XE500
CENTIX™

~ Operations
Reference
Manual

Volume 4: NHER
Operations, Part 2

Relative To Release Level 6.0 Distribution Code SA
Priced Item) Printed in U S America
November 1986 1207891

)

Burroughs

XE 500
CENTIX™

Operations
Reference
Manual

Copyright © 1986, Burroughs Corporation, Detrait, Michigan 48232

"™Trademark of Burroughs Corporation

Volume 4 System
Operations, Part 2

Relative To Release Level 6.0 Distribution Code SA
Priced liem Printed in U S America
November 1986 1207891

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and subject
to the terms and conditions of a duly executed Program Product License or Agree-
ment to purchase or lease equipment. The only warranties made by Burroughs, if any,
with respect to the products described in this document are set forth in such License
or Agreement. Burroughs cannot accept any financial or other responsibility that may
be the result of your use of the information or software material, including direct,
indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the Product
Improvement Card at the back of this manual, or remarks may be addressed directly
to Burroughs Corporation, Corporate Product Information East, 209 W. Lancaster
Ave., Paoli, PA 19301, US.A.

About This Manual

Purpose

The purpose of the XE 500 CENTIX QOperations Reference
Manual is to provide a comprehensive reference for the
XE 500 CENTIX operating system.

Scope

This manual describes the commands, system calls, libraries,
data files, and device interfaces that make up the CENTIX
Operating System running on the XE 500 computer.

Audience

Volumes 1 and 2 of this manual are intended for all uéers of
the CENTIX operating system. CENTIX system programmers
are the primary audience for Volumes 3 and 4.

Prerequisites

General users of the CENTIX system should be familiar with
the particular environments in which they will be working. A
section called Getting Started, preceding the Shell Command
descriptions in Volumes 1 and 2, provides a generic CENTIX
tutorial.

Programmers should have an understanding of the CENTIX
operating system structure and should be experienced at
writing programs in the C programming language.

1207891

vi About This Manual

How to Use This Manual

Use this manual as a starting point to find the documentation
for a CENTIX feature with which you are unfamiliar. To find
the entry you need, refer to the following:

o Permuted Index. This indexes each significant word in each
entry’s description. A complete Permuted Index for the
whole manual is in each volume.

o Contents Listing. Included in the Contents Listing is an
alphabetical list of entries, under the appropriate sections,
together with the entry descriptions. Each volume contains
the Contents Listing.

a Related Shell Command Entries. This section, for Volumes
1 and 2 only, groups together related shell command
entries that are in Section 1.

Organization
This manual consists of six sections:

Section 1, Shell Commands, describes programs that are
intended to be invoked directly by the user through the
CENTIX System shell.

Section 2, System Calls, describes the entries into the
CENTIX kernel, including the C language interfaces.

- Section 3, Library Functions, describes the available
library functions and subroutines.

Section 4, Special File Formats, documents the structure
of particular kinds of files.

Section 5, Miscellaneous Facilities, includes descriptions
of macro packages, character set tables, and so on.

Section 6, Device Files, describes various device files
that refer to specific hardware peripherals and CENTIX
System device drivers.

About This Manual vii

Related Product Information

XE 500 CENTIX Administration Guide

XE 500 CENTIX centrEASE Operations Reference Manual

XE 500 CENTIX C Language Programming Reference Manual
XE 500 CENTIX Programming Guide

XE 500 CENTIX Operations Guide

1207891

Contents

Volume 1: Shell Operations, Part 1

Section 1: Shell Commands

intro
accept
adb
admin
allre
apnum
ar

as

at, hatch
awk
banner
basename
batch

be
beheckre
beopy
bditf

bis

bre

cal
calendar
cancel
cat

]

cc

cd

cde

1207891

introduction to shell commands
allow LP requests

absolute debugger

create and administer SCCS files
system initialization shell script

print Application Processor number

1-1

archive and library maintainer for portable object code archives

mc68010 assembler

execute commands at a later time
pattern scanning and processing language
make posters

deliver portions of path names

execute commands at a later time
high-precision arithmetic language
system initialization shell script
interactive block copy

big diff

big file scanner

system initialization shell script

print calendar

reminder service

cancel requests to an LP line printer
concatenate and print files

C program beautifier

C compiler

change working directory

change the delta commentary of an SCCS delta

X Contents
centreCAP function key shell for unskilled users
centreWINDOW window management

cflow generate C flow graph

chgrp change group

chmod change mode

chown change owner

chroot change root directory for a command

clear clear terminal screen

clri clear inode

cmp compare two files

col filter reverse line-feeds

comb combine SCCS deltas

comm select or reject lines common to two sorted files
conre system initialization shell script

console control Application Processor pseudoconsole
convert convert object and archive files to common formats
cp copy files

cpio copy file archives in and out

cpp the C language preprocessor

cpset install object files in binary directories

cron clock daemon

crontab user crontab file

crup create file system partition

csplit context split

ct spawn getty to a remote terminal

ctrace C program debugger

cu call another computer system

cut cut out selected fields of each line of a file
cxref generate C program cross reference

date print and set the date

dc desk calculator

Contents

dcopy copy file systems for optimal access time
dd convert and copy a file

delta make a3 delta (change) to an SCCS file
devam device name

df report number of free disk blocks

diff Aifferential file comparator

diff3 3-way differential file comparison
dircmp directory comparison

dirname deliver portions of path names

disable disable LP printers

du summarize disk usage

dump dump selected parts of an object file
echo echo arguments

ed, red text editor

edit text editor

egrep search a file for a pattern

enable enable LP printers

env set environment for command execution
ex, edit text editor

oxpr evaluate arguments as an expression
factor factor a number

false false

f list file names and statistics for a file system
fgrep search a file for a pattern

file determine file type

finc fast incremental backup

find find files

fold fold long lines for finite width output device
fpsar File Processor system activity reporter
frec recover files from a backup tape

1207891

xii Contents
fsck file system consistency check and interactive repair
fsdb file system debugger

fwtmp manipulate connect accounting records

get get a version of an SCCS file

getopt parse command options

getty set terminal type, modes, speed, and line discipline
grep search a file for a pattern

grpek group file checker

gtdl RS-232-C terminal download

halt terminate all processing

hd hexadecimal and ASCII file dump

head give first few lines

help ask for help for SCCS commands

hyphen find hyphenated words

icode process control initialization

id print user and group IDs and names

init process control initialization

install install commands

ipcrm remove a message queue, semaphore set or shared memory id
ipcs report inter-process communication facilities status
join relational database operator

keystate print XE 550 front panel keyswitch setting

kill terminate a process

killall kill all active processes

labelit file system label checking

Id link editor for common object files

lex generate programs for simple lexical tasks

line read one line

link exercise link and unlink system calls

lint a C program checker

Contents

xiii

In

login
logname
lorder
Ip
Ipadmin
Ipmove
Ipr
Ipsched
Ipset
Ipshut
Ipstat
Is

link files

sign on

get login name

find ordering relation for an object library
send requests to an LP line printer
configure the LP spooling system
move LP requests

line printer spooler

start the LP request scheduler

set parallel line printer options
stop the LP request scheduler
print LP status information

list contents of directories

Volume 2: Shell Operations, Part 2

Section 1: Shell Commands (Cont.)
mé macro processor

machid mc68k, pdp11, u3b, vax, iAPX286 - processor type
mail send or read mail

make maintain, update, and regenerate groups of programs
mesg permit or deny messages

mkboot reformat CENTIX kernel and copy it to BTOS

mkdir make a directory

mkfs construct a file system

mklost + found make a lost +found directory for fsck

mknod build special file

more text perusal

mount mount and dismount file system

mv move files

mvdir move a directory

1207891

1-283

xiv Contents
mvtpy move PT/GT local printer device files
ncheck generate names from i-numbers

newform change the format of a text file

newgrp log in to a new group

news print news items

nice run a command at low priority

nl line numbering filter

nm print name list of common object file

nohup run a command immune to hangups and quits
od octal dump

ofcli command line interpreter for interactive BTOS JCL
ofcopy copy to or from the BTOS file system

ofed edit BTOS files

ofls list BTOS files and directories

ofvi edit BTOS files

pack compress and expand files ‘
page text perusal

passwd change login password

paste merge same lines of several files or subsequent lines of one file
path locate executable file for command

phuf print the kernel print buffer

perc describe BTOS error return code (erc)

pg file perusal filter for soft-copy terminals
pmon display statistics for an Application Processor
pr print files

pride operating system profiler

prfld operating system profiler

pripr operating system profiler

prisnap operating system profiler

pristat operating system profiler

Contents

XV

prof
profiler
prs

ps
pstat
ptd!
px
pwek
pwd

rc

red
regemp
reject
renice
m
rmdel
rmdir
rsh

sal
sa2
sact
sade
sadp
sag

sar
sarpkg
scesdiff
script
sdb
sdiff

1207891

display profile data

operating system profiler

print an SCCS file

report process status

ICC statistics for processor

RS-232-C terminal download
permuted index

password file checker

working directory name

system initialization shell script
restricted version text editor

regular expression compiler

prevent LP requests

alter priority of running process by changing nice
remove files

remove a delta from an SCCS file
remove directories

shell, restricted command programming language
system activity reporter

system activity reporter

print current SCCS file editing activity
system activity reporter

disk access profiler

system activity graph

system activity reporter

system activity report package
compare two versions of an SCCS file
make typescript of terminal session
symbolic debugger

side-by-side difference program

xvi Contents
sed stream editor

setmnt establish mount table

setuname set name of system

sh shell, the standard/restricted command programming language
shutdown terminate all processing

size pri}lt section sizes of common object files

sleep suspend execution for an interval

sort sort and/or merge files

spawn execute a process on a specific Application Processor
spawnsrv service spawn execution requests

spell hashmake, spellin, hashcheck - find spelling errors

split split a file into pieces

strip strip symbol and line number information from a common object file
stty set the options for a terminal

su become super-user or another user

sum print checksum and block count of a file

sync update the super block‘ ’

tabs set tabs on a terminal

tail deliver the last part of a file

tar tape file archiver

tdl RS-232-C terminal download

tee pipe fitting

telinit process control initialization

test condition evaluation command

tic terminfo compiler

tide display decompiled version of terminfo entry

time time a command

timex time a command; report process data and system activity
touch update access and modification times of a file

tput query terminfo data base

Contents

xvii

tr

true
tset
tsort
tty
umask
umount
uname
unget
unig
units
update
uuclean
uucp
uulog
uuname
uupick
uustat
uusub
uuto
uux

val

Ve

vi

view
volcopy
wait
wall
we

what

1207891

translate characters

provide truth values

set terminal, terminal interface, and terminal environment
topological sort

get the terminal’s name

set file-creation mode mask

dismount file system

print name of system

undo a previous get of an SCCS file

report repeated lines in a file

conversion program

provide disk synchronization

uucp spool directory clean-up

copy files between computer systems

query a summary log of uucp and uux transactions
list uucp names of known systems

accept or reject files transmitted by uuto

uucp status inquiry and job control

monitor uucp network

public computer system-to-computer system file copy
computer system to computer system command execution
validate SCCS file

version control

screen-oriented (visual) display editor

visual editor

copy file systems with label checking

await completion of process

write to all users

word count

identify SCCS files

xviii Contents
who who is on the system

whodo who is doing what

wm window management

write write to another user

wtmpfix manipulate connect accounting records

xargs construct argument list(s) and execute command

yace yet another compiler-compiler

Volume 3: System Operations, Part 1

Section 2: SystemCalls 21
intro introduction to system calls and error nubmers
access determines the accessibility of a file

acct enable or disable process accounting

alarm set a process alarm clock

brk change data segment spaced allocation
chdir changes the current working directory
chmod change mode of file

chown changes the owner and/or group of a file
chroot change the root directory

close close a file descriptor

creat create a new file or rewrite an existing one
dup duplicate an open file descriptor
exAllocExch allocate exchange

exCall send a request and wait for the response
exchanges obtain and abandon exchanges

exCheck examine an ICC message queue
exCnxSendOnDealloc make final requests

exCpRequest remove a request from an exchange
exCpResponse remove a response from an exchange
exDeallocExch deallocate exchange

Contents

Xix

exDiscard
exec

execl
execle
execlp
execv
execve
execvp
exfinal
exit
exReject
exRequest
exRespond
exSendOnDealloc
exServeRq
exWait
fentl

fork

fstat
getegid
geteuid
getgid
getpgrp
getpid
getppid
getuid

ioctl
kill
link

locking

1207891

remove a response from an exchange
execute files

execute files

execute a file

execute a file

execute a file

execute a file

execute a file

make final requests

terminate process

remove a request from an exchange
send a message to a server
send a message to a client
make final requests

appropriate a request code
examine an ICC message queue
file control

create a new process

get file status

get effective group 1D

get effective user ID

get real group 1D

get process group 1D

get process, process group, and parent process iDs

get parent process 1D

get real user, effective user, real group, and effective

group IDs

control device

send a signal to a process or a group of processes

link to a file

exclusive access to regions of a file

XX Contents
Iseek move read/write file pointer

mknod makes a directory, or a special or ordinary file
mount mount a file system

msgctl message control operations

msgget get message queue

msgop message operations

nice change priority of a process

open open a file for reading or writing
pause suspend process until signal

pipe create an interprocess channel

plock lock process, text, or data in memory
profil execution time profile

ptrace process trace

read read from a file

shrk change data segment space allocation
semctl semaphore control opeations

semget get set of semaphores

semop semaphore operations

setgid get group ID

setpgrp set process group ID

setuid set user ID

shmetl shared memory control operations
shmget get shared memory segment

shmop shared memory operations

signal specify what to do upon receipt of a signal
stat . get file status

stime set time

swrite synchronous write on a file

sync update super-block

syslocal special system requests

Contents

xxi
time get time
times get process and child process times
ulimit get and set user limits
umask set and get the file creation mask
umount unmount a file system
uname get name of current CENTIX system
unlink remove directory entry
ustat get file system statistics
utime set file access and modification times
wait wait for a child process to stop or terminate
write write on a file
Section 3: Library Functions e 3-1

intro
a64l
abort
abs
assert
atof
Bessel
bhsearch
clock
conv
crypt
ctermid
ctime
ctype
curses
cuserid
dial

1207891

introduction to libraries and subroutines
convert between long integer and base-64 ASCH string
generate an 10T fault

return integer absolute value

verify program assertion

convert ASCH! string to floating-point number
Bessel functions

binary search a sorted table

report CPU time used

translate characters

generate DES encryption

generate file name for terminal

convert date and time to string

classify characters

CRT screen handling and optimization package

get character login name of the user

establish and release an out-going terminal line connection

xXii Contents
drand48 generate uniformly distributed pseudo-random numbers
ecvt convert floating-point number to string

end last locations in programs

erf error function and complementary error function
exp exponential, logarithm, power, square root functions
fclose close or flush a stream

ferror stream status inquiries

floor floor, ceiling, remainder, absolute value functions
fopen open a stream

fread binary input/output

frexp manipulate parts of fioating-point numbers

fseek reposition a file pointer in a stream

ftw walk a file tree

gamma log gamma function

getc get character or word from a stream

getewd get the path-name of the current working directory
getenv return value for environment name

getgrent get group file entry

getlogin get login name

getopt get option letter from argument vector

getpass read a password

getpw get name from UID

getpwent get password file entry

gets get a string from a stream

getut access utmp file entry

hsearch manage hash search tables

hypot Euclidean distance function

13tol convert between 3-byte integers and long integers
Idahread read the archive header of a member of an archive file
ldclose tlose a common object file

Contents xxiii

idfhread read the file header of a common object file

ldgetname retrieve symbol name for common object file symbol table entry
ldiread manipulate line number entries of a common object file function
Idiseek seek to line number entries of a section of a common object file
Idohseek seek to the optional file header of a common object file
Idopen open a common object file for reading

ldrseek seek to relocation entries of a section of a common object. file
Idshread read an indexed/named section header of a common object file
Idsseek seek to an indexed/named section of a common object file
Idthindex compute the index of a symbol table entry of a common object file
Idtbread read an indexed symbol table entry of a common object file
ldthseek seek to the symbol tsble of a common object file

lockf record locking on files

logname return login name of user

Isearch linear search and update

malloc (fast fast main memory allocator

version)

malloc main memory allocator

matherr error-handling function

memory memiory operations

mktemp make a unique file name

monitor prepare execution profile

nlist get entries from the name list

ocurse optimized screen functions

ofCreate allecate BTOS files

ofDir BTOS directory functions

ofOpenFile access BTOS files

ofRead input/output on a BTOS file

ofRename rename a BTOS file

of Status BTOS file status

perror system error messages

1207891

xxiv Contents
popen initiate pipe to/from a process

printf print formatted output

putc put character or word on a stream

putenv change or add value to environment

putpwent write password file entry

puts put a string on a stream

gsort quicker sort

quAdd add a new entry to a BTOS queue

quRead examine BTOS queue

quRemove take back a BTOS queue request

rand simple random number generator

regcmp compile and execute regular expression

scanf convert formatted input

sethuf assign buffering to a stream

setjmp non-local gote

sinh hyperbolic functions

sleep suspend execution for interval

spawn execute a process on a specific Application Processor
sputl access long integer data in a machine-dependent fashion
spwait wait for a spawned process to terminate

ssignal software signals

stdio standard buffered input/output package

stdipc standard interprocess communication package (ftok)
string string operations

strtod convert string to double-precision number

strtol convert string to integer

swab swap bytes

swapshort translate byte orders to Motorola/Intel .

system issue a shell command

termcap terminal independent operations

Contents XXV

tmpfile create a temporary file

tmpnam create 3 name for a temporary file

trig trigonometric functions

tsearch manage binary search trees

ttyname find name of a terminal

ttyslot find the slot in the utmp file of the current user
ungete push character back into input stream

vprintf print formatted output of a varargs argument list
wmgetid get window D

wmlayout get terminal’s window layout

wmop window management operations

wmsetid associate a file descriptor with a window

Volume 4: System Operations, Part 2

Section 4: Special File Formats 4-
intro introduction to special file formats

a.out common assembler and link editor output
ar common archive file format

checklist list of file systems processed by fsck
core format of core image file

cpio format of cpio archive

dir format of directories

fitehdr file header for common object file

fs format of file system

fspec format specification in text file

gettydefs speed and terminal settings used by getty
group group file

inittab script for the init file

inode format of an i-node

issue issue identification file

1207891

XXvi Contents
ldfcn common object file access routines

linenum fine number entries in a common object file
master master device information table

mnttab mounted file system table

passwd password file

profile setting up an environment at login time

reloc relocation information for a common object file
scesfile format of SCCS file

scnhdr section header for a comon object file

syms common object file symbol table format

term format of compiled term file

termcap terminal capability data base

terminfo terminal capability data base

utmp utmp and wtmp entry formats

Section 5:

intro
environ
fentl
math
modemcap
pi“
prof
regexp
stat
term
types
values

varargs

Miscellaneous Facilities

introduction to misceliany

user environment

file control options

math functions and constants

smart modem capability data base
performance improvement in large files and direct 1/0
profile within a function

regular expression compile and match routines
data returned by stat system call
conventional names for terminals

primitive system data types
machine-dependent values

handie variable argument list

51

Contents xxvii

Section 6: DeviceFiles 6-1
intro introduction to device files

console console terminal

dsk winchester, cartridge, and floppy disks

fp winchester, cartridge, and floppy disks

ip parallel printer interface

mem core memory

mt interface for magnetic tape

null the null file

prf operating system profiler

termio general terminal interface

tp controlling terminal’s local RS-232 channels
tty controlling terminal interface

window window management primitives

1207891

XXix

Tables

1-1 ex Command Names and Abbreviations 1-17
1-2 Determination of SCCS ldentification String 1-207
1-3 Identification Keywords and Their Values 1-209
1-4 SCCS Files Data Keywords 1-373
15 Octal Codes and Statuses 1-522
31 Library Functions 34
32 Curses Routines 3-39
3-3 Terminfo Level Routines 3-43
3-4 Termcap Compatibility Routines 3-44
35 Video Attributes 3-44
3-6 Curses Function Keys 3-45
37 Default Error Handling Procedures 3-136
3-8 BTOS File Status Codes 3-160
4-1 Standard Terminal Capabilities 4-65
4-2 Terminal Name Suffixes 4-76
4-3 Capnames and l.codes 4-77
5-1 Errors and Meanings 5-17
5-2 Terminal Names 5-24
6-1 Naming Conventions for Built-In Disk Drives 6-3
6-2 Naming Conventions for SMD Disk Drives 6-4
6-3 Naming Conventions for Tape Drives 6-6

1207891

Section 4 41

Special File Formats
intro

Name
intro - introduction to special file formats

Description

This section outlines the formats of various files. The C
struct declarations for the file formats are given where
applicable. Usually, these structures can be found in the
directories /usr/include or /usr/include/sys.

1207891

4-2 Special File Formats

a.out

a.out - common assembler and link editor output

Description

The file name a.out is the output file from the assembler as
and the link editor Id. Both programs will make a.out
executable if there were no errors in assembling or linking
and no unresolved external references.

A common object file consists of a file header, an operating
system header, a table of section headers, relocation
information, (optional) line numbers, a symbol table, and a
string table. The order is given below.

File header.

Operating System header.
Section 1 header.

Section n header.
Section data.

-

Section n data.
Section relocation.

-

-Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts (line numbers, symbol table and string
table) may be missing if the program was linked with the -s
option of Id or if they were removed by strip. Also note that if
there were no unresolved external references after linking,
the relocation information will be absent. The string table
exists only if the symbol table contains symbols with names
longer than eight characters..

Special File Formats 4-3

a.out

The sizes of each section (contained in the header, discussed
below) are in bytes and are even.

When an a.out file is loaded into memory for execution,
three logical segments are set up: the text segment, the data
segment (initialized data followed by uninitialized, the latter
actually being initialized to all O’s), and a stack. The text
segment begins at location 0x0000 in the core image. The
header is never loaded, except for magic 0413 files created
with the -F option of Id. If the magic number (the first field in
the operating system header) is 407 (octal), it indicates that
the text segment is not to be write-protected or shared, so
the data segment will be contiguous with the text segment.
If the magic number is 410 (octal), the data segment and the
text segment are not writable by the program; if other
processes are executing the same a.out file, the processes
will share a single text segment. Magic number 413 (octal) is
the same as 410 (octal), except that 413 (octal) permits
demand paging. Both the -z and -F options of the loader Id
create a.out files with magic numbers 0413. If the -z option
is used, both the text and data sections of the file are on
1024-byte boundaries. If the -F option is used, the text and
data sections of the file are contiguous. Loading a single
4096-byte page into memory requires 4 transfers of 1024
bytes each for -z, and typically one transfer of 4096 bytes
for -F. Thus, a.out files created with -F can load faster and
require less disk space.

The stack begins at the end of memory and grows towards
lower addresses. The stack is automatically extended as
required. The data segment is extended only as requested by
the brk system call.

The value of a word in the text or data portions that is not a
reference to an undefined external symbol is exactly the
value that will appear in memory when the file is executed. {f
a word in the text involves a reference to an undefined
external symbol, the storage class of the symbol-table entry
for that word will be marked as an “external symbol,” and
the section number will be set to 0. When the file is
processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added to
the word in the file.

1207891

4-4 Special File Formats

a.out

File Header
The format of the filehdr header is

struct filehdr

unsigned short {_magic, /*magic number”/
unsigned short f_nscns, /'numbot of socllons'/
tong f_timdat; /*time and date stamp"/
tong f_symptr, I"ti1e ptr to symllb'/
long t_nsyms, 1* # symtab entries”/
unsigned short 1_opthdr; ['slzool(opl hdr)'/

unsigned short f_flags; 1"tiags®y

Operating System Header
The format of the operating system header is

typedef struct aouthdr

short magic; /*magic number®™/

short vstamp; /*version stamp®/

tong tsize, I'!oxl size in bytes, pldcad'[
long dsize; /"initialized data (.data) *)
long bsize, /'unlnlnltlallxod data (.bsc)'/
long entry, l'.nl'y polnt'l

long toxt_start, /'bnsc of test used for lllo'l
long data_start; /"base of data used for tile*/

} AouTHOR;

Section Header
The format of the section header is

struct scnhdr

char s_name [SYMNMLEN]; /*section name”/
long s_paddr; 1"physicat address®/
long s_vaddr, /*vittual address”/

. » »
tong s_size; /"section size”}
long s_scnptr, /'!llo ptr to raw datl'/
tong s_relptr; /'l|t0 ptr to rolocallon'/
tong s_lnnoptry /"tile ptr to line numbers®/
unsigned short s_nreloc, /'# retoc ontrlos'l
unsigned short s_ninno; 1*# 1ine number entries”/

- » »

long s_tlags, /1 tiags /

Special File Formats 4-5

a.out

Relocation

Object files have one relocation entry for each relocatable
reference in the text or data. If relocation information is
present, it will be in the following format:

struct reloc

long r_vaddr; /*(virtual) address of ret."/
long r_symndx/ /*index into symbol table"/
short r_type; /*retocation type'/

|1

The start of the relocation information is s—re/ptr from the
Section Header. If there is no relocation information, s—re/ptr.
is O.

Symbol Table

The format of the symbol table header is
#define SYMNMLEN 8
#detine FILNMLEN 14
#define SYMESZ 18 /*the size of a SYMENT®/

struct syment

union /'nll ways to get a symbol nlmo'/
{
char _nh_name [SYMNMLEN]; /*name of symbot®*/
struct
long _h_zeroes, /'--OL it in string tlblc'/
tong _n_ottset, I'loco!lon in string tlblo'/
}oan;
char * _n_nptr(2]; 1*aitows ovorllylng'/
}ons
unsigned tong n_value; /'vnluo of symbol'/
short n_scnum, [*sectlon number*/
unsigned short n_type, /'typo and derjved !yp.'/
char n_sclass; /*storage class®y
char n_numaux, /'numbor of aux onlylss'/
IH
#detine n_name n._n_name
#define n_zeroes _N.-n_n._n_zeroes

#detine n_offset _nh._n_n._n_offset
- a_nptr _nh._n_nptr[1]

1207891

4-6 Special File Formats

a.out

Some symbols require more information than a single entry;
they are followed by auxiliary entries that are the same size
as a symbol entry. The format is as follows:

union auxent {

struct {
tong x_tagndx,
union {
struct {
unsigned short x_lIlnno,
unsigned short x_size,
} x_tinsz;
long x_tsize,
)x_ml sc,
unton §
struct {
long x_innoptr,
long x_endndx,
}x_!cn;
struct
unsigned short x_dimen[DIMNUM],
Yx_ary;

}x_(cnavy;
unsigned short x_tvndx,

}x_sym;
struct {
char x_fname[FILNMLEN);
Yx_tire;
struct §
long x_scnien,
unsigned short x_nreloc,
unsigned short x_nlinno,
}x_scn;
struct {
long x_tviitlg
unsigned short x_tvien,
unsigned short x_tvran[2};
]x_tv;

|H

Indexes of symbol table entries begin at zero. The start of
the symbol table is _symptr (from the file header) bytes from
the beginning of the file. If the symbol table is stripped,
f_symptr is O. The string table (if one exists) begins at
fsymptr + (f_nsyms * SYMESZ) bytes from the beginning of
the file.

Special File Formats

4-7

a.out
See Also

as, cc, Id in Section 1; brk in Section 2; filehdr, Idfcn,
linenum, reloc, senhdr, syms in Section 4.

1207891

4-8 Special File Formats

ar

ar - common archive file format

Description

The archive command ar is used to combine several files into
one. Archives are used mainly as libraries to be searched by
the link editor Id.

Each archive begins with an archive file header, made up of
the following components:

#define ARMAG "<ar>"
#define SARMAG 4

struct ar_ndr { J®archive header"/
char ar_magic{SARMAG]; /'mlglc number®/
char ar_name[18]}, /'alehlvo n.mo'/
char ar_date[4]; j"date of last ar. mod."/
} char ar_symsf4]; /'no. of ar_sym ontrtos'l
*

Each archive that contains common obiject files (see a.out,

“above) includes an archive symbol table. This symbol table is
used by the link editor ld to determine which archive
members must be loaded during the link edit process. The
archive file header described above is followed by a number
of symbol table entries. The number of symbol table entries
is indicated in the ar_syms variable. Each symbol table entry
has the following format:

struct ar_sym { /'arenlvo symbo) table nntry'[
char sym_name {8}, I'symbol name, recog. by Id 'f
char sym_ptr{4}; /"archive position of symbol®/

I

The archive symbol table is automatically created and/or
updated by the ar command.

Special File Formats 4-9

ar

Following the archive header and symbol table are the
archive file members. Each file member is preceded by a file
member header which is of the following format:

struct arf_hdr (/':rcnlvo file member haador'l
char arf_name(16); /“1ile member name”/
char art_datre(4]; /“tile member date”/
char art_uid(4]; /"tile member user ID*/
char art_gid{4]; /“tile member group ID"/
char art_mode(4]; /“fite member mode"/
char art_sizef4}; /"tile member size"/

b

All information in the archive header, symbol table and file
member headers is stored in a machine independent fashion.
All character data is automatically portable. The numeric
information contained in the headers is also stored in a
machine independent fashion. All numeric data is stored as
four bytes and is accessed by the special archive 1/O
functions described under sputl in Section 3. Common format
archives can be moved from system to system as long as
the portable archive command ar is used.

Each archive file member begins on a word boundary; a null
byte is inserted between files if necessary. Nevertheless the
size given reflects the actual size of the file, padding excluded.

Notice there is no provision for empty areas in an archive file.

See Also

ar and ld in Section 1; sputl in Section 3.

1207891

4-10 Spécial File Formats

checklist

checklist - list of file systems processed by fsck

Description

Checklist resides in directory /etc and contains a list of at
most 15 special file names. Each special file name is
contained on a separate line and corresponds to a file
system. Each file system will then be automatically
processed by the fsck shell command.

See Also

fsck in Section 1.

Special File Formats , 4-11

core

core - format of core image file

Description

CENTIX writes out a core image of a terminated process
when any of various errors occur. See signal in Section 2 for
the list of reasons; the most common are memory violations,
illegal instructions, bus errors, and user-generated quit
signals. The core image is called core and is written in the
process’s working directory (provided it can be; normal
access controls apply). A process with an effective user ID
different from the real user ID will not produce a core image.

The first section of the core image is a copy of the system'’s
per-user data for the process, including the registers as they
were at the time of the fault. The size of this section
depends on the parameter USIZE, which is defined in
Jusr/include/sys/param.h. The remainder represents the
actual contents of the user’s core area when the core image
was written. If the text segment is read-only and shared, or
separated from data space, it is not dumped.

The format of the information in the first section is described
by the user structure of the system, defined in
Jusr/include/sys/user.h. The important things not detailed
therein are the locations of the registers, which are outlined
in /usr/include/sys/reg.h.

See Also

crash in Section 1; setuid and signal in Section 2.

1207891

4-12 Special File Formats

cpio

cpio - format of cpio archive

Description

The header structure, when the -¢ option of cpiois not used, is:

struct {
short h_magic,
h_dev,
ushort h_ino,
h_mode,
h_uid,
h_gid;
short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_tilesize[2);
char h_name[h-namesize rounded to word],
} Hdr,

When the -t option is used, the header information is
described by:
sscant!{Chdr, '%GMO%Co%CoMo%Oo%Go%Bo%I 110%60%1110%s” N
&Hdr.h_magic, &Hdr.h_dev, 8Hdr.h_ino, &Hdr.h_mode,

&Hdr.h_uid, 8Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize, &Longtile,Hdr.h_name),;

Longtime and Longfile are equivalent to Hdr.h_mtime and
Hdr.h_filesize, respectively. The contents of each file are
recorded in an element of the array of varying length
structures, archive, together with other items describing the
file. Every instance of h_magic contains the constant 070707
(octal). The items h_dev through h_mtime have meanings
explained in Section 2, under stat. The length of the
null-terminated path name h_name, including the null byte, is
given by h_namesize.

The last record of the archive always contains the name
TRAILER!. Special files, directories, and the trailer are
recorded with h_filesize equal to zero.

Special File Formats 4-13

cpio
In PILF files, h_rdev contains the cluster size exponent. This

should not cause any portability problems, as h_rdev is
otherwise ignored, except for device special files.

See Also

cpio and find in Section 1; statin Section2; pilfin Section 5.

1207891

4-14 _ Special File Formats
dir

dir - format of directories

Format

#include <sys/dir.h>

Description

A directory behaves exactly like an ordinary file, save that no
user may write into a directory. The fact that a file is a
directory is indicated by a bit in the flag word of its i-node
entry (see fs later in this section). The structure of a directory
entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ14
#endif
struct direct
{
ino_t d_ino;
char d_name[DIRS12Z];
}:

By convention, the first two entries in each directory are .
and .. The first is an entry for the directory itself. The second
is for the parent directory. The meaning of .. is modified for
the root directory of the master file system; there is no
parent, so .. and . have the same meaning.

See Also

fs in Section 4.

Special File Formats 4-15

filehdr

Name
filehdr - file header for common object files

Format

#include <filehdr.h>

Description

Every common object file begins with a 20-byte header. The
following C struct declaration is used:

struct filehdr

unsigned short f_magic, /*magic number™)
unsigned short f_nscns, l'no. ot socliont'l
long f_timdat, /"time & date stamp”/
tong t_symptr; /*tile ptr to symtab®/
long t_nsyms; J* # symtab entries”/
unsigned short f_opthdr, /'slztol(opt hdl)'l
unsigned short t_1lags, ['!!lgl'/

¥
F_symptr is the byte offset into the file at which the symbol
table can be found. Its value can be used as the offset in the
fseek library function to position an 1/O stream to the symbol
table. The operating system optional header is always 36
bytes. The valid magic numbers are given below. The first
three apply to an Application Processor.

#define MCESKWRMAGIC 0520 /“writable test segments”™/

#define MCEBKROMAGIC 0521 ['ro:donly shareable text sogs.'l
#define MCEBKPGMAGIC 0522 /"demand paged text segments”/

#detine NIBMAGIC 0550 /*3B20s"/
#define NTVMAGIC 0551 /*3B208")

#detine VAXWRMAGIC 0570 /*VAX writable text sogmouts'l

#detine VAXROMAGIC 0575 /*VAX readonliyshareable”/
/"textsegments®/

1207891

4-16

Special File Formats

filehdr

The value in £_timdat is obtained from the time system call.
Flag bits currently defined are:

#define
#define
#define
#detine
#define
#define
#define
#define
#define
#dofine
#define

F_RELFLG
F_EXEC
F_LNNO
F_LSYMS
F_MINMAL
F_UPDATE
F_SWABD
F_AR16WR
F_AR32WR
F_AR32W
F_PATCH

See Also

time in Section 2; fseek in Section 3; a.out.

00001
00002
00004
00010
00020
00040
Q0100
00200
00400
01000
02000

{*relocation entries stripped”/
/'lllo is oxccu(ubl.'/

/'llne numbers slrlppod'/
I'locnl symbols strippod'/
/*minimal object file"/
/'updato tile, ogen producad'l
/'1I!o is "pro~sw.bbad"l

/"18 bit DEC host"/

/%32 bit DEC host"y

I'non~DEC hosl'/

/*"patch” 1ist in opt hdr*y

Special File Formats 4-17

fs

fs - format of file system

Format

#include <sys/tilsys.h>
#include <sys/types.h>
#include <sys/param.h>

Description

Every file system has a common format for certain vital
information. Every such file system is divided into a certain
number of 512-byte long sectors. Sector O is unused and is
available to contain a bootstrap program or other
information.

Sector 1 is the super-block. The format of a super-block is:

!
* Structure of the super-block
-
/
struct filsys

ushort s_isize, /*size in blocks of i-1ist®)
daddr_t s_tsize; /"size In blocks of file sys"/

short s_ntree; /"no. of addresses in s_tree"/

dsddr_t s_free[NICFREE], /“free block 1ist"/

short s_ninode; /"number of i-nodes in a_lnodo'[

ino_t s_Iinode[NICINOD], /*free i-node 1ist"/

char s_tlock, /'lock during tree tist manlp.'/

char s_ilock} /"lock during i-1ist maniput./

char s_fmod, /"super block modified llng'[

char s_ronly; /'mountod readonly lllg'l

time_t s_time; /*isst super block update®;

short s_dinto[{4), I“device Intormntlon'l

daddr_t s_tiree; /“total free biocks®/

tno_t s_tinode, ['tolul free |-nodo:'/

char s_tname[8]; /"file system name*/

char s_tpack([8]; ['!II. system pack n;mo'/

tong s_tith{11]; /"ADJUST; make size of titsys"
1°512%)

1207891

3-18 ' Special File Formats

fs

short s_dummy, J"reserved for future use”/
short s_cluster, /®cluster size (PILF only)"y
tong s_bitsize, /“size ot free block bit map™/
long s_magic, /'mnglc no., to indicate now'/
I"tite system®/
long s_type, /*type of new tile system®/
b
#define FSMAGIC 0xfd187020 /*s_magic number”/
#define Fsib 1 1°512 byte block"/
#define Fs2b 2 11024 byte block™/
#define FsPILF 0x10000 I*PILF tile system®/

CENTIX recognizes three kinds of file systems, specified by
s_type:

o Oriented to 512-byte I/0. Identified by an s_type equal to
Fs1b. This type is also assumed if s.magic is not equal to
FsSMAGIC. (This type was originally the only type
supported by UNIX Systems; CENTIX does not currently
support this type.)

o Oriented to 1024-byte I/0. Identified by an s_type equal to
Fs2b. This is essentially the standard file system for
CENTIX and UNIX System V.

a PILF (Performance Improvement In Large Files) file system.
Identified by an s_type equal to FsPILF. A PILF file system
can be used like a standard file system, but is substantially
more efficient when used with direct cluster I/O (see pilf in
Section 5).

In the following description, the size of a logical block is
determined by the file. system type. For the original 512-byte
oriented file system, a block is 512 bytes. For the 1024-byte
oriented file system and the PILF file system, a block is 1024
bytes or two sectors. The operating system takes care of all
conversions from logical block numbers to physical sector
numbers.

Special File Formats 4-19

fs

S_isize is the address of the first data block after the i-list;
the i-list starts just after the super-block, namely in block 2;
thus the i-list is s_isize -2 blocks long. S_fsize is the first
block not potentially available for allocation to a file. These
numbers are used by the system to check for bad block
numbers; if an “impossible” block number is allocated from
the free list or is freed, a diagnostic is written on the on-line
console. Moreover, the free array is cleared, so as to prevent
further allocation from a presumable corrupted free list.

The free list is provided on 512-byte and 1024-byte file
systems, but not on PILF file systems. It is maintained as
follows. The s_free array contains, in s_free[1]....,
s_free[s_nfree-1], up to 49 numbers of free blocks. S_free[0]
is the block number of the head of a chain of blocks
constituting the free list. The first long in each free-chain
block is the number (up to 50) of free-block numbers listed in
the next 50 longs of this chain member. The first of these
50 blocks is the link to the next member of the chain. To
allocate a block: decrement s_nfree, and the new block is
s_free[s_nfree). If the new block number is O, there are no
blocks left, so give an error. If s_nfree became 0, read in the
block named by the new block number, replace an s_nfree by
its first word, and copy the block numbers in the next 50
longs into the s_free array. To free a block, check if s_nfree is
50; if so, copy s_nfree and the s_free array into it, write it
out, and set s_nfree to 0. In any event set s_free[s-nfree] to
the freed block’s number and increment s_nfree.

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s_inode array.
To allocate an i-node: if s_ninode is greater than O,

decrement it and return s_inode[s_ninode). If it was O, read
the i-list and place the numbers of all free i-nodes (up to 100)
into the s_jnode array, then try again. To free an i-node,
provided s_ninode is less than 100, place its number into
s_inode[s_ninode] and increment s_ninode. If s_ninode is
already 100, do not bother to enter the freed i-node into any
table. This list of i-nodes is only to speed up the allocation
process; the information as to whether the i-node is really
free or not is maintained in the i-node itself.

1207891

4-20 Special File Formats

fs

S_tinode is the total free i-nodes available in the file system.

S_flock and s_slock are flags maintained in the core copy of
the file system while it is mounted and their values on disk
are immaterial. The value of s_fmod on disk is likewise
immaterial; it is used as a flag to indicate that the
super-block has changed and should be copied to the disk
during the next periodic update of file system information.

S_ronly is a read-only to indicate write-protection.

S_time is the last time the super-block of the file system was
changed, and is the number of seconds that have elapsed
since 00:00 Jan. 1, 1970 (GMT). During a reboot, the s_time
of the super—block for the root file system is used to set the
system’s idea of the time.

S_fname is the name of the file system and s_fpack is the
name of the pack.

On a PILF file system, s_cluster is the default cluster size
exponent, used by a process that creates a file on the file
system without specifying a default cluster size (see syslocal
“in Section).

I-numbers begin at 1, and the storage for i-nodes begins in
block 2. I-nodes are 64 bytes long. I-node 1 is reserved for
future use. I-node 2 is reserved for the root directory of the
file system, but no other i-number has a built-in meaning.
Each i_node represents one file. For the format of an i-node
and its flags, see inode (later in this section).

On a PILF file system, the bit map serves the function of the
free list by showing which blocks are allocated to files. It is
at the very end of the file system. S_bitsize is the number of
blocks in the bit map. Each bit in the bit map is O if the
corresponding 1K data block is allocated to a file.

Special File Formats 4-21

fs

Files

fusr/include/sys/filsys.h
Jusr/include/sys/stat.h

See Also

fsck, fsdb, mkfs in Section 1; inode; pilf in Section 5.

1207891

4-22 Special File Formats

fspec

fspec - format specification in text files

- Description

It is sometimes convenient to maintain text files on CENTIX
with non-standard tabs, (that is, tabs that are not set at
every eighth column). Such files must generally be converted
to a standard format, frequently by replacing all tabs with the
appropriate number of spaces, before they can be processed
by CENTIX commands. A format specification occurring in
the first line of a text file specifies how tabs are to be
expanded in the remainder of the file.

A format specification consists of a sequence of parameters
separated by blanks and surrounded by the brackets <: and
:>. Each parameter consists of a keyletter, possibly followed
immediately by a value. The following parameters are
recognized:

ttabs The t parameter specifies the tab settings for the file. The
value of tabs must be one of the following 1) A list of
column numbers separated by commas, indicating tabs set
at the specified columns; 2) A - followed immediately by an
integer n, indicating tabs at intervals of n columns; or 3) A
- followed by the name of a “canned” tab specification.
Standard tabs are specified by t-8, or equivalently, t1, 9,
17, 25, and so on. The canned tabs that are recognized are
defined by the tabs shell command (see tahs, Section 1).

ssize The s parameter specifies a maximum line size. The value of
size must be an integer. Size checking is performed after
tabs have been expanded, but before the margin is prepended.

mmargin The m parameter specifies @ number of spaces to be
prepended to each line. The value of margin must be an integer.

