
DISK OPERATING SYSTEM
DOS.

User's Guide

Version 2 (Upgraded to 2.6)

May, 1980

Document No. 50432

DATAPOINT

DISK OPERATING SYSTEM
DOS.

User's Guide

Version 2 (Upgraded to 2.6)

May, 1980

Document No. 50432

Copyright © 1980 Oatapoint Corporation. All Rights Reserved

PREF-ACE

The purpose of this User's Guide is to provide the user of a

Datapoint DOS that information required to generate a system, make

effective use of the available commands, and to make user-written

programs compatible with the DOS.

This manual applies to all Version 2.6 and above "dot-series"

Disk Operating Systems, such as DOS.A, DOS.B, and so on. This

manual replaces the previous Version 2.5 DOS User's Guide.

i

TABLE OF CONTENTS

1. CHANGES FROM PRIOR VERSIONS
1.1 Utility Programs

1 . 1 . 1 BACKUP
1.1.2 CAT
1 • 1 . 3 COpy
1.1.4 DOSGEN
1.1.5 DUMP
1.1.6 EDIT
1 • 1 • 7 INDEX
1.1.8 f-1IN
1.1.9 PUTIPL
1.1.10 PUTVOLID
1 • 1 • 11 REFORMAT
1 . 1 . 12 SORT

1.2 System Routines

2. INTRODUCTION
2.1 Hardware Support Required
2.2 Software Configurations Available
2.3 Program Compatibility

3. OPERATOR COMMANDS
3.1 General Information
3.2 Command Line Syntax
3.3 Command Interpretation
3.4 Documentation Conventions
3.5 Program Signon Messages

4. EQUIPMENT CARE
4.1 Environment
4.2 Processor
4.3 Disks and Disk Drives
4.4 Other Peripherals

5. DISK FILES
5.1 File Names
5.2 File Creation
5.3 File Deletion
5.4 File Protection

6. SYSTEM GENERATION
6.1 Initial Generation

6.1.1 Formatting

ii

page

1-1
1-1
1-1
1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-3
1-3

2-1
2-1
2-2
2-2

3-1
3-1
3-1
3-2
3-3
3-3

4-1
4-1
4-2
4-2
4-2

5-1
5-1
5-2
5-3
5-3

6-1
6-1
6-1

6.1.2 Cassette System Generation
6.2 Partial Generation
6.3 UPGRADE/X
6.4 Scratch Disk Generation
6.5 Generation Cassettes and Emergencies

7. ABTONOFF COMMAND
7.1 Purpose
7.2 Use

8. APP COMMAND
8.1 Purpose
8.2 Use

9. AUTO COMMAND
9.1 Purpose
9.2 Use
9.3 Operation of AUTOed Program

10. AUTOKEY COMMAND
10.1 Purpose
10.2 Use
10.3 The Hardware Auto-Restart Facility

10.3.1 Processors with tape decks
10.3.2 Processors without tape decks

10.4 Automatic Program Execution Using AUTO
10.5 Auto-Restart Facilities Using AUTOKEY
10.6 A Simple Example
10.7 A More Complicated Example
10.8 Special Considerations
10.9 AUTOKEY and DATASHARE

11. BACKUP COMMAND
11.1 Purpose
11.2 Use

11.2.1 Options
11.3 Mirror Image Copy
11.4 Reorganizing Files

11.4.1 Copying DOS to Output Disk
11.4.2 Deleting Named Files
11.4.3 Copying Named Files

11.5 Use of KEYBOARD and DISPLAY Keys
11.6 Error Messages
11.7 Reorganizing Files for Faster Processing
11.8 BACKUP with CHAIN
11.9 £licks during Copying
11.10 Special Considerations for BACKUP

iii

6-2
6-)~

6-5
6-6
6-6

7-1
7-1
7-1

8-1
8-1
8-1

9-1
9-1
9-1
9-2

10-1
10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-3
10-1i
10-8
10-8

11-1
11-1
11-1
11-2
11-3
11-3
11-4
11-4
11-4
11-5
11-5
11-6
11-7
11-7
11-7

12. BLOKEDIT COMMAND
12.1 Purpose
12.2 Use
12.3 File Descriptions

12.3.1 Command Statement Lines
12.3.2 Source File
12.3.3 New File

12.4 Messages
12.4.1 Informative Messages
12.4.2 Fatal Errors
12.4.3 Selectively Fatal Errors

13. BOOT
13.1 Purpose
13.2 Use
13.3 Messages

14. BUILD COMMAND
14.1 Purpose
14.2 Use
14.3 A Simple Example
14.4 KEYBOARD and DISPLAY Keys

15. CAT COMMAND
15.1 Purpose
15.2 Use

16. CHAIN COMMAND
16.1 Purpose
16.2 Use

16.2.1 CHAIN Compilation
16.2.2 CHAIN Execution

16.3 Tag Definition
16.4 CHAIN Directives

16.4.1 IF Directive
16.4.2 ELSE/XIF Directives

16.5 Tag Value Substitution
16.6 BEGIN/END Directives
16.7 ABORT Directives
1 6 • 8 Com i.n en t s
16.9 Complex CHAIN Examples
16.10 Resuming An Aborted CHAIN
16.11 CHAIN Programming Considerations

17. CHANGE COMMAND
17 . 1 Pur pose
17.2 Use

iv

12-1
12-1
12-1
12-2
12-2
12-4
12-4
12-4
12-6
12-6
12-7

13-1
13-1
13-1
13-2

14-1
14-1
14-1
1 Ll-2
14-2

15-1
15-1
15-1

16-1
16-1
16-1
16-2
16-2
16-3
16-4
16-4
16-6
16-6
16-7
16-8
16-9

16-11
16-14
16-15

17-1
17-1
17-1

18. COpy COMMAND
18.1 Purpose
18.2 Use

19. DOSGEN COMMAND
19.1 Purpose
19.2 Use
19.3 Special Considerations

20. DSKCHECK
20.1 Purpose
20.2 Use
20.3 Options
20.4 System Tables and Data
20.5 Execution Phases

20.5.1 Initialization
20.5.2 HDI Checking
20.5.3 CAT Checking
20.5.4 Directory Checking
20.5.5 HIB Checking
20.5.6 Cluster Allocation, Phase 1
20.5.7 Cluster Allocation, Phase 2
20.5.8 Lockout CAT Checking

20.6 Operational Messages
20.7 Error Message Definitions

20.7.1 Operational Error Messages
20.7.2 Initialization Error Messages
20.7.3 HDI Errors
20.7.4 CAT Errors
20.7.5 Directory Errors
20.7.6 RIB Errors
20.7.7 Lockout CAT Errors

21. DUMP COMMAND
21.1 Purpose
21.2 Use
21.3 Informational Messages Provided
21.4 Level One Commands To DUMP
21.5 Level Two Commands To DUMP
21.6 Level Three Commands To DUMP
21.7 Level Four Commands To DUMP
21.8 Level Five Commands to DUMP
21.9 Error Messages

22. THE DUMP93XO COMMAND
22.1 Purpose
22.2 Use
22.3 The primary command handler

v

18-1
18-1
18-1

19-1
19-1
19-1
1,9-2

20-1
20-1
20-1
20-1
20-2
20-2
20-2
20-3
20-3
20-3
20-4
20-5
20-5
20-5
20-5
20-7
20-7
20-8

20-10
20-10
20-12
20-14
20-17

21-1
21-1
21-1
21-2
21-4
21-4
21-5
21-6
21-7
21-7

22-1
22-1
22-1
22-3

22.4 Using
22.5 Screen Display format
22.6 The Screen Dump Command Handler
22.7 Cassette Operations
22.8 Drive Numbers
22.9 Error Messages

23. EDIT
23.1 Purpose
23.2 Use
23.3 Parameter List

23.3.1 Margin Bell
23.3.2 Tab Key Character
23.3.3 Mode
23.3.4 Update
23.3.5 Key-click
23.3.6 Space Compression
23.3.7 Non-verification

23.4 Examples
23.5 Data Entry and Retrieval

23.5.1 Data Entry
23.5.2 Multi-line Record Entry

23.6 Data Retrieval
23.7 EDIT Command Format
23.8 Basic EDIT Commands

23.8.1 Setting Tabs
23.8.2 Setting TEXT Mode
23.8.3 INSERTing a Line
23.8.4 DELETEing a Line
23.8.5 COPYing a Line
23.8.6 MODIFYing a Line
23.8.7 LOCATEing a Line
23.8.8 ENDing EDIT

23.9 Intermediate Commands
23.9.1 Changing Special Characters
23.9.2 Changing Tabs
23.9.3 Changing Modes and Options
23.9.4 Deleting Lines
23.9.5 MODIFY Command

23.9.5.1 Line Modification
23.9.5.2 Field Modification

23.9.6 Line Splitting
23.9.7 Line Concatenation
23.9.8 File Search Commands
23.9.9 BYPASS End of File
23.9.10 Terminating EDIT

23.10 Advanced Commands
23.11 Recovery Procedures

vi

22-3
22-5
22-6
22-8

22-10
22-10

23-1
23-1
23-1
23-2
23-2
23-3
23-3
23-3
23-4
23-4
23-4
23-4
23-6
23-6
23-7
23-8
23-8
23-9
23-9
23-9

23-10
23-11
23-11
23-12
23-13
23-13
23-14
23-14
23-15
23-16
23-17
23-18
23-18
23-20
23-21
23-21
23-21
23-24
23-24
23-26
23-30

23.12 Glossary
23.13 Command List
23.14 EDIT ERROR MESSAGES
23.15 Configuration Sector
23.16 Example of a Definition File

24. ENCODE/DECODE COMMANDS
24.1 Purpose
24.2 Use

25. FILES COMMAND
25.1 Purpose
25.2 Use
25.3 Default Messages
25.4 File Descriptions
25.5 Error Messages

26. fIX COMMAND
26.1 Purpose
26.2 Use
26.3 Commands
26.4 Error Messages

27. FIXAPPLY
27.1 Purpose
27.2 Use

27.2.1 FIXAPPLY Phase One
27.2.2 FIXAPPLY Phase Two
27.2.3 Fatal Phase One Error Messages

28. FREE COMMAND
28.1 Purpose
28.2 Use

29. INDEX COMMAND
29.1 Purpose
29.2 Use

29.2.1 Parameters
29.2.2 System Requirements

29.3 Choosing A Record Key
29.4 Preprocessing the File

29.4.1 Invoking Reformat
29.4.2 Considerations for Unattended Indexing

29.5 INDEX Messages
29.6 lSI File Formats
29.7 Index File Size
29.8 Examples of the Use of INDEX

vii

23-30
23-34
23-41
23-42
23-44

24-1
24-1
24-1

25-1
25-1
25-1
25-2
25-3
25-4

26-1
26-1
26-1
26-1
26-3

2'7-1
27-1
27-1
27-1
27-2
27-3

28-1
28-1
28-1

29-1
29-1
29-1
29-2
29-3
29-3
29-4
29-4
29-5
29-5
29-7

29-10
29-11

30. THE INITDISK COMMAND
30.1 Purpose
30.2 Use
30.3 Error messages

31. KILL COMMAND
31.1 Purpose
31.2 Use

32. LIST COMMAND
32.1 Purpose
32.2 Use
32.3 Input file Specification
32.4 Starting Point
32.5 Output File Specification
32.6 Output Device
32.7 Output Format
32.8 Format Control
32.9 Operator Controls
32.10 Error Conditions

33. MANUAL COMMAND
33.1 Purpose
33.2 Use

34. MIN COMMAND
34.1 Purpose
34.2 Use

34.2.1 Command Line
34.2.2 Options
34.2.3 Multi-File Named Tapes

34.2.3.1 MOUT With Directory Tapes
34.2.3.2 CTOS Tapes

34.2.4 Multiple Numbered-File Tapes
34.2.5 Double File Tapes
34.2.6 Single File Tapes

34.3 Tape Formats
34.3.1 Single File Tapes
34.3.2 Double File Tapes
34.3.3 Multiple Numbered-File Tapes
34.3.4 Multiple Named-File T~pes

34.4 Errors

35. MOUT COMMAND
35.1 Purpose
35.2 Use
35.3 File Names
35.4 Writing

viii

30-1
30-1
30-1
30-1

31-1
31-1
31-1

32-1
32-1
32-1
32-2
32-2
32-3
32-3
32-4
32-4
32-5
32-5

33-1
33-1
33-1

34-1
34-1
34-1
34-1
34-1
34-3
34-3
34-5
34-6
34-6
34-7
34-7
34-7
34-8
34-8
34-8
34-9

35-1
35-1
35-1
35-5
35-7

35.5 Verifying

36. NAME COMMAND
36.1 Purpose
36.2 Use

31. PUTIPL COMMAND
37.1 Purpose
37.2 Use

38. PUTVOLID COMMAND
38.1 Purpose
38.2 Use

39. REFORMAT COMMAND
39.1 Purpose
39.2 Use
39.3 Output File Formats
39.4 Reasons for Reformatting
39.5 Reformat Messages
39.6 Text File Formats

40. REWIND COMMAND
40.1 Purpose
40.2 Use

41. SAPP COMMAND
41.1 Purpose
41.2 Use

42. SORT COMMAND
42.1 Purpose
42.2 Use
42.3 Fundamental SORT Concepts

42.3.1 File Formats
42.3.2 The Key Options
42.3.3 How to Sort a File

42.4 SORT Command Line and Options
42.4.1 Generalized Command Statement Format
42.4.2 Keys: Overlapping and in Backwards Order
42.4.3 Collating Sequence File
42.4.4 Ascending and Descending sequences
42.4.5 Input/output File Format Options
42.4.6 Limited Output Format Option
42.4.7 TAG File Output Format Option
42.4.8 Key tag File Output Format Option
42.4.9 HARDCOPY Output Option
42.4.10 Primary/Secondary Sorting Considerations

ix

35-8

36-1
36-1
36-1

31-1
37-1
37-1

38-1
38-1
38-1

39-1
39-1
39-1
39-3
39-3
39-4
39-7

40-1
40-1
40 ... 1

41-1
41-1
41-1

42-1
42-1
42-1
42-2
42-2
42-3
42-4
42-4
42-4
42-9

42-10
42-11
42-11
42-12
42-16
42-18
42-19
42-20

42.4.11 SORT Work Files
42.5 Disk space requirements
42.6 LINK into SORT from programs
42.7 The Use of CHAIN with SORT

42.7.1 Defining a Chain File for SORT
42.7.2 Naming a repetitive SORT procedure
42.7.3 Using CHAIN to cause a merge

42.8 SORT Execution-Time Messages

43. SUR COMMAND
43.1 Purpose
43.2 Use

43.2.1 Establishing a "Current SUbdirectoryU
43.2.2 Creating a Subdirectory
43.2.3 Deleting a Subdirectory
43.2.4 Renaming a Subdirectory
43.2.5 Displaying Subdirectories

43.3 About Subdirectories
43.3.1 Creation of Subdirectories
43.3.2 Deletion of Subdirectories
43.3.3 Being "in a Subdirectory"
43.3.4 Scope of a File Name
43.3.5 About Subdirectory SYSTEM
43.3.6 Files vs. the User Being "in a Subdirectory"
43.3.7 Getting a File into a Subdirectory

44. U800T COMMAND
44.1 Purpose
44.2 Use
44.3 UBoor System Load Operation

45. UTILITY/OVL

46. UTILITY/REL
46.1 Printer Drivers

46.1.1 Print Driver Routines
46.1.2 ASA Control Characters

46.2 SECINOUT DriverS
46.2.1 SECINOUT Driver Routines

47. UTILITY/SYS

48. SYSTEM DESCRIPTION
48.1 System Philosophy
48.2 System Structure

49. SYSTEM STRUCTURE
49.1 Disk Structure

x

42-20
42-21
42-21
42-26
42-26
42-27
42-28
42-28

43-1
43-1
43-1
43-2
43-2
43~2
43-2
43-3
43-3
1~3-4
43-4
43-4
43-5
43-5
43-6
43-6

44-1
44-1
44-1
44-2

45-1

46-1
46-1
46-2
46-3
46-3
46-4

47-1

48-1
48-1
48-1

49-1
49-1

49.1.1 Introduction
49.~.2 Disk Space Management: CAT and Lockout CAT
49.1.3 Files: HDI, Directory Mapping Bytes, Directory,
49.1.4 Sector Identification

49-1
49-2

R49-3
49-4
49-5
49-5
49-5

49.1.5 Addressing Byte Structures
49.1.5.1 PDA - Physical Disk Address
49.1.5.2 RIB Address/Protection
49.1.5.3 Segment Descriptor - used in RIB to define a

segment.
49.1.5.4 Physical File Number - ~~ed to access

and HDI
49.2 Disk Data Formats
49.3 Memory Mapping
49.4 Memory Tables

49.4.1 Entry Point Tables
49.4.2 Logical File Table

49.5 Disk Overlays
49.6 The Command Interpreter

50. INTEHRUPT HANDLING
50.1 Interrupt Mechanism
50.2 Interrupt Scheduler
50.3 Active Processes
50.4 Timing Considerations
50.5 DOS Interrupt Routines

50.5.1 SETI$
50.5.2 CLRI$
50.5.3 CS$
50.5.4 TP$

50.6 Programming Considerations
50.6.1 Background Code
50.6.2 Foreground Code

51. SYSTEM ROUTINES
51.1 Parameterization
51.2 Exit Conditions
5 '1 . 3 Err 0 r Han d 1 i n g
51.4 Foreground Routines

51.4.1 CS$ - Change Process State
51.4.2 TP$ - Terminate Process
51.4.3 SETI$ - Initiate Foreground Process
51.4.4 CLRI$ - Terminate Foreground Process

51.5 Loader Routines
51.5.1 800T$ - Reload the Operating System
51.5.2 RUNX$ - Load and Run a File by Number
51.5.3 LOADX$ - Load a File by Number
51.5.4 INCHL - Increment the Hand L Registers
51.5.5 DECHL - Decrement the Hand L Registers

xi

49-6
directory

49-6
49-7
49-8
49-9
49-9
49-9

49-11
49-12

50-1
50-1
50-1
50-3
50-4
50-5
50-5
50-5
50-6
50-6
50-6
50-6
50-7

51-1
51-1
51-2
51-2
51-2
51-3
51-3
51-3
51-4
51-4
51-4
51-5
51-5
51-5
51-6

51.5.6 GETNCH - Get the Next Disk Buffer Byte
51.5.7 DR$ - Read a Sector into the Disk Buffer
51.5.8 DW$ - Write a Sector from the Disk Buffer
51.5.9 DSKWAT - Wait for Disk Ready

51.6 File Handling Routines
51.6.1 PREP$ - Open or Create a File
51.6.2 OPEN$ - Open an Existing File
51.6.3 LOAD$ - Load a File
51.6.4 RUN$ - Load and Run a File
51.6.5 CLOSES - Close a File
51.6.6 CHOPS - Delete Space in a File

51-6
51-7
51-8
51-8
51-9

51.6.7 PROTE$ - Change the Protection on a File
51.6.8 POSIT$ - Position to a Record within a File
51.6.9 READ$ - Read a Record into the Buffer

51-10
51-10
51-11
51-11
51-12
51-13
51-14
51-15
51-15
51-16
51-16
51-17
51-18
51-18
51-19
51-19
51-20
51-22
51-23
51-23
51-24
51-24
51-27
51-28

51.6.10 WRITE$ - Write a Record from the Buffer
51.6.11 GET$ - Get the Next Buffer Character
51.6.12 GETR$ - Get an Indexed Buffer Character
51.6.13 PUTS - Store into the Next Buffer Position
51.6.14 PUTR$ - Store into an Indexed Buffer Position
51.6.15 BSP$ - Backspace One Physical Sector
51.6.16 BLKTFR - Transfer a Block of Memory
51.6.17 TRAP$ - Set an Error Condition Trap
51.6.18 EXIT$ - Reload the Operating System
51.6.19 ERROR$ -- Reload the Operating System
51.6.20 WAIT$ -- DOS Wait-a-~rJhile "NOP" Routine

51.7 Keyboard and Display Routines
51.7.1 DEBUG$ - Enter the Debugging Tool
51.7.2 KEYIN$ - Obtain a Line from the Keyboard
51.7.3 DSPLY$ - Display a Line on the Screen

52. DOS FUNCTION FACILITY (DOSFNC)
52.1 FUNC1 - Retrieve Directory and C.A.T. Addresses
52.2 FUNC2 - Retrieve Directory Sector or Filename
52.3 FUNC3 - Retrieve RIB Information

52-1
52-2
52-5
52-7
52-9 52.4 FUNC4 - Retrieve DOS Configuration Information

52.5 FUNC5 - Request Access to System Tables
52.6 FUNC6 - Keyboard / Display Interface Routines
52.7 FUNC7 - Test the Disk Buffer Memory
52.8 FUNC8 - Timed Pause
52.9 FUNC9 - Non-Sharable Resource Status Request
52.10 FUNC10 - Partition Information Function
52.11 FUNC11 RAM Screen Loader
52.12 FUNC12 - Enable Memory Resident Overlays
52.13 Overlay Loader (FUNC-13,14,15)
52.14 FUNC-13 Overlay Lookup By Name
52.15 FUNC-14 Load Absolute Library Member
52.16 FUNC-15 Relocatable Loader
52.17 FUNC-16 Disable Memory Resident Overlays

xii

52-10
Function52-11

52-14
52-15
52-16
52-18
52-19
52-21
52-22
52-24
52-25
52-26
52-28

53. CASSETTE HANDLING ROUTINES 53-1
53.1 TPBOF$ - Position to the Beginning of a File 53-2
53.2 TPEOF$ - Position to the End of a File 53-2
53.3 TRW$ - Physically Rewind a Cassette 53-3
53.4 TBSP$ - Physically Backspace One 53-3
53.5 TWBLK$ - Write an Unformatted Block 53-3
53.6 TR$ - Read a Numeric CTOS Record 53-4
53.7 TREAD$ - TR$ and Wait for the Last Character 53-4
53.8 TW$ - Write a Numeric CTOS Record 53-5
53.9 TWRIT$ - TW$ and Wait for the Last Character 53-5
53.10 TFMR$ - Read the Next File Marker 53-6
53.11 TFMW$ - Write a File Marker Record 53-6
53.12 TTRAP$ - Set an Error Condition Trap 53-7
53.13 TWAIT$ - Wait for I/O Completion 53-8
53.14 TCHK$ - Get I/O Status 53-8

54. COMMAND INTERPRETER ROUTINES 54-1
54.1 CMDINT - Return & Scan MCR$ line 54-1
54.2 DOS$ - Return & Display Sign On 54-2
54.3 NXTCMD - Return and Dislay "READY" 54-2
54.4 CMDAGN - Return & Give Message 54-2
54.5 GETSYM - Get Next Symbol 54-3
54.6 GETCH - Get the Next Character 54-3
54.7 GETAEN - Get Auto-Execute Physical File Number 54-4

.54.8 PUTAEN - Set or Clear a File to be Auto-Executed 54-4
54.9 GETLFB - Open the User-Specified Data File 54-4
54.10 PUTCHX - Store the Character in "A" 54-5
54.11 PUTCH - Alternate Version of PUTCHX 54-6
54.12 PUTNAM - Format a Filename from Directory 54-6
54.13 MOVSYM - Obtain the Symbol Scanned by GETSYM 54-7
54.14 GETDBA - Obtain Disk Controller Buffer Address 54-7
54.15 SCANfS - Scan Off File Specification 54-7
54.16 TeWAIT - Test controller memory & wait 54-8

55. USER SUPPORTED INPUT/OUTPUT

56. ERROR MESSAGES
56.1 System Error Messages
56.2 Utility Program Error Messages

57. ROUTINE ENTRY POINTS

58. PROCESSOR DEBUG
58.1 Introduction
58.2 Startup Procedure
58.3 Saving the Machine State
58.4 Display Format

xiii

55-1

56-1
56-1
56-3

57-1

58-1
58-1
58-1
58-2
58-2

58.5 The Command Interpreter
58.6 Command Syntax
58.7 Input Command List
58.8 DEBUG Command Summary
58.9 Extensions to Standard DEBUG

Appendix A. DOS.A AND DOS.E
A.1 Planning for DOS.A/DOS.E

A.1.1 DOS.A Physical Configuration
A.1.2 DOS.E Physical Configuration

A.2 Disk Drives
A.3 Disk Media
A.4 Loading and unloading Disk Cartridges
A.5 Switches and Indicators
A.6 Care and Handling of Disk Cartridges
A.7 Care and Maintenance of the 9350 Drives
A.8 Head Crashes

A.8.1 Prevention of Head Crashes
A.8.2 Recognition of a Head Crash
A.8.3 What to Do if You Have a Head Crash

A.9 Preparing Disk Packs for Use
A.10 Disk Organization under DOS.A/DOS.E

A.10.1 Logical Drive Mapping
A.10.2 Size of a Logical Drive
A.10.3 Cluster Mapping
A.10.4 Segments under DOS.A
A.10.5 Maximum File Size
A.10.6 Cluster Allocation Table and Directory

A.11 Internal DOS Parameterization
A.11.1 Physical Disk Address Format
A.11.2 Hardware Address Structure

Appendix B. DOS.B
B.1 Planning for DOS.B
B.2 File Storage Capacity under DOS.B
B.3 Disk Drives
B.4 Disk Media
B.5 Loading and unloading Disk Packs

B.5.1 Models 9370-9373
8.5.2 Model 9374/9375

B.6 Switches and indicators
B.6.1 Models 9370-9373

B.6.1.1 Memorex Drives
B.6.1.2 "Telex" Drives
B.6.1.3 Common Features

B.6.2 Model 9374/9375
B.7 Care and Handling of Disk Packs
B.8 Care and Maintenance of the 9370 Drives

xiv

58-3
58-3
58-4
58-8
58-9

A-1
A-1
A-1
A-2
A-2
A-2
A-2
A-3
A-4
A-5
A-5
A-6
A-6
A-7
A-7
A-8
A-8
A-8
A-8
A-9
A-9

A-10
A-11
A-11
A-11

B-1
B-1
B-1
B-2
B-2
B-2
B-2
B-3
8-4
B-4
B-4
B-5
B-5
B-6
B-7
B-7

B.9 Head Crashes
B.10 Preparing Disk Packs for Use
B.11 Disk Organization under DOS.B

B.11.1 Logical Drive Mapping
B.11.2 Size of a Logical Drive
8.11.3 Cluster Mapping
B.11.4 Segments under DOS.S
8.11.5 Maximum File Size
B.11.6 Cluster Allocation Table and Directory

B.12 Internal DOS Parameterization
B.12.1 Physical Disk Address Format
B.12.2 Hardware Address Structure

Appendix C. INTRODUCTION TO OOS.C
C.1 Planning for DOS.C
C.2 Performance of DOS.C
C.3 Disk Drives
C.4 Disk Media
C.5 Loading and Unloading Diskettes
C.6 Drive Numbering and Switches
C.7 Care and Handling of Diskettes
C.8 Preparing Diskettes for Use
C.9 Suggested Disk Organization Techniques
C.10 Disk Organization under DOS.C

C.10.1 Radius Spiraling and Sector Skewing
C.10.2 Size of a Diskette
C.10.3 Cluster Mapping
C.10.4 Segments under DOS.C
C.10.5 Maximum File Size
C.10.6 Cluster Allocation Table and Directory

C.11 Internal DOS Parameterization
C.11.1 Physical Disk Address Format

Appendix D. DOS.D
D.1 Planning for DOS.D
D.2 File Storage Capacity under DOS.D
0.3 Disk Drives
D.4 Disk Media
0.5 Loading and Unloading Disk Packs
D.6 Switches and Indicators
D.7 Disk Organization under DOS.D

0.7.1 Logical Drive Mapping
D.7.2 Size of a Logical Drive

D.7.2.1 Models 9370-9373 and 9390-9393
0.7.2.2 Models 9374/9375

0.7.3 Cluster Mapping
0.7.4 Segments under DOS.D
0.7.5 Maximum File Size

xv

B-9
B-9

B-10
B-10
B-11
B-11
B-12
8-12
B-13
B-14
B-14
B-14

C-1
C-1
C-2
C-3
C-3
C-3
C-5
C-5
C-6
C-7
C-8
C-8

C-10
C-10
C-11
C-11
C-12
C-13
C-13

D-1
0-1
0-1
0-2
0-2
0-2
D-J-t
D-5
0-5
0-6
0-6
0-7
D-7
0-7
0-8

D.7.6 Cluster Allocation Table and Directory
D.8 Internal DOS Parameterization

D.8.1 Physical Disk Address Format

Appendix E. DOS.G - 1800 OPERATING SYSTEM
E.1 CRT / Keyboard Interface Under DOS.G

E.1.1 Screen Line Numbering
£.1.2 Displaying on the Screen
E.1.3 Inputting Data From the Keyboard
E.1.4 Special CRT / Keyboard Features

E.2 Diskette Organization Under DOS.G
E.2.1 Loading and Unloading Diskettes
E.2.2 Drive Numbering
E.2.3 Care and Handling of Diskettes
E.2.4 Preparing Diskettes for Use
E.2.5 Sector Skewing
E.2.6 Size of a Diskette
E.2.7 Cluster Mapping
E.2.8 Segments Under DOS.G
E.2.9 Cluster Allocation Table and Directory

E . 3 In t ern a I DOS Par a In e t e r i z a t ion
E.3.1 Physical Disk Address Format

Appendix F. COMPARSION CHART FOR DOS'S

Appendix G. DISK DATA FORMATS
G.1 Disk Data Formats
G.2 OBJECT File Format for Disk
G.3 Relocatable Code Formats

G.3.1 Directory
G.3.2 Program Identification
G.3.3 Object Text

G.3.3.1 Memory Location
G.3.3.2 Absolute Text
G.3.3.3 Complex Relocatable References
G.3.3.4 Simple Relocatable References

G.3.4 External Definitions
G.3.5 External and Forward References (4096 maximum)
G.3.6 Transfer Address

G.4 Format of Library Files
G.4.1 Directory
G.4.2 Hembers
G.4.3 Library Type Chart

G.5 DATABUS Code File Format
G.6 DATAfORM Data File Format
G.7 MULTIfORM File Format
G.8 TEXT File Format
G.9 lSI File Format

xvi

D-8
D-9
D-9

E-1
E-1
E-2
E-3
E-3
E-3
E-5
E-5
E-6
E-6
E-6
E-6
E-7
E-7
E-7
E-8
E-9
E-9

F-1

G-1
G-1
G-1
G~3
G-4
G-5
G-5
G-6
G-6
G-7
G-8

G-10
G-11
G-11
G-12
G-12
G-13
G-14
G-14
G-14
G-15
G-16
G-18

G.10 SORT TAG File Format

xru

CHAPTER 1. CHANGES FROM PRIOR VERSIONS

The following changes have been implemented in DOS since
version 2.5 and its maintenance releases. All features and
corrections from the version 2.5 DOS releases are included in the
2.6 releases unless otherwise noted below.

1.1 Utility Programs

1.1.1 BACKUP

Error detection and correction has been significantly
improved. There is also a big performance improvement.

1 • 1 . 2 CAT

The CAT command will abort a search between drives if the
keyboard key is depressed.

1.1.3 COpy

COpy now has an "E" option which, if set, will cause COPY to
stop copying and chop the file when end of file is reached. If
you press the keyboard key while COpy is clicking, COpy will now
close and chop the file at that point.

1.1.4 DOSGEN

DOSGEN now writes on the volume being DOSGENed and then reads
the data back.

CHAPT ER 1 . CHANGES FROM PRIOR VERSIONS 1-1

1 • 1 .5 DUMP

DUMP now has "P" and "Q" options for handling print files.

1 • 1 • 6 EDIT

T1;>/O new commands have been added to EDIT. The" :G*" command
will display the line number of the pointed line. The" :T*"
command will display the current tab settings.

1.1.7 INDEX

INDEX will now accept column numbers up to 32,767 for key and
primary/secondary record specification.

1.1.8 MIN

MIN will now accept then "r" option to direct it to use the
rear cassette deck. MIN also checks for the existance of cassette
decks before executing.

1.1.9 PUTIPL

PUTIPL may now be run on a local volume while running under
ARC.

1.1.10 PUTVOLID

PUTVOLID may now be run on a local volume while running under
ARC.

1.1.11 REFORMAT

REFORMAT will now accept a record length specification of up
to 65535.

1-2 DISK OPERATING SYSTEM

1.1.12 SORT

SORT will now accept column numbers of up to 32767 for key
and primary/secondary record selection. The SORT key trains are
now sorted so an intermediate pass is not always required. SORT
now requires at least 20k and a 5500 instruction set.

1.2 System Routines

There is no longer an arbitrary upper limit on file size. A
file may be as large a~ will fit on one volume.

When running under ARC all DOS utilities permit access of up
to 31 logical drives. However, only 16 of these may be local
since in stand-alone mode DOS only permits accessihg 16 drives.
All 31 may be remote ARC volumes if you wish.

CHAPTER 1 . CHANGES FROM PRIOR VERSIONS 1-3

CHAPTER 2. INTRODUCTION

Datapoint Corporation's Disk Operating System (DOS) is a
comprehensive system of facilities for sophisticated data
management.

DOS provides the operator with a powerful set of system
commands by which the operator can control data movement and
processing from the system console. These commands allow the
system operator to accomplish things which could be substantially
more difficult on other computing systems. Sorting a large file,
for instance, can generally be accomplished in a single command
line. Despite the simplicity of operation, a wide range of
features is provided.

To the programmer, DOS offers a set of facilities to simplify
and generalize his task and file management problems. Concepts
like dynamic disk space allocation allow programs to efficiently
operate without regard to the amount of space required for the
data files they are using. In addition, the disk file structure
used by DOS allows for direct random access to data files. DOS
also makes use of fully space-compressed text files.

These features, combined with the ability to support up to
200 million bytes of high-speed random access disk storage,
provide a full range of data processing capabilities.

2.1 Hardware Support Required

The minimal configuration required to run DOS is a Datapoint
processor (1100, 1800, 2200, 5500, or 6600 family), with a minimum
16K of memory, and one disk storage unit (9320, 9350, 9370, 9380,
9390, or 1840 series). For backup and support purposes, users
with the Diskette 1100 series computer are required to have at
least one system with more than one diskette drive. 1800 systems
always use a minimum of 2 diskette drives. Configurations based
on the other processors can operate with only a single disk drive
unit in conjunction with the integral tape cassettes in most
processors, but for backup and system support purposes a two-drive
system is a recommended minimum.

CHAPTER 2. INTRODUCTION 2-1

2.2 Software Configurations Available

DOS is provided in several different models. Different
1I10dels are used depending upon the type of processor and disk in
use at an installation. Specific models are indicated by a letter
after a period in the name of DOS. The following models of DOS
are currently defined:

DOS.A -- Supports 9350 series disk drives on Datapoint 2200
and 5500/6600 family computers.

DOS.B -- Supports 9370 series disk drives on Datapoint 2200
and 5500/6600 family computers.

DOS.C -- Supports 9380 series disk drives on Datapoint 1100,
2200 and 5500/6600 family computers.

DOS.D -- Supports 9370 series and 9390 series disk drives on
Datapoint 5500/6600 family computers and 9320 series disk drives
on the 1800/3800 series computers. DOS.D is the host DOS for the
Datapoint ARC system, and is one of the operating systems
supporting the Datapoint Partition Supervisor systems.

DOS.E -- Supports 9350 series disk drives (with 16 buffer
disk controller) on Datapoint 5500/6600 family computers. DOS.E
also supports the Datapoint Partition Supervisor systems.

DOS.G -- Supports 1840 series disk drives on Datapoint 1800
family computers.

DOS.H -- Supports 151~0 series disk drives on Datapoint 1500
family computers. (DOS.H is not described in this manual. See
instead the DOS.H User's Guide, model code 50308.)

2.3 Program Compatibility

This manual describes the compatible set of facilities
available to the DOS user within the Disk Operating System.
Programs written in any of the supported higher level languages
(DATASHARE, COBOL, BASIC, RPG II and others) will generally run
unmodified on any of the DOS. Most programs written in assembler
language will also run under any of the dot-series DOS, without
reassembly.

Basically, in only a few cases will a program need to be
changed when it is transferred from one DOS to another. The need
for program modification will usually stem from one or more of the

2-2 DISK OPERATING SYSTEM

following types of situations, which should be avoided whenever
possible:

1) Programs which make assumptions regarding the size of
files. For example, programs originally written for the 9350
series disks might assume that the size of the biggest possible
file could be expressed as four ASCII digits. Under DOS.D, this
assumption is invalid since files under DOS.D may be over 38,000
data sectors long.

2) Programs which make assumptions regarding the physical
structuring of the data on the disks. For example, each DOS
allocates space on the disk in segments of different sizes, and
places its system tables in different locations on the disk.

3) Programs which generate or modify physical disk addresses
themselves. Since the disks are each organized somewhat
differently to take advantage of the particular characteristics of
the specific type of drives involved, the physical disk addresses
naturally vary among different DOS.

4) Programs which rely upon other characteristics of a DOS
which are not documented in this manual. A possible situation
would be where a programmer might look at the values in the
registers following the return from a system routine and
determine, for instance, that some routine always seemed to return
with the value "1" in one of the registers. If he then constructs
his program in such a manner that it will not function correctly
if the "1" is not present upon return from the routine, then he is
likely to find that his program will not work properly on a
different DOS.

5) programs which physically address the CRT/keyboard.

Only the first of the above situations will occur when using
a high-level language. The others only occur in assembler
language programs operating at the most detailed level of access
to operating system routines. Programmers who require this level
of detailed knowledge about the DOS will find the information
specific to each DOS in the Appendix for the DOS they are using.

CHAPTER 2. INTRODUCTION 2-3

CHAPTER 3. OPERATOR COMMANDS

All Datapoint computers include, as a standard feature, an
integral CRT display through which the internal computer
communicates with the operator. The system console also includes
a typewriter-style keyboard which the operator uses to communicate
wIth the computer. The DOS is normally controlled by commands
entered at this system console.

3.1 General Information

When DOS first becomes ready for commands, it displays a
signon message on the CRT and says "READY". Upon completion of
any job the DOS generally again displays "READY". Whenever the
ready message is shown, the operator may key in a command, which
will be displayed on the bottom line of the CRT as it is keyed in.
While typing a command, the BACKSPACE key will erase one character
for correction, and the CANCEL key will erase the entire line.

A command line specifies first what job is to be performed,
then any disk files or special system directives, then options for
the job. The command programs provided with DOS are described in
this manual; the information that must be entered for each command
is specified in the chapter about that command. A command line is
always terminated with the ENTER key.

3.2 Command Line Syntax

In general, a command line is entered as:

<field>,<field>,<field>,<field>;[options]

Each <field> indicates a DOS file name specification (see the Disk
Files chapter) or possibly a special field sucb as a subdirectory
name. The first <field> on the line always specifies the program
that will be run. Special attention must be given to the
separators between fields on the command line. The most common
separators are space and comIlla. For legibility the first two
fields are usually separated by a space and subsequent fields are
separated by a comma. A command then usually looks like:

SORT ACCTFILE,SRTFILE,:DR3;2-11

CHAPTER 3. OPERATOR COMMANDS 3-1

In this example the first field, the program to be executed, is
"SORT". The second field is "ACCTFILE", the third is "SRTFILE",
and the fourth is ": DR3". All of these fields provide information
to the SORT program. A semi-colon (;) is a special separator
which always separates <field> entries from [opti~nsl. In the
above example the options field is "2-11". Slash (/) and colon
(:) are special separators used within a file name.

Aside from the separators noted above, most special
characters ($, ?, #, =, and so on) act as separators just like
space or comma. In general, any character that is not a
syntactically valid part of a file name will be interpreted as a
field separator. The command example above could have been
entered as:

SORT@ACCTFILE=SRTFILE$:DR3;2-11

Even / and : may be interpreted as field separators if not used as
valid portions of a file name. Thus the command

COpy NAME/TXT/TEMP

has three fields: COpy, NAME/TXT, and TEMP. The use of special
characters is not recommended since the resulting command line is
very confusing for human interpretation.

3.3 Command Interpretation

As already noted, the first field on the command line
specifies the program to be executed. For any command this first
field must be given, any other fields mayor may not be needed for
a particular command. The command program must be a loadable
object file or the program load will fail and the DOS will simply
return to "READY" condition. If the program specified to be run
cannot be found, the DOS displays the message "WHAT?" and waits
for another command. If desired, the program name specification
can be preceeded by an asterisk (*) or a colon (:), indicating the
command is to be located in UTILITY/SYS in preference to a
separate command file (See Command Interpreter section).

Fields on the command line are often order dependent. If a
command is being used which accepts several fields, one of which
is not wanted, skip that field by entering two separators with
nothing between them.

SORT ACCTFILE, ,:DR3;2-11

3-2 DISK OPERATING SYSTEM

By using two commas, ":DR3" is recognized as the fourth field on
the line, with the third field being null.

3.4 Documentation Conventions

When the command line is discussed in this manual, the first
field is called the "command"; subsequent fields before the
semi-colon are called "<filespec>" or some similiar term;
characters following the semi-colon are called "options" or
"parameters".

Prototype command lines will be shown in the form:

command [<filespec1>J[,<filespec2>J[,<spec3> .. ~J[;<options>J

Items enclosed in angle brackets ("<filespec>") represent a
specification that will be entered on the actual command line.
The angle brackets are not punctuation actually used on the
command line. Square brackets also appear on the prototype lines
but are not actually used as punctuation on the command line.
Items enclosed in square brackets ("[;<options>J") represent
optional fields that may be omitted or included as desired by the
operator. Items on a prototype line that appear as capital
letters represent the actual characters that must be entered.
Items appearing as small letters represent the location for some
different actual entry.

3.5 Program Signon Messages

When a command program begins execution it first displays a
message identifying itself. If the command is specific to one
single DOS, the signon message will also identify which DOS the
command is designed to execute under. The main purpose of the
signon message is to allow the operator to determine, in the event
of some difficulty, whether a superseded version of the command
program is in use.

CHAPTER 3. OPERATOR COMMANDS 3-3

CHAPTER 4. EQUIPMENT CARE

Computers, disk drives, printers, and other data processing
equipment are delicate devices. They must be operated correctly
and given a degree of care to continue to perform correctly.
Datapoint prints "A Guide for Operating Datapoint Equipment",
model code #60252, which gives detailed instructions on the
operation of Datapoint equipment. It is recommended that any
installation without trained computer operators obtain this
manual.

4.1 Environment

Datapoint systems must be installed in an area with adequate
air conditioning. Datapoint processors can stand a fairly wide
range of temperatures, but disk drives should have a temperature
range of 60 to 80 degrees F. (15.5 to 26.7 degrees C.). The
temperature tolerance varies with the type of drive in use
(diskette drives can stand a much wider temperature range) but the
60-80 degree range is safest. Humidity must be kept low enough to
avoid condensation (below 80%) but high enough to avoid excessive
static electricity problems.

The machine area must be reasonably clean and dust-free.
Fanatic cleanliness is not necessary, but dust, cigarette ashes,
spilled liquids, and so forth can seriously affect machine
operation.

Processors and peripherals require fairly "clean" power to
avoid erratic operation. Machine room power should be supplied
from a completely separate transformer if possible. Be sure
devices such as adding machines and power tools are not connected
to the same power leads as computer equipment. The electric
motors in these devices cause severe power line noise and will
seriously affect machine operation. If necessary, isolation
transformers are available to supply clean power for Datapoint
equipment.

CHAPTER 4. EQUIPMENT CARE 4-1

4.2 Processor

The only user maintenance on the processor is to dust and
clean the cabinet, CRT screen, and keyboard occassionally and to
clean the cassette decks. The cassette decks are especially
sensitive to grime: dirty decks can cause read/write errors and
can even destroy tapes. The decks are cleaned in the same way
audio cassette decks are cleaned. Use tape head cleaner and a
cotton swab to clean the tape heads and capstans; use a dry,
lint-free cloth or swab to clean the pinch rollers. The cassette
decks should be cleaned as necessary depending on use; normally
every few months, as often as weekly if the decks get very heavy
use.

Be sure the ventilation slots on the top and rear of the
processor are never blocked, as impeded air flow will cause
overheating.

4.3 Disks and Disk Drives

Be sure all operators know how to insert and remove disks in
the disk drives. Disks must be stored properly in an environment
similar to that for the equipment. Consult the appendices of this
manual, or the Guide for Operating Datapoint Equipment, or the
Datapoint Product Specifications (green sheets) for details on
disk handling.

The disk drives must not be subjected to bumps or jolts or
head misalignment can occur. Physical location of the drives must
allow adequate air circulation for cooling purposes.

4.4 Other Peripherals

All peripherals should be dusted occasionally in keeping with
the necessary environment cleanliness. Aside from printers, most
Datapoint peripherals require practically no user maintenance.
For any necessary care, consult the Guide for Operating Datapoint
Equiprnent, the green sheets, or your Datapoint

4

service
representative.

Printer ribbons must be changed periodically to maintain
print quality. Cloth ribbons left in use for too long can
disintegrate, requiring a very messy clean-up of inky lint when
the ribbon is finally changed, so check the ribbon occasionally.
To avoid paper jams on printers, be sure the paper is aligned
correctly when loaded, and be sure the paper has a free path into

4-2 DISK OPERATING SYSTEM

the printer and as it emerges to the paper tray.

CHAPTER 4. EQUIPMENT CARE 4-3

CHAPTER 5. DISK FILES

On all DOS-supported disks, information is stored in sectors,
each of which contains 256 bytes of information. Sectors
containing related information are organized in a single
structured group called a file. All information on a disk will
generally be organized in files, except for certain system tables.

5.1 File Names

From the console, files are identified by a NAME, EXTENSION,
and LOGICAL DRIVE NUMBER. The NAME consists of up to eight
alphanumeric characters (no special characters). Typical file
names would include:

EDIT
EI"1PLOYEE
23NOV76

PAYROLL
JUL1075
X1

The EXTENSION must start with a letter and may be followed by
up to two alphanumeric characters. If an extension is used in a
file name, it is separated from the NAME by a slash (I). The
extension further identifies the file and usually indicates the
type of information contained in the file. A "TXT" extension
means text and usually implies data or program source code. "ABS"
implies program object code (absolute code) loadable by the system
loader. "CMD" implies an object code file to be used as a command
program from the system console. Other common extensions are:
REL, lSI, DBC, OVn, SYS, PRT, BAS, and LEX.

The LOGICAL DRIVE NUMBER specifies on which logical drive the
file is (or will be) located. The drive specification is
identified by a leading colon (:) and has the form ":DRn" or ":Dn"
or ": <volid>". When the": DRn" or ": On" forms are used, the "n"
is a number indicating the logical drive number as assign~d at
system installation. The ":<volid>" form allows logical volume
identification, regardless of the physical drive on which the disk
i s 10 cat e d . " < v 0 ~.i d> " is an e i g h t c h a r act e rid en t i fie r pIa c ed 0 n
a disk by the PUTVOLID program.

The complete form of a file name is thus

NAME/EXTENSION:DRIVE

CHAPTER 5. DISK FILES 5-1

When a file name is entered as part of a command, all three parts
of the name are not usually needed, though they can be specified.
The presence or absence of a part of the file name is determined
by the special separators "I" and":". Syntactically correct file
name entries are:

NAME/ABS:DRO
NAME/REL
NAME:DO
NAME

IABS:DR1
ITXT
:02
NAME:DOSD1

If a portion of the file name is not used, DOS applies default
values; the default value used depends on the location of the name
on the command line, and on the command in use.

The first field on any command line is the command program to
be run. For this field, a NAME must be given, the default
extension is CMD, and the default drive is any drive. (An "any
drive" default usually means a search of all drives, starting with
drive 0). If the command name is preceeded by an asterisk (*) or
a colon (:), the default extension and all-drive search do not
apply, as the leading character indicates the given name is to be
located as a member of UTILITY/SYS (an "absolute library"), rather
than searched for as a file.

The default values for file names given as parameters to a
command are described separately for each command.

5.2 File Creation

Files are always created implicitly. That is, the operator
never specifically instructs the system to create a given file.
Any command that writes to an output file will write into an
existing file or will automatically create a new file if
necessary.

A file to be created will be created on the drive specified
in its file name field or specified in default values applied to
its name. When a file is being created on a specific drive, files
with the same name and extension on other drives are unaffected.
If no drive is specified in the name or by default, the file is
created on any drive which has free space, the search for
available space starting on drive O. "Available space" means one
free space in the drive's directory, in which to place the name of
the new file, and at least one cluster of free space on the disk,
in which to place the data the file will contain. (A "cluster" is
the smallest unit of disk space that can be assigned to a file;

5-2 DISK OPERATING SYSTEM

clusters are defined in the chapter on System Structure.)

5.3 File Deletion

Deletion of a file is performed explicitly by operator
command, using the KILL comlnand described later. No other
programs delete an existing file, although procedures such as
system generation and backup naturally destroy all files on the
output disk.

5.4 File Protection

DOS files can be given three types of protection: write
protection, delete protection, and no protection. If a file is
write protected, it can be neither written upon nor deleted. If a
file is delete protected it cannot be deleted, although it can be
written over, effectively destroying any data previously in it.
If a file has no protection it can of course be modified in any
manner. The CHANGE command is used to set the protection of a
file.

CHAPTER 5. DISK FILES 5-3

CHAPTER 6. SYSTEM GENERATION

Before a disk can be used with DOS it must first be prepared
by writing onto it basic system tables. Also, a surface
verification must be performed so any bad areas of the disk
surface will not be used. On a new installation, the system
utility programs must be placed onto the disk for use. All these
operations constitute system generation.

6.1 Initial Generation

Datapoint distributes DOS in two forms: as a set of cassette
tapes or as a completely generated disk. Users who receive the
complete disks need not perform the cassette generation described
below, as it has already been performed on their disk. Anyone
requiring additional working disks should generate them as
outlined in "Scratch Disk Preparation".

6.1.1 Formatting

Before a disk can be written or read on any drive, it must be
appropriately formatted. Cartridge disks for use on Datapoint
drives (9350 series) require no formatting because they use
hardware formatting -- the sector formatting is inherent to the
disk. Datapoint diskettes (9380 series) are formatted when
received and do not require a special formatting process before
they can be used.

Diskettes for use on the dual-density drives (1840 series)
must be formatted when first used. The DOSGEN and BACKUP programs
of DOS.G are able to format the diskettes in the necessary manner.

The mass storage disks (9370 or 9390 series) also require a
special formatting process before they can be used. The first
tape of the DOS generation cassettes for mass storage operating
systems (DOS.B and DOS.D) is a formatting program. S~mply insert
the cassette in the rear cassette deck and depress RESTART/RUN (on
the 2200 processors only RESTART need be depressed). The tape
will rewind and then load the formatting program INITDISK. This
program will ask for a specific physical (not logical) drive
number containing the disk to be formatted. After receiving a
reply, the program will ask if the operator is certain the drive
number is correct and the disk in it is scratch, since formatting

CHAPTER 6. SYSTEM GENERATION 6-1

destroys any information previously on the disk. Formatting will
then proceed. When finished, the program will display a message
indicating the pack is completely formatted.

For additional information on the formatting program, see the
chapter on INITDISK.

6.1.2 Cassette System Generation

The first tape of the DOS generation cassettes (second tape,
for DOS.B and DOS.D) is the actual generation cassette. To use
this cassette load it into the rear cassette deck and depress
RESTART/RUN (on 2200 processors only RESTART needs be depressed).
The tape will rewind and then load the DOS generation program.
Loading takes about a minute. When the program has loaded it will
display a sign-on message and ask what logical drive is to be
generated. The drive specified must be on-line with a ready disk
in it.

Following drive selection the program will ask if a full
generation is desired. To get a full DOS generation, answer Y;
for a partial gen (useful only for upgrades from an older version
DOS) answer N. Partial generation is described below. Following
selection of full generation, the program will ask to be sure the
disk in the selected drive is scratch, containing no valuable
files that would be destroyed by generation.

After the verification questio~, the program performs a
surface test on the cylinders used by DOS for its system tables
and operating files. If this test fails, the disk is considered
unusable and error messages will so indicate. After a short pause
for the above test, the program will ask if any cylinders are to
be locked out. The normal answer to this question is N, since
locked-out cylinders cannot be used by DOS. If it is desired to
lock out any cylinders for special use, consult the DOSGEN chapter
for a description of cylinder lockout.

The next step in system generation is a quick surface
verification of th~ entire disk surface. If an error is
encountered, the program displays the cylinder number in which the
error occurred, beeps, and flags the cylinder in the Lockout CAT
so the DOS will not use it.

Following surface verification the basic system tables are
built on disk and the system programs are loaded from the tape.
Programs loaded are SYSTEMO/SYS - SYSTEM7/SYS, CAT/CMD, MIN/CMD,
and UBOOT/CMD.

6-2 DISK OPERATING SYSTEM

For initial generation of mass storage disks, be sure to
repeat the above procedure the proper number of times to assure
the entire physical volume is generated with all logical volumes.
To save time, the first logical volume of a physical pack can be
fully generated (finish loading utilities as described below),
then the remaining logical volume(s) on the pack can be generated
using the disk DOSGEN command described later.

After loading the system programs, system generation is
complete except for loading utilites, and the new DOS is brought
up ready for commands.

For 2200 and 5500 systems which need to be booted from a
cassette boot loader, as soon as the system is ready (easy to tell
since the message on the CRT is "READY") enter the command UBOOT
to produce a boot tape for the DOS. UBOOT will ask for a blank
tape in the front cassette deck and will then write and verify a
boot block on that tape. It is wise to make at least two boot
tapes at this time, since the boot tape is the only way to start
up DOS. Any time it is necessary to start DOS (after the
processor has been turned off, after loading a different set of
disks, etc.) simply place the boot tape in the rear deck and
depress RESTART/RUN (RESTART only on 2200) to boot the operating
system.

To completely finish system generation, the system programs
and utilities must be loaded. These files are contained on the
second and third tapes of the system generation cassettes (third
and fourth tapes for DOS.B and DOS.D). To load the commands
simply place each cassette in turn into the front cassette deck
and enter the command

MIN;AO:Dn

where n is the drive number being generated. When the files on
these two tapes have been copied to disk, generation is finished.

The generation cassettes for DOS.C include a fourth tape of
system cominands, containing all the programs in UTILITY/SYS (see
the appropriate chapter in this manual) as separate files. These
files are provided as a convenience so that only desired programs
can be placed on a system diskette, leaving free space on the
diskette for other use.

CHAPTER 6. SYSTEM GENERATION 6-3

6.2 Partial Generation

The Dos generation tape program has an option to perform a
partial generation for purposes of upgrading an older version of
DOS to the present version. To use partial generation load the
gen tape and specify the drive to be generated. When the program
asks if a full generation is desired answer N. The program will
ask a couple of verification questions to be sure it should just
replace the system and command files, and will then do so.

During partial generation the eight system files SYSTEMO/SYS
through SYSTEM7/SYS are replaced by new files from the tape. The
old utili ty programs must be deleted and new programs loaded from
tape before partial generation is complete. If the disk being
upgraded includes an existing UTILITY/SYS file, it may be
necessary to use LIBSYS to upgrade the absolute library, rather
than simply overstoring the old library with the new one. For
more information, see the chapter on UTILITY/SYS.

When performing a partial generation on a DOS. 1.1, 2.1, or
2.2 disk, it will be necessary to replace the old MIN/CMD with the
new command from the generation tape before the utilities tapes
can be loaded. (The old MIN cannot recognize the file format of
UTILITY/SYS.) The replacement operation must be performed before
the partial generation from the DOSGEN tape is performed.

To replace MIN, load the generation cassette in the front
deck and run MIN (the old command already on disk). MIN will
identify the tape as "CTOS SYSTEM TAPE FOR[\1AT" and will scan the
tape to find the CTOS catalog. When the catalog is located, the
files on the tape will be displayed and MIN will ask

LOAD B?

Skip the file named B by answering "N", skip CAT in the same
manner, then answer "Y" to load MIN. The program will ask for a
DOS file name; the name given should be "MIN/CM.D". MIN will ask
to be sure the existing command should be overwri tten, answer tty"~

to the OVERWRITE? question. Once MIN/CMD has been loaded, enter
an asterisk to end.~he program when it asks if UBOOT should be
loaded.

After MIN/CMD has been replaced, use the new MIN to load the
utility tapes in the normal manner.

Following a partial generation, it is a good idea to BACKUP
the upgraded disk with reorganization. The reorganization removes
any fragmentation in system files and allows an operator to easily

6-4 DISK OPERATING SYSTEM

delete undesired old files. Until the old command files have been
deleted, be sure to enter a leading * on each command so as to use
the new utilities from UTILITY/SYS.

Partial generation is not valid between some versions of DOS
(notably Version 1 DOS.B and any newer version). Check with your
Datapoint System Engineer before attempting an upgrade by partial
generation.

6.3 UPGRADE/X

A disk-based upgrade facility is available in a file called
UPGRADE/X, X being the letter specification of the DOS in use.
UPGRADE is a standard text file to be used as a chain procedure by
the command

CHAIN UPGRADE/X;OUTPUT=:Dn

where n is the drive number containing the disk to be upgraded.

The UPGRADE proced~re copies the eight system files from the
new version disk (which should be in drive zero) to the specified
drive. SYSTEM7/SYS is copied by use of COPY SYSTEM7/SYS;7 to
preserve the subdirectory structure on the old disk. After the
system files are copied, old utilities on the output disk are
deleted and new utilities are copied from the input disk. The
program PUTIPL is then run to place the necessary IPL blocks on
the output disk.

Since UPGRADE is a text file, it can be edited to modify the
chain procedure followed, to adjust to special needs. Any
modifications performed should be very carefully considered to
assure a good upgrade. System conversions are a complex process
and any errors can result in an unusable disk or lost data.

As with partial generation from cassette, use of UPGRADE is
not valid for all possible versions of DOS. Check with your
Datapoint System Engineer before using UPGRADE for a disk
conversion.

CHAPTER 6. SYSTEM GENERATION 6-5

6.4 Scratch Disk Generation

Any disk to be used in a DOS system must be generated to
contain the necessary system tables and basic system files.
Scratch disks or new system disks are best produced by use of the
DOSGEN program described later in this manual. DOSGEN is a
totally disk based program and performs much more quickly than
cassette generation. If necessary or desired, the DOS generation
cassette can be used to produce a new disk, as described above in
Initial Generation.

6.5 Generation Cassettes and Emergencies

If all boot tapes at an installation are lost or destroyed,
there is suddenly no way to access perfectly good disks. New boot
tapes can be made by loading the DOS generation cassette in the
rear deck and pressing RESTART/RUN, then holding down the KEYBOARD
key while the tape loads. After about 30 seconds a READY message
will appear on the screen from the CTOS (Cassette Tape Operating
System), which has just been loaded. Enter the command "RUN B"
and CTOS will load and run the program called "B", which is a
cassette-compatible version of USOOT, producing a new boot tape
for the DOS.

The generation tapes also provide an excellent backup copy of
all syste~ utilities and of the system files themselves. The
system files are on the DOS generation tape as files #21 through
#30 (SYSTEMO/SYS through SYSTEM7/SYS respectively). The
availability of such backups can be invaluable in event of massive
data loss on system disks.

6-6 DISK OPERATING SYSTEM

CHAPTER 7. ABTONOFF COMMAND

7.1 Purpose

The ABTONOFF command is used to manually modify the ABTIF bit
in DOSFLAG (see the description of //ABTIF in the chapter on the
CHAIN command.)

7.2 Use

The command line for ABTONOFF is:

ABTONOFF [<condition>]

Where <condition> is one of "ON" or "OFF", specifying the desired
condition of the bit. The command will display the prior
condition of the bit before modifying its status. If it is
desired to just manually inspect the bit without modifying it,
specify no <condition>.

CHAPTER 7. ABTONOFF COMMAND 7-1

CHAPTER 8. APP COMMAND

8.1 Purpose

The APP command appends two object files together creating a
third. Object files are files containing absolute object code in
a format that can be loaded by the DOS loader.

8.2 Use

APP <file spec>,[<file spec>J,<file spec>

The APP command appends the second object file after the
first and puts the result into the third file. Note that neither
of the input files are disturbed. If extensions are not suppli'ed,
ABS is assumed. The first two files (if a second is specified)
must exist. If the third file does not already exist, it will be
created. The first file's transfer address is discarded and the
new file is terminated by the transfer address of the second file.
The transfer address of an object file is defined as the entry
point of the program contained in the file.

Omitting the second file specification causes the first file
to be copied into the third file. For example:

APP DOG"CAT

will copy the file DOG/ABS into the file CAT/ABS.

The first and third file specifications are required. If
either is omitted the message

NAME REQUIRED

will be displayed. The second and third file specifications must
not be the same.

Because the APP command recognizes the actual end of the
object module contained in a file, APPing an object file, similiar
to the example above, is one technique for releasing excessive
unused space at the end of an object file.

CHAPTER 8. APP COMMAND 8-1

Another use of the APP command is to append patches to object
files, since the object files being APPed may load at the same
address as the object code in the original program. However,
since the new code is at the end of the module, it is loaded over
the old code.

8-2 DISK OPERATING SYSTEM

CHAPTER 9. AUTO COMMAND

9.1 Purpose

The AUTO command sets a program to be automatically executed
when the DOS is loaded. This auto-execute feature may be used to
facilitate automated procedures for unattended operation (as
described in the chapter on AUTOKEY), or for a varIety of other
purposes. AUTO can also simply change the program chosen for
auto-execution. Auto-execution is cleared by use of the MANUAL
command.

9.2 Use

AUTO is invoked by the comrnand

AUTO [<filespec>]

<filespec> is the name of the file to be auto-executed and must be
an executable object file on the booted drive of the system. The
default extension for <filespec> is ABS.

Following the program signon message, a line will be
displayed describing the prior status of auto-execution. If no
program was set to auto-execute, no message will be displayed. If
there was a program set for auto-execute, the message

AUTO WAS SET TO filename/ext (pfn).

will appear, where "filename/ext (pfn)" specifies the name and
physical file number of the old auto-execute pr~gram. The
optional <filespec> on the command line is required if there was
not a previous program set for auto-execution. If the <filespec>
is omitted when required the message

NAiv1E R EQ ' D

will be displayed and the program will terminate.

If a <filespec> is given in the command line the message:

AUTO NOW SET TO filename/ext (pfn)

CHAPTER 9. AUTO COMMAND 9-1

will be displayed (where pfn is the physical file number). When
the named file is set for AUTO execution a check is made to see if
the file is an object file and if the file is on the booted drive.
If the specified file does not exist, the message:

NO SUCH NAlvtE

will be displayed.

9.3 Operation of AUTOed Program

When a program is set to auto-execute, it will execute any
time the DOS is initialized. The automatic execution can be
suppressed by holding down the KEYBOARD key on the processor.
When the KEYBOARD key is depressed, DOS enters the normal command
interpreter ("READY" message) after initialization, regardless of
any program set for auto-execution.

Sometimes when a disk will not boot, the problem is caused by
an error in the auto-execute program. The program to be
auto-executed is identified only by its physical file number, so
if something has written over the program or if the program file
has been deleted, the system will hang up Hhen an attempt is made
to execute the file. To bypass this kind of problem simply boot
the DOS while holding down the KEYBOARD key (to suppress
auto-execution) then execute the MANUAL command to clear
auto-execution.

The AUTO command specifies only the program to be executed,
providing no addi tional information .~vhen the specified program
is executed it is not given any command line information, since no
command line is provided. This characteristic of auto-execution
makes it impossible to use AUTO for programs requiring or even
accepting parameters from the command line. Programs using
overlay files with the same name and a different extension will
not work when auto-executed because the name used to load the
overlay is usually obtained from the command line inforLnation.
Since almost all programs use command line information, very few
programs can be executed directly from auto-execution.

To overcome the limitations of direct auto-execution, the
command AUTOKEY makes it possible to extend the capabilities of
AUTO to encompass practically all programs. AUTOKEY is described
in a separate chapter later.

Automatic program execution is implemented by storing the
physical file number (PFN) of the file to be automatically

9-2 DISK OPERATING SYSTEM

executed. The PFN stored for this purpose is called the
Auto-Execute physical file number, or AEN. Whenever the operating
system is initialized by execution at the DOS$ entry point, the
file represented by the AEN of the booted drive is executed.
Normally the AEN is zero, representing no auto-execute program.
AUTO may set the AEN to any other value, allowing automatic
execution of any program, subject to the restrictions noted above.

CHAPTER 9. AUTO COMMAND 9-3

CHAPTER 10. AUTOKEY COMMAND

10.1 Purpose

Many users allow their Datapoint computers to run in an
unattended mode. This allows large data processing tasks, perhaps
running via the DOS command chaining facility (see CHAIN), to be
run during the evening hours when no operator is present. (An
example might be the creation of several new index files for one
or more large, ISAM-accessed data bases). However, the momentary
power failures which data processing users are being forced to
contend with during times of shortage, thunderstorms and the like
can bring down any computer not having special, uninterruptible
power supplies. When this happens to a computer running in
unattended mode, the office staff will generally return the next
morning to find their computer sitting idle and its v-lork
unfinished.

The Datapoint computers are all equipped with an
automatic-restart facility which can be used to cause them to
automatically resume their processing tasks following such an
interruption. The purpose of the AUTOKEY (and AUTO) commands is
to provide a software mechanism for users who wish to handle such
unusual circumstances and provide for the restarting of a
processing task.

10.2 Use

To specify a command line to be used during automatic system
restart, simply enter:

AUTOKEY [<command line string>]

at the system console. If no <command line string> is entered,
AUTOKEY will display the current autokey line if there is one and
then ask if this line is to be changed. If "N" is answered,
AUTOKEY simply returns to the DOS and the DOS "READY" message is
displayed. If "Y" is answered, AUTOKEY requests the new command
line to be configured and then returns to the DOS and "READY".

Alternatively, if the user wishes to simply specify a new
command line to be configured regardless of the current setting of

CHAPTER 10. AUTOKEY COMMAND 10-1

the AUTOKEY command line, he can merely place the new command line
string after the "AUTOKEY" that invokes the AUTOKEY command. This
will cause AUTOKEY to simply display the old and new commmand
lines and return to DOS.

10.3 The Hardware Auto-Restart Facility

There are a number of ways Datapoint processors handle
auto-restart.

10.3.1 Processors with tape decks

There are two small tabs on the back edge (directly opposite
from where the tape is visible) of each cassette tape. The
leftmost of these (as you look at the top side of the cassette) is
the write protect tab, which prevents writing on the topmost side
of the tape. The right-hand tab is the auto-restart tab.

Users who frequently use both sides of cassettes will
probably immediately notice that if one turns over the tape, the
assignments of these two tabs switch around, the tab which had
been write protect now being auto restart and vice versa. This in
fact is precisely what happens.

If the auto-restart tab on the rear cassette is punched out
(or slid to the side), then the computer will automatically
re-boot, just like it does when RESTART/RUN is depressed, whenever
the processor goes to STOP. Assuming that the rear cassette drive
contains a DOS boot tape, this will cause DOS to come up and
execute any program set for auto-execution.

10.3.2 Processors without tape decks

The Datapoint 1100 family of processors are provided with
switch-selectable auto restart. The computer will either halt or
automatically restart upon being stopped, depending upon the
setting of an internal switch. This switch can be set by a
Datapoint representative upon request.

Datapoint 1800 and 6000 users are provided with a firmware
auto-restart. Thus if the machine ever halts (due to a power
failure for example), on being started again it will attempt to
load the operating system.

10-2 DISK OPERATING SYSTEM

10.4 Automatic Program Execution Using AUTO

In order to provide a mechanism for programs to resume
automatically following an interruption (such as a DATASHARE
system, for instance, which might be running unattended) DOS has a
comparable facility to enable a program to be automatically
executed whenever DOS comes up. (Note that any loading and
running the DOS, whether by an auto-restart, executing the RESTART
procedure, or under program control, will activate this facility.)

The AUTO command is used to establish a program to receive
control when DOS comes up. This setting can be cleared with the
MANUAL command. For some applications, the AUTO and MANUAL
commands are adequate to allow a programmed restart of a lengthy
data processing task. However, some programs require parameters
be specified on the command line, and these are obviously not
present if no command line has been provided.

10.5 Auto-Restart Facilities Using AUTOKEY

AUTOKEY is simply a command program which can be AUTOed. The
way in which it works is very simple. If it is run via the DOS
auto-restart facility, AUTOKEY supplies a command line just as if
the same one line were entered at the system console.

The command line supplied to AUTOKEY could do anything that
can be specified in one command line to the DOS; DATASHARE could
be brought up, a SORT invoked, a user's own special restart
program started or even a CHAIN begun. AUTOKEY, when used with
AUTO, MANUAL, and CHAIN can therefore provide a very powerful
facility.

10.6 A Simple Example

As a simple example, assume that XYZ Company has several of
their sales offices on-line to their home office DATASHARE system,
which is running completely unatterided. Lightning strikes a
powerline outside of XYZ Company's home office, and power is cut
off for 15 seconds. As sQon as power is restored, their Datapoint
5500 computer re-boots its DOS (since the right-hand tab on the
boot tape has been punched out) and warmstarts the,DATASHARE
system. One command sequence to accomplish this would look like
the following:

CHAPTER 10. AUTOKEY COMMAND 10-3

AUTOKEY
DOS. VER n.n AUTOMATIC KEYIN COMMAND
NO AUTOKEY LINE CONFIGURED.
CHANGE THE AUTOKEY LINE? Y
ENTER NEW AUTOKEY LINE:
DS55500
READY
AUTO AUTOKEY/CMD
AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

An alternate form of the above would be the following:

AUTOKEY DS55500
DOS. VER n.n AUTOMATIC KEYIN COMMAND
NO AUTOKEY LINE CONFIGURED.
ENTER NEW AUTOKEY LINE:
DS55500 <--- (this is supplied automatically)
READY
AUTO ~UTOKEY/CMD

AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

Once a program has been set for auto-execution, the only way
one can bypass it is to hold down the KEYBOARD key while the DOS
is coming up. This action bypasses the auto-executed program and
enters the normal command interpreter. The user then can use ihe
MANUAL command to clear the auto-execution option.

10.7 A More Complicated Example

The following example uses many of the features of other
facilities in the Datapoint system besides simply AUTOKEY.
Explaining all of these in detail is beyond the scope of this
section. The intention here is just to demonstrate the
sophistication possible using AUTOKEY in conjunction with the
other facilities within the DOS.

Let's assume that XYZ Company is running an eight-port
Datashare system. Each of the company's seven sales offices
around the country has a Datapoint 1100 computer which is
connected up to the home office Datashare system as a port. (The
eighth port is used by the home office's secretary, Susie.)
During the day, each of the seven sales offices makes inquiries of
the central inventory, price, and model code files through a
system of Datashare programs, and another Datashare program lets

10-4 DISK OPERATING SYSTEM

them key orders into a file called "ORDERSn" where n is their port
number. At the end of each business day, XYZ Company wants to
process these orders. First they put the seven files all into one
large file, sort it, and use a Datashare program to make
corresponding entries into the master order file. The master
order file is then reformatted and the index reconstructed. The
final step is to create a second copy of the master order file
onto magnetic tape, which will then be saved for backup purposes.

Since the operation just described is fairly lengthy, one of
the programmers at XYZ Company decided to allow it to run
unattended after everyone has gone home. They even set up Susie's
MASTER program so that it automatically takes down the Datashare
system and starts up the end-of-day processing one-half hour after
the company's Los Angeles sales office (two time zones behind the
Chicago main office) closes for the afternoon. When the daily
processing is completed, Datashare is brought back up again so
that it will be up by the time the first people start arriving at
the New York sales office the next morning, an hour before the
Chicago main office opens.

In the event of an unanticipated power failure, the system
will recover and bring itself back up, resuming operations at the
last checkpoint established by AUTOKEY. Notice that the system is
also left in a state such that after the chain completes,
Datashare will automatically restart in the event of any possible
system failure. (NOTE: Datapoint 9350 disk systems using Diablo
disk drives will initialize with hardware in "WRITE PROTECT" mode
after power interruption.)

The following chain file ("OVERNITE/TXT") accomplishes the
preceeding, assuming that sUbdirectory "SYSTEM" is used throughout
the chain. The chain file could be modified easily to eliminate
this assumption. However, the chain file can be made almost
arbitrarily complicated; the point here is simply to show one of
many possible techniques for handling unattended operations which
wish to restart automatically in the case of some failure. Notice
that the chain file might have to be modified depending on the
particular version of DATASHARE an installation is using.

CHAPTER 10. AUTO KEY COMMAND 10-5

II IFS S1
II. FIRST SET UP FOR AUTO RESTART IF REQUIRED.
AUTOKEY CHAIN OVERNITE;S1
AUTO AUTOKEY/CMD
BUILD NULL;!
!
II. NEXT APPEND TOGETHER THE SEVEN FILES.
SAPP ORDERS1,ORDERS2,SCRATCH
SAPP SCRATCH,ORDERS3,SCRATCH
SAPP SCRATCH,ORDERS4,SCRATCH
SAPP SCRATCH,ORDERS5,SCRATCH
SAPP SCRATCH,ORDERS6,SCRATCH
SAPP SCRATCH,ORDERS7,SCRATCH
II. NOW SCRATCH CONTAINS THE DAILY FILES.
II. SET FIRST CHECKPOINT AT END OF PHASE 1
AUTOKEY CHAIN OVERNITE;S2
II XIF
II IFS S1,S2
II. PHASE TWO SORTS FILE "SCRATCH" INTO "ORDERDAY".
SORT SCRATCH,ORDERDAY;1-5
II. NEXT CHECKPOINT HAVING BUILT "ORDERDAY".
AUTOKEY CHAIN OVERNITE;S3
II XIF
II IFS S1,S2,S3
II. PHASE THREE PROCESSES THE FILE WITH A OS55500 PROGRAM.
BUILD CONFIGICHN;!
OS55500;C
Y
Y
Y
N
Y
N
N
Y
N

<----------null line (just hit enter)

CHAIN CONFIGICHN
DS55500 PROCESS

The program PROCESS/DBC ends with ROLLOUT "CHAIN NULL" to end the
program and continue the chain.

10-6 DISK OPERATING SYSTEM

I I. THE fv1ASTER ORDER FILE "ORDERl'1AS" NO'1'1 IS UPD?\TED.
II. SET NEXT CHECKPOINT
AUTOKEY CHAIN OVERNITE;S4
II XIF
II IFS S1,S2,S3,S4
II. PHASE FOUR REFORMATS THE MASTER ORDER FILE.
REFORMAT ORDERMAS,SCRATCH:WORK2;R
II. "SCRATCH" NOW IS A REFORHATTED COpy OF "ORDERMAS".
AUTOKEY CHAIN OVERNITE;S5
II XIF
II IFS S1,S2,S3,S4,S5
II. PHASE FIVE COPIES "SCRATCH" BACK TO "ORDERMAS"
COpy SCRATCH:WORK2,ORDERMAS
I I. " 0 R DE R ~1 AS" 1St J 0 W REA D Y FOR IN DE X I N G •
AUTOKEY CHAIN OVERNITE;S6
II XIF
II IFS S1,S2,S3,S4,S5,S6
II. PHASE SIX RECREATES THE INDEX FOR "ORDERMAS"
INDEX ORDERMAS;1-16
II. THE INDEX HAS NOW BEEN REBUILT.
AUTOKEY CHAIN OVERNITE;S7
II XIF
II IFS S1,S2,S3,S4,S5,S6,S7
II. NOW DUMP MASTER FILE TO 9-TRACK MAGNETIC TAPE.
TAPE ORDERMAS/TXT,I/E
B
o
200x4
X

* II. NOW THE BACKUP COpy OF "ORDERMAS" IS ON TAPE.
AUTOKEY CHAIN OVERNITE;S8
IIXIF
IIIFS S1,S2,S3,S4,S5,S6,S7,S8
BUILD CONFIG/CHN;!
DS55500;C
Y
N
N
N
N
N
Y
N
3600
3600
3600
3600

CHAPTER 10. AUTOKEY COMMAND 10-7

3600
3600
3600
3600

<------null line (just hit enter)

CHAIN CONFIG/CHN
KILL CONFIG/CHN
Y
KILL NULLITXT
Y
AUTOKEY DS55500
II. AND START UP OATASHARE FOR NEXT DAY.
OS55500
II XIF

10.8 Special Considerations

When building long chain files that allow for automatic
restart, several considerations must be made. Among these are
that a file must not be changed in such a way that the change
cannot be repeated if the previous checkpoint is actually used.
To accomplish this goal, frequently the file being updated must be
copied out to a scratch file, and the scratch file then updated.
Following the completion of the update is when another checkpoint
would be taken; following that the next phase would copy the
updated file back over the original. Note that a checkpoint (that
is, resetting the AUTOKEY command line) would have to be before
the creation of the dummy copy to be updated; putting a
checkpoint between the creation of the copy to update and the
actual updating process could result in the updating of a
partially updated copy. A little thought when choosing places to
update the AUTOKEY command line is called for to ensure that the
chain may be resumed from any of them without incorrect results.

10.9 AUTOKEY and DATASHARE

Some users who make frequent use of the OATASHARE ROLLOUT
feature will notice that AUTO-ing AUTOKEY with the AUTOKEY command
line set to DS55500;R will mean that whenever any port rolls out
to any program or chain of programs, Oatashare is automatically
brought back up when that program or chain of programs finishes,
regardless of whether or not DS55500;R was included at the end of
the port's chain file.

10-8 DISK OPERATING SYSTEM

CHAPTER 11. BACKUP COMMAND

11.1 Purpose

The BACKUP command provides for making copies of DOS disks.
The user can make either an exact mirror image copy of the input
disk or can select reorganization, which will group files by
extension and file name, remove unnecessary segmentation and allow
deletion of unnecessary files. Reorganization also allows copying
of DOS disks onto disks with locked out cylinders that differ from
those on the input disk. Some special considerations apply for
specific disk configurations.

11.2 Use

A disk backup is initiated by the operator entering the
following command:

BACKUP <input drive>,<output drive>[;options]

Input drive and output drive are specified as :DRn, or :Dn,
or :<volid>. If the drive selected as the input drive is not
protected (in "READ ONLY" mode), a message:

PLEASE PROTECT YOUR INPUT DISK
OR, TAP "DISPLAY" KEY TO CONTINUE

will be displayed. At this point protecting the input drive or
holding down the DISPLAY key will cause the following message:

DRIVE n SCRATCH?

If the disk on drive n is scratch enter a "Y". Any other
reply will cause the program to return to DOS. If you do reply
"Y", the program will display the message:

ARE YOU SURE?

If you are absolutely sure that you want to write over the
output disk, type "Y" again and press the enter key. Any other
reply will cause the program to return to DOS. If the output disk
has not been DOSGENedor the DOS file structure on it has been

CHAPTER 11. BACKUP COMMAND 11-1

damaged, the message:

DOSGEN YOUR DISK FIRST

will appear and control returns to DOS. If the output disk has
been DOSGENed and seems in reasonable shape, the following message
is displayed:

FILE REORGANIZATION?

If different cylinders are locked out on the input and output
disks (if the disks' lockout CATs do not match), a mirror image
BACKUP is not possible so the "FILE REORGANIZATION?" question is
bypassed. Instead, a message appears specifying that
reorganization is required and BACKUP with reorganization proceeds
as described below.

If you wish to reorganize the files being transferred to the
output disk, enter a "Y" in response to the reorganization
question. In this case, see the section on reorganizing files for
further instructions.

If you do not wish to reorganize your files and desire a
mirror image copy of your input disk, enter an "N" in response to
the reorganization question.

11.2.1 Options

DOS. C BACKUP is capable of "eliminating" the SYSTEI'1 files on
the output drive during reorganization. This saves 60 sectors on
a DOS.C diskette system. The SYSTEM files are not really
eliminated, however, they only take the minimum amount of space
possible (3 sectors each on DOS.C). To eliminate the-SYSTEM
files, use a "; N" for [; option] on the command line and use BACKUP
with reorganization.

The output diskette generated in such manner is not capable
of booting or executing DOS by itself, however, if it becomes
necessary to put the system files and the contents of that
dis k e t teo n to a n e \-1 dis k e t t e, u se the "; S" 0 P t ion. The S Y S T EM
files from the booted drive will be copied onto the output
diskette, along with the files from the input drive. This
operation requires a three drive system.

11-2 DISK OPERATING SYSTEM

11.3 Mirror Image Copy

If you have typed "N" in response to the file reorganization
question, the program will ask the question:

DO YOU WANT THE OUTPUT COpy VERIFIED?

The output copy should always be verified, so answer this
question 'Y'. Answering 'N' will result in a somewhat faster
backup operation, but there will be no testing for parity errors
on the output disk.

The program then asks:

DO YOU WANT TO COPY UNALLOCATED CLUSTERS?

Type "Y" and press the enter key if you want all data on the
disk copied regardless of whether or not it is in an area
allocated by DOS. This option is preferred in cases where you
suspect that your DOS files may be partially destroyed or the
output disk has never been fully initialized with data. Also use
this mirror image copy if you have the 9314 disk system and one of
the drive's heads gets misaligned. Backup will use the offset
feature to try and retrieve your data. If BACKUP uses the track
offset it will slow the program down but it could save your data.

Type "N" and pr es s the en ter ke y if you wi sh to copy your
disk as quickly as possible without copying unused areas of the
input disk. "Y" and "N" are the only replies allowed.

A mirror image backup makes the output disk a complete image
of the input disk. Following mirror image backup the volid of the
output disk is the same as the volid of the input disk, since even
the volid sector was copied during the backup. Mirror image
backup requires that the output drive have the same cylinders
locked out as the input drive.

11.4 Reorganizing Files

If you have typed "Y" in response to the file reorganization
question, the program will copy the System files, sort the
Directory names, and allow the operator to delete files before
copying the files to the disk copy.

Backup with reoganization to the booted drive is not
possible.

CHAPTER 11. BACKUP COMMAND 11-3

11.4.1 Copying DOS to Output Disk

Various program status messages will appear during the
copying of DOS. System tables are initialized and then the
SYSTEMn/SYS files are copied to the output disk. The system
tables themselves are not copied from the input disk to the output
disk, as is done in a mirror image backup. Following backup with
reorganization the volid of the output disk is unchanged from what
it was before the backup.

11.4.2 Deleting Named Files

When all directory names have been sorted into file extension
followed by file name sequence the following question will be
displayed:

DELETE ANY FILES DURING REORGANIZATION?

Type "N" and press the enter key if all files are to be
copied. Type "Y" and press the enter key if you wish to delete
any files. If you reply "Y" a message asking \vhich files are NOT
to be copied will appear. The lower screen will be filled by a
numbered list of files for you to choose from. Type the number or
range of numbers (nn or nn-nn) found next to names of indivi-dual
files you wish deleted. Type "ALL" and press the enter key if you
wish to delete all of the files in the list. The files selected
for deletion will be erased from the list. When all desired
deletions have been made from a list, type"." and press the enter
key to advance to the next list of file names.

When all file name lists have been examined, the program will
advance to the copy named files phase.

11.4.3 Copying Named Files

Files with names in the system directory are copied in
alphanumeric file extension, file name sequence. The name of each
file is displayed as it is copied. All files are written as close
together as possible with a minimum of segmentation.

11-4 DISK OPERATING SYSTEM

11.5 Use of KEYBOARD and DISPLAY Keys

The KEYBOARD and DISPLAY keys may be pressed any time
messages are being displayed. Depressing the DISPLAY key will
hold the current display until the key is released. Depressing
the KEYBOARD key will cause the program to terminate and return to
DOS.

11.6 Error Messages

During the execution of BACKUP the following error messages
may appear:

*** PLEASE PROTECT YOUR INPUT DISK ***
*** OR, TAP "DISPLAY" KEY TO CONTINUE***

Action: Write-disable the input drive.

INVALID DRIVE SPECIFICATION!

~ction: Retype the BACKUP command with correct <input-drive) and
<output-drive) specification.

ILLEGAL OUTPUT DRIVE!

Action: <input-drive) and <output-drive) have been specified as
the same drive! Retype BACKUP command with correct specification.

BAD CLUSTER ALLOC TABLE!

Action: A bad Cluster Allocation Table has been detected on the
input disk. The Cluster Allocation Table may be able to be fixed
using the DSKCHECK command.

CYLINDER 0 OF BACKUP DISK IS UNUSABLEI

Action: Your scratch disk cannot be used for a system disk due to
surface defects in cylinder O. Use another output disk and start
over.

SYSTEMn/SYS IS MISSING!

Action: Your DOS disk cannot be reorganized due to a missing
system file. Catalog the missing system file on your input disk
and start over.

PARITY ERROR ON DRIVE nn PDA: nnnn, nnnn

CHAPTER 11. BACKUP COMMAND 11-5

Action: An irrecoverable parity error has been detected on drive n
during mirror image BACKUP operation. The address is shown for
each error. If drive n is your output disk, DOSGEN must be rerun
to lockout the bad addresses or use a different scratch disk for
mirror image copy. If drive n is your input disk, new parity will
be computed and the record will be copied. Note the error address
and check for errors when copy is complete.

PARITY ERROR ON READ. LRN: nnnnn

PARITY ERROR ON WRITE. LRN: nnnnn

Action: An irrecoverable parity error has been detected during
BACKUP with reorganization. The LRN shown in the message is the
decimal system LRN at which the error occurred. The read error
occurs only on the input disk; the write error occurs only on the
output ,disk. Corrective action is the same as described above for
parity errors during mirror image copy.

FORWARD OFFSET TRACK BEING USED

REVERSE OFFSET TRACK BEING USED

Action: On a 9374 disk system a parity error has been detected on
the input drive and offset tracking is being used to try to
recover the data. There will be 10 attempts on both sides of the
track.

11.7 Reorganizing Files for Faster Processing

After a DOS disk has been used for awhile, the file structure
becomes fragmented and related files become scattered. The more
the disk is used the more total system performance is degraded due
to increased disk access time. System degradation is especially
noticeable when DATASHARE is, being used. File reorganization
using the BACKUP program is one way to clean up DOS disks and
improve their efficiency.

BACKUP reorganization improves system efficiency by making
the following changes:

· File segments are consolidated

· Files are packed more closely together

· Related files are clustered together

11-6 DISK OPERATING SYSTEM

. Unused trash files are removed (optionally)

. Files are rewritten reducing marginal parity errors

11.8 BACKUP with CHAIN

Because BACKUP requires that its input drives be write
protected, does not abort if parity errors occur during the
backup, and may ask different questions depending upon the
condition of the input and output disks, BACKUP generally should
not be invoked from a CHAIN. Since the BACKUP operation is so
critical to the protection of important files, an operator should
monitor the entire backup operation.

11.9 Clicks during Copying

A click occurs each time an unused sector is copied
(reorganization mode only). A file which, when copied, results in
a lot of clicks (more than a dozen, perhaps) can probably be
reduced in size, without any data loss, by using APP, SAPP or
COPY;E as appropriate.

11.10 Special Considerations for BACKUP

When using BACKUP on the 9320, 9370 or 9390 disk packs, it is
important to remember that each disk is more than one logical
drive. Since BACKUP deals with logical drives, BACKUP must be run
several times, once from each logical drive, to backup an entire
physical disk.

With the 9374 and 9354 disk drives, it is important to
remember that the drive contains a fixed platter that is a
separate logical drive. BACKUP between the fixed and removable
platters is possible.

CHAPTER 11. BACKUP COMMAND 11-7

CHAPTER 12. BLOKEDIT COMMAND

12.1 Purpose

The SLOKEDIT command provides for DOS text file manipulation.
The command copies lines of text from any DOS text file(s) to
create a new text file.

The SLOKEDIT command is useful for such things as:

New program source file generation by copying
routines from existing program source files;

Existing program source file re-arranging by
copying the lines of source-code into a Dew
sequence (into a new source file).

Re-arranging lines or paragraphs of a SCRISE
file into a new file.

In this Chapter, the following terms apply:

Text fi Ie iI1.eanS a DOS text fi Ie as de fi ned in
the REFORMAT chapter.

Line means one line of a text file as displayed
by the DOS LIST program.

12.2 Use

The syntax for the SLOKEDIT command line is as follows:

SLOKEDIT [<file spec>J,<file spec>[;optionJ

The first file specification refers to the command file, if not
specified the commands will be entered via the keyboard. The
second file specification names the new (output) file. If no
extension is supplied with the first file specification, TXT is
assumed. If no extension is supplied with the second file
specification, the extension given or assumed for the first file
is used. If no drive is given for the first file, all drives are

CHAPTER 12. SLOKEDIT COMMAND 12-1

searched. If no drive is given for the second file, the drive
g i v en 0 r ass u m ed for the fir s t f i 1 e is use d . I f nod r i ve was
specified for the first file specification then both files are
opened on the first available drive. The specified output file
must not exist on any drive on line unless the "0" option is used,
in which case the file is overwritten.

12.3 File Descriptions

BLOKEDIT deals only with text files. For any given
application there will be one text file called the COMMAND FILE
which will hold the controlling commands for BLbKEDIT. Optionally
the controlling commands may be entered directly to BLOKEDIT via
the keyboard by omitting the command file parameter. There will
be one or more text files called SOURCE FILES from which lines of
text will be copied. And there will be one text file called the
NEW FILE which will be the desired end result for the application.

12.3.1 Command Statement Lines

The command statements are the controlling factor for a
BLOKEDIT execution. The command statements specify which source
files will be used and which lines of text will be copied from
them. If the command statements are to be read from a command
file it must be generated by the DOS. EDIT command, or DOS. BUILD
command, etc., before BLOKEDIT can be used.

There are three kinds of statement lines that are meaningful
to BLOKEDIT: COMMENT lines, COMMAND lines, and QUOTED lines.

A COMMENT line is a line which has a first character of
period.

This is an example of COMMENT LINES:

. THESE THREE LINES ARE COMMENT LINES.

As in program source files, a comment line may have
explanatory notes or nothing at all following the period.

A COMMAND LINE is a line which has a SOURCE FILE NAME and/or
source file LINE NUMBERS, or begins with a double quote symbol
(") .

12-2 DISK OPERATING SYSTEM

The following are some example command lines:

FILENAME/EXT:DRO
1-100
350-377
150/TXT

NAME THE SOURCE FILE
COpy LINES 1 THRU 100
COpy LINES 350 THRU 377
NAME THE SOURCE FILE

A command line must have a first character of an upper-case
alphabetic character, or a digit, or a double quote symbol.

A command line that begins with an upper-case alphabetic
character indicates that a new SOURCE FILE is being named. A new
source file can be named only by putting the name of the file at
the very beginning of the command line. Optionally, the extension
and/or drive number for the file may be included with the source
file name. If the source file name begins with a digit the file
extension must be given.

A command line that begins with a digit indicates that the
command line ~ill have ope or more numbers, which are the numbers
of the lines to be copied from the source file previously
specified into the new file.

A command line that begins with a double quote symbol
indicates the beginning/ending of QUOTED LINES. The only
information used by BLOKEDIT in a command line that begins with a
en) is the en) itself, therefore the rest of the line can be used
for comments.

A QUOTED LINE is a line between a pair of command lines which
begin with a double quote symbol.

