64SP-3130E-1

! t
FACOM OS IV/F4

. LINKAGE EDITOR AND LOADER USER’S GUIDE

o B

Manual Correction List

~ 7 DEC 1978

Manual

Name

FACOM 0S IV/F4
LINKAGE EDITOR/LOADER USER'S GUIDE

Code

645P-3150E-1

Fujitsu Limited

Communications § Electronics

Tokyo, Japan

Abbreviations in the list

U : wupdating forms 1 to 6

1. Test replacement 4. Page insertion

2. Page replacement 5. Text deletion

3. Text insertion 6. Others ()
R: reasons for update A to C

A Correction (Misprinting & Explanation)

B Alteration of Specifications (Adding,alterating
& deleting functions)

C Others ()

No.

Page

Line

01d Contents

"New Contents

xmsmnxm.

o~

23

26

60

83

30

44

20

31

11

APPENDIX 4 SIZE OF VIRTUAL STORAGE AREA
FOR LINKAGE EDITOR AND THE
QUANTITY THAT CAN BE PROCESSED

APPENDIX 5 SIZE OF THE VIRTUAL STORAGE
AREA FOR LOADER

Common areas in reenterable programs éannot
be shared between tasks. They are treated
as prototype sections. (See Sectionm 7.4)

* Dynamic linkage table

,Common sections are prefixed by a number
symbol (#),blank common sections by i$.

mmoJ

a. LINECOUNT = - option

This specifies the number of lines per
page output to the SYSPRINT data

set. Its omission is interpreted as a
specification for 60 lines Awomﬁgmomv.

0.
LINECOUNT = %ﬂ

This specifies the number of lines per page
output to the SYSOUT data set. It

is ignored, however, when outputting to a
terminal. (10 <n<99)

Page

Line

01d Contents

New Conteants

Remarks

97

100

35

JQAOQ581-E

ERROR: COMMON AND CONTROL
SECTIONS HAVE IDENTICAL
NAME PRINTED — RENT OPTION
CANCELLED.

A control section and a
common section having

the scme name were entered
while the RENT option was
specified.

S: The RENT attribute
is ignored.

P: When giving an
initial value to a
common section in
creating a load
module with the RENT
attribute, use a
prototype section.

JQA0981-U

ERROR: TOO LARGE SYSPRINT
BLOCKSIZE — LINKAGE EDITOR
PROCESSING TERMINATED.

The block size specified

for the SYSPRINT data set
cannot be handled by the

Linkage Editor.

-No.

mmmm.

Line

01d Contents

New Contents

Remarks

100

29

The data set is not
opened. Linkage
Editor processing
terminates.

Probable user error.
Either decrease the
block size of the data
set, or increase value
2 of the SIZE option
to allow for larger
buffers, and increase
value accordingly, if
necessary. Increase
the region size, if
necessary. Rerun the
Linkage Editor step.

JQB100L

1 EXTERNAL REFERENCE DYNAMICALLY

RESOLVED.

(Explanation) Unresolved ex-
ternal reference by the V type
address constant results in
dynamic linking because DYNAMIC
option has been specified.
(Action) Processing continued.

(Measure) Unnecessary.

Page

Line

01d Contents

New aonnm:nm

,wmawﬁww

f

+ ——r— e

JQB1241

JQB125I

L

U

MISTAKE: INVALID TEXT LENGTH-
RELOCATION IMPOSSIBLE.

(Explanation) Object module in-
cluding two sections without
length has been input but the
END card does not specify Hm:mn:4

(Action) Processing suspended.

(Measure) Check if input module
is valid or not.

MISTAKE: TOO MANY DALTAB
ENTRIES.

(Explanation) Too many unresolv-
ed external references requiring
dynamic linking.

(Action) Processing suspended.
(Measure) Number of unresolved
external references reduced to

255 or less by incorporating
the necessary module.

MISTAKE: TOO MANY ALTASES.,

(Explanation) Too many addi-
tional entry points.

(Action) Processing suspended.

(Measure) Number of entry points
is to be reduced to 255 or less
by reducing the number of input
modules through dynamic linking.

01ld Contents

New Contents

No. | Page q U Remarks
‘ Otherwise, NOALIAS option may be
_ specified if additional entry
| points are not required.
10 105 m See attached page 1 through 6 4
“
|
|
| r «
" | ’ .
i i |
| i .
; !
: m :
] H
1} f
m i |
! A !
! i
| _
T
P m !
M m
P ! w
]
| :
m ﬂ
|
_
|
L

APPENDIX 4 Size of virtual storage area for Linkage Editor and the
quantity that can be processed.

The virtual storage area necessary for the execution of the Linkage
Editor is decided by various factors like the number ang the character-
istics of specified options and input modules. The section here dis-
cusses various figures needed for the estimation of the area size.

Supplementary Table 1.1 lists the main items when the Linkage Editor
uses the virtual storage (excluding the input output buffer) and the
quantity that can be processed in each case under the conditions as given
below. The Table also shows the increment when v; of SIZE option and
REGION size of EXEC statement are increased by 10 KB.

(Conditions) * REGION size of EXEC statement: 128 KB or more

+ SIZE = (118K, 36K)
* Presence of specification for DYNAMIC, OVLY, and
AM256 options. (Unless thesec options are specified,

the quantity that can be processed increases).

* SYSPRINT block length is 605 bytes.

The principal items listed are explained below.

(1) Number of external symbol items

Included here are the following items apart from the input external symbols.
* dd name specified by the LIBRARY or INCLUDE statements.
° Symbols specified by ALIAS, REPLACE, CHANGE statements.

* SEGTAB, ENTAB, and DALTAB.

TABLE 1.1 Processable quantities in Linkage Editor

Processable Increments of
Item X uantit processable amount
! 4 y when vi is increased
! by 10 KB
|
Number of external symbol ! 789 209
items |
— — [L. S— (T
|
Number of intermediate text ' 548 140
records ;
e et e e e — _.4__!,__ JRE—
Number of intcrmediate RLD o292 75
records i
N SN
Number of V-type address i 682 186
constant
!
IDR translation data table 1 | 1406 (Bytes) 524 (Bytes)
N { R
. !
IDR translation data table 2 | 512 (Bytes) 140 (Bytes)
S L . _
IDR user data table ; 3306 (Bytes) 1024 (Bytes)
Number of IDRZAP data items ; 125 39
r———-- o —— 4 ot . e b - e — e i
Number of ORDER and PACE state- | 381 109
ment operands
h T i P
Number of aliases | 256 (64 in the absence ////////
. of AM 256 option 7
| specification) o
e - =
| ,_/”/’
Number of segments ! 255 ”/,,ff”
: —
Number of regions 4 w,,/r////
Number of ENTAB items 340 ¢ —
///”
Number of DALTAB items 255 * o
//—/‘

* ENTAB and DALTAB 'sizes must not exceed the maximum record length of
the text during load module oeutput.

(2) . Number of intermediate text records
Number n of intermediate text records per section is given by:

Section length
Maximum text record length in load
module output

n=1+%

The number of the intermediate text records per section increases unless the
texts are input in the address sequence.

(3) Number of intermediate RLD records
Number n of the RLD records per section is given by

Relocatable address tonstants withln the section
30

(4) Number of V-type address constants
The limitation here applies only in the case of DYNAMIC or OVLY specifica-
tion. The processable quantity of V-type address constants indicated in

Table 1.1 is the value in the worst situatiom. Normally the value is
slightly higher.

(5) IDR translation data table 1

Size M of table 1 for IDR translation data is given by

P
M= 5 (2 xSj+6x0j) bytes

3=l
where j: input module number (j = 1Vvp)

Sji: Number of sections in the jth module (j = 1~p)

gj: { 1 ..where a module with the same IDR has been input

0 ..where a module with the¢ same IDR has not been input

(Module with the same IDR means the module created by the same language
translator on the same day).

{6) IDR translator data table 2

Size N of table 2 required for IDR translation data

%
i
i Mo

A x 6j bytes
j=1
where j: input module number (j = 17%vp)

Aj: 16 byte IDR data legth for the jth input module (31 bytes if
processed by preprocessor to support IDR)

§3: 1 0 ..where a module with the same IDR has been input

1 ..where a module with the same IDR has not been input

(7) IDR user data table

This is the table for storing data specified by the IDENTIFY statement.
Necessary size of the table:

Z
H
i me

(Rj + 6) Dbytes

where, j: specified data number (j = 1%vq)

£j: number of data bytes

(8) Number of IDR ZAP data items

This is the number of IDR data items set through the JQPSPZAP program.

APPENDIX 5 Size of the virtual storage area for loader
Supplementary Table 1.2 shows the items using virtual storage

during execution of the loader and their estimated sizes.

Supplementary Table 1.2 Size of virtual storage area
necessary for loader

- ® [. ’ \J
* : These areas are released before execution of the programs
wuoma. . i Hsnmnﬁmwwmnw Fine classification Size Remarks
classification classification
ti 4 K byte
Fixed part Loader Control section ytes
(32 K Bytes) PTOBTAM | processing section* 16 K bytes
Control program 4 K bytes
Others for data management 8 K bytes
w!‘l.l‘i e e e i e e e
. Loaded program , Size of loaded |
Region

(size specified
by the REGION
parameter)

Variable part (Size
specified by SIZE
option. However,
where region size
is not sufficient,
the region size

is 32KB).

program

DALTAB

16 x n bytes

n : Number of unresolved
external references
(referenced by the V
type address constant)

Maximum value is 255,
Table is created only
during DYNAMIC option
specification.

_mwavcw table

12 x n bytes

n : (number of sections
+ number of entry points)
Created: when ALIAS
option is specified or
when virtual storage
area is sufficient in
TSS.

Broad
classification

Intermediate
classification

Fine classification

Remarks

Region

(size specified
by the REGIQHN
parameter)

Work table area *

)

2000+ 8xm+20 xn bytes

m zcﬁvmn of RLD
entries

n : Number of ESD
entries

DCB, buffer, *
DECB areas

!

BUFNO; x (BLKSIZE + 24)
+

BUFNO, x (BLKSIZE, + 24)
+

620 bytes

BUFNO;, BLKSIZE,:
Number of input ebject
module buffersand block
size

BUFNO,, -BLKSIZE, :
SYSLOUT buffers and
block size: minimum
number of buffers in
either case is 2)

3

Temporary object =*
module storage
area

Object module gize

Necessary only when
object module input {is
translated for RENT
option in FQRTRAN or
COBOL. This memory
area 1is released for
others after the con-
cerned input module
has been processed.

P

PREFACE

This manual describes in detail the functions and facilities of the OS IV/F4 Linkage
Editor and Loader, which are two service programs required by all users of OS IV/F4.
The manual consists of ten chapters divided into three major sections.

Chapters 1 to 9 describe the Linkage Editor, explaining its purpose, standard
and optional inputs, standard and optional outputs, various editing and program-
structuring facilities, relevant JOB Control Language facilities, and the Linkage Editor
control statements.

Chapter 10 describes the Loader, stressing facilities different from those of the
Linkage Editor, its standard and optional inputs and outputs, etc. You should fully un-
derstand the basic material of (Chapters 1 —9) before attempting to read this section.

The last section comprises four appendices which will be useful to most programmers
for regular reference and trouble-shooting explanations. Appendix 1 shows the format of
the standard OS IV/F4 load module (executable program). Appendix 2 describes, in
alphabetical order, all warning/informational/diagnostic messages issued by the
Linkage Editor and Loader. Appendix 3 shows a sample input stream for a Loader job.

To fully understand the contents of this manual, you should be familiar with the
following OS IV/F4 manuals:

o FACOM OS IV/F4 Job Control Language Reference Manual

o FACOM OS IV/F4 Job Management Functions and Facilities
o FACOM OS IV/F4 Data Management Functions and Facilities
o FACOM OS IV/F4 Supervisor Functions and Facilities

o FACOM OS IV/F4 Service Aid User’s Guide

Ly - -

First Edition June, 1977

This manual may be altered without prior notice.

No part of this manual may be reprinted in any form
without permission.

CONTENTS

Page

CHAPTER 1 INTRODUCTION. . .. ittt ittt ittt ettt et e ettt e 1
1.1 Typesof Program Structures.ottt i ittt ittt 1
1.2 Comparison of Program Structures.ottt ittt ittt 2
CHAPTER 2 LINKAGE EDITOR FUNCTIONS & FACILITIES.t ii it ie e i eienen S
2.1 Objectand Load Modules. o0ttt ittt ittt it tnteenteeeennerneens S
2.1.1 External Symbol Dictionaryttt it iniiti ittt inennens 6
O < U 7
2.1.3 Relocation Dictionaryv ittt ittt ittt e et e e 7
214 EndIndicationc.ouiiuiuiiiinitinttiiit ittt e 7

2.2 Linkage Editor Processingooit it iiiiiiiniii ittt 7
2.2.1 Inputand Output SOULCES. . . . vt vvii ittt et ittt ettt e 7
222 LoadModuleCreationc.iuiuiiniitiininntneeneineeneennenneenenennenns 8

2.3 Functions of the Linkage EQitor 0ottt ittt intitntiinnernnennn 9
2.4 Relationshiptothe Restof OSIV/F4 i i i ettt it 12
2.5 Language Dependencies.vuiittit ittt e i e e e 12
CHAPTER 3 INPUTSTO THE LINKAGEEDITOR.ttt iiiiiiiiiiiniieinnennennnn 14
3.1 PrimaryInputData Set.ot i e e e 14
3.1.1 ObjectModuleInput.ottt e e i e 14
3.1.2 Control Statement Inputttt i i i i it e 15
3.1.3 Inputof BothModulesand Statementscc0iitiitininn it inennrenennenns 15

3.2 AutomaticLibrary Call.ottt i i i e e e et e 16
3.21 SYSLIBDD Statementottt ittt it etetineneneeneeeneneneneaeeesan 16
3.2.2 LIBRARY Control Statementuut ittt nentinenenneneneneneneenenenenens 17
3.2.3 Never-Call (NCAL) Option oovtt vttt it et et ettt it e tn e teneenennens 18

33 Included Data Sets.ciuiivtntne et nteeeneeeneenenenenenaenenenenensn 18
CHAPTER 4 OUTPUTS FROM THE LINKAGE EDITORttt ittt it i ieenne s 21
41 OutputLoad Moduleottt ittt it ettt it et 21
4.1.1 OutputModule Library.ottt ittt et ittt et i e 21
4.1.2 Entry Point.t i e e et e e e e 22
4.1.3 COMMON ATEAS . . . ¢ vt vttt ettt et ettt ettt et nteatenasasenseneeneensenennsns 23
4.1.4 Pseudo Registers.ottt i e i e e e e e 23
4.1.5 MultipleLoad Modules.ttt ittt it e i e e e 23

4.2 Diagnostic OULPULS. . v oottt ettt et e e e e e e 24
4.2.1 Diagnostic MesSsages. . . oo vttt ittt e e e e e e 24
422 Optional QUtPULS . . .ottt i e e e e e 25
CHAPTER S EDITING MODULES. ittt ittt ittt ittt tne et nnrneenennenn 29
5.1 Changing External Symbolso ittt i i e it e e e 29
5.2 Replacing Control SECtions.o ottt ittt et e e e e 30

S5.2.1 AutomaticReplacement i e e e 31

5.2.2 REPLACE Statement i ittt it ettt e ettt ene e etneeenne e seennnnens 32

5.3 Deleting Control Sections and Entry Namesoutienirereeneneneninnnnennennn. 32
5.4 Ordering Control Sections and Named Common Areascuutvtennrenrennnnnnenn. 33
S.5 Aligning Control Sections and Named Common Areas on Page Boundaries 34
CHAPTER 6 OVERLAY STRUCTURES. ittt ittt ittt it et enenenenas 36
O 70 T 5 T - ¢ O 36
6.1.1 Single-Region Structures.ttt it ittt ittt enenerneraennnnn 36
6.1.2 Multiple-Region Structures.ottt ittt ittt ittt e, 40
6.2 Specification. i e e e e et e et e 42
6.2.1 Segment OTigin.ottt i it e e e e 42
6.2.2 Region Origin. . ..ot it i i e et e et i e e 43
6.2.3 Positioning Control Sections ittt i it i i e e i e 43
6.2.4 Special Options.ottt i e e et et e 45
6.3 Other Overlay Considerations.ciitiit ittt it e ettt enannennns 45
6.3.1 COMMON ATEaS. . ..t vttt ittt ettt nte ettt eneeananeeensoseneonsenennsnnas 45
6.3.2 Storage Requirements.iuiiniit it iitenrennennenneeeenoeneenennnnnas 46
6.3.3 Inter-Segment Communicationsuiiiutinienneenenereneeennennneennn 46
6.4 A SampleOverlay Program.o iiiiittntiiirerenennoeaoenoansoaconenssans 48
CHAPTER 7 DYNAMIC LINK STRUCTURES AND PROTOTYPE CONTROL SECTIONS. S0
7.1 Overviewof Dynamic Linking.ttt ittt it ittt S0
7.2 Passing Control in a Dynamic Link Structure ittt ineiinnennens S0
7.3 Restrictionson Dynamic Linkingottt ittt S1
7.3.1 Dynamic LinK Series.o iit ittt it e e e e 51
7.3.2 Usability Attributes of Dynamic Link Structures i, S1
7.3.3 DeletingLoad Modules.ttt i i e e 52
7.3.4 Program Libraries.ttt i i it e e e 52
7.4 Creating Reenterable Programs with PSECTs.ttt i, 52
741 Overview Of PSEC TSttt ittt ittt ittt ettt i e e ennns 52
7.4.2 PSECTsinaDynamicLink Structure 00ttt iininnnennnes 52
CHAPTER 8 JOB CONTROL LANGUAGE FOR THE LINKAGE EDITOR.t 4
8.1 Introduction tothe EXEC Statement.ttt ittt it iiinenrnnnnns 54
8.2 JOb Step OPtiONS. o vttt t i e e e e e e e e e e 54
8.2.1 Module Attributes: AC, ALIGN2, DYNA, NE, OL, OVLY, REFR, RENT, REUS, TEST 4
8.2.2 Other Processing Options: LET,NCAL, XCAL 0ttiniintitneeneintenennennes 56
8.2.3 Storage Allocation Options: AM256, DCBS,SIZE.ttt ennnn. 57
8.2.4 Output Options: LIST, MAP, XREF, TERM it iiitiiiiiiiiinnnennnes 59
8.2.5 Incompatible Options.outiittiiitiiitetiiats it rnternacrnnsennans S9
826 ReturnCodes viti ittt it i e e e e i e e 60
8.2.7 DD Statements.ottt i it e e i e 60
8.2.8 Standard Linkage Editor DD Statementsoiirinnetereenueererannnneeeenss 61
8.2.9 Additional DD Statementsiuiut ittt i i i i e 62
8.3 Cataloged Procedures. v vit it ittt tattinesinae ettt 63
8.3.1 Standard Linkage Editor Procedures.c..iiivit i ennnennnenernennennens 63
8.3.2 Overriding Procedure Statementsc. ittt rintinnernnernns 65
8.3.3 AddingDD Statements.ot i i e i e et e i e 65

8.4 Dynamic Invocation of the Linkage Editor e et et te e ecea et 66

»

CHAPTER 9 SUMMARY OF LINKAGE EDITOR CONTROL STATEMENTS. 68

9.1 ALIAS Statement.ttt it ettt ettt e e e i e 68
9.2 CHANGE Statementovtiineiuttrnnteenneeenneeennneenneeenneenneenneennos 69
9.3 ENTRY Statement.........iiiuutiiniiiintinneeinneeiieeeinoeeaneennnennnennns 70
9.4 EXPAND Statement. utiiittiiit it iiit ittt 70
9.5 IDENTIFY Statementttt ittt iiiiiieeeeennnnnneeeennnanns 71
9.6 INCLUDE Statement.coottutun ettt tnnt et eeneeaeeneonseneenseneenens 72
9.7 INSERT Statement.ottt ittt ittt ittt eneennas 72
9.8 LIBRARY Statement..........ouut ittt iiieeinneiinnieeinnnninneennneennns 73
9.9 NAME Statement.ttt ittt e i e 74
9.10 ORDER Statement.o vvittit ittt iineeeneeinneeinneeeneonnneennss 74
9.11 OVERLAY Statementttt ittt ittt ittt ittt ine e 75
9.12 PAGE Statementttt ittt ittt ittt it e e 75
9.13 REPLACE Statement.ttt inntintinenneneenneeneenesaennennennens 76
9.14 SETCODE Statement. ov vttt ittt ittt ettntententoneenesnsensonesneenens 77
9.15 SETSSIStatementottt tineeeeeneenerneenennoenennens 77
CHAPTER 10 LOADER FUNCTIONS AND FACILITIESt tiitiiiiiinininnennenns 79
10.1 Functional Characteristicsiut it iit ittt ittt enteetenenenenenns 79
10.2 Compatibilityand Restrictions i it ittt it it et 79
10.3 InputfortheLoader.oiitiinineiniini it intinteneenteeneneeneenennenns 81
10.3.1 EXEC Statement.ottt ittt ittt et eet ettt e 81
10.3.2 DD Statements . .. oo ottt ittt it e i e e et e 81
10.3.3 Submitting Datatoa Loaded Program.cotiuiuinennntinenennennnnennnns 83

10.4 Dynamically Invokingthe Loader.......... ..ottt iniiinnnennennns 83
10.5 Printed OUtPULS . . oottt t ettt et ettt ettt et e e 86
10,6 Return Codes . ..ottt ittt ittt e ettt et e e e 87
APPENDIX 1 LOAD MODULE FORMAT ittt ittt ittt ittt it e anennannn 89
APPENDIX 2 ERROR DIAGNOSTIC AND WARNING MESSAGES., 90
APPENDIX 3 SAMPLE INPUTFORTHELOADERttt 103

ILLUSTRATIONS AND TABLES

Figure Title
No.

1.1 Simple program structure (SOK) i i i e e e
1.2 Firstexample of an overlay structure (26K)o it ittt it ittt e e
1.3 Second example of an overlay structure (34K) it it i it e e e e
1.4 Dynamic program StrUCIULEot v vttt ittt ettt et ee et enennenenenns e
2.1 Preparing a source module for eXecution. vttt i i e e i e
2.2 Translating a source module and executing theloadmodulecoiveunann...
2.3 External names and external referencesoiiiiiii i ittt
2.4 Useof the external symboldictionaryttt in ittt it ineeenennas
2.5 Input, intermediate, and output sources for the Linkage Editorcc.cvvvvnv...
2.6 Load module produced by the Linkage Editor0iitiiiiiinrnennnnennnn
2.7 Linkage Editor processing—module linkageciiiii ittt i i e i e
2.8 Linkage Editor processing—module editing0iiiiit ittt i i e
2.9 Linkage Editor processing—additional input SOUrcescouvuiurnrneneneneannann
3.1 Processing of one INCLUDE statement. uvtiittitnntnnenneeneeneneeneennoneneenns
3.2 Processing several INCLUDE statementscouiitinnineennrneeneeneenennnnns
4.1 Diagnostic messages issued by the Linkage Editor............ 0t nnenn...
4.2 Molule map and cross reference table i e e e e e e
4.3 Complete SYSPRINT listing.ot it ittt ittt ettt ittt eaantneenonenns
4.4 SYSPRINT listing of a representative FORTRAN program.covtiieininnnnnnnenan.
S.1 Editingamodule e e e et e i e s
5.2 Changing an external reference and anentry pointttt nnreneneennns
5.3 Automatic replacement of control Sectionsit it it i i i i e
5.4 Replacing a control section with the REPLACE control statement.coovivvnn...
5.5 Deletingacontrol SeCtion ittt ittt i et e et e
5.6 Ordering control SECtionS ittt it i it e i e e
5.7 Aligning control sections on pageboundariesccit ittt i
6.1 Control section dependenciesoiittintitintienternnteenrernrernneeneeaneos
6.2 Single-region overlay treestructure. it i e e e e e
6.3 Lengthofanoverlaymodule.ttt iiiiiiiiiirniireneoeneernasennennnns
6.4 Segmentorigin and use Of STOTage. v vttt ittt e e et et e e e
6.5 Inclusive and exclusive segments. i ittt i e e e e
6.6 Inclusive and exclusive references.cvvt vt ittt i i e e
6.7 Load moduleinanoverlay structurec.uittiiit i inneernnernnesennsenesnnens
6.8 Overlay process flow.ot ittt i i e e e et e e
6.9 Control sectionsused by several paths.ottt tennerneennnas
6.10 Overlay tree for multiple-regionprogramciitiiernennenns, e
6.11 Segment originsin a single-regim structure.tiittiintt ittt
6.12 Segment and region origins in a multiple-regionstructure. i i it i,
6.13 Common areas before Processingot in et in ettt
6.14 Common areas after Processingt iiut ittt trnieennneeenerssneeneeseaesnaes
6.15 Structure of sample overlay Program.ctiiit ittt et e e
6.16 JCL and Linkage Editor control statements for sample program cvvvuinn..
6.17 SYSPRINT data set for sample program.c.iiitiintenneerneeenneeeneenneennnas
7.1 Exampleofdynamiclinkage.ttt i i i i e e e
7.2 Dynamically linking several SUbprograms.vvttiitintnrennenrenreneeneeneenonaess
7.3 Exampleof a PSECT ittt ittt ittt e e et e e e
7.4 Example of dynamically inking PSECTSttt iinniinet it nteeneenesnenns
8.1 Statements in the LKED catalogued procedure.o.vuiiininnrnnnineneneeennnnannns
8.2 Statements in the LKEDG catalogued procedurecouitiuiinenuenerntenennennenns
8.3 Example of invoking the Linkage Editor 0 ittt eennans
9.1 Overlay structure for INSERT statementexample. iiitt it inninernneennnnnn
9.2 Outputload module for ORDER statementexample.vtvittriiernneerneeenneenness
9.3 Overlay structure for OVERLAY statementexamplecoviiiiiiiiiiiriinnnnnnnn

Page

O WO UV UNWLWWwWwNN

9.4

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Table
No.

1.1
1.2
3.1
6.1
6.2
6.3
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Output load module for PAGE statement eXampPle e e 77

Loader processing— SYSLIB resolution.c.cvtiiitiiii it in it inenninennienns 80
Loader processing—Ilink pack area and SYSLIBresolutionccivviiiiivneenenn, 81
Loader processing—automatic editing. F e et e e 81
Input deck for the loader—basicformat.cv ittt ittt 82
Loader and loaded —program dataintheJESstream..............coiiiiiiiiiinunenaun. .. 84
Using the LINK macro instruction toinvoke theloader............. iy 85
Using LOAD and CALL macro instructions to invoke JQBLOAD (loading without identification) 86
Using LOAD and CALL macro instructions to invoke JQBLOAD (loading with identification). 86
RetUIN COAES . .ot i ittt ittt it ettt et ittt es et ne e neenenns 87
Title Page
Characteristics of load modules ittt it 1
Characteristics of program structures i ittt ittt it it ittt 4
System automatic call libraries. cv ittt i e e e e e 17
Branch seguences for overlay programs.ciit ittt it it e i e 47
Use of the SEGLD macroinstructionttt ittt iniienenennns 47
Use of the SEGWT macroinstruction.ttt ittt i e eneeeeennn 47
SYSUT1 and SYSLMOD device types and corresponding maximum block sizes S9
Space increment to support blocking vt e e i e 60
Incompatible job step options forthelinkageco ittt ininntinnnnennnnennn 61
Linkage Editor return Codes. vt ittt ittt it ittt it ettt e e e 61
Linkage Editor DD Nameso vttt ittt ittt ittt et eeneteeeenanaenennns 62
DCB requirements for object module and control statementinput. 62
DCB requirements for SYSPRINT i i i i i it 63
DCB requirements for additional inputdatasets. i 63

Standardized OS IV/F4 catalogued procedures using the Linkage Editor 64

CHAPTER 1
INTRODUCTION

The Linkage Editor and the Loader are Fujitsu-
supplied programs which prepare object modules
created by compilers and/or the Assembler for
execution. The Linkage Editor prepares load
meodules, which you can execute later. The Loader
prepares an executable program in your address space
and passes control to it directly.

The Linkage Editor provides several editing options
such as creating overlay programs. The Loader rapid-
ly loads programs that do not need sophisticated
editing or to be saved for subsequent production
usage.

You should use the Linkage Editor rather than the
Loader:

e if your program requires editing other than the

MAP, LET, NCAL, and SIZE options.

e if your program uses control statements such as

INCLUDE, NAME, OVERLAY, etc.

e if you wish to create a temporary or permanent
executable program on direct access storage.

1.1 TYPES OF PROGRAM
STRUCTURES

You should use the Loader if your program only
requires some (or none) of the following editing and
output options: MAP, LET, NCAL, and SIZE. The
Loader halves editing and loading time compared to
the Linkage Editor.

Linkage Editor processing is performed in a link
edit step. The Linkage Editor can be used for compile-
link-go, compile-link, link-edit, and link-go jobs.
Loader processing is performed in a load step, which
is equivalent to link-go steps. You also use the Loader
for compile-load and load-go jobs.

Each load module is designed in one of four basic
structures (or certain combinations thereof): simple,
overlay, dynamic program, or dynamic link. A simple
structure does not pass control to any other load
modules during its execution; it is brought into virtual
storage all at one time. An overlay structure may, if
necessary, pass control to other load modules during
its execution; it is not brought into virtual storage all

at one time. Instead, segments of the load module
reuse the same area of virtual storage. A dynamic
program structure is brought into virtual storage at
one time and passes control to other load modules
during its execution. A dynamic link structure com-
bines aspects of the overlay and dynamic program
structures. Each of the load modules to which control
is passed can be one of the four structure types.
Characteristics of load-module structure types are
summarized in Table 1.1.

Table 1.1 Characteristics of load modules

Structu Loaded all at Passes control to
ructure type one time other load modules
Simple Yes No
Overlay No Rarely
Dynamic Program Yes Yes
Dynamic Link No Yes
Simple structure

A simple structure comprises a single load module
produced by the Linkage Editor, containing all
required instructions. It is paged into real storage by
OS IV/F4 as it is executed. The simple structure is the
most efficient of the four structure types because the
instructions (and macro instructions) it uses to pass
control — CALL, Branch, etc. — do not require con-
trol program assistance.

Overlay structure

An overlay structure comprises a single load module
divided into logically self-contained units called
segments. The load modu:e " retrieved into virtual
storage one segment at a time starting with the root
segment, which is loade. v the Supervisor. Segments
are defined when the program is linkedited.
CALL/SAVE/RETURN linkages within an overlay
structure are the same as within a simple structure.
However, Supervisor assistance is sometimes required
for calls to subroutines, eritry points, etc. in different
segments. Overlay structures are discussed in detail in
Chapter 6 below.

Dynamic program structure

A dynamic program structure requires more than one
load module during execution. Each load module can
be either a sir.ple, overlay, or another dynamic struc-
ture. The advantages of a dynamic structure over a
simple structure increase as the program becomes
more complex, particularly when the logical path of
the program depends on which records are being
processed. The load modules required in a dynamic
structure are paged into real storage when required;
they can be deleted from virtual storage when their
use is completed. Dynamic program structures are
described in Section 1.2 below and in FACOM
OS IV/F4 Supervisor Functions and Facilities.

Dynamic link structure

This structure contains attributes of both the overlay
and the dynamic program structures. The dynamic
link structure uses CALL macro instructions to invoke
sub-programs, just like simple and overlay structures.
However, if the requested entry point is in a different
load module, OS IV/F4 will retrieve it and pass con-
trol to it with a CALL-type linkage. Hence, if the entry
point is in the same load module, or if its load module
has already been retrieved by the Supervisor, control-
program linkage assistance is unnecessary. Dynamic
link structures are described in Chapter 7 and
FACOM OS IV/F4 Supervisor Functions and
Facilities.

1.2 COMPARISON OF PROGRAM
STRUCTURES

In this section, characteristics of the four types of
program structures will be explained by examples, all
based on a program comprising one main routine and
five sub-programs:

Abbreviation Function Size
M Main program 10K
S1 Sub-program1 8K
S2 Sub-program2 8K
S3 Sub-program3 6K
S4 Sub-program4 10K
SS Sub-program S 8K

Simple structure

If you design this program as a simple structure, it
becomes a load module of SOK bytes, as shown in Fig.
1.1. All of its sub-programs are retrieved simulta-
neously. All transfers of control within the structure
are direct, via Branch instructions. Therefore, this
simple structure requires more virtual storage than
any other type of structure but it takes less time for
loading compared with other possible structures.

10K { M
8K { S1
8K { s2
50K
6K { s3
10K { sS4
8K { s5

Fig. 1.1 Simple program structure (50K)

Overlay structures

Your program is now assumed not to need sub-
programs S3, S4, and SS, when sub-programs S1 and
S2 are active; similarly, S1 and S2 are not required
while S3, S4, or S5 is active. It is also assumed that S5
is unnecessary while S4 is active. In this case, you can
save virtual storage by dividing your sub-programs in-
to segments, as shown in Fig. 1.2.

10K{ M

GK{ S3 8K5{ S1 26K

8'({ S5 10|<{ s4 BK{ s2

Fig. 1.2 First example of an overlay structure (26K)

You can load any segment whenever it is needed,
since only certain sub-programs are necessary in vir-
tual storage at any instant. If a segment is in virtual
storage, it can receive control directly from another
segment; this linkage uses a Branch instruction. Com-
pared with the simple structure, your overlay structure
can be executed in a smaller area, but takes somewhat
more time for loading. In Fig. 1.2, the required
memory area is 26K. If you allocate a larger memory
area of 34K, loading time will be saved by the dif-
ferent (but logically equivalent) structure illustrated in
Fig. 1.3.

Using a single load module, you can thus define
overlay structures within memory sizes ranging from
the minimum size of Fig. 1.2 to the maximum size of
Fig. 1.1 (the simple structure). Of course, you must re-
link your entire program if you wish to change your
main program or any sub-program.

10K { M
6K { S3 8K { S1 34K
10K { sS4 BK{ S2
8K { S5

Fig. 1.3 Second example of an overlay structure (34K)

Since OS IV/F4 furnishes a private virtual storage
of 16 million bytes, it imposes fewer memory
limitations on your programs than any prior hard-
ware/software system. However, if you execute a large
program using a simple structure, it may take much
more time to page in and page out leading to reduced
CPU efficiency and long turnaround times. Loading a
sub-program only when required and completing its
execution without unnecessary paging improves
system throughput and efficiency. Therefore, when
evaluating whether or not to design overlay structures
for OS IV/F4, you should give more consideration to
loading and paging overheads than to program-design
problems resulting from limited real memories.
Paging overhead can be quite high if a mammoth
program is loaded as a simple structure. Hence, you
should consider average page-frame requirements for
loading simple structures.

Dynamic program structure
As shown in Fig. 1.4, a dynamic program structure
links some/all sub-programs into separate load
modules, loading and transferring control via Super-
visor macro instructions (LOAD, LINK, XCTL, etc.)
as required. In this example, it is assumed that the
relations between your sub-programs are identical to
those in the previous subsection: M calls S1 and S3
successively which return to their caller; S1 calls S2;
and S3 calls S4 and SS in succession. The minimum
virtual storage is 26K for executing this structure. If
your sub-programs can be ‘“‘re-used”’ (as described in
Chapter 8), OS 1V/F4 does not delete them from vir-
tual storage. OS IV/F4 will automatically keep all
sub-programs in virtual storage if they can be reused.
Thus, the dynamic program structure can auto-
matically adapt to various environments, unlike an
overlay structure which requires re-linking whenever
its structure must be changed. However, a dynamic
program structure leaves management of programs to
the OS IV/F4 Supervisor; even if a necessary sub-
program is already in memory, the Supervisor must
assist in linking it to a calling program. Hence, a
dynamic program structure typically imposes more

INTRODUCTION

(26K memory area)

10K{ M

BK{ S1 83{
8K I
10K
BK{ S2 [85{
Library s 1|5
(34K memory area)

10K{ M
—> s 1oo<{ BK{

[=/
\e\

8K { S5

S4
e

6K { S3
(50K memory area)
10K M

8K 1| S1

[z
\s\

8K {| S2

6K {| S3

10K

S4

8K {| S5

Fig. 1.4 Dynamic program structure

control-program overhead for linkage than other
program structures.

Dynamic link structure

A dynamic link structure combines attributes of the
other three program structures. You use it principally
for testing programs which ultimately will become
single, self-contained load modules.

During testing, a new program can be more con-
veniently handled as a collection of separate load
modules—dynamic program structure—instead of
being linked into a single, large load module. In other
words, when an error is uncovered in a sub-program, a
simple structure or an overlay structure requires
linkage editing of the entire load module, including
many error-free sub-programs. Linkage-editing effort
and time can be reduced if each sub-program can be
segregated from all others. During the test stage, often
more time is required for 'ink-editing of tasks than for
tests. If you use a dynamic program structure, the
Supervisor typically calls your major sub-programs
repeatedly, thus imposi.g heavy supervisory over-
heads.

To resolve these strategic problems, OS IV/F4 fur-
nishes a novel and efficient dynamic link facility,
which uses CALL macro instruction (containing
branch linkages) ‘‘most of the time” for program
linkages. If a specified entry point is in the same load
module as the caller, or if another load module with

this entry point has already been loaded, the Branch
instruction is direct, requiring no intervention by the
OS 1V/F4 Supervisor. If the requested sub-program is
not currently in virtual storage, the dynamic link
structure asks the Supervisor to load it, then branches
to it immediately after loading. Thus, you need not
know if the entry point of a called program is located
in the same load module.

The dynamic link structure is fundamentally dif-
ferent from the dynamic program structure; the for-
mer is a group of subprograms, each of which has a
simple structure. After initial loading, subprograms of
a dynamic link structure are not deleted from virtual

Table 1.2 Characteristics of program structures

storage even if their processing has been completed. A
dynamic link structure transfers control by a branch
instruction no later than the second CALL to each en-
try point. Therefore, it lacks the virtual storage
flexibility of the dynamic program structure, which
adapts to the capacity of a given virtual storage
region.

The dynamic link structure is designed primarily
for program testing; its advantages are its simplicity
and its reduced overhead for relinking programs while
the latter are being frequently changed.

Table 1.2 summarizes the characteristics of each
program structure.

Time required for
program link-ages

Required
memory area

Program
structure

Characteristics

simple relatively minimal

large

® one load module
e required memory area equals total of sub-

program lengths

e direct branches by CALL macro instructions

overlay medium medium

o one load module
e alterations require repeated link-editing of

entire load module

® necessary segments can be loaded by CALL

macro instructions

dynamic small substantial

program

e more than one load module
e OS IV/F4 manages memory areas automatically
e inter-module linkages require LOAD, LINK and

XCTL macro instructions

e alterations require minimal repeated link-editing

dynamic relatively medium

link large

o more than one load module
o required memory area is nearly maximal

(as for a simple structure)

® necessary load modules are loaded by CALL

macro instructions

e direct branches are used thereafter
e alterations require minimal repeated link-editing

CHAPTER 2

LINKAGE EDITOR FUNCTIONS

AND FACILITIES

OS IV/F4 compilers and the Assembler are collec-
tively called language translators. Input to a language
translator is called a source module (Fig. 2.1), output
from a language translator an object module. Before
an object module can be executed, it must be pro-
cessed by the Linkage Editor. The primary output of
the Linkage Editor is a load module (Fig. 2.2).

Each object module is composed of one or more
control sections. A control section is a unit of coding
(instructions and/or data) that is in itself an entity. All
elements of a control section are loaded and executed
with constant addressing relationships to one another.
A control section is therefore the smallest separately
relocatable unit of a program.

Each object module you provide to the Linkage
Editor normally contains symbolic references to con-
trol sections in other modules; such references are
called external references. These references utilize

Source
module

Language
translator

Fig. 2.1 Preparing a source module for execution

Source
module

Language
translator

Fig. 2.2 Translating a source module and executing the load module

Object module
module

module

address constants. Each such symbol must be either
the name of a control section or the name of an entry
point in a control section. Control section names and
entry names are called external names. By matching
each external reference with an external name, the
Linkage Editor resolves references between modules.
External references and external names are collec-
tively called external symbols (Fig. 2.3). An external
symbol is one you define in one module and referen-
ced in another module.

2.1 OBJECT AND LOAD MODULES

Object modules and load modules have the same basic
contents:
e Control dictionaries, containing information neces-

Load

Linkage
Editor

Load

Object module

Linkage
Editor |

R

l

Program
fetch

Execution

D}«

CSECT A1 Input
. module A Linkage
. Editor
ENTRY A11
: CSECT A1
CALL B1 :
ENTRY A11
External names: External
Control section Input symbols CALL B1
Entry name 311 e — CSECT BA
Al1 CSECT B1)
External references: . :
From A1 to B1 CALL A11
\ From B1 to A11 CALL A1t

Fig. 2.3 External names and external references

sary to resolve symbolic cross-references between
control sections of different modules, and to
relocate address constants. Control dictionary
entries are generated when external symbols, ad-
dress constants, or control sections are processed by
a language translator. Each language translator
produces two kinds of control dictionaries: an
external symbol dictionary (ESD) and a relocation
dictionary (RLD).

e Text, containing the instructions and data of the
program.

e An end-of-module indication: an END statement in
an object module, an end-of-module indicator in a
load module.

Each control dictionary, text, and end indication is
described in greater detail in the following sections.

At your option, object modules and load modules
retain data used by the Linkage Editor to create
CSECT Identification (IDR) records. If the language
translator creating an object module supports CSECT
Identification, your input object module optionally
furnishes translator data for Identification records on
its END statement. Input load modules differ from
object modules in the type of date they supply. Input
load modules also provide JQPSPZAP data, Linkage
Editor data, and user data to Identification records
created by the Linkage Editor. During your link-edit
step, you can optionally furnish an IDENTIFY con-
trol statement to supply your own data for the CSECT
Identification records.

2.1.1 External Symbol-Dictionary

The external symbol dictionary (ESD) contains one
entry for each external symbol you define or reference
within a module. The ESD contains an entry for each
external reference, pseudo register (external dummy
section), entry name, named or unnamed control sec-
tion, and blank or named common area. You can
reference an entry name, pseudo register, or named

control section from any control section or separately
processed module, but not an unnamed control sec-
tion.

Each entry identifies a symbol or symbol reference
and gives its location, if known, within the module.
Each ESD entry is classified as one of the following:

o External reference
a symbol defined elsewhere which you reference in
the current module.

o Weak external reference
a special type of external reference that is not to be
resolved by the Automatic Library Call feature
unless an ordinary external reference to the same
symbol is found.

¢ Entry name
an entry point you have identified in this module.
The corresponding ESD entry specifies the symbol,
its location, and the control section to which it
belongs.

o Control section name
the symbolic name of a control section. The
corresponding ESD entry specifies the symbol, the
length of the control section, and its location—that
is, the address of its first byte.

o Blank or named common area

a control section you use to reserve a virtual storage
area that can be referred to by other modules. You
can use a common area, for example, as a com-
munications region within a program or to hold
data supplied at execution time. The corresponding
ESD entry specifies the name and length of the
area. If there is no name, the name field contains
blanks.

o Private code
an unnamed control section. The corresponding
ESD entry specifies the length of the control section

and the origin. The name field contains blanks.

o Pseudo register

a special facility (corresponding to the external
dummy section feature of the OS I1V/F4 Assembler
and PL/I Compiler) to help write re-enterable
programs. A pseudo register is a dynamically-
obtained location in virtual storage which your
program uses to point to dynamically acquired
storage. Space for such areas is not reserved in the
load module, but is acquired during execution. The
corresponding ESD entry contains the name,
length, alignment, and displacement of the pseudo
register.

When processing input modules, the Linkage
Editor resolves references between modules by match-
ing referenced symbols to defined symbols. To do this,
it searches for the external symbol definition in the
ESD of each input module. As shown in Fig. 2.4 the
Linkage Editor matches an external reference to BB
by locating its definition in the ESD of Module B. In
the same way, it matches an external reference to Al
by locating its definition in the ESD of Module A.

Input Input
module A module B
s ESD for A
ESD Symbol Type Location
CSECT AA \ AA Control Known
. \ section
. \ name
\
ENTRY A1 Y Al Entry name [Known
. \
4 Y B1 External Unknown
CALL BB \ reference
ad ESD for B
ESD Symbol Type Location
\ BB Control Known
CSECT BB | \ section
. \ name
\
. \
CALL A1 \ A1 External Unknown
\ reference

Fig. 2.4 Use of the external symbol dictionary

2.1.2 Text

The text contains the instructions and data of the
module.

2.1.3 Relocation Dictionary

The relocation dictionary (RLD) contains one entry

LINKAGE EDITOR FUNCTIONS & FACILITIES

for each relocatable address constant that must be
modified by the OS IV/F4 Supervisor as it loads this
constant just prior to execution. An entry identifies an
address constant by indicating both its location within
a control section and the external symbol used to com-
pute the value of the address constant.

The linkage Editor re-processes the relocation dic-
tionary whenever it must adjust address constants for
reference to other control sections and modules. The
OS IV/F4 Supervisor again uses this dictionary to ad-
just these address constants whenever it loads the
module into virtual storage for execution.

2.1.4 End Indication

Each load module ends with an end-of-module in-
dication (EOM). Unlike an Assembler END in-
struction, a load-module EOM cannot specify an en-
try point. Therefore, whenever a load module is
reprocessed by the Linkage Editor, you must specify
its entry point on an ENTRY statement; if not
specified, the Linkage Editor will assign the first byte
of the first control section encountered as the entry
point, i.e., first instruction to be executed after the
Supervisor gives control to this processing program.

2.2 LINKAGE EDITOR PROCESSING

This section discusses input and output sources of the
Linkage Editor and how it creates a load module.

2.2.1 Input and Output Sources

The Linkage Editor accepts input from several sour-

Ces, as follows:

e Its primary input (SYSLIN) contains object
modules and control statements for the Linkage
Editor.

e Additional user-specified input, can comprise ob-
ject modules, control statements, and/or load mod-
ules. You can explicitly furnish these inputs or in-
corporate them automatically from a call library.

During processing, the Linkage Editor generates in-
termediate data , which is written onto a direct-access
storage device when virtua! storage allocated for input
data is exhausted.

