DEC-15-HQFA-D

PDP-15 SYSTEMS

FP15 |
FLOATING POINT PROCESSOR
MAINTENANCE MANUAL
VOLUME 1

DIGITAL EQUIPMENT CORPORATION « MAYNARD, MASSACHUSETTS




Copyright © 1971 by Digital Equipment Corporation

The material in this manual is for information-
al purposes and is subject to change without
notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

Ist Edition June 1971



CONTENTS

CHAPTER 1

1.1
1.2
1.3
1.3.1
1.3.2

CHAPTER 2

NN N NN NN
. I

. . . . . .

o~ AW =

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.7
3.7.1
3.7.2
3.7.3

INTRODUCTION

General

Floating-Point Processor Physical Description
Functional Description

Operating Cycles

Major Register Functional Descriptions

MODULE DESCRIPTIONS

General

M238 Synchronous Up/Down Counter
M159 Arithmetic Logic Unit

M191 Carry Look-Ahead Generator
M248 Right-Shift Parallel Load Register
M1701 Data Selector

M1713 16-To-1 Data Selector

FP15/PDP-15 INTERFACE

Introduction

FETCH Cycle Interface

FETCH (Indirect) Cycle Interface
FETCH Cycle Description

OPAND Cycle Interface

OPAND Cycle Description
Double~Precision Floating-Point Format
Single-Precision Floating~Point Format
Extended Integer Format
Single-Precision Integer Format

WRITE Cycle

Store JEA

Double-Precision Floating Point

Single-Precision Floating Point

Page

1-3

2-1
2-1
2-2
2-3
2-3
2-4

3-1
3-1
3-3
3-3
3-7
3-8
3-8
3-8
3-8
3-12
3-12
3-12
3-12
3-12

3.7.4
3.7.5
3.8
3.8.1
3.8.2
3.9
3.10

CHAPTER 4

4.1

4.2

4.3
4.3.1
4.3.2
4.4

4.5

4.6
4.6.1
4.6.2
4.6.3
4.6.3.1
4.6.4
4.6.4.1
4.6.4.2
4.6.4.3
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.8
4.8.1
4.8.2

Extended Integer
Single-Precision Integer
Interrupt Cycle Interface
INT 1 Cycle

INT 2 Cycle

Interrupt Cycle
FP15/CPU Control

INSTRUCTION SET

Introduction

Converting Negative Integers To Sign and Magnitude Format
Normalize

Normalization (Except Store, Divide, or Reverse Divide)
Store, Divide, or Reverse Divide

Rounding

Guard Bit

Floating-Point Addition and Subtraction

EXP Cycle

FUN Cycle

Processing of Subtracted Quantities

Overflow

Processing of Added Quantities

Overflow Interrupt Due to Addition or Subtraction
Overflow Interrupt Due to Rounding

Underflow Interrupt Due to Normalizing

Integer Add and Subtract '

EXP Cycle

FUN Cycle

Overflow

Integer Reverse Subtraction

Floating-Point and Integer Multiply

Calculation of Exponents

Determining Sign of Product

Page

3-12
3-12
3-14
3-14
3-14
3-15
3-17

4-1
4-1
4-1
4-2

4-2

4-6
4-6

4-6

4-8

4-10
4-10
4-10
4-10
4-10
4-11
4-12
4-12
4-12
4-13
4-13
4-13
4-13
4-13

cor
11



CONTENTS (cont)

4.8.3
4.8.4
4.8.5
4.8.5.1
4.8.5.
4.8.5.
4.8.5.
4.8.5.
4.9
4.9.1
4.9.2
4.9.3
4.9.4
4.9.5
=T

O W N

Multiplication of the Mantissas
Multiply Algorithm
Floating-Point Overflow
Overflow Interrupt - EXP Cycle
Underflow Interrupt - EXP Cycle
Overflow Interrupt - NOR Cycle
Underflow Interrupt - NOR Cycle
Integer Overflow

Floating-Point Division
Caleulation of Exponents
Determining Sign of Quotient
Division of the Mantissas

Divide Algorithm

Interrupts

Page

4-19
4-19
4-19
4-20
4-21

4.15
4.15.1
4.16
4.17
4.18
4.19
4.20
4.20.1
4.21
4.21.1
4,21.2

CHAPTER 5

Swap, Load and Swap
Underflow Interrupt

Float, Load and Float FMA
Fix, Load and Fix

Load JEA and Store JEA
Branch

Modify FMA

Underflow Interrupt Due to Normalization
Diagnostic Instructions
Diagnostic Read

Diagnostic Step and Read

INSTALLATION AND MAINTENANCE

Page

4-26

Q“,_\SgLﬁ.., :E;. " EVD ~ .1




ILLUSTRATIONS

Figure No.

1-1
1-2
1-3
2-1
2-2
2-3
2-4

2-5
2-6
2-7
3-1
3-2
3-3
3-4
3-5
3-6
3-7
4-1

4-2
4-3
4-4
4-5
46
4-7
4-8
4-9
5-1

Title

Cabinet Housing FP15 Logic

System Interconnecting Cabling

FP15 Functional Block Diagram
M238 Synchronous Up/Down Counter
M159 Arithmetic Logic Unit

M191 Carry Look-Ahead Generator

36-Bit ALU, Full-Carry Look-Ahead in Three
Levels

M248 Right-Shift Parallel Load Register
M1701 Data Selector

M1713 16-To-1 Data Selector

Major Signal Interface Diagram

Memory Interface--FETCH Cycle

Memory Interface-~FETCH Cycle (Indirect)
Memory Interface--OPAND Cycle

INT 1 Cycle Interface Diagram

INT 2 Cycle Interface Diagram

CPU /P15 Sample Program

Converting Negative Integers to Sign and
Magnitude

Guard Bit and Rounding

Flow Diagram for Setting Guard

Multiply Simplified Flow Diagram

Multiply Algorithm

Floating-Point Divide Simplified Flow Diagram
Floating Point Divide Algorithm

Integer Divide Algorithm

Branch Instruction Flow Diagram

H963E Cabinet (Bay 1R), Rear View with Mount-
ing Panel Door Open

FP15 Indicator Bus Connections

Art No.

15-0568
15-0575
15-0574
15-0573
15-0571
15-0576
15-0577

15-0572
15-0569
15-0570
15-0567

15-0578

15-0580
15-0581

15-0582

15-0583
15-0568

15-0585

Page

1-1
1-2
1-3
2-1
2-2
2-2
2-2

2-3
2-4

3-1
3-2
3-3
3-7
3-14
3-15
3-17
4-1

4-2
4-6

4-14
4-15
4-19
4-20
4-25
4-30
5-1

5-2

Drawing No.

D-FD-FP15-0-45
D-FD-FP15-0-46
D-FD~FP15-0-47
D-FD-FP15-0-48
D-FD-FP15-0-49
D-FD-FP15-0-50
D-FD-FP15-0-51
D-FD-FP15-0-62
D-FD-FP15-0-58
D-FD-FP15-0-59
D-FD-FP15-0-57
D-FD-FP15-0-52
D-FD-FP15-0-53
D-FD-FP15-0-54
D-FD-FP15-0-55
D-FD-FP15-0-56
D-FD-FP15-0-57
D-FD-FP15-0-60

TABLES

ENGINEERING DRAWINGS

Title

Fetch Cycle Flow 1

Fetch Cycle Flow 2

Fetch Cycle Flow 3

Opand Cycle Flow 1

Opand Cycle Flow 2

Opand Cycle Flow 3

Write Cycle Flow

Interrupt Flow

NOR TS1 Cycle Flow

NOR TS2 Cycle Flow

Float & Integer Div Fun Cycle
Add, Sub, Rev Sub, Exp Cycle
Add, Sub, Rev Sub, Sub Cycle
Floating Mul & Div Exp Cycle
Float & Integer Mul Fun Cycle
Integer Divide Exp Cycle
Float & Integer Div Fun Cycle
ASIGN Swap & Float Control

D-FD-FP15-0-61 Fix Flow

D-FD-FP15-0-63 Maint Flow 1

D-FD-FP15-0-64 Maint Flow 2

Table No. Title

1-1 FP15 System Characteristics

1-2 FP15 System Features

1-3 Operand Transfer and Cycle Time

5-1 FP15 Floating-Point Processor Major Components
5-2 Signal Cable Connections

5-3 FP15 Floating-Point Processor Engineering Drawings

Page

3-4
3-5
3-6
3-9
3-10
3-11
3-13
3-16
4-3
4-4
4-5
4-7
4-9
4-17
4-18
4-23
4-24
4-27
4-29
4-32
4-33

Page
1-1
1-2
1-2
5-1

5-5



CHAPTER 1
INTRODUCTION

1.1 GENERAL

This chapter provides a physical and functional description of the FP15 Floating-Point Processor. The

physical description includes lists of FP15 system parameters and special features.

1.2 FLOATING-POINT PROCESSOR PHYSICAL DESCRIPTION

The FP15 Floating-Point Processor consists of four racks of Medium Scale Integrated logic (MSI) and
TTL logic located as shown in Figure 1-1. The interconnecting cabling associated with fhé FP15 is
shown in Figure 1-2. The floating-point processor logic uses an operating voltage of +5 Vdc that is
supplied from an H721 Power Supply, with 115V or 220V input and +5 Vdc output fused at 20A. A
716 Power Supply provides the power for the indicator panel. The operating characteristics of the

FP15 are listed in Table 1-1; Table 1-2 includes some of the more significant features of the FP15.

Table 1-1 (Cont)

FP15 System Characteristics

Physical Characteristics

FP15 System Characteristics

Operating Characteristics

Power Requirements

Power Consumption
Temperature Range
Relative Humidity

Heat Dissipation

115V, £15%

12A

50+ 1Hz, 60+ 1.2 Hz
Single Phase

230V, +15%

6A

50+ 1Hz, 60+ 1.2Hz
Single Phase

1.4 kW max
50° - 120°F
10 - 95%

4800 btu/hr

Size 19-in. wide by 21-in. high
Weight 50 b
No. of Racks 4
Type of Logic TTL and MSI
SaY 1"
BB15 INDICATOR PANEL
FP15 INDICATOR PANEL o es oo — —

BB15 OPTION PANEL

DISPLAY (OPTIONAL)

PCOS READER PUNCH

FANS

BA1S

DWi5 LOGIC

828 POWER RECEPTACLE

FRONT

H721 POWER SUPPLY

7348 POWER SUPPLY

BLANK

H721 POWER SUPPLY

841-C POWER CONTROL

BLANK

REAR

15-0568

Figure 1-1 Cabinet Housing FP15 Logic



p(z\:v(éa INDICATOR H721 POWER
SUPPLY PANEL SUPPLY
*
BB15 OPTION FP15 FLOATING PDP-15
MEMORY - POINT CENTRAL
- PROCESSOR PROCESSOR
$ $88 controL casLe?
MDL_CABLE

MEMORY CONTROL CABLE

*
If BB option is not installed, cables are directly routed to memory.

Figure 1-2  System Interconnecting Cabling

Table 1-2

FP15 System Features

15-0575

1.3 FUNCTIONAL DESCRIPTION
The FP15 Floating-Point Processor functional block diagram is shown in Figure 1-3. Before describing

each of the major elements in the diagram, it is necessary to introduce the various operating cycles in

the FP15; they are:

FETCH
OPAND
EXP

FUN

NOR
WRITE
INTERRUPT

@ m0 a0 oo

1.3.1 Operating Cycles

During a floating-point instruction, the FP15 is in one of the operating cycles. Each cycle is approx-
imately 900 ns and is divided into three time states (300 ns per time state). The cycles can be ex-
tended in time due fo shifting and aligning. In turn, each time state is subdivided into four phases

(75 ns per phase). The following paragraphs provide a brief description of the major events that occur

Directly or indirectly addressable up to 128K of core.

Performs arithmetic operations on 18- or 36-bit integers and 36~ or 54-bit floating-
point numbers.

Allows execution of in-line code--CPU instructions and floating-point instructions
may be interspersed as desired.

1/O Processor can access memory on a shared basis with the floating-point proces-
sor; however, the 1/O Processor takes priority over the FP15.

When an undesired condition (Underflow, Overflow, Abnormal Division, or Memo-
ry Protect Violation) occurs, the FP15 interrupts the CP stored program and auto-
matically identifies the source of the interrupt.

Worst-case multiplication and division times on normalized operands do not exceed
24 ps.

Possesses ability to convert floating-point numbers to integers and integers to
floating-point numbers.

Remainder, product, and align bits in FMQ are accessible by appropriate software.
Unnormalized and unrounded arithmetic may be specified.

A class of non-memory reference instructions is available. These instructions use
existing contents of FMA and FMB and require no memory reference.

Built-in maintenance logic (maintenance mode) allows single or multiple substeps of
an instruction. All major registers and control can be examined at the end of each
step.

Designed to operate with existing PDP-15 options (Memory Protect, Memory Relo-
cate, etc.) with no increase in cycle time.

during each cycle.

FETCH - In the FETCH cycle the instruction word (first word) is loaded into the FP15 Instruction Regis-
ter (IR) and the address of the operand is loaded into the FP15 Address Register (AR). If indirection
(indirect addressing) is requested, the FP15 remains in the FETCH cycle to obtain the effective address.

OPAND - In the OPAND cycle the operand(s) is transferred from memory to the FP15. The number of

operands transferred depends on the format in Table 1-3.

Table 1-3
Operand Transfer and Cycle Time
Format No. of Operands Cycle Time
Single~-precision integer One operand (1) 1.2ps
Double-precision integer and Two operands (2) 2.4 ps
Single-precision floating-point
Double-precision floating-point Three operands (3) 3.6ps

If non-memory reference instructions are specified, the OPAND cycle is bypassed and no operands are

transferred from memory to the FP15.




CORE MEMORY BUS PDP-15
MEMORY cPU

[ e —— — — S

T T T

FP15 FLOATING
POINT PROCESSOR
7-BIT
I 13'EBA|T
REGISTER
— (JMSEXIT
I ADDRESS) |
12-BIT i_ 1
INSTRUCTION
REGISTER FP15 l TO ALL MAJOR
(IR) | CONTROL ' > REGISTERS
) © 36-BIT
BUFFERED l_ —_— _l
MEMORY BUFFER
(BMB)
17-BIT -
ADDRESS CONTROL y - CONTROL I
REGISTER
(AR) |
36-BIT
ARITHMETIC
LOGICAL
UNIT,
(ALY) I
18-8IT 18-BIT
EPA EPB
ALU I
I BUS |
L | 3s-8IT 35-BIT
FMA FMB I
l 18-81T I
35-BIT SHIFT
FMQ REGISTER
(sc)

15-05674

Figure 1-3 FP15 Functional Block Diagram

EXP - In the EXP cycle, during floating-point addition and subiraction, the mantissa with the smaller
exponent is aligned with the mantissa having the larger exponent. Alignment occurs by right-shifting

the smaller mantissa.

In the EXP cycle, during floating-point multiplication and division, the exponent is calculated. In
integer format, negative integers in 2's complement format are converted to sign and magnitude num-

bers during the EXP cycle.

.
H

FUN - In the FUN cycle, the actual arithmetic or logical operation is performed. The cycle time re-

quired is the basic 900 ns, pius the additionai time required for shift, muitiply, and divide operations.

NOR - In the NOR (normalize) cycle, the FMA is normalized by shifting. Rounding may also be re-
quested. The basic NOR cycle requires 900 ns, plus an additional 150 ns for each shift necessary to

normalize.

WRITE - During the WRITE cycle, the operands are transferred to memory. The operands transferred

from the FP15 to memory are:

Single-precision integer--one 2's complement operand
Double-precision integer--two 2's complement operands

Single-precision floating-point--2's complement exponent and high-order man-
tissa

Double-precision floating-point--2's complement exponent and high~order and
low-order mantissas.

Each transfer requires about 1.2 ps.

1.3.2 Major Register Functional Descriptions

Buffered Memory Buffer Register (BMB) - The 36-bit Memory Buffer Register is loaded from the memory
bus 18 bits at a time. The output of this register is connected to the ALU, the instruction register,

and the address register. All inputs from the memory pass through the memory buffer.

Instruction Register (IR) -~ The 12-bit Instruction Register stores bits 6 through 17 of the instruction
word retrieved from memory during the FETCH cycle. Bits 6 through 17 remain in the IR until another

instruction is fetched from memory.

Address Register (AR) ~ The 17-bit Address Register stores the effective address used in fetching or

storing operands.

Arithmetic Logic Unit (ALU) - The 36-bit ALU performs both arithmetic and logic operations in the
FP15. The output of the ALU is connected to all major registers via the ALU bus. Most major regis-

ters are available as inputs to the ALU.

EPA - The 18-bit EPA is a synchronous up-down counter used to store the 2's complement exponent
associated with the mantissa loaded in the FMA. The most significant bit of the EPA represents the
sign of the exponent. For single-precision floating-point format, the most significant bit of the ex-
ponent is bit 9. The value of this bit is extended from bit 9 through bit 0. The EPA is loaded from

the ALU bus and keeps track of the exponent associated with the mantissa in the FMA,



FMA - The 35-bit FMA stores an integer operand during integer arithmetic or a mantissa during B SIGN - The 1-bit B SIGN register stores the sign of the operand loaded into the FMB. A 1 in this
floating-point arithmetic. The FMA is loaded from the ALU and can be shifted left or right. The register represents a negative mantissa; a O represents a positive mantissa.

FMA can also be loaded and shifted simultaneously from the ALU bus during multiplication and divi-

sion. The EPA and A SIGN/FMA are the floating-point accumulator. Shift Counter - The shift counter performs the following functions:

A SIGN - The 1-bit A SIGN register stores the sign of the operand loaded into the FMA. A 1 in this a. Keelps track of the number of words to be fetched from memory during the OPAND
cycle.
register indicates a negative number; a 0 indicates a positive number. Y

b. Keeps frack of the number of words written into memory during the WRITE cycle.
FMQ - The FMQ is a 36-bit extension of the FMA or FMB and is used primarily during arithmetic op- c. Keeps track of the number of shifts required for multiply and divide operations.
erations. Bits shifted out of the FMA or FMB, during alignment for addition and subtraction, are d. Limits the number of shifts during normalizing to a maximum of 35]0'
shifted into the FMQ. The most significant bit in the FMQ is used for rounding, if requested. The e. Controls the number of shifts required during alignment.
FMQ can be loaded from the ALU bus, or directly from the FMA, and has a shift-left and shift-right f.. Checks for exponents having differences which exceed 35]0'

capability.
JEA - The 15-bit JEA address register points to the interrupt handling routines in core that service the

EPB - The 18-bit EPB register is loaded from the ALU bus and stores the 2's complement exponent asso- floating-point interrupts (underflow, overflow, abnormal divide, and FP memory trap). This register

ciated with the mantissa loaded in the FMB. The most significant bit of the EPB represents the sign of ]
is loaded by software control.
the exponent. For single-precision floating-point format, the most significant bit of the exponent is

bit 9. The value of this bit is extended from bit 9 through bit 0 Diagnostic Instruction Register (DIR) - The 7-bit DIR determines the number of steps through which an

instruction is to be sequenced.
FMB - The 35-bit FMB register stores an integer operand during integer arithmetic or a mantissa during
floating-point arithmetic. Unlike the FMA, the FMB can only be shifted right for alignment. The Diagnostic Address Regiéi‘er (DAR) - The 15-bit DAR specifies the address in core where the contents
FMB is loaded directly from the ALU bus. The EPB and B SIGN/FMB are a second operand register. of the registers are to be stored.

14



CHAPTER 2
MODULE DESCRIPTIONS

2.1 GENERAL
This chapter provides descriptions of the following modules used in the FP15 Floating-Point Processor:

M238 SYNCHRONOUS UP/DOWN COUNTER
M159 ARITHMETIC LOGIC UNIT

M191 CARRY LOOK-AHEAD GENERATOR
M248 RIGHT-SHIFT PARALLEL LOAD REGISTER
M1701 DATA SELECTOR

M1713  16-To-1 DATA SELECTOR

2.1.1 M238 Synchronous Up/Down Counter

The M238 Synchronous Up/Down Counter consists of two DEC 74193 4-bit synchronous up/down count-
ers. Synchronous operation is prdvided by having all flip-flops in the counter clocked simultaneously
so that the outputs change at the same time. The flip-flops are master-slave flip-flops and the outputs
are triggered by a positive-going transition of one of two count (clock) inputs. One input is desig-
nated U (up count); the second input is designated D (down count). The direction of counting is de-

termined by the count input that is pulsed while the other count input is high.

The outputs of the flip-flops may be preset to any desired state by entering the data at the data inputs
while the load input (L) is low. The output will change to reflect the input, regardless of the count

pulses.

A clear input (CLR) forces all outputs low on receipt of a high clear input. The clear input is inde-

pendent of the count and load inputs.

Both borrow and carry outputs are available for cascading the up-counting and down-counting opera-
tions. When counter underflow occurs, the borrow output produces the same width pulse as the down-
count input. When counter overflow occurs, the carry output produces the same width pulse as the
count-up input. Cascading is accomplished by connecting the borrow and carry inputs to the count-

down and count-up inputs, respectively, of the next counter.

The M238 Counter is used in the EPA, DIR, and DAR registers in the FP15 Floating=Point Processor.
Figure 2-1 i¢ an example of how the M238 Counter is used in the DIR register (see drawing
D-BS-FP15-0-14).

NOTE

The up count is inhibited by +3V in the DIR register,
indicating that this register can only be decremented.

CARRY L E1 BORROW L F1
FP15-0-14

M238
H24
Mp 14 D2
E2 F2
mp 15 -£2 1
DATA INPUTS 5= ———DIR 14 (1) H
: MD 16 =] DIR A5 (K| o oTPUTS
MD 17 —— L bR 16 (1) H
LOAD LD DIR H—21( L2 0iR 17 () H
CLEAR eno Aldcir
u )

UP COUNT [+3v W iour 42|
DOWN COUNT |DIR Dwn p L X2

Figure 2-1 M238 Synchronous Up/Down Counter

15-0573

2.1.2 M159 Arithmetic Logic Unit

The M159 4-bit Arithmetic Logic Unit (ALU) contains a single DEC 74181 integrated circuit. Nine of
these ALU modules are used in the FP15 Floating-Point Processor to perform 36-bit arithmetic and logic
operations, as shown on drawings D-BS-FP15-0-19 through D-BS-FP15-0-27.

This integrated circuit performs 16, 4-bit arithmetic operations when the MODE control (MC) input is
low and 16 logic functions when the MC input is high. The functions are selected by applying

2-1



combinations of function select inputs S0 through S3. For FP15 applications, the function select and

MC inputs are generated by the ALU control logic shown on drawing D-BS-FP15-0-33.

Only two arithmetic operations, A plus B and A minus B minus 1, are selected in the FP15; five logic
functions, A, -A, B, -B, and logical O are performed in the FP15. The combined ALU truth table for

FP15 arithmetic operations and logic functions is listed as follows:

Function Select Inputs
Mode Control Output Function
S3 S2 S1 S0
. *
0 1 0 0 1 A plus B (arithmetic operation)
0 0 1 1 0 A minus B minus 1 (arithmetic operation)
0 0 0 0 0 A (logic function)
1 0 0 0 0 -A (logic function)
1 1 0 1 0 B (logic function)
1 0 1 0 1 -B (logic function)
1 0 0 1 1 Logical 0 (logic function)

In addition, a comparator output, A=B, is provided when the four A inputs are equal to the four B in-
puts if the function A=B=1 is selected. A full-carry look-ahead provides fast, simultaneous carry gen-
eration by the M191 module.

Figure 2-2 shows the ALU configuration for bits 00 through 03 in the FP15 Floating-Point Processor.

2.1.3 M191 Carry Look-Ahead Generator

The M191 Carry Look-Ahead Generator, consisting of two DEC 74182 integrated circuits, is a high-
speed generator capable of anticipating a carry through a group of ALUs. A 13-ns delay occurs for
each look-ahead level. The M191, when used in conjunction with the M159 ALU, provides carry,

generate-carry, and propagate-carry functions for 36-bit words.
Figures 2-3 and 2-4 show how the M191 is used.

Each carry look-ahead circuit is associated with four ALUs (16 bits). Each circuit generates the an-
ticipated carry through its respective group of ALUs, as well as providing a Generate (G) and Propa-
gate (P) input to a third carry look-ahead circuit associated with the last ALU; hence, the term full-

carry look—ahead in three levels (36 bits).

Depending on the selected function of the ALUs, the carry look-ahead circuitry determines whether a

carry will be propagated through the particular ALU, or whether the selected function will generate a

2-2

€2
FP15-0-19
M159
. M2
2 143 D03 F3—2_ App 00
= a2 z F2 ADD O1 H
] at F1 B2 app 02
S 10 FO ADD 03 H
INPUTS FROM
M1701 DATA A 2 T2
SELECTORS —< g3 CN CNOS8
K1 ] g2
H1
g 52 ywope
L1 g0
H2
F2 28
P
K2
s3 s2 s1 g0
sz R |
FUNCTION | g2 n -2t
SELECT N1
INPUTS | SV H w1
SO H

QUTPUTS

CARRY IN

MODE CONTROL

CARRY PROPAGATE
CARRY GENERATE

15-0571

Figure 2-2 M159 Arithmetic Logic Unit

FP24 PO3 L _H2
FP24 GO3 L _J2
FP25 PO2 J1
FP25 GO2 H1

FP26 PO1 L _L1 |

FP26 GOl L K1
FP27 POO L k2
FP27 OO L L2 |
FP33 CNOO L F1_|

FP15-0-28
5|F2_rr2s
M191 g | £2_Fres
E13

EEFEEEEEE]

CN+Z
Cn+Y

ChtX

D1 FP28

El

FP28

PPOO L
GGOO L

D2 FP28 CNO3 H

CNO2 H

CNO1 H

15-0576

Figure 2-3 MI191 Carry Look-Ahead Generator

M159-ALU'S
A
'8 )
N _ _ Cn o _ _ Cn_ _ Cn_ _l N _ _ Cn _ _ N _ _ Cn _ ] ™SN_ _
G P G P G P G P G P G P [ [ G P
Go Po Cn*tX Gy Py CON+Y Gp Pp Cn+Z 63 P Go Po CntX Gy Py Cy#Y G P2 CN+Z 63 P
CN »CN
M191 M191
30 Po Cn+X 5y Py Cyn+Y
"NO 0 °N M191 1 Py Cy

Figure 2-4 36-Bit ALU, Full-Carry Look-~Ahead in Three Levels

15-0577



carry. If a carry is produced, it is directed into the next ALU in line. This sequence is continued for
each of the four ALUs in the section. The carry look-ahead circuitry then "looks" at the G and P sig-
nals of all four ALUs and determines whether a carry should be inserted into the next four ALUs and
into the third level of carry look-ahead. This process is continued for the second section of ALUs
(next 16 bits). Finally, the third level of carry look-chead determines whether a carry should be in-
serted into the final ALU by examining the resulting G and P inputs of the other two look-chead cir-

cuits.

The truth table for the first-stage carry is as follows:

True Carry Insert = L

P00 G0o CNOO CN+X
L L L H
L L H H
H H H L
L H L L

True Carry Insert = Low

P00 G0o CNOO CN+X
L L L H
H L L H
L H L L
H H L L
L L H H
H L H H
L H H H
H H H L

The following are the logic equations for a carry look-ahead stage:

= * 6 106G *xp
No1 = Cnoo * G0t Cg * Py

*P o+ PO*GO *Gy + Gy*G,*C

(9]

(@]
i
al!

NO2 1

—

|

T T e e mm— vt o o—v o —— o

*P) #6,+G, %G, PG "G, %G T

NO03 2 72 172 "1 071 72 070
— * ¥ 4P *C *CC A A R K x
GO0 - P15, + F,T, T, ,5,*5,C,iG, 7, T, T,
PPOO

(@)
1]
*
+
®
*
®

where

—

CNXX = True L
GXX = TrueH
PXX = True H

GGXX = True H
PPXX = TrueH

2.1.4 M248 Right-Shift Parallel Load Register

The M248 Right-Shift Parallel Load Register consists of two 4-bit DEC 7495 Right-Shift Parallel Load
Registers connected to allow right-shifting between 4-bit sections. The registers perform load or right-
shift operations, depending on the logical input to the MC. When a logical 0 is applied to the MC
input, the output of each flip-flop is connected to the succeeding flip-flop and right-shift operation

is performed by clocking at the input designated RS. During this time, the input designated LS is
inhibited. When a logical 1 is applied to the MC input, the flip-flops are decoupled (to prevent
right-shift); the register is loaded with parallel inputs when the input designated LS is clocked. The
register can be configured for left-shift operation by connecting the output of each flip-flop to the
parallel input of the previous flip~flop.

The M248 Right-Shift Parallel Load Register is used in the EPB, FMA, FMB, and FMQ registers in the
FP15 Floating-Point Processor. Each module is capable of handling 8 bits. Figure 2-5 shows a sample

of the application of this module in the FP15 Floating-Point Processor-.

FP15-0-18

M248

EO7
ADD 20 (H)—~V—2’A A%—EPB 02 (1) H

v 1
ADD 21 (H)—Y2]s B[Rl £pg 03 (1) H
DATA INPUTS

ADD 22 (1 —2c clEl—epB 04 (1)n [ OATA OUTPUTS
ADD 23 (H)—2&{p o —ps 05 (1)1

SERIAL INPUT EPB 01 (H)—YYsT

P2

RIGHT SHIFT  EB RS H—E2|Rrs
EPB LOAD EPB LD—2]( 5
MODE CONTROL -EPB MC H—RZ&mc

15-0572

Figure 2-5 M248 Right-Shift Parallel Load Register

2.1.5 M1701 Data Selector

The M1701 Data Selector contains two DEC 74153 Dual 4-Line-to-1-Line Data Selector/Multiplexer

integrated circuits. These integrated circuit modules comprise input multiplexers A and B of the

2-3



36-bit ALU in the FP15 Floating-Point Processor. They are aiso used as input muitipiexers fo the shift
counter, MPO, FMA, and FMQ registers. A complete block schematic of the input multiplexers is
shown on drawings D-BS-FP15-0-19 through D-BS-FP15-0-27.

For each section of each IC, one of four data inputs is selected by combinations of address input sig-
nals A and B. The selected data input is strobed to the output by a low strobe signal. Refer to the

following fruth table for a typical input multiplexer A section.

Address Inputs Data Inputs
Strobe Output
A B 0 1 2 3
X X X X 3 X 1 0
0 0 0 X x X 0 0
0 0 1 X X X 0 1
1 0 X 0 X x 0 0
1 0 x 1 x X 0 1
0 1 X X 0 X 0 0
0 1 x X 1 X 0 1
1 1 x X X 0 0 0
1 1 X X X 1 0 1
x indicates irrelevancy.

