
THE

SYSTEM

USER GUIDE
AND

PROGRAMMER'S
MANUAL

Martin Reiser

The Oberon System

ACMPRESS
Editor-in-Chief Peter Wegner Brown University
International Editor Dines Bjarner Technical University of
(Europe) Denmark

SELECTED TITLES

Advances in Database Programming Languages Franfois BanCilhon
and Peter Buneman (Eds)

Algebraic Specification J.A. Bergstra, J. Heering and P. Klint (Eds)

Software Reusability (Volume 1: Concepts and Models) Ted Biggerstaff
and Alan Perlis (Eds)

Software Reusability (Volume 2: Applications and
Experience) Ted Biggerstaff and Alan Perl is (Eds)

Object-Oriented Concepts, Databases and Applications Won Kim and
Frederick H. Lochovsky (Eds)

Performance Instrumentation and Visualization Rebecca Koskela and
Margaret Simmons (Eds)

Distributed Systems Sape Mullender (Ed)

The Programmer's Apprentice Charles Rich and Richard C. Waters

Instrumentation for Future Parallel Computer
Systems Margaret Simmons, Ingrid Bucher and Rebecca Koskela (Eds)

User Interface Design Harold Thimbleby

...

The Oberon System
User Guide and Programmer's Manual

Martin Reiser
IBM Zurich Research Laboratory
Saumerstrasse 4
8803 Ruschlikon

and

Institut fUr Computersysteme
ETHZentrum
8092 Zurich

ACM Press

New York, New York

TT Addison-Wesley Publishing Company

Wokingham, England· Reading, Massachusetts· Menlo Park, California
New York· Don Mills, Ontario· Amsterdam· Bonn
Sydney· Singapore· Tokyo· Madrid· San Juan

Copyright © 1991 by the ACM Press, A Division of the Association for Computing
Machinery, Inc. (ACM).

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission of the
publisher.

The programs in this book have been included for their instructional value. They have
been tested with care but are not guaranteed for any particular purpose. The publisher
does not offer any warranties or representations, nor does it accept any liabilities with
respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. The publisher has made every attempt to supply
trademark information about manufacturers and their products mentioned in this book.
A list of the trademark designations and their owners appears on p. xii.

Cover designed by Hybert Design and Type, Maidenhead incorporating an illustration of
Oberon, Uranus' outermost satellite, courtesy of NASA, and printed by The Riverside
Printing Co. (Reading) Ltd.
Typeset by CRB Typesetting Services, Ely, Cambs.
Printed in Great Britain by The Bath Press, Avon.

First printed 1991.

British Library Cataloguing in Publication Data
Reiser, Martin

The Oberon system: user guide and programmer's manual.
1. Computers. Operating systems
I. Title
005.43

ISBN 0-201-54422-9

Library of Congress Cataloging in Publication Data
Reiser, Martin.

The Oberon system: user guide and programmer's manual/Martin
Reiser.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-54422-9
1. Operating systems (Computers) 2. Oberon.

QA76.76.063R45 1991
005.4' 46--dc20

I. Title.

90-26629
CIP

Preface

The progress in computing hardware power continues unabated. Pro­
cessors double their speed every two to three years and the sizes of
memory and storage devices do the same.

But what is happening on the software front? The designs of the
basic operating systems which we are using are quite dated and a
major international theme is standardization. New designs and archi­
tectures are hardly ever attempted. Rather, layer upon layer of code are
added without regard to size or efficiency. The hope is that the pro­
gress in hardware will cure all software ills. However, a critical
observer may observe that software manages to outgrow hardware in
size and sluggishness. Says Niklaus Wirth, one of the authors of
Oberon: 'In times when the overwhelming trend is to standardize
languages, operating systems, communication protocols, interfaces,
and documentation methods, often long before they have proven their
merits, it is important to point out that it is still possible to depart from
the bandwagon trail, although traveling may require endurance and
cause some headache.!l

Jiirg Gutknecht and Niklaus Wirth have had the courage to
depart from the 'bandwagon trail' and to build a system from scratch­
hardware and software. The result is the Ceres family of workstations
and the Oberon operating system. To implement the Oberon system a
new language has been designed which simplifies Modula-2 and adds
constructs for object-oriented programming. This language, too, has
been christened Oberon.

The result of only a few years effort by two University pro­
fessors is first-rate and a tribute to the merits of the small programming
team striving for the most efficient solution at every step.

1 Wirth N. (1989). 'Designing a System from Scratch,' Structured Programming, 1,
10-18.

v

vi Preface

Features of Oberon are as follows. It

• is fully graphics-based utilizing a bitmapped large display;

• is based on object oriented programming concepts implement­
ing viewers as well as texts and other documents as abstract data
types;

• uses dynamic loading;

• has a lightning-fast one-pass compiler which gives the user
almost the illusion of an interpreter;

• is very fast with respect to display refreshes and performs these
refreshes with a minimum of screen flicker. It is the most
responsive system by far known to the author. This responsive­
ness substantially improves user productivity;

• features a novel user interface, the tool viewer which is a blend of
menus and command lines;

• abolishes modes to the greatest extent known to the author.

In summary, Oberon is a state-of-the-art system in terms of func­
tionality. And now comes the most stunning feat: Oberon fits into less
than 200 kBytes of memory! Oberon is an existence proof that the trend
towards memory wasting software can be halted and the machine
resources brought back to the user's needs - not the system's.

This book is the Oberon system reference book. It describes the
novel user interface and the architecture and functions of the display
system. It also contains a programming guide which discusses how the
Oberon system is programmed and used.

A typical reader would have an Oberon system and would use
the book as a reference. However, care has been taken to write the book
in a manner which also serves the curious who would like to learn about
Oberon. As a minimum prerequisite, the reader should have a knowl­
edge of Modula-2 and have read the Oberon l~nguage report.

The book provides a complete documentation of the standard
editor, compiler, file system and the so-called outer core, the data struc­
tures and procedures with which the applications programmer inter­
faces. The modules of the inner core (for example, module loader, disk
drive, storage management) are not normally available. No attempt is
made to discuss implementation details of the abstract data types or
general design issues and trade-offs?

2 A good introduction into these aspects is provided by N. Wirth and J. Gutknecht
in 'The Oberon System,' Software - Practice al1d Experiel1ce, 19(9), Sept 89, pp. 857-
93 and in their forthcoming book The Oberol1 Project to be published by Addison­
Wesley.

Preface vii

Following the 'Overview' given in Chapter 1, the book is organ­
ized into three parts as described below.

Part I: User's guide

This part describes the system as perceived from the user sitting at the
workstation. The human interface is explained following the important
example of the standard system editor which is part of every Oberon
system. The basic system commands exported by command modules
Edit, System, Backup, Net, Compiler and Miscellaneous are documented.

A user at a workstation may go through the first two chapters, 2
and 3, sequentially. The material is logically organized such that he or
she may try the examples in the manner of a tutorial.

Chapter 2 is also a reference to the Oberon human interface style
and should be studied by the designer of viewer classes.

Part II: Reference

The first chapter in this part introduces details of the multitasking
architecture, the concept of the Oberon objects Frame and Viewer and
the principles behind the object-oriented design used for late binding
of applications to the central loop component.

Then, a chapter is dedicated to each of the major modules. First,
a concise description and a summary in the style of the definition
module of Modula-2 is provided. Then, the definitions and functions
of the module are described on the level of a reference manual. Most of
the modules export one or several abstract data types and care is taken
to introduce their concepts.

Part II is structured in such a way that the topics are developed
in a readable manner. This means that definitions and procedures are
not listed alphabetically but in an order which follows the logical
concepts. The reader who simply wants an introduction to these con­
cepts can quickly scan the detailed procedure descriptions. The user
who uses the book as a reference will find individual procedures
through the index.

The minimum prerequisite is familiarity with Modula-2 and
some knowledge of the Oberon language as provided in the original
papers by Wirth.

viii Preface

Part III: Programming guide

Oberon programmers fall broadly into two classes:

(1) Those who simply create commands which perform either tradi­
tional computations or work on existing abstract documents
such as text.

(2) Those who produce new interactive applications which require
a viewer and a handler.

The first two chapters in this part cater to both types of programmers.
In Chapter 18, 'Programming commands,' it is shown how to deal with
texts and files and how to produce polymorphic commands. Special
treatment is given to the long running command which performs tasks
such as numerically intensive computations or system simulations.

Chapter 19, 'Programming viewers and frames,' gives an in­
depth discussion of the handler's structure and how it reacts to mes­
sages. A complete coverage of the system messages is provided. Pro­
gramming of the display screen is also a feature of this chapter.

In Appendix A, a complete example of a non-trivial viewer class
is provided. Design issues are explored and the source program text is
carefully discussed. Appendices Band C describe the keyboard and
ASCII characters and MS/DOS files respectively.

Part III is only of interest to the actual user of an Oberon system
and requires a good working knowledge of the Oberon language.

Acknowledgements

This text could only have been written with the help of Niklaus Wirth,
Jurg Gutknecht, Peter Mossenbock, Regis Crelier, Robert Griesemer,
Drs Hiestand, Cuno Pfister, Karl Rege, Ralph Sommerer and Josef
TempI. Their patience and contributions are deeply acknowledged.

Peter Mossenbock and Cuno Pfister went through a careful
reading of the entire manuscript. Their corrections and suggestions led
to substantial improvements. Needless to say that the hours of work
which they invested in this book deserve special thanks.

Jurg Gutknecht made valuable suggestions with respect to the
example of the viewer class 'note viewers.'

Martin Reiser
Zurich, October 1990

Contents

Preface

1 Overview
1.1 Historical notes
1.2 The Oberon user interface
1.3 The Oberon system architecture
1.4 Summary of innovations
1.5 System version, implementations and applications

Part I User's guide

2 The Oberon user interface and the standard system

v

1
1
4
7

11
13

editor 17
2.1 Tiled display 19
2.2 The mouse and its use 20
2.3 The keyboard 26
2.4 The viewer 27
2.5 Commands 34
2.6 Tool viewers 37
2.7 Naming 42
2.8 Design for user satisfaction 43

3 Using the standard editor 46
3.1 Mouse and keyboard 47
3.2 Multiple views and the large selection 48
3.3 Closing viewers and saving to disk 49
3.4 Command module Edit 51

4 File administration and system commands 53
4.1 Commands dealing with files and the file directory 53
4.2 Other commands exported by command module System 55

ix

x Contents

5 Using the Oberon compiler 59
5.1 Compiler commands and messages 59
5.2 Debugging 60

6 U sing diskettes 63
6.1 Commands dealing with diskettes 64

7 Using network and servers 66
7.1 Naming conventions 67
7.2 Command module Net 68

8 Command module Miscellaneous 73

Part II Reference

9 System overview 77
9.1 Programs in the traditional sense 78
9.2 Oberon commands, module loading 79
9.3 The event loop 80
9.4 System architecture for up-calls: active objects 82
9.5 The module hierarchy 87
9.6 Guide to the notation used to describe the modules of

the outer core 89

10 Keyboard, mouse, network and printer 90
10.1 Module Input 91
10.2 Module V24 92
10.3 Module SCC 93
10.4 Module Printer 95

11 Module Files 98
11.1 Files and the file directory 99
11.2 Read/write access: the rider 104

12 Module Display 107
12.1 Bitmapped display, the display area 108
12.2 Raster operations 111
12.3 Display control 116
12.4 The definition of Frame, FrameMsg and Handler 118

13 Module Viewers 120
13.1 The logical display 121
13.2 The viewer 124

13.3 Viewer messages
13.4 Tracks
13.5 The viewer manager
13.6 The viewer data structure

14 Module Texts
14.1 Module Fonts
14.2 Text and buffer
14.3 Reading from texts, writing to buffers
14.4 Text files

15 Module Oberon
15.1 Tasks and the event loop
15.2 Cursors
15.3 Command activation
15.4 Focus, mark and selection
15.5 Display management
15.6 Miscellaneous procedures
15.7 Exported system-wide resources

16 Module MenuViewers
16.1 The menu viewer
16.2 The modify message
16.3 The handler

17 Module TextFrames
17.1 The frame
17.2 The display manager
17.3 The handler and its components
17.4 Facilities dealing with texts
17.5 Opening and creating frames

Part III Programming guide

18 Programming commands
18.1 General programming rules
18.2 Modules and commands
18.3 Working with texts
18.4 Accessing parameters
18.5 Working with text viewers
18.6 Working with text frames
18.7 Working with files
18.8 Long running commands, background tasks
18.9 Rules for well-behaved commands

Contents xi

125
128
129
133

135
138
139
143
151

154
157
163
165
166
169
170
172

174
175
177
180

183
185
191
195
197
199

203
204
206
207
213
218
225
227
237
242

xii Contents

19

Appendix A

Appendix B

Appendix C

Programming viewers and frames
19.1 The design of a viewer class
19.2 Working with the display
19.3 Handler for a viewer
19.4 Handler for a frame to be installed in a menu viewer
19.5 Handling mouse events, the track message
19.6 Example: handler for a text frame
19.7 Rules for well-behaved handlers

Viewer class note board: an extended example
A.l Introduction
A.2 Module Boards
A.3 Module BoardFrames
A.4 Module PostIt (command module)

Keyboard and ASCII characters

MS/DOS files

Bibliography

Glossary

Index

Trademark notice
AppleI'M and Macintosh™ are registered trademarks of Apple Computer, Inc.
DECsystem™ is a trademark of Digital Equipment Corporation
IBM PSI2™ is a trademark of International Business Machines Corporation
PC_DOSTM and MS-DOSTM are trademarks of MicroSoft Corporation
SUN Sparcstation™ is a trademark of Sun Microsystems Incorporated

244
246
254
264
268
277
283
291

293
293
295
300
321

324

329

331

333

339

1 Overview

1.1 Historical notes

Professor Niklaus Wirth has a long-standing interest in compilers,
programming languages and personal workstations. He achieved a
first breakthrough with the programming language Pascal, conceived
shortly after his appointment to ETH in 1968. 1 An electrical engineer by
training, he chose a unique approach of designing languages in parallel
with the development of hardware.

A first product was the Lilith personal computer, a design based
on the AMD 2901 chip set from Advanced Micro Devices. The aim was
to explore the potential of a stack-based machine running Pascal pro­
grams. During the project, limitations of Pascal as a system program­
ming language became apparent. This led to the programming
language Modula and later Modula-2 with the clear goal to be able to
support the software of the Lilith workstation.

The successor of Lilith was Ceres-l, 2 a more conventional
design based on the NS32032 microprocessor which was chosen as the
best commercially available chip with regard to supporting a stack­
based, separately compilable language such as Modula. Ceres features
a high-resolution display and uses the mouse and keyboard as input
devices. A color display is optional. A hard disk serves as store for non­
volatile data and a diskette drive is used for back-up purposes. The first
operating system running on Ceres-l was Medos. It was implemented
in Modula-2. Ceres-l was soon followed by Ceres-2 using the faster
NS32532 chip. Lately, Ceres-3 was completed, a diskless version fea­
turing a NS32GX32 processor.

In late 1985 Wirth and Gutknecht started to design a system
from scratch with the goal of achieving extensibility and flexibility. The

I Eidgenbssische Technische Hochschule or Swiss Federal Institute of
Technology.

2 Designed by H. Eberle and N. Wirth.

2 Overview

Guiding
principle

The Oberon
language

project was whimsically christened Oberon by Wirth who was fasci­
nated by the accuracy and reliability of the space probe Voyager which
passed the moon Oberon of planet Uranus at the time of conception of
the new project.

The sizeable effort of designing a new system was to bring
insights in language and system design utilizing concepts of object­
oriented programming. Thus, Oberon is really three things:

(1) The name of the project.

(2) A new programming language, the heir of Modula-2, which
introduces type extensions.

(3) An operating system for a personal workstation.

Make it as simple as possible, but not simpler.
A. Einstein

Wirth put this quote at the beginning of his paper 'The Programming
Language Oberon.,3 In our opinion, it furnishes an ideal summary of
the design approach - both for the language and the operating system.
Wirth and Gutknecht state:

'In the design of both hardware and software for the Oberon
system we followed a guiding principle, namely to strive for
clarity and simplicity. This is not only wise in view of the tiny
team and the desire to achieve a workable system within the
time bounds of human patience, but simply indispensable for
producing any system with a claim to reliability. Clarity and
simplicity is best achieved through a regular and purpose-tuned
structure. This in turn is possible if the underlying model of
operation is well understood, reasonably simple and free of
conflicting premises.'

The topic of the Oberon programming language is not the object of this
book (we refer the reader to The Oberon Language: Steps beyond Pascal and
Modula).4 The following two quotes from Wirth put the new program­
ming language into its proper context: as an evolution of Modula-2:

'Initially, it was planned to express the system in Modula, as
that language supports the notion of modular design quite

3 Wirth N. (1988). Software - Practice and Experience, 18(7), 671-90 .
.. Reiser M. and Wirth N. Addison-Wesley Publishing Company, Inc., to be

published.

1. 1 Historical notes 3

effectively and with conscientiously chosen interfaces. In fact,
an operating system should be no more than a set of basic
modules, and the design of an application must be considered
as a goal-oriented extension of that basic set: programming is
always extending a given system.

Whereas modern languages, such as Modula, support
the notion of extensibility in the procedural realm, the notion is
less well established in the domain of data types. In particular,
Modula does not allow the definition of new data types as
extensions of other, programmer-defined types in an adequate
manner. An additional feature was called for, thereby giving
rise to an extension of Modula.'

'It soon became clear that the rule to concentrate on the essential
and to eliminate the inessential should not only be applied to
the design of the new system, but equally stringently to the
language in which the system is formulated. The application of
the principle thus led from Modula to a new language.
However, the adjective "new" has to be understood in proper
context: Oberon evolved from Modula by very few additions and
several subtractions. 5 In relying on evolution rather than
revolution we remain in the tradition of a long development that
led from ALGOL to Pascal, then to Modula-2 and eventually to
Oberon.'

Owing to the type extension facility, Oberon allows programming in
an object-oriented style. Following the designer's philosophy, it
achieves this with a minimum of constructs. There are no explicit
constructs, class, method and message. This is by design, as the quote
from Wirth documents:

'It is impossible explicitly to acknowledge all contributions of
ideas that ultimately simmered down to what is now Oberon.
Most came from the use or study of existing languages, such as
Modula-2, Ada, Smalltalk and Cedar, which often taught us how
not to do it.,6

We shall subsequently introduce features of Oberon from the point of
view of the user interface, the language and the system architecture.

5 Italics added by the author.
6 Wirth N. (1988). From Modula to Oberon. Software - Practice and Experience, 18(7),

662-70. Italics added by the author.

4 Overview

1.2 The Oberon user interface

The modality of
text

Menus and
dialog boxes

A user, looking at the screen of a typical computer terminal or personal
computer, sees, most of the time, lines of text. He or she has mastered
the concept of the cursor, a point where text can be entered or deleted.

1 Volatile text written by system

,
Volume in drive C is REISER
Directory of C:\

COMMAND COM 25276 3-05-89 2:11P
DOS <DIR>
MR <DIR>
AUTOEXEC BAT 159

3-04-89
3-09-89
4-22-89

5:45P
8:31P
8:23P

CONFIG BAK
CONFIG FSA
CONFIG SYS

7 File(s)

C:\>dir a: -,
i

51 4-11-89 7:32P
59 7-30-89 7:12P
88 9-14-89 9:21P

113932 bytes free

Command line

However, in a display as the one above, the user will quickly learn that
text is not text. The list of files in our example is written by the system.
It is a volatile text in the sense that it cannot be saved, printed or edited.
Text can only be entered in the bottom line in which case it is a
command. This user has discovered that text is modal: it is either a
system message or editable text or a command.

Later generations of software introduced menus: commands are dis­
played in lists, ready for execution by pointing. However, menus are
distinct from editable texts. If a menu command requests parameters, a
so-called dialog box is opened. A new mode is entered. The user must
complete the box before he or she is allowed to continue.

The Oberon user interface departs radically from the standard
models. The concepts of the command line and of menus are absent.
Instead, there is simply one kind of text which behaves as an intelligent
person not yet spoiled by so-called 'computer literacy' would expect: it
can be changed, edited, printed and stored.

Text is a text, nothing more, nothing less.

7.2 The Oberon user interface 5

We shall explore the consequences of this throughout the remainder of
this book.

1.2.1 Oberon display

Oberon is designed to support a human user working with a display
and using the mouse and keyboard as input devices. A conscious
choice was made to use a reasonably large monitor. 7 A typical Oberon
display looks as follows:

Track

Viewer Tool

Viewer and track The screen is tiled into non-overlapping windows termed viewers.
Viewers are stacked in two piles called tracks. Each viewer displays a
document being processed by the user. Documents may be texts,
graphics or pictures.

While the display shown appears familiar there is a fundamental
difference of deep significance: the modality of texts has been abolished.
What looks like menus in the title bars of the viewers is text too, no
different from the editable text of the main viewer area.

7 On Ceres 1024 times 800 pixels.

6 Overview

1.2.2 Command execution

Command
output

Tool

Commands are simply typed into a text viewer and then executed by
pointing at them with the mouse cursor and clicking one of the mouse
keys. A command may be embedded anywhere in a text.

The command line was natural in teletype-based systems of the
1960s. Today, it is a relict whose usefulness is passed.

If a command produces output to the screen (such as the directory
command shown earlier) a new text viewer is opened with the com­
mand's output text. Again, this text may be edited, stored or printed.
Oberon commands produce non-volatile output.

Tools: the Bridge between 'remember and type' and 'point
and click.'

As a result of the abolition of the modality of text display and of the
command line, a powerful unification of the 'remember and type' and
the 'point and click' metaphors ensues.

Commands are entered into a text viewer (using the standard Oberon
editor) and then executed with the mouse. It is therefore quite natural
to prepare a set of frequently used commands in a text which is stored
on disk. Such a text is called a tool.

When displayed, a tool is quite similar to a menu. A set of
commands is listed and the user simply executes them with the mouse.
However, if the commands request parameter input, there is no need
for complex (modal) input or dialog boxes. We deal with an editable
text and the parameter can be easily entered, thus recovering the
flexibility of the 'remember and type' environment. In fact, Oberon
tools blend almost ideally between the two worlds which, to date, both
had their critics and adherents.

It is a common experience in science that principles powerful
enough to unify different domains of thought transcend into novel
territory. This expectation is not in vain in the case of Oberon.

Distribution of system releases is a common problem. Two
things are required: a distribution medium and a sequence of com­
mands to install the new release. It is the second requirement which is
both tedious and error prone. In Oberon, a simple memorandum,
which details the sequence of commands, becomes executable. The
commands are simply clicked at, one after another, to install the
release. The following is an electronic mail message which can be
executed to actualize the system from a file server:

Simply
execute by
clicki ng with
the mouse

Submission: 14.07.89
Originator: Wirth
Recipient: CS.all
Subject: New Oberon Release

7.3 The Oberon system architecture 7

To actualize your Oberon system to the new release, execute the following
steps:

An Oberon r
command to
load the files i
of the new l
release

Net.ReceiveFile Pluto
Cere~.Boot Cursors.Bbj Diskette.Obj Display.Obj Edit.Obj Files.Sym
Fonts.Obj C2.lnput.Obj Mailer.Obj Net.Obj Oberon.Obj Oberon.Sym
Printer.Obj Reals.Obj C2.SCC.Obj System.Obj TextFrames.Obj
TextFrames.Sym TextViewers.Obj TextViewers.Sym Texts.Obj
Texts.Sym Viewers.Obj Viewers.Sym Viewers.Obj Viewers.Sym

C2.V24.0bj-

1.3 The Oberon system architecture

From the rich set of innovations, only a few can be highlighted in this
overview.

,

1.3.1 Object-oriented design

Instance­
centered objects

The notions of layering and data abstraction are now well understood.
It is the use of the type extension facility which adds an element of
novelty to the Oberon architecture.

Objects - more precisely active objects - are instances of abstract
data types represented by records with a procedure variable called the
object's handler. The parameters for the handler are the fields of a
record variable called a message. Filling the fields of the message and
calling the handler is termed sending a message to the object.

In contrast to traditional object orientation, Oberon does not
emulate the concept of class and method.

Oberon explores an object-oriented design which may be properly
termed instance centered. The binding of procedures to the object is
further delayed and done at run-time. We speak of installation of
a handler in an object. In the Oberon paradigm, messages (or
parameter blocks for handlers) are defined by the user, not the module
where the object is defined. Further discussion of instance-centered

8 Overview

object-oriented design is beyond the scope of this overview and we
refer the reader to Part II.

1.3.2 Modules, commands and abstract data types

Command,
dynamic loading

Abstract data
types

1.3.3

Traditional systems have facilities to run programs. Once loaded and
started, the program receives control. It then runs, typically for a long
time, until it is halted and the operating system starts a new program.
When a program terminates, it releases all its resources, in particular
the memory it occupied.

Oberon parts with the traditional notion of a program. The code unit,
which can be executed from the user interface, is called a command.

A command is a parameterless procedure exported by a module
written in the programming language Oberon. Since efficiency in com­
mand activation is of the essence, the command modules need to be
memory resident. However, it is not practical to load all modules when
the system is booting. Therefore, modules are dynamically loaded on
demand. Once loaded, the module remains in memory.

The module often implements one or several abstract data types. The
fact that, once loaded, modules stay memory resident has an important
consequence: instances of the abstract data types may now exist
throughout the entire session: commands may operate on and communicate
through instances of abstract data types. The abstract type text is an import­
ant example.

Command interpreter, multitasking

Every system needs a command interpreter. If a traditional system is
completely idle, control is in a loop of the system command interpreter
which waits for input. Such input may be a command to load an
interactive application. Once loaded, control passes to the application
command interpreter of the program which has its own polling loop. The
user can either issue system commands or the commands understood
by the application.

Clearly, a system which runs several windows with different
applications needs some level of multitasking. In the known designs,
this requires interruption of programs and saving of state information.

In Oberon, all commands are on the same level, waiting to be
executed. A novel architecture is required which has the following key
features:

1.3 The Oberon system architecture 9

• There is only one loop - the event loop - which is encapsulated in
a system module .

• The indivisible unit of operation is the procedure call.

Viewer 1 Viewer 2

II Handled' II Handlerll

Viewer 3

Loop calls the
handler upon a
mouse or
keyboard event

A look at the Oberon display shows many coexisting viewers,
each dedicated to a specific task such as text editing, drawing, drafting
etc. The viewers are embodied as active objects.

When nothing happens, control is in the event loop which
constantly polls device drivers. When an event is sensed, a message
that identifies that event is sent to the handler of the affected viewer.
The handler determines the action to be performed as a consequence of
a mouse or keyboard event. It is also the display manager drawing
screen output. On completion of the call to the handler, control reverts
to the loop.

The important consequence of this design is that the chain of normal
procedure calls is never interrupted. There is no state information which needs
to be saved for multitasking. There are no hidden states and the single
process of the loop may simultaneously work on several user tasks
without the complications ensuing from true multitasking.

1.3.4 Memory management, garbage collection

Oberon uses the memory management units of modern micro­
processors to map modules (program segments) into memory. Mod­
ules are loaded on demand and remain memory resident once loaded.

The computer's memory is divided into a stack for the local
variables of procedures and a heap. Garbage collection is used to keep
the heap's size constraint. The introduction of a garbage collector is not
only for convenience, but also to achieve system reliability. In fact, the
human programmer should not be trusted to allocate free space in a
consistently correct manner.

10 Overview

1.3.5 Abstract documents, the example of texts

Text as an
abstract data type

Text as an object

Viewers typically work on documents which are displayed within their
perimeter. Such documents are texts, graphics, pictures etc.

We have already highlighted the fact that texts playa very special role
in Oberon. A text is an instance of an abstract data type which is
exported by module Texts. It provides the notion of a sequence of bytes
with their associated properties.

Texts are also active objects. When one of the procedures changes the
underlying data, a message is broadcast to all visible viewers advertis­
ing this change. If a viewer does display the changed text, it will
subsequently update its display. Thus, changing the document and updat­
ing the display are strictly separated. We may say that a text displays itself
after it was changed.

Viewer 1 Viewer 2 Viewer 3

Handler is
called because
a key was
pressed 2

II Handlerlill Handlerll
\ t I

3
Broadcast UpdateMsg -
that is, call the handlers with
appropriate parameters.

Texts. Insert

1.3.6 Extensibility

Extensibility of the Oberon system is an important design goal. It may
mean:

• adding commands which are executed from texts and which
operate on existing abstract documents (for example, texts);

• adding new viewer classes composed of: (a) an abstract docu­
ment, (b) a viewer with its handler and (c) a set of commands to
be executed from texts, including an Open command which
creates an instance of the viewer.

7.4 Summary of innovations 11

Adding simple Commands operating on documents - instances of an abstract data
commands type - may be easily added at any time. The ban of hidden states ensures

that such commands never interfere with the viewers handling the document.
All that the programmer has to do is to create an object module
containing the command. The dynamic loading system allows use of
the module without prior linkage editor runs.

Adding viewer The most powerful extension is the addition of a viewer class. The
classes architecture of the Oberon system is such that both abstract documents

and new viewer types may be added without any installation pro­
cedures or recompilation of system code. That this is possible in the
strongly typed environment is in fact a significant success of the object­
oriented design.

1.4 Summary of innovations

Oberon is the result of a research project. In this overview, we have
introduced the most salient features. Throughout the book, the con­
cepts will be refined on the level of a system reference. Let us state the
conclusions drawn by the creators of Oberon:8

'The Oberon system deviates from conventional operating
systems in several respects:

(1) The notion of program is absent; instead of a program
activation, the procedure call is the unit of action
specified by the computer's operator.

(2) Each procedure call (command) is an atomic action in the
dialog between the operator and the computer: the
switch from one task to another occurs between the
user's commands rather than between two arbitrary
machine instructions.

(3) Commands take their input from texts and other kinds of
documents rather than from the keyboard. Instead of
writing directly on to the screen, commands generate
non-volatile output in the form of (displayed) data
structures.

8 Wirth N. and Gutknecht J. (1989). The Oberon system. Software- Practic~alld
Experience, 19(9), 890.

12 Overview

(4) The interface between two consecutive actions consists of
abstract data structures (texts, graphics) in main store
rather than of files on disk. When displayed in viewers,
they are editable.

(5) Oberon provides distributed command interpretation.
Viewers are regarded as rectangular areas on the screen
which are capable of interpreting commands
individually. To that purpose, the object-oriented
programming paradigm is used. A message is sent to a
viewer whenever an input event refers to it.

(6) Oberon features a simple and extremely efficient file
system. The disk directory is organized as a B-tree. A
clear distinction is made between a file and aggregates to
access it, which are called riders.

(7) Modules are loaded under Oberon only when they are
actually used. Delayed loading is important because
packages may statically consist of dozens of modules, of
which only a few are used for any specific application.
Delayed loading is controlled by page faults, which are
caused by the virtual address mechanism.

(8) A garbage collector is built into the Oberon kernel.
Instead of running as a separate process, the garbage
collector is explicitly activated between commands under
the precondition of an empty stack. This precondition
simplifies and accelerates the algorithm significantly.

(9) The system and the user packages are implemented in a
language offering data type extension and polymorphic
operations with guaranteed type safety. Full type safety
is mandatory for a system relying on automatic storage
retrieval.

(10) An Oberon system implementation can be extended
(possibly years later) by declaring new data types which
are extensions of existing, imported types. Objects of
extended types are compatible with objects of their base
type, and therefore can be integrated into existing data
structures.

(11) In the Oberon system there is no real difference between
users and programmers. Having a powerful module basis
at their disposal, users can extend the system or adapt it
to their needs by programming new tools.'

The progress in speed and memory capability of computing
machinery continues unabated. In contrast, the software that we use is

1.5 System version, implementations and applications 13

usually of dated origin and adapts only slowly. One layer of code is put
on to another one resulting in systems of enormous size. Thus it is
quite common that the operating system of a workstation will consume
1 MB and a word processor and a spreadsheet program will require
4 MB of memory and the whole thing will perform quite sluggishly on
today's generation of fast workstations.

But Oberon yields an existence proof that this need not be so and
that there is no software barrier which cannot be surpassed. The whole
system is specified by 15 000 lines of source text and the compiled code
consists of 150 kB! Therefore, care not to waste resources does payoff.
Oberon is a sophisticated system and provides equivalent, if not super­
ior, functionality when compared with well-known commercial operat­
ing systems.

1.5 System version, implementations and
applications

Version number

Applications

Object Oberon

The premise of Oberon is that of an open system which invites the user
to change functionality and add new functions. In fact, it is the hope
that the distinction between user and programmer will become more
and more blurred. A consequence of this is that two systems will rarely
be exactly the same.

The version number of the system described in this book is 1.2.

Several projects adding functionality through new viewer classes are
underway at the Institut fur Computersysteme:

• A variety of program editors which are extensions of the basic
Oberon editor described in this manual.

• Two graphics editors Graph and Oil allowing line drawings con­
trolled by the mouse.

• A document editor Leda which provides advanced text process­
ing and page layout functions in a, WYSIWYG fashion.

• A paint program Paint manipulating bitmaps.

Object Oberon is a small extension of the Oberon language, introducing
the concepts of class and message from object-oriented programming.
It was developed by P. Mossenbock and J. TempI. These authors also
changed the functionality of the viewer class - in fact creating a dif­
ferent family of Oberon systems which share the modules Oberon and
those below Oberon with standard Oberon.

14 Overview

Implementations Oberon has been run for some years on Ceres, the experimental work­
station built at the Institut fur Computersysteme. Implementations for
SUN Sparcstation and Apple Macintosh computers are publicly avail­
able. Work on other machines (DECsystem 3100, IBM PS/2 and IBM
RISC System/6000) is in various stages of completion.

2 The Oberon user interface
and the standard system
editor

This chapter provides:

• A guide for the user on how to use Oberon. Using an Oberon
workstation, the reader can use the material as a tutorial of the
standard system functions, in particular the editor.

• A guide for the programmer of applications, called viewer
classes. The 'look and feel' which distinguishes Oberon from
established user interfaces is discussed.

A simple model of Oberon is given in the following figure:

Class: Class: Class:
text graphics picture
viewers viewers viewers

Oberon outer core

Oberon inner core

other
viewer
classes

The operating system and the applications are structured as a hier­
archy of modules which fall into the following broad classes:

• Viewer class: supplants the traditional application (for example,
an editor, a draw program, a paint program etc.)

17

18 The Oberon user interface and the standard system editor

EBNF notation

• Outer core: system functions managing the display, keyboard
and mouse .

• Inner core: basic operating system functions (such as file system,
storage management, loader, compiler etc.).

The facilities of the outer core provide the basis on which applications
are written. As far as the appearance of the Oberon user interface is
concerned, the outer core defines a display composed of rectangular,
non-overlapping windows, the viewers, which exhaustively tile the
screen.

Within such a viewer, the programmer has a great deal of
freedom. A variety of interfaces are possible - from 'remember and
type' to 'point and click.' The graphical capability of an Oberon work­
station imposes no restrictions on visual layout and controls. An
Oberon viewer class may look like an IBM PC with MS/OOS, like an
Apple Macintosh or, of course, like an Oberon system.

However, experience over recent years indicates that systems
benefit a great deal if they communicate with the user in a unified
style. A successful example is the Macintosh which achieved a great
uniformity across programs of many vendors thanks to the Human
Interface Guide published by Apple. 1 For Oberon, such a style evolved
and is documented in the remaining sections of this chapter which is,
at the same time, an introduction to the standard editor, which is used
as a key example for the Oberon interface style.

To describe the syntax of commands, an extended Backus-Naur for­
malism (EBNF) is used. Brackets [and] denote optionality of the
enclosed terms. Braces { and} denote its repetition, possibly 0 times.
Parentheses (and) group terms in the usual manner. A choice is
indicated by the vertical bar. For example A I B means A or B.

Syntactic entities (non-terminal symbols) are denoted by English
words set in italics. Symbols of the language vocabulary (terminal
symbols) are set in roman font or enclosed in double quote marks. In
the syntax of commands, the following symbols occur frequently:

To improve legibility, the quote marks are omitted for the above special
symbols.

For example consider the EBNF statment:

System. Free { moduleName [*] } (~ I l')

1 Addison-Wesley Publishing Company, Inc., 1987.

2. 1 Tiled display 19

The command name System.Free is followed by a list of moduleName.
Each moduleName is optionally postfixed by an asterisk. The list, which
may be empty, is terminated either by '-' or 'i'. The following are
valid alternatives

System. Free Texts Viewers* -
System. Free MyCmd i

System. Free i

2.1 Tiled display

One of the intrinsic concepts of the Oberon system is the viewer, a
rectangular area on the display. Viewers provide a port to an underlying
application which is typically an editor operating on text, picture or
graphics data objects. Viewers are non-overlapping and tile the display
area completely.

User track System track

The figure shows six viewers of apparently different kinds. Four
viewers display text. Using the mouse and keyboard, the texts can be
edited. These viewers are called text viewers.

One viewer shows a line drawing. When the mouse is in its
boundary, boxes and lines can be drawn with the mouse. This is a
graphics viewer.

20 The Oberon user interface and the standard system editor

Viewer class

Tracks

Tool viewers and
the system log

User control

2.2

2.2.1

The bottom left viewer renders a raster image. When the mouse
is in its perimeter, individual picture elements may be set or erased.
This viewer is a picture viewer.

We may visualize a command interpreter behind each viewer. The
Oberon system routes mouse events to the interpreter belonging to the
viewer containing the mouse cursor. Typed characters are directed at a
designated viewer - the focus. Thus, the semantics of the mouse and
keyboard is defined by the type of the viewer. We call an individual
viewer on the display an instance of its viewer class. Thus, in our example
we have four instances of text viewers, one instance of a graphics
viewer and one instance of a picture viewer.

The viewers are allocated in tracks. The Oberon display knows two
tracks: a wide user track and a narrow system track. This terminology
suggests that the user track is the preferred place to edit documents
whereas the system track serves predominantly as a control area where
commands are invoked and status information is reported.

In Oberon, everything happens in viewers. In particular, all the system
control functions are performed in standard text viewers rather than in
special control areas such as a command line or menu bar. Viewers
specialized for command execution are termed tool viewers.

Only the tracks are fixed. Within the tracks, placement and size of the
viewers are under the controf of the user. Viewers can be opened and
closed. Their relative position can be changed. Their size can be
increased to that of a whole track or even the whole display. The
distinction between system track and user track is only one about
preferred usage - any viewer may be placed anywhere.

The mouse and its use

The mouse

Oberon is controlled with a three-key mouse. Physical movement of the
mouse translates into movement of a mouse cursor on the plane of the
display. This cursor has the following shape:

Mouse focus -----~-"

Mouse actions

2.2 The mouse and its use 21

The focus of the cursor (its tip) designates the object on which com­
mands issued through the mouse keys will operate.

Oberon supports other cursor shapes as well. The arrow, how­
ever, is the most prevalent one and programmers of viewer classes
should use it for standard pointing actions. Special cursors may indicate
modes; for example, a 'grabber hand' to grab and shift a document
plane or a 'cross-hair' to precisely place points on the Cartesian plane
of a graphics program.

The three mouse keys are used to issue commands whose meaning
is defined by the class of the viewer which contains the cursor. They have the
following basic assignments:

Left key
POINT

Middle key
EXECUTE

Right key
SELECT

• Left key: place or track an insertion point.

• Middle key: execute a command pointed at by the mouse cursor.

• Right key: track the selection.

A detailed explanation is given in later sections.

The following mouse actions are of importance:

• Pressing: holding a key down while the mouse is stationary.

• Dragging: holding a key down while the mouse moves.

• Clicking: pushing the key while the mouse is stationary and
releasing the key, usually in quick succession.

• Interclicking: clicking one of the keys while the mouse is dragged
on another one. Also, clicking a key while another one is
pressed.

Dragging is typically linked to tracking operations on the display. For
example, dragging with the right key tracks the selection. Interclicking
with one of the other two keys is a standard way to issue mouse-based
commands which relate to the actual tracking operation. An example is
to delete the selection just being tracked.

22 The Oberon user interface and the standard system editor

2.2.2 Selection

Removal of the
selection

Selection in text
viewers

A convenient way to designate the operands of commands is through
mouse-based selection. A selected object is prepared prior to execution
by a subsequent command. To the user, it conveys a familiar noun­
verb syntax: 'Hey you (the selection), do this (the command.),2

Objects are selected through clicking or dragging the right
mouse key. On the display, selected objects are visually characterized,
typically rendered in reverse video.

All selections may be removed with the ESC key (all other markings are
removed too.)

A stretch of text in a text viewer is selected by first moving the mouse
cursor to the start of the desired selection. The right key is pressed and
the mouse dragged. On the display, the selected area is shown in
reverse video and adjusted continuously as the mouse is moved. This
adjustment is termed tracking of the selection. The selection process is
completed when the mouse key is released. Pressing the right key
again will clear the existing selection and start a new one.

Memo1.Text I System.Close System.Copy System.G

Dragging is typically linked to tracking operations on
the display. For example, dragging with the right key
tracks the selection. I

e actua ng
operation. example is to delete the selection just

beingt

The leading edge of the selection follows the mouse

Drag on right key
to track the
selection

2.2.3 Insertion point and focus viewer

The caret

The viewer which receives typed characters must be explicitly
designated.

This leads to the concept of the insertion point as the focus, where typed
~haracters or a copied text selection appear in the document. On the

2 Human Interface Guidelines: The Apple Desktop Interface, Addison-Wesley
Publishing Company, Inc., 1987.

Removal of the
caret

Setting the caret
in text viewers

2.2 The mouse and its use 23

display, the insertion point is made visible with a symbol - the caret.
The viewer with the caret is called the focus viewer. The focus viewer is
unique.

In text viewers, the caret looks as follows:

Caret focus ~

The caret is set in place (or tracked to its destination) through
clicking or dragging the left mouse key.

The caret is made invisible with the ESC key (all other markings are
removed too.)

In text viewers, the caret is set by moving the mouse cursor to the
insertion point and clicking the left mouse key. If the mouse is dragged
on the left key, the caret is tracked; that means it jumps from character
to character trying to follow the cursor. On release of the key, the caret
is set in place.

Memo1.Text I System.Close System.Copy System.G

The caret is set in place (or tracked to its
destination) through clicking or dragging the left

m~.:
The caret tries to follow the arrow and
jumps from character to character

Hold down and
drag to track caret;
set upon release

~

2.2.4 Mark and marked viewer

Some commands require a point on the display surface as one of their
parameters. Such a point is set up by placing the mouse cursor and
pressing the SETUP key (observe the mnemonics.)

The point is made visible by a star-shaped pattern called the
pointer:

Pointer focus * ~~
at center

24 The Oberon user interface and the standard system editor

Marked viewer

Removal of the
pointer

If a pointer is set, an attempt to place another one will erase the old
star-shaped pattern. The pointer is unique.

Besides designating a point, for example as the place where a viewer
should open, the pointer is also used to mark a viewer. We say a viewer
is marked if it contains the pointer anywhere in its frame boundary.
Marked viewers are frequently the object of commands such as 'close
the marked viewer' or 'print the marked viewer.'

The pointer is made invisible with the ESC key (all other markings are
removed too.) Note that the viewer, which displayed the pointer
before ESC was pressed, remains the marked viewer. Commands
operating on the marked viewer often remove the pointer. Again, a
viewer remains marked even if the pointer is invisible.

Caution: The pointer is fixed to the screen, not to the viewer.
Therefore, when viewers are opened, closed or replaced, the marked
viewer may change, since after the display modification another
viewer may contain the pointer. It is good practice to set the pointer
explicitly prior to invoking a command operating on the marked
viewer.

2.2.5 Mouse editing commands

Standard
interclick
commands

We have already encountered the primary functions of the mouse
keys. To initiate further actions with the mouse, key combinations
using interclicks or multiple click events need to be defined. There is
only a small number of such events, however, which a typical user can
master with ease. Complex mouse events should be introduced
judiciously.

Oberon utilizes interclicking as a highly efficient way of using the
mouse for editing operations. The following standard commands
should be provided by all viewer classes operating on text documents.

Copy selection to
the caret location

Delete the
selection~

Drag with the right
key to track the
selection

Copy most recent
selection

Drag with the left key
to track the caret

Copy
attributes
from the
caret location
to the
selection

Undoing an
interc1ick
command

2.2.6

Command
execution in text
viewers

2.2 The mouse and its use 25

While tracking the caret (dragging on the left key)

• Interclicking the middle key copies the most recent selection to
the place where the caret will be set on release of the left key.

• Interclicking the right key will copy the attributes of the charac­
ter to the right of the caret to the most recent selection.

While tracking the selection (dragging on the right key)

• Interclicking the left key will delete the selection being tracked
on release of the right key.

• Interclicking the middle key will copy the selection being
tracked to the caret location on release of the right key.

Note: In many cases, these commands can be generalized to graphics
and picture editors. When natural, they should be provided. For example,
graphics objects are also selected with the right key and deleted with a
left interclick. On the other hand, there are situations where the stand­
ard assignments do not apply. For example, when pointing to a
graphics plane one cannot execute a command. Thus, the middle key is
freed to perform another function. It is good practice, however, to limit
deviations from the standard assignments. This makes the user com­
fortable and helps to avoid errors.

If a key is interclicked erroneously while the mouse is still being
dragged, that command is cancelled if all keys are pressed simultaneously.

Executing commands from texts: the abolition of the command
line

A distinguishing feature of Oberon is the unification of text input and
command input. This unification is the end of the ubiquitous 'com­
mand line.' A text is taken literally: a sequence of characters. If this
sequence is to be interpreted as a command, it is not necessary for the
characters to be in a special place.

Text viewers are the standard place to invoke commands. In such a
viewer, anywhere in the editable text, a command and its parameters
may by entered and executed by pointing at the command's name with
the mouse cursor and clicking the middle mouse key. While the middle
key remains pressed, the word pointed at with the mouse cursor is
underlined. On release of the key, Oberon tries to execute the com­
mand. If the mouse is dragged on the middle key, then words are
tracked; that is, each new word pointed at is underlined.

26 The Oberon user interface and the standard system editor

Unloading a
module prior to
execution

2.3

S stem.Tool S stem.Close S stem.Co S stem. Click

Edit.~en Memo1.Textl\.. ..
Edit.Search
Edit.Store
Edit. Recall

In our example, the user has typed the name of the text to be
opened (,Memol. Text') and is about to execute the command
Edit.Open. Note that the command is underlined, meaning that the
middle mouse key is still pressed. The command is executed on release
of the key.

If the left key is interclicked while the middle key is pressed or while
words are being tracked (dragging on the middle key), the module
containing the executed command is unloaded and a new copy of that
module is loaded. This is useful while debugging Oberon procedures.

The keyboard

In Oberon, the principal role of the keyboard is to enter text. The caret
must be visible in one of the viewers. When a character is keyed, it is
inserted at the point of the caret and the caret moves one place to the
right. The delete key (DEL) is used to erase the character to the left of
the caret and move the caret one place to the left.

There is a small number of commands keys, as follows:

• SETUP: set the pointer at the place of the mouse cursor.

• ESC: remove all markings in all viewers; that is, all selections,
the star-shaped pointer and the caret.

• PFl: display white letters on black background.

• PF2: display off (to conserve the device.)

• PF3: display black letters on white background.

• CTRL-SHIFT-DEL: interrupt a running command.

The control key (CTRL) is used to produce special language characters
such as:

CTRL-a: a
CTRL....:.u: ii
CTRL-o: 6

CTRL-SHIFT-A: A
CTRL-SHIFT-U: D
CTRL-SHIFT -0: b

System log

System tool

Opening a
viewer

2.4 The viewer 27

2.4 The viewer

2.4.1 The initial display, opening a new viewer

The initial display after booting looks as follows:

User track (empty) System track

System.Log viewer -----i+

System. Tool viewer--

Two viewers are on display named System.Log and System. Tool. Both
the system log and the system tool are text viewers, which means that
the user can edit their contents.

In the system log (that is the viewer named System.Log) commands
report progress, completion and error information. Initially, time and
date is visible.

The system tool (that is the viewer named System. Tool) contains a set of
often used commands to be activated with the mouse.

An instance of a viewer is created and displayed by executing the Open
command belonging to the desired viewer class. The open command
typically has a single parameter which designates the name of the
viewer. If a file with the same name exists, the contents of the viewer
are initialized from that file. Otherwise, an empty document is
created.

28 The Oberon user interface and the standard system editor

Placement of
new viewer

Opening of text
viewers

Normally, when an open command is issued, Oberon makes a reason­
able guess as to where to place the viewer on the display. The user,
however, can indicate where the viewer should open by means of the
pointer. Regardless of where Oberon would have opened the viewer, it
will open in the track of the star-shaped pointer and its top edge will be
at the height of the pointer.

There are two commands for opening text viewers - Edit.Open and
System. Open. With Edit.Open, the text viewer will open in the user
track; with System.Open, it will appear in the system track (unless the
pointer overrides Oberon's preference.) Edit.Open is the first entry of
the system tool. To open a text viewer, the user just types its name and
execu tes the command.

Newly opened
text viewer
Memo1.Text

stem.Tool S stem.Clos

Edit.~en Memo1.Text~:

Edit.Search
Edit.Store
Edit. Recall

2.4.2 Layout

Basic properties Oberon viewers are rectangular areas on the display. As a minimum, a
viewer has:

• A thin line outlining the frame .

• A title bar with a viewer name. The title bar is highlighted in
reverse video.

Optional
properties

Name

2.4 The viewer 29

ViewerName

t
Title bar

Viewer frame boundary

Additional properties are:

• A set of commands adjacent to the viewer name.

• A vertical scroll bar located on the left.

• A horizontal scroll bar located at the top.

An important example are text viewers which look as follows:

Memo I System.Close System.Copy System.Grow Edit.Search Edit.Store

Martin Reiser
ETH Zentrum8092
ZOrich

November 24, 198~

Vertical scroll bar

t
Commands of title bar

I --

The text displayed below the title bar is called the main text (in contrast
to the text of the title bar which is also called menu text.)

Picture viewers furnish an example with both vertical and hori­
zontal scroll bars:

. . •• . .
t

Horizontal scroll bar

The name identifies the viewer. In many cases, it corresponds to a file
name designating the disk file where the data is stored.

30 The Oberon user interface and the standard system editor

Commands in
the title bar

Editing the title
bar

2.4.3

The scroll bar of
text viewers

Normally, a list of commands appears in the title bar, separated from
the viewer name by the symbol' I '. They appear for convenience and
are executed in the same way as commands in text viewers; that is, by
pointing at them with the mouse cursor and clicking the middle mouse
key. Since the title bar displaying commands looks like the menu bar of
traditional systems, it is also sometimes called 'the menu.'

However, the title bar is also a text (in the sense of text viewers.) All
editing operations work in the same way as those in the main editable
text - new commands may be added, the name may be changed,
stretches of text may be selected, deleted and copied. The only restric­
tion is that, in order to set the caret, the mouse has to point at the very
bottom of the area rendered in reverse video, otherwise the viewer will
be repositioned (see later.) Also, a changed title bar cannot be saved to
disk. When the viewer is reopened, the standard commands are again
displayed.

Scrolling

In many cases, the extent of the document (in its two-dimensional
space) is bigger than the viewer frame. Thus, the user needs to move
the document relative to the viewer to gain access to invisible portions.
This process is called scrolling. Scrolling is performed with the mouse.

Text viewers have a standard Oberon scroll bar on the left. To scroll,
the mouse cursor points into the scroll bar.

Then:

Position mark

~
--------------T

Press the left mouse but1 I

The line at which the arrc :
points is underlined. Upo :
release of the button the I

esignated line becomes :
_ firsLone .displayed .inJbe.--'

Set position mark

Tracked line
becomes
first one
displayed

I Beginning of
document
displayed

• Clicking the right key scrolls to the beginning of the text.

• Clicking the middle key sets the position mark at the point of the
mouse cursor. The document is repositioned such that the
character which appears on top has the same relative position in
the document as the position mark in the scroll bar.

2.4 The viewer 31

• Clicking the left key moves the respective line to the top. Dragging
on the left key tracks lines (lines are underlined.) On release, the
last line will appear on top.

The following interclick events are also defined:

• Interclicking the left key while pressing the middle key scrolls to
the end of the document.

• Interclicking the right key while pressing the middle key scrolls
to the beginning of the document.

Scroll bars in other document types, such as graphics or pictures, work
analogously.

2.4.4 Placement of viewers

The user has control over viewer placement:

• At the time of the open command with the pointer (see Section
2.4.1);

• on the display with the mouse.

Move the viewer If the mouse cursor is in the upper part of the title bar, pressing the left
in its track key will remove the reverse video to tell the user that a tracking mode

has been entered. Dragging the mouse will determine the new top
position in the track. On release of the left mouse key, the top edge of
the viewer will move to the height of the mouse cursor and the viewer
contents will be redrawn. The range of movement is restricted as
shown in the following figure:

32 The Oberon user interface and the standard system editor

Move the viewer
across tracks

2.4.5

Creating an
overlay track

Opening a copy
of an existing
viewer

If the middle mouse key is interclicked while dragging the title bar, the
restriction is not observed. The viewer may be placed anywhere on the
display. In particular, a viewer may be relocated across track
boundaries.

Growing, copying and closing viewers

Executing the command System. Grow will enlarge the viewer to the size
of the whole track. In fact, a new track is laid over the existing track.
The enlarged viewer exhausts the area of that new track as shown in
the following figure:

New track
with enlarged viewer

Covered
track

New viewers may be opened and closed in the overlay track in
the usual manner. If the last viewer in the overlay closes, the covered
track is restored. If the viewer already exhausts the track, it will be
enlarged to the size of the entire display. Thus, executing System. Grow
twice will enlarge any viewer to screen size.

Note: Viewers opened with System. Grow show the same document
as the viewer from which System.Grow was executed. Any changes
made in the original viewer will be visible in the enlarged viewer.
Similarly, changes made in the enlarged viewer are preserved when
that enlarged viewer is closed. Hence, it is not necessary to save to disk
when closing an overlay.

A second viewer showing the same data (text or graphics) may be
opened with the command System. Copy:

.. ...

Second
viewer

Before System.Copy After System.Copy

2.4 The viewer 33

If enough space is available, the viewer opened with System.Copy will
take up half the area of the original viewer. It provides a second view of
the same document. The clone viewers may be scrolled independently. Any
changes in one viewer are reflected in the other one. No data is lost if
one of the copy viewers is closed.

Closing a viewer A viewer is closed with the command System.Close. It disappears from
the display and the adjacent viewer (on top) claims the closed viewer's
area. The document is not saved to disk on execution of System. Close. An
erroneously closed viewer can be recovered through System. Recall.

2.4.6 The commands of the title bar

The text displayed in the title bar of a viewer is an instance of the same
abstract data type as the text edited in text viewers. Thus, any word
representing a valid command can be executed in the usual way - even
the viewer's name.

Thus, the commands shown in the title bar are like a little local
tool affording convenient access to frequently used functions. The text
displayed in the title bar is written by the command which opens the
viewer. Those commands deemed most useful are provided. Using the
editor, the user may change or add commands.

As a general rule, commands in the title bar operate on their viewer.
Some commands are polymorphic; that is, they discriminate between
whether they are executed from an editable text or from the title bar.
Edit. Store is an example. It has no parameter in the title bar and stores
its viewer on disk. If launched from a tool, Edit. Store requests a name
as parameter and stores the marked viewer under that name.

Standard title bar As a general rule, the command System. Close should always be dis­
commands played after the viewer name. In most cases, System.Copy and Sys­

tem. Grow follow in that order.

Other title bar Most viewer classes have a Store command which saves the document
commands to disk. The store command, such as Edit. Store, is also normally shown

in the title bar. Other commands may be added for additional con­
venience. For example:

• In text viewers, the command Edit. Search is included .

• In the viewer System. Log, the command Edit.Locate replaces
Edit.Search. It is used to locate the point in a program text where
the compiler reports an error.

34 The Oberon user interface and the standard system editor

• The viewer Mailbox. Text is opened by the command Net.Mailbox
of the net tool. It is a viewer of the class text viewers which
specializes in reading mail from the mail server. Besides Sys­
tem.Close, the specialized commands Net. ReceiveMail and
Net. DeleteMail appear in the title bar.

Mailbox.Text I System.Close Net.ReceiveMaii Net.DeleteMaii

4 21.11.89 17:34:16 Wirth 1125
3 20.11.89 14:57:20 Hiestand 1780

17.11.89 16:29:44 Wirth 3521

2.5 Commands

An Oberon command is a parameterless procedure in a module written
in the programming language Oberon. It follows its naming convention,
viz:

Mod.Proc

where Mod is the module name and Proc is the name of a parameterless
procedure exported by that module. For example, Edit.Open denotes
the procedure Open from the module Edit.

Command Typically, the programs comprising a viewer class are structured into
module different modules, one of which is specifically dedicated to providing

commands. Consequently, this module is also called the command
module. For example, Edit is the command module of the text viewer
class. It is good practice to use suggestive names for the command
modules such as Edit, Paint, Graph and so on.

2.5.1 Standard syntax

Most commands require parameters. It is important not to confuse the
parameter of commands with the (formal) parameters of procedures
written in the programming language Oberon. The parameters of
commands have different sources such as:

• Text following the command name.

• Text contained in the selection.
• The viewer from which the command was executed.

• The viewer designated with the star-shaped pointer.

No parameter

Single name or
word

List of names

The marked
viewer

2.5 Commands 35

Some commands do not require parameters. The objects on which they
operate are implicitly defined. For example, the command Edit.Recall,
which inserts the most recently deleted piece of text at the caret
location, takes an internal buffer as implied parameter and inserts it at
the point of the caret. Commands which appear in the title bar usually
take their viewer as implied parameter. For example, System. Close,
executed from the title bar, needs no parameters and closes its viewer.

Several commands expect a single word after the command's name. A
word is a string of characters not containing blanks. The word is
normally a file name or a template defined by its own syntax. If a name
is expected, any special symbol terminates the name. For example, the
following figure shows three instances of 'Edit. Open Test.Mod', the
third one being embedded in a text.

--------------------------------1

Edit.Open Test.Mod

Edit.Open Test.Mod-

this is Edit.Open Test.Mod the third version

Some commands take a list of names as parameters. The list may be of
variable length. It is separated from the command name by one or
several blanks and items in the list are blank delimited. The list is
terminated by a special sYJ11bol, typically '~'. For example, executing
Compiler. Compile in the following text will compile files M1.Mod to
M5.Mod:

--------------------------------1

Compiler.Compile M1.Mod M2.Mod M3.Mod
M4.Mod M5.Mod-

Other commands operate on the marked viewer (the viewer which
contains the star-shaped pointer.) They do this either implicitly (for
example, System. Close executed from a text viewer) or they expect an
asterisk after the command name (for example, Compiler. Compile.)
For example, assume that the viewer with name Test.Mod contains
a program text. Let this viewer be marked. Then executing
'Compiler.Compile*' will compile Test.Mod. This is equivalent to issuing
'Compiler. Compile Test.Mod~'.

36 The Oberon user interface and the standard svstem editor

The selection as
operand

The selection
contains names

rr·M#l'M""jijM1~
* I

1

1

1

The command acts on the selected object. For example, Edit.CopyFont
changes the font of the selected text to match the font found at the
location of the pointer.

As a general rule, Oberon commands consider the selection as an alternative
place to find their parameters. To refer to the selection, the symbol 'j'
appears after the command name or after a list of parameters.

In the case of a command which expects a single parameter, the
symbol' j' may substitute for that parameter. This means that the
name or template is contained in the selection.

If the command expects a list of parameters, then that list may
be terminated with' j' rather than '~'. In this case, the command looks
for exactly one more parameter in the selection. This option is typically
used with the empty list.

For example, the command Compiler. Compile is followed by the
character 'j'. The name in the selection, here 'Test.Mod', is compiled.

--------------------------------1

Compiler.Compile i

" E~jjt.Open ~'m:'--IMlr.lrm·, ,'"

Note: The code used for the upward pointing arrow' j' is SEX. It
differs from the ASCII character SEX which is the caret' /\ , .

There is a second convention used to refer to the selection. The
command restricts the parameter search to the text line on which the
command name appears. If that line is empty, the scan continues to the
selection. Edit.Open and System.Open show that behavior, although
they accept' j' as an alternative. We recommend referring to the
selection explicitly by means of ' j' .

2.5.2 Complex syntax

Commands may process the text following the command name or
designated by the selection. Thus, the parameters provided in that text

2. 6 Tool viewers 37

may be of arbitrarily complex syntax. A single name or a list of names
are just the simplest cases. The following examples illustrate this.

The command System.RenameFiles processes a list of name pairs
which are indicated as follows:

The arrow composed of the character '=' immediately followed by'>'
indicates that the file 'Memol.Text' is being renamed to 'Memo2.Text'
and not the other way around.

Often, a set of attributes is set with a single command. The
attributes with their values can be conveniently symbolized with an '='
sign. The following is a hypothetical example of a command Write.Page
which defines the page format for a document editor:

-------------1

Write.Page
Width = 21 Height = 29.7
Margins: Left = 3 Right = 2.5 Top = 4 Bottom = 5- I

2.5.3 Polymorphic commands

Some commands discriminate between several of the described para­
meter sources according to the environment from where they are
executed. Such commands are called polymorphic.

We have already come across the example of Edit.Store which
behaves differently depending on whether it is executed from the
command line or from the title bar.

Another example is Edit. Open which takes a name typed on the
same line as the command text and, if none is found, extends the
search to the selection.

2.6 Tool viewers

2.6.1 The tool viewer as an alternative to the menu

A text viewer which displays a set of commands is called a tool viewer, a
novel concept which is a blend of the two paradigms 'remember and
type' and 'point and click.' 'Remember and type' interfaces feature the

38 The Oberon user interface and the standard svstem editor

well-known command line. The usual embodiment of 'point and click'
is through (pull-down) menus.

To explain the new concept, let us look at the text viewer named
System. Tool, which is automatically opened after the system is turned
on.

stem.Tool S stem.Close S stem.Co S stem.Grow

Edit.Open
Edit.Show
Edit.Search
Edit.Store
Edit. Recall

Compiler.Compile*
Compiler.Compile-

System. Recall
System.OpenLog
System.Openi

Edit.Tool Leda.Tool Draw.Tool Paint.Tool
Backup. Tool Net. Tool Miscellaneous. Tool
My.Tool

System.CopyFiles => -
System.RenameFiles => -
System. DeleteFiles­
System. Directory

*.Mod *.Text *.Doc *.Graph *.Pict *.Fnt

System.Watch System.LoadMap System.Collect
System. Free-
System.State-
System.Time / 9 1 89 105900

I To open
I further tools

Like a menu, the system tool viewer presents a set of commands ready
for execution with the mouse. However, since the tool is simply a text
viewer, parameters can be typed prior to execution. Therefore, there is
no need for (modal) dialog boxes. An example was given earlier on
page 28 (text viewer Memol. Text was opened from the system tool.)

An Oberon system usually has a variety of tools. These tools are
opened with the command System. Open, which means that they will be
displayed in the system track (unless overridden with the pointer.)

The standard system tool has a section for opening further tools.
Since space is at a premium in tool viewers, an elegant way to econo­
mize space, based on the polymorphic nature of System. Open, is used:

2. 6 Tool viewers 39

---------------------------------1

s~stem~en i
i#in.fiTi1I~da.Tool Draw.Tool Paint.Tool
Backup.Tool Net.Tool Miscelianeous.Tool
My.Tool

The command System.Open appears on its own line, optionally fol­
lowed by IIi. Below this line, several tool names are listed. To open a
tool, the user simply selects its name and clicks at System. Open. It
suffices to select the first character.

A variety of tools are prepared on the standard release disk (or
release file server.) These encompass:

• Edit. Tool: text viewers.

• Leda. Tool: text document editor Leda.

• Draw. Tool: line graphics.

• Paint. Tool: pixel drawings.

• Backup. Tool: diskettes.

• Net. Tool: network and mail server.

• Miscellaneous. Tool: miscellaneous commands.

• My. Tool: place holder for a user-supplied tool.

Except for My. Tool the names of these tools correspond to the names of
command modules. Leda, Draw and Paint are viewer classes which are
not described in this book.

2.6.2 Conventions for listing commands in tool viewers

It is possible to infer what kind of parameters apply from the way the
commands are listed in a tool:

ModCmd

ModCmd~

ModCmd*

The command has implied parameters (for
example, Edit.Recall), takes the selection as
parameter (for example, Edit.CopyFont) or admits
a single typed name (for example, Edit.Open.)
The command expects a list of names (for
example, System.Free.) Before executing, enter the
list before the termination character I ~, •

The command takes the marked viewer as a
parameter. Mark a viewer before executing the
command.

40 The Oberon user interface and the standard system editor

Mod.Cmdt
!Mod.Cmd

The command is referred to the selection.
This is a protected or dangerous command (for
example, Diskette.Format.) The exclamation mark
prevents inadvertent execution. To use the
command, insert a blank between the
exclamation mark and the command name.
Caution: Remove the separating blank again after
usage. Otherwise, the protection is lost.