Output from the Linkage Editor is of two types:

e A load module placed in a library (a partitioned
data set on a direct access device) with a member
name you specify.

e Diagnostic output written into a sequential data set
you specify.

Fig. 2.5 shows input, intermediate, and output data
sets for the Linkage Editor.

Primary User-
input iy

(

Inter-
mediate
data

Linkage
Editor

>

Diagnostic
Load output
module

Fig. 2.5 Input, intermediate, and output sources for the Linkage

Editor
Module A Module B
ESD ESD
TXT TXT
RLD RLD
END END
Linkage
Editor
Output load
module AB
CESD
TXT
RLD
EOM

Fig. 2.6 Load module produced by the Linkage Editor

2.2.2 Load Module Creation

In processing object and load modules, the Linkage
Editor assigns consecutive relative addresses to all
control sections and resolves all references between
control sections. You can even furnish object modules
produced by different language translators to create a
single load module, although this is relatively un-
common.

Your output load module is composed of all input
object modules and input load modules you furnish to
the Linkage Editor. Its control dictionaries are there-
fore the logical union of all control dictionaries in
your input modules. The control dictionaries of a load
module are called the composite external symbol dic-
tionary (CESD) and the relocation dictionary (RLD).
The load module also contains all text from each in-
put module and one end-of-module indicator (Fig.
2.6).

Assigning addresses

Each module you furnish has an origin that was
assigned during assembly, compilation, or a previous
execution of the Linkage Editor. When several
modules with independently assigned origins are
processed by the Linkage Editor, their sequences of
addresses may overlap; two input modules may even
have the same origin.

Each input module contains one or more control
sections. To produce an executable output load
module, the Linkage Editor computes relative virtual
storage addresses for each control section by assigning
an origin to the first control section encountered and

- then assigning addresses, relative to that origin, to all

other control sections of the output load module.
Later, the OS IV/F4 Supervisor uses the value as-
signed as the origin of each control section to relocate
its address-dependent items.

Although addresses in a load module are con-
secutive, they are relative to address O (zero). When
you request execution of this module, the OS IV/F4
Supervisor loads it at a specific virtual storage loca-
tion. The Supervisor increments addresses in the
module by this base address, altering each address
constant in virtual storage.

Resolving external references

The Linkage Editor also resolves external references
in input modules. Your cross references between con-
trol sections in different modules were originally sym-
bolic. They must be resolved relative to addresses
assigned within the load module. The Linkage Editor
calculates the new address of each relocatable ex-
pression in a control section and determines the
assigned origin of thre item to which it refers.

2.3 FUNCTIONS OF THE LINKAGE
EDITOR

Linkage-editor input comprises object modules, load
modules, and/or control statements. The primary
function of the Linkage Editor is to combine these
modules, in accordance with your control statements,
into a single output load module. Although this
linking (combining) of modules is its primary func-
tion, the Linkage Editor also:

e Edits modules by replacing, deleting, rearranging,
and ordering control sections as directed by your
control statements.

e Optionally aligns designated control sections and
named common areas on page boundaries.

e Accepts additional input modules from data sets
other than the primary input data set, either
automatically or as you explicitly request.

e Reserves storage for common control sections
generated by Assembler and FORTRAN language
translators, likewise static external areas generated
by PL/1.

e Computes total length and assigns displacements
for all pseudo registers (external dummy sections).

e Creates overlay programs in structures defined by
your control statements.

e Creates multiple output load modules, if so re-
quested.

e Provides special processing and diagnostic output
options.

Assembler

LINKAGE EDITOR FUNCTIONS & FACILITIES

e Assigns module attributes describing structure,
content, and logical format of your output module.

e Modifies its default address-space storage alloca-
tions in response to your optional parameters for
controlling Linkage Editor processing.

e Stores system status index (SSI) information into
the directory of the output module library, for ease
of record keeping and maintenance.

e Traces the processing history of a program.

e Allows you to lengthen a control section or named
common section without changing source code,
reassembling, or recompiling.

e Allows you to assign an authorization code to a load
module that (a) makes it a restricted resource and
(b) enables it to pass control to other restricted re-
sources.

Each of these functions is described briefly in the
following paragraphs.

Links modules

using the Linkage Editor, you can divide your
program into several modules, each containing one or
more control sections. Your modules can be separate-
ly assembled or compiled. The Linkage Editor com-
bines these modules into one output load module (Fig.
2.7) with contiguous storage addresses. During its
processing, the Linkage Editor resolves references be-
tween these modules and places the output module
into a library (partitioned data set).

source
module

COBOL
compiler

module

FORTRAN

compiler

Assembler '

\ Object

module

Object

module * / module

Object

Linkage
Editor

&
>

Load
module

Fig. 2.7 Linkage Editor processing — module linkage

Edits modules

You can more easily modify your programs via editing
functions of the Linkage Editor. If your program
needs revision, you need modify, then re-compile and

Control
statements

Linkage
Editor

Fig. 2.8 Linkage Editor processing — module editing

re-link only the affected control sections instead of the
entire source module. (With the innovative OS IV/F4
dynamic link facility, you need not relink your entire
program; you need link only those modules which you
have changed.)

You can replace, rename, move or re-order control
sections precisely as you wish. Control sections can
also be automatically replaced by the Linkage Editor.
You can change or delete external symbols by fur-
nishing other control statements, as illustrated in Fig.
2.8

Aligns control sections or common areas on page
boundaries

Control sections or named common areas in the out-
put load module can be aligned on either 2K or 4K
page boundaries (addresses which are integral multi-
ples of 2048 or 4096, respectively). Alignment on page
boundaries enables you to use real storage more ef-
ficiently, and it can appreciably reduce the paging
rates for your job.

Accepts additional input sources

Standard subroutines can be included in your output
module, thus reducing your work in coding programs.
You can specify that a subroutine be included at a
particular time during the processing of your program
by furnishing an appropriate control statement. When
the Linkage Editor encounters this statement, it
retrieves the module containing the subroutine from
the indicated input source and includes it in the out-
put module (Fig. 2.9).

Primary input:

Object
module
A

Control
statements

Linkage

Editor

Additional input’

Object
module
F

Object
module E

Automatic

library
Cand D

N
)

Load
module

oOMMUOwp

Fig. 2.9 Linkage Editor processing — additional input sousces

Symbols still undefined after all input modules have
been processed cause the Automatic Library Call
facility of the Linkage Editor to search for modules
that can resolve these references. When the Linkage
Editor finds a module name matching an unresolved
symbol, it processes the module and includes it into
the output module (Fig. 2.9).

Note: The Linkage Editor also distinguishes a
special type of external reference — the weak
external reference. An unresolved weak ex-
ternal reference does not cause the Linkage
Editor to use the Automatic Library Call
mechanism. Instead, the reference is left
unresolved, but the load module is marked
‘“‘executable.”

Reserves common storage areas

The Linkage Editor processes common control sec-
tions generated by FORTRAN compilers and/or the
Assembler; static external storage areas generated by
the PL/I compiler are processed in the same way.
These common areas are collected by the Linkage
Editor, which provides a single storage area within the
output module.

Processes pseudo registers

Like the external dummy sections of the Assembler
Language, the pseudo-register facility helps you to
generate re-enterable code. The Linkage Editor pro-
cesses pseudo registers by accumulating their total
storage requirements and recording the displacement
of each. During execution, the OS IV/F4 Supervisor
helps your program to dynamically acquire necessary
storage.

Processes prototype control sections

With the Assembler, COBOL, FORTRAN, or PL/I
languages, you can request prototype control sections
(PSECTs) for reentrant programs containing data to
be changed, work data, and address constants. When
you present a prototype control section for linking into
a reentrant load module, the Linkage Editor links it
with all other prototype control sections in the input
stream. If the ‘‘reentrant” attribute is not specified,
PSECTs are processed in the same way as ordinary
control sections (CSECTs).

Each time a reentrant load module is attached or
linked, the OS IV/F4 Supervisor copies its PSECT (if
any) into a Supervisor-allocated work area within your
address space.

Creates overlay programs

To minimize virtual storage requirement, you can
organize your program into an overlay structure by
dividing it into segments according to functional
relationships of the control sections. You can assign
the same virtual storage addresses to two or more
segments that need not be in virtual storage at the
same time.

LINKAGE EDITOR FUNCTIONS & FACILITIES

During execution, you request the OS IV/F4 Super-
visor to load these segments at different times. Your
control statements specify the relationship of segmen-
ts within your overlay structure. You place the seg-
ments of your load module into a library so that the
OS IV/F4 Supervisor can load them separately when
executing the load module.

Creates multiple load modules

The Linkage Editor can also create more than one
load module within a single job step, as directed. Each
load module is placed in the library under a unique
member name, as specified by your control statemen-
ts.

Provides special processing and diagnostic output op-
tions
You can specify special processing options that negate
(a) Automatic Library Call or (b) effects of minor
errors. In addition, the Linkage Editor can produce a
module map or cross-reference table that shows the
structure of control sections in your output module
and indicates how they communicate with one
another, plus a list of your control statements.
Throughout processing, errors and possible error
conditions are logged. Serious errors cause the Link-
age Editor to mark your output module ‘“‘not execut-
able”. Additional diagnostic data is automatically
logged by the Linkage Editor. The data indicates the
disposition of the load module in the output module
library.

Assigns load module attributes

When the Linkage Editor generates a load module, it
places an entry for the module into the directory of the
corresponding library. This entry contains attributes
that describe the structure, content, and logical for-
mat of the load module. The OS IV/F4 Supervisor
uses these attributes to determine how a module is to
be loaded, what it contains, if it is executable, whether
it can be multiply executed without reloading, and if it
can be executed by concurrent tasks. You can ex-
plicitly specify some module attributes; others are
determined by the Linkage Editor based on informa-
tion it gathers during processing.

Allocates user-specified virtual storage areas

You can specify the total amount of virtual storage the
OS IV/F4 Supervisor allocates for a particular execu-
tion of the Linkage Ediicr. also the amount to be used
for the load module buffer.

Stores system status index information

The following information is intended for systems per-
sonnel responsible for maintaining Fujitsu —supplied
load modules. The Linkage Editor uses four bytes in
the library directory entry for each Fujitsu-supplied
load module to store system status index information.
This information can be subsequently used for main-
tenance of the modules. You insert this information

into the directory with a special control statement.

Traces processing history

Tracing the processing history of a program is sim-
plified by the CSECT Identification (IDR) records
created and maintained by the Linkage Editor. A

CSECT Identification record contains data that de-

scribes:

e Language translator (including version level) and
ttanslation date for each control section.

e The most recent processing by the Linkage Editor.

e Any modification made to the executable code of
any control section.

Optionally, you can enter your own data describing
the executable code in one or more control sections.

Lengthens control sections or named common sec-
tions

You can lengthen control sections or named common
sections of a program to add patch space without
changing the source code, reassembling, or recom-
piling.

Added space is defined as binary zeros; you insert it
at the end of a specified control section by using the
EXPAND control statement. You cannot add space to
a private code (PC) or blank common (CM) section.

Assigns an authorization code to output load modules
The authorized program facility (APF) limits the use
of sensitive system and (optionally) user services and
resources to authorized system and user programs.
Program are authorized at the job-step level. For a job
step to gain authorization initially, the first module
you load at its start must be an authorized module,
and you must load the module from an authorized
library. Otherwise, the job step is not authorized ini-
tially and cannot subsequently gain authorization.

For a job step to maintain its authorization, all sub-
sequent modules you invoke during the job step (via
LINK, LOAD, ATTACH, and/or XCTL macro in-
structions) must be loaded from an authorized library.
Otherwise, your job step loses its authorization.

A load module becomes authorized if you assign it
an authorization code during linkage editing, via the
PARM-field parameter AC or the control statement
SETCODE, described in the following sections.

2.4 RELATIONSHIP TO REST OF
OS IV/F4

The Linkage Editor has the same relationship to
OS IV/F4 as any other processing program. You can
execute it either as a job step, a subprogram or a sub-
task. You invoke the Linkage Editor in one of three
ways:

e Asa job step.

e As a subprogram, by issuing a CALL macro in-
struction (after issuing a LOAD macro instruction),
a LINK macro instruction, or an XCTL macro in-
struction.

e As a subtask by issuing an ATTACH macro in-
struction.

You describe some options for the Linkage Editor
and its data sets with job control language statements.
You should not confuse these with Linkage Editor
control statements. Job control statements are pro-
cessed befor the Linkage Editor is executed; Linkage
Editor control statements are processed during its
execution.

Time sharing system (TSS)

When you request linkage editing under the
OS IV/F4 TSS, you typically utilize the Linkage Edi-
tor Prompter, which acts as an interface between you,
the operating system, and the Linkage Editor. Under
TSS, you request execution of the Linkage Editor and
definition of its data sets by a LINK command that
causes the Prompter to be executed. The operands of
your LINK command specify Linkage Editor options
your job requires. Complete procedures for use of the
LINK command are given in the FACOM OS IV/F4
TSS General Reference Manual.

2.5 LANGUAGE DEPENDENCIES

This section defines control section, entry name, ex-
ternal reference, common area and pseudo register
(external dummy section) in terms of the source-
language statements you use to create them. The
languages described are Assembler, SL/100, COBOL,
FORTRAN, and PL/I.

Assembler language and SL/100

In the Assembler or SL/100 languages, you define a
control section by a CSECT or START statement.
Either statement may specify a control section name.
The control section delimiter is an END statement, or
another CSECT or START statement.

You define an entry name with an ENTRY state-
ment.

You define an external refernce to a data area with
an EXTRN statement plus an A-type address con-
stant. You specify an external reference to a control
section or an entry name with a V-type address con-
stant.

You specify a common area with a COM statement.

You define an external dummy section with a DXD
instruction or a DSECT and a Q-type address con-
stant; your subsequent CXD instruction defines a 4-
byte field in which the Linkage Editor accumulates
the length of all external dummy sections in your load
module.

COBOL
The OS IV/F4 COBOL compiler creates at least two
control sections for each compoliation. COBOL con-
trol sections are always named, since you must specify
a name in the PROGRAM-ID paragraph of your
IDENTIFICATION DIVISION.

You define an entry name with an ENTRY state-
ment.

You create an external reference each time you
issue a CALL statement.

The OSIV/F4 COBOL compiler automatically
creates a prototype control section for all modifiable
data items and work areas in each compilation.

FORTRAN

In FORTRAN, you define a control section with a
SUBROUTINE, FUNCTION, or BLOCK DATA
statement that specifies the control section name. If
the first statement in your FORTRAN routine is not
one of these, the compiler assumes it begins the main
routine. Automatically, the statement defines a con-
trol section named MAIN (always assigned to the
main routine of a FORTRAN program) unless you use
a NAME option to assign a name. A control section is
defined by a FORTRAN END statement.

You define an entry name with an ENTRY state-
ment.

You create an external reference by each
EXTERNAL statement or reference to a subroutine
subprogram, function subprogram, or BLOCK
DATA subprogram.

You specify a common area with a COMMON
statement, which may be optionally named.

The OS IV/F4 FORTRAN GE and HE compilers
automatically create prototype control sections for
modifiable data items and work areas.

PL/1

In PL/I, you define a control section by the first
statement label on each external PROCEDURE
statement. If you specify the MAIN option the com-
piler creates the control section which obtains the ad-
dress of the principal entry point. In both cases, a
control section is compiled to provide appropriate

LINKAGE EDITOR FUNCTIONS & FACILITIES

linkage to the library storage management modules.
Control section are also created for each STATIC
EXTERNAL or EXTERNAL declaration with initial
text and for each EXTERNAL file constant.

Note: If labels or variable names used for control
section names exceed seven characters, the
PL/I compiler generates a seven-character
control section name by concatenating the
first four and last three characters in the
label or variable name.

A control section is also created for STATIC
INTERNAL storage; it contains the items declared
with their storage class attributes as well as work areas
and control blocks added by the compiler. This con-
trol section takes its name from the name of the ex-
ternal procedure control section, followed by the letter
A and padded to the left with asterisks to a length of
eight characters.

You define an entry name with each ENTRY
statement.

You define an external reference with an ENTRY
declaration, explicitly or implicitly declared with the
EXTERNAL attribute. Unresolved function referen-
ces or procedure calls imply EXTERNAL scope and
also cause external references to be generated.

You specify a named common area with a STATIC
EXTERNAL or EXTERNAL declaration when the
defined area not contain initial text. When the area is
initialized, a control section is generated. PL/I does
not use blank common areas.

You automatically create a pseudo register with
each CONTROLLED variable, file, and
PROCEDURE or PROCEDURE BEGIN block or
ON unit in the program. The name of the pseudo
register created for a CONTROLLED EXTERNAL
variable is the name of the variable. In all other cases,
the PL/I compiler generates the name of the pseudo
register from the external procedure control section
name followed by a letter (B, C, etc.), padded to the
left with asteriks to a length of eight characters. The
asterisks can be replaced, if necessary, to provide suf-
ficient unique names.

12

CHAPTER 3
INPUTS TO THE LINKAGE
EDITOR

The Linkage Editor accepts input from the primary
input data set and additional data sets defined via
Automatic Library Call or control statements you fur-
nish. Primary and additional input data sets may con-
tain any/all of the following types of data:

e One or more object modules

e One or more load modules

e Control statements

Object modules and control statements may be con-
tained in either sequential or partitioned data sets.

This chapter describes “linking”’ functions of the
Linkage Editor; “‘editing” functions are described in
Chapter S.

3.1 PRIMARY INPUT DATA SET

A primary input data set is required for every Linkage

Editor job step, defined by a DD statement whose

name is ‘““SYSLIN.” The primary input can be:

e A sequential data set

o A member of a partitioned data set

e A concatenation of sequential data sets and/or
members of partitioned data sets

The primary input data set contains object modules
and/or control statements. The modules and control
statements are processed sequentially, and their order
determines the processing sequence during a given
execution. However, the order of the control sections
after processing does not necessarily reflect the order
in which they appeared in the input.

3.1.1 Object Module Input

The primary input to the Linkage Editor may consist
solely of one or more object modules. The rest of this
section discusses your options for furnishing object
module inputs: from cards, as a member of a par-
titioned data set, passed from a previous job step, or
created in a separate job.

From cards

Each card deck is treated as a sequential data set. You
place your cards in the input stream after a DD*
statement as follows:

//SYSLIN DD *
Object Deck A

Object Deck B

/*

If you furnish card decks in addition to modules input
from other source, your JCL statements should be as
follows:

//SYSLIN DD DSNAME=INPUT....
// DD *

Object Deck A

Object Deck B

/%

By omitting the DD name from the second DD
statement, card input is concatenated to the INPUT
data set described on the SYSLIN DD statement.

As a member of a partitioned data set

You furnish an object module from a partitioned data
set to the Linkage Editor by specifying its data set
name and member name on your SYSLIN DD
statement. In the following example, you designate
the member named TAXCOMP in the object-module
library LIBROUT as the primary input:

//SYSLIN DD DSNAME=LIBROUT(TAXCOMP)....

The library member is processed as a sequential data
set.

Members of partitioned data sets can be con-
catenated with other input data sets, as follows:

//SYSLIN DD DSNAME=O0BILIB,
// DISP=(OLD, KEEP)....
// DD DSNAME=LIBROUT(TAXCOMP)....

Library member TAXCOMP is concatenated to data
set OBJLIB; both must contain object modules, since
they are the primary input.

Passed from a previous job step

You can pass an object module from a previous job
step to a linkage edit step in the same job; output
from the compiler becomes direct input to the Link-
age Editor. In the following example, you pass an ob-
ject module created in a previous job step (Step A) to
the Linkage Editor (Step B):

Step A:

//SYSGO DD DSNAME=&&OBIJECT,
DISP=(NEW, PASS),...

Step B:

//SYSLIN DD DSNAME=&&OBJECT,

DISP=(OLD, DELETE)

Your data set name &&OBJECT identifies your ob-
ject modules as the output of the language processor
on the SYSGO DD statement, and as the primary in-
put to the Linkage Editor on the SYSLIN DD
statement.

Note: The double ampersand (&&) in the data set
name defines a temporary data set, which
exists for the duration of your job and is
automatically deleted at the end of the job. If
you wish to retain the data set longer than
one job, the double ampersand must not be
used.

You can also use the method of the preceding
example to accumulate several modules from previous
steps. If you use the same data set for the output of
each language processor, your SYSLIN DD statement
can retrieve all object modules as follows:

Step A:

//SYSGO DD DSNAME=&&OBJMOD,
// DISP=(NEW, PASS)...
Step B:

//SYSPUNCH DD DSNAME=&&OBIMOD,
// DISP=(MOD, PASS)

Step C:

//SYSLIN DD DSNAME=&&OBIJMOD,
// DISP=(OLD, DELETE)

The two object modules from.Step A and Step B are
accumulated consecutively in the same sequential
data set, &&OBIMOD. The SYSLIN DD statement
in Step C causes both object modules to be used as the
primary input to the Linkage Editor.

You can use another method to-accomplish pur-
pose: concatenation of these data sets. If the object
modules were created in previous job steps with dif-
ferent member names, you can use the following JCL
statements:

INPUTS TO THE LINKAGE EDITOR

Step A:

//SYSGO DD DSNAME=&&OBILIB(MODA),
// DISP=(NEW, PASS)....

Step B:

//SYSPUNCH DD DSNAME=&&OBILIB(MODB),
// DISP=(MOD, PASS),...

Step C:

//SYSLIN DD DSNAME=&&OBJILIB(MODA),
// DISP=(OLD, DELETE)

// DD DSNAME=&&OBILIB(MODB),
// DISP=(OLD, DELETX)

You store the object modules created in Step A and
Step B into a partitioned data set with different mem-
ber names. You then concatenate the two members in
Step C as primary input.

Created in a separate job

If your only input to the Linkage Editor is an object
module from a previous job, your SYSLIN DD
statement contains all information necessary to locate
the object module, as follows:

//SYSLIN DD DSNAME=OBIJECT,

// DISP=(OLD, DELETE),
// UNIT=SYSDA,

// VOLUME=SER=LIB613

3.1.2 Control Statement Input

Your primary input data set may consist solely of con-
trol statements. In this case, you can specify your in-
put modules by INCLUDE control statements. Your
control statements may be either placed in the input
stream or stored in a permanent data set.

In the following example, your primary input con-
sists of control statements in the input stream:

//SYSLIN DD *
Linkage Editor control statements
/*

In the next example, your primary input consists of
control statements stored in the member INCLUDES
in the partitioned data set CTLSTMTS:

//SYSLIN DD DSNAME=CTLSTMTS(INCLUDES),
// DISP=(OLD, KEEP)....

In either case, your conu.! statements can be any of
those described in Chapter 9 as long as you follow the
rules given there.

3.1.3 Input of Both Modules and Statements

Your primary input to the Linkage Editor can com-

prise an intermixture of object modules and control
statements which may be in the same or different data
sets. If your modules and statements are in the same
data set, you describe this data set on your SYSLIN
DD statement just like any other data set. If your
modules and statements are in different data sets, you
must concatenate these data sets.

Control statements in the input stream

you can place your control statements in the input
stream and concatenate them to an object-module
data set as follows:

//SYSLIN DD DSNAME=&&OBIJECT,...
// DD *

Linkage Editor control statements

/%

Another method of handling control statements in the
input stream is to use the DDNAME parameter, as
follows:

//SYSLIN DD DSNAME=&&OBIJECT,...
// DD DDNAME=SYSIN
//SYSIN DD *

Linkage Editor control statements

/%

Note: Fujitsu-supplied cataloged procedures for
linkage editing use DDNAME=SYSIN for
the SYSLIN DD statement, to allow you to
specify the required primary input data set.

Control statements in a separate data set

You can concatenate a separate data set containing
control statements to a data set containing an object
module. It is often good practice to store control
statements for a frequently-used procedure in a per-
manent DASD data set. (For example, a complex
overlay structure or a series of INCLUDE statements.)
In the following example, CTLSTMTS is a PDS whose
members contain Linkage Editor control statements.
One of the members is concatenated to data set
&&OBIJECT:

//SYSLIN DD DSNAME=&&OBIJECT,

// DISP=(OLD, DELETE)....

1/ DD DSNAME=CTLSTMTS(OVLY),
// DISP=(OLD, KEEP),...

3.2 AUTOMATIC LIBRARY CALL

The Autmatic Library Call feature resolves external
references remaining unresolved after primary input
processing. Unresolved external references found in
modules from additional data sources are also
processed by this mechanism.

Note: The following discussion of automatic library
call does not apply to unresolved weak ex-
ternal references which are left unresolved.

Automatic Library Call comprises a search of the
directory of the designated library for an entry that
matches each unresolved external reference. If a
match is found, the entire member is processed as in-
put to the Linkage Editor.

Automatic Library Call can resolve an external
reference when the following conditions exist; the ex-
ternal reference must be (1) a member name or alias of
a module in the library and (2) defined as an external
name in the ESD of the module with that name. If the
unresolved external reference is a member name or an
alias in the library, but is not an external name in that
member, the member is processed but the external
reference remains unresolved unless subsequently
defined.

Automatic Library Call searches the library defined
by your SYSLIB DD statement, which contains either
(1) object modules and control statements or (2) load
modules; it must not contain both. '

You can request that modules from libraries other
than the SYSLIB library be searched with Automatic
Library Call by furnishing a LIBRARY control .
statement. The Linkage Editor searches each such li-
brary for member names matching specific external
references unresolved at the end of input processing.
If any unresolved references are found in the modules
located by Automatic Library Call, they are resolved
by another search of the library. Any external refer-
ences not specified on a LIBRARY control statement
are resolved from the library defined on the SYSLIB
DD statement.

You can use the LIBRARY statement to negate
Automatic Library Call for selected external reference
unresolved after input processing. You can use the
NCAL option on the EXEC statement to negate
Automatic Library Call for all external references
unresolved after input processing.

3.2.1 SYSLIB DD Statement

If you wish to utilize Automatic Library Call, you
must name your library in a DD statement whose
name field is “SYSLIB.” Your library may be a
system call library or a private call library. Call
libraries may be concatenated. "

System call library
Most major Fujitsu processing programs have their
own automatic call libraries (Table. 3.1). You must ex-
plicitly or implicitly define each such library when you
wish to link-edit an object module produced by that
processor.

A system call library may contain 1/0, data con-
version, and/or other special routines needed to com-
plete your module. The corresponding processor

Table 3.1 System automatic call libraries

Processing program Library name

ASSEMBLER (none)
COBOL SYS1.COBLIB
FORTRAN GE SYS1. FORTLIB

FORTRAN HE SYS1. FORTLIB
PL/I SYS1.PLIXLIB
SL/100 (none)
Sort/merge SYS1.SORTLIB

creates external references for these special routines,
and the Linkage Editor resolves reference from the
appropriate call library.

In the following example, a FORTRAN object
module created in Step A is to be link edited in Step
B, and the FORTRAN automatic call library is used
to resolve external references:

Step A:

//SYSOBJ DD DSNAME=&&OBIMOD,

// DISP=(NEW, PASS),..

Step B:

//SYSLIN DD DSNAME=&&OBIMOD,

// DISP=(OLD, DELETE)
//SYSLIB DD DSNAME=SYS1. FORTLIB,
// DISP=SHR

The disposition of “SHli” on your SYSLIB DD state-
ment means that other tasks concurrently executing
with Step B may also use SYS1. FORTLIB.

Private call libraries

The SYSLIB DD statement can also describe any
private library of yours. In this case, Automatic
Library Call searches your private library for
unresolved external references. In the following exam-
ple, you request that unresolved external references be
resolved from your private library named PVTPROG:

//SYSLIB DD DSNAME=PVTPROG,

// DISP=SHR, UNIT=SYSDA,

// VOLUME=SER=PVT002
Concatenation of call libraries

System call libraries and private call libraries may be
concatenated to one another, in which case they must
all be either object module libraries or load module
libraries but not a mixture of the two.

If you wish to link-edit object modules from dif-
ferent system processors to form one load module, you
must define all relevant call libraries by concatenating
them on your SYSLIB DD statement. In the following
example, a FORTRAN object module and a COBOL
object module are to be link edited; the two system
call libraries are concatenated as follows:

//SYSLIB DD DSNAME=SYS1. FORTLIB,
// DISP=SHR
// DD DSNAME=SYS1. COBLIB,

INPUTS TO THE LINKAGE EDITOR
/7 DISP=SHR

You can concatenate a system call library with a
private call library in this way. For example, by ad-
ding the following statement to the two in the preced-
ing example, your (uncataloged) private call library is
concatenated to two system call libraries:

// DD DSNAME=PVTPROG,
// DISP=SHR, UNIT=SYSDA,
// VOLUME=SER=PVT002

Any external references not resolved from the two
system libraries are resolved from your private library.

3.2.2 LIBRARY Control Statement

You can use a LIBRARY control statement to direct
Automatic Library Call to a library other than that
specified in the SYSLIB DD statement. Only external
references listed on the LIBRARY statement are
resolved in this way. All other unresolved external
references are resolved from the library named on
your SYSLIB DD statement.

You can use a LIBRARY statement to specify ex-
ternal references that are not to be resolved by
Automatic Library Call. The LIBRARY statement
specifies the duration of the nonresolution: either
during the current Linkage Editor step, called restric-
ted no-call; or during any subsequent Linkage Editor
step, called never-call.

Examples of each use of the LIBRARY statement
follow;a description of its format appears in Chapter
9.

Additional call libraries

If you wish to use one or more additional libraries to
resolve specific references, your LIBRARY statement
points to the DD statement that describes the library.
Your LIBRARY statement also defines which ex-
ternal references are to be resolved from the library,
i. e., names of members to be used. If an unresolved
external reference is not named in the specified
library, the reference remains unresolved unless sub-
sequently defined.

For example, you may have rewritten two modules
(DATE and TIME) from a system call library, which
you wish to test with their calling modules before
replacing the old modules. Because Automatic Library
Call would otherwise seai.* he system call library
(which is needed for other modules), you could furnish
a LIBRARY statement ¢ -~ follows:

//SYSLIB DD DSNAME=SYSI,
// COBLIB, DISP=SHR
//TESTLIB DD DSNAME=TEST,
1/ DISP=(OLD, KEEP),...
//SYSLIN DD DSNAME=ACCTROUT,...
// DD *

LIBRARY TESTLIB(DATE, TIME)

/*

Two external references, DATE and TIME, are
resolved from the library described on the TESTLIB
DD statement. All other unresolved external referenc-
es are resolved from the library described on the
SYSL_IB DD statement.

Restricted No-Call function

You can use a LIBRARY statement to specify ex-
ternal references in your output module for which no
libraries should be searched during the correct step,
by specifying these external references in parentheses
without. specifying a DDname. These references re-
main unresolved, but the Linkage Editor marks the
module “executable.”

For example your program might contain referenc-
es to two large modules that are automatically called
from a library. One of the modules has been tested
and corrected, the other is to be tested in this job step.
Rather than execute the tested module again, you can
use the restricted no-call function to prevent
Automatic Library Call from processing the module
as follows:

// EXEC PGM=JQAL, PARM=LET
//SYSLIB DD DSNAME=PVTPROG,
// DISP=SHR, UNIT=SYSDA
// VOLUME=SER=PVT002
//SYSLIN DD DSNAME=&&PAYROL,...
/! DD *

LIBRARY (OVERTIME)
/*

As a result, the external reference to OVERTIME is
not resolved by Automatic Library Call.

Primary input
data set PROG

N —

Include LIB1 (MEM1)

Fig. 3.1 Processing of one INCLUDE statement

T T

3.2.3 Never-Call (NCAL) Option

When you specify the NCAL option in your EXEC-
statement PARM parameter, Automatic Library Call
is entirely omitted. NCAL is similar to the restricted
no-call feature of the LIBRARY statement, except
that NCAL negates Automatic Library Call for all
unreSolved external references while restricted no-call
negates Automatic Library Call for selected unre-
solved external references. With NCAL, all external
references unresolved after input processing remain
unresolved. However, the module is marked
“‘executable.”

3.3 INCLUDED DATA SETS

Your INCLUDE control statements request the Link-
age Editor to use additional data sets as input. These
can be (a) sequential data sets containing object mod-
ules and/or control statements, (b) members of par-
titioned data sets containing object modules and /or
control statements, or (c) load modules.

Each INCLUDE statement points to a DD state-
ment naming the data set furnishing additional input.
If your DD statement describes a partitioned data set,
your INCLUDE statement must also furnish the name
of each member to be used. See Chapter 9 for a
detailed description of the format of the INCLUDE
statement.

When the Linkage Editor encounters an INCLUDE
control statement it processes the module or modules
indicated. In Fig. 3.1, the primary input is a sequen-
tial data set named PROG which contains an
INCLUDE statement. After processing the included

Library LIB1
member MEM1

INPUTS TO THE LINKAGE EDITOR

Primary input Sequential
data set MAIN data set PROG
P U W Lo—tL LAl Library LIB1
member MEM1
Include PROG Include LIB1 (MEM1) ———
not
processed|
]
Fig. 3.2 Processing several INCLUDE statements
data set, the Linkage Editor processes the next Including library members

primary input item. The arrows indicate the flow of
processing.

If an included data set also contains an INCLUDE
statement, this specified module is also processed.
However, any data following the INCLUDE statement
are not processed.

If the PROG data set shown in Fig. 3.1 is itself in-
cluded, any data following the INCLUDE statement
for LIB 1 are not processed. Fig. 3.2 shows the flow of
processing for this example.

Including sequential data sets

You can specify sequential data sets containing object
modules and/or control statements on an INCLUDE
control statement. In the following example, an
INCLUDE statement points to DD statements
describing two sequential data sets used as additional
input:

//ACCOUNTS DD DSNAME=ACCTROUT,

// DISP=(OLD, KEEP)
//INVENTRY DD DSNAME=INVENTRY,
// DISP=(OLD, KEEP),...
//SYSLIN DD DSNAME=QTREND....
// DD *

INCLUDE ACCOUNTS, INVENTRY

/*

Each DD statement could have been named on a
separate INCLUDE statement; with either method
you must specify a DD statement for each data set to
be included.

Another method of doing the preceding example is
given in “Including Concatenated Data Sets” below.

You can specify one or more members of a partitioned
data set via an INCLUDE control statement. You
must specify each member name on your INCLUDE
statement, not on the DD statement itself.

In the following example, one member name is
specified on the INCLUDE statement:

//PAYROLL DD DSNAME=&&PAYROUTS,

// DISP=(OLD, KEEP)....
//SYSLIN DD DSNAME=&&CHECKS,
// DISP=(OLD, DELETE)
// DD *

INCLUDE PAYROLL (FICA)
/%

If you wish to include more than one member of a par-
titioned data set, your INCLUDE statement specifies
all members to be used from each library.

In the following example, an INCLUDE statement
specifies two members from each of two libraries to be
used as additional input:

//PAYROLL DD DSNAME=PAYROUTS,

// DisP=(OLD, KEEP)....
//ATTEND DD DSNA.vi" =ATTROUTS,
// DISP=(OLD, KEEP)....
//SYSLIN DD °

INCLUDE PAYROLL\«iCA, TAX),

ATTEND(ABSENCE, OVERTIME)
/*

Including concatenated data sets

You can designate several data sets with a single
INCLUDE statement pointing to one DD statement;
additional data sets are then concatenated to the data

an

set described on the specified DD statement. When
data sets are concatenated for this purpose, their
characteristics must be identical: format, record
length, block size, etc.

In the following example, you concatenate two
sequential data sets with one INCLUDE statement:

//CONCAT DD DSNAME=ACCTROUT,
// DISP=(OLD, KEEP),..
/7 DD DSNAME=INVENTRY,

/7 DISP=(OLD, KEEP),...

//SYSLIN DD DSNAME=SALES,
/7 DISP=OLD,..
// DD *
INCLUDE CONCAT
/%

When the Linkage Editor encounters the INCLUDE
statement, it searches the two libraries PAYROUTS
and ATTROUTS for the four members, which are
then processed as input.

CHAPTER 4

OUTPUTS FROM THE LINKAGE

EDITOR

The Linkage Editor produces two types of output: a
load module and diagnostic information. The Linkage
Editor always stores the load module into a par-
titioned data set. Error and/or warning messages,
module disposition data, and optional diagnostic out-
put are written to the diagnostic output data set.

41 OUTPUT LOAD MODULE

The Linkage Editor produces one or more load mod-
ules from its input. Multiple load module processing
is a feature which you request when you create more
than one load module in a single linkage-edit job step.

Whether the Linkage Editor produces one or more
load modules, it performs the following steps:

e Stores the load module(s) into a partitioned data set
called the output module library.

e Assigns an entry point to each load module if you
have not assigned one.

e Assigns each output load module an authorization
code.

o Reserves and collects common areas, as specified in
the source-language program.

e Accumulates total length and individual displace-
ments for each pseudo register (external dummy
section).

e Deletes any zero-length private code (unnamed)
control sections.

4.1.1 Output Module Library

This library is a partitioned data set that must be
described by a DD statement named “SYSLMOD.”
The data set name of the library is also specified on
this DD statement. The data set can be temporary
(defined with a double ampersand) or permanent
(defined without a double ampersand).

Note: If the data set name is either SYS1. LINKLIB
or SYS1. SVCLIB you should request
reloading of the OS IV/F4 Supervisor after
Linkage Editor processing is complete, to in-

sure that the corresponding Data Extent
Block (DEB) is updated to reflect additional
extents if secondary allocation of direct-
access space was required.

Whether your data set is permanent or temporary,
you should assign each load module a unique member
name. You can assign aliases to an output module if
you want it to be identified by more than one name or
entered for execution at several different points. Each
member name and alias in a load module library must
be unique. The member name and aliases for each
load module appear as separate entries in the library
directory, along with the module attributes.

Member name
You can specify the member name for your output
load module on your SYSLMOD DD statement, in a
NAME statement, or both. If you fail to specify a
member name, the default is “TEMPNAME.”

If you name the member on your SYSLMOD DD
statement, you should supply this name in parenthe-
ses immediately after the library name:

//SYSLMOD DD DSNAME=MATHLIB(SQDEYV),
// DISP=(NEW, KEEP),

£/ UNIT=SYSDA, SPACE=(TRK,
// (100, 10, 1)),

// VOLUME=SER=LIB002

The member name SQDEV is assigned to the load
module stored into the new library named MATHLIB.

If you do not name the member on your SYSLMOD
DD statement, you should furnish a NAME control
statement, for example:

//SYSLMOD DD DSNAME=MATHLIB,

// L "SP=(NEW, KEEP)
//SYSLIN DD DSNAME=&&OBIJECT,
// DISP=(OLD, DELETE)
// DD *

NAME SQDEV
/*

The member name SQDEYV is assigned to the load
module stored into the MATHLIB library.

If both your SYSLMOD DD statement and your
NAME control statement specify a member name, the
names should be identical; if different, the NAME
control statement takes precedence.

Note: If you request a “link-edit and go”’ job where
the program name in the EXEC statement of
your ‘‘go”’ step contains a backward reference
to the SYSLMOD DD statement of your link-
edit step, you must ensure that the member
name specified in the SYSLMOD DD
statement is valid and is not overridden by a
NAME control statement.

For example:

//LKED EXEC PGM=JQAL

//SYSLMOD DD DSNAME=&&LOADST(GO),

// DISP=(NEW, PASS)....
//SYSLIN DD DSNAME=&&OBIJECT,
// DISP=(OLD, DELETE)
// DD *

NAME READ
/%

//GO EXEC PGM=*, LKED. SYSLMOD

The EXEC statement of the GO step specifies that the
module to be executed is described in the LKED step
in the SYSLMOD statement. The system tries to
locate a member named “GO’’; however, the output
module was assigned the name “READ,” and the
“GO"” step fails to execute correctly.

You can replace an output module with an iden-
tically-named member in either of two ways. Your
SYSLMOD DD statement can name an existing data
set as follows:

//SYSLMOD DD DSNAME=MATHLIB(SQDEV),
// DISP=(OLD, KEEP),...

Or, your NAME control statement can specify the
replace function as follows:

NAME SQDEV(R)

In either case, the member named SQDEYV is replaced
with a new module of the same name.

Alias names

You can assign an output module at most 64 aliases,
using ALIAS control statements. (With the AM256
option on your EXEC statement, you can raise this
limit to 256). When you refer to a module by an alias,
the OS IV/F4 Supervisor begins execution at the ex-
ternal name specified by the alias. If the name
specified by the ALIAS statement is not an external
symbol within the module, the Supervisor begins

execution at the main entry point.

For example, you may wish to assign two additional
entry points, CODE1 and CODE2, to a module which
has been written and tested using both ROUTONE
and OUT1 to refer to its main entry point. Rather
than correct calling modules, you can assign an alter-
nate library member name (alias) as follows:

//SYSLMOD DD DSNAME=PVTLIB,

// DISP=OLD, UNIT=SYSDA,
// VOLUME=SER=LIB001
//SYSLIN DD DSNAME=&&OBIJECT,
// DISP=(OLD, DELETE)
// DD *
ALIAS CODE1, CODE2, ROUTONE
NAME ROUT1
/%

The names CODE1, CODE2, and ROUTONE appear
in the library directory along with ROUT1, the mem-
ber name. Because CODE1 and CODE2 are defined
as external symbols within the output module, you can
request that execution begin at either of these second-
ary entry points. Control may be passed to the main
entry point by using either the member name ROUT1
or the alias ROUTONE.

4.1.2 Entry Point

Every load module must have one main entry point,

which you may specify in one of two ways:

e Ona Linkage Editor ENTRY control statement.

e On an Assembler-language END statement, the last
statement in each Assembler source program. The
Assembler produces an EOM card for each object
module. This object deck defines an entry point
only if the source-language END statement con-
tained one.

From its input, the Linkage Editor selects the entry
point for the load module as follows:

1. From the first ENTRY statement in the input.

2. If there is no ENTRY statement in the input, from
the first Assembler-produced END statement that
specifies an entry point.

3. Otherwise the first byte of the first control section of
the load module is used as the entry point.

In general, you should explicitly specify an entry
point since you cannot always predict which control
section will be first in the output module.

You may specify entry points other than the main
entry point with an ALIAS control statement. The
symbol specified on the ALIAS statement must be
defined as an external symbol in the load module. Any
reference to that symbol causes execution of the
module to begin at that point instead of the main en-
try point.

In the following example, assume you have defined
CDCHECK, CODE]1, and CODE2 as external sym-

bols in your output module:

//SYSLIN DD DSNAME=&&OBJECT,
// DISP=(OLD, DELETE)
/! DD *

ENTRY CDCHECK

ALIAS CODE1, CODE2, ROUTONE

NAME ROUT1
I

As a result of the preceding control statements,
CDCHECK is the main entry point; CODE1 and
CODE2 are additional entry points. Any reference to
ROUTONE or ROUT]1 causes execution to begin at
CDCHECK; any reference to CODE1 and CODE2
causes execution to begin at these points.

Authorization code

As you link edit each load module, the Linkage Editor
assigns an authorization code that determines wheth-
er or not your module is allowed to use restricted
system services and resources. A non-zero code allows
the module to use restricted services and resources, a
zero code disallows such usage. The authorization
code becomes part of the directory entry for your
module in the corresponding library.

4.1.3 Common Areas

In the FORTRAN, Assembler, SL/100, and PL/I
languages, you can create control sections containing
no data or instructions. These control sections are
called common or static external areas; they typically
are used as communication regions for different parts
of a program or to reserve virtual storage areas for
data supplied at execution time. These common areas
are either named or unnamed (blank common).

The Linkage Editor collects common areas; if two
or more blank common areas are found in the input,
the largest is reserved in the output module, and all
references to ‘“‘blank common’ refer to the one re-
tained. If you furnish two or more common areas with
the same name, the largest of these identically-named
areas is reserved in the output module; all references
to common areas with this name use this area.

If a control section generated from a BLOCK
DATA subprogram in FORTRAN and a named com-
mon area have the same name, the control section
must be at least as long as the named common area. If
the control section is smaller than the named common
area, a diagnostic message is issued. The control sec-
tion is regarded as the largest of the common areas
processed with that name. All subsequent control sec-
tions and/or common areas with the same name are
ignored.

4.1.4 Pseudo Registers

With PL/I you can use pseudo registers to define

OUTPUTS FROM THE LINKAGE EDITOR

storage to be allocated dynamically during execution.
External dummy sections generated by the OS IV/F4
Assembler and SL/100 compiler correspond to PL/1
pseudo registers.

The Linkage Editor accumulates the total length of
all pseudo registers and records their displacements.
If two or more pseudo registers have the same name,
the one with the longest length and most restrictive
alignment will be retained. All other pseudo registers
with the same name will be ignored; all references to
identically-named pseudo registers will refer to the
one retained.

4.1.5 Multiple Load Modules

The Linkage Editor can produce several load modules
in a single job step. You furnish NAME control
statements as delimiters for these load modules. Each
load module has a unique name and is stored into the
same library as a separate member. Options and at-
tributes you specify in your EXEC statement for that
job apply to all new load modules. If the Linkage
Editor terminates abnormally, none of the modules
yet to be processed in the job step is processed or
placed in the library. Load modules processed before
abnormal termination remain successfully stored in
the library.

You should not specify a member name on your
SYSLMOD DD statement when creating multiple
load modules.

In the following example, you create two load
modules in one Linkage Editor job step:

//LKED EXEC PGM=JQAL,
// PARM='MAP, LIST’

//SYSLMOD DD DSNAME=PAYROLL(OVERTIME),
// DISP=O0OLD, UNIT=SYSDA,
// VOLUME=SER=LIB002

//MODTWO DD DSNAME=&&OBJECT,

// DISP=(OLD, DELETE)
//SYSLIN DD DSNAME=&&OBIJECT(A),
// DISP=(OLD, DELETE)
// DD *

ENTRY INIT

NAME OVERTIME

INCLUDE MODTWO 2}

ENTRY HSKEEP

NAME VACATION
/*

The first load module is produced from the object
module in the data set defined on the SYSLIN DD
statement. The main entry point is INIT and the
member name is OVERTIME.

The second load module is produced from the ob-
ject module specified by the INCLUDE statement.