This is an example of QUOTED LINES:

n THIS IS THE
INCMNT HL

LAi'1
AD
LMA

" THIS IS THE

BEGINNING OF QUOTED LINES COMMAND LINE.
COUNT POINT TO COUNTER

LOAD TO "A" REGISTER
INCREMENT BY 1
RESTORE TO MEMORY

ENDING OF QUOTED LINES COMMAND LINE.

There may be more than one quoted line between the command
1 i n est hat beg i n wi t h ("). A quo ted 1 i n e wi 11 be cop i e d d ire c t 1 y
from the command file or keyboard to the new file. Quoted lines
enable a BLOKEDIT user to include original lines of text in a new
file along with lines copied from source files.

CHAPTER 12. BLOKE DIT COMI'1AND 12-3

12.3.2 Source File

The SOURCE FILE is a text file from which lines will be
copied. Source files are named in the command lines for a
BLOKEDIT application, and the lines to be copied from the source
file will also be specified in the command lines. It will be
useful to have a listing of a source file with line numbers, as
produced by the LIST command, when creating the command statement
lines for a BLOKEDIT application.

12.3.3 New File

The NEW FILE is a text file produced by the BLOKEDIT command.
The new file is named at BLOKEDIT execution time by the second
file specification entered on the command line.

12.4 Messages

This section describes the operator messages that BLOKEDIT
may display on the CRT screen during execution. Some of the
messages are monitor messages to keep the operator informed of the
progress of the program, while other messages are error messages.
If the keyboard was selected as input to BLOKEDIT, the user will
be prompted by the "Please enter BLOKEDIT command Enter * to
exit." message when input is required. The character * will
terminate SLOKEDIT and return to DOS.

The general format of the CRT display screen varies depending
on the source of the BLOKEDIT command statements.

If the command statements are being read from a command file
the format of the display is:

12-4 DISK OPERATING SYSTEM

/ DOS. VER. TEXT FILE BLOCKEDIT DATE oU'fpuf" FILErS-XXXXX7XX-\
PROCESSING COMMAND LINE nnn CURRENT SOURCE IS XXXXXXX/XXX:DR

Error Message Displayed Here If Necessary

\

If the command statements are being entered via the CRT keyboard,
the format is:

/-150S:-VER:-fExTFILE-BLOCKEOrr-DATE--·-OUTp·UT-flrEIs-xxxxXXX/XX\
PROCESSING COMMAND LINE nnn CURRENT SOURCE FILE IS -NONE-/ :DR

PLEASE ENTER A BLOKEDIT COMMAND ENTER * TO EXIT

\

As BLOKEDIT commands are entered on the bottom line, previous
lines are rolled up the screen.

CHAPTER 12. BLOKEDIT COMMAND 12-5

/

12.4.1 Informative Messages

PROCESSING COMMAND LINE .. CURRENT SOURCE FILE IS .. I .. :DR.

This message is the BLOKEDIT monitor message. This message
is displayed while BLOKEDIT is writing lines of text to the new
file. The monitor message displays the command file line number
currently being processed and the name, extension, and drive
number of the last named source file.

SOURCE FILE WENT TO E.O.F.

This message is displayed if the source file from which lines
were being copied ended before the specified lines were finished.

BLOKEDIT TRANSFER COMPLETE
OUTPUT FILE WAS name LINE COUNT WAS nnn

This message is displayed when all of the command file lines have
been executed. The number of lines in the new file is displayed
following the second line.

12.4.2 Fatal Errors

If SLOKEDIT detects a fatal error in the command statement
line the monitor message is rolled up the screen, an appropriate
error message is displayed, and the program aborts.

NEW FILE NAME REQUIRED

This message is displayed if the operator did not name a new
file when the BLOKEDIT command was called.

COMMAND FILE DRIVE INVALID

This message is displayed if the operator specified for the
command file a drive number that is invalid.

NEW FILE DRIVE INVALID

This message is displayed if the operator specified for the
new file a drive number that is invalid.

COMMAND AND NEW FILE NAMES MUST NOT BE IDENTICAL

This message is displayed if the operator specified command
file and new file names the same and the extension and the drives

12-6 DISK OPERATING SYSTEM

for the files were specified or assumed to be the same. Default
values of extensions and drives are described in an earlier
paragraph.

COMMAND FILE NOT FOUND

This message is displayed if the command file name was not
found on the drive(s) specified or assumed.

NEW FILE NAME IN USE
USE '0' OPTION ON COMMAND LINE TO OVER-WRITE EXISTING OUTPUT FILE.

This message is displayed if the specified output file was
found on the drive(s) specified or assumed. BLOKEDIT will not
write into an existing file if commands are being read from a
command file. If commands are being entered to BLOKEDIT via the
KEYBOARD, the operator is given the option to overwrite the
existing file:

***NEW FILE NAME IN USE, OVERWRITE IT? ANSWER WITH A YES OR NO

If the operator answers Yes (Y) the file is overwritten.
If the reply is No (N) BLOKEDIT returns control to DOS.

BAD FILE SPECIfICATION

This message is displayed if the first character of a command
file line, other than a quoted line, is an upper-case alpha
character but the DOS file specification was not recognizeable.

12.4.3 Selectively Fatal Errors

These errors are fatal when BLOKEDIT is reading a command
file, and informative when commands are being entered via the
keyboard.

SOURCE FILE NOT FOUND

This message is displayed if the source file specified could
not be found. It is probably either misspelled or in a different
subdirectory.

BAD LINE NUMBER SPECIFICATION

This message is displayed if a command file line other than a
quoted line began with a digit but contained an unrecognizable
line number specification.

CHAPTER 12. BLOKEDIT COMMAND 12-7

Here are some examples of valid line numbers:

4
999999
100-364

A single digit is acceptable.
A line number may have up to six digits.
First and last line to be selected are
separated by a dash.

34,55-78,100-147 Commas separate line specifications.

Here are some examples of invalid line numbers:

1A

123456'7
1 '7 -34-'77

Only "-", ",", or space after a digit,
unless the line is a source file
name beginning with a digit. If it is,
an extension must be given.
Number has more than six digits.
Only two numbers separated by "_rI

LINE NUMBER ZERO IS NOT VALID

This megsage is displayed if a line number of zero is
specifed in a command line. It is ignored if entered via the
keyboard.

START LINE NO. > END LINE NO

This message is displayed if the first number of a line
number pair is larger than the second number of the pair, as in:
235-176. It is ignored if entered via the keyboard.

BAD DATA IN SOURCE FILE LINE nnn *
This message is displayed if SLOKEDIT discovers non-ASCII

characters in a source file. The line number will be displayed
following the message. If commands are being entered via the
keyboard the source file is reselected, and next command is
requested.

NO VALID SOURCE FILE FOR TRANSFER

This message is displayed if SLOKEDIT discovers line numbers
to be transfered from a-source file when there is no open source
file.

12-8 DISK OPERATING SYSTEM

FORMAT OR RANGE ERROR ON SOURCE FILE

This message is displayed if DOS discovers a file which can
not be read. If commands are being entered via the keyboard the
source file will be de-selected, and next command requested.

CHAPTER 12. BLOKEDIT COMMAND 12-9

CHAPTER 13. BOOT

13.1 Purpose

The Alternate Drive Boot program provides a facility allowing
a Datapoint disk user to boot to any drive in his system. This
can be helpful with single drive systems using multiple logical
drives per physical drive when it is necessary to DOSGEN or to
BACKUP a pack with reorganization. If it is desired to DOSGEN
disks on a single physical drive system, there is a peculiar
problem: If DOS is running on drive 0, you cannot remove the disk
in drive 0 and replace it with a scratch disk and continue with
DOSGEN. This program lets you boot from drive 1 so that the
DOSGEN program can be executed on drive o. It is assumed that
DOSGEN, CHAIN, COpy and PUTIPL are on drive 1.

13.2 Use

To boot DOS from a different drive than the currently
"booted tl drive, enter:

BOOT [:<drv>][;<new DOS command line>]

~~here the new "boot" drive is specified by <drv> and the new DOS
command line following the semi-colon will be executed when the
boot process completes on the new drive. If you are not sure
where the currently booted drive is, enter:

BOOT

This will display the location of the booted drive on the screen,
and ask for a new boot drive.

CHAPTER 13. BOOT 13-1

13.3 Messages

WRONG DOS!!!
This program only operates on DOS version 2.5 or higher.

CURRENT "BOOTED" DRIVE IS :DRn.
This is a display of the currently "booted" drive.

THAT DRIVE IS OFF-LINE.
You requested booting from a drive that is not currently
available.

NOW BOOTING DOS FROM :DRn.
DOS will be booted from the new drive.

ENTER NEW "BOOT" DRIVE NUMBER (O-nn).
If a drive number was not specified on the command line,
you may enter a drive number here.

ENTER A DOS COMMAND LINE, OR TAP "ENTER".
When DOS is booted, it is possible to execute a command
line (like CHAIN, for example) as soon as the booting
process is done. If a DOS command line and a drive
specification were omitted when this program was entered,
you may now enter any valid DOS command line.

13-2 DISK OPERATING SYSTEM

CHAPTER 14. BUILD COMMAND

14.1 Purpose

BUILD provides an alternative means to create a text file
without having to use the standard DOS editor. BUILD is useful
for rapid generation of very short text files, such as two and
three line CHAIN files. Also, BUILD is usable from within a
CHAIN.

14.2 Use

The BUILD command is invoked by entering the command line:

BUILD <file spec>[;<end character>]

The <file spec> defines the output file. This output file
specification is always required. If the named file does not
exist, it is created. The default extension is ITXT.

The <end character> is optional. If no end character is
specified on the command line, BUILD terminates upon receiving a
null input line (a null input line is a line consisting of only an
ENTER; a blank line is not a null line).

BUILD accepts input lines from the keyboard and writes each
one to the output file. When BUILD is ready to accept an input
line it displays a colon (:) as a prompting character. Each input
line BUILD receives is tested for the presence of the specified
end character, if any, as the first character eqtered. If the end
character is present as the only character of the entered line,
the end line is discarded (it is not written to the output file),
and an end of file mark is written to the output file and the
output file closed by returning to DOS.

Entering an end character followed by a string will pass the
string to the output line without the end character and will not
terminate BUILD. This action allows entering CHAIN commands into
a chain file being written by BUILD from within an active CHAIN.

CHAPTER 14. BUILD COMMAND 14-1

14.3 A Simple Example

Suppose that the operator wishes to construct a simple CHAIN
file to establish a program to be auto-executed, so that the
auto-execute request can be accomplished later with a single
command line entered at the keyboard. All that is required is to
enter at the system console:

BUILD <chain file spec>;A
AUTOKEY <program name>
AUTO AUTOKEY/CMD

Upon recelvlng the " " input line, BUILD closes the output
file and terminates. Note that in the two places where the If "

appears, any enterable character could have been used. (This
allows nesting calls to BUILD, which can be very useful in the
BUILDing of chain files). After the BUILD command is finished,
the output file named on the BUILD command line contains the
following two lines:

AUTOKEY <program name>
AUTO AUTOKEY/CMD

It is also possible, through BUILD nesting, to create chain
files which during execution of the chain construct other chain
files and execute them automatically upon completion of the first
chain (since any statement of a chain file is allowed to be a
CHAIN command).

The chapter on the CHAIN command contains further examples of
the use of BUILD from within a CHAIN procedure.

14.4 KEYBOARD and DISPLAY Keys

The KEYBOARD and DISPLAY keys may be pressed any time
messages are being displayed. The keys will be effective just
prior to the display of the prompting ":". Depressing the DISPLAY
key will hold the current display until the key is released.
Depressing the KEYBOARD key will cause the program to terminate
and return to DOS.

14-2 DISK OPERATING SYSTEM

CHAPTER 15. CAT COMMAND

15.1 Purpose

The CAT command selectively displays filenames in the DOS
directory or in a library directory. One may choose to display all
cataloged filenames on all drives online, or specific filenames on
specific drives.

15.2 Use

The CAT command is invoked by entering the command line:

CAT [<name>][/<ext>][:<drv>][*][,L]

where: <name> specifies the filename or a portion of the
filename, <ext> specifies the extension or a portion of the
extension, <drv> specifies the logical disk drive, an asterisk
indicates the named file is a library, and L specifies list only
those files in the current subdirectory.

The default handling of the various input fields is any file
name, any extension, input not a library, and any subdirectory.
If the asterisk is used to specify a library check, the default
file name and extension becomes UTILITY/SYS.

Directory entries are displayed in the form:

NAME/EXTENSION (PFN) P

where PFN is the physical file number in octal (0-0317) and P is
the protection on the file; D for deletion, W for write, and blank
for none. If the file displayed is in a subdirectory other than
system, the directory entry is displayed in the form

NAME/EXTENSION-(PFN)P

with the dash indicating a sUbdirectory entry. All drives are
searched, unless a specific drive is requested, and as each drive
is scanned, the line

---- DRIVE n VOLUME ID (volid) SUBDIRECTORY (subdirectory name):

CHAPTER 15. CAT COMMAND 15-1

is displayed. This line is not displayed if the drive is not on
line, or if no files from it are to be displayed.

Depressing the DISPLAY key causes the catalog display to
pause as long as the key is held. Depressing the KEYBOARD key
causes the catalog display to terminate. If CAT is already
displaying it will abort immediately. If CAT is still searching
it will abort when it changes drives.

If the CAT command is parameterized by an extension, only
files of that extension will be displayed. If the CAT command is
parameterized by a name, only files of that name will be
displayed. If the CAT command is parameterized by a name and an
extension, only files of that root name and extension (all drives)
will be displayed. If the CAT command is parameterized by a drive
number, only files on that drive will be displayed. If only a
portion of the filename is entered, all files beginning with the
letters specified will be displayed. For example, entering:

CAT IT

would cause the display of all files on all on-line drives whose
extensions start with "T". Entering:

CAT MA:WORK2

would cause the display of all files on symbolic drive "WORK2"
whose file names start with "MA".

15-2 DISK OPERATING SYSTEM

CHAPTER 16. CHAIN COMMAND

16.1 Purpose

The CHAIN command executes a series of programs as defined by
a procedure file created by the user. The procedure file
contains the commands to invoke all required programs, and all
inputs for those programs. Basically, CHAIN repla6es the DOS
keyboard entry routine with a routine that reads lines from a work
file when the keyboard entry routine is called. Each time any
program would normally request a line to be entered from the
keyboard, it will read from the work file instead. When the last
line of the work file has been read, DOS is reloaded and commands
are again accepted from the keyboard.

CHAIN features several directives to control the procedure
executed. Tags defined on the CHAIN command line can be specified
to modify lines of the procedure file. CHAIN provides procedure
restart capabilities via "CHAIN *" and "CHAIN/OV1". When used
with AUTO and AUTOKEY, CHAIN provides an extensive automatic
procedure facility, as described in the AUTOKEY chapter.

The procedure file is a normal DOS text format file.
Procedure files are generally created using the DOS editor or the
BUILD command, but may also be created by any means producing a
suitable text file (a DATABUS program, for example).

16.2 Use

The command line to invoke a CHAIN procedure is of the form:

CHAIN <procedure>[;<tag1>[=<va11>J[,<tag2>[=<va12>J ... J[-JJ

<procedure> is the user-defined chain procedure file. This file
must already exist and must be specified on the command line. The
default extension is fTXT. The <tag n> and <vaIn> entries in the
option field are chain tags and their substitutIon values,
described fully below. The substitution value for a tag may be
specified in the form <tagn>#<val n># as well as in the form
<tagn>=<val n>·

The CHAIN command line can be extended to more than one line

CHAPTER 16. CHAIN COMMAND 16-1

by placing a hyphen (-) at the end of the option field. After
scanning the current line of the command, CHAIN will display a
colon as a prompt for the operator and wait for entry of another
line of tags and substitution values. The command can be
continued for several lines by repeated use of the hyphen.

16.2.1 CHAIN Compilation

CHAIN executes two phases, the first of which is compilation.
During compilation the specified procedure file is read and
compiled into a chain work file. Compilation consists of
evaluating and executing CHAIN directives and performing tag
substitution. The output of compilation is placed in a file
called CHAINP/SYS, which directs the operation of the program
chain during execution phase.

The chain work file is always placed on the same logical
drive as CHAIN/CMD and CHAIN/OV1, the CHAIN program files. When
operating under PS (Datapoint Partition Supervisor) the partition
10 is used in the' work file name instead of "P" to assure unique
identification of the chain work file for each partition. The
work file is placed in subdirectory SYSTEM no matter what the
current subdirectory is, so the current subdirectory can be
changed during the chain and the work file will still be
accessible. If the work file is created on an ARC (Attached
Resource Computer) remote volume it is placed in the current
subdirectory (rather than SYSTEM) to avoid work file usage
conflicts among different applications processors.

When CHAIN is used recursively (that is, when CHAIN is
invoked from within a chain procedure) the same work file is
re-used, the additional compiled information being added to the
end of the file. The extent of recursive nesting of chain
procedures is limited only by the amount of space available for
the work file.

16.2.2 CHAIN Execution

Execution begins following compilation, when the 'first line
of the chain work file is read and given to DOS as a command line
input. Execution continues until the work file is exhausted or a
fatal error occurs. During CHAIN execution the DOS keyboard entry
routine is replaced by a disk read routine so that any entry
normally read from the keyboard will be read instead from the
chain work file. For details on this execution interface see the
section on "CHAIN Programming Considerations".

16-2 DISK OPERATING SYSTEM

CHAIN execution is aborted when:

1. A line from the chain work file is longer than allowed. DOS
command lines within the chain procedure can be 80 characters
long. The allowable length of lines for input to different
programs depends on the programs used. For example, when a
program requests a file name it generally allows about 20
characters to be entered. If a chain procedure gave a line of
30 characters in response to such a request the chain would
abort.

2. The end of the work file is reached while a program is
requesting input. The work file must provide all responses
needed for execution of the programs used; it cannot invoke a
program then end without supplying all required inputs.

3. An //ABTIf directive is executed when the ABTIr bit is set.
See the section on "ABORT Directives".

4. A program executing during the chain procedure terminates in a
fatal error. Each program can control whether it aborts or
continues a chain upon termination. For details see the
section on "CHAIN Programming Considerations".

16.3 Tag Definition

The CHAIN command line can contain both tag names and
substitution values for the tags. The tag names can be from one
to eight characters in length and may have values from one to
seventy characters in length. A tag must contain only letters or
digits. The value of a tag may contain any valid character except
comma (,), equals (=) or pound sign (#). The character
restriction depends on the syntax being used.

A tag is defined by just its presence on tke CHAIN command
line. Tags may have a value given to them by one of the following
syntaxes:

CHAIN DOIT;LIST,DATE=30NOV76,TIME=1500hr

CHAIN DOIT;LIST,DATE#30NOV76#,TIM£#1500hr#

(New Syntax)

(Old Syntax)

Both syntax structures are supported and the result of the
two CHAIN commands is identical. The tag LIST has been defined
but has a null value; DATE has the value of 30NOV76 and TIME has
the value of 1500hr.

CHAPTER 16. CHAIN COMMAND 16-3

CHAIN allows two uses to be made of tags:

1. A tag can be tested to determine whether it was defined
on the CHAIN command line.

2. The value of the tag can be substituted on CHAIN input
statements before the line is written to the work file.

16.4 CHAIN Directives

All CHAIN directives are denoted by the characters "II" at
the beginning of a line. Any number of spaces (including zero)
are scanned until the CHAIN directive is reached. The first thing
after the "II" must be a valid CHAIN directive else an error
message is issued and CHAIN is aborted. The following is a list
of these statements.

IIIFS
IIIFC
IIXIF
IIELSE
IIBEGIN
IIEND
II.
11*
IIABORT
IIABTIF

16.4.1 IF Directive

IF SET (TAG DEFINED)
IF CLEAR (TAG NOT DEFINED)
END OF IF
REVERSE EFFECT OF IF
BRACKETS A GROUP OF

IF/ELSE/XIf STATEMENTS
EXECUTION TIME COMMENT
EXECUTION TIME BREAKPOINT
ABORT CHAIN COMPILATION
CONDITIONALLY ABORT CHAIN
COMPILATION TIME COMMENT.

are not present)

EXECUTION
(Note that the II's

The IF directive has two variations, IFS and IFC, which are
IF SET and IF CLEAR. The IFS directive proves positive if the tag
named appeared on the CHAIN command line, and negative if the tag
was omitted.

For example:

IIIFS LIST

will prove positive if LIST was mentioned in the CHAIN command
line, and negative if the tag does not exist, and

IIIFC LIST

16-4 DISK OPERATING SYSTEM

will prove positive if LIST was omitted and negative if it
appeared on the CHAIN command line.

When an IF directive tests negative, it causes the chain
compilation to skip all following lines of the procedure file
until a directive is reached which clears the effect of the IF (an
ELSE or XIF). When an IF directive tests positive it has no
effect on the chain compilation. Normally the chain compilation
iss aid to" inc 1 u de" 1 i n e s fr 0 m the pro c e d u ref i 1 e j inc 1 us ion i s
inhibited by a negative evaluation of an IF directive.

Simple logical operations can be performed by IF directives.
The tags to be used are separated by logical operators. The
log i calOR i sin d i cat e d by':' (v e r tic alb a r) 0 r ',' (co mm a). Th e
logical AND is indicated by '&' (ampersand) or '.' (period). For
example the following lines are in the file DOlT:

IIIFS DATE&TIME:QUICK
DB C ["1 PTE S T ; L
SAMPLE COMPILE

or IIIFS DATE.TIME,QUICK
DBCMP TEST;L
SAMPLE COMPILE

If DATE and TIME or QUICK are defined on the CHAIN command line
the DBCMP lines will be included in the work file.

or

or

CHAIN DOITjDATE=30NOV76,TIME=1500hr

CHAIN DOIT;QUICK

CHAIN DOITjDATE,TIME

will all result in a true logical condition and the DBCMP lines
will be included.

IF directives are only evaluated if lines are being included.
If'one IF directive has proven negative and has inhibited the
inclusion of lines, all following IF directives will be ignored
until either an ELSE or XIF statement is found.4 For example~

IIIFS DATE
IIIFS TIME
DBCMP TESTjL
SAMPLE COMPILATION
IIXIF

If DATE was not defined, all lines until the IIXIF will be
ignored. In this example, if DATE were not defined the IIIFS TIME
statement would not be evaluated and the DBCMP TEST;L would not be
included even if TIME was defined.

CHAPTER 16. CHAI N COtv1MAND 16-5

16.4.2 ELSE/XIF Directives

CHAIN has two directives that will alter the inclusion of
lines from an IF directive. The first is the XIF directive. It
will unconditionally terminate the range of the last IF directive.
The second is the ELSE directive; it will reverse the results of
the last IF directive; that is to say, if lines were being skipped
because the last IF proved negative, an ELSE would cause lines to
be included.

For example, the DOlT file contains the following lines:

IIIFS LIST
DBCMP TEST;L
SAMPLE COMPILATION
IIELSE
DBCMP TEST
IIXIF
I/IFS TAPE
MOUT;D,30NOV76,V
TEST/DBC
*
//XIF

If CHAIN is invoked by 'CHAIN DOIT;LIST' the work file will
contain

DBCMP TEST;L
SAMPLE COMPILATION

If invoked by 'CHAIN DOIT;TAPE', the work file will contain

DBCMP TEST
MOUT;D,30NOV76,V
TEST/DBC
*

16.5 Tag Value Substitution

A tag value is substituted whenever a pair of '#\ symbols are
found with a syntactically valid tag name between them. The value
substituted is the tag value given in the CHAIN command line.

For example, contents of a file called DOlT:

16-6 DISK OPERATING SYSTEM

DBCMP TEST;XL
TEST PROGRAM COMPILED ON #DATE# -- UTIME#
DBCMP #NAME#;XL
#NAME# PROGRAM COMPILED ON #DATE# -- UTIME#

If CHAIN is invoked by

CHAIN DOIT;TIME=2400hr,DATE=29NOV76,NAME=TEST2

the work file will contain

DBCMP TEST;XL
TEST PROGRAM COMPILED ON 29NOV76 -- 2400hr
DBCMP TEST2;XL
TEST2 PROGRAM COMPILED ON 29NOV76 -- 2400hr

If a tag is mentioned in the CHAIN command line but given no
value and if the value is to be used for substitution, a null
value is substituted for the Utag# within the line. The effect is
that the OtagO characters disappear froln the line. Continuing the
above example, if CHAIN was invoked by

CHAIN DOIT;DATE=29NOV76,NAME=TEST2

the work file will contain

DBeMP TEST;XL
TEST PROGRAM COMPILED ON 29NOV76 -­
DBCMP TEST2;XL
TEST2 PROGRAM COMPILED ON 29NOV76

16.6 BEGIN/END Directives

The BEGIN and END statements allow groups of IF/ELSE/XIF
statements to be parenthesized. A counter called the BEGIN/END
counter is initialized to zero when compilation of a procedure
begins. If the use of procedural lines is turned off and a BEGIN
operator is encountered, then the BEGIN/END counter is
incremented. If an END operator is encountered, then the
BEGIN/END counter is decremented unless it is already zero. The
ELSE and XIF operators have no effect if the BEGIN/END counter is
not equal to zero. For example:

CHAPTER 16. CHAIN COMMAND 16-7

IIIFS FLAG1
DBCMP TEST1;XL
TEST PROGRAM ONE
IIELSE
IIBEGIN
IIIFS FLAG2
DBCMP TEST2;XL
TEST PROGRAM TWO
IIELSE
DBCMP TESTTEST;XL
TEST TESTER
IIXIF
IIEND
IIXIF
IIIFS FLAG3.FLAG27
LIST SCRATCH;L
THE SCRATCH FILE AT FLAG 27
IIXIF

The 6th through the 12th lines will not be used if FLAG1
exists, notwithstanding the fact that there is an ELSE and XIF
operator within those lines, because the BEGIN/END pair prevented
these statements from having any effect.

16.7 ABORT Directives

The IIABORT statement will cause CHAIN to return to DOS if it
is processed. For example:

IIIFC TIMElDATE
**** TIME AND DATE ARE BOTH REQUIRED

IIABORT
IIXIF

If the procedure file is invoked with TIME or DATE missing, the
error message comment line would be displayed, and the compilation
of the input file would ABORT.

The IIABTIF statement will conditionally cause the execution
phase of CHAIN to ABORT. This statement causes DOSFLAG to be
examined and if bit 7 (ABTIF) is on, the chaining will abort. Bit
'1 of DOSFLAG is the abnormal program completion bit. If non-fatal
errors have been found during the execution of the last program

16-8 DISK OPERATING SYSTEM

the ABTIf bit should be set. For example, the procedure file
contains:

ABTONOFF OFF
KILL TESTFILE/CMD
Y
IIABTIF
KILL OUTPUT/TXT
Y

If the file TESTFILE/CMD is not found by KILL, it will set the
ABTIF bit. When the IIABTIF statement is processed the abnormal
program completion bit will be check~d, and in this case it will
be on, so the CHAIN will be aborted.

The ABTONOFF command should always be used to turn the ABTIF
bit off prior to execution of a program which will be tested using
IIABTIF. Once ABTIf is set on by some error, it is not cleared
except by ABTONOFF or by an abort caused by an IIABTIF directive.

16.8 Comments

CHAIN allows for two types of comment lines within the
procedural file. One type is the execution time comment. This
type may appear only before a DOS command entry and will not
appear until just before that command is to be executed. An
execution time comment can appear only just before a command
because at any other place in a procedure file, the comment would
be presented as keyboard response to an executing program.
Comments can be placed at the end of a procedure, since this
location is equivalent to immediately prior to a command. For
example, the procedure file containing:

II. COMPILATION OF THE TEST PROGRAM
DBCMP TEST;XL
TEST PROGRAM

would cause the first line to be displayed before the assembly was
executed. A variation on the execution time comment is the
operator break point. For example, the procedure file containing:

CHAPTER 16. CHAIN COMMAND 16-9

//* INSERT TAPE Z12548 INTO THE FRONT CASSETTE DECK
MOUT ; LV
TEST/TXT
DATA/TXT
*

would cause a BEEP and the first line to be displayed. At this
point the machine would wait for the operator to depress either
the KEYBOARD or DISPLAY key and then continue with the MOUT
process.

The second type of comment line is a compilation time
comment. This line is not included in the work file but is
displayed on the screen immediately after it is read from the
procedural file. This is useful in communicating to the operator
what procedure is about to be followed by CHAIN.

Both types of comment lines will be ignored (not displayed or
written) just as other procedure lines if a test has proven
negative and an ELSE or XIF operator has not been reached. For
example, if the following procedure file MAKETEST was created:

COMPILATION OF TEST PROGRAM
//IFS LIST

YOU ARE GOING TO GET A LISTING
DBeMP TEST;XL
TEST PROGRAfv1
//ELSE

YOU AREN'T GOING TO GET A LISTING
DBCMP TEST

and the CHAIN command:

CHAIN MAKETEST;LIST

was given, then only the lines:

. COMPILATION OF TEST PROGRAM

. YOU ARE GOING TO GET A LISTING

will appear on the screen before the procedure is executed. If,
however, the CHAIN command:

CHAIN MAKETEST

was given, then only the lines:

16-10 DISK OPERATING SYSTEM

. COMPILATION OF TEST PROGRAM

. YOU AREN'T GOING TO GET A LISTING

will appear on the screen before the procedure is executed.

16.9 Complex CHAIN Examples

The chapter on the AUTOKEY command contains an example of the
use of AUTO and AUTOKEY combined with the use of CHAIN directives
using tag existence testing to set checkpoints for automatic
restart of a lengthy automated procedure. The example below uses
BUILD within a chain procedure to create a procedure file for
later execution by another chain. It uses several tags for both
existence testing and value substitution.

The procedure file below, "RUNTEST", is part of a series of
CHAIN procedures for program generation and testing. RUNTEST
builds a procedure file for program compilation; the resulting
procedure file would be run by a later CHAIN.

RUNTEST recognizes several tags:

PLUS

XTR

fLAG

PROG

DATE

mention of this tag indicates the compilation
should use the DBCMPLUS compiler instead of the
older DBCMP compiler.

mention of this tag causes use of the additional
list output commands (C and R) available in
DBCMPLUS.

the substitution value for this tag will be tag
existence tested for list control on the output
procedure file.

the substitution value for thi~ tag will be a tag
to provide program name in the output procedure
file.

the substitution value for this tag will provide
the compilation date in the output procedure
file.

CHAPTER 16. CHA I N COtv1tvlAN D 16-11

RUNTEST contents:

· TEST FOR DBCMPLUS COMPILER FLAG

· IIIFC PLUS
IIBEGIN

· BEGIN PROCEDURE FOR DBCMP COMPILATION

BUILD COMPIT;!

· NOTE HOW BEGINNING INPUT LINE TO BUILD/CMD WITH THE TERMINATION CHARACTER
· ALLOWS ENTERING CHAIN COMMANDS TO THE OUTPUT FILE. THE LINE IMMEDIATELY
· BELOv~ IS WRITTEN OUT AS "I IIFS IIFLAGII"; IF IT HAD NOT BEGUN WITH "I If, IT
· WOULD HAVE BEEN INTERPRETED AS A CHAIN DIRECTIVE FOR THE CURRENT CHAIN.
· IIIIFS IIFLAGII
!II* COMPILATION LISTING BE SURE PRINTER IS READY
DBCMP IIIIPROG##;LX
II#PROGII# COMPILATION IIDATEII
!IIELSE
DBCMP III/PROGIlIl
!IIXIF

IIEND

• THIS "IIELSE" INSTRUCTION REVERSES THE EFFECT OF THE IfIIIFC PLUS" ABOVE

IIELSE
IIBEGIN

· BEGIN PROCEDURE FOR DBCMPLUS COMPILATION USING OPTIONS OF DBCMPLUS
· BASED ON "XTR,I FLAG.
· THE II BEGI Nil ABOVE CAUSES THE "XIF" SAND "ELSE" S IN THE FOLLOWING SECTION
· TO AFFECT ONLY DIRECTIVES AT THE SAME BEGIN/END LEVEL, AND NOT THE
· "IIELSE" DIRECTIVE ABOVE, WHICH CONTROLS THE ENTIRE "PLUS" CONDITIONAL
· SECTION.

BUILDCMPLIT;!
!IIIFS IIfLAG#
!II* COMPILATION LISTING BE SURE PRINTER IS READY

· THE FOLLOWING DIRECTIVES ARE RECOGNIZED DURING CHAIN COMPILATION AND
· CONTROL SELECTION OF LINES TO FOLLOW THE BUILD COMMAND ABOVE.
· IIIFS XTR

16-12 DISK OPERATING SYSTEM

DBCMPLUS ##PROG##;LXCR
IIELSE
DBCMPLUS ##PROG##;LX
IIXIF
##PROG## COMPILATION #DATE#
!IIELSE
DBCMPLUS ##PROG##
!IIXIF

· PROCEDURE IS EFFECTIVELY FINISHED AT THIS POINT, BUT IT IS ESSENTIAL TO
· PROVIDE AN "END" DIRECTIVE TO MATCH THE UNMATCHED "BEGIN" ABOVE, AND
· AN "XIF" TO TERMINATE THE "ELSE" IMMEDIATELY PRIOR TO THE "BEGIN".

IIEND
IIXIF . . END OF RUNTEST SAMPLE FILE .
· '.

Entering the command

CHAIN RUNTEST;PLUS,XTR,FLAG=LIST,PROG=NAME,DATE=210CT78

produces a procedure file CMPLIT/TXT with the following contents:

IIIFS LIST
11* COMPILATION LISTING BE SURE PRINTER IS READY
DBCMPLUS #NAME#;LXCR
#NAME# COMPILATION 210CT78
IIELSE
DBCMPL US #NAt"1E#
IIXIF

Entering the command

CHAIN RUNTEST;FLAG=PRINT,PROG=PROG,DATE

produces a procedure file COMPIT/TXT with the following contents:

CHAPTER 16. CHA IN COI"1f"1AND 16-13

IIIFS PRINT
11* COMPILATION LISTING
DBCMP HPROGH;LX
HPROGH COMPILATION
IIELSE
DBCMP HPROGH
IIXIF

BE SURE PRINTER IS READY

16.10 Resuming An Aborted CHAIN

Before the CHAIN overlay fetches the next DOS command it
stores in the CHAINP/SYS file pointers for the line to be used.
If something goes wrong during the DOS command which follows and
the procedure is aborted, CHAIN still knows where it was in the
CHAINP/SYS file when the problem occurred. Since CHAIN does not
delete the CHAINP/SYS file unless the procedure completes
successfully, it can pick up where it stopped in the CHAINP/SYS
file if the operator can correct the condition which caused the
procedure to abort in the first place. Often, the reason for the
abort is something correctable like the disk running out of files.
In this case, the operator need only correct the condition and
then enter:

CHAIN *
and the procedure will pick up with the command which failed
before. This action can generally be applied even if the RESTART
key has been depressed. Thus, one can recover from jammed paper
in a printer half way through a listing by simply depressing
RESTART, fixing the printer, and then entering the CHAIN *
command.

If the failing command cannot ever succeed, it may be
bypassed by entering the command:

CHAIN/OV1

This simply restarts the chain with the next available line in the
procedure. If the next line had been intended as a keyin line for
the failed program (as opposed to a DOS command line) the chain
will generally immediately abort again. However, by restarting
the chain in this manner, repeatedly if necessary, the invalid
step can usually be bypassed and chaining resumed. Use of
CHAIN/OV1 will not always work, since it depends on information in
processor memory to function. If the area from MCR$+80 to
MCR$+100 is disturbed, CHAIN/OV1 will fail, usually causing a
range error or perhaps a system data failure.

16-14 DISK OPERATING SYSTEM

16.11 CHAIN Programming Considerations

CHAIN only replaces the DOS keyboard entry routine (KEYIN$).
Therefore, only programs that use this routine for input ~ill
receive their input from the chain file. Programs which have
their own input routines, like the DOS editor, can be invoked from
a chain file but editing must be done manually by the operator.
Sometimes programs will use a different keyin routine based on DOS
Function 6 to request operator action for special circumstances
when it is desired to avoid using lines from the chain procedure.

When a program exits via EXIT$ or NXTCMD the chain continues
normally. If a program exits via ERROR$ or CMDAGN the chain is
aborted. Generally the terminating error message displayed by an
aborting program will remain visible on the screen following the
CHAIN abort.

Some programs can go through a rather complex set of requests
for input, which can make them difficult to use with the CHAIN
program. For this reason, most DOS programs allow almost all
options to be specified on the command line and keep the variation
in the number of keyin requests to a minimum. It is good practice
for all programs to be written with this concern in mind to
facilitate their use with CHAIN.

CHAPTER 16. CHAIN COMMAND 16-15

CHAPTER 17. CHANGE COMMAND

17.1 Purpose

The CHANGE command enables one to write protect, delete
protect, or clear the protection of a disk file. If a file is
delete or write protected, a KILL command (or program generated
KILL) cannot affect it. If a file is write protected, it cannot
be written into by the standard system routines.

17.2 Use

CHANGE <file spec>;p

The option parameter "p" is used above to indicate the
protection for the file specified. Protection can be specified
as:

For example:

D - delete protect
W - write protect
X - clear protection.

CHANGE NAME/EXTENSION;D
CHANGE NAME/EXTENSION:DR2;X

will delete protect the file in the first case, and remove all
protection in the second case. If a <file spec> is not given,
the message

NAI'1E REQUIRED.

will be displayed. If the file indicated by the first file
specification cannot be found, the message

NO SUCH NAME.

will be displayed. If the option parameter does not follow the
above syntax rules, the message

INVALID PROTECTION SPECIFICATION.

CHAPTER 17. CHANGE COMMAND 17-1

will be displayed. If no option parameter is specified the
message

PROTECTION UNCHANGED.

will be displayed.

17-2 DISK OPERATING SYSTEM

CHAPTER 18. COpy COMMAND

18.1 Purpose

The COpy command produces a duplicate copy of a disk file.
It may be desired, for example, to make a copy on a separate
volume for backup or distribution purposes.

Another feature of the COPY command will optionally allow a
user to selectively update (replace) an existing file, or create
(add) a new file to receive the copy. These options used in
combination with the CHAIN utility provide an easy method of
updating and maintaining DOS disks.

The COPY command does not make assumptions about the format
of the sectors being copied, but merely copies the file
sector-for-sector. It can copy types of disk files which are not
possible to copy using the SAPP and APP commands. Some particular
types of files are still immovable, however. The outstanding
example are INDEX files, usually with extension IISI. These files
cannot be moved because index files contain, internal to
themselves, pointers indicating their actual physical location on
the disk volume, which are made invalid when the file is m6ved to
another place on the disk.

18.2 Use

The COPY command is invoked by entering at the system
console:

COpy <infile>[,<outfile>J[;<option>J

The only portion of the operands that is specifically required is
the name of the input file. The extension of the input file, if
none is specified, is assumed to be ITXT. If a drive
specification is entered for the input file, then only that
specific drive is searched for the indicated file. If no drive
specification for the input file is given, all drives are \
searched. If the name of the output file is omitted, it is
assumed to be the same as that of the input file. If the output
filefs extension is not given, it is also assumed to be the same
as that of the input file. All drives are searched for the output

CHAPTER 18. COpy COMMAND 18-1

file unless a particular drive is specified.

The options available are:

R - Replace only
This option allows only overwriting an already existing file.
If the specified output file does not already exist no copy
takes place, the message "<infile> NOT COPIED" is displayed
and the ABTIF bit is set.

A - Add only
This option allows only creating a new file. If the
specified output file already exists no copy takes place, the
message "<infile> NOT COPIEDn is displayed and the ABTIFbit
is set.

E - Chop on end of file
The output file will be chopped at the first EOF mark found
in the input file.

7 - SYSTEM7/SYS to be copied
This option allows overwriting an existing copy of the system
file SYSTEM7/SYS with a different copy, without disturbing
the sUbdirectory information stored in the old SYSTEM7/SYS.
This option is very handy for system upgrades. The output
file must be PFN 7.

If no options are specified there are no special conditions on the
copy. The input file will be copied to the output file,
overwriting an existing file if necessary (unless the output file
is write protected). If the specified output file does not exist,
it will be created.

When a file is transferred via COPY, the output file is set
to the same protection that the input file had.

Example, 'to copy file PAYROLL/TXT from symbolic drive "vJORK2"
to symbolic drive "WORK1"

COPY PAYROLL:WORK2,:WORK1

Example, to make another copy of PROGRAM/ABS on drive zero,
but to be named MYPROG.

COpy PROGRAM/ABS,MYPROG:DRO

Example, to make another copy of PAYROLL/TXT drive 0, on
drive 1 only if it does not already exist on drive 1.

18-2 DISK OPERATING SYSTEM

COpy PAYROLL:DRO,:DR1;A

Example, to update (replace only) TREK/ABS, a file on drive 0
from a newer version on drive 1.

COPY TREK/ABS:DR1,:DRO;R

People who experience parity errors in one of their data
files can frequently recover their data using COPY. Since the
COPY program merely comments about parity errors encountered and
does not abort when one occurs, the data copied will occasionally
be correct (or almost correct) even if a parity error occurs and
can be used to recover the data in the original file.
Alternatively, using the COpy program to write the file on top of
itself (therefore without changing the file) by simply specifying
the input file and no output file, a user can frequently clear
soft (and occasionally what seem to be hard) parity errors
occurring in an important data file. (Of course, no important
file should be updated in place unless a copy of the file exists
somewhere for recovery purposes in the event of a failure.)

The COPY command issues a click each time an unused sector is
copied. If more than a dozen or so clicks occur at the end of
copying a file, it usually indicates that the file is larger than
necessary to contain the data in it. In this case, moving the
file using APP or SAPP can sometimes help to reduce its size. If
the KEYBOARD key is depressed while the machine is clicking, the
output file will be chopped at that point. Clicks ocurring during
the copying (before the end of the file) indicate sectors
containing DOS format errors, possibly implying a sector
accidentally destroyed by some faulty program.

CHAPTER 18. COpy COMMAND 18-3

CHAPTER 19. DOSGEN COMMAND

19.1 Purpose

Before any disk can be used by DOS, certain tables and other
information must be placed onto it to establish the basis that DOS
requires for the support of its file structure. These tables
include the skeleton of the DOS directory, (where the names of the
files contained on the disk are stored), as well as a map showing
which places on the disk are bad and should not be used.

The purpose of the DOSGEN command is to provide the user with
a simple way of accomplishing this preparation.

19.2 Use

To DOSGEN a disk enter:

DOSGEN <drive spec>

The drive spec is a standard DOS drive specification which
specifies which drive contains the disk to be prepared for DOS
use. Since the directory initialization process will effectively
KILL any files that might be on the disk, the command asks several
times to make sure that the operator is aware of the potential
seriousness of the operation he has invoked.

After the operator has acknowledged that he does not mind the
overwriting of the new disk, the command asks if any cylinders on
the volume are to be locked out. Normally, the answer to this
question is NO. However, by answering YES, it is possible to
cause the DOS to lock out one or more cylinders of the disk from
DOS access. This can be useful in some special applications where
it is desired to not allow DOS programs access to a file stored in
unusual format. If the user does wish to lock out any cylinders,
he may do so by specifying one or more cylinder numbers, in the
format:

12,14,16,25-28,40

The above example would cause cylinders 12, 14, 16, 25, 26,
21, 28, and 40 to be locked out. The cylinder numbers to be

CHAPTER 19. DOSGEN COMMAND 19-1

10 c k ed 0 uta r e en t e r ed in dec i rn a 1 .

After the operator has specified that no, or which, cylinders
are to be locked out, the DOSGEN command checks for bad sectors on
the disk and issues a message indicating any cylinders it finds
which contain bad sectors. Any cylinders found bad are
automatically locked out and will not be used by DOS. The
remainder of the operation is completely automatic and indicates
its completion wi th the DOS .1 READY" message.

Upon completion of the DOS generation process, the only files
on the new disk are the eight system files SYSTEMO/SYS through
SYSTEM7/SYS. In the case of DOS.D and DOS.E, UTILITY/SYS,
UTILITY/REL and UTILITY/LNK are also copied.

19.3 Special Considerations

It is important to remember that on disk packs for use with
DOS systems recognizing more than one logical drive per physical
disk pack, for example the 9370 and 9390 series disk systems, more
then one DOSGEN must be done before the physical pack is fully
initialized. This allows the user to DOSGEN any logical disk on
the pack without disturbing files he wishes to keep that may be
stored on other logical disks.

Another important thing to remember is that the 9370, 9380
and 9390 series disks must be formatted before DOSGEN can be used
on them. Diskettes (for the 9380 series drives) come
pre-formatted from the manufacturer. A diskette that has been
formatted with tracks locked out (error mapped) cannot be
DOSGENed. Disk packs for the 9370 and 9390 series drives do not
have formatting when purchased. It is therefore necessary to
format all disk pack~ for the 9370 or 9390 series drives using the
program INITDISK before attempting to use DOSGEN on them.

The booted drive of a system cannot be DOSGENed. PUTIPL
must reside on the booted drive. Following surface write/read
verification, the system files are copied. COPY and CHAIN are no
longer required.

19-2 DISK OPERATING SYSTEM

CHAPTER 20. DSKCHECK

20.1 Purpose

The purpose of DSKCHECK is to repair a logically-damaged DOS
(Disk Operating System) volume. The performance of the DOS is directly
related to the correctness of disk-resident system tables. DSKCHECK
checks all system tables for format and content and is able to determine
in most cases when an error in the system tables.9ccurs, what the error
is, and if the system tables can be reconstructed from the other data on
the disk.

20.2 Use

DSKCHECK is invoked by entering:

DSKCHECK [<drivespec>J[;<options>J

The drive specification may be entered as a standard drive specification
such as :DO, or as a VOLID (volume identification) such as :PAYROLL. If
no drive specification is entered on the command line, the program will
ask for one.

20.3 Options

Opt ion 1 e t t e r s t hat may be use dar e "L", "S", and II F" . E a c h
is explained in the following paragraphs. To be activated, an option
must be entered on the command line.

L Option, Local printer on: With this option keyed in, all
messages will be printed on the local printer as
well as displayed on the screen. An option
conflict message will appear if both the "L" option
and "S" option are selected.

S Option, Servo printer on: With this option, all messages
will be printed on the Servo printer as well as
displayed on the screen. If YlS" and "L" are both
selected, an option conflict message will appear.

F Option, System Fix option: This option causes the program

CHAPTER 20. DSKCHECK 20-1

to compute the correct data when an error in system
data is detected, if such a computation is
possible, and allows the user to fix the data which
is in error if he so chooses.

If an error in system data is detected and the
correct data cannot be computed from the other
pertinent usable data on the disk, the operator is
so informed and may be asked if he wishes the file
or entry deleted.

All error-correction messages contain a no-change
option which, if elected, cause the program to
continue to the next check without changing the
data on the disk being checked. This no-change
option is illegal and automatically deactivated if
DSKCHECK is run from CHAIN, under ARC, or under PS.

If no options are given on the command line, the default condition
is logging to the screen only. The Fix option is turned off.

20.4 System Tables and Data

Descriptions of the DOS tables, system data, and their uses
are found in the chapter on System Structure.

All of the descriptions below are written as if the "F" (fix)
option were set. If this option is not active, the operation is the
same except that no request for corrective action is made, if this is
applicable.

20.5 Execution Phases

There are many execution phases in DSKCHECK, some of which
are dependent on the type of DOS in use or on the existence of previous
conditions. Some of the executuion phases mayor may not be performed.

20.5.1 Initialization

During initialization, the program displays a signon message
and the options parameters are scanned. If the IfF" (fix) option was
selected, the correction features are enabled. If the <drivespec) is
not specified on the command line, it is asked for during this phase.

20-2 DISK OPERATING SYSTEM

20.5.2 HDI Checking

This phase of checking is dependent on the type of disk
operating system residing on the disk being checked. It is not executed
on DOS.C because this DOS does not use the HDI (Hashed Directory Index)
technique of directory indexing. DOS.C uses directory mapping, which is
verified in a later phase.

This phase reads the HDI on the disk and compares the master to the
backup. If an error occurs in reading either copy, or in comparing the
copies, an error message will be displayed, but no corrective action is
allowed at this time. If no errors are detected, an appropriate message
is displayed.

20.5.3 CAT Checking

This phase of checking reads the CAT (Cluster Allocation
Tables) on the disk being checked. The master CAT is compared with the
backup, and the same procedure described above for HDI checking is
followed. Appropriate messages are displayed, but no corrective action
is permitted during the checking phase.

20.5.4 Directory Checking

During this phase each directory page is read and checked.
The master is compared to the backup copy, and if the pages do not
match, the affected entry is displayed. The program then asks which
entry should be retained, or if both entries should be deleted.

When an unsuccessful read occurs in either the master or backup, an
error message is displayed and the comparison is not done. The good
page is used to continue the checks. If both pages fail to read
successfully, an appropriate message is displayed and the next page is
checked.

If either or both pages read successfully, and when all compare
errors are resolved, each entry is checked for valid format. If a
deleted entry is encountered, it is checked to see that the delete is
complete. If it is not, an error message is displayed and the program
asks if the error is to be corrected.

The RIB PDA (Retrieval Index Block, Physical Disk Address) is
checked to see that it points to a valid location on the disk. If an
error is detected, an appropriate message is displayed, and the program
asks if the entry should be deleted. If this entry is deleted, no space
for it will be allocated in the cluster allocation tables when the CAT

CHAPTER 20. DSKCHECK 20-3

is re-computed.

The program then proceeds by checking the filename/extension for
valid characters. Each character should fall into the range of A-Z or
0-9. If the program finds an invalid character, a warning message is
displayed and the program continues.

Under DOS.C, the program generates a mapping byte for each page as
the page is checked. If the computed mapping byte does not match the
mapping byte on the disk,.a message is displayed and the newly-computed
mapping byte is entered into the appropriate sector of the CAT that is
being generated.

20.5.5 RIB Checking

After all directory pages have been checked, the RIB for each
entry in the directory is checked for format and space allocation
validity. The RIB master and backup are first read and compared. If
either copy is not read successfully, the program asks if the good copy
is to be written to the copy with the read failure. If a read failure
occurs on both copies, an error message will inform the user and the
program will ask if the file is to be deleted. No space will be
allocated for that file in the CAT that is being re-computed.

If a compare error is detected, the filename and the first 16 bytes
of both copies are displayed; the program will ask which copy is to be
retained on the disk.

After the RIB master and backup have been read and compared and all
errors resolved, the RIB forlnat is checked for the correct PFN (Physical
File Number), LRN (Logical Record Number), and an 0377 (indicating the
end of the retrieval information block in the directory sector) in the
fourth byte. Any format error detected will be displayed, and the
corrective action reuested.

Each segment descriptor is then checked to see that it points to a
valid location on the disk, and that the first sector of the segment has
the proper PFN. The space allocation is computed and checked against
the CAT and the Lockout CAT (discussed later) for conflicts. If a
conflict occurs with the Lockou~ CAT, the program will ask if the
Lockout CAT is to be rewritten to free this space. If a conflict is
detected with another file, the conflicting area is analyzed in the next
two phases and is displayed with a request for action. If no
conflicting areas are found, the next two phases are skipped and the
program continues with the Lockout CAT check.

20-4 DISK OPERATING SYSTEM

20.5.6 Cluster Allocation, Phase 1

If a conflict was detected while checking the RIBs, this
phase is activated to re-read all the good RIBs and find all other
conflicts.

20.5.7 Cluster Allocation, Phase 2

Upon the determination of all conflicting clusters, they are
scanned to see which RIBs conflict. The program gives an opportunity to
delete one or the other or both conflicting files. If no change is
requested at this point, the CAT is upd~ted with the conflicting
clusters to retain protection from another file writing into this area.

20.5.8 Lockout CAT Checking

If no change in the Lockout CAT has been made previously, it
is now read to see that all locked out space is also allocated in the
CAT. If changes were made in previous phases of the program, the
generated Lockout CAT is checked against the CAt; if no errors are
detected, it is written to the disk.

Any errors detected in this phase cause a descriptive message to be
displayed and the program asks if a new Lockout CAT should be written.
This new Lockout CAT, if written, will only have the space for the
system tables locked out.

20.6 Operational Messages

The messages listed in this section are informational. They
are displayed to indicate where the program is in the execution cycle.

CHECKING HDI

The program is checking the HDI master and backup for read
errors in either, and for a match between the two.

CHECKING CAT FOR FORMAT

The program is reading the CAT master and backup and checking
for read errors in either, and for a match between the two.

CHAPTER 20. DSKCHECK 20-5

CAT MASTER AND BACKUP LOOK O.K.

The CAT master and backup were read without error, and the
master compared correctly with the backup.

CHECKING DIRECTORY PAGE nnn

The directory page nnn master and backup have been read without
error, and the directory entries on this page are being checked
for format. During this check, a directory mapping image is
also being constructed and checked against the one on the disk,
if necessary.

CHECKING RIBS

The directory checking is complete, and the RIBs are not being
checked.

CHECKING RIB FOR PFN nnn

The RIB for PFN nnn is now being read and checked for format
errors and allocation conflicts.

CLUSTER ALLOCATION PHASE 1

If cluster conflicts occur while checking RIBs and the 'F'
option is set, This phase is executed to find and verify all
conflicts.

CLUSTER ALLOCATION PHASE 2

This phase follows the phase 1 above to resolve any or all
conflicts.

CHECKING LOCK-OUT CAT

The Lockout Cat master and backup are being read and compared,
and checked to be sure that the locked-out space is allocated
in the CAT.

ALL LOCKED-OUT CYLINDERS ARE ALLOCATED IN THE CAT

20-6 DISK OPERATING SYSTEM

The display indicates that no Lockout CAT errors exist and that
all cylinders locked out are allocated in the CAT.

MATCHING COMPUTED CAT TO DISK

The CAT computed from the RIBs and the computed directory
tflapping bytes is being compared against that read from the
disk.

COMPUTED CAT MATCHES DISK

The CAT computed from the RIBs matches the CAT on the disk.

COMPUTED HOI MATCHES DISK

The HDI read from the drive is complete and control is being
returned to the DOS.

20.7 Error Message Definitions

Error messages for DSKCHECK follow.

20.7.1 Operational Error Messages

OPERATOR INTERVENTION - JOB TERMINATED

If the KBD (keyboard) key is depressed at any time during the
operation of the progam, this message is displayed and DSKCHECK
is terminated.

****WARNING**** WRITE FAILURE

I~ at any time a write to disk is attempted and does not
complete successfully, a warning is given. This is a serious
error because it means that an error found by DSKCHECK was not
corrected. However, the program will allow the operator to
discover if there are any other errors on the disk, and it is
then the operator's responsibility to recover as much of the
data as possible.

CHAPTER 20. DSKCHECK 20-7

nnn WRITE FAILURES HAVE OCCURRED!!! PLEASE NOTE

If a write failure did occur, this message is displayed at the
termination of the program to re-alert the operator to the fact
that something must be done about it.

20.7.2 Initialization Error Messages

DRIVE OFF LINE

When accessed, the drive being checked was found to be offline.

INVALID DRIVE

The drive selected was not a valid number or not in valid
format.

INVALID OPTION PARAMETER
VALID OPTIONS ARE L=LOCAL S=SERVO F=FIX

An option other than those listed was detected.

MULTIPLE PRINTERS SELECTED

Both servo and local printer were selected.

PROGRAM NOT LOADABLE

One or more of the libr~ry members of DSKCHECK are missing.
The members in DSKCHECK are:

DSKCHECK
DSKCVER1
DSKCVER2
DSKCVER3
DSKCVR3B
DSKCVR3C
DSKCVER4

20-8 DISK OPERATING SYSTEM

RELOCATABLE MEMBER MISSING OR UNLOADABLE

UTILITY/REL FILE MISSING

SECTOR IN/OUT MEMBER OF UTILITY/REL IS WRONG VERSION, I NEED
VERSION x

PRINT DRIVER MEMBER OF UTILITY/REL IS WRONG VERSION, I NEED
VERSION x

PRINT MODULE MISSING OR NOT LOADABLE. NO PRINT WILL OCCUR.

All the above messages show different ways of checking that
UTILITY/REL members are missing or unloadable.

YOUR DOS FUNCTION 15 IS OBSOLETE

The processor is running on an obsolete DOS that does not
recognize DSKCHECK.

WRONG DOS

THIS

THIS

THIS

The processor is running on an obsolete DOS that does not
recognize DSKCHECK.

PROGRAfv1 IS RUNNING IN A CHAIN - THE " F" OPTION HAS BEEN DEACTIVATED

The fix option is not allowed during CHAINing.

PROGRArv1 IS RUNNING UNDER ARC - THE " F" OPTION HAS BEEN DEACTIVATED

The fix option is not allowed while on ARC.

PROGRAM IS RUNNING UNDER PS - THE "F" OPTION HAS BEEN DEACTIVATED

The fix option is not allowed while under PS.

ENTER DRIVE (LIKE :00, :D1, OR :VOLID)

CHAPTER 20. DSKCHECK 20-9

An invalid drive specification or no drive specification was
detected from the comHland line.

When an asterisk (*) is entered, control returns to the DOS.

20.7.3 HDI Errors

HDI MASTER AND BACKUP DO NOT MATCH
HOI WILL BE RECONSTRUCTED FROM DIRECTORY

The Hashed Directory Index master and backup did not match and
will be recreated during the final phase.

ERROR ON READ OF HDI MASTER

Parity error found while reading the HOI master.

ERROR ON READ OF HOI BACKUP

Parity error found while reading the HDI backup.

WRITE NEW HDI TO DISK?

With the fix option set, the operptor will be able to try to
write a new HOI.

20.7.4 CAT Errors

ERROR ON READ OF CAT MASTER

An unrecoverable read error occurred during the read of the
master CAT sector. No action is taken at this time.

ERROR-ON READ OF CAT BACKUP

20-10

An unrecoverable read error occurred during the read of the
backup CAT sector. No action is taken at this time.

DISK OPERATING SYSTEM

CAT MASTER AND BACKUP DO NOT MATCH
CAT WILL BE RECONSTRUCTED FROM THE RIBS

The CAT master and backup buffers in memory do not match. No
action is taken at this time. When a computed CAT has been
constructed, it will be compared to the master and backup CAT,
and at that time corrective action may be taken.

Before the computed CAT is compared to the disk, the program checks
internal error flags, and if any of the errors above are found to have
occurred, one or more of the following messages may be displayed.
Usually it is best to ansVler "yu so the CAT on disk will be corrected.

ERROR ON READ OF CAT MASTER
WRITE BACKUP TO MASTER?

An error was detected on the initial read of the CAT master,
but the backup copy was read successfully. Answering "Y"
causes the backup to be written to the master. The fiN" answer
causes no change.

ERROR ON READ OF CAT BACKUP
WRITE MASTER TO BACKUP?

An error was detected on the initial read of the CAT backup,
but the master copy was read successfully. Answering "Y"
causes the master to be written to the backup. The "N" answer
causes no change.

BOTH CAT COPIES BAD
WRITE COMPUTED CAT TO BOTH?

Neither copy of the CAT could be read successfully. Answering
"Y" causes the computed CAT to be written to the CAT master ani
backup sectors on the disk. The "N" answer results in no
change.

CAT MASTER AND BACKUP DID NOT MATCH
WRITE COMPUTED CAT TO DISK?

After the initial read, the CAT master and backup did not
match. Answering "Y" causes the computed CAT to be written to
the CAT master and backup sectors on the disk. The "N" answer
results in no change.

CHAPTER 20. DSKCHECK 20-11

NOTE: Answer "Y" to get a good disk.

20.7.5 Directory Errors

The following error messages may appear when the program is
checking the directory. Some error conditions refer to the HDI, and
will not appear when checking a disk without an HDI. Likewise, those
messages that refer to directory mapping bytes will not appear on disks
that do not use directory mapping.

ERROR ON READ OF DIRECTORY MASTER

The current directory master page could not be read
s u c c e s s f u 11 y . 1ft he " F" (f i x) 0 p t i on is act i ve, t he r e que s t
"WRITE BACKUP TO MASTER?" will also appear. If this request is
answered "Y", the current backup page will be wri tten to the
correct directory master sector on the disk.

ERROR ON READ OF DIRECTORY BACKUP

The current directory backup page could not be read
successfully. If the "F" option is active, the request "WRITE
HAST£R TO BACKUP?" will also appear. If this request is
answered "Y", the current master page will be wri tten to the
correct directory backup sector on the disk.

BOTH PAGES READ BAD
NO SPACE WILL BE ALLOCATED FOR THE FILES ON THIS PAGE

Neither the master nor backup pages could be read successfully.
The page cannot be fixed and no space will be allocated in the
computed CAT for the files on this page, nor will HDI entries
for the files on this page appear in the computed HDI.

DIRECTORY ENTRIES DO NOT HATCH - PFN nnn

The current master and backup page do not match. The master
and backup copies of the entry that do not match will be
displayed in the format below.

DIRECTORY ENTRIES DO NOT HATCH - PFN 000

20-12 DISK OPERATING SYSTEM

MASTER -
001 303 000 000 123 131 123 124 105 115 062 040 123 131 123 377

S Y S T E M 2 S Y S

BACKUP -
001 003 000 000 123 131 123 124 105 115 060 040 123 131 123 377

S Y S T E M 0 S Y S
ACTION: 1=MASTER>BACKUP 2=BACKUP>MASTER 3=DELETE BOTH 4=NO CHANGE?

One of the following lines will also be displayed, indicating
the relationship between the filenames in the directory entries
and the value in the HDI:

NEITHER MASTER NOR BACKUP MATCH HDI; RIB WILL NOT BE CHECKED.

or

MASTER ENTRY MATCHES HDI

or

BACKUP ENTRY MATCHES HDI

DELETE INCOMPLETE PFN nnn
WRITE DELETE TO DIRECTORY?

The entry for PFN nnn was found to have one or more bytes other
than 0377. The "Y" answer causes a deleted entry to be written
to the directory for this entry. The "N" answer causes no
change.

INVALID PDA IN PFN - nnn
DELETE THE ENTRY?

The entry for PFN nnn points to a physical disk address that is
not valid for a RIB location. The "Y" answer causes the entry
to be del eted fr om the di r ec tor y mas ter and backup. The" Nil
answer causes no change.

COMPUTED HASH BYTE DOES NOT MATCH HDI FOR PFN nnn

The computed hash character for PFN nnn does not match the hash
character on the disk. No corrective action is taken, but the

CHAPTER 20. DSKCHECK 20-13

computed hash character is entered into the computed HDI, and
this will cause an error when the computed HDI is compared to
the disk.

WARNING FILENAME/EXT FOR PFN nnn CONTAINS INVALID CHARACTERS

The filename/extension for PFN nnn contains characters that are
not in the range A-Z or 0-9. This is a warning only, and does
not allow any corrective action.

DIRECTORY MAPPING BYTE DOES NOT MATCH GENERATED BYTE FOR PAGE nnn

The directory mapping byte generated for the current page (nnn)
does not match the mapping byte on the disk. The generated
byte is entered into the directory mapping area in the computed
CAT and will cause a match error when the computed CAT is
compared to the CAT on the disk.

20.7.6 RIB Errors

The error message and display formats that follow may all be
displayed in the RIB checking phase of program execution.

ERROR ON READ OF RIB MASTER
ACTION: 1=BACKUP>MASTER 4=NO CHANGE?

The RIB master could not be read successfully, but reading the
backup was successful. The" 1" answer causes the backup RIB to
be copied to the master with the correct LRN (logical record
number). The "4" answer causes no change on the disk, and the
backup RIB is used for further checks.

ERROR READ OF RIB BACKUP
ACTION: 2=MASTER>BACKUP 4=NO CHANGE?

The RIB backup could not be read successfully, but reading the
master was successful. The "2" answer causes the master RIB to
be copied to the backup with the correct LRN. The "4" answer
causes no change on the disk.

MASTER AND BACKUP READ ERRORS

20-14 DISK OPERATING SYSTEM

DELETE THE FILE?

Neither copy could be read successfully. No recovery of data
is possible, and the file may be deleted from the disk, or no
change may be made. Either action results in no space for this
file being allocated in the computed CAT.

RIB MASTER AND BACKUP DO NOT MATCH *** FILE - filename/ext
RIB MASTER -

000 000 000 377 001 004 377 377 377 377 377 377 377 377 377 377
RIB BACKUP -

000 00 1 000 377 00 1 104 377 377 377 377 377 377 377 377 377 377
ACTION: 1 =MASTER>BACKUP 2=BACKUP>MASTER 3=DELETE BOTH 4=NO CHANGE?

The RIB master and backup copies did not compare correctly.
Only the area of the RIB used by the system is compared. The
responses are self-explanatory. For any action except "3", the
resulting master is used for checking allocation. If the file
is deleted, no further checks are made, and no space is
allocated in the constructed CAT.

RIB FORfv1AT ERROR

One or more of the first four bytes of the RIB was incorrect.
The total message will display in the format below. Only the
error explanations and pointers for which errors were detected
will be displayed.

RIB FORMAT ERROR *** FILE - filename/ext
000 123 125 105 000 377 377 377 377 377 377 377 377 377 377 377

""

2 3 4

1 - PFN INCORRECT
2 - LRN LSB NOT 000
3 - LRN MSB NOT 000
4 - 4th BYTE NOT 0377

ACTION: 1=DELETE THE FILE 2=CORRECT ERROR(S) 3=NO CHANGE?

CHAPTER 20. DSKCHECK 20-15

RIB BACKUP LRN ERROR
CORRECT THE ERROR?

The RIB backup LRN was not 001, but the rest of the backup
matched the RIB master. The "Y" answer causes the correct LRN
to be written to the RIB backup sector.

INVALID SEGMENT DESCRIPTOR # nnn - RIB WILL NOT BE CHECKED

The segment descr~ptor for segment nnn pointed to a location
that cannot physically exist on the disk being checked. No
further checking of the RIB will occur.

SPACE ALLOCATION CONFLICTS WITH PREVIOUS ALLOCATION

The space allocated for the current segment of this file is in
conflict with space allocated to a previously-checked file.
Additional information is displayed in the format below.

FILENAME/EXT * FILENAME/EXT
PFN 014 * 143

CONFLICTING CLUSTERS 007 * 007
CLUSTERS IN FILE 005 * 002

ACTION: 1=DELETE PFN 014 2=DELETE PFN 1 43 3=NO CHANGE?

The above indicates that PFN 014 and PFN 143 have 7 clusters in
conflict, and that 5 of them have records from PFN-014, and 2
have records from PFN-143. In this example, PFN-143 should
probably be deleted.

CURRENT FILE OVERLAYS LOCKED OUT SPACE
FREE THIS SPACE IN LOCKOUT CAT?

Some of the space allocated to the file being checked occupies
space that is locked out. Answering "Y" causes the cylinders
in the Lockout CAT which the file overlays to be removed from
the Lockout CA T. The "Nil 'answer causes no change in the Lockout
CAT.

INVALID PFN IN FIRST SECTOR OF SEGMENT nnn *** FILE - filename/ext

The PFN in the first sector of segment nnn does not match the

20-16 DISK OPERATING SYSTEM

PFN of the file being checked. This message is informational,
as this may be a normal condition in some files. The program
will take no corrective action.

20.7.7 Lockout CAT Errors

LOCKOUT MASTER AND BACKUP DON'T MATCH
WRITE NEW LOCKOUT CAT TO DISK?

The Lockout CAT master and backup do not match. Answering "Y"
causes a Lockout CAT with only the space for the system tables
locked out to be written to the disk. The "N" answer causes no
change.

LOCKED OUT CYLINDER nnn NOT ALLOCATED IN CAT
WRITE NEW LOCKOUT CAT TO DISK?

The locked out cylinder nnn is not allocated in the CAT.
Answering "Y" causes a Lockout CAT with only the space for the
system tables locked out to be written to the disk. The "N"
answer causes no change.

ERROR ON READ OF LOCKOUT CAT
WRITE NEW LOCKOUT CAT TO DISK?

The Lockout CAT read was bad, possibly a parity error. The
user now has the opportunity to try to write the Lockout CAT
calculated back to disk.

CHAPTER 20. DSKCHECK 20-17

CHAPTER 21. DUMP COMMAND

21.1 Purpose

The DUMP command provides a simplified mechanism for
examining the entire contents of physical sectors on the disk.
The display includes both the octal and ASCII contents of every
byte in the sector. No examination for control bytes of any kind
is made, allowing the user to see the precise contents of every
physical location in the disk sector.

21.2 Use

The DUMP command is invoked by entering:

DUMP [<filespec>][;<options>]

The DUMP command operates with basically five separate levels
of control. These levels are:

LEVEL ONE - Logical drive level
LEVEL TWO - File level
LEVEL THREE - Logical record number level
LEVEL FOUR - Physical disk address level
LEVEL FIVE - Disk directory level

The entry file and/or drive specifications on the command
line allow the first one or two input levels in DUMP to be
automatically bypassed.

The <option> is the type of printer the operator wishes to
have his printing done on. The type printers supported are either
local or servo. The option letter 'L' is used for local and'S'
for servo. The default is no printer. The 'P' option may be
used to create a print file or the 'Q' option to queue to an
existing print file. If either the 'P' or 'Q' options are used
the system will prompt for a print file specification.

When the DUMP command is used, the top line on the display is
the primary control line. Input is accepted on this line. This
line is broken into four basic areas, one corresponding with each
of the first four control levels. The primary control level at

CHAPTER 21. DUMP COMMAND 21-1

any given time during the operation of the DUMP command can be
determined by the position of the flashing cursor on the control
line.

For example, if the flashing cursor is positioned after the
"DRIVE:" legend on the control line, the DUi'1P command is operating
at level one. If the cursor is posi tioned after the "FILE:"
legend on the control line, the DUMP command is opefating at level
two, etc.

21.3 Informational Messages Provided

The second line on the display is primarily used for sector
informational messages. These serve both to indicate any special
significance of the sector just read and to describe any unusual
occurrences associated with reading the sector. These messages
are generally self-explanatory. Among the messages that can be
displayed are the following, along with an explanation of the
meaning of each.

RETRIEVAL INFORMATION BLOCK (RIB). This message indicates
that the sector being displayed is the primary RIB for the
currently opened file.

RETRIEVAL INFORMATION BLOCK BACKUP. Each RIB is maintained
in duplicate for backup purposes and to allow recovery in the
event of a program erroneously destroying the primary RIB. This
message indicates that the sector being displayed is the secondary
RIB for the currently opened file.

CLUSTER ALLOCATION TABLE. This message indicates that the
sector being displayed is the primary Cluster Allocation Table
(normally referred to as the CAT) for the current logical drive.

CLUSTER ALLOCATION TABLE BACKUP. This message indicates that
the sector being displayed is the secondary, backup CAT for the
current logical drive. The CAT is also maintained in duplicate
just as is the RIB.

LOCKOUT CLUSTER ALLOCATION TABLE. Associated with each
logical drive is a sector that indicates which areas have been
locked out, prohibiting their use by DOS. This message indicates
that the sector being displayed is the Lockout CAT for the current
logical drive.

LOCKOUT CLUSTER ALLOCATION TABLE BACKUP. This message
indicates that the sector being displayed is the secondary, backup

21-2 DISK OPERATING SYSTEM

copy of the Lockout CAT.

SYSTEM DIRECTORY SECTOR. This message indicates that the
sector being displayed is one of the DOS directory sectors. The
directory sector number (in decimal and in octal) immediately
follows the message .

. USER DATA SECTOR. This message indicates that the sector is
not recognized as one of the above special system sectors.

DISK SECTOR CRCC ERROR. This message indicates that the
sector requested for display either was not found on the disk or
that a CRCC error repeatedly occurred during the read operation.
The sector displayed is the data as it was read from the disk,
unless the sector was not found.

DISK OFFLINE. This message indicates that the currently
specified logical drive is not on line.

DISK SECTOR FORMAT ERROR. This message is displayed when
DUMP notices that the sector being displayed does not correspond
to standard DOS file conventions (the first byte of each sector is
its physical file number, and the two following bytes are the
logical record number). The appearance of this message does not
necessarily indicate that the sector of the file has been
destroyed, since unwritten sectors at the end of a file and older
version DATASHARE object code files normally will fall into this
class. It merely means that if the sector were read with the DOS
READ$ routine, a format trap would occur.

SECTOR OUT OF RANGE. This message is displayed if the sector
requested (by logical record number) is not within the range of
the currently opened file.

FILE NOT FOUND. This message indicates that the file
requested could not be found. This does not necessarily mean that
the file does not exist. For example, the file could be in a
non-current sUbdirectory. If the user has not requested
non-specific volume mode (to be described), this message might
mean simply that the file desired is on a different logical drive.

INVALID PHYSICAL ADDRESS. This message indicates that the
physical disk address specified is invalid.

The remainder of the display contains the contents of the
current half of the sector most recently read. The display is
arranged as eight groups of sixteen bytes each. Each of these
groups is preceded by the three octal digit offset of that group

CHAPTER 21. DUMP COMMAND 21-3

within the sector. Each sixteen byte group consists of the octal
and ASCII contents of each of the sixteen bytes in that group.
Each byte's contents form a column one character wide and four
lines high, where the first three lines are the value of the byte,
in octal, and the fourth line is the ASCII value of that
character. Notice that the character is not examined for special
significance before it is displayed, so that computers having the
high speed RAM display option (which is strongly recommended for
all DOS systems) may display characters other than the normal
ASCII set.

21.4 Level One Commands To DUMP

When the flashing cursor indicates that DUMP is functioning
at level one, the following commands are accepted:

<enter> - The CAT on the current drive is displayed and
control is transferred to level two. In addition, the
non-specific drive mode is enabled.

number - The drive number indicated becomes the currently
selected drive. The CAT from that drive is displayed and control
is transferred to level two. Non-specific drive mode is disabled.

* - DUMP command returns control to the DOS.
> - The second half of the current sector is displayed.
< - The first half of the current sector is displayed.

21.5 Level Two Commands To DUMP

When the flashing cursor indicates that the DUMP command is
functioning at control level two, the following commands are
accepted:

<enter> - If a file is currently opened, the secondary RIB
for the file is displayed and control is transferred to level
three. If no file is opened, control is transferred to level
four.

name/ext - The named file is opened on the current drive, or
any drive if non-specific drive mode is enabled. The primary RIB
for the file is displayed and control is transferred to level
three.

pfn - The file indicated by the octal physical file number
given is opened on the current drive. The primary RIB for the
file is displayed and control transfers to level three.

I - The current physical file number is incremented and the
new file thus indicated is opened. If no file corresponding to
that physical file number exists on the current drive, the PFN is

21-4 DISK OPERATING SYSTEM

incremented repeatedly until a file corresponding to the PFN is
found. The primary RIB for the file is displayed and control is
transferred to level three.

D - D works just like the I command above except that instead
of incrementing the PFN, it is decremented.

#pfn - The directory sector containing the entry
corresponding to the file indicated by the specified physical file
number is displayed; then control is transferred ~o level five.
Since only the last four bits of the PFN are relevant, the pfn
specifier is equivalent to a relative directory sector number.
These directory sector numhers are always specified in octal.

* - Return control to level one.
> - Show the second half of the current sector.
< - Show the first half of the current sector.

21.6 Level Three Commands To DUMP

When the cursor indicates that DUMP is functioning at level
three, the LRN level, the following commands are accepted.

<enter> - The current sector is shown and control is
transferred to level four.

number - Access and display the record indicated by the LRN
specified. If the number given has a leading zero, it is assumed
to be octal; otherwise it is assumed to be decimal. The number
specified is the user (as opposed to system) LRN. The system LRN,
the value in bytes one and two in the sector, is always two
greater than the user LRN. The two numbers displayed at level
three in the control line are the user LRN in decimal (the one
with leading zeros suppressed) and octal (the one in parentheses,
with leading zeros).

Pnnnnn - Print the next 'nnnnn' sectors to the printer
selected on the command line.

I - Increment the current logical record number, access it
and display the sector.

D - Decrement the current logical record number, access it
and display the sector.

* - Return to the File level of control (level two).
> - Show the second half of the current sector.
< - Show the first half of the current sector.

CHAPTER 21. DUMP COMMAND 21-5

21.7 Level Four Commands To DUMP

Level four of the DUMP command requires more detailed
understanding of DOS physical disk addresses, and as such is not
usually as useful as the LRN level. However, when access to a
specific sector on the disk is desired, it can be achieved using
DUMP level four. It is important to realize that the physical
disk addresses specified are logical physical disk addresses, that
is, the same format as is given to the DR$ and DW$ routines in the
DOS. They are not necessarily the same as actual physical
locations on the disk. For example, with DOS.C for the 9380
series diskettes, the logical disk addresses are remapped onto the
diskette into different hard physical sector numbers than those
indicated by the logical physical disk address. The important
thing to understand here is that the disk addresses used in the
level four control of DUMP are those that would be used to
parameterize DR$ and DW$.

The commands accepted at level four of DUMP are as follows.

msb, lsb - Access and display the sector indicated at the
given physical disk address on the current logical drive. The
first field (most significant byte) is assumed to be in decimal
unless a leading zero is supplied. The second field (least
significant byte) is always considered to be in octal, regardless
of whether a leading zero is supplied or not. The second field is
separated from the first by a comma. The physical disk address
given by the user is assumed to be valid. If it is not of the
proper format, undefined results may occur. Users who are not
sure of their understanding of DOS internal physical disk
addresses should not use level four of DUMP.

Pnnnnn - Print the next 'nnnnn' sectors to the printer
selected on the command line.

I - Increment the current physical disk address, access it
and display the sector.

D - Decrement the current physical disk address, access it
and display the sector.

* - Return control to level two if no file is opened, or
level three otherwise.

> - Show the second half of the current sector.
< - Show the first half of the current sector.

21-6 DISK OPERATING SYSTEM

21.8 Level Five Commands to DUMP

When the flashing cursor indicates that the DUMP command is
operating at control level five (system directory sector level),
the following commands are accepted:

number - Show the directory sector indicated by the low order
four bits of the number specified. Since only the low order four
bits of the number are used, it is not an error to specify simply
the physical file number (PFN) of the file whose directory entry
is to be examined. A leadLng zero indicates the number is in
octal, otherwise decimal is assumed.

Pnnnnn - Print the next 'nnnnn' sectors to the printer
seclected on the command line.

I - The current directory sector number is incremented and
the corresponding directory sector is displayed.

D - The current directory sector number is decremented and
the corresponding directory sector is displayed.

* - Return control to level two.
> - Show the second half of the current directory sector.
< - Show the first half of the current directory sector.

21.9 Error Messages

Only one error message is issued by the DUMP command. It is:

ERROR IN DOS FUNCTION. DUMP ABORTED.

If this error message occurs, it means that the DOS FUNCTIONs
are probably incorrect on the disk, generally indicating that the
disk in the booted drive has not been completely (or correctly)
DOSGENed. If this is the case, SYSTEM7/SYS should be loaded using
the latest copy of DOS as distributed by Datapoint.

CHAPTER 21. DUMP COMMAND 21-7

CHAPTER 22. THE DUMP93XO COMMAND

22.1 Purpose

DUMP93XO represents one of three programs: DUMP9350,
DUMP9370, DUMP9380. Each program functions on only one of the
Datapoint type disks, 9350 series, 9370 series, or 9380 series
respectively. In the following chapter, characteristics of a
particular program or disk will be indicated by the specific drive
type. Features common to all programs will be indicated by
reference to "DUMP93XO", so the "X" can be at any time read as
"5", "7", or "8". The examples that follow are primarily set for
DUMP9370 use, since the 9370 disk uses the most complex address
format. In general, the examples apply equally well to 9350 or
9380 disks, ignoring the head address used in the 9370 command.
The DUMP93XO command enables the programmer to inspect, record, or
load physical disk sectors. DUMP93XO is intended to be used only
for extremely low-level disk examination by trained systems
personnel. Most users will find the facilities provided by the
DUMP command to be more useful for general disk examination
purposes.

22.2 Use

DUMP93XO can be invoked from an active DOS by keying in at
the system console:

DUMP93XO

Since DU1'1P93XO is a completely self-contained program, it can
be run from an LGO cassette tape (unlike most DOS commands which
rely on one or more of the DOS routines for their execution). In
this mode, DUMP93XO can occasionally be useful in helping to
determine the problem when the DOS will not boot up from some
disk. If a user intends to use DUMP93XO in this way, he should
take care to make an LGO tape and store it safely away somewhere,
before he needs it.

DUMP93XO can output physical disk records (sectors) to a
local printer, the cassette deck, or to the screen, and can load
sectors to disk from the cassette deck.

CHAPTER 22. THE DUMP93XO COMMAND 22-1

There are two command handlers in DUMP93XO. The primary
command handler controls all DUMP93XO functions except the screen
dump. The screen dump requires its own syntax because it is an
interactive, and more flexible, facility.

All commands to DUMP93XO employ the same conceptual
structure, though elements of commands may be implicit as well as
explicit. The full explicit format for commands is:

DUMP93'70:
DUMP9350:
DUMP9380:

Z AAA,BBB,CCC DDD,EEE,FFF
Z AAA,CCC DDD,FFF
Z AAA,CCC DDD,FFF

where Z is the command
AAA is the starting cylinder number
BBB is the starting head on cylinder AAA(DUMP9370 only)
CCC is the starting sector on that track
DOD is the ending cylinder number
EEE is the ending head on cylinder DDD(DUMP9370 only)
FFF is the ending sector on that track

Notice that all disk addresses are "hard" physical disk
addresses, as opposed to DOS standard-format (or "logical")
physical disk addresses. All numbers input to DUMP93XO are octal.
Consult the appropriate appendix for a description of the physical
addressing of the type of disk in use.

P
S
CD
CL
/I

*
A
E
o
@

*
II
I
D
C
H

The command codes of the primary command handler are:

Print on the local printer
Screen dump
Cassette dump
Cassette load
Jump to DOS DEBUG
Return to DOS command interpreter
ASCII mode (for printer or screen dump)
EBCDIC mode (for printer or screen dump) (DUMP9380 only)
Octal mode (for printer or screen dump)
Physical drive number

The command codes of the scfeen dump command handler are:

Return to the primary command handler
Jump to DOS DEBUG
Increment the (cylinder,head,sector) address
Decrement the (cylinder,head,sector) address
Cylinder address mode
Head address mode (93'70 only)

22-2 DISK OPERATING SYSTEM

S Sector address mode
A ASCII display mode
E EBCDIC display mode (9380 only)
o Octal display mode

The following operating instructions discuss the commands and
their applications, with some examples, in more detail.

22.3 The primary command handler

As soon as DUMP93XO has fully loaded, it displays its signon
message on the screen. When the cursor appears at the lower left
corner of the screen the primary command handler is ready to
accept commands.

22.4 Using

DUMP93XO with a Local Printer P - Print on the local printer

DUMP93XO will print only to a 132 column local printer,
address 0303. The 256 byte disk records (sectors) are listed 32
bytes per line, 8 lines per sector. Preceding each 8 line block
of print is a short line giving the physical disk address of the
printed sector. One sector or the entire disk may be dumped to
the printer by a P command. After the last sector is printed the
page is ejected to top of the next page.

Unless otherwise specified, the bytes are printed in octal,
with a space separating each byte, except every eighth byte is
delimited by a period. If the DUMP93XO command is in the ASCII
mode (set with the A command) characters that are valid ASCII
characters will be printed in ASCII. Lower-case ASCII alphabetic
characters are indicated by a preceding underscore (). If the
DUMP9380 command is in the EBCDIC mode, bytes that are valid
EBCDIC characters will be printed in EBCDIC, lower case characters
preceded by an underscore.

COMMAND EXAMPLES:

P 000,000,000 000,000,000

would dump to the printer the disk records from cylinder 000, head
000, sector 000, thru cylinder 000, head 000, sector 000. In
other words, print only the one sector with the disk address
000,000,000.

CHAPTER 22. THE DUMP93XO COMMAND 22-3

Note from the following examples that the parameter fet~hing

subroutine will make certain assumptions about information not
explicitly given.

P 0,0,0 0,23,27

would dump to the printer the disk records from cylinder 000, head
000, sector 000, thru cylinder 000, head 023, sector 027. In
other words, dump to the printer all of the sectors on cylinder
zero. Note that it is not. necessary to supply leading zeros in an
address.

For 9350 series disks, the equivalent command, dump all of
cylinder 0, is

P 0,0 0,67

For 9380 series disks, the equivalent command is

P 0,0 0,14

P ° °
would do exactly the same thing as the previous example. When
only the first number is given between spaces, it is taken to be a
cylinder address, with a sector and head address of 000 assumed
for the beginning cylinder. For 9370 disks, a head address pf 023
and a sector address of 027 are assumed for the ending cylinder
address. For 9350 disks, a sector address of 067 is assumed for
the ending address. For 9380 disks, a sector address of 014 is
assumed for the ending address.

P 4

would dump to the printer the disk records from cylinder 004, head
000, sector 000, thru cylinder 004, head 023, sector 027. In
other words, all of the sectors on cylinder 4. When only one
cylinder address is given, it is taken to be both the beginning
and ending cylinder address. For 9350 series, the command would
dump from cylinder 004, sector 000, through 004, sector 067. For
9380 series, the command would dtimp from cylinder 004, sector 000,
through cylinder 004, sector 014.

P 67 70,7

would be assumed to mean: P 067,000,000 070,007,027 ,

or for 9350's P 067,000 070,007

22-4 DISK OPERATING SYSTEM

or for 9380's P 067,000 070,007

22.5 Screen Display format

S - Screen dump

DUMP93XO can display on the CRT one disk physical record
(sector) at a time, in octal or ASCII (or EBCDIC for 9380). The
address of the sector displayed is controlled in a manner
analogous to the display of bytes in memory by the DOS debugging
facility.

A special display format is utilized to enable all 256 bytes
of a sector to be displayed on the screen at one time. Below is a
diagram of what a screen dump of a sector would look like; given
the CYL,HED,SEC address = 44,0,6 and each byte in the example
sector is its location within the sector; (i.e., starting at the
beginning of the sector, the bytes are in octal) 000, 001, 002,
003, ... , 0377:

Illustration 4.4

Note from the diagram that:

The displayed sector address is in the upper left-hand corner
of the screen. For 9350 disks, the cylinder and sector address is
shown. For 9370 disks, the cylinder, head, and sector address is
shown. For 9380 disks, the cylinder, physical sector, and logical
sector address is shown. Each portion of the address is on one
line; stated sequence above is top to bottom.

Each group of 10(octal) bytes is displayed in a contiguous
block of digits.

Each block of 100(octal) bytes begins at the left side of the
screen, preceded by an underscore ().

Each block of 100(octal) bytes-consists of 10(octal) groups
of 10(octal) contiguous bytes; 3, 3, and 2 groups to a screen
line, for the three lines required to display 100(octal) bytes.

The screen displays 400(octal) bytes, which is one disk

CHAPTER 22. THE DUMP93XO COMMAND 22-5

sector, 256(decimal) bytes.

To further break down the screen and enable quick location
and reading of individual bytes, the first digit of every second
byte is flashed on and off. Thus, each group of eight bytes is
divided into four units of two bytes.

COMMAND EXAMPLES:

S 044,014,006

would mean: display cylinder 44, head 014, sector 6 on the
screen. This command can only be given to the primary
command handler, and after it is executed DUMP93XO will be
under the control of the screen dump command handler.

22.6 The Screen Dump Command Handler

Note that as in the DOS debugging facility, the command codes
entered are not displayed, the command is merely immediately
executed.

* Return to the primary command handler. The screen will be
rolled up, the cursor turned on, and keyed commands will be
displayed as they are entered at the lower left corner of the
screen. .
NOTE that the SHIFT key must be depressed at the same time as
the asterisk (*) key.

Jump to the DOS debugging facility. # will not work if
DUMP93XO was loaded from an LGO tape.
NOTE that the SHIFT key must be depressed at the same time as
the pound sign (D) key.

I Increment the cylinder, head, or sector address and display
the sector at the new address. The new disk address will be
displayed at the top left corner of the screen.

If the C (Cylinder address mode) command is in force when an I
command is given, the cylinder address will be incremented by
one, the head and sector addresses will not change. Cylinder
address wrap-around occurs at 0312->000 (0114->000 for
DUMP9380). Incrementing by cylinder address is useful for
scanning quickly through a large file by steps of 4 (9380) or
8 (9350,9370) clusters per increment. .

I f the H (Head address mode) command is in forc e when an I

22-6 DISK OPERATING SYSTEM

command is given, the head number will be incremented by one.
If the head address was 023, it will wrap around to head zero
and the cylinder address will be incremented by one. Note that
the head address will increment across both the two logical
packs on the physical drive. H is operative only under
DUMP9370.

If the S (Sector address mode) command is in force when an I
command is given~ the sector address will be incremented by
one. If the sector was the last on the track (014 for 9380,
067 for 9350, 027 for 9370), then the head or cylinder
address, or both, are incremented by one and the sector
address is set to zero. If the cylinder address was the last
on the disk, it will be set to zero. Incrementing by sector
enables scanning sector by sector through a file and
inspection of the exact data on each disk record. Files which
span logical cylinders or are non-contiguous on the disk
(which includes most large files) will require more detailed
understanding by the user of the DOS file structure (in order
to avoid incrementing out of the file's allocated space) and
are usually better examined using the DUMP command.

D Decrement the cylinder, head, or sector address and display
the sector at the new address. Except for the direction of
address change, the D command is functionally like the I
command.

C Cylinder address mode. This command causes subsequent I or D
commands to alter the cylinder address. Optionally, a
cylinder address may be keyed in before striking the C key;
the current cylinder address will be replaced by the entered
value before the disk record is read and displayed. The
entered digits will be displayed at the lower left corner of
the screen. Note that the address must be an octal address.
If more than three digits are entered DUMP93XO will BEEP and
the procedure must be restarted. If the address entered is
not a valid cylinder address (for example, greater than 0312)
the C command will be in force but the cylinder address will
not be changed. Also note that only the eight least
significant bits of the value entered will be taken for the
address (an entered value of 444 would be interpreted as 044).

H Head address mode. This command causes subsequent I or D
commands to alter the head number. Except for the fact that
the H command modifies head addresses and sets head mode, it
is similar to the C command. (DUMP9370 only.)

S Sector address mode. This command causes subsequent I or D

CHAPTER 22. THE DUMP93XO COMMAND 22-7

commands to alter the sector address. Optionally, a sector
address may be keyed in before striking the S key. The
address option is functionally similar to the C command.
Sector address mode is the assumed mode of operation when the
program is started.

A ASCII display laode. This command causes the bytes to be
displayed in ASCII instead of OCTAL on the screen, for all
bytes that have valid ASCII bit configurations. This is
useful for examining text files on disk. Note that the ASCII
mode will carryover to the P (print) command of the primary
command handler unless changed by a subsequent 0 command.

E EBCDIC display mode (9380 only). This command causes the
bytes to be displayed in EBCDIC instead of OCTAL on the
screen, for all bytes that have valid EBCDIC bit
configurations. This is useful for examining the index track
(track zero) on a diskette, and for text files on IBM
formatted diskettes. While DUMP9380 is in EBCDIC mode, sector
addresses used are taken as physical sector numers. During
ASCII or Octal modes the addresses are taken as logical sector
numbers and are re-mapped to take sector skewing and radius
spiraling into account (see Appendix C).

o OCTAL display mode. This command causes the bytes to be
displayed in OCTAL instead of ASCII. OCTAL mode is the
assumed mode of operation when the program is started.

