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EfiQafiAMMING ~ANGUAGES: 
.wtlal ill UE.M.AND. ruiD. J:iD..W III ~~ lliU. 

N. Wirth. ETH Zurich 

The software inflation has led to a software crisis which has 
stimulated a search for better methods and tools. This includes 
the design of adequate system development languages. 

This paper contains some hints on how such languages should be 
designed and proposes some criteria for judging them. It also 
contains suggestions for evaluating their implementations. and 
emphasizes that a clear distinction must be made between a 
language and its implementation. The paper ends with concrete 
figures about a Pascal implementation that may be used as 
yardstick for objective evaluations. 

Paper presented at the Syrnp03ium on Software Engineering. 
Belfast. d-~ April 1976~ 
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rOOGAAMMING LANGUAGES; 
~ III DEMAND ANQ HUW III ASSESS lliEM 

The cost of computing power offered by modern hardware is about 
1000 times cheaper than it was 25 years ago. As a consequence, 
computer methods are applied to much more complicated and 
sophisticated problems. The result is the manufacture of very 
complex and large programs. In this phenomenon of Software 
Inflation~ operating systems took the lead. but there are 
indications that many application oriented programs, including 
data management systems, are bound to become at least as l~rge 
and complicated. 

In their struggle to build such complex systems, in their 
continual fight against logical mistakes and unforeseen 
difficulties. against unexpected growth of code and unreached 
performance figures, against cost overrun and deadlines, 
engineers are groping for more adequate methods and tools. They 
range from management and programming principles to testing 
techniques and programming larguages. The important role of 
programming languages in the design of large systems is now 
being recognised [41. In fact, they are indispensible. As a 
consequence, interest in bette~ programming languages is 
revived, and industrial, governemental, and military circles are 
establishing committees to design such languages. The programmer 
and engineer is confronted with the urgent question: what should 
we ask of these languages, and what can we expect from them? 

This paper will deal primarily with programming languages. But I 
am tempted to convey some observations from the hardware front 
that reveal a strong analogy to happenings in the area of 
language development. 

After the first generation of computers had evolved into some 
truly large-scale machines, a second generation emerged, the so­
called minicomputers. By that time, the larger machines were 
already progrmmed primarily in "higher-level" languages, such as 
Fortran. But the minicomputers threw programmers back into the 
dark age of assembly coding and bit pushing, consequently 
offsetting much of the cost savings in hardware by increasing 
cost in program preparation and upkeep. The reason for this 
regress was not so much the fact that the minicomputers' stores 
were too small to hold a compiler, but that their structure, 
order code, and architecture were determined in such an 
excruciatingly intelligent way that an automatic compiler was at 
a decided disadvantage compared to the cunning machine code 
programmer. Now we witness the emergence of the third generation 
of com put e r s , the so -c all e d m i c ro -p ro c e s so r s • The sam e 
phenomenon is repeating itself. Minicomputers have advanced to 
the state where most people realise that hand-coding is an 
arduous, hazardous, and costly business, and therefore prefer to 
use even mediocre compilers orr their minis. So the old art of 
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trickery is transferred to microprocessors, advertised, taught, 
and sold under a new heading: microprogramming. Again, the 
primary reason for this movement is the unnecessary and 
undesirable complexity that microprocessor designers mould into 
their chips during their flights of fancy. The first 
commercially available microprocessor is indeed of appalling 
baroQueness. Naturally, competitors try to outdo this very 
complexity, with the result that successors will in all 
probability be worse. Perhaps pocket calculators will repeat 
this story a third time. 

Why don't manufacturers produce powerful but simple processors? 
Because complexity has proven to be a sure winner in attracting 
customers that are easily impressed by sophisticated gadgets. 
They haven't sufficiently reaslised that the additional 
performance of a complex design is usually much more than offset 
by its intransparency or even unreliability, difficulty of 
documentation, likelihood of misappliction, and cost in 
maintenance. But we shall probably have to wait for a long time, 
until simplicity will work as a sales argument. To be sure, 
"simple" must not be equated with "simple-minded", or 
"unsophisticated", but rather with "systematic" and 
"un com promi sing to. A simple de sign re Qui re s much mo re though t , 
experience, and sound judgement, the lack of which is so easily 
desiguised in complexity. And here we hit the source of our 
dilemma: a simple design that requires more development labor 
than a complex design isn't very attractive to a trade-secret 
oriented organization in a profit-oriented society. 

LANGUAGES La INSTRUCT UB III CONSTRUCT MACHINES? 

The same phenomenon is chiefly responsible for a similar 
development in programming languages. Here, the temptation to 
accumulate facilities for specialised tasks is overwhelming, and 
the difficulties in finding generally useful, practical, yet 
systematic and mathematically appealing concepts are even 
greater. They require wide 8xp8rience, ranging from familiarity 
with diversified application ar8as, through intimate knowledge 
of programming techniques, t~ inSight in the area of hardware 
design. Simplicity appears as even less glamorous, and the 
possibilities to mend and cover up defects or inconsistencies 
are unparallelled. The cost is enormous, when these cover-up 
activities have reached their limits. These costs, however, are 
usually carried by the customer rather than the designer. 

In addition to the general gross underestimation of the 
difficulties of good lanquage desqin, there appears to be a lack 
of understanding of its' purpose. Dijkstra once remarked that 
most programmers adhere to the old-fashioned view that ~ 
purpQse ~L ~~ programs ~ ~ instruct ~ machines, whereas the 
modern proqramml3r knows that ~ OLJrppce .of. ..c..lU: machines U .t..Il 
execute ~ .Q..I:Wl.r.~ which represent our abstract machines'. I 
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consider both views as leqitimate, dependinq on the 
circumstance. A considerable step in the riqht direction will be 
taken, when desiqners ~~ proqrammers become actively conscious 
of these two views and their fundamental difference. 
Unfortunately, so far very few have been aware of them. Let me 
therefore dwell somewhat lonqer on this point. 

It has by now become widely accepted that the primary goal of 
proqramminq languages is to allow the programmer to formulate 
his' thouqhts in terms of abstractions suitable to his problem 
rather than in terms of facilities offered by his hardware. Yet 
we encounter the phenomenon that most programmers, although 
using higher-level languages, know the representation of their 
program and data in terms of computer code to a surprising level 
of detail. The result is that their programs often make active 
use of this hardware-oriented knowledge and cannot be understood 
without it. One is tempted to conclude that these programmers 
have not recognized the true objective of their language: To 
allow the precise, formal specification of abstract machines. 

But the languages too must take part of the blame. Most 
programmers today start their career ~y learning a higher level 
language, for example Fortran. After a few attempts at program 
testing, the programmer finds out that knowledge of the 
computer's architecture, instruction code, and - above all - its 
data representation is a necessary ingredient of this 
profession. For, if something "unexpected" happens, the computer 
replies not in the programmer's language - i.e. in Fortran - but 
in terms of its own, which consists of cryptic words and octal 
or hexadecimal numbers. This leads the novice into the "real 
world" of computing, and he realises that the constructs 
properly described in his manual are but a small subset of what 
the computer can actually do. For example 

1. logical values are represented like numbers, and space can be 
saved by packing many of them into one "word". Selection of 
individual bits can be achieved by appropriate arithmetic, 
since the language doesn't really know whether the data 
represent a set of logical values or a single number. 

2. an array element with index 0 can be simulated by declaring a 
Simple variable one line ahead of the array which starts with 
index 1. The zero index elemen·t can then for example be used 
as a sentinel in a linear search through the array. 