The main entry point is HSKEEP and the member
name is VACATION.

Both load modules are stored in the PAYROLL
library defined on the SYSLMOD statement. Note
that the member name specified on the SYSLMOD
statement is identical to the name given the first load
module.

Parameters on your EXEC card specify that you
wish a module map and control statement listing for
each load module. These maps and listings are
discussed in detail in Section 4.2.

42 DIAGNOSTIC OUTPUTS

The Linkage Editor creates information and
diagnostic information which it directs to the data set
defined by your SYSPRINT DD statement. In ad-
dition to routine messages generated by the Linkage
Editor, you can request various optional outputs.

4.2.1 Diagnostic Messages

The Linkage Editor generates two types of messages
module disposition messages, and error/warning
messages. Descriptions of the latter can be found in
Appendix B.

Module disposition messages
Several module disposition messages are printed for
each load module. The first indicates the options and
attributes you have specified for each module, in-
dicated by A in Figs. 4.1 and 4.3. Invalid options or
attributes are replaced by “INVALID” in the output,
and the Linkage Editor also notifies you whenever it
finds the attributes you specify are incompatible.
Disposition messages describe processing of each
load module, indicated by G in Figs. 4.1 and 4.3.
These messages are preceded by several asterisks:

**%%x% member name NOW ADDED TO DATA SET.
**k%k%% member name NOW REPLACED IN DATA SET.
*x%%%% member name DOES NOT EXIST BUT HAS BEEN
ADDED TO THE DATA SET.
*%kk%% 3lias name IS AN ALIAS FOR THIS MEMBER.
xxxx MODULE HAS BEEN MARKED NOT
EXECUTABLE.

In addition, the Linkage Editor issues module-dis-
position messages when you specify re-enterable
(RENT), reusable (REUS), or refreshable (REFR)
attribute. Each message indicates whether the load
module has been marked ‘“re-enterable” or ‘‘not
reenterable’’, ‘‘reusable’’ or ‘‘not reusable,”
“refreshable’” or ‘“‘not refreshable,” depending on
option(s) used. See ‘‘Reusability Attributes” and
“Refreshable Attribute” in Chapter 8 for more in-
formation on these options.

The message consists of several asterisks and

“MODULE HAS BEEN MARKED” followed by at-
tribute(s) you have assigned. You are responsible for
verifying that your module actually is re-enterable,
reusable, and/or refreshable. In particular, the
OS IV/F4 Supervisor may mishandle a loaded copy
of your module if the latter does not behave according
to attributes you assigned while link-editing it.

The following messages are examples of some
possible combinations:

**s%++ MODULE HAS BEEN MARKED REFRESHABLE.

##¢+x¢+ MODULE HAS BEEN MARKED NOT
REFRESHABLE.

«++#s+ MODULE HAS BEEN MARKED REUSABLE AND
NOT REFRESHABLE.

s#++++ MODULE HAS BEEN MARKED REUSABLE AND
REFRESHABLE.

When an error causes the Linkage Editor to mark a
module ‘“‘not executable,” only the MODULE HAS
BEEN MARKED NOT EXECUTABLE message ap-
pears; no attribute messages are generated.

Error/warning messages

If an error is encountered during linkage editing, the

message code for that error is printed together with

the erroneous symbol or record. (This is indicated by

C in Figs. 4.1 and 4.3.) After processing is completed,

the diagnostic message associated with that code is

printed. (This is indicated by H in Figs. 4.1 and 4.3.)

Error/warning messages have the following format:

JQAOmms message text
where JQAO indicates a Linkage Editor message;

mm is the message number; s is the severity code, and

may be one of the following values:

e Condition may cause one or more errors during
execution of the output module.

A module map or cross-reference table is pro-
duced if specified by the programmer.

e Execution of the output module may fail. Process-
ing continues. When possible, a module map
and/or cross-reference table is produced if you have
requested them. The output module is marked “not
executable” unless the LET option is specified on
the EXEC statement.

e Execution of the output module is impossible.
Processing continues. When possible, a module
map and/or cross-reference table is produced if you
have requested them. The output module is uncon-
ditionally marked ‘‘not executable.”

e Error condition precluding recovery. Processing ter-
minates at once. The only output are diagnostic
messages.

A special severity code of zero is generated for
each control statement printed as a result of the
LIST option. Severity zero does not indicate an
error or warning condition. The standard severity-
zero message code is “JQA0000”.

The Linkage Editor multiples its highest severity
code by 4 to create a return code in register 15 at the
end of processing. You can test this return code to

determine whether or not processing should
continue, as described in Section 8.2.6.

The message text contains combinations of the

following:

e Message classification (error or warning)

e Cause of error

o Identification of the symbol, segment number (for
an overlay structure), or input item to which the
message applies

e Instruction for your corrective/interpretive actions

e Action taken by the Linkage Editor

Optionally, you can direct error/warning messages
to a separate output data set by specifying “TERM”
in the PARM field of your EXEC statement and in-
cluding a SYSTERM DD statement. This separate
SYSTERM data set contains only numbered
error/warning messages. It supplements the
SYSPRINT output data set, which can also include
module disposition messages and optional diagnostic
output. If you request SYSTERM output, the num-
bered error/warning messages appear in both data
sets.

Appendix B contains a complete list of error/war-
ning messages for the Linkage Editor and Loader,
together with full explanations of probable causes of
errors and how you should correct them.

Sample diagnostic output

Fig. 4.1 shows sample diagnostic outputs from the

Linkage Editor. No optional outputs were requested

other than the list of control statements. The leftmost

letters indicate the disposition and error/warning
messages as follows:

e A is a module disposition message that lists the
options and attributes you have specified. Addi-
tional information is printed indicating all explicit
and default options.

e B is a list of control statements you furnished, each
preceded by “JQA0000”".

OUTPUTS FROM THE LINKAGE EDITOR

e C is a list of error/warning messages, in this
case citing problematical unresolved symbols
(STRINGP and OUTPROCI1) prefixed by
“JQA0461”.

e G is a module disposition message (****) that in-
dicates that the new load module (ACCUM) has
been added to the output data set, plus its author-
ization code (0).

e H s the diagnostic message directory that contains
the text of the error codes listed in item C.

4.2.2 Optional Outputs

In addition to error/warning and disposition
messages, you can ask the Linkage Editor to produce
optional outputs such as a listing of your control
statements, a module map, and a cross-reference
table.

Control statement listing

If you specify the LIST option on your EXEC
statement, the Linkage Editor creates a listing of your
control statements. For each control statement, the
listing contains a special message code (JQA0000)
followed by the statement itself. Item B in Figs. 4.1
and 4.3 lists the NAME control statement you have
furnished (only control statement in these examples).

Module map

If you specify the MAP option on your EXEC
statement, the Linkage Editor prints a map of the out-
put load module, showing all control sections in the
output module and all entry names in each control
section. Named common areas are listed as control
sections.

For each control section, the module map indicates
its origin (relative to zero) and length in bytes (in
hexadecimal notation) as shown in Fig. 4.2, item D.
For each entry name in each control section, the
module map indicates the location at which the name

(V-02/L-02) OS IV/F4 LINKAGE EDITOR OPTIONS SPECIFIED LIST,XREF,NCAL

A
DEFAULT OPTION(S) USED-SIZE=(120832,36864)

B JQAO000 NAME ACCUM
c JQA0461 STRNGP

JOQA0461 OUTPROC1
G «»»+ACCUM NOW ADDED TO DATA SET

AUTHORIZATION CODE IS 0.

DIAGNOSTIC MESSAGE DIRECTORY

H

JQA0451-W WARNING: SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCENCAL
WAS SPECIFIED OR MARKED FOR RESTRICTED NO-CALL OR NEVERCALL

Fig. 4.1 Diagnostic messages issued by the Linkage Editor

is defined.

If your module is not in an overlay structure, the
control sections are arranged in ascending order ac-
cording to their origins. Each entry name is listed
within the control section in which it is defined.

If your module is an overlay structure, its control
sections are arranged by segment, listed as they ap-
pear in the overlay structure: top to bottom, left to
right, and region by region. Within each segment, the
control sections and their corresponding entry names
are listed in ascending order according to their
assigned origins. The number of the segment in which
they appear is also listed.

In a module map, any of the following is prefixed by
the currency symbols ($):

e Blank common area,

o Private code (unnamed control section).

e For overlay programs, the segment table and each
entry table.

If your load module does not have an origin of zero,
the Linkage Editor generates a one-byte private-code
control section as its first text record. This private
code is deleted in any subsequent reprocessing of the
load module by the Linkage Editor.

Each control section obtained from a library via
Automatic Library Call is identified by an asterisk af-
ter its control section name.

At the end of the module map is the entry address,
the relative address of the main entry point, followed
by the total length of the module in bytes, as shown by
item F in Fig. 4.2 through 4.4. In the case of an
overlay module, the length is that of the longest path.
Any pseudo registers also appear at the end of the
module maP; the name, length, and displacement of

each pseudo register is displayed.

Cross reference table

If you specify the XREF option on your EXEC
statement, the Linkage Editor prints a cross-reference
table consisting of a module map and a list of cross-
references for each control section. Each address con-
stant that refers to a symbol defined in another con-
trol section is listed with its assigned location, the
referenced symbol, and the name of the control sec-
tion in which the symbol is defined. In cases where
control sections are compiled together and simple ad-
dress constants are used to refer from one control sec-
tion to another (instead of using external symbols and
entry names), the control section name is listed as the
referenced symbol.

For overlay programs, this information is provided
for each segment; in addition the Linkage Editor
provides the number of the segment in which the sym-
bol is defined.

If a symbol remains unresolved after processing by
the Linkage Editor, it is identified as
“$UNRESOLVED” in the list. However, if an
unresolved symbol is marked by the never-call func-
tion (as specified on a LIBRARY control statement), it
is identified “SNEVER—CALL”. If an unresolved
symbol is a weak external reference, it is identified
“$SUNRESOLVED(W)”.

Fig. 4.2 contains a cross-reference table (item E for
the program whose diagnostic messages appeared in
Fig. 4.1. Fig. 4.3 shows the complete SYSPRINT
listing in correct sequence. Fig. 4.4 shows a complete
listing for a FORTRAN program including four
unresolved weak external references.

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME
MAINP 00 1C80
COMAREA
) LPDCB 195C
CDAREA 1€30
ERPROC 1€80 504
EROPT 1CA8
INITPROC 2188 1080

LOCATION REFERS TO SYMBOL [IN CONTROL SECTION
200 INITPROC INITPROC

® 410 OUTPROC1 $UNRESOLVED
1 3128 COMAREA MAINP

3130 LPDCB MAINP

3138 PUTLP MAINP

ENTRY ADDRESS 00
TOTAL LENGTH 3208

Fig. 4.2 Module map and cross reference table

LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

COM1 115C COM2 155C PUTLP 185C
LPAREA 1A24 GETCD 1AA0 CDDCB 1868

LOCATION REFERS TO SYMBOL |IN CONTROL SECTION

40C STRNGP $UNRESOLVED
1CDO PUTLP MAINP
312C COM1 MAINP
3134 LPAREA MAINP
3204 ERPROC ERPROC

OUTPUTS FROM THE LINKAGE EDITOR

(V-02/L-02) OS IV/F4 LINKAGE EDITOR OPTIONS SPECIFIED LIST, XREF, NCAL

DEFAULT OPTION(S) USED — SIZE=(120832,36864) ®
JQA0000 NAME ACCUM ®
JQA0461 STRNGP ©
JOQA0461 OUTPROC1

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
MAINP 00 1C80
COMAREA D74 COM1 115C COM2 165C PUTLP 185C 10)
LPDCB 195C LPAREA 1A24 GETCD 1AA0 CDDCB 1B68
CDAREA 1C30
ERPROC 1C80 504
EROPT 1CA8
INITPROC 2188 1080)

LOCATION REFERS TOSYMBOL INCONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
200

INITPROC INITPROC 40C STRNGP $UNRESOLVED
410 OUTPROC1 $UNRESOLVED 1CDO PUTLP MAINP ®
3128 COMAREA MAINP 312C COM1 MAINP
3130 LPDCB MAINP 3134 LPAREA MAINP
3138 PUTLP MAINP 3204 ERPROC ERPROC
ENTRY ADDRESS 00 }®
TOTAL LENGTH 3208

*ex s ACCUM NOW ADDED TO DATA SET ©®
AUTHORIZATION CODE IS

DIAGNOSTIC MESSAGE DIRECTORY

JAQA0461-W WARNING : SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE — NCAL WAS SPECIFIED OR MARKED FOR ®
RESTRICTED NO-CALL OR NEVERCALL.

Fig. 4.3 Complete SYSPRINT listing

(V-02/L-02) OS IV/F4 LINKAGE EDITOR OPTIONS SPECIFIED LIST, XREF
DEFAULT OPTION(S) USED — SIZE={120832,36864)

*s#2GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET

AUTHORIZATION CODE IS 0.

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
MAIN 00 186
JMFLBCME+ 188 E86
F#RCON 188 IBCOM# 188 MDAIOE# 244 FDIOCS# 244
INTSWA F48 INTSWTCH F48
JMFLBCMA* 1010 740
DAIRECT 1278
JMFIOCVT* 1750 A2D
CVTAD# 1750 CVTAOUT 17FC CVTLOUT 1884 CVTZOUT 19E0
CVTIOUT 1DA0 CVTEOUT 1EAA CVTCOUT 1EAA
JMFINTEM* 2180 690
FPINT# 2180
JMFERTBL* 2810 4C8
JMFSQIOE* 2CD8 FF8
SQI0# 2CD8 FIOCS# 2CD8 SQIOERR 2CDC FIOCSBEP 2CDC
JMFSQIOA* 3CDO 598
JMFCKERR* 4270 DD3
EROUT# 4270 ERPRM# 44CC
JMFERM+ 5048 688
ERRMON 5048 ERRSUM 5064
JMFICONF+ 56D0 31D
ICONEF # 56D0
JMFDSTBL* 59F0 638
JMFOCONF* 6028 4CA
OCONEF# 6028
JMFICONE* 64F8 A0
ICONVE# 64F8
JMFOCONE* 6598 9E
OCONVE# 6598
JMFTRBEM+ 6638 308
JMFTRB 6638 ERRTRA 6640
JMFPTEN+ 6940 198
PTEN# 6940
JMFQPTEN* 6AD8 110
QPTEN# 6AD8
JMFISNE » 6BES8 DO
F#RERR 6BE8 IBERH# 6BE8

LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
Do

F#RCON JMFLBCME 244 DAIRECT JMFLBCMA
29C JMFLBCMA JMFLBCMA E24 SQIo# JMFSQIOE
E38 FPINT # JMFINTEM E34 CVTAD# JMFIOCVT
E28 JMFERTBL JMFERTBL E50 CVTZOUT JMFIOCVT
E48 CVTIOUT JMFIOCVT E44 CVTEOUT JMFIOCVT
E4C CVTLOUT JMFIOCVT E40 CVTCOUT JMFIOCVT
E3C CVTAOQOUT JMFIOCVT E2C JMFASYCM $UNRESOLVED(W)
E30 DPROF # $UNRESOLVED{W) DA4 JMFERM JMFERM
E20 JMFLBCMA JMFLBCHA E54 ERRSUM JMFERM
E58 EROUT# JMFCKERR 1134 JMFLBCME JMFLBCME

1F38 F#RCON JMFLBCME 1F34 JMFERM JMFERM
1F3C OCONEF# JMFOCONF 1F40 ICONEF # JMFICONF
2800 F#RCON JMFLBCME 2808 CVTAD# JMFIOCVT
2804 sQlo# JMFSQIOE 280C INTSWTCH JMFLBCME
269C JMFERM JMFERM 3860 JMFASYCM $UNRESOLVED(W)
3804 JMFDSTBL JMFDSTBL 3810 F#RCON JMFLBCME
3B5C JMFSQIOA JMFSQIOA 3B64 JMFERM JMFERM
3B68 EROUT# JMFCKERR 3B6C ERPRM# JMFCKERR
3825 JMFSQIOA JMFSQIOA 3B3C JMFSQIOA JMFSQIOA
3cCc9o JMFSQIOA JMFSQIOA 44C0 F#RCON JMFLBCME
44C4 JMFSQIOE JMFSQIOE 44C8 JMFERM JMFERM
656BC F#RCON JMFLBCME 56C0 JMFERTBL JMFERTBL
56C4 CVTAD# JMFIOCVT 56C8 JMFTRBEM JMFTRBEM
56CC SQIOERR JMFSQIOE 5968 JMFICONE JMFICONE
5964 QPTEN# JMFQPTEN 5960 PTEN# JMFPTEN
6434 JMFOCONE JMFOCONE 6430 QPTEN# JMFQPTEN
642C PTEN# JMFPTEN 67F4 F#LDIO $UNRESOLVED(W)
67E4 SQIOERR JMFSQIOE 67E8 JMFERTBL JMFERTBL
67EC F#RCON JMFLBCME 6938 F#RCON JMFLBCME
67F0 CVTAD# JMFIOCVT 693C CVTAD# JMFIOCVT
67F8 F#RERR JMFISNE 6C48 JMFERM JMFERM

6C4C F#RCON JMFLBCME
ENTRY ADDRESS 00

TOTAL LENGTH 6CB8
Fig. 4.4 SYSPRINT listing of a representative FORTRAN program

CHAPTER b5
EDITING MODULES

The Linkage Editor performs editing on a control-
section basis. That is, you can modify a control section
within an object or load module without recompiling
the entire source program. You can modify an entire
control section or external symbols within a control
section. Control sections can be deleted, replaced, or
arranged in sequence; external symbols can be deleted
or changed. External symbols comprise control sec-
tion names, entry names, external references, named
common areas, and pseudo registers. Changes,
deletions, or replacements are made to input modules;
requested alternations control Linkage Editor pro-
cessing as shown in Fig. 5.1.

Input modules MODA?2
CSECT1
MQDA1
CSECTA CSECT2
CSECT3

/

//ISYSLMOD DD DSNAME=NEWLIB(MODA1A2),...
//MODATWO DD DSNAME=MODAZ2,...
/ISYSLIN DD DSNAME=MODAT1,...
1l DD «
ENTRY CSECT3
REPLACE CSECT2(CSECTA)
INCLUDE MODATWO

JCL and control statements

Output load module ‘
MODA1A2

CSECT1

CSECTA

CSECT3

Fig. 5.1 Editing a module

Editing conventions

You must follow certain conventions to ensure that
your modifications are processed correctly. These con-
ventions concern the following items:

e entry point for the new module,

e placement of control statements,

o identical old and new symbols.

Each time the Linkage Editor reprocesses your load
module, you should specify the entry point for the out-
put module in one of two ways:

e on an ENTRY control statement

e on the Assembler-produced END statement of an
input object module, if one is present. If the entry
point specified in the Assembler-produced END
statement is not defined in the object module, you
must define the entry name as an external referen-
ce.

The entry point you assign must be defined as an
external name within the resulting load module.

Each control statement (such as CHANGE or
REPLACE) specifying an editing function must
precede either the module to be modified or the
INCLUDE statement that specifies the module. If
your INCLUDE statement specifies several
modules, your CHANGE or REPLACE statement
applies only to the first module included.

The same symbol should not appear as both an
old external symbol and a new external symbol in
one Linkage Editor run. If you wish to replace a
control section with another identically-named con-
trol section, the Linkage Editor handles this
automatically, as described in Section S.2.

5.1 CHANGING EXTERNAL SYMBOLS

You can direct the Linkage Editor to change an eX-
ternal symbol to a new symbol while processing an in-
put module. External references and address con-
stants within the module automatically refer to the
new symbol. You must use separate control state-
ments to update external references fri~n other

modules to a changed external symbol.

You specify both the old and the new symbols with
a CHANGE or REPLACE control statement. How the
old symbol was used within the module determines
whether the new symbol becomes a control section
name, an entry name, or an external reference. The
old symbol appears first, followed by the new symbol
in parentheses.

The CHANGE control statement changes a control
section name, an entry name, or an external reference.
The REPLACE statement changes or deletes an entry
name; if the symbols on a REPLACE statement are
control section names, the entire control section is
replaced or deleted, as described in Section S.2.

Your CHANGE statement must immediately
precede (a) the input module containing the external

Input module
MAINPROG

BEGIN ENTRY

CALL SUBPROG

CALL SUBPROG

CALL SUBPROG
//ISYSLMOD DD DSNAME=MYLIB,...
//SYSLIN DD «

ENTRY START

CHANGE SUBPROG(NEWSUB),BEGIN(START)
INCLUDE SYSLMOD (MAINPROG)

JCL and control statements

NAME MAINPROG (R)
/l»
Output load module
MAINPROG

START ENTRY
CALL NEWSUB

CALL NEwSUB

CALL NEWSUB

Fig. 5.2 Changing an external reference and an entry point

symbol to be changed or (b) the INCLUDE statement
specifying the input module. The scope of the

CHANGE statement spans the immediately-following:

object module or load module. The END record in the
immediately-following object module or EOM in-
dication in the load module terminates the scope of
the CHANGE statement.

In the following example, assume that SUBPROG
is defined as an external reference in the input load

module. Your CHANGE statement changes the ex- .

ternal reference to NEWSUB as shown in Fig. 5.2.

//SYSLMOD DD DSNAME=PVTLIB,
// DISP=OLD,
1/ UNIT=SYSDA,
1/ VOLUME=SER=PVT002
//SYSLIN DD *
ENTRY BEGIN
CHANGE SUBPROG (NEWSUB)
INCLUDE SYSLMOD (MAINPROG)
NAME MAINPROG (R)
/%

In the load module MAINPROG, every reference to
SUBPROG is changed to NEWSUB. Note also that
the INCLUDE statement specifies a DD name of
SYSLMOD. This allows you to use a library both as
input and to receive your output module.

You can specify more than one change on one con-
trol statement. If, in the same example, the entry
point is also to be changed, the two changes can be
specified at once, as shown in Fig. 5.2.

Your main entry point is now START instead of
BEGIN. Your ENTRY control statement specifies the
new entry point, which enters the library directory en-
try for the load module.

5.2 REPLACING CONTROL SECTIONS

You can replace an entire control section with a new
control section, either automatically or using a
REPLACE control statement. Automatic replacement
can occur for any input module but a REPLACE
statement acts only upon the module that immediately
follows it.

Notel: Any CSECT Identification (IDR) records
associated with a particular control section
are also replaced.

Note 2: For Assembler language programmers: when
you wish to replace some but not all control
sections of a separately assembled module, A-
type address constants that refer to a deleted
symbol will be incorrectly resolved unless the
entry name is at the same displacement from
the origin in both the old and new control sec-
tions. If you replace all control sections of a
separately-assembled module, no restrictions

apply.

e

5.2.1 Automatic Replacement

The Linkage Editor automatically replaces control
sections if both the old and new control sections have
the same name. The first of the identically-named
control sections processed by the Linkage Editor en-
ters the output module. All subsequent identically-
named control sections are ignored; external refer-
ences to identically-named control sections are resolv-
ed with respect to the first one processed. Therefore,
you must give the new control section the same name
as the old control section if you wish the latter to be
automatically replaced.

Automatic replacement applies only to duplicate
control section names. If duplicate entry points exist
in control sections with different names, you must fur-
nish a REPLACE statement specifying the entry point
name. If a control section being automatically
replaced contains unresolved external references and
the control section replacing it does not, you must
either (a) specify the NCAL parameter, (b) delete the
unresolved external references explicitly with a
REPLACE statement, or (c) mark them for restricted
no-call or never-call using a LIBRARY statement.
Otherwise, the unresolved external references are
retained.

When identically-named control sections appear in
modules being placed into an overlay structure, the
second and subsequent control sections with that
name are ignored, whether the modules are in seg-
ments in the same path or in exclusive segments.
Resolution of external references may therefore cause
invalid exclusive references. Invalid exclusive refer-
ences cause the Linkage Editor to mark the output
module ‘“‘not executable” unless the XCAL option is
specified on the EXEC statement.

Example 1

An object module deck contains two control sections,
READ and WRITE; member INPUT of library
PVTLIB also contains a control section WRITE.

//SYSLMOD DD DSNAME-PVTLIB,
// DISP=0LD,
// UNIT=SYSDA
// VOLUME=SER=PVT002
//SYSLIN DD *
Object Deck for READ
Object Deck for WRITE
ENTRY READIN
INCLUDE SYSLMOD (INOUT)
NAME INOUT (R)
/l

The output load module contains the new READ con-
trol section, the new WRITE control section
(replacing the old WRITE control section in member
INOUT), and all remaining control sections from
INOUT.

EDITING MODULES

Example 2

A large load module named PAYROLL, originally
written in COBOL, contains many control sections.
You recompile two control sections, FICA and
STATETAX, and pass them to the Linkage Editor in
the &&OBJECT data set. By including the
PAYROLL load module, a member of the partitioned
data set LIB00O1, as well as the recompiled object
module, you cause modified control sections auto-
matically to replace identically-named control sec-
tions, as shown in Fig. 5.3.

Input modules LIBOO1
&&OBJECT (payroll)
FICA MAINROUT
(new)
STATETAX OVERTIME
(new)
FICA
(old)
STATETAX
(old)
FEDTAX
ILLTIME
VACTIME

JCL and control
statements

/

//ISYSLMOD DD DSNAME=LIB002(PAYROLL),...
//OLDLOAD DD DSNAME=LIB0O1,...
//SYSLIN DD DSNAME=&&OBJECT,...
1! DD «
INCLUDE OLDLOAD (PAYROLL)
ENTRY INIT1
/*

Output load LIB002
module (payroll)

FICA
(new)

STATETAX
(new)

MAINROUT

OVERTIME

FEDTAX

ILLTIME

VACTIME

S

Fig. 5.3 Automatic replacement of control sections

//SYSLMOD DD DSNAME=LIBOO2(PAYROLL),

// DISP=OLD,
// UNIT=SYSDA,
/7 VOLUME=SER=LIB002
//SYSLIB DD DSNAME=SYS1.COBLIB,
// DISP=SHR
//OLDLOAD DD DSNAME=LIB001,
// DISP=(OLD,DELETE),
/7 UNIT=SYSDA,
// VOLUME=SER=LiB001
//SYSLIN DD DSNAME=&&OBIJECT,
// DISP=(OLD,DELETE)
/ DD *
INCLUDE OLDLOAD (PAYROLL)
ENTRY INIT1
/%

Your output module contains the modified FICA and
STATETAX control sections and the rest of the con-
trol sections from the old PAYROLL module. Your
main entry point is INIT1, and your output module is
stored into the library named LIB002. The COBLIB
system library resolves any external references
remaining unresolved after the SYSLIN data sets are
processed.

5.2.2 REPLACE Statement

You use a REPLACE statement to replace control sec-
tions when the old and new control sections have dif-
ferent names. The name of the old control section ap-
pears first, followed by the name of the new control
section in parentheses. The REPLACE statement
must immediately precede either the input module
that contains the control section to be replaced or the

INCLUDE statement that specifies the input module.

The scope of the REPLACE statement spans the im-

mediately-following object module or load module.

The END record in the immediately-following object

module or the EOM indication in the load module ter-

minates the action of the REPLACE statement.

An external reference to the old control section
from within the same input module is resolved to the
new control section. An external reference to the old
control section from any other module becomes an
unresolved external reference unless one of the
following occurs:

e You change the external reference to the old control
section to the new control section with a separate
CHANGE control statement.

e The same entry name appears in the new control
section or in some other control section in the input
stream.

In the following example, you use a REPLACE
statement to replace one control section with another
of a different name. Assume that the old control sec-
tion SEARCH is in library member TBLESRCH, and
that the new control BINSRCH is in the data set
&&OBJECT, which you passed from a previous step
(Fig. 5.4).

Input modules

&&OBJECT TBLESKCH

BINSRCH READIN ENTRY
CALL SEARCH
SEARCH

JCL and control statements

//ISYSLMOD DD DSNAME=SRCHRTN,...
//ISYSLIN DD DSNAME=&&OBJECT,...
1 DD «

ENTRY READIN

REPLACE SEARCH (BINSRCH)

NAME TBLESRCH (R)
/*

Outputioad TBLESRCH ¢
module READIN ENTRY

CALL BINSRCH

BINSRCH

Fig. 5.4 Replacing a control section with the REPLACE
control statement

//SYSLMOD DD DSNAME=SRCHRTN,
/7 DISP=OLD,
// UNIT=SYSDA,
// VOLUME=-SER=SRCHLIB
//SYSLIN DD DSNAME=&&OBIJECT,
// DISP=(OLD,DELETE)
// DD *
ENTRY READIN
REPLACE SEARCH (BINSRCH)
INCLUDE SYSLMOD (TBLESRCH)
NAME TBLESRCH (R)
/%

Your output module contains BINSRCH instead of
SEARCH; any references to SEARCH within the
module refer to BINSRCH. Any external references to
SEARCH from other modules will not be resolved to
BINSRCH.

5.3 DELETING CONTROL SECTIONS
AND ENTRY NAMES

You can use a REPLACE statement to delete a con-
trol section or an entry name. Your REPLACE
statement must immediately precede either the
module that contains the control section (or entry
name) to be deleted or the INCLUDE statement that
specifies the module. Only one symbol appears on

—

each REPLACE statement; the appropriate deletion
is made depending on how the symbol is defined in
the module.

If the symbol is a control section name, the entire
control section is deleted. The control section name is
deleted from the ESD only if no address constants
refer to it from within the same input module. If an
address constant does refer to it, the control section
name is changed to an external record.

The preceding is also true of an entry name to be
deleted. Any references to it from within the input
module cause the entry name to be changed to an ex-
ternal reference.

Unless resolved with other input modules, these
editor-supplied external references cause Automatic
Library Call to attempt to resolve them. Also,
deleting a control section or any entry name may
cause external references from other input modules
to become unresolved. Either condition can cause the
output load module to be marked ‘‘not executable.”

If a deleted control section contains an unresolved
external reference, the reference remains.

Note: When you delete a control section, any
CSECT Identification data associated with
that control section is also deleted.

In the following example, you wish to delete control
section CODER (Fig. 5.5):

Input module
CODEROUT
ENCODE

CODER

DECODF

l

JCL and control statements

//SYSLMOD DD DSNAME=MYLIB,...
//ISYSLIN DD =«
ENTRY START1
REPLACE CODER
INCLUDE SYSLMOD (CODEROUT)
NAME CODEROUT(R)
/*

Output load module
CODEROUT

ENCODE

DECODE

Fig. 5.5 Deleting a control section

EDITING MODULES

//SYSLMOD DD DSNAME=PVTLIB,
/7 DISP=OLD,
// UNIT=SYSDA
// VOLUME=SER=PVT002
//SYSLIN DD *
ENTRY START1
REPLACE CODER
INCLUDE SYSLMOD (CODEROUT)
NAME CODEROUT (R)
/%

CODER is deleted, and if no address constants refer
to it from other control sections in the module, its con-
trol section name is also deleted. If address constants
refer to CODER, the name is retained as an external
reference.

54 ORDERING CONTROL SECTIONS
AND NAMED COMMON AREAS

You can sequence control sections and named com-
mon areas within an output load module with
ORDER control statements. Individual control sec-
tions or named common areas are arranged in the out-
put load module according to the sequence in which
you defined them on ORDER statements. If you fur-
nish several ORDER statements in a job step, their
sequence determines the sequence of control sections
or named common areas in the load module.

Any control sections or named common areas you
do not specify on ORDER statements appear last in
the output load module. If a control section or named
common area is changed by a CHANGE or
REPLACE control statement, you must use the new
name on your ORDER statement.

In the following example, you provide ORDER
statements to sequence five of the six control sections
in an output load module. Your REPLACE statement
replaces the old control section SESECTA with
CSECTA from the data set &&OBJECT, which was
passed from a previous step. Assume that the control
sections to be ordered are found in library member
MAINROOT (Fig. 5.6):

//SYSLMOD DD DSNAME=PVTLIB,
/! DISP=OLD,
/7 UNIT=SYSDA,
// VOLUME=SER=PVT002
//SYSLIN DD DSNAME=&&OBIJECT,
/7 DISP=(OLD,DELETE)
/7 DD *
ORDER MAINEP(P),SEGMT1,SEG2
REPLACE SESECTA(CSECTA)
ORDER CSEC1A,CSECTB(P)
INCLUDE SYSLMOD(MAINROOT)
NAME MAINROOT

/%

In the load module MAINROOT, the Linkage Editor
rearranges control sections MAINEP, SEGMTI1,
SEG2, CSECTA, CSECTB in the output load module

Input modules

&&OBJECT
CSECTA

MAINROOT
CSECTB

SESECTA

MAINEP

LASTEP

SEGMT1

SEG2

JCL and control statements

//ILKED EXEC PGM=JQAI,PARM="ALIGN2, ...’

//ISYSLMOD DD DSNAME=OWNLIB, ...
/ISYSLIN DD »
PAGE RAREUSE
ORDER MAINRT (P),CSECTA,SESECT1
INCLUDE SYSLMOD (MAINROOT)
NAME MAINROOT
/*

Output load module
oK MAINROOT
MAINEP

SEGMT1

SEG2

CSECTA

2K\ CsecTs

LASTEP

Fig. 5.6 Ordering control sections

according to the sequence specified by your ORDER
statements. Your REPLACE statement replaces
SESECTA with CSECTA from the data set
&&OBIJECT, which was passed from a previous step.
The ORDER statement refers to the new control sec-
tion CSECTA. LASTEP appears after other control
sections in the output load module because you did
not name it on your ORDER statements.

5.5 ALIGNING CONTROL SECTIONS
AND NAMED COMMON AREAS ON
PAGE BOUNDARIES

You can align a control section or named common
area on a page boundary (2K or 4K bytes) by using
either an ORDER statement (with the ‘P’ operand)

or a PAGE statement. Alignment on a page boundary
tends to lower the paging rate and thus make more ef-
ficient use of real storage.

You name each control section or common area to
be aligned on either a PAGE statement or an ORDER
statement with the P operand. Either the PAGE or
ORDER statement causes the Linkage Editor to
locate the starting address of the control section or
common atea on a page boundary within the load
module. The default value for a page boundary is 4K.

In the following example, the control sections
RAREUSE and MAINRT are aligned on 2K page
boundaries by your PAGE and ORDER control
statements in conjunction with the ALIGN2 attribute.
Control sections CSECTA and SESECT1 are se-
quenced by your ORDER control statement. Assume
that each control section is 2K in length except for
SESECT1 and RAREUSE (Fig. 5.7).

Input module MAINROOT
CSECTA

RAREUSE

SESECT1

BOTTOM

MAINRT

JCL and controls statements ‘
1 EXEC PGM=JQAI,PARM="'ALIGN2’

//SYSLMOD DD DSNAME=PVTLIB, ...

/ISYSLIN DD DSNAME=&&OBJECT, ...
/! DD »
ORDER MAINEP (P) SEGMT1,SEG2
REPLACE SESECTA (CSECTA)
ORDER CSECTA,CSECTB (P)
INCLUDE SYSLMOD (MAINROOT)
NAME MAINROOT
/&
Output load, MAINROOT ‘
module oK MAINRT
2K TCSECTA
4K I'sEsecT1
6K "RAREUSE
BOTTOM

Fig. 5.7 Aligning control sections on page boundaries

//LKED

//

//SYSLMOD

//
//
//

//SYSLIN

/*

PAGE
ORDER
INCLUDE
NAME

E:XEC PGM=]QAL,
PARM='ALIGN2,...’

ED DSNAME=OWNLIB,
DISP=OLD,
UNIT=SYSDA,
VOLUME=SER=0WN002

DD *

RAREUSE

MAINRT(P),CSECTA,SESECT1

SYSLMOD(MAINROOT)

MAINROOT

EDITING MODULES

The Linkage Editor places the control sections
MAINRT and RAREUSE on 2K page boundaries
because you specified ALIGN2 on your EXEC
statement. Control sections MAINRT, CSECTA, and
SESECT]1 are sequenced as specified in the ORDER
statement. While placed on a 2K page boundary,
RAREUSE appears after control sections specified in
the ORDER statement because it was not cited in this
statement. BOTTOM comes after RAREUSE be-
cause it appeared after RAREUSE in the input
module.

CHAPTER 6
OVERLAY STRUCTURES

Ordinarily when you create a load module, you intend
that all of its control sections remain in virtual storage
throughout execution. The length of the load module
is therefore the sum of the lengths of its control sec-
tions. If storage space is not at a premium—typically
the case on OS IV/F4—this is the most efficient way
to execute a program. However, if your program is
very large and forces a high paging overhead when
loaded, you should consider using the overlay facilities
of the Linkage Editor.

To convert an ordinary program to overlay struc-
ture, you need only add special control statements to
the module in most cases. You identify the overlayable
portions of your program, and OS IV/F4 automatic-
ally loads required portions during its execution.

When you request an overlay structure, your load
module is segmented so that, at execution time, cer-
tain control sections are loaded only when referenced.
When a reference is made from one executing control
section to another, the OS IV/F4 Supervisor deter-
mines whether or not the code required is already in
virtual storage. If it is not, the code is loaded dy-
namically and may overlay an unneeded part of the
module already in storage.

Passing control in an overlay structure is basically
identical to the CALL linkage of a simple structure.
This chapter describes overlay structures, how to load
overlay segments, how to pass control to segments,
and how to use the SEGLD and SEGWT macro in-
structions.

6.1 DESIGN

The way in which you should define the structure of
an overlay module depends on the relationships
among its control sections. Two control sections that
need not be in storage at the same time can overlay
each other. Such control sections are independent: not
referencing each other directly or indirectly. In-
dependent control sections can be assigned the same
load addresses and loaded only when needed. For
example, control sections that handle error conditions
or unusual data are used infrequently and need not

occupy storage unless in use.

Control sections are grouped into segments. A
segment is the smallest functional unit (one or more
control sections) that can be loaded as one logical en-
tity during execution. Control sections required con-
tinuously are grouped into a special segment called
the root segment. This segment remains in storage
throughout execution of an overlay program.

When a particular segment is to be executed, any
segment between it and the root segment must also be
in storage. This is a path. A reference from one
segment to another segment lower in a path is a down-
ward reference—the segment refers to another
segment farther from the root. Conversely, a reference
from one segment to another segment higher in a path
(closer to the root segment) is an upward reference.

A downward reference causes overlay if the neces-
sary segment is not yet in virtual storage. An upward
reference can not cause overlay, since all segments
between the executing segment and the root must
already be in storage. These concepts are illustrated in
Figs. 6.1 and 6.2.

Sometimes several paths need the same control sec-
tions. This problem may be solved by placing these
control sections into another region. In an overlay
structure, a region is defined as a contiguous area of
virtual storage within which segments can be loaded
independently of paths in other regions. An overlay
program can be designed for single or multiple
regions. Note that ‘“‘region” in this sense is unrelated
to an “OSIV/F4 region”, the latter often used
synonymous with ‘‘address space.”

6.1.1 Single-Region Structures

For your overlay structure, you should include in the
root segment those control sections that will receive
control at the beginning of execution, plus those that
should always remain in storage. You develop the rest
of the structure by determining dependencies among
the remaining control sections and how they can use
the same virtual-storage locations at different times
during execution.

Besides control-section dependency, other topics

discussed in this section are inter-segment depend-
ency, length of the overlay program, segment origin,
communication between segments, ar: overlay pro-
cessing.

Control section dependency

Control section dependency is determined by require-
ments of one control sectior for a given routine in
another control section. A ccutrol section is depend-
ent upon any control section from which it receives
control or which process:s its data. For example, if
control section C receives control from control section
B, then C is dependent upon B—both control sections
must be in storage before execution can continue
beyond a given point in the program.

As an example, assume your program contains
seven control sections, CSA through CSG, and ex-
ceeds available/efficient storage for a simple
structure. Rather than rewrite your program, you
might evaluate whether or not it could be placed into
an overlay structure. Fig. 6.1 shows the groups of
dependent control sections in your program, arrows
indicating dependencies.

Each dependent group is also a path. For example,
if control section CSG is to be executed, CSB and CSA

OVERLAY STRUCTURES

ture for the dependent groups shown in Fig. 6.1. The
structure is contained in one overlay region and has
five segments.

Segment dependency

When a segment is in virtual storage, all segments in
its path are also necessarily in virtual storage. Each
time a segment is loaded, all segments in its path are
loaded if not already in virtual storage. In Fig. 6.2,
when segment 3 is in virtual storage, segments 1 and 2
are also in virtual storge. However, if segment 2 is in
storage, this does not imply that segment 3 or 4 is in
virtual storage, since neither segment is in the path of
segment 2.

The positions of segments in an overlay tree struc-
ture does not imply the sequence in which they
execute. You can load, overlay, and reload a segment
as many times as required by the logic of your
program. However, a segment cannot overlay itself. If
you modify a segment during execution, that modi-
fication survives only until you overlay the segment.

Length
For purposes of illustration, assume that the control
sections in your sample program have the following

must also be in storage. Because CSA and CSB are in lengths:
each path, they must be in the root segment. Control Control Section Length (in bytes)
section CSC is in two groups and therefore is a com- CSA 3,000
mon segment in two different paths. CSB 2,000
A better way to show the relationship between CSC 6,000

segments is with a tree structure. A tree is a graphical CSD 4,000
representation of how segments can use virtual CSE 3,000
storage at different times. It does not imply the order CSF 6,000
of execution, although the root segment is always the CSG 8,000
first to receive control. Fig. 6.2 shows the tree struc-

CSA CSA CSA

csB CsSB csB

csc csc CSG

T pendent
group 3
csD CSF
? Dependent
group 2
CSE Dependent
group 1

Fig. 6.1 Control section dependencies

Root segment 1

CSC » Segment 2 CSG —’

cSD Segment 5

Segment 3 CSF [Segment4

CSE
Fig. 6.2 Single-region overlay tree structure

If your program were not overlay-structured, it
would require 32,000 bytes of virtual storage. In
overlay, however, the program requires the amount of
storage needed for the longest path. In this structure,
the longest path is defined by segments 1, 2, and 3;
when they are all in storage, they require 18,000 bytes,
as shown in Fig,. 6.3.

-
CSA
3,000
bv_lt—es Root segment 1
5,000 bytes
CSB
2,000
byltes
CsC CSG
6,000 1 oot 2 8,000 [Segments
bytes ’ bytes (8,000 bytes
' 1
CsD CSF
4,000 6.000 Segment 4
bytes b\'/tes 6,000 bytes
I Segment 3
7,000 bytes
CSE
3,000
bytes
Iy

Fig. 6.3 Length of an overlay module

Segment origin

The Linkage Editor assigned the relative origin of the
root segment (the origin of the program) at 0. The
relative origin of each segment equals the length of all
segments in its path. For example, the origin of
segments 3 and 4 is 11,000: 6,000 (the length of
segment 2) plus 5,000 (the length of the root segment).
The origins of all the segments are as follows:

Segment Origin
1 0
2 5,000
3 11,000
4 11,000
S 5,000

The segment origin is also called the load point,
because it is the relative location at which the segment
is loaded.

Fig. 6.4 shows the segment origin for each segment
and the way storage is used by the sample program. In
the illustration, the vertical bars indicate segment
origins; all segments with the same origin may use the
same storage area. Fig. 6.3 also shows that the longest
path is defined by segments 1, 2, and 3.

Communication between segments

Segments that can be in virtual storage simultaneous-
ly are considered to be inclusive. Segments in the same
region but not in the same path are considered to be
exclusive; they cannot be in virtual storage
simultaneously. Fig. 6.5 shows inclusive and exclusive
segments in the sample program.

Segments upon which two or more exclusive
segments depend are called common segments. A
segment common to two other segments is part of the
path of each segment. In Fig. 6.5, segment 2 is com-
mon to segments 3 and 4 but not to segment 5.

An inclusive reference is one. between inclusive
segments—from a segment in storage to an external
symbol in a segment that does not overlay the calling
segment. An exclusive reference is one between ex-
clusive segments—from a segment in storage to an
external symbol in a segment that overlays the calling
segment.

Fig. 6.6 shows the difference between an inclusive
reference and an exclusive reference; the arrows in-
dicate references between segments.

Wherever possible, you should make inclusive
rather than exclusive references. Inclusive refererces
between segments are always valid and do not require
special options. When you make inclusive references,
you are less likely to commit errors in structuring your
overlay program.

When your external reference within a requesting
segment is to a symbol defined in a segment outside
the current path, you have issued an exclusive refer-
ence, which is valid only if you cite the requested con-
trol section in a segment common to both the segment
to be loaded and the segment to be overlaid. You must
use the same symbol in the common segment and the
exclusive reference. In Fig. 6.6, your reference from
segment B to segment A is valid because there is an in-
clusive reference from the common segment to
segment A.

In the same illustration, any reference from seg-
ment A to segment B is invalid because there is no ref-
erence from the common segment to segment B. You
can validate a reference from segment A to segment B
by including, in the common segment, an external
reference to the symbol used in the exclusive reference
to segment B.

Another way to eliminate exclusive references is to
arrange your program so that all references causing
overlays are made in higher segments. For example,
you could eliminate the exclusive reference shown in

OVERLAY STRUCTURES

| Segment b

i

8,000 bytes
oot segment 1
| ament 190 by tes |

l Segmeabgo by tes I

l Segme gfo%o bytes J

I I O O

[™ obyws |

NN I B

0 1 2 3 4 5 6 7 8 9 10

Fig. 6.4 Segment origin and use of storage

-

Root
segment 1

11 12 13 14 15 16 17 18 19 20

Relative storage location {in 1,000 byte increments) o

— |

Segment 2 Inclusive segments
1,2,and 3 Segment 5

[Segment 4

Segment 3

1,2,and 4
1and 5

Exclusive segments
2and 5

» 3and 4
3and 5
4 and 5

Fig. 6.5 Inclusive and exclusive segments

S gD U Common segment

Inclusive
reference

Segment A @~ — —— ———— — — —— — — — — —

Exclusive
reference

Fig. 6.6 Inclusive and exclusive references

Fig. 6.6 by creating a new module in the common
segment; the new module’s only function would be to
reference segment B. You would then change the code
in segment A to refer to the new module instead of to
segment B. Control then would pass from segment A
to the common segment, where the overlay of segment
A by segment B would be initiated.

