Diss. ETH No. 7646

Lilith:
A Workstation Computer
for Modula-2

, ~ A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

(ETH Ziirich)

for the degree of
Doctor of Technical Sciences

presented by
RICHARD STANLEY OHRAN
BSEE, BYU
MS, Univ of Utah
born June 11, 1942
citizen of the USA

accepted to the recommendation of
Prof. Dr. N. Wirth, examiner
Prof. Dr. C. A. Zehnder, co-examiner

Zirich 1984

Diss. ETH No. 7648

Lilith:
A Workstation Computer
for Modula-2

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOQGY ZURICH

(ETH Zarich)

for the degree of
Doctor of Technical Sciences

presented by
RICHARD STANLEY OHRAN
BSEE, BYU
MS, Univ of Utah
bormn June 11, 1942
citizen of the USA

accepted to the recommendation of
Prof. Dr. N. Wirth, examiner
Prof. Dr. C. A. Zehnder, co-examiner

Zarich 1984

Copyright 1984 by Richard Stanley Ohran, 125 West 4750 North, Provo, Utah 84604
Druckort: D-DRUCK-SPESCHA, CH-9014 St.Gallen

Preface

This dissertation is based upon the author’s participation in a research project conducted at the
Institut for Informatik of the Swiss Federal Institute of Technology(ETH) in Zurich. The principal
investigator of the project was Professor Niklaus Wirth. The project has been underway for 7
years now, and many people have contributed to it. The success of the project has exceeded
most of our expectations.

Direct support for this project has come primarily from the ETH. My participation in the project
has also been supported by the Department of Electrical Engineering of Brigham Young
University which provided a sabbatical year of leave during which the project was initiated. The
Department of Computer Science of Brigham Young University has also given support by way of
a lightened course load and professional development leave. By virtue of the technology which it
has distributed in behalf of the ETH and through grants from the Burroughs Corporation, the
Modula Research Institute of Provo, Utah has also been able to provide financial support for my
efforts in this project.

To all of my collegues on the project, | owe a debt of gratitude for the many enjoyable
associations | experienced during the project and for the many enlightening converstations.

For many enjoyable hours working together on the construction of the hardware of the Lilith, |
also thank Jirka Hoppe, Immo Noack, Farrell Ostler, Lyle Bingham, and John Nielsen.

To my friends and collegues, Duane B. Call and Aurel Soceneantu, | express thanks for their
continual encouragement during the years we have worked together.

To Prof. C. A. Zehnder | owe a special debt of gratitude for his efforts on my behalf in solving the
special bureaucratic problems associated with finding a position for a foreigner at the ETH, and
for his help with this dissertation.

Two important lessons that | have learned from Prof. N. Wirth are the value of simplicity in
technical matters and a proper perspective for the role of a professional career in life. For his
profound influence on my professional career, | offer him my most heartfelt thanks.

The patience and sacrifices of all my family members have made it possible for me to finish this
work.

Contents

Abstract

Kurztassung

1

Introduction

11
1.2
1.3

1.4

1.6

The Lilith Project
Technological Background
Project Goals

Historical Notes

A Scenario of Lilith Usage

Overview of the System

The Processor

The Memory

Display

Disk

Mouse and Keyboard
RS-232c Interface
Real Time Clock
Extra 1/0 Slots

The M-code Machine

3.1

An Overview of the M-code Machine

The Structure of the M-code Machine

The M-code Machine Operation

The Organization of Programs in Memory

The Stack, Procedure Activation Records, and Local Variables
Addressing of Variables

The Evaluation Stack

Coroutine Transfers and Interrupts

The Lilith Processor

4.1
4.2
4.3
44

4.9

The Microinstruction Cycle

The Microinstruction Register

The System BUS

The Control Store

The Microinstruction Address Circuitry
The Clock Generation Circuitry

The Arithmetic/Logic Unit (ALU)

The Data Port

The Instruction Fetch Unit (IFU)

4.10 The Memory

Decislons Made in the Design of the Lilith

6.1
6.2
6.3

Choice of the Processor Technology and the Arithmetic/Logic Unit
Design of the Microinstruction Control Unit

Expression Evaluation Stack

Design of Memory Organization

Design of the Instruction Fetch Unit

Design of the Clocking Circuitry

Design of Interrupt Circuitry

Design of Special Short Opcode Masking Instructions

The Design of the High Resolution Bitmap Display

S 8BILLLREBRE B

IA8BBE2S

8

5.10 Diagnostic Processor Unit (DPU) Design
(] Evaluation of the Lilith Design

6.1 Simulation Program

6.2 Expression Evaluation Stack

6.3 Short Constant Masking Circuitry
6.4 Microinstruction Format

6.5 Constant Generation Format Microinstructions
6.6 M-codes

6.7 The Instruction Fetch Unit

6.8 M-code Decode Delay

6.9 Memory Efficiency

6.10 Unused Memory Capacity

6.11 Display Refresh Interference
6.12 Processor Efficiency

7 Conclusions and Recommendations

7.1 Conclusions
7.2 Recommendations
7.3 Reflections on Lilith

Appendices

1 The Lilith Instruction Set
2 The Program "Simulator”
3 A Performance Measurement Program

References

Curriculum Vita

112
114

Abstract

Lilith is a single-user workstation computer optimized for the development and execution of
Modula-2 programs. Considerable departures from conventional techniques were made in its
design to optimize the processor for the execution of this high-level language. Also, special
features were included in the design to give the system extra versatility for its intended role as a
programming workstation. These features include the attachment of a high resolution bitmapped
graphics display and the inclusion of special operations in the processor which manipulate this
display. A mouse pointing device was selected as a peripheral to the processor to provide good
human interaction capabilities.

Their are three focal points of this dissertation, to document the design of the Lilith, to analyze
the performance improvements which have resulted from various decisions made in the design,
and to make recommendations for further improvements.

The selection of a stack based architecture is one factor contributing to the performance of the
Lilith. It allowed the creation of a very compact instruction set (called M-codes) which has
reduced considerably the size of Lilith programs in machine language, and thus contributed to
the overall speed of execution. The inclusion of a fast stack for expression evaluation provides
rapid execution of instructions. Dynamic measurements show that the majority of M-code
instructions execute in fewer than five microcycles.

The organization of Lilith’s memory is another factor contributing to the machine’s performance.
The use of a 64 bit read path allows the Lilith display controller to display a large number of bits
on the screen (30 million bits per second) without appreciably interfering with the processor’s
access to memory. The wide memory path also allows the use of an instruction fetch unit which
prefetches M-codes so that less time is spent by the processor fetching instructions. The
reduction in time spent fetching instructions decreases Lilith execution times by a factor of one
third in comparison with conventional machines that spend half of their time fetching
instructions.

The special characteristics of Lilith make it a perfect candidate for further expansion by
increasing memory size, decreasing cycle times, and extending the architecture to multiple
processors.

Zusammenfassung

Lilith ist ein Arbeitsplatzrechner fir einen einzelnen Benatzer, optimal ausgelegt zur Entwicklung
und Ausfiilhrung von Modula-2-Programmen. Durch betrachtliche Abweichungen von
konventionellen Lésungen wurde der Prozessor auf die Ausfiihrung von Programmen in dieser
hdheren Sprache ausgerichtet. Weitere Besonderheiten im Systementwurf betreffen dessen
Eignung als Arbeitsplatz des Programmierers. Dazu gehdren der hochaufidsende
Graphik-Bildschirm mit direkter Basierung auf dem Arbeitsspeicher (bit map) sowie spezielle
Prozessor-Operationen fir Graphikarbeiten. Eine "Maus” dient dabei als Eingabegerat zum
Prozessor fir eine ergonomisch gute Dialoggestaltung.

Die Zielsetzungen dieser Dissertation sind dreifach, namlich die Dokumentation des
Lilith-(Hardware-)Entwurfs, die Analyse der Leistungsverbesserungen als Folge der
verschiedenen Entwurfsentscheide sowie Empfehlungen fir weitere Verbesserungen.

Die Wahl einer Stapel-(stack)Architektur im Gegensatz zu einer Multiregister-Maschine ist eine
wesentliche Grundlage fir die Leistungsfahigkeit der Lilith. Sie erlaubt die Schaffung eines sehr
kompakten Befehlissatzes (sog. M-code), welcher den Umfang der Lilith-Maschinenprogramme
bedeutend reduziert und damit zur generelen Erhdhung der Ausfihrungsgeschwindigkeit
beitragt. Die Entwicklung eines schnellen 16-Stufen-Stack zur Auswertung von Ausdricken
erlaubt die rasche Verarbeitung des M-code. Dynamische Messungen Zeigen, dass die meisten
M-code-Befehle in weniger als funf Mikrozyklen ausgefihrt werden.

Der Speicheraufbau ist ein weiterer Grund, der die Leistung der Maschine erh&ht. Der Einsatz
eines 64 bit breiten Lesepfads erlaubt dem Lilith-Prozessor, eine sehr grosse Zahl von Bits (30
Mbits/s) laufend auf den Bildschirm zu Ubertragen, ohne die Gbrigen Speicheraktivitaten des
Prozessors merkbar zu beeintréachtigen. Der breite Lesepfad erlaubt auch den Einsatz eines
besonderen Befehlsvorprozessors (instruction fetch unit), welcher M-code-Befehle vorausliest,
damit der eigentliche Prozessor weniger Zeit dafir benétigt. Die Zeitreduktion beim Lesen der
Befehle vermindert die Lilith-Ausfihrungszeiten um einen Drittel, verglichen mit konventionellen
Maschinen, welche die Halfte ihrer Zeit mit dem Lesen von Befehlen verbringen.

Die besonderen Eigenschaften der Lilith-Maschine machen diese zu einem idealen Kandidaten
fur weitere Erganzungen mit grdsserem Speicher, schnelleren Zykluszeiten und weiteren
Prozessoren.

1 Introduction

1.1 The Lilith Project

In the fall of 1977 a project was begun at the Institut fOr Informatik of the Swiss Federal institute
of Technology(ETH) in Zurich under the leadership of Prof. N. Wirth. The goal of this project was
relatively ambitious: the creation of a complete new computing instrument--a workstation
computer-- based on total rework of the existing technology. The scope of the project included
the design of a new language, the design of a new operating system, and the design of a new
computer architecture. The language was called Modula-2, the operating system was called
MEDOS-2, and the computer itself was later christened "Lilith."

The name "Modula” is a contrivance from the word "modular language”. "Module” is the name
of a key programming structure in the new language. The name "MEDOS" was concocted by its
author who stated on one occasion that it was taken from the German phrase, "Mein Erstes Disk
Operating System", which means "my first disk operating system". The name "Lilith" came from
Jewish mythology as the name of a female personage of questionable integrity who supposedly
seduced men away from their wives and children.

There were many reasons for beginning such a project. One reason was a dissatisfaction with
the architecture of computers previously used and the feeling that a new effort could yield a
better result if a strong emphasis were placed on creating a design especially suited for high
level programming languages. Another reason was a desire to experiment with new ideas for
using computers in a mode where a relatively powerful computer would be dedicated to the use
of a single programmer with the intention of providing better tools for the programmer to use.
Finally, a number of years of experience in the use of high level programming languages had led
to the discovery of new principles in the design of high level languages which could only be
proven in the development and implementation of an entirely new language.

1.2 Technological Background

The design of the Lilith workstation was based primarily upon technology developed in several
earlier projects at the ETH and upon work done at the Xerox Palo Alto Research Center. The
concepts which were developed in these projects were the basis for creation of Lilith.

Pascal

The Pascal programming language [Amm] [Wir71] developed at the Institut far Informatik during
the first part of the 1970’s established the fundamental ideas of structured program languages
which determined the architecture of Lilith. In particular, the techniques of storage addressing
for variables, and the requirements for procedure calls in Pascal are directly reflected in the Lilith
architecture.

P-Machine.

As acceptance of Pascal as a programming language became widespread, a mechanism was
sought to allow an easier transfer of the programming language to other computer systems. A
solution was found in the invention of a pseudo-machine architecture which could be simulated
in the assembly language of the targeted computer system [NAJNJ]. The pseudo-machine was
never referred to by any more elegant name than the P-machine. Its order codes were referred
to as P-codes. It appears that its true significance as an innovative and extremely efficient
computer architecture was never recognized. Even though the details of its design have been
widely spread, in the intervening years not a single IC manutacturer has ventured to construct a
single-chip microcomputer implementing the P-machine architecture. It has, however, been
implemented on microprogrammed machines on several occasions [BS]. Lilith has drawn heavily
from the ideas developed in the design of the P-machine.

Modula

As a precursor to Modula-2, the Modula programming language was developed "to conquer that
stronghold of assembly coding,or at least to attack it vigorously” [Wir1] [Le]. In other words, the
goal in its design was to completely eliminate the need for assembly language programming
even at the systems programming level. The experience gained with Modula led to the inclusion
of similar ideas in Modula-2 and the successful elimination of all programming at the assembly
level in the Lilith computer.

The Xerox Alto

Exposure to the Alto computer system developed at the Xerox Palo Alto Research Center
(PARC) [TMLSB] influenced the design of the human interface aspects of the Lilith system. The
Alto made effective use of a high resolution bitmapped graphics display and of a pointing device
called a mouse. These features were also incorporated into Lilith together with the technique of
displaying characters and cursors created as raster images by software rather than hardware.
The use of multiple font styles as an additional dimension for the presentation of information on
the screen, and the use of overlapping windows as a further means of organizing information on
the screen were techniques developed at PARC and carried over into the Lilith project.

1.3 Project Goals

Goals were formulated at the start of the project. These goals reflected, of course, the
experience of the previous decade in the projects mentioned. For the most part these goals
addressed themselves to shortcomings observed in the previous efforts and to some extent to
aspirations encouraged by recent advances in semiconductor technology. At the time, no written
document was generated enumerating these goals, so the following is a recollection of them as
they came from the initial planning discussions.

The following are the goals discussed by the project team:

Rework and Extension of Pascal into a New Language: A language suitable for systems
programming use as well as application programs was sought. Seven years of Pascal usage had
unearthed many problems in the language. With the experiment of Modula completed (an
experiment in the design of a language only for use as a systems programming tool), it was felt
that the time was right to attack the general problem of a new language to replace Pascal for
applications programming with augmented features to support systems programming.

High Level Language Programming: Having the conviction that assembly language programming
was undesirable, it was hoped that the combination of a new powerful language and a correctly
designed processor architecture could completely eliminate the need for assembly language
programming. Even the operating system would be programmed in Modula-2 [Knu].

Stand-Alone Processor: It was hoped that sufficient processor power and memory storage
capacity could be combined to provide a computing work station with adequate capability to
support all language, operating systems and utility developments without the support of any
larger computer system.

Efficient Programmer’s Work Station Design: It was recognized that the use of a powerful
processor coupled with a bitmap graphics display and a mouse pointing device would allow the
development of more efficient methods of human interaction with the computer. This would be
achieved through the versatility in the workstation’s display and the speed with which images
could be changed. By using the mouse for control operations, the programmer would be able to
quickly issue commands to the computer and thus be capable of greater programming
productivity.

Hardware Efficiency and Simplicity: Above all, we hoped to be able to achieve our goals with
simpler hardware (relatively speaking). This was to be done by drawing upon the group’s
understanding of high level language compilation techniques so that a higher degree of

10

efficiency in the processor would be achieved through the elimination of processor features
unusable by high level language compilers.

Reliablility and Maintainability: Naturally, we wanted the machine to be reliable and maintainable.
We knew, however, that this goal would compete with previous goals of keeping the machine
simple and efficient. For example, the addition of parity detection circuitry or error cormrection
circuitry would have added complexity to the memory circuitry, but would have improved the
reliability of the machine. Adding circuitry to allow automated sampling of the computer’s
internal signals would improve maintainability. If every opportunity were taken to add circuitry for
the purpose of improving reliability or maintainability, the number of chips necessary to build the
machine could easily be doubled. We hoped to find an optimal balance.

The Ideal Programmer’s Workstation

In summary, it might have been said that our aspiration was to build nothing less than the ideal
programmer’s workstation. Indeed, each member of the group envisioned from the start the day
when he would have his own copy of this machine in his office as the nearly perfect solution to
his programming needs (or, as perfect as would reasonably be within our power to make it).
Since all members of the group were extensively involved in the software side of computing, it
was impossible to conceive that the machine would have any other orientation. Thus, Lilith was
to become a programmer’s workstation, optimized for all tasks relevant to programming, i.e.
editing, document preparation, compilations, debugging, filing, etc.

1.4 Historical Notes
The following timetable outlines significant events in the Lilith project:
Oct 1977 Start of Project
Sep 1978 Completion of first (wirewrap) prototype at ETH--without disk
Sep 1979 Completion of second prototype (printed circuits)
Jan 1980 Start of 30 unit production at Brigham Young University in Provo, Utah

Jun 1980 Medos-2 operational on Lilith
Compiler transferred from PDP-11

Oct 1980 Delivery of 10 units to ETH

Mar 1981 Delivery of 10 additional Liliths to ETH
Announcement of Lilith [Wir81]

Sep 1981 Construction of 60 additional Liliths by
Modula Research Institute in Provo, Utah

Jun 1982 Completion of the laser printer interface
Sep 1982 Completion of the network interface [Hop83]

Since the project’s beginning in the last quarter of 1977, almost six years have passed. More
than a hundred Liliths have been constructed and over 60 units have been installed at the ETH
for use in the the Institut far Informatik (Dept. of Computer Science). Furthermore, Liliths have
been supplied to numerous universities and corporations in North America and Europe for study
of its software and hardware innovations. At least three different corporations have produced
Liliths or variations thereof.

Initially the project was staffed by seven people: Prof. Niklaus Wirth, Project Director; Svend
Knudsen, Christian Jacobi, Leo Geissmann, Jirka Hoppe, Wermer Winiger and the author.
Knudsen, Jacobi [Jac], and Geissmann worked on the compiler [Gei]. Knudsen programmed
Medos-2 alone [Knu]. Winiger wrote the microprogrammed interpreter and worked on the editor
utilities. Hoppe wrote most of the diagnostics [Hop2] and designed the display controller for the

1"

15 inch landscape mode monitor. The author worked on the design and debug of the hardware.
N. Wirth, in addition to supervising the project, aiso was the principal architect of the machine
and its instruction set. He also programmed the text editor and the line drawing program, and
designed interfaces to the laser printer and the portrait mode display.

In the summers of 1978 and 1979, the project construction and debug efforts were aided by three
Brigham Young University students who came to Zurich for summer vacation: Farrell Ostler,
John Nielsen, and Lyle Bingham.

In 1978, Immo Noack and Anthony Gourengourt joined the project. Gourengourt aided in the
compiler effort while Noack aided the hardware side.

The areas of the Lilith project which were in part or wholely the contribution of the author were
the design of the memory subsystem, the data port, the instruction fetch unit, the expression
evaluation stack, the short constant masking circuitry, the system timing circuitry, the diagnostic
processor, the disk interface, the priority interrupt circuitry, the backplane, and the packaging of
the system.

1.5 A Scenario of Lilith Usage

The mere enumeration of a machine’s statistical characteristics do not convey adequately the
power and effectiveness one experiences when working with Lilith. Therefore, a hypothetical
scenario of machine usage will be described as it was envisioned by the designers and as bome
out in actual use of Lilith.

A Lilith user approaches the system bringing with him his own disk cartridge containing 10
megabytes of disk storage. This includes his personal text and program files, a complete library
of systems software, demonstration programs, standard and/or specially prepared font files,
documentation files and graphic illustration files. After he inserts his disk cartridge and powers
up the system, a boot program is read into the main memory establishing a core of resident
modules which are so commonly used that their presence as a"default"” is felt necessary.

After a few seconds the user has already instructed the command interpreter to initiate
execution of the document editor, and he resumes a previously begun session of editing a
document. He views this document on a high resolution screen seeing characters very much like
those of a typeset document. Some characters are larger, some are italicized, and others are
bold. Using the mouse, he points to a paragraph and inserts characters into the text by typing on
the keyboard. Effortlessly selecting a group of words with the mouse (by coordinated use of the
buttons on the mouse and by moving the mouse), he then causes a small rectangular menu to
appear in the middle of the screen by pressing another button. He quickly selects an option from
the menu by pointing to it and releasing the button. The option causes the previously selected
group of words to be repainted on the display in a bold typestyle. As he continues to type and
give control commands with the mouse, he constructs for himself an image on the screen which
corresponds to the document which he will later cause to be printed in the laser printer. The
laser printer output appears at first glance to be flawlessly typeset only on closer inspection one
recognizes that it is not quite as good as typesetting.

Later he works upon the improvement of a program, moving rapidly between the phases of
editing, compiling, and execution. While editing, the screen is populated by windows which
separate groups of information. In one window is the source code of another's program
containing a portion of code usable for his current effort. With single mouse commands he
moves this code from that window into the window containing his program and adapts it to his
program.

While debugging an abnormally terminated program, the screen is populated with windows
containing extracted information from the interrupted execution of his program. In one window
he sees the compiler listing for the program correctly positioned to the point of interruption. In
another window, he views data associated with the program tabulated with its symbolic name,
type, and most recent value when the program execution was suspended. In all, six different
windows are displayed, each having its own function associated with the debug of the erroneous

12

program. Some of the windows have been expanded in size so that they overlap others but
provide a larger viewing area. With a simple mouse operation, the windows are brought to the
surface like sheets of paper scattered on a desk. The error of the program is easily found
because the coordinated design of hardware and software in Lilith has given the programmer an
exceptionally good capability to discern the causes of program malfunction.

As the programmer completes his work session, his final act is to place a backup copy of his
work on the central file storage system which is accessible through the network linking many
Liliths with other service units such as an image scanner, and a laser-printer. His last act is to
remove his cartridge from the machine and to return it to his place of safety, confident that his
own work effort will not be disrupted by central disk crashes, unexpected system software
updates, or malicious users.

13

2 Overview of the System

The basic Lilith system consists of a processor, memory, high resolution bitmapped graphics
display, 10-megabyte cartridge disk, and miscellaneous 1/0 devices. These include: mouse
pointing device, keyboard, real time clock, and serial line receiver/transmitter interface (UART).
A block diagram of the system is given in Figure 2.1.

2.1 Processor

The processor is a microprogrammed implementation of a stack machine architecture. It
processes words of data which are 16 bits long. The most elementary processing step is a
microinstruction which requires a period of 150 nanoseconds to execute. During the execution
of a microinstruction, one or two words of data can be taken from the intermnal registers of the
processor and operated upon in a monadic or dyadic fashion with the result subsequently being
stored in another register. The operations which the processor can perform during a
microinstruction treat data as integers, cardinals (positive integers), reals, addresses and sets of
bits. There are also a class of operations which manipulate half-words; these are typically used
with characters.

Sequences of operations executed by the processor are specified by instructions which the
processor fetches from memory. The instructions may be one or more bytes long. These
instructions are called M-codes. A single M-code may require the execution of many
microinstructions in order to complete its execution. The Lilith processor typically executes
about 1.2 million M-code instructions per second.

Some of the more distinctive features of the Lilith processor are the special operations which
provide support for the use of the high resolution bitmapped graphics display. These operations
are implemented in microcode and have especially efficient algorithms for the movement of
images on the screen, for the creation of images on the screen, and for the display of characters
on the screen. To help these graphics operations execute as rapidly as possibly, a special barrel
shifter was designed into the arithmetic part of the processor.

The heart of the processor is a 16-bit arithmetic unit based on AMD2901 "bit slice” integrated
circuits. The 2901 based arithmetic unit has 16 intemnal registers and has also been augmented
with the barrel shifter mentioned in the previous paragraph and an external 16 level stack.
Information flows into and out of the processor through the system bus which is 16 bits wide and
connected to most subsystems of Lilith.

2.2 Memory

The memory of Lilith is constructed from conventional semiconductor memory chips of the
dynamic refresh type. The cycle time is 375 nanoseconds in the fastest version of the machine.
The most common configuration has 256k bytes (k = 1024), but versions of the machine have
been built with larger memories.

The display and the processor compete for cycles from memory. The allocation of memory
cycles is handled by a priority arbitration circuit. The display has the highest priority. For reading,
the memory is organized basically as 32,768 addresses of 64-bit memory words. For writing it is
organized into 131,072 sixteen-bit words. The 64 bit wide data path is not usable by all elements
of the system. So, a special multiplexing circuit allows the memory to be read in 16-bit words.
The arithmetic unit of the processor and the programmed 1/0 devices read memory in 16 bit
words, but the instruction fetch unit of the processor and the display exploit the full 64-bit word
length for their memory cycles.

For dynamic memory refresh, a memory port is allocated to a section of circuitry which
periodically requests "dummy" memory read cycles. The circuitry requests these cycles to
satisfy the requirement of the dynamic memory to refresh each of the 128 row addresses once
each two milliseconds.

14

RAM Memory
32K x 64

Keyb
ALU CDP IFU DSK DsP Mouse
UART
16
L
2K x 40 MCU
ROM 12

Figure 2.1 Lilith Block Diagram

15

2.3 Display

The display controller refreshes a high resolution 17 inch cathode ray tube from the main
memory of Lilith. The display image is a so-called portrait mode display. The refresh rate is 38
frames per second, and the structure of the image is 704 dots across and 928 dots vertically. The
total memory needed to store all dots of the screne and used to refresh the image includes
40,832 sixteen-bit words. All images displayed on the screen are constructed from "bitmap"
images written into the display area of memory. The processor has several microprogrammed
instructions which perform image-creation operations with greater efficiency than normal
programming.

2.4 Disk

The secondary storage device of Lilith is a ten megabyte Honeywell Bull cartridge disk drive. The
unit uses portions of the technology commonly referred to as “"Winchester” yet provides
flexibility in the form of a removable disk cartridge, 12" by 12" by 1". The disk controller has a
minimal amount of logic, it is constructed on a single 8.5" by 11" circuit board, and it transfers a
single sector of data to an onboard buffer of 128 sixteen-bit words. Data transfers to the main
memory are not handled by direct memory access, but are handled directly by the processor
using special microcoded routines which operate at full memory speed.

2.5 Mouse Pointing Device and Keyboard

One of the significant features of Lilith is its well-designed human interface facilitated by the
previously described high resolution display, its "mouse” pointing device, and its keyboard. The
mouse rests on the table and transmits relative surface movements to the processor. Software
can use this information to position a pointer on the screen. Through pointing and depressing
the three buttons on the mouse, the user can give commands to the processor which are
typically program control operations. The effectiveness of this interface can hardly be described:;
it must be experienced.

2.6 RS-232c Interface

For communication with other standard peripheral devices and computers, a
RS-232-compatible serial interface is provided. The transmission rate is selectable from 75 to
9600 bits per second. The voltage levels for mark and space are standard.

2.7 Real Time Clock

At the line frequency (50 Hz for Europe, 60 Hz for the USA) interrupts are generated which cause
the processor to activate a "sleeping” task which keeps track of time and scans for keyboard
entries.

2.8 Extra 1/0 Slots

For expansion of the machine’s memory and connection of peripheral devices, the machine has
additional uncommitted circuit board slots. The devices which are connected may be designed
for programmed 1/0 or for direct memory access techniques using one of the four uncommitted
memory ports.