Address input signals A and B are common to both sections of each IC. Figure 2-6 is a typical appli-

cation of the M1701 Data Selector in the FP15 Floating-Point Processor.

FP15-0-19 THRU FPi15-0-27

W2 M1701
ADD 03 H—210 203
J2 R
DATA INPUTS{FMQ 04 (1} H 1 F2
FMA 03 (1) H 2o —
S
Kids
COMMON mxe1—1{s L QUTPUTS
SELECT iy
INPUTS MX A1 A
app 02 H —£2{0
D1
DATA INPUTS{ FMQ 03 (1) H—F= 1 D2
FMA 02 (1) H 2 j
—Fils
s

15-0569

Figure 2-6 MI1701 Data Selector

24

2.1.6 MI1713 16-To-1 Data Selector
The M1713 16~To-1 Data Selector contains a single DEC 74150 integrated circuit. It is used in the
output multiplexer section of the FP15 Floating-Point Processor, where up to 16 major register outputs

are selected for transfer to the common MPO bus. The block schematic of the output multipiexer is
shown on drawing D-BS-FP15-0-03.

Data inputs are selected by combinations of data select signals MXA, MXB, MXC, and MXD, which
are generated by the multiplexer control logic shown on drawing D-BS-FP15-0-05. The strobe inputs
are wired to ground so that each IC is always enabled. A typical truth table for the 16-to-1 Data Se-

lector follows:

Data Select Inputs Data Input*
MXD MXC MXB MXA Selected
0 0 0 0 DIR12
0 0 0 1 JEAT2
0 0 1 0 ADD30
0 0 1 1 ADD12
0 1 0 0 FMQ30
0 i 0 1 FMQ12
0 1 1 0 FMB30
0 1 1 1 FMB12
1 0 0 0 EPB12
1 0 0 1 FMA30
1 0 1 0 FMAT2
1 0 1 1 EPA12
1 1 0 0 IR12
1 1 0 1 BMB30
1 1 1 0 BMB12
1 1 1 1 MPT12

* Signal mnemonics vary as shown on drawing D-BS-FP15-0-03.




Figure 2-7 is a typical example of the manner in which the M1713 Data Selector is utilized.

FP15-0-03

D12
BUSY (1) H —52 M1713

A SIGN (1) H
ADD 18 H

A SIGN (1) H
FMQ 18 (1) H
B SIGN (1) H
FMB 18 (1) H
B SIGN (1) H
EPB 00 (1) H
FMA 18 (1) H
A SIGN (1) H
EPA 00 (1) H
sC12 (1) H
BMB 18 (1) H
BMB 00 (1) H
|MPI 00 () H
MXA L

SELECT LINES MXB L
TO SELECT ONE
OF 16 INPUTS MXC L

MXD L

|

-
N

ES

2
=

o
-

i
-

|

w
-

-

INPUTS <

-
-

X

b2 MPO 00 L OUTPUT

[N

=
X

L2
K2
E2
F2
H2

[N
n

Zz
n

|

n
N

STROBE

15-0570

Figure 2-7 M1713 16-To-1 Data Selector






CHAPTER 3
FP15/PDP-15 INTERFACE

3.1 INTRODUCTION

This chapter describes the interface between the CPU, FP15, and memory. This interface is described
by discussing the major events that occur during fHe FETCH, OPAND, WRITE, and Interrupt (INT) cy-
cles, followed by a flow diagram description of each cycle. The EXP, FUN, and NOR cycles, inter-
nal to the FP15, are described in Chapter 4. Figure‘3-l shows the various control signals associated

with the interface.

b 4
MEMORY
3 3
x
2 -
- [
» it I =
-4 o x| < Q
a w gz< N
o 14 FHE B~ a.
= Ll g w
!Zx_o,,z
o i
Q| o fi
pF R
le] iy -4
wxlaals
| )
HEHEEREE
S AAES| ==
FP15
CPU FLOATING POINT
PROCESSOR

t DIS CP ACT ]
DIS I/0 ACT
DIS CP RD RST

15-0567

Figure 3-1 Major Signal Interface Diagram

3.2 FETCH CYCLE INTERFACE

Prior to the FETCH cycle, the floating-point instruction from memory is strobed into the FP15 BMB.
During the FETCH cycle, the operand address is strobed info the FP15 Address Register (AR) (see Fig-
ure 3-2). If indirection is specified, a second FETCH cycle is performed to obtain the effective ad-

dress.

Every instruction is monitored by both the CPU and the FP15, which are in parallel on the memory bus.
Bits 00 through 05 of the instruction are examined for an octal code of 71. The 71 is recognized by
the CPU as a NOP and by the FP15 as a floating~point instruction. The CPU strobes the instruction
into the memory input (MI) register and then into the instruction register (IR), while the FP15 strobes

the instruction into the BMB register.

The CPU executes the 7'|XXXX8 (NOP) and makes a second memory reference to the next location, as
if it were fetching the next instruction. This memory request (M REQ) actually fetches the operand
address that is the second half of the two-word FP15 instruction. The normal interface signals between
the CPU and memory take place; i.e., the CPU specifies an address, READ cycle, and issues M REQ.
After M REQ is placed on the memory bus, the contents of fhe BMB in the FP15 are strobed into the IR;
the DIS CP ACT and DIS CP RD RST signals an;e generated to inhibit the CPU from making further mem-
ory requests. Address Acknowledge (ADDR ACK) is returned from memory to clear M REQ in the CPU.
The memory then places the operand address on the memory data line (MDL) and issues RD RST. The
operand address is strobed into the BMB in the FP15,

The CPU does not see the operand address because DIS CP RD RST prevents RD RST from loading the MI
and halts the CPU in Time State 3, Phase 3 (TSO3*PHO3).

3-1



SUBCYCLE

CENTRAL PROCESSCR

FLOATING POINT UNIT

MEMORY

REMARKS

M REQ, ADDR, RD

 ADDR ACK

0 -M REQe

REMOVE ADDR FROM MDL
SET FETCH

» 0 - ADDR ACK
INSTR ON MDL AND
RD RST ISSUED

CPU REQUESTS MEM. CYCLE
MEM. ACKNOWLEDGES ADDRESS

CPU REMOVES ADDR FROM MDL
MEM PLACES INSTR. ON MDL

0 -~ FP MRLS ACK

= 7IXXXXg = MI 7IXXXXg ~ BMB 71XXXXg RECOGNIZED AS
5 Z MRLS R FLOATING POINT INSTR.
& g | MRLS ACK AND IS STROBED IN BMB OF
OO 0 - MRLS 2= ] FPU AND MI OF CPU. CPU
é § *0 - MRLS ACK COMPLETES REST OF MEM CYCLE.
5 Z 7IXXXXg =~ IR 71XXXXg STROBED INTO IR
T (EXECUTED AS NOP) IN CPU
M REQ | DIS CP ACT, DIS RD RST M REQ IS MADE FOR LOCATION
[ ADDR ACK CONTAINING OPERAND ADDR.
v 0 ~M REQ 2= [ BMB - IR CPU RD RST IS DISABLED, WHICH
w »0 - ADDR ACK INHIBITS RD RST FROM RESTARTING
(o) SR
2 MDL ~ BMBe————] ?Aﬁkgl:g :SDTDR ON CPU CLOCK. ;
a FP MRDA 1SSUED OPERAND ADDR STROBED INTO
% \ BMB. 71XXXXg STROBED INTO
o IR IN FPU.
o 4————————T‘MR"S ACK REST OF MEM CYCLE COMPLETED.
o) 0 - FP MRDA >0 ~ MRLS ACK
BMB - AR OPERAND ADDR
STROBED INTO AR
REMOVE DIS CP RD RST CPU BECOMES ACTIVE
o FPU ISSUES FP RD RST FP RD RST LOOKS UKE
2 "/——WITH 710000g ON MDL RD RST TO CPU. CPU
A 710000g - MI STROBES 710000g INTO MI.
>z' MRLS P MRLS ACK THE EXECUTION OF THE 710000
2 T INSTRUCTION WAITING FOR CPU
a 0- MRLS\ ACTIVE TO SET (WAITING TO ISSUE

M REQ)

Figure 3-2 Memory Interface--FETCH Cycle




The FP15 now issues MRDA (Memory Release and Data Acknowledge) which releases the memory for
additional requests and acknowledges receipt of the data (operanda ddress). The memory cycle is com-
pleted when the memory issues MRLS ACK, clears MRDA in the FP15 which, in tum, clears MRLS ACK
(Memory Release Acknowledge). The operand address, which was loaded into the BMB, is now strobed
into the FP15 AR. Since the CPU did not receive the operand address, it is still waiting for data from
memory. The FP15 places a 710000g on the MDL, clears DIS RD RST, and sends RD RST to the CPU.
The CPU loads the 710000g into the MI and generates MRLS. The FP15 generates MRLS ACK to allow
the CPU to complete its cycle.

The CPU executes the 710000g but is prevented from making a M REQ because of DIS CP ACT. The
CPU waits in TS03*PHO2 until completion of the FP15 instruction. The memory interface is now free

for 1/O memory requests.

3.3 FETCH (INDIRECT) CYCLE INTERFACE

If bit 00 of the second FP15 word (address) is a 1, specifying indirection, a second FETCH (indirect) .
cycle is performed. This word, which is in the FP15 AR, and is the address of the effective address,
is placed on the MDL (see Figure 3-3). The FP15 requests a memory cycle and the contents of the op-
erand address (effective address) are accessed from memory, placed on the MDL, and RD RST issued.
The address is then strobed into the BMB register. The FP15 issues FP MRDA to memory, which re-
leases memory for further requests. The effective address, which was fransféned into the BMB, is now

strobed into the AR and represents the address of the first operand.

If bit 00 of the second FP15 word (address) is a 0, no indirection is specified and this cycle is omitted.

SUB- | CENTRAL

CYCLE|PROCESSOR FLOATING-POINT UNIT MEMORY REMARKS
AR - MDL: THIS 1S THE INDIRECT CYCLE
M REQ, ADDR, MRD, [ADDR ACK AND THE INDIRECT ADDRESS

“ 0 ~ M REQa— IS STROBED INTO AR.
i REMOVE ADDR FROM_MDL
& 0+ ADDRACK  |OPERAND ADDR PLACED
2 ADDR ON MDL AND|ON MDL AT RD RST.
W / RDRSTISSUED  |REST OF MEMORY
= MDL - BMB CYCLE COMPLETED
] FP MRDA '
& MRLS ACK

0~ FP MRD

0~ MRLS ACK
BMB ~ AR

If bit 00 of second word is 0 (Direct Addressing) omit indirect cycle.

Figure 3-3 Memory Interface--FETCH Cycle (Indirect)

3.4 FETCH CYCLE DESCRIPTION

The FP15 detects a floating~point instruction by monitoring MDL bits 00 through 05 for a 71XXXX8
while FP SET FETCH is true (see drawings D-FD-FP15-0-45 through D-FD-FP15-0-47), FP SET FETCH
indicates that the CPU is fetching an instruction. When the 71XXXX 8 is detected, the contents of the
MDLs are strobed into the FP15 BMB bits 18 through 35 and the floating-point operation is started.

The PI and API facilities are disabled at this point, to prevent an interrupt during the floating-point

instruction.

The CPU executes the 71XXXX8 as a NOP and makes a memory request for the next instruction that is
actually the operand address associated with the floating-point instruction. The FP15 sets BUSY,

DIS CP ACT, DIS RD RST, and loads the contents of BMB bits 18 through 35, which contain the
floating-point instruction, into its IR. BUSY starts the floating-point phases and time states and

DIS RD RST prevents the CPU from seeing the RD RST of the memory request for the operand address.
The CPU waits in TS03*PHO3 for RD RST. When RD RST is retumed by memory, the FP15 strobes the
contents of the MDL into BMB bits 18 through 35 and issues MRDA to memory. The memory responds
by issuing MRLS ACK which clears MRDA. The FP15 now completes the CPU memory request by clear-
ing DIS RD RST, enabling 7]00008 (NOP) onto the MDL, and issuing FP RD RST, which strobes the
NOP into the CPU's MI. The CPU responds with MRLS and the FP15 returns MRLS ACK. The CPU be-
gins to execute the NOP but cannot issue a M REQ because DIS CP ACT holds the CPU in TS03*PH02,

thus allowing I/O memory requests to be made.

The FP15 loads BMB bits 18 through 35 (operand address) into the AR and determines if an 1/0 memory
request is pending. If one is pending, the FP15 waits; if not, the FP15 determines if indirection has
been requested. When indirection has not been requested, the FP15 enters the OPAND cycle, if an
operand FETCH is requested, or the EXP cycle, if no operand FETCH is requested.

If indirection has been requested, the FP15 places the contents of the AR onto the MDL and issues
M REQ. When RD RST is received from the memory, the contents of the MDL are strobed into BMB
bits 18 through 35 and then loaded into the AR. The FP15 then enters OPAND or EXP, as described
above.

Two other operations are also performed in the FETCH cycle. If the instruction is ADD, SUBTRACT, or
FIX, the FMQ is cleared during TSO3 of the FETCH cycle. If the instruction is a Reverse Divide, the
FMA is loaded into the FMQ); if the instruction is a Reverse Subtract, the FMA is loaded into the FMB
during TS02.

33



8 7 | 6 5 | 4 3 | LT Swgoeqad)2 | |

This drawing and speciications. herein, are the proo
erty of Digital Equipment Corporation and shall not be
reproduced or copied or used In whole Of I PAIT #3

the basis for the manufacture or sale of items without
wntten parmission. START

- [Fré9 T2 X p2_| @
| .

vES [Fre? T2 % P3|
[Frre  &—FrP mrps]
FP®9 T3 % P NoTE
| — ! [FP8 @—> Dis_ro &7
[FPee 73 x P,y
—————FP// RT cpP  E—
FPIg 1
B SET FETCH (Fras o ]
NO
FPI® FOUND Fr/a /[
[ 1 N rrP/0 / . STRLL ] —
SS2 2 FP7O
FPE8 D RD DIs PI X AP YeSs 7/ , | ]
reMa 16 =35 ’ Free T RsT | I 1 [Fréa T3 % p2 FPII Mbe £ | LTo MoL'S Fe RRRST

]
[FP¢G FFP RD RST DLY]|

[FPig sTALL sTB |

_________ . ArFrip FP mALS Ack]
P77 0I5 I _ 1
Z/0 _ACT | T |
| LD M1
@ —> cPacT I ————HFrig o—>rFP MRLsAY
| MRLS |
I l | [Frda 1= Ts « ]
YES | | I
[FPi7_+ — BuUsY H y—lFrP/o sSe7FP FPig i—=DIS RO RST| | r l [FPrs __;z—,-cp ]
l
| [¢ == mrLs ] | — T o AR ]
FPP9 STHRT' FP/I FPIé |
PHRSE K TIME, 574714 Lock I B _lfilicini | : .
lFPoew AROR ACA ] NOTE : |
PDP 15
[Frea i % Po | | [FPes T3 % p3 | —

[FP/3 como z~ ]

[FPii cHanGE

C?—{FP/Z 73 * P3

R —e EXP
@ —» FETCH

|
|
|
[FPee 77/ » ~r ]
! ] [FPrde RD  RsT | | —FPrl i—- LIMIT |
|
|
|
1

[FPe9 7/ % Pz

o 1 .
IFP & RD RST P I FPP9 77/ ¥ PO l.___.
]F‘P// '—o FETCH | e RD |[

FPEI TI % | ‘I'
AU ————— 7 TN
NOTE 1FPig FP cvelie |

FP2q l ;—-P¢3 LD [Fpmﬁ i —» FP J

T2 * P@ BMB3 /8 —35 MRDA

Prpu CHANGE |

TFPre 0 —0zs 270 Acs|

FPis | —wOPAND
l—————‘{rpw 77 x P2 ] b FETCH

——————{Fr3g_ LD sc__]

= [oFbFpis 0245 [ |1

FF39 I
T2 K P f %
NOTE |t SEE FETCH ]
PAGE 3 FIRST USED ON OPTION/MODEL_| gy, | DESCRIPTION I PART NO. l TEM
PARTS LIST
. UNLESS OTHERWISE SPECIFIED | DR 7 DATE EQUIPMENT

= DIMENSION IN INCHES. %M}W Yo/ mnanan CORPORATION

z TOLERANCES CHK'D, o DATE raTNARD MABSAGHURETTE

- ) DECIMALS ANGLES —Aﬁ——ﬂum/a T

R o %, |2y

S RO PRJ DATE, T j eV al i '
gz X =a jﬂﬁu ek FETCH CyCLE |
s s REMOVE BURRS AND BREAK SHARP II DATE
E E CORNERS SURFACE QUALITY (LA 7 l//]/

X
“|5 MATERIAL NEXT HIGHER ASSY.

[S1ZEJCODE] NUMBER REV

L Fri5-0-45

x FINISH SCALE DIFCIF

S SHEET OF ois T, T T T T T 1 | T
DEC *ORM NO
e 8 7 6 5 1 4 3 2 | 1

3-4




S ARIEE e |
8 7 j 6 5 l 4 | J A3y ] ¥IGWNN 9 d:‘:aas 3215] 2 ]
This drawing and specifications, herein, are the Drop- @
erty of Digitel Equipment Corporation and shall not be
T e for the manifachoe o ek of eama winout
writen parmsGon. W+ FP MREQ
+
[Froe 72 * P |— NO
o3 T‘J ¥ Pz D
[F E i YES
I PP3 AR —» MDL |
[FPes =2 % P> ] &
i [FPid FP mrEQ DLY|
[Fres T2 x P | T
1 X
FPP6 ADR ACK
[FPe#a T2 x PI T |
' |FPig @+ FP mREQ]
{Fres 73 * P2 ]
{FP¢c RD RST |
[Frrg rD RsT P|
[FPid FP cycLE]
[Fr8 Lo BMB 19-35]
[FPig 1+FP mrDa] c
[FPoe mrRLS Ack |
[ [FP15 LD AR ]
Lqusq Ti * Pg i =|'FP”
" - 7 ¢ —» FETCH g
NO 0]
ET
F
HeY
e [ = opPanD ER
YES 0
. pold
l[Ferr _cHangE ] "
Ea
[FPii T — ExXP | s L)
fa
B
[ FIRST USED ON GPTIONAODEL | arv. | DESCRIPTION [ eantno. |0
PARTS LIST
UNLESS OTHERWISE SPECIFIED | DBY. | DATE T
2 DIMENSION IN INCHES. ay;/lzjaff‘/ Y20/ E t ngg:l;gﬁm‘%gN
z TOLERANCES HKB T MAvNARD MEZSACHUBETTE
HE DECIMALS ANGLES EZN'G'ﬂ 242, iy A
o 10°30 ; . i o
x - "PArg |20 |FETCH CYCLE
»|o REMOVE BURRS AND BREAK SHARP -
1 E CORNERS SURFACE QUALITY ” ggg?”\}y',,q. gD‘/l;l/. £ F LO \N 2
g
[ MATERIAL NEXT HIGHER ASSY.
SIZE|COD! NUMBER REV.
o — PlA-F— 48
£ FINISH SCALE DFDFPIS-£Z- 48
SHEET OF ost. ] TT T T T T 1 |
GEC FORM MO T
DRD 102-B 8 | 7 6 5 T 4 2 ]

3-5



. . A 5 | 4 | 3 | [T Doz cedidy)2 | 1

HIBWNN 3002)]

This Grawing and spciliCatons, harain, ase the prog.
erty of Digrtal Equipment Corporation and shall not be
ceproduced or copied or used 1n whole Of in part as
the basis for the manufacture or sake of iterms without
written permissiar.

ONLY FOR
REVERSE suB

D oR REijSE DIV D
[FPa: REV ]

[zre9 Tse01 FP il FETCH | ONLY FoR
FLOAT ADD

+5uB + FIX

FP35 EPA MOVE |

] —————{FP33 Exp sEL |

[FPET  PH 83 L\ a
~ FA’L:"BE’, AUR - BUA [Fre9 7s 3 ] ) fFeii FETCH ]
s ALBI

[Fras ePa amove A

[£P5 —» A0D 18—35 ]

——1__..|FP32 P80 |
C l (fp————FPs7 rHo3 ] c
NO ADD 78 — 35
s @2
=2 ErFa —I ’ FP33 FPR35 /joo +
se 20e “82a |
YES s2 l
S3

[FP35 aA movE | AMODE [FP2a mMLs |

FP33 ® —> ADDPE —35
FPo7 PH p3 | % ,:ooasrb —35 l l —> PMQ —I

[FP35 #a1n rove e

FP32 ASIGN —» C )‘——1FP3| Dorv ]
B ZERO

lFPaa ﬁlERO—->| F—'Pae CDIV INT J
P

CRCE )

1t

f— 1 rrIlX

NCTE, FMA IS ON BSIGN
B ADD ¢¢ =25
[FP32 " BLS | [FP3z__mis ]
[poD @6 —35 wFmB| [AODBE-35wrFMa |
B
[ F15ST USED ON OPTION/MODEL m'v.] DESCRIPTION I PART NO. l IL%M—
PARTS LIST
UNLESS OTHERWISE SPECIFIED | DRN, - DATE, EQUIPMENT
> DIMENSION IN INCHES. e "‘ZT 2 CORPORATION
2 TOLERANCES CHKD, | DATE ATMARD MABSACHURETTE
A DECIMALS ANGLES ﬁgé”‘vs i;;/l TITE A
foaes 20’30’ - i
wlo RO PRQJ. ENG;, DATE, |~ — T ~
L x -2 PR e I IFETCH CYCLE
Hi REMOVE BURRS AND BREAK SHARP o DATE -
b E CORNERS SURFACE QUALITY .~ TN T el S/////W = LCW 3
&
o MATERIAL NEXT HIGHER ASSY.
SiZE]cond] NUMBER TEV
i colepis-g-a7
x FINISH 'SCALE DIFC -
O SHEET OF ost. | T T T T |
DEC FORM NO
o 8 ‘ 7 6 5 i 4 3 2 1



3.5 OPAND CYCLE INTERFACE

After the FETCH cycle, the FP15 enters the OPAND cycle. If an instruction is specified in which
operands are not fetched from memory (bit 10 of the floating-point instruction word on a 1), the
OPAND cycle is omitted completely and no memory reference is made. The current contents of the

FMA are used as the operand.

For memory reference instructions, the operand or operands from memory are transferred to the FP15
during the OPAND cycle. The number of operands is dependent on the format specified and is defined
in the note associated with the OPAND cycle in Figure 3-4. This description assumes double-
precision floating-point format in which the maximum number of operands (three) is transferred from
memory. The first operand transferred is the exponent. The FP15 requests a memory cycle (M REQ)
and transfers the effective address in the AR to memory via the MDL. Memory then places the first
operand (the contents of the address specified) on the MDL and issues RD RST. The FP15 strobes the

operand into the BMB and releases memory.

The next operand (high-~order mantissa) to be obtained is in the next sequential location (exponent ad-
dress plus one). As a result, the address in the AR is incremented so that the next memory access will

transfer the second operand. The memory cycle is exactly like that described for the exponent operand.

The third operand (low~-order mantissa) is in the next sequeﬁﬁal location (high-order mantissa plus
one). The address in the AR is incremented a second time to obtain the third operand address. The

memory cycle is like that described for the exponent operand.

If bit 10 of first word (7'|XXXXB) is set, the OPAND cycle is omitted completely. IFf the bit is 00, the OPAND cycle is performed. However,
certain operations in the OPAND cycle are excluded based on the following format:

Double-Precision Floating Point - All Operations Performed
Single-Precision Floating Point - Omit Low-Order Mantissa

Double-Precision Infeger

Single-Precision Integer

- Omit Exponent

- Omit Exponent and Low-Order Mantissa

SUBCYCLE | CENTRAL PROCESSOR FLOATING~POINT UNIT MEMORY REMARK S
AR - MDL FPU REQUESTS MEMORY CYCLE
M REQ, MRD—— | WITH CONTENTS OF AR ON MDL,
0~ M REQ@——————T*ADDR ACK
5 REMOVE ADDRESS FPU REMOVES ADDRESS FROM
\\ -
£ FROM MDL o 0~ ADDR ACK MDL. FPU WAITS FOR EXPONENT
o L EXPONENT ON MDL EXPONENT TRANSFERRED TO
% MDL - BMB4——"__ | AND RD RST FPU AND STROBED INTO
FPMRDA—— | ISSUED BMB. MEMORY
-
0 - FP MRDA<9—————T=MRLS ACK CYCLE COMPLETED
BMB -= EPA 120 - MRLS ACK
AR +1 AR ADDR REGISTER INCREMENTED
AR ~ MDL
M REQ, MRD, & FP REQUESTS MEMORY
b ‘ \:_‘ADDR ACK CYCLE WITH INCREMENTED
a 0~ MREQ@a——"" | OPERAND ADDRESS
g REMOVE ADDR
< FROM MDL 0~ ADDR ACK
z HIGH ORDER MAN- HIGH-ORDER MANTISSA
& " TISSA ON MDL & STROBED INTO FPU MEMORY
& / RD RST ISSUED BUFFER
T MDL ~ BMB
O \
= FP MRDA - = MRLS ACK MEMORY
0~ FPMRDAS—— | CYCLE COMPLETED
AR+ R 0 - MRLS ACK
AR ~ MDL FP REQUESTS MEMORY
M REQ, MRD &—n | _ CYCLE WITH TWICE--
0 ~ M REQ «———————— T ADDR ACK INCREMENTED OPERAND
REMOVE ADDR FROM MDL~y 0 _ 4o0 ) ADDRESS
g LOW ORDER MANTISSA | LOW-ORDER MANTISSA
Z |_ON MDL & RD RST STROBED INTO FP
z MDL - BMBa——"" | ISSUED MEMORY BUFFER
< FP MRDA——o |
= ™MRLS ACK MEMORY CYCLE
o N |
g 0= FPMRDAS—— | ok COMPLETED
5 BMB ~ FMA 00-35 CONTENTS OF BMB 00-35
3 STROBED INTO FMA
6] AR+ 1~ AR
-l

Figure 3-4 Memory Interface--OPAND Cycle

37




3.6 OPAND CYCLE DESCRIPTION
During the OPAND cycle, the FMB and/or EPB is loaded from memory if the instruction specified is an
arithmetic instruction (Add, Subtract, Multiply, or Divide). For other types of instructions (including

Reverse Subtract and Reverse Divide), the FMA and/or EPA is loaded. For integer format, the EPA is

not loaded.

Drawings D-FD-FP15-0-48 through D-FD-FP15-0-50 are flow diagrams of the OPAND cycle. The cy-
cle is initiated when OPAND goes to 1. At TS02*PHO]1 of this cycle, an FP M REQ is issued.

Since a WRITE operation is inhibited (-ALL WRITE), a memory read will occur. The address of the op~
erand, located in the AR, is gated onto the MDL via the output multiplexer (MPO). FP M REQ, after
a delay to allow the MDL to settle, produces M REQ to initiate the memory cycle.

When memory receives the address, it issues ADDR ACK, which clears FP M REQ. The data (operand)
and RD RST are then placed on the MDL by the memory. Before strobing the data into its memory buf-
fer, the FP15 waits for FP CYCLE. This signal is delayed by RD RST DLY to allow time for the data to
settle before it is strobed. When the data is strobed into the buffer, the FP15 issues FP MRDA and the
memory responds with MRLS ACK, which clears FP MRDA to complete the memory cycle.

The data format must now be determined. For each format, the shift counter is loaded with one less
than the number of operands to be transferred to the FP15, so that the shift counter will detect a borrow
rather than a 0 condition. For example, in double—precision integer format the shift counter is loaded
with 1. Transferring the first word to memory decrements the counter to 0; transferring the second word

decrements the counter to produce a borrow indicating completion of the transfers.

3.6.1 Double-Precision Floating-Point Format

If double-precision, floating-point format is specified (IR 11 =1, IR 12 = 1), the shift counter is
loaded, during the FETCH cycle, with a count of 2 (SC 16 =1, SC 17 =0). A signal designated
-STROBE loads the low-order bits (BMB bits 18-35) of the memory buffer with the operand. The A side
of the ALU is selected. If the instruction is a Fix, Load, Float, Reverse Subtract, or Reverse Divide,
an MA SEL signal is generated that causes the EPA fo be loaded. If an arithmetic instruction is speci-

fied (Add, Subtract, Multiply, or Divide) MA SEL is not generated and the EPB is loaded.

The shift counter is decremented and, if no borrow is generated, the second memory reference of the
OPAND cycle is initiated.

The second memory reference is similar to the first. The address in the AR has been incremented to ac-
cess the next sequential memory location (high-order mantissa). The shift counter is now at a count of
1(sC16=0, SC17=1). The STROBE signal ioads the high-order bits of the memory buffer (BMB bits
00-17) with the second operand.

3-8

The shift counter is decremented a second fime to a count of 0. The third memory reference is simiiar
to the second except that the address is again incremented to fetch the third operand (low-order man-
tissa). The -STROBE signal loads the low-order mantissa into the low-order bits of the BMB. If the
instruction is an arithmetic type, the B SIGN/FMB is loaded. If the instruction is a Fix, Load, Float,
Reverse Subtract, or Reverse Divide, the A SIGN/FMA is loaded. The A multiplexer is again selected
after the fetch of the third operand so that the A SIGN/FMA or B SIGN /FMB can be loaded as a
36-bit word from the 36-bit memory buffer.

The shift counter is decremented and now produces a borrow which indicates that all operands have

been received. At this point, the OPAND cycle is cleared and the EXP cycle is enabled.

3.6.2 Single-Precision Floating-Point Format

In single-precision floating-point format (IR 11 =0, IR 12= 1), the shift counter is loaded in the
FETCH cycle with a count of 1 (SC 16 =0, SC 17 = 1). A memory reference is made just as for
double—precision floating point and the exponent operand is strobed into the low-order bits of the BMB,

. as aresult of -STROBE. The B side of the ALU is selected for the first word of single-precision floating-

point format. The first word consists of nine bits of exponent and nine bits of mantissa. The nine bits
of exponent are loaded in the EPA or EPB. The value of bit 09 (exponent sign) is extended through

bit 00. The nine bits of the mantissa remain stored in bits 18 through 26 of the BMB, since the

A SIGN/FMA or B SIGN /FMB are loaded 36 bits at a time. The exponent bits in the BMB are cleared
(bits 27 through 35).

