder, floor(3)
absolute/

BTOS. mkboot: reformat CENTIX kernel and copy mkboot(1)
it to

uuname: CENTIX system CENTIX system copy. uucp(1)
to

uucp, uulog, uuname: CENTIX system to uuep(1)
CENTIX/

print name of current CENTIX system. uname: uname(1)

get name of current CENTIX system. uname: uname(2)

command execution. uux: CENTIX-to-CENTIX uux(1)
system

uuto, uupick: public CENTIX-to-CENTIX uuto(1)
system file/

flowgraph. cflow: generate C cflow(1)

delta: make a delta (change) to an SCCS delta(1)
file.

of running process by changing nice. /priority renice(1)

pipe: create an channel. pipe(2)
interprocess

terminal's local RS-232 channels. tp: controlling tp(6)

stream. ungetc: push character back into input ungetc(3)

1207891

Index-10

user. cuserid: get character login name of euserid(3)
the

getchar, fgetc, getw: get character or word from a/ gete(3)

/putchar, fputc, putw: character or word on a pute(3)
put stream.

ascii: map of ASCII character set. aseii(5)

_tolower, toascii: characters. / _toupper, eonv(3)
translate

iscntrl, isascii: classify characters. /isprint, etype(3)
isgraph,

tr: translate characters. tr(1)

directory. chdir: change working ehdir(2)

/dfsck: file system check and interactive fsek(1)
consistency repair.

lint: a C program checker. lint(1)

grpck: password/group checkers. pwck, pwek(1)
file

copy file systems with checking. volcopy, labelit: voleopy(1)
label

systems processed by checklist: list of file ehecklist(4)
fsck.

file. sum: print checksum and block sum(1)
count of a

chown, chgrp: change owner or ehown(1)
group

times: get process and child process times. times(2)

terminate. wait: wait for child process to stop or wait(2)

chmod: change mode. ehmod(1)

file. chmod: change mode of ehmod(2)
file.

Index-l1

of a file. chown: change owner chown(2)
and group

group. chown, chgrp: change chown(1)
owner or

directory. chroot: change root chroot(2)

for a command. chroot: change root chroot(1)
directory

isgraph, iscntrl, isascii: classify characters. ctype(3)
jisprint,

uuclean: uucp spool clean-up. uuclean(1)
directory

screen. clear: clear terminal clear(1)

clri: clear i-node. clri(1)

clear: clear terminal screen. clear(1)

status./ ferror, feof, clearerr, fileno: stream lerror(3)

exRespond: send a client. exrespond(2)
message to a

set a process alarm clock. alarm: alarm(2)

cron: clock daemon. cron(1)

used. clock: report epu time clock(3)
used.

Idclose, Idaclose: close a common object Idclose(3)
file.

close: close a file descriptor. close(2)

descriptor. close: close a file close(2)

fclose, fflush: close or flush a stream. fclose(3)

clri: clear i-node. clri(1)

. cmp: compare two files. cmp(1)

appropriate a request code. exServeRq: exserverq(2)

line-feeds. col: filter reverse coU1)

deltas. comb: combine sees comb(1)

comb: combine sees deltas. comb(1)

1207891

Index-12

common to two sorted comm: select or reject commU)
files. lines

nice: run a command at low priority. niceU)

change root directory for a command. chroot: chroot(1)

env: set environment for command execution. envU)

uux: remote system command execution. uuxU)

quits. nohup: run a command immune to nohup(1)
hangups and

interactive BTOS Jel. command line interpreter ofcliU)
of eli: for

getyopt: parse command options. getopt(1)

locate executable file for command. path: pathU)

shell, the standard/ command programming shU)
restricted language.

data and/ timex: time a command; report process timex(1)

system: issue a shell command. system(3)

test: condition evaluation command. testU)

time: time a command. time(1)

argument list(s) and command. xargs: xargs(1)
execute construct

intro: introduction to commands and intro(l)
applicaton/

at, batch: execute commands at a later / at(1)

install: install commands. install(U

cdc: change the delta commentary of an sees ede(1)
delta.

ar: tommon archive file .r(4)
format.

Index-13

editor output. a. out: common assembler and a.out(4)
link

and archive files to common formats. /object convert(1)

routines. Idfcn: . common object file Idfcn(4)
access

Idopen, Idaopen: open a common object file for / Idopen(3)

/line ·number entries of a common object file Idlread(3)
function.

/Idaclose: close a common object file. Idclose(3)

read the file header of a common object file. Idfhread(3)
Idfhread:

entries of a section of a common object file. Idlseek(3)
/number

file header of a common object file. Idohseek(3)
/seek to

/entries of a section of a common object file. Idrseek(3)

/section header of a common object file. Idshread(3)

an indexed/name section common object file. Idsseek(3)
of a /seek to

of a symbol table entry common object file. /the idtbindex(3)
of a index

symbol table entry of a common object file. Idtbread(3)
/indexed

seek to the symbol table common object file. Idtbseek(3)
of a Idtbseek:

line number entries in a common object file. Iinenum(4)
linenum:

nm: print name list of common object file. nm(l)

relocation information for common object file. reloc(4)
a reloc:

scnhdr: section header common object file. scnhdr(4)
for a

1207891

Index-14

line number information common object file. land strip(1)
from a

retrieve symbol name for common object file Idgetname(J)
symbol!

table format. syms: common object file syms(4)
symbol

filehdr: file header for common object files. filehdr(4)

Id: link editor for common object files. Id(1)

size: print section sizes of common object files. size(1)

comm: select or reject common to two sorted comm(1)
lines files.

ipcs: report inter-process communication facilities/ ipcs(1)

stdipc: standard communication package stdipe(3)
interprocess (ftok).

diff: differential file comparator. diff(1)

cmp: compare two files. cmp(1)

sees file. sccsdiff: compare two versions of sccsdiff(1)
an

diff3: 3-way differential comparison. diff3(1)
file

dircmp: directory comparison. diremp(1)

expression. regcmp, compile and execute regcmp(3)
reg ex: regular

regexp: regular compile and match regexp(5)
expression routines.

regcmp: regular compile. regemp(1)
expression

term: format of compiled term file. term(4)

cc: e compiler. ee(1)

tic: term info compiler. tie{1)

yacc: yet another compiler-compiler. yaee(1)

Index-15

modest -sized/ compiler/interpreter for bs(1)
bs: a

erf, erfc: error function and complementary error erl(3)
function.

wait: await completion of process. wait(1)

pack, pcat, unpack: compress and expand pack(1)
files.

table entry of a/ compute the index of a Idtbindex(3)
Idtbindex: symbol

cu: call another computer system. cu(1)

cat: concatenate and print cat(1)
files.

test: condition evaluation test(1)
command.

system. Ipadmin: configure the LP spooling Ipadmin(1)

fwtmp, wtmpfix: connect accounting fwtmp(1)
manipulate records.

an out-going terminal connection. dial: dial(3)
line establish

brc, bcheckrc, rc, allrc, conrc: system brc(1)
initialization/

fsck, dfsck: file system consistency check and/ fsck(1)

terminal. console: console console(6)

Application Processor / console: control console(1)

console: console terminal. console(6)

math: math functions constants. math(S)
and

mkfs: construct a file system. mkfs(1)

execute command. xargs: construct argument xargs(1)
list(s) and

Is: list contents of directory. Is(1)

csplit: context split. csplit(1)

Processor/console: control Application console(1)

1207891

Index-16

ioctl: control device. ioctl(2)

fcntl: file control. fcntl(2)

init, icode, telinit: control initialization. init(H
process

msgctl: message control operations. msgctl(2)

semctf: semaphore control operations semetl(2)

shmctl: shared memory control operations. shmetl(2)

fcntl: file control options. fend(S)

uucp status inquiry andjob control. uustat: uustat(1)

vc:· version control. veU)

interface. tty: controlling terminal tty(6)

RS-232 channels. tp: controlling terminal's tp(6)
local

terminals. term: conventional names for temeS)

units: conversion program. units(1)

dd: convert and copy a file. ddU)

floating-point number. convert ASCII string to atof(3)
atof:

integers andl 13tol, Itol3: convert between 3-byte 13tol(3)

and base-64 ASCIII convert between long a641(3)
a64I,I64a: integer

and archive files tol convert: convert object convert(1)

Igmtime, asctime, tzset: convert date and time to I ctime(3)

to string. ecvt, fcvt, gcvt convert floating-point ecvt(3)
nubmner

scanf, fscanf, sscanf: convert formatted input. seanf(3)

archive filesl convert: convert object and eonvert(1)

strtod, atof: convert string tol strtod(3)

Index-17

strtol, atol, atoi: convert string to integer. strtol(3)

dd: convert and copy a file ddU)

bcopy: interactive block copy bcopy(1)

cpio: copy file archives in and cpioU)
out.

access time. dcopy: copy file systems for dcopy(1)
optimal

checking,. vol copy, copy file systems with volcopy(1)
labelit: label

reformat CENTIX kernel copy it toBTOS. mkboot(1)
and mkboot:

cp, In, mv: copy, link or move files. cpU)

system, of copy: copy to or from the ofcopy(1)
BTOS file

system to CENTIX copy. /uuname: CENTIX uucp(1)
system

system-to- copy~ /uupick: public uuto(1)
computer system file computer

file~ core: format of core core(4)
image

core: format of core image file. core (4)

mem, kmem: core memory. mem(6)

atan2: trigonometric/ cos, tan, asin, acos, trig (3)
sin, atan,

functions. sinh, cosh, tanh: hyperbolic sinh(3)

sum: print checksum and count of a file. sum(1)
block

wc: word count. wcU)

files. cp, In, my: copy, link or cpU)
move

cpio: format of cpio archive. cpio(4)

and out. cpio: copy file archives in cpioU)

archive. cpio: format of epio cpio(4)

1207891

Index-18

preprocessor. cpp: the e language cpp(H

binary directories. cpset: install object files in cpset(H

clock: report CPU time used. clock(3)

rewrite an existing one. creat: create a new file or creat(2)

file. tmpnam, tempnam: create a name for a tmpnam(l)
temporary

an existing one. creat: create a new file or creat(2)
rewrite

fork: create a new process. fork(2)

tmpfile: create a temporary file. tmpfile(3)

channel. pipe: create an interprocess pipe(2)

files. admin: create and administer admin(H
sees

(slice). crup: create file system crup(1)
partition

umask: set and get file creation mask. umask(2)

cron: clock daemon. cron(1)

file. crontaLuser crontab crontab(1)

crontab_user crontab file. crontab(1)

cxref: generate e cross reference. cxref(1)
program

optimization package. CRT screen handling and curses(l)
curses:

partition (slice). crup: create file system crup(1)

generate DES encryption. crypt, setkey, encrypt: crypt(l)

csplit: context split. csplit(1)

terminal. ct: spawn getty to a ct(1)
remote

for terminal. ctermid: generate file ctermid(3)
name

asctime, tzset: convert ctime, localtime, gmtime, ctime(3)
datel

Index-19

debugger. ctrace: C program ctrace(1)

system. cu: call another computer cu(1)

uname: get name of current CENTIX system uname(Z)

uname: get name of current CENTIX system uname(Z)

activity. sact: print current SCCS file editing sact(1)

slot in the utmp file of the current user. /find the ttyslot(3)

getcwd: get path-name of current working getcwd(3)
directory.

and optimization package. curses: CRT screen curses(3)
handling

name of the user. cuserid: get character cuserid(3)
login

of each line of a file. cut: cut out selected cut(1)
fields

each line of a file. cut: cut out selected fields of cut(1)

cross reference. cxref: generate C cxref(1)
program

command; report process data and system/ /time a timex(1)

smart modem capabililty data base. modemcap: modemcap(5)

term cap: terminal data base. termcap(4)
capability

terminfo: terminal data base. term info (4)
capability

/sgetl: access long data in a sputl(3)
integer machine-independent

lock process, text, or data in memory. plock: plock(Z)

prof: display profile data. prof(1)

call, stat: data are turned by stat stat(5)
system

1207891

Index-20

brk, sbrk: change data segment space brk(2)
allocation.

types: primitive system data types. types(S)

join: relational database operator. join(1)

tput: query term info database. tput(1)

/asctime, tzset: convert date and time to string. ctime(3)

date: print and set the date. date(1)

date. date: print and set the date(1)

dc: desk calculator. dc(1)

optimal access time. dcopy: copy file systems dcopy(1)
for

file. dd: convert and copy a dd(1)

adb: absolute debugger. adb(1)

ctrace: e program debugger. ctrace(1)

fsdb: file system debugger. fsdb(1)

sdb: symbolic debugger. sdb(1)

names. basename, deliver portions of path basename(1)
dirname:

file. tail: deliver the last part of a tail(1)

delta commentary of an delta. cdc: change the cdc(1)
sees
file. delta: make a delta (change) to an delta(1)

sees
delta. cdc: change the delta commentary of an cdc(1)

sees
rmdel: remove a delta from an sees file. rmdel(1)

to an sees file. delta: make a delta delta(1)
(change)

comb: combine sees deltas. comb(1)

cron: clock demon. cron(1)

Index-21

mesg: permit or deny messages. mesg(1)

close: close a file descriptor. close(2)

dup: duplicate an open file descriptor. dup(2)

/wmsetids: associate a descriptor with a wmsetid(3)
file window.

de: desk calculator. de(1)

file. access: determine accessibility of aecess(2)
a

file: determine file type. file(1)

for finite width output device. /fold long lines fold(1)

master: master device information table. master(4)

ioctl: control device. ioctl(2)

devnm: device name. devnm(1)

dvnm: device name. devnm(1)

blocks. df: report number of free df(1)
disk

check and interactive/ dfsck: file system fsck(1)
fsck, consistency

terminal line connection. dial: establish an dial(3)
out-going

bdiff: big diff. bdiff(1)

comparator. diff: differential file diff(1)

comparison. diff3: 3-way differential diff3(1)
file

sdiff: side-by-side difference program. sdiff(1)

diff: differential file diff(1)
comparator.

diff3: 3-way differential file diff3(1)
comparison.

in large files and/ pilf, dio: performance pilUS)
improvement

directories. dir: format of dir(4)

1207891

Index-22

comparison. dircmp: directory dircmp(1)

improvement in large direct I/O. /dio: pilf(5)
files and performance

install object files in directories. cpset: cpset(1)
binary

dir: format of directories. dir(4)

of Is: list BTOS files and directories. ofls(1)

rm, rmdir: remove files or directories. rm(1)

cd: change working directory. cd(1)

chdir: change working directory. chdir(2)

chroot: change root directory. chroot(2)

uuclean: uucp spool directory clean-up. uuclean(1)

dircmp: directory comparison. dircmp(1)

unlink: remove directory entry. unlink(2)

chroot: change root directory for a command. chroot(1)