16

3 The M-code Machine

Litith was intentionally designed so that most people (i.e. programmers) who come in contact
with it would never see anything but the Modula-2 as a means of programming the processor. In
tact, many of the machine-dependent characteristics of Lilith which one could see at the
Modula-2 level are typically not seen because they are buried in library programs where
solutions of programming problems are provided to programmers at an abstract level free from
concern about their intricate, albeit mundane, details of implementation. This insulation from real
interaction with the hardware is considered to be one of the tenor themes in the philosophy of
Lilith’s design. The values of not having to program problem solutions on Lilith at the machine
language level are proudly proclaimed. This does not, however, mean that Lilith does not have a
machine language. In fact, it has two machine languages: M-codes which are fetched and
executed from main memory, and microinstructions which are fetched and executed from
read-only control store.

M-codes are the topic of this chapter. They are the molecules from which programs are built. As
a program, a sequence of M-codes represents a translation in Lilith-executable form of an
original Moduta-2 program. The Modula-2 compiler must create this sequence of M-codes so
that the semantic meaning of the original program is accurately reflected by the execution of
these M-codes. It is the task of the compiler writer to see that his compiler accurately transiates
the Moduta-2 programming constructions into valid M-code machine instructions. To do this, he
must understand the nature of M-codes and the structure of the M-code machine which
executes them.

It is also the task of the hardware designer to understand M-codes for he must build the
computer so that in executing M-codes, his hardware correctly performs the computing
functions assigned to each M-code. Because subsequent chapters will address the design of the
Lilith hardware, it is necessary in this chapter to present the characteristics of the M-code
engine which determined why and how the hardware of Lilith was designed.

3.1 An Overview of the M-code Machine

Like most computers, Lilith performs its task by the stepwise execution of a sequence of
instructions which it has stored in its memory. The operation is cyclic in nature: first an
instruction is fetched from memory, and then it is executed. Then the next instruction is fetched,
and the process repeats itself. The instructions, called M-codes, may require as many as 5 bytes
of memory for their specification, but most only require a single byte. The selection of the next
M-code to be taken for execution (after the one being executed) is by default the M-code
occupying the next adjacent memory location uniess the current M-code being executed
specifies a different sequence.

There are 256 M-codes which may be distinguished from each other by the contents of the first
byte of the M-code. Most of the M-codes do not require any additional bytes; some require as
many as four. M-codes requiring additional bytes typically use them for addressing offsets or
immediate data. All together, the M-codes comprise the instruction set of the machine. The goal,
of course, is to have a sequence of M-codes stored in memory stepwise directing Lilith to
perform a sequence of operations which will produce a desired solution to a problem. How to
create a sequence of M-codes which satisfies one’s needs is the subject of the discipline of
programming. We will not delve into that subject here; we will only attempt to describe the
M-code instruction set available to those who do.

Arithmetic and Logic Operations

As with most computers, Lilith has an arithmetic/logic unit (ALU) which can perform operations
upon words of data. The operations themselves are fairly conventional, i.e. 2's complement
integer arithmetic, unsigned integer arithmetic, real arithmetic using floating point notation, and
boolean operations of AND, OR, and XOR on sets of bits. Lilith differs from conventional
machines in its use of a stack as both the source and destination for the operands and the

17

results which are used and generated by the ALU. Conventional machines move data from
memory to registers and their instruction sets specify which registers are to deliver their contents
for use in the arithmetic/logic operations. In Lilith, data is moved from memory to the stack, and
the top levels of the stack are always implicitly selected as the source for the operands of any
arithmetic/logic operation. Furthermore, the resuit of any operation is always retumed to the
stack by implicit addressing. The use of a stack in this fashion is particularly efficient as has been
described on numerous occasions in the literature [Bar] [Ham). i

The stack used for arithmetic operations in Lilith can accept up to 16 words of data before any
loss of data by overflow occurs. Other processors in the past which have incorporated stacks for
arithmetic instruction evaluation have provided mechanisms for detecting when data has been
lost by overflow. Some of them, such as the Burroughs computers and the Hewlett Packard
computers, have even had mechanisms to automatically transfer data from an arithmetic
evaluation stack to memory [Bur] [HP]. Lilith has no such facilities. It does not even have the
capability in its hardware to detect whether or not the stack has overflowed. The reason for this
departure from the conventional wisdom lies in the commitment of Lilith’s designers to the use of
high level languages. It is entirely possible to organize the use of the stack so that a compiler
preparing the M-code program will always know to what extent the stack is being used.
Therefore, if the compiler is working properly, it will never allow stack usage to exceed capacity.

Data Transfers between the Arithmetic Evaluation Stack and Memory

A further example of how high level language usage has directed the architecture of Lilith is
found in the addressing mechanisms which the M-code instruction set offers for transferring
data between main memory and the stack. The most striking thing about Lilith is what it does not
offer. A conventional computer almost always has an instruction to load register r with the
contents of memory location m-where m is a completely specified address of memory, or an
abbreviated address of some section of the memory which is implicitly selected by default. Lilith
has no such instruction to offer. All addressing of memory (for data purposes) in Lilith is done by
reference to a base address register. This reflects the needs of programming in Modula-2 and
other languages. Data variables as they exist in Modula-2 programs are typically organized as
part of local or global data areas. Or, they are allocated from an area of the main memory known
as a heap and their address is assigned as the contents of a pointer variable which is in the local
or global data areas. Consequently, memory addressing in Lilith is effected by reference to base
address registers which point to the beginnings of the local and global data storage areas
together with an offset value which is included in the instruction as a constant. For pointer
variable addressing, the contents of the pointer memory location are loaded onto the stack and
the top of the stack is used as a base address register.

(Note: Interestingly, another computer which had this same characteristic of only addressing by
base address register was the first eight bit microcomputer made, the INTEL 8008[Int2]. The
direct addressing capability was later added to the improved version, the Intel 8080. | remember
distinctly the feeling of puzzlement about how one would go about using the device. The answer,
of course, lies in using immediate data operations to first load a register with a desired address
before using the register to address the memory location. The same technique is usable in Lilith
for the few instances that direct addressing is required.)

There are many advantages to addressing memory by use of base registers. Foremost is the
compactness of the instruction set which can result. Lilith makes extensive use of instructions
which have only 4 bit offsets as part of the instruction. This allows the complete specification of
load operation from a word in local or global memory to require only a single M-code instruction
byte.

M-code Addressing

When a location of memory is addressed as an M-code, its contents are taken as the next
instruction to control the operation of the processor. This operation is called the instruction fetch
and its performance is assigned to the instruction fetch unit (IFU) of the processor. Unless
otherwise directed, the instruction fetch unit retrieves a sequence of M-codes from adjacent

18

memory locations whose monotonically increasing addresses are supplied by a register within
the IFU called the program counter. From time to time, one of the M-codes stipulates an
alteration in the sequence of M-code fetches by loading a new value into the program counter.
This is an operation typical of computers. The most common such operation is the jump
operation which uses as an operand an address specifying which memory location is to be the
beginning of the new sequence of instructions executed. Here again, the high level language
orientation of the Lilith design departs from conventional techniques. Lilith has no direct jump. It
does have a relative jump, which is to say that an M-code can instruct the IFU to go forward or
pbackward an amount relative to its current position. But, an M-code cannot instruct the IFU to go
to a specific memory location directly.

Direct jumps in Lilith are handled by tables of addresses. These addresses identify the beginning
points of procedures. Since all programs written in Modula-2 may be viewed as collections of
procedures, the only time a direct jump is required is when a procedure call is made. Within a
procedure itself, all jumps are relative. Consequently, the only way Lilith offers a jump to an
absolute address is by a procedure call which finds the address in a table.

All conditional branches perform relative jumps based upon operation results left on the top of
the stack. For example, a comparison of two integers generates a boolean value of true or false
which is left on the stack after the two integers have been removed. A conditional jump operation
will then load a new address into the program counter depending upon whether it finds a true or
false on the stack.

Procedures and Modules

In Modula-2 procedures and modules are constructs in Modula-2 having names by which the
programmer knows them. In the M-code machine the procedures and modules are known by
numbers and their locations in memory are found as addresses in tables indexed by these
numbers. Procedures are always found within modules. Each module has one or more
procedures within it. Therefore, each module has a procedure table. When a program makes a
call to a procedure, it must first find the location of the module from the module table. Then, from
the module’s procedure table, it finds the starting address of the procedure.

A call to a procedure is similar to the subroutine calls typical of most computers. A retum
address is saved for later use when the procedure is completed, and the instruction fetch unit is
instructed to continue program execution at the called procedure. Most computers perform this
much. In Lilith, more work is necessary to satisfy the needs of Modula-2.

Each time a procedure is called or completed in Modula-2, the scope of local and global
variables which are accessible changes. In the context of the M-code machine, this means that
the base addressing registers used by Lilith may need to point to new data areas. For procedure
calls within the same module, it is only necessary to change the local base address registers, but
for calls to procedures within external modules, both global and local base address registers
must be updated. Furthermore, access to variables at intermediate levels in the Modula-2
program structures may require the creation of a chain of pointers by which their access can be
facilitated. A procedure activation record is the mechanism used to accomplish this. Each time a
procedure is called, a procedure activation record is produced which saves the return address,
the temporarily displaced contents of base address registers, and the link in the chain of pointers
which provides access to the variables at intermediate levels.

The nested structure of procedure calls and the possibility of recursively calling procedures in
Modula-2 dictates the need to use a stack within main memory as the mechanism for storing the
procedure activation records. As procedures are called, the stack grows; as they are completed
the stack shrinks. When procedures are called recursively, the stack grows and may have many
activation records for the same procedure. The M-code machine maintains the highest used
stack address in a register called the stack register. It uses this register for controlling the use of
the stack within main memory. Each procedure call or completion requires the updating of
content of this register. Fortunately, for the compiler writer, most of these operations are taken
care of by the M-code machine with little management necessary.

19

Dynamic Storage Allocation

The higher extremity of the unused memory space allocated to the stack is available for
allocation as the heap. When the program wishes to allocate storage dynamically during
execution and assign this storage to a pointer variable, it obtains this storage from the top end of
the stack. Naturally, the stack has fewer memory locations available for procedure activation
records when a portion of its space is taken away and assigned to the heap. A base address
register in the processor, the heap register, is used to keep track of memory so allocated. As the
stack and the heap are used, the addresses pointed to by the stack register and the heap register
grow closer together. If these two pointers meet, then the M-machine will terminate its current
computing activity with an error indication of stack overfiow.

Coroutines

As the M-code machine operates, it is sometimes desireable to suspend activity on a given
computing task and momentarily perform some work in an unrelated computing function. In
order to satisty this need, the M-code machine has been given an instruction which will deposit
into a small memory space all information about the machine state relevant to the current
computing task. At some point later in time the machine state can be reloaded from the memory
space, and execution of the program can resume with no difference distinguishable to the
program. This operation actually consists of two steps. The first step is the saving of the program
execution state into the memory locations called the process descriptor. The second step is the
loading of a program execution state from another process descriptor, which has already been
suspended. (Note: of course, there is a technique for creating a valid process descriptor for a
computing task that has not yet begun execution. How could one otherwise have a process
descriptor to transfer to?)

Having the ability to switch between independent computing tasks forces us to formulate a new
concept for a computing task just as being able to travel across a body of water separating two
areas of land forces us to formulate a new concept for land, i.e a continent. Each separate
computing activity is called a coroutine, and switch by the M-code machine from execution of
one coroutine to another is called a coroutine transfer.

Coroutine transfers can be programmed explicitly by a single M-code instruction. They can also
be initiated by the hardware in response to requests from other elements of the system. Such
requests are known as interrupts. When the M-code machine responds to an interrupt request, it
suspends the current coroutine into a process descriptor pointed to by a fixed location of
memory, and it activates a coroutine to handle the interrupt from a process descriptor pointed to
by another fixed location in memory. If an interrupt occurs without valid process descriptors at
the fixed locations of memory, the M-code machine will ignore it. From a programming
standpoint, this mechanism for handling interrupts is elegantly simple.

Coroutines transfers are also initiated whenever the M-code machine discovers a run-time
execution error such as arithmetic overflow, or invalid pointer addressing. In such cases, the
processor looks to a fixed memory location for a valid process descriptor. If it finds one, it will be
activated with the expectation that the coroutine stored there will undertake some error recovery
action or else abort the computing task which created the error. Naturally, the M-code machine
cannot assure that the coroutine activated will actually perform this function; it is the role of the
programmer using the system to determine what a run-time error handling coroutine does.

M-codes for Special Purposes

Lilith has a number of M-codes which perform special functions not necessarily associated with
the needs of programming in Modula-2. M-codes exist for functions such as high speed bitmap
graphic screen manipulations, input/output operations, and preparation of images to be printed
on a laser printer. These M-codes contribute greatly to the impressive performance Lilith gives
as a programmer’s workstation computer.

20

3.2 The Structure of the M-code Machine
The key elements of the M-code machine are the following:
BUS is a sixteen-bit data path which connects all elements of the machine together.

The main memory is a standard random access memory operating in read and write
cycles with addressability to 256k sixteen-bit words .

The global register (G) and local register (L) provide the base addresses for address
calculations needed for access to program data variables from main memory.

The stack top register (S) and the heap register (H) provide the address values used for
managing sections of main memory as a stack.

The code frame register (F) and the program counter offset register (PC) compositely
produce by addition the program counter register. Together they are used to generate a
byte address for each M-code machine instruction. These registers are part of the
instruction fetch unit.

The process register (P) holds a pointer to the process descriptor area for the currently
executing coroutine.

The mask register (M) holds the interrupt mask which determines which interrupts may be
recognized.

The evaluation stack is a true last-in-first-out stack structure composed of sixteen levels
of sixteen-bit words. It is the source of operands and the destination of results for most
operations carried out by the arithmetic/logic unit.

The arithmetic/logic unit operates on data values stored in the evaluation stack. It
performs the arithmetic operations on the following data types: cardinal, integer, and
real. It also performs relational operations comparing magnitudes for these types yielding
results of type boolean. It can perform the standard logic operations on boolean and set
data types. For address calculations the arithmetic/logic unit may reference the global
and local variable base address register as well as BUS for access to constants and
offsets.

There are additional elements of the M-code machine which need to be introduced at this time.
These elements are organizational in nature, being more a matter of usage convention within
memory than of structure.

The module frame table is a table of pointers found in the memory of Lilith. Each program
module has a base address entered for it into the module frame table so that it may be
addressed by other modules.

The data frame is an area of memory assigned to a module holding its global variables
and string constants. The address of the data frame is the value entered into the module
frame table.

The code frame is an area of memory assigned to a module for its compiled instructions.
The address of the code frame is the first word of the data frame.

The procedure address table is a table of values giving the entry point address for each
procedure of a module. The entry point address is an offset amount from the start of the
code frame.

A process descriptor is a data structure in the memory which can hold the state of a
coroutine during the times when it is suspended.

The interrupt vectors are pointers to process descriptors which are assigned fixed

21

memory locations. When an interrupt occurs, Lilith can create a coroutine transfer by
going to the fixed addresses to find process descriptors where it can save the state of the
coroutine in execution and retrieve the state of the coroutine which needs to be activated
to handle the interrupt.

The overall relfationship of the elements discussed in this section is shown in Figure 3.1. The
relationship of these elements will be discussed in greater detail in following sections.

3.3 The M-code Machine Operation

As was briefly discussed previously, a computing task performed by the M-code machine is
called a coroutine, and more than one coroutine can be operational in the machine at any given
time although only one coroutine is actually in execution (called active) at any give time, while
the others are held in a suspended state. Changes which cause the active coroutine to be
suspended and replaced by another suspended coroutine are called coroutine transfers.
Coroutine transfers may be caused either by programmed instructions or by hardware interrupts.

Each coroutine has a number of elements which make it unique and distinguish it from other
coroutines active within the system: First, each coroutine is assigned a workspace in main
memory, which it uses in part as a stack and in part as a heap. When the coroutine is created, the
registers associated with the stack and heap are initialized appropriately to use the workspace.
Figure 3.1 illustrates the address relationship of the S, L, and H registers to the workspace.

A second unique element of a coroutine is the process descriptor, which is a storage area
capable of holding the entire state of the processor relevant to the execution of the coroutine.
When a coroutine is suspended, its state is saved into its process descriptor. Usually, the storage
for the process descriptor is placed at the beginning of the workspace by the procedure which
initializes the coroutine and sets it into operation. A pointer to this area of memory is always held
in the P register of the M-code machine for the active coroutine.

A third unique element of each coroutine is the program counter value which determines
where--from program modules loaded in memory--the coroutine is to take its next instruction. It
will be discussed later how this value is actually a combination of values from two of the
machine’s registers, F and PC. The program modules themselves are not uniquely assigned to
any coroutine. They are simply resident in the machine and available to perform tasks for any
coroutine which chooses to execute their instructions.

A fourth element unique to each coroutine is the local storage allocated for each procedure as
the procedure is entered. This storage belongs to the coroutine which was active when the
procedure was entered and is available for the use of that procedure only when that coroutine
is active. If two coroutines enter and execute instructions from the same procedure, each will
have its own separate copy of the local variable storage. This will not be the case for the global
storage defined for each module and accessed by the procedures of the module. When such
global variables are used by two coroutines executing from the same procedure, the storage
referenced will be the same for both. This subject will be discussed further in the section
describing module organization.

The following analogy may help the reader to clarify the conceptual relationship between
coroutines and program modules as they exist in Lilith: We may view each coroutine as a
moving, dynamic entity to be compared with an automobile. A program module in this analogy
would be comparable to a neighborhood of streets, buildings and passages. The collection of all
program modules in Lilith’s memory is analogous to an entire city. Just as cars move through the
city constrained by the configuration of the streets and pass from one neighborhood to another,
coroutines work their way through the structures of program modules performing functions and
moving on to other modules. Just as several cars may travel in similar paths or even travel down
the same streets, several coroutines may operate within the same program module sharing
global data but each privately using its own local data.

Module frame table Ic)

pointer to global data segment
pointer to local dats segment

pointer to top of stack
pointer to stack imit

pointer to current code frame

pointer to current instruction

pointer to currént process

Deata frame

F

[]

Procedure address table /
Code frame

Moduie init tiag

String pointer

Global
Veriables

Stning constants

Coroutine State

Local Hosp

Unused Stack

Local Data
(Work Stack)

Limit

-— Top

l I » Descriptor

Fig 3.1

]

Code P1

Code P2

Code PO

Module Organization in Memory

Instruction Fetch and Execution

Once the M-code machine has a valid coroutine in an active state (there is always at least the
initial coroutine set up by the microprogram when the "reset” button is pushed), the M-code
machine follows a repetitive pattem of fetching instructions and executing them. The basic cycle
begins by fetching an M-code instruction from main memory. The address of an M-code is a
so-called byte address because an instruction may consist of as little as 8 bits taken from either
the right or left half of a normal 16-bit word of memory. Hence, a byte address requires one
additional bit in the least significant position of the address to determine from which half of the
word the address is taken. This byte address is computed from the sum of the contents of the
code frame register (F register) and the program counter offset register (PC register). The F
register value is shifted left two bits and the PC register value added to it; therefore, the resulting
address has 18 bits. An 18-bit byte address allows addressing of 256k bytes of memory or 128k
words (k = 1024) . The so-computed byte address is passed to the memory and the selected
instruction byte is returned from the memory to the M-code machine.

After the instruction byte has been fetched, the program counter offset register is incremented
by one. If additional bytes are needed to complete the instruction, they will also be fetched in the
above fashion with the possible exception that if the decoding of the first byte specifies that the
second byte is to be fetched as a negative value (for example, backward jumps), then the byte is
return as a negative number.

Once the instruction byte has been decoded, and additional instruction bytes have been fetched
as needed, the processor enters the execution phase wherein the specified operation is carried
out according to the order code of the instruction.

The M-code Instruction Set

Eight bits, i.e. one byte, constitute the basic element from which instructions are composed. A
complete Lilith instruction may use one through five bytes. (Refer to Figure 3.3.) The individual
instructions are categorized by the value of their first byte. Subsequent bytes usually provide
addressing offsets or constant data values for use by the instruction. The exceptions to this rule
are the escape and the sys code, which cause the second byte to be evaluated before the
instruction type is determined.

The instructions fall into six main categories:

1. Instructions which transfer data between main memory and the
evaluation stack which is part of the arithmetic/logic unit

2. Instructions which manipulate data on the stack

3. Instructions which change the sequence of instruction execution by
modifying the values of the F and PC registers.

4. Instructions which implement procedure calls and in the process modify
registers associated with the management of the stack in main memory.

5. The coroutine transfer which suspends the execution of a coroutine and
activates another.

6. Instructions which transfer data between the M-code machine and
input/output devices

Appendix 1 gives a descriptions of the instruction set. More will be said about some of the
particularly important instructions in later sections.

3.4 The Organization of Programs in Memory

At any given instance, Lilith will be found to have at least ten (or more likely 20) different modules
in memory, which may be in use by the coroutines operating within the system. There is a master

24

Addressing modes:
immediate n
local L+n
global G+n
indirect S+n
external FrmTab{m] + n
OoP
T
OP |
OoP n
oP n
oP m n
OoP m n
OP m n]

Fig 3.2 Microinstruction Formats

25

table of addresses for each module which is known as the module frame table. The table begins
at the absolute address of 20 (in hexadecimal) and has room for 96 entries. The number
assigned to a module is used as an index to obtain its address from the table. Modules may
reference other modules through the use of the module frame table. The address of the module
frame table is not a matter of arbitrary program selection; it is fixed and known by the
microprogram of Lilith. The module frame table is shown in the upper left hand corner of Figure
3.22

Modules

A module is a collection of procedures and data structures for performing a given task or related
set of tasks. It also has a structure which is a matter of definition in the microprogram defining
the instruction set. This structure consists of a global data frame and a code frame. Modules are
normally loaded into memory in contiguous areas from a low address above certain reserved
addresses to high addresses. The address of the first word of a module is entered into the
module frame table. All references to a module from extemal points use an index value into the
module frame table to fetch the pointer to the module. This pointer specifies the global data area
where, in turn, the first word is another pointer which gives the F register value for the start of the
code frame. At the start of the code frame is a second table for addresses of procedures found
within the module. There are as many pointers as are necessary for all the procedures of the
module. Figure 3.1 shows this relationship.

The Global Data Frame of a Module

As mentioned, the module frame table contains entries which point to the beginning of the
memory allocated to a module. This pointer value points directly to the memory area reserved to
hold the variables declared globally with the module. The first three locations of this area are not
assigned to global data variables but are used for special functions. These functions are:

Word 0: This word contains a value which, when placed in the F register, is used by the
instruction fetch unit to fetch instructions for execution. This value Is not the actual
starting address for the code frame because the F register has a 1-bit offset from the
normal address so the word actually contains the address divided by two.

Word 1: This address will initially be zero and will be set to a non-zero value with the first call of
the main procedure of the module. This word is used as a flag to Inhibit multiple
initializations of the module.

Word 2: String constants needed by the program are appended to the memory assigned to
global variables and referenced indirectly and post-indexed through the pointer found in
this location.

After the first three words in the data frame, the next storage locations are allocated for use as
global data variables.

Besides being addressable from all procedures of a module, global data variables have three
important characteristics which affect their function in a program: First, unlike local variables,
the storage allocation and "life" of the global data variable is permanent as long as the program
module defining the global variables is resident in memory. In Modula-2, the existence of
variables can even extend beyond the completion of the program which invoked the loading of
the module containing the variables. This provides a mechanism for passing information from
one coroutine to another. Second, global variables are the only variables which may be exported
from one module to another. Third, global variables are equally accessible by all coroutines
which execute with the module which has defined them or imported them. These features,
universal scope and permanence beyond the time boundaries of program executions, extend the
use of global variables beyond the normal functions seen in Pascal programs.

Because of these characteristics, global variables can assume a special role in Modula-2
programs which supercedes their use in Pascal programs. This role is related to three different
aspects of communications between modules, programs, and coroutines:

First, because of their ability to be exported, global variables are the means of communicating

26

data between separately compiled modules which import and export them. This becomes an
important consideration in the management of complex programming problems as the selection
of which global variables to export and import significantly affects the efficacy of the programs
using them.

A second communication aspect relates to the lifetime of the global data variables which are
associated with the resident program modules in memory. In Lilith, it is not necessary to purge a
module from memory simply because the task which caused it to be loaded has terminated. It is
possible to reuse a loaded module together with all accumlated information in its global variables
by using the module with a newly assembled selection of program modules to be used by a new
coroutine. The new coroutine thereby benefits from the accumulated information which the
previous task computed.

The last communication function of global variables is associated with the nature of modules
which are used by more than one coroutine within their overlapping lifetimes. Because global
variables are linked with a program and not with a coroutine (as is the case with local variables
which are allocated privately and separately to the stack of each coroutine), the global variables
become a commonly shared resource to the coroutines which reference the same program
module. This can be an important means of communication, but it can also become a source of
failure if consideration is not given to the well known probiem of synchronization and deadlock.

The Code Frame

As a module is compiled, each procedure encountered in the process is assigned a number in
sequence by which it is referenced from other modules and from other procedures within the
same module. An address for the entry point of each procedure relative to the address held in
the F register is placed in a table at the start of the code frame. The sequence number assigned
to the procedure is the index value through which the offset value is found. Therefore, the
starting address for the code frame is also the location where the address for procedure 0 of the
module is found. The main program section of a module is always procedure 0. There will be as
many words of procedure addresses as there are procedures within the module.

The code frame is currently assigned by the operating system to the first even word address just
above .the global data and the string constants. However, there is no reason it could not be
assigned to another memory area. If the amount of storage of Lilith available for data variables
becomes a limiting factor, the code frames of each module can still be relocated out of the prime
addressing space.

Procedure 0 of a Code Frame

Procedure O of the code frame is always the main program procedure of a module. When a given
program module makes references to procedures in any external modules, the main program
procedures of the external modules are called for execution before the execution of procedure 0
of this program module is completed. In such instances, the main program procedures of the
subordinate modules serve as initialization routines. This technique applies to any level of nested
module references. However, for the case where a module is referenced by more than one other
module, the main procedure of that module is only executed a single time because of special
program instructions which test the state of the flag stored in the second word of the data frame
as described above.

Addressing of Procedures

In contrast to conventional methods of making a procedure call according to the starting
memory address for the procedure code, a procedure call in Lilith is referenced only by a simple
number representing the sequential ordering of procedures within the module, i.e. 1, 2, 3..N. This
number provides an index value from the start of the code frame to a single memory location
which then provides the actual starting address of the procedure as an offset from the code
frame. For internal procedure calls within the same module, only the relative procedure number
is required. For procedures external to the module where the call is made, the procedure must
be called through the use of its 8-bit module number and its 8-bit procedure number.

27

The addressing of procedures and modules by an index value into a table provides two
advantages which may not be readily apparent. First, since all procedure entry addresses are
located by index value rather than address, relocation of a code frame to another address is
managed quite easily, requiring nothing more than the change of the pointer in the data frame.
Second, procedure variables are nothing more than integer table indexes. This also simplifies
relocation of code problems and renders the problem of loading and execution of new modules
relatively simple.