At the end of the memory reference, the shift counter is decremented to 0. Since no borrow is de-
tected, a second memory reference is initiated to fetch the 18 bits of high-order mantissa from memory.
The address in the FP15 AR is incremented to access the next sequential memory location. The 18 bits
of high-order mantissa are loaded into the high-order bits of the BMB by STROBE. The A side of the
ALU is selected and the A SIGN/FMA or B SIGN/FMB is loaded with the 27 bits of mantissa.

At the end of the cycle, the shift counter is decremented and produces a borrow indicating that the op-

eration is complete. The OPAND cycle is cleared and the EXP cycle is enabled.

3.6.3 Extended Integer Format

In extended integer format (IR 11 - 1, IR 12 = 0) the shift counter is loaded with a count of 1
(SC 16 =0, SC 17 = 1) during the FETCH cycie. The normal memory reference is made, and STROBE

causes the 18 bits from memory to be loaded into the high-order bits of the BMB.



8 6 | 5 ! 4 | 3 | [T &8 5a9ad9)2 | |
This dfawing and specifications, hecew, are the prop- - B e ——— -
ety of Digitai Equipment Corporation and shall not be
reproduced or copred Or used in whole or in part as
the basis for the manufacture or sale of items without
i parmenon.
[FPri 0PAND =1
D
ER/ =
e, « [FPid Dis 1/0 ACT {opF TRII- LIRI2=1]
—E XC
[FP#7 —sTROBE |
Frrz ALl WRITE ] O {rere | rFP MREQ]
et
IFP¢8 CLK BMB I
|[FPg3 AR » AMPO | 8 —35
[FP#2 MPo —MbL] [P35 —eMB27-355£)]
[FF MREQ DLY ] (2 I
R !
\ ~ [FP82 mrEQ | C
| - MEM BUS sToP 775
| ~
I
| —TFP/8_d» FP MREQ
| |
| |
| FP35 LD £PB
1 | | | [Fr3ss” 2o £rPa ] P
| 1 [FP32 P8 L] [FrP32 gPr o ] N
[ |~ [1 o 2
| ® B
| o | [FPde ro RST DLY] ®
] : N
I [FPi¢_RD RST P | EIO)
! YES '| F
MEM BUS 0
I | a
— [
i
FPIG DIS CP ACT #

[ rev

REVISIONS
CHANGE NO.

—-RT CP #

— BLL WRITE

[FPie <, cyece ]

FP4z

—TRANSFER B

FPI@ t —
FP MRDA

FIRST USED ON OPTION/MODEL | qrv. ] DESCRIPTION ] PART NO. l IL%M
PARTS LIST
UNLESS OTHERWISE SPECIFIED | DEN. DAT!
DIMENSION IN INCHES. T i) Lases ‘///ﬁ/EW t gg;’;:gﬁ%g;
TOLERANCES CHKD. DATE MATNARD MASBACHUSETTE
DECIMALS ANGLES . SM 747478 e
T = ENG. [ R DATE A
Joisgipes £0° 30" Xor Lsiyy
s PO Dew |0
REMOVE BURRS AND BREAK SHARP v
) D. . ~
CORNERS SURFACE QUALITY " AM/ v/ O PA ’\I D () Y CL E !

MATERIA.L NEXT HIGHER ASSY.
1 SiZE{CODH NUMBER REM
oy P :
- FINISH SCALE DIFCIFFI5-g-48
5T romw SHEET OF ost | T U T T T T 1
s 8 6 1 4 3 2 | 1



3 | [T 6v.8-599ds]2 |

8 H 3002} 32iS]
This drawmg and specifications, harein, are the prop-
ety of Digital Equipment Corporation and shall not be
rwn:«mmmwummm&nrmw«n
the basis for the manufacture or sale of items without
gty
=‘]
P . T 2%1‘; SO WSCi15=-¢ % sci7=¢| [FPo7 — s7Fo8E | D
=
[FP42 _S70P Ci/
[FPre FP Cycee
FPB8 CLHK
BrB /38— 35
FP35 — BAMMB
— ] 27— 35 SEC S
[sPF zri1=@ TRI2=1]
FP35 ClA
BrE 27— 35
C C
[FPé7 —sTRoBE | (::}————
[FP92 —sToP cLK FPo7 _S7TROBE |
FPid FP CYCLE Pgr SO Cin [FP35 (0 m&P| [FP35 ¢co M7 ~ |
[eres cik_ems 13-29 P10 F7 CYelE 7E3Z BB 00 FF3Z BME 00
FP35 —» 5 516V J —» A SIGN J
ET BMB ¢¢@ — 17 NoO FPRP@7 CLA
BME Qo — /7
—> FP35 _ BMB FP35_ CLR [AP33 8¢5 | [FP33 m¢s ] €
27 —35 SEL BMB @8-17
) N
ZRI1 =0 z
é ZR/S= 7 1
[FP33 Aus ¢ | NO
1 [e}]
FP33 sT
So = ¢, YES C | FPST — 8ME o
62; 7 FP3E& BMB {7—35 S&¢ £
25 = & ¢p — 35 SEL 0
B MODE = A o ] a
[T
FP33 AUB Ey
[FP 33 Se&lec7 8 vES S g
T FP33 @
[FP35s o EP&_| [FP2s co &£ra | s = L
6 St = v
52 = L B
[FPaz £P2 Lo | [FP22 ErPA LD | Mone =
— e e [FP33 SeELecT A] —
N — —
FIRST USED ON OPTIONMGDEL | qry. l DESCRIPTION l PART NO. TITEM
pemmere————— . | _NOC.
PARTS LIST
E SP DRN. . DATE
- e E R AN [T ]|
z| TOLERANCES CHKD. DATE MAYNARD MASBACHUBETTS
Al DECIMALS ANGLES JEﬁG "{’"‘"-’ AT A
i XX '_:;'5 +0° %0 ij ?L—) K77 N
ole X = %ﬁ;ﬁ;@ %,OPAND CYCLE
QL REMOVE BURRS AND BREAK SHARP . DATI
"E’ ‘§~ CORNERS SURFACE QUALITY /" Y hE L 57/4/77/ FLO \/V 2
G MATERIAL NEXT HIGHER ASSY.
!‘ 1ZHCOD! NUMBER REV.
: — e DIF DIFFI5-2-49
) SHEET OF fosT. | T T T T T T 1
DEC FORM NO N
s 8 | | 6 , 5 1 . 3 2 | 1

3-10



. 6 4 | [T 05,059 s)2 | 1
A3y H38nNN 3002
Tous arawing and specifications. herein, are the prop- ———
erty o* Drgtai Equipment Carporstion and shall not be
reproduced or copied Or Used m whole OF In Dart as
e Dasis for the marufacture cr sale of tems without
D
FPG2 MRLS
FP@q —
T3 YES
3
No
[FPi2 oPAND DWN P|
+/—» AR
FPIg ¢ —» [FP3o—1— sc ]
FP MRDA
C

FPII @ —P OPAND
! —> EXP

o [T

= 1
He)
2
0
[a
L
=
[@&
2
2o
B
—
FIRST USED ON OPTION/MODEL QTYAI DESCRIPTION J PART NO. I'R%T
PARTS LIST
. e [ Plodare [95 ESUIEMENT
el TOLERANCES cul(/’g. DAT t ESS:D Sf.?l'.?:
DECIMALS ANGLES | L iotlns WA b
XXX = 005 +0° 30" ENGX‘ 4 N ‘?ATE A
o XX =02
z - PROJ. DA
g X o Q‘fﬁt fzj%, CPAND CYCLE
HE REMOVE BURRS AND BREAK SHARP - BATE
3|8 Py ),
4H CORNERS SURFACE QUALITY .~ = i@ EAY F LO W 3
i MATERIAL NEXT HIGHER ASSY.
B SIZE[coDH] NUMBER REV
g FINISH SCALE DFFDIFPI5-0-30
HE- SHEET OF ost. | T"T T T T T 1 |
ORD 102-B 8 6 4 2 I




After completing the transfer, the shift counter is decremented to 0, no borrow is detected, the AR is

incremented, and a second memory reference is inifiafed.

The second memory reference causes the 18 bits in the next sequential memory location to be loaded
into the low-order bits of the BMB by -STROBE. The A side of the ALU is selected and the FMA or
FMB is loaded with the 35-bit integer.

After the transfer of the second word, the shift counter is decremented from 0 to a borrow condition.

The OPAND cycle is cleared and the EXP cycle is enabled.

3.6.4 Single-Precision Integer Format

In singl-precision integer format (IR 11 =0, IR 12 = 0) only one memory reference is made. The.shiff
counter is loaded in the FETCH cycle with a count of 0. A memory reference is performed to obtain

the operand. The operand is loaded into the low-order bits of BMB 18-35. The value of bit 18 (sign
bit) is entered through bit 00. The A side of the ALU is selected and the A SIGN/FMA or B SIGN/

FMB is loaded.

At the end of the cycle, the shift counter is decremented from 0 to produce a borrow that clears the

OPAND cycle and enables the EXP cycle.

3.7 WRITE CYCLE

If a Store instruction is specified, the WRITE cycle is initiated. During the WRITE cycle the contents
of the desired major registers are written into memory. Drawing D-FD-FP15-0-51 is a flow diagram of
the WRITE cycle. At TS02*PHO3 of the NOR cycle, the shift counter is loaded with one less than the

number of words o be transferred to memory.

The FP15 places the contents of the AR on the MDL and issues a delayed FP M REQ that allows for
settling time. The AR contains the address where the first operand is to be stored. Memory receives
the address on the MDL and issues ADR ACK indicating receipt of the address. This signal also clears
FP M REQ and enables the data to be placed on the MDL.

The particular word (depending on the count in the shift counter) is strobed on the MDL. FP MRDA
is delayed by ADDR ACK to allow address settling. The operand is strobed into memory by FP MRDA.
Memory responds with MRLS ACK that clears FP MRDA to complete the cycle.

The number of memory references during the WRITE cycle depends on the instruction and/or data for-
mat. When the shift counter produces a borrow, the WRITE cycle is terminated. BUSY and DIS CP
ACT signals are cleared and control is retumed to the CPU.

3-12

The various types of store instructions are described below:

3.7.1 Store JEA

If the instruction is Store JEA, the contents of the JEA are transferred to the output multiplexer (MPO)
and then to the MDL.

3.7.2 Double-Precision Floating Point

In double-precision floating-point format, the shift counter is loaded with a count of 2. The first word
(contents of EPA register) is transferred to the output of the multiplexer. When the shift counter is
decremented to 1, the second word (high-order mantissa ADD 00-17) is transferred to the output of the
multiplexer. When the shift counter is decremented to 0, the third word (low-order mantissa ADD

18-35) is transferred to the output of the multiplexer.

3.7.3 Single-Precision Floating Point

In single-precision floating-point format, the shift counter is 1; EPA bits 09 through 17 and FMA bits
18 through 26 are transferred to the output of the multiplexer. When the shift counter goes to 0, FMA

bits 00 through 17 are transferred to the output of the multiplexer.

3.7.4 Extended Integer

The shift counter is loaded with a count of 1 for this format. When the shift counter is 1, the high-
order bits (ADD 00-17) are transferred to the output of the multiplexer and, if the shift counter is O,
the low-order bits (ADD 18-35) are transferred to the output of the multiplexer. When an Integer
Store instruction is specified, positive or negative integers are transferred from the FMA to the FMB
and are 1's complemented during FUN*TS02. At NOR*TSO1, the FMB is incremented so the contents
of the FMB are now a 2's complement representation of the integer in the FMA. During the WRITE cy-
cle, the sign (A SIGN) of the FMA is examined. If the sign is positive, the integer is a positive inte~
ger and the contents of the FMA are stored in memory. If A SIGN is negative, however, the contents
of the FMB are stored in memory, since the FMB is the 2's complement of the FMA and negative inte-

gers are 2's complemented before being transferred to memory.

3.7.5 Single-Precision Integer

When a single-precision integer Store instruction is specified, the contents of the FMA are transferred
to the FMB and 1's complemented during FUN*TS02. At NOR*TS01, the FMB is incremented and now



S 192 |
8 7 6 5 ! 4 3 | | 15:8-C1dd0a]2 !
This drawing and specifications, herein, are the prop:
arty of Digstal Equipmaent Corporstion and shall not be
reproduced or copied or used in whole or in part as
the basis for the manufacture or sale of itams without
wrten permton.
FPII ¢ ¥ FP MREQ
D MNOR X T2 ¥ P3 D
FP3p LOAD SC
WITH COUNT
2= DPF
| = SPF+ DPI
@= SPI + JEA
FP&3 ASEL ¥BSEL
FPP3 JEA-» MPO
No
[FPas sppge —i7 seL] [Fras sPF seL |
[FPir ExiT NoR) [FPe3 aopdg—17 »med FPB3 Mo A
* AnoOB
[ No N FPo 3
P35 ADDEY [l iPA q)lz—ﬂ ¥
— 17 SEL [FP35 0D 18-35 SEL] AMPA 18 - 26
1 T —» MPO
c FP@3 pPDDEE | [FPe3 A0D /?—35—’MP<1 c
— 17 == MPO L
Noe ]
[FPr1 exiT wriTE]
YES [FPi1 ¢ = wRTTE | | e—
[FPi2 wrITE DWN P ]
H
[FP3o -T—>"sc 1 g
YES
FPI® MREQ DLY ol
"
w |
H
[FPii @ Busy | 30
B FPIG o
ADRAC K FPe9 T2%P3 STOP cLK [FPid &> DiscracT] &
ETURN CON e
[Fpu ¢-» FP MRDA J RETU ONT. S
T0 cp Py
&
B
FIRST USED ON OPTION/MODEL_| qrv. J DESCRIPTION l PART NO. I TTEN
PARTS LIST
— UNLESS OTHERWISE SPECIFIED | DEN, | - 2‘}/755/ EQUIPMENT
-~ DIMENSION IN INCHES. Wilaon o/ ﬂn@ﬂnan CORPORATION
g TOLERANCES ?K/B D/'_\,TE/ MAYNARD MASSACHUSETTS
N DECIMALS ANGLES MS—EN'G' 5—#1-‘;1;5 ATTLE A
F N T W IO |
2 N JENG. DATE - ol
g f RE;VE ;:JRRSANQ BRAEAK SHARP f‘ﬂ‘}ﬂ“ DZY/? W RI ! t CYCL E
g g CORNERS SURFACE QUALITY .~ ‘%&P!-&m /5;7 | LOW
=S MATERIAL NEXT HIGHER ASSY.
1ZE[CODH] NUMBER T REV.
—t— — o - -
- e < DIFD|FPIS-Z-5] |
h SHEET OF ost ] T T T T TTT T4
DEC +ORM NO
ono s 8 7 6 5 4 3 2 | 1

3-13



represents the 2's complement of the FMA. During the WRITE cycle, A SIGN is examined. If it is

positive, the contenis of the FMA are stored in memory; if it is negative, the 2's complement of the

negative integer are stored in memory. This 2's complement is contained in the FMB and, consequently,

the contents of the FMB are stored in memory .

3.8 INTERRUPT CYCLE INTERFACE
The following conditions in the FP15 can cause an interrupt in the CPU,

Overflow

Underflow

Abnormal division (divide by zero)
Memory violations (trap)

Q0o T Q

An interrupt generated as a result of an overflow or underflow condition can occur during the FUN
cycle, where the arithmetic operation is being performed, or during the NOR cycle, where the result
of an arithmetic operation is being normalized. An abnormal divide interrupt can occur only during
the FUN cycle; a memory violation interrupt can occur during the FETCH, OPAND, or WRITE cycles.
If an interrupt should occur while an FP15/CPU cycle is in progress, the cycle is completed, the re-

maining sequence is aborted, and INT 1 and INT 2 interrupt cycles are initiated.

If an interrupt caused by a memory violation occurs in the OPAND cycle while the exponent is being
fetched, this part of the sequence is completed, fetching of the high-order and low-order mantissas is
aborted, and the interrupt occurs. If the interrupt occurs during fetching of the high-order mantissa,

The FP15 completes this part of the cycle and aborts fetching of the low-order mantissa.

3.8.1 INT 1 Cycle

When a floating-point interrupt is raised, the FP15 forces a JMS*0 to the CPU by placing ]20()008 on
the MDL. Figure 3-5 shows the communication between the CPU and FP15. It is assumed that a mem-~
ory violation interrupt occurred during the fetching of the high-order mantissa. When the high-order
mantissa has been fetched, the OPAND cycle is aborted and a dummy setup initiated. The FP15 re-
moves DIS CP ACT and the CPU is allowed to make a memory request. DIS RD RST is raised and the
FP15 completes the memory cycle. The FP15 then removes DIS RD RST, places 1200008 (JMS*0) on
the MDL, and issues FP RD RST. The 120000, is strobed into the MI in the CPU and then executed.

8
The remainder of the cycle between the FP15 and CPU is completed.

3-14

SUB- CENTRAL FLOATING-POINT

CYCLE | PROCESSOR | PROCESSOR MEMORY REMARKS

0 - DIS CP ACT CPU CONTINUES FROM TS03*PHO2

M REQ-CP ACT'\ CPU MAKES MEMORY REQUEST

1 - DIS CP ACT-TADDR ACK  |FP15 COMPLETES MEMORY CYCLE
DIS RO RST
0 - M REQ ﬁfb

~ ADDR ACK
RD RST

- FP MRDA® |
ﬁ g TS MRLS ACK
Oo 0 ~ FP MRDA
oLy W0 -+ MRLS ACK
~33 0 - DIS RD RST
z 3 120000g ~ MDL

a8 |_FPRD RST

120000g ~ M14] FP15 FORCES JMS*0 (120000g) ON

MDL AND COMPLETES CPU CYCLE

MRLS
\r‘/_rtpp MRLS ACK
0 ~ MRLS

"0 - MRLS ACK
MI - IR ' 120000g (JMS*0) LOADED IN IR
0 ~ DIS CP ACT

Figure 3-5 INT 1 Cycle Interface Diagram
3.8.2 INT 2 Cycle
The FP15 initiates a second dummy setup that forces the CPU to accept the JEA (JMS Exit Address) in-

stead of the contents of location 0 (see Figure 3-6). The JEA address is under programmer control and

will vary depending on the cause of the interrupt.

EXIT ADDRESS +0 0
+1 JMP OWR /GO TO OVERFLOW
+2 0
+3 JMP UND /GO TO UNDERFLOW
+4 0
+5 JMP DIV /GO TO DIVIDE
+6 0
+7 JMP TRAP /GO TO MEMORY VIOLATION

In the example presented, where a memory violation caused the interrupt, the JEA address +6 will con-
tain the address of the PC (71XXXXg instruction) +3 when the JMS is complete. JEA +7 may contain

a jump instruction to an entry of a service routine associated with the interrupt.



SuB-
CYCLE

CENTRAL
PROCESSOR

FLOATING

POINT UNIT MEMORY

REMARK S

INT 2 CYCLE
JEA DUMMY FETCH

0~ MREQe®—T

\-,o ~ ADDR ACK

JEA 40 O]
2 UND
4oy (M
6 TRAP

MRLS
TTTT—%rp MRLS ACK

0 ~ MRLS

(JEA ADDRESS ~ MDL

MREQ-CPACT—nu |
1 - DIS CP ACT ™ ADDR ACK

1 = DIS RD RST

RD RST
FP MRDA<
MRLS ACK

0-FP MRDA‘<J

0 - DIS RD RST

0 - MRLS ACK

FP RD RST

0 ~ FP MRLS ACK
0 ~ DIS CP ACT

CPU MAKES MEMORY REQUEST
FP15 COMPLETES MEMORY CYCLE

FP15 FORCES JEA ADDRESS ON MDL
AND COMPLETES CPU CYCLE

JEA ADDRESS IS ACCEPTED BY CPU
AS IF IT WERE CONTENTS OF
LOCATION 000000g.

Figure 3-6 INT 2 Cycle Interface Diagram

3.9 INTERRUPT CYCLE

On entering INT 1, DIS CP ACT is removed; this allows the CPU to continue (see drawing
D-FD-FP15-0-62). When CP Active is clocked high, and a M REQ is made by the CPU to obtain the
next instruction, the FP15 is set up to take control over memory. In addition, DIS RD RST is raised to
inhibit communication between the CPU and memory, and DIS CP ACT is raised to temporarily suspend
the CPU. Memory responds to the CPU M REQ with ADDR ACK, places the contents of the specified
address on the MDL, and issues RD RST. The CPU never sees the contents of the address because of
DIS RD RST. The FP15 issues MRDA and the memory responds with MRLS ACK to complete the cycle.
Control is returned to the CPU. The FP15 then initiates a dummy setup that places 120000g on the
MDL via the input multiplexer (MPI) and output multiplexer (MPO). FP RD RST is also placed on the
MDL. At this point, the FP15 simulates memory and communicates with the CPU to complete the cy-
cle. The 1200008 is loaded into the MI register in the CPU. When the CPU receives the 1200008, it
issues MRLS. The FP15 responds with FP MRLS ACK, both are then cleared and the INT 2 cycle is in-
itiated.

The INT 2 cycle is similar to INT 1 except that the JEA address, instead of 120000g, is placed on the
MDL, the CPU executes the 120000g as a JMS*0 and makes a second M REQ. The FP15 again sus-
pends the CPU with DIS RD RST, gains control of memory, and completes the memory cycle. The JEA
address is placed on the MDL along with FP RD RST. At this point, the FP15 releases control to the
CPU and simulates a memory so the CPU can load the JEA address into the MI register. The CPU can
now complete its cycle which was initially suspended by the FP15. The action is concluded by BUSY
and DIS CP ACT being cleared, thereby retuming control to the CPU.

3-15



N

Tsize

8 6 3 | [ ] 39-.8-5130dq)2 | 1
This drawing and fications, hermn, are the prop: LEL] HIBWON 3002 3215)
ey ,.’i.'..&.‘z....‘:.“.e'm ‘Corporation and shall not be
reproduced or copred or used wn whole Of 10 part as
the basis for the manufacture or sale of tems without
written permrgsion.
®
INT
D FP33 AUA, AUB
FPCA TP FPg4 BIT 2 AUAI, A+8
SEL BIT g&
mer b JEA + & 2,9, OR
£ OR &
S?éf’ c% - > a0pER’ BUS
FPg5s MOB
MPI ¢2, 34 FP43 @< OVR
FPR9 ¢—» TS4 2= UND
4= DIV
FPB3 MPI—»MPO &= TRAP
P MPO —» MLD
Z 120000
FP43 T
MREQ e MDL N NT 2
<P Acy INT
' FP43 JMS SEL
FPPs B SEL
FP@5 MXA, MXB
FPI§ | —» DIS FP@3 ADD ¢&-17
—»MPO JEA 4+
$,2,4, ORe ~»MLD
C FP/@ I—> DIS
| — —— — - [Fri¢g Fp RD RST |
|
| L mis [FPe¢ rRD RST DLY
I ' T — o
[ [ ' (kP75 Lo mT |
_ — | @ —+ cP ACT |
i MRLS |
w—} —_—— = == — —
[FPig FP mRLs Ack |
FPig | —> FP [kPis @ = MRLS ]
[FPig g— FP MrRLS Ak]
[FPea 1= 75+ ]
B [FPri —RT <P ]
[FPii & > Bus~ | INT 2
— [FPig @ »bIs cp ACT |
FP IS DONE
CP TAKES
OVER HERE
QrY. DESCRIPTION [ PART NO. J!LEOM
L PARTS LIST
> UNLESS OTHERWISE SPECITIED Dg‘ . DATE EQUIPMENT
1 UNLESS OTHERWISE SPECIFIED CHK‘,DM“M?‘) g’i/r?‘/,” mngﬂaucoRPonAﬂON
DIMENSION IN INCHES p MAYNASED MASSACHUSET TS
A o R v [ e
ECIMA 10N AN .
212 e e tow S/l
) DA O D
2|8 wewons gt 2t . . INTERRUFPT
é E 3 RIR") DA}}#W
R L i \
© MATERIAL FIRST USED ON F L '\\V
L | SIZE{CODE| NUMBER ‘ REV.
” FINISH [SCALE DIFDFPI5S -2 — &2 __J
= SHEET [ ost. | T 1] 1 1 [ | [ | |
DEC FORM NO
DRO 1024 8 6 3 2 ]

NUMBER

FPI5-0 — 62

Cua

F

|p

w



3.10 FP15/CPU CONTROL

As an aid in understanding the exchange of control between the CPU and the FP15, Figure 3-7 shows
a typical program describing what instructions the CPU would see and what instructions the FP15 would
see if the program were executed. The first instruction (DAC 500) is recognized by the CPU and the
contents of the accumulator are deposited in location 000500. The second instruction is a floating-
point instruction that is recognized by both the CPU and FP15. The next three sequential locations
(000110, 000111, and 000112) are recognized by the FP15. The FP15 takes control and forces a
710000 NOP on the MDL so that the CPU does not use the floating-point operand address as an in-
struction. Consequently the CPU waits, since the FP15 has control of memory. When the FP15 com-
pletes the instruction, both the CPU and FP15 again monitor the next instruction fetched from core.

A similar process can be traced through the remaining steps in the program.

DST
000097 040500
000100 713150
000101 000110

000102 716140
000103 000113
000104 713750
000105 000116
000106 200130
000107 740040
000110 XXXXXX
000111 XXXXXX
000112 XXXXXX
000113 XXXXXX
000114 XXXXXX
000115 XXXXXX
000116 KXXXXX
000117 XXXXXX
000120 XXXXXX
000130 777777
000500 000000
CP SEES

040500

XXXXXX

713150

710000

CP WAITS

716140

710000

CP WAITS

713750

710000

CPU WAITS

200130

777777

740040

= Double Precision Floating Point Load
DAD = Double Precision Floating Point Add
= Double Precision Floating Point Store

DAC 500
DLD 110

DAD 113
DST 116

LAC 130

HLT

EXP A

HIGH MANTISSA » AUGEND
LOW MANTISSA

EXP B ,

HIGH MANTISSA »ADDEND
LOW MANTISSA

EXPONENT

HIGH MANTISSA » SUM
LOW MANTISSA

FPU SEES

713150
000110
XXXXXX
XXXXXX
XAXXKXXX
716140
000113
XXXXXX
XXXXXX
XXXXXX
713750
000116
XXXXXX
XXX XXX
XXXXXX

Figure 3-7 CPU/FP15 Sample Program

/CPU INSTRUCTION
/FPU INSTRUCTION
/OPERAND ADDRESS
/FPU INSTRUCTION
/OPERAND ADDRESS
/FPU INSTRUCTION
/SUM STORED

/CPU INSTRUCTION
/CPU INSTRUCTION

/CPU INSTRUCTION

/CPU WRITES INTO LOC 500
/FPU INSTRUCTION

/FPU FORCES 710000 TO CP
/FPU SEES CONTENTS

/OF 000110, 000111 & 000112

/FPU INSTRUCTION

/FPU FORCES 710000 TO CP
/FPU SEES CONTENTS

/OF 000113, 000114 & 000115

/FPU INSTRUCTION

/FPU FORCES 710000 TO CP
/FPU WRITES INTO LOC.
/000116, 000117 & 000120

/CPU INSTRUCTION

/CONTENTS OF 000130
/PROGRAM HALTS

3-17






CHAPTER 4
INSTRUCTION SET

4.1 INTRODUCTION

The following paragraphs describe the classes of instruction used in the FP15. Several functions are
applicable to many classes; these will be described first. The flow diagrams of the instructions specify
where these functions occur, if applicable. These functions include: converting negative integers to

sign and magnitude format, normalizing, and rounding.

4.2 CONVERTING NEGATIVE INTEGERS TO SIGN AND MAGNITUDE FORMAT

When a 2's complement negative integer is loaded into the FMA during the OPAND cycle, it is con-
verted to sign and magnitude format during the EXP cycle. Two's complement positive integers are al-
ready in sign and magnitude format and require no conversion. If the instruction requires no memory
reference, the number in the FMA is in sign and magnitude format. Two's complementing the number
again is undesirable, since it would convert the sign and magnitude number back to a 2's complement

number.

For FMA conversion during TSOT of the EXP cycle, FMA is complemented as a result of COMP MA
(see Figure 4-1). This signal takes the 1's complement of the integer in the FMA and puts it on the
ALU bus. During PHO3*TS01, the number on the ALU bus is strobed back into the FMA.

When the FP15 sequences to TS02 of the EXP cycle, INCA is generated; this puts the contents of the
FMA plus one on the ALU bus. During PH03*TS02, INCA-P is generated, and the output of the ALU
bus is strobed back to the FMA. The number now in the FMA is the 2's complement of the number in-

itially contained there and is a negative number in sign and magnitude format.

For FMB conversion, during TSO1 of the EXP cycle, the FMB is complemented as a result of COMP MB.

This signal takes the 1's complement of the integer in the FMB and puts it on the ALU bus. In
PHO3*TS01, COMP MB P is generated which strobes the 1's complement integer back into the FMB.

IR12
(0) H

INTEGER ExiT
2

YES

FMA FMB
CONVERSION CONVERSION

YES YES
COMP MA COMP MB
FMA-»ALU FMB —+ALU
INCREMENT INCREMENT
A PLUS B A PLUS B
(CARRY INSERT) (CARRY INSERT)

LD FMA LD FMB

‘ DONE ,

15-0678

Figure 4-1 Converting Negative Integers to Sign and Magnitude

In EXP*TS02, INCB is generated which puts the contents of the FMB plus one on the ALU bus. This
number is strobed back to the FMB during PHO3*TS02. The number now in the FMB is the 2's comple-

ment of the number originally contained there and is a negative number in sign and magnitude format.

4.3 NORMALIZE

Normalizing a mantissa in the FMA consists of left=shifting the FMA until the most significant bit is a
1, which eliminates all leading zeros. For every left—shift of the FMA, the EPA is decremented. If
the specified instruction is a Store or Divide, and normalizing is requested, the mantissa is normalized

during FUN*TS01. Otherwise, the mantissa is normalized in NOR*TS01.

41



4.3.1 Normalization (Except Store, Divide, or Reverse Divide)

If the specified instruction is not a Store or Divide type instruction, and normalizing is requested, the
normalizing process occurs in NOR*TSO1. Prior to this time; the shift counter is loaded with 42g (at
FUN*TS03*PHO3 Time). The NOR SEL signal sets up the conditions for the NORM P pulses that actu-
ally cause the normalizing. For each NORM P pulse, the FMA is shifted left and the EPA and shift
counters are decremented. If the instruction specified is not a Multiply, zeros are shifted into the
least significant positions of the FMA. If a Multiply instruction is specified, the NORM P pulses shift
the FMQ left as well as the FMA. As a result, FMQ 01 is shifted into FMA 35 and 0 is shifted into
FMQ 35.