/make a lost + found directory for fsck. mklost + found(1)

ofDlDir, ofReadDirSector: directory functions. ofdir(3)
BTOS ofCrDir,

path-name of current directory. getcwd: get getcwd(3)
working

Is: list contents of directory. Is(1)

mkdir: make a directory. mkdir(1)

mvdir: move a directory. mvdir(1)

pwd: working directory name. pwd(1)

ordinary file. mknod: directory, or a special or mknod(2)
make a

Index-23

path names. basename, dirname: deliver portions basename(1)
of

printers. enable, disable: enable/disable enable(1)
lP

acct: enable or disable process acct(2)
accounting.

type, modes, speed, and discipline. /set terminal getty(1)
line

sadp: disk access profiler. sadp(1)

df: report number of free disk blocks. df(1)

update: provide disk synchronization. update(1)

du: summarize disk usage. du(1)

cartridge, and floppy disks. dsk: winchester, dsk(6)

mount, umount: mount dismount file system. mount(1)
and

vi: screen-oriented display editor based on ex. vi(1)
(visual)

prof: display profile data. prof(1)

hypot: Euclidean distance function. hypot(3)

/lcong48: generate distributed drand48(3)
uniformly pseudo-random!

whodo: who is doing what. whodo(1)

/ atof: convert string to double-precision number. strtod(3)

tdl: RS-232 terminal download. tdl(1)

nrand48, mrand48, drand48, erand48, drand48(3)
jrand48,J Irand48.

cartridge, and floppy / dsk: winchester, dsk(6)

usage. du: summarize disk du(1)

an object file. dump: dump selected dump(1)
parts of

1207891

Index-24

hd: hexadecimal and ascii dump. hd(1)
file

od: octal dump. od(1)

object file. dump: dump selected parts of an dump(1)

descriptor. dup: duplicate an open file dup(2)

descriptor. dup: duplicate an open file dup(2)

echo: echo arguments. echo(1)

echo: echo arguments. echo(1)

floating-point number tol ecvt, fcvt, gcvt: convert ecvt(3)

ed, red: text editor. ed(1)

program. end, etext, edata: last locations in end(3)

of ed, ofvi: edit BTOS files. ofed(1)

of ed, ofvi: edit BTOS files. olvi(1)

(variant of ex forI edit: text editor edit(1)

sact: print current sees editing activity. sact(1)
file

I(visual) display editor based on ex. vi(1)

ed, red: text editor. ed(1)

ex: text editor. ex(1)

files. Id: link editor for common object Id(1)

common assembler and editor output. a.out: 8.out(4)
link

sed: stream editor. sed(1)

for casual! edit: text editor (variant of ex edit(1)

luser, real group, and effective group IDs. getuid(2)

and/ /getegid: get read effective user, real getuid(2)
user, group,

split FORTRAN, ratfor, or efl files, fsplit: fsplit(1)

Index-25

for a pattern. grep, egrep, fgrep: search a file grep(1)

enable/disable LP enable, disable: enable(1)
printers.

accounting. acct: enable or disable process acct(2)

enable, disable: enable/disable LP enable(1)
printers

encryption, crypt, setkey, encrypt: generate DES crypt(J)

setkey, encrypt: generate encryption. crypt, crypt(J)
DES

locations in program. end, etext, edata: last end(J)

getgrgid, getgrnam, endgrent, fgetgrent: get getgrent(J)
setgrent, group/

getpwuid, getpwnam, endpwent, fgetpwent: getpwent(J)
setpwent, get!

utmp/ /pututline, endutent, utmpname: getut(J)
setutent, access

nlist: get entries from name list. nlist(J)

file. linenum: line number entries in a common Iinenum(4)
object

file/ /manipulate line entries of a common Idlread(J)
number object

common/ /seek to line entries of a section of a Idlseek(J)
number

/Idnrseek: seek to entries of a section of a/ Idrseek(J)
relocation

utmp,wtmp: utmp and entry formats. utmp(4)
wtmp

fgetgrent: get group file entry. /setgrent, getgrent(J)
endgrent,

fgetwent: get password entry. /setpwent, getpwent(J)
file endpwent,

1207891

Index-26

utmpname: access utmp entry. /setutent, getut(3)
file endutent,

object file symbol table entry. / symbol name for Idgetname(3)
common

/the index of a symbol entry of a common Idtbindex(3)
table object file.

/read an indexed symbol entry of a common Idtbread(3)
table object file.

putpwent: write entry. putpwent(3)
password file

quAdd: add a new entry to a BTOS queue. quadd(3)

unlink: remove directory entry. unlink(2)

command execution. env: set environment for env(1)

environ: user environ(S)
environment.

profile: setting up an environment at login profile(4)
time.

environ: user environment. environ(S)

execution. env: set environment for env(1)
command

getenv: return value for environment name. getenv(3)

putenv: change or add environment. putenv(3)
value to

inteface, and terminal environment. /terminal tset(1)

mrand48, jrand48,/ erand48, Irand48, drand48(3)
drand48, nrand48,

complementary error erf, erfc: error function and erf(3)
function.

complementary error / erfc: error function and erf(3)
erf,

system error / perror, errno, sys_errlist, perror(3)
sYS-flerr:

Index-27

complementary I erf, erfc: error function and erf(J)

function and error function. lerfc: error erf(J)
complementary

sys_errlist, sys_nerr: error messages. lerrno, perror(J)
system

to system calls and error numbers. intro(2)
lintroduction

matherr: error-handling function. matherr(J)

hashcheck: find spelling errors. Ihashmake, spellin, spell(1)

terminal linel dial: establish an out-going dial(J)

setmnt: establish mount tabie. setmnt(1)

in program. end: etext, edata: last locations end(J)

hypot: Euclidean distance hypot(J)
function.

expression. expr: evaluate arguments as an expr(1)

test: condition evaluation command. test(1)

Itext editor (variant of ex for casual users). edit(1)

ex: text editor. ex(1)

display editor based on ex. I screen-oriented vi(1)
(visual)

obtainl exQueryDfltResp exAllocExch, exchanges(2)
Exch, exDeallocExch:

exWait, exCheck: examine an ICC message exwait(2)
queue.

quReadNext, examine BTOS queue. quread(J)
quReadKeyed:

wait for the response. exCall: Send a request excall(2)
and

obtain and abandon exchanges. exchanges(2)
I exDeallocExch:

message queue. exWait, exCheck: examine an ICC exwait(2)

1207891

Index-28

a file. locking: exclusive access to locking(2)
regions of

abandon/ /exAllocExch, exDeallocExch: obtain and exchanges(2)

execlp, execvp: execute a/ execl, execv, execle, exec(2)
execve,

execvp: execute/ exec I, execle, execve, execlp, exec(2)
execv,

execl, execv, execle, execlp, execvp: execute a/ exec(2)
execve,

path: locate executable file for path(1)
command.

execve, execlp, execvp: execute a file. /execle, exec(2)

specific Application/ execute a process on a spawn(1)
spawn:

specific/ spawnlp, execute a process on a spawn (3)
spawnvp:

construct argument execute command. xargs: xargs(1)
list(s) and

regex: compile and execute regular/ regcmp, regcmp(3)

set environment for execution. env: env(1)
command

sleep: suspend execution for an interval. sleep(1)

sleep: suspend execution for interval. sleep(3)

monitor: prepare execution profile. monitor(3)

spawnsrv: service spawn execution requests. spawnsrv(1)

profil: execution time profile. profil(2)

uux: remote system execution. uux(1)
command

execvp: execute a/ execl, execv, execle, execve, exec(2)
execlp,

execute/ execl, execv, execve, execJp, execvp: exec(2)
execle,

/execv, execle, execve, execvp: execute a file. exec(2)
execlp,

Index-29

system calls. link, unlink: exercise link and unlink link(1)

a new file or rewrite an existing one. creat: create creat(2)

process. exit, _exit: terminate exit(2)

exit, _exit: terminate process. exit(2)

exponential, logarithm,/ exp, log, log10, pow, exp(3)
sqrt:

pcat, unpack: compress expand files. pack, paek(1)
and

exp, log, log10, pow, sqrt: exponential, logarithm, exp(3)
power,/

expression. expr: evaluate arguments expr(1)
as an

routines. regexp: regular expression compile and regexp(5)
match

regcmp: regular expression compile. regemp(1)

expr: evaluate arguments expression. expr(1)
as an

compile and execute expression. regcmp, reg ex: regcmp(3)
regular

exAllocExch, exQueryDfltRespExch, exchanges(2)
exDeallocExch:/

server. exRequest: Send a exrequest(2)
message to a

client. exRespond: send a exrespond(2)
message to a

exCnxSendOnDealloc: exSendOnDealloc, exfinal(2)
make/

request code. exServeRq: appropriate a exserverq(2)

ICC message queue. exWait, exCheck: examine exwait(2)
an

remainder,/ floor, ceil, fabs: floor, ceiling, floor(3)
fmod,

factor: factor a number faetor(1)

factor: factor a number. faetor(1)

true, false: provide truth values. true(1)

1207891

Index-3D

data in a fashion .. /access long sputl(l)
machine-independent integer

finc: fast incremental backup. fine(1)

/ caHoc, mallopt, mallinfo: fast main memory malloe(l) (fast
allocator. version)

abort: generate an lOT fault. abort(l)

a stream. fclose, fflush: close or felose(l)
flush

fcntl: file control. fentl(2)

fcntl: file control options. fentl(5)

floating-point number / fcvt, gcvt: convert eevt(l)
ecvt,

fopen, freopen, fdopen: open a stream. fopen(l)

status inquiries. ferror, feof, clearerr, fileno: ferror(l)
stream

fileno: stream status/ ferror, feof, clearerr, ferror(l)

statistics for a file ff: list file names and ffU)
system.

stream. fclose, fflush: close or flush a felose(3)

word from a/ getc, fgetc, getw: get character getc(3)
getchar, or

getgrnam, setgrent, fgetgrent: get group file/ getgrent(3)
endgrent,

/getpwnam, setpwent, fgetpwent: get password getpwent(3)
endpwent, file/

stream. gets, fgets: get a string from a gets(3)

pattern. grep, egrep, fgrep: search a file for a grep(H

times. utime: set file access and utime(2)
modification

Idfcn: common object file access routines. Idfcn(4)

determine accessibility of file. access: aecess(2)
a

Index-31

tar: tape file archiver. tar(1)

cpio: copy file archives in and out. cpio(1)

pwck, grpck: file checkers. pwck(1)
password/ group

chmod: change mode of file. chmod(2)

change owner and group file. chown: chown(2)
of a

diff: differential file comparator. diff(1)

diff3: 3-way differential file comparison. diff3(1)

fcntl: file control. fcntl(2)

fcntl: file control options. fcntl(S)

system-to-computer file copy. /public uuto(1)
system computer

core: format of core file. core(4)
image

umask: set and get file creation mask. umask(2)

crontab--user crontab file. crontab(1)

fields of each line of a file. cut: cut out selected cut(1)

dd: convert and copy a file. dd(1)

a delta (change) to an file. delta: make delta(1)
sees
close: close a file descriptor. close(2)

dup: duplicate an open file descriptor. dup(2)

wmsetid, wmsetids: file descriptor with a wmsetid(3)
associate a window.

file: determine file type. fiJe(1)

hd: hexadecimal and ascii file dump. hd(1)

selected parts of an file. dump: dump dump(1)
object

1207891

Index-32

sact: print current sees file editing activity. saet(1)

endgrent, fgetgrent: get file entry. /setgrent, getgrent(3)
group

fgetpwent: get password file entry. /endpwent, getpwent(J)

utmpname: access utmp file entry. /endutent, getut(J)

putpwent; write file entry. putpwent(J)
password

execlp, execvp: execute a file. /execv, execle, exee(2)
execve,

grep, egrep, fgrep: file for a pattern. grep(1)
search a

path: locate executable file for command. path(1)

Idaopen: open a common file for reading. Idopen, Idopen(3)
object

aliases: aliases file for sendmail. aliases(5)

ar: common archive file format. ar(4)

intro: introduction to file formats. intro(4)

entries of a common file function. /line number Idlread(3)
object

get: get a version of an file. get(1)
sees
group: group file. group(4)

files. filehdr: file header for common filehdr(4)
object

file. Idfhread: read the file header of a common Idfhread(J)
object

Idohseek: seek to the file header of a common Idohseek(3)
optional object!

split: split a file into pieces. split(1)

issue: issue identification file. issue(4)

Index-33

of a member of an file. /read the archive Idahread(3)
archive header

close a common object file. Idclose, Idaclose: Idclose(3)

file header of a common file. Idfhread: read the Idfhread(3)
object

a section of a common file. /line number entries of Idlseek(3)
object

file header of a common file. /seek to the optional Idohseek(3)
object

a section of a common file. /relocation entries of Idrseek(3)
object

header of a common file. /indexed/named Idshread(3)
object section

section of a common file. Ito an Idsseek(3)
object indexed/named

table entry of a common file. /the index of a Idtbindex(3)
object symbol

table entry of a common file. /read an indexed Idtbread(3)
object symbol

table of a common object file. /seek to the symbol Idtbseek(3)

entries in a common file. linenum: line number Iinenum(4)
object

link: link to a file. link(2)

access to regions of a file. locking: exclusive locking(2)

mknod: build special file. mknod(1)

or a special or ordinary file. /make a directory, mknod(2)

ctermid: generate file name for terminal. ctermid(3)

mktemp: make a unique file name. mktemp(3)

a file system. ff: list file names and statistics for fi(1)

change the format of a text file. newform: newform(1)

1207891

Index-34

name list of common file. nm: print nm(1)
object

null: the null file. null(6)

/find the slot in the utmp file of the current user. ttyslot(3)

Input/output on a BIOS file. of Read, ofWrite: ofread(3)

of Rename: rename a file. ofrename(3)
BIOS

one. creat: create a new file or rewrite an existing creat(2)

passwd: password file. passwd(4)

or subsequent lines of one file. /Iines of several files paste(1)

soft-copy terminals. pg: file perusal filter for pg(1)

/rewind, ftell: reposition a file pointer in a stream. fseek(3)

Iseek: move read/write file pointer. Iseek(2)

activity / fpsar: File Processor system fpsar(1)

prs: print an sees file. prs(1)

read: read from file. read(2)

for a common object file. /relocation reloc(4)
information

remove a delta from an file. rmdel: rmdel(1)
sees
bfs: big file scanner. bfs(1)

two versions of an sees file. sccsdiff: compare sccsdiff(1)

sccsfile: format of sees file. sccsfile(4)

header for a common file. scnhdr: section scnhdr(4)
object

of Set FileS tat us: BIOS File Status. ofstatus(3)
ofGetFileStatus,

Index-35

stat, fstat: get file status. stat(2)

from a common object file. Iline number strip(1)
information

checksum and block file. sum: print sum(1)
count of a

swrite: synchronous file. swrite(2)
write on a

I symbol name for file symbol table entry. Idgetname(3)
common object

syms: common object file symbol table format. syms(4)

and interactivel fsck, file system consistency fsck(1)
dfsck: check

fsdb: file system debugger. fsdb(1)

names and statistics for a file system. ff: list file ffU)

fs: format of file system. fs(4)

mkfs: construct a file system. mkfsU)

umount: mount and file system. mount, mount(1)
dismount

mount: mount a file system. mount(2)

copy to or from the file system. of copy: ofcopy(1)
BTOS
crup: create file system partition crup(1}