Special File Formats 4-23

fspec

d The d parameter takes no value. Its presence indicates that
the line containing the format specification is to be deleted
from the converted file.)

e The e parameter takes no value. its presence indicates that

the current format is to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not
supplied, are t-8 and m0. If the s parameter is not specified,
no size checking is performed. if the first line of a file does
not contain a format specification, the above defaults are
assumed for the entire file. The following is an example of a
line containing a format specification:

*<:t5,10,15 872:>°

If a format specification can be disguised as a comment, it is
not necessary to code the d parameter.

Several CENTIX commands correctly interpret the format
specification for a file.

See Also

ed, newform, tabs in Section 1.

1207891

4-24 ’ Special File Formats

gettydefs

Name
gettydefs - speed and terminal settings used by getty

‘Description

The /etc/gettydefs file contains information used by the getty
shell command to set up the speed and terminal settings for
a line. It supplies information on what the login prompt
should look like. It also supplies the speed to try next if the
user indicates the current speed is not correct by typing a
<break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # tinal-tiags # login-prompt #next labe!

Each entry is followed by a blank line. The various fields can
contain quoted characters of the form /b, /n, /¢, and so on,
as well as /nnn, where nnn is the octal value of the desired
character. The various fields are:

label This is the string against which getty tries to match its
second argument. It is often the speed, such as 1200, at
which the terminal is supposed to run, but it need not be
{see below).

initial-flags These flags are the initial ioctl system call settings to
which the terminal is to be set if a terminal type is not
specified to getty. The flags that getty understands are the
same as the ones listed in /usr/include/sys/termio.h (see
termio in Section 6). Normally only the speed flag is
required in the initial-flags. getty automatically sets the
terminal to raw input mode and takes care of most of the
other flags. The initial-flag settings remain in effect until
getty executes login.

Special File Formats

4-25

gettydefs

final-flags

login-prompt

next-label

These flags take the same values as the initial-flags and are
set just prior to getty executes login. The speed flag is
again required. The composite flag SANE takes care of most
of the other flags that need to be set so that the processor
and terminal are communicating in a rational fashion. The
other two commonly specified final-flags are TAB3, so that
tabs are sent to the terminal as spaces, and HUPCL, so that
the line is hung up on the final close.

This entire field is printed as the /ogin-prompt. Unlike the
above fields where white space is ignored (a space, tab or
new-line), they are included in the /ogin-prompt field.

If this entry does not specify the desired speed, indicated by
the user typing a <break> character, then getty will
search for the entry with next-label as its label field and set
up the terminal for those settings. Usually, a series of
speeds are linked together in this fashion, into a closed set;
for instance, 2400 linked to 1200, which in turn is linked
te 300, which finally is linked to 2400.

If getty is called without a second argument, then the first
entry of /etc/gettydefs is used, thus making the first entry of
/etc/gettydefs the default entry. It is also used if getty cannot
find the specified label. If /etc/gettydefs itself is missing,
there is one entry built into the command that will bring up a
terminal at 9600 baud.

It is strongly recommended that after making or modifying
/etc/gettydefs, it be run through getty with the check option
to be sure there are no errors.

Files

/etc/gettydefs

See Also

getty, login in Sec. 1; ioctl in Sec. 2; termio in Sec. 6.

1207891

4-26 Special File Formats

group

Name
group - group file

Description
Group contains for each group the following information:

group name

encrypted password

numerical group ID

comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each
group is separated from the next by a new-line. If the
password field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted
passwords, it can and does have general read permission
and can be used, for example, to map numerical group IDs to
names.

Files
/etc/group

See Also

newgrp and passwd in Section 1; erypt in Section 3; passwd
in Section 4.

Special File Formats 4-27

inittab

Name
inittab - script for the init process

Description

The inittab file supplies the script to init's role as a general
process dispatcher. A separate inittab is required for each
processor; the last two characters of the name are the
processor number. The process that constitutes the majority
of init's process dispatching activities is the line process
/etc/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position
dependent and have the following format:

id:rstate:action:process

Each entry is delimited by a new-line, however, a backslash
{(\) preceding a new-line indicates a continuation of the entry.
Up to 512 characters per entry are permitted. Comments
may be inserted in the process field using the sh command
convention for comments. Comments for lines that spawn
gettys are displayed by the who command. It is expected that
they will contain some information about the line, such as the
location. There are no limits (other than maximum entry size)
imposed on the number of entries within the inittab file. The
entry fields are:

id This is one to four characters used to uniquely identify an entry.

1207891

4-28

Special File Formats

inittab

rstate

action

This defines the run-level in which this entry is to be
processed. Run-levels effectively correspond to a
configuration of processes in the system. That is, each
process spawned by init is assigned a run-level or
run-levels in which it is allowed to exist. The run-levels are
represented by a number ranging from 0 through 6. As an
example, if the system is in run-level 1, only those entries
having a 1 in the rstate field will be processed. When init
is requested to change run-levels, all processes that do not
have an entry in the rstate field for the target run-level will
be sent the warning signal (SIGTERM) and allowed a
20-second grace period before being forcibly terminated by a
kili signal {SIGKILL). The rstate field can define muitiple
run-levels for a process by selecting more than one run-level
in any combination from 0-6. If no run-level is specified,
then the process is assumed to be valid at all run-levels
0-6. There are three other values, a, b, and ¢, which can
appear in the rstate field, even though they are not true
run-levels. Entries that have these characters in the rstate
field are processed only when the telinit (see init in
Section 1) process requests them to be run (regardless of
the current run-level of the system). They differ from
run-levels in that init can never enter run-level 2, b or c.
Also, a request for the execution of any of these processes
does not change the current run-level. Furthermore, a
process started by an a, b, or ¢ command is not killed
when init changes levels. They are only killed if their line in
/etc/inittab is marked off in the action field, their line is
deleted entirely from /etc/inittab, or init goes into the
single-user state.

Key words in this field tell init how to treat the process
specified in the process field. The actions recognized by init
are as follows:

respawn If the process does not exist,
start the process; do not wait for
its termination {continue Scanning
the inittab file). When it dies,
restart the process. If the process
currently exists, do nothing and
continue scanning the inittab file.

Special File Formats

4-29

inittab

1207891

wait

once

boot

bootwait

powerfail

Upon init’s entering the run-level
that matches the entry's rstate,

start the process and wait for its
termination. All subsequent reads
of the inittab file while init is in

the same run-level will cause init
to ignore this entry.

Upon init's entering a run-level
that matches the entry’s rstate,
start the process; do not wait for
its termination. When it dies, do
not restart the process. If upon
entering a new run-level, where
the process is still running from a
previous run-level change, the
program will not be restarted.

The entry is to be processed only
at init's boot-time read of the
inittab file. init is to start the
process, not wait for its
termination, and when it dies, not
restart the process. In order for
this instruction to be meaningful,
the rstate should be the default
or it must match init’s run-level
at boot time. This action is useful
for an initialization function
fotlowing a hardware reboot of
the system.

The entry is to be processed only
at init's boot-time read of the
inittab file. init is to start the
process, wait for its termination
and, when it dies, not restart the
process.

Execute the process associated
with this entry only when init
receives a power fail signal
(SIGPWR). See signal, Section 2.

4-30

Special File Formats

inittab

powerwait

off

initdefault

Execute the process associated
with this entry only when init
receives a power fail signal
(SIGPWR) and wait until it
terminates before continuing any
processing of inittab.

If the process associated with
this entry is currently running,
send the warning signal
(SIGTERM) and wait 20 seconds
before forcibly terminating the
process via the kill signal
(SIGKILL). If the process is
nonexistent, ignore the entry.

This instruction is really a
synonym for the respawn action.
It is functionally identical to
respawn but is given a different
keyword in order to divorce its
association with run-levels. This
is used only with the a, b, or ¢
values described in the rstatefield.

An entry with this action is only
scanned when init is initially
invoked. init uses this entry, if it
exists, to determine which
run-level to enter initially. It does
this by taking the highest .
run-level specified in the rstate
field and using that as its initial
state. If the rstate field is empty,
this is interpreted as 0123456,
causing init to enter run-level 6.
Also, the initdefault entry can
use s to specify that init start in
the single-user state. Additionally,
if init doesn’t find an initdefault
entry in /etc/inittab, then it will
request an initial run-level from
the user at reboot time.

Special File Formats 4-31

inittab

sysinit Entries of this type are executed
before init tries to access the
console. It is expected that this
entry will be only used to
initialize devices on which init
might try to ask the run-level
question. These entries are
executed and waited for before
continuing.

process This is a sh command to be executed. The entire process
field is prefixed with exec and passed to a forked sh as
sh -c “exec command . For this reason, any legal sh syntax
can appear in the process field. Comments can be inserted
with the ; # comment syntax.

Files

/etc/inittab?? (last two characters specify the Application
Processor)

See Also

getty, init, sh, whein Section 1; exec, open, signal in Section 2.

1207891

4-32 Special File Formats

inode

inode - format of an i-node

Format

#include <sys/types.h>
#include <sys/ino.h>

Description
An i-node for a plain file or directory in a file system has the
following structure defined by <sys/ino.h>.

/"inode structure as it appears on a disk block."/
struct dinode

ushort di_mode; /"mode and type of tile")
short di_nlink; /" number of links to tile"/
ushort di_uid; /"owner's user 1d"/
ushort di_glid; }*owner's group id”/
oft_t di_size, ['numb-r of bytes in Hlo'/ q
char di_addr[39]; /"disk block addresses™/
char di_ci, I*PILF cluster size sxponent”/
time_t di_atime, I'Hmo last accossed'/
time_t di_mtime; " /"time tast modified”/
time_t di_ctime, l'llm. of tast file stat chango'[
)
*the 40 address bytes:
* 39 used; 13 addresses
: of 3 bytes each.

!

For the meaning of the defined types off_t and time_t, see
types in Section 5.

In a PILF file, addresses are organized as in a standard 1K file
system, with identical use of blocks of additional addresses.
Data addresses, however, do not point to individual 1K
blocks; instead, each points to the first block of a contiguous
cluster of blocks, each of which is 2" 1K blocks long, where
n is the value in the di_c/ field.

Special File Formats 4-33

inode

Files

/usr/include/sys/ino.h

See Also

stat in Section 2; fs; pilf, types in Section 5.

1207891

4-34 Special File Formats

issue

issue - issue identification file

Description

The file /etc/issue contains the issue or project identification
to be printed as a login prompt. This is an ASCII file that is
read by program getty and then written to any terminal
spawned or respawned from the lines file.

Files

/etc/issue

See Also

login in Section 1.

Special File Formats 4-35

Idfcn

Idfcn - common object file access routines

Format

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

Description

The common object file access routines are a collection of
functions for reading an object file that is in common object
file form. Although the calling program must know the
detailed structure of the parts of the object file that it
processes, the routines effectively insulate the calling
program from knowledge of the overall structure of the
object file.

The interface between the calling program and the object file
access routines is based on the defined type LDFILE, defined
as struct Idfile, declared in the header file Idfcn.h. The
primary purpose of this structure is to provide uniform
access to both simple object files and to object files that are
members of an archive file.

The library function ldopen allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling
program. The fields of the LDFILE structure may be accessed
individually through macros defined in Idfcn.h. They contain
the following information:

LDFILE *ldptr; The file magic number, used to distinguish between archive
TYPE(Idptr) members and simple object files.
OPTR(ldptr) The file pointer returned by fopen and used by the standard

input/output functions.

1207891

4-36 Special File Formats

Idfen

OFFSET(Idptr) The file address of the beginning of the object file; the
offset is non-zero if the object file is a member of an
archive file. '

HEADER(Idptr) The file header structure of the object file.

The object file access functions themselves may be divided
into four categories:

1 Functions that open or close an object file.
o ldopen and ldaopen open a common object file.
o ldclose and ldaclose close a common object file.
2 Functions that read header or symbol table information.

o Idahread reads the archive header of a member of an
archive file.

o ldfhread reads the file header of a common object file.

o ldshread and ldnshread read a section header of a common
object file.

o ldtbread reads a symbol table entry of acommon object file.

3 Functions that position an object file at (seek to) the start
of the section, relocation, or line number information for a
particular section.

o ldohseek seek to the optional file header of a common
object file.

o ldsseek and ldnsseek seek to a section of a common
object file.

o ldrseek and ldnrseek seek to the relocation information for
a section of a common object file.

o ldiseek and Idnlseek seek to the line number information
for a section of a common object file.

o ldthseek seek to the symbol table of a common object file.

4 The function ldtbindex, which returns the index of a
particular common object file symbol table entry

Special File Formats 4-37

Idfen

These functions are described in detail in their respective
manual pages in Section 3.

All the functions except Idopen, Idacpen and Idthindex return
either SUCCESS or FAILURE, both constants defined in
Idfcn.h. Idopen and ldaopen both return pointers to an LDFILE
structure.

Macros

Additional access to an object file is provided through a set
of macros defined in Idfcn.h. These macros parallel the
standard input/output file reading and manipulating functions,
translating a reference of the LDFILE structure into a
reference to its file descriptor field.

The following macros are provided:
LDFILE*Idptr;

GETC(Idptr)

FGETC(Ildptr)

.GETW(!ldptr)

UNGETC(c, Idptr)

FGETS(s, n, ldptr)
FREAD((char*) ptr, sizeof (°ptr), nitems, Idptr)
FSEEK(!dptr, offset, ptrname)
FTELL(idptr)

REWIND(idptr)

FEOF(lIdptr)

FERROR(Idptr)

FILENO(Idptr)

SETBUF(idptr, buf)

See the manual entries for the corresponding standard
input/output library functions for details on the use of these
macros.

The program must be loaded with the object file access
routine library libld.a.

1207891

4-38 Special File Formats
Idfen

Caution

The macro FSEEK defined in the header file Idfcn.h translates
into a call to the standard input/output function fseek. FSEEK
should not be used to seek from the end of an archive file
since the end of an archive file may not be the same as the
end of one of its object file members!

See Also

fseek, Idahread, Idclose, Idfhread, Idiread, Idiseek, Idohseek,
Idopen, Idrseek, Idiseek, ldshread, ldthindex, Idtbread, Idthseek in
Section 3.

Special File Formats 4-39

linenum

Name

linenum - line number entries in a common obiject file

Format

#include <linenum.h>

Description

Compilers based on pcc generate an entry in the object file
for each C source line on which a breakpoint is possible
(when invoked with the -g option; see ¢¢ in Section 1). Users
can then reference line numbers when using the appropriate
software test system. The structure of these line number
entries appears below.

struct |ineno
{
union
{
fong I_symndx;
fong | _paddr;
} I_addr;
unsigned short i_tnno;

1207891

4-40 Special File Formats

Numbering starts with one for each function. The initial line

- number entry for a function has /_/nno equal to zero, and the
symbol table index of the function’s entry is in L_symndx.
Otherwise, /_Inno is non-zero, and /_paddr is the physical
address of the code for the referenced line. Thus the overall
structure is the following:

[_addr /Jnno
function symtab index 0
physical address line
physical address line
fuﬁ&tion symtab index 0
physical address line
physical address line
See Also

cc in Section 1; a.out.

Special File Formats 4-41

master

master - master device information table

Description

This file is used by the config program to obtain device
information that enables it to generate the configuration files.
Do not modify it unless you fully understand its construction.
The file consists of 3 parts, each separated by a line with a
dollar sign ($) in column 1. Part 1 contains device
information; part 2 contains names of devices that have
aliases; part 3 contains tunable parameter information. Any
line with an asterisk (*) in column 1 is treated as a comment.

Part 1 contains lines consisting of 6 or 7 fields, with the
fields delimited by tabs and/or blanks:

Field 1: device name (S chars. maximum).
Field 2: device mask (octal)-each “on” bit indicates that the handler
exists:

000100 initialization handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler
Field 3: device type indicator {octal):
000200 allow only one of these devices
000100 suppress count field in conf.c file
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
000001 fixed vector

Field 4: handler prefix {4 chars. maximum).

Field 5: major device number for block-type device
Field 6: major device number for character-type device
Field 7: (optional) maximum serial devices on system

1207891

4-42 _' Special File Formats

master

Part 2 contains lines with 2 fields each:

Field 1: alias name of device (8 chars. maximum).

Field 2: reference name of device (8 chars. maximum; specified in
part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears in description file; 20 chars.
maximum)

Field 2: parameter name (as it appears in the conf.c file; 20 chars.
maximum)

Field 3: default parameter value (20 chars. maximum; parameter

specification is required if this field is omitted)

See Also

config in Section 1.

Special File Formats 4-43

mnttah

mnttab - mounted file system table

Format

#include <mnttab.h>

Description

Mnttab resides in directory /etc and contains a table of
devices, mounted by the mount shell command, in the
following structure as defined by <mnttab.h>:

struct mnttab |
char mt_dev([32];
char mt_filsys[32]};
short mt_ro_flg;
time_t mt_time;

b

Each entry is 70 bytes in length; the first 32 bytes are the
null-padded name of the place where the special file is
mounted; the next 32 bytes represent the null-padded root
name of the mounted special file; the remaining 6 bytes
contain the mounted special file's read/write permissions and
the date on which it was mounted.

The maximum number of entries in mnttab is based on the
system parameter NMOUNT located in /usr/src/uts/cf/conf.c,
which defines the number of allowable mounted special files.

See Also

mount and setmnt in Section 1.

1207891

4-44 Special File Formats

passwd

passwd - password file

Description
Passwd contains for each user the following information:
login name
encrypted password
numerical user ID
numerical group D
a field with no standard use
initial working directory
program to use as Shell

This is an ASCI file. Each field within each user’s entry is
separated from the next by a colon. The fifth field exists for
historical reasons; it is often used to hold the user's name
and address. Each user is separated from the next by a
new-line. If the password field is null, no password is
demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted
passwords, it can and does have general read permission
and can be used, for example, to map numerical user IDs to
names.

The encrypted password consists of 13 characters chosen
from a 64-character alphabet (., /, 0-9, A-Z, a-z), except
when the password is null, in which case the encrypted
password is also null. Password aging is effected for a
particular user if his or her encrypted password in the
password file is followed by a comma and a non-null string
of characters from the above alphabet. (Such a string must
be introduced in the first instance by the super-user.)

Special File Formats 4-45

passwd

The first character of the age, M say, denotes the maximum
number of weeks for which a password is valid. A user who
attempts to login after his or her password has expired will
be forced to supply a new one. The next character, m say,
denotes the minimum period in weeks that must expire
before the password may be changed. The remaining
characters define the week (counted from the beginning of
1970) when the password was last changed. (A null string is
equivalent to zero.) M and m have numerical values in the
range 0-63 that correspond to the 64-character alphabet
shown above (that is, / = 1 week; z = 63 weeks). if m = M
= O (derived from the string . or ..) the user will be forced to
change his password the next time he or she logs in (and the
“age” will disappear from the entry in the password file). If m
> M {(signified, for example, by the string ./) only the
super—user will be able to change the password.

Files

/etc/passwd

See Also

login, passwd in Section 1; ab4l, crypt, getpwent in Section 3;
group.

1207891

4-46 Special File Formats

profile

profile - setting up an environment at login time

Description

If your login directory contains a file named .profile, that file
will be executed {via the shell’s exec .profile) before your
session begins; .profiles are handy for setting exported
environment variables and terminal modes. If the file
/etc/profile exists, it will be executed for every user before
the .profile. The following example is typical {(except for the
comments):

Make some environment variables giobal
export MAIL PATH TERM
Set file creation mask
umask 22
Tell me when new mail comes in
MAIL = jusr/mail/myname
Add my /bin directory to the shell search sequence
PATH = $PATH.$SHOME/bIn
Set terminal type
export TERM
while true
do

echo 'terminat: /¢’

read TERM

it tset

then

break

fi

done

Files

$HOME/ .profile
/etc/profile

See Also

tset, env, login, mail, sh, stty, su in Section 1; environ, term in
Section 5.

Special File Formats 4-47

reloc

reloc - relocation information for a common object file

Format

#include <reloc.h>

Description

Object files have one relocation entry for each relocatable
reference in the text or data. If relocation information is
present, it will be in the following format:

struct reloc

tong r_vaddr, ['(vlvtuul) address of re'ovonco'/
tong r_symndx; /“index into symbol table"
short r_type; /“relocation type”/

|H
L'
All generics
: relioc. aiready performed to symbo! in the same section
)
#detline R_ABS 0
L.
3B generic
* 24-bit direct reference
* 24-bit "relative” reterence
* 18-bit optimized "indirect” TV reference
* 24-bit "indirect” TV reference
: 32-bit "indirect” TV reference
/
#define R_DIR24 04
#define R_REL24 05
#define R_OPT16 014
#detine R_IND24 01§
#define R_IND32 016
’.
*DEC Processors VAX 11/780 and VAX 11/750
:Also Motorola Processors 68000, 88010, and 68020
1
#detfine R-RELBYTE 017
#define R_RELWORD 020
#detfine R_RELLONG 021
#defins R_PCRBYTE 022
#detine R_PCRWORD 023
#deline R_PCRLONG 024

1207891

4-48 Special File Formats

reloc

As the link editor reads each input section and performs
relocation, the relocation entries are read. They direct how
references found within the input section are treated.

R_ABS The reference is absolute, and no relocation is necessary .
The entry will be ignored.

R_DIR24 A direct, 24-bit reference to a symbol’s virtual address.

R_REL24 A “PC-relative,” 24-bit reference to a symbol’s virtual

address. Relative references occur in instructions such as
jumps and calls. The actual address used is obtained by
adding a constant to the value of the program counter at
the time the instruction is executed.

R.OPT16 An optimized, indirect, 16-bit reference through a transfer
vector. The instruction contains the offset into the transfer
vector table to the transfer vector where the actual address
of the referenced word is stored.

R_IND24 An indirect, 24-bit reference through a transfer vector. The
instruction contains the virtual address of the transfer
vector, where the actual address of the referenced word is
stored.

R_IND32 An indirect, 32-bit reference through a transfer vector. The
instruction contains the virtual address of the transfer
vector, where the actual address of the referenced word is

stored.
R_RELBYTE A direct 8-bit reference to a symbol’s virtual address.
R_RELWORD A direct 16-bit reference to a symbol’s virtual address.
R_RELLONG A direct 32-bit reference to a symbol's virtual address.
R_PCRBYTE A "PC-relative,” 8-bit reference to a symbol’s virtual address.
R_PCRWORD A “PC-relative,” 16-bit reference to a symbol’s virtual address.
R_PCRLONG A "PC-relative,” 32-bit reference to a symbol’s virtual address.

On the VAX processors, relocation of a symbol index of -1
indicates that the relative difference between the current
segment’s start address and the program’s load address is
added to the relocatable address.

Other relocation types will be defined as they are needed.

Special File Formats ' 4-49

reloc

Relocation entries are generated automatically by the
assembler and automatically utilized by the link editor. A link
editor option exists for removing the relocation entries from
an object file.

See Also

Id, strip in Section 1; a.out, syms.

1207891

4-50 Special File Formats

scesfile

Name
sccsfile - format of SCCS file

Description

An SCCS file is an ASCII file. It consists of six logical parts:
the checksum, the delta table (contains information about
each delta), user names (contains login names and/or
numerical group IDs of users who may add deltas), flags
(contains definitions of internal keywords), comments
{contains arbitrary descriptive information about the file), and
the body (contains the actual text lines intermixed with
control lines).

Throughout an SCCS file there are lines that begin with the
ASCIl SOH (start of heading) character (octal 001). This
character is hereafter referred to as the control character and
will be represented graphically as @. Any line described
below which is not depicted as beginning with the control
character is prevented from beginning with the control
character.

Entries of the form DDDDD represent a five-digit string (a
number between 00000 and 99999).

‘Each logical part of an SCCS file is described in detail below.

Checksum

The checksum is the first line of an SCCS file. The form of
the line is:

@hDDDDD

The value of the checksum is the sum of all characters,
except those of the first line. The @h provides a magic
number of (octal) 064001.

Special File Formats ' 4-51

scesfile

Deilta table

The delta table consists of a variable number of entries of
the form:

@s DDDDD/DDDDD/DDDDD
@d <type><SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD

@i DDDDD ...
@x DDDDD ...
@g DDDDD ...
@m <MR number>

@c <comments> ...

Qe
The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line
(@d)) contains the type of the delta (currently, normal: D, and
removed: R), the SCCS ID of the delta, the date and time of
creation of the delta, the login name corresponding to the
real user ID at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

The @i, @x, @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number
associated with the delta; the @c lines contain comments
associated with the delta.

The @e line ends the delta table entry.

1207891

4-52 Special File Formats

scesfile

User names

The list of login names and/or numerical group IDs of users
who may add deltas to the file, separated by new-lines. The
lines containing these login names and/or numerical group
IDs are surrounded by the bracketing lines @u and @U. An
empty list allows anyone to make a delta. Any line starting
with a ! prohibits the succeeding group or user from making
deltas.

Flags

'Keywords used internally (see admin in Section 1 for more
information on their use). Each flag line takes the form:

@f<flag> <optional text>
The following flags are defined:

@ft <type of program>
@tv <program name>
@afi <keyword string>
@fb

@fm <module name>
@ff <floor>

@afc <ceiling>

@fd <default-sid>
@fn

@fi

@fl <lock-releases>
@fq <user defined>

@f <reserved for use in interfaces>

Special File Formats 4-53

sccsfile

The t flag defines the replacement for the %Y% identification
keyword. The v flag controls prompting for MR numbers in
addition to comments; if the optional text is present it
defines an MR number validity checking program. The i flag
controls the warning/error aspect of the “No id keywords”
message. When the i flag is not present, this message is
only a warning; when the i flag is present, this message will
cause a “fatal” error (the file will not be gotten, or the delta
will not be made). When the b flag is present, the -b keyletter
may be used on the get command to cause a branch in the
delta tree. The m flag defines the first choice for the
replacement text of the %M% identification keyword. The §
flag defines the “floor” release (the release below which no
deltas may be added). The ¢ flag defines the “ceiling” release
(the release above which no deltas may be added). The d flag
defines the default SID to be used when none is specified on
a get command. The n flag causes delta to insert a “null” delta
{a delta that applies no changes) in those releases (for
example, when delta 5.1 is made after delta 2.7, releases 3
and 4 are skipped). The absence of the n flag causes skipped
releases to be completely empty. The j flag causes get to
allow concurrent edits of the same base SID. The | flag
defines a list of releases that are locked against editing (get
with the -e keyletter). The q flag defines the replacement for
the %Q% identification keyword. The s flag is used in certain
specialized interface programs.

Comments

Arbitrary text is surrounded by the bracketing lines @t and
@T. The comments section typically will contain a description
of the file's purpose.

1207891

4-54 Special File Formats

sccsfile

Body

The body consists of text lines and control lines. Text lines
do not begin with the control character, control lines do.
There are three kinds of control lines: insert, delete, and end,
represented by:

@! DDDDD
@D DDDDD
@E DDDDD

respectively. The digit string is the serial number
corresponding to the delta for the control line.

See Also

admin, delta, get, prs in Section 1.

Special File Formats . 4-55

scnhdr

scnhdr - section header for a common object file

Format

#include <scnhdr.h>

Description

Every common object file has a table of section headers to
specify the layout of the data within the file. Each section
within an object file has its own header. The C structure
appears below.

struct scnhdr

char s_name [SYMNMLEN], /'sec!lon namo'/
long s_paddr; /“physical address”/
long s-vaddr; /“virtus! address®y

. - -
fong s_size,; J"section size”)
1ong s_scnptr, /“tile ptr to raw data™/
tong s_reiptr; /"file ptr to relocat.”/
long s_lnnoptr; /“file ptr to tine #s"/
unsigned short s_nreloc, /'# reloc entries®y
unsigned short s_ninno; /"# line no. entries”/

- - »
long s_ftlags; /"tirags”y

};

File pointers are byte offsets into the file; they can be used
as the offset in a call to fseek (see Section 3). If a section is
initialized, the file contains the actual bytes. An uninitialized
section is somewhat different. It has a size, symbols defined
in it, and symbols that refer to it. But it can have no
relocation entries, line numbers, or data. Consequently, an
uninitialized section has no raw data in the object file, and
the values for s_scnptr, s_relptr, s_Innoptr, s_nreloc, and
s_ni/nno are zero.

See Also

Id in Section 1; fseek in Section 3; a.out.

1207891

4-56 Special File Formats

syms

syms - common object file symbol table format

Format

#include <syms.h>

Description

Common object files contain information to support symbolic
software testing (see sdb in Section 1). Line number entries
(see linenum), and extensive symbolic information permit
testing at the C source level. Every object file's symbol table
is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for fite 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbolis.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The
members of the structure hold the name (null padded), its
value, and other information.

Special File Formats 4.57

syms
The C structure is given below.

#detine SYMNMLEN 8
#define FILNMLEN 14
#deiine DIMNUM 4

struct syment

union /'ull ways to get symbo! name'l
char _n_name [SYMNMLEN]); /"symbol name”/
struct
long _h_zeroes, ['isOL when in string lablo'l
tong _n_oftset; /“tocation of name in table”/
}on_n;
char '_n_nptr[Z]; ['allows ovorlaylng'/
|IH
long n_valuel /"value of symbol™;
short n_scnum, /'sociion numb.r'/
unsigned short n_type, l'typo and derived typo'/
char n_sclass; /"storage class®/
} char n_numaux, I'numbor of aux on!rlas'[
,
#define n_name n._n_name

n._n_n._n_zeroes
._Nh_n._n_otfset

_n_nptr(t)

#detine n_zeroes -
#define n_offset

-n
#define n_nptr _n

Some symbols require more information than a single entry;

they are followed by auxiliary entries that are the same size
as a symbol entry. The format follows.

1207891

4-58

Special File Formats

syms

union auxent

struct
iong x_tagndx,
union
struct
unsigned short x_inno,
unsigned short x_size,
}x_lnsz;
long x_tsize,
x_misc,
union
struct
long x_Innoptr,
long x_endndx,
) x_fcn;
struct
unsigned short x_dimen[DIMNUM];
] x_ary,
} x_fcnary,
unsigned short x_tvndx,
b ox_sym;
struct

char x_tname{FILNMLEN],
} x-fite}
struct

long x-scnlen;
unsigned short x_nreloc,
unsigned short x_niinno,

} x_scn,
struct
tong x_tvfill;

unsigned short x_tvlien,
unsigned short x_tvran[2]},
boooxavg

b
Indexes of symbol table entries begin

at zero.

Special File Formats 4-59

syms

Cautions

CENTIX C longs are equivalent to ints and are converted to
ints in the compiler to minimize the complexity of the
compiler code generator. Thus, the information about which
symbols are declared as longs and which symbols are
declared as ints does not show up in the symbol table.

See Also

sdb in Section 1; a.out, linenum.

1207891

4-60 - Special File Formats

term

term - format of compiled term file.

Format

term

Description

- Compiled terminfo descriptions are placed under the
directory /usr/lib/terminfo. In order to avoid a linear search of
a huge directory, a two-level scheme is used:
Jusr/lib/terminfo/c/name where name is the name of the
terminal, and c is the first character of name. Thus, act4 can
be found in the file /usr/lib/terminfo/a/act4. Synonyms for
the same terminal are implemented by multiple links to the
same compiled file.

The format has been chosen so that it will be the same on all
hardware. An 8 or more bit byte is assumed, but no
assumptions about byte ordering or sign extension are made.

The compiled file is created with the compile program, and
read by the routine setupterm. Both of these pieces of
software are part of curses (see Section 3). The file is divided
into six parts: the header, terminal names, Boolean flags,
numbers, strings, and string table.

The header section begins the file. This section contains six
short integers in the format described below. These integers
are (1) the magic number (octal 0432); (2) the size, in bytes,
of the names section; (3) the number of bytes in the Boolean
section; (4) the number of short integers in the numbers
section; (5) the number of offsets (short integers) in the
strings section; (6) the size, in bytes, of the string table.

Special File Formats 4-61

term

Short integers are stored in two 8-bit bytes. The first byte
contains the least significant 8 bits of the value, and the
second byte contains the most significant 8 bits. (Thus, the
value represented is 256*second +first.) The value -1 is
represented by 0377, 0377, other negative values are illegal.
The -1 generally means that a capability is missing from this
terminal. Note that this format corresponds to the hardware
of the VAX and PDP-11. Machines where this does not
correspond to the hardware read the integers as two bytes
and compute the result.

The terminal names section comes next. It contains the first
line of the terminfo description, listing the various names for
the terminal, separated by the “|” character. The section is

terminated with an ASCII NUL character.

The Boolean flags have one byte for each flag. This byte is
either O or 1 as the flag is present or absent. The capabilities
are in the same order as the file <term.h>.

Between the Boolean section and the number section, a null
byte will be inserted, if necessary, to ensure that the number
section begins on an even byte. All short integers are aligned
on a short word boundary.

The numbers section is similar to the flags section. Each
capabililty takes up two bytes, and is stored as a short
integer. If the value represented is -1, the capability is taken
to be missing.

The strings section is also similar. Each capability is stored
as a short integer, in the format above. A value of -1 means
the capability is missing. Otherwise, the value is taken as an
offset from the beginning of the string table. Special
characters in AX or-\c notation are stored in their interpreted
form, not the printing representation. Padding information
$<nn> and parameter information %x are stored intact in
uninterpreted form.

The final section is the string table. It contains all the values
of string capabilities referenced in the string section. Each
string is null terminated.

1207891

4-62 Special File Formats

term

Note that it is possible for setupterm to expect a different set
of capabilities than are actually present in the file. Either the
database may have been updated since setupterm has been
recompiled (resulting in extra unrecognized entries in the file)
or the program may have been recompiled more recently
than the database was updated (resulting in missing entries).
The routing setupterm must be prepared for both possibilities -
this is why the numbers and sizes are included. Also, new
capabilities must always be added at the end of the lists of
Boolean, number, and string capabilities.

~ As an example, an octal dump of the description for the
Microterm ACT 4 is included:

microtermjacté|microterm act v,

cr=™M, cudis®), ind="J), be!="G, am, cubi="H,

ed=”_, el= A, clearsAL, cup=T%p1%c%p2%c,

cols#80, lines#24, cuti=~X, cuutl="Z, home="},

000 032 001 \O0 025 \0 \b \0 212 \O " \Omicr

0200t e rm jact4|micro

040 t e r'm act I v \0 \0 001 \0 \O

060 \0 \0 \0 \0 \O0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

100 \0 \O P \O 377 377 030 \0 377 377 377 377 377 3717 3717 3717

120 377 377 377 377 \O \O 002 \0 377 377 377 377 004 \0 006 \O
140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377 032 \0

160 377 377 377 377 034 \0 377 377 036 \O 377 377 377 377 377 377
300 377 377 377 377 377 377 377 377 377 377 317 377 377 377 3717 377

520 377 377 377 377 \O 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377 377 007 \O \r \O0 \t \0 036 \0 037 \0
560 024 % p 1t % c % p 2%c \0O \n \0 035 \0

600 \b \0 030 \0 032 \0 \n \O

Some limitations: total compiled entries cannot exceed 4096
bytes. The name field cannot exceed 128 bytes.

Files

Jusr/lib/terminfo/*/* - compiled terminal capability data
base

See Also

curses in Section 3; terminfo.

Special File Formats 4-63

termcap

termcap - terminal capability data base

Format

Jetc/termcap

Description

This entry describes terminal-independent programming
conventions that originate at UC Berkeley. UNIX System V
initially borrowed termcap but has since changed to the
terminfo convention. CENTIX continues to support termcap
so as to be compatible with the Berkeley version of the UNIX
System, but use terminfo in new programs.

Termcap programs work from information supplied through
the TERM and TERMCAP environment variables. The location
. of the description depends on the value of TERMCAP.

o If TERMCAP is not set or is empty, TERM is the name of a
description in /etc/termcap.

o If TERMCAP has a value that begins with a /, TERM is the
name of a description in the file named by TERMCAP.

o IF TERMCAP begins with any character except /,
TERMCAP contains the description.

A description begins with a list of its names, separated by
vertical bars. The rest of the description is a list of
capabilities, separated by colons. If you use more than one
line, precede each new-line except the last with :\. Here’'s a
simple example.

d5 vt50 dec vt5:\ .
:bs:cd=\EJ:coe=\EK:cl=\EH\EJ:co#80:1i#12:nd=\EC:pt:up=/EA:

1207891

4-64 Special File Formats

termcap
There are three kinds of capabilities:

o Boolean. These indicate the presence or absence of a
terminal feature by their presence or absence. Boolean
capabilities consist of two characters (the capability name).

o Numeric. These indicate some numeric value for the
terminal, such as screen size or delay required by a
standard character. Numeric capabilities consist of two
characters (the capability name), followed by a #, followed
by a decimal number.

o String. These indicate a sequence that performs some
operation on the terminal. String capabilities consist of two
characters (the capability name), optionally followed by a
delay, followed by a string.

The delay is the number of milliseconds the program must
wait after using the sequence; specify no more than one
decimal place. If the delay is proportional to the number of
lines affected, end it with a *.

The string is a sequence of characters. The following
subsequences are specially interpreted.

\E Escape Character
AX Control-x

\n Newline

\r Return

\t Tab

\b Backspace

\f Formfeed

\xxx Octal value of xxx
\072 in string

\200 null (\OOO doesn’t work)
Octal numbers must be three digits long.

Some strings are interpreted further, such as ecm. See below.

Special File Formats 4-65

termcap

You can follow any capability name with @ to indicate that
the terminal lacks the capability. This is only useful in
conjunction with the tc capability; see “Similar Terminals,”
below.

Table 4-1 is a list of standard capabilities. (P) indicates a
string that might require padding: (P*) indicates a string that
might require proportional padding.

Table 4-1 Standard Terminal Capabilities

Name Type Pad? Description

ae str (P) Ends alternate character set.

al str (P*) Adds new blank line.

am bool Terminal has automatic margins.

as str (P) Starts alternate character set.

be str Backspace if not control-h.

bs bool Terminal can backspace with control-h.

bt str (P) Back tab.

bw bool Backspace wraps from column 0 to last column.
cC str Command character in prototype if terminal is settable.
cd str {P*) Clears to end of display.

ce str (P Clears to end of line.

ch str (P} Moves cursor horizontally to specified column.
d str (P*) Clears screen.

cm str (P) Moves cursor to specified row and column.
€0 num Number of columns in a line.

cr str {P*) Carriage return if not control-m.

cs str (P) Change scrolling region.

oV str (P Moves cursor vertically to a specified row.

da bool Display can be retained above. °

dB num Delay after backspace, in milliseconds.

db bool Display can be retained below.

dc num Delay after cairiage return, in milliseconds.
de str (P") Delete character.

dF num Delay after form feed, in milliseconds.

di str (P*) Deletes line.

dm str Enters delete mode.

dN num Delay after new-line, in milliseconds.

1207891

4-66

Special File Formats

Standard Terminal Capabilities (Cont.)

termcap
Table 4-1
Name Type
do sty
dT num
ed str
ei str
€0 str
ff str
he bool
hd str
ho str
hu str
hz str
ic str
if str
im bool
in bool
ip str
is str
k0-k9 str
kb str
kd str
ke str
kh str
ki str
kn num
ko str
ke str
ks str
ku str
10-19 str
li str
ma str
mi bool
mi str
ms bool
mu str
nc bool
nd str
nl str
ns bool
0s bool

Pad?

P

P

(P*)

(P%)

Description

Goes down one line.

Delay after tab, in milliseconds.

Ends delete mode.

Ends insert mode; give an empty string if you've
defined ic.

Can erase overstrikes with a blank.

Hardcopy terminal page eject if not form feed.
Hardcopy terminal.

Haif-line down (forward 1/2 linefeed).

Move cursor to upper left corner (home).
Half-line up (reverse 1/2 linefeed).

Hazeltine or other terminal that can’t print ~s.
Insert character.

Name of file containing terminal initialization.
Starts insert mode; give an empty string if you've
defined ic.

Insert mode distinguishes nulls on display.

Pad after insertion.

Terminal initialization.

Sent by special {usually numeric) function keys. If
programmable, set with is, if, vs, or ti.

Sent by backspace key.

Sent by terminal down arrow key.

Ends keypad transmit code.

Sent by home key.

Sent by terminal left arrow key.

Number of special function keys.

Terminal capabilities that have keys.

Sent by terminal right arrow key.

Begin keypad transmit mode.

Sent by terminal up arrow key.

Labels on special function keys.

Last line, first column.

Command key map; used by ex version 2.
Safe to move while in insert mode.

Memory lock on above cursor.

Safe to move while in standout or underline mode.
Memory unlock (turn off memory lock).

No correctly working carriage return.
Non-destructive space (cursor right).

Begin a new line if not new-line.

A video terminal that doesn’t scroll.

Terminal overstrikes.

Special File Formats 4-67

termcap

Table 4-1 Standard Terminal Capabilities (Cont.)

Name Type Pad? Description

pc str Pad character if not null.

pt bool Has hardware tabs; if they need to be set, put
sequence in is or if.

se str Ends stand out mode.

sf str (P} Scrolls forward.

sg num Number of blank characters left by so or se.

S0 str Begins stand out mode.

sr str (P) Scroll reverse (backwards).

ta str P} Tab if not control-i or with padding.

te str Name of terminal that has some of the same
capabilities; tc must be the last capability.

te str Ends programs that do cursor motion.

i str Initializes programs that do cursor motion.

uc str Underscores and moves past one character.

ue str Ends underscore mode.

ug num Number of blank spaces that surround underscore
mode.

ul bool Terminal underlines automatically even though it
can’t overstrike.

up str Upline {cursor up).

us str Start underscore mode.

vb str Visible bell (must not move cursor).

ve str Ends open and visual modes.

Vs str Initializes open and visual modes.

xb boo! Beehive (f1=escape, f2=ctrl C).

xn bool Terminal ignoresc new-line after wrap (Concept).

Xr bool Returns clears to end of line and goes to beginning
of next line (Delta Data).

Xs bool Writing on standout mode text produces standout
mode text (HP 2647?)

xt bool Destructive tabs, magic standout character (Teleray
1061).

Pointers on Preparing Descriptions
o You may want to copy the description of a similar terminal.

o Build up a description gradually, checking partial
descriptions with ex.

a Be aware that an unusual terminal may expose bugs in ex
limitations in the termcap convention.

1207891

4-68 Special File Formats

termcap

Basic Capabilities

The following capabilities are common to most terminals.
The co capability gives the number of columns per line. The li
gives the number of lines on a video terminal. The am
capability indicates that writing off the right edge takes the
cursor to the beginning of the next screen. The ¢l capability
tells how the terminal clears its screen. The bs indicates that
the terminal can backspace; but if the terminal doesn’t use
control-h, specify be instead of bs. The os capability indicates
that printing a character at an occupied position doesn’t
destroy the existing character.

