

6600 SYSTEM
~~~~==~=======-

! f)=---71) 

IL J 

1 ...... 1---------18 1/2 in.--------+i 

47.0 cm. 
i---------19 5/8 in. --------"'1•1 

50.0 cm. 

June 1979 
Document No. 60430 
Copyright© 1979 Datapoint Corporation. Printed in U.S.A. 

The "D" logo and Datapoint are trademarks of Datapoint Corporation , registered in the U .S. Patent Office . 
'The leader in dispersed data processing"' is a trademark of Datapoint Corporation. 



PREFACE 

The computer-oriented user will find this manual useful 
tor evaluation of Datapoint 6600 system capabilities and 
limitations. However, only the hardware considerations are 
covered in this manual. The full utility of the Datapoint 
6600 system cannot be appreciated until the available 
software support tor the machine has been reviewed. 

A complete family of software packages available tor the 
Datapoint 6600 system includes high-level languages, 
operating systems, source code and text editors, com­
munications programs, utility programs, etc. Reference 
should be made to the latest issue of the Datapoint Soft­
ware Catalog tor more complete information. 



TABLE OF CONTENTS 

PART 1 GENERAL FEATURES Page 
1 .1 Introduction ............................................................................ 1 
1 .2 System Elements ....................................................................... 1 
1.3 CRT Display ........................................................................... 1 
1 .4 Keyboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1 . 5 Processor ............................................................................. 1 
1 .6 Cassette Tape Decks .................................................................... 1 
1 . 7 General Specifications ................................................................... 1 
1 .8 Peripherals ............................................................................ 1 

PART 2 KEYBOARD 
2. 1 General. .............................................................................. 3 
2.2 Keyboard Operation ..................................................................... 3 

Table 2-1 Keyboard Codes .................................................................. 4 
PART 3 DISPLAY 

3.1 General Description ..................................................................... 5 
3.2 Display Operations .................................................................... 5-6 

PART 4 CASSETTE TAPES 
4.1 General Description ..................................................................... 7 
4.2 Operations ............................................................ ~ ............... 7 
4.3 Status ................................................................................ 7 
4.4 Control (Table 4-2) .................................................................... 7-8 

PART 5 PROCESSOR 
5.1 Processor Registers ..................................................................... 9 
5.2 Comparison with Datapoint 5500 and 2200 .................................................. 9 

5.2.1 Input/Output ...................................................................... 9 
5.2.2 Input Parity Checking .............................................................. 9 
5.2.3 Output Parity Checking ............................................................. 9 
5.2.4 Compatibility with 5500 and 2200 Systems Peripherals ................................... 9 

5.3 Memory .............................................................................. 9 
5.3.1 Parity Checking .................................................................. 10 
5.3.2 Physical Layout. ................................................................. 10 
5.3.3 Address Generation ............................................................... 10 

5.4 Pushdown Stack ...................................................................... 11 
5.5 Control Flip-Flops ...................................................................... 12 
5.6 System ROM Functions ................................................................. 12 
5.7 Interrupt Handling ...................................................................... 13 
5.8 Processor Instructions .................................................................. 13 

5.8.1 Comparison to 2200 System Instructions .............................................. 14 
5.8.2 Presentation Format ............................................................... 1 5 
5.8.3 Category 1 - 2200 Instructions ................................................... 1 5-20 
5.8.4 Category 2 - Augmented Category 1 Instructions .................................... .21-22 
5.8.5 Category 3 - Multi-Byte (string) Operations .......................................... 22-25 
5.8.6 Category 4 - Processor State Save and Restore Instructions ........................... .25-26 
5.8. 7 Category 5 - Address Manipulation Instructions ...................................... 26-28 
5.8.8 Category 6 - Operating System Control. .............................................. 28 
5.8.9 Category 7 - 6600 Instruction Set ................................................ 29-31 
5.8.1 0 Instructions Timing ............................................................ 3i-33 

ii 



APPENDIX A SYSTEM ROM OPERATING DESCRIPTION 
Chapter 1 . System ROM Functions .................................................................... 35 

1 .1 Introduction ............................................................................. 35 
1 .2 Power Up .............................................................................. 35 
1 .3 Restart ............................................................................. 35-36 

Chapter 2. Debug .................................................................................. 37 
2.1 Introduction ............................................................................ 37 
2.2 Starting Procedure ....................................................................... 37 
2.3 Saving the Machine State ................................................................. 37 
2.4 Display Format ......................................................................... 37 
2. 5 Command Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 
2.6 Input Command List ................................................................... 38-40 

iii 





PART 1 
GENERAL FEATURES 

1.1 Introduction 

The Datapoint 6600 is a new addition to the Datapoint 
family of processors. The Datapoint 6600 highlights such 
features as expanded memory capability to 120K user 
memory and faster memory and processor cycle times. The 
Datapoint 6600 is also completely compatible with the 
Datapoint 1100, 2200, 5500 and 1150. 

Note: All numerics preceeded with a leading zero (0) repre­
sent an octal value. 

1.2 System Elements 

There are four basic elements in the 6600 system plus the 
capability to interface to a number of external peripheral 
devices. 

This chapter introduces the basic elements: CRT, key­
board, processor and cassettes. Further information may be 
obtained from the following chapters. 

1.3 CRT Display 

The CRT Display provides the following features: 

a. 7" x 3112" viewing area; 
b. 960 characters; 
c. 80-character by 12-line format; 
d. Software defined 128-character font; 
e. 60 frames-per-second refresh rate (50 frames-per­

second when using 50 hertz power); 
f. 5 x ·7 matrix character generation; 
g. 5 x 7 solid, blinking cursor, alternates with characters, 

nondestructive; 
h. Single control line erasure, frame erasure, page roll-up 

and roll-down; 
i. Direct control of all CRT functions by the processor, 

providing tab, editing, form control, etc; and 
j. Writing rate up to 50,000 characters per second. 

1.4 Keyboard 

The integral keyboard provides a basic 55-key alphanu­
meric group, an 11-key numeric group and five system con­
trol keys. 

The keyboard provides a unique multi-key roll-over char­
acteristic providing maximum ease of typing. Transfer of 
characters from the keyboard is under control of the pro­
cessor. An audible "click" providing an acoustical feedback 
to the typist is available under processor control. 

A programmable audio "beep" is also provided when it is 
desired to gain a typist's attention. 

1.5 Processor 

The integral processor provides all control functions and 

includes: 

* 8-bit memory word length (plus parity) 
* Complete parallel 1/0 system 

Automatic power-up restart 

The instruction set contains all instructions used in the 
Datapoint 1100, 2200, 1150 and 5500 systems, providing 
complete upward program and input-output compatibility. In 
addition, the processor characteristics of the 6600 provide: 

* Higher operating speed 
* Hardware Multiply/Divide 
* String moves 
* Greater speed 
* Expanded memory 

This gives the 6600 considerably greater processing capa­
bility than found in the 5500 processors. 

1.6 Cassette Tape Decks 

Two read-write tape decks are provided for program and 
data storage. The deck accepts Norelco (Phillips)-type cas­
settes and provides: 

a. 47 characters per inch density; 
b. Bi-directional operation; and 
c. Processor controlled data transfer, direction control, 

and high-speed rewind. 

1. 7 General Specifications 

POWER REQUIREMENTS: 
115 or 240 VAC (+/-10%), 60 or 50 Hz 

EQUIPMENT DIMENSIONS: 
Width: 18.5 in. (47 cm) 
Height: 9.6 in. (24.5 cm) 
Depth: 19.6 in. (50 cm) 
Weight: 47 lbs. (21.3 kg) 

OPERATING ENVIRONMENT: (excluding media) 
10° to 38°C (50° to 100° F) 
20 to 80% Relative Humidity (Non-Condensing) 

1.8 Peripherals 

The 6600 will accommodate a wide variety of external 
peripherals, such as asynchronous and synchronous com­
munications adaptors, printers, disks, and magnetic tapes. 





PART2 
KEYBOARD 

2.1 General 
The keyboard on the Datapoint 6600 processor performs 

the functions of data entry and processor control. 
The integral keyboard provides a basic 55-key al­

phanumeric key group, an 11-key numeric group and five 
system control keys. 

The keyboard provides a unique multi-key roll-over charac­
teristic providing maximum ease of typing. Transfer of 
characters from the keyboard is under control of the proces­
sor. An audible "click" providing an acoustical feedback to 
the operator is available under software control. 

A programmable audio "beep" is also provided when it is 
desired to gain the operator's attention. 

The 11-key matrix may be optionally supplied with control 
key coding rather than numeric key coding and with keytops 
engraved to customer specifications. 

The five control keys exert control over the processor. 
Their names and associated functions are as follows: 

RUN 
Momentary contact switch which, when depressed, causes 

the processor to begin execution of the instruction located at 
the address in memory currently addressed by the program 
counter. 

STOP 
Momentary contact switch which, when depressed, causes 

instruction execution to halt at the completion of the current 
instruction. 

KEYBOARD 
Momentary contact switch which sets a status bit that may 

be tested at any ti me by the processor. 

DISPLAY 
Momentary contact switch with a function similar to that of 

KEYBOARD switch. 

RESTART 
Momentary contact switch which causes the processor to 

halt and executes the Restart routine contained in ROM. To 
protect against accidental restart, the restart function is 
inhibited unless the RESTART and RUN keys are depressed 
simultaneously. 

2.2 Keyboard Operation 

The keyboard is addressed by the processor by loading the 
A register* with 0341 octal and executing an EX ADR com­
mand. (The CRT display also uses this address. Data trans­
fers to the processor are from the keyboard and transfers 
from the processor are to the display.) Following the address 
sequence the CRT/keyboard status word can be loaded into 
the A register by executing an INPUT instruction. Bit 1 of the 
A register may be tested by the program to determine if a 
character is ready for transfer from the keyboard. The key­
board is single buffered under processor control and is de­
signed such that when a character is entered from the key-

board, another character will not be recognized from the 
keyboard until the processor accepts the first character 
entered. Bits 2 and 3 will indicate if either the KEYBOARD 
or DISPLAY control switch is pressed. 

CRT/Keyboard Status Word 

[7I 6}sl4I3I2I 1Tol 
CRT Write Ready 

r-J TI 
Keyboard Read Ready 

'---Keyboard control switch depressed 
Display control switch depressed 

1 for RAM display 
Unassigned 

The External Commands associated with the operation of 
the keyboard are as follows: 

a. EX BEEP. This command produces a 1500 Hertz tone 
for a duration of about 400 msec. The tone could be 
used as an error or ready signal to the keyboard 
operator. 

b. EX CLICK. This command produces an audible click 
which could be used to acknowledge receipt of a valid 
character when a key is depressed. 

c. EX COM1 (Command 1). Presents a control word con­
tained in the A register to the keyboard. Bit 5 of the 
control word controls the KEYBOARD switch light and 
bit 6 controls the DISPLAY switch light as follows: 

CRT/Keyboard Control Word 

l7I6IsI4I3I2I1lol 
\. ) 

y 

CRT control 
Keyboard Light (1 =on, O=off) 

'----- Display Light (1 =on, O=off) 
'-------Set cursor to auto-increment mode. 

Note: The CRT Write Ready must be true before the EX 
COM1 can be issued. 

* For 1/0 transfers in the 6600, the A register is used if an­
other register is not specified. See Part 5, category 2, for 
further information. 

3 



4 

TABLE 2-1 
KEYBOARD CODING (ASCII)* 

A-101 a - 141 0-060 :-072 
B-102 b - 142 1-061 ;-073 
C-103 c - 143 2-062 <-074 
D-104 d - 144 3-063 =-075 
E-105 e - 145 4-064 >-076 
F-106 f - 146 5-065 ?-077 
G-107 g - 147 6-066 [-133 
H-110 h - 150 7-067 rv -176 
1-111 i - 151 8-070 ]-135 
J-112 j - 152 9-071 A-136 
K-113 k - 153 Space-040 _-137 
L-114 I - 154 !-041 @ -100 

M-115 m - 155 "-042 { - 173 
N-116 n - 156 #-043 ' - 134 
0-117 0 - 157 $-044 I - 140 
P-120 p - 160 r;+-045 I - 174 
Q-121 q - 161 &-046 } - 175 
R-122 r - 162 '-047 Enter - 015 
S-123 s - 163 (-050 Cancel - 030 
T-124 t - 164 )-051 Backspace - 01 O 
U-125 u - 165 *-052 
V-126 v - 166 +-053 

W-127 w - 167 ,-054 
X-130 x - 170 -055 
Y-131 y - 171 .-056 
Z-132 z - 172 /-057 

SPECIAL NUMBER PAD OPTION 

(.)-016 
(0)-020 
(1 )-021 
(2)-022 
(3)-023 
(4)-024 
(5)-025 
(6)-026 
(7)-027 
(8)-030 
(9)-031 

*These codes are all represented in octal 

Del - 177 



.. 

PART3 
DISPLAY 

3.1 General Description 

The 6600 display provides extended character generation 
flexibility and fast character transfer rates. The display sys­
tem includes: CRT Display of 12 lines of 80 characters, 
power line screen refresh rate, 960 cells of random access 
memory holding the screen image, a program loadable ran­
dom access character generation memory capable of pro­
ducing 128 individual 5 by 7 dot matrix characters, a group 
of registers utilized to position the cursor, and automatic 
cursor increment provisions. The maximum character trans­
fer rate to the CRT is determined by processor input/output 
speed. The upper limit of the display transfer rate is approxi­
mately 50,000 characters per second. 

3.2 Display Operation 

The CRT is addressed by th.e processor by loading the 
A register with octal 0341 and executing an EX ADR com­
mand. (Note that the keyboard also uses this address, see 
Part 2.) Following the address sequence, the CRT/ 
keyboard status word can be loaded into the A register by 
executing an INPUT instruction. The CRT status assignment 
is as follows: Bit 0 of the status word indicates that the CRT is 
ready to accept data or commands if it is set to a logical 1. 
(Note that this status bit will indicate a logical one if the 
cursor is positioned to an invalid screen position.) Bits 1, 2 
and 3 are used for keyboard status. 

CRT/Keyboard Status Word 

I 1 Is Is I• 13 I 2 I 1 It_ 

T I 
'-----y-----' Le RT w,;te Ready 

. ~Keyboard Use 
'--------1 for RAM Display 

'-----------Unassigned 

Control of the CRT is accomplished through the use of the 
following external commands: 

a. EX COM1 (Command 1) transfers a control word con­
tained in the A register to the CRT. The applicable bit assign­
ments and their functions are as follows: 

l 7 I 6 I 5 I 4 I 3 12 11_10 J 

I Roll-down 1 line 
~Erase from cursor to end of line 

'---Erase from cursor to end of frame 
----Roll-up 1 line 

L------Cursor ON/OFF (on=1, off=O) 
~----Keyboard Light (on=1, off=O) 

'--------Display Light (on=1, off=O) 
Auto Cursor Increment Mode 

(O=No Auto Increment) 

The following explanations assume that the CRT has been 
addressed. 

BIT 0: Each execution of EX COM1 with this bit set to 1 
causes the roll-down operation to occur. All dis­
played characters (not the cursor) are moved down 
one line. The bottom line on the screen is lost and the 
top line is filled with the pattern in position 040 octal 
of the character generation memory. The Write 
Ready status bit goes false until the roll~down opera­
tion is complete; another EX COM1 must not be is­
sued during this time. 

BIT 1: Each execution of EX COM1 with this bit set to 1 
causes erasure from (including) the current cursor 
position to the end of the line. The character dis­
played in the erased positions is determined by the 
pattern in position 040 octal of the character genera­
tion memory. The Write Ready status bit 9oes false 
until this operation is complete; another EX COM1 
must not be issued during this time. 

BIT 2: Each execution of EX COM1 with this bit set to 1 
causes erasure from (including) the current cursor 
position to the end of the frame. The character dis­
played in the erased position is determined by the 
pattern in position 040 octal of the character genera­
tion memory. The Write Ready status bit goes false 
until this operation is complete; another EX COM1 
must not be issued during this time. 

BIT 3: Each execution of EX COM1 with this bit set to 1 
causes the roll-up operation to occur. All displayed 
characters (not the cursor) are moved up one line. 
The top line on the screen is lost and the bottom line 
is filled with the pattern in position 040 octal of the 
character generation memory. The Write Ready 
status bit goes false until the. roll-up operation is 
complete; another EX COM1 must not be issued dur­
ing this time. 

BIT 4: The cursor image may be turned on or off through the 
control word. The cursor position is the same in 
either case. The cursor image is automatically turned 
off whenever the processor is in the HALT state, and 
will be turned on again when RUN is depressed if the 
cursor was on prior to the HALT. 

BITS 
5, 6: Keyboard & Display Light - See Part 2. 

BIT 7: When this bit is set to 1, the automatic cursor incre­
ment feature is in effect. In auto cursor increment 
mode, the cursor moves one character to the right 
after each EX WRITE command. The vertical position 
of the cursor does not change. If the last character 
(horizontal position 79) is written, the cursor will in­
crement off the screen and the CRT Write Ready 
status bit will stay true until the cursor is re-posi­
tioned back onto the screen. 

5 



b. EX COM2 (Command 2) positions the cursor to the 
horizontal character slot designated by the contents of the A 
register. Character positions 0-79 (decimal) or 0-0117 (octal) 
are valid. 

c. EX COM3 (Command 3) positions the cursor to the line 
designated by the contents of the A register. Line numbers 
0-11 (decimal) or 0-013 (octal) are valid. 