(slice).

ustat: get file system statistics. ustat(2)

mnttab: mounted file system table. mnttab(4)

umount: unmount a file system. umount(2)

access time. dcopy: copy file systems for optimal dcopy(1)

fsck. checklist: list of file systems processed by checklist(4)

vol copy, labelit: copy file systems with labell volcopy(1)

deliver the last part of a file. tail: tail(1)

1207891

Index-36

term: format of compiled file. term(4)
term

tmpfile: create a file. tmpfile(3)
temporary

create a name for a file. tmpnam, tempnam: tmpnam(3)
temporary

and modification times of a file. touch: update access touch(1)

ftw: walk a file tree. ftw(3)

file: determine file type. file(1)

undo a previous get of file. unget: unget(1)
an sees
report repeated lines in a file. uniq: uniq(1)

val: validate sees file. val(1)

write: write on a file. write(2)

umask: set file-creation mode mask. umask(1)

common object files. fiJehdr: file header for filehdr(4)

ferror, feof, clearerr, fileno: stream status/ ferror(3)

create and administer files. admin: admin(1)
sees
/improvement in large files and direct I/O. pilf(S)

of Is: list BTOS files and directories. ofls(1)

cat: concatenate and files. cat(1)
print

cmp: compare two files. cmp(1)

lines common to two files. comm: select or comm(1)
sorted reject

cp, In, mv: copy, link or files. cp(1)
move

file header for common files. fiJehdr: filehdr(4)
object

Index-37

find: find files find(1)

frec: recover files from a backup tape. frec(1)

format specification in files. fspec: fspec(4)
text

cpset: install object files in binary directories. cpset(1)

intro: introduction to files. intro(&)
special

link editor for common files. Id: Id(1)
object

lockf: record locking on files. lockf(3)

ofDelete: Allocate BTOS files. lofChangeFilelength. ofcreate(3)

of ed, ofvi: edit BTOS files. ofeditors(1)

of Close All Files: Access files. 10fCloseFile, ofopenfile(3)
BTOS

rm, rmdir: remove files or directories. rm(1)

Imerge same lines of files or subsequent lines ofl paste(1)
several

unpack: compress and files. pack, pcat, pack(1)
expand

pr: print files. pr(1)

section sizes of common files. size: print size(1)
object

sort: sort and lor merge files. sort(1)

lobject and archive files to common formats. convert(1)

what: identify SCCS files. what(1)

terminals. pg: file perusal filter for soft-copy pg(1)

nl: line numbering filter. 01(1)

col: filter reverse line-feeds. col(1)

I exCnxSendOnDealloc: final requests. exfinal(2)
make

1207891

Index-38

finc: fast incremental fine(1)
backup.

find: find files. find(1)

find: find files. find(1)

hyphen: find hyphenated words. hyphen(1)

ttyname, isatty: find name of a terminal. ttyname(3)

object library. lorder: find ordering relation of an lorder(1)

hashmake, spellin, find spelling errors. spell, spell(1)
hashcheck:

of the current user. find the slot in the utmp file ttyslot(3)
ttyslot:

fold: fold long Jines for finite width output device. fold(1)

tee: pipe fitting. tee(1)

atof: convert ASCII floating-point number. atof(3)
string to

ecvt, fcvt, gcvt: convert floating-point number to/ eevt(3)

/modf: manipulate parts floating-point numbers. frexp(3)
of

floor, ceiling, remainder.! floor, ceil, fmod, fabs: floor(3)

floor, ceil, fmod, fabs: floor, ceiling, remainder.! floor(3)

/cartridge, and floppy disks. dsk(6)

cflow: generate C flow graph. eflow(1)

fclose, fflush: close or flush a stream. felose(3)

remainder.! floor, ceil, fmod, fabs: floor, ceiling, floor(3)

finite width output fold: fold long lines for fold(1)
device.

width output device. fold long lines for finite fold(1)
fold:

Index-39

stream. fopen, freopen, fdopen: fopen(3)
open a

fork: create a new fork(2)
process.

ar: common archive file format. ar(4)

newform: change the format of a text file. newform(1)

i-node: format of an i-node. inode(4)

term: format of compiled term term(4)
file.

core: format of core image file. core(4)

cpio: format of cpio archive. cpio(4)

dir: format of directories. dir(4)

fs: format of file system. fs(4)

sccsfile: format of sees file. sccsfile(4)

files. fspec: format specification in fspec(4)
text

object file symbol table format. syms: common syms(4)

archive files to common formats. /object and convert(1)

intro: introduction to file formats. intro(4)

wtmp: utmp and wtmp formats. utmp, utmp(4)
entry

scanf, fscanf, sscanf: formatted input. scanf(3)
convert

/vfprintf, vsprintf: print formatted output of a vprintf(3)
varargs/

reporter. fpsar: fp system activity fpsar(U

fprintf, sprintf: print formatted output. printf, printf(3)

system activity / fpsar: File Processor fpsar(1)

word on al putc, fputc, putw: put character putc(3)
putchar, or

1207891

Index-40

stream. puts, fputs: put a string on a puts(3)

input! output. fread, fwrite: binary fread(3)

backup tape. frec: recover files from a frec{1)

df: report number of free disk blocks. df(1)

memory allocator. malloc, free, realloc, calloc: main malloe(3)

mallopt, mallinfo:1 free, realloc, cal/oc, malloe(3)
malloc,

stream. fopen, freopen, fdopen: open a fopen(3)

parts of floating-point! frexp, ./dexp, modf: frexp(3)
manipulate

frec: recover files from a backup tape. free(1)

/ and line number from a common object strip(1)
information file.

getw: get character or from a stream. Ifgete, gete(3)
word

gets, fgets: get a string from a stream. gets(3)

rmdel: remove a delta from an sees file. rmdel(1)

getopt: get option letter from argument vector. getopt(3)

read: read from file. read(2)

ncheck: generate names from i-numbers. neheck(1)

nlist: get entries from name list. nlist(3)

of copy: copy to or from the BTOS file ofcopy(1)
system.

getpw: get name from UIO. getpw(3)

fs: format of file system. fs(4)

formatted input. scanf, fscant, sscanf: convert scanf(3)

a lost + found directory for fsck. mklost + found: mklost + found(1)
make

of file systems processed fsck. checklist: list checklist(4)
by

Index-41

consistency check andl fsck, dfsck: file system fsck(1)

fsdb: file system fsdb(1)
debugger.

reposition a file pointer inl fseek, rewind, ftell: fseek(3)

size. fsize: calculate file fsize(1)

text files. fspec: format specification fspec(4)
in

or efl files. fsplit: split fortran, ratfor, fsplit(1)

stat, fstat: get file status. stat(2)

pointer in al fseek, ftell: reposition a file fseek(3)
rewind,

communication package (ftok). Istandard stdipc(3)
interprocess

ftw: walk a file tree. ftw(3)

error / erf, erfc: error function and erf(3)
complementary

and complementary error function. I error function erf(3)

gamma: log gamma function .. gamma(3)

hypot: Euclidean distance function. hypot(3)

of a common object file function. Iline number Idlread(3)
entries

matherr: error-handling function. matherr(3)

prof: profile within a function. prof(5)

math: math functions and constants. math(5)

jO, jl, jn, yO, yl, yn: functions. bessel(3)
Bessel

logarithm, power, square functions. I sqrt: exp(3)
root exponential,

remainder, absolute value functions. Ifloor, ceiling, floor(3)

ocurse: optimized screen functions. ocurses(3)

1207891

Index-42

BTOS directory functions. ofdir(3)
/ofReadDirSector:

sinh, cosh, tanh: functions. sinh(3)
hyperbolic

atan, atan2: functions. /tan, asin, trig(3)
trigonometric acos,

fread, fwrite: binary fread(3)
input! output.

connect accounting fwtmp, wtmpfix: fwtmp(1)
records. manipulate

gamma: log gamma function. gamma(3)

gamma: log gamma gamma(3)
function.

number to string. ecvt, gcvt: convert floating-point ecvt(3)
fcvt,

abort: generate an lOT fault abort(3)

cflow: generate e flow graph. cflow(1)

reference. cxref: generate e program cross cxref(1)

terminal. ctermid: generate file name for ctermid(3)

crypt, setkey, encrypt: generate DES encryption. crypt(3)

ncheck: generate names from ncheck(1)
i-numbers.

lexical tasks. lex: generate programs for lex(1)
simple

/srand48, seed48, generate uniformly drand48(3)
Icong48: distributed/

srand: simple generator. rand, rand(3)
random-number

gets, fgets: get a string from a gets(3)
stream.

get: get a version of an sees get(1)
file.

ulimit: get and set user limits. ulimit(2)

the user. cuserid: get character login name of cuserid(3)

Index-43

getc, getchar, fgetc, get character or word getc(3)
getw: from af

nlist: get entries from name list. nlist(3)

umask: set and get file creation mask. umask(2)

stat, fstat: get file status. stat(2)

ustat: get file system statistics. ustat(2)

file. get: get a version of an get(1)
sees

setgrent, endgrent, get group file entry. getgrent(3)
fgetgrent:

getlogin: get login name. getlogin(3)

logname: get login name. logname(1)

msgget: get message queue. msgget(2)

getpw: ge~ name from UID. getpw(3)

system. uname: get name of current uname(2)
eENTIX

unget: undo a previous get of an sees file. unget(1)

argument vector. getopt: get option letter from getopt(3)

setpwent, endpwent, get password file entry. getpwent(3)
fgetpwent:

working directory. get path-name of current getcwd(3)
getcwd:

times. times: get process and child times(2)
process

and/ getpid, getpgrp, get process, process getpid(2)
getppid: group,

/geteuid, getgid, getegid: get real user, effective getuid(2)
user,/

semget: get set of semaphores. semget(2)

shmget: get shared memory shmget(2)
segment.

wmlayout: get terminal's window wmlayout(3)
layout.

1207891

Index-44

tty: get the terminal's name. tty(1)

time: get time. time(2)

wmgetid: get window 10. wmgetid(l)

get character or word getc, getchar, fgetc, getw: gete(l)
from a/

character or work from/ get char, fgetc, getw: get gete(l)
getc,

current working getcwd: get path-name of getewd(l)
directory.

getuid, geteuid, getgid, getegid: get real user.! getuid(2)

environment name. getenv: return value for getenv(l)

real user, effective/ geteuid, getgid, getegid: getuid(2)
getuid, get

user,/ getuid, geteuid, getgid, getegid: get real getuid(2)

setgrent, endgrent,/ getgrent, getgrgid, getgrent(l)
getgrnam,

endgrent,/ getgrent, getgrgid, getgrnam, getgrent(l)
setgrent,

getgrent, getgrgid, getgrnam, setgrent, getgrent(l)
endgrent.!

getlogin: get login name. getlogin(l)

argument vector. getopt: get option letter getopt(l)
from

getopt: parse command getopt(1)
options.

getpass: read a password. getpass(l)

process group, and/ getpgrp, getppid: get getpid(2)
getpid, process,

process, process group, getpid, getpgrp, getppid: getpid(2)
and! get

group, and! getpid, getppid: get process, getpid(2)
getpgrp, process

getpw: get name from getpw(l)
UIO.

Index-45

setpwent, endpwent,/ getpwent, getpwuid, getpwent(3)
getpwnam,

getpwent, getpwuid, getpwnam, setpwent, getpwent(3)
endpwent,/

endpwent,/ getpwent, getpwuid, getpwnam, getpwent(3)
setpwent,

a stream. gets, fgets: get a string gets(3)
from

and terminal settings getty. gettydefs: speed gettydefs(4)
used by

modes, speed, and line/ getty: set terminal type, getty(1)

ct: spawn getty to a remote ct(1)
terminal.

settings used by getty. gettydefs: speed and gettydefs(4)
terminal

getegid: get real user,/ getuid, geteuid, getgid, getuid(2)

pututline, setutent,1 getutent, getutid, getut(3)
getutline,

setutent, endutent,1 getutid, getutline, getut(3)
getutent, pututline,

setutent,/ getutent, getutline, pututline, getut(3)
getutid,

from al getc, getchar, getw: get character or gete(3)
fgete, word

convertl ctime, localtime, gmtime, asctime, tzset: etime(3)

setjmp, longjmp: goto. setjmp(3)
non-local

sag: system activity graph. sag(1)

plot: graphics interface. plot(4)

subroutines. plot: graphics interface plot(3)

Ifor typesetting view graphs and slides. mv(5)

file for a pattern. grep, egrep, fgrep: search a grep(1)

1201891

Iridex-46

/user, effective user, real group, and effective getuid(2)
group/

/getppid: get process, group, and parent process getpid(2)
process IDs.

chown, chgrp: change group. chown(1)
owner or

endgrent, fgetgrent: get group file entry. /setgrent, getgrent(])

group: group file. group(4)

group:. group file. group(4)

setpgrp: set process group 10. setpgrp(2)

id: print user and group IDs and names. id(1)

real group, and effective group IDs. /effective user, getuid(2)

setuid, setgid: set user and group IDs. setuid(2)

newgrp: log in to a new group. newgrp(1)

chown: change owner group of a file. chown(2)
and

a signal to a process or a group of processes. /send kill(2)

update, and regenerate groups of programs. make(1)
/maintain,

checkers. pwck, grpck: password/group pwck(l)
file

ssignaJ, gsignal: software signals. ssignaJ(3)

terminal download. tdl, gtdl, ptdl: RS-232 tdl(1)

processing. shutdown, halt: terminate all shutdown(1)

varargs: handle variable argument varargs(5)
list.

package. curses: CRT handling and optimization curses(3)
screen

Index-47

nohup: run a command hangups and quits. nohup(1)
immune to

hcreate, hdestroy: hash search tables hsearch(3)
manage hsearch,

spell, hash make, spellin, hash check: find spelling/ speU(1)

/encrypt: generate hashing encryption. crypt(3)

hash check: find/ speU, hashmake, spellin, speU(1)

search tables. hsearch, hcreate, hdestroy: manage hsearch(3)
hash

dump. hd: hexadecimal and ascii hd(l)
file

tables, hsearch, hcreate, hdestroy: manage hash hsearch(3C)
search

file. scnhdr: section header for a common scnhdr(4)
object

files. filehdr: file header for common object filehdr(4)

file. Idfhread: read the file header of a common Idfhread(3)
object

/seek to the optional file header of a common Idohseek(3)
object!

