e ot e RN E R e, it e e

MERLIN OPERATING SYSTEM

Interface Guide

Pirst Edition

4th October 1981

Slllcon Valley Software Incorporated
: 10340 Phar Lap Drive
Cupertino

California 95014

C

Table of Contents

Chapter 1 Introduction
1.1 Overview and Layout of this Guide
Chapter 2 General Information

2.1 Units
2.2 Data Representations in MERLIN

2.1 Characters, Words, and Long Words
2.2 Boolean Data Type

2.3 The NIL Pointer

2.4 The String Data Type

2.5 Packed Array of Character

Th

e System Communication Area

.3
4 The System Call Vector

2
2.
2.4.1 Calling a System Routine

2.5 File Information Block (FIB)
2.6 Device Directory -

2.6.1 Directory Entry for a Header Record
2.6.2 Directory Entry for a File Entry

2.7 The Device or Unit Table

2.8 Input OQutput Result Codes

2.9 Memory Layout under MERLIN on the 68000
2.10 Register Usage in MERLIN

2.11 Environment of A Running Program

Chapter 3 System Calls
3.1 Uhit input-output
3.1.1 UNITREAD and UNITWRITE - Direct Unit Data
Transfer
3.1.2 UNITBUSY - Check if Unit is Busy

3.1.3 UNITCLEAR - Reset a Unit
3.1.4 UNITSTATUS - Return Status of Unit

3.2 File input-output

W J (VR NV NV L W) w N e

[
'_l

o
(N

=
oW

[SESH SN SN o
WWNHNO

NN
w v

25

26
26

27

C \ | PREFACE

MERLIN is a "mini" operat;ng system for computer systems based
on the Motorola MC68000 mlcroprocesso:.

The MERLIN Operating System Documentation is arranged into two
distinct books.’

The User's Guide is a "concepts and facilities"™ manual which
explains the core ideas of MERLIN - its command interpreter, file
system, and the utility commands that provide a means to get
started on MERLIN. The User's Guide also contains information
about the software packages and utilities that run under MERLIN.
There are descriptions of how to run the compilers, the linker
and librarian, and a summary of ED - the line-oriented editor.

The Internals Guide. is a MERLIN Internal Interface Guide for
programmers wishing to write software to run under MERLIN - it
covers topics such as file structures, memory layout, device
‘drivers, and other information about MERLIN.

(- There are other manuals in addition to these two. The
additional. manuals are whole, self-contained manuals such as the
Pascal and FORTRAN reference manuals. These are separate because
(a) they are- large:. and placing them in the User's Guide would
make that manual impossibly large, and (b) because they are
separately priced-products.

e ——— e,

(&

Q)

A4

Chapter 1 Introduction

Chapter 1

Introduétion
I

MERLIN is a basic executive program for 68000-based
microcomputer systems. Its main purpose is to provide an
operating environment in which users can develop and run software
applications quickly and easily. MERLIN's main features include:
« Single-user system - the wuser has the £full power and

responsiveness of the MC68000 system available with no

competition for resources with other users.

. Fixed.and demountable volumes (devices).
« Two level file structure.

« UNIX-like. command language- with re-direction of input. and
output. '

-

. Automatic” startup command file for initialization.

« The shell or command interpreter is simply a system command -
users can develop their own shells to suit their specific
needs. -

« Assignable device drivers - new device drivers can be
incorporated without the need for system reconfiguration.
Users view MERLIN as composed of several distinct parts:

« the file system provides a way to store data in named

collections called files and a way to create, examine, remove,
copy, and otherwise manipulate such files.

. the command interpreter, known as "the shell®™, provides the
basic means of telling MERLIN what things it should do.

. the programming langquages provide the means to write new
software applications. MERLIN supports Pascal, FORTRAN, an

MERLIN 1.0 Interface Guide Page 1

A}

{

t

LChapter 2

C

A

i;(:

General Information

Chapter 2

General Information

This Chapter supplies general information about data structures
and the means by which software makes MERLIN system calls.
Topics covered in this Chapter are:

- & description of the units that MERLIN supports.

« data representation.

- various data structures such as the system communication area.

.- memory layout, and program environment.

2.1 Units

MERLIN, as stated previously, looks somewhat 1like the UCSD

Pascal system.

MERLIN knows about several units, that is,

external devices to or from which data may be transferred.

Generally speaking, it is only neccessary to be concerned with
units when using unit input-ocutput - the software layer below

that of file

input-ocutput. The unit numbers that MERLIN

currently deals with are as follows:

Unit Number and Name Description

8 - /null

is a "null" device. It acts as an infinite sink
or "black hole"™ when it is written to; when is
is read from, an end-of-file <condition is
returned. '

is the consocle, that 1is, the .keybocard and
screen, with echo.

MERLIN 1.0 Interface Guide v Page 3

Chapter 2 ' General Information

Characters, or bytes, occupy 16 bits if they are not packed.
Packed characters occupy a byte and are aligned on a byte
boundary.

‘Words occupy two bytes, or 16 bits. Words are the Pascal
integer data types. Words are always aligned on a two byte
boundary. Words represent. signed integers in the range
-32768 .. +32767.

Long Words occupy four bytes, or - 32 bits. Long words are
always aligned on a two byte boundary. Long words are accessible
in Pascal by the longint data type. Long words represent signed
integers in the range -2,147,483,648 .. +2,147,483,647. Long
words are also used to store memory addresses and pointers in
Pascal.

2.2.2 Boolean Data Type

The Pascal implementation has a Boolean data type. A Boolean
is always represented in a single byte quantity. A value of 0
(zero) represents false. A value of 1 (one) represents true. NoO
other values are valid.. When a Boolean value is not an element
of a packed data structure, a full byte of storage is used to
facilitate access..

Eeq
2.2.3 The NIL Pointerr — "\ \D\’\%

As mentioned above, the Pascal implementation uses a long word
or 32-bit gquantity to represent a pointer. One of the important
pointers is the nil pointer which points to no data element (for
example, used to indicate the end of a 1list). In this
implementation, nil is represented by the value zero (0).

2.2.4 The String Data Type

Pascal has a dynamic sized string data type similar to that of
the UCSD Pascal. system. A string -is a sequence of bytes in
memory, with the first byte in the string containing the length
of the string (not including the first byte). This means that
the maximum string length is 255 bytes. A string value must be
aligned on a word boundary.

2.2.5 Packed Array of Character

MERLIN 1.0 Interface Guide Page S

)

Chapter 2 General Information

2.3 The System Communication Area

MERLIN maintains a System Communication Area in RAM. The System
Communication ‘Area contains global information that is important
to running programs. | Two. of. the important. items are the
"IORESULT", which is the return code from input-output
operations, and the start address of the system call jump
vector. :

The System Communication Area base address is contained in the
long word found in absolute location $180. The System

Communication Area layout is described here.

IORESULT ' is a word value which contains a result code
after completion of any input-output process.

PROCESS NUMBER is a word value, which is the current process
number. The initial shell. is assigned process
number 0. Each subsegquent process receives an
incremented process number.

FREE HEAP is a long word pointer to the start of the free
memory available for storage. allocation.

SYSTEM CALL VECTOR ;
is a 1long word pointer to the start of the
system call vector. The system call vector is a
table of jump addresses to the system routines.
This is described in more detail later on.

SYSouT is a long word pointer to the initial shell's
standard output file. SYSIN and SYSOUT are used
for court of last resort error messages when the
Pascal system runs into trouble, for example,
whemr it runs short of allocatable storage.

SYSIN is a long word pointer to the initial shell's
standard input file.

SYSTEM DEVICE TABLE
is a long word pointer to the device table.

DIRECTORY NAME 1is a long word poznter to the currently "logged“
_ directory name.

MERLIN 1.0 Interface Guide Page 7

b4

 Chapter 2 General Inform;ticn

+
i
|
|
|

byte +0 | IORESULT “T

+2 [Process Number T

. +4 i Pointer to next available free space on the heap T

+8 i Pointer to start. of System Call Vector T

+12 I Pointer to System OQOutput File T

+16 i Pointer to System Input File T

+20 i Pointer to System Device Table T

+24 i Pointer to Boot Device Directory Name 1

+28‘? Pointer to Start of User Command Table T

+32 i Today's Date (held as a Packed Record) 1

(‘i’ +34 1 Overlay Jump Table Address 1
. +38 l~ Next Process Number 1
+40"i Number of Processes T

+42 i Pointer to the Process Table Array 1

+46 i Pointer to the Name of the Boot Device I

+50 i Pointer to Memory Bounds Map I

+54 i Boot Device Number 1

Figure 2-1
System Communication Area Layout

2.4 The System Call Vector

,‘i\ All MERLIN system calls are, at this time, made by reference
\L /,,

MERLIN 1.0 Interface Guide Page 9

. Chapter 2 General Information

2.4.1 Calling a System Routine

To call a system routine, the appropriate parameters must be
pushed onto the stack. The last thing pushed onto the stack
should be the return address (normally pushed via a JSR
instruction). The address of a system routine is extracted from
the system-call vector, and a JSR to that address 1is then
executed.

The code fragment below illustrates a way to call a system
routine. In this specific example, the routine FCLOSE is called
to close a file. ' _

PEA FBUFF

CLR.W - (SP)

MOVE.L $180.W,A0
MOVE.L 32 (A0) ,A0
JSR (AQ)

«++ Return Address ...

‘Push address of FIB.

Close type := NORMAL.

AQ0 := System Communication Area address.
A0 := System Call Vector address.

A0 := Address of FCLOSE entry.

Call the FCLOSE routine.

FCLOSE returns to here

NG N9 NO N0 N0 N

- 2.5 Pile Information Block. (FIB)

Access to files requires passing the address of a File
Information Block, abbreviated to FIB. A FIB contains all
information about a file, its type, buffering and so on.

Before a file can be opened, an FIB must be allocated. The
total number of bytes to be allocated depends on whether using
Block input-output is being used. If Block input-outpu;?s being
used, the FIB is 64 bytes long. In this case, the user must also
allocate a buffer for the block. If Block input-cutput is not
being used, in other words the file is a text f£ile or an ISO file
of type, the FIB .is 576 bytes long, plus the number of bytes in a

record. .

WINDOW is a long word pointer to the file 'window' -

: the area at the end of the FIB that holds the
current record. o

END OF LINE is a Boolean that is true if an end-of-line was

encountered in the file, false otherwise.

C

MERLIN 1.0 Interface Guide : Page 11

m—~
N

O

&(?

chapter 2

SOFT BUFFER

NEXT BYTE
MAXIMUM BYTE

BUFFER CHANGED

BUFFER

_RECORD WINDOW

General Information

occupies 26 bytes in the FIB.

is a Boolean quantity that when true, indicates
that the file buffer for this file is actually a
part of this structure, instead of separately
allocated as in the case of a blocked file.
When SOFT BUFFER is true, the following items
are part of the File Information Block.

is a word quantity that 1is the next byte
position to be read or written in the buffer.

is a word quantity that is the number of the
last byte in the buffer. This is wused when
reading a file that has a partial last block or
when writing any file.

is a Boolean quantity that when true, indicates
that the £file buffer in this FIB has been
changed and therefore must be eventually written
back to the disk.

is a 512 byte array - the size of one logical
disk block. ,

is an array of bytes sufficiently large to hold.
one record from the file. 1If that record is an
odd number of- bytes. in size, the buffer is-
increased to be. an even number of bytes long.

The diagram on the next page is a graphic layout of a Pile
Information Block.

| MERLIN 1.0 Interface Guide Page 13

~
v

O

Chapter 2 General Information

2.6 Device Directory

A directory resides on a blocked device. The device directory
contains information about the volume and the files that reside
cn that volume. A complete directory is an array of 73 directory
entries, the first entry being the header record which describes
the specific volume. The other 72 entries are for the files that
reside on the device. The elements in a directory entry are

- described here:

©

FIRST BLOCK is a word quantity which is the number of the
first avaliable block on this device. This
entry is nor:mallb. zero (0). :

NEXT BLOCK is a word quantity which is. the number of the
next available block after this entry. For the
volume. header entry, this is normally 6.