If commands expect more complex syntax, this should be indicated.
For example, System.RenameFiles is listed as:

[]

---------------------------------1

System.RenameFiles => - :
I ----------------------------------

The arrow composed of '=' and '>' indicates pairs of names; the
terminating symbol ,~, reminds that a list of such pairs is accepted.
The command Write.Page, discussed in an earlier example, would be
listed in the tool viewer exactly as it is expected, with suitable default
values already filled in:

---------------------------------1

Write. Page
Width = 21 Height = 29.7
Margins: Left = 3 Right = 2.5 Top = 4 Bottom = 5- :

I

2.6.3 Customizing tools

Customizing the
system tool

The malleability of texts affords an ease of customizing the system
controls which is unknown in other systems. Using the system editor,
any tool can be modified quickly. Contrast'this to menus which are
mostly frozen or only adaptable, if at all, with expert system knowl­
edge. The standard tools of the Oberdn distribution disk (or distribu­
tion file server) should be considered only a starting point.

The system tool is special in the sense that it appears on the start-up
display. It should provide a convenient starting environment.

Clearly, commands which are not likely to be useful should be
removed. Similarly, irrelevant tools should be deleted from the block of
names listed after System. Open.

If a user works predominantly on a single task, the respective
commands should be added at the beginning of the system tool. This
allows immediate productivity after booting.

User tools

Tools are task
centered

Guidelines for
customizing
tools

2.6 Tool viewers 41

If the user's tasks are more varied, the number of commands may
become too large to conveniently fit into the system tool. In this case,
several user tools provide an efficient solution. The name of these tools
should be included in the list after the line' System. Open in the system
tool. In this way, the user tools can be conveniently opened. The entry
'My. Tool' is a placeholder for such a user tool.

Efficient tools are task centered. In fact, the efficiency of the Oberon user
interface can only be fully utilized if tools are customized. Task cen­
tered means that all the commands used in performing a user's work
are found in the same tool and thus can be accessed efficiently.

In the following example, commands from modules System,
Edit, Compiler and Mare all listed in the same tool. That this is possible
pays tribute to the fact that Oberon applications are implemented as
families of cooperating commands rather than monolithic application
programs.

The user tool shown serves a programmer who is in the process
of testing procedures TestProc1 and TestProc2 in module M. It affords
easy editing, compiling and execution. The network is accessible to
print listings.

M .Tool I S stem.Close S stem.Co

System.SetUser
Edit.Open OberonErrors.Text
Edit.Print Pluto,*

Edit.Open M.Mod
Edit.Show M.TestProc1
Edit.Show M.TestProc2

Compiler.Compile;;:­
Compiler.Compile,;Js

System.Free M­
M.TestProc1
M.TestProc2

Tools can be structured in many ways. The user is in fact encouraged to
experiment until an environment is found which best supports his or
her needs. The following hints may help in achieving this goal:

• Keep tools small enough to fit into about one-quarter of the
system track height.

42 The Oberon user interface and the standard system editor

• Design task-centered tools.

• Generate many tools specialized for different tasks.

• Use meaningful names for your tools.

• Follow the naming convention for command entries.

• Make the system tool an efficient starting point (since it will be
displayed automatically.) Often, it is most convenient to add the
commands currently used at the top of the system tool.

Note: The user should not forget to save a tool text after it has been
modified using Edit. Store from the title bar.

2.7 Naming

File names

Viewer names

Oberon provides structured names to identify objects such as files,
servers and viewers. The syntax of names is:

Name = NamePart { II. II NamePart }
NamePart = Letter { Letter I Digit}

Examples are: Pluto, Test.Mod, Mail.Text, SyntaxlO.scn.Fnt.

The name of files can be structured with a period. There are no
mandatory rules to be followed but it is advisable to use suffices to
distinguish the type of the file. Often, file names have two name parts:

FileName. FileType

Some frequently used types are:

• Mod: Oberon modules (source program text).

• Text: text files created with the standard editor.

• Doc: text documents.

• Graph: graphics documents.

• Pief: picture files (bitmaps).

• Obj: Oberon modules (object files).

• Sym: symbol files.

Note: Structured file names together with the 'wild card' character '*' in
the System. Directory command provide functions similar to those
afforded by hierarchical directories.

In the case of document viewers, the viewer name and the file name
are identical. The Open command constructs the correspondence.

2.8 Design for user satisfaction 43

If a command opens a viewer for the purpose of text output, the
name of this viewer is identical to the command's name. For example,
the command System. State opens a viewer named 'System.5tate' which
displays state data.

2.8 Design for user satisfaction

2.8.1 Commands have visible consequences

The system log

Output viewers

Busy viewer

One of the basic tenets of the Oberon system is that commands have
visible consequences. This assures the user that things are going well.

For some commands, especially editing commands, visibility is
a natural consequence of their action. The result of other commands,
however, is not directly visible. Take Edit.Print for example. It does not
change the data, takes some time to execute and is not guaranteed to
succeed. Such commands need additional visual feedback.

Commands without a natural visible consequence do report their out­
come in the system log. Like all text displays, the system log is an
ordinary text viewer. The system log is part of the initial display after
booting.

Only progress, completion or error reports appear in the system log. If
a command produces text output, it should open a new text viewer
with an appropriate name. For example, the command System. State
opens a text viewer with name 'System. State' in which the state
informa tion is revealed.

If a command has an execution time which is noticeable by the user, it
displays the busy viewer arrow in the lower left corner.

Test.Mod I System.Close System.Copy System.Gro

1 Arrow mark

2.8.2 Recovery of erroneously deleted data

Any data lost through inadvertent use of a command should be
recoverable. However, Oberon viewer classes typically leave it to the

44 The Oberon user interface and the standard system editor

Edit. Recall

user to find out when data should be recovered. This means that modal
warning messages are avoided.

If a selection is deleted in a text viewer, then the command Edit.Recall
will recover the deleted stretch of text and reinsert it at the place of the
caret.

System. Recall If a viewer is erroneously closed before saving to disk, data may be
permanently lost. The last viewer to be closed can be reopened using
the command System. Recall.

Back-up files If the contents of a viewer are saved and if a file with the viewer's name
already exists, then the old file is kept under a modified file name. For
example, if text viewer Memo. Text is saved with the command
Edit. Store, then the previous version is still available under file name
Memo. Bak.

2.8.3 What Oberon viewer classes avoid

In the preceding sections, we went through the 'look and feel' which
Oberon viewer classes do provide. We shall conclude with a list of
things they avoid.

Modes Oberon commands and viewer classes go to great lengths to avoid
unnecessary, unnatural or invisible modes. Modes are not a hindrance
per se. Some modes are a natural consequence of the task at hand. For
example, the modality of the scroll bar is both visible and natural.
However, other modes lead to confusion and error or to user frustra­
tion. These modes must be avoided. Two examples should clarify what
we mean by harmful modes.

Unnatural modes A word-processing program moves the insertion point with the arrow
keys (in addition to the mouse.) It also furnishes an 'outline mode.'
There is nothing to criticize about this, the mode is visible and unques­
tionably of great utility. However, when i'n outline mode, the arrow
keys move the headings rather than the insertion point. A user who
has acquired the skill of using the arrow keys automatically will be
regularly disturbed when changing text in outline mode. It is not the
outline mode which is the problem, it is the invisible modality of the
arrow keys which is open for criticism.

Modal messages Other programs go to excesses to restrict users 'for their own good.'
User conformance is enforced with modal message boxes: 'Do you

Pretentious
controls and
graphics

2.8 Design for user satisfaction 45

really want to do that?' In most cases, the user does indeed want to do
what he or she has told the system and is predictably non-plussed by
the need to make the nagging messages disappear with mouse clicks or
key actions.

Oberon gave proof that the unification of text input and command
input in text viewers is a powerful concept capable of supplanting the
command line and most 'pull-down' menus and complex dialog boxes.
Oberon viewer classes should use this concept whenever it is
adequate.

46

3 Using the standard editor

Like most operating systems, Oberon has a standard system editor -
the viewer class text viewers. The reader has already gained a good
understanding of text viewers from Chapter 2.

This chapter gives an exhaustive description of the functions
and commands of the system editor. Besides the mouse-based actions
with which we are already familiar, the editor has a set of commands,
exported by command module Edit, to:

• search for the occurrence of a pattern;
• place the caret after the nth character in the text;
• recover deleted text;
• change fonts;
• print texts.

A text viewer Edit. Tool lists the commands from module Edit. On the
Oberon distribution disk (or distribution file server), the edit tool looks
as follows:

Edit.Tool I System.Close System.Co

Edit. Recall
Edit.Search
Edit. Locate
Edit.Store
Edit.Print lif

Edit.Print -

Edit.CopyFont
System.SetFont Syntax1 O.Scn.Fnt
System.SetFont Syntax1 OLScn.Fnt
System.SetFont Syntax1 Ob.Scn.Fnt
System.SetFont Syntax1 Ox.Scn.Fnt

Of course, the user lnay change the tool or edit commands into other
tools (for more details see Section 2.6.3.)

3. 1 Mouse and keyboard 47

3.1 Mouse and keyboard

The system editor implements all the mouse commands listed in
Chapter 2. These are summarized in Tables 3.1, 3.2 and 3.3.

Table 3.1 Cursor in text area: edit and execute commands.

Primary key

Interclick Left Middle Right

None Track caret Track word, execute Track selection

Left - Execute, load module Delete selection

Middle Copy selection to caret - Copy selection to caret
location location

Right Copy attribute at caret - -

location to selection

Table 3.2 Cursor in scroll bar: scroll up and down.

Primary key

Interclick Left Middle Right

None Track line, scroll down Set position mark, scroll Scroll to top
to arbitrary point

Left - Scroll to bottom Delete selection

Right - Scroll to top -

Table 3.3 Cursor in title bar: select and execute commands.

Interclick

None

Left

Middle

Selecting a line

Primary key

Left Middle Right

Track title bar, move Track word, execute Track selection
viewer in track

- Execute, load module -

Track title bar, - -

reposition viewer1

The text from the mouse cursor to the left edge of the viewer is selected
if the left mouse key is pressed two times without moving the mouse.
It is not necessary for the two clicks to be in quick succession.

1 Possibly across tracks.

48 Using the standard editor

Memo1.Text I S stem.Close S stem.Co S stem.G

mouse-based commands which relate to the actual
tracking operation. An example IS to d lete the
selection just being '"

Click right
key twice

Line breaks I t is necessary to use the RETURN key to break lines. Oberon text
viewers do not wrap words at the right margin.

3.2 Multiple views and the large selection

Opening second
viewer

Two viewers showing the same text can be helpful when editing large
documents. A second view of the same text is opened with the com­
mand System. Copy in the title bar.

Execution of System.Copy opens a new viewer with the same name.
Normally, the new viewer is adjacent to the original one, whose frame
is divided equally between the two clones.

The two viewers may be scrolled independently but show the
same text. Changes in one viewer are immediately displayed in the
other one, if the stretch of text being changed is visible there.

System. Copy may be executed more than once leading to a num­
ber of viewers displaying the same text.

Viewer opened
with Edit. Copy
showing second
view of text of
Mem01.Text

Closing second
viewer

Large selection

3.3 Closing viewers and saving to disk 49

Anyone of the twin viewers may be closed using the command
System. Close. There is no need to previously store the text on disk
(using Edit. Store) since a viewer remains on the display through which
that text can be accessed.

If a large document has to be selected, it may not fit into the viewer's
frame. In this case, a second viewer must be opened adjacent to the
original one using System. Copy. The text in the second viewer is
scrolled such that the end of the desired selection becomes visible. The
large selection can now be made as follows:

(1) Select the beginning of the desired large selection in the first
viewer. An arbitrary piece of the beginning may be selected -
just one character is sufficient.

(2) Select the end of the desired large selection in the second
viewer. As before, an arbitrarily large piece of the end may be
selected. Interclick commands can be given while selecting the
tail piece. They operate on the whole large selection.

Now the entire text, including the invisible portion between the begin­
ning of the first and the end of the second subselection, is selected.

Note: The entire large selection is not highlighted in reverse
video. Only the two subselections are.

3.3 Closing viewers and saving to disk

Storing to disk

Store under
different name

Text which was generated or modified in a text viewer must be saved
to disk if a permanent copy is required.

The command Edit. Store is displayed in the title bar and can be conven­
iently activated with the mouse. The text will be stored in a file which
has the same name as the viewer from which Edit. Store was executed.
If the text is a new one, a new file with the viewer's name will be
created on disk. The next Edit.Open with that name as parameter will
load the file.

To store a text under a name which is different from the viewer's title:

(1) The command Edit.Store is used from a tool. In this case, it
expects the new name as a parameter and stores the marked
viewer.

(2) The viewer's name is changed using the editor prior to execut­
ing Edit. Store from the title bar.

50 Using the standard editor

Closing viewer If System. Close is executed, the viewer is removed from the display. If
the closed viewer covers the whole track and if that track is an overlay
(generated with System. Grow), the underlying track is recovered.
Otherwise, its upper viewer is enlarged to use the freed space.

Note: Always save before executing System. Close (unless one of
multiple views is closed.) Otherwise, data may be lost.

Closing multiple If the same text is viewed through several viewers created with Sys­
views tem.Copy or System. Grow, changes are not lost when a viewer is closed

until the last viewer displaying the text is closed. The text may be saved
to disk from anyone of the multiple viewers.

Caution: The same text can be displayed in two viewers if
Edit.Open is issued twice. In this case, these are independent instances
which may have different modifications. Only one of them can be
saved under the viewer's name.

Undo closing An erroneously closed viewer can be reopened with the command
System.Recall.

Caution: Only the last viewer which was closed can be
recovered.

3.4 Command module Edit

Open Edit. Open (name I I)

Open a text viewer name. If 'I' follows Edit. Open, the name is found in
the selection.

Note: If the name is in the selection, only part of it needs to be
selected (see discussion of System. Open.) The selection is also searched
if the text line is empty after the command name.

The viewer is automatically placed in the user track, unless the
pointer is set. In this case, the viewer opens with its upper edge at the
place of the pointer. This means that if the pointer is placed in the
system track, the viewer will open there.

If a text with the given name has previously been stored, it is
initialized from disk and shown in the newly opened viewer. If the text
is a new one, new text is created; consequently, the viewer is empty.

Show Edit.Show (module. txt I I)

A viewer displaying file 'module. Mod' is opened and the first occur­
rence of the string txt is positioned near the top of that viewer.
Edit. Show is typically used to display a specified procedure in a pro­
gram text.

Store

Recall

Change
attributes

CopyFont

3.4 Command module Edit 51

If Ii' follows Edit. Show, then the parameter is found in the
selection. The selection is also searched if the text line is empty after
the command name.

The viewer is automatically placed in the user track, unless
overridden with the pointer (see Edit. Open.)

Edit.Store [name I i 1
In the title bar, Edit. Store does not take parameters. It stores its viewer
in a disk file whose name is identical with the viewer name.

If executed from a main text, Edit.Store saves the text displayed
in the marked viewer in a disk file name. If 'i' follows Edit.Store, then
the name is found in the selection.

If a disk file with the given name already exists, it is renamed.
The first name part is the same, the second name part is changed to
'Bak'. Further name parts are ignored. For example, if a viewer
Memol. Text is stored and file Memol. Text already exists, the old file is
renamed to Memol. Bak.

Edit. Recall

Inserts the most recently deleted text at the position of the caret. The
caret may be in a different viewer from the one where the text was
deleted.

Note: Deletion and Edit.Restore can be used in combination to
move text from one place to another:

(1) Delete text to be moved.

(2) Place the caret at the insertion point (may be in a different text
viewer.)

(3) Execute Edit.Recall.

Edit. Change Font (fontName Ii)
Edit. ChangeColor (colorNumber I l')

Edit.ChangeVoff (voffNumber I l')

Changes the font, color or vertical offset attributes of the selection to
fontName, colorNumber or voffNumber, respectively. Subsequently typed
text is of the global font color specified by System. SetFont, Sys­
tem. SetColor or System. Set Voff. If the command name is followed by '1",

the parameter is found in the selection.

Edit. CopyFont

Change the font of the selection to the font found at the place of the
star-shaped pointer. Subsequently, typed text is of the global font.

52 Using the standard editor

Search Edit.Search

Locate

Print

The parameter is contained in the selection and holds a text called the
pattern.

If executed from the title bar, Edit.Search places the caret at the
place of the first occurrence of the pattern in the displayed text. If
necessary, the text is scrolled such that the pattern becomes visible.

If executed from an editable text (for example, from a tool
viewer), Edit. Search searches for a match of the pattern in the text of the
marked viewer. If a caret is placed in that text, the search starts at the
location of the caret. Otherwise, it starts at the beginning of the text.
The search terminates at the end of the text.

Note: In both cases, repeated execution of Edit.Search searches
for subsequent occurrences of the pattern.

Edit. Locate
The parameter contained in the selection holds a text which is scanned
from left to right for the occurrence of the first integer. Assume that n
denotes that integer. Execution of Edit. Locate places the caret in the text
of the marked viewer after the nth character (note that carriage return
control characters are also counted.) For example, assume that the
selection in viewer System.Log contains 'pas 2598 err 38'. The marked
viewer contains the text of an Oberon module whose compilation has
caused this error message. Then the execution of Edit.Locate places the
caret at the point of the error found by the compiler.

Finding compiler errors is a typical use of Edit.Locate. Therefore,
it is shown in the title bar of the system log where the error messages
are displayed.

Edit. Print server (* I ({ name} (~ Ii)))
Prints texts on a network server named server. In the first case, the text
displayed in the marked viewer is printed. In the second case, all text
files contained in the list of names are printed.

If the list is terminated with Ii', the search is extended to the
selection for precisely one more name. This option is typically used
with the empty list.

Note: System.SetUser must be executed before the printer server
can be used (see Section 4.2.)

4 File administration and
system commands

Command
module System

The user deals with files naturally through the Open and Store com­
mands of the respective viewer class. These commands deal with the
task of creating files and registering their names in the file directory.

In addition, however, a set of files needs administration facili­
ties. When files become irrelevant, they should be deleted. Sometimes,
the name of a file needs to be changed or a copy of an existing file
produced for further processing. To work on files, a command provid­
ing a listing of the directory is essential.

The command module System provides the facilities for file adminis­
tration. It also exports commands to:

• open tool viewers and the system log;

• close, copy and enlarge viewers and tracks, recall previously
closed viewers;

• display system state information;

• set user identification;

• unload modules and force garbage collection.

4.1 Commands dealing with files and the file
directory

Directory System. Directory (template[/d II i)

Opens a viewer named 'System. Directory' which displays files control­
led by template. If 'i' follows the command name, the template is
contained in the selection. The selection is also searched if the text line
is empty after the command name.

The parameter template is a text string which must not contain
blanks. The asterisk is used as a 'wild card' - that is, a character

53

54 File administration and system commands

CopyFiles

RenameFiles

DeleteFiles

matched by any string of non-blank characters. All file names which
match the template are listed.

If the optional characters '/d' follow the template without
blanks, the listing includes date of file creation and size of the file in
bytes.

Examples of templates are as follows:

*
*.Mod
Test.*
.Scn.

All files are listed.
All files with suffix 'Mod' are listed.
All files with first name part 'Test' are listed.
All files with second name part 'Scn' are listed.

System. CopyFi les { name 1 = > name2} (~ Ii)
A list of name pairs namel and name2 is processed. The pairs are
separated by the symbol '=>' (equal sign followed by greater than
sign.) The file namel is duplicated and a directory entry name2 is
created. If a file name2 already exists, it is overwritten.

If the list is terminated with' i', the search is extended to the
selection for precisely one more name pair.

System.RenameFiles { name 1 => name2} (~ Ii)
A list of name pairs namel and name2 is processed. The pairs are
separated by the symbol '=>' (equal sign followed by greater than
sign.) Directory entry namel is renamed to name2. If entry name2
already exists, it is overwritten.

If the list is terminated with' i', the search is extended to the
selection for precisely one more name pair.

System.DeleteFiles { name} (~ Ii)
All file names contained in the parameter list are deleted from the
directory. If the list is terminated with' i', the search is extended to the
selection for precisely one more name.

Note: If a variable of type Files.File providing access to one of the
deleted files exists, it continues to afford read/write access to that file.
System.DeleteFiles only deletes the directory entry, not the physical file
data. Such data is only purged when the system is booting the next
time (see Chapter 11.)

Caution: Don't forget to terminate the parameter list with a
special symbol. Any file whose name appears after System. DeleteFiles
will be removed from the directory without a request for confirmation
or the possibility of undoing the operation.

4.2 Other commands exported by command module System 55

4.2 Other commands exported by command module
System

Open System. Open (name I j)

OpenLog

Close

Open a text viewer name. If System. Open is followed by 'j', the name is
contained in the selection. The selection is also searched if the text line
is empty after the command name.

Note: Only part of a name needs to be selected. In the following
examples, the text viewer Edit. Tool will open in the system track in
both cases.

System.ODen j

I#tiUll'i1i!l\eda.Tool Draw.Tool Paint.Tool

System.Open i
~it.Tool \eda.Tool Draw.Tool Paint.Tool

The viewer is automatically placed in the system track, unless
the star-shaped pointer is set. In this case, the viewer opens with its
upper edge at the place of the pointer. This means that if the pointer is
placed in the user track, the viewer will open there.

If a text with the given name has been previously stored, it is
initialized from disk and shown in the newly opened viewer. If the text
is a new one, the viewer is empty.

System. Open is typically used to open tool viewers.

System.OpenLog

Opens the system log viewer in the system track (unless overridden
with the pointer.)

System. Close

If executed from the title bar, System. Close closes the viewer which
contains the bar. If executed from a main text (for example, a tool
viewer), System. Close closes the marked viewer.

In the tool viewer, the command should be listed as 'Sys­
tem.Close *' to indicate that it applies to the marked viewer. Note,
however, that the asterisk is not required.

A viewer which is closed is removed from the display. The
viewer adjacent (on top) to the one which is closed reclaims the freed
display area.

56 File administration and system commands

Copy

Grow

CloseTrack

Recall

Time

Watch

ShowModules

Trap

Note: The viewer's contents (for example, text) are not saved to
disk. If the viewer is erroneously closed, it may be reopened with
System. Recall.

System. Copy

Opens a copy of the viewer in which System. Copy is executed (from the
title bar or the main text.) The copy displays the same document as the
original viewer.

System.Grow

Enlarges the viewer in which System. Grow is executed (from the title
bar or the main text.) An overlay track is opened and the enlarged
viewer covers the area of the whole track. The enlarged viewer dis­
plays the same data as the original one.

In the overlay track, other viewers may open and close in the
usual manner. If the last viewer in the overlay track closes, the under­
lying track is restored.

System . CloseT rack

Closes the track which contains the star-shaped pointer. If the track is
an overlay, the underlying track is recovered.

System. Recall

Reopens the viewer closed with the most recent execution of
System. Close.

System.Time [dd mo vv hh mm ss 1
If System. Time has no parameter (for example, if it is followed by a
special symbol), then the date and time is displayed in the system log.
With parameters, date and time are reset. The symbols dd, mo, yy, hh,
mm and ss are all two-digit blank delimited numbers denoting day,
month, year, hour, minute and second of date and time to be set.

System.Watch

Displays the amount of currently used disk space and memory
resources in the system log.

System. ShowMod u les

A map of all currently loaded modules is displayed in a viewer with
name'System.ShowModules.'

System.Trap

Displays a trap viewer.

State

SetUser

Collect

Free

Set global
attributes

4.2 Other commands exported by command module System 57

System.State { moduleName} (- 1 i)

The global data of the modules in the parameter list is displayed in a
viewer with name 'System.State.' If the list is terminated with' i', the
search is extended to the selection for precisely one more name. This
option is typically used with the empty list.

System.SetUser userNamelpassword
Sets user identification userName and password. The slash is a required
separator. Blanks are not allowed between userName and the slash and
between the slash and password. User names are restricted to eight
characters while passwords may be of any length.

When System.SetUser is invoked, the mouse pointer is frozen.
The user name, the slash and then the password must be typed blindly
(that is, are not echoed on the screen.) The operation of setting user
identification must be terminated with the ENTER or RETURN key.

Note: This is the only really modal command in the Oberon
system which requires termination by the ENTER key.

System. Collect

Initiates an immediate garbage collection run.

System.Free { moduleName[* 1 } (-I i)

Unloads every module specified by the parameter list. If a module
name is immediately followed by an asterisk, imported modules are
also unloaded as far as possible. A module can only be unloaded if it is
not imported by another module which is still loaded. Therefore, the
order of the module names in the parameter list may be significant.

If the list is terminated with Ii', the search is extended to the
selection for precisely one more name.

System.SetFont (fontName 1 i)

System.SetColor (colorNumber 1 i)

System.SetVoff (voffNumber 1 i)

Sets the attributes font, color or vertical offset globally. After execution,
the designated font or color will occur when text is typed. The change
applies to all viewers where text is entered. 1 The parameter fontName
must be a font name, colorNumber is an integer naming one of the hues
defined in the color palette and voffNumber is an integer designating the
vertical offset.

If 'i' follows the command name, the attribute is contained in
the selection.

I Given that they observe the Oberon interface guidelines.

58 File administration and system commands

The standard Oberon font is called Syntax. The default size is 10
points. The following versions of 10-point Syntax are available:

Syntax10.Scn.Fnt
Syntax10i.Scn.Fnt
Syntax10b.Scn.Fnt
Syntax10x.Scn.Fnt

Normal syntax font (default.)
Italic version.
Bold face version.
Like normal syntax but fixed spacing of
numbers and characters A to F. 2

Other point sizes are available and indicated by the number after
'Syntax.'

2 To facilitate the construction of tables or arrays of numbers (including the
hexadecimal notation.)

Compile

5 Using the Oberon compiler

The compiler is an important component of the Oberon system. Except
for parts of the inner core (and procedures in module Display), the
whole Oberon system is written in the Oberon language.

This chapter is an introduction on how to work with the com­
piler. Familiarity with the Oberon language is a prerequisite.

5.1 Compiler commands and messages

The input to the compiler are texts. Such texts are conveniently created
in text viewers using the standard system editor. The following nam­
ing convention is recommended for files storing source programs:

name. Mod

where name usually corresponds to the module's name.

Compiler. Compile * [Is lid 1
Compiler.Compile { name [Is lid 1 } (~ I l')

Compile the source text of the marked viewer (first option) or the text
files of the list of names (second option.) If the list is terminated with
, 1" , the search is extended to the selection for precisely one more name­
suffix parameter. This option is typically used with the empty list.

The optional suffixes 'Is' and '/d' follow the asterisk or the name
without blanks.

The suffix 'Is' allows the compiler to create a new symbol file. If
option 'Is' is not specified, a change in the interface of the module
results in a compilation error.

The suffix '/d' instructs the compiler to include position refer­
ences in the object code. Traps will indicate the source position which
can be located using Edit. Locate.

59

60 Using the Oberon compiler

Messages The compiler writes completion and error messages to the system log.

name.Mod compiling n1 n2
name.Mod compiling new symbol file n 1 n2

Successful compilation of program text name is reported. nl and n2 are
integers. nl is the size of the object code (in bytes); n2 denotes the size
of the global data area (in bytes.)

name.Mod compiling
pas n1 err e1

pas n2err e2

Errors with error numbers el and e2 occurred at positions nl and n2,
respectively.

5.2 Debugging

5.2.1 Finding compiler errors

To efficiently debug an Oberon module, the user should compile with
the lid' option and have the following viewers open:

• The system log.

• A customized system tool or private tool containing the fre­
quently used commands.

• ~ text viewer in the user track displaying the module's text.

• A text viewer displaying OberonErrors. Text.

Error location Compiler errors are reported in the system log. The command
Edit.Locate provides a convenient means to find the point in the pro­
gram text where the error has occurred. For this purpose, Edit. Locate is
included in the title bar of the system log viewer.

To place the caret at the location in the program text where an
error has been found:

(1) Mark the viewer which contains the module's program text.

(2) Select the line describing the error in the system log.

(3) Execute Edit. Locate in the menu of the system log.

5.2 Oebugging 61

S stem.Lo IS stem.Close S stem.Co S stem.Grow Edit.Locat

Test.Mod compiling
pos 2598 err 38

as 2598 err 10

Note: Viewer Test.Mod is marked with "1<-

Error description To find the description of the error number, open a viewer displaying
the text OberonErrors.Text. Then:

Traps

(1) Select the error number. (Be careful not to include the line break
character in the selection.)

(2) Execute Edit. Search from the title bar of viewer
OberonErrors. Text.

System. Log I System.Close System.Copy System.Grow Edit.Locate

Test.Mod compiling
pas 2598 err 38
pos 2973 errmJ

Execute Edit.Search in the title bar of OberonErrors.Text

5.2.2 Command execution and run-time errors

If a command from the module under test is invoked, the module is
loaded. In this case, it must be unloaded before a new version can
execute. Unloading is performed through the command System.Free or
through an interclick with the left mouse key while executing a com­
mand with the middle mouse key.

Certain run-time errors are trapped and produce output in a text
viewer called 'System. Trap'. The entire procedure activation stack is
displayed. The error which produced the trap is identified with a trap
code. The values of certain system registers are given. All scalar vari­
ables and strings (that is, ARRAY OF CHAR) together with their values
are also listed.

For example, a floating-point division by zero produces the
following trap viewer:

62 Using the Oberon compiler

Procedure on top of
invocation stack

Trap code Registers

..
TRAP 3 FP = 003FFE6C FSR = 00010043
M.Test 2120 ------------

a = 1.000000E+00
b= 0 ~ ... -----------

I

I

: Program counter

Next procedure in
invocation stack

c = NaN
Oberon.Call 2274

:Local variables of
M.Test
I

I
I

Trap codes

Trap from
keyboard

... Local variables of
pberon.Call

TextViewers.Call 2600

TextViewers.EditText 3630

TextViewers.HandleViewer 4326

Oberon.Loop 2677

Modules PC = 2629

FP denotes the frame pointer, FSR the floating-point status register and
NaN stands for 'not a number'.

The run-time errors are identified by numeric trap codes. The codes are
explained at the end of OberonErrors. Text.

The key combination CTRL-SHIFT-OEL produces a trap with code
number 22. The keyboard-induced trap may be used to halt the execu­
tion of commands. It also allows the user to recover when he or she
accidentally closes all viewers on the screen. Since the viewer named
System. Trap is a text viewer, it is only necessary to type 'System. Open
System. Tool' and resume work.

5.2.3 Writing to the system log

The system log provides a convenient output area for Oberon com­
mands under test. The way in which commands write to the log viewer
is explained in Section 18.3.

6 U sing diskettes

Diskettes are primarily used to back-up files of the hard disk or to
initialize RAM disks. 1 The respective command module and tool are
therefore termed Backup. The commands exported by command
module Backup serve to:

• format and initialize diskettes;

• display the directory of diskettes;

• read from diskette to hard disk and write from hard disk to
diskette, delete files on diskette;

• convert formats (command module Miscellaneous.)

On the Oberon distribution disk (or distribution file server), the back­
up tool looks as follows:

Backup.Tool I System.Close System

Backup. Directory
Backup. ReadAl1
Backup.ReadFiles -
Backup.WriteFiles -
Backup. DeleteFiles -

!Backup.Format
!Backup.lnit

Miscellaneous.ConvertToMSDOS
Miscellaneous.ConvertFromMSDOS

Of course, the user may change the tool or copy back-up commands
into other tools (for more details see Section 2.6.3.)

I For example, in the Ceres-3 workstation, which has no built-in hard disk.

63

64 Using diskettes

6.1 Commands dealing with diskettes

Format Backup.Format

A two-sided diskette is formatted. Caution: All data the diskette may
have contained is lost.

Init Backup.lnit

Initializes an already formatted diskette. Caution: All data the diskette
may have contained is lost. Note: Backup.lnit is much faster than
Backup. Format.

Directory Backup. Directory

Opens a text viewer named 'Backup. Directory' which displays the
directory of the loaded diskette.

DeleteFiles Backup.DeleteFiles { name} (~ It)
All files named in the parameter list are deleted.

If the list is terminated with It', the search is extended to the
selection for precisely one more name. This option is typically used
with the empty list.

Caution: Don't forget to terminate the parameter list with a
special symbol. Any file whose name appears after System.DeleteFiles
will be removed from the directory without a request for confirmation
or the possibility of undoing the operation.

ReadAll Backup. ReadAIl

All files contained on the diskette are copied to the hard disk.
Caution: If a file name on the diskette matches a file name on

hard disk, that file is overwritten.

ReadFiles Backup.ReadFiles { name} (~ It)

WriteFiles

All files named in the parameter list are copied to the hard disk.
If the list is terminated with 't', the search is extended to the

selection for precisely one more name.
Caution: If a file name on the diskette matches a file name on

hard disk, that file is overwritten.

Backup.WriteFiles { name} (~ It)
All files named in the parameter list are copied from the hard disk to
the diskette.

If the list is terminated with' t', the search is extended to the
selection for precisely one more name.

Caution: If a file name on the hard disk matches a file name on
diskette, that file is overwritten.

6. 7 Commands dealing with diskettes 65

6.1.1 Converting text files to MS/DOS

ConvertTo­
MSDOS

ConvertFrom­
MSDOS

The diskette format used by the Oberon system is close to the format of
MS/DOS. Full compatibility may be achieved through a set of com­
mands exported by module Miscellaneous.

Miscellaneous. Convert T oM S DOS

The directory of the loaded diskette is modified to be compatible with
the MS/DOS format.

Caution: File names may be changed (capitalized and truncated.)

Miscelianeous.ConvertFromMSDOS

The directory of an MS/DOS diskette is modified to be readable by an
Oberon system.

Note: In order to transfer a text file to an MS/DOS system, the
formatting information must be removed first using Miscel­
laneous.Cleanup. For example the files Memo1.Text, Memo2.Text and
Memo3.Text are converted to ASCII format, written to a diskette which
is subsequently converted to MS/DOS format:

Miscelianeous.Cleanup Memo1.Text Memo2.Text Memo3.Text­
Backup.WriteFiles Memo1.Text Memo2.Text Memo3.Text­
Miscelianeous.ConvertToMSDOS

The way in which line breaks are treated in Oberon texts and in MSI
DOS text files differs. Proc"edures performing the necessary transla­
tions are listed in Appendix C.

66

7 Using networks and servers

Each system running Oberon may act as a file server. Special tasks
installed on a dedicated machine provide mail and print services to the
cluster. The servers can be accessed either by telecommunication (TC)
lines (via V.24 interface) or by a local area network.

Clients

Remote client

In a cluster of workstations linked by a local area network, one
machine is typically dedicated as file, print and mail server. This
station for the dedicated server has a default name which is installation
specific. In the following examples, the name 'Pluto' designates the
network server.

To transfer files between two workstations connected by a net­
work, one of them must be designated a server by means of the
command Net.StartServer. Once initiated as a server, files can be read
from that station and transferred to it from any other network node.
The server mode is terminated by Net.StopServer.

7. 7 Naming conventions 67

7.1 Naming conventions

User name

Network name

In server mode

MR CP NW JG

Pluto

I

vlewer w'lh,

~"".,. B e
diSplays a 1<
pendlrogme

Mail server directory

,:' MR Reiser
CP Pfister
NW Wirth
JG Gutknecht

.......

If a workstation is in server mode, it is known to the network by its user
name. The user name is set with the command:

System .SetUser userName/password

(User names are restricted to eight characters while passwords may be
of any length.) To use a network and servers, it is necessary to first
issue the command System. Set User. Otherwise, a message 'no per­
mission' is written to the system log.

Only stations in server mode can be recipients of files or mes­
sages sent with the command Net.Sendfiles. In our example, station MR
is in server mode. Hence, files or messages may be sent to it with:

Net.SendFiles MR Memo1.Text Memo2.Text~
Net.SendMsg MR The files are now sent, you may switch off seNer mode

An attempt to send a message to station CP, for example, will result in
an entry 'no recipient' in the system log.

At the mail server, participants of the mail service are registered under
a network name. A directory at the mail server links user names and
network names. The network name appears as the destination address
in messages.

Typically, user names are short (for example, the user's initials)
whereas network names are chosen as the full last name of
participants.

68 Using networks and servers

7.2 Command module Net

Module Net exports commands for accessing the local area network, in
particular, to:

• send files to a server or receive files from a server;

• send mail messages;

• get server directory and time, set password;

• process the mailbox at the mail server;

• enter and leave server mode.

On the Oberon distribution disk, the network tool looks as follows:

Net.Tool I System.Close System

System.SetUser {type user/password}

Edit.Print Pluto'i'
Edit.Print Pluto -

Net.Mailbox
Net.SendMail

Net. ReceiveFiles
Net.SendFiles
Net.SendMsg
Net.Directory Pluto
Net.GetTime Pluto

Net.StartServer
Net.Unprotect
Net. WProtect
Net.StopServer

Of course, the user may change the tool or copy the commands into
other tools (for more details see Section 2.6.)

7.2.1 Network commands

SendFiles Net.SendFiles server { name} (~ Ii)
Sends a list of files name to station server. The parameters server and
name are names.

If the list is terminated with 'i', the search is extended to the
selection for precisely one more name. This option is typically used
with the empty list.

ReceiveFiles

Directory

Mailbox

ReceiveMail

7.2 Command module Net 69

For example:

Net.SendFiles Pluto Viewers,Obj TextFrames,Obj TextViewers,Obj~

will send the files Viewers.Obj, TextFrames.Obj and TextViewers.Obj to
the server with name Pluto.

Net.ReceiveFiles server { name} (~ Ii)
Transfer list of files name from server to the station which executes the
command. The parameters server and name are names.

If the list is terminated with' i', the search is extended to the
selection for precisely one more name.

Net. Directory server prefix
Fetch directory from server and display it in a newly opened viewer
with title 'Server. Directory'. All files whose name starts with prefix will
be listed.

Net.Mailbox

Open the mailbox, a special text viewer named 'Mailbox. Text', which
displays a list of pending mail at the server (with default name.)

Mailbox.Text I System.Close Net.ReceiveMail Net.DeleteMail

4 21.11.89 17:34:16 Wirth 1125
3 20.11.89 14:57:20 Hiestand 1780
1 17.11.89 16:29:44 Wirth 3521

Each line starts with a message number followed by date, time, the
sender's name and the document size (in bytes.)

Note that the mailbox viewer does not display the standard text
viewer commands in the title bar. Instead, Net. ReceiveMail and
Net.DeleteMail are displayed, which are used to view mail and delete
entries in the mailbox.

Net.ReceiveMail
The command Net.ReceiveMail is executed from the title bar of the
mailbox. The message contained in the selection is fetched from the
server and displayed in a newly opened text viewer with title
'Mailbox. Text' (see above.)

70 Using networks and servers

DeleteMail

SendMail

Mailbox.Text I System.Close Net.ReceiveMail Net.DeleteMaii

4 21.11.89 17:34:16 Wirth 1125
3 20.11.89 14:57:20 Hiestand 1780
3 20.11.89 14:57:20 Hiestand 1780 '\

Note: The message is conveniently selected by placing the mouse
cursor to the right and double clicking with the right key. However, it
is sufficient to select only the first character.

Net.DeleteMail
The command Net.DeleteMail is executed from the title bar of the
viewer 'Mailbox. Text'. The message contained in the selection is
removed from the mailbox.

Net.SendMail
The text of the marked viewer is dispatched to the mail server. To be
accepted by the server, the text must observe the following syntax:

message
toLine
ccLine
reLine
recipient
name
address
textline
CR

toLine { toLine } { ccLine } [reLine] {textLine CR}.
"To:11 recipient { ", II recipient} CR.
II Cc: II recipient { ", II recipient} CR.
"Re: 11 textline CR.
name [II @M address].
letter { letter I digit I ". II }.
String of characters without blanks.
Arbitrary text not containing CR.
Carriage return.

If the address is present, the message is passed to a remote networks via
the gateway, otherwise it is considered local. A subject may be indi­
cated, headed by IIRe:" also on one line.

MaiLTemplate I System.Close Syste

To: Wirth, Gutknecht
Cc: Theiler
Re: Reply to note: "Towards a final rei ~

At which position is the new parameter:
procedure TextViewers.NewViewer? ~

SendMsg

GetTime

SetPassword

Start Server

Unprotect

7.2 Command module Net 71

Net.SendMsg partner message

Sends a short message to the station with name partner which must be
in server mode (see Net.startserver.) The text sent as message is the
remainder of the line on which the command appears. The message is
displayed in the partner's log text.

Net.GetTime (serverf i)

Synchronizes the clock of the workstation which issues the command
with the clock of server.

If' i' is used, the server name is contained in the selection.

Net.SetPassword server "password"
Communicates the quote enclosed password to server to be used by the
mail service. This command has to be issued by the user only when he
or she changes the password.

For example, a user with user id 'mr' wants to change the
password from 'Heather' to 'Verena' at a mail server with name Pluto.
He or she issues the following three commands:

System.SetUser mr/Heather
Net.SetPassword Pluto "Verena"
System.SetUser mrNerena

First, System. Set User is executed with the old password. Then Net. set­
Password is invoked followed with system.setUser with the new pass­
word. Note how a different syntax is used to indicate the password in
system.setUser and in Net.setPassword. The passwords in those two
commands must be identical. After the change, it suffices to issue
system.setUser to gain network access. Net.setPassword is used only to
change the password at the mail server.

Net.StartServer
The workstation which executes the command is being put in server
mode; that is, a server process is initiated. Files from the workstation
can be received by any other station by means of Net.ReceiveFiles. The
workstation may be the recipient of messages sent by Net.sendMsg.
The server is write-protected; that is, it does not accept files sent by
Net. sendF iles.

Net.Unprotect
Removes write-protection of the server active at the workstation. After
Net. Unprotect is executed, the server will accept files sent by
Net.sendfiles.

Caution: If received files have the same name as existing files,
they will be overwritten.

72 Using networks and servers

WProtect

StopServer

Net.WProtect
Sets the server which is active at the workstation into write-protect
mode; that is, it will no longer accept files sent by Net. SendFiles.

Net.StopServer
Removes the server mode of the workstation; that is, the server process
is stopped.

CountLines

GetObjSize

Snapshot

Bootload

8 Command module
Miscellaneous

Command module Miscellaneous exports the following utilities.

Miscelianeous.CountLines { name} (- 1 j)

Opens a new viewer with title 'Miscellaneous. CountLines' which lists
the number of non-blank lines in each text file of the parameter list.
The total number of all texts is also displayed.

If the list is terminated with 'j', the search is extended to the
selection for precisely one more name. This option is typically used
with the empty list.

Miscellaneous.GetObjSize { name} (-I j)

Opens a new viewer with title 'Miscellaneous.GetObjSize' which lists
the size of variables, constants and code (in bytes) of the files given in
the parameter list. The total size is also displayed.

Note: The files must be object files. If the list is terminated with
, j', the search is extended to the selection for precisely one more name.

Miscelianeous.Snapshot name
Writes the pixelmap of the display from which the command was
executed to the file name. This file may be printed (on the print server)
with the command:

Paint.Print server name-

Paint is the command module of the viewer class paint viewers. It is
assumed that the necessary object modules are available.

Miscelianeous.Bootload name
File name (which must be a boot file) is transferred to the special sectors
of the disk reserved for booting the system. To make the new boot file
active, the system must be restarted.

73

74 Command module Miscellaneous

Cleanup Miscelianeous.Cleanup { name} (~ Ii)
Converts all text files specified in the parameter list to pure ASCII files.
All formatting information of the text, such as font, color and vertical
offset, is lost. Non-printablecharacters other than carriage returns are
removed.

If the list is terminated with I if, the search is extended to the
selection for precisely one more name.

ConvertBlanks Miscelianeous.ConvertBlanks { name} (~ Ii)
In all files specified in the parameter list, pairs of leading blanks are
replaced by tab characters.

If the list is terminated with Ii', the search is extended to the
selection for precisely one more name.

ConvertTabs Miscelianeous.ConvertTabs { name} (~ Ii)
In all files specified in the parameter list, leading tab characters are
replaced by two blanks.

If the list is terminated with Ii', the search is extended to the
selection for precisely one more name.

Convert diskette Miscelianeous.ConvertToMSDOS
formats Miscelianeous.ConvertFromMSDOS

See Chapter 6.

Part II
Reference

9 System overview

The goals of Oberon are:

• The monolithic application with its slow loading process is dis­
banded. Its place is taken by a set of commands.

• The system is extensible. At any time, the user can add new
commands operating on data underlying a given viewer class.
Similarly, viewer classes can be added.

• The distinction between command input and text input is abol­
ished. Commands do not write (volatile, non-editable) output to
the display but produce a text which is displayed in a text viewer
and hence can be edited and further processed with user­
provided commands.

New architectural concepts are required to realize these goals:

• Modules need to be memory resident during the entire session to
allow instances of abstract data types, such as texts, to exist
between the execution of commands.

• The event loop is centralized and is part of the system architecture,
rather than the application program. Oberon evolves the model
of a single-process multitasking system; the indivisible unit is
the procedure call.

• The fact that the event loop is centralized requires late binding
of the procedures comprising the application. A special con­
struct - the active Oberon object - is introduced for this purpose.
Techniques from object-oriented programming are used.

A central role is played by the notion of the Oberon object. To show the
need for such a construct, we shall discuss the consequence of moving
the event loop from the application to the system. The objects Frame
and Viewer are then introduced as instances of a certain record type
with a procedure field. An overview of the module hierarchy com­
pletes this chapter.

77

78 System overview

9.1 Programs in the traditional sense

A program is a piece of code which can be loaded into memory and
executed. We will assume that the program is written in Modula-2. Then
it consists of a main module possibly with a set of imported modules.

Modula-2 program

Main module

In the diagram, arrows depict the import relations that usually define a
partial ordering - the module hierarchy.

The computer on which the program runs has facilities to load
the set of compiled modules (object modules) into memory and to pass
control to the module whose statement sequence is executed. On
termination, the memory and all other resources are released. Only
files provide a permanent output which may be further processed by
subsequent programs.

If the program is an interactive one, its central component is a
loop which executes when no other work is requested and which
constantly polls for input events. In a simple case, there is only one
program in memory, the keyboard is the only input device and the
program polls the keyboard driver directly. This situation may be
depicted as follows:

Interactive program

Calls to
procedures of
the program

9.2 Oberon commands, module loading 79

The procedure with the idle loop is also called the command interpreter
of the interactive program.

More sophisticated systems provide multiple-screen windows
and a mouse as pointing device. Each window may support an applica­
tion program. Such a system has to discriminate input events, espe­
cially those from the mouse, and route them to the appropriate
program. At least a limited form of multitasking is required, as indi­
cated in the following:

Application program 3

Application program 2

Application program 1

The structure of the interactive program remains the same as in the
previous case. However, drivers are no longer called directly. A system
routine, here termed NextEvent, is substituted. Whenever NextEvent is
called, the system is in command and may decide to direct control to
another program - an action called task switch. Enough state information
is saved with the interrupted program so that it can resume execution
later.

Multiprogramming systems differ in the granularity at which
task switches may take place and also in the level of protection granted
to the memory space of an individual program. In their most sophisti­
cated form, the notion of an individual virtual machine is projected to
each one of the application programs. Each one of these virtual
machines is an individual process.

9.2 Oberon commands, module loading

It is an important concept of Oberon that commands communicate
through instances of abstract data types of which texts are a prominent

80 Svstem overview

example. Since modules provide the encapsulations of abstract data
types, this necessitates modules staying in memory for the duration of the
session. Thus, the body of a main module is no longer an appropriate
execution unit. 1 Its place is taken by the statement sequence of a parameter­
less procedure, which we now call a command.

The Oberon system provides a module loader which not only
loads object modules but also allows activation of the statement
sequences of procedures. Dynamic loading is used; that is, a module is
loaded at the time a command is executed for the first time in the
session. Loading of imported modules is further deferred until one of
their procedures is called.

While debugging, a module must be explicitly unloaded before a
recompiled version can be tested.

9.3 The event loop

Commands are initiated from texts which are displayed in text viewers.
Like the traditional interactive application, the text viewer needs a
command interpreter which:

• defines the semantics of mouse and keyboard actions;

• performs editing functions on the displayed text;

• provides the link to the module loader to start commands.

The last duty here is new - it was previously handled by the system
command interpreter. A viewer's command interpreter is also called its
handler.

Oberon introduces a novel architectural concept which differs
from the standard system model: the idle loop of the interactive
application becomes a central component - the event loop.

Viewers are represented by instances of an abstract data type
Viewer which are record variables with a procedure field called handle to
which a viewer's command interpreter is assigned. A viewer manager
maintains a (hidden) data structure of viewers and enforces proper
tiling of the screen.

In a quiescent period, control is in the event loop, which con­
stantly polls the device driver for keyboard and mouse events. If an
input event occurs, a target viewer is determined and its handler is
called. On completion, the handler returns control to the calling pro­
cedure in the loop, which continues polling. Oberon has no facility to

1 As is the case in Modula-2.

Viewer 1

~
Viewer 2

~

9.3 The event loop 81

Viewer 3

I handle r - - - - -- - -- - -:

\

• Loop calls
handle

handle = Handler

Data structures

---------------------- ---------------r-----------
I

I Handler I

Program code

Kernel, drivers

interrupt the execution of procedures. The procedure (or command) is the
indivisible unit of execution.

The concept of a central loop has a significant advantage: since
all procedures run to completion and since control follows the path
defined by normal procedure calls, no state information needs to be saved.
Oberon may thus be called a single-process multitasking system.

However, in the framework of the module concept of the
Oberon language, the new architecture poses a problem. The event
loop, which is contained in module Oberon, makes calls to handlers
provided in application modules. Since applications can be added at
any time, there is no way module Oberon can import such application
modules and gain the required knowledge to make normal procedure
calls to the handlers. (We exclude as impractical the possibility that
module Oberon is modified and recompiled each time an application is
added.) In the following diagram of the module hierarchy, the applica­
tion modules are above the module Oberon:

Modula-2 program

Main module

Oberon program

,------, Application
module which

'--..------....::----' contains handler

82 System overview

Therefore, a mechanism of late binding is required. The solution is
provided by object-oriented design which uses the type extension
facility of the Oberon language. Calls to modules higher up in the
hierarchy are termed up-calls, in contrast to normal procedure calls
which may be called down-calls.

Clearly, a smooth multitasking operation depends crucially on
whether handlers and commands keep their processing periods short.
Also, handlers are not running in protected memory regions, nor are
they prevented from trespassing into other viewer frames. System
integrity thus depends on the type safety of the language and on well­
behaved handlers. We speak, therefore, of a cooperating process multi­
tasking system.

9.4 System architecture for up-calls: active objects

In this section, we shall discuss the object-oriented design used in the
Oberon system. The issue is late binding of procedures allowing up­
calls from the main loop to viewers. The key idea is that a low level
module exports the type of the handler and a public projection of all
viewer types. This allows module Oberon, which contains the event
loop, to make calls to the handlers within the type constraints of the
Oberon language. The handler has a formal parameter Msg - the
message. The real parameters are passed in a record variable which
extends the base type of the message parameter. Type extension makes
a variety of messages compatible with the formal type of Msg.

9.4.1 Definition of an object

An Oberon object is an instance of an abstract data type which is
specified by a pointer to a descriptor record which contains state
information and has a procedure field called handle.

The object Frame For example, let Frame be the base type of such an object defining a
display area:

TYPE
Frame = POINTER TO FrameDesc;
FrameDesc = RECORD

next, dsc: Frame;
X, Y, W, H: INTEGER;
handle: Handler

END;

The object
Viewer

Application
viewer

9.4 System architecture for up-calls: active objects 83

The fields of FrameDesc describe a display frame with coordinates X
and Y, width W, height H, pointers next and dsc to other frames, and a
procedure handle.

Procedures which may be assigned to the field handle are termed
handlers. They are of the following type:

TYPE Handler = PROCEDURE (F: Frame; VAR Msg: FrameMsg);

Thus, the handler has access to the object's state information recorded
in its descriptor and to a parameter Msg of type FrameMsg.

Extending the descriptor type of objects provides a powerful mechan­
ism for adding functionality while reusing existing definitions. For
example, the abstract data type Viewer is derived from the definition of
Frame. It consists of an extension of the frame descriptor and a set of
procedures comprising the viewer manager. These procedures imple­
ment the Oberon logical display model. The added field is state, which
yields information about the viewer (for example, displayed, closed,
suspended etc.)

TYPE
Viewer = POINTER TO ViewerDesc;
ViewerDesc = RECORD

(FrameDesc) (* Type extension *)
state: INTEGER

END;

Viewers describe rectangular display areas together with their
semantics.

The system, however, should allow an open-ended number of dif­
ferent viewer types, typically providing editing functions operating on
a specific kind of document. In order to provide this functionality, the
type Viewer is further extended and additional fields (state variables or
instance variables) are added to its descriptor. For example:

TYPE
MyViewer = POINTER TO MyViewerDesc;
MyViewerDesc = RECORD

(ViewerDesc) (* Type extension *)
(* Further state variables *)

END;

84 System overview

Creation of an
object

A variable whichis an instance of type MyViewer is called an active
object. It is created as follows:

VAR
V: MyViewer;

NEW(V); V.handle : = MyHandler; (* Install handler *)
(* Initialize state variables *)

Note: The call of NEW is always immediately followed by the instal­
lation of the handler. Failure to install a handler results in an unre­
coverable system crash.

Installing a We say 'the handler MyHandler is installed in object V', which means
handler that procedure MyHandler is assigned to the field V.handle in object V.

9.4.2 Definition of a message

The type FrameMsg in the definition of Handler is a record type. The
actual parameter which is passed to the handler is called a message. It
serves to communicate information from the caller to the handler and
may be visualized as the parameter list proper of the handler.

Various callers may use messages of different types all extend­
ing a common base type FrameMsg. No restriction is placed on the
message if:

TYPE FrameMsg = RECORD END;

For example, the event loop may use messages of type InputMsg
whereas the viewer manager defines its own type ViewerMsg:

TYPE
InputMsg = RECORD

(FrameMsg)
id: INTEGER;
keys: SET;
X, Y: INTEGER;
ch: CHAR

END;

TYPE
ViewerMsg = RECORD

(FrameMsg)
id: INTEGER;
X, Y: INTEGER;
W, H: INTEGER;
state: INTEGER

END;

A message of type InputMsg contains information about a mouse or
keyboard input event; a message of type ViewerMsg holds the para­
meters of a screen configuration change.

Message
identifier

9.4 System architecture for up-calls: active objects 85

To avoid proliferation of message types, the type may be used as a
broader classification and use made of message identifiers to discriminate
between message variants. An integer field called id is typically used as
message identifier. The possible values for message identifiers are
defined as a set of constants with appropriate names; for example, the
type InputMsg may admit the identifiers:

CONST
consume = 0; (* Character read from keyboard *)
track = 1 ; (* Mouse event *)

9.4.3 Sending a message to an object

When a handler is called, it is first necessary to fill the fields of the
message. Let V be an object of type Viewer. The handler of a viewer is
called from a procedure in the event loop when an input event occurs.
Assume that an alphanumeric key was pressed. The calling sequence
may look as follows:

VAR M: InputMsg;

M.id : = consume;
M.ch : = ... ; (* Character read by loop *)
V.handle(V. M); (* send message to V *)

Note: Only relevant fields of the message need to be set, in this case the
id and the character field ch.

Sending a We say 'sending a message of type InputMsg with id = consume to object
message V' or simply 'sending a consume message to V' to mean precisely:

(1) SetM.id:= consume.
(2) Assign values to the relevant fields of message M.

(3) Call the handler of object V with the object V as first and the
record M as second actual parameter; that is, V.handle(V, M).

9.4.4 Structure of handlers

The definition of the procedure type Handler has two formal para­
meters. However, the true parameters for the handler are contained in
the fields of both the message and the object's descriptor. The handler
may encounter an open-ended number of message types. It discrimi­
nates between them with a type test. The structure of the typical
handler is therefore:

86 System overview

PROCEDURE MyHandler(F: Frame; VAR M: FrameMsg);
BEGIN

IF M IS InputMsg THEN
WITH M:lnputMsg DO

... (* Process input message *)
END

ELSIF M IS SelectionMsg THEN
WITH M: SelectionMsg DO

.. , (* Process selection message *)
END

ELSIF ... (* Further message types *)

END
END MyHandler;

The handler is at liberty to react to message types. New message types
may be introduced without affecting the proper functioning of existing
handlers.

9.4.5 Objects in the module hierarchy

In the preceding section, the concepts defining active Oberon objects
were introduced without referring to different modules. We now place
these definitions into their appropriate context. Module Display is at the
bottom of the hierarchy. It exports (among other things) the base types
Frame, Handler and FrameMsg.Module Viewers implements the abstract

TYPE MyViewer
PROCEDURE MyHandler

MyViewers

Viewer,
ViewerMsg

riPE Frame, Handler, FrameMsg
I ! I

Display

9.5 The module hierarchy 87

data type Viewer. It uses messages of type ViewerMsg to alert handlers
about changes in the display configuration. Module Oberon contains
the event loop. It imports Viewers in order to gain access to instances of
viewers to which messages of type InputMsg will be sent when the loop
senses a mouse or keyboard event. Module MyViewers - the one
provided by an application programmer - contains the type MyViewer
and the actual code for the handler.

It is an important design philosophy of the Oberon object concept
that message types are defined in the module which has a need to send them.

9.5 The module hierarchy

Pictures

We may now refine the module hierarchy of the Oberon system.

Files

Texts

Display

Command
modules

Application architecture

Outer core

~ _____________ -----,llnner core _ Kernel, Disk, Modules, Compiler .

88 System overview

In order not to overload the figure, only major import relations are
shown. The complete import lists are documented in the chapters
describing each of the modules.

9.5.1 Inner and outer core

The inner core of the system provides the Oberon compiler, memory
management, file management and program loading. This core is not
the subject of this book, except for the module Files.

The modules of the outer core export procedures and abstract
data types used by the application provider. It comprises:

• Drivers for the keyboard and mouse (Input), for the network
(V24 and SCC) and for the printer (Printer.)

• Raster operations for writing to the screen's bitmap and base
types Frame, Handler and FrameMsg (Display.)

• Management of typefaces (Fonts.)

• The abstract data type Text and the text manager (Texts.)

• The abstract data type Viewer and the viewer manager (Viewers.)

• The event loop, facilities to call commands and other system
wide resources (Oberon.)

9.5.2 Application architecture

Viewers normally display a document and provide editing functions
using the mouse and keyboard. Their functionality is naturally divided
into three modules providing:

(1) An abstract data type whose instance represents a document.

(2) An abstract data type whose instances are viewers or frames.
They comprise a display manager and a command interpreter
(the handler.)

(3) A set of commands, most notably Open which creates an
instance of the viewer.

These three functions together are called a viewer class. Viewer classes,
which implement the Oberon user interface with a title bar in reverse
video which displays name and a set of commands, make use of the
services of module Menu Viewers.

The standard editor is a good example:

9.6 Guide to the notation used to describe the modules of the outer core 89

• The abstract data type Texts. Text represents the document
(Texts.)

• The abstract data type TextFrames.Frame incorporates a display
manager and a handler. Text frames are active objects installed
in menu viewers which implement the mouse and keyboard
actions of the standard editor (TextFrames.)

• Module Edit is the command module.

In order to illustrate this concept, the diagram includes another viewer
class - picture viewers - comprised of abstract document Pictures,
display manager and handler PictureFrames and command module
Paint. These modules, however, are not documented in this book.

9.6 Guide to the notation used to describe the
modules of the outer core

The modules of the outer core of Oberon are described in subsequent
chapters with, generally, a chapter being provided for each module.
The chapter starts with a summary of the abstract data types and the
functions exported by the module.

A box follows with a rigorous definition in the form of a
Modula-2 definition module. Thus, all imported modules are identi­
fied, the exported constants, types and variables are declared and the
procedure heading of the exported procedures is listed.

Note that the Oberon programming language does not use
definition modules but export marks.

Following the definition module, the concepts and the exported
objects and procedures are explained in detail. To do this, we take the
point of view of being inside the module. This means that we refer to
identifiers declared in the module without module qualification. For
example, module Display exports a variable Bottom. In Chapter 12 we
refer to that variable as Bottom whereas the user should refer to
Display. Bottom. In Part III we adopt the user's point of view.

90

10 Keyboard, mouse, network
and printer

In this chapter, we describe the low-level device drivers Input, V24 and
see together with module Printer which accesses a printer server over
a network.

DEFINITION Input;

PROCEDURE Available (): INTEGER;
PROCEDURE Mouse(VAR keys: SET; VAR x, y: INTEGER);
PROCEDURE Read(VAR ch: CHAR);
PROCEDURE SetMouseLimits(w, h: INTEGER);
PROCEDURE Time(): LONGINT;

END Input.

DEFINITION V24;

IMPORT SYSTEM;

PROCEDURE Available (): INTEGER;
PROCEDURE Receive(VAR x: SYSTEM.BYTE);
PROCEDURE Send(x: SYSTEM.BYTE);
PROCEDURE Start(...); (* Hardware dependent parameters *)
PROCEDURE Stop;

ENDV24.

DEFINITION SCC;

IMPORT SYSTEM;

TYPE
Header = RECORD

valid: BOOLEAN;
dadr, sadr, typ: SHORTINT;
len, destLink, srcLink: INTEGER

END;

Available

PROCEDURE Available (): INTEGER;
PROCEDURE Receive(VAR x: SYSTEM.BYTE);

7 O. 7 Module Input 91

PROCEDURE ReceiveHead(VAR head: ARRAY OF SYSTEM.BYTE);
PROCEDURE SendPacket(VAR head, buf: ARRAY OF SYSTEM.BYTE);
PROCEDURE Skip(m: INTEGER);
PROCEDURE Start(filter: BOOLEAN);
PROCEDURE Stop;

END SCc.

DEFINITION Printer;

VAR
res: INTEGER;

PROCEDURE Close;
PROCEDURE ContString(VAR s: ARRAY OF CHAR; fno: SHORTINT);
PROCEDURE Font(fno: SHORTINT; VAR name: ARRAY OF CHAR);
PROCEDURE Line(x, y, w, h: INTEGER);
PROCEDURE Open(VAR name, user: ARRAY OF CHAR;

password: LONGINT);
PROCEDURE Page(nofcopies: INTEGER);
PROCEDURE Picture(x, y, w, h, mode: INTEGER; adr: LONGINT);
PROCEDURE Shade(x, y, w, h, pat: INTEGER);
PROCEDURE String(x, y: INTEGER; VAR s: ARRAY OF CHAR;

fno: SHORTINT);

END Printer.

10.1 Module Input

Module Input is the device driver for the mouse and keyboard. It deals
with special hardware supporting these devices. Procedures are pro­
vided which read the hardware and return typed characters and mouse
events.

Note: Mouse and keyboard events are normally handled by the
event loop. The programmer of commands should, therefore, refrain
from reading these devices directly except in special cases, such as
mouse tracking, reading a password or using a command key to
interrupt a long-running command (see Part III for an example.)

PROCEDURE Available (): INTEGER;
Returns the number of characters available from the keyboard.

92 Keyboard, mouse, network and printer

Read PROCEDURE Read(VAR ch: CHAR);

Mouse

The parameter ch is set to the next character read from the keyboard. If
no character is in the keyboard buffer, Read waits until a key is pressed.

Note: Procedure Available should be used to test whether a
character is available if waiting is to be avoided.

PROCEDURE Mouse(VAR keys: SET; VAR x, y: INTEGER);
Parameters x and yare the coordinates of the mouse at the time of the
call. The status of the mouse keys are recorded in keys according to the
following convention:

• 0 IN keys: right key was pressed.

• 1 IN keys: middle key was pressed.

• 2 IN keys: left key was pressed.

SetMouseLimits PROCEDURE SetMouseLimits(w, h: INTEGER);
Defines width wand height h of the rectangle in which the mouse
moves. The mouse coordinates are computed modulo wand modulo h.
Therefore, when the mouse leaves the rectangle it re-enters at the
opposite edge (the surface on which the mouse moves is logically a
torus.)

Time PROCEDURE Time(): LONGINT;

Available

Elapsed time since system startup in units of 11300 second.

10.2 Module V24

Module V24 is the driver for an asynchronous RS232 interface. Data is
sent and received in chunks of eight binary digits. The receiving end
provides a receive buffer. The buffer has circular organization and its size
is implementation dependent.

Module V24 is the device driver of the RS232 interface and in
OSI (Opens Systems Interconnection) terminology handles protocols
on level 2a - the media access control. Client modules of V24 must
implement the protocols of level2b - the logical link control. (Its descrip­
tion is beyond the scope of this book.) The receiving part is timing
critical: the receive buffer may overflow and data may get lost as a
consequence of overrun conditions.

Note: Only the more important procedures of module V24 are
described below.

PROCEDURE Available (): INTEGER;
Returns the number of bytes in the receive buffer.

10.3 Module see 93

Receive PROCEDURE Receive(VAR x: SYSTEM.BYTE);
Receives one byte from the receive buffer. If no data is buffered,
Receive waits until a byte arrives.

Send PROCEDURE Send(x: SYSTEM.BYTE);
Sends one byte over the interface.

Start PROCEDURE Start(...);
Starts the RS232 interface. The arguments are hardware dependent -
consult documentation for specific machine. The receive buffer is
cleared.

Stop PROCEDURE Stop;
Stops the RS232 interface, so no more data is received or sent. Remain­
ing bytes in the receive buffer are not touched.