3.5 The Stack, Procedure Activation Records, and Local Variables

Initially, all available memory not in use for modules is assigned to the stack of the first coroutine.
Three registers, S, L, and H, control the use of this memory. The S-register (S meaning "stack
pointer”) points to the lowest unused storage location or top of the stack. The H-register points
to the highest free storage location for purposes of overfiow checking, and the L-register is used
as a register holding the base address of the most recently created procedure activation record
and the local variables of the active procedure. From this address, offsets are computed to
memory locations within the stack. As the memory of the stack is allocated for procedure
activation records and local variable storage with each procedure call, a comparison is made to
determine whether or not the S-register has been incremented beyond the bounds allocated for
use by the stack. Each procedure call causes the S-register to be incremented by four plus the
number of local variables defined for that procedure. At any given instant, the top memory
locations of the stack will hold: a) the local variables used by the procedure currently in
execution, and b) the activation record necessary to retumn the execution control back to the
program segment which called the procedure currently in execution. See Figure 3.3.

The Procedure Activation Record

Each time a procedure is called, it is necessary to place enough information on the stack so that
the execution of the program making the procedure call can be resumed correctly, and so that
the activated procedure may have access to information at lower nesting levels. Four words of
information must be stored for this purpose. These words have the following use:

Word 0: If calling a procedure in an external module, then this word contains the pointer value
from the module pointer table for the module making the call. If calling a procedure
within the same module, then this word contains a pointer value establishing a "static
link” to variables on the stack which are considered at a lower nesting level, or global,
to the called procedure.

Word 1: This word contains a pointer to the start of the next lower activation record. This is the
so-called "dynamic link" which is necessary to deallocate storage from the stack when
the current procedure is terminated.

Word 2: This word will contain the PC value for the next M-code instruction following the
instruction which called this procedure. If this procedure was called from within the
same module, then there is a ‘0" in the most significant bit of this word. If the call was
made from an external module, then the most significant bit of this word is a ‘1", and the
procedure return instruction will know to restore the G-register from word O of this
record, as well as the F-register from the first word of the global data area pointed to by
the G-register.

Word 3: This word is used to save the state of an interrupt mask in the event that the module
entered wishes to change it.

The L-register

Each time a procedure is called, the stack is expanded twice. First, as the procedure call is
made, a procedure activation record is constructed on the stack, occupying four words of the
stack. Then as the procedure is entered, more storage is allocated to accommodate local
variables which are declared within the procedure. Parameters of the procedure call will also
occupy local variable space. The newly invoked procedure then begins to process information
through these memory locations. To facilitate this, the L-register is assigned an address pointing

28

activation record
Procedure D
localto B

activation record
Procedure C
localto B

activation record
Procedure B
local call

activation record
Procedure A
external call

Fig 3.3

J1

N

1

Local Variables

Interrupt Mask

0] PC

dynamic link

static link to B

Local Variables

Interrupt Mask
ol PC

dynamic link

static link to B

Local Variables

Interrupt Mask
o] PC

7

dynamic link

static link to A

Local Variables

Interrupt Mask
1] PC

dynamic link
G register of extern. module |

Procedure Activation Records in the Stack

A

29

to the base of the procedure activation record. The invoked procedure may then address these
memory locations efficiently as small offsets from the L-register base. Instructions are available
which use either four or eight bits for the offset information. The efficiency of the program object
code is improved greatly through this mechanism.

The use of the L-register in this manner implies an additional overhead for the operations of
procedure call and return from procedure. Each of these operations must alter the contents of
the L-register so that subsequent fetches of local variables will be correctly performed. In the
case of the procedure call, it is necessary to save the value of the L-register into the dynamic link
(word 1) of the new activation record so that it may be restored later. Then the base address for
the new activation record must be loaded. It is held in the S-register at the time of the procedure
call. The return from procedure instruction must restore that L-register value in use by the
program segment which made the procedure call. This is done by loading the L-register from the
dynamic link which was prepared by the procedure call instruction.

3.6 Addressing of Data Variables

The storage addressing schemes of the Lilith virtual machine directly reflect the needs of the
Modula-2 programming language. In Modula-2, variables may be allocated in a multitude of
ways, although they are referenced through program instructions in one of only four separate
ways:

Oftfset from the G-register:

The G-register points to a data area reserved for use with the module which is currently
being used by the active coroutine. Data variables which are considered global to the
entire module are allocated from memory in this area. There are special instructions
giving access to these variables which minimize the number of bytes necessary to make
the reference.

Offset from the L-register:

In a manner analogous to the use of the G-register, there are instructions which operate
on data variables which have been allocated locally by a procedure to the stack of the
active coroutine. This includes the variables which are declared as formal parameters of
the procedure. The method of use again involves the use of special instructions which
reduce the number of bytes necessary to make the reference.

Offset from the G-register area of an External Module:

This method of addressing gives a module access to global variables in other modules.
The mechanism is similar to references to its own global variables but requires an
additional memory cycle to fetch the external module’s data frame table entry.

Offset from a Calculated Address

Numerous references to data variables require either references to pointer values stored
in other variables or references made with the help of calculated addresses as is
necessary for indexed addressing into arrays. In such cases, the needed address are put
on top of the expression evaluation stack as the result of other variable fetches and
arithmetic operations. To make references with such addresses, the instruction set
includes a number of instructions which provide efficient memory addressing based upon
the value found in the top of the stack.

As a final comment on addressing, it seems worthwhile to point out once again that data
operations on local data variables affect only the local storage of the coroutine using the
procedure. On the other hand, data operations affecting global variables affect all coroutines
which use the particular module to which they belong.

3.7 The Evaluation Stack

The evaluation stack of Lilith is only 16 levels deep and it does not automatically overflow into
the main memory stack as has been the case in other stack machines. Actually, here is no way to
check the stack for overflow. This poses an interesting question as to how Lilith avoids
undetected errors caused by accidentally overfilling the stack. The answer is contained in a
simple rule: All programming in Lilith is done using the Modula-2 compiler. The compiler never
uses the stack for any kind of operation where it cannot determine the dynamic level of
evaluation stack usage--as in the case of building arguments on the evaluation stack by
recursive procedure calls.

This rule implies that each executed statement leaves the evaluation stack in an empty state at
the end of its interpretation. Because function calls may occur in the middie of a statement,
function procedure calls require that the evaluation stack be saved onto the main memory stack
before calling the procedure. A retum from function must restore the evaluation stack.

Coroutine transfers must also save the state of the evaluation stack. They do so by popping
words from the stack until it is empty. The words taken from the evaluation stack are pushed
onto the main memory stack. Finally, the count of words popped from the evaluation stack is
pushed onto the main memory stack. The restoration of a coroutine’s state reverses this process.

3.8 Coroutine Transfers and Interrupts
An explicitly programmed coroutine transfer has the form:
TRANSFER(01d,new);

where the parameters o/d and new are pointers to process descriptors. The process of executing
a coroutine transfer begins with saving the contents of the evaluation stack onto the main
memory stack of the coroutine being suspended. Then, the entire state of the machine is saved
into the process descriptor whose address is found in the P register of the machine. When the
entire state has been saved, the address of this process descriptor is saved in the pointer
variable "old". Then, the address of another process descriptor is picked up from the variable
new and the registers of the machine are restored to their last values for the coroutine resuming
execution.

(NOTE: The machine takes the value from the variable "new" at the beginning of the operation
and saves it in an unused register internally during the saving of the coroutine state. Therefore, it
is possible for "old" and "new" to actually be the same pointer variable.)

Interrupts

A hardware interrupt requires that the state of the machine be saved and that a special driver
coroutine be activated to satisfy the source of the interrupt. When the need has been taken care
of, the state of the machine must be restored and the interrupted coroutine aliowed to continue
processing. In Lilith, this operation is identical in execution to the coroutine transfer which can
be explicitly programmed. The interrupt handler becomes just another coroutine. The only
difference is that instead of allowing any process descriptor pointer to be used as a parameter of
the coroutine transfer instruction, an interrupt-caused transfer must use assigned locations for
the parameters of the transfer operation. It is the responsibility of the programmer to see that the
process descriptor pointer for an interrupt handler is stored into the correct memory location
which is assigned to that interrupt.

This characteristic of Lilith has some interesting properties. For example, once a coroutine has
been written to perform a given function, the programmer can allow that function to be initiated
either by a real interrupt or by an expilicitly programmed coroutine transfer. The interrupt driver
need not know the difference and also does not need to respond differently. This feature of
Modula-2 programming is discussed more thoroughly in the Modula-2 reference report by N.
Wirth [WIR82].

31

Master Reset

When the master reset button of the system is pressed, the M-code machine is initialized to a
known initial state and begins operation. It first initializes an operating system program which
eventually loads a command interpreter program that can accept commands from the terminal.

Because Lilith is a developmental machine, it is expected that a programmer will occasionally
cause the machine to lock up through faulty programming. In many cases, the the reset button
will have been pushed to escape from the unfortunate programming situation. As an aid to the
programmer caught in this circumstance, the machine accepts a keyboard command just after
reset has been pushed which causes the entire contents of memory to be written to the disk.
Then the programmer can discover the reasons for the failure in his program by using a
debugger to analyze this file.

4 The Lilith Processor

In the previous chapter the Lilith computer was presented as it is seen from the perspective of
the compiler writer, or, in other words, as one who prepares programs in M-codes would see the
machine. The Lilith processor as seen at that level was called the M-code machine. Now the
hardware will be presented at the lowest and most intricate level of operation. At this level of
operation, M-codes are not viewed as a single indivisible operations, but rather as a the
sequences of microinstruction steps which are necessary to perform the function of the
M-codes. The coliection of all the microinstruction steps necessary to emulate the functions of
all M-codes is called the microprogram, or the M-code interpreter. This program is the vital link
between the actual hardware of Lilith and the virtual M-code machine. In this chapter, the
function of the hardware components will be presented to explain what hardware functions are
available for the microprogram to use in emulating M-codes. The microprogram itself is listed in
the Lilith Hardware Manual [Ohr82].

4.1 The Microinstruction Cycle

The execution of a microinstruction is the most basic operation in Lilith. It is usually, but not
always, completed in 150 nanoseconds. It's period can be made to be longer, but probably not
much faster. When attempts were made to make Lilith function with a microinstruction period
significantly shorter, incorrect operation resulted because some of the electronics signals did
not have sufficient time to propagate through the Lilith circuitry and find a stable value.

The timing of a microinstruction cycle follows a simple protocol. First of all, the start of a
microinstruction execution cycle is always signaled by the leading edge of a signal called the
clock. Shortly after the occurrence of this clock pulse (within several nanoseconds), the
microinstruction register outputs find the stable values which are to be the microinstruction
commands for the duration of the microinstruction cycle. There are 40 such command bits, each
of which has its own meaning and which controls different parts of the processor circuitry. The
circuit elements of the processor which are sensing the states of the command bits divide
themselves into two categories: those who are commanded to provide some information for use
during this microinstruction cycle, and those who are commanded to receive some information
during this microcycle. Those circuit elements who are commanded to supply information begin
at once to respond to the command bits. Because the data must sometimes flow through a
number of circuit elements, it is important that each component be as fast as is required to allow
the data to completely propagate throughout the system and stabilize before the end of the 150
nanosecond microinstruction period. Then, at the end of the microinstruction cycle, the leading
edge of the clock comes once again, and at this instant, those circuit elements, i.e. registers or
flip-flops, who are being commanded to receive data, do so, capturing the stable data at their
inputs. The leading edge of the clock which has just signaled the end of one microinstruction
cycle is simultaneously the starting signal of another cycle, and so it goes.

It is characteristic of the execution of a microinstruction cycle that at the beginning, all signals in
the system are in a state of flux and considered to be invalid. Shortly before the end of the cycle,
all signals stabilize to a value (true or false) and can be correctly sampled. The initial period of
incorrect data will not yield erroneous results because all circuitry of the system will be
synchronized to the leading edge of the clock and thus insensitive to any false data except if it
were to occur just before the edge of the clock. This is what is commonly known as the
technique of synchronous design. (See fig 4.1)

4.2 The Microinstruction Register (MIR)

The microinstruction register consists of 40 flipflops which are loaded with command bits at the
beginning of each microinstruction cycle. Each of these command bits has a separate meaning
assigned to it and circuitry connected to it which responds when the command bits assume the
value for which the meaning is defined. Some of the bits have more than one meaning. This is
accomplished by having multiple command formats and using two of the 40 bits to select which

Control Signal %Z/ 31 /

Arithmetic Unit Output

Fig 4.1 Microinstruction Timing

-3

34

format is operating. In such cases where command bits have different meanings in different
formats (not always the case), the circuitry responding to the command bits must also be
capable responding to the format selection.

Figure 4.3 shows the three microinstruction formats in Lilith.

In formats 1 and 2, the majority of the bits are used to control the ALU. In format 3, no bits at all
are used to control the ALU. It is totally disabled during format 3 instructions.

In format 1, 8 bits are used to control the source and destination selection of the BUS. In format 2
these bits are used to provide a constant to the bus. The destination in this case is always the
ALU.

In all three formats, there are bits controlling the selection of an address to use for the next
microinstruction.

4.3 The System BUS

The main participant in the execution of a microinstruction is the system bus (BUS). It is the
highway by which data travels from one end of Lilith to the other. It is 16 bits wide and operated
by tri-state logic. A typical microinstruction cycle using the bus might cause the following to
occur:

1. A register in the AMD2901 is commanded to give its contents to the arithmetic
adding circuit inside of the AMD2801 bit slice chips.

2. The AMD2901 arithmetic circuitry is commanded to give its data to the chip
outputs

3. The ALU board is commanded to pass the AMD2901 output data to the BUS.

4. A register in the memory systerh is commanded to receive the data from the BUS
as an address to be used in a memory cycle.

The connection of the system BUS to other elements in the system is shown if figure 2.1.

The control of the system BUS comes directly from the microinstruction register. In format 1
microinstructions, 4 bits (as shown in figure 4.n) are allocated to select the source of data on the
bus, and 4 more bits are allocated to select the destination on the bus. In format 2
microinstructions, the 8 bits a gated directly to the BUS as a constant, and the destination for the
BUS data is the arithemetic/logic unit. (See fig. 5.4)

4.4 The Control Store

The control store of Lilith can have as many as 4096 instructions stored in banks of bipolar
read-only memories (ROMs). Typically, only 2048 are used. During the execution of each
microinstruction, the control store is fetching the microinstruction to be used in the next cycle.
Since a microinstruction cycle is only 150 nanoseconds long at times, it is necessary to have
ROMs which are quite fast. Also, since there are no additional timing pulses which can be
generated, it is necessary to have ROMs which supply information continuously based only upon
the address given to them.

4.5 The Microinstruction Address Circuitry

A large amount of circuitry on the MCU board is dedicated to the function of generating the
address for the control store ROMs. This address can be generated in several different ways:

1. The previously used address can be incremented. This occurs most commonly.

2. The microinstruction can be of type 3 and may specify directly a 12 bit address.
The address may be specified either conditionally or unconditionally. Also, a
jump subroutine operation may be coupled with the direct transfer which causes
the saving of a return address on a four level stack.

3. The return address of a subroutine call can be taken from the four level stack.

4, A 12 bit address can be taken from the output of a special map ROM which uses
as its address the least significant eight bits of the system BUS. The intended use
here is to accompany this mode of usage with a command to the IFU to place
the next M-code onto the BUS. Therefore, a direct jump takes place to the next
M-code microinstruction sequence

5. An interrupt vector address can be given which is equivalent to the number of
the interrupt plus eight. This vector is given by the hardware in a cycle when the
microinstruction is trying to decode a new M-code. The vector displaces the
M-code jump address by disabling the jump map ROMs.

The heart of the circuitry for the microinstruction address generation is based upon three
AMD2911 sequencer chips. These chips each process four bits of the 12 bit address, and their
outputs go directly to the control store ROMS. Intemally, these chips have an incrementer circuit
which automatically increments the address used in each microinstruction. The incremented
address is then saved in a register within the chip so that it may be selected for use during the
next microinstruction cycle. There is also a four level subroutine retum address stack within the
chip which will save the incremented address from the previous microinstruction if the current
microinstruction is performing a jump subroutine instead of using the incremented address.
Whenever an address is used which is neither the incremented version of the previously used
address nor the return address of a subroutine, it must be generated externally and passed into
the AMD2911s through the direct inputs which the chips offer.

Figure 4.2 shows a simplified block diagram of the structure which generates the
microinstruction address.

4.6 The Clock Generation Circuitry

As has been indicated previously, most events which occur in the machine are synchronized to
the leading edge of the clock signal. For the greatest percentage of microinstruction cycles, this
signal is generated at regular 150 nanosecond intervals. However, there are some conditions
which require delaying the clock for some period of time, and so the clock generation circuitry is
not as trivial as one might expect. The conditions which require the clock to be delayed are as
follows;

1. The slow bit in the microinstruction is set. This typically occurs when a decode
of an M-code is in progress. This requires more than 150 nanoseconds to
accomplish because of the time required to look up the starting address for a
M-code’s microinstruction execution sequence. The slow bit causes the clock
cycle to be extended to 225 nanoseconds.

2. The microinstruction attempts to transfer data with one of the two memory ports,
and that port is still occupied with another operation. In this case, the clock is
simply stopped until the port is free to be used again.

3. The microinstruction attempts to transfer data with an 170 device which is
momentarily occupied. Again, the clock is simply stopped until the device is
ready.

4, Lilith is being operated in diagnostic mode and the diagnostic processor unit
(DPU) has halted the processor. The clock will be delayed until the DPU releases
it by allowing the processor to return to run mode, or by giving a command for a
single clock cycle.

5. The master reset switch has been pressed. The clock will not operate until the
master reset signal returns to its normal operating condition.

The clock generation circuitry operates from a master oscillator which oscillates at twice the
maximum operating frequency of the system (13.333 megahertz). There are actually two clocks
which are generated having the same phase and timing relationships. One is the MCU CLK
which times all operations on the microcontroller board. The other is the CPU CLK which

© ' o K]
“ ~ = T !
3 Mm " x 31 “ ‘
<5 : “
wl '
< E ; m
©] o ' X o
> ' o } &
. ; : y
1. o T AW. M
' 1— T g
o m
Y

MAP
ROM

256X 12

@ N,

BUS

8
3
8
/)

Mask
Reg

8
8

Fig 4.2 The Micro-Control Unit

37

connects to all other elements of the system. The CPU CLK does not function during the
execution of format 3 microinstructions. This prevents the other parts of the system from
responding to the alternate use of the bits in the microinstruction during a format 3 instruction.

4.7 The Arithmetic/Logic Unit (ALU)

The work of information processing is done in the ALU. All other elements of the system exist for
the purpose of getting information into and out of the ALU. Other elements of the system can
store information or transmit it, but this is the one place where data is added, subtracted, ored,
anded, shifted, incremented, or inverted.

The heart of this activity is the AMD2901 bit slice processor chip. There are four of them in the
Lilith arithmetic/logic unit. This gives it the capability to operate upon 16 bits of data in parallel.
The chips provide 16 fast registers which are used as temporary storage locations for data which
the ALU operates on. It is possible to simuitaneously read two registers of the 16 for use as
operands in the arithmetic and logical operations. One of the two registers can also be used as
the destination for the operation result. The operations which the AMD2901 provides are simple
integer arithmetic and boolean logic operations. All operations are dyadic, but the input circuitry
offers the ability to select zero as one operand so that monadic operations such as increment
and complement are possible. There is also a special register in the chip called the Q register
which has been configured to be useful for the purpose of performing multiply and divide
operations.

The capabilities of the 2501 were augmented through the addition of a barrel shifter and a 16
level stack. Both of these circuits connect to the direct input port of the 2901 with tri-state logic.
They cannot be used simultaneously. The barrel shifter has been constructed so that it not only
performs a barrel shift, but it can also create masking constants by shifting in 1’s in from the left.

The 16 level stack is the physical implementation of the arithmetic evaluation stack. It is-
constructed from fast registers and operates at the maximum operating speed of the machine. It
is possible to perform all stack operations in a single microinstruction cycle, i.e push, pop, add,
etc.

The results of all arithmetic and logic operations are sampled at the end of each microinstruction
cycle into the contents of a condition code register. Then, the condition codes must be tested
immediately following each instruction to detect error conditions. The interpretation of which
condition codes represent an error depends, of course, on what type of M-code is being
interpreted. i.e. overflow for cardinal arithmetic is sensed differently than overflow for integer
arithmetic.

Figure 4.3 shows a block diagram of the ALU.
4.8 The Data Port

Information from the main memory of Lilith travels to and from the arithmetic/logic unit by way of
the system BUS. A special memory port interface exists in Lilith just for the purpose of handling
the transfer of the contents of memory cells which will be used only for data operations. Another
interface handles the transfer of memory information which is used as M-codes. The memory
port which is used for data transfers is called the data port.

A read operation is initiated when a microinstruction selects the memory address register (MAR)
as the recipient of data on the bus. This will be treated as the least significant 16 bits of an 18 bit
address. If no data was transferred previous to this microinstruction to the high memory address
register (HMAR), then the high order address bits will be set to zero by default. After the memory
address register has been loaded, the memory subsystem will perform a read operation on the
addressed memory location. If there is no interference from other memory requests, the data will
be available in about 500 nanoseconds. The data from that memory location can then be brought
onto the system BUS by speciftying the memory data register (MDR) as the source of a
microinstruction.

from MCU

I
T "

g

Y —])

T :

|_| B.u.h w

| [Z[=] o 3 x|]2 3 L e

1E b R T

DST=SC

Barrel
Shifter

MUX

SH CNT

Dst=ALU

Fig 4.3 The Arithmetic-Logic Unit

For a memory write operation the protocol is identical for the transfer of the address. The
processor must only transfer the data for writing to the memory data register before transferring
the address. By transferring the data to the memory port before the transferring the address, the
port is able to distinguish between a write and a read operation.

4.9 The Instruction Fetch Unit (IFU)

The instruction fetch unit resolves the problem of addressing memory by bytes when the
machine is fundamentally a word (16 bits) oriented device. In the previous chapter, it was
explained how the high level language orientation of the machine allowed the architecture of
Lilith to function without the capability to perform any direct program addressing, i.e. all
instruction addressing is either by relative offset or by table look-up. This characteristic has
allowed the instruction fetch unit to be cleverly constructed from two registers: the code frame
register (F) and the program counter offset register (PC). The contents of these two registers are
directly managed by Lilith instruction addressing techniques. Whenever a procedure is called in
an external module, the correct value for the code frame register is found as the first word of the
global data frame and the new value for the program counter offset register is found in the table
of procedures at the start of the code frame. Whenever an M-code commands a relative jump,
the processor adds the relative amount to the contents of the program counter offset register
and returns it to the instruction fetch unit. Inside of the instruction fetch unit, a simple adder
circuit combines the contents of the two registers into an address which is given to the memory
whenever M-codes must be fetched. After each M-code is fetched, the count in the program
counter offset register is incremented.

Transparent to the rest of the processor is the fact that the IFU actually fetches eight bytes of
instruction from memory each time its data buffers are empty or are rendered obsolete by the
execution of a program branch. Obilivious to the changes in the program counter, or the requests
for memory cycles, whenever a M-code is needed, the processor simply requests the next
sequential M-code by addressing the instruction fetch unit as the BUS source. If the processor
happens to request the last M-code of a group of eight, the IFU immediately requests a new
memory cycle to refill the buffer.

Figure 5.8 shows a block diagram of the instruction fetch unit.

4.10 The Memory

The Lilith memory can be shared by as many as eight subsystems of the machine. The memory
cycles are allocated upon request according to a priority established by the circuit which senses
the request. The address and data lines running to the memory are tri-state. When a memory
cycle is granted to a subsystem, a selection signal tells the subsystem that it can drive its signals
onto the memory’s address and data bus. During the course of a memory cycle, timing signals
which emanate from the memory system’s timing control tell the subsystem when to sample data
from the system, and when the cyle is complete.

For read operations, the memory circuits are connected so that 64 bits may be read in parallel
from a single address. These 64 are logically four 16 bit words of memory. The two least
significant address bits are not used in the read operation unless the port desires to receive only
a 16 bit memory word. In that case, the two least significant address bits control the operation of
a multiplexor circuit which selects a 18 bit word from the four which the memory has delivered.

For write operations, the 64 bit data path does not exist. There are only 16 data bits which are
used. Each bit is wired to four separate memory circuits, but only one of the four memory circuits
is activated to accept the data. Here the two least significant bits are necessary. They are
decoded to select the word of memory which will be written.

There are two cards in the basic memory configuration. Each has 32 memory chips on it. To
enlarge the memory, an additional set of cards is wired in parallel with the basic set. Each set of
cards is equipped with bank selection logic which causes the cards to be activated for different
address ranges.)

40

5 Decisions Made in the Design of Lilith

The design of Lilith will be presented here as a chronology of the major decisions which were
made the design process. Evaluation as to the final merit of these decisions will be deferred to
chapters 6 and 7. This chapter will attempt to document the considerations which went into
making these decisions.

5.1 Choice of the Processor Technology and the Arithmetic Logic Unit

Our first concern was the choice of a processor technology. We were somewhat limited in our
choices because of our conviction that conventional processors were poorly designed for use by
high-level languages. We thus eliminated all microprocessors and "computers on a chip”
because their architectures were already frozen, leaving us the choice of constructing our own
processor out of either bipolar TTL or ECL logic. Our concem was to demonstrate improved
performance by better design and not by building the fastest possible machine without regard of
cost, we decided to use bipolar Schottky TTL logic. The selection was made because of its
economy and wide availability. Consequently, our search was then narrowed to the available
bipolar Schottky circuits.

One fundamental constraint was the need to be able to do rapid shifting and masking operations.
We anticipated the need for such operations in our bitmap screen graphic functions. We were
also concerned about the number of working registers which would be available in the arithmetic
logic unit and the flexibility with which these registers might be used. We considered using the
Advanced Micro Devices 2903 [Am80], but at the time it was not readily available. This was
disappointing to us because the extra registers which it offered were tempting. We also
considered the Texas Instruments 481 [TI] but found it somewhat limited in its capability. After
some deliberation we concluded that an earlier model bit-slice arithmetic unit from Advanced
Micro Devices, the AMD2801, did indeed have adequate power and availability to meet our
needs. See Figure 4.3.

The choice of the 2901 as the ALU for Lilith presupposed the usability of the device for many
relatively unusual operations required in Lilith’s role as a workstation processor. Some of the
operations anticipated were for the manipulation of Lilith’s high resolution bitmap display. We
envisioned the implementation of characteristic bitmap operations such as the movement of an
image from one portion of the bitmap to another. In such an operation, the following sequence
would be undertaken: a word s, being part of the image, would be moved to another area of the
bitmap where it would be aligned so that part of it must fit in word d and the rest inword d + 1. In
order to perform the operation, the bits of word s must be rotated to align them properly with the
bit positions in words d and d + 1. Masks consisting of strings of 1s and Os must be generated
and used to separate the portions of the words from each other which would be used to
construct the final image. Logical AND operations between the mask and the bitmap data are
used to remove the undesired portions. Finally, the portions of words d and d+ 1 must be
logically ORed with the appropriate portions of word s to create the desired concatenation of
data.

For a "normal” processor, the above operation would require a time-consuming sequence of
instructions to perform the shifting, masking and merging operations. By providing correctly
designed hardware, we hoped in Lilith to improve the performance in this area. One of the
special hardware components added was a barre/ shifter circuit, a circuit for rotating a 16 bit
word to any position with the least significant bit rotating into the most significant bit position.
The barrel shifter was constructed from medium scale integration parts especially designed to
perform this function. One fortunate characteristic of this design was the possiblity to add OR
circuits which would give the shifter the capability to generate the masks previously described.
This feature is explained in greater detail in the Lilith Hardware Manual [Ohr].