FILE KIND is a four-bit quantity which is the kind of file
that this entry describes. The next two
Subsections describe the different layouts of a
directory entry depending on the file kind
field. The values of file: kind that are of -
interest are: ,

0 : a directory header entry.

2 ~a code file.

3 a text file.

5 a data file.

8 is also a directory header entry.

the file kind entry is followed by 12 bits of
unused space to £ill up the word.
2.6.1 Directory Entry for a Header Record

If the FILE KIND field in the‘directory entry indicates that

this entry is a directory header record, the following fields are
valid: '

MERLIN 1.0 Interface Guide Page 15

Cﬁapter 2 General Information

L)

(

\ -
(P

correspond to a file entry.

Byte --> +0 FIRST BLOCK

—+—+

f—+—+

+2 NEXT BLOCK
+4‘L FILE KIND l UNUSED -‘-I
+6 T DISK VOLUME NAME i FILE NAME 1 +6
+14 f_ LAST BLOCK l
+16 T NUMBER OF FILES I
+18 [LAST ACCESS I
+20 | LAST BOOT L |
+22 [MEM FLIPPED i_nxsx FLIPPED l LAST BYTE 1 +22
I‘ UNUSED i j +24

- +24 LAST ACCESS

Figg}e;Z-B 4
Layout of a Directory Entry

‘

MERLIN 1.0 Interface Guide Page 17

©

Q

Chapter 2

General Information

8 this wunit can perform a UNITBUSY
operation.

16 this unit can perform a UNITSTATUS
' operation.

ADDRESS OF DRIVE

R :
is. a long word pointer to the driver code for

" this device.

BLOCKED
MOUNTED

DEVICE NAME

DEVICE SIZE

a Boolean which when true, indicates that this
is a blocked device.

a Boolean which when true, indicates that this
device is mounted (a driver is assigned to it).

an eight-byte field which is the name of the
device. The first byte is the length of the
string; the remaining seven bytes are the actual
name of the device.

is a word quantity which is the number of

S12-byte blocks on this device. For an
unblocked. device, it 1is set to the maximum.
integer, 32767.

The layout of each entry in the device table is as shown

belqw.
Offset +0 | Valid Operation Bits |
+2 i Pointe:‘tb Diive: Routine I
+6 l BLOCKED j MOUNTED I
+8 ' Device Na;e occupies 1
eight bytes 1
+16 i Device Size j

T

Figure 2-5
Individual Device Table Entries

 MERLIN 1.0 Interface Guide Page 19

» Chapter 2 General Information

<T(T

13 File Not Open - Attempt to operate on a closed
file. '
14 Bad Format - Non-numeric data read in an Integer
‘ or Real read operation.
15 Ring Buffer Overflow.
16 © Write Protect - attempt to write to a write

protected device.

17 Seek Error - Seek on a file that is not a text
file or a blocked file. Also seek to a negative
record number.

64 Device Error of unknown origin.

O

MERLIN 1.0 Interface Guide | Page 21

éhapter 2 General Information

2.10 Register Usage in MERLIN

Registers A4 .. A7 are reserved for system use as follows:

a4 " holds the address of the overlay jump table.
AS holds the address of the user global data.
A6 holds the base address of the 1local stack

frame. A6 is undefined for a procedure at the
outermost (main) level.

A7 holds the current stack top address.

All other registers are CLOBBERED when system calls are made.

A<(f) 2.1l Environment of A Running Program

The diagram below shows the ;un-time environment pointed to by
register AS.

(A5) +20Q i ARGC (argument count) 1

(A5)+16 l ARGV (point to Arguments) T

(AS)+12 1 Pointer to Standard Output T

(AS5) +8 j Pointer to Standard Input I

(AS) +4 i Return Address T

33 J— > j 0ld Copy of A5 j
Figure 2-7

Environment of a Running Program

MERLIN 1.0 Interface Guide Page 23

)

Q)

-

Chapter 3 System Calls

Chapter 3

System Calls

This Chapter provides a blow-by-blow description of the system
call interfaces. 1In all cases, parameters are described in the
order in which they must be pushed onto the stack. The last
thing pushed onto the stack, in all cases, is the return
address. The discussions below cover the following topics:

- Unit input-output.

'« File input-output.

- Memory Management.

3.1.0nit input-cutput

Unit input-output is at the 1lowest 1level of the system
input-output facilities. Unit input-output references ' the
physical devices in terms of physical blocks (on a disk). There
are five system interfaces for unit input-output, namely
UNITREAD, UNITWRITE, UNITBUSY, UNITCLEAR and UNITSTATUS. They are
described in the subsections that follow.

3.1.1 UNITREAD and UNITWRITE - Direct Unit Data Transfer

UNITREAD and UNITWRITE are used to transfer information between
a memory buffer and a specific unit. Parameters are:

unit number a word guantity representing the physical unit
number involved in the transfer.

buffer address a long word pointer to the memory buffer.

byte count a word quantity representing the number of bytes

MERLIN 1.0 Interface Guide ‘ Page 25

O

()

Chapter 3 System Calls

control a word quantity representing a control parameter
- whose meaning is agreed upon between UNITSTATUS
and any of its callers.

3.2 File input-output

|

This Section describes those facilities that deal with files.
In order to use the Pile input-output facilities, it is
neccessary to allocate a Pile Information Block (FIB). See
Chapter 2 for the details of an FIB. If Blocked input-output is
being used, a buffer must also be allocated for the data transfer
operations. The buffer must be big enough to hold the number of
blocks to be transferred at any time. ‘

3.2.1 FINIT - Initialize a File

FINIT sets up a File Information Block when the file is
opened. The Open File function (FOPEN) usually calls upon FINIT
to do this. User programs do not normally need to call FINIT.
Parameters are:

Pointer to PIB a long word éointer to a File Information Block.

bytes in a record
a word gquantity. There are special meanings
attached to this parameter if it is =zero or
negative., If positive, it represents the number
of bytes per record in the file. If zero or
negative, it has the following meanings:

0 this file is an interactive file -
it is talking to a device such as a
terminal. An interactive file is to
all intents and purposes the same- as
a text file. There- are some minor
differences in the way that
end-of-line is handled.

-1 this file is a UCSD Pascal
compatible file. It 1is normally
declared as just file; (an untyped

file), as opposed to a file of

some-type;. with this file
organization, the user must provide

MERLIN 1.0 Interface Guide Page 27

¢ C

Chapter 3 System Calls

Mode a word qgquantity indicating the disposition of
the file after it is closed. The modes are:

0 normal - if the file is an old file
- it existed prior to this program
run, it 1is saved (retained) in the
file system. If the file is a new
file - created during this program
run, it is deleted or purged from
the file system.

1 lock - makes a file permanent in the
file system, regardless of any
conditions mentioned 1in case (0)
above.

2 | purge - purges or removes this file
from the file system when the file
is closed.

' 3.2.5 READCHEAR - Read a Character from a File

READCHAR reads a single. character from a file. READCEAR only’

" applies to interactive (mode 0), or text (mode -2) files.
- Parameters are: -

Pointer to FIB a. long word pointer to a File Information Block.

READCHAR returns a single byte value on the top of the stack.

3.2.6 WRITECEAR - Write a Character to a File

WRITECHAR writes a character to a file. There is a field width
specification which can cause space filling. WRITECHAR only
applies to interactive (mode 0), or text (mode =2) files.
Parameters are:

Pointer to FIB a long word pointer to a File. Information Block.

Character ' ﬁo be written is a byte.
Size a word quantity representing a field width. If

size 1is greater than one, the character is
preceded with size-l spaces.

3.2.7 SEER - Position to a Specific Record in a File

MERLIN 1.0 Interface Guide Page 29

\&

Chapter 3 System Calls

3.3 Memory Management

This section describes those MERLIN system calls dealing with
dynamic allocation and de-allocation of memory. Memory
Allocation is done on a heap. The heap grows upward from the end
of the user program. The user stack grows downward from the top
of memory. When the two collide, there is mutual annihilation.

3.3.1 NEW - Allocate Storage
NEW allocates storage on the heap. Parameters are:

Pointer to Storage
a long word pointer which points to another 1long
word pointer. The second pointer receives the
start address of the allocated storage, in the
event that there is enough storage to allocate.

Note that NEW always returns. a pointer that is
aligned to a word boundary.

Byte Count a word quantityyreprééenting the number of bytes
: to be allocated. Note that. if an odd number of
bytes are requested, NEW rounds up to an even -

(word) number and allocates that -number of
bytes.

3.3.2 DISPOSE - De-Allocate Storage

DISPOSE currently acts as a no-op. It does not actually
dispose of de-allocate storage as in some Pascal
implementations. DISPOSE does, however, return a NIL pointer to
the caller. Parameters are: ‘

Pointer to Storage -
a long word pointer that itself points to
another long word pointer. This second pointer
is the address of the region of storage to be
de-allocated.

Byte Count a word quantity representing the number of bytes
to be freed. It must be:the same number as that
given to the NEW call as described above.

MERLIN 1.0 Interface Guide ' Page 31

O

Q)

Q)

Chapter 3 System Calls

Device lS valid Indicator

a long word poznter to a Boolean quantity which
is set to true is the device named by the first
parameter above is actually on the system. If
this parameter is assigned the value false, none
of the previous three parameters are defined.

The interpretation of the various parameters of GETD#R is as

follows: |

L3

If Device-is-Valid is false, the device named by the first
parameter is not on-line. In this case, none of the other
parameters are meaningful. '

If Device-is-Valid is true, The Device-Number parameter is
assigned the number of the unit associated with that volume.

The Device-Blocked parameter is set to false if the device is
not a blocked device (such as the /printer). In this case, the
Directory parameter is meaningless. If the Device-Blocked
parameter is set to true, the device is a blocked device, in
which case the Directory parameter contalns the directory read
in from that wvolume.

MERLIN 1.0 Interface Guide . Page 33

©

éhapter 4 Writing a Unit Driver

4.1.1 Unit Driver Command Parameter

The Command passed in register D4.W describes what operation is
to be performed. The command values are summarized here and
described in greater detail below. When a given driver gets
control, the caller has already verified (from the unit table)
that this command is valid for this particular unit driver.. The
values of the command are:

0 Install the driver - perform any required initialization.
Read from the unit.

Write to the unit.

Test if unit is busy.

1
2
3 Clear the unit - reset it to its initial state.
. ,
5 Return status of unit.

6

Unmount the unit.

Install When MERLIN installs a unit, either at boot time
or when a unit is explicitly assigned, it is
called with the install parameter. The unit can
perform any initialization c¢ode neccessary to
set up cyclic buffers, place interrupt vectors
and so on.

Read and Write Are self-explanatory.

Clear Initializes the device - clear pending
interrupts and such.

Busy Check if the unit is ready for data transfer.

Status @ -Return the status of the unit. This'operation

is device dependent.

Unmount Unmount the unit. This is called when the unit
is re—-assigned a new driver or is de-assigned.
At this time the unit driver should perform any
clean up or restoring of interrupt vectors that
might be neccessary.< :

MERLIN 1.0 Interface Guide | Page 35

. ;/\

Chapter 4 Writing a Unit Driver

The next piece of code is the entry for a unit driver,
illustrating how the various sections of the driver are called
depending on the specific command.

; _
3 Entry point for the UART Driver.
H .

UARTDRIV
CLR.W D7
MOVE.L D1,A0
LEA URTTABL,Al
LSL.W $1,D4
MOVE.W O0(Al,D4.W),D4
JMP 0(Al,D4.W)

IORESULT := 0.

AQ0 := Data buffer address.

Al := Base address of offset table.
D4 := Command*2 for word count.