10.3 Module see
Module see is the device driver of a synchronous serial communication
controller which serves a network of up to 255 fully connected stations.
The network accepts addressed data packets which are delivered to a
destination node. On the receiving side, the packet is checked for
transmission errors and invalid data is discarded.

Data is sent in frames which consist of a header and a data block.
Sending and receiving operations are not symmetrical:

• A frame is sent in one operation by means of a call to SendPacket.
• Data is received in a circular buffer. The header is obtained by

the procedure ReceiveHead; subsequent data bytes are acquired
one by one using procedure Receive.

In OSI terminology, module see handles protocols on level 2a - the
media access control. Client modules of see must implement the pro­
tocols of level 2b - the logical link control. (Its description is beyond the
scope of this book.) The receiving part is timing critical: the receive
buffer may overflow and data may get lost as a consequence of overrun
conditions.

The packet header is defined by:

TYPE
Header = RECORD

valid: BOOLEAN;
dadr, sadr, typ: SHORTINT;
len, destLink, srcLink: INTEGER

END;

94 Keyboard, mouse, network and printer

Available

ReceiveHead

Receive

Skip

SendPacket

where:

• valid is TRUE if a valid packet is in the receive buffer.

• dadr is the address of the destination of the packet.

• sadr is the source address (the address of the sending station.)

• typ is used by the data link control protocol.

• len is the length of the data block.

• destLink is used by the data link control protocol.

• srcLink is used by the data link control protocol.

Prior to sending a data frame, the user must construct a header. The
fields typ, destLink and srcLink are used by logical link control protocols
specified in client modules of see.

It is mandatory for see to specify the fields dadr and len.
Network addresses are variables of type SHORTINT and are

defined by the installation. A broadcast address -1 is available.
The serial communication controller receives data which is

stored in a (circular) receive buffer which is accessed by the procedures
Available, ReceiveHead, Receive and Skip.

PROCEDURE Available (): INTEGER;
Returns the number of bytes of available data in the receive buffer.

PROCEDURE ReceiveHead(VAR head: ARRAY OF SYSTEM. BYTE);
Returns a header from the receive buffer. The parameter head is of type
Header. The field head. valid is TRUE if a valid header was received,
FALSE otherwise.

Note: It is the responsibility of the user to ensure that when
ReceiveHead is called, all data bytes of the preceding frame have been
received. Otherwise, an erroneous header is returned with head. valid =
TRUE.

PROCEDURE Receive(VAR x: SYSTEM.BYTE);
Receives one data byte from the receive buffer. If the buffer is empty,
Receive waits for data to arrive.

Note: It is the responsibility of the user to make sure that Receive
is only issued if data is in the receive buffer. When a header is properly
received, its length field indicates the number of bytes to be read.

PROCEDURE Skip(m: INTEGER);
Skips over m data bytes in the receive buffer.

PROCEDURE SendPacket(VAR head, buf: ARRAY OF SYSTEM.BYTE);
Sends a packet of data comprised of header head and data frame but.

10.4 Module Printer 95

The length of the data frame must be properly recorded in head.len.
Also, the destination address must be set by the user.

Start PROCEDURE Start(filter: BOOLEAN);
Starts the serial interface. If filter is TRUE, then interrupts are only
generated if a packet with either the proper address of the receiving
station or a broadcast address is received. If filter is set to FALSE, all
packets on the network generate an interrupt; that is, are received.
Their receive buffer is cleared.

Stop PROCEDURE Stop;
Stops the serial interface. No more interrupts are generated. The
receive buffer is not touched.

10.4 Module Printer

Result code

Module Printer provides the network interface to the printer server. A
page is composed using the procedures String, ContString, Line, Shade
and Picture. After a page is completed, it is printed with a call to Page,
which also opens a new page to be written.

A Cartesian coordinate system is used. Its origin is in the lower
left corner of the page. Points are addressed in units of printer resolution.
For example, a 300 points per inch laser printer measures points in
units of 1/300 inch. Translation from display coordinates to printer
coordinates is the responsibility of the user.

y

x, y

'-------'-----~x

VAR res: INTEGER;
The variable res is an exported result code with definition:

• res = 0: normal completion.

• res = 1: no connection.

• res = 2: no link.
• res = 3: bad response.

96 Keyboard, mouse, network and printer

Open PROCEDURE Open(VAR name, user: ARRAY OF CHAR; password: LONGINT);
Opens the connection to the print server name. The actual parameters
corresponding to user and password are normally the global variables
Oberon. User and Oberon.Password. They must be set with the command
System. Set User prior to issuing Open.

Close PROCEDURE Close;
Releases the connection to the print server.

Font PROCEDURE Font(fno: SHORTINT; VAR name: ARRAY OF CHAR);
Assigns font identifier fno (specified by the user) with font name. The
font identifier, not the font name, is subsequently used for printing
characters in a given font. The reason for this indirection is to save
transmission overhead.

String PROCEDURE String(x, y: INTEGER; VAR s: ARRAY OF CHAR; fno: SHORTINT);
Prints string s using font described by fno starting at position with
coordinates x and y.

ContString

Shade

··~l~:~u~~trJ~~~nn~~dnl ____ 1

x,y

- _. - -- --- --

Coordinate y measures the height of the baseline of the font; x is the
left edge of the character box.

PROCEDURE ContString(VAR s: ARRAY OF CHAR; fno: SHORTINT);
Continues printing string s from the end position of the previously
printed string. ContString is typically used when a font change takes
place.

Note: ContString must immediately follow a call to String or
ContString. It is not permissible to call procedure Font in between.

x,y

PROCEDURE Shade(x, y, w, h, pat: INTEGER);
Prints a rectangle with lower left corner at coordinates x and y, width

Line

Picture

Page

10.4 Module Printer 97

w, height h, filled with a pattern determined by pat. If pat = 0, then the
rectangle is white. For 1 ~ pat ~ 9, the following patterns are defined:

1 V/~~ 6

2 ~"'~ 7

3 1111111111111111
8 - 4

1 1
9 - 5

PROCEDURE Line(x, y, W, h: INTEGER);
Prints a black box (line) with lower left corner at coordinates x and y,
width wand height h.

PROCEDURE Picture(x, y, W, h, mode: INTEGER; adr: LONGINT);
Prints a bitmap stored in an array with base address adr. The bitmap is
of width wand height h (in pixels.) Its lower left corner is placed at
coordinates x and y. The parameter mode is a zoom factor. Each printed
pixel is composed of a mode x mode square of printer pixels.

Note: A bitmap will print much smaller than it appears on the
display if the printer is of higher resolution.

The bitmap is stored row-wise starting with the top left pixel
and extending downwards. Each row starts byte aligned. If w is not a
multiple of eight, then the line is padded at the right.

adr

x, y

The base address of the array is obtained with the procedure
SYSTEM.ADR.

PROCEDURE Page(nofcopies: INTEGER);
Initiates printing of one or several copies. After Page has been issued,
composition of a new page commences. Typically, Page(l) is used.

98

11 Module Files

The purpose of module Files is to implement the notion of a sequence of
bytes stored on disk. It does this in terms of disk sectors presented by the
disk driver.

Module Files exports:

• The abstract data type File. A variable of type File identifies the
da ta on the disk.

• The abstract data type Rider. An instance of type Rider is
associated with a file and affords read/write access. It is the
rider, not the file, which has the property position (the point
where read/write actions take place.)

• Procedures which interface with the disk directory. In particular,
the procedure Old creates instances of type File from a file name
contained in the directory.

The Oberon file system distinguishes clearly between three concepts:

(1) The file.

(2) The directory entry.

(3) The access method.

It differs from traditional file systems in the sense that the actions nor­
mally bundled with opening and closing files are performed explicitly.

DEFINITION Files;

IMPORT SYSTEM;
TYPE

File = POINTER TO Handle;
Handle = RECORD END;
Rider = RECORD

eof: BOOLEAN;
res: LONGINT

END;

Length

GetDate

7 7. 7 Files and the file directory 99

PROCEDURE Base(VAR r: Rider): File;
PROCEDURE Close(f: File);
PROCEDURE Delete(name: ARRAY OF CHAR; VAR res: INTEGER);
PROCEDURE GetDate(f: File; VAR t. d: LONGINT);
PROCEDURE Length(f: File): LONGINT;
PROCEDURE New(name: ARRAY OF CHAR): File;
PROCEDURE Old(name: ARRAY OF CHAR): File;
PROCEDURE Pos(VAR r: Rider): LONGINT;
PROCEDURE Purge(f: File);
PROCEDURE Read(VAR r: Rider; VARx: SYSTEM.BYTE);
PROCEDURE ReadBytes(VAR r: Rider; VAR x: ARRAYOF SYSTEM.BYTE;

n: LONGINT);
PROCEDURE Register(f: File);
PROCEDURE Rename(old, new: ARRAY OF CHAR; VAR res: INTEGER);
PROCEDURE Set(VAR r: Rider; f: File; pas: LONGINT);
PROCEDURE Write(VAR r: Rider; x: SYSTEM.BYTE);
PROCEDURE Write Bytes(VAR r: Rider; VAR x: ARRAYOF SYSTEM.BYTE;

n: LONGINT);

END Files.

11.1 Files and the file directory

A file is an instance of the abstract data type File. Variables of type File
identify the data on the disk comprising the file. This data is called the
physical file which is composed of possibly non-contiguous disk sectors.
The logical file provided by module Files is a simple sequence of bytes.

TYPE
File = POINTER TO Handle;
Handle = RECORD END;

It has the hidden properties:

• Length (in bytes);

• Name;

• Date.

Name and date are assigned to the file on creation. They may be
obtained through the following procedures:

PROCEDURE Length(f: File): LONGINT;
Returns the length of file f (in bytes.)

PROCEDURE GetDate(f: File; VAR t, d: LONGINT);
Returns the date of creation d of file f (see Chapter 15 for the encoding
of the date in variable d.)

100 Module Files

File names A file name is defined by the lexicographic syntax:

Name = NamePart { ". II NamePart }.
NamePart = letter { letter I digit}.

The following are examples of structured names:

Viewers. Mod

Viewers.Obj
Memol.Text
SyntaxlO.Scn.Fnt
Reiser .Mail.Memo25

For a file containing the source text of
Oberon module Viewers.
For an object file of Viewers.
For a text file containing a document.
For syntax screen font.
For stored electronic mail of user Reiser.

File directory To have a non-volatile record of file names and their associated phys­
ical files, a file directory is also stored on disk. The directory is a flat
table, which means it is not structured into sub-directories. Structured
names, defined by the above syntax, together with the facilities of the
commands exported by command module System, provide some of the
amenities of a hierarchical file system.

Old

New

11.1.1 Opening files

The term 'opening a file' means initializing the resources which allow
programs to access file data (that is, pointer variables providing access
to physical files and the necessary buffers.)

In Oberon, files and entries in the directory are clearly distinct
entities. Opening a file (creating an instance of the type File) is per­
formed by two procedures: Old and New:

PROCEDURE Old(name: ARRAY OF CHAR): File;
Creates a file from directory entry name. If name does not exist, the
result is NIL.

PROCEDURE New(name: ARRAY OF CHAR): File;
Creates a new file whose name is determined by parameter name. A
new physical file is initialized. The name is bound to the file at the time
of creation and may be later registered in the directory.

Note: The procedure New does not create an entry in the directory.
Directory entries are unique. This, however, need not be the

case with file names. The following diagram illustrates this fact:

Close

7 7. 7 Files and the file directory 101

Directory:

"Memo.Text"

Physical files

Handle
CD File 1 := Files.Old("Memo.Text")

.... :

~-----l "Memo.Text"

Handle @ File2 := F!les.New("Memo.Text")

"Memo.Text" ~---+----l

@ File3 :=.~iles.Old("MemO.Text")

Variables Filel, File2 and File3 are instances of the type File. Each one of
them has the same name 'Memo. Text.' Filel and File3 point to the same
handle whereas File2 affords access to a newly initialized physical file.

11.1.2 Closing files

Normally the term 'closing a file' describes the following actions:

(1) Ensure that all buffers are written to disk.

(2) Register the file in the directory.

(3) Remove or invalidate the access handle.

In Oberon, the third task of the traditional close operation is never
performed. As long as a variable of type File' exists, it provides access to
its physical file data. During a session, disk sectors comprising physical files
are never released (unless procedure Purge is called.) Unused sectors
(that is, sectors which do not belong to files recorded in the directory)
are reclaimed when the system is booting. Oberon provides two pro­
cedures for performing tasks (1) and (2) explicitly: Close and Register.

PROCEDURE Close(f: File);
Ensures that the physical file is identical with the logical state of the
file. The two states may differ due to buffering. Close writes all buffers
back to disk.

Notes: File f and other files sharingf i (that is, the handle to which f
points) continue to provide access to the physical file and read/write

102 Module Files

operations of associated riders can continue. Close does not register the
file name in the directory.

Register PROCEDURE Register(f: File);
Closes file I (in the sense of procedure Close) and registers it under its
name in the directory. If the name is already an entry in the directory,
its file will be unregistered.

Note: The unregistered file is not deleted. If variables of type File
are associated with it, they continue to point to the physical file. In
particular, riders associated with such file variables continue to per­
form proper read/write operations.

In rare cases, there is a need to purge files (to remove their disk
sectors.) An example is a server task on a machine which is never
turned off. In this case, disk space of working files is never released
andmust be reclaimed explicitly. This is done through Purge.

Purge PROCEDURE Purge(f: File);

Rename

Removes the physical file (the list of sectors) from the disk. The pro­
cedure does not invalidate file I, or other files sharing the same handle
11'. If any write operations are performed with riders associated with
those files after a call to Purge, data is destroyed.

Note: This procedure must be invoked only if it is certain that no
files and no associated riders remain active. It is used only for spool
files on servers and similar applications.

11.1.3 Directory maintenance

The only wayan entry in the directory can be created is through the
following sequence of events:

(1) Create a file I (that is, an instance of type File) with the new
name using procedure 1:= New(name).

(2) Register the file I through Register(f).

Temporary files are created with New and not registered. The name of
temporary files may be the empty string II II. Their disk space will be
reclaimed at the time of the next session.

Two procedures are provided to remove entries from the direct­
ory and to change names in the directory: Rename and Delete.

PROCEDURE Rename(old, new: ARRAY OF CHAR; VAR res: INTEGER);
Renames directory entry old to new. The result code res reports the
conditions:

• res = 0: file renamed .
• res = 1: new name already exists and is now associated with the

new file.

Delete

11. 1 Files and the file directory 103

• res = 2: old name is not in directory.

• res = 3: name is not well formed.

• res = 4: name is too long.

Note: This is an operation on the directory. Any variables of type File
which are associated with the physical file retain their relationship
under the old name.

PROCEDURE Delete(name: ARRAY OF CHAR; VAR res: INTEGER);

Removes directory entry name. The result code res reports the
conditions:

• res = 0: file deleted.

• res = 3: name is not well formed.

• res = 4: name is too long.

Note: The physical file is not purged. If variables of type File are
associated with the physical file, they continue to provide valid read/
write access.

The directory may change through registration of files, renam­
ing or deletion of entries. Changing the directory does not affect
existing files (that is, the variables of type File which provide access to
the physical data.) The effect of deleting a directory entry and register­
ing a file is shown below for the example given earlier:

Directory: Directory:

"Memo.Text"

Physical files Physical files
File 1 File 1

"Memo.Text"

File 2 File 2

"Memo.Text" "Memo.Text"

File 3 File 3

"Memo.Text" "Memo.Text"

Directory entry "Memo.Text" deleted File 2 registered

104 Module Files

11.2 Read/write access: the rider

Set

The abstraction provided by Oberon files is a contiguous sequence of
bytes. A second abstract data type, Rider, provides sequential and
random read/write access.

Sequential files have a position which designates the point in the
sequence of bytes where read/write operations take place. The position
is implicitly incremented after each operation.

In Oberon, this position is not a property of the file but em­
bodied in a second abstract data type, the Rider. A rider (an instance of
the type Rider) is associated with a file. It is set to a specific position in
the file and then affords sequential read/write access through a set of
procedures. The position is incremented upon each 110 operation.

The definition of Rider is:

TYPE
Rider = RECORD

eaf: BOOLEAN;
res: LONGINT

END;

Its properties are:

• The file on which the rider operates (hidden.)

• The read/write position (hidden.)

• res: a result code which reports on the completion of read/write
opera tions.

• eof: the end-of-file condition which will be set to TRUE when an
attempt is made to pass the end of the file.

Note that read/write operations now refer to their rider, not to the file.
Several riders can operate on the same file as shown in the following
diagram:

Read(A, ch)

Position
of A

Write(8, x)

Position
of 8

PROCEDURE Set(VAR r: Rider; f: File; pas: LONGINT);

Length
of F

Associates rider r with file f at position pas. The field r.eof is set to
FALSE.

Read

ReadBytes

Write

Write Bytes

11.2 Read/write access: the rider 105

Notes: The bytes of file f are numbered from 0 up to, but not
including, Length(f). r. eof is FALSE even if pas ;:;: Length(f). The user
must ensure that pas is within the file limits.

PROCEDURE Read(VAR r: Rider; VAR x: SYSTEM.BYTE);
Rider r reads one byte at its position and returns it in parameter x. The
position of the rider is incremented by one. An attempt to read beyond
the end of the file results in x = OX and r.eof = TRUE.

Notes: The field r.eof is set at an attempt to read beyond the file,
not at reading the last byte. Actual parameters of type CHAR and
SHORTINT are compatible with the formal parameter x.

The following loop reads and processes all the bytes in a file F:

F : = Files.Old(IISample.Textll);
Files.Set(R, F, 0);
Files.Read(R, x);
WHILE -R.eot DO

... (* Process byte x *)
Files.Read(R, x)

END;

PROCEDURE ReadBytes(VAR r: Rider; VAR x: ARRAY OF SYSTEM.BYTE;
n: LONGINT);

Rider r reads a block of n bytes at its position and returns it in
parameter x. The position of the rider is incremented by n. If the
request results in an attempt to read beyond the end of the file, r.eof =
TRUE and r. res = number of bytes requested but not read.

Note: Actual parameters corresponding to x may be of any type.

PROCEDURE Write(VAR r: Rider; x: SYSTEM.BYTE);
Writes byte x in the file associated with rider r at the rider's position
and advances this position by one.

If Pos(r) = Length(8ase(r)), then x is appended to the file and the
length of the file is extended. Otherwise, the byte at the rider's position
is replaced by the data byte x. Actual parameters of type CHAR and
SHORTINT are compatible with the formal parameter x.

PROCEDURE WriteBytes(VAR r: Rider; VAR x: ARRAY OF SYSTEM.BYTE;
n: LONGINT);

Writes block of n bytes contained in x in the file associated with rider r
at the rider's position and advances this position by n.

If Pos(r) + n ;:;: Length(8ase(r)), then the length of the file is
extended. If the rider is positioned at the end of the file, the data block
is appended. Actual parameters corresponding to x may be of any
type.

106 Module Files

Pos

Base

Examples: Write an array A of type Matrix to file f:

Files.Set(R, f, 0);
FiJes.WriteBytes(R, A SIZE(Matrix));

Write an object P stored on the heap and accessed through the pointer
type Obj to disk:

Files.WriteBytes(R, Pi, SIZE(Obj));

Note the dereferencing operator i. Observe that, for this to work
properly, it is assumed that the writing and reading Oberon programs
use the same array mapping. Compiler dependence may be avoided if
the elements are written individually under the control of loop
statements.

PROCEDURE Pos(VAR r: Rider): LONGINT;

Returns the position of rider r.

PROCEDURE Base(VAR r: Rider): File;

Returns the file associated with rider r.

12 Module Display

The module Display provides three general functions:

(1) A set of procedures performing raster operations on pixelmaps
(that is, for writing to the screen.) The data type Pattern provides
raster data information. Variables of type Font are collections of
patterns representing characters to be copied to the screen.

(2) A set of procedures for controlling the monochrome and color
display.

(3) Export of the data types Frame, FrameMsg and Handler which are
the basis for the Oberon objects Viewers. Viewer, Menu­
Viewers. Viewer, TextFrames.Frame and other extensions defined
by viewer classes.

For efficiency reasons, the procedures in module Display are written in
assembler.

DEFINITION Display;

IMPORT SYSTEM;

CONST
black = 0; white = 15; 1

replace = 0; paint = 1; invert = 2;

TYPE
Font = POINTER TO Bytes;
Bytes = RECORD END;

Frame = POINTER TO FrameDesc;
FrameDesc = RECORD

dsc, next: Frame;
X, Y, W, H: INTEGER;
handle: Handler

END;

1 The value 15 applies for a 16-bit color display.

107

108 Module Display

Pixel size

FrameMsg = RECORD END;
Handler = PROCEDURE(f: Frame; VAR msg: FrameMsg);
Pattern = LONGINT;

VAR
Bottom, ColLeft, Height, Left, UBottom, Width: INTEGER;
Unit: LONGINT;
arrow, cross, downArrow, hook, star: Pattern;
grayO, gray1, gray2, ticks: Pattern;

PROCEDURE CopyBlock(sx, sy, w, h, dx, dy, mode: INTEGER);
PROCEDURE CopyPattern(col: INTEGER; pat: Pattern;

X, Y, mode: INTEGER);
PROCEDURE DefCC(X, Y, W, H: INTEGER);
PROCEDURE DefCP(VAR raster: ARRAY OF SYSTEM.BYTE);
PROCEDURE DrawCX(X, Y: INTEGER);
PROCEDURE FadeCX(X, Y: INTEGER);
PROCEDURE GetChar(f: Font; ch: CHAR; VAR dx, x, y, w, h: INTEGER;

VAR p: Pattern);
PROCEDURE GetColor(col: INTEGER; VAR red, green, blue: INTEGER);
PROCEDURE InitCC;
PROCEDURE InitCP;
PROCEDURE Map(X: INTEGER): LONGINT;
PROCEDURE RepIConst(col, X, Y, W, H, mode: INTEGER);
PROCEDURE RepIPattern(col: INTEGER; pat: Pattern;

X, Y, W, H, mode: INTEGER);
PROCEDURE SetColor(col, red, green, blue: INTEGER);
PROCEDURE SetCursor(mode: SET);
PROCEDURE SetMode(X: INTEGER; s: SET);

END Display.

12.1 Bitmapped display, the display area

The Oberon display subsystem is a pure bitmapped design. CRT (cathode
ray tube) display devices address a given number of points on their
screen surface and are capable of writing dots of a given color at the
location of these points. Such a picture point is called a pixel.

The size of a screen pixel in units of 1/36000 em is recorded in the global
variable:

VAR Unit: LONGINT;

12. 1 Bitmapped display, the display area 109

Pixelmap In a bitmapped architecture, the pixels of the device are mapped into a
special memory area, the pixelmap. In this map, each pixel of the device
has a corresponding pixel value designating its color. The display
hardware reads the pixelmap and drives the CRT device. Therefore,
the memory holding pixelmaps is also called video RAM.

Raster operations The pixelmap is accessed through a set of procedures performing raster
operations which are exported by module Display. Some of these take
as source a small pixelmap, suitably termed a pattern.

The display area

y

Pattern Pixel map

~Copypattern

Y -+---------j£;

x

Display device

Color of
-+-t __ --::::iiI1¥-point

x

In a pure bitmapped design, everything displayed is created
through raster operations on the pixelmap. Alphanumeric characters,
for example, are simply patterns copied to the appropriate place in the
pixelmap. The collection of such patterns is called a font.

The display area is considered a plane with x and y coordinates. Three
pixelmaps are defined:

(1) The primary monochrome map.

(2) The secondary monochrome map.

(3) The color map.

Their position on the Cartesian plane is shown in the following
diagram:

110 Module Display

y

--___ -.....__-Width • :

L--__ ColLeft

r
UBottom --I~~~~~~~~~~~~~=~ Jht

~---Width--__ .~:

Left

x

Pixel coordinates Pixels have integer-valued coordinates X and Y which measure the
position in terms of screen resolution, typically 72 to 80 points per inch.

Pixel values

The module Display exports variables which locate the different
pixelmaps on the plane:

VAR Left ColLeft, Bottom, UBottom, Width, Height: INTEGER;

The values are hardware dependent. 2

Each pixel has a value which determines its color. In the case of a
monochrome pixelmap, the pixel is represented by one bit and hence
has values 0 (background) or 1 (inverse of background.) The back­
ground color is usually black. Reverse video mode, however, results in
a white background.

In the case of a color pixelmap, each pixel is represented by an
integer. The number of bits allocated to the pixel depends on the
hardware. 3 The system assigns to each of the possible pixel values a
particular hue mixed from the base colors.

2 For the Ceres workstation with monochrome and color monitor: Lett = 0,
ColLett = 1024, Bottom = 0, UBottom = -1024, Width = 1024, Height = 800.

3 Four binary digits on Ceres.

Use of the
secondary mono­
chrome map

Organization of
the video
memory

12.2 Raster operations 111

Only one of the monochrome maps is displayed at any given time. The
user can switch between them using procedure SetMode. One may, for
example, construct a complicated graphics using many calls to the
procedures performing raster operations and, on completion, switch
the display.

The pixelmaps are stored in the video RAM, which is embedded in the
general address space. Thus, access to the video RAM is no different
from ordinary memory access.

Base address of pixel map
in the video RAM

Increasing video RAM addresses

The pixel values are stored contiguously, row-wise from the top
to the bottom. In a monochrome map, each pixel is represented by one
bit. In the color map, the system-specific number of binary digits is
allocated per pixel. The base address of the pixelmap in the video RAM
is recovered using the procedure Map.

12.2 Raster operations

Module Display contains four procedures which perform operations
on the pixelmaps:

• ReplCanst: dr3ws a box or a line.

• ReplPattern: draws a pattern in a rectangle.

• CopyPattern: copies a pattern to the display.

• CopyBlock: moves a rectangular block.

12.2.1 Patterns and fonts

The data type Pattern represents a program-defined source area with
binary pixel values:

112 Module Display

Type Font

TYPE
Pattern = LONGINT;

(* PatternDesc = RECORD
w, h: SHORTINT;
raster: ARRAY (w + 7) DIV 8 * h OF SYSTEM,BYTE
END; *)

In PatternDesc, w is the pattern's width and h its height. The array raster
carries the pixel data, line by line, ordered from bottom to top and left
to right, a single bit per pixel.

Note: Pattern is an integer type rather than a pointer type as is
the case with all other Oberon objects. The reason is that it is used by a
low-level assembler module. The integer holds the starting address of
the pattern. The record type PatternDesc is not exported by module
Display, therefore it is listed in comment brackets. The pattern descrip­
tors must be built by the programmer using character constants,
integers or sets (see examples in Section 19.2.)

The following patterns are exported:

VAR
arrow, star, downArrow, hook, cross: Pattern;
grayO, gray1, gray2, ticks: Pattern;

* !
arrow star downArrow hook

grayO gray1 gray2

+
cross

ticks

The pattern arrow is used for the mouse cursor, star for the star-shaped
pointer, downArrow for the viewer busy signal, hook for the caret and
cross for a special cursor (such as in a graphics editor.) The patterns
grayO and grayl are two shades of gray, gray2 is a checkerboard of 2 by 2
pixel squares and ticks produces a 'tick' mark in a square lattice of 16
pixels.

A collection of patterns for screen characters which share a common
typeface is called a font. The abstract data type Font represents such a
collection.

GetChar

TYPE
Font = POINTER TO Bytes;
Bytes = RECORD END;

12.2 Raster operations 113

The patterns of a given character are retrieved from a font by the
procedure GetChar:

PROCEDURE GetChar(f: Font; ch: CHAR; VAR dx, x, y, w, h: INTEGER;
VAR p: Pattern);

This returns the pattern p of character ch in the typeface of font f. The
pattern is of minimal extent. The result parameters x, y, W, hand dx place
the pattern in the character's box as shown in the following diagram:

h

y

~: ... w
.,

x
dx

12.2.2 Procedures for raster operations

h

~-+--J--- Base line

x~

~ , w '

,'" .,
dx

Destination The raster operations affect a rectangular area of the pixelmap called
the destination which is specified by its lower left corner x, y and its
extent w, h measured in pixels.

Pixel map Destination
L /

/ L
/

h

j

Y

- w -x

114 Module Display

Color numbers

Modes

Note: The destination must be fully contained in the available
display map, otherwise unpredictable results may occur (including
address exceptions.) It is the user's responsibility to enforce this restric­
tion. If the results are to be visible, the destination must fall in the
active pixelmap of an existing device.

The notion of a color number is introduced in order to achieve a unified
treatment for the monochrome and color case. In the latter, the color
number is simply the hue of the pixel. In the former, the following
convention holds:

• pixel = 0: background color.

• pixel> 0: inverse of background color.

The hues white and black are exported as constants:

CONST black = 0; white = 15;

On both the monochrome and the color monitor the pixel values white
and black map into the corresponding colors (in the case of the color
monitor, the standard color palette is assumed.) The values black and
white denote the extremal color numbers; that is, black::::; col::::; white.
The value 15 applies to a four-bit color monitor. If other hardware is
used, white is adjusted accordingly. Note that module Display is hard­
ware dependent and needs to be changed for different monitors.

The procedures CopyPattern and ReplPattern take as source a
monochrome pattern. A parameter col is used to extend the binary
pixel values to the range of the color numbers according to the follow­
ing rules:

dst:= (if src = 0 then 0, col otherwise)

dst:= (if src = 0 then dst, col otherwise)

dst:= (if src = 0 then dst, col - dst otherwise)

where:

src is the value of the source pixel.

Replace mode

Paint mode

Invert mode

dst is the value of the corresponding destination pixel.

Note: In the invert mode, col should be set to the maximum value
given by white. If the standard color palette is chosen, the colors are
properly inverted.

For example, on a monochrome display, the effect of copying an
arrow pattern in one of the three modes over the letters ABC is as
follows:

ReplConst

ReplPattern

12.2 Raster operations 115

replace paint invert

The module Display exports the following constants which are used as
arguments to determine the desired mode:

CONST replace = 0; paint = 1; invert = 2;

PROCEDURE ReplConst(col. x, y, w, h, mode: INTEGER);

Replicates color number col over the destination x, y, w, h in the
specified mode. In the case of a monochrome destination, col = 0
represents the background color whereas col> 0 maps into the inverse
of the background. 4

Examples (monochrome map): Fill destination with background
color:

RepIConst(Display.black, x, v' w, h, Display.replace);

Fill destination with the inverse of background color:

RepIConst(Display.white, x, y, w, h, Display.replace);

Invert destination:

RepIConst(Display.white, x, y, w, h, Display.invert);

Other combinations of the col and mode parameters do not yield new
results.

PROCEDURE ReplPattern(col: INTEGER; pat: Pattern; x, V' w, h, mode: INTEGER);

Replicates the source pattern pat over the destination x, y, w, h in color
and mode specified by the parameters col and mode, respectively. On
the monochrome display, col is ignored.

The pattern is aligned with respect to the origin. This guarantees
that overlapping destination areas are filled with a homogeneous
pattern. s

.. Current implementation restriction: In the color display, the paint mode is
treated as replace mode.

5 Current implementation restriction: The pattern width w is ignored. For the
monochrome display, w = 32 and 0 ~ h < 256. For the color display, w = 16 and
o ~ h ~ 16. If applied to the color display, 1 is subtracted from the x and w
values, if they are odd. Hint: In order to be display independent, width should
be taken as 16 and the pattern should be replicated such that, in each line, pixel
values 16 .. 31 equal those of 0 .. 15.

116 Module Displav

CopyPattern PROCEDURE CopyPattern(col: INTEGER; pat: Pattern; x, y, mode: INTEGER);
Copies the specified pattern pat to the screen map such that its lower
left corner has coordinates x, y.

The color and mode of the copied pattern are determined by the
parameters col and mode. On the monochrome display, the parameter
col is ignored. 6

CopyBlock PROCEDURE CopyBlock(sx, sy, W, h, dx, dy, mode: INTEGER);

Map

SetMode

Copies a rectangular screen area, the source block specified by sx, sy,
w, h to an area of the same size with lower left corner at position dx,
dy.7 Source and destination areas may overlap.

12.3 Display control

The following procedures serve to control the display devices and are
typically used for system initialization.

PROCEDURE Map(x: INTEGER): LONGINT;
The base address of the pixelmap containing the coordinate x. For
example, Map(Left) yields the base of the primary monochrome map.
Similarly, Map(CoILeft) furnishes the base of the color map. Pixel values
are stored contiguously, row-wise from the top row to the bottom row.
In the monochrome map, a pixel consumes one bit; in the color map, a
number of bits according to the capability of the display8.

PROCEDURE SetMode(X: INTEGER; s: SET);
Determines the 'mode' of operation of the device covering coordinate
X. For the monochrome display (Left ~ X < Width), the control register
s contains the following mode elements:

• 0 IN s means 'display is on'.

• 1 IN s means 'secondary map is displayed'.

• 2 IN s means 'display is in reverse video mode'.

For the color display (ColLeft ~ X < ColLeft + Width), only bit 0 is
available.

6 Current implementation restriction: The replace mode is not available, paint is
substituted instead. The pattern must satisfy a < w ~ 32 and a ~ h < 256.

7 Current implementation restriction: If applied to the color display, 1 is
subtracted from the x and w values, if they are odd. The mode parameter is
ignored and taken as replace.

!l Four bits on the Ceres-2.

SetColor

GetColor

SetCursor

InitCC

InitCP

12.3 Display control 117

PROCEDURE SetColor(col, red, green, blue: INTEGER);

Defines the hue associated with color number col. The parameters col,
red, green and blue range over the admissible pixel values. 9

If col < 0, the operation applies to the color in which the cursor is
displayed.

Each color number designates a specific hue which is mixed
from the primary colors red, blue and green. In fact, the pixel value (or
color number) is used to index a table of three registers which deter­
mine the weight of the primary colors. These registers can be set by
means of the procedure SetColor.

Color
Number
of pixel

0

Red

..

15

Blue Green

... -
Color
assigned
to pixel

PROCEDURE GetColor(col: INTEGER; VAR red, green, blue: INTEGER);

Assigns the intensity values of the color number col to the variable red,
green and blue. If col < 0, the intensities of the color used for the cursor
are recovered.

PROCEDURE SetCursor(mode: SET);

Determines the cursor mode of the color display. The register contains
the following elements:

• 0 IN mode means 'display cross-haiL'

• 1 IN mode means 'display cursor pattern.'

PROCEDURE InitCC;

Initializes a cross-hair cursor on the color display.

PROCEDURE InitCP;

Initializes a cursor on the color display which has the shape of a default
pattern.

<) 0 .. 15 in the case of four-bit color displays (such as used by Ceres.)

118 Module Display

DefCC PROCEDURE DefCC(X, y, W, H: INTEGER);

DefCP

DrawCX

FadeCX

Defines the area on the color display in which the cross-hair is to be
displayed.

PROCEDURE DefCP(VAR raster: ARRAY OF SYSTEM.BYTE);
Allows the definition of a pattern to be used as color cursor. The array
raster must be declared as:

raster: ARRAY 128 OF LONGINT

and represents the pixelmap of the 64 by 64 point cursor pattern, two
long integers per line. The pattern is taken top-down, left to right.

PROCEDURE DrawCX(X, Y: INTEGER);
Draws the color cursor with lower left corner at position X, Y.

PROCEDURE FadeCX(X, Y: INTEGER);
Erases the color cursor at position X, Y.

12.4 The definition of Frame, FrameMsg and Handler

A frame defines a rectangular area of the screen. The definitions of
Frame, FrameDesc, Handler and FrameMsg are exported to be extended in
client modules. Module Display does not perform operations with
them. The type Frame is defined by:

TYPE

where:

Frame = POINTER TO FrameDesc;
FrameDesc = RECORD

dsc, next: Frame;
X, Y, W, H: INTEGER;
handle: Handler

END;

• next is the link to neighbor frame.

• dsc is the link to subframe.

H

X,Y w

• X, Yare the absolute coordinates of the lower left corner of the
frame's rectangle (in pixels.)

• W, H are the width and height of the frame (in pixels.)

• handle is the procedure which handles messages sent to the
frame.

72.4 The definition of Frame, FrameMsg and Handler 119

Each frame has a field of type Handler with definition:

TYPE Handler: PROCEDURE(f: Frame; VAR msg: FrameMsg);

where FrameMsg is a record exported by module Display with defi­
nition:

TYPE FrameMsg = RECORD END;

FrameMsg is a base type to be extended by client modules. It contains a
parameter list for the handler. The handler is a procedure which reacts
to messages sent to the frame (for example, to mouse and keyboard
events directed at a viewer.)

120

13 Module Viewers

The module Viewers provides:

• A logical model of the display with tracks and viewers. Viewers
completely tile the display. New tracks may be overlaid over
existing ones. Covered tracks are restored when an overlay
closes.

• The abstract data type Track which describes a vertical stripe of
the display.

• The abstract data type Viewer which describes a rectangular area
of the screen together with its semantics. Instances of type
Viewer are active objects. One of their properties is a handler
which embodies the command interpreter of the viewer and
which performs all output operations to the display within its
boundary.

• Procedures to manage tracks and viewers, termed viewer man­
ager. The viewer manager enforces a consistent and exhaustive
tiling of the display. Viewers are notified of display configura­
tion changes by means of messages of type ViewerMsg.

DEFINITION Viewers;

IMPORT Display;

CONST restore = 0; modify = 1; suspend = 2;

TYPE
Viewer = POINTER TO ViewerDesc;
ViewerDesc = RECORD (Display.FrameDesc)

state: INTEGER
END;

ViewerMsg = RECORD (Display.FrameMsg)
id, X, Y, W, H, state: INTEGER

END;

13. 1 The logical display 121

VAR curW, minH: INTEGER;

PROCEDURE Broadcast(VAR M: Display.FrameMsg);
PROCEDURE Change(V: Viewer; Y: INTEGER);
PROCEDURE Close(V: Viewer);
PROCEDURE CloseTrack(X: INTEGER);
PROCEDURE InitTrack(W, H: INTEGER; Filler: Viewer);
PROCEDURE Locate(X, H: INTEGER;

VAR fil, bot, alt, max: Display.Frame);
PROCEDURE Next(V: Viewer): Viewer;
PROCEDURE Open(V: Viewer; X, Y: INTEGER);
PROCEDURE OpenTrack(X, W: INTEGER; Filler: Viewer);
PROCEDURE Recall(VAR V: Viewer);
PROCEDURE This(X, Y: INTEGER): Viewer;

END Viewers.

13.1 The logical display

Tracks The logical display is a rectangular area which is subdivided vertically
into a fixed set of adjacent tracks. A Cartesian coordinate system is
defined with origin in the lower left corner.

Viewers

y
Track 2 Track 4

Track 1 Track 3

..
x

The vertical stripe ofa track is further subdivided horizontally into
viewers. Viewers are stacked, one on top of another, and fill tracks
from the bottom up without leaving any gaps.

y

x

122 Module Viewers

Filler viewer

Opening and
closing of
viewers

It is simpler to assume that the whole logical display is exhaustively tiled
with viewers. For this purpose, the notion of a filler viewer is introduced
which covers the remaining area in the respective track.

y Filler viewers

If viewers use up the whole height of their track, the filler viewer is
assumed to be on top and of zero height. Thus, a track contains always
at least one viewer, the filler.

The tracks of the logical display form a fixed grid. Within this grid,
viewers open and close under program control. Adjacent viewers
either shrink or expand in such a way that the display remains
exhaustively tiled. The rule is that the change takes place at the bottom of
the viewer which expands or shrinks, as shown in the following figure:

3

Viewer 3 opened
Viewer 2 shrinks

Viewer 2 closed
Viewer 1 expands

While the grid of tracks remains fixed, new tracks may be
overlaid over existing tracks. The viewers in a covered track are hid­
den. When a covered track closes, the hidden track is restored.

Overlay tracks

Standard layout

Viewer manager

13. 1 The logical display 123

Overlay track

Covered track Overlay
closed

Overlay tracks may be opened to an arbitrary depth forming a stack of
tracks. Only tracks on top of their stacks are visible. It is also possible to
combine several tracks to form an overlay track of increased width.

Double width track

The logical screen model implemented by module Viewers allows an
arbitrary number of tracks. The screen of an Oberon system, however,
is divided into two tracks: a wide user track and a narrower system
track. If a color monitor is added, it is similarly divided into two
tracks. The two or four track configuration is initialized by module
Oberon.

Module Viewers implements the logical screen model. For this pur­
pose, it provides:

• The abstract data type Track (which is completely hidden.)

• The abstract data type Viewer. Instances of type Viewer are active
objects which also define the viewer's semantics.

A set of procedures - collectively termed the viewer manager - operates
on tracks and viewers and guarantees that the logical display remains
consistent.

124 Module Viewers

13.2 The viewer

Viewer states

Minimal height

A viewer is an instance of the abstract data type Viewer:

TYPE
Viewer = POINTER TO ViewerDesc;
ViewerDesc = RECORD

(Display. FrameDesc)
state: INTEGER

END;

The properties of a viewer are:

• Width, height and coordinates of the bottom left corner in abso­
lute display coordinates (fields X, Y, Wand H inherited from
Display. Frame.)

• A neighbor viewer (field next inherited from Display. Frame.)

• A data structure of objects of base type Display.Frame (field dsc
inherited from Display.Frame.)

• A handler which defines all mouse and keyboard commands
and performs display output (field handle inherited from
Display. Frame.)

• A state (field state.)

The viewer's state may be visualized as a priority number. This priority
defines the importance of the viewer and may be used to make
decisions regarding which viewers to display. The following conven­
tions are defined:

• state> 1: the viewer is not a filler and displayed.

• state = 1: the viewer is a filler.

• state = 0: the viewer is closed.

• state = -1: the viewer is a suspended filler.

• state < -1: the viewer is not a filler and suspended. 1

Requests to open or modify viewers are dependent on the minimal
viewer height which is exported in variable:

VAR minH: INTEGER;

I Current implementation restriction: The states are limited to the range
-2 ~ state ~ 2.

Locate

This

Next

13.3 Viewer messages 125

13.2.1 Locating viewers

The following procedures yield the viewer which satisfies certain
conditions.

PROCEDURE Locate(X: INTEGER; H: INTEGER;
VAR fil. bot, alt, max: Display.Frame);

Within the track which contains x coordinate X, locate and return the
following viewers:

• fil: filler viewer.
• bot: viewer at the bottom of the track; that is, bot. Y = o.
• alt: a viewer of height alt.H ~ H.

• max: the viewer of maximum height.

PROCEDURE This(X, Y: INTEGER): Viewer;
Returns the viewer V whose frame contains the point with coordinates
X, Yviz.

• V.X::sX<V.X+V.W.

• V. Y ::s Y < V. Y + V.H.

PROCEDURE Next(V: Viewer): Viewer;
Returns the neighbor of V. If V.state > 1, the neighbor is the viewer
adjacent (on top) to V. If fil, bot and top denote the filler viewer, the
bottom viewer and the top viewer, respectively, then the following
relations hold:

Next(top) = fil, Next(fil) = bot.

13.3 Viewer messages

The location and size of a viewer are determined by the viewer manager.
However, the contents displayed in a viewer's frame can only be
produced by its handler. The viewer manager must, therefore, com­
municate with the handlers of affected viewers when the display config­
uration changes. It does this by sending a message of type ViewerMsg:

TYPE
ViewerMsg = RECORD

(Display.FrameMsg)
id: INTEGER;
X, Y, W, H: INTEGER;
state: INTEGER

END;

126 Module Viewers

Message
identifiers

Broadcast

Message
parameters

where:

• id is the message identifier: 0 (restore), 1 (modify) or 2
(suspend.)

• X, Yare the coordinates of the lower left corner of the changed
viewer (X not used.)

• W, H are the width and height of the changed viewer (W not
used.)

• state is the state of the changed viewer.

The following named constants are exported serving as message iden­
tifiers with self-explanatory meaning:

CONST restore = 0; modify = 1; suspend = 2;

A variable of type ViewerMsg with id = restore is called a 'restore
message.' Similarly, if id = modify, we speak of a 'modify message' and
if id = suspend of a 'suspend message.'

The handler which receives a viewer message has access to:

• its viewer in the state valid prior to the call to the viewer
manager;

• the message which indicates the state which will be valid after
the viewer manager call is completed.

Note: While processing a viewer message, the handler must not invoke a
procedure of the viewer manager.

Often, the need arises to send messages to all visible viewers. The
update message mechanism of texts, for example, makes use of this
facility. Such a message broadcast is performed using:

PROCEDURE Broadcast(VAR M: Display.FrameMsg);

Send message M to all visible viewers.

In an actual viewer message, only those fields which apply to a given
change are set (see Table 13.1.)

13.3 Viewer messages 127

Table 13.1 Fields set for a message M: ViewerMsg.

Event Action M.id M.X M.Y M.W M.H M.state

New viewer or Restore display in restore
overlay track closed old boundary

Display configuration Change at bottom modify NewY NewH
changed

Viewer will be closed Release data suspend a
structure

Overlay track opened Release data suspend - V.state

Restore message

Modify message

structure

The viewer manager sends a restore message to all viewers which were
covered by an overlay track which is closing (CloseTrack.) A restore
message may also be sent by a command which creates an instance of a
viewer.

If the handler receives a restore message, it is expected to
redraw the viewer's contents within its old boundaries, which are
found in the viewer's descriptor record.

The viewer manager sends a modify message to a viewer whose size
will change as a result of another viewer which is opening, closing or
moving its top edge.

If the handler receives a modify message, it is notified that its
viewer's frame will expand or reduce at the bottom. The handler, on
receiving the message, is expected to redraw the viewer's contents
within its new boundaries. The viewer's descriptor, passed to the
handler, contains the frame location and extent before the change. The
new y coordinate of the frame's lower left corner and the new height
are found in the fields M. Yand M.H of the modify message M.

If the viewer expands, the handler is expected to draw the new
contents in the target area V.X, M. Y, V. W, M.H.

V.W

V.H

M.H

V.X,V.V

M.Y

128 Module Viewers

If the viewer reduces its size, the handler is still allowed to use
the large area V.X, V. Y, V. W, V.H.

V.W

M.H

V.H

V.X, V.Y

Suspend The viewer manager sends a suspend message to all those viewers
message which may be suspended due to a newly opening overlay track. It also

sends a suspend message to a viewer being closed. The target state of a
viewer being suspended is contained in field state.

If a handler receives a suspend message, it is notified that it will
be removed from the screen. It may perform certain clean-up functions
prior to loosing control over the display. For example, if the screen
map is changed in a paint program, the bitmap must be saved before
the screen is redrawn.

Note: It is not required that the handler clears the viewer's
frame. The viewer claiming the space will do that.

13.4 Tracks

Tracks are instances of the abstract data type Track. Their properties
are:

• Width, height and location of the bottom left corner (in display
coordinates.)

• A filler viewer (which is always present.)

• Possibly an underlying track.

The properties of tracks are hidden and can be inferred only indirectly
from procedures exported by module Oberon and from viewers within
a given track.

Module Viewers exports the variable curW which reports the
width of the logical display (that is, the sum of all track widths):

VAR curW: INTEGER;

InitTrack

13.5 The viewer manager 129

PROCEDURE InitTrack(W, H: INTEGER; Filler: Viewer);
Initializes a new track containing a single viewer Filler, provided that
Filler.state = 0 (closed.) The new track is adjacent to the right edge of
the logical display. The frame of viewer Filler is initialized such that it
exhausts the frame of the new track and its state is set to 1 (filler.)

Existing tracks in
logical display

new
track

Note: The viewer manager does not send a restore message
to Filler. All tracks should be defined with the same logical screen
height.

13.5 The viewer manager

The viewer manager comprises a set of procedures to open, close and
modify tracks and viewers. These procedures send viewer messages to
affected viewers. They always observe the following sequence:

(1) Determine the affected viewer or viewers.

(2) Compute location and size of the modified viewer frames but do
not change their frame descriptors yet.

(3) Notify the affected viewers of the change by sending a viewer
message.

130 Module Viewers

OpenTrack

(4) Update the descriptors of the affected viewers to reflect the new
configuration. The fields change according to:

• X, Y, W, H: the new frame.

• next: if viewer is inserted into the data structure.

• state: if viewer is suspended or closed.

PROCEDURE OpenTrack(X, W: INTEGER; Filler: Viewer);

Creates an overlay track which spans one or several existing tracks.
The new track contains a single viewer Filler. Suspends all viewers in
the covered tracks.

Those tracks which have an x coordinate in the interval
[X, X + W)2 will be covered. The frame of the new overlay track is the
union of the frames of the covered tracks. The frame of viewer Filler is
initialized such that it exhausts the frame of the new track and its state
is set to 1 (filler.)

New overlay track

I I
Tracks spanned

I

by [X, X+W)

W

• I

x
Covered Tracks

All viewers Vin the covered tracks are suspended. That means a
suspend message M is sent with M.state < 1 (inverse of the state prior
to suspension.) The state of the suspended viewers will be inverted
subsequently.

Notes: OpenTrack has no effect unless Filler.state = a (closed.)
Suspended viewers cease to receive Oberon track messages (mouse
events.) However, a suspended focus viewer still receives consume
and defocus messages (keyboard events.) The handler must, therefore,
check whether the viewer is displayed. The viewer manager does not
send a restore message to Filler, hence the display is left unchanged by
Open Track. Open Track must not be called when a handler processes a
viewer message.

2 X is in the interval [X, X + W) if X::::; x < X + W.

CloseTrack

Open

Y-"

13.5 The viewer manager 131'

PROCEDURE CloseTrack(X: INTEGER);
If the track which contains x coordinate X is an overlay track, it is
closed. All viewers in the closing track are also closed (see procedure
Close.) The covered tracks are reinstated and the viewers in those tracks
are restored. That means a restore message is sent and their state is
inverted subsequently.

Notes: No action takes place if the closed track is not an overlay.
CloseTrack must not be called when a handler processes a viewer
message.

PROCEDURE Open(V: Viewer; X, Y: INTEGER);
If viewer V is closed (V.state = 0), it will be opened in the track which
contains x coordinate X. Space is claimed from viewer U which con­
tains the point with coordinates X, Y. The height of the new viewer is
controlled by Y such that the top edge of V contains the point with
coordinates X, Y, except if this would result in a viewer of height less
than minH. In this case, a viewer of height minH is opened.

The fate of viewer U is determined by the remaining space. If
the height of this space is less than minH, U will be closed (see
procedure Close.) Otherwise, a modify message is sent to U and its
frame is adjusted subsequently.

Open assigns frame boundaries V.X, V. Y, V. Wand V.H and sets
V.state := 2 (displayed.) It inserts V into the data structure of viewers
(field V.next.)

Y

Y::; U.Y + U.H - minH

Viewer
V

Y> U.Y + U.H - min~"_.f. __ _

Y---. minH
"---"""-"""""""""" ""-";""""

Viewer
V

U closed

Notes: No action takes place if V is not closed prior to the call of
Open. Open does not send a restore message to V. Open must not be
called when a handler processes a viewer message.

132 Module Viewers

Change PROCEDURE Change(V: Viewer; Y: INTEGER);

Close

Recall

Viewer V is changed with the intent of moving its top edge to the new
y coordinate Y. The height of the new top edge is limited by the
requirement that at least minH remains for the upper neighbor U of V.
Thus, the new height of V is given by:

h = min(Y - V.Y, V.H + U.H - minH)

Viewer U is modified (that is, an appropriate modify message is sent)
and its frame is adjusted subsequently. Change assigns the new frame
boundaries V.X, V. Y, V. Wand V.H.

Y

Viewer V

y:s; U.Y + U.H - minH

Viewer
V

Y> U.Y + U.H - min~_J

Y minH

Viewer
V

----,-

Notes: Change has an effect only if: (1) Y - V. Y ~ minH (that is,
the height of V after the intended change is at least minH) and (2) V is a
displayed (that is, V.state > 1.) Change must not be called when a
handler processes a viewer message.

PROCEDURE Close(V: Viewer);
If viewer V is not a filler and displayed (V. state > 1), it is closed. A
suspend message M with M.state = 0 is sent to V and its state is set to 0
(closed) subsequently.

If V is the last viewer in an overlay track (besides the filler), then
that track is closed too (see procedure CloseTrack.)

Otherwise, the upper neighbor U of V claims its space. A mod­
ify message is sent to U and its frame is adjusted subsequently.

Note: Close must not be called when a handler processes a viewer
message.

PROCEDURE Recall(VAR V: Viewer);
V is the last viewer which was previously closed bya call to Close. If no
call to Close precedes the execution of Recall, NIL results.

13.6 The viewer data structure 133

13.6 The viewer data structure

Even though tracks and viewers are data abstractions, it seems useful
to take a look at the data structure hidden by module Viewers. The
type Track is an extension of the type Viewer with an additional field
under which may point to overlay tracks.

Tracks and viewers are linked in a hierarchical data structure of
circular lists using the fields dsc and next. Let F denote a frame (which
may be of type Track or Viewer.) Then:

• F.dsc points to a frame one level below F (that is, from track to
viewer.)

• F.next points to the next frame of the same level (that is, the
adjacent track or viewer.)

The following diagram gives an example:

next

dsc

next

under

User
track

,---f.
Filler

next

dsc

Screen configuration B A viewer

t Filler

Text
viewer B

Text

c
Text viewer A

Picture Text
viewer viewer C

The viewer manager maintains the data structure composed of objects
of type Track and Viewer which comprise the first two levels of a
hierarchy. Extending the base type Display.Frame, the viewer too has a
field dsc. Thus, further levels may be defined. In fact, text viewers are

134 Module Viewers

comprised of two frames of type TextFrames.Frame. Note, however,
that the frames linked to viewers through dsc are under the control of
the handler, not the viewer manager.

14 Module Texts

Module Texts provides the abstract data type Text which is a model of a
sequence of characters with their associated properties: font, color and
vertical offset. The text's data structure is hidden. It is accessed
or changed through a set of procedures which comprise the data
manager.

Module Texts exports:

• The abstract data type Text. Instances of Text are active Oberon
objects with an installed procedure, called notifier, which is
invoked whenever the text changes.

• The abstract data type Buffer to assemble and hold temporary
texts.

• The abstract data type Reader to read the characters of a text
sequentially.

• The abstract data type Scanner to read symbols (integers, reals,
strings etc.) from texts and translate them into an internal
representation.

• The abstract data type Writer to create texts in buffers from
variables of several basic types (CHAR, INTEGER, REAL etc.)

• Procedures for changing, opening and closing texts including
reading and writing to disk.

Readers, scanners and writers operate sequentially on the sequence of
characters. Like riders on files, they have an implicit property, the
position, which is incremented at each operation. In fact, they are
extensions of the type Files. Rider.

As a preliminary, module Fonts is described which exports
the abstract data type Font, which provides the raster data for screen
fonts.

135

136 Module Texts

DEFINITION Fonts;

IMPORT Display;

TYPE
Font = POINTER-iO FontDesc;
FontDesc = RECORD

name: Name;
height. minX, maxX, minY, maxY: INTEGER;
raster: Display.Font

END;
Name = ARRAY 32 OF CHAR;

VAR Default: Font;

PROCEDURE This (name: ARRAY OF CHAR): Font;

END Fonts.

DEFINITION Texts;

IMPORT Display, Files, Fonts;

CONST
Inval = 0; Name = 1; String = 2; Int = 3; Real = 4; LongReal = 5;
Char = 6;
replace = 0; insert = 1; delete = 2;

TYPE
Buffer = POINTER TO BufDesc;
BufDesc = RECORD

len: LONGINT
END;

Notifier = PROCEDURE (T: Text; op: INTEGER; beg, end: LONGINT);

Reader = RECORD (Files. Rider)
eot: BOOLEAN;
fnt: Fonts.Font;
col, voff: SHORTINT

END;

Scanner = RECORD (Reader)
nextCh: CHAR;
line, class: INTEGER;
i: LONGINT;
x: REAL;
y: LONGREAL;
c: CHAR;
len: SHORTINT;
s: ARRAY 32 OF CHAR

END;

Text = POINTER TO TextDesc;
TextDesc = RECORD

len: LONGINT;
notify: Notifier

END;

Writer = RECORD (Files.Rider)
buf: Buffer;
fnt: Fonts.Font;
col, voff: SHORTINT

END;

PROCEDURE Append(T: Text; B: Buffer);

Introduction 137

PROCEDURE ChangeLooks(T: Text; beg, end: LONGINT; sel: SET;
fnt: Fonts.Font; col, voff: SHORTINT);

PROCEDURE Copy(SB, DB: Buffer);
PROCEDURE Delete(T: Text; beg, end: LONGINT);
PROCEDURE Insert(T: Text; pos: LONGINT; B: Buffer);
PROCEDURE Load(T: Text; f: Files.File; pos: LONGINT;

VAR len: LONGINT);
PROCEDURE Open(T: Text; name: ARRAY OF CHAR);
PROCEDURE OpenBuf(B: Buffer);
PROCEDURE OpenReader(VAR R: Reader; T: Text; pos: LONGINT);
PROCEDURE OpenScanner(VAR S: Scanner; T: Text; pos: LONGINT);
PROCEDURE OpenWriter(VAR W: Writer);
PROCEDURE Pos(VAR R: Reader): LONGINT;
PROCEDURE Read(VAR R: Reader; VAR ch: CHAR);
PROCEDURE Recall(VAR B: Buffer);
PROCEDURE Save(T: Text; beg, end: LONGINT; B: Buffer);
PROCEDURE Scan(VAR S: Scanner);
PROCEDURE SetColor(VAR W: Writer; col: SHORTINT);
PROCEDURE SetFont(VAR W: Writer; fnt: Fonts.Font);
PROCEDURE SetOffset(VAR W: Writer; voff: SHORTINT);
PROCEDURE Store(T: Text; f: Files.File; pos: LONGINT;

VAR len: LONGINT);
PROCEDURE Write(VAR W: Writer; ch: CHAR);
PROCEDURE WriteDate(VAR W: Writer; t, d: LONGINT);
PROCEDURE WriteHex(VAR W: Writer; i: LONGINT);
PROCEDURE Writelnt(VAR W: Writer; i, n: LONGINT);
PROCEDURE WriteLn(VAR W: Writer);
PROCEDURE WriteLongReal(VAR W: Writer; y: LONGREAL;

n: INTEGER);
PROCEDURE WriteLongRealHex(VAR W: Writer; y: LONGREAL);
PROCEDURE WriteReal(VAR W: Writer; x: REAL; n: INTEGER);
PROCEDURE WriteRealFix(VAR W: Writer; x: REAL; n, k: INTEGER);
PROCEDURE WriteRealHex(VAR W: Writer; x: REAL);
PROCEDURE WriteString(VAR W: Writer; s: ARRAY OF CHAR);

END Texts.

138 Module Texts

14.1 Module Fonts

The term font refers to the set of characters of a certain design and size.
The abstract data type Font has the following definition:

TYPE

where:

Font = POINTER TO FontDesc;
FontDesc = RECORD

name: ARRAY 32 OF CHAR;
height: INTEGER;
minX, max)(: INTEGER;
minY, maxY: INTEGER;
raster: Display.Font

END;

• name is the name of the file which contains font data.

• raster is the set of patterns used in procedure Display. GetChar.

• height is the minimum distance between text lines.

• minX, maxX, minY, maxY are the extremal values of the box
which encloses the raster points of all characters of the font
when their base points are aligned at (0, 0).

Note: The extremal values are algebraically defined; that is,
minX:%; 0 and minY :%; o. Module Fonts exports a variable designating
the default font which is initialized from SyntaxlO.Scn.Fnt:

VAR Default: Font;

14.2 Text and buffer 139

This PROCEDURE This(name: ARRAY OF CHAR): Font;
Initializes the returned font from data stored in a file whose name is
indicated in parameter name. If the file does not exist, the default font is
returned.

14.2 Text and buffer

14.2.1 Text

A text is an active object which is an instance of the abstract data type
Text, which implements the notion of a sequence of characters with
their associated properties. Characters may be retrieved based on their
position with respect to the start of the text.

Numbering In line with the Oberon language conventions used for arrays, the first
text element has ordinal number o.

Stretch A stretch denotes a subsequence of a text beginning with element beg
up to but not including end. The shorthand notation [beg, end) is
used. The length of the stretch is always end - beg. For example,
in the following diagram, the stretch [2, 5) consists of the elements c, d
andE.

2 3 4 8
I

beg

The abstract type Text is defined by:

TYPE
Text = POINTER TO TextDesc;
TextDesc = RECORD

len: LONGINT;
notify: Notifier

END;

It has the properties:

• len: the text's length (in characters.)

• notify: a procedure invoked when the text is changed.

140 Module Texts

Notifier

Open

A text element has the properties:

• fnt: the character's font (type Fonts.Font.)

• color: the character's color numberer1 (type SHORTINT.)

• voff: vertical offset in pixels (type SHORTINT.)

The procedure value of notify, termed the text's notifier, is called
whenever the text is changed. It is of type:

TYPE Notifier = PROCEDURE(T: Text; op: INTEGER;
beg, end: LONGINT);

where:

• T is the text changed prior to the call of the notifier.

• op is an operation code defining the nature of the change.

• beg, end are the stretch [beg, end) which were changed.

Module Texts exports the following named constants defining the
operation codes in a self-explanatory manner:

CONST replace = 0; insert = 1; delete = 2;

PROCEDURE Open(T: Text; name: ARRAY OF CHAR);

Loads the text stored on disk in the file whose name is contained in the
parameter name. Initializes the text T. The field T.len is set to the text's
length (in characters.)

If name = II II (empty string) or if no file with that name exists, a
new text is created.

The file must be marked either as a text file or an ASCII file. A
text file is preceded by a text block identifier OFOOIH (-4095 decimal)
two bytes in length. Files created with Edit. Store are so marked. If it is
an ASCII file, the default font color and vertical offset values are
applied.

For example, an instance of type Text is created as follows:

NEW(Txt); Txt.notify:= TextFrames.NotifyDisplay;
Texts.Open(Txt, IlnputFile");

TextFrames.NotifyDisplay is a notifier for standard texts.

1 See Chapter 12.

14.2 Text and buffer 141

14.2.2 Display of texts in viewers

Texts are typically displayed in a text viewer. The displayed view of the
text must reflect all changes. The task of synchronizing the viewers is
complicated if the same text is displayed in more than one viewer. The
notifier concept provides an elegant solution. The notifier is called
whenever the text is modified. Texts which are to be displayed in
standard text viewers use the notifier TextFrames.NotifyDisplay which
broadcasts messages of type TextFrames. UpdateMsg, indicating the
nature of the change and allowing the display managers of the affected
viewers to update their views of the text.

The following diagram depicts creation of a text viewer, instal­
lation of the notifier and broadcast of update messages.

Viewer Viewer

I I handle I' II handle II

® Update mes ages @ Delete

t

Text

(1) The command Open creates the viewer, opens the displayed text
and installs the notifier.

(2) Later, the handler may invoke a procedure which changes the
text (for example, Delete.)

(3) The text manager performs the operation on the text's data
structure and calls notify.

(4) The procedure notify sends update messages to all visible
viewers including the one where the text was modified. These
viewers may actualize their display if they show the changed
text.

We wish to point to the great generality of the scheme. Texts make no
assumption about message sending. It is the programmer of the viewer
class who chooses the appropriate update mechanism.

142 Module Texts

14.2.3 The buffer

A buffer is another abstract data type describing a sequence of charac­
ters with their properties. It differs from a text in two respects:

(1) There is no notifier.

(2) No procedures are provided to store buffers on disk.

Buffers provide, therefore, temporary text data structures which exist
no longer than the duration of a session. The absence of a notifier
makes a buffer more efficient when assembling the characters compris­
ing a text. Buffers are, therefore, used by writers for that purpose.

The abstract data type Buffer has the following definition:

TYPE
Buffer = POINTER TO BufferDesc;
BufferDesc = RECORD

len: LONGINT (* Length of the buffer *)
END;

OpenBuf PROCEDURE OpenBuf(B: Buffer);

Initializes the buffer B. The field B.len is set to O. As in the case of text, B
must be created first with NEW(B).

14.2.4 Operations on texts and buffers

ChangeLooks PROCEDURE ChangeLooks(T: Text; beg, end: LONGINT; sel: SET;

Delete

Copy

fnt: Fonts.Font; col, voff: SHORTINT);

Changes the attributes color, font or vertical offset of the stretch
[beg, end) in text T. The notifier T.notify is called. Results are undefined
if the stretch [beg, end) is not valid.

Which of the attributes is changed is directed by the parameter
sel:

• a IN sel: the font is changed to fnt.

• 1 IN sel: the color is changed to col.

• 2 IN sel: the vertical offset is changed to voff.

PROCEDURE Delete(T: Text; beg, end: LONGINT);

Deletes stretch [beg, end) in text T. The notifier T.notify is called. Results
are not defined if the stretch is invalid.

PROCEDURE Copy(SB: Buffer; DB: Buffer);

Appends a copy of buffer SB to buffer DB. The source buffer is not
cleared.

Recall

Save

Insert

14.3 Reading from texts, writing to buffers 143

PROCEDURE Recall(VAR B: Buffer);
Recalls the most recently deleted stretch of text in buffer B. There is no
need to open the buffer prior to passing it as actual parameter.

PROCEDURE Save(T: Text: beg, end: LONGINT; B: Buffer);
Appends stretch [beg, end) in text T to the end of buffer B.