When FMA 01 goes to 1 (NORM DONE), or when the shift counter produces a borrow (SC BORROW),

normalizing is terminated and the logic on FPO? is reset to allow the phases and time states to continue.

A borrow indicates that normalization is not possible because the number is 0. Refer to Drawings
D-FD-FP15-0-58 and D-FD-FP15-0-59 for a detailed flow of normalize.

4.3.2 Store, Divide, or Reverse Divide

When a Store or Divide instruction is specified, and normalizing is requested, a NOR SEL signal
(FP40) is generated that enables NORM P to left-shift the FMA and to decrement the EPA for each
left=shift (refer to Drawing D-FD-FP15-0-57). The FP15 sequences to PHO3*TSO1 of the FUN cycle

and remains "stopped"” in this state until normalizing is completed.

Before generating NORM P, the shift counter is loaded with octal 43 (3510) if the specified instruc-
tion is a Divide or Reverse Divide, and is loaded with 428 (34]0) if the specified instruction is a Store.

For each NORM P pulse, the FMA is shifted left and both the EPA and shift counter are decremented.
Zeros are shifted into the least significant positions of the FMA. Normalizing is complete when
FMA 01 goes to a T (NORM DONE), or when the shift counter produces a borrow (SC BORROW). In

either case, the logic on FP0? is "reset" and the phases and time states are allowed to continue.

4.4 ROUNDING

The FP15 can specify rounded or unrounded arithmetic by IR14 of the instruction word.

During alignment of the mantissas in floating—point addition, either the FMA or FMB (depending on
which has the smaller exponent) is shifted right. Bits shifted out of either register are shifted into the
FMQ. If rounding is requested, and FMQ 01 is a 1, +1 is added to the least significant bit of the
FMA or FMB, whichever was being shifted.

A second round can occur during floating-point addition if the addition produced a carry out of the
ALU (see Figure 4-2). When this occurs, the FMA is right-shifted and the EPA is incremented, put-
ting the correct number back into the FMA. The bit shifted out of the least significant bit of the FMA
is shifted into a guard bit and, if rounding is requested, +1 is added to the least significant bit of the
FMA,

The following example shows two numbers being added resulting in a carry. The EPA is incremented
and the FMA right-shifted. Since the least significant bit of the FMA is a 1, the guard bit is set.
When rounding is requested, +1 is added to the least significant bit of the FMA.

Example:

. 1012 + .HO2 = ? Three-bit registers assumed for simplicity.

ADDITION
FMA FMB
1 0 1 1 110
\—_ﬁf——J LN J

\g
L M

'y
N
Carry
1 0 1 1
\\\\Gmrd
1 01l1 1 and increment EPA
ROUNDING
1 0|1 1

- 1_ -
t{11]o =.110x2" = 1.10, = 1.5,

Figure 4-2 Guard Bit and Rounding



8 7 | : | 4 3 | [T 85 .gsoddg)2 | !
o of Do Eqsoment Cocpeston ahd sha not oo INITIALLY IN THE FUN CYCLE
e o e e o oot e ok P17 FUN (7 H F
prubompliihiny F —FP3I FiIX NOR  CYCLE |
FP30 ADDR_ A
THIS PLACES 42 K THIS IS ACTUALLY A O+B+l1
AT S§C INPUTS| COMPLETING THE 2’6 COMPLEMENT
FORMATING — 7HE 1°S COMPLEMENT
WAS PERFORMED ZN THE FUN CYCLE,
FPI1 FUN (N H O FPi2 T3 ¥ P3 H DURING INTEGER STORE INSTRUCZIONS,
THE Fa1R CONTAINS THE NON COMALEMENTED D
RESULT AND THE FMB CONTRINS THE
275 COMPLEMENTED RESULT
lFP// NOR (1) H FP40 LD NORM COUNT, FP35 STORE* NO
SETS SC (2-17T042
A+ B
FP33 AUS , FP33CN @8 L FPP9 PHASE 2 FP3S TR14 (@) ¥ FLT P
‘o— & sIDE’ oF ALy [ | (FPeT * t
FP32 B L S FP35 STORE RND
NORMBLIZE BIT
FP31 FLT PT FPI? ADSS ~H c
TO WRITE CYCLE

FP40 NOR SEL

Frady
fok EFece
IND FPC,

FP40

[R-3
FMAG 1
(i)

FP40 NOARM DCNE NO

FP40 NORM P

FP38 NORM EN H

MXA, MMC MLS  ALS
SHIFTS FMA | LEFT
DWN COUNTS EPA |
DWN COUNTS SC i12-17

MMC FMQIS ALSO
LEFT SHIFTED

AS AN FMA EXTENSIOA

FP32 MXB, MXA

I TF ROUNDING CAUSES A
CARRY FROM MSB, THH
FMA RT SHTD ¥ EPA INCR.

TOo WRITE GYCLE

FP40 FLORT + FIX

FP32 EPA UP

FP@I PH@3I (N H
FP40 EPA GRT L

AUAT WHICH
PLACES <00
N BsIDE
OF Al
|EF32 ALS |
r3
A+8 TS STILL VALID
ITF BIT 27 Is A ONE IT %

SHIFTED 70 24 AND
FMA 27 —35 —p O

No 'S THEAE B
AN SC
wﬂw @
YES
FrP8e RSET ¢
E—
[[FIRST USED ON OPTION/MODEL ] arv. | DESCRIPTION | PARTNO. | r’rEM“
ST PHASE—» O *
ENABLES THE <P PARTSLIST
TS GEN Jaar?
_— UNLESS OTHERWISE SPECIFIED | DN DAT E P T
- - DIMENSION IN INCHES. zgw 3/23/7 mngﬂan Cg:PIORNI\ElgN
z TOLERANCES CHKD. DATE MAYNARD MASBACHUBETTS
B DECIMALS ANGLES —H—M o s i’r TITLE
o | ww oo xS A
w sl NOR TS| CYCLE
Ofw REMOVE BURRS AND BREAK SHARP N e
g g CORNERS SURFACE QUALITY ./ 43 Vv .:‘7; /7 FLO W
g3 MATERIAL NEXT RIGHER ASSY.
SiZe]con NUMBER REV.
L
f FINISH SCALE D FD FP'S—‘ @— 58 ;
z SHEET oF os. T T 1T T 1 T 1T 1 T
DEC FORM NO
s 8 7 I 6 1 4 3 2 ] 1

4-3



85 =0 =51d0dq)2 |
8 7 6 i 5 4 3 | I A3 l HISNNN 3q09]3zis] 2 ]
Tms orawing ana specifications, herem, are the prop:
arty of Dvgitai Equipment Corporation and shall not be
o s for W manuachure o swe of ams WOt
L permson NOR T3z
FPEI TS 2(1
D . D
No D YES
OoN A
v
FP4¢ CLR EPA FP40 ROUND
— THIS INDICATES GUARD WAS SET BY EITHER __
Mrras cN@dL | @po 355 FOR AN ADD+SUB, GR EM@ @/ (1)
FOR MULTIPLY OR DIVIDE OR FIX
Z
FPI3 TRI4 (§) 5
NO FP4o_RND |
FPI
C P13 ADD gd c
ZERO CHECK OF FMA
FPES PHASE 3 (1) FP4$ FIX OR FLOAT| ¥ FLOATING POINT INSTRUCTION
®
FP48 CLR EPA P|
[fpt@ Fix +FLoAT FPP9 PHASE 3(/3] FP3e GRT L _:¢q PHASE 3 (1
—
[FP4d rounD Ma P ] Fr32 MXA MXE FP36 EPA GRT
UND SYNC— 0 FP32 ASIGN—» O | :
-
@
e
I
S
[FP29 ~BRANC H+ INT] >
3 H
0
B -FPlI_C STORE FPII NOR (N H &
C STORE > = .
on FP32 FLE
50
F B [wriTE (v ] 5
P38 PREP SC L S A
Isuaa:.es-sc INPUTS AR AL
FPCA B
qm. DESCRIPTION I PART NO. I"N%"
PARTS LIST
maat 1RST USED ON OPTION/ M L / EQUIPMENT
E ﬂnﬂnan CORPORATION
— | MaviaD, MABACHUSET TS
A TITLE A
oo 214 NOR TS2 CYCLE
Qlw
2 R E
HH O Shels o [ FLOW
elZ NEXT HIGHER ASSY
! CODE NUMBER I REV.
P SCALE DjFofFPi5— g—55 , |
5 | OF st} [ [ T T T T T 11
mEee g 7 6 5 4 3 2 I 1

44



8 7 | 6 5 4 ] 3 | [T Spsedgda)2 :
A HIGWNN 3002|3218
This drawing and specificatians, herein, are the Drop FUN
erty of Digital EQuipment Corporation and shall not be
retuodn.ud b: muﬂ: or used in uﬂnﬂ: :"‘: :r:'tmzt _
T:n:j‘i:;:;l.‘:;:) ufacture or sale of C DIV 7 S} e °
o2 £P38 DIV ASH Fp38 DIV 40D SH | FP38
- xR F ¢ P32 mMx8 sueTrac- | FF3e
FP33 ) FMA TION RESULT 15
i¢g5,/; MO[}’f FMG ARE SHIFTED LEFT D
ez LY eus P38 SHIFTED LEFT ON FMA INPUTS
I BIV CoUNT SEL] FP39 SC ADDR A FMQ SHIFTED LEFT
TrAE s FP38 1 43> INPUT OF
=4
MQZ P Fpag | SHIFT COUNTER 1> FM@ 35 INPUT| FP27
SC ADDR A
N SC ADDR &
FP32 EPA>SC
LS ALY Bus+FAMY -
)
Fun-TI P2 |73
LOAD SC
Foon or, | £ DIV INC P EPAGE @) |43
£XP,WRITE UND SYNC(B)
£32
EPA UP +1- EPA
BRANCH + INT | FF1
¥
FPR4@ FP39
CARRY P 1% OYR CHECK FP43
NO FP43 POS EPA COULD
Fri FMA &1, 1 £Pad EPAGP (1) OVERFLOW ON
OVR SYNC (@) FP38 FIRST SHIFT C
YES NORM P

W
7O INTERRUPT
FLOwW

DIV sHRT P | FF28

FP32

ARS
SHEIFT7T FMR RIGHT |

SHIFT FMA LEFT

NORM DONE | P %P

@ STOP PHASE

CARRY EN

1
FP33
DOWN COUNT SC

1> UND CHECK FpPas

NEG EPA COULD
UNDER FLOW WHILE
NORMALIZING FMA

1= UND SYNC SAVE
UNDERFLOW FOR
POSSIBLE INT-
ERRUPT IN NOR

!

FP32

ALS MLS
STROBE
FMAE FMQ

[arsasLz sc COUNT |7 Down counT sc |

FP3@
sc
BORRQ

¥ES

1= OVR SYNC SAVE
OVERFLOW FOR
POSSIBLE INT-
ERRUPT IN NOR

FP43

!

= [oForris-57 [ ]

FP®Y FP39 FP39
DIV SWAF P FP39 1= sToP PHaSE ] DIV MG ] | OIVSWAP |
A
FP32 57V SEL FP39 emas | P2 [ xsy Frans |7
ALS, MLS 8US FMQ INPYT
FMG=>FMA
FP33
FMA=FMQ A—B—1,C NGB
l MXALFMA-FME
Fp32 DIV SHRT £P38
FUN¥*T3 l—
MODIIY ASTGN
FP
ITF DESIRED AMC ENABLE 32
FMA FOR A
RIGHT SHIFT
J
FTRST USED ON OF/MOD TTEM
qQr. DESCRIPTION PART NO.
. PDPI5 [Ty
- Q PARTS LIST
:l UNLESS OTHERWISE SPECIFIED JoRN. " R EQUIPMENT
= UNLESS OTHERWISE SPECIFIED. |- /1 How 5 t CORPORATION
DIMENSION iN INCHES ‘ 5 ’#" 5/y/7 MATNARD MASSACHUSETTS
TOLERANCES r—A—L‘-LL TITLE A
DECIMALS  FRACTIONS  ANGLES Em&ﬂ Ao 3}};5/77 -
2 ER = 1/64 = 0°30" s T — "
z PROS € AT . -
sz e g o B 1 FLOAT & INTECGER
Z CORNERS A ~ Bry it ~
3 — - oo [Slyln DIV FUN CYCLE
, NEXT HIGHER ASSY
| A-ML-FPi5 SIZE[CODE NUMBER REV.
: FINISH SCALE i DIFDIFPI5-© - 57
: A 5] T T T T T T T T |
DES LORM NO T
e 7 6 5 4 3 2 l 1

4-5




If the +1 added to the FMA causes a carry out of the ALU, the FMA is right~shifted and the EPA is in-

cremenfed.

For floating-point Multiplication and Division, rounding can occur. If the multiplication or Division
operation causes FMQ 01 to go to a 1, the guard bit is set. With this bit set, and rounding requested,
+1 is added to the least significant bit of the FMA.

For a Fix instruction, bits in the FMA and FMQ are right-shifted. If, upon termination of the shifting
process, FMQ 01 is set, the guard bit is set. A rounding request will then cause +1 to be added to the
least significant bit of the FMA,

4.5 GUARD BIT

The guard bit is used to determine whether rounding should occur if rounding is requested (see Figure
4-3). This bit is set under the following conditions:
a. During floating-point Addition, when a carry is produced out of the ALU, the FMA

is right-shifted and, if the least significant bit of the FMA is a 1, the guard bit is
set.

b. During floating-point multiplication and division, if FMQ 01 is a 1 after the multi-
plication or division operation, the guard bit is set.

c. During a Fix instruction, upon completion of the shifting process, if FMQ 01 is a
1, the guard bit is set.

d. The contents of the guard bit are saved in bit 01 of the JEA word on a Store JEA
instruction.

e. The Load JEA instruction restores the guard bit fo a 1 if bit 01 of the JEA operand
fetched from memory is set.

When the next instruction is specified (provided it is not a Floating-Point Test, Load JEA, Store JEA,
or Branch), the guard bit is cleared.

4.6 FLOATING-POINT ADDITION AND SUBTRACTION

The FP15 can perform floating-point addition, subtraction, and reverse subtraction for both single~
and double-precision floating-point numbers. The manner in which these arithmetic operations are

implemented is similar and will be described, with differences pointed out as they occur.

In floating—point subtraction, the minuend is loaded into the EPA/A SIGN/FMA via the Load instruc-
tion and the subtrahend is loaded into the EPB/B SIGN/FMB via the subtract instruction. If, as a re-
sult of some previous computation, the proposed subtrahend for the next subtraction is in the FMA, a

Reverse Subtract instruction can be issued. In this event, the contents (subtrahend) of the

46

MULTIPLY OR DIVIDE ORFiX
FP12(NOR#T1)# FP40 (FLOAT + FIX)

ADD OR SUBTRACT
FP36 ADD+SUB SEL
]

LOAD JEA
P MPY’DIVOF!X_H\‘FMOO\ (1) FPi9 ADD 00

T\
BMB BIT 19(1) CD

FP33 A+B

GRT
(FUN% T1) FP36

CARRY FROM ALU

FP27 ADD 35

OR

SET GUARD

Figure 4-3 Flow Diagram for Setting Guard

15-0580

EPA/A SIGN/FMA are transferred to the EPB/B SIGN/FMB during the FETCH cycle and the Reverse
Subtract instruction loads the minuend into the EPA/A SIGN/FMA.,

4.6.1 EXP Cycle

The first function performed in the EXP cycle for floating-point addition or subtraction is a check to
determine if the specified instruction is an Add, Subtract, or Reverse Subtract (see Drawing
D-FD-FP15-0-52). If it is a Reverse Subtract, A-0-1 is transferred to the ALU bus where A represents
the FMA and 0 indicates that the FMB is disabled from the ALU. A test is now made to determine if
A=B; if so, the FMA is known to be 0 and STOP ALIGN (1) is set. If the specified instruction is Add
or Subtract, 0-B-1 is transferred to the ALU bus, where 0 indicates that the FMA is disabled from the
ALU and B represents the FMB. A test is made to determine if A=B; if it does, the FMB must be equal
to 0 and STOP ALIGN (1) is set. In effect, then, no alignment will occur for a zero FMA or zero
FMB and the FUN cycle is initiated. Also, if the difference between the EPA and EPB is greater than
428, STOP ALIGN (1) is generated, no alignment occurs, and the FUN cycle is initiated. However,
if the FMA and FMB are non-zero and the difference between the EPA and EPB is less than 428, align-
ment is initiated. EPA-EPB-1 is placed on the ALU bus and, if the exponents are equal, the mantissas
are already aligned and the FUN cycle is initiated.

If the exponents are not equal, the sign of the result of EPA-EPB is determined. A negative sign
(ADD18H) indicates that the EPB is greater than the EPA and the FMA must be aligned. A positive
sign (ADD18L) indicates that the EPA is larger than the EPB and the FMB must be aligned. At this
point, the shift counter is loaded with EPA-EPB-1, if the EPA is larger than the EPB or with EPA-EPB-1



| ]

¥38WON

2S5 — 0@ —Sidddd

g2 |

3009

This drawing and i rein, are the prop-
erty of Digaat Equipment Corporation and shall not be
reproduced or copsed of u: in whole or in part as
the basis for the manutacture or sale of items without @
s parmiaon.
No | : i
INTEGER FP37 SEL C L FP37 SEL D L FP37 F22K2 L ALL OTHER
FCRMAT EPA POS # EPR PoS) EPA NEG % £P8 NEG| EPA NEG % EP8 POY CONDITIONS
FLOATING s ) B 4 leapp 18 w
POINT FORMAT I
D D
DURING THE OPAND
CYCLE OF ADD OR SUB
THE FMB IS LOADED
WITH THE ARGUMENT
FOR REV SUB THE
gﬁiceKG?sR:,:Ego [ra7 e creck [FP27 mA CHECKH FMA IS LOADED £rA ze>Gmalled 5:3713555MA11ER
[CONVERT To SI6N THAN EP8 THAN EPA
AND MAGNITUBE P33 AUS DISTL FP33 AUST OS] FMA SELECTED FMB SELECTED
— . -F -1 —> £ — @i —>
ALl  BUS ""AluU Bus FOR SHIFTING FOR SHIFTING -
P37 STOP ALIGN
[FPaa comP MA L [FPa« comp B (] WILL BE SET IF
' FP32 A ZERO OR FPI
FP33 A FP33 JE fos P@q SET SYHL(Y 4 B ZERO IS SET ORIF
[—FMA—» 2Ly eus] '—FMB-» ALuU BUS YES  /stop 5703; ves |EPAZEPE>35/0
¢ i 4 GLIGN ALIG N,
TSé! FP34 COMP MA L FP34 COMP w8 P TSE | o ¢
Prgs — I @ M8 P Yo 0055 R
C FP32 ALS H I ‘F‘PJZ BLS H />57 PHASE c
LD FMA LD FMB B 2ERO0 A ZERO (1) FP37 ALIGN MA A FP37
FMB=T7T0 ZERO FMA=T0 ZERO UPCOUNT ALTGN
- g M
[FP3+ zncA L | [FPa4 ance L ] 1 SHIFTCOluNTER f
FP33 A+B H FP37 ALIGN EXP L FP32 ARS H FP37 BRS L
EPA ~EPB—1 —» FMA SHIFT RIGHT DOWNCOUNT SHIFY]
FP33 AUS DIs L ALYy BUS FMA 35+ FMQ & 1 COUNTER, FMB
+FMB—> ALU BUY SHIFT RIGHT,
FrV B 35 —>FmQ i
— [FP34 InC A4+ L] [FP24 znve AvE L ¢
1
FP33 CNOO L P33 cNOO L -
FMA+ 1 AL BUS 6+ FMB+ > ALY BUY Fp3 E
FMA—» QLU BUS NO /¢ cAr -
BY_ DEFAULT
s § N
TS82 FP34 INCA P L YES |
PH®3 E@
E
H
FpP32 SLS H FP37 TRANS EPB Z |
B LD FMA FP37 ALIGN EXPH FP37 EXP CARRY U EPB—» ALY, BUS v
EPA-EPB ~1—» epA—-£PB — &
ALY
BUS ALY BUS FP37 TRANS EFB M i
ALY BUS—>EPA ATy
22 |
TO FUN CYCLE FP37 LD S¢ P I
ALY BUS —» B
SHIFT COUNTER
FPG3 R SET (N
@-» ST _PHASE
TO FUN CYCLE
QTY. DESCRIPTION PART NO. ['L%M
PARTS LIST
2 [_UNLESS OTHERWISE SPECIFIED_JDRN. DATE EQUIPMENT
=L UNLESS OTHERWISE SPECIFIED ‘g/‘/ﬁ’”’ ;{?’/7’ EBEHEEHCORPORATION
A DIMENSION IN INCHES . MAYNARD MAGSACHMUSETTS
TOLERANCES St 7T A
DECIMALS FRACTIONS ANGLES ™ r—\ —_ Py - — \ -~
wlo = 005 = 1/64 = 0°30° | I~ —
) |_Z_, nnusunm:zouunv{ DA}E AL"JJ Ov D, NI \/ SU b
2ls REMOVE BURRS AND BREAK SHARP za/%/
] Nz %‘lﬁlfh EXP ~ =
iz =y Tog |5 O
© FIRST USED ON L
- SIZE{CODE. NUMBER REV
i SCALE DIFDIFPIS 82 '
d SHEET [ osT. | | I T 1 1]
DEC tORM NO
DRD 1024 8 7 r 5 T 4 3 2 1



and carry insert (EPA-EPB+1-1) if the EPB is larger than the EPA. This is to set up the shift counter so

the proper amount of shifts are performed to align the exponents.

To determine whether the FMA or FMB is fo be selected for shifting, the signs of EPA and EPB are ex-
amined, in addition to the sign (ADD18) of the result of EPA-EPB. The three cases, in which the FMA
is selected for shifting, are listed below:
a. Positive EPA, positive EPB, and a negative sign as a result of EPA-EPB. With both
quantities positive and a negative result for EPA-EPB, the EPA is smaller than the EPB,

Example:  +3 EPA
-(+5) EPB

-2 EPA-EPB

b. Negative EPA, negative EPB, and a negative sign for EPA-EPB. In this case, EPA
is smaller (more negative) than EPB in order for a negative sign to occur.

Example: -5 EPA
-(-3) EPB

-2 EPA-EPB
c. EPA negative and EPB positive. The sign in this case is always negative indicating
that the EPB is larger (more positive) than the EPA.

Example: -5 EPA
’ -(+2) EPB

--7 EPA-EPB

For all other possibilities, the FMB is selected for shifting. Up to this point, the FMA and FMB have
been examined to see if either is 0; the shift counter has been loaded with EPA-EPB (if EPA < EPB) or
EPA-EPB-1 (if EPA > EPB) to provide an accurate count of the number of shifts required to align expo-

nents; and the mantissa register associated with the smaller exponent has been selected for shifting.

If STOP ALIGN is set, this indicates that mantissa alignment is not necessary as a result of one of the

following conditions:

a. Zero FMA
b. Zero FMB, or

c. EPA-EPB> 35]0

If STOP ALIGN is not set, alignment is performed, and either the FMA or FMB is selected for shifting.
The mantissa with the smaller exponent is selected for shifting. If the EPA is less than the EPB, SA H
is generated and the FMA is shifted. The shift counter is loaded with EPA-EPB, which will be a nega-
tive number in this case. The counter will be incremented with each shift until an SC CARRY is de-
tected (counter going from all ones to all zeros). For example, if the EPA contained +2 and the EPB

contained +4, the shift counter is loaded with =2. The first shift of the FMA increments the counter

to -1 and the second to all zeros, which is detected as an SC CARRY. This indicates termination of

mantissa alignment.

If the FMB is selected for shifting as a result of EPB being smaller than EPA, SA will be low and the
shift counter is loaded with EPA-EPB-1. This quantity is a positive number and the counter is decre-
mented for each shift until an SC BORROW is detected; this is why EPA-EPB-1 is required rather than
EPA-EPB. For example, assume that the EPA contains +3 and the EPB contains +1. The shift counter
is loaded with EPA-EPB-1 or 1. The first shift of the FMB decrements the counter to zero, and the
second shift of the FMB decrements the counter to all ones, which is detected as SC BORROW to con-

clude the alignment.

Since the exponent associated with the mantissa not being shifted is the true exponent of the result, it
is necessary to load the EPB into the EPA, if the FMA was selected for shifting. While alignment is
taking place, the time state generator is disabled. On completing the alignment process, the time

state generator is restarted, and the FUN cycle is initiated.

4.6.2 FUN Cycle

In the FUN cycle, the A side of the ALU is disabled if the FMA is 0 and the B side of the ALU is dis-
abled if the FMB is O (see Drawing FP15-0-53). When the EPA differs from the EPB by more than 35]0,
the side of the ALU associated with the smaller exponent is disabled. This prevents additional shifting
and is time saving. For example, if EPB is greater than EPA by 1000, EPA has to be shifted 1000
times and is, thus, a very small number compared to EPB. In fact, the number is so relatively small it
can be considered 0. Consequently, the B side of the ALU is disabled, the 1000 shifts are prevented,

and the time necessary to perform these shifts is saved.

The following two rules of addition and subtraction with respect to the sign are used.

a. During addition, quantities with like signs are added, while quantities with unlike
signs are subtracted.

Examples:  +5 -5
+(+2) +(+2)
+7 -3
NOTE

In the example on the right the two quantities are sub-
tracted although the operation specified is addition.

b. During subtraction, quantities with like signs are subtracted, while quantities with
unlike signs are added.

(continued on page 4-10)



7 6 | 4 3 | [ ]5—2 —5aqg a2 | !
A3Y HITWNN 3002{32IS)
This drawing and specifications, heresn, are the prop-
L " _ shall not be
e nen fo the Faamutactors o e of s WOVt
(74 7457 WiES
OVERFLOW JHE
RESULT IS Two's
D COMPLE MENTED D
FLOATING No
FP33 AUS | H FP33 AUS H POTNT
E B SIDE (FMB)OF THE THE A SIDE (FMR) oF T#4
AL Wikl BE A ALY WILL BE A
— LOGICAL ZERO THROUGH| LOSICAL ZERO THROUGH FP36 ADD -+
HE UM CYCLE THE FUN CYCLE sus P T3 —
| I Tsé2
PH@3
FP3]
NO C sSuUB H
SUB OR REV FP32 ALS H
FP3! ADD H
NRD+1 FMAL wity
BE TRUE WHEN
ROUNDING IS NOT]
REQUESTED OR
Cc FMQ @1 (8D C
FP36 ADD S L FP36 ADDA L FP36 SUB S L FP36 SUB A L FPSQ ADD +SUB P |
ADD UNLIKE ADD LIKE SUB . LIKE SUB UNLIKE -
SIGNS SIGNS SIGNS SIGNS TO INT CYCLE
[ - I ]
TS 33 Tigl
—] PHE3 PHE3
P,
FP36 FMA FP3Z2IaLs H 2
STROBE LD FMA
;VRD *1 LWL BE B
RUE WHELNY FOUNDING
\ZS NO7 REQUESTED FLPDBZF ::s H b
o 27 Frra @ (B) H
OR ZF SB¢L 0
|
B Eﬁ,sa chgo |k ] EP33 CNQO ~ L Yo}
> plg BUS o MBS — T
L
F‘D‘
Sl
Ed
] P32 | ALs ~ GRT H TO NOR CYCLE
LD FMA —
®
QTY. DESCRIPTION l PART NO. T
- PARTS LIST
- ORN. ., DATE EQUIPMENT
u o oy
el UNLESS OTHERWISE SPECIFIED ‘?e"/"”“”’ 275 /7 E EHHEHCORPORATION
A DIMENSION IN INCHES CHK'D. DSA/TE%é AAYNARD MASSACHUSETTS
n:cmllsTO';EchfNoc s D”/E TITLE A
tONS ANGLES -
o = 005 = 1/64 = 0°30° H
g i FINAL SURFACE oumrv/ ADD) bUBJ
b7 REMOVE BURRS AND BREAK SHARP —
HE REV SUB
3
© H ~ ~ —
FUN CYCLE
—f . REV.
x
E) -
LTI TTTTTT 1

DEC FORM NO
DRD 1024



b. Examples: +5 +5
{cont) -(+2) -(-2)
+3 +7
NOTE

In the example on the right the two quantities are
added although the operation specified is subtraction.

Referring to the flow diagram again, quantities with unlike signs during addition and like signs during
subtraction are actually subtracted. Thus A-B-1 is put on the ALU bus for these cases. Conversely,
quantities with like signs during addition and unlike signs during subtraction are actually added. In

these cases, A+B is put on the ALU bus.

4.6.3 Processing of Subtracted Quantities

If the quantities are being subtracted and the FMB contains the mantissa with the smaller exponent, it
must be determined if rounding has been requested and whether FMQ 01 is a 1. If both conditions are
true, A-B-1 is put on the ALU bus. An additional 1 is subtracted to account for the rounding of the
FMB (A-B-1=A-[B+11). This is accomplished by putting A-B-1 on the ALU bus rather than just A-B.
If rounding has not been requested, or FMQ 01 is a 0, a carry insert of +1 is added and A-B-1+1, or
simply A-B, is put on the ALU bus. This quantity, in both cases, represents the result that is loaded
into the FMA. However, if overflow occurs, it indicates a wrong assumption was made and the result

in the FMA is incorrect. This is explained in detail in the following paragraphs.

4.6.3.1 Overflow - For quantities that are actually subtracted (addition with unlike signs or subtrac-
tion with like signs), the sign of the result is assumed to be the same sign as in the FMA. If no over-
flow occurs, the sign of the result is correct. If overflow occurs, it indicates an incorrect sign has
been assumed. If this occurs, the assumed sign is complemented and the actual result is 2's comple-
mented. Two examples follow--the first shows that the assumed sign is correct, the second shows that

the assumed sign is incorrect.

Example: Sign

{no overflow) +6 0 0110 FMA
-3 1 0011 FMB
+3 0 0011 =43

No overflow, sign
correct, result correct

4-10

Sign

Example: -3 i 0011 FMA
{(with overflow) -(-6) 1 011¢ FMB
+3 1 1101

¢

Overflow, 2's complement
result, complement sign

0 0011 =+3

*

Sign complemented 2's complement of result

If rounding is not requested or FMQ 01 is a 0, 1 is added to the FMA to compensate for the incorrect
result. The result is then loaded into the FMA.

4.6.4 Processing of Added Quantities

When two quantities are to be added (addition with like signs or subtraction with unlike signs), A+B is
put on the ALU bus as described previously. 1f FMQ 01 is a 1 and rounding is requested, +1 is added
to the least significant bit of the FMA.