D4 := QOffset from URTTABL.

Go to appropriate driver.

WO N0 N0 Ne Se w0

URTTABL DATA.W URTINST-URTTABL
DATA.W URTRD-URTTABL
DATA.W "URTWR-URTTABL.
DATA.W URTCLR-URTTABL
DATA.W URTBSY-URTTABL
DATA.W URTST-URTTABL
DATA.W URTUNMT-URTTABL

Install driver.
Read from UART.
Write to UART.
Clear UART.
Test if Busy.
Return status.
Unmount driver.

O N0 N0 W0 NG N9 N ¢

The next few code sections illustrate the-entry points and give
a broad view of the operations performed.

Constants to define the UART base addresses.

80 N0 N

TARTA EQU $600000
TDARTAC EQU $600002

UART A data register.
UART A command register.

«e “o

URTINST - Install the Driver.
AQ := UART A control register.
Select register. 0.

Reset the whole UART.

" Select register 2.

URTINST
' MOVE $0ARTAC,AO
MOVE.B #18, (A0)
MOVE.B #2,(a0)
eeee Mmore code to
esees initialize the UART

N N0 N0 N S

RTS ' s Return to the caller.
TRTUNMT ;s URTUNMT - Unmount the driver.
’ RTS 7

Nothing to do in this driver.

MERLIN 1.0 Interface Guide | Page 37

C

(G

Chapter S Interface Definitions in Pascal

Chapter S

Interface Definitions in Pascal

This chapter shows the Pascal type definitions, and the
procedure interfaces, to MERLIN. The information given here is
the Pascal representation of the narrative information in the
preceding Chapters.

S.1 Basic Constant and Type Definitions

Const
BLOCKSIZE = 512; | number. of bytes. in. a disk block.
VIDLENGTHE = 7; number of characters in a volume name
TIDLENGTH = 15; | number: of. characters in a file. name
MAXDIR = 72; { max number of directory entries/volume
MAXDEV = 20; | max number of devices on the system
MAXJTABLE = 22; | number of entries in system call table
MAXUTABLE = 10; | number of entries in user call table
MAXPROCESS = 10; { max number of processes allowed
SYSCOMPLOC = $0180; { System Communication Area Pointer
LOCODELOC = $0108; { Lowest memory location pointer
HICODELOC = $010C; { Highest memory location pointer

{ Pile disposition codes }

FNORMAL = 0;
FLOCK = 1;
FPURGE = 2;
FTRUNC = 3;

Type

string80 = string[80];

dirrange = 0 .. MAXDIR; .
vid = string [VIDLENGTEH]; ¢ "\
tid = string [TIDLENGTH]:

MERLIN 1.0 Interface Guide) Page 39

e

" Chapter 5 Interface Definitions in Pascal

5.1.1 Layout of the Date Record

Type
daterec = packed record , :
: year : 0 .. 100; { 100 => temporary file |}

day « 0 .. 31;
month : 0 .. 12; [0 => date not meaningful |}
end;
5.1.2 Layout of a Directory Entry : M,¢W’i\

Type
direntry =

packed record :
firstblock : integer;
nextblock : integer;
status : boolean; -

filler : 0 .. 2047; - — '&Cﬁk-’ & LA
case fkind : filekind of. 5t [oemt
SECURDIR, UNTYPEDFILE: S et ©
(dvid : vid; ' vdisk voluﬁgfnamej]
deovblock: integer; last block of volume o bead P
dnumfiles: integer; number of files —— Cuvv=VE LY
dloadtime: integer; time of last access **““ffﬂiﬁlML%
dlastboot: daterec); most recent date settlng‘i‘ J
MemFlipped: Boolean; TRUE if flipped in memorykx ' a\
DskFlipped: Boolean; TRUE if flipped on disk ,\\‘wﬁwﬂf
XDSKFILE, CODEFILE, TEXTFILE, N
INFOFILE, DATAFILE, GRAFFILE, 4
FOTOFILE:
(deid: tid; { title of file

dlastbyte: 1 .. BLOCKSIZE; { bytes in last block
daccess: daterec); { last modification date
end; :

~directory = array[dlrrangel of dlrentry,
pdirectory = “directory:;

‘devrange = 0 .. MAXDEV:“f
byte = =128 .. 127; { |, F>

MERLIN 1.0 Interface Guide Page 41

bhapter 5 Interface Definitions

‘O
S.1.3 File Interface Block Definition

type :
pfibo = “£ib; PR K
fib = record fwindow: pbytes; b”"

FEOLN: Boolean; ™

FEOF: Boolean; y

FTEXT: Boolean; | -

fstate: (FTVALID, | FIEMPTY, FIVALID, FTEMPTY) ;

frecsize: integer;~————
case [FIsOpen: Boolean of ,
true: (FIsBlocked: Boolean; T
funit: integer;
fvid: vid;
frepeatccuqﬁ
fnextblock, g
fmaxblock: integer;
FModified: Boolean;
fheader: direntry;
case FSoftBuf: Boolean of .

“ /‘ : h RN Y

true: (fnextbyte, fmaxbyte: integer;

, «) FBufChanged: Boolean;

end:; —— —

ooy Lo. 2] of T

o Qh%;ﬁ]
f7

or

C

MERLIN 1.0 Interface Guide

<§§gffe : 0..511] of. byte;
uparrow: integer)) ;%(

in Pascal

Page 43

‘O

(B

)

Chapter 5 Interface Definitions in Pascal

Type
pprocrec = “procrec; .
, ™ . t 20 <
procrec = record d: array[0 .. 7] of longint;$ wueaS 7/
a: array(0 .. 7

.] of longint;\ /
no: integer; 7
end;
pproctable = “proctable;

proctable = array (0 .. MAXPROCESS] of procrec;

MERLIN 1.0 Interface Guide Page 45

* Chapter 5 Interface Definitions in Pascal

$S.2.2 File Input Output

Procedure FINIT(f: pfib; recbytes: integer);
procedure FGET(f: pfib);
procedure FPUT(f: pfib);
procedure FOPEN(fpathname: pstring64;
f: pfib:
NewFlag: Boolean);
procedure FCLOSE(f: pfib; £fmode: integer);
function FREADCHAR(f: pfib): byte;
procedure FWRITECHAR(f: pfib; ch: byte; £fsize: integer);
procedure FSEBK(f: pfib; £frecno: longint);
. () function BLOCKIO(f: pfib;
.&w fbuff: pbytes;

fblocks, fbpck: integer;
ReadFlag: Boolean): integer;

O

MERLIN 1.0 Interface Guide . Page 47

CORVUS CONCEPT
Linker Librarian Reference

Manual

s
a,
N

LINKER and LIBRARY UTILITY

Reference Manual

First Edition

22nd December .1981

Silicon Valley Software Incorporated
10340 Phar Lap Drive

Cupertino

California 95014

((,)

This Linker and Library Utility Reference Manual was produced by:

Jeffrey Barth, R. Steven Glanville and Henry McGilton.

Silicon Valley Software Incorporated
Publication Number 810601-01

BV

N

Copyright: (C) 1881 by Silicon Valley Software Incorporated

All rights reserved. No part of this document may be
reproduced, translated, transcribed or transmitted in
any form or by any means manual, electronic,
electro-magnetic, chemical or optical without explicit
written permission from Silicon Valley - Software

Inco;porated.

Y

Table of Contents

Chapter 1 Introduction

1.1 Building an Executable Program
1.2 Overview and Layout of this Manual

Chapter 2 Li

nker

2.1 Linker Options
2.2 Linker Error Messages
2.3 Partial Linking

Chapter 3 Library Utility

Chapter 4 Object File Formats

4.1 Notation Used to Describe Object File Formats

4.2 Linker File Layout
Level Description of Linker Blocks

4.3 Byte

OO G P G G
[] [] [L[] . [] . L[] e 0 []
WWwwwwwwwwww
FHWOWOdOWL&WN K-
o

[[] [] [] [] . (] [L] . [

4.3.12
4.3.13

4.3.14
4.3.15
4.3.16
4.3.17
4.3.18

4.3.19

4.3.20

80
8l
82
83
84
85
86
87
88
89
8a

8B
B

Module Name Block

End Block

Entry Point Block.

External Reference Block
Starting Address Block

Code Block

32-Bit Relocation Block

Common Block Reference

Common Block Definition
- Short External Reference Block
- FORTRAN Data Area Definition Block

- FORTRAN Data Area Initialization
lock

8C - FORTRAN Data Area Reference Block

8E
8F

Quick Load Executable Block
Executable Block Definition
Library Module Block
Library Entry Block

Unit Block

- FORTRAN Executable Data Area

Reference Block

94

- FORTRAN Executable Data Area

4 O uue W N e

B . Initialization Block
{ 4.3.21 Text Block
(4.3.22 EOF Mark

4.4 Executable Block Details

4.4.1 Layout of an Executable Block
4.4.2 Format of the Jump Table
4.4.3 Layout of a Segment Table
4.4.4 Lavout of Descriptors
4.5 Loading a Segment
4.6 Running a Program
¢
(7 .
N .

- ii -

30
31
31

32

32
34
35
36

37
37

)

N

Q)

.

Chapter 1 . Introduction

'Chapter 1

Introduction

The Linker and Library utilities are a pair of complementary
programs which aid in the process of generating executable
programs under the MERLIN operating system.

The Linker links or binds relocatable object-code modules, and
optional modules from 1libraries, to form a program which is
executable.

The Library utility builds a library from relocatable
object-code modules. Such a library can contain frequently used
procedures (such as the mathematical functions of FORTRAN) which
can be used in subsequent link processes.

—

1.1 Building an Executable Program

To get from the source text of a program to an executable
object code file, the user must proceed as follows:

1. The source file is compiled or assembled. The result of
compiling or assembling is a self-relocatable object-code
file, along with 1listings and error diagnostics. This
process continues until a "clean" compilation or assembly
is obtained.

2. The relocatable object-code is 1linked, possibly including
run-time support libraries, to generate executable code
into a disk file.

3. The program can then be run (executed) on the machine
simply by typing its filename.

The following chapters in this manual describe the Linker and
Librarian object-code management system.

LA

-

Linker/Library Reference Manual : Page 1

(.

Introduction Chapter 1

1.2 Overview and Lavout of this Manual

Chapter 2 covers the Linker, its use, options and messages.

Chapter 3 describes the Library management utility and how to
use it to build a library of relocatable object-code modules.

Chapter 4 is a detailed description of how object—code files
are constructed, together with details of the various types of
blocks that go to make an object-code file.

Page 2 Linker/Library Reference Manual

)

Chapter 2 T Linker

Chapter 2

Linker

The Linker is a utility which accepts files of relocatable
object-code generated by the various compilers and assemblers,
Plus library files generated by the Library utility, and links or
binds those into a form suitable for execution.

The Linker can also perform a partial link, where a collection
of relocatable object-modules is bound into one file that can be
used in future linking operations. This is described later on in
this section.

As well as binding together relocatable modules from various
language processors, the Linker can search libraries of commonly
used functions, (such as the PASCAL run time environment), and
link those modules that are referenced into the final loadable
output file. -

In order to 1link relocatable modules into an executable
object-code file, the Linker needs the following pieces of
information:

. The optional name of the listing file where the Linker messages
and memory map information is to be listed. 1If no listing file
name is given, no memory map information is generated.

- The name of the object-code file in which to write the £final
linked output.

- The name(s) of the file(s) from which the relocatable
object-code is read. :

. A list of one or more libraries which are to be used to satisfy
external references within the object-code file.

A typical Linker run is shown below. Linker responses are in
bold face text, and user.input is underlined.

Linker/Library Reference Manual Page 3

O

7

L

Linker Chapter 2

Example of Linker Usage

$ linker

LINKER - MC680008 Object Code Linker
20-Jul-81

(C) 1981 Silicon Valley Software, Inc.

