88A00508A-E

GA-16/110/220
~ system reference manual

GENERAL AUTOMATION

- 1065 South East Street
Anaheim, California 92805
(714) 778-4800

© TWX 910-591-1695

(© 1979, General Automation, Inc,

RECORD OF REVISIONS

Title: GA-16/110/220 System Reference Manual

Document Number: 88A00508A

DATE ISSUE

July 76 Preliminary Issue

Dec. 76 Revision B :
Releaseu issue revised to include GA-16/110 computer information.

June 77 Revision C
Sept 77 Change 1 Pages Affected are:

1-11
2-14
2=-15
4-38
443
4-85
6-45
A-5

A-7

Jan 78 Revision D Incorporates Change Package Cl and change on page;
4~134

Mar 79 Revision E

ii

88A00508A-E

o

sy

16/220 IN JUMBO CHASSIS

GA-

i AR

T emeinnn

2

16/220 IN COMPACT CHASSIS

(A-

o—
o—
.-

88A00508A-E

FOREWORD

This GA-16/110/220 System Reference manual describes the configuration, operation,
programming, and input/output interfaces of both the GA-16/110 and GA-16/220 com-
puters. Both computers are similar in their basic design, configurations, and
programming and are described in one manual, The manual is intended for use as
follows:

For the original equipment manufacturer who will incorporate a GA-16/110 or a
GA-16/220 into his product, particular emphasis is placed upon flexibility of
configurations and 1/0 controller design considerations.

For a system programmer who will be designing, maintaining, or adapting software
for use on a GA-16/110 or GA-16/220, all references to instructions are in
terms of both machine code and GA's CAP-16 Assembler.

For general reference to operating procedures.

The following manuals are recommended for GA-16/110/220 hardware maintenance and
supplemental software information:

GA-16/110/220 Hardware Maintenance Manual (88A00509A)

System Generation & Operator Interface for FSOS or a GA-16/220/330 (94A01563A)
Disk Drum-Based Operating System, DBOS—-16 (88A00115A)

Real-Time Executive System, RTX~-16 (88A00114A)

Real-Time Operating System, RT0S-16 (88A00230A)

How to Use Your GA-16/220 (88A00525A)

Series-16 CAP-16 Assembler (88A00481A)

Series-16 Input/Output System (I0S) (88A00471A)

Series~16 1/0 Controller Manuals (as required for peripherals used)
GA-16/220/330 Stand-Alone Utilities (94A01531A)

Execution of T&V Programs on the GA-16 Series Computers (94A015194)

The basic unit for both computers is the GA~16/110 CPU module, which provides a
microprogrammed CPU to carry out the GA-16/SPC-16 series instruction set. The

GA-16/110 provides controls and indicators, memory bus, programmed I/O bus, vectored

priority interrupts, cold start, power fail/auto restart, and operations monitor;
alarm. An optional piggyback memory module plugs into the GA-16/110 module to
provide 2K words of random access memory (RAM) (or combination RAM and erasable
programmable read-only-memory (EPROM). An optional 64-word ROM may be installed
on the piggyback memory to provide initial program load (IPL) capability from

a peripheral device. A complete GA-16/110 computer (with memory) can therefore,
be provided on a single printed circuit module for insertion into a users device.

A GA-16/220 computer consists of the GA-16/110 module (CPU-1) plus a second module
(CPU-2 module) which adds additional controls including data entry switches that may
be sensed by a users program, and a vectored console interrupt button. The CPU-2
module also provides a 1 milisecond real-time clock (RTC), memory mode change under

iv

88A00508A-E

program control, and control instructions for I/O reset and single-step execution.
The CPU-2 module enlarges the I/0 capabilities to include a built-in serial I/0
controller (with vectored interrupt) for TTY or CRT.

An optional system console interface module (SCI) may be plugged into the CPU-2
module to provide an interactive operator program via TTY or CRT (console ROM). An
optional IPL ROM may be installed on the SCI to provide program load capabilities
from a variety of peripheral devices.

Both the GA-16/110 and GA-16/220 computers may be installed in either a compact or
jumbo enclosure which provides printed circuit card slots and connectors for the
GA-16/110 CPU (CPU-1) and the 220 module (CPU-2). 1In addition, the enclosure also
provides slots and connectors for the installation of 4K or 8K dynamic RAM memory
modules, a memory parity and write protect (MPP) module, and a backup memory power
supply. I/0 controller slots are also provided together with rear interface
connectors for peripheral devices and provision for the connection of an I/0 expan-
sion chassis. The compact enclosure provides a compartment for a main power supply
to run the CPU and I/0 controllers, while the jumbo enclosure requires an external
power supply unit.

Specific differences between the two computers are defined in the text, and the term
"GA-16/110/220" is generally used where characteristics are shared.

CAUTION

Several standard GA controllers have had to be updated for compatibility
with both the SPC-16 and GA-16 series processors. The controllers affected
are listed below:

Model No. Name
1615-xxxx CIT-16
3346-3347 -xXxXX Disk Controller
1615-xxxx0208 MHSDC
1615-xxxx0230 ABTU
1615-0240 APU
1561-xxxx Asynchronous Communication Controller
1581-xxxx Asynchronous Communication Controlier
1574 -xxxx : DMA Asynchronous Communication Controller
1530-xxxX DMA MUX
1579-xxxx SDLC
1582-xxxx Console Controlier
157 1-xxXXX Paddle Board (Loop Back)

Controllers constructed prior to May 1, 1976, not reflect the proper
changes. Any of these controllers, not incorporating the necessary
modifications, are not compatible with the GA-16/440, 16/330, 16/220,
and 16/110 processors.

Controllers constructed after May 1, 1976, are fully compatible with all
GA-16 series and SPC-16 series processors.

88A00508A-E

CAUTION

Before applying power to either a GA-16/110 or a GA-16/220 configured
in a compact or jumbo enclosure, verify that plug-in modules are -
inserted correctly (component side to the left). . If a module is
inserted upside down, severe damage to the equipment will occur.

The user should also verify that the memory service module (if used)
and the serial I/0 paddleboard (on a GA-16/220) are inserted in the
correct rear connectors. A first-time user of a GA-16/220 should
read "How to Use Your GA-16/220" (88A00525A) and run the CPU T&V
Program.

vi

88A00508A-E

TABLE OF CONTENTS

1.2 'STANDARD FEATURES OF THE GA-16/110 AND GA-16/220 SYSTEMS . . .

1.2.1 MICROCONSOLE AND OTHER CONTROLS AND INDICATORS. . . .

1.2.1.1 Microconsole for GA-16/110 System.

.1.2 Microconsole for GA-16/220 System.
3

NN
e

Additional Controls and Indicators for

GA- 16/110 and GA- 16/220. e a e e e e e e

1.2.2.2 EPROM. © v W v v v v e e e e e e e e e
2.3 ADDRESSING MODES. v v v v v v v o o v v o o &
2.4 GENERAL-PURPOSE REGISTERS + & v v v v v v v v v v v .
2.5 INPUT/OQUTPUT SYSTEM « « & v v v v v v v v . &
.2.6 INTERRUPT SYSTEM.« « v o o v v v v v v
2.7
TIO
3.1

1.3

SYSTEM ORGANIZATION e e e e e e e e e
2.1 ELEMENTS OF THE CPU « v v v o v v o v v o v o s
2.2 WORD FORMAT . . v v v v v v v v v e e e e e e e e e e e e
2.3 DATA FORMAT . . v v v v v v e v e e e e e e e e e e e e

2.3.1 ARITHMETIC QUANTITY (SIGN BIT)

2.3.2 LOGICAL WORDS (NO SIGN BIT)

2.3.3 ADDRESSES AND MEMORY MODE
3.4 BYTEDATA & 0 v v v v v v e e e e e e e e e e e e
.3.5 BIT DATA . . e e e e e
E

2
2
2.4 ELEMENTS OF THE CENTRAL PROCESSING UNIT (CPU)
2.
2 SEMICONDUCTOR MEMORY «
2
2
2

MEMORY PARITY PROTECT (MPP)

MEMORY PARITY PROTECT (MPP) . « v v v v v o o e e
1.3.1.1 Memory Parity. . . . « . ¢ ¢« v ¢« v v v v ..
1.3.1.2 Memory Write Protect
1.3.1.3 Program Timeout.
1.3.1.4 Error Corrections. + + ¢« « +« « « « .
1.3.2 SYSTEM CONSOLE INTERFACE (GA-16/220 OWLY)
1.4 PERIPHERALS AND CONTROLLERS. . « « v v ¢ v v v v v o o v o .
1.5 SOFTWARE e e e e e e e e e e

E . e e e
4.1 THE ARITHMETIC/LOGICAL AND CONTROL SECTION
4.2 e
.4.3 SYSTEM CONSOLE INTERFACE (SCI) (GA-16/220 ONLY)
.4.4 e
4.5 [INPUT/OUTPUT (I/0) CONTROL e e e e e e

| IR I I N S |
— s O

N RO R RO R I R R R R R RO R RO R
1
= = 00 00 00 N S U1 S S b

Section

Title Page

2.5 MAJOR REGISTERS. 4 & v v v ¢ 4 v ¢ o o o o o o o o o o o o o & 2-12
2.5.1 GENERAL-PURPOSE REGISTERS v v & v v v ¢ ¢ o ¢ o o o o & 2-12
2.5.2 ISE AND INTERRUPTS. . . v v v ¢ v « & e e e e s e e . . 2-14
2.5.3 STATUS REGISTER (REGISTER S) 2-14
2.5.4 PROGRAM COUNTER (REGISTER P). v v v v v ¢ ¢ o o o o o 2-17
2.5.5 REGISTER I (NON-PROGRAMMABLE) . . . v « « v ¢« ¢« v v « 2-18
2.5.6 TA TRI-STATE LATCH. . . & & v ¢ v v v ¢ ¢ ¢ o o o o o » 2-18
2.5.7 REGISTER W (NON-PROGRAMMABLE) . . . v « « v ¢« v ¢ ¢ « & 2-18
2.6 HARDWARE INTERRUPT (NI AND IN) . v v v v v v v v v o o o o o & 2-19
2.6.1 IN INTERRUPTS . . v & v v ¢ v o v v e 0 o o o o o o o & 2-22
2.6.2 NI INTERRUPTS+ ¢« « « . . e e e e e e e e e e 2-23
2.7 ERROR CORRECTION OPTION. . o v v & v o « . e e e e e e e e 2-24
2.7.1 OPERATIONAL MODES . v v v v v ¢ v ¢ ¢ ¢ o o o o o o o 2-24
2.7.1.1 Input Status MOAE. + v v v v e e e e e e . 2-25
2.7.2 MODE SELECTION. . . « .+ « v « « & C e e e e e e e e e 2-26
2.7.3 ERROR CORRECTION INTERRUPTS . « + v v v v v v v v o . . 2-26
2.7.3.1 Correctable Error Interrupt. « . . . 2-26
2.7.3.2 Non-Correctable Error Interrupt. 2-26
2.7.4 MPP STATUS WORD .+ + v v v ¢ ¢ ¢ ¢ o ¢ o o o o o o o o 2-26
2.7.4.1 ECC Board Status Indicators. 2-26

GA-16/220 CONFIGURATION AND OPERATION . . . v v v v v v ¢« v ¢ o o & 3-1

3.1 TYPICAL GA-16/110/220 CONFIGURATIONS « ¢ ¢« « v . . 3-1
3.1.1 SELF-CONTAINED GA-16/110 SYSTEM 3-2 !
3.1.2 SELF-CONTAINED GA-16/220 SYSTEM 3-3 ¢
3.1.3 LARGE GA-16/110 SYSTEM WITH MEMORY '
PARITY PROTECT OPTION & ¢« ¢ v ¢ v v v o o o & 3-3
3.1.4 LARGE GA-16/220 SYSTEM WITH MEMORY j
PARITY PROTECT OPTION . . & ¢ & v ¢ v o v o o o « o 3-4

3.2 MODULE DESCRIPTION . . . & v v ¢ v v e o e v e o e o o o o o & 3-11
3.2.1 POWER SUPPLY i & v e e e v e e e e e e e e 3-11
3.2.2 CPU=2 MODULE & ¢ v ¢ v v v v v e e e e e e e 3-11
3.2.3 SYSTEM CONSOLE INTERFACE (SCI) MODULE (GA-16/220) . . . 3-11

3.2.4 MULTI-DEVICE INITIAL PROGRAM LOAD

READ-ONLY-MEMORY (IPL ROM) FOR GA-16/220 3-12-
3.2.5 CPU-1 MODULE . . . & . ¢ v v v v v v e e e e o o o o 3-12¢
3.2.6 MEMORY. PARITY PROTECT (MPP) MODULE 3-12
3.2.7 MEMORY MODULES . . & & v ¢ v v v v v v e v e e e e 0 3-13:
3.2.7.1 General Description of Memory Modules 3-13:
3.2.7.2 Setting Memory Addresses 3-14-
3.2.8 BACKUP POWER SUPPLY (BATTERY BACKUP) 3-18°
3.3 CONTROLS AND INDICATORS . . & & ¢ & v v 4 o o o o o o o o o & 3-18
3.4 START-UP AND PROGRAM LOAD . . . & v ¢ v v v ¢ v o o o o o o » 3-25,
3.4.1 START-UP OF GA-16/220 GENERAL-PURPOSE SYSTEM 3-27
3.4.1.1 Preconditions for System Start-Up 3-27

3.4.1.2 Verify Memories Are Powered 3-27

3.4.1.3 Main Power Application Procedure 3-28

88A00508A-E

viii

Section

3.

5

3.6

3.

w W

7

O

88A00508A-E

Title

3.4.2 START-UP OF GA-16/110 OR GA-16/220 DEDICATED
SYSTEM WITHOUT SCI « . . « « . .
3.4.2.1 Preconditions for System Start- -Up
3.4.2.2 Verify Memories are Powered . . .
3.4.2.3 Main Power Turn-On I
LROMS . . v v v v v v e e e e e e e e e e e e
5.1 PGS AND MINI-PGS FORMAT

5.2 SINGLE-DEVICE ROM ON GA-16/110 AND DEDICATED
GA=16/220 . . v v v v e e e e e e e e e
3.5.3 GA-16/220 MULTI-DEVICE INITIAL PROGRAM LOAD

ROM ON SCI « « v v v v o

IP
3.
3

5.

.5.3.2 High-Speed Paper Tape Reader (PTR)
.5.3.3 Card Reader (CDR)
.5.3.4 Disk (DKx) . . . « v v v v o v ..
OLE ROM (GA-16/220). . . + « « v & v « « &
ONSOLE ROM COMMANDS . ¢ « « v ¢ « o « & -
OMMAND COMPONENTS.

C

S ON
3.
3

nomwwww

IC
6.1
6.2 COMMAND COMPONENTS. . . . « « « ¢« « « « o &
2.1 Address or Value Constant.
Command Mnemonics.
Command Modifier
DESCRIPTIONS. + ¢« « « « « .
Memory Display and Alter
Execute Program.

.6.
.6.2.2
.6.2.3
MMAND
1
2
.3 Punch Memory In Binary
4
5
6
7
8

3.6.3

o
J=.

wwwwwwwwwww:::mm

1

="

Load Memory In Binary.
Memory Dump.
Register Display and Alter
Executing a Single Instruction . .
Set Trap « v « v v v v e e e e e
Set Relative Address1ng Bias . . .
.10 Fi11 Memory. . . « v v & v« v o
.6.3.11 I/OReset. . . . « « « v v « v . .
CONSOLE ROM SYSTEM INTERFACES (GA-16/220).
3.7.1 USE OF INTERRUPT VECTORS.
3.7.2 USE OF THE BREAK INTERRUPT FEATURES

O

6
6
6
6
.6.
6
6
6
6
6

wwwwwwwwwwwowww

3.7.3 USE OF CONSOLE ROM CLOSED SUBROUTINES

BUS-16 STAND-ALONE UTILITY « . « ¢ o .
TEST AND VERIFY (T&V) PROGRAMS
3.9.1 CPUT&V v o v v v v v e e e
3.9.2 MPP T&YV « « o o oo e e e e e
3.9.3 PERIPHERAL PRODUCT T&Vs .« . o o oo .

ix

3.1 Teletype (TTY) . » . .« B

......

......

oooooo

......

oooooo

......

......

......

. .

Page

3-28
3-28
3-29
3-29
3-30
3-30

3-31

3-32
3-32
3-33
3-33
3-33
3-33
3-34
3-35
3-35
3-35
3-36
3-36
3-37
3-37
3-38
3-39
3-39
3-40
3-41
3-42
3-43
3-43
3-44
3-44
3-44
3-44

3-47
3-48

Section

4

88A00508A-E

Title Page

INSTRUCTION REPERTOIRE. . . . v & & v v v e e v e e e e e o e o s 4-1
4.1 INSTRUCTION GROUPS e e e e e e e e e e e e e e e e 4-1
4.1.1 CONVENTIONS . . & v v v v v v e e e v e o o v o o o o 4-5
4,1.2 ADDRESSING PARAMETERS & v v v v v o ¢ o o o o & 4-6
4.1.3 REGISTER IDENTIFIER CODES v ¢« v v ¢ ¢ v o o « & 4-8

4.2 INSTRUCTION FORMAT . . . & & v v i v e v e e e e e e e e e e 4-8
4.3 ADDRESSING MODES & & v v v v v v e v e e e o o o u e 4-9

4.4

4.5

4.3.1 EFFECTIVE ADDRESS GENERATION - STAGE 1
(ABSOLUTE, BASE-RELATIVE, PROGRAM-RELATIVE, OR

LITERAL) v v v v v v et e e e e e e e e e e e e e 4-9
4,3,1.1 Absolute e e e e e e e e e 4-11
4.3.1.2 Base-Rellative 4-11
4.3.1.3 Program-Relative 4-12
4.3.1.4 Literal. . . . & v v v v i e e e e e e e e e 4-13
4.3.2 EFFECTIVE ADDRESS GENERATION - STAGE 2 (DIRECT
OR INDIRECT) . . v v v v v e e e e e e e e e e e e u 4-14
4,.3.2.1 Direct v v .. e v e e e e e e 4-14
4.3.2.2 Indirect v v v i i e e e e e e e e e 4-15
4.3.3 EFFECTIVE ADDRESS GENERATION - STAGE 3
(INDEXED OR NON=INDEXED) . v v v v v ¢ 4 v v o v o o 4-16
4.3.3.1 Non-Indexed. . . . v & v v v o ¢ v ¢ o o o o & 4-16
4.3.3.2 Indexed. v . it e e e e e e e e 4-17
4.3.4 EFFECTIVE ADDRESS WRAPAROUND. . . . + v v v v v o v « . 4-19
4.3.5 EFFECTIVE ADDRESS BEYOND MEMORY 4.23
MEMORY REFERENCE INSTRUCTIONS . . & & & v v v v v e e v e o 4-24
4,4.1 JUMP UNCONDITIONALLY (JMP) v « v v v v v . . 4-27
4.4,2 JUMP TO SUBROUTINE (JSR) . . v & v v v v v v v v v o 4-28
4.4.3 LOAD REGISTER A (LDA) v v v v v v v e v v W 4-30
4.4.4 STORE REGISTER A (STA) . . . & &+ v v v v v v v v e v s 4-31
MEMORY REFERENCE WITH INDEXING INSTRUCTIONS 4-32
4.5.1 COMPARE MEMORY WITH REGISTER (CMR) 4-37
4.,5.2 DECREMENT MEMORY (DECM) « v v v v v v v « . 4-37
4.5.3 INCREMENT MEMORY (INCM) « v v v v v v v v o . 4-38
4.5.4 LOAD ALL REGISTERS AND STATUS (LARS) 4-38
4.5.5 LOAD BYTE (LDBY) . v v v v v v v v v v e e o e e u u 4-39
4.5.6 LOAD REGISTER (LDR) . . v v v v v v v v e v e e e e 4-40
4.5.7 RESET BIT (RBIT) . &+ & v v v v 4 v e o o e e e e e u s 4-42
4.5.8 STORE ALL REGISTERS AND STATUS (SARS) 4-43
4,5.9 SET BIT (SBIT) v v v v v v v e e e et e o o e e e u s 4-44
4.5.10 STORE BYTE (STBY) . . & v v v v v v v e v e e e e u 4-45
4.5.11 STORE REGISTER (STR) . v v v v v v v s v o e e v e a s 4-46
4.5.12 TEST BIT (TBIT) . & & v v v v e e e o o o o e o e w 4-47 -
4.5.13 PROGRAMMING EXAMPLES & & ¢ v v v v v v o o & 4-48

88A00508A-E

Section Title

4.6 CONDITIONAL JUMP INSTRUCTIONS (SKIP) « « o v o« «
SKIP IF MINUS (SKM) v v v v v v v v v v o v
SKIP IF NOT ZERO (SKN) e s e e e e
SKIP IF OVERFLOW FALSE (SKOF) « « .« . ..
SKIP IF OVERFLOW TRUE (SKOT) . . . « . « « « ¢ « o« .
SKIP IF PLUS (SKP) . . v v v v v v v v v o v v o s .
SKIP IF LINK RESET (SKR) . . . « « v ¢ v o v v v v vt
SKIP IS LINK SET (SKS) . + v v v v v v v v v v v v ot
SKIP IF ZERO (SKZ) . . v « v v v v v v v v o e e e
PROGRAMMING EXAMPLES o v o v v o v o v o 0 o s

TER OPERATE AND REGISTER OPERATE COMPARE INSTRUCTIONS ..
ADD REGISTERS (ADD) . .« v ¢ v v v v i v v v v o v o s
ADD COMPARE REGISTERS (ADDG) . . + « « v « « v « o« &
AND REGISTERS (AND) - . . « v v v v v v v v v v o v o
AND COMPARE REGISTERS (ANDC) « o « ¢ o o o &
OR REGISTERS (OR) . . v v v v v v v v vt v v o v o e
OR COMPARE REGISTERS (ORC) « o « v v o« o o
TRANSFER REGISTER (RTR) . . . « v v v o v v v o v v e
SUBTRACT REGISTERS (SUB) . . « . . « « « « « . . C e
SUBTRACT COMPARE REGISTERS (SUBC) « .« . .

.10 EXCLUSIVE-OR REGISTERS (XOR) « . o « ¢ « « « .

.11 EXCLUSIVE-OR COMPARE REGISTERS (XORC)

.12 PROGRAMMING EXAMPLES o v v v v v v v v

ISTER OPERATE LITERAL AND REGISTER OPERATE LITERAL

MPARE INSTRUCTIONS . . . v v v v v v o v v o o v o o o o s

ADD VALUE TO REGISTER (ADDV) « v v v v v o v .

ADD COMPARE VALUE WITH REGISTER (ADDVC)

AND VALUE WITH REGISTER (ANDV) . . . « v v o v « o«

AND COMPARE VALUE WITH REGISTER (ANDVC)

LOAD VALUE TO REGISTER (LDV) . . . « « « « v v v v o .

OR VALUE WITH REGISTER (ORV) « « « « « « . .

OR COMPARE VALUE WITH REGISTER (ORVC)

SUBTRACT VALUE FROM REGISTER (SUBV)

SUBTRACT COMPARE VALUE WITH REGISTER (SUBVC)

.10 EXCLUSIVE-OR VALUE WITH REGISTER (XORV)

.11 EXCLUSIVE-OR COMPARE VALUE WITH REGISTER (XORVC) . . .

.12 PROGRAMMING EXAMPLES « « v ¢ v v v v v o v o e

SUBROUTINE RETURN VIA INDIRECT VECTOR (RTNIV)

.10 REGISTER CHANGE INSTRUCTIONS « v ¢« o o v o o &
4.10.1 ADD SHIFT COUNTER TO REGISTER (ADDS)

.10.2 COMPLEMENT REGISTER (CMPL) « ¢« « « « . .

()]
—

bR AEPRPRPE
OO OO
nwowoo~NoOYTOTI B WM

4.7 REGI

C)ﬁg¢>4>4>4>4>4>4>4>4>4>4>4>
O(D\l\l\l\l\l\l\l\l\l\l\l\l
oo~NOTOTPhwNE

4.8

O O O N N N N N A
o 0o Co 0o Co 0O 00 0o 0O 0O 0O O
OoCoNOTOTPwWNE

AN
— O

4.10.2

4.10.3 DECREMENT REGISTER (DECR)« « « v o o o o .
4.10.4 DISPLAY REGISTER CONTENTS (DSPL) « ¢ « .« .
4.10.5 EXCHANGE BYTES (EXBY) . . . v « v v v v v v v v v o

X

88A00508A-E

Section Title Page
4.10.6 EXIT FROM SUBROUTINE (EXIT) . . . «v v ¢ v v v v v « . 4-80
4.10.7 [INCREMENT REGISTER (INCR) v v v v v v v v v . 4-80
4.10.8 RCSW, (INVALID INSTRUCTION) . . . v v v v v v v o « . . 4-81
4.10.9 RESTORE INTERRUPT SYSTEM ENABLE (RISE) 4-82
4.10.10 ADD LINK TO REGISTER (RLK) . + v v v ¢ v ¢ v ¢ o v v 4-83
4.10.11 RETURN FROM SUBROUTINE (RTRN) « + v v v « . . 4-84
4.10.12 TRANSFER REGISTER TO STATUS (TRS) . . . +. v « v . . . 4-85
4.10.13 TRANSFER STATUS TO REGISTER (TSR) . . v v v v v + . . 4-85
4.10.14 EXECUTE REGISTER CONTENTS (XEC) . . « v v v ¢ v o « . 4-86
4.10.15 ZERO REGISTER (ZERO) e e e e e e e e 4-86
4.10.16 ZERO LEFT BYTE (ZLBY) e e e e e e e e e 4-87
4.10.17 ZERO RIGHT BYTE (ZRBY) . . . v v v v v v v v v v v v . 4-87
4.10.18 PROGRAMMING EXAMPLES & v v v ¢ 4 v v v v v . 4-88

4.11 SHIFT LEFT INSTRUCTIONS T e e e e e e e e e e 4-90
4.11.1 SHIFT LEFT CIRCULAR (SLC) . . v v v v v o v v v o v 4-91
4.11.2 SHIFT LEFT CIRCULAR THROUGH LINK (SLCL) 4-91
4.11.3 SHIFT LEFT INSERT ONE (SLIO) v v v+ « . . 4-91
4.11.4 SHIFT LEFT INSERT ZERO (SLIZ) ¢« v v v v . . 4-91

4.12 SHIFT RIGHT INSTRUCTIONS & & v v v s v v e v e e e e 4-92
4.12.1 SHIFT RIGHT ARITHMETIC (SRA) . . . +v v v v v v v v o . 4-93
4.12.2 SHIFT RIGHT CIRCULAR (SRC) . . . + v v v v v v v v o 4-93
4.12.3 SHIFT RIGHT CIRCULAR THROUGH LINK (SRCL) 4-94
4.12.4 SHIFT RIGHT LOGICAL AND COUNT (SRLC) « 4-94
4.12.5 PROGRAMMING EXAMPLE v v v v v v v v o w 4-95

4.13 CONTROL INSTRUCTIONS . . & & & v vt v v e e e o e e e e e v 4-95
4.13.1 SET BACKGROUND MODE (BMS) v v v v v v v o v . 4-97
4,13.2 SET FOREGROUND MODE (FMS)« . ¢ v v v v v v v 4-97
4,13.3 ENABLE INTERRUPTS (INE) . . . v v v v v v v v s v w 4-98
4,13.4 INHIBIT INTERRUPTS (INH) v v v v v . . . 4-98
4.13.5 RESET LINK (LKR) . . . v v v v v v e e e e e e e e u 4-98
4.13.6 SET LINK (LKS) . . & v v v v v v v e e e e e e 4-99
4.13.7 PULSE OPERATIONS MONITOR ALARM (PMA) 4-99
4.13.8 GENERATE SYNC PULSE (SYNC) . . . « v v v v v v v v . . 4-99
4.13.9 PROGRAM SEQUENCE INTERRUPT (TRAP)/RESERVED

OP CODES . . & & v it e e e e e e e e e e e e . 4-100
4.13.10 WAIT (WAIT). & v v v v vt e e e e e e e e e e e e e 4-101

4,14 PROGRAMMED INPUT/QUTPUT INSTRUCTIONS . . . « ¢ ¢« v v v v v .+ . 4-102
4.14.1 OUTPUT CONTROL FUNCTION (CTRL) « +v v v v v ¢« v v v « . 4-104
4,14.2 DATA TRANSFER IN TO MEMORY (DTIM). « « . . . 4-104
4,14.3 DATA TRANSFER IN TO REGISTER (DTIR).« . . . 4-105
4.14.4 DATA TRANSFER OUT FROM MEMORY (DTOM) 4-105
4,14.5 DATA TRANSFER OUT FROM REGISTER (DTOR) 4-106
4.14.6 TEST DEVICE (TEST) &+ ¢ v v v v ¢ v v o v v o o o o v & 4-106

xii

Section

88A00508A-E

4,15 SPECIAL FEATURES . . + v v v v v v v v v v v v e e e e v e e s

4.16

4.17

4.15.1

4.15.2

4
4

4,
4.
4.

HA
4.

16.1
4.16.2

READ CONSOLE SWITCHES (GA-16/220). « « « « . .
4.15,1.1 Read Console Switches Into
' Memory (RCSM) « « v v o o o o
4.15.1.2 Read Console Switches Into
Register (RCSR) « ¢« o o o
INTERNAL MASK WORDS (GA-16/220) « « « « « . .
4.15.2.1 Console Interrupt (CNSL INT)
4.15.2.2 Real-Time Clock Interrupt (RTC)
4,15.2.3 Teletype Interrupt « « . o .
4,15.2.4 Memory Mode Change Mask
SERIAL I/0 CONTROLLER . . . v v v v v ¢ v v v o v o .
OPERATIONS MONITOR ALARM (OMA)
NI POWER-FAIL INTERRUPT +« « ¢ ¢« ¢« ¢ ¢ « & o &
AUTOMATIC RESTART INTERRUPT « ¢« v « « ¢« « + &
GA-16/110 MEMORY MODE SET . v .« « v v ¢ v v v o o o -

NARE MULTIPLY AND DIVIDE « « « ¢« v o v v o v o o

HARDWARE DIVIDE (DIV) . . . v v v v v ¢ v v v v v o s
HARDWARE MULTIPLY (MPY)+ « ¢ v o o v o o o

SPECIAL INSTRUCTIONS v v v v v v v v v v o o v 0 0 o s

4.17.1
4.17.2

I/0 RESET (IORST) . & v v v v v v o o v o v v o o v s
ENABLE SINGLE STEP INTERRUPT (SSTEP)

4.18 SAMPLE GA-16/220 PROGRAM « « v ¢ v v ¢ v o o o 0 o

M
5.
5
5.
5
5
5

o1 o

1

O\U‘l-bwl\)

oo~

EMORY PARITY PROTECT (MPP)« v v v o v v v o ¢ o o PO

MEMORY PARITY . . o & v v v v v v e e e e e e e e e e e e
WRITE PROTECT FEATURES v« v ¢ v v v v v v o v v o v e
PROGRAM TIMEOUT (PTO) . . « v v v v & v v v e o v v o v v o s
MPP CONTROLS AND INDICATORS « o ¢ o v v v v v o o v s
NON-INHIBITABLE MPP INTERRUPT « ¢ o v v o o o
MPP COMMANDS . . . & v & v v v v v e e e e e e e e e e e e e

5.6.1

5.6.2

OUTPUT WORDS . . v v v v e v v v e e e e e e e e e e s
5.6.1.1 Qutput Map Address or Map Data

5.6.1.2 Output Command Word (Resets Status) . .

INPUT WORDS. & v v v v v e v e v a e e e v e e e e e s
5.6.2.1 Input Status Word <
5.6.2.2 Input Memory Address Word ¢ . . .
5.6.2.3 Input Memory Data Word
5.6.2.4 Input Protect Map Data

MPP OPERATION .+ o v v v e e e e e e e e e e e e
INSTRUCTION AND DATA SUMMARY . - + v v v ee e e e e e e e e

X111

88A00508A-E

Section Title Page
6 INPUT/QUTPUT OPERATIONS v v v o e s e e e e e e e e w 6-1
6.1 PIO OPERATIONS v v v i e e e e e e e e e e e 6-1
6.2 INTERRUPT-DRIVEN PROGRAMMED I/0 v v v v v v v v o . . 6-8
6.3 GA-16/220 DIRECT MEMORY ACCESS VIA DATA CHANNEL
I/0 (DCI0) & v v v e e e e e e e e e e e e e e e e e e 6-9
6.4 INTERFACING TO THE DATA CHANNEL BUS, MHSDC 6-10
6.5 GA-16/220 DIRECT MEMORY ACCESS (DMA) DIRECT I/0 6-13
6.6 DELETED v v i v v s e e e e e e e e e e 6-13
6.7 I/OMEMORY v v v v s s e e e e 6-14
6.8 1/0 HARDWARE INTERFACE e e e e e e e e e 6-44
6.8.1 CONTROLLER DESIGN CONSIDERATIONS 6-44
6.8.2 PHYSICAL DESCRIPTION OF I/O SYSTEM 6-47
6.8.3 I/0 BUS DESCRIPTION . . . & v & v v v v v v v v v v 6-47
6.8.4 I/0 BUS DRIVERS/RECEIVERS v v v « . . . 6-56
6.8.5 I/0 CONNECTOR PIN ASSIGNMENTS 6-57
6.9 I/0 BUS TIMING AND INTERFACING+ « v v v . .. 6-60
6.9.1 TEST AND CONTROL LOGIC TIMING 6-60
6.9.2 DATA OUT LOGIC AND TIMING v v+ 6-64
6.9.3 DATA IN LOGICAND TIMING v v v v v v v . . 6-64
6.9.4 INTERRUPT LOGIC AND TIMING v v + v o . . . 6-69
6.9.4.1 Request Phase 6-69
6.9.4.2 Priority Determination Phase 6-69
6.9.4.3 Acknowledge Phase « 6-71
6.9.5 GA-16/220 DMA TRANSFERS + v v v v v v v v . . 6-72
6.10 INTERFACE TO MHSDC & v v v v v v v e e e e e e e e 6-75
6.10.1 GA-16/220 DATA CHANNEL BUS DESCRIPTION (MHSDC) 6-75
6.10.2 DATA CHANNEL TIMING AND INTERFACING 6-77
6.10.3 DATA CHANNEL INITIALIZATION SEQUENCE 6-79
6.10.4 DATA CHANNEL INPUT BLOCK TRANSFER OPERATIONS 6-81
6.10.5 DATA CHANNEL OUTPUT BLOCK TRANSFER OPERATIONS 6-85
6.10.6 DATA CHANNEL/CONTROLLER CHAINING SEQUENCE 6-85
6.10.7 LATENCY TIME & ¢ v v v v e e e e e e e e 6-90
6.11 INTERFACE EXAMPLES & . . ¢ v v v v v e v e e e e e 6-90
6.11.1 EXAMPLE CONTROLLERS 1 AND 2 v v v v . . 6-90
6.11.2 EXAMPLE CONTROLLERS 3 AND 4 6-94
6.11.3 EXAMPLE CONTROLLER 3 v v v v v v .. 6-95
6.11.4 EXAMPLE CONTROLLER 4 v v v v v v v . . 6-97
7 INSTALLATION PROCEDURES & & v v v e e e e e e e e e e e 7-1
7.1 GENERAL . . . v v vt e e e e e e e e e e e e e e e 7-1
7.2 PHYSICAL DESCRIPTION & v v v v v e e e e e v 7-1
7.2.1 DESCRIPTION OF THE EXTERNAL I/0 ENCLOSURE 7-3
7.3 SITE REQUIREMENTS & ¢ . v v v et e e e e e e e e o 7-10
7.3.1 ENVIRONMENTAL CONDITIONS « . v v v .« .. 7-10
7.3.2 POWER REQUIREMENTS ¢ v v v v v v v .. 7-10

Xiv

Number

[\
U

PRPRLETTLY
PN~ ULPRWN-

WN O~

I 1 1
PO ONONVGES

o g ?\?\?\L{nmmmtfmbbbbb
——Yooo~NouULP L=,

= O

O\OO\O\OI\O\O\G\O\

(@)Y
|
—
W N

6-14
6-15
6-16

6-17

88A00508A-E

LIST OF ILLUSTRATIONS
Title

GA-16/110 ComponentsS. . + « « « & o o o o o o o o o o o s
GA-16/220 Components8. « + « o o« « s o o o o s o o o o +
Internal Organization of the CPU. « « « .« .

IN Interrupt FIOW . v ¢ ¢« v ¢ ¢ ¢ o« ¢ o o« o o o o o o o

MPP Status Word . « « « & ¢ o ¢ ¢ o o o o o o o o s s o
GA-16/110 System in Compact Chassis (No MPP).
GA-16/220 System in Compact Chassis (No MPP)
GA-16/110 System in Jumbo Chassis (With MPP)
GA-16/220 System in Jumbo Chassis (With MPP)
Memory AdAress Map . + « « « o o o o o o 4 4 e e e e s
Dedicated Memory Locations . . . e e e e e e e e e e
System Console Interface and IPL ROM Memory Locations . .
General System Start-Up Flow Diagram « +

Address Stages for Instructions that Reference Memory . .

Effective Address Generation, Memory Reference Instructions

Effective Address Generation, Memory Reference with
Indexing Instructions . . . « & ¢ ¢ o ¢ ¢ o ¢ o 0 o .

Effective Address Generation, Conditional Jump Instructions

Effective Address Generation, Literal Addressing Mode . .