tread an indexed/named header of a common Idshread(3)
section object/

Idahread: read the header of a member of ant Idahread(3)
archive

help: ask for help. help(l)

help: ask for help. help(l)

dump. hd: hexadecimal and ascii file hd(l)

manage hash search hsearch, hcreate, hdestroy: hsearch(3)
tables.

sinh, cosh, tanh: hyperbolic functions. sinh(3)

hyphen: find hyphenated hyphen(1)
words.

hyphen: find hyphenated words. hyphen(l)

1207891

Index-48

function. hypot: Euclidean distance hypot(3)

exWait, exCheck: ICC message queue. exwait(2)
examine an

processor. pstat: ICC statistics for pstat(1)

control initialization. init, icode, telinit: process init(1)

semaphore set or shared id. /remove a message ipcrm(1)
memory queue,

and names. id: print user and group IDs id(1)

setpgrp: set process 10. setpgrp(2)
group

wmgetid: get window 10. wmgetid(3)

issue: issue identification file. issue(4)

what: identify SCCS files. what(1)

id: print user and group IDs and names. id(1)

group, and parent IDs. /get process, process getpid(2)
process

group, and effective IDs. /effective user, real getuid(2)
group

setgid: set user and IDs. setuid, setuid(2)
group

core: format of core image file. core(4)

crash: examine system images. crash(1)

nohup: run a command immune to hangups and nohup(1)
quits.

direct! pi If , dio: improvement in large files pilf(5)
performance and

finc: fast incremental backup. finc(1)

tgoto, tputs: terminal independent operations. termcap(3)

for formatting a index. /the macro package mptx(5)
permuted

Index-49

of a/ Idtbindex: compute index of a symbol table Idtbindex(3)
the entry

a common/ Idtbread: indexed symbol table entry Idtbread(3)
read an of

Idshread, Idnshread: read indexed/named section Idshread(3)
an header/

Idsseek, Idnsseek: seek indexed/named section of Idsseek(3)
to an a/

control initialization. init, icode, telinit: process init(1)

inittab: script for the init process. inittab(4)

tellinit: process control initialization. init, icode, init(1)

rc, allrc, comc: system initialization shell scripts. brc(1)

process. popen, pclose: initiate pipe to/from a popen(3)

process. inittab: script for the init inittab(4)

clri: clear i-node. clri(1)

inode: format of an i-node inode(4)

inode: format of an i-node. inode(4)

convert formatted input. /fscanf, sscanf: scanf(3)

push character back into input stream. ungetc: ungetc(3)

fread, fwrite: binary input! output. fread(3)

of Read, ofWrite: Input!output on a BTOS ofread(3)
file.

stdio: standard buffered input! output package. stdio(3)

fileno: stream status inquiries. /feot, clearerr, ferror(3)

uustat: uucp status inquiry and job control. uustat(1)

install: install commands. install(1)

install: install commands. install(1)

directories. cpset: install object files in cpset(1)
binary

1207891

Index-50

tset: set terminal, interface, and terminal! tsel(1)
terminal

abs: return integer absolute value. abs(3)

/164a: convert between integer and base-64 a641(3)
long ASCII/

sputl, sgetl: access long integer data in a/ sputl(3)

atol, atoi: convert string to integer, strto', strtol(3)

/toI3: convert between integers and long integers. 13to1(3)
3-byte

3-byte integers and long integers. /convert 13to1(3)
between

bcopy: interactive block copy. beopy(1)

command line interpreter interactive BTOS JCL. ofeli(1)
for ofcli:

system consistency check interactive repair. /file fsek(1)
and

mt: interface for magnetic mt(6)
tape.

Ip: parallel printer interface. Ip(6)

plot: graphics interface. plot(4)

plot: graphics interface subroutines. plot(3)

termio: general terminal interface. termio(6)

tty: controlling terminal interface. tty(6)

BTOS JCL. of eli: interpreter for interactive ofeli(1)
command line

pipe: create an interprocess channel. pipe(2)

facilities/. ipcs: report inter-process ipes(1)
communication

package/ stdipc: interprocess stdipe(3)
standard communication .
suspend execution for an interval., sleep: sleep(1)

Index-51

sleep: suspend executin interval. sleep(3)
for

commands and intro: introduction to intro(1)
application/

formats. intro: introduction to file intro(4)

miscellany. intro: introduction to intro(5)

files. intro: introduction to intro(&)
special

subroutines and libraries. intro: introduction to intro(3)

calls and error numbers. intro: introduction to intro(2)
system

applicaton programs. introduction to commands intro(1)
intro: and

intro: introduction to file intro(4)
formats.

intro: introduction to miscellany. intro(5)

intro: introduction to special intro(&)
files.

and libraries. intro: introduction to subroutines intro(3)

and error numbers. intro: introduction to system intro(2)
calls

ncheck: generate names i-numbers. ncheck(1)
from

in large files and direct I/O. /performance pill(5)
improvement

ioctl: control device. iocd(2)

abort: generate an lOT fault. abort(3)

semaphore set or ipcrm: remove a message ipcrm(1)
shared/ queue,

communication facilities/ ipcs: report inter-process ipcs(1)

/islower, isdigit, isxdigit, isalnum, isspace, ispunct,/ ctype(3)

isdigit, isxdigit, isalnum,/ isalpha, isupper, islower, ctype(3)

1207891

Index-52

lisprint, isgraph, iscntrl, isascii: classify characters. ctype(J)

terminal. ttyname, isatty: find name of a ttyname(J)

lispunct, isprint, isgraph, iscntrl, isascii: classify I ctype(J)

isalpha, isupper, islower, is digit, isxdigit, isalnum,1 ctype(J)

isspace, ispunct, isprint, isgraph, iscntrl, isascii:1 ctype(J)

isalnum,J isalpha, islower, isdigit, isxdigit, ctype(J)
isupper,

lisa Inurn, isspace, isprint, isgraph, iscntrl,J ctype(J)
ispunct,

isxdigit, isalnum, isspace, ispunct, isprint, isgraph,J ctype(J)

lisdigit, isxdigit, isalnum, isspace, ispunct, isprint,1 ctype(J)

system: issue a shell command. system(J)

issue: issue identification file. issue(4)

file. issue: issue identification issue(4)

isxdigit, isalnum,/ isupper, islower, isdigit, ctype(J)
isalpha,

lisupper, is lower, isdigit, isxdigit, isalnum, isspace,J ctype(J)

news: print news items. news(1)

functions. jO, jl, jn, yO, yl, yn: Bessel bessel(J)

functions. jO jl, jn, yO, yl, yn: Bessel bessel(J)

for interactive STOS JCL. Icommand line ofcli(1)
interpreter

functions. jO, j 1 , jn, yO, yl, yn: Bessel bessel(3)

operator. - join: relational database join(1)

Irand48, nrand48, jrand48, srand48, drand48(J)
mrand48, seed48,1

mkboot: reformat CENTIX kernel and copy it to mkboot(1)
BTOS.

Index-53

killall: kill all active processes. killan(1)

process or a group of / kill: send a signal to a kill(2)

kill: terminate a process. kill (1)

processes. kill all: kill all active killan(1)

mem, kmem: core memory. mem(6)

3-byte integers and 13tol, Itol3: convert 13to1(3)
long/ between

integer and base-64/ 164a: convert between a641(3)
a641, long

copy file systems with label checking. /Iabelit: volcopy(1)

with label checking. labelit: copy file systems volcopy(1)
vol copy,

scanning and processing language. awk: pattern awk(1)

arbitrary-precision language. bc: be(1)
arithmetic

cpp: the C language preprocessor. epp(1)

command programming language. shU)
I standardl restricted

get terminal's window layout. wmlayout: wmlayout(3)

Ijrand48, srand48, Icong48: generate drand48(3)
seed48, uniformly/

object files. Id: link editor for common IdU)

object fde. Idclose, Idaclose: close a common Idelose(3)

header of a member of anI Idahread: read the archive Idahread(3)

file for reading. Idopen, Idaopen: open a common Idopen(3)
object

common object file. Idclose, Idaclose: close a Idelose(3)

of floating-point/frexp, Idexp, modf: manipulate frexp(3)
parts

access routines. Idfcn~ common object file Idfen(4)

-1201891

Index-54

of a common object file. Idfhread: read the file Idfhread(J)
header

name for common object Idgetname: retrieve symbol Idgetname(J)
file/

line number entries/ Idlinit, Idlitem: manipulate Idlread(J)
Idlread,

number / Idlread, Idlinit, Idlitem: manipulate line Idlread(J)

manipulate line number / Idlread, Idlinit, Idlitem: Idlread{J)

to line number entries/ Idlseek, Idnlseek: seek Idlseek(J)

number entries of a Idlseek, Idnlseek: seek to Idlseek(J)
section/ line

entries of a section/ Idnrseek: seek to Idrseek(J)
Idrseek, relocation

indexed/named/ Idnshread: read an Idshread(J)
Idshread,

indexed/named/ Idsseek, Idnsseek: seek to an Idsseek(J)

file header of a common/ Idohseek: seek to the Idohseek(J)
optional

object file for reading. Idopen, Idaopen: open a Idopen(J)
common

relocation entries of a/ Idrseek, Idnrseek: seek to Idrseek(J)

indexed/named section Idshread, Idnshread: read an Idshread(J)
of a/

indexed/named section Idsseek, Idnsseek: seek to Idsseek(J)
of a/ an

of a symbol table entry Idtbindex: compute the Idtbindex(J)
of a/ index

symbol table entry of a/ Idtbread: read an indexed Idtbread(J)

table of a common Idtbseek: seek to the Idtbseek(J)
object! symbol

get opt: get option letter from argument getopt(J)
vector.

Index-55

simple lexical tasks. lex: generate programs for lex(1)

generate programs for lexical tasks. lex: lex(1)
simple

update. Isearch, Ifind: linear search and Iseareh(3)

to subroutines and libraries. /introduction iotro(3)

relation for an object library. /find ordering lorder(1)

portable/ ar: archive and library maintainer for ar(1)

ulimit: get and set user limits. ulimit(2)

an out-going terminal line connection. / establish dial(3)

type, modes, speed, and line discipline. /set getty(1)
terminal

interactive/ ofcli: line interpreter for ofeli{1)
command

line: read one line. line(1)

common object file. line number entries in a Iinenum(4)
linenum:

/Idlinit, Idlitem: line number entries of a/ Idlread(3)
manipulate

Idlseek, Idnlseek: seek to line number entries of a/ Idlseek(J)

strip: strip symbol and line number information strip(1)
from a/

nl: line numbering filter. 01(1)

out selected fields of line of a file. cut: cut eut(1)
each

send/cancel requests to line printer, Ip, cancel: Ip(1)
an lP

Ipset: set parallel line printer options. Ipset(1)

Ipr: line printer spooler. Ipr(1)

line: read one line. line(1)

Isearch, Ifind: linear search and update. Iseareh(3)

1207891

Index-56

col: filter reverse line-feeds. col(1)

in a common object file linenum: line number linenum(4)
entries

files. comm: select or lines common to two comm(1)
reject sorted

device. fold: fold long lines for finite width fold(1)
output

head: give first few lines. head(1)

uniq: report repeated lines in a file. uniq(1)

of several files or lines of one file. /same lines paste(1)
subsequent

subsequent! paste: lines of several files or paste(1)
merge same

link, unlink: exercise link and unlink system Iink(1)
cal/s.

files. Id: link editor for common Id(1)
object

a.out: common assembler link editor output. a.out(4)
and

link: link to a file. Iink(2)

cp, In, mv: copy, link or move files. cp(1)

link: link to a file. Iink(2)

and unlink system cal/s. link, unlink: exercise link link(1)

lint: a C program checker. lint(1)

Is: list contents of directory. Is(1)

directories. of Is: list BlOS files and ofls(1)

for a file system. ff: list file names and ffU)
statistics

nlist: get entries from list. nlist(3)
name

nm: print name list of common object file .. nm(1)

by fsck. checklist: list of file systems checklist(4)
processed

'1t'''t''1I! ',erll'''''''' tI .. ""wIMfMMIf'HIbIf"m"rlU 0' ... ,.HIi"'f'!II

Index-57

handle variable argument list. varargs: varargs(5)

output of a varargs list. /print formatted vprintf(J)
argument

xargs: construct list(s) and execute xargs(1)
argument command.

files. cp, In, mv: copy, link or move cp(l)

tzset: convert datal localtime, gmtime, ctime(J)
ctime, asctime,

command. path: locate executable file for path(l)

end, etext, edata: last locations in program. end(J)

data in memory. plock: lock process, text, or plock(2)

files. lockf: record locking on lockf(J)

regions of a file. locking: exclusive access to locking(2)

lockf: record locking on files. lockf(J)

gamma: log gamma function. gamma(J)

newgrp: log in to a new group. newgrp(1)

exponential, logarithm.! log, log10, pow, sqrt: exp(J)
exp,

logarithm, power,/ exp, log10, pow, sqrt: exp(J)
log, exponential,

/logl0, pow, sqrt: logarithm, power, square exp(J)
exponential, root!

getlogin: get login name. getlogin(J)

log name: get login name. logname(1)

cuserid: get character login name of the user. cuserid(J)

logname: return login name of user. logname(3)

passwd: change login password. passwd(l)

login: sigll on. login(1)

setting up an login time. profile: profile (4)
environment at

log name: get login name. logname(1}

1207891

Index-58

user. log name: return login logname(3)
name of

a641, 164a: convert long integer and base-64 a641(3)
between ASCII/

sputl, sgetl: access long integer data in a/ sputl(3)

between 3-byte integers long integers. /ltoI3: 13tol(3)
and convert

output device. fold: fold long lines for finite width fold(1)

setjmp, longjmp: non-local goto. setjmp(3)

for an object library. lorder: find ordering lorder(1)
relation

mklost + found: make a lost + found directory for mklost + found(1)
fsck.

nice: run a command at low priority. nice(1)

requests to an LP line/ Ip, cancel: send/cancel Ip(1)

send/ cancel requests to LP line printer. Ip, cancel: Ip(1)
an

interface. Ip: parallel printer Ip(6)

disable: enable/disable LP printers. enable, enable(1)

Ipshut, Ipmove: LP request scheduler and Ipsched(1)
start/ stop the move/

accept, reject: LP requests. accept(1)
allow/prevent

Ipadmin: configure the LP spooling system. Ipadmin(1)

Ipstat: print LP status information. Ipstat(1)

spooling system. Ipadmin: configure the LP Ipadmin(1)

request! Ipsched, Ipshut, Ipmove: start/stop the LP Ipsched(1)

Ipr: line printer spooler. Ipr(1)

start/ stop the LP Ipsched, Ipshut, Ipmove: Ipsched(1)
request!