Listing File - /console

Output file[.OBJ] - myproglinked
Input file[.OBJ] - myprog

Input file[.OBJ] - paslib

Input file([.OBJ] -
eeeee Lots of Linker Messages

3

The Linker keeps prompting for more "Input files™ until an

empty line (carriage return) is entered. This enables the entry

of a whole list of libraries as places from which to satisfy
external references. The last one entered is usually the name of
a run-time library (PASLIB in this example). A ".obj" suffix is
added to all input filenames if it is omitted from the filename
when entered.

If the Linker cannot find a -specific input file, it displays a
message to the effect:

*** Warning - Can't open input file ***
and repeats the prompt for an input file. The incorrect filename |

is simply ignored and the link can be completed with no adverse
consegquences.

2.1 Linker Options

Linker options -are supplied on the command line when the Linker
is called up. Linker options are introduced by a "+" sign, a "-"
sign, followed by a letter, or a "?". The options are as follows:
2?2 Display status information.

g The —q option disallows quick-load.format for the executable
object-code file, and forces overlay format. The +g option

(the default) allows quick-locad format.

[N

Page 4 Linker/Library Reference Manual

Chapter 2 Linker

u The +u option lists unreferenced entry points. The default is
-

m The +m option prints the memory map in the order in which
modules are linked. The default is -m.

a The +a option prints the memory map in alphabetical order. The
default is +a.

s The +s option prints symbols that start with the "%" sign.

Such symbols are used for compiler generated symbols. The
default is -s or do not print "$%" symbols.

2.2 Linker Error Messages

The Linker can display various error messages in the course of
its operation. The error messages are self-explanatory. There
are three grades of error messages, with different outcomes:
Warnings are correctable errors. The error can be

corrected and the link proceeds. For example,
misspelling a_filename will result in a message
to the effect that the file cannot be opened, at
which point the filename can be retyped.

Errors are correctable in that the user can proceed
with the 1link process, but the generated
object-code file is not created properly.

Fatal errors are those from which the Linker cannot correct

or recover. In those cases the linker returns
to the shell.

2.3 Partial Linking

As mentioned above, the Linker can perform a partial 1link,
where the final output is not neccessarily executable, but a
collection of separate relocatable object-code files can be
combined into one file. The resultant file can then be used as
an input file in subseguent link operations. The output of a

P

Linker/Library Reference Manual Page S

Chapter 2 Linker

u The +u option lists unreferenced entry points. The default is
-u.

m The +m option prints the memory map in the order in which
‘modules are linked. The default is -m.

a The +a opticn prints the memory map in alphabetical order. The
default is +a.

s The +s option prints symbols that start with the "%" sign.

Such symbols are used for compiler generated symbols. The
default is -s or do not print "$" symbols.

2.2 Linker Error Messages

The Linker can display various error messages in the course of
its operation. The error messages are self-explanatory. There
are three grades of error messages, with different outcomes:

Wwarnings are correctable errors. The error can be
corrected and the link proceeds. For example,
misspelling a -filename will result in a message
to the effect that the file cannot be opened, at
which point the filename can be retyped.

Errors are correctable in -that the user can proceed
with the 1link process, but the generated
object-code file is not created properly.

Fatal errors are those from which the Linker cannot correct
. or recover. In those cases the linker returns
to the shell.

2.3 Partial Linking

As mentioned above, the Linker can perform a partial 1link,
where the final output is not neccessarily executable, but a
collection of separate relocatable object-code files can be
combined into one file. The resultant file can then be used as
an input file in subsequent link operations. The output of a

. °

-

Linker/Library Reference Manual Page 5

/-\
-~

Linker Chapter 2

partial link can have unsatisfied external references.

If, for any reason, the linked object file has not had all its
external references satisfied, the linker displays a message to
the effect:

-

The output is not executable

This message appears when external references are not satisfied.
It may mean that a program was missing some subroutines from a
library (maybe the user forgot to include the library in the link
process), or it also can appear when doing a partial 1link, in
which case the message is to be ignored, since the full link will
be done at a later date.

Page 6 : Linker/Library Reference Manual

_/':

A

Chapter 3 Library Utility

Chapter 3

Library Otility

The Librarian binds compiled or assembled relocatable
object-code modules into a collection called a library. The
purpose of a library is to provide a repository for commonly used
object modules that have to be present when linking (see the
Linker description), such that the common modules end up bound
together into the final executable code module.

The library utility typically wants the following pieces of
information form the user:

. The name of the file which is to receive the listing (results
and log) of the library process.

. The name of the file which is to contain the generated library
when the library generation process is complete.

. The name(s) of file(s) (with the .obj) suffix, which contain
the constituent parts of the library to be generated.

A typical Librarian session appears below. Note that Librarian
responses are in bold face text and user inputs are underlined.

$ library ;

LIBRARY - MC68000 Library Utility
20-Jul-81l

(C) 1981 Silicon Valley Software, Inc.

Listing file - /console

Output File[.OBJ] - bodleian

Input file[.OBJ] - bookshelf

Input file[.OBJ] - stacks

Input file[.OBJ] - .
eeeees Lots of interesting Librarian messages

%
If the Librarian cannot find the specified input file it issues

.

Linker/Library Reference Manual v Page 7

Library Utility Chapter 3

N |

a message to the effect:

The file 'whatever.obj' can't be opened

Page 8 Linker/Librarv Reference Manual

Chapter 4 Object File Formats

Chapter 4

Object File Formats

This chapter describes the layout of the object-code files that
the Linker and Librarian can process. The various code blocks
are described in sufficient detail that a compiler writer can
generate object-code that 1is acceptable to the Linker and
Librarian.

4.1 Notation Used to Describe Object File Formats

The symbol "::=" is read as "defined to be". Where a whole
list of objects appear to the right of a "pile" of "::=" signs,
it implies a choice of any of the objects.

Objects enclosed in "angle brackets", "<" and ">" are syntactic
objects which are defined in terms of other objects.

An object followed by an asterisk sign, "*", can be repeated
“"zero to many times" (the list of objects can be empty).

An object followed by a plus sign, "+", can be repeated "one to
many times" (there must be at least one of that object).

4.2 Linker File Layout

This section is a description of the Linker File at the "top
level™.

<Module File>

<Link File> =
= <Library File>

Linker/Library Reference Manual ' Page 9

>

Object File Formats Chapter 4

<Unit File>
<Execute File>

0 o0

<Module File> <Module>* EOF mark

<Library Module Block>+ <Library Entry Block>+
<Module>+ <Text Block>* EOF Mark

<Library File>

<Unit File> T

<Unit Block> <Module>+ <Text Block> EOF Mark

<Execute File> <Executable Block> <Module>*

<Quick Load Block>

<Module> <Module Name Block> <Other Block>+ <End Block>

<Other Block> Entry Block

External Block

Start Block

Code Block

Relocation Block

Common Relocation Block

Common Definition Block

Short External Block

Data Initialization Block

FORTRAN data area definition block

FORTRAN data area Initialization Block
FORTRAN Data Area Reference Block -
FORTRAN Executable Data Area Initialization Block
FORTRAN Executable Data Area Reference Block

00 00 98 00 00 0 00 00 a0 0% g0 00 00 0
€0 00 00 00 00 90 00 00 00 00 00 e 00 o
[T T T RN BB

4.3 Byte Level Description of Linker Blocks

All Linker and Librarian object-code blocks start with a single
"identifier byte"™. This block identifier takes values from 80
(base 16) upwards. The choice of values greater than 80 (base
16) is an attempt to minimise the probability that a regular
ASCII text file is mistaken for the start of an object-code
block. B

Page 10 Linker/Library Reference Manual

Chanter 4

)

4.3.1 80 -
byte -->
80

size

(/) module name

: TS
,é;<i/;;gmenf_2ié§:>
Tl

Linker/Library Reference Manual

Object File Formats

Module Name Block

pm—————— R —— e —————- o +
0 | 80 | size (3 bytes) |
 tmm————— e e D +
4 i module name '

(8 bytes)
e Fmm Fmm Fmmm +

12 ‘ segment name 4|

(8 bytes)
S Fomm e tmm o ———— +

20 | csize (4 bytes) |

e -—+ o ———— e +

24 | comments (24 .. size-1 bytes) ... |

+ e Fommm +

Hexadecimal 80 indicates a Mddule Name Block.
Number of bytes in this block.

Blank padded ASCII name of module.
ASCII name of _segment in which this module will
reside.

in the code block for this

Number of bytes

module.

Arbitrary information - ignored by the Linker.

Page 11

P,

Ml..

9’»8‘“/

Object File Formats Chapter 4

N

'4.3.2 81 - End Block

fmm————— e Fmm—————— tmm—————— +
byte --> o | 81 | size (3 bytes) l
tmmm————— B tmm e ——— tmmm————— +
4| csize (4 bytes) |
$——— E e ——— tmm—————— +
81 Bexadecimal 81 indicates this is an End Block.
size Number of bytes in this block - it is always °
000008.
csize Number of bytes in the code block for this
module.

Page 12 . Linker/Library Reference Manual

(

oy i = ~udty 09
Blank Padded ASCII user name of entry point. w Mw:l"

Rk

s
.

link name

loc

comments

..

4.3.3 82 -
byte --=>
82

size

Object File Formats

Entry Point Block

fmm e e e e + .
o | 82 | size (3 bytes) |

T SR fom—————— e N +
4‘! link name ,
8 (8 bytes)

. - r S, e +
12 l user name

(8 bytes) :

P RS ST R +
20 | loc (4 bytes) |

+ -— ST S —— o ———— +
24 | comments (24 .. size-l1 bytes) ... |

Hexadecimal 82 indicates this is an Entry Point

Block.

Number of bytes in this block.

Blank padded ASCII Linker name of entry point. Jfk’u:bu
? .

Location of entry point relative to this ‘QMM‘

module. v i
v ¢"4Mﬁt

Arbitrary information - ignored by the Linker. %*“wﬂﬁ’

Linker/Library Refereﬁcé Manual Page 13

Object File Formats Chapter 4

. |

b -de
-+

- o
e e
L

-+

TR — fm———— e e ———— S S — +
byte --> 0 | 83 | size (3 bytes) |
Fm—————— . FURSE . +
4‘[link name l
8 (8 bytes)
R —— fm—————a T ¥ S +
12 ‘ " user name l
(8 bytes)
fm—————— fm——— i —— +
20 | ref 1 (4 bytes) |
+ + . +
24 | ref 2 (4 bytes) |
+ + R + ———+
| L] L] L] l
+ + S S —— +
| each reference consumes 4 bytes |
- + + + ———+
!
!

' () 16+4*n ref n (4 bytes) |
o + + + ——

-

83 Hexadecimal 83 indicates this is an External
Reference Block.

size " Number of bytes in this block.

link name Blank padded ASCII Linker name of external
reference.

user name Blank padded ASCII user name of external
reference.

ref 1 Location of first reference relative to this
module. .

ref 2 Location of second reference relative to this
module.

e o o Other references.

rtef n Location of 1last reference relative to this
module. :

Page 14 . Linker/Library Reference Manual

Chapter 4 ' T Object File Formats

i 4.3.5 84 - Starting Address Block

| fom————— Fmm e ——— Fommm +
byte --> 0 | 84 | size (3 bytes) |
f B R tm——————— tmm————— tmm—————— +
4 | start (4 bytes) |
fmm————— tm——————— tmm————— tm——————— +
8 | gsize (4 bytes) |
fomm—————— tmm b ————— tmm—————— +
12 | comments (12 .. sxze-l bytes) ... |
e m—————— tm——————— tm——————— +
84 Hexadecimal 84 indicates this 1is a Starting
Address Block.
‘size Number of bytes in this block.
start . Starting address relative to this module.
‘:f) gsize Number of bytes in the global data area.
comments Arbitrary information - ignored by the Linker.