3. the control variable in a DO statement after termination has 
a value which is equal to the DO-limit plus 1 (if the step is 

as usual - unity). 

4. a modulo operation on an integer variable by a power of 2 can 
be programmed by an .AND. opera tion (i f the in tege r is 
positive I). 
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5. 1~ characters are packed into one word and can be extracted 
by suitable arithmetic and .AND. operations. For instance7 
two such 1~-tuples can be compared by a single subtraction 
(and the result is correct, if both operands start with a 
letter or a digit less than 51). 

In all these cases, the main culprit is the language that does 
not provide suitable constructs to represent in a proper astract 
way those features that the computer itself possesses. It is 
only natural that language designers therefore aim at 
introducing these facilities in newer languages. This leads to 
the introduction of a richer set of data structures, strings, 
sequences, etc.7 but unfortunately we also find features that 
are patently machine-oriented 'rather than corresponding to any 
well understood mathematical abstractions and objects. For 
example: 

1. the label list (called switch)7 permitting an indexed jump, 
and the label variable permitting "assigned go to". 

2. the address 7 reference, or pointer to variables and points in 
the program7 and the use of ordinary arithmetic operations to 
manipulate them. 

3. the interrupt as an event or "on-condition". 

4. the bit-string as a set of logical values7 denoted by octal 
numbers. 

5. the Equivalence statement permitting the sharing of store for 
different sets of variables (supposedly used during disjoint 
intervals of the computation). 

Now what could be wrong with these features? It is the fact that 
they neither help the pro~rammer to think in terms of structures 
suitable to his problem, nor enable a compiler to double-check 
the legality of the progra~ statements within a well-defined 
framework of abstraction. I~stead7 they merely represent 
structures suitable to the machine disguised in the costume of a 
high-level language7 and they leave the task to find appropriate 
applications up to the programmer. Hence, the advantage of using 
a language with these features over using assembly code is only 
marginal. rerhaps it increases a programmer"s productivity, if 
measured in lines of code per day. But the far more important 
task of increasing a programmer"s ability to find structures 
most appropriate to the original problem, to find inherently 
effective solutions, and to design reliable programs, is 
affected to a much lesser degree. 

In order to illustrate this subtle but important point let me 
offer you the following language constructs as alternatives to 
those critizised. 
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1. Instead of a label list and an indexed go to statement, 
introduce a selective statement. It not only eliminates the need 
for explicit labels and jumps, but makes the choice of precisely 
one of several statements much more obvious. 

switch G - L1, L2, L3, L4: 

~ S[ i+l1 : 
L1: statement-0: ~ L5: 
L2: statement-1: Jl..C...t.c L5: 
L3: statement-2: ~ L5: 
L4: statement-3: ~~ L5: 
L 5: 

~ i .c..t: 
0: statement-0: 
1: statement-1: 
2: statement-2: 
3: statement-3 

.aw1 

In the above pieces of programs, one of four statements is to be 
executed, namely statement-0 in the case of variable i having 
the value 0, statment-1 in case i=1, etc. This is concisely and 
naturally expressed by a case statement [81 • Instead.,. the Algol-
60 program at the left uses a goto statement referring to a 
switch declaration, in analogy to an indexed branch instruction 
in assembler code. 

2. If pointers are to serve to construct lists and trees, a 
facility for defining recursive data structures might well 
replace them and express the intended data structure more 
naturally. For example (see Fig. 1): 

~~ list 
~ tree = 

(node: integer: tail: list) 
(node: integer: left,right: tree) 

Fig. 1. Lists and trees as recursive structures 

If more general structures, including rings are to be made 
available, or if the main objective is data sharing, then 
pointers should at least be restricted to the role they must 
play, namely to refer" to other objects. All notions that suggest 
that a pointer is represented by an integer denoting a storage 
address must be avoided. If a language supports the notion of 
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data types, each pointer should be restricted to point to one 
type of object only. This permits an inexpensive compile-time 
check to prevent many common and costly errors 1n the use of 
pointers [9]. For example: 

DECLARE 
1 TREE_NODE CONTROLLED (CURRENT) 

2 KEY FIXED BINARY, 
2 . (LE F T ,R I G H T ) POI N T E R , 

1 LIST_NODE CONTROLLED (CURRENT) 
2 KEY 1 FIXED BINARY" 
2 (NEXT ,TREE) POINTER" 

ROOT POINTER STATIC 

~ treenode -
record key: integer: 

left,right: treenode 
.w::u1 : 

listnode -
record key: integer: 

next: listnode: 
tree: treenode 

.aru1 : 
~~ root: listnode 

The above pieces of program" expressed in PL/r at the left and 
Pascal at the right, allow to generate a data structure 
consistinQ of a ring of listnodes which are the roots of binary 
trees (see FiQ. 2). The danger of the PL/I formulation lies in 
the circumstance that treenodes may be inserted inadvertantly in 
place of listnodes and vice-versa, and that a reference to one 
kind of node is possible under the misbelief that it is a node 
of the other kind. Such an error cannot even be detected at the 
time of node generation. In the Pascal version, this kind of 
confusion would already be detected at compile-time" because of 
the distinction of pointers to listnodes from pointers to 
treenodes. 

F1n.2. Rinq of tree strur.tures 

3. An interrupt is a hiqhly machine-oriented concept that allows 
a Single proc~ssor to participate in the execution of several 
concurrent processes. A lanQuBqe should either be devoted to the 
formulation of striGtly sequential alqnrithms, in which case the 
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interrupt has no place as a concept, or it is desipned to 
express the concurrency of several sequential processes. In this 
case a suitable form of synchronization opp-rations must be 
found, but aqain the interrupt as a concept is inappropriate, 
because it refers to 0 processor (machine) instead of a process 
(conceptual unit of the abstract algorithm). 

4. The bitstrinp or word, if used as a set of logical values 
could well be represented as a Boolean array with indices 
ranginq from 1 to w (where w is the wordlength of the computer). 
However, the denotation of constants of this type is usually by 
octal or hexadecimal numbers, which are conceptually foreiqn to 
the notion of loqical values. A more natural concept that can 
very well be implemented by bitstrings is the ~ (of integers 
between 1 and w) • 

.Q.i.ll b 
b : = 1328: 
II b [4] .tb..wl 
b1 .a.ru.t b2 

~ s: set 
s := {2,4,5,7} 
.if. 4 ~ s .th..e.n 
s1 * s2 (set intersection) 

5. The dangers of a facility like the Equivalence statement to 
share store lie not so much in the conceptual realm as in the 
pitfalls of its application. It is too easy to forget the fact 
that the different stets of variables should be mutually 
exclusive in time. Hence, a facility that does not necessarily 
advertise shared use of store, but instead implicitly allocates 
and frees store as needed, would be preferable by far. This is 
precisely the effect achieved by the facility of variable 
declarations local to procedures of Algol 60. It enables a 
compiler to guarantee that inadvertant use of the variable under 
the wrong name is impossible. 

COMMON A ,8 
EOUIVALENCE A ,B .,gro ced u re p1( ) : 
SUBROUTINE S 1 ( ~a: T 1 : . . . A . .. .ll..aiU..n. ••• a ••• .aru1 : 
END 
SUBROUTINE S 2( r;H:!::I!; a d !.,u: ~ P 2( ) : 

B ~ b: T 2: 
END ~ ••• b ••• !Uli! 