A couple of notes on moving off the edge. Programs that
use this convention never move the cursor off the top or the
left edge of the screen. On the other hand, they assume that
moving off the bottom edge scrolls the display up.

These capabilities suffice to describe hardcopy and very
dumb terminals.

Cursor Addresses and Other Variables

If a string capability includes a variable value, use a % escape
to indicate the value. By default, programs take these values
to be zero origin (that is, the first possible value is 0) and
that the em capability specifies two values: row, then column.
Use the %r or %i capability if either assumption is incorrect.

These are the valid % escapes.

%d Print the values as a decimal number.

%2 Print the values as a two-digit decimal number.

%3 Print the values as a three-digit decimal number.

%. Print the value in binary (but see below).

%+x Add ASCII value of x to value, then print in binary.
%>xy If the next value is greater than the ASCII value of x, add

the ASCH value of y before using the value's % escape.

Special File Formats 4-69

termcap

Y%r Row is the first value in this cm.

Yi Values are 1-origin.

%% Print a %.

%n In this capability, exclusive or the values with 01400 before
using the values’ % escapes (DM2500).

%B Change the next value to binary coded decimal ({16°(x/10))
+ {x%10) where x is the value) before interpreting it.

%D The next value is reverse-coded (x-2*{x%16) where x is

the value; Delta Data)

A program should avoid using a em sequence that includes a
tab, new-line, control-d, or return, because the terminal
interface may misinterpret these characters. If possible, use
the em sequence to move to the row or column after the
destination, then use local motion to get to the destination.

Here are some examples of ecm definitions. To position the
cursor of an HP2645 on row 3, column 12, you must send
the terminal “\E&a12c03Y," followed by a 6 millisecond
delay; the HP2645 description includes
:cm=6\E&%r%2c%2Y:. To position the cursor of an ACT-V,
you send it a control-t, followed by the row and column in
binary; the ACT-IV description includes :cm=AT%.%.:. The
LSl ADM3a uses the set of printable ASCIl characters to
represent row and column values; its description includes
:CmM\x=%+%+:.

Local and General Cursor Motions

Most terminals have short strings that trigger
commonly-used cursor motions. A non-destructive space (BR
nd) moves the cursor one position right. An upline sequence
(up) moves the cursor one position up. A home sequence (ho)
moves the cursor to the upper left hand corner. A lower-left
() goes to the other left hand corner. The | capability may
be a sequence that moves the cursor home, then up; but
otherwise programs never do this.

1207891

4-70 Special File Formats

termcap

Area Clears

Some terminals have short sequences that clear all or part of
a display. Clear (cl) ciears the screen and homes the cursor; if
clearing the screen does not restore the terminal’s normal
modes, ¢l should include the strings that do. Clear to end of
line (ce) clears from the current cursor position to the right.
Clear to end of display (cd) clears from the current cursor
position to the bottom of the display; programs always move
the cursor to the beginning of the line before using cd.

Insert/Delete Line

Many terminals have strings that shift text starting at the
current cursor position. Programs always move the cursor to
the beginning of the line before using these strings. Add line
(al) shifts the current line and all below it down a position
leaving the cursor on the newly-blanked line. Delete line (dl)
deletes the line the cursor is on without moving the cursor. If
a terminal description has an al capability, you do not really
need to specify sh.

If deleting a line might produce a non-blank line at the bottom
of the screen, specify db. If scrolling backwards might
produce a non-blank line at the top of the screen, specify da.

Insert/Delete Character

The termcap convention recognizes two kinds of terminal
insert/delete string.

a The first convention is by far more common. Using insert
or delete modes only affect characters on the current line.
Inserting a single character shifts all characters, including all
blanks, to the right; the character on the right edge of the
screen is lost. No special capability is required to describe
this kind of terminal.

Special File Formats 4-71

termcap

o The second convention is rarer and more complicated. The
terminal distinguishes between blank spaces created by
output tabs (011) or spaces (040) from all other blanks;
other blanks are known as nulls. Inserting a character
eliminates the first null to the right of the cursor; deleting a
character doubles the first nuil. If there are no nulls on the
current line, inserting a character inserts the line's
rightmost character at the beginning of the next line. Use
the in capability to describe this kind of terminal.

A simple experiment shows what type you have. Set the
terminal to its “local” mode. Clear the screen, then type a
short sequence of text. Move the cursor to the right several
spaces without using the space or tab characters. Type a
second short sequence of text. Move the cursor back to the
beginning of the first text. Start the terminal’s insert mode
and begin tapping the space bar. If you have the first kind of
terminal, both sequences of text will move at once; whatever
character is at the right edge of the screen will be lost. If you
have the second kind of terminal, at first only the first
sequence of text will move; when the first sequence hits the
second sequence, it will push the second onto the next line.

A terminal can have either an insert mode or the ability to
insert a single character. Specify insert mode with im and ei.
To specify that the terminal can insert a single character,
specify ic and specify empty strings for im and ei. If you must
delay or output more control text after inserting a single
character, specify ip.

if a terminal has both an insert mode and the ability to insert
a single character, it is usually best not to specify ic.

Some programs operate more quickly if they are allowed to
move the cursor around randomly while in insert mode. For
example, vi has to delete a character when you insert a
character before a tab. If your terminal permits this, specify
move on insert mi. Beware of terminals that foul up in subtle
ways when you do this.

Delete mode (dm), end delete mode (ed), and delete character
(dc) work like im, ei and ic.

1207891

4-72 Special File Formats

termcap

Highlighting, Underlining, and Visible Bells

Specify the terminals most distinctive display mode with so
se. Half intensity is usually not a good choice unless the
terminal is normally in reverse video.

The convention provides for underline mode and for single
character underlining. Specify underline mode with us and ue.
Specify a way to underline and move past a character with
uc; if your terminal can underline a single character but
doesn’t automatically move on, add a nondestructive space
to the uc string.

Some terminals can’t overstrike but still correctly underline
text without special help from the host computer. If yours is
one, specify ul.

If your terminal spaces before and after entering standout
and underline mode, specify ug.

Programs leave standout and underline mode before moving
the cursor or printing a new-line.

If the terminal can flash the screen without moving the
cursor, specify vh (visual bell).

If the terminal needs to change working modes before
entering the open and visual modes of ex and vi, specify vs
and ve, respectively. These can be used to change, for
example, from an underline to a block cursor and back.

If the terminal needs to be in a special mode when running a
program that addresses the cursor, specify ti and te. This
may be important if a terminal has more than one page of
memory. If the terminal has memory-relative cursor
addressing but not screen relative cursor addressing, use ti
to fix a screen-sized window into the terminal.

If a terminal can overstrike, programs assume that printable
spaces don’t destroy anything, unless you specify eo.

Special File Formats 4-73

termcap

Keypad

Some terminals have keypads that transmit special codes. If
the keypad can be turned on and off, specify ks and ke; if you
don’t, programs assume that the keypad is always on.
Specify the codes sent by cursor motion keys with ki, kr, ku,
kd, and kh. If there are function keys, specify the codes they
send with f1, 12, 13, 14, 15, 16, {7, {8, and 9. If these keys have
labels other than the usual “fO through f9,” specify the labels
1,12, 13, 14, 15, 16, 17, 18, and 19. If there are other keys that
transmit the same code that the terminal expects for a
function, such as clear screen, mention the affected
capabilities in the ko capability. For example, “:ko=cl !, sf,sb:"
says that the terminal has clear, home down, scroli down,
and scroll up keys that transmit the same thing as the cl, |,
sf, and sb capabilities.

Terminal Initialization

If a terminal must be initialized, on login for example, specify
a short string with is or a file containing initialization strings
with if. Other capabilities include is, and initialization string for
the terminal, and if, the name of a file containing long
initialization strings. If both are given, is is printed before if. If
the terminal has tab stops, these strings should first clear all
stops, then set new stops at the 9 column and every 8
column thereafter.

Similar Terminals

If a new terminal strongly resembles an existing terminal, you
can write a description of the new terminal that only
mentions the old terminal and the capabilities that differ. The
tc capability describes the old terminal; it must be the last
capability in the description. If the old terminal has
capabilities that the new one lacks, specify an @ after the
capability name.

1207891

4-74 Special File Formats

termcap

The different entries you create with tc need not represent
terminals that are actually different. They can represent
different uses for a single terminal, or user preferences as to
which terminal features are desirable.

The following example defines and describes a variant of the
2621 that never turns on the keypad.

hn 2621nl :ks@: ke@: tc=2621:

Files
/etc/termcap - standard data base

Known Problems

The ex command allows only 256 characters for string
capabilities, and the routines in the termcap library function
do not check for overflow of this buffer.

The total length of a single description (excluding only
escaped new-lines) may not exceed 1024 characters. If you
use te, the combined description may not exceed 1024
characters.

The vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that
are not supported by any program.

The ma capability is obsolete and serves no function in our
database; Berkeley includes it for the benefit of systems that
cannot run version 3 of vi.

See Also

ex, tset, vi, ul, more in Section 1; curses, termcap in Section 3.

Special File Formats 4-75

terminfo

terminfo - terminal capability data base

Format

fusr/lib/terminfo/*/"*

Description

Terminfo is a data base describing terminals used, for
example, by the vi command and the curses library function.
Terminals are described in terminfo by giving a set of
capabilities that they have, and by describing how operations
are performed. Padding requirements and initialization
sequences are included in terminfo.

Entries in terminfo consist of a number of *,” separated fields.
White space after *, is ignored. The first entry for each
terminal gives the names that are known for the terminal,
separated by | characters. The first name given is the most
common abbreviation for the terminal, the last name given
should be a long name fully identifying the terminal, and all
others are understood as synonyms for the terminal name.
All names but the last should be in lower case and contain
no blanks; the last name may well contain upper case and
blanks for readability.

Terminal names (except for the last, verbose entry} should be
chosen using the conventions shown in Table 4-2. The
particular piece of hardware making up the terminal should
have a root name chosen, thus "hp2621.” This name should
not contain hyphens, except that synonyms may be chosen
that do not conflict with other names. Modes that the
hardware can be in, or user preferences, should be indicated
by appending a hyphen and an indicator of the mode. Thus,
a vt100 in 132 column mode would be vt100-w. The
following suffixes should be used where possible:

1207891

4-76 Special File Formats

terminfo

Table 4-2 Terminal Name Suffixes

Suffix Meaning Example
-w Wide mode (more than 80 columns) vt100-w
-am With auto. margins {usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) ¢100-na
-np Number of pages of memory c100-4p
-v Reverse video ¢100-rv
Capabilities

The variable is the name by which the programmer (at the
terminfo level) accesses the capability. The capname is the
short name used in the text of the database, and is used by
a person updating the database. The i.code is the two letter
internal code used in the compiled database, and always
corresponds to the old termcap capability name.

Capability names have no hard length limit, but an informal
limit of 5 characters has been adopted to keep them short
and to allow the tabs in the source file caps to line up nicely.
Whenever possible, names are chosen to be the same as or
similar to the ANSI X3.64-1979 standard. Semantics are
also intended to match those of the specification. For the
capnames and i.codes listed in Table 4-3: :

{P) Indicates that padding may be specified.

(G) Indicates that the string is passed through tparm withparms as
given (#i).

(*) Indicates that padding may be based on the number of lines affected.

(#1) Indicates the /th parameter.

Special File Formats

4-71

terminfo

Table 4-3 Capnames and l.codes

Variable Booleans

auto_left_margin,

auto_right_margin,
beehive_glitch,

ceol_standout_glitch,
eat_newline_glitch,
erase_overstrike,
generic_type,

hard_copy,
has_meta_key,

has_status_line,
insert_null_glitch,
memory—above,

memory._below,

move_insert_mode,
move_standout_mode,

over_strike,
status_line_esc_ok,

teleray_glitch,

tilde_glitch,
transparent_underline,
xon_xoff,

Numbers:
columns,
init_tabs,
lines,

1207891

Cap-
name

bw

am
xsb

xhp
xent
€0
gn
he
hs
in
da
db

mir
msgr

0s
eslok

hz
ul
xon

cols
it
lines

bw

am
xb

Xs
xn
)
gn

he
km

hs
in
da
db

mi
ms

0s
es

hz

ol

X0

o
it
fi

Description

cub? wraps from column 0 to
last column

Terminal has automatic margins
Beehive (f1=escape, f2=ctrl
C)

Standout not erased by
overwriting (hp)

new-line ignored after 80 cols
{Concept)

Can erase overstrikes with a
blank

Generic line type (such as
dialup, switch)

Hardcopy terminal

Has a meta key (shift, sets
parity bit)

Has extra “status line”

Insert mode distinguishes nulls
Display may be retained above
the screen

Display may be retained below
the screen

Safe to move while in insert mode
Safe to move in standout
modes

Terminal overstrikes

Escape can be used on the
status line

Tabs ruin, magic so char
(Teleray 1061}

Hazeltine, can not print ~s
underline character overstrikes
Terminal uses xon/xoff
handshaking

Number of columns in a line
Tabs initially every # spaces
Number of lines on screen or page

4-78

Special File Formats

terminfo

Table 4-3 Capnames and l.codes (Cont.)

Variable Booleans

lines_of_memory,
magic_cookie_glitch,
padding_baud_rate,
virtual_terminal,

width_status_line,

Strings:

back_tab,

bell,

carriage_return,
change_scroli_region,

clear_all_tabs,
clear_screen,

clr_eol,

cir_eos,
column_address,
command_character,

cursor_address,

cursor—down,
cursor_home,
cursorinvisible,
cursor_left,
cursor_mem._address,

cursor_normal,
cursor_right,

cursor_.to_ll,
cursor_up,
cursor_visible,
delete_character,
delete_line,

Cap-
name

Im
xme

pb

wsl

cht
bel
or

csr

the
clear

ed
hpa
cmdch

cup

cud1
home
civis
cub?
mreup

cnorm

cuft

cuul
cwvis
dehl
dlt

l.
code

Im
sg
pb
vt

w§s

bt
bl
or
cs

do
ho
CcM
ve
nd
up
Vs

de
dl

Description

Lines of memory if > lines. 0
means varies.

Number of blank characters left
by smso or rmso

Lowest baud where cr/nl
padding is needed

Virtual terminal number
{CENTIX system)

Number of columns in status line

Back tab (P)

Audible signal (bell) (P}
Carriage return (P*)

change to lines #1 through #2
(vt100) (PG)

Clear all tab stops (P}

Clear screen and home cursor
{P*)

Clear to end of line (P)

Clear to end of display (P*)
Set cursor column {PG)

- Term. settable cmd char in

prototype

Screen rel. cursor motion row
#1 col #2 (PG)

Down one line

Home cursor (if no cup)
Make cursor invisible

Move cursor left one spare
Memory relative cursor
addressing

Make cursor appear normal
(undo vs/vi)

Non-destructive space (cursor
right)

Last line, first column (if no cup)
Upline {cursor up)

Make cursor very visible
Delete character (P*)

Delete line (P*)

Special File Formats

4-79

terminfo

Table 4-3 Capnames and l.codes {Cont.)

Variable Booleans

dis_status_line,
down_half_line,

enter_alt_charset_mode,

enter_blink_mode,
enter_bold_mode,
enter_ca_mode,

enter_delete_mode,
enter_dim_mode,
enter_insert_mode,

enter_protected_mode,

enter_reverse_mode,
enter_secure_mode,

enter_standout_mode,
enter_underline_mode,
erase_chars,

exit.alt_charset_mode,

exit_attribute_mode,
exit_ca_mode,

exit_delete_mode,
exit_insert_mode,
exit_standout_mode,
exit_underline_made,
flash_screen,

form_feed,
from_status_line,
init_1string,
init_2string,
init_3string,
init_file,
insert_character,
insert_line,
insert_padding,

key_backspace,

key_.catah,
~ key_clear,

1207891

Cap-
name

dsl
hd

smacs
blink
bold
smcup

smde
dim
smir
prot
rev
invis

smso
smul
ech
rmacs
sgr0
rmeup

rmdc
mir
mso
rmul
flash

ff
fsl
is1
is2
is3
if
ich1
il
ip
kbs

ktbe
kelr

ds
hd

as
mb
md
ti

dm
mh
im
mp
mr
mk

SO
us
ec
ae
me
te

ed
ei
se
ue
vb

ff
fs
il
i2
i3
if
ic
al
ip

kb
ka
kC

Description

Disable status line

Half-line down (forward 1/2
linefeed)

Start alternate character set (P)
Turn on blinking

Turn on bold (extra bright) mode
String to begin programs that
use cup

Delete mode (enter)

Turn on half-bright mode
Insert mode (enter)

Turn on protected mode

Turn on reverse video mode
Turn on blank mode (chars
invisible)

Begin stand out mode

Start underscore mode

Erase #1 characters (PG)

End alternate character set (P)
Turn off all attributes

String to end programs that
use cup

End delete mode

End insert mode

End stand out mode

End underscore mode

Visible bell (may not move
cursor)

Hardcopy terminal page eject (P*)
Return from status line
Terminal initialization string
Terminal initialization string
Terminal initialization string
Name of file containing is
Insert character (P)

Add new biank line {P*}
Insert pad after character
inserted (P*)

Sent by backspace key

Sent by clear-all-tabs key
Sent by clear screen or erase key

4-80

Special File Formats

terminfo

Table 4-3 Capnames and |.codes (Cont.)

Variable Booleans

key_ctab,
key_dc,
key.dt,
key_down,
key.eic,

key_eol,
key_eos,

key_f0,
key_f1,
key_f10,
key_f2,
key_13,
key-fd,
key_f5,
key_f6,
key_f7,
key_f8,
key_f9
key_home,
key..ic,

key_il,
key_left,
key..II,
key_npage,
key_ppage,
key_right,
key_sf,
key_sr,
key_stab,
key._up,
keypad_local,
keypad_xmit,

lab_{0,
lab_f1,
lab_f10,

Cap-
name

kctab
kdch1
kdl1

keud1
krmir

kel
ked

kf0
kf1
kf10
kf2
kf3
kf4
kfb
kf6
kf7
kf8
kf9
khome
kich1

kilt
keub1
kil
knp
kpp
keuf1
kind
kri
khts
kcuu1
rmkx
smkx

ifo
if
1110

I.
code

kt
kD
kL
kd
kM

kE
kS

k0
k1
ka
k2
k3
k4
kb
k6
k7
k8

k9

kh
kl

kA
k1
kH
kN

Description

Sent by clear-tab key

Sent by delete character key
Sent by delete line key

Sent by terminal down arrow key
Sent by rmir er smir in insert
mode

Sent by clear-to-end-of-line key
Sent by clear-to-end-of-screen
key

Sent by function key 0

Sent by function key f1

Sent by function key f10

Sent by function key 2

Sent by function key 3

Sent by function key f4

Sent by function key 5

Sent by function key 6

Sent by function key {7

Sent by function key 8

Sent by function key 9

Sent by home key

Sent by ins char/enter ins
mode key

Sent by insert line

Sent by terminal left arrow key
Sent by home-down key

Sent by next-page key

Sent by previous page key
Sent by terminal right arrow key
Sent by scroll-forward /down key
Sent by scroll-backward /up key
Sent by set-tab key

Sent by terminal up arrow key
Out of “keypad transmit” mode
Put terminal in “keypad
transmit” mode

Labels on function key f0 if not f0
Labels on function key f1 if not f1
Labels on function key f10 if
not 10

Special File Formats

4-81

terminfo

Table 4-3 Capnames and l.codes (Cont.)

Variable Booleans

lab._f2,
lab_£3,
lab_f4,
lab_f5,
lab_f6,
lab_f7,
lab_f8,
lab_f9,
meta_on,
meta_off,
newline,

pad_char,
parm_dch,
parm_delete_line,
parm_down_cursor,

parm..ich,
parm_index,
parm_insert_line,
parm_left_cursor,
parm_right_cursor,

. parm_rindex,
parm_up_cursor,
pkey._key,
pkey_local,
pkey_xmit,
print_screen,
prir_off,
prtr_on,
repeat_char,
reset_1string,

reset_2string,

1207891

Cap-
name

12
I3
1f4
1f5
16
If7
18
1f9
smm
mm
nel

pad
dch
dl

cud

ich
indn
il
cub
cuf

rin
cuu
pfkey
pfloc
pfx
mcO
mcd
meh
rep
1s1

1s2

pl
px
s
pf
po
i
12

Description

Labels on function key f2 if not {2
Labels on function key {3 if not f3
Labels on function key {4 if not f4
Labels on function key f5 if not {5
Labels on function key 6 if not {6
Labels on function key 7 if not f7
Labels on function key {8 if not {8
Labels on function key f9 if not f9
Turn on “meta mode” (8th bit)
Turn off “meta mode”
New-line (behaves like cr
followed by If)

Pad character (rather than null)
Delete #1 chars (PG*)

Delete #1 lines (PG*}

Move cursor down #1 lines
(PG")

Insert #1 blank chars (PG*)
Scroll forward #1 lines (PG}
Add #1 new blank lines (PG*)
Move cursor left #1 spaces (PG)
Move cursor right #1 spaces
(PG")

Scroll backward #1 lines (PG)
Move cursor up #1 lines (PG*)
Prog funct key #1 to type
string #2

Prog funct key #1 to execute
string #2

Prog funct key #1 to xmit
string #2

Print contents of the screen
Turn off the printer

Turn on the printer

Repeat char #1 #2 times
(PG*)

Reset terminal completely to
sane modes

Reset terminal completely to
sane modes

4-82

Special File Formats

terminfo

Table 4-3 Capnames and l.codes (Cont.)

Variable Booleans

reset_3string,
reset_file,
restore_cursor,
row_address,
save_cursor,
scroll_forward,
scroll_reverse,
set_attributes,
set_tab,
set_window,

tab,

to_status_line,
underline_.char,

up_half_line,

init_prog,
key_al,
key_a3,
key_b2,
key_c1,
key_c3,
prtr_non,

Cap-
name

rs3
rf
rc
vpa
¢
ind
n
sgr
hts
wind
ht

tsl
uc

hu

iprog
ka1
ka3
kb2
kel
ke3
mchp

I
code

3
if

rc
cv
sC
sf
st

sa
st

wi
ta

ts
uc

hu

Description

Reset terminal completely to
sane modes

Name of file containing reset
string

Restore cursor to pasition of
last sc

Vertical position absolute (set
row) (PG)

Save cursor position (P)
Scroll text up (P)

Scroll text down (P)

Define the video attributes
(PG3)

Set a tab in all rows, current
column

Current window is lines #1-#2
cols #3-#4

Tab to next 8 space hardware
tab stop

Go to status line, column #1
Underscore one char and move
past it

Half-line up (reverse 1/2
linefeed)

Path name of program for init
Upper left of keypad

Upper right of keypad

Center of keypad

Lower left of keypad

Lower right of keypad

Turn on the printer for #1 bytes

Special File Formats 4-83

terminfo

A Sample Entry

The following entry, which describes the Concept-100, is
among the more complex entries in the terminfo file as of
this writing.
concept100 | c100 | concept | c104 | c100-4p | concept 100,
am,bel="G,blank=\EH,bl Ink=\EC,clear=AL§<2">, cnorm=\Ew,
cols#80,cr="M$<9>,cubi="H,cud1="J,cut1=\E,
cup=\Ea%p 1% '%+%chp2% '%+%c,
cuul=\E;,cvvis=\EW,db,dch1=\EMA$<16">,
dim=\EE, d|1=\EAB$<3">,
0d=\EAC$<18">,01=\EAU$<18">,00, 1ash=\EK$<20>\EK,
ht=\t$<8>,
111=\EMR$<3">, In, ind=Ay, ind=rJ$<9>, ip=8<168">,
182=\EU\E(\E7\E5\EB\EI\ENH\EK\E\200\E0&\200\Ec\47\E,
kbs=Ah,kcub1=\E>,kcudi=\E<,Kcufi=\E=, kcuu1=\E;,
K11=\E5,kt2s\EB,k{3=\E7, khome=\E?
||nos#24,m|r,pb#sooo.proi-\Ei,rtp-\Er%pl%c%pz%"%0%c$<.2’>,
rev=\ED,rmcup=\Ev $<6>\Ep\r\n,rmir=\E\200, rmkx=\Ex,
rmso=\Ed\Ee, rmul=\Eg, rmul=\EQ,sgr0=\EN\200,
smcup=\EU\Ev 8p\Ep\r,smir=\E P, smkx=\EX, smso=\EE\ED,
smul=\EG, tabs,ul,vt#8,xen},

Entries may continue onto multiple lines by placing white
space at the beginning of each line except the first.
Comments may be included on lines beginning with “#.”
Capabilities in terminfo are of three types: Boolean
capabilities, which indicate that the terminal has some
particular feature; numeric capabilities giving the size of the
terminal or the size of particular delays; and string
capabilities, which give a sequence that can be used to
perform particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the
Concept has automatic margins (that is, an automatic return
and linefeed when the end of a line is reached) is indicated
by the capability am. Hence the description of the Concept
includes am. Numeric capabilities are followed by the
character ‘#’ and then the value. Thus cels, which indicates
the number of columns the terminal has, gives the value ‘80’
for the Concept.

1207891

4-84 Special File Formats

terminfo

Finally, string valued capabilities, such as el (clear to end of
line sequence) are given by the two-character code, an '=,’
and then a string ending at the next following *,". A delay in
milliseconds may appear anywhere in such a capability,
enclosed in $<..> brackets, as in el=\EK$ <3>, and padding
characters are supplied by tputs to provide this delay. The
delay can be either a number (such as '20°), or a number
followed buy "*’ (such as ‘3*’). "*" indicates that the padding
required is proportional to the number of lines affected by
the operation, and the amount given is the per-affected-unit
padding required. (In the case of insert character, the factor
is still the number of lines affected. This is always 1 unless
the terminal has xenl and the software uses it.) When "*" is
specified, it is sometimes useful to give a delay of the form
‘3.5’ to specify a delay per unit to tenths of milliseconds.
(Only one decimal place is allowed.)

A number of escape sequences are provided in the string
valued capabilities for easy encoding of characters there.
Both \E and \e map to an ESCAPE character, Ax maps to a
control-x for any appropriate x, and the sequences
\MNAN\t\b\f\s gives a new-line, linefeed, return, tab,
backspace, formfeed, and space. Other escapes include \A
for A, \\ for \, \, for comma, \: for:, and \O for null. (\O wiill
produce \200, which does not terminate a string but
behaves as a null character on most terminals.) Finally,
characters may be given as three octal digits after a \.

Sometimes individual capabilities must be commented out.
To do this, put a period before the capability name. For
example, see the second ind in the example above.

Special File Formats 4-85

terminfo

Preparing Descriptions

We now outline how to prepare descriptions of terminals.
The most effective way to prepare a terminal description is
by imitating the description of a similar terminal in terminfo
and to build up a description gradually, using partial
descriptions with vi to check that they are correct. Be aware
that a very unusual terminal may expose deficiencies in the
ability of the terminfo file to describe it or bugs in it in vi. To
easily test a new terminal description, you can set the
environment variable TERMINFO to a pathname of a directory
containing the compiled description you are working on and
programs will look there rather than in /usr/lib/terminfo. To
get the padding for insert line right (if the terminal
manufacturer did not document it) a severe test is to edit
/etc/passwd at 9600 baud, delete 16 or so lines from the
middle of the screen, then hit the 'u’ key several times
quickly. If the terminal messes up, more padding is usually
needed. A similar test can be used for insert character.

Basic Capabilities

The number of columns on each line for the terminal is given
by the cols numeric capability. If the terminal is a CRT, then
the number of lines on the screen is given by the lines
capability. If the terminal wraps around to the beginning of
the next line when it reaches the right margin, then it should
have the am capability. If the terminal can clear its screen,
leaving the cursor in the home position, then this is given by
the clear string capability. If the terminal overstrikes (rather
than clearing a position when a character is struck over) then
it should have the os capability. If the terminal is a printing
terminal, with no soft copy unit, give it both he and os. (os
applies to storage scope terminals, such as TEKTRONIX
4010 series, as well as hard copy and APL terminals.) If
there is a code to move the cursor to the left edge of the
current row, give this as cr. (Normally this will be carriage
return, control M.) If there is a code to produce an audible
signal (bell, beep, and so on) give this as bel.

1207891

4-86 Special File Formats

terminfo

If there is a code to move the cursor one position to the left
{such as backspace) that capability should be given as cub1.
Similarly, codes to move to the right, up, and down should
be given as cuf1, cuul, and cud1. These local cursor motions
should not alter the text they pass over (for example, you
would not normally use ‘cufl =" because the space would
erase the character moved over).

A very important point here is that the local cursor motions
encoded in terminfo are undefined at the left and top edges
of a CRT terminal. Programs should never attempt to
backspace around the left edge, unless bw is given, and
never attempt to go up locally off the top. In order to scroll
text up, a program will go to the bottom left corner of the
screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of
the screen and sends the ri (reverse index) string. The strings
ind and ri are undefined when not on their respective corners
of the screen.

Parameterized versions of the scrolling sequences are indn
and rin, which have the same semantics as ind and ri except
that they take one parameter, and scroll that many lines.
They are also undefined except at the appropriate edge of
the screen.

The am capability tells whether the cursor sticks at the right
edge of the screen when text is output, but this does not
necessarily apply to a cuft from the last column. The only
local motion that is defined from the left edge is if bw is
given, then a cubl1 from the left edge will move to the right
edge of the previous row. If bw is not given, the effect is
undefined. This is useful for drawing a box around the edge
of the screen, for example. If the terminal has switch
selectable automatic margins, the terminfo file usually
assumes that this is on; that is, am. If the terminal has a
command that moves to the first column of the next line,
that command can be given as nel (newline). it does not
matter if the command clears the remainder of the current
line, so if the terminal has no cr and If it may still be possible
to craft a working nel out of one or both of them.

Special File Formats 4-81

terminfo

These capabilities suffice to describe hardcopy and glass-tty
terminals. Thus the model 33 teletype is described as

33 tty33 tty mode! 33 teletype,
bel="AG, cols#72, cr="M, cudi=AJ, hc, ind=AJ, os,

while the Lear Siegler ADM-3 is described as

adm3 3 Isi adm3,
am, bel=AG, clear=AZ, cols#80, cr=~M, cubi=~H, cudi=~AJ,
ind=AJ, lines #24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in
the terminal are described by a parameterized string
capability, with printf like escapes %x in it (see Section 3). For
example, to address the cursor, the cup capability is given,
using two parameters: the row and column to address to.
{Rows and columns are numbered from zero and refer to the
physical screen visible to the user, not to any unseen
memory.) If the terminal has memory relative cursor
addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes
to manipulate it. Typically a sequence will push one of the
parameters onto the stack and then print it in some format.
Often more complex operations are necessary.

The % encodings have the following meanings:

%% outputs ‘%’

%d print pop() as in printf

%2d print pop() like %2d

X3d print pop() like %3d

%02d

%03d as in printf

Y%c print pop() gives %c

%s print pop{) gives %s
%p[1-9] push ith parm

%P[a-2) set variable [a-z) to pop({)
%gq[a-z) get variable [a-z] and push it
%'c’ char constant ¢

%{ nn} : integer constant nn

%+ %-%"%/ %m arithmetic (%m is mod): push (pop() op pop())

1207891

4-88 Special File Formats

terminfo

%&%| %A bit operations: push {pop() op pop())

%=%>%< logical operations; push (pop{) op pop())

%! %~ unary operations push {op pop())

%i add 1 to first two parms {for ANSI terminals)

%? expr %t if-then-else, %e elsepart is optional.

thenpart %e else-if’s are possible ala Algol 68:

elsepart %; %? c, %t b, %e c, %t b, %e ¢, %t by %e c, %t b, %e %;

¢, are conditions, b, are bodies.

Binary operations are in postfix form with the operands in the
usual order. That is, to get x-5 you use "%gx%{5}%-".

Consider the HP2645, which, to get to row 3 and column
12, needs to be sent \E&a12c03Y padded for 6
milliseconds. Note that the order of the rows and columns is
inverted here, and that the row and column are printed as
two digits. Thus its cup capability is
cup=6\E&%p2%2dc%p1%2dY.

The Microterm ACT-IV needs the current row and column
sent preceded by a AT , with the row and column simply
encoded in binary, cup=AT%p1%c%p2%c. Terminals that
use %c need to be able to backspace the cursor (cub1), and
to move the cursor up one line on the screen {cuul). This is
necessary because it is not always safe to transmit \n AD
and \r, as the system may change or discard them. (The
library routines dealing with terminfo set tty modes so that
tabs are never expanded, so \t is safe to send. This turns
out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and
column offset by a blank character, thus
cup=\E=%p1%" " % +%c%p2% %+ %c. After sending "\E=",
this pushes the first parameter, pushes the ASCIl value for a
space (32), adds them (pushing the sum on the stack in
place of the two previous values) and outputs that value as a
character. Then the same is done for the second parameter.
More complex arithmetic is possible using the stack.

Special File Formats 4-89

terminfo

If the terminal has row or column absolute cursor addressing,
these can be given as single parameter capabilities hpa
{(horizontal position absolute) and vpa (vertical position
absolute). Sometimes these are shorter than the more
general two parameter sequence (as with the hp2645) and
can be used in preference to cup. If there are parameterized
local motions (for example, move n spaces to the right) these
can be given as cud, cub, cuf, and cuu with a single parameter
indicating how many spaces to move. These are primarily
useful if the terminal does not have cup, such as the
TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very
upper left corner of screen), then this can be given as home;
similarly a fast way of getting to the lower left-hand corner
can be given as lI; This may involve going up with cuul from
the home position, but a program should never do this itself
{unless Il does) because it can make no assumption about the
effect of moving up from the home position. Note that the
home position is the same as addressing to (0,0): to the top
left corner of the screen, not of memory. (Thus, the \EH
sequence on HP terminals cannot be used for home.)

Area Clears

If the terminal can clear from the current position to the end
of the line, leaving the cursor where it is, this should be
given as el. If the terminal can clear from the current position
to the end of the display, then this should be given as ed. Ed
is only defined from the first column of a line. (Thus, it can
be simulated by a request to delete a large number of lines if
a true ed is not available.)

1207891

4-90 Special File Formats

terminfo

Insert/Delete Line

If the terminal can open a new blank line before the line
where the cursor is, this should be given as il1; this is done
only from the first position of a line. The cursor must then
appear on the newly blank line. If the terminal can delete the
line that the cursor is on, then this should be given as dit;
this is done only from the first position on the line to be
deleted. Versions of ilt and di1 which take a single parameter
and insert or delete that many lines can be given as il and dl.
If the terminal has a settable scrolling region (like the vt100),
the command to set this can be described with the esr
capability, which takes two parameters: the top and bottom
lines of the scrolling region. The cursor position is undefined
after using this command. It is possible to get the effect of
insert or delete line using this command; the s¢ and rc (save
and restore cursor) commands are also useful. Inserting lines
at the top or bottom of the screen can also be done using ri
and ind on many terminals without a true insert/delete line,
which is often faster even on terminals with those features.

If the terminal has the ability to define a window as part of
memory, which all commands affect, it should be given as
the parameterized string wind. The four parameters are the
starting and ending lines in memory and the starting and
ending columns in memory, in that order.

If the terminal can retain display memory above, then the da
capability should be given; if display memory can be retained
below, then db should be given. These indicate that deleting
a line or scrolling may bring non-blank lines up from below or
that scrolling back with ri may bring down non-blank lines.

Special File Formats 4-91

terminfo

Insert/Delete Character

There are two basic kinds of intelligent terminals (with
respect to insert/delete character) that can be described
using terminfo. The most common insert/delete character
operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals,
such as the Concept 100 and the Perkin Elmer Owl, make a
distinction between typed and untyped blanks on the screen,
shifting upon an insert or delete only to an untyped blank,
which is either eliminated, or expanded to two untyped blanks.

You can determine the kind of terminal you have by clearing
the screen and then typing text separated by cursor motions.
Type abc def using local cursor motions (not spaces)
between the abc and the def. Then position the cursor
before the abc and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and
characters to fall off the end, then your terminal does not
distinguish between blanks and untyped positions. If the abc
shifts over to the def, which then move together around the
end of the current line and onto the next as you insert, you
have the second type of terminal; you should give the
capability in, which stands for insert null. While these are two
logically separate attributes (one line vs. multi-line insert
mode, and special treatment of untyped spaces) we have
seen no terminals whose insert mode cannot be described
with the single attribute.

Terminfo can describe both terminals that have an insert
mode, and terminals that send a simple sequence to open a
blank position on the current line. Give as smir the sequence
to get into insert mode. Give as rmir the sequence to leave
insert mode. Now give as ich1 any sequence needed to be
sent just before sending the character to be inserted. Most
terminals with a true insert mode will not give ich1; terminals
that send a sequence to open a screen position should give
it here. (Iif your terminal has both, insert mode is usually
preferable to ich1. Do not give both unless the terminal

1207891

4-92 : Special File Formats

terminfo

actually requires both to be used in combination.) If post
insert padding is needed, give this as a number of
milliseconds in ip (a string option). Any other sequence that
may need to be sent after an insert of a single character may
also be given in ip. If your terminal needs both to be placed
into an ‘insert mode’ and a special code to precede each
inserted character, then both smir/rmir and ich1 can be given,
and both will be used. The ich capability, with one parameter,
n, will repeat the effects of ich1 n times.

It is occasionally necessary to move around while in insert
mode to delete characters on the same line (for example, if
there is a tab after the insertion position). If your terminal
allows motion while in insert mode you can give the
capability mir to speed up inserting in this case. Omitting mir
will affect only speed. Some terminals {notably Datamedia’s)
must not have mir because of the way their insert mode works.

Finally, you can specify dch1 to delete a single character, dch
with one parameter, n, to delete n characters, and delete
mode by giving smde and rmde to enter and exit delete mode
{any mode the terminal needs to be placed in for dech1 to work).

A command to erase n characters (equivalent to outputting n
blanks without moving the cursor) can be given as ech with
one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes,
these can be represented in a number of different ways. You
should choose one display form as standout mode,
representing a good, high contrast, easy-on-the-eyes, format
for highlighting error messages and other attention getters. (i
you have a choice, reverse video plus half-bright is good, or
reverse video alone.) The sequences to enter and exit
standout mode are given as smso and rmso, respectively. If
the code to change into or out of standout mode leaves one
or even two blank spaces on the screen, as the TVI 912 and
Teleray 1061 do, then xme should be given to tell how many
spaces are left.

Special File Formats 4-93

terminfo

Codes to begin underlining and end underlining can be given
as smul and rmul, respectively. If the terminal has a code to
underline the current character and move the cursor one
space to the right, such as the Microterm Mime, this can be
given as uc.

Other capabilities to enter various highlighting modes include
blink (blinking), bold (bold or extra bright), dim (dim or
half_bright), invis (blanking or invisible text), prot (protected),
rev {reverse video), sgr0 (turn off all attribute modes), smacs
{enter alternate character set mode), and rmacs (exit alternate
character set mode). Turning on any of these modes singly
may or may not turn off other modes.

if there is a sequence to set arbitrary combinations of
modes, this should be given as sgr (set attributes), taking 9
parameters. Each parameter is either O or 1, as the
corresponding attribute is on or off. The 9 parameters are, in
order: standout, underline, reverse, blink, dim, bold, blank,
protect, alternate character set. Not all modes need be
supported by sgr, only those for which corresponding
separate attribute commands exist.

Terminals with the “magic cookie™ glitch (xme) deposit special
“cookies” when they receive mode-setting sequences, which

_affect the display algorithm rather than having extra bits for
each character. Some terminals, such as the HP2621,
automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout
mode should exit standout mode before moving the cursor
or sending a new-line, uniess the msgr capability, asserting
that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an
error quietly (a bell replacement), this can be given as flash; it
must not move the cursor.

1207891

4-94 Special File Formats

terminfo

If the cursor needs to be made more visible than normal
when it is not on the bottom line {to make, for example, a
non-blinking underline into an easier to find block or blinking
underline) give this sequence as cwvis. If there is a way to
make the cursor completely invisible, give that as civis. The
capability enorm should be given, which undoes the effects of
both of these modes.

if the terminal needs to be in a special mode when running a
program that uses these capabilities, the codes to enter and
exit this mode can be given as smcup and rmcup. This arises,
for example, from terminals like the Concept with more than
one page of memory. If the terminal has only memory
relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into
the terminal for cursor addressing to work properly. This is
also used for the TEKTRONIX 4025, where smeup sets the
command character to be the one used by terminfo.

If your terminal correctly generates underlined characters
(with no special codes needed) even though it does not
overstrike, then you should give the capability ul. If
overstrikes are erasable with a blank, then this should be
indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the
keys are pressed, this information can be given. Note that it
is not possible to handle terminals where the keypad only
works in local (this applies, for example, to the unshifted
HP2621 keys). If the keypad can be set to transmit or not
transmit, give these codes as smkx and rmkx. Otherwise the
keypad is assumed to always transmit. The codes sent by
the left arrow, right arrow, up arrow, down arrow, and home
keys can be given as kecub1, keuf1, kcuut, kcud1, and khome,
respectively. If there are function keys such as fO, f1, ...,
f10, the codes they send can be given as kf0, kf1, ..., kf10. If
these keys have labels other than the default fO through 10,
the labels can be given as If0, Ift, ..., If10. The codes
transmitted by certain other special keys can be

Special File Formats 4-95

terminfo

given: kil (home down), kbs (backspace), ktbe (clear all tabs),
ketab (clear the tab stop in this column), kelr (clear screen or
erase key), kdch1 (delete character), kdl1 (delete line), krmir
(exit insert mode), kel (clear to end of line), ked (clear to end
of screen), kicht (insert character to enter insert mode), kil1
(insert line), knp (next page), kpp (previous page), kind (scroll
forward/down), kri (scroll backward/up), khts (set a tab stop
in this column). In addition, if the keypad has a 3 by 3 array
of keys including the four arrow keys, the other five keys can
be given as kal, ka3, kb2, ke1, and ke3. These keys are useful
when the effects of a 3 by 3 directional pad are needed.

Tabs and Initialization

if the terminal has hardware tabs, the command to advance
to the next tab stop can be given as ht (usually control I). A
“backtab” command, which moves leftward to the next tab
stop, can be given as cbt. By convention, if the teletype
modes indicate that tabs are being expanded by the
computer rather than being sent to the terminal, programs
should not use ht or ¢bt even if they are present, since the
user may not have the tab stops properly set. If the terminal
has hardware tabs that are initially set every n spaces when
the terminal is powered up, the numeric parameter it is given,
showing the number of spaces the tabs are set to. This is
normally used by the tset command to determine whether to
set the mode for hardware tab expansion, and whether to
set the tab stops. If the terminal has tab stops that can be
saved in nonvolatile memory, the terminfo description can
assume that they are properly set.