Index-59

printer options. Ipset: set parallel line Ipset(1)

LP request scheduler / Ipshut, Ipmove: start/stop Ipsehed(1)
Ipsched, the

information. Ipstat: print LP status Ipstat(1)

jrand48,f drand48, Irand48, nrand48, drand48(3)
erand48, mrand48,

directory. Is: list contents of Is(1)

and update. Isearch, Ifind: linear Iseareh(3)
search

pointer. Iseek: move read/write Iseek(2)
file

integers and long/ 13tol, Itol3: convert between 13to1(3)
3-byte

m4: macro processor. m4(1)

values: machine-dependent values. values(5)

/access long integer data 'machine-independent sputl(3)
in a fashion.

permuted index. mptx: macro package for mptx(5)
the formatting

documents. mm: the MM macro package for mm(5)
formatting

typesetting/ mv: a troft macro package for mv(5)

m4: macro processor. m4(1)

in this manual. man: macros for formatting man(S)
entries

send mail to users or read mail. mail, rmail: mail(1)

users or read mail. mail, rmail: send mail to mail(1)

mail, rmail: send mail to users or read mail. mail(1)

malloc, free, realloc, main memory allocator. malloe(3)
calloc:

/mallopt, mallinfo: fast main memory allocator. malloe(3) (fast
version)

regenerate groups of / maintain, update, and make(1)
make:

1207891

Index-50

ar: archive and library maintainer for portable/ ar(1)

SCCS file. delta: make a delta (change) to an delta(1)

mkdir: make a directory. mkdir(1)

or ordinary file. mknod: make a directory, or a mknod(2)
special

mktemp: make a unique file name. mktemp(3)

exCnxSendOnOeal make final requests. exfinal(2)
loc:

regenerate groups off make: maintain, update, make(1)
and

banner: make posters. banner(1)

session. script: make typescript of script(1)
terminal

realloc, calloc, mallopt, mallinfo: fast main malloc(3) (fast
memory/ version)

main memory allocator. malloc, free, realloc, malloc(3)
calloe:

mallopt, mallinfo: fast malloe, free, realloe, malloc(3)
main/ calloe,

malloc, free, realloc, mallopt, mallinfo: fast malloc(3) (fast
calloe, main/ version)

/tfind, tdelete, twalk: manage binary search tsearch(3)
trees.

hsearch, hcreate, manage hash search hsearch(3)
hdestroy: tables.

wmop: window management operations. wmop(3)

window: window management primitives. window(6)

wm: window management. . wm(1)

records. fwtmp, wtmpfix: manipulate connect fwtmp(1)
accounting

off Idlread, ·Idlinit, manipulate line number Idlread(3)
Idlitem: entries

frexp, Idexp, modf: manipulate parts off frexp(3)

ascii: map of ASCII character set. ascii(5)

umask: set file-creation mask. umask(1)
mode

Index-61

set and get file creation mask. umask: umask(2)

table. master: master device information master(4)

information table. master: master device master(4)

regular expression match routines. regexp: regexp(5)
commpile and

math: math functions and math(5)
constants.

constants. math: math functions and math(5)

function. matherr: error-handling matherr(3)

processor type. mc68k, pdp 11, u3b, vax: machid(1)

mem, kmem: core mem(6)
memory.

memcpy, memset: memccpy, memchr, memory(3)
memoryl memcmp,

memset: memory I memchr, memcmp, memory(3)
memccpy, memcpy,

operations. memccpy, memcmp, memcpy, memory(3)
memchr, memset: memory

memccpy, memchr, memcpy, memset: memory(3)
memcmp, memoryl

free, realloc, ealloe: main memory allocator. mall DC, malloc(3)

mallopt, mallinfo: fast memory allocator. lealloc, malloc(3) (fast
main version)

shmetl: shared memory control shmctl(2)
operations.

queue, semaphore set or memory id. fremove a ipcrm(1)
shared message

mem, kmem: core memory. mem(6)

memcmp, memepy, memory operations. memory(3)
memset: Imemchr,

shmop: shared memory operations. shmop(2)

text, or data in memory. flock process, plock(2)

shmget: get shared memory segment. shmget(2)

1207891

Index-62

/memchr, memcmp, memset: memory memory(J)
memcpy, operations.

sort: sort and/or merge files. sort(1)

files or subsequent! merge same lines of paste(1)
paste: several

mesg: permit or deny mesg(1)
messages.

msgctl: message control msgctl(2)
operations.

msgop: message operations. msgop(2)

exCheck: examine an ICC message queue. exWait, exwait(2)

msgget: get message queue. msgget(2)

or shared/ ipcrm: remove a message queue, ipcrm(1)
semaphore set

exRespond: send a message to a client. exrespond(2)

exRequest: Send a message to a server. exrequest(2)

mesg: permit or deny messages. mesg(1)

sys_nerr: system error messages. lerrno, perror(J)
sys_errlist,

and copy it to BTOS. mkboot: reformat CENTIX mkboot(1)
kernel

mkdir: make a directory. mkdir(1)

mkfs: construct a file mkfs(1)
system.

lost + found directory mklost + found: make a mklost + found(1)
fori

mknod: build special file. mknod(1)

special or ordinary file. mknod: make a directory, mknod(2)
or a

name: mktemp: make a unique file mktemp(J)

table. mnttab: mounted file mnttab(4)
system

chmod: change mode. chmod(1)

Index-63

umask: set file-creation mode mask. umask(1)

chmod: change mode of file. chmod(2)

modemcap: smart modem capability data modemcap(5)
base.

capability data base. modemcap: smart modem modemcap(5)

getty: set terminal type, modes, speed, and line/ getty(1)

/ compiler/interpreter for modest-sized programs. bs(1)

floating-point! frexp, modf: manipulate parts of frexp(3)
Idexp,

touch: update access and modification times of a file. touch(U

utime: set file access modification times. utime(2)
and

profile. monitor: prepare execution monitor(J)

uusub: monitor uucp network. uusub(1)

more, page: text perusal. more(1)

translate byte orders to Motorola/Intel. swapshort(3)
/swaplong:

mount: mount a file system. mount(2)

system. mount, umount: mount and dismount file mount(1)

mount: mount a file mount(2)
system.

setmnt: establish mount table. setmnt(1)

dismount file system. mount, umount: mount mount(1)
and

mnttab: mounted file system table .. mnttab(4)

mvdir: move a directory. mvdir(1)

cp, In, mv: copy, link or move files. cp(1)

Iseek: move read/write file Iseek(2)
pointer.

1207891

Index-64

the lP request scheduler move request. / start/ stop Ipsched(1)
and

formatting a permuted mptx: the macro package mptx(5)
index. for

/ erand48, Irand48, mrand48, jrand48, drand48(J)
nrand48, srand48,/

operations. msgctl: message control msgctl(2)

msgget: get message msgget(2)
queue.

msgop: message msgop(2)
op.erations.

tape. mt: interface for magnetic mt(6}

package for typesetting/ my: a troff macro mv(S)

cp, In, my: copy, link or move files. cp(1)

mvdir: move a directory. mvdir(1)

i-numbers. ncheck: generate names ncheck(1)
from

uusub: monitor uucp network. uusub(1)

a text file. newform: change the newform(1)
format of

newgrp: log in to a new newgrp(1)
group.

news: print news items. news(1)

news: print news items. news(1)

process. nice; change priority of a nice(2}

process by changing nice. / of running reniee(U

priority. nice: run a command at low niee(1)

nJ: line numbering filter. nl(1)

list. nlist: get entries from nlist(3}
name

object file. nm: print name list of nm{1}
common

hangups and quits. nohup: run a command nohup(1)
immune to

Index-65

setjmp, longjmp: non-local goto. setjmp(3)

drand48, erand48, nrand48, mrand48, drand48(3)
Irand48, jrand48,f

null: the null file. null(6)

null: the null file. null(6)

nl: line numbering filter. nl(1)

to/ convert: convert object and archive files convert(1)

Idfcn: common object file access routines. Idfen(4)

dump selected parts of an object file. dump: dump(1)

Jdopen, Idaopen: open a object file for reading. Idopen(3)
common

number entries of a object file function. /Iine Idlread(3)
common

Idaclose: close a common object file. Idclose, Idelose(3)

the file header of a object file. Idfhread: read Idfhread(3)
common

of a section of a object file. /number Idlseek(3)
common entries

file header of a common object file. Ito the Idohseek(3)
optional

of a section of a object file. lentries Idrseek(3)
common

header of a common object file. Isection Idshread(3)

section header of a object file. Idsseek(3)
common /indexed/named

symbol table entry of a object file. /the index of a Idtbindex(3)
common

symbol table entry of a object file. Iread an Idtbread(3)
common indexed

the symbol table of a object file. I seek to Idtbseek(3)
common

number entries in a object file. linenum: line linenum(4)
common

1207891

Index-66

nm: print name list of object file. nm(1)
common

information for a object file. /relocation reloc(4)
common

section header for a object file. scnhdr: scnhdr(4)
common

information from a object file. land line strip(1)
common number

entry. /symbol name for object file symbol table Idgetname(3}
common

format. syms: common object file symbol table syms(4)

file header for common object files. filehdr: filehdr(4)

directories. cpset: install object files in binary cpset(1)

Id: link editor for object files. Id(U
common

print section sizes of object files. size: size(1)
common

find ordering relation for object library. larder: larder(1)
an

/exAllocExch, obtain and abandon exchanges(2)
exDeallocExch: exchanges.

od: octal dump. od(1)

functions. ocurse: optimized screen ocurses(J)

od: octal dump. od(1)

Allocate BTOS/ of Create, of Change File Length, ofcreate(3)
ofDelete:

interpreter for otcli: command line ofcli(1)
interactive/

of Open File, of Close File, of Close All Files: Access ofopenfile(3)
BTOS/

Access BTOS/ of Close File, ofopenfile(3)
ofOpenFile, of Close All Files:

BTOS file system. of copy: copy to or from the ofcopy(1)

Index-67

ofReadDirSector: BTOS/ ofCrDir, ofDlDir, ofdir(3)

ofDelete: Allocate BTOS/ of Create, ofcreate(3)
of Change File Length,

of Create , ofDelete: Allocate BTOS ofcreate(3)
of Change File Length, files.

directory functions. ofDlDir, ofReadDirSector: ofdir(3)
ofCrDir, BTOS

of ed, ofvi: edit BTOS files. ofeditors(1)

of Set FileS tat us: BTOS of Get FileS tat us, ofstatus(3)
File/

directories. of Is: list BTOS files and ofls(1)

of Close All Files: Access ofOpenFile, of Close File, ofopenfile(3)
BTOS/

on a BTOS file. of Read, ofWrite: ofread(3)
Input/output

directory / ofCrDir, ofReadDirSector: BTOS ofdir(3)
ofDlDir,

of Rename: rename a BTOS ofrename(3)
file.

Status. of Get FileS tat us, of Set FileS tat us: BTOS File ofstatus(3)

of ed, ofvi: edit BTOS files. ofeditors(1)

BTOS file. of Read, ofWrite:lnputj output on a ofread(3)

reading. Idopen, Idaopen: open a common object file Idopen(3)
for

fopen, freopen, fdopen: open a stream. fopen(3)

dup: duplicate an open file descriptor. dup(2)

open: open for reading or open(2)
writing.

writing. open: open for reading or open(2)

profiler. prf: operating system prf(6)

prfdc, prfsnap, prfpr: operating system/ profiler(1)

memcmp, memcpy, operations. memccpy, memory(3)
memset: memory memchr,

1207891

Index-68

msgctl: message control operations. msgctl(2)

msgop: message operations. msgop(2)

semctl: semaphore operations. semctl(2)
control

semop: semaphore operations. semop(2)

shmctl: shared memory operations. shmctl(2)
control

shmop: shared memory operations. shmop(2)

strcspn, strtok: string operations. /strpbrk, string(J)
strspn,

tputs: terminal operations. /tgetstr, tgoto, termcap(3)
independent

wmop: window operations. wmop(J)
management

join: relational database operator. join(1)

dcopy: copy file systems optimal access time. deopy(1)
for

CRT screen handling and optimization package. curses(J)
curses:

ocurse: optimized screen ocurses(J)
functions.

vector ,. getopt: get option letter from getopt(J)
argument

common/ Idohseek: seek optional file header of a Idohseek(J)
to the

fcntl: file control options. fentHS)

stty: set the options for a terminal. stty(1)

get opt: parse command options. getopt(1)

set parallel line printer options. Ipset: Ipset(1)

object library. lorder: find ordering relation for an lorder(1)

Index-59

a directory, or a special or ordinary file. mknod: make mknod(2)

dial: establish an out-going terminal line/ diaJ(3)

assembler and link editor output. a.out: common a.ouI(4)

long lines for finite width output device. fold: fold fold(1)

/vsprintf: print formatted output of a varargs vprintf(3)
argument!

sprintf: print formatted output. printf, fprintf, printf(3)

chown: change owner and group of a file chown(2)

chown, chgrp: change owner or group. chown(1)

and expand files. pack, pcat, unpack: pack(1)
compress

handling and optimization package. curses: CRT curses(3)
screen

view / mv: a troff macro package for typesetting mv(5)

sadc: system activity package. sal, sa2, sar(1)
report

standard buffered package. stdio: stdio(3)
input! output

interprocess package (ftok). /standard stdipc(3)
communcation

more, page: text perusal. more(1)

Ipset: set parallel line printer Ipset(1)
options.

Ip: parallel printer interface. Ip(6)

process, process group, parent process IDs. /get getpid(2)
and

getopt: parse command options. getopt(1)

crup: create file system partition (slice). crup(1)

1207891

Index-70

passwd: change login passwd(1)
password.

passwd: password file. passwd(4)

/ endpwent, fgetpwent: password file entry. getpwent(J)
get

putpwent: write password file entry,. putpwent(3)

passwd: password file. passwd(4)

getpass: read a password. getpass(J}

passwd: change login password. passwd(1)

pwck, grpck: password/group file pwck(l}
checkers.

several files or paste: merge same lines of paste(1)
subsequent/

for command. path: locate executable file path(1)

dirname: deliver portions path names. basename, basename(1)
of

directory. getcwd: get path-name of current getcwd(J)
working

fgrep: serach a file for a pattern. grep, egrep, grep(1)

processing language. pattern scanning and awk(1)
awk:

signal. pause: suspend process pause(2)
until

expand files. pack, pcat, unpack: compress pack(l}
and

a process. popen, pclose: initiate pipe popen(3)
to/from

type. mc68k, pdp 11, u3b, vax: machid(1)
processor

large files and/ pi If , dio: performance improvement pilf(5)
in

mesg: permit or deny messages. mesg(1)

format. acct: per-process accounting file acct(4)

sys_nerr: system error / perror, errno, sys_errlist, perror(J)

Index-11

terminals. pg: file perusal filter for soft-copy pg(1)

more, page: text perusal. moreU)

soft-copy terminals. pg: file perusal filter for pg(1)

split: split a file into pieces. split(1)

improvement in large pilf, dio: performance pUf(5)
files/

channel. pipe: create an pipe(2)
interprocess

tee: pipe fitting. tee(1)

popen, pclose: initiate pipe to/from a process. popen(3)

text, or data in/ plock: lock process: plock(2)

interface. kplot: graphics plot(4)

subroutines. plot: graphics interface plot(3)

ftell: reposition a file pointer in a stream. Iseek(3)
/rewind,

Iseek: move read/write pointer. Iseek(2)
file

to/from a process. popen, pclose: initiate pipe popen(3)

and library maintainer for portable archives. / archive ar(1)

basename, dirname: portions of path names. basename(1)
deliver

banner: make posters. banner(1)

logarithm, exp, log, pow, sqrt: exponential, exp(3)
log10,

exp, log, log10, pow, sqrt: exponential,f exp(3)

/exponential, logarithm, power, square root! exp(3)

pr: print files. pr(1)

monitor: prepare execution profile. monitor(3)

cpp: the e language preprocessor. cpp(1)

unget: undo a previous get of an sees unget(1)
file.