I believe that there will be no real progress until programmers 
learn to distinguish clearly between a language (definition) and 
its implementation in terms of compiler and computer. The former 
must be understood without knowledge of the latter. And we can 
only expect programmers to understand this vital distinction, if 
language designers take the lead, and when implementors and 
manual writers follow that lead. 

Criteria ~~ judging ~ language ~ .i~ dgcymentatign 
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Hence, we conclude that the first criterion that any future 
programming language must satisfY7 and that prospective 
customers must ask for, is ~ ~mplete definition withOyt 
reference ~ comoiler ~ ~omDuter. Such a definition will 
inherently be of a rather mathematical nature. 

To many hardcore programmers, this demanu perhaps sounds 
academic and (nearly) impassible. I certainly have nat claimed 
that' it is easy! I only claim that it is a necessary condition 
for genuine progress. I even have considerable sympathy for 
abjections and reservations. Given a particular problem and 
confronted with one's installed hardware, one is often close to 
the paint of despair when trying to maintain these high 
aspirations. It is therefore precisely the criterion where most 
language designers - often unconsciously - compromise and fail. 

One may argue legitimately that there will always remain certain 
aspects of hardware that will be particular if nat peculiar and 
that ~ be utilized and programmed as well (evidently 
enforcing the "old view" upon the programmer). We mainly think 
of interfaces to peripheral equipment, input/output devices, on­
line sensors, or machinery to be controlled. But even in this 
area we must aim at a much higher standard of functional 
definition. Until this is widely achieved, language designers 
are well-advised to provide a facility to delineate modules 
within which certain device dependent language features are 
admitted and protected from access from elsewhere in a program. 
Such a facility, if well designed, would obviate the hitherto 
common practice of using several languages of different "levelS" 
in deSigning a large system. This is a point of considerable 
practical importance, because interfacing between different 
languages (and operating systems) is precisely the occasion that 
most frequently forces programmers to step down to the "bit 
pattern level" as the only cOmmon ground of all implementations. 

Hence, I recommend that a future language must provide a 
mpdylarization facility 1Lhi.c.h ·"ntrpduces .wuI. encapsylates A..Q 

abstract ~pnceot. Such concepts can then be built out of 
concepts defined in lower level modules, and will express 
composite objects and actions on higher levels. This 
modularization facility is instrumental in keeping the size of a 
language - measured in terms of the number of data types, 
operators, control structures, etc. - within reasonable bounds. 
Without it, the temptation to include an additional feature each 
time a new application comes to mind is enormous. It can hardly 
be resisted, if there is no provision for expressing it in a 
closed and protected form within the 1anpuage. 

This leads us to another criterion for judginq future language 
proposels: their ~. We have witnessed the' traumatic effects 
of languages of extreme size, whose descriptions comprise 
hundreds of pages of specialised and diffuse -terminology with 
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the disguised purpose to disguise confusion. A journey through 
the world of programminrr lanquage manuals is indeed a soberinq 
experience. The failure to distinguish between language 
definition and compiler description, between the meaning of 
language constructs and restrictions imposed by an 
implementation, between essential and incidential, has already 
been mentioned. But I must point out a common deficiency of even 
more fundamental nature: poor mastery of (natural) language. 
This phenomenon is unfortunately very widespread not only in 
manuals but also in the prolific computer science literature. It 
is not my intention to recommend the practice of embellishing 
imprecise thoughts with artful language, but I advise any author 
to straighten out his thoughts until simple words suffice to 
express them. In programming, we are dealing with complicated 
issues, and the more complicated an issue, the simpler must be 
the lanquage to describe it. Sloppy use of language - be it 
English, German, Fortran, or PL/1 - is an unmistakable symptom 
of inadequacy. 

Hence, our next demand addressed to future language designers is 
conciseness ~ ~larity ~ description, and sound ~~ ~ 
langyage. To give a concrete figure, the definition of a 
language, comprising its syntax specifying the set of well­
formed sentences, and its semantics defining the meaning of 
these sentences, should not extend over more than 50 pages. This 
primary document should be accompanied by separate documents 
describing implementations, their limitations, effectiveness, 
and their reactions to ill-formed programs. The total length of 
these documents should be not more than 25 pages, and they ~ 
~ written in ~ ~, devoid ~ ill-defined technical 
jargon. Anything else is unacceptable, regardless of the hiqh­
level committees sponsoring the product, the pressing ecomonic 
reasons, the urging of politicians to promote international 
cooperation, governmental blessing, or even commercial 
advertisement campaigns. On the contrary, the appearance of such 
decor must be taken as a call for extra vigilance. 

Technical ~riteria £~ jydging ~ langyage implementation 

My insistence on separating the language, its syntax, and its 
semantics as an abstract entity on the one side, and its 
implementation as a concrete tool on the other Side, should not 
be interpreted as emphasis of ·the abstract at the expense of 
technical realities. We cannot close our eyes to the fact that 
programs are developed exclusively either to be executed by 
computers or as academic exercises. Hence. to most people a 
language is at most as good as its compiler. My point is that we 
should not waste our time evaluating a compiler until we have 
closely examined the language. However, if a language has shown 
to be conceptually sound, what are the criteria to judge a 
compiler? Let me list the most important ones. 



- 11 -

The compiler ~ ~~ totally reliable. This requirement is three 
fold. First, it implies that every program is checked against 
~ ~~ ~~ A£ ~ha ~anguage, that no formally incorrect 
program be allowed to pass without an indication. Second~ it 
implies that any correct program is translated correctly. All 
efforts of systematic design, program verification, etc. rely on 
total compiler correctness. Third, no incorrect program can be 
allow~d to cause the compiler to crash. These are very stringent 
conditions not only, for the compiler engineer, but also for 
the language designer. For, under this rule the hardships of the 
former grow exponentially with the generosity of the latter. 
Consider, for example, the case where a language definition 
contains the rule that there may be no procedures exerting so­
called side-effects on non-local· variables. Then we ask that a 
compiler be able to detect such side-effects. 

Inspite of its exhaustive checking facilities, a compiler must 
compile ~ reasonable ~. This is particularly important when 
constructing large programs, such as operating systems and 
compilers themselves. The figure of one second per page of 
source program is a reasonable figure for a medium size 
computer. An efficient compiler makes all desire for so-called 
interactive or incremental compilation disappear, and reduces 
the need for separate compilability of program parts 
significantly. If part compilation is provided, then the 
compiler must be able to maintain full checks for all allowed 
interfaces, be they parameters (type compatibility) or global 
variables. Otherwise part compilation is a mixed blessing. 

The next requirement of a good compiler is that it generate 
efficient ~~. This does not mean that every single odd 
facility of the hardware has to be utilised at all cost. But it 
implies the selection of reasonably obvious code, and in 
particular the lack of virtually any kind of run-time support 
routines. A most crucia} point is an effective code for 
procedure calls. 

A related requirement is that t~',e execytion ~ of the code be 
reasonably predictable. There must be no circumstances where a 
language construct suddenly becomes drastically more expensive, 
if used in a certain special context. The programmer should have 
the possibility to understand the approximate costs of all 
language constructs. The same holds for the storage space 
consumed by code and - even more important for data. For 
example, an implementation where the efficiency of access to 
indexed variables depends on the lower index boend being 0 or 
not, is rather undesirable. So is a system where the storage 
requirements of the two rectanqular arrays 

a1: array[1:2, 1:1~001 ~ inteqer 
a2: ~~[ 1:1000, 1:21 nL integer 
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are very different. 