Other capabilities include is1, is2 and is3, initialization strings
for the terminal; iprog, the path name of a program to be run
to initialize the terminal; and if, the name of a file containing
long initialization strings. These strings are expected to set
the terminal into modes consistent with the rest of the
terminfo description. They are normally sent to the terminal,
by the tset program, each time the user logs in. They will be
printed in the following order: ist, is2; setting tabs using the
and hts; if; running the programiprog; and finally is. Most
initialization is done with is2. Special terminal modes can be
set up without duplicating strings by putting the common

1207891

4-96 Special File Formats

terminfo

sequences in is2 and special cases in is1 and is3. A pair of
sequences that does a harder reset from a totally unknown
state can be analogously given as rs1, rs2, ff, and rs3,
analogous to is2 and if. These strings are output by the reset
program, which is used when the terminal gets into a
wedged state. Commands are normally placed in rs2 and rf
only if they produce annoying effects on the screen and are
not necessary when logging in. For example, the command
to set the vt100 into 80-column mode would normally be
part of is2, but it causes an annoying glitch of the screen and
is not normally needed since the terminal is usually already in
80 column mode.

If there are commands to set and clear tab stops, they can
be given as the (clear all tab stops) and hts (set a tab stop in
the current column of every row). If a more complex
sequence is needed to set the tabs than can be described by
this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver.
These are primarily needed by hard copy terminals, and are
used by the tset program to set teletype modes
appropriately. Delays embedded in the capabilities cr, ind,
cub1, ff, and tab will cause the appropriate delay bits to be set
in the teletype driver. If pb (padding baud rate) is given, these
values can be ignored at baud rates below the value of pb.

Miscellaneous

If the terminal requires other than null (zero) character as a
pad, then this can be given as pad. Only the first character of
the pad string is used. :

Special File Formats 4-97

terminfo

If the terminal has an extra “status line” that is not normally
used by software, this fact can be indicated. If the status line
is viewed as an extra line below the bottom line, into which
one can cursor address normally (such as the Heathkit h19's
25th line, or the 24th line of a vt100 that is set to a 23-line
scrolling region), the capability hs should be given. Special
strings to go to the beginning of the status line and to return
from the status line can be given as tsl and fsl. (fsl must leave
the cursor position in the same place it was before tsl. If
necessary, the s¢ and r¢ strings can be included in ts! and fsl
to get this effect.) The parameter tsl takes one parameter,
which is the column number of the status line the cursor is to
be moved to. If escape sequences and other special
commands, such as tab, work while in the status line, the
flag eslok can be given. A string that turns off the status line
(or otherwise erases its contents) should be given as dsl. If
the terminal has commands to save and restore the position
of the cursor, give them as se and re. The status is normally
assumed to be the same width as the rest of the screen
{cols). If the status line is a different width (possibly because
the terminal does not allow an entire line to be loaded), the
width, in columns, can be indicated with the numeric
parameter wsl.

If the terminal can move up or down half a line, this can be

indicated with hu (half-line up) and hd (half-line down). This is
primarily useful for superscripts and subscripts on hardcopy
terminals. If a hardcopy terminal can eject to the next page

(form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given
number of times (to save time transmitting a large number of
identical characters), this can be indicated with the
parameterized string rep. The first parameter is the character
to be repeated and the second is the number of times to
repeat it. Thus, tparm (repeat_char, ‘x’, 10) is the same as
“XXXXXXXXXX' .

1207891

4-98 Special File Formats

terminfo

If the terminal has a settable command character, such as
the TEKTRONIX 4025, this can be indicated with cmdch. A
prototype command character is chosen which is used in all
capabilities. This character is given in the emdch capability to
identify it. The following convention is supported on CENTIX:
The environment is to be searched for a CC variable, and if
found, all occurrences of the prototype character are
replaced with the character in the environment variable.

Terminal descriptions that do not represent a specific kind of
known terminal, such as switch, dialup, patch, and network,
should include the gn (generic) capability so that programs
can complain that they do not know how to talk to the
terminal. (This capability does not apply to virtual terminal
descriptions for which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control,
give xon. Padding information should still be included so that
routines can make better decisions about costs, but actual
characters will not be transmitted.

If the terminal has a "meta key” that acts as a shift key,
setting the 8th bit of any character transmitted, this fact can
be indicated with km. Otherwise, software will assume that
the 8th bit is parity and it will usually be cleared. If strings
exist to turn this "meta mode” on and off, they can be given
as smm and rmm.

If the terminal has more lines of memory than will fit on the
screen at once, the number of lines of memory can be
indicated with Im. A value of Im#0 indicates that the number
of lines is not fixed, but that there is still more. memory than
fits on the screen.

If the terminal is one of those supported by the CENTIX
virtual terminal protocol, the terminal number can be given as vt.

Special File Formats 4-99

terminfo

Media copy strings that control an auxiliary printer connected
to the terminal can be given as mc0: print the contents of the
screen; med: turn off the printer; and me5: turn on the printer.
When the printer is on, all text sent to the terminal will be
sent to the printer. It is undefined whether the text is also
displayed on the terminal screen when the printer is on. A
variation mebp takes one parameter and leaves the printer on
for as many characters as the value of the parameter, then
turns the printer off. The parameter should not exceed 255.
All text, including me4, is transparently passed to the printer
while an mebp is in effect.

Strings to program function keys can be given as pfkey, pfloc,
and pfx. Each of these strings takes two parameters: the
function key number to program (from O to 10) and the
string to program it with. Function key numbers out of this
range may program undefined keys in a terminal dependent
manner. The difference between the capabilities is that pfkey
causes pressing the given key to be the same as the user
typing the given string; pfloc causes the string to be executed
by the terminal in local; and pfx causes the string to be
transmitted to the computer.

Similar Terminals

If there are two very similar terminals, one can be defined as
being just like the other with certain exceptions. The string
capability use can be given with the name of the similar
terminal. The capabilities given before use override those in
the terminal type invoked by use. A capability can be
cancelled by placing xx@ to the left of the capability
definition, where xx is the capability. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 262 1-nl that does not have the smkx or rmkx
capabilities, and hence does not turn on the function key
labels when in visual mode. This is useful for different modes
for a terminal, or for different user preferences.

1207891

4-100 Special File Formats

terminfo

Files

Jusr/lib/terminfo/?/* - files containing terminal
descriptions

See Also

curses, printf in Section 3; term in Section 5.

Special File Formats 4-101

utmp

utmp, wtmp - utmp and wtmp entry formats

Format

#include <sys/types.h>
#include <utmp.h>

Description

These files hold user and accounting information for such
commands as who, write, and login. Each Application
Processor has its own utmp and wtmp files; the two digit AP
number is appended to the file name.

The files have the following structure as defined by
<utmp.h>:

#define UTMP_FILE . "jetc/utmp”
#define WTMP_F I LE "retc/wtmp”
#detine ut_name ut_user

struct utmp

char ut_userf8}], /'Usor login namo'/
char ut_id[4]; I*/etc/inittab id"/
char ut_line[12]), /'dovlco name (console, Inxx)'/
short ut_pid, /'pvocess ld'/
short ut_type, /'typc ot ontry'/
struct exit_status [
short e_termination, I'Proc. terminat. slutus'l
short e_oxit, /'oncoss exit s!atus'l
} ut_exit, I'The exit status of a process
*marked as DEAD_PROCESS."/
time_t ut_time; /*time entry was made®/

3

/'Dellnltlons for ut_lypo'[
#detine EMPTY

#define RUN_LVL
#define BOOT_TIME
#detine OLD_TIME
#detine NEW_TIME
#define INIT_PROCESS
#define LOGIN_PROCESS

/'Procoss spawned by "tnlt”'l

/'A ”gatty" process waiting
- L]
for togin /

B e N - O

1207891

4-102 ‘ Special File Formats

utmp

#define USEA_PROCESS 7 1*A user process”/

#detine DEAD_PROCESS 8

#define ACCOUNTING 9

#define UTMAXTYPE ACCOUNT ING /'Largoal legal value

*of ut_type"/
Special strings or formats used in the 'ut_llno" tfield '/
when accounting for something other than a process 'I
No string for the ut_line field can be more than 11 '/
/ chars + a NULL in length '/
#define RUNLVL_MSG run-tevel%c”
#detfine BOOT_MSG system boot”
#define OTIME_MSG old time”
#detfine NTIME_MSG new time”

-
-
»
.

"
"
»
»

Files

Jusr/include/utmp.h
/etc/utmp??
/etc/wtmp??

See Also

login, who, write in Section 1; getut in Section 3.

Section b 5-1

Miscellaneous Facilities
intro

Name

intro - introduction to miscellany
Description

This section describes miscellaneous facilities such as macro
packages, character set tables, and so on.

1207891

5-2 Miscellaneous Facilities

environ

environ - user environment

Description

An array of strings called the "environment” is made
available by the exec system call when a process begins. By
convention, these strings have the form “name=value.” The
following names are used by various commands.

PATH The sequence of directory prefixes that sh, time, nice,
nohup, and so on, apply in searching for a file known by an
incomplete path name. The prefixes are separated by colons(:).
login sets PATH=:/hin:/usr/hin.

HOME Name of the user’s login directory, set by login from the
password file passwd.

TERM The kind of terminal for which output is to be prepared. This
information is used by commands such as mm, which may
exploit special capabilities of that terminal.

T2 Time zone information. The format is xxxmzz where xxx is
standard local time zone abbreviation, n is the difference in
hours from GMT, and zzz is the abbreviation for the
daylight-saving local time zone, if any; for example,
EST5EDT,

Further names may be placed in the environment by the
export command and “name=value” arguments in sh, or by
exec. It is unwise to conflict with certain shell variables that
are frequently exported by .profile files: MAIL, PS1, PS2, IFS.

See Also

env, login, sh in Section 1; exec in Section 2; getenv in
Section 3; profile in Section 4; term.

Miscellaneous Facilities 5-3

fentl

Name
fentl - file control options

Format

#include <fcntl.h>

Description

The fentl function provides for control over open files. The
include file describes requests and arguments to fentl and open
(see Section 2).

/*Flag values accessible to open and fcntl*/
/*(The first three can onily be set by open)*/
#define O_RDONLY 0
#define O_WRONLY 1

#detine O_RDWR 2

#define O_NDELAY 04 /*Non-blocking 1/0*/

#detine O_APPEND 010 |/ *append (writes guaranteed*/
/*at the end)*/

#define O_SYNC 020 /]*synchronous write option*/

#define O_DIRECT 020000 /*perform direct 1/0"/

#define O_NODIRECT 040000

/*Flag values accessible only to open*/

#define O_CREAT 00400 /*open with file create*/
/*uses third open arg)*/

#define O-TRUNC 01000 /]*open with truncation®/

#define O_EXCL 02000 /]*exclusive open*/

/*fecnt! requests”®/
#define F_DUPFD
#define F_GETFD
#define F_SETFD
#define F_GETFL
#define F_SETFL
#define F_GETLK
#define F_SETLK

/*Duplicate fildes*/

/*Get fildes tlags*/

/*Set fildes flags*/

/]*Get file tlags"/

/*Set file flags*/

/|*Get blocking file locks*/
[*Set or clear file locks*/
/*and fail on busy*/
#define F_SETLKW 7 /]*Set or clear file locks*/
/*and wait on busy*/

DG EWN O

1207891

5-4 Miscellaneous Facilities

fentl

/*tile segment locking control structure*/
struct flock f{

short I _type;

short 1_whence;

long I_start;

long I_len; /*1f O then until EOF*/
int I_pid; /*returned with F_GETLK"/

/*tile segment locking types*/

#define F_RDLCK 01 /*Read lock*/
#define F_WRLCK 02 /*Write lock*/
#detfine F_UNLCK 03 /*Remove locks*/

See Also

fentl, open in Section 2.

Miscellaneous Facilities 5-5

math

Name
math - math functions and constants

Format

#include <math.h>

Description

This file contains declarations of all the functions in the Math
Library, as well as various functions in the C Library (see
Section 3, Library Functions) that return floating-point values.

It defines the structure and constants used by the matherr
error—handling mechanisms, including the following constant
used as an error-return value:

HUGE The maximum value of a single-precision floating-point number.

The following mathematical constants are defined for user
convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 fogarithm of e.

M_LOG10E The base-10 logarithm of e.

M_LN2 The natural logarithm of 2.

M_LN10 The natural logarithm of 10.

M_PI The ratio of the circumference of a circle to its diameter.

{There are also several fractions of its reciprocal and its
square root.)

M_SQRT2 The positive square root of 2.
M_SQRT1_2 The positive square root of 1/2.

For the definitions of various machine-dependent
“constants,” see the description of the <values.h> header file.

1207891

5-6 Miscellaneous Facilities

math

Files
Jusr/include/math.h

See Also

intro, matherr in Section 3; values.

Miscellaneous Facilities 5-7

modemcap

modemcap - smart modem capability data base

Format

Jusr/lib/uucp/modemcap

Description

Modemcap describes the call placing protocol of smart
modems. CENTIX uucp and dial accept a reference to a
modemcap entry in place of an automatic call unit reference
in /urs/lib/uucp/L-devices. Each entry describes a single
modem in a specific configuration.

Modemcap is a text file. Lines that begin with a pound sign
(#) are ignored. Other lines make up descriptions.

Each description begins on a new line. The beginning of the
description is a list of its names, separated by vertical
bars(l). Any of the names, which must not begin with cua,
can be used in place of the call unit name in
Jusr/lib/uucp/L-devices.

The rest of the description is a list of capabilities, separated
by colons(:). If a description extends over more than one line,
each line except the last must end with a backslash(\). (The
continuation is normally entered as
colon-backslash-newline-tab-colon: this produces a single
invalid capability, which is ignored.) Here is an example:

#bizcomp 1012 - option switch 9 down

bz | bizcomp bizcomp 1012:

:al=NO ANSWER:b1=NO DIAL TONE:b2=NO ANSWER:c1=1:c2=2:\
:CTw7:d1#1:d5#5:eh=\r:ph=\02D:ps=\02:pw=72:\
:sa=A:sq=QisvaV:sx=X:82Z=Z :wp=\r:\
:pl=szdSwpdisvwpsqwpsxwpdiphwpc7biwpc2atcib2di:

1207891

5-8 Miscellaneous Facilities

modemcap

Each capability has three parts:

1
2

The two-character name of the capability.

A pound sign (#) or equal sign (=). A pound sign indicates
a numeric capability. An equal sign indicates a string
capability.

The capability value. For a numeric capability, the value is
the number that immediately follows the pound sign. For a
string capability, the value is the string of characters,
including blanks, between the equal sign and the colon that
ends the capability. {If a colon is part of the value, it must
be expressed as an octal sequence; see below.) In a string
capability, the following sequences stand for single
characters:

\xxx (where xxx is one to three octal digits) The character
whose octal value is xxx.

\072 Colon (:).

\200 Null (\OGO doesn’t work).

\E Escape {\033).
\n Newline (\012).
\r Return (\015).

\t Tab (\011).

\b Backspace (\010).
\f Formfeed (\014).
AX Control-x.

There are four kinds of capabilities: the piace call capability,
basic features capabilities, the send phone number capability,
and send/receive capabilities. Only the place call capability is
mandatory.

Place Call Capability

pl String capability. Controls the use of the other capabilities. The
value of the string is a procedure made up of the other
capabilities. A communication program works through pl's value,
using each capability as it is encountered; a limited control of
execution flow is provided by some special capabilities.

Miscellaneous Facilities 5-9

modemcap

Basic Features Capabilities

Basic features capabilities specify strings used to command
basic features of the modem. These capabilities never appear
in the pl value, but are implied by other capabilities. The
capability descriptions indicate which capabilities use basic
features capabilities -and what happens when basic features
capabilities are undefined.

ps

pe

eh

pa
w

Primary command start; string capability. The ps capability
specifies the characters that precede modem commands, if
required. Used by sx capability.

Primary command end; string capability. The pe capability specifies
the characters that must follow modem commands, if required.
Used by sx capability.

End phone number; string capability. Used by ph capability.
Pause in phone number; string capability. Used by ph capability.

Pause in phone number and wait for dial tone; string capability.
Used by ph capability.

Send Phone Number Capability

ph

1207891

String capability. In a single write system call, send a string with
three parts:

1 The ph capability's own value.

2 The phone number as ASCII digits. Whenever the modem should
pause, send the value of the pa capability, if defined. Whenever
the modem should pause and wait for a dial tone, send the
value of the pw capability, if defined.

3 The value of the eh capability, if defined.

5-10 : Miscellaneous Facilities

modemcap

Send/Receive Capabilities

Send/receive capabilities are different from other capabilities
in their naming convention. The first character of the
capability name tells the kind of capability. The second
character of the name is chosen arbitrarily from the
lowercase letters and digits and identifies the particular
capability from others of the same kind.

tx String capability. Send the value to the modem.

sx String capability. In a single write, send a command to the
modem. The command has three parts:

1 The value of the ps capability, if defined.

2 The sx’s capability’s own value.

3 The value of the pe capability, if defined.

dx Numeric capability. Delay for the number of seconds specified in the value.

wx String capability; value must be a single character. Wisk through input
from modem until the value is read. Put input, up to but not including
the terminating character, in the wisk buffer, replacing the previous contents.

cx String capability. Compare value with contents of the wisk buffer. Set
the comparison flag to EQUAL if they match, NOT_EQUAL otherwise. Do
not modify the comparison flag until you execute another cx.

mx Numeric capability. Skip on EQUAL. if the comparison flag is EQUAL, the
next n instructions in the pl value are skipped, where n is the value of
mx.

nx Numeric capability. Skip on NON_EQUAL. If the comparison flag is
NOT_EQUAL, the next n instructions in the pl value are skipped, where
nis the value of nx.

ax String capability. Abort on EQUAL. If the comparison flag is EQUAL,
abort the phone call. If debug output is specified, print the value of the
ax capability.

bx String capability. Abort on NOT_EQUAL. If the comparison flag is

NOT_EQUAL, abort the phone call. If debug output is specified, print the
value of the bx capability.

Miscellaneous Facilities 5-11

modemcap

Example

The Bizcomp 1012 example above assumes that the
modem’s switch 9 (configuration: TERMINAL/COMPUTER,) is
down (COMPUTER). With this setting, the modem has the
following characteristics:

o Commands to the modem must be preceded by an STX
(\002) and followed by a CR (\r). This prevents normal
data transmissions from being taken for modem
commands.

o The modem’s messages to the computer are terse. The
following two-character sequences are diagnostics.

1 CR connection made
2 CR no connection or no answer
7 CR dial tone detected

A CR is a command prompt. A communication program
that uses the Bizcom 1012 modemcap entry follows the
following procedure:

1 (szdbwpd1) Send an STX-Z-CR, resetting the modem.
Wait five seconds, then read the resulting CR. Wait
another one second.

2 (svwpsqwpsxwpd1) Send an STX-V-CR (select tone
dialing); read the resulting CR. Send an STX-Q-CR (toggle
busy detection); read the resulting CR. Send an
STX-X-CR (select transparent data mode); read the
resulting CR. Wait one second.

3 (ph) Send an STX-D, then the phone number. The phone
number should include a colon {:) whenever the modem
should pause to listen for another dial tone. The
description lacks a pa capability, so there is no way to
pause without waiting for a dial tone.

4 (wpc7b1) Read until the next CR. if the input isn't “7,”
abort with the debug message “NO DIAL TONE.”

1207891

5-12 Miscellaneous Facilities

modemcap

5 (wpc2alc1b2) Read until the next CR. If the input is "2,”
abort with the debug message “NO ANSWER."
Otherwise, if the input isn't “1,” abort with the debug
message “NO ANSWER.”

6 (d1) Wait one second. The connection is established.

See Also

dial in Section 3; uucp in Section 1.

Miscellaneous Facilities 5-13

pilf

pilf, dio - performance improvement in large files and
direct /O

Description

A PILF file system supports the input or output of large
amounts of data with a single physical read or write. This
requires special strategies for I/0; when standard 1/0
operations are applied to a PILF file system, it behaves like a
standard 1K file system. A PILF file system is created with
the -P option of mkfs (see Section 1).

A file on a PILF file system is allocated by clusters, each of
which is equal in size and consists of contiguous blocks.
Performance improvement is seen when the DIO (Direct
Input/Output) mechanism is used and no read or write
crosses a cluster boundary.

A field in the i-node determines the file's cluster size. A
cluster consists of 2¢ 1K blocks, where ¢ is the value in the
i—node. The process that creates a PILF file specifies its
cluster size using the syslocal system call; if a process has not
yet specified a cluster size, the default cluster size, in the
superblock, is used. A file's cluster size is determined when
it is created; it cannot be changed.

DIO transfers data directly between the process’s address
space and the disk, bypassing the kernel buffer cache. It is
specifically meant to be used on PILF files. DIO is
automatically used for reads or writes of multiples of 1K to
regular files that are greater than 2K and word aligned.

Caution

A buffer used for DIO must be on an even address. This is
the same degree of alignment as a short.

See Also

cp, mkfs, fsck, fsdb in Section 1; fentl, fork, open, syslocal in
Section 2; fs, inode in Section 4; fentl.

1207891

5-14 Miscellaneous Facilities

prof

prof - profile within a function

Format

#define MARK
#include <prof.h>
void MARK (name)

Description

MARK will introduce a mark called name that will be treated
the same as a function entry point. Execution of the mark will
add to a counter for that mark, and program-counter time
spent will be accounted to the immediately preceding mark,
or to the function if there are no preceding marks within the
active function.

Name may be any combination of up to six letters, numbers
or underscores. Each name in a single compilation must be
unique, but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be
defined before the header file <prof.h> is included. This may
be defined by a preprocessor directive as in the synopsis, or
by a command line argument, such as:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may
be leftin the source files containing them and will be ignored.

Miscellaneous Facilities 5-15

prof

Example

In this example, marks can be used to determine how much
time is spent in each loop. Unless this example is compiled
with MARK defined on the command line, the marks are ignored.

#include <prof.h>
foo()
{

int i, j;

MARK (loop1);
for(i = 0; u < 2000; i++) {

}
MARK(loop2):
for (j = 0; j <2000; j++) {

}

See Also

prof in Section 1; profil in Section 2; meniter in Section 3.

1207831

5-16 Miscellaneous Facilities

regexp

regexp - regular expression compile and match routines
p

Format

#define INIT <declarations>

#define GETC() <getc code>

#define PEEKC() <peekc code>

#detfine UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, ‘expbuf, ‘*endbuf;
int eof;

int step (string, expbuf)
char °*string, *expbuf;

extern char *loct1, °*loc2, *locs;

extern int circf, sed, nbra;

Description

This page describes general-purpose regular expression
matching routines in the form of ed, defined in
/usr/include/regexp.h. Programs such as ed, sed, grep, bs, expr,
and so on, which perform regular expression matching, use
this source file. In this way, only this file need be changed to
maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs
that include this file must have the following five macros
declared before the "#include <regexp.h>" statement. These
macros are used by the compile routine.

Miscellaneous Facilities 5-17

regexp

GETC() Return the value of the next character in the regular
expression pattern. Successive calls to GETC() should return
successive characters of the regular expression.

PEEKC() Return the next character in the regular expression.
Successive calls to PEEKC{) should return the same
character (which should also be the next character returned
by GETC()).

UNGETC(c) Cause the argument ¢ to be returned by the next call to
GETC() (and PEEKC()). No more that one character of
pushback is ever needed and this character is guaranteed to
be the last character read by GETC(). The value of the
macro UNGETC(c) is always ignored.

RETURN(pointer) This macro is used on normal exit of the compile routine.
The value of the argument pointer is a pointer to the
character after the last character of the compiled regular
expression. This is useful to programs that have memory
allocation to manage.

ERROR(val This is the abnormal return from the compile routine. The
argument val is an error number (see Table 5-1, below, for
meanings). This call should never return.

Table 5-1 Errors and Meanings

Error Meaning

1. Range endpoint too large.

16 Bad number.

25 “\digit™ out of range.

36 Ilegal or missing delimiter.

4 No remembered search string.

42 \(\} imbalance.

43 Too many \({.

44 More than 2 numbers given in \{ \}.
45 } expacted after \.

46 First number exceeds second in \{ \}.
49 [} imbalance.

50 Regular expression overflow.

1207891

5-18 Miscellaneous Facilities

regexp
The syntax of the compile routine is as follows
compile (instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the
compile routine but is useful for programs that pass down
different pointers to input characters. It is sometimes used in
the INIT declaration (see below). Programs that call functions
to input characters or have characters in an external array
can pass down a value of {(char *) O) for this parameter.

The next parameter, expbuf, is a character pointer. [t points
to the place where the compiled regular expression will be
placed.

The parameter endbuf is one more than the highest address
where the compiled regular expression may be placed. If the
compiled expression cannot fit in (endbug-expbuf) bytes, a
call to ERROR(50) is made.

The parameter eof is the character that marks the end of the
regular expression. For example, in ed, this character is
usually a /.

Each program that includes this file must have a #define
statement for INIT. This definition will be placed right after
the declaration for the function compile and the opening
brace({). It is used for dependent declarations and
initializations. Most often it is used to set a register variable
to point to the beginning of the regular expression so that
this register variable can be used in the declarations for
GETC(), PEEKC(), and UNGETC(). Otherwise, it can be used to
declare external variables that might be used by GETC(),
PEEKC(), and UNGETC(). See the example below of the
declarations taken from the grep shell command.

Miscellaneous. Facilities : 5-19

regexp

There are other functions in this file that perform actual
regular expression matching, one of which is the function
step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of
characters to be checked for a match. This string should be
null terminated.

The second parameter, expbuf, is the compiled regular
expression that was obtained by a call of the function compile.

The function step returns non-zero if the given string matches
the regular expression, and zero if the expressions do not
match. If there is a match, two external character pointers
are set as a side effect to the call to step. The variable set in
step is Joc7. This is a pointer to the first character that
matched the regular expression. The variable /oc2, which is
set by the function advance, points to the character after the
last character that matches the regular expression. Thus if
the regular expression matches the entire line, /oc7 will point
to the first character of string and /oc2 will point to the null
at the end of string.

Step uses the external variable circf which is set by compile if
the regular expression begins with _If this is set, step will try
to match the regular expression to the beginning of the string
only. If more than one regular expression is to be compiled
before the first is executed, the value of circf should be
“saved for each compiled expression, and circf should be set
to that saved value before each call to step.

The function advance is called from step with the same
arguments as step. The purpose of step is to step through the
string argument and call advance until advance returns non-zero,
indicating a match, or until the end of string is reached. If you
want to constrain string to the beginning of the line in all
cases, step need not be called; simply call advance.

1207891

5-20 Miscellaneous Facilities

regexp

When advance encounters a * or \{ \} sequence in the regular
expression, it will advance its pointer to the string to be
matched as far as possible and will recursively call itself,
trying to match the rest of the string to the rest of the
regular expression. As long as there is no match, advance will
back up along the string until it finds a match or reaches the
point in the string that initially matched the * or \{ \}. It is
sometimes desirabie to stop this backing up before the initial
point in the string is reached. If the external character pointer
locs is equal to the point in the string at some time during the
backing up process, advance will break out of the loop that
backs up and wiill return zero. This is used by ed and sed for
substitutions done globally (not just the first occurrence, but
the whole line} so, for example, expressions like s/y*//g do
not loop forever.

The additional external variables sed and nbra are used for
special purposes.

Examples

The following is an example of how the regular expression
macros and calls look from the grep command:

#define INIT register char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)

#detfine UNGETC(c) (-sp)
#detine RETURN(c) return;
#define ERROR(c) regerr()
#include <regexp.h>
(void) compile(*argv, expbuf, &expbuf[ESIZE], '\0"');

it (step(linebuf, expbuf))
succeed()

Miscellaneous Facilities 5-21

regexp

Files
Jusr/include/regexp.h

Known Problems
The handling of circf is kludgy.

The actual code is probably easier to understand than this
manual page.

See Also

bs, ed, expr, grep, sed in Section 1.

1207891

5-22 Miscellaneous Facilities

stat

Name
stat - data returned by stat system call

Format

#include <sys/types.h>
#include <sys/stat.h>

Description

The system calls stat and fstat return data, the structure of
which is defined by this include file. The encoding of the field
st_mode is defined in this file also.

l.
*Structure of the result of stat
°!
struct stat
{
dev__t st_dev;
ino_t st_ino;
ushort st_mode;
short st_nlink;
ushort st_uid;
ushort st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
}:
#define S_IFMT 0170000 /°type of file*/
#define S_IFDIR 0040000 /°*directory*/
#define S_IFCHR 0020000 /°character special*/
#define S_IFBLK 0060000 /*block special*/
#define S_IFREG 0100000 /°regular*/
#define S_IFIFO 0010000 /°*tifo*/
#define S_ISUID 04000 /*set user id on execution*/
#define S_ISGID 02000 /*set group id on execution®/

#define S_ISVTX 01000 /*save swapped text after use*/

Miscellaneous Facilities

5-23

stat

#define S_IREAD
#define S_IWRITE
#define S_IEXEC

Files

Jusrfinclude/sys/types.h

00400
00200
00100

Jusr/include/sys/stat.h

See Also

stat in Section 2; types.

1207891

/*read permission, owner*/
/*write permission, owner"*/
/]*execute/search permission,

owner"/

h-24 Miscellaneous Facilities

term

term - conventional names for terminals

Description

The names shown in Table 5-2 are used by certain shell
commands (for example, tabs is maintained as part of the
shell environment) in the variable $TERM:

Table 5-2 Terminal Names

Name Description

pt Burroughs/Convergent Technologies Programmable Terminal
gt Burroughs/Convergent Technologies Graphics Terminal
freedom Liberty Freedom 100

1520 Datamedia 1520

1620 DIABLO 1620 and others using the HyType Il printer
1620-12 Same as above, in 12-pitch mode

2621 Hewlett-Packard HP2621 series

2631 Hewlett-Packard 2631 line printer

2631-¢c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard 2640 series

2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DASI/DTC/GSI 300 and others using. the HyType | printer
300-12 Same as above, in 12-pitch mode

300s DASI/DTC/GSI 300s

382 DTC 382

300s-12 Same as above two entries, in 12-pitch mode

3045 Datamedia 3045

33 TELETYPE Model 33 KSR

37 TELETYPE Model 37 KSR

40-2 TELETYPE Model 40/2

40-4 TELETYPE Model 40/4

4540 TELETYPE MOdel 4540

3270 1BM Mode! 3270

4000a Trendata 4000a

4014 TEKTRONIX 4014

43 TELETYPE Model 43 KSR

450 DASI 450 (same as Diablo 1620)

450-12 Same as above, in 12-pitch mode

135 Texas Instruments T1735 and TI725

Miscellaneous Facilities 5-25

term

Name Description

745 Texas Instruments TI745

dumb Generic name for terminals that lack reverse line—feed and other
special escape sequences; likely to work when the real terminal
type is not known to the program

sync Generic name for synchronous TELETYPE 4540-compatible
terminals

hp Hewlett—Packard (same as 2645)

Ip Generic name for a line printer

tn1200 User Electric TermiNet 1200

tn300 User Electric TermiNet 300

Up to 8 characters, chosen from -, a-z, and/or 0-9, make up
a basic terminal name. Terminal sub-models and operational
modes are distinguished by suffixes beginning with a -.
Names should generally be based on original vendor, rather
than local distributors. A terminal acquired from one vendor:
should not have more than one distinct basic name.

Commands whose behavior depends on the type of terminal
should accept arguments of the form -Trerm where term is
one of the names given above; if no such argument is
present, such commands should obtain the terminal type
from the environment variable $TERM, which, in turn, should
contain term.

See Also

mm, sh, stty, tabs in Section 1; profile in Section 4; environ.

1207891

5-26 " Miscellaneous Facilities

types

Name

types - primitive system data types

Format

#include <sys/types.h>

Description

The data types defined in the include file are used in CENTIX
code; some data of these types are accessible to user code:

typedef struct {int r[1};}"* physadr;
typedef long . daddr_t;
typedef char* caddr_t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedet long time_t;
typedef int label _t[13];
typedef short dev_t;
typedet long off_t;
typedef long paddr_t;
typedef long key_t;

The form daddr_t is used for disk addresses except in an
i-node on disk. see fs in Section 4. Times are encoded in
seconds since 00:00:00 GMT, January 1, 1970. The major
and minor parts of a device code specify kind and unit
number of a device. Offsets are measured in bytes from the
beginning of a file. The /abel_t variables are used to save the
processor state while another process is running.

See Also

fs in Section 4.

Miscellaneous Facilities

5-27

values

values - machine-dependent values

Format

#include <values.h>

Description

This file contains a set of manifest constants, conditionally
defined for particular processor architectures.

The model assumed for integers is binary representation
(one’s or two's complement), where the sign is represented
by the value of the high-order bit.

BITS(type)
HIBITS

HIBITL
HIBITI
MAXSHORT
MAXLONG
MAXINT
MAXFLOAT,

LN_MAXFLOAT

MAXDOUBLE,
LN_MAXDOUBLE

1207891

The number of bits in a specified type (for example, int).

The value of a short integer with only the high-order bit set
{in most implementations, 0x8000).

The value of a long integer with only the high—order bit set
{in most implementations, 0x80000000).

The value of a regular integer with only the high—order bit
set (usually the same as HIBITS or HIBITL).

The maximum value of a signed short integer (in most
implementations, Ox7FFF = 32767).

The maximum value of a signed long integer (in most
implementations, OX7FFFFFFF — 2147483647).

The maximum value of a signed regular integer (usually the
same as MAXSHORT or MAXLONG).

The maximum value of a single-precision floating-point
number, and its natural logarithm.

The maximum value of a double-precision floating—peint
number, and its natural logarithm.

5-28 Miscellaneous Facilities

values

MINFLOAT, The minimum positive value of a single-precision

LN_MINFLOAT floating-point number, and its natural logarithm.

MINDOUBLE, The minimum positive value of a double-precision

LN_MINDOUBLE floating-point number, and its natural logarithm.

FSIGNIF The number of significant bits in the mantissa of a
single-precision floating-point number.

DSIGNIF The number of significant bits in the mantissa of a
double-precision floating-point number.

Files

Jusr/include/values.h

See Also

intro in Section3; math.

Miscellaneous Facilities 5-29

varargs

Name
varargs - handle variable argument list

Format
#include <varargs.h>
va_alist
va_dcl

void va_start(pvar)
va_tlist pvar;

type va_arg(pvar, type)
va_llist pvar;

void va_end(pvar)
va_list pvar;

Description

This set of macros allows portable procedures that accept
variable argument lists to be written. Routines that have
variable argument lists (such as the printf library function) but
do not use varargs are inherently nonportable, as different
machines use different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should
follow va_dcl.

va_listis a type defined for the variable used to traverse the list.
va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by
pvar. Type is the type the argument is expected to be.
Different types can be mixed, but it is up to the routine to
know what type of argument is expected, as it cannot be
determined at runtime.

1207891

5-30 Miscellaneous Facilities

varargs

va.end is used to clean up.

Multiple traversals, each bracketed by va_start... va_end, are
possible.

Example

This example is a possible implementation of the execl
system call. .

#include <varargs.h>
#define MAXARGS 100

/* excel is called by

excel(file, argt!, arg2, ..., (char *)0);
°1
execl(va_alist)
va_dcl

{
va_list ap;
char *tile;
char *args[MAXARGS];
int argno = 0;

va_start(ap):
file = va_arg(ap, char*);
while ((args[argno++]) = va_arg(ap, char*)) != (char*)0)

va_end(ap).
return execv(file, args):

Known Problems

It is up to the calling routine to specify how many arguments
there are, since it is not always possible to determine this
from the stack frame. For example, execl is passed a zero
pointer to signal the end of the list. Printf can tell how many
arguments are there by the format.

It is non-portable to specify a second argument of char,
short, or float to va_arg, since arguments seen by the called
function are not char, short, or float. C converts char and
short arguments to int and converts float arguments to
double before passing them to a function.

Miscellaneous Facilities

5-31

varargs

See Also

exec in Section 2; printf in Section 3.

1207891

Section 6 61

Device Files
intro

Name

intro - introduction to device files

Description

This section describes various device files that refer to
specific hardware peripherals and CENTIX System device
drivers. The names of the entries are generally derived from
names for the hardware, as opposed to the names of the
files themselves. Characteristics of both the hardware device
and the corresponding device driver are discussed where
applicable.

To be configured into the CENTIX operating system, each
peripheral (or I/0) device must be represented in the overall
CENTIX file system by a device file, located in the /dev
directory. The contents of a device file point to the device
driver, located in the CENTIX kernel, for the device.

When you send data to, for example, a disk, you send the
data to the device file in the /dev directory that has been
created for that disk. The data, however, is not actually
stored in the device file (in the CENTIX file system), but at
the disk itself. In the same way, when you load data from a
tape, you call it from the device file for the tape device, but
the data is actually loaded from the tape itself.

There are two types of CENTIX device files:

o Block device files are used for devices that handle I/O data
in 1024 bytes (1 kB) blocks. The I/O size is controlled by
the operating system’s buffer size and is independent of
the user’s 1/O size. Disk and tape devices can be
configured as block devices.

o Character device files are used for devices that handle raw
data streams. The size of |/O transfers in raw data streams
are determined either by the software design of the device
itself (for terminals and printers) or by the program
controlling the device {for disks and tapes).

1207891

6-2 Device Files

intro

For those devices that can be used as either block or
character, the difference between the two is in performance.
One or the other type of device may be necessary for special
Bapplications.

With the CENTIX 6.0 system software release, the device
file naming conventions for tapes and disks have changed.
(Device names for printers and terminals have not changed.)
The system now supports both the old and new naming
conventions. Old names are linked to the new names internally.

In CENTIX systems before the 6.0 release, the disk devices
are named as follows:

/dev/[rixp/ddn
where:

o [r] is an optional field that defines the disk as a character
— rather than block — device.

o xp is fp if the disk device is connected to an FP; dp if the
disk device is connected to a DP.

o dd represents the disk number. CENTIX disk numbers are
the same as the BTOS disk device numbers, except that
you must add a O in front of a one-digit BTOS disk number

~ for CENTIX. That is, if a built-in disk is named d4 in BTOS,
dd is 04 in CENTIX. Or, if an SMD disk is named s1 in
BTOS, dd is 01 in CENTIX. (Do not add a zero in front of a
two-digit BTOS disk number. ForBTOS disk s 10, ddis 10.)

o n represents the disk partition. Each disk has a maximum
of eight partitions (O through 7).

With the CENTIX 6.0 release, the disk devices on your
system are named as follows:

/dev/[rldsk/cndnnsn
where:

o {r] is an optional field that defines the disk as a character
— rather than block — device.

o cn represents the controller number. The controlier number
is always cO if the controller is a file processor (FP). The
controller number is always c1 if the controller is a disk
processor (DP).

Device Files 6-3

intro

o dnn represents the disk number. CENTIX disk numbers are
the same as the BTOS disk sevice numbers, except that
you must add a O in front of a one-digit BTOS disk number
for CENTIX. That is, if a built-in disk is named d4 in BTOS,
nn is 04 in CENTIX. Or, if an SMD disk is named s1 in
BTOS, nnis 01 in CENTIX. (Do not add a zero in front of a
two-digit BTOS disk number. For BTOS disk s 10, nnis 10).

o sn represents the disk partition. Each disk has a maximum
of 8 partitions (O through 7).

Table 6-1 shows the correlation between the old (pre-6.0
release) and new (6.0 release) naming conventions for built-in
disks connected to FPs. Table 6-2 shows the correlation
between the old and new naming conventions for storage
module device (SMD) drives connected to DPs. Note that in
both tables, n represents the partition number. Each disk can
have up to eight partitions (O through 7).

Table 6-1 Naming Conventions for Built-In Disk Drives

Pre-60 6.0 Release and Later BTOS Disk Device
Release Name

FIRST FP

/dev/[r]fp00n /dev/[rldsk/c0d00sn d0 [disk cartridge]
/dev/[r]fp01n /dev/[rldsk/c0d01sn d1

/dev/[r}fp02n /dev/[rldsk/c0d02sn d2

/dev/[rlfp03n /dev/[rldsk/c0d03sn d3

SECOND FP

/dev/[r]fp04n /dev/[r]dsk/c0d04sn d4

/dev/[r)fp05n Jdev/[rdsk/c0d05sn d5

/dev/[rlfp06n /dev/[rldsk/c0d0Bsn d6

/dev/[r]fp07n /dev/[rldsk/c0d07sn d7

THIRD FP

/dev/[r]fp08n /dev/[r]dsk/c0d08sn a8

/dev/[r}fp09n /dev/{rldsk/c0d09sn a9

/dev/[r}fp10n /dev/(rldsk/c0d10sn d10
/dev/[rifp1in /dev/[r}dsk/cOd11sn a1

and so on.

1207891

6-4 Device Files

intro

Table 6-2 Naming Conventions for SMD Disk Drives
Pre-60 6.0 Release and Later BTOS Disk Device
Release Name
FIRST DP

/dev/[r}dp00n /dev/[r]dsk/c1d00sn s0
/dev/[rldp01n /dev/[rldsk/c1d01sn sl
/dev/[rldp02n /dev/[r)dsk/c1d02sn s2
/dev/[r]dp03n /dev/[rldsk/c1d03sn s3
/dev/[rldp04n /dev/[r]dsk/c1d04sn s4
/dev/[r)dp05n /dev/[rldsk/c1d05sn sb
SECOND DP

/dev/[r]dpC6n /dev/[r]dsk/c1d06sn s6
/dev/[r]dp07n /dev/[r}dsk/c1d07sn s7
/dev/[rldp08n /dev/{rldsk/c1d08sn s8
/dev/[r]dp09n /dev/[rldsk/c1d09sn s9
/dev/[rldp10n /dev/[rldsk/c1d10sn s10
Jdev/[rldp11n /dev/[rldsk/c1d11sn s
THIRD DP

Jdev/[rldp12n /dev/[r]dsk/c1d12sn s12
/dev/[r}dp13n /dev/[rldsk/c1d13sn s13
/dev/[rldp14n /dev/[r]dsk/c1d14sn s14
/dev/[rldp15n /dev/[rldsk/c1d15sn s15
/dev/[r]dp16a /dev/[r]dsk/c1d16sn s16
/dev/[rldp17n /dev/[rldsk/c1d17sn s17
and so on.

With the CENTIX 6.0 release, the conventions for naming
tape drives have also changed.

In CENTIX systems before the 6.0 release, the tape diives
are named as follows:

/dev/[n][rjmtn
where:

o [n] indicates that the tape is not to rewind a tape file
closes. The default is that the tape automatically rewinds.

o [r] indicates that the tape device will handle raw data
streams rather than one kB blocks of data.