Internal Mask Words (GA-16/220 Only) . . « « « « « « .
TTY Exercise Program . . « « ¢ « o o o « o o o o &+ s o o
Sample GA-16/220 Program . . « « « « o o« & s o o o o o o
GA-16/220 Memory Parity Protect Module
MPP Protect Maps .« .« « ¢ ¢ o &+ o o o o o o o 4 s s e o e
Illustration of Memory Protection . . « . ¢ « « + « o o &
Output Data for MPP « « « ¢ ¢ & « o ¢ ¢ o o o
Input Data from MPP « « « & « o « o ¢ o o o o
MPP Demonstration Program . . « « « « « o o o o o o o o =
Typical Programmed I/0 Sequence . . . « « « « + « « « « =
Example Block Transfer Memory Map (GA-16/220)
Input Data From HSPTR . . . « « o o o o o o o ¢ o o o
Qutput Data to HSPTP e e e e e e e e e e
Object Word Format to Floppy DlSK Controller
Status Word Format for Floppy Disk Controller
Read Card Input Format (via DCIO) . . . « « « « « ¢« « + &
Object Word to Line Printer . . . s e e s e e e e s e
Data Words to Line Printer (via DCIO) e e e e e e e e e e
Object Word Format to 3341/3343 Disk Controller
Status Word for the 3341/3343 Disk Controller
Object Words to 3345 Disk Controller

Status Words From 3345 Disk Controller . . .

Status Word From 3346/3347 Disk Storage System Controller
Object Word for 3346/3347 Disk Storage System Controller
Object Word to Models 3331, 3332, and 3333 Magnetic Tape

Unit Controller . . e e e e e e e e e e e e e
Status Word for Models 3331 3332, and 3333 Magnetic Tape
Controller . v v v v ¢ 4 e e s e e e e e s e e e e e e e

XV

o
QU

[{e]
(9]

UL
~ W

I
R OOOoULINNWYWWN

1
[e))

i I
~

U
—— N =
oo~

4-26

4-36
4-53
4-66
4-110
4-117

=~
1 [L L
e N = O W
~N O g

N

|
9]

CIJ\O\G\O\O\Y!U\U'IU'IUIUI
N = =
O 0 >

[))
|

6-22
6-24
6-25
6-27
6-29
6-31
6-34
6-35
6-36

6-37

6-38

Number

6-18
6~19
6~20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6~34
6-35
6-36
6-37
6-38
6-39
6-40
6-41

6-42
6-43
6-44

U\ITI\ITI\I\I\IO\
Mr—-.l.\wwb—-\lc\w-l-\wl\:n-aa

D-

88A00508A-E

LIST OF ILLUSTRATIONS (Continued)
Title

Object Word Formats to HPT Controller
Status Word Format for HPT Controller
Mask Word for Internal Interrupts . .
Mask Word for Setting Memory Mode . .
TTY Input or Output Data Format . . .
I/0 Interfaces . « « v « « o o & o &
Typical I/0 System . . . e e e e e e e e
Flowchart of I/0 Instructions C e e e e e e e
Timing for I/O TEST and CONTROL Instructions . _
Logic for I/0 TEST and CTRL Instructions . ,
Timing and Logic for Data Output_Function

Timing and Logic for Data Input Funetion
Logic and Timing for Program Interrupt Sequence

¢ e e 8 & ® o e o

e o & o o
.
-

Timing and Logic for DMA Data Qutput . . . e e o e
Timing for Consecutive DMA Data Output Transfers . e
Timing for Consecutive DMA Data Input Transfers
Timing and Logic for DMA Input . . & + ¢« &+ ¢ o s o & & .
Timing for Data Channel Initialization Sequence
Data Channel Transfer (Input) « « « & . . e e e e e
Timing for Consecutive Data Channel Transfers (Input) . « e e e
Timing and Logic for Data Channel Data Transfer (Output).
Timing for Consecutive Data Channel Data Transfer (Qutput) . . .

e o6 e e e e e 8 o o
e e e e e o e e e & ° &

Data Channel/Controller Chaining Sequence« e e e
Standard Controller to Data Channel Interface Featuring Logic

to Accommodate 11 €CaSes . .+ 4+ ¢ ¢ & o ¢ & e e s e b e 4 e e e s
Example Controller 1 . . & & ¢ v ¢ ¢ o & s o o o s o s o o o
Example Controller 2 . . ¢ & ¢ s ¢ o o s o o s o o o o o =
Example Controller 3 . . ¢ & ¢ ¢ ¢« 4 o o ¢ o o o o s s o o o o o
Example Controller 4 . . e s e e n e s e e e e e e s e
GA-16/220 CPU Configuracion e e e e e e e

Installation Drawing I/0 Power Supply Model 1615
Installation Drawing, T/0 Enclosure Model 1615-0001
Circuit Board Layout . . . e o e o o

Pin Relationship Between Controller Card and Paddle Board
Pin Relationship Between CIT-16 Board and External I/O Bus Cable
I/0 Signal Connections, External I/0 Enclosure . . . « « « « « &
Binary Paper Tape Format. . . . + o« « o o o o s o o
PGS Paper Tape Format . « « « « + « « o o o o o o »
Binary Card Format. . . + « + « & o ¢ o o s o o @
PGS Card Format + « « « o o« « o o o ¢ o o & N
GA-16/110 System in Compact Chassis (No MPP) . .
GA-16/220 System in Compact Chassis (No MPP). .
GA-16/110 System in Jumbo Chassis (With MPP). . .
GA-16/220 System in Jumbo Chassis (With MPP).

.
.
.
.

Typical I/0 System Interrupt Chain for Early Compact Jumbo Chassis.

Redesigned GA-16/110/220 Processor Boards . . e o v s »

XVi

Page

6-39
6-40
6-41
6-41
6-42
6-45
6-48
6-61
6-62
6-63
6-65
6-67
6-70
6-73
6=-74
6-74
6-76
6-80
6-82
6-84
6-86
6-87
6-88

6-89
6-92
6-93

[} | LI U
£ N 00
@ o

|
N =M~ Ooo~NOoNW

(v) \1\1\571\1\1\10«0\

G-2

Number

J-\J-\-l-\wwwliJwNNNNNh—‘
LWNoFULEELWDND PV WL =

G\G\O\G\UILlJ'l-I-\J-\-D-L\
rPLONEORNOOG

7T %
~N o (%]

CI)\O\
O

6-10
6-11
6-12
6-13
6-14

6-15
6-16

6-17
6-18

88A00508A-E

LIST OF TABLES

Title

GA-16/110/220 Computer Specifications . . . + « o« « o o o o« .
Register Contents e e e e e c e e e
Operation Affecting ISE F/F or ISE Status Indicator e e e e
Interrupt SUumMmMary . « « o o ¢ o o ¢ o o ¢ o o 0 e e e e e
Dedicated Memory Map. + + + v & &+ ¢ & o s & & o« o 2 o o o .
Mode Selection Bits . . ¢ v ¢« ¢ v v 4 4 4 e e e s e e e e
Connector Assignments for Compact Chassis Computer System .
Connector Assignments for Jumbo Chassis Computer System . . .
GA~16/110/220 Controls and Indicators . . « « « « ¢ « o o o« &
IPL Selector Switch on SCI Module (GA-16/220) « + + .
Console ROM Closed Subroutines . . « o &« v & o o « o o « o
GA-16/110/220 Instruction Repertoire . . . + « « « « o« « o
EA Coding, Memory Reference Instructions « . . .
Coding of Effective Address — Memory Reference with

Indexing INsStructions .« « o o« v & o+ o o o o o o o o 0 e .
Dedicated Memory for NI InterruptsS . . + + « + o « o = « o &
Effects of Memory Mode Change « ¢« ¢ « ¢ ¢ v « o + o &
TTY Modes . . « « o o o o « « & e e e e e e e e e e e e e
Instruction Summary for Serial I/O Controller . . . + + . .
PTO Time Period JUMPEYS . &+ + ¢ « o o o o o o o s o o o o &
Instruction Summary for MPP Module e e e e e e e
Standard Device Select Codes and Interrupt Ass1gnments . e s
I/0 Signal Summary . . . e e e e e e e e e e e e e e

Data Channel Assignments for Standard Peripheral Units . . .
Instruction Summary for High-Speed Paper Tape Reader (HSPTR)

Controller + o o v o o o 4 4 e e 4 e e e s e e e e e e e e
Instruction Summary for High-Speed Paper Tape Punch (HSPTP)
Controller « v ¢« ¢« ¢ o o« o« o 4 o 4 4 e e e e e e e e

Instruction Summary for Model 3349 for Floppy Disk Controller
Instruction Summary for the Model 3356 Controller (Card

Reader SyStem) . .« &+ « o & o o o o o o o o o o o 0+ e e .
Character Codes for Card Reader e
Instruction Summary for the Model 3356 Controller (Llne

Printer Sectiom) . . « « o+ + 4 o o o o 4 e 4 e e e 4 e e
Paper Feed Codes for Printer « « .« « « « & &
Character Codes for the Line Printer
Instruction Summary for the 3341/3343 Disk Storage System . .
Instruction Summary for the 3345 Disk Controller
Instruction Summary for the 3346/3347 Disk Storage System

Controller+ . . e .
Instruction Summary for Models 3331, 3332, 3333 Magnetic Tape

Unit Controller . « « « & « o o o o o o =

Instruction Summary for Model 3342 Head-Per-Track Controller

Instruction Summary for 16/220 Internal Functions and Console .

Instruction Summary for Serial I/0 Controller (GA—16/220) or
External Model 1582 Controller (GA-16/110)

Xvii

6-35
6-37
6-39
6-41

6-42

Number

6-19
6-20
6-21
6-22
6-23
6-24
6-25
A-1
A-2
A-3
A4
A=5
B-1
F-1
F-2

Appendix
A

o ™m m o O W

88A00508A-E

LIST OF TABLES (Continued)
Title

Detail Description of ASR 33 TTY Functions. . ¢« « « « + « &

I/0 Bus Descriptions. . . « e e s e e e e e e e e

I/0 Cable and CIT-16 Connector Pin Assignments.

I/0 Signal Pin Assignments. & G« e s s e e e e e

Data Channel Bus Signals. e e e e e e e e e s
Interface Signals for Example Controllers land 2 . « ¢« « « &
Interface Signals for Example Controllers 3 and 4
General InstructionNsS. « + « « ¢ o o o ¢ o s o o o o e o
Summary of General Instructions o o e e e e e e

Memory Reference Instructions EA Calculacions e e e e e e

Memory Reference with Indexing, -EA Calculations « « « « « + &
Standard I/0 Data & Instructions. . « « o« ¢« o o ¢ o o o o o o
ASCII Character Code Summary. e e e e s e s e e e e

Connector Assignments for Compact Chassis Computer System

Connector Assignments for Jumbo Chassis Computer System

LIST OF APPENDICES
Title

GA-16/110/220 INSTRUCTION SUMMARY . . . « « « « v v v v o o &
ASCIT CHARACTER CODE. . + & v v o v o o v v v o . e
CONVERSION TABLES « « & « v v v v v e e e e e e e oo
BINARY, PGS AND DATA FORMAT . v « v v v v v o v o o v v v o
SUMMARY OF SYSTEM CONSOLE ROM COMMANDS. . .« « « « « « « « « .
EARLY GA-16/110 AND GA-16/220 CONFIGURATIONS.
REDESIGNED GA-16/110/220 PROCESSOR BOARDS . . + « + « « . . .

xviii

Page

6-43
6-51
6-58
6-59
6-78
6-91
6-94
A-2
A-4
A-9
A-10
A-14
B-2
F-4
F-7

Page

 88A00508A-F

introduction

The GA-16/110 and GA-16/220 computer systems are based upon a fast and powerful
microprocessor. This microprocessor supports a large instruction set and many pro-
gramming features that are not available in most microprocessors. The GA-16/110 is
especially designed for dedicated applications where high performance is required
to function as remote controllers and cphcentrators in a large network system. The
GA-16/110 is a total microcomputer with CPU, memory, program loader, and I/0 on a
single small plug-in card for OEM designers to install in their products. The GA~
16/110 CPU may also be installed in a GA Compact or Jumbo enclosure, together with
additional memory, to provide a computer system for rack mounting.

The GA-16/110 computer may be converted to a general-purpose GA-16/220 computer by

adding one additional module which adds the capabilities identified in Table 1-1 as
GA-16/220.

Applications for a GA-16/220 include computing systems operating under a GA-16
series operating system for batch processing, program development, and process and

machine control, with operator interaction provided via a teletype or CRT unit.

Table 1-1 lists the specifications of the GA-16/110 and GA-16/220 computer system.

Table 1-1. GA-16/110/220 Computer Specifications

Architecture Microprogrammed

16-bit General-Purpose Computer

Paraldel Binary Two's Complement Arithmetic
Single- and Double-Word Instructions

Programmed and Direct Memory Access Input/Output

-

Technology Processor —nMOS LSI and Tri-State (7400, 7400H and
Schottky Logic) Circuitry and Unique Four-Layer Printed
Circuit Board Packaging

Memory Semiconductor RAM, PROM, and EPROM
Registers Programmable Registers
Accumulators

Index/Accumulators
Base Register

Subroutine Linkage
Program Counter
Instruction Register
Status Register

—
— == NN OOY O

1-1

Table 1-1.

88AN0S5C8A-E

GA-16/110/220 Computer Specifications (Continued)

Registers (Cont)

Status Indicators 7
Zero
. Plus
Link
Overflow
Foreground/Background
32K/64K Memory Mode
Interrupt System Enable (ISE) Save

Shift Count 1
Standard Processor Real-Time Clock (RTC) o . 1 ms
Operations Monitor Alarm (OMA) 150 ms - 300 ms
Power Fail/Auto Restart (PF/AR)
Cold Start

64K Direct Addressing
Memory Parity Protect (MPP) (Optional)
Interrupt Program Timeout (Optional)

Arithmetic and Logic

Parallel Binary, Two's Complement, Fixed-Point,
Bit, Byte, and Word

ADD, SUB, COMP, INC, DEC, AND, OR, XOR, SET BIT,
RESET BIT, TEST BIT

Hardware Multiply and Divide (Unsigned)

Signed Multiply/Divide (Optional)

Instructions
(Fourteen Classes)

Memory Reference

Memory Referenced Indexed

Conditional Jump (Skip) on Eight (8) Conditions

Register Operate and

Register Operate and Compare

Register Operate Literal and

Register Operate Literal and Compare

Subroutine Return Via Indirect Vector

Register Change

Shift Left

Shift Right

Control

Input/Output (Addressing to 64 Device Select Codes)

Read Conmsole Switches (Additional Input/Output on
GA-16/220)

Multiply/Divide (Unsigned)

Special (Enable Single Step Interrupt, I/O Reset)
(Additional Input/Output on GA-16/220)

(All instructions listed by class and alphabetically
in Section 4.)

1-2

88A00508A~E

Table 1-1. GA-16/110/220 Computer Specifications (Continued)

Addressing
(Eleven Modes)

Direct

Direct, Indexed

Indirect

Indirect, Indexed

Program Relative

Program Relative, Indirect
Base Relative

Base Relative, Indexed
Base Relative, Indirect
Base Relative, Indirect, Indexed
Literal .

Programmed I/0 (PIO)

16-Bit Parallel Tranfers

Vectored Priority Interrupts

120K Word Transfer Rate

Data Transfer

To/From Memory

To/From Any One of the Sixteen (16) Programmable
Registers

Serial I/0
(GA-16/220)

Integral Universal Asynchronous Receiver Transmitter
(UART) Serial I/0 Controller for Console TTY or CRT
Data Rates
110 or 9600 Baud (Early Model CPU2 Board) Sixteen
rates, 0 thru 9600 Baud (CPU2 Board 31D02519A or 31D02574A)

Direct Memory Access
(DMA) I/0 (GA-16/220)

16-Bit Parallel Transfers

Multi-Channel Operation with Vectored Priority
Sequencing

1.25M Word-Per-Second Transfer Rate Interleaved
with CPU

Interrupts

Non-Inhibitable (NI) Interrupts
Power Fail
Auto-Restart
Memory Parity, Write Protect, and Program Timeout
(Options)
TRAP Instruction
Single Step/Break (GA-16/220)

1-3

88A00508A-E

Table 1-1. GA~16/110/220 Computer Specifications (Continued)

Interrupts Internal Inhibitable (IN) Interrupts (GA-16/220)
(Cont) Real-Time Clock
Console TTY
Console Interrupt
External Inhibitable (IN) Interrupts
64 Priority Interrupt Levels
Dimensions GA-16/110 CPU Module or Additional 220 Module
Height 7.250 in. (18.415 cm)
Width . " 0.625 in. (1.588 cm)
Width w/Piggyback RAM 1.063 in. (2.700 cm)
(or SCI)
Depth 11.000 in. (27.940 cm)
Compact GA-16/110/220 System with Internal Power
Supply or Jumbo GA-16/110/220 System (Requires
Separate Power Supply)
Hedight 8.750 in. (18.415 cm)
Width 19.000 in. (48.260 cm)
Depth (w/o Cables) 21.150 in., (53.721 cm)
Depth (w/Cables) 22.250 in. (56.515 cm)
Separate Power Supply for Jumbo GA-16/110/220 System
Height 10.750 in. (27.305 cm)
Width 19.000 in. (48.260 cm)
Depth (w/o Cables) 5.750 in. (14.605 cm)
Depth (w/Cables 7.750 in. (19.685 cm)
Temperature Operable at 0°C to 50°C (System Cooling Fan used)
Humidity Up to 90 Percent Relative (Non-condensing)

Input/Output Interface
Signals

Low Level - 0.0 to 0.4 volt
High Level- 2.0 to 5.0 volts

I/0 Drivers - 74365 Tri-State TTL Drivers
Saturation voltage 0.4 volt
Capable of sinking 40 ma to ground

I/0 Cable Termination

Twisted Pairlines - 100Q characteristic impedance
Returns grounded at both ends

88A00508A-E

Table 1-1. GA-16/110/220 Computer Specifications (Continued)

Power GA-16/110 Module Only

+5V@2.7A, +15V@0.092A, -15V@0.012A
Optional Piggyback RAM Memory for GA-16/110/220
w/IPL +5V@1.620A, w/o IPL +5V@l.236A
GA~16/220 Module

+5V@2.58A, +15V@0.000A, -15V@0.012A
8K by 16K Memory Module

+5V@1l.5A, -5V@0.004A, +12V@0.400A
MPP

+5V@2,25A

Optional System Console Interface (SCI)
w/IPL +5V@1.2A w/o IPL +5V@0.64A
GA-16/110 or GA-16/220 Power Supplies

115 Volts AC, Single-Phase +10 Percent, 47 to 63 Hz
(Internal or External Power Supply)

220 Volts AC, Single-Phase +10 Percent, 47 to 63 Hz
(External Power Supply Only)

230 Watts Maximum (Compact)
500 Watts Maximum (Jumbo)

1-5

88A00508A-E

The GA-16/110/220 Systems have 16 general-purpose registers, 12 (GA-16/110) or
14 (GA-16/220) powerful instructions classes, 11 addressing modes, and active
priority interrupt system. The systems offer the user the ability to:

+ Directly address any word, byte or bit in 64K of memory.

« Relative address, allowing programs to be self-relocating (i.e., they will
run without modification anywhere in memory).

« Base Relative address, allowing the independent location of data and instructions;
temporary storage required by subroutines can be allocated dynamically, thus,
minimizing memory requirements by allowing subroutines to share portions of memory.

. Reduce the overhead incurred when servicing a program interrupt from an external

controller; control may be transferred ditrectly to the routine responsible for

servicing the interrupting controller, since each controller has its own inter-
rupt level.

« Locate data and instructions independently and to execute the contents of any
register as an instruction, allowing any program to be written as "pure procedure"
and, consequently, to be implemented in Read-Only-Memory,

1.1 SYSTEM ARCHITECTURE

The central part of both the GA-16/110 and the GA~16/220 is a powerful microprogrammed

processor. This processor provides a larger, more sophisticated instruction set than

any other computer in its class. Microprogramming allows software compatibility with
the extensive SPC-16 library of programs, while offering a large number of new fea-
tures and instructions. Significant enhancements to the instruction repertoire for
the GA~16/110 include:

+ New Left Shift Instructions

- Subroutine Return Instruction for Non-Inhibitable Interrupts

+ Program TRAP Instruction

The GA-16/220 adds the following instructions:

+ Instruction Permitting I/0 Reset

+ Instruction Permitting Single-Step Operatiom

88A00508A-E

1.2 STANDARD FEATURES OF THE GA-16/110 AND GA-16/220 SYSTEMS

Standard Features of the GA-16/110 system include:

+ Microconsole

+ 16 General-Purpose Registers

+ Fast Context Switching with Foreground/Background Registers

+ Unsigned Multiply/Divide

* Direct Memory Addressability to 64K

+ Power Fail/Auto Restart

» Operations Monitor Alarm

+ Priority Interrupt System

+ Programmed Input/Output System

¢ Interrupt for Real-Time Clock (External Pulses and Enable Required)
A GA-16/220 system provides the following additional standard features:
+ Programmable Memory Mode Change

+ Pulses and Enable Signal for Real-Time Clock Interrupt- l ms

+ Console Interrupt

+ Serial I/0 Controller for TTY, CRT or RS-232C Interface

+ Direct Memory Access I/0 (Using Multiple High-Speed Data Channel (MHSDC) or
Direct DMA)

« Data Entry Switches for use with RCSR and RCSM Instructions

1.2.1 MICROCONSOLE AND OTHER CONTROLS AND INDICATORS

1.2.1.1 Microconsole for GA-16/110 System

The microconsole on a GA-16/110 consists of switches and indicators mounted on the
single plug-in CPU module. These switches and indicators permit an operator to
carry out basic control operations. Section 3 prov.des a complete description of
all switches and indicators.

1-7

88A00508A-E

The following switches (or jumpers) are included on the GA-16/110 module:
. 32K or 64K Addressing Mode Selection (via jumper)

+ Reset Button (RESET)

+ Internal or backup memory power (+3VB)

« Jumper to disable internal 20 MHz crystal oscillator for test purposes
Indicators include the following:

+ Interrupt Acknowledge (IACK)

+ Interrupt System Enabled (ISE)

+ Stall Indicator (OMA)

+ Foreground Register Usage Indicator (FGND)

+ Run Indicator (RUN)

e Wait Indicator (WAIT)

1.2.1.2 Microconsole for the GA-16/220 System

The microconsole on a GA-16/220 consists of switches and indicators mounted on the
two plug-in CPU modules and, when provided, on the system console interface (SCI)
module. These switches and indicators permit an operator to monitor CPU status and
carry out basic control operations. Section 3 provides a complete description of
all switches and indicators.

The switches are identified as being on the CPU-1 module (110), the CPU-2 module (220)
and the System Console Interface (SCI) which mounts onto the CPU-2 module:

. 32K or Programmed Addressing Mode Selector (220)
. Console Interrupt Button (CI) (220)
. Data Entry Switches (bits 15 to 0) (220)

+ Teletype or CRT Baud Rate Selector (BAUD) (220) depends on CPU-2 Board; may be
100 or 9600 or 16 rates O through 9600 baud.

+ TTY Break Enable Switch (BKDS) on SCI (220-SCI)
. TTY Break Mode Selector (BKINT) on SCI (220-SCI)
« IPL Button (IPL) on SCI (220-SCI)

. IPL Device Selector (IPL SLT) on SCI (220-SCI)

1-8

88A00508A-E

+ Reset Enable Selector (RESET) on SCI (220-SCI)

* CPU and I/0 Reset Button (RESET) (110) |

* Internal or backup memory (+5VB) (110)
Indicators include the following:

* Direct Memory Access Acknowledge (DMA ACK) (220)
* Interrupt Acknowledge (IACK) (1163

* Interrupt System Enabled (ISE) (110)

» Stall Indicator (OMA) (110) "

* Foreground Register Usage Indicator (FGND) (110)
* Run Indicator (RUN) (110)

* Wait Indicator (WAIT) (110)

1.2.1.3 Additional Controls and Indicators for GA-16/110 and GA-16/220

There are switches on each memory module for determining addressing (up to 64K) and
(in the case of 18-bit modules) a parity error override switch and error indicators.

When installed, the MPP module contains a switch for determining whether a stallor an
interrupt will occur when a parity error is detected and indicators to aid in diag-
nosing whether errors are due to a program protect violation, a DMT port 1 (GA-16/110)
or DMA (GA-16/220) protect violation, a parity error, or a combination of errors.
Indicators also display the parity bits for upper and lower bytes of words in which
parity error was detected.

The battery backup power supply, when installed, has an indicator to show when power
is being supplied to preserve memory contents and has a manual cutoff button to dis-
connect battery power when cutoff of AC power is deliberate (as in a total system
shutdown). AC power application is independently applied to CPU main power supply
and auxiliary (battery backup) power supply.

88A00508A-E

1.2.2 MEMORY

The principle memory building block for both the GA-16/110 and GA-16/220 systems 1is
a plug-in dynamic RAM module of 8K words in both 16-bit and 18-bit configurations.
The 18-bit memories provide parity generation and error detection. A memory module
may have 4, 8, 16, 32, or 64K capacity.

The 8K modules can be set to beginning addresses on any 8K boundary up to 56K, 4K
modules can be set on 4K boundaries up to 60K, and 16K and 32K modules can similarly
be set on boundaries up to 64K.

1.2.2.1 Auxiliary RAMs and ROMs

A special-purpose 1K control and memory module is available as an option for a
GA-16/220. It is called the System Console Interface (SCI). This module, in addi-
tion to microconsole controls, has 512 words of ROM containing interactive console
TTY routines. It also has 256 words of RAM for working storage of data. A 256-word
IPL ROM provides bootstrap loading capabilities for TTY, paper tape reader, card
reader, floppy disk, moving arm disk, and head-per-track disk (or drum). Use of

the SCI is described in Section 3.5

A 2K static RAM is optional for both GA-16/110 and GA-16/220. It mounts on the

CPU-1 module (and is referred to as the piggyback RAM memory) and therefore, does

not require a memory slot. It may be set for beginning address of 0 or 8K, depending
on the application. In addition to 2K RAM, the piggyback memory may also include a
single device 64-word IPL ROM which can be specified to load from a TTY or high-speed
paper tape reader; however, when the SCI is installed (on a GA-16/220), the multi-
device IPL ROM on the SCI takes precedence and the 64-word IPL ROM should not be
installed.

1.2.2.2 EPROM

Another piggyback memory is also available for the CPU-1 board; it has 3K words of
EPROM and 1K words of RAM. The 1K work RAM resides below the 3K EPROM. The EPROM
(after ultraviolet erasure) may be reprogrammed via a 4K programming module that
plugs into the memory bus. The programming module may be set to occupy any 4K
boundary up to 60K. The EPROM programmer (01P01786A) and an application manual
(82500761A) for .the programmer are available from General Automationm.

1-10

88AC0C7 T - T

1.2.3 ADDRESSING MODES

Eleven addressing modes are available with instructions that address memory.
Instructions may specify an absolute, program-relative (relative to the location of
the instruction itself), or base-relative address, which may be either a direct or
an indirect address. In addition, other instructions may specify one of three index
registers to be used as a word byte or bit index to the referenced location.

1.2.4 GENERAL-PURPOSE REGISTERS

The GA-16/110/220 computer is organized around 16 general-purpose registers. These
registers are divided into two banks of eight registers, foreground and background,
for fast context switching. Data placed in foreground registers in foreground mode
may be saved by changing to background mode to use background registers and vice-
versa. All general-purpose registers in a bank may be used as accumulators for
arithmetic and logical operations, as program loop counters, or as a data input/
output buffers.

In addition to the functional capabilities common to all general-purpose registers,
certain of them have special properties. In each bank of eight registers, one
register (D) is used in preindexed (base-relative) addressing. When an instruction
specifies base-relative addressing, the address field of the instrugtion is added -
to the contents of this register in determining the memory location to be referenced
by the instruction.

Three registers in each bank (X,Y, and Z) are designated postindex registers. When
one of these registers is specified in an instruction as an index register, the
specified register's contents are added to the computer address to determine the
word or byte in memory to be referenced.

One register in each bank (E) serves as a subroutine return register; it holds the
return address after a Jump-to-Subroutine (JSR) instruction is executed or when a
program interrupt occurs. Registers A, B and C are used only as general-purpose
registers.

1-11

88A00508A-E

1.2.5 INPUT/OUTPUT SYSTEM

The input/output system for the GA-16/110 and GA-16/220 is designed for maximum
efficiency and flexibility. Data moves between the computer and peripheral devices
either under program control, or automatically, using the direct memory access (DMA),
(GA-16/220) features.

A program communicates with peripheral equipment via programmed input/output (PIO)
instructions. Four classes of PIO instructions provide data input, data output,
control, and test functions. A PIO instruction addresses any one of up to 64 device
select codes. A serial I/O controller and an internal interrupt mask register are
integral features of the CPU-2 module, leaving 62 device codes for external 1/0
controllers.

An active priority interrupt system minimizes interrupt response time. For each of
the possible controllers there is a dedicated memory location which may contain that
controller's interrupt service routine address. When a processor acknowledges an
interrupt, control is transferred to the address stored in the interrupting device's
dedicated memory location; by virtue of arriving at the addressing routine, the
interrupting controller has been identified.

On a GA-16/220, the direct memory access feature allows automatic, high-speed
transfer of blocks of data between memory and peripherals. A DMA transfer operation
is initiated by a program and runs to completion under the supervision of the peri-
pheral controllers and Multiple High-Speed Data Channel Controller module (MHSDC),
(for some DMA controllers MHSDC is not required). Each time the controller is ready
to send or receive a data item, it acquires the memory bus for a DMA transfer.
Usually this proceeds in parallel with CPU operations without stealing cycles from
the CPU. This is referred to as interleaved DMA.

1-12

88A00508A-E

1.2.6 INTERRUPT SYSTEM

The GA-16/220 priority interrupt system consists of two classes of interrupts,
Inhibitable (IN) and Non-Inhibitable (NI). Refer to the following list of inter-
rupts (those which apply only to the GA-16/220 are identified by (220)):

* Non-Inhibitable (NI) Interrupts (highest priority, in order listed)

*+ Power Fail

*+ Auto-Restart

* Memory Parity and Write Protect Error

+ TRAP Instruction (or reserved opcode)

+ TTY Break/Single Step Instruction (220)

* Inhibitable (IN) Interrupts (lower priority, in order listed)

* Real-Time Clock

+ TTY Not Busy (220) Controller by Internal Mask Word (220)

+ Console Interrupt (220)

* Peripheral Device Controllers (External interrupt, priority determined by
controller location)

The NI interrupts are non-inhibitable by the Interrupt System Enable flip-flop
(ISE F/F). These interrupts handle the abnormal operations caused by malfunctions
of the system and, therefore, require special hardware manipulation of the current
status of the computer. During an NI iInterrupt the hardware stores the P counter
and ISE status in memory so the interrupt processing program can store the inter-
rupted program after the malfunction has been rectified.

The inhibitable interrupts (IN) are generally used for I/0 control of external
devices. This group consists of a number of individually vectored interrupts, each
with its own priority level determined by physical location.

The ISE flip~flop controls the IN interrupts as a group; certain individual inter-
rupts are controlled by a mask. (The internal interrupts, for example, are enabled
by setting bits in an internal mask word. External I/O controllers may have pro-
vision for enabling or disabling interrupt capability by setting a mask in the con-
troller.) The instructions associated with these interrupts are described in
Section 4.15.2.

1.2.7 SPECIAL FEATURES

The following special features are provided for the GA-16/110 or GA-16/220 computer;

88A00508A-E

these features insure reliable operation even in remote or unattended environments.
(Those features which apply only to the GA-16/220 are prefaced by (220)):

(220) The Real-Time Clock (RTC) provides a periodic interrupt that occurs every
1.0 millisecond when the interrupt level from the RTIC is enabled. (1.0 millisec-
ond pulses and enable signal originate in CPU-2). In addition to providing a
multiprogramming capability, the interrupt may be used to protect against unusual
conditions by periodically returning control to a system monitor program. The
interrupt from the RTC may be enabled or disabled under program control.

(110) The Real-Time Clock (RTC) may be provided if the user provides clock
pulses and enable signals from an external source

The Operations Monitor Alarm (OMA) protects the system against abnormal operation
and provides a signal to warn of the abnormality. Once activated, the OMA brings
instruction execution to an orderly halt and changes the system safe signal (SFEC)
to the unsafe condition. This signal can be used to control an audiovisual alarm
or automatic switchover. The Pulse Operations Monitor Alarm (PMA) instruction is
provided to both arm the OMA and reset it during normal operation. The instruc-
tion starts the alarm timer when it is executed for the first time and resets the
timer each time it 1s executed thereafter. Failure to execute the instruction
within 150 to 300 milliseconds after the previous execution activates the alarm.
When the alarm becomes activated, the computer automatically switches from the
run mode to the idle mode and the safe signal (SFEC) is removed from the I/O Bus.

The OMA may be cleared by auto-restart or by manually pressing the RESET button
on the microconsole.

The Power Fail Interrupt issues a warning to the running program if the unregulated
DC voltage drops below a predetermined limit (approximately 105 vac input for

a fully loaded system). The warning is in the form of a program interrupt that
transfers control, via an indirect memory location, to a power fail service
routine. The service routine can then save register contents and bring the system
to an orderly shutdown before DC power drops below a critical level.

At the same time the Power Fail interrupt is required, the Power Fail timer is
initialized to time out in 90-150 us. After 90-150 us, the Power Fail times out and
the machine switches to the idle mode; the SFEC signal remains in the safe
condition. The regulated direct current voltages are guaranteed to be good during .
the timeout period.

The Auto-Restart Interrupt causes an orderly start-up with a special restart
interrupt when power is restored after a power failure. When the unregulated
DC voltage goes above a predetermined value, the Auto-Restart circuit requests
an interrupt provided system is equipped with a battery backup power supply.
The service routine that is activated as a result of this interrupt may restore
registers and status and return control to the program. Thus, computers placed
at remote locations do not require operator intervention for restart after a
power failure. The entire system is initialized prior to the Auto-Restart
Interrupt request.

1-14

88A00508A-E

1.3 OPTIONAL FEATURES OF THE GA-16/110 AND GA-16/220 SYSTEMS

1.3.1 MEMORY PARITY PROTECT (MPP)

There is one optional module that provides additional memory integrity and management
functions. This is the Memory Parity and Write Protection option (MPP). The MPP
option provides response to a parity error indication from an 18-bit memory module,
Write Protection, and program timeout. A detailed description of MPP is contained

in Section 5.

1.3.1.1 Memory Parity

This feature (in conjunction with the use of 18-bit memory modules) provides a
memory error detection and recovery system. Response to a parity error is switch-
selectable to force either an interrupt or stall condition. If the stall mode is
selected and a parity error occurs, the computer will stop and there will be a visual
indication of the error condition.

If the interrupt mode 1s selected and a parity error occurs (odd parity is normal),
then a non-inhibitable (NI) interrupt is forced and an interrupt service routine is
executed. The parity hardware provides the following diagnostic information for
this recovery service routine.

* Address of memory location where the parity error occurred

* Content of the memory location where the parity error occurred

* The value of the parity bits for upper and lower bytes of the memory word
in which parity error was detected

* Whether or not the word was to be used by the processor or DMA

The above diagnostic information should be used to determine what further action
need be taken. This further action is highly application-dependent.

A special instruction is provided that will force a parity error for hardware
maintenance.

1-15

88A00508A-E

1.3.1.2 Memory Write Protect

This feature protects memory locations (in 1K segments) from being written into by
user programs or DMA devices. This is especially valuable in a multiprogramming
system. The write protect feature can be selected to protect against both program
and DMA (or DMT port 1) attempts to write into protected areas of memory. 1If a
program or DMA tries to write in a protected memory area, it will provide a visual
indication and cause an (NI) interrupt that calls a service routine. The write
protect hardware provides the following features which may be used by the service
routine:

+ Address of word being written into

. Address of DMT port 1 (GA-16/110), DMA (GA-16/220), or imstruction trying
: to write -

« Violation caused by CPU or DMA

+ Independent enabling of features by programmed I/0 instructions
+ Violation signaled by non-inhibitable (NI) interrupt

- Separate CPU (program) and DMA (or DMT port 1) protect maps

« CPU and DMA write protect individually enabled

1.3.1.3 Program Timeout

The program timeout feature provides a means of setting a limit on the time that any
program may inhibit the interrupt system or execute non-interruptable instrucitons
(primarily jump-to-subroutine (JSR)). The time limit is adjustable by jumpers on
the MPP board and timeout is enabled by a program I/O instruction.

1.3.1.4 Error Correction
The error correction option provides single-bit error correction and multiple-bit

arror detection for a 32K or a 64K memory board. , The error correction (ECC) option
consists of a single printed circuit module which plugs into the 32/64K memory board.

1-16

88A00508A~E

1.3.2 SYSTEM CONSOLE INTERFACE (GA-16/220 ONLY)

An optional System Console Interface (SCI) module is available for the GA-16/220.
It is mounted in piggyback fashion on the CPU-2 module. This option provides an
operator with interactive console capability via a teletype or CRT.

Firmware is provided in the 512-word ROM and 256-word RAM to perform the following:
* Display and change registers

* Display and change memory locations

* Display a prescribed block of memory

* Store a specified data pattern in a block of memory

* Load and punch binary tapes via teletype reader/puhch

* Single step through program instructions

* Set four traps

* Reset I/O

* Go (enter user's program at selected locations

The firmware also contains subroutines which may be called from a user's program.
These subroutines are described in Section 3.7.

The SCI module may also contain a 256-word IPL ROM which permits an operator to load
operating system and user software from the following peripheral devices which may
be ordered with the GA-16/220 system:

* Teletype

* High-Speed Paper Tape Reader

* Card Reader

* Model 3347 Disk

* Model 3346 Removable Disk

* Model 3349 Floppy Disk

* Model 3346 Fixed Disk

* Model 3342 Disk

* Model 3341 Disk

An IPL select switch and an IPL button are provided on the SCI module microconsole

to select device and initiate IPL. IPL may also be initiated remotely via a
hardware interface or by auto-restart with cold start line grounded.