Another feature which we anticipated to add to the 2901 was a special circuit for the expression
evaluation stack. This feature will be discussed in a later section.

41

5.2 Design of Microinstruction Control Unit

Anticipating that an elaborate microprogram would be necessary to emulate the stack
architecture and especially needed for the complex bitmap graphic operations, our next concern
was the design of an efficient microinstruction control unit (MCU).

As we analyzed the function which the MCU would be required to perform, it was evident that
three basic operations needed to occur in each cycle of MCU execution:

1. the execution by Lilith of the operations specificed by the current microinstruction,

2. the selection of an address for the next microinstruction based upon the results of
operations and commands of the current microinstruction,

3. the fetch of the next microinstruction from the control store using the selected
microinstruction address.

We knew that each of these operations would involve a significant but unknown signal
propagation delay in the circuitry which performed the function. The maximum accumulation of
these signal propagation delays would determine the minimum required time for each
microinstruction execution. A pictorial representation of these time relationships of these signal
delays is shown in figure 5.1.

There are widely known techniques [Mick] for reducing signal propagation times. In one of
these, registers loaded by the system clock are inserted in the the information paths of the
processor. The effect of inserting such a register is to break the signal propagation path and
separate it into two shorter cycles. The total time to execute a given microinstruction is actually
increased by such an action because two cycles are required to complete the microinstruction.
However, if the location of the register is properly chosen, the execution of two microinstructions
can be overlapped, and the net throughput is increased. A general discussion of the techniques
for design of such pipeline registers is given in chapter 2 of "Bit-slice Microprogrammed
Design" by John Mick and Jim Brick [Mick].

For our design, we chose to place a register at the outputs of the control store, called the
microinstruction register (MIR). This register is used to hold the bits of a microinstruction for the
period of one microinstruction cycle. Another register is placed at the outputs of the condition
codes, called the condition code register. The condition code register captures the results of a
microinstruction execution and holds them for testing during the next microinstruction cycle.
The effect of the condition code register is to reduce the maximum signal propagation delay so
that a faster microinstruction execution rate can be supported.

To understand how this works, consider first how it would work without the condition code
register. The execution phase begins immediately after a microinstruction has been loaded into
the MIR. If the condition codes were not to be captured into a register, the address generation
logic would need to wait for the completion of the ALU operations to begin its operation. It must
wait for the condition codes to be stabilized for use in generating the address for the next
microinstruction. (Specifications in the 2901 documentation [AMDS80] and, later, our own
measurements indicate this delay would be longer than 100 nanoseconds.) Consequently, the
minimum microinstruction cycle time which can be used is the sum of all the delays. (shown in
figure 6.1) On the other hand, if a condition code register is used, then the values of the
condition codes are immediately stable and the generation of a new address can begin
immediately simultaneous with the operation of the ALU. The minimum cycle time in this case is
the shorter of the time required for ALU operation and the combined time required for address
generation followed by control store access. (shown if figure 5.2)

By use of the condition code register, the logic to generate address can function immediately,
but it can only test the results of the previous microinstruction (and not the results of the current
instructiont).

The key feature of this organization is that all microinstructions can be executed faster, even

42

start end
cycle cycle

|
|

D

delay for arithmetic unit operation

|

!

|

|

|

delay for test of condition |
codes and for generation of]
microinstruction address |
e .
|

|

|

|

delay for microinstruction fetch
from control store ROM

Vi, ...,

Yy _

minimum microinstruction cycle time

e
I
l

time —»p

Figure 5.1 Timing Relationships for a Non-pipelined Processor

start of cycle

I delay for arithmetic unit operation |

—
|

|

|

|

I

I

codes and for generation |
| of microinstruction address |
|

[

|

1

|

|

delay for test of condition

delay for microinstruction fetch
from control store ROM

7/

|
minimum microinstruction cycle time

|
time —»p

Figure 5.2 Timing Relationships of a Pipelined Processor

44

though two microinstructions are needed to perform an operation and check the validity of the
results. For example, in the case of the add M-code, for example, two shorter microinstructions
are needed to perform the operation and then check for arithmetic overflow instead of a single
longer microinstruction which would have sufficed if condition codes of a microinstruction
execution could have been checked within the same cycle.

The deciding questions, of courss, are: how often would such test instructions need to occur,
and how much shorter can the microinstruction cycle time be made? Lacking any concrete data
as to the dynamic usage of test instructions in the execution of the microprogram (it was not yet
written), we used our instincts and chose to include the result register for the condition codes.
The merit of this decision will be discussed in the next chapter.

An approximate time relationship of the signal propagation delays is illustrated in Figure 5.2. The
overlapped execution of microinstructions is diagrammed in Figure 5.3 ina qualitative fashion.

Design of Next Microinstruction Address Generation Logic

The function of the next microinstruction address generation logic is to provide the
microprogram adequate capability to branch to different segments of the microprogram
according to the state of the machine and the way the microprogram has been written. There are
six conditions which can arise in the execution of the microprogram each of which require a
different derivation of the next microinstruction address. They are:

(a) a simple "next" instruction taking as an address the previous address plus one

(b) a jump address, conditional or non-conditional, where the microinstruction address is
taken from within the previous microinstruction word

(c) a "map jump" address where the address of the next microinstruction is determined
by accessing special map ROM driven from the value of an M-code

(d) a jump subroutine instruction where the current address is saved incremented by one
in a special register for use later as a return address, and the subroutine jump
address Is taken from the microinstruction word

(e) a "return from subroutine” address where the address comes from the register where
it was saved during the above mentioned "jump to subroutine”™ microinstruction

(f) an interrupt vector which is a "hardwired” address provided in lieu of the ‘map jump’
address whenever an interrupt occurs

None of the integrated circuits available at the time offered the capability to implement all of
these features alone, but when used together with some extemnal logic the AMD2911
microcontroller sequencer chip from Advanced Micro Devices offered the capability to
implement all of these features. Specifically, it offered the basic mechanisms for sequentially
delivering the monotonically increasing sequence of addresses for normal microinstruction
access and the mechanism for accepting new addresses directly for jump operations. It also
offered the capability to implement a subroutine call by saving a return address in a stack and
branching to a new location. This allowed up to four nested subroutine calls for the jump to
subroutine operations.

After choosing the AMD2911 sequencer, we were left with the problem of adapting it for the
execution of the table look-up operation associated with the decode of M-codes, and also with
the execution of interrupt operations caused by requests from input/output devices.

The design of the table look-up circuitry for M-codes was relatively simple. It was only necessary
to add a small (256 x 12 bit) read-only memory (map ROM). This ROM received its address from
the system BUS. By properly selecting the instruction fetch unit as the source for the BUS, the
correct M-code is delivered to the ROM which in turn gives as its output, the address of the
microinstruction sequence which performs the M-code execution. A special selecltion code in
the microinstruction format portion which controls the 2911 allows the address to be taken
directly by the 2911.

————— microcyclen
1

_

I

microcyclen+1 —
1

execute microinstruction n

test results of n-1
make address n+ 1

fetch
microinstruction n+ 1

L

r

execute microinstruction n + 1

test results of n
make address n+ 2

fetch
microinstruction n+ 2

Figure 6.3 Overlapped Execution of Microinstructions

46

The design of the interrupt mechanism was more difficult. At first we considered implementing
an interrupt mechanism which would allow interrupts to occur at any point in the microprogram
as had been done in the Alto project [TMLSB]. However, the difficulties associated with
managing the use of registers and the proper saving of state led us to give up this notion. We
finally developed a technique which allows interrupts to occur only when an M-code table
look-up operation is underway. At this juncture, the state of the machine is in a known condition
and the operation could be simplified considerably.

The implementation of the interrupt vector in this manner was simple. It required an interrupt
request to disable the map ROM during the execution of a M-code decode operation and to
enable the circuitry which generates the interrupt vector address. Figure 4.2 gives a block
diagram of this circuitry.

The interrupt vector described above was actually added to the design after we had worked out
the design of the instruction fetch unit. Initially, our selection of the 2911 was based upon its
capability to satisfy the first five requirements.

Design of Microinstruction Format

in choosing the microinstruction format, we allocated the bits according to the needs of the
devices being controlled by the microinstruction word. Twenty-five bits were directly assigned to
the control of the ALU--the element of the computer most directly controlled by the MCU.

Three bits were allocated to the control of the AMD2911 sequencer, which were used to control
the next microinstruction address generation logic.

Eight additional bits were allocated for control of the system BUS: four bits specifying the
source, and four bits specifying the destination for information being transferred during any one
microcycle. The ALU and the MCU are the only functional units of the computer which are
directly controlled by the microinstruction word. The other elements, i.e. Instruction Fetch Unit,
Memory Data Port, and the I/0 devices are controlled by virtue of being selected as a bus source
or a bus destination.

Having made the decision to include a register for the condition codes coming from the ALU, it
was questionable whether or not many instances would present themselves which could utilize
both a test and jump operation and a compute operation during the same microinstruction. We
felt that this was unlikely, so we availed ourselves of an opportunity to save the use of extra bits
in the microinstruction word by establishing two formats: one for test and jump operations and
one for arithmetic logic operations. The test and jump microinstructions use for condition code
selectors the same positions of the microinstruction word which are normally used to control the
ALU. In order to prevent the ALU from incorrectly responding to the different use of these control
bits, the system clock to the ALU is inhibited during test and jump instructions. Figure 5.4 gives
the format of the microinstruction word.

Generation of Constants

We struggled for some time over the manner in which we would generate constants for use in the
microcode. Constants are typically used for masking, as increments to other values, or as I/0
addresses. We considered including a special ROM in the ALU for this purpose, but eventually
decided to obtain muitiple use of the microinstruction word BUS source and destination fields by
allowing them to be either used as the control for the BUS sources as normally intended, or to be
gated onto the BUS directly as data. This required the use of another bit in the microinstruction
word to specify which of the two functions would be active. It also required some special logic to
override the normal BUS source and destination selection. When the constant generation format
of a microinstruction is selected, the BUS source is automatically selected as the constant in the
MIR, and the BUS destination is automatically selected as the ALU. This adaptation to the
microinstruction format is also shown in Figure 5.4.

47

Type |

393837 363534333231302028272625242322212019181716151413121110 8 8 7 6 5§ 4 3 2 1 0

T KIS Esnm BUS BUS

Dst Fct | Src | C A B SM| PC 9] |9]%aounter| Dest Src
1]1}71
Type I
393837 363534333231 202028272625242322212019181716151413121110 8 8 7 6 5 4 3210
T|KIS|E
Dst | Fet | src|{C| A B |sSM|Pc |of |ofo constant
11141
Type il
39383736 353433323130202827262524232221201918 17161514 13 1211 10 8 8 765 4 3210
T|KIS|E
Jump Address Condition Mask PC |o] |o|o
11111
Dst,Fct,Src,A,B 2901 Control fields
SM Shift mode
PC 2911 Control fields
Sc Shift counter
T Instruction time: 0 = long, 1 = short
K(MIR 14) 1 = type 1 instruction, 0 = type 2 instruction
S Stack enable
E 1 = type 1; 0 = type 2, instruction
C Carry control for ALU

Figure 6.4 Microinstruction Format

48

5.3 Expression Evaluation Stack

Stack machines had been frequently discredited as being less efficient than register based
machines because of the excessive number of memory operations associated with the
manipulation of variables on a stack which is kept in main memory. Consequently, it became a
primary objective to discover a mechanism whereby a bipolar stack could be added to the
arithmetic unit without undue complexity.

Two issues affecting the complexity were (1) the depth of the stack and (2) the question of how
to handle the stack underflow and overflow conditions. Other successful stack machine
computers were known to have fast register stacks of relatively small depth which automatically
overflowed into main memory [HP] [Bur]. We liked the idea of a fast expression evaluation stack
but felt that the implementation of hardware for automatic underflow and overflow into main
memory would be too expensive. Three possible solutions were considered:

First, it was thought possible to test the stack for overflow and underflow after each stack
operation with the necessary adjustments handled upon detection by microcode subroutines.
Then it was realized that the totally pervasive use of the stack throughout the microprogram
would require far too many microprogrammed tests for overflow and underflow with subsequent
deleterious effects to the processing speed and the size of the microprogram. We rejected that
idea.

The second alternative was to include special hardware for the detection of stack overflow and
underflow. In this case an interrupt would have to be generated to handle the condition.
However, this implied allowing interrupts to occur after each microinstruction, a mechanism we
had decided not to include in the hardware because of its complexity. So, we looked for an
alternate solution which did not burden the machine with the overhead of managing the stack in
this fashion.

Finally, realizing that we were prepared to constrain the programming of Lilith totally to the use
of a high-level language compiler, it was concluded that a limited use of the bipolar stack would
be possible without implementing overflow into the main memory. This could be accomplished if
the stack were used only for expression evaluation and other operations where the depth of the
stack usage could be controlled by the compiler. The consequences of such a restriction were
that some potential uses of the stack were not possible. As an example, it precluded leaving any
data on the stack while executing a function call. Since functions can be called recursively, the
compiler would have no possibility to test the level of stack usage. In order to solve this problem,
special instructions were included to allow the expression evaluation stack to be saved to the
main memory stack before a function call and restored after a return. We were also able to use
this operation whenever a coroutine transfer took place.

For its actual implementation, the stack was constructed from standard bipolar memories. The
stack addressing mechanism was developed from a synchronous up/down counter and a
four-bit adder circuit. The normal state of the stack address counter was to address the next
empty register of the stack (for push instructions). For pop operations, the adder circuit is used
to instantaneously and temporarily decrement the stack address to the last used location. At the
end of the microcycle, the stack counter "catches up"” by decrementing its value at the end of
the cycle. [Figure 6.5]

The connection of the bipolar stack to the 2901 bit-slice chips proved to be a uniquely
compatible combination. The effectiveness of the connection satisfied every need. Because of
an internal path in the 2901 allowing data from the register banks to bypass the intemal adder
circuitry in the 2901, it was possible to configure microinstructions which could perform all stack
operations in a single 150 microsecond microcycle, i.e. push, pop and basic operations between
the top levels of the stack, such as add, subtract, or compare. Figure 5.6 shows how this was
possible.

After we had discovered that the 2901 was an ideal host to the addition of such a stack, we
considered increasing the size of the stack beyond sixteen levels; however, we could find no

49

Stack
Address
Counter

u/D

Data in (to 2601) ﬁ

Adder

Enable

CPU Cik

16x16
Register
Array

Al

D

2901

Data out (from 2001)

Figure 6.6 Operation of Evaluation Stack

2901 |

16x 16
RAM

Barrel
Shifter

MUX
ALU

MUX

16x 16
RAM

GATE

_

BUS (16)

Figure 5.6a Expression Stack Push Operation

51

2901 I
16x 16
RAM
l A I 8
MUX
ALU

MUX
16x 16
RAM

Barrel

Shifter

A
QATE
BUS (16)

Figure 5.6b Expression Stack Pop Operation

52

2901 T

16x 16
RAM

Barrel
Shifter

16x 16
RAM

GATE

BUS (16)

Figure 5.6c Expression Stack Dyadic Operations

63

configuration which would provide sufficient stack depth which would not also add the overhead
of testing for stack overfiow. Thus, increasing stack depth could not eliminate the need for
saving the stack in operations where the compiler could not verify or control the depth of stack
usage. As a consequence, it was concluded that sixteen levels is actually adequate, and that a
greater number would most likely be of little value. As it currently stands, the evaluation stack is
saved into the main memory stack whenever any operation takes place in which the compiler
cannot control the depth of stack usage.

5.4 Design of Memory Organization

It was clear from the beginning that we would need a large bandwidth of memory to satisfy the
needs of a high resolution bitmap graphics display. We noted that the memory bandwidth
required to operate the bitmap display of the Alto computer was such that whenever the display
was turned on the processing power of the machine was reduced to a third of its normal capacity
[TMLSB]. This was attributed to the small word width of the Alto memory. To avoid this problem,
we arrived at a memory organization design which provides for a 64-bit muiti-word read
operation, i.e reading four words at a time, and a single word 16-bit write operation. This
organization is feasible by using 16k and 64k (k = 1024) memory chips which have separate input
and output data lines. While the output data lines are organized to read 64 parallel bits onto a
memory bus, the sixteen input lines each go to four different chips in a 64-bit word, the chips
having a control signal to select which 16-bit word actually receives the data (Figure 5.7). To
provide for 16-bit read operations as well as 16-bit write operations, we eventually added the
necessary gating circuitry to select one word of the four and to gate it to the 16-bit memory data
bus. This gating circuitry is primarily used by the data port of the processor and the Ethernet
interface.

Having the main memory service both a bitmapped screen and a processor created a need for
either a multi-port memory or a tight coupling between the display and processor. In the latter
alternative, the use of memory would be totally controlled by the processor and given to the
display as needed. This concept would also have to extend to any future DMA devices which
used the memory of Lilith directly. Instead of this altemative, we chose to provide a multiport
memory system having eight possible memory ports. We defined a protocol where the requesting
port would assert to the memory allocation circuitry a request for a memory cycle. When the
cycle is available, the memory would acknowledge the signal and assert a selection line in
return, telling the port that it should place its address, and data if necessary, onto the memory
address and data buses. The memory control would then provide timing signals to strobe
information into registers in the port and to clear the request for a memory cycle at an
appropriate time within the cycle. The memory timing circuitry itself was constructed from a
small state machine which also asserted at appropriate times the necessary row and column
strobes to the memory chips and strobed the data from the memory into the port register

appropriately.
5.5 Design of the Instruction Fetch Unit

At first we had no intention of having an a special unit for instruction fetches. However, our
desire to implement an instruction set based upon byte operation codes conflicted with the
concept of a word-addressed memory. Some effort was expended in designing schemes
whereby byte-sized instructions could be fetched from a double byte wide memory without the
overhead of an excessive number of memory cycles. A very simple but inefficient approach to
this problem involves reading a word of memory for every byte desired and subsequently
selecting that byte while discarding the other byte. This technique would have been far less
costly in hardware, but also extremely inefficient by comparison to methods we could envision
using a separate unit to fetch instructions. We finally concluded to accept the extra cost and use
the extra memory bandwidth to develop the Instruction Fetch Unit. It provided us the necessary
addressing to each byte of a word and allowed us the possibility to fetch eight bytes of
instruction at a time.

At first we considered the possibility of having a single 16-bit counter which would be a byte

54

Memory
request

Memory
address
16,17

Memory
address

0.15

—_————————p port selection lines
64/16" R/W
Priority ‘
Cycle
request
— Cycle control
RAS lCAS ln/w'
— Board »| Drivers Drivers |} Drivers
select
l RAS l cAS l R/W actactors
0.3 0.3 0.3 0.3
Memory 64 bit
array —_— read
data
Address —
— | MUX .
AO0.6 l
(Write Data)
T mux | — st

Refresh
Counter

Figure 5.7 The Lilith Memory

(Read Data)

56

address counter. This, of course, would have only allowed access to the first 64k bytes of
memory for use as program storage. It did, however, allow manipulation of the program counter
as a single word of memory. After some deliberation, we concluded that this was not acceptable
and began looking at techniques which would allow us to use a base register value and an offset.
In the end, we developed a technique using two registers as a means of computing the final
program counter address. One register is the so-called frame register, which provides the base
address where any module of code is located. The frame register has a 16-bit value and is
therefore storable in a single word of memory. To provide the capability for locating instructions
beyond the first 64k addresses of memory, the frame register was considered to be shifted with
respect to the actual program counter address. The bits not included in the frame register are
presumed to be zeros. This required that each module begin on an even or muitiple of 4 address.

The second register, called the offset register, is also a 16-bit address which, when added to the
frame register shifted by two bits, provides an eighteen bit byte address that selects the
instruction byte to be used next. The hardware to implement this structure included a complete
20-bit adder circuit. Philosophically, we had a hard time accepting this design. After all, this was
supposed to be a simple machine, and it had a complete 20-bit arithmetic unit in the instruction
fetch unit!

The IFU required of the microprogrammer a conceptual change in his understanding of
instruction fetching. Instead of performing instruction fetches by giving the address of the byte
desired and waiting for the instruction to be retumed, the microprogram is forced to use the
philosophy of saying, "Give me the next instruction,” without knowing the actual address of the
instruction. Only when a branch operation is to take place does the program have any contact
with the instruction address. In this case, it would reload the offset register as well as possibly
the frame register. The logic of the IFU is complicated by the fact that the processor does not
know whether or not it has the requested instruction byte within the IFU's eight register storage
area. As a consequence, the IFU is required to automatically fetch the next group of eight
instruction bytes as soon as the instructions from the previous group of eight have all been
utilized.

One of the desirable features of this addressing technique is that it allows program instructions
to be found in larger areas of memory than the 84k addressing space of a 16-bit machine. It does
so in such a fashion that the programmer is unaware that his program resides outside of normal
64k boundaries. This is not the case in many 16-bit minicomputers, which have paging
mechanisms. In Lilith, the use of memory pages beyond the initial 64k words for instructions is
totally transparent to the programmer. The Instruction Fetch Unit is shown in Figure 5.8.

5.6 Design of the Clocking Circuitry

In the simplest case, the clocking circuitry is nothing more than a free running oscillator with
mechanisms to stop it or to single step it for debugging purposes. In Lilith, the clocking circuitry
has been complicated by the design decisions which have previously been discussed in this
chapter. These complications are outlined as follows.

First, the use of a map ROM for decoding M-codes causes the execution of the M-code decode
instruction to take a longer time than the normal arithmetic operations. Because of this, we were
forced to develop a clock circuitry which had long and short microinstruction times; the long is
225 nanoseconds and the short is 150 nanoseconds. The selection of a microinstruction’s speed
is controlled by a bit in the microinstruction format selects between long and short instructions.

A second problem was created by the possibility that the multiport memory interface might
allocate memory cycles to other devices outside the processor’s control. Consequently, the
possibility exists that the processor might request a memory cycle at a time when it would expect
to find the memory data available but instead would find that its memory request had not yet
been granted.

Two possible solutions to this problem were considered. The first was to provide a status bit
which the processor could test to determine whether or not the memory data port had completed

BUS

FRegister 00| |00, PCRegister Bus Buffer
1 |
8
data
bits
Adder
Byte 8 Byte
Select :
31LSB address bits Logic Registers
Address Buffer
l o
data
bits

Memory

Figure 5.8 Instruction Fetch Unit

67

its assigned operation. This bit would have to be tested before initiating any operation and would
also have to be tested before retrieving the resuits of any read operation.

The second possibility was to include in the clock circuitry the capability to simply halt the clock
for a period of time whenever the processor attempted to execute a microinstruction referencing
amemory port which had not yet completed its operation. We chose the second technique rather
than the first because we felt that there would be too many microinstructions wasted in testing
the status of the memory bit, and we also felt that there would be time lost for unnecessary tests
of the memory port, which was already available.

There were, in fact, two memory ports to consider: first, the data port, which was used for
reading and writing 16-bit words of data into memory, and second, the instruction fetch unit,
which provided the processor with bytes of memory for use as M-code. Because of these
considerations, the clock circuitry of Lilith became a small state machine with a total of three
states. The sequencing of this small state machine was controlled by "ready" signals from the
two memory interfaces and commands from the current microinstruction which determined
whether or not an "unready"” memary interface was being used in that microinstruction. Figure
5.9 depicts this circuitry.

5.7 Design of Interrupt Circuitry

We had been very impressed by the clever usage of the interruptible microinstruction control
unit of the Xerox Alto computer [TMLSB]. It had succeeded in minimizing the hardware needed
for its 1/0 devices by off-loading much of the work to a main processor which was able to
respond virtually instantly because of its interrupt structure. We considered for some time using
this idea, but finally decided it would be extremely difficult to fit the idea of interruptible
microinstructions into our design.

The next logical choice, then, seemed to be to allow interrupts to occur only at end of an
M-code. It was relatively easy to implement this as it requires only a small amount of circuitry to
detect the interrupt requests and to generate a "hard-wired" vector for the next microinstruction
address. This "hardwired" vector replaces the next micrainstruction address which would have
normally come from the map ROM which decodes M-codes. To make things easier for the
programmer of the microcode, we also inhibited (during an interrupt response) the command to
the IFU which causes the program counter to advance. By inhibiting the advance command to
the program counter, the correct state of the machine was preserved for the interrupt handler.

To provide the processor with the ability to mask interrupts whenever it desired, an interrupt
mask register was included which can inhibit any or all interrupts according to the data loaded
into it from the processor bus.

It was an oversight that we did not anticipate how complex some of the M-code instructions
would be. Some of them are composed of hundreds and even thousands of microinstructions.
This causes problems with some of Lilith’s 1/0 devices. The RS-232c interface for example,
sometimes loses characters because of the processor is tied up with an unusually long M-code.
Had we anticipated this, we would have designed some of the 1/0 devices differently.

Figure 5.10. shows details of the construction of the interrupt circuitry.
5.8 Design of Special Short Opcode Masking Instructions

After we began programming the microprogram which was to perform the M-code interpretation,
we discovered that many instructions were being used in a potentially superfluous manner to
obtain the short constants which were imbedded in some of the 256 M-codes. Knowing that
these M-code instructions would be used quite frequently, we began an investigation to see if
ther was some way we could optimize these operations. Fortunately, the design, as it had
progressed until that date, could still be modified without a major effort. We found that these four
bit constants could be stripped out of the M-code during the microinstruction cycle which
fetched and decoded the M-code from the IFU. Previous to this time, the M-code had passed
directly from the IFU to the MCU. All that was necessary to allow the constant to be captured was

58

IFU ready » Memory Clock
dsta port ready ~——————————P] Clock # CPUCk
Run > Ok
Single Step
A
| BuUS
BUS
—_—) Control
s Destingtion | Signais
Decoder
Next instruction
address Control MIR
Store MIR0.30 —Pp
0..39
ALU
» Control
Microaddress
Microinstruction control signals
Register
Next
Microinstruction Constant
uAD 0...11 Address Driver
Generator
Interrupt
Logic interrupt _f M-code
Vector
B8uUs 0.7

Figure 5.9 Micro Control Unit Block Diagram

69

Interrupt
Buso.7 —— | Mask Buffer ——p BUSO.7
Register
Read
Load Interrupt Mask —— Interrupt Mask

MCU Clock

Priority Interry

pt
eropt ———— terrupt :D_— —>] Encoder | — o
Reque:m — | Request —

Register

Figure 5.10 Interrupt Reguest Handling

60

to pass the M-code over the bus and to include proper commands in the M-code decoding
microinstruction so that the contents of the bus were loaded into the Q register of the 2801. In
the ALU, a modification was made so that the use of the "jump map" instruction caused the data
coming from the bus to be stripped of any significant bits above the least significant four.

The effect of this modification, allowed all M-codes using short constants to be targeted to the
same entry microinstruction for interpretation. And, no further cycles were necessary to obtain
the short constant for use. After the fetch and decode of an M-code, the 4-bit constant field from
the M-code would be ready for use in the Q register of the ALU. Of course, if an M-code were
not one of those using short constants, then the contents of the Q register would simply be
ignored.

5.9 The Design of the High Resolution Bitmap Display

Much effort went into the design of the high resolution bitmap display interface. We expected the
display to burden the processor with incessant memory cycle requests to refresh the image on
the screen. With this in mind, we included features in the display interface which would allow us
to reduce the size of the visible bitmap both vertically and horizontally. Also, a reduced size
bitmap could be vertically positioned almost at will on the screen, and horizontally on quad-word
boundaries. Initially, a total of 454,666 bits were displayable on the screen. These were
organized as an array of 768 bits horizontal by 592 vertical. Later versions of the display had a
portrait mode organization with 704 dots horizontal by 928 dots vertical.