PROCEDURE Insert(T: Text; pas: LONGINT; B: Buffer);
Inserts the contents of buffer B into text T at position pas. After comple­
tion, the first character of B occupies position pas in T. The buffer B is
cleared. The notifier T.1lotify is called. Results are undefined if pas is
outside of the text.

For example, if T has textual value 'ThisuisutheuOberonuguide',
and B = 'newu', where the character 'u' denotes a space, then
Texts.Insert(T, 12, B) yields a text T with value:

IThiSLJisLJtheLJnewLJOberonLJguide"

Append PROCEDURE Append(T: Text; B: Buffer);
Appends the contents of buffer B to text T. The buffer B is cleared
(B.len = 0.) The notifier T.notify is called. Append is an abbreviation for
Insert(T, T.len, B).

14.3 Reading from texts, writing to buffers

Texts and buffers are sequential data structures with many similarities
to files. In fact, they are implemented as extensions of the Oberon
file system. As with the file's rider, the read/write operations on texts
are performed through instances of abstract data types. There are
three:

(1) Reader: to read characters from a text.

(2) Sea/mer: to read symbols (integers, reals etc.) and translate them
to an internal representation.

(3) Writer: to assemble text data in buffers.

It is the reader, the scanner and the writer which possess the property
position, not the object text. Several readers and scanners may operate
on the same text.

144 Module Texts

ch = A B.i = 12

; ;
Read(A, ch) (Scan) B

Text T

Position Position
of A of B

Writers only operate on an associated buffer. The written characters
are always appended. When a chunk of text is assembled, the buffer is
typically inserted into a text. At that moment, the notifier is called. If
the text is displayed and uses message passing, all views are updated.

Text T

14.3.1 The reader

ch =a

t
Read(A, ch)

Position
of A

C.buf '----L..--'---'----'------l

B.i = 12 Append(T, C.buf)

t
Scan(B)

Position
of B

A reader is an instance of the abstract data type Reader and affords
sequential read access to the elements of an associated text. It has the
following definition:

TYPE
Reader = RECORD

(Files.Rider)
eot: BOOLEAN;
tnt: Fonts.Font;
col, voff: SHORTINT

END;

OpenReader

Read

14.3 Reading from texts, writing to buffers 145

The reader's properties are:

• all associated text on which the reader operates (hidden.)

• a positio1l in the text (hidden.)

• eat: an end-of-text condition.

• fllt: the font of the character which was last read.

• col: the color number of the character which was last read.

• voff: the vertical offset of the character which was last read.

Note: The reader also inherits properties from the rider which it
extends. However, these play no role in the application of the reader.

PROCEDURE OpenReader(VAR R: Reader; T: Text; pas: LONGINT);
Initializes reader R and sets it at position pas in text T. The field R.eot is
set to FALSE; the attribute fields remain unspecified. The first read
operation after the reader is opened will return the character at posi­
tion pas in text T.

If pas is outside the text (pas ~ T.len), the result is unspecified.
The programmer cannot rely on R.eot being TRUE.

PROCEDURE Read(VAR R: Reader; VAR ch: CHAR);
The character cII found at the position of the reader R is returned and
that position is incremented by 1. If an attempt is made to read beyond
the text's length, then R.eot = TRUE and ch remains undefined. Other­
wise, the reader's fields are set:

• R.eof to FALSE.
• R.fnt, R.col and R. voff to the attributes of ch.

Pos PROCEDURE Pas(VAR R: Reader): LONGINT;
Returns the position of reader R in its associated text. At the end of
text, the result is unspecified.

14.3.2 The scanner

A scanner is an instance of the abstract data type Scanner. It parses an
associated text for tokens of the following kind:

• numbers (of various types);

• strings;

• names;
• special symbols.

Tokens are scanned sequentially, translated to an internal representa­
tion and returned by the scanner in one of its result fields.

146 Module Texts

Scanner class
codes

A scanner has the following definition:

TYPE
Scanner = RECORD

(Reader)
nextCh: CHAR;
line, class: INTEGER;
i: LONGINT;
x: REAL;
y: LONGREAL;
c: CHAR;
len: SHORTINT;
s: ARRAY 32 OF CHAR

END;

The properties of a scanner are:

• an associated text on which the scanner operates (hidden.)

• a position in the text (hidden.)

• nextCh: the character in the text which immediately follows a
scanned symbol.

• line: the line number of the scanned symbol.

• class: a code indicating the type of the scanned symbol (see
definition later.)

• i, x, y, c: fields of appropriate type in which results are returned.

• len: the length of a name or string.

• s: field in which names or strings are returned.

Note: The scanner also inherits properties from the underlying
reader and rider. Except possibly for eot, these are not productive in the
use of the scanner.

The field class which identifies the type of the scanned symbol admits
values O .. 6. The following constants define the meaning of class:

CONST Inval = 0; Name = 1; String = 2; Int = 3; Real = 4; LongReal = 5;
Char = 6;

Scanned symbols The scanner parses the associated text for tokens. While parsing,
blanks (SP or 20X) and tab characters (HT or 09X) are ignored. Carriage
return characters (CR or ODX) are also skipped but they have the effect

OpenS canner

Scan

14.3 Reading from texts, writing to buffers 147

of incrementing the line count. Tokens are defined by the lexicographic
syntax:

Name = NamePart { II. II NamePart }.
NamePart = letter { letter I digit}.
String = II II II { letter I digit I specialChar } II II II I

II I II { letter I digit I SpecialChar } II I II .
Integer = ["+11 III-"] digit {digit} I

["+11 I"-II] digit {hexDigit} IIHII.
Real = [II + II III-II] digit { digit} ". II digit { digit}

[IIEII [11+" III-II] digit { digit}].
LangReal = [II + II III _II] digit { digit} II. II digit { digit}

["D" ["+" I"-II] digit {digit}].2
Char = specialChar I ctlChar. 3

specialChar = Printable ASCII characters other than letters or
number (II~II I"!II III@" III # 111 11 $" ...).

ctlChar = The control character of the ASCII code (that is,
ordinal number < 20X) except HT or CR.

PROCEDURE OpenScanner(VAR S: Scanner; T: Text; pas: LONGINT);

Opens scanner S and sets it at position pas in text T. The field S.eat is
initialized to FALSE; the output fields remain unspecified. The scan
operation after a call of OpenScanner will return the symbol starting at
position pas in text T.

If pas is outside the text (pas ~ T.len), the result is unspecified.

PROCEDURE Scan(VAR S: Scanner);

After each call to the procedure Scan, the associated text is parsed for a
symbol, starting at the current position of the scanner in its associated
text. Blanks and carriage return characters (CR or 00 X) are skipped.
After a symbol is found, it is translated into an internal representation
and assigned to the output field of the matching type. The type of
symbol being scanned is identified by the field S.class.

The character immediately following the scanned symbol is the
value of S.l1extCh. The new position of the scanner is one more than the
position of 5 .1lextCh.

The scanner counts lines starting at a for the first one scanned.
Each occurrence of a carriage return character (CR or ODX) increments
the field S.line by one.

2 A number is also of type LONGREAL if the number of digits after the decimal
point exceeds the precision of reals.

:1 Other than SP, HT or CR.

148 Module Texts

Scnll(5)

S.cot
S.llcxtCh
S.lillc
S.cl(l55
S.i
S.x
S.y
S.c
S.lcll
5.5

1st

The Boolean variable S.eot (in base type reader) is accessible and
can be tested for the end-of-text condition.

Note: Unlike the case of reader, eot may be TRUE when the last
symbol is scanned, not at the attempt to scan beyond the text. This has
to be taken into account when using eot.

For example, let S be a scanner operating on the text Txt with
textual value 'NameLJ=LJI000; ~3.141', where 'LJ' denotes a space and 'r
a line break control character. In a text viewer, this text would look as
follows:

Name = 1000;
3.141

After opening S at position 0 through a call to Texts.OpenScanner
(S, Txt, 0), successive calls to Scan(S) yield the following:

2nd 3rd 4th 5th 6th

FALSE FALSE FALSE FALSE TRUE TRUE
11.11 II~II Undef Undef ,

a a a a 1 Undef
Name Char Int Char Real Undef
Undef Undef 1000 Undef Undef Undef
Undef Undef Undef Undef 3.141 Undef
Undef Undef Undef Undef Undef Undef
Undef "=11 Undef 11.11 Undef Undef ,
4 Undef Undef Undef Undef Undef
"Name" Undef Undef Undef Undef Undef

Note: 'Undef' means that the programmer should not rely on the value.
In the current implementation, once a field is set, it keeps its value
until it is changed the next time.

If, in our example, the scanner is opened at the third character
by means of Texts.OpenScanner(S, Txt, 2), the first call of Scan(S)
yields:

S.class = Texts.Name
S.len = 2
S.s = "me"

14.3 Reading from texts, writing to buffers 149

14.3.3 The writer

OpenWriter

Set attributes

Write

WriteHex

A writer is an instance of the abstract data type Writer. The writer
appends characters or symbols to the end of an associated buffer.
Many of the write procedures serve to translate from the internal
representation of numbers of the basic types (SHORTINT, INTEGER,
LONGINT, REAL, LONGREAL) to textual symbols.

A writer has the following definition:

TYPE
Writer = RECORD

(Files. Rider)
buf: Buffer;
fnt: Fonts.Font;
col, voff: SHORTINT

END;

The properties of the writer are:

• buf: the associated buffer in which text data is assembled.

• fnt: the font in current use.

• col: the color number in current use.

• voff: the vertical offset in current use.

Note: While the writer also inherits the properties of the underlying
rider, these are not used.

PROCEDURE OpenWriter(VAR W: Writer);

Opens writer W. The associated buffer W.buf is also opened. The
characteristics are W.fnt = Fonts. Default, W.col = Display.white and
W.voff = O.

PROCEDURE SetColor(VAR W: Writer; col: SHORTINT);
PROCEDURE SetFont(VAR W: Writer; fnt: Fonts.Font);

PROCEDURE SetOffset(VAR W: Writer; voff: SHORTINT);

Sets the character attributes of writer W. Subsequently written charac­
ters or symbols possess these attributes.

PROCEDURE Write(VAR W: Writer; ch: CHAR);

App~nds character ch to the end of the buffer W.buf of writer W.

PRO~EDURE WriteHex(VAR W: Writer; i: LONGINT);

Cpnverts integer i to a sequence of eight hexadecimal characters pre­
ceded by a blank. The resulting string is appended to the end of the
buffer W.buf of writer W.

150 Module Texts

Writelnt

WriteLn

Write Long Real

WriteLong­
RealHex

WriteReal

WriteRealFix

WriteRealHex

PROCEDURE Writelnt(VAR W: Writer; i, n: LONGINT);

Converts integer i to a character string representing i in decimal form.
The resulting string is padded with blanks on the left up to a length of
11 and appended to the end of the buffer W.buf of writer W. The field
size is adjusted if chosen too small.

For example, if W.buf has textual value "abc" and i = 17, then
after Writelnt(W, i, 4), W.buf contains labcLJLJ17" (LJ represents a blank.)

PROCEDURE WriteLn(VAR W: Writer);

Appends a carriage return character (CR or ODX) to the end of the
buffer W.buf of writer W.

PROCEDURE WriteLongReal(VAR W: Writer; y: LONGREAL; n: INTEGER);

Converts long real y to a character string representing y in decimal
form. The resulting string is padded with blanks on the left up to a
length of 11 and appended to the end of the buffer W.buf of writer W.
The field size is adjusted if chosen too small.

PROCEDURE WriteLongRealHex(VAR W: Writer; y: LONGREAL);

Converts long real y to a sequence of 16 hexadecimal characters pre­
ceded by a blank. The resulting character string is appended to the end
of the buffer W.buf of writer W.

PROCEDURE WriteReal(VAR W: Writer; x: REAL; n: INTEGER);

Converts real x to a character string representing x in decimal form.
The resulting string is padded with blanks on the left up to a length of
II and appended to the end of the buffer W.buf of writer W. The field
size is adjusted if chosen too small:

PROCEDURE WriteRealFix(VAR W: Writer; x: REAL; n, k: INTEGER);

Appends the fixed-point decimal character representation of real vari­
able x, right justified in a field of n places with k places for the decimal
fraction to the end of the buffer W.buf of writer W. The field size is
adjusted if chosen too small.

For example, if W.bufhas textual value "abc" and pi = 3.14159 ..
(up to machine precision), then after WriteReaIFix(W, pi, 6, 3), W.buf is
"abcLJ3.14111 (the symbol LJ represents blanks.)

PROCEDURE WriteRealHex(VAR W: Writer; x: REAL);

Converts real x to a sequence of eight hexadecimal characters preceded
by a blank. The resulting character string is appended to the end of the
buffer W.buf of writer W.

WriteString

Write Date

14.4 Textfiles 151

PROCEDURE WriteString(VAR W: Writer; s: ARRAY OF CHAR);

Appends string s to the end of the buffer W.buf of writer W.

PROCEDURE WriteDate(VAR W: Writer; t. d: LONGINT);

Appends the date to the buffer W.buf of writer W. The parameters
t (time) and d (date) are in the format defined by the procedure
Oberol1.GetTime. The format is 'dd.mm.yy hh:mm:ss' with dd: day,
mm: month, yy: year, hh: hour, mm: minute and ss: second. All two
digit numbers with leading zeros if necessary.

For example, the following writes the date to the system log:

VAR t. d: LONGINT; W: Texts.Writer;

Oberon.GetTime(t. d);
Texts.WriteDate(W, t. d);
Texts. WriteLn(W);
Texts.Append(Oberon.Log, W.buf);

System.Log

10.01.90 11 :12:18

14.4 Text files

Texts are stored on disk files in the form of text blocks. A given file may
contain several blocks of different type, of which text blocks are just
one. A complex document, for example, may be composed of text
blocks, one for each paragraph, graphics blocks and interspersed
descriptor blocks.

Document file composed of blocks

v
Text block identifier

Each block is preceded by a mark composed of two bytes. The
first byte is the block mark identifier (OFOX) and the second one spec­
ifies the type of block (OlX for text blocks.)

Two procedures are provided to read and write text blocks: Load
and Store.

152 Module Texts

Load PROCEDURE Laad(T: Text; f: Files.File; pas: LONGINT; VAR len: LONGINT);

Loads the text block stored on disk in file f starting at pos. The file
position pos designates the start of text data after the text block identi­
fier (OFOOIH.) On completion, len is set to the length of the block
excluding the text block identifier.

Store

It is the caller's responsibility to ensure that pos is a valid starting
position.

pos pos + len: starting point of next block

Note: Load knows the length of the text block from information
contained in the text data. It reads only one text block (not to the end of
file.)

For example, the following loads two consecutive text blocks
from file F:

VAR
F: Files.File;
T1, T2: Texts.Text;
pas, length: LONGINT;

pas := 2;
Texts.Laad(T1, F, pas, length);
pas: = pas + length + 2;
Texts.Laad(T2, F, pas, length);

Note: In general, it is prudent to read the block identifier before
the call to Load and test whether it is really a text block.

PROCEDURE Stare(T: Text; f: Files.file; pas: LONGINT; VAR len: LONGINT);

Stores the text T in file f starting at file position pos. The text block
identifier (OFOOIH) is written first. On completion, len is set to the
length of the block including the text block identifier.

It is the caller's responsibility to ensure that pos is a valid starting
position. Also, the caller must make sure that no subsequent block is
overwritten.

14.4 Textfiles 153

pos pos + len: starting point of next block

Note: If an existing text block is overwritten, the user must
ensure that the newly written text is not longer than the block which is
overwritten. If a gap ensues, then pos + length is no longer the starting
position of the next block. It is advisable not to overwrite existing
blocks.

file F.
For example, the following appends two text blocks at the end of

VAR
F: Files.File;
T1, T2: Texts.Text;
pas, length: LONGINT;

pas: = Files.Length(F);
Texts.Stare(T1, F, pas, length);
Texts.Stare(T2, F, pas + length, length);

154

15 Module Oberon

Module Oberon performs system services and exports:

• The event loop with facilities to install user-defined tasks.

• The message types InputMsg and ControlMsg which report
mouse, keyboard and certain viewer control events.

• The abstract data type Cursor and the standard cursors Mouse
and Pointer with their patterns Arrow and Star, respectively.

• The procedure Call, the type ParList and the variable Par which
provide the link to the kernel to start commands from within a
procedure and pass parameter information to the called
command.

• The message type SelectionMsg and procedures which deal with
the latest system-wide selection, the marked viewer and the focus
vzewer.

• Procedures for display set-up.
• Procedures which access the system clock, and provide user

identification, password protection and a pop-up menu.

• Types and variables which define system-wide resources, namely
CopyMsg, CopyoverMsg, FocusViewer, Log (the system log), Par (a
parameter list), User (user identification), Password, Mouse,
Pointer, Arrow, Star, CurColor, CurFnt, CurOff and CurTask.

After system start-up, the body of module Oberon gets control and:

• Initializes the monochrome. display (procedure Open Display)
observing the standard Oberon model of a wide user track and a
system track.

• Initializes the focus viewer (the viewer containing the point
(0, 0).)

• Installs the garbage collection task in the loop.

• Initializes the cursors Mouse and Pointer.

Introduction 155

Module System is then loaded whose body completes system
ini tializa tion.

DEFINITION Oberon;

IMPORT Display, Texts, Viewers, Input, Display, Fonts, Kernel, Modules;

CONST
consume = 0; track = 1; (* input message id *)
defocus = 0; neutralize = 1; mark = 2; (* control message id *)

TYPE
ControlMsg = RECORD(Display.FrameMsg)

id, X, Y: INTEGER
END;

CopyMsg = RECORD(Display.FrameMsg)
F: Display.Frame

END;

CopyOverMsg = RECORD(Display.FrameMsg)
text: Texts.Text;
beg, end: LONGINT

END;

InputMsg = RECORD(Display.FrameMsg)
id: INTEGER;
keys: SET;
X, Y: INTEGER;
ch: CHAR;
fnt: Fonts.Font;
col. voff: SHORTINT

END;

SelectionMsg = RECORD(Display.FrameMsg)
time: LONGINT;
text: Texts.Text;
beg, end: LONTINT

END;

Cursor = RECORD
marker: Marker;
on: BOO LEAN;
X, Y: INTEGER

END;

Marker = RECORD
Fade, Draw: Painter

END;

156 Module Oberon

Painter = PROCEDURE(x, y: INTEGER);
ParList = POINTER TO ParRec;
ParRec = RECORD

vwr: Viewers Viewer;
frame: Display.Frame;
text: Texts.Text;
pos: LONGINT

END;

Task = POINTER TO TaskDesc;
TaskDesc = RECORD

safe: BOOLEAN;
handle: Handler

END;
Handler = PROCEDURE ();

VAR
Arrow, Star: Marker;
CurColor, CurOff: SHORTINT;
CurFnt: Fonts.Font;
CurTask: Task;
FocusViewer: Viewers Viewer;
Log: Texts.Text;
Mouse, Pointer: Cursor;
Par: ParList;
Password: LONGINT;
User: ARRAY 8 OF CHAR;

PROCEDURE AllocateSystemViewer(DX: INTEGER; VAR X, Y: INTEGER);
PROCEDURE AllocateUserViewer(DX: INTEGER; VAR X, Y: INTEGER);
PROCEDURE Call(VAR name: ARRAY OF CHAR; par: ParList;

new: BOOLEAN; VAR res: INTEGER);
PROCEDURE Collect(count: INTEGER);
PROCEDURE DisplayHeight(X: INTEGER): INTEGER;
PROCEDURE DisplayWidth(X: INTEGER): INTEGER;
PROCEDURE DrawCursor(VAR c: Cursor; VAR m: Marker;

X, Y: INTEGER);
PROCEDURE FadeCursor(VAR c: Cursor);
PROCEDURE GetClock(VAR t d: LONGINT);
PROCEDURE GetSelection(VAR text: Texts.Text;

VAR beg, end, time: LONGINT);
PROCEDURE Install(T: Task);
PROCEDURE Loop;
PROCEDURE MarkedViewer (): Viewers.Vlewer;
PROCEDURE OpenCursor(VAR c: Cursor);
PROCEDURE OpenDisplay(UW, SW, H: INTEGER);
PROCEDURE OpenTrack(X, W: INtEGER);
PROCEDURE PassFocus(V: ViewersViewer);
PROCEDURE Remove(T: Task);

15. 1 Tasks and the event loop 157

PROCEDURE RemoveMarks(X, Y, W, H: INTEGER);
PROCEDURE SetClock(t, d: LONGINT);
PROCEDURE SetColor(col: SHORTINT);
PROCEDURE SetFont(fnt: Fonts.Font);
PROCEDURE SetOffset(voff: SHORTINT);
PROCEDURE SetUser(VAR user, password: ARRAY OF CHAR);
PROCEDURE ShowMenu(VAR cmd: INTEGER; X, Y: INTEGER;

menu: ARRAY OF CHAR);
PROCEDURE SystemTrack(X: INTEGER): INTEGER;
PROCEDURE Time (): LONGINT;
PROCEDURE UserTrack(X: INTEGER): INTEGER;

END Oberon.

15.1 Tasks and the event loop

15.1.1 The event loop

Mouse and
keyboard
handler

Module Oberon contains the event loop. A set of procedures is executed
in cyclical order ad infinitum. A task is a record variable with a pro­
cedure field handle. The parameterless procedure assigned to handle is
called the task's handler. Task records are linked in a circular list and
control passes from one handler to the next one in the list. Passing of
control is termed a task switch.

Message ~ ___ +--

to viewer

Mouse and keyboard

Garbage collection

Mouse and keyboard
handler

The handler for the mouse and keyboard plays a prominent role in the
event loop. It is prefixed to anyone of the installable tasks. This
handler interfaces with module Input which reads hardware registers.
Mouse/and keyboard buffers are polled at each task switch in the loop:
if events are sensed, the handler releases control by sending an input
message to the appropriate viewer. The rate at which the loop cycles
varies and so does the rate at which the devices are serviced.

158 Module Oberon

Garbage collector The garbage collector is the handler of a task which is installed by the
statement sequence of module Oberon. It is a safe task (see Section
15.1.2) and thus remains permanently installed in the event loop.

User tasks The user may install private tasks which participate in the multitasking
provided by the event loop. Since tasks are not pre-empted by the
system, it is essential that task handlers do not seize control over
extended periods of time (the recommended period is less than 100 ms.)
User tasks are typically unsafe and removed on the occurrence of a trap.

Tasks should be used whenever a function is executed
repetitively over long periods of time but should not seize control
permanently. User tasks may be viewed as background activities.
Servers, simulations and network components are examples where
user tasks are beneficially exploited.

Loop The main loop is exported as procedure:

Safe tasks

PROCEDURE Loop;

Polls mouse and keyboard prior to executing one of the installed tasks
in cyclical order. Translates ASCII codes to produce a national lan­
guage symbol with desired key combinations - for example, CTRL-a
for a (see Appendix B.)

15.1.2 Tasks

A task is an instance of the abstract data type Task:

TYPE
Handler = PROCEDURE ();
Task = POINTER TO TaskDesc;
TaskDesc = RECORD

safe: BOOLEAN;
handle: Handler

END;

The task's properties are:

• A successor task (hidden.)
• safe: determines whether the task is removed when a trap

occurs.

• handle: the task's handler.

On occurrence of a trap, the task which caused the trap is removed
from the loop if safe = FALSE. Normally, user tasks are not safe. An
example of a safe task is the garbage collector.

Current task

Install

Remove

Collect

15. 1 Tasks and the event loop 159

Within the program text of the task handler, the task owning that
handler can be accessed through the global variable:

VAR CurTask: Task;

Note: CurTask is defined only within the scope of the handler.

PROCEDURE Install(T: Task);

Installs task T in the central loop. The handler of the task is invoked in
each cycle of the event loop.

The following is an example of its use:

NEW (MyTask); (* Allocate MyTask *)
MyTask.handle : = MyHandler; (* Install Handler *)
MyTask.safe : = FALSE;
Oberon.lnstall (MyTask); (* Install MyTask in loop *)

PROCEDURE Remove(T: Task);

Removes task T from the central loop.

PROCEDURE Collect(count: INTEGER);

Garbage collection is executed every 20 mouse events. A counter is
decremented at each mouse event and garbage collection takes place
when the counter is O. The procedure Collect sets the counter to the
value count.

For example, a call Collect(O) will force garbage collection on the
next cycle of the event loop.

15.1.3 Input messages

Mouse and keyboard events are sensed prior to each task switch.
Procedure Loop informs the affected viewer by sending a message of
type:

TYPE
InputMsg = RECORD

(Display. FrameMsg)
id: INTEGER;
keys: SET;
X, Y: INTEGER;
ch: CHAR;

fnt: Fonts.Font;
col, voff:SHORTINT

END;

160 Module Oberon

Input message
identifiers

Target viewer

where:

• id is the message identifier (0: consume, 1: track.)

• keys is the mouse keys which are pressed:
o IN keys: right key is pressed.
1 IN keys: middle key is pressed.
2 IN keys: left key is pressed.

• X, Yare the mouse coordinates.

• ch is the character typed on the keyboard.

• fnt is the font of ch.
• col is the color number of ch.

• voff is the vertical offset of ch.

The following input message identifiers are exported as named
constants:

CONST consume = 0; track = 1 ;

For simplicity, we call a message M of type InputMsg with M. id
consume a 'consume message;' a 'track message' if M.id = track.

Each input message is sent to a single target viewer:

• Consume message: to the focus viewer (see Section 15.4.1.)

• Track message: to the viewer which contains the mouse cursor.

Messages of type InputMsg report on the mouse and keyboard events
listed in Table 15.1. The table shows that, depending on the message
id, only parts of the fields are actually used ..

Table 15.1 Fields set for a message M: InputMsg

Event Action M.id M.X M. Y M.keys M.ch M·fnt
M.col
M.voff

Character typed Insert in text consume Character Attribute

Mouse event

Consume
message

Viewer specific track Coordinate
of mouse

Key
pressed

Hitting a key (other than SETUP, ESC or PFI to PF4) on the keyboard
generates a consume message M which is passed to the focus viewer.
The field M.ch contains the ASCII equivalent of the key. The typed
character has the following attributes:

15. 1 Tasks and the event/oop 161

• M.fnt: the font (default Fonts. Default.)
• M.col: the color (default value Display.white.)

• M.voff: the vertical offset (default value 0.)

The attributes can be changed using procedures SetFont, SetColor and
SetOffset.

The typical action of a handler which receives a consume mes­
sage is to insert the character into a text or a caption. It is not guaranteed,
however, that the viewer V receiving a consume message is displayed
(V. state > 1.) The handler (or the display manager on its behalf) must
always test for visibility before writing the character to the screen.

Track message When the mouse is moved and/or when a mouse key is pressed, a track
message M is generated. This message is sent to the viewer which
contains the mouse coordinates. These coordinates are reported in
M.X and M. Y. The status of the mouse keys can be deduced from the
value of M.keys.

A handler which receives a track message draws, as a first
action, the mouse cursor.

The further actions of the handler are decoding and execution of
the mouse key commands (see Part III.)

15.1.4 Control messages

Input message
identifiers

Certain keyboard events have system-wide significance. Rather than
using a consume message, procedure Loop reports them to the target
viewer in a message of type:

TYPE

where:

ControlMsg = RECORD
(Display. FrameMsg)
id: INTEGER;
X, Y: INTEGER

END;

• id is the message identifier (0: defocus, 1: neutralize, 2: mark.)

• X, Yare the mouse coordinates.

The following control message identifiers are exported as named
constants:

CONST defocus = 0; neutralize = 1; mark = 2;

162 Module Oberon

Target viewer

For simplicity, we call a message M of type ControlMsg with M.id =
defocus a 'defocus message;' a 'neutralize message' if M.id = neutralize
and a 'mark message' if M.id = mark.

The target viewers of a control message are:

• Mark message: the viewer which contains the mouse cursor.

• Neutralize message: broadcast to all visible viewers.

• Defocus message: the focus viewer.

Table 15.2 summarizes the three control messages:

Table 15.2 Fields set for a message M:ControlMsg

Event

Focus removed

ESC key

SETUP key

Action

Remove caret or similar insertion
marks

Remove marks such as caret,
selection and pointer

Draw star-shaped pointer

M.id

defocus

neutralize

mark

M.X M.Y

Mouse
coordinates

Defocus message A defocus message is sent to the viewer which loses the focus as a
consequence of a call·to the procedure PassFocus. Consume messages
are no longer directed at that viewer. The handler receiving a defocus
message takes appropriate actions. Typically, the caret is removed if it
is displayed.

Neutralize A neutralize message is broadcasted to all visible viewers when the
message ESC key is pressed. The handler which receives a neutralize message is

told to remove all marks in its viewer's frame, in particular:

Mark message

• the star-shaped pointer;

• the selection;

• the caret.

A mark message M is sent to the viewer which contains the mouse
cursor when the SETUP key is pressed. The mouse coordinates are
transmitted in M.X and M. Y.

A handler which receives a mark message is told to draw the
star-shaped pointer at the position of the mouse cursor.

Marker

Cursor

15.2 Cursors 163

15.2 Cursors

Cursors are patterns which move over the screen. Two such cursors
are defined as global objects: the arrow of the mouse and the star­
shaped pointer which designates a point on the display. Even though
for the human eye the mouse cursor moves smoothly and the pointer
jumps, both actually move in discrete steps. To make such a step, the
cursor at the old location must be first removed, the screen content
restored and then the cursor pattern drawn at the new location.

The pattern of cursors is not restricted to the arrow and the
asterisk. Module Oberon provides an abstraction which allows user­
defined shapes. The cursor changes its pattern properly when it moves
across different viewers using differently shaped cursors.

A marker is an instance of the abstract data type Marker:

TYPE

where:

Painter = PROCEDURE (x, y: INTEGER);
Marker = RECORD

Fade, Draw: Painter;
END;

• Fade is the procedure to remove the cursor pattern at the old
location.

• Draw is the procedure to draw the pattern at the new location.

A cursor is an instance of the abstract data type Cursor:

TYPE
Cursor = RECORD

marker: Marker;
on: BOOLEAN;
X, Y: INTEGER

END;

It has the following properties:

• marker: the marker of the cursor.

• 011: TRUE if cursor is displayed, FALSE otherwise.

• X, Y: the position of the cursor.

164 Module Oberon

OpenCursor

FadeCursor

DrawCursor

RemoveMarks

Module Oberon exports two predefined cursors and two markers with
self-explanatory meaning:

VAR
Mouse, Pointer: Cursor;
Arrow, Star: Marker;

PROCEDURE OpenCursor(VAR c: Cursor);

Initializes cursor c. The cursor's fields are set such that:

• c.on = FALSE.

• c.X = o.
• c.Y = O.

PROCEDURE FadeCursor(VAR c: Cursor);

Removes cursor c from the screen if c.on = TRUE. Sets c.on := FALSE.
The coordinates c.X and c. Y remain unchanged.

PROCEDURE DrawCursor(VAR c: Cursor; VAR m: Marker; X, Y:INTEGER);

Fades cursor c at its old location recorded in c.X and c. Y using pro­
cedure c.rnarker.Fade. Draws new cursor pattern using m.Draw and
records the new location X and Y as well as the new marker m in the
cursor's record. The field c.on is set to TRUE. Thus, the marker in the
cursor's record is used to fade the old cursor pattern and the marker
passed as a parameter is used to draw the new one. This allows the
cursor to change shape as it moves across viewers.

For example, the following draw the arrow-shaped mouse cur­
sor and the star-shaped pointer, respectively:

Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, X, Y);

Oberon.DrawCursor(Oberon.Pointer, Oberon.Star, X, Y);

PROCEDURE RemoveMarks(X, Y, W, H: INTEGER);

Fades the two cursors Mouse and Pointer if any part of their bit pattern
is located in the rectangle with left lower corner coordinates X, Y,
width Wand height H.

RemoveMarks is conveniently used to remove the arrow and star­
shaped pattern prior to writing to the display. Failure to do so can lead
to 'dead' cursors and pointers (see Part III, Section 19.2.)

15.3 Command activation 165

15.3 Command activation

Parameter list

Call

Two of the important features of the Oberon system are the capabilities
to:

(1) Invoke commands from ordinary texts.

(2) Create polymorphic commands.

Module Oberon provides the necessary interface to the inner core of
the operating system and supplies the the command with information
about the viewer and possibly the subframe from where it was called.

Prior to the use of the procedure Call, a parameter list must be built
which is an instance of the following type:

TYPE
ParList = POINTER TO ParRec;
ParRec = RECORD

vwr: Viewers.Viewer;
frame: Display.Frame;
text: Texts.Text;
pas: LONGINT

END;

where:

• vwr is the viewer which contains the text from where the com­
mand is executed.

• frame is the subframe which contains the text from where the
command is executed.

• text is the text from where the command is executed.

• pos is the starting position of the parameter list; that is, the
position of the first character in text after the command name.

Module Oberon exports the global variable:

VAR Par: ParList;

which is used to transfer parameter information to the command to be
called.

PROCEDURE Call(VAR name: ARRAY OF CHAR; par: ParList; new: BOOLEAN;
VAR res: INTEGER);

Invokes the command whose name is the value of parameter name. The
name must observe the Oberon convention Mod.Proc where Mod is a
module name and Proc denotes a parameterless procedure exported by

166 Module Oberon

Result codes

Mod. If module Mod is not in memory, it is loaded first. If new = TRUE,
then a new instance of the module is always loaded prior to passing
control to Proc. This is important during debugging of a module when
the newly compiled version should execute.

The formal parameter par, the parameter list, contains informa­
tion about the environment from which the command is executed. An
instance of a parameter list has to be created and completed prior to a
call to Call. For example:

Var PL: Oberon.ParList;

NEW(PL);
PL.vwr : = (* The viewer from which the command will be called *)
PL.frame : = (* The subframe from which the command will be called *)
PL.text : = (* The text from which the command will be called *)
PL.pos : = (* Position immediately after the command name in text *)
Oberon.Call(IMod.Proc", PL, FALSE, res);

Note: Don't forget to allocate the parameter list with a call to NEW(PL).
Prior to passing control to Proc, the parameter list par is assigned

to the global variable Par which is accessible in command Proc.
Through Par, the command has access to the text from which it was
launched and to viewer and subframe containing that text.

The parameter res is a result code which reports on the completion of
the call. The following result codes are defined:

• res = 0: successful completion.

• res = 1: command does not exist.

• res = 2: not an object file or error in file.

• res = 3: module imported with bad key.

• res = 4: not enough space.

15.4 Focus, mark and selection

15.4.1 Focus viewer

The mouse and keyboard handler of the event loop sends consume
messages to the focus viewer on keyboard events. The focus viewer is
the value of the global variable:

VAR FocusViewer: ViewersViewer;

which is exported by module Oberon for use within commands. A
viewer is designated the focus viewer by means of the procedure:

15.4 Focus, mark and selection 167

PassFocus PROCEDURE PassFocus(V: Viewers.viewer);

Viewer V will become the new focus viewer. A defocus message is sent
to the previous focus viewer. The global variable FocusViewer declared
in module Oberon is set to V.

15.4.2 Marked viewer

Initial mark

Marking a
viewer

MarkedViewer

A viewer V is marked if the cursor Pointer is located within the viewer's
frame; that is, if:

V.X ~ Pointer.X < V.X + V. W
V. Y ~ Pninter. Y < V. Y + V.H

Pointer is initialized such that Pointer.X = 0, Pointer. Y = 0 and
Pointer.on = FALSE. Hence, after start-up, the bottom viewer located
in the user track is marked.

To mark a viewer, the cursor Pointer has to be set somewhere in its
frame through a call to:

OberonDrawCursor(Oberon.Pointer. Oberon.Star, X, Y)

Notes: It is not required that the cursor Pointer is visible. In fact,
commands which take the marked viewer as a parameter often fade the
star pattern. The viewer remains marked, however, until the pointer is
passed to another viewer.

Since a cursor can only be at one place, the marked viewer is
unique.

The cursor Pointer is bound to screen coordinates, and not to a
particular viewer. Since a viewer is marked when Pointer is within its
boundary, the marked viewer may change when the screen is recon­
figured. For example, assume that viewer Vl is marked. Then Vl is
closed and V2 claims its space. Now, executing any command which
takes the marked viewer as a parameter refers to V2.

PROCEDURE MarkedViewer (): Viewers.viewer;

Returns the marked viewer. MarkedViewer is equivalent to
Viewers. This(Pointer.X, Pointer. Y).

15.4.3 Text selection

The text selection is an important parameter source for commands.
System wide, the selection is not unique, like the focus or the mark. In

168 Module Oberon

fact, each text viewer may contain one, possibly two selections. Com­
mands, therefore, look for the most recent selection for their input,
which is found by the procedure:

PROCEDURE GetSelection(VAR text: Texts.Text; VAR beg, end:
LONGINT; VAR time: LONGINT);

The most recent text selection of any viewer is the stretch [beg, end) in
text. The time of this selection is returned in the parameter time. If
time < 0, then no selection exists in the system.

Having text selected is a property of the viewer. The number of
viewer classes is open and their architecture is unknown to module
Oberon. Therefore, the procedure GetSelection must rely on the cooper­
ation of the visible viewers in the determination of the latest selection.
It does this using the message-passing mechanism.

For this purpose, the type Selection.Msg is defined:

TYPE

where:

SelectionMsg = RECORD
(Display. FrameMsg)
time: LONGINT;
text: Texts.Text;
beg, end: LONGINT

END;

• time is the time of the selection currently contained in the
message.

• text is the text which contains the selection.

• beg, end is the stretch [beg, end) which is selected in text.

The procedure GetSelection broadcasts a message M of type SelectionMsg
to all visible viewers. M. time is set to -1 when M is sent. A handler
which receives M will report the latest text selection, if one exists, in
the fields of M. In particular, it carries out the following:

(1) Checks whether a selection exists. If so, it checks whether its
time is more recent than M.time. If so, it performs steps 2 to 4.

(2) Assigns the text containing the selection to field M. text.

(3) Assigns the selected stretch [beg, end) to the fields M.beg and
M.end.

(4) Assigns the time of the selection to M.time.

15.5 Display management 169

15.5 Display management

OpenDisplay

OpenTrack

DisplayWidth
DisplayHeight

UserTrack
SystemTrack

AllocateUser­
Viewer
AllocateSystem­
Viewer

Module Oberon initializes the monochrome display and provides a set
of functions which yield various display settings.

PROCEDURE OpenDisplay(UW, SW, H: INTEGER);
Opens two tracks to the right of already existing tracks with user track
width UW, system track width SW and height H.I

PROCEDURE OpenTrack(X, W: INTEGER);
Same as Viewers.OpenTrack except that a standard filler viewer is
installed (see Chapter 13.)

PROCEDURE DisplayWidth(X: INTEGER): INTEGER;
PROCEDURE DisplayHeight(X: INTEGER): INTEGER;
Returns the width (height) of the display which contains the x coordi­
nate X.

PROCEDURE UserTrack(X: INTEGER): INTEGER;
PROCEDURE SystemTrack(X: INTEGER): INTEGER;
Returns the left margin of the user track (system track) of the display
which contains the x coordinate X.

PROCEDURE AliocateUserViewer(DX: INTEGER; VAR X, Y: INTEGER);
PROCEDURE AliocateSystemViewer(DX: INTEGER; VAR X, Y: INTEGER);
Procedures which yield a proposal for coordinates X and Y to be used
to open a new viewer in the user track (system track) in the display
which contains the x coordinate OX. The outcome depends on the
display status of the cursor Pointer.

If the pointer is visible, then the values of X and Y equal the x
and y coordinates of the focus of the pointer.

If the pointer is not visible, then an algorithm is used to deter­
mine X and Y in the respective track of the designated display.

Note: These procedures do not open viewers. They yield only a
placement suggestion returned in parameters X and Y. An instance
of the viewer is subsequently created and opened with
Viewers.Open(V, X, Y).

I On the Ceres display, the choices are UW = 640, SW = 384 and H = 800.

170 Module Oberon

15.6 Miscellaneous procedures

Set attributes PROCEDURE SetFont(fnt: Fonts.Font);
PROCEDURE SetColor(col: SHORTINT);
PROCEDURE SetOffset(voff: SHORTINT);
Sets the attributes of typed characters globally. The attributes in effect
at any given time will be transmitted in the input message. The default
values are the default font, white and 0 vertical offset. The global
character attributes are also the values of the global variables CurFnt,
CurColor and CurOff.

GetClock PROCEDURE GetClock(VAR 1. d: LONGINT);

SetClock

Time

User
identification

SetUser

Reads the hardware clock and returns time t and date d. Time and date
are encoded in 32-bit words as follows:

7 bits I 4 bits 5 bits

High order
year month day

Low order

5 bits 6 bits 6 bits
hour minute second

PROCEDURE SetClock(t. d: LONGINT);
Sets the hardware clock to time t and date d. The parameters use the
same encoding as GetClock.

PROCEDURE Time (): LONGINT;
Returns the time in units of 1/300 s since system start-up.

Module Oberon exports the variables:

VAR
User: ARRAY 8 OF CHAR;
Password: LONGINT;

These variables are set by the procedure SetUser.

PROCEDURE SetUser(VAR user, password: ARRAY OF CHAR);
Assigns user identification user to the global variable User. Encrypts the
password given in parameter password and assigns it to the global
variable Password.

ShowMenu

15.6 Miscellaneous procedures 171

PROCEDURE ShowMenu(VAR cmd: INTEGER; X, Y: INTEGER;
menu: ARRAY OF CHAR);

Draws a pop-up menu at screen location X, Y. ShowMenu must be used
in a loop executing while a mouse key is pressed. Dragging the mouse
selects a command in the menu which, on release of the mouse key, is
reported to the caller.

The menu is displayed in a rectangle which is 44 pixels wide and
of height 5 * (2 + Fonts.Default.height) + 4. The default font height is
normally 10 point, hence the menu height is 74 pixels.

t~
74 p;;iIMIo,;_...."

J-o---------
X,Y

Up to five commands are allowed and their mnemonics are stored in
the string menu according to the syntactic rule:

command { 1'1'1 command}

The command selected is returned in parameter cmd. Assuming that
the number of menu items is m (1 ~m ~ 5), then:

• cmd < 5 - m: no command is selected.

• cmd = 5 - m: the mth command is selected.

• cmd = 5 - (m - 1): the (m - 1) command is selected.

• cmd = 4: the first command is selected.

• cmd > 4: no command is selected.

If the string menu contains less than five commands, then the missing
entries in the menu's rectangle are blank.

Note: It is the caller's responsibility to ensure that the menu
rectangle does not exceed the display boundary. Otherwise, address­
ing exceptions may occur.

172 Module Oberon

15.7 Exported system-wide resources

Module Oberon exports a set of message types to be used by client
modules. It also exports global variables (most of which have been
already mentioned.)

15.7.1 Copy messages

The message type CopyMsg is exported for use by client modules:

TYPE
CopyMsg = RECORD

(Display.FrameMsg)
F: Display.Frame

END;

Messages of type CopyMsg request the recipient handler to produce a
copy of its object. The copy is returned in the field F. The type CopyMsg
is exported by module Oberon but used by client modules, most
notably module System, which broadcasts copy messages to imple­
ment the commands System. Copy and System. Grow.

A copy Fnew of an object F is a new instance of the type F. Fnew
is put into exactly the same state as F was, when its handler was first
called to put it on the display. The documents linked to Fnew are
identical to those of F.

If F is a viewer (an extension of type Viewers. Viewer), then any
subframes must be copied too and linked through Fnew.dsc. The copy
of the viewer must be closed (Fnew.state = 0.)

If F is a frame for a menu viewer, the copy must have height
zero (F.H = 0.)

Normally, a procedure Open is provided to initialize abstract
data types. If available, the Open procedure should be used to initialize
the copied objects, passing the documents of the original object as
parameters (an example is given in Part III.)

15.7.2 CopyOver messages

The message type CopyOverMsg is exported for use by client modules:

TYPE
CopyOverMsg = RECORD
(Display.FrameMsg)

text: Texts.Text;
beg, end: LONGINT

END;

15.7 Exported system-wide resources 173

A message M of type CopyOverMsg is sent to the focus viewer by other
viewers (or commands.)

The handler which receives a copy over message M is requested
to insert the stretch [M.beg, M.end) of M.text at the caret location.

The copy over message is typically used by text editors when the
user interclicks the middle mouse key while selecting.

15.7.3 State variables

Module Oberon exports the following variables:

VAR

where:

CurFnt: Fonts.Fong;
CurColor, CurOff: SHORTINT;
CurTask: Task;
FocusViewer: ViewersViewer;
Log: Texts.Text;
Par: ParList;
User: ARRAY 8 OF CHAR;
Password: LONGINT;
Mouse, Pointer: Cursor;
Arrow, Star: Marker;

• CurFnt is the globally set font (procedure SetFont.)

• CurColor is the globally set color (procedure SetColor.)

• CurOff is the globally set vertical offset (procedure SetOffset.)

• CurTask is the current task (defined within the scope of the task
handler only.)

• Focus Viewer is the focus viewer; that is, the viewer at which
keyboard events are directed.

• Log is the text of the system log.

• Par is the parameter list passed most recently to the procedure
Call.

• User is the user identification used for remote server function.

• Password is the user's encoded password.

• Mouse is the mouse cursor.

• Pointer is the star-shaped pointer (a cursor.)

• Arrow is the arrow-shaped marker typically used by cursor
Mouse.

• Star is the star-shaped marker typically used by cursor Pointer.

174

16 Module MenuViewers

Module Menu Viewers exports the abstract data type Viewer which
embodies the model of a viewer with two active subframes: a menu
frame and a main frame. Instances of the type Viewer (termed menu
viewers) help to implement standard Oberon viewers.

The handler of a menu viewer acts on the mouse command for
moving the top edge of the viewer (that is, pressing the left mouse key
in the upper part of the menu frame area and dragging.)

When the viewer is modified, either through dragging the menu
frame or directed by a message of type Viewers. ViewerMsg, the position
and size of the menu frame and of the main frame are newly deter­
mined. A message of type ModifyMsg is then sent to these active frames
requesting appropriate modification of the displayed contents.

All messages which are of no concern to the handler of the
menu viewer are simply passed on to the handlers of the subframes.

The standard text viewer is a menu viewer with two text frames
(see Chapter 17.)

DEFINITION MenuViewers;

IMPORT Display, Viewers;

CONST reduce = 0; extend = 1; (* Message identifiers *)

TYPE
ModifyMsg = RECORD(Display.FrameMsg)

id: INTEGER;
dY, Y, H: INTEGER

END;

Viewer = POINTER TO ViewerDesc;
ViewerDesc = RECORD(ViewersViewerDesc)

menuH: INTEGER
END;

16. 1 The menu viewer 175

PROCEDURE Handle(V: Display.Frame; VAR M: Display.FrameMsg);
PROCEDURE New(Menu. Main: Display.Frame; menuH. X. Y: INTEGER):

Viewer;

END MenuViewers.

16.1 The menu viewer

Functions of the
handler

To draw a standard Oberon viewer, provide the title bar with its
editable text and allow this title bar to be tracked with the mouse, turns
out to be rather subtle. Since these functions are common to all viewer
classes observing the Oberon interface recommendations, they are
implemented once and for all in a special abstract data type Viewer:

TYPE
Viewer = POINTER TO ViewerDesc;
ViewerDesc = RECORD

(Viewers.ViewerDesc)
menuH: INTEGER

END;

An instance of Viewer is termed a menu viewer. Its properties are:

• Width, height and coordinate of the bottom left corner (fields X,
Y, Wand H inherited from Display. Frame.)

• A neighbor viewer (field next inherited from Display. Frame.)

• Two active subframes of base type Display.Frame called the
menu frame and the main frame (accessed through field dsc
inherited from Display. Frame.)

• A handler (field handle inherited from Display.Frame.)

• A state (field state inherited from Viewers. Viewer.)

• The maximal height of the menu frame (field menuH.)

The handler of a menu viewer performs the following actions:

• It interprets the mouse command 'shift title bar' (that is, drag­
ging with the left mouse key starting from the menu frame.)

• It maintains a one-pixel wide line around the viewer's
perimeter.

• It sets the star-shaped pointer.

• It manages the position and size of the subframes.

176 Module MenuViewers

Logical frame
structure

Frame geometry

The logical structure of the subframes of a menu viewer V is shown in
the following diagram:

v Neighbor

menuF mainF

The following relations hold between a menu viewer V with menu
frame menuF and main frame mainF:

V IS Viewer menuF = V.dsc mainF = V. dsc. next

Both the menu frame and the main frame are active objects which are
of base type Display.Frame and have a handler installed. The require­
ments for such a handler are discussed in Section 19.3.

The menu viewer maintains a line around its perimeter which is one
pixel wide. The area within this line is subdivided into the menu frame
and the main frame. The maximal height of the menu frame is menuH.
If the viewer's size does not accommodate a menu frame of full height,
then the menu frame exhausts the area within the boundary line and
the main frame is of height O.

Ic M ... e .. n u ... F .. r .. a ... m ... e H J menuH

Main Frame V.H

V.X, V.Y V.W
I i ••••••••• • •• ~~nu.Fra;~.·· ••••••• ;I •• tmenuH

The following relations hold:

mainF.H + menuF.H = V.H - 2 and
mainF.W = menuF.W = V.W - 2

16.2 The modify message 177

Standard Oberon As the name suggests, the menu frame holds the title bar with viewer
viewer name and the local commands. For this purpose, a frame of type

TextFrames.Frame will be installed (see Chapter 17.) The main frame is
of the special type of its viewer (or frame) class. If both subframes are
of type TextFrames.Frame, the menu viewer represents a text viewer.

New PROCEDURE New(Menu, Main: Display.Frame; menuH, X, Y: INTEGER): Viewer;

Creates an instance of a menu viewer and displays it on the screen.
Menu and Main are active objects extending type Display.Frame which
react properly to messages of type ModifyMsg (see Section 16.2.) Para­
meter menuH designates the height of the menu frame ~

The menu viewer will open such that its top edge contains the
point with coordinates X, Y provided this results in a viewer whose
height is bigger than Viewers. minH. Otherwise, a viewer of the mini­
mum height is opened.

For example, a standard text viewer is generated as follows (see
also Chapter 17):

text: = ... (* Text to be displayed *)
name: = . . . (* Name of viewer *)
cmds : = "System.Close System.Copy ... II (* Commands of title bar *)
Oberon .AllocateUserViewer(X, Y);
V : = MenuViewers.New(TextFrames.NewMenu(name, cmds},

TextFrames.NewText(text,O},
TextFrames.menuH, X, V);

where:

V: MenuViewers.viewer; text: Texts.Text;
name, cmd: ARRAY 32 OF CHAR; X, Y: INTEGER;

16.2 The modify message

The handler installed in a menu viewer manages the size of its sub­
frames. For this purpose, the message type ModifyMsg is defined:

TYPE
ModifyMsg = RECORD

(Display. FrameMsg)
id: INTEGER;
dY, Y, H: INTEGER

END;

178 Module MenuViewers

Extend message

where:

• id is the message identifier (0 = reduce, 1 = extend.)

• dY is the translation.

• Y is the new value of the y coordinate of the lower left corner of
the frame.

• H is the new height of the frame.

Note: dY, Y and H are related by:

dY = ABS(M. Y + M.H - F. Y - F.H)

They are chosen in such a way to make the task of the frame handler as
simple as possible (see Part III, Section 19.4.)

Named constants for the message identifiers are provided:

CONST reduce = 0; extend = 1 ;

For simplicity, we call a message M of type ModifyMsg a 'reduce
message' if M.id = reduce; 'extend message' if M.id = extend.

When we say that the handler of the menu viewer manages its
subframes, we mean precisely the following:

• The handler determines the new location and size of the sub­
frames.

• The handler sends an appropriate modify message to the sub­
frames.

• After control is returned, the handler assigns the new frame
parameters X, Y, Wand H to the descriptors of the subframes.

Note: Since the subframe declaration is typically in the same module as
the frame handler procedure, that frame handler is allowed to assign
intermediary values to X, Y, Wand H.

In the following discussion, F denotes the subframe prior to the
change. When a modify message is sent to a subframe, its handler has
access to both the frame F and the message M. The meaning of M.dY,
M. Y and M.H is explained in the diagrams.

The frame will expand. The handler of F clears the extended area and
adjusts the display.

Note: The handler is expected to draw the contents of the rec­
tangle F.X, M. Y, F. W, M.H.

F.X, F.Y

Reduce message

F.X, F.Y

Consistency

76.2 The modify message 179

M.H M.H

M.Y M.

F.X, F.Y

If dY =0, then the area extends at the bottom. If dY > 0, the frame is
both extended and shifted upwards by an amount dY (dY is always
non-negative.)

The frame will shrink. The handler of F adjusts the display.
Note: The handler is still allowed to work in the large frame

defined by the rectangle F.X, F. Y, F. W, F.H.

M.H

M.Y

M.H

M.
F.X, F.Y

If dY = 0, then the area reduces at the bottom. If dY > 0, the frame is
both reduced and shifted downwards by an amount dY (dY is always
non-negative.)

Initially, the frame is assigned zero height and the handler is called
with an extend message. Then the frame is kept consistent at all times
by the menu viewer. For example, when the frame is moved from one
track into another one (move title bar with interclick), it is first shrunk
to zero height and subsequently expanded at the new location. Simi­
larly, if a frame is overlaid, it is reduced to zero height and when it is
recovered, it is extended from there.

This consistency reduced the required procedure from four (for
example, Suspend, Restore, Extend and Reduce) to just two (for example,
Extend and Reduce.)

180 Module MenuViewers

16.3 The handler

The frames under the direction of a menu viewer are active Oberon
objects. This means that they have their own handler and that their
type extends the base type Display. Frame. The semantics of the sub­
frames is completely determined by the frame handlers.

The handler of the menu viewer and the handlers of the sub­
frames are back-to-back and divide the work. The handler of the menu
viewer receives the messages first. It acts on:

• An Oberon track message in the upper part of the menu frame.

• The Oberon mark message.

• Messages of type Viewers. ViewerMsg.

All other messages are simply passed on to the menu frame and to the
main frame. When the menu viewer repositions its top edge or pro­
cesses a viewer message, it in turn sends messages of type ModifyMsg
to the two subframes.

Trac k message ... J Left mouse yes Reposition - ~ Send modify message to menu and
main frame I k~in bar?

I
lin menu? l yes

I
I

lin main? l yes
I

Ma rk message .. Draw pointer -
er message ... Adjust viewer

View

Other

viewer

--.
--.

--1
.. -
...

1Iass to menu frame

Pass to main frame

Send modify message to menu and
main frame

Pass to menu and main frame

Ancestor of a
sub frame

The handlers installed in the subframes V.dsc and V.dsc.next of a menu
viewer V sometimes need access to that viewer. Let F denote such a
frame. Then the managing menu viewer MV of F is the result of the
statement:

Handle

MV := Viewers.This(F.X, F.Y);

PROCEDURE Handle(V: Display.Frame; VAR M: Display.FrameMsg);

Handle is the handler installed in menu viewers. It processes the fol­
lowing messages: track, viewer, mark.

Track message

Viewer message

16.3 The handler 181

If the track message reports a 'shift title bar' command, the viewer will
be changed at the top. 'Shift title bar' is signalled by a message M of
type Oberon. InputMsg with:

• M. id = Oberon. track.

• 2 IN M.keys; that is, left mouse key pressed.

• M. Y > V. Y + V.H - menuF.H - 1; that is, the mouse is in the
menu frame but not in the bottom two lines.

All other track messages are passed on to either the menu frame or the
main frame, depending on which frame contains the mouse. If
(M.X, M. Y) is in neither frame, no action will take place.

Pressing the left mouse key in the reposition-sensitive area of
the menu viewer inverts the menu frame. Dragging on the left key
defines the new position of the viewer's top edge. On release of the left
key, the viewer is repositioned within the range shown in the diagram.
If the middle key is interclicked, the viewer is repositioned without
restrictions (see Part I, Section 2.4.4.)

Once the location of the repositioned viewer is established, the
one-pixel wide viewer boundary is drawn or adjusted. Origin, width
and height of the subframes are determined.. Modify messages report­
ing the change are sent to both subframes. The fields X, Y, Wand H of
the subframes are subsequently set by Handle.

Handle adjusts the viewer in response to messages of type
Viewers. ViewerMsg. The one-pixel wide viewer boundary is drawn
(restore message) or adjusted (modify message.) Origin, width and
height of the subframes are determined. Messages of type ModifyMsg
reporting the change are sent to both subframes. The fields X, Y,'W
and H of the subframes are subsequently set by Handle.

If the viewer is suspended, Handle sends modify messages to the
subframes which will result in their height being reduced to O. Sub­
sequently, it sets X, Y, Wand H of the subframes accordingly.

182 Module MenuViewers

Mark message

All other
messages

If the viewer is being restored, Handle first assigns 0 height to
both subframes and then sends appropriate extend messages. It sets
the fields X, Y, Wand H subsequently.

Handle sets the star-shaped pointer in response to a message M of type
Oberon.ControlMsg with M.id = Oberon.mark.

All other messages are sent to both subframes.

17 Module TextFrames

Module TextFrames exports the abstract data type Frame. An instance
of Frame is called a text frame. It is an active frame which is intended to
be installed in a menu viewer. Normally, the menu frame of a menu
viewer is a text frame. If both subframes are text frames, the viewer is a
text viewer which represents the standard Oberon editor.

There are two sets of exported procedures:

(1) The display manager, dealing with the display of objects of type
Texts. Text.

(2) The handler and its components dealing with different message
types. The handler defines the semantics of the standard
Oberon editor.

The procedures of the display manager serve to:

• Draw the text portion which falls into the frame boundary start-
ing at an arbitrary position.

• Adjust the display to changing frame boundaries.

• Select stretches of text and display them in reverse video.

• Track and set the caret.

• Track words and lines.

• Set the position mark according to the position of the first
displayed character relative to the text's length.

DEFINITION TextFrames;

IMPORT Input. Display, Viewers, MenuViewers, Fonts, Texts, Oberon;

CONST replace = 0; insert = 1; delete = 2;

183

184 Module T extFrames

TYPE
Frame = POINTER TO FrameDesc;
FrameDesc = RECORD(Display.FrameDesc)

text: Texts.Text;
org: LONGINT;
col: INTEGER;
Isp: INTEGER;
left right top, bot: INTEGER;
markH: INTEGER;
time: LONGINT;
mark, car, sel: INTEGER;
carloc, selbeg, selend: Location

END;

Location = RECORD
org, pos: LONGINT;
dx, x, y: INTEGER

END;

UpdateMsg = RECORD(Display.FrameMsg)
id: INTEGER;
text: Texts.Text;
beg, end: LONGINT

END;

VAR
barW, menuH: INTEGER;
left right top, bot: INTEGER;
Isp: INTEGER;

(* Display manager *)
PROCEDURE Delete(F: Frame; beg, end: LONGINT);
PROCEDURE Extend(F: Frame; newY: INTEGER);
PROCEDURE Insert(F: Frame; beg, end: LONGINT);
PROCEDURE Mark(F: Frame; mark: INTEGER);
PROCEDURE Pos(F: Frame; X, Y: INTEGER): LONGINT;
PROCEDURE Reduce(F: Frame; newY: INTEGER);
PROCEDURE RemoveCaret(F: Frame);
PROCEDURE RemoveSelection(F: Frame);
PROCEDURE Replace(F: Frame; beg, end: LONGINT);
PROCEDU RE Restore(F: Frame);
PROCEDURE SetCaret(F: Frame; pos: LONGINT);
PROCEDURE SetSelection(F: Frame; beg, end: LONGINT);
PROCEDURE Show(F: Frame; pos: LONGINT);
PROCEDURE Suspend(F.Frame);
PROCEDURE TrackCaret(F: Frame; X, Y: INTEGER; VAR keysum: SET);
PROCEDURE TrackLine(F: Frame; X, Y: INTEGER; VAR org: LONGINT;

VAR keysum: SET);

77. 7 The frame 185

PROCEDURE TrackSelection(F: Frame; X, Y: INTEGER;
VAR keysum: SET);

PROCEDURE TrackWord(F: Frame; X, Y: INTEGER; VAR pos: LONGINT;
VAR keysum: SET);

(* Handler and its components *)
PROCEDURE Call(F: Frame; pos: LONGINT; new: BOOLEAN);
PROCEDURE Copy(F: Frame; VAR Fcopy: Frame);
PROCEDURE CopyOver(F: Frame; text: Texts.Text; beg, end: LONGINT);
PROCEDURE Defocus(F: Frame);
PROCEDURE Edit(F: Frame; X, Y: INTEGER; keys: SET);
PROCEDURE GetSelection(F: Frame; VAR text: Texts.Text;

VAR beg, end, time: LONGINT);
PROCEDURE Handle(F: Display.Frame; VAR M: Display.FrameMsg);
PROCEDURE Modify(F: Frame; id, dY, Y, H: INTEGER);
PROCEDURE Neutralize(F: Frame);
PROCEDURE Update(F: Frame; VAR M: UpdateMsg);
PROCEDURE Write(F: Frame; ch: CHAR; fnt: Fonts.Font;

col. voff: SHORTINT);

(* Texts *)
PROCEDURE NotifyDisplay(T: Texts.Text; op: INTEGER;

beg, end: LONGINT);
PROCEDURE Text(name: ARRAY OF CHAR): Texts.Text;

(* Creation of objects *)
PROCEDURE NewMenu(name, commands: ARRAY OF CHAR): Frame;
PROCEDURE NewText(text: Texts.Text; pas: LONGINT): Frame;
PROCEDURE Open(F: Frame; H: Display.Handler;

T: Texts.Text; org: LONGINT;
col. left, right. top, bot. Isp: INTEGER);

END TextFrames.

17.1 The frame

A text frame is an instance of the abstract data type Frame. The text
frame is an active frame intended to be installed either as the menu
frame or the main frame in a menu viewer. The text frame implements the
standard Oberon editor. It has the following definition:

TYPE
Frame = POINTER TO FrameDesc:
FrameDesc = RECORD

(Display. FrameDesc)
text: Texts.Text;
org: LONGINT;
col: INTEGER;

186 Module TextFrames

Location

Isp: INTEGER;
left, right top, bot: INTEGER;
markH: INTEGER;
time: LONGINT;
mark, car, sel: INTEGER;
carloc, selbeg, selend: Location

END;

A text frame has the following properties:

• Width, height and coordinate of the bottom left corner (fields X,
Y, Wand H inherited from Display.Frame.)

• A neighbor frame (field next inherited from Display.Frame.)

• A handler which implements the standard editor and is compat­
ible with the requirements of Menu Viewers (field handle inherited
from Display. Frame.)

• A displayed text (fields text and org.)

• A background color (field col.)

• Line spacing information (field lsp.)

• A margin (fields left, right, top and bot.)

• A selection (fields time, sel, selbeg and selend.)

• A caret (fields car and carloc.)

• A mark (fields mark and markH.)

The text frame also inherits the field dsc from Display.Frame. This field
is not normally used.

The auxiliary type Location describes the place and properties of a given
character:

TYPE

where:

Location = RECORD
org, pos: LONGINT;
dx, x, y: INTEGER

END;

• org is the position in the text of the first displayed character in
the line which contains the located character.

• pos is the position in the text of the located character.

• dx is the width of the located character.

• x, yare the relative positions of the located character within the
frame.

Exported
variables

Frame and text

17. 1 The frame 187

Character numbering in texts starts at O. The relative position of a
character is given by the coordinates of the character's base point (see
Chapter 14) measured in a coordinate system with origin in the lower
left corner of the frame. Thus, the base point of a located character has
display coordinates:

x = F.X + loc.x and Y = F. Y + loc.y

where F is a variable of type Frame and lac denotes a location.

The following variables are exported to designate standard values for
various frame properties:

VAR

where:

barW: INTEGER;
menuH: INTEGER;
Isp: INTEGER;
left. right, top, bot: INTEGER;

• barW is the width of the standard scroll bar.

• menuH is the standard height of the menu frame.

• lsp is the standard line spacing.
• left, right, top, bot are the standard margins.

A text frame F displays the text designated in field text. Often, the
whole text is bigger (typically longer) than the portion that fits into the
boundary of frame F. The display manager provides the functions to
show that portion of the text which falls into the frame, given that the
first displayed character has position F.org.

F.org: starting
position

from the application to the system.
The Oberon architecture is far more distributed and calls for new
programming concept to allow the up-call in a strongly typed language
environment. Techniques from Object Oriented Programming provide the
solution.
2 4 Cooperating Process Multitasking
In a quiescent period, control is in the event loop which spins and
constantly polls the device driver for keyboard and mouse events. If an

.... ermines a

F_H

(F_X,FY)

'target viewer whose handler it calls (up-call). At this poin control passes
to the handler. Upon completion, the handler returns con 01 to the calling
procedure in the loop which continues spinning. Oberon as no facility to
interrupt processing in the handler.
A smooth multitasking operation thus depends crucially ~ether handlers
keep their processing periods short. Also, handlers are t running in
protected memory regions nor are they prevented from t spassing into
other viewer frames. System integrity thus depends on II behaved
handlers. We speak therefore of a cooperating process ultitasking
system.
3 System Architecture for Up-Calls: Active Objects

To instigate a down-ci F_W 3 of the system procedu ~:~~~~~~ti~an

mor complex In the case of an up-call. Oberon needs the type of the
procedure handle. In an open system it is not possible without impractical
restrictions to import this type into the modules of Oberon. We note that
typically handlers are written by application programmers long after the

188 Module T extFrames

Color

Spacing

Margin

Further properties of a text frame F are the color, the line
spacing, the mark, the margin, the selection and the caret. They are
depicted in the following diagram.