d. EX COM4 (Command 4) places the character generator 
memory in the load mode and sets the load pointer to the 
contents of the A register. Character positions 0-127 (deci­
mal) or 0-0177 (octal) are valid. 

e. EX WRITE transfers the character in the A register to the 
screen image memory at the position indicated by the cursor 
position. The cursor need not be on for this transfer to occur. 
If the auto cursor increment feature is enabled the cursor 
position will be incremented after the transfer. When the 
character generation memory has been set to the load mode, 
the above transfer is inhibited (as is the automatic cursor 
increment) and EX WRITE transfers data from the A register 
to the character generation memory. Execution of an EX 
WRITE (to either the screen image memory or the character 
generation memory) causes the Write Ready status bit to go 
false for up to 17 microseconds. Unless a delay of at 1east this 
duration is guaranteed by the program, the Write Ready sta­
tus bit should be checked before execution of an EX WRITE, 
EX COM1, EX COM2, EX COM3 or EX COM4 after a previous 
EX WRITE. Note that EX COM2 and EX COM3 do not affect 
the Write Ready status. 

Five successive byte transfers are required to load a com­
plete 5 by 7 character dot pattern. The loading format is 
illustrated by the following diagram which illustrates the let­
ter "A" loaded into memory: 

Bit No. 6 x x x 

6 

5 x 
4 x 
3 x 
2 x 
1 x 
0 x 

1 

x x x 

2 3 4 

Transfer 
Number 

(EX WRITE) 

x 
x 
x 
x 
x 
x 
5 

For example, the procedure for loading the character loca­
tion 0101 with an "A" as illustrated would consist of the 
following character transfers: 

• 
• 
• 
LA 0101 Set load pointer to 
EX COM4 Location 0101 
LB 077 
CALL DWRITE Load column 1 
LB 0110 
CALL DWRITE Load column 2 
CALL DWRITE Load column 3 
CALL DWRITE Load column 4 
LB 077 
CALL DWRITE Load column 5 

• 
• 
• 

The DWRITE subroutine below is used here instead of an 
EX WRITE instruction to guarantee the 17 microseconds 
delay required between executions of EX WRITE instruc­
tions: 

DWRITE LAB 

DWRITW 
EX 
IN 
SRC 
JFC 
RET 

WRITE 

DWRITW 

After all five columns of a character have been loaded, the 
character load pointer is automatically incremented to the 
following character. In the case of the above example the 
load pointer will be incremented to location 0102. Note that it 
is only necessary to issue additional EX COM4, when nonse­
quential character locations are being loaded. The display 
logic card is removed from the load mode by the execution of 
an EX COM1 (with A=O if no other function is desired). 

As mentioned previously, the Write Ready status bit goes 
false during the roll-up, roll-down, erase-to-end-of-line and 
erase-to-end-of-frame operations. The maximum periods 
during which Write Ready will be false for each of these 
operations is tabulated below for 60 Hz and 50 Hz primary 
power frequency: 

OPERATION 50HZ 60HZ 

Roll up 21.1 msec 17.8 msec 
Roll down 21.1 msec 17.8 msec 
Erase to-end-of-line 21.1 msec 17.8 msec 
Erase-to-end-of-frame 35 msec 31.7msec 



-----------------------~-~ 

.. 

PART4 

CASSETTE TAPES 

4.1 General Description 

The Datapoint 6600 contains two cassette tape recording 
devices for storage of programs and data. Since the 
hardware Restart (Appendix A, 1.3) uses the rear deck 
(number one), programs will typically be on it while data 
areas will be on the front deck (number two). However, once 
the machine is initially loaded, either deck may be used for 
both purposes. 

Data on the tape is organized by record (of any length). 
Records are written and read at 350 eight-bit characters per 
second. See Table 4-1 for a list of physical specifications. 

4.2 Operations 

Data is recorded or read in bit serial fashion on one track. 
Each eight bit character is framed by three sync bits on either 
side of the character. 

The first eight bit string framed by valid sync code groups 
(010) indicates the beginning of a record. The appearance of 
eleven ones in a row indicates the end of a record. Sync code 
groups after the first character in a record and before the end 
of the record are ignored. 

Note that the sync codes are valid for tape motion in either 
direction so the tape may be read backwards, although in the 
reverse direction the data bits will appear reversed (bit 0 will 
be bit 7, 1 will be 6, etc.) 

This is what a typical record looks like: 

i 1 1 1 1 1 1 lo 1 o Id d d d d d d d Io 1 o Id d d d d I 

-..- -...- -..- -...-- ---
Inter Sync 1st Character Sync 2nd Character 
Record Code in Record Code 
Gap 

I a 1 o Id d d d d d d d lo 1oI1 1111111111111111 -- ...._,,_. ------------ --Sync Last Character Sync End of Record Inter 
Code in Record Code Mark Record 

Gap 

4.3 status 

The cassette tape unit is addressed by the processor by 
loading the A register with 0360 octal and executing the EX 
ADR instruction. Following this sequence, the tape unit 
status can be loaded into the A register by executing an 
INPUT instruction. The bit assignments are as follows: 

r 71615141312 l 1 l 0 J TAPE STATUS WORD 

11 Deck Ready 

'-----End of Tape 
....._ __ Read Ready 

'-----Write Ready 

'----Inter-Record Gap 
'---Unassigned 

'----Cassette in Place 

Unassigned 

DECK READY 

END OF TAPE 

READ READY 

WRITE READY 

INTER-RECORD 
GAP 

CASSETTE IN 
PLACE 

Deck Ready will be set whenever the tape 
unit is ready to accept another command. 
(Only the TSTOP command should be is­
sued if this bit is false). When Deck Ready 
is true the tape will be stopped, a cassette 
in the selected deck, and the head en­
gaged. This bit should be checked after 
selecting a deck. 

End of Tape indicates that the cassette 
has run onto leader (in either direction). 

Read Ready indicates that the selected 
deck has read another character. 

Write Ready indicates that the selected 
deck is ready to write another character. 

Inter-Record Gap indicates selected 
deck has come across an inter-record gap 
(invalid sync code). 

Cassette in Place indicates that a cassette 
is physically in place in the selected deck. 

4.4 Control (Table 4·2) 

When the cassette tape unit is addressed the following 
instructions will control the action of the tape: 

a. EX TSTOP causes any motion of either deck to be 
stopped and any read or write operations to be termi­
nated. When everything has settled, the Ready status 
bit will come true and operations may be resumed. 

7 



b. EX DECK 1 causes deck one (rear) to be the currently 
selected deck. Before commanding a deck selection, 
care should be taken that the currently selected deck 
has completed all operations. 

c. EX DECK 2 causes deck two (front) to be the currently 
selected deck. Note the precaution in (b). 

d. EX RBK causes the currently selected deck to be set 
in forward motion and, after 70 msec, for the read cir­
cuitry to be enabled. The Read Ready status bit will 
come true upon appearance of a valid character. 
When an invalid sync code is encountered the Inter­
Record Gap status bit comes true and tape motion is 
automatically stopped. Note that this will happen only 
after at least one valid character has been found. 
Once the Read Ready status bit comes true, the 
character must be taken within 2.8 msec. or it will be 
overwritten with the next one. The tape read hard­
ware double-buffers incoming characters to allow the 
2.8 msec. character availability. 

e. EX BSP is similar to EX RBK except that tape motion 
is in the reverse direction so the data bits will be 
reversed. 

f. EX SF is similar to EX RBK except the tape is not 
stopped upon appearance of an Inter-Record Gap, and 
if allowed to continue will start to read the next record 
on the tape. In this case, the Read Ready status bit will 
come true again after the first character of the next 

record is read. Only EX TSTOP will stop the motion 
initiated by EX SF. 

g. EX SB is similar to EX SF except that tape motion is in 
the reverse direction and the data bits are reversed. 

h. EX WBK causes the currently selected deck to be set 
in forward motion and all status bits except the Write 
Ready to go false. A character must then be presented 
within 2.8 msec. (the first character will be accepted 
at once due to the buffering in the tape hardware and 
then there will be a pause while the tape comes up to 
speed), at which time the Write Ready will go false 
until the writing circuitry is ready to accept another 
character. An end of record is signaled to the hard­
ware by withholding a character for a period of time 
longer than the 2.8 msec. specified above. When this 
is done, the Write Ready will go false, an Inter-Record 
Gap will be written, the tape motion will cease and the 
Deck Ready status bit will come true again. 

i. EX REWIND causes the tape to be rewound to the 
beginning on the selected deck. Worst case rewind 
time is approximately 40 seconds. 

j. PUNCH TABS on the cassette cartridge are used for 
"write protect" and "automatic restart." The punch 
tab on the left (as you face the processor) inhibits the 
ability to write on tape, when punched. When the tab 
on the right is punched, it causes an automatic restart 
whenever a halt or power-up occurs. 

TABLE 4·1 

8 

TAPE UNIT PHYSICAL SPECIFICATIONS 

Density 
Speed 
Recording Rate 
Capacity 
Start/Stop time (Inter-Record Gap) 
Start/Stop Distance (Inter-Record Gap) 
Rewind Speed 
Rewind Time (max 300 ft.) 
Character Transfer Time 

47 characters/inch 
7.5 ips 
350 c.p.s. 
130,000 characters (typical) 
280 msec. 
2 inches 
90 ips 
40 sec. 
2.8 msec. 

TABLE 4·2 

COMMAND OCTAL DEVICE 
NUMBER CODE COMMAND DESCRIPTION ADDRESS 

15 DECK1 155 Select Deck 1 Connects deck 1 to 1/0 bus 0360 
16 DECK2 157 Select Deck 2 Connects deck 2 to 1/0 bus 
17 RBK 161 Read Block Enables read circuitry and sets 

tape in forward motion 
18 WBK 163 Write Block Enables write circuitry and sets 0360 

tape in forward motion 
19 -- 165 (Unassigned) -- --
20 BSP 167 Backspace Backs up the selected tape 

One Block one record 
21 SF 171 Slew Fo:ward Sets selected tape deck in 

forward motion 
22 SB 173 Slew Backward Sets selected tape deck in 

backward motion 
23 REWIND 175 Rewind Rewinds the selected deck to 

beginning of tape 
24 TSTOP 177 Stop Tape Halts motion of the selected 0360 

tape deck 



PARTS 
PROCESSOR 

The processor in the 6600 is comprised of two sets of eight 
8-bit program accessible registers, two sets of 4 control 
flags, 128K bytes of memory (120K bytes of user program 
memory), a 16-bit program counter, an 8-bit instruction reg­
ister, an 8-bit base register, a 16-level push down Stack, a 
special 4-bit instruction modification register and a 16-word 
memory sector table. 

5.1 Processor Registers 

The eight programmable registers are named A, B, C, D, E, 
H, L, and X. The flag flip-flops are named C (carry), Z (zero), S 
(sign), and P (parity). There are two sets of these registers and 
flags and access to them depends upon the mode the pro­
cessor is in. Upon Restart or whenever the Alpha mode in­
struction is executed, all Alpha mode registers and flags are 
accessible by the program. Whenever a Beta mode instruc­
tion is executed, the Beta mode registers and flags are ac­
cessible. No other registers or functions within the machine 
are affected by the processor mode. 

Registers A-Lare general purpose registers which may be 
interchanged with each other as to their functions. When an 
arithmetic, logical or 1/0 instruction is performed and a reg­
ister is not specified, the "A" register is over stored with 
the result. 

When using registers for addressing, they may be paired 
together to form a 16-bit address; XA, BC, DE and HL. If a pair 
of registers is not specified, the H L registers wi II be assumed. 

The X register is a working page register and is not nor­
mally used for the same functions as registers A-L, except to 
form the upper 8 bits of a 16-bit address word. 

P - The P register is the "location counter" for the program 
and contains the address of the next instruction to be exe­
cuted. This register is stored in the pushdown Stack upon the 
execution of a ''CALL" instruction and is loaded with the 
effective address upon execution of a "JUMP", "CALL" or 
"RETURN" instruction. The P register is 16 bits wide. 

I - The I register is the register which holds the "operation 
code" of the instruction currently being executed. The con­
tents of I are gated through a decoding network to determine 
what operation, internal or external, is to be performed. I is 8 
bits wide. This register is for internal hardware sequencing 
and is transparent to the user. 

5.2 Comparison With Datapoint 5500 and 2200 
Systems 

5.2.1 Input/Output 

Besides simply executing 1/0 instructions faster than the 
5500 and 2200 systems, the 6600 system 1/0 has parity check-

ing while maintaining control over compatibility with 5500 
and 2200/1100 devices. 

5.2.2 Input Parity Checking 

A ninth wire exists in the input and output data paths of the 
1/0 bus. An INPUT instruction (PIN) exists which will cause an 
interrupt if there is not an odd number of ones out of the nine 
bits on the input bus when the data is strobed into the pro­
cessor. Note that if a non-existent device is addressed and 
then a PIN is executed, a parity fault will occur because the 
status will be nine zeros, which is an even number (zero) of 
ones. Also note that using the INPUT instruction will never 
cause a parity fault interrupt, allowing all 2200 programs to 
execute properly on the 6600 systems (see Section 5.2.4). 

5.2.3 Output Parity Checking 

In addition to the output bus parity bit, there is another 
input wire to the processor called the Output Parity Fault 
line. If this wire is low during the parity fault check window 
(about 40 nanoseconds wide occurring 2 to 6 microseconds 
after the trailing edge of any output strobe), the output parity 
fault interrupt will occur. A 6600 system 1/0 device can 
check for an even number of ones out of the nine output bits 
at the leading edge of the output strobe. If there are an even 
number of ones, the device can hold the Output Parity Fault 
line low until the leading edge of the next 1/0 strobe, thus 
causing the Output Parity Fault interrupt. 

5.2.4 Compatibility With 5500 and 2200 Systems 
Peripherals 

6600 system peripherals may not be directly compatible 
with the 2200 because of the use of output parity checking, 
but are directly compatible with the 5500. However, 2200 
peripherals can be made to work on the 6600 system if the 
PIN (parity checking input) instruction is not used. Also 6600 
system peripherals may be used on 2200 systems via an 1/0 
option strap. The three additional wires used in the 6600 
system 1/0 bus are not used in the 2200 system 1/0. 

5.3 Memory 

In addition to having more memory capability than the 5500 
system, the 6600 memory system is faster. The 6600 also 
features parity checking and advanced memory handling. 

9 



5.3.1 Parity Checking 

Each byte in the memory system has a ninth bit which is 
used for parity. checking. Even parity is written into every 
location automatically when the machine is powered up and 
into the given location whenever a data byte is written (the 
words are written such that there are always an even number 
of ones out of the total number of nine bits). Whenever a data 
byte is read, a check for even parity is made and a special 
interrupt invoked if the check fails. This interrupt supplies the 
logical address of the failing memory location for diagnostic 
purposes. This means that the base addressing of the par­
ticular routine being run would have to be known to convert 
the failure address to a physical memory address. Note that 
if a non-existent memory location is accessed, a parity fault 
will not occur because all zeros (even number of ones) will 
be read. In addition to the RAM, the 6600 contains a ROM 
(read-only memory) which is used for power initialization, 
RESTART, debugging, memory testing, and other system 
functions. The parity bit for ROM is generated artificially. 

5.3.2 Physical Layout 

The 6600 contains provisions for five memory boards. The 
first four boards contain 32K bytes of RAM each. The fifth 
board contains 4K of ROM and overlays locations 0170000 
through 0177777. This gives 124K of RAM, 4K of which is re­
served for System RAM, leaving a total of 120K of user RAM. 

4 

3 

2 

0 

ROM } 

32K RAM 

32K RAM 

32K RAM 

32K RAM 

Figure 5-1 
MEMORY LAYOUT 

5.3.3 Address Generation 

0177777 

0170000 

0377777 

0300000 

0200000 

0100000 

0 

Figure 5-1 is a map of the physical memory layout. 
This memory is referenced by what is called a "physi­
cal" memory address. Board 1 is physical locations 0 
through 077777 (RAM), board 2 is physical locations 0100000 
through 0167777 (RAM), board 3 is physical locations 
0200000 through 0277777 (RAM), board 4 is physical lo­
cations 0300000 through 0377777 (RAM), and board 5 is 

10 

physical locations 0170000 through 0177777 (ROM). 
User programs use what is called a "logical" memory 

address. This is a 16-bit value created by the program 
and translated to the proper "physical" memory address 
by a mechanism in the processor. The translation mechanism 
utilizes a base register and a memory sector table as depicted 
in Figure 5-2. 

If the logical memory address is between 0100000 and 
0137777, its upper eight bits are added (two's complement) 
to the eight bit base register. Otherwise, the upper eight bits 
of the logical memory address are unchanged by the adder. 
The new 16-bit value consisting of the lower eight bits of the 
logical memory address and the eight bits from the adder is 
called the "based logical memory address." Note that the 
base register may be negative (two's complement) for 
creating based logical memory addresses lower than 
0100000. 

The upper four bits of the based logical memory address 
form an address for the 16-entry 8-bit sector table. This table 
divides the 64K based logical memory space into sixteen 4K 
byte sectors, each of which may be translated to any physical 
4K memory section and may be protected from being 
accessed if the USER mode flag is set or from being written 
into regardless of the state of the USER mode flag. (Note that 
many people in the computer industry refer to the sector 
table as a page table. However, the reference has been 
changed here to avoid confusion with the term "page" used 
elsewhere to denote a 256 byte section of logical memory 
space starting at an address of 0 modulo 256.) 