Device Files 6-5

intro

o n represents the tape drive in the system. nis O for the
first half-inch tape drive on the system, 1 for a quarter-inch
cartridge (QIC) tape drive, 2 for the second half inch tape
drive on the system, 3 for the third, and so on.

With the 6.0 release, the tape drives on your system are
named as follows:

/dev/[rJmt/cndnn]
where:

o [r] indicates that the tape device will handle raw data
streams rather than one kB blocks of data.

o cn represents the controller number. For a QIC tape drive,
cn is always 0. For a half-inch tape drive, cn is always 1.

o dn represents the tape drive on the controller. You can
have only one QIC drive on your system; it is dO. The first
half inch tape drive is dO, the second is d1, and so on.

o [n] indicates that the tape is not to rewind when a-tape file
closes. The default is that the tape automatically rewinds.

Table 6-3 Naming Conventions for Tape Drives

Pre-60 Release 6.0 Release and Later
First half-inch drive /dev/[n}{r]mt0 /dev/[rImt/c1d0[n]
QIC drive Jdev/[n]{r]mt1 /dev/[rImt/c0d0[n)
Second half-inch tape Jdev/[n}{rImt2 /dev/[rimt/c1d1[n}
drive ;
Third half-inch tape drive /dev/[n][rlmt3 /dev/[rjmt/c1d2[n]
and so on.

1207891

6-6 Device Files

console

console - console terminal

Description

The special file console designates a standard destination for
system diagnostics. The kernel writes its diagnostics to this
file, as does any user process with messages of
system-wide importance. If console is associated with a
physical terminal, then console messages also appear on that
terminal; it is not necessary to have console associated with
a physical terminal.

Note that inittab (see Section 4) does not normally post a
getty process on console. This is because console might
become associated with a terminal that is already a login
terminal. Each Application Processor has its own console,
which can be associated with any terminal or with no
terminal at all. Whether or not the console is associated with
a terminal, the most recent console output is saved in a
circular buffer.

1/O operations on console by a process running on an AP
affect the console for that AP. The exact meaning depends
on whether or not the console is associated with a terminal.

o If the console is associated with a terminal, all I/O
operations to console, including ioctl system calls, have the
same affect as if applied directly to the terminal, except
that the output is duplicated on the console buffer.

o If the console is not associated with a terminal, all
attempts to read the console return an end of file
condition, all writes to the console go only to the console
buffer, and ioct! operations have no effect on any terminal.

If the kernel debugger is enabled, a CODE-b on the terminal
associated with the console activates the kernel debugger.
The command ge to the kernel debugger resumes normal
processing.

The console shell command and syslocal system calls control
terminal association and print the buffers of AP consoles.

Device Files 6-7

console

Files

/dev/console

Caution

The kernel debugger is not a supported product and may
disappear without warning. Normal system processing is
suspended while the kernel debugger is active.

See Also

console in Section 1: syslocal in Section 2.

1207891

6-8 Device Files

dsk

Name
dsk - winchester, cartridge, and floppy disks

Description

The files /dev/[rldsk/cndnnsn refer to slices on winchester,
cartridge, and floppy disks, where:

a [r] is an optional field that you include when you are
loading the file system to a raw memory device. A device
that is defined as raw handles raw data streams (one
character at a time) rather than one kB blocks of data.

o cn represents the controller number. The controller number
is always cO if the controller is a file processor (FP). The
controller number is always c1 if the controller is a disk
processor (DP).

a dnn represents the disk number. CENTIX disk numbers are
the same as the BTOS disk sevice numbers, except that
you must add a O in front of a one-digit BTOS disk number
for CENTIX. That is, if a built-in disk is named d4 in BTOS,
nn is 04 in CENTIX. Or, if an SMD disk is named s1 in
BTOS, nnis O1 in CENTIX. (Do not add a zero in front of a
two-digit BTOS disk number. For BTOS disk s 10, nnis 10).

o sn represents the disk partition. Each disk has a maximum
of 8 partitions (O through 7).

In the XE 500 CENTIX System architecture, BTOS manages
disk initialization and low-level input/output; CENTIX only
accesses the disks to store and retrieve data. A disk special
file is a reference to a BTOS disk file set aside specially for
CENTIX's use. The BTOS file is called a file system partition
and is created using the crup shell command (see Section 1).
The relationship between file system partitions and CENTIX
special files is controlled by the BTOS file system
configuration file, [Sys]<Sys>ConfigUFS.sys. For more
information on using disk devices, see the XE 500 CENTIX
Administration Guide.

Device Files

6-9

dsk

Files

/dev/dsk/
/dev/rdsk/
/dev/dump?
/dev/boot?

See Also

crup, mknod, ofcopy in Section 1; ioctl in Section 2; intro.

1207891

6-10 DBevice Files

fp

Name
fp - winchester, cartridge, and floppy disks

Description

This entry describes disk device naming conventions prior to
the CENTIX 6.0 release. It is included for compatibility with
earlier versions of CENTIX. If your CENTIX system is release
6.0 or later, refer to the entry for dsk, earlier in this section.

The files /dev/fp000 through /dev/fp64n and rfpO00 through
rfp64n refer to slices on winchester, cartridge, and floppy
disks. An r in the name indicates the character (raw)
interface. The three hexadecimal digits are the file processor
number, disk number, and slice number. The cartridge drive
is disk O on file processor O.

XE 500 CENTIX System architecture greatly simplifies the
CENTIX disk interface: BTOS manages disk initialization and
low-level input/output; CENTIX only accesses the disks to
store and retrieve data. A disk special file is a reference to a
BTOS disk file set aside specially for use by CENTIX. The
BTOS file is called a file system partition and is created by
the crup shell command. The relationship between file system
partitions and CENTIX special files is controlled by the BTOS
file system configuration file, [Sys]<Sys>ConfigUFS.sys.

See Also

crup, mknod, ofcopy in Section 1; isctl in Section 2.

Device Files : 6-11

Ip

Ip - parallel printer interface

Description

Lp is an interface to the parallel printer channel. Bytes written
are sent to the printer. Opening and closing produce page
ejects. Unlike the serial interfaces (termio), the Ip driver never
prepends a carriage return to a new line {line feed). The Ip
driver does have options to filter output, for the benefit of
printers with special requirement. The driver also controls
page format. Page format and filter options are controlled
with the ioctl system call:

#include _sys/iprio.h>
ioctl (fildes, command, arg)

where command is one of the following constants:

LPRSET Set the current page format from the location pointed to by
arg; this location is a structure of type lprio, declared in the
header file:

struct Iprio f{
short ind;
short col;
short line;

}
Arg should be declared as follows:
struct lprio *arg;

Ind is the page indent in columns, initially 4. Col is the
number of columns in a line, initially 132. Line is the number
lines on a page, initially 66. A new-line that extends over
the end of a page is output as a formfeed. Lines longer than
the fine length minus the indent are truncated.

LPRGET Get the current page format and put it in the Iprio structure
pointed to by arg.

1207891

6-12

Device Files

Ip

LPRSOPTS -

Set the filter options from arg, which must be of type int.
Arg should be the logical or of one or more of the following
constants, defined in the header file:

Constant Value Meaning

LPNOBS 4 No backspace. Set this
bit if the printer cannot
properly interpret
backspace characters.
The driver uses carriage
return to produce
equivalent overstriking.

LPRAW 8 ~ Raw output. Set this bit
if the driver must not
edit output in any way.
The driver ignores all
other option bits in the
minor device number.

LPCAP 16 Capitals. This option
supports printers with a
“half-ASCII” character
set. Lowercase is
translated to uppercase.

LPNOCR 32 No Carriage Return. This
option supports printers
that do not respond to a
carriage return (character
0D hexadecimal).
Carriage returns are
changed to new-lines. If
No Newline is also set,
carriage returns are
changed to form feeds.

LPNOFF 64 No Form Feed. This
option supports printers
that do not respond to a
form feed (character OC
hexadecimal). Form feeds
are changed to
new-lines. If No Newline
is also set, form feeds
are changed to carriage
returns.

Device Files

6-13

LPRGOPTS

Files
/dev/lp

See Also

LPNON 12 No Newline. This option
supports printers that do
not respond to a
new-line {character OA
hexadecimal). New-lines
are changed to carriage
returns. If No Carriage
Return is also set,
new-lines are changed
to form feeds.

Setting all three of No Carriage Return, No Newline, and No
Form Feed has the same effect as setting none of them.

Get the current state of the filter options and put them in
arg, which must be an int. ,

Ipr, Ipset in Section 1.

1207891

6-14 Device Files

mem

mem, kmem - core memory

Description

Mem is a special file that is an image of the core memory of
the CENTIX-based processor board. It may be used, for
example, to examine, and even to patch the system.

Byte addresses in mem are interpreted as memory
addresses. References to non-existent locations cause errors
to be returned.

Examining and patching device registers is likely to lead to
unexpected results when read-only or write-only bits are
present.

The file kmem is the same as mem except that kernel virtual
memory rather than physical memory is accessed.

Caution

When reading and writing memory in other processes, reads
and writes are done in multiples of 1K. As a result, the data
may actually change between 1K reads and writes.

Files

/dev/memxx, /dev/kmemxx, where xx is the two-digit
processor number.

Device Files 6-15

mt

mt - interface for magnetic tape

Description
This interface provides access to all magnetic tape drives.

mtx is the block device with rewind on close for drive x. To
get the no-rewind device, prepend n; to get the raw
(character) device, prepend r; and to get the no-rewind on
close, raw device, prepend nr.

There can be up to four drives, any of which can be built-in
quarter-inch cartridge {QIC} drives or external drives
controlled by a Storage Processor. The connection between
drives and drive numbers is in the file system configuration
file, under BTOS.

Tape files are separated by tape marks, also known as EOFs.
Closing a file open for writing writes one tape mark on a QIC
drive and two tape marks on other drives; if the device was
no-rewind, the tape is left positioned just after the single
QIC tape mark or between the two marks. If the file was a
no-rewind file, reopening the drive for writing overwrites the
second mark, if there is one, and creates another tape file.
Thus on a QIC drive, a single tape mark separates the tape
files and ends the tape; on other drives, a single tape mark
separates the tape files and a double mark ends the tape.

Here are summaries of block and character device features:

o The block devices read and write only 1024-byte physical
blocks; reads and writes of other sizes are resolved into
1K physical 1/0. Seeks are ignored on QIC drives. On other
drives seeks are allowed, but once the file is opened,
reading is restricted to between the last write and the next
tape mark. Reading the tape mark produces a zero-length
read and leaves the tape positioned after the tape mark; if
the file is a no-rewind file, the program can access the next
tape file by closing the device and then reopening or
opening another device for the same drive.

1207891

6-16 Device Files

mt

o On the raw devices, each read or write reads or writes the
next physical block. A read must match the size of a
normal tape block. The size of a write determines the size
of the next block; Write sizes must be a multiple of 512
on QIC drives, a multiple of 2 on other drives. Read/write
buffers must begin on an even address; this is the same
alignment as short. Seeks are ignored. Reading a tape mark
produces a zero-length read and leaves the tape positioned
after the mark; the program can, without closing the
device, read the next tape file.

Files

/dev/mt/*
/dev/nmt/*
/dev/rmt/*
/dev/nrmt/*

Caution

A nondata error cannot be recovered from except by closing
the device.

A QIC tape has no special mark for end of tape, as opposed
to end of file.

Device Files

6-17

Name

null - the null file

Description

Data written on a null special file is discarded.

Reads from a null special file always return O bytes.

Files
/dev/null

1207891

6-18 Device Files
prf

Name
prf - operating system profiler

Description

The prf file provides access to activity information in the
operating system. Writing the file loads the measurement
facility with text addresses to be monitored. Reading the file
returns these addresses and a set of counters indicative of
activity between adjacent text addresses.

The recording mechanism is driven by the system clock and
samples the program counter at line frequency. Samples that
catch the operating system are matched against the stored
text addresses and increment corresponding counters for
later processing.

The file prf is a pseudo-device with no associated hardware.

Files
/dev/prf

See Also

profiler in Section1.

Device Files 6-19

termio

termio - general terminal interface

Description

CENTIX systems use a single interface convention for all
RS-232 and cluster (RS-422) terminals, although cluster
terminals do not use all the features of the convention. The
convention is almost completely taken from the UNIX
System V interface for asynchronous terminals.

Two kinds of terminals use this convention:
o RS-232 terminals connected to channels on the XE 500 itself.

o PT 1500 cluster terminals. Generally a cluster channel
supports more than one PT 1500; some terminals are
indirectly connected through other terminals. Cluster
terminals use the same interface as directly connected
RS-232 terminals, except that hardware control operations
are meaningless on cluster terminals. (Note that “cluster
terminal” refers to the way the terminal is used, not to the
terminal itself; a PT 1500 terminal can serve as an RS-232
terminal or as a cluster terminal.)

A single naming convention applies to regular RS-232 and
cluster terminals. A direct RS-232 or cluster terminal has a
name of the form ttyxxx, where xxx is the terminal’s number
expressed in three digits.

When a terminal file is opened, it normally causes the
process to wait until a connection is established. In practice,
users’ programs seldom open these files; they are opened by
getty and become a user’s standard input, output, and error
files. The very first terminal file opened by the process group
leader of a terminal file not already associated with a process
group becomes the control terminal for that process group.
The control terminal plays a special role in handling quit and
interrupt signals, as discussed below. The control terminal is
inherited by a child process during a fork system call. A
process can break this association by changing its process
group using the setpgrp system call.

1207891

6-20 " Device Files

termio

A terminal associated with one of these files ordinarily
operates in full-duplex mode. Characters may be typed at
any time, even while output is occurring, and are only lost
when the system’s character input buffers become
completely full, which is rare, or when the user has
accumulated the maximum allowed number of input
characters that have not yet been read by some program.
Currently, this limit is 256 characters. When the input limit is
reached, all the saved characters are thrown away without
notice. «

Normally, terminal input is processed in units of lines. A line
is delimited by a new-line {ASCIl LF) character, an end-of-file
(ASCIl EOT) character, or an end-of-line character. This
means that a program attempting to read will be suspended
until an entire line has been typed. Also, no matter how
many characters are requested in the read call, at most one
line will be returned. It is not, however, necessary to read a
whole line at once; any number of characters may be
requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. By
defauilt, the character generated by a PT 1500 BACKSPACE
key (ASCIi BS, Control-H on most terminals) erases the last
character typed, except that it will not erase beyond the
beginning of the line. By default, the character @ kills
(deletes) the entire input line, and optionally outputs a
new-line character. Both these characters operate on a
keystroke basis, independently of any backspacing or
tabbing that may have been done. Both the erase and kill
characters may be entered literally by preceding them with
the escape character (\). In this case the escape character is
not read. The erase and kill characters may be changed.

Device Files 6-21

termio

Certain characters have special functions on input. These
functions and their default character values are summarized
as follows:

INTR (Rubout of ASCIHl DEL; generated by a PT 1500 DELETE
key) generates an interrupt signal that is sent to all
processes with the associated control terminal. Normally,
each such process is forced to terminate, but arrangements
may be made either to ignore the signal or to receive a trap
to an agreed-upon location; see signal in Section 2.

QuiT (Control-kor ASCII FS; generated by a PT 1500
CODE-CANCEL key) generates a quit signal. Its treatment is
identical to the interrupt signal except that, unless a
receiving process has made other arrangements, it wiil not
only be terminated but a core image file (called core) wilt
be created in the current working directory.

ERASE (Control-H or ASCII BS; generated by a PT 1500
BACKSPACE key) erases the preceding character. It will not
erase beyond the start of a line, as delimited by an NL,
EOF, or EOL character.

KILL (@) deletes the entire line, as delimited by an NL, EOF, or
EOL character.

EOF {Control-D or ASCII EOT; generated by a PT 1500 FINISH
key) may be used to generate an end-of-file from a terminal.
When received, all the characters waiting to be read are
immediately passed to the program, without waiting for a
new-line, and the EOF is discarded. Thus, if there are no
characters waiting, which is to say the EOF occurred at the
beginning of a line, zero characters will be passed back,
which is the standard end-of-file indication.

NL (ASCIl LF) is the normal line delimiter. It cannot be changed
or escaped.

EOL . (ASCH NUL) is an additional line delimiter, like NL. It is not
normally used.

STOP (Control-S or ASCIl DC3) can be used to temporarily

suspend output. it is useful with CRT terminals to prevent
output from disappearing before it can be read. While output
is suspended, STOP characters are ignored and not read.

START {Control-Q or ASCHi DC1) is used to resume output that has
been suspended by a STOP character. While output is not
suspended, START characters are ignored and not read. The
start/stop characters cannot be changed or escaped.

1207891

6-22 Device Files

termio

The character values for INTR, QUIT, ERASE, KILL, EOF, and
EOL may be changed to suit individual tastes. The ERASE,
KILL, and EOF characters may be escaped by a preceding \
character, in which case no special function is done.

When the carrier signal from the data-set drops, a hangup
signal is sent to all processes that have this terminal as the
control terminal. Unless other arrangements have been made,
this signal causes the processes to terminate. If the hangup
signal is ignored, any subsequent read returns with an
end-of-file indication. Thus programs that read a terminal and
test for end-of-file can terminate appropriately when hung up on.

When one or more characters are written, they are
transmitted to the terminal as soon as previously-written
characters have finished typing. Input characters are echoed
by putting them in the output queue as they arrive. If a
process produces characters more rapidly than they can be
typed, it will be suspended when its output queue exceeds
some fimit. When the queue has drained down to some
threshold, the program is resumed.

Several ioctl system calls apply to terminal files. The primary
calls use the following structure, defined in <termio.h>:

#define NCC 8

struct termio {
unsigned short c_iflag; /*input modes*/
unsigned short c_oftag; /*output modes*/
unsigned short c_cflag; /*control modes*/
unsigned short c_lflag; /*local modes*/
char c_line; /*line discipline*/

unsigned char c_cc[NCC]; /*controil chars*/

Device Files 6-23

termio

The special control characters are defined by the array c_cc.
The relative positions for each function are as follows:

INTR
auiT
ERASE
KILL
EOF
EOL
reserved
reserved

SNOOEWN—O

The c_iflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.

BRKINT 0000002 Signal interrupt on break.

IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.

INPCK 0000020 Enable input parity check.

ISTRIP 0000040 Strip character.

INLCR 0000100 Map NL to CR on input.

IGNCR 0000200 Ignore CR.

ICRNL 0000400 Map CR to NL on input.

UCLC 0001000 Map upper-case to lower-case on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

if IGNBRK is set, the break condition (a character framing
error with data all zeros) is ignored, that is, not put on the
input queue and therefore not read by any process.
Otherwise, if BRKINT is set, the break condition will
generate an interrupt signal and flush both the input and
output queues. If IGNPAR is set, characters with other
framing and parity errors are ignored.

Iif PARMRK is set, a character with a framing or parity error
which is not ignored is read as the three character
sequence: 0377, O, X, where X is the data of the character
received in error. To avoid ambiguity in this case, if ISTRIP

is not set, a valid character of 0377 is read as 0377, 0377.
if PARMRK is not set, a framing or parity error which is not
ignored is read as the character NUL (O).

1207891

6-24 Device Files

termio

If INPCK is set, input parity checking is enabled. If INPCK is
not set, input parity checking is disabled. This allows output
parity generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to
7-bits, otherwise all 8-bits are processed.

If INLCR is set, a received NL character is translated into a
CR character. If IGNCR is set, a received CR character is
ignored (not read). Otherwise if ICRNL is set, a received CR
character is translated into an NL character.

If IUCLC is set, a received upper-case alphabetic character is
translated into the corresponding lower-case character.

If IXON is set, start/stop output control is enabled. A
received STOP character will suspend output and a received
START character will restart output. All start/stop characters
are ignored and not read. If IXANY is set, any input character
will restart output that has been suspended.

If IXOFF is set, the system will transmit START/STOP
characters when the input queue is nearly empty/full.

The initial input control value is all bits clear.

The c_oflag field specifies the system treatment of output.

0POST 0000001 Postprocess output.

0LCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column 0.
ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select new-line delays:

NLO)

NL1 0000400

CRDLY 0003000 Select carriage-return delays:
CRO 0

CR1 0001000

CR2 0002000

CR3 0003000

Device Files '6-25

termio
TABDLY 0014000 Select horizontal-tab delays:
TABO 0
TAB1 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO ’ 0
BS1 0020000
VTDLY 0040000 Select vertical-tab delays:
V10 0
VT1 0040000
FFDLY 0100000 Select form-feed delays:
FFO 0
FF1 0100000

If OPOST is set, output characters are post-processed as
indicated by the remaining flags, otherwise characters are
transmitted without change.

If OLCUC is set, a lower-case alphabetic character is
transmitted as the corresponding upper-case character. This
function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL
character pair. If OCRNL is set, the CR character is
transmitted as the NL character. If ONOCR is set, no CR
character is transmitted when at column O (first position). If
ONLRET is set, the NL character is assumed to do the
carriage-return function; the column pointer will be set to O
and the delays specified for CR will be used. Otherwise the
NL character is assumed to do just the line-feed function; the
column pointer will remain unchanged. The column pointer is
also set to O if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow
for mechanical or other movement when certain characters
are sent to the terminal. In all cases a value of O indicates no
delay. If OFILL is set, fill characters will be transmitted for
delay instead of a timed delay. This is useful for high baud
rate terminals that need only a minimal delay. If OFDEL is set,
the fill character is DEL, otherwise NUL.

If a form-feed vertical-tab delay is specified, it lasts for about
2 seconds.

1207891

6-26 Device Files

termio

New-line delay lasts about 0.10 seconds. If ONLRET is set,
the carriage-return delays are used instead of the new-line
delays. If OFILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current
column position, type 2 is about 0.10 seconds, and type 3 is
about 0.18 seconds. If OFILL is set, delay type 1 transmits
one or two fill characters, and type 2 and 3, two fill characters.

Horizontal-tab delay type 1 is dependent on the current
column position. Type 2 is about 0.04 seconds. Type 3
specifies that tabs are to be expanded into spaces. If OFILL
is set, delay type 1 transmits zero or two fill characters and
delay type 2 transmits 1 fill character.

Backspace delay lasts about 0.05 seconds. If OFILL is set,
one fill character will be transmitted.

The actual delays depend on line speed and system load.
The initial output control value is all bits clear.

The c_cflag field describes the hardware control of the
terminal (not used on cluster terminals):)

CBAUD 0000017 Baud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud

82400 0000013 2400 baud

Device Files ' 6-27

termio
B4800 0000014 4800 baud
B3600 0000015 9600 baud
EXTA 0000016 19200 baud
EXTB 0000017 External clock.
CSIZE 0000060 Character size:
CS5 0 5 hits
CS6 0000020 6 bits
cs7 0000040 7 bits
cs8 0000060 8 bits
CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PARODD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate,
BO, is used to hang up the connection. If BO is specified, the
data—terminal-ready signal will not be asserted. Normally,
this will disconnect the line. For any particular hardware,
impossible speed changes are ignored. EXTB specifies
external clocking.

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include the
parity bit, if any. If CSTOPB is set, two stop bits are used,
otherwise one stop bit. For example, at 110 baud, two stops
bits are required.

If PARENB is set, parity generation and detection is enabled
and a parity bit is added to each character. If parity is
enabled, the PARODD flag specifies odd parity if set,
otherwise even parity is used.

1207891

6-28 Device Files

termio

If CREAD is set, the receiver is enabled. Otherwise no
characters will be received.

Iif HUPCL is set, the line will be disconnected when the last
process with the line open closes it or terminates. That is,
the data-terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct
connection with no modem control. Otherwise modem
control is assumed.

The initial hardware control value after open is B9600, CS8,
CREAD, HUPCL.

The c_fflag field of the argument structure is used by the line
discipline to control terminal functions. The basic line
discipline (0) provides the following:

ISIG 0000001 Enable signals.

ICANON 0000002 Canonical input (erase and kill
processing).

XCASE 0000004 Canonical upper/lower presentation.

ECHO 0000010 Enable echo.

ECHOE 0000020 Echo erase character as BS-SP-BS.

ECHOK 0000040 Echo NL after kill character.

ECHONL 0000100 Echo NL.

NOFLSH 0000200 Disable flush after interrupt or quit.

if ISIG is set, each input character is checked against the
special control characters INTR and QUIT. If an input
character matches one of these control characters, the
function associated with that character is performed. If ISIG
is not set, no checking is done. Thus these special input
functions are possible only if ISIG is set. These functions may
be disabled individually by changing the value of the control
character to an unlikely orimpossible value (for example, 0377).

Device Files 6-29

termio

If ICANON is set, canonical processing is enabled. This
enables the erase and kill edit functions, and the assembly of
input characters into lines delimited by NL, EOF, and EOL. If
ICANON is not set, read requests are satisfied directly from
the input queue. A read will not be satisfied until at least MIN
characters have been received or the timeout value TIME has
expired. This allows fast bursts of input to be read efficiently
while still allowing single character input. The MIN and TIME
values are stored in the position for the EOF and EOL
characters respectively. The time value represents tenths of
seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is
accepted on input by preceding it with a \ character, and is
output preceded by a \ character. In this mode, the following
escape sequences are generated on output and accepted on
input:

for. use.
\
\!
\A
A\
\)
\\

e)

For example, A is input as \a, \n as \\n, and \N as \\\n.
If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are
possible. If ECHO and ECHOE are set, the erase character is
echoed as ASCII BS SP BS, which will clear the last character
from a CRT screen. If ECHOE is set and ECHO is not set, the
erase character is echoed as ASCIl SP BS. If ECHOK is set,
the NL character will be echoed after the kill character to
emphasize that the line will be deleted. Note that an escape
character preceding the erase or kill character removes any
special function. If ECHONL is set, the NL character will be
echoed even if ECHO is not set. This is useful for terminals
set to local echo (so-called half duplex).

1207891

6-30 Device Files

termio

Unless escaped, the EOF character is not echoed. Because
EOT is the default EOF character, this prevents terminals that
respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output
queues associated with the quit and interrupt characters will
not be done.

The initial line-discipline control value is all bits clear.
The primary ioctl system calls have the form:

ioctl (fildes, command, arg)
struct termio ‘arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and store
in the termio structure referenced by arg.

TCSETA Set the parameters associated with the terminal from the
structure referenced by arg. The change is immediate.

TCSETAW Wait for the output to drain before setting the new

parameters. This form should be used when changing
parameters that will affect output.

TCSETAF Wait for the output to drain, then flush the input queue and
set the new parameters.

Additional ioctl calls have the form:

loctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK . Wait for the output to drain. If arg is O, then send a break
(zero bits to 0.25 seconds).

TCXONC Start/stop control. If arg is 0, suspend output; if 1, restart
suspended output; if 2, transmit XOFF; if 3, transmit XON.

TCFLSH If arg is 0, flush the input queue; if 1, flush the output

queue; if 2, flush both the input and output queues.

Device Files 6-31

termio

Files
/dev/tty??? /dev/tp????

Caution

The default value for ERASE is backspace rather than the
~ historical #.

Known problems

Local RS-232 terminals do not currently provide hangup (BO),
draining, flushing, or delay.

See Also

stty, ioctl in Section 2; tp, tty.

1207831

6-32 Device Files

tp

Name

tp - controlling terminal’s local RS-232 channels

Description

The tp devices access the RS-232 channels on the
controlling terminal. The terminal must be a cluster terminal
configured to permit use of the local RS-232 channels (see
termio). Just as /dev/tty permits a process to conveniently
access its process group’s controlling terminal (see tty),
/dev/tp1 and /dev/tp2 access the controlling terminal’s
RS-232 channels without reference to the terminal number.
This is convenient for accessing the user’s local hardware,
such as a telephone with an RS-232 interface.

See Also

tty.

Device Files 6-33

tty

tty - controlling terminal interface

Description

The file /dev/tty is, in each process, a synonym for the
control terminal associated with the process group of that
process, if any. It is useful for programs or shell sequences
that wish to be sure of writing messages on the terminal no
matter how output has been redirected. It can also be used
for programs that demand the name of a file for output,
when typed output is desired and it is tiresome to find out
what terminal is currently in use.

If the terminal is under window management, a process
group is controlled by a specific window, and 1/O on /dev/tty
is directed to that window. A terminal can control one
process group in each window. See window.

Files
/dev/tty

See Also

tp, window.

1207891

6-34 Device Files

window
Name

window - window management primitives

Format

#include _sys/window.h>

Description

Window management (see wm in Section 1) provides a
superset of windowless terminal features. This entry
describes terminal file features special to window
management. Window management features are designed
not to interfere with programs that do not know about
window management. Such design includes simple
extensions to the CENTIX System’s standard concepts of file
descriptor and control terminal.

o Each terminal file descriptor has an associated window
number, a small positive integer that identifies a window.
A window number is the most primitive way to refer to a
window, and should not be confused with the window ID
used by window management sub-routines. A new
window gets the smalled window number not already in
use. Closing a window frees its number for possible
assignment to a later window. Output and control calls on
the file descriptor apply only to the descriptor's window;
input calls succeed only when the window is active.

A file descriptor created by a dup system call or inherited
across a fork system call inherits the original descriptor’s
window number. All the file descriptors in such a chain of
inheritance, provided they belong to processes in the same
process group, are affected when ioctl changes the
window number of any of them.

Device Files 6-35

window

o When a process group’s control terminal is under window
management, the process group is actually controlled by a
particular window. Such can have more than one process-
group, each controlled by a different window.
Keyboard-generated signals (interrupt and quit) go to the
process group controlled by the active window.

When the user creates a new window by using the SPLIT
key, the window manager forks a process for that window.
The new process inherits file descriptors for standard input
(0), standard output (1), and standard error (2) that are
associated with the new window. The new process is leader
of a process group controlled by the new window.

Programs that create and use windows use window
management ioctl calls. Such calls take the form

loctl (fildes, command, arg)
struct wioctl *arg;

Fildes is a file descriptor for terminal and window affected,
command is a window management command (see below),
arg is a pointer to the following structure, declared in
<sys/window.h>:

#define NWCC 2

struct wioctl {
wndw_t wi_dfltwndw;
wndw_t wi_wndw;
slot__t wi_mycpuslot;
slot__t wi_destcpuslot;
port_t wi_bport;
char wi_dummy;
unsigned char wi_cc[NWCC]:
}i

Window management ioctl calls get (WIOCGET) and set
(WIOCSET and WIOCSETP) terminal attributes described in
the wioctl structure:

wi_dfitwndw The window number for the process’s default window. If
the process does an open on /dev/tty, the new file
descriptor is associated with the default window.

1207891

6-36

Device Files

window

wi_wndw

wi_mycpuslot

wi_destcpuslot
wi_bport

wi_cc

The window number for the window that fildes (ioctl’s first
parameter) is associated with.

The slot number of the process's host processor. (Not settable.)

The slot nurhher of the processor that drives the terminal.
(Not settable.)

The terminal’s Cluster Processor or Terminal Processor
channel number. (Not settable.)

Not used by the CENTIX kernel. A value supplied by a
WIOCSET or WIOCSETP is stored in a place associated with
window wp_wndw. A subsequent WIOCGET on the same
window retrieves the information.

Here are the window management ioctl commands:

WIOCGET

WIOCSET

WIOCSETP

WIOCCLRP

Get information on calling process and file descriptor fildes.
Fill in arg.

Set values for calling process and file descriptor fildes from
information in arg. Has no effect on process group-control
terminal relationship.

Set values for calling process and file descriptor fildes from
information in arg. The window specified in arg- >
wi_wndw becomes the process’s group’s controlling
terminal provided the following:

The calling process is the process group leader.
The process group is not currently controlled by
another window on this or any other terminal.

The specified window is not already a control window.

Only valid executed by process group leades. The process
group ceases to have a control terminal or window and the
control terminal/window ceases to control any process
group. The process group is free to find another control
terminal/window, and the old control terminal/window is
free to become the control terminal/window for another
process group.

Device Files 6-37

window

WIOCCLUSTER loctl returns 1 if and only if the terminal is a cluster terminal.
WIOCDIRECT Enable direct sending of terminal IPC requests.
WIOCUNDIRECT Disable direct sending of terminal IPC requests.

An open on a terminal special file other than /dev/tty (for
example, /dev/tty000) produces a file descriptor for the
lowest—numbered open window. lectl can move this file
descriptor to any window.

An open can also obtain a controlling terminal/window. The
requirements are the same as for WIOCSETP.

Files

/dev/tty - control terminal
/dev/tty??? - terminals

Cautions

WIOCDIRECT and WIOCUNDIRECT are required by the
operating system. Their use by user programs is inadvisable.

Use these features in as standard and conservative a way as
possible. The best way to enforce standards is to use
window management through the library calls described in
Section 3.

See Also

stty, wm in Section 1; dup, fork, ioctl, open in Section 2;
wmgetid, wmlayout, wmop, wmsetid in Section 3; termio, tty.

1207891

Index-1

Permuted Index

This index includes entries for all pages of all four volumes of
this guide. The entries themselves are based on the one-line
descriptions or titles found in the Name portion of each
manual entry; the significant words {(keywords) of these
descriptions are listed alphabetically down the center of the

index.

The permuted index is a keyword-in-context index that has
three columns. To use the index, read the center column to
look up specific commands by name or by subject topics.
Note that the entry may begin in the left column or wrap
around and continue into the left column. A period (.) marks
the end of the entry, and a slash (/) indicates where the entry
is continued or truncated. The right column gives the manual
entry under which the command or subject is described;
following each manual entry name is the section number, in
parentheses, in which that entry can be found.

/Itol3: convert between

comparison. diff3;
between fong integer/
/obtain and

fault.

absolute value.

adb:

abs: return integer
ceiling, remainder,
allow/prevent LP/
times of/ touch: update
times. utime: set file
/ofCloseAllFiles:
accessibility of a/

in a/ sputl, sgeth:

1207891

3-byte integers and
long/

3-way differential file
ab4l, 164a: convert
abandon exchanges.
abort: generate an 10T
abs: return integer
absolute debugger
absolute value.
absolute value/ /floor,
accept, reject:

access and modification
access and modification
Access BTOS files
access: determine

access long integer data

13tol(3)

diff3(1)
a641(3)
exchanges(2)
abort(3)
ahs(3)
adb(1)
ahs(3)
floor(3)
accept(1)
touch(1)
utime(2)
ofopenfile(3)
access(2)
sputl(3)

Index-2

sadp: disk

common object file

file systems for optimal
Iockitig: exclusive
/endutent, utmpname:
access: determine

or disable process
/manipulate connect
process accounting.
sin, cos, tan, asin,
killall: kill all

sag: system

sal, sa2, sadc: system
File Processor system
sar: system

SCCS file editing

process data and system

BTOS queue. quAdd:
putenv: change or
administer SCCS files.
admin: create and
alarm: set a process

alarm clock.

access profiler.

access routines. ldfen:
access time. /copy
access to regions of a/
access utmp file entry.
accessibility of a file.
accounting. /enable
accounting records.
acct: enable or disable
acos, atan, atan2:/
active processes.
activity graph.

activity report package.
activity reporter.
activity reporter.
activity. /print current
activity. /report

adb: absolute debugger
add a new entry to a
add value to/

admin: create and
administer SCCS files.
alarm clock.

alarm: set a process

sadp{1)
Idfcn(4)
deopy(1)
locking(2)
getut(3)
access(2)
acct(2)
fwtmp(1)
acct(2)
trig(3)
killali(1)
sag(1)
sar(1)
fpsar(1)
sar{1)
sact(1)
timex(1)
adhb(1)
quadd(3)
putenv(3)
admin(1)
admin(1)
alarm(2)

alarm(2)

Index-3

for sendmail.
sendmail. aliases:
/ofDelete:

data segment space
calloc: main memory

fast main memory

accept, reject:

bre, beheckre, re,
running process;/ renice:
sort: sort

and link editor output.
Processor number.
number. apnum: print
console: control

/a process on a specific
/a process on a specific
/to commands and
code. exServeRq:
maintainer for portable/
format.

arithmetic/ be:
maintainer for/ ar:

cpio: format of cpio

ar. common

1207891

aliases: aliases file
aliases file for
allocate BTOS files.
allocation. /change
allocator. /realloc,

allocator. /mallinfo:

allow/prevent LP/
allrc, conrc: system/
alter priority of
and/or. merge files.

a.out: common assembler

apnum: print Application

Application Processor
Application Processor/
Application Processor.
Application Processor.
application programs.
appropriate a request
ar: archive and library
ar; common archive file
arbitrary-precision
archive and library
archive

archive file format.

aliases(5)
aliases(5)
ofcreate(3)
brk(2)
malloc(3)

malloc(3) (fast
version)

accept(1)
bre(1)
renice(1)
sort(1)
a.out(d)
apnum(1)
apnum(1)
console(1)
spawn(1)
spawn(3)
intro(1)
exserverq(2)
ar(1)

ar(4)

be(1)

ar(1)
cpio(4)
ar(a)

Index-4

header of a member of an
/convert object and
Idahread: read the

tar: tape file
maintainer for portable
cpio: copy file ‘
varargs: handle variable
/Joutput of a varargs
xargs: construct

/get option letter from
expr: evaluate

echo: echo

be: arbitrary-precision

expr: evaluate arguments

ascii: map of

hd: hexadecimal and
character set.

long integer and base-64
atof: convert

date/ /localtime,
gmtime,

sin, cos, tan,

help:

archive file. /archive
archive files to common/
archive header of a/
archiver.

archives. /and library
archives in and out.
argument list.
argument list.
argument list(s) and/
argument vector.
arguments as an/
arguments.

arithmetic language.

as an expression.

as: assembler.

ASCII character set.
ascii file dump.

ascii: map of ASCH
ASCIl string. /between
ASCII string to/

asctime, tzset: convert

asin, acos, atan, atan2:/
ask for help.

Idahread(3)
convert(1)
Idahread(3)
tar(1)

ar{1)
cpio{1)
varargs(5)
vprintf(3)
xargs(1)
getopt(3)
expr(1)
echo(1)
be(1)
expr(1)
as(1)
ascii(5)
hd{1)
ascii(5)
a64i(3)
atof(3)

ctime(3)

trig(3)
help(1)

Index-5

editor/ a.out: common
as:

assertion.

assert: verify program
setbuf, setvbuf:
wmsetid, wmsetids: -
commands at a later/
cos, tan, asin, acos,
tan, asin, acos, atan,
string to/

strtod,

integer. strtol, atol,
string to/ strtol,
process. wait:

and processing/
request. quRemove: take
ungetc: push character
finc: fast incremental

recover files from a
modem capability data

terminal capability data

terminal capability data

1207891

assembler and link
assembler.

assert: verify program
assertion. -

assign buffering to a/
associate a file/

at, batch: execute
atan, atan2: sin,
atan2: trigonometric/
atof: convert ASCII
atof: convert string to/
atoi: convert string to
atol, atoi: convert
await completion of
awk: pattern scanning
back a BTOS queue
back into input stream.
backup.

backup tape. frec:
banner: make posters.
base. modemcap: smart
base. termcap:

base. terminfo:

a.out(4)
as(1)
assert(3)
assert{3)
sethuf(3)
wmsetid(3)
at(1)
trig(3)
trig(3)
atof(3)
strtod(3)
strtol(3)
strtol(3)
wait(1)
awk(1)
quremove(3)
ungetc(3)
finc(1)
frec{1)
banner(1)
modemcap(5)
termcap(4)
terminfo(4)

Index-6

between long integer and
{visual) display editor
portions of path names.

at a later time. at,
arithmetic language.
system intialization/ brc,

copy.

cb: C program

jo' ”: jn, YO: Y], yn:

/install object files in
fread, fwrite:

bsearch:

tfind, tdelete, twalk:
manage

bcopy: interactive
sum: print checksum and
sync: update the super

df: report number of free
disk

conrc: system
initialization/

spare allocation.

base-64 ASCI string.
/convert

based on ex.
/screen-oriented

basename, dirname:
deliver

batch: execute commands
be: arbitrary-precision
beheckre, re, allre, conrc:

beopy: interactive block
copy.

bdiff: big diff.
beautifier.

Bessel functions.
bfs: big file scanner.
binary directories.
binary input/output.

binary search a sorted
table.

binary search trees,
tsearch,

block copy.

block count of a file
block.

blocks.

bre, bcheckre, re, allre,

brk, sbrk: change data
segment

a64i(3)
vi{1)
hasename(1)

at(1)
be(1)
bre(1)
beopy(1)

bdiff(1)
ch(1)
bessel(3)
bfs(1)
cpset(1)
fread(3)
bsearch(3)

tsearch(3)

beopy(1)
sum(1)
sync(1)
df(1)

bre(1)

brk(2)

Index-7

compiler/interp
reter/

sorted table

/ofDIDir,
ofReadDirSector:

ofWrite: Input/output on a
ofRename: rename a
ofSetFileStatus:

ofcopy: copy to or from the
directories. ofis: list
JofDelete: Allocate

ofed, ofvi: edit
ofCloseAllFiies: Access

interpreter for interactive

CENTIX kernel and copy
it to

quAdd: add a new entry
toa

quReadKeyed: examine

quRemove: take back a
stdio: standard

setbuf, setvbuf: assign
mknod:

swapshort, swaplong:
translate

swah: swap

1207891

bs: a

bsearch: binary search a

BTOS directory functions.

BTOS file. ofRead,
BTOS file.

BTOS File Status.

BTOS file system.

BTOS files and

BTOS files.

BTOS files.

BTOS files. /ofCloseFile.

BTOS JCL. ofcli
command line

BTOS. mkboot: reformat
BTOS queue.

BTOS queue.
quReadNext.

BTOS queue request.

buffered input/output
package.

buffering to a stream
build special file.

byte orders to
Motorola/Intel.

bytes.

bs(1)

hsearch(3)
ofdir(3)

ofread(3)
ofrename(3)
ofstatus(3)
ofcopy(1)
ofis(1)
ofcreate(3)
ofeditors(1)
ofopenfile(3)
ofcli(1)

mkboot{1)
quadd(3)
guread(3)

quremove(3)
stdio(3)

setbuf(3)
mknod(1)
swapshort(3)

swab(3)

Index-8

cc:

cflow: generate
cpp: the

ch: -

lint: a

cxref: generate

ctrace:

de: desk
cal:print
service.
cu:

data returned by stat
system

malloc, free, realloc,

fast/ malloc, free,
realloc,

intro: introduction to
system

link and unlink system
to an LP line printer. Ip,.

modemcap: smart modem
termcap: terminal

terinfo: terminal

disks. dsk: winchester,

{variant of ex for

C compiler.

C flowgraph.

C language preprocessor.

C program beautifier.
C program checker.

C program cross
reference.