- If any exclusive references appear in your pro-
gram—rvalid or invalid—the Linkage Editor con-
siders them errors unless you request one of the
special options described later in this section.

___________ Segment B

Notes:

e During execution of a program written in a higher
level language such as FORTRAN, COBOL, or
PL/I, an exclusive call rcsults in abnormal ter-
mination of the program if the requested segment
attempts to return contrnl directly to the invoking
segment that has been overlaid.

e If a COBOL program includes a segment that
contains a reference to a COBOL class test or
TRANSFORM table, the segment containing the
table must be either (1) in the root segment or (2) a
segment that is higher in the same path than the
segment containing the reference to the table.

20

B entry point KOBE into register 15 and branches

Loading segments

The OS IV/F4 Supervisor can load segments without
assistance from your program and in spite of the fact
that linkage procedures in an overlay structure are
identical to those in a simple structure.

V-type address constants are the key to loading an
overlay structure. When the Linkage Editor en-
counters one or more V-type address constants un-
defined in the same segment, it creates a special table
(ENTAB) at the end of the segment, as shown in Fig.
6.7. The Linkage Editor stores the address of the
corresponding ENTAB entry into the field defined by
the V-type address constant in the program. At the
beginning of a root segment, the Linkage Editor
creates a SEGTAB control block, used by the Super-
visor to manage segment loading.

Fig. 6.7 shows a load module with its SEGTAB and
an ENTAB entry for a downward reference. For each
upward reference, the referenced entry point is
guaranteed to be in virtual storage. Hence, the V-type
address constant is resolved directly for upward
references.

SEGTAB
] Segment 1
ENTAB
Segment 2
ENTAB Segment 5
Segment 3 Segment 4

Fig. 6.7 Load module in an overlay structure

Fig. 6.8 illustrates the structure of an ENTAB and
associated control flow in steps (a) —(g):

(a) As previously described, the Linkage Editor has
stored the address of the ENTAB entry into the
V-type address constant pointing to the external
symbol of the other segment. Hence, control
passes to ENTAB by branching to this address.

(b) If the requested segment has not been loaded,
control passes to an Overlay-Supervisor call (SVC
45), since the current displacement points to this
Overlay-Supervisor instruction in the same
ENTAB.

(¢©) The Supervisor tests whether this segment is in
memory. If not, the Supervisor loads this segment
and increases the displacement in the cor-
responding ENTAB entry by two bytes. The dis-
placement is increased only after the segment has
been successfully loaded.

(d) On completion of step (c), the Supervisor passes
control to the instruction following the SVC 45
instruction. This sequence loads the address of

to it. Since the overlay structure is within one
load module, the address of this entry point was
resolved by the Linkage Editor; it is not
dynamically created during step (c).

(e) If segment N attempts to pass control to entry
point KOBE of segment M, after loading
segment M and until such time as a segment ex-
clusive of M is subsequently loaded, control
passes directly to KOBE without Supervisor in-
tervention, since the corresponding displacement
in ENTAB has been already changed.

() If segment N passes control to an entry point in
segment L—which is exclusive of segment
M —steps (a)—(d) are repeated to load segment
L. At this time, if the displacement for KOBE
remains unchanged, segment M cannot be
loaded if control again passes to KOBE. There-
fore, the ENTAB entry of the preceding segment
is restored during loading of an exclusive
segment.

(g) For an overlay structure, no ENTAB entry is
required for upward references; direct branches
always succeed. Therefore, in Fig. 6.7, segment 1
loads segments S and 3 at the same time. In an
overlay structure, segments on the path of a given
segment remain loaded including their entry
points.

In the example of Fig. 6.8, you used a Branch and
Link instruction to pass control. This method can be
used only for inclusive references. For an exclusive
reference, the calling segment has already been
overlaid when it returns, so that control should be
passed without return.

6.1.2 Multiple-Region Structures

If you use a control section in several segments, it is
usually desirable to place that control section into the
root segment. However, the root segment can get so
large that the benefits of overlay are lost. If some con-
trol sections in your root segment could overlay each
other (except for the requirement that all segments in
a path must be in storage at the same time), your job
may be appropriate for multiple-region structure.
Multiple-region structures can also increase segment
loading efficiency; processing can continue in one
region while the next path to be executed is being con-
currently loaded into another region.

With multiple regions, a segment has access to
segments that are not in its path. Within each region,
the rules for single-region overlay programs apply, but
the regions are independent of each other. A
maximum of four regions can be defined for one load
module.

Fig. 6.9 shows the relationship between control sec-
tions in the sample program and two new control sec-
tions, CSH and CSI, each of which is used by two
other control sections in different paths. Placing CSH

OVERLAY STRUCTURES

JAPAN CSECT
— L 15,VCON1
BALR 14,15
(a)
rF-—-VvCont DC V(KOBE)
i
l
| ENTAB
! T
= 1 |Segment|
— B (0,15) KOBE ! address |No. of -
N A o KOBE
| | !
|
| (b) (e) !
I L
! |
Supervisor | (c) | svcas L 15,4(0,15) BR15 | SEGTAB
o Loading of I !
segment ! i
o Alteration of I :
displacement | 1
disp T (d) ! (d)
[}
e ————— - J
|
|
|
I
L
e b A -
KOBE| CSECT
|
|
I
I
|
)
| BR 14
|

— Control flow
— -» address

Fig. 6.8 Typical flow in an overlay structure

and CSI in the root segment makes it larger than
necessary because CSH and CSI can overlay each
other. These control sections should not be duplicated
in both paths because the Linkage Editor automati-
cally deletes the second pair, resulting in an invalid
exclusive reference.

If you place the two control sections into another
region, they can be in virtual storage when needed
regardless of which path is executed in the first region.
Fig. 6.10 shows all control sections in a two-region
structure. Either path in region 2 can be in virtual
storage regardless of the path being executed in region
1; segments in region 2 can cause segments in region 1
to be loaded without being overlaid themselves.

The relative origin of a second region is determined

by the length of the longest path in the first region
(18,000 bytes). Region 2 begins at relative address
18,000. The relative origin of a third region would be
determined by the length of the longest path in the
first region plus the longes: ~ath in the second region.

You determine the virtual storage required for your
program by comparing the lengths of the longest path
in each region. In Fig. 6.10, if CSH is 4,000 bytes and
CSI is 3,000 bytes, the storage required is 22,000
bytes, plus the storage required by the SEGTAB and
ENTAB tables described in the preceding section.
You should be careful in planning multiple regions,
since supervisory overhead may arise due to the
Overlay Supervisor being unable to optimize segment
loading.

I
cJ?A
csB
| I
csc CSG
l |
csD CSF]
CSH csl
CSE] db
CSH csi
db

Fig. 6.9 Control sections used by several paths

REGION 1 T
S

-‘» Root segment 1

1

(9]
>

9]
o)

CSC ¢ Segment 2
CSG ¢ Segment §

r

csD CSF ¢ Segment 4
Segment 3

CSE

REGION 2

CIH Segment 6 CSI } Segment 7

Fig. 6.10 Overlay tree for multiple-region program

6.2 SPECIFICATION

Once you have designed an overlay structure, you

must indicate to the Linkage Editor the relative

positions of segments and regions, and the control sec-
tions in each segment:

o Segments are positioned by OVERLAY statements.
Since segments are not named, you identify a
segment by giving its origin (or load point) a sym-
bolic name and then using that name in an
OVERLAY statement to specify a symbolic origin.
Each OVERLAY statement begins a new segment.

o Regions are also positioned by OVERLAY state-
ments. You specify the origin of the first segment of
the region, followed by “(REGION)”.

o Control sections are positioned in the segment
specified by the OVERLAY statement with which
they are associated in the input sequence. However,
the sequece of control sectins within a segment is
not necessarily the order in which the control sec-
tions are specified.

Your input sequence of control statements and con-

trol sections should reflect the sequence of segments
in the overlay structure: top to bottom, left to right,
region by region. This sequence is illustrated in later-
examples.

Note: If you wish to reprocess your overlay structure
with the Linkage Editor, you must re-specify
your OERLAY statements and EXEC-state-
ment parameters such as OVLY. If you fail to
provide these statements and options, your
resulting load module will revert to a simple
structure rather than remaining as an overlay
structure.

6.2.1 Segment Origin

You must specify the symbolic origin of every segment
other than the root with an OVERLAY statement.
The first time a symbolic origin is specified, a load
point is created at the end of the previous segment.
That load point is logically assigned a relative address
at the double-word boundary that follows the last byte
in the preceding segment. Subsequent use of the same
symbolic origin indicates that the next segment is to
have its origin at the same load point.

In the sample single-region program, your
OVERLAY statements assign symbolic origin names
ONE and TWO to the two necessary load points, as
shown in Fig. 6.10. Segments 2 and 5 are at load point
ONE, segments 3 and 4 are at load point TWO.

The following sequence of OVERLAY statements
will create the structure in Fig. 6.11 (the control sec-
tions in each segment are indicated by name):

Root segment 1

ONE

Segment 2

Segment 5

TWO

Segment 3 Segment 4

Fig. 6.11 Segment origins in a single-region structure

Control section CSA
Control section CSB
OVERLAY ONE
Control section CSC
OVERAY TWO

Control section CSD

Control section CSE

OVERLAY TWO

Control section CSF

OVERLAY ONE

Control section CSG

Note that the sequence of OVERLAY statements
reflects the order of segments in the structure: top to
bottom, and left to right.

6.2.2 Region Origin

You must specify the symbolic origin of every region
other than the first with an OVERLAY statement.
Once you have started a new region you may not
reference a segment origin from a previous region.

In the sample multiple-region program, symbolic
origin THREE is assigned to region 2, as shown in
Fig. 6.12. Segments 6 and 7 are at load point THREE.

If you add the following OVERLAY statements to
the sequence for the single-region program, you will
create a multiple-region structure:

OVERLAY THREE(REGION)
Control section CSH
OVERLAY THREE

Control section CSI

REGION 1
Root seTment 1
l ONE
Segment 2 Segment 5
TWO
Segment 3 Segment 4
REGION2 1~ THREE 1
Segment 6 Segment 7

Fig. 6.12 Segment and region origins in a multiple-region structure

6.2.3 Positioning Control Sections

After each OVERLAY statement, you must specify

the control sections for that segment in one of three

ways:

e By placing object decks for each segment after the
appropriate OVERLAY statement.

e By using INCLUD statements for modules con-
taining the control sections for the segment.

o By using INSERT statements to reposition a con-

OVERLAY STRUCTURES

trol section from its position in the input stream to a
particular segment.

The Linkage Editor places any control sections
preceding the first OVERLAY statment into the root
segment; they can be repositioned with an INSERT
statement. Control sections from the automatic call
library are also placed into the root segment. You can
use INSERT statements to place these control sections
into another specific segment. Common areas in an
overlay program are described in Section 6.3.

Examples of the three methods for positioning con-
trol sections follow. Each example results in the struc-
ture for the single-region sample program. An exam-
ple of repositioning control sections from the auto-
matic call library follows the first three examples:

Using object decks

The primary input for this example contains an
ENTRY statement and seven object decks, separated
by OVERLAY statements:

//LKED EXEC PGM=JQAL,
// PARM='OVLY’

//SYSLIN DD *
ENTRY BEGIN
Object deck for CSA
Object deck for CSB
OVERLAY ONE
Object deck for CSC
OVERLAY TWO
Object deck for CSD
Object deck for CSE
OVERLAY TWO
Object deck for CSF
OVERLAY ONE
Object deck for CSG

/%

You must specify the OVLY parameter on the EXEC
statement for every overlay structure to be created by
the Linkage Editor.

Using INCLUDE statements

The primary input for this example comprises a series
of control statements. INCLUDE statements in this
data set direct the Linkage Editor to library members
that contain control sections for the program.

//LKED EXEC PL "—TQAL,
// PARM='OVLY’
//MODLIB DD DSNAME=O0BILIB,
// DISP=(OLD,KEEP),...
//SYSLIN DD *

ENTRY BEGIN

INCLUDE MODLIB(CSA,CSB)

OVERLAY ONE

INCLUDE MODLIB(CSC)

OVERLAY TWO

INCLUDE MODLIB(CSD,CSE)
OVERLAY TWO
INCLUDE MODLIB(CSF)
OVERLAY ONE
INCLUDE MODLIB(CSG)

/%

This example differs from the previous one in that
control sections of the program are not directly in the
primary input. Instead, they are named in the primary
input by INCLUDE statements. When the Linkage
Editor processes an INCLUDE statement, it retrieves
the appropriate control section(s) from the library and
processes them.

Using INSERT statements
When you use INSERT statements, they and any
OVERLAY statements may either follow or precede
all input modules. However, the order of the control
sections in a segment is not necessarily the same as the
order of the INSERT statements for each segment. An
example of each is given, as well as an example of
repositioning automatically-called control sections.
Following All Input: You can furnish control
statements following all the input modules, as shown
in the following example:

//LKED EXEC PGM=JQAL,
// PARM='OVLY’

//SYSLIN DD DSNAME=OBIJECT,
// DISP=(OLD,KEEP)....
// DD *

ENTRY BEGIN

INSERT CSA,CSB

OVERLAY ONE

INSERT CSC

OVERLAY TWO

INSERT CSD,CSE

OVERLAY TWO

INSERT CSF

OVERLAY ONE

INSERT CSG
/%

The primary input data set comprises object modules
containing the desired control sections concatenated
to the input stream.

Preceding All Input: You can insert your control
statements ahead of all input modules, as shown in
the following example:

//LKED EXEC PGM=JQAL,
// PARM='OVLY’
//MODULES DD DSNAME=O0BISEQ,
// DISP=(OLD,KEEP),...
//SYSLIN DD *

ENTRY BEGIN

INSERT CSA,CSB

OVERLAY ONE

INSERT CSC

OVERLAY TWO
INSERT CSD,CSE
OVERLAY TWO
INSERT CSF
OVERLAY ONE
INSERT CSG
INCLUDE MODULES
/%

The primary input data set contains all control
statements for the overlay structure and an INCLUDE
statement. The sequential data set specified by the
INCLUDE statement contains all object modules for
the structure.

Repositioning Automatically-Called Control Sec-
tions: You can use INSERT statements to move
automatically-called control sections from the root to
the desired segment. This is helpful when control sec-
tions from the automatic call library are used in only
one segment. By moving such control sections, you
can ensure that the root will contain only control sec-
tions used by more than one segment.

When you write a program in a higher-level
language, the Linkage Editor retrieves special control
sections from the appropriate automatic call library.
Assume your sample program is written in COBOL
and that two control sections (ILBOVTRO and
ILBOSCHO) are called automatically from
SYS1.COBLIB. Ordinarily, these control sections are
placed into the root segment. However, you can
furnish INSERT statements, as in the following exam-
ple, to place these control sections outside the root
segment.

//LKED EXEC PGM=JQAL,
// PARM='OVLY’
//MODLIB DD DSNAME=OBILIB,
// DISP=(OLD,KEEP),...
//SYSLIB DD DSNAME=SYS1.COBLIB,
// DISP=SHR
//SYSLIN DD *

ENTRY BEGIN

INCLUDE MODLIB(CSA, CSB)

OVERLAY ONE

INCLUDE MODLIB(CSC)

OVERLAY TWO

INCLUDE MODLIB(CSD, CSE)

INSERT ILBOVTRO

OVERLAY TWO

INCLUDE MODLIB(CSF)

INSERT ILBOSCHO

OVERLAY ONE

INCLUDE MODLIB(CSG)

/*

As a result, segments 3 and 4 will also contain
ILBOVTRO and ILBOSCHO, respectively.

This example shows two of the ways for specifying
the control sections for a segment.

6.2.4 Special Options

The Linkage Editor provides you three special job-
step options—OQOVLY, LET, and XCAL—to help
specify overlay structures on your linkage-edit EXEC
statement. You must specify these options each time
you re-link your load module into an overlay
structure.

OVLY option

You must specify the OVLY option for every overlay
program. If you inadvertently omit “OVLY,” all of
your OVERLAY and INSERT statements are con-
sidered invalid. Your output module is marked ‘“‘not
executable’” unless you also specify the LET option.
Your output module is linked into a simple structure
unless you specify the OVLY option.

LET option
If you specify the LET option, your output module is
marked “‘executable’ even though the Linkage Editor

may detect certain error conditions. When you specify -

LET, any exclusive reference (valid or invalid) is ac-
cepted. At execution time, a valid exclusive reference
is executed correctly; an invalid exclusive reference
usually causes your program to terminate abnormally.

With the LET option, unresolved external referen-
ces do not prevent your module from being marked
“executable.” This could be helpful when part of a
large program is ready for testing; the segments to be
tested may contain references to segments not yet
coded. If you specify “LET”’, you can test those parts
of your program that are finished, as long as the
references to the absent segments are not executed. If
you omit “LET”, the Linkage Editor will detect these
unresolved references and mark your module ‘‘not
executable”.

XCAL option

If you specify the XCAL option, the Linkage Editor
does not consider valid exclusive calls as errors, and it
marks your load module “‘executable”. However,
other errors could cause the module to be marked
“not executable’” unless you specify the LET option.
In this case, “XCAL” need not be specified also.

6.3 OTHER OVERLAY CON-
SIDERATIONS

This section discusses several special considerations
for overlay programs: handling of common areas,
special storage requirements, and overlay com-
munication.

6.3.1 Common Areas

When the Linkage Editor encounters common areas

OVERLAY STRUCTURES

(blank or named) in an overlay program, it collects
them as described previously (i.e., the largest blank or
identically-named common area is used). The final
location of each common area in your output module
depends on whether you furnished INSERT state-
ments to structure your program.

If you furnish INSERT statements, each named
common area should either be (a) part of the input
stream in the appropriate segment or (b) placed there
with an INSERT statement.

You cannot use INSERT statements to reference
blank common areas; a blank common area should
always be part of the input stream in the appropriate
segment.

If you do not use INSERT statements and if you
place the control sections for each segment between
OVERLAY statements, the Linkage Editor promotes
the common area automatically— places it into the
common segment of paths referencing it, so that the
common area is in storage when needed. The position
of the promoted area in relation to other control sec-
tions within the common segment is unpredictable.

If the Linkage Editor encounters a common area in
a module from the automatic call library, it auto-
matically promotes it to the root segment. In the case
of a named common area, you can override this pro-
motion by furnishing an INSERT statement.

Assume that your sample program is written in
FORTRAN and that common areas are present as
shown in Fig. 6.13. Further assume that you have
structured your overlay program with INCLUDE
statements between the OVERLAY statements, so
that automatic promotion occurs.

T
CSA
.|_ Root segment 1
CSB
I 1
Blank common Blank common
¢ Segment 2
Segment 5
csc CSG
T — Named common B
Named Named +
common A common A
CSD
Segment3 CSF Segment 4
CSE Named
J_ common B

Fig. 6.13 Common areas before processing

Segments 2 and S contain blank common areas,
segments 3 and 4 contain named common area ‘“A”’,
and segments 4 and S contain named common area
“B”. The Linkage Editor collects blank common
areas and promotes the largest area to the root
segment (the first common segment in the two paths).

The Linkage Editor collects the “A” common areas
and promotes the largest to segment 2; the “B’’ com-
mon areas are collected and promoted to the root
segment. Fig. 6.14 shows the location of the common
areas after processing by the Linkage Editor.

T
CSA
CSB
Root segment 1
Blank common

Named cc')mmon B

CcsC

Segment 2 CSG [Segment 5

Named common A

CSD
CSF ; Segment 4
Segment 3

CSE

Fig. 6.14 Common areas after processing

6.3.2 Storage Requirements

Virtual storage requirements for your overlay pro-
gram include tables added to your module by the
Linkage Editor and the OS IV-F4 Overlay Supervisor
necessary for execution. The former comprise the
segment table (SEGTAB), entry tables (ENTABs), and
other control information. Their size must be included
in the minimum requirements for an overlay program,
along with the storage required by the longest path
and any control sections from the automatic call
library.

Every overlay program contains one segment table
in its root segment, whose storage requirements are:

SEGTAB=4n+24

where:

n=the number of segments in the program.

Some segments will contain entry tables. The re-
quirements of entry tables for segments in the longest
path must be added to the storage requirements for
the program. The requirements for an entry table are:

ENTAB=12(x+1)

where:

x=the number of entries in the table.

Finally, the OS IV/F4 Supervisor creates a NOTE
list prior to executing each overlay program, whose
storage requirements are:

NOTELST=4n+8

where:

n=the number of segments in the program

To the minimum requirements of your load
module, you must add the requirements of the
Opverlay Supervisor; during execution of your module,
the OS IV/F4 Supervisor may request its Overlay
Supervisor routine to initiate an overlay.

6.3.3 Inter-SegmentCommunications

You can use several techniques for communicating
between segments of your overlay program. A higher-
level or Assembler-language program ordinarily uses
a CALL statement or macro instruction, respectively,
to pass control to a symbol defined in another seg-
ment. The CALL causes the segment to be loaded if it
is not already present in storage. An Assembler-
language program may also use three additional ways
to communicate between segments:

e By a Branch instruction, which causes a segment to
be loaded and control to be passed to a symbol
defined in that segment.

o By a Segment Load (SEGLD) macro instruction,
which requests loading of a segment. Processing
continues in the requesting segment while the re-
quested segment is being loaded.

e By a Segment Load and Wait (SEGWT) macro in-
struction, which requests loading of a segment.
Processing continues in the requesting segment only
after the requested segment is loaded.

These two macro instructions are fully described in
the FACOM OS IV/F4 Supervisor Macro In-
structions Reference Manual.

You can only issue CALL or Branch instructions for
exclusive references. You should net use either the
SEGLD or SEGWT macro instruction to make an ex-
clusive reference, since both imply that processing is
to continue in the requesting segment, and an ex-
clusive reference leads to erroneous results when the
program is executed.

CALL statement or macro instruction

Your CALL statement or macro instruction refers to
an external name in the segment to which you pass
control. You must define this external name as an ex-
ternal reference in the requested segment. With the
Assembler language, you must define the name as a
four-byte V-type address constant, reserving the high-
order byte for exclusive usage by OS IV/F4 Super-
visor.

When you issue a CALL, the OS IV/F4 Supervisor
loads the requested segment and any segments in its
path if they are already in virtual storage. After the
Supervisor loads this segment, it passes control to it at
the location specified by the external name.

A CALL between inclusive segments is always valid.
You can return to the requesting segment by another
source language statement such as RETURN. A
CALL between exclusive segments is valid if condi-
tions for a valid exclusive reference are met; you can
return from the requested segment only via another
exclusive reference, because your requesting segment
has been overlaid.

Branch instruction
You can use any of the branching conventions shown
in Table 6.1 to request loading and branching to a

segment. The OS IV/F4 Supervisor loads the re-
quested segment and any segments in its path if they
are not already in virtual storage. The Supervisor then
passes control to the requested segment at the location
specified by the address constant in general register
1S.

Table 6.1 Branch sequences for overlay programs

OVERLAY STRUCTURES

being loaded. You can then pass control to the re-
quested segment with a CALL or Branch instruction,
as shown in variations 1 and 2, respectively. You can
issue a SEGWT macro instruction to ensure that the
specified control section is in virtual storage before
processing begins, as shown in Variation 3.

Table 6.2 Use of the SEGLD macro instruction

. Coding Coding
Variation Variation —
Name! Operation Operand?2:3 Name!l Operation Operand?2-3

1 L R15,=V(name) 1 SEGLD external name
BALR Rn,R15 CALL external name

2 L R15,ADCON 2 SEGLD external name
BALR Rn,R15 branch
. 3 SEGLD external name
) SEGWT external name

ADCON DC V(name) L Rn,=A(name)

3 L R15,=V(name) T
BAL Rn,0(0,R15)4 1 When the name field is blank, specification of a name is

4 L R15,=V (name) optional. _
BAL Rn,0(R15)5 2 External name is an entry name or a control section name in

. . the requested segment.

5 L R15,=V(name) 3 Rn is any otherregister and is used to hold the return address.
BCR 15,R15 This register is conventionally register 14,

6% L R15,=V(name)
BC 15,0(0,R15)4

76 L R15,=V(name) .
BC 15,0(R15)5 Y ou must define any external name in your SEGLD

I When the name field is blank, specification of a name is
optional.

2 R15 is the register into which is loaded a 4-byte address
constant that is an entry name or a control section name in
the requested segment, The address constant must be loaded
into register 15,

3 Rnis any other register and is used to hold the return address.
This register is conventionally register 14.

4 This may also be written so that the index register contains
the address; the other fields must be zero.

5 The base register must contain the address ; the displacement
must be zero.

6 Conditional branches are also allowed.

Your address constant must be a 4-byte V-type ad-
dress constant. You must reserve its high-order byte
for use by the OS 1V/F4 Supervisor.

Branching between inclusive segments is always
valid; you can return via the address in Rn. Branching
between exclusive segments is valid if the conditions
for a valid exclusive reference are met; you can return
only via another exclusive reference.

Segment load (SEGLD) macro instruction

You issue a SEGLD macro instruction to provide
overlap between segment loading and processing
within your requesting segment. With any of the
coding sequences in Table 6.2, you initiate loading of
the requested segment (and any segments in its path)
if they are not already in virtual storag®. Processing
then resumes at the next sequential instruction in your
requesting segment while the new segment(s) are

macro instruction with a 4-byte V-type address con-
stant. You must reserve its high-order byte for use by
the OS 1V/F4 Supervisor.

Segment wait (SEGWT) macro instruction

You issue a SEGWT macro instruction to stop pro-
cessing in the requesting segment until your requested
segment has been loaded. For any of the variations in
Table 6.3, no further processing takes place until the
requested segment (and all segments in its path) are
loaded. Processing resumes at the next sequential in-
struction in the requesting segment after your
segment has been loaded.

Table 6.3 Use of the SEGWT macro instruction

Coding
Variation T
Name! \ Operation ! Operand?:3
1 i SEGLD f external name
SEGWT | external name
| v Rn,ADCON
i branch
ADCON DC A(name)
2 I SEGWT external name
f L Rn,=A(name)

1 When the name field is blank, specification of a name is
optional.

2 External name is an entry name or a control section name in
the requested segment.

3 Rnis any other register and is used to hold the return address.
This register is usually register 14,

If you use SEGWT and SEGLE macro instructions
together, OS IV/F4 overlaps processing and segment
loading; your SEGWT macro instruction checks
whether or not necessary information is in storage
when needed (see Example 1 in Fig. 6.17). In Example
2 of Fig. 6.17, no overlap occurs; your SEGWT macro
instruction initiates loading, but processing halts in
the requesting segment until the requested segment is
in virtual storage.

You must define the external name in your SEGWT
macro instruction with a 4-byte V-type address con-
stant. You must reserve its high-order byte for use by
the OS IV/F4 Supervisor. If you wish to reference a
virtual storage location in the requested segment you
must define an A-type address constant for the entry
name of this location.

MAINP
ERPROC
ONE
STRNGP
INITPROC
TWO
PARS OUTPROC

Fig. 6.15 Structure of sample overlay program

6.4 A SAMPLE OVERLAY PROGRAM

The following Assembler-language program is to be
linked into an overlay structure comprising 5 seg-
ments constructed from 6 control sections: MAINP,
ERPROC, INITPROC, STRNGP, PARS, and
OUTPROC. The overlay structure is diagrammed in
Fig. 6.15, and corresponding JCL and Linkage Editor
control statements appear in Fig. 6.16. Fig. 6.17
shows the corresponding SYSPRINT output.

//ILWK EXEC PGM=JQAL.,
1 PARM='LIST XREF,
NCAL,OVLY’
/ISYSPRINT DD SYSOUT=A
//ISYSLMOD DD DSN=USER,LOADMOD,
1 SPACE=(TRK,{100,
10,1)),UNIT=SYSDA,
/! DISP={MOD,PASS),
1 VOL=SER=USER12
//SYSUT1 DD SPACE=(TRK,{100,
10)) ,UNIT=SYSDA
/ISYSLIN DD DSN=&&OBJ,
1 DISP=(OLD,DELETE)
1! DD .
INSERT MAIN,ERPROC
OVERLAY ONE
INSERT INITPROC
OVERLAY ONE
INSERT STRNGP
OVERLAY TWO
INSERT PARS
OVERLAY TWO
INSERT OUTPROC
ENTRY MAINP
NAME ANALY
/*

Fig. 6.16 JCL and Linkage Editor control statements for sample
program

OVERLAY STRUCTURES

FACOM OSIV/F4 LINKAGE EDJTOR VO03LO1l DATE 76.07.06 TIME 22.27.10 PAGE 1
OPTIONS SPECIFIED = LIST XREFNCALOVLY
®esVALUES IN EFFECTe#w## SIZECDEFAULT USED>®(120832+36864) L INECOUNT=60
MAX. LENGTH OF OUTPUT TEXT BLOCK = 12288
JRA0000 INSERT MAINP,ERPROC 00301110
JGA0000 OVERLAY C\E 00301120
JeA0000 INSERT YNlTPROC 60301130
JEA0000 OVERLAY ONE 00301140
JQA0000 INSERT STRNGP 00301150
JQA0000 OVERLAY TwO 00301160
JOA0000 INSERT PARS 00301170
J@A0Q00 OVERLAY Tw 00301180
JRAOQ00 INSERT OUTPROC 00301190
JEA0000 ENTRY MAINP 00301200
JOAC000 NAME ANALY) 00301210
JEAO461 PUTL }
CROSS REFERENCE TABLE
LIZTTXYTIRALISI ST Y 3 LX2Z2 223
CONTROL SECTION ENTRY
[T YR 23 HERBEN.
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATIGN NAME LOCATION
¥SEGTAB 0 2C 1
MAINP 30 1090 1
COMAKEA 81C CoML AOC CcoM2 coc PUTLP (414
LPDCB DCo LPAREA E10 GETCD EAQ copce F28
CDAREA F18
ERPROC 10¢c0 10 1
EROPT 1190
SENTAB 1240 30 1
LOCATION REFERS TO SYMBOL I[N SECTION IN SEG. NO. LOCATION REFERS TO SYMBoL [N SECTION IN SEG. NG.
INITPROC INITPROC H 23C STRNGP STRNGP 3
240 OUTPROC1 OUTPROC 5 1280 PUTL $UNRESOLVED
BRRRRRRRBRRRNBR RS *REBBEY
CONTROL SECTION ENTRY
RERRRRRRRBRRRRR RN L2223 223
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATICN NAME LGCATICN
INITPROC 1200 75¢C 2
LOCATION REFERS TO SYMBOL [N SECTION IN SEG. NO. LOCATION REFERS TO SYMBOL IN SECTION [N SEG. NO.
191 COMAREA MAINP 1 191¢ CCM1 MAINP 1
1920 LPDCB MAINP 1 1924 LPAREA MA]NP 1
1928 PUTLP MAINP 1 19F4 ERPROC ERPROC 1
19F8 EROPT ERPROC 1
FACOM OS1V/F4 LINKAGE EDITOR VQ3LOl1 DATE 76.07.06 TIME 22.27.10 PAGE 2
YT YR YRS S 2222 2.4 X222 2]
CONTROL SETTTON ENTRY
EYT YT 2 2 4 EX2 22223
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME ~ LOCATION NAME LOCATION NAME LOCATION
STRNGP 1200 2A0 3
GETSTRNG 1388
LOCATION REFERS TO SYMBOL IN SECTION IN SEG. NO. LOCATION REFERS TO SYMBOL IN SECTION IN SEG, NO.
1550 PUTL SUNRESOLVED 14F0 ccM2 MA [NP 1
14F4 CbDCB MAINP 1 14F8 CDAREA MAINP 1
14FC GETCD MA [NP 1
RRRBERBRBRRRRRBRNEN EX222 XT3
CONTROL SECTION ENTRY
[IXXTTTITT A2 2222 23 EX2 2322)
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
PARS 1570 3¢
LOCATION REFERS TO SYMBOL IN SECTION IN SEG. NO. LOCATION REFERS TO SYMBOL IN SECTION IN SEG, NO.
l6B8 COMAREA MAINP 1 16BC oMy MA NP 1
1858 ERPR ERPROC 1 1850 EROPT ERPROC 1
1354 GETSTRNG STRNGP 3
EXATT YR 2244222 28] LI X222
CONTROL SECTION ENTRY
XTI XTI YL 2 3 Y2 i223
NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
ouTPROC I570 320 3
OUTPROCL 1620
LOCATION REFERS TO SYMBOL [N SECTION [N SEG. NO. LOCATION REFERS TO SYMBOL IN SECTION IN SEG, NO.
Cio COoM1 MAINP 1 19€0 LPDCB MAINP 1
19E4 LPAREA MA INP 1 19€EC PUTLP MAINP 1
161C CcoM2 MAINP 1 19€8 GETSTRNG STRNGP 3
ENTRY ADDRESS 30
TOTAL LENGTH 1A90
«#MEMBER NAME®® ANALY NOW ADDED TO DATA SET,
##TTRe#(00 / - 01 /7 08) #sAUTHORIZATION CODEs#(0)
#aNOwW 3 TRACK(S) LEFT UNUSEU IN DATA SET COVERING 1 EXTENT(S).
DIAGNOST]C MESSAGE DIRECTCRY
JOAD461-W WARNING : SYMBOL PRINTED 1S AN UNRESOLVED EXTERNAL REFERENCE = NCAL WAS SPECIFIED CR MARKED FOR RESTR!CTED}
NO=-CALL OR NEVERCALL .

Fig. 6.17 SYSPRINT data set for sample program

CHAPTER 7

DYNAMIC LINK STRUCTURES AND
PROTOTYPE CONTROL SECTIONS

7.1 OVERVIEW OF DYNAMIC
LINKING

A dynamic link structure somewhat resembles both
overlay and dynamic program structures, the latter
utilizing OS IV/F4 Supervisor series to link (LINK),
load (LOAD), or transfer control (XCTL) among
various subprograms. The principal objective of the
novel and powerful OS IV/F4 dynamic linking facility
is to help you test large programs (a) consisting of
many subprograms and (b) ultimately to become large
simple-structured or overlay-structured production
programs.

During testing of a new program, you can more
conveniently manage it as a collection of separately-
linked load modules rather than linking it into a
single large module. Whenever you uncover an error
in a large simple (or overlay) structure, you must not
only correct and re-compile the erroneous object
module but also link-edit the entire load module, in-
cluding many error free subprograms. You can reduce
your link-editing effort, time, and consequent ex-
posure to mechanical error if you segregate each
major sub-program—or substantial collection of
smaller subprograms—into a separate load module.
Without the dynamic linking facility, more test time
has often been required for link-editing of programs
than for the tests themselves. However, in a dynamic
program structure, the Supervisor calls most major
sub-programs, imposing heavy supervisory overheads.

To resolve these strategic problems, OS IV/F4 fur-
nishes the dynamic link structure, which uses CALL
macro instructions (containing Branch linkages) most
of the time to link subprograms. If a specified entry
point is in the same load module as its callers, or if
another load module with this entry point has already
been loaded, the Branch instruction is direct, i.e.,
without assistance from the OS IV/F4 Supervisor. If
the requested sub-program is not currently in virtual
storage, the dynamic link structure yields control to
the Supervisor; after the latter has loaded your
program automatically, it branches to your program.
You need never know whether the entry point of a
called program is located in the same load module as

-n

its caller, or not.

The dynamic link structure is fundamentally dif-
ferent from the dynamic program structure. A
dynamic link structure comprises a group of sub-
programs, each of which has a simple structure; after
initial loading, these sub-programs are not deleted
from virtual storage even if their processing has been
completed. A dynamic link structure transfers control
by a Branch instruction no later than the second
CALL to each entry point. Therefore, it lacks the vir-
tual storage flexibility of the dynamic program struc-
ture, which adapts to the capacity of a given virtual
storage region.

The dynamic link structure is designed primarily
for program testing; its advantages are its simplicity
and reduced overhead for relinking programs while
the latter are being frequently changed.

7.2 PASSING CONTROLIN A
DYNAMIC LINK STRUCTURE

Procedures for passing control in a dynamic link
structure are identical to those for a simple structure:
CALL, SAVE and RETURN macro instructions, or
equivalent machine instructions. In this section, the
discussion concentrates on how you load modules in
a dynamic link structure, plus some restrictions on
using the structure.

To create a dynamic link structure, you must
specify external subroutines by V-type address con-
stants. Such a constant is automatically prepared by
the OS 1V/F4 Assembler and the major compilers for
every CALL you issue. Alternatively, you can write
your own subroutine linkages and associated V-type
constants. You must also link-edit your structure
specifying PARM=DYNA on your Linkage-Editor
EXEC statement.

If one or more V-type address constants cannot be
resolved within your load module, the Linkage Editor
creates a Dynamic Address Linking Table (DALTAB)
at its end as shown in Fig. 7.1. This example will be
used throughout the explanation of loading and
passing control in a dynamic link structure.

DYNAMIC LINK STRUCTURES AND PROTOTYPE CONTROL SECTIONS

Module Japan

.)
| |
! JAPAN CASECT !
1 . i

’ .
! LOOP L R15,VCON1 |
‘i BALR R14,R15 (- |
. 1
| : |
| B LOOP i

| :
Step 1| | . :
! VCON1 DC VIKOBE) !
! I
: I
! '|
Step 2 !
P2 | Ibynamiclinle Table(DALTABY | |
Step 4 1|‘ :
RS S — I

Step5
Dynamic Module KOBE

Link | | @M1T——""""""""—""~""7" "7~~~ —77 —"ll
Supervisor | |
Routine | KOBE CSECT !
(Step 3) ‘ : }
IR | . |
| : |
| BR R14 eturn
| |
e J

Figure 7-1 Example of dynamic linkage

Step 1

Step 2

Step 3

Within the JAPAN load module, a call is
made to the independently-compiled
KOBE routine, The CALL macro in-
struction generates two machine in-
structions:

L 15, VCON1

BALR 14,15
and the VCON1 address constant naming
“KOBE”. This load module is link-edited
without the KOBE routine; instead, the
DYNA parameter instructs the Linkage
Editor to insert the address of DALTAB
into VCONI1 (and any other unresolved V-
type address constants).
The first time KOBE is called, its
DALTAB entry points to an “SVC45” in-
struction. This instruction passes control
to the dynamic-link supervisory routine.
The Supervisor tests whether the KOBE
load module was requested from the name
entry. It also tests whether KOBE has
already been dynamically linked by
another CALL macro instruction. If
KOBE has not yet been loaded, the Super-
visor (a) retrieves it from the appropriate
step, job, or link library, (b) stores its
loaded address into the second word of its

name entry in DALTAB, and (c) adds *“2”
to the displacement of the first word in its
entry. Step (¢) causes the Branch in-
struction at the beginning of the name en-
try to point to the following two-instruc-
tion sequence:

L 15,40, 15)

BR 15
After completing step 3, the Supervisor
returns control to this two-instruction
sequence in DALTAB, after restoring all
registers (including register 15) to their
values at the time the programmers called
KOBE. This return passes control to
KOBE just as if you had link-edited it into
the JAPAN load module.
Thereafter, each linkage to KOBE from
JAPAN will be direct, just as if you had
link-edited them together. In some re-
spects, a dynamic link structure resembles
a dynamic program structure; in other re-
spects, it resembles an overlay structure.

Step 4

Step 5

7.3 RESTRICTIONS ON DYNAMIC
LINKING

In either a dynamic link structure or dynamic
program structure, subprograms are separately link-
edited and loaded on demand. However, the sub-
programs of a dynamic link structure must themselves
be simple, overlay, or dynamic program structures;
they cannot be dynamic link structures. Fig. 7.2 shows
the complete flow of two relatively complex dynamic
link structures.

First dynamic link series

L {
__________ Second dynamic link series
A B Bl
! Y s T !
, CALLS CALLT |
| I
} cALLU| |
i } 4 I
' U / |
| |
| |
| |
| I
| |
L~ o _______ J

Fig. 7.2 Dynamically linking several subprograms

7.3.1 Dynamic Link Series

A dynamic link series is a collection of load modules
amornig which control flows in a dynamic link struc-
ture. Fig. 7.2 contains two series, which you should
handle as a simple structure with respect to reen-
terability and serial reusability.

7.3.2 Usability Attributes of Dynamic Link
Structures

Whatever usability attributes its component sub-
programs may have, a dynamic link structure must
manage these subprograms directly and completely.

You manage the first series in Fig. 7.2 as a simple

structure: subprograms are called directly by one

another, and thus load modules A and B are non-
reusable.

Regardless of how many different calls—and their
frequencies—are made to entry points B and D,
module B is loaded only once for the first dynamic
link series. Hence, attributes of its modules can be
summarized as followed:

o If nonreusable: each module of a dynamic link
series is either never loaded (if never requested) or
loaded once.

e If reusable: irrespective of whether you invoke a
reusable load module within a dynamic link struc-
ture or not, one copy is loaded into the job pack
area. If you make several calls concurrently to a
serially-reusable module from a dynamic link
series, the task is likely to fail.

7.3.3 Deleting Load Modules

No load module in a dynamic link series is deleted
until the entire series is deleted. All load modules in
the second series of Fig. 7.2 are deleted when the
original load module (‘“Y”’) returns control to its caller
(“X”) via the Supervisor. Likewise, the first series is
deleted when it returns control to the Supervisor.
However, reusable load modules are not deleted from
your address space until/unless the latter becomes ex-
hausted; in this respect, dynamically linked modules
are managed differently than those accessed via LINK
or XCTL macro instructions.

In Fig. 7.2, you could call Y from X by issuing a
LOAD macro instruction followed by a CALL, rather
than issuing a LINK macro instruction. In this case,

the second dynamic link series would not be distinct -

from the first series; load modules S and T would be
incorporated into the first series from an OS IV/F4
standpoint. When Y returned control to X, only load-
module Y would be deleted, and S and T would
remain loaded. These latter two modules would be
deleted from the dynamic link series only when X
returns control to the Supervisor.

7.3.4 Program Libraries

A dynamic link structure cannot utilize a private
library; every load module it retrieves must be in the
step, job, or link libraries.

7.4 CREATING REENTERABLE
PROGRAMS WITH PSECTS

As will be discussed in Chapter 8, a reenterable
program does. not modify its instructions or data areas
during execution. To create reenterable programs,
you must acquire data areas and work areas
dynamically during execution by issuing GETMAIN
macro instructions. When finished with these areas,
you must accurately release them — whatever storage
areas you acquire via GETMAIN macro instructions
must be identified precisely in your corresponding
FREEMAIN macro instructions with respect to
locations and sizes.

If your reenterable program needs to initialize cer-
tain data areas and parameters, you must issue
machine instructions—explicitly or implicitly—to set
these initial values. To facilitiate initializing reen-
terable programs, OS IV/F4 provides the prototype
control section (PSECT) facility, which permits you to
define a pre-initialized work area when assembling or
compiling the program.

You must notify the Linkage Editor that you are
creating a reenterable program by specifying
PARM=RENT on your EXEC statement.

7.41 Overview of PSECTs

PSECTs were developed primarily to support
COBOL, FORTRAN, and PL/I programs, but you
may also use them in Assembler language programs.
The following discussion uses Assembler language
terminology and examples.

Definition

Each reenterable program comprises two or more con-
trol sections. You should define all unmodified in-
structions and constants (such as Assembler literals)
in one or more ordinary control sections (CSECTs);
modifiable instructions and work areas should be
defined in one or more PSECTS. All necessary
facilities of the OS IV/F4 Assembler Language can be
defined in PSECTs.

Loading and deleting

In any OS IV/F4 load module, the Linkage Editor
segregates any PSECTs from all CSECTs. During
execution of your program, each time you ask
OS IV/F4 to load a module (by a LINK, LOAD, etc.
macro instruction), the Supervisor loads a fresh copy
of its PSECTs. Therefore, your job pack area may

DYNAMIC LINK STRUCTURES AND PROTOTYPE CONTROL SECTIONS

contain one or more reenterant CSECTs and as many
PSECT:s as the current number of subtasks using this
load module. Your link pack area will contain only the
reentrant CSECTs; PSECTs are automatically
allocated from your region as you request LPA load
modules. Each PSECT can address the corresponding
CSECT via V-type and EXTRN address constants,
but it is clearly impossible for a reenterable CSECT to
address locations in a PSECT (since several PSECT's
may be simultaneously active with this CSECT).

PSECTs can only be used once. Hence, whenever a
DELETE macro instruction is issued to a load module
containing one or more PSECTs, OS IV/F4 deletes
the PSECTSs and frees their virtual-storage areas.

CSECT

STRTPROC DS OH
USING DATA,7 BASE REG FOR DATA
USING STRTPROC,12 BASE REG FOR PROG

L 3,VALUE EXAMPLE OF ACCESS
PSECT
ENTRY EPA1

EPA1 DS OH

USING EPA1,15
SVG 14,12,SAVEPT SAVE CALLER’S

REGS
L 12,VPROC OBTAIN PROCEDURE
ADDRESS
LA 7,DATA OBTAIN DATA
ADDRESS
BR 12
VPROC DC V(STRTPROC)
DATA DS OF
SAVEPT DC A(REGSAVE)
REGSAVE DC 18F‘0’

VALUE DC CL8'0S4/F4’

Fig. 7.3 Example cf A PSECT

Entry points

For a CSECT to address data in its PSECT, your
CSECT routine must furnish the address of its PSECT
in a special base register. Hence, each PSECT must
furnish an entry point (ENTRY attribute for a linkage
instruction) and establish its own addressability
before branching to the corresponding CSECT, as
shown in Fig. 7.3.

7.4.2 PSECTs in a Dynamic Link Structure

It is often advantageous to define one or more
PSECTs in a dynamic link structure, since PSECTs
permit efficient testing of reentrant programs, as
described bbelow.

Loading 2 PSECT

In a dynamic program structure, the OS IV/F4
Supervisor loads a PSECT each time you invoke the
corresponding load module. Since a dynamic link
structure is treated as one load module by OS IV/F4,
any PSECT it contains is loaded only once.