A check is now made for an overflow condition. A floating-point overflow causes a signal designated
GRT to be issued. The FMA is right-shifted fo transfer the overflowed bit back into the FMA; the EPA
is incremented to compensate for the shift. ADD 35 is examined prior to the right=shift-=if this bit is
a 1, FMQ 01 becomes a 1 after the right-shift and the guard bit is set. The FMA is now loaded with
the results of A+B on the ALU bus. If no overflow occurs, the FMA is not right-shifted, the guard bit
is not set, the EPA is not incremented, and the FMA is loaded directly with A+B from the ALU

bus.

4.6.4.1 Overflow Interrupt Due to Addition or Subtraction - If the addition or subtraction operation
results in an exponent greater than 27 (377777g), a temporary overflow occurs. The result con-
tained in the EPA, after the overflow, is no longer the true result. However, the true result can be
calculated by adding the contenis of the EPA, after the overflow, fo 2]7. The contents of

A SIGN/FMA are unchanged.

4.6.4,2 Overflow Interrupt Due to Rounding - If rounding is requested, and the rounding operation
produces a camry out of the ALU, the FMA is right-shifted and the EPA is incremented. If the EPA

contains 377777 and is incremented, an overflow interrupt occurs and the interrupt cycle is initiated.



4.6.4.3 Underflow Interrupt Due to Normalizing - Normalizing is accomplished by left-shifting the
FMA and decrementing the EPA for each left-shift. If, during this process, the EPA contains 4000008
and is decremented to 3777778, an underflow interrupt occurs. The contents of the A SIGN/FM,?Sore
correct. The EPA no longer contains the true result; however, this can be obtained by adding -2 to

the contents of the EPA after the underflow occurs.

Example: EPA 4000008
-1
Result left in EPA 3777778
True result = -2]8 + 3777778

It is possible for the underflow to eliminate the condition that causes the temporary overflow during the
addition or subtraction. If underflow does not remove this condition, the overflow interrupt becomes a

permanent interrupt and enters an interrupt cycle (see Paragraphs 3.8 and 3.9).

411



4.7 INTEGER ADD AND SUBTRACT

The FP15 can perform addition, subtraction, and reverse subtraction using either single-precision or
extended-precision data formats. Addition, subtraction, and reverse subtraction are performed in a
similar manner and will be explained using Drawings D-FD-FP15-0-52 and D-FD-FP15-0-53 for refer-

ence.

4.7.1 EXP Cycle

In the EXP cycle, negative integers (stored in memory in 2's complement format) are converted to sign
and magnitude format. For example, if the specified instruction is a Load or Reverse Subtract with a
negative argument, the argument is converted to sign and magnitude format and loaded into the FMA.
If the instruction is an Add or Subtract, with a negative argument, the argument is converted to sign
and magnitude format and loaded into the FMB. The negative integers are converted from 2's comple-
ment to sign and magnitude format by 1's complementing and incrementing the 2's complement integer.
For example, the number -58 in 2's complement format is 1.011. One's complementing and increment-

ing this number yields 1.101, which represents -58 in sign and magnitude format.

4.7.2 FUN Cycle

In the FUN cycle, the signs of the operands are compared. If the specified operation is an integer
add and the signs are unlike or an integer subtract and the signs are alike, the ALU is selected for
A-B-1 operation (a straight A-B function is not possible). The -1 is compensated for by a carry insert
which puts +1 in the ALU bus along with the contents of the FMA. Actually, the ALU performs an
A-B-1+1 function which reduces to A-B. A represents the FMA, and B represents the FMB, The FMB
is subtracted from the FMA and the result is loaded into the FMA.

If the specified operation is an integer add and the signs are alike or an integer subtract and the signs
are unlike, the ALU is selected to perform an A+B function which really adds the contents of the FMA
to the FMB and puts the results into the FMA,

If the two quantities are positive and added together, it is possible for an integer overflow to occur.

This is detected as a carry out of the ALU (ADD 00 high). If this occurs, the FP15 goes into an inter-
rupt cycle.

4-12

One of the last things performed in integer addition or subtraction is to determine the sign of the resuit,
This is accomplished by assuming the previous sign of the FMA is correct. If so, there is no carry gen-
erated out of the ALU, and the addition or subtraction of the FMA or FMB is done in the normal man-
ner. The A SIGN represents the sign of the result and the contents of the FMA yield the true number.

However, if a carry occurs out of the ALU, this indicates that the sign has been assumed incorrectly.
If this is the case, the existing contents of the FMA are 2's complemented and the A SIGN is comple-
mented. Several simplified examples follow that illustrate this concept. Note that a bad assumption

can only be made when the ALU is specified to do an A-B function.

Example: Bad Assumption (Integer Add)

A SIGN 1 0 1 0 FMA -28
ALU Performing

B SIGN 0| + 1 0 1 FMB +(58) A-B Function

1 1 0 1 Result ?

t (incorrect)

Bad assumption (ADD 00 H)
(2's complement FMA)
(Complement A SIGN)
ASIGN [0 ] o 1 1 Result +3
(correct)

Example: Good Assumption (Integer Add)

A SIGN 1 0 1 0 FMA —28
ALU Performing
B SIGN 1 + 0 0 1 FMB +(—]8) A+B Function
1 0 0 1 i Result -3
(correct)

Good assumption (ADD 00 L)
(Do not 2's complement FMA)
(Do not complement A SIGN)



Example: Bad Assumption (Integer Subtract)

A SIGN 0 1 0 1 FMA +58
ALU Performing
B SIGN 0| - 1 1 0 FMB -(+68) A-B Function
I:] 1 1 1 1 Result ?
(incorrect)

Bad assumption (ADD 00 H)
(2's complement FMA)
(Complement A SIGN)

1 0 0 1 Result -1
(correct)

Example: Good Assumption (Integer Subtract)

A SIGN 1 1 1 0 FMA -68

ALU Performing
B SIGN 0| - 0 0 1 FMB -(+]8) A+B Function
0 1 0 1 1 1 -7,

} 8
Good assumption (ADD 00 L)
(Do not 2's complement FMA)

(Do not complement A SIGN)

4.7.3 Overflow

If the addition or subtraction operation results in a magnitude greater than 235 =1, an overflow inter-

rupt will occur. The result contained in the FMA, after the overflow, is no longer the correct result.

4.7.4 Integer Reverse Subtraction

Integer reverse subtraction and integer subtraction are similar to each other except for the fact that, in
integer reverse subtraction, the contents of the FMA are transferred to the FMB during the FETCH cycle
and the FMA is loaded with the subtrahend when the integer reverse subtraction is specified. During

the EXP and FUN cycles, operation is similar since the subtrahend is in the FMA and the minuend is in

the FMB for both integer reverse subtraction and integer subtraction.

However, the correct result can be computed by adding 235 to the existing contents of the FMA after

the interrupt. The A SIGN remains unchanged.

Example: A SIGN (0) FMA 300007

B SIGN (0) FMB 07777788
A SIGN (1) _4(moTés
Result left in FMA 0000068
Correct Result = 235 + 0000068

4.8 FLOATING-POINT AND INTEGER MULTIPLY

In order to multiply two numbers in floating-point format, the following basic functions are performed:
calculation of exponent, determination of the sign of the product, and multiplication of the mantissas.

These are described in the following paragraphs.

4.8.1 Calculation of Exponents

During the EXP cycle, the contents of the EPA and EPB are gated into the ALU where the EPA is added
to the EPB (see Figure 4~5). The sum is strobed back into the EPA. In floating-point multiplication
operations, recall that the exponents are added while the mantissas are multiplied. In integer multi-

plication, there is no exponent calculafion.

4.8.2 Determining Sign of Product

The sign of the product is determined in the EXP cycle before the mantissas are multiplied. If the mul-
tiplier and multiplicand have the same sign, the sign of the product is positive. If the signs differ,

the resultant sign of the product is negative. In either case, the resultant sign is strobed into the

A SIGN. Negative integers are converted to sign and magnitude format; positive integers are already

in sign and magnitude format.

4.8.3 Multiplication of the Mantissas

The mantissas are multiplied by a series of additions and right-shifts of the FMA during the FUN cycle.
Before the actual multiplication occurs, however, the shift counter is preloaded with a constant of
428 (34] 0), the contents of the FMA are transferred to the FMQ, and the FMA is then cleared. The

rules for multiplication of the mantissas are:

4-13



1. Test the least significant bit of the FMQ.

a. IfFMQ 35isa 1, add the contents of the FMB to the contents of the
FMA and shift and load the FMA and shift the FMQ right as one 70-bit
register.

b. If FMQ 35 is a 0, do not load the FMA with A+B, but merely shift the
FMA and FMQ right.
2. Decrement the shift counter and test for a borrow.
a. If a borrow is detected, the multiplication is complete.
b. If no borrow is detected, repeat the first step.
3. After a borrow has been detected, the multiplication is complete if it is a floating~

point multiply. If it is an integer multiply, the contents of the FMA and FMQ are
swapped and the multiplication is complete.

Figure 4-4 shows a simplified flow diagram of the above rules. For floating-point multiplication, the
~ most significant bits of the product are retained in the FMA. For integer multiplication, as a result of

the swap, however, the most significant bits of the product are retained in the FMQ.

4.8.4 Multiply Algorithm

In order to depict the multiply algorithm, Figure 4-5 Shows a simplified example where the number 5
(101 2) is to be multiplied by the number 4 (1002). EPA and EPB are both equal to 3, so in the final
product, the binary number will be shifted six places to the right. Initially, the shift counter is
loaded with 2, the FMA is transferred to the FMQ, and the FMA is cleared.

NOTE

The shift counter is loaded with one less than the num-
ber of stages in the FMQ. Since the example uses a
three—stage FMQ, a count of 2 is preloaded into the
shift counter. In the case of the FP15, the shift count-
er is looded with 42 (3410), actually 35y shifts may
occur before a borrow is produced.

In the first step, the least significant bit of the FMQ is tested. Since it is a 1, the contents of the
FMB are added to the contents of the FMA and the entire FMA and FMQ are shifted right as one 6-bit
register. Each time a shift occurs, the shift counter is decremented. The shift counter now contains a

count of 1.

In Step 2, the least significant bit of the FMQ is tested again. Since it is a 0 in this case, the FMA
and FMQ are merely shifted right. The shift counter is again decremented (this time to 00).

4-14

EXP _CYCLE
EPA PLUS EPB NOTE. A
— EPA No EXP cycle for Integer Multiply.
CALCULATE
A SIGN
A SIGN
AND B SIGN
SAME?
MAKE A SIGN MAKE A SIGN
NEGATIVE POSITIVE
FUN_CYCLE
LOAD SHIFT l
COUNTER WITH | FUN = T1
NOTE" 42g, (3440) SWAP FMA
Shift counter loaded AND FMQ
with 34,4, However,
3540 counts will occur FMA — FM
before borrow is produced. Q
NOTE:
Floating point multiply- NO
most significant bits —=FMA
Intege it INTEGER
nteger muitiply- OVERFLOW
YES NO most significant bits—»FMQ l
ADD FMB TO SHIFT FMA |N$SR;8PT
FMA, PUT AND FMQ CYCLE
SUM IN FMA RIGHT

.

SHIFT FMA
AND FMQ RIGHT

I

1

DECREMENT
SHIFT
COUNTER

' DONE »

INTEGER
MPY.

?

Figure 4-4

YES

Multiply Simplified Flow Diagram

15-0581




Initial Conditions:

In Step 3, the least significant bit of the FMQ is tested again and is a 1. Consequently, the contents

100 x 101, = ?
419 x 519 = 2010 of the FMB are added to the contents of the FMA and the FMA and FMQ are shifted right. The shift
EPA = 3 counter is again decremented to 11, indicating a borrow condition. This signifies that the multiplica-

}ES\;B - ?00 tion is complete and the product is .010100 x 26, This number is 010100. in binary after the binary
FMA = 101 . : : iaht.
MO = 000 point has been shifted six places to the righ
After Swap If this were an integer multiply, the FMA and FMQ would be swapped. In the example presented, a 1
FMA = 000
EMQ = 101 is contained in the FMQ ofter the swap. For integer multiply, any 1 contained in the FMQ after the
swap results in an overflow interrupt. Therefore, a product up fo a maximum of 35 bits in length
AfrerF'Sv“/X:p_ 000 " - (length of the FMA) is possible in the FP15 for integer Multiplication. Drawings D-FD-FP15-0-54 and
- M M )
FMQ - 101 a E—e = D-FD-FP15-0-55 represent flow diagrams of multiplication in the EXP and FUN cycles, respectively.
Lo foofrfo]r]

Step 1

Test least significant bit + -nn FMB

(LSB of FMQ)

If 1, add FMB to FMA ma |1 [ofJo |1 Jo]1] fma
and SNOONONONNN
Shift FMA and FMQ right ma o [1]ofo]1 o] mma
and

Decrement Shift Counter Shift Counter

Step 2
Test LSB of FMQ a (01 ]olo]1]0o] ema
SOOI
1£0, shift FMAand FMQright  FfMA |0 [0 [1 Jo Jo [ 1] Fma
and

Dec;'emenf Shift Counf‘er n Shift Co;nfer
[0 [o]

Test LSB of FMQ lolo]n |olo|lj

If 1, add FMB to FMA + nnn

and ! ! [ 0 l ! l 0 | 0 [ ﬂ
NUONNNONN
::;ﬂ' FMA and FMQ right I 0 I 1 l 0 l 1 , 0 Iﬂ

Decrement Shift Counter
- SC Borrow

EPA+EPB=3+3=6 Multiply Complete

6

Answer = .010100 x 2~ = 101002 = 248 = 20

10

Figure 4-5 Multiply Algorithm
4-15



4.8.5 Floating-Point Overflow

The following paragraphs describe the interrupt exceptions which can occur during floating-point mul-
tiplication. An overflow or underflow in the EXP cycle is temporary, since it can be removed by an

underflow or overflow, respectively, in the FUN cycle.

4.8.5.1 Overflow Interrupt - EXP Cycle - A temporary overflow can occur if a positive EPB is added

to a positive EPA with a negative result. An example of this is:

EPA 00

{ SIGN) |
377777 = EPA =011 111 111 11 1M
000001g = EPB = 0.00 000 000 000 000 001

400000 = Result 1.00 000 000 000 000 000

LsicN

The overflow condition is detected as a result of the sign bit (EPA0D) going from O to 1.

It is possible that this temporary overflow can be eliminated during the NOR cycle if normalize is re-
quested. Decrementing the EPA during normalize may reduce the number so that it can be contained in
the EPA. If so, the temporary overflow condition is eliminated. If the condition is not removed, an

overflow interrupt will occur at NOR*TS03.

4.8.5.2 Underflow Interrupt - EXP Cycle - A temporary underflow can occur if a negative EPB is
added to a negative EPA with a positive result. An example of this is:

EPA 00

§ SIGN)
400000 = EPA = 1.00 000 000 000 000 00O
400000 = EPB = 1.00 000 000 000 000 000
1000000 = Result = 10.00 000 000 000 000 000

iGN

4-16

ible that this temporary underflow can be eliminated during the NOR cycle if rounding is re-

-1

quested. This is possibie only if the EPA just underfiowed, since rounding can oniy increment the EPA
once and only if a carry was generated out of the ALU. If the underflow condition is not removed, an

underflow interrupt will occur at NOR*TS02,

In effect, two negative quantities are added with a result too small to be shown in the register. The
change of sign in the EPA from negative to positive is detected as an underflow. The bit (EPA 00 go-
ing from a 1 to a 0) is preserved until the NOR cycle, where it is possible for rounding, if requested,

to eliminate the condition causing the interrupt,

4.8.5.3 Overflow Interrupt - NOR Cycle - At NOR*TS02, the guard bit is examined. If the bit is
set, and rounding is requested, 1 is added to the least significant bit of the FMA. If this operation

produces a carry out of the most significant stage of the ALU, the FMA is right-shifted and the EPA is
incremented. If the EPA contains 377777¢ before it is incremented, an overflow interrupt will occur

and the interrupt cycle is initiated.

It is possible during rounding that incrementing the EPA will remove the condition causing the tempo-
rary underflow in the EXP cycle. If the condition is not removed, the interrupt flag is raised. For ex-
ample, assume that the EPA contained 377777g in the EXP cycle due to underflow and that a rounding
request was made. The rounding caused a carry out of the ALU that necessitated right-shifting the
FMA and incrementing the EPA. Incrementing the EPA to 400000 removed the temporary underflow.

4.8.5.4 Underflow Interrupt - NOR Cycle - If normalize is requested, it is performed during the
NOR cycle for floating-point multiplication. As the mantissa is being left=shifted, the EPA is being
decremented. During normalize, if the EPA should be decremented from 400000 to 377777, an under-
flow interrupt will occur at NOR*TS03 and the interrupt cycle is initiated. This is detected as a re-

sult of EPA 00 going from 1toa 0.

It is possible during normalize that decrementing the EPA will remove the condition causing the tem-

porary overflow in the EXP cycle. If the condition is not removed, the interrupt flag is then raised.



8

[ bS=8-51d9dq] 2 | .

This drawing and specifications, herein, are the prop-
erty of Digital Equipment Corporation and shall not be
reproduced or copied Of usad in whole Or in part 3%
he Dasis for the manufacture or sale of items without
whften permission.

] Rev.

REVISIONS
CHANGE NO.

TRZi MPY EXP T

FP39 DIVEXP-TI

FP33 EXP SEL

AVE I EPR —» ALY

FP33 AUB; epﬁ—.pwll

FP39 MPY EXP

FP31 EPA 8 (0
EPB 84 (B
- ADD 8

]

FP37 SELA
NEG EPA—~P0S EPH
WITH POS RESULT

YIELDS UNDERFLOW|

FP43 EPA & (1
EPB @8 (1N
—ADD /8

e

FP43 SELE

NEG EPA+ NEG EPS
WITH POS RESULT
YIELDS UNDERFL

FP39 MPY + DIV
EXP P

Fp32 ¥+ ASIGN

FP33 AUBI,
EP8+ ALY BUS

P3 ¥ FPC

FP32 EPA LD
EPB —» EPA

TO FUN CYCLE

0 o

N/

[FP43 MuL+pIv UnD P |

FP43
I —» UND SYNC
SAVE UNDERFLOW
FOR ™ POSST BLE INT
ERRUPT IN NOR.

TO FUN-CYCLE

D
FP39 EPA 06 (B) FP37 EPA 20(23)
EPB @@ (1) EPB &8 (D)
ADD I8 ADD /8
FP37 SEL B FP37 SELL
POS EPA-NEG EPB POS EPA+POS EPB
WITH NEG RESULT VVTTH NEG RESULT
YIELDS OVERFLOW YIELD OVERFLOW —
FP43 MUL + DIV OVR P C

FP43 | 9 OVR SYAC|
[SAVE OVERFLOW

FOR POSSIBLE INT
ERRUPT IN NOR,

TO FUN CYCLE

© BROFPIS 0 54 " | T

lFIRST USED ON OPTION/MODEL

EXP CYCLE

uFLOATING VUL E DIV

A
QrY. DESCRIPTION l PART NO. H%M
PARTS LIST
DO NOT SCALE DRAWIG —[oRi= P& " EQUIPMENT
SRLES: OTHERWISE SPEaES oo A Hn@n nCORPORATION
IN INCHES g‘LE/ MAYNARD, MASSACHUSETTS
TOLERANCES A
FRACTIONS

|S|ZEIOODE| NUMBER REV.
:_~ FINISH [SCALE D D FpiS - 2 - 54 N o
—5 SHEET oF ost. | | TT T T T T T |
Em 8 7 6 ) 4 3 2 | !



- ﬂdl l
8 7 L I 5 l 4 l [ Ay l gga)ﬁn% g'd jlgo: 371 2 ]
This drawing and speccations, hecein, are the prop-
erty of Digite: Equipment Corparation and shall not be
reproduced or capud Of usad in whole or in part as
the basis for the manufscture or sale of items without
e pariton
rse
D
i s7or puasE | 799
FUN
MPY SEL Frp3g
- FIX MEY 7S/
P FP33
FP3 FFP38 - FP33 FP®Y
SC ADDR A o[ __merswar 50,83, Fme+ [ @ sToP PHASE |
42.)>INPUT OF ] FamB ALU BUS
HIF FP32
SHIFT COUNTER MXBI; FMA >
1 FMQINPUT
FP3
FUN-TI:P2 3 pas
LOAD SC S@,51, MODE
g ALL 8us I
P39 FP38 FP38
MPr SWAP P FP38 MPY SHRT DII MQ | [ DIV SWAP ]
4 s FP33 FP32
res P32 MXB8 MXA £P32 AUA; FMQ~> MXBI FMA—> d
S, @ FMA ADDITION RESULT Al Bus FMa INPUT
MLS FMA> FMQ IS SHIFTEO RIGHT

FP39

CARRY EN

ON FMA JNPUTS

Fr99

CARRY P

FP3%

[

]

DIV SWAP P FpP3g

739 w7 SHRT ] ws ws |7
FMA - FMQ
FP32 FP32] FMQ - FMA
RS LORD FMA ARS , MRS
MRS ; SHIFT SHIFT FMA ¢ k
FMQ@ RIGHT FMG RIGHT ] P32 e
FUN¥T3 -
[ J MODEFY ASIGN "
IF BESIRED |
el
Downr counT sc| £ l ——
5 :g
70 NOR CrCLE o
EI
2
s}
a
'S
i
Ko
B
FIRST USED ON OP /MOD Qrv. DESCRIPTION l PART NO. J'LEO”'
PDPI5 PARTS LIST
7T URLESS OTHERWISE SPECIFED_Jogry BATE EQUIPMENT
2 UNLESS OTHERWISE SPECIFIED |- Ehezl] mﬂaﬂan CORPORATION
] DIMENSION IN INCHES CHK'D, D‘TE, i MAYNARD MASEACHUSETTS
L4 S Rk A
TOLERANCES < /e
. DECIMALS FRACTIONS  ANGLES G, o .
wls = 005 = 1/64 = 4 oA "{' .‘,: f
22 e T FLOAT & INTECER
e o P, VUL FUN CYCLE
i x5 XT - BHER ASSY
7 7 A-ML—FPI5 SIZE[CODE NUMBER l REV.
=T FINSH [P iy DFD|FPI5—g — 55 7
5 7 4 lsumiorl st ] T T T T T T T4 4
mES 8 7 | S 1 4 | ? ]

4-18



4.8.5.5 Integer Overflow - The only interrupt possible during integer multiply is an integer over-
flow. After the FMA and FMQ are swapped, the FMQ is examined. If the FMQ is not zero, an over-

flow interrupt occurs and the interrupt cycle is initiated.

4.9 FLOATING-POINT DIVISION

To perform floating-point division in the FP15, both the dividend and divisor must be normalized. The
dividend is normalized in the FUN cycle. The basic functions performed in the division process in-
clude calculation of exponents, determination of the sign of the quotient, and division of the mantis-
sas. These are described in detail in the following paragraphs. Refer to Figure 4-6 which represents

a simplified flow diagram of floating-point division.

4,9.1 Calculation of Exponents

During the EXP cycle, the contents of the EPA and EPB are gated onto the ALU where the EPB is sub-
tracted from the EPA. The difference is loaded back into the EPA. In floating-point division, the

exponent associated with the divisor is subtracted from the exponent associated with the dividend.

4.9.2 Determining Sign of Quotient

The sign of the quotient is determined in the EXP cycle before the mantissas are divided. If the divi-
dend and divisor have the same sign, the sign of the quotient is positive. If the signs are different,

the quotient is negative. In either case, the sign of the quotient is stored in A SIGN.

4.9.3 Division of the Mantissas

The dividend mantissa is divided by the divisor by a series of subtractions and left-shifts of the FMA.
This process is performed in the FUN cycle and can be reduced to the following rules:
1 . Normalize the dividend and divisor. If the divisor is not normalized, an abnormal
divide interrupt will occur. To keep track of the number of shifts as a result of
normalize, the shift counter is loaded with an octal count of 438 (3519). Each

shift decrements the counter and, on completion of normalize, the counter is dis-
abled. If more than 35 shifts occur and the number is not normmalized, the FMA is 0.

2. Subtract the FMB from the FMA and test the sign of the difference (located in
ADD 00):

a. If the sign is positive,
* Shift a 1 into the least significant bit of the FMQ.
Left-shift and load the FMA with the difference just obtained.

(continued on page 4~20)

EXP CYCLE NOR CYCLE

EPA -EPB
—= EPA

'

CALCULATE
A SIGN

SET GUARD
BIT

MAKE A SIGN MAKE A SIGN
CLEAR EPA
NEGATIVE POSITIVE aEea
ROUND FMA
FUN CYCLE LOAD SHIFT
COUNTER WITH

COUNT OF 43g | FUN*TI

(3510)
YES DISABLE
FMA Q1 - 1 i
COUNTER
SUBTRACT FMB
FROM FMA NO
DIVIDEND —FMA
DIVISOR—=FMB NORMALIZE AND
DISABLE SHIFT
COUNTER (GO TO
NORMALIZE FLOW)
FMA > FMB FMB >FMA
LEFT SHIFT
FMA
SHIFT
O—+FMQ
INCREMENT
EPA
LEFT SHIFT
AND-LOAD FMA
WITH RESULT
OF SUB -
TRACTION
SHIFT
1—=FMQ
[ 1S YES
MSB OF SHIFT FMA
FMQ=1 RIGHT
’ ?
o ;
SWAP FMA
AND FMQ

15-0582

Figure 4-6 Floating-Point Divide Simplified Flow Diagram

4-19



a. {(continued)

NOTE

If this is first subtraction, and a 0 sign is produced,
the EPA is incremented. This condition applies only
to the first subtraction.

b. If the sign is negative,
Shift a O into the least significant bit of the FMQ.
Left-shift the FMA.

3. Test whether the most significant bit of the FMQ is a 1.

a. [If the bitis 1, the division function is complete. Before this fact is de-
tected, the FMA is left-shifted and loaded (if a negative sign) or left-
shifted (if a positive sign) and should not have been. It is therefore nec-
essary to shift the FMA right. Otherwise the bit shifted out of the MSB
of the FMA will be lost. ’

b. If the bit is 0, repeat Steps 2 and 3.

4. Swap the FMA and FMQ. The FMA will now contain the quotient and the FMQ
will contain the remainder.

4.9.4 Divide Algorithm

Drawings D-FD-FP15-0-54 and D-FD-FP15-0-57 are flow diagrams of the EXP and FUN cycles during
floating-point division. Figure 4-7 is an example of how the divide algorithm is implemented. The
number 0.1115 (0.875]0) is divided by 0.101, (0.625]0). These numbers are loaded in the FMA and
FMB, respectively. According to the rules just described, the first step is to subtract the FMB from the

FMA, since both numbers are already normalized. The first subtraction produces a 0 sign which causes:

a. the EPA to be incremented,
b. a1 to be shifted into the FMQ, and
c. the result of the subtraction to be left-shifted and loaded into the FMA.

The most significant bit of the FMQ is not a 1, so the process continues. The second subtraction
(FMA-FMB) produces a sign of 1 which causes:

a. a0 to be shifted into the FMQ, and
b. the FMA to be shifted left.

The most significant bit of the FMQ is still not a 1, so the process continues. The third subtraction

produces a 0 sign which causes:

a. al to be shifted into the FMQ, and
b. the result of the subtraction to be left-shifted and loaded into the FMA.

4-20

Example: 0.111+0.101 = ? NOTE
(.875] = .625]0 = 1.4)

o

Exponent calculation and sign of result are deter-

FMA = 0.111 mined in EXP cycle and are not shown here.
FMB = 0.101
EPA = 0
EPB = 0
FMQ = 0
STEP 1 lo. [1 [1]1 |mma
Subtract FMB from FMA
Test sign - [0.,] '0,1 |FMB
If 0, (a) increment EPA (only for first subtraction)
(b) shift 1 into LSB of FMQ , 0. l 0 l 0 l Difference

(c) left shift and load difference - FMA SIGN
FMQ i

STEP 2 IO.’I 0 [0 | Newrma
Subtract FMB from new FMA
Test sign - o [v Jo]1 Jems

If 1, (a) shift 0 into LSB of FMA
(b) left shift FMA (no load)

r[1 |1 1 ] 1 ] oitference
maCT o) SIGN
[o. J1 ]oo]rma
o s

1. 10 01]0 Left-shifted

FMA
STEP 3 L. 1o ] o]o] Newrma
Subtract FMB from FMA SIGN
Test sign

If 0, (a) shift 1 into LSB of FMQ
(b) left shift and load difference = FMA

lo.[1]o]1]ems
[o.] o [ 1] 1] bifference
1_

SIGN
ma (10 [oll | 1] 0 | Newrma
\\
[o.io | 1 [ 1 ] FMA dfter
right shift
MQ
FMB/FMQ after swap lo [t Jo i ]J[o]o]r 1]

NOTE

EPA was incremented due to O sign from first subtraction.
The binary point is thus relocated from .101 to 1.01, or
1.2510. The true answer should be 1.4 but this number
cannot be represented with three binary bits.. The clos-
est answer without exceeding the true answer is 1. 2540~

*MSB of FMQ =1  Division complete

Figure 4-7 Floating Point Divide Algorithm



This condition causes a 1 to appear in the most significant bit of the FMQ indicating the division is
complete. However, the FMA has been left-shifted and loaded with the result of the last subtraction.
This occurred before it was detected that the divide was complete. As aresult, a bit was shifted out
of the MSB erron‘eously. Consequently, the FMA is right-shifted to restore the bit and then the con-
tents of the FMA and FMQ are swapped. The FMA now contains the quotient and the FMQ contains

the remainder.

Since the EPA was incremented in the first step, the final answer of . 101, if the FMA is adjusted to
1.0]2. This yields a decimal number of 1.25, whereas the true answer should be 1.4. However, with
three bits it is impossible to represent 1.4 in binary form; the closest approximation to this number
without exceeding it is 1.25. Much greater accuracy is obtained in the FP15 which uses 36-bit man-

tissas.

During the NOR cycle, several additional events happen (refer to Drawing D-FD-FP15-0-59). If the
MSB of the FMQ is a 1 after the FMA and FMQ are swapped, the guard bit is set, and rounding is re-
quested, +1 is added to the least significant bit of the FMA. If the guard bit is 0, the FMA is checked
at NOR*TS02 to see if the FMA is 0. This is done by selecting the ALU for A-B-1 operation, where A
represents the FMA, and B = 0 (by being disabled from the ALU). If A =B is true, FMA = 0. In this
case, EPA/A SIGN is cleared. With the guard bit set, the zero check of the FMA is not performed.