22.7 Cassette Operations

CD - Cassette Dump
CL - Cassette Load

DUMP93XO can write to the front cassette deck the contents of
specified disk sectors, and can read DUMP93XO tapes from the front
deck to load specified sectors.

COMMAND EXAMPLES:

CD 000,000,000 000,002,027

would mean: dump the sectors from c~linder 000, head 000, sector
000, thru cylinder 000, head 2, sector 027 to the cassette in the
front deck. In other words, dump the first three tracks of the
disk to cassette. The CD command will dump from one sector to 500
sectors (all that will fit on a cassette), in contiguous sectors.
The disk addresses given (explicitly or implicitly) must be from

22-8 DISK OPERATING SYSTEM

lesser to greater (e.g. CD 40,0,0 36,0,27 would be invalid because
the second address is less than the first address). If any fault
is found in the addresses given, the message:

PARAivtETER ERROR

will be displayed and the machine will BEEP. Refer to the
discussion of the P (print) command for examples of explicit and
implicit addresses in commands. If the command is correct, the
message:

FRONT DECK SCRATCH ?

will be displayed. A reply of "Y" will cause the cassette dump to
proceed, while a reply of "X" will cause an exit to the primary
command handler. Any other reply will cause the question to be
repeated. When the front deck is ready, the cassette dump will
rewind the tape and begin dumping the specified sectors to tape as
individual 256-byte records. When all of the sectors have been
written, the tape is rewound and checked sector by sector against
the sectors on disk. If the tape data does not match the disk
data exactly, the cassette dump will abort with the message:

TAPE/DISK VERIFY FAILURE

and exit to the primary command handler. If the tape is correct,
it is rewound and control is returned to the primary command
handler.

CL ° ,2

means: load the disk sectors addressed 000,000,000 thru 000,02,027
from the front cassette. Not more than 500 sectors may be
specified to be loaded from a cassette. The cassette load read
routines expect to find records of exactly 256 bytes on the tape
for at least as many records as there are sectors to be loaded.
If a record that does not meet the specifications is encountered
before the last sector has been loaded, the cassette load will
abort with the message

BAD DUMP TAPE

and return control to the primary command handler. It is not
necessary that the records on the tape be written to the same disk
addresses as from which they were read. Therefore, the CD and CL
commands provide a means of moving sectors from place to place on
one disk, or from one disk to another.

CHAPTER 22. THE DUMP93XO COMMAND 22-9

WARNING: Loading these sectors does not affect the C.A.T.
Directory, or RIBs on a disk. Therefore, if the sectors are not
loaded carefully into a matching file, they will be unallocated,
unreferenced and probably cause FORMAT errors if read.

It is not necessary that a CL read all of the records that
may be on a cassette, only that there are at least as many records
on the cassette as there are sectors to be loaded. When the
specified sectors have been loaded, the tape is rewound and the
tape records are re-read and matched against the loaded sectors on
the disk. If the data on the tape does not match the data on the
disk, the cassette load routine will abort with the message:

TAPE/DISK VERIFY FAILURE

and exit to the primary command handler. If everything is
correct, the cassette load routine rewinds the front tape and
returns control to the primary command handler.

22.8 Drive Numbers

When DUMP93XO begins execution it assumes that it is to deal
with the disk in drive zero. The @ command instructs DUMP93XO to
deal with the disk in the specified physical drive.

COMMAND EXAMPLE:

@ 1

would mean: succeeding commands will refer to the disk in physical
drive 1. The @ 1 command will remain in force until another @
command addresses a different physical drive. Note that the
address parameter for the @ command consists of one and only one
digit.

22.9 Error Messages

Some of the error messages produced by DUMP93XO and their
meanings are explained below.

PARAMETER ERROR

Occurs if an invalid command or disk address is given to the
primary command handler. Note that all disk addresses must be
expressed in octal.

22-10 DISK OPERATING SYSTEM

SO rviUCH ?

Occurs if a command is given to dump more than 10 cylinders
to the printer. Note that one cylinder will fill 32 printer pages
(8 pages for 9350, 2 pages for 9380), and ten cylinders would
represent a very large file. Respond "N" if you really don't want
the printer to print out that many pages of paper. Otherwise, "Y"
will cause the printing to proceed.

CASSETTE TOO SMALL

Occurs if a comtoand is given" to dump too many cylinders to
cassette.

TAPE/OISK VERIFY FAILURE

Occurs during the tape-against-disk check phase of a cassette
dump or cassette load if the data on the tape does not match
exactly the data on disk. The tape is rewound and the dump or
load should be retried.

BAD DUMP TAPE

Occurs if a tape record is read that does not conform to the
DUMP93XO tape record format. If it occurs during a cassette load,
no data from the bad tape record is written to disk.

DISK NOT ON LINE

This message is self-explanatory.

DISK PROTECTED

Occurs if the disk is protected and a cassette load command
is given. Nothing will be written to the disk as long as the READ
ONLY indicator is on.

C.R.C. ERROR

Occurs if a hardware read or write error persists after three
attempts to accomplish the read/write unless the read error occurs
during a printer dump command (so that data on bad sectors can be
hard-copy recorded and examined). If a C.R.C. error occurs during
a printer dump, the machine will beep.

BEEP (Audio signal)

The machine will BEEP if an invalid command is entered from

CHAPTER 22. THE DUMP93XO COMMAND 22-11

the keyboard. Also see C.R.C. ERROR.

SEEK INCOMPLETE

(9370 only)

This occurs if the disk controller SEEK INCOMPLETE status bit
is set. This bit is set if a cylinder seek operation does not
finish within 100 milliseconds. When this occurs, it generally
indicates a hardware malfunction.

COMMAND ERROR

(9350 only)

This occurs if the disk controller COMMAND ERROR status bit
is set. The DUMP9350 program should be reloaded if this happens.
If it happens again, something is wrong with the processor, the
1/0 bus, the disk controller, or the disk drive.

SECTOR NOT FOUND

(9370 only)

This occurs if the disk controller SECTOR NOT FOUND status
bit is set. This usually occurs as a result of the formatting
information on a disk (as written by INIT9370) being incomplete or
incorrect, but could also indicate a software or hardware
malfunction.

(9350 only)

Same as COMMAND ERROR.

(9380 only)

Occurs if the disk controller SECTOR NOT FOUND status bit is
set. This usually occurs as a result of the formatting
information on a disk being incomplete or incorrect, but could
also indicate a software or hardware malfunction.

22-12 DISK OPERATING SYSTEM

CHAPTER 23. EDIT

23.1 Purpose

EDIT is used to create and update source files on the disk.
The editor enables the creation of files in a variety of data
formats: text files, assembler code files, DATABUS source code
files, or many user-designed data files.

This chapter describes the general operation of the editor.
Basic commands to find, add and modify text lines are described.
Intermediate commands permit short-cuts for experienced users and
the advanced commands allow the user to create complex commands
for repetitive editing tasks.

23.2 Use

The EDIT program is parameterized as follows (where items in
square brackets are optional):

EDIT <f1>[,<f2>][,<f3>][;parameter list]

<f1> is the source file, <f2> is the scratch file and <f3> is
the definition file. The source file <f1> is assumed to have an
extension of 'TXT' if none is provided. If there is no file of
the specified name, a new file is created after checking with the
operator. If no scratch file <f2> is specified, a primary scratch
file 'SCRATCH/TXT' and a secondary scratch file 'SCRATCH/XTX' are
used. Since the second scratch file will be named <scratch file
name> /XTX, the extension '/XTX' for <f2> is NOT allowed. The
definition file <f3> is assumed to be EDIT/DEF unless otherwise
specified. Both the scratch file name and the definition file
name are stored in the configuration sector. These names will be
used unless they are otherwise specified on the command line.
Both the scratch and definition file names are displayed in the
signon message.

CHAPTER 23. EDIT 23-1

23.3 Parameter List

A parameter list', indicated by the SEMI-COLON (;) following
the file specifications, may be included. That list may include
nine parameters which are order independent. The possible
parameters are:

[;[margin][tab key][mode][shift][line][update]
[keyclick][space-compression][non-verification]]

At the start of an EDIT, the values for these nine parameters are
taken from the command line. Values for [margins], [tab key],
[mode], [shift], [line], [key click] and [space-compression] not
given on the command line are taken from the source file
configuration sector, if there is one. The source file is updated
unless otherwise specified on the command line. and verification
mode is assumed. Care should be exercised to be sure that not
more than one mode, margin, and so on are specified on the command
line or the desired value may not be selected.

When a file has been edited with EDIT, a special sector
called the "configuration sector" is written at the beginning of
the file. The sector contains the tabs, modes and special
characters in effect when the EDIT was completed. These default
values are used in place of any such parameters not specified on
the command line.

If no command line parameter list is provided and the source
file has no configuration sector, or an unrecognizable one then
"Assembler" mode wi th space-compression, a margin at '15, no
keyclick and the space bar for tabbing is assumed.

23.3.1 Margin Bell

A number in the parameter list is taken to be the margin
designator; this causes the margin 'bell' to ring at the
designated margin. The default margin is 75.

For example ";30 tl causes the bell to ring in column 30.

23-2 DISK OPERATING SYSTEM

23.3.2 Tab Key Character

A tab
non-alpha,
character.
SEMI-COLON
any of the

key character encountered in the parameter list, i.e.,
non-numeric, non-colon, replaces the assumed tab key

(SPACE in Assembler, DATABUS and Comment mode,
in Text mode.) The tab character cannot be the same as
modify command separators or the continue character.

For example, ";"'" causes the caret key ("') to replace the
assumed character as the tab key.

23.3.3 Mode

A different set of assumptions is used if one of the 'mode'
para~eters is set. If no mode is listed or 'A' is typed,
Assembler mode is used. DATABUS or DATAFORM (D) mode simply
changes the tab stops.

Comment mode 'e' enables the same set of assumptions that 'A'
does. This option is different from the 'C' mode available in the
previous DOS General EDIT.

Text ~ode (T) sets no tabstops, does no shift inversion and
enables the word wrap-around feature (see the glossary). The
[shift] option'S' and the [line] option 'L' are recognized only
if the text mode 'T' is set (either on the command line or in the
configuration file). To activate line truncation instead of word
wrap-around in Text mode, enter 'L' in the parameter list. To
enable shift key inversion (see glossary) in Text mode, enter the
parameter'S' in the list. Text mode is especially useful for
generating SCRIBE input files.

See the glossary for complete definitions of the various
modes.

23.3.4 Update

During editing, the source file is transferred into the
scratch file as the text is updated. A second scratch file may be
also used as the edit proceeds. When the edit is terminated, the
physical source file is normally updated.

The 'ONE-PASS' parameter '0' may be set in the parameter
list. Then, at the completion of the edit, the scratch file
contains the updated information and the source file is unchanged.

CHAPTER 23. EDIT 23-3

23.3.5 Key-click

If the 'K' parameter is set, a 'click' sounds each time a key
is struck.

23.3.6 Space Compression

EDIT normally space-compresses (see Text File Format, in
Appendix G.) If an 'E' appears as a parameter on the command
line, spaces are "expanded", that is, NOT space-compressed. In
expanded mode, EDIT reads in either space-compressed or
non-space-compressed data but puts out only non-space-compressed
records. To clear expanded mode, enter a 'G' for GEDIT format as
a parameter on the command line. The space compression option
(either 'E' or 'G') is stored with the file in the configuration
sector, but may be changed by putting the desired option on the
command line.

23.3.1 Non-verification

Four EDIT commands, :B, :E/, :E\ and :0, question the user:

SURE?

before executing. In certain special cases, for instance, when
running under CHAIN, it is inconvenient to provide the 'Y'. The
non-verification parameter on the command line allows the user to
answer 'YES' in advance by placing a 'Y' on the command line.
When 'Y' has been placed on the command line and the commands :8,
:E/, :E\ or :0 are entered, no verification is requested from the
user.

23.4 Examples

To perform standard Assembler code editing, enter the
command:

EDIT <source>

To edit a file for input to the text processor, SCRIBE, enter the
command:

EDIT <source>;T

To also change the margin bell to ring at column 35 (e.g. for

23-4 DISK OPERATING SYSTEM

labels) enter the command:

EDIT <source>;35T

These parameters set the bell at 35 and select the Text mode. Note
that the parameters are not order dependent; therefore, the
command:

EDIT <source>;T35

achieves the same results.

EDIT <source>;E

produces a file in which all spaces are written out (or
non-space-compressed).

To write the edited text into a second file, without updating
the original file, enter the command:

EDIT <source>,<new file>;OT

If the file is Assembler code instead of text, si~ply omit the
'T'; if DATABUS, replace 'T' by '0'.

A second file, with the same name as <f1> but with a
different extension, may be used as the scratch file by entering:

EDIT <f1>,I<extension>

Note that the extension IXTX is not allowed for the scratch
file specification.

Once the initial command (and parameter list) has been
entered, the DOS Editor sign-on message will appear on the screen
followed with the file's configuration information (e.g. tabs,
special characters, margin, keyclick, word wrap-around, shift
inversion and space-compression) with the cursor left on the
'command line'. From this position data may be entered, lines may
be fetched from the source file, or EDIT commands may be entered.

CHAPTER 23. EDIT 23-5

23.5 Data Entry and Retrieval

23.5.1 Data Entry

To enter text, simply type on the bottom or "command" line.
When the ENTER key is pressed the screen rolls up one line. The
command line is once again blank and the cursor is at the
beginning of the command line, ready to accept more input.

When a SPACE is typed to the right of the margin bell column
(except in column 79) and word wrap-around is enabled, the editor
will automatically roll up the screen and begin a new line. If a
non-space character is typed into the last column of the screen
and word wrap-around is enabled, the last word on the line is
removed and, after the screen is rolled up, that word is placed on
the command line, where data entry may proceed.

The lines that have been rolled above the command lines are
referred to as "screen lines".

When typing on a "screen line" (as the result of a command),
the ENTER key causes the cursor to return to the command line. To
oontinue data entry at the same screen area, the Pseudo-ENTER key
may be used. This key (DEL) causes (in all but command mode), a
new blank line to be inserted at that point on the screen so that
data entry may proceed.

The BACKSPACE key erases the last character and moves the
qursor back one position. The CANCEL key erases the line back to
the previous tabstop, or back to the beginning of the line if no
tabs are set.

Typing the tab key character causes the cursor to move to the
next tab stop to the right. If there are no tab stops to the
right of the cursor, the tab key character is accepted as a normal
data character.

23-6 DISK OPERATING SYSTEM

23.5.2 Multi-line Record Entry

A record in a disk file is a string of characters, perhaps
including space compression characters, that is terminated with an
octal 015. Normally the length of a record is no greater than 80
characters, including the octal 015, and correspo~ds to a screen
line.

Multi-line records are records in a disk file that are
greater than '79 characters long and must be continued to the next
line when displayed on the screen.

To enter lnulti-line records, use the continue character. The
assumed continue character is '&'. When this character is keyed
in the fi rst col umn, the continue ind icator (a "greater than" (»
on a slow screen or a solid triangle on a high speed ~creen) is
displayed. If the continue character is keyed in any other
column, it is accepted as a normal data character.
NOTE: This character cannot be modified into, or taken out of a
line •.. it must be keyed in.

Note that although multi-line records are indicated on the
screen, the editor treats them as if they were separate lines.
The copy comrr'land, fo r in stanc e, copi es onl y tile po in ted li ne and
NOT all of the lines in the mulit-line record. The only time EDIT
recognizes lines as part of a multi-line record is during output.

Any line be3inning with a continue indicator is joined to the
previous line on output, forming records greater than 79
characters, if required.

When creating or modifying multi-line records, trailing
spaces on a line often need to appear to force the line to be
greater than 79 characters. In EDIT, trailing spaces are NOT
deleted when they have been entered or read in from a file.
However, when EDIT modifies, appends or copies a line, trailing
spaces are deleted from that line as in the previous DOS Editor.
Note that to update a multi-line record with trailing spaces the
line must be re-entered. However, if the tE' option is entered
on the command line these trailing spaces will not be truncated by
the ':1"1', ':C' or ':A' commands.

CHAPTER 23. EDIT 23-7

23.6 Data Retrieval

To fetch data from the source file, hold down the DISPLAY key
and press the KEYBOARD key. As long as the two keys are
depressed, data is fetched, displayed on the command line and
rolled up the screen. If the end of file is reached, no more data
is fetched and the machine beeps.

To fetch data backwards, hold down the KEYBOARD key and press
the DISPLAY key. As long as the two keys are depressed, the
screen rolls down and prior lines inserted on the top line. If
the beginning of the file contained in memory is reached, the
machine beeps, and no more data is fetched.

To fetch a single line, the shifted DEL key may be pressed.
Using this key insures that only one input line is fetched. If
keying on the command line, and a colon is not in the first
column, a pseudo-enter anywhere on the command line will fetch
another line.

All of available memory is used as a circular buffer. As the
operator proceeds through the file, EDIT writes lines from the end
of the buffer out to disk, maintaining a post-screen buffer so the
user can roll backwards. Rolling backwards is restricted by the
size of the post-screen buffer. Of course, if the file is small
enough to fit completely in [nemory, there is no restriction.
Sometimes the processor appears to hang while it is doing buffer
management.

23.7 EDIT Command Format

The text appearing on the screen lines (that is, the lines
above the command line) may be edited using a set of 'commands'.
A 'pointer' (» in the left hand column of the screen indicates
the line which the command affects.

To Inove the pointer up, press the KEYBOARD key. To move the
pointer down, press the DISPLAY key. The pointer wraps around
from the top to the bottom and vice versa.

Commands allow the user to delete a single line (:0) or part
of the screen (:SC and :SB), insert (:1) a new line between the
current lines on the screen and modify (:M) parts of a line by
replacing text or inserting new text. Commands are also available
to search the file for specific text (:F and :L), for the end of
the file (:EO or :E*), or for a particular line by number (:G).

23-B DISK OPERATING SYSTEM

An editor command is always preceeded by a COLON (:). To
enter a command, type a colon in the first column of the command
line with the appropriate comrnand character(s) and any necessary
parameters. The command characters may be upper or lower case. To
force a line to be entered with a colon in the first column, start
the line with two colons (the first one is discarded and the line
shifted left).

23.8 Basic EDIT Commands

The following commands are a few basic editor commands. The
user can get started without worrying about complex command forms.
Remember that the 'pointer' on the screen indicates the line
affected by the co~mand.

23.8.1 Setting Tabs

:T - TAB set - this command enables the user to reset the tab
stops during execution. The command causes a line of numbers to
be displayed across the bottom of the screen.

The operator should space over to each position where a
tabstop is desired and type any non-blank character. These tab
stops are meaningful during data entry. A maximum of 20 tab stops
may be set.

See the section on 'Changing Tabs' for more information on
setting tabs.

23.8.2 Setting TEXT Mode

:X - TEXT - this command enables word wrap-around and
disables shift key inversion and space insertion after leading
periods, pluses, and asterisks. It automatically enters the tab
set command (:T), so that tab stops may be cleared by the
operator. The tab key character is not changed; therefore, the
":[tab key]" command must be used to set a new tab key character
if one is desired.

See the section on 'Changing Modes and Options' for more
information.

CHAPTER 23. EDIT 23-9

23.8.3 INSERTing a Line

:1 - INSERT - Perform a line insert at the pointed line.

This command causes the lines from the bottom of the screen
to the pointed line (but NOT including the pointed line) to roll
down one line on the screen. A blank line is inserted below the
pointed line, the pointer moves down to point to the blank line
and the cursor is left at the beginning of the new blank line
where data entry may proceed.

If word wrap-around is enabled and the end of the new line is
reached during text entry, the new line (and all lines above it on
tile screen) roll up leaving a blank line containing the overflow
from the previously INSERTed line. The cursor is left following
the overflow awaiting continued data enty. When the ENTER key is
pressed, the cursor returns to the command line and the new text,
if any, remains on the screen in its new position.

If the ENTER key is hit in the first column of the blank
INSERTed line, the screen rolls up to fill the null line, leaving
the screen in its original form.

If the Pseudo-ENTER key is used instead of the ENTER key to
terminate an INSERTed line, another INSERTion is performed and the
cursor remains on the newly INSERTed blank line awaiting data
entry of another line.

To make complex changes to a line already on the screen, the
operator may INSERT a line immediately below the original and then
retype the line with the changes. The original line may then be
DELETEd.

The INSERT command may also be used in the form

:1 <string>

This form will perform a new line insert as described above, place
the specified <string> on the new line, and return to the command
line immediately.

23-10 DISK OPERATING SYSTEM

23.8.4 DELETEing a Line

:0 - DELETE - delete the entire pointed line.

Blanks are written over the entire pointed line and the
cursor is left on the now null line where nevI text may be entered.
When the new line has been entered, it may be terminated with the
ENTER key. This leaves the new line in the place of the DELETEd
line, the pointer at the new line and the cursor returned to the
command line.

If no replacement text is needed, pressing the ENTER key in
the first column of the pointed line causes the screen to roll up
one line from the bottom to fill the pointed vertical position
with the line that was originally below it, leaves the pointer in
the same vertical position and returns the cursor to the command
line. At the end of the file (last screen of data), this action
leaves a blank bottom screen line. This line is a "phantom" line
with no real existence in the text file. It will not be written
to the disk.

If a new line is written in the place of the DELETEd line and
word wrap-around is enabled, the new line plus the screen lines
above the new line roll up, as described in the "INSERTing a Line"
section.

If the new line is terminated with a Pseudo-ENTER key, the
cursor does not return to the command line. Instead, an INSERTion
is made at the pointed line.

For other approaches to deleting lines, see the "Deleting
Lines" section in the "Intermediate Commands" chapter.

23.8.5 COPYing a Line

:A - APPEND - copies the pointed line to the bottom of the
screen, and rolls the screen up one line. The cursor returns to
the command line and the pointer stays with the original pointed
line by moving up one position when the screen rolls up. (Use :A*
to keep the pointer in the same vertical position on an APPEND).

:c - COpy - deletes the pointed line, rolls up the screen and
copies the pointed line to the bottom of the screen.

When the COPY command is entered, the pointed line is DELETEd
and text may be entered in the now blank pointed line. As with
the DELETE and INSERT commands, multiple lines may be inserted in

CHAPTER 23.' EDIT 23-11

the screen lines when word-wrap is enabled or by terminating lines
with the Pseudo-ENTER key.

When the new text entry is terminated with the ENTER key, the
cursor returns to the command line. The original pointed line has
been written following the line that was on the bottom of the
screen when the COpy command was initiated. If one or more new
line has been inserted during the COPY, the user must roll up the
screen to view the moved line.

If no new text was entered, i.e., the ENTER key was entered
as the first character on the new line, the screen rolls up to
fill the null line and the pointer remains in the same vertical
position. Since the screen has rolled up, the pointer is now
pointing to the line following the first copied line so that a
group of lines may be easily copied to another part of the screen.

23~8.6 MODIFYing a Line

:M [old text][command separator][new text] - MODIFY - a
modify command allows the operator to:

1) replace [old text] by [new text],
2) insert [new text] after [old text]
3) or append (i.e., truncate and add) [new text] after

[old text].

For instance:

:M [old text]<[new text]

replaces [old text] on the pointed line with [new text]. The
command:

:M [old text]>[new text]

inserts [new text] immediately following [old text] on the pointed
line. The command:

':M [old text]\[new text]

truncates the pointed line immediat~ly following [old text] and
then appends [new text].

If [old text] is not found in the pointed line, the machine
beeps and returns to the command line without making any
modification to the pointed lirie.

23-12 DISK OPERATING SYSTEM

Modifications at the end of the file (on the last screen of
data) can create "phantom" lines as described under "DELETEing a
Line". For the many various forms of this command see the 'MODIFY
Command' section.

23.8.1 LOCATEing a Line

:L - LOCATE next - typed exactly :L[ENTERJ, finds the next
line of text. If positioned at the end of the file, the 'next'
line is the first line of the file.

:L [old text] - LOCATE match - searches for a line containing
embedded text matching [old textJ. Leading spaces should be
supplied if meaningful.

For additional approaches to locating a line, see the 'File
Search Commands' section.

23.8.8 ENDing EDIT

:E* - EOF without display - searches for the end of the file
and, when it is reached, displays the last screen of text.

:E - END - causes the remainder of the logical source file to
be copied to the logical scratch file and then, if the logical
scratch is not the physical input file, the scratch file is copied
back to the source file.

The command line is left on the screen as long as the copy
from source to scratch is in progress. It is erased during the
final copy from scratch back to source.

Note: If EDIT is exited by any other means than one of the :E
commands the format of the scratch files is not guaranteed. Also,
if a system ERROR such as "File Space Full" is encountered while a
:E is in progress, the format of the files is not guaranteed.

CHAPTER 23. EDIT 23-13

23.9 Intermediate Commands

Most of the following commands are expansions of the ones in
the previous section. One additional concept introduced in this
chapter is that of "fields". A field is a portion of the line
between two consecutive tabs. Field one is between the left
margin and the first tab, field two is between the first and
second tab, and so on. Even though up to twenty tabs may be set,
only the first nine fields may be referenced.

23.9.1 Changing Special Characters

:[tab key] - change the tab key character to any non-alpha,
non-numeric, non-COLON, non-ENTER character typed after a leading
colon on the command line.

:[old modify operator] [new modify operator] - change the old
modify operator to the new one specified.

:[old continue character] [new continue character] - change
the old continue character to be new one specified.

:CH - display the current special characters.

For instance, if a user, wants to use "]" for the tab key, "="
for the modify replace operator, "_" for the modify insert
operator, and "I" for the modify append operator, the following
commands are typed:

:]
:< =
:> -
: \

Then to check that they were properly changed, the user
types:

:CH

which displays:

:CH TAB KEY:] CONTINUE: & MODIFY REPLACE: = INSERT: - APPEND:

23-14 DISK OPERATING SYSTEM

None of the modify operators nor the continue character nor
the tab key character may be the same character, and the special
characters must all be non-alpha, non-numeric, non-colon,
non-ENTER. A beep sounds if a character change command is
invalid.

At the end of EDIT, the special characters and tabs are
stored' in the updated file. The next time that EDIT is used wi th
the file, the same characters are used if not changed by the
command line parameters. The tabs and special characters are
displayed below the sign-on message.

23.9.2 Changing Tabs

:T - TAB set - enables the user to reset the tab stops during
execution. The command causes a line of numbers to be displayed
across the bottom of the screen.

The operator should space over to each position where a
tabstop is desired and type any non-blank character. These tab
stops are meaningful during data entry and for referencing fields
(the portion of the line between consecutive tab stops). A
maximum of 20 tab stops may be set. If the cancel key is
depressed during selection it will cause the numbers on the screen
to no longer be displayed, but the tab set command remains in
operation until the enter key ,is depressed.

:T [nn][,nn] ... - TAB set by column number - enables the user
to reset the tab stops by column number. For instance, entering
" : T 9, 1 5 , 3 0 " set s the tab s to col u m n s 9, 1 5, and 3 0 . A m a x i m urn 0 f
20 tab stops may be set. Tab numbers must be in ascending order.

At the end of EDIT, the tab positions and special characters
are stored in the updated file. The next time that the file is
edited, the same tabs and special characters are used. They are
displayed immediately below the sign-on message.

:T* TAB display - this command will display the cur~ent tab
settings on the screen.

Below are commands for setting tabs to pre-determined default
values.

:TA - Set Assembler tabs at columns 9, 15, and 30.

:TD - Set Datashare/Databus tabs at columns 10 and 20.

CHAPTER 23. EDIT 23-15

:TS - Set SNAP tabs at columns 11, 21 and 38.

:RH - RPG Header - sets tab stops for RPG header
specification at columns 6 and 15.

:RF - RPG File - sets tab stops for RPG file description
specification at columns 6, 15, 24, 33, 40, 54, 66 and 70.

:RE - RPG Extension - sets tab stops for RPG extension
specification at columns 6, 11, 19,27, 33, 36, 40, 46, 52 and 58.

:RL - RPG Line - sets tab stops for RPG line counter
specification at columns 6, 15 and 20.

:RI - RPG Input - sets tab stops for RPG input specification
at columns 6, 15,21, 44, 53, 59 and 65.

:RC - RPG Calculation - sets tab stops for RPG calculation
specification at columns 6, 18, 28, 33, 43, 49, 54 and 60.

:RO - RPG Output - sets tab stops for RPG output
specification at columns 6, 15, 23, 32, 38, 40 and 45.

:RS - RPG Summary - sets tab stops for RPG summary
specification at columns 6, 14 and 23.

23.9.3 Changing Modes and Options

:X - TEXT - enables word wrap-around and disables shift key
inversion and space insertion after leading periods, pluses, and
asterisks. It automatically enters the TAB set command (:T), so
that tab stops may be cleared by the operator. The tab key
character is not changed; therefore, the ":[tab key]" command must
be used to set a new tab key character if one is desired.

:XI - Invert TEXT - enables shift key inversion and disables
word wrap-around and enables space insertion after leading
periods, 'pluses, and asterisks. It automatically enters the TAB
set command so that tab stops may be reset by the operator.

:K - Keyclick - causes the machine to 'click' every time a
key is struck.

:KI - Invert Keyclick - turns off the 'click' set above.

23-16 DISK OPERATING SYSTEM

23.9.4 Deleting Lines

The user may delete the leading part of a line, the whole
line, or multiple lines.

:D - DELETE - deletes the entire pointed line (See 'OELETEing
Lines' section in the 'BASIC EDIT COM~ANDS' section.

:D [old text] - DELETE through - deletes all characters from
the left edge of the pointed line through (and including) the
specified [old text]. The remaining characters are left justified
and re-displayed.

The cursor returns automatically to the comrnand line.

:D[#] [old text] - DELETE through field - deletes all
characters from the left edge of the pointed line through (and
including) the specified [old text] in the specified field. The
remaining characters in that field only are left justified and
re-displayed. All characters following the specified field are
also deleted.

The cursor returns automatically to the command line.

:D[#][SPACE][ENTER] - DELETE through previous text - uses the
previously defined [old text] to perform a DELETE through
operation. A field number may be specified if desired, in which
case a DELETE through field operation is performed using the
previously defined [old text].

:D* - DELETE display - display the [old text] currently in
use for DELETE. After the saved string is displayed, the cursor
remains at the end of the display and the operator must press
ENTER to proceed. No DELETE is actually performed. DELETE uses
the same save area as LOCATE, FIND, and QUERY.

:SC - SCRATCH above - this command erases the lines from the
top of the screen down to the pointed line, inclusive. The cursor
and pointer are moved to the top line where data entry may
proceed. Note, the execution of this command may cause the
relative line number count, used by the :GA command to become
inaccurate. Exiting and re-entering EDIT will correct this
problem.

:SB - SCRATCH below - this command erases the lines from the
pointed line to the bottom of the screen, inclusive. The cursor
is left on the pointed line, where data entry may proceed.

CHAPTER 23. EDIT 23-17

As with the DELETE command, additional lines of text may be
inserted with word wrap-around, if enabled, or by terminating each
line with Pseudo-ENTER instead of ENTER.

23.9.5 MODIFY Command

The general form of the MODIFY command is:

:M[V][U] [old text][modify operator][new text]

where [V] is the VERIFY option, [U] is the optional field number,
and [modify operator] is the command separator which defines the
action of the command. Both [old text] and [new text] fields are
optional. If [old text] is omitted, the command takes effect at
the left-most edge of the pointed line (or at the left edge of the
specified field). If the [new text] field is omitted, a null, or
zero-length field is used to execute the modification. Note that
the [old text] cannot include any of the modify operator
characters; [new text] may contain one of those characters. If
necessary, the modify operators can be changed as described above
in 'Changing Special Characters' to avoid bad interpretations of
modify commands.

The VERIFY option causes the cursor to blink at the first
character to be modified. The user then has three responses. If
he presses 'Y' for 'YES', the modification takes place. If he
presses the 'ENTER' key, control returns to the command line. If
he presses any other key, the modify command continues to search
the line for another occurrence of [old text] to modify.

23.9.5.1 Line Modification

The following descriptions are of the line modification
version of the MODIFY command.

:M[V] [old text][replace operator][new text] - MODIFY
(replace) - replace the specified [old text] by the specified [new
text]. The "less than" character «) is the default command
separator which indicates replacement. If [new text] field is
omitted, the [old text] is simply deleted and the line compressed
to the left.

For example to modify the text line:

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK.

23-18 DISK OPERATING SYSTEM

The command: ":fv1 BROWN<RED" causes the line to be
redisplayed like this:

THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK.

The command: " : M . < 1234 T Ir'1ES." to the above line
generates a line like:

THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK 1234 TIMES.

If the replacement causes the line to become longer than 79
characters and word wrap-around is enabled, the trailing word is
wrapped around and a new line is inserted containing the entire
last word. If the [new text] is shorter than the [old text] it
replaces, the line is shortened.

After the pointed line is redisplayed, the cursor is returned
to the command line.

:M[V] [old te~t][insert operator][new text] - MODIFY (insert)
- the command separator "greater than" (» is the default
character causing the [new text] to be inserted in the pointed
line immediately after the [old text].

If the line becomes longer than 79 characters, and word
wrap-around is not in effect, the trailing characters are
truncated. If, however, word wrap-around is on, the last word(s)
are inserted on a new line.

:M[V] [old text][append operator][new text] - MODIFY (append)
- the "backslash" (\) is the default command separator causing
everything in the pointed line past the [old text] to be replaced
by the [new text].

As in all MODIFY commands, if the pointed line becomes longer
than 79 characters, truncation occurs if word wrap-around is not
enabled.

:M or :M[#] - MODIFY repeat - typed exactly :M[ENTER] or
:M[#][ENTER], uses the [old text][sep][new text] from the last
MODIFY command. This is useful when making the same change
repeatedly. Note that the field number is not saved, and must
therefore be supplied if necessary.

:MV or :MV[#] - MODIFY VERIFY repeat - typed exactly
: MV[ENTER] or :ivIV[#] [ENTER] is the same as the above comtnand
except that it invokes verification.

CHAPTER 23. EDIT 23-19

:M* - MODIFY display - display the expression entered for the
last MODIFY. After the saved command is displayed, the cursor is

. left at the end of the display and the operator must press ENTER
to proceed. No MODIFY is actually performed.

Unless the 'E' option, on the command line, has been set
trailing spaces on the modified line are always deleted. This
action may cause a multi-line record to be shortened.

23.9.5.2 Field Modification

In field modification ~ode, the MODIFY command acts only on a
specific field and does not expand or contract the entire line but
maintains the integrity of all fields before and after the
affected field.

:M[V][d] [old text][modify operator][new text] - MODIFY field
- where the pound sign [d] is a number from 1 to 9 designating the
TAB field to be modified (or the starting point to search for
matching [old text]). This command may be executed in any of the
previous Modify forms.

Modification is performed within the specified field only.
Thus, a replacement or append shorter than the original field is
blank filled and subsequent fields will maintain their position
and content. An insertion longer than the specified field is
truncated (with the exception of the last field whenever word
wrap-around is in effect).

For example, in assembler mode, field 1 is the label, field 2
is the op code, field 3 is the expression and field 4 is the
comment.

LABEL OP EXP COMMENT

the label may be deleted by the command:

:Ml \

and the resulting line becomes:

OP EXP COMMENT

Or, the expression field (EXP) could be changed to EXP+l without
disturbing the comment field position by the command:

:M3 EXP>+1

23-20 DISK OPERATING SYSTEM

which generates:

LABEL OP EXP+1 COMMENT

To add a comment to a line previously containing none or to
replace an existing comment field, enter:

:M4 \[new comment]

Remember when using the repeat form of the MODIFY command
that the modification applies to the entire line if the field
number is omitted.

23.9.6 Line Splitting

:V [old text] - SPLIT - split the pointed line after the text
matching [old text] and insert the remainder of the line past the
matching text below the pointed line. The pointer remains in its
original position. This is useful for INSERTing sentences in the
midst of text without doing a group of cumbersome MODIFYs.

23.9.7 Line Concatenation

:W - CONCATENATE - append the line below the pointed line to
the pointed line. The pointed line is assumed to have a trailing
space if word wrap-around is in effect. This is useful in text
mode where a MODIFY has caused words to wrap-around to the next
line and the operator wishes to include them with the following
line.

23.9.8 File Search Commands

Manual, operator controlled, searches may be performed by
depressing the KEYBOARD and DISPLAY keys simultaneously to cause
data to be fetched from the file (forward or backward depending
which key is pressed first) and displayed on the screen. This
continues until either key is released. The :EO command performs
the same function automatically, i.e., it causes lines to be
fetched and displayed until the end of the file is reached.
Pressing ihe DISPLAY key stops the :EO command until it is
released. To terminate an :EO command, press the KEYBOARD key.
To fetch a single line use the Pseudo-ENTER key (DEL).

The :E- command works the same way as the :EO except that it

CHAPTER 23. EDIT 23-21

fetches lines backwards through the file in memory rolling the
screen down.

To find the end of a file without displaying the entire file
(since the display is time consuming) use the :E* command. This
searches for the end of file and displays the last screen of data.
For more information the :E command, see the section on
'Terminating EDIT'.

FINDs and LOCATEs search the file for a line containing
specific text. When a line has been found, it is aligned with the
pointer on the screen so that it may be operated on. Lines above
and below the line are also displayed. FINDs and LOCATEs allow
field specification, that is~ if a field is specified, only lines
with the specific text in that field are found.

A FIND or LOCATE wraps entirely around the file. If the
requested text is not found, the last screen image when the FIND
or LOCATE was executed is displayed and the machine beeps. A FIND
or LOCATE [jay be aborted by pressing the KEYBOARD key.

The [old text] specified for a FIND command is saved. The
saved [old text] may be redisplayed or used again. FIND, LOCATE,
DELETE, and QUERY store the [old textJ in the same save area.

:F [old text] - fIND ~atch - the input file is searched for a
line starting with the specified [old textJ. Leading spaces in
the file's lines will be ignored and need not be entered as part
of [old text] unless meaningful. Note th~t this command should be
typed exactly :F[SPACEJ[old text].

:f[SPACE] - FIND same match - if the FIND command is followed
by exactly one space and the ENTER key, the previous FIND (DELETE,
QUERY, or LOCATE) [old text] is used for this FIND. Several
occurrences of the same text may be searched out in this manner.

:F[#] - FIND in field [#] - search for a field starting with
the desired text. field fINDs may be used in either of the
command formats: :F[#J [old text] or :F[#][spaceJ.

:F* - FIND display - the asterisk (*) after the FIND ~ommand
causes the [old text] of the previous FIND, DELETE, QUERY, or
LOCATE command to be displayed. The cursor is left at the end of
the display and the operator must press ENTER to proceed. No FIND
is performed.

:L - LOCATE next - typed exactly :L[ENTER], finds the next
line of text. If positioned at the end of the file, the screen is

23-22 DISK OPERATING SYSTEM

cleared and the 'next' line is the first line of the file.

:L [old text] - LOCATE match - similar to FIND match except
that the locate cominand searches for a line containing imbedded
text matching [old text]. Leading spaces should be supplied if
meaningful.

:L[space] - LOCATE same match - typed exactly
:L[SPACE][ENTER], uses the [old text] specified by the previous
LOCATE, DELETE, QUERY or FIND command to perform a search.

:L[#] - LOCATE in field [U] - locate desired string in
specified field. Field LOCATES may be used in either of the above
command formats: :L[U] [old text] or :L[#][space].

:L* - LOCATE display - display the [old text] entered for the
previous LOCATE, DELETE, QUERY, or FIND command. As in the FIND
display, the cursor is left at the end of the display and the'
operator must press ENTER to continue. No LOCATE is actually
performed.

There are several variations on the GET command that allow
the user to quickly jump forward or backward through a file or to
a specific line by number.

:G - GET next screen - clears the screen and refills it with
the next screen image.

:G- - GET prior screen - clears the screen and refills it
with the prior screen image.

:Gnnnnn - GET nnnnn lines - fetches nnnnn (from 1 to 65,535)
lines from the file or until the end of file. For example, ": G1"
rolls the screen up,one line.

:G-nnnnn - GET nnnnn lines backward - same as the above
command except that it fetches backwards through the file in
memory.

:GAnnnnn - GET Absolute [nnnnn]th line - position the file so
that the [nnnnn]th line of the file (counting from the beginning
of the file) is displayed on the bottom line of the screen.

:G* - GET display - this will display the line number (see
:GAnnnnn command) of the pointed line. This is displayed on the
bottom of the screen and will remain until a key is pressed.

CHAPTER 23. EDIT 23-23

23.9.9 BYPASS End of File

:B - BYPASS - fetch a line from the file, bypassing the end
of file. This may be a true end of file or one caused by RECORD
FORMAT errors, PARITY errors, or a RANGE TRAP (see the section on
Recovery Procedures). Subsequent lines may then be fetched by the
normal mechanisms. This command is intended as a recovery tool
for use only if the file has been accidentally shortened or
contains badly formatted records.

Before executing the BYPASS command EDIT asks the operator
"SURE?", requiring a "Y" response for execution of the command.

Note: There are certain file conditions which :8 cannot
handle and/or correct.

23.9.10 Terminating EDIT

:E* - EOF without display - searches for the end of the file
and, when it is reached, displays the last screen of text.

:EO - EOF with display - causes the data to be fetched and
displayed on the screen continuously until end of file is reached.
The operator may make the search pause by pressing the DISPLAY
key.

:E- - Display to the beginning of file - works exactly as the
:EO command above except !that it fetches backward through the file
in memory, rolling the screen down.

:E - END - the end command causes the remainder of the
logical source file to be copied to the logical scratch file and
then the scratch file is copied back to the source file.

The command line is left on the screen as long as the copy
from source to· scratch is in progress; it is erased during the
final copy from scratch back to source. When the final copy is
completed, control is returned to DOS.

:E/ - END/DEL - same as the END command, except the edited
file is truncated below the last line on the screen.

More specifically, this command causes the remainder of the
source file to be deleted (the lines currently on the screen are
written out), and the scratch file is copied back to the source
file. When the file is completely updated, the system is
reloaded.

23-24 DISK OPERATING SYSTEM

Before executing the END/DEL command EDIT asks "SURE?",
requiring a "Y" response from the operator in order to execute the
command.

:E\ - END/DEL - same as the END command, except the edited
file is truncated above the first line on the screen.

More specifically, this command causes the prior portion of
the source file to be deleted (the lines currently on the screen
are written out), and the remainder of the file to be written out
to the scratch file. The scratch file is then copied back to the
source file. When the file is completely updated, the system is
reloaded.

Before executing the END/DEL command EDIT asks "SURE?",
requiring a "Y" response from the operator in order to execute the
command.

:EX [DOS command string] - END and Execute - this command
does an END (":E" above) and then executes the DOS command string.
Note that if you have a program set for automatic execution (see
the AUTO command), this program will be executed and the one set
with the :EX command will be ignored.

:0 - this command causes the EDIT to return to DOS without
updating the source file.

Before executing END and Execute command EDIT asks "SURE?",
requiring a "Y" response from the operator in order to execute
the command.

:OX [DOS command string] - this command causes the EDIT to
return to DOS without updating the source file and then execute
the DOS command string.

If EDIT is exited using either :0 or :OX the format of
neither SCRATCH/TXT or SCRATCH/XTX is guaranteed correct. Also,
if a file is created and EDIT is exited using :0 or :OX rather
than :E, then the format of the newly created file is not
guaranteed. Note that in the case of an AUTO'd program, the
AUTO'd program will be executed and not the one specified in the
:OX command (see :EX also).

CHAPT ER 23. EDIT 23-25

23.10 Advanced Commands

:0 [user-defined command string] - Define the user-defined
corntl1and string zero.

:0 - Execute user-defined command string zero.

The user may define and execute up to ten EDIT command
strings. These strings may use themselves, do conditional skips
of commands, and request operator response. This gives the EDIT
the capability of doing sophisticated file modification in a
s emi- a utoma t ic I11ann er (the user al wa ys has complete .con trol) .

The use r In a y d e fin e c 0 li1 rn and s ": 0" t h r 0 ugh ": 9 " a son e 0 r m 0 r e
EDIT commands. The defined command may be a single command (for
example, a complicated MODIFY command) that is used quite often,
but one the user does not want to type in every time he needs it.
Or it may be a string of commands separated with Pseudo ENTER
(DEL) characters. The Pseudo ENTER character appears as a solid
triangle on a High-Speed or "RAl'1 lf screen and as a carat ("') on a
slow screen. The command string should be terminated with a
Pseudo ENTER if trailing spaces are significant. A carat is used
to represent the pseudo ENTER in the examples below. For
instance, if the user types:

:2 :M abcdefghijklmnop<ponmlkjihgfedcba

he has defined command 2. Every time that he types in:

: 2

the pointed line is modified in the specified ~anner. If the user
types:

:5 :M abcde<edcba"':M fghij<jihgf

he has defined command 5 as a pair of modify commands. Every time
that he types in:

: 5

the pointed line has both modifications done in sequence just as
if the user had typed them in separately. When a command in a
user-defined string fails, the string terminates, so if the first
modifications fails the second one will not be performed.

23-26 DISK OPERATING SYSTEM

If the user needs to replace every occurrence of the string
"LABEL" in his file with "LABELl", he may define a command as:

:2 :L LABEL AM LABEL <LABEL1~2

Note: a new definition discards the old definition. Also, the
colon following the Pseudo ENTER character is optional. The user
may then type:

: 2

which loops changing "LABEL" to "LABELl" everywhere it is found
in the file. The command string terminates when the LOCATE fails.
Of course the user can always terminate the command with the
KEYBOARD key.

For a more co~plicated example, the user may be editing the
disk file which may be created by the DOS FILES Command, and
define two commanJs as:

:8 :M2 \:DRO,:DR1A:M <COpy A:9~

:9 :Zft:M /</A:9 A :G1A:ZA:Q /A:8 A:Z*

Then he may set a tab at column 13 (immediately after the file
extension in the FILES-created ftle). By typing:

: 8

the user creates a CHAIN file for copying all the files from drive
zero to drive one.

Modify commands used on the last screen of lines from the
file generate a "phantom" line below the present screen lines.
Creation of this line means that a :Gl command will always be
successful following a modify. For this reason, repetitive
commands should be constructed to use a locate or query command
that will fail when the instruction should terminate. The
examples above illustrate use of this type of test to terminate a
repetitive command. The phantom lines that can appear at the end
of a file during EDIT are null lines and will not appear in the
updated disk file.

The execution of any command string may be temporarily
~topped by holding down the DISPLAY key or terminated by pressing
the KEYBOARD key.

:0* - Display the user-defined command string zero.

CHAPTER 23. EDIT 23-27

:00 - Display the user-defined command strings zero through
nine.

The above commands allow the user to examine command strings
individually in relation to the text on the screen or to examine
the~ all at once in relation to each other.

:0< - Insert user-defined command string zero into the file
text immediately below the pointed line.

:0> - Define user-defined comrnand string zero as the pointed
line on the screen.

The above commands allow the user to save the command strings
in the text of his file. It also simplifi~s the modification of
command strings as the user can use MODIFY on the string rather
than keying in the entire string again. It also assists in
defining several similar command strings.

A definition file with a default name of EDIT/DEF may be
created by the user to contain a set of user pre-defined command
strings. These are loaded automatically every time that EDIT is
executed. This is an editable file. Remember, the user can force
a colon as the first character on a line by starting the line with
a double colon. The definition file may contain comment lines
(lines starting with "+U, u*u, or ".") or null lines. The sequence
of the defined command strings has no effect. Command strings may
be multiply defined; the last definition will be the one in
effect.

:99 [user-defined command string] - Define an initialization
comilland string in the definition file.

If an initialization command is defined in the definition
file, it is executed automatically when EDIT is executed. It may
be'defined to do things such as change the tab key, turn on key
click, change the modify operators, set tab stops, or even do file
modification without operater intervention. The automatic
execution of the initialization command may be overridden by
pressing the KEYBOARD key when executing EDIT.

:Z* - Terminate execution of the user-defined command string
and return control to the bottom keyin line.

:Z - Skip over one command after the following command in the
user-defined command string if the following command fails.

:Z[n] - Skip over [n] commands (0 to 9) after the following

23-28 DISK OPERATING SYSTEM

command in the user-defined command string if the following
command fails.

Almost every EDIT command either "succeeds" or "fails". For
instance, LOCATE succeeds if it finds a line containing the
specified text and fails if it doesn't. The MODIFY command fails
if the string to be modified is not found or if, using the VERIFY
option, the user has pressed the ENTER key. The GET fails if the
end of file is reached. The use of the above commands allows
conditionally skipping over commands in the user-defined comlnand
depending on the success of a command.

:U[n] - Unconditionally skip over en] commands (1 to 9) in
the user-defined command string.

This allows skipping over commands that might be jumped to by
a conditional skip.

:Q [string] - QUERY, setting a succeed or fail condition,
depending on the specified string being contained in the pointed
line.

This command works similar to the FIND or LOCATE command in
that it uses the line save area and allows field specification.
It does not affeci the pointed line at all but sets up a
conditional skip. For instance, if command 3 were defined:

then its execution would GET lines until the pointer pointed to a
line containing the string "ABC" in field 2. While the QUERY
fails, the first conditional skip command (":Z") causes execution
of the command string to skip over the n:z*", GET a line, and then
star t over. v{hen the QU E RY succeed s, the ": Z *" is ex ecuted wh ich
terminates the command string. This example effectively does a
LOCATE while displaying all the lines examined.

4

See the section 'Example of an EDIT/DEF File' for more
user-defined commands.

CHAPTER 23. EDIT 23-29

23.11 Recovery Procedures

A 'FORMAT TRAP' occurs when a record not belonging to the
current file is encountered. This can be caused either by a
physical misalignment of the disk read head or because a record
has erroneously been written into that file by some other program.

A 'RANGE TRAP' occurs when the physical limit of the file is
reached and no end of file is present.

A 'PARITY TRAP' occurs when a record is misread from the
disk. This may be caused by physical misalignment of the disk
read head or a bad surface on the disk.

These three errors cause EDIT to believe that it has reached
the end of file. To read past an end of file, use the BYPASS
command, ":B", repeatedly if necessary.

Use of the B com~and may allow recovery of most of a damaged
file, but at least some data will probably be irretrievable.

If the source file is lost (for example, erroneously KILLed),
one of the scratch files may contain a useful copy. Since the
scratch files (SCRATCH/TXT or SCRATCH/XTX) usually contain a copy
of the last file edited, they may be used to recover only that
file. If the file fits completely within the memory buffer,
scratch files are never used.

23.12 Glossary

Assembler mode - assumed mode of execution. Tab stops at 9, 15
and 30. The space bar is assumed as the tab key
character (this may be changed in parameter list or
during execution). Shift key inversion and no word
wrap-around are assumed. Leading periods (.), pluses
(+), and asterisks (*) generate a following space (.) or
(+) or (*) for comment lines.

Command - characters typed at the left edge of the command line
following a COLON (:) which have special meaning to the
editor.

Command line - the bottom line of the screen where most data is
entered, lines are fetched and commands are typed.

23-30 DISK OPERATING SYSTEM

Comment field - in assembler code the fourth field which is
generally used for programmercornl.l1ents.

Comment mode - assumed if 'C' in parameter list. Tab stops at 9,
15 and 30. The space bar is assumed to be the tab key
character (this may be changed in parameter list or
during execution). Shift key inversion and no word
wrap-around are assumed. Leading periods (.), pluses
(+), and asterisks (*) generate a following space (.) or
(+) or (*) for comment lines.

Configuration sector - the first sector at a file which has been
written by EDIT. It is invisible to most programs and
therefore may be lost if the file is MOUTed, for example.
When the configuration sector exists, it contains the
tabs, bell margin, special characters, click option, mode
and space-compression information and is used for the
editor defaults.

Continue Character - a character which when entered in the first
column causes a continue indicator to appear (see below).
The default continue character is the ampersand (&) which
may be changed during execution.-

Continue Indicator - A solid triangle (or a "greater than" symbol
(» 0 n a s low s c r e en) a p pea r i n gin the fir s t col U [11 n 0 f a
line, which means that the previous record exceeds 79
characters. ~hen the continue character has been entered
in the first column, the continue indicator appears and
its presence means the line containing the indicator is
joined on output to the previous line, possibly creating
records greater than 79 characters.

DATABUS mode - assumed if 'D' in parameter list. Tab stops at 10
and 20 (may be changed during execution). The space bar
is assumed to be the tab key character (this may be
changed in the parameter list or during execution).
Shift key inversion and no word wrap-around are assumed.
Leading periods (.), pluses (+), and asterisks (*)
generate a following space (.) or (+) or (*) for
comment lines.

D~finition file - this is an EDITable file containing pre-defined
user command strings which is ,automatically loaded when
the Editor is executed. The definition file may also
contain an initialization command (" :99"") which is
automatically executed unless the "KEYBOARD" key is
pressed. The default name for the file is EDIT/DEF.

CHAPTER 23. EDIT 23-31

Field number - a digit used in commands to designate the portion
of the pointed line between,two consecutive tab stops.
Field '1' is always from column 1 to the first tabstop;
thus, in Assembler mode, '1' designates the label field,
'2' the opcode field, '3' the expression field and '4'
the comment field. During field modification, leading
and trailing fields are preserved.

Line insert - results from an INSERT command, data entry or
modification when word wrap-around is in effect, or use
of the Pseudo-ENTER key. The lines below the pointed
line are rolled down and a new, blank line is generated
at the pointed line.

Logical scratch file - current output file.

Logical source file - current input file.

Modify operator - the character in a MODIFY command which
indicates what is to be done. The default replace
operator is the "less than" symbol «), the default
insert operator is the "greater than" symbol (», and the
default append operator is the "backslash" (\).

Multi-line Record - a line on disk that is greater than 79
characters, displaying as more than one line on the
screen with each continued line marked with a continue
indicator.

New text - a group of characters, typed immediately after a modify
operator in a modify command, which will become part of
the line being modified.

Old text - a group of characters, including spaces, which are
searched for, either in the pointed line (as in the
MODIFY command) or in the file (as in the FIND or LOCATE
commands).

One-pass option - assumed if '0' in parameter list. The one-pass
option does not update the physical source file.

Parameter list - initialization information provided when the
editor is first executed. Following file specifications,
a SEMI-COLON (;) indicates the presence of a parameter
list. The mode (A, C, D, or T), one-pass option (0), tab
character, margin bell column, key-click (K),
space-compression (E or G), non-verification (Y) and, in
text mode only, 'shift inversion' (S), and 'no word

23-32 DISK OPERATING SYSTEM

wrap-around' (L) may be set.

Pointed line - a pointer (» in the left hand margin is used to
reference lines for modification by command. The line to
the right of the pointer is the pointed line.

Physical scratch file - specified (or implied SCRATCH/TXT) output
file.

Physical source file - specified input file.

Pseudo-ENTER - the key marked DEL (always shifted) is referred to
as the Pseudo-ENTER key. If pressed in the first column
of the command line, one line of text is fetched from the
source file.

If pressed while entering a command, a user-defined
command string separator is entered.

In all other modes, the Pseudo-ENTER key causes a new
line to be inserted so that data entry may proceed in the
same area of the screen. If pressed on the last screen
line, causes the processor to beep.

Scratch file - at any point in time, the logical scratch file is
the output file.

Screen line - any of the lines on the screen which may be
referenced by the command pointer. The command line
(bottom line) is not, therefore, included.

Shift key inversion - reverse the function of the shift key for
all alpha characters so that unshifted alpha characters
appear upper case.

Source file - originally this is the input file specified at
initial execution. The term source file refers to the
current input file; thus, at any point in time, the
logical source file may be either the specified input
file or the scratch files.

Space-compression - an "abbreviation" written to disk file when
two or more blank spaces are consecutive in a string.
For ex ample, "HI THER En is conv er ted to
"HI(011)(00S)THEREH where (011) is the space compression
indicator, (005) is the number of spaces compressed and
integers in parenthesis are octal codes. The default
mode is 'G' for GEDIT or space-compressed mode. The 'E'

CHAPTER 23. EDIT 23-33

option on the command line causes spaces to be expanded,
that is, written out with no space-compression.

Text mode - assumed by a 'T' in the parameter list. No tab stops
are set (tabs may be set during execution). The
SEMI-COLON (;) is the assumed tab character (the tab key
character may be changed in the parameter list or during
execution). No shift key inversion is performed (this
may be selected in the parameter list with an'S'). Word
wrap-around is performed (this feature may be turned off
by an 'L' in the parameter list).

Word - a word is defined as any group of less than 10 characters
preceeded by a space.

Word wrap-around - a feature of text mode. During data entry a
space to the right of the margin bell column causes an
immediate carriage return. If this occurs on a screen
line, a line insert is performed so that data entry may
proceed at the same area of the screen. If a character
is typed over the last column of the screen, the last
word is removed, a line insert performed and the removed
word is placed at the beginning of the inserted line
where data entry may proceed. If a modify command causes
the line to become longer than 19 characters, the
trailing characters, including the last word on the line,
are moved to a new line which is inserted below the
original line. Control then returns to the command line.

23.13 Command List

The full set of EDIT commands are listed below. All legal
combinations of options are included. ESP] represents a space.
[E NT] repr esen ts the "ENTER" key. [/I J represen ts the fi eld
number, a number in the range 1-9. Commands may be either upper
or lowercase.

:[NE~ TAB KEY][ENT] - Replace the old tab key character with the
new one. The default for the tab key character is the
space bar.

:[OLD CONTINUE CHARACTER][SP][NEW CONTINUE CHARACTER][ENT] -
Replace the old continue character (for input of long
records) with the new one. The default for the continue
character is the ampersand (&).

23-34 DISK OPERATING SYSTEM

: [OLD REPLACE OPERATOR][SP] [NEW REPLACE OPERATOR] [ENT], - Replace
the old modify-replace character with the new one. The
default for the ~odify-replace character is the "less
t han" «) s ym b 0 I .

:[OLD INSERT OPERATOR][SP][NEW INSERT OPERATOR][ENT] - Replace
the old modify-insert character with the new one. The
default for the modify-insert character is the "greater
than" (» symbol.

:[OLD APPEND OPERATOR][SP][NEW APPEND OPERATOR][ENT] - Replace
the old modify-append character with the new one. The
default for the modify-append character is the
"backslash" (\).

::[string][ENT] - Force a line beginning with a colon to be
entered into the text of the file.

:A[ENT] - Copy the pointed line to the bottom of the screen and
roll the screen up one line and move the pointer up one
line.

:A*[ENT] - Copy the pointed line to the bottom of the screen and
roll the screen up one line without moving the pointer.
This allows defining a command that does multiple ":A*"s
to copy multiple lines.

:B[ENTER] - BYPASS the end of file which may be caused by RECORD
FORMAT, PARITY, or RANGE errors.

:C[ENT] - Copy the pointed line to the bottom of the screen,
delete the pointed line, and key in a new line.

:CH[ENT] - Display the current tab key character and MODIFY
operators.

:D*[ENT] - Display the previously defined string used by DELETE,
FIND, LOCATE, or QUERY.

:D[ENT] - Delete the pointed line and key in a new line.

:D[SP][ENT] - Delete up through a previously defined string
(defined by a previous DELETE, FIND, LOCATE, or QUERY)
in the pointed line.

:D[SP][string][ENT] - Delete up through the specified string in
the pointed' line.

CHAPTER 23. EDIT 23-35

:D[#][SP][ENT] - Delete up through a previously defined string
(defined by a previous DELETE, FIND, LOCATE, or QUERY)
in the specified field of the pointed line.

:D[#][SP][string][ENT] - Delete up through the specified string
in the specified field in the pointed line.

:E[ENT] - END the EDIT by copying the modified file back to the
original source file.

:E/[ENT] - END the EDIT by copying the modified file back to the
original source file up to the bottom line displayed on
the screen. This deletes the remainder of the file.

:E\[ENT] - END the EDIT by copying the modified file back to the
original source file starting with the top line of the
screen up to the end of the file. This deletes the
preceding portion of the file.

:EO[ENT] - Display the file forwards (rolling the screen up) to
the end of file. The "DISPLAY" key stops the display
until it is released.

:E-[ENT] - Display the file backwards (rolling the screen down)
to the beginning of the file contained in memory. The
"DISPLAY" key stops the display until it is released.

:E*[ENT] - Display the last screen of the file immediately above
the COMMAND LINE.

:EX[SP][DOS command string][ENT] - END the EDIT by copying the
modified file back to the original source file, then
execute the DOS command string.

:F*[ENT] - Display the previously defined string used by fIND,
DELETE, LOCATE, or QUERY.

:f[SP][ENT] - Find a line starting with the previously defined
string.

:F[SP][string][ENT] - Find a line starting with the defined
string.

:F[#][SP][ENT] - find a line starting in the specified field with
the previously defined string.

:f[U][SP][string][ENT] - Find a line starting in the specified
field with the defined string.

23-36 DISK OPERATING SYSTEM

:G[ENT] - Display the next screen-full of lines.

:G-[ENT] - Display the prior screen-full of lines.

:G[nnnnn][ENT] - Roll up the screen [nnnnn] lines where the
number may range from 1 to 65,535 lines. This stops at
the end of file.

:G-[nnnnn][ENT] - Roll down the screen [nnnnn] lines. This stops
if the beginning of the memory buffer is reached.

:GA[nnnnn] - Display the [nnnnn]th line of the file. This rolls
forward or backward through the file depending on the
current location in the file.

:G* - Display the line number of the pointed line.

:I[ENT] - Insert by keying in a new line immediately below the
pointed line.

:I[SP][string][ENT] - Insert the specified string immediately
below the pointed line.

:K[ENT] - Turn on the key click.

:KI[ENT] - Turn off the key click (Key click Invert).

:L*[ENT] - Display the previously defined string used by LOCATE,
DELETE, FIND, or QUERY.

:L[ENT] - Roll up the screen one line. At the end of the "file,
this causes the file to wrap-around to the beginning.

:L[SP][ENT] - LOCATE a line containing the previously defined
string.

:L[SP][string][ENT] - LOCATE a line containing the defined
string.

:L[#][SP][ENT] - LOCATE a line containing the previously defined
string in the specified field.

:M*[ENT] - Display the previous MODIFY command line.

:M[ENT] - Modify the pointed line using the previous MODIFY
command line.

:MV[ENT] - MODIFY with VERIFY the pointed line using the previous

CHAPTER 23. EDIT 23-31

MODIFY command line.

:MV[#][ENT] - Repeat the previous MODIFY command line with VERIFY
applied to the specified field.

:M[SP][modify string][ENT] - MODIFY the pointed line as sp~cified
by the modify string.

:MV[SP][modify string][ENT] - MODIFY with VERIFY the pointed line
as specified by the lnodify string.

:M[U][SP][modify string][ENT] - MODIFY the specified field in the
pointed line as specified by the modify string.

:MV[#][SP][modify string][ENT] - MODIFY with VERIFY the specified
field in the pointed line as specified by the modify
string.

Modify strings are of the folloHing formats. The
default replace operator is the "less than" symbol «).
The default insert operator is the "greater than" symbol
(». The default append operator is the "backslash"
s yin b 0 1 (\). [s t r i n g 1] and [s t r in g 2] are 0 p t ion a 1 .

[string1][replace operator][string2] - Replace string1
,with string2.

[string1][insert operator][string2] - Insert string2
immediately following string1.

[string1][append operator][string2] - Truncate the line
immediately following string1 and append string2.

:O[ENT] - Return to the Operating System without updating the
original source file. '

:OX[SP][DOS command string] - Return to the Operating System
without updating the original source file and execute
the given DOS command string.

:Q*[ENT] - Display the previously defined string used by QUERY,
DELETE, FIND, or LOCATE.

:Q[SP][ENT] - QUERY (setting a succeed or fail condition) if the
previously defined string is contained within the
pointed line.

:Q[SP][string][ENT] - QUERY if the given string is contained

23-38 DISK OPERATING SYSTEM

within the pointed line.

:Q[U][SP][ENT] - QUERY if the previously defined string is
contained within the specified field of the pointed
line.

:Q[U][SP][string][ENT] - QUERY if the given string is contained
within the specified field of the pointed line.

:RC[ENT] - Set RPG Calculations tab stops (columns 6, 18, 28, 33,
43, 49, 54, and 60).

:RE[ENT] - Set RPG Extension tab stops (columns 6, 11, 19, 27,
33, 36, 40, 46, 52, and 58).

:RF[ENT] - Set RPG File tab stops (columns 6, 15, 24, 33, 40, 54,
66, and 70).

:RH[ENT] - Set RPG Header tab stops (columns 6 and 15).

:RI[ENT] - Set RPG Input tab stops (columns 6, 15, 21, 44, 53,
59, and 65).

:RL[ENT] - Set RPG Line tab stops (columns 6, 15, and 20).

:RO[ENT] - Set RPG Output tab stops (columns 6, 15, 23, 32, 38,
40, and 45).

:RS[ENT] - Set RPG Summary tab stops (columns 6, 14, and 23).

:SB[ENT] - SCRATCH BELOW deletes all the lines on the scre~n from
the pointed line down through the bottom line and then
allows keying in a new line at pointed line.

:SC[ENT] - SCRATCH deletes all the lines on the screen from the
top line down through the pointed line and then allows
keying in a new line at the top screen line.

:T[ENT] - Set TAB stops by displaying a line of column numbers
and allowing the user to space across setting tabs by
typing non-blanks. Up to 20 tabs may be set.

:T[SP][nn][,nn] ... [ENT] - Set tab stops to the columns specified
by [nn][,nn] ... where [nn] ranges from 2 to 79. Up to
20 tabs may be set.

:T* - Display the current tab stop settings.

CHAPTER 23. EDIT 23-39

:TA[ENT] - Set TAB stops for Assembler (columns 9, 15, and 30).

:TD[ENT] - Set TAB stops for Databus or Datashare (columns 10 and
20) •

:TS[ENT] - Set TAB stops for SNAP (columns 11, 21, and 38).

:U[ENT] - UNCONDITIONAL skip over the following command in the
user-defined command string.

:U[n][ENT] - UNCONDITIONAL skip over en] (1 to 9) following
commands in the user-defined command string.

:V[SP][string][ENTJ - Split the pointed line after the text in
the line matching [string] and insert the remainder of
the line immediately below the pointed line.

:W[ENT] - Concatenate the line below the pointed line to the
pointed line. If word wrap-around is in effect, the
pointed line is assumed to have a trailing space.

:X[ENT] - Change to TEXT mode with word wrap-around and no shift
inversion and then set tab stops (as in :T above).

:XI[ENT] - Change to Assembler mode with shift inversion and no
word wrap-around and then set tab stops (as in :T
above) .

:Z[ENT] - Skip over l command after the following command in the
user-defined command string if .the following command
fails.

:Z[n][ENT] - Skip over en] (0 to 9) commands after the following
command in the user defined command string if the
following command fails.

:Z*[ENT] - Terminate execution of the user-defined command string
and return control to the bottom key in line.

The following commands, though refering to 0,
actually refer to all the user-definable commands 0
through 9.

:O[ENT] - Execute user-defined command zero. Any value 0 through
9 may be used in place of zero.

:O*[ENT] - Display user-defined command zero. Any value 0
through 9 may be used in place of zero.

DISK OPERATING SYSTEM

:O[SP][user-defined command string][ENT] - Define user-defined
command zero. Any value 0 through 9 may be used in
place of zero. The command string consists of one or
more EDIT commands separated with a Pseudo ENTER (DEL)
character. The colon immediately following the Pseudo
ENTER character is optional.

:O<[ENT] - Insert user-defined command zero into the file text
immediately below the pointed line. Any value n through
9 may be used in place of zero.

:O>[ENT] - Define user-defined command zero as the pointed line
6n the screen. The combination of this and the above
command allow user-defined commands to be saved in the
text of the file and to be edited. Any value 0 through
9 may be used in place of zero.

The above two commands, ":n<" and ":n>", cannot be used
effectively from within a user-defined command string.
Both commands function by moving the specified command
string through the command string work area, so after
they are executed, the command referenced in the
instruction is present in the work area. If used within
another user-defined command, the effect will be to
terminate execution of the original string and begin
execution of the string named in the :0< or :n> command.

:OO[ENT] - Display the user-defined commands zero through nine.

:99[SP][user-defined command string][ENT] - This·is the
initialization com~nand which appears in the definition
file and is executed when the EDIT is started. It may
be overridden by pressing the KEYBOARD key while
bringing up EDIT. This command may only be used in the
definition file (/DEF) and not during the actual EDIT.

23.14 EDIT ERROR MESSAGES

The following is a list of error messages that may occur
during EDIT:

NAME REQUIRED - supply either the name of a nel." file or the name
of the file that is to be edited.

BAD DEVICE - the drive specification on one of the three file
specifications is either invalid or refers to a drive not on-line.

CHAPTER 23. EDIT 23-41

BOTH SOURCE AND SCRATCH FILES CANNOT BE SAME - either the same
file specification has been entered in the first and second
positions on the command line or the first file specification is
"SCRATCH" and no scratch file specification is given (hence using
the default name of SCRATCH).

BAD EXTENSION (/XTX) FOR SCRATCH - since EDIT uses two scratch
f i I e s w her e the sec 0 n d. s c rat c h f i 1 e has the n a in e 0 f the fir s t
scratch file and the extension XTX, the extension XTX is not
allowed in the scratch file specification.

BAD OPTION PARAMETER - an invalid character appears on the command
line.

INPUT FILE MUST EXIST IN "ONE-PASS" - the "0" option may not be
used during creation of a new file

FAULTY DEFINITION FILE - either the file in the third file
specification is not a valid definition file, or EDIT/DEF (the
default definition file) does not contain the user-defined
commands in the proper form.

TRAPS - FORMAT, RANGE and PARITY traps may occur when there is
some problem with the head alignment of the disk drive or when
there is something wrong with the file (see the chapter "Recovery
Procedures")

Processor "beeps" - the usual indication of an error in the
command just keyed in: rolling off the beginning of the text in
memory, rolling off the end of the file, locating text not in the
file, or keying in an unrecognizable command (see the "failure"
conditions in the chapter "Advanced Commands").

23.15 Configuration Sector

A file that has been written with EDIT contains configuration
information in the first sector. This sector begins with an octal
003 so that it is invisible to most programs. As a convenience,
the tab settings, special characters and modes are contained in
the sector so that these defaults are used the next time the file
is edited. If the file has been MOUTed and MINed, for example,
the configuration sector is not preserved.

The following describes the contents of the configuration
sector. A three-digit integer in parentheses represents an octal
byte.

23-42 DISK OPERATING SYSTEM

(003) * 0 0 0 0 0 0 0 0 (015) E D I T <version> (015)

<tab numbers> (015) <bell position> (015)

<tab key> <continue character> <modify replace operator>

<modify insert operator> <modify append operator>

<key click switch> <shift inversion switch> <word wrap-around
switch>

<text mode switch> <expand mode switch>

<scratch file name> <definition file name> (015) (003)

\rJhere:

<tab numbers>

are decimal integers separated by spaces representing the tab
positions and the field lengths. For example, assembler tabs
(9,15,30) are represented by "1 89615153049 '79".

<bell position>

is a decimal number of at most two digits.

<tab key>
<continue character>
<modify replace operator>
<modify insert operator>
<~odify append operator>

are the actual ASCII characters.

<key click switch>

is liN" if off and "K" if the click option is on.

CHAPTER 23. EDIT 23-43

<shift inversion switch>

is "N" if no shift inversion and" " if shift inversion is on.

<word wrap-around switch>

is "Wit for word-wrap and "N" for word-wrap off.

<text mode switch>

is" T " i f t ext mod e (s pac e s not aut om a tic all y g e n era ted
following a plus, asterisk or period in the first column) or
"N" if not.

<expand mode switch>

is "E" when space compression is inhibited and liN" if space
compression is desired.

<scratch file name>

is the eleven (11) character name and extension of the scratch
file.

<definiton file name>

is the eleven (11) character name and extension of the
definiton file.

23.16 Example of a Definition File

This is an example of a definition file for EDIT. Note that comments
may appear. Although this contains some useful general-purpose
user-defined commands, the most common use of command strings is for a
special edi ting job. Care should be used in defining user command strin
to make sure they perform as intended!

For example, a file needs n?" following every line beginning with a "*"

23-44 DISK OPERATING SYSTEM

Many times user-defined commands are required for a one-time application.

Here are some more general examples:

Global search and replace with verification:

:1 :z~:mv":1":1 ":1"

This function assumes that the modification and the locate have been
done previously so the repeated form of the command is used. This
string can be modified to add field parameters for the locate and
modify commands or the verfication option removed from the modify
command.

Delete until:

:2 :z":q ~:z*"':m \"':2"

By using the :Q function, "query" a particular string for the line the
cursor is pointing to. This sets up a string for the repeated form of
the :Q command. This function deletes all lines beginning with the
pointed line up until it finds the particular string entered at first.

Insert line of asterisks:

:3 :i *~:m *>**********"':m":m"':m":m":m":m":m":m'"

Use this function to insert a line of asterisk (or modify the string
to insert lines of periods or underbars).

Draw a box of asterisks:

Use the line function (:3) to draw the top of the box. Do a :xi to insurE
that If format" (no word \.-.Trap) mode is in effect. Now go down to where the
bottom of the box is to be drawn and key in :4. This draws a box of
asterisks.

CHAPTER 23. EDIT 23-45

Marking updated lines with SNAP tabs in assembler mode:

This is an easy way to mark modified lines.

· Leave :8 empty for "local" user-defined commands.

· End the file with a DOS command usually called after edit completion:

· :9 :ex CHAIN ASSEMBLE/CHN;DATE=310CT78,OPT=FIGLXMP,POPT,LINK=L n

· When the same chain file is usually called after the edit is finished, a
user-defined command may be used rather than typing in complicated parametE
each time.

23-46 DISK OPERATING SYSTEM

Note: nested commands will not work. If the command is:

when the user types in ':1', EDIT will perform Function 4, but
will not return to perform Function 6 or Function 7.

Also if command :2 is defined as

:M *<:"':8>"':M :<*"':8

and the pointer is positioned to the line

"*EX SNAP3 PROG;LXIFG"

As soon as the first :8 is encountered

:EX SNAP3 PROG;LXIFG

will be placed in user defined position number 8, and user defined
command :8 will be immediately executed. Execution control will
not return to command :2.

Also, if command :3 is defined as

:8>'"

and the pointer is positioned to the line

:EX EDIT PROG/TXT

EDIT will place in position :8

:EX EDIT PROG/TXT

and execute :8 immeditately

IF :3 is defined as

:8>

:3 will only place

:EX EDIT PROG/TXT

in position :8 and not execute it.

CHAPTER 23. EDIT

CHAPTER 24. ENCODE/DECODE COMMANDS

24.1 Purpose

The ENCODE command is used to convert/encrypt disk files
containing data in any format into 19 character records containing
only ASCII characters. Data in encoded format can be copied or
transmitted by all Datapoint programs.

The DECODE command is used to translate encoded data files
back into exact duplicates of the original disk files or decrypts
encrypted files.

24.2 Use

ENCODE <file spec>,[<file spec>][;<key word>]

The ENCODE command converts the first file into encoded
format and writes the data into the second file. If extensions
are not supplied, ASS is assumed for the first file and ENC is
assumed for the second file. If the second file is not specified,
the name of the first file with an extension of ENC is assumed.
The second file will be created if it does not already exist.
Encoded data creates a file 50 percent larger than the original.

~

If the key word is given the file is encrypted using the key
word as a basis. It is very important to retain the key word for
the file cannot be retrived without it.

DECOD£ <file spec>,[<file spec>][;<key word>]

The DECODE command converts the first file from encoded
format back into binary and writes the data into the second file.
If extensions are not supplied, ENC is assumed for the first file
and ASS is assumed for the second file. If the second file is not
specified, the name of the first file with an extension of ABS is
assumed. The second file will be cfeated if it does not already
exist.

If the file has been encrypted the key word must be given and
the same as was used for ENCODE.

CHAPTER 24. ENCODE/DECODE COMMANDS 24-1

INPUT FILE MUST BE SPECIFIED!

will be displayed if the first file specification is omitted.

INPUT FILE DOES NOT EXIST!

will be displayed if the first file specified cannot be found in
the DOS directory.

OUTPUT WOULD DESTROY INPUT FILE!

will be displayed if the first and second file specifications are
identical.

INPUT FILE CONTAINS BAD DATA!

will be displayed if an encoded data file cannot be decoded into
its original binary form.

This message also occurs when a file which has been encrypted
is being decrypted with an incorrect key.

ENCODE reads and converts binary data until either a valid
text end-of-file is read or allocated file space is exhausted.
Data in encoded form is always terminated with a valid text
end-of-file.

24-2 DISK OPERATING SYSTEM

CHAPTER 25. FILES COMMAND

25.1 Purpose

FILES is a program which selectively prints or displays DOS
file descriptions in file name sequence.

One may select information pertaining to all DOS files or to
only those files with names and/or extensions beginning with the
characters specified by the operator. Selected directory entries
are sorted into ascending file name sequence. If desired,
information from associated Retrieval Information Blocks
(described in the chapter on System Structure) is also extracted
for each directory entry. Extracted data is interpreted and
displayed on the screen, listed on a Local o~ Servo printer, or
written to a disk file.

25.2 Use

To execute the FILES program, type in the name FILES followed
by selection criteria and display options (if option codes are to
be used):

FILES [<filename>J[/<ext>J[:<drv>J[,<subdir>J[,<output-file>][;options]

<filename> Select entries for files with names beginning
with the 1-8 characters specified.

<ext> Select entries for files with name extensions
starting with the 1-3 characters specified.

<drv> Specifies the disk drive to be selected.
If this field is omitted, drive 0 will be
selected.

<subdir> Specifies the named sUbdirectory from which
to select entries.

<output-file> Specifies the disk file to which the
selected entries will be written, if disk
file output is specified.

CHAPTER 25. FILES COMMAND 25-1

options: The following option codes are available, and
may be entered in any order:

N - Suppress file allocation map.
D - Display on CRT.
L - List on local printer.
S - List on servo printer.
F - Write output to disk as DOS text-type

file.

If options are keyed and D, L, Sand F are omitted, then D is
assumed. D, L, S, and F options are mutually exclusive; output
can be sent to only one device. If F is keyed and the <output
file spec> is not present in the command line, one is requested
by the message:

DOS OUTPUT FILE SPEC:

25.3 Default Messages

If no option codes are entered, the following messages will
be displayed on the CRT:

SUPPRESS FILE ALLOCATION MAP?

If "Y" or "YES" is entered in response to this message, the
display of file allocation information from Retrieval Information
Blocks (RIB) will be suppressed. If any other response is
entered, file allocation information will be displayed for each
selected file.

After the user has replied to the map selection message, the
program will test to see if the there is a servo printer connected
to the processor. If a servo printer is attached and ready, the
following message will be displayed:

LIST ON SERVO PRINTER?

If the user enters a "Y" or "YES" in response to this
message, the servo printer will be selected to display output. If
any other response is entered or the program cannot find an
available servo prirtter, the program will test to see if a local
printer is connected and ready for printing. If the program finds
that a local printer is available, the following message will be
displayed:

LIST ON LOCAL PRINTER?

25-2 DISK OPERATING SYSTEM

If the user enters "Y" or "YES" in response to this message,
the local printer will be selected for output. If a printer has
been selected for output, the following message will be displayed:

ENTER HEADING:

Up to 32 characters can be entered, which will be displayed
at the top of each page of printed output.

If no printer is available, or if the operator has rejected
printer output, the program will ask for disk output:

WRITE OUTPUT ON DISK?

If the user enters "Y" or "YES", output will be written to a
disk file, otherwise output will be displayed on the CRT. If disk
output is selected, an output file name will be requested unless
one was provided on the command line.

25.4 File Descriptions

File descriptions are sorted into ascending file name
sequence for easy reference and displayed or printed in the
following format:

FILENAME/EXT (PFN) DW

D~J flags following the Physical File Number (PFN) indicate if
the file is delete protected (D), or write protected (W). If the
file allocation map was not suppressed, messages describing the
file's size and location will be included in the file description.
When allocation map information is printed or displayed, the
program displays totals lines specifying the total number of files
listed and the total number of sectors in those files. Disk
output never has totals lines.

Depressing the DISPLAY key during display or printing of file
descriptions will cause the program to pause until the key is
released. Depressing the KEYBOARD key will cause the program to
terminate and return control to the operating system.

Allocation map information describes each segment in the file
by giving the cylinder and cluster starting address of the segment
and its length in sectors. One line is displayed for each
segment. See the chapter on System Structure and the Appendix for
the appropriate DOS for a description of disk space allocation.

CHAPTER 25. FILES COMMAND 25-3

25.5 Error Messages

* PARITY ERROR *
FILES can not continue due to an irrecoverable parity error

encountered while trying to read data from the disk.

* DRIVE OFFLINE *
FILES is unable to connect to the disk drive selected by the

operator (drive 0 if not otherwise specified).

FILE(S) NOT FOUND.

No Directory entries have been found that meet the user's
selection criteria.

INVALID DRIVE

An invalid drive specification was entered.

CONFLICTING OPTIONS SPECIFIED

Options specify output on more than one device.

UNRECOGNIZABLE OPTION CODE

An unrecognizable code has been entered in the option field.

PRINTER NOT AVAILABLE

An option code specifies a printer that does not respond when
tested for status.

25-4 DISK OPERATING SYSTEM

CHAPTER 26. FIX COMMAND

26.1 Purpose

The FIX program can be used to modify bytes of DOS-Ioadable
object code in an absolute code file. This program can be very
dangerous and should be used only by qualified assembler language
programmers or by someone following specific directions provided
by Datapoint.

26.2 Use

To invoke FIX, enter the command:

FIX <file spec)

The program will display a sign-on message and will then
display an initial line of six zeros, two spaces, and three more
zeros on the bottom CRT line. (The zeros represent the current
address and its contents.)

000000 000

The screen is then rolled up. The program then waits for a
command from the operator. The <file spec) must specify a
DOS-loadable object file. If no extension is provided, lABS is
assumed.

Commands are in the form [numberJ[characterJ where the number
is assumed to be octal. If the number is omitted, a value of zero
is used. Commands are terminated by the enter key. Following a
command, the current address and its contents are re-displayed.

26.3 Commands

The following is a list of command characters with their
effect:

ENTER - Set current address.

If no block of object code is currently in

CHAPTER 26. FIX COMMAND 26-1

memory (as at the begtnning of execution or after a block
has been rewritten), search the object file forward until
a block containing the given location is found, then
display the contents of that location. If the address
does not exist in the object file, the current address is
left at zero.

If a block of code is in memory and the location given is
within the limits of the block, the contents of the
location will be displayed.

If a block is in memory and the location given is not
within the block limits, the current address will be set
to the minimum or maximum address of that block, its
contents will be displayed and a beep will sound. To
access the desired address the current block must first
be aborted (A) or transferred (T).

M - Change the contents of the current address to the number

I

given.

Increment the current address (up to the maximum address
in the current block).

Change contents of current address to number given and
automatically increment the current address and display
the contents of the resulting location.

D Decrement the current address (down to the minimum
address in the current block).

T - Transfer the modified block back to disk - rewriting it
in place. After the block is written, the current
address is set back to zero, so that all searches always
start from the beginning of the file. No modification is
made to the stored file until a T command is executed.

A - Abort processing the current block, set the current
address back to zero.

o or * - Return to the operating system - if there is a block of
object code in memory, it is not written back into the
file.

If the command character is not one of the above, it is
ignored and regarded as if only the ENTER KEY had been pressed.

26-2 DISK OPERATING SYSTEM

26.4 Error Messages

If the <filespec> is not an absolute object code file, the
message

RECORD FORMAT ERROR

is displayed.

If the file specified on the command line is not found, the
toessage

NO SUCH NAME

is displayed.

CHAPTER 26. FIX COf-1MAND 26-3

CHAPTER 27. FIXAPPLY

27.1 Purpose

FIXAPPLY is a program which accepts as input patch files
distributed by Datapoint Corporation for software maintenance
purposes. Each encoded patch file contains the file names and
member names of the modules to be patched, the patch addresses,
patch data, and generated self-checking bytes to guarantee file
integrity.

27.2 Use

FIXAPPLY is invoked using a command line of the form:

FIXAPPLY <patchfile>

where <patchfile> specifies the name of the patch file containing
the modifications to be performed. All information needed for the
modifications to be performed is included in the patch file,
including the names of the files and library members involved.

FIX~PPLY execution consists of two phases: a verification
phase and an execution phase. The verification phase reads the
input patch file, locates all modules to be patched, verifies the
prior data to be overstored, and guarantees the self-check fields
to be correct. The execution phase reads a binary work file
generated in the first phase and directly updates the object
modules.

27.2.1 FIXAPPLY Phase One

The first phase of FIXAPPLY reads the patch file provided,
converts the data into binary, validates it, and builds a work
file on disk (FIXAPPLY/WRK) containing the random positions in the
programs to be patched.

If any errors are found in the first phase, execution is
terminated (wi th one exception, as described below). Note that
the original value of the object byte to be patched is contained
as part of the data in the patch file. This data must match,

CHAPTER 27. FIXAPPLY 27-1

preventing re-patching the same object module. It also allows
version and revision levels to be checked.

Most errors occuring in phase one allow phase one to run to
completion but will not allow phase two to run.

There is one phase one error which can be overridden by
operator intervention at the system console. If FIXAPPLY fails to
find a particular file, the message:

CAN'T FIND FILE <file name>

will be displayed. The operator will then be asked for the
correct name of this file. This action allows users who have
renamed Datapoint software products to specify their own in-house
names. Member names within absolute libraries, however, cannot be
overridden.

If fatal phase one errors are found, the message:

PHASE 1 ERRORS; ABORTED

will appear and the program will terminate, returning to DOS. If
no fatal phase one error occurred, the message:

PHASE 1 COMPLETED OK

will appear and the program will proceed to its second phase.

27.2.2 FIXAPPLY Phase Two

There are no active displays during FIXAPPLY phase two, nor
is there any means of operator intervention during this phase. It
is important that the program not be interrupted (such as by
rebooting the system) during this phase, as a partial upgrade of a
target file could occur. At the end of phase two the message:

SUCCESSFUL COMPLETION

will appear and the program will return to DOS.

If some error does occur during phase 2 the message:

PHASE 2 INTERNAL ERROR; ABORTED

will appear and the program will immediately terminate and return
to DOS. In the event of such a failure, the target file will be

27-2 DISK OPERATING SYSTEM

partially updated and unusable and must be reloaded prior to again
attempting to apply the patch. An internal error abort is
probably caused by hardware failure, or modification of the target
or worl< file by another user on a multi-user system.

27.2.3 Fatal Phase One Error Messages

I

INPUT FILE MISSING OR NOT SPECIFIED!
The patch file name was not specified or the specified

file could not be found. The program terminates immediately
without completing phase one.

OLD/NEW BYTE MISMATCH!
The object file is probably not the proper

version/revision.

RECORD COUNT ERROR!
A record has been lost within the modifications for the

current program name displayed on the screen.

ILLEGAL EOF ON INPUT!
The input file is not properly formatted.

INVALID OBJECT FORMAT!
The current object file is not in a recognizable format.

FILE INTEGRITY ERROR ON INPUT!
The internal LRC check has failed.

It is important to remember that the internal pseudo-LRC on
the patch file prevents the file from being ta6pered with. Any
alteration to the file will almost always cause pass one to fail.
Also, due to the old/new byte checking, a patch file may not be
applied twice to the same software.

CHAPTER 27. FIXAPPLY 27-3

CHAPTER 28. FREE COMMAND

28.1 Purpose

As a disk becomes full, it is useful to know how many
256-byte'sectors remain available for allocation. Another useful
bit of knowledge on the larger disks is how many empty slots in
the directory remain for the allocation of file names. The FREE
command displays these two values.

28.2 Use

The FREE command is invoked by a command line of the form:

FREE [:<drv>J

The drive to be examined may be specified by the <drv> field. If
no drive is specified, all drives will be examined.

The command scans all drives that it finds on-line and
displays (1) the number of available file names (representing
possible files to be created) and (2) the number of available
sectors that it finds on each.

Holding down the DISPLAY key will cause FREE to pause.
Pressing the KEYBOARD key will cause FREE to terminate and return
to the operating system.

CHAPTER 28. FREE COMMAND 28-1

CHAPTER 29. INDEX COMMAND

29.1 Purpose

The INDEX command creates or reorganizes the tree structure
required by programs using the indexed sequential access method
(ISAM). Indices may be created from any DOS text file. The
indexed access method can then rapidly access records in this file
in either sequential or random order. Records in files to be
indexed tl1ust contain a record key up to 118 characters long
contained in the first 249 characters of each record.

It is possible to build many independent indices to permit
access to records of the same file by many separate, unrelated
keys. There are no restrictions on the number of indices that may
be built, or on the relationship or lack of relationship among the
various keys used.

INDEX can create the tree structure (using the DOS SORT
command), reorganize the tree structure, create a Key tag file from
the index file, or create an index from a Key tag file. The format
of a Key tag file is described in the chapter on the SORT command.

29.2 Use

When the Index command is to be executed, the operator must
enter:

INDEX <textfile>[,<indxfile>J[,<tagfile>J[,<drive>J;<parameters>

where only the first file specification and key field parameter
are mandatory, and specify the text file to be indexed. Default
extension is ITXT. The second file specification is the name of
the INDEX file to be created. If no file is specified, the name
of the first file is used with default extension of IIS1. If no
drive is specified, the INDEX file will be placed on the same
dr i ve as the fi Ie to be, ind ex ed. INDEX files may have any name s
at all and may be located on physically different drives from the
file being indexed. However, high-level languages using ISAM
files (DATA8US, for example) assume the INDEX file will have the
normal IISI extension, and if the file open instruction is drive

CHAPTER 29. INDEX COfv1HAND 29-1

directed the IISI ~nd ITXT files must be on the same drive.

The third file specification is for the
file. The third file name will also default
first file with a default extension of ITAG.
specification, which may only specify drive,
put its intermediate workIITes. Otherwise,
optimize drive selection.

29.2.1 Parameters

intermediate tag
to the name of the

The fourth file
tells SORT where to
SORT will attempt to

In addition to the parameters that INDEX itself recognizes,
the user may specify any parameters acceptable to the REFORMAT
utility (if preprocessing is to be done), or a primary record
specification to be passed to SORT, or Mnnn or Q options to
FASTSORT. Parameters recognized by INDEX are as follows:

K
I
X

F
E

mmm-nnn

Create a Key tag file from the IISI file.
Create an IISI file from the Key tag file.
Recreate the IISI file, handling insertions and
deletions.
Preprocess the input file with REFORMAT.
Index in EBCDIC collating sequence.
Key specification

The Key tag file is a standard text file containing the
pointer and key of each record to be indexed. The format is
explained in the SORT chapter. The file may be LISTed, EDITed or
transmitted. This last feature allows the IISI file to be created
at a remote site without invoking SORT.

The format of the key is mmm-nnn [,mmrn-nnn] [,mmm-nnnJ .•.
where rnrnm is the beginning character position of the key field in
each logical record and nnn is the ending position of the key
field. Note that each record must have a unique key. Refer to·
the SORT chapter for a more complete description of key
specifications.