1207891

Index-72

profiler. prf: operating system prf(6)

prfld, prfstat, prfdc, prfsnap, prfpr:/ profiler(l)

prfsnap, prfpr:/ prfld, prfstat, prfdc, profiler(1)

/prfstat, prfdc, prfsnap, prfpr: operating system/ profiler(1)

prfld, prfstat, prfdc, prfsnap, prfpr:/ profiler(1)

prfpr: operating/ prfld, prfstat, prfdc, prfsnap, profiler(1)

types: primitive system data types(S)
types.

window: window primitives. window(6)
managment

prs: print an sees file. prs(1)

date: print and set the date. date(1)

number. apnum: print Application Processor apnum(1)

cal: print calendar. caUl)

of a file. sum: print checksum and block sumO)
count

editing activity. sact: print current sees file sact(1)

cat: concatenate and print files. cat(1)

pr: print files. pr(1)

vprintf, vfprintf, vsprintf: print formatted output of a/ vprintf(3)

printf, fprintf, sprintf: print formatted output. printf(3)

Ipstat: print LP status Ipstat(1)
information.

object file. nm: print name list of common nm(l)

uname: print name of system. uname(1)

news: print news items. news(1)

object files. size: print section sizes of size (1)
common

Index-73

names. id: print user and group IDs and id(1)

Ip: parallel printer interface. Ip(6)

requests to an LP line printer. /cancel: Ip(1)
send/cancel

Ipset: set parallel line printer options. Ipset(1)

Ipr: line printer spooler. Ipr(1)

disable: enable/disable printers. enable, enable(1)
LP

print formatted output. printf, fprintf, sprintf: printf(3)

nice: run a command at priority. nice(1)
low

nice: change priority of a process. nice(2)

process/ renice: alter priority of running renice(1)

acct: enable or disable process accounting. acct(2)

alarm: set a process alarm clock. alarm(2)

times. times: get process and child process times(2).

/priority of running process by chanaging/ renice(1)

init, icode, telinit: process control! init(1)

timex: time a command; process data and system/ timex(1)
report

exit, _exit: terminate process. exit(2)

fork: create a new process. fork(2)

Igetpgrp, getppid: get process group, and getpid(2)
process, parent!

setpgrp: set process group 10. setpgrp(2)

process group, and process IDs. Iget process, getpid(2)
parent

inittab: script for the init process. inittab(4)

kill: terminate a process. kill(1)

1207891

Index-74

nice: change priority of a process. nice(2)

Application/ spawn: process on a specific spawn(.1)
execute a

spawnlp, spawnvp: process on a specific/ spawn(J)
execute a

kill: send a signal to a process or a group of / kill (2)

initiate pipe to/from a process. popen, pclose: popen(J)

getpid, getpgrp, getppid: process, process group, getpid(2)
get and/

ps: report process status. ps(1)

in memory. plock: lock process, text, or data plock(2)

times: get process and process times. times(2)
child

wait: wait for child process to stop or wait(2)
terminate.

pause: suspend process until signal. pause(2)

wait: await completion process. wait(1)
of

list of file systems processed by fsck. checklist(4)
checklist:

to a process or a group of processes. /send a signal kill(2)

killall: kill all active processes. killall(1)

awk: pattern scanning processing language. awk(1)
and

shutdown, halt: processing. shutdown(1)
terminate all

m4: macro processor. m4(1)

apnum: print Application Processor number. apnum(1)

console: control Processor pseudoconsole. . console(1)
Application

Index-75

lee statistics for processor. pstat: pstat(l)

on a specific Applicaton Processor. /execute a spawn(l)
process

on a specific Application Processor. / execute a spawn(3)
process

activity / fpsar: File Processor system fpsar(l)

mc68k, pdpll, u3b, vax: processor type. machid(1)

prof: display profile data. prof(l)

function. prof: profile within a prof(5)

profile. profil: execution time profiJ(2)

prof: display profile data. prof(l)

monitor: prepare profil,e. monitor(3)
execution

profil: execution time profile. profiJ(2)

environment at login profile: setting up an profile(4)
time.

prof: profile within a function. prof(5)

prf: operating system profiler. prf(6)

prfpr: operating system profiler. /prfsnap, profiler(1)

sadp: disk access prof Her. sadp(1)

standard / restricted programming language. sh(1)
command /the

update: provide disk update(l)
synchronization.

/pdpll, u3b, u3b5, vax provide truth value/ machid(l)

true, false: provide truth values. true(1)

prs: print an sees file. prs(1)

ps: report process staus. ps(1)

control Application pseudoconsole. console: console(1)
Processor

1207891

Index-76

/generate uniformly pseudo-random numbers. drand48(J)
distributed

for processor. pstat: ICC statistics pstat(1)

download. tdl, gtdl, ptdl: RS-232 terminal tdl(1)

ptrace; process trace. ptrace(2)

ptx: permuted index. ptx(1)

stream. ungetc: push character back into ungetc(J)
input

put character or word on putc, putchar, fputc, putc(J)
a/ putw:

character or word on a/ putchar, fputc, putw: put putc(J)
putc,

environment. putenv: change or add putenv(J)
value to

entry. putpwent: write password putpwent(3)
file

stream. puts, fputs: put a string puts(J)
on a

getutent, getutid, pututline, setutent, getut(J)
getutline, endutent,j

a/ putc, putchar, fputc, putw: put character or putc(J)
word on

file checkers. pwck, grpck: pwck(1)
password/group

pwd: working directory pwd(1)
name.

qsort: quicker sort. qsort(J)

BTOS queue. quAdd: add a new entry quadd(J)
to a

tput: query temrinfo database~ tputU)

examine an ICC message queue. exWait, exCheck: exwait(2)

msgget: get message queue. msgget(2)

add a new entry to a BTOS queue. quAdd: quadd(J)

Index-77

quReadKeyed: examine queue. quReadNext, quread(3)
BTOS

quRemove: take back a queue request. quremove(J)
BTOS

ipcrm: remove a message queue, semaphore set or ipcrm(1)
shared/

qsort: quicker sort. qsort(3)

command immune to quits. nohup: run a nohup(1)
hangups and

queue. quReadNext, quReadKeyed: examine quread(3)
BTOS

examine BTOS queue. quReadNext, quReadKeyed: quread(J)

queue request. quRemove: take back a quremove(3)
BTOS

random-number rand, srand: simple rand(3)
generator.

rand, srand: simple random-number generator. rand(3)

fsplit: split fortran, ratfor, or efl files. fsplit(1)

initialization/bre, rc, allrc, comc: system brc(1)
bcheckrc,

getpass: read a password. getpass(3)

entry of a common/ read an indexed symbol Idtbread(J)
Idtbread: table

header / Idshread, read an indexed/named Idshread(J)
Idnshread: section

read: read from file. read(2)

rmail: send mail to users or read mail. mail, mail(1)

line: read one line. line(1)

read: read from file. read(2)

member of ani Idahread: read the archive header of a Idahread(3)

common object file. read the file header of a Idfhread(J)
Idfhread:

1207891

Index-78

open a common object reading. Idopen, Idaopen: Idopen(3)
file for

open: open for reading or writing. open(2)

Iseek: move read/write file pointer. Iseek(2)

allocator. malloc, free, realloc, calloc: main maUoc(3)
memory

mallinfo: fast! malloc, realloc, ca/loc, mal/opt, maUoc(3) (fast
free, version)

specify what to do upon receipt of a signal. signal: signal(2)

lockf: record locking on files. lockf(3)

manipulate connect records. fwtmp, wtmpfix: fwtmp(1)
accounting

tape. frec: recover files from a frecU)
backup

ed, red: text editor. ed(1)

it to BTOS. mkboot: reformat CENTIX kernel mkboot(1)
and copy

execute regular regcmp, regex: compile regcmp(3)
expression. and

expression compile. regcmp: regular regcmp(1)

make: maintain, update, regenerate groups of make(1)
and programs.

regular expression. reg ex: compile and regcmp(3)
regcmp, execute

compile and match regexp: regular expression regexp(5)
routines.

locking: exclusive access regions of a file. locking(2)
to

match routines. regexp: regular expression compile regexp(5)
and

regcmp: regular expression regcmp(1)
compile.

regex: compile and regular expression. regcmp(3)
execute regcmp,

requests. accept, reject: allow/prevent lP accept(1)

Index-79

sorted files. comm: reject lines common two comm(1)
select or

larder: find ordering relation for an object! lorder(1)

join: relational database join(1)
operator.

for a common object file. reloc: relocation reloc(4)
information

Idrseek, Idnrseek: seek to relocation entries of al Idrseek(3)

common object file. relocation information for a reloc(4)
reloc:

Ifmod, tabs: floor, remainder, absolute valuel floor(3)
ceiling,

calendar. reminder service. calendar(1)

ct: spawn getty to a remote terminal. ct(1)

file. rmdel: remove a delta from an rmdel(1)
SCCS

semaphore set or I ipcrm: remove a message queue, ipcrm(1)

unlink: remove directory entry. unlink(2)

rm, rmdir: remove files or directories. rm(1)

of Rename: rename a BTOS file. ofrename(3)

of running process by I renice: alter priority renice(1)

check and interactive repair. /system fsck(1)
consistency

uniq: report repeated lines in a file. uniq(1)

clock: report CPU time used. clock(3)

communication/ ipcs: report inter-process ipcs(1)

blocks. df: report number of tree disk df(1)

sa2, sadc: system report package. sal, sar(1)
activity

timex: time a command; report process data and timex(1)
system/

1207891

Index-SO

ps: report process status. ps(1)

file. uniq: report repeated lines in a uniq(l)

system activity reporter. /Processor fpsar(l)

sar: system activity reporter. sar(l)

stream, fseek, rewind, reposition a file pointer in a fseek(J)
ftell:

reponse. exCall: Send a request and wait for the excall(2)

exServeRq: appropriate a request code. exserverq(2)

take back a BTOS queue request. quRemove: quremove(J)

/Ipmove: start/stop the request scheduler and Ipsched(l}
lP move/

reject: allow/prevent lP requests. accept, accept(l)

exCnxSendOnDeal request. exSelidOnDealloc, exfinal(2)
loc: make final

LP request scheduler and requests. / start/stop the Ipsched(1)
move

service spawn execution requests. spawnsrv: spawnsrv(1)

syslocal: special system requests. syslocal(2)

Ip, cancel: send/cancel requests to an lP line/. Ip(l)

a request and wait for the response. exCall: Send excall(2)

common object file/ retrieve symbol name for Idgetname(3)
Idgetname:

abs: return integer absolute abs(J)
value.

logname: return login name of user. logname(3)

name. getenv: return value for getenv(J)
environment

Index-81

stat: data returned by stat system stat(5)
call.

col: filter reverse line-feeds. col(l)

file pointer in a/ fseek, rewind, ftell: reposition a fseek(J)

creat: create a new file or rewrite an existing one. creat(2)

directories. rm, rmdir: remove files or rm(1)

read mail. mail, rmail: send mail to users or mail(1)

sees file. rmdel: remove a delta rmdel(1)
from an

directories. rm, rmdir: remove files or rm(1)

chroot: change root directory. chroot(2)

chroot: change root directory for a chroot(1)
command.

logarithm, power, square root functions. exp(J)
/ exponential,

common object file routines. Idfcn: Idfcn(4)
access

expression compile and routines. regexp: regular regexp(5)
match

controlling terminal's RS-232 channels. tp: tp(6)
local

tdl: rs232 terminal download. tdl(1)

standard/restricted/ sh, rsh: shell, the sh(1)

nice: run a command at low nice(1)
priority.

hang ups and quits. run a command immune to nohup(1)
nohup:

/ alter priority of running process by / renice(1)

activity report package. sal, sa2, sadc: system sar(1)

report package. sal, sa2, sadc: system activity sar(1)

editing activity. sact: print current sees file sact(1)

package. sa 1, sa2, sadc: system activity sar(1)
report

1207891

Index-82

sar: system activity sar(1)
reporter.

profiler. sadp: disk access sadp(l)

graph. sag: system activity sag(1)

reporter. sar: system activity sar(l)

space allocation. brk, sbrk: change data brk(2)
segment

formatted input. scanf, fscanf, sscanf: scanf(3)
convert

bfs: big file scanner. bfs(l)

language. awk: pattern scanning and processing awk(1)

the delta commentary of sees delta. cdc: change cdc(l)
an

comb: combine sees deltas. comb(1)

make a delta (change) to sees file. delta: delta(1)
an

sact: print current sees file editing activity. sact(1)

get: get a version of an sees file. get(l)

prs: print an sees file. prs(1)

rmdel: remove a delta sees file. rmdel(1)
'from an

compare two versions of sees file. sccsdiff: sccsdiff(1)
an

sccsfile: format of sees file. sccsfile(4)

undo a previous get of an sees file. unget: unget(l)

val: validate sees file. val(1)

admin: create and sees files. admin(1)
administer

what: identify sees files. what(1)

of an sees file. sccsdiff: compare two sccsdiff(1)
versions

Index-83

sccsfile: format of sees sccsfile(4)
file.

