
SEMICDNDUCTDR TECHNOLOGY

Effects Of Pipelining
On Algorithms
For The MC68020
by David Olsen, Lockheed, Sunnyvale, CA

I
n the past, the performance of an algorithm on a micropro­
cessor was determined by how fast the processor ran and
how many instructions the algorithm required. This has been

changed by the advent of pipelining found in today's 32-bit
microprocessors. Now, the order in which instructions are
executed, location of the instruction on an even or odd boun­
dary in memory and the form of the a lgorithm affect the
performance.

The execution of instruction can be broken down into six dis­
tinct phases: instruction fetc h, instruction decode, effective ad­
dress calculation , operand fetching, execution and storage of
data . In simpler microprocessors, all these stages will be com­
pleted before execution of the next instruction is started . The
pipelining in the 68020 allows for the starting of these phases
on the following instructions before the completion of the cur­
rent instruction . The 68020 has three units which are respon­
sible for these functions, the pipeline, the bus controller and the
sequencer.

The pipeline has three stages; the first stage holds an oper­
and, and the second and third stages hold an operand or an oper­
and extension word (Figure 1). An operand extension word is
the second word of a two-word instruction . For example, the
instruction "MOY %FFFF, DI" shows the holding of interme­
diate data. The pipeline is responsible for decoding the instruc­
tions and supplying the sequencer with any operand extension
words. The bus controller is responsible for all activity on the
address and data bus, including instruction fetch , instruction
prefetch, operand fetching , data fetc hing and storage of data .
The sequencer is responsible for the effective address calcula-

4 5 6

Bus Controller I Read(A1)+ Prefetch I
Cal Elf. l Idle Perform Add DEC
Address

Sequencer

Instruction
Execution Time

ADD(A1)+D1

Sequencer

Control
Unit

Execution
Unit

r----------------prperrne----------------1
: I
I %FFFF I ! MOV (Operand (Next I
0 % FFFF, Extension Instruction ! D5 Word)
I
I
I
I I

L------- ------------ ----·------ .. -------J

Instruction
Flow

From Cache
And Memory

Figure 1: The pipeline of the 68020 has three stages. The first stage
holds an operand, and the second and third stages hold an operand or
operand extension word .

tion , that is, determining bus address for all the address ing
modes and activity involving the ALU.

The 68020differs from the 68000 in that these three units per­
form independently. In the 68000, the bus controller can pre­
fetch instructions when not needed to fetch or to store operands.
In the 68020, the sequencer has a degree of independence. If the

David Olsen is Associate Engineer Senior at Lockheed Space
Systems Division, Sunnyvale, CA .

11 12 13 14

Idle
Fetch

Add (A1)+D1
Add(A1)+D1 DBTD5,L

Cal Elf. Idle
Address

Displace-
ment

DBTD5, Loop

Figure 2: Timing diagram for a simple algorithm to add an array of numbers.

sequencer is finished with its required phase of an instruction,
and the bus controller is finishing the last phase of instruction
execution as in MOY Dl,(AI), the sequencer can then look at
the next instruction prefetched into the pipeline and start execu­
tion. The overlap of the bus controller finishing the last phase
of an instruction and the sequencer starting its execution phase
of a new instruction can be great enough that the sequencer
would finish an instruction at the same time that the bus con­
troller finishes the previous instruction . Of course, there are
locks in the pipeline to prevent instruction dependent sequences

The performance of
today's µPsis being af­
fected by the increasing
use of pipelining.

from occurring out of order.
The effect of pipelining can be illustrated by a simple

algorithm for adding up an array of numbers. The most obvious
way of implementing this algorithm is as follows (D5 contains
the length of the array):

WOP: ADD (Al)+ ,DI ----i
__J Main Loop

DBTD5,WOP

The timing for these instructions running on the 68020 is
shown in Figure 2. The times the sequencer and the bus con­
troller are active are shown. The sequencer is idle during the
first ADD instruction, clock cycle 4. This is because the ADD
Dl ,D2 instruction requires the data be fetched from memory,
(A), and loaded into register DI before it can add DI to D2.
Therefore, the sequencer must wait for the bus controller to
complete before performing the addition.

The first algorithm requires l2 clock cycles to sum an element
in an array. However, to maximize the instruction overlap, this
algorithm can be rewritten as follows:

WOP: MOY (Al)+,DI J
ADDD3,D4
MOY (A2)+ ,D3 Main Loop
ADDDl,D2
DBTD5,WOP
ADDD4,D2

Bus Controller

Sequencer

Instruction
Execution Time

I Read (A1)+

Perform Move

Move (A1)+D1

Pref etch I Read (A2)+

Perform
Add D3, Perform Move

D4

Mov(A2)+D3

Perform
AddD1,

D2

The time associated with this algorithm is shown in Figure
3. The array is broken in half, and each half is summed separ­
ately. During the first instruction when the sequencer is finished
with its task or calculating the effective address and increment­
ing the address register Al, the sequencer can start executing
the next instruction in the pipeline (ADD DL,D2). This is at the
end of clock cycle 4. Because the second instruction , ADD
D3,D4, does not require the data being fetched by the first MOY
instruction, there is no interlock between the sequencer and the
bus controller ; that is, the sequencer can continue processing
instructions in the pipeline. This is called an instruction inde­
pendent sequence. Compare the first two instructions of each
algorithm and notice that for the first algorithm the sequencer
must wait for the data being fetched before being able to con­
tinue processing instructions in the pipeline. The second
algorithm eliminated idle sequencer time. By alternating the
additions, the idle sequencer time, which occurs when the ADD
(Al)+ ,DI instruction is waiting for data to be fetched , is
eliminated. The sequencer is never idle.

Performing two additions takes 18 cycles, or 9 cycles per addi­
tion of array element. This is a savings of 3 cycles, or 67 % of
the time required in the first algorithm . However, this requires
more memory and initiation and uses two extra registers, which
might require being restored ifused in a subroutine. However,
an array size larger than 10-15 elements is the approximate
crossover point for improved performance.

One criterion for using this type of algorithm separation is
that the algorithm must be highly repetitive, a loop. Also, the
calculations within the repetitive part must be associative; i.e.,
the order in which they occur does not matter or the elements
being operated on are independent of each other. It does not
matter what order an array is summed or what order an array
is searched for an element.

The performance of today's microprocessors is being affected
by the increasing use of pipelining. The firmware programmer
must gain familiarity with the effects of pipelining and how it
will enable him to increase the peformance of the system . For
the person involved in the selection of a high level language for
the microprocessor where high performance is important, the
idea of pipelining must be kept in mind. New compilers will un­
doubtedly take advantage of the pipelining, and optimizing
compilers will become avai lab le which have pipeline
reorganizers. co

How useful did you find this article? Please circle the appropriate
number on the Reader Inquiry Card.

Very Useful 613
Useful .. 614
Somewhat Useful . 615

13 14 15 16 17 18 19 20

Idle Fetch
Mov(A1)+D1 Mov(A1)+D1 Add D3, D4

DEC Cal Elf. Idle
Address

Mov(A2)+D3 ADD D1 , D2

DBT D5, Loop
DBT D5, Loop Displace·

ment

Figure 3: Timing diagram for the rewritten algorithm showing the elimination of idle sequencer time.