The compiler itself should also be reasonably ~omQact. Bulky 
compilers are u5ually inefficient too. particularly because 
loadino is costly and inconvenient, and because the job priority 
will be lower - assuming a fair scheduling policy - if a large 
store is requested. This point is even more essential in 
interactive environments, where a system's swappinp activity is 
greatly increased by colossal compilers. 

Once again. let me emphasise the feedback on lanquage design: 
these requirements postulate nothing less than that the deSigner 
must be intimately familiar with all techniques and details of 
implemen ta tion • 

A compiler must provide a simple ~ effective interface ~ ~ 
environment. its file system, and/or its input and output 
devices. This places the requirement on the language design that 
it should reflect such objects in a decent way. The compiler and 
its code should not impose any adoitional overhead through such 
an interface, as for example ~xtra buffering of transmitted 
da ta. 

All preceding reqUirements concern the programmer directly. 
There are additional ones. stemming "from considerations of 
compiler maintenance problems. One is that the compiler ~ 
written in ~ ~ langyage (always assuming that we are 
concerned with a general purpose programming language). A 
compiler written completely in a high-level language is 
immeasurably easier and safer to adapt to changing environments 
and demands. Only such a description enables you to pinpoint 
possible mistakes in a short time and to correct them 
immediately. Moreover, it is the best guarantee that the 
implementor has taken care to produce a good compiler; not only 
because sloppy work becomes much more subject to scrutiny by 
customers. but also because an effort to generate efficient and 
compact code immediately pays off in increased performance of 
the compiler itself. 

If a language and its compiler are both of sufficient quality to 
define and process themselves, it also becomes economical to 
abandon the concept of "binary program libraries" and to collect 
and retain proprams in their source form alone. 

All these requirements more or less directly influence the 
design of a language itself. They all suggest a great deal of 
restraint of the designer against his flights of fancy. The most 
important argument for this point comes from the compiler 
engineer: ~ develooment ~~ ~£ 2 compiler should stand in a 
proper relationship to the advantages gained by the use of the 
language. ~ ~ ~~ ~ individyal langyage features. 
Hence, the language designer must be aware of the additional 
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amount of effort neoded to implement a feature under the 
presence of various other features. Very often such costs cannot 
be indicated without consideration of context. 
For example: 

1. The cost of implementation of dynamic arrays is negligible, 
if arrays cannot occur as components of other structures. If 
they can, the problem is very much more complex. 

2. Packed data structures are relatively straight-forward to 
implement, if all structures are static, i.e. if all their 
characteristics are constant and known at compile-time. The 
difficulties multiply, if dynamic structures are allowed, or 
if merely a static packed structure can be passed as 3 

parameter to a subroutine, in which its size is unknown. 

3~ Implementation of sequential files becomes drastically 
complex, if the file elements are allowed to vary in 
(size), whereas this freedom has little effect on 
complexity of compiling arrays. 

more 
type 
the 

Hence, 
omitted 

a proper design is characterised 
as by what is included. 

equally by what is 

~ these ~riteria Q~ m~ 

I have suggested a number of criteria by which to juqge present 
and future language designs and implementations of them. I"admit 
that they are rather stringent. It is important to examine them 
critically and, if one has agreed with them, to uphold them, 
even if perhaps one has to abandon some of one's pet ideas on 
features that a language should contain. 

Postulating stiff criteria is, however, an easy matter, and 
practicing programmers have learned to be suspicious of 
academics who preach high- spirited ideals. So perhaps I owe a 
proof that it is indeed pnssible to achieve these postulated 
merits by a single language. 1 am prepared to do so by providing 
a few figures and facts about the programming language Pascal • 
I offer this language only as a yardstick, in full awareness 
that Pascal is not the ultimate wisdom in language design, 
definition, and documentation. After all, a yardstick that 
cannot be surpassed would ill serve as an encouragement for 
future efforts. 

First, a brief sketch of the language: Pascal offers a set of 
program structuring facilities supporting the concepts of 
structured programming. It includes well-known forms of 
conditional, selective, and repetitive statements. Its 
subroutines can all be activated recursively, and there are 
several kinds of parameters: expressions (by value), variables 
(by reference), procedures, and functions. Variables are 
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declared to be of a fixed type. There nre thn standard types 
intener, real, Boolean, and character. In addition, new types 
can be defined within the lanquaqe. A scalar type is defined by 
enumeratinq its possible values, a structured type is defined by 
indicatinn its structurinn scheme and the type(s) of its 
components. There are four basic structurinn schemes: arrays, 
records, sets, and (sequential) files. In Q~dition, dynamic 
structures of any pattern can be constrvcted with the aid of 
pointers, with comprehensive and inexpensive checks of the 
validity of their use. The lanquaqe is defined by a concise 
report of ~n parTes [11,141, and nn attempt has been made to 
define its semantics by rinorous axioms [1~q • 

~econd, a brief sketch of the compiler (developed at ETH for the 
COC ():J::n COMputer family): I t performs A complete check of 
syntax and type compatibility rules. Errors are accurately 
pinpointed and care is taken to avoid spurious messar,es. Great 
care is taken to qenerate effective cod~. For example 

1. neqisters are used in a hiqh:.y efficient \'lay. 

2. Address co~putation of components of structured variables is 
performed at compile time wherevet possible. 

3. Multiplications and divisions by po~crs of 2 are implemented 
as shifts. 

Lan[Juaqe rules that cannot be checked at compilo-time are 
verified at run-time. This incJudes checkinq of indox bounds, of 
case expressions, of as~innment compatibility to subranqc 
variables, etc. IJpon detection of an illeqal operption, a 
SYMbolic post-mortem dump i3 prnviden, listinq currently 
accessible VAriables by name and current value. 

The cornpiler sUPrJort:; the dC'ltn po.ckinrr facility of PClsco.l. rn a 
cor r] put e r \'J i t h I a r q c \'/0 r dIe n f1 t h, t his can '.., e 11 1 end t 0 5 a v i. n ~ s a f 
stornqe by sizeable factors (up to ~~ on the CO~ system). The 
compiler itself profits by this, althnu~h the routines to 
implement packed data representations are extensive and 
complicated. 

~oreover, the compiler provides a smooth interface to the 
resident file systen. Files used in a pronran nnd existinG 
before and/or after execution' arc clenrly listed as pnrnmeters 
in a pro,ram hcadtn~. The co~piler nonorntns standnrd 
reJocntable code and allows linkaqe with separately compiled 
proceduros. 

The sinc:;le-pass compiler requires 2~~;~C words (= 16a~'10 bytes) 
for codn and data tn compile small pronra~s, and 23n0C words to 
recompile itself. (ry comparison, the s·tandflrdFortran compiler 
requires 2000~ words.) Tho efficiency of the COMpiled corle is 
indicated by a few sample proqr8ms in the A~pendix. The aver3nc 
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compilation speed is 110 lines of source code per second 
(measured when compiling the compiler). Compiling, loading, and 
executing the null-program takes 0.3 seconds. These figures have 
been obtained on a CDC 6400 computer (roughly equivalent to IBM 
370/155 or Univac 1106). 

The entire compiler is programmed exclusively in Pascal itself 
(16] • There is no assembly code interspersed in the Pascal text. 
Every program is supporied by a small run-time routine package 
that provides the interface to the computer·s peripheral 
processors and the operating system. This nucleus is programmed 
in assembly code and occupies just 500 words. Conversion 
routines for numeric input and output (including floating-point 
conversion) are also described fully in Pascal. 