4.3.6 85 - Code Block

+=— + -—+
byte --> 0 | 85 | size (3 bytes) |
v +== + e e — tm—————— +
4 | addr (4 bytes) |
+ -+ + —-———t
8 | object-code (8..sxze-l bytes) ... |
+ —tmm—————— +
85 Hexadecimal 85 indicates this is a Code Block.
size Number of bytes in this block.
addr Module~-relative address of first code byte.
object-code The object-code ‘- always an even number of

(4‘ bytes.

Linker/Librarv Reference Mannal -

Object File Formats ' Chapter 4

4.3.7 86 - 32-Bit Relocation Block

Fm——————— fm—————— e tm—————— +
byte --> 0 | 86 | size (3 bytes) |
+ _______ ..L - J_ _____________ +
4 | addr 1 (4 bytes) |
e ————— R S rm—————— +
12 | addr 2 (4 bytes) |
rm—————— Fm———— e —— e fm—————— +
I [] . L] l
tm—————— m——————— e ——— fm——————— +
16 | each addr consumes 4 bytes l
- - —t—————— tm—————— +
l : L] L] L] I
+- + bm——————— pm—————— +
12+4*n | addt n (4 bytes) |
+ —t———————— +
86 Hexadecimal 86 1indicates this is a . 32-bit
Relocation Block.
(bl) size Number of bytes in this block.
C;‘ addr 1 Location of first address to relocate.. -
addr 2 Location of second address to relocate.
« o o Locations of other addresses to relocate.
addr n Location of last address to relocate.

?age 16 , Linker/Library Reference Manual

Chapter 4 Object File Formats

4.3.8 87 - Common Block Reference

Fom——————— Fm—————— o ———— +
byte --> 0 | 87 | size (3 bytes) |
tm—————— o ———— tm——————— tm——————— +
4 common name
(8 bytes)
Fmm——————— tm——————— o —————— tm——————— +
12 | ref 1 (4 bytes) N
tm—————— tm——————— tmm————— tm—————— +
16 | ref 2 (4 bytes) |
+- —-—— ———tem——————— tm—————— +
20 | |
Fm——————— fm——————— Fmm—————— tm——————— +
- | each reference consumes 4 bytes |
o + ——t———————— tm—————— +
| |
Fmm—————— tm—————— tm——————— tm——————— +
8+4*n | ref n (4 bytes) |
tm—————— tmm———— + ————+ -—+
87 Hexadecimal 87 indicates this is a Common Block
Reference. — -
size Number of bytes in this block.
common name Blank padded ASCII common block name.
ref 1 Location of first reference relative to this
module.
ref 2 Location of second reference relative to this
module.
o o Other references relative to this module.
ref n - Location of 1last reference relative to this
module. '

Linker/Library Reference Manual Page 17

Object File Formats Chapter 4

4.3.9 88 - Common Block Definition

fmm——————— B Fommm————— +
byte --> o | 88 | size (3 bytes) |
: $——- ——te e tom—————— +
4 ‘common name 3
(8 bytes) pwm
+ - e ———t e + wot c/'-:',.;‘
12 | dsize (4 bytes) | uwﬂ g v
f————— - + B A — + %;u@J‘
16 | comments (16 .. size-1 bytes) ... | Ll
+— + Fm——————— tmm—————— +
88 Bexadecimal 88 indicates this is a Common Block
Definition.
size Number of bytes in this block.
~common name Blank padded ASCII common data area name.
dsize Number of bytes in this common data area.
comments Arbitrary information - ignored by the Linker.
—

Page 18 - Linker/Library Reference Manual

z/\}-

()

Chanter 4 Object File Formats

4.3.10 89 - Short External Reference Block

B — fm——————— fm——————— o ————— +
byte --> 0 | 89 | size (3 bytes) |
o ————— tm——————— Fmm - +
4 link name
(8 bytes)
e ————— Pm——————— e Fm—————— +
12 user name
(8 bytes)
tm——————— Fm—————— . o ————— +
20 | ref 1 (2 bytes) | ref 2 (2 bytes) |
o e —— e —————— +
18+2*n | . .. | ref n (2 bytes) |
tm————— fm——————— e ————— e +
89 Hexadecimal 89 indicates this is a Short
External Reference Block.
size . Number of bytes in this block.
link name Blank padded ASCII Linker name of external-
reference. -
user name Blank padded ASCII user name of external
reference.
ref 1 Location of first reference relative to this
module.
ref 2 Location df second reference relative to this
module.
e o Locations of other references relative to this
’ module.
ref n. Location of 1last reference relative to this

"module.

The Linker does not yet support the short external reference
block. It is intended to provide for one-word offsets that are
either filled in with call-relative, short-absolute calls, or
possibly calls indexed by an A-register, probably A4. The Linker
will support this type of block in the future, and compilers will
have an option to control the kind of generated call.

‘Linker/Library Reference Manual Page 19

Object File Formats Chapter 4

4.3.11 8A - FORTRAN Data Area Definition Block

fm————— tm——————— fo——————— +
byte --> 0 | sa | size (3 bytes) |
te——————— e ittt fm—————— +
4 data area name
(8 bytes)
fm——————— fmm—————— tm—————— tom—————— +
12 | dsize (4 bytes) |
b ———— Fm———— - ——te——————— +
8a Hexadecimal 8A indicates this 1is a FORTRAN Data
Area Definition Block.
size Number of bytes in this block.

data area name

dsize

Blank padded ASCII name of FORTRAN fixed data
area.

Size of this data area.

Linker/Library Reference Manual

4.3.12 88 -
byte -->

8B

size

Object File Formats

FORTRAN Data Area Initialization Block

fomm—————— Fommmm———— T Fomm————— +
0 | 8B | size (3 bytes) g J‘lﬁ’
Fm———— +- T fom————— -+ , (3941*
4 I data area name l),)
(8 bytes) -l Ve
T R — Fom——————— S e ————— + \“Ggwpus
12 | daddr (4 bytes) | o ¢P
o ——— + ———te——————— +
16 data occupies bytes 16 .. size-1
in the rest of the block | 00 *
Fmmm—————t ———te——————— e

Hexadecimal 8B indicates this is a FORTRAN Data
Area Initialization Block.

Number of bytes in this block.

data area name Blank padded ASCII name of FORTRAN fixed data

daddr

data

00

*

area.

Starting address for this data. ’ -

—

The initialization data.

If the size of the data block is odd, there is
one byte of 00 added to make the block an even
number of bytes in size.

Linker/Library Reference Manual ~ Page 21

.Object File Formats Chapter 4

e - o e +
byte --> 0 | 8C] size (3 bytes) |
' o ————— - R e +
4. data area name '
(8 bytes)
S — e S — +
12 | ref 1 (4 bytes) |
o ———— e e Fmmm + w2
16 | ref 2 (4 bytes) N "
R ——— R R fmmmmem e + Qwﬂr gN””
l e e o I w" o!\ 6“_
R + + S —— + b&v ﬁp(fnv*
| each reference consumes 4 bytes | c/ww‘ (N
+ + e ———— Fm—————— + ‘4ﬁp*n
| l o
+— - —t——————— e +
8+4*n | ref n (4 bytes) l
+ + e Fm——————— +

size

data area name

ref 1
ref 2

ref n

Hexadecimal 8C indicates this is a FORTRAN Data
Area Reference Block.

Number of bytes in this block.

Blank padded ASCII name of FORTRAN fixed data
area.

Location of first reference.
Location of first reference.
Location of other references.

Location of last reference.

Linker/Library Reference Manual

Chapter 4

4.3.14 8E - Quick Load Executable Block

¥ H . S S S .
byte --> 0 | - 8E l size (3 bytes)
[S —— S Fmm—————— Fmm———
4 | start location (4 bytes)
fmmm e . ol I
8 | data size (4 bytes)
fmmm e bmm— Fmmm———
12 | code block bytes (12..size-1l) .
fommm e fmm Fmm—
8E Hexadecimal 8E indicates this

Executable Block.

size Number of bytes in this block.

Object File Formats

-—

is a Quick-Load

start location Relative starting address of the code block.

data size Total number of bytes in global common data
: areas.
code block The absolute, self-relocatable code block for

this program.

Linker/Library Reference Manual

’WL(A-\":V.).

Page 23

()

/

)

Object File Formats

4.3.15 8F - Executable Block Definition

byte --> 0

[0 o R

12
16
20
24
28

24+n*4
28+n*4
8F

size

o ———— e Fomm e o ——— +
| 8F | size (3 bytes) |
e +-— —tm——————— e +
| jump table address (4 bytes) |
+ e +
| jump ‘table size (4 bytes) |
- -t —tm——————— e +
| data size (4 bytes) g
——— + ——t——————— fmmm————— +
| num 00 | 00 |
+ + fmmm - +
| o0 | o0 | o0 | o0 |
+ + + + —_——
l size 1 (4 bytes) |
- + -t
| size 2 (4 bYuES) |
tm————— + + —tmm————— +
l I
Fm————— + + + -+
| size n (4 bytes) |
+ + -+
| jump table bytes (oo 51ze—l) eee | -
+— —t—————— +

Hexadecimal 8F indicates this 1is an Executable

Block Definition.

Number of bytes in this block.

jump table address

Absolute load address of jump table.

jump table size Number of bytes in the jump table.

data size

num

Total number of bytes in global common data
areas.

Number of FORTRAN Data Areas.

00 00 00 00 60 0O

size 1

Page 24

six bytes of zero filler.

Size of first FORTRAN Data Area.

Linker/Library Reference Manual

Chaptet 4

Chanter 4

size 2
size n

jump table

Object File Formats

Size of second FORTRAN Data Area.

Sizes of other FORTRAN Data Areas.

Size of last FORTRAN Data Area.

The jump table itseif, including the executable.

code for the loader. For a further description,
see the section on "Executable Block Details".

Linker/Library Reference Manual Page 25

bbject File Formats Chapter 4

()

(
4.3.16 90 - Library Module Block
b ————— fom—————— e ———— o ——— +
byte --> 0 | 90 | size (3 bytes) |
_ fom——————— fm——————— N T —— +
4 module name
(8 bytes)
tm————— o ————— Fm—————— Fom——————— +
12 | msize (4 bytes) |
o ————— Fm—————— fm——————— m——————— +
16 | caddr (4 bytes)]
fm—————— fom—————— e ———— fem——————— +
20 | , taddr (4 bytes) : |
e ———— o e e fm——————— tm—————— +
24 | tsize (4 bytes) |
e ————— —te—————— o ——— +
28 | module count | module 1 |
m————— fm————— e ————— b —————— +
32 | module 2 | .. |
, b ————— Fomm————— tm—————— fm—————— +
&N | module n-1 | module n |
(| . + + —— : —t—— —
6;- 90 Hexadecimal 90 indicates this is a Library
T Module Block.
size Number of bytes in this block.
module name Name of this module.
msize Number of bytes of code in this module.
caddr Disk addreqs of module.
taddr If non-zero, is the disk address of the text
_block. 1If zero, there is no text block.
tsize .Size of text block.
module count 'Ndmber of other modules that this module
references.
module 1 Number of the first module referenced.
module 2 Number of the second module referenced.

(e

Page 26 Linker/Library Reference Manual

Chapter 4 Object File Formats

. o . Numbers of other modules referenced.

module n Number of the last module referenced.

4.3.17 91 - Library Entry Block

. e —— S — R +

byte --> o] 91 | size (3 bytes) |
b R T T . + y)
4 link name .