1-17

88A00508A~E

1.4 PERIPHERALS AND CONTROLLERS

Standard controllers manufactured and supplied by General Automation interface the
GA-16/110 or the GA-16/220 to a full range of peripherals as well as to standard
serial and parallel communications lines and digital and analog data acquisition.
Among the controllers and peripherals offered are:

Multiple High-Speed Data Channel Controller (DMA, 220)

Teletype or CRT Display Terminals Controller (Built-in on a 220,
External on a 110)

High-Speed Paper Tape Reader/Punch

Card Reader/Punch (DMA, 220)

Line Printer (DMA, 220) (PIO, 110)

Disk Storage Drive (DMA, 220)

Drum storage Drive (DMA 220)

Magnetic Tape Drive (DMA, 220)

Floppy Disk or Cassette Drive (DMA, 220)

Synchronous Data Link Controller (SLDC) (DMA, 220;
does not require MHSDC) (PIO, 110)

Synchronous Communications Controller

Asynchronous Communications Controller

Industrial Process I/0 Controllers, include:

- AC Power Switching Controller

+ Analog Signal Multiplexer/Analog-to-Digital Converter
Digital-to-Analog Converter

Digital Input Controllers

Digital Output Controllers

Variable Threshold Digital Input Controller

A1l programmed and DMA I/0 controllers are housed in either the chassis containing
the CPU or one or more external I/O enclosures.

88A00508A-E

1.5 SOFTWARE

A GA-16/110, being a dedicated machine, will normally use programs developed on a
general-purpose machine, such as a GA-16/220, 330, 440 or SPC-16. The programs are
usually punched on a paper tape for loading into the GA-16/110, or programs may be
loaded from a host computer via a communications data link.

All GA series (and earlier SPC-16 series) computer systems are backed by a variety
of system software packages. Programming languages include FORTRAN IV, Commercial
FORTRAN, COBOL, BASIC, and CAP-16 macro assembler.

Operating systems which are available for data processing and control applications
include:

+ Free-Standing Operating System - FSO0S-16
* Disk-Based Operating System - DBOS-16
+ Real-Time Executive - RTX~16

+ Real-Time Operating System - RT0S-16

1-19/1-20

88A00508A-E

system organization

This section describes the organization of the GA-16/110 and the GA-16/220:
(1) elements of the Central Processing Unit (CPU), (2) instruction and data word
formats, and (3) description of the interrupt system.

The system organization is described in.detail to provide the reader with background
to evaluate information contained in the following sections; a clear understanding
of the information provided in Section 2 is an essential prerequisite to the compre-
hension of subsequent sections.

Figure 2-1 gives a high-level overview of the GA-16/110 system's components.
Figure 2-2 gives a high-level overview of the GA-16/220 system's components.

2.1 ELEMENTS OF THE CPU

The instruction repertoire includes 91 basic instructions, each of which identifies
one of the elementary operations that can be performed by the computer. Any location
in memory may contain either a word of data or an instruction word. The internal
representation of data and instructions is described in Section 2.2

There are eleven ways, or "addressing modes'", by which an instruction can refer to a
memory location; e.g., values in registers or other locations can be added to the
address bits of an instruction. However, when the final address is formed, it is
called the Effective Address (EA). The EA is a full, 16-bit, absolute address.
Addressing modes are discussed in Section 4 of this manual.

The Input/Output (I/0) system allows the CPU and peripheral equipment to communicate.
The general organization of the Input/Output system is described in Section 6.

2.2 WORD FORMAT

The architecture of the GA-16/110/220 processor is based on a l6-bit binary word.
Instructions and data are transferred between the CPU and memory in units of the 16-
bit word. Arithmetic and logical operations are performed in parallel onm 16-bit

data words.

Bit positions within a word are numbered sequentially from right to left; the lowest
bit is numbered zero and the highest order bit is numbered 15.

15 1413 12 11 10 9 8 7 6 65 4 3 2 1 0

88A00508A-E

INTERNAL BATTERY BACKUP
o [SR
AN
12V BATTERY [—L__cHancen:
L MEMORY MODULE ECC MODULE
P ERROR
| uewoRY toaiT | SaREemion
: OPTION
R - . .
r" - EE . . MEMORY MPP MODULE
' DATA MEMORY
| MEMORY 16BIT - BUS
- .‘.—-——_—-’ PARITY
| OR 18 8IT PROTECT OPTION
| 110 MODULE =1 PIGGYBACK MEMORY
i €—2—p| cPu anD micROCONSOLE L——
i CONTROLS. COMMONTO || 2K RAM
=P 110 OR 220 COMPUTER 84W IPL ROM
MEMORY _r
SERVICE [€&———
MODULE* @
a
o — MAIN POWER
= SUPPLY
L
' PROGRAMMED (/0 TELETYPE
PIO CONTROLLER
¢ ' »
> PROGRAMMED 1/O HIGH-SPEED PAPER
PIO CONTROLLER TAPE PUNCH/
P> READER

508-2-1.

*EITHER BATTERY BACKUP POWER SUPPLY OR MEMORY SERVICE
MODULE MUST BE INSTALLED TO PROVIDE MEMQORY POWER.

Figure 2-1. GA-16/110 Components

2-2

88A00508A~E

INTERNAL BATTERY BACKUP '
OR POWER SUPPLY :
\ 12V BATTERY . r p—— CHARGER)*
i L MEMORY MODULE ‘ECC MODULE
\
‘ >
ERROR
OR _.} MEMORY 16 BIT. & ~P»{ (CORRECTION
r] , OR 18 BIT* ° 'OPTION
MO R L .
I MS'ESS&E : MEMORY MP? MODULE
| I DATA
MEMORY 16 BIT BUS MEMORY
I OR 18 BIT* < | PARITY
PROTECT OPTION
110 MODULE — PIGGYBACK MEMORY
: '.4-1'3.-; CPU AND MICROICONSOLE L— > 2K RAM
CONTROLS. COMMON TO > >
~=»| 110 OR 220 COMPUTER ' 84w IPL. ROM
MEMORY
SEnVCE |- —— -
DMA 220 MODULE SIGNALS 'SC1 PIGGYBACK
< SCI Lt
“4— | — aoDITIONAL PROGRAM | ROM
P MICROCONSOLE CONTROLS [cowrom | 256
AND TTY CONTROLLER —— 256W RAM W
ol |
2
o] MAIN POWER TELETYPE OR
= SUPPLY CRT
— P
DMA SINGLE DEVICE DATA LINK (TYPICAL) _
4——P| va cONTROLLER
ome P MULTIPLE HIGH-SPEED
@—————p»| DATA CONTROLLER e
| MHSDC
— S— ~
K—__—-A | DATA CHANNEL I .
| DIsSK K————’ CONTROLLER FOR =t = = TO 7 ADDITIONAL HIGH-
k(TYPlCAL) | HIGH-SPEED DEVICE SPEED DATA CHANNEL
- — S | CONTROLLERS
wnouueeaes | L .
PR : 'HIGH-SPEED PAPER
?n%hra OOQYNGGYBACK ¢ PIO > zaog?:Sr&ERD 1/0 TAPE PUNCH/
READER

*E|ITHER BATTERY BACKUP POWER SUPPLY OR MEMORY SERVICE MODULE MUST BE INSTALLED TO SUPPLY MEMORY POWER.

508-2-2'

Figure 2-2. GA-16/220 Components

2-3

88A00508A-E

2.3 DATA FORMAT

The interpretation of data is largely a function of the program that operates on
that data. A data word may be interpreted as an arithmetic quantity, a logical word,

an address, two 8-bit bytes, or 16 bits (each of the 16 having a significant inde-
pendence of other bits).)

2.3.1 ARITHMETIC QUANTITY (SIGN BIT)

The GA-16/110/220 hardware performs arithmetic operations in parallel on 16-bit
quantities using two's complement, binary arithmetic. In a word containing a signed
integer, the high-order bit represents the sign.

15141312 1110 9 8 7 6 5 4 3 2 1 0
H
|

lllllllllllll.ll
¥ v L]

\

SIGN L— VALUE

Q —=POSITIVE
1 —= NEGATIVE 243-2-1

A positive number is presented as its binary equivalent in the value portion of
a word. ‘

The representation for the negative of a number is obtained by taking its two's
complement with the sign bit included in the operation. A two's complement opera-
tion may be performed by taking the one's complement (or logical complement of the
number) and adding one to the result, ignoring any carry out of bit 15.

A 16-bit word can represent any negative number in the range of -32,7681p (8000;¢)
to -1 (FFFF1g) and positive numbers from +1 (0001l3g) through +32,76719 (7FFF16).
Zero is considered a positive number since its sign bit is reset.

NOTE

Rather than representing hexadecimal numbers as
nnnnig, these numbers are also represented as
X'nnn' (i.e., X'7FFF', X'21', X'3F', ete.) unless
otherwise noted. The X'nmnn' notation corresponds
to the convention used to specify hexadecimal
numbers when writing CAP-16 assembler statements.

2-4

88A00508A-E

2.3.2 LOGICAL WORDS (NO SIGN BIT)

The GA-16/110/220 hardware performs logical operations in parallel on 16-bit words.

The four logical operations are: (1) logical complement, (2) logical AND, (3) logi-
cal OR, and (4) logical Exclusive-OR (XOR). The logical complement is performed on

a single word. The other logical operations are performed on corresponding bits

of two words.

The logical complement (or one's complement) of a word is obtained by changing each
1 bit to 0 and each 0 bit to 1,
1514131211 109 8 7 6 56 4 3 2 1 0
(]
ey eyt ety 0000t

T L] 4

Example:

The complement of:

15 1413 12 11 10 9 8 7 6 5-4 3 2 1 0

is: o1 0 1t 0 0o0 1.0 111 00
T Rl ! L1 , 20 1 19

The logical AND of two words is the result obtained by the logical AND of each bit
in the first word with the corresponding bit in the second word. The logical AND
of two bits results in a 1 only if both bits are 1. The AND operation (indicated
by A) can be represented in a truth table as follows:

A, A B, = R
i i i
0 0 0 NOTE: The subscript i denotes
bit position in a word.
0 1 0 P
1 0 0
1 1 1
Thus 1614 13 12 11 10 9 8 7 6 56 4 3 2 1 0
t 01 0.1 1 1 0 1 0O 1 1 1 0
| T W R T U U T T N N T | L0L1
T L 1
AND
15 14_13 12 1110 9 8 7 6 5 4 3 2 1 O
0 1 1 1 1 o 1 1 1 0 0 0 1 1 1 1
[S W W TN TR NS SR WA NN N N S G|

results in: T T T
15141312 1110 9 8 7 6 5§ 4 3 2 1 ©
[o 0 10 1 0101000100 1]
1 1 | i 1 | i 1 1 1 1 | | . | 3

Ll L v

:243-23.

88A00508A-E

The logical OR of two words is the result obtained by the logical OR of each bit
in the first word with the corresponding bit in the second word. The logical OR
of two bits results in a 1 if either bit is 1. The OR operation (indicated by v)
can be represented in a truth table as follows:

Af V By = Ry

0 0 0
0 1 1
1 0 1
1 1 1
Thus ' 1561413 12 1110 9 8 7 6 5 4 3 2 1 0

T 0 1 1 1. 00 00-10.100.1.0
U W WS S AN TN TN T Tl S S

OR

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
1100 0 00 0 00
ol L1 L4 1 Il‘l‘l | —

1
lolol

T T

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 01 11 1 000101 1 0 10
[1 1 1

L1 a1 1 ¢ 1 1 1
T T T

results in:

The logical XOR of two words is the result obtained by the logical XOR of each bit
in the first word with the corresponding bit in the second word. The logical XOR
of two bits results in 1, only if the two bits are different. The XOR operation .
(indicated by ¥) can be represented in a truth table as follows:

0 0 0
0 1 1
1 0 1
1 1 0
15 1413 12 1110 9 8 7 6 5 4 3 2 1 0
Thus 1 0 1
0 |1 (10 11 1' L} 1° 1° (2,19 |° Lo !

T 1 1

XOR

15141312 11 10 9 8 7 6 5 4 3 2 1 0
[1 0110 0011101000 f]
L 1 = 1 1 [| | 4+ 1 1 1 1

\J

results in:
1514 13 12 11 10 9 8 72 6 5 4 3 2 1 0

1 1+ 0. % 1t 1t 1 1 1 1 1 1 1]
rl | R T VRS W T W NN S W . | loLOL
L T T

243-24.

2-6

88A00508A-E

2.3.3 ADDRESSES AND MEMORY MODE

A memory location is identified by a number called its address. The GA-16/110/220
memory is directly addressable to a capacity of 64K (65,5350 words). The highest
memory address which can be referenced is selectable. The terms 32K or 64K memory
mode refer to the capability of selecting whether the processor will use 16 or 15
bits to define the addresses of data or instructions in memory. The GA-16/110 may be
run in the 32K mode by wiring the +64KM line to ground. The GA-16/220 may be run in
the 32K mode by setting MODE switch or by executing an I/0 instruction for memory
mode change. The 32K mode allows software, developed for the General Automation
SPC-16 series computers, to also run on the GA-16/220. For further details on mem—
ory mode change, refer to Section 4.15.2.4.

In the 64K mode, memory addresses may range from 0000 to FFFF1g; in the 32K mode, the
upper address limit is 7FFFjg. When a memory location or hardware register contains
an address, its format is as shown below: ’

1514 13 12 11 10 9 8 7 6 6 4 3 2 1 0

A N (N (Y N (N N TN WO I N M
f Ny T I 1
FORCED TO ZERO ABSOLUTE ADDRESS 32K
IN 32K MODE
.
ABSOLUTE ADDRESS 64K

When the address field of an instruction and the contents of a hardware register are
used in determining an address (e.g., indexed addressing), the address calculation is
performed using 16-bit, signed numbers (negative numbers are in two's complement form).

2.3.4 BYTE DATA

A word may be considered as two bytes, designated the "left byte" and the "right byte".

1514 13 12 11 10 9 8 7 6 56 4 3 2 1 0

1 1 1 | S N | ! . |

]

{

i
A)
LEFT BYTE RIGHT BYTE

466-2-2.
An 8-bit byte is a convenient unit for representing some forms of data. For example,
any of the 128 ASCII characters (see Appendix B for ASCII character codes) can be rep-
resented in a single byte. (Only the 7 lowest order bits of a byte are significant
for ASCII character data; the high-order bit always contains 1.)

Instructions are provided to load or store any byte in memory, to zero the left or
eight byte of a register, .and to exchange the two bytes in a register.

2-7

88A00508A-E

2.3.5 BIT DATA

A word may be considered as 16 independent bits, each bit being identified as bit 7
to 0 of the left or right byte:

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 O

it 1 1 1 1 I T U W N |
7 6 5 4 3 2 1 0,7 6 5 4 3 2 1 0,

BIT NUMBERS FOR BIT NUMBERS FOR
LEFT BYTE RIGHT BYTE

243-28
Instructions are provided to allow the testing, setting and resetting of individual
bits in memory. Thus, logical variables (variables that have a value either "True"

or "False"; i.e., 1 or 0) may be packed in memory (16 per word) without sacrificing
access time to these variables.

2.4 [ELEMENTS OF THE CENTRAL PROCESSING UNIT (CPU)

Figure 2-3 illustrates the internal organization of the GA-16/110/220 and identifies
the principle CPU elements. The CPU elements shown in Figure 2-3 are contained in
the various plug-in modules which comprise the GA-16/110/220 system (refer to Section
3). (Those elements which are available only on a GA-16/220 are indicated by an
asterisk in the figure.) GA-16/220 features are implemented on a GA-16/220 (CPU-2)
module which interconnects with the GA-16/110 (CPU-1) module.

2.4.1 THE ARITHMETIC/LOGICAL AND CONTROL SECTION

The arithmetic/logical and control section on CPU-1 is the heart of both a GA-16/110
and a GA-16/220 system consisting of five major components:

* Real-Time Clock (RTC) — The real-time clock logic in the GA-~16/110 generates
an interrupt when enabled and pulsed by an external source. On a GA-16/220
1.0 millisecond pulses and interrupt enable are provided and the RTC generates
an interrupt, when enabled, every 1.0 millisecond.

Interrupt Control Logic — This logic masks and monitors all interrupt generating
conditions. If an interrupt occurs, and is programmatically enabled, the inter-
rupt control logic allows generation of the interrupt via the I/O Bus.

* CPU Bus Control Logic — These components interpret conditions sensed in the
microconsole switches and contain 1logic to drive the indicators. On a GA-16/110,
these conditions include the RESET switch, the mode-setting jumper, and other
remote control lines accessible via the module connector. On a GA-16/220, addi-
tional microconsole controls allow selection of the baud rate of the teletype/CRT
interface, IPL enable, 32K or program mode of operation, etc. (Refer to Table 3-3.)
The output of the CPU Bus Control logic is gated onto the Initial Program Decode
(IPD) bus to set the corresponding conditions in the CPU Control Read-Only-Memory
(CROM) and Register and Arithmetic/Logical Unit (RALU).

6-¢

*g€-7 @an3T4g

ndo @2yl Jo uorieziueldip Teuadlul

O O

1
ARITHMETIC / LOGICAL AND CONTROL ! SEMI-CONDUCTOR MEMORY
CPU BUS | MEMORY
P m— CONTROL jp———————P] CONTROL
REAL TIME Logic | Logic
CLOCK
PIO INTERRUPT L
CONTROL I — =
* TRISTATE
—] BUFFERED —>
\ INTERRUPT l CROM ’ RALY] r TABUS ADDRESS
\PD BUS LATCH
4> CONTROL T
LOGIC | A
. ¢| M BUS !1 | _____I ?
- — ‘l CHIP DATA BUS 5
IO | .
CONTROL | PROGRAMMED | | I |
INPUT/OUTPUT <_|
+—> CONTROL TRISTATE | PIGGY BACK l
| BI-DIRECTIONAL L ———————»| MEMORY
| INTERFACE | AND IPL O
]
“ |41 +
P l It‘ ! SEMI-CONDUCTOR {—=—
u| iNnsus— :'-INEB(:lésIVERS — TO BUS TD BUS 4| vemory <
4 B
/ |]
° .
v —
T !-— —1-——'-' ————— T —] o e —— ——— — —
Z OUTBUS I |
T [€0UTBUS| pRiveRs +— | l 1+
c |
o oo T
N ' + 1
2 —> > 0B BUS L MEMORY PARITY L
c I I | AND PROTECT 4— TABUS
(MPP OPTION) T
5 IN BUS 4 1 t
" [¥] 14 |
. » | : SYSTEM L
-.— cOrSCLE CONSOLE
TELLY YPE SERIAL 1/0 BUS CONSOLE INTERFACE
SWITCHES
CONTROLLER 1 | I AND ",L,o
ocio - ' l }
CONTROL - [semiaLwoconn 1] ‘
DMA
<+ LOGIC | I [I
L * A I
RS232/TTY PADDLE BD |
1/0 CONTROL | MPP | scl

+ EXTERNAL MODULES

0

RS232 CONN

TTY CONN

ON CPU-2 MODULE, OTHER FUNCTIONS CARRIED OUT ON CPU-1 MODULE

IPL ON SCt TAKES PRECEDENCE WHEN SCI INSTALLED

508-2-3.

g-V80500V88

88A00508A-E

+ Control Read-Only-Memory (CROM) — The CROM contains the microcoded programs used
to control all instruction decode and gating internal to the CPU. The CROM
receives the instruction, from memory, via the Memory Bus (M-Bus) and issues
gating commands, based on the decode of the instruction in the Instruction regis-
ter I. These commands are gated over the IPD~Bus and M-Bus. Register I in the
GA-16/110/220 is internal to the CROM.

« The Register and Arithmetic/Logical Unit (RALU) — The RALU, in addition to being
the computational/logical unit of the GA~16/110/220, also contains all high-speed
registers, other than the instruction register I, which is internal to the CROM.
These registers are the program counter (P), the working register (W), the status
register (S), and the 16 general-purpose registers (foreground A,X,Y,Z,B,C,D,E,
and background A', X', ¥', 2', B', C', D', and E').

. Tri-State Bidirectional Interface — Data from the tri-state data bus (TD-Bus),
that is to be written into memory, will be transferred through this interface.
Similarly, data read frommemory (excepting parity bits on 18-bit memories) is
transferred in the opposite direction to the CROM/RALU. Specific memory
addressing is accomplished via memory control logic and the tri-state address
bus (TA-Bus) described in Section 3.

2.4.2 SEMICONDUCTOR MEMORY

All memory on a GA-16/110/220 is a semiconductor memory. Both dynamic memory
(requiring refresh cycles) and static memory (requiring no refresh) are used for
random-access read/write memory (RAM). Read-Only-Memory (ROM) is implemented by
programmable (initially) read-only-memory chips (PROM). User-programmable read-
only-memory is available with ultraviolet-erasable electrically-programmable memory
chips (EPROM). The following components comprise the semiconductor memory and control:

+ Memory Control Logic — This logic aids in selection of the correct memory
module to be written or read, gating when an address is available on the TA-Bus,
and determination of whether memory being accessed is external, piggyback, IPL,
or system console interface.

. Tri-State Buffered Latch — This logic outputs the address of the memory word
to be accessed to the appropriate semiconductor memory unit. The address is
also gated to the MPP option (if installed) for checking whether address is
write protected.

« Piggyback Memory — This memory is an option which is installed on the CPU-1
module and is normally either static RAM or a combination of EPROM and static RAM.
The piggyback memory also may contain an IPL ROM (more detail in Section 3.7).

. Semiconductor Memory — This memory is formed from 4096-word (4K), 8192-word (8K),
16384-word (16K), 32768-word (32K), or 65536-word (64K) dynamic RAM memory boards.
Two word lengths are available in each size; a 16-bit word and an 18-bit word.

The extra two bits are used to write odd parity for the upper and lower bytes.
When a read occurs, the parity bits are checked and even parity causes an error
condition to be indicated. It further indicates that action may be controlled
via the MPP option, if installed, or by the memory module itself (more detail in
Section 3.2.7). An error correction module may be used with the 32/64K boards;
it increases the effective word length to 22 bits (refer to Section 2.7).

- System Console Interface — Described in Section 2.4.3 and Section 3.

2-10

88A00508A-E

2.4.3 SYSTEM CONSOLE INTERFACE (SCI) (GA-16/220 ONLY)

The System Console Interface contains a 256-word random-access-memory (RAM) and a
512-word read-only-memory (ROM) to provide an interactive console teletype interface
utility program. Optionally, the SCI may contain a 256-word IPL ROM. The SCI also

contains several control switches that are described in the next section (reference
Table 3-3).

2.4.4 MEMORY PARITY PROTECT (MPP)

The optional Memory Parity Protect module receives memory data to verify memory
parity. For write protection, the MPP contains an internal matrix, set by program
instructions, to protect 1K segments, of memory from access; both program and DMA
accesses may be independently inhibited. Through this protect feature, the MPP
receives the address of the memory location being accessed from the Memory Address
latch for verification that the specified location is not a protected location.

2.4.5 TINPUT/OUTPUT (1/0) CONTROL

The Input/Output Control section of the GA-16/110/220 contains all circuitry
necessary for gating and control of data input and output from peripheral devices.

+ The Programmed Input/Output Control logic oversees and controls all I/O transfers
that are non-DMA in nature. This would include all program issuances of DTOR/M,
DTIR/M, Control and Test instructionms.

*+ The In-Bus Receivers accept data from the MPP, Comnsole TTY Controller (220 only),
or I/0 Bus. The data from the In-Bus Receivers are passed to the correct desti-
nation via the TD-Bus.

e The Out-Bus Drivers/Out-Bus Latches — Output information from the TD-Bus is
gated into the Out-Bus latches from which it may be transferred to the MPP module,
console TTY controller (220 only), or to the Out-Bus drivers. Output from the
Out-Bus drivers is destined for the I/O Bus.

*+ The Console Data Switches (220 only) are the 16 miniature rocker-type switches
on the microconsole used for manual entry of data via the In-Bus.

The Console Teletype Controller (220 only) is a Universal Asynchronous Receiver/
Transmitter (UART) logic chip. The UART serial I/O controller is a standard,
internal, controller that performs serial-to-parallel and parallel-to-serial
conversion of teletype or CRT output and input data. All communication with the
teletype or CRT is accomplished through the Console Teletype Controller over the
serial I/0 Bus via the RS232/Current Loop Adapter Card (TTY Paddleboard).

« The DMA logic (220 only) controls all Direct Memory Access input/output over
the I/0 Bus to/from memory.

2-11

88A00508A-E

2.5 MAJOR REGISTERS

To clarify the functions of the internal registers of the GA-16/110/220, further
descriptions are presented in Sections 2.5.1 through 2.5.8.

2.5.1 GENERAL-PURPOSE REGISTERS

Sixteen general-purpose programmable 16-bit hardware registers are standard on the
GA-16/110/220. These registers, located in the RALU chip, are functionally divided
into two sets, eight foreground registers and eight background registers.

Table 2-1 shows the function of these registers.

Table 2-1. Register Contents

Foreground
or Background CPU Register
Register Description Function Logic Select
A or A' General-Purpose! Accumulator 000 Register A
X or X' Index/General-Purpose | Used for postindexed 001 | Register X
addressing
Y or Y' Index/General~-Purpose | As post index-register 010 | Register Y
Z or 2' Index/General-Purpose | As post index-register 011 | Register Z
B or B' General Purpose! Accumulator 101 Register B
C or C' General-Purposel Accumulator 101 | Register C
D or D' Base-Relative Addres—- | As preindex register, con~ | 110 | Register D
sing/General-Purpose tains the base address for
base-relative addressing
E or E' Subroutine Linking/ During subroutine or inter-| 111 Register E
General-Purpose rupt execution, contains
return address and inter-
rupt system enable control
bit

l For hardware multiply (MPY) and divide (DIV) instructions, register A, B, and C
have the following usage:

A B £
Multiplicand - Multiplier } MPY
- Product (MSBs) Product (LSBs)
Divisor Dividend - } DIV

- Quotient Remainder

2-12

88A00508A-E

The general-purpose registers are implemented as a fast-access, "scratch pad"
memory. A four-bit code is used to select the register being referenced for reading
or writing. The high-order bit of the select code comes from the Foreground (F)
indicator; the three low-order bits are supplied by the CPU logic as required for the
execution of a particular ,instruction.

F INDICATOR

1 + Foreground Registers (A - E)

0 -~ Background Registers (A' - E')
By using the Foreground/Background instruction, either one of two sets of identical
register groups may be used (A <»E and A'<+> E'). Only one set of registers is
active at a gilven time. Any reference to a register, say Register A, refers to the
active one of the pair, either A' if in background mode or A if in foreground mode.
However, the inactive registers retain their content while they are inactive.

Subsequent register descriptions apply equally to foreground or background registers.
All discussions of register operations imply the active set.

Instructions are provided to perform the following operations on any of the eight
general-purpose registers.

+ Load register from memory (word or byte).
- Store register in memory (word or byte).
+ Arithmetic and logical operations between any two registers:
ADD, SUBtract, OR, AND, exclusive OR (XOR) and transfer contents of one to

another.

« Arithmetic and logical operations between any register and memory (literal
addressing).

+ Compare any register with memory.

« Increment, decrement, complement, or clear any register.
+ Shift bits in any register, right or left.

+ Exchange the bytes in any register.

« Execute the contents of any register as an instruction.

+ Input and output of data to any peripheral may be performed with any register.

2-13

 88A00508A-E

2.5.2 ISE AND INTERRUPTS

The ISE flip-flop controls the inhibitable (IN) interrupts. When it is set (=1),
the IN interrupts are enabled. When reset (=0), the IN interrupts are disabled.
The ISE flip-flop may be set/reset under program control when INE, INH, RTRN, RISE,
RTINIV and JSR instructions are executed. The status of the ISE flip-flop is main-
tained in bit 15 of the program counter (register P) in 32K mode and in bit 15 in
the status register (S) in 64K mode. After executing an instruction which resets
the ISE, the status bit may not reflect the actual ISE state, since its purpose is
to preserve the contents before instruction was executed so that state may be
reestablished.

In addition to the ISE flip-flop, an individual mask bit may be associated with
each device which can generate an IN interrupt. Both the mask bit and the ISE
flip-flop must be set for an interrupt to occur. Further details on interrupts
are contained in Section 2.6.

2.5.3 STATUS REGISTER (REGISTER S)

The status register (S) contains ISE save status, the 32K/64K memory mode indicator,
the Shift Counter (4-bits) and the Link, Overflow, Plus, Zero and Foreground/
Background indicators.

1614 13 12 11 10 9 8 7 6 5 4 3 2 1t O

[ot

L i 1 1 1 1 1 1

. c— [W | 1‘“

J UNASSIGNED SHIFT COUNTER
ISE SAVE STATUS LINK

0/1 = 32/64K MODE ——~ —-= OVERFLOW

PLUS

ZERO

FOREGROUND

508-24
Instructions TSR and TRS are provided to transfer the contents of register S to any
general-purpose register and vice versa. Its contents are also loaded from or
stored into memory with the execution of a LARS (load all registers and status) or
SARS (store all registers and status) instruction.

An indicator in register S is "set" if it contains a one, and is "reset" if it
contains a zero. The bits in the status register are described as follows:

+ The ISE indicator (bit 15), also referred to as S,., relates to the status of
15
the IN class of interrupts.

+ The operations which set the ISE flip-flop (ISE) or the ISE save indicator (S..)
are tabulated in Table 2-2. It is the ISE flip-flop which determines whether
the interrupt system is enabled, not the ISE indicator; therefore, S;5 does
not necessarily show the current interrupt status. This is a design feature
which allows a program to reset ISE to a previous status by using the stored,
former status.

2-14

88A00508A~E

Table 2-2, Operation Affecting ISE F/F or ISE Status Indicator

Operation ISE F/F ISE Save Indicator S,

IN or NI interrupt Reset (=0) = ISE F/F before reset
INE instruction Set (=1) No change
INH instruction Reset (=0) No change
JSR instruction Reset (=0) = ISE F/F before reset
LARS instruction No change B ‘ " = bit 15 of eighth word loaded
RINIV instruction .= bit 15 of specified . No change

address+l1
RTRN instruction = bit 15 of specified No change

register (32K mode)

= 815 (64K mode)
TRS instruction No change = bit 15 of specified register
NOTE

When operating in the 32K mode, the status
of ISE is also stored in bit 15 of the F
register when appropriate instructions

are executed.

The 32K/64K memory mode indicator (bit 14) identifies the maximum address

" available to the CPU. 1In the 32K mode, 15 bits of register P are used for
addressing and the most significant bit contains ISE. In the 64K mode, the
full 16 bits of register P are used for addressing and ISE save status is
contained in register S. The 32K mode allows software compatibility with the
SPC-16/40 series computers. The memory mode indicator is unaffected by LARS
and TRS. On a GA-16/110, the memory mode is hard-wired. On a GA-16/220, the
memory mode is switch-selectable for 32K or can be changed by outputting the
appropriate mask word (see Section 4,15.2) or by interrupts. Either an IN or
an NI interrupt will place the CPU in the 64K mode while CPU reset or power up
places the CPU in the 32K mode.

Bits 13-9 of the status register are unassigned. These bits can be changed with
LARS or TRS instructions, and are transferred with SARS or TSR instructions.

2-15

88A00508A-E

The Foreground indicator and control (bit 8) contains 1 if foreground registers
are active and 0 if the background registers are active. Imnstructions are pro-
vided to set or reset this bit (FMS or BMS).

The Zero indicator (bit 7) is set if an arithmetic, logical or transfer operation
results in zero (i.e., all bits of the result are 0). Otherwise, it is reset
indicating that the result is not zero. Instructions are provided to test this
indicator. '

The Plus indicator (bit 6) 1is set to indicate that the result of the last
arithmetic transfer or logical operation is positive (i.e., bit 15 is 0). 1If
the result is negative, the Plus indicator is reset. Instructions are pro-
vided to test the Plus indicator.

The Overflow indicator (bit 5) indicates;én arithmetic overflow for an add or
subtract instruction. The Overflow indicator is set (=1):

- If the sum of two numbers of like sign results in a different sign, or

- If the difference of two numbers of unlike sign results in a sign different
from that of the destination register (minuend).

Overflow conditions occur ﬁhen the result of an arithmetic operation is not in
the allowed range (i.e., not between -32,768 and +32,767). For example, if
32,767 is added to 32,767:

15141312 11 10 ¢ 8 7 6 §6 4 3 2 1 0

ot + 1 1t 1 1 1t 11 1 1 1 1 1 1
+32767,4 = | N T T T T T T B T

15 14 13 12 11 10 9 8 7 €6 5 4 3 2 1 0

+32767..=/0 1 1t 1t 1 1 ¥ 1 1 1 1 1 1 1 1 1
10 A U TR WA NN (N WO TR TN NN SN SN MY SN 1
T v T .
1514 1312 1110 9 8 7 6 5§ 4 3 2 1
2 = Li 1T 1.1 1 1 1 1 1 1 1 1 1 1 1
10 TR N N SN NS N R I TR T T T | |°

The Overflow indicator is not necessarily an error indicator. If a program is
dealing with only unsigned integers (i.e., using all 16 bits to contain the
value, allowing numbers in the range 0 to 6553510), the destination register's
contents may be read as +6553410 (the correct sum) instead of -210. However,
the overflow indicator would be set by this operation since 16 bits cannot
correctly represent the signed result in two's complement form. Instructions
are provided to test the overflow indicator for 1 or O.

2~-16

88A00508A-E

+ The Link indicator (bit 4) is affected by two types of operations:
arithmetic and shift.

- Arithmetic — The Link is set (=1) if there is a carry, or reset (=0) if
there is no carry, from bit 15 of a previous arithmetic operation. The
link is particularly useful in multiple-precision operations where more
than one 16-bit word is used to represent a quantity; an instruction is
provided to add the contents of the Link to any general-purpose register.
Thus, a carry out of bit 15 from one register containing the least sig-
nificant half of a number may be added to another register containing

the
two

most significant half of the number, allowing the contents of the
registers to be treated as a single number.

- Shift — During the execution of a shift instruction, the Link indicator
contains the last value shifted out of bit 0 or bit 15 of the selected
register. o .

+ Instructions are provided for setting, resetting, and testing the Link indicator.

+ The Shift Counter (bits 3 to 0) is used in the execution of the Shift Right,
Multiply, and Divide instructions. A shift right instruction specifies a general-
purpose register and the number of shifts to be performed. Each time the selected
register is shifted, the Shift Counter is incremented and compared with the
corresponding bits in register I (which contains the number of shifts specified

by the
At the
shifts
may be
do not

instruction) to determine whether or not another shift cycle is required.
completion of the operation, the Shift Counter will contain the number of
minus one that were actually performed. The value of the Shift Counter
read by the ADDS instruction. Shift Left instructions are single bit, and
affect the shift counter.

2.5.4 PROGRAM COUNTER (REGISTER P)

The 16-bit register P is used as the program sequence register and is also called
the "Program Counter'.

In the 32K mode, the high-order bit of register P will reflect the Interrupt System
Enable (ISE) flip/flop.(However, this bit is not included in address calculations.)
In the 64K mode, all 16 bits are used for addressing.

When discussing program sequencing, the symbol "P" refers to the contents of bits
14 to 0 in the 32K mode, and bits 15 to 0 in the 64K mode.

15 1413 1211 10 9 8 7 6 56 4 3 2 1 O

N T T T P
v
PROGRAM COUNTER 32K Mode
INTERRUPT SYSTEM ENABLE (ISE) {1 ENABLED }

0—DISABLED

466-26

2-17

88A00508A-E

‘16 1413 12 1110 9 8 7 6 6 4 3 2 1 O

(.11] L1 1 1 i (| | | | 1

\“ . ¥) I y

PROGRAM COUNTER
64K Mode

468-2-8.

The Program Counter normally contains the address of the next instruction to be
executed. Its contents are transferred to the TA Tri-State Latch following the
execution of the current instruction, to read the next instruction from memory; then
its contents are incremented (its contents are incremented again if the instruction
is a double-word instruction). Instructions that modify instruction sequencing

(e.g., JMP) do so by altering the contents of register P. Register P can be changed
by "jump'", "conditional jump", (skip), "jump-to-subroutine" and "return" instructions.

2.5.5 REGISTER I (NON-PROGRAMMABLE)

Register I (16 bits) is the instruction register. When an ‘instruction is first
accessed from memory it is transferred to I. The instruction decode logic operates
with the bit pattern in register I to determine the sequence of events necessary to
execute the instruction. If an instruction is two words long, register I holds only
the first word. As soon as register P is incremented (or loaded manually) to point
to the next instruction, register I will be loaded (i.e., register I contains the
next instruction to be executed).

2.5.6 TA TRI-STATE LATCH

The Tri-State Latch contains the absolute address of the memory location to or from
which an instruction as address or data is to be read/stored.

2.5.7 REGISTER W (NON-PROGRAMMABLE)

Working register (W) usually holds the effective address (EA) for address calculationms.
In effective address (EA) calculation, register W is utilized as follows:

+ 1In base-relative address, register W is truncated from bit 10 through 15.

+ In program-relative address, register W will have 9 extended through 15 for
sign purposes.

o In skip instructions, register W bit 8 will be extended through 15 as a sign
representation.

+ In a single word memory reference with indexing instructions, register W will
truncate above bit 4.

2-18

88A00508A-E

2.5.8 CONSOLE SWITCHES

The console switches (available only on a GA-16/220 computer) are part of the CPU-2
module microconsole. The operator sets the console switches (refer to Section 3,
Table 3-3, items 5 and 6). The RCSR and RCSM instructions are used to check the
conditions of the switches.

2.6 HARDWARE INTERRUPT (NI AND IN)

A program interrupt interrupts the program stream and forces a new sequence of
commands to be executed before returning to the interrupted program. An interrupt
signal accomplishes this by forcing a hardware jump-to-subroutine (JSR) indirect
through a memory location dedicated for that purpose called the interrupt vector.
The interrupt vector must contain the address of the interrupt subroutine. See
Tables 2-3 and 2-4. It also stores the location plus one (P+l) of where it was
interrupted and the old status of ISE (Interrupt System Enable). The dedicated
memory location's address is generated on the interrupting controller or CPU logic
and is passed to the CPU interrupt logic on the In-Bus during Interrupt Acknowledge
(TIACK) time. The place where P+l and ISE is stored is a function of what mode the
CPU is in and what type of interrupt occurred. All IN and NI interrupts force the
CPU into the 64K memory mode and reset the ISE F/F. ISE being reset inhibits the
IN interrupt group. P+1 and ISE storage is as follows:

PROGRAM INTERRUPTS f

IN - 32K Mode IN - 64K Mode NI - 32K Mode NI - 64K Mode
PH> Ejug E15-0 (ADRS),, o (ADRS)5_g
(ADRS)15 ;
ISE> Eyg8)5 515 (ADRS+L) | (ADRS+1) |

ADRS is the first of two dedicated memory locations (beginning at X'78') as shown
in Tables 2-3 and 2-4.