The primary record specification is an option that allows the
user to create the ISAM index file from a subset of the data file.
The format of the primary record specification is "Pnnntc". The
"P" must al ways appear. The field following "P", denoted by
"nnn", represents the column in each logical record where a one
position field exists that differentiates records in the file.
The location of this one character field must be less than or
equal to 249. The "t" can have one of two values: either an

29-2 DISK OPERATING SYSTEM

equal sign (=) or a pound sign (n). If the former, it means
create the ISAM index file from all records that contain the ASCII
c h a r act e r it c" in po sit ion n n n . If i tis a po u n d s i g n, i t mea n s
that the ISAr~ file will be created from all records that do not
contain the value of "c" in position nnn. The "c" may be any
ASCII character except 015 (ENTER value).

In general the parameters for INDEX can be specified in any
order and may optionally be separated from each other by a blank
or a comma. The only exception to this rule is when a primary
record specification exists, it must precede the key field
specification and be separated from the key by a blank or a comma.

29.2.2 System Requirements

If INDEX is creating the index file fro~ the text file (no K,
I, or X option specified) the SORT or FASTSORT command must be
available. If INDEX is being executed on a processor capable of
executing FASTSORT, it will attempt to execute FASTSORT before
defaulting to the SORT command. INDEX can locate FASTSORT in
UTILITY/SYS or as a separate command file. FASTSORT is a separate
program not released as part of DOS.

If pre-processing of the text file is specified on the INDEX
command line, the REFORMAT command must be available to perform
the pre-processing. INDEX can locate REFORMAT in UTILITY/SYS or
as a separate command file.

If the X option of INDEX is used to recreate the tree
structure file, the NAME command must be available. INDEX can
locate NAME in UTILITY/SYS or as a separate command file.

If the E option of INDEX is used to specify EBCDIC collating
sequence, the EBCDIC/SEQ file must be available to define that
sequence.

29.3 Choosing A Record Key

Since the speed of access to an indexed file varies according
to how much file space and thus how many levels of index are
required for the index tree, the choice of what to use for a
record key becomes highly important. Of course, you must choose a
key which will uniquely determine the record you wish to access,
but you should scrupulously avoid including information in the key
which is not absolutely necessary. For example, a file could be

CHAPTER 29. INDEX COHMAND 29-3

keyed according to automobile license plate numbers. Typically,
these numbers will include a hyphen or other punctuation, which
could easily be excluded from the record's key. The indexed
access method will perform more efficiently if all non-significant
characters are removed from the record's key.

29.4 Preprocessing the File

In file structures such as an indexed file where records are
randomly inserted and deleted, the file tends to become
non-optimum for searching. In addition, due to the method with
which the indexed access method inserts records, each inserted
record exists in a separate disk sector. This means that for
records that are 80 characters long, two-thirds of the disk space
for each additional record is wasted. This results in a reduction
of the performance of the indexed access method.

In order to reclaim space vacated by deleted records and
padding bytes in inserted records, the file may be processed by
the REFORMAT utility prior to indexing.

29.4.1 Invoking Reformat

The INDEX utility will auto[aatically invoke REFORr~AT if the
"F" option is present when INDEX is invoked. You must have
specified the options that REFORMAT will need to process the file.

Note that if multiple indices are to be created, reformatting
need only be specified for the first INDEX step, and MUST not be
specified later if it was not sp~cified in the first step.
Although REFORMAT will not destroy the file, specifying
reformatting may invalidate any previously built indices.

Basically, you must tell REFORMAT what format the records of
the file are to have after preprocessing. You may select record
compression, space and record compression, or blocking. Since the
reformatting is done in-place, the REFORMAT option cannot enlarge
the file which is to be indexed. For addi tional details on the
REfORMAT utility, see the REfORMAT section of this guide.

29-4 DISK OPERATING SYSTEM

29.4.2 Considerations for Unattended Indexing

Those who use the INDEX command from a CHAIN file (see the
section on the CHAIN command for more details) and use AUTOKEY to
restart their chain in the event of a failure should generally
avoid using REFORMAT directly frota INDEX. The reason why is that
REfORMAT as invoked by INDEX uses the REFORMAT-in-place mode of
the REFORMAT command. (The reason for this is that it is faster
to do so, and also allows the indexing with reformatting of a file
which is too big to REFORMAT in the available scratch space on a
single-drive, almost full disk). Although REFORMAT is very
careful not to damage the file being processed, if the file is
actually in the process of being reformatted when a power failure
occurs, the results can be undesirable.

This potential problem during unattended INDEX chaining can
be avoided by setting a checkpoint (see the AUTOKEY command
description for details), copying the original file to a scratch
file, setting another checkpoint, reformatting the scratch file
back into the original (using the COPY mode of REFORMAT), setting
a further checkpoint, and finally INDEXing the file using INDEX.
In this way there is always an undamaged file with which execution
can resume if necessary.

29.5 INDEX Messages

The Index command displays several messages on the operator's
console. They are listed below with explanations, in the sequence
in which they may appear.

DOS. VER n.n INDEX COMMAND - date
Signon message that gives the user the version of DOS
required and the date of the INDEX command.

WRONG DOS!!
Indicates that the version of DOS in use is too old to
support the version of the INDEX command being used.

INFILE NAME MISSING.
Indicates that the user has omitted the first, and
required, file specification.

NO SUCH NAME.
The input file specified for the INDEX does not exist.

INVALID DEVICE.

CHAPTER 29. INDEX COMMAND 29-5

A drive specification entered as part of one of the
file specifications was invalid.

SYSTEM11SYS MISSING!
Indicates the SYSTEM7/SYS file is missing on the drive
on which the IISI file resides. This message only
appears if the X option is used.

KEYTAG FILE BEING BUILT.
Indicates that INDEX is now creating the ASCII KEYTAG
file requested with the "K" option.

FILE PREPROCESSING WILL BE DONE BY REFORMAT COMMAND.
This indicates that the user has requested
preprocessing of his file by the REfORMAT command (R
option specified).

INDEX WILL USE EBCDIC SORT.
The user has requested an index using the EBCDIC
collating sequence (E option specified).

REFORMAT <filename>; <parameters>
Display of the command line used to invoke REFORMAT
for preprocessing the input file.

REFORMAT UNLOADABLE!
Indicates that the REFORMAT command could not be found
as a member of UTILITY/SYS or as REFORMAT/CMD, or that
if found the command was not executable. The REFORMAT
command should be loaded or reloaded onto disk.

SORT <filename>, ...
Display of the command line used to invoke SORT to
produce the Key tag file froln which the index will be
constructed.

SORT UNLOADABLE!
Indicates that the SORT/CMD file cound not be found,
or that if found it was not executable. The SORT
command should be loaded or reloaded onto disk.

BUILDING LOWEST LEVEL INDEX.
This indicates that INDEX is now creating the lowest
level of the index file.

NULL INDEX FILE CREATED.
This indicates that an empty tag file was created by
SORT. The index file created is usable by programs

29-6 DISK OPERATING SYSTEM

using ISAM for adding records. After creating a null
index file INDEX will exit normally (CHAIN will not be
aborted) but will have set the ABTIF bit in DOSFLAG.

LONG KEY ENCOUNTERED AND TRUNCATED.
This indicates that the tag file contained a key that
was longer than 118 characters. It was truncated to
118 characters.

DUPLICATE KEY: <key>
Two keys in the tag file were found to be identical
and the first 60 characters of the key are displayed.
INDEX will continue so as to display any other
duplicate keys that may be found.

INDEX TERMINATED WITH DUPLICATE KEYS.
Duplicate keys have been found and a null index will
be created, as described above under NULL INDEX FILE
CREATED. The tag file is not deleted and since it is
in standard text format, it may be EDITed to remove or
modify the duplicate key and tag. Or a program (e.g.
in DATABUS) may be written to display the records
containing the duplicate keys so the user may resolve
the ambiguity. INDEX may then be reinvoked using the
"I" option.

BUILDING -NEXT- LEVEL INDEX.
This indicates that the lower level of the index file
has been completed and the next level is now being
created.

DONE.
The creation of the index file is now completed.

Other messages may be generated by REFORMAT or SORT. See the
appropriate chapter for an explanation.

29.6 lSI File Formats

The DOS indexed file structure consists of a multi-level
radix tree structure based on the record keys, and contains
pointers to the location of the keyed records. Note that since
dlany of these pointers are physical disk addresses, the lSI file
cannot be moved without re-invoking INDEX. The text file may be
moved so long as it is unchanged in any way. Moving the lSI file
will destroy it.

CHAPTER 29. INDEX COMMAND

The different levels of indices all have the same content,
except for the lowest level index. Index levels are built up
until an intermediate level of index will fit in a single disk
sector. This becomes the highest level of index. This
requirement is the reason for the 118 character limitation on key
length.

The lSI files have the following format:

Offset Length

o 3

3 nn

nn+4 nn

Description

PFN and LRN bytes as per DOS convention -
see the chapter on SYSTEM STRUCTURE.

This is a KEY entry where nn is key length+7
for a lowest level index, and key length+3
for a higher level index. The first sector
of an lSI file after the RIBs is a special
header record.

This is the second KEY entry in the sector.
There must be at least two KEY entries per
sector.

Note that as many key entries are put in a
sector as will fit without splitting across
a sector boundary.

Each KEY entry for an intermediate level index has the
following format:

Offset Length

o KL

KL

KL+1 2

Description

The highest key in the next lower level
index sector. (KL is the keylength.)

Octal 012 - This indicates the end of the
key 8nd that this is a higher level index
entry.

PDA (MSB, LSB) of the entry in the next
lower level of index.

29-8 DISK OPERATING SYSTEM

rCL+3 1 Octal 0377 - This indicates that this is the
last entry in this sector.

Each KEY entry for a lowest level index entry has the
following format:

Offset Length

o KL

KL

KL+1 3

KL+4 3

KL+7 1

Description

The key for this particular record. (KL is
the keylength.)

Octal 015 - This indicates that this is a
lowest level index entry and delimits the
end of the key.

Buffer Offset, and the physical disk address
for the logically next lowest level index
entry.

Buffer Offset, and logical record number of
the text file record having this key.

Octal 0377 - Indicates that this is the end
of the lowest level index.

The first data sector in an lSI file is a header record used
to locate the file from which the index was built. In this way,
it is only necessary to specify the name of the index to
DATASHARE.

Offset Length

o

3

14

17

23

3

1 1

3

3

3

Description

PFN and LRN indicators as per DOS
convention. See the System Structure
Chapter.

Name of the data file that goes with this
index file.

PFN, and RIB PDA of this file. This field
is used to check that the index file has not
been moved.

PFN, and RIB PDA of the file indexed.

Buffer address and LRN of the last record

CHAPTER 29. INDEX COMMAND 29-9

26 3

used in the data file.

Buffer address and LRN of the first free
index entry.

29.7 Index File Size

The size of the index file for a particular text file may be
calculated by the formula below. Applying this formula yields a
figure showing the largest size the file might have. The
resulting file will generally be smaller than calculated because
trailing blanks on keys are discarded, so storage space for the
keys is less than expected based on key length.

Calculating the space used by an index file requires
calculating the space used for each level of index and adding
them. In the following equations:

R = number of logical records to be indexed
L = key length (number of characters per key)
SCi) = number of disk sectors for the ith level

of the index tree
K = number of keys per disk sector

For the lowest level index (i = 1),

K = 250/(L+7) (discard any remainder)

and

S(1) = R/K (round up result)

When S (i) =
calculation
in only one
index. For
calculation

the highest level of index has been reached and the
is complete. If S(1) = 1 the calculation is finished
step, but only very short files produce a one-sector
each successive level of index the following
must be performed:

K = 250/(L+3) (discard any remainder)

and

SCi) = S(i-1)/K (round up result)

If S(i»1, then i=i+1 and perform the calculation again until
reachin the highest level of index. Once S(i)=1 has been reached

29-10 DISK OPERATING SYSTEM

simply add the space calculated as needed for each level of index:

Total size = S(1) + S(2) + ••. + SCi)

Remember that the total space used for the index file will
probably be less than calculated here since trailing blanks are
not stored.

29.8 Examples of the Use of INDEX

First, a simple example in which only a single ISI file is
created, with the same name and on the same device as the text
file it indexes. The file is a list of bad checks presented at a
local grocery chain, and now each store has a DATASHARE terminal
to inquire on the current status of each deadbeat. Thus, while
the file is accessed often, additions and deletions are fairly
infrequent, so the file will not be reformatted. The file is keyed
by bank number (8 digits) and account number (7 digits)
concatenated and in positions 1 to 15 of each record.

In order to create the index file, the operator must type:

INDEX DEADBEAT;1-15

The INDEX program will then create a file DEADBEAT/ISI which
DATASHARE can use to access the DEADBEAT/TXT file.

Now, this same grocery chain has expanded its operations, so
it desires to include more information on the location and date of
each bad check presented. Therefore, they have expanded the file
to include the old key in positions 1 to 15, a store location
number in positions 16 to 18, and a date field in positions 19 to
24. As an afterthought, the manager decides to tack on the name
of the person passing the bad check in positions 193 to 216.

In order to create the indices required for access by any of
these keys, the operator must type:

INDEX DEADBEAT,BANK;1-15
INDEX DEADBEAT,DATE;19-24
INDEX DEADBEAT,STORE;16-18
INDEX DEADBEAT,NAME;193-216

The INDEX program will create four files with names BANK/ISI,
DATE/ISI, STORE/ISI, and NAME/ISI. Each file is logically
separate, yet all are on the same volume as DEADBEAT/TXT.

CHAPTER 29. INDEX COMI"1AND 29-11

Now the store owners have uncovered a hitch - first, the
number of bad checks is becoming so large, there is no room on one
disk for all the index files and the text file. In addition,
access has been slowing way down as the frequency of additions and
deletions increases. The store owners have called Datapoint to
complain, and their local systems engineer has told them they need
to reformat the files when they re-index, and has sold the~

another disk drive.

The operator now types:

INDEX DEADBEAT,BANK/ISI:DR1;FR1-15
INDEX DEADBEAT,DATE/ISI:DR1;19-24
INDEX DEADBEAT,STORE/ISI:DR1;16-18
INDEX DEADBEAT,NAME/ISI:DR1;193-216

Note that the reformatting is done only once at the
beginning. If reformatting had not been done when the first index
was built, it could not be correctly done later without
invalidating the previously built indices.

Now, several years later, the grocery chain has expanded and
has a large disk system at their main store. The owners are doing
so much processing that there is not the tiine to run the above
INDEX programs as each one invokes SORT. However, they wish to
keep access titne to the minimum. Also, the DEADBEAT file is so
large that numerous additions and deletions hardly affect the
size.

Every night the operator now types:

INDEX BANK;X
INDEX DATE;X
INDEX STORE;X
INDEX NAME; X

which recreates the index files. Then during weekly processing,
the operator does the processing above which invokes REFORMAT.

The store owners have wisely dispersed some of their data
processing to their branch stores. So each night the operator
also types:

29-12

INDEX BANK;K
INDEX DATE;K
INDEX STORE;K
INDEX NAME; K

DISK OPERATING SYSTEM

which creates tag files of the four indices. The operator then
transmits DEADBEAT/TXT, BANK/TAG, DATA/TAG, STORE/TAG, and
NAME/TAG to each of the branch stores. The operator at the branch
store, after receiving these files, types:

INDEX DEADBEAT,BANK,BANK;I
INDEX DEADBEAT,DATE,DATE;I
INDEX DEADBEAT,STORE,STORE;I
INDEX DEADBEAT,NAME,NAME;I

which creates a local set of indices without invoking SORT.

Note: In the above example that created a BANK tag file, the
command line with default fields is:

INDEX BANK/TXT,BANK/ISI,BANK/TAG;K

As only the /ISI and /TAG files are needed for creation of the tag
file, the same results could have been achieved by typing:

INDEX ,BANK,BANK;K

CHAPTER 29. INDEX COMfv1AND 29-13

CHAPTER 30. THE INITDISK COMMAND

30.1 Purpose

When a new disk pack is received, it is not immediately
usable in the 9370 or .9390 series drives until it has been
formatted. The formatting process which causes track and sector
identifying information to be written over the entire disk
surface, is performed by the INITDISK command. This command is
useful only on 9370 or 9390 series disks!

30.2 Use

The INITDISK program is distributed as both a cassette
load-and-go (LGO) version and as a disk command program. To
invoke INITDISK from a working DOS (normally useful only with
two-drive systems), the operator enters at the system console:

INITDISK

With an LGO cassette, the operator places the cassette in the
rear cassette deck and presses the RESTART and RUN keys
simultaneously (only the RUN key on a 2200 processor). Once the
program has initially loaded, it functions the same regardless of
whether it has been loaded from cassette or disk.

After being loaded, INITDISK asks which physical (not
logical) drive contains the disk to be formatted and asks the user
for confirmation that it is all right to destroy the previous
contents of the disk, if any. After the command is satisfied that
the user knows what is about to happen, it proceeds to format the
disk. The process takes a few minutes.

30.3 Error messages

If the INITDISK command encounters any sort of error
indication before or during the formatting process, it will wait
for a while to see if the problem will go away on its own. (A
typical example would be if the disk to be formatted has not yet
come on line when the INITDISK command begins execution). If the
problem persists, the program will display a comment on the CRT

CHAPTER 30. THE INITDISK COMMAND 30-1

display indicating that it is waiting on the disk, describe the
status of the disk as indicated by the controller, attempt some
corrective actions that may help to clear the situation, and
inform the operator of what corrective action has been taken.
This is repeated until the problem is successfully cleared up.

30-2 DISK OPERATING SYSTEM

CHAPTER 31. KILL COMMAND

31.1 Purpose

The KILL command deletes a file from a logical volume. The
file's directory entry is removed and its disk space is
deallocated.

31.2 Use

The KILL command is initiated by the operator entering the
command line

KILL [<file spec>]

If this file is protected in any way, the message

NO!

will be displayed. If the file specification is not given on the
command line (file names which contain special characters cannot
be given on the command line), the request for the file name:

WHAT FILE?
I

EXAMPLE:
:DR

SCRATCH ITXT:DR1 11143 :DR1

will appear. The user must keyin an eight chapacter filename
(including trailing spaces), a slash, a three character extension
(including trailing spaces), a colon, the letter "0" and the drive
number on which the file resides. If the entire filename
specification is not entered properly, the message:

NOS U C H N A tv} E .

will appear. A file can be specified by physical file number by
entering "iI", followed by the octal PFN, followed by 8 spaces and
the drive specification. If the specified file cannot be found
(both a name and an extension must always be supplied unless using
PFN), the message:

NO SUCH NAivJE.

CHAPTER 31. KILL COMMAND 31-1

will be displayed. If the file exists but it is in a valid
subdirectory other than the current sUbdirectory (except SYSTEM),
the message:

THAT FILE IS NOT IN YOUR SUBDIRECTORY

will appear. If the file is found and is not protected, the
message:

THAT FILE IS <filename> ON DRIVE n SUBDIRECTORY NAME (xxxxxxxx:

will appear. Then the operator must additionally answer the message:

ARE YOU SURE?

with a 'Y' before the actual deletion of the file is achieved.
After the deletion has occurred the following message is
displayed:

* FILE DELETED *

31-2 DISK OPERATING SYSTEM

CHAPTER 32. LIST COMMAND

32.1 Purpose

The LIST command will list any DOS standard format text file
to the screen, a local or servo printer, or a disk file. The
command can be used for:

A quick scan of a file by displaying it on the screen
(LISTing a file is faster than EDITing it);

Producing a hardcopy listing of a file for permanent records;

Listing a file for use in preparation of a SLOKEDIT command
file.

In this chapter, the following terms apply:

Text file means a file with records containing only ASCII
characters t except for space-compression bytes and the
End-Of-Record and End-Of-File marks. Files created by EDIT
and those produced by DATASHARE are normally in the class of
text files.

Line means one record of a text file. When displayed on the
screen, only the first 72 characters of a record will be
displayed; when listed on a local or servo printer only the
first 124 characters will be printed. (The remaining eight
characters contain a line number.)

Record means the user logical record number (LRN). The first
LRN of a file is zero.

32.2 Use

When the LIST program is to be executed, the operator must
type:

LIST <filespec>[,<spec2>J[,<filespec2>t[~optionsJ

CHAPTER 32. LIST COMMAND 32-1

Available options are:

L list on Local printer
S list on Servo printer
D Display on CRT
X suppress line numbers
F list Formatted print file
P output formatted Print file
Q Queue format~ed print file, appending to an existing file
Nn set Number of lines per page to n
I list in Indexed sequence

Options may be entered in any sequence and should be
separated by commas.

32.3 Input File Specification

The file specification «filespec» must refer to a DOS text
file. If no extension is supplied with the file name, an
extension is assumed depending on the options given. A default
extension of TXT is assumed unless the option "I" or "F" is used.
The option "I" (list a file using its index) causes a default
extension of lSI and the option "F" (list a file with format
control bytes) causes a default extension of PRT. If no drive is
supplied with the file specification, all drives will be searched
for the filename/ext. If <filespec> is omitted, the message

.NAME REQUIRED.

is displayed. If the file indicated by <filespec> is not found on
an online volume, the message

NO SUCH NAHE.

is displayed.

32.4 Starting Point

The operator may specify a line number, or logical record
number, in the file at which the list should begin by including an
optional second parameter <spec2>. For example:

LIST <filespec>,L400

would list the specified file beginning with line 400 of the file.

32-2 DISK OPERATING SYSTEM

If the line number specification exceeds the number of lines in
the file, LIST returns to DOS after displaying the message:

FILE EXHAUSTED BEFORE LINE FOUND.

LIST <filespec>,R18

would directly access logical record 18 of the specified file and
list, starting at line number 1. If range or format errors occur,
the error type is indicated and another record number is
requested.

For instance, if the record number specification exceeds the
number of records, the message

RANGE - NEXT RECORD NUMBER:

is displayed.

The default value for the second parameter is line 1 and
record O.

32.5 Output File Specification

If the options "P" (write to a print file on disk) or "Q"
('QUEUED' write to a disk print file starting at the end-of-file
mark) are used, then the third parameter (filespec2) may be used
to specify the output file. If the filename is not given, it is
assumed to be the same as the input file name. If the extension
is not given, it is assumed to be PRT.

Output from either the "P" or "Q" option is a text file with
print control characters as described in the Format Control
section. The file will be paged with headings; line numbers will
be included unless suppressed by the "X" option.

32.6 Output Device

The operator may specify an output device other than the CRT
display by including an optional pararneter of "s" (servo printer),
flL" (local printer), "P", or "Q". For example:

LIST <filespec>,L400;S

would list the specified file on the Datapoint servo printer
starting at line 400 or

CHAPTER 32. LIST COMMAND 32-3

LIST <filespec>;L

would list the specified file on a Datapoint local printer
beginning at line number one.

For either print or disk output LIST will request a heading,
which will be placed at the top of every page of output.

The default output device is the CRT display which may be
specified by entering a "0".

32.7 Output Format

A parameter is available to suppress line numbers. If the
'X' is entered, lines of up to 132 characters will be printed.
For example:

LIST <filespec>;SX

would put the output on the servo printer without line numbers,

LIST <filespec>;X

would display the listing, showing 80 characters per line on the
CRT.

Any paged output (from the "L","S","P", or "Q" options) is
normally listed at 54 lines per page. The "Nn" option can be used
to change the number of lines per page, n being the desired
lines/page count.

32.8 Format Control

The parameter "F" is available to allow the handling of print
files (those with a format character in the first column of each
line). If "F" is entered, the file will be listed wi thout line
numbers, page numbers, or headings, since all these items should
already be in the print file. The following format characters
cause the indicated action to be taken before the line is printed.

- Skip to top of form

+ - Suppress line feed

(space) - Single line feed

32-4 DISK OPERATING SYSTEM

o - Double line feed

Triple line feed

Any other character in the first colulnn will be handled as a space
(single line feed) and discarded.

32.9 Operator Controls

The listing consists of a continuous stream of the listed
file'S text. To cause the listing to pause, the operator may hold
down the DISPLAY key. To abort the listing, the operator may
depress the KEYBOARD key.

32.10 Error Conditions

If printer output was specified and the requested printer is
not available, LIST beeps and displays the message:

PRINTEH NOT READY

If the printer is made ready, listing will proceed. The KEYBOARD
key may be depressed to abort the LIST at this point if necessary.

LIST checks to be sure the text end-of-file is exactly six
zeroes and a three (see Text File Formats in the REFORMAT
chapter).

If the EOF is not exactly correct, LIST displays the message:

INVALID END OF FILE.

LIST can be used to test for a bad EOF since most text-handling
programs are not so particular about EOF format.

When <spec2> has been entered to start LIST at a particular
record number, LIST traps FORMAT or RANGE errors and allows a new
starting location to be entered. In any other usage, LIST does
not trap FORMAT or RANGE errors and any such errors are fatal.

CHAPTER 32. LIST COMMAND 32-5

CHAPTER 33. MANUAL COMMAND

33.1 Purpose

The MANUAL command clears t~e automatic execution established
by the AUTO command.

33.2 Use

The command is invoked simply by entering:

:VJAN UAL

If the auto-execution name has not been set the ioessage

AUTO NOT SET.

will be displayed. Otherwise, the System Table location reserved
for the auto-execution information will be cleared and the message

AUTO CLEARED.

will be displayed.

CHAPTER 33. MA1~ UA L COtv1f-1A N D 33-1

CHAPTER 34. MIN COMMAND

34.1 Purpose

The Multiple In (MIN) command is useful for reading multiple
files (source, object, Databus object, and relocatable code) from
the front cassette drive to disk. It will handle all standard
single file (OUT and SOUT), double file (SOBO), and multiple file
(LGO, CTOS, and MOUT with or without a directory) tape formats.

34.2 Use

34.2.1 Command Line

The prototype command line for MIN is

i-1 I N [< f i 1 e 1 > [, < f i 1 e 2 > . . .]] [; < 0 p t ion s>]

File specifications are of the form <filename> I<ext>:<drv>. If
the drive is not given, all drives online will 0e searched
starting at drive zero. The default extension will be 'TXT' for
source, 'ABS' for object, 'DBC' for Databus object files, and
'REL' for Relocatable Code files depending on the tape file
format.

34.2.2 Options

Tape file modifications may prevent MIN from automatically
determini ng the tape format. In this event, the options 'L' (for
LGO), 'C' (for CTOS), or 'D' (for Directory) are available. Also,
option 'N' (for No directory) will tell the system that it is
handling a MOUT tape without a directory, which allows entering
the file names manually if the directory entry names are not
desired. This option also allows entering the directory to disk.

These options are merely test overrides. If, for instance, a
tape starts with a recognizable file mark, a loader won't even be
tested for and therefore entering the 'L' option is meaningless.

CHAPTER 34. MIN COMMAND 34-1

Unfortunately, MIN cannot differentiate an OUT, SOUT, or SaBa
tape from a MOUT without directory tape. To speed the processing,
the options'S' (for SOUT) and 'B' (for SOBO) are available. Once
again, if the tape doesn't resemble a SOUT tape, for instance,
entering an'S' is 1!leaningless.

MIN accepts a drive specification option ":DRn", ":On" or
": <volid)1f to force the disk files to a specific drive. Note that
this drive specification is an option appearing in the option list
following the semicolon, not part of any file specification.
Drive specification may be necessary to avoid overwriting existing
files on other drives or to force MIN to place the files on a
drive other than drive O.

MIN accepts the 'r' option to direct it to use the rear
cassette deck. It will default to the front deck.

If the tape is a MOUT tape with a directory, the options 'A'
(for All), '0' (for Overwrite), 'Q' (for modifying the extension
with Q's) are available. Using the option 'A' will load all files
on the tape overriding the normal operator message for each file.
However, if the file already exists, the operator will be asked if
overwriting is desired and if not, for a new file name. Entering
the '0' option in conjunction with the 'A' will force overwriting
of existing files (unless write protected). If while processing
in the 'All Overwrite' mode a write protected file is encountered,
the message:

WRITE PROTECTED

will appear and processing will continue wi th the next file.
Entering the 'Q' option in conjunction with the 'A' will put as
~any Q's into the directory extension as necessary to create a new
filename/ext if the original one already exists. If the original
filename/ext exists, the message:

EXISTING FILE

will appear to the right before the modification to the extension
is per forroed. If the fil en arne/QQQ al re ad y ex i sts, the me s sage:

Q OPTION EXHAUSTED

will appear to the right and the file will be skipped.

The option 'N' followed by an octal number allows that
specific file to be loaded. For example, entering:

34-2 DISK OPERATING SYSTEM

MIN FILE/TXT;N12

will load the tape file following file mark 12 (octal) to disk as
'fILE/TXT'. If a non-octal number is entered (e.g. N8) the
message:

NUMBER NOT OCTAL

will appear and MIN will be terminated. MIN bypasses the loader
on a LGO tape before searching for files. If the file specified
is not found, the message:

FILE NOT FOUND

will appear and MIN will be terminated. If the file is found and
the file name was not entered on the command line, the file name
will be requested as described below.

The options 'L', 'C', 'N', 'S', and 'B' are mutually
exclusive. Only one may be entered. The 'A' may be entered with
or without the '0' and with none of the other above options. '0'
and 'Q' are mutually exclusive and may only be entered in
conjunction with the 'A'. If any of these restrictions is
violated or a character other than those above entered, the
message:

BAD OPTION PARAMETER

will appear and the program will be aborted.

34.2.3 Multi-File Named Tapes

34.2.3.1 MOUT With Directory Tapes

Unless overridden with options, these tapes are processed in
the follwing manner. The tape is first identified as:

MOUT TAPE FORMAT

Next the date of creation will be displayed:

DATE: DD MMM YY

Then the directory will be displayed:

CHAPTER 34. MIN COMMAND 34-3

DIRECTORY: <file1/ext> <file2/ext> <file3/ext> •..

Then the operator will be asked:

LOAD <file1/ext> ?

If the file is to be loaded the response Y (yes) will cause the
file to be loaded. If the response is N (no), the tape will
advance to the next file (if any) and repeat the question. If the
response is *, control is returned to DOS. If the filename
specified already exiSts, the message:

NAME IN USE. WRITE OVER?

will appear. The answer N (no) will cause the message

DOS FILE NAME:

to be displayed on the same line. The operator must then enter a
valid DOS file specification of the form, <name> /<ext>. If the
new name already exists the program will loop back to the 'NAME IN
USE' message again. When there is no conflict the file will be
loaded to disk. The answer > will cause the file to be skipped.
The answer Y (yes) will cause the disk resident file to be
overwritten. If the file to be overwrittten is write protected,
the :0 e s sag e :

WRITE PROTECTED OVERWRITE?

will appear. If the response is not Y, the filename request will
be displayed again. If the response is Y, the protection is
changed from write protect to delete protect and the disk resident
file is overwritten. When a file bas been loaded from the
cassette the message:

LOADED

will appear to the right of the filename. The message:

MULTIPLE IN COMPLETED

indicates the successful completion of the program.

For information on the creation of MOUT with directory tapes,
consult the chapter on MOUT.

34-4 DISK OPERATING SYSTEM

34.2.3.2 eTOS Tapes

A CTOS tape will be identified as:

eTOS SYSTEM TAPE FORMAT

Tl1e system then searches for the catalog '(tape file 111). The
cros file is fairly long so it takes a while. If the catalog file
is not an object file or is an object file that loads into memory
somewhere other than 017406 or 017410, the message:

BAD CATALOG

will appear and the remainder of the tape will be processed as a
multiple numbered-file tape starting at tape file #2. If a good
catalog is found, it will then be displayed as:

CATALOG: <file 1> <file 2> <file 3> <file 4>.

Then the operator will be asked:

DJ YOU ~ANT TO LOAD <file 1> ?

If the file is to be loaded, the response Y (yes) will cause the
message:

DOS F'I LE NArv1E:

to be displayed on the same line. If the response is N (no), the
operator will be asked for the next file (if any). If the
response is *, control is returned to DOS. If no name is entered,
the message:

NAME REQUIRED

will appear. If the filename specified already exists, the
message:

NAME IN USE. ~RITE OVER?

will appear. The answer N (no) will cause the filename request to
be displayed again. The answer > will cause the file to be
skipped. The answer Y (yes) will cause the disk resident file to
be overwritten. If the file to be overwrittten is write
protected, the message:

~RITE PROTECTED OVERWRITE?

CHAPTER 34. MIN COMMAND 34-5

will appear. If the response is not Y, the filename request will
be displayed again. If the response is Y, the protection is
changed from write protect to delete protect and the disk resident
file is overwritten. 'JIlhen a file has been loaded from tl-J.e
cassette the message:

LOADED

will appear to the right of the filename. The message:

MULTIPLE IN COMPLETED

indicates the successful completion of the program.

34.2.4 Multiple Numbered-File Tapes

LGO tapes and MOUT tapes without a directory are both handled
in the same manner. MIN is first executed as:

MIN

An LGO tape will then be identified as:

LGO TAPE FORMAT

In the case of multiple files, MIN will operate in the same
lnanner as described in the section on eTaS tapes above for loading
a file without entering the name on the command line. The files,
hO\iever, will be referenced by number instead of by name. The
questions described will be asked for each file on the tape until
end of file has been encountered on the tape or an * is entered in
response to the "load" question. MI~'J bypasses the loader on a LGO
tape before searching for files.

34.2.5 "Double File Tapes

The file specifications for a SaBa tape may be entered on the
co.nrnand line in the following manner:

MIN [<file spec>J[,<file spec>J;B

File specifications are of the form discussed above. If the
second file name is not given, the first name with the assumed
extension of ABS will be used. If the extension is not given with
the first name, TXT will be assu·ned. If the filename has not been
en ter ed on the command 1 i ne, f1IN wi 11 oper a te in t he same mann er

34-6 DISK OPERATING SYSTEM

as described in the section on multiple numbered-file tapes above
for each file on the cassette, displaying the messClges in the same
order for both files.

34.2.6 Single File Tapes

For OUT, and SOUT tape formats, the file specifications may
be included on the command line in the following manner:

MIN [<file spec>J;<option>

where <option> is an'S' for SOUT tape formats.

If the file name has not been entered on the command line,
the program will ask for the file name in the manner described in
the section on multiple nu~bered-file tapes.

34.3 Tape Formats

MIN will automatically process the tape format by the
following conventions if an option is given.

34.3.1 Single File Tapes

An OUT (object out) tape format has a file mark zero, a file
mark one, an object file wi th entry point, and a file (nark 0177.
An object file has an address with the MSB and LSB in the fourth
and fifth bytes of each record. Their complements are in the
sixth and seventh bytes. The remainder of each record is filled
with octal characters (ranging from 0 to 0377).

A SOUT (source out) tape format has a file mark zero, a
source file, a file mark one, and a file mark 0177. A source file
consists of records containing only ASCII characters, except for
space cOli1pression bytes, physical end-of-record bytes, and logical
end-of-record bytes.

CHAPTER 34. MIN COMrv1AND 34-'7

34.3.2 Double File Tapes

A SOBO (source and object out) tape is the combination of a
SOUT and OUT tape. It has a file mark zero, a source file, a file
mark one, an object file wi th entry point, and a file rnark 017'7.

34.3.3 Multiple Numbered-File Tapes

A LGO (load and go) tape has a loader, a file mark zero, a
string of files (the first being an object file and the rest may
be source, object, Databus object, and relocatable code
inter~ixed) separated by sequential file marks, and a file mark
040.

A HOUT (multiple out) tape without directory has a file mark
zero, a string of files (may be source, object, Databus object and
relocatable code intermixed) separated by sequential file marks,
and file marks 040 and 0177. Single and double file tapes are
included in this category if options are not used.

34.3.4 Multiple Named-File Tapes

A eTOS (cassette tape operating system) tape has a loader, a
file mark zero, a eTOS object file with entry point, a file mark
one, a catalog object file, a string of files separated by
sequential (though not necessarily contiguous) file marks, and a
file mark 040.

A HOUT (multiple out) tape with directory has a file mark
zero, a tape directory, a string of files separated by sequential
file marks, and file marks 040 and 0177. The directory is a
source format file containing a date entry seven bytes long
(DDMMMYY) and 31 file name entries each eleven bytes long (eight
b y t e s for the n a tn e and t h r e c b y t e s for the ext ens ion) . The
entries are separated by end-of-string bytes (octal 015). This
!llakes it convenient for display under eTOS LIST or to load to disk
and list.

31+ - 8 DIS K 0 PER l\ T I U G S Y S T E ['1

34.4 Errors

If the tape format is not one of the eight standard formats
outlined above in the Tape Formats section (e. g. it starts wi th a
file mark two) the,nessage:

INVALID TAPE FORMAT

will appear and the processing will be aborted.

If the end of tape is detected while processin~, the message:

END OF TAPE

will appear and the processing will be aborted.

If a parity error is encountered in an object or Datashare
file on tape, the message:

PARITY ERROR-FILE WILL BE DELETED

will appear, the file name will be removed from the disk
directory, and processing will skip to the next file. If a parity
error is encountered in a source file on tape, the message:

PARITY ERROR-RSCORD MODIFIED

will appear, a 253 byte disk record will be written with percent
signs in the first five positions of the record data, and
processing will be continued with the next record.

If an unrecognizable record format is encountered, the
message:

UNRECOGNIZABLE TAPE R~CORD FORMAT

will appear and MIN will be terminated.

CHAPTER 34. fvtI N COf-1~1AN D 34-9

CHAPTER 35. MOUT COMMAND

35.1 Purpose

The Multiple Out (MOUT) command is useful for writing
multiple (up to 32, or 31 if a directory is used) disk files
(source, object, and Datashare) out to the front cassette drive.

An additional feature is the ablity to create a tape file
directory as file #0 on the tape. The directory is a source
format file, that is, it consists entirely of ASCII characters
except for space compression bytes, physical end-of-record marks,
and logical end-of-record marks. The directory contains a date
entry seven bytes long (DDMMMYY) and 31 file na~e entries each
eleven bytes long (eight bytes for the narne and three bytes for
the extension). The entries are separated by end-of-string bytes
(octal 015). This makes it convenient to list under eros LIST or
to load to disk and list. The directory is also used by the MIN
program to enter files to disk. MOUT creates the directory in
memory before the tape writing starts even if it is not to be
written to tape. The writing of a full tape (over 500 records)
takes about 10 minutes, which shows the advantage of entering all
the na~es before writing begins.

Another feature is the option to automatically verify a tape
f~llowing its creation. Or a previously written directory tape
~ay be verified in an 'only verify' mode. If this mode is
requested, the system will read the directory on the cassette tape
in the front drive (if a valid directory is not found, the system
will request file names from the operator) and verification will
be performed against the indicated files.

35.2 Use

File specifications and/or options may be entered on the
command line in the following manner:

MOUT [<file spec>,<file spec>, ...][;options]

File specifications are of the form FILENAME/EXT:DR#. If the
drive is not given, all online drives will be searched starting at
drive zero. If the extension is not given, ABS is assumed. File

CHAPTER 35. MOUT COMHAND 35-1

specs are separated by anything (including multiple spa~es) except
letters, numbers, sl ash (/), or colon (:).

Options (wh i c11 follo\-1 a semi-colon and may bes pac ed or
separated by comtnas) are 'L' for a loader format tape, 'D' for a
directory forulat tape, 'V' for verification of the created tape,
'X' for verification only, and 'r' (lower-case letter actually
entered) for output to rear cassette.

If a loader is to be written, the first file (file 110) must
be an object file. There are no restrictions on files other than
#0.

The directory option ('D') .will write a tape directory as
file #0. The first item within the directory is the date entered
DDMMMYY. The month is entared as three alpha characters. The
date ioay be entered following the option letter (for example,
D12JAN74). If the date is not entered, it will be requested.

The verify option ('V') will verify all the files on the
created tape. Verification consists of making a byte for byte
comparison between the data on the disk and the data on the tape.
If verification fails, the tape will be rewritten and verification
tried one more time.

The verify only option ('X') will cause the first tape file
to be read from the front deck. If file #0 is a directory (first
seven characters of DDMMMYY format), the remaining files will be
automatically verified using the directory entries. If the tape
begins with a loader, it will be verified and file na~es requested
for the remaining files as they are verified. An 'N' may be
entered i:nll1ediately preceding the 'X' to force the system not to
recognize the directory. This would be done if manually entering
file names is desired (for instance, the directory names don't
match the disk file names). If there is nei ther a directory or
loader, file names are requested as the files are verified.

If the semi-colon is entered with no entry following, it will
be interpreted that the tape will not have a loader, a directory,
or a~y verification.

Entering 'D' and 'L' together or entering anything with 'X'
other than 'N', or entering some letter other than 'D', 'L', 'V',
'X', or 'N' will result in the message:

BAD OPTION PARAMETER. ~our DISCONTINUED.

and the Multiple Out will be aborted.

35-2 DISK OPERATING SYSTEM

If file names and/or options are not entered on the command
line, MOUT will ask for them as required. If options were not
entered, the first question will be:

DO YOU WANT A LOADER?

Replies other than 'Y' or 'N' will be answered by:

~JHAT?

and a repeat of the question. If the reply is 'N', the next
question is:

DO YOU WANT A DIRECTORY?

Again, if the reply is other than 'Y' or 'N', it will be answered
by:

WHAT?

and a repeat of the question. If the reply is 'Y', the next
request is:

ENTER THE DATE (DDM~MYY):

where the month is entered as three alpha characters. If the day
is not in the range of 00 to 39, the month not alpha, or the year
not in the range of 10 to 99, the response:

BAD DATE

will appear and again the request for the date. The next question
is:

DO YOU WANT TO VERIFY THE TAPE?

If the reply is not 'Y' or 'N', the response:

\tJHAT?

will appear followed by a repeat of the question. If the reply is
'Y' and the replies to the loader and directory questions were
'N', the question:

DO YOU WANT TO ONLY VERIFY THE TAPE?

will then be asked. If the reply is other than 'Y' or 'N', the
response

CHAPTER 35. :"lOUT COt"lt"lAND 35-3

WHAT?

will appear followed by a repeat of the question. If only
verification is requested, the first tape record on the front tape
deck is read in. If it is a directory (the first seven characters
o f D D ~1 ~1 MY Y for mat), the rein a in i n g t a pc f i 1 e s will be aut 0 mat i c a II y
verified using the directory entries. If it is a loader, the
message:

LGO TAPE FOHi-1AT

will appear. The message:

LOADER IS BEING VERIFIED

will then appear as the loader is being verified. If the loader
v e r i fie s cor r e c t 1 y, the ([) e s sag e :

LOADER OK

will appear to the right. Otherwise, the message:

BAD LOADER

will appear. After checking the loader, or if the tape has
neither a loader or directory, the message:

CASSETTE FILE #XX (format) DOS FILE NAME:

will appear where XX is the file number and (format) is (SOURCE),
(OBJECT), (DATABUS CODE), or (RELOCATABLE CODE) depending on the
file format. If nothing is entered, the message:

NAME REQUIHED

will appear and the request will be repeated. If an asterisk (*)
is entered, MOUT will terminate and return to DOS. If a
greater-than sign (» is entered, the program will skip to the
next file. If a less-than sign «) is entered, the program will
backspace to the prior file (bypassing null files). If the
program finds the beginning of the tape, it will beep and then
move forward to the first file. If a name is entered, the default
extension is 'TXT' for source, 'ABS' for object, and 'DBC' for
Datashare object depending on the file format. If the drive
number is not entered, all online drives will be searched starting
at drive zero. If a drive number greater than DOS allows is
given, the message:

35-4 DISK OPERATING SYSTEM

BAD DRIVE

will appear and the request repe~ted. If the file is not found,
the :nessage:

FILE NOT FOUrJD

will appear and the request repeated. If the disk file is found,
it will be matched byte by byte against the disk file. If the
files completely match, the message:

FILE: OK

will appear to the right and p~ocessing continues with the nekt
file. If an error is detected, the appropriate message will
appear and processing continues t-Jith the next file. Null files
are bypassed. Processing contiriues until Sn end-of~tape mark
(file mark 040 or 0117) is read at which time the message:

VERIFICATION PHASE COMPLETED

will appear and MOUT will be terminated.

Use of the 'r' option does not dhange the ~rograrn operation
described above, it simply causes the rear cassette deck to be
used rather than the front deck.

35.3 File Names

If the file rtames ate not given in the command line~ the
operator will be asked for the file na~es one at a time. The
request is of the form:

CASSETTE FILE XX DOS' NAME:

\rJhere XX is the. file number.. Possible repl ies to the file naroe
query include:

a) the file specifications as discussed above,
b) a pound sign (U) which will bump the file number to 20

octal if not already there (only allowed on loader tapes to
initiate numbered files on a CTOS tape),

c) a dollar sign ($) which will cauSe a null file (tape file
i11ark only) to be written to tape and the file spec of
HULL/NUL to be entered in the directory,

d) a n a s t e r i s k (*) ~-I hi ch wi 11 i h d i cat e no ,n 0 ref i 1 e s are to be

CHAPTER 35. fv10 U1' COf,H1AIJ D 35-5

entered and the tape writing started (writing is postponed
until the directory is complete), and

e) as which will abort the program. The 1I1essage:
MULTIPLE OUT DISCOrJTINUED will appear and control is
returned to DOS. (To dump as/ASS, enter 'OS/ASS').

If the operator fails to enter a name, the message:

NAl"1E REQUIRED

will appear and the name request will be repeated. If the drive
is given and is not in the range valid for DOS, the message:

BAD DRIVE

will appear followed by a re-request of the name. If the file is
not found, the message:

FILE NOT FOUND

will appear followed by a re-request of the name. If the file is
found, the forrflat (0 bj ec t, source, or Da tashare) will be
determined by the system. If the tape is a loader tape and file
110 is not an object file, the message:

FILE FOLLO~ING LOADER NOT OBJECT

will appear along with a re-request of the file name. This
message may also be displayed if the reply to the file name query
for file #0 is a pound sign. Otherwise the messages:

OBJECT FILE

or:

SOURCE FILE

or:

DATABUS CODE FILE

or:

HELOCATABLE CODE FILE

or:

NULL FILE

35-6 DISK OPERATING SYSTEM

will appear to the right of the file name. If the pound sign is
entered for a tape that does not have a loader, the message:

NOT LGO TAPE

Hill appear with a re-request of the file name. If 32 files (or
31 on a directory tape) are entered, the message:

THAT'S THE El~D OF THE LINE

will appear and the tape writing is started automatically.

35.4 Writing

Once the tape Hr i ting has started, the systetll will keep the
operator informed of its progress. As a loader is being written,
the message:

LOADER IS BEING WRITTEN

will appear. As a directory is being written, the message:

DIRECTORY IS BEING WRITTEN

will appear. While files (including null files) are being
written, the message:

F I L E < f i 1 en a;o e / ext> I S BEl N G W R ITT EN

wi 11 a p pea r . W h en t he w r i tin g i s c o~n p 1 e ted, t he me s sag e :

WHITING PHASE COMPLETED

will appear.

If a non-object record is sensed in an object file while
wri ting to tape, the tllessage:

FILE CONTAINS NON-OBJECT RECORD

will appear and the next file is written over the bad tape file
including the file mark. This will leave a directory entry
without a file. If this should happen, it will cause verification
to display the message:

NON-SEQUENTIAL FILE MARK

CHAPTER 35. ['10 UT COf'1MAND 35-7

and the tape rewritten.

If a non-source record is sensed in a source file while
writing to tape, the message:

INCORRECTLY FORMATTED SOURCE RECORD

will appear. The file is ended at this point without writing the
bad record and the next tape file will start immediately
following. If this should happen, it will cause verification to
display the message:

INCORRECTLY FORMATTED DISK RECORD

or:

TAPE EOF BEFORE DISK EOF

and the tape rewritten.

If MOUT runs out of tape, the message:

END OF TAPE ENCOUNTERED WHILE WRITING filename/ext

will appear, an end of tape marker written at the end of the
previous tape file, and the unwritten files will be removed from
the directory (if there is one). Processing then will be continued
with verification.

35.5 Verifying

If verification is requested, the system will keep the
operator informed of its progress. As a loader is being verified,
the message:

LOADER IS BEING VERIFIED

will appear. As a directory is being verified, the message:

DIRECTORY IS BEING VERIFIED

will appear. While files (including null files) are being
veri fie d, t he tI1 e s sag e :

FILE filename/ext IS BEING VERIFIED

35-8 DISK OPERATING SYSTEM

will appear. When the verification is completed, the message:

VERIfICATION PHASE COMPLETED

will appear. If verification is requested for a tape having no
directory, the message:

NOT DIRECTORY TAPE

is displayed. Then the ulessage:

CASSETTE FILE nXX(format) DOS FILE NAME:

will appear. The filenalile should be entered. Responses are
discussed in the section under OPTIONS.

A variety of error messages may be displayed during the
verification phase. Most of them are self-explanatory. They
include:

BAD LOADER

BAD DIHECTORY

TAPE FILE DOES NOT MATCH DISK FILE

INCORRECTLY FOR;1ATTED DISK RECORD

DISK FILE CONTAINS NON-OBJECT RECORD.

DISK FILE CONTAINS NON-TEXT RECORD.

NON-SEQUENTIAL FILE MARK.

TAPE fILE !v1ARK READ BEFORE TAPE OBJECT EOF.

TAPE OBJECT EOF NOT FOLLO'vV"ED BY TAPE FILE MARK.

DISK EOF BEFORE TAPE EOr

TAPE EOF BEFORE DISK EOF

If an error is detected, the program will then either rewrite
the tape (if it has just been created) or skip to the next file
(if in the 'verify only' mode). If it rewrites the tape, the
message:

I'M NO!vv REWRITING THE TAPE

CHAPTER 35. [v10UT COMMAN 0 35-9

will appear. The system will rewrite once before quitting
cOlopletely at which point the message:

VERIfICATION UNSUCCESSFUL

will appear and the processing terminated.

If a problem arises that causes an abnormal end (e.g. end of
tape), the message:

f"1 U L TIP LEO UT DIS CON 'f I N U E D

wi 11 appear, otherwi se the tne ssage:

MULTIPLE OUT COMPLETED

will signal the successful end of the program.

ERROR D ON DECK 2

will signal parity errors on the cassette and control is returned
to DOS.

35-10 DISK OPERATING SYSTEM

CHAPTER 36. NAME COMMAND

36.1 Purpose

The I~ A ;"1 E . c 0 tn ill and allow s the use r to c han get hen am e 0 f a
file, the extension of a file, or the subdirectory in which a file
resides. However, the contents ~f the file and the volume on
which it resides are not affected in any way.

36.2 Use

The N A 1V1 E C etil to and i sin v 0 ked by the 0 per a tor en t e r i n g a
comriland line of the for~11

NAME <file spec1>[,<file spec2>][,<subdirectory na~e>J

The first file specification refers to the current file name
and the second file specification is the new name and/or extension
to be assigned. If no extension is supplied in the first file
s p e c i f i cat ion, A B Sis ass Ul!l e d . I f no ext ens ion iss u p P lie din the
second file specification, the extension of the first file is
assu~ed. If no filename is ~iven in the second file
specification, the name of the first file is assumed. The drive
number should only be specified in the first file specification.

If the NAiJIE comlnand is used to move a file from one
subdirectory to another the second file specification may be .
omitted (unless the filename and/or extension are to be changed)
and the subdirectory name denoting the subdirectory into which the
file is to be placed is the third specification:

NAME <file spec1>,,<subdirectory name>

If no subdirectory name is entered, the file is placed in the
current subdirectory.

If the first file specification is not given, the message

NAiJIE REQU IRED.

will be displayed. If the second nane is already defined on the
drive that contains the first file, the message

CHAPTER 36. NAME COM HAND 36-1

NAME IN USE.

will be displayed. Note that the drive specification on the
second name is ignored. If the first name is not found on an
online disk, the message

NO SUCH NAI"1E.

will be displayed. If the subdirectory name keyed is not found
on the disk containing the file to be renamed, the message

tJO SUCH SUBDIRECTORY.

will be displayed.

36-2 DISK OPERATIj~G SYSTEM

CHAPTER 37. PUTIPL COMMAND

37.1 Purpose

The PUTIPL command writes an IPL (Initial Program Loader)
block and DOS boot bloc~s to the disk.

37.2 Use

PUTIPL <:DRIVE>

If the drive number is not specifie'd in the cotnmand line,
PUTIPL will display the following:

LOGICAL DRIVE TO BE 'rJRITTEN (O-max OR "*,, TO EXIT TO DOS):

Respond with the drive number that you want to write to.

If you are running under ARC, PUTIPL may be executed on local
drives. Attempting to \\Trite IPL blocks on a remote voluLne,
however, will result in the error:

NOT TO A HEMGTE VOLUME

CHAPTER 37. PUT I PL CO~H1AN j) 37-1

CHAPTER 38. PUTVOLID COMMAND

38.1 Purpose

The PUTVOLID command writes a sy:abolic volume identification
(VOLID) onto a disk.

38.2 Use

PUTVOLID <volid> <:drive>[;<owner id>J

Where <volid> is 1 to 8 characters in length, <drive> is the
logical drive to be written to, and <o\tJner id> is any information
the user wants.

If only a drive number is entered, the existing <volid> for
that drive will be displayed.

If the information on the command line is incorrect in any
way, an error message will be displayed with the proper format to
enter.

PUTVOLID ~ay be used under ARC to write a VOLID on a local
volume. However, attempting to write a VOLID on a remote volume
will result in the error:

NOT TO A REMOTE VOLUME

C;lAPTER 38. PUTVOLID COMMAND 38-1

CHAPTER 39. REFORMAT COMMAND

39.1 Purpose

The DOS REFORMAT command is used to change the internal disk
format of text-type (non-object) files. Additionally, it can
recover disk space left unused when files are updated by the
DATASHARE indexed sequential access 'nethod. REfOR~1AT can coropress
a file in place on disk provided that such compression does not
entail the writing of a physical disk sector prior to the time
that sector is read. REFORMAT maintains logical consistency in
such cases and will not write on a disk file until it has checked
to be sure it can complete its job successfully.

39.2 Use

When the REFORMAT program is to be executed, the operator
;oust type:

REF 0 R [v} A T < f i 1 e - s p e c > [, < f i I e - s p e c >] [; < par a In e t e r s >]

where only the first file specification is mandatory, and
specifies the file to be reformatted. If the second file
specification is given, it must be distinct from the first.
Reformatting in place is requested by omitting the second file
specification.

The parameter list describes the forlflat the output file is to
take, and whether REFORMAT is to free any disk space that might be
vacated by the reformatting process. In addi tion, the user can
specify that REFORM~T is to pad short records, and either truncate
or segment long records. REFORMAT will produce three different
kinds of output files: record compressed, space and record
compressed, or blocked records (see the section on TEXT FILE
FORMATS). Note that REfORMAT will not produce blocked space
compressed records or space compressed non-record compressed files
although such files can be used as input to the REFORMAT program.
If no parameters are given, the output file is blocked one record
per sector.

CHAPTER 39. R EFORt'1AT CO['-1MAND 39-1

Para:J1eters passed to REFORH~T may be separated by spaces or
comcrla s. The val id par arne ter s ar e as fo llows :

Parameter Description

8<n> The output file will be blocked. This implies no space
or record compression, with <n> logical records per
physical sector.

C The output file will be space and record compressed.
The number of logical records per physical sector will
be indeterminate.

R The output file will be record compressed, but no space
compression will be done. In general, the number of
logical records per physical sector will be
i n d e t e r ell ina t e .

L<n> The length of each logical record will be adjusted to
<n> (up to 65,000) characters. Note that if the logical
records are space compressed, this will not make the
physical length of the records <0> characters. If the
l~gical record is shorter than <n> characters, it will
be padded with blanks ,to the proper length. If the
logical record is longer than <n> characters, the action
taken depends on the T and S parameter. Hote that when
L is greater than 245, the output must be record
compressed.

T (Only valid if L parameter is given) Truncate the
logical record if it is longer than <n> characters.

S (Only valid if L parameter is given) If the length of
the logical record is greater than <n> characters,
segment it into (q) logical records each of length <n>,
padding if necessary. The number (q) is defined as input
length divided by <n> rounded upward to the next
integer.

39-2

If neither S or T is specified, and an input record of
length greater than <n> is found, a message is issued
and REFORMAT gives up.

DISK OPERATING SYSTEM

D If reformatting is done in place and this parameter is
specified, any disk space vacated by the reformatting
process will be returned to the operating system for
re-use.

39.3 Output File Formats

The REFOR!~AT utili ty per"ni ts you to select essentially three
different output file for;nats. It will produce blocked files that
are not space compressed, record compressed files that are not
space cOlnpressed, and files that are both record and space
cOlnpressed. In addi tion, it has a subcommand to permi t you to
specify the logical length of the output records. Use of this
subcommand will guarantee that each record has exactly the same
logical length. Note that if the output format does not specify
space compression, the physical length of each record will be
identical. This is especially useful for telecommunications
disciplines that require records of fixed length.

If you have set a fixed logical length for output records,
there are two subcommands available to tell REFORMAT what to do
with records whose logical length exceeds the specified output
length. You may select either truncation of the input record, or
you [nay segment it into two (or more) output records, each of the
logical length specified.

39.4 Reasons for Reformatting

Several uses of REFORMAT deserve special mention. First, a
random disk file is structured to have one logical record per
physical sector. Often, however, it is convenient to create a
random file through the use of the general purpose editor - which
record and space compresses its output. REFORMAT can then
reprocess the file into the correct format for DATASHARE or
DATABUS raadom access.

CHAPTER 39. REfORMAT COMMAND 39-3

Secondly, when a file is accessed with DATASHARE indexed
sequential access method, any additions or deletions result in an
increase in the physical size of the file. The reason for this is
that any inserted records are placed at the physical end of the
file, and each one consumes at least one entire physical sector,
regardless of its logical length. Similarly, deleted records are
siil1ply overstored with octal 032 (logical delete) characters, and
the space they vacate is not reused. REFORMAT recognizes this
condition, and will recover such vacated space. Note that ISAM
read-only or update-only (no additions or deletions) files do not
usually need reformatting.

39.5 Reformat Messages

The REFORMAT utility program produces several messages on the
operator's console. The contents and where necessary, meaning of
those messages follow:

DOS. VER 2 REFORMAT COMMAND - date
Self-explanatory sign on message.

COMMAND LINE ERROR: 015 missing
This is an internal error and should be reported to
Datapoint.

PROGRAM ERROR - EXCESS FILE SPACE NOT DEALLOCATED
TO PREVENT POSSIBLE LOSS Of DATA

REFORMAT has detected an invalid end of file mark. In
order to prevent the possible loss of data which might
be after the invalid end of file indicator, space
allocated but unused is not freed.

EXCESS FILE SPACE NOT DEALLOCATED; OUTPUT fILE IS
DELETE PROTECTED.

Self-explanatory.

OUTPUT FILE IS WRITE PROTECTED AND CANNOT 9E
wRITTEN INTO OR SHORTENED.

You have requested REFORMAT to output to a
write-protected file.

INVALID OPTIONS SPECIFIED
You have given REFORMAT an invalid parameter list.
This message is followed by the valid options you may
specify.

39-4 DISK OPERATING SYSTEM

ILLEGAL, CONFLICTING OR DUPLICATE OPTIONS
You have specified two mutually exclusive options.

YOU SPECIFIED BOTH SEGMENTATION AND TRUNCATION.
YOU CANNOT HAVE BOTH

Self-explanatory.

BLOCKING FACTOR CONTAINS INVALID NON-NUMERIC DIGITS
Self-explanatory.

BLOCKING FACTOR REQUIRED BUT MISSING OR ZERO FOUND
You specified blocking but omitted the blocking
factor.

LOGICAL RECORD LENGTH REQUIRED BUT MISSING OR ZERO FOUND
You must specify the logical record length of the
output file if you wish to have fixed length output
records.

YOU HAVE ILLEGALLY ENTERED A SPECIFICATION FOR
A THIRD FILE

REFORMAT recognizes only two file specifications.

HOW DO YOU EXPECT TO FIT THAT MANY RECORDS IN A
256 BYTE SECTOR?

Self-explanatory.

LOGICAL RECORD LENGTH MUST 8E < 65535 BYTES.
Self-explanatory.

YOUR BLOCKING FACTOR IS TOO LARGE FOR THE SIZE
OF THE RECORDS YOU HAVE.

Self-explanatory.

YOUR LOGICAL RECORD LENGTH IS TOO SMALL FOR THE
SIZE OF THE RECORDS YOU HAVE

While processing the input file, REFORMAT came across
a record that was larger than the specified logical
record length. Since you specified neither
segmentation nor truncation, this is recognized as an
error.

SPECIFIED OUTPUT FILE FORMAT ENLARGES PRESENT
INPUT FILE. fILES CANNOT BE ENLARGED DURING
REFORMAT-IN-PLACE. REFORMAT IN-PLACE REQUEST
REFUSED.

Self-explanatory.

CHAPTER 39. REFORMAT COMMAND 39-5

YOU SPECIfIED AN OUTPUT FILE THAT ENDED UP
BEING YOUR INPUT FILE. TO REFORMAT IN-PLACE
DO NOT SPECIFY ANY OUTPUT FILE.

Self-explanatory.

OUTPUT FILE NOT FOUND ON DRIVE X.
OUTPUT FILE FOUND ON DRIVE Y.
OUTPUT fILE WILL BE CREATED ON DRIVE Z.

These messages only occur if no specific drive was
indicated for the output file. The first message
appears followed by either the second or third.
REFORMAT could not find the output file on the same
drive as the input file. It either found one on a
different drive, or created one on the displayed
drive. If the output file is created, it is always
created on the same drive as the one the input file is
on.

REFORMAT IN-PLACE REQUESTED.
PRESCAN IN PROGRESS.

REFORMAT is checking to make sure it can properly
process the file inplace.

FILE ALREADY WAS IN THE SPECIFIED FORMAT
Self-explanatory.

COPYING ,JITH REFOR~1ATTING IN PROGRESS
Self-explanatory.

REFORMAT-IN-PLACE IS IN PROGRESS.
DO NOT DISTURB!!!

Self-explanatory.

NAl'J\£ REQUIRED
Either you gave only an extension or drive for the
input file, or you specified the output file first,
followed by the input file.

INVALID DEVICE
An invalid drive was specified for the input file.

NO SUCH NAME
The input file specified cannot be found.

39-6 DISK OPERATING SYSTEM

INVALID DRIVE SPECIFICATION
The drive specification entered for one of the file
specifications was not in a valid format.

39.6 Text File Formats

Under Datapoint Corporation's Disk Operating System, text
files consist of legal ASCII characters, which make up the text
itself, and various control characters with special meanings. It
is illegal to have the control characters in the text portion of
the file. According to DOS convention, any character between 000
and 037 is considered a control character.

Each physical record of a text file is a logical disk sector,
and contains 256 characters. The first three and last two
characters are reserved for control functions; hence, the maximum
space available in a single physical record is 251 bytes. The
format of a logical sector is as follows:

Offset Length
(octal) (octal)

000 001

001 002

003 373

376 002

Descriptio!1

Physical file number of this file. For a
detailed description of physical file
organization, see the chapter on System
Structure.

Logical record number. This refers to logical
physical records, and is not related to text
records within the file.

Text. 251 bytes of text and control characters,
depending upon the format of the file.

Two characters reserved.

The text part of each file is considered a logical stream,
crossing sector boundaries without being logically discontjnuous.
Demarcations of logical record boundaries are made solely by
control characters imbedded within the text itself. There are
essentially five control characters found in files generated by
DOS: 000 <NUL> used for end of file indication, 003 used to
denote the end of medium (a sector boundary) but not the end of a
logical record, 011 <CMP> used to denote space compression, 015
<ENT> used to denote the end of a logical record, and 032
used to denote deleted data.

CHAPTER 39. REFORMAT COMMAND 39-7

Under DOS each file is treated as a single, continuous stream
of data. Physical records bear no relation to the logical
structure of the data contained in them. In this way, a
proliferation of different file structures and the special
routines needed to treat such special cases have been avoided.
This does not mean that there cannot be a relation between
physical and logical structure, it simply means that such a
relationship is incidental to a particular file, and need not be
treated as a special case. For example, random access to a data
file is defined in the DATABUS language. Files to be accessed in
this manner are structured in such a way that one logical record
corresponds exactly with one physical record. This structure is
not in her en tin the m a k e up 0 far and o:a f i Ie, in fa c t, s u c h f i Ie s
can be treated exactly as any other text file.

The basis for this treatment of text files is the logical
record. A logical record starts at the beginning of a file, or
immediately after the end of a previous logical record. It
consists of ASCII data and is of no pre-determined length.
Instead, the record is ter~inated with a single ENT character. In
this vvay, complications arising from a multitude of record types
are entirely avoided.

If the logical record contains any CMP characters, it is said
to be space-compressed. The character immediately following the
CMP character is a space count, and the pair represent the number
of ASCII blanks removed when the record was compressed. Since the
character following CMP is always assumed to be a space count, CMP
can never occur as the next-to-last text character in a physical
sector, since the EM character following it would be lost.

If the file is organized so that each physical sector
contains exactly the same integral number of logical records, with
no logical record spanning an EM character, the file is said to be
blocked. If the file is not blocked, then it is said to be record
compressed. Note that for a blocked file all sectors except
possibly the last one in the file contain the same number of
logical records while for record compressed files the number of
logical records per physical sector is indeterminate.

Under DOS conventions, a valid end of file mark consists of
exactly six NUL characters, followed by an EM character:

000 000000 000 000 000 003

This mark must begin at a sector boundary. All information after
a valid end of file mark in the sector is indeterminate.

39-8 DISK OPERATING SYSTEM

CHAPTER 40. REWIND COMMAND

40.1 Purpose

The REWIND com~and causes the front or rear cassette deck to
rewind the cassette in place.

40.2 Use

The REWIND command is entered as:

RE:fI1IND [<deck>]

If the <deck> entry is not made, the cassette in the front deck
will be rewound. If <deck> is specified the cassette in the rear
deck will be rewound. The actual values entered for <deck> are
"REAR" or "DECK1". If some unrecognizable entry is made for <deck>
the entry will be ignored and the front deck will be rewound.

REWIND returns to the operating system as soon as the
cassette rewind operation has been started. If no cassette is in
place in the specified deck the error tI1essage:

NO CASSETTE IN SELECTED DECK.

The cassette can be fully wound onto the clear leader at the
reverse end of the tape, since the re\.Jind command starts by
slewing the tape backwards for a few seconds first. This action
takes up any slack that may be present in the cassette before the
high-speed rewind starts, and also ensures that the tape is not on
the clear leader when the actual rewind begins.

CHAPTER 40. 40-1

CHAPTER 41. SAPP COMMAND

41.1 Purpose

The SAPP command allows appending two text files to create a
single larger file, or copying one text file to another,
recognizing the end of file and not copying unused file space.

41.2 Use

SAP? <file spec>,[<file spec>J,<file spec>

The SAP? coml:11and appends the second source file after the
first and puts the result into the third file. If extensions are
not supplied, TXT is assu1rled. The first two files must exist. If
the third file does not already exist, a new file will be created.
The first file's end of file record is discarded and the copy is
terminated by the end of file mark in the second file.

Omitting the second file specification causes the first file
to be copied into the third file. Note that neither the first or
second file is changed.

The first and third file specifications are required. If
either is omitted the message

NAME REQUIRED

will be displayed.

The second and third file specifications must not be the

CHAPTER 41. SAP P COivtHAND 41-1

CHAPTER 42. SORT COMMAND

42.1 Purpose

The Disk Operating System SOHT provides a facility allowing
any Datapoint disk 'User to initiate file sorts directly frolo the
keyboard. The SORT can resequence the records of a file in
ascending or descending order based on a key defined by a set of
character column positions. SORT provides considerable control of
the output record format, and can even output directly to a local
or servo printer.

Tne FASTSORT utility, release separately, will resequence a
file much more quickly than SORT for users with 5500, 6600 or 1800
series processors. FASTSORT does not provide the full
capabilities of SORT, especially the limited output facility.

For more sophisticated uses, SORT may be called from other
programs through CHAIN. Using CHAIN also enables complicated sort
options to be reduced to a single file name which may then be
invoked either from the keyboard or another program. CHAIN also
extends the SORT package to operate as a merge.

42.2 Use

SORT is invoked using a command line of the format:

SORT <in>,<out>[,<drv>J[,<seq>J[;<options>J

<in> is the input file
<out> is the output file
<drv> is the SORT work file drive specification
<seq> is the collating sequence file
<options> include specifications for the following:

output file format (I, C or N)
spec ial output record format (L, T, or K)
hardcopy output (H or X)
collating sequence order (A or D)
p r Ln a r y / sec 0 n dar y r e cor d s p e c i fie a t ion (g n n n t c)
sort key specifications (sss-eee)

All the fields of the command line are explained in detail

CHAPTER 42. SORT COMI"lAND 42-1

later in this chapter.

42.3 Fundamental SORT Concepts

42.3.1 File Formats

All Datapoint syste1ns use a universal text file structure
recognized by Databus, COBOL, RPG, Basic, Scribe, Editor,
Assembler, terminal emulators, and so on. Therefore, any text file
3enerated by or for any of the above may be sorted. The file to be
sorted must be on disk, however.

There are two sub-formats a Datapoint file can have: Blocked
or Sequential. Blocked files are required to have a single
'string' or 'record' of data per physical disk record. The
maximum record size for blocked records is 249 bytes (plus
end-of-record and end-of-sector control bytes for a total of 251
bytes). Sequential records have no fixed relationship to physical
disk records and are written as densely as possible in the given
file space. Nonetheless, blocked files can be read sequentially
in the identical way that sequential files are read. In fact,
both types of files, when read sequentially, are
indistinguishable. Blocked files are used for achieving random
access to records. They generally require more disk space than
sequential files for the same amount of data.

Space compression implies that the logical position and the
physical position of a character in a record may differ. SORT
will always expand the spaces to determine the logical position of
a character.

When sorting, consider that the result of the sort is not a
restructuring of the original file. It is a new file which is a
restructured copy of the original file. The original file is
never changed.

Therefore, SORT produces a file which is a sorted version of
the original. This gives the user the added opportunity of
specifying the type of file to be output regardless of the input
file format (with some restrictions; see the section on
Input/Output File ForMat Options).

42-2 DISK OPERATING SYSTEM

42.3.2 The Key Options

The KEY of a sort is the field or that part of the record
which is to order the sequence of records. For instance, it can
be a person's name, state, employee number, amount in debt or any
aspect of the data base identifiable by a fixed position in the
record, based upon the column count from the beginnirig of the
record.

Consider the followin~ record (column count scale below for
reference only):

Mule, Francis A. 242219 123 BAHN SAN ANTONIO TX
123456789012345678901234567890123456789012345678901234567890

The name begins in column 1 and goes to 22. The employee nu~ber
spans columns 24-29. The street address is 31-42. The city is
43-58. The State is 59-60

If each person had a record in the file exactly in the above
fo rrna t, SOR T cou Id ord er t he sequence of records in the fi Ie 'r) y
any of the above fields. For instance, to get an alphabetical
list of the records by name, the key would be 1 to 22 (hereafter
referred to as 1-22). The key for sequencing the file in order of
employee number would be 24-29. The key for ordering the records
by state then city and then employee number would be
59-60,43-58,24-29.

Any portion of the record can be used as a key. Care must be
taken when selecting a key to include no more characters than
necessary, since each character added to the key slows down the
sort.

The key specified for SORT is concatenated to a single
string, then sorted character-by-character, with the left-most
character being of most significance. It is very ilnportant to
realize the effects of a right-to-left character sort. To appear
in the correct sequence, numeric fields must be right-justified,
character fields must be left-justified. If si~ned numeric fields
are sorted, the sign should be moved to the left-most position and
the magnitude right-justified; otherwise the resulting sorted
sequence will contain positive and negative values in no
discernible order, since the ,,_tt and "+" signs are just another
character to SORT. A full explanation of character sort concepts
is beyond the scope of this manual. Interested users should
co r1 suI tan a p pro p ria t e in for III a t ion sci e n c e t ext boo k •

CHAPTER 42. SORT COHiv1AND 42-3

42.3.3 How to Sort a File

File sort operations are initiated by a single command line.
All the operator must know is the name of the file to be sorted,
the name desired for the sorted output file, and the columns
containing the key.

For ins tan c e, the key boa r dis sue d COin tn and for the abo v e
example to sort on the name field (1-22), would be:

SORT EMPLFILE,SORTFILE;1-22

This is assuming that the name of that file was EMPLFILE. It
is also the operator's decision as to what the resultant sorted
file is called, as the command could have easily been:

SORT EMPLfILE,EMPSORT;1-22

as well. The second file named is where the resultant sorted
output will be placed.

More complicated keys may be stated as well and the command
to sort by state and then na:ne \-Jould be:

·SORT EMPLFILE,SORTfILE;59-60,1-22

That is all there is to simplified sorting.

Testing SORT for yourself is simple. Most systems have a
source code file for a Databus or Assembly language program on the
disk. Such programs can be sorted by op-code and provide an
interesting analysis of the usage of each instruction type:

SORT INFILE,OUTfILE;9-12

42.4 SORT Command Line and Options

42.4.1 Generalized Command Statement Format

The following is the generalized statement format for the
Datapoint DOS SORT:

SORT <in> ,<out>[,<drY>] [,<seq>J [; [fJ [oJ [rJ [hJ [gnnntcJ [k 1 J ... [,onJ [,kn :

In the options field commas :nay be used to separate

42-4 DISK OPERATING SYSTEM

parameters; commas must be used to separate sort key groups (kn)
and order specifications (on) when more than one of either is
used. The fields and option parameters definable on the SORT
corn in and lin ear e :

<in> .. Input file specification. 'This file must exist on
disk. The default extension for the input filG is
'TXT' .

<out> Output file specification. If the specified
output file already exists, it will be
overwritten. The default name of the output file
is the same as that entered for the input file.
The default extension of the output file is the
same as that entered or assumed for the input
fi Ie. The out put fi I e cannot be the sa:ne as the
input fi Ie.

<drv> SORT work file drive specification. Only a drive
specification of the form :Dn or :<volid> is legal
in this field; entering a name or extension will
cause SORT to abort. SORT attempts to optimize
its sPGed by placing its work files on a drive
separate from the input or output files. Unless
otherwise directed by this field, SORT creates its
work files on the first available disk, starting
with the highest-numbered drive online and
checking in descending order for a disk with any
room for work files. If SORT selects a drive with
insufficient space, it will abort later.
Specifying a work drive with plenty of free space
can avoid this occurrence.

<seq> Non-ASCII collating sequence file. Specifies a
file containing the character collating sequence
to be used for the sort. If not used, ASCII
sequence will be assumed.

SORT option parameters:

f Format of output file. Codes recognized are I, C,
and N.

The I option specifies a blocked output file, that
is one record per sector. Refer to the previous
section of this chapter for a discussion of text
file formats.

CHAPTER 42. SORT COMtv1AND 42-5

The C option specifies a record compressed output
file and may be used regardless of the input file
format. The default output file format is record
compressed, so the C option is never required.

The C and I options are mutually exclusive.

The N option specifies no space compression of the
output file. By default, SORT writes the output
file with the same compression format as the input
file. That is, if the input file is space
compressed, the output file will be also; if the
input file has no space compression, the output
file will not be space compressed. If the N
option is used the output file will have no space
compression even if the input file is space
compressed.

o Collating sequence order. The options entered may
be A (ascending) or D (descending). The default
sequence is ascending. If some keys are to be
sorted in ascending order and other keys in
descending order, the "on" specification
described below should preceed each key whose
order differs from the order of the key preceeding
it. However, if all keys are to be ordered in the
same sequence, this option need only be specified
once.

r•.. Record format. This parameter specifies a special
output record fopmat: L for Limi ted output file
format, T for Tag file output, or K for Key tag
file output. The default value is no special
output record format, so that the records in the
output file will be exact copies (full image
records) of the records in the input file.

42-6

Normally the sort transfers all of the records of
the input file to the output file. It is
possible, not only to transfer part of each
record, but to select only certain records or to
include constant literals in each record as well.
Including the 'L' parameter in the list of
parameters will cause another question to be asked
wherein you may specify the limitations and
constants. See the section on Limited Output
Format Option.

DISK OPERATING SYSTEM

By entering the 'T' character, an output file is
generated which consists only of binary record
nUJober and buffer byte pointers to the input file
records. See the section on Tag File Output
Format Option.

By entering the 'K' character, a standard text
for!nat 0 ut put fi Ie is gener a ted wh i ch con sis ts 0 f
records containing a 5 byte user logical record
number, a 3 byte buffer address, and the key.
These records are space-compressed and have
trailing spaces truncated. See the section on
Key tag File Output Format Option.

h Hardcopy output. Entering options H or X causes
the output of SORT to be listed on a printer. H
specifies a local printer for output; X specifies
a servo printer.

When hardcopy output is used, the output file
specification becomes optional. If an output file
was specified, SORT will write an output disk file
as well as printing its output. If no output file
was specified, SORT will produce only printed
output. Except when performing hardcopy output
the output file specification must be entered on
the command line.

If hardcopy output is specified, limited output (L
option under" Record format" above) must also be
specified. For more information see the section
on Hardcopy Output Option.

gnnntc Primary/Secondary SORT specification. These
parameters are all a single option and must be
entered completely and in the order indicated.
The separate parameters of the option are listed
below.

g ••••••• Group indicator. Specifies that the input file
consists of primary and secondary records and
specifies which group is to be sorted. The
character specified may be P for primary or S for
secondary. There is no default value.

In a file with primary and secondary records, a
string of records with a primary record as the
first record and secondary records following it is

CHAPTER 42. SORT COrv1MAND 42-7

CHAPTER 43. SUR COMMAND

43.1 Purpose

The use 0 f the SUR (Sub d ire c tor y Uti 1 i tyRo uti n e) com In and
allows the user to logically partition the directory on a given
disk into several smaller subdirectories. Each such subdirectory
can then contain zero or toore files, up to the combined maximum of
256 files per logical drive. The reasons for such a capability
are readily apparent. When a specific disk is used for (!10re than
one purpose, some inconveniences turn up. AssuMe for a mo~ent
that a user has a disk which he is using for program generation on
each of two more or less unrelated projects. ~hen he uses the CAT
command, for instance, he will normally see a whole range of
files, some of which are not related to the project he may be
currently interested in. Or, he may begin editing a new file on
the disk, only to find that another user of the same disk may have
already had a file of that name. Without the DOS subdirectory
facility, it is not permitted to have two files on a given logical
drive with the same name.

43.2 Use

The SUR command is parameterized as follows:

SUR [<name> [/<function>]][:DR<n>][,<new name>]

The function performed by SUR is determined by the absence or
value of the <function> field and the name field,as described
below. If a specific drive is mentioned then that function is
performed on only that drive, otherwise, it is performed on all
drives. The only exception to this is remote ARC volumes. The
only function permitted on a volume located at an ARC file
processor is the display function. An attempt to perform any
other function on one of these volumes will result in the message

DRIVE nn IS A REMOTE ARC VOLUME

being displayed and the function will not be performed on that
volume.

CHAPTER 43. SU R COfv1MAND 43-1

43.2.1 Establishing a "Current Subdirectory"

If the function field is not given, SUR establishes the named
subdirectory as the current subdirectory on all drives on ~lich
the named subdirectory exists. If the named subdirectory does
not exist ~n one or more drives, the current subdirectory on any
such drives is unaffected. If a specific drive is mentioned,
then only the current subdirectory on the specified drive is
subject to change.

43.2.2 Creating a Subdirectory

If the function field is INEW, SUH creates the named
subdirectory on all drives on Hhich the named subdirectory does
not exist. The current subdirectory is not affected by the
operation. If a specific drive is ;nentioned, then the na:ned
subdirectory is only created on the specified drive.

43.2.3 Deleting a Subdirectory

If the function field is IDEL, SUR deletes the named
subdirectory on any drives on which the named subdirectory exists.
If any files are in the named subdirectory, they are moved to
subdirectory HAIN before the na:ned subdirectory is deleted. If
the subdirectory being deleted is the current subdirectory on that
drive, the current subdirectory is also changed to MAIN.
Subdirectories SYST£H and t\1AIN cannot be deleted. If a specific
drive is mentioned, then the named subdirectory is only deleted
from the specified drive.

43.2.4 Renaming a Subdirectory

If the function field is IREN, SUR renames the named
subdirectory on any drives on which the nat!led subdirectory exists,
to the name specified in the new subdirectory name field. If any
files are in the na';1ed subdirectory, they will be in the
subdirectory specified by the new subdirectory nar'1e field upon
completion of the operation. Subdirectories SYSTEM and MAIN
cannot be renamed. If a specific drive is mentioned, then the
name of the named subdirectory is changed only on that specified
drive.

43-2 DISK OPERATING SYSTEM

43.2.5 Displaying Subdirectories

If the subdirectory name field is not given, SUR displays the
names of all subdirectories on all on-line drive~. The format of
the listing is similar to that provided for file names by the CAT
command. The number in parentheses to the right of each
subdirectory name is the sUbdirectory number associated with that
name (in octal); an asterisk indicates the current sUbdirectory
on each drive. If a specific drive is mentioned, then only the
subdirectories present on the specified drive are displayed.

43.3 About Subdirectories

Each sUbdirectory on a disk has a unique name. Two
subdirectories always exist on all drives; these are called
SYSTEM and MAIN. A maximum of 31 subdirectories can exist on any
volullle. Since two are already used (SYSTEM and [vtAIN), there are
29 subdirectories available for user specification. The names for
these subdirectories are assigned by the user as he establishes
them, and follow the same rules as for any standard DOS file name.
As a subdirectory is created, the name specified by the user is
related to a unique number which is referred to as the
subdirectory number. The relationship between sUbdirectory names
and subdirectory-numbers is similar to the relationship between
DOS file names and physical file numbers. A given sUbdirectory
may have different numbers on different drives, even though the
subdirectory name is the same.

It is important to realize that subdirectories are not a way
of getting more than 256 files on a drive. This they cannot do.
The thing that subdirectories are good for is partitioning the
directory and restricting the scope of a file name. This allows
several files of the same name to exist on one disk at the same
time, without causing the DOS to become confused 3S to which is
the one to be referenced at any time. The way the DOS achieves
this is that each of the files is in a "different subdirectory",
and hence is uniquely identified even though the name and
extension may be identical.

CHAPTER 43. SU R COtvtI-1AN D 43-3

~3.3.1 Creation of Subdirectories

Subdirectories are created with the SUR command. All that is
required is to specify a name for the proposed subdirectory and
request its creation. Creation of a SUbdirectory does not
actually result in any real change to the directory on disk; all
it does is cause the specified name to be entered into a table in
S Y S T E [v17 / S Y S which relates each sub d ire c tor y n a tn e VJ i t h its
subdirectory number. The user is allowed to specify which drive
he wishes to create the subdirectory on; if he does not indicate
a specific drive, the named SUbdirectory is placed onto all
on-line drives if possible.

43.3.2 Deletion of Subdirectories

Subdirectories are deleted with the SUR command. The user
specifies the name of the subdirectory he wishes to remove and
requests its deletion. Deletion of 3 subdirectory does not result
in KILLing the files within the range of that subdirectory. If a
subdirectory to be deleted contains ooe or more files, the files
are first moved from that subdirectory to the one called MAIN
before the named subdirectory is deleted. It is important to note
that it is possible to get rnore thao one file with the same name
and extension in subdirectory ivlAIN because no check for a Il1atching
file is made. The user is alloVled to specify froll} which drives
the subdirectory is to be deleted; if he does not indicate a
specific drive, the named subdirectory is deleted fro~ all on-line
jrives on which it appears. Subdirectories may not be deleted
while PS is running.

43.3.3 Being "in a Subdirectory"

The user can define at any time which of the subdirectories
on each of his disks contain the current files he is interested
in. This is done wi th the SUR COll1mand by specifying the name of
the subdirectory containing the files of current interest. This
action causes him to be placed "into" the named subdirectory on
t he d r i ve s p e c i fie d . (I f no s p e c i f i cdr i v e i s ~(} en t ion ed, he will
be placed "intoH the SUbdirectory specified on all on-line drives
containing a subdirectory with the given name). It is
appropriate to point out that the current SUbdirectory on each
drive need not have the saGle name; for example, the user could
easily be in SUbdirectory PROGRAMS on drive zero and in
subdirectory DATABASE on drive one at the same time. This
becomes even more complex ldr1en running under ARC. It is perfectly
legal for a user to MOUNT the same physical volume as several

43-4 DISK OPERATING SYSTEM

log i cal vol U til e s, e a chi n a d iff ere n t sub d ire c tor y . T h u s d r i v e
zero could be volume ABC in subdirectory A and drive one could be
voluit1e ABC in subdirectory B.

Once in a specific subdirectory on a drive, that state does
not normally change until the user requests being placed into a
different sUbdirectory (again via the SUR command) or re-boots the
DOS. Booting the DOS causes the user to be placed into the
sUbdirectory named SYSTEM on all drives.

43.3.4 Scope of a File Name

When a program accesses a file under DOS, it tells DOS the
name and extension of the file it is looking for and either
indicates one specific drive which the DOS is to search for the
file, or requests that the DOS look on all on-line drives. In
order for the DOS to "find" the given file, the DOS must find a
file whose name and extension exactly match the ones specified by
the requesting program. If the current subdirectory (for that
drive) is not SYSTEM, then the file must be in the current
sUbdirectory or in SYSTEM to be found. If no such file can be
found, the DOS returns indicating that the specified file cannot
be found and therefore probably does not exist.

Therefore the scope of a file name can be more or less
defined via the following: when a user is in sUbdirectory X on
drive Y, files can be "seen" by his program only if they are in
either subdirectory X or subdirectory SYSTEM. Files in any other
sUbdirectory will not appear to exist.

The entire above procedure does not apply when OPENing a file
by PFN since subdirectories are not checked in this case.

43.3.5 About Subdirectory SYSTEM

It has been shown that files in the subdirectory named SYSTEM
are special in that they can be accessed regardless of which
sUbdirectory the user is "in" on a specific drive. Likewise, a
special situation also occurs when the user is "in" the
sUbdirectory named SYSTEM. When the" subdirectory named SYSTEM is
the current subdirectory on a given drive, all files on that drive
are accessible regardless of which subdirectory they themselves
are actually in.

A little caution must be used when a user is in subdirectory
SYSTEt1 on a disk with multiple files of the sanle name and

CHAPTER 43. SUR COIVlMAND 43-5

extension. The caution is that, although each of the files is
still associated with one and only one subdirectory, all of the
files on a disk are available when the user is "inl1 the SYSTEM
subdirectory. The result is that in this situation, one of the
files of the desired name and extension will be referenced; which
one is referenced is, however, undefined. Therefore, good
practice dictates that if a user has more than one file with the
same name and extension on some drive, that he make a point of
always knowing which subdirectory he is in (and that it is not
SYSTEM) if it matters to him \..]hich of his files he referenceS:

43.3.6 Files vs. the User Being "in a Subdirectory"

It is important not to confuse the two distinct concepts of a
file being in a sUbdirectory as opposed to that of [a user] "being
in a subdirectory".

A file being in a specific subdirectory is a way of saying
that the file can be accessed' only when the current subdirectory
is either that specific SUbdirectory or SYSTEM. This
relationship, that of a file being in a specific subdirectory, is
retained more or less permanently; if a file is placed in
SUbdirectory SUBDIRl today on a disk, the disk can be removed and
stored on a shelf; if tomorrow the disk is taken down from the
shelf and re-mounted, that file will still be in subdirectory
SUBDIR1.

A user being in a specific subdirectory is a way of saying
that the subdirectory in question is "the current subdirectory" on
one or more logical drives. The "current subdirectory" on a drive
is less permanent and reflects the use of the SUR command since
the previous time the DOS was bootstrapped.

43.3.7 Getting a File into a Subdirectory

In general, there are two ways to get a file into a given
subdirectory. The easiest and probably most common of these is
automatic. Whenever a file is created, it is always placed into
the current subdirectory on the drive on which-rt is created.

Once a file has been thus created, it can be moved between
subdirectories with the NAME command. The NAME command can take a
file within the scope of the current SUbdirectory and put it into
the current subdirectory if it is not already (which is useful if
either the source or destination subdirectory is SYSTEM) or can

43-6 DISK OPERATING SYSTEM

place it into any other sUbdirectory the user might wish to put it
into.

CHAPTER 43. SUR COMMAND 43-7

nnn .

considered one block, or group, of records.

When the file is sorted on primary records the
output file has the blocks of records re-ordered
so that the primary records are in the sorted
sequence; no change is made in the sequence of
the secondary records following each primary
record.

When the file is sorted on secondary records and
the first key specified is in ascending sequence,
the output file has the blocks of records in the
same order as in the input file, and the secondary
records within each block in the sorted sequences.

When the file is sorted on secondary records and
the first key specified is in descending sequence,
the output file has the blocks of records in
reversed order as the input file, and the
secondary records within each block in the sorted
sequence.

SORT has no provision for the sorting of primary
and secondary records in the same SORT run.

Numeric position of primary/secondary flag. This
parameter specifies the character position for the
character (the 'c' parameter) indicating whether
the r e cor dis apr i ~n a r y 0 r sec 0 n dar y r e cor d . The
number must be within the range 1 to 249. It is
not necessary to enter leading zeroes to pad the
nurnber out to three digi ts, but do not use any
leading blanks or an error will result.

t Type of evaluation. This parameter specifies
equivalence or inequivalence of the group
indicator character; that is, whether the
character in the record should be equal to or not
equal to the character specified. The actual
character entered is '=' for equal or 'II' for not
equal. There is no default value, either ,-, or
'II' must be entered.

42-8

If '=' is given then if the character in the nnnth
position of an input file record is equal to the
group indicator character (indicated by 'c' below)
then the record is a member of the specified sort
group (indicated by 'g' above). Otherwise, it is

DISK OPERATING SYSTEM

not a member of the specified group.

c Character, group indicator. T~is parameter
specifies the actual test character for
determination of a record's membership in the sort
group. The actual character entered may be any
8-bit value except 015 (ENTER value). There is no
default character: the character i~mediately
following the 't' parameter is taken to be the 'e'
parameter (except 015, which would be an error).

On· · . . . · .

k n • • • • • • •

Sort Key specification, sss-eec. If no key is
specified, the SORT will assume 1-10; that is, the
first ten characters of the record.
sss is the starting key position.
eee is the ending key position.
The key is limited to 118 characters total,
S u lIlil1 i n g the 1 en g tho fall s p e c i f i c a to n s .

Order for the nth sort key. May be A (ascending)
or D (descending) as described for the "0"
parameter above. If omitted the order used on the
pr ev io us key is a ss u~l1ed .

The nth sort key specification (sss-eee). The
maximum number of keys is simply the number that
can be typed on the command line withJut exceeding
the line length.

42.4.2 Keys: Overlapping and in Backwards Order

The key specification need not be only forward. A
s p e c i fie at ion 0 f 1 '7 -1 2 wi 11 c a use the 6 del i iil i ted c h a rae t e r s to be
a key but in the order of 17,16,15,14,13,12. This is extremely
valuable, clearly, in data which has the most significant digit or
character last.

Key specifications may also be overlapping: 1-20,30-15
overlaps 15 to 20. When this occurs, the syste~ will optimize the
sort and save time over re-sorting on those columns again.