(8 bytes)

AR ¥ W fom—————— SR +

12 | module

— + -4 + ———+

14 | address (4 bytes) |

fm——————— T R —— U T +

s

Linker/Library Reference Manual Page 27

Object File Formats) Chapter 4

)

(
4.3.18 92 - Unit Block

e ——— Fom—————— e ———— tem——————— +
byte, -=> 0 | 92 | size (3 bytes) |
. . tmm—————— e tm—m————— e —— +
| 4 unit name
| (8 bytes)
fmmm e E e —— +
12 | caddr (4 bytes) |
fmm—————e e e ————— +
16 | taddr (4 bytes) |
Fomm—————e it Fmmmm——— +
20 | tsize (4 bytes) |
P ———— e et tem—————- +
24 | gsize (4 bytes) |
$m—— + ——tm—————— tm——————— +
92 Hexadecimal 92 indicates that this is a Unit
Block.
size - Number of bytes in this block - always 00001C.
_!z) unit name Name of this unit.
Cé#i caddr Disk address of module.
taddr Disk.add;ess of text block.
tsize Size of text block.
gsize Number of bytes of globals in this unit.

Page 28 Linker/Library Reference Manual

Chaoter 4 Object File Formats

C

(

4.3.19 93 - FORTRAN Executable Data Area Reference Block

e T TRTE IR +
byte --> o] 93 | size (3 bytes) |
Fom e o o +

4 | area number o v o v oL

o ————— e e e ———— +

6 | ref 1 (4 bytes) |
P Tt S o +

10 | ref 2 (4 bytes) |
Fm—————— Fmm e Fmmm————— +

l ' - .- l

+ e +

each reference consumes 4 bytes |

-—+ -+ e

e -+ -+ — s e

g — g —

2+4*n ref n (4 bytes) [
R e e —— Fe——————— +
() 3 Hexadecimal 93. indicates this is a FORTRAN -
L Executable Data Area Reference Block.
© size Number of bytes in this block.)
area number Data area number.-
- ref 1 Address of first reference.
ref 2 Address of second reference.
« o o Addresses of other references.
ref n Address of last reference. .

O

o
e

Linker/Library Reference Manual | Page 29

Object File Formats Chapter 4

4.3.20 94 - FORTRAN Executable Data Area Initialization Block

o ———— Fmmm e Fmmm +
byte --> 0| 94 | size (3 bytes) l
m—————— T S e +

4 | data area number|
e o T R —

6 | daddr (4 bytes) |
fm—————— e o R — +

10 | initialization data |
s S m—————— T — +

L- ------- o Fmm—————— Fmmm l
S ¢ [|

+- + o —_—t

94 i Hexadecimal 94 indicates this 1is a FORTRAN
- Executable Data Area Initialization Block.

size Number of bytes in this block.
(j’ data area number Number of the FORTRAN Data Area.
Gg;_ daddr Starting address for this data. -

initialization data
’ The data to £ill the block with.
00 If the size of the initialization data is an odd

number of bytes, a filler of 00 is appended to
make it an even number of bytes.

Page 30 Linker/Library Reference Manual

Object File Formats Chapter 4

()

4.4 =xecutable Block Details

This section describes the layout of an executable block. It
includes details of the jump table and segment tables.

4.4.1 Layout of an Executable Block

+ -t -———
byte --> 0 | 8F | size (3 bytes) |
+ + + ——tm——————— +
4 | Jump Table Address (4 bytes) |
fmm—————— +=- + —tm—————— +
8 | Jump Table Size (4 bytes) |
fm——————— tm——————— o _—— -+
12 | Data Size (4 bytes) |
fm——————— . + +=— -+
16 | Num | co | a0 |
+ + + - —_—— » -
20| 00 | 00 | o0 | 00 |
+ + + + -+
24 | Size 1 (4 bytes) 1
+ + + -—+ -+
28 | Size 2 (4 bytes) |
+ —— + —fm—————— +
l [] - L] I
fm—————— + + -+ -+
20+4*n | Size n_ (4 bytes) |
+ + + + -+
24+4*n | Jump Table (... size-1 bytes) ... |
+ + + + -+
8F -Hexadecimal 8F indicates this is an Executable
Block Definition.
size Number of bytes in this block.

jump table address
’ Absolute load address of jump table.

(ﬁ) jump table size Number of bytes in the jump table.

O

Page 32 . Linker/Library Reference Manuall

Chaoter 4 Object File Formats

data size Total number of bytes in global common data
areas.
num Number of FORTRAN Data Areas.

00 00 00 00 00 0O
six bytes of zero filler.

size 1 Size of first FORTRAN Data Area.

size 2 Size of second FORTRAN Data Area.

.« o Sizes of other FORTRAN Data Areas.

size n Size of last FORTRAN Data Area.

jump table The jump table itself, including the executable

code for the loader.

If any FORTRAN Executable Data Area Initialization Blocks are
present, they must immediately follow the executable block.

Linker/Library Reference Manual Page 33

?

Object File Formats

)
(

4.4.2 Format of the Jump Table

fm———— +— SR —— e +
A4 --> $STOP | Number of Segments (2 bytes) |
' o —— Fo——————— e +
+2. | Main Segment Table (32 bytes) |
R SR +—— e e +
+34 Segment Table #2 (32 bytes)
Segment Table #n (32 bytes)
+ T SRS AR +
2+n*32 | Dummy Table #n+l (4 bytes) |
fm—————— fmm————— - —tm———————+
I $_START Descrlptor (10 bytes) |
+ -—+ fomm—————— +
Segment #1 P#Z Descriptor
]
‘Segment #l P#n Descriptor
+ + + + -+
Segment #2 P#l Descriptor
{f) Segment #2 P#n Descriptor
- + + + - -+
Cﬁ} | Segment #3 . P#l Descriptor |
| .. |
+- _L .J_ _L _.._..+
| seg. #m Pén Descrlptor (10 bytes) |
+ -t
-20 | Address of REMOVEl (4 bytes) |
+ --'1' +
-16 | Address of Buffer (4 bytes) |
+ -—
-12 | Address of Code Flle (4 bytes) |
-8 | Actlve Segment List (4 bytes) |
+ —— +
-4 | Address of $$TOP (4 bytes) |
'$SLOADIT ‘ .Object-code neccessary to
locad and execute a segment.
+ -— + ‘ -+

Chapter 4

All segment
descriptors
are 10 bytes.

Page 34 ' Linker/Library Reference Manual

Chapter 4 Object File Formats

(| |
4.4.3 Layout of a Segment Table

A Segment Table consists of eight 32-bit values:

o ————— e Fmmmm e tmmm e + |
byte --> o | Address of first descriptor |
e e e +
4 | File Address of Segment |
m———— o e o +
8 | Size of code in bytes |
e —————— +== + o +
12 | Actual Address in Memory |
o —————t + ————————— +
16 | Scratch Return Address !
+ + + + _——t
20 | Segment Reference Count |
+ + + + -+
24 | Active Segment-list link |
+ + +—- ——tm— +
28 | .« o Reserved . . . l
+ + + e +

o |
Linker/Library Reference Manual Page 35

' OCbject File Formats Chapter 4

4.4.4 Layout of Descriptors

An entry-point-descriptor is in one of two states, depending

whether its corresponding segement is in memory or not. The
formats of a descriptor are:

when Segment not in memory: When segment in memory:

o ——————— + o o +
| Relative offset of this | | Relative offset of this |
- ——— r——— ——
| entry in its segment. | | entry in its segment. |
fmmm————————— e T + e e +
| JSR xxx.L | | JMP xxx.L |
+ - - R —— e +
| Absolute address of | | Absolute address of |
e ——— S —
| SSLOADIT | | procedure as loaded |
e o ——————— + e e e — +

Page 36 ' Linker/Library Reference Manual

()

\

Y

Chapter 4 Object File Formats

4.5 Loading a Segment

A segment is locaded into memory when the first call to one of
its procedures 1is executed. Such a call 1is always via a
descriptor in the jump table.

The JSR to SSLOADIT executes the loader from its entry-point
'SSLOADIT'. The loader is able to tell which segement to load by
comparing the place from which it was called with the limits of
the segment-table entries found in the first part of the jump
table. The loader then performs the following actions:

1. The loader loads that segment.

2. Fixes up all the JSR's to JMP's, so that further calls upon
that segment jump directly to the entry-point instead of
calling the loader.

3. Saves the calling routine's return address in the segment
entry.

4. Patches the return address on the stack to return througﬁ
the anti-locader entry-point '$SREMOVEL'.

5. Jump to the procedure entry-point which caused this loader
invocation in the first place.

Further calls to entry-points in the segment are thus only
slowed by a single JMP instruction instead of a loader call.
When the initial call to that segment eventually returns, it will
pass through 'S$$REMOVELl', which removes that segment and reclaims
the memory which that segment uses.

4.6 Running a Program

When a brogram is executed, the program called 'run' performs
the following steps:

1. The file containing the executable program is opened,

linker/Library Reference Manual : Page 37

» Object File Formats Chapter 4

4_.

It is checked to see if it 1is the correct format, for
example, the first byte should be 8F16'

The jump table 1is 1locaded into the proper 1location in
memory, and

A JSR to JT+Word(JT)*32+2 is executed.

The normal overlay procedure then takes control to overlay the
main segment and begin execution at its starting address.

Page 38 . Linker/Library Reference Manual

CORVUS CONCEPT

Technical Erratta Section

(B

. This is a preliminary list of files required to support the Corvus
Files and file names may change between now

CONCEPT workstation.

and beta site distribution.

to boot the system.

Volume: CCSYS, size

Operating system:

2048 blocks

ASSIGN 9
CC.BOOTL 2
CC.DISPAT 16
CC.FILMGR 30
CC.HELP 7
CC.KERNEL 52
CC.SETPRT 15
CC.SETUP 24
CC.SYSMGR 16
CC.WNDMGR 23
SHELL 12
WRITEBOOT 5
- Operating system drivers:
DRV.CONSOL 2
DRV.DISPHZ 7
DRV.DISPUD 7
DRV.DISPVT 7
DRV.KYBD 6
DRV.PRNTR 3
DRV.SYSTRM 5
DRV.TIMER 3
Character set files:
CSH.DEFAULT 4
CSK.DEFAULT 2
CSU.DEFAULT 4
CSU.ALTCHARSET 13
CSV.DEFAULT 3
Help data files:
E.DISPAT.TEXT 4
H. FILMGR.TEXT 6
H.SYSMGR.TEXT 4
H.WNDMGR. TEXT 4
System development files:
ASM68K 72
CODE 89
DEBUG 12
FORTRAN 185
LIBRARY 25
LINKER 51
LOADER. IMAGE 1

data
data
data
data
data
data
data
data
data
data
data
data

data
data
data
data
data

data --

data
data

data
data
data
data
data

text

- text

text
text

data
data
data
data
data
data

data

Files marked with an * are reqguired

L.E.F.

Assign driver to device
Local disk boot
Dispatcher

File manager

System help program
Operating system kernel
Printer port set up
System initialization
System manager

Window manager

System command processor
Write boot blocks

Console driver

Horizontal display driver
Horizontal display driver
Vertical display driver
Reyboard driver

Serial printer driver
System terminal driver
Timer (clock) driver

Horizontal display character set
RKeyboard character set
Borizontal display character set
Alternate display character set
Vertical display character set

Dispatcher help text
File manager help text
System manager help text
Window manager help text

MC68000 assembler
Code file generator
Simple debugger
Fortran compiler
Library manager
Code file linker

data

Pascal compiler
Pascal program preprocessor
Pascal program cross reference

Fortran support library
Pascal support library

Disk diagnostic data

Character set editor

Disk block mqve program

OMNINET diagnostic program

Text file spool/despool program
Disk block pﬂtch program

: [
CP/M interpreter
LogiCalc
EDWORD

PASCAL 184
VSIPPP 20 data
_ VSIXRF 30 data
FTNLIB.OBJ 217 data
PASLIB.OBJ 53 data

f(3 System support files:
' DIAG.DATA 1 data
EDCH 28 data
MOVE 20 data
ODIAG 45 data
SPOOL 28 data
ZAP 29 data
Application files:
CC.CPM : 22 data
CC.LGICLCl 94 data
D 199 data
<:fgbeIT.TEXT 4 text
LCMASK 9 data
SYSTEM.APPLECPM 26 data
ZED 96 data
Demo files:

GRAPHICS 4C data
GDEMO 6 text
MEM 4 data
PLOTMEM 5 data
WDEMO 21 data

EDWORD SUpport —

LogiCalc support
CP/M support
EDWORD (Zentec version)

Graphics demo

Graphics demo data
Plot memory (one line)
Plot memory

Window demo

File: cclib.doc.text
‘Date: 13-Apr-82

i

.(‘ Corvus CONCEPT System Library
(/

The /CCUTIL/CCLIB.OBJ library file contains support units and
subroutines for the Corvus CONCEPT.