In the GA-16/220, all (IN and NI) interrupts disable ISE when acknowledged. The
burden is on the program to turn ISE on again if other interrupts are to be acti-
vated while one interrupt is being serviced.

The basic purpose of interrupts is to free the program from having to periodically
test the status of a device to see if a particular event has transpired. Instead

of peridically "looking" at a device, a program's attention will automatically be
diverted (interrupted) when the event happens. The second function of an interrupt
is to do the bookkeeping necessary to accomplish an orderly return to the interrupted
program when the interrupt must remember where it came from. Interrupts are serviced
by priority. General types of priorities are from highest to lowest, i.e., NI and IN.

88A00508A-E

Table 2-3. Interrupt Summary
Hexadecimal
Hexadecimal Storage ADRS
NI Interrupts Vector P+1/ISE
Power Fail - PFD 40 78/79
Auto Restart - RS 41 Register E/S
Memory Parity Protect — MPP
Parity Error 42 7A/7B
Write Protect Error 42 7A/78B
Program Timeout 42 - 7A/7B
Program Sequence Interrupt - TRAP 44 7C/7D
*TTY Break/Single Step - CTRL 1,X'3E' 46 JE/7F
<:>ISE is stored in bit 15 of the specified location
NI Associated Instructions - RTNIV, Section 4.9.
Hexadecimal
IN Interrupts Hexadecimal Storage
(Require Mask and ISE on) | Priority Vector P+1/1SE
*edek - -
Real-Time Clock RTC 1 43 E14_0/E15 E/S15
**Teletype Busy - TTY 2 45 A 1\
*Console Interrupt - CI 3 47
External Priority Vector
From I/0 Determined Wired In See
Control- By Physical Controller [Table 6-1
lers Location Logic Y *
E14-0/B1s | /515
* GA-16/220 only
#% GA-16/220 only; TTY may be provided with external 32K 64K
1582 controller.
#%% 1.0 millisecond pulses and mask provided on GA-16/220 Mode

A GA-16/110 requires external pulses and enabling signal.

IN Associated Instructions - RTRN, RISE, INH, INE, JSR (Affects ISE), DTOR/M X'3E'
(Af fects mask for RIC, CI and TTY).

88A00508A-E

Table 2-4. Dedicated Memory Map

Hexadecimal
Location Contents
0080 Standard entry point for operating system monitor (E$MON)
® 007F ISE | ysingle Step, Break
% 007E P+l ngle Step, Brea
007D ISE
® oo07c¢ P } TRAP Temporary Storage of
® 0078 ISE } Memory Management Interrupt Return
ég 007 A P+1 y Managemen Location and Interrupt
0079 ISE System Enable Bit (ISE)
® 0078 P+l } Power Fail 7
0077 External Interrupts from
! } I/0 Controllers.
0047 *Console Interrupt Vector
® 0046 *Single Step, Break
0045 #%*TTY Not Busy Vector
® 0044 Op Code TRAP Vector Interrupt Vectors
0043 RTC Vector
® 004 2 Memory Management Vector
® 0041 Restart Vector
@ 0040 Power Fail Vector
003F CAR DC 15
00 3E SCR DC 15
i *High-Speed Data Channel
0021 CAR DC reretatisacion o
0020 SCR DC O Stack fault
Q OO01F SFV’}SABI vector and
o 001E CsP ___current stack
001D SFV, pointer can
001cC Csp }SABO be simulated
0018B by software. Operating System Use
0018 : l
0017 |
) I
0010 | User Program Use
000F I
! |
e TE 0008 | !
PROTECT 0007 P+1 - Stack Fault)_ _|
i Return , Operating System Use
0001
0000 Dynamic Storage Point (Dsp),
L Standard Software

*GA-16/220 only
*%GA-16/220 or GA-16/110 with 1582 controller.

Circled number items are associated functions. Locations are hexadecimal.

2-21

88A00508A-E

2.6.1 IN INTERRUPTS

IN interrupts are controlled as a group by the ISE flip-flop, and individually by
interrupt masks. 1IN interrupts are typically those interrupts generated in a device
controller external to the CPU. 1IN interrupts (Figure 2-4) can also be generated by
logic internal to the CPU package from the Real-Time Clock (RTC), Console Interrupt
(CI) or the Teletype Controller (TTY). The interrupts inside the CPU chassis have a
higher priority than those inside the I/0 chassis. The internal interrupts are in

the priority order of RTC, TTY, and CI. The priority of the external interrupts are
in accordance with the physical location of controllers in the I/O section. The
controller closest to the CPU module has the highest priority with priorities descen-
ding with distance from the CPU module; (i.e., the module farthest from the CPU module
has the lowest priority). Any module will work in any slot of the I/O section so long
as there are no empty slots between it and the CPU module (shorting boards are avail-
able as desired to fill slots). Thus, priorities are changed easily. Priority as it
is used here means which interrupt is acknowledged if two or more become true at the
same time. It does not refer to nesting type priority where a higher priority (NI
interrupt), will interrupt out a lower priority (IN interrupt) interrtupt.

Figure 2-4 shows the flow of a typical IN interrupt operating in a 64K mode. The
example assumes an Analog-to-Digital Converter (A/D) in the I/0 chassis will generate
interrupt vector address X'55' (refer to Note 2 in Figure 2-4), when it had a request
on line. The program issues a command in location X'2020' to tell the converter to
start. In locatiomns X'2021' and X'2022', it then enables the mask and ISE to allow
the request to be acknowledged when the conversion is finished. The program need not
monitor the A/D since, when the conversion is finished, it will generate an interrupt.
In the example, the interrupt request, signaling the finish of the A/D conversion,
occurs during the instruction execution X'2040'. When the CPU acknowledges the inter-
rupt request, the controller passes the interrupt vector address X'55' to the CPU
which then forces a hardware JSR. The hardware JSR zeros the ISE, stores the old
value of ISE in the Status Register bit 15, and stores the incremented program
counter (P+l1 = next instruction address) in register E.

NOTE

If the CPU were in the 32K mode, the example in
Figure 2-4 18 correct, except that both P Counter
(15 bits in the 32K mode) and ISE are stored in
register E. Also, the RTRN operates on just
register E and not 515.

The interrupt service routine is then entered at location X'3000'. The subroutine
typically operates on the A/D data and asks for another conversion (on a different
input line). Regardless of what the subroutine does, it will end with an RTRN; a
Return through the E and S registers. This restores ISE and the program counter and
execution continues at location X'2041'. Refer to Section 6 for further discussion.

NOTE

If the instruction at X'2040' was such that it
turned off ISE, the interrupt would not be ack-
nowledged until ISE was again turned on.

The time required for the CPU to execute the "Forced JSR" for IN interrupts (including
the Housekeeping, P-SAVE, etc), is 3.1 microseconds, i.e., the time between exiting
the main program and getting to the service routine.

2=22

88A00508A-E

-
—{ EZP RTRAN E)
S15~> ISE
INTERRUPT ACKNOWLEDGE S—— ' [A/D INTERRUPT
JSR INDIRECT THROUGH 64K MODE ¢ SERVICE SUBROUTI
LOCATION 56 TO 3000 . NE
[\ P+1—E =i 3000 . J
ISE >S15 | 64K MODE I . '
W/
0-> |SE [™
.)
X'2042' .
—- X'2041° = . NEXT INST @
X'2040° - |__ ANY INST
INTERRUPT REQUEST FROM DEVICE — . > MAIN PROGRAM
..
ENABLE ISE X'2022' INE
ENABLE A/D INTERRUPT MASK X'2021’ CTRL
START A/D CONVERSION X'2020 CTRL
/
(S o (W
L ey ™
INTERRUPT VECTOR 55 @ X'0065' X'3000°
CONTAINS ADDRESS OF '
INTERRUPT SERVICE , INTERRUPT VECTORS
SUBROUTINE
X'0000°
508-2-5

! Any instruction that is interruptable.
This excludes JSR or any instruction that resets ISE.

2l 0cations are hexadecimal. Hexadecimal locations are identified by X'nnnn' to
correspond with CAP-16 assembler convention for specifying a hexadecimal numbers.

Figure 2-4. 1IN Interrupt Flow

2.6.2 NI INTERRUPTS

NI interrupts denote an error condition and are unaffected by the ISE state. When

NI interrupts occur, the P+l and ISE status bit are stored in dedicated memory loca-
tions as shown in Table 2-3. Unlike IN interrupts, NI interrupts may occur immedi-
ately after a JSR instruction because, although it resets the ISE, the status of

ISE is ignored. The return from an interrupt routine is accomplished with an RINIV
instruction (Section 4.9). The time required for the CPU to execute the "Forced JSR"
for NI interrupts is 5.85 microseconds. In other respects, programming considera-
tions for NI interrupts are the same as for IN interrupts.

2-23

88A00508A-E

2.7 ERROR CORRECTION OPTION

The error correction option provides single-bit error correction and multiple-bit
error detection for a 32K or 64K memory board. The error correction option consists
of a single printed circuit module which plugs into a 32Kxl6-bit or 64Kx16-bit
memory board. :

To perform error correction and detection, the ECC board generates and stores six
check bits as each data word is written into memory. During memory read, a second
group of six check bits is generated and exclusive-ORed with the check bits gene-
rated during write. If the result is zero, the data word was stored and read
correctly. A single-bit error results in a non-zero result with the bit position
in error specified by the decode of the result. Multiple-bit errors also generate
a non-zero result from the exclusive-OR operation, but the decode does not indicate
positions for the erroneous bits. . '

NOTE
Upon initial power up, all ECC check bits
are incorrect. All memory locations must be
initialized by a store operation before the
error correction and detection is enabled.

Failure to initialize the memory will cause
false error indications.

2.7.1 OPERATIONAL MODES

Operational modes for the error correction options are established by the program.
The error correction option utilizes the following operational modes:

. Error Correction OFF — Disables the error correction feature only.

. Normal 1 Mode — The ECC module generates an interrupt on both correctable
(single-bit) and non-correctable (multiple-bit) errors.

« Normal 2 Mode — The ECC module generates aan interrupt on non-correctable
errors only while single-bit errors are corrected.

. Write Data Only Mode — Used for test or diagnostic purposes only. New check
bits are generated but not stored in memory. The original check bits remain.

e Input Séatus Mode — Read status word from ECC module 1if the associated memory
board has an error (see Section 2.7.1.1).

2-24

88A00508A~E

2.7.1.1 Input Status Mode

The input status mode allows a status word to be generated by the error correction
board for each memory module with an error.

A status priority signal from the CPU is propagated through each error correction
board. The first board with an error will trap the status priority signal.
Executing a read of memory location zero will cause the error correction board to
place the following status word on the data bus:

16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 O

LOCATION . .
ZERO | ll= 1 1 l‘: 1 1 l'}Jl |
UPPER TEN ADDRESS BITS | HAMMING CODE
OF 19 BIT ADDRESS. BITS.
508-2-6

Following the read command, the status priority signal is sent to the next error
correction board having an error. This board also blocks propagation of the
priority status signal, and responds to a CPU read of location zero. After trans-
mitting the status priority signal, the CPU continues to read until a status word
of all zeros has been received, indicating no more errors exist.

NOTFE

Normal Mode Two, single bit errors also
cause the ECC to genmerate a status word
which can be examined utilizing the Input
Status Mode. However, there 18 no
interrupt for single-bit errors.

2=-25

88A00508A-E

2.7.2 MODE SELECTION

Mode selection for the error correction option is accomplished by executing a DTOR
to the MPP with the appropriate error correction mode coded into bits 6 through 4
of the output data word. Table 2-5 lists the mode selection bits.

The mode selection may be changed by executing a DTOR, or by system reset. System
reset will enable the "Error Correction OFF" mode.

2.7.3 ERROR CORRECTION INTERRUPTS

The following interrupts are generated by the error correction board:

« Correctable Error Interrupt
. Non-Correctable Error Interrupt

2.7.3.1 Correctable Error Interrupt

The Error Correction error signal will cause the MPP to generate a non-inhibitable
interrupt.

2.7.3.2 Non-Correctable Error Interrupt

The error correction board will activate the parity error line to signify a
non-correctable error. Response to this depends on whether the processor is
equipped with MPP. The MPP will generate a non-inhibitable interrupt.

2.7.4 MPP STATUS WORD

The occurrence of both non-correctable and correctable errors may be distinguished
by examining the MPP status word. The MPP status word that is set if an error has
occurred in the error-correcting memory. The MPP status word is shown in Figure
2-5. The MPP module indicates correctable errors with bit 12; however, non-
correctable errors are indicated by both the parity error bit and the Error
Correction bit (bit 12) being on (one).

2.7.4.1 ECC Board Status Indicators
Two indicators on the error correction board indicate the error status. For a

correctable error, the yellow indicator turns on. For a non-correctable error, the
red indicator turns on, and the yellow may also be on.

2-26

88A00508A-E

Table 2-5. Mode Selection Bits

Bits 6 5 4 Mode
0 0 O Error Correction Mode Off
0 0 1 Normal 1 Mode
0 1 0O Normal 2 Mode
0 1 1 Input Status Mode
1 0 0 Write Data Only Mode

15 14 13 12 11 10 9 8

x|®
X|w
xXin
x

X0

7
XxX|]0 00 X X X X|X
P11 1 1 1

| [Y

oy
o
e
P

PROGRAM PARITY ERROR =1

——— DMA PARITY ERROR = 1

PROGRAM PROTECT ERROR = 1

OMA PROTECT ERROR = 1
——r——————— PROGRAM TIMEOUT = 1

LOWER BYTE PARITY BIT CONDITION
UPPER BYTE PARITY BIT CONDITION
PARITY ERROR STALL SWITCHON = 1
PARITY CHECKING WAS ENABLED = 1
PROGRAM WRITE PROTECT WAS ENABLED =1
DMA WRITE PROTECT WAS ENABLED = 1
PROGRAM TIME OUT WAS ENABLED = 1
ERROR CORRECTION ERROR

MULTIPLE ERROR

466-5-8

Figure 2-5. MPP Status Word

2-27/2-28

' 88A00508A-E |

GA-16/220 configuration
and operation

The configurations of both the GA-16/110 and the GA-16/220 are flexible due to their
modular design. Because of this flexibility, the locations of controls and indicators
described in this section may differ in a given application. Typical configurations
are described to familiarize the reader with the functions applicable to each of thes:
computers. This section describes typical configurations, modules, functions of con-
trols and indicators, operating procedureés, and use of the system console interface
(SCI) program (on a GA-16/220). - :

3.1 TYPICAL GA-16/110/220 CONFIGURATIONS

A complete GA-16/110 computer with 2K of memory, an IPL ROM program, and interfaces
to a programmed I/0 or DMT I/0 controller may consist of a single, printed circuit
assembly.

A CPU-2 module (220) may be interconnected to the CPU-1 module (110) to create a
GA-16/220 computer. The CPU-2 module adds the DMA port, serial I/O controller, 1 mse:
RTC, and additional controls and indicators. Both modules may be installed in a
chassis using a 140-pin connector (GA part number 41A00105A03) or in a GA compact

or jumbo chassis described in the following paragraphs.

A self-contained GA-16/110 system, with up to 64K of memory, or a GA-16/220 system,
with up to 64K of memory, including a built-in power supply, five I/0 controller

modules, and provisions for I/0 expansion may be installed in a single, relay rack
chassis. The chassis which provides this capability, is termed a compact chassis.

A larger GA-16/110 system with 64K of memory or a GA-16/220 system with 64K of memory,
eight I/0 controllers, and a provision for external I/0 expansion may be configured in
a chassis termed a jumbo chassis. The main power supply is external to the jumbo
chassis.

A battery compartment is provided in both the compact and jumbo chassis. A battery
backup power supply may be installed which preserves the contents of the memory if
there is a main power failure or when main system power is turned off.

Memory parity protect (MPP) is another option which may be provided by installation

of an MPP module instead of one of the memory modules. To achieve parity error de-
tection, memory modules with 18-bit words (16-bit programmable and two bits for parity
are installed.

The error correction option requires a 32Kxl6-bit or 64Kx16-bit memory board and the
piggyback ECC module.

88A00508A-E

Figure 3-1 and 3-2 show typical gself-contained GA-16/110 and GA-16/220 computer
systems in a compact chassis. Table 3-1 identifies the modules which may be in-
stalled in the chassis connectors, and identifies interfaces which are located at
rear of the chassis. Figures 3-3 and 3-4 and Table 3-2, provide similar information
for computer systems installed in a jumbo MIB chassis. The description of these
systems is contained in Sections 3.1.1 through 3.1.4.

Modules which are used in GA-16/110/220 are described in Section 3.2 (I/0 controllers
excepted). Controls and indicators are identified on the figures by circled key-
numbers and are described functionally in Section 3.3 (Table 3-3).

NOTE

Key numbers (:) and (:) do not apply to jumbo_chassis
since power supply ie externmal. Key numbers (;}
through (2) do not apply’to GA-16/110 in either
chassia since the controls and indicators repre-
gented ave only used on a GA-16/220. Key numbers

through apply to the memory parity protect
module which may be used on either computer. The
MPP numbers fall out of sequence in Figure 3-3 to
illustrate MPP can be located in amy conmnector from
012 through 017.

3.1.1 SELF-CONTAINED GA-16/110 SYSTEM

Figure 3-1 shows a self-contained 110 system (without memory parity protect or
error correction option) installed in a compact chassis. As shown, this system has
the following features:

1. Built-in power supply.
2. 110 CPU (CPU-1 module) with piggyback 2K RAM and single-device IPL ROM (see note).

3. 12K of additional memory using three 4K memory modules set to occupy address 0
through 8K and 12K through 16K.

NOTE

Total memory capacity ig 14K; however, in this
configuration (assuming piggyback RAM and IPL

begin at 8K) the addresses from the end of the

IPL ROM (10K+) through the next 4K boundary (12K)
cannot be occupied by memory. A system programmer
would avoid writing programs that reference these
addresses. For further detail on memory allocation,
refer to Section 3.2.7.

4. Battery backup supply.

5. Model 1582 variable asynchronous console controller to provide serial current
loop or RS232 (for TTY/CRT).

88A00508A-E

6. High-speed paper tape reader/punch (HSPTR/P) controller.
7. Space for three additional I/0 controller boards.
8. Cable interface driver (CID) permitting use of an external I/0 chassis

which may contain additional I/0 controllers.

3.1.2 SELF-CONTAINED GA-16/220 SYSTEM

Figure 3-2 shows a self-contained 220 system (without memory parity protect or error
correction option) installed in a compact chassis. As shown, this system has the
following features:

1. Built-in power supply.

2. 220 CPU (CPI-1 and CPU-2 boards) with TTY controller and microconsole.
3. System console interface (SCI) module mounted on 220 board.

4. 16K memory using two 8K memory modules.

5. Battery backup supply.

6. Multiple high-speed data channel (MHSDC) controller.

7. Floppy disk controller (DMA Channel via MHSDC).

8. Space for two additional I/0 controller boards.

9., Channel interface driver (CID) permitting use of an external I/0 chassis
which may contain additional I/0 controllers.

3.1.3 LARGE GA-16/110 SYSTEM WITH MEMORY PARITY PROTECT OPTION

Figure 3-3 shows a GA-16/110 system with memory parity protect option. This system

is installed in a jumbo chassis. Systems which use a jumbo chassis require an
external power supply (not shown) since power requirementé are greater than could

be accommodated by a built-in supply. As shown, the system has the following features:

1. 110CPU (CPU-1 module) with piggyback 2K RAM and single-device IPL ROM (see note).

2. 4K of unprotected memory using 4K memory module set to occupy location 12K
through 16K (see mnote).

3. 32K of additional protected memory using four 8K memory modules set to occupy

locations O through 8K and 16K through 40K (see note). (Error correction
requires 32K or 64K memory board.)

3-3

88A00508A-E

NOTE

Total memory capacity is 64K; however, in this
configuration (assuming piggyback RAM and IPL
begin at 8K), the addresses from the end of the
IPL ROM (10K+) through the next 4K boundary (12K)
eannot be occupied by memory. A system programmer
would avoid writing programe that reference these
addresses. Thigs configuration also illustrates that
the switches on the memory modules, not their loca-
tions in the chassis, determine their addressing.
For further detail on memory allocatior, refer to
Section 3.2.7.

4. Memory parity protect module.

5. Battery backup supply.

6. Model 1582 variable asynchronous console controller to provide serial
TTY interface.

High-speed paper tape reader/punch (HSPTR/P) controller.
8. Space for six additional programmed I/0 controllers.

9. Cable interface driver (CID) permitting use of an external I/0 chassis
which may contain additional I/O controllers.

3.1.4 LARGE GA-16/220 SYSTEM WITH MEMORY PARITY PROTECT OPTION

Figure 3-4 shows a GA-16/220 system with memory parity protect option. This system
is installed in a jumbo chassis. Systems which use a jumbo chassis require an

external power supply (not shown) since power requirements are greater than could be
accommodated by a built-in supply. As shown, the system has the following features:

1. 220 CPU (CPU-1 and CPU-2 modules).

2. System console interface (SCI) module mounted on CPU-2 board. .

3. Memory parity protect module.

4. 32K memory (using 8K memory modules with 18-bit words for parity detection
MPP option.

5. Battery backup supply.

6. Multiple high-speed data channel (MHSDC) controller.

7. Floppy disk controller (DMA Channel via MHSDC).

8 High-speed paper tape reader/printer (HSPTR/P) controller (programmed 1/0).
9. Space for four additional I/0 controller boards.

10. Cable interface driver (CID) permitting use of an external I/0 chassis which
may contain additional I/0 controllers.

3-4

€-¢

TERMINALS FOR
EXTERNAL 12
VOLT BATTERY
(ON REAR)

AC CABLE TO

MEMORY SERVICE
MODULE (IF
BACKUP POWER
SUPPLY NOT USED)

TO REMOTE

CONTROL.

LINES

TOTTY ORCRT
TO HSPTR/P

EXTERNAL POWER SUPPLY
J15 J14 J13

TO CABLE INTERFACE
TRANSLATOR (CIT) IN
1/0 EXPANSION CHASSIS
(IF USED)

CONNECTOR FOR OPTIONAL

BATTERY
— PACK

@) @&l @
@1y ©&] @]
®@el]®]

e
ANa

®

<DOTMD
REEE
<DOEMZ

EMeM®U

0B 00

IMEEOT-HZ00 <-4 Nwoo=

—
| —

IMEFOD—HZ00 O~p—HIvNI

U= DML~ 2D MOPTMIM-Z= MroO»O

[1 [

:-—-—————————————————[:-—-BE/

BACKUP POWER 21 420 f419 18517 16
SUPPLY [1 11 AC CABLE TO MAIN
AN N N N N\ O | POWER SUPPLY
LU [HEN NN Ll L]
m oso B, 7% B 2 i
|] | | |
% E% % (I | { |

T,]

MAIN POWER SUPPLY

SYSTEM GROUND
TERMINALS (ON REAR)

XY

O O

ore ()

|~=— CPU SECTION

: \ 2K PIGGYBACK MEMORY

1/0 SECTION —

WITH IPL ROM

Figure 3-1.

GA-16/110 System in Compact Chassis (No MPP)

- =V80500V88

9-t

TO CABLE

M8

INTERFACE
TERMINALS FOR TRANSLATOR
EXTERNAL 12 TO SERIAL 1/O (CIT) IN 1/O
VOLT BATTERY MEMORY SERVICE AND REMOT(E EXPANSION
Connor < EOSRRY — ol
NIT (IF USED
SUPPLY NOT USED) LINES '
AC CABLE TO 0 CONNECTOR FOR OPTIONAL
BACKUP POWER i EXTERNAL POWER SUPPLY
SUPPLY 321 0106 s na 13
[l (1 1l AC CABLE TO MAIN
[T ,Ij;'\‘lj\ \LJ \[_I \L_I \I_] N POWER SUPPLY
U B A 13 »n n
: T i)
R | | I T B | i
BATTERY Lot Ll LJ L.l Ll | mam powen suppLy
— PACK . -
3 I
A
f, H | I SYSTEM GROUND
- ‘ £ TERMINALS
iy | | [L4 L
()19 %:} %‘: @ : ‘ : y {ON REAR)
-/ L 1 1on0 I ! e
FUSE ®l1ei]l g | | a Lwd
@ | | E Fuse
4 1 &0 | (I (:)
| 1 ®0 | | v ®
@160 | | & o
ofeoles |1
cYu gorm | | 40)
@l el | |
L L
1 10 1] i

0 T

SEE APPENDIX G FOR CPU2 BOARD 31D02574A

-|r<—- CPU SECTION

Figure 3-2.

1O SECTION —»

508-3-2.

GA-16/220 System in Compact Chassis (No MPP)

I-V80500V88

88A00508A-E

Table 3-1.

FRONT/MODULE (110)

Connector Assignments for Compact Chassis Computer System

FRONT/MODULE (220)

J1 Main power supply J1 Main power supply
J2 Cable interface driver (CID) J2 Cable interface driver (CID)
J3 I/0 controllers or shorting J3 I/0 controllers or shorting
J4 boards. J4 boards.
J5 Shorting boards are used in J5 Shorting boards are used in empty
J6 empty slots between con- J6 slots between controllers or CID
J7 trollers or CID to maintain to maintain interrupt chain
priority chain continuity. continuity.
J8 CPU-1 module with optional J7 MHSDC controller, if used, should
piggyback memory and IPL ROM. go into J7.
J9 Memory module (can't be J8 CPU-2 module with optional System
| serviced properly by MPP) .) Console Interface.
! J9 CPU-1 module with optional piggy-
J10 |} Memory module, or back memory.
J11 | Memory Parity Protect J10 Memory module, or
- module. J11 Memory Parity Protect
J12 J12 also used for battery . module.
backup regulator board. J12 J12 also used for battery backup

- Backup power supply and regulator board.
battery pack (use regulator - Backup power supply battery pack
board in J12). (use regulator board in J12).

REAR/INTERFACE (110) REAR/INTERFACE (220)

- AC input connector and system - AC input connector and system
grounding terminals on power grounding terminals on power
supply. supply.

J13 Connector for optional external J13 Connector for optional external
power supply cable. power supply cable.
J14 Cables to I/0 expansion chassis J1l4 Cable to I/0 expansion chassis
(6-feet maximum). (6-feet maximum).
J15 Paddleboards and cables inter- J15 Paddleboards and cables inter-
Jié facing controllers (in J3 J16 facing controllers (in J3
J17 through J7) to peripheral J17 through J7) to peripheral
J18 devices. J18 devices.
J19 J19
J20 Access to cold-start (CLDS-) J20 Serial I/0 paddleboard with con-
memory mode (64KM+) and re- nector to TTY or CRT also pro-
mote control lines (IPLSW-, vides access to cold-start
PFD~, RSET-, RUN-). (CLDS-) jumpers and remote con-
rol lines (IPLSW-, PFD-, RSET-,
RUN-) .
J21 Memory Service Module if backup J21 Memory Service Module if

power is not used.

AC cord for backup power supply.
Terminals for external 12-volt

battery on rear of battery pack.

3-7

auxiliary power supply
is not used.

AC cord for backup power supply.
Terminals for external 12-volt
battery on rear of battery pack.

8-t

TERMINALS FOR SYSTEM GROUND

EXTERNAL 12 TERMINALS TOCABLE _
Yoom:' ;g:rTuT ERY DCCABLE FROM \EMORY SERVICE TRANSLATOR
EXTERNALMAIN MODULE (IF BACKUP (CIT) IN 1/0
AC CABLE TO SUPPLY POWER SUPPLY TO SERIAL 1/O TTY OR CRT gﬁgshl'sslon
BACKUP POWER NOT USEDI TOHSPTRP - (IF USED)
SUPPLY i
(]
131 130 4 j28 427 | 426 ’_[‘st 24 J23 J22 21 J20 N9 J18
M [l n nnnnmnan
[\ I N— AN NN NN N N .
I OO o u T O oo utld
LA TT RN IT T R TT ST T a0 : B 8 0 B T
]
N S N A O I A
BATTERY :
N | T U
: O - T e N
5 2 IS N R A A R
ey 5 H K af T IR koo | | | |
() o} : ®D|) ®% ® L Lo [B | &
FUSE 2 B | e efed e ® - I e e R
1 . ® & In | R
€ v £ N T | I H
Oy o) C |) 0o L | I | &
o o] @] &) ®il0H @ tofe | o
of o4 eof el ede b 9o E IR | R E
1 80 od of of edek I R T A
od o el el elsek T T T T
_ I A B Jd
CPU SECTION T~ 1/0 SECTION -
2K PIGGYBACK MEMORY
WITH (PL ROM 50833

Figure 3-3. GA-16/110 System in Jumbo Chassis (With MPP)

I-v¥80500V88

6-¢

SYSTEM GROUND

TERMINALS FOR TERMINALS

EXTERNAL 12

VOLT BATTERY MEMORY SERVICE

DC CABLE FROM TO SERIAL

Figure 3-4.

GA-16/220 System in Jumbo Chassis (With MPP)

(ON REAR) TO FLOPPY TO CABLE IN
Ral-uprr sty :‘gﬁé’ ,;' ZJL‘;E{?CKUP gg AND. DISK UNIT INTERFACE
AC CABLE TO TRANSLATOR
AUXILIARY SUPPLY NOT USED) CONTROL TO HSPTRIP (CIT) IN 1/0
POWER SUPPLY f LINES EXPANSION
1l CHASSIS
J31 J30 I‘.128 J27 J26 J25 J24 1923 422 J21 420 J19 r@ {IF USED)
. [[o Il
{ \ | 4_ﬂﬁfT!ﬁETE=E!§§?7’\\ N\ NN N N NN N
L L U U U uoo g
J1|7 J1|6 J15 J1'4 J1I3 J12 I J9 J|8 J7 .I? JI!") .I|4 JI3 J2 J1
! | | 1 | | 1
U U
I O I P ¥ v ¥ ¥ v ¥ vy
C e [T 1T 1T 1T T T T T T
= 2 Ec c
2Ok ey I T B I
Aok .]
~ o og ed eg ep : S I
() oo edoeded a L S I T T N
FUSE el el efed I 2 (Bl o 8 I T T T I
M M| M| M 3 F % 3 I | I | :
£ E E E e Wi ol : c
oLl LR Bk Bl LSl 2 I N
Q) EEE) e iel 3 I I -
[} @] ®i] @) @ ¥ o)
g ogeq e g : R R
| ol od o0l o & I I
] ok of ol o & | :
@ I [
ol ol ol e &0 R |
I
f] Fl o
oo 10 nnnnnnor
r— CPU SECTION _“’:‘_‘ 1/0 SECTION "'—"’l
SEE APPENDIX G FOR CPU2 BOARD 31D02574A
508-34

T-V80500Y88

Table 3-2.

88A00508A-E

FRONT/MODULE (110)

Connector Assignments for Jumbo Chassis Computer System

FPONT/MOPMYLE (220)

J1 Cable interface driver (CID) J1 Cable interface driver (CID).

J2 I/0 controllers or shorting J2 I/0 controllers or shorting

J3 boards. J3 boards.

J4 ' . J4 Shorting boards are used in empty

J5 Shorting boards are used in empty J5 slots between controllers or CID

J6 slots between controllers or CID J6 to maintain interrupt chain con-

J7 to maintain interrupt chain J7 tinuity.

J8 continuity. J8 MHSDC controller, if used, should

J9 J9 go into J9.

J10 CPU-1 module with optional piggy- J10 CPU-2 module with optional System
back memory and IPL ROM. Console Interface.

J11 Memory module (can't be Jil CPU-1 module with optional piggy-
serviced properly by MPP). . back memory.

: “J12 [\ Memory module, or memory

J12 ' Memory module, or J13 parity protect module.

J13 memory parity protect J14 J18 also used for battery backup

J14 module. J18 also used for bat- J15 regulator board.

J15 tery backup regulator board. J16

J16 J17

J17 - Backup power supply battery pack

- Backup power supply battery pack (use regulator board in J18).
(use regulator board in J18).
REAR/INTERFACE (110) REAR/INTERFACE (220)
J18| Cable to I/O expansion chassis, Jl8 Cable to I/0 expansion chassis

(6~feet maximum). (6~-feet maximum).

J19 Paddleboards and cables inter- J19 Paddleboards and cables interfac-

J20 facing I/0 controllers (in J2 thru | J20 ing I/0 controllers (in Jl thru

J21 J10) to peripheral devices. J21 J10) to peripheral devices.

J22 J22

J23 J23

J24 J24

J25 J25

J26 J26

J27 Access to cold-start (CLDS-) memory | J27 Serial I/0 paddleboard with con-
mode (64KM+), and remote control nector for TTY or CRT. Also pro-
lines (IPLSW-, PFD-, RSET~, RUN-). vides access to cold-start (CLDS-)

jumper, and remote control lines
(IPLSW-, PFD-, RSET-, RUN-).

J28 Memory Service Module if backup J28 Memory Service Module if auxiliary
power supply is not used. power supply is not used.

J30 Power cable from external power J30 Power cable from external power
supply. supply.

J31 System grounding terminals. J31 System grounding terminals.

AC cord for backup power supply.
Terminals for extermal l2-volt
battery on rear of battery pack.

AC cord for backup power supply.
Terminals for external 12-volt
battery on rear of battery pack.

88A00508A-E

3.2 MODULE DESCRIPTION

This section describes the modules which may be incorporated into a GA-16/110 or a
GA-16/220 system. For detailed description of modules, refer to the GA-16/110/220
hardware manual (88A00509A).

3.2.1 POWER SUPPLY
Two types of power supply may be used with a GA-16/110/220 system.

1. A plug—-in supply for use with self-contained systems installed in the compact
chassis (Figures 3-~1 and 3-2). This supply requires 115VAC, 47-63Hz
input at 230 watts maximum. Its outputs are +5V@ 17A, +15V @ 3A, and -15V @ 2A.

CAUTION

Units shipped prior to 15 December 1976 have
lesser capability of +5V at 8A (with convec-
tive cooling) +5V @ 15A° (with external cooling
fan), +15V @2.5A and -15V @ 1.5A.

2. An external supply, which is used for larger GA-16/110/220 systems, installed
in a jumbo chassis (Figure 3-3 and 3-4). An external supply may also be used
with a compact chassis if desired. The external supply input is 115V or 230VAC,
47-63Hz at 500 watts maximum. Outputs are +5V at 30A, +15V at 5A, and -15V at
5A.

The only control on the built-in supply, is the power switch ((:)) on Figure 3-1. Th:
fuse ((:)) on Figure 3-1 is replaceable; however, a blown fuse indicates a system
failure requiring maintenance. The external supply does not have a power switch.
Power is applied when the supply is connected to an AC outlet. The AC outlet may

be controlled in accordance with the user's requirements.

3.2.2 CPU-2 MODULE

The CPU-2 module is always used in conjunction with a CPU~1 module (described in
Section 3.2.3) to form a GA-16/220 computer. The CPU-2 module contains additional
microconsole switches and indicators. It also contains the logic needed to provide
built-in serial I/O controllers, real-time clock (RTC), and console interrupt. The
controls and indicators are described in Section 3.3, Table 3-3.

3.2.3 SYSTEM CONSOLE INTERFACE (SCI) MODULE (GA-16/220)

The system console interface (SCI) module is an optional module which is plugged into
the CPU-2 module. It contains a 256-word random-access-memory (RAM) and a 512-word
read-only-memory (ROM) necessary to provide an interactive utility program. A number
of its subroutines may also be called from a user's program (described in Section 3.7:.
This program, called the console ROM, uses the serial I/0 capabilities of the CPU-2
module. Using the SCI program, an operator at a TTY or CRT may perform such function;
as shown in the following list.

1. Displaying and changing registers.

2. Displaying and changing memory locations.

3-11

83A00508A~E

3. Resetting I/0.
4., Stepping through a program in memory.
5. Starting a program in memory.

A detailed description of the SCI operator commands and system reponses is contained
in Section 3.6. The controls and indicators on the SCI module are described in Sec-
tion 3.3, Table 3-3. The SCI module may also contain an Initial Program Load (IPL)
ROM which is described in the following section.

3.2.4 MULTI-DEVICE INITIAL PROGRAM LOAD READ-ONLY-MEMORY (IPL ROM) FOR GA-16/220

The IPL ROM is an option which is mounted on-the SCI module prior to delivery of a
GA-16/220 system. The IPL ROM provides a set of bootstrap loaders (256-words) which
permits the loading of a user's program from the teletype, or from a variety of
other peripheral devices. A selector switch op the SCI module ({4)) on Figure 3-2
or 3-4, selects the device. The IPL button () causes the program to execute,
thereby loading from the selected device. Operating procedures are described in
Sections 3.4 and 3.5.2.

3.2.5 CPU-1 MODULE

The CPU-1 module contains the basic microprogrammed CPU logic. This module is used
in both the GA-16/110 computer and the GA-16/220 computer (a GA-16/110 may be con-
verted to a GA-16/220 by adding CPU-2 module). This module contains the micropro-
cessor which contains the firmware for decoding and executing all machine instruc-
tions. These instructions and their CAP-16 assembly language equivalents are
described in Section 4. The module also has provisions for installing a 2K static
RAM and 64-word IPL ROM; usage of this configuration is described in Section 3.4.2
(dedicated GA-16/110/220). The microconsole control on the CPU-1 is the RESET button
() in Figure 3-1 through 3-4. When used with CPU-2 module in a GA-16/220 system,
the RESET button function is determined by the setting of the CPU Reset enable switch
((:)) in Figure 3-2 or 3-4, on the SCI and the cold start line. Controls and indi-
cators for the CPU-1 module are described in Section 3.3, Table 3-3.