The sector table contains eight bits for each entry. Bit 1 
(the next to the least significant) of a sector table entry 
contains a hardware generated and checked parity bit. Any 
value loaded into this position is ignored since the hardware 
generates the proper parity bit when a sector table entry is 
loaded. If, during any memory access, there are not an odd 
number of one bits out of the eight sector table entry bit 
positions, a Sector Table Parity Error System Call interrupt 
will be generated to memory location 0167474. Bit 2 of a 
sector table entry is set to enable the sector to be accessed 
(read or written) when the machine is in User Mode. Bit 3 of a 
sector table entry is set to enable the sector to be written in 
either User or System Mode. Bits 4 through 7 of a sector table 
entry are used for physical memory address bits 12 through 
15 and bit 0 of a sector table entry is used for physical 
memory address bit 16 (giving a total of 17 bits of physical 
memory address to allow accessing 128K of physical 
memory space.) 

With the address generation mechanism described above, 
two major benefits can be realized. The first is ease of 
reentrant coding for multiple user tasks. The program can 
load into the base register the base address (in multiples of 
256 bytes) of his non-reentrant data area minus 0100000 and 
then all references to logical memory addresses between 
0100000 and 0100000 plus the length of his data area will 
automatically be translated into the proper based logical 
memory location. The second major benefit is afforded by 
the sector table. Besides providing the ability to implement a 
completely protected monitor, the sector table provides ease 
in running several independent partitions in memory at once. 



5.4 Pushdown Stack 

A feature of the 6600 is the incorporation into the pro­
cessor's structure of a pushdown Stack. This is useful for 
subroutine calling, saving the value of register pairs, cal­
culating an address and then jumping to it without having to 
overstore a JUMP instruction, making an abortive exit from a 
subroutine (returning control to a location other than the one 
after the CALL instruction), and saving the state of the ma­
chine (if there is at least one free stack location). 

Information may be transferred between either the 
P-counter and the Stack or any register pair and the Stack. 
The Stack is actually a separate scratch pad memory of six­
teen 16-bit words which is addressed by a four-bit up/down 
counter. Whenever a CALL or PUSH instruction is executed, 
the P-counter or indicated register pair is written into the 
Stack word pointed out by the Stack Pointer which is then 
incremented. The pointer ends-around to 0 if it is incre­
mented past 15. Whenever a RETURN or POP instruction is 
executed, the Stack pointer is first decremented (ending 
around to 15 if it is decremented below 0) and then the P­
counter or indicated register pair is loaded from the pointed 
location. Note that the above description implies that the 
maximum subroutine nesting depth is sixteen and will be 
less if data is also pushed onto the Stack. That is, the 
seventeenth CALL or PUSH will overstore the value written 
in the first if no RETURN or POP instructions intervene. 

11 



PUSH 
or 

CALL 

BASE 
ENABLE 

&\ 
27i' 

2a 

21 

20 

-
LOGICAL 
MEMORY 
ADDRESS 

_!_ 

.... 
..... 
~ 

..... 
.... 

..... 

~ 

l 
Address of CALL 5 

Address of CALL 4 

Address of CALL 3 

Address of CALL 2 

Address of CALL 1 

16 bits 
Note: Some of the complex 

multi-byte instructions 
use 1 Stack entry. 

12 

BASE 
REGISTER 

t I 

+ 

...... 

Figure 5-2 

POP or 
RETURN 

Maximum 
capacity 

16 CALLS 

SECTOR 
TABLE 

A 
D 

..... R . 

WRITE EN ABLE 

NABLE 

T 
~ACCESSE 

23 PARITY Bl 
22 
21 
20 
27 
26 
25 
24 

_, 

216 

21s 
.... 
..... 
-" 212 

2" .... .... 
..... 2s 

21 
...... 

....... 

20 

.______ 

PHYSICAL 
MEMORY 
ADDRESS 

5.5 Control Flip-Flops 

Also contained in the basic processor are eight control 
(flag) flip-flops (four in ALPHA mode and four in BETA mode) 
which reflect the state of the arithmetic logic unit and which 
can be tested through the execution of a CONDITIONAL 
JUMP, CALL or RETURN instruction. The flip-flop 
mnemonics with their associated functions are as follows: 

C-Carry flip-flop. Set when an arithmetic operation results 
in either a carry (add) or borrow (subtract). 

Z - Zero flip-flop. Set when the result of an arithmetic or 
logical operation is equal to zero. 

S - Sign flip-flop. Reflects the state of bit 7 after an arithme­
tic or logical operation. 

P - Parity flip-flop. Indicates parity after any arithmetic or 
logical operation. This is entirely separate from the 1/0 or 
memory parity system referred to elsewhere. If this flip-flop is 
set (true) there are an odd number of one bits; if it is reset 
(false). there are an even number of one bits. 

5.6 System ROM Functions 

See Appendix A for a complete description of the 6600 
processor ROM features. 



5. 7 Interrupt Handling 

There are eleven different interrupt events possible in the 
6600. All except the power-up interrupt use the System Call 
mechanism (see instruction description) to the memory loca­
tion explained below. The System Call mechanism pushes 
the current value of the P-counter onto the Stack, disables 
the one millisecond interrupt, clears the USER mode and 
forces execution to continue at the indicated vector loca­
tion. Note that one of the interrupts is actually the SYSTEM 
CALL (SC) instruction and that the other interrupts use the 
same mechanism but jump to different locations. 

The following describe the interrupt vector entry point 
locations. Note that all of these vectors are in System RAM lo­
cations and are initialized on power-up. See Appendix A for a 
description of how those are handled in the system ROM. 

0167400 MEMORY PARITY FAULT 

This is caused by a memory read resulting in a nine bit word 
with an odd number of ones. Before the P-counter was 
pushed onto the Stack by the System Call mechanism, the 
based logical memory address of the faulty memory cell was 
pushed onto the Stack. 

Note that during multiple byte operations which use the 
Stack, the P-counter is used during the instruction to hold a 
data address. If an interrupt occurs during one of these in­
structions, the value the P-counter pushed onto the Stack 
will be a data address instead of the true P-counter value 
(the actual P-counter value being another entry further down 
on the Stack). For this reason, one cannot always determine 
the state of the machine if an interrupt occurs. 

0167406 INPUT PARITY FAULT 

This is caused by a PIN or MIN instruction (see instruction 
explanation) resulting in a nine bit word from the 1/0 Bus with 
an even number of ones. The P-counter value pushed onto 
the Stack points to the PIN or MIN instruction. 

0167414 OUTPUT PARITY FAULT 

This is caused by the Output Parity Fault line on the 1/0 Bus 
being low during the parity fault check window (about 40 
nanoseconds occurring 2 to 6 us afterthe trailing edge of any 
output strobe). The Output Parity Fault line can be held low 
by 6600 System 1/0 devices if they see an even number of 
ones out of the nine bits of the 1/0 Bus. The P-counter value 
pushed onto the Stack points to the output or MOUT in­
struction. 

0167422 WRITE PROTECT VIOLATION 

This is caused by a memory write operation being attemp­
ted on a sector of memory for which the Write Enable bit (A3 
in the sector table entry) has not been set. 

Note that during multiple byte operations which use the 
Stack, the P-counter is used during the instruction to hold a 
data address. If an interrupt occurs during one of these in­
structions, the value the P-counter pushed onto the Stack 
will be a data address instead of the true P-counter value 
(the actual P-counter value being another entry further down 
on the Stack). For this reason, one cannot always determine 
the state of the machine if an interrupt occurs. 

0167430 ACCESS PROTECT VIOLATION 

This is caused by the USER mode flag being set and a 
memory operation being performed on a sector of memory 
for which the access enable bit (A2 in the page sector table 
entry) has not been set. The same note concerning multiple 
byte operations and the Memory Parity Fault interrupt ap­
plies to the access protect violation interrupt. 

0167436 PRIVILEGED INSTRUCTION VIOLATION 

This is caused by the execution of an 1/0 instruction or an 
instruction capable of changing the sector table or base 
register while the USER mode flag is set. The P-countervalue 
pushed onto the Stack points to the instruction which caused 
the interrupt. 

0167444 ONE MILLISECOND INTERRUPT 

This is caused every 1000 microseconds. These interrupts 
can be inhibited with the DI instruction as in the 5500 system 
(and are inhibited with RESTART or POWERUP). 

0167452 USER SY.STEM CALL 

This is caused by the execution of an SC instruction. 

0167460 BREAK POINT 

This is caused by the execution of a BP instruction. 

0167466 UNDEFINED INSTRUCTION 

This is caused by an attempt to execute an instruction 
which is undefined in the 6600. 

0167474 SECTOR TABLE PARITY FAULT 

This is caused when a parity error is detected while loading 
in the Sector Table during any memory access. 

5.8 Processor Instructions 

The 6600 processor instructions have been divided into 
seven categories for convenience of presentation. 

* Category one: All instructions contained 
in 1100 and 2200 system processors. 

* Category two: 2200 system instructions 
which have been enhanced with 
additional register referencing capability. 

* Category three: Multi-byte (string) 
instructions. 

* Category four: Instructions for saving 
and restoring the state of the processor. 

* Category five: Address manipulation 
instructions. 

* Category six: Operating system control 
instructions. 

* Category seven: 6600 Instruction 
* Set and Instruction Timing. 

13 



5.8.1 Comparison to 2200 System Instructions 

The 6600 has a number of instructions not in 2200 system 
processors. Before these instructions can be described, 
however, the new data paths in the processor must be de­
scribed. A new discrete register (not part of the register stack 
containing the general purpose registers) has been added. It 
is a working register called the implicit register. 

Many 2200 instructions reference the A register implicitly 
(e.g., use it for an accumulator or load it from the 1/0 Bus). 
The register that is implicitly referenced in the 6600 in these 
cases is still the A register unless an instruction is executed 
which changes the implicitly referenced register for the fol­
lowing instruction only. There are eight instructions (one 
byte long) which allow the implicit register to be loaded with 
one through eight (implying registers A, B, C, D, E, H, L, or X). 
Once this is done, interrupts are inhibited until the following 
instruction is completed. If the following instruction would 
reference the A register implicitly in the 2200, the 6600 will 
reference the register indicated by the implicit register value 
instead. This also applies to instructions where HL is the 
implied register pair specifying an address. The implicit reg­
ister can be used to specify a different register pair (implying 
register pairs BC, DE, HL or XA). Notice the use of the word 
"implied", as references are made to the "implied register" 
in later descriptions. ' 

The instructions which set the implicit register will not be 
described separately since they are used only to augment the 
function code (op code) of the instruction which they modify. 
In some cases the value of the implicit register will not deter­
mine a register reference but will modify an operation action 
instead. The implicit register is also used for a loop counter in 
many of the multi-byte instructions. Since the implicit regis­
ter is only 4 bits wide the multibyte instructions that use it 
for a loop counter are limited to executing the loop sixteen 
times (usually meaning that fields are limited to sixteen byte::s 
in width). However, some of the multi-byte instructions use a 
general purpose register for a loop colinter enabling them 
to loop 256 times. The one millisecond interrupt can occur 
only during the fetch of a new instruction if interrupts are 
enabled at all. This means that for some of the longer 
multi-byte instructions, interrupts can be disabled for as long 
as 840 microseconds. This would be troublesome if one 
was using the one millisecond clock for short-term time 
critical work. The full 256 byte capability is included, how­
ever, in the event that one might find it useful if time critical 
work was not being performed. 

Two additional general purpose registers have been added 
to the 6600 processors. By general purpose, it is meant that 
there is one for each mode (ALPHA and BETA) and that they 
reside in the register stack along with the rest of the general 
purpose registers. In the 6600 this register (numbered 7 in 
the general purpose register stack) is called the X register. 

The X register is not quite as generally accessible as the 
rest of the registers, due to the fact that register select num­
ber 7 is used to specify memory in many instructions. How­
ever, the X register can be loaded immediately as well as be 
accessed via the implicit register mechanism and also by 
several instructions which use the X register's contents as 
the upper eight bits of an address. The X register is gen­
erally used in the 6600 system to indicate a working page in 
memory. (Here, the word "page is used to denote a 256 byte 
section of logical memory space.) 

14 

The use of the X register enables several of the instructions 
which provide a fixed memory address in the instruction to 
be one byte shorter by not having to specify the upper eight 
bits of the address (using the contents of the X register 
instead). Experience in programming the 2200 system has 
shown that one working storage page is generally quite 
adequate to hold most of the items accessed most often by a 
given program and that these items are accessed often 
enough to make the X register concept useful both in terms 
of saving memory and increasing speed. 

Additional programming conventions developed with the 
2200 system have been reflected in the 6600 instruction set. 
The BC and DE register are often used as pairs to form a 
sixteen bit value (B or D being the MSP and C or E being the 
LSP). Several of the new instructions treat these pairs speci­
fically as sixteen bit values. 



5.8.2 Presentation Format 

A description of each 6600 instruction is given below. In 
order to simplify the presentation, the following symbols and 
abbreviations are used: 

Operation: 

Op Code: 

Timing: 

Length: 

Stack: 
Entry: 

Exit: 

Algorithm: 

( ) 
+--

--+ 

v 
-¥­
.A. 
A 
B 
c 
D 
E 
H 
L 
x 
M 

p 

Stack 
(OP) 

(rs) 

(rd) 

( r) 

(rp) 

Symbolic representation of 
instruction description 
Operation Code, expressed in 
octal 
Execution time in microseconds 
(Note: memory refresh overhead 
is 5% implying that a program 
will execute, on 
the average, 5% slower than the sum 
of the indicated timings.) 
Number of bytes in the instruction 
(Used when the length may not be 
especially obvious from the 
op code or the 
instruction diagram.) 
Number of stack entries 
Conditions necessary before 
execution 
Conditions existing after 
execution 
Steps taken to perform the 
instruction execution 
The contents of 
Is replaced by 
Is transferred to 
Is compared with 
Logical "Or" operation 
Logical "Exclusive Or" operation 
Logical "AND" operation 

8-bit processor registers 

Contents of Memory location 
designated by the contents 
of HL or the designated 
register pair 
Program counter (When shown P + X 
location relative to first byte of instruction) 
The Pushdown Stack 
One of the eight ALU 
operations (AD, AC, SU, SB 
ND, XR, OR, CP) 
A source general register 
(ABCDEHL)(s=O to 6) 
A destination general register 
(ABCDEHL) (d=O to 6) 
A general register (ABCDEHLX) 
(s or d =0 to 7) 
One or the pairs of registers (BC DE HL XA) 

rp 

A register select op code 
No byte is necessary 
for selection of the A register 
Otherwise: B=0111, C=062, 
D=0113, E=0174, H=0115 
L=0176, X=022 
A register pair select op code 
No byte is necessary for 
the selection of HL 

rp+1 

(vvv) 

Otherwise: BC=062, DE=0174, XA=022 
BC=0113, DE=0115, HL=0117, XA=0111 
An 8-bit value used 

(adr) 

(cf) 

(exp) 

data 

loc 

in an instruction 
A 16-bit value used in 
an instruction with the 
LSP first, followed by the MSP 
Control flags (CZSP) (c=O to 3) 
(Often called flip-flops) 
External command, listed in 
Table 5-1 
An expression reducing to 
an 8-bit immediate value 
An expression reducing to 
a 16-bit address 

5.8.3 Category 1 - 2200 System Instructions 
For timing, refer to 5.8.10 

LOAD IMMEDIATE 
Op Code: Od6 (vvv) 
Operation: (vvv)-+(r) 

L (r) 

Transfers the value of the operand given in the instruction 
to the register specified by bits 3-5 of the instruction word. 

1

7 

0 

6

1

5 

; 

3

1

2 ~ 0 

I ~PERAND0 I 
1. d is the destination designator. 
2. None of the flag flip-flops are changed. 

LOAD L(rd)M, L(rd)(rs), LM(rs) 
For L(rd)M: Op Code: 3d7 

Operation: (M)-+(rd) d ~6 

For L(rd)(rs): Op Code: 3ds 

Operation: (rs)-+(rd) s~6, d ~6 

For LM(rs): Op Code: 37s 

Operation: (rs)-+(M) s ~6 

Transfers the operand from the source specified by bits 0-2 of 
the instruction word to the destination specified by bits 3-5 of 
the instruction word. 

17 3 615 : 312 : 01 

1. The source data is unaffected. 
2. s and d both = 7 results in a HALT instruction. 
3. None of the flag flip-flops are changed. 

15 



ADD IMMEDIATE 
Op Code: 004 (vvv) 
Operation: (A) + (P+1)-A 

AD data 

Adds the value of the (data) operand to the contents of the 
A register and retains the sum in the A register. 

1. Carry flip-flop set if add overflow occurs; otherwise carry 
is reset. 

2. The Sign, Zero and Parity flip-flops indicate the status of 
the A register at completion. 

ADD 
For AD(rs): Op Code: 20s 

Operation: (A) + (rs)-A 
For ADM: Op Code: 207 

Operation: (A) + (M)-A 

AD(rs), ADM 

This instruction is identical to ADD IMMEDIATE with the 
exception of operand source. 

s specifies the operand source. 

ADD WITH CARRY IMMEDIATE 
Op Code: 014 (vvv) 
Operation: (A)+ (P+1) + (Carry)-A 

AC data 

Adds the Carry bit and contents of the operand to the con­
tents of the A register and retains the sum in the A register. 