The compiler itself is about 7000 lines long. Hence, it takes 
only 63 seconds of processor time (on a CDC 6400) to recompile 
the compiler. By comparison, a cross-reference generator, also 
programmed entirely in Pascal, takes 30 seconds to produce an 
alphabetically ordered cross-reference table of the co~piler 
program. 

The latest compiler (ag~n for the CDC 6400) was developed by a 
single expert programmer in 16 (full-time equivalent) months 
(1,2] • This figure excludes work on the small support package 
and the I/O conversion routines. It was developed according to 
rigid discipline and the top-down, stepwise refinement technique 
(15]. Its remarkably high reliability is primarily due to its 
systematic design and the use of a suitable language for coding 
it. 

Last but not least, the language Pascal was designed~ ~ 
ago. The first compiler was operational in late 1970. Since then 
the language has undergone extensive use and scrutiny (6,12]. 
Sufficient practical experience is available to make an 
objective assessment of its utility (17], many other compilers 
have been or are being developed on other computers (5,13], and 
Pascal has already spurred further developments in the direction 
of multiprogramming (3]. 

So much about Pascal. It should suffice to convince that the 
afore postulated criteria are more than wishful thinking, but 
objectives that ~ be achieved, because they already ~ been 
achieved to ~ fair degree. My primary conclusion is that Pascal 
is a language which already approaches the system complexity, 
beyond which lies the land of diminishing returns. One should 
therefore be rather critical about new language proposals that 
usually start from scratch and rapidly build up to even greater 
complexity. I have provided this information and these. figures 
in order that future languages - no matter where they come from 
- may be objectively compared, by the customers who will have to 
pay for them. 
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APPENDIX 
PASCAL .I~ £rggrams 

The purpose of the followinq sample proqrams is to convey an 
impression of the character of the proqramminq lanquaqe Pascal, 
and to provide some performance fiqures for comparative studies. 
These fiqures were obtained on a CDC 64ee computer with the 
SCOPE 3.4 operatinq system. The statements "writeln(clock)" 
i n die ate the poi n t s w fi ere the tim e was t a ken • 

1. G en e ra t e ~ .:tM.l..a ,Q.f. .Q~ .Il.f .z 
This proqram computes the exact values of 2**k and 2**(-k) for 
k=1 ••• n, and prints them in the form 

2 1 .5 
4 2 .25 
[] 3 .125 

16 4 .0625 
32 5 • ~13125 
64 6 .015625 

orggram powersoftwo(output): 
~ m = 3 J: n = C) ~ : (* m > = n *10 q ( 2) *) 
~ exp,i,j,l: intener: 

c,r,t: interIer: 
d: array [C •• m] .Q£ inteaer: 
f: arrGY [1 •• nl ,QL inteqer: 

(*positive powers*) 
(*nenativc powRrs*) 

.lli:l£Lin. 1 : = ~~; r : = 1; d r ~~ 1 • - 1; 
wri teln (clock): 
.f..a..r: e x p : = 1 .i.cJ. n r1Jl 
bcnin (*conpute and print 2**exp *) 

Lw: i ::; :: ..to. 1 .llil 
QQllin t := 2*d[il + c; 

.if. t > = 1 a .:tlliln. 
.h~ d [ i 1 . - t -1 :;: c .­
~.o.Q 
~ 

Q.a..ui.n d r i 1 . - t: c . - 7J 
~n.Q 

.if. c > ~ .!Jl.e..n 
ll.lli!.i..o. 1 := 1+1; d[ll := 1 
~nQ 

c . - ~~: 

.f..!:U: i : = m dor:nto 1 .Q.o. wri te (. '): 
f..Q..r: i : = 1 lill.llil..t.u ~~ Q.Q. \'J r i t B (d [ i 1 : 1 ) : 
writf)(8xP:5,' .'): 
(*compute and print 2**(-exp) *) 
for j := 1 ..to. exp-1 Q.Q. 
lJ.llil.i..o. r : = 1:~ *r + f [ .il : 

f r.il . - r Q~ 2; r : = r - ? -If f r.il \'J r i b~ ( f r .i 1 : 1 ) 
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Wex~1 := 5; writeln('5'); r := 0 
end : 
wri teln (clock) 

.wJJ1 • 

This program uses integer arithmetic exclusively. Execution time 
for computing the powers of 2 (n-90) was measured as 916 (813) 
msec. The finure in parentheses is obtained when run-time index 
bound checks are disabled. 

2. Palindromic sQyares 

A number is a palindrome, if it reads the same from both ends. 
Find all integers between 1 and 1~000 whose squares are 
palindromes! For example: sqr(11) 121, sqr(22) 484 7 
sqr(2002) = 40C8C04. 

program pa1indromes(output); 
~~ i,j,l,n,r,s: integer; 

p: boolean: 
d: ~ [1 •• 101 ~L integer: 

~ n := 0; '1lriteln(clock): 
reo eat n : = n + 1; s : = n *n: 1 : = 0: 

repeat 1 := 1+1: r := s ~~ 1~; 

d [11 . - s - 1 0 *r; s : = r 
~ s = 0; 
i := 1; j := 1; 
rep eat p : = d [ i 1 =d [ j 1 ; 

i := i+1: j := j-1 
..!m..til. (i >= j) w:: .wU P: 
1£ p ~ writeln(n7n*n) 
~~ n = 10000; 
wri teln (clock) 

..aLll1 • 

Execution time was measured as 3466 (2695) msec. 

3. Qyicksort 

This program sorts an array of 10000 integers according to the 
method .ca11ed Quicksort [71 • It uses a recursive procedure. The 
maximum depth of recursion is In(10000). 

prOgram quicksort(output); 
~ n = 10000: 
~ i,z: integer: 

a: ~ [ 1 •• n 1 ~L in t e g e r ; 

orocedyre sort(l,r: inteqer): 
~ i 7j,x 7W: integer: 
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..!2ill;:;.i.o. (*quicksort with recursion on both partitions*) 
i :=1; j :=r;x :=o[(i+j).du21; 
re oea t 
~ u[i1 < x ~~ 
1Lhill x < CI [il r:u 
.if. i < = .i .t.llQ.n 
~n VI : = a r i 1 ; 

i := i+1; j := 
~.rill 

until i > j: 

i . -
.i . -

a [ i 1 
j -1 

il 1 < j il:!..ill:l sort (1 ,.i ) ; 
.i.f i < r ..:tl:uill. 30 r t (i ,r ) 

~.n.d (*sort*) : 

i +1 : 
.i -1 : 

, - o[ :i 1 a[ il ' -

be~in z := 1729: (*nenernt8 random soquencn*) 
~ i := 1 ~~ n Q~ 

\,. , , , 

.!:ul.£L.in z : = (1 3 1 ~~ 7 1 * z ) .m.!l.!1 2 1 tl 71l n 3 (-, 4 7: a [ i 1 . - z 

.lmJj ; 
wri tel n (clock); 
so rt ( 1 ,n ) : 
writeln(clock) 

.e.ru1 • 

Execution time: 409~ (2061) msec. 

4. Count characters ~n £ ~ 

The followinq proqram copies a text (file of charact8rs) and 
counts the transmitted blanks, letters, dinits, special eymbol~, 
end li08s. It also inserts a printer control character at the 
be~inning of each line. 