Units in the CCLIB library include:

CCdefn - Corvus CONCEPT Definition Unit
CCclkIO - Corvus CONCEPT Clock Processing Unit
CCcrtI0O - Corvus CONCEPT CRT Control Unit
CCdrvIO - Corvus Disk Drive Support Unit
CCdrvUl - Corvus Disk Drive Utilities Unit
CChexout - Output Hex Characters Unit

CClblIO - Corvus CONCEPT Label Processing Unit
CCpipes - Corvus Disk Drive Pipes Unit

CCprtIO =~ Corvus CONCEPT Printer I/O Unit

CCsema4 - Corvus Disk Drive Semaphore Unit
CCwndIO - Corvus CONCEPT Window Processing Unit

Subroutines in the CCLIB library include:

\‘-)

wSactSlt - Get active slot function

FUNCTION OSactSlt: integer;

OSactSrv - Get active server function

FUNCTION OSactSrv: integer;

0SaltSlt - Get alternate slot function

FUNCTION OSaltSlt: integer:;

0SaltSrv - Get alternate server function

FUNCTION OSaltSrv: integer;
0SsltTyp - Get device type for slot function

O

(.3extCRT - Check for externai CRT function

FUNCTION OSsltType (slot: integer): slottype:;

.

OSmaxDev
u(
0SdispDv
0skybdDv
OostimDv

OSomniDv

0Sdcm2Dbv

{ (,

N %

0SdcmlDv

pOSuserID
pOScurWnd
pOSsysWnd

pOSdevNam

O
()

FUNCTION OSextCRT: boolean;

Get maximum device number function

FUNCTION OSmaxDev: integer;

Get DISPLAY driver device number function

FUNCTION OSdispDv: integer;

Get KYBD driver device number function

FUNCTION OSkybdDv: integer;

Get TIMER driver device number function

FUNCTION OStimDv: integer;

Get OMNINET driver device number function

FUNCTION OSomniDv: integer;

Get DTACOM2 driver device number function

FUNCTION OSdcm2Dv: integer;

—

Get DTACOM1 driver deviée number function

FUNCTION 0OSdcmlDv: integer;

Get Constellation user ID pointer

FUNCTION pOSuserID: pointer;

Get current window record pointer

FUNCTION pOScurWnd: pointer;

Get system window record pointer

FUNCTION pOSsysWnd (wndnbr: integer): pointer;

~

Get device name pointer

FUNCTION pOSdevNam (untnbr: integer): pointer;

(

CCBgfn Unit Interface

COKST

(

MAXWINDOW
SysComPLo
LongStrMa
MaxBytes

{

{ Corvus

{
IOEioregq

IOEnotrn
IOEtimot
IOEnobuf

IOEwndfn
IOEwndbe
IOEwndcs
IOEwnddc
IOEwndds
IOEwndiw
IOEwndwr
IOEwndwn

- IOEnodsp
IOEnokyb
IOEnotim
IOEnoomn
IOEnoprt

IOEtblid
IOEtblfl
IOEtbliu
IOEkybte
IOEuiopm
IOEprmln
IOEfnccd
IOEclkmf

TYPE

Byte
String32
pString32
Stringé64
pString64
String80
pString80
Bytes

. Words
pBytes
pWords

‘f\ slottypes

(

/

(&
X

20;
$0180;
1030;
10000;

CONCEPT I/0 Result Codes

03;

21;
22
23;

32;
33;
34;
35;
36;
37;
38;
39;

40;
41;
42;
43;
44;

50;
51;
52;
53;
54;
55;
56;
57;

Invalid I/O request

Transporter not ready
Timed out waiting for Omninet event
Read without a valid write buffer

Invalid window function
Window create boundary
Invalid character set

Delete current window

Delete system window
Inactive window

Invalid window record
Invalid system window number:

Display driver not available
Keyboard driver not available
Timer driver not available
OMNINET driver not available
Printer driver not available

Invalid table_entry ID

Table full

Table entry in use ;
Keyboard transmission error
Invalid unit I/O parameter
Invalid parameter block length
Invalid function code

Clock (hardware) malfunction

A iy A iy by A A A AN Ay Ay b A Lone Yo Xana X ane Yaon X amn Yo WonnY lama Yonse Xana —_—

-128..127;

STRING[32];

“sString32;

STRING[64];

“Stringé64;

STRING([80];

“string80;

ARRAY {0..9999] OF Byte;
ARRAY [0..9999] OF INTEGER;
“Bytes;

“Words;

(nodrive,floppydrive,localdrive,omninet);

M) Al Al el ol Ad Mgl Sgd gl gl gd Ao) gl A Ml S gt pd Mgl Al Ay Sgd vt s g g gt

«)

LongStr

SndRcvStr

END;

RECCORD

len: INTEGER;
CASE integer OF

(c: PACKED
(b:
(str:
(int:

PACKED

RECORD

sln: INTEGER;
rln: INTEGER;
CASE integer
: (c:
(b:
(str:
(int:

{send

{recv
OF
PACRED

PACKED

> W N
o9 oo a0 o

ARRAY
ARRAY
ARRAY
ARRAY

[1..LongStrMax])
[1..LongStrMax])
[1..LongStrMax]
[1..LongStrMax]

length}
length}

ARRAY
ARRAY
ARRAY
ARRAY

[1..LongStrMax]
[1..LongStrMax]
(1..LongStrMax]
[1l..LongStrMax]

OF
OF
OF
OF

OF

OF
OF

Ne _Ng S N

CHAR) ¢
byte) ;i
CHAR) ;
byte);

pCharSet

. . CharsSet
‘length offset
§ 4 0
-

‘ 2
- 2 8
<(:> 2 10
{ 4 12
{ 1 16

{ 1 17
{ total 18

pwndStat
wndsStat

{length offset
{ 2 0
{ 2 2
{ 2 4
{ 2 6
{ 1 8
{ 1 9
{ total 10

pwndRcd
wndRcd

{length offset
{ 4 0
{ 4 4
{. 4 8

) 2 12

&7 2 14
{ 2 16
{2 18
{ 2 20
{ 2 22
{ 2 24
{ 2 26
{ 2 28
{ 2 30
{ 1 32
{ 1 33
{ 1 34
{ 2 35
{ total 36

St Ayt A gt S Amgnd g)

record

tblloc: pBytes; {character set data pointer}

lpch: integer; {scanlines per character (assume wide)}
bpch: integer; {bits per character (vertical height)}
frstch: integer; {first character code - ascii}

lastch: integer; {last character code - ascii}

mask: longint; {mask used in positioning cells}

attrl: byte; {attributes}
{ bit 0 = 1 - vertical orientation}
attr2: byte; {currently unused} ’
end;
“Wndstat;
record

homex: integer; {relative to current character set}
homey: integer; {relative to current character set}
width: integer; {relative to current character set}
lngth: integer; {relative to current character set}
active: boolean; {active window flag}

£filll: Dbyte; {currently unused}

end;

“wWndRcd;

record

charpt: pCharSet; {character set record pointer}

homept: pBytes; {home (upper left) pointer}

curadr: pBytes; {current location pointer}

homeof: integer; {bit offset of home location}

basex: integer; {home x value, rel to root window}
basey: integer; {home y value, rel to root window}
lngthx: integer; {maximum x value, bits rel to window}
lngthy: integer; {maximum y value, bits rel to wimdow}
cursx: integer; {current x value, bits rel to window}
cursy: integer; {current y value, bits rel to window}
bitofs: integer; {bit offset of current address}

grorgx: integer; {graphics - origin x, bits rel to home}
grorgy: integer; {graphics - origin y, bits rel to home}

attrl: byte; {inverse, underscore, insert}

attr2: byte; {v/h, graphics/char, cursor on/off,
cursor inv/underline}

state: byte; {used for decoding escape sequences}

rcdlen: byte; {window description record length}

end;

CCcikIO Unit

(%

O

Interface

DayofWeek,Month,Day:

Hour ,Mins,Secs,Tenths,LeapYear: integer;

Lo Y ane Xann Yane Yo Wana ¥ ara Xana Vo Wona R ana Woen Yo Vo We Y

month

integer; { set by timer driver }

clock parameter block }

debug flag
day of week
year

day
hour
minute

second
date:
date:
date:
time:
time:
set by unit

"hr:mi:sc”
"hr:mi am"
27?7

(var CPB: ClkPB):;
(CPB: ClkPB):;

. TYPE
‘ ClkStr2 = string[2]
ClkStrl0 = string([10
. ClkStr40 = string[40
("(// ClkPB = record
end;
VAR .
ClkInfo: ClkPB;
ClkDebug: boolean;
ClkWD: ClksStrlO;
ClkY¥r: ClkStrlo0;
ClkMo: Clkstrlo;
ClkDy: ClksStr2;
ClkHr: ClkStr2;
ClkMi: ClkStr2;
Clksc: ClksStr2;
ClkDatel: ClkStr40;
ClkDate2: ClkStr40;
ClkDate3: ClkStr40;
ClkTimel: ClkStr40;
ClkTime2: ClkStr40;
Year: integer;
procedure ClkRead
- procedure ClkWrite
procedure ClkFormat (CPB: ClkPB);
4 cedure CCclkIOinit;

"dy-mon-yr" format
"month dy, year" format
"dy month year" format

format
format

}

{ set by timer driver }

Ayt Cd oyl gt gt

CCcrtIO Unit Interface

USES ‘{SU CCLIB} CCdefn;

CONST

CCcrtIOversion = 'n.n';
(' YesEcho = TRUE; NoEcho = FALSE;
(U ghft = TRUE; NoShft = FALSE;
‘ Bs?p = TRUE; NoBsup = FALSE;
TYPE
CrtRdx = (BinRdx,0OctRdx,DecRdx,BexRdx);
CrtStatus = (Normal, Escape, Error);
CrtCommand = (ErasEOS, ErasEOL, Up, Down, Right, Left, Leadin, EraseALL,
| Tab, StartBeat, HeartBeat);
VAR | .
Beep : CHAR;
CrtTpgm : STRING[16]:;
CrtTvrs : STRING([1l6];
CrtTcpy : STRING[80];
wndowLin : INTEGER;
wndowCol : INTEGER;
BeatCnt : INTEGER;
NumDef : BOOLEAN;
StrDef : BOOLEAN;
shift : BOOLEAN;
Compress : BOOLEAN:
" TypeAhead: BOOLEAN;
EchoCH : BOOLEAN;
RealCRT : BOOLEAN;
(“ ExtCRT : BOOLEAN;
<;JNCTION UpperCase (ch: CHAR): CHAR;
FUNCTION GetNum (VAR num:INTEGER): CrtStatus;
FUNCTION GetLongNum (VAR ln: LONGINT): CrtStatus;
FUNCTION GetString (VAR buf:String80): CrtStatus;
FUNCTION GetByte: CHAR;
FUNCTION CvStrint (VAR buf:String80): INTEGER;
PROCEDURE CvIntStr (num: INTEGER; VAR buf:String80; rdx:CrtRdx);
PROCEDURE CvLIntStr (num: LONGINT; VAR buf:String80);
PROCEDURE CrtAction (cmd: CrtCommand);
PROCEDURE CrtTitle (txt: String80);
PROCEDURE CrtPrompt (txt,opt: String80);
PROCEDURE CrtPause (VAR ch: CHAR):;
PROCEDURE GoToXY (x,y: INTEGER):;
PROCEDURE CCcrtIOinit;