1. If add overflow occurs, the Carry flip-flop is set; otherwise 
Carry is reset. 

2. The Sign, Zero and Parity flip-flops indicate the status of 
the A register at completion. 

ADD WITH CARRY 
For AC( rs): Op Code: 21 s 

Operation: (A) + (Carry) + (rs)-A 
For ACM: Op Code: 217 

Operation: (A) + (Carry) + (M)-+A 

AC(rs), ACM 

This instruction is identical to ADD WITH CARRY IMMEDIATE 
with the exception of operand source. 

s specifies the operand source. 

16 

SUBTRACT IMMEDIATE 
Op Code: 024 (vvv) 
Operation: (A) - (P+1 )--A 

SU data 

Subtracts the value of the operand from the contents in 
the A register and retains the difference in the A register. 

1. The Carry flip-flop is set if underflow occurs, otherwise 
carry is reset. 

2. The Zero, Sign and Parity flip-flops represent the status of 
the A register at completion. 

SUBTRACT SU(rs), SUM 
For SU(rs): Op Code: 22s 

Operation: (A)-(rs)-A 
For SUM: Op Code: 227 
Operation: (A)-(M)-A 

This instruction is identical to SUBTRACT IMMEDIATE with 
the exception of operand source. 

s specifies the operand source. 

SUBTRACT WITH BORROW IMMEDIATE 
Op Code: 034 (vvv) 
Operation: (A)-(P + 1) - (Carry)-+ A 

SB data 

Subtracts the value of the operand and the Carry bit from 
the contents of the A register, and retains the difference in 
the A register. 

1

7 

0 

6

1

5 

: 

3

1

2 

: 

0 

I 70PERAN~ I 

1. Sets the Carry flip-flop if underflow occurs; otherwise 
resets Carry. 

2. The Zero, Sign, and Parity flip-flops represent the status of 
the A register at completion. 

SUBTRACT WITH BORROW 
For SB(rs): Op Code: 23s 

Operation: (A)-(rs)-(Carry)-A 
For SBM: Op Code: 237 
Operation: (A)-(M) - (Carry)--+A 

SB(rs), SBM 

This instruction is identical to SUBTRACT WITH BORROW 
IMMEDIATE with the exception of the operand source. 

s specifies the operand source. 



AND IMMEDIATE 

Op Code: 044 (wv) 

Operation: (A)..A.(P+1)--A 

ND data 

Forms the logical product of the contents of the A register 
with the value of the operand and places the result in the A 
register. 

1. Resets the Carry flip-flop upon completion. 
2. The Zero, Sign and Parity flip flops represent the status of 

the A register upon completion. 

(A Reg) 
(P+1) 
(A Reg) 

AND 

Sample Operation: 

0 0 0 0 1 
0 1 1 0 0 
0 0 0 0 0 

For ND(rs): Op Code: 24s 
Operation: (AWrs)-A 

For NDM: Op Code: 247 
Operation: (A)A!Mt• A 

1 
0 
0 

ND(rs), NDM 

This instruction is identical to AND IMMEDIATE with the 
exception of operand source. 

s specifies the operand source. 

OR IMMEDIATE 
Op Code: 064 (wv) 
Operation: (A) V (P+1)-A 

OR data 

Forms the logical sum of the contents of the A Register and 
the value of the operand, and places the result in the A 
register. 

1. Resets the Carry flip-flop upon completion. 
2. The Zero, Sign and Parity flip-flops represent the status of 

the A register upon completion. 

Sample Operation: 

(A Reg) 
(P+1) 
(A Reg) 

OR 

0 0 0 0 1 
0 0 0 
0 0 1 

For OR(rs): Op Code: 26s 
Operation: (A) V (rs)-A 

For ORM: Op Code: 267 
Operation: (A) V (M)-+A 

1 1 
1 0 
1 1 

OR(rs),ORM 

This instruction is identical to OR IMMEDIATE with the ex­
ception of operand source. 

s specifies operand source. 

EXCLUSIVE OR IMMEDIATE 
Op Code: 054 (vvv) 
Operation: (A)~(P+1)-A 

XR data 

Forms the logical difference of the contents of the A register 
and the value of the operand, and places the result in the A 
register. 

1

7 6 I 5 4 3 I 2 1 o I 7 o I 
. 0 _ 5 . 4 OPERAND 

1. Resets the Carry flip-flop at completion. 
2. The Zero, Sign and Parity flip-flops represent the status of 

the A register upon completion. 

(A Reg) 
(P+1) 
(A Reg) 

Sample operation: 

0 0 1 1 0 1 0 1 
01011100 
0 1 0 1 0 0 

EXCLUSIVE OR 
For XR(rs): Op Code: 25s 

Operation: (A) 41- (rs)-A 
For XRM: Op Code: 257 

Operation: (A) 41- (M)-A 

XR(rs), XRM 

This instruction is identical to EXCLUSIVE OR IMMEDIATE 
with the exception of operand source. 

s specifies the operand source. 

17 



COMPARE IMMEDIATE 
Op Code: 074 (wv) 
Operation: (A) : (P+1) 

CP data 

Compares the contents of the A register with the value of the 
operand. 

1. The flag flip-flops assume the same state as they would for 
a Subtract instruction. 

2. The contents of the A register are unaffected. 

COMPARE CP(rs), CPM 
For CP(rs): Op Code: 27s 

Operation: (A) :(rs) 
For CPM: Op Code: 277 

Operation: (A) :(M) 

This instruction is identical to COMPARE IMMEDIATE with 
the exception of operand source. 

172615 ~ 312 ~ 01 

s specifies the operand sources 

UNCONDITIONAL JUMP 
Op Code: 104 (adr) 
Operation: (adr)--+ P 

JMP loc 

An unconditional transfer of control. The second byte of the 
instruction represents the least significant portion of the 
jump address, while the third byte of the instruction repre­
sents the most significant portion. 

7 

Op Code 

JUMP IF CONDITION TRUE 
Op Code: 1 (c+4) 0 (adr) 

P+1 P+2 

Address 

Operation: If condition true, (adr)--+ P 

JT(cf) loc 

Examines the designated flip-flop. If set, transfers control to 
(adr). If reset, executes the next sequentially available in­
struction. 

P+1 P+2 

LSP 
0 17 

MSP OI 
Op Code Address 

1. c designates which flip-flop (condition) is to be tested. 
2. The condition of the selected flip-flop is unchanged by 

18 

this instruction. 

JUMP IF CONDITION FALSE 
Op Code: 1c0 (adr) 
Operation: if condition false, (adr) - P 

JF(cf) loc 

Examines the designated flip-flop. If reset, transfers control 
to (adr). If set, executes the next sequentially available in­
struction. 

P+1 P+2 

1

7 

1 

6

1

5 

: 

3

1

2 ~ 0 

1

7 

LSP 

0 

1

7 

MSP 

0 I 
Op Code Address 

1. c designates which flip-flop (condition) is to be tested. 
2. The condition of the selected flip-flop is unchanged by 

this instruction. 

SUBROUTINE CALL 
Op Code: 106 (adr) 

Operation: P+3- Stack, (adr)--+P 

CALLloc 

Transfers the address of the next sequentially available in­
struction to the pushdown Stack, and transfers control to 
the address specified by the contents of the two memory 
locations immediately following the Op Code. 

P+1 P+2 

171 615 ~ 312 ~ 017 LSP 017 MSP 01 

Op Code Address 

The Stack is open-ended in operation. If it is overfilled, the 
deepest address will be lost. 

SUBROUTINE CALL IF CONDITION TRUE CT( cf) loc 
Op Code: 1(c+4)2 (adr) 

Operation: If condition true, P+3--+ Stack, (adr) - P 
Examines the designated flip-flop. If set, transfers the ad­
dress of the next sequentially available instruction to the 
pushdown Stack, and transfers control to (adr). If reset, exe­
cutes the next sequentially available instruction. 

P+1 P+2 

1

7 

1 615 : 312 2 °I1 LSP °17 MSP 

0 I 
Op Code Address 

1. c designates which flip-flop (condition) is to be tested. 
2. The condition of the selected flip-flop is unchanged by 

this instruction. 
3. The Stack is open-ended in operation. If it is overfilled, the 

deepest address will be lost. 

SUBROUTINE CALL IF CONDITION FALSE CF(cf) loc 
Op Code: 1c2 (adr) 
Operation: If condition false, P+3-+ Stack, (adr)-+ P 

Examines the designated flip-flop. If reset, transfers the ad-



dress of the next sequentially available instruction to the 
pushdown Stack, and transfers control to (adr). If set, exe­
cutes the next sequentially avai I able instruction. 

P+1 P+2 

LSP MSP 

0 I 
Op Code Address 

1. c designates which flip-flop (condition) is to be tested. 
2. The condition of the selected flip-flop is unchanged by 

this instruction. 
3. The Stack is open-ended in operation. If it is overfilled, the 

deepest address will be lost. 

SUBROUTINE RETURN 
Op Code: 007 

Operation: (Stack)-P 

RET 

Transfers control to the address specified by the most recent 
entry into the pushdown Stack. Deletes the most recent entry 
from the Stack. 

The effect of attempting more RETURN instructions than the 
Stack is capable of handling is undefined. 

SUBROUTINE RETURN IF CONDITION TRUE RT(cf) 
Op Code: O (c+4) 3 

Operation: If condition true, (Stack)-- P. 

Examines the designated flip-flop. If set, transfers control to 
the address specified by the most recent entry into the 
pushdown Stack and deletes the most recent entry into the 
Stack. If reset, executes the next sequentially available in­
struction. 

1. c designates which flip-flop (condition) is to be tested. 
2. The condition of the selected flip-flop is unchanged by 

this instruction. 
3. The effect of attempting more RETURN instructions than 

the Stack is capable of handling is undefined. 

SUBROUTINE RETURN IF CONDITION FALSE RF(cf) 
Op Code: Oc3 
Operation: If condition false, (Stack) - P 

Examines the designated flip-flop. If reset, transfers control 
to the address specified by the most recent entry into the 
pushdown Stack and deletes the most recent entry into the 
Stack. If set, executes the next sequentially available instruc­
tion. 

1. c designates which flip-flop (condition) is to be tested. 
2. The condition of the selected flip-flop is unchanged by 

this instruction. 
3. The effect of attempting more RETURN instructions than 

the Stack is capable of handling is undefined. 

SHIFT RIGHT CIRCULAR 
Op Code: 012 
Operation: A1N1--+A(N-1) AO--+A?, Ao- Carry 

SRC 

Shifts the contents of the A register right in a circular fashion. 
Shifts the least significant bit into the most significant bit 
position. Upon completion of the operation, the Carry flip­
flop is equal to the most significant bit. 

The Zero, Parity and Sign flip-flops are not affected by this 
instruction. 

SHIFT LEFT CIRCULAR 
Op Code: 002 
Operation: A1N-11--+ AINI: A7---Ao A7 - Carry 

SLC 

Shifts the contents of the A register left in a circular fashion. 
Shifts the most significant bit into the least significant bit 
position. Upon completion of the operation, the Carry flip­
flop is equal to the least significant bit. 

The Zero, Parity and Sign flip-flops are not affected by this 
instruction. 

NO OPERATION NOP 
Op Code: 300 

Operation: P+1-P 

No operation is performed 

173615 ~ 312 ~ 01 

The Zero, Parity and Sign flip-flops are not affected by this 
instruction. 

HALT HALT 
Op Code: 000, 001, or 377 
Timing: Execution stops 
Operation: The processor halts 

When the START button on the console is depressed, opera­
tion resumes at P+1. 

If USER mode is set this instruction will cause a privileged 
instruction interrupt to occur. 

19 



POP POP 
Op Code: 060 
Operation: (Stack)-.H,L 

Transfers the most recent Stack entry into the H & L registers. 

H=MSP, L=LSP 

PUSH 
Op Code: 070 
Operation: H,L-stack 

PUSH 

Transfers the contents of the H & L registers into the 
pushdown Stack. H=MSP, L=LSP. 

5 4 
7 

INPUT INPUT 
Op Code: 101 
Operation: (1/0 Bus)-.A 

Transfers the contents of the 1/0 Bus to the A register. 

171615 ~ 312 ~ 01 

Priv. Note: If USER mode is set this instruction will cause a 
privileged instruction interrupt to occur. 

ENABLE INTERRUPTS 
Op Code: 050 

El 

Following the next instruction, El will allow the interrupts to 
occur until a DISABLE INTERRUPT instruction is executed. 

170615:312~01 
Priv. Note: If USER mode is set this instruction will cause a 

privileged instruction interrupt to occur. 

DISABLE INTERRUPTS 
Op Code: 040 

DI 

Prevents interrupts from occurring until an ENABLE INTER­
RUPT instruction is executed. 

170615: 312 ~ 01 

Priv. Note: If USER mode is set this instruction will cause a 
privileged instruction interrupt to occur. 

20 

SELECT ALPHA MODE 
Op Code: 030 

ALPHA 

Selects the ALPHA MODE registers and control flip-flops. 

Priv. Note: If USER mode is set this instruction will cause a 
privileged instruction interrupt to occur. 

SELECT BETA MODE 
Op Code: 020 

BETA 

Selects the BETA MODE registers and control flip-flops. 

17 0 615 ~ 312 ~ 01 

Priv. Note: If USER mode is set this instruction will cause a 
privileged instruction interrupt to occur. 

EXTERNAL COMMAND 
Op Code: 121 to 153 

EX (exp) 

Operation: Performs 1/0 control according to (exp) 

These instructions perform the functions necessary for con­
trol of the 1/0 System and external devices. Many of these 
functions are specifically related to operation of particular 
devices. The device oriented commands for the Keyboard, 
CRT Display, and cassette decks are explained in the sec­
tions covering these devices. 

1~~1:~:1~:~1 
Table 5-1 is a list of the External Commands. For a detailed 
discussion of their use, reference should be made to Part 6 
{Input/Output Operations) and to descriptions of the sepa­
rate external devices. External Commands 155-177 are not 
listed, as they apply to systems with integral cassette 
units and are described in Part 4 {Cassette Tapes). 

Priv. Note: If USER mode is set this instruction will cause a 
privileged instruction interrupt to occur. 



TABLE 5·1 
EXTERNAL COMMANDS 

EX (exp) 

OCTAL 
(exp) CODE COMMAND 

ADR 121 Address 

STATUS 123 Sense Status 

DATA 125 Sense Data 

WRITE 127 Write Strobe 

COM1 131 Command 1 

COM2 133 Command 2 

COM3 135 Command 3 

COM4 137 Command 4 

BEEP 151 Beep 

CLICK 153 Click 

5.8.4 Category 2 - Augmented Category 1 
Instructions 

LOAD REGISTER FROM MEMORY 
USING BC, DE, OR XA FOR THE 
ADDRESS 

Op Code: rp 3d7 
Operation: (M)---(rd),d S 6 
Length: 2 bytes 
Example: LEM BC 

L(rd)M (rp) 

Identical to the L(rd)M instruction except that the specified 
register pair, instead of HL, is used for the memory address. 

LOAD MEMORY FROM REGISTER 
USING BC, DE, OR XA FOR THE 
ADDRESS 

Op Code: rp 37s 
Operation: (rs)~ M, sS6 
Length: 2 bytes 
Example: LMB DE 

LM(rs) (rp) 

Identical to the LM(rd) instruction except that the specified 
register pair, instead of HL, is used for the memory address. 

DEVICE 
DESCRIPTION ADDRESS 

Selects device specified by ALL 
A register ' Connects selected device status 
to input lines 
Connects selected device data to 
input lines 
Signals selected device that output 
data word is on output lines 
Outputs a control function to 
selected device 
Outputs a control function to 
selected device 
Outputs a control function to 
selected device y 
Outputs a control function to ALL 
selected device 
Activates tone producing ALL 
mechanism 
Activates audible click producing ALL 
mechanism 

ARITHMETIC AND LOGICAL OPERATIONS TO 
OTHER THAN THE A REGISTER 

Mnemonics: 
(op)(rs) (r) 
(op)M (r) 
(op)(r) (vvv) 

SRC (r) 
SLC (r) 

Examples: 
ADAB adds A to B 
ADMC adds (HL) to C 
sue 20 subtracts 20 
from C 
SRCB sh if ts Bright 
SLCD shifts D left 

Op Codes: r 2ps, r Op?, r Op4, r 012, r 002 
Timing: Add 1.0 to equivalent category 1 instruction tim­

ing. 

Length: Add 1 byte to the equivalent category 1 instruction. 

Identical to the equivalent category 1 arithmetic operations 
except that the specified register, instead of the A register, 
is used as the accumulator. 

SHIFT RIGHT EXTENDED 
For SRE: 

SRE, SRE(r) 

Op Code: 032 
Operation: AN--A(N-11 Carry---A1 M---Carry 
Length: 1 byte 

21 



For SRE(r): Op Code: r 032 

Operation: (r)N --(r)(N-1) Carry-+ (r)7,(r)o--+ Carry 
Length: 2 bytes 

The register is shifted right one place with the left hand bit 
being replaced by the Carry and the Carry being replaced by 
the right-hand bit. 