4.9.5 Interrupts

Five possible interrupt exceptions can occur during floating-point Division: EXP cycle overflow and
underflow and FUN cycle overflow, underflow, and abnormal divide. The conditions causing each

type are described below.

4.9.5.1 Overflow Interrupt - EXP Cycle -~ An overflow interrupt can occur if a negative EPB is sub-

tracted from a positive EPA with a negative result. An example of this is:

¥ SIGN
300002g = EPA = 0.11 000 000 000 000 010
400000g = EPB = 1.00 000 000 000 000 000
700002g = Result = 1.11 000 000 000 000 010

The sign bit (EPA 00) going from O to 1 is preserved until the FUN cycle. If normalize is requested, it
is possible that decrementing the EPA during normalize will remove the overflow condition. If so, an

overflow interrupt will not occur. If the overflow condition is not removed, an overflow interrupt will
occur at NOR*TS03.

4.9.5.2 Underflow Interrupt - EXP Cycle - An underflow interrupt can occur if a positive EPB is

subtracted from a negative EPA with a positive result. An example of this is:

(EPA 00)
¢ SIGN
477777 = EPA = 100 111 11 11 111 11
377777 = EPB = 011 111 11 111 111 11
1 077776 1000 111 111 111 111 110
4 siGN

In effect, two negative quantities are added with a result too small to be shown in the register. The
change of sign in the EPA from negative to positive is detected as an underflow. The sign bit (EPA 00
going from a 1 fo a 0) is preserved until the NOR cycle where it is possible (if rounding is requested)
to eliminate the condition causing the underflow. This is possible only if the EPA underflowed by 1
since rounding only increments the EPA once and only if there was a carry generated out of the ALU.

If the underflow condition is not removed, an underflow interrupt will occur at NOR*TS02.

4.9.5.3 Overflow Interrupt - FUN Cycle - It is possible to get an overflow interrupt during the first
shift of the divide operation. If the first subtraction produced a 0 SIGN, the EPA is incremented. If
the EPA contained 377777 and is incremented to 400000g, an overflow interrupt will occur at
NOR*TS03. This is detected as a result of the sign bit (EPA 00) going from a 0 to 1 condition.

4.9.5.4 Underflow Interrupt - FUN Cycle - If normalize is requested, it is performed during the
FUN cycle for floating-point Division. As the mantissa is left-shifted, the EPA is decremented. Dur-
ing normalize, if the EPA should be decremented from 400000 to 377777; an underflow interrupt will
occur at NOR*TS03. This is detected as a result of EPA 00 going from a 1 fo a 0.

4.9.5.5 Abnormal Divide - FUN Cycle - If the most significant bit of the divisor (FMB) isnot a 1,
an abnormal divide interrupt is initiated indicating an unnormalized or 0 FMB. This interrupt is not
delayed until NOR*TSO03 as is the case with overflow and underflow interrupts. The interrupt is raised
immediately at FUN*TSO1.

4.10 FLOATING POINT REVERSE DIVIDE

In a Divide instruction, the dividend is loaded into the FMA by a Load instruction and the divisor is
loaded into the FMB by the Divide instruction. However, assume that as a result of some previous op-

eration, a number which is to be used as a divisor is left in the FMA. In this case, a Reverse Divide
instruction can be issued that gates the divisor from the EPA /A SIGN/FMA to the EPB/B SIGN /FMB

during the FETCH cycle and loads the dividend into the EPA/A SIGN /FMA.

4-21



4.11 INTEGER DIVISION
Integer division in the FP15 is accomplished during the EXP and FUN cycles. The most significant bits
of the dividend and divisor must be 1s (normalized) before the actual division can be performed. Be-

cause of the integer divide algorithm, the dividend must be larger than the divisor for integer division;

otherwise, the quotient is fractional and the FMA is ultimately zeroed.

The dividend is loaded into the A SIGN/FMA as a result of the Load instruction; the divisor is loaded
into the B SIGN/FMB as a result of the Integer Divide (IDV or EDV) instruction. If the divisor is

negative, it is converted to sign and magnitude format.

4,11.1 EXP Cycle

Normalization of the dividend and divisor is performed in the EXP cycle. The FMA contains the divi-
dend and the FMB contains the divisor; the contents of the FMB are then transferred to the FMQ.

If the most significant bits of the FMA and FMQ are 1s, nothing further occurs during the EXP cycle
except that the contents of the FMQ are transferred back to the FMB. Three other possible conditions
that can occur are:

a. If the MSB of the FMA is a 1 and the MSB of the FMQ is not a 1, the FMQ is shifted

left. Each left—shift causes the EPA to be incremented. The process is terminated
when the MSB of the FMQ becomes a 1.

Example:
EPA FMA FMQ
ojo}o 1 0o 0|oO 1
0] 0|1 1 00 0|1 0
0 110 1 0f|o0 1100

b. If the MSB of the FMQ is a 1 and the MSB of the FMA is not a 1 the FMA will be
cleared since the divisor is larger than the dividend. No integer divide will occur.

c. If neither the MSB of the FMA nor FMQ is a 1 both are shifted left. If the MSB of
the FMQ becomes a 1 before the MSB of the FMA, this relates back to Step 2 and
no integer divide can occur. If the MSB of the FMA becomes a 1 before the FMQ,
the FMQ will continue to be shifted left; however, the EPA is incremented for each
left-shift of the FMQ not accompanied by a left-shift of the FMA.

When both the MSB of the FMA and FMQ are 1s, the contents of the FMQ are trans-
ferred back to the FMB and the EXP cycle is concluded.

4-22

4.11.2 FUN Cycle

In the FUN cycle, the actual division process consists of a series of subtractions which, depending on
the sign of the difference, cause the FMA to be (1) left-shifted or (2) left-shifted and loaded with the
difference just obtained. Again, depending on the sign, FMQ 35 is set temporarily storing the quo-

tient. The algorithm can be reduced to the following set of rules:

a. Load the shift counter with the value of the EPA obtained during the EXP cycle.
b. Clear the FMQ.

c. Subtract the FMB from the FMA.
1. If the sign of the difference (AD 00) is positive:
- Transfer 1 to the LSB of the FMQ
Left-shift and load the FMA with the difference obtained

- Increment the EPA, if this is the first subtraction. This increment of the
EPA is performed merely as a matter of routine for integer divide, and is
primarily used for floating-point Division. '

2. If the sign is negative:
* Transfer a O to the LSB of the FMQ
Left-shift the FMA

d. If the division is integer, decrement the shift counter and check for a borrow.
1. If no borrow occurs, go back to Step 3 and repeat the process.

2. If a borrow is generated, the divide function is completed. However, the last
left-shift or left—shift and load was performed before the borrow was detected;
this causes the MSB to be shifted out of the FMA and an erroneous remainder
would result. The FMA is shifted right to comrect the condition.

e. Swap the confents of the FMA and FMQ. The quotient is now in the FMA and the
remainder in the FMQ.

4.11.3 Divide Algorithm

Drawing D-FD-FP15-0-56 is a flow diagram of integer divide during the EXP cycle and Drawing
D-FD-FP15-0-57 shows the flow during the FUN cycle. A better understanding of integer divide can
be obtained by reviewing the rules just described using the flow diagram for reference. An example
of integer divide using two 3-bit numbers is shown in Figure 4-8. For clarity, only those registers

that change as a result of a particular action are shown.



| [ To5—.8~509gdq)2 |

This diawing and specifications, herein,

erty of Digitat Equipment Corporation and shail not be
reproduced or zopeed or used in whole of in part s
-1 the basis for the manufacture or sae of flems without
written permission.

TS@3
FP39
SCADDR A 43g)= D
L oF ShIT Fro9
COUNTER /- STO0FP FPHRSE
FP33
FP3/ AUA
NO
R, FMQ—» ALY BUS
YES
ma seL |77 [
FP34
NO
FP43
vES ALS MLS EPA DT (D)
SHIFT FMA unvo. Srywe (@)
7504 & FMQ LEFT
‘[ _compma | [ _comems__|7* v o C
. MLS FP39
p FP33 [= FP33
A, MODE B8,5¢,82, MODE 2/:’/2’:7;_/__7_ SET ZERO 1> ovR,cHECK £pa | P43
COMPLE MENT OF COMPLEMENT OF - S70P SHZFTING CAN NOT OVER-
FMA-A LU BUS FMB-» ALU BUS ANSWER = ZERO zt}?;v;—_gzg;_no/?v
L FpP34 L FP32
COMP MA P, ALS |gp3z [COMPMB A BLS |rp3p
LOAD FMA WITH LOAD FMB WITH FP3g
ITS COMPLE MENT ITS COMPLEMENT
P
rs@2 o No —
/> OVR SrNnC FPe3 :
SHOWLD NOT =
Tnves P znves 7P Mcl INT 7P Exp oF INT D1V
(o]
FP33 FP33 FP33
CNEG CN@P 8,81, 83 l ‘LO
CARRY INTO CARRYINTO MODE § I
PLY BI7 35 ALY BI7 35 FH8B - ALY BUS TO FUN creLE 3
\L s}
[anca P ]FP znce P PP [ wqInT P | PRI o
FP32 FP38 FP32
ALS C DIV INTP MLS
+1> FME = FAIQ
FMA FP32
MLS, BLS
FMB+1- FMB FPP9
FMB +1 > FMQ [ ¢- sT0P PHASE | B
l FPCA R SET SYwnC
FP39
£0 01 counT £ Frss
LOAD SC WITH
43, @ EPA
FP32
8 8L5s 3
FMQ —> FMB
FIRST USED ON 0P/ MOD Q. DESCRIPTION l PART NO. J.TEM
PDPI5 - No.
; l PARTS LIST
—
> UNLESS OTHERWISE SPECIFIED_JORN., DATE. EQUIPMENT
Z -UNLESS QTHERWISE SPECIFIEDJORN. . ATE 4
= 70 FUNCYCLE UNLESS O SPECIRED | et 13171 t CORPORATION
DIMENSION IN INCHES (CHK'D. DATE MAYNARD, MABSACHUSETTS
A Sc/2l e A
: / ™~
212 = INTEGER DIVIDE
S|w
a|a
L EX? CYCLE
o
— s -
- A-ML-FPI5 SIZEJCODE NUMBER REV.
» FTW - SoALE DIFD|FPI5—2—56 I
3 . '
o] AR 50 0 A O
NO
ORD 1024 8 7 6 4 3 I 1

4-23



8 7 l 6 5 4 [ 3 | [T 5@ siadade)2 | 1
This ‘drawing and specifications. L are FUN A ] _YIBAON 3003|321
erty of Digital Equipment Corporation and shafl not be
reproduced or copwed or used i’n:ﬁe: l::"l: :t;n::
e s c o1v TSt () °
ez FP38 [ orvasw | FPe [ b1vapp sH_ |78
e - P2 MXB SUBTRAC- FpP32
D s¢,s/, mope |FF33 MXR; FMA & TION RESULT 18 i
¢- Y U BUS FMQ ARE SHIFTED LEFT D
~ £P3G SHIFTED LEFT ON FMA INPUTS
1 [ ozv counT sec) FF° SC ADDR A FMQ SHIFTED LEFT
FHAsE 2 FP38 43g)> INPUT OF
Mz P Fp3g | SHIFT COUNTER 7~ FM® 35 INPUT| FP27
SC ADDR 4
1 SC ADDR 8
) FP3z EPA-SC
TIVILE @) FF43 MLS; ALY BUSHFMY T
=
e Fon-T1p2 |F¥
— LOAD SC I
@ UN, NOR, | FF! £PA gg @) | FP43
EXP,WRITE UND SYNC(®)
= FPIt
S ] 7 ;
T3-P3 FP4@ FP39
NO CARRY P /> ovR creck | FP43
FP43 POS EPA COULD
C FRI FMA DI, 1 frad gc: g&(l’é @ Fr38 ovERFLOW ON
YES NORM P v £ FIRST SHIFT Cc
SHIFT FMA LEFT 32
FP4g T
NORM DONE ALS MLS
70 FNTERRUPT FPIa3 STROBE
FLow DOWN COUNT SC FMA § FMQ
FPa3
7 UND CHECK FP3
WEG EPA COULD QISABLE SC COUNT | [[oowwn counT sc
UNDERFLOW WHILE
NORMALIZING FMA I-» OVR SYNC SAVE Fre.
OVERFLOW FOR
@ ) FP3g POSSIBLE INT-
—} NO ERRUPT IN NOR
80RRO
\ Yes J« 5
@ STOP PHASE <
-
I UND SYNC SAVE
° UNDERFLOW FOR B~
POSSIBLE INT~ u;)
ERRUPT IN NOR
FP38 H
DIV SHRT P | FF38 l S§TOP DIV iR
z |
B FP32 @+ 570P PHASE | ©7P? bl
SHIFT FMB RIGHT] a
Ha)
ST VAP P FP39 17— 5STOP PHASE |79 DIV MG [773°T DIV SWAP FP39 |§u.
~ O
FP33 P32
P e #ras aum Puas | faxar s
EMG> FMA &l BUS FM@ INPUT 8
FMA= FMQ A-B-1,CNEG Fr33 l ¢ J
I MXALEMA~FME
— N ETS FP32 DIVSHRT | FF38
MODIT¥ ASIGN
IF DESIRED amc envasie |73
FMA FOR A
RIGHT SHIFT
W
[FIRST USED ON OP/MOD
Y. ITEM
@ PDP IS Q DESCRIPTION I PART NO. l NO.
7 PARTS LIST
EQUIPMENT
A t CORPORATION
rarniAnD vasarCHURETTS
' TITLE A
Z 2 = 008 = 1/64 = 0% .- =y
Z|% i = -
T FLOAT & INTECER
5.2 INE 1 7~
i - ; 521 DIV FUN CYCLE
NEXT HIGHER ASSY
L A-ML-FPI5 SIZE[CODE] NUMBER REV. ]
5} IHN!SM ScE 7 DIFDIFP15-@~ 57 l
—fe——F— ]
[SHEET oF ost ] T T T T T T T T1

DEC +ORM NO
DRD 102A

4-24

[ 2

] 1



EXP CYCLE

FMB - FMQ

Shift FMQ left
Increment EPA

FMQ - FMB
FUN CYCLE

EPA ~ SC
0~ FMQ

Increment EPA

1 - FMQ

Left shift and load FMA with
difference

Decrement SC

1 - FMQ

Left shift and load FMA with
difference

Decrement SC

Right shift FMA

Swap FMA and FMQ

EPA FMQ FMA FMB
0j]0 |0 0 oo 1 0 011
0 1 0
0|0 1 1 0| o0
110
SC FMQ FMA FMB
010 1 0010 1 0 10
- 0] o0
1 0
0|0 |0 010 1 00
- 010
0 0
1 1 1 0 1 1 01]0
—
o]0
——
0|0 0 1 1
Remainder Quotient = 0]12 = 3‘0

Figure 4-8 Integer Divide Algorithm

4.11.4 Interrupt Exception - Abnormal Divide

The only interrupt that can occur as a result of performing integer division is abnormal divide. Ab-
normal divide occurs if the most significant bit of the FMB is 0 (FMB 01=0). The abnorma! divide in-

terrupt flag is raised immediately at FUN*TS01.

4.12 INTEGER REVERSE DIVISION

In a Divide instruction the dividend is loaded info the FMA with a Load instruction and the divisor is
loaded into the FMB by a Divide instruction. If, as a result of some previous computation, the pro-
posed divisor is in the FMA, a Reverse Divide instruction can be issued. This instruction causes the
divisor to be gated from the FMA to the FMB during the FETCH cycle and causes the dividend to be

loaded into the FMB.

4.13 INTEGER STORE

For single-precision Integer Store instructions, A SIGN and bits 19 through 35 of the FMA are stored
in 2's complement format at the argument address (refer to Drawing D-FD-FP15-0-58). For extended
integer Store, A SIGN and bits 01 through 35 of the FMA are stored in 2's complement format in two
locations starting at the argument address. If the result of an arithmetic operation resulted in a nega-
tive answer, the answer is converted to 2's complement format prior to being written into memory .
Two's complemenhng is accomplished by 1's complementing the negative answer in FUN*TSOZ and in-

crementing this value in NOR*TSO] No operands are fetched from memory during a Store instruction.

4.13.1  Overflow Interrupt

If any of the high-order bits (bits 00-18) are o 1 during a single Integer Store, an overflow interrupt is

initiated at FUN*TSO1. No interrupts are possible with double Integer Store instructions.

4.14 FLOATING-POINT STORE

For single-precision floating-point Store instructions, the first word is stored in 2's complement format
at the argument address and consists of bits 09 through 17 of the EPA register and bits 18 through 26 of
the FMA. The second word consists of A SIGN and bits 01 through 17 of the FMA and is stored in the
argument address plus one. For double~precision floating-point instructions, the first word is stored in
The second word is stored

in the argument address plus one and consists of A SIGN and bits 01 through 17 of the FMA. The third

the argument address and consists of bits 00 through 17 in the EPA register.

word is stored in the argument address plus two and consists of bits 18 through 35 of the FMA.,

Floating-point Store instructions require no fetch from memory.

4-25



Normalize, if requested, occurs at FUN*TSO1 and rounding, if requested, occurs at NOR*TSO1.
Rounding of double~precision floating-point Store instructions cannot be specified. If rounding is re-
quested for a single-precision floating—point Store instruction, bit 27 of the FMA is examined. If it is
a1, 1is added to the FMA, bit 26. If bit 27 is a 0, no rounding occurs. Bits 27 through 35 are then
zeroed. The following interrupt exceptions can occur during a single-precision floating-point Store
instruction. The only interrupt exception that can occur during a double-precision floating-point

Store instruction is an underflow interrupt due to normalize, which occurs at NOR*TS03.

4.14.1 EPA Underflow or Overflow Interrupt

During a single-precision floating-point Store instruction, either an EPA overflow or EPA underflow
interrupt can occur at NOR*TS02*PHO3. 1f the EPA is positive, the high-order bits (bits 01 through
08) of the EPA are checked. A 1 in any of these bit positions initiates a temporary overflow. If the
EPA is negative, then the high-order bits of the EPA are checked for 0s. A 0 in any one of these bit

positions initiates a temporary underflow.

4.14.2 Underflow Interrupt Due to Normalize

If normalize is requested, the FMA is left=shifted and the EPA is decremented. If the EPA contains
4000008 and is decremented to 3777778,
that the condition causing the EPA overflow interrupt at NOR*TS03*PHO3 is eliminated when the EPA

an underflow interrupt occurs at NOR*TS03. It is possible

is decremented during normalize. If so, no interrupt is raised. If not, the temporary EPA overflow
interrupt becomes permanent and is raised at NOR*TS03. The normalize underflow interrupt can occur

for both single- and double-precision floating-point Store instructions.

4.14.3 Overflow Interrupt Due to Rounding

If rounding is requested, for a single-precision floating-point Store instruction, FMA bit 27 is ex-
amined. Ifitisal, 1is added to FMA bit 26. Should a carry occur out of the ALU as a result of
this operation, the FMA is right-shifted and the EPA is incremented. If the EPA contained 0003778
and is incremented fo (X)04008, an overflow interrupt is raised at NOR*TS03.

It is possible that the condition causing the EPA underflow interrupt at NOR*TS02*PHO3 can be elimi-
nated if the EPA is incremented during a rounding request. This condition can occur only if the EPA

just underflowed as the EPA can only be incremented once due to rounding.

4-26

4,15 SWAP, LOAD AND SWAP

The Swap instruction swaps the contents of the FMA and the FMQ. If the instruction is a Load and
Swap, the operand from memory is loaded info the FMA and then the contents of the FMA and FMQ
are swapped.

Drawing D-FD-FP15-0-60 is a flow diagram of the Swap instruction. The swap occurs at
FUN*TSO1*PHO3. The contents of the FMQ are gated to the A side of the ALU bus, and the contents
of the FMA are gated into the FMQ. The A side of the ALU bus is enabled through the ALU by de-
fault (nothing specified), and the ALU output is strobed into the FMA completing the swap.

4.15.1 Underflow Interrupt

If, as a result of normalize, the EPA is decremented from 4000008 to 3777778, an underflow interrupt

will occur and the interrupt cycle is initiated.

4.16 FLOAT, LOAD AND FLOAT FMA
The two basic types of Float instructions are:

a. Load and Float FMA, and
b. Float FMA

The Float class of instructions convert integer format to floating-point format. The Load and Float in-
structions require a memory reference cycle(s) to fetch an operand(s) from memory. The Float FMA in-
struction merely floats the existing contents of the FMA with no operand fetch involved. Floating an
integer is accomplished simply by loading the EPA with 438, which effectively relocates the binary
point to the left of the number. The infeger is thus converted fo a floating-point number--the mantissa
is contained in the FMA and the exponent of 35]0 is contained in the EPA. The following example
shows the integer 58 being converted to a floating—point number. The EPA is loaded with 3 since a
3-bit integer and 3-bit EPA and FMA have been shown for simplicity.

EPA = | O FMA = | 0.101 | = 0.1012 x 23 = 58

Drawing D-FD-FP15-0-60 is a flow diagram of the Float instruction. If a Float instruction is specified,
a signal called FLOAT SELECT is generated af FUN*TS01. At FUN*TSO1*PHO3, « Float Select P sig-
nal causes the EPA to be loaded from the ALU bus with a constant of 438 (35] o).



8 7 6 5 l 4 3 l I A3Y J ggﬁwg-gld:‘gﬂg G]Z I
This drawing and specifications. harein, are the prop: — b
erty of Digital Equipment Corporation and shall not be
el piad or used in whole o¢ in part as.
the basis for the manufacture or sale of tems without
writhen permission.
e e e —_—— e e e _— |
|
| FLOAT
SWAP FMA AND FMQ |
| | P
i I
| I
| FPI2 FUN % TI | FPI2 FUN % T1I
g I
! [FP3i_swAP ] ! [Frr Foar s
[ ; |
i H
| [Fro7em a5 oy |——0
= 09 3 (1)
v . FPo3 P 63 ¢ [FrT PR T e o]
|
| . |
FPp9 PHE3 1
| I FP4l FLORTSELH 43g 70 B ALWU ]
' 1
| EFBB B To ALW |
I’:g |
| FP<41 SwAP MQ | FP32 EPA LD
| { C
] ‘ LORDS 43 ZNV7O £A7
| [ . - _ _ -
I {FPaz ALs ] [Fra2 MisT] [FP32 mxai| [FP33 Aug] | - - - - - " == - - - - = = = = = = — —— — - -
| A SIGN PoOS
| | IRIG () IRI7 ()
1
! [ A SIGN CoNTROL
| ‘
| FMA — FMQ 3 MXBI, MLS I
| FMQ—> ASIDE OF ADDER ; AUA
| FM& —» ADDER OUTPUT BY DEFAULT| I ¢
ADDER—» FMA BY DEFAULT § ALS |
| | A SIGN NEG 7
—_—— e - e e e — IRI6 (1Y IRIT (&) H
FP32 A SIGN—» &
COMP ASIGN S
IRIG (N IRIT (1) FIE FON %53 O
[FP13 Tric v+ ZRI7 (] FPI3 IR 16 (1 s !
B
FPI3 IR16 (1 [FPI3 IR 17 (8) | S
I
75 FrTE PP PN ¥ TS %P3 ] 773z Frie Y
FPB2 [
e
CLK PULSE

FFP32 ASIGN-»|

; B
‘ ASIGN—P E i
FP3EZ P32
R
FIRST USED ON OPTION/MODEL_| ary. I DESCRIPTION l PART NO. LlL%T'
PARTS LIST -
_ UNLESS OTHERWISE SPECIFIED | DRN. DATE
E DIMENSION IN INCHES. & Wl [2/2a t Eg:p' pRM 1E. NT
Bl TOLERANCES SR, 7\1'/% SQORPoRATION
DECIMALS ANGLES |-l < 502; /8
oz Fr N ZafF | OAT, A
2|2 X = 22 cTN
2 g REMOVE BURRS AND BREAK SHARP VDA/'F‘E Z SWAP A N D AV'IU r\,
o CORNERS SURFACE QUALITY .~ /il 0
3 MATERIAL CONTRbL
il SiZEcong NUMBER REV.
5 FINISH SCALE DFD|FPI5S-2 — oL
1o SHEET oF osT] T 1T 1T 1T 1T T 1 |
mos 8 7 6 5 1 4 3 2 1

4-27




In order to load the constant into the EPA, it is first specified ot the input to the B multiplexer by a
FIX or FLOAT SEL signal. An AUAT signal enables the 438 to the output of the ALU. This is accom-
plished by forcing SO and 52 low and $1, 53 and MODE high.

4.17 FIX, LOAD AND FIX

The Fix or Load and Fix instructions convert floating-point format to integer format. If the instruction
is a Fix, no memory reference is required. An example of this is the FIX EPA (FMA) instruction that
converts the existing contents of the FMA to integer format. If the instruction is a Load and Fix, a

memory reference is required to load the FMA with the operand from memory.

Drawing D-FD-FP15-0-61 is a flow diagram for the Fix type instruction. The diagram is divided into
two major branches--one for a positive EPA and one for a negative EPA. 1f the EPA contains a nega-
tive number, the floating-point number is a fraction that cannot be converted to an integer and the

FMA is cleared.

NOTE

At FUN*TSO1, FIX ZERO is generated if the EPA is neg-
tive. This signal forces a logical zero on the ALU bus
and at Phase 2, a FIX ZERQ P signal strobes the ALU
output (zero) to the FMA resulting in a zero FMA,

If the EPA is positive, the floating-point number can be converted to an integer and the Fix operation
is initiated. The ALU is selected for A-B-1 operation during the FUN cycle. "A" represents the
EPA, and "B" represents a special constant that is 35]0 for a Fix instruction. At this point a test is
made to defermine if the EPA is equal to 438. If so, the Fix operation is completed. If not, 438 is
subtracted from the EPA and the difference is loaded into the shift counter from the ALU bus. If the

difference is positive (EPA 43 ), the number cannot be fixed since 3510 or more shifts would shift the

8
number completely out of the FMA; in this case, a Fix Overflow is generated and the Fix operation

ceases. An interrupt sequence is initiated due to the overflow resulting from EPA 438. The interrupt
sequence consists of INT 1 and INT 2 cycles that lead to a service routine in the CPU associated with

the overflow. The interrupt séquence is described more fully in Chapter 3.

If the difference between the EPA and 438 is negative, the operand can be converted from floating-
point to integer and the Fix operation proceeds. The shift counter is loaded with the negative quan-
tity that results from EPA-438 (where EPA < 438). Logic on FPO9 causes the FP15 to stop in TS02*PHO3

4-28

of the FUN cycle. At this time, the FMA and FMQ right-shifting process is initiated. Shifting is
accomplished by the FIX SHMA P signal that is generated for each shift.

The shift counter is incremented each time a shift occurs. The counter is tested after each shift to see
if a carry is generated. If not, the FMA and FMQ are shifted until a carry is generated. At this
point, the FMA and FMQ have been shifted the required number of places to fix the floating-point
number. The operation is concluded by "resetting” the logic on FP09 to allow continuation of the

phase and time states.

4,18 LOAD JEA AND STORE JEA

The Load JEA instruction loads the JEA register (bits 07-17) from bits 21-35 of the BMB. The guard
bit is loaded from BMB 19.

The JEA register is loaded by a LD JMS P signal that occurs during FUN*TSO1.

The Store JEA instruction occurs during the WRITE cycle where the operand is written into memory
(see Paragraph 2.10). JEA bits 03-17 are gated to MPO bits 03-17, and the A SIGN and guard bits
are gated to MPO bits 00 and 01, respectively.

4,19 BRANCH

The Branch instruction provides the programmer with a means of altering the program sequence. Bits
13-17 of the instruction word are used as a mask to test for certain conditions such as zero or non-zero
FMA, positive or negative A SIGN, and FMA carry. Figure 4-9 is a simplified flow diagram of the
instruction. As an example, assume the programmer wishes to test for FMA = 0 and to branch if it is.
The test mask would have bit 17 on a 1 to test the FMA. 1f the FMA is 0 and a Branch instruction has
been specified, the Branch test is successful. If indirection has been specified, the indirect cycle
must be completed. This is indicated by CHANGE H which occurs when no indirection is specified or
when indirection is specified and has been completed. The FP15 enters an INT 1 cycle that forces the
CPU to begin execution of a JMP*0 instruction. The INT 2 cycle is initiated and the FP15 forces the
CPU to accept the contents of the address register that contains the address specified by the Branch in-
struction. If the Branch is not successful, the instruction is exited, and is cleared at the end of
FETCH*TS03*PHO03. Indirection, if specified, must be completed before BUSY is cleared. The INT 2
cycle is completed at INT 2*TS03*PHO3 to complete the instruction. The Branch instruction can be

microprogrammed on an inclusive OR basis,



8 7 6 5 | 4 | [ [ 158 51902 | !
This diawing and specifications, hersin, sre tha prop-
erty of Digitet Equipment Corporation and shall not
o used in whole or in part
the bams for the manufacturs o sale of items without
ean permspon.
FIX FMA
L FP3/ FIX
FRII FUNG H D
[ FIX ZEEFRO ]
FP<tt FIX SEL —I I
FPIZ ALS 7 —
LDS FMA WITH
ZEROS
LFIK ZERO P ;‘Pst/‘
|cosrenc o —mey |
£PA — 434
ATA Lu B |_F‘1_x +_]‘FL‘0A7- SEL [ FREZ” —FPBIA=B # ,_/
P33 } CN @B L ’ it FPR&S fr c
£PH — 43g TS NOT
NEGRTIVE [ L e L s Fwa/ﬁJ |Fp4, FIX COUNT—/ | FPe8 |or® rsax GusrD ﬁz&)]
A- B FPa3 ]
, FPFO [ CLR EPA |
7S 2. )
57z [ =meer ] 2% 0 |
l PH @ 7 (7] L FPE3 | P> HBSZ6NV |
P 43 FZIX OvF FPRZ9I FPR 4/ FIX SHMA
| i Pr7 e > 25 ]
I [ FP4! FIX P | ]
[FP 43 ovmA ] - 1 B
LD SC SET
[ e 55 | e I [ Frs8 mmc | Frs2 amc |
[FP 93 z~7 ] SHIET COUNTER LORD ©
WZI7H EP/ — 43 "
8 [ FrPe Mo FPC ] lg é
2
: |
FIX SHMA P 0|
~> A —
FPBS r £e2/ o
803
fa
PRS MRS -
vo UP CounT THE SC
B
l " SE7 SYNC I
Fres
.
— 57 PHASE I
~res
FIRST USED ON OPTION/MODEL QTVJ DESCRIPTION I BART NO. l m%T
PARTS LIST |
- UNLESS OTHERWISE SPECIFIED [ DR . DATE
. DIMENSION IN INCHES. Wg;‘”"““" #-50-2 mn@nan gg:l;c?nhls'lg;
2 TOLERANCES CHKD, DATE MAYNARD MASSACHUBETTS
r DECIMALS ANGLEs Lo bones Nl TITLE
ENG, N DATE, A
oo 10" 300 Q,! 74-; KA
=} - | ENG. DATE
g..z, Xt ;&M Ao FIX F! OW
wi{o REMOVE BURRS AND BREAK SHARP 5 DATI 1 b
BH CORNERS SURFACE QUALITY " %};ﬂ;ﬁﬂ fy
=13 MATERIAL NEXT HIGHER ASSY.
- SiZEjcoD! NUMBER ‘ REV.
L. ! DFDIFPI5-2 —&i
x FINISH SCALE NCNE i © |
e ++suse*rlor/ mst]llllllllll
DEC *ORM NO
o 8 7 6 5 1 4 | 2 | 1

4-29



4-30

?