CHAPTER 42. SORT COl'1;"lAND 42-9

42.4.3 Collating Sequence File

By specifying a sequence file, the user may substitute any
collating sequence for the standard ASCII character set. The
sequence file may have any name, but the extension must be "/SEQ"
(SEQ is the default extension). If the disk drive number on which
the file resides is omitted, SORT defaults to the same drive from
which the SORT itself was loaded. This table may be supplied by
the user but must meet certain requirements to be loaded:

1. It must be an absolute object file.
2. It must begin loading at location 027 l+00.
3. The first eleven bytes must contain the file name and the

extension must be SEQ. (Full 8 - character file name with
trailing blanks, then extension.)

4. The table itself must begin loading at location 027400 and
occupy 256 bytes (overstoring the file name described in
3). For instance, the source for the EBCDIC sequence file
begins:

SET 027400
DC 'EBCDIC SEQ'
SET 027400
DC 0,1,2,3,4,5,6,7,

5. If the file is not found on the specified disk drive the
following message is displayed:

SEQUENCE FILE NOT fOUND

6. If the file is found but is not an absolute object file
the following message is displayed:

SEQUENCE FILE FOR~AT ERROR A

7. If the file format appears valid, the file will be loaded
using DOS routine LOADX$. LOADX$ will return an error
code if the load is unsuccessful. The following display
will notify the user of the error:

42-10

SEQUENCE FILE FORMAT ERROR n

where n=O if file does not exist
1 if disk drive is off-line
2 if directory parity fault

DISK OPERATING SYSTEM

3 if RIB parity fault
4 if file parity fault
5 if off end of physical file
6 if record of illegal format

42.4.4 Ascending and Descending sequences

Changing the collating sequence from ascending to descending
is the same as 'reversing' the file, or placing the last first,
etc. Sorting a telephone directory in ascending sequence on name
produces the familiar order. Should it be sorted in descending
sequence, then Mr. Zyk would be first and Ms. Aardvark would be
last. The order of collation, when alphabetic, numeric, and
punctuation characters all can occur in a column together, follo\-1s
the character set order. The sequence may be specified for each
sort key. However, it need not be specified if it is the same as
the key which preceeds it. Therefore, it is possible to sort
portions of the key in ascending order and portions in descending
order.

42.4.5 Input/output File Format Options

SORT accesses each file sequentially. Due to the techniques
used in the Datapoint standard file structure, the sequential
reading technique will provide SORT with all of the records in the
file whether the file was originally blocked or sequential.
Therefore, the file format options only allow specification of the
output file's format.

If the input file is blocked, that is one logical record or
string per physical disk record, then you have a choice of output
formats (f option). If 'I' is chosen, that is blocked, then each
output disk record will contain an exact copy of the appropriate
input file record. If. 'I' is not specified, then the input file,
reordered, will be reblocked and appear, generally much more
compactly, in the output file in record-compressed sequential
fortnat.

If the input file is sequential in its original format, then
there is only one choice for the output format; the output file
format for a sort on an input file which is sequential must be
sequential.

CHAPTER 42. SOH T CO!'-P1AN D 42-11

42.4.6 Limited Output Format Option

In many cases, especially when making reports, directories
etc. from the data base, it isn't necessary to have the entire
record transferred from the input file to the output file during a
sort. For instance, an entire personnel data base can be sorted
by name to produce an internal company telephone directory.
However, it is obvious that all that is needed is the name and
telephone number, not all the other payroll information.
Therefore, SORT permits transferring only that part of the data
base desired.

1ft he' L' 0 P t ion is e t1 t ere din the SO R T co tOto and 1 i n e, the
o per a tor wi 11 be prompted for a second in put 1 i ne \Jlhen the progr am
displays a message:

LIMITED OUTPUT FILE FORMAT:

The cursor will be left flashing on the bottom line of the CRT and
the program will wait while the operator enters the limited output
specification line. This line may contain any number of
specifiers as defined below, so long as it fits on a single screen
en try 1 i n e . The 1 i mit e d 0 u t put s p e c i f i cat i n til us t con sis t 0 fat
least one valid character output specification.

The f 0 11 0 Hi n g i s the g en era 1 i zed s tat em e n t for ~n a t for the
limited output specification:

{(sss[-eeeJ:*:'qqq')[/(P:nnntc[(&:+)nnntc[... JJ)]}[,{<limspec)} ... J[-J

Different ite~s within parentheses are separated by a
vertical bar (:); only one item within parentheses may be
s p e c i f i ed ina 1 Ln ita t ion s p e c i f i cat ion i t e (11 • The
collection of items within the braces ({}) constitute a
limitation specification item. As lnany limitation
specification items may be entered as will fit on a single
entry line. The upper-case letter P and the special
characters hyphen (-), asterisk (*), single quote ('), slash
(/), plus (+), and ampersand (&) represent actual literal
characters entered in the limitation specification line.
The lower-case letters represent different values which will
be entered on the limited output specification line.

T he f 0110 wing 1 i s t d e fin est he par a [11 e t e r s w h i c h can be
specified:

Parameters to specify characters output:

42-12 DISK OPERATING SYSTEM

sss[-eeeJ.

.)t

Delimited character output from input record.
Causes the characters from the specified
columns of the input record to be copied to
the output record.
S3S is the starting column position.
eee is the ending column position.
The eee specification is optional; if not
specified only the single character at column
sss will be copied.
The column nu~bers specified must be in the
range of 1 to 249 .

ASCII TAG output. This parameter specifies
that an ASCII pointer to the input record
will appear in the output record. The ASCII
pointer is a text numeric field with a
5-digit logical record number followed by a
3-digit byte pointer. The logical record
number references the user LRN in which the
text record begins; this number can be used
for DATASHARE random access or other similar
applications. The byte pointer points to the
first byte of the text record within the
specified LRN; this number can be used to
tab within DATASHARE random access or other
similar applications. The maximum value for
the logical record number is 65,535; the
maximum value for the byte pointer is 250.
If the 'I' format option was specified in the
command line option field, no byte pointer
will be written. When the input file is in
'I' format the logical record number alone is
sufficient to identify the text records,
since each logical record always then begins
in byte one.

'qqq' ..•.. Quoted character string. This para'.I1eter
specifies an actual string of quoted
characters that is to be copied into the
output record. The quoting symbol is the
single quote mark, or apostrophe ('). The
string may include any characters except an
apostrophe or an 015, and must be less than
90 characters long.

Parauleters specifying special condi tions for output. If
used, these parameters must im~ediately follow one of the
character output parameters. A slash (I) separates the

CHAPTER 42. SORT C O~1rv1A ND 42-13

conditional parameter from the character output parameter to
which it applies.

P. • • • Primary record to be source. This parameter
specifies that the information specified by
the preceeding character output paradleter is
to be extracted from the primary record for
the current record block, rather than the
present (secondary) record. This parameter
has no effect when an output record is being
generated from a primary record.

&. • • • • • • Logical AND for tOul tiple nnntc .

+. . . . Logical OR for multiple nnntc.

nnntc Conditional output dependent on character
evaluation. The nnntc parameters constitute
a single item and must all be specified in
the correct sequence if the option is used.
As indicated in the prototype specification
line, multiple character evaluation
specifications may be entered following a
single character output parameter, separated
from each other by ampersands (&) or plusses
(+). If such multiple parameters are used
the specified characters will be output if
the left-to-right significant logical
expression is satisfied.

nnn Numeric position of evaluation character.
This parameter specifies the character
position for the character (the 'c' parameter
below) indicating whether the infor~ation
specified by the prior set of character
output positions is to be copied from the
input record to the output record. The
number must fall in the range 1 to 249.

t Type of evaluation. This parameter specifies
the equivalence or inequivalence of the
evaluation character; that is, whether the
character in the input record should be equal
to or not equal to the evaluation charater.
The actual character entered is '=' for equal
or' II' for not e q u a1 . 1ft he e val u at 10 n i s
satisfied, then the information specified by
the prior set of character output positions

42-14 DISK OPERATING SYSTEM

c.

will be copied to the output record.

Evaluation character. This parameter
specifies the actual test character for
record evaluation. The actual character
entered may be any character except 015.

Line continuation. Limited output
specifications can be continued to another
line.

The limited output specification can specify that only
a portion of each input record is to be transfered to the
output file. Should the response "1-10" be gi ven to the
limited output format request, only the first ten characters
of each record will be transferred to the output file. A
specification of "1-10,50-70" would transfer thirty-one

'characters from each record of the input file to the output
file. The eleventh character in the output record would be
the fiftieth character of the input record, and so on.

To permit even more utility in report generation, SORT
allows inclusion of constants in the output record that did
not occur in the input record. For instance, assume that
the personnel data base was a full record of about 240
characters and that the employee's name appears in columns
80 to 110 and his telephone number was in columns 171 to
180. To make a telephone directory in alphabetical order,
one could answer the following to the limited output file
format request:

80-110,' - ',171-180

This specification would put out the name followed by
one space, a hyphen, one more space and the nuttlber. Any
number of input file fields and constants can be placed in
the output file up to the limit of the line on which the
specification is typed.

Often not every record of the input file is needed in
the output file. Limited output allows selection of parts
of records from the input file, based on character
evaluation on character position. For example, if a
primary/secondary file is being sorted and only the primary
records are desired in the output file, the command could
appear as:

SORT INFILE,OUTFILE;LP1=*,2-10

CHAPTER 42. SORT COM["1Al~D 1~2-15

LIMITED OUTPUT FILE FORMAT:
1-85/1=*

<--(program displays)

Columns 1-85 of the input record will be written to the
output file if column 1 is an *.

Limited output can be used to make more complex
selectioris. If it is desired to output records containing a
a in column 5 OR a. 1 in column 6, the command would be:

SORT INFILE,OUTFILE;L5-8,12-15
LIfVlITED QUTP UT FI LE FOHtv1AT: <-- (progr am di s pI a ys)
1-85/5=0+6=1

To output only records containing a 0 in column 5 AND a
in column 6 the command would be:

SORT INFILE,OUTFILE;L5-8,12-15
LIMITED OUTPUT FILE fORMAT: <--(program displays)
1-~85/5=O&6= 1

There is no relationship between the primary/secondary
specification on the command line and the conditional output
specification on the limited output format line.

Also note that the output file may require
proportionally less room than the input file when limited.
Often this fact can be put to use when the disk file space
is nearly exhausted and a sort is required.

42.4.7 TAG File Output Format Option

For some applications it is useful to have a data file sorted
into several different sequences. However, to have several copies
of a file on disk merely to have it in different sequences
consullles a lot of disk space, and indeed if the file is a very
large file toany copies of it may not fi t onto one or even four
disk packs.

This problem could be avoided if there were a way to index
into the one main file in any of several different sequences. The
index pointers could exist as a file, and the index entry for each
record in the main file would only have to be three bytes long:
two bytes for the LRN (Logical Record Number) and one byte for the
BUFPTR (Buffer Pointer, a pointer to the beginning of the actual
desired record within the disk physical buffer).

42-16 DISK OPERATING SYSTEM

SORT provides for the generation of such an indexing file, a
TAG file, by the 'T' variation of the 'r' option. A TAG file may
be generated for either a sequential or blocked file, and will
have the same format for either file. The format of a TAG file is
simple:

1. For each record in the input file, the TAG file will have a
three byte binary pointer to the first byte of the record.

2. The format of the pointer is:
Byte 1: MSPLRN (Most Significant Portion of LRN),
Byte 2: LSPLRN (Least Significant Portion of LRN),
Byte 3: BUFPTR (Buffer Pointer).

3. The three-byte binary pointers are blocked 83 to a physical
disk record.

4. The Physical-End-Of-Record mark is an 003 and the rest ~OD's.

5. The End-Of-File mark is: beginning at the first byte in the
physical record, six ODD's, one 003, and the rest ODD's.

TAG files tnay be used by assembly language programs or by RPG
II (as Record Address files).

for users writing their own Assembly language code to use a
TAG file, it is iillportant to know that the MSPLRN and LSPLRN are
together a 16-bit binary pointer to the DOS LRN of the input file,
as opposed to the User LRN. The difference is this: The DOS LRN
of a file points to the actual Nth record (starting with zero, the
primary RIB) in the file, whereas the User LRN of a file points to
the Nth data record (starting with the zeroth data record) in the
file. Thus a DOS LRN of zero points to the very first record of
the file, which is the master copy of the RIB; a DOS LRN of one
points to the second record of the file, which is the RIB copy; a
DOS LRN of two points to the third record of the file, which is
the first data record of the file and User LRN zero. The LHN
given in the TAG file can NOT be used with thePOSIT$ routine
unless it is biased by -2. It is much easier to simply place the
LRN from the T~G file directly into the LFT entry for the file
that is indexed.

The case with the buffer pointer byte is similar to the LRN
pointer bytes. The buffer pointer byte fro~ the tag file is the
DOS buffer pointer as opposed to the User buffer pointer. The
difference is that the DOS buffer pointer points to the actual Nth
byte of a disk buffer (starting with zero), whereas the User
buffer pointer points to the Nth data byte in the disk buffer.

CHAPTER 42. SORT COMMAND 42-11

The beginning (zeroth) data byte in the buffer is the fourth byte
in the buffer; the first three bytes are reserved for the DOS.
Thus, a DOS BUFPTR of zero points to the very first byte in the
buffer, which is the PFN (Physical File NUli1ber) of the file; a DOS
BUfPTR of one points to the second byte in the buffer, which is
the DOS LSPLRN; a DOS BUFPTR of two points to the third byte in
the buffer, which is the DOS MSPLRN; a DOS BUfPTR of three points
to the fourth byte of the buffer, which if the first data byte and
User 8UFPTR zero. The BUFPTR given in the TAG file can NOT be
used with the GETR$ or PUTR$ routines unless it is biased by -3.
It is much easier to simply place the BUFPTR from the TAG file
directly into the LFT entry for the file that is indexed.

If a TAG file is generated when the 'P' option is specified
then TAG file pointers will be generated only to the Primary
records in the input file.

If a TAG file is generated when the'S' option is specified
then TAG file pointers will be generated that point to each
Primary record of the input file (in their original sequence) each
primary tag being followed by pointers to the Secondary records in
the record block in their sorted sequence.

When a TAG file is generated for 'P'~ or'S' sorts, no
indication is given in the TAG file pointer as to whether the
pointer points to a primary or a secondary record; it is up to the
user's program to check the records in the -indexed file to
determine when a record block begins or ends.

42.4.8 Key tag File Output Format Option

Requesting a Key tag file output will cause a file (default
extension "TXT") to be created. This EDIT-compatible text file
contains the record pointers and the key. The record pointers
(first 8 bytes of the record) consist of a 5 byte logical record
number (range 0 to 65,535) and a 3 byte buffer address. The
record number is the user logical record number, that is, zero
points to the first data sector. Therefore, the user logical
record number, converted to binary, may be used with the POSIT$
routine. The buffer address is the buffer pointer, that is, one
points to the first data byte in a sector. It may be biased by 2
and placed directly into the Logical File Table, or if biased by
-1, used by the GETR$ routine. This Key tag file output is the
Key tag file used by INDEX.

If a sequence file (for example, EBCDIC/SEQ) is used, the key
produced by this option will be translated to that sequence. If

42-18 DISK OPERATING SYSTEM

the un-translated key is desired, a Key tag file may be created
(slower) by requesting ASCII TAG output from the Limited Output
Format Option.

42.4.9 HARDCOPY Output Option

Many times it is desired to have a hardcopy (printed) output
from a SORT instead of or in addition to the creation of a disk
output file. This can be easily accomplished with SORT by
specifying the 'H' or' X' option along wi th the 'L' (Limi ted
Output) option. The hardcopy option is essentially an expansion
of the 'L' option because disk data files are almost never
suitable for full image output to a printer; deci~al points need
to be inserted into dollar and cents amounts, dashes need to be
inserted into part numbers, and spaces need to be placed between
dollar amounts and part nULubers to columnate the data, and so on.
If it is desired to list output records in full image for~at, it
is only neccessary to give:

1-n

(where n is the maximum printable character on printer) as the
l1.l1i ted output string specification.

Sort will not send a line of over 132 characters to a
printer. If the limited output specification designates a longer
output record, then the full specified formatting will be applied
to the disk output file (if any), but only the first 132
characters of the record will be printed.

If the following special characters are imbedded in the
output record, they will be interpreted as indicated:

015 = End-Of-Record and Carriage-Return/Line Feed.
012 = Line Feed.
014 = Form Feed.

The 'H' option specifies output to a local printer. The 'X'
option specifies output to a servo printer. If the selected
printer is not on-line then SORT will pause during final Inerge and
display the message PRINTER OFF-LINE. While this message is
displayed the program may be terminated by pressing the KEYBOARD
key. Printing will commence and program operation will continue
when the correct printer is brought on-line and ready.

CHAPTER 42. SOHT COMrv1AND 42-19

42.4.10 Primary/Secondary Sorting Considerations

If the 'P' (Primary) or'S' (Secondary) SORT option is used
then the input file must have a PSPSPS format in order for
SORT to work as expected, where P is one primary record and S is
one or more secondary records. The first record in the file
should always be a primary record, and the last record should be a
secondary record. There should always be at least one secondary
record following each primary record. Tertiary and further level
r e cor d s can not be a c c 0 lil mod ate d by SO R T .

In some cases it may be possible to successfully sort a file
using the 'P' or'S' options even if the file does not faithfully
follow the above rules, but problems will likely show up if such a
sort is attempted. For example, if a file has the format
PPPPSPSPS ... , and a sort is done using the'S' option, the output
file will not contain the first three primary records at all.
This case occurs because when sorting using the'S' option,
pointers are generated for only the secondary records, prefixed by
a pointer to the record preceeding the first secondary record of a
record block. Since no secondary poi~ters were ever generated for
the first three pri:nary records, they are simply lost.

42.4.11 SORT Work Files

SORT uses two scratch files during its operation:
*SORTKEY/SYS and *SORTMRG/SYS. The first character of these file
names will change when SORT is run under Datapoint's Partition
Supervisor (PS). When PS is active the partition identifier (a
one-digit number unique to each partition) is placed in the file
na[Jle in place of the asterisk, so there is no danger of
simultaneous SORTs trying to use the same scratch files. SORT
always uses the same names for these files, only the drive on
which they are placed can be affected by the operator (by means of
the <drv> field on the command line).

SORT will always build the *SORTKEY/SYS file, since it holds
the sort key trains generated as the first step of sorting. If
more than one sort key train is built, SORT will also create the
*SORTMRG/SYS file to merge the trains. Normally the work files
will be deleted when SORT terminates, but if the SORT aborts or is
interrupted for some reason the work files will be left on disk.
If this happens they should be deleted using KILL by PFN, since
the asterisk is not a normal part of a file name and cannot be
scanned as such by the command interpreter.

42-20 DISK OPERATING SYSTEM

42.5 Disk space requirements

A formula for determining the room in physical disk records
that will be required for the SORT work files is:

where: R = Room in physical disk records (sectors) required on
disk.

N = Number of logical records in input file for which keys
will be generated:

L =
p =

T =
S =

= number of records in file if not sorting on 'P' or
'S' .
= number of primary records in file if sorting on 'P'.
= number of secondary records in file if sorting on
, S ' •
Length of the sort key in bytes.
3 if sorting on secondary records,
o if not sorting on secondary records.
number of sort key trains.
bytes per block of physical space available to the user
(nominally 253 bytes)

The val ue of T c an be co!nputed approx ima tel y, as:

Where M is the available processor memory size expressed in
decimal.

42.6 LINK into SORT from programs

There are three ways in which a SORT can be initiated:

1. From the keyboard via the DOS COM~AND HANDLER;
2. By using the DOS CHAIN command;
3. By loading and linking to SORT/CMD from an ass:=rnbly

language program.

Datashare users can invoke SORT by using the rollout
facility to start or continue a chain (see CHAIN and the DATASHARE
User's Guide for more details).

CHAPTEH 42. SORT COt-1MAND Lt2 -21

The following detailed information is provided for users
writing system-level programs in assembler language, since
Datapoint does not release a source listing of the SORT program.
Normal usage of SORT requires no knowledge of the following
information.

Sort reserves for the user a nominal amount of storage normally
occupied by the DOS DEBUG$ routine. The specific memory locations
saved are 06144 through 06377. This permits the user to partially
overlay his program with the SORT utility and regain control at
the completion of the sort. Additionally, the next page of
storage, 06400-06777, is available to the user if full image
output records are to be generated. The DOS interrupt handler is
disabled during the sort but is re-enabled upon completion of the
sort. Of course, if the user has a foreground process running
before and after the sort, the process must be controlled from
within the memory not used by SORT, or when foreground is
re-enabled it will vector to Hhatever SORT left in memory.

NOTE: New information for DOS 2.5. SORT now uses DOS
Functions. The DOS Function loader must be intact when SORT is
invoked. SORT itself no longer overstores the loader so DOS
Functions may be used immediately following return from SORT. If,
the hardcopy output option of SORT is used, user forground
processes cannot be left active during the SORT. The local
printer driver may use interrupt slot 3 if it needs to wait for
the printer to become ready. The servo printer driver always uses
interrupt slot 3. If hardcopy output is used from SORT, the
normal DOS interrupt scheduler must be available and there must be
no active interrupt vectors.

The steps to call SORT from an assembler program are as
follows:

1. Close files 1, 2, and 3 if open.
2. Set MCR$ (01400-01543) with the command string terminated

by a 015.
3. Load the SORT utility.
4. PUSH the stack.
5. Point HL to a parameter table with the format:

PTABLE DA LIMSTG
DA HEDING
DA EXITAD

6. RETURN

Where:

42-22 DISK OPERATING SYSTEM

LIMSTG = the limited output specification string, terminated by a
015. If there is to b~ no limitation output specification,
put 0 . If there is I a L I i-1 S T G , it must exist en t ire 1 yw i t hi n
the range 06144-06377. The LIMSTG must be exactly the
characters as they would be entered from the keyboard.
Examples follow.

HEDING = the hardcopy heading string, terminated by a 015. If
there is to be no hardcopy output, put o. If there is a
hardcopy heading string, it must- exist entirely within the
range 06144-06377. The HEDING must be e~actly the
characters as they would be entered from the keyboard.
Examples follow.

EXITAD = the first memory location to be executed upon successful
completion of the sort. If the sort is to return to the
DOS upon completion, put o. If there is a specific exit
address, it must exist within the range 06144-06377.
Normally, the instructions at the exit address will load
and run the program to be run after the sort, or will
re-load a control program of the user's own control system.

A simple example of loading and running sort from an
assembler program would be:

CHAPTER 42. SORT COMMAND 42-23

1.SRTCMD
2. SHT NAtv1
3.PTABL£
4.
5.

6.RUNSHT
7.
8.
9.

10.
1 1 .
12.
1 3.

14.
15.

DC
DC
DA
DA
DA

LC
DE
HL
CALL
LC
DE
CALL
PUSH

HL
RET

'SORT
'SORT
o
o
o

INFILE,OUTFILE' ,015 SORT CMD STRING
CM0' NAME OF SORT UTILITY ON DISK

NO LIMITATION STRING
NO HARDCOPY HEADI~G
NO SPECIAL EXIT ADDRESS

S R T N A tv1- S R T C l"l D I-lOVE THE SORT COi"'ltvIAND STRING
MCR:$ TO MCR$
SRTCiViD
BLKTFR
-1 LOAD THE SORT UTILITY
SRT NA[\1
LOAD$

PUSH THE SORT STAHTING
A.DDRESS

PTABLE POINT TO THE PA.RAMETER TA.BLE
RUq SORT

Tne above sequence of instructions could be located anywhere in
memory, except lines 13 thru 15 must obviously reside in a portion
of me'morYfrom 06144 thru 06377 to avoid being overlayed when the
SORT utility is loaded from disk. The above instructions
exemplify the simplest possible case of linking to SORT, in that
only the SORT com;nand and an input file and an output file are
specified, all other options are defaulted. The above
ins t r u c t ion s h a vet he s a i.t1 e e f f e c t as call i n g S OR T b Y en t e r i n g t he
1 i r1 e.:

SORT INFILE,OUTFILE

to the DOS COMMAND HANDLER.

Here is a line-by-line explanation of the instructions:

Line 1 defines the SORT comynand string. This is accornplished
by a sLn pl e DC statem-en t of a quoted ASC I I s tr ing fo 110Hed by a
015. The quoted ASCII characters are exactly the same that would
be keyed in to the DOS Command Handler if the sort were being
initiated from the keyboard. The 015 is the string delimiter and
is the same character that is placed after a strin3 by the KEYIN$
routine when the "ENTER" key is depressed. The SORT command
string can be up to 100 characters long including the 015 because

42-24 DISK OPERATING SYSTEM

the MCR$ area is 100 bytes long. Note that this is nineteen
characters r(}ore than can be specified from the keyboard.

Line 2 defines the na:ne of the SORT utility main overlay.
Not ice t hat the com pIe ten a ((} e 0 f the SO R T g i v en her emu s t be
exactly the name as listed in the DOS directory of files. The
eleven ASCII characters in a file name specification include an
eight character filename and a three character extension. Since
the f i 1 en a LI1 e 0 f SO R Tis 0 n 1 y f 0 u r c h a r act e r s, i t ;11 u s t be f 0110 wed
by four spaces before the extension of "Crv1D" can be given.

Line 3 defines the beginning of the six-byte parameter table.
The first two bytes of the parameter table specify the address of
the beginning of the Limited Output Specification string. In this
example there is to be no limited output specification string, so
an address of 0 is given.

Line 4 defines the address of the beginning of the HARDCOPY
HEADING string. In this example there is to be no hardcopy
output, so an address of 0 is given.

Line 5 defines the address of the Exit Address, or the
address to which the SORT is to exit when it is successfully
completed. (If something goes wrong during the sort, exit is to
the DOS.) In this example there is to be no special exit address,
so an addess of 0 is given.

Line 6 begins the actual process of calling SORT fro:!l the
program. Lines 6 thru 9 move the SRTCMD string from wherever it
is in memory to the HCR$ area.

Lin e lOs p e c i fie s t h d t SO R Tis to bel 0 ad e d fr 0 til W her eve r i t
is found in the disk drives that are on-line to the system. Refer
to the chapter on System Routines if you al~e not familiar \,,ji to the
DOS LOAD$ routine.

Line 11 points to the name of the SORT utility main overlay
in memory, given in SRTNAtvl, line 2.

Line 12 calls the DOS LOAD$ routine whicll finds the SORT main
overlay program on disk and loads it into memory, leaving the
starting address in HL.

Line 13 puts the starting address of SORT on the P-counter
Stack.

Line 14 points to the Parameter Table, lines 3, 4, and 5.
The way that SOHT knows that it is being run by the DOS Command

Ct-IAP'TER 42. SOHT CO>1rv1AND 42-25

Handler or by a user program is by comparing the values of the HL
contents with the entry point of SORT. If the values are equal,
as they are immediately following a LOAD$, then SORT asks for a
Limited Output Specification string and a Hardcopy Heading string
if they are specified in the SORT COMMAND string. If the values
are not equal, then SORT checks the memory pointed by HL for the
location of the Limited Output Specification string, the Hardcopy
Heading string, and an Exit Address.

Line 15 effects the actual transfer of execution to the SORT
utility. Since the starting address of the SORT was PUSHed onto
the P-counter stack, a RETurn instruction JuMPs to the SORT
starting address.

42.1 The Use of CHAIN with SORT

The reader should first familiarize himself with CHAIN by
thoroughly reading the CHAIN Section.

CHAIN is a system whereby the operator of a Datapoint DOS may
pre-define a procedure sequence of his own programs, system
commands and utilities (including keyboard answers to questions
requested by these programs) and have them called and sequentially
executed by a single name. This feature is especially powerful
w hen u sin g SO R T sin c e the r e tn a y be are pet i t i ve seq u e n ceo f
routines with complex parameterizations which could make good use
of simplification.

A Datashare program can link to SORT by executing a ROLLOUT
instruction to a user-built CHAIN file which includes the SORT
command line and, if specified, the Limited Output specification
line and a Hardcopy Heading line, followed by the DSBACK program
to re-load the Datashare.

42.1.1 Defining a Chain File for SORT

The author of a chain file only needs to remember that all
questions that the system requests including those initiated by
the executing programs must be answered from the chain file just
as though they would be typed in from the keyboard.

For instance, the initiation of a sort

"SORT IHFILE,OUTFILE;I3-42"

42-26 DISK OPER~TINQ SYSTEM

could be done through chain. To do this, use EDIT or BUILD to
type in that exact sequence of characters into a file. Note that
the file will, in this case, consist of a single line as typed
above. The file can be any name, but for purposes of si~plifying
the explanation, it shall be referred to as "CHAINFILY'. If
"CI1AINFIL" consists of that single line, and if the operator types
the command nCHAIN CHAINFIL" to the DOS, the SORT specified above
would be initiated. If the 'L' specification were included in the
statement above, then SORT would ask for another line of
information. In this case, the file "CHAINFIL" woulj have to have
two lines in it with the first being the SORT command and the
second being the limited output file format specification.

42.7.2 Naming a repetitive SORT procedure

Frequently there are sorts and printouts and other procedures
which occur together and for which a name invoking the procedure
would be a great simplification.

For instance, in the telephone directory example above, the
process of sorting the file into a limited output file and then
listing it on a local printer could be procedurized as follows:

SORT EMPFILE,TELFILE;L80-110
80-110,' - ',171-180
LIST TELFILE;XL
TELEPHONE DIRECTORY FOR XXXXXXXXXX CORPORATION

Note that there are four statements. The first is the SORT
command. The second is the anSHer to the limited fonnat initiated
by the 'L' in the SORT command. The third is the DOS LIST command
with the specifiers of 'X' Hhich says 'without line numbers' and
the 'L' which means local printer. Then there is a fourth line
which the LIST coml.l1and requests - the heading. This question lOUSt
also be answered in the chain file. If the above four statements
were placed in a file by the Editor (or by any other means) and
then CHAIN were invoked with that file specified, the result would
be a printed telephone directory from the personnel files.

CHAPTEH 42. SORT COM>1AND 42-27

42.7.3 Using CHAIN to cause a merge

Consider a situation wherein a system has a master file
called 'MASTER' and a file of records to be added, in sequence, to
the master file called 'ADDFILE'. To merge these two files in
sorted sequence at the end of each day would normally require a
sequence of keyed in operations which are somewhat complicated and
error prone. CHAIN can cause an effective MERGE and assign it a
sin g 1 e n a ~n e as follow s :

SAPP MASTER,ADDFILE,MAST£R
SORT MASTER,SCRATCH;1-20
KILL HASTER/TXT
Y
NAME SCRATCH/TXT,MASTER/TXT

Note that the procedure:
1) appends the ADDFILE to the MASTER file.
2) Sorts the extended MASTER file into a SCRATCH file.
3-5) Renames the SCRATCH file as the new MASTER file. Thus, it is
a p par en t t hat a ttl erg e can bee f f e c t i vel y a chi e v ed us i n gSa R Tan d
by using chain to pre-define the procedure.

42.8 SORT Execution-Time Messages

This section describes the operator messages that SORT may
display on the CRT screen during execution. Some of the messages
are monitor messages to keep the operator infonoed of the progress
of the program, while other messages are error messages.

DOS. VER. n.n SORT COMMAND - date

This message is the SORT sign-on.

SORT OVERLAY MISSING.

This message is displayed if the SORT/OV1 file is not on the
sauIe drive as the SORT/CMD file.

INPUT FILE REQUIRED.

This message is displayed if no filename was specified for the
first file specification. This would happen if a command line
such as:

SORT ,OUTFILE or SORT ITXT,OUTFILE

42-28 DISK OPERATING SYSTEM

were entered.

BAD DEVICE SPECIfIC~TION.

This message is displayed if a drive specification in a file
specification was not entered in a valid format.

OUTPUT FILE SAME AS INPUT.

This message is displayed if the filename and extension of the
input file and the output file are the same, and the drive for
each file is the same or not specified for both files.

INPUT FILE NOT fOUND.

This message is displayed if the INPUT file could not be found
on any drive on-line to the system if no drive was specified,
or on the drive given if a drive was specified. If no
extension is supplied in the file specification an extension of
TXT will be assumed.

KEY FILE SPECIfICATION ERROR.

This message is displayed if a FILENAME or EXTENSION is given
for the KEY DRIVE specification.

KEY FILE DEVICE SPECIFICATION ERROR.

This message is displayed if the drive specification for the
KEY file is not a valid drive spec.

SORT KEY fILE PLACED ON DRIVE #

This message is displayed if the KEY DRIVE was not specified on
a multi-drive system. The message is to notify the operator of
the location of the KEY file. The # stands for a valid drive
number.

OPTION FIELD ERROR.

This message is displayed if a semicolon (;) is entered at the
end of the SORT command line but is not followed by any option
specifications.

CHAPTEH 42. SORT CO[vH1AND)-+2-29

OPTION SPECIFICATION DUPLICATION.

This message is displayed if a command line such as:

SORT INFILE,OUTFILE;DLA

were entered. The 'D' and 'A' options are both variations of
the ORDER option, and obviously both cannot occur
simultaneously.

HARDCOPY ONLY IF LIMITED OUTPUT SPECIFIED.

This message is displayed if the 'd' or 'X' option is specified
but the 'L' option was not specified.

ILLEGAL HEADER SPECIFICATION.

This message is displayed if the 'PI or'S' option is given but
is immediately followed by the 015 byte -- the "ENTER" key.

ILLEGAL HEADER KEY EVALUATION.

This message is displayed if the character immediately
following the 'PNNN' or 'SNNN' option is not '_I or 'D'.

ILLEGAL SORT KEY SPECIFICATION.

This message is displayed if a key position of 0 or greater
than 32,767 was specified, or if a key position was not
terminated by "," or ,,_n or 015, or if a two-position key was
not terminated by ", I' or 015.

SORT KEY TOO LONG.

This message is displayed if the total sort key is longer than
118 characters long.

OVERLAPPING SORT KEY SPECIFICATIONS---SORT OPTIMIZED.

This message is displayed .if the same record positions were
specified for more than one sort key group. SOHT does not

42-30 DISK OPERATING SYSTEM

repeat duplicate positions in sort key generation and thus
saves processing and disk read/write time.

OVERLAPPING SORT AND HEADER KEYS---SORT OPTIMIZED.

This message is displayed if the same record position is
specified as a sort key position and a header indication
position. The position is removed as a sort key position and
the key is thus shortened. The effect is as for the previous
ioessage.

LIIVJITED OUTPUT FILE FOR1'1AT:

Thi s me ssage is dis pI a yed if SORT ha s ac c epted the SOH T c oi:nm3nd
line including all option specifications and if the 'L' option
has been given. The operator must enter the limited output
specification line.

NULL LIMITATION SPECIFICATION.

This message is displayed if the 'L' option Has given but the
limitation specification \Jas only 015 -- the "ENTER" key. If
the 'L' option is given then a non-empty limited output
specification string must also be given.

INVALID LIMITATION SPECIFICATION.

This message is displayed if the limited output specification
does not fit the syntax given in the section on Limited Output
Format Option. Usually the fault is that a comma was not
placed between option specification groups, or double quotes
(") were used instead of single quotes (') .

ENTER THE HARDCOPY HEADING:

This message is displayed Hhen the limited output specification
has been accepted and if the 'H' or 'X' option was give~. The
operator must enter from 0 to 79 characters of information
which will be printed at the top of each page printed during
SORT output generation.

CHAPTER 42. 42-31

SEQUENCE FILE NAME REQUIRED

This message is displayed when the sequence file field is blank
and the file specification fields have not been terminated with
a semi-colon or an end of line designator.

SEQUENCE FILE ~OT fOUND

This message is displayed when SORT requests the sequence file
be OPENed and DOS cannot locate the file on the disk drive
indicated. Note that if the drive is not specified, the drive
on which the SORT/CMD resides is implied.

SEQUENCE FILE FORMAT ERROR A

This message is displayed 1;"rhen SORT determines that the
sequence file specified is not an absolute object file.

SEQUENCE FILE FORMAT ERROR n

This message is displayed when SOHT receives an error return
from LOADX$ when an attempt is made to load the sequence file.
The value of n may be 0-6 and is defined as follows:

o If file does not exist
1 If disk drive is off-line
2 If directory parity error
3 If RIB parity fault
4 If file parity fault
5 If off end of physical file
6 If record of illegal format

LIMITATION SPECIFICATION OVERFLOW

T11is message indicates that limited output parameters entered
require more memory (256 bytes) than allocated by SORT.

INTERNAL ERROR -- GET SYSTEM HELP I!!

This message indicates a probable hardware error occurred
during a limited output string sort. SORT cannot continue
executing.

42-32 DISK OPERATING SYSTEM

The following messages may be displayed during sort
initialization if SORT were linked to by an assembly language
prograln:

INVALID LIMITATION STRING ADDRESS.

I N VA LID H A R DC 0 P Y 1·1 E A DIN G S T R IN GAD D RES S •

INVALID USER EXIT ADDRESS.

One of these messages is displayed if the corresponding entry
in the parameter table linkage data \-Jas not either 0 or in the
range 06144-06377 inclusive.

LfT ENTRIES 1->3 NOT CLOSED ~HEN SORT ENTERED.

This message is displayed if the user left one of the logical
files 1, 2, or 3 open upon linking to the SORT utility.

LI~ITATION STRING MISSING.

This message is displayed if the 'L' option was given in the
SORT command string but the pointer to the limited output
format string in the parameter table linkage data was 0,
indicating no limited output format string specified.

HARDCOPY :1EADI NG 3T RING (vII SS I NG.

Thi~ message is displayed if the 'H' or 'X' option was given in
the SORT command string but the pointer to the hardcopy heading
string in the parameter table linkage data was 0, indicating no
hardcopy heading string specified.

The following messages may be displayed after the SORT
initialization is completed:

BUILDING SORT KEY TRAIN n.

This message is displayed when all parameter specifications
have been accepted and SORT has started the extraction of the
sort keys from records of the input file. The trains are

CHAPTEH 42. SO R T C a 1'1 ~'1 AND 42-33

build in memory, sorted, and writted to the *SORTKEY/SYS file.

SORT KEY FILE OVERFLOW.

This message is displayed if there was not adequate room on the
selected drive to hold the *SORTKEY/SYS file. If *SORTKEY/SYS
f i 1 e 0 v e r flo w 0 c cur s the f i lei s del e ted fr 0 m the dis k be for e
the message is displayed.

NON-TEXT CHARACTER IN INPUT FILE. LRN nnnnn

MISSING EOS IN INPUT FILE. LRN nnnnn

INVALID EOF IN INPUT FILE. LHN nnnnn

One of the above messages is displayed if the corresponding
error pondition is found in the input file while building the
sort key trains. A non-text character is an octal zero (eof
character) found in the text string. The message "MISSING EOS
... " indicates that a sector has no 003 marking the logical end
of sector. The message "INVALID EOF ... " indicates that a GOO
was found in the first data byte of a sector, but the sector
did not contain a complete text end of file mark. The LRN
displayed is the User LRN containing the invalid text data, in
octal. The error condition in the input file must be corrected
before the file can be sorted.

NULL OUTPUT FILE.

This message is displayed if no sort key records were
generated. A null output file (first record EOF) is prepared
before SORT ends.

INTERMEDIATE MERGE PASS n, TRAIN n •

This message is displayed if more than sixteen sort key trains
exist during a merge pass. The intermediate merge pass number
is the Nth iteration of the merge process. The train number is
the number of the train being output by the merge pass. If
more than sixteen trains are output by an intermediate merge
pass then at least one more intermediate merge pass will be
required to merge those trains.

42-34 DISK OPERATING SYSTEM

FINAL MERGE: SORT TRAIN n.

This message is displayed during the generation of the output
file fro~n the data in the sort key file and from the records in
the INPUT file. The sort train number corresponds to the
current state of progress as measured against the number of
trains generated by the last intermediate merge pass.

MERGE FILE OVERFLOW

This message indicates not enough disk space is available for
the merge file.

OUTPUT FILE OVERFLOW

This message indicates not enou~h disk space is available for
the output file.

CHAPTER 42. SORT COMf'1AND 42-35

CHAPTER 44. UBOOT COMMAND

44.1 Purpose

The UBOOT command writes a DOS bootblock onto the cassette
tape in the front tape deck. The resulting "boot" tape is used to
initiate system loading when the processor is restarted.

44.2 Use

UBOOT is invoked by entering the command

UBOOT

The program verifies that there is a tape in the front cassette
deck and asks the operator for permission to write on the tape.
When the operator instructs the program to proceed it writes a DOS
bootblock onto the cassette in the front deck. The UBOOT command
then rereads the bootblock to insure that the cassette is good.
In addition, the bootblock checks its own parity immediately upon
loading and halts if it finds it has not been loaded properly.

After the boot tape has been written the program asks the
operator whether to write another tape or to return to the
operating system. The operator may insert another cassette and
ask the program to write another boot tape as often as desired.
The program terminates when the operator instructs it to do so.

If the machine halts upon booting repeatedly and other boot
tapes work on the same machine, then the boot tape which causes
the boot operation to halt is not a good tape and should be
replaced.

44.3 UBOOT System Load Operation

The boot tape created by UBOOT reads an IPL (Initial Program
Loader) block from disk. The IPL block then reads and executes
the DOS bootblock (from disk). The IPL and bootblock are put on
disk by DOSGEN and PUTIPL.

The UBOOT tape is capable of loading any version 2.3 or later

CHAPTER 44. UBOOT COMMAND 44-1

DOS from any type of disk. If there are multiple types of disks
on your system, they will be scanned in the following order:

1. Mass storage disks (9390 first, then 9370/9374)
2. Cartridge disks
3. Floppy di sks

Logical drive zero will be tested on each of the disks. If drive
zero is off-line, depressing the "DISPLAY" key will cause a scan
of ALL on-line drives. This means that if drive zero is "down",
you can generally continue running. When a disk is found that
contains a good IPL , it will be selected as the "BOOT DRIVE";
henceforth overlays will be loaded off it. Cornmands will also be
loaded from the booted drive first (default).

44-2 DISK OPERATING SYSTEM

CHAPTER 45. UTILITY/OVL

The DOS for processors using the 5500 instruction set (DOS.D,
DOS. E, and DOS. G) include a file "UTILITY/OVL". This file
contains memory resident copies of the DOS overlays and DOS
Functions. These copies of the overlays reside in system RAM
between 0160000 and 0167377. While the memory resident overlays
are present, calls to DOS overlays (OPEN$, PREP$, and so on) or to
DOS Functions will not require accessing the disks to load the
routines. The result is improved system performance. The
operating system automatically loads and initiates use of
UTILITY/OVL whenever possible; programs needing system RAM for
their own purposes disable use of the memory resident overlays.

Use of UTILITY/OVL is initiated by DOS Function 12. Usage is
terminated by DOS Function 16.

CHAPTER 45. UTILITY/OVL 45-1

CHAPTER 46. UTILITY/REL

The UTILITY/REL file contains a number of system utility
routines in relocatable code format. The purpose of these
routines is to simplify and standardize the use of common
peripheral devices. The routines may be used by any user-written
assembler language programs; most Datapoint products now use these
routines whenever possible.

The utility routines are linked into a program at execution
time, using DOS Functions 13 and 15. Since DOS Function 15 uses
the UTILITY/LNK file, UTILITY/LNK must be available in order to
use UTILITY/REL. Member sizes listed below are approximate; use
the LIBSYS program or DOS Function 15, subfunction 0 to determine
the exact size of a member. For definitions of relocatable code
terms such as "PAB", "external definition", and so on, consult the
SNAP/3 User's Guide.

46.1 Printer Drivers

The members LOCAL, SERVO, SCREEN and FILE output print lines
to the selected device. All of the print drivers have a PAB flag
of 'T', meaning that they can be loaded starting at any 256-byte
page boundary. If the member is loaded starting at some location
other than a page boundary, the load will succeed but the driver
will not work. On exit all registers should be considered
indeterminate unless their contents are specified below.

LOCAL - Print a line to a local (address 0303) printer.
Approximate size 0461 bytes.

SERVO - Print a line to a servo (address 0132) printer.
Approximate size 02432 bytes.

SCREEN - Display a line on the console CRT. Approximate size 0352
bytes.

FILE - Print a line to a disk file. Approximate size 02341
bytes.

CHAPTER 46. UTILITY/REL 46-1

46.1.1 Print Driver Routines

The print drivers all use the same set of entry points:
POPEN$, PRINT$, PCLOSE$, PSUSP$ and PRESTRT$. Each entry point is
a "Jrv1P" vector to the appropriate routine wi thin the driver,· and
the five entry points are the first 15 bytes of each library
member. Each of these labels is also an external definition of
the library member. All five of the routines simply perform their
specified function and return. There are no error conditions on
return.

POPEN$ - Open the selected output device. If a printer (LOCAL
or SERVO) is the output device, this routine checks for
printer ready and for printer allocation (via DOS Function 9).
If the printer is already allocated as a resource for the
other partition, or if the printer is not ready, a message
specifying "PRINTER OFF-LINE" flashes on the screen.
Depressing the KEYBOARD key causes the routine to abort via
ERROR$. When the printer is available, it is allocated as a
resource to the present partition and the routine returns.

If the output device is a disk file, HL must point to an
opened LFT entry, and the A register should contain the
queueing option byte. The queueing option is either zero for
no queueing or non-zero for queueing. If queueing is selected
output will be queued to the end of an existing file; with no
queueing the output will start at the beginning of the
specified file. A disk file created using this routine will
have a special user LRN zero written to the disk. This record
is a configuration sector similar to that used by EDIT, but
storing different Information. The information stored allows
quickly positioning to the end of the disk file to queue
additional output to it.

If the output device is the screen, device open is not
necessary.

PRINT$ - Output a line to the selected device. On entry, HL
points to a line of characters starting with an ASA control
character and terminated by an 015 (EOL). The print line may
not contain any control chafacters or space compression. The
routine returns after the line has been output.

PCLOSE$ - Close the output device. If the output device is a
printer (LOCAL or SERVO), the routine will form feed if
necessary to maintain page parity and will deallocate the
printer. If the output device.is a disk file, the file ~ill
be closed (excess space will be deallocated). If the output
device is the console CRT, device close is not necessary.

46-2 DISK OPERATING SYSTEM

PSUSP$ - Suspend printing. Call this routine to suspend
printing while loading an overlay of your program. Enter with
HL pointing to a place to save an LFT entry (16 bytes). The
routine will exit with the current output page count in DE.

PRESTRT$ - Restart printing. Call this routine to restart a print
file after suspension. Enter with DE containing the page
count (saved from PSUSP$), and HL pointing to the saved LFT
entry (also from PSUSP$).

46.1.2 ASA Control Characters

The following print control characters are recognized by the
print drivers:

space - single space before printing
+ - suppress line feeds
o - double space before printing

- triple space before printing
- skip to top of form

any other character - treated as space
Whenever a line is sent to the PRINT$ routine, the first character
of the line is assumed to be a print control character as defined
above and the appropriate action is taken. The print control
character is not sent to the output device as an output character.

46.2 SECINOUT Drivers

The drivers SEC5500, SEC2200, SECPS and SECABP are
collectively called the SECINOUT drivers because they move
256-byte blocks between processor memory and the disk controller
buffer. All the sector in/out drivers are non-page sensitive and
may be loaded anywhere in the user's program area.

SEC5500 - Moves 256 bytes to or from the disk buffer on a 1800,
5500, 6000 or 6600 processor, when neither PS nor ARC is
active. Approximate size 0211 bytes.

SEC2200 - Moves 256 bytes to or from the disk buffer on a 1100 or
2200 prbcessor. Approximate size 0124 bytes.

SECPS - Same as SEC5500 except that it runs when PS is active.
Approximate size 072 bytes.

SECABP - Same as SEC5500 except that it runs when ARC is active.
Approximate size 0100 bytes.

CHAPTER 46. UTILITY/REL 46-3

46.2.1 SECINOUT Driver Routines

The SECINOUT drivers have only two routine entry points,
which have no external definitions. The transfer address of the
driver is the sector in routine; the transfer address plus three
is the sector out routine. Both routines require the same entry
conditions:

B = DOS LFN (extended LFNs may be used)
H = MSB of 256-byte input or output memory buffer

(must start on page boundary)
On exit all conditions are indeterminate.

46-4 DISK OPERATING SYSTEM

CHAPTER 47. UTILITY/SYS

Most of the DOS commands have been put in an absolute library
named "UTILITY/SYS". This has the folloHing advantages:

1. Free up some directory and data space.
2. Makes most of the utility programs available on any disk,

since UTILITY/SYS can be on any drive on-line.
3. Assures the user that the most current DOS commands will

b'e used.

Using the librarian utility program (LIBSYS), many user
programs can also be added to UTILITY/SYS. A few guidelines for
programs that can be members of "UTILITY/SYS":

1. Programs should start at 017000 or higher.
2. Programs that use overlays should use DOS function 13 and

14 to access the library.

If you have placed your OHn programs into UTILITY/SYS, do not
overwrite UTILITY/SYS on a partial gen. Instead, MIN the new
UTILITY/SYS using a different file name, then use LI8SYS as
follows:

f"lIN
(filename UTILITY/NEW)
LIBSYS UTILITY/SYS
REPLACE UTILITY/NEW
END
KILL UTILITY/NEW
YES

To display the members in UTILITY/SYS, enter:

CAT *
When keyboard commands are entered, the specified command

will automatically be located as either a separate disk file or a
member of UTILITY/SYS. Normally a separate file name is first
checked, then the library member. To reverse the normal
precedence put a leading * or : in front of the command name. For
example:

*CHANGE SCRATCH/TXT;X
or

CHAPTER 47. UTILITY/SYS 47-1

:CHANGE SCRATCH/TXT;X

See the chapter on the Co~mand Interpreter for details on
selection of a command from the disk directory or from
UTILITY/SYS.

47-2 DISK OPERATING SYSTEM

CHAPTER 48. SYSTEM DESCRIPTION

48.1 System Philosophy

The objective of DOS is to allow maximum use of the
capabilities of a Datapoint disk system with a ~inimum of effort.
The DOS disk structure provides dynamic space allocation and fully
random file access capability on all supported disk types. Also
provided are an extensive set of utility programs to perform many­
basic data processing functions. In all system utilities the
operator comm~nds are as simple as possible while providing a
versatile program capability. Error codes and program messages
are mostly presented in English, avoiding complex,
incomprehensible messages.

Datapoint DOS is a facilities oriented system. It provides
utility programs for general use, and extensive system routines
for use in assembler coding. DOS is not a supervisory system; it
imposes practically no overhead. The DOS facilities provide a base
for Datashare, BASIC, and most other Datapoint languages and
systems.

48.2 System Structure

DOS occupies only the lower 8K of memory in the processor.
Of this BK, only the lower 2.BK is necessary for the support of
the disks. The first 768 bytes of memory (0 - 01377) contain the
object code loader, entry point table, and interrupt handler.
Object code may be loaded from 01400 upwards, overlaying much of
DOS. If object code is loaded below 01400, the code overstores
the loader or entry points and results are unpredictable.

The operating system debug facility and the keyboard and
display routines reside between 2.8K and 4K, the cassette driver
routines from 4K to 5.4K, and the command interpreter from 5.4K to
8K. It is recommended that user programs start at 017000 (octal).

To achieve its small size in memory, DOS uses disk-resident
overlays for the disk file opening, closin~, and allocation
routines. Most of the system error messages also reside in an
overlay, allowing fully descriptive messages without using a
prohibitive amount of memory. A set of short utility routines

CHAPTER 48. SYSTEM DESCRIPTION

(DOS Functions) uses a separate overlay area.

The operating system uses a single disk controller with at
least one physical disk- drive attached. Each "on-line" drive -- a
drive containing a disk ready to read -- is assumed to contain a
valid DOS disk, which will have all necessary system tables and
files present and in correct format. This assumption on the part
of the system requires caution on the part of the operator if a
disk not fitting this description is mounted. If, for instance, a
disk has been mounted to be DOSGENed, the operator must not run
any programs that will attempt to use the disk before it has been
DOSGENed, or an abort will occur indicating system data failure.

DOS is designed to be run interactively by an operator at the
processor console. The operator generally enters commands from
the keyboard, which the operating system interprets and executes.
During execution, status information needed by the executing
program is requested from the operator via CRT messages expecting
a keyed response.

A DOS utility program (CHAIN) allows execution of predefined
processes automatically in a non-interactive fashion, so no
operator attention is required. Other utility programs extend
this automatic capability such that the system can be made almost
completely operator independent if desired.

48-2 DISK OPERATING SYSTEM

CHAPTER 49. SYSTEM STRUCTURE

49.1 Disk Structure

49.1.1 Introduction

Any disk used with DOS is a self-contained information
structure. A disk contains up to 256 files, each of which is
described in system tables on the disk and which resides
completely on the one disk. No system information on a disk
references any other disk.

The basic structure of disk storage is the file. Files on
Datapoint DOS consist of up to 38,400 sectors, or as many sectors
as fit on a logical disk, whichever is smaller. The space
occupied by a file is mapped in its Retrieval Information Block
(RIB), which is the first sector of the file. The Directory
stores the name of each file and provides a pointer to locate the
RIB, thus completely defining a file.

Space for files is allocated in clusters, a cluster being the
smallest allocatable unit of disk space. In general, each
cylinder of a disk is divided into 8 equal clusters. On DOS.C
systems a cylinder has only 4 clusters. Thus a cluster consists
of 3, 6, or 24 sectors on diskette, cartridge, and mass storage
systems respectively. The sectors constituting a cluster are
always contiguous and never cross the boundary of a cylinder or
head. The Cluster Allocation Table (CAT) and the Lockout CAT
maintain a record of clusters in use or unavailable for use and
clusters free for use.

The RIB maps the file space in segments; a segment is a set
of contiguous clusters. A file then consists of a set of segments
located randomly on the disk, each segment being a small block of
clusters. Within this space, the file is logically continuous,
there being no logical discontinuity at the boundary of a segment.

Each sector within a file carries its own identification.
The first byte of a sector contains the Physical File Number (PFN)
of the file to which it belongs. The PFN uniquely identifies a
file. The second and third bytes contain the Logical Record

CHAPTER 49. SYSTEM STRUCTURE 49-1

Number (LRN) of the sector. The LRN is a count of sectors in the
file, starting with 0 at the first sector, and incrementing by one
for each successive sector.

All major tables discussed in this section -- the CAT,
Lockout CAT, HDI, Directory, and RIB -- are kept in duplicate.
The backup copy of each of the tables helps prevent data loss in
event of a read/write error to a system sector.

49.1.2 Disk Space Management: CAT and Lockout CAT

The Lockout CAT indicates locked out cylinders -- cylinders
which will not be used by the DOS. Cylinders are automatically
locked out at DOS generation if they are found bad by the surface
verification. Cylinders may be manually specified for lockout
during system generation. Cylinder 0 is always locked out for
system use. Each byte of the Lockout CAT represents a cylinder:
byte O=cyl 0, byte 1=cyl 1, byte 2=cyl 2, etc. The byte value is
0377 (017 on diskettes) if the cylinder is locked out, and is 000,
otherwise.

The CAT indicates available space for the DOS; CAT updates
are performed automatically as space allocation or deallocation is
performed. As in the Lockout CAT, each byte of the CAT represents
a cylinder. Each bit of a byte represents a cluster of the
cylinder: bit 7=cluster 0, bit 6=cluster 1, etc. (For diskettes,
bits 7-4 are zero, bit 3=cluster 0, bit 2=cluster 1, bit 1=cluster
2, and bit O=cluster 3). If a bit is set (1), the cluster it
represents is either in use by a file or locked out; if a bit is
clear (0), the cluster is free.

The CAT and Lockout CAT observe some fixed format rules:

Byte 0 is always 0377
Byte 1 through n may be any value as described above

(n is the number of cylinders on the disk)
Bytes n+1 through 0376 are 0377 (except for directory

mapping bytes, if used.)
Byte 0377 is any value. This is the auto-execute PFN and

is normally zero.

49-2 DISK OPERATING SYSTEM

49.1.3 Files: HOI, Directory Mapping Bytes, Directory, RIB

The Hashed Directory Index (HOI) provides access to, and
controls allocation of, the Directory. Each byte of the HOI
represents a directory entry, offset from the beginning of the
index by PFN. Thus, byte O=PFN 0, byte 1=PFN 1, byte 2=PFN 2, and
so on. If the value of the byte is 0377 the directory entry it
represents is not in use. When a PFN is in use, a hash code
(value 0-0376) generated from the file name is placed in the byte.
This value indicates the PFN is in use, and is used to speed
directory searching when a file is being loacated by name.

Directory Mapping Bytes are a less sophisticated means of
Directory access and control, used in DOS. B version 1 and in
diskette operating systems. The mapping bytes are bytes 0357-0376
of the CAT. Each byte represents a directory sector (0-15) and
the value in the byte represents the number of entries (0-16) in
use in that sector.

The Directory is 16 sectors (logically referenced as 0-15)
containing 256 directory entries, 16 entries per sector. A
directory entry contains the name, protection, and subdirectory of
a file; it also points to the file's RIB. An empty directory
entry is set to all 0377s. Directory entry format:

Bytes 0-1 are the RIB address/protection. (See
"Addressing Byte Structures".)

Bytes 2-3 are unused (normally zero)
Bytes 4-11 are the file name. A file name is usually

ASCII characters as described in the DISK FILES
chapter under File Names, padded with blanks to
be eight characters long, but may be any values.

CHAPTER 49. S YS TE1"1 S TR UCTURE 49-3

Bytes 12-14 are the file/extension. Same format rules
as file name.

Byte 15 is the subdirectory number, usually 0377,
indicating subdirectory SYSTEM.

A Retrieval Information Block (RIB) maps a file's domain on
disk. A file is composed of segments, each segment being composed
of contiguous clusters. The RIB contains up to 126 segment
descriptors which completely describe the clusters allocated to a
file.

I PFN--I LRN
LSB MSB

~--~- ----- ---~----~--~~--~1_~----~------~

Each segment descriptor (SD) is two bytes long (see "Addressing
Byte Structures"). A segment descriptor of 0377,037'7 indicates
the end of the RIB. The fourth byte of a RIB is always 0377. The
RIB is always the first sector of the file; the RIB copy is the
second sector and is identical to the RIB except that its LRN is
1 •

49.1.4 Sector Identification

Every sector of a file contains in its first byte the PFN of
the file. The next two bytes are the Logical Record Number (LRN),
stored least significant byte first. The PFN and LRN are
primarily intended as validation fields when a file record is
read. When a file record is written, the PFN and LRN are set
correctly; reading a record with a PFN that does not match or an
out-of-sequence LRN constitutes a Record Format Error.

Not every sector in the space allocated to a file has this
PFN and LRN data. Only sectors that have been used for the file
have this information set. Unused sectors may have anything in
the first three bytes.

49-4 DISK OPERATING SYSTEM

49.1.5 Addressing Byte Structures

49.1.5.1 PDA - Physical Disk Address

MSB

[216151413121110 I
I cylinder

address

LSB

171615114131[10 1

L sector
number
cluster
number

The cluster number references a cluster within a cylinder;
values are 0-7 except for diskette, systems which use values
0,2,4,6 for clusters 0,1,2,3 respectively. The sector number
references a sector within a cluster.

Hote: This is the DOS "PDA" and must not be confused with
the hardware disk addressing of any particular controller.'

49.1.5.2 RIB Address/Protection

Used in a directory entry to point to beginning of file.
MSB LSB

1716/5/4131 21 1 10 I
I cylinder
--address

~J2JL!J11. 211lifOl

l~ write protection
(l=protected)
delete protection
(l=protected)
unassigned
cluster number

The cylinder address and cluster number, with an assumed
sector number of zero, is the PDA of the first sector of the file.

CHAPTER 49. SYSTEM STRUCTURE 49-5

49.1.5.3 Segment Descriptor - used in RIB to define a segment.

MSB

OTITII4j~
cylinder
address

LSB

'-------.. ,-

number of
clusters minus 1
cluster number

The cylinder address and cluster number, with an assumed
sector number of zero, is the PDA of the first sector of the
segwent. The length of the segment in clusters is given by the
low-order five bits of the lsb; length can be 1-32 clusters
(except DOS. B, 1-10).

49.1.5.4 Physical File Number - used to access directory and HDI

17161514113121ITOl

I

L __ directory sector number
. directory entry number

The directory sector number specifies a sector of the
directory (0-15). The directory entry number (0-15) specifies an
entry within a sector.

Note: Since directory entries are 020 bytes long, if the
low-order four bits of the PFN are set to 0, the resulting value
is the byte location of the beginning of the specified directory
entry. For example, PFN 0304 references the directory entry
beginning at byte 0300 (entry number 014) of sector 4 of the
directory.

49-6 DISK OPERATING SYSTEM

49.2 Disk Data Formats

The DOS itself does not deal with the user's data below the
record level. It only keeps track of where the records are,
allowing the user to format the data in any manner he pleases.
The user is presented with records that are 253 bytes long, the
first three bytes of each sector being reserved for system sector
identification as described above. The DOS and its utility
programs do make a number of assumptions concerning file structure
however, and system operation is much simpler if all files are
structured to match these assumptions.

DOS makes assumptions about the structure of text files and
about absolute object code files. The structure expected for text
files under DOS is described in the chapter on REFORMAT. Any file
to be processed by the standard text-handling facilities of DOS
must have the standard text format described.