1/0 USING OTHER THAN THE 
A REGISTER IN(r), EX(rs) (exp) 

For IN(r): Op Code: r 101 
Operation: (1/0 Bus)-+(r) 
Length: 2 bytes 

For EX (rs) (exp): Op Code: r 121, r 123, etc. 

Operation: Performs 1/0 control with the specified register 
according to (exp) 

Length: 2 bytes 

Identical to the 2200 1/0 operations except that the specified 
register, instead of the A register, is used. 

PARITY CHECKING INPUT 
For PIN: Op Code: 103 

Length: 1 byte 
For PIN (r): Op Code: r 103 

Length: 2 bytes 

PIN, PIN(r) 

Identical to the INPUT instruction except that if the nine bits 
of the 1/0 Bus contain an even number of ones, an interrupt 
will occur. 

PUSH USING BC, DE, OR XA 
Op Code: rp 070 
Operation: (rp)-- ,Stack 
Length: 2 bytes 

PUSH (rp) 

Pushes the specified register pair onto the Stack. 

PUSH IMMEDIATE 
Op Code: 051 (adr) 
Operation: (adr)--. Stack 
Length: 3 bytes 

PUSHloc 

Pushes the value of the operand onto the Stack. 

POP USING BC, DE, OR XA 
Op Code: rp 060 
Operation: (Stack)-(rp) 
Length: 2 bytes 

Pops the Stack into the specified register pair. 

22 

POP(rp) 

5.8.5 Category 3 - Multi-byte (string) 
Operations 

BLOCK TRANSFER OR BLOCK 
TRANSFER REVERSE 
For BT: Op Code: 021 

Length: 1 byte 
For BTR: Op Code: 111 021 

Length: 2 bytes 

BT,BTR 

The Block Transfer instructions move the number of bytes 
specified in the C register from the field pointed to by HL to 
the field pointed to by DE while adding the contents of the A 
register to each byte transferred. BT causes the pointers to 
be incremented after each transfer while BTR causes the 
pointers to be decremented after each transfer. If the B regis­
ter is not zero, the transfer will stop if a character which is 
equal to the 2's complement of the B register is stored in 
the destination field (stops after the matching character is 
moved). 

Entry: HL=location of first source byte. 
DE= location of first destination byte. 
C=number of bytes to move (C=1 to 

255; 0 for 256). 
B=2's complement of terminating 

character if not 0. 
A=8-bit value added to each byte as 

it is moved (for de-zoning and 
zoning decimal numbers). 

Exit: HL=location past last source byte. 
DE=location past last destination 

byte. 
A=entry value. 
B=entry value. 
C=zero or count before terminator 

character found. 
Condition flags are all altered. 

Stack: 1 entry used. 
Caution: Since BT and BTR instructions can 

take up to 609 microseconds to 
execute, care must be exercised 
in their use if time critical 
interrupt driven programs 
are to be simultaneously 
executed. 

BLOCK CONVERT 
Op Code: 062 021 

Length: 2 bytes 

BCV 

BLOCK CONVERT is a variation of BLOCK TRANSFER, 
where the field pointed to by the DE registers is translated 
byte-by-byte using the translate table pointed to by the HL 
registers. 



Entry: HL=location of the translate table 
(must not cross a page 
boundary). 

DE= location of the first byte to be 
translated. 

C=number of bytes to move 
B=2's complement of terminating 

character if not 0. 
A=no entry value used. 

Exit: HL=undefined 
DE=location past last destination 

byte 
A=LSB of last table position used 

for translation. 
B=entry value. 
C=zero or count before termination 

character found. 

Algorithm: 1. Get the byte pointed to by DE. 
2. Set A to the sum of the byte 

added to L. 
3. Get the byte pointed to by 

HA. This is the table's translated 
byte. 

4. Store the translated byte where 
DE points 

5. Increment DE. 
6. B is added to the translated 

byte. 
7. Stop if the Carry and Zero 

conditions are true - a 
match is found. 

8. Decrement the C register. (Add -1 )* 
9. Go to Step 1 if result 

is non-zero. 
Stack: 1 entry used 
Caution: Since BCV instructions can take 

over 840 microseconds to 
execute, care must be taken 
in their use if 
time critical interrupt driven 
programs are to be simultaneously 
executed. 

* A decrement operation is 
actually an add of -1. 

BINARY FIELD ADD WITH CARRY 
OR SUBTRACT WITH BORROW BFAC, BFSB 

For BFAC: Op Code: 011 
Length: 1 byte 

For BFSB: Op Code: 031 
Length: 1 byte 

These instructions take the field pointed to by HL and either 
add it to or subtract it from the field pointed to by DE, leaving 
the result in the field pointed by DE. The fields may be 1 
through 16 bytes in length. 

Entry: HL=location of right hand byte of 
the operand field. 

DE=location of right hand byte of 
the accumulator field 

C=the field width ( 1 through 16; 0 

or 16 implies 16). 
Carry=carry or borrow into the 

operation. 
Exit: HL=location to left of the left hand 

byte of the operand field. 
DE=location to left of the left 

hand byte of the Accumulator 
field. 

C=indeterminate. 
Carry=carry or borrow out of the 

operation (all the 
condition flags are altered). 

Algorithm: 1. Load the implicit register from C. 
2. Get the byte pointed to by HL. 
3. Add it with carry or subtract 

it with borrow from the byte 
pointed to by DE and store the 
result where DE points. 

4. Decrement HL and DE by one. 
5. Decrement the implicit register 

by one. 
6. Go to step 2 if the implicit 

register is not now zero. 
Stack: 1 entry used 

BLOCK COMPARE 
Op Code: 041 

Length: 1 byte 

BCP 

This instruction matches two strings of bytes from left to right 
until either a mismatch is found or the specified maximum 
number of bytes have been scanned. 
Entry: HL=location of left hand byte of the 

subtracting field. 
DE= location of left hand byte of the 

subtracted from field. 
C=the maximum number of bytes to 

scan (1 thru 255; 0 implies 256). 
Exit: IF A MISMATCH WAS FOUND: 

HL=location after the mismatch in 
the subtracting field 

DE=location after the mismatch in 
the subtracted from field 

C=entry value minus number of 
bytes that matched 

Condition flags all refl:}ct the result 
of the subtract instruction that 
found the two bytes differing. 

IF ALL BYTES MATCHED 
HL=location after the last byte in 

the subtracting field 
DE=location after the last byte in 

the subtracted from field 
C=zero 
Condition flags are indeterminate. 

(Zero condition being set true) 
Algorithm: 1. Get the byte pointed to by HL. 

2. Subtract the byte pointed 
to by DE from it. 

3. Increment DE and HL. 

23 



Stack: 

4. Exit if the Zero condition is 
false. 

5. Decrement C. (Add -1) 
6. Go to Step 1 if C is not 

equal to zero. 
7. Exit with the Zero condition true. 
1 entry used. 

DECIMAL FIELD ADD WITH CARRY 

Op Code: 111 041 

Length: 2 bytes. 

DFAC 

This instruction takes the field of zoned BCD digits pointed to 
by HL and adds it to the field of zoned decimal digits pointed 
to by DE, leaving the result in the field pointed to by DE. The 
zone bits of the result field are set to the zone bits in the B 
register. The fields may be 1 through 16 bytes in length. 
Entry: Same as for the BFAC instruction 

except B=output zoning (right 4 
bits must be O; left 4 bits must 
be other than 0000). 

Exit: Same as for the BFAC instruction 
except A register is destroyed. 

B=entry value. 
Algorithm: 1. Load the implicit register from C. 

Stack: 

2. Get the byte pointed to by HL. 
3. Add it with carry to the byte 

pointed to by DE. 
4. Strip away the zone bits. 
5. Clear the Carry and go to step 7 

if the resu It is less than 10. 
6. Subtract 10 from the result and 

set the Carry. 
7. Set the zoning bits. 
8. Store the result where DE points. 
9. Decrement HL and DE by one. 
10. Decrement the implicit register by one. 
11. Go to step 2 if the implicit 

register is not zero. 
1 entry used. 

NOTE: The binary values for the zoned BCD digits with xxxx 
not equal to 0000 are as follows (the digits are not 
packed, i.e., only one digit per byte): 

O:xxxxOOOO 
1 :xxxx0001 
2:xxxx0010 
3:xxxx0011 
4:xxxx0100 

5:xxxx0101 
6:xxxx0110 
7:xxxx0111 
8:xxxx1000 
9:xxxx1001 

DECIMAL FIELD SUBTRACT WITH BORROW 

Op Code: 062 041 

Length: 1 byte 

This instruction takes the field of zoned BCD digits pointed to 

24 

by HL and substracts it from the field of zoned BCD digits 
pointed to be DE, leaving the result in the field pointed to by 
DE. The zone bits of the two fields must be identical. The zone 
bits of the result field are set to the zone bits in the B register. 
The fields may be 1 through 16 bytes in length. 
Entry: same as for the DFAC instruction. 
Exit: f-'"\me as for the DFAC instruction. 
Algorithm: 1. Load the implicit register from C. 

Stack: 

2. Get the byte pointed to by HL. 
3. Subtract it, with borrow, from 

the byte pointed to by DE. 
4. Go to Step 6 and clear the Carry 

if the byte result is not negative. 
5. Add 10 to the result and set the 

Carry. 
6. Set the zone bits to those in 

the B register. 
7. Store the result where DE points. 
8. Decrement HL and DE by one. 
9. Decrement the implicit register 

by one. . 
10. Go to Step 2 if the implicit 

register is not zero. 
1 entry used. 

BINARY FIELD SHIFT LEFT 
Op Code: 075 
Length: 1 byte 

BFSL 

This instruction shifts a field of bytes in memory left one bit 
position as if all of the bytes made up one continuous word. 
Entry: HL=location of right-hand byte 

of the field. 
C=the field width (1 through 16; 

0 or 16 implies 16). 
Carry= bit shifted in on right 

Exit: HL=location left of the left-hand 
byte of the field. 

C=indeterminate. 
A=indeterminate. 
Carry=bit shifted out on the left. 
All other flags are indeterminate. 

Stack: 1 entry used. 

BINARY FIEL;\l SHIFT RIGHT 
Op Code: 111 075 
Length: 2 bytes 

BFSR 

This instruction is similar to BFSL except the shift is in the 
opposite direction. 
Entry: HL=location of left-hand byte 

of the field. 
C=the field width (1 through 16; 

0 or 16 implies 16) 
Carry=bit shifted in on left. 

Exit: HL=location right of the right-hand 
byte of the field. 

C=indeterminate. 
A=indeterminate. 
Carry=bit shifted out on the right. 
All other flags are indeterminate. 

Stack: 1 entry used. 



MULTIPLE INPUT 
Op Code: 111 061 
Length: 2 bytes 

MIN 

This instruction moves the number of bytes specified in the C 
register from a buffered input device to the field pointed to by 
H&L. The number of bytes moved is the number in the C reg­
ister modulo 16. To make transferring up to 256 bytes easy yet 
interruptable, the full eight bit value of the C register is re­
tained during loop counting and exit is made with the C 
register containing its entry value minus the number of bytes 
transferred, HL containing its entry value plus the number of 
bytes transferred, and the Zero condition code reflecting the 
eight bit result of the last decrementation of the C register. 
Thus the interruptable loop for transferring the number of 
bytes indicated by the eight bit value in the C register yet not 
inhibiting interrupts more than 155 microseconds would ap­
pear as follows: 

LOOP LA DEVADR 
DI 
EX ADA 
EX DATA 
El 
MIN 
JFZ LOOP 

Note that the device must be re-addressed for each execu­
tion of the MIN instruction if an interrupt could cause 
some other device to be addressed. The MIN instruction 
causes a parity checking input strobe to be executed every 
8 microseconds. This execution operates without regard 
to any status bits of any kind. There is no existing 2200 
system 1/0 device capable of using this instruction and it 
is included for use with system 1/0 devices with parity 
generation and faster buffers allowing them to be used at 
data rates equivalent to OMA channels. The MIN instruction 
has all of the advantages of a non-1/0 device interrupting 
system (lower software overhead in high throughput 
situations, superior control over the occurrence of events 
allowing probability of correctness in the program logic 
and repeatability of event occurence, and simpler hardware 
using lower speeds and noise filtered buses) and yet 
achieves OMA throughput rates. 

Entry: HL=location of first destination byte 
C=number of bytes to move (this 

number is taken modulo 16 and if 
it is O modulo 16 then 16 bytes 
will be moved). 

Exit: HL=location of entry value plus 
number of bytes moved 

C=entry value minus number of bytes moved 
Algorithm: 1. Execute a parity checking INPUT. 

2. Store the byte where HL points. 
3. Increment HL. 
4. Load the implicit register from C. 
5. Decrement C using the ALU. (Add -1) 
6. Decrement the implicit register. 
7. Exit if the implicit register is 

zero. 
8. Decrement the P-counter. 

Stack: 

9. Re-fetch the instruction without 
allowing interrupts. 

1 entry used. 

NOTE: To input a block of 256 bytes using the loop described 
above would take 2495 microseconds if no interrupts occur­
red (an average of 9.75 microseconds per byte). 

MULTIPLE OUTPUT 
Op Code: 111 071 

Length: 2 bytes 

MOUT 

This instruction is similar to the MIN instruction except for 
the direction of information flow. MOUT moves the number 
of bytes specified in the C register from the field pointed to 
by HL to a buffered output device. A byte is written using the 
EX WRITE strobe every 8 microseconds and interrupts can 
be inhibited for a maximum of 155 microseconds. As with 
MIN there is no existing 2200 system 1/0 device capable of 
being used with the MOUT instruction. 

NOTE: To output a block of 256 bytes using a loop similar to 
the one described for MIN (a MOUT instruction would appear 
where a MIN instruction appears in the example) would take 
2495 microseconds if no interrupts occurred (an average of 
9.75 microseconds per byte). 

5.8.6 Category 4 - Processor State Save and 
Restore Instructions 

STACK STORE 
Op Code: 065 
Length: 1 byte 

STKS 

The STACK STORE instruction POPs a specified number of 
Stack entries and stores them (LSB followed by MSB) in the 
field pointed to by HL. Upon entry, HL points to the left-hand 
byte. 

Entry: 

Exit: 

HL=first location in the storage area 
C=the number of entries to be POPPED 

and stored (1 through 16; 0 or 16 
implies 16) 

HL and C indeterminate 
Condition flags unchanged 

STACK LOAD 
Op Code: 111 065 
Length: 2 bytes 

STKL 

The STACK LOAD instruction pushes onto the Stack the 
specified number of entries from the field pointed to by HL. 
Upon entry HL points to the right hand byte and the entries 
are loaded in reverse order to allow restoring the Stack from 
locations stored using the STKS instruction. 

Entry: 

Exit: 

HL=last location in the storage area 
C=the number of entries to be 

PUSHED (1 through 16; 0 or 16 
implies 16) 

HL=indeterminate 
C= indeterminate 

Condition flags unchanged 25 



REGISTER STORE 
Op Code: 055 
Length: 1 byte 

REGS 

The REGISTER STORE instruction stores all of the registers 
for the currently selected mode (ALPHA or BETA) in the field 
pointed to by the top entry of the Stack. This entry points to 
the right-hand byte of the field and the registers are stored in 
reverse order moving from right to left. When the instruc­
tion terminates, the top entry of the Stack points to the left 
of the left-hand byte in the field. For example, if entry is made 
with the top entry of the Stack pointing to location 02007 
(octal), the registers are stored as follows: 

02000:A 
02001 :B 
02002:C 
02003:D 
02004:E 
02005:H 
02006:L 
02007:X 

In the above example, the top entry of the Stack wi II be 01777 
when the instruction terminates. The contents of neither the 
registers nor the condition flags for the given mode are al­
tered by this instruction. 

REGISTER LOAD 
Op Code: 111 05'5 
Length: 2 bytes 

REGL 

The REGISTER LOAD instruction loads all of the registers for 
"the currently selected" mode (ALPHA or BETA) from the 
field pointed to by HL. Upon entry, HL points to the right­
hand byte of the field. The registers are loaded in reverse or­
der moving to the left in the field. In this manner, the registers 
can be reloaded from values stored by the REGS instruction. 
In the example given forthe REGS instruction, if the REGL in­
struction were entered with HL=02007, the registers shown 
would be loaded from the locations shown. The condition 
flags are not altered by this instruction. 

CONDITION CODE SAVE 
Op Code: 042, r 042 
Length: 1 byte or 2 bytes if r specified. 

CCS, CCS(r) 

This instruction loads the register (r) with a value such that if 
the value is added to itself using the AD(r) operation, the con­
dition flags will all be restored to their state before the CCS 
instruction was executed. The logic equations for the value 
loaded into (r) are: 

26 

A7=Carry 
A6=Sign 
A5=A4=A3=A2=0 
A1 =Not Zero and Not Sign 
AO=Not Zero and Not Parity 

This instruction does not alter the state of any of the condi­
tion flags. If (r) is not specified, the A register is used. 

5.8. 7 Category 5 - Address Manipulation 
Instructions 

INCREMENT REGISTER PAIR 

Mnemonics 
INCP HL 
INCP HL, 2 
INCP HL,A 
INCP BC 
INCP BC,2 
INCP BC,A 
INCP DE 
INCP DE,2 
INCP DE,A 
INCP XA 
INCP XA,2 
INCP XA,A 

Op Codes 
015 
117 015 
017 
062 015 
113 015 
062 017 
174 015 
115 015 
174 017 
022 015 
111 015 
022 017 

INCP 

These instructions increment the indicated register pair by 
either one, two or the contents of the A register. The incre­
ment value is added to the LSP register and then the carry is 
added to the MSP register, if necessary. The A register is not 
changed, except in the XA case. Other condition flags are in­
determinate. 