3.2.6 MEMORY PARITY PROTECT (MPP) MODULE

The MPP module is an option which may be installed in a GA-16/110/220 system as shown
in Figure 3-3 and 3-4. The MPP providas the system programmer with the capability of
protecting areas of memory from access by the CPU (program protect) or by direct
memory access from a DMA controller (DMA protect). Detailed description of MPP usage
is contained in Section 5. The MPP module contains the indicators necessary for
identifying write protect violations, parity errors, and multiple errors. Parity
error detection requires the installation of 18-bit memory modules (described in
Section 3.2.7). The MPP module also contains the logic necessary for initiating
either a CPU stall condition or a program interrupt via vector X'42' when parity
errors occur (protect errors always cause ar interrupt). The STALL switch () on
Figure 3-3 and 3-4) is preset before the module is installed to select which action
will occur. Controls and indicators for the MPP are described in Section 3.3, Table 3-3.

3-12

88A00508A-E .

3.2.7 MEMORY MODULES

This section describes the memory modules which may be used in a GA-16/110/220 system

3.2.7.1 General Description of Memory Modules

The GA-16/110/220 computer may be equipped with several different types of memory
modules. The standard type of memory modules for general-purpose read/write appli-
cations are dynamic random~access solid-state memories (RAM) of 4, 8, 16, 32, or 64K
word capacities. The programmable word length is 16 bits; however, for detection

of parity error, memories using 18-bit words may be installed in either size (16-bit
and 18-bit memories can be intermixed). The two extra bits are set for odd parity
for upper and lower bytes. Parity bits are set during write operations and tested
during read operations. Usage of 18-bit modules normally assumes the installation
of an MPP module (Section 3.2.6). 18-bit meémories may be used without an MPP module
for parity generation and error detection. A parity override switch is provided to
disable parity error detections, when MPP is not installed.

NOTE

If parity override is not enabled, a parity error
will result in a stall condition on data fetches or
a repeated attempt to execute imstruction with in-
struction fetches. Indicators lights DERR and IERR
(and (38) on Figure 3-1 through 3-4) are provided
to indicate these conditions and are operative if
MPP ig not imstalled.

Because RAM memories are solid-state, they require continuous power (approximately
12 watts per 8K module) in order to hold their contents. To ensure that power is
maintained, backup power supply may be installed (Section 3.2.8). The wiring of
both the compact and jumbo chassis is designed to power memories by supplying +5 and
+12 volts via converter/regulators from a 12-volt battery contained in a battery
pack. A switch ((:)) selects whether power is from main power supply or backup
power supply. If plug-in dynamic RAM is used without battery backup, a memory ser-—
vice module must be installed in the interface connector at the rear of the MIB
(refer to Figure 3-1thru 3-4). The memory service module powers the dynamic memory
modules by converting the +5 and *15 volt power from the main power supply to +5,
-5, and +12 volts required by the memory modules. Static RAM's on piggyback memory
boards do not require the memory service module.

Other types of memories which may be installed in a GA-16/110/220 system may include
preprogrammed read-only-memories or a combination of ROM and RAM configured to a
users requirements. A 2K word piggyback RAM memory and 64-word IPL ROM may be
installed on the CPU-1 module; however, the 64-word IPL ROM is not used if the SCI
is installed on the GA-16/220 system. Use of piggyback memory and IPL ROM without
an SCI module in a GA-16/220 system is recommended only for dedicated user
applications.

3-13

88A00508A-E

3.2.7.2 Setting Memory Addresses

Each 8K memory module has three switches ((:), (:), and.<:> in Figures 3-1 through 3-4),
which are used to set memory boundaries in 8K increments. A 4K memory module contains
an additional switch @ which allows the setting of memory boundaries in 4K increments.
Figure 3-5 shows a core map and illustrates the setting of switches on memory modules
for both 8K and 4K boundaries.

NOTE

The conventions shown in Figure 3-5 are typical of core map
representationg throughout this manual. Low addresses are
shown at the bottom and high addresses at the top. Unless
otherwise specified, locations on core map are in hexadeci-
mal numbering system. Hexadectmal locations in text will
always be represented as X'nnim' which corresponds to the
CAP-16 assembler convention for defining a hexadecimal number.

MEMORV MEMORY
SWITCHES =/ SWITCHES
! |
' |
HEXADECIMAL - DECIMAL
ADDRESS ADDRESS (4
¥R 32,767 -—— —-—
m T] | ;
| @ _ 32K) 1
1
7000 [“l2s672 o
SFFF [~ — — — T/ T T 7T T 7T Tlaen _o“
—] (28K) 1 1
— - 1 1
- — 0 0
6000 24,576 . _
SFFF 24578 1
[~ 124K) [
- ~ 1
- — [
s00 | _ o __ 20 480 —
aFeF [~ Ta04m o
- - (20K}]]
| 1 1
4000 16,384 0 °
IFRF 16.383 ;
—] (18x) 1
L] 0
s00 o _ ___ 9
o0 v -—
2FFF @ — (12K) o
1 1
! [0
2000 @ 0 0
8192
VEFF 8191 - "—
[. (8K) 0
_] 0
1000 () 4096 0
ofFFf [— ———— — — — — — — 4008 ---
B @ @] 14%) ° g
— - @ 0 o
o0 O t —[r0z4 0 0 !
a0 T '508-3-5.

Figure 3-5. Memory Address Map (Sheet 1 of 2)

3-14

88A00508A-E

S | w
SWITCHES | SWITCHES
HEXADECIMAL DECIMAL @ @
ADDRESS ADDRESS
FROTITOO3IIIITOgRE b T N

-] !

- - 1
Eg‘;‘; —————————————— 61,440 P

— - (60K) 1 ?

— _ 1 1
£000 57,344 2 !
DFFF | _187.343 1

| :] (56K)| | [

1
oooo | _ _ _ - r_ _ _|s3248 o
CFRRF | 83,247 o

— 7 (52K) o e

- — 1 1
€000 | 49,152 ! '
BFFF 49,151 - _

- (48K) !

L - 1

— — 0
Bo00 | o _ __] 45,056 U
AFFF 45,065

= . (44K) . ?
a0 [. "la0.060 ; ?
9FFF 40,959 - —

[- {40K) 1

L — - 0

- - °
000 | _ _ _ . _ _} 36,864 _——
sFFF| 36863 0

— 1 (38K) 0 [¢]

0]

— — 1 1
8000 32,768 508-3-5.

NOTES:

1 Each small division represents 400 hexadecimal (X'400°) or 1024 decimal {in common terminology, 1K) words of memory.

2 4K boundaries are represented by dashed lines.

3 8K boundaries are represented by solid lines.

4 Hexadecimal and decimal addresses shown specify both lower and upper addresses of each 4K block of memory.

The decimal number in parenthesis represents the commonly used terminology for defining memory capacity (i.e., a 16 K system
actually has 16,384 words, or an addressing range from O through 16,383 words, decimal, or X'0' through X'3FFF’ when expressed
in hexadecimal).

6 Memory switch settings are shown in the order they appear on the memory module, top to bottom. (As shown in Figures 3-1
through 3-4.) The up positions of the switch is 1.

7 Memory addresses X'00’ through X'C1’ are dedicated to the interrupt vector locations or are reserved for Series 16 operating systems
which may be used, Figure 3-8.

8 On a GA-16/220, the upper 1K of sach memory mode, locations X'7C00’ through X'7FFF’ when in 32K mode or locations X'FC00’
through X'FFFF’ when in 64K mode, is reserved for the SCI Console ROM and IPL ROM (Figure 3-7). These locations are indepen-
dent of the amount of memory implemented by memory modules; however, if a memory module is set to include the reserved
locations, those locations are not usable by that memory module. For example, the upper 1K of the fourth memory module in
Figure 34 is not usable when operating in the 32K mode, since these locations are occupied by the SCI.

9 A 2K static RAM and a 64-word IPL ROM may be installed on the CPU-1 board. This memory (also referred to as the ‘‘piggyback’’

memory) physically occupies the first 2K of memory +64 words or 2K of memory beginning at the 8K boundary (set by jumpers).
A RAM memory module may not be set to a boundary which includes the locations of the piggyback memory.

Figure 3-5. Memory Address Map (Sheet 2 of 2)

3-15

88400508A-E

Figure 3-6 shows dedicated memory locations reserved for interrupt functions, and

for GA-16 series operating systems when implemented.
locations occupied by the SCI Console ROM and RAM and IPL ROM.
closed subroutines which may be called from a user's program are also shown.

are described in more detail in Section 3.7.
to Section 2.6.

HEXADECIMAL
LOCATIONS

0080

Figure 3-7 shows dedicated
The locations of
These
For a description of interrupts, refer

DESCRIPTION

MONITOR ENTRY POINT FOR GA-18 SERIES OPERATING SYSTEMS

STORAGE FOR RETURN
INSTRUCTION LOCATION
AND ISE STATUS WHEN
INTERRUPT OCCURRED

CONTAINS ADDRESSES
OF USER-DEFINED
PROCESSING ROUTINE

USED BY HIGH SPEED
DATA CHANNELS

007F | ISE

007E | ¥) SINGLE STEP INSTRUCTION

007D | ISE

oo7e | p } TRAP INSTRUCTION

0078 | ISE MPP ERROR

007A | P+

0079 | ISESTATUS

0078 | P+ }POWER FAIL

0077

0076

. : INTERRUPT VECTORS FROM 1/0 CONTROLLERS,
048

0047 | CONSOLE INTERRUPT VECTOR

0046 | SINGLE STEP, BREAK VECTOR

0045 | TELETYPE NOT BUSY VECTOR

0044 | TRAPINSTRUCTION VECTOR

0043 | REAL TIME CLOCK (RTC) VECTOR

0042 | MPP ERROR VECTOR

0041 | RESTART VECTOR

0040 | POWER FAIL VECTOR

003F | CAR

003E | SCR

0021 | CHANNEL ADDRESS REGISTER (CAR)

0020 | SCAN CONTROL REGISTER (SCR)

001F 11 usep BY GA-16 SERIES

0018 | | OPERATING SYSTEMS

0017

0010 | | USER PROGRAMS MAY USE

000F

0008

0 001 OPERATING SYSTEMS

00
:07 l USED BY GA-16 SERIES
0000

Figure 3-6.

3-16

NO MPP WRITE PROTECT

508-36.

Dedicated Memory Locations

HEX

ADDRESS

88A00508A-E

nFFF

nF00
nEFF

nEQO
nDFF

nDOO0
nCEO
nCCO
nCAO
nC80
nC60
nC40

nC20

IPL
ROM
(IF USED)

DECIMAL ADDRESS
{ADD TO 31,000 OR 63,000

CONSOLE
RAM, DATA

nC00

CONSOLE
ROM, INSTRUCTIONS

1023
(266 WORDS)
768
767
(256 WORDS)
512
511
.nDBB
———————— = — —
_— _(5_1-2_W2RES)_1 *PUNCH STANDARD PAPER
TAPE LEADER
L e e —
266y e ———— -
A nC98 *OUTPUT CR AND LF
y, nC8C *ASCll CHARACTER INPUTTO A,C
, nC73 *FOUR HEX DIGITS FROM TTY TO REGIST=R
nC61 *FOUR HEX DIGITS FROM REGISTER BTO TT
—{428 | "C5C *REGISTER ATO TTY
9 nC67 *TTY CHARACTER TO REGISTER A
-164
-— 32
o /

NOTE: n=7 IN 32K MODE , F IN 64K MODE

*SCI CLOSED SUBROUTINES (ACCESSIBLE TO USER)

Figure 3-7.

508- 3-7

System Console Interface and IPL ROM Memory Locations

3-17

88A00508A-E

3.2.8 BACKUP POWER SUPPLY (BATTERY BACKUP)

Battery backup is an option which provides a battery pack, a line-operated charger,
and a battery backup regulator module. The purpose of the battery backup is to supply
+5 and +12 volt power to the memory modules (including +5V to 2K piggyback memory)
at all times when power is applied, and to switch to batteries to preserve the con-
tents of memory if the AC power fails. The length of time memory contents will be
preserved is dependent on the size of memory. The standard battery backup unit is
illustrated in Figure 3-1 through 3-4 is rated at 12 volts at 1.5A, and will main-
tain memory power for approximately 1.2 hours for 8K of memory and proportionally
less for larger systems. A provision is available which permits using an external
battery of greater capacity to extend the time power is maintained. The battery
charger will trickle charge an external battery at a 0.5 ampere/hour rate. Most
controls on the battery backup control module are for adjustment and will be preset.
The only control of operator interest is the manual cutoff switch (on Figures
3-1 through 3-4). This switch permits an operator to deliberately disconnect the
battery supply only when AC power is shut off to the backup power supply. The indi-
cator light () indicates when power is applied to the memories. When battery
backup is not installed, a module designated the memory service module (MSM) must

be inserted into the connector at the rear of the MIB to provide -5V and +12V to
plug-in dynamic RAM modules (not required with piggyback static RAM). The MSM makes
alternative connections and conversions from the main power supply to supply neces-
sary voltage to the memory modules.

3.3 CONTROLS AND INDICATORS

All possible controls and indicators which may be found on a typical GA-16/110/220
system are listed in Table 3-3. Controls and indicators which may be located on 1/0
controllers are not included. Controls and indicators are contained on several
modules of a GA-16/110/220 system. The key numbers (circled on Table 3-3 and Figures
3-1 through 3-4) are identified by module as follows:

1 and 2 (PS) Plug-in compact power supply

3 thru 10 (220) CPU-2 module

11 thru 15 (220-SCI) SCI module (option)

16 thru 23 (110) CPU~1 module

24 thru 31 (MPP) MPP module (option)

32 thru 34 (MEM) 8K memory module with 16-bit words

32 thru 34 } (MEM) 8K memory module with 18-bit words for parity
36 thru 38 error detection (option)

32 thru 35 (MEM) 4K memory module with 16-bit words

32 thru 38 (MEM) 4K memory module with 18-bit words for parity

error detection (option)

39 thru 43 (BAT) Backup power supply regulator module (option)

Table 3-4 provides switch settings for the IPL selector (IPL SLT) on the SCI module.

3-18

88A00508A-E

Table 3-3. GA-16/110/220 Controls and Indicators (Sheet 1 of 6)

Key Label Description and Function

C) ON The: main power switch causes power to be applied to CPU and
(PS) OFF I/0 controllers. Power is also applied to memory modules if

memory service module is installed.

C) FUSE The fuse holder allows replacement of main power supply fuse.
(PS)

C) 32K The 2-position switch selects memory addressing mode. When
(220) PGM in the 32K position program addressing limit is 32K words.

When in the PROGRAM position-either 32K or 64K mode is selec-
ted by a program-which sets the memory mode mask word (see
Section 4.15.2.4), '

C) CNSL Console interrupt pushbutton, when pressed, causes a program
(220) INT interrupt through vector X'47" if (1) the console interrupt
bit in the internal mask word is set (Section 4.15.2.1) and,
(2) the interrupt system is enabled (refer to description of
instructions INE and RISE in Section 4.13.2 and 4.10.9).

C) 15 8 These miniature binary switches are called the console
(220) switches.

C) 7 0 The console switches may be read by.an RCSM or RCSR instruc-
(220) tion in a program (Section 4.15.1). This capability permits

writing programs which allow data entry and control via these
switches. When switch is in position labeled OPEN, bit is

set to 0.
C) DMA ACK This indicator may blink periodically when direct memory
(220) access cycle stealing is occurring. It may illuminate con-

tinuously if very high DMA activity is in progress or if
there is a malfunction. In a GA-16/220 system DMA activity
is normally controlled by the multiple high-speed data
channel (MHSDC) controller.

¥TTY BAUD The 2-position switch changes the baud rate of the built-in
(220) serial I/0 controller to accommodate either a teletype
(Model 33 automatic send receive, ASR, or equivalent) at
110 baud or a CRT terminal at 110 or 9600 baud.

® *9600 This Trimpot permits fine adjustment of the 9600
(220) baud transmission rate. It is adjusted only when the BAUD
switch is in the 9600 position.
*110 This Trimpot permits fine adjustment of the 110
(220) baud transmission rate. It is adjusted only when the BAUD

switch is in the 110 position.

*These controls present an early model CPU2 boards; CPU2 board 31D02574A has a rotary
baud rate selector (refer to Appendix G).
3-19

88A00508A-E

Table 3-3. GA-16/110/220 Controls and Indicators (Sheet 2 of 6)

Key Label Description and Function

CD BKDS The 2-position switch enables or disables the TTY break

(220- capability. When switch is in the break-disable (BKDS) posi-
SCI) tion, TTY breaks are ignored. When in the other position, TTY

break is enabled so when a TTY operator presses the BREAK key
on a teletype or CRT (provided unit is equipped with this key)
either a processor (CPU) reset or an interrupt occurs depen-

ding on the setting of the BKINT switch .
(:) BKINT The 2-position switch gets the break mode for TTY or CRT,
(220- provided BKDS switch - is set so that break mode is enabled.
SCI) When BKINT switch is set to break-interrupt position (BKINT)

a TTY break causes a non-inhibitable interrupt via vector
location X'46' (provided CPU is not operating under the SCI
Console ROM program or the IPL ROM). Registers and status
are saved in locations in the SCI program RAM. When switch
is not in the BKINT position, a TTY break initiates a break
reset which causes control to be transferred to the Console
ROM and registers and status are not saved. I/0 controllers
are not reset.

(:) IPL Pushbutton initiates initial program load (IPL). When pressed,
(220- control is passed to the IPL ROM installed on the SCI module,
SCI) and program loading occurs from a peripheral device. Selection

of the peripheral device is accomplished by setting the IPL
SEL selector switch (:) to the appropriate position for the
IPL device installed with the system. This function may be
remotely controlled via IPLSW line, or at auto-restart with
cold start line low (at ground). CAUTION: IPL clears all
memory locations.

<:> IPL SEL The IPL selector switch is a l6-position rotary switch. The
(220- switch is used to preselect which 1/0 device will be the source
SCI) of an IPL when the IPL switch (:) is pressed. (In systems

illustrated in Figure 3-2 and 3-4, the device would be floppy
disk or teletype). Load-and-go operation is selectable for all
devices, while load-and-stop .operation may be selected for
teletype, high-speed paper tape reader, or card reader. The
switch positions and device selections are shown in Table 3-4.

<:> CNSL The 2-position_switch determines both the function of the CPU
(220~ . reset button and an auto-restart operation when power is
SCI) applied. When in the console position (CNSL) the CPU and I/0

are reset and control is transferred to the Console ROM. If
in the other position, the status of the cold start line,
CLDS, determines the operations as described for RESET push-
button on the CPU~1 module @ .

3-20

Key

Table 3-3.

Label

88A00508A-E

GA-16/110/220 Controls and Indicators (Sheet 3 of 6)

Description and Function

(110)

RESET

Pushbutton resets the CPU and the I1/0 system, and causes
control to be transferred in accordance with the cold start
line (CLDS-) and (on a GA-16/220) the CNSL switch(15).
On a GA-16/110, the cold start line determines the function
of the RESET switch as follows:
cold start high: Control is transferred via
auto-restart vector X'4l'.
cold start low (grounded):Control is transferred to the
IPL ROM.
On a GA-16/220, the cold start line determines these functions
only if the CNSL SWitch<:>is~not in the CNSL position. 1In
the CNSL position, control is transferred to the console ROM
on the SCI. This function may be remotely controlled via the
RESET and SYRT lines, together.

(110)

IACK

Interrupt acknowledge indicator blinks when control has passed
to a routine via an interrupt vector. It normally blinks so
rapidly as to be barely visible. If continuously illuminated,
it indicates that the control has not returned from the inter-
rupt processing routine, a "hung-up" condition.

1 (110)

ISE

Interrupt system enabled indicator is illuminated when the ISE
flip-flop is set, and means that the inhibitable interrupt
system is enabled. Refer to description of instructions INE
and RISE (Section 4).

(110)

OMA

This indicator (also referred to as the OMA stall indicator)
is illuminated when the operators monitor alarm (OMA) has
timed out. The OMA must have been initially turned on by a
PMA instruction (Section 4.13.7). When the OMA indicator
illuminates, the RUN indicator is extinguished and the
CPU is in an idle state. To recover from an OMA, the operator
must press the RESET button .

(110)

FGND

Foreground indicator is illuminated when the foreground
registers are used and extinguished when background registers
are used. Refer to instructions BMS and FMS (Sections 4.13.1
and 4.13.2) for setting foreground or background register
usage.

(110)

RUN

The RUN indicator is illuminated when the CPU is in the run
mode. If the WAIT indicator (:) is also illuminated, the CPU
is in a wait condition as a regult of executing a WAIT in-
struction. If MPP indicators @ through are illuminated,
memory parity error has caused the _stall. 1In order for an MPP
stall to occur, the STALL switch (3]) must be in the stall
position. To recover, the user must RESET the systemn.

If the run indicator is extinguished, the system is in idle.

3-21

88A00508A-E

Table 3-3. GA-16/110/220 Controls and Indicators (Sheet 4 of 6)
Key Label Description and Function
@ RUN NOTE: If 18-bit memories are installed without installation
(110) (Cont) of MPP module, a stall cgndition may occur if the
parity override switch 18 not set. Refer to
Section 3.2.7.1 and deseription of R , and @
in this table.
A remote idle indicator may be implemented via the RUN line,
and conversely grounding the RUN line will force the CPU into
the idle condition.
22 WAIT Wait indicator illuminates when a WAIT instruction has been
(110) executed (Sectiom 4.13.10).
@E? - Unlabeled 2-position battery backup switch faces to the rear
(110) of CPU-1 module, and must be set prior to installation. In
the backup position (down), +5VB power for the memories
(including the piggyback RAM) originates in the backup
power supply or from batteries (when AC power is discon-
nected). When switch is not in backup position, the power
is obtained from the main power supply. A memory service
module must also be installed in the rear connector (as
shown in Figures 3-1 through 3-4) to obtain power from the
main power supply for the 8K/4K RAM memories when backup
power supply is not used.
(:) DPT The DMA write protect indicator, when illumated, indicates
(MPP) that an attempt has been made by NMA to write into a memory
area (via the high-speed data channel) which has been DMA-
protected (refer to Section 5).
<:> ME Multiple error indicator illuminates when a second error
(MPP) occurs before software can process a previous error. Other
indicators also may be illuminated.
PPT Program write protect indicator, illuminates when a program
(MPP) has attempted to write data in a memory area which has been
program-protected (refer to Sectiom 5).
<:> LPB Lower parity bit indicator shows the contents of parity bit
(MPP) for the lower byte of a memory word (illuminated = 1. Con-
tent of bit must be compared with the lower byte to determine
if error has occurred; even parity is error.
UPB Upper parity bit indicator shows contents of the parity bit

(MPP)

for the upper byte of a memory word (i1lluminated = 1. Con-
tent of bit must be compared with the upper byte to determine
if error has occurred; even parity is error.

3-22

88A00508A-E

Table 3-3. GA-16/110/220 Controls and Indicators (Sheet 5 of 6)

Key Label Description and Function

DPY DMA parity indicator illuminates when a parity error is

(MPP) detected during a DMA transfer.

PPY Program parity indicator illuminates when a parity error is

(MPP) detected when a program reads a memory location (data or
instruction fetch).
NOTE: Indicators through remain illuminated until

MPP status 18 reset undér software control. Refer to
Section 5.

(:) STALL The 2-position switch faces to the rear of the MPP module

(MPP) and is preset prior to installation.This switch determines
CPU action when a pMA or CPU paritv error occurs. When
switch is in STALL position, the memory bus is forced to a
busy state, thereby halting the CPU. When not in the STALL
position, control is passed to a routine via non-inhibitable
_interrupt vector X'42'. (All non-parity errors pass control
via X'42' regardless of the setting of STALL ‘switch, and
routine must determine type of error.)

(32) 15 Three 2-position switches used on both 8K and 4K memory

33) 14 modules to set the memory to occupy locations starting at one

qa 13 of eight 8K boundaries. Refer to Section 3,2,7, Figure 3-5,

(MEM) for memory map and corresponding switch settings.

(:) 12 The 2-position switch installéd only on 4K memories. It

(MEM) selects the upper_or er 4K boundary within the 8K boundary
set by switches (;) , and . Refer to Section 3.2.7,
for memory map a corresponding switch settings.

PAR The 2-position switch is installed only on 18-bit memories.

(MEM) OVRD This switch is effective only if MPP module is not installed

and enables parity override which disables parity error de-
tection when in DOWN position. When in UP position, parity

error detection occurs. Action upon a parity error depends

on whether or not an MPP module is installed:

- When MPP module is not installed and switch is in the
UP position, a parity error will cause a CPU stall con-
dition on data fetches or repeated attempts to execute
instruction fetches, and the DERR and IERR indicators
will identify the error.

- When an MPP module is installed, switch may be in either
position and parity errors will be identifjed by the LPB,
UPB, DPY, and PPY indicators through on the MPP
module. Detection is enabled by PIO to the MPP module
(Section 5). Action taken upon parity error detection then
is determined by the setting of the stall switch @ on the
MPP module.

3-23

88A00508A-E

Table 3-3. GA-16/110/220 Controls and Indicators (Sheet 6 of 6)
Key Label Description and Function
@ DERR The data error indicator illuminates (in 18-bit memories)
(MEM) when a parity error occurs on a data fetch. The data comes
out as '0000'. This condition is cleared by a system
reset or by a break reset (see description of and @ .
IERR This instruction error indicator (in 18-bit memories)
illuminates when a parity error occurs on an instruction
fetch. The instruction comes out as '0000' (WAIT). This
- condition is cleared by a system reset or by a break reset.
NOTE: If the Memory Parity Protect (MPP) option is included
in a system, neither the IERR nor DERR indicators will
illuminate unless there is a high failure rate. The
MPP i8 managing the memory under program control.
- Unlabeled indicator illuminates when power (either from AC
(BAT) line or from batteries) is applied to the memory modules.
Light is extinguished when manual cut-off button @ is
pressed (or if batteries are exhausted) provided AC power is
disconnected from the auxiliary power supply.
- Unlabeled pushbutton provides manual cut-off of battery power
(BAT) to memory modules. Pressing this button will have no effect
unless AC power is disconnected from auxiliary power supply.
If AC power is disconnected, pressing this button will cut
of f power to memories. Power will not be restored to memories
until AC power is reconnected.
NOTE: Application of power to auxiliary power supply is
independent of built-in main power supply switch R
or other means of controlling power to external main
power supply.
@ BAT CHG This control is used to adjust the charge voltage to the
(BAT) ADJ battery pack to maintain a 0.5 ampere rate (maximum). Setting
for 12-volt, 1.5 ampere battery supplied is 13.6 volts.
@ 5VB This control is used to adjust the +5-volt regulator.
(BAT)
@ VDD This control is used to adjust the +12-volt regulator.
(BAT)

3=24

88A00508A-E

Table 3-4. IPL Selector Switch on SCI Module (GA-16/220)

Position

Device

Card
3347
3346
3349
3343
3346
3342
3341

Card

HoouaQwwlPowoNouUPLWNFO

Teletype (Load and Go)
High-Speed Paper Tape Reader (Load and Go)

Reader (Load and Go)

Disk (Load and Go)
Removable Disk (Load and Go)
Floppy Disk (Load and Go)
Disk (Load and Go)

Fixed Disk (Load and Go)
Disk (Load and Go)

Disk (Load and Go)

Teletype (Load and Stop)
High-Speed Paper Tape Reader (Load and Stop)

Reader (Load and Stop)

Option
Option
Option

NOTE: Refer to description of IPL SEL switch(i)in Table 3-3.

3.4 START-UP AND PROGRAM LOAD

This section provides start-up and program load procedures for basic configurations

of the GA-16/110 and the GA-16/220 systems. These configurations are:

1. A general-purpose GA-16/220 system configured to use with one of the GA-16 series
operating systems; this configuration will include the system console interface
module equipped with IPL ROM for loading a program from various devices. It may
include a 2K piggyback RAM (on the CPU-1 module) however, the IPL ROM on the

piggyback will not be used.

2. A dedicated GA-16/110 or 220 system configured to use a special-purpose program;
this configuration will use the 2K piggyback RAM (on the CPU-1 module) equipped
with a single-device IPL, ROM and, in the case of a GA-16/220, does not include

the SCI on the CPU-2 module. Circled numbers in procedures refer to switch

designations in Figures 3-1 through 3-4, Table 3-3.

Figure 3-8 provides a general flow diagram for GA-16/110 and GA-16/220 System

Start-Up.

3-25

88A00508A-E

——ame — e e — — r-—-—-—-—r—-————.
| REFER TO SECTION 3.4.1]| |REFER TO SECTION 3.4.2 |
| START UP OF GENERAL | START UP OF GA-16/110 |
PURPOSE GA-18/220 NO Ea DEDICATED GA-16/220
e e —— POWER ON —— = — -
NO
‘— —— =7 MANUAL
SC! AVAILABLE g FORCED ON INITIAL | RESET
ONLY ON220 N = “|POWERTURNON _ | 1
L 4> =
- - N

YES:

A

sci NO

CNSL SWITCH
IN POSITION

®‘

YES

AUTO LOAD —m

P

IPL BUTTON (13)

PRESENT
NO NO
f!

CONTROL

TRANSFERRED

TO INTERRUPT

VECTOR X‘a41"
MEMORY
WITH iPL ROM
INSTALLED

I

IPL BUTTON (13

v v v

CONTROL

CONTROL
TRANSFERRED TRANSFERRED
TO sci TO IPL ROM
CONSOLE ROM

SECTION 3.6* SECTION 3.5.3‘

IPL VIA IPL BUTTON
OR LOAD BINARY
TAPE FROM TTY
WITHTHE L
COMMAND

IPL VIA SELECTED
PERIPHERAL DEVICE

CONTROL
BATTERY TRANSFERRED
BACKUP ON OR ~» TO SINGLE
ROM AT X'41’ DEVICE ROM
SECTION 3.5.2l

INTERRUPT ROUTINE
REQUIRED FOR

IPL VIA DEVICE
CORRECT OPERATION

3.6.3.4

Figure 3-8.

508-3-8
General System Start-Up Flow Diagram

3-26

88A00508A-E

3.4.1 START-UP OF GA-16/220 GENERAL-PURPOSE SYSTEM

3.4.1.1 Preconditions for System Start-Up

Power turn on, an automatic power restart, or pressing the RESET button.w1ll
result in one of three options. This is dependent upon the setting of the CNSL
selector switch and the status of the cold-start via hard-wired interface, CLDS.

1. CNSL switch in CNSL position: Control is transferred to the SCI Console ROM
for operator interaction via console teletype.

2, CNSL switch not in CNSL position and CLDS low: Control is transferred to
the IPL ROM and loading of a user's program or GA-16 operating system will
begin from the peripheral device selected via the IPL SLT switch
Table 3-3 and 3-4.

3. CNSL switch not in CNSL position and CLDS high: Control is transferred to
interrupt vector X'4l' which must contain the address of a routine which can
effect some operation. This routine must be defined by a user program. It
is also a requirement that battery backup be used to preserve the memory
contents or that a ROM be implemented at location X'41'.

NOTE

Standard systems are shipped with CLDS hard-wired
high. This line is generally used only for special
systems applications.

3.4.1.2 Verify Memories Are Powered
When battery backup supply is installed, the operator should verify that AC-derived
power is being supplied to memories before turning on the main power supply by the
following procedure:
1. Verify that the battery backup switch (:) is in the correct position.
2. Verify that indicator is 1lluminated.
3. Press manual cutoff switch
- Indicator should remain illuminated.
If indicator is extinguished, it signifies that memories were running on
battery with no AC power to the backup power supply. AC supply mains should

be checked. When power is supplied, indicator will come back on.

If battery backup is not installed, memory power will be applied when main power
supply is turned on (Section 3.4.1.3).

3-27

88A00508A-E

3.4.1.3 Main Power Application Procedure

l. Ready the peripheral device.

a. If option 1 (Section-3.4.1.1) is selected, verify that console TTY is
turned ON and in LINE position.
or
b. If option2 is implemented, mount the program source media (paper tape,
cards, disk, etc.) on the peripheral device, (refer to Section 3.5.3).

2. Apply power to main power supply.
a. Via main power connector for external supply
or |

b. Via power switch @ on built-in supply,
- RUN indicator (:) will illuminate.
- (Option 1) TTY will output a @ (proceed with Section 3.6).
- (Option 2) Program will load from IPL device; (refer to Section 3.5.3).
If a load and stop IPL is used, control will return to the console ROM and
operator interaction may occur in accordance with the procedures of

Section 3.6.

- (Option 3) user-defined.
3.4.2 4START-UP OF GA-16/110 OR GA-16/220 DEDICATED SYSTEM WITHOUT SCI

3.4.2.1 Preconditions for System Start-Up

1. One of the following single-device IPL ROM's will be installed on the 1K or 2K
piggyback memory. These are described in Section 3.5.

Version 1 - Teletype Version 2 - High-speed paper tape reader
2. An 1/0 controller must be installed in the I/O side of the MIB as follows:
a. Model 1582 for teletype (TTY).

b. Model 3321 for high-speed paper tape reader (PTR).

3-28

88A00508A-E

Power turn on, automatic restart, or pressing the RESET buttonwill result
in one of two options, dependent upon the state of the cold start hardware inter-
face, CLDS.

a. CLDS low: Control is transferred to the single-device IPL ROM.

b. CLDS high: Control is transferred to interrupt vector X'4l' which must
contain the address of a routine which can effect some operation. This
routine must be defined by a user program. It is also a requirement that
battery backup be used to preserve memory or that a ROM be implemented at
location X'41l' with a transfer vector to a user's dedicated program.

NOTE
Standard systems are shipped with CLDS hard-wired
high. This line is generally used only for special
systems applications.

3.4.2.2 Verify Memories Are Powered

When battery backup supply is installed, the operator should verify that AC-derived
power is being supplied to memories before turning on the main power supply by the
following procedure:

1.

2.

Verify that battery backup switch (:) is in correct position.

Verify that indicator (9 1is illuminated.

Press manual cutoff switch . .

- Indicator should remain illuminated.

If indicator is extinguished, it signifies that memories were running on battery

with no AC power to backup power supply. AC supply mains should be checked.
When power is supplied, indicator will come back on.

If battery backup 1s not installed, memory power will be applied when main power
supply is turned on (Section 3.4.2.3).

3.4.2.3 Main Power Turn-0n

NOTE
If IPL (Section 3.4.2.1) is implemented, mount
the program source tape on the TTY or PTR and
refer to Section 3.5.2 for actions which occur
upon power turn on.
Apply power to main power supply.
a. Via power switch(:> on built-in power supply,

or

b. Via power connector if external supply is used.

3-29

88A00508A-E

In either case:

- RUN indicator illuminates.
or
- RUN indicator illuminates and paper tape loads,
as described in Section 3.5.2.

3.5 IPL _ROMS
As standard options, GA offers the following Initial Program Load (IPL) ROMs:

1. Single-device IPL — This IPL runms on a GA-16/110 or a dedicated GA-16/220
and mounts on a 2K piggyback memory. It is a complete 64-word mini PGS loader
requiring no preamble on the media being loaded. It is an absolute load-and-go
binary loader with check sum.)

Version 1 - TTY Version 2 - High-speed paper tape reader

2. Multi-device IPL — This IPL ROM is mounted on the GA-16/220 System Console
Interface Module. It consists of a 256-word program which provides bootstrap
loaders for the TTY, high-speed paper tape reader, card reader, floppy disk,
moving arm disk (both fixed and remoable platter) and head-per-track disk.

Each of these bootstrap loaders accesses its designated peripheral to bring a
PGS loader into the RAM. (The PGS loader must be in the zero sector of a disk
or in the preamble of tapes and card decks.) The PGS loader then automatically
loads the program and data which must be in the PGS format, i.e., relocatable
with check sum and designated start address as described in Section 3.5.1.

The following sections describe PGS and mini-PGS formats, use of single-device ROM
on a GA-16/110 or dedicated GA-16/220, and use of the multiple-device ROM on a
general-purpose GA-16/220.

3.5.1 PGS AND MINI-PGS FORMAT

The PGS (Program Generation System) format is the standard for all GA program
generation systems. All language translators (Macro Assembler, FORTRAN, BASIC,
COBOL) output object code in PGS format; the Coreload Overlay Builder (CLOB) links
PGS elements into a loadable PGS module; all utilities, subroutines, T&Vs, etc.,
are in PGS format. All GA device loaders require the PGS format. They perform
check summing, permit specification of load address and automatically relocate pro-
gram elements. PGS format is described in Appexdix D.

The multi-device IPL on the System Console Interface Module (GA-16/220) contains a
set of binary bootstrap loaders for various peripherals. They bring in PGS loaders
in binary format from their respective devices. The loaders, in turn, proceed to
load the programs, which must be in PGS format.

3-30

88A00508A-E

A mini-PGS format was developed especially to facilitate TTY or PTR IPLs in GA-16/110
or dedicated GA-16/220s with small piggyback RAMs. Because of limited memory in
these systems, it is undesirable to use any portion of RAM to hold the PGS loader
during IPL. Also, due to physical constrictions, it is not possible to commit the
full PGS loader to ROM. Thus, the mini-PGS loader operates as a complete loader

(not just bootstraps) fitting into 64 words of ROM on the 2K RAM boards.

The mini-PGS format differs from PGS mainly in its being absolute rather than
relocatable. Mini-PGS still performs check summing for verified loading.

For systems with a mini-PGS IPL, the software package includes a mini-PGS punch
routine. After developing his program in the full relocatable PGS format with any
language (Macro Assembler, FORTRAN, BASIC, COBOL), the programmer uses the mini-PGS
punch routine to produce a mini-PGS copy of the program he has generated. The
resulting tape is loaded by the 64-word IPL ROMs on the piggyback RAMs.

The full PGS loaders handle both PGS and mini-PGS format. The mini—~PGS loaders are
restricted to the mini-PGS format.

3.5.2 - SINGLE-DEVICE ROM ON GA-16/110 AND DEDICATED GA-16/220

In a small dedicated system using 2K piggyback RAM on the GA-16/110 module, one of
the single-device IPLs described in Section 3.5 must be mounted on the piggyback
memory board to load-and-go from a TTY or PTR.

The following procedures apply to TTY or PTR IPL GA-16/110 and on dedicated GA-16/2:0s
without the System Console Interface Module:

1. The tape to be loaded must be in mini-PGS format. (See Section 3.5.1 for an
explanation of PGS and mini-PGS formats.)

2. Place the paper tape in the TTY or PTR with the leader in the read position. Dt
not place the first character in the read position.