If a file is to be loaded by the system loader, it ~ust be an
object code file in the following format:

~~~--ad-d-l~-~-~S ad~~:~S N bytes of 
N object code 

U l lsb msb complement . G~-----='-L-HL--=-----!--.-----L 

----y- ../ 

I~_ one data block 

data block 

Note that this is the format of output files from Datapoint 

0377 

logical EOR 

ass e In b 1 e r s . Any n urn be r 0 fda tab 1 0 c k s ;n a yap pea r ina r e cor d . 
The leading byte of a data block will always be either 0, 
indicating a block follows, or 0377, indicating end of record. 
The special case of N being zero is used to indicate end of file, 
in which case the HL given is taken to be the starting address of 
the program loaded. 

CHAPTER 49. SYSTEM STRUCTURE 49-7 



49.3 Memory Mapping 

The DOS occupies memory as shown by the following map: 

49-8 

COMMAND 
OVERLAYS 

COMMAND 
INTERPRETER 

017000 

r-______________ -l012400 

CASSETTE 
DRIVERS 

___________________ ---1010000 (4K) 

DOS FUNCTIONS 
'07400 

DEBUG 

.. -- ------------
KEYIN &. DISPLAY 

__________ ----! 05400 

FILE HANDLING 
OVERLAYS 

~ _____ ~ _______ ~ 04000 (2K) 

DISK FILE 
HANDLING ROUTINES 

DATA AREA 

ENTRY POINTS & 
~--_INT~RRUP~~~~~~ 

SYSTEM LOADER 

O?OOO 

01400 

01000 

L--._________________ 0 

DISK OPERATING SYSTEM 



49.4 Memory Tables 

49.4.1 Entry Point Tables 

Three entry point tables exist within the DOS. These tables 
consist of a group of jumps to the various routines made available 
to the user. These jumps allow the system to be changed without 
requiring the user to modify his programs. To assure 
compatability between operating systems and for future versions of 
DOS, any calls to syste?'11 routines should use the documented entry 
points only. 

The first entry point table is located between 01000 and 
01377. It contains entry points to the routines in the loader 
(the loader itself, the basic disk read and write drivers, and the 
interrupt handler) and to the DOS file handling routines. It also 
contains in-line routines to increment and decrement the HL 
registers. 

The second entry point table is located between 010000 and 
010066 and contains entry points to the cassette handling 
routines. 

The third entry point table is located between 013400 and 
013452 and contains entry points to routines within the command 
interpreter. The availability of the command interpreter routines 
makes small command tasks easy to implement. 

See the chapters on System Routines and Routine Entry Points 
for details on the routine functions and entry point locations. 

49.4.2 Logical File Table 

The major working table in the system is called the Logical 
File Table (LFT) and is located from 01544 through 01643. It 
contains all of the information required by the file handling 
routines for every file which is currently open (a maximum of 
three files may be open at anyone time - logical tiles one, two, 
and three). Once the user has opened a file by its symbolic name, 
he deals with it by the logical file number under which it was 
opened. The Logical File Number (LFN) speci fies Hhich LFT and 
\vhich di sk buffer memory page are to be used for a file. 

CHAPTER 49. SYSTEM STRUCTURE 49-9 



The LFT contains for each entry the following information in 
the order shown (the number in parentheses is the number of bytes 
used for the item): 

PFN 

PDN 

LRN 

BLRN 

CSD 

RIBCYL 
RIBSEC 

MAXLRN 

LRNLIM 

BUFADR 

XXXXXX 

(1) - Physical File Number, PFN of the file 
referenced by this LFT 

(1) - Logical Drive Number (bits 3 - 0) 
Protection (bit 7 set indicates delete 
protection, bit 6 set indicates write 
protection) New Space Allocated flag (bit 5) 
set if new space has been allocated to this 
file. 

(2) - Next Logical Record Number, system LRN of next 
sequential sector 

(2) - Base LRN, first LRN in current segment (system 
LRN) 

(2) - Current Segment Descriptor 
The CSD and BLRN describe the current file 
segment' and allow quick calculation of the PDA 
to be read/written by treating the LRN as an 
offset from BLRN. If the desired LRN is not in 
the current segment, the RIB is re-read and a 
new current segment established. 

(1) - Physical Disk Address of RIB, MSB 
(1) - Physical Disk Address of RIB, LSB 

Storing the RIB PDA allows quickly locating the 
RIB when it must be accessed for getting a new 
segment descriptor, for allocation updates, or 
for file closing. 

(2) - Largest system LRN referenced (read, written, 
or positioned to) since the file was opened. 
Used for space deal location at close if new 
space allocated flag is set. 

(2) - Largest LRN allowed. Obsolete field, now 
unused. 

(1) - Current controller buffer byte address, used 
for byte transfers to or from the disk 
controller buffer. 

(1) - Unused 

lObytes total 

There are actually four LFT entries (01544-01563, 
01564-01603, 01604-01623, 01624-01643) to correspond to LFNs zero 
through three. The LFN used for a file specifies which buffer 
page to use for the disk transfer operation. LFN 0 uses buffer 
page zero (or 4, 8, or 12), LFN 1 uses buffer page one (or 5, 9, 
or 13), and so on. The larger buffer page numbers are available 

49-10 DISK OPERATING SYSTEM 



on 4K disk controllers and are specified by the high-order bits of 
the LFN given to the system routine used. Not all routines 
recognize the page-select feature of LFN, check the description of 
each routine in System Routines. 

Buffer page zero is a special case and is reserved for system 
use because the DOS needs a buffer into which it can read the RIB 
if it is necessary to determine a new current segment when a given 
access is made. This need is only critical on writes, when the 
buffer contains the information to be written to the disk. On 
reads, the user's data will always be the last item to be read and 
and page zero may be used. Always be careful in use of· buffer 
page zero, however, since an access involving a different logical 
file may cause logical file zero's disk buffer to be loaded with a 
RIB. Also, the zeroth disk controller buffer is always used by 
the system loader in transferring data to memory. Page zero is 
used so that an overlay may be loaded or another program can be 
chained to without disturbing any of the standard (one through 
three) logical files. LFN zero has one final peculiarity, CLOSEs 
have no effect wllen issued on LFN zero. Ne'ither space 
deallocation nor updating of the protection field occur when 
logical file zero is closed. 

The DOS loader uses a set of locations in memory between 4 
and 022 to perform the functions of an LFT entry during the 
loading process. It knows, however, that an object file is always 
sequential and does not have to have the accessing generalization 
of the main file handling routines. The file handling routines 
also use these low memory locations for temporary storage of a 
specified LFT entry to eliminate having to continually index into 
the LFT. Also, since the basic disk read and write routines use 
location 5 to indicate which drive is to be used, having the LFT 
temporarily stored in the low memory locations automatically 
selects the correct drive for use. 

49.5 Disk Overlays 

DOS uses disk overlays to reduce its main memory 
requirements. The overlays are in disk files SYSTEM1/SYS through 
SYSTEM7/SYS. The memory-resident DOS is stored in the disk file 
SYSTEMO/SiS. These eight files must reside in PFNs 0 through 7, 
the PFN corresponding to the number in the file name. 

CHAPTER 49. SYSTEM STRUCTURE 49-11 



The system overlay files load into memory between 04000 and 
05400 and are loaded by the system as needed. The functions of 
the overlays are: 

SYSTEM1/SYS - PREP - create a new file 
SYSTEM2/SYS - CLOSE - close a file 
SYSTEM3/SYS - OPEN - open an existing file 
SYSTEM4/SYS - ALLOC - allocate more space for a file 
SYSTEM5/SIS - ABORT - display an error message 
SYSTEMS/SYS - SCREEN - initialize a RAM display screen 

SYSTEM7/SYS is the DOS Fuction overlay and is described in 
the DOS Function section of the chapter on System Routines. The 
DOS Functions are short overlay routines and load into a separate 
area of memory. Also, the first sector of SYSTEM7/SYS is used to 
store sUbdirectory names (see the SUR command). 

When DOS needs an overlay file, it searches for the file on 
the booted drive. 

49.6- The Command Interpreter 

The command interpreter resides in locations 013400 through 
016777. The command interpreter receives command lines from the 
keyboard, as described in the chapter on Operator Commands, 
storing the command line in memory in the Monitor Communication 
Region (MCR$, location 01400 through 01543). When the line is 
terminated (ENTER key, 015), the stored command line is scanned 
and the indicated command program is loaded and executed. 

While the command interpreter is waiting for character entry 
from the keyboard, it runs a test on the disk buffer memory. As 
soon as a character is ready from the keyboard, the disk buffer 
memory test is terminated and the normal keyin routine is entered. 
Even just sriking the CANCEL key will terminate the disk buffer 
memory test. If an error is detected by the disk buffer memory 
test, the message "DISK BUFFER FAULT" is displayed and the screen 
is rolled up one line. 

When the command interpreter is initially entered via the 
entry point DOS$ it will execute the program set for 
auto-execution if there is one. If the KEYBOARD key is depressed, 
auto-execution is not performed. The AUTOed program will also be 
run any time the system returns to DOS$; exit routines EXIT$ and 
ERROR$ return via this entry point. 

When a command line has been entered, the command interpreter 

49-12 DISK OPERATING SYSTEM 



must attempt to locate and load the specified command program. If 
the command is obviously bad (a null entry line) the interpreter 
iLmnediately displays "WHAT?" and waits for a new line. A pound 
sign (#) for invoking DEBUG is also treated as a special case, 
causing the interpreter to immediately go to DEBUG. Normally the 
first field on the command line will be normalized to the form 
shown below and the file thus specified will be searched for. The 
sequence of searching for a requested program depends on the 
format of the command line. 

If the operator entered a leading n·)t" or ":" as part of the 
command name, a flag called UTILS~ (UTILity SWitch) is set, 
indicating that the specified command is to be located as a member 
of UTILITY/SYS. If a drive specification was entered as part of 
the command name, the search goes only to the specified drive, as 
indicated in the sequence shown below. 

The first test the interpreter performs is to check the drive 
specification entered, if any. If the drive specification is 
invalid, an error message is displayed and a new command line 
requested. If the drive specified is valid, or if no drive was 
specified, the interpreter searches for the command as outlined 
below. 

1. If a drive was specified: 
a. If UTILS~ is set: 

(1) Open UTILITY/SYS on the specified drive. If the 
file is missing or if the specified command is 
not a member, say "WHAT?", else run the program. 

b. If UTILSW is not set: 
(1) Attempt to open the command file on the specified 

drive. If successful, run the program. Else: 
(2) If no extension was specified in the command 

name, open UTILITY/SYS on the specified drive and 
search for the command as a member of the 
library. Else: 

(3) "\tJHAT?" and get another command. 
2. If no drive was specified: 

a. If UTILSW is set: 
(1) Open UTILITY/SYS on the booted drive and search 

for the command as a member of the library. 
Else: 

(2) Try to open command as a file on booted drive. 
Else: 

(3) Check for command in UTILITY/SYS on any drive. 
Else: 

(4) Try to open command as a file on any drive. Else: 
(5) "WHAT?" and get another command. 

CHAPTER 49. SYSTEM STRUCTURE 49-13 



b. If UTILSW is not set: 
(1) Try to open command as a file on booted drive. 

Else: 
(2) If no extension was specified in the command 

name, open UTILITY/SYS on the booted drive and 
check for the command as a member of the library. 
Else: 

(3) Try to open command as a file on any drive. Else: 
(4) If no extension was specified in the command 

name, open UTILITY/SYS on any drive and check for 
the command as a member of the library. Else: 

(5) "\iJHAT?" and get another command. 

The command interpreter uses lexical scanning routines to 
interpret the entered command line. These routines are available 
for user programs and are described in the chapter on System 
Routines. The command interpreter scans up to four file 
specifications from the command line. The file name scan is 
terminated by a semicolon (;) or end-of-string (015). The file 
specifications are entered in a normalized symbolic form into the 
corresponding logical file table entries (0 through 3). The 
no rmal i zed fo rrJ1 is not t he same as normal LFT in forma t ion, the LFT 
area simply provides convenient storage for the file 
specifications. If desired (and it usually is), the open routine 
can open a file using the LFT in which the file name used for the 
open is stored. The format of the normalized form is shown here: 

DRCODE (1) 

03'77 (1) 

FILENAME (8) 

- Drive select code: logical drive number in 
binary, no drive spec (0377), invalid drive 
spec (0376) 

- PDN location of normal LFT, set to 0377 to 
indicate the LFT is closed. 

- File name specified, padded with trailing 
spaces to 8 characters. Eight spaces if no 
name given. 

FILEEXT (3) - File extension specified. Three spaces if no 
extension entered. 

DRSPEC (3) - Logical drive specification (spaces if no 
spec). 

When a program receives control from the command interpreter, 
LFTs one through three (zero was used to load the program itself) 
contain normalized entries as indicated above, and MCR$ still 
contains the command as entered, so the program can retrieve 
information from its command line. If a program is auto-executed, 
none of this command line information is available, so any program 
which tests for information as provided above can not be 
a uto- ex ec uted. Conver s el y, any progr am in tend ed for 

49-14 DISK OPERATING SYSTEM 



auto-execution must not look for command information. The command 
AUTOKEY is provided to allow automatic execution of programs 
requiring command line information. 

CHAPTER 49. SYSTEM STRUCTURE 49-15 



CHAPTER 50. INTERRUPT HANDLING 

50.1 Interrupt Mechanism 

Datapoint 1100, 1800, 2200, 5500 and 6600 processors feature 
a one-millisecond timed interrupt. Every millisecond, a flip-flop 
indicating "interrupt pending" is set; the setting of this 
flip-flop occurs independently of processor instruction cycling. 
At the beginning of an instruction fetch cycle the status of the 
interrupt pending flip-flop is checked. If the flip-flop is set, 
and interrupts are enabled, a CALL to the interrupt vector 
location occurs and the flip-flop is cleared. On 1100 and 2200 
processors, the interrupt vector location is address 0. On 1800, 
5500 and 6600 processors the interrupt vector location is address 
0167444, which normally performs a jump to location O. While 
interrupts are active, location zero is a jump to the interrupt 
scheduler. 

The execution of the CALL ends hardware control of the 
interrupt. Any interrupt service performed, task scheduling, or 
prioritizing is under software control. 

The machine instruction DI (Disable Interrupts) prohibits 
recognition of the interrupt pending flip-flop, thereby preventing 
any interrupt calls until recognition of the flip-flop is 
reactivated by an EI (Enable Interrupts) instruction. 

Datapoint processors do not have a structured multi-level 
hardware interrupt vector mechanis~ available to the system 
programmer. Any liD performed by the system must be monitored by 
the processor through the use of status flags. Such monitoring is 
usually performed by a foreground process, typically one process 
per liD device. 

50.2 Interrupt Scheduler 

DOS provides an interrupt scheduler loaded as part of the 
s ystern boot opera tion. The sched ul er res id es bet ween 01201 and 
01376 and remains memory-resident. Normal system operation never 
overstores this scheduler. The basic coding of the scheduler is 
shown below. The code shown is intended as an example of the 
structure of the scheduler and is not the exact code used within 

CHAPTER 50. INTERRUPT HANDLING 50-1 



DOS. 

INTRPT 

INTO 
INT1 
INT2 
INT3 

RETURN 

INTSCN 

INT4 

INT5 

INT6 

INT,? 

INTRET 

DI 
BETA 
CALL 
CALL 
CALL 
CALL 
MLA 
AD 
Llv1A 
AD 
LLA 
PUSH 
RET 

DC 

CALL 
JMP 
CALL 
JMP 
CALL 
JMP 
CALL 
XRA 
MSA 
ALPHA 
EI 
RET 

RETURN 
RETURN 
RETURN 
RETURI~ 

*INTSCN 
6 

INT4-6 

o 

RETURN 
INTRET 
RETURN 
INTRET 
RETURN 
INTRET 
RETURN 

*INTSCN 

Disable interrupts 
Use BETA mode 
Perform each of processes 0 

through 
three 

Rotate to the next 
one of processes 
4 through 7 

HL => CALL address 
Jump to the 
, next CALL 

Rotation counter storage 

CALLs for the rotating 
process slots 

Reset the scan pointer 
after calling process 7 

back to ALPHA mode 
Enable interrupts 
Back to the background 

All processing performed on an interrupt call is called 
"foreground", the processing interrupted is referred to as 
"background". Foreground processing begins wi th the DI 
instruction labeled INTRPT above and ends with the RET instruction 
terminating the scheduler. The above scheduler illustrates the 
fundamental rules of foreground code on a Datapoint processor: 

1. Interrupts must be disabled during foreground processing. 
The scheduler disables interrupts initially and does not 
enable interrupts until immediately before terminating. 
Foreground processes must not enable interrupts or invoke 
any DOS routines which internally enable interrupts. 

2. Foreground processing is performed in BETA mode, 
background processing in ALPHA mode. The scheduler sets 
the machine modes; foreground processes should not change 
the mode. 

50-2 DISK OPERATING SYSTEM 



3. Foreground processes are CALLed routines and must return 
with the stack in the same condition as on entry. Each 
CALL instruction INTO through INT? can be used to call a 
foreground routine. The scheduler itself uses a simple 
RET to return to background processin~; if any foreground 
routine modifies the stack, the scheduler could exit to 
the wrong location. Even if the scheduler manages to 
return properly, the background process uses the same 
stack (there is only one stack) and any modification 
performed by foreground routines could be fatal to the 
background processing. 

4. Register contents on entry to foreground processing may be 
undefined. Normally the BETA mode registers and condition 
flags will be the same on entry to foreground as they were 
at the conclusion of foreground processing on the previous 
interrupt, so contents on entry can be considered as 
known. Under PS, however, the BETA mode registers and 
condition flags are not preserved, since they are used by 
PS and by the other partition. Even when PS is not in 
use, register contents cannot be predicted if there is a 
possibility of multiple foreground routines being active. 
If a single routine is active, registers may be preserved; 
if another routine or two is rl1ade active, they may modify 
the registers used by the first routine, effectively 
destroying any expected contents. 

50.3 Active Processes 

Each of the labeled CALLs in the scheduler, INTO - INT?, is 
called a foreground "process" or, sometimes, an interrupt tI slot" , 
and is referenced by number 0 through 7. 

Normally each foreground process is inactive, since each CALL 
invokes only a RETURN to the scheduler. A process is made active 
by overstoring the address RETURN following the process CALL with 
the entry address of a desired foreground routine. The address so 
stored is called the "state" of the foreground process. (Two DOS 
routines, SETI$ and CS$, set the state of a process.) Thus if the 
address PRINT is stored LSB, MSB in INT1+1 and INT1+2 (the address 
area following the CALL at INT1) the state of foreground process 1 
would be PRINT. Once a process has been made active -- given a 
state -- it can again be made inactive by storing the adress 
RETURN back into the two bytes following the CALL. (Two DOS 
routines, CLRI$ and TP$, terminate processes in this manner.) 
While a process is active, the routine it calls will be performed 
once every interrupt cycle, or every fourth cycle depending on the 

CHAPTER 50. INTERRUPT HANDLING 50-3 



slot number used. 

The scheduler is structured to provide four "one-millisecond" 
processes and four "four-millisecond" processes. The 
"one-millisecond" and "four-millisecond" designations refer to the 
length of time between sequential executions of the process. 
Interrupt slots 0-3 are one-millisecond processes; each process is 
executed every time an interrupt occurs. Interrupt slots 4-7 are 
four-millisecond processes; one of the four is executed every time 
an interrupt occurs, so anyone process is executed only every 
fourth millisecond. 

50.4 Timing Considerations 

The most severe constraint on foreground routines is timing, 
mainly the total length of time required to execute. Since an 
interrupt occurs every millisecond, the total amount of time spent 
in foreground must be less than 1000 microseconds. Thus the 
amount of time spent executing each active foreground routine and 
the interrupt scheduler itself (130 microseconds on a 2200) must 
total less than a millisecond. If the time spent in foreground is 
more than a millisecond, the interrupt pending flag will already 
be set when the interrupt scheduler executes its final RET, so an 
interrupt call will immediately occur and no background processing 
will be performed. 

Also, if more than one millisecond is spent in foreground, 
interrupts can be dropped. The interrupt pending flag has only 
" 0 f f " and " 0 n" v a 1 u e s . I fan in t err up t s i g n a 1 0 c cur s wh i 1 e the 
flag is already on, it simply stays on and the occurrence of the 
interrupt pulse has no effect -- the interrupt is lost. If, for 
exatnple, 1200 microseconds is being spent in foreground on each 
interrupt, only 5 interrupt calls will occur in a 6 millisecond 
time interval. One interrupt will be lost because the flag was 
aIr e ad y set wh en its s i g n a 1 oc cur red . I n a s i mil a r fa s hi 0 n , 
interrupts can be lost if interrupts are disabled for too long in 
background. 

Another timing concern is "jitter". Jitter describes the 
variation in interrupt timing: it is not exactly one millisecond 
between interrupt calls. The timing variation occurs mainly 
because of time spent in background with interrupts disabled. If 
background processing disables interrupts for 200 microseconds 
(200 microseconds of jitter) it could be 1200 microseconds between 
interrupt calls if the interrupt pending flag were set immediately 
after interrupts became disabled. An additional source of jitter 
is time spent in foreground processes. Any variation in the 

50-4 DISK OPERATING SYSTEM 



execution time of process 0 appears as jitter to process 1. 

Jitter must be taken into account when designing any program 
structure. If an external device is being serviced by interrupts 
and the device presents a character for input every 1.4 
milliseconds, jitter must not exceed 400 microseconds. If the 
jitter were over 400 microseconds, a character could appear ready 
and then be overstored by the next character before an interrupt 
occurred to service the device. A good guideline is 200 
microseconds maximum for any foreground process. 

50.5 DOS Interrupt Routines 

DOS provides four utility routines for interrupt processing. 
Use of these routines simplifies interrupt process coding and 
helps assure DOS compatibility. For full descriptions of 
parameterization of these routines, see the chapter on System 
Routines. 

50.5.1 SETI$ 

3ETI$ changes the state of a foreground process. SETI$ is 
usable only from background and is generally used to initiate a 
previously inactive process. The routine accepts a specified 
address and stores the address following the CALL instruction of a 
specified interrupt slot. Even if the process was previously 
active, the new state is stored over the old state. 

50.5.2 CLRI$ 

CLRI$ terminates a foreground process. The address of RETURN 
(see sample scheduler above) is stored following the CALL of the 
specified process number. Any routine active from that interrupt 
slot is then inactive. CLRI$ is used from background. 

50.5.3 CS$ 

CS$, like SETI$, changes the state of a foreground process, 
but is used from foreground. A call to CS$ affects only the 
process performing the call. CS$ changes the state of the process 
to the address of the instruction following the "CALL CS$" and 
returns -- not to the invoking routine -- but to the interrupt 
scheduler. Due to the stack manipulations performed by CS$ it 
must be called only from the outermost stack level of a foreground 

CHAPTER 50. INTERRUPT HANDLING 50-5 



routine; it must not be called from a routine called by the main 
routine. CS$ does not enable interrupts. 

50.5.4 TP$ 

TP$, like CLRI$, terminates a foreground process and is 
itself called from foreground. TP$ affects only the foreground 
process from which it is called, setting the state of that process 
to RETURN to deactivate the process, and returning to the 
scheduler. Like CS$, TP$ must be called only from the outermost 
stack level of a foreground routine. TP$ does not enable 
interrupts. 

50.6 Programming Considerations 

50.6.1 Background Code 

If interrupt processing is to be used, the mainline program 
code must be written "interruptable" with the realization it may 
be interrupted anytime interrupts are not disabled. For most 
processing, no particular concern is necessary, since if the 
interrupt processes are coded correctly the stack, registers, and 
condition flags are unchanged after the interrupt process; the 
background code will never notice the interruption. Coding for 
1/0 device handling is the most critical part of interruptable 
code, since during interrupt processing the selected 1/0 device 
can change. 

Interrupts must be disabled any time the currently selected 
1/0 device status is critical: between addressing the device and 
testing status, between addressing the device and issuing a 
command, and so on. At the same time, interrupts ~nust not be 
disabled for too long a time, due to introducing excessive jitter 
or even dropping interrupts. It is especially important to be 
certain interrupts are enabled for at least one instruction cycle 
in any wait loop lest interrupts be delayed for the duration of 
the loop. 

If the background code uses BETA mode, interrupts must be 
disabled all the time BETA mode is in use. If an interrupt occurs 
\vhile in BETA mode, the registers and condition codes will be 
modified by the scheduler and foreground routines and results to 
the background program could be disastrous. Background code 
should not generally use BETA mode. 

50-6 DISK OPERATING SYSTEM 



All DOS utility routines are completely interruptable and 
disable interrupts for a maximum of 200 111icroseconds. DOS 
routines generally return with interrupts enabled. 

50.6.2 Foreground Code 

Duration of foreground routines is of primary concern. If a 
routine is too long to execute in a single interrupt cycle, its 
operation must be split using CS$ or successive four-millisecond 
processes. Foreground routines should never use a wait loop; they 
should instead return, using the delay of background processing to 
wait for the next interrupt. 

Additionally, foreground routines: 

1. Must not enable interrupts. 
2. Must exit with the stack in the same condition as on 

en tr y. 
3. Must not use mode instructions. 
4. Should not assume register conditions have been preserved. 

Be sure to terminate foreground processes when they are no 
longer needed. A process left active uses up machine time. When 
a program finishes, any active foreground processes remain active 
upon return to DOS. These foreground processes at best slow down 
the system, and may cause CALLs to locations that have been 
overstored by later programs, causing unpredictable results. 

DOS itself uses foreground processing in only a few 
instances: the .cassette driver routines, the DEBUG P-counter 
display, the delay function (DOSFUNC 8), and the relocatable servo 
printer driver. 

CHAPTER 50. INTERRUPT HANDLING 50-7 



CHAPTER 51. SYSTEM ROUTINES 

51.1 Parameterization 

Parameters are passed to the subroutines through the 
registers. In the discussion of these parameters, the following 
abbreviations will be used: 

LFN - Logical File Number times 16 
LRN - Logical Record Number (the user's LRN) 
PFN - Physical File Humber 
LFT - Logical File Table 

The following definitions apply to the descriptions of the 
system routines. 

drive number - indicates a logical drive number (0 through N, 
where N is the maximum number of logical drives 
supported by the DOS in use). In some routines, 0377 
is used to indicate that all drives are to be checked. 

name - the address of a field containing exactly eleven 
bytes. The first eight bytes are the file name and the 
last three bytes are the file extension by command 
interpreter convention. The na~e characters may be any 
eight bit combinations except the first character must 
not be a 0371. The command interpreter requires that 
all characters be letters or digits. 

=> - indicates an address pointer. This symbol will be used 
when describing routine entry or exit conditions to 
indicate that a specific register pair contains an 
address which is the memory location containing the 
specified information. Thus "HL => string" means the 
HL register pair contains the memory address of the 
first character of a string. 

extended LFN - LFN referencing a physical disk buffer. The 
normal DOS LFN values are 0, 16, 32, and 48 (0<4, 1<4, 
2<4, and 3<4), and specify usage of a particular LFT 
and of a particular page of disk buffer memory (pages 0 
through 3). Some of the system routines for DOS.D, 
DOS.E, and DOS.G allow specification of larger LFN 

CHAPTER 51. SYS TEtvt ROUT INES 51-1 



values, allowing use of buffer pages 4 through 15. The 
extended LFN is specified as buffer page number times 
16. The LFT used by a specified LFN is determined by 
the low-order two bits of the buffer page number. 
Thus, pages 0, 4, 8, and 12 use LFT 0, pages 1, 5, 9, 
and 13 use LFT 1, and so on. 

51.2 Exit Conditions 

If a routine fails to perform as expected, some indication 
must be made that the expected action did not occur. This 
indication is given by the condition flags in the processor being 
set in a special manner or by control being transferred to a trap 
location instead of returned via the subroutine mechanism. The 
'Exit conditions' section of each subroutine description shows the 
register contents and condition flags of interest when the routine 
returns. 

51.3 Error Handling 

Minor errors are indicated by the Exit Condition of the 
routine called. Major errors cause a trap -- an automatic seizure 
of program control by the operating system. The trap for each 
type of error transfers control to a specified location, which 
will display an appropriate error message. 

Minor errors are always non-fatal; the program can test the 
Exit Conditions and determine what action to take. Major errors 
can be fatal or non-fatal. When a system trap occurs, the system 
will simply display a message and restore itself, causing a fatal 
program error. Many major error traps can be intercepted by the 
program and given special treatment, as described in the section 
on TRAP$ below. 

51.4 Foreground Routines 

The chapter on Interrupt Handling contains a complete 
discussion on the functioning and use of the foreground handling 
and should be consulted for an understanding of the following 
routines. 

51-2 DISK OPERATING SYSTEM 



51.4.1 CS$ - Change Process State 

CS$. changes a foreground routine's state. It is called by 
the executing foreground routine and causes its execution address 
to be changed to the address following the CALL CS$. Execution 
will not continue at the new address until the next interrupt 
occurs. CS$ is normally called from the outermost stack level 
(level 0) of an active foreground process. Calls to CS$ from 
deeper stack levels of the routine must be very carefully planned 
and are not recommended. 

En try po in t : 

Parameters: 

01033 

on subroutine stack - see the chapter on Interupt 
Handling 

Exit conditions: return is made to the scheduler 

51.4.2 TP$ - Terminate Process 

TP$ deactivates the process called by storing the address of 
a return instruction in the process call. TP$ is entered by a 
jump instruction, not a call. TP$ is invoked from the outermost 
stack level (level 0) of an active foreground process. 

Entry point: 

Parameters: 

01036 

on the stack - see the chapter on Interrupt 
Handling 

Exit conditions: no exit, returns to Interrupt Scheduler 

51.4.3 SETI$ - Initiate Foreground Process 

S£TI$ activates the interrupt process specified by the 
parameter in the C register (0-7) by storing the address given in 
the D and E registers into the call instruction for that process 
and enables the interrupt handler. Interrupt processes zero 
through three are executed every millisecond while four through 
seven are executed every fourth millisecond. 

Entry point: 01041 

Parameters: C = process number (0-7) 
DE = address of foreground process 

CHAPTER 51. SYSTEM ROUTINES 51-3 



Exit conditions: B,D,E unchanged 
H,L = a 

51.4.4 CLRI$ - Terminate Foreground Process 

CLRI$ deactivates a foreground process by storing the address 
of a return instruction into the process call specified by the 
parameter in the C register (0-7) and enables the interrupt 
handler. 

Entry point: 01044 

Parameters: C = process number (0-7) 

Exit conditions: B unchanged 
H,L = 0 

51.5 Loader Routines 

There are two levels of disk handling routines. This section 
describes the lower level routines which reside in the loader and 
require numbers physically describing the drive, cylinder, sector, 
buffer, and file. The section on File Handling Routines describes 
the upper level routines. 

INCHL and DECHL are described in this section only because 
they are used by the DOS at all levels and because these two 
routines are loaded as part of the bootblack. In general, the 
other routines described in this section are not used by typical 
user programs; most user programs will be better served by the 
higher level routines described in the section on File Handling 
Routines. 

51.5.1 800T$ - Reload the Operating System 

BOOT$ loads and executes the operaiing system (PFN a on the 
booted drive). This action does not affect the interrupt handling 
facility between 01000 and 01377. Since BOOT$ requires that the 
operating system always be loaded specifically from the booted 
drive, BOOT$ should normally only be used in cases where EXIT$ is 
unusable, surih as when the disk handling routines have been 
overstored. BOOT$ does not close any files before reloading the 
DOS. 

Entry point: 01000 

51-4 DISK OPERATING SYSTEM 



Parameters: none 

Exit conditions: does not return 

51.5.2 RUNX$ - Load and Run a File by Number 

RUNX$ loads the physical file specified and begins its 
execution. If the file cannot be loaded, a jump to BOOT$ occurs. 

Entry point: 01003 

Parameters: A = PFN 
C = drive number 

Exit conditions: does not return 

51.5.3 LOADX$ - Load a File by Number 

LOADX$ loads the physical file specified and returns with the 
starting address in IlL if the load was successful. 

Entry point: 01006 

Parameters: A = PFN 
C = Drive Number 

Exit conditions: Carry false: HL = Starting address of file 
Carry true: A=O if file does not exist 

1 if drive off-line 
2 if directory parity fault 
3 if RIB parity fault 
4 if file parity fault 
5 if off end of physical file 
6 if record of illegal format 

51.5.4 INCHL - Increment the Hand L Registers 

INCHL increments the sixteen bit value in the HL registers by 
one. If the routine is entered at INCHL+2, the sixteen bit value 
in the HL registers will be incremented by the number in the A 
register. 

Entry point: 01011 (01013 for increment by A) 

Parameters: HL = number to be incremented 

CHAPTER 51. SYSTEM ROUTINES 51-5 



A = increment value if INCHL+2 used 

Exit conditions: HL incremented 
A equal to the H-register 
B,C,D,E unchanged 
all condition flags undefined 

51.5.5 DECHL - Decrement the Hand L Registers 

DECHL decrements the sixteen bit value in the HL registers by 
one. If the routine is entered at DECHL+2, the sixteen bit value 
in the HL registers will be decremented by negative the number in 
the A register (e.g., for decrement by 2, A is set to -2). 

Entry point: 01022 (01024 for decrement by -A) 

Parameters: tIL = number to be decremented 
A = decrement value if DECHL+2 used 

Exit conditions: HL decremented 
A equal to the H-register 
B,C,D,E unchanged 
all condition flags undefined 

51.5.6 GETNCH - Get the Next Disk Buffer Byte 

GETNCH gets the character from the physical disk buffer 
location pointed to by memory location DOSPTR (location 026) from 
the disk buffer currently selected, and then increments the 
contents of location DOSPTR. 

Entry point: 01047 

Parameters: DOSPTR = disk buffer address (0-255) 

Exit conditions: A = character from disk buffer 
(DOSPTR) = (DOSPTR)+1 
B,C,D,E,H,L all unchanged 

51-6 DISK OPERATING SYSTEM 



51.5.7 DR$ - Read a Sector into the Disk Buffer 

DR$ causes a sector to be transferred from the disk to one of 
the disk controller buffers. The drive number is given in the 
least significant bits (the others are ignored) of location 
TFT+PDN (location 5). (The number of bits ignored depends upon 
the particular DOS in use). The physical disk address LSB is 
given in the E register and the physical disk address MSB is given 
in the D register. The disk controller buffer number times 
sixteen is given in the B register. Interrupts are disabled by 
this routine for a maximum of 100 microseconds. 

Compatibility note! The physical disk address format will 
vary among different DOS; the user's program should not make 
assumptions regarding this format if the program is to be 
transportable between different DOS. The most significant byte 
(MSB) is generally a cylinder number, and the least significant 
byte (LSB) is a sector address within a cylinder. The least 
significant byte especially will vary among DOS. In general, the 
only safe way to insure a valid, proper physical disk address 
(PDA) is to get it as a returned item from a system routine 
(POSIT$ or one of the DOS FUNCTIONs described later). User 
program generation or manipulation of physical disk addresses is 
strongly discouraged. 

If parity faults are detected, DR$ retries the read operation 
four to ten times (depending on the type of disk drive in use) 
before returning with an abnormal exit status. This routine is 
used by all higher-level DOS disk routines, so the same retry 
count applies to all DOS disk operations. 

Entry point: 

Parameter: 

01052 

B = extended LFN 
D = physical disk address MSB 
E = physical disk address LSB 
T F T + P D N (a t 10 c 5) = log i cal d r i v e n u In be r 

Exit conditions: B,D,E,TFT & PDN all unchanged 
Carry false if read successful 
Carry true and Zero false if drive off-line 
Carry true and Zero true if parity fault 

CHAPTER 51. SYSTEM ROUTINES 51-7 



51.5.8 DW$ - Write a Sector from the Disk Buffer 

DW$ causes the contents of one of the disk controller buffers 
to be transferred to a sector on the disk. If the physical write 
protection on the specified drive is enabled, DW$ will beep 
continuously until the protection is disabled. 

There are two types of write protection in the disk operating 
system. The first type is a physical protection that is part of 
the disk drive hardware, which will cause DW$ to beep if set. The 
second type of write protection is a logical protection that is 
connected with each file on a disk. A bit exists in the directory 
entry for each file which, if set, will prevent the higher-level 
routines (for example, WRITE$) fro~ calling the DW$ routine. It 
is important not to confuse these two types of write protection. 
All references to write protection that follow refer to the 
logical protection on each file and not to the physical protection 
of the drive itself. 

In DOS, OW$ uses the write/verify mode of the disk 
controller. Thus all writes performed by the DOS use this mode of 
writing. As in the DR$ routine, several retries will be made if 
parity faults are detected before abnormal exit will occur. In 
all other respects, DW$ is similar to OR$. 

Entry point: 01055 

Parameters: B = extended LFN 
D = physical disk address MSB 
E = physical disk address LSB 
TFT+PDN (at loc 5 ) = logical drive number 

Exit conditions: B,D,E,TFT & PON unchanged 
Carry false if write successful 
Carry true and Zero false if drive off-line 
Carry true and Zero true if parity fault 

51.5.9 DSKWAT - Wait for Disk Ready 

DSKWAT waits for disk ready, controller ready, no disk I/O 
transfer in progress, and drive online to all be true. If the 
drive is not online, return is made with the carry flag true, the 
zero flag false, and interrupts enabled. Otherwise, exit is ~ade 
with interrupts disabled. This routine is obsolete and is not 
available under some systems (PS, for example). It is recommended 
that this routine not be used. 

51-8 DISK OPERATING SYSTEM 



En try po in t : 01060 

Parameters: none (drive checked is the selected drive) 

Exit conditions: explained above 
B,C,D,E,H,L unchanged 

51.6 File Handling Routines 

A file is dealt with as a logically contiguous and randomly 
accessible space. A file is specified by its symbolic name or by 
its PFN. A LRN within a file is specified by a two-byte number 
kept within the system (LRN in the LFT). When a file is opened, 
the LRN is set to two. 

There is a distinction between system LRN and user LRN. A 
LRN in the LFT is a system LRN. System LRN zero is the primary 
RIB for a file and system LRN one is the RIB backup. System LRN 
two is user LRN zero (user data sector 0). Logical record numbers 
supplied to system routines are usually user LRNs. These numbers 
are converted to system LRNs before being used by the DOS or 
placed into the LFT. In the routine descriptions below, "LRN" 
refers to a user LRN unless otherwise specified. 

After each record access (READ$ or WRITE$), the LRN in the 
LFT is incremented. Thus, for sequential accesses, the user need 
not actually specify which record he is dealing with. However, a 
routine named POSIT$ allows the LRN to be changed to any value 
between zero and the upper limit of the file, providing a random 
access facility. (This upper limit depends upon the DOS in use). 

All of the logical file handling routines automatically 
create or verify the PFN and LRN of the file sector being handled 
(see Disk Structure). 

It must be noted that READ$ and WRITE$ provide sequential 
processing of file sectors, but do not automatically handle the 
Datapoint sequential text file format. All necessary 
end-of-record (015) and end-of-sector (003) bytes must be placed 
in the disk buffer under program control; the system routines do 
not provide these control bytes. Likewise, the CLOSE$ routine 
does not provide any end-of-file mark. To provide a valid text 
EOF, the user program must write an EOF byte by byte. For 
Datapoint file formats, see the appendix on Disk Data Formats. 

CHAPTER 51. SYSTEM ROUTINES 51-9 



51.6.1 PREP$ - Open or Create a File 

PREP$ searches the directory or directories specified for the 
given name. If the name is found, the file is simply opened for 
use as the specified logical file number. Otherwise, a new file 
having the name specified will be created. If a new file is 
created, an end-of-file by GEDIT convention (six zeros followed by 
an 003) is written in LRN zero. Whether the file is siraply opened 
or is created, the information describing it is stored in the LFT 
entry specified so that all subsequent references to that file by 
its LFN will be able to deal with the correct locations on the 
disk. If the LFT entry specified is already in use when PREP$is 
called, the file that the entry specifies will be closed (see the 
section on CLOSE$) and the new file opened in its place. 

DE is the address of an 11-byte string which is the name of 
the file being specified (as explained before under the section on 
Parameterization). 

Entry point: 

Parameters: 

01063 

B = LFN 
C = drive number or 0377 
DE=> file name string 

Exit conditions: B = LFN; other registers indeterminate 

Traps: SPACE A new file must be created and 
no space is left or no more directory 
entries are available. 

OFf-LINE The drive specified is off-line. 

51.6.2 OPEN$ - Open an Existing File 

OPENS is similar to PREP$ except for the action taken if the 
file specified does not exist. In this case, return is made with 
the Carry condition true (return is made with Carry false if the 
file exists). In addition, a file may be Qpened by PFN by setting 
the D register to zero and setting the E register with the PFN. 
Action taken to open by PFN is the same as that taken if a name is 
specified. 

En tr y po in t : 

Parameters: 

51-10 

01066 

B = LFN 
C = drive number or 0377 
DE => file name string or 

DISK OPERATING SYSTEM 



D = O,E = PFN 

Exit conditions: B = LFN; other registers indeterminate 
Carry true if the file is non-existent 

Traps: none 

51.6.3 LOAD$ - Load a File 

LOAD$ opens the specified file as logical file zero and then 
calls the system loader to load it into memory. Exit is made with 
the Carry condition set if the file is non-existent, or if the 
drive specified (if any) is off line. If the load is successful, 
return is made with the starting address in the Hand L registers. 

Entry point: 01071 

Paralneters: same as for OPEN$ (except B not required) 

Exit conditions: B = LFN (always zero) 

Traps: 

HL = starting address if good load 
Carry true if file non-existent or drive off-line 

OF FLI N 

RPARIT 
RANGE 
FORfJJAT 

Drive went off-line after loading 
began. 
File contains parity fault. 
Loader ran off end of file. 
Record of bad loader format found. 

51.6.4 RUN$ - Load and Run a File 

RUN$ opens the specified file as logical file zero and then 
calls the system loader to load it into memory. Return is made to 
the instruction following the call if the name specified cannot be 
found in the directory or directories specified. If any loading 
errors occur, the operating system is reloaded. Otherwise, 
control is transferred to the starting address given by the 
loader. 

Entry point: 01074 

Parameters: same as for OPEN$ 
(except that B is not required) 

Exit conditions: If successful, routine does not return; 
program from specified file is executed. 

CHAPTER 51. SYSTEM ROUTINES 51-11 



Returns if name not found. 
DOS reloaded if bad object program load. 

Traps: none 

51.6.5 CLOSE$ - Close a File 

When new space is allocated for a file, a large contiguous 
piece (up to one full segment) is taken in an effort to keep the 
file as physically contiguous as possible. When this allocation 
takes place, a flag in the LFT, called the new space allocated 
flag, is set. The LFT also contains a number which is the largest 
LRN referenced while the file was open. When CLOSE$ is called, 
the file is physically truncated after the largest LRN reterenced, 
if the new space allocated flag is set. Thus, if only a few 
records of the new space allocated have been used, the rest of the 
space is freed for use in other files. However, if all of the 
space is used, the file will consist of a large amount of 
physically contiguous space. If CHOP$ was called with the D 
register set to -1 (0377), and the LRN in the LFT has not been 
changed, a call to CLOSE$ will delete the entire file and remove 
its entry from the directory. 

After the file has been truncated, if necessary, CLOSE$ then 
writes the copies of the protection bits and old file length limit 
field that are in LFT entry back into the directory. Therefore, 
one only needs to change these entries in the LFT and then close 
the file to have them changed in the directory. This action is 
the basis for the functioning of the CHOP$ and PROTE$ routines. 
Since the protection bits and old file length limit field are not 
changed on the disk until the CLOSE$ routine is called, if one 
changes these numbers and then, for some reason, reloads the 
system without calling the CLOSE$ routine (by rebooting the system 
before the file is closed, for example) the disk will retain the 
old values. 

If deallocation of file space (CHOP$) is to be used following 
a protection change (PROTE$), the file must be CLOSEd and 
re-OPENed. 

51-12 

DE 
LC 
CALL 
LC 
CALL 

NAME 
-1 
OPEN$ 
1 
PROTE$ 

DISK OPERATING SYSTEM 

FILE NAME 
DRIVE 
OPEN THE FILE 
CHANGE PROTECTION 
CHANGE PROTECTION 



NAME 

CALL 
DE 
LC 
CALL 
DE 
CALL 
CALL 

DC 

CLOSE$ 
NAME 
-1 
OPEN$ 
-1 
CHOP$ 
CLOSE$ 

'SCRATCH TXT' 

NOW, SET THE PROTECTION 
RE-OPEN THE FILE 

CHOP THE FILE 

AND DELETE IT. 

FILE NAME TO BE DELETED 

After the protection and file length limit have been stored 
in the directory, CLOSES then vacates the LFT entry specified by 
storing an 0377 in the second byte of the entry (this is the drive 
number and 0377 denotes that the LFT entry is not in use). CLOSE$ 
siffiply returns if the LFT entry is not in use. 

Entry point: 01077 

Parameters: B = LFN (16,32,48; 0 => NOP) 

Exit conditions: B = LFN; other registers indeterminate 

Traps: none 

51.6.6 CHOP$ - Delete Space in a File 

CHOPS sets the LFT entry to deallocate file space following 
the given LRN. If the CLOSES routine is called after the call to 
CHOPS without the LRN being changed, the space after the specified 
LRN will be physically deleted from the file, making it free again 
for allocation by the system. Note that if the D register is set 
to -1 (0377) upon entry to CHOPS, calling the CLOSES routine will 
completely delete the file from the system (removing its entry 
from the directory as well as freeing all of its space). When an 
entry is deleted from the directory, all sixteen bytes of the 
directory for that entry are set to 0377 (value set by the system 
generation program for unused directory entries). 

Remember that calling CHOPS only affects the LFT entry and 
that no physical change on the file is effected until CLOSE$ is 
called. 

CHAPTER 51. SYSTEM ROUTINES 51-13 



Entry point: 01102 

Parameters: B = LFN 
DE = LRN if D not 0377 
D = -1 (0377) to delete entire file 

Exit conditions: B = LFN; other registers indeterminate 

Traps: RANGE 
DVIOLA 
~~VIOLA 

DE was not less than MAXLRN. 
Delete protection is set. 
Write protection is set. 

51.6.7 PROTE$ - Change the Protection on a File 

PROTE$ changes the file protection bit and/or upper file 
length limit copies that are kept in the LFT. The protection 
bits, given in the C register, are changed only if the least 
significant bit of the C register is a one. The old upper file 
length limit field is changed only if the sign bit of D is one on 
entry. Therefore, setting the number to zero prevents the limit 
field from being changed. The file length field is obsolete and 
is no longer used by the DOS; it is maintained for future use. 

Remember that calling PROTE$ only affects the LFT entry and 
that no physical change on the file is effected until CLOSE$ is 
called. 

En try po in t : 

Parameters: 

01105 

B = LFN 
C = new protection: 

CO = 1 for protection change 
C6 = 1 for write protection 
C7 = 1 for delete protection 

DE = new LRN limit field; 0 for no change 

Exit conditions: B = LFN; other registers indeterminate 

Traps: none 

51-14 DISK OPERATING SYSTEM 



51.6.8 POSIT$ - Position to a Record within a File 

POSIT$ positions the file logically to the user LRN given. 
If the LRN given is -1, the current value in the LFT is used for 
positioning and the LFT entry is not changed. Positioning to LRN 
zero performs a logical "rewind" of sequential files. 

Entry point: a 111 a 

Parameters: B = LFN 
DE = LRN (use LRN from LFT if DE = -1) 

Exit conditions: B = LFN 
D = Physical Disk Address MSB 
E = Physical Disk Address LSB 
ZERO FALSE: DE are valid, position was valid 
ZERO TRUE: DE are invalid, specified sector not 

in allocated space 
other registers indeterminate 

Traps: none 

51.6.9 READ$ - Read a Record into the Buffer 

READ$ causes the record pointed to by the LRN in the LFT 
entry specified by the LFN given, to be transferred from the disk 
to the disk controller buffer that corresponds to the LFN given. 
The LRN is incremented by one after the read if it was successful. 
If a parity fault is detected READ$ performs four to ten retries 
before giving a parity trap. Attempting to read a record that is 
not physically allocated will cause a RANGE trap. 

En try po in t : 01113 

Parameters: B = LFN 

Exit conditions: B = LFN; other registers indeterminate 
LRN = LRN + 1 if successful 

Traps: RANGE 
RPARIT 
FORMAT 
OFFLIN 

LRN specified was out of range. 
Record was unreadable. 
PFN or LRN in record is incorrect. 
Drive is off-line. 

CHAPTER 51. SYSTEI1 ROUTINES 51-15 



51.6.10 WRITE$ - Write a Record from the Buffer 

WRITE$ first takes the PFN and LRN values from the 
appropriate LFT and stores them into the first three bytes of the 
disk controller buffer that corresponds to the LFN given. It then 
transfers that buffer to the disk sector specified by the LRN. 
The LRN is incremented after the write if it is successful. If a 
parity fault is detected, WRITE$ tries up to ten times to obtain a 
good write before giving an error indication. 

If WRITE$ tries to write a record beyond the space already 
allocated to the file, it will automatically attempt to allocate 
more space. If the space is available, it is allocated and the 
write occurs. If there is no more physical space on the disk or 
if there are no more entries in the RIB available for the new 
segment descriptor, a SPACE trap occurs. 

En tr y po in t: 01116 

Parameters: B = LFN 

Exit conditions: B = LFN; other registers indeterminate 
LRN = LRN + 1 if successful 

Traps: WVIOLA 
WPARIT 
OFFLIN 
RANGE 
SPACE 

File is write protected. 
Write/verify failure occurred. 
Drive is off-line. 
LRN specified was less than zero. 
Explained above. 

51.6.11 GET$ - Get the Next Buffer Character 

The LFT contains an entry called BUFADR (not to be confused 
with location 026 used by GETNCH) which points to a character in 
the disk controller buffer that corresponds to the given LFN. 
Each buffer contains 256 characters, but since the system uses the 
first three bytes in each sector to store the PFN and the LRN of 
each record, the user has only~253 bytes available. 

Whenever READ$, WRITE$, or POSIT$ are executed, they set 
BUFADR to point to the third byte in the disk controller buffer 
(by setting the BUFADR field of the LFT entry to a three). 
Whenever GET$ is called, the byte pointed to by this pointer is 
fetched from the disk controller buffer and the pointer is 
incremented. If the byte being returned is not a valid user data 
byte (that is, BUFADR was 0, 1, or 2 on entry) then Carry is true 
on return, and register A contains the specified byte of the 

51-16 DISK OPERATING SYSTEM 



buffer (which will be the PFN or one of the LRN bytes). The next 
buffer is not read autbmatically from the disk; the pointer simply 
ends-around. Upon the first call of GET$ which returns Carry 
true, the PFN will be obtained since it is contained in buffer 
location zero. A byte may also be accessed by simply setting 
BUFADR to the desired location. 

En try po in t: 01121 

Pararneters: B = LFN 

£xit conditions: A = the byte obtained from the buffer 
all other registers preserved 
Carry true if location 0, 1, or 2 accessed 

Traps: none 

51.6.12 GETR$ - Get an Indexed Buffer Character 

GETR$ is similar to GET$ except that it uses the logical 
buffer address supplied in the C register instead of the physical 
buffer address in the LFT for the address of the disk buffer byte 
to return. Calling GETR$ has no effect on the buffer pointer kept 
in the LFT. The physical buffer location is obtained by adding 
three to the value given in the C register to skip past the system 
data in the first three bytes in the disk buffer. Thus the user 
is presented with a logical space within a record that is 
addressed from 0 through 252. Normally, GETR$ exits with the 
value in the C register incremented by one and the carry condition 
false. However, if the C register is between 253 and 255 
(inclusive) upon entry, it will not be incremented and exit will 
be made with the Carry condition true. In either case, the buffer 
byte located by the C register value plus three is returned in the 
A register. Therefore, the user may obtain any buffer byte with 
GETR$ but ~ust remember to supply an address which is the physical 
buffer address minus three and remember not to assume that the C 
register will be incremented if he plans to access one of the 
first three physical bytes. 

Entry point: 01124 

Parameters: B = extended LFN 
C = buffer location 

Exit conditions: A = byte obtained 
C = C + 1 if carry false 
Carry true if 252 < C < 256 

CHAPTER 51. SYSTE["I ROUTINES 51-17 



all other registers preserved 

Traps: none 

51.6.13 PUT$ - Store into the Next Buffer Position 

PUT$ is similar to GET$ except that the byte presented in the 
A register on entry is stored into the buffer. Also, on return 
register A contains the physical address of the next byte to be 
accessed in the disk buffer. Carry is true if the byte stored was 
placed into the last physical location in the buffer. In 
standard, EDIT-format records, the last two bytes (at least) of 
the buffer are not used, and an 03 occurring earlier in the sector 
must indicate logical end-of-sector. (A complete description of 
the format for DOS text files can be found in the appendix 
describing Disk Data Formats.) 

Entry point: 

Parameters: 

01127 

A = the byte to be stored in the buffer 
B = LFN 

Exit conditions: A as described above (physical address of next 
byte) 

Traps: 

all other registers preserved 
Carry true if location 255 was the destination 

byte. 

none 

51.6.14 PUTR$ - Store into an Indexed Buffer Position 

PUTR$ is identical to GETR$ except that the byte presented in 
the A register is stored into the buffer. 

Entry point: 

Parameters: 

01132 

A = byte to be written 
B = extended LFN 
C = logical buffer location 

Exit conditions: C = C + 1 if carry false 
Carry true if 252 < C < 256 
all other registers preserved 

Traps: none 

51-18 DISK OPERATING SYSTEM 



51.6.15 BSP$ - Backspace One Physical Sector 

BSP$ decrements the LRN in the LFT entry specified by the LFN 
given and then executes POSIT$. No check is made to prevent BSP$ 
from backing into a RIB. However, if one calls BSP$ and attempts 
to backspace back beyond system LRN 0 (user LRN -2, which is the 
master RIB) ZERO TRUE ~.jill be returned (as for POSIT$). 

En tr y po in t : 01135 

Parameters: B = LFN 

Exit conditions: B = LFN; other registers indeterminate 
ZERO FALSE: valid backspace 

Traps: 

ZERO TRUE: invalid backspace (attempt to 
backspace past master RIB) 

none 

51.6.16 BLKTFR - Transfer a Block of Memory 

BLKTFR moves the number of bytes specified in the C register 
(0 causes transfer of 256 bytes) from the memory locations 
starting from the address in HL to the memory locations starting 
at the address in DE. Since exit is made with HL and DE pointing 
after the last byte moved and C equal to zero, transfers of more 
than 256 bytes may easily be made. Set C to the residual number 
of bytes to be moved (number of bytes modulo 256), call BLKTFR to 
move the residual number of bytes, then call BLKTFR again enough 
times to move the necessary number of 256-byte blocks. For 
example: 

HL 
DE 
LC 
CALL 
CALL 
CALL 

SOURCE 
DEST 
25 
BLKTFR 
BLKTFR 
BLKTFR 

Point to source string 
Point to destination string 
Set residual number 
Move 25 bytes 
Move 256 bytes 
Move 256 bytes 

will cause 537 bytes to be transferred from SOURCE to DEST. 

Entry point: 

Parameters: 

01143 

C = number of bytes to be moved 
(0 moves 256 bytes) 

HL = source address 
DE = destination address 

CHAPTER 51. SYSTEM ROUTINES 51-19 



Exit conditions: HL = HL + C (HL + 256 if C = 0) 
DE = DE + C (DE + 256 if C = 0) 
B = unchanged 
C = zero 

Traps: none 

51.6.17 TRAP$ - Set an Error Condition Trap 

There are eight non-fatal error conditions, concerning the 
disk operating system file handling facilities, that may be 
trapped by the user. If the trap corresponding to a certain error 
is not set by TRAP$, the system displays a pertinent message and 
reloads the system if the trap occurs. If the trap is set, 
control is transferred to the address specified when the trap was 
set, with the subroutine return address stack in the state it had 
before the calling of the file handling routine that caused the 
error condition. 

The only disk errors that cannot be trapped are those 
associated with the system tables on the disk. The occurrence of 
these errors causes the message 

FAILURE IN SYSTEM DATA 

to be displayed. Other errors that cannot be trapped have to do 
with the LFT entry not being open when a routine which tried to 
use data from the entry was called, invalid logical file numbers, 
invalid drive numbers, invalid trap numbers, and invalid physical 
file numbers. 

If a trap occurs during a call to READ$ or WRITE$, the LRN in 
the LFT is not incremented; if the user wishes to continue 
processing "records past the one which caused the trap, he must 
increment the LHN in the LFT himself. 

TRAP$ sets the trap whose number is given in the C register 
to the address supplied in the D register (MSB) and E register 
(LSB). The trap is cleared by calling TRAP$ with D and E equal to 
zero. The trap is also cleared when the error condition occurs, 
at which time the B register will be loaded with the Logical File 
Number involved and control transferred to the indicated address~ 

In the following table, the mnemonic given after the trap 
number is the one used in the previous routine explanations. The 
capitalized lines are the messages displayed if the trap is not 
set. 

51-20 DISK OPERATING SYSTEM 



0 - RPARIT - PARITY FAILURE DURING READ 
A parity fault while reading a data record causes this 
trap. 

1 - WPARIT - PARITY FAILURE DURING WRITE 
A parity fault while writing a data record causes this 
trap. 

2 - FORMAT - RECORD FORMAT ERROR 
The physical file number or logical.record number in the 
record read not matching the ones contained in the logical 
file table entry causes this trap. The physical position 
of a record is obtained from information in the Retrieval 
Information Block (RIB) and the PFN and LRN in the record 
are only checked to ensure that the drive is functioning 
correctly and that the user is not trying to read a record 
he has not written. This trap has nothing to do with the 
format of the 253 data bytes provided to the user. 

3 - RANGE - RECORD NUMBER OUT OF RANGE 
During a read, an access below system LRN zero or to a 
record above the currently allocated space causes this 
trap. During a write, an access below system LRN zero 
causes this trap. 

4 - WVIOLA - WRITE PROTECT VIOLATION 
An attempt to write on, delete, or shorten a file with the 
write protection bit set causes this trap. 

5 - DVIOLA - DELETE PROTECT VIOLATION 
An attempt to delete or shorten a file with the delete 
protection bit set causes this trap. 

6 - SPACE - FILE SPACE FULL 
An attempt to allocate more space when either the disk is 
full or no more segment descriptor slots in the RIB are 
available causes this trap. 

7 - OFFLIN - DRIVE OFF LINE 
An attempt to use a drive that is either physically absent 
or not online causes this trap. 

The causes given for the various traps are the causes for DOS 
to issue the appropriate messages. Some of the DOS Command 
programs also cause the issuance of some of these messages for 
related reasons. For example, several DOS Utilities indicate a 
RECORD FORMAT ERROR if the sector formatting of a file being 
processed does not follow GEDIT (or DOS EDIT) standards. In such 

CHAPTER 51. SYSTEM ROUTINES 51-21 



cases the above details are sometimes not valid descriptions of 
the problem; in this example the 253 data bytes encountered may be 
the cause of the record format error. 

In addition, FORMAT and RANGE traps are frequently the result 
of sequentially reading or otherwise processing a file which has 
no valid EOF, resulting in the program reading past the logical 
end of the fi Ie. 

Entry point: 

Parameters: 

01146 

DE = trap address 
C = trap number 

Exit conditions: register contents indeterminate 

Traps: none 

51.6.18 EXIT$ - Reload the Operating System 

EXIT$ closes any logical files (one through three) that are 
open and then reloads the operating system. EXIT$ is the normal 
exit for all DOS programs. 

If MCR$ (01400) contains exactly two forward arrows "»,, 
followed by a command line, followed by an 015, the command 
interpreter will be reloaded, and the command line in Iv1CR$ will be 
scanned and executed. 

Consider a program that is to terminate and begin a 
predefined procedure. If the procedure is a chain procedure file 
PROC1/TXT, the program can simply place the following string in 
memory starting at MCR$: 

»CHAIN PROC1(015) 

then, JMP EXIT$. This method is easier to work with than a series 
of programs linked by LOAD$ or RUN$, and has the advantage of 
reloading DOS, so its routines are available for later programs. 
If a progra~ is set for automatic execution (via the AUTO command) 
the auto-execute will be performed before the command line left in 
MCR$ will be acted upon. 

En try po in t : 0 1 1 5 1 

Parameters: none 

51-22 DISK OPERATING SYSTEM 



Exit conditions: no exit 

Tr aps : none 

51.6.19 ERROR$ -- Reload the Operating System 

ERROR$ is identical to EXIT$ in all respects except that 
jumping to ERROR$ will abort an active CHAIN (refer to the CHAIN 
command in this manual for more details). A user program would 
exit through ERROR$ if an error of severity suggesting aborting a 
CHAIN occurred. 

En try po in t : 01140 

Parameters: none 

Exit conditions: no exit 

Traps: none 

51.6.20 WAIT$ -- DOS Wait-a-While "NOP" Routine 

This routine, after being called, returns with all registers, 
condition codes, and the stack preserved; in effect a "NOP". 
Normally, the return is immediate. This routine should be used in 
loops which wait for conditions that are not time-critical to 
occur (for example, waiting for the keyboard operator to release 
the DISPLAY key). 1/0 status, including in particular the device 
addressed, is subject to change on return. 

En try po in t : 01170 

Parameters: none 

Exit Conditions: registers and condition codes unchanged 

Traps: None 

CHAPTER 51. SYSTEM ROUTINES 51-23 



51.1 Keyboard and Display Routines 

51.1.1 DEBUG$ - Enter the Debugging Tool 

The debugging tool enables the programmer to load files by 
number, examine and modify memory locations, set breakpoints, and 
execute sections of his program. This facility greatly simplifies 
the task of debugging machine language programs. 

The debugging tool can be entered from the command 
interpreter by entering a single pound sign (#) on the command 
line or from the user's program by jumping to the entry point. 
When debug is executing, two numbers are displayed vertically in 
the last column of the screen. The five-digit top number is an 
address and the three-digit bottom number is the contents of that 
address. After these numbers are displayed, input is requested 
from the keyboard as indicated by a flashing cursor. Commands to 
the debugger are given in the form <n>X where <n> is any number of 
octal digits and X is a command character. The command is 
executed immediately upon depression of the command character key 
without waiting for the ENTER key (the ENTER character is a 
command in itself). 

All keys that are not recognized are ignored, with a beep 
signaling the rejection. The BACKSPACE key is ignored, but since 
commands use only the lower eight or sixteen bits of <n>, errors 
in the entry of numbers can be corrected by striking several zeros 
and then entering the correct digits. Alternatively, the CANCEL 
key causes the current input line to be erased without changing 
the current address. Although display stops if the cursor runs 
off the screen during input, characters are still accepted. 

The debugger maintains a current address that is usually 
displayed as the five digit number at the right of the screen. 
There are times, however, when the five digits at the right of the 
screen do not reflect the current address and caution must be 
exercised to avoid confusion as to the value of the current 
address. The ENTER key is normally used to change the current 
address, but depressing it without preceding it with any digits 
will cause the current address to be displayed. Therefore, if 
there is any doubt about the number being displayed on the screen, 
simply depressing the ENTER key will ensure that the current 
address is being displayed. 

Whenever the debugger is entered either from a jump to the 
entry point or from a return from a breakpoint or call command, a 

51-24 DISK OPERATING SYSTEM 



beep is given and the state of all of the alpha mode registers and 
condition flags is saved. The value initially displayed is the 
top of the stack at entry, unless DEBUG was entered from a DOS 
DEBUG breakpoint; in this case the address displayed is the 
address where the breakpoint was set. In all cases, the stack is 
preserved as at entry and the current address is set to the 
address displayed at entry. This display enables the user to 
observe the state of his program when the debugger was entered. 
Whenever a memory location is called or jumped to, the state of 
all of the alpha mode registers and condition flags is restored 
from the values saved at entry. Since these values are saved in 
memory, the programmer can simply modify these locations to change 
the values used to initialize the state of the alpha machine 
before control is transferred. 

A major debugging technique is to set breakpoints at critical 
places in the prograrn and execute portions of the program while 
checking the values of the registers and critical memory locations 
at each break. The debugger sets a breakpoint by storing a jump 
instruction to a special entry point within itself in the current 
address and the following two locations. (Notice that setting 
breakpoints less than three bytes apart is therefore not a good 
idea.) Before the jump is stored, the contents of the memory 
locations to be used are saved in a table in the debugger. When 
the breakpoint is reached, the memory locations are restored with 
their original contents. A maximum of four breakpoints may be 
active at anyone time. A command is provided to insure that all 
breakpoints have been restored. When a breakpoint is executed, 
the current address is set to the first byte of the breakpoint 
jump instruction. Since the J command causes a jump to the 
current address if no digits precede it, one can continue 
execution of the routine that was broken by simply depressing the 
J key. Execution will continue with the first byte that was 
overstored by the breakpoint jump with the state of the alpha 
machine exactly like it was before the break occurred. Thus, the 
programmer can set a breakpoint, start execution, examine the 
registers when the break occurs (since register viewing does not 
change the current address) and then depress the J key to continue 
execution. This technique allows him to practically single step 
his program. 

ENTRY POINT: 01154 

COMI'1AN DS: 

B - Set a breakpoint at the location given or, if no number is 
given, at the current address. Caution should be exercised to 
insure that the current address is pointing to the desired 

CHAPTER 51. SYSTEM ROUTINES 51-25 



location if it is used. 

C - Execute a call to the number given or, if no number is given, 
to the current address. The alpha machine state is loaded 
from the values saved in the debugger before the call is 
executed. A return to the call causes the debugger to be 
re-entered and the alpha machine state to be saved. 

D Decrement the current address (any digits given are ignored). 

G - Get the physical file specified from the disk. Care must be 
exercised that a file is not loaded that will overlay the 
debugger (locations 0-01377 and 06000-07377). If the file 
does not exist or contains a record of illegal loader format, 
a beep will be given. The first digit of the last four 
entered is the logical drive number from which the file is to 
be loaded. The following three digits are the physical file 
number. For example, 02003G will load SYSTEM3/SYS from drive 
two. To load PFN 0115 from drive 0, simply enter 115G. 

I - Increment the current address (any digits given are ignored). 

J Execute a jump to the number given or, if no number is given, 
to the current address. The alpha machine state is loaded 
from the values saved in the debugger before the jump is 
executed. 

M - Modify the contents of the current address. The least 
significant eight bits of the octal number given before the 
command character are used for the new memory value. If no 
digits are given, a zero is assumed. 

P - Turn on the P-counter display (to the left of the current 
address). This display is a foreground driven routine which 
takes the value of the P-counter when the interrupt occurred 
and displays it vertically. This implies that the value shown 
is the background P-counter at 32 millisecond sample points. 
When the display is active, simultaneous depression of the 
KEYBOARD and DISPLAY keys will cause the debugger to be 
entered regardless of what is currently being executed in the 
background. When such entry occurs, the current address points 
to the location where the background program was interrupted 
so that execution can be resumed with the J command. 

R - Display the saved alpha mode register value. The registers 
are referenced by number (O-A, 1-B, 2-C, 3-D, 4-E, 5-H, 6-L, 
and 7-Conditions). The condition code is stored with bits 
1=Carry, 6=Sign, bits 5 through 2 always zero, 1=(-Zero and 

51-26 DISK OPERATING SYSTEM 



-Sign), and O=(-Zero and -Parity). (The easiest way to 
understand this is to realize that the condition code as 
displayed, added to itself, results in restoring all four 
conditions to their entry values.) When a register is 
displayed, the address shown is the memory location used to 
store the value of that register. This does not, however, 
affect the current address. The registers may be initialized 
for a C or J command by simply storing into the memory 
locations displayed when the registers are displayed. 

x - Turn off the P-counter display. 

# - Clear all breakpoints. The current address will reflect the 
location of the last point cleared . 

. - Perform the M command followed by the I command. 

CANCEL - Erase the entered number without changing the current 
address. 

ENTER - Change the current address to the digits entered. If no 
digits are entered, the current address in effect will be 
displayed. 

51.7.2 KEYIN$ - Obtain a Line from the Keyboard 

KEYIN$ obtains a string of characters from the keyboard, 
displaying them on the screen and storing them in memory as they 
are entered. When KEYIN$ is called, the cursor is turned on and 
characters requested. Backspacing off the beginning of the line, 
entering more than the specified maximum number of characters, or 
running off the screen is prevented. The routine turns off the 
cursor and returns when the ENTER key is depressed. 

CHAPTER 51. SYSTEM ROUTINES 51-27 



Entry point: 

Parameters: 

01157 

C = maximum number of characters accepted 
(including ENTER) 
D = initial horizontal cursor position 
E = vertical cursor position 
HL=> input buffer 

Exit conditions: String terminated by 015 
HL=> 015 in input buffer 
D = horizontal position of ENTER 
E = unchanged 
C = 0 
B = undefined 

51.7.3 DSPLY$ - Display a Line on the Screen 

DSPLY$ displays a string of characters stored in memory onto 
the screen. Certain characters denote control functions according 
to the following table: 

003 - end of string 
011 - new horizontal position follows 
013 - new vertical position follows 
015 - end of string with CR/LF 
021 - erase to end of fra~e 

022 - erase to end of line 
023 - roll up one line 

If the string to be displayed starts with either or both 
horizontal or vertical cursor controls, then either or both of the 
corresponding values need not be in D or E at entry. If the 
cursor is not positioned on the screen with DE or 011 and 013 the 
results of 021, 022, or 023 are undefined. 

Entry point: 

Parameters: 

01162 

D = initial horizontal cursor position 
E = initial vertical cursor position 
HL => string in memory 

Exit conditions: DE = cursor position after the last. 
character displayed 

51-28 

HL :> byte after the string terminator 
A,B,C undefined 

DISK OPERATING SYSTEM 



CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 

The page of memory 1 oc a ted bet ween 07400 and 077'77 con ta ins a 
special loader and overlay area. This "loader" can load anyone 
of up to 255 DOS overlays, each up to 124 bytes long. The loader 
resides in the first harf of the page and the overlays all load 
into the second half of the same page. The overlays reside on 
disk in physical file '7, called SYSTEM7/SYS. The design of the 
DOS FUNCTION loader is such that overlays are loaded only if 
necessary; that is, if the same overlay is called several times in 
sequence, it is not reloaded each time. The overlays provide the 
DOS assembly language programmer with many useful utility 
functions. Parameterization of DOS FUNCTIONs varies with the 
individual functions, the only basic requirement being that upon 
entry to the DOS FUNCTION loader, the A register contains the 
function number (1-255). Use of functions not yet installed will 
produce indeterminate results, such as format traps, range traps, 
processor halts, and the like. DOS FUNCTIONs are normally loaded 
from the SYSTE['17/SYS on the booted drive, or may come from the 
memory resident overlays if available (see UTILITY/OVL). 

Upon the first call to DOSFNC (the DOS FUNCTION loader), 
SYSTEM7/SYS is opened as LFO and the LFT entry saved within the 
DOS FUNCTION loader. Upon subsequent calls to DOSFNC, the entry 
is simply moved back into the LFT, eliminating the need to re-open 
SYSTEM7/SYS each time a function is loaded. The file is only 
closed by reloading DOS, either by depressing RESTART or by a 
program passing control to 800T$, EXIT$, or ERROR$. 

Since new DOS functions will be added as necessary the 
following descriptions should not be considered exhaustive. 

En tr y po in t : 07400 

Parameters: A = Function number (1-0377) 
Others required by individual functions 

Exit conditions: Defined separately for each function. 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-1 



52.1 FUNC1 - Retrieve Directory and C.A.T. Addresses 

Uniform attributes for all subfunctions 

On entry, A = function nu~ber (1) 
C = subfunction number (0,1,2,3,4,5,6,7) 

On exit, B,C,H,L all unchanged 
CARRY FALSE: successful completion 
CARRY TRUE: invalid subfunction number 

All other entry/exit parameters and conditions are 
described seperately for each individual subfunction. 

DOS FUNCTION: SUBFUNCTION: o 

Return the address of a specified directory sector in DE. 

On entry, B = directory sector number (0-15) OR 
PFN of entry in the directory sector 

On exit, A indeterminate 
DE = PDA of specified directory sector. 

DOS FUNCTION: SUBFUNCTION: 

Return the two-byte physical disk address for each of the 16 
master directory sectors, into a 32-byte work area provided by the 
user. 

On entry, 
On exit, 

52-2 

HL =>32-byte work area to receive the PDA's 
all registers preserved 
User-provided work area contains 16 PDA's, 
one corresponding to each prime directory 
sector, in ascending order (LSB,MSB). 

DISK OPERATING SYSTEM 



DOS FUNCTION: SUBFUNCTION: 2 

Return the two-byte physical disk address of each of the 16 
directory sector backups, in ascending order, into a 32-byte 
user-provided work area. 

On entry, 
On ex it, 

DOS fUNCTION: 

HL => 32-byte work area to receive the PDA's 
all registers preserved 
User-provided work area contains 16 PDA's, 
one corresponding to each backup directory 
sector, in ascending order (LSB,MSB). 

SUBFUNCTION: 3 

Return the physical disk address of the Cluster Allocation 
Table (CAT) in the DE register pair. 

On entry, 
On ex it, 

DOS FUNCTION: 

no further conditions 
A indeterminate 
DE = POA of prime CAT 

SUBFUNCTION: 4 

Return the physical disk address of the backup Cluster 
Allocation Table (CAT) in the DE register pair. 

On entry, 
On ex it, 

no further conditions 
A indeterminate 
DE = PDA of backup CAT 

CHAPTER 52. DOS FUNCTION FACILITY (OOSFNC) 52-3 



DOS FUNCTION: SUBFUNCTION: 5 

Return the physical disk address of the lockout CAT. 

On entry, 
On ex it, 

DOS FUNCTION: 

no further conditions 
A indeterminate 
DE = PDA of lockout CAT 

SUBFUNCTION: 6 

Return the physical disk address of the lockout CAT backup. 

On entry, 
On ex it, 

DOS FUNCTION: 

no further conditions 
A indeterminate 
DE = PDA of lockout CAT backup 

SUBFUNCTION: 7 

Return the address of a backup directory sector (in DE). 

On entry, 

On ex it, 

52-4 

8 = backup directory sector number (0-15) 
or PFN of a file entry contained therein 
A indeterminate 
DE = PDA of backup directory sector 

DISK OPERATING SYSTEM 



52.2 FUNC2 - Retrieve Directory Sector or Filename 

Uniform attributes for all subfunctions 

On entry, 

On exit, 

A = function number (2) 
C = subfunction number (0,1,2) 
all registers preserved 
CARRY TRUE: error or invalid subfunction number 

All other entrylexit parameters and conditions are 
described separately for each individual subfunction. 

DOS FUNCTION: 2 SUBFUNCTION: o 

Read in the directory sector containing the 16-byte directory 
entry corresponding to the PFN given, on a specified logical 
drive. 

On entry, 

On exit, 

DOS FUNCTION: 

B = LFN as per DOS standard; (0, 16, 32, 48) 
D = PDN (logical drive number of file) 
E = PFN 
CARRY FALSE: Selected directory sector is in 

buffer specified, which is the 
selected buffer upon exit. 

CARRY TRUE: 1/0 error, further defined 
as follows: 

ZERO FALSE: Specified drive is off-line 
ZERO TRUE: Unable to read sector due to CRCC 

error during read, or unrecoverable 
failure to find sector. 

2 SUBFUNCTION: 

Get the 16-byte directory entry corresponding to a specified 
PFN on a given logical drive. 

On entry, B = LFN as per DOS standard; (0, 16, 32, 48) 
o = PDN (logical drive number of file) 
E = PFN 
HL => 16-byte area to receive the entry 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-5 



On exit, 

DOS FUNCTION: 

CARRY FALSE: Entry is in user's area. 
CARRY TRUE: 1/0 error, further defined 

as follows: 
ZERO FALSE: Specified drive is off-line. 
ZERO TRUE: Unable to read sector due to CRCC 

error during read, or unrecoverable 
failure to find sector. 

2 SUBFUNCTION: 2 

Get namelext (prn) for a specified numbered file on a 
specified logical drive. (Same basic format as used by DOS CAT 
co:nmand) . 

On entry, 

On exit, 

8 = LFr~ as per DOS standard; (0, 16, 32, 48) 
D = PDN (logical drive number of file) 
E = PFN 
HL => 20 byte area to receive the entry 
CARRY FALSE: User's 20-byte area contains 

the name, extension and PFN of the 
specified file, for example: 
E D I TIC ~1 D (0 3 rr ) 
where the right parenthesis is followed 
by an 003. 
U~LESS ZERO TRUE: 

Implies that the file number 
specified does not exist. 

CARRY TRUE: 1/0 error, further defined 
as f0110\;.[s: 

ZERO FALSE: Specified drive is off-line. 
ZERO TRUE: Unable to read sector due to CRCC 

error during read, or unrecoverable 
failure to find sector. 

NOTICE: The use of this subfunction only (of those in DOS 
fUNCTION 2) -requ ir es --thatthe-DOS command in ter pr eter 
be present (the com,.nand interpreter resides from 
013400-01'1000) • 

52-6 DISK OPERATING SYSTE~ 



52.3 FUNC3 - Retrieve RIB Information 

Uniform attributes for all subfunctions: 

On entry, A = function number (3) 
C = subfunction number (0,1,2,3) 

All other entry and exit parameters and conditions are 
described separately for each individual subfunction. 

DOS FUNCTION: 3 SUBFUNCTION: o 

Return the number of sectors allocated to a file on disk. 

On entry, 

On exi t, 

DOS FUNCTION: 

B = drive number (same as C as provided for OPEN$) 
DE = proper OPEN$ parameters defining the file 

to be accessed. 
CARRY FALSE: successful completion 

HL = length of file (MSB,LSB) in sectors 
RIB for file specified is in LFO 
disk buffer. 

CARRY TRUE: Error occurred, anyone of: 

3 

OPEN failed on file specified; 
unable to read RIB; 
parity or drive off-line. 

SUBFUNCTION: 

Get the RIB for a specified file into the LFO disk buffer. 

On entry, 

On ex it, 

B = drive number (same as C as provided for OPEN$) 
DE = proper OPEN$ parameters defining the file 

to be accessed. 
all registers preserved 
CARRY FALSE: successful completion 

RIB for file specified is in 
LFO disl< buffer. 

CARRY TRUE: Error occurred, anyone of: 
OPEN failed on file specified; 
unable to read RIB; 
parity or drive off-line. 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-7 



DOS FUNCTION: 3 SUBfUNCTION: 2 

Read a RIB for a file, given the first two bytes of the 
directory entry. 

On entry, B = drive number (same as C as provided for OPEN$) 
D = RIB pointer, (MSB) from directory, or LFT 
E = RIB pointer, (LSB) from directory, or LFT 

On exit, all registers preserved 
CARRY FALSE: successful completion 

RIB for file specified is in 
LFO disk buffer 

CARRY TRUE, ZERO F ALS E: Specified drive is off-line. 
CARRY TRUE, ZERO TRUE: Parity error occurred during 

DOS FUNCTION: 3 SUBFUNCTION: 3 

Return segment descriptor information from a RIB. 

On entry, 

On ex it, 

RIB is in LfO disk buffer. 
BUFADR field in LFO LFT entry points to 
segment descriptor 
LFO buffer unchanged. 
CARRY TRUE: successful completion 

A = starting cyl. number for segment 
B = starting cluster number for segment 
DE = number of sectors in the segment 
BUFADR points to next segment 

descriptor. 
RIB undisturbed 

CARRY FALSE: BUFADR pointed after logical 
end of RIB; 
BUFADR contents undefined. 

52-8 DISK OPERATING SYSTEM 

read. 



52.4 FUNC4 - Retrieve DOS Configuration Information 

Uniform attributes for all subfunctions: 

On entry, 

On ex it, 

A = function number (4) 
C = subfunction number (O,n) 
A = DOS configuration value 
CARRY FALSE: successful completion 
CARRY TRUE: possibly invalid subfunction number 

Different subfunction numbers return different DOS 
configuration bytes. These values, returned in A, are numeric 
items which change in value depending upon which DOS is runnin3;. 
The subfunction numbers, along with the significance of the 
returned value, are: 

o - Letter of this DOS (A,B,C,D,etc.) 
1 - DOS Version ('2' typ.) 
2 - DOS Revision ('5' typ.) 
3 - Total number cylinders on disk (203 typ.) 
4 - Maximum Logical Drive (3,15 typ) 
5 - Year of Compilation (79 typ) 
6 - Day of Compilation (130 typ) 
7 - Cluster Mask (0340 typ) 
8 - Increment Cluster number (040 typ) 
9 - Sector Mask (037 typ) 
10 - Maximum Sector Number in PDA (23 typ) 
11 - Number of Sectors/Cluster (3,6,24 typ) 
12 - Number of Clusters/Cylinder (4,8 typ) 
13 - Number of Clusters/Track (1,4 typ) 
14 - Number of Functions in SYSTEM7 (24 typ) 
15-17 (Unused) 
18 - DOS Pre-release (040 if released) 
19 - DOS Maintenance Release (040 if none) 
20-24 (Unused) 
25 - Get VOLID address into (DE) 
26 - no longer valid 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-9 



52.5 FUNC5 - Request Access to System Tables 

This function is used when running under the Partition 
Supervisor (PS). This function must be called before and after 
any changes are made to the system tables on any drive. 

Uniform attributes for all subfunctions: 

On entry, A = function number (5) 
C = subfunction number (0,1) 

All other entry and exit parameters and conditions are described 
seperately for each individual subfunction. 

DOS FUNCTION: 5 SUBFUNCTION: o 

Request exclusive update permission to system table sectors 
on disk. 

On entry, 
On exit, 

DOS FUNCTION: 

D = physical drive (PON) of drive 
CARRY FALSE: successful completion 

Exclusive use of specified drive 
guaranteed. 

CARRY TRUE: Error occurred. 

5 SUBFUNCTION: 

Release exclusive update authority for system table sectors 
on disk. 

On entry, 
On exit, 

52-10 

D = physical drive (PDN) of drive 
CARRY FALSE: successful completion 

Exclusive use of specified drive 
released. 

CARRY TRUE: Error occurred. 

DISK OPERATING SYSTEM 



52.6 FUNC6 - Keyboard / Display Interface Routines Function 

Uniform attributes for all subfunctions: 

On entry, A = function number (6) 
C = subfunction number (0-11) 

On ex it, CARRY TRUE: illegal subfunction 

All other entry and exit parameters and conditions are described 
sepatately for each individual subfunction. 

DOS FUNCTION: 6 SUBFUNCTION: o 

Check the status of the KEYBOARD and DISPLAY keys. 

On entry, 
On ex it, 

DUS FUNCTION: 

no further conditions 
SIGN TRUE: KEYBOARD key pressed 
PARITY TRUE: DISPLAY key pressed 
all registers preserved 

6 SUBFUNCTION: 

Check for character ready. 

On entry, 
On exi t, 

DOS FUNCTION: 

no further conditions 
ZERO TRUE: No character present 
ZERO FALSE: Ready to get character 
all registers preserved 

6 SUBFUNCTION: 2 

Get a character from the Keyboard. 

On entry, 
On ex it, 

DE = horizontal, vertical screen coordinates 
ZERO TRUE: no character present 
all registers preserved 
ZERO FALSE: character in the A register 
all other registers preserved 

DOS fUNCTIOfJ: 6 SUBFUNCTION: 3 

Write the character in the B register to the screen. 

On entry, DE = horizontal, vertical screen coordinates 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-11 



On exit, 

DOS fUNCTION: 

B = character to be written to screen 
CARHY TRUE: D or E out of range 
all registers preserved 
CARRY fALSE: character written 
all registers preserved 

6 SUBFUNCTION: 4 

Return the HOME-UP position in DE. 

On entry, 
On exit, 

DOS fUNCTION: 

no further conditions 
DE = address of top line / left colu:nn of CRT 
all other registers preserved 

6 SUBFUNCTION: 5 

Return the HOME-DOWN position in DE. 

On entry, 
On exit, 

DOS FUNCTION: 

no further conditions 
DE = address of bottom line / left column of CRT 
all other registers preserved 

6 SUBfUNCTION: 6 

Turn on the Cursor. 

Un entry, 
Un exit, 

DOS FUNCTION: 

DE = horizontal, vertical screen coordinates 
all registers preserved 

6 SUBFUNCTION: 7 

Rollup the screen 1 line. 

Un entry, 
On exit, 

DOS FUNCTION: 

DE = horizontal, vertical screen coordinates 
all registers preserved 

6 SUBfUNCTION: 8 

Erase from cursor position to end of frame. 

On entry, 
On exit, 

DE = horizontal, vertical screen coordinates 
all registers preserved 

DISK OPERATING 3YSTEM 



DOS FUNCTION: 6 SUBFUNCTION: 9 

Erase from cursor position to end of line. 

On entry, 
On ex it, 

DOS FUNCTION: 

DE = horizontal, vertical screen coordinates 
all registers preserved 

6 SUBFUNCTION: 10 

Rolldown the screen 1 line. 

On entry, 
On exit, 

DOS FUNCTION: 

DE = horizontal, vertical screen coordinates 
CARRY TRUE: illegal operation for this device 
all registers preserved 
CARRY FALSE: screen rolled down 1 line 
all registers preserved 

6 SUBFUNCTION: 11 

Turn off the Cursor. 

On entry, 
On exit, 

DE = horizontal, vertical screen coordinates 
all registers preserved 

CHAPTER 52. DOS FUNCTIbN FACILITY (DOSFNC) 52-13 



52.7 FUNC7 - Test the Disk Buffer Memory 

Disk buffer memory test function. 

This DOS FUNCTION performs a rotating, cycling test of the 
disk controller buffer memories. It returns upon the keyboard 
becoming .READ READY, or upon encountering a buffer failure, 
whichever occurs first. 

On entry, 
On exit, 

52-14 

no special conditions 
all registers preserved 
ZERO TRUE: buffer memory test normal 
ZERO FALSE: failure in buffer memories 

DISK OPERATING SYSTEM 



52.B FUNeB - Timed Pause 

Pause function. 

This DOS FUNCTION provides the user program with a timed 
pause. The requested pause may be up to approximately four hours 
long. 

On entry, 

On exit, 

B = foreground process number to use (0-7) 
CDE = number of milliseconds to pause 

(C ~ most signifigant, E = least signifigant) 
all registers preserved 

Note that if foreground process nu~bers 4-7 are used, the 
wait time is effectively multiplied by four, allowing a maximum 
wait time in excess of eighteen hours. Also note that the time 
required to start up the DOS FUNCTION is not considered part of 
the time paused. Since the DOS FUNCTION mayor may not be 
resident when called, this function may wait longer than the 
quantity in CDE and therefore must not be used for timing 
extremely critical, short term intervals. 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-15 



52.9 FUNC9 - Non-Sharable Resource Status Request 

This DOS FUNCTION is used to allocate and de-allocate a 
system resource. Typically, this function is used when a program 
is going to run under the Partition Supervisor (PS). The use of 
this function will prevent conflicting use of 1/0 devices by the 
programs running in the two partitions. For example, the DOS 
utilities that use the printer (LIST, FILES, etc.) all call this 
function before they use the printer. Then, if a DATASHARE print 
statement is executed in the other partition, the listings will 
not be intermixed. 

Uniform attributes for all subfunctions: 

On entry, A = function number (9) 
C = subfunction number (0,1) 

All other entry and exit parameters and conditions are described 
separately for each individual subfunction. 

DOS FUNCTION: 9 SUBFUNCTION: o 

Request use of a non-shareable system resource (printer, tape 
drive, and so on). 

On entry, 

On Exit, 

52-16 

B = Resource Number 
o - Local Line Printer 
1 - Servo Printer 
2 - (Un-defined) 
3 - (Un-defined) 
4 - Cassette Tape Decks 
5 - 7 or 9 Track Tape 
6 - Multiport Comm Box 1 (all ports) 
7 - Multiport Comm Box 2 (all ports) 

CARRY TRUE, ZERO TRUE: Permission to use granted. 
CARRY TRUE, ZERO FALSE: Error occurred. 
CARRY FALSE, ZERO TRUE: Already allocated to same 

partition. In this case, the device 
may be used, but must not be deallocated 
when finished. 

CARRY FALSE, ZERO FALSE: Already allocated to other 
partition. 

DISK OPERATING SYSTEM 



DOS FUNCTION: 9 SUBFUNCTION: 

Release non-sharable resource for use by next party. This 
subfunction should be called after a process receiving access to a 
resource using subfunction zero has received CARRY TRUE, ZERO TRUE 
return, and finishes using the resource it wanted to use. 

The only status returned by subfunction one that is likely to 
change upon waiting is CARRY FALSE, ZERO FALSE. In this case, the 
program wishing to release the resource should wait, perhaps five 
seconds (use function 8), and then retry the request. Any other 
status is not subject to change. 

This subfunction cannot be used to test for printer busy, 
since if an invoking progra~ in the same partition had allocated 
the device, the test would release it, possibly resulting in 
losing the device to a competing partition. 

Indefinite postponement can be prevented by always allocating 
non-sharable resources in descending numerical sequence (when ffiore 
than one non-sharable resource is needed at the same time). 

On entry, 
On exit, 

all parameters identical to those for subfunction 0 
CARRY TRUE: error 
CARRY FALSE, ZERO TRUE: released 
CARRY FALSE, ZERO FALSE: Resource was in use by different 

partition, therefore not released. 

CHAPTER 52~ DOS FUNCTION FACILITY (DOSFNC) 52-17 



52.10 FUNC10 - Partition Information Function 

This function is used to qualify a program to run in a 
"fixed" partition under the Partition Supervisor (PS), and to 
provide DOS/PS partition configuration information. 

Uniform attributes for all subfunctions: 

On entry, A = function number (10) 
C = subfunction number (0,1) 

All other entry and exit parameters and conditions are described 
separately for each individual subfunction. 

DOS FUNCTION: 10 SUBFUNCTION: 0 

Authorize invoking program to execute in a fixed type 
partition. 

On entry, 
On ex it, 

DOS FUNCTION: 

C = subfunction number (0) 
no signific~nt conditions 

10 SUBFUNCTION: 

Provide DOS/PS configuration infor~ation. 

On entry, 
On exi t, 

52-18 

C = subfunction number (1) 
HL => configuration list 

The list may not be modified and is 
guaranteed only until the next call to any 
system routine. List format described below. 

BYTE 0: partition ID 

BYTE 1: 
BYTE 2: 
BYT E 3: 
BYTE 4: 

Space if not running under PS, otherwise, 
a unique identifier. 
region size - in number of K (16, 48, etc) 
number of disk buffers (4, 16, etc) 
. . .. • .. 1 implies fixed parti tion 
multiport 1/0 bus address for console on port 
(0 implies console on port not active) 

BYTE 5: multiport port select code of console port 
(only if byte 4 is non-zero) 

DISK OPERATING SYSTEM 



52.11 FUNC11 RAM Screen Loader 

Uniform attributes for all subfunctions: 

On entry, A = function number (11) 
C = subfunction number (0,1,2) 

All other entry and exit parameters and conditions are described 
separately for each individual subfunction. 

DOS FUNCTION: 11 SUBFUNCTION: 0 

Load one or more character combinations into the RAM display 
character generator. 

On entry, B = default first character to be loaded 
HL = starting address of character set definition 

list 

The list consists of consecutive entries of either five or six 
bytes each. The first byte, if present, indicates the 7-bit 
character combination whose bit pattern definition follows. The 
presence of the first byte is indicated by its sign bit being set. 
If the first byte of the first entry is not present, the 7-bit 
character value in the B register is used instead. The definition 
list may contain any mixture of six-byte and five-byte entries. 
The end of the list is indicated by an 0200. This implies that 
the bit combination displayed for a binary zero cannot be imbedded 
in a list, but can only appear at its beginning; null lists are 
not allowed. The five data bytes following represent the five 
columns of bits for each displayed character and can each have 
values of 0 (a blank column) to 0177 (a vertical line). The 0100 
bit is at the top of the character displayed; the 1 bit is on the 
bottom row of the displayed character. 

On exit, CARRY F~LSE, ZERO FALSE: RAM display not 
present 

CARRY FALSE, ZERO TRUE: normal completion 
CARRY TRUE: error (should not occur) 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-19 



DOS FUNCTION: 11 SUBFUNCTION: 

Load a single character combination to RAM display. 

On entry, 

On exit, 

B = default character to be loaded 
HL = address of five-byte or six-byte bit pattern 
definition 

The first byte, if present, takes precedence 
over the character indicated by the B 
register. Presence of the first byte is 
indicated by the sign bit being set. 

CARRY FALSE, ZERO FALSE: RAM display not 
present 
CARRY FALSE, ZERO TRUE: normal completion 

DOS FUNCTION: 11 SUBFUNCTION: 2 

Subfunction two requests reloading of the standard character 
set on program termination. Calling this subfunction will result 
in the standard DOS character set being reloaded upon the next 
entry to DOS$. Entry to the DOS at DOS$ is the result of transfer 
of control to EXIT$, 800T$, ERROR$ as well as DOS$. Return to the 
DOS via NXTCMD, CMDAGN, and CMDINT do not result in the display 
being immediately reloaded, (but it eventually will be reloaded 
upon subsequent entry at DOS$ as described). 

52-20 DISK OPERATING SYSTEM 



52.12 FUNC12 - Enable Memory Resident Overlays 

This function enables memory resident overlays and DOS 
Functions if running on DOS.D, DOS.E, or DOS.G. The UTILITY/OVL 
file will be loaded and use of its memory resident overlay code 
will begin. If the memory resident overlays cannot currently be 
loaded (PSACT or NETACT bits of DOSFLAG set, or UTILITY/OVL not 
present) then this function performs no action. 

On entry, A = function number (12) 
C = subfunction nu~ber (0) 

On exit, all registers indeterminate 
$MEMU bit of DOSFL2 on if successful 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-21 



52.13 Overlay Loader (FUNC-13,14,15) 

DOS functions 13, 14 and 15 are used to load "overlay 
libraries". Using these functions, one need only have a single 
directory entry for a program and its associated overlays (called 
"members"). The overlay library format is described in detail in 
the library utility program User's Guide (LIBSYS), since that 
program is responsible for creating and maintaining libraries. 
Program libraries can be either absolute or relocatable code. 

Function 13 performs a library lookup by name. 

Function 14 actually performs the library load from an 
absolute library. 

Function 15 performs the library load from a 
relocatable library. 

Below is an example of the use of these DOS functions in 
loading an absolute program overlay. In the example, the "root" 
program has several overlays; the root program was invoked from 
the keyboard by entering "FLX/ABS". 

52-22 DISK OPERATING SYSTEM 



HL 
DE 
LC 
CALL 

LFT+LFO 
SAVELFT 
16 
BLKTFR 

Save opened LFT entry 
(FLX/ABS) 
16 bytes 

. To lookup the member named "FLXOAW": 

NAfv1LOD LA 
DE 
HL 
CALL 
JTC 
JUMP 

13 
OVLNAM 
SAVELFT 
DOSFNC 
ABORT 
LOAD 

Prepare to lookup by name 

Lookup by name 
True Carry is error. 
(DE contains LRN if Carry False) 

. To actually load the absolute file (and execute it): 

LOAD 

SAVELFT 
OVLNAM 

LA 
HL 
CALL 
JTC 

PUSH 
RET 

SK 
DC 

14 
SAVELFT 
DOSFNC 
ABORT 

16 
'FLXOAW 

Prepare to load the file 

Load starting at LRN (DE) 
True Carry is error. 
(HL is transfer address if Carry False) 
Push entry point onto stack 
and transfer control there 

LFT save area 
8-byte name 

Note: All lookups (FUNC13) should be done first, and then all 
loads (FUNC14 or FUNC15) so functions will not be reloaded 
as often. 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-23 



52.14 FUNC-13 Overlay Lookup By Name 

Return the LRN of library member <name>, pointed to by DE 
into DE. 

On entry, 

On ex it, 

52-24 

A = function number (13) 
DE => address of 8-byte file name 
HL => 16-byte save area of user opened LFT 

(not LFO) 
CARRY TRUE: name not found 
CARRY FALSE: 

A = library type (see LIBSYS User's Guide) 
BC = undefined 
DE = LRN (LSB,MSB) of library member 
HL = entry value of DE + 8 

DISK OPERATING SYSTEM 



52.15 FUNC-14 Load Absolute Library Member 

Load the absolute member beginning at LRN given in DE. 

On entry, 

On ex it, 

A = function number (14) 
DE = LRN (LSB,MSB) of member to be loaded. 
HL => 16-byte save area of user opened LFT 

(not LFO) 
CARRY TRUE: unloadable file 
CARRY FALSE: 

A,B,C,D,E undefined 
HL = transfer address of member 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-25 



52.16 FUNC-15 Relocatable Loader 

DOS Function 15 uses the file UTILITY/LNK to perform the 
actual loading procedure. This function uses memory from 06000 
through 07377 in addition to the DOS Function loader area from 
07400 through 07777. Uniform attributes for all subfunctions: 

On entry A = function number (15) 
B = LFN of opened relocatable library 
C = subfunction number (0 or 1) 

All other entry and exit parameters and conditions are described 
separately for each individual subfunction. 

DOS FUNCTION: 15 SUBFUNCTION: o 

Return the size of relocatable member into DE. 

On entry 
On exit 

DOS FUNCTION: 

DE => LRN 0 of library member (from DOSFNC 13 typically) 
CARRY TRUE: invalid library format 
CARRY FALSE: 

C,H,L undefined 
A = revision level of member 

(for UTILITY/REL members only) 
B = entry value 
DE = program length (LSB,MSB) 

15 SUBFUNCTION: 

Load a relocatable library member. 

On entry 

On exit 

52-26 

HL => address of parameter list (defined below) 
DE => LRN 0 of library member (from DOSFNC 13 typically) 
CARRY TRUE: link error 
CARRY FALSE: 

A,C = undefined 
B = unchanged 
DE = next available address 
HL = transfer address 

DISK OPERATING SYSTEM 



Parameter table for DOS FUNCTION 15 SUBFUNCTION 1: 

0-1 origin address (LSB,MSB) 
2-3 address of external reference work area terminated by 000 

0377,0377 implies no work area, that is no external references. 

4-5 

Example: RPT 20 

address of 
0377 , 031'7 
Example: 