DECREMENT REGISTER PAIR 

Mnemonics 
DECP HL 
DECP HL,2 
DECP HL,A 
DECP BC 
DECP BC,2 
DECP BC,A 
DECP DE 
DECP DE,2 
DECP DE,A 
DECP XA 
DECP XA,2 
DECP XA,A 

Op Codes 
035 
117 035 
037 
062 035 
113 035 
062 037 
174 035 
115 035 
174 037 
022 035 
111 035 
022 037 

DECP 

These instructions decrement the indicated register pair by 
either one, two, or the contents of the A register. The decre­
ment value is subtracted from the LSP register and then the 
borrow is subtracted from the MSP register, if necessary. The 
A register is not changed, except in the case of XA. 

DOUBLE LOAD 

Mnemonics 
DL DE,HL 
DL BC,HL 

Op Codes 
047 
111 047 

DL 

............................... ________________________ ~~~~~~ 



'I 

DL BC,BC 062 047 
DL BC,DE 113 047 
DL DE.BC 174 047 
DL DE,DE 115 047 
DL HL,BC 176 047 
DL HL,DE 117 047 
DL HL,HL 057 

These instructions load the register pair specified by the first 
operand from the memory location pointed to by the register 
pair specified by the second operand. The LSP register (C, E, 
or L) is loaded from the specified memory location and the 
MSP register (B,D, or H) is loaded from the next higher 
memory location. Note that indirect addressing can be ac­
complished by loading a register pair from the locations that 
the pair specify (DL HL,HL for example). 

DOUBLE STORE 

Mnemonics 
DS DE,HL 
DS BC,HL 
DS BC,DE 
DS DE.BC 
DS HL,BC 
DS HL,DE 

Op Codes 
027 
111 027 
113 027 
174 027 
176 027 
117 027 

DS 

These instructions store the register pair specified by the first 
operand into the memory locations pointed to by the register 
pair specified by the second operand. The LSP register (C,E, 
or L) is stored in the specified memory location and the MSP 
register (B,D or H) is stored in the next higher location. 

PAGED LOAD 

Mnemonics 
PL A,(loc) 
PL B,([oc) 
PL C,(loc) 
PL D,(loc) 
PL E,(loc) 
PL H,(loc) 
PL L,(loc) 

Op Codes 
105 LSP 
114 LSP 
124 LSP 
134 LSP 
144 LSP 
154 LSP 
164 LSP 

PL 

These instructions load the specified register from the mem­
ory location specified by the LSP given in the instruction and 
the MSP in the X register. 

PAGED STORE PS 

Mnemonics Op Codes 
PS A,(loc) 107 LSP 
PS B,(loc) 116 LSP 
PS C,(loc) 126 LSP 
PS D,(loc) 136 LSP 
PS E,(loc) 146 LSP 
PS H,(loc) 156 LSP 
PS L,(loc) 166 LSP 

These instructions store the specified register in the memory 
location specified by the LSP given in the instruction and the 
MSP given in the X register. 

DOUBLE PAGED LOAD DPL 

Mnemonics Op Codes 
DPL BC,(loc) 111 124 LSP 
DPL DE,(loc) 113 144 LSP 
DPL HL,(loc) 115 164 LSP 

These instructions load the specified register pair from the 
memory locations specified by the LSP given in the instruc­
tion and the MSP given in the X register. The C,E, or L register 
is loaded from the specified memory location and the B,D, or 
H register is loaded from the next higher location. 

DOUBLE PAGED STORE 

Mnemonics 
DPS BC,(loc) 
DPS DE,(loc) 
DPS HL,(loc) 

Op Codes 
111 126 LSP 
113 146 LSP 
115 166 LSP 

DPS 

These instructions store the specified register pair in the 
locations specified by the LSP given in the instruction and 
the MSP given in the X register. The C, E or L register is stored 
in the specified location and the B, Dor H register is stored in 
the next higher location. 

INCREMENT AND DECREMENT INDEX 

Mnemonics 
INCi (disp), (index) 
DECI (disp), (index) 
INCl*(disp), (index) 
DECl*(disp},(index) 

Op Codes 
005 LSP(i) 
025 LSP(i) 
111 005 LSP MSP(i) 
111 025 LSP MSP(i) 

INCi, DECI 

The processor has a construct called an index which is a 
16-bit value kept in memory. The concept is similar to index 
registers except that all the values are kept in the page of 
memory pointed to by the X register. The index is specified by 
a single byte in the instructions (shown as (i) above) which 
points to the memory location containing the LSP of the 
index value, the MSP being in the next higher memory loca­
tion ((i) specifies the LSP of the index address while the X 
register specifies the MSP of the index address). The in­
struction also contains a displacement (shown as (disp) 
above) that is either one or two bytes in length (depending 
upon the op code). These instructions either increment or 
decrement the value of the index by the displacement. The 
Carry condition flag reflects the carry or borrow from the 
incrementation or decrementation. The rest of the condition 
flags are indeterminate. 

Stack: 1 entry used 

LOAD FROM INDEX INCREMENTED OR DE· 
CREMENTED LFll, LFID 

Mnemonics 
LFll BC,(disp), (index) 
LFID BC,(disp),(index) 
LFll BC,*(disp),(index) 
LFID BC,*(disp),(index) 
LFll DE,(disp),(index) 
LFID DE,(disp),(index) 

Op Codes 
062 005 LSP(i) 
062 025 LSP(i) 
113 005 LSP MSP(i) 
113 025 LSP MSP(i) 
174 005 LSP(i) 
174 025 LSP(i) 

27 



LFll DE,*(disp),(index) 
LFID DE,*(disp),(index) 
LFll HL,(disp),(index) 
LFID HL,(disp),(index) 
LFll HL,*(disp),(index) 
LFID HL,*(disp),(index) 

115 005 LSP MSP(i) 
115 025 LSP MSP(i) 
176 005 LSP(i) 
176 025 ISP(i) 
117 005 LSP MSP(i) 
117 025 LSP MSP(i) 

These instructions are similar to the INCi and DECI instruc­
tions except that they load the specified pair of registers with 
the result of adding or subtracting the displacement to or 
from the value of the index. The condition flags are similarly 
affected. 
Stack: 1 entry used. 

5.8.8 Category 6 • Operating System Control 

BASE REGISTER LOAD 
Op Code: 072, r 072 

BRL, BRL(r) 

Length: 1 or 2 if r specified 

This instruction loads the base register from the specified 
register. Note that the base register cannot be read. For this 
reason, loading the base register will normally be a monitor 
function, allowing the monitor to keep within itself the value 
of the base register for user state storage purposes. This 
instruction will cause a privileged instruction interrupt if the 
USER mode flag is set. If (r) is not specified, the A register is 
used. 

NOP JUMP NOJ loc 
Op Code: 045 (adr) 
P+3 -+ P 
Length: 3 bytes. 

This instruction increments the P-counter twice. It is useful 
for overstoring jump instructions which might be execated 
while being overstored. The procedure to overstore a jump 
instruction would be to first overstore the op code with an 
045 (NOP JUMP) and then update the address portion. 
Then the op code could be overstored with the appropriate 
jump instruction. The primary use of this instruction is for 
overstoring the interrupt vector jump instructions for the 
interrupts which cannot be disabled (such as MEMORY PAR­
ITY FAULT) and which might happen while the jump is being 
overstored. No condition flags or registers are modified. 

SYSTEM CALL 
Op Code: 067 

SC 

28 

This instruction causes the USER mode flag to be cleared, 
the last entry in the sector table to be set to the last 4K section 
of addressable memory space with access protection, and a 
CALL to be performed to location 0167452 (in the ROM). This 
is the mechanism via which the user would communicate 
with an operating system that used the USER mode. 

USER RETURN UR 
Op Code: 111 102 

This instruction is identical to the RETURN instruction (op 
code 007) except that additionally the USER mode flag is set. 

SECTOR TABLE LOAD 
Op Code: 077 

Length: 1 byte 

STL 

This instruction loads up to the first 15 entries in the sector 
table. This table contains eight bits for each entry. Bit 1 is 
not used and should always be set to zero. Bit 2 is set for 
access enable. Bit 3 is set for write enable. The left-hand 
four bits and Bit 0 are used to map that entry into a particular 

_ 4K section of physical memory space. This instruction will 
cause a privileged instruction interrupt if the USER mode flag 
is set. 

Entry: HL=location of tirst byte in table 
of up to 15 to load. 

C=number of entries to load (0 to 15). 
Exit: 
Stack: 

No registers or condition flags are changed. 
1 entry used. 

BREAKPOINT 
Op Code: 052 

Length: 1 byte 

BP 

This instruction is similar to a SYSTEM CALL (SC) instruction 
except the call is performed to location 0167460 of system 
RAM. This will cause entry into the system DEBUG routine if 
the memory vector is not changed. 

ENABLE INTERRUPTS AND JUMP 
Op Code: 111 050 (adr) 

Length: 4 bytes 

E~MP (loc) 

This instruction is identical to the ENABLE INTERRUPTS (El) 
instruction except that additionally a jump is performed to 
the (LSP, MSP) address. 

ENABLE INTERRUPTS AND RETURN 
Op Code: 062 050 

Length: 2 bytes 

EUR 

This instruction is identical to the combination of the ENA­
BLE INTERRUPTS, Set USER Mode Flag and RETURN in­
structions. 



.----------- --------

Category 7: 
5.8.9 6600 Instruction Set 

The following is a description of the instructions that 
are new with the 6600 processor. 

DOUBLE PAGED LOAD REVERSED 

Mnemonic 

DPLR BC, loc 
DPLR DE, loc 
DPLR HL, loc 

Timing: 3.80 

Opcode 

062 114 LSP 
174 134 LSP 
176 154 LSP 

DPLR (rp), loc 

These instructions load the specified register pair from 
the memory locations specified by the LSP given in the in­
struction and the MSP given in the X-register. The B, D, or H 
register is loaded from the specified memory location and 
the C, E, or L register is loaded from the next higher loca­
tion. Note that this is similar to the 5500 DPL instruction ex­
cept the order in which the registers are loaded is reversed. 

DOUBLE PAGED STORE REVERSED DPSR (rp), loc 

Mnemonic 

DPSR BC, loc 
DPSR DE, loc 
DPSR HL, loc 

Timing: 3.80 

Opcode 

062 116 LSP 
174 136 LSP 
176 156 LSP 

These instructions store the specified register pair into 
the locations specified by the LSP given in the instruction 
and the MSP given in the X-register. The B, D, or H register 
is stored into the specified memory location and the C, E, or 
L register is stored into the next higher location. Note that 
this is similar to the 5500 DPS instruction except the order 
in which the registers are stored is reversed. 

SECTOR TABLE LOAD STARTING AT OFFSET 

Mnemonic 

ST LOA 
STLOB 
STLOC 
STLOD 
STLOE 

Timing: 3.70 + C * 1.25 

Opcode 

022 077 
111 077 
062 077 
113 077 
174 077 

STLO (r) 

The Sector Table in the 6600 contains eight bits for each 
entry. Bit O of a Sector Table entry is explained later. Bit 1 
of a Sector Table entry contains a hardware generated and 
checked parity bit. Any value loaded into this bit position is 
ignored since the hardware generates the proper parity bit 
when a Sector Table entry is loaded. If, during any memory 
access, there is not the correct number of one bits out of 
the eight Sector Table entry bit positions, a Sector Table 
Parity Error System Call interrupt will be generated to mem­
ory location 0167474. Bit 2 of a Sector Table entry is set 

to enable the sector to be accessed (read or written) when 
the machine is in User Mode. Bit 3 of a Sector Table entry is 
set to enable the sector to be written in either User or System 
Mode. Bits 4 through 7 of a Sector Table entry are used for 
physical memory address bits 12 through 15 and bit 0 is used 
for physical memory address bit 16 (giving the 6600 17 bits 
of physical memory address to accommodate the 128K of 
physical memory space). 

The STLO(r) instruction is similar to the 5500 STL in­
struction except that the upper four bits of the specified 
register (A, B, C, D, or E) determine where in the Sector 
Table the loading is started (the lower four bits can be any 
value). For example, if the STLOA instruction is performed 
with the A-register containing a 060 (octal) and the C-register 
containing a 5, Sector Table entries 3 through 7 will be 
loaded. Note that if the upper four bits of the specified 
register plus the lower four bits of the C-register total 
more than 15, loading will wrap around in the Sector Table 
into the lower entries and the value that was to be loaded 
into the top entry will be ignored (the top entry always 
points to the system ROM sector at 0170000 through 
0177777, is access enabled, and not write enabled). For 
example, if the STLOB instruction is performed with the 
8-register containing a 0300 and the C-register containing a 
7, the Sector Table entries loaded will be 12, 13, 14, 15 
(ignored), 0, 1, and 2. 

Entry: HL = location of first byte in a table of up to 15 
Sector Table entries to be loaded 

C = number of entries to be loaded (0 thru 15; 
the upper 4 bits of C can be any value) 

(r) = starting Sector Table entry (upper four bits 
0 thru 15; the lower 4 bits of (r) can be any 
value; (r) can be A, B, D, or E) 

Exit: Sector Table loaded 
No registers or condition flags changed 
1 stack level used 

SYSTEM INFORMATION 

Opcode: 111 010 
Timing: 2.50 

INFO 

This instruction is used to differentiate the 6600 from other 
Datapoint processors. In the 5500, this instruction performs 
no operation. In the 6600, this instruction loads a 1 into 
the A-register and the revision number of the micro-code 
ROM into the 8-register. None of the condition code flags 
and none of the other registers are affected by this in­
struction. To determine the type of Datapoint processor in 
which the program is running, the following sequence is 
suggested: 

XRA 
LLA 
LHA 
DECP 
JFC 
XRA 
INFO 
ORA 
JTZ 
JMP 

Determine if 2200 

HL (This is a NOP on a 2200) 
IMA2200 I'm a 2200 

Determine if 5500 or 6600 

IMA5500 I'm a 5500 
I MA6600 I'm a 6600 

29 



BINARY FIELD LEFT TO RIGHT OPERATIONS 
BFLR(op) 

Mnemonic 

BFLRAD 
BFLRAC 
BFLRSU 
BFLRSB 
BFLRND 
BFLRXR 
BFLROR 

Timing: 6.30 + N * 2.15 

Opcode 

111 006 
111 016 
111 026 
111 036 
111 046 
111 056 
111 066 

These instructions are similar to the 5500 BFAC and 
BFSB instructions except that the memory pointers are in­
cremented after each operation is performed (instead of 
being decremented). In addition, logical and non-carry oper­
ators are allowed (the non-carry operators are usefu I for in­
crementing a number of one-byte counters appearing in 
contiguous memory). 

DOUBLE MEMORY TO REGISTER OPERATIONS 
D(op)M (rp) 

Mnemonic 

DADM (rp) 
DACM (rp) 
DSUM (rp) 
DSBM (rp) 
DNDM (rp) 
DXRM (rp) 
DORM (rp) 
DCPM (rp) 

Timing: 4.60 to 5.65 

Opcode 

I rp I 013 
I rp I 310 
I rpl 033 
I rpl 330 
I rpl 043 
I rpl 053 
I rp I 063 
I rpl 073 

These instructions perform the indicated operation be­
tween the 16-bit value at the memory location pointed to by 
the HL register pair (LSB at the location pointed to and MSB 
at the next higher location) and the 16-bit value in the spec­
ified register pair (BC, DE, HL, or XA). In subtraction and 
comparison, the value in memory is subtracted from the value 
in the register pair, and in all operations except comparison 
the result is deposited in the register pair. The Carry, Sign, 
and Zero condition flags reflect the entire 16-bit result (the 
Carry is always set false by the logical operations) while the 
Parity condition flag is undefined after the operation. 

DOUBLE PAGED TO REGISTER OPERATIONS 
D(op)P 

(rp),loc 
Mnemonic 

DADP (rp), loc 
DACP (rp), loc 
DSUP (rp), loc 
DSBP (rp), loc 
DNDP (rp), loc 
DXRP (rp), loc 
DORP (rp), loc 
DCPP (rp), loc 

Timing: 5.15 to 6.20 

30 

Opcode 

I rp+1 I 013 LOCLSB 
I rp+1 I 310 LOCLSB 
I rp+1 I 033 LOCLSB 
I rp+1 I 330 LOCLSB 
I rp + 1 I 043 LOCLSB 
I rp + 1 I 053 LOCLSB 
I rp+ 1 I 063 LOCLSB 
I rp+ 1 I 073 LOCLSB 

These instructions are similar to the D(op)M instructions 
except that the memory locations used are pointed to by the 
memory address contained in the instruction (LSP) and the 
X-register (MSP). 

DOUBLE IMMEDIATE TO REGISTER OPERATIONS 
D(op)I (rp), data 

Mnemonic 

DADI (rp), data 
DACI (rp), data 
DSUI (rp), data 
DSBI (rp), data 
DNDI (rp), data 
DXRI (rp), data 
DORI (rp), data 
DCPI (rp), data 

Timing: 4.00 to 5.05 

Opcode 

I rp I 110 LSB MSB 
I rp I 311 LSB MSB 
I rp I 130 LSB MSB 
I rp I 331 LSB MSB 
I rp I 140 LSB MSB 
I rp I 150 LSB MSB 
I rp I 160 LSB MSB 
I rp I 170 LSB MSB 

These instructions are similar to the D(op)M instructions 
except that the operand data is actually the last two bytes in 
the instruction. 