3. Auto-load is initiated upon power turn-on or by the operator by pressing the
Reset button, provided the Cold Start Line is grounded. This does a complete
system reset and forces the CPU to the IPL address for execution of the program
stored in the ROM.

NOTE
The reason for grounding CLDS is that if Cold Start is
not grounded, reset sends the CPU to X'41', whose content
i8 probably invalid 1f power has been down.
Auto-load can also be initiated remotely by grounding:
a. Cold Start Line and (momentarily) Reset Line on the

rear of the computer. Thig resets the CPU and auto-
loads. It does not reset I/0.

3-31

88A00508A-E

b. Cold Start Line and (momentarily) Power Fail Detect
Line. (Grounding FFD 18 equivalent to the power-up
or restart signal.) This auto-loads with a complete
gystem resget.

4. With power on, the PTR automatically starts reading when the IPL is initiated.
However, TTY start is different. When IPL is initiated, the ROM goes out to
the TTY and attempts to start reading. The TTY reader must then be manually
switched to "START". (This manual switching at the TTY need not be done im-
mediately, since the IPL ROM continues indefinitely to apply ''start' sequence
to TTY until it detects the first character from the reader.)

5. Without interruption, either TTY or PTR read their tapes to the end and stop.
The IPL ROMs then automatically transfer control to the start address of the
program just loaded and begin execution; Both TTY and PTR IPLs are load-and-go.

3.5.3 GA-16/220 MULTI-DEVICE INITIAL PROGRAM LOAD ROM ON SCI

This section describes the characteristics of various devices when loading programs
under the control of the IPL ROM installed on the SCI module. Loading of a program
via the IPL ROM takes place under the following conditions:

1. Upon initial power turn-on or automatic power restart; provided option 2.
(Section 3.4.1.1) has been implemented.

2. When an operator presses the RESET button Q:) on the microconsole; provided
option 2 (Section 3.4.1.1) has been implemented; (alternatively, an external
RESET button may be connected via hardware interface, RSET line).

3. When an operator presses the IPL button (:) ; (alternatively an external IPL
button may be connected via hardware interface, IPLSW).

3.5.3.1 Teletype (TTY)

Blank leader is ignored. Loading of binary tape begins at a predetermined location
below the end of available memory. The IPL ROM looks for the highest X'nAOQ'
address available; for a 32K memory this would be X'7A00'; for 8K memory this
would be X'lA0O'.

Loading continues until either feeding stops (tape runs out or reader is turned off),
or 150 blank frames have been encountered. If 150 blank frames have gone by, it is
assumed that either the module just loaded is itself a loader and what it is to load
follows on the same piece of tape, or that the program is stand-alone. When in the
load-and-go mode, execution will transfer to the starting load location; load-and-stop
will print the starting address in hex and tramsfer to the Console ROM.

If feeding stops, control goes immediately to the Console ROM when in load-and-stop
mode, or the IPL routine will wait for the reader to be started up again if in
load-and-go mode. Refer to the GA-16/220/330 Stand-Alone Utilities document number
94A001531A for detailed operating procedures.

3-32

88A00508A-E

3.5.3.2 High-Speed Paper Tape Reader (PTR)

This device is functibnally identical to the TTY. The only real difference is that
there is no way for the operator to restart the PTR in load-and-go mode, so that the
IPL routine will peribdically try to restart it. Since this method is not particu-
larly reliable, it is recommended that for the PTR, both loader and program be on

the same tape (separated by at least 150 blank frames), or that load-and-stop be uszd.

3.5.3.3 Card Reader (CDR)

The CDR loader starts loading at the location 512 words below the end of available
memory and continues loading until bit 9 in column 72 is encountered in any card.

At this point, load-and-go mode will wait for CDR-ready and go to the loaded module.
while load-and-stop will transfer control the Console ROM. Refer to GA-16/220/330
Stand-Alone Utilities document for detailed operating procedures.

3.5.3.4 Disk (DKx)

The devices are functibnally identical. Sector 0, track 0, head 0, is loaded into
the RAM above the Console ROM (7E00 in a 32K system, or FEOO in 64K). Control is
immediately transferred to the sector just loaded which is assumed to be sector
loader.

3341 10-Surface Disk (DK1)
3342 TFixed-Head Disk (DK2)
3343 20-Surface Disk (DK3)
3346 Dual-Platter Disk, Removable Cartridge (DK6)
3346 Dual-Platter Disk, Fixed Surface (DK6F)
3347 Removable Cartridge Disk (DK7)
3349 Floppy Disk (DK9)

3.6 SCI CONSOLE ROM (GA-16/220)

The SCI Console ROM provides an interactive program which permits program diagnostic
and development activities to be carried out via the teletype or CRT. The SCI
Console ROM is entered by several methods:

1. Upon power—-up, auto-restart, or when an operator presses RESET button,
provided CNSL switch(if)is in the CNSL position (option 1, Section 3.4.1.1).

- Carriage return and line feed @ occur on TTY.
- The break interrupt vector X'46' is loaded so that subsequent entry may be
made with TTY BREAK key.

2, When teletype operator presses BREAK key, provided the following hardware
conditions are met:

a. BKDS switch(:>is not set in the BKDS position.
b. BKINT switch(:>is not set in the BKINT position.

- Address of next instruction to be executed is printed.

3-33

88A00508A-E

3. When a program executes a TRAP instructiomn.
- Address where trap occurred is printed.

4, When an IPL ROM loads from TTY, card reader, or paper tape reader in a load-and
stop mode (refer to IPL SLT positions, Table 3-4) after loading is completed.

- Starting address of loaded program is printed.

5. When a user's program uses one of the closed subroutines to read or write data
on the teletype, or to punch a tape loader. This entry is not interactive and
control will return to the user's program. Section 3.7 describes the SCI ROM
closed subroutines.

On all entries except 5, the operator may use the,Consoie ROM commands to restart a
program, single step, examine memory locations, etc., as described in Section 3.6.1.

3.6.1 CONSOLE ROM COMMANDS

The user can accomplish various operations by means of commands, which he enters at
the teletype. The Console ROM interprets and acts upon these commands. All commands
have the general format: '

[a [/aaaall ¢ [,n] €
where:
a 1is a hexadecimal address of value constant (Section 3.6.2.1)
¢ 1is a Console ROM command mnemonic (Section 3.6.2.2)
m is a command modifier (Section 3.6.2.3)
(}9 is a carriage return

Each of the components of a command is discussed in the following paragraphs.
Command components in brackets ([]) are optional.

All Console ROM commands are terminated by typing a carriage return. If, during the

typing of a command, a user makes an error, a rubout may be typed to delete the
entire command.

3-34

88A00508A-E

3.6.2 COMMAND COMPONENTS

3.6.2.1 Address or Value Constant

An address or value constant is a four-digit, hexadecimal value which is used as
either an absolute word address or a data value, depending on the command currently
being processed. When entering an address or value constant, leading zeros may be
omitted. Only the last four digits of the string are accepted as the address or
value. therefore, if an error is made, you can continue typing and enter the cor-
rect four digits as the last characters of the string.

Entering a slash (/) character terminates the accumulation of the current address

or value constant and indicates the beginning of the accumulation of hexadecimal
digits for the next address or value constant. A maximum of four addresses or value
constants are allowed. If more than four address or value constants are input, or
if no address or value is specified, Console ROM will output a question mark (?)
followed by a carriage return and line feed, ignoring everything which has been
previously entered. A new command line may then be entered.

3.6.2.2 Command Mnemonics

Each command mnemonic is specified by a single, non-hexadecimal character. The
typing of a command mnemonic terminates the acceptance of address or value constant
input and activates a particular command.

If the command mnemonic is not recognized, the Console ROM outputs a question mark
(?) followed by a carriage return and line feed, ignoring everything which has been
previously entered. A new command line may then be entered.

All valid Console ROM command mnemonics are shown in the following listing.

MNEMONIC FUNCTTION

Carriage Return @Z) Memory display and alter (at TTY or CRT)
G Go, program execution

Punch paper tape in binary

Load binary paper tape

Memory dump

>Register display and alter

Single instruction execution

Trap set

Set bias for relative addressing

N < H »n ™ R o

Fill memory

I/0 reset

3-35

88A00508A-E

3.6.2.3 Command Modifier

The optional command modifier is used to indicate the addressing mode to be used in
the performance of the indicated command. It is separated from the command mnemonic
by a comma and is indicated by a single letter. For some commands, a modifer is not
accepted and any attempt to enter one will be ignored. The modifier A specifies that
absolute addressing is to be used. That is, the contents of the hexadecimal address
entered as part of the command is to be used for referencing memory during command
execution.

The modifier B specifies that relative addressing is to be used. That is, the bias
(specified by command Y) is to be added to each hexadecimal address entered to com—
pute the absolute address to be used for referencing memory during command execution.
After an addressing mode is specified, that mode (A or ﬁ) will remain in effect until
explicitly changed by the modifier specification on another command. The initial
addressing mode is absolute (A).

If the command modifier is not recognized, or it an invalid modifier is specified,
the Console ROM will output a question mark (?) followed by a carriage return and

line feed, ignoring everything which has been previously entered. A new command
line may then be entered.

3.6.3 COMMAND DESCRIPTIONS

In the discussion of the various commands which follow, the following conventions
are used:

¥ represents a space character
(39 represents the RETURN key of the teletype or CRT.

Lower-case letters (e.g., b,e,n, etc.) are generic indicatioms of the address
or value components.

Letters or special characters must be specified as indicated. Command components in
brackets [] are optional. Italics represent the portion typed by the operator.

3-36

88A00508A-E

3.6.3.1 Memory Display and Alter

Mnemonic:

none

This command is implied by terminating a command (via a carriage return) before a
modifier is specified or by the specification of a modifier.

Format:

Operation:

Examples:

al,m] @®

The Console ROM starts a new line and types the address (a) followed
by an equal sign (=), the contents of location a, and a blank space.
If the user responds with a space, the contents of the next sequential
memory location will be displayed. If the user responds with a hexa-
decimal number, that value will immediately replace the displayed num-
ber in that memory location. If the user responds with a carriage
return, the command is terminated.

3FCO,A Display the contents of location 3FCO.

3FC0=1642 ¥ Location 3FCO contains the value 16A2; the space
response requests that the next sequential location
be displayed.

3FC1=D4BC 2DC5Y Location 3FCl contains the value D4BC; the value 2DC5
is to replace D4BC in location 3FCl and the next
sequential location is to be displayed.

3FC2=A208 Location 3FC2 contains the value A208; no change is
made to location 3FC2 and the command is terminated.

3.6.3.2 Execute Program

Mnemonic:
Format:

Operation:

G

[alc [,m] €B

If an address (a) is specified, the Console ROM will start execution of
the user's program at the specified address. If no address is speci-
fied, the Console ROM will start execution of the user's program at the
address where the last trap occurred, or at the address following the
location where the last single instruction execution occurred.

If no address was specified and no trap or single instruction execution

has occurred, the Console ROM will respond with a quesiion mark (?),
ignore the command, and be ready to accept another command.

3-37

Examples:

88A00508A~E

3000Y,A ({) Set relative addressing bias at location 3000.
1007, B (39 Set trap at memory location 100 relative to bias.
10G6,B (ED Start execution of the program at memory location
. 10 relative to the bias.
B+0100 Location of trap (previously set) is printed
. followed by .
G A trap returns control to the Console ROM; execution

is to continue at the location where the trap occurred.

3.6.3.3 Punch Memory In Binary

Mnemonic:

Format:

I

b/el @

The beginning address (b) is the first memory location to be punched and (e) is the
last memory location to be punched. :

Operation:

Examples:

Memory locations (b) through (e) are output to the teletype for punching
on paper tape. When the command is terminated (via a carriage return)

a 100-character leader is punched. It is during this time that the user
must turn on the teletype punch. After the leader, memory locations (b)
through (e) are punched in binary. Following the punching of data, a
100-character trailer is punched. The Console ROM is then ready for
another command; at this time, the user must turn off the teletype punch.

NOTE

A carriage return line-feed is not output when the

punch command is completed. Therefore, the teletype
print head will be positioned at any rando: position

when the command i8 completed. The user may input any
non-hexadecimal character which is not a . nmand mnemonic
in order to effect a carriage return line-re.d (see
Section 3.6.2.2, paragraph 2).

23FD/347CI €® When the €B) is typed, a 100-character leader will be
punched. Turn on the teletype punch at this time.
Next, locations 23FD through 347C will be punched,
followed by a 100-character trailer. When punching
is complete, turn off the teletype punch.

3-38

88A00508A-E

3.6.3.4 Load Memory In Binary
Mnemonic: L
Format: | aL (39
NOTE

This provides an alternate to IPL by permitting a
bootstrap loader on paper tape to be read into memory.

Operation: The teletype paper tape reader is read and loaded directly into memory,
starting at location l. Only a binary paper tape can be properly pro-
cessed. The paper tape must be placed in the teletype paper tape
reader with the first non-blank frame over the read head (i.e., the
leader frames will NOT be ignored). The reader must be turned on AFTER
the load command has been terminated by a carriage return. Loading
will continue until the tape reader is turned off (i.e., the trailer
frames will be read and loaded; they will NOT terminate the loading
process. After the loading process has been terminated by turning off
the paper tape reader, the user must re-enter the Console ROM by press-
ing the RESET button. The Console ROM may also be re-entered by execu-
ting a break reset function.

Example: 80L Load from the teletype paper tape reader starting
at location 80.

3.6.3.5 Memory Dump

Mnemonic: M

Format: b/eM [,mode]

The beginning address (b) is the first memory location to be printed and (e) is the
address of the last memory location to be printed.

Operation: The contents of memory locations starting with location (b) and proceeding
through location (e) are printed at the console teletype. The data is
displayed eight locations per line, and each line is prefixed with the
address of the first (left-most) value for that line. The contents of
memory locations cannot be changed with this command.

If the memory address specified by (e) is less than the memory address
specified by (b), printing will proceed from location (b) to location
FFFF, then from location zero to location (e).

Examples: 10/22M,B (39 Print contents of relative memory locations 10 thru 22.
B+0010=0782 D891 ...

B+0018=6088 103F ...
B+0020=5824 0135 0003

3-39

88A00508A-E

3.6.3.6 Register Display and Alter

Mnemonic:

R

Format: [r] R (EQ

where: r must be in the range: 0 <r < 8
r value register name
0 A
1 X
2 Y
3 z
4 B
5 c
6 D
7 E
8 S (status)

Operation:

Examples:

If r is specified, the Console ROM starts a new line and types the regis-
ter name followed by an equal sign, the contents of the register, and a
space. If the user responds with a space, the contents of the next se-
quential register will be displayed. If the user responds with a hexa-
decimal number, that value will replace the displayed number in that
register. If the user responds with a carriage return, the command is
terminated; if he enters a hexadecimal number, that value replaced the
contents of the register before the command is terminated.

If r is not specified, all nine registers are displayed on a, single line.
The value contained in each register is preceded by its name and an equal
sign. No register values can be changed with this format of the command.

3R <E§ Display the contents of register Z.

Z=3FCO ¥ The contents of register Z is 3FCO; display the next
register.

B=2ABC 2D5CH The contents of register B is 2ABC; replace the contents

with 2D5C, then display the next register.

C=1044 1408 (}9 The contents of register C is 1044; replace the contents
with 1408, then terminate the command.

3-40

88A00508A-E

3.6.3.7 Executing a Single Instruction

Mnemonic:

Format:

Operation:

Examples:

S
S or as [,mode] @
where: a 1is the memory location of the single instruction

to be executed.

If an address (a) is specified, the Console ROM will execute the
instruction of the user's program at the location specified; control
will return to the Console ROM. If no address is specified, no command
terminator (carriage return) will be accepted, and the Console ROM will
execute the instruction of the user's program at the address where the
last trap occurred or at the address following the location where the
last single instruction execution occurred (i.e., the next instruction),
whichever occurred last. If no address was specified and no trap or
single instruction execution has occurred, the Console ROM will respond
with a question mark (?), ignore the commands, and be ready to accept
another command.

When control returns to the Console ROM from a single instruction
execution, all the current registers are saved (including the status)

and the address of the next instruction to be executed (i.e., register P)
is typed at the teletype. The Console ROM is then ready to accept
another command.

NOTE

A single step through the following instructions
require special procedures; in general, it is best
to avoid attempts to single step through them.
WAIT: Specify 'a' to advance post location
of WAIT instruction.
XEC: A TRAP (T) must previously be set past
the XEC instruction location.

Any PIO instruction to the serial I/0 controller
device address X'3F': The SCI also uses this
device and leaves it in RCV mode when it exits.
Results may be unpredictable.

948, B Execute the single instruction at relative location 94.

B+0095 The instruction at relative location 94 was executed;
the next instruction to be executed is at relative
location 95.

S Execute the next instruction (i.e., the single instrucs
tion at relative location 95).

B+0024 A single instruction was executed; the next instructiomn
to be executed is at relative location 24 (a JMP, JSR,
etc., must have occurred).

3-41

88A00508A-E

3.6.3.8 Set Trap

Mnmonic:

Format:

Operation:

Examples:

T
[a] T [,mode] @
where: a is the address of the memory location where control

is to return to the Console ROM BEFORE the instruction
at that memory location is executed.

The Console ROM uses the GA-16 TRAP instruction to facilitate the setting
of break points within the user's program. This facility enables con-
trol to return to the Console ROM when control reaches that point so

that the user may examine or alter either memory locations or registers,
or he may redirect execution control..

When a TRAP returns control to the Console ROM, all of the current
registers are saved (including the status), the user's original data
words are restored, the TRAP is deactivated, and the address of the
memory location where the TRAP occurred is typed on the teletype. The
Console ROM is then ready for a command to be input. A maximum of four
TRAPs may be active at any one time. If the user attempts to set more
than four TRAPs, the Console ROM will respond to each such TRAP command
with question mark (?), ignore the command, and be ready to accept an-
other command. The status of the four active TRAPs is not affected.

If the address (a) is not specified, a TRAP will be removed. When a
TRAP is removed, the address of the restored memory location is typed on
the teletype. If no TRAPs are active when a request for TRAP removal is
made, the Console ROM will respond by typing a question mark (?), and

be ready to accept another command.

1000T,A (}§ Set a TRAP at absolute memory location 1000.
107,B (}9 Set a TRAP at relative memory location 10.
oG (}9 Start user program execu:ion at relative memory

location O (note that the addressing mode of the
previous command remains in effect).

B+0010 Control returns to the Console ROM upon encountering

. the TRAP which was set at relative memory location 10.

T Remove the TRAP. Addressof the TRAP removed. (Note:

1000 It is assumed that the user specified some command
which changed the addressing mode from relative to
absolute.)

T (Eg Remove a TRAP.

? All TRAPs have been removed.

3-42

88A00508A-E

3.6.3.9 Set Relative Addressing Bias

Mnemonic:

Format:

Operation:

Examples:

Y
ay[,A]
where: a is the address bias to be used when the relative

addressing mode is in effect.

The value of the bias to be used when the relative addressing mode is

in effect is changed to the address specified. The addressing mode is
NOT affected.

3000Y,A The bias to be used in‘relativé addressing is
set to 3000.
7/11M,B The eleven-word block of memory beginning at relative

location 7 (absolute location 3007) is to be listed.

3.6.3.10 Fill Memory

Mnemonic:

Format:

Operation:

Examples:

Z
b/e/nZ[,mode] (}9
where: b is the address of the first memory location to be

filled with the specified address value n, and (e) is
the address of the last memory location to be filled
with the specified value n.

Memory locations (b) through (e) (inclusive) are filled with the
specified value (n). :

If the memory address specified by (e) is less than the memory address
specified by (b), filling will proceed from location (b), to the first
location where the store of data is not effective (i.e., non-existent
memory or ROM).

23AB/24AB/0Z,A @i@ Fill absolute memory locations 23AB through 24AB
with zeros.

55/63/11112,B €R) Fill relative memory locations 55 through 63 with
the hexadecimal value 1111.

3-43

88A00508A-E

3.6.3.11 1/0 Reset

Mnemonic: !

Format: ! @

Operation: A system-level I/0 reset is performed (i.e., a CTRL 2 to device X'3' is
performed). This will initialized (reset) all peripheral controllers
(except the teletype) and will not affect the CPU.

3.7 CONSOLE ROM SYSTEM INTERFACES (GA-16/220)

This section describes the methods by which the console. ROM may interact with a
user's program. - .

3.7.1 USE OF INTERRUPT VECTORS
The Console ROM makes use of interrupt vectors at locations X'44' and X'46'.

Location X'44' and its associated cells X'7C' and X'7D' are used to service traps.
When a G (3.6.3.2) command is given, the Console ROM checks to see if the user has
specified any traps to be set. If any traps are to be set, the Console ROM, at this
time, sets the appropriate traps after first saving the user's original object code.
The contents of location X'44' is then saved and the vector is changed to the Console
ROMs TRAP entry point.

When a trap interrupt through location X'44' occurs, the Console ROM examines the
instruction causing the trap. If it 1s not a trap that the Console ROM set, control
will go to the location pointed to by the saved trap vector; if a trap that the
Console ROM set caused the interrupt, the address where the trap occurred will be
printed on the teletype, those user locations containing the traps will be re-
established with user code, and the location X'44' vector will be reset to the user's
original contents.

Location X'46' is set by the Console ROM to point to its single step or break
interrupt entry point whenever the RESET button is pressed or a G (3.6.3.2) orS
(3.6.3.7) command is given. The user's contents are neither preserved or restored.

3.7.2 USE OF THE BREAK INTERRUPT FEATURES

The CPU has a BKDS switch and a BKINT switch. When the BKDS is set to enable the
BREAK key and the BKINT switch is set to allow an interrupt upon the detection of a
break signal, the user may interrupt his program at any point in time by pressing
the teletype BREAK key. When this is dome, an interrupt through location X'46' will
occur, the Console ROM will save all registers and the status at the time of the in-
terrupt, and then print at the teletype the address of the next instruction to be
executed in the user program.

3-44

88A00508A-E

3.7.3 USE OF CONSOLE ROM CLOSED SUBROUTINES

Table 3-5 provides a list of the closed subroutines which a user may call from his
program. Assembly coding must be used. For all Console ROM subroutines, the con-
dition indicators (Z,P,0,L) will be changed.

The addresses shown in Table 3-5 are the full 16-bit (64K) addresses and should be
used by the user in referencing these routines even in the 32K mode (since the high-
order bit will be truncated). The addresses in parenthesis are the corresponding
addresses for 32K mode, so that the user will be aware of possible address conflicts.

The Console ROM subroutines use base-relative references (Section 4.3.1.2);
therefore, register D must be set to the base location X'FEOO' in the ROM prior to
entry of any subroutine. If the user program also uses register D, the user's cal-
ling sequence must save register D contents (in a memory address or an available
register) before setting register D to X'FEOO'. Upon return, register D contents
may then be restored. The CAP-16 assembler does not provide any automatic means of
referencing the subroutines.

The user must construct his own linkages to the addresses, usﬁally via equate (EQU)
directive in his program. A suggested method is, for example:

ROMDB EQU X'FEQO' Base address for subroutine data references
TTYIN EQU X'FC57! Address of TTY input subroutine.

RTIR Z,D Save program base

LDV D,ROMDB " Load subroutine base

JSR TTYIN Read a character from TTY

RTR D,2 Restore program base

CAUTION
A note of caution should be observed — 1if for

some reason, a new version of the Console ROM is
made, the subroutine entry locations and base
address may change.

3-45

88A00508A-E

Table 3-5. Console ROM Closed Subroutines
Hexadecimal
Location Function Registers Affected; Comments
FC57 Read one charactér from the A; data in bits 7-0, bits 15-0 = zero,
(7¢57) console TTY into register A. parity bit not forced on.
FC5C Write one character from None; data taken from bits 0-7 of
(7C5C) A register to the console TTY. register A.
FC61 Output the 4 hexadecimal digits| A,Y,B; uses RAM location FE03 (7E03)
(7¢c61) in register B to the console
TTY.
FC73 Input hexadecinal digits into (A,B,Cé uses RAM locations FEO3 (7E03),
(7€73) register b; stops on first FEO4 (7E04), and FEOl (7EO1l); on return:
non-hexadecimal character. '

- Register B contains the last 4 hex
digits input.

- Register C contains the terminative
non-hex character with parity in
bits 7-0, bits 15-8 are zero.

- Zero indicator is set if any valid
digits were input; reset if not.

FC8C Input an ASCII character. A,C; uses RAM location FEO4 (7E04) on
(7¢8C) return:

- Register A contains the character
without parity in bits 7-0, bits
15-8 are zero.

-~ Register C contains the character
with parity in bits 7-0, bits 15-8
are zero.

FC9B Output carriage-return and A; uses RAM location FEO3 (7E03)
(7C9B) line-feed to console TTY.

FD88 Punch standard length paper A,X; uses RAM location FEQ3 (7E03)
(7D88) tape leader or traller on

console TTY paper tape punch.

3-46

88A00508A-E

3.8 BUS-16 STAND-ALONE UTILITY

BUS-16 is a powerful utility program which is
with enhancements. BUS~-16 is provided in PGS
BUS-16 can be loaded in PGS format by the PGS
format by TTYB or HSPT bootstrap loaders. It
PGS LOADER and PGS PUNCHER. In addition, its
bugging another stand-alone program in core.

similar in scope to the console ROM
or binary format on cards or tape.
LOADER or from disk; or in binary

can perform the functions of both the
control commands make it ideal for de-
Using BUS-16, the following functions

can be performed by directives at the teletype keyboard.

1. Select octal or hexadecimal mode of operationm.

2. Select absolute or relocatable address mode.

3. Load object program in PGS format.
4. Display and alter memory.

5. Display and alter registers.

6. Search memory for specified value.
7. Selectively execute object program.
8. Selectively list memory.

9. Punch PGS or binary object program.\

10. Calculate sums and differences.

Since BUS-16 is relocatable, it may be loaded

memory required is approximately X'4CO' words.

into any free area of core. Total

Its execution address is the first location of the program.

For loading and execution procedures refer to GA-16/220/330 Stand-Alone Utilities,

document number 94A01531A.

3-47

88A00508A-E

3.9 TEST AND VERIFY (T&V) PROGRAMS

A series of test and verify programs are available for checkout of the SPC-16 and
GA-16 series computer systems as described in the following sections.

3.9.1 CPU T&V

The CPU T&V program for GA-16 series computers is available in binary or PGS format

on paper tape. Description of the test and procedures for running the CPU T&V are
provided in comments which begin the program listing (GA release #5T10A). For a
GA-16/220 system, an introductory manual entitled "How to Use Your GA-16/220"

(Document Number 88A00525A) is available. This manual is oriented to the installatiom,
familiarization, and first-time use of a GA-16/220 system. The CPU T&V program is

run to check out the system. ‘ '

3.9.2 MPP T&V

A T&V program for GA-~16 systems equipped with an MPP module is available.
Description of the tests and procedures for running the MPP T&V are provided in
comments which begin the program listing (GA release number 5T1104).

3.9.3 PERIPHERAL PRODUCT T&Vs

T&Vs for peripheral products are available for the SPC-16 series of computers., The
procedures provided with these T&Vs are oriented toward use of a SPC-16 machine.
There are several differences when running them on a GA-16 series computer. These
differences are described in a reference document 94A01519A entitled Execution of
Test and Verify Programs on the GA-16 Series Computers.

88A00508A-E

instruction repertoire

This section describes the GA-16/110/220 instructions. A working program is
illustrated at the end of Section 4 (Figure 4-8) in which many of the GA-16/110/220
instructions are used.

4.1 INSTRUCTION GROUPS

Table 4-1 shows the fourteen instruction groups and the entire instruction repertoirc
for the GA-16/110/220 computer systems. This instruction set provides many operations
not commonly available on a minicomputer. These operations include:

* Bit instructions that will test, set, or reset any bit in memory, facilitating
efficient use of logical variables.

* Byte instructions to load or store into memory any byte, or to switch the contents.
of two bytes in a word; this greatly simplifies handling character data.

* Register-to-register and literal (immediate)-to-register arithmetic and logic
instructions. These instructions may generate results which are stored in a
register, or the results may be reflected in status indicators only (indicating
greater than, less than, zero, non-zero, plus, minus, etc.).

* Compare-memory-with-register instructions to reflect results in status indicators
only; this allows efficient searching of memory for specified values.

* Capability of loading an instruction into a register and of executing it; this
feature facilitates the use of procedure-only programs in read-only memory (ROM).

* Jump to a subroutine and return via the address stored in register E; the tech~
nique of saving the return address in a register decreases subroutine and inter-
rupt processing overhead.

¢+ Load all registers and status, or save all registers and status; each of these
operations requires only one instruction and greatly simplifies coding of inter-
ruptable and re-entrant programs.

The GA-16/220 provides the following additional instruction capability:

+ Single step and I/0 reset under program control.

* Read microconsole data entry switches under program control.

Instructions having similar formats (and addressing modes, where applicable) are

introduced as a group, followed by subsections which describe individual instructions

and include examples of how the instructions are used.

4-1

88A00508A-E

Table 4-1. GA-16/110/220 Instruction Repertoire (Sheet 1 of 3) |
Variable Execution Diséussed in

Op Code|Parameters Description Time (us) Paragraph Number
MEMORY REFERENCE
JMP Addr Jump unconditionally 1.55 4.4.1
JSR Addr Jump to subroutine 2.05 @ 4.4,2
LDA Addr Load register A 2.60 4.4.3
STA Addr Store register A 2.60 4.4.4
MEMORY REFERENCE WITH INDEXING 4.5
CMR R,Addr,X Compare memory with register 3.60 4.5.1
DECM Addr,X Decrement memory 3.60 4.5.2
INCM Addr,X Increment memory 3.60 4.5.3
LARS Addr,X Load all registers and status 11.50 4.5.4
LDBY R,Addr ,X Load byte 3.60 4.5.5
LDR R,Addr,X Load register 2.60 10 4.5.6
RBIT n,Addr,X Reset bit n (n =0 to 7) 3.60 4.,5.7
SARS Addr ,X Store all registers and status 15.20 4.5.8
SBIT n,Addr,X Set bit n (n =0 to 7) 3.60 4.5.9
STBY R,Addr,X Store byte 3.55 4.5.10
STR R,Addr,X Store register 3.00 4.5.11
TBIT n,Addr,X Test bit n (n = 0 to 7) 3.60 4.5.12
CONDITIONAL JUMP (SKIP) -- EXTENDED DISPLACEMENT 4.6
SKM Addr Skip if minus 2.05 4.6.1
SKN Addr Skip if non-zero 2.05 4.6.2
SKOF Addr Skip if overflow false (mo overflow)] 2.55 4.6.3
SKOT Addr Skip 1if overflow true 2.55 4.6.4
SKP Addr Skip if plus 2.05 4.6.5
SKR Addr Skip if link reset 2.05 4.6.6
SKS Addr Skip if link set 2.05 4.6,7
SKZ Addr Skip 1if zero 2.05 4.6.8
REGISTER OPERATE and
REGISTER OPERATE QQMEAB£§:> 4.7
(Rd = destination register; Rs = source register)
ADD Rd,Rs Add registers 2.05 4,7.1
ADDC Rd,Rs Add register and compare 2.05 4.7.2
AND Rd,Rs AND registers 2.05 4.7.3
ANDC Rd,Rs AND registers and compare 2.05 4.7.4
OR Rd,Rs OR registers 2.05 4.7.5
ORC Rd,Rs OR registers and compare 2.05 4.7.6
RTR Rd,Rs Transfer register 2.05 4.7.7
SUB Rd,Rs Subtract registers (Rd-Rs) 2.05 4.7.8
SUBC Rd,Rs Subtract registers and compare 2.05 4.7.9
XOR Rd,Rs Exclusive-OR registers s and d 2.05 4.7.10
XORC Rd,Rs Exclusive-OR registers and compare 2.05 4.7.11

(:>Execution times will vary depending on addressing mode, indexing, and (for memory
reference with indexing) number of words per instruction.

Compare .instructions do not affect the contents of the registers used.

4-2

88A00508A-E

Description

Execution

GA-16/110/220 Instruction Repertoire (Sheet 2 of 3)

Discussed in
Paragraph Numbe

Add value to register R

Add value to register R and compare
AND value with register R

AND value with register R and compare
Load value into register R

OR value with register R

OR value with register R and compare
Subtract value from register R
Subtract value from reglster R & compare
Exclusive-OR value with register R

Table 4-1.
Variable
Op Code|Parameters
REGISTER OPERATE LITERAL and
REGISTER OPERATE LITERAL COMPARE
ADDV R,value
ADDVC R,value
ANDV R,value
ANDVC R,value
LDV R,value
ORV R,value
ORVC R,value
SUBV R,value
SUBVC R,value
XORV R,value
XORVC R,value

Exclusive-OR value with register R
and compare

SUBROUTINE RETURN VIA

INDIRECT VECTOR
RTNIV |Addr

REGISTER CHANGE

ADDS
CMPL
DECR
DSPL
EXBY
EXIT
INCR
RCSW
RISE
RLK

RTRN
TRS

TSR

XEC

ZERO
ZLBY
ZRBY

SHIFT LEFT

SLC R
SLCL R

WA IAd DDA DHOEDHD DR

SLIO
SLIZ

R

Return from an NI interrupt

Add shift counter to register R
Complement register R

Decrement register R

Transfer register R to Data Bus
Exchange bytes

Exit from subroutine via register R |
Increment register R

Invalid instruction; use RCSR A
Restore interrupt system enable via R’
Add link to register R

Return from subroutine via register R
Transfer register R to status register
Transfer status register to register R
Execute instruction contained in R
Zero register R

Zero the left byte
Zero the right byte

of register R
of register R

Shift left circular
Shift left circular
thru link

Shift left logical;
Shift left logical;

in register R
in register R

insert omne's
insert zeros

Time (us)

3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10
3.10

13.10

4.70

3.55
3.05
2.55
3.05
2.55
2.55
2,55
2.55
2.55
3.05
'2.55
2.55
2.55
2.05
2.55
2.55
2.55

e
. e

.
.

O~ UBnHSWND -

o

00 00 00 00 00 OO 00 00 QO 00 o

S L R T R S S R S R
- .

4.8.11

—
o

= s e e e
[ecNeoNeNeoloNoNeNoNo]
WOoONOTTU P~ WN -

AP EPEPPRPEAEEAEEE B~ OB

4.10.10
4.10.11
4.10.12
4.10.13
4.10.14
4.10.15
4.10.16
4.10.17

4.11
4.11.1

88A00508A-E

"N is the number of shifts -1
"Includes NI interrupt time
e GA-16/110 has no microconsole switches for data entry so these instructions

have no effect
$)N is the total number of bits in the divisor or multiplier
I is the number of one bits in the multiplier

4-4

Table 4-1. GA-16/110/220 Instruction Repertoire (Sheet 3 of 3)
Variable Execution Discussed in
Op Code Parameters Description Time (us) Paragraph Number
SHIFT RIGHT 4,12
SRA R,count Shift right arithmetic count times 3.05+1.0 4.12.1
SRC R,count Shift right circular count times 3.05+1.0N 4.12.2
SRCL R,count Shift right circular in register R ‘,
thru 1link 3.05+1.0Nz 4.12.3
SRLC R,count Shift right logical and count . 3.05+l.0N‘D 4.12.4
CONTROL 4.13
BMS Select background registers 2.55 4.13.1
FMS Select foreground registers 2.55 4.13.2
INE Enable interrupts 2.55 4.13.3
INH Inhibit interrupts 12.55 4.13.4
LKR Reset link 2.55 4.13.5
LKS Set link 2.55 4.13.6
PMA Pulse monitor alarm (reset OMA timer) | 2.55 4.13.7
SYNC Generate a sync pulse 2.55 4.13.8
TRAP Interrupt the program sequence 8.80(:) 4.13.9
WAIT Halt execution of instructions 2.55 4.13.10
PROGRAMMED I/0 4.14,
CTRL fun,device|Output function control pulse 2.05 4,14.1
DTIM R,device Transfer data from device into loca-
tion pointed tobyregister R 4,10 4.14,2
DTIR R,device |Transfer data from device toregisterR| 3.05 4.14.
DTOM R,device |Transfer data pointed to in register
3.10 .14,
R from memory to device
DTOR R,device Transfer data in R to device 2.55 4.14.5
TEST fun,device|Test device 2.55(false) 4.14.6
3.05(true)
READ CONSOLE SWITCHES (220 onlyﬁ:D 4.15.1
RCSM R Read console switches to memory 3.05 4,15.1.1
~ pointed to by register R
RCSR R Read console switches to register R |4.10 ‘ 4.15.1.2
MULTIPLY/DIVIDE
DIV n Divide 3.5+2.0N<:> 4.16.1
MPY | n Multiply 3.5+L5N(5)
+.51
per "1" bit
SPECIAL INSTRUCTIONS (220 only)
CTRL 2,X'3E' I/0 bus reset (IORST) 4.17.1
CTRL 1,X"3E' Enable single instruction interrupt
(This instruciton must be in upper
1K of memory mode; that is, the SCI) 4,17.2

88A00508A-E

Examples in this section use CAP-16 assembly language syntax. A source statement
consists of an instruction mnemonic (for example, JMP for jump instructions) fol-
lowed by parameters that specify operands such as the address to be referenced by
that instruction, the register to be loaded or stored, the register to be used as
an index register, the bit to be tested, etc. A source statement may also include
a label. A label identifies the memory location at which the machine-language
representation of the source statement will be stored; it does not affect machine-
language coding until it appears as a parameter in another source statement.

A CAP-16 assembly-language program consists of a series of source statements which
are translated by the CAP-16 assembler into machine-language equivalents. The
general relationship between machine language format and source-statement format
for the GA-16/220 instructions is represented below:

151413 12 11109 8 7 6 56 4 3 2 1 0

MACHINE INSTRUCTION FORMAT OP CODE OP CODE EXTENSION/OPERANDS
1 | 1 i | 1 1 : 1 | | g | 11
-
o
a— -
SOURCE STATEMENT FORMAT (LABEL) . INSTRUCTION PARAMETERS
MNEMONIC 243-3-1

Both formats are given for each instruction group. A machine instruction diagram is
presented, which identifies the significance of bits or groups of bits within an
instruction word. This 1s followed by the source-statement format, which lists the
instruction mnemonics for that group and defines the parameters which are used. The
source-statement parameters are explained in terms of their relationship to the bits
in the machine instruction. A discussion of the addressing modes, addressing ranges,
and effective address generation is included for instruction groups that reference
memory.