Margin Selection Caret

: ~ -:
simultaneously more than one application is q' impra '
loading and saving typic takes tens of se as up to :

, More sophisticated syste s therefore prov~ for multip _ ~ ___ _

Mark __ •• ~ 10... applications between them (e.g. App_ -'- - --
: Finder, IBM OS/2, UNIX). Ho r, the fact remains th :
: alternates between applications which restore their own

upon activation.

Interactive applications have a user interface which is
structured into a set of menus which are supported with
interface and a pointing device such as a mouse. The rn
however, are fixed or at best slightly changeable by the

L _______________________ _

Line spacing

The field col of a text frame F determines whether the frame has the
standard background (F.col = Display.black) or an inverted background
(F. col > 0, typically F.col = Display. white.)

F.col = 0

Text sample displayed

with col = 0, i.e. standard

background

F.col > 0

Text sample displayed
with col = 15, i.e.
Inverted standard

back round

Note: In all the drawings of this book, the standard background
is assumed to be white.

The field lsp controls the spacing of lines:

Oberon
Isp

Integer t t Int.height

If lsp = 0 then the displayed (or printed) lines are separated by
fnt.height (assuming that font fnt is in effect.) This is the standard value
and results in the densest display or printing.

A text frame F has a margin around its perimeter. The size of this
margin is specified by the fields left, right, top and bot.

Selection

Caret

17. 1 The frame 189

F.top

_________ i ~ _____________ ~ __ ,

F.left ~

simultaneously more tha~ne application is quite impra
loading and saving typic takes tens of seconds up to
More sophisticated syste s therefore provide for multip
applications with fast switching between them (e.g. App
Finder, IBM OS/2, UNIX). However, the fact remains th
alternates between applications which restore their own
upon activation.
~ ~ ~F.right

interface and a pointing ice such as a mouse. The IT

Interactive applications have a user interface which is
structured into a set of m~us which are supported with

, however, are fixed or at b st slightly changeable by the

L _____________ ~_, ________________ _

F.bot

Restriction: The area in the margin is at the disposal of the
display manager. Client modules cannot assume that pixels written
into the margin will not be cleared.

A text frame may have a selection. When a selection exists, it is unique.
The state of the selection is indicated by the fields sel, time, selbeg and
selend:

• sel = 0: no selection exists.

• sel > 0: a selection exists.

• time: time of last selection.

• selbeg: location of begin of selection.

• selend: location of end of selection.

Note: selbeg and selend are defined only if sel > O. If frame F has a
selection, the selected stretch of text is [beg, end) with beg = F.selbeg.pos
and end = F.selend.pos. The relative coordinates of the characters at
positions beg and end and their respective line origins are also available
(F.selbeg.x, F.selbeg.y, F.selbeg.org etc.)

A text frame may display a caret. The state of the caret is defined by the
fields car and carloc as follows:

• car = 0: no caret is set.

• car> 0: caret is set.

Field carloc is defined only if car> O. If frame F has a caret set, its
position in the text of F is given by F.carloc.pos. The relative coordinates
of the character to the right of the caret and its line origin are the values
of F.carloc.x, F.carIoc.y and F.carloc.org.

190 Module T extFrames

Mark

Note: It is the responsibility of the programmer to ensure that the
caret is unique within the frame and set only if the menu viewer which
supervises the frame is the focus viewer.

A text frame may display a mark in the left-hand margin. Two marks
are available: position and arrow (the arrow is used when a long
running command is executing.)

~ - - ~imultaneously­
I ,han one applic

quite impractic,
loading and sal
~ypically takes t
~econds up to r

I ~ore sophistic,
~ systems theref<

provide for mull
open applicatio

I tast switching b

~ __ !h~':11 Je~g~ ~r:P!

Position mark

~ - - ~imulta;;eously­
I ,han one applic

quite impractic,
loading and sal
typically takes t
~econds up to r
More sophistic,
systems therefc
provide for mull
open applicatio

: I tast switching b

~ ~_ !h~':11 Je~g~ ~~!

Arrow mark

The state of the mark is given by the field mark:

• mark < 0: arrow mark is displayed.

• mark = 0: no mark is displayed.

• mark> 0: position mark is displayed.

The field markH defines the location of the position mark as shown in
the following diagram:

- - -)- - -: - - - ~i';;.;jtan~~u-s~ more th-;';; ;;ne -;'ppli~atio-n is-q~ite i';;pr';c!
: loading and saving typically takes tens of seconds up to \
I More sophisticated systems therefore provide for multiple

markH : ~pplications with fast switching between them (e.g. ApPI~
I Finder, IBM OS/2, UNIX). However, the fact remains thatl
: ~Iternates between applications which restore their own il
: ~pon activation. :

_____ ~ I I

: Interactive applications have a user interface which is ty~
I structured into a set of menus which are supported with a
: ~nterface and a pointing device such as a mouse. The m~
~ __ ~~~e~::,_a~e_fi~~d _o~ ~t ~~s~ s~i~h!l~ c_h~"!l~<:b~ .?~ ~~ ~

If text is drawn or changed in the frame or if the frame changes
(procedures Reduce, Extend, Show, Insert, Replace and Delete), the field
markH is adjusted such that in the actual frame F:

markHIF.H = F.orgIF.text.len

Some procedures also reposition the position mark according to the
changed display (for example, Show, insert, Replace and Delete.) The
position mark is displayed only if F.left ;::: barW.

77.2 The displav manager 191

17.2 The display manager

Restore PROCEDURE Restore(F: Frame);
The content of text frame F is written to the display, starting at position
F.org in text F.text. If F.mark > 0 (position), the position mark is restored
according to F. markH. The frame area is cleared of its previous contents.

Suspend PROCEDURE Suspend(F: Frame);
Suspends text frame F. The hidden data structure describing the dis­
played text is released.

Reduce PROCEDURE Reduce(F: Frame; newY: INTEGER);

Extend

Reduces text frame F such that the bottom edge assumes the y coordi­
nate newY. Text lines which would only be partially visible are cleared.
F. Y and F.H are adjusted such that F. Y = newY and the top edge stays
fixed.

Preconditions: (1) newY ~ F. Y, (2) F.mark = 0 (that is, no marks
are displayed) and (3) the frame is consistent (that is, F.X, F. Y, F. W,
F.H are not changed except in concordance with Extend and Reduce (see
discussion under procedure Extend.)

If a position mark is displayed (F. mark > 0), it must be removed
using Mark(O) prior to a call of Reduce. If a position mark is desired, it
has to be reset with Mark(1) afterwards.

PROCEDURE Extend(F: Frame; newY: INTEGER);
Extends text frame F such that the bottom edge assumes the y coordi­
nate newY. Clears the extended area and writes newly visible text lines.
If F.left ~ barW, a scroll bar is drawn. The fields F. Y and F.H are
adjusted such that F. Y = newY and the top edge stays fixed.

Preconditions: (1) newY < F. Y, (2) F.mark = 0 (that is, no marks
are displayed) and (3) the frame is consistent (that is, F.X, F. Y, F. W,
F.H are not changed except in concordance with Extend and Reduce.)

If a position mark is displayed (F. mark > 0), it must be removed
using Mark(O) prior to a call of Extend. If a position mark is desired, it
has to be reset with Mark(l) afterwards.

The following is an example of precondition (3). Assume that
text frame F is to be cleared and redrawn. This is achieved as follows:

PROCEDURE Redraw(F);
VAR oldY: INTEGER;
BEGIN

oldY:= F.Y;
Reduce(F, F.Y + F.H);
Extend(F, oldY);

END Redraw;

192 Module T extFrames

Show

Mark

Pos

The following is illegal since the frame boundaries are changed without
prior invocation of Reduce. A frame without text results.

PROCEDURE Redraw(F);
VAR Y: INTEGER;
BEGIN

Display.ReplConst
(Display. black, F.X. F.Y, F.W, F.H, Display.replace); (* Clearframe *)

Y:= F.Y; F.Y:= F.Y + F.H; F.H := 0;
Extend(F, Y)

END Redraw;

PROCEDURE Show(F: Frame; pos: LONGINT);

Displays the text of text frame F starting at position pos. The parameter
pos is normally the starting position of a line (the first character after a
carriage return ODX.) If it is not, then the next line following pos will be
the top line. If the position mark is displayed, it is adjusted.

Show has an effect only if pos results in a different top line. If pos
is negative, the first character of the text is assumed. If pos > F.text.len,
then the line after the last character is on top. In this case, the frame is
empty.

Precondition: (1) Show assumes that the caret, the selection and
all cursors are removed from the display. Use the procedures
RemoveCaret(F), RemoveSelection(F) and Oberon.RemoveMarks(F.X, F. Y,
F. W, F.H) to remove marks if needed. (2) The frame is consistent (that
is, F.X, F. Y, F. W, F.H are not changed except in concordance with
Extend and Reduce.)

PROCEDURE Mark(F: Frame; mark: INTEGER);

Marks text frame F specified by mark:

• mark < 0: arrow mark.

• mark = 0: no mark.

• mark> 0: position mark.

Arrow mark (viewer busy) and position mark are mutually exclusive.
The position mark is only drawn if F.left ~ barW.

PROCEDURE Pos(F: Frame; X. Y: INTEGER): LONGINT;

Returns the position of the character designated by the point with
coordinates X, Y in text frame F. The point X, Y is measured in display
coordinates. If the frame is empty, a negative value is returned.

SetCaret

TrackCaret

17.2 The display manager 193

If the point X, Y is:

• Within the area of the displayed text, then the position of the
character whose box contains X, Y is returned.

• To the right of the displayed text, then the position of the last
character of the text line at height Y is returned (usually a
carriage return ODX.)

• Below the last line of a text, then the position of the character
vertically above X, Y is returned.

• To the right and below the last line, then the position of the last
character of the text is returned.

This function is used to correlate cursor positions with text position.

PROCEDURE SetCaret(F: Frame; pas: LONGINT);

Sets the caret in text frame F at the position pos in the text of F. The field
F.car is set to 1 and the caret location is recorded in F.carloc. If pos is less
than the position of the first character displayed in F, then the caret is
set to the left of the first character. If pos is bigger than the position of
the last character displayed in F, then the caret is set to the right of the
last character.

Precondition: SetCaret assumes that no caret is set.
The caret is only allowed if V, the ancestor viewer of F, is the

focus viewer. The caller must request the focus first, viz.

Oberon.PassFocus(V); TextFrames.SetCaret(F, pas);

Note: If F showed a caret before the call to Oberon.PassFocus, it is
removed when control returns. If it is certain that V is the focus viewer,
RemoveCaret may be substituted for Oberon.PassFocus.

PROCEDURE TrackCaret(F: Frame; X, Y: INTEGER; VAR keysum: SET);

Tracks the caret in text frame F from starting point X, Y. As long as any
key is pressed, the caret follows the mouse cursor. On release of all
keys, the caret is set in place. The field F.ear is set to 1 and the final
caret location is recorded in F.carloc.

Any mouse keys pressed during tracking are reported in para-
meter keysum which contains the sum (logical OR) of all keys:

• 0 IN keysum: right key pressed.

• 1 IN keysum: middle key pressed.

• 2 IN keysum: left key pressed.

Precondition: TrackCaret assumes that no caret is set (see discussion
under procedure SetCaret.)

194 Module TextFrames

RemoveCaret PROCEDURE RemoveCaret(F: Frame);

Removes the caret from text frame F. The field F.ear is set to O.
RemoveCaret has no effect if no caret is set (F.ear = 0.)

SetSelection PROCEDURE SetSelection(F: Frame; beg, end: LONGINT);

Selects the stretch [beg, end) of the text frame in the text of F. The field
F.sel is set to 1 and the selection is recorded in F.selbeg and F.selend. The
selected stretch of text is displayed in reverse video. If the stretch
[beg, end) is only partially visible in frame F, then only the visible
portion is selected. Consequently, if the stretch is invisible, no selec­
tion is set (F.sel = 0.)

A text frame can contain only one selection at a time. Every call
to SetSeleetion automatically clears a previous one.

TrackSelection PROCEDURE TrackSelection(F: Frame; X, Y: INTEGER; VAR keysum: SET);

Tracks the selection in text frame F starting at X, Y. As long as any key
is pressed, the selection follows the mouse cursor. On release of all
keys, the selection is set. The field F. sel is set to 1 and the selection is
recorded in F.selbeg and F.selend.

Any mouse keys pressed during tracking are reported in para­
meter keysum (see TraekCaret.)

A text frame can contain only one selection at a time. Every call
to TraekSeleetion automatically clears a previous one.

RemoveSelection PROCEDURE RemoveSelection(F: Frame);

Removes the selection from text frame F. If a selection exists, the
reverse video is removed. The field F.sel is set to O.

TrackLine PROCEDURE TrackLine(F: Frame; X, Y: INTEGER; VAR org: LONGINT;

VAR keysum: SET);

Tracks lines in text frame F from starting point X, Y. As long as any key
is pressed, the line pointed at with the cursor is underlined. On release
of all keys, the underlining is removed. The position of the first charac­
ter of the line which was underlined last is returned in parameter org.

Any mouse keys pressed during tracking are reported in para­
meter keysum (see TraekCaret.)

This procedure is used when scrolling in a text viewer.

TrackWord PROCEDURE TrackWord(F: Frame; X, Y: INTEGER; VAR pos: LONGINT;

VAR keysum: SET);

Tracks words in text frame F from starting point X, Y. As long as any
key is pressed, the word pointed at with the cursor is underlined. On
release of all keys, the underlining is removed. The position of the first
character of the word which was underlined last is returned in para­
meter pos.

Replace
Insert
Delete

Handle

17.3

77.3 The handler and its components 195

Any mouse' keys pressed during tracking are reported in para­
meter keysum (see TrackCaret.)

Note: A word is defined as any stretch of blank-delimited
characters.

This procedure facilitates command execution from texts.

PROCEDURE Replace(F: Frame; beg, end: LONGINT);

PROCEDURE Insert(F: Frame; beg, end: LONGINT);

PROCEDURE Delete(F: Frame; beg, end: LONGINT);

The stretch [beg, end) is replaced, inserted or deleted in the text of F.
The display is updated accordingly. These procedures are typically
called by a handler in response to a message of type UpdateMsg. If the
position mark is displayed, it is adjusted.

Precondition: It is assumed that the caret, the selection and all
the cursors are removed from the display, use the procedures
RemoveCaret(F), RemoveSelection(F) and Oberon.RemoveMarks(F.X, F. Y,
F. W, F.H) to remove marks if needed.

The handler and its components

PROCEDURE Handle(F: Display.Frame; VAR M: Display.FrameMsg);

Handle carries out the following:

• Tracks the mouse cursor.

• Invokes commands from the displayed text (middle mouse key.)

• Selects stretches of text (right mouse key.)

• Places the caret (left mouse key.)

• Removes marks (ESC key.)

• Inserts text from the keyboard at the caret location.

• Performs mouse editing functions such as deletion and copying
of selected text (mouse interclick commands.)

• Performs scrolling (mouse events in the scroll bar.)

• Responds to messages of type Oberon.CopyMsg,
Oberon.SelectionMsg and Oberon.CopyOverMsg.

• Adjusts the frame in response to messages of type
Menu Viewers.ModifyMsg.

Handle is the standard handler for text frames. It works in reaction to
messages coming from the modules Oberon, MenuViewers and Text­
Frames itself. Typically, for each message type and each message id, a
procedure is called. These procedures are exported too and described
in the sequel. The program text of Handle is discussed in Part III.

196 Module T extFrames

Call PROCEDURE Call(F: Frame; pos: LONGINT; new: BOOLEAN);

Defocus

Neutralize

Write

Edit

Invokes a command found in the text displayed in text frame F. The
first name at or after pas is interpreted as the command name. It must
observe the Oberon convention Mod.Proc, where Mod is a module
name and Proc denotes a parameterless procedure exported by Mod. If
module Mod is not in memory, it is loaded first. If new = TRUE, a new
instance of the module is always loaded prior to passing control to
Proc. This is useful during debugging of a module when the newly
compiled version should execute.

Call builds an Oberon parameter list and invokes Oberon. Call. It
reports error conditions in the system log.

Call is typically used in conjunction with TrackWord, which
delivers the value of pas.

PROCEDURE Defocus(F: Frame);

Removes the caret from text frame F. Defocus is called by Handle in
response to an Oberon defocus message.

PROCEDURE Neutralize(F: Frame);

Removes the caret, selection and pointer from text frame F. Neutralize is
called by Handle in response to an Oberon neutralize message.

PROCEDURE Write(F: Frame; ch: CHAR: fnt: Fonts.Font; col, voff: SHORTINT);

Inserts character ch into text F. text at the position corresponding to the
caret location. The inserted character is a member of font fnt, drawn in
color col and with offset voff. If ch = 7FX (DEL key), the preceding
character is deleted. The caret is adjusted to the right (left in the case of
deletion.)

The display is subsequently updated directed by an update
message originating from the notifier of F.text. The handler is called
recursively.

Precondition: It is assumed that the caret is set.
Write is called by Handle in response to an Oberon consume

message.

PROCEDURE Edit(F: Frame: X, Y: INTEGER; keys: SET);

Edit tracks the mouse cursor and acts on mouse key events (if any.) It
executes the mouse commands defined by the standard editor, such as
selecting, caret tracking, copying and deleting while tracking, scrolling
and command execution. The parameters X, Y, and keys are the start­
ing mouse position and key values, respectively.

Note: If the text F. text is changed as a result of mouse interclick
commands, the handler will be called recursively with an update
message originating from the notifier.

Edit is called by Handle in response to an Oberon track message.

GetSelection

Copy

CopyOver

Modify

17.4 Facilities dealing with texts 197

PROCEDURE GetSelection(F: Frame; VAR text: Texts.Text;

VAR beg, end, time: LONGINT);

If text frame F contains a selection which is more recent than indicated
in time, the new value of text is the text which contains that selection
and [beg, end) is the selected stretch. The parameters remain un­
changed if no selection exists which is more recent than time.

GetSelection is called by Handle in response to an Oberon selec­
tion message.

PROCEDURE Copy(F: Frame; VAR Fcopy: Frame);

Returns a copy of text frame F in Fcopy. Copy is called by Handle in
response to an Oberon copy message.

PROCEDURE CopyOver(F: Frame; text: Texts.Text; beg, end: LONGINT);

Copies the stretch [beg, end) of text text to the caret location F.carloc.pos
of text F.text. If the caret is not set, no action occurs.

In the case that CopyOver changes F. text, the handler will be
called recursively with an update message.

CopyOver is called by Handle in response to an Oberon copyover
message.

PROCEDURE Modify(F: Frame; id, dY, Y: INTEGER);

Modifies the size of text frame F and adjusts the display accordingly.
Parameter id indicates the type of the change (extend or reduce), dY
denotes a coordinate transformation and Y is the new value of the y
coordinate of the lower left corner of F.

Modify is called by Handle in response to a Menu Viewers modify
message.

Update PROCEDURE Update(F: Frame; VAR M: UpdateMsg);

Removes all marks and updates the display of text frame F as directed
by the message M of type UpdateMsg.

Update is called by Handle in response to an update message (see
Section 17.4.)

17.4 Facilities dealing with texts

Notify Display

When a text changes, its notifier is invoked. Texts displayed in text
frames use the notifier NotifyDisplay which is exported by module
TextFrames:

PROCEDURE NotifyDisplay(T: Texts.Text; op: INTEGER; beg, end: LONGINT);

In order to update all views when a change of the underlying text T

198 Module T extFrames

UpdateMsg

Update message
identifiers

occurs, NotifyDisplay broadcasts a message of type UpdateMsg to all
visible viewers. Parameters beg and end report the changed stretch
[beg, end) in T. The type of change is indicated in op which takes values:

• op = 0: stretch is replaced.

• op = 1: stretch is inserted.

• op = 2: stretch is deleted.

The update message sent by NotifyDisplay has type:

TYPE
UpdateMsg = RECORD

(Display. FrameMsg)
id: INTEGER;
text: Texts.Text;

where:

beg, end: LONGINT
END;

id is the message identifier.
text is the changed text.
beg, end is the stretch [beg, end) which is changed.

Update message identifiers are exported as named constants with
obvious meaning:

CONST replace = 0; insert = 1; delete = 2;

Table 17.1 summarizes events and actions relating to update messages.

Table 17.1 Events and actions for the message M: UpdateMsg, process stretch [M.beg, M.end)

Event Action M.id

Stretch replaced in M. text

Stretch inserted in M. text

Stretch deleted in M. text

Update display if stretch is visible (call of Replace)

Update display if stretch is visible (call of Insert)

Update display if stretch is visible (call of Delete)

Text PROCEDURE Text(name: ARRAY OF CHAR): Texts.Text;

replace

insert

delete

Creates a new text from file name. The notifier NotifyDisplay is installed.
If name = II II or if file name does not exist, then an empty text is created.

17.5 Opening and creating frames 199

17.5 Opening and creating frames

Open PROCEDURE Open(F: Frame; H: Display.Handler; T: Texts.Text; org: LONGINT;
col, left, right, top, bot, Isp: INTEGER);

Opens text frame F and installs handler H. The text T is linked with F
and positioned such that the character with position org is displayed at
the top left corner of the frame (for details see procedure Show.) The
fields col, left, right, top, bot, and lsp of text frame F are initialized with
the values passed to the parameters with the corresponding names.

If left;::: barW, then a scroll bar will be provided. Mark, caret and
selection are off (that is, F.mark = 0, F.car = 0 and F.sel = 0.)

Note: Open does not write text to the display.

NewMenu PROCEDURE NewMenu(name, commands: ARRAY OF CHAR): Frame;

Generates a text frame to be installed as the menu frame in a menu
viewer. The background color is Display. white (the inverse of the nor­
mal background.) No scroll bar is provided. The standard font is used.
The frame displays one text line composed of the viewer name con­
tained in name and the set of commands passed in commands. The name
is separated from the commands with the symbol '1'.

NewText PROCEDURE NewText(text: Texts.Text; pas: LONGINT): Frame;

Generates a text frame to be installed as the main frame in a menu
viewer. The text frame is associated with text; pas designates the first
displayed character in the upper left corner (see procedure Show.) The
frame has standard properties and the background color is the stand­
ard background (Display. black.) A scroll bar is provided.

Part III
Programming guide

18 Programming commands

In the Oberon system, the notion of a main program is absent. The
executable code unit is the command. The term command suggests an
action in the framework of an interactive system such as Edit. Open,
System. Close or Edit. Store.

The good old program, however, still exists. There are numer­
ically intensive computations such as system simulations which have
a natural affinity to personal workstations with their graphical
capability. In Oberon terminology, such programs are commands too.

Thus, whoever writes a program for an Oberon system is writ­
ing a command. As indicated, the intent may be twofold:

(1) To write a program which performs a computation.

(2) To write a command which operates on an instance of an
abstract data type such as a text or a graphic.

The second kind of activity aims at extending the functionality provided
by an existing interactive application - termed a viewer class. That
commands operating on instances of data types belonging to viewer
classes can be easily written and added to the system is not self-evident
- in fact, it is impossible in most systems. The factors that make it
possible in Oberon are:

• The event loop is a central component.

• The absence of hidden states when control is in the event loop.

• The unified way in which commands are executed from texts.

In this chapter, we explain how to write commands. The topics dis­
cussed are how to deal with texts, how to decode parameter informa­
tion, how to work with text viewers, how to use files and, finally, how
to structure a long running command such that it may be installed as a
task in the event loop.

203

204 Programming commands

18.1 General programming rules

18.1.1 Read-only nature of object descriptors

The majority of the Oberon constructs are instances of abstract data
types. They are represented by variables of record type exported by
their respective modules. In general, the fields of these records should
be treated as strictly read-only. The respective modules provide pro­
cedures to initialize the objects and to change properties.

For example, a writer is an instance of the abstract data type:

TYPE
Writer = RECORD

(Files.Rider)
buf: Buffer;
fnt: Fonts.Font;
col, voff: SHORTINT

END;

The fields fnt, col and voff describe the attributes of the writer. They
may be read at any time to find the characteristics of the next symbol
written. However, the programmer must not change the attributes with
direct assignments to those fields. For this purpose, the procedures
Texts.SetColor, Texts.SetFont and Texts.SetVoff are provided.

There are a few exceptions to the read-only nature of the fields of
an Oberon object, most notably the installation of handlers and noti­
fiers. Consider a viewer, V say, which is initialized as follows:

NEW(V); (* Create the descriptor *)
V.handle : = HandlerProc; (* Install handler *)
V.state : = 0; (* Set V to state closed, precondition for opening *)
Viewers.Open(V, X, Y); (* Initialize the other public fields of V *)

(* Initialize private fields, if any *)

Similarly, notifiers are installed in texts.
Another exception is the fields next and dsc of frames under the

supervision of a handler; that is, the subframes of a viewer class. These
fields, too, are set through assignment statements.

18.1.2 Responsibility for parameter correctness

The general philosophy in Oberon is that it is the caller's responsibility to
ensure correctness of the actual parameters.

78. 7 General programming rules 205

With few exceptions, parameter errors lead to undefined but not
disastrous results. For example, if a reader is set beyond the end of its
text, the next read operation yields an unspecified character of that
text.

If correctness is not implicitly guaranteed, tests must be per­
formed by the client of modules of the outer core. For example, if it is
not guaranteed that the position of a reader is inside the text, a test is
needed:

pos : = ... (* Position in text where reading should start *)
IF pos > T.len THEN (* Exception handling *)
ELSE... (* Normal read operation *)
END;

Special care must be used with the procedures performing raster oper­
ations (Display.ReplConst, Display.ReplPattern, Display.CopyPattern, Dis­
play.CopyBlock) and the procedure Oberon.ShowMenu. Attempts to draw
outside the pixelmaps may result in addressing exceptions.

18.1.3 Use of exported constants, variables and functions instead of
user-defined constants

Many modules export constants, variables or functions which reveal
parameters of the module. The programmer is urged to use these and
not substitute their numerical values.

For example, the display maps are of height Display. Height. The
programmer should not substitute the numerical value 800 which
applies to the Ceres workstation. In so doing, the user compromises
his or her software in the case of a migration to new hardware with a
different display size.

Similarly, module Oberon exports the procedure
Oberon.DisplayHeight(), which yields the height of the logical display
which should not be confused with Display.Height, although in most
cases the two coincide.

18.1.4 Strings

Often, the programmer of commands deals with strings. Oberon
allows strings of varying length to be passed as open array parameters
to procedures. The special symbol OX terminates the string.

206 Programming commands

18.2 Modules and commands

A command is a parameterless procedure written in the language
Oberon. The command can be executed from a text displayed in a text
viewer. It is referred to by its name which follows the Oberon
convention:

Mod.Froc

where Mod is the module name and Froc designates a procedure
exported by Mod.

Executing a command results in at least one procedure call.
Since the procedure is the indivisible unit of operation in Oberon, no
other activity may proceed in parallel with the command. In particular,
the event loop is halted and mouse and keyboard are not polled. This
means that the mouse cursor is frozen and input from the keyboard is
blocked. Therefore, as long as the system should be responsive to the
interactive user, command execution must be short.

This poses a dilemma for long running computations. Such
computations should be made interruptible or, better yet, they should
be installed as a task in the event loop.

However, even while a command executes, the Oberon system
will react to the CTRL-SHIFT-DEL key combination. It will terminate
the command in execution and display a trap viewer.

18.2.1 Dynamic loading

Modules typically export an abstract data type. Since, in Oberon,
commands communicate using instances of abstract data types, such
as texts, their modules must stay in memory during the entire session.
However, it is wasteful if not downright impossible to load all modules
when the system is booting. Only those modules whose data types or
commands are in actual use need to be memory resident. Therefore,
Oberon uses dynamic loading.

A module is loaded only when one of its exported procedures is
called for the first time in a session. Loading of imported modules is
further delayed until they are used. On loading, the statement
sequence of the module executes. Then, the module stays memory
resident.

While debugging a command, the programmer must be aware
that a newly compiled module does not execute, unless the old module
is purged with the command System.Free or with an interclick with the
left mouse key while the execute key is pressed. If faced for the first

18.3 Working with texts 207

time with a dynamic loading system, this may cause the novice some
musing.

18.2.2 Statement sequence

A typical use of the statement sequence of the body of a module is the
initialization of array or list data structures which cannot be declared as
constants. Patterns used for cursors furnish a representative example.

18.3 Working with texts

In this section, we discuss common techniques for dealing with texts.
The programmer deals frequently with texts since they have many uses
in editors and compilers, and commands use them to display (non­
volatile) output.

The reader should have a good understanding of the mechan­
ism used by texts to update their display. We recapitulate that texts are
active objects. When a standard text is changed, it broadcasts an
update message to all visible viewers which indicates the change. If a
viewer displays that text, it will update the display in response to the
message. Therefore, the programmer does not have to worry about the
display of the text - in fact, he or she does not even have to know the
viewers in which the text is displayed. In a sense, Oberon displays
texts automatically.

Some frequently occurring constructs are as follows:

System log text

Create an empty text

Create a new text and initialize it from
disk file name

Write to system log

Insert buffer buf at position pas in text

Append buffer buf to text

Read sequential characters

1 Typically in the body of the module.

Oberon.Log

text: = T extFrames.T ext(" ");

text: = TextFrames.Text(name);

Texts.OpenWriter(W); 1

... Texts.Write(W, ch); ...
Texts.Append(Oberon.Log, W.buf);

Texts.lnsert(text. pas, buf);

Texts.Append(text, buf);

Texts.OpenReader(R, text. pas);
... Texts. Read(R, ch); ...

208 Programming commands

Scan sequential symbols

Save stretch [beg, end) of text in buffer but

18.3.1 Creating a text

Texts.OpenScanner(S, text, pas);
... Texts.Scan(S);
IF S.class = Texts.lnt THEN 2

n : = S.i (* Process integer *)
END; ...

NEW(buf); Texts.OpenBuf(buf);
T exts.Save(text, beg, end, buf);

Sometimes, the text on which a command works is given, for example
the text of the main frame of a text viewer. Often, however, a new
instance of a text (a variable of type Texts. Text) needs to be created.
Recall that TextFrames. Text serves this purpose. Its source text is a good
way to learn how a text is generated:

PROCEDURE Text*(name: ARRAY OF CHAR): Texts.Text;
VAR text: Texts.Text;
BEGIN

(* Create an instance and install notifier *)
NEW(text);
text.notify : = TextFrames.NotifyDisplay;
Texts.Open(text, name); (* Initialize text from file name *)
RETURN text

END Text;

In most cases, TextFrames. Text can be used to generate a text. If it is
necessary to create an instance of Texts. Text explicitly, it is important
not to forget to install the notifier. Otherwise, addressing exceptions will
result.

18.3.2 Reading from a text

A reader is used to access the characters in a text in sequential order.
The reader is associated with the text and can be set to an arbitrary
initial position. Each call returns a character, one after another.

The following program excerpt is typical for the use of a reader.
It processes all the characters in a text, starting at a given position pas:

2 Other class codes are Texts.Char, Texts.Inval, Texts.LongReal, Texts.Name,
Texts. Real and Texts. String (see Chapter 14.)

78.3 Working with texts 209

PROCEDURE ProcessText(text: Texts.Text; pos: LONGINT);
VAR R: Texts.Reader; ch: CHAR;
BEGIN

IF pos < textlen THEN (* The position is within the text *)
Texts.OpenReader(R. text, pos);
Texts.Read(R, ch); (* Read character at position pos *)
WHILE -R.eot DO

(* Process character ch *)
Texts.Read(R, ch) (* Read next character *)

END;
END

END ProcessText;

If it is not guaranteed that the starting position is within the text, a test
must be performed as in our example.

Let us look at a complete example of a procedure which is pat­
terned after the preceding program skeleton. The procedure GetItaZies
searches a text from the initial position pas for the first occurrence of an
italics font. It returns this position, if it exists, otherwise -1 results.

PROCEDURE Getltalics(text: Texts.Text; pos: LONGINT): LONGINT;
VAR R: Texts.Reader; ch: CHAR; Syntax10i: Fonts.Font;
BEGIN

IF pos < textlen TH EN
Syntax10i : = Fonts.This(IISyntax1 Oi.Scn.Fnt"); (* The italics font *)
Texts.OpenReader(R, text, pos);
Texts.Read(R, ch); (* Read first character *)
WHILE -R.eot DO

IF R.fnt = Syntax1 Oi THEN RETURN Texts.Pos(R) - 1 END;
Texts.Read(R, ch) (* Read next character *)

END
END;
RETURN - 1

END Getltalics;

Observe that we made use of the field Rfnt which reports the font of
the last character read.

18.3.3 Scanning a text

The reader provides sequential access to the characters comprising a
text. Using a reader, texts can be analyzed and processed as shown in
the previous example.

A frequently recurring task, however, is parsing a text for num­
bers, names, strings and special characters and translating the textual

210 Programming commands

representation of these symbols to internal values. The scanner is pro­
vided to facilitate these jobs.

Scanners are frequently used to parse parameter lists. Examples
of such use will be given in Section 18.4. Another typical use is to read
numerical parameters from input files.

The basic principle in using a scanner is simple. A symbol is
scanned, its type tested and then the appropriate output field of the
scanner is further processed:

pos : = (* Determine starting position *)
Texts.OpenScanner(S, text, pos); (* Set scanner to starting position *)
Texts.Scan(S); (* Scan a symbol *)

where:

IF S.class = Texts.Name THEN (* Test whether it is a name *)
name:= S.s;

(* Process name *)
ELSIF S.class = Texts.lnt THEN (* Test whether it is an integer *)

i:= S.i;
(* Process integer *)

END;

text: Texts.Text;
pos: LONGINT;
S: Texts.Scanner;
name: ARRAY 32 OF CHAR;
i: INTEGER;

Again, if it is not guaranteed that pas is within the text, a test must be
performed.

If the whole text is to be processed by the scanner, special
precautions are required at the end. In the case of a reader R, the
predicate ~R.eat provides a natural stopping condition for the WHILE
loop reading all characters of a text. The scanner inherits field eat from
the reader. However, the end-of-text condition S.eat may already yield
TRUE while the last valid symbol is returned, not only after an attempt
to scan beyond the end of the text. In this case, a WHILE loop using the
predicate ~S.eat misses the last symbol. Therefore, it is always prefer­
able to terminate a sequence of scan operations with a definite symbol.

18.3.4 Writing a text

The conversion of the internal representation of basic types, such as
integers, reals and characters, to textual representation is a frequent
operation. The writer performs this conversion using an associated

Module LogOut

18.3 Working with texts 211

variable of type Texts.Buffer. Each call to a write procedure appends the
buffer. When a suitable chunk of text is composed, the writer's buffer
can be inserted into a text by means of the procedures Texts.Insert and
Texts. Append. At this point, the text's notifier is activated. If it is a
standard notifier, it alerts all visible viewers of the change, which will
be reflected on the display.

Thus, writing a text to the screen requires:

(1) Installing the text in a viewer and opening that viewer.

(2) Changing the text using a procedure of the text manager.

The manner in which the first is performed will be explained later. In
our next example, we will write to the system log. The text Oberon.Log
already exists and is installed in the log viewer. If the log viewer is
visible, then changing the log text will automatically display the
change in the system log and all its clones (produced with System. Copy,
for example.)

Module LogOut exports procedures which write variables to the system
log in symbolic form. It is a useful utility for debugging commands.

MODULE LogOut;

IMPORTTexts, Oberon;

VAR W: Texts.Writer;

PROCEDURE Putlnt*(txt: ARRAYOFCHAR; i: LONGINT);
BEGIN

Texts.WriteString(W, txt); (* Append string txt to W.buf *)
Texts.Writelnt(W, i, 1); (* Convert i to text and append to W.buf *)
Texts.WriteLn(W); (* Append a carriage return character to W.buf *)
Texts.Append(Oberon.Log, W.buf) (* DisplayW.buf in log *)

END Putlnt;

PROCEDURE PutString*(txt: ARRAY OF CHAR);
BEGIN

Texts.WriteString(W, txt); (* Append string txt to W.buf *)
Texts.WriteLn(W); (* Append a carriage return characterto W.buf *)
Texts.Append(Oberon.Log, W.buf) (* DisplayW.buf in log *)

END Putlnt;

(* Other procedures for reals etc. *)

BEGIN
Texts.OpenWriter(W)

END LogOut.

212 Programming commands

Only one writer
per module

Output of a
matrix

After a call:

LogOut.Putlnt(lIi =11, i)

a line "i = 36" (assuming that i = 36) appears at the end of the system
log text in the log viewer.

The writer is based on the file system. Opening a writer opens a work
file - a relatively complex operation. In most cases, one writer per
module is enough. It is, therefore, good practice to open the writer
once per session in the module's body, as shown in the foregoing
example. Local writers should be avoided.

Our next example deals with the output of a matrix of real numbers.
The procedure MatrixOut produces a buffer which is returned as result.
The buffer can later be inserted into a text by means of Texts.Insert or
Texts. Append. Since these procedures invoke the notifier, the result will
be displayed at that point in time.

PROCEDURE MatrixOut(VAR A: ARRAY OF ARRAY OF REAL): Texts.Buffer;
VAR

i, i: INTEGER;
Syntax10x: Fonts.Font;

BEGIN
Syntax10x : = Fonts.This(IISyntax1 Ox.Scn.Fntll);
Texts.SetFont(W, Syntax1 Ox);
i:= 0;
WHILE i < LEN(A 0) DO

i:= 0;
WHILE i < LEN(A 1) DO

Texts.WriteReaIFix(W, A[i, il, 15,5); (* 15 places, 5 decimal places *)
INC(j)

END;
Texts.WriteLn(W); (* Write carriage return *)
INC(i)

END;
RETURN W.buf

EN 0 MatrixOut;

W is a variable of type Texts. Writer which is globally defined and opened
in the module's body. The formal parameter A is a V AR parameter to
avoid copying of an array. Compared to the use of a value parameter,
this is more efficient and saves memory, too.

18.4 Accessing parameters 213

18.4 Accessing parameters

In the sense of the programming language Oberon, commands are
procedures without formal parameters. This does not mean, of course,
that commands have no need for an input mechanism. The command
Edit.Open, for example, must be told which text file to load from disk.
Commands which perform computations are typically parameterized
by a number of variables which must be initialized prior to each run.

There are three major sources of parameter information:

(1) The text which contains the command name.

(2) The selection.

(3) The marked viewer.

Module Oberon provides the global variable Oberon. Par through which
commands gain access to the text and the frames from where they were
execu ted. The following diagram recalls the fields of Oberon. Par.

Oberon Par vwr: Viewer from which command is called

Oberon.Par.frame: Subframe from which command is called

Oberon. Par. text: Text from which command is called

~his is a text Svstem.Free M1 M2 M3- in a viewer ...

Oberon.Par.pos: Position immediately
after the command name

I

Examining the environment from which a command is invoked
allows the design of polymorphic commands. Take Edit. Store for exam­
ple. If executed from the title bar, it stores that viewer. However, if
activated from a tool, it operates on the marked viewer and stores it
under a name found in the called text.

The following lists ways to locate parameter information and
provides tests which are useful in polymorphic commands:

System parameter list

Viewer from which command is issued

Frame from which command is issued

Text from which command is issued

Start of parameter list

Oberon.Par

Oberon.Par.vwr

Oberon.Par.frame

Oberon.Par.text

Oberon.Par.pos

214 Programming commands

The most recent selection in the system

The marked viewer

Oberon.GetSelection(text, beg, end, time)

Oberon.MarkedViewer()

Text.OpenScanner Open scanner for parameter list
(S, Oberon.Par.text, Oberon.Par.pos)

Was command issued from a menu frame of
any viewer?

IF Oberon.Par.frame = Oberon.Par.vwr.dsc THEN ...

18.4.1 Parameters in the source text

List of names

Numerical
parameters

Frequently, the command information follows the command name.
The scanner is a powerful tool for decoding the parameters.

Many standard Oberon commands expect a parameter list composed
of blank delimited names, terminated by the character "_II. Typically,
the names designate files to be processed.

Our first example is the following skeleton of a procedure Pro­
cessNames which expects such a list of names. A scanner is opened and
positioned right after the last character of the command name. The
global variable Oberon.Par contains the necessary information. Then a
loop is entered which scans name after name in the list. Any symbol
which is not a name terminates the list. As in the Oberon implementa­
tion, the' -' is not enforced~

PROCEDURE ProcessNames*;
VAR S: Texts.Scanner;
BEGIN

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
Texts.Scan(S) ;
WHILE S.class = Texts.Name DO

name: = S.s;
... (* Process object with name S.s *)
Texts.Scan(S)

END;
EN D ProcessNames;

Our next example is of a different nature. Consider a command MMl
exported by module Sim which simulates a certain queuing system.
This system is parameterized by a real number Rho. It is good practice
in this case to include hints such as "Rho = II in the parameter text. Our
goal is to start a simulation run by clicking with the middle mouse key
at the word 'MM1' in a text which may show:

Sim.MM1 Rho = 0.9

18.4 Accessing parameters 215

Again, the scanner is used to decode the parameter of the command
MM1:

PROCEDURE MM1 *;
VAR

Rho: REAL;
S: Texts.Scanner;
error: BOOLEAN;
... (* Other variables *)

BEGIN
Texts.OpenScanner(S. Oberon.Par.text. Oberon.Par.pos);
Texts.Scan(S);
IF -((S.class = Texts.Name) & (S.s = "Rho")) THEN

LogOut.PutString(IIParameter error"); RETURN
END;
Texts.Scan(S);
IF -((S.class = Texts.Char) & (S.c = "=")) THEN

LogOut. PutString(1I Parameter error"); RETURN
END;
Texts.Scan(S);
IF S.class # Texts. Real THEN

LogOut.PutString(IIParameter error"); RETURN
END;
Rho:= S.x;
... (* Perform simulation *)

END MM1;

MMl tests whether the parameter text is well formed; that is, consists
of the name Rho followed by the equal sign followed by a real number.
In this procedure, the simulation is only performed if the parameter is
read properly. Otherwise, a message 'Parameter error' is written to the
system log. We recommend such tests, otherwise unpredictable errors
may occur.

The two examples show how the scanner is used to decode
parameter lists. More complex syntactical structures can be built in a
similar manner.

18.4.2 Parameters in the selection

The selection provides a parameter source across viewer boundaries.
This is in contrast to the local parameter information contained in the
same text adjacent to the command name. The selection is unique only
within a text frame. This means that each text viewer may contain two
selections at a time, one in the menu frame and one in the main frame.

216 Programming commands

Commands, therefore, refer to the most recent selection in the system
which is located by means of a call to Oberon. Getselection.

The selection is used as a parameter in two ways:

(1) The selected text is the object of the command and is changed or
otherwise processed. Take Edit.CopyFont for example. This com­
mand changes the font of the stretch contained in the selection.

(2) The selection contains a name (or list of names) designating
objects to be processed. In this case, the selected stretch may be
viewed as an extension of the text following the command
name.

Edit. Open is an example of a command that operates in this way. It first
looks for a parameter on the same text line as the command name. If
none is there or if the symbol' i'3 terminates the command name, it
considers the selection to be an extension and searches it for a name. If
none is found, a default applies.

The following sketch of a procedure Process Selection exhibits the
technique to access the selection:

PROCEDURE ProcessSelection*;
VAR

T: Texts.Text; (* The text of the selection *)
beg, end: LONGINT; (* The stretch in Twhich is selected *)
time: LONGINT; (* The time of the most recent selection *)

BEGIN
Oberon.GetSelection(T, beg, end, time);
IF time> 0 THEN (* The selection exists *)

(* Process selection *)
END

EN D ProcessSelection;

Note: The test whether time> a is mandatory since it is not guaranteed
that a selection exists.

We are now ready to modify the example ProcessNames to com­
ply with the Oberon convention that when the list of names is termi­
nated by the symbol' i', the selection is scanned for one more name.

PROCEDURE ProcessNames*;
VAR

S: Texts.Scanner;
text: Texts.Text;
beg, end, time: LONGINT;

3 The code for the upward pointing arrow is SEX, the ASCII equivalent of '/'0.1.

18.4 Accessing parameters 217

BEGIN
Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pas);
Texts.Scan(S);
WHILE S.class = Texts.Name DO

Texts.Scan(S)
END;

(* Process object with name S.S *)

IF (S.class = Texts.Char) & (S.c = IIf II) THEN
Oberon.GetSelection(text, beg, end, time);
IF time> a THEN (* The selection exists *)

Texts.OpenScanner(S, text, beg);
Texts.Scan(S);
IF S.class = Texts.Name THEN

END
END

END
END ProcessNames;

(* Process object with name S.s *)

18.4.3 The marked viewer as parameter

One of the uses of the star-shaped pointer, technically the cursor
Oberon. Pointer, is to designate viewers as objects of commands. The
marked viewer is available from Oberon.MarkedViewer().

For example, the following command Close closes the marked
viewer. Unlike System. Close, it tests whether the command has an
asterisk as parameter; that is, it enforces the syntax 'Close *'.

PROCEDURE Close*;
VAR V: Viewers.viewer; S: Texts.Scanner;
BEGIN

Texts.OpenScanner(S, Oberon. Par.text, Oberon. Par.pos);
T exts.Scan(S);
IF (S.class = Texts.Char) & (S.c = 11*11) THEN

V:= Oberon.MarkedViewer();
Viewers.Close(V)

END
END;

We recall that the procedure Oberon.MarkedViewer() does not require
the pointer to be visible. The programmer may, however, insist on a
visible star-shaped pointer with the test:

IF Oberon.Pointer.on THEN ...

218 Programming commands

18.5 Working with text viewers

Text viewers playa prominent role in Oberon as:

• The place from where commands are executed.

• The place where programs and simple office texts are edited.

• The means for commands to display textual output.

A programmer attempting to extend Oberon is, therefore, often faced
with the task of working with t~xt viewers. To enter this endeavor, a
good understanding of the text viewer structure is required. Recall that
a text viewer is a menu viewer with two installed text frames.

V IS MenuViewers.Viewer ,
dsc
~ menuF:= V.dsc(TextFrames.Frame)

T
next Menu frame

I

, mainF:= V.dsc.next(TextFrames.Frame)

Main frame

The following summarizes frequently used objects, tests and
operations:

Position of star-shaped pointer

The marked viewer

Position of the mouse

Viewer which contains mouse

Focus viewer

Is viewer Va standard text viewer?

Has viewer Va text frame as menu frame?

Has viewer Va text frame as main frame?

The menu frame of a text viewer V

The menu text of a text viewer

X : = Oberon.Pointer.x;
Y:= Oberon.Pointer.Y;

Oberon.MarkedViewer()

X: = Oberon.Mouse.X;
Y : = Oberon.Mouse.Y;

Viewers.This(Oberon. Mouse.X, Oberon. Mouse. Y)

Oberon. FocusViewer

IF (V IS MenuViewersViewer) &
(V.dsc IS TextFrames.Frame) &
(V.dsc.next IS TextFrames.Frame THEN ...

IF V.dsc IS TextFrames.Frame THEN ...

IF (V.dsc # NIL) &
(V.dsc.next IS TextFrames.Frame) THEN

V.dsc(TextFrames.Frame)

V.dsc(TextFrames.Frame).text

The main frame of a text viewer

The main text of a text viewer

The most recent selection

Is the command executed from the menu
frame?

Placement of the viewer in the user track
of the display which contains the mouse

Placement of the viewer in the system
track of the display which contains the
mouse

Open a new text viewer: X and Yare
determined by AllocateUserViewer or
AllocateSystem Viewer

18.5 Working with text viewers 219

V.dsc.next(TextFrames.Frame)

V.dsc.next(TextFrames.Frame).text

Oberon.GetSelection(text, beg, end, time)

V: = Oberon.Par.vwr;
IF (Oberon.Par.frame IS TextFrames.Frame) &

(V.dsc = Oberon.Par.frame) THEN

Oberon.AllocateUserViewer(Oberon.Mouse.X, X, Y);

Oberon.AllocateSystemViewer(Oberon.Mouse.x, X, Y);

text: = TextFrames.Text(name);
V : = MenuViewers.New(

TextFrames.NewMenu(name, commands),
TextFrames.NewText(text, 0),
TextFrames.menuH, X, Y);

18.5.1 Processing the text of the main frame

Obviously, the text displayed in the main frame of a text viewer
V is frequently the operand of commands. It is the value of
V.dsc.next(TextFrames.Frame).text. In many cases, however, it is not
guaranteed that the viewer is a text viewer. It is, therefore, required
that prior to an attempt to access the text a type test be performed:

IF (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN
... (* Process text *)

END;

Let us elaborate a more ambitious example. The command CopyFont
copies the font of the character underneath the star-shaped pointer to
the selection. Besides accessing the text of a viewer, this example
illustrates various techniques:

• How to deal with the pointer and the marked viewer.

• The use of the selection as operand of the command.

• The use of texts and readers.

• The use of several functions from the display manager of
module TextFrames.

We first access the selection. If it exists, the text of the marked viewer
is located (Viewers. This.) The position of the pointer is correlated with
the text position (TextFrames.Pos) and that character read. Once

220 Programming commands

Writing to a
viewer

read, its font attribute is deduced and applied to the selection
(Text. ChangeLooks.)

PROCEDURE CopyFont*;
VAR

F: TextFrames.Frame;
T: Texts.Text;
R: Texts.Reader;
V: Viewers Viewer;
beg, end, time: LONGINT; (* Time and stretch of selection *)
X, Y: INTEGER; (* A position designated by the pointer *)
pos: LONGINT; (* The character equivalent of X, Y *)
ch: CHAR;

BEGIN
Oberon.GetSelection(T, beg, end, time); (* Most recent selection *)
IF (time> 0) (* Selection exists *)
& Oberon.Pointer.on (* Pointer is visible *) THEN

X: = Oberon.Pointer.x; Y: = Oberon.Pointer.Y;
V: = Viewers.This(X, Y); (* The viewer which contains the pointer *)
IF (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN

(* Second frame is a text frame *)
F : = V.dsc.next(TextFrames.Frame); (* The main frame *)
IF (X >= F.x) & (X < F.x + F.W) & (Y >= F.Y) & (Y < F.Y + F.H) THEN

(* The pointeris in the main frame *)
pos: = TextFrames.Pos(F, X, Y); (* Convert X, Ytotext position *)
IF pos >= OTHEN

(* Position is valid *)
Texts.OpenReader(R, F.text. pos);
Texts.Read(R, ch); (* Read character at pos to access its font *)
Texts.ChangeLooks(T, beg, end, {O}, R.fnt, 0, 0)
(* the font of the stretch [beg, end) is changed and

the display is updated *)
END

END
END

END
END CopyFont;

Due to the active nature of the text, we do not have to know the
viewers which show the changed text T. When T is changed, it broad­
casts an update message to all visible viewers which refresh the
display.

Once the text of a viewer is accessed, its characteristics may be changed
(as in the foregoing example) or output may be added to the text with
Texts.Append or Texts.Insert and displayed in the viewer. This works
exactly as in the example of the module LogOut.

18.5 Working with text viewers 221

18.5.2 Commands which open viewers

Placement
proposition

In the previous example, the command operated on the text of a viewer
which is already displayed. Another situation arises when a command
produces textual output which is ready for display. We encountered a
first example in module LogOut and its procedures which write to the
system log. The system log, however, is reserved for short status
reports of commands. If the command has more voluminous output, it
needs to open a text viewer. Commands communicate through texts and
refrain from writing to the screen directly.

The following steps are typical to open a text viewer:

(1) Create the menu frame using TextFrames.NewMenu.

(2) Create the text of the main frame (often TextFrames. Text is
helpful.)

(3) Create the main frame using TextFrames.NewText.

(4) Determine a point X, Y on the top edge of the viewer to be
opened, using Oberon.AllocateUserViewer if the viewer should
open in the user track, otherwise Oberon.AllocateSystemViewer.

(5) Open the viewer with MenuViewers.New such that its top edge
contains X, Y.

To open a viewer means to reduce the space of an existing one
(possibly the filler viewer.) Where to place a new viewer may depend
on various considerations. In most cases, the procedures
Oberon.AllocateUserViewer and Oberon.AllocateSystemViewer are used to
make a placement suggestion in the user track and the system track,
respectively. Oberon.AllocateUserViewer is typically called as follows:

Oberon.AllocateUserViewer(Oberon.Mouse.X, X, Y);

The first actual parameter determines that the new viewer will open in
the display which contains the mouse cursor. Thus, if a second display
is present (color), the user can control whether the new viewer will
appear in the user track of the monochrome or color display. If:

Oberon.AllocateUserViewer(Display.Left, X, Y);

is used, then the viewer will always open on the monochrome display.
The V AR parameters X and Y return the placement proposition which
is in turn used in the call of Men u Viewers . New.

Let us recall MatrixOut which produced a buffer containing the
textual representation of a matrix of real numbers. We will use Matrix­
Out in our next example which represents a command InvertMatrix. As

222 Programming commands

its name implies, a matrix of real numbers is inverted. Once the inverse
is computed, MatrixOut is used to format the output and a new text
viewer is opened to display the results.

PROCEDURE InvertMatrix*;
CONST origin = 0;
VAR

menuF. mainF: TextFrames.Frame;
matrixText: Texts.Text; (* Text of the main frame *)
V: MenuViewersViewer;

BEGIN
Invert(A. B); (* A procedure which inverts A and stores result in B *)
matrixText : = TextFrames.TextC'II); (* Create empty text *)
Texts.Append(matrixText. MatrixOut(B)); (* Create display text *)
menuF:= TextFrames.NewMenu(IMatrix.Output".

"System.Close System.Copy System.Grow Edit.Store");
mainF : = TextFrames.NewText(matrixText. origin);
Oberon.AllocateUserViewer(Oberon.Mouse.X. X. V); (* Placement *)
V : = MenuViewers.New(menuF. mainF. TextFrames.menuH. X. Y)

END InvertMatrix;

Variables A and B are externally defined and are of type ARRAY N, N
OF REAL. A writer W used by the procedure MatrixOut is also exter­
nally defined and opened in the module's body.

At first sight, it might be surprising that the viewer V, created by
InvertMatrix, is a local variable. What happens is that MenuViewers.New
creates the viewer's descriptor and calls the viewer manager to insert it
in its data structure of visible viewers. The fact that the viewer is in this
structure protects it from falling prey to the garbage collector.

18.5.3 The Open command, custom menu

The standard title bar of Oberon text viewers (also termed the menu)
contains the viewer name and the commands System. Close, Sys­
tem.Copy, System,Grow, Edit,Search and Edit, Store. This choice is well
tried in practice. However, a user may wish to change this convention
for several reasons; for example:

• Other commands are used frequently (for example, Edit.Recall.)

• The viewer performs a special task whose commands should
appear in the title bar.

The command Net.Mailbox opens such a specialized text viewer (see
Chapter 7.) Its title bar shows the commands Net.ReceiveMail and
Net. DeleteMail which both operate on the text displayed in the mailbox

18.5 Working with text viewers 223

viewer. Note, however, that it is still a standard text viewer and not an
instance of a new viewer class.

To open text viewers with a different set of commands in the
title bar, the user needs to provide his or her own Open command. We
shall portray a command Open which replaces the menu command
Edit. Search with Edit. Recall. A scanner first scans the text after the
command. If a name is found it is opened. On the other hand, if the
scanned symbol equals 1\ i 1\, the selection is scanned for the name. If
none is found, a default applies. Once the name is determined, a text
viewer is opened.

PROCEDURE Open*;
CONST origin = 0;
VAR

S: Texts.Scanner;
menuF, mainF: TextFrames.Frame;
mainT: Texts.Text;
X, Y: INTEGER;
beg, end, time: LONGINT;
V: MenuViewers.viewer;

BEGIN
Texts.OpenScanner(S, Oberon.Par.text. Oberon.Par.pos);
Texts.Scan(S); (* Scan symbol immediately after command name *)
IF S.class # Texts.Name THEN

S.S : = ITemp.Text"; (* Default name *)
IF (S.class = Texts.Char) & (S.c = II i") THEN

(* The scanned symbol is II t II *)
Oberon.GetSelection(text, beg, end, time);
IF time> 0 THEN (* Selection exists *)

Texts.OpenScanner(S, text, beg);
Texts.Scan(S) (* Scan for name in selection *)

END
END

END;
mainT : = TextFrames.Text(S.s);' (* Open text S.S from disk *)
mainF:= TextFrames.NewText(mainT, origin);
menuF : = TextFrames.NewMenu(S.s,

"System.Close System.Copy System.Grow Edit.Recall Edit.Store");
Oberon.AllocateUserViewer(Oberon.Mouse.X, X, Y);
V: = MenuViewers.New(menuF, mainF, TextFrames.menuH, X, Y)

END Open;

18.5.4 Menu commands

The menu frame of a text viewer is an ordinary text frame. Any
command can be issued from the menu in the same way as it is

224 Programming commands

executed from the main frame. However, it turns out that commands
issued from the menu frame (the title bar) are most useful if they
implicitly refer to the viewer which contains the menu frame. There­
fore, commands intended to be used in the menu should be poly­
morphic; that is, they should differentiate between whether they were
activated from a menu frame or from a main frame. Edit.Store is an
example. Issued from the menu, it operates on the viewer containing
that particular menu. Issued from a main frame, it requests a name
parameter and stores the marked viewer under that name.

A menu frame is defined to be a text frame linked to viewer V by
V.dsc. Whether a command was issued from the menu can be learned
from the fields of Oberon.Par:

IF (Oberon.Par.frame IS TextFrames.Frame) &
(Oberon.Par.frame = Oberon.Par.vwr.dsc) THEN ...

As an example, consider the following excerpt of a command Pro­
cessText which operates on texts. If the command is issued from an
editable text (for example, a tool text), it admits a parameter list. All
texts in the list will be processed. If, on the other hand, ProcessText is
issued from the menu, it will work on the text contained in the main
frame of the viewer which contains the menu.

PROCEDURE ProcessText*;
VAR

text: Texts.text; (* Text to be processed *)
V: Viewers.viewer; S: Texts.Scanner;

BEGIN
V : = Oberon.Par.vwr;
IF (Oberon.Par.frame IS TextFrames.Frame) &

(Oberon.Par.frame = V.dsc)THEN
(* Command is issued from the menu *)
IF (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN

(* The second frame of viewer is a text frame *)
text: = Oberon.Par.vwr.dsc.next(TextFrames.Frame).text;
... (* Process text *)

END
ELSE (* Command issued from an editable text frame *)

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
ScantS);
WHILE S.class = Texts.Name DO

text: = TextFrames.Text(S.s); (* Open text from file with name S.s*)
... (* Process text *)
ScantS)

END
END

END ProcessText;

18.6 Working with text frames 225

18.6 Working with text frames

Text frames embody the standard Oberon editor. Module TextFrames
exports a set of procedures called display manager. If the programmer
of commands wishes to deal with the selection, the caret or with
scrolling operations, the services of the display manager are needed.
Using these facilities, the commands of module Edit (for example,
Edit.Search, Edit.CopyFont, Edit.Recall) may be augmented.

The following summarizes frequently used tests and operations:

Has viewer Va main frame? IF (V.dsc # NIL) &

The focus viewer

Text of text frame F

(V.dsc.next IS TextFrames.Frame) THEN

Oberon. FacusViewer

F.text

Position of first displayed character

A caret is set in text frame F

Position of the caret, if one is set

F.arg

IF F.car # 0 THEN ...

IF F.car # 0 THEN pas: = F.carlac.pas END;

IF F.sel # 0 THEN ... A selection exists in text frame F

Start of the selection, if one exists

End of the selection, if one exists

Set the caret at pas in text frame F installed in menu
viewer V

Select stretch [beg, end) in text frame F

Scroll text such that line with origin at arg will be
displayed on top of the viewer

IF F.sel # 0 THEN pas: = F.selbeg.pas END;

IF F.sel # 0 THEN pas: = F.selend.pas END;

Oberon. Pass Facus(V) ;
TextFrames.SetCaret(F, pas);

TextFrames.SetSelectian(F, beg, end);

TextFrames. RemaveSelectian(F);
TextFrames. RemaveCaret(F);
Oberon.RemaveMarks(F.X, F.Y, F.W, F.H);
TextFrames.Shaw(F, org);

The following points should be kept in mind when using pro­
cedures of the display manager operating on a text frame F:

• A caret is only allowed if the viewer which manages F is the
focus viewer.

• If a caret is displayed (F.car > 0), it must be removed prior to
using TextFrames. SetCaret.

• Prior to using TextFrames.Show, the caret, the selection, the
mouse cursor and the pointer must be removed.

The caret is removed either by a call of TextFrames.Remove­
Caret(F) or as a consequence of Oberon.PassFocus(V). Thus, if the focus
has to be requested, a call to TextFrames.RemoveCaret is superfluous.

As a first example, we examine the command Edit.Recall which
inserts the most recently deleted stretch of text at the caret location.

226 Programming commands

PROCEDURE Recall*;
VAR

F: TextFrames.Frame;
buf: Texts.Buffer;
V: Viewers Viewer;
pos: LONGINT;

BEGIN
V: = Oberon.FocusViewer;
IF (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN

(* Focus viewer has a main frame which is a text frame *)
F:= V.dsc.next(TextFrames.Frame); (* The main frame *)
IF F.car > 0 THEN (* A caret is set *)

Texts. Recall(buf); (* The most recently deleted text *)
pos : = F.carloc.pos + buf.len; (* Caret position after insert *)
Texts.1 n se rt(F. text, F. text. ca rloc. pos, buf);
TextFrames.SetCaret(F, pos)

END
END

END Recall;

Note that since V is the focus viewer, there is no need to request the
focus through a call to Oberon.PassFacus. The call of Texts. Insert invokes
the handler which updates the display. In doing so, it clears the caret,
the precondition for TextFrames.SetCaret.

A further example is a command SearchItalics. The text of the
main frame of the marked viewer is searched for the occurrence of a
character in the italics font SyntaxlOi.Sen.Fnt. The search is started at
the caret position or at the beginning of the text if no caret is set. If a
character is located, the text is scrolled such that it is displayed near the
top line and the caret is positioned.

Command SearehItalics uses procedure GetItaZies developed in
a previous example. An ancillary problem arises. If Text­
Frames.Shaw(F, pas) is called with a position which is not the origin of a
line, the line after pas will be the first one displayed. Therefore, we
invoke TextFrames.Pas(F, pas - 200) which positions the text near the
top.

PROCEDURE Searchltalics*;
VAR

V: ViewersViewer;
pas, carPas: LONGINT;
F: TextFrames.Frame;

18.7 Working with files 227

BEGIN
V: = Oberon.MarkedViewer();
IF (V.dsc # NIL) & (V.dsc.next IS TextFrames.Frame) THEN

(* Marked viewer has a main frame which is a text frame *)
F : = V.dsc.next(TextFrames.Frame); (* The main frame *)
IF F.car # 0 THEN (* A caret is displayed *)

carPos : = F.carloc.pos
ELSE

carPos := 0
END;
pos : = Getltalics(F.text. carPos);
IF pos < 0 THEN RETURN (* No italics font found *)
ELSE

Oberon.PassFocus(V); (* Request focus, clear caret if one is set *)
T extFrames. RemoveSelection(F);
Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
TextFrames.Show(F, pas - 200); (* Scroll viewer *)
TextFrames.SetCaret(F, pos) (* Set the caret *)

END
END

END Searchltalics;

18.7 Working with files

The Oberon file system differs from the standard model. The user has
to be especially aware that the name of a file (that is, an instance of the
abstract data type Files.File) and the directory entry are distinct. Also,
the procedure Close differs from its ordinary meaning. Let us recapitu­
late the major characteristics which have to be kept in mind when
working with Oberon files:

• Files and directory entries are distinct entities.

• Files are created with a name. In the case of a new file, the name
must be explicitly registered in the directory (if the file is not a
temporary one.)

• The access mechanism is separated from the file and embodied
in the abstract data type Files. Rider. Several riders may operate
on the same file.

• Physical data is never purged during a session. As long as a
variable of type File exists, it affords access to its data.

• Unused disk sectors (not belonging to a file registered in the
directory) are reclaimed when the system is booting.

228 Programming commands

The following lists some useful constructs:

Open a new file name

Open an existing file name

Write buffers to disk sectors

F : = Files.New (name);

F:= Files.Old (name);

Files.Close (F);

Files.Register (F);

Files.Set (R, F, 0);
Files.Read (R, ch);
Files.Read (R, ch);

Write buffers to disk and register file F in directory

Sequential read access through rider R

Sequential write access through rider R

Random access at position pos

Read/write a record A of type T

Files.Set (R, F, 0);
Files.Write (R, ch);
Files.Write (R, ch);

Files.Set (R, F, pas);
Files.Read (R, ch); ... Files.Write(R, ch);

Files.ReadBytes (R, A, SIZE(T));
Files.WriteBytes (R, A, SIZE(T));

Read/write a record of type T accessed with a pointer P Files.ReadBytes (R, Pi, SIZE(T));
Files.WriteBytes (R, Pi, SIZE(T));

8.7.1 Opening and closing of files

Opening a file means creating an instance of type Files. File. If the file
already exists, Files. Old creates 'such an instance. Otherwise, Files.New
is used.