C program debugger.
cal: print calendar.
calculator.

calendar.

calendar: reminder

call another computer
system.

call. stat:

calloc: main memory
allocator. :

calloc, mallopt, mallinfo:
calls and error number.

calls. fink, unlink:
exercise

cancel: send/cancel
requests

capabililty data base.
capability data base.
capability data base.
cartridge, and floppy

casual users). /editor

ce(1)
cflow(1)
cpp(1)
cb(1)
lint(1)
exref(1)

ctrace(1)
cal(1)
de(1)
cal(1)
calendar(1)
cu(1)

stat(5)
malloc(3)
malloc(3) (fast
version)
intro(2)

link(1)

Ip(1)

modemcap(5)
termcap(d)
terminfo(4)
dsk(6)

edit(1)

Index-9

files.

beautifier.

directory.

commentary of an SCCS
delta.

ceiling, remainder,/ floor,
/ceil, fmod, fabs: floor,

BTOS. mkboot: reformat

uuname: CENTIX system
to

uucp, uulog, uuname:

print name of current
get name of current

command execution. uux;
uuto, uupick: public

flowgraph.
delta: make a delta

of running process by

pipe: create an
interprocess

terminal’s local RS-232
stream. ungetc: push

1207891

cat: concatenate and
print

ch: C program

cc: € compiler.

cd: change working
cdc: change the delta

ceil, fmod, fabs: fioor,

ceiling, remainder;
absolute/

CENTIX kernel and copy
it to
CENTIX system copy.

CENTIX system to
CENTIX/

CENTIX system. uname:
CENTIX system. uname:

CENTIX-t0-CENTIX
system

CENTIX-to-CENTIX
system file/

cflow: generate C

{change) to an SCCS
file.

changing nice. /priority
channel.

channels. tp: controlling

character back into input

cat(1)

ch(1)
ce(1)
cd(1)
cde(1)

floor(3)
floor(3)

mkboot(1)
uucp{1)
uucp(1)

uname(1)
uname(2)

uux(1)
uuto(1)

cflow(1)
delta(1)

renice(1)

pipe(2)

tp(6)
ungetc(3)

Index-10

user. cuserid: get

getchar, fgetc, getw: get

/putchar, fputc, putw:
put

ascii: map of ASCI!

—tolower, toascii:
translate

isentrl, isascii: classify

tr: translate
directory.

/dfsek: file system
consistency

lint: a C program

grpck: password/group
file

copy file systems with
label

systems processed by
fsck.
file. sum: print

chown,

times: get process ‘and

terminate. wait: wait for

file.

character login name of
the

character or word from a/

character or word on a
stream.

character set.

characters. /._toupper,

characters. /isprint,
isgraph,

characters.
chdir: change waorking

check and interactive
repair.

checker.

checkers. pwek,

checking. volcopy, labelit:

checklist: list of file

checksum and block
count of a

chgrp: change owner or
group

child process times.
child process to stop or
chmod: change mode.

chmod: change mode of
file.

cuserid(3)

getc(3)
putc(3)

ascii(5)

conv(3)
ctype(3)

tr(1)
chdir(2)
fsck(1)

lint(1)
pwek(1)

volcopy(1)
checklist(d)
sum(1)
chown(1)

times(2)
wait(2)
chmod(1)
chmod(2}

Index-11

of a file.

group.

directory.

for a command.

isgraph, iscntrl, isascii:

uuclean: uucp spool
directory

screen.

clri:

clear:

status./ ferror, feof,

exRespond: send a
message to a

set a process alarm
cron:
used.

Idclose, Idaclose:

close:
descriptor.

fclose, fflush:

appropriate a request
line-feeds.
deltas.

comb:

1207891

chown: change owner
and group

chown, chgrp: change
owner or

chroot: change root

chroot: change root
directory

classify characters.
/isprint,

clean-up.

clear: clear terminal
clear i-node.

clear terminal screen.
clearerr, fileno: stream

client.

clock. alarm:
clock daemon.

clock: report CPU time
used.

close a common object
file.

close a file descriptor.

close: close a file

close or flush a stream.

clri: clear i-node.

- cmp: compare two files.

code. exServeRq:
col: filter reverse
comb: combine SCCS
combine SCCS deltas.

chown(2)
chown(1)

chroot(2)
chroot(1)

ctype(3)
uuclean(1)

clear(1)
clri(1)
clear(1)
ferror(3)
exrespond(2)

alarm(2)
cron(1)
clock(3)

; ldclose(3)

close(2)
close(2)
fclose(3)
chri(1)
cmp(1)
exserverq(2)
col(1)
comb(1)
comh(1)

Index-12

common to two sorted
files.

nice: run a

change root directory for a
env: set environment for
uux: remote system

quits. nohup: run a

interactive BTOS JCL.
ofcli:

getyopt: parse
locate executable file for

shell, the standard/
restricted

data and/ timex: time a
system: issue a shell
test: condition evaluation
time: time a

argument list(s) and
execute

intro: introduction to

at, batch: execute
install: install
cdc: change the delta

ar.

comm: select or reject
lines

command at low priority.
command. chroot;
command execution.
command execution.

command immune to
hangups and

command line interpreter
for

command options.
command. path:

command programming
language.

command; report process
command.
command.
command.

command. xargs:
construct

commands and
applicaten/

commands at a later/
commands.

commentary of an SCCS
delta.

common archive file
format.

comm(1)

nice(1)
chroot(1)
env(1)
uux(1)
nohup(1)

ofcli(1)

getopt(1)
path(1)
sh(t)

timex({1)
system(3)
test(1)
time(1)
xargs(1)

intro(1)

at(1)
install(1)
cde(1)

ar{d)

Index-13

editor output. a.out:

and archive files to

routines. ldfcn:

Idopen, Idaopen: open a

/line number entries of a

/Idaclose: close a
read the file header of a

entries of a section of a
file header of a

/entries of a section of a
/section header of a

an indexed/name section
of a

of a symbol table entry
of a

symbol table entry of a

seek to the symbol tabie
of a

line number entries in a

nm: print name list of

relocation information for
a

scnhdr: section header
for a

1207891

common assembler and
link

common formats. /object

" common object file

access
common object file for/

common object file
function.

common object file.

common object file.
|dfhread:

common object file.
/number

common object file.

- [seek to

common object file.
common object file.

common object file.
/seek to

common object file. /the
index

common object file.
Jindexed

common object file.
Idtbseek:

common object file.
linenum:

common object file.

common object file.
reloc:

common object file.

a.out(4)

convert(1)
idfen(4)

Idopen(3)
Idiread(3)

ldclose(3)
Idthread(3)

Idiseek(3)
Idohseek(3)

ldrseek(3)
ldshread(3)
Idsseek(3)

idtbindex(3)
ldtbread(3)
Idthseek(3)
linenum(4)

nm(1)
reloc(4)

scnhdr(4)

Index-14

line number information
from a

retrieve symbol name for
table format. syms:

filehdr: file header for
id: link editor for
size: print section sizes of

comm: select or reject
lines

ipcs: report inter-process

stdipc: standard
- interprocess

diff: differential file
cmp:
SCCS file. scesdiff:

diff3: 3-way differential
file

dircmp: directory

expression. regcmp,
regex:

regexp: regular
expression

regcmp: regular
expression

term: format of
cc. C
tic: terminfo

yacc: yet another

common object file. /and

common obiject file
symbol/

common object file
symbol

common object files.
common object files.
common object files.

common to two sorted
files.

communication facilities/

communication package
(ftok).

comparator.
compare two files.

compare two versions of
an

comparison.

comparison.

compile and execute
regular

compile and match
routines.

compile.

compiled term file.
compiler.
compiler.

compiler-compiler.

strip(1)

‘ ldgetname(3)

syms(4)

filehdr(4)
1d(1)
size(1)

comm(1)

ipes(1)
stdipe(3)

diff(1)
cmp(1)
scesdiff(1)

diff3(1)

dircmp(1)
regemp(3)

regexp(5)
regcmp({1)

term(4)
ce(1)
tic(1)
yace(1)

Index-15

modest-sized/
bs: a

erf, erfc: error function and

wait: await

pack, pcat, unpack:

table entry of a/
Idtbindex:

cu: call another

cat:
test:

system. Ipadmin:

fwtmp, wtmpfix:
manipulate

an out-going terminal
line

bre, beheckre, re, allre,

tsck, dfsck: file system
terminal.
Application Processor/
console:

math: math functions
and

mkfs:

execute command. xargs:

Is: list
csplit:
Processor/ console:

1207891

compiler/interpreter for

complementary error
function.

completion of process.

compress and expand
files.

compute the index of a
symbol

computer system.

concatenate and print
files.

condition evaluation
command.

configure the LP spooling

connect accounting
records.

connection. dial:
establish

conrc: system
initialization/

consistency check and/
console: console
console; control
console terminal.

constants.

construct a file system.

construct argument
list(s) and

contents of directory.
context split.
control Application

bs(1)
erf(3)

wait{1)
pack(1)

Idthindex(3)

cu(1)
cat(1)

test(1)

Ipadmin(1)
fwtmp(1)

dial(3)

-bre(1)

fsck(1)
console(6)
console(1)
console(6)
math({5)

mkfs(1)
xargs(1)

1s(1)
csplit(1)

console(1)

Index-16

iocth:
fentl: file

init, icode, telinit:
process

msgetl: message
semctl: semaphore
shmetl: shared memory
fentl: file
uucp status inquiry and job
vc: version
interface. tty:

RS-232 channels. tp:

terminals. term;
units:
dd:

floating-point number.
atof:

integers and/ I3tol, Itol3:

and base-64 ASCIl/
b4, 164a:

and archive files to/
/gmtime, asctime, tzset:

to string. ecvt, fovt, govt

scanf, fscanf, sscanf:
archive files/ convert:
strtod, atof:

control device.
control.

control initialization.-

control operations.

. control operations

control operations.
control options.
control. uustat:
control.

controlling terminaf

controlling terminal’s
local

conventional names for
conversion program.

convert and copy a file.
convert ASCH string to

convert between 3-byte

convert between fong
integer

convert: convert object
convert date and time to/

convert floating-point
nubmner :

convert formatted input.
convert object and
convert string to/

ioctl(2)
fentl(2)
init(1)

msgcti(2)
semcti(2)
shmetl{2)
fenti(5)
uustat(1)
ve(1)
tty(6)
tp(6)

term(5)
units(1)
dd{1)
atof(3)

13tol(3)
ab4i(3)

convert{1)
ctime(3)
ecvt(3)

scanf(3)
convert(1)
strtod(3)

Index-17

strtol, atol, atoi:
dd: convert and
bcopy: interactive block

cpio;
access time. dcopy:

checking,. volcopy,
labelit:

reformat CENTIX kernel
and

cp, In, mv:

system, ofcopy:

system to CENTIX
system

system-to-
computer system file

file.

core: format of
mem, kmem:

atan2: trigonometric/
sin,

functions. sinh,

sum: print checksum and
block

we: word

files.

cpio: format of
and out.

archive.

1207891

convert string to integer.
copy a file

copy

copy file archives in and
out.

copy file systems for
optimal

copy file sysfems with
labe!

copy it to BTOS.
mkboot:

copy, link or move files.

copy to or from the
BTOS file

copy. /uuname: CENTIX

copy. /uupick: public
computer

core: format of core
image

core image file.
tore memory.

cos, tan, asin, acos,
atan,

cosh, tanh: hyperbolic

count of a file.

count.

cp, In, mv: copy, link or
move

cpio archive.
cpio: copy file archives in

cpio: format of cpio

strtol(3)
dd(1)
beopy(1)
cpio(1)

deopy(1)

volcopy(1)

mkboot{1)

epl1)
ofcopy(1)

vucp(1)
uuto(1)
core(4)

core(4)
mem(6)
trig(3)

sinh(3)

sum(1)

we(1)
cp(1)

cpio(d)
cpio(1)
cpio(4)

Index-18

preprocessor.

binary directories.
clock: report

rewrite an existing one.

file. tmpnam, tempnam:
an existing one. creat:

fork:
tmpfile:
channel. pipe:

files. admin:
(slice). crup:

umask: set and get file

file.
crontab__user

cxref: generate C
program

optimization package.
curses:

partition (slice).
generate DES encryption.

terminal.
for terminal.

asctime, tzset: convert
date/

cpp: the C language
cpset: install object files in
CPU time used.

creat: create a new file or

create a name for a
temporary

create a new file or
rewrite

create a new process.
create a temporary file.
create an interprocess

create and administer
SCCS

create file system
partition

creation mask.

“cron: clock daemon.

crontab._user crontab
crontab file.

cross reference.
CRT screen handling and

crup: create file system
crypt, setkey, encrypt:
csplit: context split.

ct: spawn getty to a
remote

ctermid: generate file
name

ctime, localtime, gmtime,

cpp(1)
cpset(1)
clock(3)
creat(2)
tmpnam(3)

creat(2)

fork(2)
tmpfile(3)
pipe(2)
admin(1)

crup(1)

umask(2)
cron(1)
crontah(1)
crontab(1)
exref(1)

curses(3)

crup(1)
crypt(3)
csplit(1)
ct(1)

ctermid(3)

ctime(3)

Index-19

debugger.

system.

uname: get name of
uname: get name of
activity. sact: print

slot in the utmp file of the

getcwd: get path-name of

and optimization package.

name of the user.
of each line of a file.

each line of a file. cut:

cross reference.

command; report process
smart modem capabililty

termcap: terminal
capability

terminfo: terminal
capability

/sgetl: access long
integer

lock process, text, or
prof: display profile

call, stat:

1207891

ctrace: C program

cu: call another computer
current CENTIX system
current CENTIX system
current SCCS file editing
current user. /find the

current working
directory.

curses: CRT screen
handling

cuserid: get character
login

cut: cut out selected
fields

cut out selected fields of

cxref: generate C
program

data and system/ /time a
data base. modemcap:

data base.
data base.

data in a
machine-independent

data in memory. plock:
data.

data are turned by stat
system

ctrace(1)
cu(1)
uname(2)
uname(2)
sact(1)
ttyslot(3)
getewd(3)

curses(3)
cuserid(3)
tut{1)

cut{1)
cxref(1)

timex(1)
modemcap(5)

termcap(4)
terminfo{4)
sputl(3)

plock(2)
prof(1)
stat(5)

index-20

brk, sbrk: change

types: primitive system
join: relational

tput: query terminfo
/asctime, tzset: convert
date: print and set the
date.

optimal access time.

file.

adb: absolute
ctrace: C program
fsdb: file system
sdb: symbolic

names. basename,
dirname:

file. tail:

delta commentary of an
ScCs

file. delta: make a

delta. cdc: change the

rmdel: remove a
to an SCCS file.

comb: combine SCCS

cron: clock

data segment space
allocation.

data types.

database operator.
database.

date and time to string.
date.

date: print and set the
de: desk calculator.

dcopy: copy file systems
for

dd: convert and copy a
debugger.
debugger.
debugger.
debugger.
deliver portions of path

deliver the last part of a
delta. cdc: change the

delta (change) to an
SCCS

delta commentary of an
SCCS

delta from an SCCS file.

delta: make a delta
(change)

deltas.
demon.

brk(2)

types(5)
join(1)
tput(1)
ctime(3)
date(1)
date(1)
de(1)
dcopy(1)

dd(1)
adh(1)
ctrace(1)
fsdh(1)
sdh(1)

basename(1)

tail(1)
cde(1)

delta(1)
cde(1)

rmdel(1)
delta(1)

comb(1)

cron(1)

Index-21

mesg: permit or
close: close a file
dup: duplicate an open file

/wmsetids: associate a
file

dc:

file. access:

file:

for finite width output
master: master

ioctl: control

devom:

blocks.
check and interactive/
fsck,

terminal line connection.

hdiff: big
comparator.

comparison.

sdiff: side-by-side
diff:

diff3: 3-way
in large files and/ pilf,

directories.

1207891

deny messages.
descriptor.
descriptor.

descriptor with a
window.

desk calculator.

determine accessibility of
a

determine file type.
device. /fold long lines
device information table.
device.

device name.

dvnm: device name.

df: report number of free
disk

dfsclg: file system
consistency

dial: establish an
out-going

diff.
diff: differential file

diff3: 3-way differential
file

difference program.

differential file
comparator.

differential file
comparison.

dio: performance
improvement

dir: format of

mesg(1)
close(2)
dup(2)

wmsetid(3)

de(1)
access(2)

file(1)
fold(1)
master(4)
ioctl(2)
devam(1)
devam(1)
df(t)

fsck(1)
dial(3)

bdiff(1)
diff(1)
diff3(1)

sdiff(1)
diff(1)

diff3(1)
pili(5)

dir(4)

Index-22

comparison.

improvement in large
files and

install object files in
binary

dir: format of

ofls: list BTOS files and
rm, rmdir: remove files or
cd: change working
chdir: change working
chroot: change root
uuclean: uucp spool
dircmp:

unlink: remove

chroot: change root

/make a lost + found

ofDIDir, ofReadDirSector:

BTOS

path-name of current
working

Is: list contents of
mkdir: make a
mvdir: move a
pwd: working

ordinary file. mknod:
make a

dircmp: directory

direct 1/0. /dio:
performance

directories. cpset:

directories.
directories.
directories.

directory.

directory.

directory.

directory clean-up.
directory comparison.

directory entry.

directory for a command.

directory for fsck.

directory functions.
ofCrDir,

directory. getewd: get

directory.
directory.
directory.
directory name.

directory, or a special or

diremp(1)
pilf(5)

cpset{1)

dir(4)
ofis(1)
m(1)
cd(1)
chdir(2)
chroot(2)
uuclean(1)
dircmp(1)
unlink(2)
chroot(1)
mklost+ found(1)
ofdir(3)

getcwd(3)

Is(1)
mkdir(1)
mvdir(1)
pwd(1)
mknod(2)

Index-23

path names. basename,
printers. enable,
acct: enable or
type, modes, speed, and

line

sadp:

df: report number of free

update: provide
du: summarize
cartridge, and floppy

mount, umount: mount
and

vi: screen-oriented
(visual)

prof:
hypot: Euclidean

/lcong48: generate
uniformly

whodo: who is
/atof: convert string to
tdl: RS-232 terminal

nrand48, mrand48,
jrand48,/

cartridge, and floppy/
usage.

an object file.

1207891

dirname: deliver portions
of

disable: enable/disable
LP

disable process
accounting.

discipline. /set terminal

disk access profiler. ‘
disk blocks.

disk synchronization.
disk usage.

disks. dsk: winchester,

dismount file system.

display editor based on ex.

display profile data.
distance function.

distributed
pseudo-random/

doing what.

double-precision number.

download.

drand48, erand48,
Irand48.

dsk: winchester,
du: summarize disk

dump: dump selected
parts of

basename(1)
enable(1)
acct(2)

getty(1)

sadp(1)
df(1)
update(1)
du(1)
dsk(6)

mount(1)
vi(1)

prof(1)
hypot(3)
drand48(3)

whodo(1)
strtod(3)
tdi(1)
drand48(3)

dsk(6)
du(1)
dump(1)

Index-24

hd: hexadecimal and asci
file

od: octal

object file. dump:
descriptor.
descriptor. dup:
echo:

floating-point number to/

program. end, etext,
ofed, ofvi:

ofed, ofvi:

(variant of ex for/

sact: print current SCCS
file

/{visual) display
ed, red: text
ex: text

files. 1d: link

common assembler and
link

sed: stream
for casual/ edit: text
/user, real group, and

and/ /getegid: get read
user,

split FORTRAN, ratfor, or

dump.

dump.

dump selected parts of an
dup: duplicate an open file
duplicate an open file
echo arguments.

echo: echo arguments.
ecvt, fovt, gevt: convert
ed, red: text editor.
edata: last locations in
edit BTOS files.

edit BTOS files.

edit: text editor

editing activity.

editor based on ex.
editor.

editor.

editor for common object
editor output. a.out:

editor.
editor (variant of ex
effective group 1Ds.

effective user, real
group,

efl files, fsplit:

hd(1)

od(1)
dump(1)
dup(2)
dup(2)
echo(1)
echo(1)
ecvt(3)
ed{1)
end(3)
ofed(1)
ofvi(1)
edit(1)
sact(1)

vi(1)
ed(1)
ex(1)
1d(1)
a.out(4)

sed(1)
edit(1)
getuid(2)
getuid(2)

fsplit(1)

Index-25

for a pattern. grep,

enable/disable LP
printers.

accounting. acct:

enable, disable:

encryption, crypt, setkey,

setkey, encrypt: generate
DES

locations in program.

getgrgid, getgrnam,
setgrent,

getpwuid, getpwnam,
setpwent,

utmp/ /pututline,
setutent,

nlist: get

file. linenum: line number

file/ /manipulate line
number

common/ /seek to line
number

/ldnrseek: seek to
relocation

utmp,wtmp: utmp and
wtmp

fgetgrent: get group file

fgetwent: get password
file

1207891

egrep, fgrep: search a file

enable, disable:

enable or disable process

enable/disable LP
printers

encrypt: generate DES
encryption. crypt,

end, etext, edata: last

endgrent, fgetgrent: get
group/

endpwent, fgetpwent:
get/

endutent, utmpname:
access

entries from name list.

entries in a common
object

entries of a common
object

entries of a section of a
entries of a section of a/
entry formats.

entry. /setgrent,

endgrent,

entry. /setpwent,
endpwent,

grep(1)
enable(1)

acct(2)
enable(1)

crypt(3)
crypt(3)

end(3)
getgrent(3)

getpwent(3)
getut(3)

nlist(3)

linenum(4)
Idiread(3)
Idiseek(3)
Idrseek(3)
utmp(4)
getgrent(3)

getpwent(3)

Index-26

utmpname: access utmp
file

object file symbol table

/the index of a symbol
table

/read an indexed symbol
table

putpwent: write
password file

quAdd: add a new
unlink: remove directory

command execution.

profile: setting up an

environ: user

execution. env: set

getenv: return value for

putenv: change or add
value to

inteface, and terminal

mrand48, jrand48,/
drand48,

complementary error
function.

complementary error/
erf,

system error/ perror,

entry. /setutent,
endutent,

entry. /symbol name for
common

entry of a common
object file.

entry of a common
object file.

entry.

entry to a BTOS queue.
entry.
env: set environment for

environ: user
environment.

environment at login
time.

environment.

environment for
command

environment name.

environment.

environment. /terminal

erand48, Irand48,
nrand48,

erf, erfc: error function and

erfc: error function and

errno, sys—errlist,
sys._nerr:

getut(3)
ldgetname(3)
l;ilbindeX(3)
Idtbread(3)
putpwent(3)

quadd(3)
unlink(2)
env(1)

environ(5)
profile(d)

environ(5)
env{1)

getenv(3)
putenv(3)

tset(1)
drand48(3)

erf(3)
erf(3)

perror(3)

Index-27

complementary/ erf, erfc:

function and
complementary

sys_errlist, sys__nerr:
system

to system calls and

matherr:

hashcheck: find spelling
terminal line/ dial:
setmnt:

in program. end:

hypot:

expression. expr:
test: condition
/text editor (variant of

display editor based on
obtain/ exQueryDfitResp
Exch,

exWait, exCheck:
quReadNext,
quReadKeyed:

wait for the response.

obtain and abandon

message queue. exWait,

1207891

error function and

error function. /erfc: error
error messages. /ermo,

error numbers.
/introduction

error-handling function.
errors. /hashmake, spellin,
establish an out-going
establish mount table.
etext, edata: last locations

Euclidean distance
function.

evaluate arguments as an
evaiuation command.

ex for casual users).

ex: text editor.

ex. /screen-oriented
{visual)

exAllocExch,
exDeallocExch:

examine an ICC message
queue.

examine BTOS queue.

exCall: Send a request
and

exchanges.
/exDeallocExch:

exCheck: examine an ICC

erf(3)
erf(3)

perror(3)
intro(2)

matherr(3)
speli(1)
dial(3)
setmnt(1)
end(3)
hypot(3)

expr(1)
test(1)
edit(1)
ex(1)
vi(1)

exchanges(2)
exwait(2)
quread(3)
excall(2)
exchanges(2)

exwait(2)

Index-28

a file. locking:

abandon/ /exAllocExch,

execlp, execvp: execute a/

execvp: execute/ execl,
execv,

execl, execv, execle,
execve,

path: locate

execve, execlp, execvp:

specific Application/
spawn:

specific/ spawnlp,
spawnvp:

construct argument
list(s) and

regex: compile and

set environment for
command

sleep: suspend

sleep: suspend

monitor: prepare
spawnsrv: service spawn
profil:

uux: remote system
command

execvp: execute a/ execl,

execute/ execl, execv,
execle,

/execy, execle, execve,
execlp,

exclusive aceess to
regions of

exDeallocExch: obtain and

execl, execv, execle,
execve,

execle, execve, execlp,
execlp, execvp: execute a/

executable file for
command.

execute a file. /execle,

execute a process on a
execute a process on a
execute command. xargs:

execute regular/ regcmp,

execution. env:

execution for an interval.
execution for interval.
execution profile.
execution requests.
execution time profile.

execution.
execv, execle, execve,
execlp,

execve, execlp, execvp:

execvp: execute a file.

locking(2)

exchanges(2)

exec(2)
exec(2)
exec(2)
path{1)

exec(2)

spawn(1)
spawn(3)
xargs(1)

regemp(3)
env(1)

sleep(1)
sleep(3)
monitor(3)
spawnsrv(1)
profil(2)

uux(1)
exec(2)
exec(2)

exec(2)

index-29

system calls. link, unlink:
a new file or rewrite an
process.

exit,

exponential, logarithm,/

pcat, unpack: compress
and

exp, log, log10, pow, sqrt:
expression.
routines. regexp: regular

regcmp: regular

expr: evaluate arguments
as an

compile and execute
regular

exAllocExch,
exDeallocExch:/

server.
client.
exCnxSendOnDealloc:
make/

request code.

ICC message queue.

remainder,/ floor, ceil,
fmod, :

factor:

true,

1207891

exercise link and unlink
existing one. creat: create

exit, __exit: terminate

_exit: terminate process.

exp, log, log10, pow,
sqrt:

expand files. pack,

exponential, logarithm,
power,/

expr: evaluate arguments
as an

expression compile and
match

expression compile.

expression.

expression. regcmp, regex:

exQueryDfltRespExch,

exRequest: Send a
message to a

exRespond: send a
message to 3

exSendOnDealloc,

exServeRq: appropriate a

exWait, exCheck: examine
an

fabs: floor, ceiling,

factor a number
factor: factor a number.

false: provide truth values.

link(1)
creat(2)
exit(2)
exit{(2)
exp(3)

pack(1)
exp(3)
expr{1)
regexp(5)

regcmp(1)
expr(1)

regemp(3)
exchanges(2)
exrequest(2)
exrespond(2)
exfinal(2)

exserverq(2)

exwait(2)
floor(3)

factor(1)
factor(1)
true(1)

Index-30

data in a
machine-independent

finc:

/calloc, mallopt, mallinfo:

abort: generate an 10T

a stream.

floating-point number/
ecvt,

fopen, freopen,

status inquiries. ferror,

fileno: stream status/

statistics for a file
system.

stream. fclose,

wofd from a/ getc,
getchar, .

getgrnam, setgrent,
endgrent,

/getpwnam, setpwent,
endpwent,

stream. gets,
pattern. grep, egrep,

times. utime: set

Idfen: common object

determine accessibility of
a

fashion.. /access long
integer

fast incremental backup.

fast main memory
allocator.

fault.

fclose, fflush: close or
flush

fentl: file control.
fentl: file control options.
fevt, gevt: convert

fdopen: open a stream.

feof, clearerr, fileno:
stream

ferror, feof, clearerr,

ff: list file names and

fflush: close or flush a

fgetc, getw: get character
or

fgetgrent: get group file/

fgetpwent: get password
file/

fgets: get a string from a
fgrep: search a file for a

file access and
modification

file access routines.

file. access:

sputl(3)

finc(1)

malloc(3) (fast
version)

abort(3)
fclose(3)

fentl(2)
fentl(5)
ecvt(3)

fopen(3)
ferror(3)

ferror(3)
ff(1)

fclose(3)
getc(3)

getgrent{3)
getpwent(3)

gets(3)
arep(1}
utime(2)

Idfen{a)

access(2)

Index-31

tar: tape
cpio: copy

pwek, grpck:
password/group

chmod: change mode of

change owner and group
of a .

diff: differential

diff3: 3-way differential
fentl:

fentl:

system-to-computer
system

core: format of core
image

umask: set and get
crontab--user crontab
fields of each line of a
dd: convert and copy a

a delta (change) to an
SCCS

close: close a
dup: duplicate an open

wmsetid, wmsetids:
associate a

hd: hexadecimal and ascii

selected parts of an
object

120780

file archiver.
file archives in and out.

file checkers.

file.

file. chown:

file comparator.
file comparison.
file control.

file control options.

file copy. /public
computer

file.

file creation mask.

file.

file. cut: cut out selected
file.

file. delta: make

file descriptor.
file descriptor.

file descriptor with a
window.

file: determine file type.
file dump.

file. dump: dump

tar(1)
cpio(t)
pwek(1)

chmod(2)
chown(2)

diff(1)

diff3(1)
fentl(2)
fentl(5)
uuto(1)

core(4)

umask(2)
crontah(1)
cut(1)
dd(1)
delta(1)

close(2)
dup(2)

wmsetid(3)

file(1)
hd{1)
dump(1)

Index-32

sact: print current SCCS

endgrent, fgetgrent: get
group

fgetpwent: get password
utmpname: access utmp

putpwent; write
password

execlp, execvp: execute a

grep, egrep, fgrep:
search a

path: locate executable

Idaopen: open a commen
object

aliases: aliases
ar: common archive
intro: introduction to

entries of a common
object

get: get a version of an
SCCS

group: group
files. filehdr:

file. Idfhread: read the

Idohseek: seek to the
optional

split: split a

issue: issue identification

file editing activity.
file entry. /setgrent,

file entry. /endpwent,
file entry. /endutent,
file entry.

file. /execv, execle,
execve,

file for a pattern.

file for command.

file for reading. Idopen,

file for sendmail.
file format.
file formats.

file function. /line number
file.

file,

file header for common
object

file header of a common
object

file header of a common
object/

file into pieces.
file.

sact{1)
getgrent(3)

getpwent(3)
getut(3)
putpwent(3)

exec(2)
grep(1)

path(1)
Idopen(3)

aliases(5)
ar(4)
intro(4)
Idiread(3)

get(1)

group(4)
filehdr(4)

ldfhread(3)
idohseek(3)

split(1)

issue(4)

Index-33

of a member of an
archive

close a common object

file header of a common
object

a section of a common
cbject

file header of a common
object

a section of a common
object

header of a common
object

section of a common
object

table entry of a common
object

table entry of a common
object

table of a common object

entries in a common
object

link: link to a

access to regions of a
mknod: build special

or a special or ordinary
ctermid: generate
mktemp: make a unique
a file system. ff: list
change the format of a text

1207891

file. /read the archive
header

file. dclose, Idaclose:
file. Idfhread: read the

file. /line number entries of
file. /seek to the optional
file. /relocation entries of

file. /indexed/named
section

file. /to an
indexed/named

file. /the index of a
symbol

file. /read an indexed
symbol

file. /seek to the symbol

file. linenum: line number

file.

file. locking: exclusive
file.

file. /make a directory,
file name for terminal.
file name.

file names and statistics for

file. newform:

Idahread(3)

ldclose(3)
ldfhread(3)

ldiseek(3)
Idohseek(3)
ldrseek(3)
ldshread(3)
ldsseek(3)
Idthindex(3)
Idthread(3)

Idthseek(3)

linenum(4)

link(2)
locking(2)
mknod(1)
mknod(2)
ctermid(3)
mktemp(3)
fi(1)
newform(1)

index-34

name list of common
object

null: the null
/find the slot in the utmp
Input/output on a BTOS

ofRename: rename a
BTOS

one. creat: create a new
passwd: password

or subsequent lines of one
soft-copy terminals. pg:
/rewind, ftell: reposition a
Iseek: move read/write
activity/ fpsar:

prs: print an SCCS

read: read from

for a common object

remove 3 delta from an
SCCS

bfs: big
two versions of an SCCS
sccsfile: format of SCCS

header for a common
object

ofSetFileStatus: BTOS

file. nm: print

file.

file of the current user.
file. ofRead, ofWrite:
file.

file or rewrite an existing
file.

file. /lines of several files
file perusal filter for

file pointer in a stream.
file pointer.

File Processor system
file.

file.

file. /relocation
information

file. rmdel:

file scanner.
file. sccsdiff: compare
file.

file. scnhdr: section

File Status.
of GetFileStatus,

nm(1)

null(6)
ttyslot(3)
ofread(3)

ofrename(3)

creat(2)
passwd(4)
paste(1)
pgll)
fseek(3)
Iseek(2)
fpsar(1)
prs(1)
read(2)
reloc(4)

rmdel(1)

bfs(1)
scesdiff(1)
scesfile(4)
scnhdr(4)

ofstatus(3)

Index-35

stat, fstat: get

from a common object

checksum and block
count of a

swrite: synchronous
write on a

/symbol name for
common object

syms: common object

and interactive/ fsck,
dfsck:

fsdb:

names and statistics for a
fs: format of

mkfs: construct a

umount: mount and
dismount

mount. mount a

copy to or from the
BTOS

crup: create

ustat: get

mnttab: mounted
umount: unmount a
access time. dcopy: copy
fsck. checklist: list of
volcopy, labelit: copy
deliver the last part of a

1207891

file status.

file. /line number
information

file. sum: print

file.

file symbol table entry.

file symbol table format.

file system consistency
check

file system debugger.
file system, ff: list file
file system.

file system.

file system. mount,

file system.

file system. ofcopy:

file system partition
(slice).

file system statistics.
file system table.
file system.

file systems for optimal

file systems processed by

file systems with label/
file. tail:

stat(2)
strip(1)

sum(1)
swrite(2)
ldgetname(3)

syms(4)
fsck(1)

fsdb(1)
1i(1)
1s(4)
mkfs(1)

mount(1)

mount(2)

ofcopy(1)
crup(1}

ustat(2)
mnttah(4)
umount(2)
deopy(1)
checklist{4)
volcopy(1)
tail(1)

Index-36

term: format of compiled
term

tmpfile: create a
temporary

create a name for a
temporary

and modification times of a
ftw: walk a
file: determine

undo a previous get of
an SCCS

report repeated lines in a
val: validate SCCS

write: write on a

umask: set

common object files.
ferror, feof, clearerr,

create and administer
SCCs

/improvement in large
ofls: list BTOS

cat: concatenate and
print

cmp: compare two

lines common to two
sorted

cp, In, mv: copy, link or
move

file header for common
object

file.
file.
file. tmpnam, tempnam:

file. touch: update access
file tree.
file type.

file. unget:

file. uniq:

file.

file.

file-creation mode mask.
filehdr: file header for
fileno: stream status/

files. admin:

files and direct 1/0.
files and directories.

files.

files.

files. comm: select or
reject

files.

files. filehdr:

term{4)
tmpfile(3)
tmpnam(3)

touch(1)
ftw(3)
file(1)
unget(1)

unig(1)
val(1)
write(2)
umask(1)
filehdr(4)
ferror(3)
admin(1)

pilf(5)
ofis(1)
cat(1)

cmp(1)

comm(1)
cpl1)

filehdr(4)

Index-37

find: find
frec: recover

format specification in
text

cpset: install object

intro: introduction to
special

link editor for common
object

lockf: record locking on
ofDelete: Allocate BTOS
ofed, ofvi: edit BTOS

ofCloseAliFiles: Access
BTOS

tm, rmdir: remove

/merge same lines of
several

unpack: compress and
expand

pr: print

section sizes of common
object

sort: sort and/or merge
/object and archive
what: identify SCCS
terminals. pg: file perusal
nl: line numbering

col:

/exCnxSendOnDealloc:
make

1207891

files
files from a backup tape.

files. fspec:

files in hinary directories.

files.
files. Id:

files.

files. /ofChangeFileLength.
files.

files. /ofCloseFile,

files or directories.

files or subsequent lines of/
files. pack, pcat,

files.

files. size: print

files.

files to common formats.
files.

filter for soft-copy

filter.

filter reverse line-feeds.

final requests.

find(1)
frec(1)
tspec(4)

cpset(1)
intro(6)

1d(1)

lockf(3)
ofcreate(3)
ofeditors(1)
ofopentile(3)

m(1)
paste(1)

pack(1)

pr(1)
size(1)

sort(1)
convert(1)
what{1)
pg(1)
al(1)
col(1)
exfinal(2)

Index-38

find:

hyphen:
ttyname, isatty:
object library. lorder:

hashmake, spellin,
hashcheck:

of the current user.
ttyslot:

fold: fold long lines for
tee: pipe

atof: convert ASCH
string to

ecvt, fovt, gevt: convert

/modf: manipulate parts
of

floor, ceiling, remainder,/
floor, ceil, fmod, fabs:
/cartridge, and

cflow: generate C

fclose, fflush: close or
remainder,/ floor, ceil,

finite width output
device.

width output device.
fold:

finc: fast incremental
backup.

find files.

find: find files.

find hyphenated words.
find name of a terminal.
find ordering relation of an

find spelling errors. spell,

find the slot in the utmp file

finite width output device.

fitting.

floating-point number.

floating-point number to/

floating-point numbers.

floor, ceil, fmod, fabs:
floor, ceiling, remainder,/
floppy disks.

flow graph.

flush a stream.

fmod, fabs: floor, ceiling,

fold: fold long lines for

fold long lines for finite

finc(1)

find(1)
find(1)
hyphen(1)
ttyname(3)
lorder(1)
spell(1)

ttyslot(3)

fold(1)
tee(1)
atof(3)

ecvt(3)
frexp(3)

floor(3)
floor(3)
dsk(6)
cflow(1)
felose(3)
floor(3)
fold(1)

fold(1)

Index-39

stream.

ar: common archive file
newform: change the
i-node:

term:

core:
cpio:
dir:

fs:
scesfile:

files. fspec:

object file symbol tabie
archive files to common
intro: introduction to file

witmp: utmp and wtmp
entry

scanf, fscanf, sscanf:
convert

Svfprintf, vsprintf: print

reporter. fpsar:
fprintf, sprintf: print
system activity/

word on a/ putc,
putchar,

1207891

fopen, freopen, fdopen:

" open a

fork: create a new
process.

format.
format of a text file.
format of an i-node.

format of compiled term
file.

format of core image file.
format of cpio archive.
format of directories.
format of file system.
format of SCCS file.

format specification in
text

format. syms: common
formats. /object and
formats.

formats. utmp,
formatted input.

formatted output of a
varargs/

fp system activity
formatted output. printf,
tpsar: File Processor

fputc, putw: put character
or

fopen(3)
fork(2)

ar(4)
newform(1)
inode(d)
term(4)

core(4)
cpio(4)
dir(d)
fsa)
scesfile(d)
fspecia)

syms(4)
convert(1)
intro(4)
utmp(4)

scanf(3)
vprint#(3)

fpsar(1)
printf(3)
fpsar(1)
pute(3)

Index-40

stream. puts,
input/output.

backup tape.

df: report number of
memory allocator. malloc,

mallopt, mallinfo:/
malloc,

stream. fopen,

parts of floating-point/

frec: recover files

/and line number
information

getw: get character or
word

gets, fgets: get a string
rmdel: remove a delta
getopt: get option letter
read: read

ncheck: generate names
nlist; get entries

ofcopy: copy to or

getpw: get name

formatted input. scanf,

a lost + found directory for

of file systems processed
by

fputs: put a string on a
fread, fwrite; binary
frec: recover files from a
free disk blocks.

free, realloc, calloc: main

free, realloc, calloc,

freopen, fdopen: open a

frexp, Idexp, modf:
manipulate

from a backup tape.

from a common object
file.

from a stream. /fgetc,

from a stream.

from an SCCS file.
from argument vector.
from file.

from i-numbers.

from name list.

from the BTOS file
system.

from UID.
fs: format of file system.
fscanf, sscanf: convert

fsck. mkiost+ found:
make

fsck. checklist: list

puts(3)
fread(3)
frec(1)
df(1)
malloc(3)

malloc(3)

fopen(3)
frexp(3)

frec(1)
strip(1)

gete(3)

gets(3)
rmdel(1)
getopt(3)
read(2)
ncheck(1)
nlist(3)
ofcopy(1)

getpw(3)

fs(4)

scanf(3)

mklost +found(1)

checklist(4)

Index-41

consistency check and/

reposition a file pointer in/
size.

text files.

or efl files.
stat,

pointer in a/ fseek,
rewind,

communication package

error/ erf, erfc: error

and complementary error
gamma: log gamma
hypot: Euclidean distance

of a common object file

matherr: error-handling
prof: profile within a
math: math

i0, i1, in, ¥O, 1, yn:
Bessel

logarithm, power, square
root

remainder, absolute value

ocurse: optimized screen

1207891

fsck, dfsck: file system

fsdb: file system
debugger.

fseek, rewind, ftell:

fsize: calculate file

fspec: format specification
in

fsplit: split fortran, ratfor,
fstat: get file status.

ftell: reposition a file

(ftok). /standard
interprocess

ftw: walk a file tree.

function and
complementary

function. /error function
function. .
function.

function. /line number
entries

function.
function.
functions and constants.

functions.

functions. /sqrt:
exponential,

functions. /floor, ceiling,

functions.

fsck(1)
fsdb(1)

fseek(3)
fsize(1)
fspec(d)

fsplit(1)
stat(2)
fseek(3)

stdipe(3)

ftw(3)
erf(3)

erf(3)
gamma(3)
hypot(3)
Idiread(3)

matherr(3)
prof(5)
math(5)
hessel(3)

exp(3)

fioor(3)

ocurses(3)

Index-42

BTOS directory

sinh, cosh, tanh:
hyperbolic

atan, atan2:
trigonometric

fread,

connect accounting
records.

gamma: log

number to string. ecvt,
fovt,

abort:

cflow:

reference. cxref:
terminal. ctermid:
crypt, setkey, encrypt:
ncheck:

lexical tasks. lex:

/srand48, seed48,
Icong48:

srand: simple
random-number

gets, fgets:

get:

ulimit:

the user. cuserid:

functions.
/ofReadDirSector:

functions.

functions. /tan, asin,
acos,

fwrite: binary
input/output.

fwtmp, wtmpfix:
manipulate

gamma function.

gamma: log gamma
function.

gevt: convert floating-point

generate an I0T fault
generate C flow graph.
generate C program cross
generate file name for
generate DES encryption.

generate names from
i-numbers.

generate programs for
simple

generate uniformly
distributed/

generator. rand,

get a string from a
stream.

get a version of an SCCS
file.

get and set user limits.

get character login name of

ofdir(3)
sinh(3)
trig(3)
fread(3)
fwtmp(1)

gamma(3)

gamma(3)
ecvt(3)

abort(3)
cflow(1)
cxref(1)
ctermid(3)
crypt(3)
ncheck(1)

lex(1)
drand48(3)
rand(3)
gets(3)
get(1)

ulimit(2)
cuserid{3)

Index-43

getc, getchar, fgetc,
getw:

nlist:

umask: set and
stat, fstat:
ustat:

file.

setgrent, endgrent,
fgetgrent:

getlogin:
logname:;
msgget:

getpw:

system. uname:

unget: undo a previous
argument vector. getopt:

setpwent, endpwent,
fgetpwent:

working directory.
getewd:

times. times:

and/ getpid, getpgrp,
getppid:

/geteuid, getgid, getegid:’

semget:

shmget:

wmlayout:

1207891

get character or word
from a/

get entries from name list.

get file creation mask.
get file status.
get file system statistics.

get: get a version of an
sccs

get group file entry.

get login name.
get login name.
get message queue.
get name from UID.

get name of current
CENTIX

get of an SCCS file.
get option letter from

get password file entry.
get path-name of current

get process and child
process

get process, process
group,

get real user, effective
user,/

get set of semaphores.

get shared memory
segment.

get terminal’s window
layout.

getc(3)

nlist(3)
umask(2)
stat(2)
ustat(2)
get(1)

getgrent(3)

getlogin(3)
logname(1)
msgget(2)
getpw(3)
uname(2)

unget(1)
getopt(3)
getpwent(3)

getcwd(3)
times(2)
getpid(2)
getuid(2)

semget(2)
shmget(2)

wmlayout(3)

lndex-44

tty:
time:
wmgetid:

get character or word
from a/

character or work from/
getc,

current working
directory.

getuid, geteuid, getgid,
environment name.

real user, effective/
getuid,

user,/ getuid, geteuid,

setgrent, endgrent,/
endgrent,/ getgrent,

getgrent, getgrgid,

argument vector.

process group, and/
getpid,

process, process group,
and/

group, and/ getpid,
getpgrp,

get the terminal’s name.
get time.

get window ID.

getc, getchar, fgetc, getw:

getchar, fgetc, getw: get
getcwd: get path-name of

getegid: get real user,/
getenv: return value for

geteuid, getgid, getegid:
get

getgid, getegid: get real

getgrent, getgrgid,
getgrnam,

getgrgid, getgrnam,
setgrent,

getgrnam, setgrent,
endgrent,/

getlogin: get login name.

getopt: get option letter
from

getopt: parse command
options.

getpass: read a password.

getpgrp, getppid: get
process,

getpid, getpgrp, getppid:
get

getppid: get process,
process

getpw: get name from
uiD.

tty(1)
time(2)
wmgetid(3)
getc(3)

getc(3)
getcwd(3)

getuid(2)
getenv(3)
getuid(2)

getuid(2)
getgrent(3)

getgrent(3)
getgrent(3)

getlogin(3)
getopt(3)

getopt(1)

getpass(3)
getpid(2)

getpid(2)
getpid(2)

getpw(3)

Index-45

setpwent, endpwent,/
getpwent, getpwuid,
endpwent,/ getpwent,
a stream.

and terminal settings
used by

modes, speed, and line/

ct: spawn
settings used by getty.

getegid: get real user,/
pututline, setutent,/

setutent, endutent,/
getutent,

setutent,/ getutent,
getutid,

from a/ getc, getchar,
fgetc,

convert/ ctime, localtime,

setjmp, longjmp:
non-local

sag: system activity
plot:

subroutines. plot:
/for typesetting view
file for a pattern.