DOUBLE REGISTER TO MEMORY OPERATIONS 
DM(op) (rp) 

Mnemonic Opcode 

DMAD (rp) I rp+1 I 110 
DMAC (rp) I rp+1 I 311 
DMSU (rp) I rp+1 I 130 
DMSB (rp) I rp+1 I 331 
DMND (rp) I rp+1 I 140 
DMXR (rp) I rp+1 I 150 
DMOR (rp) I rp+1 I 160 

Timing: 5.30 to 6.35 

These instructions are similar to the D(op)M instructions 
except that the direction of data flow is reversed. On sub­
traction, the register pair value is subtracted from the mem­
ory locations, and in all operations the result is deposited 
into the memory locations (specified by the HL register pair). 
Note that there is no comparison operation. 

SINGLE PAGED TO REGISTER OPERATIONS P(op) 
(r), loc 

Mnemonic Opcode 

PAD (r), loc I r I 106 LOCLSB 
PAC (r), loc I r I 112 LOCLSB 
PSU (r), loc I r I 122 LOCLSB 
PSB (r), loc I r I 132 LOCLSB 
PND (r), loc I r I 142 LOCLSB 
PXR (r), loc I r I 152 LOCLSB 
POR (r), toe I r I 162 LOCLSB 
PCP (r), toe I r I 172 LOCLSB 

Timing: 3.40 (except 3.25 for CP) 

These instructions perform the indicated operation be-



tween the 8-bit value in the memory location specified by the 
last byte in the instruction (LSB) and the X-register (MSB) 
and the 8-bit value in the specified register with all, except 
the comparison operation, depositing the result in the spec­
ified register. All condition flags are set to reflect the result as 
in an (op) (r) operation. 

DOUBLY LINKED LIST DELETE 

Opcode: 111 051 
Timing: 9.40 

LLDEL 

A doubly linked list construct in the 6600 appears as 
follows: 

ITEM1 DA ITEM2 forward pointer 
DA ITEM3 backward pointer 

ITEM2 DA ITEM3 forward pointer 
DA ITEM1 backward pointer 

ITEM3 DA ITEM1 forward pointer 
DA ITEM2 backward pointer 

ITEM4 DA 00000 item to be inserted 
DA 00000 

When the linked list delete instruction is performed with HL 
pointing to ITEM2, the instruction deletes ITEM2 from the list 
by moving its forward pointer to the forward pointer of ITEM1 
and its backward pointer to the backward pointer of ITEM3. 
When the instruction completes, the entry value of HL has 
not been changed while the DE register is left pointing to 
ITEM1 and BC is left pointing to ITEM3. None of the condition 
flags are changed by this instruction (ITEM4 will be 
referrenced in the following description). 

DOUBLY LINKED LIST INSERT 

Opcode: 062 051 
Timing:· 10.80 

LLINS 

This instruction inserts a list item into a linked list con­
struct. Using the example shown forthe LLDEL instruction, if 
the insert instruction is performed with DE pointing to ITEM2 
and HL pointing to ITEM4, the instruction exits with ITEM2's 
forward pointer pointing to ITEM4, ITEM4's forward pointer 
pointing to ITEM3, ITEM3's backward pointer pointing to 
ITEM4, and ITEM4's backward pointer pointing to ITEM2. 
Finally, the entry values of the DE and HL registers are 
unchanged and the BC register is left pointing to ITEM3. 
None of the condition flags are changed by this instruction. 

INTEGER MULTIPLY: 
HLDE = HL *BC 

Opcode: 
Timing: 

111 011 
If H = 0: 
If H # 0: 

26.20 + N * 2.00 
45.55 + N * 2.00 
(N = number of 1 's in HL) 

IMULT 

This instruction multiplies the unsigned values in HL and 
BC putting an unsigned result in the HLDE register quadruple 
(most significant byte in H and least significant byte in E). 
When the instruction completes, the Zero condition flag re­
flects the 16-bit result in the HL register pair and the Carry 
condition flag is set if the sign bit of the D register is a one. 

The A, B, C, and X registers are not changed by this 
instruction. The Sign and Parity condition flags are 
undefined. 

DOUBLE INTEGER DIVIDE: 
HLDE/BC = > Q(DE),R(HL) 
Opcode: 111 031 
Timing: If error: 3.55 

Else: 57.40 to 82.20 

DIDIV 

This instruction produces an error indication with the 
Carry condition flag set if the BC register pair is less 
than or equal to the HL register pair (in unsigned 
arithmetic). Otherwise, it divides the unsigned HLDE 
register quadruple by the BC register pair placing the 
quotient in the DE register pair and the remainder in the HL 
register pair. Upon completion of the instruction, the 
Carry condition is left cleared to indicate that an error 
did not occur and the Zero condition is set based upon the 
16-bit value in the HL register pair. The A, B, C, and X 
registers are unchanged by this instruction. The Sign and 
Parity condition flags are undefined. 

INTEGER DIVIDE: IDIV 
DE/BC=> Q(DE),R(HL) 
Opcode: 062 031 
Timing: If error: 3.90 

Else: 57.75 to 82.55 

This instruction is identical to the DIDIV instruction ex­
cept that the HL registers are first loaded with zero. 

2'S COMPLEMENT A REGISTER PAIR 

Mnemonic 

COMP BC 
COMP DE 
COMP HL 

Opcode 

062 011 
174 011 
176 011 

Timing: 4.75 if complement 
3.70 otherwise 

COMP (rp) 

If the sign bit of the A-register is set, this instruction 
performs a 2's complement upon the specified register pair. 
Upon completion of this instruction, only the specified 
register pair's contents can be changed and the condition 
flags are undefined. 

2'S COMPLEMENT A REGISTER PAIR 

Mnemonic 

COMPS BC 
COMPS DE 
COMPS HL 

Timing: 5.20 if complement 
4.15 otherwise 

Opcode 

113 011 
115 011 
117 011 

COMPS (rp) 

This instruction is identical to the COMP instruction except 
that the sign bit of the A-register is duplicated in the next 
lower A-register bit position. 

31 



5.8.10 Instruction Timing XR(r) data 3.20 2.45 
OR(r) data 3.20 2.45 

The following table shows the 5500 and 6600 timings tor CP(r) data 3.00 2.30 
those instructions that are implemented in the 5500 
processor. SLC 1.40 1.15 

SRC 1.40 1.15 
Instruction 5500 timing 6600 timing SRE 1.40 1.15 

L(rd)M 2.60 1.75 SLC(r) 2.40 2.00 
L(rd)M (rp) 3.40 2.60 SRC(r) 2.40 2.00 
LM(rd) 2.60 1.75 SRE(r) 2.40 2.00 
LM(rd) (rp) 3.40 2.60 
L(rd) (rs) 1.20 1.00 JMP loc 2.60 2.05 
L(r) data 1.80 1.45 Jee loc 2.80 2.25 

Jee loc (fall thru) 1.40 1.10 
AD( rs) 1.40 1.15 EJMP loc 4.40 3.40 
AC( rs) 1.40 1.15 NOJ loc 1.40 1.00 
SU( rs) 1.40 1.15 NOP 1.20 0.70 
SB( rs) 1.40 1.15 
ND( rs) 1.40 1.15 CALLloc 2.80 2.20 
XR(rs) 1.40 1.15 Ccc loc 3.20 2.45 
OR( rs) 1.40 1.15 Ccc loc (fall thru) 1.60 1.20 
CP(rs) 1.20 1.00 

RET 1.80 1.30 
AD(rs) (rd) 2.40 2.00 Rec 2.00 1.50 
AC(rs) (rd) 2.40 2.00 Rec (fall thru) 1.00 0.80 
SU(rs) (rd) 2.40 2.00 UR 3.20 2.45 
SB(rs) (rd) 2.40 2.00 EUR 3.80 3.15 
ND(rs) (rd) 2.40 2.00 
XR(rs) (rd) 2.40 2.00 IN 5.00 5.00 
OR(rs) (rd) 2.40 2.00 IN(r) 6.00 5.85 
CP(rs) (rd) 2.20 1.85 PIN 5.40 5.00 

PIN(r) 6.40 5.85 
ADM 2.60 2.10 EX (exp) 9.20 7.00 
ACM 2.60 2.10 EX(r) (exp) 10.20 7.85 
SUM 2.60 2.10 MIN 3.00 + N * 8.80 2.95 + N * 8.30 
SBM 2.60 2.10 MOUT 3.00 + N * 8.40 2.95 + N * 8.30 
NDM 2.60 2.10 BETA 1.40 1.20 
XRM 2.60 2.10 ALPHA 1.40 1.20 
ORM 2.60 2.10 DI 1.40 1.20 
CPM 2.40 1.95 El 1.40 1.20 

ADM(rd) 3.60 2.95 
POP 2.20 1.45 ACM( rd) 3.60 2.95 
POP (rp) 3.00 2.30 SUM( rd) 3.60 2.95 

SBM(rd) 3.60 2.95 PUSH 1.80 1.15 

NDM(rd) 3.60 2.95 PUSH (rp) 2.60 2.00 

XRM(rd) 3.60 2.95 PUSH loc 2.60 2.05 

ORM( rd) 3.60 2.95 
CPM(rd) 3.40 2.80 BT (A=B=O) 4.80 + N * 3.20 6.70 + N * 1.60 
AD data 2.20 1.60 BT (A, BfO) 4.80 + N * 3.40 6.00 + N * 2.35 
AC data 2.20 1.60 BTR (A=B=O) 5.80 + N * 3.60 7.85 + N * 1.60 
SU data 2.20 1.60 BTR (A, B#O) 5.80 + N * 3.80 6.95 + N * 2.35 
SB data 2.20 1.60 BCV (A=B=O) 5.80 + N * 4.80 7.55 + N * 2.50 
ND data 2.20 1.60 BCV (A, BfO) 5.80 + N * 5.00 6.85 + N * 3.25 
XR data 2.20 1.60 BCP (it match) 5.20 + N * 2.60 5.35 + N * 1.95 
OR data 2.20 1.60 BCP (mismatch) 4.40 + N * 2.60 4.85+N*1.95 
CP data 2.00 1.45 

BFAC 5.00 + N * 2.80 5.35 + N * 2.15 
AD(r) data 3.20 2.45 BFSB 5.00 + N * 2.80 5.35 + N * 2.15 
AC(r) data 3.20 2.45 DFAC 5.40 + N * 4.50 6.20 + N * 3.45 
SU(r) data 3.20 2.45 DFSB 5.40 + N * 3.80 6.30 + N * 2.90 
SB(r) data 3.20 2.45 BFSL 3.80 + N * 2.20 3.00 + N * 1.70 
ND(r) data 3.20 2.45 BFSR 4.60 + N * 2.00 3.40 + N * 1.55 

32 



~--------

STKS 1.60+N*2.40 1.55 + N * 1.70 
STKL 4.40 + N * 2.20 3.60 + N * 1.70 
REGS 13.00 9.10 
REGL 12.20 9.85 
ccs 2.40 to 3.00 1.65 to 2.45 

INCP HL 2.80 1.40 or 1.95 
INCP HL,A 3.00 1.55 or 2.10 
INCP (rp) 3.60 2.45 or 3.00 
INCP (rp),2 3.80 2.50 or 3.05 
INCP (rp),A 3.80 2.40 or 2.95 
DECP HL 2.80 1.40or1.95 
DECP HL,A 3.00 1.55or2.10 
DECP (rp) 3.60 2.45 or 3.00 
DECP (rp),2 3.80 2.50 or 3.05 
DECP (rp),A 3.80 2.40 or 2.95 

DL DE,HL 3.60 2.50 
DL BC,HL 5.40 3.95 
DL BC,BC 4.80 3.75 
DL BC,DE 5.20 3.90 
DL DE,BC 4.80 3.75 
DL DE,DE 5.20 3.90 
DL HL,BC 4.80 3.75 
DL HL,DE 5.20 3.90 
DL HL,HL 3.60 2.50 
DS DE,HL 3.60 2.50 
DS BC,HL 5.40 3.95 
DS BC,DE 5.20 3.90 
DS DE,BC 4.80 3.75 
DS HL,BC 4.80 3.75 
DS HL,DE 5.20 3.90 

PL (r),loc 3.00 2.20 
PS (r),loc 3.00 2.20 
DPL (rp), loc 5.00 3.80 
DPS (rp),loc 5.00 3.80 

INCi (dsp),(idx) 7.40 3.65 or 5.10 
DECI (dsp,(idx) 7.60 3.65 or 5.10 
INCi *(dsp),(idx) 9.40 7.25 
DECI *(dsp),(idx) 9.60 7.45 
LFll (rp),(dsp),(idx) 7.40 5.60 
LFID (rp),(dsp),(idx) 7.60 5.80 
LFll (rp),*(dsp),(idx) 8.40 6.25 
LFID (rp),*(dsp),(idx) 8.60 6.45 

BRL 1.20 1.00 
BRL(r) 2.20 1.85 
STL 3.20 + N * 1.80 2.70 + N * 1.25 

SC 2.00 1.80 
BP 2.20 2.00 

33 





APPENDIX A 
SYSTEM ROM OPERATING DESCRIPTION 

CHAPTER 1. SYSTEM ROM FUNCTIONS 

1.1 INTRODUCTION 

The Datapoint 6600 ROM occupies 4K of physical memory. 
(From 0170000 to 0177777). Four major routines are exe­
cuted in the ROM with which the user should be familiar. 
They are POWERUP, RESTART, DEBUG, and MEMORY 
TEST. 

1.2 POWERUP 

The first major ROM routine, POWERUP, is executed when 
the 6600 is (initially) supplied with power. This routine dis­
ables the one millisecond interrupt. selects ALPHA Mode, 
writes zeroes in all of RAM Memory to initialize memory parity 
(note that there is no machine state to save), and calls a 
subroutine SETUP which does six things: 

(1) Loads the Sector Table entries 0 => 016 (0 = > 14 
decimal) with values to make a one-for-one trans­
lation from based logical space to physical space 
with no protection set. (Note that the 017th entry in 
the Sector Table is always set to point to the 4K 
sector of physical memory (0170000 = > 0177777) 
with USER and WRITE access disabled.) 

(2) Clears the User Mode Flag. 

(3) Initializes the Base Register to zero. 

(4) Loads a partial character set in the RAM display. 

(5) Clears all entries in the Breakpoint Table (which is 
also in System RAM). 

(6) Initializes the Interrupt Vector Table in System RAM 
(to the internal trap messages). 

The vectors are loaded as indicated in the following 
RAM memory locations: 

0167400 
0167406 
0167414 
0167422 
0167430 
0167436 
0167444 
0167452 
0167460 
0167466 
0167474 

MEMORY PARITY FAILURE VECTOR. 
INPUT PARITY FAILURE VECTOR. 
OUTPUT PARITY FAILURE VECTOR. 
WRITE PROTECT VIOLATION VECTOR. 
ACCESS PROTECT VIOLATION VECTOR. 
PRIVELEDGED INSTR VIOLATION VECTOR. 
ONE MILLISECOND CLOCK VECTOR. 
USER SYSTEM CALL VECTOR. 
BREAKPOINT VECTOR. 
UNASSIGNED INSTRUCTION 
SECTOR TABLE PARITY ERROR 

Note that the ONE MILLISECOND INTERRUPT is disabled 
during the time any System interrupt is executed. Under the 
normal ROM initialization sequence, the ONE MILLISECOND 
INTERRUPT vector is pointed back into the ROM where the 

ONE Ml LLISECOND INTERRUPTS are re-enabled prior to the 
jump to location zero. If a user program alters any of the 
SYSTEM INTERRUPT VECTORS, it must also be responsible 
for re-enabling interrupts (El) if required. 

System RAM is the term used to denote the 256-byte page 
of RAM Memory (From 0167400 to 0167777) which contains 
Interrupt Vector Locations in the first 128 bytes and the Ma­
chine State Storage Area and the Diagnostic Scratch Area in 
the second 128 bytes. 

Interrupts are generated in 6600 firmware through the 
'System-Call" mechanism which shifts program execution 
into 6600 ROM locations which contain JMP's to Interrupt 
Vectors in the System RAM. 

The Interrupt Vectors consist of six byte entries to enable 
Vector Address Modification through the use of the NOJ 
instruction. (See NOJ description in Sec. 5.8.8.) 

The POWERUP sequence concludes by loading the RAM 
display with an abbreviated ASCII character set (all unloaded 
characters are set to triangles) and HALTING to invoke the 
bootstrap mechanism. 

The POWERUP routine contains an operating feature 
which gives the user the capability of moving the logical 
sector of memory which contains the System RAM to the 
bottom (zeroth) physical sector (on RAM card 1) and moving 
the rest of the memory up one sector in physical memory. 
This feature could conceivably be of use in the case where 
the System RAM memory failed and the user wanted to get 
into DEBUG to run the memory test (particularly if the 
memory failure was intermittent). To do this the KEYBOARD 
and DISPLAY Keys must BOTH be depressed at the time of 
POWER UP. 

1.3 RESTART 

The second major ROM routine, RESTART, is invoked by 
momentarily depressing the RESTART and RUN keys, by the 
machine being halted (by other than the STOP key) when 
either a cassette is in place in the rear deck with the right­
hand tab punched out, or when no cassette is in place in the 
rear deck and the head gate is closed. Note that if the DIS­
PLAY key is depressed at the time RESTART is invoked, the 
Diagnostic routine (DEBUG) will be entered. 