We did not include a hardware character generator in the display interface. Therefore, for all
characters which were to be displayed upon the screen, it was necessary to paint them from
images stored in memory. The character images were kept in special data structures which were
appropriately called "fonts". A specially designed microinstruction "understands" the structure
of font files in memory and can transfer character images from the font files to the display with
great efficiency.

Our apprehensions about the burden placed upon the memory by the display interface proved to
be unfounded. The following chapter will be deal with this topic more analytically. It suffices here
to say that the features of the display interface which allow us to reduce the image have been
seldom used, and in a later redesign of the interface, these features have been completely
eliminated.

5.10 Diagnostic Processor Unit (DPU) Design

As we began to diagnose the first wirewrap version of the processor, we quickly concluded to
employ a simple microcomputer to help us trace the execution of instructions. The idea worked
poorly at first because of our "jury-rigged” implementation. However, the potential value of such
a diagnostic processor did not escape us. Very quickly we abandoned the "jury-rigged”
implementation and concentrated our efforts on an improved version using a Motorola 6802
processor. This resulted in a diagnostic processor unit (DPU) which has the following
capabilities:

1) It can disable the microinstruction register (MIR) of the MCU and substitute its own
microinstruction.

2) It can disable the address to the microcontrol store ROM and substitute its own.

3) It can inhibit the clock to the ALU regardiess of what type of microinstruction is being
executed.

4) It can allow a single or a controlled number of clock pulses to occur .
5) It can be selected as the bus source.
8) It can read the MIR, next microinstruction address, or the bus.

With the appropriate software, the DPU can perform the following high-ievel functions:
1.
2.

It can load test programs in memory for Lilith execution.

It can execute single microinstructions in a controlled fashion and verify their correct
operation.

It can allow single step execution of microinstructions and M-codes for debugging
microprograms.

It can repeatedly execute short sequences of microinstructions at full speed so that
the maximum operation speed can be measured

61

In normal usage, the DPU board is not installed. When installed, the machine can only be booted
by its command. Normally, the DPU would only be used by maintenance engineers and
microprogram writers. See Figure 5.11.

62

M
[
¢
R
MOTOROLA :
6800 MPU
8
B
|
T
u
A
+—>
D
RAM «— -
u
B
P u
A
T I s
A
ROM E—
B
u
s
Control
signal
UART < — Register

Figure 5.11 DPU Block Diagram

Microinstruction
Register
(MIR 0--39)

Microinstruction
Address

Register
(UAR 0--11)

BUS
(16 Bit)

> Disable MCU MIR

Disable MCU Address

» Disable CPU Clock

> Single Step

» Run

6 Evaluation of the Lilith Design

The design decisions of the Lilith chronicled in Chapter § were made on the basis of information
and materials available at the time. This chapter will evaluate the Lilith design in the light of
current knowledge and three years experience working with Lilith.

6.1 Simulation Program

In order to get detailed measurements of the internal workings of Lilith, a simulation program
was written which captured quantitative information about the execution of a Lilith program. A
description and listing of this program is given in Appendix 2. Use of this program yielded
quantitative information about the operation of Lilith such as the number of microinstructions
and memory cycles involved in the execution of a program. The results reported in this chapter
come from the simulated execution of a widely known and used benchmark program [Wir2]
[Jac]. The benchmark program is listed in Appendix 3.

The simulated execution of the benchmark program lasted only 36.09 milliseconds according to
the simulation calculations. In actual execution, one thousand iterations of this program were
executed so that the actual execution rate could be accurately timed. The actual timed rate of
execution for one thousand iterations was an average of 36.48 seconds. The discrepancy is only
about one percent, which is attributable to memory refresh interference and the error in
measurement. Also, the execution time of the FOR loop which caused the program to execute
one thousand times was not calculated in the simulation. Finally, the execution times of Lilith can
vary significantly because of variance in the code position relative to the quad-word boundaries
of the memory. In view of these uncontrollable factors, greater accuracy from the simulation
could not be expected. The results of the measurements in the simulation are given in Table 6.1.

item description count units
1 Total Execution Time 36.09 milliseconds
2 Processor Instruction Time 25.89 milliseconds
3 Processor IFU Wait Time 1.83 milliseconds
4 Processor MDP Wait Time 8.38 milliseconds
5 Microinstructions Executed 169,649 instructions
6 Test-Format Microinstructions 20,618 instructions
7 Constant-Format Microinstructions 2,604 instructions
8 IFU Bytes Fetched 32,147 bytes
9 M-code Opcode Bytes 26,098 op-codes
10 Short Constant M-codes 19,495 op-codes
11 IFU Memory Cycles 6,396 cycles
12 Memory Read Cycles 21,950 cycles
13 Memory Write Cycles 10,027 cycles
14 ALU Push Operations 13,594 operations
15 ALU Pop Operations 3,460 operations
16 ALU Dyadic Operations 10,134 operations
17 IfU Idle Time Before M-code Decode 3.31 milliseconds
18 IFU bytes Delayed by Memory Access 6,020 bytes
19 M-codes with 2 microinstructions 4,657 M-codes
20 " "3 " 12,546 M-codes
21 " "4 " 2,764 M-codes
22 " "5 " 1,205 M-codes
23 " " 6 " 1,669 M-codes
24 " " 7 " 1,150 M-codes
25 " " 8 " 412 M-codes
26 " "9 " 0 M-codes
27 " " 10 " 0 M-codes

28 L "
29 T "
30 "3 "
31 14 "
32 " "1 "
33 " o16 "
34 Y "
36 v "
36 L "
37 "o 20 "

41

1
0
1
3
0
0
0
5
5
6

1,27

Table 6.1 Quantitative Measures of Various Parameters
Taken from a Simulated Lilith Program Execution

A further evaluation of Lilith’'s performance was obtained in the execution of the individual
elements of the benchmark program given in Appendix 2. This same experiment is described in
the paper by Wirth and the dissertation by Jacobi. The version of Lilith in this case was improved
over both previous measurements, having a faster memory with a cycle time of 375 ns. The
results of the new Lilith performance together with the old performance figures are listed in

Table 6.2.
Test Original
Lilith
a empty REPEAT loop 321
b empty WHILE loop 334
c empty FOR loop 422
d CARDINAL arithmetic 187
e REAL arithmetic 130
f sin,exp,1n,sqrt 87
g array access 109
h with bound test 89
i matrix access 197
j with bound test 164
k call of empty procedure 144
1 with 4 parameters 94
m copying arrays 63
n access via pointers 125
o reading a disk stream 80

« VAX 750 measurements made by Roger Vossler, TRW, Redondo Beach, CA.

600 nsec
Litlith

422
419
528
218
144

99
136
111
249
198
187
123

96
162

94

M-codes
M-codes
M-codes
M-codes
M-codes
M-codes
M-codes
M-codes
M-codes
M-codes

375 nsec
Lilith

464
480
652
226
147
103
161
126
269
214
214
144
113
181
117

Table 8.2 Lilith Performance Measurements (test repetitions per minute)

As can be seen from the figures in Table 6.2, the latest version of Lilith significantly outperforms
the earlier versions, and clearly outperforms the VAX 760 as measured by this benchmark

program.

With the information from Table 6.1 and Table 6.2, we can attempt to answer some interesting

questions about Lilith such as:

1. How much execution time does the bipolar stack adaptation of the 2901 bit slice

processor save?

How many test-format microinstructions are used?

o N

How often are the constant generation format microinstructions used?
How many microinstructions per M-code on the average?

How much execution time does the short-constant masking circuitry of the ALU save?

VAX 750
Pascals

463
497
363
160
84
51
55
55
112

6. What is the average execution rate of M-codes?

7. What are the lengths of the most frequently executed M-codes?

8. What is the average length of an M-code In bytes?

9. How many M-codes are executed per IFU memory cycle?

10. How many M-code fetches from the IFU delay the processor execution?

11. How much performance increase would come if the M-code decode were pipelined?
12. How many memory read cycles are saved by the IFU?

13. What is ratio of instruction fetch memory cycles to data movement memory cycles?
14. How much execution time is due to memory delay?

15. How much of the memory bandwidth is used by the processor?

16. How much interference is there between the memory usage for display refresh and the memory
usage by the processor?

The answers to these questions will help draw conclusions regarding the soundness of the Lilith
design and help formulate recommendations for the next design iteration.

6.2 Expression Evaluation Stack

The special bipolar expression evaluation stack which has been adapted to the AMD 2901
bit-slice arithmetic unit functions very efficiently because of a feature included in the 2901
integrated circuit. This feature, a path from the register file of the 2901 to the outputs, allows all
stack operations to take place in a single microinstruction. This includes push, pop, and dyadic
operations. Strangely, this valuable feature appears to have been omitted from later AMD
bit-slice circuit designs, i.e. AMD2903 and AMD29116. It appears possible to incorporate a
bipolar stack in designs using these processors, but impossible to perform all stack operations in
a single microinstruction. First of all, we should like to know how valuable the bipolar expression
stack is in comparison to a memory implemented stack, and secondly, whether or not the AMD
2901 implementation is of significant value.

Entries 14,15, and 16 of Table 6.1 gives the number of stack operations for the simulated
benchmark program execution. If the expression evaluation stack were implemented in main
memory, there would be at least one memory reference for each stack operation and several
microinstructions for maintenance of stack pointers. As a minimum, we could assume additional
execution time for a single memory cycle and a single microinstruction. Calculating the
additional execution time, we arrive at the following:

27188 stack operations s 525 nanoseconds = 14.27 milliseconds

Comparing this figure to the overall execution time of 36.1 milliseconds, we compute the
performance decrease due to the lack of the bipolar stack:

14.27/36.1 = 39.5% performance decrease

If we presume the use of a bipolar expression evaluation stack with another (other than 2901)
arithmetic logic chip, we can calculate in the same manner the execution penalty caused by the
need for an additional microinstruction for stack operations:

27188 stack operations + 150 nanoseconds = 4.07 milliseconds
4.07/361 = 11.2% performance decrease

This performance penalty can be further decreased if it is possible to hide the execution of a
second microinstruction for stack push operations in the "shadow" of the memory operation
necessary for loading variables. Unfortunately, this will not work for loading constants onto the
stack, since most of the time they come directly from the IFU without any delay. Consequently,
we may presume that the final execution time penalty will be somewhere between 6 and 11
percent.

6.3 Short Constant Masking Circuitry

Special circuitry of the ALU strips 4 bits from every M-code as it is decoded by the MCU. These 4
bits are placed in the Q register in case they are needed by the opcode which is being decoded.
Not all opcodes need these constants, but for the simulated execution of the benchmark
program, 19,495 M-codes (item 10, Table 6.1) out of 26098 executed M-codes (item 9, Table 6.1)
were of the type which used the short constants imbedded in the opcode. This is 74.7 percent.
Since this operation takes place simultaneously with the decode of the M-code, there is no
further execution time needed before use. If, however, this circuitry had not been included in
Lilith's design, it would have been necessary to generate these constants with the
constant-format microinstructions. Then, it would have required one additional microinstruction
to branch to the microprogram segment which handled the class of instructions having the short
constant. This would mean an additional 300 nanoseconds execution time penalty for each
short-constant type M-code. The performance decrease for our simulated program is computed
as follows:

19495 short-constant M-codes « 300 nanoseconds = 6.85 milliseconds
5.85 / 36.1 = 16.2 % performance decrease

The lack of this circuitry would also impose an additional penalty in the number of
microinstructions in the microprogram. Since the use of the circuitry allows the map ROM to
target all short-constant M-codes of a similar type to a single control store address, far fewer
steps in the microprogram are required. Without this circuitry, two additional microcodes would
be required for all short-constant M-codes except for the first one of each class. This would
require an additional 212 microinstructions, more than 10 percent of the currently used number
of microinstructions in the microprogram of Lilith.

6.4 Microinstruction Format

The condition codes which result from the execution of any microinstruction cannot be tested
until the following microinstruction because they are first loaded into a register. The purpose of
this register is to enable Lilith to operate at a higher clock rate by limiting the signal propagations
which must take place within a single cycle. Without this register, the microinstruction cycle time
would be constrained by 1) the signal propagation delays necessary to execute an arithmetic
operation and generate condition codes, 2) the propagation delays necessary to use the
condition codes to select the next microinstruction address, and 3) the propagation delays
necessary to access the next microinstruction from the control store ROMs. With the pipeline
register, the signal propagation chain is broken in two with the arithmetic propagation delays
working independently from the next microinstruction access delays. Figure 5.2 illustrates this
situation.

As indicated in chapter 5, the design decision to use a pipeline register was based upon the
premise that the number of instructions requiring condition code tests would be significantly
fewer than those not requiring condition code tests. Therefore, those not requiring condition
code tests would not be penalized with an execution time long enough to accommodate the test.
The savings in execution time of these microinstructions was estimated to provide a net gain in
speed in spite of the loss in speed caused by the use of two microinstructions to handle
operations requiring the test of condition codes.

In item 6, Table 6.1, the statistics of the simulated benchmark program show that only 20,618 test
format microinstructions were executed out of a total 169,649 microinstructions (item 5, Table
6.1). Consequently, there are approximately 7 normal microinstructions executed for each test
format microinstruction. This means that if the microinstruction execution time were extended to
allow condition code testing within the same microinstruction as they are generated, then only
seven of these microinstructions would be required to accomplish the same function that the 8
pipelined microinstructions are now accomplishing. In order to have the same total execution
time, this extended microinstruction cycle could therefore be only 1/7 longer than the current

67

microinstruction cycle time, i.e. 171 nanoseconds. Measurements have shown that this could not
be the case since the combined signal propagation delays would extend well beyond 200
nanoseconds. Therefore, the final conclusion is that pipelining the condition codes, as it now
exists, is effective for the architecture of Lilith.

6.5 Constant Generation Format Microinstructions

It is significant that only 2,604 microinstructions (item 7, Table 6.1) out of a execution total of
169,596 microinstructions (item 5, Table 6.1) were of the constant generation format. Since this
is only 1.6% of the total execution of the program, it clearly represents an opportunity to reassess
the impact that the logic implementation of the constant-format microinstruction has had on the
overall speed of the machine. Any mechanism that could improve the overali performance of the
processor by as little as 5 per cent could well be worth the change, for the time expense incurred
by the process of generating constants would be minimal in view of their infrequent use.

6.6 M-codes

The efficiency of M-codes has been covered in other publications [Wir2]. Jacobi [Jac] gives
some interesting comparisons in appendix § which show comparisons of Lilith code lengths and
executions speeds with other well known processors. Therefore, it has been well documented
that the compactness of Lilith M-codes gives it an advantage over other processors. What has
not been documented is the profile of M-code interpretation by microinstructions.

Using the results of the simulated benchmark program execution, the number of
microinstructions executed per M-code were tabulated and are presented in Figure 6.1. An
unanticipated result of this tabulation is the fact that 66% of the M-code instructions complete
execution in 3 microinstructions or less. The average number of microinstructions per M-code
execution is about six, but that is because the number of M-codes with 20 or more
microinstructions is significant. Floating point instructions are found in this category.

Dividing the total execution time, 36.1 milliseconds, by the total number of microinstructions
executed, 159,649, gives the average execution time of a microinstruction, which is 226
nanoseconds. This gives an average execution time of 1.38 microseconds per M-code, or an
overall M-code execution rate of 725,000 instructions per second. This figure appears artificially
low because of the high number of microinstructions executed in some of Lilith’s more complex
M-codes. A more realistic figure for comparison would take the average of the main body of
M-codes which is approximately 3.5 microinstructions per M-code. This gives a figure for
comparison of 1,260,000 M-code executions per second.

6.7 The Instruction Fetch Unit

It was hoped from the beginning that the IFU would be able to deliver instructions to the
processor with greater efficiency because of its use of the 64-bit memory interface. Since it
fetches 8 instructions at a time, it was expected that memory references required to provide
instruction bytes would be significantly lower than the number of bytes delivered. For the
simulated execution of the benchmark program it was determined that 6,396 memory cycles
(item 11, Table 6.1) were necessary to deliver 32,147 instruction bytes (item 8, Table 6.1) to the
processor. This is an average of five instruction bytes delivered for each memory reference. For
the most part these bytes were delivered without causing a delay in the processor execution. In
fact, the total delay in processor execution (out of the total of 36.1 milliseconds of execution
time) was only 1.83 milliseconds (item 3, Table 6.1), or 5.06 percent.

Close inspection of the IFU delay figure, 1.83 milliseconds, would appear low considering 6,396
memory cycles (item 11, Table 6.1) each requiring 375 nanoseconds for a total of 2.39
milliseconds. To reconcile this, one must recognize that each time the IFU delivers the last ofa
block of 8 instruction bytes, it automatically prefetches the next block. Consequently, it is entirely
possible that when the processor arrives at a point where it rieeds another instruction, that
instruction has already been fetched and may be delivered without any delay. Using the
simulation program, the count of IFU instruction requests delayed by memory access times was

Number of M-codes
Executed during

Simulator Program

| h o]

234567 8 9101112131415161718 19 20 and>20
Number of Microinstructions per M-code

Figure 6.1 Executed M-code Distribution in Simulator Program

determined to be only 5,020 (item 18, Table 6.1) for the benchmark simulation.

If one were to view the IFU as a simple cache memory with the criteria that an undelayed
instruction delivery constitutes a "hit,” then the IFU would appear to have a "hit" ratio of 84.3 %.

(32,147 ifu bytes - 5,020 delayed ifu bytes)/ 32,147 ifu bytes = 84.3%

It is also interesting to note that of the 32,147 ifu bytes (item 8, Table 6.1) delivered, 26,098 (item
9, Table 6.1) of them were opcodes, giving an average of 1.23 bytes per M-code instruction.

In summarizing the effectiveness of the IFU, one should note that if the IFU could accomplish its
task perfectly (no delays for any instruction fetches), the actually processor performance would
only be increased by 5.06%. This indicates that there are better places to begin optimizing Lilith
than in the IFU.

6.8 M-code Decode Delay

Because of the additional signal propagation required to allow the M-code map ROM to deliver
the starting address for the portion of the microprogram to interpret an M-code, the Lilith
processor allows an extra long microinstruction cycle of 226 nanoseconds. Because of the
pre-fetch capability of the Instruction Fetch Unit, it is conceivable that the decode of M-codes
could be overlapped with the execution of the previous M-code. Therefore, it would be of value
to evaluate the percentage of execution time occupied by M-code evaluation. Using the tally
26,098 M-codes for the simulated executions, we find that 5.87 milliseconds were spent
decading M-codes:

26,098 M-codes « 225 nanoseconds per M-code decode = 5.87 milliseconds

which is 16.27 % of the actual execution time. We would find this performance improvement if
the M-code decode delay could be completely overlapped with the previous instruction
execution. Of course, this may not be possible if the IFU were incapacitated by an ongoing
memory cycle. In order to determine the potential possibility for overlapping instruction decode,
the simulation program was modified to include the counting of IFU idle time prior to M-code
decode operations. The resultant calculations show a potential for a 14.6 reduction of execution
time if the decode operation execution time could be reduced to 160 nanoseconds and
overlapped as much as the memory would allow with the execution of previous M-codes.

6.9 Memory Efficiency

Von Neumann introduced the concept of storing program instructions as well as data in memory.
Unfortunately this leaves the processor continually waiting for memory access. For this reason,
memory usage in computers has often been referred to as the "\Von Neumann bottleneck. Using
the simulation program, we will now analyze Lilith’s pattern of memory usage to see if it suffers
from this syndrome as much as conventional processors.

First of all, it is of interest to calculate the overall performance degradation caused by memory
access delays. From item 2 of Table 6.1 we see the total computed execution time for the
program according to the theoretical time allotted each microinstruction to be 25.89
milliseconds. The calculated memory access delay for the IFU is 1.83 milliseconds (item 3, Table
6.1) and for the memory data port, it is 8.38 milliseconds (item 4, Table 6.1). This computes to a
total of 28.3% of the execution time which can be attributed to the delay caused by memory
access.

This is a low figure when compared to conventional processors. It is low because of the Lilith’s
exploitation of the 64-bit width of its memory for instruction fetch operations. As an indication of
the effectiveness of Lilith’s memory, consider that a 50% decrease in Lilith’s memory cycle time
would only yield a 14% increase in processor speed. Clearly, Lilith’s performance is more
dependent on it's basic processor speed than upon it's memory cycle time.

70

6.10 Unused Memory Capacity

Having discovered Lilith’s usage of the memory to be quite efficient, the next question to address
is: What additional memory bandwidth is available for other purposes such as 1/0 devices and
co-processors? The percentage of memory utilization by Lilith can be calculated using figures
from the simulated execution of the benchmark program.

First of all, the total number of memory cycles available during the simulated execution period is
96,267.

36,100,000 nanoseconds / 375 nanoseconds per cycle = 96,267 cycles

According to the statistics in item 12 of Table 6.1, 21,960 memory read cycles were initiated as
well as 10,027 memory write cycles (item 13, Table 6.1). This gives a total of 31,987 memory
cycles used by Lilith from of the available 96,267. The percentage utilization is 33.2%. The
refresh operation for the dynamic memory chips requires 128 cycles every two milliseconds, or
another 2310 cycles. This occupies another 2.4% of the Lilith’s memory bandwidth. So, a total
61,970 memory cycles were available during the period of the benchmark program’s execution
for other uses, i.e. a total of 64.3% of the Lilith’s total memory bandwidth.

6.11 Display Refresh Interference

All measurements of Lilith's performance by simulation or actual program execution as reported
in this document have been without usage of the display or consideration of the delay which it
would cause with competing requests for memory cycles. Two versions of a high resolution
display are currently in use in Lilith. The original version is compatible with the European black
and white television standard. The refresh of this display requires 454,656 bits each 40
milliseconds which translates to 7,128 read memory cycles during the period. The percent of
Lilith's memory bandwidth used for this operation is computed as:

7,128 memory cycles « 375 nanoseconds / 40,000,000 nanoseconds = 6.68%

The second version of the Lilith display has a screen dimension of 640 by 832 pixels for a total of
532,480 bits. The refresh rate for a complete image is 36 frames per second. A similar calculation
for the use of the Lilith’s memory bandwidth is:

8,320 memory cycles s 375 nanoseconds / 27,777,777 nanoseconds = 11.23%

If Lilith were using its full memory bandwidth, then one could expect a performance degradation
approximately equal to the above percentages. However, since the actual memory usage by the
Lilith processor is approximately 33% one would expect only one third of the display refresh
cycles to actual interfere with the processor performance. For the execution of the benchmark
program which was actually timed at 36.48 seconds without the display, a similar measurement
was conducted with the higher speed. portrait display active giving a time of 37.47 seconds. This
represents a performance degradation of 2.73% as actually measured. The measured figure is
actually lower by .3 seconds than the calculations would predict in this experiment. This is easy
to understand but difficult to explain. In this document we shall have to be satistied to merely
state that it is caused by the difference in the synchronous timing relationship of the processor
with the memory and the asychronous timing relationship of the display with the memory.

6.12 Processor Efficiency

A measure of a processor’s speed is relatively easy to benchmark. A measure of its efficiency is
not so easy. Lilith seems to perform 3 to 5 times faster that other processors with similar memory
cycle and microinstruction execution times. How to capture and measure this efficiency seems
to be a difficult problem. The author of this dissertation wishes to propose a figure of merit which
he thinks should reflect the relative efficiency of a processor. The figure of merit proposed is a
simple ratio of the number of memory cycles used for data movement and the number of memory
cycles used for instruction fetch. The rationale behind this lies in the assumption that most

14

memory operations for data movement are in some way productive whereas memory operations
for instruction fetches may be viewed as overhead. Consequently, a greater ratio implies a the
greater efficiency. It is predicted that most processors will have a ratio less than one whereas for
Lilith, the following ratio is computed from the simulated benchmark program:

31,987 total memory cycles - 6,396 IFU cycles = 25,591 data cycles
26,591 data memory cycles / 6,396 IFU memory cycles = 4.00

If, as expected, other processors do have values less than one for the ratio of the number of
memory cycles used in data operations and the number of memory cycles used for instruction
fetch, then this figure of merit does explain part of how Lilith attains a greater efficiency than
conventional computers.

72

7 Conclusions and Recommendations

The Lilith design has been presented and evaluated with the help of a simulation program. Now,
conclusions will be drawn in this chapter, and recommendations will be made to guide future
efforts.

7.1 Conclusions
Stack Architecture is Still a Better Way

More than 20 years have passed since the advent of the first successful stack architecture
machine [Bar] [Ham], yet the world at large still seems to question whether or not stack
machines are in fact more efficient than the traditional register architecture machines which
have enjoyed the greater popularity.

Lilith now adds weight to the accumulated evidence which supports the hypothesis that stack
machines are more efficient by demonstrating greater performance than other machines of
comparable technology. However, because of the diversity of computer applications and the
large number of programming languages in use, this issue may never be resolved. David Bulman
has summarized the situation very clearly in a 1977 paper [Bul}:

For anyone who has been working with stack computers for very long, it is hard to see why
any non-stack machines are built at all, except for requirements of machine language
compatibility. With the almost total move to high-level languages which economic realities
will force on the industry, any such residual interest in machine language should vanish in
the near future. Of course, the designers and builders of the B5000 were saying that in
1960.

Instruction Fetch Unit Breaks the Von Neumann Bottleneck

Having an instruction fetch unit with a 64 bit read path to memory in Lilith is certainly one of the
most significant contributions to its better performance. Most computers divide their time
alternating between instruction fetch operations and instruction execute operations. Hence they
spend approximately 50% of their time at each function. The Lilith instruction fetch operations
occupy the processor only about 23.8% (see the Figure of Merit conclusion below) of the time.
The rest of the time is spent in execution. Without the Instruction Fetch Unit, it would be about
50%. The Instruction Fetch Unit provides one other advantage: it's built-in adder circuit provides
automatic base register addressing and consequently allows the code to be entirely position
independent in memory. Since the IFU only requires 32 small scale and medium scale integrated
circuits (less than 10 percent of the total machine parts bill), it is well worth the investment.

The Expression Evaluation Stack Works Well With the AMD2901

Other stack processors have also had register stacks in the arithmetic logic units. The original
Burroughs B5000 had two levels in register with an automatic overfiow into main memory. Later
versions of the Burroughs computers as well as the HP3000 have had more stack levels
implemented in registers with automatic overflow [Bur][HP], but Lilith manages to implement its
stack without automatic spill-over. It does this by making the assumption that all programming
will be handled by a compiler which will manage the level of stack usage. This also means that no
special tests are ever required to determine if there is a stack overflow in the expression
evaluation stack.

The AMD2801 implementation of the expression stack is especially efficient since all stack
operations can be performed in only a single microinstruction. Since no test operations are ever
required to determine stack overflow, most stack operations, including dyadic operations such
as add, subtract (but not multiply or divide) can be completed in one or two microinstructions
beyond the M-code fetch and decode operation.

The final conclusion is that the implementation of the expression evaluation stack in Lilith is both
cost effective and efficient.