Rr00ram countcharacters(input,output); 
~ ch: char: 

c3,c1,c2,c3,c4: inteqer: (*counters*) 
beGjn writeln(clock): linelimit(output, -1): 

c ~ : = ~: c 1 : = 0: c 2 . - 0: c 3 : = 0; c4 : = n; 
~ n.tl.t eof (input) .d.a 
begin write(' '); c3 := c0+1; 
~ ~ eoln(input) ~ 
~ read(ch); write(ch); 

.i.f ch = ' '.:tb..e.n c1 := c1+'/ ~ 
i.f ch .in [ 'a' •• 'z'1 ..tl:l.lID c2 ,- c2+1 ~ 
.i.E ch i.r:l ['0' .. '9'1 ..tl:l.lID c3 .- c3+1 ~ c4 := c4+1 
~: 
readln; writeln 
~; 
writeln(clock): 
writelo(c~,' lin8s'); 
writeln(c1,' blanks'): 
writcln(c2,' letters'): 
writeln(c3,' dinits'): 
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writeln(c~,' special characters'): 
w ri tel n (c 10 c k ) 
~ . 
Execution time was measured as 4345 msec for a file with 1794 
lines, 23441 blanks, 27331 letters, 1705 digits, and 9516 
special characters. This results in an average of 0.068 msec per 
character, or 14680 characters per second. 

5. l.L1.wLt .wll1. gut 0 y t .l:lL .n urn b e r s 

The next sample proQram generates a file f of 25000 real 
numbers, and computes their sum s. Then the file is reset and 
read, and a checksum is computed. 

~rQgram numericIO (f,output): 
cgnst n = 25000: d a 0.12345: 
~ i: integer: X,s: real: 

f: .f.i.l.a .o..E rea 1 : 
~ writeln(clock): 

x := 1.0: s := 0: rewrite(f): 
.t:w:: i :.. 1 ..to. n .tUl 
~ write(f,x): s := s+x: x .- x+d 
.e.ru1 : 

writeln(clock, s): 
re se t (f ): s ::11 0: 
while .n~ eof(f)~.l:l 

begin read(f,x): s := s+x 
~: 

writeln(clock, s) 
~ . 
It took 1230 msec to generate the file, and 980 msec to read it. 
This corresponds to 49 usec to write, and 39 usec to read per 
number. 
The amount of time increases drastically, if a decimal 
representation of the numbers on the file is requested. This is 
easily accomplished, namely by declarinQ the file to consist of 
characters instead of real numbers: 

f: ~ .elf. char 
In this case, the read and write statements include a conversiun 
operation from decimal to binary and vice-versa. Generating the 
file then takes 28185 msec, reading takes 30313 msec. This 
corresponds to an increase by a factor of 23 in writing and 31 
in reading. (Each number is represented by 22 characters on the 
file) • 
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6. E..iY.h..t .ll.wle.ll.S 

This propram finds all 92 positions of n queens on a chessboard 
such that no queen checks another queen [151. The backtrackino 
algorithm is recursive. 

program ei~htqu88ns(output): 
~ i integer: 

a ~ [ 1 •• 0 1 ~f boolean: 
b array [ 2 .. 161 o..f boolean: 
c ~ [ -7 •• 7 1 ~f boolean; 
x ~ [ 1 •• 8 ] ~f inteoer: 
safe : boolean: 

procedure print: 
JLfl.l.: k: inte~er: 

begin write(' '): 
.fJ.u: k := 1..to. 8..d~ writc(x[kr.~:2): 
writeln 

.e.n..Q. : 

orocedure trycol (j : interIer): 
~ i : inteqer: 

prgcedure setqueen: 
ll.w:I.in a[i] .- false; b[i+j1 .- false: c[i-jl .- false 
J;:.nQ : 

prgcedure removequeen: 
121Uli...o. a [ i 1 : = t rue: b [ i + j ] : = t rue; c [ i - j ] : = t rue 
~: 

reDeat i := i+1: safe := a[ i1 2..Q..Q b[ i+j] ~ c[ i-j] : 
..if: safe .:t.b..e..n 
.h..lliI.in set queen ; x[ jl := i: 

iL j < 8 ~ trycol(j+1) ~ print: 
remove queen 

!ID.ct 
JJn..t.i.l i = 8 

beg i n .f..o.I: i : = 1 .:to. B QQ. a [ i] : = t rue : 
.L.P..I: i := 2 ~ 16 Q.Q b[il := true: 
.f.o..I: i : = - 7 j;~ 7 Q.Q. c [ i] : = t rue : 

writeln(clock); trycol(1): writeln(clock) 

.an.d • 

Run-time: 1017 UJ79) msec. 

7. ~ .numbers 
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Proqram primlJs computes the first HliHl prime numbers, and 
writes them in a table with 2~ numbers per line. This takes 1347 
(H161)mser.. 

prggram primes(output); 
~ n = 10aa; n1 = 33; (*n1 :0: sqrt(n)*) 
~ i,k,x,inc,lim,square,l: integer: 

prim: boolean; 
p ,v: ~ [ 1 •• n 11 Jl.f in t e q e r : 

~~ writeln(clock); 
wri te (2: 6, 3: 6): 1 : .. 2: 
x :a 1; inc := 4: lim := 1: square := 9: 
.f..w: i : = 3 .t.a n !i.e. 
~ (*find next prime*) 
~~ x := x+inc: inc := 6-inc: 

1£ square <= x ~n 
~ lim :- lim+1: 

v[lim1 .- square: square .- sqr(p[lim+1]) 
~: 

k := 2: prim := true: 
~~ prim ~ (k<lim) QQ 
.Q.a.!U.n. k : = k + 1 : 

.if v[k1 < x .ihSUl v[ k1 := v[ k] + 2*p[ k] 
prim :s x <> v[k] 

~ 
..!In.t.i.l p ri m : 
.if. i <= n1 ..tlliuJ. p[i1 := x: 
write(x:6): 1 := 1+1: 
II 1 = 2 0 .t.b..e.n. 
~ writeln: 1 := 0 
Wli1 

.aru1 : 
writeln: writeln(clock) 

.arut • 

8. A.ocestor 

The last sample program operates on a Boolean matrix. In its 
first part it generates a matrix r •. Let r(i,j] mean "individual 
i is a parent of individual j". At completion of the second 
part, r[i,j1 means "individual i is an ancestor of individual 
j .... In the third part, the matrix is output. 

program ancestor(output): 
(*R.W .Floyd: 'Ancestor', Comm.ACM 6-62 and 3-63, Alq.96*) 
~ n ... 100: 
~ i,j,k: integer: 

r: U~ [ 1 •• n, 1 •• n] .Q..f. boolean: 
~ (* r[i,j] - "i is a parent of j"*) 

.f..a..t: i : .. 1 ~ n ~ 
.tJu: j := 1 .to. n .de. r[i,j] ::a false: 
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.uu: i : = 1 .to. n .d..c. 
1.f. i ~ 1~ <> ~.tb..ao. r[i,i+11 :z: true: 

wri teln (clock): 
.fJ:u: i : - 1 ..t.a n ..dJl 

.uu: j : - 1 .t1l n .Q.c. 
.1.f. r [ j ,i 1 .lli.e.n 

.f.c...t: k : = 1 ..t.c. n .t1.c. 
1.f. r[ i ,k 1 .:t..h..ao r[ j ,k 1 :"" true: 

writeln{clock): 
.t:..cJ: i : = 1 .:to. n .!1c. 
begin write(' '): 

.f.c.I: j : ... 1 .t1l n .&1Jl write(chr(ord(r[i,j1 )+ord('~'»): 
writeln 

.wll! : 
writeln(clock) 

.wui • 

It takes 291 msec to generate the matrix, 1667 msec to execute 
the ancestor algorithm, and 578 msec to output the matrix. Since 
the matrix consists of 100 * 10~ elements, 100~0 (60-bit) words 
of store are needed. 
If r is declared as 

r: Racked array [1 •• n, 1 •• n1 ~L Boolean 
then the required store is only 200 words, or 50 times less. The 
execution times are then 406 msec to generate, 2126 msec to 
computed, and 642 msec to output the matrix. This is only 1.3 
times more than in the case of the unpacked matrix 
representation. 
A second version of the algorithm uses the Pasrial set structure 
instead of a Boolean matrix. The relation r[i,j1 is expressed as 
"j in r[i1". Since the Pascal 6000-3.4 compiler restricts sets 
to have at most 59 elements, the following performance 
comparison is based on the case n = 50. 