Calling a sub-program

When a dynamic link structure contains a PSECT, the
latter must contain a V-type address constant poin-
ting to the entry point of the corresponding CSECT,
as shown in Fig. 7.4. With this V-type constant, the
Linkage Editor creates a DALTAB in this PSECT, as
defined in Section 7.2. During your second and sub-
sequent calls to this PSECT, control flows directly via
a Branch instruction. In the dynamic link structure
defined in Fig. 7.4, this Branch instruction operates
correctly so long as the calling procedure contains a
V-type constant pointing to an entry point in the
PSECT.

Specifying appropriate linkage editor options

When you wish to link-edit a reentrant program with
dynamic link structure, you must specify
“PARM=(RENT, DYNA)” on your EXEC statement.

Calling program

Called program

MPROC

MEPA

VPROC
VSUBE
DATA
SVPOINT
SVAREA

CSECT
DS

USING
USING

L
BALR

DS
USING
SVG

LA
BR

DC
DC
DS
DC
DC

OH
MPROC,12
DATA,7

15,VSUBE
14,15

PSECT

ENTRY

OH

MEPA,15
14,12, SVPOINT

12,VPROC
7,DATA
12

V(MPROC)
V(SUBRTNE)
OF
A(SVAREA)
18F ‘0’

Data
area

suBP

MEPA
SUBRTNE

VvsSuBP
suBsD
SUBSVP
SUBSAVE

CSECT
DS

USING
USING

RETURN
PSECT
ENTRY
DS
USING
SVG

L
LA
BR

DC
DS
DC
DC

OH
-8
SUBD,10

SUBRTINE
OH

*,15
14,12,SUBSVP

8,VSUBP
10,SUBD
8

V(SUBP)

OF
A(SUBSAVE)
18F‘0’

Data
area

Fig. 7.4 Example of dynamically linking PSECTs

CHAPTER 8

JOB CONTROL LANGUAGE FOR THE

LINKAGE EDITOR

This chapter summarizes aspects of the OS IV/F4 Job
Control Language (JCL) that pertain directly to the
Linkage Editor: the EXEC statement, DD statements,
and cataloged procedures for the Linkage Editor. In
addition, Section 8.4 describes how you can invoke the
Linkage Editor from another Assembler-language
program. You should already be familiar with JCL, as
described in the FACOM OS IV/F4 Job Control
Language Reference Manual or FACOM OS IV/F4
Job Control Language User’s Guide.

8.1 INTRODUCTION TO THE EXEC
STATEMENT

The EXEC statement is the first statement of every

job step. For linkage editing, the following topics

are pertinent:

e Program name of the Linkage Editor: JQAL (alias
LINKEDIT)

o Linkage Editor options

e Region size for the Linkage Editor

e Linkage Editor return codes

Either of the following EXEC statements cause the
Linkage Editor to be invoked:

//LKED EXEC
//LKED EXEC

PGM=JQAL
PGM=LINKEDIT

8.2 JOB STEP OPTIONS

Your EXEC statement also contains a list of options

or parameters you can pass to the Linkage Editor:

o Module attributes, which describe the charac-
teristics of the output load module.

e Special processing options, to direct Linkage Editor
processing.

e Space allocation options, which affect the amount
of storage used by the Linkage Editor for processing
and output-module buffers.

e Output options, which specify the kind of printed

outputs the Linkage Editor is to produce.

The rest of this section describes the options in each
category. All options for a particular execution are
listed in the PARM parameter on the EXEC
statement, in any sequence so long as the correspond-
ing coding rules are followed.

8.2.1 Module Attributes: AC, ALIGN2, DYNA,
NE, OL, OVLY, REFR, RENT, REUS, TEST

Your module attributes describe various charac-

teristics applicable to all load modules you edit in one

job step. The Linkage Editor stores these attributes in

the directory entry for each module, along with its

member name and any aliases.

Module attributes are as follows:

AC Authorization code for access to security-
restricted system programs and data sets

ALIGN2 Page-boundary alignment of specified con-
trol sections

DYNA Dynamic link structure for the load
module(s)

NE Not editable by subsequent Linkage Editor
jobs

OL Only loadable by the OS IV/F4 Super-
visor; the module(s) cannot be attached,
linked, etc.

OVLY Overlay structure for the load module(s)

REFR Refreshable by the OS IV/F4 Recovery
Management Supervisor, should they be
damaged during execution.

RENT Reenterable by OS IV/F4 Job Manage-
ment, should two or more subtasks
simultaneously require the same module.

REUS Serially reusable by two or more subtasks

TEST Testable format for usage from a TSS ter-
minal

Authorization code (AC)
You can assign to a load module an authorization
code, which determines whether or not it can use
restricted system services and resources.

To assign an authorization code through the PARM

field, code the AC parameter as follows:

//LKED EXEC PGM=IQAL,
// PARM=‘AC=n,..."

The authorization code n must be a decimal integer
less than 256.

“AC=", “AC=,...” and ‘“AC="" are equivalent to
“AC=0". The authorization code you assign in the
PARM field is overridden by any authorization code
you assign with a SETCODE control statement.

Page boundary attribute (ALIGN2)
Control sections within a load module with the page
boundary attribute are aligned in storage on page
boundaries (i.e., address 0 of each such control section
is assigned an address which is an integral multiple of
2048 or 4096). Used with the PAGE control statement
or the ORDER statement with the P operand, this at-
tribute requests the Linkage Editor to align specified
control sections on 2K boundaries.

To assign the 2K page boundary attribute, code
ALIGN?2 in the PARM field, as follows:

//LKED EXEC PGM=JQAL,
// PARM='ALIGN2,...

Note: If you omit the ALIGN2 attribute but furnish
one or more PAGE statements or ORDER
statements with P operands, the Linkage
Editor assigns 4K boundaries to the specified
control sections.

Dynamic link (DYNA) structure
You create a dynamic link structure by specifying the
following EXEC statement:

//LKED EXEC PGM=JQAL,
// PARM='DYNA,...’

Any external references remaining unresolved after
your (optional) usage of Automatic Library Call and
explicit inclusion of modules will be entered into the
DALTAB table for the corresponding load module, as
described in Chapter 7. When you execute this
module subsequently, the OS IV/F4 Supervisor
resolves these references dynamically from the step,
job, and/or link libraries.

Non-editable (NE) attribute
The Linkage Editor cannot re-process any load
module which you have marked NE (not editable). If
you request a module map or a cross reference table,
the “‘not editable” attribute is ignored.

To assign the ‘“‘not editable” attribute, code NE in
the PARM field, as follows:

//LKED EXEC PGM=JQAL,
// PARM='NE,...

Only-loadable (OL) attribute
You can bring a module with the “‘only loadable” at-
tribute into virtual storage only with a LOAD macro
instruction. To execute a module with the ‘“‘only
loadable” attribute, you issue a Branch instruction or
a CALL macro instruction. If you attempt to enter the
module with a LINK, XCTL, or ATTACH macro in-
struction, your program is terminated abnormally by
the OS IV/F4 Supervisor.

To assign the ‘“‘only loadable” attribute, code OL in
the PARM field as follows:

//LKED EXEC PGM=IJQAL,
/! PARM='0OL,...’

Note: The ‘“‘only loadable” attribute is intended
primarily for use by the OS IV/F4 Super-
visor. You may impair usability of your
module by specifying OL.

Overlay (OVLY) attribute

You edit your program into an overlay structure as
directed by Linkage Editor OVERLAY control
statements if you assign it the “overlay” attribute.
Your module cannot be also designated as refresh-
able, re-enterable, or serially reusable.

If you specify the ‘“‘overlay” attribute but furnish no
OVERLAY control statements, the attribute is
negated.

If you omit specifying the “‘overlay’’ attribute any
OVERLAY or INSERT statements are considered in-
valid, and your module is not linked into an overlay
structure. This condition is also recoverable; if you
specify the LET option, your module is marked
executable.

To assign the overlay attribute, code OVLY in the
PARM field as follows:

//LKED EXEC PGM=HEWL,
/! PARM='OVLY,...

See Chapter 6 for information on the design and
specification of an overlay structure.

Refreshable (REFR) attribute
A refreshable module can be replaced by a new copy
during execution by a Recovery Management routine
(part of the OS IV/F4 Supervisor) without changing
either the sequence or results of processing. This type
of module cannot be modified by itself or by any other
module during execution. The Linkage Editor only
stores the attribute in the directory entry; it does not
check whether the module is truly refreshable.
Refreshability and reenterability are essentially iden-
tical attributes. Most of your programs need not be
designated ‘‘refreshable”, although it may be useful
for programs processing real-time data or other ap-
plications requiring ultra-reliable operation.

All control sections of a refreshable load module
must also be refreshable. If any load modules that are

JOB CONTROL LANGUAGE FOR THE LINKAGE EDITOR

not refreshable enter the input to the Linkage Editor,
the resulting load module is not refreshable.

To assign the refreshable attribute, code REFR in
the PARM field, as follows:

//LKED EXEC PGM=JQAL,
// PARM='REFR,...’

Reusability attributes (RENT and REUS)

Reusability means that the same copy of a load
module can be used by more than one task either con-
currently or serially. The reusability attributes are
reenterable and serially reusable. If you specify
neither attribute, your module is not reusable. In this
case, the OS IV/F4 Supervisor must bring a fresh
copy into virtual storage for each task wishing to use
the module.

The Linkage Editor stores the attribute you specify
into the directory entry; it does not check whether the
module is truly re-enterable or serially reusable. A re-
enterable module is automatically reusable, but not
conversely.

A reenterable module can be executed by more than
one task at a time; that is, you may begin using a reen-
terable module before a previous task has finished
executing it. You cannot modify a reenterable
module, by definition—nor can any other user.

All control sections within a reenterable module are
obviously themselves reenterable. If any non-
reenterable modules are merged with reenterable
modules by the Linkage Editor, the resulting load
module is non-reenterable.

To assign the reenterable attribute, code RENT in
the PARM field, as follows:

//LKED EXEC PGM=JQAL,
// PARM='RENT,...’

A serially reusable module can be used by only one
task at a time; that is, you may not begin executing a
serially reusable module before a previous task has
finished executing it. This type of module must
initialize itself and/or restore any instructions or data
in the module altered during execution.

All control sections of a serially reusable module
must be either serially reusable or reenterable. If any
load modules that are neither serially reusable nor
reenterable enter the input to the Linkage Editor, the
resulting load module is not serially reusable.

To assign the serially reusable attribute, code
REUS in the PARM field, as follows:

//LKED EXEC PGM=JQAL,
// PARM='RELUS,...
Test attribute

A module with the test attribute contains symbol
tables appropriate for program testing by TSS TEST
commands. The Linkage Editor accepts these symbol
tables as input and places them in the output module.
The module is marked as being under test. If the

TEST attribute is not specified, any symbol tables are
ignored by the Linkage Editor, and they are not
placed into the output module. If you specify the
TEST attribute but furnish no symbol tables, the out-
put load module will not contain symbol tables needed
for TSS testing.

To assign the test attribute, code TEST in the
PARM field, as follows:

//LKED EXEC PGM=IJQAL,
// PARM=‘TEST,...’
Default attributes

Unless you specify corresponding module attributes
your output module is not linked into an overlay
(OVLY) structure or a testable (TEST) format.
Likewise, your module is neither refreshable nor reen-
terable nor serially reusable. The Linkage Editor
aligns its control sections on 4K page boundaries
if—and only if—you request page boundary align-
ment.

One other attribute is automatically specified by the
Linkage Editor after it completes processing each load
module. If it detected errors preventing the output
module from being executed successfully (Severity 2),
the Linkage Editor assigns the ‘“‘not executable” at-
tribute. The OS IV/F4 Supervisor will refuse to load a
module with this attribute.

If you specify the LET option, the Linkage Editor
marks the output module ‘“executable” even if
severity-2 errors occur. The LET option is discussed
later in this section.

If you omit the AC parameter or code it incorrectly,
the Linkage Editor assigns a default authorization
code of zero (0) to the output module.

Incompatible attributes

Of the module attributes which you can specify,
several are mutually exclusive. If you specify two or
more mutually exclusive attributes for a load module,
the Linkage Editor ignores the less significant at-
tributes. For example, if you specify both OVLY and
RENT, your module will be linked into an overlay
structure but it will not be reenterable.

Certain attributes are also incompatible with other
job-step options. For canvenience, all job step options
are shown in Fig. 8.3 at the end of this chapter along
with those options that are incompatible.

8.2.2 OtherProcessing Options: LET, NCAL,
XCAL

You can specify several other processing options
which determine whether you can later execute your
output module or whether you wish to invoke the
Automatic Library Call mechanism. These options are
‘“‘exclusive call”’, “let execute’’ and ‘‘no automatic
call”,

Let execute (LET) option

If you specify the LET option, the Linkage Editor

markes your output module ‘“‘executable” even.if it

detects one or more severity-2 error conditions during

processing. (A severity-2 error condition could make

execution of the output load module impossible.)

Some examples of severity-2 errors are as follows:

e Unresolved external references.

e Valid or invalid exclusive calls in an overlay
program.

o Error on a Linkage Editor control statement.

e Missing library madule (or misspelled reference)

e No available space in the directory of the output
module library.

To specify the “‘let execute!” option, code LET in the
PARM field as follows:

//LKED EXEC PGM=IQAL,
/ PARM='LET,...’

Note: If you specify LET, you need not also specify
XCAL.

No automatic library call NCAL) option
If you specify the NCAL option, the Linkage Editor
automatically retrieves library members to resolve ex-
ternal references. The output module is marked
“executable” even if it contains unresolved external
references. If you specify this option, you need not fur-
nish LIBRARY statements to negate Automatic
Library Call for selected external references. With this
option, you need not furnish a SYSLIB DD statement.
To specify the NCAL option, code NCAL in the
PARM field as follows:

//LKED EXEC PARM=IJQAL,
// PARM=‘NCAL,...’

Note: Other errors may cause the module to be
marked ‘“‘not executable’” unless you also
specify the LET option.

Exclusive call (XCAL) option
if you request the exclusive call option, the Linkage
Editor marks your output module ‘‘executable’” even
if your program (in overlay format) issues valid ex-
clusive references among its segments. However, the
Linkage Editor prints a warning message for each
valid exclusive reference.

To specify the exclusive call option, code XCAL in

the PARM field as follows:
//LKED EXEC PGM=JQAL,
// PARM=‘XCAL,OVLY,...

Note: Other errors may éause the module to be
marked ‘‘not executable’’ unless the ‘‘let
execute’’ option is specified.

8.2.3 Storage Allocation Options: AM256,
DCBS, SIZE

These options allow you to influence how the Linkage
Editor should allocate virtual storage for itself, and
also to specify the blocksize for the output module and
to increase the maximum number of aliases permitted
per module.

Aliases maximum of 256 (AM256)

This parameter notifies the Linkage Editor that your
module(s) may have more than the default maximum
of 64 aliases per member. This option is typically
required only for large dynamic link structures.

DCBS option

The DCBS option allows you to specify the block size
for your SYSLMOD data set in the DCB parameter of
your SYSLMOD DD statement.

If you specify the DCBS option, the block-size value
in the SYSLMOD DSCB may be overridden. If you
omit the DCBS option, this block-size value may not
be overridden.

If you specify the DCBS option but no block-size
value in the DCB parameter of your SYSLMOD DD
statement, the Linkage Editor uses the maximum
track size for the device. If you omit the DCBS option
but you provide a block-size value in your DCB
parameter the Linkage Editor ignores this block-size
value. : .

Even if you specify a DCBS option, the Linkage
Editor will not allow you to set the block size for the
SYSLMOD data set to a subminimal value, i.e., less
than the block size of a DSCB for an existing data set.

Any block size you specify will be used unless (1) it
is larger than the maximum record size for the device,
in which case the maximum record size is used, or (2)
it is less than the minimum block size, in which: case
the minimum block size is used.

The following example shows the use of the DCBS
option for a F478 disk drive:

//LKED EXEC PGM=JQAL,
// PARM=‘XREF,DCBS’
//SYSLMOD DD DSNAME=LOADMOD(TEST),
/" DISP=(NEW ,KEEP),

= DCB=(BLKSIZE=3072),...

As a result, the Linkage Editor uses a 3K blocksize for
your output module library.

Note: When you furnish a DCBS option, you must
specify a blocksize subparameter in the DCB
parameter of your SYSLMOD DD statement.

SIZE option
You can specify the amount of virtual storage to be
used by the Linkage Editor and, separately, how much

A

JOB CONTROL LANGUAGE FOR THE LINKAGE EDITOR

of this storage should be used for the load module buf-
fer.

Each installation selects default values for the SIZE
option during system generation. These default values
are used if you omit one or both SIZE parameters or if
you fail to specify them correctly. Most OS IV/F4 in-
stallations will choose sufficiently generous SIZE
default values so that its users need never specify SIZE
parameters,

Format: Permissible formats for the SIZE option
are as follows:
SIZE=(valuel, value2)
SIZE=(valuel)
SIZE=(valuel,)
SIZE=(,value2)
SIZE=(,)

When coded in the PARM field, the expression is
enclosed in single quotes, as follows:

//LKED EXEC PGM=JQAL,
// PARM="'SIZE=(valuel,
// value2),...

“Valuel” and ‘‘value2” may be expressed as (a) in-
tegers specifying the number of bytes of virtual
storage or (b) nK where n represents the number of
kilobytes (1024 bytes) of virtual storage.

When determining the values for the SIZE option,
you should calculate “‘value2” first, then ‘‘valuel”.

“Value2” specifies the number of bytes of storage
to be allocated for the module buffer. The allocation
specified by ‘“value2” is a part of the virtual storage
specified by ‘‘valuel”.

The minimum for ‘“value2” is 6144 (6K) or the
length of the largest input load module text block,
whichever is larger. If you specify a value less than
6144 (6K), the Linkage Editor was its default value for
“value2”.

Space allocated by ‘‘value2” is used for the
following buffers:

o buffer into which input load-module text is read,

e buffer from which load-module text is written to the
intermediate data set,

e buffer into which load-module text is read from the
intermediate data set, and

e buffers from which load-module text is written to
the output data set.

Therefore, the determination of ‘‘value2” requires
that you consider the maximum block sizes of data
sets from which load-module test is read (SYSLIB, or
any data set referenced by an INCLUDE statement, or
any library data set), block size for the intermediate
data set (SYSUT1) and block size for the output load
module data set (SYSLMOD).

Table 8.1 lists FACOM direct access devices that
you can use for input load modules, the intermediate
data set, and output load modules. This table lists the
maximum block size used for each device by the

Linkage Editor. You can always specify these
maximum block sizes when calculating “‘value2”.

Table 8.1 SYSUT1 and SYSLMOD device types and correspond-
ing maximum block sizes

Device Maximum block size
F6625 13312 or 13K
F478 12288 or 12K
F479 12288 or 12K

You must specify ‘“‘value2” so that the Linkage
Editor has sufficient storage to allocate buffers com-
patible with block sizes for the intermediate and out-
put data sets.

The Linkage Editor optimizes the record size for
the output data set unless one of the following con-
ditions exists.

1. You specify PARM="‘...DCBS..." and your
SYSLMOD DD statement contains a BLKSIZE
subparameter in the DCB parameter, forcing the
Linkage Editor to write records having a
maximum length equal to the BLKSIZE
specification.

2. Your (existing) data set has its block size less
than the optimum record size, forcing the
Linkage Editor to write records no longer than
that block size.

3. You specify ‘value2” smaller than twice the
maximum record size for the output data set, for-
cing the Linkage Editor to write records having a
maximum size of 50%* ‘‘value2”.

4. Your intermediate and output data sets have
dissimilar record sizes, forcing the Linkage
Editor to write records having a maximum size
compatible with both data sets.

The Linkage Editor optimizes the record size of the
output data set for its device type, but it selects a
record size compatible with the intermediate data set
(as described above). Therefore, you optimize process-
ing of load-module buffers if you allocate the interme-
diate and output data sets to the same type of device.
The performance of the Linkage Editor is also im-
proved if you allocate these data sets to different units
of the same type.

“Valuel” specifies how much virtual storage you
wish to allocate to the Linkage Editor regardless of
region size. The storage specified by ‘“valuel” in-
cludes the allocation specified by “‘value2”.

The minimum for ‘“valuel” is 64K. If you specify
less than this minimum the Linkage Editor uses in-
stallation default options for both ‘valuel” and
“value2”.

The Linkage Editor supports blocking factors of S,
10, and 40 for SYSLIN, object module libraries, and
SYSPRINT data sets. The requirement for additional
space depends upon the requested blocking factor.

The Table 8.2 shows the additional ‘valuel”
space—in excess of 64K —required to support each
blocking factor.

Table 8.2 Space increment to support blocking

Blocking factor Required increment to ““value1’’

5to1 0
10to 1 18432 or 18K
40to 1 28672 or 28K

Blocking factors of 1 through 4, 6 through 9, and 11
through 39 are treated as blocking factors of 5, 10,
and 40, respectively. Blocking factors greater than 40
are invalid.

If you specify ‘““valuel” greater than the region size,
the Linkage Editor may use some storage required for
data management and other system functions; this
lack of storage will result in its abnormal termination.

“Valuel” should be as large as possible. The per-
formance of the Linkage Editor slightly improves if
you allocate it additional storage.

Examples of valuel determination

1. Assume you have already determined an op-
timum ‘‘value2” of 36K for a paricular linkage-
edit job step. An appropriate ‘‘valuel” is 94K,
since 30K bytes above the minimum of 64K is
needed for the ‘‘value2” allocation and no ad-
ditional storage is required to raise the blocking
factor for SYSLIN, SYSPRINT, and object-
module libraries.

2. Assume you assign a minimum ‘“value2” (6K)
and that all object module libraries are blocked S
to 1, except one that is blocked 10 to 1. Assume
your SYSLIN and SYSPRINT data sets require
blocking factors of 5. An appropriate ‘‘valuel”
for this link-edit is 82K: 18K above the minimum
needed to support the blocking factor of 10 to 1
on the object module library.

3. Assume the same situation exists as in example 2,
except that the minimum region size is 100K. A
more appropriate ‘‘valuel”’ under these cir-
cumstances is 90K. Since extra space is available,
you can optimize the allocated region and in-
crease “value2” to 18K.

8.2.4 Outputoptions: LIST, MAP, XREF, TERM

These options control the optional diagnostic output
produced by the Linkage Editor. You can request that
the Linkage Editor produce a list of all control
statements, a module map, and/or a cross-reference
table to help you test your program. The format of
each is described in Chapter 4.

In addition, you can request that any numbered
error/warning messages generated by the Linkage

Editor should appear on the SYSTERM data set as
well as the SYSPRINT data set.

Control statement listing option
To request a control statement listing, code LIST in
the PARM field, as follows:

//LKED EXEC PGM=IJQAL,
// PARM='LIST,...’

When you specify the LIST option, your control
statements are listed in card-image format on the
diagnostic output data set.

Module map option
To request a module map, code MAP in the PARM
field, as follows:

//LKED EXEC PGM=JQAL,
// PARM=‘MAP,...

When you specify the MAP option, the Linkage
Editor produces a storage map of the output module
on the diagnostic output data set.

Cross reference table option
To request a cross-reference table, code XREF in the
PARM field, as follows:

//LKED EXEC PGM=JQAL,
// PARM='XREF,...’

When you specify the XREF option, the Linkage
Editor produces a cross-reference table of the output
module on the diagnostic output data set. Since the
cross reference table includes a module map, you need
not specify both XREF and MAP.

Alternate output (SYSTERM) option

To request that any numbered error/warning
messages be displayed on the data set defined by your
SYSTERM DD statement, code TERM in the PARM
field, as follows:

//LKED EXEC PGM=JQAL,
// PARM=‘TERM,...

If you specify the TERM option you must furnish a
SYSTERM DD statement; otherwise ‘“TERM” is
ignored.

8.2.5 Incompatible Options

If you specify mutually exclusive job-step options, the
Linkage Editor ignores the less significant options.
Table 8.3 illustrates the relative significance of these
options. When an ‘X"’ appears at an intersection, the
options are incompatible, and the option that appears
higher in the list is selected.

For example, to check the compatibility of XREF

JOB CONTROL LANGUAGE FOR THE LINKAGE EDITOR

and NE, follow the XREF column down and the NE
row across until they intersect. Since an X appears
where they intersect, they are incompatible; XREF is
selected, NE is negated.

If you furnish incorrect values for the SIZE
parameter, the Linkage Editor uses your installation
default values.

If the Linkage Editor detects incompatible options,
it prints the following message:

OQPTIONS INCOMPATIBLE
after the standard module disposition message.

Table 8.3 Incompatible job step options for the Linkage Editor

x

Table 8.4 Linkage Editor return codes

Return | Severity
code code
00 0
04 1

Description

Normal conclusion.

Warning messages have been listed, but
execution should be successful. For ex-
ample, if you requested an overlay struc-
ture of only one segment, a return code of
04 ia issued.

08 2 Error messages have been listed, and ex-
ecution may fail. The Linkage Editor
marks your module ‘“not executable’’ un-
less you have specified the LET option.
For example, if the blocksize of a specified
library data set cannot be handled by the
Linkage Editor, a return code of 08 is
issued.

12 3 Severe errors have occurred and execution
is impossible. For example, if you specify
an invalid entry point, the Linkage Editor
issues a return code of 12,

16 4 Terminal errors have occurred, and pro-
cessing has terminated. For example, if the
Linkage Editor cannot handle the blocking
factor you requested for SYSPRINT, it

issues a return code of 16.

8.2.6 Return Codes

The Linkage Editor passes a return code to OS IV/F4
Job Management upon completion of the job step.
The return code reflects the highest severity code
recorded in any iteration of the Linkage Editor within
that job step. The highest severity code encountered
during processing is multiplied by 4 to create the
return code; the Linkage Editor loads this code into
register 15 at the end of its processing. Table 8.4 con-
tains return codes, corresponding severity codes, and
their descriptions.

You can use this return code to determine whether
or not to execute the load module by using a con-
dition-code test (COND) on the EXEC statement for
the load module. OS IV/F4 Job Management com-
pares the return code with values you specify in the
COND parameter; results from these comparisons
determine subsequent action.

8.2.7 DD Statements

Every data set used by the Linkage Editor must be
described in a DD statement. Each DD statement
must have a name, except for the second and sub-
sequent data sets of a concatenation. DD statements
required by the Linkage Editor have pre-assigned
names; those for additional input data sets have
names you assign; those for concatenated data sets
(after the first) have no names.

In addition to its name, each DD statement
provides OS IV/F4 with information about the in-
put/output device on which the data set resides, and a
description of the data set itself. All job-control
facilities for describing devices are available to users
of the Linkage Editor.

Besides information about the device, your DD
statement also contains a data set description, which
includes the data set name and its disposition. You
may also supply information for its data control block
(DCB).

Data Set Name

The Linkage Editor uses either sequential or par-
titioned data sets. For sequential data sets, only their
names need be specified; for partitioned data sets,
member names must also be specified either on
corresponding DD statements or with control
statements.

When you pass input data sets from a previous job
step, or when you are testing a new load module, you
should typically use temporary data set names (.e.,
&&dsname) to ensure that no duplicate data sets
remain. Any data set with a temporary name is
automatically deleted at the end of your job. When
you wish to store a module permanently, you must use
a data set name without ampersands.

DCB Informatien

As you create each new data set, information about it
must be placed in the associated data control block
(DCB). If this information does not exist in a DCB or
header label, you must specify it in the DCB
parameter on your DD statement.

Record format (RECFM), logical record size
(LRECL), and blocksize (BLKSIZE) subparameters of
the DCB parameter are discussed below as they apply
to the Linkage Editor. Specific information on each
appears in its description, which follows later in this
section. Other DCB parameters (tape recording
technique, density, and so forth) are described in the
FACOM OS IV/F4 Job Control Language Reference
Manual and the FACOM OS IV/F4 Job Control

Language User’s Guide.

Record Format
The following record formats are used with the

Linkage Editor:

RECFM= Records are:

F fixed length

FB fixed length and blocked.

FBA fixed length, blocked, and contain ANSI
control characters

FBS fixed length, blocked, and written in stan-
dard blocks

FA fixed length and contain ANSI control
characters

FS fixed length and written in standard
blocks

U undefined length

UA undefined length and contain ANSI con-

trol characters

You should use a record format of FS or FBS with
caution; all blocks in the data set must be the same
size; this size must be equal to the specified blocksize;
and a truncated block can occur only as the last block
in the data set.

Note: Track overflow is never used by the Linkage
Editor. When moving or copying load
modules, you should not use the track over-
flow feature for target data sets, since errors
may subsequently occur when you attempt to
retrieve the modules for execution.

Logical Record and Block Sizes

Blocking is allowed for input object module data sets
and the diagnostic output data set. The blocking fac-
tors used to determine buffer allocations are 10 and
40. BLKSIZE must therefore be a multiple of LRECL.
See the description of blocking factors in Section 8.2.3
under “SIZE Option.”

Also, you should specify a blocksize for your output
load module library whenever you specify the DCBS
option, as described under “SYSLMOD DD State-
ment” later in this section.

8.2.8 Standard Linkage Editor DD Statements

The Linkage Editor uses up to six data sets of which
four are required. DD statements for these data sets
must use the preassigned DD names given in Table
8.5. The descriptions that follow give pertinent device
and dataset information for each data set.

Table 8.5 Linkage Editor DD names

- Data set DD name Required
Primary input data set SYSLIN Yes
Automatic call library SYSLIB Only if the Automatic

Library Call mechanism
is used

Intermediate data set SYSUT1 Yes

Diagnostic output dataset|SYSPRINT | Yes

Output module library SYSLMOD | Yes

Alternate outputdataset ([SYSTERM | Only if the TERM
option is specified

SYSLIN

The SYSLIN DD statement is required; it describes
the primary input data set, which you can assign to a
direct-access device, magnetic tape unit, card reader,
or the JES input stream (DD*). The data set may be
either sequential or partitioned; in the latter case you
must specify a member name.

If you assign SYSLIN to a card reader or the JES in-
put stream, input records must be unblocked and 80
bytes long. This data set must contain object modules
and/or control statements. Furnishing load modules
as primary input is considered a severity-4 error.

Table 8.6 DCB requirements for object module and control
statement input

LRECL BLKSIZE RECFM
80 80 F,FS
80 800,3200* FB,FBS

* These are the maximum blocksizes allowed. Which maximum
is applicable depends on any values you assign to ‘‘value 1"
and “‘value 2"’ of the SIZE option.

SYSLIB

A SYSLIB DD statement is required whenever you
wish to use the Automatic Library Call mechanism.
This DD statement describes the automatic call
library, which must be assigned to a direct-access
device. The data set must be partitioned, but you
should not specify any member names.

If you furnish concatenated call libraries you must
not intermix object and load module libraries.If you
only furnish object modules in SYSLIB, your call
library may also contain control statements.

The DCB requirements for object-module call
libraries are given in Table 8.6. The DCB requirement
for load-module call libraries is a record format of U;
the blocksize used for storage allocation is equal to the
maximum for the device used, not the record read.

JOB CONTROL LANGUAGE FOR THE LINKAGE EDITOR

SYSUT1

The SYSUT1 DD statement is required; it describes
the intermediate sequential data set, which must be
assigned to a direct-access device. Space must be
allocated for this data set but its DCB requirements
are supplied by the Linkage Editor.

SYSPRINT
The SYSPRINT DD statement is required; it
describes the diagnostic output written by the Linkage
Editor to a sequential data set assigned to a printer,
intermediate storage device, or the JES output stream
(SYSOUT=A). If an intermediate storage device is
used, the data records contain a carriage control
character as the first byte. The usual specification for
this data set is SYSOUT=A. You may assign a block-
size, but the record format assigned by the Linkage
Editor depends on whether blocking is used or not.
Table 8.7 shows the DCB requirements for
SYSPRINT. The only parameter you can furnish is
the blocksize.

Table 8.7 DCB requirements for SYSPRINT

LRECL BLKSIZE RECFM
121 121 FA
121 n x 121 where FBA

n is less than
or equal to 40

Note: The value specified for BLKSIZE, either on the DCB para-
meter of the SYSPRINT DD statement or in the DSCB
(data set control block) of an existing data set, must be
a multiple of 121; if it is not, the Linkage Editor issues
a message to the operator’s console and terminates
processing.

SYSLMOD

The SYSLMOD DD statement is required; it
describes the output module library, which must be a
partitioned data set assigned to a direct-access device.

You may optionally specify a member name on your
SYSLMOD DD statement, used only if you omitted
specifying its name on a NAME control statement.
Your member name implies replacement of an iden-
tically-named member in the load-module library, if
one exists.

If your new member is to replace an identically-
named member, you should code DISP=OLD on your
SYSLMOD statement. If your member is to be added
to an existing library, its disposition should be MOD,
OLD, or SHR. If no library exists and your member is
the first to be created, its disposition should be NEW
or MOD. If your member is to be added to an existing
library used concurrently in another region or parti-
tion, the disposition should be SHR.

The record format U is assigned by the Linkage
Editor. See Appendix 1 for details on load-module
formats.

The Linkage Editor assigns a blocksize by:
1. Finding the smallest of the following values:

e The maximum track size for the device

o The value of the BLKSIZE subparameter in the
DCB parameter on the SYSLMOD DD state-
ment, if you specified the DCBS option

o The actual output buffer length (half the number
specified for ‘““value2” of the SIZE option)

2. Comparing the smallest value above to the value
currently in the DSCB. The greater value is
assigned as the block size.

SYSTERM _

The SYSTERM DD statement is optional; it describes
a data set used only for numbered error/warning
messages. Although primarily for keyboard terminals
operating under the OS IV/F4 Time Sharing System
you can use the SYSTERM DD statement in any en-
vironment to define a data set consisting only of num-
bered error/warning messages.

You define SYSTERM output by (a) including a
SYSTERM DD statement in your JCL and (b)
specifying TERM in the PARM field of your EXEC
statement. If you request SYSTERM output the
Linkage Editor writes numbered messages to both the
SYSTERM and SYSPRINT data sets.

DCB requirements for SYSTERM
(LRECL=121,BLKSIZE=121, and RECFM=FBA)
are supplied by the Linkage Editor. If necessary, the
Linkage Editor will modify the DSCB (data set control
block) of an existing data set to reflect these values.

8.2.9 Additional DD Statements

Each DD name you specify on an INCLUDE or
LIBRARY control statement must correspond to a
DD statement you must furnish. These DD state-
ments describe sequential or partitioned data sets
assigned to magnetic tape units or direct-access
devices. DCB requirements for these data sets are
shown in Table 8.8.

Table 8.8 DCB requirements for additonal input data sets

Data set contents RECFM | LRECL BLKSIZE
Object modules and/ FFS 80 80
or control statements
Load modules U 1K 1K
Object modules and/ | F,FS 80 80
or control statements | FB,FBS 400,800,3200*
Load modules U maximum | equal to
for device LRECL
or one-half
of “value2”,
whichever
is smaller

* These are the maximum block sizes allowed. Which maximum
is applicable depends on the values given to ‘“‘value 1" and
““value 2'' of the SIZE option.

If you concatenate two or more data sets, their
records must have the same formats, record sizes, and
block sizes. If these data sets reside on magnetic tape,
their tape recording techniques and densities must
also be identical.

8.3 CATALOGED PROCEDURES

OS IV/F4 allows each installation to store a frequent-
ly-useful collection of EXEC and DD statements un-
der a unique member name in a procedure library.
Such a series of job control language (JCL) statements
is called a cataloged procedure. You can recall these
statements at any time to specify your job require-
ments. To request a particular procedure, place you
an EXEC statement in the input stream specifying its
member name (procedure name).

You can override parameters of a cataloged
procedure temporarily (i.e., for the duration of a
single job) and also add DD statements to selected job
steps. Information you alter in this way is in effect
only for the duration of one job step; the cataloged
procedures themselves are not altered permanently by
invocation as described below. Any DD statements
you add must follow those that override statements
predefined within a particular procedure.

8.3.1 Standard Linkage Editor Procedures

OSIV/F4 provides two standardized cataloged
procedures for using the Linkage Editor: a single-step
procedure that link-edits the input and produces a
load module (procedure LKED), and a two-step
procedure that link-edits the input, produces a load

Table 8.9 Standardized OSIV/F4 cataloged procedures using
the Linkage Editor

module, and executes that module (procedure
LKEDG). Many cataloged procedures OS IV/F4
defines for the language translators also contain
Linkage Editor steps, as shown in Table 8.9.

LKED procedure

The standard OS IV/FA4 cataloged procedure named
LKED is a single-step procedure that link edits input,
produces a load module, and passes the load module
to another step in the same job. The statements in this
procedure are shown in Fig. 8.1; the following is a
description of these statements.

o Statement Numbers

You can use the 8-digit numbers on the right-hand
side of each statement to identify it. They could be
used, for example, when permanently modifying the
cataloged procedure with the JSEUPDTE utility
program. For a description of this utility program,
see the FACOM SO IV/F4 Data Set Utility User’s
Guide.

¢ EXEC Statement
The PARM field specifies the XREF, LIST, LET,
and NCAL options. If you wish to use the Auto-
matic Library Call mechanism, you must override
the NCAL option and add a SYSLIB DD statement.
Overriding and adding DD statements are
discussed later in this section.

o SYSPRINT Statement
The SYSPRINT DD statement specifies SYSOUT
class A, which is either a printer, an intermediate
storage device, or the JES output stream. If you use
JES or an intermediate storage device, you should
furnish carriage control characters preceding the
data.

e SYSIN Statement
By specifying DDNAME=SYSIN, you can sub-
sequently define any data set as long as it fulfills the

Compile and link Compile, link, requirements for Linkage Editor input. You define
-anguage edit procedure and go procedure your input data set with a DD statement whose DD
Assembler ASMECL ASMFCLG name is SYSIN. This data set may be either in the
Cobol COBUCL COBUCLG JES input stream or residing on a separate volume.
Fortran GE FORTACL FORTACLG If your data set is in the JES input stream, you
Fortran HE FORTBCL FORTBCLG must furnish the following SYSIN statement:
L/ PL1XFCL PL1XFCLG
5L/100 SLi1CL SL1CLG .
(none) LKED LKEDG //LKED.SYSIN
//LKED EXEC PGM=JQAL PARM='XREF,LIST,LETNCAL REGION=110K 00020000
/ISYSPRINT DD SYSOUT=A 00040000
/ISYSLIN DD DDNAME=SYSIN 00060000
//SYSLMOD DD DSNAME=&&GOSET(GO),SPACE=(1024,(50,20,1)), €00080000
" UNIT=SYSDA,DISP=(MOD PASS) 00100000
/ISYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), €00120000
/" SPACE=(1024,(200,20)) 00140000

Fig. 8.1 Statements in the LKED cataloged procedure

JOB CONTROL LANGUAGE FOR THE LINKAGE EDITOR

It may be anywhere among your DD statements for
this job step as long as it follows all overriding DD
statements. Any object module decks and/or con-
trol statements should immediately follow your
SYSIN statement, with a delimiter statement (/*) at
the end of the input.

If the data set resides on a separate volume, the
following SYSIN statement is used:

//LKED.SYSIN DD parameters describing an input
data set

If this SYSIN statement is used, it may be anywhere
among your DD statements as long as it follows all
overriding DD statements for this step. You can
concatenate several data sets, described in Chapter
3

SYSLMOD Statement

The SYSLMOD DD statement specifies a tem-
porary data set and a general space allocation. The
disposition allows the next job step to execute the
load module. If the load module is to reside per-
manently in a library, various parameters of these
general specifications must be explicitly overridden.

SYSUT1 Statement

The SYSUT1 DD statement specifies that the inter-
mediate data set is to reside on a direct-access
device, but not the same device as either the
SYSLMOD or the SYSIN data sets. Again, a
general space allocation is given.

SYSLIB Statement

Note that there is no SYSLIB DD statement. If you
wish to use the Automatic Library Call mechanism
with this cataloged procedure, you must add a
SYSLIB DD statement and also negate the NCAL
option in the PARM field of your EXEC statement.

Invoking the LKED Procedure
To invoke the LKED procedure, code the following
EXEC statement:

The following example shows the use of the
SYSIN DD* statement:

Step A:

//LESTEP EXEC LKED

[Overriding and additional DD statements for the LKED
step, each beginning “//LKED.DDname..."”]

//LKED.SYSIN DD *

[Object module decks and/or control statement]

Step B:

//EXSTEP EXEC PGM=*LESTEP.LKED.

SYSLMOD
[DD statements and data for load module execution}]

If you supply data for your execution step, your
data must be followed by a delimiter (/*) statement.

Step A invokes the LKED procedure and Step B
executes the load module produced in Step A. The
job control language statements for these two steps
are combined in LKEDG cataloged procedure.

LKEDG procedure

The cataloged procedure named LKEDG is a two-
step procedure that link-edits input, produces a load
module, and executes that load module. The state-
ments in this procedure are shown in Fig. 8.2. The
steps are named LKED and GO. The specifications in
the statements in the LKED step are identical to the
specifications in the LKED in the LKED procedure.

o GO Step

The EXEC statement specifies that the program to
be executed is the load module produced in the
LKED step of this job. This module was stored in
the data set described on the SYSLMOD DD state-
ment in that step. If a NAME statement was used to
specify a member name other than that used on the
SYSLMOD statement, you should use the LKED
procedure rather than LKEDG.

The condition (COND) parameter on the GO
EXEC statement specifies that the execution step
will be bypassed if the return code issued by the
LKED step is greater than 4.

e Invoking the LKEDG Procedure
To invoke the LKEDG procedure, code the follow-
ing EXEC statement:

//stepname EXEC LKED
. . . //stepname EXEC LKEDG

where stepname is optional and is the name of the

job step.
//LKED EXEC PGM=JQAL,PARM="XREF LIST NCAL' ,REGION=110K 00020000
/ISYSPRINT DD SYSOUT=A 00040000
//SYSLIN DD DDNAME=SYSIN 00060000
//SYSLMOD DD DSNAME=&&GOSET(GO),SPACE=(1024,(50,20,1)), €00080000
1 UNIT=(SYSDA,DISP=(MOD,PASS) 00100000
//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), C00120000
" SPACE=(1024,(200,20)) 00140000
11GO EXEC PGM=+LKED.SYSLMOD,COND=(4,LT,LKED) 00160000

Fig. 8.2 Statements in the LKEDG cataloged procedure

where stepname optionally names the job step. The
following example shows the use of the SYSIN DD*
statement with the LKED procedure:

//TWOSTEP EXEC LKEDG
[Overriding and additional DD statements for the LKED
step, each beginning //LKED.DDname...]

//LKED.SYSIN DD *
[Object module decks and/or control statements]
/%

[DD statements for the GO step, each beginning
//GO.DDname...]

//GO.SYSIN DD b
[Data for the GO step]
/‘

8.3.2 Overriding Procedure Statements

The programmer may override any EXEC or DD
statement specifications in a cataloged procedure.
These temporary specifications remain in effect only
for the duration of his job step. For a detailed des-
cription of overriding cataloged procedures, see the
FACOM OS IV/F4 Job Control Language Reference
Manual or FACOM OS IV/F4 Job Control Language
User’s Guide.

Overriding an EXEC Statement

You can override one or more EXEC statements in a
cataloged procedure by specifying changes and ad-
ditions on the EXEC statement that invokes the
cataloged procedure. You must ordinarily specify the
stepname when overriding EXEC-statement param-
eters. For example, you can increase the REGION
parameter as follows:

//LESTEP EXEC LKED,REGIOI;I.LKED=136K

The rest of the specifications on the EXEC statement
of the LKED procedure remain in effect.

If you need to override the PARM field, all PARM
options specified in the cataloged procedure are
negated. For example, if you wish to specify the
XREF, LIST, or NCAL options when overriding the
PARM field, you must re-specify each non-default
value. In the following example, the OVLY option is
added and the NCAL option is negated:

//LESTEP EXEC LKED,PARM.LKED=‘OVLY,
1/ XREF,LIST’

As a result, you have retained the XREF and LIST op-
tions but have dropped the NCAL option. Remember,
if you negate NCAL in this way, you must add a
SYSLIB DD statement.

If you use the LKEDG procedure to execute a load
module just built, an efficient way is to specify the
LET parameter in your LKED step, i.e., invoke the
LKEDG procedure with the following EXEC
statement:

//stepname EXEC LKEDG,PARM.LKED=‘XREF,

// LIST,NCAL,LET’
// COND.GO=(8,LT,LKED)
Overriding DD statements

You can override any DD statements in a cataloged
procedure as long as the overriding statements are in
the same order as they appear in the procedure. DD
statements not overridden follow the specifications in
the cataloged procedure.

Only those parameters you explicitly override are
affected; other parameters remain as specified in the
procedure. In the following example, the output load
module is to be placed in a permanent library:

//LIBUPDTE EXEC LKED

//LKED.SYSLMOD DD DSNAME=LOADLIB(PAYROLL),
/! DISP=OLD

//LKED.SYSIN DD DSNAME=OBIMOD,

// DISP=(OLD,DELETE)

As a result of the statements in the example, the
LKED procedure processes the object module in the
OBJMOD data set, storing the output load module in
the LOADLIB data set with member name
PAYROLL. The SPACE parameter on the
SYSLMOD DD statement and the other specifi-
cations in the procedure remain in effect.

Note: A common source of JCL errors is incorrectly
sequencing overriding statements. In the
preceding example, if the SYSIN statement
had preceded the SYSLMOD statement, the
latter would be erroneously placed vis a vis
the LKED procedure. Since the overriding
SYSLMOD statement would then be ignored
by OS IV/F4 Job Management, the entire job
would probably fail.

8.3.3 Adding DD Statements

You can supply DD statements for additional data
sets when using cataloged procedures. These
additional DD statements must follow any overriding
DD statements; the former can be in any sequence.

In the following example, Automatic Library Call is
used along with the LKEDG procedure:

//CPSTEP EXEC LKEDG,PARM.LKED="XREF,
// LIST’

//LKED.SYSLMOD DD DSNAME=LOADLIB(TESTER),
// DISP=OLD.,...