73

Multiple Word Sizes Are Better

Many computer designers allow themselves to be constrained to a single word size for all
functions when, in truth, different functions of a computer are better implemented with different
word sizes. An instruction size of eight bits was found to be more efficient in Lilith for high-level
language use, and a 16-bit word length was selected for data. For 170 memory read operations a
word length of 64 was selected to provide a higher data rate and thereby lessen the frequency of
memory requests. Because of this, Lilith has only minimal performance degradation due to
display refreshes. It is difficult to attribute all the efficiency of the Lilith processor to any one
design decision, but certainly the choice of multiple word sizes according to the processor
needs was a key contributor.

16 Bits Is Enough

No matter how big the computer is, there will always be a program too big for it to handle. One
must learn to think only in terms of the subset of computer programs that are reasonable to be
used on a given computer. A 16-bit Lilith computer handles a very reasonable subset of
problems--more than enough to make it valuable. That subset, however, probably does not
include some of the programs which are currently fashionable. It does include program
development, word processing, many graphic programs, and even some computer aided
engineering. However, it is questionable whether one has sufficient capacity in Lilith to develop
programs for the design of VLSI integrated circuits..

it is a mistake to compare the 16-bit addressing capability of Lilith to the 16-bit addressing
capability of some of the more popular microcomputers, and automatically assume that Lilith
suffers the same restrictions. First of all, Lilith addresses words, not bytes, and it also operates
with base address registers for instruction addressing so that programs may reside without
penalty in a much larger address space than 16 bits allows. Furthermore, a number of important
data operations such as display addressing, font addressing, and 170 transfer buffer addressing
do not need to fall within the 16-bit address limitation. Only addressing of program-declared
variables needs to fall within this range, so that they may be passed as parameters by reference
in procedure calls.

Some users have proposed that Lilith should be given the capacity to handle an expanded
addressing space by allocating two words for a memory resident address as has been done in
the Alto and the PERQ computers. By doing this, Lilith would have the capacity to address very
large data structures. In fact, Lilith already has the ability to handle double word pointers in a
fashion which works very well for large data structures. The problem is that the use of these
double word pointers is not directly supported by the compiler, and therefore, must be
programmed through the use of the compiler code procedure mechanism. This could (and hasl)
worked very well when data structures have been defined and accessed through special
procedures.

Before any serious consideration is given to the idea of attempting to handle 32 bit addresses in
the current 16 bit Lilith, one should evaluate carefully the performance difference between
PERQ, which does exactly that, and Lilith. Jacobi [Jac] has reported measurements, which show
that Lilith is at least twice as fast.

In summary, it is quite feasible to conceive of a Lilith program effectively using as many as a
million bytes of memory. Sixteen bits of addressing may not be quite enough for some
programming wishes, but chances are that Lilith is more than adequate to handle what most
people categorically assume to be too large for 16 bits.

Memory-mapped High Resolution Graphics is Efficient

Experience with Lilith supports the idea that memory-mapped bitmap graphics is still the best
way. Detractors of the idea suggest that the display refresh interferes with the speed of the
processor, that the bitmap occupies valuable memory addressing space, and that a separate
graphics processor can be more effective. These notions can be refuted by experience with

74

Lilith.

Display refresh interfered significantly with the processing power in the Alto computer, but not in
Lilith. Measurements reported in chapter 6 have shown that the display refresh only slows
processing by a negligible 3%. This hardly warrants a separate memory.

Use of valuable addressing space is not a problem since the bitmap can be kept in Lilith’s
non-prime addressing space. Therefore, there is no reason to make an external bitmap memory.
If Lilith had more memory for the bitmap, it could use it just as well for other purposes than just
display refresh.

The use of a separate graphics processor could be of value. Graphics processing is typically
needed for intermittent intervals at a high processing rate. A processor powerful enough to
perform well as a graphics processor could also be desireable as the host processor. The
processor of Lilith is both a powerful graphics engine and a powerful host processor. This
combination seems to be both usable and efficient. The industry has many examples of weak
host processors coupled to powerful graphic engines and vice versa. Their overall performance
is not satisfying. The best combination would seem to be a powerful host processor coupled with
an equally powerful graphics processor. The two combined, such as in Lilith, would seem to be
cost effective. Nevertheless, if a separate graphics processor is to be added, there is no reason
that it could not operate out of Lilith’s main memory. In fact, there is no reason it could not be a
second Lilith processor.

The Weak Link in Lilith is the Microinstruction Sequencer

Measurements using the Diagnostic Processor Unit(DPU) have indicated that aimost all
components of Lilith could operate reliably at a rate as much as 30% faster than the current
cycle time of 150 nanoseconds. The exception is the microinstruction sequencing logic which
has a chain of signal propagations which will not allow this. At the heart of this chain is the
AMD2911 microprogram sequencer [AM]. This circuit is either too slow, or the way it has been
designed into Lilith needs to be reconsidered. Under either circumstance, this would be the
place to begin for improving the Lilith’s performance. The statistics reported in chapter 6 confirm
this conclusion. From the distribution of execution time given in Table 6.1, one can see that an
improvement of 30% in memory speed would only yield an overall performance increase of 9.2%
whereas an improvement of 30% in the basic microinstruction cycle time would net an
improvement of almost 21%. (This is a comparison of 30% of the total memory wait time versus
30% of the microinstruction execution time)

Measurements of the Lilith execution rate indicate that a redesign of the microinstruction
sequencing logic could allow the processor to operate as much as 50% faster.

Interrupts are Delayed by Complex Lilith Instructions

Lilith enjoys a performance advantage over other processors because of its single-minded
design orientation towards the execution of programs written in Modula-2. This narrow
orientation has allowed the designers to identify relatively complex operations which occur
frequently in Modula-2 and assign them to single microinstructions, thereby allowing Lilith to
perform more work with less instruction fetch overhead. However, this advantage is lost in the
case of Lilith’s response to interrupts. Since Lilith can only recognize interrupts at the
completion of an M-code, in some cases a particularly long M-code can delay the recognition of
an interrupt more than is acceptable. In the case of some very long bitmap operations it is
possible to delay an interrupt response by more than several tenths of a second.

One possible solution to this problem is to allow interrupts to be recognized during individual
M-code executions. Our considerations of this alternative have led us to the conclusion that this
would be difficult because of the lack of complex integrated circuit chips which would support
this. Another possibility is to design peripheral interfaces with more intelligence so that longer
delays in processor interrupt acknowledgement can be tolerated without loss of information. The
cheapness of microcomputers is almost a proverb now, so this solution could probably be most
economically realized.

75

Microprogrammability is an Essential Tool

We have not attempted to justify the value of Lilith’s microprogrammability in this document.
Therefore, this conclusion (that the ability to alter and reprogram the microcode is essential) is
unsubstantiated as far as this document is concemed, but we feel it is necessary to stress the
value of this feature based upon our general experience with Lilith. The ability to microprogram a
computer has not been emphasized in recent years as much as it was earlier. Our opportunities
for use of Lilith have been greatly expanded by virtue of the ability to develop M-codes for
special applications. This facility has been used extensively to develop high speed M-codes
performing very specialized functions for the laser printer. It has also been used to make higher
precision floating point operations available for a computer-aided engineering application. We
expect to continue to make good use of this feature.

The Diagnostic Processor is an Indispensable Aid to Debugging

We have only indirectly alluded to the value of the diagnostic processor unit. Therefore, this
conclusion is also unsubstantiated in this document. Nonetheless, many thousands of hours
spent in the pursuit of Lilith’s bugs have convinced the author of the value of the diagnostic
processor unit. It is hoped that the reader will accept this conclusion on the basis of that
experience.

Co-processors Could Easily Be Added to Lilith

Having an especially elegant implementation of coroutine management such as provided by
Modula-2 invites us to investigate new ways to utilize this system feature in programs. The use of
coroutines as a means of logically separating a complex program into smaller, less-complex,
separate coroutine tasks becomes apparent to us. Closely coupled is the idea of increasing
performance by adding additional processors to process the somewhat independent computing
tasks in parallel. The statistics from our analysis indicate that this could be done quite
successfully. As computed in Chapter 6 with the statistics from Table 6.2, it was shown that only
about a third of the Lilith’s memory bandwidth was actually used by the processor in the
simulated execution of the benchmark program. With two thirds of the memory bandwidth
available, and four of eight available memory ports unused [Ohr], it would appear that a
co-processors could easily be added to Lilith with substantial benefit. This would be especially
so if one of the more powerful, and highly integrated microprocessors were selected. Or, if the
additional processor were a Lilith, it is even possible that there would be additional bandwidth
left to add even a third.

Figure of Merit Explains Lilith’s Efficiency

If one regards data movement in memory as useful work and effort expended in fetching and
decoding instructions as overhead, then Lilith shows some interesting figures of merit with
regard to 1) the number of memory bytes used, 2) the number of memory cycles used, and 3) the
execution time spent for each category.

First of all, from Table 6.1 the ratio of memory bytes used in the execution of our simulated
program shows that Lilith has the following figure of merit:

(25,591 data memory words s 2 bytes/word)/ 32147 IFU bytes = 1.59
In chapter 6, we developed a similar figure of merit for memory cycles:
26,591 data memory cycles / 6396 IFU memory cycles = 4.00

Finally, in terms of actual execution time spent, Lilith uses 23.8% of its time for fetching and
decoding instructions. The calculations are:

225 ns + 26098 M-codes + 150 ns s 6049 M-code operands
+ 1.83ms IFU memory delay = 8.61 ms instruction fetch time

27.49 ms instruction execution / 8.61 ms inst. fetch = 3.19

76

In all three of the above cases, the numbers are above 1. Intuitively, we feel that this manner of
measuring efficiency is accurate. However, until we have by some means measured other
computers in the same fashion, we cannot be sure.

7.2 Recommendations

Based upon the measurements of the Lilith performance and experience in using it, three
recommendations can be made.

Improved Microinstruction Controller Design

Experience with the design of the MCU of Lilith has shown this part of the machine to be
singularly responsible for preventing a faster rate of execution. We therefore propose a faster
design which can also provide the needed capabilities for conditional jump and jump to
subroutine operations.

If the next microinstruction address is included in the microinstruction register, the minimum
possible cycle time for a microinstruction controller would then be a function of the access time
of the control store ROM, and the load time of the register as shown in Figure 7.1a.

Of course, this organization has no capability to make conditional branches, as each
microinstruction has only a single possible successor. In order to add this capability, we need to
add a second control store so that two microinstruction can be fetched simultaneously. Then,
logic operations based on condition codes and the contents of the previous microinstruction can
be used to select which of the two microinstructions will be enabled for use as the next
microinstruction. The timing of this design is longer than the previous design only by the /oad
time of the flipflops which enable the microinstruction register. This is shown if Figure 7.1b.

By adding a tri-state buffer which can be gated off, we can allow one half of the double-size
control store to receive its address input from the next M-code delivered by the IFU. Now the
loop timing would be increased by the propagation delay of the tri-state buffer or the delay
caused by the arrival of the M-code, whichever is longer. See Figure 7.1c. Incidentally, some
additional control options must be included in the microinstruction word so that the selection
can be made for the right control store for receiving the next microinstruction address from the
microinstruction register or from the IFU.

Interrupts are easily added at this point, by programming the interrupt vector into the next
microinstruction field of the instruction word, and then adding logic to allow an interrupt to
override the selection of the right MIR in favor of the left.

As a final refinement, we propose adding a small stack by way of a side path to serve as the
means of performing jump to subroutine operations as shown in Figure 7.1d. The additional
register in the loop is necessary to capture the proper return address in the stack. Note that the
address of the jump to subroutine instruction is the address which is saved, and the instruction
which is fetched upon returning from the subroutine must be the instruction from the same
address in the opposite control store.

It is recognized that this microinstruction control architecture would follow an erratic path
through the control store and that even some of the microinstructions might need to be
duplicated in several locations. Nevertheless, we predict that these problems would be
manageable in the microinstruction assembly program, and that the overall speed of operation
would be significantly faster.

Improvement of Memory Addressing for Coroutines

As Lilith is currently designed, memory addresses in the first 64k words have a special status and
must be shared by all tasks operating within the machine. We feel that future use of workstations
will be heavily oriented towards single-users, but not necessarily towards single task operations.
In other words, we see the possibility that a user may want to display several windows on the
screen and initiate several independent operations through these windows. Consequently, we

Control
Store

MIR

I

l

ALU Control
Figure 7.1a Simple MCU
l | l
Control Control
Store Store
MIR « Toction MIR

|
P

<+—— Next Address

L

L—»

=

| ¥

ALU Control

Figure 7.1b MCU with Jump Capability

M-Code

Y
Buffer
Buffer K
—
| br n
Control Control
Store Store
! !
MIR Toraction MIR
[t]
-]
‘———

1 4 |

ALU Control
Figure 7.1c MCU with Jumps and Jump Map

M-Code
¥
Buffer
r——» ——I—v Buffer > | < Stack
| *] v |
Control Control ?
Store Store
Register
MIR] ?_eo'g"%"m Ly MIR
| I t T
L | 1
‘.—.
"—l—' ‘____l

ER
ALU Control

Figure 7.1d MCU with Jumps, Jump Map, and Jump Subroutine

79

see a need for a modification to the Lilith design which will provide an option for each task or
coroutine operating within the system to have its own separate address space, uncompromised
by any other. At the same time, we wish to see all shareable resources, such as code areas,
shared to avoid the expense of duplication.

We think that this can be achieved quite simply. First of all, it is necessary to design a default
register into the memory data port circuitry. The function of this register would be to provide high
order page address bits for any memory operation which was intended to take place in the lower
64k words of memory. Then each coroutine could be allocated its own base page addressing
space, including its own module table.

With each coroutine having its own module frame table, it would still be possible to share module
code space and prevent duplicate use of memory. This would depend entirely upon the code
frame pointer which is placed in the first word of the global storage area. One should note,
however, that unless coroutines are allocated into the same base page of memory, global
storage areas of modules will no longer be shared as before.

This leaves one problem to be resolved: how does the machine handle coroutine transfers,
especially those caused by machine interrupts? We propose a solution which requires the
establishment of two types of coroutine transfers: global and local. Local coroutine transfers
would be those which would take place as currently implemented in the machine, without any
reference to the default base page address register. Global coroutine transfers, on the other
hand, would always save the value of the default base page register as well as restore such a
value from the process descriptor. This implies that there be two kinds of process descriptors:
global and local, as well. It would be requisite that all global process descriptors be resident in
the real base page of the machine. Interrupt caused coroutine transfers would be by their very
nature global transfers.

We feel that this addition to the Lilith architecture may do more to help alleviate concerns about
the small addressing space of Lilith than an increased word width. At the very least, Lilith could
make use of a greatly expanded memory with this addition.

As a final comment, it would be well to point out that this addition to the Lilith’s architecture
could possibly be completed without causing any incompatibility with current software, except
those modules which have interrupt driven 170 directly programmed.

Word Size Expansion of Lilith

Many are suggesting that the processors of tomorrow need a word size greater than 16 bits. And,
as the next "magical” number beyond 16, they offer 32 bits as the logical choice for the word
size of the next processor. We are hesitant to espouse such a choice, for it magnifies the
packaging problems of building the processor by at least a factor of four rather than two. In the
future, it may be possible when memory can be economically integrated onto the same chip as
the processor, but we do not find it practical or efficient now.

When the question is asked, "do we really need that much memory?", one always gets the
response: "oh, but memory is cheap now." So, we propose a new processor which provides
both the extra memory addressing capability (which "everyone" seems to feel is necessary), and
the benefits of the smaller word size.

We propose a word size of 20 or 24 bits. Each word of memory would be of this width. Each
register of the processor would also be of this width. The addressing space which could be
referenced by a pointer in storage would, therefore, be 1 or 16 million words. Probably, it will be
at least five years before the integration specialists can get this much memory on a single chip.
Therefore, it should be adequate for now.

One can think of many objections, all related to the "unconventional” word size: the number of
characters per word, the number of instruction bytes per word, the difficulty of implementing
graphic operations on a bitmap constructed from 20 or 24 bit words. It is true, 16 bits has been a
'magic’ number for certain operations. So, we propose to "waste” memory by continuing the

80

orientation of the processor to 16 bits in all of these circumstances. First of all, the number of
characters per word would continue to be two. Perhaps the extra bits could be used as font
indicators, but not as a third character. The display interface would only "see" 16-bit words as it
fetched them for the bitmap, and the graphic operators would continue to calculate bit positions
with ease as they performed division by simple shifting, and modulo arithmetic with AND
operations. Finally, in order to minimize the additional work needed to complete this system, the
instruction set for the computer would continue to be based upon two 8-bit M-codes per word.

The only obvious objection to this machine architecture is that it wastes memory. Perhaps this
objection is diminished by the advent of cheap memory.

7.3 Reflections on Lilith

It has take many years to establish the value of the Lilith architecture. Unfortunately for the
hardware engineer, just building the machine is not enough to prove its value. It also takes a
good deal of software effort to demonstrate the value of what has been created. The hardware
technology of Lilith is already old, but the software which demonstrates its effectiveness is just
emerging. Furthermore, a large amount of the software which is being developed falls under the
category of software tools refinement, so that with the passage of time Lilith offers better and
better software tools for the development of programs which further demonstrate its value.

One thing is clear from Lilith benchmarks: Lilith has an architectural advantage over
conventional register machine designs. The amount of storage required for Lilith programs is still
substantially smaller than any of the new processor designs. Also, in the benchmark
comparisons, those processors offering comparable performance with Lilith are constructed
from new faster technology and have cycle times which would lead one to expect them to
substantially outperform Lilith. But, as an example, a 10 megahertz Motorola 68000 processor
with a 100 nanosecond microcycle offers performance only approximately equal to a Lilith with a
150 nanosecond microcycle time instead of being 50 percent faster. If a Lilith were developed in
chip form with a similar technological basis, it would be substantially faster.

81

Appendix 1 The Lilith Instruction Set

In this appendix the Lilith instruction set is presented in a clear but rather unexact form. A
reader who is relatively unexperienced in the structure of stack machines and in the use of the
Modula-2 programming language may find the information as it is presented here easier to
digest. However, the most accurate and the official definition for the Lilith M-code machine
operation is defined by the pseudo-modula-2 program, known as the "interpreter”, which has
been published in documents by Wirth [Wir80] and Jacobi [Jac], and in the Lilith Hardware
Manual [Ohr]. If any ambiguity arises in understanding how an instruction presented here
operates, it should be resolved by reference to this program.

For use in understanding the instruction set as it is presented here, the following notations must
be explained.

a)

b)

c)

d)

e)

f)

The relative sizes of the boxes denotes the number of bits used. The smallest
size is 4 and the most frequently used size is 8. The largest size is a word, i.e.
16 bits.

The term 'tos’ means "top of the expression evaluation stack’.

The terms ’push’, ’pop’, and 'load’ are always used with respect to moving
data into and out of the expression evaluation stack.

Using a value as an ‘address’ always implies access into main memory.

The letters "P", "G", "L", "S", "PC", "F", "M", and "H" refer to the registers
which have been described in Chapter 3.

The value of the program counter, "PC", always ’points’ to the next byte after
the opcode portion of the instruction.

82

Load Immediate Instructions

Load Address Instructions

mE
T

| E

L]

3

|

fuo I

3

LIN

)) I

L

5 |
el |g| |5

F_Eklm

»]

Jump Instructions

3

E

2

(=]

JPFC n

JPF

alils

JPBC n

4

Ji

ORJP n

ol

Pushn

Pushn

Pushn

Push m; Pushn

Push NIL

Push address of word addressed by L. + n

Push address of word addressed by G + n

Replace tos with tos + n

Push address of nth word
in global storage of module m

Jump to PC + nif tos = O; pop tos

JumptoPC + n

Jump to PC + niftos = O; pop tos

JumptoPC + n

Jump to PC - nif tos = O; pop tos

JumptoPC-n

JumptoPC + niftos<>0
else increment PC and pop

Jump toPC + nand push 0
else increment PC and pop

Load Local

.
-

Push word addressed by L + n

LLw Push word addressed by L. + n

7 l

LLD Push double word addressed by L + n

Store Local

Pop word into word addressed by L. + n

ias
'H

Pop word into word addressed by L. + n

SLo n Pop double word into double word addressed by L + n

Load External

[tew T mn [o | Push nth word in global storage of module m
LED m n | Push double word at nth word of global storage
of module m
Store External
I SEW | m I n | Pop word into nth word of global storage of module m
SED m n I Pop double word into nth word of global storage
of modulem
Load Gilobal
Law|n] Push word addressed by G + n
LGW n Push word addressed by G + n
LGD n Push double word addressed by G + n
Store Global

sewin Pop word into word addressed by G + n

Pop word into word addressed by G + n

tiels

Pop double word into double word addressed by G + n

Load Stack

Lsw]n] Replace tos with word addressed by tos + n

Replace tos with word addressed by tos + n

Push double word addressed by tos + n; (tos removed)

Push double word addressed by tos; (tos removed)
Store Stack

Store tos in word addressed by tos-1 + n
(tos, tos-1 removed)

Store tos in word addressed by tos-1 + n
(tos, tos-1 removed)

Store tos double word in double word addressed by
tos-2 + n; (tos, tos-1, tos-2 removed)

EEEE

Store tos double word in double word addressed by
tos-2; (tos, tos-1, tos-2 removed)
Load Indexed

LXB Get word addressed by tos/2 + tos-1;
If tos is even then push left byte else push right byte
(tos, tos-1 removed)

Push word addressed by tos + tos-1;
(tos, tos-1 removed)

Push the double word addressed by tos + tos-1;
(tos, tos-1 removed)

LXFW Push the word addressed by tos + tos-1 « 4;
(tos, tos-1 removed)

Store Indexed

4

SX Compute word address of tos/2 + tos-1;

If tos is even then store tos-2 in left half of word
address else store tos-2 in right hatif
(tos, tos-1, tos-2 removed)

Store tos in word addressed by tos-1 + tos-2
(tos, tos-1, tos-2 removed)

F [

Store tos double word in double word addressed by
tos-2 + tos-3;
(tos, tos-1, tos-2, tos-3 removed)

Store tos in word addressed by tos-1 + tos-2 s 4
(tos, tos-1, tos-2 removed)

Unsigned Boolean Compares

uLss

g
o

UGTR

EF

Signed Boolean Compares

Dyadic Boolean Operations

Ol

x
2

Signed Unary Operation

ABS

NEG

OM

g

If tos < tos-1
Push 1 else Push 0; (tos, tos-1 removed)

If tos < = tos-1
Push 1 else Push 0; (tos, tos-1 removed)

If tos > tos-1
Push 1 else Push 0; (tos, tos-1 removed)

If tos > = tos-1
Push 1 else Push 0; (tos, tos-1 removed)

If tos = tos-1
Push 1 else Push 0; (tos, tos-1 removed)

If tos <> tos-1
Push 1 else Push 0; (tos, tos-1 removed)

If tos < tos-1
Push 1 else Push 0; (tos, tos-1 removed)

If tos< = tos-1
Push 1 else Push 0; (tos, tos-1 removed)

If tos > tos-1
Push 1 else Push 0; (tos, tos-1 removed)

Iftos > = tos-1
Push 1 else Push 0; (tos, tos-1 removed)

Push tos OR tos-1
(tos, tos-1 removed)

Push tos XOR tos-1
(tos, tos-1 removed)

Push tos AND tos-1
(tos, tos-1 removed)

Push absolute value of tos
(tos removed)

Push 2’s complement of tos
(tos removed)

Push 1’s complement of tos
(tos removed)

Unsigned Dyadic Operation

Push tos + tos-1
(tos, tos-1 removed)

Push tos-1 - tos
(tos, tos-1 removed)

UMuL Push tos « tos-1
(tos, tos-1 removed)

Push tos-1/ tos
(tos, tos-1 removed)

8 HEE

Push tos-1 MOD tos
(tos, tos-1 removed)
Signed Dyadic Operation

Push tos + tos-1
(tos, tos-1 removed)

Push tos-1 - tos
(tos, tos-1 removed)

g [

MUL Push tos » tos-1
(tos, tos-1 removed)

ow Push tos-1 / tos
(tos, tos-1 removed)

Range Checking

i

UCHK Unsigned: Rangecheck trap if tos-2 < tos-1 or
tos-2 > tos; (tos, tos-1 removed)

CHK Signed: Rangecheck trap if tos-2 < tos-1 or
tos-2 > tos; (tos, tos-1 removed)
CHKZ Rangecheck trap if tos-1 > tos (tos removed)
Rangecheck trap if tos < 0
Bit Test
[IN I If tos-1 IN tos Push1 else Push O (tos,tos-1 removed)
Test and Set
Push word addressed by tos;

|

Set word addressed by tos to 1 (remove tos)

Load String Address

o [o | Push n + word addressed by G + 2

Stack Operations

g

>
£
3

sTOT

E¢

E@@D

Procedure Operations

m] o~

r
2

i

i
3

L

o]
3

EEI

87

SetStoS + n

PushS; SetSto S + tos; (tos removed)
Copy tos to Procedure Stack; (tos removed)
Push tos

Decrement S

Word addressed by L + nsettoS;

Move tos words starting at tos-1

into word addressed by S; SetSto S + tos;
(tos, tos-1 removed)

Call the nth procedure in module m

Call the nth local procedure

Get the word on the top of the procedure stack;

Call the procedure of the right half of the word,
in the module of the left half of the word

Call the nth local procedure

Call the nth local procedure

Return from Procedure

Get Base address (static link) n levels down

Get Base address one level down

Appendix 2 The Program "Simulator"

"Simulator,” a program written in Modula-2, simulates as closely as possible the execution of
microinstructions in the Lilith computer. The purpose in writing such a program is to provide a
means to discover the dynamic nature of the processor and thereby answer such questions
regarding the usage of memory, the effectiveness of the instruction fetch unit, or the dynamic
occurrence of wait for memory condition.

The organization of Simulator is identical to the function organization of the Lilith. However, the
functional components of Simulator are programs modules, whereas the function components of
the Lilith are circuit boards or portions of circuit boards.

The modules of Simulator (bearing identical names to the functional components of the Lilith)
are interconnected by IMPORT and EXPORT statements. These interconnections parallel the
Lilith interconnections found in the back plane. Quite often, segments of the Simulator
programming exactly reflect the electronic components used in the actual circuitry, and other
times the programming takes a circuitous route to achieve the correct functional simulation of
the hardware. The arithmetic logic unit, for example, required some intricate programming in
order to correctly sense the carry, overflow and other condition codes. Such deviations from
exact simulation are, however, confined to the execution of a single microinstruction, so that the
various registers of the machine always contain exactly the correct data at the end of each
microinstruction.

The correctness of Simulator was established in an interesting tashion. Since the Lilith is already
equipped with a diagnostic processor which can load programs and execute them in a single
instruction mode fashion, it was possible to debug the Simulator by comparing its results to the
results reported by the diagnostic processor. A special terminal emulator program was used for
this purpose. The emulator alternately requests single instruction execution results from the
diagnostic processor and computes simulated microinstruction executions through procedure
calls to Simulator. The speed of this comparison is slow, less than a hundred microinstructions
per second. Nevertheless, it is fast enough to enable aimost complete testing of the program
Simulator. Ironically, this technique portends to be of real value in isolating faults in
malfunctioning machines.

Several files are required as data input for Simulator. These are files for the control store ROM’s,
the map ROM's, and the boot program. They are output files from the microinstruction
assembler and from the "Bootlink" program. Simulator uses these files unmodified.