1207891

getpwent, getpwuid,
getpwnam,

getpwnam, setpwent,
endpwent,/

getpwuid, getpwnam,
setpwent,

gets, fgets: get a string
from

getty. gettydefs: speed

getty: set terminal type,

getty to a remote
terminal.

gettydefs: speed and
terminal

getuid, geteuid, getgid,

getutent, getutid,
getutline,

getutid, getutline,
pututline,

getutline, pututline,

getw: get character or
word

gmtime, asctime, tzset:
goto.

graph.

graphics interface.
graphics interface

graphs and slides.

grep, egrep, fgrep: searcha

getpwent(3)
getpwent(3)
getpwent(3)
gets(3)

gettydefs(d)

getty(1)
ct(1)

gettydefs(4)

getuid(2)
getut(3)

getut(3)
getut(3)
getc(3)

ctime(3)
setjmp(3)

sag(1)
plot(4)
plot(3)
mv(5)
grep(1)

Index-46

/Juser, effective user, real

/getppid: get process,
process

chown, chgrp: change
owner or

endgrent, fgetgrent: get

group:

setpgrp: set process

id: print user and

real group, and effective
setuid, setgid: set user and
newgrp: log in to a new

chown: change owner
and

a signal to a process or a

update, and regenerate
checkers. pwck,

ssignal,
terminal download. tdl,
processing. shutdown,

varargs:

package. curses: CRT
screen

group, and effective
group/

group, and parent process
IDs.

group.

group file entry. /setgrent,
group file.

group:. group fife.

group ID.

group IDs and names.
group IDs. /effective user,
group IDs.

group.

group of a file.

group of processes. /send

groups of programs.
/maintain,

grpek: password/group
file

gsignal: software signals.
gtdl, ptdl: RS-232
halt: terminate all

handle variable argument
list.

handling and optimization

getuid(2)
getpid(2)
chown(1)

getgrent(3)

' group(4)

group(4)
setpgrp(2)
id{1)
getuid(2)
setuid(2)
newgrp(1)

chown(2)

kill(2)
make(1)

pwek(1)

ssignal(3)
tdi(1)
shutdown(1)
varargs(5)

curses(3)

Index-47

nohup: run a command
immune to

hereate, hdestroy:
manage

spell, hashmake, spellin,
/encrypt: generate
hashcheck: find/ spell,

search tables. hsearch,
dump.

tables, hsearch, hcreate,
file. scnhdr: section

files. filehdr: file
file. Idfhread: read the file

/seek to the optional file

/read an indexed/named
section

Idahread: read the
archive

help: ask for
dump. hd:

manage hash search
tables.

sinh, cosh, tanh:

hyphen: find

1207891

hangups and quits.

hash search tables
hsearch,

hashcheck: find spelling/
hashing encryption.
hashmake, spellin,

hcreate, hdestroy: manage
hash

hd: hexadecimal and ascii
file

hdestroy: manage hash
search

header for a common
object

header for common object

header of a common
object

header of a common
object/

header of a common
object/

header of a member of an/

help: ask for help.
help.

hexadecimal and ascii file

hsearch, hcreate, hdestroy:

hyperbolic functions.

hyphen: find hyphenated
words.

hyphenated words.

nohup(1)
hsearch(3)

spell(1)
crypt(3)
speli(1)
hsearch(3)

hd(1)
hsearch(3C)
scnhdr(4)

filehdr(4)
Idfhread(3)

Idohseek(3)
ldshread(3)
Idahread{3)

help(1)
help(1)
hd{1)
hsearch(3)

sinh(3)
hyphen(1)

hyphen(t)

Index-48

function.

exWait, exCheck:
examine an

processor. pstat:
control initialization. init,

semaphore set or shared
memory

and names.

setpgrp: set process
group

wmgetid: get window
issue: issue

what:

id: print user and group

group, and parent
process

group, and effective
group

setgid: set user and
group

core; format of core
crash: examine system

nohup: run a command

direct/ pilf, dio:
performance

finc: fast
tgoto, tputs: terminal

for formatting a
permuted

hypot: Euclidean distance

ICC message queue.

ICC statistics for
icode, telinit: process

id. /remove a message
queue,

id: print user and group IDs
iD.

ID.

identification file.
identify SCCS files.
IDs and names.

1Ds. /get process, process
IDs. /effective user, real
iDs. setuid,

image file.
images.

immune to hangups and
quits.

improvement in large files
and

incremental backup.
independent operations.

index. /the macro package

hypot(3)

exwait(2)

pstat{1)
init(1)
ipcrm(1)

id(1)
setpgrp(2)

wmgetid(3)
issue(4)
what(1)
id(1)
getpid(2)

getuid(2)
setuid{2)

core(d)
crash(1)
nohup(1)

pilf(5)

finc(1)
termcap(3)
mptx(5)

Index-49

of a/ ldthindex: compute
the

a common/ ldtbread:
read an

Idshread, Idnshread: read
an

ldsseek, ldnsseek: seek
to an

control initialization.
inittab: script for the
tellinit: process control
rc, allrc, conrc: system
process. popen, pclose:
process.

clri: clear

inode: format of an
convert formatted

push character back into
fread, fwrite: binary
ofRead, ofWrite:

stdio: standard buffered
fileno: stream status
uustat: uucp status

install:

directories. cpset:

1207891

index of a symbol table
entry

indexed symbo! table entry
of

indexed/named section
header/

indexed/named section of

a/

init, icode, telinit: process
init process.

initialization. init, icode,
initialization shell scripts.
initiate pipe to/from a
inittab: script for the init
i-node.

inode: format of an i-node
i-node.

input. /fscanf, sscanf:
input stream. ungetc:
input/output.

Input/output on a BTOS
file.

input/output package.
inguiries. /feof, clearerr,
inquiry and job control.
install commands.
install: install commands.

install object files in
binary

Idthindex(3)
ldtbread(3)
Idshread(3)
Idsseek(3)

init(1)
inittab(4)
init(1)
bre(1)
popen(3)
inittah(4)
clri(1)
inode(4)
inode(4)
scanf(3)
ungetc(3)
fread(3)
ofread(3)

stdio(3)
ferror(3)
uustat(1)
install(1)
install(1)
cpset(1)

Index-50

tset: set terminal,
terminal

abs: return

/164a: convert between
long

sputl, sgetl: access long
atol, atoi: convert string to

/tol3: convert between
3-byte

3-byte integers and long

beopy:

command line interpreter
for

system consistency check
and

mt:

Ip: parallel printer

plot: graphics

plot: graphics

termio: general terminal
tty: controlling terminal

BTOS JCL. ofcli:
command line

pipe: create an
facilities/ ipcs: report
package/ stdipc:
standard

suspend execution for an

interface, and terminal/

integer absolute value.

integer and base-64
ASClI/

integer data in a/
integer, strtol,

integers and long integers.

integers. /convert
between

interactive block copy.

interactive BT0S JCL.
ofcli:

interactive repair. /file

interface for magnetic
tape.

interface.
interface.
interface subroutines.
interface.
interface.

interpreter for interactive

interprocess channel.

inter-process
communication

interprocess
communication

interval., sleep:

tset(1)

abs(3)
a64i(3)

sputl(3)
strtol(3)
13tol(3)

13tol(3)

beopy(1)
ofcli(1)

fsck(t)
mt(6)

Ip(6)
plot(4)
plot{3)
termio(6)
tty(6)
ofcli(1)

pipe(2)
ipes(1)

stdipe(3)

sleep{1)

Index-51

sleep: suspend executin
for

commands and
application/

formats.
miscellany.

files.

subroutines and libraries.

calls and error numbers.

applicaton programs.
intro:

intro:

intro:

intro:

and libraries. intro:

and error numbers. intro:

ncheck: generate names
from

in large files and direct

abort: generate an

semaphore set or
shared/

communication facilities/
Jislower, isdigit, isxdigit,
isdigit, isxdigit, isalnum,/

1207891

interval.
intro: introduction to

intro: introduction to file
intro: introduction to

intro: introduction to
special

intro: introduction to

intro: introduction to
system

introduction to commands
and

introduction to file
formats.

introduction to miscellany.

introduction to special
files.

introduction to subroutines

introduction to system
calls

i-numbers.

1/0. /performance
improvement

ioctl: control device.
10T fault.

ipcrm; remove a message
queue,

ipcs: report inter-process
isalnum, isspace, ispunct,/

isalpha, isupper, islower,

sleep(3)
intro(1)

intro(4)
intro(5)
intro(6)

intro(3)
intro(2)

intro(1)
intro(4)

intro(5)
intro(6)

intro(3)
intro(2)

ncheck(1)
pilf(5)

iocti(2)
abort(3)
iperm(1)

ipes(1)
ctype(3)
ctype(3)

Index-52

/isprint, isgraph, iscntrl,
terminal. ttyname,
/Jispunct, isprint, isgraph,
isalpha, isupper, islower,
isspace, ispunct, isprint,

isalnum,/ isalpha,
isupper,

Jisalnum, isspace,
ispunct,

isxdigit, isalnum, isspace,
/isdigit, isxdigit, isalnum,
system:

issue:

file.

isxdigit, isalnum,/
isalpha,

Jisupper, islower, isdigit,
news: print news
functions.

functions. j0

for interactive BTOS

functions. j0, j1,
operator. "

Irand48, nrand48,
mrand48,

mkboot: reformat CENTIX

isascii: classify characters.
isatty: find name of a
iscntrl, isascii; classify/
isdigit, isxdigit, isalnum,/
isgraph, iscntrl, isascii:/

islower, isdigit, isxdigit,
isprint, isgraph, iscntrl,/

ispunct, isprint, isgraph,/
isspace, ispunct, isprint,/
issue a shell command.
issue identification file.
issue: issue identification

isupper, islower, isdigit,

isxdigit, isalnum, isspace,/
items.

i0,j1.in, y0, y1, yn: Bessel
i1, in, y0, y1, yn: Bessel

JCL. /command line
interpreter

in, Y0, y1, yn: Bessel
join: relational database

jrand48, srand48,
seed48,/

kernel and copy it to
BTOS.

ctype(3)
ttyname(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)

ctype(3)

ctype(3)
ctype(3)
system(3)
issue(4)
issue(4)
ctype(3)

ctype(3)

news(1)

hessel(3)
hessel(3)
ofcli(1)

bessel(3)
join(1)
drand48(3)

mkboot(1)

Index-53

killall:

process or a group of/

processes.
mem,

3-byte integers and
long/

integer and base-64/
ab4,

copy file systems with

with label checking.
volcopy,

scanning and processing

arbitrary-precision
~ arithmetic

cpp: the C

command programming

get terminal’s window

/jrand48, srand48,
seed48,

object files.
object file. ldclose,
header of a member of an/

file for reading. Idopen,

common object file.

of floating-point/frexp,

access routines.

1207891

kill all active processes.
kill: send a signal to a
kill: terminate a process.
killall: kill all active
kmem: core memory.

13tol, itol3: convert
between

164a: convert between
long

label checking. /labelit:

labelit: copy file systems

language. awk: pattern

language. bc:

language preprocessor.

language.
/standard/restricted

layout. wmlayout:

Icong48: generate
uniformly/

1d: link editor for common
Idaclose: close a common
Idahread: read the archive

Idaopen: open a common
object

ldclose, !daclose: close a

Idexp, modf: manipulate
parts

idfcn: common object file

killali(1)
kill(2)
kili{1)
killali(1)
mem(6)
13tol(3)

ab4i(3)

voicopy(1)
volcopy(1)

awk(1)
be(1)

cppl1)
sh(1)

wmlayout(3)
drand48(3)

1d(1)
Idclose(3)
Idahread(3)
1dopen(3)

ldclose(3)
frexp(3)

1dfen(8)

Index-54

of a common object file.

name for common object
file/

line number entries/
Idiread,

number/ ldiread, ldlinit,
manipulate line number/
to line number entries/

number entries of a
section/

entries of a section/
Idrseek,

indexed/named/
Idshread,

indexed/named/ ldsseek,

file header of a common/
object file for reading.

relocation entries of a/

indexed/named section
of a/

indexed/named section
of a/

of a symbol table entry
of a/

symbol table entry of a/

table of a common
object/

getopt: get option

Idthread: read the file
header

Idgetname: retrieve symbol
Idlinit, Idlitem: manipulate

Idlitem: manipulate line
Idiread, Idlinit, Idlitem:
Idiseek, Idnlseek: seek

Idiseek, ldnlseek: seek to
line

Idnrseek: seek to
relocation

ldnshread: read an

ldnsseek: seek to an

Idohseek: seek to the
optional

Idopen, Idaopen: open a
common

Idrseek, ldnrseek: seek to

ldshread, ldnshread: read an

ldsseek, ldnsseek: seek to
an

Idtbindex: compute the
index

Idtbread: read an indexed

Idtbseek: seek to the
symbol

letter from argument
vector.

Idfhread(3)
Idgetname(3)
Idiread(3)

idlread(3)
Idiread(3)
Idiseek(3)
Idiseek(3)

idrseek(3)
ldshread(3)

ldsseek(3)
Idohseek(3)

Idopen(3)

ldrseek{3)

' ldshread(3)

ldsseek(3)
Idthindex(3)

ldtbread(3)
ldthseek(3)

getopt(3)

Index-55

simple lexical tasks.

generate programs for
simple

update. Isearch,

to subroutines and
relation for an object
portable/ ar: archive and
ulimit: get and set user
an out-going terminal

type, modes, speed, and

interactive/ ofcli:
command

line: read one

common object file.
linenum:

/\dlinit, Idlitem:
manipulate

Idiseek, ldniseek: seek to
strip: strip symbol and

nk:

out selected fields of
each

send/cancel requests to
an LP

Ipset: set parallel
lpr:

Isearch, lfind:

1207891

lex: generate programs for

lexical tasks. lex:

find: linear search and
libraries. /introduction
library. /find ordering
library maintainer for
limits.

line connection. /establish

line discipline. /set
terminal

line interpreter for

line.

line number entries in a
line number entries of a/

line number entries of a/

line number information
from a/

line numbering filter.

line of a file. cut: cut
line printer, Ip, cancel:

line printer options.
line printer spooler.
line: read one line.

linear search and update.

lex(1)
Tex(1)

Isearch(3)
intro(3)
torder(1)
ar(1)
ulimit(2)
dial(3)
getty(1)

ofcli(1)

line(1)
linenum(4)

Idiread(3)

Idiseek(3)
strip(1)

ni(1)
cut(1)

Ip(1)

Ipset{1)
Ipr(1)
line(1)
Isearch(3)

Index-56

col: filter reverse

in-a common object file

files. comm: select or
reject

device. fold: fold long

head: give first few
unig: report repeated

of several files or
subsequent

subsequent/ paste:
merge same

link, unfink: exercise
files. Id:

a.out: common assembler
and

cp, In, mv: copy,
link:
and unlink system calls.

Is:
directories. ofls:

for a file system. ff:

nlist: get entries from
name

nm: print name
by fsck. checklist:

line-feeds.

linenum: line number
entries

lines common to two
sorted

lines for finite width
output

lines.
lines in a file.

lines of one file. /same lines
lines of several files or

link and unlink system
calls.

link editor for common
object

link editor output.

link: link to a file.

link or move files.

link to a file.

fink, unlink: exercise link

lint: a C program checker.
list contents of directory.
list BTOS files and

list file names and
statistics

list.

list of common object file. .

list of file systems
processed

col(1)

linenum(4)
comm(1)
fold(1)

head(1)
unig(1)
paste(1)

paste(1)
link(1)
1d(1)
a.out(4)

link(2)
cp(1)
link(2)
link(1)
lint(1)
Is(1)
ofis(1)
f(1)

nlist(3)

nm(1)
checklist(d)

Index-57

handle variable argument

output of a varargs
argument

xargs: construct
argument

files. ¢p,

tzset: convert data/
ctime,

command. path:

end, etext, edata: last
data in memory. plock:
files.

regions of a file.

lockf: record

gamma:

newgrp:

exponential, logarithm,/
exp,

logarithm, power,/ exp,
log,

/log10, pow, sqrt:
exponential,

getlogin: get
logname: get

cuserid: get character
logname: return

passwd: change

setting up an
environment at

1207891

list. varargs:

list. /print formatted

list{s) and execute
command.

In, mv: copy, link or move

localtime, gmtime,

asctime,

locate executable file for
locations in program.

lock process, text, or
lockf: record locking on
locking: exclusive access to
locking on files.

log gamma function.

log in to a new group.

log, log10, pow, sqrt:

log10, pow, sqrt:
exponential,

logarithm, power, square
root/

login name.

login name.

login name of the user.
login name of user.
login password.

login: sign on.

login time. profile;

logname: get login name.

varargs{5)
vprintf(3)

xargs(1)

cp(1)
ctime(3)

path(1)
end(3)
plock(2)
lockf(3)
locking(2)
lockf(3)
gamma(3)
newgrp(1)
exp(3)

exp(3)
exp(3)

getlogin(3)
logname(1)
cuserid(3)
logname(3)
passwd(1)
login(1)
profile(4)

logname(1)

Index-58

user.

ab4l, 164a: convert
between

sputl, sgetl: access

between 3-byte integers
and

output device. fold: fold
setjmp,
for an object library.

mklost + found: make a

nice: run a command at
requests to an LP line/

send/cancel requests to
an

interface.
disable: enable/disable

Ipshut, Ipmove;
start/stop the

accept, reject:
allow/prevent

Ipadmin: configure the
Ipstat: print
spooling system.

request/ Ipsched, Ipshut,

start/stop the LP
request/

logname: return login
name of

long integer and base-64
ASCli/

long integer data in a/

long integers. /ltol3:
convert

long lines for finite width
longjmp: non-local goto.

lorder: find ordering
relation

lost +found directory for
fsck.

low priority.
Ip, cancel: send/cancel

LP line printer. Ip, cancel:

Ip: parallel printer
LP printers. enable,

LP request scheduler and
move/

LP requests.

LP spooling system.

LP status information.
Ipadmin: configure the LP
Ipmove: start/stop the LP
Ipr: line printer spooler.

Ipsched, Ipshut, Ipmove:

logname(3)
a64i(3)

sputi(3)
13tol(3)

fold(1)
setjimp(3)
lorder(1)

mklost -+ found(1)

nice(1)
Ip(1)
Ip(1)

Ip(6)
enable(1)
Ipsched(1)

accept{1)

Ipadmin(1)
Ipstat(1)
Ipadmin(1)
Ipsched(1)
Ipr(1)
Ipsched(1)

Index-59

printer options.

LP request scheduler/
Ipsched,

information.

jrand48,/ drand48,
erand48,

directory.
and update.

pointer.

integers and long/ 13tol,

values:

/access long integer data
ina

permuted index. mptx:
the

documents. mm: the MM

typesetting/ mv: a troff
mé:

in this manual. man:

send mail to users or read
users or read mail.
mail, rmail: send

malloc, free, realloc,
calloc:

/mallopt, mallinfo: fast

regenerate groups of/
make:

1207891

Ipset: set parallel line

Ipshut, Ipmove: start/stop
the

Ipstat: print LP status

Irand48, nrand48,
mrand48,

Is: list contents of

Isearch, Ifind: linear
search

Iseek: move read/write
file

Itol3: convert between
3-byte

m4: macro processor.

machine-dependent values.

‘machine-independent

fashion.

macro package for
formatting

macro package for
formatting

macro package for
macro processor.

macros for formatting
entries

mail. mail, rmail:

mail, rmail: send mail to

mail to users or read mail.

main memory allocator.
main memory allocator.

maintain, update, and

Ipset{1)
Ipsched(1)

Ipstat(1)
drand48(3)

Is(1)
Isearch(3)

Iseek(2)
13t01(3)

m4(1)
values(5)
sputl(3)

mptx(5)
mm(5)

mv(5)
ma(1)

man(5)

mail(1)
mail(1)
mail(1)

malloc(3)

malloc{3) (fast
version)

make(1)

Index-60

ar: archive and library
SCCS file. delta:
mkdir:

or ordinary file. mknod:

mktemp:

exCnxSendOnDeal
loc:

regenerate groups of/

banner:

session. script:
realloc, calloc, mallopt,
main memory allocator.

mallopt, mallinfo: fast
main/

malloc, free, realloc,
calloc,

/tfind, tdelete, twalk:

hsearch, hcreate,
hdestroy:

wmop: window
window: window
wm: window

records. fwtmp, wimpfix:

of/ Idlread, ‘Idlinit,
Idfitem:

frexp, Idexp, modf:
ascii:

umask: set file-creation
mode

maintainer for portable/
make a delta (change) to an
make a directory.

make a directory, or 3
special

make a unique file name.

make final requests.

make: maintain, update,
and

make posters.

make typescript of
terminal

mallinfo: fast main
memory/

malloc, free, realloc,
calloc:

malloc, free, realloc,
calloc,

mallopt, mallinfo: fast
main/

manage binary search
trees.

manage hash search
tables.

management operations.
management primitives.
management. .

manipulate connect
accounting

manipulate line number
entries

manipulate parts of/
map of ASCII character set.

mask.

ar(1)
delta(1)
mkdir(1)
mknod(2)

mktemp(3)
exfinal(2)

make(1)

banner(1)

script(1)

malloc(3) (fast
version)

malloc(3)
malloc(3)

malloc(3) (fast
version)

tsearch(3)
hsearch(3)

wmop(3)
window(6)
wm(1)
fwtmp(1)

Idiread(3)

frexp(3)
astii(5)
umask(1)

Index-61

set and get file creation
table. master:
information table.

regular expression
commpile and

math:

constants.
function,

processor type.

memepy, memset:
memory/

memset: memory/
memccpy,

operations. memccpy,
memchr,

memccpy, memchr,
memcmp,

free, realloc, calloc: main

mallopt, mallinfo: fast
main

shmetl: shared

queue, semaphore set or
shared

mem, kmem: core

memcmp, memcpy,
memset:

shmop: shared
text, or data in

shmget: get shared

1207891

mask. umask:
master device information
master: master device

match routines. regexp:

math functions and
constants.

math: math functions and
matherr: error-handling
mc68k, pdp11, u3b, vax:

mem, kmem: core
memory.

memccpy, memchr,
memcmp,

memchr, memcmp,
memcpy,

memcmp, memcpy,
memset: memory

memcpy, memset:
memory/

memory allocator. malloc,

memory allocator. /calloc,

memory control
operations.

memory id. /remove 3
message

memory.

memory operations.
/memchr,

memory operations.
memory. /lock process,

memory segment.

umask(2)
master(4)
master(4)

regexp(5)
math(5)

math(5)
matherr(3)
machid(1)

mem({6)
memory(3)
memory(3)
membry(3)
memory(3)
malloc(3)
malloc(3) (fast
version)
shmetl(2)

iperm(1)

mem(6)

memory(3)

shmop(2)
plock(2)
shmget(2)

Index-62

/memchr, mememp,
memcpy,

sort: sort and/or

files or subsequent/
paste:

msgetl:

msgop:
exCheck: examine an ICC
msgget: get

or shared/ ipcrm: remove a

exRespond: send a
exRequest: Send a
mesg: permit or deny

sys._nerr: system error

and copy it to BTOS.

lost + found directory
for/

special or ordinary file.

name:
table.

chmod: change

memset: memory
operations.

merge files.

merge same lines of
several

mesg: permit or deny
messages.

message control
operations.

message operations.
message queue. exWait,
message queue.

message queue,
semaphore set

message to a client.
message o a server.
messages.

messages. /errno,
sys__errlist,

mkboot: reformat CENTIX
kernel

mkdir: make a directory.

mkfs: construct a file
system.

mklost +found: make a

mknod: build special file.

mknod: make a directory,
ora

mktemp: make a unique file

mnttab: mounted file
system

mode.

memory(3)

sort(1)
paste(1)

mesg(1)
msgcti(2)

msgop(2)
exwait(2)
msgget(2)
ipcrm({1)

exrespond(2)
exrequest(2)
mesg(1)
perror(3)

mkboot(1)

mkdir(1)
mkfs(1)

mklost+found(1)

mknod({1)
mknod(2)

mktemp(3)
mnttah(4)

chmod({1)

Index-63

umask: set file-creation
chmod: change

modemcap: smart

capability data base.
getty: set terminal type,
/compiler/interpreter for

floating-point/ frexp,
Idexp,

touch: update access and

utime: set file access
and

profile.

uusub:

translate byte orders to

mount;

system. mount, umount:

setmnt: establish

dismount file system.

mnttab:
mvdir:
cp, In, mv: copy, link or

Iseek:

1207891

mode mask.
mode of file.

modem capability data
base.

modemcap: smart modem
modes, speed, and fine/
modest-sized programs.

modf: manipulate parts of

maodification times of afile.

modification times.

monitor: prepare execution
monitor uucp network.
more, page: text perusal.

Motorola/Intel.
/swaplong:

mount a file system.
mount and dismount file

mount; mount a file
system.

mount table.

mount, umount: mount
and

mounted file system table. .
move a directory.
move files.

move read/write file
pointer.

umask({1)
chmod(2)

modemcap(5)

modemcap(5)
getty{1)

bs{1)
frexp(3)

touch(1)
utime{2)

monitor(3)
uusub({1)
more{1)

swapshort(3)

mount{2)
mount(1)

mount(2)

setmnt(1)

mount(1)

mnttah{4)
mvdir(1)
epit)
Iseek(2)

Index-64

the LP request scheduler
and

formatting a permuted
index.

/erand48, Irand48,
nrand48,

operations.

tape.
package for typesetting/

cp, In,

i-numbers.

uusub: monitor uucp
a text file.

news: print

process.
process by changing
priority.

list.
object file.

hangups and quits.

move request. /start/stop

mptx: the macro package
for

mrand48, jrand48,
srand48,/

msgctl: message control

msgget: get message
queue.

msgop: message
operations.

mt: interface for magnetic
mv: a troff macro

mv: copy, link or move files.
mvdir: move a directory.

ncheck: generate names
from

network.

newform: change the
format of

newgrp: log in to a new
group.

news items.

news: print news items.
nice; change priority of a
nice. /of running

nice: run a command at low
nl: line numbering filter.

nlist: get entries from
name

nm: print name list of
common

nohup: run a command
immune to

Ipsched(1)
mptx(5)
drand48(3)

msgetl(2)
msgget(2)

msgop(2)

mt(6)
mv(5)
cp(1)
mvdir(1)
ncheck(1)

uusub(1)
newform(1)

newgrp(1)

news(1)
news(1)
nice(2)
renice(1)
nice(1)
ni(1)
nlist(3)

nm(1)

nohup{1)

Index-65

setjmp, longjmp:

drand48, erand48,
Irand48,

null: the

nl: line

to/ convert: convert
Idfen: common

dump selected parts of an

idopen, daopen: open a
common

number entries of a
common

ldaclose: close a common

the file header of a
common

of a section of a
common

file header of a common

of a section of a
common

header of a common

section header of a
common

symbol table entry of a
common

symbol table entry of a
common

the symbol table of a
common

number entries in a
common

1207891

non-local goto.

nrand48, mrand4$,
jrand48,/

null file.

null: the null file.
numbering filter.

object and archive files
object file access routines.
object file. dump:

object file for reading.

object file function. /line

object file. ldclose,
object file. Idfhread: read

object file. /number
entries

object file. /to the
optional

object file. /entries

object file. /section

object file.
/indexed/named

object file. /the index of a
object file. /read an
indexed

object file. /seek to

object file. linenum: line

setjmp(3)
drand48(3)

null{6)
null(6)
nl{1)
convert(1)
ldfen(d)
dump(1)
Idopen(3)

Idiread(3)

Idclose(3)
1dfhread(3)

ldiseek(3)
idohseek(3)

ldrseek(3)

" ldshread(3)

Idsseek(3)

Idtbindex(3)

Idthread(3)

ldtbseek(3)

linenum(4)

Index-66

nm: print name list of
common

information for a
common

section header for a
common

information from a
common

entry. /symhol name for
common

format. syms: common
file header for common
directories. cpset: install

Id: link editor for
common

print section sizes of
common

find ordering relation for
an

/exAllocExch,
exDeallocExch:

od:

functions.

Allocate BTOS/ ofCreate,

interpreter for
interactive/

ofOpenfFile, ofCloseFile,

Access BT0S/
ofOpenFile,

BTOS file system.

object file.
object file. /relocation
object file. scnhdr:

abject file. /and line
number

object file symbol table

object file symbol table
object files. filehdr:
object files in binary

object files.
object files. size:
abject library. lorder:

obtain and abandon
exchanges.

octal dump.
ocurse: optimized screen
od: octal dump.

ofChangeFileLength,
ofDelete:

ofcli: command line

ofCloseAllFiles: Access
BTGS/

ofCloseFile,
ofCloseAllFiles:

ofcopy: copy to or from the

nm(1)
reloc{4)
scnhdr(4)
strip{1)
Idgetname(3)

syms(4}
filehdr(4)
cpset(1)
Id{1)

size(1)
lorder(1)
exchanges(2)

od(1)
ocurses(3}
od(1)

ofcreate(3)
ofcli(1)
ofopentile(3)
ofopenfile(3)

ofcopy(1)

index-67

ofReadDirSector: BTOS/
ofDelete: Allocate BTOS/

ofCreate,
ofChangeFileLength,

directory functions.
ofCrDir,

ofSetFileStatus: BTOS
File/

directories.

ofCloseAllFiles: Access
BTOS/

on a BTOS file.

directory/ ofCrDir,
of DIDir,

Status. ofGetFileStatus,
ofed,

BTOS file. ofRead,
reading. Idopen, Idaopen:

fopen, freopen, fdopen:
dup: duplicate an

open:

writing.
profiler. prf:
pridc, prisnap, prfpr:

memcmp, memcpy,
memset: memory

1207891

ofCrDir, ofDIDir,

ofCreate,
ofChangeFileLength,

ofDelete: Allocate BTOS
files.

ofDIDir, ofReadDirSector:
BTOS

ofed, ofvi: edit BTOS files.
ofGetFileStatus,

ofls: list BTOS files and
ofOpenfFile, ofCloseFile,

ofRead, ofWrite:
input/output

ofReadDirSector: BT0S

ofRename: rename a BTOS
file.

ofSetFileStatus: BTOS File
ofvi: edit BTOS files.
ofWrite: Input/output on a

open a common object file
for

open a stream.
open file descriptor.

open for reading or
writing.

open: open for reading or
operating system
operating system/

operations. memccpy,
memchr,

ofdir(3)

ofcreate(3)
ofcreate(3)
ofdir(3)

ofeditors(1)
ofstatus(3)

ofls(1)
ofopenfile(3)

ofread(3)
ofdir(3)
ofrename(3)

ofstatus(3)
ofeditors(1)
ofread(3)
Idopen(3)

fopen(3)
dup(2)
open(2)

open(2)
pri(6)
profiler(1)
memory(3)

Index-68

msgctl: message control
msgop: message

semctl: semaphore
control

semop: semaphore

shmetl: shared memory
control

shmop: shared memory

strespn, strtok: string

tputs: terminal
independent

wmop: window
management

join: relational database

deopy: copy file systems
for

CRT screen handling and
ocurse:
vector,. getopt: get

common/ [dohseek: seek
to the

fentl: file control

stty: set the

getopt: parse command
set parallel line printer

object library. lorder: find

operations.
operations.

operations.

operations.

operations.

operations.

operations. /strpbrk,
strspn,

operations. /tgetstr, tgoto,
operations.

operator.

optimal access time.

optimization package.
curses:

optimized screen
functions.

option letter from
argument

optional file header of a

options.

options for a terminal.
options.

options. Ipset:

ordering relation for an

msgcetl(2)
msgop(2)
semcti(2)

semop(2)
shmetl(2)

shmop(2)
string(3)

termcap(3)
wmop(3)

join(1)
deopy(1)

curses(3)
ocurses(3)
getopt(3)
Idohseek(3)

fenti(5)
stty(1)
getopt(1)
Ipset(1)
lorder(1)

Index-69

adirectory, or a special or
dial: establish an
assembler and link editor
long lines for finite width

/Jvsprintf: print formatted

sprintf: print formatted
chown: change
chown, chgrp: change
and expand files.

handling and optimization

view/ mv: a troff macro

sadc: system activity
report

standard buffered
input/output

interprocess
communcation

more,

Ipset: set

Ip:

process, process group,
and

getopt:

crup: create file system

1207891

ordinary file. mknod: make
out-going terminal line/
output. a.out: common
output device. fold: fold

output of a varargs
argument/

output. printf, fprintf,
owner and group of a file
owner or group.

pack, pcat, unpack:
compress

package. curses: CRT
screen

package for typesetting

package. sal, sa2,
package. stdio:
package {ftok). /standard

page: text perusal.

parallel line printer
options.

parallel printer interface.

parent process IDs. /get

parse command options.

partition (slice).

mknod(2)
dial(3)
a.out(4)
fold(1)
vprintf(3)

printf(3)
chown(2)
chown(1)
pack(1)

curses(3)

mv(5)
sar(1)

stdio(3)
stdipe(3)

more(1)
Ipset(1)

1p(6)
getpid(2)

getopt(1)
crup(1)

Index-70

/endpwent, fgetpwent:
get

putpwent: write
passwd:

getpass: read a
passwd: change login

pwek, grpek:

several files or
subsequent/

for command.

dirname: deliver portions
of

directory. getcwd: get
fgrep: serach a file for a
processing language.
awk:

signal.

expand files. pack,

a process. popen,

type. me68k,

large files and/ pilf, dio:

mesg:
format. acct:

Sys__nerr; system error/

passwd: change login
password.

passwd: password file.

password file entry.

password file entry,.
password file.
password.
password.

password/group file
checkers.

paste: merge same lines of

path: locate executable file

path names. basename,

path-name of current
working

pattern. grep, egrep,

pattern scanning and

pause: suspend process
until

pcat, unpack: compress
and

pclose: initiate pipe
to/from

pdp11, u3b, vax:
processer

performance improvement
in

permit or deny messages.
per-process accounting file

perror, errno, sys_errlist,

passwd(1)

passwd(4)
getpwent(3)

putpwent(3)
passwd(4)
getpass(3)
passwd(1)
pwek(1)

paste(1)

path(1)

basename(1)
getcwd(3)

grep(1)
awk(1)

pause(2)
pack(1)
popen{(3)
machid(1)
pilf(5)

mesg(1)
acct(4)
perror(3)

Index-71

terminals. pg: file
more, page: text
soft-copy terminals.
split: split a file into

improvement in large
files/

channel.

tee:

popen, pclose: initiate
text, or data in/
interface.

subroutines.

ftell: reposition a file

Iseek: move read/write
file

to/from a process.
and library maintainer for

basename, dirname:
deliver

banner: make

logarithm, exp, log,
log10,

exp, log, log10,

/exponential, logarithm,
monitor:

cpp: the C language

unget: undo a

1207891

perusal filter for soft-copy
perusal.

pg: file perusal filter for
pieces.

pilf, dio: performance

pipe: create an
interprocess

pipe fitting.

pipe to/from a process.
plock: lock process:
kplot: graphics

plot: graphics interface

pointer in a stream.
/rewind,

pointer.

popen, pclose: initiate pipe
portable archives. /archive

portions of path names.

posters.

pow, sqrt: exponential,

pow, sqrt: exponential,/
power, square root/

pr: print files.

prepare execution profile.
preprocessor.

previous get of an SCCS
file.

pg{1)
more(1)
pg(1)
split(1)
pitf(5)

pipe(2)

tee(1)
popen(3)
plock(2)
plot(4)
plot(3)
fseek(3)

Iseek(2)

popen(3)
ar(1)

basename(1)

banner(1)
exp(3)

exp(3)
exp(3)
pr(1)
monitor(3)
cppl1)
unget(1)

Index-72

profiler.

prild, prfstat,

prfsnap, pripr:/
/pristat, prfdc, prfsnap,
prfld, prfstat, pridc,
pripr: operating/ prfld,
types:

window: window
managment

prs:

date:

number. apnum:
cal:

of a file. sum:

editing activity. sact:
cat: concatenate and

pr:

vprintf, vfprintf, vsprintf:
printf, fprintf, sprintf:
Ipstat:

object file. nm:
uname:
news:

object files. size:

prf: operating system
pride, prfsnap, pripr:/
prfld, prfstat, prfde,
pripr: operating system/
prisnap, prfpr:/

prfstat, prfdc, prfsnap,

primitive system data
types.

primitives.

print an SCCS file.

print and set the date.
print Application Processor
print calendar.

print checksum and block
count

print current SCCS file
print files.

print files.

print formatted output of a/
print formatted output.

print LP status
information.

print name list of common
print name of system.
print news items.

print section sizes of
common

pri(6)
profiler(1)
profiler(1)
profiler{1)
profiler(1}
profiler(1)
types(5)

window(6)

prs(1)
date(1)
apnum(1)
cal(1)

sum(1)

sact(1)
cat(1)
pr(1)
vprintf(3)
printf(3)
Ipstat(1)

nm(1)
uname(1)
news(1)

size(1)

Index-73

names. id:
Ip: parallel

requests to an LP line

Ipset: set parallel line
Ipr: line

disable: enable/disable
P

print formatted output.

nice: run a command at
low

nice: change

process/ renice: alter
acct: enable or disable
alarm: set a

times. times: get
/priority of running
init, icode, telinit:

timex: time a command;
report

exit, __exit: terminate

fork: create a new

/getpgrp, getppid: get
process,

setpgrp: set

process group, and
parent

inittab: script for the init
kill: terminate a

1207891

print user and group IDs and
printer interface.

printer. /cancel:
send/cancel

printer options.
printer spooler.

printers. enable,

printf, fprintf, sprintf:
priority.

priority of a process.
priority of running
process accounting.
process alarm clock.
process and child process
process by chanaging/
process control/

process data and system/

process.
process.

process group, and
parent/

process group 1D.

process IDs. /get process,

process.

process.

id(1)
1p(6)
Ip(1)

Ipset(1)
Ipr(1)
enable(1)

printf(3)

nice(1)

nice(2)
renice(1)
acct{2)
alarm(2)
times(2)-
renice(1)
init(1)

timex(1)

exit(2)
fork(2)
getpid(2)

setpgrp(2)
getpid(2)

inittah(4)
kili(1)

Index-74

nice: change priority of a

Application/ spawn:
execute a

spawnlp, spawnvp:
execute a

kill: send a signal to a
initiate pipe to/from a

getpid, getpgrp, getppid:
get

ps: report
in memory. plock: lock

times: get process and
child

wait: wait for child

pause: suspend

wait: await completion
of

list of file systems

to a process or a group of
killall: kill all active

awk: pattern scanning
and

shutdown, halt:
terminate all

m4: macro
apnum: print Application

console: control
Application

process.

process on a specific
process on a specific/

process or a group of/
process. pepen, pclose:

process, process group,
and/

process status.
process, text, or data

process times.

process to stop or
terminate.

process until signal.

process.

processed by fsck.
checklist:

processes. /send a signal
processes.

processing language.
processing.

processor.

Processor number.