The first example covers the simplest case: the file exists, is
opened, processed and then closed. In this case, Files.Close is used
since the directory entry is already in existence.

PROCEDURE ProcessFile(name: ARRAY OF CHAR);
VAR file: Files.File;
BEGIN

file: = Files.Old (name); (~, Create file variable from directory entry name *)
IF file = NIL THEN (* No entry name exists in the directory *)

(* Exception handling *)
ELSE

Files.Close (file)
END;

(* Process file *)
(or Write buffers to disk *)

Note, however, that unlike the close operation in other systems, the file
F is still valid after Files.Close is called and read/write operations can be
performed. The file is valid as long as its variable exists.

Initialize data
structure

Save with
back-up

18. 7 Working with files 229

Sometimes, a command will attempt to open an old file and, if
none exists, create a new one. The corresponding program text looks
as follows:

PROCEDURE ProcessFile(name: ARRAY OF CHAR);
VAR file: Files.File;
BEGIN

file: = Files.Old(name); (* Create file from directory *)
IF file = NIL THEN (* No entry in directory *)

file: = Files.New(name) (* Create new file *)
END;

Files. Register(file);
END;

(* Process file *)
(* Write buffers to disk and register file *)

Here, it is not certain that the file name is already in the directory.
Therefore, Files.Close must be replaced by Files.Register which also
closes the file and, in addition, writes an entry into the directory. Thus,
in the event the file already existed, it will be closed. On the other
hand, the newly created file will be closed and registered.

It is quite typical for files to be used to initialize a data structure, often
an instance of an abstract data type such as a text, graphic, bitmap,
spreadsheet etc. The following is an example of how an open pro­
cedure for such a data structure X of hypothetical type DataStructure
may read:

PROCEDUREOpen(X: DataStructure; name: ARRAYOFCHAR);
VAR file: Files.File;
BEGIN

file: = Files.Old(name); (* Create a file from the directory *)
IFfile = NIL THEN

(* No such file exists *)

ELSE

END
END Open;

(* Create a new instance of the data structure X *)

(* Read data from disk and build X *)

Note that the data structure needs to be mapped on to the file. It
typically consists of a header followed by descriptors and data blocks.
An example is given in Section 18.7.3.

Recall that commands such as Edit.Store, which save a data structure to
disk, rename the old file if it is overwritten. This allows the user to
undo an erroneous change. A program excerpt which retains a back-up
of the old copy while saving the data structure is as follows:

230 Programming commands

Back-up name

PROCEDURE Save(X: DataStructure; name: ARRAY OF CHAR);
VAR

file: Files File;
backupName: ARRAY 32 OF CHAR;
res: INTEGER;

BEGIN
file: = Files.New(name); (* Create an output file *)

(* Write data structure to file *)
Backup(name, backupName); (* Create a backup name *)
Files.Rename(name, backupName, res);
Files.Register(file) (* Register the newly created output file *)

END;

The data structure is written to a new file, even if it was initialized from
an old file name. The directory entry name is first changed to a back-up
name derived from name and then the new file is registered. If a file
name existed prior to the call to Save, it is still available under the back­
up name.

The procedure Files.Rename returns a result variable res which
may be decoded as follows:

CASE res OF
0:

I 1: .. ,
I 2: .. .
I 3: .. .
I 4: .. .

END;

(* Normal termination *)
(* New name existed already *)
(* Old name is not in directory *)
(* Name is not well formed *)
(* Name is too long *)

A suggestion for the procedure Backup which derives a back-up name
from the original file name is:

PROCEDURE Backup(VAR name; bak: ARRAY OF CHAR);
VAR i, j: INTEGER;
BEGIN

i :=0; j:= 0;
LOOP

WHILE (name[iJ # OX) & (name[iJ # 11.") DO INC(i) END;
IF name[iJ = OX THEN EXIT END;
INC(i);
WHILE j # i DO bak[j] : = name[jJ; INC(j) END

END;
bak[jJ:= "B"; bak[j + 1J:= "a"; bak[j + 2J:= "k"; bak[j + 3J := OX

END Backup;

18.7 Working with files 231

The procedure Backup substitutes "Bak" for the file suffix; for example,
Backup(,'Test.Mod", backup) yields backup = ITest.Bak". The character
OX is used to terminate a string.

18.7.2 Read/write operations of files

Read/write operations are performed with a rider. Several riders may
operate on the same file. A single byte is read or written by means of a
call to Files.Read and Files. Write. Whole blocks are processed by
Files. ReadBytes and Files. WriteBytes.

Sequential access File data is accessed sequentially by means of a sequence of Read or
Write calls to the rider R, viz.

Random access

VAR
R: Files.Rider;
F: Files.File;
ch: CHAR;

Files.Set (R, F, 0); (* Position rider R at the beginning of the file F *)
Files.Read (R, ch); (* Read first byte *)
Files.Read (R, ch); (* Read second byte *)

Random access is achieved with a pair of procedure calls Set followed
by Read or Write:

VAR
R: Files.Rider;
F: Files.File;
ch: CHAR;

Files.Set (R, F, 0); (* Position rider R at the beginning of the file F *)
Files.Read(R, ch); (* Read first byte *)

pas: = 10;
Files.Set(R, F, pas); (* Position rider *)
Files.Read(R, ch); (* Read eleventh byte *)

pas: = Files.Length (F);
Files.Set(R, F, pas); (* Position rider *)
Files.Write(R, ch); (* Append a byte to the end of the file F *)

Note: Numbering of bytes in the file starts with O.

232 Programming commands

Record types In the following example, we update a file which contains records of
type Person. All records are read sequentially, processed and rewritten
to the same position in the file. Whole records are read and written
using the procedures Files. ReadBytes and Files. WriteBytes.

TYPE Person = RECORD
Name: ARRAY 32 OF CHAR;
... (* Other fields *)

END;

PROCEDURE UpdateFile(F: Files.File);
CONST beginning = 0;
VAR

Customer: Person;
readR, writeR: Files.Rider;

BEGIN
F := Files.Old(name);
IF F = NIL THEN LogOut.PutString("file does not exist"); RETURN END;

Files.Set(readR, F, beginning);
Files.Set(writeR, F, beginning);
Files. ReadBytes(readR, Customer, SIZE(Person));
WHILE ~readR.eof DO

... (* Process Customer record *)
Files.WriteBytes(writeR, Customer, SIZE(Person));
Files.ReadBytes(readR, Customer, SIZE(Person))

END;
Fi les. Register(file)

END UpdateFile;

This example shows how two riders operating on the same file can be
used. The rider, readR, reads records sequentially. The rider, writeR,
trails readR and updates the record in place.

Observe the use of the function SIZE to determine the number
of bytes in a record. The use of SIZE is preferable to using numeric
constants.

If a record is read or written as an aggregate (that is, with
ReadBytes(readR, Customer, SIZE(Person))), it can only be read sub­
sequently if the compiler mapping the aggregate is the same as the one
used when writing. Field-wise reading (or writing) is less implementa­
tion dependent.

Files.WriteBytes(writeR, Customer. Name, LEN(Customer.Name));
Files.WriteBytes(writeR, ... (* Other fields *)

Records accessed
through pointers

Array types

18.7 Working with files 233

Often, records are stored on the heap and accessed through pointers.
In this case, it is important to dereference the pointer in the read and write
procedures. The dereferencing operator is the upward pointing arrow
II' .4

TYPE
Person = POINTER TO PersonDesc;
PersonDesc = RECORD

Name: ARRAY 32 OF CHAR;
... (* Other fields *)

END;
VAR Customer: Person;

Files.Read(readR. Customer,. SIZE (PersonDesc));
Files.Write(writeR. Customer!. SIZE (PersonDesc));

The following procedure ReadMatrix initializes a two-dimensional array
of reals from a file. It is assumed that the number of rows and columns
are recorded at the beginning of the file.

PROCEDURE ReadMatrix(VAR A: ARRAY OF ARRAY OF REAL;
file: Files.File);

VAR
R: Files.Rider;
M. N: INTEGER; (* Rowand column number *)
i. j: INTEGER;

BEGIN
Files.Set(R. file. 0); (* Set rider R at file origin *)
Files.ReadBytes(R. M. SIZE (INTEGER)); (* Initialize M *)
Files.ReadBytes(R. N. SIZE (INTEGER)); (* Initialize N *)
i:= 0;
WHILEi<MDO

j:= 0;
WHILEj < N DO

Files.ReadBytes(R. A[i. jl. SIZE(REAL));
INC(j)

END;
INC(i)

END
EN D ReadMatrix;

4 The code for the upward pointing arrow is SEX, the ASCII equivalent of 'AI.

234 Programming commands

Procedure ReadMatrix reads the array element-wise. Using
Files.ReadBytes, the array can be initialized with a single procedure call.
Assume that A is of type Matrix which specifies a two-dimensional
array of reals. Then:

Files.ReadBytes(R, M, SIZE (INTEGER)); (* Initialize M *)
Files.ReadBytes(R, N, SIZE (INTEGER)); (* Initialize N *)
Files.ReadBytes(R, A SIZE (Matrix));

This technique may, however, waste disk space if the actual array
bounds M and N are not of a size close to the maximum value specified
in the declaration of type Matrix. Also, files written in the abbreviated
manner can only be read if the implementations use the same array
mapping. In this respect, element-wise reading and writing is less
implementation dependent.

18.7.3 A note on complex file organizations

Complex data structures require a corresponding file organization.
Such organizations can be built using the primitive functions exported
by module Files.

U sing an electronic mail system, many small text files arise. It is
wasteful and tedious to maintain such a collection of file names. The
need arises to store mail in a repository.

Our next example is a complete module MailFile which provides
such a repository. The file organization is shown in the following
diagram.

Directory Text block 1 Text block 2 Text block 3

IfOJ I I I I l .." t
L Number of text blocks

Text files are stored as contiguous data blocks. Prior to text data is a
directory which is an array of integers. The first word in the directory
indicates the number of texts in the file. It is followed by contiguous
records of the starting positions of corresponding text blocks.

Module Texts provides the procedures Texts.Load and Texts. Store
which transfer text blocks to and from disk. To append a text block to a
file, the rider is positioned at the file before the block is written. Note
the offset of 2 required in Texts. Load (see Chapter 14.)

MODULE MailFile;

IMPORTTexts, Files;

CONST max = 200;

18.7 Working with files 235

TYPE Directory = ARRAY max OF LONGINT;

PROCEDURE Store(text: Texts.Text; file: Files.File; VAR res: INTEGER);
VAR

dir: Directory;
R: Files.Rider;
pos, len: LONGINT;

BEGIN
res: = 0; (* Result code for normal termination *)
Files.Set(R, file, 0); (* Set rider at beginning of file *)
Files.ReadBytes(R, dir, SIZE(Directory)); (* Read directory *)
INC (dir[O]); (* Increment the number of files *)
IF didO] >= max THEN

res: = 1 ; (* Result code for directory overflow *)
RETURN

END;
pos : = Files.Length(file);
Texts.Store(text. file, pos,len); (* Append a text block to file *)
dir[dir[O]] : = pos; (* Record directory entry *)
Files.Set(R, file, 0); (* Reset rider at beginning of file *)
Files.WriteBytes(R, dir, SIZE(Directory)) (* Write modified directory *)

END Store;

PROCEDURE Fetch (i: INTEGER; file: Files.File; text: Texts.Text;
VAR res: INTEGER);

VAR
dir: Directory;
R: Files.Rider;
pos, len: LONGINT;

BEGIN
res: = 0; (* Result code for normal termination *)
Files.Set(R, file, 0); (* Set rider at beginning of file *)
Files.ReadBytes(R, dir, SIZE(Directory)); (* Read directory *)
IF i > didO] THEN

res: = 1; (* Result code for out of range position parameter i *)
RETURN

END;
pos : = didi] + 2; (* Starting position of text block *)
Texts.Load(text. file, pos, len) (* Initialize text *)

END Store;

... (* Further procedures, in particular commands *)

END MailFile.

236 Programming commands

Our example only illustrates the procedures to add a text block to the
file and to fetch a text block given its index number. For a complete
application, commands have to be added to open a new repository file,
to access the text coming from the mail system and to provide a variety
of search functions.

18.7.4 Operating on groups of files

Enumerate

Commands which operate on groups of files can be a significant help in
maintaining files. For example, one might want to back up all files
which were changed in a given working day.

We recall that the command System. Directory opens a text viewer
with name 'System.Directory.' The text displayed in this viewer con­
tains a list of files which match a template. Date, time and size may be
optionally obtained. The text of this viewer can be accessed as any
displayed text (see Section 18.3) and processed by means of a scanner.
For example, the file list may be sorted according to name, time or size.

Sometimes, opening a viewer is not adequate. In this case the
procedure FileDir.Enumerate of module FileDir is needed. FileDir is part
of the inner core and thus the following discussion should be consid­
ered an advanced topic.

PROCEDURE Enumerate(prefix: ARRAY OF CHAR; Handle: EntryHandler);

All directory entries whose name start with prefix are processed. For
each matching entry, the procedure Handle is invoked. Handle is of
type:

TYPE EntryHandler = PROCEDURE(name: FileDir.FileName;
sector: DiskAdr; VAR cant: BOOLEAN);

Within the scope of the handler, the formal parameter name corres­
ponds to the name of the directory entry, sector is the address of the
first disk sector of the file and cont controls the enumeration operation.
As long as cont = TRUE at the point of return, the enumeration
proceeds. If cont = FALSE, the enumeration is terminated.

Important note: The handler must not change the directory while
Enumerate runs. Otherwise, the disk may become inconsistent and data
may be lost permanently.

The following example prints a list of file names in the system
log.

78.8 Long running commands, background tasks 237

MODULE FileList;
IMPORT FileDir,

PROCEDURE * Handle(name: FileDir.FileName; adr: FileDirDiskAdr;
cant: BOOLEAN);

BEGIN
LogOut. PutString(name);
cant:= TRUE

END Handle;

PROCEDURE Show*;
BEGIN

FileDir.Enumerate("I, Handle)
END Show;

... (* Further procedures *)
END FileList.

18.8 Long running commands, background tasks

While control is in a command, the Oberon system ceases to admit
input from the mouse and keyboard. This interferes notably with the
responsiveness of the system, if the processing time of commands
exceeds a certain threshold, which is around a tenth of a second. The
reader is most likely familiar with the interrupts produced by disk
access and compilations.

Besides commands which run for a few tenths of a second to a
few seconds, there is a class of very long running commands, such as
numerically intensive computation and system simulation. For­
tunately, it is often quite easy to design such programs so that they can
be interrupted and restarted. With such a design, it will be possible to:

• Make the very long running command interruptible in a control­
led way.

• Run the very long running command in the background, thus
preserving an interactive system for the user who can simul­
taneously perform other activities.

Other applications of background tasks are:

• An animated display; for example, a running clock.

• Servers which need to react to network traffic.

238 Programming commands

18.8.1 Setting the arrow mark

Any command running longer that about a tenth of a second should
show a busy viewer mark. According to Oberon conventions, this
mark is a downward pointing arrow in the lower left corner of the
viewer. This alerts the user to be patient. The pattern for the arrow is
exported by module Display in the global variable Display.downArrow
and can be drawn using Display.CopyPattern.

If the frame enclosing the lower left corner is a text frame, then
the procedure TextFrames.Mark can be used to display the arrow mark
as shown in the following example of a command Process. Text, which
performs some lengthy computation with the text of a text viewer.

PROCEDURE ProcessText*;
CONST arrow = -1 ; position = 1 ;
VAR mainF: TextFrames.Frame;
BEGIN

V : = Oberon.Par.vwr;
IF (V.dsc NL) & (V.dsc.next IS TextFrames.Frame) THEN

mainF : = V.dsc.next(TextFrames.Frame);
TextFrames.Mark(mainF, arrow); (* Show busy arrow *)
... (* Decode parameter list and process text files *)
TextFrames.Mark(mainF, position) (* Restore position mark *)

END
END ProcessText;.

18.8.2 Very long running commands in the foreground

Some computations may monopolize the system for arbitrarily long
periods of time and shut down interaction with the user. Unless special
precautions are taken, the only communication left is CTRL-SHIFT­
DEL, to halt their execution. A more controlled interruption is clearly
desirable.

Key is a design which provides interrupt/restart points. In sys­
tem simulations, for example, such restart points are naturally avail­
able. Numerical programs too can often be made interruptible without
undue difficulty.

In our next example, we show how to make a simulation inter­
ruptible from the keyboard. Since the Oberon loop is halted, the
keyboard must be read directly using Input.Read. Note that this is the
only exception to the rule, that the keyboard is exclusively handled
through the event loop. When the simulation runs, pressing the "s"
key will interrupt it and return control to the user.

18.8 Long running commands, background tasks 239

The command Setup will read parameters and set up a run
which is started with Simulation. The run may be interrupted by press­
ing the "s" key. Subsequent activation of Simulation continues the run.

MODULESim;

IMPORT Oberon, Texts, LogOut, Input, ... ;

VAR
interval: LONGINT; (* Numberof steps performed

between checkpoints *)
stepCnt: LONGINT;
maxCnt: LONGINT; (* Maximum numberof simulation steps *)
ch: CHAR; (* Read from keyboard: "r" = resume, "s" = stop *)

(* Declarations of other variables *)

PROCEDURE Simulate*;
BEGIN

REPEAT
ch:= "r"; (*Setcontrolcharacterto "run"*)
IF Input.Available() > OTHEN Input.Read(ch) END;

IF ch = "s" THEN (* Stop key was pressed *)
LogOut.Putlnt("simulation interrupted, stepCnt =", stepCnt);

RETURN
END;
REPEAT

INC(stepCnt)
(* Perform one simulation step *)

UNTIL stepCnt MOD interval = 0
UNTIL stepCnt = maxCnt

END Simulate;

PROCEDURE Setup*;
VAR S: Texts.Scanner;
BEGIN

stepCnt : = 0;
Texts.OpenScanner(S, Oberon.Par.text, Oberon. Par.pos);
Texts.Scan(S); interval:= S.i;
Texts.Scan(S); maxCnt: = S.i

END Setup;
ENDSim.

(* Read further parameters *)

Note that prior to the call of Input.Read it is necessary to test whether
there are characters in the keyboard buffer (Input.Available.) Otherwise,
Input.Read will wait for a character to be typed, hence no simulation
would take place.

240 Programming commands

18.8.3 Very long running commands in the background

In the preceding section, we have seen how to make a very long
running command interruptible in a controlled way. However, as long
as the command keeps control, no other activity can go on in the
system (except for interrupt-driven handlers.) If the long running job
can be partitioned into short slices, then it can be installed in a task
running in the event loop. Commands to be installed in tasks must
satisfy the following:

• Have short execution time (less than a tenth of a second.)
• Be Oberon procedures without parameters.

While commands should be short in general, this is a must for com­
mands to be installed in the background. Otherwise, a truly jerky
behavior of the mouse cursor results.

The following program piece shows how to create an instance of
a task, install handler SimulationProc and insert the task into the event
loop:

VAR
SimulationTask: Oberon.Task;

NEW(SimulationTask);
SimulationTask.handle : = SimulationProc;
Simulation.Task.safe : = FALSE;
Oberon.lnstall(Simulation Task);

After Oberon.Install, the procedure variable handle of task Simulation­
Task is called at every cycle of the event loop. The task is removed from
the loop using:

Oberon.Remove(SimulationTask);

Let us sketch the simulation example with more detail.
running: BOOLEAN;
MODULESim;

IMPORT Oberon, Texts, LogOut ... ;

VAR
steps: INTEGER; (* Number of steps performed in one call

of Simulation*)
running:
BOOLEAN; (* TRUE if the simulation task is in the event loop *)
SimulationTask: Oberon.Task;
... (* Declarations of other parameters and variables *)

PROCEDURE Simulate*;
(* Procedure to be run as task in the background *)

18.8 Long running commands, background tasks 241

VAR i: INTEGER;
... (* Declarations of other parameters and variables *)

BEGIN
i:= 0;
WHILE i < steps DO

... (* Perform one simulation step *)
INC(i)

END
END Simulate;

PROCEDURE: Start*;
(* Command that starts the simulation *)
VAR

S: Texts.Scanner;
... (* Declarations of other parameters and variables *)

BEGIN
IF running THEN

LogOut.PutString("simulation already running");
RETURN

ELSE
Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
Texts.Scan(S); steps := S.i;
... (* Read further parameters *)
Oberon.lnstall(SimulationTask); (* Install task in event loop *)
running: = TRUE (* Task is running *)
LogOut.PutString("simulation started")

END
END Start;

PROCEDURE Stop*;
(* Command to stop simulation in background *)

BEGIN
IF running THEN

Oberon. Remove(SimulationTask);
running: = FALSE;
... (* Open a viewer and display results *)

ELSE
LogOut.PutString("simulation not running");
RETURN

END
END Stop;

BEGIN
NEW(SimulationTask); (* Create a task *)
Simulation Task. handle : = Simulate; (* Install handler *)
SimulationTask.safe : = FALSE; (* A normal task, removed upon failure *)
running: = FALSE

END Sim.

242 Programming commands

Our example exhibits several typical features of an application running
in the background:

• The variable steps to control the amount of computing done in
each cycle of the event loop.

• A procedure Start to start the background activity by installing a
task in the loop.

• A procedure Stop to halt the background activity and display
results.

• A Boolean variable running to prevent installation of multiple
tasks with the same handler.

18.8.4 Garbage collection

The garbage collector is a task in the event loop. It is activated after
every 20 mouse clicks. Therefore, if no mouse activity takes place,
garbage collection is suppressed. If a long running command creates
variables on the heap (calls to NEW), then there is a danger that
storage overflow may happen. User tasks in the background which do
produce rubbish must, therefore, force garbage collection from time to
time through a call to Oberon. Collect. The simulation command, for
example, should be modified according to:

PROCEDURE Simulation*;
VAR i: INTEGER;
BEGIN

INC(count);
i :=0;
WHILE i < steps DO

... (* Perform one simulation step *)
INC(i)

END;
IF MOD(count. collectlnterval) = 0 THEN Oberon.Coliect(O) END

END Simulation;

The variable count is an externally defined counter that records invoca­
tions of Simulation while collectlnterval measures the maximal interval
between garbage collections.

18.9 Rules for well-behaved commands

Let us conclude this chapter with a set of guidelines for the program­
mer of commands.

18.9 Rules for well-behaved commands 243

• Commands do not leave the system in a hidden state.

• Commands are uninterruptible atomic actions. They do not
perform a dialog with the user. This means that with few excep­
tionsS commands do not deal with the mouse and keyboard driver
directly (module Input.) The job of dealing with these input
devices is performed by the handler of a viewer reacting to
Oberon messages (see Chapter 19.)

• Output written by commands is a (non-volatile) text which is
displayed in a viewer. Commands do not write text to the screen
directly using functions from module Display.

• Commands have a visible consequence. They open or close a viewer,
for example. If their action is not visible a priori, they write a
completion or error message to the system log.

• If commands are not instantaneous, they write an arrow mark to
signal/viewer is busy.'

• Long running commands should be designed to run in slices and
installed in the background. They explicitly activate the garbage
collector.

• Commands test the parameters for validity and report errors in the
system log.

• Commands, especially when taking the marked viewer as a
parameter, check the type of the accessed frames. If they operate on
text viewers, for example, they always make sure that a menu
frame and a main frame exist, which are of type
TextFrames.Frame.

• When taking the selection as a parameter, it is the most recent
selection.

• An asterisk following the command name means that the com­
mand operates on the marked viewer.

• An upward pointing arrow 11" following the command name
means that the parameters are found in the selection.

• If commands draw to the pixelmaps directly (using the pro­
cedures for raster operations of module Display), they strictly
respect the boundary of the viewer and its subframes. They also
refrain from output operation to the display if the viewer state is
suspended or closed.

• Commands executing in the background must have very short
execution times.

:; Providing a controlled break point and tracking the mouse on a key, for
example.

244

19 Programming viewers and
frames

In Oberon, an interactive application is called a viewer class. A particu­
lar viewer on the display is an instance of such a class. Adding viewer
classes is the most powerful way of extending the Oberon system.

While adding a single command is usually simple, creating a
viewer class is often a major task comprised of programming:

(1) An abstract data type whose instances are documents, such as
texts, graphics, bitmaps or spreadsheets. The procedures oper­
ating on the abstract data type are called the data manager.

(2) A handler which interprets the mouse and keyboard and which
produces (all) screen output. Usually, screen output is delivered
by a set of procedures known as the display manager. The handler
also interacts with the data manager of the displayed document.

(3) A set of commands which create an instance of the viewer class
(usually called Open) and perform other operations relating to
the display or to the document.

Each one of the three parts is typically encapsulated into a module. A
viewer class is, thus, a module triplet; for example:

Function Standard editor Bitmap editor Graphics editor

Commands Edit Paint Draw
Handler TextFrames PictureFrames GraphicFrames
Data manager Texts Pictures Graphics

Evidently, creating a viewer class touches on all aspects of program­
ming - data structures, algorithms and special fields such as editor
design. Clearly, a comprehensive coverage is beyond the scope of this
book. In this chapter, we shall concentrate on the handler and on program­
ming the display.

Introduction 245

The relation of the document to the viewer is depicted in the
following diagram which shows the three major sources of messages:
module Oberon, module Viewers and the data managers.

Instance Handler
of viewer

Update t I
messages ~

eC::> .' s'().<:$ •••••

~e: ····
~e: ···

~\e ••• •
~ .•.....

Viewer manager
• Assign frames
• Maintains viewer data structure

Screen

I instance of abstract document (for example. a text) I

The provider of a viewer class can choose between two levels of
abstraction and:

(1) program a viewer;
(2) program a frame which will be installed in a menu viewer.

The first approach is completely general within the framework of the
tiled display model provided by module Viewers. No restriction is
imposed on the viewer's appearance and how the mouse and keyboard
are interpreted.

The second approach prescribes that the viewer has standard
layout with a wire frame and a title bar. The viewer also reacts to the
left mouse key within the title bar and repositions its top edge. Within
the frame (to be precise the main frame), interpretation of the mouse
and keyboard are still completely under the control of the user.

Thus, in most cases, the programmer of a viewer class will follow the
second approach. It relieves him or her from the conceptually simple but
tedious chore of computing the boundaries of two frames within the
viewer and of handling title bar tracking.

246 Programming viewers and frames

19.1 The design of a viewer class

The design of a typical viewer class (which observes standard Oberon
conventions) is comprised of the following elements:

• Specifying a data representation of the underlying logical model
of the document (for example, text, graphic etc.) and defining
the operations to be performed on the document.

• Designing a frame which is installed in a menu viewer. The
frame is linked to an instance of the document. It has a handler
and a data structure of objects which are visible within the
frame. Objects in that data structure may be termed display
descriptors.

• The use of update messages to synchronize document state and
display state.

We shall sketch essential features of such a design. For this purpose,
we sketch a highly simplified graphics editor. A complete example of a
viewer class is furnished in Appendix A.

19.1.1 The document and data manager

Document A graphic is composed of elements such as lines, rectangles, circles,
text captions etc. The logical model is a Cartesian plane. We have to
find an appropriate data structure for such a plane. We call this data
structure the document.

Document

A simple data representation of such a graphic is a list of
descriptors of graphical objects. The following figure shows a graphic
composed of a rectangle, a circle and two line segments. Both the plane
and the data representation are shown.

List of objects

/0
D

Document coordinates

Data manager

19. 1 The design of a viewer class 247

The type declarations for such a graphic may look as follows:

TYPE
Graph = POINTER TO GraphDesc;
GraphDesc = RECORD

(* Graph specific data *)
list: Object (* Link to object list *)

END;

TYPE
Object = POINTER TO ObjectDesc;
ObjectDesc = RECORD

... (* Data common to all objects *)
next: Object

END;

TYPE
Rect = POINTER TO RectDesc;
RectDesc = RECORD

(ObjectDesc)
X, Y, W, H: INTEGER;

END;

Thus, a graphic is an instance of the data type Graph. A variety of
graphics objects may be defined as extensions of the base type Object.
We have outlined the definition of a rectangle.

We have to provide operations on the graphical object. The following
are typical functions:

• Initialize a graphic (typically called Open or New.)
• Create an object and add it to the data structure.

• Delete or modify an object.
• Provide access to all objects; for example, with an abstract data

type Reader similar to the readers for texts.

The set of these procedures is the document manager. When the docu­
ment manager makes changes to the data structure, it broadcasts an
update message to all visible viewers. The essence of the definition of
such a message is:

TYPE
UpdateMsg = RECORD

(Display. FrameMsg)
id: INTEGER;
graph: Graph; (* The graph which is updated *)
object: Object; (* The object which is updated *)

(* Other information related to the update *)
END;

The message identifies the document and the object which is changed.
The type of change is determined by the message identifier for which
we declare constants with names which are suggestive of the update
action; for example:

CONST delete = 0;

248 Programming viewers and frames

It is good practice to make Graph an abstract data type which is encap­
sulated in a module with an appropriate name, Graphics, say.

19.1.2 The frame and display manager

Frame The next step in our design is to create a viewer. Since we plan to
adhere to Oberon user interface guidelines, we will program a frame to
be installed in a menu viewer. This involves the design of an appropri­
ate frame data structure and programming the handler. First, we turn
our attention to the issue of the data structure.

The frame is an extension of the type Display.Frame and inherits
all its properties, most notably the frame's rectangle X, Y, Wand Hand
the field handle. Our frame displays a single document which is an
instance of the type Graph. The frame deals with those objects of the
graph which are visible in its rectangle. For this purpose, the frame
needs additional properties; for example:

• The graph being handled by the frame.

• A data structure of display descriptors.
• A data structure of special objects, such as a selection.

• The frame position in the document space.

The following diagram shows a graphics frame and its relation to the
displayed document. Since the graph is a simple list of graphics
objects, it is straightforward to attach a similar list of display descrip­
tors to the frame. Each one of these descriptors points to the graphics
object which it represents. Note that the relation is not the other way
around, since the concept of an abstract document precludes 'knowl­
edge' of the viewers in which the document is rendered. The frame
itself points to the graph displayed in its boundary. It also has a second
list of objects which have a special status: they: are 'selected' and serve
as operand of subsequent operations (such as move or delete.)

Selected object

Coordinate
systems

19. 1 The design of a viewer class 249

The display descriptors are instances of types which we call
VisibleLine, VisibleRect etc. and which may have the following
declara tions:

TYPE TYPE
VisibleObject = POINTER TO VDesc;
VDesc = RECORD

VisibleRect = POINTER TO VRectDesc;
VRectDesc = RECORD

object: Graphics.Object;
next: VisibleObject

END;

(VDesc)
X. Y. W. H: INTEGER

END;

Documents are, at least potentially, larger than the available frame
size. Therefore, the frame's location in the document space is an
additional property of the frame. Also, Oberon raster operations use
(absolute) screen coordinates. Therefore, document coordinates and
display coordinates have to be transformed into each other. The fol­
lowing diagram depicts screen and viewer superimposed on the
graphics plane.

t Screen

Frame

~------------~~
Display coordinates

Document coordinates

We are now ready for the declaration of the type Frame:

TYPE Frame = POINTER TO FrameDesc;
FrameDesc = RECORD

(Display. Frame)
graph: Graphics.Graph; (* The rendered graph *)
XUL. YUL: INTEGER; (* upper left frame corner. in document

coordinates *)
DisplayList: VisibleObject;
SelectionList: VisibleObject;

(* Other frame data *)
END;

250 Programming viewers and frames

Note that if the upper left corner is chosen to fix the frame position in
the document plane, frame repositioning will become particularly
easy, since the upper left corner stays fixed in such moves.

Display manager The handler uses a set of procedures to update the display which, as
we mentioned, is termed the display manager. Typical functions are:

• Display those objects which fall in the frame's rectangle.

• Display those objects which will become visible when the frame
extends (typically called Extend.)

• Remove objects which will become invisible (or partially visible)
when the frame reduces its size (typically called Reduce.)

• Locate the display descriptor for a given document object.

• Deal with the selection.

• Deal with update messages from changed graphics documents.

19.1.3 The handler

The handler is the heart of the viewer class. Recall that everything
visible (including the mouse cursor) is drawn by the handler which
also produces the entire Oberon user interface. Specifically, the hand­
ler's functions are:

• Interpret mouse and keyboard input and act on the document
accordingly (using the data manger.)

• Draw and write to the display.

• Adjust the size of the frame.

• Perform certain standard system functions (for example, set the
pointer, copy a frame, report the selection, copy a stretch of text
to the caret etc.)

Each handler has to implement the Oberon interface conventions,
including command activation with the mouse. How this is done will
be described in detail in subsequent sections. However, central to the
design of an Oberon viewer class is the update mechanism using
messages - a topic to which we now turn. The essence of this is that
handlers do not deal with the update of the document and the display
in parallel. Assume that in our example the graphic is changed in one of
the viewers. Then:

• The handler of the viewer in which the user edited the graphic
invokes one of the functions of the data manager to change the
document.

Structure of the
handler

79. 1 The design of a viewer class 251

• The data manager updates its data structure and broadcasts an
update message.

• All handlers which receive the update message check whether
they display the object and, if so, update the screen. The hand­
ler which instigates the change is called recursively.

This mechanism leads to the fact that both the module defining the
document and the frame module declare procedures have the same
name. Text viewers are a typical example. The document module,
Texts, exports Texts. Insert. Similarly, the display manager in Text­
Frames knows a procedure TextFrames.Insert which is called in
response to an update message communicating an insert event. A
similar correspondence is found in our viewer class.

We know that the handler does its work exclusively in reaction to
messages sent to it by various parts of the system. It is in essence a
large IF ... ELSIF ... ELSIF ... END statement. Type tests are used to
discriminate between message types. Further tests on message identi­
fiers determine the actions to be taken. Type guards (often using WITH
statements) are required to access the fields of the viewer's descriptor
and the actual message passed as a parameter.

The update mechanism is highlighted in the following excerpt of
a frame handler which exhibits the following:

• The decoding of a mouse command to delete a specified object
designated by the variable Rect.

• The processing of the resulting update message M.

PROCEDURE Handler*(F: Display.Frame; VAR: M: Display.FrameMsg);
BEGIN
WITH F: Frame DO

IF M IS Oberon.lnputMsg THEN
WITH M: Oberon.lnputMsg DO

IF M.id = Oberon.track THEN
(* A mouse event occurred *)
Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, M.x, M.Y);
IF... (* Decode delete command *) THEN

Graphics.Delete(Rect) (* Use the data manger *)
END

ELSIF ... (* Other input message id's *)
END

END

252 Programming viewers and frames

ELSIF M IS Graphics.UpdateMsg THEN
WITH M: Graphics.UpdateMsg DO

IF M.graph = F.graph THEN
(* The graph is displayed in this frame *)
IF M.id = Graphics.delete THEN

Delete(M.object); (* Invoke the display manager *)
ELSIF ... (* Other update messages *)
END

END
END

ELSIF ... (* All other message types *)
END

END
END Handler;

Recursive calls to It is important that the programmer grasps the recursive nature of the
handlers update mechanism, otherwise he or she might have a few surprises.

Assume for example that in response to an update message the pro­
cedure LogOut.PutInt is called to display the message identifier in the
system log. Once the newly compiled handler is installed in an
instance of the viewer class under test, the system stops and does not
react to any control (other than the reset button.) We leave it as an
exercise for the reader to find out why.

19.1.4 Sample event trail

A good understanding of the update mechanism is essential. We,
therefore, discuss a sample event trail. The example chosen is text
deletion with the standard Oberon editor. Recall that this entails the
following:

(1) Move with the mouse cursor to the beginning of the stretch to be
deleted.

(2) Press the left mouse key and track the selection.

(3) Before release of the left key, interclick the right mouse key. On
release of all keys, the selected stretch is deleted. Both the
document and the display are synchronized.

We shall follow these three phases, which are depicted in the following
diagrams.

Recall from Part II that a text viewer, V say, is of type Menu­
Viewers. Viewer with a main frame of type TextFrames.Frame. Both Vand
the main frame have a handler which work in tandem. In our example,
the handler of V simply passes the messages to the handler of the

Phase 1

Phase 2

19. 1 The design of a viewer class 253

main frame. In order not to overload the diagrams, we have combined
the two handlers under V.handle.

The mouse moves to the starting point of the selection. The event loop
polls the mouse (call to Input.Mouse) and sends a track message (TM) to
the handler of viewer V indicating that the mouse position has
changed. The handler draws the mouse cursor and relinquishes con­
trol back to the loop, since no mouse keys have been pressed. The
events happen in quick succession; the mouse cursor moves smoothly
over the viewer frame.

Cll
(/)
:::J
o

::2:
:5 a.
c

a. o
o

....J
C
o
CD
.n
o

This phase commences with a right mouse key down event which is
also reported in a track message (TM-MR.) The handler determines
that the mouse is in the main frame and invokes Text­
Frames. TrackSelection which seizes control and polls the mouse directly.
Between calls to Input.Mouse, the selection is made visible (reverse
video.) This loop continues until all mouse keys are released. At this
point, control returns to the handler.

Cll
en
:::J
o

::2:
:5
a.
E

-~ -~
-~ -~

a.
o
o

....J
C
o
(p
.n o

Cll
=0
c
co
..c

>
TM-MS
~

~ .. --.. --.. -..
~

254 Programming viewers and frames

Phase 3 The handler recognizes that the left mouse key has been interclicked
during tracking. It calls Texts. Delete to remove the stretch which corres­
ponds to the selection. The text manager invokes the text's notifier
which in turn sends an update message (UM) to all visible viewers,
hence also to V, whose handler is activated recursively. The handler
now draws on the services of TextFrames. Delete to adjust the display to
the change in the underlying text data.

Q)

~
Q)
Q)

~ 0
Q) 0.. Q) c::; ui 0 Ul 0 CD X Q)
:::J E 0J Q) CD Q)

:E C =0 0 c::: Q) CI1

=i
0 c::: en u =0 U:
Q5 CI1 x Ul c::: X

0.. .r:: -0 CI1
.0 Q) .r:: Q)

E 0 :> I- :> :> t-

UM
Ul
Q5
=0
c:::
CI1
.r::
Q5

.r::

0

At this point, the delete action is completed. All pending pro­
cedures relinquish control which returns to the event loop. Mouse and
keyboard are quiescent, hence the loop polls the mouse and keyboard
at a fast rate.

19.2 Working with the display

In general, a substantial portion of the program text of a viewer class is
devoted to the display manager. In this section, we discuss basic
techniques for programming a monochrome display.

19.2.1 Common raster operations

Some useful constructs are summarized as follows:

19.2 Working with the display 255

Constants

Clear a rectangular area

CONST fgnd = Display.white; bkgnd = Display.black;

Oberon.RemoveMarks(X, Y, W, H);
Display.RepIConst(bkgnd, X, Y, W, H, Display.replace);

Draw a filled rectangle Display.RepIConst(fgnd, X, Y, W, H, Display.replace);

Display.RepIConst(fgnd, X, Y, L, 1, Display.replace);

Display.RepIConst(fgnd, X, Y, 1, H, Display.replace);

Display.RepIConst(fgnd, X, Y, 1, 1, Display.replace);

Display.CopyPattern(fgnd, pat, X, Y, Display.invert);

Draw a horizontal line of length L

Draw a vertical line of height H

Draw a dot at X, Y

Draw a pattern and remove it
afterwards

Mark a rectangular selection and
remove it afterwards

Display.CopyPattern(fgnd, pat, X, Y, Display.invert);

Display.RepIConst(fgnd, X, Y, W, H, Display.invert);

Write a character ell in a font tnt. The
previous character is at X, Y

Display.RepIConst(fgnd, X, Y, W, H, Display.invert);

Display.GetChar(fnt.raster, ch, dx, x, y, w, h, pat);
Display.CopyPattern(fgnd, pat, X + x, Y + y, Display.invert);

Foreground/
background color

The named constant bkgnd denotes the background color and fgnd the
foreground color. If the monitor operates in normal mode, then the
foreground color is white and the background color is black; thus:

fgnd = Display.white and bkgnd = Display.black

If the monitor is set to reverse video mode, the opposite is the case.
Note: The drawings in this book assume reverse video mode;

that is, the characters are drawn in black on a white background.
On the monochrome monitor, any value col> a will print in the

foreground color. Our particular choice, fgnd = Display. white, yields
proper black background and a white foreground on a color monitor,
provided the standard color palette is in use.

Raster operations The basis for programming the display are the following procedures:

• Display.ReplConst: to draw a dot, a line and a rectangle.

• Display.ReplPattern: to fill a rectangle with a pattern.

• Display.CopyPattern: to copy a pattern (such as a character) to a
given position.

• Display.CopyBlock: to copy a rectangle on the display to a new
location.

• Fonts. This(name): to initialize a font.

• Display.GetChar: to obtain the pattern of a given character from a
font.

256 Programming viewers and frames

Rules When using procedures from the module Display, always ensure that:

• the parameters Wand H in the definition of the destination are
positive integers;

• no raster operations are performed outside the defined
pixelmaps;

• cursors and marks (such as selection and caret) are cleared
before writing in replace or paint mode (see discussion later.)

19.2.2 Drawing and removing mark patterns

Drawing marks Animated marks such as the mouse cursor, the pointer or the caret
playa fundamental role in the design of graphical user interfaces. To
implement such moving marks, a method is needed to draw and
remove the mark pattern. The invert mode provides a simple solution:

(1) Draw the pattern (here an arrow) at the position Xl, Yl:

Display.CopyPattern(fgnd. Display.arrow. X1. Y1. Display.invert)

~c
X1, Y1

(2) Remove (fade) the pattern at the same position Xl, Yl and
recover the original display:

Display.CopyPattern(fgnd. Display.arrow. X1. Y1. Display.invert)

6····

X1, Y1

(3) Draw the pattern at a new location X2, Y2:

Display.CopyPattern(fgnd. Display.arrow. X2. Y2. Display.invert)

19.2 Working with the display 257

~c
X2,Y2

Removing marks It is clear that this method only works if the display within the rec­
tangle of the pattern does not change between steps 1 and 2. Assume
that the mouse cursor is visible in a frame F. Now, the area of F is
cleared with a call to Display. ReplConst(bkgnd, F.X, F. Y, F. W, F.H,
Display. replace.) Then, at the instance of the next track message, a ghost
image of the cursor is created which will stay on the display.

It is, therefore, compulsory that all marks be cleared prior to
changing the display in replace or paint mode. This is achieved with
the following procedures:

• Oberon. RemoveMarks(X, Y, W, H): remove mouse cursor and
pointer in the rectangular area X, Y, W, H.

• TextFrames.RemoveCaret(F): remove the caret from text frame F

• TextFrames.RemoveSelection(F): remove the selection from text
frame F.

Note: Writing in invert mode does not require removal of marks such as
the mouse cursor, star-shaped marker, selection and caret.

19.2.3 Programming patterns

Bitmapping

Patterns have to be built using the binary representation of standard
data types. The first byte is interpreted as a SHORTINT denoting the
pattern's width, the second byte is taken likewise as the pattern's
height. The bits that follow are the pattern's bitmap rendered row­
wise, left to right from the bottom up.

The mapping from low- to high-order bits to corresponding left to right
positions in the pattern is hardware dependent. In the following two
examples, we assume that the low-order byte is first in the address
space and similarly the low-order bit is first within a byte. Thus, IX
puts a foreground pixel in the leftmost position of a row of eight pixels
and 80X puts a foreground pixel in the rightmost position, respect­
ively.1 Hardware using the reverse mapping is also common.

1 This is the mapping used on Ceres on which the examples were developed.

258 Programming viewers and frames

Pattern as an
array of bytes

Cross-beam
marker

As an illustrative example, let us generate the pattern of a cross­
shaped pattern which may be used for a cursor, for example:

Odd bytes

Bit a Bit 7

1 •

~ ~
Bit a Bit 7

Even bytes

We will build the pattern from an array of bytes:

PROCEDURE InitCross(VAR Xpattern: Display. Pattern);
VAR

X: ARRAY 32 OF SYSTEM.BYTE;
j: INTEGER;

BEGIN
X[O] : = 16;
X[1]:= 15;
i:= 2;
WHILE i < 32 DO

(* Width of pattern *)
(* Height of pattern *)

IF ODD[i] THEN Xli] : = 1 X; (* Vertical beam pixels *)
ELSE Xli] : = OX;
END;
INC(i)

END;
X[16]:= OFEX; X[17]:= OFFX; (* Horizonticrossbeam *)
Xpattern : = SYSTEM.ADR(X)

END InitCross;

We are now ready to present the program text of a module which
exports a marker using the cross-pattern. The marker is an abstraction
of a pattern used by cursors. It consists of a record with two procedure
fields, Draw and Fade. The procedure assigned to Draw produces the
cursor pattern at a given location; the one held in Fade removes it and
restores the original display content.

Using the technique based on the invert mode, we obtain the
following:

Pattern as an
array of SET

19.2 Working with the display 259

MODULE Marks;

IMPORT Oberon, Display;

VAR
Xpattern: Display. Pattern; (* Cross pattern for marker *)
Cross*: Oberon.Marker; (* The exported marker *)
left. top: INTEGER;

PROCEDURE InitCross(VAR Xpattern: Display. Pattern);
BEGIN

(* See above *)
END InitCross;

PROCEDURE DrawFade*(X, Y: INTEGER);
BEGIN

IF X < left THEN X : = left END; IF X> right THEN X: = right END;
IF Y < bot THEN Y : = bot; IF Y > top THEN Y: = top END;
Display.CopyPattern(Display.white, Xpattern, X - 8, Y - 7, Display.invert)

END DrawFade;

BEGIN
left: = Display. Left + 8; right: = Display. Left + Display.Width - 8;
bot: = Display. Bottom + 8; top: = Display. Bottom + Display.Height - 8;
In itCross(Xpattern);
Cross.Fade : = DrawFade; Cross.Draw: = DrawFade

END Marks.

Note the tests in procedure DrawFade. They insure that the pattern is
fully contained in the primary monochrome map. Their omission
would lead to addressing exceptions if the cursor moves to the bound­
aries. A cross-shaped mouse cursor can be drawn with:

Oberon.DrawCursor(Oberon.Mouse, Marks.Cross, X, Y)

There is a different way to specify a pattern using an array of SET.
Again, the method is hardware and to some extent compiler depend­
ent. Typically, a variable of type SET is a 32-bit word. This time, we
define a checkerboard pattern useful as background shading.

Right
31 in X[1]

X[O] --r 1--X[11 •••••••••••••••

o in X[O]
Left

260 Programming viewers and frames

Dashed lines

TYPE
Pattern = RECORD

filler: INTEGER; (* To obtain proper alignment of wand h fields *)
w: SHORTINT; (* Pattern width *)
h: SHORTINT; (* Pattern height *)
X: ARRAY 2 OF SET

END;
VAR

P: Pattern;
Checkerboard: Display. Pattern;

P.W : = 16; (* See recommendation in Chapter 12 *)
P.h:= 2;
X[O]:= {0,2,4,6,8, 10, 12, 14, 16, 18,20,22, 24,26,28,30};
X[l] := {1, 3, 5, 7, 9,11,13,15,17,19,21,23,25,27,29,31};
Checkerboard:= SYSTEM.ADR(P + 2);

Specifying a pattern as an ARRAY OF SET has the advantage that
individual bits can be easily set using their position.

If a line is drawn using:

Display. RepIPattern(fgnd, Checkerboard, X, Y, W, 1, Display.replace)

a finely dashed horizontal line is drawn. Other dashing can be easily
generated.

19.2.4 Basic techniques

Marking a
selection

Drawing a
viewer frame

In this section, we will show how to mark a selected object in reverse
video, how to draw a viewer frame and how to write text.

The method used to render a selection in reverse video is similar to the
ones discussed for drawing and fading a marker.

Suppose that the object to be selected is contained in the rec­
tangle X, Y, Wand H. Then, a selection is set, as well as removed, by
means of a call to:

Display.RepIConst(fgnd, X, Y, W, H, Display.invert)

The following procedure is an example of how Display.ReplConst is
used to draw lines and rectangles. A viewer frame is produced.

Writing text

19.2 Working with the display 261

x, Y

PROCEDURE DrawViewerFrame(X, Y, W, H: INTEGER);
CONST

bkgnd = Display.black;
fgnd = Display.white;
barH=14;
replace = Display.replace;

BEGIN
Oberon.RemoveMarks(X, Y, W, H); (* Clear mouse and pointer *)
Display.RepIConst(bkgnd, X, Y, W, H, replace); (* Clear area *)
Display.RepIConst(fgnd, X, Y, 1, H, replace); (* Left *)
Display.RepIConst(fgnd, X + W, Y, 1, H, replace); (* Right *)
Display.RepIConst(fgnd, X + 1, Y, W - 2, 1, replace); (* Bottom *)
Display.RepIConst(fgnd, X + 1, Y + H - barH, W - 2, barH, replace)

END DrawViewerFrame;

Observe that cursors must first be removed prior to writing in
replace mode. The first statement fills the viewer area with the back­
ground color.

Horizontal lines are rectangles of height 1 drawn by the pro­
cedure Display.ReplConst as shown by the bottom edge. Vertical lines
are analogously rectangles of width 1.

Display managers often write text characters. The method is always the
same:

• Open the appropriate font fnt usingfnt := Fonts. This(name).

• Obtain the pattern of character ch with Display.GetChar(fnt, ch,
dx, x, y, w, h, pattern).

• Display the pattern by means of Display.CopyPattern(fgnd, pat­
tern, X + x, Y + y, Display. invert) where X and Yare the writing
coordinates.

• Determine the new x coordinate X:= INC(X, dx).

Details are visible in the following example of a procedure WriteStretch
which writes a stretch [beg, end) of text txt to the screen, using font fnt,

262 Programming viewers and frames

starting at position X, Y with left margin at Xleft, right margin Xright
and line spacing lsp. It is assumed that the text is displayed line-wise
with carriage return control characters (ODX) forcing line breaks.

PROCEDURE WriteStretch(txt: Texts.Text; beg, end: LONGINT;
fnt: Fonts.Font; X, Y: INTEGER;
Xleft. Xright. Isp: INTEGER);

CONST
fgnd = Display.white; CR = ODX;

VAR
ch: CHAR; (* Character to be written *)
pat: Display.Pattern; (* Pattern of character to be written *)
dx, x, y, w, h: INTEGER; (* Font metric data *)
R: Texts.Reader;
i: LONGINT;

BEGIN
(* Precondition: writing area is cleared *)
Texts.OpenReader(R, txt, beg);
Texts.Read(R, ch); (* Read first character *)
i:= beg;
WHILE i < end DO

REPEAT
Display.GetChar(fnt.raster, ch, dx, x, y, w, h, pat);
IF (X + dx) < Xright THEN

Display.CopyPattern(fgnd, pat. X + x, Y + y, Display.invert)
END;
INC(X, dx); (* Determine new X for next character *)
Texts.Read(R, ch); (* Read next character *)
INC(i)

UNTIL ch = CR;
Y:= Y -Isp;
X:= Xleft;
Texts.Read(R, ch);
INC(i)

END;
END WriteStretch;

(* Decrement y coordinate of base line *)
(* Set x coordinate to left-hand side margin *)

In the call to Display.CopyPattern, invert mode is used. This is advan­
tageous in the sense that the text will also properly be written in areas
of foreground color, such as the title bar drawn in DrawViewerFrame.

Writing a stretch of text in this manner is typical of actions of
the display manager in response to update messages. The determin­
ation of the starting position, clearing the writing area and finding
the minimum extent that actually needs rewriting may be quite in­
volved.

19.2 Working with the display 263

19.2.5 Operating directly on the pixelmap, saving the pixelmap

Copy pixelmap
to normal
memory

Accessing the
pixelmap as array

Address
computation

Using functions of module SYSTEM, it is possible to write directly into
the pixelmaps, to copy portions of the video RAM to normal memory
or write it to disk.

The following procedure copies the primary monochrome pixelmap to
normal memory:

CONST DH = Display.Height; DW = Display.Width;

TYPE
Bitmap = POINTER TO BitmapArray;
BitmapArray = ARRAY DH, (DW DIV 8) OF SYSTEM. BYTE;

PROCEDURE CopyMap(S: Bitmap);
VAR A: LONGINT; D: Bitmap;
BEGIN

A: = Display.Map(Display.Left); (* Base address of map *)
D : = SYSTEM.v AL(Bitmap, A); (* Convert A into pointer type Bitmap *)
S i : = D i (* Copy operation *)

ENDCopyMap;

Note the deteferencing operators in the statement which copies the
array. Without them, only the pointer would be assigned.

In the current implementation of Oberon, arrays are stored row-wise.
Knowing this, it is possible to access the pixelmap directly.

Let D denote a bitmap pointer obtained in the same way as in
the foregoing example. Then, D[i, j] is a byte which holds eight pixel
values which have common y coordinate y = DH - i - 1. The pixels in
D[i, j] start at x = j * 8.

Another technique which allows Hie setting of individual bits
directly is to define the bitmap array as an ARRAY OF SET. For this, it
is necessary to know that sets are stored in 32-bit words. Thus:

TYPE Bitmap = ARRAY DH, (DW DIV 32) OF SET;

Operations such as copying part of the pixelmap to normal memory
require that the user performs explicit address computations. The
function SYSTEM. VAL allows conversion of the type LONGINT to
pointer types and vice versa.

Also, working on bitmaps may be computing time-intensive.
Using the function SYSTEM.MOVE instead of explicit loops over
arrays usually yields considerable savings.

264 Programming viewers and frames

Caution: Using the functions of module SYSTEM to avoid type
rules and to perform direct address computations is machine specific
and not type save. Extreme care must be exercised.

19.2.6 Design for freedom from flicker

The display strategy used in updating the screen has a crucial effect on:

• response times;

• flicker (short blanking of information already displayed.)

Flicker is quite annoying and, for optimal performance, both measures
must be carefully tuned. While response time improves with advance­
ments in hardware, flicker does not. Design for freedom of flicker
really pays off as the standard text viewers amply demonstrate.

The following rules should be followed:

• Do not redraw any valid parts of the display.

• If a rectangular area shows valid data, except for its position, use
a block move rather than redrawing the area.

• Generate a complex display in the secondary display map and
utilize a block move on its completion.

Use of the secondary map is shown in the following over-simplified
example. We draw a horizontal line, emanating atXl, Yl with length L
enclosed in a rectangle X, Y, W, H.

(* Transform y coordinates to secondary map *)
Ybot : = Y + Display.Ubottom;
Y1 bot: = Y1 + Display. Ubottom;

Display.RepIConst(bkgnd, X, Ybot. W, H, Display.replace);
(* Clear rectangle *)

Display.RepIConst(fgnd, X1, Y1 bot. L, 1, Display.replace); (* Draw line *)

(* Move viewer frame to primary map *)
Display.CopyBlock(X, Ybot, W, H, X, Y, Display.replace);

Note: Ubottom is negative.

19.3 Handler for a viewer

A handler intended to be installed in a viewer must process the
following:

19.3 Handler for a viewer 265

• Messages originating in modules Viewers and Oberon .

• Update messages corresponding to document types displayed
by the viewer.

19.3.1 Model of a viewer handler

The following program skeleton shows the structure of a model hand­
ler. All messages of the outer core are listed in the model handler. The
comments indicate what action is expected if the handler follows the
recommendations of the Oberon user interface.

This handler is exported by a module which implements a
viewer. This module defines the abstract data type Viewer which is an
extension of Viewer. Viewer.

TYPE
Viewer = POINTER TO ViewerDesc; (* The viewer type of this

viewer class *)
ViewerDesc = RECORD

(Viewers Viewer)
(* Further state variables of viewer class *)

END

PROCEDURE Handler*{V: Display.Frame; VAR: M: Display.FrameMsg);
CONST right = 0; middle = 1; left = 2; (* Mouse keys *)
VAR

Vcopy: Viewer; (* Used to copy viewer *)
(* Declaration of other local variables *);

BEGIN
WITH V: Viewer DO

IF M IS Oberon.lnputMsg THEN
(* A mouse or keyboard event occurred *)
WITH M: Oberon.lnputMsg DO

IF M.id = Oberon.consume THEN
(* Keyboard input occurred, M.ch contains the read character.
Interpret the character as a command or insert it into a text or
caption *)

ELSIF M.id = Oberon.track THEN
(* A mouse event occurred. The mouse coordinates are in M.x
and M.Y. The mouse keys are contained in field M.keys *)
Oberon.DrawCursor{Oberon.Mouse, Oberon.Arrow, M.X, M.Y);

END
END

266 Programming viewers and frames

ELSIF M IS Oberon.ControlMsg THEN
WITH M: Oberon.ControlMsg DO

IF M.id = Oberon.defocus THEN
(* Focus was taken away as a result of a call to
Oberon.PassFocus. Remove caret *)

ELSIF M.id = Oberon.neutralize THEN
(* ESC key pressed. Remove all marks such as pointer, caret and
selections *)

ELSIF M.id = Oberon.mark THEN
(* SETUP key pressed, place star-shaped marker *)
OberonDrawCursor(Oberon.Mouse, Oberon.Arrow, M.X, M.Y);
OberonDrawCursor(Oberon.Pointer, Oberon.Star, M.X, M.Y)

END
END

ELSIF M IS Oberon.SelectionMsg THEN
WITH M: Oberon.SelectionMsg DO

(* Oberon.GetSelection was called. The handler must report the
most recent selection in the fields of the message *)
IF ... (* There is a selection and the time of selection> M.time *)

THEN
M.text : = ... ; (* The text which contains the selection *)
M.beg : = ... ; (* Beginning of selected stretch *)
M.end : = ... ; (* End of selected stretch *)
M.time : = .,. (* Time of the selection *)

END
END

ELSIF M IS Oberon.CopyMsg THEN
WITH M: Oberon.CopyMsg DO

(* A copy of the handler's viewer is requested, typically by the
commands System.Copy and System.Grow. The state of the copy
must be 0 (closed). The copy is returned in the field M.F of the
message *)
NEW(Vcopy); ,
Vcopy : = ... ; (* Copy structure of viewer V *)
Vcopy.state : = 0; (* Closed *)
M.F:= Vcopy

END
ELSIF M IS Oberon.CopyOverMsg THEN

WITH M: Oberon.CopyOverMsg DO
(* Insert stretch [M.beg, M.end) of text M.text at the caret location *)

END
ELSIF M IS ViewersViewerMsg THEN

WITH M: ViewersViewerMsg DO
(* The display configuration changed. The viewer manager informs
about changes to be made. The frame of V is still the old one. The

19.3 Handler for a viewer 267

message contains the nature of the change. When control returns,
the viewer manager will set V.x, V.Y, V.W and V.H to the new
values *)
IF M.id = Viewers. restore THEN

(* An overlay track was closed or a new viewer placed on the
display. Restore display of the viewer in its old boundary given by
V.X, V.Y, V.W, W.H *)

ELSIF M.id = Viewers.modify THEN
(* The frame of the viewer will be changed at the bottom. The
message contains the new y coordinate and the new height in
M.Y and M.H. Adjust the display at bottom of the new frame
given by V.X, M.Y, V.W, M.H *)

ELSIF M.id = Viewers.suspend THEN
(* The viewer will be suspended due to an overlay track
(V.state < 0) or closed V.state = O. Release data structure of
display descriptors and perform possible save operations; for
example, of a pixel map *)

END
END

ELSIF M IS X.UpdateMsg THEN
WITH M: X.UpdateMsg DO

(* Process update message'from module X. This viewer displays an
instance of an abstract data type exported by X *)

END
ELSIF M IS y'UpdateMsg THEN (* Further update message types *)
END

END (* WITH V: Viewer *)
END Handler;

19.3.2 Example: handler of the filler viewer

From the point of view of the Oberon system, there is no mandatory
response. In fact, if a handler did nothing, other viewer classes would
still function. However, in the rectangular frame of a viewer with such
a minimalist handler, the display of viewers which previously held the
space would remain on the display and the mouse cursor would stop at
the boundary. As a minimum, therefore, the handler should blank
its frame, set the pointer and track the mouse cursor. Such a mini­
mal handler is assigned to the filler viewers installed in tracks by
Oberon. Open Track. Our next and only example of a handler, intended
for a viewer, lists the program text for such a filler handler.

268 Programming viewers and frames

PROCEDURE FilierHandler*(V: Display.Frame;
VAR M: Display.FrameMsg);

CONST black = Display.black; repl = Display.replace;
BEGIN
WITH V: ViewersViewer DO

IF M IS Oberon.lnputMsg THEN
WITH M: Oberon.lnputMsg DO

IF M.id = Oberon.track THEN
(* Track mouse cursor *)
Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, M.X, M.Y)

ELSIF M.id = Oberon.mark THEN
(* Place pointer *)
OberonDrawCursor(Oberon.Pointer, Oberon.Star, M.X, M.Y)

ELSIF M.id = Oberon.neutralize THEN
(* Remove mouse cursor and pointer *)
Oberon.RemoveMarks(V.X, V.Y, V.W, V.H)

END
END

ELSIF M IS ViewersViewerMsg THEN
WITH M: ViewersViewerMsg DO

IF (M.id = Viewers.modify) & (M.Y < V.Y) THEN
(* The frame of filler viewer will expand at the bottom, blank new
area *)
Oberon.RemoveMarks(V.x, V.Y, V.W, V.H);
Display.RepIConst(black, V.X, M.Y, V.W, V.Y - M.Y, repl)

ELSIF (M.id = Viewers.restore) & (V.H > 0) THEN
(* The filler viewer is of height other than 0 and is restored. Blank
viewer area *)
Oberon. RemoveMarks(V.X, V.Y, V.W, V.H);
Display.RepIConst(black, V.x, V.Y, V.W, V.H, repl)

END
END

END
END (* WITH V: ViewersViewer *)
END FilierHandler;

19.4 Handler for a frame to be installed in a menu
viewer

Module Menu Viewers provides facilities which greatly ease the task of
programming a standard Oberon viewer. The client of MenuViewers
has to provide an abstract data type - typically called Frame - which
extends base type Display.Frame. Such a frame is an active object with a

19.4 Handler for a frame to be installed in a menu viewer 269

handler which is similar to the handler of a viewer, except for the
following:

• Messages of type MenuViewers.ModifyMsg supersede the viewer
messages (of type Viewers. ViewerMsg.)

• No message of type Oberon.ControlMsg with id = Oberon.mark
has to be processed (the pointer is set by the menu viewer.)

Like the handler for a viewer proper, the handler for a frame interprets
all mouse and keyboard events within its frame and writes everything
visible on the display.

The menu viewer is composed of two frames: the menu frame
and the main frame. The menu viewer's handler and the frame hand­
lers work in tandem as rendered in the following diagram.

Oberon
loop

en
Q)
0)

rn "eC::J .' en r_'().'1J ••••
Q) r>9 ••••
E ~v .'
c ~e'
e ~\e ••••••
jg: ••••••

o,~··

Handler of
menu viewer

Update
messages

Handler of
menu frame

Handler of
main frame

Track

Main frame

The handler of the menu viewer manages the two subframes;
that is, it assigns their frame boundaries when the display configura­
tion changes, either because the title bar is moved or because a
viewer's modify message is received. For this purpose, it sends mes­
sages of type MenuViewers.ModifyMsg to the frame handler. Most other
messages are simply passed from the viewer handler to the frame
handlers.

270 Programming viewers and frames

19.4.1 Model of a frame handler

The program structure of a frame handler is similar to the structure of
the viewer handler as shown in the following model. The module
which exports the handler also defines the abstract data type Frame.

TYPE
Frame = POINTER TO FrameDesc; (* The frame type of this viewer

class *)
FrameDesc = RECORD

(Display.FrameDesc)
(* Further state variables of viewer class *)

END

PROCEDURE Handler*(F: Display.Frame; VAR: M: Display.FrameMsg);
CONST right = 0; middle = 1; left = 2; (* mouse keys *)
VAR

Fcopy: Frame; (* Used to copy frame *)
(* Declaration of other local variables *);

BEGIN
WITH F: Frame DO

IF M IS Oberon.lnputMsg THEN
(* A mouse or keyboard event occurred *)
WITH M: Oberon.lnputMsg DO

IF M.id = Oberon.consume THEN
(* Keyboard input occurred. M.ch contains the read character.
Interpret the character as a command or insert it into a text or
caption *)

ELSIF M.id = Oberon.track THEN
(* A mouse event occurred. The mouse coordinates are in M.X
and M.Y. The mouse keys are contained in field M.keys *)
OberonDrawCursor(Oberon.Mouse, Oberon.Arrow, M.x, M.Y);

END
END

ELSIF M IS Oberon.ControlMsg THEN
WITH M: Oberon.ControlMsg DO

IF M.id = Oberon.defocus THEN
(* Focus was taken away as a result of a call to
Oberon.PassFocus. Remove caret *)

ELSIF M.id = Oberon.neutralize THEN
(* ESC key pressed. Remove all marks suc~inter, caret and
selections *)

END
END

The owning
menu viewer

79.4 Handler for a frame to be installed in a menu viewer 271

ELSIF M IS Oberon.SelectionMsg THEN
WITH M: Oberon.SelectionMsg DO

(* Oberon.GetSelection was called. The handler must report the
most recent selection in the fields of the message *)

END
ELSIF M IS Oberon.CopyMsg THEN

WITH M: Oberon.CopyMsg DO
(* A copy of the handler's frame is requested, typically by the
commands System.Copy and System.Grow. The copy is returned in
the field M.F of the message *)
NEW(Fcopy);
Fcopy : = ... ; (* Copy structure of viewer V *)
M.F := Fcopy

END
ELSIF M IS Oberon.CopyOverMsg THEN

WITH M: Oberon.CopyOverMsg DO
(* Insert stretch [M.beg, M.end) of text M.text at the caret location *)

END
ELSIF M IS MenuViewers.ModifyMsg THEN

WITH M: MenuViewers.ModifyMsg DO
(* The display configuration changed *)
Modify(F, M) (* See below *)

END
ELSIF M IS X.UpdateMsg THEN

WITH M: X.UpdateMsg DO
(* Process update message from module X. This viewer displays an
instance of an abstract data type exported by X *)

END
ELSIF M IS Y.UpdateMsg THEN (* Further update message types *)
END

END (* WITH F: Frame *)
END Handler;

The frame handler interprets Oberon and updates messages to pro­
duce the desired mouse and keyboard semantics. Typically, the
requirements of the Oberon interface have to be implemented.