89

MODULE Simulator;
(* R. Ohran, Nov, 1983%)
IMPORT SYSTEM;
IMPORT FileSystem;
IMPORT Terminal;
IMPORT WinDisk;
FROM CardinalI0 IMPORT WriteOct;
FROM Terminal IMPORT WriteLn WriteString,Read,ReadAgain Write;

CONST
bdALU = 0; bsALU = 0;
bdMD = 1; bsMD = 1;
bdPC = 2; bsPC = 2;
bdMAR = 3; bsIR4 = 3;
bdSR = 4; bsIR8 = 4;
bdMDS = 5; bsIRMINUS = b;
bdIOA = 6; bSIRSTAR = 6;
bdIOD = 7; bsIOD = 7;
bdINM = 8; bSINM = 8;
bdBNK =13;
bdF =14; bsF =14;
bdDASH =15; bsDASH =15;
bsINT =16;
oneCycle = 1;
oneCode = -1;

TYPE MicroInstruction = ARRAY[0..4] OF CHAR;

VAR uad:CARDINAL; (*next microinstruction addresss)
bus:CARDINAL; (*processor buss)
mir: MicroInstruction; (*microinstruction registers)
iMask :CARDINAL; (*interrupt mask registers)
ioAddress:CARDINAL ; (*1/0 address registers)

i,d,ucnt,ecnt:CARDINAL;

aluinstr:BOOLEAN;

interrupt:BOOLEAN;

ch:CHAR;

time:CARDINAL; (*counts time in nanosecondss)
mcnt:ARRAY [1..20] OF CARDINAL; (scounts microinstructions in M-codess)

PROCEDURE WriteState;

BEGIN
WriteOct(time);time:=0;
WriteOct(Memory.readcnt) ;Memory. readcnt:=0;
WriteOct(Memory.writecnt) ;Memory.writecnt:=0;
WriteOct(IFU.ifubytes);IFU.ifubytes:=0;
WriteOct(IFU.memcnt);IFU.memcnt:=0;
WriteOct(IFU.mcodecnt);IFU.mcodecnt:=0;
WriteOct(MIR.uinstcnt) ;MIR. uinstcnt:=0;
WriteOct(IFU.wait);IFU.wait:=0;
WriteOct(MDP.wait);MDP.wait:=0;
WriteOct(MIR.testinstcnt) ;MIR. testinstcnt:=0;
Writeln;
WriteOct(ALU.pushcnt) ;ALU.pushcnt:=0;
WriteOct(ALU.popcnt);;ALU.popcnt:=0;
WriteOct(ALU.opcnt);ALU.opcnt:=0;

WriteOct(IFU.mcodedelay);IFU.mcodedelay:=0;
WriteOct(IFU.delayl);IFU.delayl:=0;
WriteOct(IFU.waitcnt);IFU.waitcnt:=0;
WriteOct(ALU.qcount);ALU.qcount:=0;
WriteOct(ecnt);ecnt:=0;
WriteOct(jsrcnt);jsrcnt:=0;
Writeln;
END WriteState;

MODULE HPHEX;
(*+ implements a formatted input/output to the HPterminal #)
IMPORT Write, Read, WriteLn, WriteString,ReadAgain;
EXPORT hexin, hexout,hexbyteout,Khexi2out;

PROCEDURE hexout(n : CARDINAL);
VAR help1l, help2:CARDINAL;
BEGIN help1l := 1000h;
REPEAT help2 := (n DIV helpl) MOD 16;
help1i:= helpi DIV 16;
IF help2 <= 9 THEN Write(CHAR(help2+30h))
ELSE Write(CHAR(help2+37h))
END
UNTIL helpl = 0;
END hexout;

PROCEDURE hexbyteout(n : CARDINAL);
VAR help1, help2:CARDINAL;
BEGIN help1 := 10h;
REPEAT help2 := (n DIV help1l) MOD 16;
help1:= help1l DIV 16;
IF help2 <= 9 THEN Write(CHAR(help2+30h))
ELSE Write(CHAR(help2+37h))
END
UNTIL helpl = 0;
END hexbyteout;

PROCEDURE hex12out(n : CARDINAL);
VAR help1, help2:CARDINAL;
BEGIN help1l := 100h;
REPEAT help2 := (n DIV help1) MOD 16;
help1:= helpl DIV 16;
IF help2 <= 9 THEN Write(CHAR(help2+30h))
ELSE Write(CHAR(help2+37h))
END
UNTIL helpl = 0;
END hex12out;

PROCEDURE hexin(VAR n:CARDINAL);
VAR ch:CHAR; help:CARDINAL;
BEGIN n:=0;
Read(ch);Write(ch);
WHILE ((ch>='0')AND(ch<='9')) OR ((ch>='A') AND (ch<='F')) DO
IF ch <= '9' THEN help:=CARDINAL(ch)-30h
ELSE help:=CARDINAL(ch)-37h
END;
n:=n*16+help;
Read(ch);
END;

ReadAgain;
END hexin;
END HPHEX;

MODULE I0;

FROM SYSTEM IMPORT WORD;

FROM WinDisk IMPORT DiskRead,DiskWrite;
FROM FileSystem IMPORT Response;

FROM Terminal IMPORT BusyRead,Write;

IMPORT bus,uad, ioAddress,interrupt,WriteState;
IMPORT WriteOct,time;

EXPORT QUALIFIED Get,Put;

CONST secno = 3B;
cyllo = 4B;
cylhi = 6B;
sdh = 6B;

VAR lastuad,lastIOData,bindex,sector:CARDINAL;
ch:CHAR; r:Response;
buffer:RECORD
CASE BOOLEAN OF
TRUE:c:ARRAY[0..255] OF CHAR|
FALSE:w:ARRAY[0..127] OF WORD
END;
END;
diskreg:ARRAY[0..7] OF CARDINAL;

PROCEDURE GET(channel: CARDINAL; VAR info: WORD);
(* input from channel to info *)

CODE 240B (* Read *)

END GET;

PROCEDURE PUT(channel: CARDINAL; info: WORD);
(* output info to channel +)
CODE 241B (* Write #)

END PUT;
PROCEDURE Get;
BEGIN
IF (lastuad + 1) = uad THEN
ELSIF ioAddress = 20B THEN

lastIOData:=CARDINAL(buffer.c[bindex]);bindex:=(bindex + 1) MOD 256;
ELSIF ioAddress = 1 THEN BusyRead(ch);
IF ch = 0C THEN lastIOData:-0 ELSE lastIOData:=1 END;
ELSIF ioAddress = 2 THEN lastIOData:=CARDINAL(ch)
ELSE GET(ioAddress,lastIOData)
END;
bus:=lastIOData;
lastuad:=uad
END Get;

PROCEDURE Put;
BEGIN
IF (lastuad + 1) = uad THEN
ELSIF (ioAddress DIV 8) = 2 THEN
IF ioAddress = 20 THEN buffer.c[bindex]:=CHAR(bus);
INC(bindex);
IF bindex>=256 THEN (*write sector possiblys)

91

92

bindex:=0 END;
ELSIF joAddress = 27B THEN
IF bus = 20H THEN
sector:= diskreg[secno] MOD 32 + 32¢(diskreg[sdh] MOD 2)
+diskreg[cyl10]+64 + diskreg[cylhi]*266+64;
DiskRead(0,sector,buffer.w,r);bindex:=0;
ELSIF bus= 30H THEN (sdisk write commands) bindex:=0;
ELSE PUT(ioAddress,bus) END;
ELSE diskreg[ioAddress MOD 8]:= bus END
ELSIF ioAddress = 3 THEN interrupt:=FALSE
ELSIF ioAddress = 0 THEN Write('#');WriteState;
ELSE PUT(ioAddress,bus) END;
lastuad:=uad
END Put;
BEGIN
lastuad:=0;
END I0;

MODULE ALU;

IMPORT MIR;

IMPORT bus;

IMPORT bdMDS,bdALU,bsIR4;

EXPORT QUALIFIED ccCodes,Reg,RAMA,y,popcnt,pushcnt,opent,
ClockALU,shiftCountReg,EvaluateALU,
qloaded,qcount, lastqcent;

CONST

(* symbolic "I" field names *)

(+ I0-I3 13-15 16-18 s)
AQ = 0; ADD = 0; QREG = 0; R = 0;
AB = 1; SUBR =1; NOP =1; C =1;
70 = 2; SUBS = 2; RAMA = 2; Z = 2;
B = 3; Or = 3; RAMF = 3; V = 3;
ZA = 4; And = 4; RAMQD = 4; F = 4;
DA = 5; NOTRS = 5; RAMD = 5; S = 5;
DQ = 6; EXOR = 6; RAMQU = 6; H = 6;
DZ = 7; EXNOR = 7; RAMU = 7; E = 7;

VAR

stkindex,stkcnt,dinputs,y, f:CARDINAL;
shiftCountReg,popcnt,pushcnt,opcnt:CARDINAL;
Qreg ,qcount,lastqcnt : CARDINAL;
qloaded:BOOLEAN;

Reg : ARRAY [0..16] OF CARDINAL;

stack: ARRAY [0..15] OF CARDINAL;
newccCodes,ccCodes: BITSET;

PROCEDURE DADD(xh,h1,yh,y1:CARDINAL):REAL;
CODE 2108B;
END DADD;

PROCEDURE SHM(mask:CARDINAL;ch,n:CARDINAL):CARDINAL;
CODE 275B;322B;
END SHM;

PROCEDURE EvaluateALU;
VAR r,s,carry:CARDINAL;
trick:RECORD

CASE BOOLEAN OF
FALSE: H,L:CARDINAL|
TRUE: real:REAL

END
END;
BEGIN
EvaluateShifter;

IF (MIR.bd = bdMDS) THEN

MIR.rs:= CARDINAL(BITSET(MIR.rs) * {13,15});

IF NOT (14 IN BITSET(MIR.dest)) THEN

IF NOT(15 IN BITSET(Qreg)) THEN INC(MIR.rs,2) END;

ELSIF C IN ccCodes THEN INC(MIR.rs,2) END;
END;
lastqcent:=qcount;
CASE MIR.rs OF

AQ : r:=Reg[MIR.a];s:=Qreg; IF qloaded THEN INC(qcount) END|

AB : r:=Reg[MIR.a];s:=Reg[MIR.b];|

ZQ : r:= 0;s:=Qreg;IF qloaded THEN INC(qcount) END|

ZB : r:= 0;s:=Reg[MIR.b];|

ZA : r:= 0;s:=Reg[MIR.a];|

DA : r:= dinputs;s:=Reg[MIR.a];|

DQ : r:= dinputs;s:=Qreg;IF qloaded THEN INC(qcount) END|
DZ : r:= dinputs;s:=0;

END; (= rs CASE +)

CASE MIR.c OF

: carry:=CARDINAL(C IN ccCodes)|

: carry:=CARDINAL(NOT (C IN ccCodes))|
: carry:=1|

: carry:=0

END;

WM mS

newccCodes:= {};

CASE MIR.fct OF

ADD : trick.real:=DADD(0,r,0,s);
IF BOOLEAN(carry) THEN

trick.real:=DADD(trick.H,trick.L,O,l) END;

f:=trick.L;
IF 15 IN BITSET(trick.H) THEN INCL(newccCodes,C) END;
IF 8 IN BITSET(f) THEN INCL(newccCodes,H) END;
IF @ IN BITSET(f) THEN INCL(newccCodes,F) END;
IF £=0 THEN INCL(newccCodes,Z) END;
IF BOOLEAN(BITSET(SHM(1,CARDINAL(BITSET(f)/BITSET(r)/
BITSET(s)),16))/BITSET(trick.H)) THEN INCL(newccCodes,V) END;|

SUBR : r:=OFFFFH - r;
trick.real:=DADD(0,r,0,s);
IF BOOLEAN(carry) THEN

trick.rea]:=DADD(trick.H,trick.L,0,1) END;

f:=trick.L;
IF 15 IN BITSET(trick.H) THEN INCL(newccCodes,C) END;
IF 8 IN BITSET(f) THEN INCL(newccCodes,H) END;
IF 0 IN BITSET(f) THEN INCL(newccCodes,F) END;
IF =0 THEN INCL(newccCodes,Z) END;
IF BOOLEAN(BITSET(SHM(1,CARDINAL(BITSET(f)/BITSET(r)/
BITSET(s)),16))/BITSET(trick.H)) THEN INCL(newccCodes,V) END;|

SUBS : s:=OFFFFH - s;
trick.real:=DADD(0,r,0,s);
IF BOOLEAN(carry) THEN

trick.real:=DADD(trick.H,trick.L,0,1) END;

f:=trick.L;
IF 15 IN BITSET(trick.H) THEN INCL(newccCodes,C) END;
IF 8 IN BITSET(f) THEN INCL(newccCodes,H) END;
IF 0 IN BITSET(f) THEN INCL(newccCodes,F) END;
IF £=0 THEN INCL(newccCodes,Z) END;
IF BOOLEAN(BITSET(SHM(1,CARDINAL(BITSET(f)/BITSET(r)/
BITSET(s)),15))/BITSET(trick.H)) THEN INCL(newccCodes,V) END;|

Or : f := CARDINAL(BITSET(r) + BITSET(s));

IF 8 IN BITSET(f) THEN INCL(newccCodes,H) END;
IF 0 IN BITSET(f) THEN INCL(newccCodes,F) END;
IF f=0 THEN INCL(newccCodes,Z) END;|

And : f := CARDINAL(BITSET(r) * BITSET(s));
IF 8 IN BITSET(f) THEN INCL(newccCodes,H) END;
IF 0 IN BITSET(f) THEN INCL(newccCodes,F) END;
IF f=0 THEN INCL(newccCodes,Z) END;|

NOTRS : f := CARDINAL((BITSET(r)/{0..15}) * BITSET(s));
IF 8 IN BITSET(f) THEN INCL(newccCodes,H) END;
IF @ IN BITSET(f) THEN INCL(newccCodes,F) END;
IF f=0 THEN INCL(newccCodes,Z) END;|

EXOR : f := CARDINAL(BITSET(r) / BITSET(s));
IF 8 IN BITSET(f) THEN INCL(newccCodes,H) END;
IF 0 IN BITSET(f) THEN INCL(newccCodes,F) END;

IF f=0 THEN INCL(newccCodes,Z) END;|

EXNOR : f := CARDINAL(BITSET(r) / BITSET(s) / {0..15})
IF 8 IN BITSET(f) THEN INCL(newccCodes,H) END;
IF 0 IN BITSET(f) THEN INCL(newccCodes,F) END;
IF £=0 THEN INCL(newccCodes,Z) END;

END; (* fct CASE)

IF V IN newccCodes THEN

IF NOT(F IN newccCodes) THEN INCL(newccCodes,S) END
ELSIF F IN newccCodes THEN INCL(newccCodes,S)
END;

IF stkindex= @ THEN INCL(newccCodes,E) END;

IF MIR.dest = RAMA THEN y:= Reg[MIR.a] ELSE y:=f END;
END EvaluateAlLU;
PROCEDURE ClockALU;

BEGIN
CASE MIR.dest OF
QREG : Qreg := f ;IF MIR.bs <> bsIR4 THEN qloaded:=FALSE END;|
NOP :
RAMA : Reg[MIR.b]:= f |
RAMF : Reg[MIR.b]:= f |
RAMQD : Reg[MIR.b]:= f DIV 2 + SHM(8000H,CARDINAL(C IN newccCodes),1);

Qreg:= Qreg DIV 2 + SHM(8000OH,f,1):qloaded:=FALSE |

85

RAMD : Reg[MIR.b]:= f DIV 2 + SHM(8@0OH,CARDINAL(C IN newccCodes),1);

RAMQU : Reg[MIR.b]:= (f MOD 32768) * 2 + SHM(1,Qreg,15);
Qreg:= (Qreg MOD 32768)* 2 + CARDINAL(C IN ccCodes);
qloaded: =FALSE |

RAMU : Reg[MIR.b]:= (f MOD 32768) s 2 + SHM(1,Qreg, 15)

END; (» dest CASE ¢)

IF (MIR.bd = bdALU) AND NOT MIR.s THEN stack[stkindex]:=y END;
IF NOT MIR.s THEN
IF MIR.bd = bdALU THEN stkcnt:=(stkcnt +15) MOD 16; INC(pushcnt) ;
ELSE stkent := (stkcnt + 1) MOD 16;
IF MIR.dest = RAMA THEN INC(popcnt) ELSE INC(opcnt) END;
END;
END;
ccCodes:=newccCodes;
END ClockALU;

PROCEDURE EvaluateShifter;

PROCEDURE ROR(data,shift:CARDINAL):CARDINAL;
CODE 275B
END ROR;

BEGIN
IF (MIR.bd = bdALU) AND NOT MIR.s THEN stkindex:=(stkcnt + 15) MOD 16
ELSE stkindex:= stkcnt END;
IF MIR.bd = bdALU THEN
IF MIR.sh > 1 THEN
dinputs:= ROR(bus,shiftCountReg)
ELSE dinputs := ROR(bus,MIR.shff)"
END;
IF ODD(MIR.sh) THEN
IF MIR.sh > 1 THEN dinputs:= CARDINAL(BITSET(dinputs)
+ BITSET(ROR(1,shiftCountReg)-1))
ELSE dinputs:= CARDINAL(BITSET(dinputs)+ BITSET(ROR(1,MIR.shff)-1))
END;
END;
IF MIR.bs = bsIR4 THEN dinputs:= dinputs MOD 16 END

ELSE dinputs:= stack[stkindex]
END
END EvaluateShifter;

BEGIN
stkcnt:=0;
shiftCountReg:=0;
popcnt:=0;
pushcnt:=0;
opcnt:=0;
qcount:=0;
qloaded:=FALSE

END ALU;

MODULE MCU;
IMPORT MIR;
IMPORT ALU;
IMPORT bus,uad;

96

IMPORT bsIR4,bsINT;
FROM Terminal IMPORT WriteString,Writeln;
FROM FileSystem IMPORT File,Lookup,Response,ReadChar;

EXPORT NextUAD, jsrcnt;

CONST
pcPOP
pcRTN
pcJdSR
pcDASH
pcLOoP
pcJIMP H
clockVector = 12;

VAR cc:BOOLEAN;
mux2911,uindex, jsrcnt:CARDINAL;
ustack:ARRAY[0..3] OF CARDINAL;
mapROM:ARRAY[0..2566] OF CARDINAL;

woun o onouw on

.
’
»
’
’
’

NOLEWR S

PROCEDURE NextUAD;
BEGIN
IF MIR.k THEN mux2911:= MIR.pc
ELSE
cc:= NOT((MIR.ccMask * ALU.ccCodes) = {});
IF (NOT MIR.ccSense AND cc) OR (MIR.ccSense AND NQOT cc) THEN
mux2911:= MIR.pc
ELSE mux2911:= pcDASH END;
END;
CASE mux2911 OF
pcIMP: IF (MIR.bs = bsSIR4) THEN
uad:= mapROM[bus]
ELSIF (MIR.bs = bSINT) THEN
vad:= clockVector
ELSE uad:=MIR.jadr
END |
pcJSR: ustack[uindex]:=uad+1;
uad:=MIR. jadr; uindex:=(uindex + 1) MOD 4 ;
INC(jsrcnt)]
pcRTN: uindex:=(uindex + 3) MOD 4;
uad:=ustack[uindex] |
pcDASH: uad:=uad+1 |
pclLOP: uad:= ustack[(uindex + 3) MOD 4] |
pcPOP: uad:=uad+1; uindex:=(uindex + 3) MOD 4
ELSE WriteString('bad uad error') END;
END NextUAD;

PROCEDURE ReadMapROM;
VAR f:File;
c:CHAR;
tmp, i:CARDINAL;
BEGIN
Lookup(f,'DK.int13dot2.MAP' FALSE);
IF f.res = notdone THEN
WriteLn;WriteString('int13dot2.MAP not found.');
HALT;
END;
FOR i:=0 TO 47H DO ReadChar(f,c); END;

FOR i:=0 TO 127 DO
ReadChar(f,c);
tmp :=CARDINAL(c)*16;
ReadChar(f,c);
mapROM[2#+i]:=tmp+(CARDINAL(c) DIV 16);
tmp:=(CARDINAL(c) MOD 16)+266;
ReadChar(f,c);
mapROM[2#+i+1]:=tmp+CARDINAL(C);

END;

END ReadMapROM;

BEGIN
ReadMapROM;
uindex:=0;
jsrcnt:-0

END MCU;

MODULE MIR;

IMPORT bus,uad,mir,MicroInstruction,aluinstr;

FROM FileSystem IMPORT File,Lookup,Close,Response,Reset,ReadChar;
FROM Terminal IMPORT WriteLn, WriteString;

EXPORT QUALIFIED LoadMIR,
dest,fct,rs,c,a,b,sh,pc,sp,k,s,e,shff,
bd,bs,n, jadr,ccSense,ccMask,uinstent, testinstent;

VAR dest,fct,rs,c,a,b,sh,pc,shff,bd,bs.n,jadr.
uinstcnt,testinstcnt: CARDINAL;
sp,k,s,e,ccSense:BOOLEAN;
ccMask :BITSET;
controlstore:ARRAY[O..4095] OF Microlnstruction;

PROCEDURE SHM(mask : CARDINAL ;ch:CHAR;n:CARDINAL) : CARDINAL ;
CODE 275B;3228B;
END SHM;

PROCEDURE LoadMIR;

BEGIN
mir:=controlstore[uad];
jadr:=SHM(OFFOH,mir[4],12) + SHM(OFH,mir[3],4);
dest:= SHM(7,mir[4],5);
fct := SHM(7,mir[4],2);

rs:= SHM(6,mir[4],156) + SHM(1,mir[3],7);
c := SHM(3,mir[3],5);

a := SHM(15,mir[3],1);

b:= SHM(8,mir[3],13) + SHM(7,mir[2],5);
sh:= SHM(3,mir[2],3);

pc:= CARDINAL(mir[2]) MOD 8;

sp:= 8 IN BITSET(mir[1]);

k := 9 IN BITSET(mir[1]);aluinstr:=k;

§ := 10 IN BITSET(mir[1]);

e := 11 IN BITSET(mir[1]);

shff := CARDINAL(mir[1]) MOD 16;

bd := SHM(15,mir[0],4);

bs := CARDINAL(mir[0]) MOD 16;

n := CARDINAL(mir[0]);

ccMask := BITSET(SHM(1FOOH,mir[2],11) + SHM(OE00OH,mir[3],3));
ccSense := 12 IN BITSET(mir[3]);

INC(uinstcnt);

98

IF NOT k THEN INC(testinstcnt) END;
END LoadMIR;

PROCEDURE LoadROMfromFiles;

PROCEDURE ReadFileAndStoreInROM(fileName:ARRAY OF CHAR; index:CARDINAL);
VAR i,tmp,lineLength,sum,address,highAddressByte : CARDINAL;

¢ : CHAR;

f : File;

PROCEDURE ReadByte():CARDINAL;
VAR byte : [0..255];

PROCEDURE ReadHex():CARDINAL;
VAR ¢ : CHAR;
BEGIN
c:=0C;
WHILE (c<'0') DO ReadChar(f,c);END;
IF ¢ >='A' THEN
RETURN (ORD(c)-ORD('A')+10);
ELSE
RETURN (ORD(c)-ORD('0'));
END;
END ReadHex;

BEGIN
byte:=-ReadHex()*16;
RETURN(CARDINAL(byte+ReadHex()));
END ReadByte;

BEGIN

Lookup(f,fileName, FALSE);

IF f.res = notdone THEN
WriteLn;WriteString(fileName);WriteString(' not found.');
HALT;

END;

sum:=0; address:=0;

FOR i:=1 TO 11 DO ReadChar(f,c); END; (* delete header *)

LooP
ReadChar(f,c);

IF ¢ <>'S' THEN
WriteString(' S missing at head of 1line ');
HALT;

END;

ReadChar(f,c);

IF ¢ = '9' THEN EXIT; ELSIF ¢ <> '1' THEN
WriteString(' S1 missing at head of line');
HALT;

END;

lineLength := ReadByte()-3;

highAddressByte := ReadByte();

tmp:=highAddressBytes256+ReadByte();

IF address <> tmp THEN
address:=tmp;

END;

FOR i:=1 TO linelLength DO
tmp := ReadByte();
controlstore[address][index]:= CHAR(tmp);
INC(address);

END; (= FOR)
ReadChar(f,c);ReadChar(f,c);ReadChar(f,c);
IF ¢ <> 36C THEN WriteString(' EOL missing '); HALT;END;
sum:=0;
END; (= LOOP =)
Close(f);
END ReadFileAndStoreInROM;

BEGIN
ReadFileAndStoreInROM('DK.int13dot2.BM1 ',0);
ReadFileAndStoreInROM('DK.int13dot2.BM2 *,1);
ReadFileAndStoreInROM('DK.int13dot2.BM3 *,2);
ReadFileAndStoreInROM('DK.int13dot2.BM4 ',3);
ReadfileAndStoreInROM('DK.int13dot2.BM5 ',4);

END LoadROMfromFiles;

BEGIN
LoadROMfromFiles;uinstcnt:=0;testinstcnt:=0;
END MIR;

MODULE IFU;

IMPORT bus,Memory,MDP,ALU;

FROM FileSystem IMPORT File,Lookup,Response,ReadChar,Close;

FROM Terminal IMPORT Write ,WriteString,WriteLn;

EXPORT QUALIFIED BSIR8,BSIR4,BSIRSTAR,BSIRMINUS,LoadPC,LoadF,f,pc,
memcnt, ifubytes,wait,delay,mcodecnt,idle,delayl,mcodedelay,waitcnt;

VAR pc,f,fhi,flo,memcnt,ifubytes,wait,delay:CARDINAL;
mcodedelay,mcodecnt,idle,delayl,waitcnt:CARDINAL ;
boot:BOOLEAN;
reg:RECORD

CASE BOOLEAN OF
TRUE: words: ARRAY[O..3] OF CARDINAL|
FALSE: bytes: ARRAY[O..7] OF CHAR
END
END;
bootROM: ARRAY[@..2047] OF CHAR;

PROCEDURE IFUDelay;
BEGIN
IF delay>® THEN INC(waitcnt) END;
IF MDP.delay > delay
THEN DEC(MDP.delay,delay);
ELSIF MDP.delay>@ THEN INC(MDP.wait,MDP.delay-1);
DEC(delay,MDP.delay-1);MDP.delay:=0;
ELSE MDP.delay:=0
END;
INC(wait,delay);delay:=0;
END IFUDelay;

PROCEDURE BSIRS;
BEGIN
IFUDelay;
IF boot THEN bus:=CARDINAL(bootROM[pc MOD 2048]); INC(pc) ELSE
bus:=CARDINAL(reg.bytes[(pc+(flo MOD 4) + 2) MOD 8]);
INC(pc);
IF ((pc + (flo MOD 4) = 2) MOD 8) = @ THEN
Memory.Read64(fhi,(pc DIV 2 + flo),reg.words);INC(memcnt);
delay:=Memory.cycle + MDP.delay;idle:=0;

100

IF MDP.delay >0 THEN DEC(delay) END;
(s if overflow, offset has crossed page boundarys)
END;
END;
INC(ifubytes);
END BSIRS;

PROCEDURE BSIRMINUS;
BEGIN

BSIRS;

bus:=bus + QFFQOH
END BSIRMINUS;

PROCEDURE BSIR4; \
BEGIN "

ALU.qloaded:=TRUE;

INC(mcodedelay,delay);