"{ PROCEDURES/FUNCTIONS for compatibity}
PROCEDURE Crt

o)

(cmd: CrtCommand);

{same as CrtAction}

CCdrvIO Unit Interface

USES '{SU CCLIB} CCdefn;

CONST

(

4
4

CCdrvioVersion

lowslot
highslot

TYPE

sevenbits
eightbits
aname
cdosbuf

trkaddr

voltabent

cbuffer

volent

cvoldir

filent

cdir

LI |}
=
~e

0..127;

0..255;

PACKED ARRAY [l..4] OF CHAR;
ARRAY [0..255] OF byte;

PACKED RECORD
top3: 0..7;
msb: 0..31;
lsb: 0..255;
END;

RECORD

ftrk: trkaddr;
ltrk: trkaddr;
END;

ARRAY [0..127] OF trkaddr;

RECORD

ftype,

1lblk,

fblk: INTEGER;

vname: STRING([7]:;

nfils,

nblks: INTEGER; -

d2: PACKED ARRAY [0..7] OF CHAR;
END;

RECORD

ftype, 1blk, £fblk: INTEGER;
name: STRING([7]:

nfils, nblks: INTEGER;

£ill: PACKED ARRAY [1..494] of CHAR;

END;

RECORD

ftype,

1blk, :

fblk: INTEGER;

name: STRING[1l5];

d2: PACKED ARRAY [0..3] OF CHAR:
END;

RECORD

volu: volent;

fil: ARRAY [l1..77] OF filent;
END; :

VAR

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE |
-{ icTION
(_uncTION
FUNCTION
FUNCTION
PROCEDURE

)

userentry

A

ctable
cdtyp
cdbuf

drvCslot:
drvPslot:
drvaAslot:
PrepFile:
PrepFID:

PACKED RECORD

name: aname;

password: PACKED ARRAY[1l..2] OF CHAR;
bootvolume: eightbits;

id: sevenbits;
pascaluser: BOOLEAN;
END;

ARRAY [l..128] OF userentry:
(abuffer, avoldir, adir, atable, avbuf, adosbuf);

RECORD CASE cdtyp OF
abuffer: (buffer: cbuffer);
adir: (dir: cdir);
atable: (table: ctable);
adosbuf: (dosbuf: cdosbuf)
avoldir: (voldir: cvoldir)
END;

-
’
.
’

INTEGER; {current slot number}
INTEGER; {primary (boot) slot number}
INTEGER; {alternate slot number}
FILE;

String32;

cdsend (VAR st: SndRcvStr):;

cdrecv (VAR st: SndRcvStr):

disksend (slot: INTEGER; VAR st: SndRcvStr);

diskrecv (slot: INTEGER; VAR st: SndRcvStr); .

cdread (VAR buf: cdbuf; len,drv,sct: INTEGER): INTEGER;
cdwrite (VAR buf: cdbuf; len,drv,sct: INTEGER): INTEGER;
PutPrep (VAR xcv: SndRcvStr; drv: INTEGER): INTEGER;
UnPrep (VAR xcv: SndRcvStr): INTEGER;

CCdrvIOinit;

CCdrvUl Unit Interface

USES
{SU CCLIB} CCdefn,
{$U CCLIB} CCdrvIO;

- 1sT
K\,‘ CCdrvUlVersion = 'n.n';
DrMax = 5;
TYPE

DrRev = (RevA,RevB,Rev(C);

DrSizes = (0ldTenMB,FiveMB, TenMB, TwentyMB, FortyMB);

VirDrInfo = RECORD ,

~ Capacity: LONGINT;

END;

PhysDrInfo =. RECORD
spt,tpc,cpd: INTEGER;
Capacity: LONGINT;
DrSize: DrSizes;
DrType: DrRev;
PhysDr: BOOLEAN; {true if physical drive, false for virtual}
END; .

VDrArray = ARRAY [l..DrMax] OF VirDriInfo;

PDrArray = ARRAY [l..DrMax] OF PhysDrInfo;

VAR
DrDebug: BOOLEAN;
DrTbuf: CDBuf; {general purpose I/0 buffer}

DrNumDrvs: INTEGER; {number of drives online}
~ DrUserlID: INTEGER; {current user ID}
f(f) { =——- set by Findvol =--- }
kh~ DrVolDrv: INTEGER; {current volume disk drive}
DrVolAddr: INTEGER; {current volume block address}
DrVolIndex: INTEGER; {current index into volume table}
{current disk volume table}
DrVolTable: ARRAY [0..63] OF VolTabEnt;

{
DrVirDrv: VDrArray; {for call to CheckDrives}
DrPhyDrv: PDrArray; {ditto ...}

PROCEDURE DrvRd (VAR Buf: CDBuf; Len,Drv,Sec: INTEGER):;

PROCEDURE DrvWr (VAR Buf: CDBuf; Len,Drv,Sec: INTEGER);

FUNCTION GetAddr (Trk: TrkAddr): INTEGER;

PROCEDURE ReadVT (Drive,UserId: INTEGER):;

. FUNCTION FindVol (Mname: String32; Drive,UserID: INTEGER): INTEGER;
PROCEDURE CCdrvUlinit; '

O

CChéxout Unit Interface

USES °
{$U. CCLIB} CCdefn;

PROCEDURE puthexbyte (b: BYTE);

g "EDURE puthexword(w: INTEGER) ;
- SoCEDURE puthexlong(l: LONGINT);

PROCEDURE dumphex (p: pBYTES; len: INTEGER);:;
PROCEDURE hexinit; \

O

CClplIO Unit Interface

“TYPE’
+ LblReyStr = string[6];
LblRtnStr = string[l6];

OCEDURE LblsOn;
FUNCTION LblSet (KN: integer; LblStr: LblKeyStr;
RetStr: LblRtnStr): integer;

4 "OCEDURE LblsInit;
<

PROCEDURE CClblIOinit;

)

Ccpipes Unit Interface

USES *
{$U. CCLIB} CCdefn;
CONST
) (\ PipesVersion = 'n.n'; {current version number} ,
(&~ PnameLen = 8; {size of a pipe name} !
PblkLen = 512; {size of a pipe block} |
{pipe return codes ...}
PipeOk = 0; {successful return code} i
PipeEmpty = -8; {tried to read an empty pipe}
PipeNotOpen = -9; {pipe was not open for read or write}
PipeFull = -10; {tried to write to a full pipe}
PipeOpErr = =-11; {tried to open (for reading) an open pPipe}
PipeNotThere = -12; {pipe does not exist}
PipeNoRoom = =13; {the pipe data structures are full, and there
is no room for new pipes at the moment...}
PipeBadCmd = =-14; {illegal command} '
PipesNotInitted = -15; {pipes not initialized}
{an error code less than -127 is a fatal disk error}
TYPE
PNameStr = STRING[Pnamelen];
PipeBlk = RECORD CASE integer OF
l: (c: PACKED ARRAY [l..PblkLen] OF CHAR);
2: (b: ARRAY [l..PblkLen] OF byte);
END;

PipePslot: INTEGER; {primary (boot) slot number}
PipeAslot:. INTEGER; {alternate slot number}
PipeDebug: BOOLEAN; -

VAR A .
,(“\ PipeCslot: INTEGER; {current slot for pipe I1/0}

FUNCTION pipestatus (VAR names,ptrs: PipeBlk): INTEGER;

FUNCTION pipeoprd (pname: PNameStr): INTEGER;

FUNCTION pipeopwr (pname: PNameStr): INTEGER;

FUNCTION pipeclrd (npipe: INTEGER): INTEGER;

FUNCTION pipeclwr (npipe: INTEGER): INTEGER;

FUNCTION pipepurge (npipe: INTEGER): INTEGER;

FUNCTION piperead (npipe: INTEGER; VAR info: PipeBlk): INTEGER;
FUNCTION pipewrite (npipe,wlen: INTEGER; VAR info: PipeBlk): INTEGER;
FUNCTION pipesinit (baddr,bsize: INTEGER): INTEGER;

PROCEDURE CCpipeinit;

CCprtIO Unit Interface

"USES*
+su- CCLIB} CCdefn;
CONST PRT = 6; { unit & of /Printer }
<(-) { baud rate codes }
BAUD300 = 0
BAUD600 = 1;
BAUD1200 = 2;
BAUD2400 = 3;
" BAUD4800 = 4; { default }
BAUD9600 = 5;
BAUD19200 = 6;
{ parity codes }
PARDISABLED = 0; { default }
PARODD = 1;
PAREVEN = 2;
PARMARRKXNR = 3;
PARSPACEXNR = 4;
{ datacom codes }
PORT1 = 0;
PORT2 = 1; { default }
{ word size (charsize) codes }
CHARSZ8 = 0; { devault }
CHARSZ7 = 1;
,() { handshake codes }
(L LINECTSINVERTED = 0;
h LINECTSNORMAL = 1;
LINEDSRINVERTED = 2; -
LINEDSRNORMAL = 3; { default }
LINEDCDINVERTED = 4;
LINEDCDNORMAL = 5;
XONXOFF = 6;
ENQACK = 7;

VAR PrtAvail: boolean; {

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

printef available (assigned) }

PrtStatus (var br,par,dc,chsz,hs: integer):
PrtFreeSpace (var freebytes: integer):
PrtBaudRate (baudrate: integer):

PrtParity (parity: integer):

PrtDataCom (port: integer):

PrtCharSize (charsize: integer):

PrtBandShake (protocol: integer):

PROCEDURE CCprtlIOinit; -

(()

integer;
integer;
integer;
integer;
integer;
integer;
integer;

CCseﬁa4 Unit Interface
USES %*

{*$S% CCLIB} CCdefn,

{SU CCLIB} CCdrvlIO;

~T
(- Sema4ver51on = 'n.n';

{ Return codes for the semaphore unit }

SemWasSet = $80; { the prior state of this semaphore was locked }

SemNotSet = $00; { prior state was unlocked }

SemFull = $FD; { semaphore table is full (32 active semaphores)

SemDskErr = S$FF; { disk error during write thru }

{ negative function return values indicate error conditions }

{ 0 return means no error (and not set prior to operation) }

{ $80 (128) return means key set prior to operation }
TYPE

SemStr STRING[8];

SemKeys
SemKeyList

PACKED ARRAY [l1..8] OF CHAR;

RECORD CASE integer OF

l: (skey: ARRAY [1..32] OF SemKeys);
2: (sbyt: ARRAY [1..256] OF byte):
END;

FUNCTION SemLock (key: SemStr): INTEGER;

FUNCTION SemUnlock (key: SemStr): INTEGER;

FUNCTION SemClear: INTEGER;

@ -"TION SemStatus (VAR kbuf: SemKeyList): INTEGER;
Q “wCEDURE CCSema4Init;

CCw?i}O Unit Interféce

USES

(st cCLIB} CCdefn;

CONST
: f/ GRAPHICS
" CURSORON
INVCURSOR
WRAPLINE
SCROLLOFF
CLEARPAGE

{ values of
CURRPROCWIN
CMDWINDOW

ROOTWINDOW

FUNCTION
FUNCTION
- FUNCTION
FUNCTION

FUNCTION
FUNCTION

W uwnnn
AWH N
B D) OV ~e ~o So
-y wo “o

=1
2
'3

WinSystem
WinSelect
WinDelete
WinCreate

WinClear
WinStatus

{ attr2 flag values - add together }

e we o

wn for WinSystem } ‘
{ current process window
{ cmd/msg window

{ root user window

(wn: integer):

(var WR:
(var WR:
(var WR:

wndRcd) :
wndRcd) :

WndRcd; homex,homey,width,length:

flags: byte):

(var WR:

(var homex,homey,width,length: integer):

PROCEDURE CCwndIOinit;

e

(€

wndRcd) :

et et et

integer;
integer;
integer;
integer;
integer;
integer;
integer;