//LKED.SYSLIB DD DSNAME=SYSLI.PLILIB,

1/ DISP=SHR

//LKED.SYSIN DD *
[Object module decks and/or control statements]
/%

//GO.SYSIN DD *
[Data for execution step]
/ *

You have negated the NCAL option and added a

JOB CONTROL LANGUAGE FOR THE LINKAGE EDITOR

SYSLIB DD statement between the overriding
SYSLMOD DD statement and the SYSIN DD state-
ment.

8.4 DYNAMIC INVOCATION OF THE
LINKAGE EDITOR

You can invoke the Linkage Editor during execution
of another program by issuing one of the following
macro instructions:

symbol LINK EP=JQAL,
PARAM=(optionlist,DDname-list),
VLi=1

symbol ATTACH EP=JQAL,
PARAM=(optionlist,DDname-list),
VL=1

symbol LOAD EP=JQAL

symbol XCTL EP=JQAL

EP=JQAL

Specifies the symbolic name of the Linkage Editor.
You can use “EP=LINKEDIT” for compatibility
with other operating systems, since “LINKEDIT” is a
standard OS IV/F4 alias for “JQAL.”

PARAM=(optionlist, DDname-list)

Specifies, as a sublist, address parameters to be
passed from the problem to the Linkage Editor. The
first fullword in the address parameter list contains
the address of the option and attribute list for the load
module. The second fullword contains the address of a
list of DD names. If you use standard DD names, you
can omit this list.

optionlist

Specifies the address of a variable-length list con-
taining any options and module attributes. You must
furnish this address even if you need no list.

The option list must begin on a halfword boundary.
The two high-order bytes count the number of bytes in
the remainder of the list. If you specify no options or
attributes, your count should be zero. Your option list
is free-form; fields separated by commas, with no em-
bedded blanks or zeros.

DDnamelist

Specifies the address of a variable-length list con-
taining alternative DDnames for data sets used during
linkage editing. If you use all standard DDnames you
may omit this operand.

The list must begin on a halfword boundary. Its two
high-order bytes count the number of bytes in the
remainder of the list. Each name less than 8 bytes long
must be left-justified and padded with blanks. If you
omit an alternate DDname for a particular entry on
the list, the Linkage Editor will use its standard DD
name; you must store binary zeros into its 8-byte en-
try. Names can be omitted from the end by merely

shortening the list, i.e., reducing the count field (head
of the list) appropriately.
The sequence of the 8-byte entries in the DD-
namelist is as follows:
Entry Alternate Name For:

1 SYSLIN

2 member name (name under which the out-
put load module is stored in the
SYSLMOD data set; the Linkage Editor
uses this entry if you omit the name from
your SYSLMOD DD statement or furnish
no NAME control statement)
SYSLMOD
SYSLIB
(not applicable)
SYSPRINT
(not applicable)
SYSUT1
(not applicable)
SYSTERM

NV WnNPW
I
(oY
[y

[

VL
Specifies that the sign bit is to be set to 1 in the last
fullword of the address parameter list.

Note: Among major program packages supplied by
Fujitsu, SORT and several others invoke the
Linkage Editor dynamically during their ini-
tialization phases in order to create tailored,
high-efficiency programs incorporating op-
tional user-supplied exit routines.

When the Linkage Editor completes
processing, it returns a condition code to the
OS IV/F4 Supervisor in register 15, as
described in Section 8.2.6.

MAIN CSECT
LA 13,SAVEAREA SET SAVE AREA
: POINTER

LINK EP=JQAL,PARAM=(PLIST,DLIST),VL=1

DS OH

PLIST DC AL2(L1) LENGTH OF OPTION
LIST

OPT DC C'LIST ,XREF' OPTIONS
L1 EQU *-OPT

DS OH
DLIST DC AL2(L2) LENGTH OF DD NAME
DDN DC XL80’ LIST (NO SYSLIN

DC XL80 ALTERNATE)

DC C'LOADLIBU’ (NO ALTERNATE MEM-
L2 EQU +«-DDN BER,NAME)

SAVEAREA DS 18F ALTERNATE DD NAME

END

Fig. 8.3 Example of invoking the Linkage Editor

Example:
The Fig. 8.3 shows how you can LINK to the Linkage
Editor. After executing—whether successful or un-
successful—the Linkage Editor returns control to the
OS IV/F4 Supervisor, which returns control to the
Assembly program of this example just after the
LINK macro instruction.

Options requested in this example are LIST and

XREF, to which PLIST points. An alternate DD name
is used for SYSLMOD; hence, this job invoking the
Linkage Editor should furnish a LOADLIB DD state-
ment, whose data set will receive the new load module.

Register 13 points to the save area required by the
OS IV/F4 Supervisor whenever you issue a LINK
macro instruction.

CHAPTER 9

SUMMARY OF LINKAGE EDITOR CONTROL

STATEMENTS

This chapter summarizes the OS IV/F4 Linkage

Editor control statements:

e What each statement does

e Format of the statement

e Placement of the statement in the input stream

e Notes on its use

e One or more examples, together with appropriate
job control language statements.

The control statements are described in alpha-
betical order. Before using this chapter, you should be
familiar with following information on general for-
mat, format conventions, and placement. This chap-
ter describes control statements in terms of punched
cards, but the discussion applies equally to inputs
from keyboard terminals, magnetic tape, etc.

General Format
Each control statement specifies an operation and one
or more operands. Nothing must be written preceding
the operation, which begins at or after column 2. The
operation must be separated from the operand by one
or more blanks.

A control statement can be continued on as many
cards as necessary by terminating the operand at a
comma, and by placing a nonblank character in
column 72 of the card. Continuation must begin in
column 16 of the next card. A symbol cannot be split;
that is, it cannot begin on one card and continue on
the next card.

Format Conventions

The following conventions are used to describe the

coding of Linkage Editor control statements:

o Capital letters indicate exact characters you must
enter.

o Lower-case letters must be supplied by the user.

e Other punctuation (parentheses, commas, spaces,
etc.) must be entered as shown.

e Braces { } indicate a choice of entry; unless a
default is indicated, you must choose one of the en-
tries.

e Brackets [] indicates an optional field or
parameter.

® An ellipsis (...) indicates that multiple entries of the

type immediately preceding the ellipsis are allowed.

e Items separated by a vertical bar (1) represent
alternative items. No more than one of the items
may be selected.

Placement Information

You may place Linkage Editor control statements
before, between, or after modules. They can be
grouped, but they cannot be placed within a module.
However, specific placement restrictions may be im-
posed by the nature of the functions being requested
by the control statement. Any placement restrictions
are noted.

9.1 ALIAS Statement

The ALIAS statement specifies additional names for
the output library member; it also can specify names
of alternative entry points. You can specify up to 64
names on one or more ALIAS statements for each
library member. (The AM256 parameter raises this
aliases limit to 256/member.) The Linkage Editor en-
ters the names into the directory of the partitioned
data set, in addition to the member name.

Format
The format of the ALIAS statement is:
ALIAS { symbol } [,symbol]
externalname / [,externalname
symbol

specifies an alternate name for the load module.
When the module is executed, the main entry point is
used as the starting point for execution.

externalname

specifies a name that is defined as a control section
name or entry name in the output module. When the
module is called for execution, execution begins at the
external name referred to.

Placement

You may place an ALIAS statement before, between,
or after object modules or other control statements. It
must precede a NAME statement used to specify the
member name, if one is present.

Notes

o In an overlay program, an external name specified
by the ALIAS statement must be in the root
segment.

e You can assign no more than 64 alias names to one
output module unless you raise this limit to 256
alias names with the AM256 parameter.

e Each alias for a load module is retained in the
directory entry for the module; the Linkage Editor
does not delete old aliases. Therefore, each alias
must be unique; attempting to assign the same alias
to more than one load module can cause incorrect
module reference.

e You should delete obsolete alias names from the
PDS directory with a system utility such as
JSEPROGM to avoid future name conflicts.

o If the Replace (R) option is in effect for an output
load module (that is, the load module replaces an
identically-named module in the library), Replace
applies to each ALIAS name for the load module as
well as its primary name.

Example

You wish to assign an output module ROUT1 two
alternate entry points, CODE1 and CODE2. In ad-
dition, you have written calling modules using both
ROUT1 and ROUTONE to refer to the output
module. Rather than correct the calling modules, you
can assign an alternative library member name as
follows:

ALIAS CODE1,CODE2,ROUTONE
NAME ROUT1

Since CODE1 and CODE?2 are entry names in the out-
put module, when you call the module by these names,
execution begins at the referenced points. Modules
that call the output module as “ROUTONE” now
correctly refer to “ROUT1"” at its main entry point.
The names CODE1, CODE2, and ROUTONE appear
in the library directory along with ROUT1.

9.2 CHANGE STATEMENT

You use a CHANGE statement to replace a specific
external symbol by an immediately-following paren-
thesized symbol. The external symbol to be changed
can be a control section name, an entry name, or an
external reference. You can specify several changes
with a single CHANGE statement.

Format

The format of the CHANGE statement is:
CHANGE externalsymbol(newsymbol)

[,externalsymbol(newsymbol)]...

externalsymbol
is the control section name, entry name, or external
reference that is to be changed.

newsymbol
is the name to which the external symbol is to be
changed.

Placement

You must place a CHANGE statement immediately
before the module containing the external symbol to
be changed or an INCLUDE statement specifying the
module. The scope of the CHANGE statement spans
the immediately-following object module or load
module. The END record in the immediately-fol-
lowing object module, or End-of-Module indication in
the immediately-following load module, delimits the
scope of the CHANGE statement.

Notes

o External references from other modules to a
changed control section name or entry name remain
unresolved unless you take further action.

e If you misspell a symbol on a CHANGE statement,
the Linkage Editor will not change it. You can
review outputs such as the cross-reference listing or
module map to verify each change.

Example 1

Two control sections in different modules have the
name TAXROUT. If you wish to link edit the modules
together, you must change one of the control section
names. If the module to be changed is defined by a
DD statement named OBJMOD, you could change
the control section name as follows:

//OBJIMOD DD DSNAME=TAXES,
/7 DISP=(OLD,KEEP),...
//SYSLIN DD hd

CHANGE TAXROUT(STATETAX)

INCLUDE OBJMOD
/*

As a result, you change the name of TAXROUT con-
trol section in the TAXES module to STATETAX.
Any references to TAXROUT from other modules are
not affected.

Example 2

A load module contains references to TAXROUT that
you wish to change to STATETAX. If you define this
module with DD statement named LOADMOD, you
could change the external references at the same time
you change the control section name as follows:

SUMMARY OF LINKAGE EDITOR CONTROL STATEMENTS

//OBIMOD DD DSNAME=TAXES,
// DISP=(OLD,DELETE),...
//LOADMOD DD DSNAME=LOADLIB,
// DISP=OLD,...
//SYSLIN DD b

CHANGE TAXROUT(STATETAX)

INCLUDE OBJMOD

CHANGE TAXROUT(STATETAX)

INCLUDE LOADMOD(INVENTRY)
/*

As a result you change both the control section name
TAXROUT in the TAXES module and external
reference TAXROUT in the INVENTRY module to
STATETAX. Any references to TAXROUT from
other modules are not affected.

9.3 ENTRY STATEMENT

The ENTRY statement specifies the symbolic name of
the first instruction to be executed when you call the
program by its module name for execution. You must
furnish an ENTRY statement whenever you re-link a
load module. If the Linkage Editor encounters more
than one ENTRY statement for a single load module,
it accepts the first statement as the main entry point
and ignores all other ENTRY statements.

Format
The format of the ENTRY statement is:

ENTRY externalname

externalname
is defined as either a control section name or an entry
name in a linkage editor input module.

Placement

You can place an ENTRY statement before, between,
or after object modules or other control statements. It
must precede any NAME statement for the module.

Notes

e In an overlay program, the first instruction to be
executed must be in the root segment.

e The external name specified must be the name of
an instruction, not a data name, if the module is to
be executed (as contrasted with being used as data).

Example
In the following example, the main entry point is
INIT1:

//LOADLIB DD DSNAME=LOADLIB,
// DISP=OLD,...
//SYSLIN DD hd

ENTRY INIT1

INCLUDE LOADLIB(READ, WRITE)

ENTRY READIN
/*

INIT1 must be either a control section name or an en-
try name in the linkage editor input. The Linkage
Editor ignores the redundant READIN entry point.

9.4 EXPAND STATEMENT

The EXPAND statement lengthens control sections
or named common sections by a specified number of
bytes.

Format

The format of an EXPAND statement is:
EXPAND name(xxxx) [,name(xxxx)]...

name

is the symbolic name of a common section or control
section whose length is to be increased.

XXXX
is the decimal number of bytes you wish to add to the
length of a common section. The Linkage Editor fills
each expansion area with binary zeros, up to a
maximum of 4096 bytes.

Placement

You can place an EXPAND statement before, bet-
ween, or after other control statements or object
modules. However, you must place it following the
module containing the control or named common
section to which it refers. If you have entered this
control section or named common section with an
INCLUDE statement, the EXPAND statement must
follow the INCLUDE statement.

Notes

You should use expand with caution, so as not to in-
crease a program beyond its design limitations. For
example, if you add space to a control section beyond
the range of its base register, that space is unusable.

Example

In the following example, EXPAND statements add a
250-byte patch area (initialized to zeros) at the end of
control section CSECT1 and increase the length of
named common section COM1 by 400 bytes.

//LKED EXEC PGM=JQAL

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=SYSDA,

// SPACE=(TRK,(10,4))
//SYSLMOD DD DSNAME=PDSX,DISP=0LD
//SYSLIN DD DSNAME=&&LOADSET,

/! DISP=(OLD,PASS),

// UNIT=SYSDA
// DD *
EXPAND CSECT1(250)
EXPAND COM1(400)
NAME MODI1(R)

/*

9.5 IDENTIFY STATEMENT

The IDENTIFY statement writes descriptive data you
supply into the CSECT Identification (IDR) records
for a particular control section. You can also use
IDENTIFY to associate system-supplied data with
executable code.

. -!):./,at
s .2 ormat of the IDENTIFY statement is:

.DENTIFY csectname(‘data’)
[,csectname(‘data’)]...

csectname
is the symbolic name of the control section to be iden-
tified.

data

specifies up to 40 EBCDIC characters of identifying

information. You may supply any information desired

for identification purposes.
The rules of syntax for the operand field are:

1. No blanks or characters may appear between the
left parenthesis and the leading quote, nor be-
tween the trailing quote and the right paren-
thesis.

2. The data field consists of 1 to 40 characters;
therefore, a null entry must be represented, mini-
mally, by a single blank.

3. Blanks may appear between the leading quote
and the trailing quote. Each blank counts as 1
character toward the 40 character limit.

4. Asingle quote between the leading quote and the
trailing quote is represented by 2 consecutive
quotes. The pair of quotes counts as 1 character
toward the 40-character limit.

S. Any other EBCDIC character may appear be-
tween the leading quote and the trailing quote.

6. An IDENTIFY statement may be continued onto
additional cards; however, a whole operand must
appear on a single card image and at least 1
whole operand must appear on each card image
of the continued statement.

7. If the Linkage Editor finds a leading quote it
processes all characters until it finds a trailing
quote or reaches the 40-character limit.

8. Blanks may not appear between the CSECT
name and the left parenthesis.

9. A blank following a left parenthesis terminates
the operand field; a blank following a comma
that terminates an operand terminates the
operand field of that card image.

Placement

You can place an IDENTIFY statement before, bet-
ween, or after other control statements or object
modules. The IDENTIFY statement must follow the
module containing the control section to be identified
or the INCLUDE statement specifying the module.

Example

In the following example, IDENTIFY statements
identify the source levels of a control section, a PTF
application to a control section, and the functions of
several control sections.

//LKED EXEC PGM=JQAL
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,
1/ SPACE=(TRK,(10,5))
//SYSLMOD DD DSNAME=LOADSET,
// DISP=OLD
//OLDMOD DD DSNAME=OLD.LOADSET,
// DISP=0OLD
//PTFMOD DD DSNAME=PTF.OBJECT,
// DISP=0OLD
//SYSLIN DD .
[input object deck for a control section named FORT]
IDENTIFY FORT('LEVEL 03’)
INCLUDE PTFMOD(CSECT4)
IDENTIFY CSECT4(‘PTF99999’)
INCLUDE OLDMOD(PROG1)
IDENTIFY CSECTI1('I/0 ROUTINE’),
CSECT2(‘SORT ROUTINE)),
CSECT3(‘SCAN ROUTINE’)
/*

From these control statements, the Linkage Editor
creates IDR records containing the following iden-
tification data:

e The name of the Linkage Editor that produced the
load module, the Linkage Editor version and
modification level, and the date of the current
Linkage Editor processing of the module. This in-
formation is provided automatically.

e Your data describing the functions of several con-
trol sections in the module, as indicated on the third
IDENTIFY statement.

e If your language translator supports IDR, the Iden-
tification records produced by the Linkage Editor
also contain the name of the translator that
produced the object module, its version and modifi-
cation level, and data of compilation/assembly.

You can reference IDR records created by the
Linkage Editor with the LISTIDR function of the
JQNLIST service aid program, which is described in
the FACOM OS IV/F4 System Utility User’s Guide.

SUMMARY OF LINKAGE EDITOR CONTROL STATEMENTS

9.6 INCLUDE STATEMENT

The INCLUDE statement specifies sequential data
sets and/or libraries that furnish additional input for
the Linkage Editor, which processes them in the order
in which they appear. However, the sequence of data
sets and modules within the output load module does
not necessarily follow the order of the INCLUDE
statements.

Format

The format of the INCLUDE statement is:
INCLUDE ddname [(membername[,...])]

[,ddname[(membername [,...])]]...

ddname

is the name of a DD statement that describes a
sequential or partitioned data set used as additional
input to the Linkage Editor. For a sequential data set,
you need specify only the DD name. For a partitioned
data set, you must also specify at least one member
name.

membername

is the name of or an alias for a member of the library
defined in the specified DD statement. The mem-
bername must not be specified again within the
DSNAME parameter of the DD statement.

Placement

You can place an INCLUDE statement before, be-
tween, or after object modules or other control state-
ments.

Note

A NAME statement within a data set specified in an
INCLUDE statement is invalid; the NAME statement
is ignored. All other control statements are processed.

Example 1

In the following example, an INCLUDE statement
specifies two data sets to be the input to the Linkage
Editor:

//OBIMOD DD DSNAME=&&OBIJECT,
// DISP=(OLD,DELETE)
//LOADMOD DD DSNAME=LOADLIB,
// DISP=SHR,...

//SYSLIN DD *
INCLUDE OBJMOD,LOADMOIDTESTMOD,READMOD)
/*

Note that you must supply a DD statement for every
DD name in your INCLUDE statement.

Example 2
You could have used two separate INCLUDE state-

ments in the preceding example, as follows:

OBIMOD
LOADMOD(TESTMOD,READMOD)

INCLUDE
INCLUDE

9.7 INSERT STATEMENT

The INSERT statement repositions a control section
from its location within the input stream to the
current segment in an overlay structure. However, the
sequence of control sections within a segment is not
necessarily determined by your INSERT statements;
you use ORDER statements for sequencing within a
segment.

If an operand of an INSERT statement is not
already present in the external symbol dictionary, the
Linkage Editor defines it as an external reference. If
the reference has not been resolved at the end of pri-
mary input processing, Automatic Library Call at-
tempts to resolve it.

Format

The format of the INSERT statement is:
INSERT csectname,...

csectname

is the name of the control section to be repositioned. A

particular control section can appear only once within
aload module.

Placement

You must place each INSERT statement in the input
sequence following the OVERLAY statement defining
the origin of its segment. If you wish to insert the con-
trol section into the root segment, you must place the
INSERT statement before the first OVERLAY state-
ment.

Notes

Control sections positioned in a segment must contain

all address constants to be used during execution

unless:

e A-type address constants are located in a segment
in the path.

e V-type address segment are located in the path. If
an exclusive reference is made, the V-type address
constant must be in a common segment.

e V-type address constants used to pass control to
another segment are located in the path. If an
exclusive reference is made, the V-type address
constant must be in a common segment.

Example
The following INSERT (and OVERLAY) statements
specify the overlay structure shown in Fig. 9.1:

// EXEC PGM=JQAL,PARM='OVLY,

// XREF,LIST’

DD *

//SYSLIN
INSERT CSA
INSERT CSB
OVERLAY ALPHA
INSERT CSC,CSD
OVERLAY ALPHA
INSERT CSE
CSA
CT B
ALPHA
CcsC

Fig. 9.1 Overlay structure for INSERT statement example

9.8 LIBRARY STATEMENT

You use a LIBRARY statement to specify:

e Additional automatic call libraries, which contain
modules used to resolve external references found
in the program.

o Restricted no-call function:
external references you do not wish resolved by
Automatic Library Call during this linkage edit.

o Never-call function:
external references you do not wish resolved by
Automatic Library Call mechanism during this or
any subsequent linkage edit of this module.

You can furnish combinations of these functions in
a single LIBRARY statement.

Format
The format of the LIBRARY statement is:

ddname(membername[,membername,...])
LIBRARY { (externalreference[,externalreference,...]) ¢ ,...
*(externalreference[,externalreference,...])

ddname
is the name of a DD statement that defines a library.

membername

is the name (or an alias) for a member of the specified
library. You specify which members are used to
resolve references.

externalreference

is an external reference that may remain unresolved
after primary input processing and should not then be
resolved by Automatic Library Call.

*

indicates that the external reference is never to be
resolved; if you omit the asterisk, the Linkage Editor
leaves the corresponding reference unresolved only
during its current run.

Placement

You can place a LIBRARY statement before, be-
tween, or after object modules or other control state-
ments.

Notes

o If an unresolved external symbol is not a member
name in the library specified, the external reference
remains unresolved unless defined in another input
module.

e If you specify NCAL you cannot also use the
LIBRARY statement to specify additional call
libraries.

e Members retrieved by Automatic Library Call are
placed into the root segment of an overlay program,
unless you reposition them with INSERT state-
ments.

o Specifying an external reference for restricted no-
call or never-call by means of the LIBRARY state-
ment prevents the external reference from being re-
solved by automatic inclusion of the necessary
module from an automatic call library. However, it
does not prevent the external reference from being
resolved if the module necessary to resolve the
reference is specifically included or is included as
part of an input module.

Example
The following example shows all three uses of the
LIBRARY statement:

// EXEC PGM=JQAL,PARM='LET,
// XREF,LIST’
//TESTLIB DD DSNAME=TEST,
// DISP=SHR,...
//SYSLIN DD *
LIBRARY TESTLIB(DATA, TIME),(FICACOMP),

*(STATETAX) %
/™

As a result, you utilize the DATA and TIME members
from the TEST library to resolve external references.
FICACOMP and STATETAX are not resolved; there-
fore, you must specify the LET option on your EXEC
statement if the module is to be marked ‘‘executable.”
In addition, STATETAX will not be resolved in any
subsequent reprocessing by the Linkage Editor.

SUMMARY OF LINKAGE EDITOR CONTROL STATEMENTS

9.9 NAME STATEMENT

Each NAME statement specifies the name of the load
module created from preceding inputs and serves as a
delimiter for input to this load module. As a delimiter
the NAME statement allows you to create multiple
load modules in one Linkage Editor job step. You can
also use the NAME statement to indicate that the new
load module replaces an identically-named module in
the library.

Format
The format of the NAME statement is:
NAME membername [(R)]

membername
is the name you assign to the load module.

R)

indicates that this load module replaces an identical-
ly-named module in the output module library. If the
module is not a replacement, the parenthesized value
(R) should not be specified.

Placement

You place each NAME statement after the last input
module or control statement used for the correspond-
ing output module.

Notes

e You must furnish any corresponding ALIAS state-
ments before the NAME statement.

e A NAME statement found in a data set other than
the primary input data set is invalid, and it is
ignored.

Example
In the following example, the Linkage Editor creates
two load modules, RDMOD and WRTMOD, in one
job step:

//SYSLMOD DD DSNAME=AUXMODS,

// DISP=MOD,...
//NEWMOD DD DSNAME=&&WRTMOD,
// DISP=OLD
//SYSLIN DD DSNAME=&&RDMOD,
// DISP=0OLD
// DD *

NAME RDMOD(R)

INCLUDE NEWMOD

NAME WRTMOD
/%

As a result, your first module, RDMOD, replaces an
identically-named module in the AUXMODS library,
the second module, WRTMOD is added to the
library.

9.10 ORDER STATEMENT

You use ORDER statements to select the sequence in
which control sections or named common areas
should appear in an output load module.

Format
The format of the ORDER statement is:

common-area-name[(P)]
ORDER {csectname[(P)] } "
common area name

is the name of the common area to be sequenced.

csectname
is the name of the control section to be sequenced.

(P)

indicates that the starting address of the control
section or named common area is to be on a page
boundary within the load module. The control sec-
tions or common areas are aligned on 4K page bound-
aries unless you specify the ALIGN2 attribute on your
EXEC statement.

Placement
You can place an ORDER statement before, between,
or after object modules or other control statements.

Notes

e You may name a control section or common area on
only one ORDER statement. If you supply the same
name more than once, it is ignored along with the
balance of the control statement on which it ap-
pears.

e Control sections and common areas can appear in
either the primary input, the Automatic Call
Library, or both.

e If you change a control section or named common
area by a CHANGE or REPLACE control state-
ment and also wish to sequence it, you should
specify the new name on the ORDER statement.

Example

In this example, you wish to sequence the control sec-
tions in the LDMOD module according to the sequen-
ce specified on your ORDER statements. Page-
boundary alignments and control section sequences
resulting from these statements are shown in Fig. 9.2,
assuming each control section is 1K in length.

Notes
The control section name PART1 is changed by a
CHANGE statement to FSTPART. The ORDER
statement refers to the control section by its new
name.

JCL and control statements

//1SYSLMOD DD

DSNAME=PVTLIB,DISP=OLD, ...
/ISYSLIN DD *
ORDER ROOTSEG(P) MAINSEG,SEG1,SEG2
ORDER SEG3(P),ENTRY1
CHANGE PART1(FSTPART)
ORDER FSTPART SESECTA SESECTBI(P)
INCLUDE SYSLMOD(LDMOD)

Qutput load module
LDMOD
ROOTSEG

oK

MAINSEG

SEG1

SEG2

4K TseGs

ENTRY1

FSTPART

SESECTA
8K

SESECTB

Fig. 9.2 Output load module for ORDER statement example

9.11 OVERLAY STATEMENT

You use an OVERLAY statement to designate the
beginning of an overlay segment or overlay region.
Since a segment or a region is not externally named,
you identify it by giving its origin (or load point) a
symbolic name, used only for Linkage-editing pur-
poses, on a OVERLAY statement to signify the start
of a new segment or region.

Format
The format of the OVERLAY statement is:

OVERLAY symbol [(REGION)]

symbol
is the symbolic name you assign to the origin of a

segment. This symbol is not related external symbols
in a module.

(REGION)
specifies the origin of a new region.

Placement

The OVERLAY statement must precede (a) the first
module of the next segment, (b) your INCLUDE state-
ment specifying the first module of the segment, or (c)
your INSERT statement specifying the control sec-
tions to be positioned in the segment.

Notes

e You must specify the OVLY option on your EXEC

statement when you wish to use OVERLAY state-
ments.

e Your sequence of OVERLAY statements should
reflect the order of the segments in your overlay

structure: top to bottom, left to right, and region by
region.

e No OVERLAY statemient should precede the root
segment.

Example
The following OVERLAY and INSERT statements
specify the overlay structure in Fig. 9.3.

// EXEC PGM=JQAL,PARM='0OVLY,
// XREF,LIST’

//SYSLIN DD DSNAME=&&OB],...
// DD .
INSERT SECT1
OVERLAY ONE
INSERT SECT2
OVERLAY TWO
INSERT SECT3
OVERLAY TWO
INSERT SECT4
OVERLAY ONE
INSERT SECTS, SECT6
OVERLAY THREE(REGION)
INSERT SECT7
OVERLAY THREE
INSERT SECTS8
/t

REGION 1

REGION 2

Fig. 9.3 Overlay structure for OVERLAY statement example

9.12 PAGE STATEMENT

A PAGE statement aligns a control section or named
common area on a 4K page boundary in the load
module. If you specify the ALIGN2 attribute on the
EXEC statement for your linkage-edit job step and if
you furnish one or more PAGE statements, the latter
serve to align specified control sections or common
areas on 2K page boundaries within your load
module. Whether individual control sections are
aligned on 2K or 4K boundaries, the OS IV/F4
Supervisor will load the associated module on a 4K
page boundary; that is, address 0 of the module will
be loaded at a virtual-storage address which is a
multiple of 4096.

SUMMARY OF LINKAGE EDITOR CONTROL STATEMENTS

Format
The format of the PAGE statement is:
PAGE {common-a.rea-name } »
csectname

common area name
is the name of a common area to be aligned on a page

boundary.

csectname
is the name of a control section to be aligned on a page

boundary.

Placement
The PAGE statement can be placed before, between,
or after object modules or other control statements.

Notes

o If you change a control section or named common
area by a CHANGE or REPLACE statement and
also wish to insure page alignment you should spec-
ify the new name in the PAGE statement.

o The control sections and common areas named as
operands can appear in the primary input and/or
the automatic call library.

JCL and control statements

//ILKED EXEC PGM=JQAL,
PARM='ALIGN2, ...
//ISYSLMOD DD DSNAME=PVTLIB,
DISP=0OLD,...
/ISYSLIN DD .
PAGE ALIGN,BNDRY4K, EIGHTK
INCLUDE SYSLMOD(LDMOD)

/*
Output load module
LDMOD

ALIGN

oK

Empty space
due to boundary
alignment

BNDRY4K

4K

Empty space
due to boundary
alignment

EIGHTK

8K

Fig. 9.4 Output load module for PAGE statement example

Example

In this example, you wish to align the control sections
in the LDMOD module on page boundaries, as
specified in the following PAGE statement:

PAGE ALIGN,BNDRY4K,EIGHTK

Appropriate JCL and Linkage Editor control state-
ments, as well as the output load module, are shown in
Fig. 9.4, assuming each control section is 3K bytes in
length.

9.13 REPLACE STATEMENT

The REPLACE statement specifies one of the
following:

e Replacement of one control section with another.

e Deletion of a control section.

e Deletion of an entry name.

A REPLACE statement can specify more than one
function.

When you replace a control section, the Linkage
Editor changes all references within the input module
to the old control section to point to the new control
section. Any external references to the old control sec-
tion from other modules are unresolved unless
changed.

When you delete a control section, the Linkage
Editor deletes the control section name from the ex-
ternal symbol dictionary unless references are made to
the control section within the input module. If there
are any such references, the Linkage Editor changes
the control section name to an external reference. Ex-
ternal references from other modules to a deleted con-
trol section also remain unresolved.

When deleting an entry name, the Linkage Editor
changes it to an external reference if there are any
references to it within the same input module.

Format
The format of the REPLACE statement is:

{csectname-1[(csectname-2)] }

REPLACE
entryname

csectname

is the name of a control section. If you furnish only
csectname-1, the Linkage Editor deletes the control
section; if you also furnish csectname-2, the Linkage
Editor replaces the first control section with the
second.

entryname
is the entry name to be deleted.

Placement

Your REPLACE statement must immediately precede
either (1) the module containing the control section or
entry name to be replaced or deleted, or (2) your
INCLUDE statement specifying the module. The
scope of the REPLACE statement spans the im-
mediately-following object module or load module.
The END record in the immediately-following object
module, or the end-of-module indication in the load
module, terminates the action of the REPLACE
statement.

Notes

e The Linkage Editor does not delete unresolved ex-
ternal references from the output module, even if a
deleted control section contains the only reference
to a symbol.

e When you wish to replace some—but not all—con-
trol sections of a separatély-assembled module, A-
type address constants that refer to a deleted sym-
bol will be incorrectly resolved unless the entry
name is at the same displacement from the origin in
both the old and the new control sections.

e If you misspell a control section name on your
REPLACE statement, the control section will not
be replaced or deleted. You can use Linkage Editor
output such as the cross-reference listing and mod-
ule map to verify each change.

Example

In the following example, assume that the INT7 con-
trol section is in the LOANCOMP member and that
the INT8 control section, which is to replace INT7, is
in the &&NEWINT data set. Also assume that you
wish to delete the PRIME control section in the
LOANCOMP member.

//NEWMOD DD DSNAME=&&NEWINT,
// DISP=(OLD,DELETE)
//OLDMOD DD DSNAME=PVTLIB,
// DISP=O0OLD....
//SYSLIN DD *

ENTRY MAINENT

INCLUDE NEWMOD

REPLACE INT7(INT8),PRIME
INCLUDE OLDMOD(LLOANCOMP)
/%

As a result, the Linkage Editor deletes INT7 from the
input module described by the OLDMOD DD state-
ment, and replaces INT7 with INTS. All references to
INT7 in the input module now refer to INT8. Any
reference to INT7 from other modules remain
unresolved. Control section PRIME is deleted; the
control section name is also deleted from the external
symbol dictionary if there are no references to PRIME
in LOANCOMP.

9.14 SETCODE STATEMENT

A SETCODE statement assigns an authorization code
to an output load module, which is placed in the direc-
tory entry for the module.

Format
The format of the SETCODE statement is as follows:

SETCODE AC(authorization-code)

authorization-code
is 1 to 8 decimal digits specifying a value from O to
255.

Placement

You can place a SETCODE statement before, be-
tween, or after object modules or other control state-
ments. It must precede the NAME statement for the
module if one is present.

Notes

If you assign an authorization code with a SETCODE
statement, it overrides any authorization code
assigned by an AC parameter in the PARM field of
your EXEC statement.

If the Linkage Editor encounters more than one
SETCODE statement while editing a load module, it
uses the last valid authorization code it encounters.

The operand “AC()” results in an authorization
code of zero (0).

Example
In the following example, the Linkage Editor assigns
an authorization code of 1 to the MOD1 load module.

//LKED EXEC PGM=JQAL
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,
// SPACE=(TRK,(10,5))
//SYSLMOD DD DSNAME=SYS1.LINKLIB,
/7 DISP=OLD
//SYSLIN DD DSNAME=&&ILOADSET,
/! DISP=(OLD,PASS)
/ UNIT=SYSDA
// DD *

SETCODE ACQ)

NAME MODI(R)

/*

9.15 SETSSI STATEMENT

You use a SETSSI statement to place System Status
Index information into the directory entry for the out-
put module.

SUMMARY OF LINKAGE EDITOR CONTROL STATEMENTS

Format
The format for the SETSSI statement is:

SETSSI XXXXXXXX

XXXXXXXX
represents eight hexadecimal characters (0—9, A—F)
to be placed in the 4-byte System Status Index of the
directory entry.

Placement

You can place a SETSSI statement before, between,
or after object modules or other control statements. It
must precede the NAME statement for the module, if
one is present.

Notes

You must provide a SETSSI statement whenever you
re-process a Fujitsu module with the Linkage Editor.
If you omit the statement, no System Status Index
information is retained.

CHAPTER 10

LOADER FUNCTIONS AND FACILITIES

The Loader combines basic editing and loading func-
tions of the Linkage Editor and OS 1V/F4 Supervisor,
respectively, in one job step. Therefore, the load func-
tion is equivalent to the link edit-go function. You can
use the Loader for compile-load-go and load-go jobs.

The Loader will accept object modules produced by
any language processor, together with load modules
produced by the Linkage Editor. Optionally, it will
search a call library (SYSLIB) and/or resident link-
pack area (LPA) to resolve external references. The
Loader does not produce load modules for program
libraries.

The functional characteristics, compatibility and
restrictions, performance considerations, and storage
considerations of the Loader are described in the
following sections. For additional details on program
loading, you should consult FACOM OS IV/F4
Supervisor Functions and Facilities.

10.1 FUNCTIONAL CHARAC-
TERISTICS

The Loader combines the following basic functions of
the Linkage Editor and the Program Fetch function of

the OS 1V /F4 Supervisor:
1. Resolution of external references between pro-
gram modules.

2. Optional inclusion of modules from a call library
(SYSLIB), a link pack area, (LPA) or both (Figs.
10.1 and 10.2). The Loader includes modules
from a call library or the LPA upon your request,
if any external references remain unresolved after
analyzing the primary input. If you request both
call-library and LPA resolution, the Loader will
search the latter first.

3. Automatic deletion of duplicate copies of pro-
gram modules (Fig. 10.3). The first copy is
loaded, and all succeeding requests use that copy.

4. Relocation of all address constants so that the
Loader can pass control directly to the selected
entry point in virtual storage.

Diagnostic messages produced by the Loader ate
similar to those of the Linkage Editor.

Obiject and/or A
load modules B
—™ Loader —* c

A D
8 E
¢ F
SYSLIN / G

Object or Virtual storage

load modules

O TTmo

SYSLIB — called automatically when references
were unresolved at the end of input
from SYSLIN.

Fig. 10.1 Loader processing — SYSLIB resolution

10.2 COMPATIBILITY AND RESTRIC-
TIONS

The Loader accepts the same basic input as the

Linkage Editor:

1. You can submit any object modules that can be
processed by the Linkage Editor to the Loader.

2. You can submit any load modules produced by
the Linkage Editor to the Loader, except those
edited with the *‘not executable” attribute.

The Loader supports the following Linkage Editor op-
tions: MAP, LET, NCAL, DYNA, SIZE, and TERM.
No other Linkage Editor options nor attributes are
supported; if you furnish them, the Loader will ignore
them, i.e., they will not be considered as errors. The
Loader will print appropriate messages on the
SYSLOUT data set indicating that these options
and/or attributes are not supported. You can specify
supported options in the PARM field of your EXEC

LOADER FUNCTIONS AND FACILITIES

Object and/or . .
load modules User's region
A
A
B —_— Loader _— B —
T~ References made in B to
(¢ N D, E,F,and G are
Cc -\ N resolved to the link
J N\ pack area.
\
SYSLIN H N
rd \
~ \
e \
Object or Link pack area)
load modules e —————— //l
Ve 201
e D o~ — — — - L
e 7 !/ Modules in link pack
D A _4~-"// areamustbe
E e E=———— ’// // re-enterable.
P 7 - 1 /
F ~ F -— —— /s
H 7 -7
G=—""
SYSLIB — Called automatically when i
references remain unresolved ~ Virtual storage
at the end of input from
SYSLIN and after searching
the link pack area.
Fig. 10.2 Loader processing — link pack area and SYSLIB resolution
Object and/or - - T~ 4
load modules P ~. E
- -
-7 D . .
E .7 The first copy is
D~ Loader A loaded
A B
B c
C
D
Virtual storage
SYSLIN

Fig. 10.3 Loader processing — automatic editing

statement or with LINK, ATTACH, LOAD, or XCTL
macro instruction. In addition to supported Linkage
Editor options, the Loader provides several other op-
tions. Loader options are described in Section 10.3.1.

The Loader does not process Linkage Editor con-
trol statements INCLUDE NAME, OVERLAY, etc.).
If you furnish them, they will not be treated as errors;
instead, the Loader will furnish messages on the
SYSLOUT data set indicating that the control
statements are not supported.

The Loader and Linkage Editor follow the same in-
put conventions. In contrast to the Linkage Editor,
the Loader can accept load modules from the SYSLIN
dats set; it also accepts already-loaded object modules
in virtual storage.

The Loader needs no auxiliary storage space com-
parable to the SYSUT1 data set of the Linkage
Editor.

Time sharing system (TSS)

When you request the Loader while using the
OS IV/F4 TSS, you actually invoke the Loader
Prompter, a program that interfaces your terminal to
OS IV/F4 and its Loader. Under TSS, you define
Loader options and data sets via the LOADGO com-
mand. Complete procedures for using the LOADGO
command to load and execute an object module may
be found in the FACOM OS IV/F4 TSS Terminal
User’s Guide.

10.3 INPUT FOR THE LOADER

The input deck for the Loader must contain job con-
trol language statements for the Loader and—as
necessary—for your application program if it is to be
executed after loading (Fig. 10.4).

//name JOB parameters (optional)
//name EXEC PGM=LOADER,PARM=(parameters)
//ISYSLIN DD parameters

//SYSLIB DD parameters (optional)
/ISYSLOUT DD parameters (optional)
//ISYSTERM DD parameters {optional)

1/l (optional DD statements and data

/l required for loaded program)

Fig. 10.4 Input deck for the loader — basic format

Only the EXEC and SYSLIN statements are required
for a Loader step. The JOB statement is required if
the Loader is the first step in the job. Aliases for
“LOADER” in the EXEC statement are
“JQBMLGO” and “JQBLDRGO”.

10.3.1 EXEC Statement

You use an EXEC statement to invoke the Loader and
specify its options. You specify Loader and loader-
program options in the PARM field of this EXEC
statement. The PARM field must have the following
format:
,PARM="[loader-option],...]]
[/loaded-program option|,...]T
Note that you must separate any loaded-program
options from your Loader options by a slash (/). If you
furnish no Loader options, your loaded-program
options must begin with a slash. You may omit the
entire PARM field if you need no Loader nor loaded-
program options.
The Loader options are:
e MAP
The Loader produces a map of the loaded program
that lists external names and their absolute storage
addresses on the SYSLOUT data set. If you omit a
SYSLOUT DD statement, OS IV/F4 ignores any
MAP option you request.
o NOMAP
A map is not produced.
e RES
The Loader performs an automatic search of the
link pack area (LPA) list after processing the
primary input (SYSLIN) and before searching the
SYSLIB data set. If you specify this option the
Loader automatically selects the CALL option.
e NORES
The Loader omits any automatic search of the LPA
list.

e CALL
The Loader performs an automatic search of the
SYSLIB data set. If you omit a SYSLIB DD
statement, this option is ignored.

e NOCALL or NCAL
The Loader omits any automatic search of the
SYSLIB data set. If you select this option, the order
automatically sélects the NORES option.

e LET
The Loader will try to execute the object program
even if it detects one or more severity-2 error con-
ditions. (A severity-2 error condition is one that of-
ten makes execution of a loaded program im-
possible.)

e NOLET
The Loader will not try to execute the loaded
program if it detects at least one severity-2 error
condition.

o SIZE=size
Specifies the size, in bytes, of the virtual-storage
region that you furnish to the Loader explicitly or
(normally) implicitly.

e EP=name
Specifies the entry point of the loaded program.
You must specify an external name for this
parameter if the entry point of the loaded program
is in an input load module. For FORTRAN and
PL/I, these entry points must be MAIN and
JXXNTRY, respectively, unless you change the
compiler options.

o NAME=name
Specifies the name you use to identify the loaded
program to the system. If omitted, the default name
is “**GO”.

e PRINT
The Loader displays informational and diagnostic
messages on the SYSLOUT data set.

e NOPRINT
The Loader does not open the SYSLOUT data set,
and it omits all informational and diagnostic
messages.

¢ TERM
The Loader directs any numbered diagnostic
messages to the SYSTERM data set. Although in-
tended to be used when operating under the Time
Sharing System (TSS), the SYSTERM data set can
replace or supplement the SYSLOUT data set at
any time. If you omit the SYSTERM DD statement,
the Loader ignores this option.

o NOTERM
The Loader does not display numbered diagnostic
messages on the SYSTERM data set.

e ALIAS
The name you furnish with the EP parameter is an
alias for the desired load module.

e DYNA
The modules are to be loaded as a dynamic link
structure, as described in Chapter 7.

The default options are: NOMAP, RES, CALL,
NOLET, SIZE=100K, PRINT, NAME=**GO and
NOTERM. ,

In the following examples of the EXEC statement,
X and Y are parameters required by the loaded
program,

// EXEC PGM=JQBMLGO
//ABC EXEC PGM=LDRGO,

// PARM='MAP,

/1 EP=FIRST/X,Y’
//LOADI1 EXEC PGM=LOADER,

// PARM="/X,Y’
//LOAD2 EXEC PGM=LOADER,

// PARM=NOPRINT
//LOAD3 EXEC PGM=LOADER,

// PARM=(MAP, LET)
//LOAD4 EXEC PGM=LOADER,

/! PARM=‘NAME=NEWPROG,
// TERM, NOPRINT’

For further details on how to code the EXEC
statement, you should refer to the FACOM OS IV /F4
Job Control Language or the FACOM OS IV/F4 Job
Control Language User’s Guide.

10.3.2 DD Statements

The Loader uses up to four DD statements named

SYSLIN, SYSLIB, SYSLOUT, and SYSTERM. You

must furnish a SYSLIN statement for every Loader

job; the other three DD statements are optional.
The following considerations apply to the DCB
parameters for SYSLIN, SYSLIB, and SYSLOUT:

e For better performance, you should explicitly
specify the BLKSIZE and BUFNO subparameters.

o If you omit BUFNO, the Loader assumes
BUFNO=2.

e If you specify RECFM=U, the Loader assumes
BUFNO=2 and ignores any BLKSIZE and LRECL
subparameters.

o RECFM=V is not accepted.

o RECFM=FBSA is always assumed for SYSLOUT.

o If you omit RECFM, the Loader assumes
RECFM-=F for SYSLIN and SYSLIB.

o If you omit BLKSIZE, the Loader assigns the
LRECL value for the block size.

e The Loader assumes LRECL=121 for SYSLOUT
unless it is operating under the Time Sharing
System (TSS), in which case it assumes LRECL=81.

o If you omit LRECL, the Loader assumes
LRECL=80 for SYSLIN and SYSLIB.

e If you use OPTCD=C to specify chained
scheduling, you must allocate an additional 2K
(2048 bytes) of virtual storage in your region if
necessary Data Management routines are not
resident.

Note: The SYSTERM data set always comprises
unblocked 81-character records with
BUFNO=2 and RECFM=FSA. Because

LOADER FUNCTIONS AND FACILITIES

these values are fixed, you need not furnish
a DCB parameter.

In addition to the DD statements required
for the Loader, you must include any DD
statements and data required by the loaded
program in your input deck.