It is sometimes necessary to gain access to the menu viewer which
manages a frame F. This viewer is the value of the function:

Viewers.This(F.X. F.Y)

Typical uses are:

272 Programming viewers and frames

Setting the caret
in a text frame

Oberon copy
message

• To request that the focus be passed to the viewer managing the
frame F (its ancestor) by means of:

Oberon.PassFocus(Viewers.This(F.x, F.Y));

• To assign the field vwr in an Oberon parameter list par; that is:

par.vwr:= Viewers.This(F.X, F.Y);

If F is a text frame installed in a menu viewer V, then the caret is set at
position pas as follows:

Oberon.PassFocus(Viewers.This(F.X, F.Y));
TextFrames.SetCaret(F, pos);

The two procedures called in this order make sure that the caret is
unique within a menu viewer. To see why, we have to distinguish
three cases:

(1) V is not the focus viewer. The first statement passes the focus to
Vand frame F sets the caret. Hence, the caret is unique in F.

(2) V is the focus viewer and the caret is in the other subframe. V
receives a defocus message which is passed to both subframes.
Thus, prior to F setting the caret, it is removed in the other sub­
frame.

(3) V is the focus viewer and frame F has a caret set. It is removed as
in step 2 prior to being set at the new position pas.

Following an operation which changes the text of F, the caret must be
moved (see, for example, procedure Write in Section 19.3.)

When a frame, not currently visible, is to be displayed, the owning
menu viewer sets its frame to height 0 and sends an appropriate extend
message. It follows from this that the copy to be returned in the copy
message must also be of height O. For example, a text frame produces
its copy as follows:

PROCEDURE CopyFrame(F: TextFrames.Frame;
VAR M: Oberon.CopyMsg);

VAR Fcopy: TextFrames.Frame;
BEGIN

NEW(Fcopy);
TextFrames.Open(Fcopy, F.handle, F.text. F.org, F.col, F.left. F.right.

M.F : = Fcopy
END CopyFrame;

F.top, F.bot. F.lsp);

19.4 Handler for a frame to be installed in a menu viewer 273

The use of TextFrames.Open makes sure that the copy frame is of height
o and does not possess such properties as a selection or a caret. Fcopy is
opened with exactly the same document (F. text) and all other proper­
ties of F.

19.4.2 Processing the modify message

The only reason for the existence of module Menu Viewers is to make the
task of implementing standard Oberon viewers easier. For this purpose,
the fields of the modify message are chosen such that a simple and
standardized treatment is possible under the following assumptions:

(1) When the frame is repositioned, the objects which are already
displayed keep their size and shape exactly.

(2) When the frame is repositioned, the document coordinate dis-
played in the upper left corner of the viewer stays fixed.

These assumptions are quite natural and are satisfied in the majority of
cases. They allow a reduction of the essential procedures from four to
just two - extend at the bottom of the frame and reduce at the bottom of the
frame.

The following diagrams show the principle behind this reduc­
tion. F denotes the frame as it existed prior to the change and which is
passed to the handler. The modify message has the fields Y, the new y
coordinate of the lower left corner, H, the new height, and dY, a shift of
the frame.

(1) An extend message with dY = 0 reports the basic event extend at
the bottom. The new area is cleared and objects which will become
visible in the larger area are drawn.

F.H

M.H

F.W

F.X, F.Y L-------J..oo-__ - M.Y

(2) A reduce message with dY = 0 reports the basic event reduce at the
bottom. Objects which will only be partially visible after reduction
must be either cleared or adjusted (for example, in the standard
editor, a partially visible text line is deleted.)

274 Programming viewers and frames

M.H

F.H
L-----------'-' ... ~I- M.Y

F.W

F.X, F.Y

(3) An extend message with dY > 0 reports a shift followed by the
pure extend at the bottom. The frame is shifted up, its y coordinate
transformed and the descriptors of all visible objects are adjusted.
Then, an extend at bottom is performed on the shifted frame.

F.H

F.W

F.X, F.Y

M.H

~y
L-----__w_-----'-'...r M.Y

(4) A reduce message with dY > 0 reports a pure reduce at the bottom
followed by a shift. First, the reduction is performed in the old
frame. Then, the frame is shifted down by dY. The descriptors of
the visible objects are adjusted.

Y

F.H

M.H

~dY

F.W :'L _______ ~-- M.Y

F.X, F.Y

Modify

Expand

Reduce

79.4 Handler for a frame to be installed in a menu viewer 275

The four cases just discussed are treated by the generic procedure
Modify, which is the same for all frame classes:

PROCEDURE Modify(F: Frame; VAR M: MenuViewers.ModifyMsg);
CONST repl = Display.replace;
BEGIN

IF M.id = MenuViewers.extend THEN
IF M.dY > 0 THEN

(* Shift existing frame upwards *)
Display.CopyBlock(FX F.Y, F.W, F.H, F.X, F.Y + M.dY, repl);
F.Y: = F.Y + M.dY;
TransformDisplayDescriptors(F, M.dY)

END;
Extend(F, M.Y)

ELSIF id = MenuViewers.reduce THEN
Reduce(F, M.Y + M.dY);
IF M.dY > 0 THEN

(* Shift existing frame downwards *)
Display.CopyBlock(F.x, M.Y + M.dY, F.W, M.H, F.X, M.Y, repl);
TransformDisplayDescriptors(F, - M .dY);

END
END

END Modify;

Note: Block copy operations are used to shift the existing display
efficiently. It is not necessary to set F. Y and F.H; this will be done by
the handler of the menu viewer.

Modify works with the following three procedures which are
frame specific.

PROCEDURE Expand(F: Frame; newY: INTEGER);

Expands frame F at the bottom. The type of F is given by the frame
class. The actual parameter M. Y is passed to the formal parameter
newY.

The actions of Expand are:

• To clear the expanded area defined by the rectangle F.X, M. Y,
F.W, F.Y - M.Y .

• To draw objects which are visible in the expanded area.

PROCEDURE Reduce(F: Frame; newY: INTEGER);

Reduces frame F at the bottom. The type of F is given by the frame
class. The actual parameter M. Y is passed to the formal parameter
newY.

276 Programming viewers and frames

Transform­
Display­
Descriptors

Normally, certain objects will no longer fit fully in the reduced
frame. Three strategies may be employed:

(1) Partially visible objects are cleared from the display.

(2) Partially visible objects are adjusted such that they fit the
reduced frame.

(3) Partially visible objects are inactivated but the screen is not
updated.

The last strategy is the most responsive and is plagued with least
flicker. However, it produces 'bodies' which have to be cleared after a
while with an explicit restore command.

PROCEDURE TransfarmDisplayDescriptars(F: Frame; dY: INTEGER);

The type of F is given by the frame class.
It is typical that the objects which are visible in a frame are

defined through a list of display descriptors. For example, in the
standard editor, each line has a line descriptor. In graphics programs,
there are descriptors for lines, circles, rectangles etc.

The task of TransformDisplayDescriptors is to traverse the data
structure of display descriptors attached to frame F and transform any
y coordinate measured in absolute screen coordinates according to the
statement:

Y:= Y+dY

19.4.3 Reusing a frame handler

Often, a user wishes to change a viewer class only slightly. In such a
case, he or she may be able to extend an existing handler. The new
handler interprets the messages whose semantics have changed and
calls the old handler with the rest of the messages.

For example, assume that we wish to move the caret with the
arrow keys. We need to know the code which the keyboard produces
when one of the arrow keys is hit. We then process the consume
message with this code outside the normal handler TextFrames.Handle.
Our modified handler is:

PROCEDURE MyHandler*(F: Display.Frame; VAR: M: Display.FrameMsg);
CONST

Left = OC4X; Right = OC3X; Up = OC1 X; Dawn = OC2X; (* see Appendix *)
VAR pas: LONGINT;

19.5 Handling mouse events, the track message 277

BEGIN
WITH F: TextFrames.Frame DO

IF MIS Oberon.lnputMsg THEN
WITH M: Oberon.lnputMsg DO

IF M.id = Oberon.consume THEN
IF F.car > 0 THEN (* A caret is set *)

IF M.ch = LeftTHEN
T extFrames. RemoveCaret(F);
TextFrames.SetCaret(F, F.carloc.pos - 1)

ELSIF M.ch = RightTHEN
TextFrames. RemoveCaret(F);
TextFrames.SetCaret(F, F.carloc.pos + 1)

END
END

END
END

END;
TextFrames.Handle(F, M); (* Call thenormal handler *)

END (* WITH F: TextFrames.Frame *)
END MyHandler

The user also has to provide his or her own open command which will
install the modified handler.

19.5 Handling mouse events, the track message

Within the program text of the handler, processing mouse events is
usually the most complicated part. Viewer classes define a variety of
mouse commands. Recall the mouse editing commands of the stand­
ard editor which use single and interclick events and which even differ
depending on whether the mouse is in the scroll bar or in the editable
text. This section treats techniques of handling the mouse and decod­
ing mouse commands.

When the event loop senses a mouse movement or key press, it
sends a track message M to the affected viewer. If it is a menu viewer,
the mouse event is further delegated to the subframe which contains
the mouse cursor (unless it is a 'reposition title bar' command.) We
recapitulate that the term track message means a message of type
Oberon.lnputMsg with M. id = Oberon. track. While the mouse moves or
while a key is pressed, track messages arrive at a fast rate; that is, at the
rate at which the event loop cycles.

The first action in processing a track message M is always to
draw the mouse cursor using the call:

Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, M.x, M.Y);

278 Programming viewers and frames

Note: Oberon.Arrow is the recommended cursor pattern. However,
markers with other patterns may be used; for example, to indicate
modes such as 'draw rectangle mode' in a graphics program.

If a key is pressed, the human operator issues a command. Two
actions are typical:

(1) Clicking: The mouse is stationary and a key is pressed. On
release, a specific action takes place. For example, clicking with
the right key into the scroll bar scrolls to the top of the document.

(2) Dragging: The mouse moves while a key is pressed. During the
move, a continuous action is visible. On release of the key, a
final command is executed. There are many examples in
Oberon; for example, dragging on the middle key underlines
words touched with the cursor and on release the final word is
executed as a command.

In both cases the action takes place on release of all mouse keys.
Oberon track messages state that, at a given time, a mouse key

is either up or down. The handler must find the points in time when
the key state changes.

19.5.1 The tracking loop

An elegant way to do this is as follows. At the first track message with
a key-down indicator, the handler seizes control. A loop, called the
tracking loop, is entered. In this loop, the mouse driver is read directly
and interclick events are recorded. The loop terminates when all three
keys are up again. At this point in time, the final command action is
determined and executed and control reverts to the event loop. An
example of such a tracking procedure is as follows:

PROCEDURE TrackMouse(VAR X, Y: INTEGER; VAR keysum: SET);
VAR keys: SET;
BEGIN

keys: = keysum;
WHILE keys # {} DO

(* There is still a key down *)
Oberon.DrawCursor(Oberon.Mouse, Oberon.Mouse.marker, X, V);

(* Perform some tracking actions *)
Input.Mouse(keys, X, V); (* Read mouse driver *)
keysum : = keysum + keys (* Record possible interclicks in keysum *)

END
(* At the exit keysum records all keys pressed *)

END TrackMouse;

Tracking a
rectangle

Flicker avoidance

79.5 Handling mouse events, the track message 279

TrackMouse is called with actual parameters M.X, M. Y and M.keys,
respectively (where M is the track message.)

It is noteworthy that the actual parameter indicating the marker
of the mouse cursor is Oberon.Mouse.marker, not Oberon.Arrow. This is
to ensure that the tracking procedure works correctly in a viewer or
frame using a non-standard mouse cursor.

After a call to TrackMouse, the variable parameter keysum reports
all mouse keys which were pressed during the tracking operation.
Thus, inspection of keysum allows determination of interclick events.

To give a real example of a tracking loop, we span a rectangle with the
mouse. Such a rectangle may define the selection or a geometrical
object to be drawn. The mouse is placed at the upper left corner, a key
pressed and dragged. The rectangle grows or shrinks in real time as the
mouse defines the diagonal. When all keys are released, the extremal
corners of the rectangle are returned and the tracked outline is
removed.

While spanning a rectangle in real time, it is important only to redraw
those line segments which change. Otherwise, the growing rectangle
flickers in an unpleasant manner. The procedure FlipRect shows thl'
principle.

XO,YO

D
Before execution
of FlipRect

®

®

<V
G) ~

j~

@

X1,Y1 X2,Y2

Six segments are
being inverted

After execution of
FlipRect

In order to allow the spanned rectangle to grow and shrink, an
auxiliary procedure ReplConst is provided, which relaxes the restriction
of Display.ReplConst that the destination always has positive width W
and height H. In the auxiliary procedure, a destination may be defined
from the upper right corner X, Y, for example. In this case, Wand H
are negative integers.

280 Programming viewers and frames

PROCEDURE RepIConst(color, X, Y, W, H, mode: INTEGER);
BEGIN

IFW<OTHENX :=X + W; W:= -WEND;
IF H <OTHEN Y:= Y + H; H:= -H END;
IF (W # 0) &(H # 0) THEN

Display. RepIConst(color, X, y, W, H, mode)
END

EN D ReplConst;

Using the generalized procedure ReplConst, our rectangle will be
grown from the lower left corner (Xl, Yl) to (X2, Y2) by inverting the
six line segments shown in the diagram:

PROCEDURE FlipRect(XO, YO, X1, Y1, X2, Y2: INTEGER);
CONSTfgnd = Display.white;
BEGIN

RepIConst(fgnd, XO + 1, Y1, X1 - XO - 2, 1, Display.invert); (* Segment 1 *)
RepIConst(fgnd, X1 - 1, Y1, 1, YO - Y1, Display.invert); (* Segment 2 *)
RepIConst(fgnd, X1 - 1, YO - 1, X2 - X1, 1, Display.invert); (* Segment 3 *)
RepIConst(fgnd, X2 - 1, Y2, 1, YO - Y2, Display.invert); (* Segment 4 *)
RepIConst(fgnd, XO + 1, Y2, X2 - XO - 2,1, Display.invert); (* Segment 5 *)
RepIConst(fgnd, XO, Y2, 1, Y1 - Y2, Display.invert) (* Segment 6 *)

END FlipRect;

The procedure DragRect uses the described method. The parameters
XO, YO define the initial upper left corner; Xl, Y2 denote the initial
lower right corner; keysum returns all keys pressed during the dragging
action; and X2, Y2 are result parameters yielding the final lower right
corner. The tracking operation is confined to the frame F.

PROCEDURE DragRect(F: Display.Frame; XO, YO, X1, Y1 : INTEGER;
VAR X2, Y2: INTEGER; VAR keysum: SET);

VAR
keys: SET;
x, y: INTEGER;

BEGIN
keys: = keysum;
(* Draw initial rectangle *)
FlipRect(XO, YO, XO + 1, YO - 1, X1 , Y1);

WHILE keys # {} DO
(* Track as long as any key depressed *)
Input.Mouse(keys, x, y);
Oberon DrawCursor(Oberon.Mouse, Oberon.Arrow, x, y);
keysum : = keysum + keys;
X2 : = Min(Max(x, F.x). F.x + F.W); (* Confine X2 to frame F *)
Y2 : = Min(Max(y, F.Y). F.Y + F.H); (* Confine Y2 to frame F *)

19.5 Handling mouse events, the track message 281

IF (X2 # X1) OR (Y2 # Y1) THEN
FlipRect(XO, YO, X1 , Y1 , X2, Y2);
X1 := X2; Y1 := Y2

END
END;
FlipRect(XO, YO, XO + 1, YO - 1, X1, Y1) (* Erase spanned rectangle *)

END DragRect;

Note: The distinction between the mouse position, x, y, and the moving
corner of the rectangle, X2, Y2, is deliberate. While the mouse cursor is
allowed to move over the whole screen, the moving corner of the
tracked rectangle is usually subject to restrictions. In our example,
tracking is confined to the area of frame F.

Whether the whole rectangle being spanned is redrawn or the
techniques of FlipRect are used makes a big difference. An unusually
smooth 'rubberband-like' spanning is achieved if only those parts
which actually change are erased and added.

19.5.2 Different mouse-sensitive areas

We are now in a position to elaborate the part of the handler which
deals with track messages. Normally, a viewer's frame is divided into
areas for which the response to mouse keys differs. In text viewers, for
example, the title bar, the scroll bar and the text region are three
such areas. The following program fragment provides a general frame­
work:

CONST right = 0; middle = 1; left = 2;
IF M.id = Oberon.track THEN

(* A mouse event occurred *)
Oberon.DrawCursor(Oberon.Mouse, Oberon.Arrow, M.X, M.Y);
IF ... (* Mouse coordinates M.x, M.Y are in area 1 *) THEN

IF right IN M.keys THEN
Call TrackMouseOnRightinArea1 (M.x, M.Y, M.keys);
IF (middle IN M.keys) & (left IN M.keys) THEN

(* Mouse action cancelled *)
RETURN

ELSIF middle IN M.keys THEN
... (* Mouse command with middle key interclicked *)

ELSIF left IN M.keys THEN
... (* Mouse command with left key interclicked *)

ELSE
... (* Mouse command without interclicks *)

END

282 Programming viewers and frames

Executing a
command

ELSIF middle IN M.keys THEN
Call TrackMouseOnMiddieinArea1 (M.x, M.Y, M.keys);
IF (right IN M.keys) & (left IN M.keys) THEN

(* Mouse action cancelled *)
RETURN

ELSIF right IN M.keys THEN
... (* Mouse command with right key interclicked *)

ELSIF left IN M.keys THEN
... (* Mouse command with left key interclicked *)

ELSE
... (* Mouse command without interclicks *)

END
ELSIF left IN M.keys THEN

Call TrackMouseOnLeftinArea1 (M.x, MY, M.keys);
IF (middle IN M.keys) & (right IN M.keys) THEN

(* Mouse action cancelled *)
RETURN

ELSIF middle IN M.keys THEN
... (* Mouse command with middle key interclicked *)

ELSIF right IN M.keys THEN
... (* Mouse command with right key interclicked *)

ELSE
... (* Mouse command without interclicks *)

END
END

ELSIF .,. (* Mouse coordinates M.x, M.Y are in area 2 *) THEN
(* Track keys as above *)

ELSIF .,. (* Mouse coordinates M.x, M.Y are in area 3 *) THEN
(* Track keys as above *)

END
END;

In the most general case, a tracking procedure is provided for each area
and each primary key. These tracking procedures follow the example
TrackMouse closely. In practice, the number of tracking procedures is
usually less than three times the number of areas.

To prevent the handler's program text growing too big, the
entire mouse tracking per area or group of areas could be encapsulated
in a procedure. For the standard editor, the tracking procedure is called
TextFrames. Edit.

Whenever the mouse is in an area which displays a text, the mandatory
response to a middle key mouse-up event is the interpretation of
the word found at the mouse location as a command. If the text is

19.6 Example: handler for a text frame 283

displayed in a text frame, the following program excerpt handles
command execution:

where:

IF middle IN M.keys THEN
TextFrames.TrackWord(F, M.x, M.Y, pos, M.keys);
IF -(right IN M.keys) THEN

TextFrames.Call(F, pos, left IN M.keys)
END;

F: TextFrames.Frame; (* The text frame containing the mouse *)
pos: LONGINT;

19.6 Example: handler for a text frame

19.6.1 Introduction

Since text frames are likely to be reused in many applications, we
conclude this chapter by discussing the code for a handler implement­
ing the standard editor. The handler uses the display manager of
module TextFrames and is intended to be installed in frames managed
by a menu viewer.

This section is a tutorial. It shows how the editor is implemented
using the display manager of module TextFrames. Following the des­
cribed techniques, it is easy to change or extend the editor in various
ways.

The following programs are close to those employed in module
TextFrames (author J. Gutknecht.) However, for tutorial reasons, the
subdivision into individual procedures is different.

Recall the rules which should be observed when working with
the display manager of module TextFrames:'

• A caret is only allowed if the viewer which manages F is the
focus viewer.

• When the focus is requested by means of a call to
Oberon.PassFocus(V), any caret which may be visible prior to the
call is removed.

• If a caret is displayed (F.car > 0), it must be removed prior to
using TextFrames. SetCaret.

• Prior to using TextFrames.Show, TextFrames.Extend, Text­
Frames. Reduce, TextFrames.lnsert, TextFrames.Delete and Text­
Frames.Replace, the caret, the selection, the mouse cursor and the
pointer must be removed.

284 Programming viewers and frames

• The text is changed through calls to procedures of module Texts
(the data manager.) This results in a recursive call to the handler
which receives an update message. After control reverts, the
caret must be moved explicitly, if this is required.

19.6.2 Handler implementation

RemoveMarks

TrackMouse

Scroll

MODULE EditFrames;

IMPORT Texts, TextFrames, Display, Oberon, Input, MenuViewers;

CONST
right = 0; middle = 1; left = 2; (* Mouse keys *)
noMark = 0; position Mark = 1 ;
repl = Display.replace;

VAR KeyboardWriter: Texts.Writer;

Removes selection and the caret from text frame F:

PROCEDURE RemoveMarks(F: TextFrames.Frame);
BEGIN

TextFrames.RemoveSelection(F);
TextFrames. RemoveCaret(F)

END RemoveMarks;

Tracks the mouse while any key is pressed. On release of all keys, the
sum of the keys pressed while tracking is reported in keysum. Definite
command action takes place after TrackMouse, depending on the
primary key and interclick keys (see Section 19.5.)

PROCEDURE TrackMouse(VAR x, y: INTEGER; VAR keysum: SET);

Handles the mouse keys when the cursor is in the scroll bar. Note that
all marks must be removed prior to a call to the procedure Text­
Frames. Shaw.

Text is scrolled such that the character at pas will be the first one
displayed where pas is determined according to:

a : H = pas: text .len, a = F. Y + F. H - Y and H = F. H

Select key

19.6 Example: handler for a text frame 285

PROCEDURE Scroll(F: TextFrames.Frame; x, y: INTEGER; keysum: SET);
VAR pos: LONGINT;
BEGIN

IF right IN keysum THEN (* Scroll to top *)
TrackMouse(x, y, keysum);
IF (left IN keysum) & (middle IN keysum) THEN

RETURN (* Interclick command cancelled *)
ELSE

RemoveMarks(F); Oberon.RemoveMarks(F.X, FY, F.W, F.H);
TextFrames.Show(F,O)

END
ELSIF middle IN keysum THEN (* Set position mark *)

T rackMouse(x, y, keysum);
IF (left IN keysum) & (middle IN keysum) THEN

RETURN (* Interclick command cancelled *)
ELSE

pos : = (F.Y + F.H - y) * (F.text.len) DIV F.H;
RemoveMarks(F); Oberon.RemoveMarks(F.X, FY, F.W, F.H);
TextFrames.Show(F, pos)

END
ELSIF left IN keysum THEN (* Scroll down *)

TextFrames.TrackLine(F, x, y, pos, keysum);
IF (pos >= 0) & ~((Ieft IN keysum) & (right IN keysum)) THEN

RemoveMarks(F); Oberon.RemoveMarks(F.x, FY, F.W, F.H);
TextFrames.Show(F, pos) (* Tracked line to top *)

END
END

END Scroll;

Handles the right mouse key when the cursor is in the editable text.
Note the need for the call to Oberon.PassFocus so that the caret can be
displayed at the point where deletion took place. The caret has to be
properly adjusted after each call to Texts. Delete. The operations on the
text of frame F will invoke the handler of F recursively. The update
operation will clear all marks. Hence, no explicit clearing operation is
required prior to TextFrames.SetCaret.

PROCEDURE HandleRightKeylnEditArea(F: TextFrames.Frame;

VAR
text: Texts.Text;
beg, end, time: LONGINT;
M: Oberon.CopyOverMsg;

BEGIN

x, y: INTEGER; keysum: SET);

TextFrames.TrackSelection(F, x, y, keysum);

286 Programming viewers and frames

Execute key

IF F.sel # 0 THEN (* A selection exists *)
IF (left IN keysum) & (middle IN keysum) THEN

RETURN (* Interclick command cancelled *)
ELSIF left IN keysum THEN (* Delete selection *)

Oberon.GetSelection(text, beg, end, time);
Texts.Delete(text. beg, end);
Oberon.PassFocus(Viewers.This(F.x, F.Y));
TextFrames.SetCaret(F, beg)

ELSIF middle IN keysum THEN (* Copy selection to caret *)
(* Send an Oberon copy over message to the focus viewer *)
Oberon.GetSelection(text, beg, end, time);
M.text : = text; M.beg : = beg; M.end : = end;
Oberon.FocusViewer.handle(Oberon.FocusViewer, M)

END
END

END HandleRightKeylnEditArea;

Handles the middle key when the cursor is in the editable text. The
menu viewer which manages frame F is needed to build the parameter
list. It is the value of Viewers. This(F.X, F.Y).

PROCEDURE HandleMiddleKeylnEditArea(F: TextFrames.Frame;

VAR
pas: LONGINT;
par: Oberon.ParList;
S: Texts.Scanner;
res: INTEGER;

BEGIN

x, y: INTEGER; keysum: SET);

TextFrames.TrackWord(F, x, y, pos, keysum);
IF (pos >= 0) & -((left IN keysum) & (right IN keysum)) THEN
(* A valid position found and interclick not cancelled *)

Texts.OpenScanner(S, F.text, pos); Texts.Scan(S);
IF S.class = Texts.Name THEN (* A name found at mouse pos *)

(* Build Oberon parameter list *)
NEW(par);
par.vwr:= Viewers.This(F.x, F.Y); (* The menu viewer *)
par.frame : = F;
par.text : = F.text;
par.pos : = pos + S.len; (* Position immediately after cmd name *)
Oberon.Call(S.s, par, left IN keysum, res);
IF res> 1 THEN

LogOut. Putl nt("call error", res)
END

END
END

END HandleMiddleKeylnEditArea;

Point key

Write

79.6 Example: handler for a text frame 287

Handles the left key when the cursor is in the editable text. After a call
to Oberon.PassFocus, the caret will be removed. Hence, the pre­
condition for TextFrames. TrackCaret is met.

The caret has to be properly adjusted after each call to
Texts. Insert. The operations on the text of frame F will invoke the
handler of F recursively. The update operation will clear all marks.
Hence, no explicit clearing operation is required prior to Text­
Frames. SetCaret.

PROCEDURE HandleLeftKeylnEditArea(F: TextFrames.Frame;

VAR
B: Texts.Buffer;
text: Texts.Text;
beg, end, time: LONGINT;

BEGIN

x, y: INTEGER; keysum: SET);

Oberon.PassFocus(Viewers.This(F.X, F.Y));
TextFrames.TrackCaret(F, x, y, keysum);
IF F.car # 0 THEN (* A caret is set *)

IF (middle IN keysum) & (right IN keysum) THEN
RETURN (* Interclick command cancelled *)

ELSIF middle IN keysum THEN (* Copy selection to caret location *)
Oberon.GetSelection(text, beg, end, time);
IF time> 0 THEN (* A selection exists *)

NEW(B); Texts.OpenBuf(B);
Texts.Save(text, beg, end, B);
Texts.lnsert(F.text, F.carloc.pos, B);
TextFrames.SetCaret(F, F.carloc.pos + (end - beg))

END
END

END
END HandleLeftKeylnEditArea;

Writes a character from the keyboard to the caret location. Deletes
character if DEL is hit.

The caret has to be properly adjusted after each call to
Texts.Insert or Texts. Delete. The operations on the text of frame F will
invoke the handler of F recursively. The update operation will clear all
marks. Hence, no explicit clearing operation is required prior to Text­
Frames. SetCaret.

PROCEDURE Write(F: TextFrames.Frame; VAR M: Oberon.lnputMsg);
CONST DEL = 7FX; (* The ASCII characterfor delete *)

288 Programming viewers and frames

ReportSelection

CopyFrame

CopyOver

BEGIN
IF F.car # 0 THEN (* A caret is set *)

IF M.ch = DEL THEN
IF F.carloc.pos > F.org THEN (* Caret not at origin of frame *)

TextsDelete(F.text, F.carloc.pos ...:.... 1, F.carloc.pos);
TextFrames.SetCaret(F, F.carloc.pos - 1)

END
ELSE

Texts.Write(KeyboardWriter, M.ch);
Texts.lnsert(F.text, F.carloc.pos, KeyboardWriter.buf);
TextFrames.SetCaret(F, F.carloc.pos + 1)

END
END

END Write;

Reports the selection of frame F in the selection message.

PROCEDURE ReportSelection(F: TextFrames.Frame;
VAR M: Oberon.SelectionMsg);

BEGIN
IF (F.sel > 0) & (F.time > M.time) THEN

(* A selection exists and is more recent than the one contained in M *)
M.text : = F.text;
M.beg : = F.selbeg.pos;
M.end : = F.selend.pos;
M.time : = F.time

END
END ReportSelection;

Produces a copy of frame F and reports it in the copy message (see
Section 19.4.)

PROCEDURE CopyFrame(F: TextFrames.Frame;
VAR M: Oberon.CopyMsg);

Copies the stretch of text reported in the copyover message to the caret
location. The caret has to be properly adjusted after each call to
Texts.Insert. The operations on the text of frame F will invoke the
handler of F recursively. The update operation will clear all marks.
Hence, no explicit clearing operation is required prior to Text­
Frames. SetCaret .

PROCEDURE CopyOver(F: TextFrames.Frame;
M: Oberon.CopyOverMsg);

VAR buf: Texts.Buffer;

Modify

Update

79.6 Example: handler for a text frame 289

BEGIN
IF F.car > 0 THEN (* A caret is set *)

NEW(buf); Texts.OpenBut(but);
Texts.Save(M.text M.beg, M.end, but);
Texts.lnsert(F.text F.carloc.pos, buf);
TextFrames.SetCaret(F, F.carloc.pos + (M.end - M.beg))

END
END CopyOver;

Modifies frame as directed by the MenuViewers modify message (see
Section 19.4.)

The procedures TextFrames.Extend and TextFrames.Reduce
use relative coordinates. Hence, no coordinate transformations are
required.

PROCEDURE Modify(F: TextFrames.Frame;
M: MenuViewers.ModifyMsg);

BEGIN
RemoveMarks(F); Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
TextFrames.Mark(F, noMark);
IF M.id = MenuViewers.extend THEN

IF M.dY > 0 THEN
Display.CopyBlock(F.X, F.Y, F.W, F.H, F.x, F.Y + M.dY, repl);
F.Y:= F.Y + M.dY

END;
TextFrames.Extend(F, M.Y)

ELSIF M.id = MenuViewers.reduce THEN
TextFrames.Reduce(F, M.Y + M.dY);
IF M.dY > 0 THEN

Display.CopyBlock(F.X, M.Y + M.dY, F.W, M.H, F.X, M.Y, repl)
END

END;
TextFrames.Mark(positionMark)

END Modify;

Updates the display directed by a TextFrames update message.

PROCEDURE Update(F: TextFrames.Frame; M: TextFrames.UpdateMsg);
BEGIN

RemoveMarks(F); Oberon.RemoveMarks(F.x, F.Y, F.W, F.H);
IF M.id = TextFrames.replace THEN

TextFrames.Replace(F, M.beg, M.end)
ELSIF M.id = TextFrames.insert THEN

TextFrames.lnsert(F, M.beg, M.end)
ELSIF M.id = TextFrames.delete THEN

TextFrames.Delete(F, M.beg, M.end)
END

END Update;

290 Programming viewers and frames

Handle Here is the handler.

Open

PROCEDURE Handle*(F: Display.Frame; VAR M: Display.FrameMsg);
BEGIN
WITH F: TextFrames.Frame DO

IF M IS Oberon.lnputMsg THEN
WITH M: Oberon.lnputMsg DO

IF M.id = Oberon. consume THEN Write(F, M)
ELSIF M.id = Oberon.track THEN

OberonDrawCursor(Oberon.Mouse. Oberon.Arrow. M.x. M.Y);
IF M.X < F.x + TextFrames.barW THEN (* Mouse in scroll bar *)

Scroll(F. M.X. M.Y. M.keys)
ELSE (* Mouse in editable text area *)

IF right IN M.keys THEN
HandleRightKeylnEditArea(F, M.X, M.Y. M.keys)

ELSIF middle IN M.keys THEN
HandleMiddleKeylnEditArea(F, M.x, M.Y, M.keys)

ELSIF left IN M.keys THEN
HandleLeftKeylnEditArea(F, M.X. MY, M.keys)

END
END

END
END

ELSIF M IS Oberon.ControlMsg THEN
WITH M: Oberon.ControlMsg DO

IF M.id = Oberon.defocus THEN TextFrames.RemoveCaret(F)
ELSIF M.id = Oberon.neutralize THEN RemoveMarks(F)
END

END
ELSIF M IS Oberon.SelectionMsg THEN

ReportSelection(F. M(Oberon.SelectionMsg))
ELSIF M IS Oberon.CopyMsg THEN

CopyFrame(F. M(Oberon.CopyMsg))
ELSIF M IS Oberon.CopyOverMsg THEN

CopyOver(F. M(Oberon.CopyOverMsg))
ELSIF M IS MenuViewers.ModifyMsg THEN

Modify(F. M(MenuViewers.ModifyMsg))
ELSIF M IS TextFrames.UpdateMsg THEN

IF F.text = M.text THEN Update(F. M(TextFrames.UpdateMsg)) END
END

END (* WITH F: TextFrames.Frame DO *)
END Handle;

Creates an instance of a menu viewer with a standard menu frame and
a main frame with the handler of this module installed.

PROCEDURE Open*;
CONST beginning = 0;

VAR
V: MenuViewersViewer;
X, Y: INTEGER;
editText, text: Texts.Text;

19.7 Rules for well-behaved handlers 291

mainF, menuF: TextFrames.Frame;
beg, end, time: LONGINT;
S: Texts.Scanner;

BEGIN
Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
Texts.Scan(S);
IF S.class # Texts.Name THEN

S.s : = "Edit.Text";
IF (S.class = Texts.Char) & S.c =" t ") THEN

Oberon.GetSelection(text, beg, end, time);
IF t > a THEN (* Selection exists *)

Texts.OpenScanner(S, text, beg);
Texts.Scan(S)

END
END

END;
editText : = TextFrames.Text(S.s);
NEW(mainF);
TextFrames.Open(mainF, Handle, editText, beginning,

Display.white,
TextFrames.left, TextFrames.right,
TextFrames.top, TextFrames.bot,
TextFrames.lsp) ;

menuF : = TextFrames.NewMenu(S.s,
"System.Close System. Copy System.Grow Edit.Search Edit.Store");
Oberon.AllocateUserViewer(Oberon.Mouse.X, X, Y);
V : = MenuViewers.New(menuF, mainF, TextFrames.menuH, X, Y);
TextFrames.Mark(mainF, position Mark)

END Open;

BEGIN
Texts.OpenWriter(KeyboardWriter);

END EditFrames.

19.7 Rules for well-behaved handlers

By handler, we subsequently mean the handler proper and all procedures
called by it including those of the display manager .

• The handler is responsible for all write operations to the screen
(including tracking the mouse cursor.) It typically uses pro­
cedures from module Display.

292 Programming viewers and frames

• The handler is responsible for respecting the viewer's boundary or
the frame boundary at all times when writing to the screen. The
only exception to this rule are the tracking loops in which the
cursor (and possibly a figure such as a rectangle) is drawn.

• The handler writes to the screen only if the state of the viewer is
displayed (V.state > 1.) Note: It is possible that the handler of
suspended or closed viewers will still receive messages. For
example, if the suspended viewer was the focus viewer before it
became suspended or closed, it will continue to receive Oberon
consume and defocus messages.

• The handler does not read the keyboard directly (through call to
Input.Read.) Keyboard input is received through messages a
character at a time.

APPENDIX A
Viewer class note board: an
extended example

A.I Introduction

Manipulation of
notes

Little note slips are an feature of our everyday life. Our example of a
viewer class gives an electronic analog of a note board. The viewer
shows portion of a board to which notes are attached.

Remind.Board I System.Close System.Copy System.Grow Boards.Store

Note: don't forget to include
mean value analysis in the

I

r-M-a-rt-in-R-i next lecture. Highlight the
ETH Zen approximate procedures.

J

Tomorrow: Colloquium
Auditorium A 36
Time: 16:15

Notes are manipulated with the mouse. Care has been taken to ensure
that analogies with the standard editor are preserved:

• Creation: The mouse points into the board area. Dragging on the
left key (the point key) spans a rectangle. On release, a note
appears with the defined size.

293

294 Viewer class note board: an extended example

• Selection: A note is selected by clicking at its border with the right
key (the select key.) The selected note is highlighted in reverse
video .

• Deletion: A note is deleted if, while selecting, the left key is
interc1icked (like the selection in the standard editor.)

Drag outline with mouse On release of mouse
key, note appears

Scrolling The note board may be grabbed (middle key) and moved vertically
behind the window of the viewer. While the board is grabbed, the
cursor shape changes to a cross.

Note board viewers can be split (System.Copy) or grown (Sys­
tem.Grow) as text viewers. If a viewer is copied, both viewers show the
same note board.

Editing notes In each note, the standard text editor functions without restrictions.
Text can be entered, selected, deleted and copied. Commands may be
executed as from any text.

A.l.1 Goals

The example is a tutorial. Its goal is to illustrate the design of a fully
functional viewer class, in particular:

• To present an active document, the note board, which notifies the
display whenever it is changed. The note board is similar in this
respect to texts.

• To give a complete example of a handler for a frame (called board
frame) to be installed ina menu viewer.

• To demonstrate how to reuse text frames (objects of type
TextFrames.Frame) in a different context.

• To discuss the design aspects of a windowing system which
allows for overlapping frames.

A.2Module Boards 295

The example is fully functional and tested. However, to keep it concise,
many functions which are clearly desirable are omitted, for example:

• To move notes around.

• To change the size of notes or to duplicate notes.

• To generate all kinds of prepared form notes - for calling cards,
time reminders or telephone calls.

• To have calendars with automatic links to notes.

• To keep notes in different files.

Clearly, the sophistication of the viewer class is only limited by fantasy
and programming man-months.

A.l.2 Module hierarchy

The module structure of board viewers is shown in the following
diagram (only the major import relations are depicted.)

Command module

Frame handler

Abstract document

A.2 Module Boards

This module provides the document of the viewer class. The design of
this module is simple. A board - an instance of the abstract data type
Board - is an unlimited Cartesian plane which contains notes. Each
note is defined by its lower left coordinate X, Y, a width Wand height
H. A note has an associated text. The note is itself an instance of the
abstract data type Note.

296 Viewer class note board: an extended example

Note

y
Notes on the
Cartesian plane

----+-----------~ X

Notes are linked in a list with an anchor in the board descriptor.
The order of the list corresponds to the temporal order in which notes
were created (procedure Paste) or explicitly moved to the end of the list
(procedure ToTop.) The latter is invoked when a note is moved to the
top of a pile of overlapping notes.

The procedures operating on notes are termed the data man-
ager. They carry out the following functions:

• Create new notes (PosteEmpty.)

• Post existing notes (Paste.)

• Delete notes (Delete.)

• Move notes to top (ToTop.)

As with the data manger of texts, an update message is broadcasted
which identifies the change.

Our module also provides procedures which initialize a board
(that is, an instance of the abstract data type Board from a file (pro­
cedure NewBoard)) and stores a board to a file (procedure Store.)

Module Boards;

IMPORT TextFrames, Texts, Viewers, Files;

The abstract data type Note has the properties: position, size, a text and
a next note.

Board

Update message

Message id

Reader

Minimum size

TYPE
Note* = POINTER TO NoteDesc;
NoteDesc* = RECORD

X*, Y*, W*, H*: INTEGER;
text*: Texts.Text;
next: Note

END;

A.2 Module Boards 297

The abstract data type Board affords access to a list of notes. The notes
are not visible to the client and are read using a reader.

TYPE
Board* = POINTER TO BoardDesc;
BoardDesc* = RECORD

list: Note
END;

The procedures which change a note board broadcast a message of
type Boards. UpdateMsg to all visible viewers.

TYPE
UpdateMsg* = RECORD

(Display. FrameMsg)
id*: INTEGER;
board*: Board;
note*: Note

END;

The following constants defin~ the messages in a self-explanatory
manner:

CONST poste* = 0; discard* = 1; toTop* = 2;

The abstract data type Reader yields sequential access to notes. Note:
The field Note is not visible to the client. It records the position of the
reader in the list of notes.

TYPE
Reader* = RECORD

N: Note
END;

Notes are only opened if they have minimal size:

VAR minW*, minH*: INTEGER;

298 Viewer class note board: an extended example

File id A note file is characterized by a two-byte tag which has value:

List processing

Poste

PosteEmpty

Discard

ToTop

CONST BoardFileld = 31697;

The following procedures operate on the list of notes. Only the pro­
cedure heading is shown for brevity.

PROCEDURE Append(B: Board; N: Note);

PROCEDURE Remove(B: Board; N: Note):

PROCEDURE ToListEnd(B: Board; N: Note):

Appends a note N to the end of the note list and broadcasts a post
message.

PROCEDURE Poste*(B: Board; N: Note);
VAR M: UpdateMsg;
BEGIN

Append(B, N);
M.id := poste;M.note:= N; M.board:= B; Viewers.Broadcast(M)

END Poste;

Creates a new note at X, Y with width Wand height H. Posts the new
note (see Poste.)

PROCEDURE PosteEmpty*(B: Board; X, Y, W, H: INTEGER);
VAR N: Note;
BEGIN

IF (W < minW) OR (H < minH) THEN RETURN END;
. NEW(N);

N.X:= X; N.Y:= Y; N.W:= W; N.H := H; (* In board coordinates *)
N.text : = TextFrames.Text("I1);
Poste(B, N)

END PosteEmpty;

Discards note N. Broadcasts a discard message.

PROCEDURE Discard*(B: Board; N: Note);
VAR M: UpdateMsg;
BEGIN

Remove (B, N);
M.id : = discard; M.note : = N; M.board : = B; Viewers.Broadcast(M)

END Discard;

Moves note N to the end. of the list. When displayed, such a note will
always appear at the top of a pile of overlapping notes. Broadcasts a
ToTop message.

OpenReader,
Read

Store

A.2 Module Boards 299

PROCEDURE ToTop*(B: Board; N: Note);
VAR M: UpdateMsg;
BEGIN

ToListEnd(B, N);
M.id:= toTop; M.note:= N; M.board:= B; Viewers.Broadcast(M)

END ToTop;

Sets reader to origin of list of notes of board B. Reads next note N.

PROCEDURE OpenReader*(VAR R: Reader; B: Board);
BEGIN

R.N : = B.list
END OpenReader;

PROCEDURE Read*(VAR R: Reader; VAR N: Note);
BEGIN

N : = R.N; IF N # NIL THEN R.N : = R.N.next END
END Read;

Stores notes of board B in a file name. The file is identified as a note board
file with a two-byte tag. Behind this tag is a sequence of stored notes.
Each note is represented by its descriptor followed by a text block, viz.

Descriptor Descriptor
_ WNiHWlH!!!!@1777777J Eil!iEiHHMHI fr:r/-"'-7-r/-r/-r/---/---/~/--"'----'7"'J

Id Text block Text block
177777//7J

Text block

PROCEDURE Store*(B: Board; name: ARRAY OF CHAR);
VAR

F: Files.File;
R: Files.Rider;
N: Note;
pos, len: LONGINT;
tag: INTEGER;

BEGIN
F : = Files.New(name); Files.Set(R, F, 0);
tag:= BoardFileld; Files.WriteBytes(R, tag, SIZE(INTEGER));
N := B.list;
WHILE N # NIL DO

Files.WriteBytes(R, N 1', SIZE(NoteDesc));
pos : = Files.Pos(R);
Texts.Store(N.text, F, pos, len);
Files.Set(R, F, pos + len);
N:= N.next

END;
Files.Register(F)

END Store;

300 Viewer class note board: an extended example

NewBoard Returns an instance of a board which was initialized from file name. If
no file name exists or if the file is not a note board file, an empty board is
created.

PROCEDURE NewBoard*(name: ARRAY OF CHAR): Board;
VAR

F: Files.File;
R: Files.Rider;
B: Board;
N: Note;
pos, len: LONGINT;
tag: INTEGER;

BEGIN
NEW(B); B.list : = NIL;
F : = Files.Old(name);
IF F# NIL THEN

Files.Set(R, F, 0);
Files.ReadBytes(R, tag, SIZE(lNTEGER));
IF tag = BoardFileld THEN

NEW(N); (* Create instance of note *)
Files.ReadBytes(R, N i, SIZE(NoteDesc));
WHILE ~R.eof DO

NEW(N.text); (* Create instance of text *)
N.text.notify : = TextFrames.NotifyDisplay;
pos : = Files.Pos(R) + 2; (* Note offset of 2 *)

Texts.Load(N.text, F, pos, len);
Files.Set(R. F, pas + len);
Append(B, N);
NEW(N); (* Create instance of note *)
Files.ReadBytes(R, N i, SIZE(NoteDesc))

END
END

END;
RETURN B

END NewBoard;

BEGIN
minW:= 20; minH := 15

END Boards.

A.3 Module BoardFrames

A.3.1 Introduction

This module provides the handler of the viewer class 'board viewers.'
Of course, we will follow the Oberon user interface guidelines - hence,

Display
descriptors

Editor in notes

Coordinate
system

A.3 Module BoardFrames 301

the use of a menu viewer is an obvious choice. The task at hand is to
program a frame, to be installed in such a menu viewer. The duties of the
handler and the use of update messages were outlined in Section 19.1.

We call the type of our frame simply Frame. An instance of this
type is a board frame. Such a board frame displays exactly one board
(more specifically, an instance of type Boards. Board.)

A board frame shows those notes which are visible within its bound­
ary. A record of these notes has to be kept by each frame. For this
purpose, each displayed note is specified by a display descriptor. It is
quite natural to call the type of such a descriptor Note. We thus deal
with objects of the following type:

• Boards.Note: abstract note, also called 'board note.'

• BoardFrames.Note: display descriptor also dubbed 'frame note.'

Our frame notes turn out to be rather complex objects. Within each
note, the standard Oberon editor is to be provided. But notes are also
allowed to overlap and form piles. Our handler has to deal with the
management of such piles in addition to directing a multitude of
editors.

Fortunately, objects which embody the editor in a rectangular
already exist: text frames. If we can reuse text frames, we are home free,
as far as the editor is concerned. We can easily convince ourselves that
this is possible. All we have to do is to declare the type Note as an
extension of the type TextFrames.Frame and take care that the right
messages are forwarded to the handlers of the displayed notes.

A design issue in most viewer classes is the coordinate systems used in
the document and in the frame. Frame coordinates may be relative to
the frame or absolute with respect to the display.

Since frame notes are extensions of text frames, absolute coordi­
nates must be used. In order to relate display coordinates to frame
coordinates, a fixed point is required. Our choice is the upper left corner
of the frame measured in board coordinates. The upper left corner is
the right choice whenever this is also the fixed point with respect to
frame moves - the normal and natural choice.

Board coordinates X, Yare transformed to screen coordinates
x, y according to the formulae:

x = X - (Xboard - F.X) and y = Y - (Yboard - F. Y - F.H)

302 Viewer class note board: an extended example

Note geometry

t ~
Xboard Yboard Screen

"~ _____ --",

F.X, F.Y Display coordinates

I Board coordinates

The geometry of a note N is shown in the diagram. The frame defined
by N.X, N. Y, N. Wand N.H is surrounded by a border of width margo
The wire frame is painted in that border margin.

---r------------

N.H marg~ ~

____ t ____________ ;)---_ __
~:

N.X, N.Y ""': ---N.W ~

Note: It is tempting to use the text frame margins N.left, N.right,
N. top and N.bot instead of an outer margin of width margo Unfor­
tunately, the display manager of module TextFrames sometimes clears
the frame borders, hence the wire frame would also be deleted.

Types Frame and We are now ready to define the abstract data types Frame and Note:
Note

TYPE
Note* = POINTER TO NoteDesc;
NoteDesc* = RECORD

(TextFrames.FrameDesc)
note*: Boards.Note;
flag: BOOLEAN

END;

TYPE
Frame* = POINTER TO FrameDesc;
FrameDesc* = RECORD

(Display. FrameDesc)
SelectedNote*: Note;
board*: Boards. Board;
Xboard*. Yboard*: INTEGER

END;

Data structure of
board viewers

Back-to-back
handlers

The properties are:

• All those inherited from
TextFrames.Frame.

• The board note which is
displayed.

• An ancillary flag.

A.3 Module BoardFrames 303

The properties are:

• All those inherited from
Display. Frame.

• A selected note.

• The board which is
displayed.

• The coordinate fixed
point.

Since notes are of base type Display.Frame, we make them descendants
of the board frame F. Also, inspired by the viewer data structure, we
use N.next (of a note N) to form a simple list of notes with anchor F.dsc.
With these design choices, the data structure of a board viewer looks as
follows:

All objects in this data structure are active (have an installed handler.)
The menu viewer is the first recipient of a message originating from
viewers, Oberon or document modules. If either acts on it or else
hands it over to the handler of the board frame. Again, the board frame
handler either consumes a message or further relegates it to the note
frames. The hand-over of messages from handler to handler observes
the following rules:

• A handler may act on a message and optionally pass it to the
next handler in the chain: menu viewer - board frame - frame
note.

• A track message is exclusively passed to the frame which con­
tains the mouse cursor.

• All other messages are passed to all successor handlers; that is,
they are broadcast.

304 Viewer class note board: an extended example

Note manager

Temporal order

Track
message

All other
messages

Handler of
menu viewer

)

Handler of
board frame

) To note which
contains
mouse

To all notes
(broadcast)

Handler of
frame note

Text frames are normally managed by a menu viewer which acts as
supervisor. It assigns frame boundaries and sends modify messages.
In our case, notes are extensions of text frames. However, they are
now under our control. This means that the handler of a board frame
creates and deletes notes, assigns their frame (X, Y, Wand H) and
determines their position in the list. It draws notes and finds the note
corresponding to a given coordinate position. These actions are per­
formed by a set of procedures termed the note manager.

The board notes are ordered according to increasing time of:

• Creation (Boards. Paste and Boards.PosteEmpty.)
• Explicit orders to move to the top (Boards. ToTop.)

The list of frame notes must reflect the same temporal order. For example, in
the following figure, note 0 was created or touched after note A etc.

BoardFrames.Frame

BoardFrames.Note

The update message mechanism provides a simple means to keep the
list of board notes and display notes in step. For example, if a mouse
event occurs in a note which is overlaid by other notes, that note has to
be brought to the top. This means:

• The handler of the board frame calls Boards. ToTop to bring the
board note to the end of the board list.

• An update message M with M.id = toTop is broadcasted, hence
also received by our handler.

Overlapping
notes

Drawing notes

Removing notes

A.3 Module BoardFrames 305

• The corresponding frame note is brought to the end of the frame
list and redrawn on top of its pile.

Notes in a board frame may overlap. This causes the well-known
clipping problems when one of the notes is deleted or moved. The
following diagram shows an example of a board frame with notes
which correspond to the list shown in the previous diagram.

If the notes are drawn in their temporal order - from the first one to the
last one - then the right overlapping is always achieved. The simplest
solution, therefore, is always to enact this restoration sequence when
the note configuration changes.

However, initialization and display of a note is not a trivial
operation. Therefore, it is vital to avoid unnecessary redrawing of
notes. The result is a better response time paired with less flicker. Some
sophistication is needed to reach this goal.

The trivial cases are bringing a note to the top of a pile and
removing a note which does not overlap any of its peers - just draw the
incriminated note without consideration for other notes.

The situation is complicated in all other cases. Consider the situation
where a note is removed which overlaps other notes. An example is
depicted in the following diagram.

to be deleted

D

306 Viewer class note board: an extended example

Extending and
reducing a frame

Scrolling

As a consequence of the removal of A, all the darkly shaded notes need
restoration in the temporal order of the note list. The affected notes can
be determined by a recursive procedure explained later (procedure
MarkAfter Delete.)

Similarly, when the area of the frame shrinks, those notes which
overlap with the reduced area but are not fully contained in it must be
removed. As a consequence, some notes, flagged by the recursive
procedure mentioned earlier, may have to be redrawn even though
they are fully contained in the target frame.

c9BD
---r-l--------------m----!.· · ..•.. ·.· · .. · ...•..... I .. ·.··.lnnnlm

j~ LJ Remove

D CJ Redraw

In the same vein, when the frame extends, only those notes
should be drawn which are newly visible. Note that here, too, drawing
such a note may lead to the need to redraw another.note which is fully
contained in the original frame. The same recursive method flags those
notes.

For simplicity, we do not implement the scroll bar but shift the docu­
ment plane behind the viewer by 'grabbing' it with the mouse. The
techniques already discussed can be combined with a block move to
avoid unnecessary restore activity. For example, scrolling down is
achieved by:

(1) a reduction at the bottom;
(2) a block move downwards;
(3) an expansion at the top.

Note

Frame

A.3 Module BoardFrames 307

The block move is analogous to the one discussed in Section 19.4. The
following diagram shows a downward scroll. The shaded notes are
redrawn.

Reduce at
bottom

D
D
DD
Shift down

D
DD

Extend at top

Similarly, an upward shift of the board plane is achieved by:

(1) a reduction at the top;
(2) a block move upwards;
(3) an expansion at the bottom.

A.3.2 Declarations

MODULE BoardFrames;

IMPORTTextFrames, MenuViewers, Boards, Marks, Oberon, Display,
Input;

The abstract data type Note is described in the introductory text. The
ancillary flag is used by the procedures MarkAfterDraw, MarkAfterDelete
and DrawMarkedNotes.

TYPE
Note* = POINTER TO NoteDesc;
NoteDesc* = RECORD

(TextFrames.FrameDesc)
note*: Boards.Note;
flag: BOOLEAN

END;

The abstract data type Frame is described in the introductory text.

TYPE
Frame* = POINTER TO FrameDesc;
FrameDesc* = RECORD

(Display. FrameDesc)
SelectedNote*: Note;
board*: Boards.Board;
Xboard*, Yboard*: INTEGER (* Upper leftcornerin board coordinates *)

END;

308 Viewer class note board: an extended example

CONST
right = 0; middle = 1; left = 2; (* Mouse keys *)
black = Display.black; white = Display.white; (* Displaycolor*)
repl = Display.replace;

VAR marg: INTEGER; (* Size of border around notes *)

A.3.3 Auxiliary procedures

BoardToFrame

PROCEDUREXYinRect(X, Y, RX, RY, RW, RH: INTEGER): BOOLEAN;
BEGIN (* Is pointX, Y contained in rectangle R *)

RETURN (X >= RX) & (X < RX + RW) & (Y >= RY) & (Y < RY + RH)
END XYinRect;

PROCEDURE In(BN: Boards.Note; F: Frame): BOOLEAN;
VARX, y, W, H: INTEGER;
BEGIN (* Is board note BN contained in frame F *)

BoardToFrame(F, BN, X, Y, W, H);
RETURN XYinRect(X, Y, F.X, F.Y, F.W, F.H) &

XYinRect(X + W, Y + H, F.X, F.Y, F.W, F.H)
END In;

PROCEDURE Overlap(A. B: Display.Frame): BOOLEAN;
BEGIN (* Does frame A overlap frame B or is it contained in B *)

RETURN
(A.X + A.W + marg > B.X - marg) & (B.x + B.W + marg > A.X - marg) &
(A.Y + A.H + marg > B.Y - marg) & (B.Y + B.H + marg > A.Y - marg)

END Overlap;

Performs address translation from board coordinates to viewer coordi­
nates. The rectangle which corresponds to the board note is returned
in the variable parameters X, Y, W, H.

PROCEDURE BoardToFrame(F: Frame; BN: Boards.Note;
VAR X, Y, W, H: INTEGER);

BEGIN
W:= BN.W; H:= BN.H;
X: = BN.X - (F.Xboard - F.x); Y: = BN.Y - (F.Yboard - F.Y - F.H)

END BoardToFrame;

A.3.4 Draw notes

DrawNoteFrame Draws the wire frame of a note N. The little handle at the lower right
corner is intended for resizing the note. This function is not part of the
tutorial.

A.3 Module BoardFrames 309

Q
rg

N.H
N.W

N.X, N.V

PROCEDURE DrawNoteFrame(N: Display.Frame);
VARX, Y, W, H: INTEGER;
BEGIN

X:= N.X- marg; Y:= N.Y - marg; W:= N.W+ 2* marg;
H : = N.H + 2*marg;
Oberon. RemoveMarks(X, Y, W, H);
Display.RepIConst(black, X, Y, W, H, repl);
Display. RepIConst(white, X, Y + 1, 1, H - 1, repl);
Display. RepIConst(white, X + W - 2, Y + 1, 1, H - 1, repl);
Display.RepIConst(white, X + W -1, Y, 1, H -1, repl);
Display.RepIConst(white, X + 1, Y + 1, W - 3,1, repl);
Display. RepIConst(white, X + 1, Y, W - 2,1, repl);

(* Clear frame *)
(* Left *)

(* Right *)

(* Bottom *)

Display. RepIConst(white, X + 1, Y + H -1, W - 3,1, repl);
Display.RepIConst(white, X + W - marg, Y, marg, marg, repl)

(*Top *)
(* Handle *)

END DrawNoteFrame;

ClearNoteFrame Clears the rectangle of note N.

DrawNote

PROCEDURE ClearNoteFrame(N: Display.Frame);
VARX, Y, W, H: INTEGER;
BEGIN

X:= N.X - marg; Y:= N.Y - marg; W:= N.W + 2* marg;
H : = N.H + 2*marg;
Oberon.RemoveMarks(X, Y, W, H);
Display.RepIConst(black,X, Y, W, H, repl)

END ClearNoteFrame;

Draws the note frame and restores the note text.

PROCEDURE DrawNote*(N: Note);
BEGIN

DrawNoteFrame(N);
TextFrames.Restore(N)

END DrawNote;

310 Viewer class note board: an extended example

DrawMarked­
Notes

Draws all notes N from the list of notes with N.flag = TRUE. These are
the notes which were marked by the procedure MarkAfterDraw and
MarkeAfter Delete.

PROCEDURE DrawMarkedNotes(F: Frame);
VAR Q: Display.Frame;
BEGIN

Q:= F.dsc;
WHILE Q# NIL DO

IF Q(Note).flag THEN
DrawNote(Q(Note)); Q(Note).flag : = FALSE

END;
Q:= Q.next

END
END DrawMarkedNotes;

A.3.S Tracking procedures

TrackMouse Keeps control in a loop by reading the mouse directly as long as a key is
pressed. Returns final position and keys which were interclicked.

DragRect

PROCEDURE TrackMouse(Marker: Oberon. Marker; VAR X, Y: INTEGER;
VARkeysum: SET);

VAR keys: SET;
BEGIN

keys: = keysum;
WHILE keys # { } DO

Oberon.DrawCursor(Oberon.Mouse, Marker, X, Y);
Input.Mouse(keys, X, V); keysum := keysum + keys;

END
END TrackMouse;

Spans a rectangle with the mouse (see Section 19.2.) The initial rec­
tangle is defined by the diagonal points XO, YO and Xl, Yl. The final
lower left point is returned in X2, Y2.

PROCEDURE DragRect(F: Display.Frame; XO, YO, X1, Y1 : INTEGER;
VARX2,Y2:INTEGER; VARkeysum: SET);

A.3.6 The note manager

This Returns the topmost note which contains the point X, Y; NIL if X, Y
does not designate a note.

List processing

IsTop

A.3 Module BoardFrames 311

X2, Y2
~-------

This(X1, Y1) = A
This(X2, Y2) = NIL

PROCEDURE This*(F: Frame; X, Y: INTEGER): Display.Frame;
VAR 0, DF: Display.Frame;
BEGIN

o : = F.dsc; DF : = NIL;
WHILE 0 # NIL DO

IF XYinRect(X, Y, O.X - marg, O.Y - marg, O.W + 2*marg, O.H +
2*marg) THEN

DF:= 0
END;
0: = O.next

END;
RETURN DF

END This;

The following procedures operate on the list of notes. Only the pro­
cedure heading is shown for brevity.

PROCEDURE Append(F: Frame; DF: Display.Frame);

PROCEDURE Remove(F: Frame; DF: Display.Frame);

PROCEDURE ToListEnd(F: Frame; DF: Display.Frame);

PROCEDURE Locate*(F: Frame; BN: Boards.Note): Display.Frame;

Returns TRUE if DF is on top; that is, not overlapped by any other note
frame. Note: It is not necessary that DF is at the end of the list of notes.

Is

IsTop(A) = IsTop(O) = TRUE

312 Viewer class note board: an extended example

Broadcast

MarkAfterDraw

PROCEDURE IsTop*(DF: Display.Frame): BOOLEAN;
VAR res: BOOLEAN; 0: Display.Frame;
BEGIN

o : = DF.next; res: = TRUE;
WHILE 0 # NIL DO

res: = res & -Overlap(O, OF);
0:= O.next

END; /'
RETURN res

END IsTop;

Broadcasts message M to all note frames in the list.

PROCEDURE Broadcast*(F: Frame; VAR M: Display.FrameMsg);
VAR 0: Display.Frame;
BEGIN

0:= F.dsc;
WHILE 0 # NIL DO

O.handle(O, M); 0:= O.next
END

END Broadcast;

All notes which need restoration as a consequence of the redrawing of
N are flagged. Only notes which follow N in the list need to be
searched. Note: E is not flagged. Procedure MarkAfterDraw works
recursively.

Flagged by MarkAfterDraw(N)

D
PROCEDURE MarkAfterDraw(N: Display.Frame);
VAR 0: Display.Frame;
BEGIN (* All flags FALSE *)

N(Note).flag := TRUE;
0:= N.next;
WHILE 0 # NIL DO

IF -O(Note).flag & Overlap(O, N) THEN
O(Note).flag : = TRUE;
MarkAfterDraw(O)

END;

Q:= Q.next
END

END MarkAfterDraw;

A.3 Module BoardFrames 313

MarkAfterDelete Note N will be deleted. All notes which need restoration as a conse­
quence are flagged. Procedure MarkAfterDelete invokes MarkAfterDraw
for all notes which overlap with it.

OpenNote

Flagged by MarkAfterDelete(F, N)

To be deleted

D
PROCEDURE MarkAfterDelete(F: Frame; N: Display.Frame);
VAR Q: Display.Frame;
BEGIN (* All flags FALSE *)

Q:= F.dsc;
WHILE Q # NIL DO

IF ~Q(Note).flag & Overlap(Q, N) & Q # N THEN
MarkAfterDraw(Q)

END;
Q : = Q.next

END
END MarkAfterDelete;

Opens frame note N from board note BN.

PROCEDURE OpenNote*(F: Frame; N: Note; BN: Boards.Note);
VAR X, Y, W, H: INTEGER;
BEGIN

BoardToFrame(F, BN, X, Y, W, H);
N.X:= X + marg; N.Y:= Y + marg;
N.W:= W + 2 * marg; N.H := H + 2 * marg;
TextFrames.Open(N, TextFrames.Handle, BN.text, 0, black, 5, 0, 0, 0,

TextFrames.lsp);
N.next : = NIL;
N.note:= BN;
N.flag : = FALSE

END OpenNote;

314 Viewer class note board: an extended example

NewNote Creates an instance of a new frame note N from board note BN.

PROCEDURE NewNote*(F: Frame; BN: Boards.Note): Note;
VAR N: Note;
BEGIN

NEW(N); OpenNote(F,N, BN); Append(F, N);
RETURN N

END NewNote;

A.3.7 Response to Oberon messages

Neutralize If a note is selected, removes that selection. Also, removes all text
selections in notes, the caret and the pointer.

CopyFrame

ShiftBoard

PROCEDURE Neutralize*(F: Frame);
VAR M: Oberon.ControIMsg;
BEGIN

Oberon.RemoveMarks(F.X, F.Y, F.W, F.H);
M.id : = Oberon.neutralize; Broadcast(F, M);
Deselect(F)

END Neutralize;

Produces a copy of frame F. The frame must be of height 0, thus the list
of notes is empty. The function New produces such a frame.