/start/stop the lP scheduler and move Ipsched(l)
request requests.

common object file. scnhdr: section header for a scnhdr(4)

clear: clear terminal screen. clear(1)

ocurse: optimized screen functions. ocurse(J)

optimization/ curses: screen handling and curses(J)
eRT
display editor based on/ screen-oriented (visual) vi(l)
vi:

inittab: script for the init process. inittab(4)

terminal session. script: make typescript of script(l)

system initialization shell scripts. Irc, allrc, conrc: brc(l)

sdb: symbolic debugger. sdb(1)

program. sdiff: side-by-side sdiff(1)
difference

grep, egrep, fgrep: search a file for a pattern grep(1)

bsearch: binary search a sorted table. bsearch(J)

Isearch, Ifind: linear search and update. Isearch(J)

hcreate, hdestroy: search tables. hsearch, hsearch{J)
manage hash

tdelete, twalk: manage search trees. tsearch, tsearch(J)
binary tfind,

object file. scnhdr: section header for a scnhdr(4)
common

object! /read an section header of a Idshread{J)
indexed/ named common

Ito line number entries section of a common Idlseek(J)
of a object!

Ito relocation entries of a section of a common Idrseek(J)
object!

Iseek to an section of a common Idsseek(J)
indexed/ named object!

1207891

Index-84

files. size: print section sizes of common size(1)
object

sed: stream editor. sed(1)

/mrand48, jrand48, seed48, Icong48: drand48(3)
srand48, generate/

section of / Idsseek, seek to an indexed/named Idsseek(3)
Idnsseek:

a section/ Idlseek, seek to line number Idlseek(3)
Idnlseek: entries of

a section/ Idrseek, seek to relocation entries of Idrseek(3)
Idnrseek:

header of a common/ seek to the optional file Idohseek(3)
Idohseek:

common object file. seek to the symbol table Idtbseek(3)
Idtbseek: of a

shmget: get shared segment. shmget(2)
memory

brk, sbrk: change data segment space allocation. brk(2)

to two sorted files. select or reject lines comm(1)
comm: common

of a file. cut: cut out selected fields of each line cut(1)

file. dump: dump selected parts of an object dump(1)

semctl: semaphore control semctl(2)
operations.

semop: semaphore operations. semop(2)

ipcrm: remove a message semaphore set or shared ipcrm(1)
queue, memory/

semget: get set of semaphores. semget(2)

operations. semctl: semaphore control semctl(2)

semget: get set of semget(2)
semaphores.

semop: semaphore semop(2)
operations.

exRespond: send a message to a exrespond(2)
client. .

Index-85

exRequest Send a message to a exrequest(2)
server.

the response. exCall: Send a request and wait for excall(2)

a group of processes. kill: send a signal to a process or kill(2)

mail. mail, rmail: send mail to users or read mailU)

line printer. Ip, cancel: send/cancel requests to Ip(1)
an LP

aliases file for sendmail. aliases: aliases(S)

exRequest Send a server. exrequest(2)
message to a

make typescript of session. script: script(1)
terminal

buffering to a stream setbuf, setvbuf: assign setbuf(3)

IDs. setuid, setgid: set user and group setuid(2)

getgrent, getgrgid, setgrent, endgrent, getgrent(3)
getgrnam, fgetgrent/

goto. setjmp, longjmp: non-local setjmp(3)

encryption. crypt, setkey, encrypt: generate crypt(3)
DES

setmnt: establish mount setmnt(1)
table.

setpgrp: set process group setpgrp(2)
10.

getpwent, getpwuid, getpwent, endpwent, getpwent(3)
getpwnam, fgetpwent:/

environment! cprofile: setting up a C shell cprofile(4)

login time. profile: setting up an environment profile(4)
at

gettydefs: speed and setting used by getty. gettydefs(4)
terminal

group IDs. setuid, setgid: set user and setuid(2)

1207891

Index-86

setuname: set name of setuname(1}
system.

I getutid, getutline, setutent, endutent, getut(3)
pututline, utmpname:j

stream. setbuf, setvbuf: asign buffering to a setbuf(3)

data in a/ sputl, sgetl: access long integer sputl(3)

standardl restricted sh, rsh: shell, the sh(1)
command/

operations. shmctl: shared memory control shmctl(2)

queue, semaphore set or shared memory id. /a ipcrm(1)
message

shmop: shared memory operations. shmop(2)

shmget: get shared memory segment. shmget(2)

system: issue a shell command. system(3)

cprofile: setting up a C shell environment at! cprofile(4}

conrc: system shell scripts. Irc, allrc, brc(1)
initialization

command programming/ shell, the sh(1)
sh, rsh: standard/restricted

operations. shmctl: shared memory shmctl(2)
control

segment. shmget: get shared shmget(2)
memory

operations. shmop: shared memory shmop(2)

processing. shutdown, halt: terminate shutdown(1)
all

program. sdiff: side-by-side difference sdiff(1)

login: sign on. 10gin(1)

pause: suspend process signal. pause(2)
until

whaqt to do upon receipt signal. signal: specify signal(2)
of a

upon receipt of a signal. signal: specify what to do signal(2)

Index-87

of processes. kill: send a signal to a process or a kill (2)
group

ssignal, gsignal: software signals. ssignal(J)

lex: generate programs sigmple lexical tasks. lex(1)
for

generator. rand, srand: simple random-number rand(J)

atan, atan2: sin, cos, tan, asin, acos, trig(J)
trigonometric/

functions. sinh, cosh, tanh: sinh(J)
hyperbolic

fsize: calculate file size. fsize(1)

common object files size: print section sizes of size(1)

size: print section sizes of common object size(1)
files.

an interval. sleep: suspend execution sleep(1)
for

interval. sleep: suspend execution sleep(3)
for

create file system (slice). crup: crup(1)
partition

the/ ttyslot: find the slot in the utmp file of mv(5)

current! ttyslot: find the slot in the utmp file of the ttyslot(3)

base. modemcap: smart modem capability modemcap(5)
data

pg: file perusal filter for soft-copy terminals. pg(1)

ssignal, gsignal: software signals. ssignal(3)

sort: sort and/or merge files. sort(1)

qsort: quicker sort. qsort(3)

sort: sort and/or merge sort(1)
files.

tsort: topological sort. tsort(1)

1207891

Index-88

or reject lines common sorted files. comm: select comm(1)
to two

bsearch: binary search a sorted table. bsearch(J)

brk, sbrk: change data space allocation. brk(2)
segment

specific Application/ spawn: execute a process spawn(1)
on a

spawnsrv: service spawn execution requests. spawnsrv(1)

terminal. ct: spawn getty to a remote ct(1)

process on a specific/ spawnlp, spawnvp: spawn(3)
execute a

execution requests. spawnsrv: service spawn spawnsrv(1)

a specific/ spawnlp, spawnvp: execute a spawn(3)
process on

spawn: execute a specific Application/ spawn(1)
process on a

execute a process on a specific Application/ spawn(3)
/spawnvp:

fspec: format specification in text files. fspec(4)

receipt of a signal. specify what to do upon signal(2)
signal:

/set terminal type, speed, and line discipline. getty(1)
modes,

used by getty. gettydefs: speed and terminal gettydefs(4)
settings

hash check: find spelling/ spell, hash make, spellin, spell(1)

spelling/ spell, spellin, hash check: find spell(1)
hashmake,

spellin, hashcheck: find spelling errors. spell(1)
/hashmake,

split: split a file into pieces. split(1)

csplit: context split. csplit(1)

efl files. fsplit: split fortran, ratfor, or fsplit(1)

Index-89

pieces. split: split a file into split(1)

uuclean: uucp spool directory clean-up. uelean(1)

Ipr: line printer spooler. Ipr(1)

Ipadmin: configure the lP spooling system. Ipadmin(1)

output, printf, fprintf, sprintf: print formatted printf(3)

integer data in a/ sputl, sgetl: access long sputl(3)

power,/ exp, log, log10, sqrt: exponential, exp(3)
pow, logarithm,

exponential, logarithm, square root functions. exp(3)
power /sqrt:

generator, rand, srand: simple rand(3)
random-number

nrand48, mrand48, srand48, seed48, drand48(3)
jrand48, Icong48:/

input. scanf, fscanf, sscanf: convert formatted seanf(3)

signals. ssignal, gsignal: software ssignal(3)

package. stdio: standard buffered stdio(3)
input! output

communication package/ standard interprocess stdipe(3)
stdipc:

sh, rsh: shell, the standard/ restricted sh(1)
command/

Ipsched, Ipshut, Ipmove: start/stop the lP request! Ipsehed(1)

system call. stat: data returned by stat stat(5)

stat, fstat: get file status. stat(2)

stat: data returned by stat system call. stat(5)

ff: list file names and statistics for a fil~ ff(1)
system.

processor. pstat: ICC statistics for pstat(1)

ustat: get file system statistics. ustat(2)

1207891

Index-90

Ipstat: print lP status information. Ipstat(1)

feof, clearerr, fileno: status inquiries. ferror, ferror(3)
stream

control. uustat: uucp status inquiry and job uustat(1)

communication facilities status. /report ipcs(1)
inter-process

of Set FileS tat us: BTOS Status. of Get FileS tat us. ofstatus(J)
File

ps: report process status. ps(1)

stat, fstat: get file status. stat(2)

input/output package. stdio: standard buffered stdio(3)

stime: set time. stime(2)

wait for child process to stop or terminate. wait: wait(2)

strnemp, strepy, streat, strneat, stremp, string(3)
strnepy,/

/strepy, strnepy, strlen, strehr, strrehr, strpbrk,/ string(J)

strnepy,/ streat, strncat, strcmp, strncmp, strcpy, string(3)

/strneat, strcmp, strcpy, strncpy, strlen,/ string(3)
strnemp,

/strrchr, strpbrk, strspn, strcpn, strtok: string/ string(3)

sed: stream editor. sed(1)

fflush: close or flush a stream. felose, fclose(3)

fopen, freopen, fdopen: stream. fopen(3)
open a

reposition a file pointer stream. fseek, rewind, fseek(J)
in a ftell:

get character or word stream. /getchar, fgete, getc(3)
from a getw:

fgets: get a string from a stream. gets, gets(J)

Index-91

put character or word on a stream. /putchar, fputc, putc(3)
putw:

puts, fputs: put a string stream. puts(J)
on a

setvbuf: assign buffering stream. setbuf, setbuf(J)
to a

/feof, c1earerr, fileno: stream status inquiries. ferror(3)

push character back into stream. ungetc: ungetc(3)
input

long integer and base-64 string. /164a: convert a641(3)
ASCII between

convert date and time to string. /asctime, tzset: clime(3)

floating-point number to string. /fcvt, gcvt: convert ecvt(3)

gets, fgets: get a string from a stream. gets(3)

puts, fputs: put a string on a stream. puts(J)

strspn, strcspn, strtok: string operations. string (3)
/strpbrk,

number. strtod, atof: string to double-precision strtod(3)
convert

number. atof: convert string to floating-point atof(3)
ASCII

strtol, atol, atoi: convert string to integer. strtol(3)

line number information/ strip: strip symbol and strip(1)

number/strip: strip symbol and line strip(1)

strncmp, strcpy, strncpy, strlen, strchr, strrchr,/ string(3)

strcpy, strncpy,f strcat, strncat, strcmp, strncmp, string(3)

strcat, strncat, strcmp, strncmp, strcpy, strncpy'/ string(J)

strcmp, strncmp, strcpy, strncpy, strlen, strchr,/ string(3)

1207891

Index-92

Istrlen, strchr, strrchr, strpbrk, strspn, strcspn,l string(J)

strncpy, strlen, strchr, strrchr, strpbrk, strspn,/ string(J)

strchr, strrchr, strpbrk, strspn, strcspn, strtok:1 string(J)

to double-precision strtod, atof: convert string strtod(J)
number.

Istrpbrk,strspn, strcspn, strtok: string operations. string(J)

string to integer. strtol, atol, atoi: convert strtol(J)

terminal. stty: set the options for a stty(1)

another user. su: become super-user or su(1)

intro: introduction to subroutines and libraries. intro(3)

plot: graphics interface subroutines. plot(3)

I same lines of several subsequent lines of one file. paste(1)
files or

count of a file. sum: print checksum and sum(1)
block

du: summarize disk usage. du(1)

sync: update the super block. syne(1)

sync: update super-block. syne(2)

su: become super-user or another su(1)
user.

interval. sleep: suspend execution of an sleep(1)

interval. sleep: suspend execution for sleep(3)

pause: suspend process until pause(2)
signal.

swab: swap bytes. swab(3)

swab: swap bytes. swab (3)

orders tol swapshort, swap long: translate byte swapshort(J)

byte orders tol swap short, swap long: swapshort(J)
translate

Index-93

file. swrite: synchronous write swrite(2)
on a

information from/ strip: symbol and line number strip(1)
strip

file/ Idgetname: retrieve symbol name for common Idgetname(3)
object

name for common object symbol table entry. Idgetname(3)
file /symbol

objectj / compute the symbol table entry of a Idtbindex(3)
index of a common

Idtbread: read an indexed symbol table entry of a Idtbread(3)
common/

syms: common object file symbol table format. syms(4)

objectj Idtbseek: seek to symbol table of a common Idtbseek(3)
the

sdb: symbolic debugger. sdb(1)

symbol table format. syms: common object file syms(4)

sync: update super-block sync(2)

sync: update the super sync(1)
block ..

update: provide disk synchronization. update(1)

swrite: synchronous write on a swrite(2)
file ..

error / perror, ermo, sys....errlist, sYS-'1err: perror(3)
system

requests. syslocal: special system syslocal(2)

perror, ermo, sys-'1err: system error / perror(3)
sys_errlist,

binary search a sorted table. bsearch: bsearch(3)

for common object file table entry. /symbol name Idgetname(3)
symbol

/ compute the index of a table entry of a common Idtbindex(3)
symbol objectj

1207891

Index-94

file. /read an indexed table entry of a common Idtbread(J)
symbol object

common object file table format. syms: syms(4)
symbol

master device information table. master: master(4)

mnttab: mounted file table. mnttab(4)
system

Idtbseek: seek to the table of a common object Idtbseek(J)
symbol file.

setmnt: establish mount table. setmnt(1)

hdestroy: manage hash tables. hsearch, hcreate, hsearch(J)
search

tabs: set tabs on a terminal. . tabs(1)

tabs: set tabs on a tabs(1)
terminal.

expand, unexpand: tabs to spaces, and vice/ expand(1)
expand

a file. tail: deliver the last part of tail(1)

request. quRemove: take back a BTOS queue quremove(J)

trigonometric/ sin, cos, tan, asin, acos, atan, trig(J)
atan2:

sinh, cosh, tanh: hyperbolic functions. sinh(J)

tar: tape file archiver. tar(1)

recover files from a tape. frec: frec(1)
backup

mt: interface for tape. mt(6)
magnetic

tar: tape file archiver. tar(1)

programs for simple tasks. lex: generate lex(1)
lexical

search trees, tsearch, tdelete, twalk: manage tsearch(J)
tfind binary

tdl: rs232 terminal tdl(1)
download.