~rogram an~estor(output): 
(*ancestor algorithm usinn sets instead of boolean matrix*) 
~ n = 53: 
~ i,j: integer: 

r: array [ 1 •• n 1 .c.f. J;id .Q.f. 1 •• n: 
begin (* j in r[i1 = "i is a parent of j"*) 

Dll: i : = 1 .t1l n .d..c. 
il i m.w1 10 <> 0 .t.WllL r[ i 1 : = [i+11 ~ r[ i 1 : = [1: 

wri teln (clock): 
.f.l:u: i : = 1 .:t.c. n .d..I:l. 

.f.c..J::: j : = 1 .t.ll n .Q.Q 
.if i ..in r [ j 1 .tb..wl r [ j 1 . - r [ i 1 +r [ j 1 

writeln(clock): 
.f.o..l: i : = 1 .to. n Q.Q. 
Q~ writr.(' '): 

Du: j : = 1 j;~ n Ji.ll 
.iL j.ill r[il..tb.tw. writr.('1') ~ write('.'); 

wri teln 
..e..o..d. : 



writpln(clnck) 
.a.ru1 • 
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This pro[1ram requires only 50 msec to compute the ancestor 
matrix, comparRrl to 341 msec for the version using a packAd 
array. This is a qain 'by a factor of 5.~. 
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Extract from 

PROFESSOR CLEVERBYTE'S ~ ~U HEAVEN 

N. Wirth, ETH Zurich 

Abstract 

The following fable is a grotesque extrapolation of past and 
current trends in the design of computer hardware and software. 
It is intended to raise the uncomfortable Question whether these 
trends signify real progress or not, and suggests that there may 
exist sensible Limits of Growth for software too. 

When I had been dead for several weeks, I began to get a little 
anxious. I had been hovering around, first experimenting with my 
novel facilities and freedom from all earthly limitations. 
Perhaps I ought to mentien at this point that I had been a 
manager of a software house, and my decease had been a direct 
consequence of our decision to introduce both a new programming 
language and a new operating system at the same time. The 
ensuing difficulties were enormous and responsible for my 
spending the rest of my life on the job. 

So I was disappointed to see how little difference my absence 
made, in spite of the fact that I had been the only one 
intimately familiar with all the details of these new systems. I 
realized that a little more or less confusion didn't really 
matter. 

Hence I became anxious to direct my course upwards. FortunatelY 
I remembered the report of Mark Twain's Captain Stormfield , and 
therefore was neither surprised by my exhilaratino rush through 
space, nor did I expect to enter a heaven of eternal bliss. But 
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I expected that it would be a place of unlimited opportunities 
where nothinq was impocsible. This expectation is, of courS8, 
Quite typical of 8 man from the software profession. 

Heaven is a complex place, and it is also astonishinqly modern: 
I was taken aback to discover larqe hoards with liqht-displays 
and computer terminals used to find your present location as 
well as the shortest path to any desired location or department. 
The boards list all possible subjects you may think of. They 
continually expand as new departments with imaginative names 
emerge, one about every second. I readily found Software 
Engineering - merely the 0 had been misspelled as an a, perhaps 
by a German clerk - and I headed off in its direction. As B new 
department, it was located at heaven's periphery, and I marched 
for several days. 

When I finally reached my blessed destination with sore feet, I 
found the Quarters almost deserted. But as luck would have it, 
shortly thereafter I spotted a man carrying a deck of punched 
cards. I was overjoyed when I recognised him as myoId friend 
Jonathan- Flagbit who several years ago had switched from 
computing to life insurance. "You here, inspi te of all!" I 
exclaimed: "You don't seem to have kept up with progress" I 
sneered referring to his card deck. 

"Don't jump to rash conclusions, Cleverbyte, I've gone through 
all the stages up here, and we've got he most modern equipment 
you haven't even dreamt of". 

Beinq Quite excited at this prospect, I asked: "May I see your 
modern equipment?" 

"Of course you may, everything is possible up in heaven and even 
more so in the Software Department ofer there. All you need is 
to make a wi sh, and it shall be ful filled" • 

I told him grudgingly that I could have spared my sore feet had 
I known this beforehand, and he replied: 

"Every newcomer indulges in wishing, but soon they get tired of 
it. It's deceiving in the long run. Too often there are small 
bugs, and you get something different. So wishing isn't as 
wonderful as it first soundS." 

I was pondering about this point, thSn decided that I wasn't 
really eager to admire their equipment. Instead, I asked: "What 
about programminq lanquaqes?" 

"That is a huge department of its own. We use thousands of 
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languaqes, and some of them are so sophisticated that no amount 
of paper woeld suffice to hold a complete listing, so they are 
permanently kept on Womm, and you enquire only about what you 
need at the moment". 

"What is Womm?" I asked, now suddenly being aware that it was me 
who was behind. But Flagbit didn"t scorn my ignorance, or at 
least he concealed it magnificently and replied: 

"That is our new word organising mass memory device. It is the 
first o.F its kind having an infinite capacity. Its access speed 
and transfer rates are still slow, but they are working on it. 
It has revolutionised our entire business and opened the door to 
a new generation of programming languages". 

"I bet. But, I beCT your pardon for asking, what are the goals in 
designinq all these languages? After all, languages were 
invented to raise the quality, reliability, efficiency of 
systems, and to reduce the cost of their production", I 
suggested cautiously. 

"Now, come on, Cleverbyte! That sounds pretty old-fashioned, 
even by earthly standards! I reckon you had a problem with 
unemployment lately too: up here it is one of major proportions. 
To be quite frank, it is directly responsible for the software 
explosion. Producing languages to make programming easier and 
simpler would be counterproductive. On the contrary, these 
languages are ideally suited to keep uncounted people on their 
intellectual toes, content and busy, and to maintain an image of 
progress and sophistication. We have whole armies of clerks 
writing manuals: and they love it". 

I wasn"t quite prepared for a sermon of such length, and it took 
me some time to digest this philosophy. So I asked naively: 

"But have you discovered a way to comprehend these languages and 
pro fit by the i r use?" 

"One never understands the whl,le thing. It is another of those 
stifling high-brow dogmas that one should be able to understand 
The Whole. When yoe are to solve a problem, you study the 
relevant sectio~s of your l~nguage, and if you can"t follow it, 
you take a course or have somebody write another manual for you. 
There are lots of souls waiting for attractive suggestions to 
teach a course or write a manual. Naturally, this will take too 
lonq if you have a genuine desire to get some problem really 
solved. Then you qo back to first principles and simple means -
just look at my cnrdsl Rut it takes people a lonq time to find 
this out, just as with loosing their illusions about wishing". 
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"And how dn YOU think this will be in the future? More mount.=tins 
of manuals?" 