PROCEDURE CopyFrame*(F: Frame; VAR M: Oberon.CopyMsg);
BEGIN

M.F:= New(F.board, F.Xboard, F.Yboard);
END CopyFrame;

Shifts the board vertically under the direction of the mouse. The mouse
cursor takes the shape of a cross-hair to indicate 'grabbing mode' (see
Chapter 19.) Dragging the mouse defines a translation vector dY. The
frame is scrolled upwards (dY > 0) or downwards (dY < 0.) The
method discussed in the introduction is used (a call of Reduce), fol­
lowed by a shift followed by execution of Expand.

PROCEDURE ShiftBoard*(F: Frame; VAR X, Y: INTEGER;
VAR keysum: SET);

VAR dY, YO: INTEGER;
BEGIN

YO:=Y;
TrackMouse(Marks.Cross, X, Y, keysum);
Neutralize(F) ;
dY : = Y - YO; (* The translation vector *)

Deselect

Select

A.3 Module BoardFrames 315

IF dY < a THEN (* Scroll downwards *)
Reduce(F. F.Y + F.H. F.Y - dY); (* Reduce at bottom *)
Display.CopyBlock(F.X. F.Y. F.W. F.H. F.X. F.Y + dY. replace); (* Shift *)
TransformDisplayDescriptors(F. dY); F.Y: = FY + dY;

(* Transform coord. *)
Extend(F. F.Y + F.H - dY. F.Y); (* Extend attop *)
F.Yboard: = F.Yboard - dY (* Adjust coord. of upperleftcornerof F *)

ELSIF dY > a THEN (* Scroll upwards *)
Reduce(F. F.Y + F.H - dY. F.Y); (* Reduce at top *)
F.Yboard: = F.Yboard - dY;
Display.CopyBlock(F.x. F.Y. F.W. F.H. F.X. F.Y + dY. replace); (* Shift *)
TransformDisplayDescriptors(F. dY); F.Y: = F.Y + dY;

(* Transform coord. *)
Extend(F. F.Y + F.H. F.Y - dY) (* Expand at bottom *)

END
END ShiftBoard;

Removes the selection from a selected note, if one exists.

PROCEDURE Deselect*(F: Frame);
VAR N: Note;
BEGIN

IF F.SelectedNote # NIL THEN
N : = F.SelectedNote; F.SelectedNote : = NIL;
Display.RepIConst(white. N.X - margo N.Y - margo N.W + 2 * margo

N.H + 2 * margo Display.invert);
END

END Deselect;

Selects note N and displays it in reverse video. If while the select key
remains pressed the left key is interclicked, then note N is deleted.

PROCEDURE Select*(F: Frame; N: Note; keysum: SET);
VAR X. Y: INTEGER;
BEGIN

Neutralize(F) ;
Display.RepIConst(white. N.X - margo N.Y - margo

N.W + 2 * margo N.H + 2 * margo Display.invert);
TrackMouse(Oberon.Arrow. X. Y. keysum);
F.SelectedNote : = N;
IF (left IN keysum) & ~((middle IN keysum) & (right IN keysum)) THEN

BoardsDiscard(F.board. N.note)
END

END Select;

316 Viewer class note board: an extended example

A.3.B Response to boards update messages

Poste Board note BN was posted. If it is visible in F, creates a corresponding
frame note (the display descriptor) and appends it to the end of the list
of notes.

ToTop

Discard

PROCEDURE Poste*(F: Frame; BN: Boards.Note);
VAR N: Note;
BEGIN

IF In(BN, F) THEN
N : = NewNote(F, BN); Neutralize(F); DrawNote(N)

END
END Poste;

Board note BN was moved to top (to the end of the list of board notes.)
Moves the corresponding frame note to top. If it is overlapped, it is
redrawn.

ToTop(F, N)

PROCEDURE ToTop*(F: Frame; BN: Boards.Note);
VAR N: Display.Frame;
BEGIN

IF In(BN, F) THEN
N : = Locate(F, BN);
IF ~lsTop(N) THEN

Neutralize(F); DrawNote(N(Note))
END;
ToListEnd(F, N)

END
END ToTop;

Board note BN was discarded. Removes corresponding frame note and
redraws notes which overlapped with the discarded note.

PROCEDURE Discard*(F: Frame; BN: Boards.Note);
VAR N: Display.Frame;

BEGIN
IF In(BN, F) THEN

N : = Locate(F, BN);
Neutralize(F) ;
MarkAfterDelete(F, N);
ClearNoteFrame(N) ;
Remove(F, N);
DrawMarkedNotes(F)

END
END Discard;

A.3 Module BoardFrames 317

A.3.9 Response to menu viewer's messages

Extend Extends frame F such that the new top edge has y coordinate Ytop and
the new bottom edge has y coordinate Ybot. All notes visible in the
extended area will be drawn at completion of Extend. An attempt is
made to draw only newly visible notes. However, due to overlapping
conditions, some notes contained in the original frame may have to be
restored. The temporal order of the frame notes and board notes is
strictly preserved. The values of F. Y and F.H are adjusted to reflect the
new size of F.

PROCEDURE Extend(F: Frame; Ytop, Ybot: INTEGER);
VAR

BN: Boards.Note;
R: Boards.Reader;
N: Note;
A 0: Display.Frame;
X, Y, W, H: INTEGER;

BEGIN (* Ytop > F.Y + F.H and Ybot < F.Y *)
(* Clear enlarged area *)
IF F.Y - Ybot > OTHEN

Display.RepIConst(black, F.x, Ybot, F.W, F.Y - Ybot, repl)
END;
IFYtop - F.Y - F.H >OTHEN

Display.RepIConst(black, F.X, F.Y + F.H, F.W, Ytop - F.Y - F.H, repl)
END;
(* Phase 1 : Read all board notes sequentially and test whetherthey are
displayed. If one is found that is not, an instance of a frame note is created
and inserted in the list of notes such that the temporal order is preserved *)
Boards.OpenReader(R, F.board);
Boards.Read(R, BN); (* Read first board note *)
NEW(A); A. next : = F.dsc; 0: = A; (* Auxiliary list element *)

318 Viewer class note board: an extended example

Reduce

WHILE BN # NIL DO
BoardToFrame(F, BN, X, Y, W, H);
IF (X>= F.x) &(X + W< F.X + F.W) &(Y>= Ybot) &(Y + H <Ytop)
THEN

(* Board note is contained in the enlarged area *)
IF O.next = NIL THEN

(* Board note BN is not displayed. Create a new note and append it
to the list *)
NEW(N); OpenNote(F, N, BN); O.next:= N; 0:= N

ELSIF O.riext(Note).note = BN THEN
(* Board note BN is already displayed *)
0:= O.next

ELSE
(* Board note BN is not displayed. Create a new note and insert it
into the list after auxiliary note 0 *)
NEW(N); OpenNote(F, N, BN);
N.next : = O.next; O.next : = N; 0: = N

END
END;
Boards.Read(R, BN) (* Read next board note *)

END;
F.dsc: = A.next;
(* Phase 2: Mark all notes which were newly created and draw the marked
notes *)
0:= F.dsc;
WHILEO# NILDO

IF -In(O(Note).note, F) THEN (* Note is newly created *)
MarkAfterDraw(F, 0); O(Note).flag : = TRUE

END;
0:= O.next

END;
DrawMarkedNotes(F) ;
F.Y: = Ybot; F.H : = Ytop - Ybot (* Adjust frame *)

END Extend;

Reduces frame F such that the new top edge has y coordinate Ytop and
the new bottom edge has y coordinate Ybot. All notes which overlap
with the reduced area but are not fully contained in it are removed
from the display. Some notes may have to be restored due to removal
of overlapping frames. The values of F. Y and F.H are adjusted to reflect
the new size of F.

PROCEDURE Reduce(F: Frame; Ytop, Ybot: INTEGER);
VAR 0: Display.Frame;

Modify

A.3 Module BoardFrames 319

BEGIN (* Ytop < F.X + F.H, Ybot > F.Y *)
0:= F.dsc;
WHILE 0 # NIL DO

IF (O.Y - marg < Ybot) OR (O.Y + O.H + marg >= Ytop) THEN
Remove(F,O);
ClearNoteFrame(O) ;
MarkAfterDelete(F,O) (* Mark frames for restoration *)

END;
0:= O.next

END;
DrawMarkedNotes(F) ;
F.Y : = Ybot; F.H : = Ytop - Ybot (* Adjust frame *)

END Reduce;

Modifies frame F as directed by the menu viewer's modify message M
(see Sectiqn 19.4.)

PROCEDURE TransformDisplayDescriptors(F: Frame; dY: INTEGER);
VAR 0: Display.Frame;
BEGIN

0:= F.dsc;
WHILE 0 # NIL DO

O.Y:= O.Y + dY;
0:= O.next

END
EN D Transform DisplayDescriptors;

PROCEDURE Modify(F: Frame; M: MenuViewers.ModifyMsg);
BEGIN

Neutralize(F) ;
IF M.id = MenuViewers.extend THEN

IF M.dY > 0 THEN
Display.CopyBlock(F.X, F.Y, F.W, F.H, F.X, F.Y + M.dY, repl);
F.Y:= F.Y + M.dY;
Transform DisplayDescriptors(F, M .dY)

END;
Extend(F, F.Y + F.H, M.Y)

ELSIF M.id = MenuViewers.reduce THEN
Reduce(F, F.Y + F.H, M.Y + M.dY);
IF M.dY > 0 THEN

Display.CopyBlock(F.X, MY + M.dY, F.W, M.H, F.x, M.Y, repl);
T ransformDisplayDescriptors(F, - M.dY)

END
END

END Modify;

320 Viewer class note board: an extended example

A.3.10 The handler

The handler uses the preceding procedures as components.

PROCEDURE Handler* (F: Display.Frame; VAR M: Display.FrameMsg);
VAR

N: Display.Frame;
X, Y: INTEGER;

BEGIN
WITH F: Frame DO

IF MIS Oberon.lnputMsgTHEN
WITH M: Oberon.lnputMsg DO

IF M.id = Oberon.track THEN (* Mouse event *)
OberonDrawCursor(Oberon.Mouse, Oberon.Arrow, M.X, M.Y);
N : = This(F, M.X, M.Y); (* Notewhich contains mouse *)
IF N = NIL THEN (* Mouse in board area *)

IF left IN M.keys THEN
DragRect(F, M.X, M.Y, M.X + 2, M.Y - 2, X, Y, M.keys);
Boards.PosteEmpty(F.board, F.xboard + M.X - F.X, F.Yboard

+ Y - FY - F.H,X- M.x, MY - Y)
ELSIF middle IN M.keys THEN

ShiftBoard(F, M.X, M.Y, M.keys)
END

ELSE (* Mouse in note frame *)
IF M.keys # {} THEN

IF ~lsTop(N) THEN (* Bring note to top *)
Boards.ToTop(F.board, N(Note).note)

END;
IF XYinRect(M.x, M.Y, N.X, N.Y, N.W, N.H) THEN

(* Mouse is in the text area of N *)
IF N(Note) # F.SelectedNote THEN

N.handle(N, M) (* Pass track message to note N *)
END

ELSE
IF right IN M.keys THEN Select(F, N(Note}, M.keys) END

END
END

END
ELSE

Broadcast(F, M)
END

END

(* Pass input message M to all notes *)

ELSIF MIS Oberon.ControlMsg THEN
IF M(Oberon.ControIMsg).id = Oberon. neutralize THEN

Neutralize(F)
ELSE

Broadcast(F, M)
END

A.4 Module Postlt (command module) 321

ELSIF M IS Oberon.CopyMsg THEN
CopyFrame(F, M(Oberon.CopyMsg);

ELSIF MIS MenuViewers.ModifyMsg THEN
Modify(F, M(MenuViewers.ModifyMsg))

ELSIF MIS Boards.UpdateMsg THEN
WITH M: Boards.UpdateMsg DO

IF M.board = F.boardTHEN
IF M.id = Boards.poste THEN

Poste(F, M.note)
ELSIF M.id = Boards.toTop THEN

ToTop(F, M.note)
ELSIF M.id = Boards.discard THEN

Discard(F, M.note)
END

END
END

ELSE
Broadcast{F, M)

END
END
END Handler;

A.3.ll Creating an instance of frame

(* Pass message M to all notes *)

(* WITH F: Frame DO *)

NewViewer Creates an instance of the abstract data type Frame displaying board B.

PROCEDURE New*(B: Boards.Board; Xboard, Yboard: INTEGER): Frame;
VAR F: Frame;
BEGIN

NEW(F); F.handle : = Handler;
F.board : = B;
F.Xboard : = Xboard; F.Yboard : = Yboard; F.SelectedNote : = NIL;
RETURN F

END New;

BEGIN
marg:= 5;

EN D BoardFrames.

A.4 Module PostIt (command module)

The module PostIt is the command module of the viewer class board
viewers. We will keep it as simple as possible.

Module Postlt;

IMPORT TextFrames, Boards, Files, Texts, Oberon, Viewers, BoardFrames,
MenuViewers, LogOut;

322 Viewer class note board: an extended example

Open Opens a note board. The command functions in the same way as
Edit.Open. If a name follows PostIt.Open, then a viewer with that name
is opened. If PostIt.Open is followed by 'i', then the selection is
searched. If both methods do not yield a name, the default
'Boards. Board' is applied.

Store

PROCEDURE Open*;
VAR

S: Texts.Scanner;
V: MenuViewersViewer;
X, Y: INTEGER;
menuF: TextFrames.Frame; mainF: BoardFrames.Frame;
text: Texts.Text; beg, end, time: LONGINT;

BEGIN
Texts.OpenScanner(S, Oberon. Par.text. Oberon. Par. pos); T exts.Scan(S);
IF S.class # Texts.Name THEN

S.S : = II Boards. Board";
IF (S.class = Texts.Char) & (S.c = II i ") THEN

Oberon.GetSelection(text, beg, end, time);
IF time >= 0 THEN (* Selection exists *)

Texts.OpenScanner(S, text, beg); Texts.Scan(S);
END

END
END;
menuF : = TextFrames.NewMenu(S.s,

"System.Close System.Copy System.Grow Postlt.Store");
mainF: = BoardFrames.New(Boards.NewBoard(S.sl. 0,0);
Oberon.AllocateUserViewer(Oberon.Mouse.X, X, Y);
V: = MenuViewers.New(menuF, mainF, TextFrames.menuH, X, Y)

END Open;

If executed from the menu frame, the board of that viewer is stored. If
executed from another text, typically a tool, the marked viewer is
stored under a given name. The name is derived as in Open. Procedure
Backup is elaborated in Section 8.7.2.

PROCEDURE Store*;
VAR

V: ViewersViewer; S: Texts.Scanner; text: Texts.Text;
beg, end, time: LONGINT; res: INTEGER;

BEGIN
V: = Oberon.Par.vwr;
IF Oberon.Par.frame = V.dsc THEN

(* Command executed from the menu frame *)

A.4 Module Postlt (command module) 323

IF (V.dsc # NIL) & (V.dsc.next IS BoardFrames.Frame) THEN
(* A board frame exists *)
Texts.OpenScanner(S, Oberon.Par.text, 0);
Texts.Scan(S); (* Read the name of the viewer *)
IF S.class = Texts.Name THEN

Backup(S.s, bak);
Files. Rename(S.s, bak, res);
Boards.Store(V.dsc.next(BoardFrames.Frame).board, S.s);
LogOut. PutString(II Postlt.Store II); LogOut. PutString(S.s)

ELSE
LogOut. PutString(1I Postlt.Store illegal namell

)

END
ELSE LogOut. PutString(1I Postlt.Store not a board viewer")
END

ELSE
(* Command executed from a text other than the menu *)
V : = Oberon.MarkedViewer();
IF (V.dsc # NIL) & (V.dsc.next IS BoardFrames.Frame) THEN

(* A board frame exists *)
Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
Texts.Scan(S) ;
IF S.class # Texts.Name THEN

S.s : = II Boards. Board" ;
IF (S.class = Texts.Char) & (S.c = II i ") THEN

Oberon.GetSelection(text, beg, end, time);
IF time >= 0 THEN (* Selection exists *)

Texts.OpenScanner(S, text, beg); Texts.Scan(S);
END

END
END;
Backup(S.s) ;
Files.Rename(S.s, bak, res);
Boards.Store(V.dsc.next(BoardFrames.Frame).board, S.s);
LogOut. PutString(1I Postlt.Store "); LogOut. PutString(S.s)

ELSE
LogOut. PutString(1I Postlt.Store not a board viewer")

END
END

END Store;

APPENDIXB
Keyboard and ASCII
characters

Ceres features a standard ASCII keyboard, as depicted in the following
diagram. A numeric keypad is present but not shown.

j PF1 j PF2j PF31 PF4 j + I , I~I~I

r I ~ $ I ~o I ~ I ~ I ~
•

() I : j . I BS I BR I 4 9 0

I TAB I Q I w I E I R I T I y I u I I 0 I p II I IDELI

I K I L I I " I RETURN OJ E
N ICTAL I f~6~ I A I s I D I F I G I H I J
T
E

SHIFT R

SPACE

324

Keyboard and ASCII characters 325

Dec Hex Char Key! Dec Hex Char Keyl

0 OX NUL 41 29X
1 IX SOH CTRL-A 42 2AX *
2 2X STX CTRL-B 43 2BX +
3 3X ETX CTRL-C 44 2CX I

4 4X EaT CTRL-D 45 2DX -
5 5X ENQ CTRL-E 46 2EX
6 6X ACK CTRL-F 47 2FX
7 7X BEL CTRL-G 48 30X 0
8 8X BS CTRL-H 49 31X 1
9 9X HT CTRL-I I TAB 50 32X 2

10 OAX LF CTRL-J I LINE FEED 51 33X 3
11 OBX VT CTRL-K 52 34X 4
12 OCX FF CTRL-L 53 35X 5
13 ODX CR CTRL-M I RETURN 54 36X 6
14 OEX SO CTRL-N 55 37X 7
15 OFX 51 CTRL-O 56 38X 8
16 lOX DLE CTRL-P 57 39X 9
17 llX DC1 CTRL-Q 58 3AX
18 12X DC2 CTRL-R 59 3BX
19 13X DC3 CTRL-S 60 3CX <
20 14X DC4 CTRL-T 61 3DX
21 15X NAK CTRL-U 62 3EX >
22 16X SYN CTRL-V 63 3FX ?
23 17X ETB CTRL-W 64 40X @
24 18X CAN CTRL-X 65 41X A
25 19X EM CTRL-Y 66 42X B
26 lAX SUB CTRL-Z 67 43X C
27 1BX ESC CTRL-[I ESC 68 44X D
28 1CX FS CTRL-\ 69 45X E
29 1DX GS CTRL-] 70 46X F
30 lEX RS CTRL-6 71 47X G
31 1FX US CTRL-- (hyphen) 72 48X H
32 20X SP SPACE2 73 49X I
33 21X 74 4AX J
34 22X II 75 4BX K
35 23X # 76 4CX L
36 24X $ 77 4DX M
37 25X (7'0 78 4EX N
38 26X & 79 4FX a
39 27X I 80 SOX P
40 28X 81 SIX Q

J Ceres-3 keyboard. Most ASCII keyboards are similar.
2 Between 20X and 7FX lies the standard ASCII characters. They are produced

with the respective labelled keys, including the use of SHIFT.

326 Appendix B

Dec Hex Char Kel Dec Hex Char Keyl

82 52X R 126 7EX ~

83 53X S 127 7FX DEL DEL
84 54X T 128 80X A4 ~ (CTRL-SHIFT-A)5
85 55X U 129 81X b CTRL-SHIFT -A
86 56X V (CTRL-SHIFT-0)5
87 57X W 130 82X 0 CTRL-SHIFT -B
88 58X X (CTRL-SHIFT _U)5
89 59X Y 131 83X a CTRL-SHIFT -C (CTRL-af
90 5AX Z 132 84X 6 CTRL-SHIFT -D (CTRL-o)5
91 5BX [133 85X ii CTRL-SHIFT-E (CTRL-u)5
92 5CX \ 134 86X a CTRL-SHIFT -F
93 5DX] 135 87X e CTRL-SHIFT -G
94 5EX AJ 136 88X CTRL-SHIFT -H
95 5FX 137 89X 6 CTRL-SHIFT -I
96 60X \ 138 8AX U CTRL-SHIFT -J
97 61X a 139 8BX a CTRL-SHIFT -K
98 62X b 140 8CX e CTRL-SHIFT -L
99 63X c 141 8DX CTRL-SHIFT -M

100 64X d 142 8EX 0 CTRL-SHIFT -N
101 65X e 143 8FX U CTRL-SHIFT -0
102 66X f 144 90X e CTRL-SHIFT -P
103 67X g 145 91X e CTRL-SHIFT -Q I
104 68X h NOSCRL
105 69X 146 92X CTRL-SHIFT -R
106 6AX j 147 93X <; CTRL-SHIFT -S I
107 6BX k CTRL-NO SCRL
108 6CX 1 148 94X a CTRL-SHIFT - T
109 6DX m 149 95X ii. CTRL-SHIFT -U
110 6EX n 150 96X CTRL-SHIFT -V
111 6FX 0 151 97X CTRL-SHIFT -W
112 70X P 152 98X CTRL-SHIFT -x
113 71X q 153 99X CTRL-SHIFT - Y
114 72X r 154 9AX CTRL-SHIFT -Z
115 73X s 155 9BX - h CTRL-SHIFT -[
116 74X t 156 9CX CTRL-SHIFT -\
117 75X u 157 9DX CTRL-SHIFT -]
118 76X v 158 9EX CTRL-SHIFT -6
119 77X w 159 9FX CTRL-SHIFT-- (hyphen)
120 78X x 160 OAOX
121 79X Y 161 OA1X
122 7AX z 162 OA2X
123 7BX 163 OA3X
124 7CX 164 OA4X SETUP
125 7DX 165 OA5X SHIFT-SETUP

J Oberon fonts print an upward arrow' i' instead of the caret' AI.

4 Special language symbols as defined in the Syntax family fonts.
5 Translation by Oberon loop (that is, 81X is substituted for 8FX) to make national

language characters accessible with simple key combinations.
6 En-dash.

Keyboard and ASCII characters 327

Dec Hex Char Keyl Dec Hex Char Keyl

166 OA6X CTRL-SETUP 211 OD3X
167 OA7X CTRL-SHIFT -SETUP 212 OD4X
168 OA8X 213 OD5X
169 OA9X 214 OD6X
170 OAAX 215 OD7X
171 OABX 216 OD8X
172 OACX BREAK 217 OD9X
173 OADX SHIFT-BREAK 218 ODAX
174 OAEX CTRL-BREAK 219 ODBX
175 OAFX CTRL-SHIFT -BREAK 220 ODCX
U6 OBOX 221 ODDX
177 OB1X 222 ODEX
178 OB2X 223 ODFX
179 OB3X 224 OEOX
180 OB4X 225 OE1X
181 OB5X 226 OE2X
182 OB6X 227 OE3X
183 OB7X 228 OE4X
184 OB8X 229 OE5X
185 OB9X 230 OE6X
186 OBAX 231 OE7X
187 OBBX 232 OE8X CTRL-SHIFT -BS
188 OBCX 233 OE9X CTRL-SHIFT -TAB
189 OBDX 234 OEAX CTRL-SHIFT -LINE FEED
190 OBEX 235 OEBX
191 OBFX 236 OECX
192 OCOX 237 OEDX CTRL-SHIFT -RETURN
193 OC1X UPARROW 238 OEEX
194 OC2X DOWN ARROW 239 OEFX
195 OC3X RIGHT ARROW 240 OF OX
196 OC4X LEFT ARROW 241 OF1X PFI
197 OC5X 242 OF2X PF2
198 OC6X 243 OF3X PF3
199 OC7X 244 OF4X PF4
200 OC8X 245 OF5X
201 OC9X 246 OF6X
202 OCAX 247 OF7X
203 OCBX 248 OF8X
204 OCCX 249 OF9X
205 OCDX ENTER 250 OFAX
206 OCEX 251 OFBX
207 OCFX 252 OFCX
208 ODOX 253 OFDX
209 ODIX 254 OFEX
210 OD2X 255 OFFX CTRL-SHIFT -DEL

328 Appendix 8

Remarks:

(1) Only the code points OOX to 7FX are standardized (ASCII code.)

(2) The assignment of special language characters to code points
80X ~ ch ~ 95X is a property of the fonts of the Syntax family.

(3) The creation of codes outside the printable characters
(20X ~ ch ~ 7FX) by means of the CTRL and CTRL-SHIFT
modifier keys is particular for the keyboard of Ceres-3. It is,
however, typical for many ASCII keyboards. With different
equipment, the user needs to consult the hardware
documentation.

(4) The procedure Oberon.Loop substitutes the code points for the
umlaut characters to the following key combinations: CTRL-A =
a, CTRL-O = 0, CTRL-U = ii, CTRL-SHIFT-A = A, CTRL­
SHIFT -0 = 6 and CTRL-SHIFT -U = O. If this substitution is
not desired, Oberon. Loop needs to be modified.

(5) Except for the substitution of point 4, the event loop transfers all
codes in the consume message.

(6) Text viewers, however, accept only standard ASCII characters
(that is, 20X ~ ch ~ 7FX) and the umlaut characters a, 0, ii, A, 6
and O. If other codes generated by the keyboard should be
inserted in texts, the procedure TextFrames. Write has to be modi­
fied (or a different procedure called in a customized handler.)

APPENDIXC
MS/OOS files

File compatibility between Oberon and MS/DOS systems can be
achieved on the level of ASCII files. If an Oberon text is to be displayed
by a DOS (ASCII) editor, the character attributes (font, color and
vertical offset) must be first eliminated and the textual representation
stored in a file. The command Miscellaneous.Cleanup may be used for
this purpose.

However, DOS differs from Oberon in the way line breaks and
the end of a file are marked:

Line break
End of file

Oberon

CR (ODX)

MS/DOS

CR-LF (ODX-OAX)
CR-LF-SUB (ODX-OAX-IAX)

The following procedure transforms a text into a file which may be
properly viewed in a DOS ASCII editor:

PROCEDURE TextToDOSFile(text: TextsText; file: Files.File);

CONST
CR = ODX;
LF = OAX;
SUB = 1AX;

VAR
Reader: Texts.Reader;
Rider: Files.Rider;
ch: CHAR;

BEGIN
Texts.OpenReader(Reader, text. 0);
Files.Set(Rider, file, 0);
Texts.Read(Reader, ch);

329

330 Appendix C

WHILE -Reader.eot DO
Files.Write(Rider, ch);
IF ch = CR THEN

Files Write(Rider, LF)
END;
Texts.Read(Reader, ch)

END;
Files Write(Rider, CR); Files Write(Rider, LF); Files Write(Rider, SUB)

END TextToDOSFile;

Note: Procedure TextToDOSFile performs the elimination of character
attributes. Unlike Miscellaneous. Cleanup, however, it does not eliminate
non-printable characters. If this is desired, an appropriate test which
filters out characters in the range ch < 20X and ch > 7FX should be
added.

The translation from DOS to Oberon is similarly achieved:

PROCEDURE DOSFileToText(file: Files.File): Texts.Text;

CONST
LF = OAX;
SUB = 1AX;

VAR
text: Texts.Text;
Writer: Texts.Writer;
Rider: Files.Rider;
ch: CHAR;

BEGIN
Texts. OpenWriter(Writer);
Files.Set(Rider, file, 0);
Files. Read(Rider, ch);
WHILE -Rider.eof DO

IF (ch # LF) & (ch # SUB) THEN
Texts.Write(W, ch)

END;
Files.Read(Rider, ch)

END;
NEW(text); text.notify:= TextFrames.NotifyDisplay;
Texts.Open(text, 1111); Texts.Append(text, W.buf);
RETURN text

END DOSFileToText

If a file is transferred to a DOS machine through a diskette, the
user must not forget to transform the diskette directory using
Miscellaneous.ConvertToMSDOS. Similarly, Miscellaneous.ConvertFrom­
MSDOS is needed when a diskette is transferred from DOS to Oberon.

Oberon
language

Ceres
workstation

Oberon
operating
system

Bibliography

The Oberon language is described in the following papers and reports:

Wirth N. (1987). Type extensions. ACM Transactions on Prog. Languages and
Systems, 10, 204-14

Wirth N. (1988). The programming language Oberon. Software - Practice and
Experience, 18, 671-90

Wirth N. (1988). From Modula to Oberon. Software - Practice and Experience, 18,
661-70

Gutknecht J. (1989). Variations on the role of module interfaces. Structured
Programming, 10, 40-6

Mossenbock H. and TempI J. (1989). Object Oberon - a modest object-oriented
language. Structured Programming, 10(4), 199-207

Reiser M. and Wirth N. The Oberon language - steps beyond Pascal and
Modula. To be published.

Architecture and implementation of the Ceres workstation is the object of:

Eberle H. (1987). Development and analysis of a workstation computer. PhD
thesis, ETH Nr 8431

Heeb H. (1988). Design of the Processor Board for the Ceres-2 Workstation. Technical
Report 93, Institut fUr Informatik, ETH

Wirth N. (1989). Ceres-Net: A Low-Cost Computer Network and Extending Ceres-Net
by a Mail Service. Technical Report 112, Institut fiir Informatik, ETH

Goal and structure of the Oberon operating system is discussed in:

Wirth N. (1988). Oberon: A system for workstations, Microprocessing and Micro­
programming, 24, 3-8. North-Holland

Wirth N. (1989). Designing a system from scratch. Structured Programming, I,
10-18

Wirth N. and Gutknecht J. (1989). The Oberon system. Software - Practice and
Experience, 19(9), 857-93

Gutknecht J. (1989). The Oberon Guide. Technical Report 119, Institut fiir Infor­
matik, ETH

Wirth N. and Gutknecht J. The Oberon system. To be published.

331

332 Bibliography

Oberon
implementa­
tions

TempI J. (1990). SPARe-Oberon, User's Guide and Implementation, Report 133,
Institut fiir Informatik, ETH

Franz M. (1990). The Implementation of MacOberon, Technical Report 141, Institut
fiir Informatik, ETH

Franz M. (1990). MacOberon Reference Manual, Technical Report 142, Jnstitut fiir
Informatik, ETH

Glossary

Arrow mark An arrow shown at the bottom left corner of a viewer indicating
that a command is executed from that viewer which takes noticeable time
(for example, more than about a tenth of a second.)

Bitmap A special area of the computer's memory which is dedicated to the
display hardware. Each point on the display, called a pixel, corresponds to
a number of bits which hold a pixel value, which determines the color of the
pixel. For a monochrome display, the pixel value is a (black) or 1 (white)
which may be stored in one bit. The bitmap is also called pixelmap.

Caret A mark in texts designating the point receiving characters from the
keyboard or from copied selections.

Clicking Pressing and releasing a mouse key.
Color number The pixel value which defines the color of a point on the

display.
Color palette A set of registers which define 16 hues out of 256 shades of

blue, red and green.
Command (1) Informal definition: A system action initiated by clicking at the

command name in a text with the execute key. (2) Technical definition:
Any parameteriess Oberon procedure exported by a module.

Command module A module which only exports commands, which can be
executed from texts typically displayed in tool viewers.

Cooperative process multitasking A multitasking system where the overall
functioning depends on well-behavedness of the individual commands (or
tasks.) Oberon, for example, recognizes the procedure (or command) as an
indivisible unit and therefore assumes its run-time to be short.

Cursor (1) Informal definition: A pattern moving over the display under
mouse direction and used to point at objects. The mouse cursor is typically
a left pointing arrow. (2) Technical definition: An object which fades and
draws patterns on a trail.

Directory A table on the disk which allows access to the file data by a file
name.

Display manager A set of procedures which draw the portion of a document
which fits the area of a viewer. Example: Module TextFrames contains the
display manager of the standard editor.

Dragging Moving the mouse while one of the keys remains pressed.
Driver A system routine dealing with hardware registers or interrupts; for

333

334 Glossary

example, module Input reads special registers which hold mouse and
keyboard information.

Dynamic loading The modules (or the procedures in a module) are only
loaded into memory on demand.

Event loop see Loop.
Execute key The middle mouse key used to execute commands from texts.
File (1) Data stored on fixed disk or on diskette. The abstraction of contiguous

bytes is constructed from (possibly) non-contiguous disk sectors. (2) An
Oberon object which provides access to the disk sectors holding the data.

File server A machine on the network enabled to receive or deliver files. Note
that any station may be put into a file server mode.

Filler viewer A viewer which represents empty areas in a track (either the
track is empty or the top most viewer is dragged down with the mouse.)
With the filler viewer, the display is exhaustively tiled with a non­
overlapping rectangular viewer.

Focus The viewer which receives keyboard input. It typically contains a caret.
Typed characters or copied selections are inserted at the caret.

Font (1) The set of characters of a given design and size. (2) Abstract data type
which yields access to font data, loaded from disk files. The type Font is
exported by modules Display and Font.

Frame An Oberon object which describes a rectangular area of the screen. It
has provisions to install a handler and affords pointer type fields which
allow frames to form a hierarchical data structure. The type Frame
(exported by module Display) is extended to the types Viewers.Viewer,
MenuViewers.Viewer and TextFrames.Frame. Other viewer classes may
add further extensions.

Handler Command interpreter of a viewer (or viewer class.) The handler is a
procedure which is assigned to the field handle of the viewer descriptor.
The handler is called on system events such as mouse and keyboard input,
change in the viewer configuration etc. The parameters for the handler are
passed in a record termed a message.

Inner core Set of modules of the Oberon system providing basic operating
system functions such as storage management, module loading, file direct­
ory functions and file access.

Interclicking Clicking a mouse key while another key (the primary key)
remains pressed.

Logical display A display organized into tracks and viewers within tracks
which tile the screen area exhaustively. Allows for overlay tracks.

Loop A procedure in module Oberon which contains the idle loop. When
nothing else happens, the loop continuously polls mouse, keyboard and
possibly the network drivers. Besides the drivers, the garbage collector is
periodically invoked. The user may install procedures, called tasks, in the
loop. These tasks will periodically execute.

Mail server A dedicated machine maintaining mailboxes for each user partici­
pating in electronic mail.

Main frame The second subframe of a menu viewer. It is an active frame
which embodies the specialized function of the viewer. If the main frame
is a text frame, the menu viewer is a text viewer.

Glossary 335

Map Short for bitmap (see Bitmap.) Oberon knows three maps: (1) The
primary monochrome map; (2) The secondary monochrome map; (3) The
color map.

Mark A pattern overlaid over the display which will be removed again and
which does not change the displayed contents. For example, the mouse
cursor, the star-shaped pointer, the selection mark or the caret.

Marker An abstract data type to draw and fade the pattern of a cursor. For
example, Oberon.Arrow and Oberon. Star.

Menu command A command listed in the title bar of a viewer. It usually
operates on its viewer.

Menu frame The first subframe of a menu viewer. It typically is a text frame
which displays the viewer's title bar (see Title bar.)

Menu viewer A viewer which supports two (active) subframes. A menu
viewer can be repositioned with the mouse. Typically, the first subframe
(menu frame) is a text frame displaying the viewer's name and the menu
commands. If both frames are text frames, the viewer is a text viewer.

Message A record variable of a given message type which holds parameters
for handlers of viewers. The fields of the message are first filled and then
the message is passed as an actual parameter when the handler is called.
This sequence is termed 'sending a message.'

Message identifier An integer field which differentiates variants of a mes­
sage type; for example, the message type Oberon.InputMsg has variants:
consume = a and track = 1. In short, one speaks of an Oberon track
message and means a message of type Oberon.InputMsg with id = track.

Module hierarchy The partial ordering of modules defined by the relation
module A imports module B.

Multiple views Two (or more) viewers showing the same document which
may be individually scrolled in each viewer.

Name A sequence of name parts delimited by periods. A name part is a word
starting with a letter. Examples: Edit.Open, SyntaxlO.5cn.Fnt.

Network name A name under which an Oberon server on the network
knows the users. The network name is linked to the user name by the
network administrator.

Notifier A procedure invoked by texts when they are changed. The notifier is
installed in a text descriptor; that is, it is assigned to the descriptor's
procedure field notify.

Oberon (1) A programming language which simplifies and generalizes
Modula-2. (2) An operating system for a personal workstation.

Object An instance of an abstract data type. It is described by a record
variable which is accessed through a pointer. Typically, the pointer type
has the name of the object and the record is called the object descriptor. If
the object possesses a procedure field (to which a procedure is actually
assigned), then it is called an active object. Examples of active objects:
Viewers. Viewer, TextFrames.Frame.

Outer core Set of modules of the Oberon system managing display, keyboard
and mouse (modules: Input, Display, Fonts, Texts, Viewers, Oberon,
MenuViewers and TextFrames.)

Parameter Information for commands executed with the mouse (must be

336 Glossary

distinguished from the formal and actual parameters of Oberon pro­
cedures.) The parameter sources are (1) The text from which the command
is executed; (2) The selection; (3) The marked viewer.

Parameter list (1) A list of parameters following the command name in the
text from where the command was executed. Typically, the parameter list
consists of names and is terminated by a special symbol, usually 11-. II (2) A
variable of type Oberon.ParList which transfers information about the
environment from which the command was executed to the invoked
procedure.

Password A secret string of characters used to secure network access. The
password is registered with the command System. Set User and stored in
encoded form in the variable Oberon. Password.

Pattern An array of bytes which stores a pattern of (monochrome) pixels to be
transferred to the display maps through procedures performing raster
operations. Typically, a pattern holds a screen font or a cursor shape.

Pixel A raster point on the display specified through its display coordinates
or an address in the bitmap.

Pixelmap see Bitmap.
Point key The right mouse key used, for example, to set or track the caret.
Pointer A star-shaped mark placed on the display with the SETUP key which

designates a point or a viewer. The coordinates of the pointer or the
marked viewer may be parameters of commands. Technically, the pointer
is a cursor (see Cursor.)

Polymorphic command A command which admits various parameter
sources depending on context.

Position mark A beam perpendicular to the scroll bar which shows the
relative position of the viewer in the document (in proportions of the scroll
bar height or width.)

Pressing Holding down a mouse key while the mouse remains stationary.
Print server A dedicated machine managing a (electrophotographic) printer

on a network.
Reader (1) An abstract data type exported by module Texts which affords

sequential access to the characters in an associated text (spelled upper
case.) (2) An instance of the abstract data type (spelled lower case.)

Rider (1) An abstract data type exported by module Files which affords
sequential read/write access to the characters in an associated file (spelled
upper case.) (2) An instance of the abstract data type (spelled lower case.)

Scanner (1) An abstract data type exported by module Texts which affords
sequential access to tokens such as integers, reals, names etc. in an
associated text (spelled upper case.) (2) An instance of the abstract data
type (spelled lower case.)

Scroll bar A stripe at the left (optionally on top) of viewer frames serving for
mouse-based scrolling commands.

Scrolling Positioning the viewer frame in a document whose size exceeds the
viewer.

Select key The right mouse key used to select objects (for example, stretches
of text.)

Selection Objects marked for subsequent actions or as parameters for

Glossary 337

commands. The selection of objects is performed with the right mouse
key. Selected objects are marked, typically displayed in reverse video.

Sending a message see Message.
Server A special machine running a dedicated file, print or mail service over a

network.
Stretch Part of a text defined by the starting character position and by the

position of the first character not included in the stretch.
System log A global text into which commands report progress and comple­

tion messages. The system log is displayed in a text viewer named Sys­
tem.Log. The system log is open on the start-up display.

System tool A tool listing frequently used commands from modules System,
Edit and Compiler. The system tool is open on the start-up display.

System track see Track.
Task A parameterless procedure which is called at each cycle of the loop.
Text An abstract data type describing a sequence of characters together with

their properties. Texts are active objects exported by module Texts.
Text display manager A set of procedures exported by module TextFrames

which display texts in text frames.
Text frame A frame specialized to display texts for editing with the standard

editor. A text frame is an (active) object exported by module TextFrames
which embodies the standard editor.

Text viewer (1) The viewer class which embodies the standard Oberon text
editor. (2) An active Oberon object which is or type MenuViewers.Viewer
and has two text frames installed.

Title bar A bar at the top of viewer frames which is displayed in reverse
video. The title bar has the viewer title and, optionally, a set of commands
(also termed menu commands) which operate on the viewer. The title bar
is also used to drag the viewer under mouse control.

Tool A text displayed in a text viewer which lists commands ready for
execution with the mouse. Parameters may be typed in first. The notion of
tool supplants the menu of standard system designs.

Track A vertically oriented stripe on the display in which viewers are stacked
contiguously. A standard Oberon display features two tracks: a wide user
track and a narrower system track.

Trap A run-time error leads to abnormal program termination which is
reported in a trap viewer.

Up-call A procedure call where the parameters are not fully specified at
compile time. This is the case for a call to a procedure whose source code is
in a module which is not imported by the caller.

User identification see Password and User name.
User name Name under which a station is known to the network. The user

name is normally a short; for example, the user's initial. The user name is
set with the command System.SetUser.

User track see Track.
Viewer (1) A rectangular area of the display together with its semantics

which is defined by the viewer's command interpreter (or handler.) Typ­
ically, a viewer displays a document, such as a text or a graphic, and
provides an editor for that document. (2) An active Oberon object which

338 Glossary

defines a viewer. The base type Viewers. Viewer is exported by module
Viewers and is normally extended in the modules comprising a viewer
class.

Viewer class A specialized viewer together with a command module which,
among other commands, provides an Open command to create instances
of the viewer. A viewer class is typically comprised of a viewer type, an
abstract document manager, a display manager and a handler.

Viewer manager The set of procedures which manages the hierarchical data
structure of tracks and viewers. These procedures are exported by module
Viewers. They send viewer messages to handlers.

Writer (1) An abstract data type exported by module Texts which adds
character or textual representations of integers, reals and strings to the end
of an associated buffer (spelled upper case.) (2) An instance of the abstract
data type (spelled lower case.)

Index

Active object 82
Application architecture 88
Arrow mark 43, 190, 192,238
Arrow marker (for mouse cursor)

164
ASCII

code table 325
file 74
keyboard 324

Asynchronous interface 92

Back-up disk files 63
Back-up tool 63
Bitmap 108
Block mark 151
Body of module 207
Broadcast message 126
Buffer 142

Caret 23
procedures to track and remove

193
Ceres 1
Ceres-3 keyboard 324
Change menu of viewer 222
Change viewer 31
Clock 92, 170
Close track 56
Close viewer 33, 50, 55
Closing a file 101
Color cursor 117
Color number 110, 114
Command 34, 203

arrow mark 43,238
background task 237, 240

complex syntax 36
dynamic loading 206
execu ting 25
garbage collection 242
interrupting 26,238
long running 43,237
menu commands 223
name 34
parameters 34, 213

in launching text 214
in selection 215
marked viewer 217

polymorphic 37,213
rules for well-behaved command

242
termination from keyboard 206
which open viewer 221

Command activation 8, 165
Command interpreter 79
Command module 34

Back.up 63
Edit 50
Miscellaneous 65, 73
Net 68
System 53

Commands
Backup.DeleteFiles 64
Backup.Directory 64
Backup.Format 64
Backup.Init 64
Backup.ReadAll 64
Backup.ReadFiles 64
Backup.WriteFiles 64
Compiler. Compile 59
Edit.ChangeColor 51

339

340 Index

Commands cont.
Edit.ChangeFont 51
Edit.CopyFont 51
Edit.Locate 52
Edi t. Open 50
Edit.Recall 44,51
Edit. Search 52
Edit.Show 50
Edit.Store 49,51
Miscellaneous. Bootload 73
Miscellaneous.Cleanup 74
Miscellaneous. ConvertBlanks 74
Miscellaneous. ConvertFrom

MSDOS 65
Miscellaneous.ConvertTabs 74
Miscellaneous. ConvertT oMS DOS

65
Miscellaneous.CountLines 73
Miscellaneous.GetObjSize 73
Miscellaneous.snapshot 73
Net.DeleteMail 70
Net. Directory 69
Net.GetTime 71
Net.Mailbox 69
Net.ReceiveFiles 69
Net. ReceiveMail 69
Net.SendFiles 68
Net. SendMail 70
Net.sendMsg 71
Net.SetPassword 71
Net. StartServer 71
Net.StopServer 72
Net. Unprotect 71
Net.Wprotect 72
System. Close 33,50,55
System.CloseTrack 56
System. Collect 57
System. Copy 32,33,48,56
System.CopyFiles 54
System.DeleteFiles 54
System. Directory 53
System. Free 57
System.Grow 32,33,56
System.LoadMap 56
System.OpenLog 55
System. Recall 33,44,56
System.RenameFiles 54
System.SetColor 57

System.setFont 57
System.setUser 57,67
System.SetVoff 57
System. State 57
System. Time 56
System. Trap 56
System. Watch 56

Compiler 59
error description 61
locating errors 52,60
messages 60

Consume message 160
ControlMsg

definition 161
defocus 162
mark 162
message id's 161

Cooperative process multitasking
82

Copy attribute 25
Copy file 54
CopyMsg, definition 172
CopyOverMsg, definition 172
Copy selection 25
Copy viewer 32,33,48,56
Creation of a file 100
Creation of a file directory entry

102
Creation of a text 208
Creation of an object 84
CTRLkey 26
Current task 159
Cursor 163

color 117
cross-beam marker 258
definition 163
Mouse 164
Pointer 164
tracking mouse in handler 277

Customizing tools 40

Defocus message 162
DEL key 26
Delete a file directory entry

103
Delete file 54
Delete message 198
Delete selection 25

Directory
commands (tool level) 53
maintenance 102
of file names 100

Diskette 63
back-up tool 63
MS/DOS forma t 65

Display map size 110
Display modes 114
Display module 107
Draw

animated marks 256
cursor 277
dashed line 260
line 261
pattern 257
selection 260
spanning a rectangle 279
viewer frame 260

Driver
mouse and keyboard (module

Input) 91
printer 95
serial communication 93
V24 interface 92

Dynamic loading 8,206

Edit tool 46
Editing with mouse 24, 47
ESC key 26

remove caret 23
remove pointer 24
remove selection 22

Event loop 80, 157
Examples

backup file name 230
basic scanning techniques 210
copy pixel map 263
CopyFont 219
cross beam marker 258
decode mouse commands 281
design of an abstract document

295
directory listing 236
display descriptors 301
draw a viewer frame 260
filler handler 267
formatting of a matrix 212

Index 341

frame handler 270
handler for viewer 265
handler of note boards 320
handler of standard editor 283
initialize a pattern 258
initialize abstract data type from

file 300
mail file 234
marked viewer as parameter 217
menu commands 224
module LogOut 211
mouse tracking 278
moving the caret with arrow keys

276
note board viewer 293
numerical parameter 214
Open 223
open and close file 228
opening a viewer in a command

221
overlapping frames 305
process a list of names 214
process selection 216
processing modify message 275
read all characters from a text 208
read/write array 233
read/write records 232
reusing a handler 276
scrolling and setting the caret 226
scrolling in a general frame 306
searching a text 226
show arrow mark 238
simulation as task 240
simulation in foreground 238
track a rectangle 279
use of secondary display map 264
write to display 261
writing to system log 211

Executing a command 25
Extend message 177, 178
Extensibility 10

File
ASCII text file 74
close 101, 228
complex organization 234
definition 99
directory 100

342 Index

File COl1t.

disk directory 53
diskette directory 64
initialize a data structure

229
MS/DOS files 329
name 42,100
open 100, 228
random access 231
read/write a record type 232
read/write access 104
read/write arrays 233
read/write objects on the heap 233
save with back-up 229
sequential access 231
temporary 104
text 151
transfer 66, 68

FileDir module 236
Files

copy 54
delete 54
delete diskette 64
operating on groups 236
rename 54

Files module 98
Filler

handler 267
viewer 122

Flicker avoidance 264
Focus viewer 23, 166
Font

Display.Font, definition 112
Fonts.Font, definition 138

Fonts module 138
Frame

Display.Frame, definition 118
main frame 176
menu frame 176
TextFrames. Frame, definition

185
Frame handler 270
Function keys 26

Garbage collector
in long running commands 242
System. Collect 57

Grow viewer 32,33,56

Handler 83, 119
back to back 180
example standard editor 283
executing command 282
filler handler 267
general structure 85
installation 84, 204
MenuViewers.Handle 180
mouse-sensitive areas 281
of a frame 270
of a viewer 265
of Note-board viewer 320
recursive call 252
rules for well-behaved handler 291
sample event trail 252
task handler 157
TextFrames.Handle 195
tracking mouse 277
type definition 119

Initial display 27
Inner core 18,88
Input message 160
Input module 91
InputMsg

consume 160
definition 159
message id's 160
track 161

Insert message 198
Insertion point 22
Interclicking 21,24
Interrupt a running command 26,

238
Invert mode 114

Keyboard 26
command keys 26
CTRL key 26
ESC key 22, 23, 24, 26
layout 324
national language characters 26
PF keys 26
RETURN key 48
SETUP key 23

Large selection 49
Late binding 82

Length
buffer 142
file 99
text 139

Loading text 151
Local area network 66
Locating compiler errors 52, 60
Logical display 121
Logical link control 92,93
Loop 157

Mailbox 69
delete mail 70
receive mail 69

Main frame 176
Main text 29
Margin 188
Mark message 162
Mark selection 260
Marked viewer 23, 167

as parameter 217
Marker

Arrow 164
cross-beam 258
Star 164

Marks
arrow mark in text frame 190,

192
busy arrow in viewer 238
mouse arrow marker 164
moving 256
position 190, 192
star-shaped marker for pointer

164
Matrix output 212
Media access control 92,93
Memory management 9
Menu

changing commands in title bar
222

commands 33
commands in title bar 223

Menu frame 176
Menu text 29
Menu viewer 175
MenuViewers module 174
Message 84

broadcast 126

ControlMsg 162
defocus 162
mark 162
neutralize 162

CopyMsg 172
CopyOverMsg 172
definition

Index 343

Display.FrameMsg 119
MenuViewers.ModifyMsg 177
Oberon.ControlMsg 161
Oberon.CopyMsg 172
Oberon.CopyOverMsg 172
Oberon.InputMsg 159
Oberon.SelectionMsg 168
TextViewers.UpdateMsg 198
Viewers. ViewerMsg 125

identifier 85
InputMsg 160

consume 160
track 161

ModifyMsg 177
extend 178
procedure Modify 273
reduce 179

SelectionMsg 168
Sending 85
UpdateMsg 198

delete 198
insert 198
replace 198

ViewerMsg 125, 126
modify 127
restore 127
suspend 128

Modes 44
Modify message 126, 127, 273
ModifyMsg

definition 177
extend 178
message id's 178
reduce 179

Modula-2 1
Module 203

body 207
unloading 57

Module Backup 63
Module Display 107

color number 110, 114

344 Index

Module Display cont.
definition

font 112
frame 118
FrameMsg 119
Handler 119
Pattern 111

display control 116
display map

size in pixels 110
memory organization of the

pixelmap 111
modes 114
pixel size 108
raster operations 111
standard patterns 112

Module Edit 50
Module FileDir 236
Module Files 98

close file 101
definition

File 99
Rider 104

directory 100
directory maintenance 102
examples 227
file name 100
open file 100
temporary file 104

Module Fonts 138
Module hierarchy 86
Module Input 91
Module LogOut 211
Module MenuViewers 174

ancestor viewer 180
definition

ModifyMsg 177
Viewer 175

frame geometry 176
handler 180
logical frame structure 176
main frame 176
menu frame 176

Module Miscellaneous 65
Module Net 68
Module Oberon 154

clock 170
command activation 165

definition
ControlMsg 161
CopyMsg 172
CopyOverMsg 172
Cursor 163
Handler (of a task) 158
InputMsg 159
Marker 163
Painter 163
ParList 165
SelectionMsg 168
Task 158

display management 169
FocusViewer 166
loop 157
marked viewer 167
parameter list 165
pop-up menu 171
selection 167
state variables 173
system-wide resources 172
user identification 170

Module Printer 95
Module SCC 93

address 94
header 93
receive buffer 94

Module TextFrames 183
arrow mark 190, 192
caret 189
color 188
definition

frame 185
location 186
UpdateMsg 198

line spacing 188
margins 188
position mark 190
selection 189
standard notifier 197
text origin 187
update text 195

Module Texts 135
definition of scanner tokens

146
definition

Buffer 142
Reader 144

Scanner 145
Writer 149

examples 207
numbering 139
stretch 139
text block 151
text file 151

Module triplet 244
Module V24 92
Module Viewers 120

definition
Viewer 124
ViewerMsg 125

display model 121
filler viewer 122
frame data structure

133
minimal height 124
overlay track 123
track 128
viewer manager 123
viewer state 124

Mouse 20
actions

clicking 21
dragging 21
interclicking 21
pressing 21

copy text attributes 25
copy text selection 25
cursor 20
delete text selection 25
draw cursor 277
driver 91
editing text 47
limits 92
scroll text 30
select text 22
sensitive display areas

281
standard cursor 164
three keys 21

execute key 21
point key 21
selection key 21

undo interclick 25
Move viewer 31
Moving the selection 51

MS/DOS
diskette forma t 65
files 329

Multiple view of text 48
Multitasking 79, 81, 82

Name 42
command 34
file 42
network 67
source program 59
user name 67
viewer 42

Index 345

National language characters 26, 158
Net tool 68
Network 66
Note-board viewer 293

handler 320
module BoardFrames 300
module Boards 295
module PostIt 321

Notifier 141
codes 140
definition 140
TextFrames.NotifyDisplay 197

Oberon
inner core 18,88
innovations 11
outer core 18,88
system 7
system structure 87

Oberon module 154
Object 82

creation of instance 84
Open

a viewer 27
files (procedures Files.Old,

Files.New) 100
font (procedure Fonts.This) 139
general open command 141
main frame (procedure

TextFrames.NewText) 199
menu frame (procedure

TextFrames.NewMenu) 199
menu viewer (procedure

MenuViewers.New) 177
Oberon.OpenCursor 164

346 Index

Open cont.
Oberon.OpenDisplay 169
Oberon. Open Track 169
Printer. Open 96
text (procedure TextFrames. Text)

198
text viewer 50
TextFrames.Open 199
Texts. Open 140
Texts.OpenBuf 142
Texts.OpenReader 145
Texts.OpenScanner 147
Texts.OpenWriter 149
Viewers. Open 131
Viewers. Open Track 130

Open command 222
Organization of video RAM 111
Outer core 18,88
Output to system log 62
Overlapping frame 305, 311
Overlay track 123

Packet header 93
Paint mode 114
Parameter

correctness 204
implied 35
list of names 35
marked viewer 35
of commands 213
selection as operand 36
selection contains a name 36
single name 35
table of constructs 213

Parameter list
ParList, definition 165
parsing 210

Password 57, 67, 71
Pattern

definition 111
examples 257
standard patterns 112

PF keys 26
Pixel size 108
Pixel value 110
Pixelmap 109

copying to normal memory
263

memory organization 111
saving to disk 263

Pointer 23
mark message 162
standard cursor 164

Pop-up menu 171
Position

of a character in a text frame 192
of rider 104, 106
set rider 104

Position mark 190, 192
Printer module 95
Procedures

Display.CopyBlock 116
Display.CopyPattern 116
Display. DefCC 118
Display.DefCP 118
Display. DrawCX 118
Display.FadeCX 118
Display.GetChar 113
Display.GetColor 117
Display.InitCC 117
Display.InitCP 117
Display.Map 116
Display.ReplConst 115
Display.ReplPattern 115
Display.SetColor 117
Display.SetCursor 117
Display.5etMode 116
FileDir.Enumerate 236
Files. Base 106
Files.Close 101
Files. Delete 103
Files. Length 99
Files.New 100
Files.Old 100
Files.Pos 106
Files.Purge 102
Files.Read 105
Files. ReadBytes 105
Files.Register 102
Files.Rename 102
Files. Set 104
Files. Write 105
Files. Write Bytes 105
Fonts.This 139
Input.Available 91
Input.Mouse 92

Input.Read 92
Input.SetMouseLimits 92
Input.Time 92
MenuViewers.Handle 180
MenuViewers.New 177
Oberon.AllocateSystem Viewer

169
Oberon. Alloca te User Viewer 169
Oberon. Call 165, 196
Oberon. Coilect 159
Oberon. DisplayHeight 169
Oberon.DisplayWidth 169
Oberon. DrawCursor 164
Oberon.FadeCursor 164
Oberon.GetClock 170
Oberon.GetSelection 168
Oberon.lnstall 159
Oberon. Loop 158
Oberon.MarkedViewer 167
Oberon.OpenCursor 164
Oberon.OpenDisplay 169
Oberon.OpenTrack 169
Oberon.PassFocus 167
Oberon. Remove 159
Oberon.RemoveMarks 164
Oberon.SetClock 170
Oberon.SetColor 170
Oberon.SetFont 170
Oberon.SetUser 170
Oberon.SetVoff 170
Oberon.showMenu 171
Oberon.systemTrack 169
Oberon. Time 170
Oberon. UserTrack 169
Prin ter . Close 96
Prin ter. Con tString 96
Printer. Font 96
Printer. Line 97
Printer.Open 96
Printer.Page 97
Printer.Picture 97
Printer.Shade 96
Printer.String 96
SCC.Available 94
SCC. Receive 94
SCC.ReceiveHead 94
Scc. SendPacket 94
SCC.Skip 94

Index 347

SCc. Start 95
SCC.Stop 95
TextFrames.CopyOver 197
TextFrames. CopyViewer 197
TextFrames.Defocus 196
TextFrames. Delete 195
TextFrames.Edit 196
TextFrames.Extend 191
TextFrames. GetSelection 197
TextFrames.Handle 195
TextFrames.lnsert 195
TextFrames.Mark 192
TextFrames.Modify 197
TextFrames.Neutralize 196
TextFrames.NewMenu 199
TextFrames.NewText 199
TextFrames.NotifyDisplay 197
TextFrames.Open 199
TextFrames.Pos 192
TextFrames.Reduce 191
TextFrames. RemoveCaret 194
TextFrames. RemoveSelection 194
TextFrames.Replace 195
TextFrames.Restore 191
TextFrames.SetCaret 193
TextFrames. SetSelection 194
TextFrames.Show 192
TextFrames.Suspend 191
TextFrames.Text 198
TextFrames. TrackCaret 193
T extFrames. T rackLine 194
TextFrames. TrackSelection 194
TextFrames. TrackWord 194
TextFrames. Update 197
TextFrames. Write 196
Texts.Append 143
Texts.ChangeLooks 142
Texts.Copy 142
Texts.Delete 142
Texts.lnsert 143
Texts.Load 152
Texts.Open 140
Texts.OpenBuf 142
Texts.OpenReader 145
Texts.OpenScanner 147
Texts.OpenWriter 149
Texts.Pos 145
Texts.Read 145

348 Index

Procedures cont.
Texts. Recall 143
Texts.Save 143
Texts.Scan 147
Texts.SetColor 149
Texts.setFont 149
Texts.SetOffset 149
Texts.Store 152
Texts. Write 149
Texts. WriteDate 151
Texts.WriteHex 149
Texts.Writelnt 150
Texts. WriteLn 150
Texts.WriteLongReal 150
Texts.WriteLongRealHex 150
Texts. WriteReal 150
Texts. WriteRealFix 150
Texts. WriteRealHex 150
Texts. WriteString 151
V24.Available 92
V24.Receive 93
V24.send 93
V24.Start 93
V24.stop 93
Viewers. Broadcast 126
Viewers. Change 132
Viewers. Close 132
Viewers.CloseTrack 131
Viewers.InitTrack 129
Viewers. Locate 125
Viewers. Next 125
Viewers. Open 131
Viewers.OpenTrack 130
Viewers. Recall 132
Viewers. This 125

Random access 104,231
Raster operation 111,255

Copy Block 116
CopyPattern 116
ReplConst 115
ReplPattern 115

Read file 105
Reader 144

example 208
Reading of text data 144,208
Recall closed viewer 33, 50
Reduce message 177, 179

Register a file 102
Rename a file directory entry 102
Rename files 54
Replace message 198
Replace mode 114
Restore message 127
RETURN key 48
Rider 104

definition 104
position 104

RS323 interface 92
Run-time errors 61

Save task 158
Saving texts 49, 151
Scanner 145

class codes 146
definition 146
definition of tokens 146
example 209

Scanning text 145, 209
SCC module 93
Scrolling 30

page down 31
to arbitrary point in document 30
to beginning of document 30
to end of document 31

Searching text 52
Selection 22, 167

as parameter 36, 215
copy 25
delete 25
display in reverse video 260
large text 49
line of text 47
location in text frame 189
moving 51
procedures in module TextFrames

194
SelectionMsg 168
tracking 22

Send a message to an object 85
Send files 68
Send mail 70
Sequential file access 104, 231
Server

file 66
mail 66

mailbox 69
print 66
send mail 70
start 71
stop 72
Unprotect 71
Wprotect 72

SETUP key 23,26
Standard patterns 112
Star marker (for pointer) 164
Star-shaped pointer 23
Store text viewer 49,51
Store text 151
Stretch of text 139
String 205
Suspend message 126, 128
Synchronous interface 93
Syntax fonts 57
System log 27

writing to 211
System tool 27, 38

Task
current 159
definition 158
example 237
garbage collector 158
mouse and keyboard handler 157
safe 158
user task 158

Temporary file 104
Termination of string 205
Text 139

conversion to MS/DOS format
329

creation of 198, 208
definition and properties 139
loading 151
notifier 140
numbering 139
reading 208
reading from 143
scanning 209
storing 151
stretch 139
update display 141
write to display 261
writing 210

Text block 151
Text frame 185

examples 225
Text selection 167
Text viewer

carriage return 48
copy attribute 25
copy selection 25
delete selection 25
examples 218
executing commands

25
large selection 49
main frame 219
main text 29
menu commands 33
menu text 29
mouse editing 24, 47
multiple views 48
open 50
saving to disk 49
scrolling 30
search text 52
selecting a line 47
selection 22
setting the caret 23
store to disk 51
System. Log 27
System. Tool 27
tool 37

Index 349

TextFrames module 183
Texts module 135
Title bar 28

commands 33
Tokens (scanner) 146
Tool 20

customizing 40
definition 37
guidelines 41
naming convention 39
predefined tools 39

Backup 63
Edit 46
Miscellaneous 73
Net 68
System 27

user 41
Tool viewer 37

350 Index

Track
definition 128
procedures 129
system 20
user 20

Track message 161
Tracking

caret 23, 193
line 194
mouse cursor 277
rectangle 279
selection 22, 194
viewer bar 31
word 25,194

Trap 61
codes 62
from keyboard 62

Undo
closing of viewer 44, 56
deletion of selection 44, 51
interclick 25

Unloading module 26
Up-call 82
Update message 141
UpdateMsg 198
User identification 170
User task 158
User tool 41

V24 module 92
Video RAM 111
Viewer 19

arrow mark 43
close 33,55
copy 32,56
draw frame 260
focus 23, 166
grow 32,56

handler 265
layout 28
manager 123
marked 24,35, 167
menu commands 29
Menu Viewers. Viewer, definition

175
message id 126
move 31
name 29
open 27
placement 31
recall 33
scroll bar 29
state 124
target viewer 162
title bar 28
tracking title bar 31
Viewers. Viewer, definition 124

Viewer class 17, 88,244
example Note-board 293
module triplet 244

ViewerMsg
definition 125
message id's 126
modify 127
restore 127
suspend 128

Viewers module 120

Well-behaved command 242
Well-behaved handler 291
Write file 105
Write text to display 261
Writer 149

definition 149
example 210

Writing of text data 149
Writing to system log 211

THE OBERON SYSTEM
USER GUIDE AND PROGRAMMER'S MANUAL

Martin Reiser

In 1985 Niklaus Wirth and Ji.irg
Gutknecht embarked on a project to

build a new computer system from
scratch. The quote from Einstein:
Make it as simple as possible, but not
simpler served as a signpost for their
approach - resulting in a system of
exemplary lucidity, efficiency and
compactness. Wirth was fascinated by
the accuracy and reliability of the
Voyager space probe then passing
Oberon, one of the moons of Uranus.
The project was christened Oberon in
its honor.

Oberon is rich in function and designed to be easily
extensible - yet fits in less than 200 kBytes. It proves that
there is no inherent justification in the memory wasting
evolution of popular standardized operating systems.

This book is the definitive guide to the Oberon System,
which consists of:

• The Oberon language, designed by Wirth as a successor
to Pascal and Modula-2, supporting an object-oriented
style of programming

• The Oberon operating system, complete with a novel user
interface and associated software tools.

Key features of the book include:

• A tutorial guide to the graphical user interface,
exploring the main system commands

• A clear account of the major system modules, illustrated
by a wealth of examples

• A programming guide showing how the Oberon
system is programmed and used.

About the author:

Martin Reiser is a senior staff member of the LBM Research
Division and has served as director of the LBM Zurich
Research Laboratory. He is internationally renowned for
his research in performance evaluation as demonstrated by
several honors. Professor Reiser has received several
Outstanding Innovation awards from LBM. He is a fellow
of the IEEE, recipient of the IFIP Silver Core and winner
of the IEEE Koji Kobayashi Computers and
Communications Award. Since 1989 he has worked
closely with Wirth and Gutknecht at ETH Zurich on
Oberon. The result is an authoritative guide which will
provide unique insights for programmers, system
designers, students and researchers.

Addison-Wesley Publishing Company
9 780201 544220

ISBN 0-201-54422-9