SYSLIN
The SYSLIN DD statement defines the input data for
the Loader, which can be object modules produced by
a language translator, load modules produced by the
Linkage Editor, or both. The data set defined by the
SYSLIN statement can be sequential data sets,
members of a partitioned data set, or both. The
DSNAME parameter for a partitioned data set must
also furnish the member name:
DSNAME=dsname(membername).
You can concatenate more than one module in your
SYSLIN stream.
The following are examples of the SYSLIN
statement. The first example defines a member of a
previously-cataloged partitioned data set:

//SYSLIN DD DSNAME=OUTPUT.FORT(MOD12),
// DISP=OLD, DCB=BLKSIZE=3200

The second example defines a sequential data set on
magnetic tape:

//SYSLIN DD DSNAME=PROGIS, UNIT=2400,

// DISP=(OLD, KEEP),
// VOLUME=(PRIVATE, RETAIN,
/7 SER=MCS167)

The third example defines a data set which was the
output of a previous step in the same job:

//SYSLIN DD DSNAME=*.COBOL.SYSLIN,
/7 DISP=(OLD, DELETE)

The fourth example shows the concatenation of three
data sets. The first two data sets are members of
different partitioned data sets; the first is an object
module and the second is a load module. The third
data set is in the input stream following a SYSLIN DD
statement, as described in Section 10.3.3.

//SYSLIN DD DSNAME=PGMLIB.SET1(RFS1),

// DISP=O0LD,
/7 DCB=(BLKSIZE=3200, RECFM=FB)
7/ DD DSNAME=PGMLIB.SET2(ABCS),
// DISP=0LD, DCB=RECFM=U
// DD DDNAME=SYSIN
SYSLIB

The SYSLIB data set contains Fujitsu-supplied or in-
stallation library routines you wish to include in your
loaded program. The Loader searches this data set
when it detects unresolved references after processing
SYSLIN and optionally searching the link pack area.
The SYSLIB data set resolves an external reference
whenever it is as follows: (1) a member name or an

alias of a module in the data set, and (2) defined as an
external name in the external symbol dictionary of the
module with that name. If the unresolved external
reference is a member name or an alias in the library,
but is not an external name in that member, the
Loader processes the member but leaves the external
reference unresolved unless subsequently defined.

The data set defined by your SYSLIB DD statement
must be a partitioned data set that contains object
modules or load modules, but not both. You can use
concatenation to include additional partitioned data
sets in SYSLIB. All concatenated data sets must con-
tain the same type of modules (object or load).

The following are examples of the SYSLIB DD
statement. The first example defines a cataloged par-
titioned data set that can be shared by other steps:

//SYSLIB DD DSNAME=SYS1.COBLIB, DISP=SHR
The second example shows the concatenation of two
data sets:

//SYSLIB DD DSNAME=SYS1.PL1BASE,DISP=SHR
/" DD DSNAME=LIBMOD.MATH,
/1 DISP=OLD

SYSLOUT

The Loader writes into your SYSLOUT data set any
error or warning messages; it also displays there the
optional map of external references if you request it as
described in Section 10.5. The data set defined by this
DD statement must be sequential. You can furnish a
DCB parameter to specify its blocking factor
(BLKSIZE) or number of buffers (BUFNO).

The following are examples of the SYSLOUT DD
statement. The first example specifies the system out-
put unit:

//SYSLOUT DD SYSOUT=A

The second example defines a sequential data set on a
F651 printer:

//SYSLOUT DD UNIT=F651,
// DCB=(BLKSIZE=121,BUFNO=4)

SYSTERM
The SYSTERM DD statement defines a data set used
only for numbered diagnostic messages. When you
use the Loader under the OS IV/F4 Time Sharing
System (TSS), your SYSTERM DD statement defines
your terminal output data set. You can also use
SYSTERM at any time to replace or supplement the
SYSLOUT data set. Because the Loader does not
open the SYSTERM data set unless it must issue a
diagnostic message, using SYSTERM instead of
SYSLOUT can reduce Loader processing time.

If you use SYSTERM rather than SYSLOUT, the
numbered messages in the SYSTERM data set are
your only diagnostic output. If you use SYSTERM to

supplement SYSLOUT, the numbered messages
appear in both data sets.

The DCB parameters for SYSTERM are fixed and
need not be specified. The SYSTERM data set always
consists of unblocked 81-character records with
BUFNO=2 and RECFM=FSA.

The following example shows a SYSTERM DD
statement specifying the standard JES output stream:

//SYSTERM DD SYSOUT=A

10.3.3 Submitting Data to a Loaded Program

Data for your loaded program can follow your Loader
data in the JES input stream. You define such loaded-
program data by a DD statement following the Loader
data.

Fig. 10.5 shows how you can load a previously-
compiled FORTRAN problem progtam. The program
to be loaded (loader data) follows the SYSLIN DD
statement. The loaded-program data follows the
FTOSF001 DD statement.

//LOAD JOB MSGLEVEL=1
//ILDR EXEC PGM=LOADER,PARM=MAP
/ISYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
//ISYSLOUT DD SYSOUT=A
//FTO6F001 DD SYSOUT=A
//SYSLIN DD .
[Loader data]
/=
//FTO5F001 DD »

[Loaded program data]
/*

Fig. 10.5 Loader and loaded-program data in the JES input
stream

10.4 DYNAMICALLY INVOKING THE
LOADER

You can invoke the Loader by either its program
name, JQBMLGO, or either of its two standard
aliases, JQBLDRGO or LOADER. You can request
dynamic loading via one of the following macro in-
structions:

EP=loadername,
[symbol] LINK PARAM={optionlist
v ATTACH [[,ddname iist)),
VL=1
LOAD
[symbol] {XCTL } EP=loadername
EP=LOADER

specifies the symbolic name of a standard alias for the
Loader. = _

PARAM=(optionlist [ddname list])

specifies, as a sublist, address parameters to be passed
to the Loader. The first full-word in the address
parameter list contains the address of the option list
for the Loader and/or loaded program. The second
full-word contains the address of the list of alternative
DD names. If you use all standard DD names (the
normal situation), you can omit this list.

Option list

points to a variable-length list containing options for
both the Loader and your loaded program. You must
furnish this address even if you furnish no options.

Your option list must begin on a halfword bound-
ary. The two high-order bytes count the number of
bytes in the remainder of the list. If you furnish no op-
tions, your count should be zero.

The option list is free-form, with options for the
Loader and your loaded program separated by a slash
(/) and with each option separated by a comma. No
blanks or zeros should appear in the list.

ddname list

specifies the address of a variable-length list con-
taining alternative DD names for Loader data sets. If
you use all standard DD names you can omit this
operand.

The format of this list is identical to the format of
the comparable list for invoking the Linkage Editor,
described in Section 8.4:

Entry Alternate Name For:

LOADER FUNCTIONS AND FACILITIES

VL i
specifies that the sign bit is to be set to 1 in the last
fullword of the address parameter list.

Fig. 10.6 shows an Assembler-language program
using the LINK macro instruction to invoke the
Loader.

If desired, you can use the Loader to process a
program but not execute it. To invoke just the portion
of the Loader that processes input modules, specify
either the JQBLOAD or JQBLOADR in your LOAD
macro instruction, as shown in Fig. 10.7.

The first CALL macro instruction passes control to
the Loader, and the second CALL macro instruction
requests execution of the loaded program.

JQBLAD both loads and identifies a program,
returning the address of an 8-character name in
register 1. You can furnish this name with an
ATTACH, LINK, LOAD, or XCTL macro instruction
to invoke the loaded program. If another of your
programs attaches a loaded program, you should
avoid specifying SZERO=NO in your ATTACH
macro instruction. If you must specify SZERO=NO,
your program should issue a LOAD macro instruction
for the loaded program before issuing an ATTACH
macro instruction. Likewise, your program should
issue a DELETE macro instruction for the loaded
program after it returns from operating as an at-
tached subtask.

JQBLOADR loads your program but does not iden-
tify it. JQBLOADR returns the entry point of your
loaded program in register 0. Register 1 points to two

1 SYSLIN full words: the first points to the beginning of the
2 (not applicable) loaded program; the second contains the size of the
3 (not applicable) loaded program. You can use these location and size
4 SYSLIB values in a FREEMAIN macro instruction to free
S (not applicable) storage occupied by the loaded program when you no
6 SYSLOUT longer need it.
7—11 (not applicable) Fig. 10.7 shows an Assembler-language program
12 SYSTERM that uses the LOAD and CALL macro instructions to
SVG (14,12) ,=A(SAVEAREA) initialize save
. registers and point
to new save area
LINK EP=LOADER,PARAM=(PARM),VL=1
L 13,4(13)
RETURN (14,12),T
DS OH
PARM DC AL2(LENGTH) length of options
OPTIONS DC C’NOPRINT,CALL/X,Y,Z' loader and loaded
LENGTH EQU «-OPTIONS program options
SAVEAREA DS 18F save area
END

Fig. 10.6 Using the LINK macro instruction to invoke the loader

SVG

LOAD
LR
CALL

LR
LR
LR

DELETE
CH
BH
LR

CALL

FREE L
L
FREEMAIN

L
RETURN
DS
PARM1 DC
OPTIONS1 DC
LENGTH1 EQU
DS
PARM2 DC
OPTIONS2 DC
LENGTH2 EQU
SAVEAREA DS

END

14,12,=A(SAVEAREA)

EP=JQBLOADR
15,0
(15),(PARM1) VL

7,15
5,0
6.1

EP=JOBLOADER
7=H'4¢’

FREE

15,5

(15),(PARM2),VL

0,4(6)
1,0(6)
R,LV=(0),A=(1)

13,4(13)
(14,12),T

OH
AL2(LENGTH1)
C'NOPRINT,CALL'
*.OPTIONS1

OH
AL2(LENGTH2)
c'X.Y, 2
*-OPTIONS2
18F

initialize save registers and
point to new save area

load the Loader
get its entry point address
invoke the Loader

save return code

save entry to loaded program
save pointer to list containing
start address and length
delete Loader

verify successful loading
negative branch

loading successful-get entry
point address for CALL
invoke loaded program

get length into register O
get start address
delete loaded program

length of Loader options
Loader options

Length of loaded-program options

loaded-program options

save area

Fig. 10.7 Using LOAD and CALL macro instructions to invoke JQBLOADR

(Loading without identification)

SVG

LOAD
LR
CALL
LR

MvC
DELETE
CH

BH

LINK

L
RETURN
DS
PARM1 DC
OPTIONS1 DC
LENGTH1 EQU
DS
PARM2 DC
OPTIONS2 DC
LENGTH2 EQU
SAVEAREA Ds
PGMNAM DS

END

14,12,=A(SAVEAREA)

EP=JQBLOAD
15,0

{15),(PARM1),VL

7.15

PGMNAM(8),0(1)
EP=HEWLOAD
7.=H'4

ERROR
EPLOC=PGMNAM,
PARM=(PARM2),VL=1

13,4(13)
(14,12),T

OH
AL2(LENGTH1)
C'MAP’
*-OPTIONS1

OH
AL2(LENGTH2)
c'xyz
*-OPTIONS2
18F

2F

initialine save registers and
point to new save area

load the Loader

get its entry point address
invoke the Loader

save the return code

save program name

delete the Loader

verify successful loading
negative branch

loading successful, invoke program

length of Loader options
Loader options

length of loaded-program options

loaded-program options

save area
program name

Fig. 10.8 Using LOAD and CALL macro instructions to invoke JQBLOAD

(Loading with identification)

invoke JQBLOADR. Fig. 10.8 shows an Assembler-
language program that uses the LOAD and CALL
macro instructions to invoke JQBLOAD.

For further information on the use of these macro
instructions, refer to the FACOM OS IV/F4 Super-
visor Macro Instructions Reference Manual.

10.5 PRINTED OUTPUTS

Loader printed outputs comprise a collection of
diagnostic and error messages plus an optional
storage map of the loaded program. This output is
created in the data set defined by your SYSLOUT and
SYSTERM DD statements. If you omit these, the
Loader prints no outputs.

SYSLOUT output includes a loader heading and a
list of options and defaults requested in the PARM
field of your EXEC statement. SIZE is the size region

LOADER FUNCTIONS AND FACILITIES

obtained, not necessarily the size you requested in the
PARM field. The Loader prints various messages
when it detects errors. After it finishes processing, it
also prints an explanation of each error. Loader error
messages are similar to those of the Linkage Editor
and are listed in Appendix 2.

SYSTERM output includes only numbered warn-
ing and error messages. After the Loader completes its
processing, it writes an explanation of each error
message onto SYSTERM.

The storage map includes the name and absolute
address of each control section and entry point in the
loaded program. Each map entry marked with an
asterisk (*) comes from the data set specified on the
SYSLIB DD statement. Two asterisks (**) indicate
the entry was found in the link pack area. The Loader
writes its storage map as it processes input modules;
hence, all map entries appear in the sequence ESD en-
tries are encountered. It also displays the total size
and highest address (in virtual storage) of the loaded
program.

Loaded
Loader program
Return return return
code code! code
0 0 0
4 0
8(LET) 0
4 0 4
4 4
8(LET) 4
8 0 8
4 8
8(LET) 8
8
12 0 12
4 12
8(LET) 12
12
16 0 16
4 16
8(LET) 16
16

Conclusion or meaning

Program loaded successfully, and execution of the
loaded program was successful.

The Loader found a condition that may cause and
error during execution, but no error occurred

during execution of the loaded program.

Program loaded successfully, and an error occurred
during execution of the loaded program.

The Loader found a condition that may cause an
error during execution, and an error did occur
during execution of the loaded program.

Program loaded successfully, and an error occurred
during execution of the loaded program.

The Loader found a condition that may cause an
error during execution, and an error did occur during
execution of the loaded program.

The Loader found a condition that could make
execution impossible. The loaded program was not
executed.

Program loaded successfully, and an error occurred
during execution of the loaded program.

The Loader found a condition that may cause an
error during execution, and an error did occur during
execution of the loaded program.

The Loader could not load the program successfully,
execution impossible.

Program loaded successfully, but the loaded program
found a terminating error.

The Loader found a condition that may cause an
error during execution, and a terminating error was
found during execution of the loaded program.

The Loader could not load the program at all, and
execution is clearly impossible.

1 Error diagnostics (SYSI OUT and/or SYSTEM data set) show the severity of errors found

by the Loader.

Fig. 10.9 Return codes

10.6 RETURN CODES

The return code of a Loader step summarizes the
return codes from loading and from the loaded
program after it has executed.

The return code indicates whether errors occurred
during loading or execution. You can test the return
code with a COND parameter on your JOB statement

and/or with COND parameter on your EXEC
parameters on your EXEC statements for succeeding
job steps. For details, see the publication FACOM
OS IV/F4 Job Control Language Reference Manual.
Fig. 10.9 shows the return codes from the Loader step,
followed by corresponding return codes internal to the
Loader and those of the loaded program.

APPENDIX 1:
LOAD MODULE FORMAT

The format of a load module built by the Linkage load modules, you should not specify the Track Over-

Editor is shown in Fig. Al.1. flow feature when creating the target data set, as the
When writing the output load module to the OS IV/F4 Supervisor may encounter an erroneous
SYSLMOD data set, the Linkage Editor never uses format when fetching the load modules for execution.

the Track Overflow feature. When moving or copying

TTR-P2, if TEST option and SYM records present

TTR-P2, if no TEST option TTR-T3, if OVLY option used TTR-T3, if no OVLY option
SYM CESD| |IDR leTL| |SEGTAB] CTL [1st TXT] | ENTAB| (continued)
i
resent if TEST Present if OVLY Present if OVLY option
option and SYM option and more used and more than 1
records present than 1 segment segment

TTR-N1, if OVLY option
and more than 1 segment

|RLD| |CTRL,RLD,...CTL,RLD,TXT,ENTAB| |RLD| |CTL| |TXT| |[TTR]

Carries EOS if Carries EOM Carries EOM Present if OVLY option
following ENTAB if this is RLD if no RLDs and more than 1 segment
for Last TXT for Last TXT

TTR-N!: TTR of the nore list used for overlay-structured modules.
TTR-N?: TTR of the first block of the named member (load module).
TTR-N?: TTR of the first block of text.

Fig. Al.1 Load module format

APPENDIX 2:

ERROR DIAGNOSTIC AND WARNING

MESSAGES

Each message contains a severity code in the final
position of the message code which indicates the
nature of the message. If an error is encountered
during processing, the message code is printed with
the applicable symbol or record in error. After
processing is completed, the diagnostic message
associated with that code is printed.
Message Format:
(1) Error/warning messages written when the errors
are detected.
{J QA0 } mmé& (applicable symbol or record in
JOB1) error)
(2) Error/warning messages written after processing
is completed.
{IQAO
JQB1
where:

} mmI-x (message text)

Table A2.1 Table of Linkage Editor and loader severity codes

e JQAO identifies a Linkage Editor message
o JQBI1 identifies a Loader message

e mm is the message number

o &, x are the severity codes of the message.

The severity codes used in Linkage Editor and
Loader messages are defined in Table A2.1.

The return code reflects the highest severity en-
countered during processing. The highest severity
code recorded is multiplied by 4 to create the return
code. This code is placed in register 15 at the end of
processing.

JQA0201-W - JQAO010I-E

Message-severity code
Text
Explanation
S: System action
P: Recommended programmer response

Severity code | Return
& X code

Meaning

0 | 0 Informational message: appears
when control statement is printed
as result of LIST option. Con-
dition will not cause an error

during execution.

Warning message; condition may
cause error during execution of
module.

Error message; condition may
make execution of module im-
possible; module is marked ““hot
executable’’, unless LET option
was specified; module processing
is continued.

Error message; condition will
make execution of module im-
possible; module is marked “’hot
executable’’, module processing
is continued.

Error message; no recovery from
error condition is possible;
module is not produced; module
processing is terminated; only
output is diagnostic messages.

JQA0201I-W

(control statement)
The control statement is printed as a result of the
LIST option.

JQAO01I-E

ERROR: INVALID TWO-BYTE RELOCATABLE
ADDRESS CONSTANT HAS BEEN FOUND IN
INPUT—ADDRESS CONSTANT HAS NOT BEEN
RELOCATED.

A relocatable A-type or V-type address constant of

less than three bytes has been found in the input.

S: The constant is not relocated.

P: Probable user error. Check assembler lan-
guage input for V-type address constants,
which cannot be relocated. Delete or correct
the invalid address constant.

JQAO02I-E
ERROR: INVALID V-TYPE ADDRESS
CONSTANT HAS BEEN FOUND IN

INPUT— ADDRESS CONSTANT HAS NOT BEEN
RELOCATED.

-

-

A V-type address constant of less than four bytes

has been found in the overlay structure.

S: The constant is not relocated.

P: Probable user error. Specify a length of four
bytes for all V-type address constants.

JQAO003I-S
ERROR: ENTRY POINT FROM END CARD IS
INVALID—ENTRY POINT IS NOT ASSIGNED.

The entry point for the program as specified as a

relative address in an END card. The entry point

that as specified appeared to be valid when the

END card was processed, however, the entry point

was found to be invalid when the entry point of the

load module was being determined.

S: No entry point is assigned.

P: Check object module input for completeness.
Then either specify an entry point name on
the ENTRY control statement, or, if entry
points were specified at compilation or assem-
bly, make sure the object module containing
the desired entry point precedes all other ob-
ject modules with assembled or complied en-

try points.

JQAOQ05SI-S

ERROR: SYMBOL PRINTED FROM ENTRY
STATEMENT IS NOT AN EXTERNAL NAME.
ENTRY POINT IS NOT ASSIGNED.

The symbolic entry point specified in an ENTRY

statement is not a control section or entry name.

S: No entry point is assigned.

P: Probable user error. Correct the ENTRY con-
trol statement, or make sure that the control
section containing the entry point is inculuded
in the input and has not been accidentally
deleted or redefined by a REPLACE or
CHANGE control statement.

JQAO006I-S

ERROR: SYMBOL PRINTED FROM END CARD
IS NOT AN EXTERNAL NAME—ENTRY POINT
IS NOT ASSIGNED.

The symbolic entry point specified in an END

statement is not a control section or entry name.

S: No entry point is assigned.

P: Check that the entry point section or entry
name has not been accidentally deleted or
redefined by a REPLACE or CHANGE con-
trol statement. Check the module containing
the entry point for completeness.

JQAO0071-S
ERROR: ENTRY POINT FROM ENTRY
STATEMENT IS IN A SEGMENT OTHER THAN
THE ROOT SEGMENT OF OVERLAY STRUC-
TURE—ENTRY POINT IS NOT ASSIGNED.
The entry point specified by the programmer is in
a segment other than the root segment. Either the
module containing the entry point was placed in a

ERROR DIAGNOSTIC AND WARNING MESSAGES

segment other than the root segment by means of

the INSERT statement, or the entry point is in-

correc:ly specified on the ENTRY statement.

S: No entry point is assigned.

P: Probable user error. Either correct the
ENTRY control statement, or move the mod-
ule containing the entry point to the root
segment.

JQAOO0SI-S

ERROR: ENTRY POINT FROM END CARD

IS IN IN A SEGMENT OTHER THAN THE ROOT
SEGMENT OF THE OVERLAY STRUC-
TURE—ENTRY POINT IS NOT ASSIGNED.

The entry point is in a segment other than the root

segment. Either the INSERT statement was used

to place the control section containing the entry
point in another segment, or the symbol specified
on the END statement is incorrect.

S: No entry point is assigned.

P: Probable user error. Move the object module
containing the entry point to the root seg-
ment, or specify an entry point in the root
segment using the ENTRY control statement.

JQAO0II-S

ERROR: ENTRY POINT ADDRESS FROM END
CARD IS IN A SEGMENT OTHER THAN THE
ROOT SEGMENT OF OVERLAY STRUC-
TURE—ENTRY POINT IS NOT ASSIGNED.

The entry point is in a segment other than the root

segment. Either the INSERT statement was used

to place the control section containing the entry
point in another segment, or the address specified
on the END statement is incorrect.

S: No entry point is assigned.

P: Probable user error. Move the object module
containing the entry point to the root seg-
ment, or specify an entry point in the root seg-
ment using the ENTRY control statement.

JQAO010I-E
ERROR: ENTRY POINT ON END CARD IS
INVALID—ENTRY POINT IS IGNORED.

A possible entry point for the program was spec-

ified as a relative address in an END card. When

the END card was processed, the control section
identification of the specified entry point was
found to be invalid.

S: The entry point is ignored. The first valid en-
try point encountered is used; if there is none,
no entry point is assigned.

P: Probable user error. Check the input object
modules for completeness and proper se-
quence. If necessary, either recreate any
module which has been in card from, or
isolate the incorrect module by executing the
linkage editor with the NCAL option
sPecified, using the NAME control statement
for each input object module. Diagnostic

JQAO11I-S - JQA026I-U

Message-severity code
Text
Explanation
S: System action
P- Recommended programmer response

JQAO010 should recur and isolate the incorrect
module. Recreate the module and rerun the
step.

JQAO11I-S
ERROR: NO SECTION HAS BEEN FOUND IN
ROOT SEGMENT OF OVERLAY STRUC-
TURE—ENTRY POINT IS NOT ASSIGNED.
There are no control sections in the root segment.
Either (1) all control sections originally in the root
segment have been deleted, or (2) there were no
control sections originally in the root segment, or
(3) an OVERLAY statement preceded the input.
S: No entry point assigned.
P: Probable user error. Place at least one control
section in the root segment.

JQAO12I-S
ERROR: NO CESD ENTRIES—EXECUTION
IMPOSSIBLE.

There are no external symbol dictionary entries.

There are no control sections in the output.

S: Processing is terminated.

P: Probable user error. Check other messages
issued for cause of error (i.e., invalid input
from object module). Insure that at least one
control section appears in the input and is not
deleted by the REPLACE control statement.

JQAO13I-E
ERROR: SYMBOL PRINTED IS AN
UNRESOLVED EXTERNAL REFERENCE.

An external reference is unresolved at the end of

input processing. None of the following is spec-

ified; restricted no-call, never-call, or NCAL.

S: The module is marked not executable unless
LET is specified.

P: Probable user error. Check that the reference
is valid and not the result of a keypunch or
programming error. If the reference is valid,
add the needed module or alias to one of the
input data sets. Make sure the SYSLIB data
set DD statement has been specified, if need-
ed. If resolution is not desired, specify NCAL,
never-call, or restricted no-call. If the referen-
ce was found in a control section replaced by
another control section not containing that
same reference, delete the reference, or specify
NCAL, never-call, or restricted no-call.

JQAO014I-S
ERROR: NO TEXT REMAINS IN OUTPUT

MODULE.

No text remains in the output module. Either all

the control sections originally in the input are

deleted, or there are no control sections that
originally contained text.

S: Processing is terminated.

P: Probable user error. Check other messages
issued for cause of error (i.e., invalid input
from object module). Insure that at least one
control section contains text and is not deleted
by the REPLACE control statement or by
automatic replacement.

JQAO15I-E
ERROR: NO CALLS OR BRANCHES THAT
REFER FROM ROOT SEGMENT TO LOWER
SEGMENTS.
There are calls or branches from the root segment
to a segment lower in the tree structure. Other

segments cannot be loaded.
S: The module is marked not executable unless
LET is specified.

P: Probable user error. Make sure the root seg-
ment contains a control section that refers to
at least one other segment in the overlay
structure by means of a V-type address con-
stant.

JQA016-W

WARNING: EXCLUSIVE CALL THAT REFERS
FROM SEGMENT NUMBER PRINTED TO
SYMBOL PRINTED—XCAL WAS SPECIFIED.

There is a valid exclusive branch-type reference;

the XCAL option is specified for this job step.

S: Processing continues.

P: No response is necessary normally. You can
check that the printed branch-type references
between exclusive segments are correct
according to your overlay structure.

JQAO171-E
ERROR: EXCLUSIVE CALL THAT REFERS
FROM SEGMENT NUMBER PRINTED TO
SYMBOL PRINTED.
A valid branch-type reference is made from a
segment to an excusive segment; the XCAL option
is not specified.
S: The module is marked not executable unless
the LET option is specified.
P: Probable user error. Either rearrange the
overlay structure to place both segments in
the same path, or specify the XCAL option.

JQAO18I-E
ERROR: INVALID EXCLUSIVE CALL THAT
REFERS FROM SEGMENT NUMBER PRINTED
TO SYMBOL PRINTED.
There is an invalid exclusive branch-type reference
from a segment to a symbol in an exclusive seg-
ment.

—

S: The module is marked not executable urdess
the LET option is specified.

P: Probable user error. Either place the segments
in the same path, or place a V-type address
constant in a common segment.

JQA020I-W
WARNING: OUTPUT MODULE WITH
OVERLAY STRUCTURE CONTAINS ONLY ONE
SEGMENT—OVLY OPTION CANCELLED.
There are no OVERLAY statements in the input.
S: The overlay option is cancelled.
P: Probable user error. Either place OVERLAY
statements in the input, or remove the OVLY
option from the EXEC statement.

JQAO0211-E
ERROR: EXPECTED CONTINUATION CARD
HAS NOT FOLLOWED.
A Linkage Editor control statement specifying a
continuation (nonblack in column 72) is not fol-
lewed by a continuation card.
S: The card is not processed as a continuation,
but as normal input. -
P: Probable user error. Either remove the non-
blank character in column 72 or insert the
necessary continuation record.

JQAO022I-E
ERROR: INVALID CARD PRINTED HAS BEEN
FOUND IN INPUT OBJECT MODULE.

One of the following occurred during the pro-

cessing of an object module: a record of invalid

type was encountered, a text (TXT) record was en-

countered in which the data length (columns 11-

12) is invalid or mispunched; an invalid, probably

mispunched, RLD record was encountered in an

object module.

S: The record in error is ignored and processing
continues.

P: (1) Remove all extraneous records from the in-
put to the Linkage Editor, (2) insure that
Linkage Editor control statements are placed
either or after object modules, (3) insure that
all records in the object module have a 12-2-9
punch in column 1, (4) insure that all records
in the object module contain one of the fol-
lowing in columns 2-4; ESD, SYM, TXT,
RLD, or END, (S5) locate the TXT or RLD
record having the invalid or mispunched data,
regenerate the object module or investigate
the punching device or generating processor
for malfunctions.

JQA023I-E
ERROR: INVALID RECORD HAS BEEN FOUND
IN INPUT LOAD MODULE.
The member being read does not contain a valid
load module,
S: The erroneous record is ignored and pro-

ERROR DIAGNOSTIC AND WARNING MESSAGES

cessing continues. The output load module is
marked not executable,

P: Check that all input data sets are specified
correctly on the DD statements. Isolate the in-
correct load module by executing the Linkage
Editor with INCLUDE and NAME statements
for each suspected load module. When the in-
correct load module is isolated, recreate it and
rerun the job step.

JQA0241-W
WARNING: DOUBLY DEFINED EXTERNAL
NAME HAS BEEN FOUND IN INPUT—ESD
TYPE DEFINITIONS CONFLICT.
Two identical external names have been found in
the input. (1) The invalid match involves a label
reference (LR) or labe definition (LD) matching an
existing section definition (SD), common (CM), or
label reference (LR). The section definition for the
input LR or LD must be marked delete in order
for this not to be an error. (2) It is always invalid
for a CM to match an existing LR.
S: References to the name are resolved with
respect to the first occurrence of the name.
P: Probable user error. Correct the existing sym-
bol conflict.

JQA0251-U
ERROR: TABLE OVERFLOW—TOO MANY
EXTERNAL SYMBOLS IN ESD.

There are too many external symbol or control

statement operands in the problem program.

S: Processing is terminated.

P: Probable user error: Check that no un-
necessary modules or control statements are
included in the input. Then, either increase
the Linkage Editor’s table space by increasing
valuel (or decreasing value2) of the SIZE
parameter, making sure the region or par-
tition size is also increased, if necessary; or
reduce the number of external symbols in the
input (control sections, entry points, and
named common areas).

JQA0261-U
ERROR: TABLE OVERFLOW—TOO MANY
EXTERNAL SYMBOLS FROM INPUT MODULE.

Either (1) an input module contains too many ex-

ternal symbols in the ESD, or (2) an ESD card is

mispunched.

S: Processing is terminated.

P: Probable user error. Check that input object
modules are complete and not mispunched.
Then, either break down any large input
module into a number of smaller modules, or
increase the linkage editor’s table space by in-
creasing valuel (or decreasing value2) of the
SIZE parameter making sure the region or
partition size is also increased, if necessary.

JQA027I-E - JQAO41I-E

Message-severity code
Text
Explanation
S: System action
P: Recommended programmer response

JQAO27I-E
ERROR: LOAD MODULE FROM LIBRARY
SPECIFIED WAS NOT EDITABLE.
When the load module was created, it was marked
“not editable”.
S: The load module was not accepted as input.
P: Probable user error. If the module is unac-
ceptable because it is marked ‘“‘not editable,”
it must be recreated before it can be input to
the Linkage Editor.

JQAO0281-U

ERROR: INDISPENSABLE DDNAME PRINTED
CANNOT BE OPENED—DD STATEMENT
MISSING.

The specified data set cannot be opened. The DD

statement defining the data set is missing.

S: Processing is terminated.

P: Probable user error. Either supply the missing
DD statement, or correct erroneous in-
formation on the DD staiement. If the
Linkage Editor was invoked by a macro in-
struction such as LINK rather than through
the EXEC statement, make sure any passed
list of DDnames is correct.

JQA0291-U
ERROR: SYNCHRONOUS ERROR OCCURRED
DURING ACCESS TO DDNAME PRINTED.

Either (1) a physical uncorrectable 1/O error oc-
curred, or (2) an. object module is missing an END
card as the last card, or (3) if the data definition
name that was printed is for a DD statement that
defines a blocked input data set of fixed format,
an input record larger than the specified block size
or logical record length was found.

S: Processing is terminated. The data definition
name in the name field of the DD statement
for the input data set was printed after the
message code. If an input/output error oc-
curred, the information provided by the
SYNADA macro instruction was printed after
the message code in the following format:
SYNAD EXIT, jobname, stepname, unit ad-
dress, device type, DDname, operation at-
tempted, error description, block count or
BBCCHHR, access method.

P: For any fixed format, specify the correct block
size. If the block size was correct and the data
set was an input data set, recreate or restore
the data set.

JQAO030I-E

ERROR: INVALID CONTROL STATEMENT
IN INPUT—SCAN FOR CARD PRINTED
TERMINATED.

Either there is an error on a Linkage Editor con-

trol statement, or an OVERLAY control statement

was encountered and the OVLY attribute was not
specified on the EXEC statement.

S: A statement in error is accepted as input up
to the point of the error; the OVERLAY
statements are ignored and ‘the module is not
in overlay format.

P: Probable user error. Either correct the error if
necessary, or specify OVLY on the EXEC
statement.

JQAO031I-U
ERROR: REGIONS SPECIFIED BEYOND
MAXIMUM NUMBER 4.
There are five or more regions specified in this
overlay structure.
S: Processing is terminated.
P: Probable user error. Reduce the number of
regions in the overlay structure to four or
fewer.

JQAO0321-U
ERROR: SEGMENTS SPECIFIED BEYOND
MAXIMUM NUMBER.
The number of segments exceeded 25S.
S: Processing is terminated.
P: Reduce the number of segments in the overlay
structure to 255 or less.

JQAO033I-E
ERROR: ALIASES SPECIFIED BEYOND
MAXIMUM NUMBER—EXCESS IGNORED.
More than 64 (or 256 if AM256 is specified) aliases
were specified for the output load module.
S: The excess aliases are ignored.
P: Probable user error. Either (1) specify AM256,
(2) reduce the number of aliases, or (3) create
a second copy of the module under a different
name with the additional aliases specified.

JQAO34I-E
ERROR: MODULE WAS NOT FOUND IN
LIBRARY SPECIFIED.

The module or alias name specified on an

INCLUDE or LIBRARY control statement was

not found in the specified library.

S: Any references to the module are not resolved.
The output load module is marked ‘‘not
executable” unless the LET option has been
specified.

P: Probable user error. Correct the library or
module name on the DD, INCLUDE or
LIBRARY control statement.

JQAO0351-U
ERROR: TABLE OVERFLOW—TOO MANY EX-
TERNAL REFERENCES BETWEEN SECTIONS.

There are too many V-type address constants

referring to external symbols in a program that is

being structured in overlay. The table recording
these V-type address constants has overflowed.

S: Processing is terminated.

P: Probable user error. Either (1) increase the
Linkage Editor’s table space by increasing
valuel (or decreasing value2) of the SIZE
parameter, making sure the region size is also
increased, if necessary; or (2) reduce the num-
ber of V-type address constants by combining
control sections; or (3) change V-type address
constants that do not refer across segments to
A-type address constants with EXTRN state-
ment.

JQAO0361-U
ERROR: TABLE OVERFLOW—TOO MANY
TEXTS OR CHANGES OF ORIGIN IN INPUT.

The internal tables used by the Linkage Editor to

account for the text of a load module have over-

flowed due to discontinuities in the input text or
the division of the text into pieces equal to the
block size for the SYSMOD data set.

S: Processing is terminated.

P: Probable user error. (1) Increase the Linkage
Editor’s table space by increasing valuel (or
decreasing value2) of the SIZE parameter,
making sure the region or partition size is also
increased if necessary; or (2) increase the
Linkage Editor’s buffer space by increasing
both valuel and value2 of the SIZE
parameter, making sure the region or par-
tition size is increased proportionally; or (3)
reduce the number of ORG statements
specified in assembler language routines; or
(4) break down the step into a number of link-
edits, performing only part of the necessary
linkage function in each successive step.

JQA0371-U

ERROR: TABLE OVERLOW—TOO MANY
RELOCATABLE ADDRESS CONSTANTS OR
TOQ MANY SECTIONS CONTAINING SUCH
CONSTANTS.

Either (1) there are too many control sections with

relocation dictionaries, or (2) there are too many

relocatable address constants.

S: Processing is terminated.

P: Probable user error. Either increase the
Linkage Editor’s table space by increasing
valuel (or decreasing value2) of the SIZE
parameter, making sure the region size is also
increased, if necessary; or reduce the number
of relocatable address constants in the input.
(One method is to assemble the coding of two
or more control sections into one control sec-

ERROR DIAGNGSTIC AND WARNING MESSAGES

tion.)

JQAO38I-E
ERROR: INVALID TEXT RECORD ID-CARD
IGNORED.
The ID of the text record refers to an invalid ex-
ternal symbol dictionary entry; i.e., it does not
refer to a section definition entry or a private code
entry. The input deck may be out of sequence or
incomplete.
S: The record is ignored. Processing continues.
P: Probable user error. Check the input object
modules for completeness and proper sequen-
ce. If necessary, recreate any module which
has been in card form.

JQA0391-U

ERROR: NO SPACE FOR LIBRARY
DIRECTORY OR PERMANENT DEVICE
ERROR—MEMBER NOT STORED.

This is either an input/output error or no space

was allocated for the library directory.

S: Processing terminates.

P: Check the SYSLMOD data set to make sure it
is a partitioned data set with space allocated
for a directory. If necessary, restore library to
a different volume, and rerun the job.

JQA0401-U
ERROR: NO SPACE LEFT IN
DIRECTORY—MEMBER NOT STORED.

All the directory blocks allocated when the output

data set was created have been used.

S: Processing terminates.

P: Probable user error. Either reprocess, placing
the output module in a new library; when the
original library is used as input, concatenate
the new one with it; or use a utility program
to copy the library, allowing for more direc-
tory entries. Edit the member into the new
library.

JQAO411-E
ERROR: NO SPACE LEFT IN
DIRECTORY—ALIAS NOT STORED.

All directory blocks allocated when the output

data set was created have been used.

S: The ALIAS is not stored in the specified
library; however, the member can be referred
to by the member name.

P: Probable user error. Either reprocess, placing
the output module in a new library; when the
original library is used as input, concatenate
the new one with it, or use a utility program to
copy the entire library (except the member
whose alias was not stored), and allow for
more directory entries. Edit the member into
the new library.

JQAO042I-W - JQA059I-U

Message-severity code
Text
Explanation
S: System action
P: Recommended programmer response

JQAO042I-W

WARNING: IDENTICAL NAME IN DIREC-
TORY—ATTEMPT TAKEN TO STORE UNDER
‘TEMPNAME’ INSTEAD.

The output module name has been used previously

in the library. The REPLACE function is not

specified.

S: An attempt is made to store the output
module into the library under the name
TEMPNAME.

P: Probable user error. Either reprocess, using a
different name in the SYSMOD DD
statement or NAME statement, or reprocess,
and specify the REPLACE function for the
name originally specified in the SYSLMOD
DD statement or the NAME statement.

JQAO43I-E
ERROR: LIBRARY SPECIFIED CANNOT BE
OPENED—DD STATEMENT MISSING. '

The DD statement that defines the library is

probably missing!
S: Processing continues without input from the
specified library.

P: Probable user error. Either supply the missing
DD statement, or correct erroneous informa-
tion on the DD statement.

JQAO044I-U
ERROR: TABLE OVERFLOW—TOO MANY
REFERENCES TO LOWER SEGMENTS.

There are many V-type address constants that

refer to segments lower in the tree structure.

S: Processing is terminated.

P: Probable user error. Either increase the
Linkage Editor’s table space by increasing
valuel (or decreasing value2) of the SIZE pa-
rameter, making sure the region size is also
increased if necessary; or use an overlay struc-
ture with fewer segments.

JQAO0451-U
ERROR: TABLE OVERFLOW—TOO MANY
REFERENCES TO LOWER SEGMENTS IN ONE
SEGMENT.
One segment in the overlay structure contains too
many V-type address constants that refer to
segments lower in the tree structure. The
maximum is determined by the size of output load
module record.
S: Processing is terminated.
P: Probable user error. Either (1) increase the

size of an output load module record by
specifying SYSMOD as a library with a larger
block size, or (2) incorporate some of the
called control sections in the requesting
segment, or (3) divide the requesting segment
into two or more segments.

JQA046I-W
WARNING: SYMBOL PRINTED IS AN UNRE-
SOLVED EXTERNAL REFERENCE—NCAL WAS
SPECIFIED OR MARKED FOR RESTRICTED
NO CALL OR NEVERCALL.
The NCAL option, restricted no-call, or never-call
function was specified for the external reference.
S: The automatic library call mechanism does
not attempt to resolve the external reference.
P: No response is necessary normally. Check that
the reference is valid and not the result of a
keypunch or programming error.

JQAO47I-E
ERROR: ALIAS ENTRY POINT IS
INVALID—OUT OF ROOT SEGMENT.
The specified alias entry point is not in the root
segment.
S: The entry point for the member name is used.
P: Probable user error. Respecify the alias, entry
Point, or overlay structure.

JQAO48I-U

ERROR: TABLE OVERFLOW—TOO MANY
EXTERNAL SYMBOLS UNDERGOING
RELOCATION.

There are too many symbols being relocated.

S: Processing is terminated.

P: Probable user error. Increase the Linkage Ed-
itor’s table space by increasing valuel (or de-
creasing value2) of the SIZE parameter mak-
ing sure the region or partition size is also in-
creased if necessary.

JQAO491-E
ERROR: NAME STATEMENT FOUND IN
OTHER THAN PRIMARY INPUT—STATEMENT
IS IGNORED.
A NAME statement has been encountered in an
included data set or an automatic library. NAME
statements may be placed only in the primary in-
put.
S: The record is ignored. Processing continues.
P: Remove the NAME statement fom the library
or sequential data set. Reprocess if the load
module is incorrect.

JQAOS0I-E
ERROR: PERMANENT DEVICE ERROR—ALIAS
NOT STORED.
The alias could not be stored in the library directo-
ry because of an input/output error.
S: The load module has already been stored.

P: Execution of the module is possible using the
member name or aliases already stored. The
module can be link edited again with the new
alias specified.

JQAOS1I-E

ERROR: SYNTAX INCOMPATIBLE WITH DATA
SET RECORD FORMAT—INCLUDE STATE-
MENT FOR DDNAME PRINTED IGNORED.

The INCLUDE statement syntax conflicts with the

characteristics of the data set specified on the DD

statement.

S: The specified module is ignored.

P: Probable user error. Either specify a member
name on the INCLUDE or DD statement if
the data set is partitioned; or remove all mem-
ber names from the INCLUDE statement if
the data set is not partitioned.

JQAOS2I-E
ERROR: RECORD FORMAT OF DATA SET
SPECIFIED IS UNACCEPTABLE—DDNAME
PRINTED.
The record format of the specified data set is not
type U or F and cannot be processed by the
Linkage Editor.
S: The data set is not processed.
P: Probable user error. Correct the data set
specification.

JQAOS3I-E

ERROR: BLOCK SIZE OF LIBRARY SPECIFIED
CANNOT BE HANDLED AS EXCEEDING
MAXIMUM-—DDNAME PRINTED.

The block size of the specified library data set can-

not be handled by the Linkage Editor.

S: The data set is not processed.

P: Probable user error. Either decrease the
block size of the data set, or increase value2 of
the SIZE parameter to allow for larger buf-
fers, and increase valuel accordingly, if
necessary.

JQAO0541-S

ERROR: IDENTICAL NAME IN DIREC-
TORY—UNABLE TO STORE EVEN UNDER
‘TEMPNAME’.

The member name already exists in the directory.

In the case of a member, an attempt was made to

store under TEMPNAME; however, TEMPNAME

was also found in the directory.

S: The output module is not stored under this
member name.

P: Probable user error. Either specify a unique
member name for the module on the NAME
control statement or the SYSLMOD DD
statement, or specify the REPLACE function
on the NAME statement.

ERROR DIAGNOSTIC AND WARNING MESSAGES

JQAOSSI-E
ERROR: COMMON PRINTED EXCEEDED
CONTROL OR PROTOTYPE SECTION SIZE
WITH IDENTICAL NAME.
A named common area has been encountered
which is larger than a control section with the
same name.
S: The Linkage Editor uses the length specified
for the control section. Processing continues.
P: Ensure that no named common area is larger
than the control section initializing it.

JQA056]-E
ERROR: EXPAND CONTROL STATEMENT
MISPLACED.
The section specified by an EXPAND statement
has not yet been input to the Linkage Editor.
S: The EXPAND statement is ignored and
processing continues.
P: The EXPAND statement must specify a sec-
tion already in the input moedule.

JQAOS7I-E
ERROR: COMMON PRINTED AND
SUBROUTINE HAVE MATCHING NAME.

This message appears only when the Linkage

Editor is processing an object program originally

written in FORTRAN. It is issued when a common

area defined in the program has the same name as

a subrogram.

S: Processing continues. The output module is
marked ‘‘not executable’” unless the LET op-
tion is specified.

P: Change the name of either the common area
or the subprogram so that the names are no
longer the same.

JQAOSSI-E
ERROR: COMMON AND CONTROL SECTIONS
HAVE IDENTICAL NAME PRINTED—RENT
OPTION CANCELLED.
A control section and a common section having the
same name were entered while the RENT option
was specified.
S: The RENT attribute is ignored.
P: When giving an initial value to a common sec-
tion in creating a load module with the RENT
attribute, use a prototype section.

JQAO0591-U
ERROR: BLOCK SIZE OF INPUT DATA SET IS
INVALID.
The block size for the primary input data
(SYSLIN) is not an even multiple of the logical
record length, or exceeds the allowable maximum.
S: Linkage Editor processing terminates.
P: Probable user error. The region for the job
step must be large enough to allow the size
values specified, as described in “EXEC

Statement—REGION Parameter,” in the

JQAO060I-E - JOQAO078I-E

Message-severity code
Text

Explanation

S: System action

P: Recommended programmer response

Linkage Editor manual. If the region is not
large enough, increase the REGION param-
eter before executing the Linkage Editor step
again. If the blocking factor is greater than 40
to 1 or is not a multiple of the logical record
length, correct the BLKSIZE field, or recreate
the data set, or both. Execute the Linkage
Editor step again.

JQAO060I-E
ERROR: END CARD IS NOT CONTAINED IN IN-
PUT OBJECT MODULE.

The END card of an object module being

processed by the Linkage Editor is missing.

S: Linkage Editor processing continues. The
load module produced is marked ‘‘not
executable’’ unless the LET option has been
specified.

P: Verify that the last card is an END card.
Rerun the Linkage Editor step using the ob-
ject deck.

JQAO0611-U
ERROR: LENGTH FOR EXTERNAL SYMBOL
PRINTED IS NOT SPECIFIED.
An object module contained a control section that
had a length field containing zero in its external
symbol dictionary (ESD) entry, and either the con-
trol section was not last in the object module or the
length was not specified on the END card.
S: The module was not processed, and the
Linkage Editor terminated processing.
P: Probable user error. Check the input object
modules for completeness and proper sequen-
ce.