IF id1e<2 THEN INC(delay1l,idle) ELSE INC(delay1,2) END;

IFUDelay;

IF boot THEN bus:=CARDINAL(bootROM[pc MOD 2048]); INC(pc) ELSE

bus:=CARDINAL(reg.bytes[(pc+(flo MOD 4) = 2) MOD 8]);

INC(pc):

IF ((pc+(flo MOD 4) = 2) MOD 8) = 0 THEN
Memory.Read64(fhi,(pc DIV 2 + flo),reg.words);INC(memcnt);
delay:=Memory.cycle +1+ MDP.delay; idle:=0;

IF MDP.delay >0 THEN DEC(delay) END;
(* if overflow, offset has crossed page boundarys)

END;

END;
INC(ifubytes);
INC(mcodecnt);
END BSIR4;

PROCEDURE BSIRSTAR;

BEGIN
IFUDelay;
bus:=CARDINAL(reg.bytes[(pc+(f1o MOD 4) = 2) MOD 8]);
INC(pc);INC(ifubytes);

END BSIRSTAR;

PROCEDURE LoadPC;

VAR 1i:CARDINAL;

BEGIN
IFUDelay;
pc:=bus;
boot:=0 IN BITSET(pc);
IF boot THEN pc:=pc MOD 32768 END;
Memory.Read64(fhi ,(pc DIV 2 + flo),reg.words);
INC(memcnt) ;delay:=Memory.cycle + MDP.delay;idle:=0;
IF MDP.delay >0 THEN DEC(delay) END;

END LoadPC;

PROCEDURE LoadF;
BEGIN
IFUDelay;
f:=bus;
fhi:=f DIV 8000H;
flo:= (f MOD 8000H)=*2;
END LoadF; -

101

PROCEDURE ReadFileAndStoreInROM(fileName:ARRAY OF CHAR);
VAR i,tmp,Tinelength,sum,address,highAddressByte : CARDINAL;
¢ : CHAR;
f : File;

PROCEDURE ReadByte():CARDINAL;
VAR byte : [@..255];

PROCEDURE ReadHex () :CARDINAL;

VAR ¢ : CHAR;
BEGIN
c:=0C;

WHILE (c<'0') DO ReadChar(f,c);END;
IF ¢ >="A' THEN
RETURN (ORD(c)-ORD('A')+10);
ELSE
RETURN (ORD(c)-ORD('0'));
END;
END ReadHex;

BEGIN
byte:=ReadHex()*16;
RETURN(CARDINAL(byte+ReadHex()));
END ReadByte;

BEGIN
Lookup(f,fileName,FALSE);
IF f.res = notdone THEN
WriteLn;WriteString(fileName);WriteString(' not found.');

HALT;
END;
sum:=0; address:=0;
LOOP
REPEAT
ReadChar(f,c);
UNTIL ¢ = 'S';

ReadChar(f,c);

IF ¢ = '9' THEN EXIT; ELSIF ¢ <> '1' THEN
WriteString(' S1 missing at head of line');
HALT;

END;

lineLength := ReadByte()-3;

highAddressByte := ReadByte();

tmp:=highAddressBytes256+ReadByte();

IF address <> tmp THEN
address:=tmp;

END;

FOR i:=1 TO linelLength DO
tmp := ReadByte();
bootROM[address]:= CHAR(tmp);
INC(address);

END; (* FOR +)

ReadChar(f,c);ReadChar(f,c);ReadChar(f,c);

IF ¢ <> 36C THEN WriteString(' EOL missing '); HALTEND;

sum:=90;

END; (= LOOP =)
Close(f);
END ReadFileAndStoreInROM;

102

BEGIN
boot:=FALSE;
pc:=0;
£:=0;fhi:=0;f10:=0;ifubytes:=0;wait:=0;memcnt:=0;delay:=0;idle:=0;
mcodecnt:=0;delayl:=0;mcodedelay:=0;waitcnt:=0;
ReadFileAndStoreInROM('DK.int13dot2.BOT');

END IFU;

MODULE MDP;
IMPORT bus,Memory,IFU;
EXPORT QUALIFIED ReadMDPData,LoadMDPWriteData,LoadHMAR,LoadMAR,hmar,
delay,wait;
VAR mdpData,mdpWriteData,hmar,mar,wait,delay : CARDINAL;
writeflag:BOOLEAN;

PROCEDURE MDPDelay;
BEGIN
IF IFU.delay > delay
THEN DEC(IFU.delay,delay)
ELSE INC(IFU.wait,IFU.delay);
DEC(delay,IFU.delay);IFU.delay:=0
END;
INC(wait,delay);
delay:=0;
END MDPDelay;

PROCEDURE LoadMDPWriteData;
BEGIN
MDPDelay;
mdpWriteData:=bus;
writeflag:=TRUE;
END LoadMDPWriteData;

PROCEDURE LoadHMAR;
BEGIN

hmar:=bus;
END LoadHMAR;

PROCEDURE LoadMAR;
BEGIN

MDPDelay;

IF writeFlag THEN
Memory.Write(hmar,bus,mdpWriteData);
writeFlag:=FALSE

ELSE
mdpData:= Memory.Read(hmar,bus)

END;

hmar:=0;

delay:=Memory.cycle+IFU.delay+ 1;

END LoadMAR;

PROCEDURE ReadMDPData;
BEGIN
MDPDelay;
bus:=mdpData;
END ReadMDPData;

BEGIN

103

hmar:=0;writeFlag:=FALSE;delay:=0;wait:=0;
END MDP;

MODULE Memory;

FROM SYSTEM IMPORT WORD;

FROM WinDisk IMPORT DiskRead,DiskWrite;

FROM FileSystem IMPORT File,Lookup,ReadWord,Response,Close;
FROM Terminal IMPORT WriteString;

EXPORT QUALIFIED Read,Read64,Write,readcnt,writecnt,cycle;

CONST maxPages = 16; (*number of memory pages residents)
unloaded = 1024;
dumpFileOffset = 192; (sstarting sector of disk resident memory#*)
diskDrive = 0,
cycle = 7;

TYPE Pagelndex = [0..1024];
(* 1024 is used as the index for unused pages.*)
Page = ARRAY [0..127] OF CARDINAL;
(* Pages are the same size as disk sectors. *)

VAR
diskstatus : Response;
i,size,adr,help : CARDINAL;
oldestPage : CARDINAL;
writecnt ,readcnt : CARDINAL;
f : File; >
memory : ARRAY [0.. 1023] OF Pagelndex;
pageTable : ARRAY [0..maxPages-1] OF RECORD

pagenum : CARDINAL;

written: BOOLEAN;

page : Page;
END;

PROCEDURE SXFW(h,1,d:CARDINAL);
CODE 223B;
END SXFW;

PROCEDURE Read(hmar,mar:CARDINAL):CARDINAL;
VAR srcpage,d:CARDINAL;
BEGIN

INC(readcnt);

srcpage := (hmar+512)+(mar DIV 128);

IF memory[srcpage]=unloaded THEN

SwapPage(srcpage);

END;

RETURN(pageTable[memory[srcpage]].page[mar MOD 128]);
END Read;

PROCEDURE Read64(hmar,mar:CARDINAL;VAR blk:ARRAY OF WORD);
VAR srcpage:CARDINAL;
BEGIN

INC(readcnt);

srcpage := (hmar*512)+(mar DIV 128);

mar:=CARDINAL(BITSET(mar) * {0..13});

IF memory[srcpage]=unloaded THEN

SwapPage(srcpage);
END;
FOR i:=0 TO 3 DO

104

b1k[i]:= WORD(pageTable[memory[srcpage]].page[mar MOD 128 + i])
END;
END Read64;

PROCEDURE Write(hmar,mar,data:CARDINAL);
VAR dstpage:CARDINAL;
BEGIN
INC(writecnt);
dstpage := (hmars512)+(mar DIV 128);
IF hmar>@ THEN SXFW((hmar MOD 2)+*4000H,mar,data) END;
IF memory[dstpage]=unloaded THEN
SwapPage(dstpage)
END;
pageTable[memory[dstpage]].page[mar MOD 128]:-data;
pageTable[memory[dstpage]].written:=TRUE;
END Write;

PROCEDURE SwapPage(num:CARDINAL);
BEGIN
IF pageTable[oldestPage].written THEN
DiskWrite(diskDrive,pageTable[o1destPage].pagenum+dumpFileOffset,
pageTable[oldestPage].page,diskstatus)
END;
memory[pageTable[oldestPage].pagenum]:=unloaded;
LoadPage(num);
END SwapPage;

PROCEDURE LoadPage(num:CARDINAL);

BEGIN
memory[num]:=-oldestPage;
oldestPage:=(oldestPage + 1) MOD maxPages;
pageTable[memory[num]].pagenum:=num;
pageTable[memory[num]].written:=FALSE;
DiskRead(diskDrive,dumpFileOffset + num,

pageTable[memory[num]].page,diskstatus);
END LoadPage;

BEGIN
FOR i:=0 TO 1023 DO memory[i]:=unloaded END;
oldestPage:=0;
FOR i:= @ TO maxPages-1 DO LoadPage(i) END;
oldestPage:=2;
Lookup(f,'DK.simtest.ABS', FALSE);
IF f.res <> done THEN WriteString('no boot file') END;
ReadWord(f,size);
WHILE size <> 0 DO
ReadWord(f,adr);
FOR i:= 2 TO size DO
ReadWord(f,help);
Write(0,adr,help);
INC(adr) END;
ReadWord(f,size);
END;
readcnt:=0;
writecnt:=0;
END Memory;

PROCEDURE ExecuteCycles(stopCondition:INTEGER);

PROCEDURE Stop():BOOLEAN;
BEGIN
IF stopCondition = @ THEN RETURN TRUE
ELSIF stopCondition <@ THEN
RETURN (MIR.bs = bsIR4) OR (MIR.bs = bsSINT)
ELSE DEC(stopCondition); RETURN FALSE
END
END Stop;

BEGIN
REPEAT
IF MIR.k THEN ALU.ClockALU;
CASE MIR.bd OF
bdDASH: |
bdALU : |
bdSR : ALU.shiftCountReg:=bus MOD 16|
bdPC : IFU.LoadPC|
bdF : IFU.LoadF|
bdINM : iMask:=bus MOD 256 |
bdIOA : ioAddress := bus MOD 64;|
bdIOD : I0.Put |
bdBNK : MDP.hmar := bus MOD 2|
bdMAR : MDP.LoadMAR|
bdMD : MDP.LoadMDPWriteData |
bdMDS :
ELSE
Writeln;WriteString(' sim: Illegal value in dest ');
HALT;
END; (* CASE #)
END;
IF MIR.sp THEN INC(time,3);
IF IFU.delay>0 THEN DEC(IFU.delay) ELSE INC(IFU.idle) END;
IF MDP.delay>0 THEN DEC(MDP.delay) END;
ELSE INC(time,2);
END;
IF IFU.delay>® THEN DEC(IFU.delay) ELSE INC(IFU.idle) END;
IF MDP.delay>@ THEN DEC(MDP.delay) END;
IF IFU.delay>@ THEN DEC(IFU.delay) ELSE INC(IFU.idle) END;
IF MDP.delay>® THEN DEC(MDP.delay) END;
IF time>65000 THEN WriteState END;
MIR.LoadMIR;
bus:=0FFFFH;

IF MIR.k THEN
IF MIR.e THEN bus:=MIR.n;MIR.bd:=bdALU;MIR.bs:=bsDASH;
INC(ecnt) END;
CASE MIR.bs OF
bsALU : IF MIR.bd = bdALU THEN
IF MIR.dest - ALU.RAMA THEN bus:=ALU.Reg[MIR.a]
ELSE WriteString('bad dest value');HALT END;
ELSE ALU.EvaluateAlLU; bus:= ALU.y ;
ALU.qcount:=ALU.lastqcnt

END|
bsMD : MDP.ReadMDPData |
bsIR4 : IF interrupt THEN MIR.bs:=bsINT

ELSE IFU.BSIR4 END;

IF ucnt >19 THEN INC(mcnt[20]) ELSE INC(mcnt[ucnt]) END;

105

106

ucnt:=0 |
bsIR8 : IFU.BSIR8 |
bsIRSTAR : IFU.BSIRSTAR |
bsIRMINUS : IFU.BSIRMINUS |

bsF : bus := IFU.f|
bsPC : bus := IFU.pc|
bsINM : bus := iMask]
bsIOD : 10.Get |
bsDASH

ELSE

WriteString('Invalid value in bs');HALT
END; (* CASE #)
ALU.EvaluateALU;
END; ,
INC(ucnt);
MCU.NextUAD;
UNTIL Stop():;
END ExecuteCycles;

PROCEDURE Reset;
VAR i:CARDINAL;
BEGIN
interrupt:=FALSE; uad:=1;time:=0;;
Memory.Write(0,14B,0C000H);
Memory.Write(0,15B,0);
1:=1061008;
REPEAT
Memory.Write(0,i,0);INC(i)
UNTIL i= 106100B + 1024 ;
MIR.LoadMIR;
bus:=0FFFFH;
IF MIR.k THEN
IF MIR.e THEN bus:=MIR.n;MIR.bd:=bdALU;MIR.bs:=bsDASH END;
CASE MIR.bs OF
bsALU : IF MIR.bd = bdALU THEN
IF MIR.dest = ALU.RAMA THEN bus:=ALU.Reg[MIR.a]
ELSE WriteString('bad dest value');HALT END;
ELSE ALU.EvaluateAlLU; bus:= ALU.y END|

bsMD : MDP.ReadMDPData |

bsIR4 : IF interrupt THEN MIR.bs:=bsINT
ELSE IFU.BSIR4 END |

bsIR8 : IFU.BSIRS |

bsIRSTAR : IFU.BSIRSTAR |
bSIRMINUS : IFU.BSIRMINUS |

bsF : bus := IFU.f}
bsPC : bus := IFU.pc|
bsINM : bus := iMask]|
bsIOD : 10.Get |
bsDASH

ELSE

WriteString('Invalid value in bs');HALT
END; (* CASE #)
ALU.EvaluateAlU;
END;

MCU.NextUAD;
END Reset;

107

BEGIN
Reset;
ecnt:=0;
FOR i:=1 TO 20 DO mcnt[i]:=0 END;
ucnt:=1;
LOOP
ExecuteCycles(oneCode);
END;
END Simulator.

108

Appendix 3 A Performance Measurement Program

This program first appeared in the publication, "The Personal Computer Lilith", by N. Wirth
[wir2] where it was used to measure the performance of Lilith in compariscn with several other
computers. The program was subsequently used to measure other computers and the results
were published in Jacobi's dissertation [Jac]. The program as it has been modified here has
been used to develop new numbers for Lilith with the 375 nanosecond main memory, and it has
been used by the simulation program in Appendix 2 as the basis for the analysis of Lilith’s
dynamic performance. The results of this analysis were reported in Chapter 5.

Some additional tests results have been provided by Roger Vossler of TRW and Dave Coar of
Floating Point Systems, using machines at their installations. Vossler provided the
measurements of the VAX 750, the PDP11/45, and the SUN computers. Coar provide
measurements of a 10 megahertz 68000 computer.

Test Lilith PDP11/45 VAX750 SUN VAX750 68000
375 ns C (¥ C PASCAL

MODULA-2
a empty REPEAT loop 464 314 433 483 463 502
b empty WHILE loop 480 210 468 338 497 501
c empty FOR loop 652 251 422 376 363 578
d CARDINAL arithmetic 226 118 153 40 160 162
e REAL arithmetic 147 138 100 9 84
f sin,exp,In,sqrt 103 37 26 3 51
g array access 161 77 137 93 55 125
h with bound test 126 102
i matrix access 269 140 120 59 112 210
3 with bound test 214 175
k call of empty proc. 214 63 101 293 64 233
1 with 4 parameters 144 42 79 133 56 142
m copying arrays 113 85 96
n access via pointer 181 215
o reading disk stream 117

The 10 megahertz 68000 based system is most nearly equal to Lilith in performance, with the
exception of its real arithmetic. Real arithmetic on the 68000 must be implemented in software
and therefore is extremely slow as the numbers from the SUN 68000 demonstrate. The
comparison between these machines demonstrates most dramatically the advantage Lilith has
from its high level language oriented architecture. The 10 mhz 68000 has a microinstruction
cycle time of 100 nanoseconds, which is 0% faster than Lilith, and it has a memory cycle time of
400 nanoseconds compared to the Lilith's memory cycle time of 375 nanoseconds. Even with
these advantages, it still is only almost as fast as Lilith.

MODULE Benchmark;
(* modified for use with SIMULATOR program, R. Ohran, Nov,1983 s)
(*$7-
a: empty REPEAT loop
empty WHILE loop
empty FOR loop
CARDINAL arithmetic
REAL arithmetic
standard functions
array of single dimension
same as g but with index tests
matrix access
same as i1 but with index tests
call of empty, parameterless procedure
call of empty procedure with 4 parameters
copying of arrays (blockmoves)
pointer chaining
reading of file =)
FROM SYSTEM IMPORT WORD;
FROM Storage IMPORT ALLOCATE;
FROM Terminal IMPORT Read,BusyRead,Write,Writeln;
FROM InOut IMPORT WriteCard;
FROM FileSystem IMPORT File,Lookup,ReadWord,Reset,Response;
FROM MathLib® IMPORT sin,exp,1n,sqrt;
FROM DisplayDriver IMPORT Show,BMD;

TYPE NodePtr = POINTER TO Node;
Node = RECORD x,y:CARDINAL; next: NodePtr END;

VAR A,B,C: ARRAY[0..255] OF CARDINAL;
M: ARRAY [0..99],[0..99] OF CARDINAL;
m,i: CARDINAL;
head: NodePtr;

O 38 =m NCwaTOQ -HHO0OAOT

PROCEDURE GET(chan : CARDINAL; VAR value : WORD);

CODE 240b
END GET;

PROCEDURE PUT(chan : CARDINAL; value : WORD);

CODE 241b
END PUT;

PROCEDURE Test(ch:CHAR);
VAR i,j,k: CARDINAL;
ro,r1,r2: REAL; p: NodePtr;

PROCEDURE P;
BEGIN
END P;

PROCEDURE Q(x,y,z,w: CARDINAL);
BEGIN
END Q;

BEGIN
CASE ch OF

110

"a": k:=20000;
REPEAT
k:=k-1
UNTIL k = 0 |

"b": i:= 20000;
WHILE i > 0 DO

ir= i1
END |
"¢": FOR i:= 1 TO 20000 DO
END |
"d": j:= 0; k:= 10000;
REPEAT
k:=k-1; j:=j+1; i:=(k*3) DIV (j*5)
UNTIL k = 0 |
"e": k:=5000; r1 := 7.28; r2 := 34.8;
REPEAT

k:=k-1; r@ := (risrl) / (ri+r2)
UNTIL k = 0 |

"fr. k:= 500;

REPEAT
r@ := sin(0.7); ri:= exp(2.9);
rd := In(10.0); r1 := sqrt(18.0); k:= k-1
UNTIL k = 0 | ,
"g": k:=20000;i:=0 ; B[0] :=73;
REPEAT
A[i]:=B[i]:B[1]:=A[1]:k:= k-1
UNTIL k = 0 |
"h': (*$T++) k:=20000;i:=0 ; B[0] :=73;
REPEAT

A[i]:=B[1];B[i]:=A[1];k:= k-1
UNTIL k = @ (*$T-#)|

"i*. FOR i:= 0 TO 99 DO
FOR j:= 0 TO 99 DO
M[i,3] := M[j.1]
END

END |

mj": (+$T++)FOR i:= @ TO 99 DO
FOR j:= 0 TO 99 DO
M[3,3] := M[§.i)
END
END (*$T-#) |

"k": k:=20000;
REPEAT
P;k:=k-1;
UNTIL k=0 |

"1": k:=20000;
REPEAT
Q(i,j.k,m); k:=k-1;
UNTIL k=0 |

"m": k:=500;
REPEAT
k:=k-1; A:=B; B:=C; C:=A;
UNTIL k =0 |
"n": k:=500;

REPEAT p:=head;
REPEAT p:=pt.next UNTIL p= NIL;
k:=k-1;

UNTIL k = 0 |

"o": k := 5000;
REPEAT
k:=k-1; ReadWord(f,i)

UNTIL k = 0;
Reset(f)

ELSE

END

END Test;

CONST display = 74B;
off = FALSE;
on = TRUE;

VAR ch,ch1: CHAR;
n: CARDINAL;
f: File;
q: NodePtr;

BEGIN
Lookup(f,"anyFile",FALSE);
head:=NIL; n:=100;
REPEAT q:-head;

NEW(head); head+.next:
UNTIL n=0;
Write('>'); Read(ch);
WHILE ("a" <= ch) & (ch <= "p") DO
Write(ch); WritelLn; n:=0;
PUT(display,on);
IF ch<'p' THEN

REPEAT n:=n+1; Test(ch);

(* IF(n MOD 60) = @ THEN WritelLn END;

Write('.');*)BusyRead(ch1);

UNTIL ch1 <> ocC;

ELSE

Write('p');

FOR i:=1 TO 10 DO
Test('a');Test('b');Test('c');Test('d");
Test('e');Test('g');Test('h');Test('i');
Test('j');Test('k');Test('1');Test('m’);

END;

END;
PUT(display,on);
WriteCard(n,6);WriteLn; Write(">"); Read(ch)
END ;
END Benchmark.

q; n:=n-1

m

112

References

[Am] Bipolar Microprocessor Logic and Interface Data Book, Advanced Micro Devices
1982.

[Amm] U. Ammann, Die Entwicklung eines Pascal-Compilers nach der Methode des
Strukturierten Programmierens, Diss ETH 6466, ETH Zurich, 1976.

[BS] Miles A. Barel, John P. Strait, PERQ QCode Reference Manual, Three Rivers
Computer Corporation, Sept 3, 1980.

[Bar] R. S. Barton, "A New Approach to the Functional Design of a Digital Computer”,
Proceedings of the Westem Joint Computer Conference, 1961, pp. 393-396.

[Bul] D. M. Bulman, "Stack Computers:An Introduction”, Computer, IEEE Computer
Society, Long Beach, California. May 1977, pp.18-28.

[Bur] Burroughs Corp., Burroughs BS600 Reference Manual, Detroit, 1968.

[Bur2] The Operational Characteristics of the Processors for the Burroughs B 5000,
Burroughs Corporation, Nov. 1961.

[Dij] E. W. Dijkstra, Recursive Programming, Numerische Mathematik 2, 1960, pp.
312-318.

[For] Forest Baskett, Puzzle: an informal compute bound benchmark, Widely used and
circulated.

[Gei] L. Geissmann, Separate Compilation in Modula-2 and the Structure of the Modula-2
Compiler on the Personal Computer Lilith, Diss. 7286, ETH, Zurich,1983.

[Ham] C. L. Hamblin, "An Addressless Coding Scheme Base on Mathematical Notations,"
Proc., W. R. E. Conference on Computing, Salisbury, South Australia, June 1957.

[Han82] L. Geissmann, J. Hoppe, C. Jacobi, S. E. Knudsen, W. Winiger, N. Wirth, Lilith
Handbook, Institut fir Informatik, ETH, Zurich, October 1982.

[Hop83] J. Hoppe, Magnet: A Local Network for Lilith Computers, Institut far Informatik, ETH,
Zurich, 1983.

[Hop2] J. Hoppe, Maintenance and Testing of Lilith, Report 68, Institut far informatik, ETH,
Zurich, December,1983.

[HP] Hewlett-Packard Co., HP3000 Computer System Reference Manual, Cupertino,
1973.

[int] Intel Component Data Catalog, 1982, pp. 5-8.

[Int2] Reference book on Intel 8008.

[vac] Christian Jacobi, Code Generation and the Lilith Architecture. Diss ETH No 7185.
Swiss Federal Institute of Technology, Zurich.1982, p. 1.

[vac2] Christian Jacobi, Evaluation of the Lilith Architecture in View of Compiling Modula
Programs, Proceedings of the German Chapter of the ACM 11, Teubner, July 1982.

[Le] Van Kiet Le, The Module: A Tool for Structured Programming, Diss ETH No.6153,
ETH, Zurich, 1978.

[Knu] S. E. Knudsen, Medos-2: A Modula-2 Oriented Operating System for the Personal

Computer Lilith, Diss ETH No. 7346, ETH, Zurich, 1983.

[Mick]

[NAJNJ]

[Onhr]

[onr2]
[

[TMLSB]

[Wir71]
[wir1]

[wir2]

[wirs2]

113

John Mick and Jim Brick. Bit-Slice Microprocessor Design. McGraw-Hill, Inc, 1980,
pp. 93-127.

K. V. Nori, U. Ammann, K. Jensen, H. H. Naegeli, Ch. Jacobi, The Pascal-P
Implementation Notes, Pascal - The Language and Its Implementation, Edited by D.
W. Barron, John Wiley .

Richard Ohran, Lilith Hardware Manual, Modula Research Institute, Provo, Utah,
1982.

Richard Ohran, Lilith and Modula-2, Byte Magazine, August 1984, p. 181-192.

Texas Instruments, The Bipolar Microcomputer Components Data Book, Second
Edition, 1979.

C. P Thacker, E. M. McCreight, B. W. Lampson, R. R. Sproull, and D. R. Boggs, Alto:
A personal computer, Xerox, Palo Alto, California. July 1979, p. 14.

N. Wirth, The Programing Language Pascal, Acta Informatica 1, 1971, pp. 35-63.

N. Wirth, Modula: A Language for Modular Multiprogramming, Software-Practice
and Experience, Jan 1977, pp. 3-35.

N. Wirth, The Personal Computer Lilith, Report 40, Swiss Federal Institute of
Technology, Zurich. 1981.

N. Wirth, Programming in Modula-2, Springer-Verlag, Berlin Heidelberg, 1982,

114

Curriculum Vitae

Richard Stanley Ohran
125 West 4750 North
Provo, Utah 84604

| was bom on June 11, 1942 in the city of San Mateo, California, USA. From 1948 until 1960 |
attend primary and secondary school in Belmont, California. | began college in 1960 at Brigham
Young University. My college career was interrupted for a period of 30 months in 1963 during
which time | performed voluntary service for my church. In 1968 | graduated from Brigham
Young University with a five year bachelor’s engineering degree in electronics.

During the 1968-1969 school year | attended graduate school at the University of lllinois.

Since 1970 until now | have held a teaching position at Brigham Young University in Provo, Utah.
From 1970 until 1981 my position was with the Electrical Engineering Department in the capacity
of an instructor. Since 1981 | have been an assistant professor in the Computer Science
Department. All other employments which | have have since 1970 have been in addition to my
position as a university faculty member.

From 1974 until 1975 | was employed part time as a visiting instructor at the Computer Science
Department of the University of Utah. While working at the University of Utah, | was also enrolled
in the Master’s program and completed a Masters degree in computer science in 1977.

From 1975 until 1978 | was employed during the summers as a Unesco field expert in computers
at the Polytechnic of Bucharest in Romania.

From the fall of 1977 until January, 1981 | spent a sabbatical leave at the Institut fir Informatik of
the Swiss Federal Institute of Technology(ETH) in Zurich.

Since September, 1981 | have been the director of the Modula Research Institute alongside of
my teaching responsibilities at BYU.

During the last half of 1983 and the first part of 1984, | have been on leave from BYU and
employed at the Modula Corporation.

Since December 1966, | have been married to Maralee Young and have a family of six sons.