4.1.1 CONVENTIONS

The sequence of operations involved in executing an instruction is discussed in each
instruction's subsection. The indicators and general-purpose registers that are
affected by the execution of each instruction are specified. 1In discussing the se-
quence of operations, the following conventions are observed:

« The sequence 1s shown by one or more arrows. For example, l1-+Link means that the
contents of the link indicator is replaced by a 1.

« Upper-case letters are used to represent the contents of a specific register.
For example, D refers to the contents of register D,

e Bits within a word may be represented as subscripts. TFor example, B
to bits 3 through 0 of register B

3-0 refers

+ The term effective address, EA, refers to the address value calculated during
execution of an instruction which addresses a memory location. EA is the value
at any step in the evaluation process.

4=5

88A00508A~E

A memory address is represented by an address symbol without parenthesis. An
address symbol enclosed in parentheses refers to the contents of the location
addressed by the symbol. For example, EA is an effective address; (EA) is the
contents of the memory location addressed by EA; ((EA)) means the contents of
the memory location addressed by EA points to another location (i.e., an indi-
rect address).

The symbol $§ refers to the absolute address from which the instruction currently

being executed was fetched. §+1 refers to the next sequential address. Thus, if:
the instruction at $ is a one-word imstruction which does not affect program se-
quencing, $+1 is the address of the next instruction to be executed. If $ points
to a two-word instruction, $ is the address of the first word and $+1 the address
of the second word. For a two-word instruction, $+1 is the second word of the !
instruction and $+2 is the address of the next instruction to be executed. i

In examples using base-relative addressing, the symbol $$ refers to the base
address (that is, the contents of register D). ‘ f

A bit position represented as an "X" can be either "1" or "O".

Hexadecimal numbers are represented by X'nnnn' (X'll', X'7FFF', etc.). Numbers
less than X'A' do not have to be represented in this way, but often are for
consistency.

4.1.2 ADDRESSING PARAMETERS

Two instruction groups (memory reference and memory reference with indexing) use
some addressing paramters that may or may not be present. These parameters cor-
respond to the three addressing stages as follows:

[,m] Stage-1 addressing (absolute, base-relative, program-relative) - For both

[*]

groups, the interpretation of this stage is normally left to the CAP-16
assembler. The assembler will choose the correct addressing mode using
information given by other source statements (called assembler directives)
for which no machine instructions are generated. First-stage addressing
can be specified by appending a parameter (,m) to the source statement.

Stage-2 addressing (direct, indirect) - For both groups, an asterisk speci-
fies indirect addressing; if no asterisk is coded, direct addressing is used.

[,1] Stage-3 addressing (indexed) ~ The memory reference with indexing instructions

_can specify an indexed address by naming an index register as a parameter; if
no index register is given, the address is not indexed.

These parameters are enclosed in brackets in the source statement format to indicate
that the parameter may or may not be present in the source statement itself.

There is one other addressing parameter needed by three of the instruction groups
which reference memory. This is an address expression which is used in determining
the value placed into the address field of the instruction. The address expression
may be a constant or it may include a label reference. The value of a constant is
specified directly as a parameter in a source statement. The value assigned to a
label, however, is independent of the source statement which includes it as an ad-
dressing parameter, since the label's value is determined by the location of the
instruction in which the label appears.

88A00508A-E

A CAP-16 assembly-language program generally consists of two sections: a program
section (PSECT) and a data section (DSECT). The PSECT normally contains all the
executable instructions in the program as well as any constants used by the program
that do not change during its execution. The DSECT normally reserves storage for
variable data items on which the instructions in the PSECT operate.

Labels in a PSECT are assigned a value relative to the beginning of the PSECT. If
PB (program base) symbolizes the absolute address of the first location in a PSECT,
then PB+0, PB+l1, and PB+2 identify the addresses of the first three locations. If
these locations are given the labels ONE, TWO, and THREE, respectively, label ONE
has the value PB+0, label TWO has the value PB+1, and label THREE has the value PB+2
When a label that has been given a program-relative value appears as a parameter in
another source statement, that statement is normally assembled into machine code
using program-relative addressing. For example, in the following program section:

Value of Label Label : Mnemonic Parameters
PB+0 - ONE - JMP THREE
PB+1 TWO . .
PB+2 THREE . .
PB+3 FOUR JMP TWO

the jump instructions would be assembled into machine code using program-relative
addressing. The first instruction is located at PB+0; its program-relative origin

is its location plus one (or PB+l). The location that the instruction references
(THREE) has the address PB+2; the address field will be assembled to contain
(PB+2)-(PB+1)=1. The fourth instruction's location is PB+3 and its origin is

PB+4. It references the address PB+1 (TWO); therefore, the address field of the
fourth instruction will contain (PB+1)-(PB+4)=-3 (in two's complement form). Since
the absolute address PB is eliminated in address calculation, its value is irrel-
evant to the coding of the instruction. This means that program sections, comprised
of instructions that use only program-relative addressing when referencing locations
within the PSECT, may be located anywhere in memory without affecting the coding of
individual instructions (that is, PB can have any value).

Labels within a DSECT are given a value relative to the beginning of the DSECT. If
$$ symbolizes the address of the first location of DSECT, then $$+0, $$+1, and $$+2
identify the first three locations of the DSECT. For example, in the following
program:

DSECT (Indicates data section)
DATAOQ DS 1 (Defines labels DATAO and DATAl and allows one word
DATA1 DS 1 of memory storage for each.)
PSECT (Indicates program section)
LDA DATAO Load contents of location DATAQ into register A.
STA DATA1 Store contents of register A at location DATAI.

88A00508A-E

4.1.3 REGISTER IDENTIFIER CODES

Several instruction groups use register identifier codes. These codes are listed
below; they are the same for all instructions and apply to both foreground and back-
ground register usage (refer fo Section 4.13.1 and 4.13.2 for selection of register
sets).

Bit Code Register
000 A or A'
001 X or X'
010 Y or Y'
011 Z or 2'
100 B or B'
101 C or C'
110 D or D'
111 E or E'

4.2 INSTRUCTION FORMAT

Instructions are represented as one or two l6-bit binary words (depending on the op
code) in the following general formats:

ONE-WORD INSTRUCTION
1514 1312 11 10 ¢ 8 7 6 5§ 4 3 2 1 O

OP CODE |OP CODE EXTENSION AND/OR QUALIFIERSI
L1 W S T T R S T D S R

TWO-WORD INSTRUCTION
i514 1312 11 10 9 8 7 6 56 4 3 2 1 0

OP CODE |OP CODE EXTENSION AND/OR QUALIFIERS
[| 11111||5|n|WORDONE

T
QUALIFIER WORD TWO

The operations code (bits 15 to 12 of the first word), together with any operation
code extension bits, uniquely identify each of the GA-16/220 instructions. The re-
maining bits are grouped into various qualifier fields. The number, grouping, and
significance of qualifier fields depends on the instruction that is specified by the
operation code and operation code extension bits. Qualifiers specify such things as
the addressing mode that the instruction is to use, the address of the memory loca-
tion to be referenced by the instruction, the register on which the instruction is

to operate, etc. All instructions have an operation code in bits 15 to 12. Instruc-
tions requiring the most space for qualifiers are given the shortest operation codes
(that is, use only bits 15 to 12 to specify the instruction). Some instructions have
a combination of operation code extension and operands in bits 11 to 0, and instruc-
tions which do not require any operands use all 16 bits to specify an operation.

4-8

88A00508A-E

A two-word imstruction is needed with memory reference with indexing instructions
(Section 4.5) when an allowed address is too large to fit in the first word; in this
case, the address will be contained in the second word. An instruction which includazs
a literal value operand (Section 4.8) will always be a two-word instruction with the
literal value contained in the second word (that is, the operand for the instruction
is in the location immediately following the op-code word). The subroutine return
via indirect vector instruction (Section 4.9) is also a two-word instruction.

4.3 _ADDRESSING MODES

The processing power of the GA-16/110/220 computer is a result of its flexible
addressing scheme. Instructions reference memory locations to either alter program
sequencing or to store, retrieve, or test data. Not all instructions reference mem-
ory, but those that do contain either explicit or implicit addressing information.
During the execution of an instruction.-containing address information, the CPU uses
the address information to determine the absolute address of the memory location to
be accessed.)

There are a number of methods by which the CPU may calculate an address. These
methods are termed ''addressing modes'". Some instructions use only one addressing
mode; for these instructions, the mode is implied by the group to which the in-
struction belongs. Other instructions allow a choice among several addressing modes;
certain bits are set aside in these instructions to select the addressing mode.

All instructions that reference memory (except instructions using literal addressing)
have a number of bits that serve as an address field. The address field contains an
absolute address or relative address, which may be signed or unsigned.

Figure 4-1 identifies the instruction groups that reference memory and the addressing
modes available to each group. As illustrated, an address evaluation requires from
one to three stages, depending upon the addressing mode.

4.3.1 EFFECTIVE ADDRESS GENERATION - STAGE 1
(ABSOLUTE, BASE-RELATIVE, PROGRAM-RELATIVE, OR LITERAL)

As shown in Figure 4-1, instructions that reference memory may use absolute, base-
relative, program-relative, or literal addressing. These terms describe the various
methods by which the CPU can determine an effective address in stage 1 of an address
generation. For some instructions, the effective address that is determined in stag:
1 (EAl) is the final effective address (EA FINAL). That is, stage 2 and stage 3 are
not required. When stage 2 is required, the result of stage 1 is carried into stage 2.

4-9

01-%

*1-¢ 2an314

Kiows] 9ousi9J9y IBYJ SUOTIONIISUI 10J 59881 SS3IPPY

Instruction Group

Addressing Stages

And Function Stage 1 Stage 2 Stage 3
Memory Reference
a. Move data items Program Relative Direct
EAl EA2 = EA FINAL
b. Change program sequencing Base Relative . Indirect '
Memory Reference with Indexing
)]
Reference word, byte or bit data. Absolute EAI Direct EA2 Non-Indexed EA3 = EA FINAL
Base Relative Indirect . Indexed -
Condtional Jump (Skip)
Conditionally change program Program Relative EA = EA FINAL
sequencing 1
-
Register Operate Literal and
Register Operate Literal Compare
Reference a literal value Literal EAl = EA FINAL
.243-2-13

#-V80S00V88

88A00508A-E

4.3.1.1 Absolute

The effective address is the address contained in the address field of the instruction.
For example, a memory reference instruction with indexing:

1514 131211 10 9 8 7 6 56 4 3 2 1 0
X X X x|o]x x x x x x[1 0o 0o 0 1
1 1 1 1 i L 1 i i L 1

|

M "w
I ADDRESS FIELD
INDICATES ABSOLUTE
specifies the effective address, X'll'.
MEMORY
TOP —— =
(HIGHESTADDRESS) - — — — — = — == — = 7
INSTRUGTION LOCATED AT ANY

ADDRESS IN MEMORY

b e — — . - —

EFFECTIVE ADDRESS
(15t STAGE)

b, & & L—.

b e — — —— o—— —— o — o—]

0 e——]

243-2-14

Absolute addressing is used by the memory reference with indexing instructionms,
Section 4.5.

4.3,1.2 Base-Relative

The effective address is calculated as the sum of the contents of register D (called
the base address) and the contents of the address field of the instruction. For ex-
ample, if register D contains:

16 1413 12 11 10 9 8 7 6 5 4 3 2 1 0

0O 0 0 0O0OO0OOC O 11O OO 0 O0OCO
11| I T S T T TR TR W i I |
. ! ! i J
v
ADDRESS FIELD OF
D-REGISTER X'80°

243-2-15

4-11

88A00508A-E

and the instruction is a memory reference instruction with indexing:

1514 1312 1110 9 8 72 6 5§ 4 3 2 1 0

X X X Xi1]x x X X X X '
L1 1 [4 L1 1=° |°|°11
\qld

the effective address will

ADDRESS FIELD X117’

INDICATES BASE RELATIVE

be X'80'+X'11'=X'91’.

MEMORY

TOP ———=

X917’ i

X80’ ==t

0 e

LOCATED AT ANY

INSTRUCTION =" ADDRESS IN MEMORY

EFFECTIVE ADDRESS
(1st STAGE)

--——— BASE ADDRESS

243-2-18

Base relative addressing is used by the memory reference instructions (Section 4.4)
and the memory reference with indexing instructions (Section 4.5).

4.3.1.3 Program-Relative

The effective address is calculated as the sum of the address of the memory location
following the one from which the instruction itself was fetched and the contents of
the address field of the instruction (in two's complement form with the high-order

bit of the address field specifying the sign).

For example, if the instruction (a

memory reference instruction is illustrated) is located at hex address lFF and it

appears as:

15

14 13 12 11 10 9 8 7 6 6§

4 3 2 1 0

X X X X|o|x[|1 0 0 1t 1
L1 1 | 1

1t 1.0 0 O
|

b ———

! J

SIGN BIT
- INDICATES

4-12

t ADDRESS FIELD X’188" IN TWO’S COMPLEMENT FORM

PROGRAM RELATIVE
46684-2.

88A00508A~E

the address is determined as follows. The addressing origin is X'lFF'+X'l'=X'200'
or, expressed in binary:

0000001000000000

Since the address field (for program-relative addressing) always contains a signed
number, the binary digit indicated in the sign bit is extended to the left to form
a l6-digit binary number. In the above example, the address field indicates the
following two's complement number:

111111001111000
This is summed with the origin address, ignoring the carry.
0000001000000000

+1111111001111000
0000000001111000 = X'78'

Thus, X'78' is the effective address.

MEMORY
TOP mmemeiipe
X'200"——| —— ADDRESSING ORIGIN
. -—— = = — — — — — E N FOR
VTS —— INSTRUCTION FIXED LOCATIO

THIS EXAMPLE

EFFECTIVE ADDRESS

x'78 (1st STAGE)

et — — — — — — o]

0 ——»|

243-2-16

Program relative addressing is used by the memory reference instructions (Section 4.4%)
and the conditional jump instructions (Section 4.6).

4.3.1.4 Literal

Instructions that use literal addressing are all two-word instructions. The effective
address 1s simply the address of the second word of the instruction (i.e., the operaad
is contained in the second word of the instruction). The register operate literal aad
register operate literal compare instructions (Section 4.8) use literal addressing.

4-13

88A00508A-E

MEMORY
TOP =i = LOCATION OF NEXT
= INSTRUCTION TO BE
EXECUTED
e e e e e —— —
X502 = -
X'601° e———ipmn | OPERAND g 2nd WORD OF INSTRUCTION
pr— c— vt— — — — — am—
X'500" ————3| INSTRUCTION -
P — om m—" ey wew encw s esses)
(R | 1st WORD OF
INSTRUCTION
46684-3.

4.3.2 EFFECTIVE ADDRESS GENERATION - STAGE 2 (DIRECT OR INDIRECT)

If a second address generation is required, the CPU must determine if the effective
address from stage 1 1s direct or indirect. 1In the examples that follow, the CPU
interrogates only one bit in the instruction word during stage 2; the address field
of the instruction is no longer relevant (it is used only to determine the effective

address for stage 1).

4.3.2.1 Direct

The effective address that was generated in stage 1 is simply carried into stage 3
(that is, no operation is indicated in stage 2). The result of stage 1 is thus
termed a direct address. For example, the following instruction specifies the

omission of stage 2 of the operand address generation.

151413 12 11 10 9 8 7 6 6 4 3 2 1 0O

X X X X X|o[Xx X X X X X x X X X
AN BT [A RS R R AN RN

T T]
4

L INDICATES DIRECT

4-14

88A00508A~E

If the effective address resulting from stage 1 for the above instruction were
X'300', the effective address carried into stage 3 would be X'300' (that is,
EA,=EA_=X'300').

1 2
MEMORY
TOP i
__ EFFECTIVE ADDRESS
(STAGE 1)
X'300" ————isn= ‘ -
EFFECTIVE ADDRESS
— (STAGE 2)
0 ——

Direct addressing is used by memory reference instructions (Section 4.4), memory
reference with indexing (Section 4.5), and conditional jump instructions (Section 4.€).

4,3,.2.2 Indirect

The effective address generated in stage 1 is the address of a memory location that
contains the effective address for stage 2. When indirect is indicated, an extra
memory cycle is required to fetch the effective address for stage 2 (that is, the
contents of the memory location identified by the effective address from stage 1).
The effective address resulting from stage 1 is called an indirect address. For
example, the following instruction specifies that the memory location identified by
the effective address from stage 1 is to be accessed to retrieve the effective ad-
dress that is to be carried into stage 3.

16 14 13 12 1110 9 8 7 6 5 4 3 2 1 O
X X X X X)1iX X X X X X X X X X
1 1 | 11 ¢+ 1t ¢ {1 1

L] L 1 v
INDICATES INDIRECT

If the effective address from stage 1 were X'300' and memory location 300 contained
X'600', then X'600' would be the effective address resulting from stage 2.

4-15

88A00508A~E

MEMORY
‘ - - = =="=== = EFFECTIVE ADDRESS
wm——_—
X600’ L e e _ (STAGE 2)
. T T T T T EFFECTIVE ADDRESS
X300 | __Xeo I sTaGgE1)

486-4-5.

Indirect addressing is used with memory reference instructions (Section 4.4), memory .
reference with indexing (Section 4.5), return via indirect vector instruction (Section !

4.9).

4.3.3 EFFECTIVE ADDRESS GENERATION - STAGE 3 (INDEXED OR NON-INDEXED)

If stage 3 is indicated, the CPU must determine whether or mot to add the contents of
an index register to the effective address from stage 2. The address determined in
stage 3 is the final effective address. Only the memory reference with indexing in-
structions (Section 4.5) provide a choice of indexed or non-indexed address genera-
tion, all other instruction groups which address memory are non-indexed.

4.3.3.1 Non-Indexed

The effective address resulting from stage 2 becomes the final effective address
(that is, no operation is indicated in stage 3). For erample, the follawing in=-
struction specifies the omission of stage 3 of operand address generation.

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
X X X X X X]0 0)]Xx X X X X X X X
I N TS | | [| L1

l
T \

L INDICATES NON-INDEXED

If the effective address resulting from stage 2 were X'300', then the result of
stage 3 would also be X'300'. Thus, X'300' becomes the final effective address.
On non-indexed instructions which reference bytes or bits, the upper byte of the
effective address is accessed.

[y

4-16

88A00508A-E

MEMORY

EFFECTIVE ADDRESS
(STAGE 2)

X*300" i

EFFECTIVE ADDRESS
(STAGE 3)
(FINAL ADDRESS)

4,3.3.2 Indexed

The effective address from stage 2 is modified by the contents of the index register
(registers X, Y, or Z) indicated by the instruction, to determine the final effective
address. If the instruction is one that operates on word data, the contents of the
index register selected are simply added to the effective address from stage 2 to de-
termine the final address. If the instruction is one that operates on byte or bit
data, the contents of the index register are divided by two by shifting one bit right
(bit 15 is set to 0), then added to the effective address from stage 2 to determine
the operand address. The indexing range of byte and bit instructions is limited to
32K. TIf the contents of the index register are even (remainder=0), the left byte is
selected; if odd (remainder=1), the right byte is selected. (For bit instructionms,

a 3-bit field in the instruction itself indicates which of the eight bits in the
selected byte is to be referenced.) For example, the following word imnstruction
specifies that the contents of register X are to be used in determining the operand
address.

15 14 13 12 1110 9 8 7 6 5§ 4 3 2 1 O
X X X X X X{0 1|x X X X X X X X
1 1 } 1 | - L1 1

|
t t
\ ./
v

INDICATES A
WORD INSTRUCTION

INDICATES INDEX REGISTER

10»-REGISTER Y

01»REGISTER X
11»REGISTER Z

466-4-6.

4-17

88A00508A-E

1f register X contains

1514 13 12 11 10 9 B 7 6 6§ 4 3 2 1 ¢
0 0 00 O 0 GO 0 0 O 01 0 O

| I 1 1 1 | S T T | lo
\ L L Ll

X8’
and the effective address from stage 2 is X'200',

X'8'=x'208'.
MEMORY

e c— — — — c— —— —— —

X'208' ~—————ap|

X'200° ———s=

466-4-7.

the operand address is X'200'+

~a— EFFECTIVE ADDRESS

(STAGE 3)
(FINAL ADDRESS)

-~ EFFECTIVE ADDRESS

(STAGE 2)

As an example of byte indexing, the following byte instruction specifies that the
contents of register Y are to be used in determining the operand address.

If register Y contains

15 14 13 12 11 10 9 8 7 6

X X X X X X|]1 0]X X X X X X X X
L4 1 1 1 1 | I SN G B R

T L]
\ ~ ’ L REGISTER
INDICATES A INDICATES INDEX
BYTE INSTRUCTION 01™-REGISTER X
10»REGISTER Y
11»REGISTER Z

15 14 13 12 11 10 ¢ 8 7 6 5 4 3 2 1 O

0 0 0 00O O 0 0O O O O 1 0 01

| NS N (N N NS U N VAN (R NS SN SO N N

N 1 T { P ?
X4

INDICATES THAT THE
RIGHT BYTE IS TO BE

(USED FOR ADDRESS DETERMINATION)
REFERENCED

4-18

. 88A00508A-E

and the effective address from stage 2 is X'600', the operand address is X'600'+
X'4'=X'604",

(o J——
SELECTED BYTE IN ARRAY
NUMBERED 0 THROUGH B
(HEX)
A B
e e e |]
X'604' ———-| 8 : 9 ~--———— EFFECTIVE ADDRESS
— T T T 5 — (STAGE 3)
I R (FINAL ADDRESS)
4 | 5
e e]
2 | 3
R
P — o | 1 <——— EFFECTIVE ADDRESS
- — — e —— (STAGE 2)
00—
466438

The actual contents of register Y is X'9'. Thus, in byte indexing, the bytes can
be viewed as an array with the contents of the index register identifying the ele-
ment in the array that is referenced.

4.3.4 EFFECTIVE ADDRESS WRAPAROUND

In the previous effective address generation examples it was assumed that the sum of
the address origin (P counter +l1, or base register), the displacement in the instruc-
tion, and the index register contents place the EA within the limits of 32K or 64K
memory. Wraparound may occur if the EA range is above or below memory limits in a
32K or 64K system. In a smaller system a condition called effective address out-of-
memory may also occur, as described in Section 4.3.5, when EA is above physical top
of memory. The most common reason for wraparound or out-of-memory is improper
specification of program or base locations when loading programs. Wraparound also
can occur when EA calculations greater than X'7FFF' are applied to 32K mode operation.
A deliberate wraparound is created when a negative displacement is coded in two's
complement form.

The following examples illustrate wraparound and also give further insight into the
mechanism by which addition of negative displacements (coded as two's complement)
wraparound to place EA below the address origin. The examples also show what occurs
when address calculations based on a 64K mode are applied to a machine operating in
32K mode.

4-19

88A00508A-E

1. A Load A (LDA) imstruction 1s executed at location X'7FQOF' and has the following
format:

15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0
X'7f0f* O 1 0 OjOjOJO0 1 1t 1 0 O 1 1 O i
| L |

DISPLACEMENT
.

This instruction specifies program relative direct addressing mode with a
displacement value (after extending sign bit) of X'0OlCD'.

The first stage addressing in binary is as follows:

X' 7FOF' 0111111100001 111
+X'0001° 1
=X'7F10' 0111111100010000
+X'01CD! 0000000111001101
=X'80DD’ 1000000011011 101

The effective address calculations are always carried out using all 16 bits,
then at the end of the calculations, the l6th bit is forced to zero if in 32K
mode.

In the example, the ‘difference between the effective address in 64K and 32K
memory is illustrated below. The EA for 32K will probably lead to an error in

execution.
X'80DD’ DATA
X' 7F 10’ ORIGIN
X'7FOF’ INSTRUCTION X*7F10° ORIGIN
X'7FOF* INSTRUCTION
X'DD’ DATA
64K MODE 32K MODE

466-4-9.

The data referenced is above the origin when in the 64K mode, but is below it
if executed in the 32K mode. The effective address can be said to have wrapped
around the top of core and is now in a lower core area.

4=20 -

88A00508A-E

Using the same instruction with the sign bit = 1 to denote a negative
displacement:

16 14 13 12 11 10 8 8
1 1

1
o1 0 0 0 O 0

IV S U I N R N T N B A T B |

¥] {
.~ . _—

g

- i

8 6 4 3 2 0
100 11 1

DISPLACEMENT

The displacement value after extending the sign bit is X'FFCD' and the
calculations (beginning with the origin are as follows):

X'7F10' 0111111100010000
+X'FFCD' 1111111111001101
X'7EDD’ 0111111011011101

There will be no difference between 32K and 64K mode address. The equivalent
negative displacement from the origin = X'033'.

X'7F1Q’ ORIGIN
X'7FOF’ INSTRUCTION

X'033'
X'7EDD’ DATA

466-4-10

Taking the two's complement of X'0033', the negative displacement from the origir
of example 2 and coding it into the 10-bit displacement field:

Q000110011
1111001100

+1
1111001101

displacement

4-21

88A00508A-E

Gives the same binary number as shown in the beginning of example 2. It

follows then, that if an address expression were evaluated by an assembler to

be -X'0033', the assembler would code the two's complement into the instruction's
displacement field. After extending the sign and adding to the P counter+l the
correct effective address in memory is obtained.

In this example, a two-word memory reference with indexing instruction is located
at address X'l1F7' (and X'11F8'),

X'11F8’ 1t 00 00 1010 1 1 1 00 0 1| X857

X 11F7 1t 10110110001 1 1 11 X'DB1F’

The instruction (an STR) specifies base relative direct addressing with register
Z indexing. Register A will contain the data to be stored in the effective
address. The base register D contains the following value:

D= oooo11001ooooooo~|x'ocao'

and the Z register contains the following:

z- |ooooooooooooo111]x'ooor

466-4-11

The first stage addressing calculation is as follows and, since this is direct
addressing, the second stage result is the same:

1000010101110001 X'8571"'
+0000110010000000 X'0c80’'
1001000111110001 X'91F1'

The third stage adds the contents of register Z:

-

1001000111110001 X'91F1’
0000000000000 111 X'0007"'
1001000111111000 X'91F8'

4-22

88A00508A-E

If in 32K mode the most significant bit is zero = X'11F8', the core maps for 64K
or 32K are as follows:

DATA FROM A REGISTER
+Z REGISTER
GIVES EA /PI.ACED IN EA LOCATION
'91F8’ THIRD STAGE
X'91F8 DATA FROM A REGISTER
OVERLAYS INSTRUCTION
X'91F1’ FIRST/SECOND STAGE e sttt
_u—ADDRESS ORIGIN)
X 11Fg’ N " x11Fg’ THIRD STAGE
INSTRUCTION ADDRESS
X11F7 X11F7
xloesol X'ocaol
64K MODE 32K MODE
D REGISTER CONTENTS
POINT TO BASE LOCATION 507-4-2.

4.3.5 EFFECTIVE ADDRESS BEYOND MEMORY

A situation may arise in which an effective address points to a location which is

not occupied by real memory. This is different from the wraparound situation
described in Section 4.3.4 because in wraparound we assume a memory whose upper

limit is exceeded by an EA calculation either through a programming error, or normal.y
whenever a negative displacement is converted to two's complement.

Address beyond memory may occur when operating in 32K mode with less than 32K of Mem:ry
installed or in 64K mode with less than 64K of memory.

As an example, assume a machine with 16K of memory with a hexadecimal upper limit of

X'3FFF'. If a memory reference or memory reference with index instruction results ir.
an EA calculation of X'4C30', that location is beyond memory upper limit. The result
then depends on the instruction as follows:

1. Write data into memory: No observable result.

2. Read data from memory: Zeros are returned.

3. Fetch instruction: Zeros are fetched; this is a WAIT instruction and the machine
will stop on a WAIT condition.

If MPP is installed, a parity error interrupt will occur in situations 2 and 3 if
parity error detection is enabled.

4-23

88A00508A-E

4.4 MEMORY REFERENCE INSTRUCTIONS

There are four instructions in the memory reference group. They are one-word
instructions that cause data to be moved to/from register A or to effect a jump
to another instruction or subroutine. Memory reference instructions have the
following machine instruction format:

15 413 12 1110 9 8 7 6 5 4 3 2 1 O
OP CODE M|+ DISPLACEMENT
L1 1 —1 ! TS O N W |

L.

M = 0_PROGRAM RELATIVE
= 1 BASE RELATIVE

(]
(=]

DIRECT
INDIRECT

[]
-

243-3-2
The CAP~16 source statement format for this instruction group is:
Command Parameters
JMP
JSR
LDA [*]address[,mode]
STA

where:

* if present, indicates indirect addressing (bit 10 = 1)
if absent, direct addressing implied (bit 10 = 0)

address is an address expression

mode indicates addressing mode (bit 11)
= () Program—-Relative
=] Base-Relative

The address displacement (bits 9 to 0) is determined as follows:

1. If mode is absent from the CAP-16 source statement, the addressing mode is
determined by the assembler:

Program-Relative: address - $+1 + bits 9 to O (two's complement form)
Base-Relative: address - $$ - bits 9 to O :

2. 1If mode is specified: address -~ bits 9 to O
NOTE

If mode is specified, the address expression
ig8 a displacement and must evaluate to a con-
stant within the range 0 to 1023 for base-
relative addressing and -512 to +511 for
program-relative addressing (i.e., it may

not inelude a relocatable label value).

The addresses, which may be accessed directly by memory reference instructions, are
illustrated on the following page.

4=24

88A00508A-E

TOP

BASE RELATIVE '
RANGE 1 +1023 (DECIMAL) = X'3FF' (UNSIGNED)

- ; - — " D REGISTER POINTS HERE
| +511 (DECIMAL) = X“1FF*

PROGRAM RELATIVE _ 4 _
RANGE Yl e I Pt

INSTRUCTION AT P!

612 (DECIMAL) = X'200’ (TWO’S COMPLEMENT)

\ : A

"MEMORY REFERENCE INSTRUCTION LOCATED ANYWHERE IN MEMORY, BUT IF

INSTRUCTION LOCATION PLACES RANGE ABOVE TOP OR BELOW ZERO, EITHER
EA WRAPAROUND OR EA OUT-OF-MEMORY MAY OCCUR FOR CERTAIN VALUES
OF DISP. (SECTIONS 4.3.4 AND 4.3.5.) 507-4-3

Effective address coding is summarized in Table 4-2.

Table 4-2., EA Coding, Memory Reference Instructions

Next Additional (z

Type of Address M (I Range ea® Instruction | Execution Time\
Program Relative 0 | 0 | -512<DISP<+511 | P+1+DISP P+1 0

Program Relative, 0 1 -512<DISP<+511 | (P+1+DISP) P+1 .500us
Indirect
Base Relative 1 0 0<DISP<1023 | D+DISP P+1 0
Base Relative, 1 1 0<DISP<1023 (D+DISP) P+1 .500us
Indirect

CDRecall that, as described in paragraph 4.1.1, D+DISP means that the final effec-
tive address is D+DISP: (D+DISP) means that the contents of memory location
D+DISP contains the final effective address.

C)Instruction cycles plus additional cycles equals total processor cycles for the
instruction. Add 500 ns for each additional cycle.

4=25

88A00508A-E

Upon executing a memory reference instruction, the effective address is generated
as shown in Figure 4-2.

FETCH MEMORY
REFERENCE
INSTRUCTION
P+1 —>P
NEGATIVE DISPLACEMENTS
DISPa9*Woo | __ _ _ | ARE RePRESENTED IN 2
DISP, ~W.g 10 ~| COMPLEMENT FORM WITH
SIGN BIT 9=1

BASE
RELATIVE
ADDRESSIN

OD+W =W P+W > W

INDIRECT

NO (BIT 10=0)
ADDRESSING '

‘WWwW

5

EXECUTE

INSTRUCTION

W =EFFECTIVE
ADDRESS

FETCH NEXT
INSTRUCTION

507-4-4

Figure 4-2. Effective Address Generation, Memory Reference Instructions

4-26

88A00508A-E

4.4.1 JUMP UNCONDITIONALLY (JMP)

151‘1312"1093765432'01.55}5

0O 1 1t 1 IM{I |+ DISP XIXXX'

L1 1 N U N R N N T T |
L]]

The EA replaces the contents of register P. Program execution continues with the
instruction at memory location EA.

32K Mode . 64K Mode

BAl4-0 * Fla-0 BA15.0 * Pis-0

Indicators affected: None
Registers affected: None

NOTE

This instruction is interruptable. Unlike
the JMP instruction on a GA-16/440 or SPC-186,
an interrupt may occur following the execu-
tion of the JMP instruction; therefore, the
instruction at the EA could be pre-empted by
an interrupt. Interrupt subroutine return
will continue the program at the jumped-to-

address.
Examples:

JMP START Program control is transferred to the instruction having
the label START; the label must identify a memory locaticn
in the range -512 to +511 words from the JMP instruction
location plus one.

JMP *NEXT Program control is transferred to the instruction whose

. address is contained in the memory location having the
. label NEXT. The instruction to be executed next may be
. located anywhere in memory.

NEXT DC START

4=27

88A00508A-E

4.4.2 JUMP TO SUBROUTINE (JSR)

15 14 13 12 11 10 9 § 7 6 6 4 3 2 t 0 205
0 1 1 0|M]I + DisP X'BXXX’

el B NN U G W T SR T |
1 1

The JSR instruction is used to transfer control from a main program to a subroutine
and disable the inhibitable (IN) interrupts (ISE = Q). The next instruction location-
(subroutine return address) and the ISE status of the main program are saved to
resume main program execution sequence and ISE status after the subroutine executes
an RTRN, E instruction.

32K Mode

The contents of register P (containing the address of the next memory location)
replaces the contents of register E, bits l4 to 0; the ISE status replaces bit 15
of register E and S,.. The EA then replaces the contents of register P and the
ISE is turned off, &;sabling inhibitable interrupt requests.

P~ E,,g 1514 1312 11 10 9 8 7 6 6 4 3 2 1 0
REGISTERE = | X SUBROUTINE RETURN ADDRESS
ISE~> E &S 1 } i 1 [1 1])] 1l § | 1 i
15 %345 T t } }
EA 40" P1a0 |——— CURRENT INTERRUPT SYSTEM ENABLE STATUS
0 ISE 1 = ENABLED
0 = DISABLED

Indicators affected: S Y TOS¢g (SEE 84K MODE)

Registers affected: Els

64K Mode

The contents of register P (containing the address of the next memory location)
replaces the contents of register E. The ISE status replaces bit 15 of the status
register. The EA then replaces the contents of register P and the ISE is turned
off, disabling inhibitable interrupt requests.

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

REGISTERE = SUBROUTINE RETURN ADDRESS
1 2 ' ! 1 1 1 1 I 4 I 1 1
| 4 13 i

15 14 13 12 11 109 7 6 5 4 3 2 1 0
P—E REGISTERS = X ol elz]lr|o]L ‘ 's.c l
ISE >S5 1 A .
EA—P | 0 = 32K MODE
0-~ISE ‘ 1 = 64K MODE

PREVIOUS INTERRUPT SYSTEM ENABLE STATUS

1 = ENABLED
0 = DISABLED 50843
Indicators affected: S15
- Registers affected: E

4-28

88A00508A-E

The contents of registers A,B,C,D,X,Y, and Z are not affected by the execution of a
JSR; thus, parameters may be passed to the subroutine as the contents of these reg-
isters. (Other methods are shown in the examples in Section 4.5.13.)

The return from a subroutine is normally made using a RIRN E instruction (Section
4,10.11). The ISE of the calling program may be duplicated in the subroutine with
the RISE E instruction (Section 4.10.9), or IN interrupts may be specifically enable !
with INE instruction (Section 4.13.3). Otherwise, IN interrupts remain disabled
during the execution of the subroutine.

Since the address transferred to register E is $+l1, a return cannot be made properly
from a subroutine called by a JSR instruction at the last location of memory.

When the CPU acknowledges an IN interrupt, it simulates a JSR instruction which
indirectly references the memory location dedicated to the interrupting device. The
address plus one of the last instruction executed before the interrupt occurred is
stored in register E.

Examples: (32K Mode)

JSR SUBRUT SUBRUT is a label in the program section. The
GO LDA MEAS address of the instruction labeled GO and the
current interrupt status are stored in register E
and S; the ISE is inhibited, and program control is
transferred to location SUBRUT. Location SUBRUT must
be in the range =512 to +511 words from the location
of the instruction labeled GO (that is, $+1).

JSR *$S+1 The memory location given by $$+1 contains the address
(anywhere in memory) of the subroutine. The address of
the location following this JSR instruction and the
current interrupt status are loaded into register E and
S and the ISE is inhibited. Control is then transferred
to the subroutine.

4-29

88A00508A-E

4.4.3 LOAD REGISTER A (LDA)

1514 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0O

01 0 0 |M[1]+ DISP
{ 1 { L i 1 1

2.60 s
X'4XXX"

1 4 1 1
L T N

508-4-4

The contents of the location specified by the effective address replaces the contents
of register A. ‘

(BA) 159 ™ A15-9

Indicators affected: Nomne
Registers affected: A

Examples:

LDA $-54 The displacement is calculated as ($-54)=-($+1) = =55,
Thus, the contents of location $-54 (i.e., $+1-55) is
loaded into register A.

LDA SMRT The contents of location SMRT are loaded into regis-
ter A. If label SMRT is in the PSECT, it may identify
any location in the range =512 to +511 locations from
$+1. If label SMRT is in the DSECT, it may identify
any location up to 1023 words from the current base
address.

LDA 0,1 Base-relative addressing is specified. The displace-
ment is 0, and the effective address is calculated as
D+0; thus, the contents of the memory location pointed
to by the current value in register D is loaded into
register A.

LDA *ADRS2 Indirect addressing is specified. ADRS2 may identify
a location up to 1023 words from the base address or
in the range =512 to +511 locations from $+1. The
contents of this location is used as an address,
which may specify any location, and is loaded into
register A.