Processor pseudoconsole. .

nice(2)

spawn(1)
spawn(3)

kill(2)
popen(3)
getpid(2)

psi1)
plock(2)
times(2)

wait(2)

pause(2)
wait(1)

checklist(4)

kill(2)
killall(1)
awk(1)

‘shutdown(l)

m4(1)
apnum(1)

console(1)

Index-75

ICC statistics for

on a specific Applicaton
on a specific Application

activity/ fpsar: File

mcB8k, pdp11, u3b, vax:

function.
profile.
prof: display

monitor: prepare
execution

profil: execution time

environment at login
time.

prof:

prf: operating system
prfpr: operating system
sadp: disk access

standard/restricted
command

update:

/pdp11, u3b, udbb, vax
true, false:

contrel Application
Processor

1207891

processor. pstat:

Processor. /execute a
process

Processor. /execute a
process

Processor system

processor type.

prof: display profile data.

prof: profile within a
profil: execution time
profile data.

profil e.

profile.

profile: setting up an

profile within a function.

profiler.
profiler. /prfsnap,
profiler.

programming language.
/the

provide disk
synchronization.

provide truth value/
provide truth values.

prs: print an SCCS file.

ps: report process staus.

pseudoconsole. console:

pstat(1)

spawn(1)
spawn(3)

fpsar(1)
machid(1)
prof(1)
prof(5)
profil(2)
prof(1)

monitor(3)

profil(2)
profile(d)

prof(5)
prf(6)
profiler(1)
sadp(1)
sh(1)

update(1)

machid(1)
true(1)
prs(1)
psi1)

console(1)

Index-76

/generate uniformly
distributed

for processor.
download. tdl, gtdi,

stream. ungetc:

put character or word on

a/

character or word on a/
pute,

environment.
entry.

stream.

getutent, getutid,
getutline,

a/ putc, putchar, fputc,

file checkers.

BTOS queue.

tput:
examine an ICC message
msgget: get message

add a new entry toa BTOS

pseudo-random numbers.

pstat: ICC statistics
ptdl: RS-232 terminal
ptrace; process trace.
ptx: permuted index.

push character back into
input

putc, putchar, fputc,
putw:

putchar, fputc, putw: put

putenv: change or add
value to

putpwent: write password
file

puts, fputs: put a string
ona

pututline, setutent,
endutent,/

putw: put character or
word on

pwek, grpek:
password/group

pwd: working directory
name.

gsort: quicker sort.

quAdd: add a new entry
toa

query temrinfo database.
queue. exWait, exCheck:
queue.

queue. quAdd:

drand48(3)

pstat(1)
tdi(1)
ptrace(2)
ptx(1)
ungetc(3)

pute(3)
pute(3)
putenv(3)
putpwent(3)
puts(3)
getut(3)
pute(3)
pwek(1)
pwd(1)

gsort(3)
quadd(3)

tput(1)
exwait(2)
msgget(2)
quadd(3)

Index-77

quReadKeyed: examine
BT0S

quRemove: take back a
BTOS

ipcrm: remove a message

gsort:

command immune to
hangups and

queue. quReadNext,

examine BTOS queue.

queue request.

random-number
generator,

rand, srand: simple
fsplit: split fortran,

initialization/brc,
beheckre,

getpass:

entry of a common/
Idtbread:

header/ Idshread,
ldnshread:

read:
rmail: send mail to users or

line:

member of an/ Idahread:

common object file.
ldfhread:

1207891

queue. quReadNext,

queue request.

queue, semaphore set or
shared/

quicker sort.

quits. nohup: run a

quReadKeyed: examine
BT0S

quReadNext, quReadKeyed:

quRemove: take back a
BTOS

rand, srand: simple

random-number generator.
ratfor, or efl files.

rc, allre, conrc: system

read a password.

read an indexed symbol
table

read an indexed/named
section

read from file.

read mail. mail,

read one line.

read: read from file.

read the archive header of a

read the file header of a

quread(3)
quremove(3)
ipcrm(1)

gsort(3)
nohup(1)

quread(3)

quread(3)

quremove(3)
rand(3)

rand(3)
fsplit(1)
bre(1)

getpass(3)
Idthread(3)

ldshread(3)

read(2)
mail(1)
line(1)
read(2)
Idahread(3)
Idfhread(3)

Index-78

open a common object
file for

open: open for
Iseek: move

allocator. malloc, free,

mallinfo: fast/ malloc,
free,

specify what to do upon
lockf:

manipulate connect
accounting

tape. frec:

ed,
it to BTOS. mkboot:

execute regular
expression.

expression compile.

make: maintain, update,
and

regular expression.
regemp,

compile and match
routines.

locking: exclusive access
to

match routines. regexp:
regemp:
regex: compile and

execute

requests. accept,

reading. Idopen, Idaopen:

reading or writing.
read/write file pointer.

realloc, calloc: main
memory

realloc, calloc, mallopt,

receipt of a signal. signal:
record locking on files.

records. fwtmp, wtmpfix:

recover files from a
backup

red: text editor.

reformat CENTIX kernel
and copy

regcmp, regex: compile
and

regcmp: regular

regenerate groups of
programs.

regex: compile and
execute

regexp: regular expression
regions of a file.

regular expression compile
and

regular expression
compile.

regular expression.
regcmp,

reject: allow/prevent LP

Idopen(3)

open(2)
Iseek(2)
malloc(3)
malloe(3) (fast
version)
signal(2)
lockf(3)
fwtmp(1)

frec(1)

ed(1)
mkhoot(1)

regcmp(3)

regemp(1)
make(1)

regcmp(3)
regexp(5)

locking(2)

‘ regexp(5)

regcmp(1)
regemp(3)

accept(1)

Index-79

sorted files. comm:
select or

lorder: find ordering

join:
for a common obiject file.

Idrseek, Idnrseek: seek to

common object file.
reloc:

/fmod, fabs: floor,
ceiling,

calendar.
ct: spawn getty to a

file. rmdel:

semaphore set or/ ipcrm:
unlink:

m, rmdir:

ofRename: _
of running process by/

check and interactive

unig: report

clock:
communication/ ipcs:
blocks. df:

sa2, sadc: system
activity

timex: time a command;

1207891

reject lines common two

relation for an object/

relational database
operator.

reloc: relocation
information

relocation entries of a/

relocation information for a
remainder, absolute value/

reminder service.
remote terminal.

remove a delta from an
SCCS

remove a message queue,
remove directory entry.
remove files or directories.
rename a BTOS file.
renice: alter priority

repair. /system
consistency

repeated lines in a file.
report CPU time used.
report inter-process

report number of free disk

report package. sal,

report process data and
system/

comm(1)

lorder(1)
join(1)

reloc(4)

Idrseek(3)
reloc(4)

floor(3)

calendar(1)
ct(1)
rmdel(1)

ipcrm(1)
unlink(2)
m(1)
ofrename(3)
renice(1)
fsck(1)

unig(1)
clock(3)
ipes(1)
df(1)
sar(1)

timex(1)

Index-80

ps:
file. unigq:

system activity

sar: system activity

stream, fseek, rewind,
ftell:

reponse. exCall: Send a
exServeRq: appropriate a
take back a BTOS queue

/ipmove: start/stop the
P

reject: allow/prevent LP

exCnxSendOnDeal
loc: make final

LP request scheduler and
move

service spawn execution
syslocal: special system
Ip, cancel: send/cancel

arequest and wait for the

common object file/
Idgetname:

abs:

logname:

name. getenv:

report process status.
report repeated lines in a
reporter. /Processor
reporter.

reposition a file pointer in a

request and wait for the
request code.
request. quRemove:

request scheduler and
move/

requests. accept,

request. exSeridOnDealloc,
requests. /start/stop the

requests. spawnsrv:
requests.

requests to an LP line/.
response. exCall: Send

retrieve symbol name for

return integer absolute
value.

return login name of user.

return value for
environment

ps(1)
unig(1)
fpsar(1)
sar(1)
fseek(3)

excall(2)
exserverg(2)
quremove(3)
Ipsched(1)

accept(1)
exfinal(2)

Ipsched(1)

spawnsrv(1)
syslocal(2)
Ip(1)
excall{2)
ldgetname(3)

abs(3)

logname(3)

getenv(3)

Index-81

stat: data

col: filter

file pointer in a/ fseek,
creat: create a new file or
directories.

read mail. mail,

SCCS file.

directories. rm,
chroot: change

chroot: change
logarithm, power, square

common object file
access

expression compile and
match

controlling terminal’s
local

tdl:
standard/restricted/ sh,

nice:

hangups and quits.
nohup:

/alter priority of
activity report package.
report package. sal,
editing activity.
package. sal, sa2,

1207891

returned by stat system
call.

reverse line-feeds.
rewind, ftell: reposition a
rewrite an existing one.
rm, rmdir: remove files or
rmail: send mail to users or

rmdel: remove a delta
from an

rmdir: remove files or
root directory.

root directory for a
command.

root functions.
/exponential,

routines. idfen:
routines. regexp: regular
RS-232 channels. tp:

rs232 terminal download.
rsh: shell, the

run a command at low
priority.
run a command immune to

running process by/

sal, sa2, sadc: system
sa2, sadc: system activity
sact: print current SCCS file

sadc: system activity
report

stat(5)

col(1)
fseek(3)
creat(2)
m(1)
mail{1)
rmdel(1)

m(1)
chroot(2)
chroot(1)

exp(3)
ldfen(4)
regexp(5)
tp(6)

tdi{1)
sh(1)

nice(1)
nohup(1)

renice(1)
sar(1)
sar(1)
sact(1)
sar{1)

Index-82

profiler.
graph.
reporter.

space allocation. brk,
formatted input.

bfs: big file
language. awk: pattern

the delta commentary of
an

comb: combine

make a delta (change) to
an

sact: print current
get: get a version of an
prs: print an

mmdel: remove a delta
from an

compare two versions of
an

scesfile: format of
undo a previous get of an
val: validate

admin: create and
administer

what: identify
* of an SCCS file.

sar: system activity
reporter.

sadp: disk access
sag: system activity
sar: system activity

shrk: change data
segment

scanf, fscanf, sscanf:
convert

séanner.
scanning and processing
SCCS delta. cdc: change

SCCS deltas.
SCCS file. delta:

SCCS file editing activity.
SCCS file.
SCCS file.
SCCS file.

SCCS file. scesdiff:

SCCS file.

SCCS file. unget:
SCCS file.

SCCS files.

SCCS files.

sccsdiff: compare twe
versions

sar(1)

sadp(1)
sag(1)
sar(1)
brk(2)

scanf(3)

bfs(1)
awk(1)
cde(1)

comb(1)
delta(1)

sact(1)
get(1)
prs(1)
rmdel(1)

scesdiff(1)

scesfile(d)
unget(1)
val(1)
admin(1)

what(1)
scesdiff(1)

Index-83

/start/stop the LP
request

common object file.
clear: clear terminal
ocurse: optimized

optimization/ curses:
CRT

display editor based on/
vi:

inittab:
terminal session.

system initialization shell

program.

grep, eqrep, fgrep:
bsearch: binary
Isearch, Ifind: linear

hcreate, hdestroy:
manage hash

tdelete, twaik: manage
binary

object file. scnhdr:

cobject/ /read an
indexed/named

/1o line number entries
of a

/to relocation entries of a

/seek to an
indexed/named

1207891

scesfile: format of SCCS
file.

scheduler and move
requests.

scnhdr: section header for a
screen.
screen functions.

screen handling and
screen-oriented (visual)

script for the init process.
script: make typescript of
scripts. /rc, allrc, conrc:
sdb: symbolic debugger.

sdiff: side-by-side
difference

search a file for a pattern
search a sorted table.
search and update.

search tables. hsearch,

search trees. tsearch,
tfind,

section header for a
common

section header of a
common

section of a common
object/
section of a common
object/

section of a common
object/

scesfile(d)
Ipsched(1)

scnhdr(4)
clear(1)
ocurse(3)

curses(3)
vi(1)

inittah(4)
script(1)
bre(1)
sdh(1)
sdiff(1)

grep(1)

bsearch(3)
Isearch(3)
hsearch(3)

tsearch(3)
scnhdr(4)
ldshread(3)
Idiseek(3)
Idrseek(3)

ldsseek(3)

Index-84

files. size: print

/mrand48, jrand48,
srand48,

section of/ ldsseek,
Idnsseek:

a section/ ldiseek,
ldniseek:

a section/ ldrseek,
Idnrseek:

header of a common/
Idohseek:

common object file.
Idtbseek:

shmget: get shared
memory

brk, sbrk: change data

to two sorted files.
comm:

of a file. cut: cut out
file. dump: dump

semctl:

semop:

ipcrm: remove a message
gueue,

semget: get set of

operations.

exRespond:

section sizes of common
object

sed: stream editor.

seed48, lcong48:
generate/

seek to an indexed/named

seek to line number
entries of

seek to relocation entries of
seek to the optional file

seek to the symbol table
of a

segment.

segment space allocation.

select or reject lines
common

selected fields of each line
selected parts of an object

semaphore control
operations.

semaphore operations.

semaphore set or shared
memory/

semaphores.
semctl: semaphore control

semget: get set of
semaphores.

semop: semaphore
operations.

send a message to a
client. .

size(1)

sed(1)
drand48(3)

Idsseek(3)
Idiseek(3)
Idrseek(3)
Idohseek(3)
ldthseek(3)
shmget(2)

brk(2)

comm(1)

cut(1)
dump(1)
semetl(2)

semop(2)
ipcrm(1)

semget(2)
semctl{2)
semget(2)

semop(2)

exrespond(2)

Index-85

exRequest:

the response. exCall:
a group of processes. kill:
mail. mail, rmail:

line printer. Ip, cancel:

aliases file for

exRequest: Send a
message to a

make typescript of
terminal

buffering to a stream
IDs. setuid,

getgrent, getgrgid,
getgrnam,

goto.
encryption. crypt,

getpwent, getpwuid,
getpwnam,

environment/ cprofile:
login time. profile:
gettydefs: speed and

terminal

group IDs.

1207891

Send a message to a
server.

Send a request and wait for
send a signal to a process or
send mail to users or read

send/cancel requests to
an LP

sendmail. aliases:

server.
session. seript:

setbuf, setvbuf: assign
setgid: set user and group

setgrent, endgrent,
fgetgrent:/

setjmp, longjmp: non-local

setkey, encrypt: generate
DES

setmnt: establish mount
table.

setpgrp: set process group
ID.

getpwent, endpwent,
fgetpwent:/

setting up a C shell

setting up an environment
at

setting used by getty.

setuid, setgid: set user and

exrequest(2)

excall(2)
kill(2)
mail()
Ip(1)

aliases(5)

exrequest(2)
script(1)

setbuf(3)
setuid(2)
getgrent(3)

setjmp(3)
crypt(3)

setmnt(1)
setpgrp(2)
getpwent(3)

cprofile{4)
profile(d)

gettydefs(4)

setuid(2)

Index-86

/getutid, getutline,
pututline,

stream. setbuf,
data in a/ sputi,

standard/restricted
command/

operations. shmetl:

queue, semaphore set or

shmop:

shmget: get

system: issue a
cprofile: setting up a €

conrc: system
initialization

command programming/
sh, rsh:

operations.
segment.

operations.

processing.

program. sdiff:
login:

pause: suspend process
until

whagt to do upon receipt
of a

upon receipt of a signal.

setuname: set name of
system.

setutent, endutent,
utmpname:/

setvbuf: asign buffering to a
sgetl: access long integer

sh, rsh: shell, the

shared memory control

shared memory id. /a
message

shared memory operations.
shared memory segment.
shell command.

shell environment at/

shell scripts. /rc, allrc,

shell, the
standard/restricted

shmetl: shared memory
control

shmget: get shared
memory

shmop: shared memory

shutdown, halt: terminate
all

side-by-side difference
sign on.

signal.
signal. signal: specify

signal: specify what to do

setuname(1)
getut(3)

setbuf(3)
sputl(3)
sh(1)

shmetl(2)
iperm(1)

shmop(2)

shmget(2)
system(3)
cprofile(4)
bre(1)

sh(1)
shmeti(2)
shmget(2)

shmop(2)
shutdown(1)

sdiff(1)
login(1)
pause(2)

signal(2)

signal(2)

Index-87

of processes. kill: send a

ssignal, gsignal: software

lex: generate programs
for

generator. rand, srand:

atan, atan2:
trigonometric/

functions.

fsize: calculate file
common object files

size; print section
an interval,
interval.

create file system
partition

the/ ttyslot: find the
current/ ttyslot: find the

base. modemcap:

pg: file perusal filter for
ssignal, gsignal:
sort:

gsort: quicker

tsort: topological

1207891

signal to a process or a
group

signals.

sigmple lexical tasks.

simple random-number

sin, cos, tan, asin, acos,

sinh, cosh, tanh:
hyperbolic

size.
size: print section sizes of

sizes of common object
files.

sleep: suspend execution
for

sleep: suspend execution
for

(slice). crup:

slot in the utmp file of
slot in the utmp file of the

smart modem capability
data

soft-copy terminals.
software signals.

sort and/or merge files.
sort.

sort: sort and/or merge
files.

sort.

kill(2)

ssignal(3)
lex(1)

rand(3)
trig(3)

sinh(3)

fsize(1)
size(1)

size(1)
sleep(1)
sleep(3)
crup{1)

mv(5)
ttyslot(3)
modemcap(5)

pg(1)
ssignal(3)
sort(1)
gsort(3)
sort(1)

tsort(1)

Index-88

or reject lines common
to two

bsearch: binary search a

brk, sbrk: change data
segment

specific Application/

spawnsrv: service
terminal. ct:

process on @ specific/

execution requests.

a specific/ spawnlp,

spawn: execute a
process on a

execute a process on a

fspec: format

receipt of a signal.
signal:

/set terminal type,
modes,

used by getty. gettydefs:

hashcheck: find spelling/

spelling/ spell,
hashmake,

spellin, hashcheck: find

split:
csplit: context
efl files. fsplit:

sorted files. comm: select

sorted table.

space allocation.

spawn: execute a process
ona

spawn execution requests.

spawn getty to a remote

spawnlp, spawnvp:
execute a

Spawnsrv: service spawn

spawnvp: execute a
process on

specific Application/

specific Application/
/spawnvp:

specification in text files.

specify what to do upon
speed, and line discipline.

speed and terminal
settings

spell, hashmake, spellin,

spellin, hashcheck: find

spelling errors.
/hashmake,

split a file into pieces.
split.

split fortran, ratfor, or

comm(1)

bsearch(3)
brk(2)

spawn(1)

spawnsrv(1)
ct(1)
spawn(3)

spawnsrv(1)

spawn(3)
spawn(1)
spawn(3)

fspec(d)

signal(2)

getty(1)
gettydefs{4)

spell(1)
spell(1)

spell(1)

split(1)
csplit{1)
fsplit(1)

Index-89

pieces.
uuclean: uucp

lpr: line printer

Ipadmin: configure the LP

output, printf, fprintf,
integer data in a/

power,/ exp, log, log10,
pow,

exponential, logarithm,
power

generator, rand,

nrand48, mrand48,
jrand48,

input. scanf, fscanf,
signals.

package. stdio:
communication package/
stdipc:

sh, rsh: shell, the

Ipsched, Ipshut, Ipmove:

system call.

stat: data returned by

ff: list file names and

processor. pstat: ICC

ustat: get file system

1207891

split: split a file into
spoo! directory clean-up.
spaoler.

spooling system.
sprintf: print formatted
sputl, sgetl: access long

sqrt: exponential,
logarithm,

square root functions.
/sqrt:

srand: simple
randem-number

srand48, seed48,
lcong48:/

sscanf: convert formatted
ssignal, gsignal: software

standard buffered
input/output

standard interprocess

standard/restricted
command/

start/stop the LP request/
stat: data returned by stat
stat, fstat: get file status.
stat system call.

statistics for a file
system.

statistics for

statistics.

split{1)
uclean(1)
Ipr(t)
Ipadmin(t)
printf(3)
sputi(3)
exp(3)

exp{3)
rand(3)
drand48(3)

scanf(3)
ssignal(3)
stdio(3)

stdipc(3)
sh(1)

Ipsched(1)
stat(5)
stat(2)
stat(5)
ff(1)

pstat(1)
ustat(2)

Index-90

Ipstat: print LP

feof, clearerr, fileno:
stream

control. uustat: uucp

communication facilities

ofSetFileStatus: BTOS
File

ps: report process
stat, fstat: get file
input/output package.

wait for child process to

strncmp, strepy,
strncpy,/

/strepy, strncpy, strlen,
strnepy,/ streat, strncat,

/strncat, strcmp,
strnemp,

/strrchr, strpbrk, strspn,
sed:
fflush: close or flush a

fopen, freopen, fdopen:
open a

reposition a file pointer
ina

get character or word
from a

fgets: get a string from a

status information.

status inquiries. ferror,

status inquiry and job

status. /report
inter-process

Status. ofGetFileStatus.

status.

status.

stdio: standard buffered
stime: set time.

stop or terminate. wait:

strcat, stencat, strcmp,

strchr, strrchr, strpbrk,/
stremp, strncmp, strepy,

strepy, strncpy, strlen,/

strcpn, strtok: string/
stream editor.
stream. fclose,

stream.

stream. fseek, rewind,
ftell:

stream. /getchar, fgetc,
getw:

stream. gets,

Ipstat(1)
ferror(3)

uustat(l)
ipes(1)

ofstatus(3)

ps(1)
stat(2)
stdio(3)
stime(2)
wait(2)
string(3)

string(3)
string(3)
string(3)

string(3)
sed(1)

felose(3)
fopen(3)

fseek(3)
getc(3)

gets(3)

Index-91

put character or word on a

puts, fputs: put a string
ona

setvbuf: assign buffering
to a

/teof, clearerr, fileno:

push character back into
input

long integer and base-64
ASCH

convert date and time to
floating-point number to
gets, fgets: get a

puts, fputs: put a -
strspn, strcspn, strtok:

number. strtod, atof:
convert

number. atof: convert
ASCI

strtol, atol, atoi: convert
line number information/
number/ strip:

strncmp, strepy, strncpy,
strepy, strncpy,/ strcat,
strcat, strncat, strcmp,

stremp, strncmp, strepy,

1207891

stream. /putchar, fputc,
putw:

stream.
stream. sethuf,

stream status inquiries.

stream. ungetc:

string. /164a: convert
between

string. /asctime, tzset:
string. /fevt, gevt: convert
string from a stream.
string on a stream.

string operations.
/strpbrk,

string to double-precision
string to floating-point

string to integer.

strip: strip symbol and
strip symbol and line
strien, strchr, strrchr,/
strncat, stremp, strncmp,
strncmp, strcpy, strcpy,/

strncpy, strlen, strbhr,/

putc(3)
puts(3)
sethuf(3)

ferror(3)
ungetc(3)

ab4i(3)

ctime(3)
ecvt(3)
gets(3)
puts(3)
string(3)

strtod(3)
atof(3)

strtol(3)
strip(1)

strip(1)

string(3)
string(3)
string(3)
string(3)

Index-92

/strlen, strchr, strrchr,
strncpy, strlen, strchr,
strchr, strrchr, strpbrk,

to double-precision
number.

/strpbrk,strspn, strespn,
string to integer.
terminal.

another user.

intro: introduction to
plot: graphics interface

/same lines of several
files or

count of a file.

du:
sync: update the
sync: update

su: become

interval. sleep:
interval. sleep:

pause:

swab:
orders to/ swapshort,
byte orders to/

strpbrk, strspn, strcspn,/
strrchr, strpbrk, strspn,/
strspn, strespn, strtok:/

strtod, atof: convert string

strtok: string operations.
strtol, atol, atoi: convert
stty. set the options for a
su: become super-user or
subroutines and libraries.
subroutines.

subsequent lines of one file.

sum: print checksum and
block

summarize disk usage.
super block.
super-block.

super-user or another
user.

suspend execution of an
suspend execution for

suspend process until
signal.

swab: swap bytes.
swap bytes.
swaplong: translate byte

swapshort, swaplong:
translate

string(3)
string(3)
string(3)
strtod(3)

string(3)
strtol(3)
stty(1)
su(1)
intro(3)
plot(3)
paste(1)

sum(1)

du(1)
sync(1)
sync(2)
su(1)

sleep(1)
sleep(3)
pause(2)

swah(3)
swab(3)
swapshort(3)
swapshort(3)

Index-93

file.

information from/ strip:
strip

file/ Idgetname: retrieve

name for common object
file

object/ /compute the
index of a

|dtbread: read an indexed

syms: common object file

object/ Idthseek: seek to
the

sdb:

symbol table format.

update: provide disk

swrite:
error/ perror, erng,

requests.

perror, ermo,
sys__errlist,

binary search a sorted

for common object file
symbol

/compute the index of a
symbol

1207891

swrite: synchronous write
ona

symbol and line number

symbol name for common
abject

symbol table entry.
/symbol

symbol table entry of a
common

symbol table entry of a
common/

symbol table format.

symhol table of a common

symbolic debugger.
syms: common object file
sync: update super-block

sync: update the super
block. .

synchronization.

synchronous write on a
file. .

sys—errlist, sys__nerr:
system

syslocal: special system

sys_nerr. system error/

table. bsearch:

table entry. /symbol name

table entry of a common
object/

swrite(2)
strip(1)
idgetname(3)
Idgetname(3)
Idthindex(3)
Idtbread(3)

syms(4)
Idthseek(3)

sdh(1)

syms(4)
sync(2)
sync(1)

update(1)

swrite(2)
perror(3)

syslocal(2)
perror(3)

bsearch(3)
Idgetname(3)

Idtbindex(3)

Index-94

file. /read an indexed
symbol

common object file
symbol

master device information

mnttab: mounted file
system

Idtbseek: seek to the
symbol

setmnt: establish mount

hdestroy: manage hash
search

tabs: set

expand, unexpand:
expand

a file.
request. quRemove:

trigonometric/ sin, cos,

sinh, cosh,
tar:

recover files from a
backup

mt: interface for
magnetic

programs for simple
lexical

search trees, tsearch,
tfind

table entry of a commen
object

table format. syms:

table. master:
table.

table of a common object
file.

table.

tables. hsearch, hcreate,

tabs on a terminal. .

tabs: set tabs on a
terminal.

tabs to spaces, and vice/

tail: deliver the last part of
take back a BTOS queue

tan, asin, acos, atan,
atan2:

tanh: hyperbolic functions.

tape file archiver.

tape. frec:

tape.

tar: tape file archiver.

tasks. lex: generate

tdelete, twalk: manage
binary

tdl: rs232 terminal
download.

Idtbread(3)
syms(4)

master(4)
mnttab(4)

Idtbseek(3)

setmnt(1)
hsearch(3)

tabs(1)
tabs(1)

expand(1)

tail(1)
quremove(3)
trig(3)

sinh(3)
tar(1)
frec(1)

mt(6)

tar(1)
lex{1)

tsearch(3)

tdi{1)

Index-95

initialization. init, icode,

temporary file. tmpnam,

tmpfile: create a

tempnam: create a name
for a

terminals.

term: format of compiled
file.

data base.
termcap:
terminfo:

console: console

ct: spawn getty to a
remote

generate file name for
tdl: 1s232

/terminal interface, and
/tgetstr, tgoto, tputs:

terminal/ tset: set
terminal,

termio: general
tty: controlling

dial: establish an
out-going

1207891

tee: pipe fitting.
telinit: process control

tempnam: create a name
for a

temporary file.
temporary file. tmpnam,

term: conventional names
for

term file. .

term: format of compiled
term

termcap: terminal
capability

terminal capability data
base. .

terminal capability data
base.

terminal,

terminal.

terminal. ctermid:
terminal download.
terminal environment.
terminal independent/

terminal interface, and

terminal interface.
terminal interface.

terminal line connection.

tee(1)
init(1)
tmpnam(3)

tmpfile(3)
tmpnam(3)

term(5)

term(4)
term(4)

termcap(4)
termcap(4)
terminfo(4)

console(6)

" et{1)

ctermid(3)
tdi(1)
tset(1)
termcap(3)
tset{1)

termio(6)

tty(6)
dial(3)

Index-96

clear: clear
script: make typescript of

getty. gettydefs: speed
and

stty: set the options for 2
tabs: set tabs on a

and terminal/ tset: set

tty: get the name of the
isatty: find name of a

and line/ getty: set

vt: virtual
channels. tp: controlling

perusal filter for
soft-copy

term: conventional names
for

wmlayout: get

kilk:

shutdown, halt:

exit, —_exit:

for child process to stop or
tic:

tput: query

tic;

interface:

command.

ed, red:

terminal screen.
terminal session.

terminal settings used by

terminal.
terminal.

terminal, terminal
interface,

terminal.
terminal. ttyname,

terminal type, modes,
speed,

terminal.
terminal’s local RS-232

terminals. pg: file

terminals.

terminal’s window layout.

terminate a process. _
terminate all processing.
terminate process.
terminate. wait: wait
terminfo compiler.
terminfo database.
terminfo compiler.
termio: general terminal
test: condition evaluation

text editor.

clear(1)
script(1)
gettydefs(4)

stty(1)
tabs(1)
tset(1)

tty(1)
ttyname(3)
getty(1)

vt(6)
tp(6)
pg(1)

term(5)

wmlayout(3)

 Kill{1)

shutdown(1)
exit(2)
wait(2)
tic(1)

tput(1)
terminfo(4)
termio(6)
test(1)

ed(1)

Index-97

ex:
ex for casual/ edit:
change the format of a

tspec: format
specification in

plock: lock process
more, page:

strings: extract the
ASCHl

binary search types.
tsearch,

tgetstr, tgoto, tputs:/
tputs:/ tgetent, tgetnum,
tgoto, tputs:/ tgetent,

tgetent, tgetnum,
tgetflag,

/tgetnum, tgetflag,
tgetstr,

data and system/ timex:

time:
commands at a later
environment at login

systems for optimal
access

profil: execution

up an environment at
login

1207891

text editor.

text editor (variant of
text file. newform:
text files.

text, or data in memory.
text persual.

text strings in a file.

tfind, tdelete, twalk:
manage

tgetent, tgetnum, tgetflag,
tgetflag, tgetstr, tgote,
tgetnum, tgetflag, tgetstr,
tgetstr, tgoto, tputs:/

tgoto, tputs: terminal/

tic: terminfo compiler.

time a command; report
process

time a command.
time. /batch: execute
time. /up a C shell
time. dcopy: copy file

time: get time.
time profile..

time. profile: setting

ex(1)

edit(1)
newform(1)
fshec(4) '

plock(2)
mpte(l)

stfings(i)

tsearch(3)

| “termu‘:ap(3)

termcap(3)
termcap(3)
termeap(3)

termcap(3)

tic{1)
timex(1)

time(1)
at(t)
cprofile(d)
deopy(1)

time(2) » _
profil(2)
profile(d)

Index-98

stime: set

time: get

tzset: convert date and
clock: report CPU
process times.

update access and
modification

get process and child
process

file access and
modification

process data and
system/

file.
for a temporary file.

/tolower, ___toupper,
—tolower,

popen, pclose: initiate -
pipe

toupper, tolower,
_—toupper,

toascii: -translate/
toupper,

tsort:

modification times of a
file.

translate/ toupper,
tolower,

_—tolower, toasci:
translate/

local RS-232 channels.

time.

time: time a command.
time.

time to string. /asctime,
time used.

times: get process and child

times of a file. touch:
times. times:
times. utime: set

timex: time a command;
report

tmpfile: create a
temporary

tmpnam, tempnam: create
a name

toascii: translate
characters.

to/from a process.

__tolower, toascii:
translate/

tolower, ___toupper,
—tolower,

topological sort.

touch: update access and

__toupper, _tolower,
toascii;

toupper, tolower,
—toupper,

tp: controlling terminal’s

stime(2)
time(1)

time(2)

ctime(3)
clock(3)
times(2)
touch(1)

times(2)
utime(2)
timex(1)
tmpfile(3)
tmpnam(3)
conv(3)
popen(3)
conv(3)
conv(3)

tsort(1)
touch(1)

conv(3)
conv(3)

tp(6)

Index-99

database.

/tgetflag, tgetstr, tgoto,

ptrace: process
swapshort, swaplong:

/—toupper, __tolower,
toascii:

tr:
ftw: walk a file

twalk: manage binary
search

tan, asin, acos, atan,
atan2:

typesetting view/ mv: a
values.

/u3b, u3bb, vax: brovide
true, false: provide

twalk: manage binary
search/

interface, and terminal/

interface.
a terminal.

utmp file of the current/
tsearch, tfind, tdelete,

1207891

tput: query terminfo

tputs: terminal
independent/

tr: translate characters.
trace.
translate byte orders to/

translate characters.

translate characters.
tree.
trees: /tfind, tdelete,

trigonometric functions.
Jcos,

troff macro package for
true, false: provide truth
truth value about your/
truth values.

tsearch, tfind, tdelete,

tset: set terminal, terminal
tsort: topological sort.
tty: controlling terminal

tty: get the terminal's
name.

ttyname, isatty; find name
of

ttyslot: find the slot in the

twalk: manage binary
search/

tput(1)
termcap(3)

tr(1)
ptrace(2)
swapshort(3)

conv(3)

te(1)
ftw(3)
tsearch(3)

trig(3)

mv(5)
true(1)
machid(1)
true(1)
tsearch(3)

tset(1)
tsort(1)
tty(6)
tty(1)

ttyname(3)

ttyslot(3)
tsearch(3)

Index-100

file: determine file

pdp11, u3b, vax:
processor

getty: set terminal

ttytype: list of terminal
types.

types: primitive system
data

session. script: make
/troff macro package for

localtime, gmtime,
asctime,

truth/ mc68k, pdp11,
mc68k, pdp11, u3b,
getpw: get name from
limits.

creation mask.

mask.

file system. mount,

CTIX system.

an SCCS file.

type.
type. mc68k,

type, modes, speed, and
line/

types by terminal number.

types: primitive system
data

types.

typescript of terminal
typesetting view graphs/

tzset: convert date and
time/

u3b, u3b5, vax: provide
u3bb, vax: provide truth/
uiD.

ulimit; get and set user
umask: set and get file

umask: set file-creation
mode

umount: mount and
dismount

umount: unmount a file
system.

uname: get name of
current

uname: print name of
system.

unget: undo a previous
get of

file(1)
machid(1)

getty(1)

ttytype(4)
types(5)

tvnes(S)

script(1)
mv(5)
ctime(3)

machid(1)
machid(1)
getpw(3)
ulimit(2}
umask(2)

umask(1)
mount(1)
umount(2)
uname(2)
uname(1)

unget(1)

Iindex-101

spaces, and/ expand,
get of an SCCS file

into input stream.

/seed48, Icong48:
generate

a file.

mktemp: make a

unlink system calls. link,
entry.

unfink: exercise link and
umount:

files. pack, pcat,
times of a file. touch:

of programs. make:
maintain,

Ifind: linear search and
synchronization

sync:

sync:

du: summarize disk

id: print

setuid, setgid: set
crontab--

character login name of
the

1207891

unexpand: expand tabs to
unget: undo a previous

ungetc: push character
back

uniformly distributed/

uniq: report repeated lines
in

unique file name.

units: conversion program.
unlink: exercise link and
unlink: remove directory
unlink system calils. link,
unmount a file system.

unpack: compress and
expand

update access and
modification

update, and regenerate
groups

update. Isearch,
update: provide disk
update super-block.
update the super block.
usage.

user and group IDs and
names. .

user and group 10s.
user crontab file.

user. cuserid: get

expand(1)
unget(1)
ungetc(3)

drand48(3)
unig(1)

mktemp(3)
units(1)
link(1)
unlink(2)
link(1)
umount(2)
pack(1)

touch(1)
make(1)

Isearch(3)
update(1)
syne(2)
sync(1)
du(1)
id(1)

setuid(2)
crontab(1)

cuserid(3)

Index-102

/getgid, getegid: get real
environ:
ulimit: get and set

logname: return login
name of

/get real user, effective

become super-user or
another

the utmp file of the
current

write: write to another
of ex for casual

mail, rmail: send mail to
wall: write to all
statistics.

modification times.

utmp, wtmp:

endutent, utmpname:
access

ttyslot: find the slot in the
entry formats.

/putuline, setutent,
endutent,

clean-up.

uusub: monitor

uuclean:

user, effective user, read/
user environment.
user limits.

user.

user, real group, and/

user. su:
user. /find the slot in

user.
users). /editor (variant
users or read mail.

users.

ustat: get file system
utime: set file access and

utmp and wtmp entry
formats.

utmp file entry. /setutent,

utmp file of the current
user.

utmp, wtmp: utmp and
wimp

utmpname: access utmp
file/

uuclean: uucp spool
directory

uucp network.

uucp spool directory
clean-up.

getuid(2)
environ{5)
ulimit(2)

logname(3)

getuid(2)
su(1)

ttyslot(3)

write{1)
edit(1)
mail(1)
wall(1)
ustat(2)
utime(2)
utmp(4)

getut(3)
ttyslot(3)
utmp(4)
getut(3)
uuclean(1)

uusub(1)

uuclean(1)

Index-103

control. uustat:

bedtween computer
systems.

between computer/
uucp,

computer/ uucp, uulog,

system-to-
computer/ uuto,

and job control.

system-to-computer
system/

execution.

val:
u3b5, vax: provide truth

abs: return integer
absolute

getenv: return

ceiling, remainder,
absolute

putenv: change or add
values.
true, false: provide truth

values:
machine-dependent

/print formatted output
of a

argument list.

1207891

uucp status inquiry and job

uucp, uulog, uuname: copy
data

uulog, uuname: copy data

uuname: copy data
between

uupick: public computer

uustat: uucp status inquiry

uusub: monitor uucp
network.

uuto, uupick: public
computer

uux: remote system
command

val: validate SCCS file.
validate SCCS file.
value about your/ /u3b,

value.

value for environment
name.

value functions. /fabs:
floor,

value to environment.
values: machine-dependent
values.

values.
varargs argument list.

varargs: handle variable

uustat(1)
uucp(1)

vucp(1)
uucp(1)
uuto(1)

uustat(1)
uusub(1)

uuto(1)
uux(1)

val(1)
val(1)
machid(1)
abs(3)

getenv(3)
floor(3)

putenv(3)
values(5)
true(1)

values{5)
vprintf(3)

varargs(5)

Index-104

varargs: handle
edit; text editor
mc68k, pdp11, u3b,

option letter from
- argument

assert:

ve:

get: get a

scesdiff: compare two

formatted output
of /vprintf,

display editor based on ex.
/package for typesetting

on ex. vi: screen-oriented

systems with label
checking.

print formatted output of

a/

output of/ vprintf,
viprintf,

process.

or terminate. wait:

exCall: Send a request and

to stop or terminate.

ftw:

variable argument list.
{variant of ex for/
vax: processor type.
vc: version control.

vector. getopt: get

verify program assertion.
version control.

version of an SCCS file.
versions of an SCCS file.

vprintf, vsprintf: print

vi: screen-oriented (visual)
view graphs and slides.

{visual) display editor
based

volcopy, labelit: copy file
vprintf, viprintf, vsprintf:
vsprintf: print formatted

wait: await completion of

wait for child process to
stop

wait for the response.

wait: wait for child
process

walk a file tree.

wall: write to all users.

varargs(5)
edit(1)
machid(1)
ve(1)
getopt(3)

assert(3)
ve(1)
get(1)
scesdiff{1)
vprintf(3)

vi(1)
mv(5)
vi(1)

volcopy(1)
vprintf(3)
vprintf(3)

wait(1)
wait(2)

excall(2)
wait(2)

ftw(3)
wall(1)

Index-105

signal. signal: specify

whodo:

who:

fold long lines for finite
and floppy disks. dsk:
wmgetid: get

wmlayout: get terminal’s
wmop:

window:

wm:

primitives:

a file descriptor with a

window layout.

operations.
file descriptor with a/

descriptor with a/
wmsetid,

1207891

wc: word count.
what: identify SCCS files.

waht to do upon receipt
of a

whao is doing what.
who is on the system.

who: who is on the
system.

whodo: who is doing
what.

width output device. fold:
winchester, cartridge,
window ID.

window layout.

window management
operations.

window management
primitives.
window management.

window: window
management

window. /wmsetids:
associate

wm: window
management.

wmgetid: get window ID.
wmlayout: get terminal’s

wmop: window
management

wmsetid, wmsetids:
associate a

wmsetids: associate a file

we(1)
what(1)
signal(2)

whodo(1)
who(1)
who(1)

whodo(1)

fold(1)
dsk(6)
wmgetid(3)
wmlayout(3)
wmop(3)

window(6)

wm(1)

window(6)
wmsetid(3)
wm(1)

wmgetfd(!i)
wmlayout(3)

wmop(3)
wmsetid(3)

wmsetid(3)

Index-106

cd: change

chdir: change

get path-name of current
pwd:

swrite: synchronous
write:

putpwent:

wall:

write:

open: open for reading or
utmp, wtmp: utmp and
formats. utmp,

accounting records.
fwtmp,

list{s) and execute
command.

0, i1, in,

i0. i1, in, YO,
compiler-compiler.
iol iI’ in' yol YL

working directory.

working directory.

waorking directory. getcwd:

working directory name.
write on a file.

write on a file.

write password file entry.
write to all users.

write to another user.

write: write on a file.

write: write to another user.

writing.
wtmp entry formats.

wtmp: utmp and wtmp
entry

wtmpfix: manipulate
connect

xargs: construct argument

y0, y1, yn: Besse!
functions.

y1, yn: Bessel functions.
yacc: yet another

yn: Bessel functions.

cd(1)
chdir(2)
getewd(3)
pwd(1)

' swrite(2)

write(2)
putpwent(3)
wall(1)
write(1)
write(2)
write(1)
open(2)
utmpi4)
utmp(4)

fwtmp(1)
xargs(1)
bessel(3)

bessel(3)
yace(1)
bessel(3)

Title:
Form Number: Date:

Burroughs Corporation is interested in your comments and suggestions regarding
this manual. We will use them to improve the quality of your Product Information.

Ellease check type of suggestion: [J Addition [Deletion [J Revision
Error

Comments:

Name
Title
Company

Address
Street City State Zip

Telephone Number ()
Area Code

Title:
Form Number: Date:

Burroughs Corporation is interested in your comments and suggestions regarding
_ thismanual. We will use them to improve the quality of your Product Information.

Il;{ease check type of suggestion: [J Addition [Deletion (J Revision
Error ;

Comments: :

Name
Title
Company
Address

Street City State Zip

Telephone Number ()

Area Code

BUSINESS REPLY CARD

FIRST CLASS PERMITNO.817 DETROIT, MI 48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services — East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

Amimmnmsnniamammanmmil

BUSINESS REPLY CARD

FIRST CLASS PERMITNO. 817 DETROIT, Mi 48232

POSTAGE WILL BE PAID BY ADDRESSEE

Burroughs Corporation
Production Services — East
209 W. Lancaster Avenue
Paoli, Pa 19301 USA

ATTN: Corporate Product Information

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