DC 'bbbbbbbb' ,*-1 
DC 0 

external definition work area terminated by 000 
implies no work area, that is no external definitions. 

RPT 20 
DC 'bbbbbbbb' ,*-1 
DC 0 

6-7 LRN (LSB,MSB) of relocatable module 

CHAPTER 52. DOS FUNCTION FACILITY (DOSFNC) 52-27 



52.17 FUNC-16 Disable Memory Resident Overlays 

This function disables usage of memory resident overlays 
(UTILITY/OVL) enabled by DOS Function 12. Uniform attributes for 
all subfunctions: 

On entry, A = function number (16) 
C = subfunction number (0 or 1) 

All other entry and exit parameters and conditions are described 
separately for each individual subfunction. 

DOS FUNCTION: 16 SUBFUNCTION: o 

Stop using overlays. 

On entry, 
On exi t, 

DOS FUNCTION: 

no special conditions 
all registers and conditions indeterminate 
$MEMU bit of DOSFL2 cleared 

16 SUBFUNCTION: 

Memory resident overlays overstored; stop using overlays. 
Caution: do not overstore system RAM (0160000 to 0167377) until 
~fter calling this function. 

On entry, 
On ex it, 

52-28 

no special conditions 
all registers and conditions indeterminate 
$MEMU bit of DOSFL2 cleared 
$MEMD bit of DOSFL2 set 

all registers and conditions indeterminate 

DISK OPERATING SYSTEM 



CHAPTER 53. CASSETTE HANDLING ROUTINES 

Standard record formats, identifiers, and file marker record 
conventions on cassettes are established by the Cassette Tape 
Operating System (CTOS). Routines capable of dealing with 
cassettes in a manner compatible with eTOS are provided as part of 
the Disk Operating System to enhance its overall capability. For 
detailed information on cassette format and organization, see the 
Cassette Tape Operating System Manual. 

All of the DOS cassette routines are foreground driven and 
are among the few routines within the DOS which make use of the 
foreground handling facility. Being foreground driven, however, 
does not alter the manner in which the routines are handled since 
all interfacing between the background and foreground is handled 
by the system. It does allow increased speed of operation with 
the cassettes since the user may be processing one record while 
another is being read from or written to the tape. This is 
evident in the way the DOS slews the tape when transferring 
information between it and the disk. 

Some of the cassette handling routines initiate foreground 
action and then return immediately to the user while others wait 
for I/O completion. All of the routines wait for any uncompleted 
I/O to finish before starting something new. In the cases of 
reading or writing on the same deck, requesting the next operation 
before the completion of the first will cause the tape to 
automatically slew instead of stopping between records. Slewing 
occurs only in the case of a read followed by another read or a 
write followed by another write on the same deck. The only cases 

'where caution must be exercised are in the read and write routines 
which return immediately after starting the I/O operation. If the 
user does not wait for transfer to complete, he might accidentally 
attempt to use the data before it is completely read or change the 
data before it is completely written. In the second case, records 
with incorrect parity will usually be generated. Routines are 
provided, however, which automatically wait for transfer to 
complete, relieving the user of concern for the fact that the 
routines are foreground driven if he has no need for the 
advantages. 

The various error conditions associated with cassette 
handling can be trapped by the user. If a trap is not set and an 
error occurs, an error message similar to messages generated by 
eTOS \lill be displayed and the DOS reloaded. If the trap has been 

CHAPTER 53. CASSETTE HANDLING ROUTINES 53-1 



set, execution will jump to the address specified and the trap 
will be cleared. The traps are identified in the error message by 
a letter similar to the CTOS identification. In the relevant 
cases, the same letter is used in the DOS as is used in the CTOS. 
In the following routine descriptions the relevant letter will be 
given in the 'Traps' section. 

Most of the cassette routines are parameterized by a deck 
number given in the B register. This number is a zero for the 
rear deck and a one for the front deck. The cassette handler 
routines use interrupt slot 1 for their foreground process. 

53.1 TPBOF$ - Position to the Beginning of a File 

TPBOF$ positions the cassette in the specified deck to the 
specified file. The search for the file marker of the desired 
file is started with backward motion of the tape. If a marker of 
lower value than the file number requested or the beginning of the 
tape is encountered, the search will be reversed to forward motion 
of the tape. If then a marker of larger value than the file 
number requested, the end of the tape, or a record of 
unrecognizable format is encountered, an error G will be given. 
Otherwise, the file is left positioned before the first data 
record. 

Entry point: 010000 

Parameters: B = deck number 
C = physical file number (0-0177) 

Exit conditions: none 

Traps: D 
G 

Unrecognizable record found. 
File could not be found. 

53.2 TPEOF$ - Position to the End of a File 

TPEOF$ moves the tape forward until the next file mark is 
found. It then backspaces the tape one record to leave it at the 
end of the current file. 

Entry point: 010005 

Parameters: B = deck number 

53-2 DISK OPERATING SYSTEM 



Exit conditions: none 

Traps: D 
E 

Unrecognizable record found. 
End of tape encountered. 

53.3 TRW$ - Physically Rewind a Cassette 

TRW$ rewinds the cassette on the selected deck by first 
slewing backwards to ensure that the tape is not on the trailer 
and then performing a hardware rewind. 

Entry point: 010012 

Parameters: B = deck number 

Exit conditions: none 

Traps: none 

53.4 TBSP$ - Physically Backspace One 

TBSP$ simply executes a hardware backspace function. No 
checking is performed on the data passed over. However, 
backspacing onto clear leader causes an end of tape trap. 

Entry point: 010017 

Parameters: B = deck number 

Exit conditions: none 

Traps: E Beginning of tape encountered. 

53.5 TWBLK$ - Write an Unformatted Block 

TWBLK$ writes the specified number of bytes (0 causes 256 to 
be written) from the memory buffer specified onto the cassette in 
the deck specified. Only the bytes specified will be written on 
the tape. 

En try po in t : 010024 

Parameters: B = deck number 
C = number of bytes to write (0 for 256) 

CHAPTER 53. CASSETTE HANDLING ROUTINES 53-3 



HL => start of buffer 

Exit conditions: none 

Traps: E 
Z 

End of tape encountered. 
Premature deck ready status occurred. 

53.6 TR$ - Read a Numeric eTOS Record 

TR$ reads a record of eTOS numeric format into the memory 
locations specified. The length of the record is stored in the 
specified memory location and the data bytes are stored in the 
locations that follow. Return is made from TR$ as soon as the 
read operation is started but the user cannot use the data until 
the operation has been completed (see TCHK$). One way to check 
for operation completion is to call TR$ again with a different 
buffer as its parameter. Return from the second call will be made 
as soon as the first operation is completed. This is the 
mechanism via which multiple buffering is normally achieved. Note 
that tape motion will not cease if TR$ is called within five 
milliseconds of the end of the previous record. 

If parity problems arise, TR$ tries up to 5 times to read the 
tape before giving a parity failure trap. Other traps given are 
end of tape and end of file. If an end of file trap is given, the 
tape is positioned before the file marker. 

Entry point: 010031 

Parameters: B = deck number 
HL => data storage location 

Exit conditions: none 

Traps: D 
E 
F 

Parity failure occurred. 
End of tape encountered. 
End of file encountered. 

53.7 TREAD$ - TR$ and Wait for the Last Character 

TREAD$ performs the TR$ function and then waits for the last 
character to be read from the tape. This routine should be used 
when multiple buffering iSjnot being performed since it relieves 
the user from having to explicitly wait for the last character to 
be read. 

53-4 DISK OPERATING SYSTEM 



Entry point: 010034 

Parameters: same as for TR$ 

Exit conditions: none 

Traps: same as for TR$ 

53.8 TW$ - Write a Numeric eTaS Record 

TW$ writes the specified memory locations in a record of 
standard eTaS numeric format. It uses (for parity generation) the 
three locations preceeding the memory location specified which 
contains the number of bytes to be written and is followed by that 
number of data bytes. 

TW$ returns as soon as the write operation is started. The 
user must be careful not to change any of the memory locations 
given as parameters before the last byte has been transferred. 
This can be achieved by either calling TCHK$ and waiting for 
completion status or calling TW$ with the next buffer if multiple 
buffering is being used. Note that tape motion will not cease if 
TW$ is called before the middle of the IRG is reached from the 
previous write (140 milliseconds after the last character is 
written when using a 7.5 ips deck). 

Entry point: 010037 

Parameters: same as for TR$ 

Exit conditions: none 

Traps: E 
Z 

End of tape encountered. 
Premature deck ready status occurred. 

53.9 TWRI'P$ - TW$ and Wait for the Last Character 

TWRIT$ executes the TW$ routine and then waits for the last 
byte to be written on the tape. This routine should be used when 
multiple buffering is not being performed since it relieves the 
user from having to explicitly wait for the last byte to be 
written. 

En tr y po in t: 010042 

Parameters: same as for TR$ 

CHAPTER 53. CASSETTE HANDLING ROUTINES 53-5 



Exit conditions: none 

Traps: same as for TW$ 

53.10 TFMR$ - Read the Next File Marker 

TFMR$ reads the tape until a file marker record is found. A 
trap occurs if a record is encountered that is neither a file 
marker nor a eTaS numeric data record. 

Entry point: 010045 

Parameters: B = deck number 

Exit conditions: C = PFN of file marker 

Traps: 

Tape positioned after marker record. 

D 
E 

Unrecognizable record found. 
End of tape encountered. 

53.11 TFMW$ - Write a File Marker Record 

TFMW$ writes a file marker record that contains the number 
specified. 

Entry point: 010050 

Parameters: 8 = deck number 
e = PFN to be written 

Exit conditions: none 

53-6 DISK OPERATING SYSTEM 



Traps: E 
Z 

End of tape encountered. 
Premature deck ready status occurred. 

53.12 TTRAP$ - Set an Error Condition Trap 

TTRAP$ allows the user to trap the various errors associated 
with cassette 1/0. If the trap is not set and an error occurs, an 
er ror message of the fo rrn 

*** ERROR X ON DECK Y *** 
will be displayed, where X is one of the letters shown below and Y 
is a 1 for the rear deck and a 2 for the front deck. The trap is 
specified by a number according to the following table: 

3 - D - Parity failure occurred. 
4 - E - End of tape encountered. 
5 - F - End of file encountered. 
6 - G - File could not be found. 

In addition, error Z (which cannot be trapped) indicates that the 
deck ready status bit came true while a record was being written. 
This status implies that the write routine fell behind in writing 
characters and most probably indicates that the foreground 
interrupt handling was disrupted in some fashion (interrupts were 
disabled too long or an interrupt driven routine was running which 
imposed too much overhead). It may also be caused by the tape 
being write protected (left rear tab punched out). 

Traps are cleared by setting their addresses to zero. When 
the event which causes a trap occurs, that trap is cleared and 
control passed to the address indicated with the deck number in 
the B register (0 for rear and 1 for front deck). 

Entry point: 010053 

Parameters: C : trap nu~ber (above) 
DE: trap address (0 clears trap) 

Exit conditions: none 

Traps: none 

CHAPTER 53. CASSETTE HANDLING ROUTINES 53-7 



53.13 TWAIT$ - Wait for lID Completion 

TWAIT$ waits for any tape operation active to complete. This 
does not mean that physical motion has stopped since TR$ and TW$ 
indicate IIO completion when the last character has been 
transferred. It does mean that all data is free to be processed 
by the user. TWAIT$ also executes any traps pending upon the 
completion status being set. 

Entry point: 010056 

Parameters: none 

Exit conditions: B, C, D, and E registers preserved 

Traps: Any trap pending will be executed. 

53.14 TCHK$ - Get lID Status 

TCHK$ sets the tape demand flag in the' Carry condition flag 
and loads the tape handling status in the A register. The 
handling status codes are as follows: 

000 PBOF in progress 
002 PEOF in progress 
004 - Rewind in progress 
006 - Record read in progress 
010 - Backspace in progress 
012 - File mark read in progress 
014 - Record write in progress 

377 - Normal completion 
206 - Parity error 
210 - End of tape 
212 - End of file 
214 - File not found 
262 - Premature deck ready status 

53-8 DISK OPERATING SYSTEM 



Normal use of the cassette routines will not require the user to 
deal with these status codes or even use the TCHK$ routine. They 
are provided here to facilitate understanding the listing of the 
routines. 

Entry point: 010061 

Parameters: none 

Exit conditions: Carry condition = demand flag 
A = status code (above) 

Traps: none 

CHAPTER 53. CASSETTE HANDLING ROUTINES 53-9 



CHAPTER 54. COMMAND INTERPRETER ROUTINES 

This section deals with a series of routines within the 
command interpreter. Note that these routines are only available 
for use if the user program does not overlay the command 
interpreter, which resides in locations 013400-016717. 

The first four of these entry points are more like "exit 
points", since they are places in the DOS to which users may 
return instead of EXIT$. The primary advantage to using them 
instead of EXIT$ is that none of these four entry points results 
in the DOS being reloaded, a process which takes significant time. 
Since these entry points do not reload the DOS, programs which 
exit through CMDINT, DOS$, CMDAGN, or NXTCMD must not have 
overstored any part of the DOS; that is they should reside only in 
locations 017000 up\vards. Also, these "exit points" do not clear 
any traps that the user may have set; the~efore the user should 
clear any traps he has set before exiting in this manner. If this 
is not done, the system will most likely go astray upon the first 
subsequent occurrence of a trapped situation. 

Most of the other routines documented in this section are 
routines which are used by one or more of the DOS command programs 
supplied either on the DOS Generation or DOS Utilities tapes. 
Since these routines are in the command. interpreter's entry point 
table and are used by some of the DOS commands, they are 
documented here primarily for the sake of completeness. 

54.1 CMDINT - Return & Scan MCR$ line 

CMDINT closes files 1-3 if necessary and processes MCR$ just 
as it would a command line entered by an operator at the keyboard. 
(This results in executing the program indicated by the command 
line.) 

Entry point: 01165 

Parameters: MCR$ (an 80 byte area of memory starting at 01400) 
should contain a string resembling a command line 
terminated with a 015. 

Exit conditions: Does not return 

CHAPTER 54. COMMAND INTERPRETER ROUTINES 54-1 



54.2 DOS$ - Return & Display Sign On 

DOS$ first loads the RAM screen, if available, with the 
character set contained in SYSTEM6/SYS (or CHARSET/SYS if it 
exists). Once the RAM display has been loaded, it is not reloaded 
until either another bootstrap from cassette, or the appropriate 
DOS function is invoked by a DOS program. 003$ then causes any 
program which has been AUTOed to be executed. If no programs are 
set for auto-execution, the DOS sign-on is displayed, files 1-3 
are closed if necessary, and the familiar "READY" message is 
displayed. Any traps set by the user program (via TRAP$) are not 
cleared unless the DOS is reloaded. This implies that if a user 
program sets any of the traps and wishes to return via DOS$, 
NXTCMD, or CMDAGN, it must first clear any traps it has set to 
prevent the DOS from going astray. DOS$ is the normal starting 
point of the DOS when a bootstrap operation or a jump to 800T$, 
EXIT$, or ERROR$ occurs. 

En try po in t : 013400 

Parameters: none 

Exit conditions: Does not return 

54.3 NXTCMD - Return and Dislay "READY" 

NXTCMD causes files 1-3 to be closed and displays the 
familiar DOS "READY" message. 

Entry point: 013403 

Parameters: none 

Exit conditions: Does not return 

54.4 CMDAGN - Return & Give Message 

CMDAGN causes files 1-3 to be closed and displays a 
user-supplied message before returning to the command interpreter. 
CMDAGN causes termination of an active chain and is intended as an 
error exit. 

Entry point: 013406 

Parameters: HL => DSPLY$-format string 
DE unused; string should position cursor 

54-2 DISK OPERATING SYSTEM 



Exit conditions: Does not return. 
DOS CHAIN facility aborts if active. 

54.5 GETSYM - Get Next Symbol 

GETSYM causes the symbol pointed to by INPTR to be scanned 
off and stored in an 8-byte field called SYMBOL located at 013472. 
The symbol (leading spaces are ignored) must contain only upper 
case alphabetic or numeric characters. The first illegal 
character encountered terminates the scan; the illegal, 
terminating character is stored for the user's inspection (at 
SYMBOL+8) and SYMBOL is padded on the right with spaces if 
necessary. If the symbol is longer than eight characters, th~ 
first eight only are used; remaining characters, through the 
terminator, are scanned but not stored. (The terminator is stored 
at SYMBOL+8 in any case.) On exit, INPTR points to the byte 
following the terminator, unless the terminator was an 015 or a 
semicolon, in which case INPTR points to the terminator. 

Entry point: 013411 

Parameters: INPTR, INPTR+1 => beginning of symbol 

Exit conditions: SYMBOL = 8-byte symbol as described above 
A, SYMBOL+8 = terminator character 
INPTR, INPTR+1 => byte after symbol terminator 

(except as noted above) 
all other registers indeterminate 

54.6 GETCH - Get the Next Character 

GETCH obtains the next character pointed to by INPTR and 
returns it in A. On exit, if zero is true, A = 015 or a 
semicolon, and INPTR is not incremented (INPTR is never bumped 
past an 015 or a semicolon); if zero is false, A is not an 015 or 
a semicolon and INPTR is incremented. 

Entry point: 013414 

Parameters: INPTR, INPTR+1 = address of byte (see above) 

Exit conditions: A = character 
ZERO TRUE/FALSE as described above 
INPTR, INPTR+1 = HL+1 if zero false or 

HL if zero true 
C,D,E unchanged 

CHAPTER 54. COMMAND INTERPRETER ROUTINES 54-3 



B indeterminate 

54.1 GETAEN - Get Auto-Execute Physical File Number 

GETAEN returns the physical file number of the file (on the 
logical drive specified in C) which is set to be auto-executed by 
the DOS. 

Entry point: 013417 

Parameters: C = Logical Drive 

Exit conditions: Carry true if 1/0 error reading the CAT 
Carry false: A = auto-execute PFN (O=none) 

Zero true if a-e PFN not set 
Zero false if A is valid a-e PFN 

all other registers indeterminate 

54.8 PUTAEN - Set or Clear a File to be Auto-Executed 

PUTAEN either sets or clears the auto-execute PFN stored in 
the CAT on the disk in the logical drive specified in C. The 
change becomes effective upon the next time DOS is entered at 
DOS$, either by depressing the RESTART key, the auto-restart tab 
being punched out of the rear cassette and the processor halted, 
or jumping to EXIT$, ERROR$, BOOT$, or DOS$. 

Entry point: 

Parameters: 

013422 

A = PFN to be auto-executed (0 to clear) 
C = Logical Drive 

Exit conditions: all registers indeterminate 
Carry true if 1/0 error updating CAT 

54.9' GETLFB - Open the User-Specified Data File 

GETLFB opens logical file specified in B using the file name, 
extension, and drive select code stored in the indicated LFT 
entry, in the normalized form described in the section on the 
Command Interpreter. The extension, if blank, is assumed to be 
"ABS". The logical drive specification field is ignored, since 
the drive select code field is used instead. If an error occurs, 
Carry is true on return and HL points to a DSPLY$-format string 
complete with cursor positioning bytes and one of the following 

54-4 DISK OPERATING SYSTEM 



messages: 

NAME REQUIRED. First byte of name field is blank. 
INVALID DEVICE. Drive specification invalid; select 

code = 0376. 
NO SUCH NAME. File not found; the file must exist. 

Each of the above messages is preceeded by control bytes: 
011,0,013,11,023 and followed by an 015. If carry is false upon 
return, the file named has been successfully opened as the 
requested logical file number. 

En try po in t : 013425 

Parameters: B = LFN 
Other parameters in LFT specified by LFN; see 

above. 

Exit conditions: Carry false: file successfully opened 
all registers indeterminate 
Carry true: OPEN failed 

HL => message 

54.10 PUTCHX - Store the Character in "A" 

PUTCHX stores the A register at the memory location pointed 
to by HL, increments HL, and decrements a byte counter maintained 
in E. 

En try po in t : 

Parameters: 

013433 

HL = address where A is to be stored 
A = byte to be stored at HL 
E = count to be decremented 

Exit conditions: B,C,D unchanged 
E = entry value - 1 
HL = entry value + 1 

CHAPTER 54. COMMAND INTERPRETER ROUTINES 54-5 



54.11 PUTCH - Alternate Version of PUTCHX 

PUTCH is like PUTCHX except it starts by setting the most 
significant bit of A to zero. If A then contains a space (040) 
PUTCH immediately returns with zero true, in which case A is not 
stored, HL is not incremented, and E is not decremented. 

Entry point: 013430 

Parameters: same as PUTCHX 

Exit conditions: same as PUTCHX except as described above 

54.12 PUTNAM - Format a Filename from Directory 

PUTNAM is a routine which extracts a name, extension and 
ph Y sic a I f i len u ill b e r for a d ire c tor yen try and put s the min to a 
place in the command interpreter called "NAME" (located at 013513; 
the field is 19 bytes long and followed by an 03.) Since this 
routine is used by the CAT command, the format of the names 
produced by PUTNAM should be familiar to all DOS users. 

Note that on entry, only the most significant 4 bits of Care 
used, and that CURLOC (location 01340}) is to contain the two-byte 
PDA of the directory sector (LSB, MSB). 

Entry point: 013436 

Parameters: directory sector in the disk buffer 
B = LFN indicating which buffer 
C = PFN of entry being extracted 
CURLOC = PDA of directory sector 

Exit conditions: CURLOC unchanged 
disk buffer unchanged 
B unchanged 
all other registers indeterminate 
ZERO TRUE: file does not exist 

54-6 DISK OPERATING SYSTEM 



54.13 MOVSYM - Obtain the Symbol Scanned by GETSYM 

MOVSYM moves the eight-byte SYMBOL described in the section 
on GETSYM into the eight-byte area pointed to by DE. 

Entry point: 013441 

Parameters: DE = address of user's eight-byte area 

Exit conditions: B unchanged. 
all other registers indeterminate 

54.14 GETDBA - Obtain Disk Controller Buffer Address 

GETDBA extracts the current disk buffer address, in a format 
acceptable to GETR$, from one of the four LFT entries. It does 
this by getting the BUFADR from the specified LFT entry and 
subtracting three from it. On return, H is the address MSB 
pointing into the command interpreter data area. 

Entry point: 013444 

Parameters: B = LFN (0,16,32,48) 

Exit conditions: A = BUFADR as described above 
H as described above 
B,C,D,E unchanged 

54.15 SCANFS - Scan Off File Specification 

SCANFS scans a file specification of the form 
<filename>l<ext>:<drv> pointed to by HL into a 16 byte area 
pointed to by DE. The area pointed to by DE is treated as an LFT 
entry, that is, the first byte is a drive select code (0376 
meaning invalid drive spec, 0377 meaning unspecified drive spec, 
or the binary drive number), the second byte is 0377 indicating 
the file is closed, bytes 3 thru 10 are the file name (blank if 
not given), bytes 11 thru 13 are the extension (blank if hot 
given), and bytes 14 thru 16 are the normalized drive spec (blank 
if not given). The scanned drive spec may be 1 to 8 characters 
long and must be in volid (:<volid» or drive number (:Dn or :DRn) 
form. For a drive number the drive entry must be 2-7 characters 
long, the first character must be "0", the second may be "R", and 
the remaining must be digits. Therefore ":00" and ":DR00014" are 
both legal representations. The normalized represention consists 
of a "D" followed by "R" and the single digit given or "0" 

CHAPTER 54. COMMAND INTERPRETER ROUTINES 



followed by the two digits given; for 'instance, the above examples 
in normalized form would be "DRO" and "D14" respectively. 
Scanning a volid results in the correct drive number being stored 
in the norrl1alized drive spec field. The scan is terminated by any 
non-alphanumeric character other than n.n or "I". 

Entry Point: 013447 

Parameters: DE => "LFT TABLE" entry 
HL => string to be scanned 

Exit Conditions: DE => byte following "LFT TABLE" entry 
HL => byte after terminator (unless 015 or 
in which case it points to terminator) 

54.16 TeWAIT - Test controller memory & wait 

" . " , 

TCWAIT is the point in the COMMAND INTERPRETER where it loops 
testing the disk controller buffer memory while waiting for a 
command to be keyed in. It is only to be used by the CHAIN 
command to trap programs returning to DOS. 

Entry Point: 013452 

Parameters: none 

Exit Condition: Does not return. 

54-8 DISK OPERATING SYSTEM 



CHAPTER 55. USER SUPPORTED INPUT/OUTPUT 

When the user desires to use I/O devices other than the 
keyboard, display, disk, or cassettes, he will use a routine that 
is not part of the operating system. Many of these devices (for 
instance, the communications channel) will be serviced by 
foreground processes which run with interrupts disabled. However, 
if the user does access an I/O device from a background process, 
he must realize that as long as interrupts are enabled, some other 
device can be addressed by a foreground routine. For this reason 
the user must disable interrupts between the time he addresses his 
device and the time he uses it. To reduce the amount of 
foreground processing real time jitter (discussed earlier) as much 
as possible, the aim in writing background I/O routines should be 
to minimize the amount of time that interrupts are disabled. This 
implies that devices accessed from background programs must be 
addressed every time they are used. For example: 

GETBYT EI Enable interrupts in case 
LA DEVADR looping 
01 Disable interrupts 
EX ADR Address the device 
IN Get the device status 
NO 2 Check for required bits 
JTZ GETBYT Wait if not set 
EX DATA Else get the byte 
EI Enable interrupts after 
IN the data input 
RET 

Note that a little cheating on time was done in the interest of 
program length. Since the INPUT in DATA mode was done without 
enabling interrupts, re-disabling them and re-addressing the 
device was not necessary. One should be judicious in the trade 
off employed in exercising this freedom. 

The user must not do I/O to the disk controller from 
foreground-driven routines or results can be unpredictable. The 
DOS disk drivers allow user foreground routines to receive control 
in the midst of a disk I/O operation, under the assumption that 
the foreground routine will not do anything to the disk controller 
which would confuse it. 

CHAPTER 55. USER SUPPORTED INPUT/OUTPUT 55-1 



CHAPTER 56. ERROR MESSAGES 

56.1 System Error Messages 

The following error messages are produced by the DOS system 
routines and may appear during the execution of almost any 
program. 

PARITY FAILURE DURING READ 
A parity fault occurred while a disk data record was 
being read. 

PARITY FAILURE DURING ~RITE 
A parity fault occurred while a disk data record was 
being written. 

RECORD FORMAT ERROR 
The physical file number or logical record number in the 
record read did not match the values contained in the 
logical file table. 

RECORD NUMBER OUT OF RANGE 
The record accessed had a logical record number less than 
zero or, during reads, was outside the physical space 
allocated to the file. 

WRITE PROTECT VIOLATION 
An attempt was made to write on a file that had its write 
protection bit set. 

DELETE PROTECT VIOLATION 
An attempt was made to delete .~ file that had either its 
write or delete protection bit set. 

FILE SPACE FULL 
An attempt wa s mad e to allocate space when ei ther the 
disk was physically full or no more segment descriptor 
slots were available in the RIB for the given file. 

CHAPTER 56. ERROR rv1ESSAGES 56-1 



DRIVE OFF LINE 
The drive went off-line after a file on it was opened. 

LOGICAL FILE NOT OPEN 
An attempt was made to use an entry in the logical file 
table that was not opened for use with some file. 

INVALID LOGICAL FILE NUMBER 
A routine was called with the logical file number 
parameter not 0, 16, 32 or 48. 

INVALID DRIVE NUMBER 
A routine was called with the drive number not zero 
through the defined drive number limit (or 0377, if 
alloHed) . 

INVALID TRAP NUMBER 
The TRAP$ routine was called with a trap number not 
between zero and seven. 

FAILURE IN SYSTEM DATA 
An unrecoverable parity error occurred while the system 
was dealing with one of the disk tables or a retrieval 
information block, or a RIB with incorrect format was 
accessed. 

INVALID PHYSICAL FILE NUMBER 
A physical file number reserved for the system was 
illegally referenced. 

INTERNAL SYSTEM ERROR 
The error message routine was parameterized with an 
invalid error message number. 

ERROR X ON DECK Y 

56-2 

A cassette routine error has occurred. The X indicates 
the type of error according to the following table: 

o - parity error 
E - end of tape 
F - end of file 
G - unfindable file 
Z - write failure 

DISK OPERATING SiSTEM 



56.2 Utility Program Error Messages 

The following messages (listed in alphabetic order) are 
produced by the indicated DOS utility. For a description of the 
error condition and possible corrective action see the individual 
chapter for the utility in use. 
'7' OPTION IS ONLY VALID WHEN COPYING SYSTEM7/SYS 

COpy 
* DRIVE OFF LINE 

SUR 
* DRIVE OFF LINE OR FULL * 

SUR 
* DRIVE OFF-LINE * 

AUTO 
* DRIVE OFFLINE * 

FILES 
* INVALID EXTENSION * 

SUR 
* MAY NOT BE DELETED * 

SUR 
* MAY NOT BE RENAMED * 

SUR 
* PARITY ERROR * 

FILES 
* SYSTEM DATA FAILURE * 

AUTO,CAT,MANUAL,NAME 
* SYSTEM DATA FAILURE ON DRIVE x * 

SUR 
* SYSTEM DRIVE OFF LINE * 

r~ANUAL 
** BAD DATA IN THE SOURCE FILE LINE DIGITS ** 

BLOKEDIT 
** BAD FILE SPECIFICATION ** 

SLOKEDIT 
** BAD LINE NUMBER SPECIFICATION ** 

BLOKEDIT 
** FORMAT OR RANGE ERROR ON SOURCE FILE ** 

BLOKEDIT 
** LINE NUMBER ZERO IS NOT VALID ** 

BLOKEDIT 
** NO VALID SOURCE FILE FOR TRANSFER ** 

BLOKEDIT 
** SOURCE FILE NOT FOUND ** 

BLOKEDIT 
** SOURCE FILE WENT TO EOF ** 

BLOKEDIT 
** START LINE NO. > END LINE NO. ** 

BLOKEDIT 

CHAPTER 56. ERROR MESSAGES 56-3 



*** BAD OPTION FOLLO~ING ; ON COMMAND LINE - IGNORED *** 
BLOKEDIT 

*** COMMAND AND NEW FILE NAMES CAN NOT BE IDENTICAL *** 
BLOKEDIT 

*** COMMAND FILE DRIVE IS INVALID *** 
BLOKEDIT 

*** COMMAND FILE NOT FOUND *** 
BLOKEDIT 

*** DUPLICATE NAME. NOT COPIED. *** 
BACKUP 

*** INCORRECTLY FORMATTED DISK RECORD *** 
MOUT 

*** NEW FILE AND SOURCE FILES CAN NOT BE IDENTICAL *** 
BLOKEDIT 

*** NEW FILE DRIVE IS INVALID *** 
BLOKEDIT 

*** NEW FILE NAME IN USE *** 
BLOKEDIT 

*** NEW FILE NAME IN USE, OVERWRITE IT? ANSWER WITH YES OR NO 
BLOKEDIT 

*** NEW FILE NAME IS REQUIRED *** 
BLOKEDIT 

*** NOT ALL FILES WOULD FIT ON THE CASSETTE *** 
MOUT 

*** THE FILE IS TOO LARGE TO FIT ON THE CASSETTE *** 
MOUT 

*** UNABLE TO OPEN INPUT FILE! *** 
BACKUP 

***END OF TAPE*** 
MIN 

***MISMATCH*** 
MOUT 

***PARITY ERROR - FILE WILL BE DELETED*** 
MIN 

***PARITY ERROR - RECORD MODIFI£D*** 
MIN 

***WRITE PROTECTED*** 
IV1 I N 

*END OF TAPE WHILE WRITING DIRECTORY* 
r~OUT 

*FILE CONTAINS NON-OBJECT RECORD* 
1V10 UT 

*FILE FORMAT ERROR* 
REFORMAT 

*FILE NOT OPEN* 
REFORI"1AT 

*INCORRECTLY FORMATTED SOURCE RECORD* 
MOUT 

56-4 DISK OPERATING SYSTEM 



- ALREADY IN DRIVE x'X SUBDIRECTORY. 
SUR 

- DRIVE x HAS NO SUBDIRECTORY. 
SUR 

- DRIVE x IS A REMOTE ARC VOLUME. 
SUR 

- DRIVE x'S SUBDIRECTORY IS FULL. 
SUR 

- NOT IN DRIVE x'S SUBDIREECTORY. 
SUR 

BAD CLUSTER ALLOCATION TABLE! USE DSKCHECK TO FIX IT. 
BACKUP 

BAD DATE 
1'10UT 

BAD DEVICE SPECIFICATION. 
CHAIN 

BAD DEVICE. 
EDIT 

BAD DOS FUNCTION 
FREE 

BAD DRIVE 
MOUT 

BAD DRIVE SPECIFICATION 
FREE 

BAD EXTENSION (/XTX) FOR SCRATCH. 
EDIT 

BAD FILE FORl'1AT! 
EDIT 

BAD LOADER 
I'10UT 

BAD OPTION PARAMETER 
DUM P , E D IT, f'1 I N 

BAD OPTION PARAMETER. MOUT DISCONTINUED. 
MOUT 

BAD SECOND FILE SPEC! SHOULD BE "Ln" OR "Rn"! 
LIST 

BAD TAPE DIRECTORY 
MOUT 

BLOCK TOO SHORT ON VERIFY 
UBOOT 

BLOCKING FACTOR CONTAINS INVALID NON-NUMERIC DIGITS. 
REFORl'1AT 

BLOCKING FACTOR REQUIRED BUT MISSING OR ZERO FOUND. 
REFORMAT 

BOOT GENERATION ABORTED - TRY AGAIN? 
UBOOT 

BOOTED DRIVE IS ILLEGAL OUTPUT DURING REORG. 
BACKUP 

CHAPTER 56. ERROR t'1ESSAGES 56-5 



BOTH SOURCE AND SCRATCH FILES CANNOT BE SAME. 
EDIT 

CAN'T FIND FILE xxxxxxxx/xxx MEMBER xxxxxxxx 
FIXAPPLY 

CASSETTE NO LONGER IN PLACE 
UBOOT 

CASSETTE WRITE PROTECTED 
UBOOT 

CHAIN OVERLAY MISSING. 
CHAIN 

CHAINING ABORTED - ABTIF - ERROR BIT ON. 
CHAIN 

CHAINING ALREADY ACTIVE. 
CHAIN 

COMMAND LINE ERROR: 015 MISSING 
REFORMAT 

CONDITION SPECIFICATION ERROR. 
CHAIN 

CONFLICTING OPTIONS SPECIFIED. 
FILES 

CORRECT FORMAT IS: PUTVOLID <VOL-ID><:DRIVE>;<OWNER-ID> 
PUTVOLID 

CRC ERROR ON DRn 
PUTVOLID 

CYLINDER ZERO OF BACKUP DISK IS UNUSABLE! 
BACKUP 

DECK ERROR (DECK READY DURING WRITE) 
UBOOT 

DIRECTORY FULL 
MOUT 

DISK EOF BEFORE TAPE EOF. 
MOUT 

DISK FILE CONTAINS NON-OBJECT RECORD. 
MOUT 

DISK FILE CONTAINS NON-TEXT RECORD. 
f-10 UT 

DISK OFFLINE 
DUMP 

DISK SECTOR CRCC ERROR 
DUI-1 P 

DISK SECTOR FORt."AT ERROR 
DUMP 

DOS FUNCTION 15 ERROR 
FILES 

DRIVE OFF LINE 
DSKCHECK,KILL 

DRIVE xx OFFLINE! 
BACKUP 

56-6 DISK OPERATING SYSTEM 



DRn OFF-LINE 
PUTVOLID 

DUPLICATE KEY: 
INDEX 

ERROR IN DOS FUNCTION. DUMP ABORTED. 
DUMP 

ERROR IS DOS FUNCTION 
FILES 

EXCESS FILE SPACE NOT DEALLOCATED; OUTPUT FILE IS DELETE PROTECTED 
REFORMAT 

FAULTY DEFINITION FILE. 
EDIT 

FILE ALREADY WAS IN SPECIFIED FORMAT. 
REFORIvlAT, 

FILE EXHAUSTED BEFORE LINE FOUND. FILE IS nnnn LINES LONG. 
LIST 

FILE FOLLOWING LOADER NOT OBJECT 
I~OUT 

FILE INTEGRITY ERROR ON INPUT! 
FIXAPPLi 

FILE IS MISSING FROM UTILITY/REL, OR IS UNLOADABLE 
LIST 

FILE NAME MISSING 
CHANGE 

FILE NOT FOUND 
DUMP,EDIT,MIN,MOUT 

FILE NOT FOUND. CREATE IT? 
EDIT 

FILE TWO AND THREE MUST BE DIFFERENT. 
APP,SAPP 

FILE x CONTAINS A NON-OBJECT RECORD. 
APP 

FILE(S) NOT FOUND 
FILES 

FORMAT - NEXT RECORD NUMBER: 
LIST 

FORMAT ERROR IN INPUT FILE! 
LIST 

HADCOPY ONLY IF LIMITED OUTPUT 
SORT 

HARDCOPY HEADING STRING MISSING 
SORT 

HOW DO YOU EXPECT TO FIT THAT MANY RECORDS IN A 256-BYTE SECTOR? 
REFORil1AT 

I CAN'T RUN IN THE REMOTE PARTITION 
EDIT 

I CAN'T WRITE A NULL TAPE! 
MOUT 

CHAPTER 56. ERROR MESSAGES 56-1 



ILLEGAL EOF ON INPUT! 
FIXAPPLY 

ILLEGAL HEADER KEY EVALUATION 
SORT 

ILLEGAL HEADER SPECIFICATION 
SORT 

ILLEGAL SORT KEY SPECIFICATION 
SORT 

ILLEGAL, CONFLICTING OR DUPLICATE OPTION. 
REFORMAT 

INDEX FILE DOESN'T POINT TO ITSELF! 
LIST 

INDEX TERMINATED WITH DUPLICATE KEYS 
INDEX 

INFILE NAME MISSING 
Ir~DEX . 

INPUT AND OUTPUT DRIVES MUST BE DIFFERENT 
BACKUP 

INPUT AND OUTPUT FILES CANNOT BE THE SAME! 
LIST 

INPUT DISK LOCKOUT CAT UNREADABLE. REORGANIZATION REQUIRED. 
BACKUP 

INPUT FILE CONTAINS BAD DATA! 
DECODE 

INPUT FILE DOES NOT EXIST! 
DECODE,ENCODE 

INPUT FILE IS EMPTY! 
REFORMAT 

INPUT FILE MISSING OR NO~ SPECIFIED! 
FIXAPPLY 

INPUT FILE MUST BE SPECIFIED 
DECODE,ENCODE 

I N PUT F I L EMU S T E X 1ST IN" 0 N E - PAS S " . 
EDIT 

INPUT FILE NOT FOUND 
LIST,SORT 

INPUT FILE REQUIRED 
SORT 

INTERNAL ERROR 
EDIT 

INTERNAL ERROR -- GET SYSTEMS HELP I!! 
SORT 

INVALID DEVICE 
CAT,INDEX,SAPP 

INVALID DEVICE SPECIFICATION 
LIST 

INVALID DRIVE 
APP,BACKUP,DSKCHECK,FILES,KILL,MIN,PUTIPL,SORT 

56-8 DISK OPERATING SYSTEM 



INVALID DRIVE SPECIFICATION 
BUILD 

INVALID END-OF-FILE AT LRN nnnnn. 
LIST 

INVALID END-OF-FILE MARK AT LRN nnn 
SORT 

INVALID FILE SPECIFICATION 
BUILD 

INVALID FORMAT FOR PFN REPLY. 
KILL 

INVALID HADCOPY HEADING ADDRESS 
SORT 

INVALID LIMITATION SPECIFICATION 
SORT 

INVALID LIMITATION STRING ADDRESS 
SORT 

INVALID OBJECT FORMAT! 
FIXAPPLY 

INVALID OPTION PARAMETER 
DSKCHECK 

INVALID OPTIONS SPECIFIED. VALID ONES ARE: 
REFORi~AT 

INVALID PHYSICAL ADDRESS 
DUMP 

INVALID PROTECTION SPECIFICATION. 
CHANGE 

INVALID TAPE FORMAT 
:-11 N, r~OUT 

INVALID TEXT CHARACTER AT LRN nnn 
SORT 

INVALID USER EXIT ADDRESS 
SORT 

ISAM AND LINE/RECORD COUNT INCOMPATIBLE 
LIST 

KEY FILE SPECIFICATION ERROR 
SORT 

LFT ENTRIES 1->3 NOT CLOSED WHEN SORT ENTERED 
SORT 

LIMITATION STRING MISSING 
SORT 

LINE OVERFLOW DURING VALUE SUBSTITUTION. 
CHAIN 

LIST TERMINATED. 
LIST 

LOCAL IS MISSING FROM UTILITY/REL OR UNLOADABLE 
FILES 

LOCAL IS MISSING FROM UTILITY/REL, OR IS UNLOADABLE 
LIST 

CHAPTER 56. ERROR MESSAGES 56-9 1 



LOGICAL RECORD LENGTH REQUIRED BUT MISSING OR ZERO FOUND. 
REFORMAT 

LOGICAL RECORD LENGTH MUST BE < 65535 BYTES. 
REFORMAT 

LONG KEY ENCOUNTERED AND TRUNCATED 
INDEX 

MISSING END-Of-PHYSICAL RECORD AT LRN nnnn. 
LIST 

MISSING EOS AT LRN nnn 
SORT 

MISSING OWNER-ID. 
PUTVOLID 

MULTIPLE PRINTERS SELECTORS 
DSKCHECK 

N A [vi E I NUS E • 
NAME 

NAME NOT FOUND. 
APP,SAPP 

NAME REQUIRED 
APP,CHAIN,EDIT,MOUT,NAME,SAPP 

NO AUTOK£Y LINE CONFIGURED. 
AUTOKEY 

NO CASSETTE IN SELECTED DECK. 
REvvIND 

NOS U C H N A [JI E 
CHAIN,INDEX,KILL 

NO SUCH OVERLAY LIBRARY. 
CAT 

NO SUCH SUBDIRECTORY 
NAtJlE 

NO! 
KILL 

NO! YOU CAN ONLY "AUTO" FILES THAT ARE ON BOOTED DRIVE. 
AUTO 

NO! YOU CANNOT "AUTO" SYSTEM FILES. 
AUTO 

NO! THAT FILE IS PROTECTED. 
NAME 

NON-SEQUENTIAL FILE MARK 
~10UT 

NOT DIRECTORY TAPE 
~10UT 

NOT LGO TAPE 
MOUT 

NOT WHILE ARC IS RUNNING 
BACKUP,PUTIPL,PUTVOLID,UBOOT 

NOT WHILE PS IS RUNNING 
BACKUP,PUTIPL,PUTVOLID,UBOOT 

56-10 DISK OPERATING SYSTEM 



NULL FILE 
iv10 UT 

NULL INDEX FILE CREATED 
INDEX 

NULL LIMITATION STRING 
SORT 

NUMBER NOT OCTAL 
MIN 

NUMBER OF LINES PER PAGE MUST BE 1-255! 
LIST 

OLD/NEW BYTE MISMATCH! 
FIXAPPLY 

OPTION FIELD ERROR 
SORT 

OPTION SPECIFICATION DUPLICATION 
SORT 

OPTION SPECIFICATION ERROR. 
CHAIN 

OUTPUT DISK LOCKOUT CAT UNREADABLE. REORGANIZATION REQUIRED 
BACKUP 

OUTPUT DRIVE NUMBER REQUIRED. 
PUTVOLID 

OUTPUT FILE IS WRITE PROTECTED AND CANNOT BE WRITTEN INTO OR 
SHORTENED. 

REFORMAT 
OUTPUT FILE NOT FOUND ON DRIVE x. 

REFORIvlAT 
OUTPUT FILE OVERfLOW 

SORT 
OUTPUT FILE SAME AS INPUT 

SORT 
OUTPUT FILE WOULD DESTROY INPUT FILE! 

DECODE,ENCODE 
OUTPUT FILE WRITE PROTECTED. 

EDIT 
PARAMETER ERROR MULTIPLE PRINT DEVICES REQUESTED. 

LIST 
PARAMETER ERROR, ALLOWED PARAMETERS ARE D,L,S,P,Q,X,Nn,F AND I 

LIST 
PARITY ERROR ON DRIVE n. PDA: nnnn,nnnn 

BACKUP 
PARITY ERROR ON READ. LRN: nnnnn 

BACKUP,COPY 
PARITY ERROR ON WRITE. LRN: nnnnn 

BACKUP,COPY 
PHASE 1 ERRORS; ABORTED 

FIXAPPLY 
PHASE 2 INTERNAL ERROR; ABORTED 

CHAPTER 56. ERROR MESSAGES 56-11 



FIXAPPLY 
PHASE 3 INTERNAL ERROR; ABORTED 

FIXAPPLY 
PLEASE DOSGEN YOU OUTPUT DISK FIRST 

BACKUP 
PRINT DRIVER MEMBER OF UTILITY/REL IS WRONG VERSION, I NEED 
VERSION A 

DSKCHECK 
PRINT MODULE MISSING OR NOT LOADABLE NO PRINT WILL OCCUR 

DSKCHECK 
PRINTER MODULE MISSING FROM UTILITY/REL. 

DUMP 
PROGRAM ERROR; EXCESS FILE SPACE NOT DEALLOCATED TO PREVENT 
POSSIBLE LOSS OF 
DATA. 

REFORMAT 
PROGRAM NOT LOADABLE 

DSKCI-fECK 
PROTECTION UNCHANGED. 

CHANGE 
RANGE - NEXT RECORED NUMBER: 

LIST 
RANGE ERROR IN INPUT FILE! 

LIST 
RECORD COUNT ERROR! 

FIXAPPLY 
RECORD FORMAT ERROR 

FIX 
REFORMAT UNLOADABLE! 

INDEX 
RELOCATABLE MEMBER MISSING OR UNLOADABLE 

DSKCHECK,fIXAPPLY 
SCREEN IS MISSING FROM UTILITY/REL OR UNLOADABLE 

FILES 
SCREEN IS MISSING FROM UTILITY/REL, OR IS UNLOADABLE 

LIST 
SEC2200 IS MISSING FROM UTILITY/REL OR UNLOADABLE 

FILES 
SEC5500 IS MISSING FROM UTILITY/REL OR UNLOADABLE 

FILES 
SECPS IS MISSING FROM UTILITY/REL OR UNLOADABLE 

FILES 
SECTOR IN/OUT MEMBER OF UTILITY/REL IS WRONG VERSION, I NEED 
VERSION A 

DSKCHECK 
SECTOR OUT OF RANGE 

DUMP 
SEQUENCE FILE FORMAT ERROR n 

56-12 DISK OPERATING SYSTEM 



SORT 
SEQUENCE FILE NAME REQUIRED 

SORT 
SEQUENCE FILE NOT FOUND 

SORT 
SERVO IS MISSING FROM UTILITY/REL OR UNLOADABLE 

FILES 
SERVO IS MISSING FROM UTILITY/REL, OR IS UNLOADABLE 

LIST 
SORT KEY TOO LONG 

SORT 
SORT OVERLAY MISSING 

SORT 
SORT UNLOADABLE! 

INDEX 
SPECIFIED OUTPUT FILE FORMAT ENLARGES PRESENT INPUT FILE. F 

REFORlv1AT 
SUBDIRECTORY NOT FOUND. 

FILES 
SYMBOL TABLE OVERFLOW 

CHAIN 
SYSTEM7/SYS MISSING! 

INDEX, KILL 
SYSTEMx/SYS IS MISSING 

BACKUP 
TAG DEFINED MORE THAN ONCE. 

CHAIN 
TAG VALUE NOT TERMINATED. 

CHAIN 
TAPE EOF BEFORE DISK EOF. 

MOUT 
TAPE FILE MARK READ BEFORE TAPE OBJECT EOF. 

HOUT 
TAPE OBJECT EOF NOT FOLLOWED BY TAPE FILE MARK 

HOUT 
THAT DRIVE HAS NO SUBDIRECTORY 

N At-1E 
THAT FILE IS NOT IN YOUR SUBDIRECTORY. 

KILL 
THAT ISN'T THE RIGHT FORMAT FOR YOUR REPLY. 

KILL 
THE CHAINP/SYS FILE HAS BEEN DELETED. 

CHAIN 
THE DISKS' LOCKOUT-OUT CYLINDERS DO NOT MATCH. REORGANIZATION 
REQUIRED. 

BACKUP 
THE KEYBOARD KEY WAS HIT MIN ABORTED 

l'1IN 

CHAPTER 56. ERROR MESSAGES 56-13 



THIS PROGRAfv1 IS RUNNING FROM IN A CHt\IN - THE "Fit OPTION HAS BEEN 
DEACTIVATED 

DSCHECK 
THIS PROGRAfv1 IS RUNNING FROM UNDER ARC - THE "F" OPTION HAS BEEN 
DEACTIVATED 

DSKCHECK 
THIS PROGRAM IS RUNNING FROM UNDER PS - "F" OPTION HAS BEEN 
DEACTIVATED 

DSKCHECK 
UNABLE TO LOAD PRINTER MODULE FROM UTILITY/SYS. 

DUMP 
UNDEFINED CHAIN OPERATOR. 

CHAIN 
UNRECOGNIZABLE TAPE RECORD FORMAT 

MIN 
UNRECOGNIZEABLE OPTION CODE. 

FILES 
USE '0' OPTION ON COMfv1AND LINE TO OVER-WRITE EXISTING OUTPUT FILE 

BLOKEDIT 
UTILITY/REL MISSING FROM BOOTED DRIVE! 

FIXAPPLY 
UTILITY/REL FILE MISSING 

DSKCHECK 
UTILITY/REL IS MISSING FROM BOOT DRIVE 

FILES 
UTILITY/REL IS MISSING ON BOOTED DRIVE 

LIST 
UTILITY/REL MISSING FROM BOOTED DRIVE. 

DUMP 
VALID PARAMTERS ARE 'ON' AND 'OFF' 

ABTONOFF 
VERIFICATION UNSUCCESSFUL 

MOUT 
VOLUME NAME MISSING. 

PUTVOLID 
WRONG DOS!! 

ABTONOFF,APP,AUTO,AUTOKEY,BACKUP,BLOKEDIT,BUILD,CAT,CHAIN,CHA 
NGE, 

COPY,DECODE,DSKCHECK,EDIT,ENCODE,FIX,FIXAPPLY,FREE,INDEX,INIT 
DISK, 

KILL,MANUAL,MIN,MOUT,NAME,PUTIPL,PUTVOLID,REFORMAT,REWIND,SAP 
P, 

SORT,SUR,UBOOT 
WRONG PROCESSOR! 

EDIT 
YOU CAN'T AUTO THAT FILE 

AUTO 
YOU CAN'T FIX AN OVERLAY LIBRARY! 

56-14 DISK OPERATING SYSTEM 



FIX 
YOU CANNOT APPEND OVERLAY LIBRARIES. 

APP 
YOU HAVE ILLEGALLY ENTERED A SPECIFICATION FOR A THIRD FILE 

REFORHAT 
YOU SPECIFIED AN OUTPUT FILE THAT ENDED UP BEING YOUR INPUT FILE. 
TO REFORMAT-IN-PLACE DO NOT SPECIFY ANY OUTPUT FILE. 

REFORMAT 
YOU SPECIFIED BOTH SEGMENTATION AND TRUNCATION. YOU CAN NOT HAVE 
BOTH. 

REFORMAT 
YOUR BLOCKING FACTOR IS TOO LARGE FOR THE SIZE OF RECORDS YOU 
HAVE. 

REFORMAT 
YOUR DOS FUNCTION 15 IS OBSOLETE 

DSKCHECK 
YOUR LOGICAL RECORD LENGTH IS TOO SMALL FOR THE SIZE OF RECORDS 
YOU HAVE. 

REFORMAT 

CHAPTER 56. ERROR MESSAGES 56-15 



CHAPTER 57. ROUTINE ENTRY POINTS 

These entry points are contained in a file called DOS/EPT. 

Loader Routines 

01000 
01003 
01006 
01041 
01052 
01055 
01060 
01113 

BOOT$ 
RUNX$ 
LOADX$ 
GETNCH 
DR$ 
DW$ 
DSKWAT 
DWNV$ 

reload the operating system 
load and run a file by number 
load a file by number 
get the next disk buffer byte 
read a sector into the disk buffer 
write a sector from the disk buffer 
wait for disk ready 
DW$ without write verify 2.3 only 

Time-critical Scheduling Routines 

01033 
01036 
01041 
01044 

CS$ 
TP$ 
SETI$ 
CLRI$ 

change process state 
terminate process 
initiate foreground process 
terminate foreground process 

Symbolic File Handling Routines 

01063 
01066 
01011 
01014 

PREPS 
OPENS 
LOAD$ 
RUN$ 

open or create a file 
open an existing file 
load a file by name 
load and run a file by name 

Logical File Handling Routines 

01011 
01102 
01105 
0111 0 
0111 3 
0111 6 
011 21 
01124 
01121 
01132 
01135 

CLOSES 
CHOP$ 
PROTE$ 
POSITS 
READ$ 
WRITE$ 
GET$ 
GETR$ 
PUT$ 
PUTR$ 
BSP$ 

close a file 
delete space in a file 
change the protection on a file 
position to a record within a file 
read a record into the buffer 
write a record from the buffer 
get the next buffer character 
get an indexed buffer character 
store into the next buffer position 
store into an indexed buffer position 
backspace one record 

CHAPTER 51. ROUTINE ENTRY POINTS 51-1 



Generalized Processing Routines 

01011 
01022 
01140 
01143 
01146 
01151 
011 rrO 
0'7400 

INCHL 
DECHL 
ERROR$ 
BLKTFR 
TRAP$ 
EXIT$ 
WAIT$ 
DOSFNC 

increment HL 
decrement HL 
close all files, exit chain, and reload DOS 
transfer a block of memory 
set a disk error condition trap 
reload the operating system 
DOS wait-a-while "NOP" routine 
DOS function loader 

Keyboard and Display Routines 

01154 
01157 
01162 

DEBUG$ 
KEIIN$ 
DSPLY$ 

enter the debugging tool 
obtain a line from the keyboard 
display a line on the screen 

Cassette Handling Routines 

010000 
010005 
010012 
010017 
010024 
010031 
010034 
010037 
010042 
010045 
010050 
010053 
010056 
010061 

TPBOF$ 
TPEOF$ 
THW$ 
TBSP$ 
TWBLK$ 
TR$ 
TREAD$ 
TW$ 
TWRIT$ 
TFfv1R$ 
TFfv1W$ 
TTRAP$ 
TWAIT$ 
TCHK$ 

position to the beginning of a file 
position to the end of a file 
physically rewind a cassette 
physically backspace one record 
write an unformatted block 
read a numeric CTOS record 
TR$ and wait for last character 
write a numeric CTOS record 
TW$ and wait for last character 
read the next file marker record 
write a file marker record 
set a cassette error trap 
wait for 1/0 completion 
get 1/0 status 

Command Interpreter Utility Routines 

01165 Cf-1DINT return to command interpreter & scan MCR$ line 
013400 DOS$ return to command interpreter & display sign on 
013403 NXTCMD return to command interpreter & say 'I REA 0 Y" 
013406 CMDAGN return to command interpreter & give message 
013411 GETSYM get the next symbol from MCR$ 
013414 GETCH get the next character from MCR$ 
013417 GETAEN get the auto execute PFN 
013422 PUTAEN set the auto execute DFN 
013425 GETLFB open the user-specified file (LFN in B) 
013430 PUTCH store the nonblank character in the A register 
013433 PUTCHX store the char ac ter in the A register 
013436 PUTNAr-1 format a filename from a directory block 

57-2 DISK OPERATING SYSTEM 



013441 
013444 
013441 
013452 
013455 

MOVSYM 
GET DBA 
SCANFS 
TCWAIT 
INPTR 

obtain the symbol scanned off by GETSYM 
obtain the disk controller buffer address 
scan off a file specification 
test controller memory and wait for command 
internal byte pointer for GETCH and GETSYM 

Internal DOS Equivalences 

00004 
00005 
00026 
00021 
00030 
00053 
01315 
01316 
01311 
01200 
01400 
o 15 lt4 
4 
0<4 
1<4 
2<4 
3<4 

DOSPFN 
DOSPDN 
DOSPTR 
SDFLAG 
SDNR 
BOOTDRIV 
DISKTYPE 
DISKADR 
DOSFLAG 
DOSFL2 
~1CR$ 

LFT 
TFT 
LFO 
LF1 
LF2 
LF3 

PFN for use by DR$ and DW$ 
PDN for use by DR$ and DW$ 
BUFPTR used by GETNCH 
SUb-directory existence flag 
Subdirectory number table (one per drive) 
Drive from which DOS was booted 
Type of disk from which DOS was booted 
1/0 bus address of booted disk controller 
DOS Flag byte #1 
DOS Flag byte #2 
Monitor Communication Region 
Logical File Table 
temporary file table 
logical file #0 
logical file #1 
logical file #2 
logical file #3 

Logical File Table Description 

0 PFN ( 1 ) PHYSICAL FILE NUMBER 
1 PDN ( 1 ) PHYSICAL DRIVE NUMBER AND PROTECTION 
2 LRN (2 ) NEXT LRN TO BE DEALT WITH 
4 BLRN (2) FIRST. LRN WITI1IN CURRENT SEGMENT 
6 CSD (2) CURRENT SEGMENT DESCRIPTOR 
8 RIBCYL ( 1 ) PDA (MSB) OF RIB 
9 RIBSEC ( 1 ) PDA (LSB) OF RIB 
10 MAXLRN (2 ) LARGEST LRN REFERENCED 
12 LRNLIH (2) RESERVED FIELD (INITIALLY ZERO) 
14 BUFADR ( 1 ) CURRENT CONTROLLER BUFFER ADDRESS 
15 XXXXXX ( 1 ) NOT USED 

CHAPTER 51. ROUTINE ENTRY POINTS 51-3 



DOS Memory Mapping 

000000 
001000 
004000 
005400 
005572 
006000 
07400 
010000 
013400 
017000 

LDRAD$ 
DOSAD$ 
OVLAD$ 
DSPAD$ 
KEYAD$ 
DEBAD$ 
FLDAD$ 
CASAD$ 
CMDAD$ 
COVAD$ 

System Loader 
Resident DOS 
DOS Overlays 
CRT Write Routine 
Keyboard Read Routine 
DOS Debug Routine 
DOS Function Loader 
Cassette Tape Drivers 
Command Interpreter 
Command Interpreter Overlays 

DOS Keyboard/Display Routine Control Byte Equates 

3 
011 
013 
015 
021 
022 
023 
1 1 
o 

79 
o 

DOS 

1 <'7 
1<6 
1<5 
1<4 
1<3 
1<2 
1 < 1 
1<0 

DOS 

1<7 
1<6 
1<5 
1<4 
1<3 
1<2 

FLAG 

FLAG 

EOS 
H 
V 
EOL 
ECF 
ECL 
R 
BL 
TL 

RC 
LC 

byte 

ABTIF 

111 

NETACT 
U800T 
CHACT 
IS55AVL 
PSACT 
RAMAVL 
ROMBOOT 

byte 112 

$FL2B7 
$REMARC 
$1800CPU 
$UPSACT 
$MEI·1D 
$MEMU 

end of string, no CR/LF 
horizontal position follows 
vertical position follows 
end of line, CR/LF 
erase cursor to end of frame 
erase cursor to end of line 
roll screen up one line 
number of bottom line on screen 
number of top line on screen 
(not valid on all processors) 
number of rightmost column on screen 
number of leftmost column on screen 

(location 01377) 

1 ••• abnormal program completion 
• 1 •• ARC active 
• • 1 • DOS was booted from disk 
• •• 1 chaining active 

1 ••• 5500 instructions available 
• 1 •• PS active 
• • 1 • RAM display available 
• •• 1 BOOTSTRAP loaded from ROtv1 

(location 1200) 

1 ••• reserved 
• 1 •• Remote console facility active 
• • 1 • Running on an 1800 processor 
• •• 1 UPS active 

1 ••• memory resident overlays destroyed 
• 1 •• memory resident overlays pr esen t 

57-4 DISK OPERATING SYSTEM 



1 < 1 $FL2Bl ....•. 1. reserved 

1 <0 $ONESHOT ...• ... 1 One-shot bit for startup procedures 
DISKTYPE (location 01375) 

o 
1 
2 
3 
4 
5 
6 
'7 
8+ 

$ARC 
$9370 
$9374 
$9390 
$9350 
$RESVAL 
$9380 
$1840 

ARC remote volume 
9370 25MB mass storage disk 
9374 20MB disk 
9390 storage module system 
9350 2.5MB disk 
reserved 
9380 single-density diskettes 
1842 dual-density diskettes 
reserved 

CHAPTER 57. ROUTINE ENTRY POINTS 57-5 



CHAPTER 58. PROCESSOR DEBUG 

58.1 Introduction 

The Datapoint 5500, 6000, 6600, 1800, and 3800 family 
processors include a DEBUG program implemented in ROM, whose 
immediate accessibility creates a flexible interface between user 
and machine. This guide is intended to provide the user of these 
systems with that information essential to the use of the 
ROM-DEBUG. With this powerful hardware feature the user should 
quickly develop an aggressive debugging tool. 

58.2 Startup Procedure 

There are five methods of entry to DEBUG: 

(1) Forcing entry through manual intervention. 
(2) Entry through a BREAKPOINT set by DEBUG. 
(3) Entry through a BREAKPOINT imbedded in the user 

Program. 
(4) Entry as the consequence of a RETURN from a DEBUG Call 

Command. 
(5) Entry through a hardware vector such as 

,t E 1 M EM 0 R Y PAR I T Y ERR 0 R" . 

To force entry to DEBUG, depress in sequence the DISPLAY, 
RUN, and RESTART keys (DSP, INT, and RESTART on an 1800/3800), 
keeping each key depressed until all three are down. Then release 
RUN (INT on an 1800/3800). This will bring up the DEBUG display 
and commands may be entered. 

Note that depression of the DISPLAY key during the transition 
from Boot Block read-in to execution during REBOOT will also cause 
entry into DEBUG. 

CHAPTER 58. PROCESSOR DEBUG 58-1 



58.3 Saving the Machine State 

When DEBUG is entered through console intervention, most of 
the user's program state is undisturbed. Information not saved is 
the state of the interrupt enable flip-flop (interrupts are 
disabled), the state of the base register or sector table (these 
two are not changed upon entry to DEBUG), the state of the 
ALPHA/BETA Mode flip-flop (all registers are saved), the state of 
the I/O system (what device is addressed and the state of its 
status/data select flip-flop), and the bottom two stack locations. 

Information saved is the ALPHA/BETA Mode registers and 
condition code flip-flops, the Program Counter (PC) and 016 Stack 
locations. 

for: 

The 
and 

Note that there exist default values upon exit from DEBUG 

( 1 ) 
(2 ) 

( 3 ) 

first 
' R ' ) . 

ALPHA/BETA Mode flip-flop 
Currently addressed device and its Status/Data Mode 
flip-flop 
Interrupt enable flip-flop (always disabled) 

two of these can be set using DEBUG commands ('A', 'G' 

58.4 Display Format 

The ROM-DEBUG display consists of four lines and occupies the 
bottom-right corner of the screen. 

AAAAAA 
* NNN 
tv1MMM[v1M 

nnnnnnn* 

CURADR 
ASCII,8 BIT OCTAL C[GURADR] 
LSB, MSB ADDRESS FORMED AT CURADR. 
COMMAND INTERPRETER 

The first (top) line shows the current sixteen bit address. 

The second line contains both an ASCII (One character shown as *) 
and an 8-bit octal (Three characters shown as NNN) representation 
of the contents of the current address byte. 

The third line contains an octal representation of the 16-bit 
value whose LSB is at CURADR and whose MSB is at CURADR+1. (This 
is the address format used by JMP, CALL and DA mnemonics). 

58-2 DISK OPERATING SYSTEM 



58.5 The Command Interpreter 

The bottom line of the display is an interpreter used to edit 
and input commands to DEBUG. The blinking cursor signifies that 
the Command Interpreter is awaiting user input. 

Data is entered serially into the input display buffer. The 
cursor is displaced to the right successively as this occurs. The 
Backspace key erases the character most recently entered, shifting 
the entry cursor to the left one space. The cancel key deletes 
the entire entry. 

All commands are single characters. Commands which accept 
input arguments are preceded by the argument, which is entered in 
octal. Not all commands require an input argument. The last 
character input to the interpreter must be a legal command. 
Illegal input is ignored, evoking a BEEP from the processor. 
Commands are executed upon their entry into the interpreter (no 
ENTER key is required), with the current contents of the entry 
line being cleared. Upon command completion the cursor reappears, 
awaiting further input. 

58.6 Command Syntax 

This explanation of the command syntax uses the following 
notation: 

nnnn ... Indicates an optional sequence of octal digits not to 
exceed the number of n's given. 

12345 

If input argument contains more than eight bits of 
significance, special results will occur. In general 
what will happen is that two bytes of memory will be 
affected by the command, either a register pair or a 
memory address in LSB, MSB format. 

There exists a set of special commands whose accidental 
execution is inhibited by the requirement that they 
contain this unique argument. 

CHAPTER 58. PROCESSOR DEBUG 58-3 



58.7 Input Command List 

nnn A Address the given or current 1/0 device. No check is 
made on address format. STATUS is displayed as 
C[CURADR]. NOTE that the CURRENT Device is readdressed 
and put into the mode last accessed (Data mode if 'F' 
or 'G' have been executed subsequent to last 'A' 
command) prior to resumption of execution through Call, 
Exit, Jump or User Exit Commands if the last 1/0 DEBUG 
command executed is A. 

nnnnnn B Set a BREAKPOINT at the given or current address. Upon 
BP execution the state of the machine is saved, the 
memory location at which the BP was set is restored to 
its original value and the corresponding BP table entry 
is cleared. 

The following notes reference the use of the 'B' 
command. 

Overlay BREAKPOINT will not loop. That is: It is not 
possible to successively set a BREAKPOINT in the same 
memory location in order to iterate the execution of a 
program loop. To iterate BREAKPOINT through looping 
sequence requires~ 'double Breakpoint'. Twenty 
BREAKPOINTs can be active at anyone time. Note that 
BP's DISABLE INTERRUPTS and leave them disabled prior 
to resumption of execution through Call, Exit, Jump or 
User Exit commands. This is done to enable testing of 
Foreground routines with DEBUG. If it becomes necessary 
to use DEBUG with Interrupts Enabled, the user should 
place an EI instruction in a main loop of his program. 
It is impossible for the machine to determine its 
current register (ALPHA/BETA) mode. Therefore the 'R' 
command mode flip-flop is set to ALPHA when a BP is 
encountered. If the user wishes to test code written 
in BETA Mode it is necessary that he manually put the 
Machine in BETA Mode (With 'R' Command) prior to 
resumption of execution through Call, Exit, Jump or 
User Exit commands. Similarly, he may have to address 
the proper 1/0 device (with A) and perhaps put it into 
DATA Mode (with G) before continuing execution from a 
breakpoint: Note that DEBUG will not set a BREAKPOINT 
over another BREAKPOINT. 

nnnnnn C Call the given or current address. The Machine State 
is restored before execution control is passed to the 

58-4 DISK OPERATING SYSTEM 



Subroutine. A RETURN from the Called Subroutine causes 
re-entry into DEBUG and hence, causes the Machine State 
to again be saved. 

D Decrement the current address value. Any Input 
Argument will be ignored. 

E Continue execution from a forced or BREAKPOINT entry 
into DEBUG. Machine State is restored prior to 
resumption of execution. The interrupts are left 
disabled. The register mode is set to the last R value 
(initialized to ALPHA Mode upon BP or on forced entry), 
the base register and sector table are not changed, and 
the liD device is addressed and optionplly set to DATA 
mode. Note that this command does not depend on any 
Display Parameters. Prior DATAPOINT Debug software 
used CURADR as an exit address pointer. 

nnn F Fetch next data byte from current or given 1/0 device. 
Command will automatically put device in DATA Mode and 
the device will subsequently be put in data mod~ when 
the E command is given. 

nnn G Go to data mode in the current or given 1/0 device when 
the E command is given. 

H * Not Used. * 
I Increment the current address value. Any Input 

Argument will be ignored. 

nnnnnn J Jump to the given or current address. Machine State is 
restored prior to resumption of execution. 

12345K Set ASCII keyin mode. Will allow ASCII data to be 
entered into CURADR in auto-increment mode (i.e. will 
update CURADR). BACKSPACE movesCURADR back and 
displays its contents. DELete moves CURADR forward and 
displays its contents. CANCEL causes a return to 
normal mode. 

L Link to the address pointed to by the Current Address. 
CURADR is replaced by line 3 (the 16-bit LSB, MSB 
address formed at CURADR,CURADR+1). The remaining 
display parameters are updated appropriately. Note 
that initial display state upon entry into DEBUG can be 
regenerated by performing the'S' command, followed 
immediately by the 'L' command. 

CHAPTER 58. PROCESSOR DEBUG 58-5 



(nnn)nnn M Modify the contents of the current address location. 
If the value of the Input Argument exceeds eight bits 
of significance, two memory locations will be modified, 
treating the input argument as an address in LSB, MSB 
Format for JMP and DA. (A CLICK is sounded to notify 
the operator of this action.) 

N * Not Used. * 
() * Not Used. * 

nnnnnn P Load the Base Register with the 8-bit value (nnnnnn -
0100000) 

123450 Load the Sector Table. CURADR => Table whose first 
byte equals the number of entries to be loaded. The 
following bytes contain arguments to be loaded into the 
Sector Table. 

R Switch Alpha/Beta Mode register display. The ASCII 
character displayed after command execution tells the 
current display mode: A=ALPHA, B=BETA. 

nn S Display the specified stack item (up to 015 Octal). 

12345T 

Note: P, 0 => 014 Octal after RESTART. (Since RESTART 
PUSHes P onto the top of the STACK.) 

Start memory test. Displays Memory Size and Pass 
Counter in right-bottom corner of screen. Maintains 
running display of Test Failures. 

U User mode execute. Command sets USER Flag then 
executes 'E' Command . 

., 

nnn V EX COM4 
nnn W EX WRITE 
nnn X EX CO~11 
nnn Y EX C0i'12 
nnn Z EX COM3 

The various EX commands affect the 
device specified by the last A command. 
The nnn entry specifies the output byte 
value issued with the command. Following 
the command, the DEBUG display shows the 
device status 

Set Current Address to nnnnnn. Command has no efect 
unless it is preceeded by an Input Argument. 

<Cancel> Cancel entry line. 

<BSP> Backspace on entry line. 

58-6 DISK OPERATING SYSTEM 



(nnn)nnn . Modify the contents and then increment the current 
address. If input argument has more than eight bits of 
significance, two memory locations are modified, 
treating the argument as an address in LSB, MSB Format. 
(a CLICK is sounded). 

(nnn)nnn A Modify the contents and then increment the current 
address. If input argument is n~ll, the last non-null 
value given is used. If 'last value' exceeded eight 
bits of significance, two memory locations will be 
modified. (a CLICK is sounded). 

(nnn)nnn 
nnn 

(nnn)nnn 
nnn 

(nnn)nnn 
nnn 

(nnn)nnn 
nnn 

# Clear all active (DEBUG set) breakpoints, restoring 
values. 

a 
b 
c 
d 
e 
h 
1 
x 

Display or modify register or 
register pair. If no input argument 
is provided, the register contents are 
displayed (center line of display). 
Specify LSB register of a register 
pair (L for HL pair) to display pair 
contents on bottom line. 
If an input argument is provided 
the register contents are modified 
and then displayed. If input argument 
exceeds one byte, a register pair is 
mod i fi ed . 

f Display the condition flags. The byte 
displayed is structured: 
'7=>C, 6=>S, 1=>-Z&-S, O=>-Z&-P 
This value added to itself will generate 
the flag values it represents. 

CHAPTER 58. PROCESSOR DEBUG 58-7 



58.8 DEBUG Command Summary 

nnn A - Address the given or last lID device 
nnnnnn B - Set a break point at the given or current address 
nnnnnn C - Call the given or current address 

D - Decrement the current address 
E - Continue execution 

nnn F - Fetch the next data byte from current lID device 
nnn G - Go to data mode in the current lID device 

I - Increment the current address 
nnnnnn J - Jump to the given or current address 

K - Set ASCII keyin mode (12345K) 
L - Link to the address pointed to by the current address 

(nnn)nnn M - Modify the contents of the location ponted to by the 
current address 

nnnnnn P - Load the page basing register 
Q - Load the sector table 
R - Switch from alpha to beta mode or vice versa 

nn S - Display the specified stack item 
T - Start memory test ('12345T') 
U - User mode execute 

nnn V - EX COM4 to last 1/0 device 
nnn W - EX WRITE to last 1/0 device 
nnn X - EX COM1 to last 1/0 device 
nnn Y ~ EX COM2 to last 1/0 device 
nnn Z - EX COM3 to last 1/0 device 

(nnn)nnn a - Display or update the contents of the A-register 
nnn b - Display or update the contents of the B-register 

(nnn)nnn c - Display or update the contents of the C-register 
nnn d - Display or update the contents of the D-register 

(nnn)nnn e - Display or update the contents of the E-register 
f - Display the flags (adding the number to itself will 

restore the flags) 
nnn h - Display or update the contents of the H-register 

(nnn)nnn I - Display or update the contents of the L-register 
nnn x - Display or update the contents of the X-register 

(nnn)nnn . - The equivalent of an M followed by an I 
nnnnnn <enter> - Change the current address 

# - Clear breakpoints 
(nnn)nnn A _ Modify and Increment using last value 

58-8 DISK OPERATING SYSTEM 



ROM DEBUG DISPLAY 
AAAAAA - The current address (in 

octal) 

x - The contents of location 
AAAAAA (in ASCII) 

AAAAAAA 
X NI~N 

MMMMMM 

- or the contents of the specified register (in ASCII) 

NNN - The contents of location AAAAAA (in octal) 
- or the contents of the specified register (in octal) 

MMMMMM - The contents of locations AAAAAA+1 and AAAAAA 
respectively, concatenated into one octal number 

- or the contents of a register pair concatenated into one 
octal number (XA, BC, DE, HL) 

58.9 Extensions to Standard DEBUG 

The DEBUG described above is specifically that implemented on 
the 5500 processor. The other processors using ROM-DEBUG have 
implemented a superset of the 5500 DEBUG and recognize an expanded 
list of comrnands. For descriptions of the commands unique to each 
processor family, consult the Datapoint product specification for 
the processor in use. 

CHAPTER 58. PROCESSOR DEBUG 58-9 



APPENDIX A. DOS.A AND DOS.E 

DOS.A and DOS.E are two Disk Operating Systems supporting 
Datapoint computers operating in conjunction with up to four 9350 
series cartridge disk drives. 

A.1 Planning for DOS.A/DOS.E 

DOS.A and DOS.E are both alike in many respects. Both use 
the 9350-series disk cartridge drives, and they are each almost 
identical to the other operationally. The primary operational 
difference between DOS.A and DOS.E is that DOS.E will support the 
Datapoint Partition Supervisor, PS, released separately. 
Operating under PS, DOS.E permits the concurrent execution of more 
than one partition. 

A.1.1 DOS.A Physical Configuration 

DOS.A operates in either Datapoint 2200, 5500 or 6600 family 
processors with at least 16K of memory and one or more 9350-series 
disk drives. Use of a single 9350-series drive is possible, but a 
multi-drive system should be available for backup and support 
purposes. Some consideration must be given to the question of 
copying files from one disk to another, and most systems 
incorporating the 9350-series disks will have files large enough 
to make it impractical to transfer them from one disk cartridge to 
another one cassette at a time. 

An option which should be considered during the systems 
planning phase is the High Speed, or so-called "RAfv1" Display 
Option for 2200 processors. This option is strongly recommended, 
as it can substantially increase total system throughput 
(especially on batch-processing oriented systems) at a very small 
additional cost. This option is field-installable, and is 
standard equipment on Datapoint 5500 and 6600 family computers. 

APPENDIX A. DOS.A AND DOS.E A-1 



A.1.2. DOS.E Physical Configuration 

DOS.E differs from DOS.A in that DOS.E requires a mlnlmum 48K 
Datapoint 5500 processor and two, three, or four 9350-series disk 
drlves attached to a 9357 disk control unit. This enhanced 
cartridge disk controller contains four times the amount of high 
speed cache memory contained in the older 9350-series controller, 
as well as additional hardware features to facilitate the 
multiprogrammed environment available under PS/DOS.E. (Older 
9350-series disk controllers can be easily field-upgraded to 9357 
levels. ) 

A.2 Disk Drives 

DOS.A and DOS.E support a maximum of four 9350-series 
cartridge disk drive units. 

A.3 Disk Media 

The Oatapoint 9350-series disk drives use a single platter 
disk cartridge, media-compatible with the IBM 2315 disk cartridge. 
Data is recorded in 203 concentric circles on each of the two 
recording surfaces. Each such circle is referred to as a track. 

The disk itself is enclosed within a plastic cartridge which 
helps to protect it from bumps, jolts, and contaminants while it 
is not in place in the disk drive. This cartridge and the care 
taken in its handling and storage are of prime importance in 
helping to eliminate disk errors and parity failures that 
contamination can cause. 

A.4 Loading and unloading Disk Cartridges 

Loading and unloading cartridges from the 9350-series drives 
is simplicity itself. At the top of the front side of the drive 
is the cartridge access door. Pulling out and down on the handle 
opens this door. The cartridge is inserted into the cavity with 
the "tongue if of the cartridge on top and entering first. When the 
cartridge is fully inserted, the cartridge access door is closed 
and the rocker switch marked "LOAD/RUN" is switched to the "RUN" 
posi tion. When the swi tch is moved to "RUN", the following things 
occur: 

1) The cartridge access door is locked closed. 

A-2 DISK OPERATING SYSTEM 



2) The indicator lamp marked "LOAD" on the front panel of the 
drive is extinguished; 

3) The disk pack accelerates to its rated speed of 1500 rpm, 
at which time the indicator lamp marked "READY" lights up. 
When this lamp lights up, it indicates that the disk has 
come on-line for the Datapoint processor. 

Remov ing a cartr idge wh ic his no longer needed from a dr i v e 
is a simple reversal of the above steps. First, the "LOAD/RUN" 
switch is moved to the "LOAD" position. The drive immediately 
goes off-line to the processor and is swiftly braked to a smooth 
stop. When the disk comes to a full and complete stop, the door 
is unlocked and the "LOAD" indicator lamp comes on. At this time, 
the cartridge access door can be opened with a gentle tug, after 
which the cartridge simply slips right out. The cartridge should 
be stored in a suitable storage rack; it should never be left in a 
place where it might slip and fall onto a hard surface, such as a 
floor. 

A.5 Switches and Indicators 

The current cartridge disk drive, manufactured by Wangco, 
uses a small cluster of controls in the lower right-hand corner of 
the disk drive front panel. There is a thumbwheel switch for 
physical drive number selection, which is set at installation and 
should not be moved thereafter. The rocker switch marked "RUN" 
and "LOAD" controls disk loading as described above; the "READY", 
"LOAD" indicator lamp is immediately below this switch. The 
leftmost controls are a pair of rocker switches marked "PROT CART" 
and "PR or FIXED". The se s\lJi tche s control the wr i te pro tec tion 
status of the cartridge disk and the fixed disk inside the drive. 
When the indicator lamp behind one of these switches is lit, the 
corresponding disk is write-protected. The protection can be 
changed at any time by changing the switch position. 

The older cartridge drive, manufactured by Diablo, has only 
one single rocker switch, (the LOAD/RUN switch which has been 
previously described) and four color-coded indicator lamps. The 
first of these, a white lamp marked "LOAD" corneson to indicate 
that the drive is ready to have a disk cartridge inserted or 
removed. The second lamp, a yellow one marked "READY" indicates 
that the cartridge in place has come up to speed and is on-line. 
The third lamp, an orange one marked "CHECK", is an error 
indication. This lamp is rarely seen illuminated. If it does 
light up, taking the drive offline and back online may help 
(switching the LOAD/RUN switch to LOAD and back). If that does 

APPENDIX ~. DOS.A AND DOS.E A-3 



not work, try powering down the entire systeto and then turning it 
back on again, using the main power switches. If the CHECK 
condition still is not cleared, call the Datapoint Customer 
Support Center for technical assistance. The fourth red lamp is 
marked "PROTECT", and when it is illuminated the processor cannot 
write on the disk in that drive. The disk is protected each time 
it is brought to RUN status. Depressing the PROTECT button 
extinguishes the indicator lamp and write-enables the disk. The 
disk can be re-protected only by switching the LOAD/RUN switch to 
LOAD and back to RUN. 

A.6 Care and Handling of Disk Cartridges 

Disk cartridges for the 9350-series disk drives are precision 
assemblies and must be treated with some care. It is highly 
important that they not be dropped, mishandled, or contaminated 
with dust or other pollutants. The cartridges should be stored in 
an appropriate storage rack, in an area free from dust and in an 
environment similar to that where the drives are installed 
(preferably in the same room with the computer). Users should be 
very careful to never allow anything to contact the oxide surface 
of the disk itself. 

If the cartridges are shipped by common carrier, they should 
be repackaged in their original, protective shipping carton and 
marked "FRAGILE". Disk cartridges should never be mailed by 
Parcel Post. Upon receipt of a disk cartridge, if there is any 
evidence of damage the cartridge should not be used until it has 
been inspected and approved for use by a Datapoint service 
representative. 

In addition, any cartridge which has been in a non-computer 
room environment should be allowed to equalize temperatures in the 
room with the computer for 24 hours before use if at all possible 
before attempting to read or write data on the cartridge. In an 
emergency, placing the cartridge onto a drive and letting it spin 
up and run for about an hour will usually be adequate, but this 
procedure should be considered an emergency measure only. 

A little care in handling disk cartridges will repay itself 
several times over in reliable and trouble free service with long 
life from your disk cartridges. 

A-4 DISK OPERATING SYSTEM 



A.1 Care and Maintenance of the 9350 Drives 

As with the disk cartridges themselves, cleanliness of the 
9350 disk drives is of great importance. All efforts should be 
made to keep the room as dust-free as possible. Since the 
read/write heads fly very close to the disk surface (about 100 
millionths of an inch away from the oxide surface) even such small 
particles in the air as those present in cigarette smoke are apt 
to cause troubles sooner or later. Any dust that may collect 
around the disk drives should be regularly cleaned away. 

In addition to this user maintenance, the user should also 
ensure that his local Datapoint service representative performs 
the preventive maintenance procedures outlined in the 9350 series 
disk drive maintenance manual. These preventive maintenance 
procedures can be compared to changing the oil and oil filter in 
the family automobile. An automobile will perform all right for a 
while without regular oil and filter changes, but sooner or later 
it will extract a heavy penalty for not having better care. The 
same characteristic holds true for disk drives as well. 

A.8 Head Crashes 

Each of the two heads in the 9350-series disk drive is held 
near the disk oxide surface by a spring which pushes the head 
toward the surface with a force of approximately 350 grams. The 
disk, on the other hand, is spinning at approximately 50 miles per 
hour relative to the head. The head and disk are kept apart by a 
micro-cushion of air only about 100 millionths of an inch thick. 
A head crash occurs when this lubricating air film fails. The 
main causes of head crashes are foreign particles in the 
lubricating film, contamination buildup on the surfaces of the 
disk or read/write heads, or a defective disk surface. 

When a head crash occurs, the head rubs directly against the 
oxide surface of the disk, which frequently loosens more oxide, 
resulting in further and more severe crashes, and things go 
progressively downhill from there. Due to the severity of a head 
crash, not just because of the loss of data on a disk but also due 
to the degree of damage to the heads on the drive, it is important 
to recognize the symptoms of a head crash. In this manner a disk 
experiencing a head crash can usually be discovered and stopped 
before the crash reaches catastrophic proportions. 

APPENDIX A. DOS.AAN~ DOS.E A-5 



A.8.1 Prevention of Head Crashes 

There are three main things that a user can do to help 
minimize the likelihood of a head crash. These include: 

1) Preventive maintenance. Establish a preventive 
maintenance schedule with your Datapoint customer engineer 
and stick to it. Make sure that this preventive 
maintenance gets done. Particularly important is 
attention to the head/arm assemblies, air filtration 
system and moving parts. 

2) Proper handling and storage of disk cartridges. Disks 
should be carefully stored in an area free from dust, 
s m 0 k e, and 0 the r con tam ina t ion . Any dis k s wh 0 s e 
cartridges are cracked or broken should be replaced 
immediately. Disk cartridges should be handled carefully 
to avoid bumping or dropping. Never insert a dropped 
cartridge into a drive! Give it to a Datapoint service 
representative for inspection. 

3) Keep the cartridge access door closed. Never leave it 
open. The longer it is open, the greater the 
susceptibility to contamination. 

A.8.2 Recognition of a Head Crash 

In spite of all precautions, chances are that most users will 
experience a head crash sooner or later. Being able to identify 
it quickly when it happens can help to minimize the damage. A 
head crash may be indicated by one or more of the following 
symptoms: 

1) Repetitive hard read or write parity errors. Because of 
the propagation effect of a head crash, do not move any 
disk with massive hard parity errors to another drive. If 
errors persist, then the possibility of a head crash 
exists and must be investigated. 

2) Audible tinkling sound. An audible tinkling sound from 
the disk, which may progress to a screech, probably 
indicates a head crash. 

3) Visible damage to the disk surface. Any scratch on the 
recording portion of the disk surface where the aluminum 
substrate is exposed. Concentric adjacent scratches of 
any length. A single scratch of over approximately three 

A-6 DISK OPERATING SYSTEM 



inches in length. Imbedded particles or an accumulation 
of loose oxide on the surface. Any of these can indicate 
that a head crash has occurred. 

A.8.3 What to Do if You Have a Head Crash 

If you suspect that you have had a head crash, call the 
Datapoint customer support center at once. In the meantime, 
observe the following precautions: 

1) The disk which was mounted on the drive when the crash 
occurred should be considered suspect and should not be 
mounted on any other drive until it has been inspected by 
the Customer Engineer and approved for use. 

2) The drive which experienced the crash should not be used 
until it has been thoroughly checked by the Customer 
Engineer. Other disks which are probably intact can be 
damaged by a drive which has had a crash , since the same 
drive is apt to crash again with any subsequent disk 
placed in it until it has been properly serviced. 

3) Head crashes should be considered to be contagious. A 
disk which has crashed may have loose oxide or other 
irregularities on its surface. If the disk is placed into 
a different drive, these contaminants are apt to very 
quickly result in a crash occurring on the new drive as 
well. Since the loose oxide or whatever can build up on 
the heads of the drive as well as the disk itself, the 
drive can carry the contaminants of a bad disk over to any 
number of good disks subsequently used on it, and these 
can in turn contaminate other drives. 

A.9 Preparing Disk Packs for Use 

When a disk cartridge is first received from the 
manufacturer, it is completely demagnetized. However, unlike the 
other Datapoint Corporation disk drives, on the 9350 series drives 
the position of the sectors on the disk surface are determined by 
the sector timing slots around the edge of the disk's hub. 
Therefore, no special preparation of the disk (other than the 
DOSGEN process itself which is always required) is necessary 
before a new cartridge can be used by the DOS. 

APPENDIX A. DOS.A AND DOS.E A-1 



A.10 Disk Organization under DOS.A/DOS.E 

This section describes the logical organization of the data 
on the disk when operating under DOS.A/DOS.E and how it relates to 
the general DOS file concepts as described in the chapter on 
System Structure. In this chapter it is assumed that the user is 
familiar with these concepts and has read and is familiar with the 
basic DOS file structuring. 

A.10.1 Logical Drive Mapping 

Under DOS.A, each physical disk cartridge corresponds with 
precisely one logical drive. Since the 9350-series disk 
controller is only capable of attaching four 9350-series disk 
drives, that means that only four logical drives (numbered 0, 1, 
2, and 3) are legal under DOS.A. 

A.10.2 Size of a Logical Drive 

Each logical drive is two tracks on each of 203 cylinders of 
the physical disk cartridge. This results in 406 tracks of 24 
sectors each, or a total of 9,744 total sectors on a disk 
cartridge. Since cylinder zero is reserved for system tables, 
only 9,696 sectors fall into allocatable file space and therefore 
only 9,696 sectors are available for storage under the DOS.A file 
management scheme. Of these, almost 100 sectors are required for 
the minimum DOS.A system, the eight DOS.A system files 
(SYSTEMO/SYS through SYSTEM7/SYS). This leaves on the order of 
9500 sectors for user data once the DOS.A proper and a few of the 
basic commands have been loaded. 

A.10.3 Cluster Mapping 

Because there are eight bits per byte in the cluster 
allocation table (or CAT for short), and it is desirable to 
maintain one byte in the CAT per cylinder of available space on 
the drive, each cylinder on a logical drive (containing 48 
sectors, total) is broken into eight groups, each one containing 
six physically contiguous sectors. Each such group is called a 
cluster. The first four clusters per cylinder are recorded on 
track zero of the cylinder, and the second four clusters of that 
cylinder are recorded on the other side of the disk, which is 
track one, of the same cylinder. 

Due to the fact that space is always allocated in terms of an 

A-8 DISK OPERATING SYSTEM 



integral number of clusters, this implies that the minimum file 
size under DOS.A is six sectors and that file size will always be 
a multiple of this number. 

A.10.4 Segments under DOS.A 

Disk space under Datapoint Corporation's DOS is always 
allocated in contiguous chunks of clusters called segments. When 
space is allocated, the largest segment on the disk (up to the 
maximum possible sized segment) is allocated, to keep the file as 
free of fragmentation as possible. By limiting the allocation 
size to the size of a full segment, the problem of allocating all 
available space on a disk to a first scratch file before a second 
one is subsequently opened is tninimized. If several scratch files 
are opened and space in them is allocated at regular intervals, 
the resultant seg~ents will be interleaved, resulting in minimized 
access time as the heads randomly access throughout the scratch 
area. The desire to make segment size small (to minimize file 
space conflicts and help to optimize use of space on the disk) and 
yet large (to maximize processing speed, maximize file size and 
minimize the number of RIB accesses) resulted in a segment size of 
thirty-two clusters. This compromise results in a 192-sector 
segment (thirty-two clusters of six contiguous sectors each) 
allowing easy addressability of a maximum size file while still 
allowing the segment size information to be kept within five bits 
as required for RIB compatibility with the other versions of DOS. 

A.10.5 Maximum File Size 

Under DOS.A, the maximum file size available is about 9,600 
sectors. This is because there are 9,696 allocatable sectors of 
which almost 100 are used for the DOS.A system files. In 
practice, the user should not ever construct a system which pushes 
against the limits of available file size on a disk, since this 
fails to allow for future growth and expansion of his system. 
Another consideration is that if any tracks need to be locked out 
on the disk cartridge due to surface defects, then there may not 
be enough space left on the disk for his file. 

Files bigger than about 9,000 sectors should be kept on 
larger disk systems, such as 9370 series disks under DOS.B or 
other appropriate DOS. If files larger than that size must be 
kept under DOS.A, then the files should be segmented into two or 
more distinct files and logically concatenated at the user program 
level, the same as would be necessary for files larger than about 
800 sectors on the 9380 series diskettes. 

APPENDIX A. DOS.A AND DOS.E A-9 



A.10.6 Cluster Allocation Table and Directory 

Each disk cartridge used under DOS.A has its own, completely 
self-contained directory and file structure, just as for all 
Datapoint Corporation DOS. There are sixteen directory sectors on 
each disk cartridge, located in consecutive sectors starting at 
sector six on track zero of cylinder zero. Therefore, the sectors 
go from sector six to sector 025 (octal). The cluster allocation 
table is at sector zero of track zero, cylinder zero. The lockout 
cluster allocation table is at sector one of track zero, cylinder 
zero. The hashed directory index is at sector two of track zero, 
cylinder zero. The backup copies of each of these are in the 
corresponding locations of track one of cylinder zero. 

The Hashed Directory Index, maintained by the DOS, resides in 
sector two of track zero, cylinder zero. This table enables 
directory lookups to go about four times faster than was possible 
under DOS 1.2. The technique works as follows: 

Given an eleven byte file name and extension, an 
arithmetic/logical operation upon the file name results in an 
eight-bit quantity referred to as a hash code. This code is 
essentially a condensation of the 11bytes of file name and 
extension information into only one byte. Obviously, the 
information is not complete; there are only 256 distinct 
eight-bit hash codes possible, while there are literally billions 
of legal file names and extensions. However, the condensation of 
information is such that looking at the hashed directory index 
allows the DOS to substantially restrict the range of directory 
sectors it must examine when doing a directory lookup. Each hash 
code for the file names in the directory is stored into the hashed 
directory index, offset by the physical file number (PFN) of the 
file with the corresponding name and extension. 

Note that there is a calculated danger in the hashed 
directory approach. The danger is that if the hashed directory 
index is overwritten or otherwise destroyed accidentally, files 
may become inaccessable even though they are clearly shown (by 
doing a CAT command on the disk, for example) to be present. When 
this occurs on a disk, the technique to repair the disk is the 
REPAIR command. When the REPAIR command is almost finished, 
specify that the Hashed Directory Index is to be rewritten to the 
disk. This causes the HOI to be regenerated from the actual disk 
directory and rewritten. In general, the Hashed Directory Index 
is rarely if ever destroyed in actual disk usage, and contributes 
greatly to overall system performance if many directory lookups 
are being done. 

A-10 DISK OPERATING SYSTEM 



A.11 Internal DOS Parameterization 

This section describes the DOS.A-dependent details of the 
parameterization of DOS.A system routines. 

A.11.1 Physical Disk Address Format 

Under DOS.A, physical disk addresses are presented (for 
example, as input to the OR$ and OW$ routines) in a two-byte 
format quite similar to that used under the other DOS. The most 
significant byte (which is traditionally placed in the 0 register) 
is the cylinder number, just like for DOS.B and DOS.C. The less 
significant byte (usually placed in the E register) has its most 
significant three bits representing a cluster number within the 
cylinder (any combination of these three bits is valid) and the 
least significant five bits representing a relative sector number 
within the specified cluster. Only the values zero through five 
are valid for the least significant five bits, since there are 
only six sectors per cluster. 

A.11.2 Hardware Address Structure 

The hardware disk address for 9350 disks also requires two 
bytes. One byte specifies cylinder number. The other byte 
specifies a sector number, 0 - 021 on the bottom surface, 040-067 
on the top surface. This hardware address is used only for the 
DUMP9350 program and internally to the DOS routines OR$ and D~$. 

APPENDIX A. DOS.A AND OOS.E A-11 



APPENDIX B. DOS.B 

DOS.B is Datapoint Corporation's Disk Operating System 
supporting Datapoint 2200, 5500 and 6600 family computers 
operating in conjunction with up to two 9370 series disk drives. 

B.1 Planning for DOS.B 

The recommended configuration for a DOS.B system includes 16K 
or more of memory in the 2200 or 5500 series computers. Use of a 
single 93'70-series drive is possible, but the user should at least 
have access to a double-drive system for backup purposes. Some 
consideration must be given to the question of copying files from 
one disk pack to another, and users of the 9370-series "Mass 
Storage" disk systems will typically have files far too big to 
consider transferring from one disk to another one cassetteful at 
a time. 

Another option which should be strongly considered is the 
High Speed, or so-called "RAH" Display Option for 2200 processors. 
This option can substantially increase total system throughput 
(especially on batch-processing oriented systems) at a very small 
additional cost. The RAM Display option is field-installable, and 
is standard equipment on Datapoint 5500 and 6600 family computers. 

B.2 File Storage Capacity under DOS.B 

Under DOS.B, each 9370-series disk unit is dealt with as two 
logical drives. Each of these two logical drives contains 38,976 
sectors of 256 bytes each and can store up to 256 files. Of 
these, about 250 sectors and about ten files are used by the 
operating system and a few basic commands, leaving about 10 
million bytes of usable space per logical drive, or up to roughly 
20 million bytes of storage total for each disk storage unit in 
the configuration. 

Other features of DOS.B include a large maximum file size: 
up to 30,237 data sectors ia a single DOS.B file (not including 
the end-of-file mark and two RIBs). 

APPENDIX B. DOS.B B-1 



B.3 Disk Drives 

Datapoint DOS.B supports one or two 9370-series disk drives 
attached to one 9370-series disk controller. 

B.4 Disk Media 

The Datapoint 9310 series comprises two different types of 
drives. Models 9370-9373 use an 11-platter disk pack, 
media-compatible with the IBM 2316 disk storage module. On these 
packs data is recorded in 203 concentric circles on each of the 20 
recording surfaces. Each such circle is referred to as a track. 
Models 9374 and 9375 use a single-platter disk which records data 
on 408 tracks (DOS uses only 406 of these). 

The disk pack is enclosed within a plastic enclosure when it 
is not in place in the drive. This cover is intended to help keep 
the disk free from dust, pollen,· smoke and other contaminants and 
is of prime importance in helping to eliminate disk errors and 
parity failures that contamination can cause. 

B.5 Loading and unloading Disk Packs 

B.5.1 Models 9370-9373 

On the right side of the top of the 9370-series disk drives 
is the disk access cover. While holding the disk pack by the top 
center handle, rewove the bottom portion of the disk pack 
enclosure by turning the bottom knob with the other hand. Then 
raise the disk access cover and carefully lower the disk pack into 
the cavity, still holding the disk pack by the top handle. When 
the pack has fully seated onto the spindle, turn the disk pack top 
center handle fully clockwise, until firm resistance is met. ·It 
is important that the pack be solidly in place before removing the 
top cover. After the pack has been properly mounted, the top 
cover should be slowly and carefully removed by lifting it 
straight upwards. Avoid letting the cover tilt and wedge against 
the edges of the disk platters as it is being drawn upwards as 
this can affect the precision alignment of the ·disk pack. The 
access cover should be closed as soon as the disk pack cover has 
been fully removed, and the top and bottom halves of the disk pack 
protective cover should be immediately put back together to keep 
out dust and other contaminants. 

B-2 DISK OPERATING SYSTEM 



To remove a disk pack, first place the "START/STOP" switch on 
the operator control panel of the drive to the STOP position. 
This immediately takes the drive off line and activates dynamic 
braking circuits in the drive which will brake the pack to a 
smooth but rapid stop in about twelve seconds. The disk access 
cover on top of the drive must not be opened before the pack has 
come to a full and complete stop. When this has occurred, raise 
the disk access cover and carefully lower the top portion of the 
disk pack cover down onto the pack. Be certain not to get it 
skewed since if the cover wedges against the edges of the platters 
it is possible to affect the critical surface-to-surface alignment 
of the pack, which will damage it. When the cover is fully 
lowered onto the pack, turn the handle in the center of the top of 
the cover counterclockwise until a distinct click is heard. This 
click indicates that the pack has been released from the drive 
spindle and may now be removed. Lift the disk pack and top cover 
together carefully out of the drive and immediately reattatch the 
bottom cover to the base of the pack, locking it firmly in place 
by a twist of the knob in the center of the bottom portion of the 
canister. The pack should be stored horizontally on a shelf 
(never on edge!) and in a position where itis not apt to be 
dropped or pushed accidentally over an edge. If another disk is 
not to be mounted immediately into the drive the pack was just 
removed from, the disk access cover should be closed right away to 
help prevent the entrance of dust, smoke or other contaminants 
into the drive mechanism and access arm assembly. 

B.5.2 Model 9374/9375 

At the top of the front panel of the drive is a handle for 
access. Pull forward and down on this handle to release the 
drive, then slide the entire drive forward to expose the cavity in 
which the disk fits. The disk pack itself has a handle on the top 
of the case. To open the disk pack, place the handle folded flat 
against the case and slide the lock button to the left, then -
holding the lock button on - lift the handle to its full vertical 
position. This action releases magnetic clamps and allows the 
bottom of the disk cover to falloff. Lower the disk into the 
cavity in the drive, being sure it is fully seated. Now lower the 
handle on the top of the disk container. Invert the bottom of the 
disk pack cover and place it on top of the disk, inside the drive. 
It is essential the disk pack bottom cover be placed in the drive, 
since the disk will not run if the cover is not present. Finally, 
slide the drive back into its cabinet, closing the access door. 

Removing a disk is the exact reverse of inserting it. To 
remove the disk from the cavity in the drive, the lock button on 
the handle must be held to the left, just as for opening the disk 

APPENDIX B. DOS.S B-3 



cover. 

B.6 Switches and indicators 

B.6.1 Models 9310-9313 

Two types of drives are repesented in these model codes; both 
use the same controller and the same disk packs. Some are "Telex" 
drives, manufactured by TSS; others are Memorex drives. The 
Memorex drives have no latch on the disk access cover, while the 
Telex drives use a spring-loaded cover held down by a latch. 80th 
types of drive units use the same 9370 controller and provide 
identical performance. 

B.6.1.1 Memorex Drives 

The large physical drive number (just to the right of the 
READ-WRITE/READ ONLY switch) lights up when the heads are loaded 
onto the disk surface and typically at this time the drive will be 
on line. 

The smaller numbers to the right serve as an indication of 
the position ofJthe heads as they perform cylinder seeks to 
positions nearer or farther from the center of the disk pack. The 
exact physical cylinder number to which the heads are positioned 
at any given time can be determined by adding together the numbers 
which are illuminated, giving a cylinder number in decimal; the 
cylinder number in octal can be determined by noting which of the 
eight number positions are illuminated and considering those 
illurl1inated to be "1" bi ts and those not illuminated to be "0" 
bits. The bits then can be converted easily to a three-digit octal 
number by grouping them in groups of 2,3,3: a technique familiar 
to users conversant with octal. 

The words "READ ONLY" illuminate to indicate that the drive 
is in the so-called "Write Protected" mode. In this mode, the 
computer cannot write anything onto the disk in that drive, but 
can only read the information already on the pack. This light is 
the indication of whether a drive is write-protected or not, and 
does not always immediately reflect the position of the read-only 
SWITc~ See "Common Feature~below-.- - -- --- ---

The words "FILE UNSAFE" light up when the safety circuits in 
the drive detect one or more of about a dozen different conditions 

8-4 DISK OPERATING SYSTEM 



that they consider would endanger the data on the disk pack if 
continued disk operation were attempted. The FILE UNSAFE 
condition can be caused by (among other things) unusually severe 
power surges, and infrequently by a program going completely 
haywire and giving flagrantly illegal commands to the disk drives. 
If this light comes on during use of the system, the first remedy. 
to try is to push the switch marked "START/STOP" to the "STOP" 
position. After the disk has come to a complete, braked stop 
(which should take about twelve seconds), push the switch back to 
the "START" position. If the problem which caused the FILE UNSAFE 
condition to occur was spurious, the drive will power back up 
normally and come on-line again in about sixty seconds. If the 
FILE UNSAFE condition occurs again (usually immediately upon 
completion of the sixty-second power-up delay) and repeatedly, it 
probably indicates a hardware malfunction and time to call the 
Datapoint Customer Support Center. 

B.6.1.2 "Telex" Drives 

The controls and indicators on Telex drives are essentially 
identical to those on the Memorex drives. When the drive is 
on-line, a green indicator light comes on indicating "FILE READY". 
There are no indicator lights for head position; cylinder position 
of the heads can be read on a vernier scale mounted on the top of 
the access arm assembly and visible through the top of the loading 
cover. A white indicator lamp indicates "READ ONLY" when the 
drive is protected, and, as on the Memorex drives, the read/write 
status of the drive does not immediately reflect the setting of 
the READ/WRITE - READ ONLY switch (see "Common Features" below). A 
red indicator lamp indicating "SELECT LOCK" is equivalent to the 
"FILE UNSAFE" indicator on the older drives. 

B.6.1.3 Common Features 

Changing the setting of the READ WRITE/READ ONLY switch only 
affects the drive if the drive is deselected. Therefore, this 
switch should be normally kept in the READ-WRITE position except 
for special purposes, and should usually be returned to the 
READ-WRITE position as soon as possible after the special purpose 
is completed. If the DOS command interpreter is active (as 
indicated by the familiar DOS "READY" message) and the READ ONLY 
lamp and the READ-WRITE/READ ONLY switch do not concur (indicating 
that that drive is selected), simply entering a blank from the 
system console is a simple technique to ensure that the drive 
becomes deselected so that the revised setting of the READ ONLY 
switch will take effect. 

APPENDIX S. DOS.S 8-5 



The other switch on the operator control panel on the 
9370-series drive (marked ENABLE/DISABLE) is for use only by the 
customer engineer and should always be left in the position marked 
ENABLE. This switch, when set to DISABLE, takes the drive off 
line (although the drive 'ready indicator stays illuminated). The 
switch is only active when the drive is de-selected, and this is 
the reason why the svvitch should not be usea-casually. If drive 
zero, for example, is DISABLEd and then the co~puter is 
bootstrapped, drive zero will not be de-selected at least until 
the DOS has completely booted itself up. And until the drive is 
de-selected, turning the switch to the ENABLE position has no 
effect. The only solution for this problem if it occurs is to 
completely power down the entire system and bring it back up again 
with the switch in the ENABLE position. So in general, it is a 
good idea to keep this switch set to ENABLE and let it go at that. 

B.6.2 Model 9374/9375 

The 9374 disk drives are controlled by a small cluster of 
switches in the lower right-hand corner of the front panel of each 
drive. A thumbwheel switch sets the physical device number; this 
switch is set at installation and should not be reset thereafter. 

A LOAD/RUN rocker switch controls loading the disk. An 
indicator light below the rocker switch indicates if the drive is 
in LOAD, ready for a disk to be removed or inserted, or in RUN, 
on-line to the processor .. 

A pair of rocker switches labeled PROT CART and PROT FIXED 
control write protection of the removable disk pack and the fixed 
platter within the drive. When one of these switches is 
illuminated the corresponding disk is write protected. The 
protection setting of either disk can be changed at any time by 
using the PROT switch. When a disk is first spun up (first 
brought to READY status) both disks will be write protected for at 
least three minutes to ensure thermal stabilization. If the drive 
is cold, the write-protect delay could be longer. The delay for 
thermal stabilization is necessary because the 9374 disk is a very 
high-density storage medium. 

8-6 DISK OPERATING SYSTEM 



B.7 Care and Handling of Disk Packs 

Disk packs for the 9370 series disk drives are precision, 
high-technology assemblies and must be treated as such. It is of 
extreme importance that they not be mishandled, dropped, or 
contaminated with dust or other pollutants. The packs should be 
stored strictly horizontally (not on edge) on a shelf clean from 
dust and in an environment similar to that where the drives are 
installed (preferably in the same room with the computer). 

On the bottom of each 11-platter disk pack is a fine nylon 
filter, normally white. This filter should be replaced at least 
once per year, or more often if indicated by discloration or 
airborne debris. 

If the packs are shipped by common carrier, they should be 
repackaged in their original shipping carton and marked YlFRAGILE". 
Disk packs should never by mailed by Parcel Post. 

In addition, any pack which has been in a non-computer room 
environment should be allowed to equalize temperatures in the room 
with the computer for 24 hours before use if at all possible 
before attempting to read or write data on the pack. In an 
emergency, placing the pack onto a drive and letting it spin up 
and run for about an hour will usually be adequate, but this 
procedure should be considered an emergency measure only. 

A little care in handling disk packs will repay itself 
several times over in reliable and trouble free service with long 
life from your disk packs. 

B.8 Care and Maintenance of the 9370 Drives 

The 9370 series disk drives are full scale mainframe computer 
peripherals and deserve to be taken care of. As with the disk 
packs, cleanliness is of paramount importance. All efforts should 
be made to keep the room as dust-free as possible. Since the 
read/write heads fly very close to the disk surface (about 80 
millionths of an inch away from the oxide on the 11-platter packs) 
even such small particles in the air as those present in cigarette 
smoke may cause troubles eventually. The drawing in this section, 
reproduced here courtesy of Memorex Corporation, graphically 
depicts the relative proportions of disk head flying height and 
common office pollutants, and should help to explain why the need 
for cleanliness and good housekeeping practices is so important. 

APPENDIX B. DOS.B B-7 



:t"'!J:' HEAD 
fl YING 
"'E'GI'1T 

]31. HE AD 
rl YI'l:C 
Hf ICHT 

$ .... ,,1\ l ; ARTICLE 
2~·' ·,'1("0 IN. 

O·)v2~·· 

Disc 
Cross. Section 

Users of the system should be careful to close the disk access 
cover (or slide the drive back in the cabinet) as soon as the pack 
loading or unloading is complete and keep disk packs in their 
protective covers at all times to prevent contamination. If disk 
pack canisters become soiled, they should be cleaned carefully 
with a mild detergent solution and carefully wiped dry. Users 
should be very careful to never allow anything to contact the 
oxide surface of the disk pack itself. 

In addition to this user maintenance, the user should also 
ensure that the preventive maintenance procedures outlined in the 

B-8 DISK OPERATING SYSTEM 



9370 series disk drive maintenance manual are performed. 

B.9 Head Crashes 

Each of the heads in the 9370-series drive is held near the 
disk surface by a spring which pushes the head toward the surface 
with a force of about 350 grams. The disk on the other hand is 
spinning at about 80 miles per hour relative to the heads. The 
head and disk are kept apart by a micro-cushion of air only eighty 