JQAO063I-1

SYNCHRONOUS ERROR OCCURRED DURING
ACCESS TO DDNAME PRINTED—XREF
FAILED.

A permanent input/output error occurred while

attempting to produce a cross-reference table. The

output module was success fully edited.

S: The information provided by the SYNADAF
macro instruction was printed after the mes-
sage code in the following format; SYNAD
EXIT, jobname, stepname, unit address,
device type, DDname, operation attempted,
error description, block count or BBCCHHR,
access method.

P: Rerun the Linkage Editor step.

oR

JQAO0641-E
ERROR: SYMBOL PRINTED ON CONTROL
STATEMENT WAS NOT MATCHED.
A control section name or common name ap-
pearing on an ORDER or PAGE control statement
was not found in the primary or additional input
sources.
S: The name is ignored. Processing continues.
P. Probable user error. Include the specified con-
trol section or common area in the input or
delete the name from the control statement.

JQAO065I-E
ERROR: ORDER SPECIFIED FOR SYMBOL
PRINTED IS INVALID.

A control section or common area was named

more than once in a series of ORDER statements.

After a name appears once, any subsequent use of

the name is invalid unless the name appears as the

last operand on one ORDER statement and the
first operand on the next.

S: The first use of the name determines the order
of the control section or common area in the
output load module. Any subsequent use of
the name is ignored. Linkage Editor
processing continues.

P: Probable user error. Correct the ORDER
statement so the name appears only once or
appears as the last operand on one statement
and the first operand on the next.

JQAO0671-1
THE IDENTIFY DATA HAS BEEN ADDED TO
IDR RECORD FOR SECTION NAME PRINTED.
The Linkage Editor has added the data specified
on the IDENTIFY control statement to the IDR
record for the control section indicated.
S: Processing continues.
P: None. this message is for information.

JQAO068I-E

ERROR: NO SECTION FOR THE IDENTIFY
DATA OR IDR CONTROL STATEMENT
MISPLACED—DATA IGNORED.

The control section named on the IDENTIFY con-

trol statement either does not exist in the load

module or has not been read in by the Linkage

Editor by the time it encountered the IDENTIFY

statement.

S: The data specifietd on the IDENTIFY
statement is ignored. Linkage Editor
processing continues.

P: Probable user error. Check the IDENTIFY
statement to verify that the control section
name has been specified correctly and that the
IDENTIFY statement has been placed cor-
rectly in the input. Verify that the required
control section has been included in the input
to the Linkage Editor step. Correct the input
and rerun the Linkage Editor step.

£

JQA069I-U

ERROR: TABLE OVERFLOW-SIZE VALUE NOT
LARGE ENOUGH FOR SECTION IDR
INPUT—LINKAGE EDITOR PROCESSING
TERMINATED.

The space available for CSECT identification rec-

ords was insufficient for the actual input.

S: Linkage Editor processing terminates.

P: Rerun the link edit, increasing the space
available to the Linkage Editor by increasing
valuel(or decreasing value2, or both) of the
SIZE option. Be sure that the region size is
also increased correspondingly. If this fails,
divide the link edit into two or more smaller
link edits.

JQA0701-U
ERROR: INVALID CODE DETECTED IN
SECTION IDR INPUT LINKAGE EDITOR
PROCESSING TERMINATED.
An unrecoverable error was detected while pro-
cessing an input module containing CSECT Identi-
fication (IDR) records.
S: Linkage Editor processing terminates.
P: Probable user error. Examine all data sets
containing input load modules. Check all
secondary input sources.

JQA0711-U
ERROR: NO SPACE AVAILABLE FOR STOW
ACTION—MEMBER NOT STORED.

The conditional GETMAIN macro instruction

issued by the STOW routine to obtain work space

in virtual storage was unsuccessful.

S: The member is not stored in the specified li-
brary; Linkage Editor processing is ter-
minated.

P: Rerun the Linkage Editor job step. The error
may be a temporary one caused by fragmenta-
tion of virtual storage.

JQAO0721-E
ERROR: ALIAS NAME PRINTED IS INVALID.
An ALIAS name has been specified that either
does not begin with an alphabetic character, $, #,
@, or 12-0 punch, or contains a character that is
not alphanumeric, $, #, @ or 12-0 punch.
S: The ALIAS name is ignored.
P: Correct the invalid character(s) in the ALIAS
name according to the rules above and rerun
the link-edit job step.

JQAO0731-W
WARNING: ALIAS MATCHED MEMBER
NAME—ALIAS IGNORED. ,
An ALIAS name has been specified that duplicates
the member name of the output load module.
S: The ALIAS name is ignored.
P: Either (1) delete the ALIAS name, or (2) make
the ALIAS name unique.

ERROR DIAGNOSTIC AND WARNING MESSAGES

JQA0741-1
THE SPECIFIED ACTION TAKEN FOR AN
EXPAND REQUEST.
The Linkage Editor has increased the size of a
control section or named common section by the
number of bytes specified in an EXPAND control
statement. Details of the expansion are provided in
the message text that appears immediately fol-
lowing the EXPAND control statement.
S: Processing continues.
P: None. This message is for information only;
no error has occurredand no response is re-
quired.

JQAO751I-W
WARNING: NO UNRESOLVED EXTERNAL
REFERENCE REQUIRES DYNAMIC
LINK—DYNAMIC OPTION CANCELLED.
While the DYNAMIC option is specified, there is
no unresolved V-type address constant.
S: This is a warning. The DYNAMIC option is
ignored.
P: Eliminate the DYNAMIC option. Execution is
not hampered.

JQAO0761-U
ERROR: TABLE OVERFLOW —TOO MANY
UNRESOLVED EXTERNAL REFERENCES
REQUIRE DYNAMIC LINK.
There are too many unresolved external references
which require dynamic linkage.
P: Processing is discontinued.
P: Expand the table area by increasing the valuel
(or decreasing the value2) of the SIZE option.
If necessary, also enlarge REGION size of
the EXEC statement. Or, decrease the num-
ber of unresolved external references by in-
putting needed modules.

JQAO0771-U
ERROR: TABLE OVERFLOW —MODULE CON-
TAINS TOO MANY UNRESOLVED EXTERNAL
REFERENCES REQUIRING DYNAMIC LINK.
There are too many unresolved external references
which require dynamic linkage.
S: Processing is discontinued.
P: Decrease the number of modules requiring
dynamic linkage by inputting needed mod-
ules.

JQAO78I-E
ERROR: INVALID REENTERABLE PROGRAM.
INPROPER REFERENCE IN ADDRESS
PRINTED—RENT OPTION CANCELLED.
An address printed in a reenterable program
makes a reference from the control section group
to the prototype section group.
S: The RENT option is ignored.
P: Correct the erroneous reference made by the
address constant.

JQA098I-U - JQB116I-S

Message-severity code
Text
Explanation
S: System action
P: Recommended programmer response

JQAO098I-U
ERROR: TOO LARGE SYSPRINT
BLOCKSIZE— LINKAGE EDITOR PROCESSING
TERMINATED.
The block size specified for the SYSPRINT data
set cannot be handled by the Linkage Editor.
S: The dataset is not opened. Linkage Editor
processing terminates.
P: Probable user error. Either decrease the block
size of the data set, or increase value2 of the
SIZE option to allow for larger buffers, and
increase valiel accordingly, if necessary. In-
crease the region size, if necessary. Rerun the
Linkage Editor step.

JQA099I-U

ERROR: SYSPRINT DD STATEMENT
MISSING —LINKAGE EDITOR PROCESSING
TERMINATED.

The SYSPRINT data set cannot be opened.

S: Linkage Editor processing terminates.

P: Probable user error. The SYSPRINT DD
statement is probably missing. Supply the
missing SYSPRINT DD statement, and exe-
cute the job step again.

JOB1011-W
WARNING: NO ENTRY POINT

No entry point was specified in the parameter field

or END card. The END card entry point specifica-

tion could be incorrect (i.e., invalid ID, bad col-
umn alignment, etc.) The parameter field specifi-
cation could also be incorrect.

S: The first assigned address is used as the entry
point.

P: Probable user error. Specify the entry point
name in the loader parameter list, EP=. If the
entry point occurs in load module input, this
parameter must be specified.

JQB102I-W
WARNING: ILLEGAL RECORD—IGNORED.

The card read has a blank in column one.

S: The card is ignored.

P: Probable user error. Check input for a blank
card or linkage ditor control card. If other
errors occur, recreate all object modules
which have been in card form. Rerun the step
using the Linkage Editor instead of the
loader, and save the resulting output.

JQB103I-W
WARNING: EXTERNAL REFERENCE—UNRE-
SOLVED (NOCALL SPECIFIED).

The NCAL, NOCALL, ot NORES option or never-

call function was specifed for the external referen-

ce.

S: The SYSLIB data set is not searched if the
NCAL or NOCALL option has been specified.
The Link Pack Atea queue is not searched if
the NORES option has been specified. Neither
the SYSLIB data set nor the Link Pack Area
queue are searched if the ER is marked
‘never-call’ from a previous Linkage Editor
run.

P: No response is necessary normally. If you wish
the reference resolved, either (1) add the
needed module to the SYSIN input data set;
(2) remove the NOCALL, NCAL, or NORES
option, if specified; or (3) if an input load
module contained a never-call reference, re-
create the load module without specifying
never-call. Run the failing step using the
Linkage Editor instead of Loader and save the
resulting output.

JQB1MMI-E
MISTAKE: EXTERNAL REFERENCE —UNRE-
SOLVED.

The external reference was not found on the

defined SYSLIB data set or in the Link Pack Area.

S: No attempt is made to execute the module
unless the LET option is specified.

P: Probable user error. Make sure that the re-
ference is valid and not the result of a key-
punch or programming error. If the reference
is valid, add the needed module or alias to
either (1) the SYSLIB data set, (2) the link
pack area, or (3) the SYSLIN input data set.

JQB10SI-E
MISTAKE: INVALID ID.

Input contains an invalid external symbol ID. This

error is the result of the following conditions: (1)

the SD for an ID does not appear in the input

module, (2) text is received before the ESD de-
fining it is received, (3) an RLD is received before
the ESDs to which it pertains, (4) the ID defining
the entry point on the END card is not a defined

SD, PC, or LR ESD type.

S: The invalid item is ignored.

P: Check that input object modules are complete
and that assembly or compilation errors did
not occur when object modules were
generated. Rerun the step with the NOCALL
option specified.

JQB106I-E

MISTAKE: DOUBLY DEFINED ESD ENTRY.
Two identical external names have been found in
the input. The invalid match involves a label refer-

ence (LR) or label definition (LD) matching an
existing (SD, PS, CM), or label reference (LR). The
section definition for the input LR or LD must be
deleted in order for this not to be an error. It is
always invalid for a CM to match an existing LR.
S: References to the name are resolved with
respect to the first occurrence of the name.
P: Probable user error. Correct the existing
symbol conflict.

JQB1071-E
MISTAKE: COMMON EXCEEDS SIZE OF
CSECT OR PSECT WITH IDENTICAL NAME.
A named common area has been encounted which
is larger than the control section with same name.
S: The loader uses the length of the control
section. Processing continues.
P: Ensure that no named common area is larger
than the control section initializing it.

JQB108I-E
MISTAKE: INVALID TWO-BYTE ADCON.

A relocatable A-type or V-type address constant of

less than.three bytes has been found in the input.

S: The constant is not relocated.

P: Probable user error. Check assembler
language input for Y-type address constants,
which can’t be relocated. Delete or correct the
invalid address constant. Rerun the step using
the Linkage Editor instead of the Loader, and
save the resulting output.

JQB109I-E
MISTAKE: NO END RECORD.

An END card is missing for an input object

module.

S: Processing continues.

P: Probable user error. Check input object mod-
ules. The last record of each should have a
12-2-9 punch in column 1 and the END iden-
tifier in columns 2—4. If an END record is
missing, recreate the module and rerun.

JOQBI110I-E
MISTAKE: INVALID RECORD IN OBJECT
MODULE.
An unrecognizable record type was received while
reading an object module.
S: The card is ignored.
P: Probable user error. Check object module in-
put for invalid records.

JQB-1111-E

MISTAKE: INVALID TEXT LENGTH.
The length of a control section in an object module
was not specified in either its ESD entry or on the
END record, and text was received for the control
section.
S: The total length of the text received was used.
P: Check if an END record in any object module

ERROR DIAGNOSTIC AND WARNING MESSAGES

is missing or has been replaced. If so, recreate
the object module and rerun. Execute the
failing step using the Linkage Editor instead
of the Loader and save the resulting output.

JQB112I-E
MISTAKE: INVALID BLKSIZE.
In the specified data set, the BLKSIZE was not an
integral multiple of LRECL.
S: BLKSIZE was rounded up to the next higher
multiple of LRECL and processing continued.
P: Probable user error. Change BLKSIZE to be
an integral multiple of LRECL.

JQB113I1-S
MISTAKE: ENTRY POINT NAME NOT
MATCHED.

The entry point name specified in the parameter

field or on an END card was not matched to an in-

coming LR, SD, or PC.

S: The first assigned address is used as the entry
point address.

P: Probable user error. (1) Check to see if the
EP= parameter was specified correctly. (2)
Check to see if the module containing the en-
try point is included in either the SYSLIN or
SYSLIB input. (3) Check other messages is-
sued for the cause of error (i.e., invalid
record).

JQB1141-S
MISTAKE: NO TEXT.

No valid text has been received for the loaded

module.

S: The loader returns to the caller with a con-
dition code of 12.

P: Probable user error. Make sure that the
SYSLIN data was specified correctly. Check
other error messages issued for cause of error
(e.g., invalid record).

JQB115I-S
MISTAKE: INVALID LOAD MODULE FORMAT.

An unrecognizable record was found while reading

a load module.

S: The record was ignored and processing con-
tinued.

P: Check that all input data sets are specified
correctly on DD statements. When the in-
correct load module is isolated, recreate it and
rerun the job step.

JQB116I-S
MISTAKE: 170 ERROR WHILE SEARCHING
SYSLIB.
A permanent 1/0 error occurred while attempting
a BLDL.
S: Automatic library call processing is ter-
minated.
P: Ensure that the SYSLIB defined data set is

JQA117i-U - JQB 199i-L

Message-severity code
Text
Explanation
S: System action
P: Recommended programmer response

partitioned. If it is, recreate or restore the
data set and rerun the job step. Execute the
failing step using the Linkage Editor instead
of the Loader and save the resulting output.

JOB1171-U
MISTAKE: TOO MANY ESD ENTRIES IN INPUT
MODULE.
The external symbol ID is too large to fit in the
translation table.
S: Processing is terminated.
P: If the program is large and/or complex, either
run the step using the Linkage Editor, or
break down the large program module into a
number of smaller routines. If the program is
not particularly large or complex, check other
messages issued for the cause or error. Object
module input may be incomplete or mis-
punched.

JQB118I-U

MISTAKE: INVALID RECFM.
Only object module (FIXED record format) and
load module (UNDEFINED record format) data
sets are accepted by the loader.
S: Processing was terminated.
P: Probable user error. Make sure that the rec-

ord format specification is correct.

JOB1191.U
MISTAKE: PRIMARY INPUT CANNOT BE
OPENED.
The SYSLIN data set cannot be opened. The DD
statement defining the data set is missing or in-
correct.
S: Processing terminates.
P: Probable user error. Either supply a missing
SYSLIN DD statement or correct erroneous
information on the SYSLIN DD statement.

JQB120I-U

MISTAKE: WORKING AREA OVERFLOWED.
The amount of virtual storage available to the
Loader is insufficient to allow construction of the
required tables and loaded program.
S: Processing was terminated.
P: Probable user error. (1) Increase the SIZE

parameter, or (2) make sure the REGION
specification is sufficient, or (3) make sure
that sufficient virtual storage is available to
satisfy the SIZE specification.

JQB1211-U
MISTAKE: SYNCHRONOUS 170 ERROR.

A physical uncorrectable input/output error

occurred. If it occurred on a blocked data set, the

block size may have been specified incorrectly.

S: The message supplied by the SYNADAF
macro was printed. Processing was termi-
nated.

P: For any fixed format, specify the correct block
size. If the block size was correct and the data
set was an input data set, recreate or restore
the data set. Execute the failing step using the
Linkage Editor instead of the Loader and save
the resulting output.

JQB122I-U
MISTAKE: IDENTIFICATION FAILED.
The IDENTIFY routine located an error in the
parameter list passed to it by the Loader.
S: Processing is terminated.
P: Verify that the appropriate IDENTIFY macro
instruction support is included in the system.
The release level of the IDENTIFY macro in-
struction should be the same as the release
level of the Loader.

JQB123I-U
MISTAKE: IDENTIFICATION FAILED
(EXISTING PROGRAM NAME).

When trying to identify the loaded program to the

system, the IDENTIFY routine found a duplicate

program name in the user’s region or partition or
in the Link Pack Area.

S: Processing is terminated.

P: Probable user error. Specify a unique pro-
gram name using the NAME option or let the
Loader default the name to **GO. Rerun the
job.

JQB1991-L
MISTAKE: USER PROGRAM ABNORMALLY
TERMINATED.

This message is issued by the loader when it deter-

mines that the loaded program has termimated ab-

normally.

S: Loaded program execution is terminated ab-
normally, and control is returned to the
Loader.

P: Eliminate the cause of the abnormal ter-
mination and rerun the job.

APPENDIX 3:

SAMPLE INPUT FOR THE LOADER

Fig. A3.1 shows an input deck for a loading job. You
wish to load a previously-assembled program,
MASTER, without using any SYSLOUT, SYSLIB,
or SYSTERM DD statements.

//LOAD JOoB MSGLEVEL=1
I EXEC PGM=LOADER
//SYSLIN DD DSNAME=MASTER,DISP=0LD

(DD statements and data required for execution of MASTER)
/*

Fig. A3.1 Input deck for a loading job

Fig. A3.2 shows an input deck for a compile-load
job using the JIS COBOL compiler for the compile
step. The loaded program requires the SYSOUT,

TAXRATE, and SYSIN DD statements.

Fig. A3.3 shows the compilation and loading of
three modules. In the first three steps, you use the
FORTRAN HE compiler (IMFAAQQ) for one main
program, MAIN, and two subprograms, SUB1 and
SUB2. You place each of the object modules into a
separate sequential data set and pass them to the
Loader job step. In addition to the FORTRAN
library, you use a private library, MYLIB, to resolve
external references. In the Loader step, you concate-
nate MYLIB with the SYSLIB DD statement. Include
SUB1 and SUB2 by concatenating them with the
SYSLIN DD statement. Your SYSTERM statement
defined the diagnostic output data set. The loaded
program requires FT01F001 and FT10F001 DD state-
ments for execution, but it does not require data from
the JES input stream.

//J0B JOB 22,MCS MSGLEVEL=1
//COBOL EXEC PGM=JMXCBL00,PARM=MAP,REGION=86K,RD=R
/ISYSPRINT DD SYSOUT=A
/ISYSPUNCH DD UNIT=SYSCP
//ISYSUT1 DD UNIT=SYSDA,PACE=(TRK,(100,10))
//1SYSUT2 DD UNIT=SYSDA,PACE=(TRK,(100,10))
/ISYSUT3 DD UNIT=SYSDA,PACE=(TRK,(100,10))
//ISYSUT4 DD UNIT=SYSDA SPACE=(TRK,(100,10))
/ISYSLIN DD DSNAME=&&LOADSET,DISP=(MOD,PASS),
1/) UNIT=SYSSQ,SPACE=(TRK,(30,10))
/ISYSIN DD *

(Source program)
//LOAD EXEC PGM=LOADER,PARM='"MAP,LET',COND=

1 (5,LT,COBOL)

//ISYSLIN DD DSNAME=+*.COBOL SYSLIN,DISP=
/! (OLD,DELETE)

//ISYSLOUT DD SYSOUT=A

/ISYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR
//SYSOUT DD SYSOUT=A

//ITAXRATE DD
//ISYSIN DD *

(Data for loaded program)
I+

DSNAME=TAXRATE,DISP=0LD

‘Fig. A3.2 Input deck for a compile-load job

//30BX Jos

/ISTEP1 EXEC PGM=JMFAAO00,PARM="NAME=MAIN,LOAD’
//ISYSLIN DD DSNAME=8&GOFILE,DISP=(,PASS),UNIT=SYSSQ
/ISYSIN DD *

(Source module for MAIN)
/n
//ISTEP2 EXEC PGM=JMFAAO00,PARM="NAME=SUB1,LOAD’
/ISYSLIN DD DSNAME=&&SUBPROG1,DISP=(,PASS), UNIT=SYSSQ
//ISYSIN bD *

(Source module for SUB1)
/n
//STEP3 EXEC PGM=JMFAAQ00,PARM=NAME=SUB2,LOAD’
//SYSLIN DD DSNAME=&&SUBPROG2,DISP=(,PASS),UNIT=SYSSQ
//SYSIN DD *

(Source module for SUB2)
/*
/ISTEP4 EXEC PGM=LOADER
//SYSTERM DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=0OLD
1/ DD DSNAME=MYLIB,DISP=0OLD
//SYSLIN DD DSNAME=+* STEP1.SYSLIN,DISP=OLD
// DD DSNAME=+ STEP2.SYSLIN,DISP=OLD
/! DD DSNAME=+ STEP3.SYSLIN,DISP=0OLD
//FTO1F001 DD DSNAME=PARAMS,DIiSP=OLD
//IFT10F001 DD SYSOUT=A
i

Fig. A3.3 Input deck for compilation and loading of the three modules

A

INDEX

abnormal termination, 39, 45, 5§
AC (See authorization code attribute)
accepting additional input sources, 10
adding DD statements, 65
additional
call libraries, 17
data sets, 14
DD statements, 62—63
input, 10, 18
address constant, S, 6
A-type, 12, 72, 77
EXTRN, 12, 52
four-byte V-type, 46, 47
Q-type, 12
V-type, 12, 40, 50, S2, §3, 72
address of PSECT, 52
advantage of
a dynamic structure, 2 P
dynamic link structure, 2, 3 .
dynamic program structure, 3
multiple-region structures, 40
overlay structure, 2, 3
simple structure, 2
ALIAS control statement, 22, 68 —69, 74
alias names, deleting obsolete, 69
alias names for load modules, 21, 22, 69, 82
alias (ALIAS) option, 81
aliases
for linkage editor, 54, 66
for loader, 81
maximum of 256 (AM256) in job step
options, §7
old, 69
ALIGN?2 attribute (See page boundary alignment
attribute)
aligning control sections and named common areas
on page boundaries, 10, 34—3S, 55
allocating user-specified virtual storage area, 11
alternate output (TERM) option, 25, §9, 62, 79, 81
Assembler, S, 11, 23
ENTRY statement, 12
EXTRN statement, 12
literals, 52
Assembler language
and SL/100, 12
END statement, 22
programs, S2
Assembler-produced END statement, 29
assigning
an authorization code to output load
modules, 12
load module addresses, 8
load module attributes, 11
SYSLIN to card reader or JES input
stream, 61
ATTACH macro instruction, 12, S5, 80

attribute
authorization code (AC), 12, 21, 23, S§, 77
ENTRY, 52
EXTERNAL, 13
load module, 23, 54—56
ignoring non-editable, 55
attribute, load module, 23, 54— 56
non-reusable, S1
not editable (NE), S5
only-loadable (OL), 55
ovetlay structure (OVLY), 45, S5, 56, 75
reenterable (RENT), 11, 24, 55, 56
refreshable (REFR), 24, 5SS, S6
reusable (REUS), 24, 51, 52, 55, 56
serially reusable (REUS), 24, 51, S2, S5, 56
test (TEST), 56
A-type address constant, 12, 72, 77
authorization code (AC) attribute, 12, 21, 23,
S5, 77
authorization, gaining, 12
authorized
library, 12
load module, 12
program facility (APF), 12
automatic
call library, 44, 45, 74, 76
control section replacement, 31 —32
library call, 10, 11, 16—18, 33, S5, 61,
63, 65, 72, 73
avoiding errors in structuring overlay programs, 38

blank common (CM) area, 6, 12, 23, 45
BLKSIZE subparameter in the DD statement DCB
parameter, 58
BLOCK DATA
statement, 13
subprogram, 23
block, PROCEDURE BEGIN, 13
block size, logical record and, 61
block size (DBCS) option, 57
boundary, page, 10
Branch instruction, 47
passing control by, 46
branching between exclusive segments, 47
branching between inclusive segments, 47
buffer, load module, 11, 58
buffer, module, S8

calculating load module buffer size, 58
CALL
between exclusive segments, 46
between inclusive segments, 46
linkage, 36
linkage within an overlay structure, 1
macro instruction, 46, 47, 52, S5, 84

CALL-continued control sections-continued

option, 81 automatic replacement, 31—32
statement, 46 common, 11
call library 17, 79 controlling the sequence of, 74
additional, 17 cross references between, 8
automatic, 44, 45, 74, 76 deleting, 32—33, 76
concatenation of, 17 dependency, 37
calling a subprogram, 53 dependent, 37
card, EOM, 22 independent, 36
catalogued procedure, 63 —66 lengthening, 12
CHANGE control statement, 29, 30, 32, 33, MAIN, in FORTRAN, 13
69—70, 74, 76 name, 6, 30, 31, 33
changing external symbols, 29— 30 positioning, 43—44
changing parts of overlay structures, 2 private code, 26
characteristics of load modules, 1 replacement, 30
characteristics of program structures, 4 replacement by REPLACE statement, 32
COBOL, 11, 13, 39 repositioning automatically-called, 44
CALL statement, 13, 46 specifying position, 43
class test, 39 unnamed, 6
ENTRY statement, 13 control statement, 1, 9, 12, 68
program, 39, 52 ALIAS, 22, 68—69, 74
TRANSFORM table, 39 CHANGE, 29, 30, 32, 33, 69—70, 74, 76
common ENTRY, 7, 22, 29, 43, 70
control section, 11 EXPAND, 12, 70—71
section, lengthening, 12 IDENTIFY, 6, 71
segment, 37, 38 INCLUDE, 15, 18, 29, 30, 32, 4, 62, 69, 70, 71,
source of JCL errors, 65 72, 77
storage areas, reserving, 11 input, 15
common area, 21, 23, 45—46 INSERT, 43, 44, 45, S5, 72, 73
blank, 6, 12, 23, 45 in the input stream, 16
named, 6, 23, 45 LIBRARY, 16, 17—18, 31, 57, 62, 73
unnamed, 23 Linkage Editor, 12, 68—78, 80
communication between segments, 38 —39, 46—48 listing, 25
comparison of program structure, 2—4 NAME, 21, 23, 62, 64, 69, 70, 74, 77, 78
compile-load-go job, 79 ORDER, 33, 34, 55, 72, 74
compile-load steps, 1 overlay, 42, 43, 4, 4S5, S5, 72, 75
compiler, FORTRAN, 11 PAGE, 34, 55, 75—76
compilers, OS IV/F4, § position, 29
composite external symbol dictionary (CESD), 8 REPLACE, 24, 30, 31, 32, 33, 74, 76 —77
computing relative virtual storage addresses, 8 SETCODE, 12, 55, 77
COM statement, 12 CONTROLLED EXTERNAL variable, 13
concatenated SYSLIB data sets, 63, 83 CONTROLLED file, 13
concatenating SYSLIN modules, 63, 82 CONTROLLED PROCEDURE, 13
concatenating the primary input data set CONTROLLED variable, 13
(SYSLIN), 14, 15, 63 controlling the sequence of control sections, 74
by omitting the DD name, 14 controlling the sequence of named common
with control statement in a separate data set, 16 areas, 74
with control statement in the input stream, 16 creating an executable program on DASDI, 1
concatenation of call libraries (See also automatic creating multiple load modules, 11
library call), 17 creating overlay programs, 11
constants, address, S, 6 creating reenterable programs with PSECTs,
control 52—S53
block, SEGTAB, 40 cross references between control sections, 8
dictionary, 6 cross reference table, 11, 26
section (PSECT) prototype, 11, 13, 52 cross reference table (XREF) option, 26, 59, 63
transfer (See passing control) CSECT
control sections (CSECT), 5, 6, 8, 11, 13, 25, 29, Identification (IDR) records, 6, 12
36, 52, 72 reenterable, 52
and named common areas on page boundaries, statement, 12

aligning, 10, 34—3S5, 5§ CXD instruction, 12

DASDI, creating an executable program on, 1 downward reference, 36

data, intermediate, 7 DSECT statement, 12

data, JQPSPZAP, 6 dummy section, external, 6

data sets DXD instruction, 12
additional, 14 dynamically invoking the Linkage Editor, 66 —67
included, 18 dynamically invoking the Loader, 83 —85
including concatenated, 19—20 Dynamic Address Linkage Table (DALTAB),
including sequential, 19 50, 55
name, 60 dynamic link, 10
SYSLIB, 79, 81, 82 dynamic linking, restrictions, 51—52
SYSLIN, 64 dynamic link series, 51, 52
SYSLMOD, 21, 64, 66 dynamic link structure, 1, 2, 3—4, 50—53,
SYSLOUT, 79, 81, 83 5S, 79, 81
SYSPRINT, 59 and prototype control sections, S0—S3
SYSTERM, 59, 81, 83 (DYNA) attribute, S5, 79, 81
temporary, 15 disadvantages of, 4, SO

DCB passing control in, 50—S51
block size (DCBS) option, S7 PSECTs, 52—53
information, 61 usability attributes, S1
parameter, BLKSIZE subparameter in the DD dynamic program structure, 1, 2, 3

statement, S8 dynamic structure, advantages of, 2

parameters for, 61, 82
parameters for DD statements, 61, 82

requirements for SYSPRINT, 62 editing
DD statement, 14 conventions, 29
adding, 65 modules, 10, 29—35
additional, 62—63 options, 1
DCB parameter BLKSIZE subparameter, 58 editor-supplied external references, 33
Linkage Editor, 60—61 eliminating exclusive references, 38
overriding, 65 end-of-module indication (EOM), 6, 7, 8, 30,
specifying, 60—61, 82—83 69, 77
DDname, 18, 62 END record, 77
ddname list, 66, 84 END statement, 6, 12
declaration, EXTERNAL, 13 assembler language, 22
default Assembler-produced, 29
attributes in job step options, 56 ENTRY attribute, 52
member name, 21 ENTRY control statement, 7, 22, 29, 43, 70
options for Loader, 81 entry name, 6, 30
TEMPNAME, 21 deleting, 32—33, 76
values for the SIZE option, S8 entry point, 7, 22—23, 29, 31, 50, 52, 81
defining PSECTSs, 52 default, 7
definition of segments, 1 for load modules, 22
DELETE macro instruction, 52 JXXNTRY, 81
deleting MAIN, 81
control sections and entry names, 32—33, 76 PSECT, 52
entry names, 32—33, 76 ENTRY statement
load modules, 52 Assembler, 12
obsolete alias names, 69 PL/I, 13
PSECTs, 52 entry table (ENTAB), 40, 46
unresolved external references, 77 EOM card, 22
delimiter, input, 74 EP=JQAL, 66
dependent control sections, 37 EP=LINKEDIT, 66
diagnostic information, 11, 21 EP=name, 81
diagnostic messages, 24 —25 error condition, severity-2, 81
diagnostic output, 7 error/warning messages, 24
disadvantage of exclusive call (XCAL) option, 45, 57
dynamic link structure, 4, SO exclusive reference, 38, 47
dynamic program structure, 2, 3 invalid, 31, 38
overlay structure, 2 valid, 38, 57

simple structure, 2, 3

exclusive segments, 38

branching between, 47

CALL between, 46
EXEC JCL statement, 23, 30, 63, 65, 81

PARM parameter of, 54
‘“‘executable” module, 18, 45, S5, 56, 57
execution sequence in a segment, 37
EXPAND control statement, 12, 70—71
EXTERNAL

attribute, 13

declaration, 13

file constant, 13
external

dummy section, 6

name, 5, 46

reference, 5, 6, 29, 30, 72, 73

symbol, 5, 6, 29

symbol dictionary (ESD) 6—7, 33, 72
external area, static, 11, 23
external references

deleting unresolved, 77

editor-supplied, 33

resolving, 7, 8, 79

unresolved, 83
external symbol dictionary (CESD), composite, 8
external symbols, changing, 29—30
EXTRN address constant, 12, 52
EXTRN Assembler statement, 12

file, CONTROLLED, 13
format conventions, 68
FORTRAN, 11, 13, 23, 39, 81

COMMON statement, 13

compiler, 11

END statement, 13

ENTRY statement, 13

program, 52
four basic load module structures, 1
four-byte V-type address constant, 46, 47
FREEMAIN macro instruction, 52
function,

LISTIDR, 71

load, 79

Program Fetch, 79

subprogram, 13
functions of the linkage editor, 9—12
FUNCTION statement, 3

gaining authorization, 12
GETMAIN macro instruction, 52

history processing, 12

IDENTIFICATION DIVISION, 13
IDENTIFY control statement, 6, 71
IDR record, 71

ignoring non-editable attribute, SS
inability to reference an unnamed control
section, 6
inability to use program libraries with dynamic
link, 52
INCLUDE control statement, 15, 18, 29, 30, 32, ‘
4, 62, 69, 70, 71, 72, 77 w |
included data sets, 18
including concatenated data sets, 19—20
including library members, 19
including sequential data sets, 19
inclusive reference, 38
inclusive segments, 38
branching between, 47
CALL between, 46
incompatible attributes or options, 24, 56— 59
incompatible job step options for the Linkage
Editor, 60
independent control sections, 36
input
additional, 10, 18
and output sources, 7 —
delimiter, 74
for the loader, 81 —83
module text, 8
object module, 14—15
of both object modules and control statements, .
15—16
to the Linkage Editor, 14—20
input sources, accepting additional, 10
input stream, JES, 63
INSERT control statement, 43, 44, 45, 55, 72, 73
position of, 44
instruction,
Branch, 47
CXD, 12
DXD, 12
intermediate data, 7
intermixing object and load module libraries, 61
inter-segment communications, 46 —48
invalid exclusive reference, 31, 38
invoking
subprograms, 2
the Linkage Editor, 12
the LKED procedure, 64
the LKEDG procedure, 64—65

.

JCL errors, common source of, 65
JES input stream, 61, 63
JES output stream, 64
job, compile-load-go, 79
job control language
for the Linkage Editor, 54—67 -
for the loader, 81 —83
statements, 12
job, load-go, 79 N
job pack area, 51
job step authorization, 12
job step options, 54 —62

JQAL (alias LINKEDIT) program, 54
JQBLDRGO program, 81, 83
JQBLOAD, 84

JQBLOADR, 84

JQBMLGO program, 81, 83
JQNLIST service aid program, 71
JQPSPZAP data, 6

JSEPROGM system utility, 69
JXXNTRY entry point, 81

language dependencies, 12—13
languages, PL/I, 11, 23
language translators, S
lengthening control sections or named common
sections, 12
LET option, 24, 4S5, SS, 56, 63, 79, 81
library, 7, 9
authorized, 12
call, 17, 79
call, automatic, 10, 11, 16—18, 33, S§, 61,
63, 65, 72, 73
LIBRARY control statement, 16, 17—18, 31, 57,
62, 73
library members, including, 19
Link command, TSS, 12
link,
~ dynamic, 10
edit-go function, 79
edit step, 1
pack area (LPA), 51, 52, 79, 81
pack area search (RES) option, 81
series, dynamic, S1, 52
structure, dynamic, 1, 2, 3—4, 50—53, 55,
79, 81
link-go steps, 18
LINK macro instruction, 12, 50, 52, 55, 80
linkage, CALL, 36
Linkage Editor, 1, 12
aliases for, 54, 66
control statements, 12, 68 —78, 80
DD statements, 60—61
dynamic invocation, 83 —8S
functions and facilities, S—13
incompatible job step options for, 60
input, 7, 9, 14—20
invocation, 12
job control language, 54— 56
options, 45, 53, 54
output from, 7, 21—26
processing, 7—8
Prompter, 12
return codes, 60
specifying options, 54— 62
standard DD statements, 61 —62
standard procedures, 63 —65
virtual storage size, 57
LINKEDIT program, 66
linking modules, 9
LIST option, 25, 59, 63

LISTIDR function, 71
literals, Assembler, 52
LKED procedure, 63, 64
LKEDG procedure, 64
load function, 79
load-go job, 79
LOAD macro instruction, 12, 50, 52, SS, 80, 84
load module, 1, S, 7, 9, 21, 74, 77, 79
addresses, assigning, 8
alias names for, 21, 22, 69, 82
attributes, 23, 5S4 —56
attributes, assigning, 11
authorized, 12
buffer, 11, S8
characteristics of, 1
creating multiple, 11
creation, 8
deleting, 52
entry point for, 22
four basic structures, 1
libraries and object libraries, intermixing, 61
member name for, 21
output, 21 —24
load point, 38, 42
load step, 1
Loader, 1
alias, 83
compatibility and restrictions, 79—80
default options, 82
default program name, 81
dynamic invocation, 83 —85
functions and facilities, 79—87
input for, 81—83
job control language, 81 —83
printed outputs, 86
Prompter, 80
return codes, 87
virtual storage region size, 81
LOADER program, 83
loading PSECT, 52
loading segments, 40
logical record and block size, 61

macro instruction
ATTACH, 12, S5, 80
CALL, 46, 47, 52, S5, 84
DELETE, 52
FREEMAIN, 52
GETMAIN, 52
Link, 12, 50, 52, SS, 80
LOAD, 12, 50, 52, S§, 80, 84
SEGLD, 48, 72
Segment Load (SEGLD), 46, 47
Segment Load and Wait (SEGWT), 46, 47,472
VL parameter in LINK and ATTACH,
66, 84 —86
XCTL, 12, S0, S5, 80
MAIN
control section in FORTRAN, 13

MAIN-continued
entry point, 81
option in PL/I, 13
maintaining authorization, 12
maximum of 256 (AM 256) aliases in job step
options, 57
member name, 21 —22, 83
default, 21
for load module, 21
members, replacing, 62
messages, error/warning, 24
messages, module disposition, 24
module attribute, 54— 56
authorization code (AC), 54
dynamic link structure (DYNA), 55
non-editable (NE), 55
only-loadable (OL), 55
overlay structure (OVLY), 55
page boundary alignment (ALIGN2), 55
refreshable (REFR), 24, 55, 56
reenterable (RENT), 11, 24, 55, 56
serially reusable (REUS), 24, S1, 52, 55, 56
test (TEST), 56
module buffer, S8
module disposition messages, 24
module library, output, 21 —22
module map, 11, 25—26
(MAP) option, 59, 79, 81
module, “‘not executable”, 24, 31, 33, 45, 57
module replacement, 74
module text, 7, 8
modules,
editing, 10, 29—35
executable, 18, 45, 55, 56, 57
linking, 9
reprocessing, 70, 78
multiple load module
creation, 11
processing, 21, 23—24
multiple-region structures, 40—41

NAME control statement, 21, 23, 62, 64, 69, 70,

74, 77, 78

named common area, 6, 23, 45

controlling the sequence of, 74
named control section, 6, 30, 31, 33
name entry, 6, 30
NAME option, 13
NAME =name, 81
negating Automatic Library Call, 16, 17

never-call (NCAL) option, 16, 17, 18, 31, 63, 64,

71, 73, 81
no alternate output (NOTERM) option, 81
NOCALL option, 81
no call, restricted, 17, 18, 31, 73
no let execute (NOLET) option, 81
no LPA search (NORES) option, 81
no module map (NOMAP) option, 81
non-reusable attribute, 51

nonzero origin, 26

NOPRINT option, 81

not editable (NE) attribute, 55

‘““not executable” module, 24, 31, 33, 45, 57

object module, S, 9, 79
object module input, 14—15
as a member of a partitioned data set, 14
created in a separate job, 15
from cards, 14
passed from a previous job step, 15
objective of dynamic linkage facility, S0
old aliases, 69
ON unit, 13
only-loadable (OL) attribute, S5
only-loadable (OL), module attribute, 55
option (See also module attributes)
23, 54—62, 81 —82
aliases maximum of 256 (AM256), 57
alternate output (SYSTERM), 59
CALL, 81
control statement listing (LIST), 59
cross reference table (XREF), 26, 59, 63
DCB block size (DCBS), 57
editing, 1
exclusive call (XCAL), 45, 57
incompatibility of, 24, 56, 59—60
job step, 54—62
LET, 24, 45, 55, 56, 63, 79, 81
let execute (LET), 57
Linkage Editor, 45, 53, 54
link pack area search (RES), 81
LIST, 25, 59, 63
Loader default, 82
MAIN, in PL/1, 13
module map (MAP), 59, 79, 81
NAME, 13
never call (NCAL), 16, 17, 18, 31, 63,
64, 71, 73, 81
no alternate output (NOTERM), 81
NOCALL, 81
no let execute (NOLET), 81
no LPA search (NORES), 81
no module map (NOMAP), 81
NOPRINT, 81
PRINT, 81
Replace (R), 69
RES (See link pack area search option)
TERM (See alternate output option)
virtual storage size (SIZE), 57—58, 79, 81
XCAL (See exclusive call option)
XREF (See cross reference table option)
option list, 66, 84
optional outputs, 25—26
ORDER control statement, 33, 34, S5, 72, 74
P operand of, 34
ordering control sections and named common
areas, 33

origin, 8, 26
OS IV/F4 compilers, S
output, diagnostic, 7
output from Linkage Editor, 7, 21 —26
output load module, 21 —24
assigning an authorization code to, 12
output module library, 21 —22
output (TERM) option
alternate, 25, 59, 62, 79, 81
output options: LIST, MAP, TERM, XREF, 59
outputs, optional, 25—26
output stream, JES, 64
outputting to SYS1. LINKLIB, 21
outputting to SYS1. SVCLIB, 21
overlayable sections, 36
overlay control statement, 42, 43, 44, 45,
S5, 72, 75
overlay programs
avoiding errors in structuring, 38
creating, 11
overlay structure, 1, 2, 26, 36 —48
advantage of, 2, 3
CALL linkage within an, 1
changing parts of, 2
design, 36—41
disadvantage of, 2
length, 37—40
module attributes, S5
(OVLY) attribute, 45, 55, 56, 75
reprocessing, 42
single-region, 36 —40
storage requirements, 46
specification, 42—45
overriding
an EXEC statement, 65
block size value in SYSLMOD DSCB, 57
DD statements, 65
member name in SYSLMOD DD
statement, 22
procedure statements, 65
overview of dynamic linking, S0
overview of PSECTs, 52

P operand of ORDER control statement, 34
page boundary, 10
alignment (ALIGN2) attribute, S5
default, 34
PAGE control statement, 34, 55, 75—76
parameter, REGION, 42
PARM parameter of EXEC statement, 54
PARM=DYNA, 50
PARM=(RENT, DYNA), 53
passing control
by Branch instruction, 46
by CALL macro instruction, 46
by CALL statement, 46
in a dynamic link structure, 50— 51
path, 36

PL/1, 13, 39, 81
compiler, 11
ENTRY statement, 13
languages, 11, 23
program, 52
position of
ALIAS statement, 69
CHANGE statement, 30, 69
ENTRY statement, 70
EXPAND statement, 70
IDENTIFY statement, 71
INCLUDE statement, 72
INSERT statements, 44
LIBRARY statement, 73
NAME statement, 74
OVERLAY statement, 75, 44
PAGE statement, 76
REPLACE statement, 32, 77
SETCODE statement, 77
SETSSI statement, 78
positioning control sections, 43 —44
using INCLUDE statements, 43 —44
using INSERT statements, 44
using object decks, 43
primary input data set (SYSLIN), 14—16, 74, 81
primary input to Linkage Editor, 7
PRINT option, 81
private call libraries (See also automatic library
calD, 17
private code (PC), 6, 12, 21
privates code control section, 26
procedure,
catalogued, 63—66
library, 63, 64
LKED, 63, 64
LKEDG, 63, 64
name, 63
PROCEDURE BEGIN block, 13
PROCEDURE statement, 13
procedure statements, overriding, 65
processing
prototype control sections, 11
multiple load modules, 21, 23—24
pseudo registers, 11
processing, Linkage Editor, 7—8
program,
authorization, 12
COBOL, 39, 52
editing, 1
FORTRAN, 52
JQAL (alias LINKEDIT), 34
JQBLDRGO, 81, 83
JQBMLGO, 81, 83
JQNLIST service aid, 71
LINKEDIT, 66
LOADER, 83
PL/1, 52
program facility (APF), authorized, 12
Program Fetch function, 79

using Linkage Editor rather than Loader, 1
using Loader rather than Linkage Editor, 1

validating references, 38
valid exclusive reference, 38, 57
valid references considered as errors, 39
variable
CONTROLLED, 13
CONTROLLED EXTERNAL, 13
virtual storage
addresses, computing relative, 8
requirements, 46
size (SIZE) option, 57—58, 79, 81

114

VL parameter in LINK and ATTACH macro
instructions, 66, 84 —86
V-type address constant, 12, 40, 50, S2, 53, 72

warning message, 57
weak external reference, 6, 11, 16, 26

XCAL option (See exclusive call option)
XCTL macro instruction, 12, 50, S5, 80
XREF option (See cross reference table option)

FACOM OS IV/F4
64SP-3150E- 1 Linkage Editor and Loader
COMMENT FORM User’s Guide

Please use the form below to write whatever comments and suggestions you may have regarding this publication. The
completed form should be given to the FACOM representative in your area.

Your opinions please.
Please mark each item below with the appropriate letter representing your frank views on this publication, i.e.
E (excellent), G (good), F (fair), P (poor).

D Text usefulness |:| Illustrations/tables D General appearance
l__—l Text clarity I:l Index coverage E‘ Paper quality
I:I Text accuracy I:' Cross referencing D Printing
[:I Text organization I__—] [:I Binding
Detailed comments:
Name: Position:

Company or organization:

Address: Reply requested: No

Yes

FOR OFFICE USE ONLY. Do not fill in here.

Local representative: : Date received:
Documentation section Date received:
Action:

Seen and checked by,

-