BRANCH
INST

DO NOT BRANCH

YES

FP3l BRANCH

FP32 FMA=0

FP13 IR17 (1)

FP32 NEGATIVE ASIGN

FP13 IR16 (1)

FP32 POSITIVE ASIGN

FP13 IR1S (1)

FP32 NON ZERO FMA

FP13 IR14 (1)

@1 7 @7 @

FP40 GUARD=1

FP13 IR13 (1)

OR

No

YES

BRANCH TEST
, ? p

BRANCH +

INT

ENTER INT {
FETCH *» T3 » P3

FORCE CPU
TO BEGIN

EXECUTING
JMP % 0

:

COMPLETE
INT 1 CYCLE

(INT 1% T2 %P3)

ENTER INT 2
(INT 1%T3 »P3)

FORCE CPU
TO ACCEPT
CONTENTS OF
FP15 AR

l

COMPLETE
INT 2 CYCLE
{INT 2%T3 « P3)

:

BRANCH
COMPLETE

Figure 4-9 Branch Instruction Flow Diagram

FP41

FP29

DO NOT BRANCH
CLEAR BUSY AT
FETCH % T3 %P3

15-0583

4.20 MODIFY FMA
The class of instructions used to modify the FMA are:

Zero EPA (A SIGN) FMA
Normalize EPA (A SIGN) FMA
Make A SIGN positive

Make A SIGN negative
Complement A SIGN

® Q0 oaQ
o« o s+ e

The flow diagram for control of A SIGN is shown in Drawing D-FD-FP15-0-58. This diagram is ap-
plicable to making the A SIGN positive or negative, or complementing the A SIGN. If IR16 and IR17
of the instruction word are a 0 and 1, respectively, the A SIGN becomes 0 (positive) at
FUN*TS03*PHO3. 1f IR16is a 1 and IR17 is a 0, the A SIGN becomes a 1. If both IR16 and IR17 are
Is, the A SIGN is examined and complemented at FUN*TS03*PHO3.

4.20.1

Underflow Interrupt Due to Normalization

The only possible interrupt for this class of instructions is an underflow interrupt as a result of normal-
ize EPA/A SIGN/FMA. If the exponent of the result is less than 4000008 (-2]7), an underflow inter-

rupt occurs since the resultant exponent cannot be correctly represented in the EPA.

4.21 DIAGNOSTIC INSTRUCTIONS

The FP15 maintenance mode provides the user with the capability of sequencing through any floating-
point instruction step by step. Each instruction contains a number of steps determined by the format,

type of instruction, and operand values. One step is counted at each of the following times.

FETCH * TSO3 * PHO3
FETCH * TSO3 * PHO3
OPAND * TS03 * PHO3
*

OPAND * T503 * PHO3 Depends on data format
OPAND * TS03 * PHO3

%

*

(if indirection)
(if not immediate)

EXP * TSO1 * PHO3 (1, 2, or 3 words)

EXP * TS02 * PHO3 (FMA and FMB aligned - 1 step count for every
align shift.)

EXP * TSO3 * PHO3

FUN * TSO1 * PHO3

FUN * 7502 * PHO3 (FMA and FMB are multiplied or divided here--

1 step count per shift. FMA also fixed here--

1 step count per every fix shift.)

FUN * TSO3 * PHO3

NOR  * TSO1 * PHO3 (FMA normalized here--1 step count per every

normalize shift.)

NOR  * TS02 * PHO3

NOR  * TS03 * PHO3
(continued on page 4~31)



WRITE * TSO3 * PHO3 (if a Store type)
WRITE * TSO03 * PHO3 (if a Store type)
WRITE * TS03 * PHO3 (if a Store type)

Depends on data format
(1, 2, or 3 words)

For example, if a single-precision floating-point Add instruction was specified, a step is counted at

the following times:

No. of Steps

FETCH * TSO3 * PHO3 1
OPAND * TS03 * PHO3 1
OPAND * TS03 * PHO3 Two OPAND cycles 1
EXP * TSO1 * PHO3 ,

EXP * TS02 * PHO3 (1 step count for every align shift) 1 to 35*
EXP * TSO3 * PHO3 1

FUN * TSO1 * PHO3 1
FUN * TS02 * PHO3 1
FUN * TSO3 * PHO3 1
NOR  * TSO1 * PHO3 1 to 35*
NOR  * TS02 * PHO3 1
NOR  * TSO3 * PHO3 1

In the preceding example, the number of steps ranges from 11 to 79 and, depending on how many align

shifts and normalize shifts, must be performed.

The FP15 maintenance mode is initiated by a DMN (Diagnostic Mode On) instruction. CPU instruc-

tions are handled in the normal manner and are not affected by the FP15 at this point.

Drawings D-FD-FP15-0-63 and D-FD-FP15-0-64 are flow diagrams of the events occurring during
maintenance mode. The first floating-point instruction received after the FP15 is in maintenance
mode is handled in a manner similar to that described in the memory interface; in other words, the in-
struction is loaded into the CPU instruction register and the FP15 instruction register. The next word
(operand address) is loaded into the FP15 BMB; a dummy cycle is initiated to prevent the CPU from
sensing the operand address as an instruction. DIS RD RST prevents the CPU from accepting the oper-
and address and the CPU is idle waiting for RD RST. The FP15 forces a 710000 NOP on the MDL; the

FP15 now simulates memory to complete the CPU/memory reference. The operand address is then

* Depends on operand values.

strobed into the FP15 address register. The FP15 executed instruction stops in TS03*PHO3 of the

FETCH cycle. When the dummy cycle is complete and stop clock is present, the signals that were pre-
viously inhibiting the CPU are cleared and control is returned to the CPU. At this time, BUSY isa 1,
the instruction has stopped executing at TS03*PHO3 of the FETCH cycle, stop clock is present, and

maintenance mode is enabled.

The next floating-point instruction fetched from core should logically be a maintenance instruction,

such as a Diagnostic Read or Diagnostic Step and Read. Since BUSY is a 1, any floating-point in- 4
struction will be treated as a maintenance insf.rucﬁon. The instruction from core is now loaded into

the DIR and the next word is loaded into the DAR. The CPU is again disabled by DIS CP RD RST and
waits in TSO3*PHO3 for the next RD RST to occur.

The CPU/memory reference cycle is completed, DIS CP RD RST is removed, the FP15 places a 710000
NOP on the MDL, the CPU strobes the NOP in the MI register, and the memory cycle is completed.

Upon completion of the memory cycle, the FP15 goes into diagnostic operation.

4.21.1 Diagnostic Read

If bit 11 in the DIR is a 0, the instruction in the DIR is interpreted as a Diagnostic Read instruction.
The FP15 instruction is only partially complete at this point; the contents of sixteen 18-bit words are
transferred one at a time from the FP15 to memory starting at the argument address. The words are

transferred in the following order:

1. BMB 00-17 (Buffered Memory Buffer)
2. BMB 18-35

3. SC 12-17 and IR 06-17 (Shift Counter and Instruction Register)
4. EPA 00-17

5. ASIGN and FMA 01-17

6. FMA 18-35

7. EPB00-17

8. B SIGN and FMB 01-17

9. FMB 18-35
10. BSIGN and FMQ 01-17
11. FMQ 18-35

4-31



c9-0— Eds [
8 7 6 l 4 3 | l AJY I 9 HEBWﬂNgldj 353 3215] 2 ]
This drawing and specifications, herein, are the prop:
erty of Drgrtat Equipment Corporation and shall not be
reproduced or copiRd OF Ussd in whole or in part a3
the basis for the manufacture or sale of tems without
vt pesSon
7/731@ WAS ISSUED
D MEINT MODE FLOP
FPLP =/ RETLRNED D
CP FOR NEXT INST
FP@9 73 X% P/
FP42 | —» STOPCLK
FPE? STOP 775 FPI@ @—> FP MRDA FRP DCH SYNC FPPI P SET FETCH
e e C® FPIQ $—=DIS RD RST FP/§ FOUND
FPlIf RT CP FP@BL& RD RST
i 1
rros serresad |FPg rerorsy | |reez s ser 0186 T rpps srail sTal—rrm 1080 018
o MDL LINES
C C
ACTE: CP
IFPob MRLS ACK } @ —l— ]/"F¢b FPRD RST DLY
FPPL MRLS ACK | AW [rpg /= s7aLL
PDPIE LD MI
@ —» CP ACT
MRL= DATA AcK FPIP DIS 1/0 ACT
l FPIG FP Ac
\FP/# £P MALS ACK
— l—
PDOPIS @ —v MRLS |
FPI® B— FP MBL SACK -
- - ™)
FPPII—> 75 4 IFP/(Z SET FP ’—-FP—MJ_.DISRDR&T] )
]
£
[fre7 sTarTsEr  [I—F Z0cK ] 1 e
8 FP42 STOP CLK [;pw, ADR PCK 1 [FF/¢/—-DISCPACT] ;_2
FPPT 7/ % PI FPB& ADR ACR L
FP/@ MAT CLR FP#b RO RST Eh
= a
I/-‘PQ)‘? 7% P2 } [rpi3 1040 1A ] [rPrec ro RST | ] i
FP/@ CLA STALL FP/@ CLR DISLPAC lFP/b LOAD DAR FPOG RDlRST P ]
B
FP/@ I—» FETCH & 7P
‘ @ 1— { [FPG) RD RS | [Fros ciear mx] [erre 7P cycie | é
FPI® CLR DIS J/0 AC FPPF CLR 7S 4
| [Erre ] [rra 77 cvece |
RETURNS CONTROL 70 CP
FPOS LOAD BMB /6-351 WI7H BUSY = I, FEFCH = /
STOP CLK =4, MAINT MODE =/ o
1 FP/@ I— FP MRDA
{FF3¢ LoAD SC l FIRST USED ON OPTION/MODEL m—y_l DESCRIPTION l PART NO. lr’r‘%an
PARTS LIST
UNLESS OTHERWISE SPECIFIED | DRM.7v | DATE EQUIPMENT
~ DIMENSION IN INCHES. R L S0 t En CORPORATION
g TOLERANCES CD;IKB 5?77 MAYNARD MABSACHUSETTE
Al T DECIMALS ANGLES = HoHos D/A‘/; i s A
.x;x:.g;ﬁ +0° 30" p‘l 7“;1 5//9';7/ N T NUA
o XX PROJ. ENG. DAJE Mr\]\" FLOYA
; o Xoo=a 3 Lt S hwfol
2l HEMOVE BURRS AND BREAK SHARP = DAT]
K CORNERS SURFACE QUALITY .~ 7,: )‘)"p«-;»-a_ ;9,:{%7/
& ‘x’ MATERIAL NEXT HIGHER ASSY.
JORNIRRIP A i?l E[CODE| NUMBER REV.
—— . DIFD|FPIS-T-¢3 o
¥ FINISH | scALE |
H . |_[Sheer OF ost | T T T T T T 1T 1
DEC FORM NO
o 8 7 6 1 4 3 2 | 1

4-32



the basis or the manufacture o« saie of items without
wrtten parmesion.

-0—G' a
8 I 7 | I A3!1 79 u;a?nu 9 djgoa 3215 2 | 1
This drawing and specificstions, heresn, are the prop-
wety of Digital Equipment Corpocation and shall not be
reproduced or copied or used in whole or in part a3

D
> FP MROA |
FFr/2
§—~Dis AC RST
FPid
RT CP
EpPJ
E”’iMDL‘L/%%S FF_RD RST
" FPes FPig
FPRDRSTOLY
6 FPi8
LD mMI
g+ CP ACT TLR
MRLS, DATAACK| Plg C
POP /S | !
RETURN TO C ¥
FPMRLS ACK FOR NEXT INST.
P NOTE : MAINT MODE
=/, BUSY MAY OR
MAY NOT =1, THIS
DETERMINES POINT
OF ENTR % @ oRr
START P
P—FPHRLS ACK 3
e
20
Mt
=TS 4 <
Fp -
S
He
=
w
Q|
L
Ha]
8
YES fa
ENTER NEW
I FETCH+OPAND NO B
= .
NOR+ INT +
STORE+CLR
BUSY S
P ———— .
FIRST USED ON OPTION/MODEL QTy,l DESCRIPTION | PART NO. l ey
PARTS LIST
UNLESS OTHERWISE SPECIFIED Df& . DATE EQUIPMENT
DIMENSION IN INCHES. Hofrenions hia Nl ] HEHEEHCORPORATION
TOLERANCES CHIKD. DATE NAYNARD MaSSAGHUSETTS
DECIMALS ANGLES ﬁu% "{””"-‘ %21‘_' e A
wlm | S Jety |5
2| X -1 PR‘%‘-,}& 7 DATE, AR TG - .
g i REMOVE BURRS AND BREAK SHARP L MM {57 !\IIA ‘l N T §_ LO \A/ 2
Sly [ - BATE
= CORNERS SURFACE QUALITY " I@Eﬁ Ao,
GE] MATERIAL NEXT HIGHER ASSY.
SiZE]cong] NUMBER REV.
L C RS-0 -84
£ FINISH . SCALE NONE DFD[FPIS-C -8
o 7 7 SHEET OF ost. | T T T T T T 1 1
DEC FoRM NG
o o 8 7 ] 2 1

4-33



12. ADD 00-17 (ALU)

13. ADD 18-35

14.  JEA 00-17 (JMS Exit Address)
15. STA 00-17 (see following Note)
16. AR 00-17 (Address Register)

A memory cycle is initiated for each transfer. Each time a word is transferred, the MPO counter is in-

cremented.

NOTE

The STA 00-17 is a status word comprised of the fol-
lowing information:

STA 00 FP15 BUSY
STA 01 FETCH CYCLE
STA 02 OPAND CYCLE
STA 03 EXP CYCLE
STA 04 FUN CYCLE
STA 05 NOR CYCLE
STA 06 WRITE CYCLE
STA 07 INT1

STA 08 INT 2

STA 09 TIME STATE 1
STA 10 TIME STATE 2
STA 11 TIME STATE 3
STA 12-17 DIR 12-17

The DAR is also incremented; thus, the sixteen 18-bit words are transferred to 16 sequential memory
locations starting at the argument address. When a count of 16 is reached, the MPO counter generates
a carry that sets TRANS EN. TRANS EN clears the FP15 and control is returned to the CPU for the
next instruction. The Diagnostic Read instruction may be executed indefinitely without affecting the

partially completed instruction.

4.21.2 Diagnostic Step and Read

If bit 11 of the word in the DIR is a 1, the instruction is handled as a Diagnostic Step and Read. The
instruction is sequenced through one or more steps and, depending on instruction type, format, and
operand values, a new cycle may be entered. For example, if indirection is specified, the instruction

is sequenced through another FETCH cycle; if a non-memory reference instruction is specified with no

4-34

indirection, the OPAND cycle is bypassed; if the instruction is integer, the EXP cycle is bypassed,
etc. The FP clock, which was halted at TSO3*PHO3, is restarted (see D-FD-FP15-0-64). At this

point, the flow sequences through a decision network that determines whether a step has occurred.

The FP15 is stopped if any of the following conditions occur:

-EXC*TS03*PH02 When FP15 is in TS03*PH02 and is not in the EXP,
NOR, or FUN cycle.

EXC*FPCA*PH02 When FP15 is in PHO2, FP clock is present and an
EXP, NOR, or FUN cycle is specified.

ALIGN MA P When FP15 is doing an alignment to align mantissas.

BRS When the FMB is doing a right shift.

CARRY P During each shift that occurs in a multiply or divide
operation.

INT DIVIDE P During an integer divide operation.

SHMA P When the FMA is being shifted during a Fix instruc-
tion,

NORM P When a normalize operation is taking place.

For each of the preceeding steps that occurs, the DIR is decremented. The Diagnostic Step and Read
is initially loaded with a value 710100+n, where n is the desired number of steps. If the number of
steps completed is less than n, the logic determines whether the FP15 is at the end of the NOR, or
WRITE cycle, or in an interrupt sequence. If the FP15 is not in any of these states, the Diagnostic

Step and Read causes another step to be performed.

If the FP15 is at the end of a NOR or WRITE cycle or in an interrupt sequence, and the instruction is
not completed (BUSY=1), the clock is stopped and the current contents of the registers are transferred
to memory. If the FP15 is ot the end of a NOR or WRITE cycle or in an interrupt, and the instruc-
tion has been completed, the clock is not stopped and the current contents of the registers are trans-
ferred to memory. When the 16 words have been transferred, an MX CARRY is generated, the memory
cycle is completed, the FP15 cleared, and control is returned to the CPU for the next instruction. If
the FP15 instruction is not completed (BUSY=1), the point of entry is via the diagnostic instruction
path. If the instruction has been completed, (BUSY=0) the point of entry is through the initial path.



CHAPTER 5
INSTALLATION AND MAINTENANCE

5.1 INSTALLATION

* The FP15 Floating-Point Processor is installed in the H963E Cabinet (Bay IR) of the PDP-15,/20,/30/40
Systems. This cabinet contains the PC15 and BA15 and may also include the BB15. When the FP15 is
included in a new system, it is completely installed and tested at the factory before the system is
shipped. The Féllowing paragraphs describe how to install, interconnect, and test an FP15 that is to
be installed in an existing PDP-15 System. Table 5-1 summarizes the major components supplied as
part of the FP15 Floating-Point Processor. A complete list is provided on drawing D-UA-FP15-0-0.

Figure 5-1 shows the general location of the major components installed in the HP63E Cabinet.

Table 5-1
FP15 Floating~Point Processor Major Components

Quantity Item Part Number

FP15 Wired Assembly D-AD-7007243-0-0

1

1 FP15 Indicator Panel D-UA-7006331-0-0
1 H721 Power Supply H721

1 716 Indicator Power Supply 716

NOTE

If the FP15 is to be installed in early PDP-15 Systems
with 783 Power Supplies mounted on the rear door of the
H963E cabinet, an H950-C 19-in. mounting panel door

will be included and substituted for the original rear
door of the HP63E Cabinet.

BBIS || ==~ — - ==~~~ —-
716 INDICATOR
POWER SUPPLIES

FP15 ' ~— — FP15 LOGIC — — —

H721 POWER SUPPLY

H734B POWER SUPPLY

BLANK

H721 POWER SUPPLY

841-B POWER CONTROL

BLANK

REAR CABINET REAR DOOR 15-0568 -

Figure 5-1 H9643E Cabinet (Bay 1R),
Rear View with Mounting Panel Door Open

5.1.1 Field Installation Procedures

Step
1

Procedure

Remove the H950-P (5-1/4 in.) Cover Panel below the BB15 Indica-
tor Panel. Install the FP15 Indicator Panel in this location.

Install the 716 Indicator Power Supply on the inside right wall of
the cabinet (as viewed from the rear). Mount the 716 directly be-
low the existing 716 that provides power to the BB15 Indicator Pan-
el.

Install the H721 Power Supply on the rear door of the cabinet di-
rectly above the existing 734D Variable Power Supply.

Locate the FP15 logic wired assembly directly above the H721 Pow-
er Supply on the rear door of the cabinet. Fasfen securely to the
rear door with the mounting hardware supplied. Be sure to use the
spacers. )

5-1



5.1.2 Indicator Panel/Power Supply Wiring

Connect the FP15 Indicator Panel and associated 716 Indicator Power Supply as follows:

Step Procedure
1 Connect black wire between the FP15 Indicator Panel ground tab
and the cabinet chassis ground.
2 Connect orange wire between the +6.5V tab on the FP15 Indicator
Panel and the orange tab on the 716 Power Supply.
3 Connect both 716 Power Supplies to cabinet chassis ground.

Connect a red and white twisted pair between the AC tabs on the
716 Power Supplies.

5.1.3 H721 Power Supply Wiring

Step Procedure
1 Connect the red and white twisted pair from the 841B Power Control
to the H721 Power Supply ac input terminals (TB2-1 and 2). Refer
to D-CS-H721-0-1 for internal connections.
Connect a black wire from TB2-8 to cabinet chassis ground.
3 Disconnect the console power switch lead from the existing H721

Power Supply (TB2-6) and connect it fo the added 721 Power Supply
at TB2-6. Connect a wire from TB2-6 on the original H721 to
TB2-7 on the added H721. These connections will connect both
H721 thermostat circuits in series with the console power switch.

5.1.4 Signal Cable Connections

Table 5-2 is a signal cable connection chart that indicates how to connect the FP15 into an existing

PDP-15 System.

When the system does not include certain BB15 options (KM, KT, or MP), ignore the BB15 cable con-

NOTE

The connections place the FP15 between the KP15 and
the BB15.

nections and connect the FP15 directly to the MM15A as indicated in the table.

Table 5-2
Signal Cable Connections

Connector Locations
FC"b'.e KP15 FP15 BB15 MM15A Remarks
unction
ouTt IN out IN ouT IN

Memory Jo2 H29 J29 B02 A02 B02 If BB15 does not con~

Data Lines tain KM15, KT15, or
MP15, connect FP15-
J29 to MM15A-B03.

Memory Jo3 H30 J30 BO3 A03 BO3 Under conditions list-

Control Lines ed above, connect
FP15-J30 to MM15A-
BO2.

API Control HO3 H31 J31 BO5 - - This cable is not re-
quired to be connect-
ed to memory.

FP15 INDICATOR PANEL VIEWED FROM REAR

~

[ INDICATOR
[ @ | «——— BUS CABLE ——| @

e

RIBBON CLAMPS ; RIBBON
cabLES To{ Ll N NN ) CABLES To
FP1S J04

FP15 JO3

I ] B

s AULLL =

[ 2] [=

RIBBON 777
CABLES TO M >

FP15 JO6

N RIBBON
= CABLES TO

FP15 JO5

Figure 5-2 FP15 Indicator Bus Connections

5.1.5 Indicator Bus Cable Connections

Connect the FP15 Indicator Bus cables to the FP15 wired assembly indicator cable connector card lo-

cations (JO3, JO4, JO5, and J06) as designated in Figure 5-2. Dress the indicator bus cables between

the FP15 wired assembly and the H721 Power Supply.

5-2

5.1.6 Handwire List

15-0585

The KP15 must be modified per handwire list supplied in the FP15 Installation Kit.




5.1.7 Postinstallation Checks and Tests
Make a final check of the completed installation to ensure that:

All modules are correctly installed in the FP15 wired assembly.
Major components are securely mounted in the cabinet.

c. Cable and wired connections are correct, and cables and hamesses are dressed and
fastened within the cabinet.

Apply primary power to the cabinet by closing the circuit breaker on the 841B Power Control. Test for
" +5V at any of the G829 modules.

Run the FPU 01 Random Exerciser diagnostic program to test FP15 Floating-Point Processor operation.
As a further test to ensure that the FP15 is correctly installed and operational, load and run the In-
struction Test diagnostic program MAINDEC-15-DOTA.

5.2 MAINTENANCE

The FP15 Floating-Point hardware includes built-in diagnostic hardware that allows any floating-point
instruction to be sequenced through step-by-step and allows the user to obtain a printout of each reg-
ister as each step of an instruction is performed. An indicator panel, also supplied with the FP15,
providing a visual display of the major registers. The stepping of the instruction and the printout is
accomplished under software control. The diagnostic programs assume that the CPU and memory are
functioning and operating properly, and are designed to minimize actual troubleshooting since mal-
functions can be isolated before troubleshooting techniques have to be used. The following paragraphs

describe the FP15 Indicator Panel and the diagnostic programs used.

5.2.1 FP15 Indicator Panel

The FP15 Indicator Panel is used as a maintenance aid and is located directly above the BB15 Option

Panel. The indicator panel consists of the following indicators.

EPA Denotes the state of the 18 bits in the EPA
register.

JEA Bit 00 denotes the state of A SIGN, bit 01
- denotes the state of the GUARD bit; bit 02
is not used; bits 03 through 17 denote the
JEA exit address in memory.

A SIGN, FMA A SIGN denotes sign of operand in the FMA;
FMA 1 through 35 represents the value of the
operand in the FMA,

B SIGN, FMQ

MAJOR STATE, TIME STATE

DIR

STAL

TS4

ST PHAS

MDL EN

L MIT

MAINTENANCE

MAT

MANT MODE
SEL DIAG
DIAG

TRNS EN

B SIGN denotes the sign of the FMB; FMQ 1
through 35 denotes the value of the quantity
stored in the FMQ.

Denotes the current major state and time
state of the FP15. The FP15 could be in the
FETCH, OPAND, EXP, FUN, NOR, WRITE,
INT 1, or INT 2 major states and in TSO1,
TS02, or TS03. The BUSY indicator indicates
that the FP15 is in the process of performing
some function which it has not yet completed.
For example, the FP15 may be sequenced
through an instruction in Diagnostic Mode.

The DIR indicators denote the number of
steps to be sequenced through for an instruc-
tion in Diagnostic Mode. The value repre-
sented by the indicators is decremented for
each step which occurs.

The STAL indicator denotes that a 71XXXXg
floating-point instruction has been detected
by the FP15.

The TS4 indicator, when on, denotes that

the FP15 has control of memory and, when
off, indicates that the FP15 is simulating a
memory.

This indicator denotes that the FP15 is tem-
porarily halted and is not advancing through
the various phases, time states, and major
states.

This indicator denotes that the MDL lines
are enabled and that data is about to be
placed on these lines.

This indicator denotes that the FP15 is in the
second FETCH cycle (indirection).

The indicator panel has five maintenance
indicators that perform the following func-
tions:

This indicator denotes that a Maintenance
(Diagnostic) instruction has been decoded.

This indicator denotes that the FP15 is in
Maintenance (Diagnostic) mode.

This indicator denotes that a Diagnostic in-~
struction has been selected.

This indicator denotes that a Diagnostic in=-
struction is being executed.

This indicator denotes that the sixteen 18-
bit words representing the contents of the
various registers have been written into mem-
ory.
(continued on page 5-4)

5-3



DISABLES

RD RST

CP ACT

1/0 ACT

FP MEMORY CONTROL

COND

M REQ

RD RST

MRDA

MRLS ACK

5.2.2 Diagnostic Programs

In addition to the built-in diagnostic hardware and indicator panel, the following test programs are

available.

Instruction Test - Part 1
Instruction Test - Part 2
Instruction Test = Part 3

Floating-Point Diagnostic
Random Exerciser

Diagnostic Mode Stepping

These test programs are described in the following paragraphs. Before these programs are run, the

The FP15 indicator panel is equipped with
the following three disable indicators:

This indicator denotes that the CPU is inhib-
ited from using the RD RST from memory.

This indicator denotes that the CPU is tempo-
rarily suspended from sequencing through
phases and time states.

This indicator denotes that the FP15 is doing
a memory reference cycle (FETCH, OPAND,
or WRITE).

The FP indicator panel has five indicators as-
sociated with the FP15 Memory Interface.
These indicators are described below.

This indicator denotes that an FP memory re-
quest is being made. The indicator remains
on during the memory cycle.

This indicator denotes that an FP memory re-
quest is initiated.

This indicator denotes that the FP15 is simu-
lating memory and has placed data on the
MDL.

This indicator denotes that the FP15 has re-
ceived data from memory and is releasing
memory for additional requests.

This indicator denotes that memory is free to
accept additional memory requests.

FPIT 01 MAINDEC-15-DOTA
FPIT 02 MAINDEC-15-DOUA
FPIT 03 MAINDEC-15-DOVA

MAINDEC-15-DOWA

FP STEP MAINDEC-15-DOSA

System Exerciser should be run on a daily basis for preventive maintenance.

54

5.2.3 Instruction Tests
The instruction tests perform the following major functions:

Verify that the diagnostic instructions are operating correctly.

Provide loop information for debugging.

Check whether all FP15 registers can be cleared and then set to all 1s.
Exercise the FP15 instructions in Diagnostic Mode in a general fashion.
Run automatically until an error is detected.

® Q0 TQ

The error is identified at a 6-digit location (address of program listing). A copy of the contents of the
major registers can be obtained at the time of the error. For further isolation of a malfunction caus-

ing the error condition, a scope loop is utilized.

In order to run the instruction fest, the program FPSTEP, which is a separate independent program,
must be preloaded in core. The FPSTEP program allows diagnostic mode stepping of any FPU instruc-'
tion. The operator must specify the instruction to be stepped and must specify either an argument or

data to be used with the instruction.

The FP STEP program can perform the following major functions:

Scope loop any FP15 instruction at any step rate.

b. Automatically step any FPU instruction to completion using a pre-set step rate,
with or without typeouts of the FPU registers.

c. Step any FP15 instruction with complete control over step rate and register typeouts
between steps.

d. Restart at any time without affecting the program.

5.2.4 Random Exerciser

The FP15 Floating-Point Processor Random Exerciser is a test program to simulate system usage for pre-
ventive maintenance. A PDP-15 Computer with 8,192 word memory and an FP15 Floating-Point Pro-
cessor are necessary to run the program. The complete FP15 Instruction Test Hardware Diagnostic

series should be run prior to running the random exerciser. The following system parameters are se-
lected:

a. 50 or 60 Hz power
b. API or no API
c. The amount of memory to be initialized

After system parameter selection, the instruction and data format are selected. Hardware operations
and software calculations can then be performed on specified operands or on randomly selected func-

tions.



The random exerciser contains a real-time clock (RTC) routine to keep track of time and uses a 24 hour

clock (for example, 2:00 p.m. is 14:00). The program will print:

Disable RTC
Type in time

When time is reached enable RTC

Time

Errors are detected in the random exerciser program by comparing a software calculated arithmetic re-

sult to the actual FPU completed result. Occurrence of an error condition causes an error typeout

format to be printed.