millionths of an inch thick. A head crash occurs when this 
lubricating air film fails. The main-causes of head crashes are 
foreign particles in the lubricating film, contamination buildup 
on the surfaces of the disk or read/write heads, or a defective 
disk surface. 

When a head crash occurs, the head rubs against the oxide 
surface of the disk, which frequently loosens more oxide, 
resulting in further and more severe crashes, and things go 
progressively downhill from there. Due to the severiti of a head 
crash, not just because of the loss of data on a disk but also due 
to the degree of damage to the heads on the drive, it is important 
to recognize the symptoms of a head crash. In this manner a disk 
experiencing a head crash can usually be discovered and stopped 
before the crash reaches catastrophic proportions. 

For a description of symptoms of a head crash and appropriate 
prventive and restorative action, see Appendix A under "Head 
Crashes". 

B.10 Preparing Disk Packs for Use 

When a disk pack is first received from the manufacturer, it 
is completely demagnetized and is not usable until it has been 
formatted. The formatting process writes the entire surface of 
the disk pack with track and sector addresses which later allow 
the controller to identify where a given sector is on the surface 
of the disk. 

When this information is later read by the DOS, any errors 
discovered in the formatting information are treated in the same 
way as a parity error in the written sector information itself, 
thus resulting in up to nine or ten re-tries before returning with 
a parity error indication. Sometimes, if the parity error 
indicated by the DOS is due to an error developing in the 
formatting information on the disk, the parity error on the disk 
can be cOlnpletely eliminated by using the BACKUP command to save 

APPENDIX S. DOS.S B-9 



as m u c h 0 f the in for [a a t ion 0 n 't he pac k asp 0 s sib 1 e and the n 
reformatting the pack. (After reformatting the pack, any data 
that had been on the pack is destroyed and it must be DOSGENed 
like a new one). Even what at first appear to be "hard" parity 
errors can occasionally be cleared this way. 

Formatting information is written onto the disk using the 
INITDISK command, either from a working DOS or from a LOAD & GO 
cassette. (NOTE: al though in general the commands from the DOS 
cannot be run without the DOS being active, INITDISK is one of the 
few exceptions). Following successful completion of the INITDISK 
command program, the disk pack it was used on can be DOSGENed 
(twice, once for each of the two logical drives) and will normally 
not need to be re-formatted again for the duration of its 
lifetime. 

B.11 Disk Organization under DOS.B 

This chapter describes the logical organization of the data 
on the disk when operating under DOS.B and how it relates to the 
general DOS file concepts as described in the chapter on System 
Structure. In this section it is assumed that the user is 
familiar with these concepts and has read and is familiar with the 
basic DOS file structuring. 

B.11.1 Logical Drive Mapping 

Under DOS.B each physical volume is broken into two logical 
drives. This is done for reasons of addressing. It is simply not 
possible to address all of the sectors on an entire 9370 disk 
volume using only two bytes of physical disk address, and the two 
byte physical disk address is central to all of Datapoint 
Corporation DOS's operations. It is not practical to change this 
characteristic without making changes which would result in 
invalidating ~any user-written programs and many large systems 
which run under the DOS. Therefore the disk was broken into two 
halves, and one bit of the effective physical disk address is 
taken from the logical drive number. 

For the 9374 drives the removable disk is one logical drive, 
and the fixed disk is a second logical drive. 

The first eight recording surfaces on the 11-platter disk 
(heads are numbered from zero to nineteen starting at the top of 
the disk drive) correspond to logical heads zero to seven on the 
even logical drive, and the next eight recording surfaces on the 

B-10 DISK OPERATING SYSTEM 



disk correspond to logical heads zero to seven on the odd logical 
drive (physical heads eight through fifteen). Physical heads 
sixteen through nineteen (and the corresponding recording surfaces 
on the disk pack) are not used by DOS.B. 

8.11.2 Size of a Logical Drive 

Each logical drive is eight tracks on each of 203 cylinders 
of the physical drive. This results in 1624 tracks of 24 sectors 
each, or a total of 38,976 total sectors on a logical drive. Of 
these, about 38,400 remain when the DOS has been generated, the 
system tables constructed on the disk, and a few basic commands 
loaded. The 9374 disks are addressed using the same structure of 
203 cylinders, 24 sectors per track. Physically the 9374 disks 
have 406 cylinders with 48 sectors per track, but the disk 
controller itself provides an interface between the physical and 
logical structure, so the processor "sees" a drive structured just 
like a 9370 drive. 

8.11.3 Cluster Mapping 

Because there are eight bits per byte in the cluster 
allocation table (or CAT for short), and it is desirable to 
maintain one byte in the CAT per cylinder of available space on 
the drive, each track on a logical drive represents one DOS 
cluster, and is represented in the CAT by exactly one bit. Since 
the DOS uses eight tracks per logical cylinder, this results in 
exactly eight clusters per cylinder of twenty four sectors each. 

Due to the fact that space is always allocated in terms of an 
integral number of clusters, this implies that the minimuill file 
size under DOS.B is twenty-four sectors and that file size will 
always be a multiple of this number. It turns out that choosing a 
full track as the smallest allocatable unit of space has other 
advantages as well from a system standpoint, since it allows some 
programs (like DOS.B COpy) to make several simplifying assumptions 
about the data in a file which enables them to copy data and 
reference information in a file substantially more easily and 
efficiently than would be otherwise possible. 

APPENDIX B. DOS.B B-11 



B.ll.4 Segments under DOS.B 

Space under Datapoint Corporation's DOS is always allocated 
in contiguous chunks of clusters called segments. When space is 
allocated, the largest segment on a drive up to the maximum 
possible sized segment is allocated, to keep the file as free of 
fragmentation as possible. By limiting the allocation size to the 
size of a full segment, the problem of allocating all available 
space on a disk to a first scratch file before a second one is 
subsequently opened is minimized. If several scratch files are 
opened and space in them is allocated at regular intervals, the 
resultant segments will be interleaved, resulting in minimized 
access tiJle as the he ad s r andornl y access throughout the sc ra tc h 
area. The desire to (jlake segment size small (to minimize file 
space conflicts and help to optimize use of space on the drive) 
and yet large (to maximize processing speed, maximize file size 
and minimize the number of RIB accesses) resulted in a segment 
size of ten clusters. This compromise results in a 240-sector 
segment (ten clusters or tracks of 24 sectors each) allowing a 
maximum file size of over 30,000 sectors while still allowing 
internal disk address and segment size calculations to be done 
using faster single precision arithmetic techniques. 

B.ll.5 Maximum File Size 

Under DOS.B, the maximum size file available is 30,238 data 
sectors. This number "is the result of 126 segment descriptors in 
the RIB, each of which points at one segment of 10 tracks of 24 
sectors each: 

24 sectors x 10 tracks x 126 segments = 30,240 total sectors 

Since the first two sectors of each file under the DOS are 
used for the RIB and its copy, that leaves 30,238 sectors 
available to the user for the storage of his data. Files longer 
than this number will have to be segmented or logically 
concatenated at the user progra~ level, the same as would be 
necessary for files larger than about 9600 sectors on the 9350 
series disks. 

B-12 DISK OPERATING SYSTEM 



B.11.6 Cluster Allocation Table and Directory 

Each logical drive under DOS.S contains its own directory and 
cluster allocation table, just as for all Datapoint Corporation 
DOS. There are sixteen directory sectors on each logical drive, 
located in consecutive sectors starting at sector five on logical 
track zero of cylinder zero. Therefore, the sectors go from 
sector five to sector 024 (octal). The cluster allocation table 
is at sector zero of logical track zero, cylinder zero. The 
lockout cluster allocation table is at sector one of logical track 
zero, cylinder zero. The backup sectors for all of these are in 
the corresponding locations on logical track one of the same 
cylinder. 

The Hashed Directory Index, maintained by the DOS, resides in 
sector two of track zero, cylinder zero. This table enables 
directory lookups to go about four times faster (on full disk 
directories) than was possible under DOS.S Version 1. The 
technique works as follows: 

Given an eleven byte file name and extension, an 
arithmetic/logical operation upon the file name results in an 
eight-bit quantity referred to as a hash code. This code is 
essentially a condensation of the 11 bytes of file name and 
extension information into only one byte. Obviously, the 
information is not complete; there are only 256 distinct eight-bit 
hash codes possible, while there are literally billions of legal 
file names and extensions. However, the condensation of 
information is such that looking at the hashed directory index 
allows the DOS to substantially restrict the range of directory 
sectors it must examine when doing a directory lookup. Each hash 
code for the file names in the directory is stored into the hashed 
directory index, offset by the physical file number (PFN) of the 
file with the corresponding name and extension. 

Note that there is a calculated danger in the hashed 
directory approach. The danger is that if the hashed directory 
index is overwritten or otherwise destroyed accidentially, files 
may become inaccessable even though they are clearly shown (by 
doing a CAT command on the disk, for example) to be present. When 
this occurs on a disk the technique to repair the disk is the 
REPAIR command. When the REPAIR command is almost finished, 
simply specify that the Hashed Directory Index is to be rewritten 
to the disk. This causes the HDI to be regenerated from the 
actual disk directory and rewritten. In general, the Hashed 
Directory Index is rarely if ever destroyed in actual disk-usage, 
and contributes greatly to overall system performance if many 
directory lookups are being done. 

APPENDIX B. DOS.S B-13 



B.12 Internal DOS Parameterization 

This section describes the DOS-dependent details of the 
parameterization of DOS.B system routines. 

B.12.1 Physical Disk Address Format 

Under DOS.B, physical disk addresses are represented in a 
two-byte format in a manner quite similar to that used under the 
other DOS. The most significant byte (which is traditionally 
placed in the D register) is the cylinder number. The less 
significant byte (usually placed in the E register) has its most 
significant three bits representing a cluster number within the 
cylinder (or logical track number in the specific case of DOS.B) 
and the least significant five bits representing the sector number 
within the specified cluster. Since there are 24 sectors in a 
cluster, the five bit sector number has a valid range of 0-027. 

B.12.2 Hardware Address Structure 

The 9370 series drives use three bytes for hardware 
addressing. The cylinder number is one byte (range 0-0312), the 
head number is a second byte (range 0-023), and the sector number 
a third byte (range 0-027). 

B-14 DISK OPERATING SYSTEM 



APPENDIX C. INTRODUCTION TO DOS.C 

DOS.C is Datapoint Corporation's Disk Operating System 
supporting Datapoint 1100, 2200, 5500 and 6600 series processors 
operating in conjunction with up to four 9380 series diskette 
drives. 

C.1 Planning for DOS.C 

The minimum configuration for a DOS.C system includes 16K of 
memory in the 1100 or 2200 series computers and 16K or more in 
5500 or 6600 series computers. Use of a single 9380-series drive 
is possible, but the user should at least have access to a 
double-drive system for backup purposes. Sou1e consideration must 
be given to the question of copying files from one diskette to 
another. Users with 2200, 5500 or 6600 series computers (having 
cassette tape drives) can use cassettes if necessary as a standard 
exchange medium for file transfers (except for files bigger than 
about 450 sectors, too large to fit on a single side of a 
cassette). Those with Diskette 1100 series computers do not have 
cassette tape drives and hence must use diskettes as their file 
transfer medium. Since DOS.C software is distributed on diskettes 
by Datapoint Corporation, the user will need to have at least a 
two drive system to copy the software from the diskette received 
from Datapoint to his working diskette(s). Single drive systems 
should be considered only by those intending to use them as 
satelli te systems (example: data entry stations) and planning on 
having at least one other system with two or more drives (for 
program development and file processing applications). 

Another option which should be strongly considered is the 
High Speed, or so-called "RAtJI" Display option for 2200 processors. 
This option can substantially increase total system throughput and 
responsiveness (especially in applications displaying a lot of 
text on the screen, such as data entry) at a very small additional 
cost. The RAM Display is field-installable (although less 
expensive when factory-installed), and is standard equipment on 
Da'tapoint 5500 and 6600 and Diskette 1100 series computers. 

APPENDIX C. INTRODUCTION TO DOS.C C-1 



C.2 Performance of DOS.C 

Users who are currently using Datapoint computers in 
cassette-based systems will find substantial improvements in 
performance when they upgrade to DOS.C. The 9380 series diskette 
drives are several times faster than cassettes for ordinary 
sequential data transfers; random-access type operations (such as 
sorting and ISAM file access) can easily be two orders of 
magnitude faster than is attained using tape cassettes. 

Users who are currently using competitive diskette-based 
equipment will generally find that total system performance of 
Datapoint systems will exceed that which they are accustomed to. 
This improvement is due to the generally superior data handling 
techniques and file structuring as used in Datapoint's DOS. These 
characteristics stem from the fact that instead of employing a 
lower-performance cassette-style file structure as a base for the 
operating system, Datapoint chose instead to adapt the same 
advanced and dynamic disk file access techniques as used in its 
other DOS to the new diskette media. 

The obvious side benefit of this DOS compatibility is that 
not only is virtually all of the Datapoint DOS software library 
available to diskette users but that most user programs which were 
written originally for other Datapoint DOS systems will run 
unmodified (except for possible file size limitations and timing 
differences due to the slower access times of the 9380 series disk 
drives) under DOS.C. 

In addition to the increased speed of access of the 9380 
series drives as compared to cassettes, another big advantage is 
that the total amount of storage available on a diskette-based 
system is about four times the amount usable on cassette systems, 
even when both cassette drives are in use. 

It should be recognized that DOS.C is not expected to 
eliminate the usefulness of larger capacity, higher performance 
disks. Many users will have applications which are too involved 
or too large for the 9380 series diskette drives. Users who need 
large data files or high speed random access to disk storage will 
find the performance they are looking for in the other versions of 
Datapoint DOS. 

C-2 DISK OPERATING SYSTEM 



C.3 Disk Drives 

Datapoint DOS.C supports up to four 9380-series flexible 
diskette drives through their integral disk controller unit. The 
disk controller contains 1024 bytes of high speed, random access 
memory which buffers four sectors between the diskette drives and 
the Datapoint processor, enabling greater 1/0 device autonomy and 
improved overall system performance. 

C.4 Disk Media 

The Datapoint 9380-series flexible diskette drives use a 
flexible diskette for data storage. This diskette is media and 
format-compatible with the IBM 3741-style flexible diskette. 

Data is recorded in 77 concentric circles on only one side of 
the diskette (as per the IBM standards for diskette data 
interchange). Each such circle is referred to as a track. 
Although each such track on the diskette actually co~tains 26 
physical records of 128 bytes each, these are paired up by the 
Datapoint 9380 series diskette controller (an integral part of the 
diskette system) so that to the Datapoint computer each track 
appears to consist of 13 records (called sectors) of 256 bytes 
each. In Datapoint DOS documentation, unless explicitly indicated 
to the contrary, the term sector always refers to a 256-byte 
logical sector, and it is strictly incidental that this sector is 
broken into two physical 128 byte records for transfer to and from 
the diskette media. 

The diskette is permanently enclosed within a durable plastic 
cover. This cover provides for easy insertion of the diskette 
into the diskette drives and provides structural rigidity for the 
media when it is not in use. In addition, the plastic cover 
provides a degree of environmental protection for the diskette and 
its oxide surface from damage caused by careless handling. 

C.5 Loading and Unloading Diskettes 

Upon observation of a diskette, three holes through the 
plastic diskette cover will be noted. Each of these holes allows 
one to see a portion of the oxide-coated surface of the diskette 
itself. 

The large, round hole in the center of the cover is used by 
the diskette drive for the hub which clamps to the diskette and 
turns the diskette within the cover. 

APPENDIX C. INTRODUCTION TO DOS.C C-3 



The longer, narrower radial slot towards one edge of the 
enclosure is the slot through which the read/write head in the 
diskette drive contacts the diskette's oxide coating for data 
transfer operations. 

The smaller round hole present on the diskette is the hole 
through which the index hole, a hole in the diskette proper about 
the diameter of a pencil lead, is sensed by the controller and 
used for timing and control purposes. 

The reason for the description of these holes is that they 
provide the definitive reference for indicating the proper 
direction of insertion of the diskette media into the 9380 series 
drives. When the diskette is properly inserted, the edge of the 
diskette with the long slot is inserted first. The smaller hole 
(the one through which the index hole is sensed) will be the last 
of the three holes in the cover to enter the drive, and it will be 
positioned toward the tabletop rather than downwards toward the 
floor. 

The diskette loading slot is covered by a long, narrow 
handle. A rectangular pushbutton to the side of the handle is 
pushed to open the handle for diskette insertion and removal. 
When inserting the diskette, it will meet with a spring resistance 
after being inserted about 3/4 into the drive. Press the diskette 
gently into place until the spring catches and the diskette stays 
in place without being held in with the finger. Be careful not to 
push the diskette too far into the drive, as this can cause the 
innermost edge of the diskette's plastic cover to be wedged 
between some metal projections on the diskette drive which could 
possibly result in damage to the diskette. After the diskette is 
in place, pull the door/handle to the left until it latches 
closed. As the door is pulled closed, the hub engages the 
diskette, bringing it to its rated rotational speed of 360 rpm 
(and then online) almost immediately. 

To remove a diskette, first ensure that all input/output 
activity on the diskette has completed. (This is necessary since 
it is possible to open the drive door, which takes the diskette 
offline, in the middle of a write operation; this can result in 
improper data being written onto the diskette.) Then press the 
button to the left of the door/handle. The door will open and the 
diskette will emerge in much the same way toast pops out of a 
toaster. Upon removing the diskette from the drive, it should be 
immediately placed in its protective paper envelope to help 
protect the surface from abrasive contaminants and other elements 
which could damage it. 

C-4 DISK OPERATING SYSTEM 



C.6 Drive Numbering and Switches 

Diskette drives are normally installed in the cabinet 
starting from the left. These drives are numbered 0, 1, 2, and 3 
respectively from left to right. These numbers constitute the 
physical drive number. In the case of DOS.C, the same number is 
also sometimes referred to as the DOS logical drive number, or 
frequently just drive number. 

The main power switch for the diskette unit is located on the 
underside of the tabletop and to the left side of the diskette 
drives, positioned toward the front of the cabinet. Sliding this 
switch towards the rear of the diskette drive cabinet turns the 
diskette unit on, and sliding the switch towards the user turns 
the diskette unit off. This switch should normally always be left 
in the ON position. 

There are no other controls or switches intended for use by 
the user on the 9380-series diskette drives. 

C.7 Care and Handling of Diskettes 

Diskettes are sturdy media which will give long and 
trouble-free service if they are handled with reasonable care. 

1) Diskettes should always be stored in their protective 
paper envelopes when not inserted in a drive. These 
envelopes should then be stored in the protective boxes in 
which the diskettes are received from the manufacturer. 

2) Do not force too many diskettes into one box. They should 
not be placed under heavy pressure, as this can warp the 
diskette media, possibly causing read/write errors. 

3) Diskettes should not be rolled, folded or otherwise 
subjected to strains which could crease the media. 

4) Never touch the oxide coating of the diskette through the 
holes in the plastic cover. Human skin has oils on it 
which will attract and retain dust and other abrasive 
contaminants if these oils get onto the diskette's 
surface. In addition, contact between hard surfaces and 
the diskette oxide can scrape away the 
information-carrying oxide from the diskette surface; this 
will usually result in unrecoverable errors on the 
diskette. 

APPENDIX C. INTRODUCTION TO DOS.C C-5 



5) Diskettes should not be subjected to strong magnetic 
fields. 

6) When mailing diskettes, they should either be placed 
between two sheets of corrugated cardboard (for rigidity 
and protection while going through the mails) or placed in 
some suitable protective carrier. Many diskette media 
manufacturers sell mailers specifically designed for use 
in sending diskettes, either singly or in multiples, 
through the mail. 

7) Diskettes can generally be taken through airport security 
x-ray and metal detecting equipment without danger of 
damage to the information recorded on the diskette. 

C.8 Preparing Diskettes for Use 

When a diskette is first received from the media 
manufacturer, it contains formatting information recorded across 
the entire usable surface of the di~kette. This information is 
provided to allow the controller to identify where a given sector 
is on the surface of the disk, and also allows the controller to 
ver i fy pr oper head po si tioning in the dr i ve mechan i sm. Normal 
reading and writing on the diskette does not destroy the 
formatting information contained thereon. 

Only diskettes in 3740 format (128 byte sectors) are usable 
by DOS.C. Diskettes that have been reformatted with bad tracks 
flagged and alternate tracks substituted cannot be used. Also, 
diskettes in System 32 format (256 byte sectors) or IBM 3600 
format (512 byte sectors) cannot be used. 

Diskettes cannot be used by DOS.C until they have been 
generated with the DOSGEN program described earlier. Datapoint 
DOS uses its own unique file structure which is capable of more 
sophisticated data and file manipulation than the standard IBM 
file structure which is intended for data entry and not for actual 
computer data processing. This more sophisticated file structure 
is what results in the need for DOSGEN before a diskette can be 
used by DOS.C. 

A special note regarding disks which are to be used in the 
booted drive is appropriate. All of the newer releases of DOS 
commands use DOS FUNCTIONs (as described in the DOS USER'S GUIDE). 
These functions are resident on the diskette in the file 
SYSTEM7/SYS. When updated versions of DOS.C and associated 
utilities are received from Datapoint Corporation, the file 

C-6 DISK OPERATING SYSTEM 



SYSTEM7/SYS may also have one or more new DOS FUNCTIONs resident. 
Therefore, wholesale copying of DOS commands from newly received 
diskettes to older diskettes with older versions of SYSTEM1/SYS 
will frequently result in commands which either work or do not 
work depending on whether the older or newer version of 
SYSTEM7/SYS is present on the booted drive. Therefore the user 
should generally keep his DOS commands disk more or less intact 
and not use a newly released diskette to supply commands to 
previously DOSGENed diskettes; instead, he should freshly generate 
as many system diskettes (including whichever DOS commands he 
intends to use) as he needs. 

C.9 Suggested Disk Organization Techniques 

Due to the relatively small capacity of the flexible 
diskette, careful consideration should be given to which files 
should be put on which diskettes. Users with single drives for 
data entry and related applications will have little choice in 
such matters. However, for users with multi-drive systems being 
used for program development, the following convention is 
suggested: 

1) DOS system diskettes. These diskettes contain the system 
files (as do all diskettes for use with DOS.C) and 
whichever DOS eommands the user intends to use. Usually 
this diskette will be used in drive zero during program 
generation, debugging and other DOS system-type functions 
and because of this will contain all of the DOS itself, 
DOS commands and latest set of DOS FUNCTIONs as released 
by Datapoint. This diskette will also frequently contain 
the editor scratch file, SCRATCH/TXT. 

2) Source program diskettes. These diskettes can be 
considered as library file diskettes. These diskettes may 
contain programs, Dataform form~, and other user text 
files used, for example, during program generation. Once 
these programs are finalized, they can be copied to DOS 
System diskettes or User System diskettes as appropriate. 

3) User system diskettes. These diskettes are similar in 
intent to DOS System diskettes but differ in that they are 
intended more for specific application use rather than for 
general program development and debugging. These 
diskettes will usually be used with DB11, SCRIBE, 
DOSBASIC, or DATAFORM or will have large numbers of 
user-written application programs on them. These disks 
will usually not contain the more specialized DOS commands 

APPENDIX C. INTRODUCTION TO DOS.C. C-7 



(and other files) such as DUMP9380, DSKCHECK, DOSIEPT, 
APP, CHANGE, DUMP and the like. 

4) Data file diskettes. These diskettes contain primarily 
user data files. Typical characteristics of files on this 
type of diskette: non-executable, user information; 
SCRIBE text; other things which are user-entered (or 
generated) but not programs as such. 

5) Scratch diskettes. These diskettes are diskettes 
containing no important files. These diskettes are 
suggested for use in transferring files from one diskette 
to another, and to provide diskettes containing large 
unallocated areas for use as scratch files by programs 
using scratch files (for example, SORT and EDIT commands). 

As support for the above five basic types of diskettes, the 
following color-coding convention is suggested for diskette 
labels: 

red - DOS System diskettes 
green - User System diskettes 
blue - Text files (source programs and SCRIBE text) 
yellow - Data files 
grey - Scratch diskettes 

For best results, users should use only diskette media 
provided by those manufacturers recommended by Datapoint 
Corporation. 

C.10 Disk Organization under DOS.C 

This chapter describes the logical organization of the data 
on the disk when operating under DOS.C and how it relates to the 
general DOS file concepts as described in the chapter on System 
Structure. In this chapter it is assumed that the user is 
familiar with the basic DOS file structuring. 

C.10.1 Radius Spiraling and Sector Skewing 

Under DOS.C, the sectors on the diskette are logically 
renumbered to allow substantially increased performance over what 
would be possible otherwise. Program loading, in particular, goes 
about three times faster than would be possible if this were not 
done. This renumbering of the sectors on the track is referred to 
as sector skewing. This sector skewing takes the form of placing 

C-8 DISK OPERATING SYSTEM 



logically sequential sectors about four sectors apart on a track 
of the diskette. Thus logical sector zero on track zero would 
appear in physical sector zero; logical sector one would appear in 
physical sector five; logical sector two would appear in physical 
sector ten; and so forth. 

In addition to rearranging the order of the sectors on a 
track of the diskette, the starting points (logical sectors zero 
on each track) do not line up along a straight-line radius as do 
the physical sectors zero. Instead, the starting point for 
numbering sectors on a track spirals inwards. Therefore, the 
logical radius line (sectors zero, for example) forms a spiral on 
the diskette surface, and hence the term radius spiraling. The 
intention behind radius spiraling is twofold: one, it allows for 
head seek time between adjacent tracks while rapidly scanning 
through a data file (in addition to the processing time lag 
provided by the normal sector skewing); two, it allows searching 
the directory (which is along a logical radius of the diskette, as 
will be described later) about three times faster than would 
otherwise occur. Together with sector skewing, radius spiraling 
aids in achieving much higher overall system performance than is 
obtainable on most competitive diskette based systems. 

Use the chart below to convert from the logical to physical 
sector. First divide the decimal track number by 4. The 
remainder gives the appropriate column. Run down the left side to 
the logical sector and across to the appropriate column to get the 
physical sector number. 

LOGICAL REIv1AINDER OF TRACK/4 
SECTOR 0 1 2 3 

0 (0 ) 0 05 012 02 
1 ( 01 ) 05 012 02 07 
2 (02) 012 02 07 014 
3 (03) 02 07 014 04 
4 (04) 07 014 04 011 
5 (05) 014 04 011 01 
6 (06) 04 011 01 06 
7 (0'7 ) 011 01 06 013 
8 (010) 01 06 013 03 
9 (011) 06 013 03 010 
10 (012) 013 03 010 0 
1 1 (013) 03 010 0 05 
12 (014) 010 0 05 012 

Note that physical sector addresses are never used by DOS. 
Even in DUMP9380 the sector address entered is taken as a logical 

APPENDIX C. INTRODUCTION TO DOS.C C-9 



sector address except when in EBCDIC mode, when it is considered a 
physical sector address. 

C.10.2 Size of a Diskette 

There are 77 tracks on a diskette, each of which contains 
logically thirteen 256-byte sectors (physically twenty-six 
128-byte sectors). This yields a total of 1001 sectors, or a 
grand total of 256,256 bytes of storage capacity. The first track 
on the diskette (the one nearest the edge of the diskette) is not 
used by DOS.C, in order to help provide compatibility with IBM 
equipment. Additionally, the logical last sector on each track 
(sector 12 if one counts starting at 0) is not used by DOS.C for 
data, for reasons which will be described in subsequent sections. 
Subtracting these two unallocatable areas results in a total 
allocatable file space of 912 sectors. About ninety sectors of 
these are used by the DOS for its system files, leaving about 825 
sectors for user files, a user file capacity of over 200,000 
bytes. This constitutes about twice the capacity of a tape 
cassette on each diskette. Due to the higher data storage 
efficiency attained by Datapoint software, most users will find 
that the total number of records stored on a Datapoint format 
diskette will be as large as, and in most cases substantially 
larger than, the number achieved on competitive systems. 

C.10.3 Cluster Mapping 

Under DOS.C, each track of the diskette consists of 4 
clusters of three sectors each. This implies that one cluster or 
three sectors is the smallest allocatable unit of space on a 
diskette, and that all files are multiples of three sectors in 
length. 

In the cluster allocation table, the four clusters on each 
track are represented by the low-order four bits of each byte. As 
in other Datapoint DOS, a one bit represents that the 
corresponding cluster is allocated and a zero bit indicates that 
the corresponding cluster is available for allocation. The 
high-order four bits of each byte in the CATs are reserved for 
future use in DOS.C, and are currently always set to zero. 

C-10 DISK OPERATING SYSTEM 



C.10.4 Segments under DOS.C 

The use of a three sector cluster has numerous advantages on 
the diskette. One which should be immediat~ly apparent is that 
the amount of space wasted due to always allocating an integral 
number of clusters is reduced to only an average of one and a half 
sectors per file. Perhaps a less obvious advantage results from 
the manner in which the Datapoint DOS allocates disk space to 
files. During space allocation, the DOS will ~llocate the first 
contiguous, maximum-size segment it can find as an initial (or 
secondary) allocation. Since a segment consists of up to 32 
clusters (there are five bits of cluster number information in 
each segment descriptor), this results in files being initially 
allocated 96 sectors, assuming that the space on the diskette is 
sufficiently unfragmented to allow such an allocation. Making 
this initial allocation smaller than the 192 and 240 sectors as 
used in some of the other Datapoint DOS allows for several scratch 
files to be opened on a diskette which already has a few files on 
it, as each newly opened file will take a smaller bite out of that 
portion of space remaining unallocated. Making the full segment 
size much smaller than 96 sectors quickly increases the amount of 
overhead required to index through the file (since the number of 
RIB accesses required increases) and decreases performance. 

C.10.5 Maximum File Size 

Under DOS.C, the maximum file size attainable depends upon 
the amount of space used on the diskette for system files, but 
using the current size of DOS.C as an example indicates that at 
least 800 sectors should be available for user file allocation on 
a normal data file diskette. Users having only a single diskette 
drive and therefore having several programs on the diskette in 
addition to the DOS will have a corresponding reduction in the 
maximum size of data files they may have. Users whose files 
exceed the capacity of one diskette will need to segment their 
files at the user program level much as they would do on a 
cassette system when a file exceeded the capacity of a single 
cassette. 

APPENDIX C. INTRODUCTION TO DOS.C C-11 



C.l0.6 Cluster Allocation Table and Directory 

Under DOS.C, the use of four three-sector clusters per track 
results in one unused sector per track. This restriction arises 
from the facts that (1) all clusters under Datapoint DOS must 
contain the same number of sectors and no cluster may span a track 
boundary; and (2) a 13-sector cluster is not practical because it 
results in excessive amounts of wasted space at the end of each 
file on the diskette. Since these 76 sectors on the diskette 
(remember that track zero is not used) are not available for 
allocation as file space, they are partially put to use for 
storage of DOS system tables: four cluster allocation table 
sectors and thirty-two directory sectors. These system tables are 
positioned in the following manner: 

Track 0 - Unused; for IBH compatibility 
Tracks 1-16 - Directory copy, for backup purposes 
Tracks 17 -32 - Primary DOS directory 
Track 33 - Working Cluster Allocation Table 
Track 34 - Working Cluster Allocation Table backup 
Track 35 - Lockout Cluster Allocation Table 
Track 36 - Lockout Cluster Allocation Table backup 
Tracks 37-76 - Reserved for fut ur e DOS use 

Again recall that each of the above sectors is in logical 
sector 12 of the track indicated. 

In the Cluster Allocation Tables, bytes 239-254 are used for 
the Directory Happing bytes. These sixteen bytes each contain 
either an 0377 or the number of files currently allocated in the 
corresponding one of the sixte~n directory sectors. These bytes 
are updated automatically by the DOS whenever a file is created or 
deleted, and are updated by the DOS occasionally if they are found 
to be inaccurate. The purpose of these directory mapping bytes is 
to provide improved speed of directory lookups and to allow faster 
creation of files. They are of the greatest benefit to users who 
have several drives in their system where relatively few files 
exist on each drive. The intention is to eliminate the need to 
read in directory sectors while looking for a file if those 
sectors are known to not contain any active directory entries, and 
likewise when looking for an empty slot for use by a new file to 
eliminate having to read sectors known to have all sixteen 
directory entries in use. 

C-12 DISK OPERATING SYSTEM 



C.11 Internal DOS Parameterization 

This section describes the DOS-dependent details of the 
parameterization of DOS.C system routines. 

C.11.1 Physical Disk Address Format 

Under DOS.C, physical disk addresses are represented in a 
two-byte format in a manner quite similar to that used under the 
other DOS. The most significant byte (which is traditionally 
placed in the D register) is the cylinder number. The less 
significant byte (usually placed in the E register) has its most 
significant two bits representing a cluster number within the 
track (all combinations of these two bits are valid since there 
are four clusters per track) and the least significant two bits 
representing the sector number within the specified cluster. 
Because there are only three sectors per cluster, only binary 
values 00, 01 and 10 are valid for these low-order bits. (The 
only exception to this rule is that a least significant PDA byte 
of 0303 permits access to the unallocatable sector on each track, 
that sector used for system table sectors). (For compatibility 
reasons, the most significant three bits can be considered the 
cluster number, yielding clusters numbered 0, 2, 4, and 6). 

The unused bits of the least significant physical disk 
address byte (that is, the center four bits) should always be set 
to zero. 

APPENDIX C. INTRODUCTION TO DOS.C C-13 



APPENDIX D. DOS.D 

DOS.D is Datapoint Corporation's Disk Operating System 
supporting 48K or larger Datapoint 5500 or 6600 family computers 
operating in conjunction with from two to eight 9370 series disk 
drives, or with from two to three 9390 series disk drives. In 
addition to the interactive/batch operation as provided in all 
standard Datapoint Corporation DOS, DOS.D additionally supports 
Oatapoint's Partition Supervisor (called PS, PS66, or UPS, 
released separately) which provides for the simultaneous execution 
of multiple DOS programs. DOS.D is also the operating system used 
in the Datapoint Attached Resou~ce Computer (ARC) system. 

0.1 Planning for DOS.D 

The minimum configuration for a DOS.D system requires a 48K 
Datapoint 5500 family computer. The minimum disk requirements are 
a 9370 controller and drive and at least one 9371 disk extension 
unit, or a 9374 controller and drive, or a 9390 controller and 
dual drive. If more storage is desired, additional disk extension 
units may be attached to the disk controller, up to a total 
capacity of 16 logical disk drives. 

D.2 File Storage Capacity under DOS.D 

Under OOS.D, each 9370-9373 model disk unit is dealt with as 
two logical drives. Each of these two logical drives contains 
48,576 sectors of 256 bytes each and can store up to 256 files. 
Of these, about 250 sectors and about ten files are used by the 
operating system and a few basic commands, leaving about 12.4 
million bytes of usable space per logical drive, or u~ to roughly 
25 million bytes of storage total for each disk storage unit in 
the configuration. 

Using the 9374/9375 disk drives, file storage is somewhat 
less due to the capacity of the disks used. For these drives, 
each logical drive contains 38,976 sectors and provides about 10 
million bytes of usable space per logical drive, or roughly 20 
million bytes of storage per disk unit. 

Using the 9390 series disk drives, each physical disk pack is 
handled as 5 logical drives, each logical drive being identical to 
a logical drive on a 9370 disk pack. Thus each logical drive has 

APPENDIX D. DOS.D 0-1 



48,576 sectors, providing about 12.4 million bytes of usable 
space. Each physical disk unit provides about 62 million bytes of 
storage. 

Other features of DOS.D include a large maximum file size: 
up to 38,397 data sectors in a single DOS.D file (not including 
the end-of-file mark and two RIBs). 

D.3 Disk Drives 

Datapoint DOS.D supports from two to eight 9370-series disk 
drives attached to one 9370-s~ries disk controller, or one 9390 
controller and dual disk drive unit and optional extension drive. 
These drives are high-performance, random access disk units. They 
are the equal in every way to drives in constant daily use on the 
largest mainframe computer systems. 

D.4 Disk Media 

See Appendix B for information on the 9370-series disk drives 
and disk packs. 

The Datapoint 9390 series disk drives use a 5-platter disk 
pack with six recording surfaces, one of which is used only for 
timing marks. These packs are equivalent to CDC Model 877 packs. 
The disk pack is enclosed within a plastic enclosure when it is 
not in place in the drive. This cover is intended to help keep 
the disk free from dust, pollen, smoke, and other contaminants and 
is of prime importance in helping to eliminate disk errors and 
parity failures that contamination can cause. Keep the disk in 
its cover at all times when not in use. 

D.5 Loading and Unloading Disk Packs 

See Appendix B.5 for information on the 9370 series disk 
drives and disk packs. 

The model 9390 drives are top-loading units. To open a 
drive, release the lid by lifting up on the latch at the center of 
the front of the drive, just under the lip of the lid. The lid 
will lift open, exposing the drive cavity. The hinges of the lid 
are damped so it will remain open when released. The lower drive 
of the pair in a cabinet must be slid forward out of the cabinet 
before its lid can be opened. To slide the lower drive forward, 
use the depressions in the lower front of the drive. Push up 

D-2 DISK OPERATING SYSTEM 



against the latch at the top of either of the depressions until 
the drive is released, then pull gently forward until the drive is 
clear of the cabinet. 

To insert a disk pack, hold the pack by the top center 
handle. Release the bottom cover of the pack by squeezing the two 
halves of the small handle in the center of the bottom cover 
toward each other. Remove the bottom cover. Still holding the 
pack by the top center handle, lower the pack and top cover 
together into the drive cavity. When the pack is seated on the 
drive spindle, turn the top center handle fully clockwise until 
firm resistance is met. It is important that the pack be firmly 
in place before removing the top cover. When the pack is properly 
mounted, carefully remove the top cover by lifting it straight up. 

Whenever moving the top cover in or out of the drive cavity, 
be sure to move the cover carefully straight up or down. If the 
cover becomes skewed in the cavity, damage to the disk pack or to 
the drive could result. 

Once the pack is in place, close the drive access lid, which 
will latch into place. The lower drive should be immediately 
pushed gently back into the cabinet until it latches into 
position. The top and bottom halves of the disk pack cover should 
be immediately put back together to keep out dust and other 
contaminants. 

To remove a disk pack, first stop the drive (see Switches and 
Indicators below) and be sure the drive is in load condition. 
Open the drive access lid. Carefully lower the top cover straight 
down onto the disk pack. When the cover is fully lowered, turn 
the top center handle counterclockwise until a distinct click is 
heard. This click indicates that the pack has been released from 
the drive spindle and may now be removed. Lift the disk pack and 
top cover together straight out of the drive and immediately 
reattach the bottom pack cover by putting it in place and pressing 
its latches into position. The pack should be stored horizontall,y 
on a shelf (never on edge!) and in a position where it is not apt 
to be dropped or pushed accidentally over an edge. If another 
disk is not to be mounted immediately into the drive the pack was 
just removed from, the disk access lid should be closed and the 
drive pushed back into the cabinet right away to avoid possible 
physical damage or contamination. 

APPENDIX D. DOS.D D-3 



D.6 Switches and Indicators 

See Appendix 8.6 for information describing the 9370 series 
disk drives. 

The controls of the 9390 disk drive are in a small recessed 
panel in the upper left hand corner of the front of the drive 
unit. The physical drive number indicator is located below the 
READY light on the panel. This indicator is the front of a 
removable plastic plug that is keyed to select the physical drive 
number of the unit. DOS can use physical drive 0, 1, and 2 only. 

When the drive is in load condition, both the START and READY 
lights will be off. To start the drive, push the button below the 
START light. The START light will immediately cOlne on; the READY 
light will blink while the disk pack is spun up to speed. When 
the drive is ready for operation, the READY light will stop 
blinking and stay lit. During operation, both the START and READY 
lights will stay lit. To stop the drive, again push the button 
below the START light. The START light will immediately go off; 
the READY light will blink while the disk pack is braked to a 
stop. When the drive is again in load condition, both the START 
and READY lights will be off. 

The READY light is the main indicator of drive status. When 
the READY light is off, the drive is in load condition and disk 
packs may be loaded or unloaded. When the READY light is 
blinking, the drive is starting or stopping and no operations are 
possible. The 9390 takes less than 30 seconds to become ready for 
operation or to stop following operation. When the READY light is 
lit, the drive is ready for 1/0 operations. 

The PROTECT light indicates the write-protect condition of 
the drive. When the PROTECT light is lit, the disk pack in the 
drive is physically protected and cannot be written upon. When 
the PROTECT light is off it is possible to write on the disk. 
Write protection is controlled by the pushbutton beneath the 
PROTECT light. If protection is off, pushing the button turns 
protection on; if protection if on, pushing the button turns 
protection off. The button extends farther from the cabinet while 
protection is off, but the difference in position between the two 
conditions is difficult to see. 

The FAULT light comes on when the safety circuits in the 
drive detect one or more of a number of conditions that they 
consider would endanger the data on the disk pack if continued 
disk operation were attempted. The FAULT condition can be caused 
by (among other things) power surges or power supply problems in 

D-4 DISK OPERATING SYSTEM 



the drive, or by illegal commands from the controller. The FAULT 
light can be cleared by pressing the button below it. If the 
light stays off, the error condition causing the fault has been 
corrected and operation can continue. If the light comes back on 
immediately, the condition still exists and further work must be 
done to clear it. The drive should be stopped, then brought ready 
again, and the DOS should be restarted. If the fault condition 
still perSists, or if a transient fault keeps recurring, a 
hardware iflalfunction is indicated and the problem should be 
reported to the Datapoint Customer Support Center. 

D.1 Disk Organization under DOS.D 

This section describes the logical organization of the data 
on the disk when operating under DOS.D and how it relates to the 
general DOS file concepts as described in the chapter on System 
Structure. In this section it is assumed that the user is 
familiar with these concepts and has read and is familiar with the 
basic DOS file structuring. 

0.1.1 Logical Drive Mapping 

Under DOS.D each physical drive is broken into multiple 
logical volumes. This is done for reasons of addressing. It is 
simply not possible to address all of the sectors on an entire 
mass storage disk drive using only two bytes of physical disk 
address, and the two byte physical disk address is central to all 
of Datapoint Corporation DOS's operations. It is not practical to 
change this characteristic without making changes which would 
result in invalidating many user-written programs and many large 
systems which run under the DOS. Therefore the disk was broken 
into logical volumes, and part of the effective physical disk 
address is taken from the logical drive number. 

For the 9314 drives the removable disk is one logical drive, 
and the fixed disk is a second logical drive. 

For the 9310 drives, each disk pack is two logical drives. 
Each logical drive appears to be 253 cylinders (numbered 0-252 
decimal) of eight 24-sector tracks each. The first eight 
recording surfaces on the disk pack (heads on the 9370 drive are 
numbered from zero to nineteen starting at the top of the disk 
drive) correspond to the first 203 cylinders on the first logical 
drive (the even-numbered one). The next eight recording surfaces 
on the disk pack correspond to the first 203 cylinders on the 
second logical drive (the odd-numbered one). The first 203 

APPENDIX D. DOS.D 0-5 



cylinders on each logical drive is referred to as primary 
addressing space. Mapping of disk space within primary addressing 
space is done-in an algorith:n identical to that used under DOS.B. 

Physical heads sixteen and seventeen (and the corresponding 
recording surfaces on the disk pack) correspond to logical 
cylinders 203-252 on the even logical drive; heads eighteen and 
nineteen correspond to logical cylinders 203-252 on the odd 
logical drive. These cylinders of each logical drive are referred 
to as the extended addressing space. Since DOS.D assumes that 
each cylinder consists of eight tracks, each of logical cylinders 
203 through 252 are mapped across four physical cylinders of two 
tracks each from the center of the pack outward. In this way, 
disk space within primary and extended addressing space can be 
dealt with by DOS.D in a uniform way at all but the very lowest 
levels of the disk read/write driver. 

Using the 9374/9375 disk drive, there is no extended 
addressing space, only 203 cylinders of 8 24-sector tracks each. 
The disk platter itself has 406 cylinders of 2 48-sector tracks 
each, but the disk controller provides address conversion so the 
physical structure is transparent to the processor. 

For the 9390 drive, each disk pack is addressed as five 
logical drives. Each logical drive is addressed in the same 
manner as a logical drive on the 9370 disk. The mapping of the 
physical disk structure to a logical structure of 253 cylinders of 
8 tracks each with 24 sectors per track is handled by the 9390 
controller. The actual physical structure of the disk cannot be 
addressed by DOS, so only the logical structure presented by the 
controller is considered in this manual. 

0.7.2 Size of a Logical Drive 

0.7.2.1 Models 9370-9373 and 9390-9393 

Each logical drive is eight tracks on each of 253 cylinders. 
This results in 2024 tracks of 24 sectors each, or a total of 
48,576 total sectors on a logical drive. Of these, about 48,000 
remain when the DOS has been generated, the system tables 
constructed on the disk, and a few basic commands loaded. 

D-6 DISK OPERATING SYSTEM 



0.1.2.2 Models 9374/9375 

Each logical drive is eight tracks on each of 203 cylinders, 
yielding 1624 tracks of 24 sectors each, or 38,916 sectors on a 
drive. Of these total sectors, about 38,400 remain when the DOS 
has been generated, the system tables constructed, and a few basic 
commands loaded. There is one unused cylinder on each platter -­
logical cylinder 203, physically cylinders 406 and 401. These 
innermost cylinders are not normally addressable and are not even 
formatted by INITDISK. A test program for long-term reliability 
testing is planned which will require exclusive use of these 
cylinders. 

0.1.3 Cluster Mapping 

Because there are eight bits per byte in the cluster 
allocation table (or CAT for short), and it is desirable to 
maintain one byte in the CAT per cylinder of available space on 
the drive, each track on a logical drive represents one DOS 
cluster, and is represented in the CAT by exactly one bit. Since 
the DOS uses eight tracks per logical cylinder, this results in 
exactly eight clusters per cylinder of twenty four sectors each. 

Due to the fact that space is always allocated in terms of an 
integral number of clusters, this implies that the minimum file 
size under DOS.D is twenty-four sectors and that file size will 
always be a multiple of this number. It turns out that choosing a 
full track as the smallest allocatable unit of space has other 
advantages as well from a system standpoint, since it allows some 
programs (like COpy) to make several simplifying assumptions about 
the data in a file which enables them to copy data and reference 
information in a file substantially more readily and efficiently 
than would be otherwise possible. 

0.1.4 Segments under DOS.D 

Space under Datapoint Corporation's DOS is always allocated 
in contiguous chunks of clusters called segments. When space is 
allocated, the largest segment on a drive up to the maximum 
possible sized segment is allocated, to keep the file as free of 
fragmentation as possible. By limiting the allocation size to the 
size of a full segment, the problem of allocating all available 
space on a disk to a first scratch file before a second one is 
subsequently opened is minimized. If several scratch files are 
opened and space in them is allocated at regular intervals, the 
resultant segments will be interleaved, resulting in minimized 

APPENDIX D. DOS.D D-1 



access time as the heads randomly access throughout the scratch 
area. The desire to make segment size small (to minimize file 
space conflicts and help to optimize use of space on the drive) 
and yet large (to maximize processing speed, maximize file size 
and minimize the number of RIB accesses) resulted in a segment 
size of thirty-two clusters. This compromise results in a 
768-sector segment (32 clusters of eight tracks of 24 sectors 
each) allowing a maximum file size of over 38,000 sectors. 

D.7.5 Maximum File Size 

Under DOS.D there is no fixed upper limit on file size. A 
file may be as large as will fit in the remaining space on a 
volume. On a 9390 or 9370 this works out ot be about 48,000 
sectors. On a 9374 this works out to be about 38,400. Files 
longer than these numbers will have to be segmented or logically 
concatenated at the user program level, the same as would be 
necessary for files larger than about 9600 sectors on the 9350 
series disks. 

D.7.6 Cluster Allocation Table and Directory 

Each logical drive under DOS.D contains its own directory and 
cluster allocation table, just as for all Datapoint Corporation 
DOS. There are sixteen directory sectors on each logical drive, 
located in consecutive sectors starting at sector seven on logical 
track zero of cylinder zero. Therefore, the sectors go from 
sector seven to sector 026 (octal). The cluster allocation table 
is at sector zero of logical track zero, cylinder zero. The 
lockout cluster allocation table is at sector one of logical track 
zero, cylinder zero. The hashed directory index is at sector two 
of track zero, cylinder zero. The backup copies of each of these 
are in the corresponding locations of logical track one of the 
same cylinder. 

The Hashed Directory Index, maintained by the DOS, resides in 
sector two of track zero, cylinder zero. This table enables 
directory lookups to go about four times faster (on full disk 
directories) than was possible under DOS.B Version 1. The 
technique works as follows: 

Given an eleven byte file name and extension, an 
arithmetic/logical operation upon the file name results in an 
eight-bit quantity referred to as a hash code. This code is 
essentially a condensation of the 11 bytes of file name and 
extension information into only one byte. Obviously, the 

0-8 DISK OPERATING SYSTEM 



information is not complete; there are only 256 distinct 
eight-bit hash codes possible, while there are literally billions 
of legal file names and extensions. However, the condensation of 
information is such that looking at the hashed directory index 
allows the DOS to substantially restrict the range of directory 
sectors it must examine when doing a directory lookup. Each hash 
code for the file names in the directory is stored into the hashed 
directory index, offset by the physical file number (PFN) of the 
file with the corresponding name and extension. 

Note that there is a calculated danger in the hashed 
directory approach. The danger is that if the hashed directory 
index is overwritten or otherwise destroyed accidentally, files 
may become inaccessable even though they are clearly shown (by 
doing a CAT command on the disk, for example) to be present. When 
this occurs on a disk the technique to repair the disk is the 
DSKCHECK command. When the DSKCHECK command is almost finished, 
simply specify that the Hashed Directory Index is to be rewritten 
to the disk. This causes the HDI to be regenerated from the 
actual disk directory and rewritten. In general, the Hashed 
Directory Index is rarely if ever destroyed in actual disk usage, 
and contributes greatly to overall system performance if many 
directory lookups are being done. 

D.B Internal DOS Parameterization 

This section describes the DOS-dependent details of the 
parameterization of DOS.D system routines. 

D.B.1 Physical Disk Address Format 

Under DOS.D physical disk addresses are represented in a 
two-byte format in a manner quite similar to that used under the 
other DOS. The most significant byte (which is traditionally 
placed in the D register) is the cylinder number. The less 
significant byte (usually placed in the E register) has its most 
significant three bits representing a cluster number within the 
cylinder (or logical track number in the specific case of DOS.D) 
and the least significant five bits representing the sector number 
within the specified cluster. 

APPENDIX D. DOS.D D-9 



APPENDIX E. DOS.G - 1800 OPERATING SYSTEM 

DOS.G is the Datapoint 1800 Disk Operating System supporting 
the 1800 processor with integral double-density diskette drives. 

The 1800 processor's instruction set is the same as that of a 
5500, as is its 1/0 structure. The most salient architectural 
differences are the direct coupling of the 1800 console screen to 
memory, and the 24x80 display. 

The standard DOS commands are available, with the exceptions 
of these dependent on peripherals not supported by the processor 
(no cassette drives are included with the 1800 processor). 

The following commands are not supported because they are 
associated with peripheral devices not available with an 1800 
processor: 

DUMP93XO 
INITDISK 
MIN 
MOUT 
REWIND 
UBOOT 

This Appendix describes the relationship of DOS.G to the 
other DOSs. DOS.G is designed to execute on a Datapoint 1800 
processor connected to at least one dual-drive, double-density 
diskette. DOS.G supports a maximum of eight (8) logical diskette 
drives (4 physical drives) for a total of about 4 megabytes of 
on-line data. Each physical diskette drive can contain two (2) 
logical drives. Diskette organization and CRTlkeyboard 
differences should have minimal impact on the user. 

E.1 CRT I Keyboard Interface Under DOS.G 

The CRT (screen) 1 Keyboard on the 1800 processor have 
several major differences from the 2200/5500 type processors: 

1. 24 lines (vertical) instead of 12 lines. 
2. Characters on the CRT are displayed from RAM memory. 
3. Keyed-in characters and function keys are stored in RAM memory. 
4. Addi tional "Function" keys have been added. 

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM E-1 



E.l.l Screen Line Numbering 

The 1800 CRT has 24 lines of 80 characters each. The lines 
are actually numbered starting at the bottom of the screen (for 
compatibility reasons). The bottom line number is eleven (11), as 
on the 2200/5500 CRT. Each higher line is numerically one less. 
This means that the top line number is minus twelve (-12). 

ILLUSTRATION 1. CRT LINE NUMBERING 

LINE -12 (Top of Screen) 
LINE -11 
LINE -10 
LINE -9 
LINE -8 
LINE -7 
LINE -6 
LINE -5 
LINE -4 
LINE -3 
LINE -2 
LINE -1 
LINE 0 This line corresponds to the top of a 2200/5500 CRT 
LINE 1 
LINE 2 
LINE 3 
LINE 4 
LINE 5 
LINE 6 
LINE 7 
LINE 8 
LINE 9 
LINE 10 
LINE 11 This line corresponds to the bottom of a 2200/5500 CRT 

The correct technique for determining the top and bottom line 
for any program that runs under DOS.G version 2.3 (or upward) is 
to call DOS Function 6, subfunction 4 (homeup position) and 
subfunction 5 (homedown position). 

E-2 DISK OPERATING SYSTEM 



E.1.2 Displaying on the Screen 

Displaying data on the screen can be accomplished in several 
ways: 
1. DSPLY$ - This standard DOS routine is totally compatible with 

the pre-existing DSPLY$ routine. 

2. DOS Function 6, subfunction 3 - write a byte to screen. This 
routine will write the byte in the (8) register to the 
screen, at the position defined by the (DE) register 
pair; D contains the horizontal screen coordinates, and E 
the vertical. 

3. writing a byte into the RAM memory that is the screen buffer. 
This technique is not recommended. 

4. 1800 ROM display routine as documented in the 1800 Product 
Specification. This technique is not recommended. 

E.1.3 Inputting Data From the Keyboard 

Entering data from the keyboard can be accomplished several 
ways: 

1. KEYIN$ - This standard DOS routine is totally compatible with 
the pre-existing KEYIN$ routine. 

2. DOS Function 6, subfunction 2 - input a character. Register 
pair (DE) must contain the horizontal and vertical screen 
coordinates for the flashing cursor. 

3. Reading the RAM byte in memory that is the keyed in character. 
This technique is not recommended. 

4. 1800 ROM keyin routine as documented in the 1800 Product 
Specification. This technique is not recommended. 

E.1.4 Special CRT / Keyboard Features 

The 1800 CRT / Keyboard contains several useful features: 
1. Inverted video capability. Each character position on the 

screen is defined as a 7x9 dot matrix. Normally, the 
inner 5x7 dots are used to display a lighted character. 
However, by displaying a character whose "sign" bit is 
set, the character will be displayed as a "hole" 
surrounded by "light". For example, writing an octal 

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM E-3 



"0101" to the screen will display the familiar character 
"A", however, displaying an octal "0301" will display a 
lit 7x9 rectangle containing a dark 5X7 outline of the 
character "A". 

2. Additional "Function" keys. There are ten keys on the 
right-hand side of the 1800 processor. These are 
"function" keys. When they are depressed, the status 
bits change to reflect the fact that a key has been 
pressed. Each key sets a unique bit, therefore, any 
arbitrary meaning can be attached to any key (or 
combination of keys). The only word of caution necessary 
is that pressing the RESTART and INT keys simultaneously 
will cause the 1800 to perform a RESTART. Additionally, 
the KBD and DSP keys are treated like the 2200/5500 
"KEYBOARD" and "DISPLAY" keys by DOS function 6. 

ILLUSTRATION 2. FUNCTION KEYS 

-r------T 
I I 

F5 

F4 

F3 

F2 

F1 

E-4 DISK OPERATING SYSTEM 

Re­
Start 

ATT 

INT 

-'-----T 
I I 

KBD 

DSP 
T 
I 



3. Roll-Down capability. The 1800 screen can "roll down", just 
like the 5500 screen (and 2200's equipped with RAM screen 
option). To roll the screen down, use DOS function 6, 
subfunction 10. 

4. Character Font loading capability. Any combination of bits 
that can be represented in a 5x7 pattern can be displayed 
as a character. See the 1800 hardware reference manual 
for a description of character font loading. For simple 
non-standard characters, a "CHARSET/SYS" file may be 
used, as described in the manual for CHARIN18 (DOS.G 
International Character Set Loader). 

E.2 Diskette Organization Under DOS.G 

This section describes the logical organization of the data 
on the diskette when operating under DOS.G and how it relates to 
the general DOS file concepts as described in the chapter on 
System Structure. In this chapter it is assumed that the user is 
familiar with the basic DOS file structuring. 

E.2.1 Loading and Unloading Diskettes 

The 1800 diskette drives are aligned in a horizontal plane, 
rather than in a vertical plane (9380-diskette controller). This 
makes loading and unloading the diskettes much easier. Each 
diskette drive has two long handles (horizontal), and two smaller 
rectangUlar "unload" buttons. The unload button should be firmly 
pressed and released to open the diskette loading slot. The 
diskette should be carefully inserted into the 1800 diskette 
drive, I'label side up", wi th the edge of the diskette that has the 
long, narrow slot being inserted first. When inserting the 
diskette, it will meet with a spring resistance after being 
inserted about 3/4 into the drive. Press the diskette gently into 
place until the spring catches, and the diskette stays in place 
without being held in with the fingers. Be careful not to push 
the diskette too far into the drive, as this could cause damage to 
the diskette ~edia. After the diskette is in place, pull the 
door/handle straight down until it latches closed. As the door is 
pulled closed, the hub engages the diskette, bringing it to its 
rated rotational speed of 360 rpm, and then online, almost 
immediately. 

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM E-5 



To remove a diskette, first ensure that all input/output 
activity on the diskette has completed. Generally, the red 
indicator lights on the unload buttons will be a good indication 
of activity. Now, press the unload button firmly. The door will 
open and the diskette will emerge. Upon removing the diskette 
from the drive, it should be immediately placed in its protective 
paper envelope to help protect the surface from abrasive 
contaminants and other elements which could damage it. Also, the 
spinning hub of the drive itself could abrade the recording 
surface of a diskette left in a half-in, half-out position. 

E.2.2 Drive Numbering 

Each 1800 diskette drive contains two diskettes. The 
diskette on the right is the even numbered drive, and the one on 
the left is the odd numbered drive. 

E.2.3 Care and Handling of Diskettes 

Please read Appendix C, section 7 for the proper care and 
handling of diskettes. 

E.2.4 Preparing Diskettes for Use 

DOS.G supports double-density diskettes. This means that each 
diskette can contain about a half-megabyte of data. Before a 
diskette can be used, it must be "formatted" for double densi ty 
mode. Executing the DOS. BACKUP command, or the DOS. DOSGEN 
command will allow the user to quickly convert a diskette to 
double density mode. A diskette that has been converted to double 
density mode is readable ~nll on an 1800-type diskette drive. 

E.2.5 Sector Skewing 

Under DOS.G the sectors on the diskette are logically 
renumbered to allow substantially increased performance over what 
would be possible otherwise. This renumbering of sectors on the 
physical track, to build a logical track, is referred to as Sector 
Skewing. This sector skewing takes the form of placing logically 
sequential sectors three sectors apart on a track of the diskette. 
Thus, logical sector zero on track zero would appear in physical 
sector zero; logical sector one on track zero would appear in 
physical sector three; and so forth. 

E-6 DISK OPERATING SYSTEM 



Since a logical track occupies the same space as the 
corresponding physical track , the difference being in the 
numbering of the included sectors, the terms may be used with some 
interchangeability. 

E.2.6 Size of a Diskette 

There are 77 tracks on a diskette, each of which contains 26 
sectors of 256 bytes. This yields a total of 2002 sectors, or a 
grand total of 512,512 bytes of storage capacity. The first track 
(track 0) is used by the DOS for the IPL and BOOT blocks. 
Additionally, logical sector 24 (starting at 0) of each track is 
not used by DOS.G for data, for reasons which will be described in 
the Cluster Mapping paragraph. Subtracting these two 
unallocatable areas results in a total allocatable file space of 
1900 sectors. About 90 of these sectors are used by the DOS for 
its system files, leaving about 1800 sectors for user files, a 
user file capacity of over 460,000 bytes. 

E.2.7 Cluster Mapping 

Under DOS.G, each track of the diskette consists of 8 
clusters of three sectors each. This implies that one cluster or 
three sectors is the smallest allocatable unit of space on a 
diskette, and that all files are multiples of three sectors in 
length. Each byte in the cluster allocation table (CAT) 
represents a track, and each bit of a CAT byte represents a 
cluster (three sectors). Sector 24 of each track is used by the 
DOS. Sector 25 is unused by the DOS. 

E.2.8 Segments Under DOS.G 

The use of a three sector cluster has numerous advantages on 
the diskette. One which should be immediately apparent is that 
the amount of space wasted due to always allocating an integral 
number of clusters is reduced to only an average of one and a half 
sectors per file. During space allocation, the DOS will allocate 
the first contiguous, maximum-size segment it can find as an 
initial or secondary allocation. Since a segment consists of up 
to 32 clusters (there are 5 bits of cluster number information in 
each segment descriptor), this results in files being initially 
allocated 96 sectors, assuming that the space on the diskette is 
sufficiently unfragmented to allow such an allocation. Making 
this initial allocation smaller than the 192 or 240 sectors as 
used in some of the other Datapoint DOS's allows for several 

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM E-7 



scratch files to be opened on a diskette which already has a few 
files on it, as each newly opened file will take a smaller bite 
out of that portion of space remaining· unallocated. Making the 
full segment size much smaller than 96 sectors quickly increases 
the amount of overhead required to index through the file (since 
the number of RIB accesses required increases) and decreases 
performance. 

E.2.9 Cluster Allocation Table and Directory 

Under DOS.G, the use of eight three-sector clusters per track 
results in two unused sectors per track. This restriction arrises 
from the facts that (1) all clusters must contain the same number 
of sectors and no cluster may span a track boundary; and (2) a 26 
sector cluster is not practical because it results in excessive 
amounts of wasted space at the end of each file on the diskette. 

Half of the 76 unused sectors, one ·per track, are put to use 
for storage of DOS system tables (four cluster allocation table 
sectors and thirty-two directory sectors). These system tables 
are positioned in the following manner: 

IL LUST RATION 3 - S YS TEi-1 TABL E POSIT IONS 

Track 0 - Unused 
Tracks 1-16 - Directory Copy 
Tracks 17-32 - Primary DuS Directory 
Track 33 - Working C.A.T. 
Track 34 - Working C.A.T. Backup 
Tr acl{ 35 - Lockout C.A.T. 
Track 36 - Lockout C.A.T. Backup 
Tracks 37-76 - Reserved for future DOS use 

Each of the above sectors is in logical sector 24 of the track 
indicated. 

In the Cluster Allocation Tables, bytes 239-254 are used for 
the Directory Mapping Bytes. These sixteen bytes each contain the 
number of files currently allocated in the corresponding one of 
the sixteen directory sectors. These bytes are updated 
automatically by the DOS whenever a file is created or deleted, 
and are updated by DOS occasionally if they are found to be 
inaccurate. The purpose' of these directory (napping bytes is to 
provide improved speed of directory lookups and to allow f8ster 
creation of files. They are of the greatest benefit to users who 
h a ve s e v .e r aId r i v e sin the irs y s t e:o , w her ere 1 a t i vel y f e 1tl f i 1 e s 
exist on each drive. The intention is to eliminate the need to 

£-8 DISK OPERATING SYSTEM 



read in directory sectors while looking for a file, if those 
sectors are known not to contain any active directory entries; and 
likewise, when looking for an empty slot for use by a new file, to 
eliminate having to read sectors known to have all sixteen 
directory entries in use. 

E.3 Internal DOS Parameterization 

This section describes the DOS-dependent details of the 
parameterization of DOS.G system routines. 

E.3.1 Physical Disk Address Format 

Under DOS.G, physical disk addresses are represented in a 
two-byte format in a manner quite similar to that used under the 
other DOS. The most significant byte is the track number. T~e 
least significant byte has its most significant three bits 
representing a cluster nu~ber within the track and the least 
significant two bits representing the sector number within the 
specified cluster. Because there are only three sectors per 
cluster, only binary values 00, 01, and 10 are valid for these 
low-order bits. The unused bits of the least significant physical 
disk address byte should always be set to zero. 
ILLUSTRATION 4 - P.D.A. FORMAT 

lVlSB BYT E 

T7:6 5 

--~---..... -

---------------------------------- Track number (0-76) 000-0114 Octal 

: '7 : 6 

--~--~ 

LSB BYTE 

5 

.x x ~--:>\""--:>\""--"X".--

Sector number 0,1,2 (Binary 00,01,10) 
Unused (should be set to 000) 
Cluster nu~ber 0-7 

APPENDIX E. DOS.G - 1800 OPERATING SYSTEM E-9 



APPENDIX F. COMPARSION CHART FOR DOS'S 

The tables belo\4 list basic logical and physical 
configuration information for the various Datapoint DOS. When 
values refer to "drive" a logical drive is indicated, unless the 
value is specifically identified as referring to a physical drive. 
The information shown for DOS.B and DOS.D uses the following 
convention to distinguish among the various drive types supported 
by those systems: values for 9370 drives have no special 
punctuation, values for 9374 drives are enclosed in parentheses, 
values for 9390 drives are enclosed in square brackets. When only 
a single value is given for DOS.B or DOS.D, the information 
applies to all drive types. 

APPENDIX F. CO~lPARSIOH CHART FOR DOS'S F-l 



DOS.A 

min processor req. 16K 2200 

disk controller/drive 9350 
type used 9354 

phys. drives on system 1-4 

logical drives per 
physical drive 

type of disk 

cylinders used/drive 

tracks used/drive 

sectors/track 

sectors/drive 

bytes/drive 

user sectors/drive 

user bytes/drive 

sectors/cluster 

clusters/track 

clusters/cylinder 

rnax.clusters/seg. 

max.sectors/seg. 

max.sectors/file 
(including RIB's) 

directory search 

1 

Scotch 92-204 
or equivalent 

203 

406 

24 

9,744 

2,494,464 

9,600 

2,457,600 

6 

4 

8 

32 

192 

9600 

HDI 

F-2 DISK OPERATING SYSTEM 

DOS.B 

16K 2200 

9370 
(9374) 

1-2 

2 

Scotch 911-0 
or equivalent 
(Datapoint 
model 80428) 

203 

1 ,624 

24 

38,976 

9,977,856 

38,400 

9,830,400 

24 

8 

10 

240 

30,240 

HDI 

DOS.C 

1 6K 1100 

9380 

1-4 

I B 1"1 1 28 - b y t e 
so ft- sec tor ed 
diskette, or 
equivalent 

76 

76 

1 3 

988 

252,928 

800 

204,800 

3 

'-t 

4 

32 

96 

800 

DMB 



min.processor req. 

disk controller/drive 
type used 

DOS.D 

48K 5500 

9370, (9374) 
[9390] 

DOS.E 

48K 5500 

9350 
9354 

phys. drives on system 2-8 (2-8) [2-3] 2-4 

type of disk 

logical drives per 
physical drive 

cylinders used/drive 

tracks used/drive 

sectors/track 

sectors/drive 

bytes/drive 

user sectors/drive 

user bytes 

sectors/cluster 

clusters/track 

clusters/cylinder 

rnax.clusters/seg. 

max.sectors/seg. 

max.sectors/file 
(including RIB's) 

Scotch 911-0 
or equivalent 
(Datapoint 
model 80428) 
[Scotch 949/80 
or equivalent] 
2 (2) [5] 

Scotch 92-204 
or equivalent 

1 

253 (203) [253] 203 

2,024 (1624) 406 
[2024] 

24 24 

48,576 (38976) 9,744 
[48,576] 

12,435,456 2,494,464 
(9,977,856) 
[12,435,456] 
48,000 (38,400) 9,600 
[48,000J 

12,288,000 2,457,600 
(9,830,400) 
[12,288,000J 
24 6 

1 4 

8 8 

32 32 

768 192 

up to 9600 
48,000 

DOS.G 

60K 1800 

1840 

2-4 

f'1 a x ell F D - 3200 S 
floppy disk 
or equivalent 

'76 

76 

26 

1,976 

505,856 

1600 

405,600 

3 

8 

8 

32 

96 

1600 

APPENDIX F. COMPARSION CHART FOR DOS'S F-3 



directory search HDI HDI D!vtB 

I nth eta b 1 e below "c y 1 i n d e r " ref e r s tot h e P D A tv] S Ban d "s e c tor" 
refers to the PDA LSB. 

DOS.A/DOS.E DOS.B DOS.C DOS.D DOS.G 

PDA of CAT 0,0 0,0 041,0303 0,0 041,0343 

PDA of CAT 0,0200 0,040 042,0303 0,040 042,0343 
Backup 

PDA of Lockout o , 1 0, 1 043,0303 0, 1 043,0343 
CAT 

PDA of Lockout 0,0201 0,041 044,0303 0,041 044,0343 
CAT Backup 

PDA of HDI 0,2 0,2 NA 0,2 NA 

PDA of HDI 0,0202 0,042 NA 0,042 NA 
Backup 

Directory cylinder 0 cylinder 0 sector 303 cylinder 0 sector 343 
Location sectors 6 sectors 5 cylinders sectors '7 cylinders 

to 025 to 024 021 to 040 to 026 021 to 040 

Directory cylinder 0 cylinder 0 sector 303 cylinder 0 sector 343 
Backup sectors sectors cylinders sectors cylinders 
Location 046 to 065 045 to 064 01 to 020 047 to 066 01 to 020 

F-4 DISK OPERATING SYSTEM 



APPENDIX G. DISK DATA FORMATS 

G.1 Disk Data Formats 

The DOS itself does not deal with the user's data below the 
record level. It only keeps track of where the records are, 
allowing the user to format the data in any manner he pleases. 
The user is presented with records that are 253 bytes long. The 
system keeps the physical file number in the first physical 
location of each sector and the system logical record number of 
the given record in the second (LSS) and third (MSB) physical 
locations of each sector. This is done to insure that the record 
obtained is the record desired. The last 253 bytes may, contain 
anything the user chooses. There are, however, some assumptions 
made by the DOS and the programs supplied with it that deal with 
disk data. These assumptions fall into several classes described 
below. The two types normally of greatest interest are object 
records and symbolic data records. Object records include all 
records that are to be loaded into memory by the DOS loader. 
Symbolic data records include all records that are to be handled 
by the standard data handling programs. These progra;ns include 
the general purpose editor, the assembler, DATASHARE, RPG II, 
DOSBASIC, and the DATABUS programs (both source lines for the 
various compilers and data records handled by the resulting 
programs). 

G.2 OBJECT File Format for Disk 

Object files contain binary data which can be loaded using 
the syste~ loader and then executed. Multiple logical records can 
be grouped into one physical block. 

BYTE 
-1-

2 
3 
4 
5 
6 

CONTENTS 
o => object record, or 0377 => end of block 
H - load address for record 
L 
-H - ones cotI1plement of load address 
-L 
count of data bytes following 

End-of-file is indicated when the count byte has a value of 
zero. For the end-of-file record, the value of HL is the entry 

APPENDIX G. DISK D~TA FORMATS 3-1 



point address of the object code. The object file created by the 
ASSEMBLER has a system loader object format. 

Logical Record Number Byt~ # 

LRN 0 (RIB) 

LRN (RIB COpy) 

LRN 2 

o 
1 
2 
3 
4 
5 

Physical File Humber 
Logical Record Number (LSB) 
Logical Record Humber (["1S8) 
0377 
Segm~nt Descriptor 

5 Segment Descriptor 2 

2N+2 Segment Descriptor N 
2N+3 
2N+4 0377 
2N+5 0377 

o 
1 
2 
3 
4 
5 
6 

7 

8 
9 

n+9 
n+10 
n+ 11 
n+12 

n+13 

n+14 
n+15 

Physical File Number 
Logical Record Number (LSB) 
Logical Record Number (MSB) 
o - indicating data block 
Starting address of block (LSB) 
Starting address of block (MSB) 
One's complement of LSB of starting 
address 
One's complement of MSB of starting 
address 
Block length (n) 
Beginning of data 

0 - Next data block 
Starting address of 
Starting address of 
One's complement of 
address 
One's complement of 
address 
Block length ( m) 
Be&inning of block 

block (LSB) 
block (MSB) 
LSB of starting 

MSB of starting 

data 

G-2 DISK OPERATING SYSTEM 



LRN 3 

LRN N 

n+m+15- Next data block 

o 
1 
2 
3 

o 

0377 - End of Record 

Physical File Number 
Logical Record Number (LSB) 
Logical Record Number (MSB) 
o - Next data block 

o - Last data block 
Transfer address (LSB) 
Transfer address (MSB) 
One's complement of the LSB of the 
transfer address 
One's complement of the MSB of the 
transfer address 
o - block length equal to zero signifies 
end-of-file 

G.3 Relocatable Code Formats 

Relocatable object code is initially assumed to be starting 
at location 010000 until a Hselect new PAB" or "select new 
location" code is encountered. 

Each sector containing relocatable code starts with a one 
byte header containing sector contents code. The relocatable code 
in each sector is followed by a byte containing binary zero. 

Sector contents codes are: 

0200 
0201 
0202 
0203 
0204 

Directory 
Program Identification 
Object Text 
External Definitions 
External References 

APPENDIX r u. DISK DATA FORMATS G-3 



0205 Transfer Address 

Relocatable code files are in library form as follows: 

-----Directory : 
--I 

------------------------------------- I 

P Program Identification :<--
o : 
i : 
n 
t 

Object Text 

e: -------------------------------------
r -->: External Definitions 

External References 

Transfer Address 

Program Identification :<------
etc ....... . 

G.3.1 Directory 

<-------Directory Entry------> 

: Next Directory LRN : Program Name : 
: LSB : f'1SB: : 

Program LRN 
LSB : MSB 

<--------2---------> <-----8------> <------2------> 
bytes bytes bytes 

p 
o 
i 
n 
t 
e 
r 

, 
I 

: etc .. 

A directory entry is required for each object program in a 
library. The first sector of the object code library is reserved 
as a directory for the first twenty-four programs in the library. 
If the library contains more than twenty~four programs, a pointer 
is generated that points to the LRN of the next directory sector 
(the sector following bhe twenty-fourth object program). The last 
directory sector used has a pointer set to 0377, 0377. 

G-4 DISK OPERATING SYSTEM 



G.3.2 Program Identification 

<----------PAS Entries---------> 

: LRN : Program-name: PAS: PAS-name :Address:Length : 
:LSB:MSB: :flags: :LSB:MSS:LSS:MSB:etc 

<--2--> <------8-----> <-1-> <----8---> <--2--> <--2--> 
bytes bytes byte bytes bytes bytes 

LRN is a pointer to the first sector following object text 
(the first external definition sector, or ihe first ext~rnal 
reference sector, or the transfer address if there are no 
definitions or references). 

The program name is an eight character name of the program, 
as reflected in the program id record. 

Each P~B (program address block) defines a separate address 
counter used to assign memory locations. Up to fifteen PAB's can 
be defined for each program (PAB numbers 1-15). Flag bits are used 
to indicate relocatability and page sensitivity. 

PA13 flags: 

: 7 6 5 4 321 0 : 

\ \ \ \ \ \ 
\ \ \ \ \ ---

\ \ \ \ -----
\ \ \ 

\ \ -------
\ 
-------

G.3.3 Object Text 

bits 0-2 are unassigned 
COivllVlON PAS 
P A B til u s t not c r 0 ssp age b 0 u n dry 
PAB must start on page boundry 
PAB is relocatdble 
PAD assigned 

Relocatable object text is interspersed with control bytes 
used by the linkage editor in creating absolute code. 

APPENDIX DISK DATA FORMATS G-5 



G.3.3.1 Memory Location 

Codes 0160 and 0161 are used to define starting me~ory 
locations. 

Select New PAB 

0160 PAB 

PAB defines the number of the Program Address Block to be 
used for the object code that follows. If the PAB is not in use, 
the new location will be zero. 

Select New Location 

0161 LSS MSB 

LSB and MSB define the new location in the current PAS of the 
next byte of object code. 

G.3.3.2 Absolute Text 

Codes 0001-0071 precede code and data that does not require 
relocation. 

Absolute Text 

1-0071 1-63 absolute text bytes 

The code is a count of the number of absolute text bytes that 
follow. 

G-6 DISK OPERATING SYSTEM 



G.3.3.3 Complex Relocatable References 

Codes 0100-0157 are used to define operators and operands of 
complex expressions that are evaluated by the linkage editor 
during relocation. Complex expressions are in encoded Polish 
Postfix notation. 

Push Relocatable Location on Stack 

: 0100+PAB : LSB MSB 

PAB, LSB and MSB define the assembled memory location. 

Push External Reference on Stack 

: 0120+MSB: LSB 

MSB and LSB are an index to an external reference entry. 

Push Binary Value on Stack 

0140 LSB MSB 

LSB and MSB are a 16 bit binary integer. 

APPENDIX G. DISK DATA FORMATS G-7 



Operators: 

< > . OR. .XOR . \., ----------
0141 0142 0143 0144 

.AND. + * 
0145 0146 0147 0150 

/ Negate .HOD. 

0151 0152 0153 

Codes 0141-0153 are expression operators. 

Pop Result of Evaluation from Stack: -- ---
Pop LSB Pop MSB Pop LSB-t"lSB Pop MSB-LSB 
---------- ---------- ---------- ----------

0154 0155 0156 0157 
---------- ---------- ---------- ----------

Codes 0154-0157 terminate evaluation of complex expressions 
and indicate the form of the absolute code to be generated. 

G.3.3.4 Simple Relocatable References 

Codes 0200-0377 are used for simple relocatable references 
consisting of a single relocatable sy~bol or relocatable symbol 
plus a non-relocatable displacement. Codes for simple relocation 
can be decoded as follows: 

G-8 DISK OPERATING SYSTEM 



: 7 654 321 0 : 

\ \ \ \ \ 
\ \ \ \ 

\ \ \ 
\ \ 

\ 

LSB Reference 

bits 0-3 are part of relocation definition 
external reference 
inverted address (MSB-LSB) 
16 bit address 
slrnpl e rel oc ata b 1 e rnemory refer enc e 

: 0200+PAB: LSB 

LSB de fi nes the rel oc atabl e merllor y lac a tion • 

MSB Reference 

: 0240+PAB : LSB MSB 

PAE, LSB and MSB define the relacatable me~ory location. A 
full sixteen bit address must be given in case a carry occurs 
between LSB and MSB during relocation. 

LSB-MS3 Reference 

: 0300+PAB : LSB I'1SB 

PAB~ LSB and MSB define the relocatable memory location. 

MSB-LSB Reference 

: 0340+PAB : LSB MSB 

PAB, MSB and LSB define the relocatable memory location. 

APPENDIX G. DISK DATA FORMATS G-9 



LSB External Reference 

l 0220+MSB l LSB 

MSB and LSB are an index to an external/forward reference 
entry table. 

MSB External Reference 

l 0260+MSB l LSB 

MSB and LSB are an index to an external/forward reference 
en try tab 1 e. 

LS8-MSB External Reference 

l 0320+iv1SB l LSB 

MSB and LSB are an index to an external/forward reference 
entry table. 

MSB-LSB External Reference 

l 03 60+\1S8 l LSB 

MSB and LSB are an index to an external/forward reference· 
entry table. 

G.3.4 External Definitions 

External name l PAB or 0200 l LSB l MSB l 

<----------8---------> <-----1-----> <-1-> <-1-> 
bytes byte byte byte 

External definitions are external symbols made available to 
other relocatable modules. External references made by other 
relocatable modules are linked to external definitions as 

G-l0 DISK OPERATING SYSTEM 



discussed in Chapter 1. The location of each relocatable external 
definition is defined by PAS, LSB and MSS. A flag (0200), LSB and 
MSB define non-relocatable external definition values. Up to 
twenty-two external definitions can be defined in each external 
definition sector. All external definition sectors for a given 
program must be contiguous, and not intermixed with external 
reference sectors. 

G.3.5 External and Forward References (4096 maximum) 

External Reference 

ASCII Symbol 

<-------------------8---------------------> 
bytes 

Forward reference 

0200 PAB LSB MSB Unused 

<--1--> <--1--> <--1--> <--1--> <---4----> 
byte /byte byte byte bytes 

A forward reference is defined as a reference whose value is 
unknown at some given time in the relocatable module's creation, 
but whose value is known later, and then is plugged into the 
forward reference table. 

All external reference/forward definition sectors must be 
contiguous. 

G.3.6 Transfer Address 

PAB LSB MSB 

<----1----> <----1----> <----1----> 
byte byte byte 

APPENDIX G. DISK DATA FORMATS G-11 



PAS, LSD and MSB define the starting location in the program. 
If PAB=0377, a starting location was not specified. 

G.4 Format of Library Files 

The Library is constructed from two types of entries, 
Directory Entries and mernbers. 

G.4.1 Directory 

The first entry of the library file must be the first 
Directory Entry. Additional directory entries are formatted as 
required and linked into the directory chain. Each directory has 
two major parts: 

1) The directory header which is 7 bytes. The format is as 
follows: 

: 0200 : 

:OfooT 
LSB 

T MSB -: 

LSB 

T MSB 

Directory Unique Code 
2 Bytes long 

Type of library (see library type chart) 

Pointer to next directory entry LRN 
0377,0377 if last one. 

Pointer to end of file sector, (LRN) 
(only valid in first directory). 

2) Member name entries, each one is 10 bytes long. 

-r­
I 

T [s13 T 
T MsH r 

G-12 

Member name 8 bytes long 
in ASCII code 

Starting LRN 
of this member 

DISK OPERATING SYSTEM 



One directory entry can contain a maximum of 24 member names. All 
un use d me tn b ern am e en t r i e s will be set toO 377 ' s . A del e ted 
~ember will be set to 0377's. 

An entire directory entry: 

r 

: D ire c tory He ad e r-T'M e rn be r--: -[RN\ M em berT L R N T:-:-":-:-:-TMemb e r f L R N"To'3771 
: Name 1 :Name 2: :Name n: 

G.4.2 Members 

The members are the second type entry of the library. Each 
Ioember is pointed to by the member name pointer in one of the 
directory entries. Each member is terminated by an end of member 
(EOM) code. The EOM is indicated by a sector which contains six 
bytes of 000 followed by 010. 
NOTE: EOM indicates only the end of this member not the end of 
the library. 

A simple library file format 

:-"-:-EF: 

Directory-

:Member A: -1-1 
I I :Member C: 

APPENDIX G. DISK DATA FORMATS 

'-I-I 
I I : Member'BT 

EOr4·-------

G-13 

-1-1 
I I 



G.4.3 Library Type Chart 

If the library contained more than 24 members another 
directory entry would be placed into the chain of directories. 

The following is the bit chart for library types 

1 • 
• 1 

1 •• 
• 1 • 
•• 1 

111 

Reserved 
Absolute 
Relocatable 
Dataform 
Databus (DBL) 
Reseved for future use 

G.5 DATABUS Code File Format 

DATABUS files contain code produced by the DATABUS compiler 
for· use by its interpreter. All blocks are 251 bytes long. 

BYTE CONTEtJTS 

1 040 - DATABlJS code file indicator 
2 H - load address 
3 L 
4 -H - complement of load address 
5 -L 

End of file is indicated by bytes 1 through 6 being binary 
zeros, followed by a binary three. 

G.6 DATAFORM Data File Format 

Every record created by a DATAFORM form is stored 
consecutively on the disk terminated with a 015 designated as the 
end of logical record character. Disk sector boundaries are 
transversed by placing a 003 to represent the end of physical 
record. An end of file mark is six zeros followed by a 003 
beginning at the start of the next unused sector. This complies 
with Datapoint's DOS text file structure. However, other 
characters immediately following the 003 are necessary record 
descriptors to allow record form linkages and the record backspace 
feature to be implemented in DATAFORM. The first character 
following the end of physical record character, 003, represents 
the form number that created the first logical record starting in 

G-14 DISK OPERATING SYSTEM 



that sector, biased by 4. The character immediately following is 
the absolute address in the sector of the first character of the 
logical record. (Note that the first data character of every 
sector starts at address 003.) There must be a similar pair of 
characters describing every logical record that starts in that 
sector. These character pairs must be in that sector and in 
consecutive order. (i.e. The first pair relates to the first 
record, the second pair to the second record, etc.) The remainder 
of the sector, if unused, is filled with zeros. DATAFORM 1100 
Version 1 may use the entire 253 bytes available in the sector. 
However, DATAFORM Version 2 does not use the last two bytes of 
every sector, only 251 bytes are used. 

G.7 MULTIFORM File Format 

The first sector of a Multiform file contains information 
concerning the file name, form library relating to the data, and 
end of file position. The format of this header sector is 
described below. The first byte of a sector has a sector address 
of zero. 

SECTOH ADDRESS 

0- 2 
3 

4- 11 
12- 14 
15- 16 

17- 24 
25- 27 
28-251 

252 
253 

254-255 

DESCRIPTION 

Reserved for DOS 
Contains a byte value of 003 
First 8 characters of the data file name 
Three characters of the data file extension 
LRN of the last sector which has data written to 
it. Must be in LSB,MSB format 
first 8 characters of the form file name 
Three characters of the form file extension 
Not care conditions 
Contains a byte value of 000 
Contains a byte value of 003 
Reserved for DOS 

All records are now written consecutively in a non-space 
compressed format. Each record is terminated by an 015. The end 
of the physical record is indicated by an 003. Bytes after the 
003 contain special information that Multiform uses. This 
information is right justified in the sector, which will be 
described from right to left. 

APPENDI~ ~ u. DISK DATA FORMATS G-15 



SECTOR ADDRESS 

253 

252 

251 

DESCRIPTION 

Contains a byte value equal to the number of 
records that start in that sector plus the value 
3 · 

Each record that starts in the sector has two 
bytes that describe its position and the form 
that created it. 

Contains a byte value equal to the form number 
of the form that relates to the last record that 
starts in the sector. 

The true sector position of the last record that 
starts in this sector. 

The next preceeding byte pair describes the next to the last 
record that starts in that sector in the same forillat as described 
above. These byte pairs are repeated for every record that starts 
in that sector. The end of physical record preceeds these record 
description byte pairs by no more than one character. The 
exception to this is the last sector in the file which contains 
data. In this case, immediately preceeding the record description 
byte pairs will be a byte whose value is the true sector address 
of the end of physical record character. Note, if no record 
begins in this sector, sector byte address 253 will contain an 003 
and the preceeding byte will have the sector address of the end of 
physical record character. The next sect6r in the file will 
contain the standard DOS end-of-file mark. 

G.B TEXT File Format 

TEXT files typically contain data, source statements, or 
\-1ha tever is mean i ngful to the user. The requi r eBlent is that the 
data contained in the text file must be equal to or greater than 
OqO (space). The only bytes less than 040 which are allowed are 
the following: . 

CONTROL BYTE SYMBOL MEANING 

000 

003 

G-16 

NULL. The NULL control byte is used in the 
indication of the end of the file. 

END-OF-MEDIUM. No more meaningful data is contained 

DISK OPERATING SYSTEM 



011<cnt> 

015 

032 

in this block. The EM is NOT a data byte but must 
be within the block. 

SPACE COMPRESSION. The byte following the 011 isa 
binary count of spaces which have been compressed. 
<cnt> can be between 2 and 255, inclusive. The 
011<cnt> sequence must not be split across block 
(sector) boundar ~e'S:--

END-Of-RECORD. The EOR, also the Enter [ENT] or 
Carriage Return character, indicates the end of the 
logical record. It is NOT a data byte. 

DELETE. The DEL' byte indicates the data byte is 
deleted. The DEL is NOT a data byte. Entire 
records (including the EaR indicator) can be deleted 
by over-writing them with DEL bytes. 

There is no explicit maximum size for a logical record. A 
logical record can span as many blocks (sectors) as necessary, 
within the capacity of the device. A physical block must be less 
than or equal to 251 bytes, including any necessary EOR bytes and 
the trailing EM byte. Text files can be either space or record 
compressed, or both, or may be" blocked. Space compressed files 
use the CMP control bytes to represent strings of blanks within 
logical records. A space compressed file has no particular 
relationship between the physical and logical records. A record 
compressed file does not use space compression, but uses EOR 
control bytes to identify logical records within physical records. 
A record compressed file has no particular relationship between 
the physical and logical records. A blocked file has some fixed 
relationship between logical and physical records, normally 
containing one logical record per physical sector. Datapoint text 
files are generally both space' and record compressed, record 
compressed only, or blocked. Blocked files with space compression 
are possible but are not generally used. 

End of file is indicated by bytes 1 through 6 being binary 
zeros <NUL>, followed by a binary three <EM>. 

APPENDIX G. DISK DATA FORMATS G-17 



G.9 lSI File Format 

The indexed file is a normal GEDIT-col~patible text file. 
The ISAM file is of the following format: 

first record - header record 

0-10 - indexed file name of form filenameext 
11 - PFN of the ISAM file 
12 - the sector of the ISAM file RIB 
13 - the cylinder of the ISAM file RIB 
14 - PFN of the indexed file~ 
15 - the sector of the indexed file RIB 
16 - the cylinder of the indexed file RIB 
17-18 - OBSOLETE 
19 - OBSOLETE 
20-22 - last record used in data file (BUFADR, LRN LSB, LRN MSB) 
23-25 - next free entry in ISAM file (BUFADR, LRN LSB, LRN MSB) 

Second sector - highest level 

The highest level index is a single sector using the same format 
as the intermediate level sectors described below. 

Third+ sectors - lowest level 

KEYI015/NEXBUF/NEXSEC/NEXCYL/RECBUF/RECLSB/RECMSB/IKEY .... 
Since key cannot be split over sector boundary, 
sector is padded with 0377's. 

KEY - uncompressed ASCII key with trailing spaces truncated 
o -> first record 
0377 -> last record 

NEXBUF - buffer address of the next key, 0 implies next sequential 
NEXSEC - sector address of the next key 
NEXCYL - cylinder address of the next key 
RECBUF - buffer address of the indexed record 
RECLSB - logical record number LSB of the indexed record 
RECMSB - logical record number MSB of the indexed record 

N+ sectors - intermediate levels 

KEYI012/NEXSEC/NEXCYLIIKEY ••• 
Since key cannot be split over sector boundary, sector is filled 
0371's. 

KEY - uncompressed ASCII key with trailing spaces truncated 
o -> first record 

G-18 DISK OPERATING SYSTEM 



0377 -> last record 
NEXSEC - sector address of the next-Iower-Ievel key 
NEXCYL - cylinder address of the next-lower-Ievel key 

The ASCII key tag file produced by SORT or INDEX utilities and used as an 
in ter~(}ed ia te step in the c r ea tion or r e-cr ea t ion of an lSI fi Ie has the 
following format. 

RECLRN/RECBUF/KEY/0151IKEY ... 

RECLHN - 5 byte ASCII decimal logical record number of the indexed 
key 

RECBUF - 3 byte ASCII decimal buffer address of the key 
the ASCII decimal numbers have leading blanks 

KEY - compressed ASCII key with trailing spaces truncated 

G.1D SORT TAG File Format 

The format of a SORT TAG file is as follows. 

1. For each record in the corresponding input data file, the TAG 
file will have a three byte binary pointer to the first byte 
of the record. 

2. The fortnat of the po inter is: 
Byte 1: MSPLRN (Most significant portion of LRN), 
Byte 2: LSPLRN (Least significant portion of LRN), 
Byte 3: BUFTPTR (Disk buffer pointer). 

3. The three-byte binary pointers are blocked 83 to a physical 
disk record. 

4. The physical-end-of-record is indicated by an <EM>. 

5. The end-of-file is indicated by bytes 1 through 6 being 
<NUL>s followed by one <EM>. 

APPENDIX G. DISK DATA FORMATS G-19 



" z 
::i 
:c 
:E 
a: 
o 
II. 

III 
Z 
::i 

" z 
o ... 
C 
to 
:::I 
U 

Manual·Name ___________________ _ 

Manual Number ___________________ _ 

READER'S COMMENTS 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? Please make suggestions for 
improvement. 

Name _____________________ Date _________________ _ 

Organization _____________________________________ ___ 

Street __________________________________________ __ 

City __________________ State ______ Zip Code ______________ _ 

All comments and suggestions become the property of Datapoint. 



Fold Here 

__________________________ ~~~I~':::!..e~~n~~t~~ ___________________________ _ 

BUSINESS REPLY MAl L 
No Postage Necessary if mailed in the United States 

Postage will be paid by: 

DATAPOINT CORPORATION 
DIRECTOR OF SOFTWARE SUPPORT 
8550 Datapoint Drive, Mail Station# N60 . 
San Antonio, Texas 78284 

I II II I FIRST CLASS 
Permit 
5774 

San Antonio 
Texas 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	08-01
	08-02
	09-01
	09-02
	09-03
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	13-01
	13-02
	14-01
	14-02
	15-01
	15-02
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	17-01
	17-02
	18-01
	18-02
	18-03
	19-01
	19-02
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	23-27
	23-28
	23-29
	23-30
	23-31
	23-32
	23-33
	23-34
	23-35
	23-36
	23-37
	23-38
	23-39
	23-40
	23-41
	23-42
	23-43
	23-44
	23-45
	23-46
	23-47
	24-01
	24-02
	25-01
	25-02
	25-03
	25-04
	26-01
	26-02
	26-03
	27-01
	27-02
	27-03
	28-01
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	29-07
	29-08
	29-09
	29-10
	29-11
	29-12
	29-13
	30-01
	30-02
	31-01
	31-02
	32-01
	32-02
	32-03
	32-04
	32-05
	33-01
	34-01
	34-02
	34-03
	34-04
	34-05
	34-06
	34-07
	34-08
	34-09
	35-01
	35-02
	35-03
	35-04
	35-05
	35-06
	35-07
	35-08
	35-09
	35-10
	36-01
	36-02
	37-01
	38-01
	39-01
	39-02
	39-03
	39-04
	39-05
	39-06
	39-07
	39-08
	40-01
	41-01
	42-01
	42-02
	42-03
	42-04
	42-05
	42-06
	42-07
	43-01
	43-02
	43-03
	43-04
	43-05
	43-06
	43-07
	43-08
	43-09
	43-10
	43-11
	43-12
	43-13
	43-14
	43-15
	43-16
	43-17
	43-18
	43-19
	43-20
	43-21
	43-22
	43-23
	43-24
	43-25
	43-26
	43-27
	43-28
	43-29
	43-30
	43-31
	43-32
	43-33
	43-34
	43-35
	44-01
	44-02
	45-01
	46-01
	46-02
	46-03
	46-04
	47-01
	47-02
	48-01
	48-02
	49-01
	49-02
	49-03
	49-04
	49-05
	49-06
	49-07
	49-08
	49-09
	49-10
	49-11
	49-12
	49-13
	49-14
	49-15
	50-01
	50-02
	50-03
	50-04
	50-05
	50-06
	50-07
	51-01
	51-02
	51-03
	51-04
	51-05
	51-06
	51-07
	51-08
	51-09
	51-10
	51-11
	51-12
	51-13
	51-14
	51-15
	51-16
	51-17
	51-18
	51-19
	51-20
	51-21
	51-22
	51-23
	51-24
	51-25
	51-26
	51-27
	51-28
	52-01
	52-02
	52-03
	52-04
	52-05
	52-06
	52-07
	52-08
	52-09
	52-10
	52-11
	52-12
	52-13
	52-14
	52-15
	52-16
	52-17
	52-18
	52-19
	52-20
	52-21
	52-22
	52-23
	52-24
	52-25
	52-26
	52-27
	52-28
	53-01
	53-02
	53-03
	53-04
	53-05
	53-06
	53-07
	53-08
	53-09
	54-01
	54-02
	54-03
	54-04
	54-05
	54-06
	54-07
	54-08
	55-01
	56-01
	56-02
	56-03
	56-04
	56-05
	56-06
	56-07
	56-08
	56-09
	56-10
	56-11
	56-12
	56-13
	56-14
	56-15
	57-01
	57-02
	57-03
	57-04
	57-05
	58-01
	58-02
	58-03
	58-04
	58-05
	58-06
	58-07
	58-08
	58-09
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	replyA
	replyB