Index-95

tee: pipe fitting. tee(1)

initialization. init, icode, telinit: process control init(l)

temporary file. tmpnam, tempnam: create a name tmpnam(J)
for a

tmpfile: create a temporary file. tmpfile(J)

tempnam: create a name temporary file. tmpnam, tmpnam(J)
for a

terminals. term: conventional names term(5)
for

term: format of compiled term file .. term(4)

file. term: format of compiled term(4)
term

data base. termcap: terminal termcap(4)
capability

termcap: terminal capability data termcap(4)
base ..

terminfo: terminal capability data terminfo(4)
base.

console: console terminal. console(6)

ct: spawn getty to a terminal. ct(l)
remote

generate file name for terminal. ctermid: ctermid(J)

tdl: rs232 terminal download. tdl(l)

/terminal interface, and terminal environment. tset(1)

/tgetstr, tgoto, tputs: terminal independent! termcap(J)

terminal! tset: set terminal interface, and tset(l)
terminal,

termio: general terminal interface. termio(6)

tty: controlling terminal interface. tty(6)

dial: establish an terminal line connection. dial(J)
out-going

1207891

Index-96

clear: clear terminal screen. clear(1)

script: make typescript of terminal session. script(1)

getty. gettydefs: speed terminal settings used by gettydefs(4)
and

stty: set the options for a terminal. sttyU)

tabs: set tabs on a terminal. tabs(1)

and terminal! tset: set terminal, terminal tset(1)
interface,

tty: get the name of the terminal. ttyU)

isatty: find name of a terminal. ttyname, ttyname(J)

and line/ getty: set terminal type, modes, getty(1)
speed,

vt: virtual terminal. vt(6)

channels. tp: controlling terminal's local RS-232 tp(6)

perusal filter for terminals. pg: file pg(1)
soft-copy

term: conventional names terminals. term(S)
for

wmlayout: get terminal's window layout. wmlayout(3)

kill: terminate a process. killU)

shutdown, halt: terminate all processing. shutdown(1)

exit, _exit: terminate process. exit(2)

for child process to stop or terminate. wait: wait wait(2)

tic: terminfo compiler. tic(1)

tput: query terminfo database. tput(1)

tic; terminfo compiler. terminfo(4)

interface: termio: general terminal termio(6)

command. test: condition evaluation testU)

ed, red: text editor. ed(1)

Index-97

ex: text editor. ex(1)

ex for casual! edit: text editor (variant of editU)

change the format of a text file. newform: newform(1)

fspec: format text files. fspec(4)
specification in

plock: lock process text, or data in memory. plock(2)

more, page: text persual. more(1)

strings: extract the text strings in a file. strings(1)
ASCII

binary search types. tfind, tdelete, twalk: tsearch(3)
tsearch, manage

tgetstr, tgoto, tputs:/ tgetent, tgetnum, tgetflag, termcap(3)

tputs:/ tgetent, tgetnum, tgetflag, tgetstr, tgoto, termcap(3)

tgoto, tputs:/ tgetent, tgetnum, tgetflag, tgetstr, termcap(3)

tgetent, tgetnum, tgetstr, tgoto, tputs:/ termcap(3)
tgetflag,

/tgetnum, tgetflag, tgoto, tputs: terminal/ termcap(3)
tgetstr,

tic: terminfo compiler. ticU)

data and system/ timex: time a command; report timex(1)
process

time: time a command. time(1)

commands at a later time. /batch: execute a1(1)

environment at login time. /up a C shell cprofile(4)

systems for optimal time. dcopy: copy file dcopy(1)
access

time: get time. time(2)

profil: execution time profile .. profil(2)

up an environment at time. profile: setting profile(4)
login

1207891

Index-98

stime: set time. stime(2)

time: time a command. time(1)

time: get time. time(2)

tzset: convert date and time to string. /asctime, ctime(J)

clock: report CPU time used. clock(J)

process times. times: get process and child times(2)

update access and times of a file. touch: touch(1)
modification

get process and child times. times: times(2)
process

file access and times. utime: set utime(2)
modification

process data and timex: time a command; timex(1)
system/ report

file. tmpfile: create a tmpfile(3)
temporary

for a temporary file. tmpnam, tempnam: create tmpnam(3)
a name

/tolower, _toupper, toascii: translate conv(J)
_tolower, characters.

popen, pclose: initiate . to/from a process. popen(J)
pipe

toupper, to lower, _tolower, toascii: conv(3)
_toupper, translate/

toascii: translate/ to lower, _toupper, conv(J)
toupper, _to lower,

tsort: topological sort. tsort(1)

modification times of a touch: update access and touch(1)
file.

translate/ toupper, _toupper, _tolower, conv(J)
tolower, toascii:

_tolower, toascii: toupper, tolower, conv(J)
translate/ _toupper,

local RS-232 channels. tp: controlling terminal's tp(6)

Index-99

database. tput: query terminfo tput(1)

/tgetflag, tgetstr, tgoto, tputs: terminal termeap(J)
independent!

tr: translate characters. tr(1)

ptrace: process trace. ptraee(2)

swapshort, swap long: translate byte orders to/ swapshort(J)

/ _toupper, _tolower, translate characters. eonv(J)
toascii:

tr: translate characters. tr(1)

ftw: walk a file tree. ftw(3)

twalk: manage binary trees: /tfind, tdelete, tseareh(3)
search

tan, asin, acos, atan, trigonometric functions. trig(3)
atan2: /eos,

typesetting view! mv: a troff macro package for mv(S)

values. true, false: provide truth true(1)

!u3b, u3b5, vax: provide truth value about your! maehid(1)

true, false: provide truth values. true(1)

twalk: manage binary tsearch, tfind, tdelete, tseareh(3)
search!

interface, and terminal! tset: set terminal, terminal tset(H

tsort: topological sort. tsort(1)

interface. tty: controlling terminal tty(6)

tty: get the terminal's tty(1)
name.

a terminal. ttyname, isatty: find name ttyname(3)
of

utmp file of the current! ttyslot: find the slot in the ttyslot(3)

tsearch, tfind, tdelete, twalk: manage binary tseareh(3)
search/

1207891

Index-l00

file: determine file type. file(1)

pdp11, u3b, vax: type. mc68k, machid(1)
processor

getty: set terminal type, modes, speed, and getty(1)
line/

ttytype: list of terminal types by terminal number. ttytype(4)

types. types: primitive system types(S)
data

types: primitive system types. types(S)
data

session. script: make typescript of terminal script(1)

/troff macro package for typesetting view graphs/ mv(S)

/Iocaltime, gmtime, tzset: convert date and ctime(3)
asctime, time/

truth/ mc68k, pdp 11, u3b, u3b5, vax: provide machid(1)

mc68k, pdp11, u3b, u3b5, vax: provide truth/ machid(1)

getpw: get name from UID. getpw(3)

limits. ulimit: get and set user ulimit(2)

creation mask. umask: set and get file umask(2)

mask. umask: set file-creation umask(1)
mode

file system. mount, umount: mount and mount(1)
dismount

umount: unmount a file umount(2)
system.

CTIX system. uname: get name of uname(2)
current

uname: print name of uname(1)
system.

an SCCS file. unget: undo a previous unget(1)
get of

Index-101

spaces, and/ expand, unexpand: expand tabs to expand(1)

get of an sees file unget: undo a previous unget(l)

into input stream. ungetc: push character ungetc(3)
back

/seed48, Icong48: uniformly distributed/ drand48(3)
generate

a file. uniq: report repeated lines uniq(l)
in

mktemp: make a unique file name. mktemp(3)

units: conversion program. units(l)

unlink system calls. link, unlink: exercise link and link(1)

entry. unlink: remove directory unlink(2)

unlink: exercise link and unlink system calls. link, link(1)

umount: unmount a file system. umount(2)

files. pack, peat, unpack: compress and pack(l)
expand

times of a file. touch: update access and touch(1)
modification

of programs. make: update, and regenerate make(1)
maintain, groups

Ifind: linear search and update. Isearch, Isearch(3)

synchronization update: provide disk update(l)

sync: update super-block. sync(2)

sync: update the super block. sync(l)

du: summarize disk usage. du(1)

id: print user and group IDs and id(1)
names.

setuid, setgid: set user and group IDs. setuid(2)

crontab-- user crontab file. crontab(1)

character login name of user. cuserid: get cuserid(3)
the

1207891

Index-l02

/getgid, getegid: get real user, effective user, read/ getuid(2)

environ: user environment. environ(5)

ulimit: get and set user limits. ulimit(2)

logname: return login user. logname(J)
name of

/get real user, effective user, real group, and/ getuid(2)

become super-user or user. su: su(1)
another

the utmp file of the user. /find the slot in ttyslot(J)
current

write: write to another user. write(1)

of ex for casual users). jeditor (variant edit(1)

mail, rmail: send mail to users or read mail. mail(1)

wall: write to all users. wall(1)

statistics. ustat: get file system ustat(2)

modification times. utime: set file access and utime(2)

utmp, wtmp: utmp and wtmp entry utmp(4)
formats.

endutent, utmpname: utmp file entry. /setutent, getut(J)
access

ttyslot: find the slot in the utmp file of the current ttyslot(J)
user.

entry formats. utmp, wtmp: utmp and utmp(4)
wtmp

jputuline, setutent, utmpname: access utmp getut(J)
endutent, filej

clean-up. uuclean: uucp spool uuclean(1)
directory

uusub: monitor uucp network. uusub(1)

uuclean: uucp spool directory uuclean(1)
clean-up.

Index-103

control. uustat: uucp status inquiry and job uustat(l)

bedtween computer uucp, uulog, uuname: copy uucp(l)
systems. data

between computer / uulog, uuname: copy data uucp(1)
uucp,

computer/ uucp, uulog, uuname: copy data uucp(l)
between

system-to- uupick: public computer uuto(1)
computer / uuto,

and job control. uustat: uucp status inquiry uustat(l)

uusub: monitor uucp uusub(l)
network.

system-to-computer uuto, uupick: public uuto(1)
system/ computer

execution. uux: remote system uux(1)
command

val: validate sees file. val(l)

val: validate sees file. val(l)

u3b5, vax: provide truth value about your/ /u3b, machid(1)

abs: return integer value. abs(3)
absolute

getenv: return value for environment getenv(3)
name.

ceiling, remainder, value functions. /fabs: floor(3)
absolute floor,

putenv: change or add value to environment. putenv(3)

values. values: machine-dependent values(5)

true, false: provide truth values. true(l)

values: values. values(5)
machine-dependent

/print formatted output varargs argument list. vprintf(3)
of a

argument list. varargs: handle variable varargs(5)

1207891

Index-104

varargs: handle variable argument list. varargs(5)

edit: text editor (variant of ex for / edit(1)

mc68k, pdp 11, u3b, vax: processor type. maehid(1)

vc: version control. ve(1)

option letter from vector. get opt: get getopt(l)
argument

assert: verify program assertion. assert(l)

vc: version control. ve(1)

get: get a version of an SCCS file. gel(1)

sccsdiff: compare two versions of an SCCS file. sccsdiff(1)

formatted output vprintf, vsprintf: print vprintf(l)
of/vprintf,

display editor based on ex. vi: screen-oriented (visual) vi(1)

/package for typesetting view graphs and slides. mv(5)

on ex. vi: screen-oriented (visual) display editor vi(1)
based

systems with label vol copy, labelit: copy file volcopy(1)
checking.

print formatted output of vprintf, vfprintf, vsprintf: vprintf(l)
a/

output of / vprintf, vsprintf: print formatted vprintf(l)
vfprintf,

process. wait: await completion of wait(1)

or terminate. wait: wait for child process to wait(2)
stop

exCall: Send a request and wait for the response. excall(2)

to stop or terminate. wait: wait for child wait(2)
process

ftw: walk a file tree. ftw(l)

wall: write to all users. wall(1)

Index-l05

we: word count. we(1)

what: identify sees files. what(1)

signal. signal: specify waht to do upon receipt signal(2)
of a

whodo: who is doing what. whodo(l)

who: who is on the system. who(1)

who: who is on the who(1)
system.

whodo: who is doing whodo(l)
what.

fold long lines for finite width output device. fold: fold(1)

and floppy disks. dsk: winchester, cartridge, dsk(6)

wmgetid: get window 10. wmgetid(3)

wmlayout: get terminal's window layout. wmlayout(3)

wmop: window management wmop(3)
operations.

window: window management window(6)
primitives.

wm: window management. wm(1)

primitives: window: window window(6)
management

a file descriptor with a window. /wmsetids: wmsetid(3)
associate

wm: window wm(1)
management.

wmgetid: get window 10. wmgetid(3)

window layout. wmlayout: get terminal's wmlayout(3)

operations. wmop: window wmop(3)
management

file descriptor with af wmsetid, wmsetids: wmsetid(3)
associate a

descriptor with af wmsetids: associate a file wmsetid(3)
wmsetid,

1201891

Index-lOS

cd: change working directory. cd(1)

chdir: change working directory. chdir(2)

get path-name of current working directory. getcwd: getcwd(3)

pwd: working directory name. pwd(1)

swrite: svnchronous write on -a file. swrite(2)

write: write on a file. write(2)

putpwent: write password file entry. putpwent(3)

wall: write to all users. wall(1)

write: write to another user. write(1)

write: write on a file. write(2)

write: write to another user. write(1)

open: open for reading or writing. open(2)

utmp, wtmp: utmp and wtmp entry formats. utmp(4)

formats. utmp, wtmp: utmp and wtmp utmp(4)
entry

accounting records. wtmpfix: manipulate fwtmp(1)
fwtmp, connect

list(s) and execute xargs: construct argument xargs(1)
command.

jO, jl, jn, VO, Vl, yn: Bessel bessel(3)
functions.

jO, jl, jn, yO, vl, yn: Bessel functions. bessel(3)

compiler-compiler. vacc: vet another yacc(1)

jO, jl, jn, yO, Vl, vn: Bessel functions. bessel(3)

Title: ___________________________ _

Form Number: ____________ _ Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the qual ity of your Product Information.

Please check type of suggestion: D Addition 0 Deletion 0 Revision
o Error
Comments: ________________________ __

Name
Title ___________________________ _

Company

Address ___ ~-------~~---_=~---~~-----
Street City State Zip

Telephone Number () __________________ _
Area Code

Title: ___________________________ _

Form Number: ____________ _ Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Please check type of suggestion: 0 Addition 0 Deletion 0 Revision
o Error

Comments: ~--------------------------

Name
Title _____________________________ _

Company ___ _

Address ___ ~~------~~---_=----~~-----
Street City State Zip

Telephone Number () _________ ---------------------------
Area Code

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, MI48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services - East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

1.1 •• 11 •• 1 ••• 1.1 •• 11. J .1.11.1 •• 1.1 •• 1 ••• 1.1.1"11111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 817 DETROIT, MI48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services - East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

I. 11.11 •• 1 ••• I. I. I 11"11.11. 1111. 1 •• 111.1.1.11111 III

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