"We don"t really worry about the future, but if you care to 
know, just make a wish to be transferred to some lanquaqe desiqn 
committee", Flaqbit remarked. We agreed that this was the best 
way to obtain a representative picture, for Flaqbit had assured 
me that in the future all this was going to be done by 
committee. There followed a slight tremor, we were whisked away 
and found .ourse1ves in the midst of a select group of obvious 
experts in full action. The scenery was splendid, a phantastic 
combination of seaside and mountain resort, mak~ng it 
particularly difficult for me to follow the subsequent 
discussion. 
W: "The problem is one of coerc lons rather than types". 
H: "CoerCions can give one an clmount of uni form reference which 

is beneficial". 
I: "But the semantics change with uniform reference, that is, 

one has punning". 
G: "Visibility is important and it must be taught as a practical 

concept". 
I: NVisibility is conceptually hard". 
0: "Visibility is tough, because of its interaction with block 

structure" • 
I: "Let us now discuss partial visibility'" 
L: "A variable is like a capability". 
G: "To beliebe that every variable is a reference is inaccurate. 

If we have sorted out visibility, then partial visibility 
will be easy". 

A: "Algol 68 has the notion of possessing'and referencing". 
K: "A name cannot possess a reference'" 
G: "All visibility should be coupled to compilation units". 

I soon got restless for I could hardly perceive that they were 
talking about our subject at all. I was just about to voice my 
complaints when all of a sudden the whole region fairly rocked 
under the crash of four thousand and ninetysix thunder blasts. 

"There, that"s the Professor'" Flaggy whispered. 

"Then let"s be moving along", I urged, being anxious to leave 
this committee where I felt uncomfortably incompetent. 

"Keep your seat, Cleverbyte", Flagbi t said, "he is only just 
telegraphed". 

"How?' " 

"These blasts only mean that he has been sighted by our 
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computerised early warninq radar system. He is just off Cape 
Canaveral. The committee will now qo down to meet him and escort 
him in. But he is still millions of miles away, so the show 
won t come up for a considerable time, yet". 

We walked down to the Conference Center at leasure. 1 was truly 
amazed by its sheer size: onehundredandthirtyonethousand and 
seventy two seats, virtually all empty. 

"This venue looks pretty deserted. I bet there i5 a hitch 
sam ewhe re again" , 1 rema rk ed pes simi s ticall y. "1 s he perha ps 
going to give one of those highly specialised talkc that only a 
handful of experts can follow?" 

"Don"t you fret, Cleverbyte, it"s all riqht, you shall see. Of 
course he is going to talk specialised. That is important to 
maintain the proper image. But the topiC is just for show 
anyway. People will come for social and commercial reasons: it 
is fashionable to have been here, and you meet friends". 

At his moment there was another big banq, like that of a new 
supernova. 

"The Professor is throuqh the security checks now and will be on 
stage wi thin seconds", Flagbi t explained. And then there was a 
big flash~ the whole place was splendidly lit up, and all the 
seats were suddenly taken. My chin dropped a few inches by 
surprise, and my friend commented with undisguised pride: 

"That"s the way we do it up here. Nobody worrying about being 
late, nobody sneaking in after the curtains went up. Wishinq is 
Quicker than walkinq'" 

However, I spotted a slight disturbance not too far from us. 
Somebody was makinq a distinct fuss. 

"What's going on down 
scene 50mewaht unusual in 

there, Flaggy?" 1 asked, finding this 
such E well-organised place. 

"You see, since all people wish to be in the stadium when they 
hear the bang, computation of seat assignments presents a few 
prOblems", he remarked with calculated understatement and his 
pri de ha d vi s i bl y dimini shed. -T hen he can tinued : 

"They (his previous We now had become a deferential They!) have 
recently put a new supercomputer into operation, but 
occasionally there is still a glitch in the algorithm, although 
it was announced to be formally verified. It doesn"t take long 
until you realise that every verification is worthless as long 
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relaxed in the lobby. Our qlasses not yet empty, a hefty, 
square-jawed man approached our table. Flaqbit jumped up a~d 
pulled me by my sleeve. 

"This man is the chief brain of our supercomputer. Hello, 
Megachip, let me introduce you to my friend Cleverbyte who has 
just arrivedl What are the latest fiqures on your machine?" 

"Well, it now works with three times the speed of liqht. Sixteen 
billion active elements placed on 2.56 million single chips'" 
was his reply. 

By that time, I had already learned to keep my composure when 
hearing of stagqering innovations, but nevertheless I must have 
been looking pretty foolish, for Fl~qbit interjected: 

"You must know, Cleverbyte, Megachip has had the greatest idea 
ever: by makinq chips work faster than liqht you can read out 
your computed results virtually before you insert your data, 
provided you position your output station at a location remote 
from your input deVice". 

I was at a loss for words and could merely state the obvious: 
"Sut this must revolutionize the entire computinq business, 
particularly programming". Megachip laughed heartily: 

"It sure does' All this craze about optimization is over. We 
have a store of several giqabytes, hundredtwentyeiqht thousand 
parallel microprocessors, sixteen thousand data channels running 
at megabaud rates. The whole hardware merely costs eight million 
pounds, which I am sure is not more than a handful of shillings 
was in your earthly days". 

"This is a stagqering feat indeed: but does your software stand 
up to these measures? I am sure its cost was immeasurably 
larger", I commented. 

"The biqqest Single piece of software ever developed' The 
operating system alone takes over one billion bytes of 
instructions, and together with the compilers it took seventeen 
hundred man-centuries to develop, in spite of our loss OT 
interest in optimization. Most of the work went into 
maintenance, and after several breakthrouahs in reliability we 
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now have only nbout 50 breakdowns per second. The real 
turninq-point was the acceptance of the fact that a perfect, 
faultless system would never materialise, but that instead we 
had to work towards a fault-tolerant, self-recovering system. 
This resulted in close to 1~0% of the breakdowns being recovered 
by the system without intervention". 

"These are truly awesome figures to me! But may I ask you, Mr. 
Megachip, how this tremendous system was developed, and in 
particular what programming language you use, for with the ones 
that I know such a feat would have been utterly impossible". 

"Well, Cleverbyte, you are right" but not qui te. The language 
used has qradually evolved by extensions in all possible 
directions. To give you a measure, the manuals measure 
threehundred thousand volumes and the compiler uses up half a 
billion bytes. You see, we are quite willinq to let anyone keep 
his habits of programming: hence the language must be compatible 
with pretty well every previous language that has ever existed". 

This decidedlY began to amuse me, for I felt I had heard these 
arguments before. Tongue in cheek I asked: 

"But doesn"t this inflation of languages largely offset the 
gains you have made in the development of hardware? I am 
convinced that this diversity and the systematic retention of 
old mistakes is a wasteful deadweight for men and machines 
alike". 

"Of course it is: but listen" dear Cleverbyte, we sorely need 
this deadweightl You just take the wrong viewpoint: this bulky 
software does ~ offset our hardware innovations" but ~ystifies 
them. By Jove, how could we otherwise find any motivation in our 
continued hard labor? Just think of it, we are in heaven where 
time is eternity and speed doesn't truly matter!" 
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