5.3 ENGINEERING DRAWINGS

Engineering drawings pertinent fo the FP15 Floating-Point Processor are listed in Table 5-3 and in-

cluded in a separate volume entitled FP15 Floating Point Processor, Engineering Drawings.

Table 5-3

FP15 Floating-Point Processor Engineering Drawings

Table 5-3 (Cont)

Drawing No.

No. of
Sheets

Title

D-DI-FP15-0-67
D-AD-7007243-0-0
A-PL-7007243-0-0
D-MU-FP15-0-66
A-PL-FP15-0-66
D-BS-FP15-0-01
D-BS-FP15-0-02
D-BS-FP15-0-03
D-BS-FP15-0-04
D-BS-FP15-0-05
D-BS-FP15-0-06
D-BS-FP15-0-07
D-BS-FP15-0-08
D-BS-FP15-0-09
D-BS-FP15-0-10
D-BS-FP15-0-11
D-BS-FP15-0-12
D-BS-FP15-0-13
D-BS-FP15-0-14
D-BS-FP15-0-15
D-BS-FP15-0-16
D-BS-FP15-0-17
D-BS-FP15-0-18

— ol il et et o et e ) el e d vt el d —d vl —t N N = N) et D)

. No. of .
Drawing No. Sheets Title
D-UA-FP15-0-0 Floating Point Processor
A-PL-FP15-0-0 Floating Point Processor

Drawing Index List (FP15)
Wired Assy (FP15)

Wired Assy (FP15)

Module Utilization
Module Utilization
Memory Interface Cables
Memory Drivers

Output Multiplexer (MPO)
Multiplexer Inputs (MPI)
Multiplexer Control
Memory Receivers
Buffered Mem Bits 00-17
Buffered Mem Bits 18-35
Time State Generator
Memory Interface Cirl 1
Memory Interface Ctrl 2
Memory Interface Ctrl 3
Instruction Register (IR)
Diagnostic Inst Reg (DIR)
Address Register (AE)
Diagnostic Address Reg (DAR)
A Exponent Register (EPA)
B Exponent Register (EPB)

D-BS-FP15-0-19
D-BS-FP15-0-20
D-BS-FP15-0-21
D-BS-FP15-0-22
D-BS-FP15-0-23
D-BS-FP15-0-24
D-BS-FP15-0-25
D-BS-FP15-0-26
D-BS-FP15-0-27
D-BS-FP15-0-28
D-BS-FP12-0-29
D-BS-FP15-0-30
D-BS-FP15-0-31
D-BS-FP15-0-32
D-BS-FP15-0-33
D-BS-FP15-0-34
D-BS-FP15-0-35
D-BS-FP15-0-36
D-BS-FP15-0-37
D-BS-FP15-0-38
D-BS-FP15-0-39
D-BS-FP15-0-40
D-BS-FP15-0-41
D-BS-FP15-0-42
D-BS-FP15-0-43
D-BS-FP15-0-44
A-SP-FP15-0-70
A-SP-FP15-0-71
A-SP-FP15-0-72
D-CS-H721-0-1
C-C5-716-0-1
D-FD-FP15-0-45
D-FD-FP15-0-46
D-FD-FP15-0-47
D-FD-FP15-0-48
D-FD-FP15-0-49
D-FD-FP15-0-50
D-FD-FP15-0-51
D-FD-FP15-0-52
D-FD-FP15-0-53
D-FD-FP15-0-54
D-FD-FP15-0-55
D-FD-FP15-0-56
D-FD-FP15-0-57
D-FD-FP15-0-58
D-FD-FP15-0-59
D-FD-FP15-0-60
D-FD-FP15-0-61
D-FD-FP15-0-62
D-FD-FP15-0-63
D-FD-FP15-0-64

[ —
ettt e ot ot ol o ol ol et et o ok ) ) d e N) O ) N N " . N N . a N . a 3 et o) wd el ol o wod ) e el ol ol

Arith Logic Unit 00-03

Arith Logic Unit 04-07

Arith Logic Unit 08-11

Arith Logic Unit 12-15

Arith Logic Unit 16-19

Arith Logic Unit 20-23

Arith Logic Unit 24-27

Arith Logic Unit 28-31

Arith Logic Unit 32-35
Carry Look Ahead

JMS Exit Address Reg (JEA)
Shift Counter (SC)
Instruction Decoder

Mantissa & Exponent Cirl
Adder Control

Load & Store Control 1

Load & Store Control 2

Add & Subtract Citrl 1

Add & Subtract Ctrl 2
Multiply & Divide Ctrl 1
Multiply & Divide Ctrl 2
Normalize Control

Misc Inst Control

Diagnostic Control

Error Check

Indicator Cables

Acceptance Specification
Installation Specification
FP15 Hand Wire List

H721 Power Supply

716 Power Supply

Fetch Cycle Flow 1

Fetch Cycle Flow 2

Fetch Cycle Flow 3

Opand Cycle Flow 1

Opand Cycle Flow 2

Opand Cycle Flow 3

Write Cycle Flow

Add, Sub, Rev Sub, Exp Cycle
Add, Sub, Rev Sub, Sub Cycle
Floating Mul & Div Exp Cycle
Float & Integer Mul Fun Cycle
Integer Divide Exp Cycle
Float & Integer Div Fun Cycle
NOR TS1 Cycle Flow

NOR TS2 Cycle Flow
ASIGN Swap & Float Control
Fix Flow

Interrupt Flow

Maint Flow 1

Maint Flow 2

5-5







APPENDIX A

SIGNAL GLOSSARY

Signal Mnemonic Logic Print
AA + PC FP15-0-05
ADD A FP15-0-36
ADD 00-17 SEL FP15-0-35
ADD § FP15-0-36
ADD 18-35 SEL FP15-0-35
ADR ACK (1)B FP15-0-01
ALIGN MA FP15-0-37
ALIGN MB FP15-0-37
ALL WRITE FP15-0-12
-ALL ZEROS FP15-0-37
AR LOAD FP15-0-15
A SEL, B SEL FP15-0-05
A SIGN, BSIGN FP15-0-32
AUA, AUB FP15-0-33
AUA1, AUBI1 FP15-0-33
AUS FP15-0-33
AUS1 FP15-0-33
A ZERO, B ZERO FP15-0-32
BIT 00-01 DIS FP15-0-04

Function

Address Acknowledge or Power Clear. »
Indicates an addition of two quantities with like signs.
Used for selecting MPO address lines during a Store instruction.

Indicates addition of two quantities with unlike signs (actually
a subtraction).

Used for selecting MPO address lines during a Store instruction.

Notifies the peripheral devices of receipt of MREQ, memory ad-
dress, and mode of operation (read or write).

Indicates that FMA is to be aligned during addition or subtrac-
tion. Also indicates that the exponent associated with the FMA,
in this case, is less than the exponent associated with the FMB.

Indicates that FMB is to be aligned during addition or subtrac-
tion. Also indicates that the exponent associated with the FMB,
in this case, is less than the exponent associated with the FMA.

Indicates that the FP15 is in @ WRITE cycle or a diagnostic rou-
tine.

Indicates that the difference between EPA and EPB is not great-
er than 3510

A signal used to load the AR af FETCH*T3*P3.

Used to select one of four inputs to be gated through M1701
Data Selector.

The sign bits of the FMA and FMB, respectively.

Address lines for selecting the A side of ALU.

Address lines for selecting the B side of ALU.

Strobe line for multiplexer connected to the A side of ALU.
Strobe line for multiplexer connected to the B side of ALU.

Used to detect whether the FMA or FMB registers, respectively,
are cleared. (Equal to Zero.)

Sets bits 00 and 01 to indicate jump type instruction.

Signal Mnemonic

Logic Print

BIT 02 SEL
BMB 00-35

BRANCH EN
BMB 27-35 SEL
BRANCH TEST
BRS

BUSY

CARRY P

C DIV (Combined
Divide)
CDIVINTP

CHANGE
CHECK EN

CLK 00-17

CLK 18-35
CLR BMB 00-17

CLR EPA P

FP15-0-04
FP15-0-35

FP15-0-41

FP15-0-35

FP15-0-41

FP15-0-37

FP15-0-11

FP15-0-39

FP15-0-31

FP15-0-38

FP15-0-11
FP15-0-37

FP15-0-07
FP15-0-08
FP15-0-35

FP15-0-40

Function

Sets bit 02 to indicate JMS type instruction.

Used for loading the FMA during a non-arithmetic function and
for loading the FMB during an arithmetic function. This signal
generates AUB on D-BS-FP15-0-33 to select the A side of the
ALU.

Indicates that a successful branch test has occurred.

A signal used to load bits 27 through 35 of the BMB into the
EPA or EPB when single-precision floating-point format is speci-

fied.

Indicates a successful branch test was made and a branch is to
be performed.

In EXP cycle during addition or subtraction, BRS (FMB Right
Shift) causes shifting of FMB to align mantissas.

Indicates that the FP15 is busy and sets up certain conditions
for floating—point operation.

Generates the strobe that loads the FMA or FMQ after each i
shift.

This signal represents the OR of Divide and Reverse Divide.

Used in the EXP cycle of Integer Divide for negative integers
to increment the FMB containing the negative integer.

Indicates that the FP15 has finished the FETCH cycle.

Determines whether format is floating-point or integer addition
or subtraction.’

A signal used to clock bits 00 through 17 of the BMB.
A signal used to clock bits 18 through 35 of the BMB.

Clears bits 00-17 when a positive 2's complement single-
precision integer number is loaded into the BMB.

During normalize, FMA is checked to see if it is 0. If so,
CLR EPA P clears EPA and A SIGN.



Signal Mnemonic

Logic Print

CLR EXC

COMP
COMP MA

COMP MB P

COMP SUB
CN 00

CN 01-08
COND |
COUNTALTP
CP ACT DIS

CP RD RST DIS
CsuB

DAR CLK

DATA ACK L
DCH SYNC
DIAG

DIR DWN

DIS CP ACT
DIS 1/0 ACT
DIS RD RST
DIV ADD SH

DIV ASH

DIV COUNT P

FP15-0-29

FP15-0-36
FP15-0-34

FP15-0-34

FP15-0-36

FP15-0-33
FP15-0-28
FP15-0-11
FP15-0-39
FP15-0-01
FP15-0-01
FP15-0-31

FP15-0-16

FP15-0-01
FP15-0-06

FP15-0-42

FP15-0-42
FP15-0-10
FP15-0-10
FP15-0-10
FP15-0-38
FP15-0-38

FP15-0-39

Function

A signal used to clear EXP, FUN, or NOR cycle upon receipt
of an interrupt or Branch instruction.

Indicates that an overflow has occurred during subtraction.

Used during integer arithmetic when a negative 2's complement
number is used. This number is converted to sign and magnitude
by complementing and incrementing the FMA. COMP MA com-
plements the FMA.

Used during integer arithmetic when a negative 2's complement
number from memory is used. The number is converted to sign
and magnitude format by complementing and incrementing the
FMB. COMP MB complements the FMB.

Complements the result if an overflow occurred during a sub-
traction.

Indicates a carry input to the least significant stage of the ALU.
Carry inputs to each ALU from the carry look-ahead generator.
Indicates that the FP15 is making a memory request.

Shifts FMA and FMQ left during EXP cycle of Integer Divide.
Disables CPU cycle to allow FPU to communicate with memory.
Inhibits CPU from seeing data on MDL.

This signal represents the OR of Subtract and Reverse Subtract.

A signal used to increment the Diagnostic Address Register dur-
ing Maintenance Mode.

Notifies memory that it may remove the data from the bus.
Indicates 1/O Processor wants memory access.

Indicates next instruction fetched from core will be interpreted
as a Diagnostic instruction.

Decrements the DIR for each step of a Diagnostic Step and Read
instruction.

Used to disable the CPU in order to allow the FP15 to gafn con-
trol of memory.

Used to prevent 1/O from gaining control of memory bus during
floating-point operations.

Used to disable the CPU from seeing a RD RST signal and allow-
ing the FP15 to gain control of memory.

Produces MXB during Divide if subtraction produces positive re-

 sult. MXB shifts subtracted result left on inputs to FMA,

Produces MXA during Divide if subtraction produces negative
result. MXA enables FMA to be shifted left.

Used to increment the EPA and left-shift the FMQ in the EXP
cycle of Integer Divide.

Signa! Mnemonic

Logic Print

DIV COUNT SEL

DIV EXP
DIV EXP P

DIVIDE (1) H
DIVINCP

DIV MQ
DIV MQ SH

DIV P

DIV SHRT P

DIV SWAP P

DIV ZERO
DUMMY EN
EPA GRT

EPA LD
EPA MOVE P

EPA UP
EPB SEL

EXC

EXIT INT + BRANCH

EXP

EXP EXC

(Exponent Exception)

EXP ONES
EXP SEL
EXP ZEROS

FP15-0-39

FP15-0-39
FP15-0-39

FP15-0-43
FP15-0-38

FP15-0-38

FP15-0-38

FP15-0-38

FP15-0-38

FP15-0-38

FP15-0-43
FP15-0-05
FP15-0-36

FP15-0-32
FP15-0-35

FP15-0-32

FP15-0-37

FP15-0-11

FP15-0-41
FP15-0-11

FP15-0-37

FP15-0-37
FP15-0-33
FP15-0-37

Function

Enables EPA to inputs of shift counter during FUN cycle of In-
teger Divide.

Initiates EXP cycle during floating-point division.

Used in detecting possible overflow or underflow in the EXP cy-
cle during division.

Indicates abnormal divide has been detected.

Used to produce EPA UP on first shift of divide if first subfrac-
tion result is positive.

Produces AUA to enable FMQ to ALU bus for subsequent swap
of the FMA and FMQ at the end of the divide.

Produces MXA1 which enables FMQ to be shifted left in the
FUN cycle during division.

A pulse used to produce ALS and MLS during division in order
to strobe the FMA and FMQ. A DIV P pulse is produced for
each shift during Divide.

Produces ARS which shifts the FMA right one place at the end
of the divide process and prior to the swap.

Produces ALS and MLS which causes the contents of the FMA
and FMQ to be swapped.

A divide-by-zero operation has been attempted.
A signal used in the dummy fetch of the FETCH cycle.

Increments the EPA during a floating-point or Fix instruction
due to a carry out of the ALU.

A signal that loads the EPA.

Used during Reverse Divide or Reverse Subtract to load the con-
tents of the EPA into the EPB.

A signal (that increments the EPA).

Selects EPB to be inputted to B side of ALU when calculating
exponent during multiplication and division. Also used to trans-
fer EPB to EPA if EPB > EPA during addition or subtraction.

Indicates that the FP15 is in the EXP, FUN, or NOR cycle,
which are all intemal cycles within the floating~point processor.

Indicates completion of interrupt or Branch instruction.

Denotes exponent cycle which is used to align or calculate ex~
ponents of the operands.

Used during exponent alignment and indicates that difference
between exponents is too large to be aligned.

Indicates EPB - EPA is greater than positive 35.
A signal used to enable the EPA during shifting operations.
Indicates EPA - EPB is greater than positive 35.



Signal Mnemonic

Logic Print

FETCH

FIX COUNT

FIX + FLOAT SEL
FIX P

FIX SHMA

FIX SEL
FIX ZERO

FLOAT + FIX
FLOAT SEL P
F LOCK

FMA STROBE

FPCA, FPC
FP MRDA

FP MREQ

FP MRLS ACK
FP RD RST

FP WAIT

FUN

GG 00, GG O1
G01-G07

GRT

GUARD

HFPC

FP15-0-11
FP15-0-41
FP15-0-41
FP15-0-41
FP15-0-41

FP15-0-41
FP15-0-41

FP15-0-40
FP15-0-41
FP15-0-11

FP15-0-36

FP15-0-09
FP15-0-10

FP15-0-10
FP15-0-10
FP15-0-10
FP15-0-09
FP>15-0-1 1
FP15-0-28
FP15-0-20
through -26

FP15-0-36

FP15-0-40
FP15-0-40

Function

Denotes FETCH cycle where the instruction is strobed into the
FP15 Instruction Register.

Establishes the number of shifts required to fix the floating-
point numbers.

Indicates a Fix or Float instruction has been selected.

Used to load the shift counter with the difference between 3510
and the EPA and indicates the number of shifts required to fix
the number.

Upcounts the shift counter and right shifts the FMA and FMQ
during a Fix instruction.

Indicates a number greater than 1 which can be fixed.

Indicates a fractional number that cannot be fixed. A SIGN
and EPA are cleared.

Designates floating-point instruction or Fix instruction.
Loads 43g in the EPA during a Float instruction.

Used to set up the FETCH cycle during the start of a floating
point operation.

This signal causes the FMA to be reloaded if an overflow occurs
out of the ALU.

Floating-point clock outputs.

Memory Release, Data Acknowledge. Used to indicate to mem-
ory that cycle is completed and data has been accepted.

A memory request made by the FP15. Memory senses the re-
quest as a CPU memory request.

Used to simulate MRLS ACK generated by the memory to com-
plete memory cycle.

Used to simulate Central Processor in order to complete memory
cycle.

Locks floating-point processor in TSO3*PHO1 during the dummy
FETCH.

Denotes function cycle which includes the actual instruction to
be executed.

Carry generate outputs from carry look-ahead logic used to
speed up carry propagation through the ALU.

Carry generate outputs of one of the 4-bit ALU circuits used in
carry look-ahead circuitry.

Generated (greater than) when a carry occurs out of the MSB of
the ALU during addition, subtraction, or rounding.

Indicates that rounding is possible.

A clock pulse used for normalizing numbers - two HFPC pulses
(half FPC) are required per shift during normalize.

Signal Mnemonic

Logic Print

INCAP

INCB P

INT
INT + API ST
INT CHECK 1

INT CHECK 2P
INT COMP P
INT DIV P

INT DIV STOP

INT INC P
INT MPY OWR
INTRP SYNC (1) H
INT 1, INT 2

1/0O ACT DIS

IR CLK
JMS SEL
LD DIV COUNT

LD EPA, LD EPB
LD IR

LD JMS P
LD MA

LD MB

FP15-0-34

FP15-0-34

FP15-0-43
FP15-0-05
FP15-0-43

FP15-0-43
FP15-0-35
FP15-0-39
FP15-0-39

FP15-0-35
FP15-0-43
FP15-0-10
FP15-0-11

FP15-0-01

FP15-0-13
FP15-0-43
FP15-0-39

FP15-0-35
FP15-0-08

FP15-0-41
FP15-0-35

FP15-0-35

Function

Used during integer arithmetic when a negative 2's complement
number from memory is used. This number is converted to sign

and magnitude by complementing and incrementing the FMA.
INCA increments the FMA,

Used during integer arithmetic when a negative 2's complement
number from memory is used. This number is converted to sign
and magnitude by complementing and incrementing the FMB,
INCB increments the FMB.

Indicates an interrupt has been defected.
Indicates that a Trap has been found.

Check for overflow of negative integer during single-precision
Integer Store instruction.

Checks for overflow of positive integer during single-precision
Integer Store instruction.

Loads the complement of the FMA into the FMB during Integer
Store. : :

Used during integer divide to generate signals indicating wheth-
er FMA, or FMQ, or both, are to be left~shifted.

Generated when both FMA and FMQ are normalized during In-
teger Divide.

Used for incrementing the FMB during an Integer Store.
Indicates an overflow has occurred during Integer Multiply.
Used to disable program interrupt and APl when STALL is set.

This signal is raised during an overflow, underflow, or divide
by zero condition to indicate entry to a Service routine in the

CPU,

Disables 1/O processor to allow FP15 to communicate with mem-
ory.

A signal used to clock the IR.
Forces JMS exit address onto MDL lines.

Causes shift counter to be loaded with 43g in the EXP cycle dur-
ing Integer Divide.

Used to load the EPA or EPB register, respectively, during the
OPAND cycle.

A strobe signal used to load the DIR when a floating—point in-
struction has been detected.

A pulse used to load JMS during FUN*TSI.

Used to load the FMA during the OPAND cycle when @ non-
arithmetic or reverse arithmetic instruction is issued.

Used to load the FMB during the OPAND cycle when an arith-
metic instruction (except for Reverse Subtract or Reverse Divide)
is issved. '

A-3



Signal Mnemonic

Logic Print

LD NORM COUNT

LDSCP

LIKE

LIMIT
MA CHECK
MB CHECK

MAINT MODE (1) H

MA MOVE P

MAT CIR

M CLR
MDL EN

MDL 00-MDL 17

MPI 00-17

MPO 00-17

M PWR-OK
MPY + DIV EXP P

MPY + DIV ODD
MPY + DIV OVR P

MPY + DIV UND P

MPY EXP P

MPY P

MPY SEL
MPY SHAD

A4

FP15-0-40

FP15-0-37

FP15-0-36

FP15-0-11
FP15-0-37
FP15-0-37
FP15-0-41

FP15-0-35

FP15-0-10

FP15-0-41
FP15-0-11

FP15-0-01

FP15-0-04

FP15-0-03

FP15-01
FP15-0-39

FP15-0-38
FP15-0-43

FP15-0-43

FP15-0-39

FP15-0-39

FP15-0-38
FP15-0-39

Function

Used to load the shift counter with 438 to limit the number of
shifts during normalize.

A pulse used to load the shift counter to check the number of
shifts needed for alignment of mantissas.

Indicates A SIGN and B SIGN are both positive or both nega-
tive.

Allows FP15 to perform only one level of indirection.
Check to see if FMA is equal to 0.
Checks to see if FMB is equal to 0.

When set, this signal indicates maintenance instructions are to
be performed.

Used during Reverse Divide or Reverse Subtract to load the con-
tents of the FMA into the FMB.

Indicates that the maintenance instruction is complete and the
register contents have been written into memory.

Indicates a Debreak instruction or a Power Clear condition.
Enables data from the FP15 to be placed on the MDL.

18 memory data lines providing bidirectional transfer of address
and/or data from memory.

Each MPI line can receive one of four different input signals.
Data on the output line is determined by select signals MOA
and MOB.

18 output multiplexer lines that transfer one of sixteen 18-bit
words to memory.

Memory power is applied to the memory circuits.

Used io produce EPB LD which strobes ALU confents into EPB in
the EXP cycle of Multiply or Divide.

This signal indicates negative quotient.

Indicates an overflow has been detected during multiplication
or division.

Indicates an underflow has been detected during multiplication
or division.

Used in detecting possible underflow or overflow in the EXP cy-
cle during multiplication.

Used to produce ALS and MRS in order to load the FMA and
shift FMQ right during multiplicaticn.

Produces A+B which strobes FMA + FMB into the ALU.
Produces MXA and MXB during floating-point and Integer Mul-

tiply which causes the added result to be shifted right at inputs
to FMA and also enables FMQ for right-shift.

Signal Mnemonic Logic Print
MPY SHRT FP15-0-39
MPY SWAP P FP15-0-38
MQ INT FP15-0-39
MQ INTP FP15-0-39
MRD FP15-01
MRDA

MREQ FP15-01
MRLS FP15-01
MRLS ACK (1) B FP15-01
MRS FP15-0-32
MWR FP15-01
MXA, MXB FP15-0-32
MXA, MXB, MXC, FP15-0-05
MXD

MXAT, MXBI1 FP15-0-32
NOR FP15-0-11
NOR EN FP15-0-32
NORM DONE FP15-0-40
NORM P FP15-0-40
NOR SEL FP15-0-40
ODD FP15-0-36
OPAND FP15-0-11
OPAND DWN P FP15-0-12
OWR (1)H FP15-0-43
PO1-PO7 FP15-0-20

through -26

Function

During floating-point or Integer Multiply, this signal causes
FMA and FMQ to be right-shifted.

Produces ALS and MLS in order to zero the FMA and strobe the
FMA into the FMQ at the beginning of the FUN cycle in mul-
tiplication.

Used in Integer Divide during the EXP cycle to enable the FMB
to the ALU bus.

Produces MLS which strobes the FMB into the FMQ.
Selects read/restore memory cycle.

Memory Release, Data Acknowledge. Issued by the FP15 to in-
dicate data has been received and to allow additional memory
requests.

The signal is generated by the CPU requesting start of a memory
cycle.

The CPU issues this signal to release memory for additional re-
quests.

Notifies device that memory has accepted data and is terminat-
ing memory cycle.

A signal that causes the FMQ to be right-shifted.
Selects clear/write memory cycle.

Used as select signals to supply data from one of four sources to
the FMA,

Select lines to select one of 16 possible inputs to MPO.,

Used as select signals to supply data from one of four sources of
the FMQ.

Denotes normalize cycle, where an operand is to be normalized.
A signal which causes normalize to occur when requested.
Indicates FMA 01 is on a 1 and normalize is completed.

Pulse used for normalizing FMA. A NORM P pulse is generated
for each normalize shift.

Indicates normalization has been requested.
Indicates sign bits (A SIGN and B SIGN) are not equal.

Denotes OPAND cycle in which the operand(s) is fetched from
memory .

Down counts the shift counter during the OPAND cycle. Up to
three down counts are possible depending on number of operands
required from memory.

Indicates an overflow has been detected.

Carry propagate outputs from the ALU where a carry is propa-
gated at the output of a 4-bit ALU circuit.



Signal Mnemonic Logic Print
PPOO, PPO1 FP15-0-28
PREP SC FP15-0-38
RD RST (1) B FP15-01
RND FP15-0-40
RND+1 FP15-0-36
ROUND MA P FP15-0-40
RSET (1) H FP15-0-09
R SET SYNC FP15-0-09
RT CP FP15-0-11
SC ADDR A, FP15-0-30
SC ADDR B

SEL A, SEL B FP15-0-37
SEL C, SELD FP15-0-37
SEL DIAG FP15-0-42
SET BMB 00-17 FP15-0-35
SET FP FP15-0-10
SET OWR FP15-0-43
SET SC 17 FP15-0-30
SET UND FP15-0-43
SET ZERO FP15-0-39
SKIP ZERO FP15-0-39
S0, 51, 52, S3 FP15-0-33
STALL FP15-0-10

Function

Propagate output from the carry look-ahead circuitry used to in-
dicate a carry was propagated from previous stage.

Used to inhibit the stepping of the shift counter during floating-
point Divide (FUN cycle). PREP SC loads the shift counter at
NOR*T3,

Notifies the CPU that the data from memory is on the bus and
ready to be strobed into the MI register.

Indicates that rounding has been requested and is about to take
place.

Occurs during addition at FUN*T1 as a result of mantissa align-
ment.

Indicates FMA is to be rounded if guard is set.

A signal that clears R SET SYNC which allows ST PHASE to re-
set in order to start the phase and time state generator.

Used to reset ST PHASE in order to reset the FP clock.

Allows CPU to complete cycle since the FP15 simulates an NOP
which is fransmitted to the CPU.

Selects one of two address lines on the M1701 Data Selector
which is outputted to the shift counter.

SEL A s g]enerai'ed when the absolute value of EPA-EPB is great-
er than 217, SEL B is generated when the absolute value of
EPA-EPB is greater than 217-1,

SEL C is generated when EPB is more positive than EPA and both
are positive quantities. SEL D is generated when EPA is more
negative than EPB and both quantities are negative.

Maintenance mode is enabied and the instruction on which
maintenance is to be performed was loaded.

Sets bits 00 through 17 to all 1's when a negative 2's comple-
ment single-precision integer number is loaded into the BMB.

Indicates that the CPU is fetching the address of the argument.

Detects overflow during multiplication or division.

Used to indicate the number of operands or the number of write
cycles to be performed.

Detects underflow during multiplication or division.
Indicates a zero quotient and also that shifting is halted.

Decreases amount of time between carry pulses for multiplica-
tion when a shift rather than an add and shift is to be performed.

Address selection lines used to specify arithmetic or logical op-
erations to be performed by ALU (see FP15-0-33).

Generated during detection of a 71XXXXg op code denoting an
FP instruction.

Signal Mnemonic Logic Print
STALL RESET FP15-0-10
STALL STB FP15-0-06
STEP P FP15-0-42
STOP ALIGN FP15-0-37
STOP CLK FP15-0-42
STOP DIV FP15-0-38
STORE COMP FP15-0-35
STORE JEA FP15-0-41
STORE OWR P FP15-0-43
STORE RND P FP15-0-35
STORE SEL FP15-0-35
STORE UND P FP15-0-43
ST PHASE FP15-0-09
SUB A FP15-0-36
SUB S FP15-0-36
SWAP MQ P FP15-0-41
TRANSFER FP15-0-42
TRANS EN FP15-0-10
TRANS EPB FP15-0-37
TRANSFER P FP15-0-42
TS1(1), TS 2(1), FP15-0-09
TS 3 (1)

UND (1) H FP15-0-43
UND SYNC (1) H FP15-0-43
WRITE FP15-0-11
WRITE DWN P FP15-0-02

Function

Used to reset the STALL flip-flop as a result of a PI or API
break.

Monitors MDL lines and strobes data into FP15 when 71XXXX

has been detected. 8
Indicates first step of Diagnostic Step and Read instruction.

Used during EXP cycle of addition or subtraction when exponent
difference is greater than 35 and denotes that alignment is com-
pleted or no alignment is to be performed.

Halts the FP15 Clock to allow sixteen 18-bit words to be trans-
ferred to memory during a Diagnostic Step and Read or Diagnos-
tic Read instruction.

Stops the division process when the divisor is normalized.

Indicates that the contents of the FMB are written into memory.
This signal is raised for a negative integer.

Used to store the JEA.

Indicates that overflow has been detected during normalization
of a single-precision floating-point Store instruction.

Used to round on a single-precision floating-point Store instruc-
tion.

Used to select inputs to the multiplexer during a WRITE cycle.

Indicates that underflow has been detected during normalization
of a single~precision floating-point Store instruction.

Used to stop the phase during arithmetic operations.

Indicates a subtraction of two quantities with unlike signs (ac-
tually an addition).

Indicates a subtraction of two quantities with like signs.
Used to swap the contents of the FMA and FMQ.

Enables Transfer P which initiates transfer of sixteen 18-bit
words to memory.

Used during Maintenance mode to indicate completion of trans-
fer of data from sixteen registers to memory.

Transfers contents of EPB into EPA during exponent alignment
when the EPB is greater than the EPA.

Initiates transfer of sixteen 18-bit words to memory during Main-
tenance mode.

Various time state of the time state generator.

Indicates an underflow has been detected.
Used for storage of temporary underflow condition.
Denotes WRITE cycle in which data is written into memory.

Down counts the shift counter during the WRITE cycle. Up to
three down counts are possible.

A-5



	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	A-1
	A-2
	A-3
	A-4
	A-5