The RESTART routine disables the one millisecond inter­
rupt, puts the 6600 in ALPHA Mode, and checks f~r 
diagnostic activation (DISPLAY key depressed). If DEBUG is 
not selected for execution, RESTART calls SETUP and then 
executes the bootstrap function which will load a block of data 
from a cassette tape in the rear deck or from a disk 
peripheral that contains a disk that is on line. 

If the rear cassette deck has a cassette tape in place, 
the tape will be rewound and the first block of data 
read into low RAM and then executed. 

Otherwise, disk peripheral devices are scanned in the 
order of Mass Storage (1/0 addresses 0113, 0115, and 
0116), Cartridge Disk (1/0 address 0170), and Diskette 

35 



(1/0 addresses 074, 072, 071) for a disk on line in drive 
zero. If no such disk is found, the cassette deck is checked 
again. If during this loop the operator depresses the DIS­
PLAY key, the drive number checked in each of the disk 
peripherals is incremented once each time through the 
loop. If the drive number is incremented from 255, a click 
is sounded and the drive number is returned to zero. If a 
disk is found on line, a 256 byte block is read (from cylinder 
0, head 0, sector 3 of Mass Storage; cylinder 0, head 0, 
sector 3 of Cartridge Disk; track 0, sector 4 of Flexible 
Disk). If the format of this block is correct, it is loaded 
into memory and executed. If the format is not correct, the 
same action is taken as if the disk is not on line., A click 
is sounded for every sector read from a disk peripheral. 

The format of the block of data on the disk is L H -L 
-H (252 bytes of data). The L is the LSB and the H is the 
MSB of the address of where the data is to be loaded. The 
-L and -H are the 1 's complements of the L and H values. 
The first byte of the data must be a zero and will be over­
stored with the drive number from which the block was 
loaded. Execution is begun at the location of the second 
byte of data. User programs may cause a Restart to occur 
by jumping to the Restart routine entry point at 0170033 in 
the ROM. 

36 



CHAPTER 2. DEBUG 

2.1 INTRODUCTION 

The Datapoint 6600 DEBUG is a ROM-resident program 
whose immediate accessibility creates a flexible interface 
between user and machine. This guide is intended to provide 
the 6600 user with that information essential to the use of the 
ROM-DEBUG System Test. 

2.2 STARTUP PROCEDURE 

There are four methods of entry to DEBUG: 

(1) Forcing entry through manual intervention. 

(2) Entry through a BREAKPOINT set by DEBUG. 

(3) Entry through a BREAKPOINT imbedded in the 
user program. 

(4) Entry as the consequence of a RETURN from a 
DEBUG Call Command. 

TO FORCE ENTRY INTO DEBUG: 

DEPRESS DISPLAY, RUN, RESTART; keeping each key 
depressed until all three are down. 

Then release RUN or RESTART. 

This will bring up the DEBUG display and commands may 
be entered. 

2.3 SAVING THE MACHINE STATE 

When DEBUG is entered through console intervention, 
most of the user's program state is undisturbed. What is not 
saved is the state of the interrupt enable flip-flop (interrupts 
are disabled), the state of the base register or sector table 
(these two are not changed upon entry to DEBUG), the state 
of ALPHA/BETA Mode flip-flop (all registers are saved), the 
state of the 1/0 system (what device is addressed and the state 
of its status/data selection flip-flop), and the bottom two 
Stack locations. 

What is saved are the ALPHA/BETA Mode registers and 
condition code flip-flops, and the 14 Stack entries (the top 
entry containing the P-counter). 

Note that there exist default values upon exit from DEBUG 
for: 

(1) ALPHA/BETA Mode flip-flop. 

(2) Currently addressed device and its Status/Data 
Mode flip-flop. 

These can be changed using DEBUG commands ('A', 'G', 
and 'R'). 

2.4 DISPLAY FORMAT 

The 6600 DEBUG display consists of five lines and oc­
cupies the bottom-right corner of the screen. 

LLLLLL 
BBBBBB 
' NNN 
MMMMMM 
nnnnnnn'' 

LOGICAL ADDRESS (IF ORIGIN NOT 0) 
PHYSICAL ADDRESS 
ASCII. 8 BIT OCTAL C[CURADR] 
LSB, MSB ADDRESS FORMED AT CURADR. 
COMMAND INTERPRETER 

The first (top) line shows the logical address only if Origin 
(See 0 command) is non-zero. 

The second line shows the current physical (Based) six­
teen bit address, referred to as CURADR below. 

The third line contains both an ASCII (One character 
shown as*) and an 8-bit octal (Three characters shown as 
NNN) representation of the contents of the current physical 
address byte. 

The fourth line contains an octal representation of the 
16-bit value whose LSB is at CURADR and whose MSB is at 
CURADR+1. (This is the address format used by JMP, CALL, 
and DA mnemonics). 

THE COMMAND INTERPRETER 

The bottom line of the display is used to edit and input 
commands to DEBUG. The blinking cursor signifies that the 
Command Interpreter is awaiting user input. 

Data is entered serially into the input display buffer. The 
cursor is displaced to the right successively as this occurs. 
The BACKSPACE Key erases the character most recently 
entered, shifting the entry cursor to the left one space. The 
CANCEL Key deletes the entire entry. 

All commands are single characters. Commands which 
accept input arguments are preceded by the argument which 
is entered in octal. Not all commands require an input argu­
ment. The last character input to the interpreter must be a 
legal command. Illegal input is ignored, evoking a BEEP from 
the 6600.Commands are executed upon their entry into the 
interpreter (no ENTER Key is required and the command 
character is not displayed), with the current contents of the 
entry line being cleared. Upon command completion the 
cursor reappears, awaiting further input. 

2.5 COMMAND SYNTAX 

This explanation of the command syntax uses the follow­
ing notation: 

nnn Indicates an optional sequence of octal 
digits not to exceed the number of n's 
given. 

(nnn) nnn If input argument contains more than 
eight bits of significance, special results 
will occur. In general what will happen is 

37 



that two bytes of memory wi II be affected 
by the command, either a register pair or 
a memory address in LSB, MSB format. 

nnnnnn 16-bit argument. No digits usually 
causes special action. 

12345 There exists a set of special commands 
whose accidental execution is inhibited 
by the requirement that they contain this 
unique argument. 

2.6 INPUT COMMAND LIST 

38 

nnnA Address the given or current (if nnn not 
given) 1/0 device. The current 1/0 device 
is the last one selected by this command. 
No check is made on address format. 
STATUS is displayed as C[CURADR]. 
Note that the current device is readdres­
sed and put into the mode last accessed 
(Data mode if 'F' or 'G' hc.ve been exe­
cuted subsequent to last 'A' command) 
prior to resuming execution through 
CALL, EXECUTE, JUMP or USER RE­
TURN Commands. 

nnnnnnB Store a BREAKPOINT instruction at the 
given or current address. Upon BP 
execution the state of the machine is 
saved, the memory location at which the 
BP was set is restored to its original 
value and the corresponding BP table 
entry is cleared. 

The following notes reference the use of 
the 'B' command. 

Overlay BREAKPOINT will not loop. That 
is: It is not possible to successfully set a 
BREAKPOINT in the same memory loca­
tion in order to iterate the execution of a 
program loop. To iterate BREAKPOINT 
through a looping sequence requires 
'double BREAKPOINTING'. 

Ten BREAKPOINTS can be active at any 
one time. Note that BP's DISABLE inter­
rupts and leave them disabled prior to 
resuming execution through CALL, 
EXECUTE, JUMP or USER RETURN 
commands. This is done to enable test­
ing of foreground routines with DEBUG. 
(If it becomes necessary to use DEBUG 
with interrupts enabled, the user can en­
able interrupts on return with the ''i'" 
command.) Note that it is impossible for 
the machine to determine its current re­
gister (ALPH/BETA) mode. Therefore the 
'R" command mode flip-flop is set to 
ALPHA when a BP is encountered. If the 
user wishes to test code written in BETA 

Mode it is necessary that he manually 
put the 6600 in BETA Mode (with the 'R' 
command) prior to resumption of execu­
tion through CALL, EXECUTE, JUMP or 
USER RETURN commands. Similarly, 
the USER may have to address the 
proper 1/0 device (with A) and perhaps 
put it into DATA Mode (with G) before 
continuing execution from a BREAK­
POINT. Note that DEBUG will not set a 
BREAKPOINT over another BREAK­
POINT. 

nnnnnnC Call the given or current address. The 
Machine State is restored before execu­
tion control is passed to the Subroutine. 
A RETURN from the Called Subroutine 
causes re-entry into DEBUG and hence, 
for the Machine State to again be saved. 

nnnnnnD Decrement the current address value by 
one or value (nnnnnn). 

nnnnnnE Continue execution from a forced or 
BREAKPOINT entry into DEBUG. 
Machine State is restored prior to re­
sumption of execution. The interrupts 
are left disabled. The register mode is set 
to the last R value (initialized to ALPHA 
Mode upon BP or forced entry), the base 
register and sector table are not 
changed, and the 1/0 device is addressed 
and optionally set to DATA Mode. If a 
new execution address is given (n), the 
top Stack location will be changed to (n) 
prior to continuation of execution. 

nnnF Fetch next data byte from current or 
given 1/0 device. The F Command will 
automatically put device in DATA Mode 
and the device will subsequently be put 
in DATA mode when the E command is 
given. 

nnnG Go to DATA mode in the current or given 
1/0 device when the E command is given. 

H Not used 

nnnnnnl Increment the current address value by 
one or value (nnnnnn). 

nnnnnnJ Jump to the given or current address. 
Machine State is restored prior to re­
sumption of execution. 

12345K Set ASCII keyin mode. Will allow ASCII 
data to be entered into CURADR in auto­
increment mode (i.e. will update 
CURADR). BACKSPACE moves 
CURADR back and displays its contents. 
DELete moves CURADR forward and 
displays its contents. CANCEL causes a 



.. 

return to normal mode. 

L Link to the address pointed to by the 
Current Address. CURADR is replaced 
by line 3 (the 16-bit LSB, MSB address 
formed at CURADR, CURADR+1). The 
remaining display parameters are upda­
ted appropriately. Note that initial dis­
play state upon entry into DEBUG can be 
regenerated by performing the 'S' com­
mand, followed immediately by the 'L' 
command. 

(nnn) nnnM Modify the contents of the current ad­
dress location. If the value of the Input 
Argument exceeds eight significant bits, 
two memory locations will be modified, 
treating the input argument as an ad­
dress in LSB, MSB Format for JMP and 
DA. (A CLICK is sounded to notify the 
operator if an MSB is stored). 

nnnnnnN Set physical address to nnnnnn. 

0 Origin mode (useful for debugging re­
locatable code) - performs the follow­
ing four functions. (Utilizes upper and 
lower case 0). 
1. O clears Origin mode. 
2. nnO Sets Origin table 

pointer. The Origin 
table is 10 entries 
deep and entries of 
0-011 are valid. 

3. o Sets addressing 
bias to selected 
table entry 
(2 above) 

4. nnnnnno Modifies selected table 
entry to (n) and sets 
address bias to that 
value. 

NOTE: Setting Origin mode 
also displays top add­
ress line (Logical 
Address). 

nnnnnnP Load the Base Register with the 8-bit 
value = (nnnnnn - 0100000)>8 

123450 Load the Sector Table. CURADR =>Ta­
ble whose first byte equals the number of 
entries to be loaded. The following bytes 
contain arguments to be loaded into the 
Sector Table. 

R Switch ALPHA/BETA Mode register dis­
play. The ASCII character displayed after 
command execution tells the current 
display mode: A=ALPHA, B=BETA. 

nnS Display the specified Stack item (up to 

015 Octal}. Note: Entry into DEBUG 
pushed P onto the top of the Stack. 

12345T Start primary memory test. Displays 
Memory Size and Pass Counter in right­
bottom corner of screen. Maintains run­
ning display of test failures. 

nnnnnnU User mode execute with optional return 
to (n) address. Command sets USER 
mode and then executes i Command. 
(Interrupts enabled} 

nnnV EX COM4 

nnnW EX WRITE 
nnnX EX COM1 

The 1/0 device must be add­
ressed with A command. 
STATUS is displayed. 
after the command is 
issued. 

nnnY EX COM2 'nnn' is the current 
output byte. 

nnnZ EX COM3 The previous nnn value is 
used if none is given. 

? Displays the processor version, the re­
vision level of the Micro-Code and the re­
vision level of the Macro-Code. 

SHIFTED COMMAND CHARACTERS 

nnn x 
(nnn) nnn a 

nnn b 
(nnn) nnn c 

nnn d 
(nnn)nnn e 

nnn h 
(nnn) nnn I 

nnn f 

Display 'X' register or modify to (nnn) 
'A' modify register pair if input 
'B' argument exceeds eight bits 
'C' 
'D' the LSB register specifies the 
'E' pair (i.e. L for H & L) 
'H' 
'L' 

Displays or modifies the condition flag 
byte. 
Flag bits: 7=>C; 6=>S; 1 = > - Z & - S; 0 
= >- Z & - P. 
The bit pattern which displays the condi­
tion flags will replicate the previous state 
when added to itself. 

o See Origin mode. 
nnnnnn i Same as 'E', but with interrupts enabled. 
nnnnnn s PUSH value (n) onto Stack. 

nn r POP Stack (nn) times. 
nnn p Load Base register direct with value 

(nnn). 
12345 t Start Pseudo-random memory test. 

nnn y EX DATA with (nnn) on output Bus. 
nnn z EX STATUS, with (nnn) on output Bus. 

nnnnnnENTER Set Logical Address (physical if no ori­
gin) to nnnnnn. Command has no effect 
unless it is preceded by an Input Argu­
ment. 

CANCEL Cancel entry line. 

BACKSPACE Backspace on entry line. 
(nnn) nnn. Modify the contents and then increment 

the current address. If Input Argument 
has more than eight significant bits, two 
memory locations are modified, treating 

39 



the argument as an address in LSB, MSB 
Format. (a CLICK is sounded). 

(nnn) nnnA Modify the contents and then increment 
the current address. If Input Argument is 
null, the last non-null value given is used. 
If 'last value' exceeded eight bits of sig­
nificance, two memory locations will be 
modified. (a CLICK is sounded). 

# Clear all active (DEBUG set) break­
points, restoring values. 

6600 ROM DEBUG COMMAND SUMMARY 

40 

nnn A 
nnn nnn B 

nnn nnn C 
nnn nnn D 

(nnn nnn) E 

nnn F 

nnn G 

(nnn) nnn I 

nnn nnn J 
12345 K 

L 

(nnn) nnn M 

nnnnnn N 
nn 0 

[ ] (ENTER) 

[ ] (nnn) 

(nnn) nnn P 

12345 Q 
R 

nn S 
12345 T 

nnn nnnn U 

Address the (n) or current 1/0 device. 
Set a breakpoint to the (n) or current 

address. 
Call the (n) or current address. 
Decrement the current address by (n) or 

1. 
Continue execution or replace top stack 

location with (n) and continue execu­
tion. 

Fetch next data byte from (n) or current 
device. 

Go to DATA mode in (n) or current de­
vice on 'E', 'U' or 'i' command. 

Increment the current address by (n) or 
1. 

Jump to the given (n) or current address. 
Set ASCII keyin mode. 
Link to address pointed to by current 

address. 
Modify the contents of the current ad-

dress. 
Set physical address to nnnnnn. 
Select Origin table entry. 
Set Origin addressing to entry value and 

display. 
Set Origin addressing to (n), enter in ta-

ble, and display. 
Load Base register with (nnnnnn -
0100000)>8 
Load the sector table. 
Switch ALPHA/BETA mode and display. 
Display the (Nth) Stack location item. 
Start the primary 6600 memory test. 
Continue execution as in 'E' command 
but in USER mode. (Interrupts enabled) 

nnn V EX COM4 Device must be 

addressed for 1/0 
commands. 

nn W EX WRITE 

nnn X EX COM1 
nnn Y EX COM2 
nnn ? EX COM3 . 

Status is displayed after 
c.ommand issue. 
'nnn' is the output byte. 

? Displays processor version, Micro-Code 
and Macro-Code revision levels. 

SHIFTED COMMAND CHARACTERS 

nnn x 
(nnn) nnn a 

nnn b 
(nnn) nnn c 

nnn d 
(nnn) nnn e 

nnn h 
(nnn) nnn I 

nnn f 
nnn nnn i 

nnn nnn h 
nn s 

nnn p 

12345 t 
nnn y 
nnn z 

nnnnnn ENT 
CAN 

BKSP 
(nnn) nnn. 

nnn (nnn) A 

Display X register or modify to (nnn) 
A modify register pair if 
B argument exceeds eight bits. 
c 
D The LSB register specifies 
E the pair. (i.e. L for H&L) 
H 
L 

Displays or updates the condition flags. 
Same as 'E' above with interrupts ena-

bled. 
PUSH value (nnn nnn) onto Stack. 
POP Stack (nn) times. 
Load Base register direct with value 

(nnn). 
Alternate 6600 memory test. 
EX DATA (nnn) on output bus. 
EX STATUS (nnn) on output bus. 
Set Logical address to 'nnnnnn'. 
Cancel entry line. 
Backspace one on entry line. 
Modify and increment. 
Modify and increment using the last 

non-null value. 