4-30

88A00508A-E

4.4.4 STORE REGISTER A (STA)

161413 12 1110 9 8 7 6 6 4 3 2 1 0 56,

0 1 0 1|M|1]+ Disp XBEXXX'
| | 1 Ill#lLl

l
s

8084-5

The contents of register A replace the contents of the memory location specified by
EA.

Aps.o > B 5 4
Indicators affected: None
Registers affected: None
Example:

STA *VAL The contents of memory location VAL provide the
address where the contents of register A will be
stored. The final effective address (i.e., the
contents at VAL) is taken as an absolute address
and may specify any memory location.

4-31

88A00508A~E

4.5 MEMORY REFERENCE WITH INDEXING INSTRUCTIONS

The twelve instructions for memory reference with indexing provide the option of
specifying an index as part of the address when referencing a memory location. Any
word or byte of memory may be loaded to or stored from a specified register. Any bit
in memory may be set, reset, or tested. Any word in memory may be incremented, de-
cremented, or compared to the contents of any register. Instructions are also pro-
vided to load or store all registers and status, simplifying efficient, interruptable,
re-entrant subroutine coding.

A memory reference with indexing instruction occupies one or two words, depending
upon the value of bits 4 to 0 of the first word of the instruction. The one- and
two-word formats are as follows:

ONE-WORD INSTRUCTION
1514 1312 11 10 9 8 7 6 5§ 4 3 2 1 0

OPCODE |M |1 [INDX ADRS/DISP
1 1 i] | % 1 1 i
A \ [}
M = 0 ABSOLUTE REGISTER OR
= 1 BASE RELATIVE BIT IDENTIFIER OR
) OP CODE EXTENSION
| = 0 DIRECT INDEX REGISTER: 00 = NO INDEX
= 1 INDIRECT 01 = REGISTER X
10 = REGISTER Y
TWO-WORD INSTRUCTION 11 = REGISTER Z
15 1413 12 11 10 9 8 7 6 5 4 3 2 1 0
OP CODE M I]INDX 1 1 1 1 1
1 1] 1 1 1 = i 1 |
ADRS/DISP
466-4-21

The CAP-16 source statement format for this group is:

Command Parameters

CMR EB\
DECM
INCM

LARS
LDBY © C) register,[*]address[,index][,mode]?
;g?rd) 3 ©) [*]address[,index][,mode]

SARS) ® b,[*]address[,index][,mode]

SBIT |
STBY
STR B
TBIT @)

4-32

where:

register

register
or b

*

address

index

mode

88A00508A-E

specifies one of the general-purpose registers, coded into bits 7 to 5
for instructions which name a register (LDR, STR, CMR, LDBY, and STBY).

or

specifies a bit position, 7 to 0, of the referenced byte in memory,
coded into bits 7 to 5 for bit instructions (SBIT, RBIT, and TBIT).

or

is absent for other instructions (LARS, SARS, INCM, and DECM), and
bits 7 to 5 contain an operation code extension.

if present, indicates indirect .addressing (bit 10=1); if absent, -
indicates direct addressing (bit 10=0).

is an address expression.

if present, specifies one of the three index registers (bits 9 and 8):
= 0l register X; = 10 register Y; = 11 register Z. If absent, no index
register is specified: = 00 no index.

indicates the addressing mode (absolute or base-relative) and instruc—
tion length as follows:

= 0 one-word instruction (bits 4 to O = ADRS) with absolute
addressing (bit 11=0).

= 1 one-word instruction (bits 4 to 0 = DISP) with base-relative
addressing (bit 11=1),

= 2 two-word instruction (first word bits 4 to 0 = X'1F' and
second word bits 15 to 0 = ADRS) with absolute addressing
(bit 11=0).

= 3 two-word instruction (first word bits 4 to 0 = X'1F' and
second word bits 15 to 0 = DISP) with base-relative
addressing (bit 11=1),

NOTE

If the computer ig in the 32K mode, bit 15
of EA is foreced to 0.

ADRS and DISP are determined as follows:

Absolute ADRS: address + bits 4 to 0 (or 15 to O of second word)

Base Relative DISP: if mode is not specified, (address -~ $8) - bits 4 to O

(or 15 to 0 of second word)

Base Relative DISP: 1if mode is specified, address - bits 4 to 0

(or 15 to O of second word)

4-33

88A00508A-E

NOTE

If the programmer wishes to specify the
addressing mode and the address contains
a relocatable label value or a label value
outside the range 0-30,9, a two-word in-
struction (mode=2 or 3) must be specified.

Addressing ranges are illustrated below. Note that for indirect addresses, the
indirectly addressed location must be in the range illustrated below, but the
retrieved address may point to any location in memory.

2-WORD ABSOLUTE y
INSTRUCTION

\

1-WORD ABSOLUTE
INSTRUCTION

2-WORD BASE-
RELATIVE
INSTRUCTION

1- WORD BASE-
RELATIVE
INSTRUCTION

2-WORD BASE-
RELATIVE
INSTRUCTION
(NEGATIVE

DISPLACEMENT) §

TOoP -

D+X'1E’

1 :

REGISTER D POINTS HERE

e ————— —}=—— InsTRUCTION'

X' 1E’

? .

0

1MEMOIRY REFERENCE WITH INDEXING INSTRUCTION LOCATED ANYWHERE IN MEMORY.

2 ADDRESS WRAPAROUND OR ADDRESS OUTSIDE MEMORY MAY OCCUR IF EA CALCULATION
PLACES ADDRESS RANGE ABOVE TOP (SECTION 4.3.4 AND 4.3.5)..

466-4-22

Effective address coding is summarized in Table 4-3.

4-34

88A00508A-E

Table 4-3. Coding of Effective Address — Memory Reference
with Indexing Instructions

Additional
Execution
Next Time
Absolute M | I | Indx | Adrs EAC> Instruction (us)C)
Direct 0ojo1lo <1F ADRS P+1 0.0
Direct, Indexed 0 0 1-3 <1lF ADRS+INDX P+1 0.0
Direct 00 |O =1F (P+1) P+2 0.500
Direct, Indexed 010 1-3 =1F (P+1)+INDX - P+2 0.500
Indirect o110 <IF | (ADRS) P+1 0.500
Indirect, Indexed 0 1 1-3 <1F (ADRS)+INDX P+1 0.500
Indirect ofjt1|o =1F | ((P+1)) P+2 1.000
Indirect, Indexed | 0 | 1 | 1-3 =1F ((P+1))+INDX P+2 1.000
Base-Relative DISP
Direct 1 0 0 <1F D+DISP P+1 0.0
Direct, Indexed 1 0 1-3 <1lF D+DISP+INDX P+1 0.0
Direct 1 0 0 =1F D+(P+1) P+2 0.500
Direct, Indexed 110] 1-3 =1F D+(P+1)+INDX P+2 0.500
Indirect 1 1 0 <1F (D+DISP) P+1 0.500
Indirect, Indexed | 1 | 1 1-3 <1F (D+DISP)+INDX P+1 0.500
Indirect 1 1]0 =1F (D+(P+1)) P+2 1.000
Indirect, Indexed | 1 | 1 | 1-3 =1F (D+(P+1))+INDX P+2 1.000

(DmNpx/2 for LDBY, STBY, SBIT, RBIT and TBIT instructions; indexing range is limited
to 32K.

(:>Instruction cycle time plus additional execution time equals total processor time
for instruction.

Upon execution of a memory reference with indexing instruction, the effective address
is generated as shown in Figure 4-3.

4-35

Mx:3xxx"

'8
= o Tpoce
— '

L\

FETCH MRX
INSTRUCTION
P+1 =P

ADRS/DISP
(8ITS 4 - 0)
- X1F’

NO (ONE WORD INS.)

YES (TWO WORD INS.)

88A00508A-E

- ADRS/DISP W, o
Pe1->p 0=>Wi55
BASE
RELATIVE NO (BIT 11=0)

ADDRESSING

YES (BIT11=1)

D+W W

INDIRECT NO (BIT 10=0)
ADDRESSING
YES (BIT 10=1)

*W-W

INDEXED NO (BiTS ©,8=00)

ADDRESSING

(BITS 9,8 =01:X)
(BITS 9,8 = 10:Y) . CMR
(BITS 9,8= 11:2) DECM

INCM
LARS
BYTE LDR
ADDRESSING NO SARS
INSTRUCTION ‘ STR
LDBY
- §TBY W+ INDX REG. W
TBIT
RBIT
sBIT
w +INDX REG. ,,
EXECUTE
INSTRUCTION
W = EFFECTIVE
ADDRESS
FETCH NEXT
INSTRUCTION
466-4-23

Figure 4-3. Effective Address Generation, Memory Reference
with Indexing Instructions

4-36

88A00508A-E

4.5.1 COMPARE MEMORY WITH REGISTER (CMR)

15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 O 3.60 us

1 1 1 0 |M]1I |INDX REG ADRS/DISP . '
11 1 11 L1 1 1 X'EXXX

v

The contents of the location, as specified by the EA, are subtracted from the con-
tents of the selected register, with the result of the subtraction being recorded
only in the indicators. The zero indicator is set if the result of the subtraction
is zero. and the plus indicator is set if the result is positive. An overflow occur:
if the sign of the register and the sign of the contents of the EA are unlike, with
the sign of the result also different from the sign of the register contents. The
link will be set if there was a carry-out of bit 15.

R15—0 - (EA)IS—O > DaFa Bus

Indicators affected: Zero, Plus, Overflow, Link
Registers affected: None

Example: CMR A,lO,,i The contents of location D+10 are subtracted from the
‘ contents of register A, with the results appearing in
the indicators only

4.5.2 DECREMEMT MEMORY (DECM)

15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 O 3.60 us

1 1 1 1 Im] [iNDX ADRS/DISP X'FX4X"
L 11 1 011|0 {1 1 1.1 X'FX6X’

508-4-6.

The contents of the location specified b& the EA is decremented by 1.

(EA)15_0~1 -> (EA)ls-O
Indicators affected: Zero, Plus, Link (Overflow is not affected.)
Registers affected: None

Example: DECM 0,X An absolute address is specified with indexing. Since
the contents of register X are added to zero, register
X contains the absolute address of the location to be
referenced. The specified memory location is decrementel.

If, in the above, example, the number contained in register X were, instead, contain:d
with register D, the following instruction (which specifies base-relative addressing)

would decrement the same memory location.

DECM 0,,1

4-37

88A00508A-E

4.5.3 INCREMENT MEMORY (INCM)

The contents of the location specified by the EA is incremented by 1.

(EA) +1 -+ (EA)

15-0

Indicators affected:

Registers affected:

Example: INCM

i5 14 13 12 11 10 9 8 7 6 6 4 3 2 ¥ O 3.60 us

1
1

1

|

L

1 IMjt]INDX|O. O O
1 Ll

ADRS/DISP X‘FX0X’
L1 1 1 XFXI1X’

15-0

ADR+4

The contents of memory location ADR+4 are

4.5.4 LOAD ALL REGISTERS AND STATUS (LARS)

Zero, Plus, Link (Overflow is not affected.)
None .

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0 11850

) X FX9X’

[1 1 1 1t M|y]iNnox]1 o ol ADRS/DISP X‘FX8X’
1 1 1 L] L } L

6508-4-7

incremented.

Registers A,X,Y,2,B,C,D, and E, and the shift counter and indicators (register S)
are loaded from the contents of nine consecutive locations specified by EA through

EA+8. Bit 14 of register S (memory mcde) i1s not loaded.

is loaded, but ISE itself is unaffected.

(EA)ls_o o AlS-O (EA+8)3_0
(EA+L) 1o g > Xy5 g (EA+8)
(Ea+2) . o > ¥is_g (EA+8)
(EA+3)15_0 d ZlS-O (EA+8)6
(EA+4) 150 Bis-o (EA+8),
(EA+5) 15 o > Cis g (EA+8) g
(EA+6) 150 ~ Disto (EA*8) 139
(EA+7)15_0 - ElS-O (EA+8)15

Indicators affected:

Registers affected: A,X,Y,Z2,B,C,D,E

Example: LARS *STACK

-

>

-

Shift Counter
Link
Overflow
Plus

Zero
Foreground

513-9
ISE Save

Zero, Plus, Overfldw, Link, Foreground, ISE Save

Bit 15 of register S

Register S

The registers and status indicators are loaded from
nine consecutive memory locations; the address of the
first location is contained at STACK (i.e., STACK is

an indirect address).

4-38

88A00508A-E

4.5.5 LOAD BYTE (LDBY)

16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 O 3.60 us

10 0 0 |mM|1|[INDX] REG ADRS/DISP BXXX’
L1 1 L 1 1 L 1 1 X'BXXX

v

808-4-8

If an index register is specified, the index register divided by two is used to
determine the EA. If the contents of the selected index register is odd, the right
byte (bits 7 to 0) of the location specified by the EA replaces bits 7 to 0 of the
selected register. If the contents of the selected index register are even or no
index register is specified, the left byte (bits 15 to 8) of the location specified
by the EA replace bits 7 to 0 of the selected register. In either case, bits 15 to
8 of the selected register are not affected.

If contents of index register are odd:

(EA) 7.0 * R7-0

If contents of index register are even or no index register specified:

(EA) 5.8 ™ Ry

Indicators affected: None
Registers affected: Bits 7 to 0 of selected register

Example:

LDBY A,ADDR4,X 1If ADDR4 is a label in the DSECT, addressing is
direct and base-relative with indexing. The dis-
placement is ADDR4-$$. The EA is calculated as the
contents of register D plus the displacement plus
the contents of register X divided by 2. The con-
tents of this location (bits 7 to 0 if X is odd or
bits 15 to 8 if X is even) are loaded into register
A, bits 7 to O.

4-39

4.5.6 LOAD REGISTER (LDR)

88A00508A-E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 96y

1 1 0 0[m|t][INDX| REG ADRS/DISP CXXX
| I W | L Ll 1 i X'CXXX

508-4-9

The contents of the location specified by EA replaces the contents of the selected

register.

(EA)

15-0 ~ Ris-0

Indicators affected: None

Registers affected:

Examples: LDR

LDR

LDR

LDR

LDR

LDR

A,0

A,*30,X

Z,%20,,1
or
Z,*3$5+20

B,ADRS,Y,2

Selected register

Addressing is direct and absolute. The instruction
is contained in a single word. The contents of mem-
ory location 0 are loaded into register A.

Addressing is indirect and absolute. The instruction
is contained in a single word. The contents of mem-
ory location 0 are used as an address, and the con-
tents of this addressed location are loaded into reg-
ister B.

Addressing is indirect and absolute with indexing, and
the instruction is contained in a single word. The
contents of memory location 30 are used as an address;
the value contained in register X is added to this ad-
dress to specify the location whose contents are loaded
into register A.

Addressing 1s indirect and base-relative. Since the
first-stage address is within 31 locations of the base
address, a one-word instruction is used where mode is
specified. For either instruction, location $$+20 con-
tains the address or the location whose contents are
loaded into register Z.

Addressing is direct and absolute with indexing. The
contents of the absolute memory location, whose address
is the offset from ADRS by the contents of register Y,
are loaded into register B. ADRS may identify any mem-
ory location, since a two-word instruction 1is specified,
and may be relocatable,

4-40

LDR

LDR

or

C,*X'1000',X,3

C,*$$+x'1000' ,X

88A00508A-E

A&&fessing is indirect and base-relative with
indexing. Either of these source statements

~will cause a two-word instruction to be gen-

erated; the second word will contain X'1000'.
When this instruction is executed, the effec-
tive address is generated as follows:

1. Add second word to base address:

10001 +D = EA

6 1

2. Get address at indirect EA:
(EAl) =‘EA_2
3, Add index:
EA2+X = Final EA

The contents of the location specified by the
final EA replaces the contents of register C.

4-41

88A00508A-E

4.5.7 RESET BIT (RBIT)

16 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1t 0 3.60 s

0 0 1 1 |M]v]INDX] BITID | ADRS/DISP —
1 | | l L 1 | [5 1 | —] X'3XXX

508-4-10

A zero is placed in the specified bit of the location determined by the EA. The
previous status (zero, non-zero) of the specified bit is shown in the zero indicator.
This is done by complementing the bit, so that:

If bit was 1, zero indicator = 0 for non-zero status
If bit was 0, zero indicator = 1 for zero status

If the address is to be indexed, the index iégistér divided by two is used in deter-
mining the EA. 1If the contents of the selected index register are odd, the specified
bit (7 to 0) of the right byte is reset. If the contents of the selected index reg-
ister is even, or if no index register is selected, the specified bit (7 to 0) of the
left byte 1s reset.

If index is odd:

(Ez}b + Zero Indicator

0~ (EA)b
If index is even (or no index):

(EA)b+8 + Zero Indicator

0> (EA)y g
Indicators affected: Zero
Registers affected: None

Example: RBIT 2,4,Y,3 The beginning address of the bit array 1is calculated as
the contents of register D plus 4, and the value of
register Y divided by two, identifies the word element
in which the specified bit is contained. If the con-
tents of regigter Y areodd, bit 2 at the EA is reset;
if the contents of register Y are even, bit 10 (i.e.,
bit 2 of the left byte) at the EA is reset. The zero
indicator will contain zero if the specified bit was
one before the operation, or will contain one if the
specified bit was zero before the operation.

4-42

88A00508A~E

4.5.8 STORE ALL REGISTERS AND STATUS (SARS)

1514 13 12 11 10 9 8 7 6 65 4 3 2 1 0 4570

1 1 1 t|MIt1]INDX]1T 1 O ADRS/DISP X'‘FXCX’
i1 1 j 1 L1 11 X'FXDX'

508-4-11

Registers A,X,Y,Z,B,C,D, and E, and the shift counter and status indicators (register
S) replace the contents of nine consecutive memory locations specified by EA througt
EA+8.

Ajs_o ™ (EA)15_0 (Shift Counter > (EA+8)3_0
Xje g > (BAHL) o o Link + (EA+8),
YlS-O > (EA.-I-2)15_0 | Overflow > (EA+8)5
Zys_o ™ (EAH3) o o Register S Plus + (EAH8)
: 1
Bis_g ™ (EA+4)15_0 . Zero > (EA+8),
Cis_o ™ (BA+S) 5 Foreground ~ (EA+8) ¢
Dys_q > (EA+6) 15 $13-9 > (EAH8) 15 g
Bis_g > (BA+T) 5 o 32/64K MEM Mode ~ (EA+8),,
ISE, Save Status - (EA,+8)15
Indicators affected: None
Registers affected: None
Example:
SARS *0,,0 The contents of all registers and indicators are

stored into nine consecutive memory locations. The
address of the first memory location is contained in
location 0 (i.e., 0 is an indirect address).

4=43

88A00508A-E

4.5.9 SET BIT (SBIT)

16 141312 11 10 9 8 7 6 6 4 3 2 1 0 360
1 0 1 1 |M[1]|INDX] BITID | ADRs/DISP BXXX’
1 1 i [1 L [| / 1 1 X'BXXX

L4

508-4-12

A one is placed in the specified bit of the location determined by the EA. The
previous status (zero, non-zero) of the specified bit is shown in the zero indicator.
This is done by complementing the bit, so that:

if bit was 1, zero indicator = 0 for non-zero status
if bit was 0, zero indicator = 1 for zero status

If the address is to be indexed, the index register, divided by two, is used in
determining the effective address. If the contents of the selected index register
are odd, the specified bit (7 to 0) of the right byte is set. If the contents of
the selected index register are even, or if no index register 1is selected, the
specified bit (7 to 0) of the left byte is set.

If index is odd:

(ﬁZ)b - Zero Indicator
1~ (EA)b

If index is even (or no index):

(EA)b+8 -+ Zero Indicator

1 > (EA)y g

Indicators affected: Zero
Registers affected: None

Example:

SBIT 4,BITS,2 BITS identifies the beginning address of a
bit array, and the value of register Z,
divided by two, identifies the word that
contains the referenced bit. TIf the contents
of register Z is odd, bit 4 at the EA is set.
If the contents of register Z is even, bit
12 (i.e., bit 4 of the left byte) is set. The
zero indicator will contain zero if the
specified bit was one before the operation,
or will contain one of the specified bit was
zero before the operation.

4=44

88A00508A-E

4.5.10 STORE BYTE (STBY)

16 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1 O 3.55 us

1 0 0 1 |M]t|INDX| REG ADRS/DISP DX
1 1 1 1 | 1 L1 1 - X'aXxx

v

508-4-13

If an index register is specified, the index register, divided by two, is used to
determine the EA. If the contents of the selected index register are odd, bits 7
to 0 of the selected register replace the right byte (bits 7 to 0) of the location
specified by the EA. If the contents of the selected register are even, or if no
index register is specified, bits 7 to 0 of the selected register replace the left
byte (bits 15 to 8) of the location as specified by the EA.

If contents of selected index register are odd:

Ry_o ~ (BA) ;g

If contents of index register are even or if no index register is specified:

R, o > (EA)

7 15-8

Indicators affected: None
Registers affected: None

4-45

4.5.11 STORE REGISTER (STR)

i5 14 13 12 11 10 9 8 7 6 § 4 3 2 1.0

88A00508A-E

3.00 us

11
1

0
1

1
1

INDX] REG [ADRS/DISP
1] L 5 1 1 i

X'DXXX’

8508-4-14

The contents of the selected register replace the contents of the location specified

by the EA.

R +~ (EA)

15-0 15-0

Indicators affected: Nomne
Registers affected: None

Example:

STR A,LOC

Where LOC2 X'1F' and is in the DSECT. Addressing
is direct and base-relative; a 2-word instruction
is generated. Location LOC may be any forward
reference from the base address. (Although the
programmer will rarely use the capability, the
location could also be any reverse reference from
the base address, since the second word of the
instruction may specify a negative displacement
in two's complement form.) When this instruction
is executed, the contents of register A are
stored at location LOC.

4-46

88A00508A-E

4.5.12 TEST BIT (TBIT)

16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0
1 0 1 0 |M]! |INDX| BITID ADRS/DISP
1 1 L i 1 L1 1 1

v

3.60 s
X AXXX

808416

The complement of the specified bit in the location determined by the EA is loaded
into the zero indicator to indicate the status of the bit. If an index register is
specified, the register, divided by two, is used in determining the EA. If the con-
tents of the selected index register is odd, the status of the specified bit (7 to
0) of the right byte is reflected in the zero indicator. If the contents of the
selected index register is even (or if no register was selected), the status of the
specified bit (7 to 0) of the left byte is reflected in the zero indicator.

If index is odd:

(EKSb + Zero Indicator

If index is even (or no index):

(EA)b+8 -+ Zero Indicator

Indicators affected: Zero
Registers affected: None

Example:

‘TBIT 3,0ME,Y The EA is the address OME, plus the contents of
register Y, divided by two. If register Y is
odd, the status of bit 3 is placed into the zero
indicator. If register Y is even, the status of
bit 11 (bit 3 of the left byte) is placed into
the zero indicator. The contents of the memory
location addressed is not changed.

4=47

88A00508A-E

4.%.13 PROGRAMMING EXAMPLES

I. Beginning at the location pointed to by the base address, this instruction
sequence performs an operation (not defined in the example) on consecutive
‘elements of an array. When a test for exit is successful, the routine exits.

ZERO Y Zero register Y

LOOP LDR A,88,Y Load element from location $$+Y.
. (Perform operations and test for exit.)
INCR Y Increment register Y.
JMP LOOP Jump to load next element.

Ie
.

This sequence loads two-word elements of an array, placing the first word into
register B and the second word into register C. The beginning address of the
array is accessed indirectly. The indirect address is the contents of the
memory location at the base address. Upon execution of the LDR instruction,
the indirect address D+0 contains the address of the beginning of the array.
Then the value of the index (register Y) is added to locate the array element.

ZERO Y Zero the index register to begin.

L.OOP LDR B,*0,Y,1 Load register B with the first word.
INCR Y Increment index.
LDR C,*0,Y,1 Load register C with the second word.
: (Perform operations and test for exit.)
INCR Y Increment to the next first word.
JIMP LOOP Jump to load the next first word.

3. The results of a number of computations are to be stored sequentially, beginning
at a memory location which is accessed indirectly. This is illustrated as follows:

TOP:

} STORE RESULTS
ADRS r——pf

ADRS «4— REGISTER D POINTS TO THIS LOCATION

} PROGRAM

508-4-16

4-48

Main Program:

ZERO X
JSR STORE
Jsr STORE
Subroutine:
STORE STR A,*0,X,1
INCR X
RTRN E

88A00508A-E

Zero index to start STORE at beginning of STORE arrav.
Do first computation, leaving result in register A.
Call subroutine STORE.

Do second computation, leaving result in register A.
Call subroutine STORE.

(Continue computations, calling STORE for each resul".

Store result in register A.
Increment index.
Return to main program.

4, This sequence loads the left byte of lo¢cation ADR into register A, then loads th:
right byte of the same location into register B.

TOP
REGISTER A
7 0
| L
7 07 0
T ADR
REGISTER B :::{__—__J
7 0
—— T
0
243-3-23

ZERO

Zero index.

X
LDBY A,ADR[,X] ! Load left byte.

INCR X
LDBY B,ADR,X

lHas same effect if omitted

Increment index.
Load right byte.

5. This sequence stores bytes into consecutive byte locations. The beginning ad-
dress of the byte array is located indirectly through the base address.

ZERO X

LOOP -+
STBY A,*$8,X
INCR X
Jmp LOOP

(Perform .omputation, leaving result in right byte
of register A.)

Store byte result.

Increment index.

(Test for exit.)

Loop to compute next byte.

4=-49

6.

88A00508A-E

A subroutine may use the instruction SARS to start and LARS prior to returning,
then perform any computations using registers/indicators without interfering
with the contents/status set by the calling program.

Calling program:

JSR SUBR

Subroutine:

SUBR SARS SAVER Store all registers/status in a buffer (9 words)

. called SAVER.
. (Perform compytations.)
LARS SAVER Restore calling program's registers/status.
RTRN E Return to calling program.

7. This sequence shows one method of passing parameters to a subroutine. The

beginning address of the parameter list (i.e., the address of the first param-
eter) is put in the memory location immediately following the JSR instruction.
Upon executing the JSR, the address of this location is stored in the E register
as the return address. The subroutine transfers this address to the D register
so that the subroutine's base address points to the memory location immediately
following the JSR instruction in the main program. By indirectly addressing
this location, with base relative mode, the subroutine obtains the beginning
address of the parameter list, and adds an index to this indirect address to
fetch the individual parameters. To return to the calling program, register E
is incremented by one to point to the next executable instruction in the main
program. Then a RTRN returns to the main program.

Main program:

JSR SUBR
DC LIST Define beginning location of parameters.

HOH .

Subroutine:
SUBR SARS *SAVEP Store register/status in nine locations beginning
with adrs in SAVEP.

RTR D,E Change base adrs to Main return adrs.
ZERO Y Zero index.

LOOP LDR A,*0,Y,1 Load first parameter.
. (Perform operations and test for jump to EXIT.)
INCR Y Increment index.
JMP LOOP Jump to load next parameter.

EXIT LARS *SAVEP Restore original register contents.
INCR E Increment E to return at location HOH.
RTRN E Return to main program at HOH.

4-50

88A00508A~E

4.6 CONDITIONAL JUMP INSTRUCTIONS (SKIP)

Each Conditional Jump instruction tests one of the indicators (Zero, Plus, Overflow,
or Link) for either a true (1) or false (0) state. If the condition being tested is
met, program control is transferred to the location specified by the instruction; if
the condition is not met, execution continues with the next instruction in the pro-
gram sequence.

Testing the Overflow indicator also resets it; testing the other indicators does not
affect their status.

There are eight instructions in this group; each has the following machine format:

15141312110 9 8 7 6 5'4 3 2 1 0

0O 0 1 0 + DISPLACEMENT
111 ‘!Illllll

4 -
t ~————————— |INDICATOR CODE:
00 = OVERFLOW AND RESET

TEST FOR STATUS 01 = LINK
1 = TRUE 11=PLUS

6084-17
The CAP-16 source-statement format for this instruction group is as follows:

Command Parameters

SKM)
SKN
SKOF
SKOT
SKP
SKR

SKS

SKZ

’ address expression

The addressing mode for this instruction group is always program-relative and direct.
The displacement field of the skip instruction is a signed 9-bit value. If the skip
is forward (to a higher address) the displacement field will contain a postive value
(with bit 8=0) equal to the difference between the EA and the instruction location +1
(P+1). 1If the skip is reverse (to a lower address) the displacement field will con=-
tain the two's complement (with bit 8=1) of the difference between the EA and P+1.

The effective address determines where control is to be transferred i1f the status
condition (bit 11) of the selected indicator (bits 10 and 9) is met.

4-51

88A00508A~E

The addressing range is illustrated below:

ToOP
+266 = X'OFF"
‘S A S —— P+1
EA RANGE {
—————————— SKIP INSTRUCTION LOCATED
ANYWHERE IN MEMORY
-266 = X*100’ (TWO'S COMPLEMENT)
\

5084-18
Address wraparound or out-of-memory condition may occur if the instruction location
permits EA range to exceed Top or go below 0 (Sections 4.3.4 and 4.3.5).
The effective address is generated using the signed displacement bits 8 to 0. Bit

8 is extended to bits 15 through 9 and added to P+l to compute the effective address.
Effective address generation is diagrammed in Figure 4-4.

4-52

88A00508A~E

m | |

FETCH SKIP
INSTRUCTION

v

P+1—>P

IS TEST

CONDITION NO
MET?
NEGATIVE DISPLACEMENTS
EDISPg o >Wg g | -m —- ARE REPRESENTED IN 2'S
8 8-0 COMPLEMENT FORM WITH
SIGN BIT 8=1
EDISPg > W, g o
P+W P

FETCH NEXT
INSTRUCTION

6507-4-16

Figure 4-4. Effective Address Generation, Conditional Jump Instructions (SKIP,

4-53

88A00508A-E

4.6.1 SKIP IF MINUS (SKM)

151413 12 1110 9 8 7 6 6§ 4 3 2 1 0 206

0 0 1 Oofjof1 11}]% EDISP X'26XX’' (FORWARD)
TR 1 I I I T S T X'27XX’' (REVERSE)

If the plus indicator is not set (negative condition exists), control is transferred
to the EA. If the plus indicator 1is set (positive condition exists), execution con-
tinues with the next instruction. ’

Indicators affected: None
Registers affected: None

4.6.2 SKIP IF NOT ZERO (SKN)

161413 12 1110 ¢ 8 7 6 5§ 4 3 2 1 0O 2.05 us

001 001 o]t EDISP X'24XX’ (FORWARD)
i L

1 - —1 1 L1 1 X'26XX’ (REVERSE)

1f the zero indicator is not set (non-zero condition exists), control is transferred
to the EA. If the zero indicator is set (zero condition exists), execution continues
with the next instruction.

Indicators affected: None

Registers affected: None

4.6.3 SKIP IF OVERFLOW FALSE (SKOF)

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 2.55 s

ro o1 0 olo 0 1»; EDISP X‘20XX’' (FORWARD)
i L1 L T T L 1 1 X21XX’ (REVERSE)

508-4-19

1f the overflow indicator is not set (no overflow condition), control is transferred
to the EA. If the overflow indicator is set (overflow condition exists), execution
continues with the next instruction. The overflow indicator is reset.

Indicators affected: 0 - Overflow
Registers affected: None

4-54

88A00508A-E

4.6.4 SKIP IF OVERFLOW TRUE (SKOT)

16 14 13 12 1110 9 8 7 6 6 4 3 2 1 O 2.55 us

o 0 1 ol1/0 of=* EDISP X'28XX’ (FORWARD)
T | 1 | S N S T U I X'29XX’' (REVERSE)

If the overflow indicator is set (overflow condition exists), control is transferred
to the EA. If the overflow indicator 1s not set (no overflow condition) execution
continues with the next instruction. The overflow indicator is reset.

Indicators affected: 0 - Overflow
Registers affected: None

4.6.5 SKIP IF PLUS (SKP)

1514 13 12 11 10 9 8 7 6 6 4 3 2 1 0 2.05 s

0 0 1 O 1|1 1]+ EDISP X'2EXX’ (FORWARD)
[| 1 T I T S | X'2F XX’ (REVERSE)

If the plus indicator is set (positive condition exists), control is transferred to
the EA. If the plus indicator is not set (negative condition exists), execution
continues with the next instruction.

Indicators affected: None
Registers affected: None

4.6.6 SKIP IF LINK RESET (SKR)

151413 12 1110 9 8 7 6 5 4 3 2 1 0 545,

o 0 1 ofofo 1]+ EDISP X‘22XX’' (FORWARD)
41 N N X'23XX’ (REVERSE)

Il 1 |
508-4-20

T T

If the link indicator is not set (=0), control is transferred to the EA. If the
1ink indicator is set (=1), execution continues with the next instruction.

Indicators affected: None
Registers affected: None

4-55

88A00508A~E

4.6.7 SKIP IF LINK SET (SKS)

161413 12 1110 9 8 7 6 56 4 3 2 1 0 205

o 0o 1 ol1]o 1]+ EDISP X'2AXX' (FORWARD)
[| 1 L1 i 1 1 1 1 X'2BXX' (REVERSE)

If the link indicator is set (=1), control is transferred to the EA. If the link
indicator is not set (=0), execution continues with the next instruction.

Indicators affected: None
Registers affected: None

4.6.8 SKIP IF ZERQO (SKZ)

16 14 13 12 1110 9 8 7 6 6 4 3 2 1t O 2.05 s

0 0 1 O0¢f1{1 O}+ EDISP X‘2CXX° (FORWARD)
i1 1 1 Lt 1+t 1 4.1 X'2DXX‘ (REVERSE)

v T

508-4-21

1f the zero indicator is set (zero condition exists), control is transferred to the
EA. 1If the zero indicator is not set (non-zero condition exists), execution con-
tinues with the next instruction.

Indicators affected: Nomne
Registers affected: None

Example:

SKZ START The zero indicator is tested; if it is set (=1,
indicating a zero condition), control is trans-
ferred to location START. If it is not set (=0,
indicating a non-zero condition), program execu-
tion continues with the next instruction. START
may be any location in the range -256 to +255
words from $+1.

4-56

88A00508A-E

4.6.9 PROGRAMMING EXAMPLES

The elements of a byte array belong to one of two groups, identified by a flag in
bit 7 (Group A=0, Group B=1). A computation is to be performed using bytes in

Group A only. Bit 7 of each byte is tested, with the result placed into the zero
indicator:)

Group A — If bit 7=0, zero indicator is set (=1)
Group B — If bit‘7=l, zero indicator is reset (=0)

Base-relative, indirect addressing is specified for the TBIT instruction, with the
byte array accessed indirectly through the base address location.

ZERO X Zero byte index to begin.
LOOP TBIT 7,%0,X%,1 Test bit 7. o
SKN NEXT If Group B byte, go on to next byte.
LDBY C,*0,X,1 , Load Group A byte into register C.
. (Perform computations.)
NEXT : (Test for done.)
INCR X Increment index for next byte
JMP LOOP Jump to test next byte.

4.7 REGISTER OPERATE and
REGISTER OPERATE COMPARE INSTRUCTIONS

Register operate and register operate compare instructions are all one-word,
single-cycle, register-to-register operations.

Register operate instructions may be used to:

1. Transfer the contents of one register to another.

2. Add or subtract the contents of two registers.

3. Perform one of logical operations AND, XOR, or OR with the contents of
two registers.

The results of a register operate instruction are also reflected in the indicators.
The register operate compare instructions perform the same arithmetic and logical

operations without changing register contents; the results appear in the indicators
only.

4-57

88A00508A~E

There are eleven instructions in this group; each has the following machine
instruction format:

16 14 13 12 1110 9 8 7 6 6 4 3 2 1 O

0 0 0 0|1 Rs Rd
11 [| 1 1 | I |
: L
OP CODE OPERATION
EXTENSION 0101 = TRANSFER
0110 = SUBTRACT
INSTRUCTION TYPE 0111 = AND
0 = COMPARE 1000 = XOR
1 = LOAD 1001 = ADD
1101 = OR
486-4-40

If bit 4=1, the operation determined by bits 3 to 0 is performed. The result replaces
the contents of the destination register, and the. conditions of the result are placed

into the indicators. If bit 4=0, the operation determined by bits 3 to 0 is performed
and the conditions of the result are placed into the indicators only; the destination

register remains unchanged.

The results of register transfer (RTR) and logical operations are shown in the zero
and plus indicators. The results of arithmetic operations (addition, subtraction)
are shown in the zero, plus, overflow and link indicators.

The CAP-16 source statement format for this instruction group is as follows:
Command Parameters

ADD
ADDC
AND
ANDC
OR
ORC ¢ Rd,Rs
RTR
SUB
SUBC
XOR
XORC

where:
Rd is the destination register (determines the coding for bits 7 to 5).

Rs is the source register (determines the coding for bits 10 to 8).

4-58

88A00508A-E

4.7.1 ADD REGISTERS (ADD)

15 14 13 12 1110 9 8 7 6 6 4 3 2 1 o 2.056 us

0 0 0 o1 Rs Rd 111 0 0 1] ywwwar
L L1 N L L 1 1] X0xxe

The contents of the source register are added to the contents of the destination
register. The destination register retains the sum; the contents of the source
register remain unchanged.

L]

Rd +Rs -+ Rd

15-0 15-0 15-0
Indicators affected: Zero, Plus, Overflow, Link
Registers affected: Destination Register .
Example:
ADD A,B The contents of register B are added to the con-

tents of register A; the result is placed in
register A. The contents of register B remain
unchanged.

4.7.2 ADD COMPARE REGISTERS (ADDC)

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 2.06 s
0 0 0 01 Rs Rd o1 0 o 1
L1 1 L |1 Lt

X'0X X9’

508-4-22

The contents of the source register and the contents of the destination register
are added together, and the results are reflected in the indicators. Neither the
source nor destination register 1is changed.

Rd15_0+Rsls_0 - Data Bus
Indicators affected: Zero, Plus, Overflow, Link
Registers affected: None
Example:
ADDC A,B The contents of register A are added to the con-

tents of register B. The results are reflected
in the zero, plus, overflow and link indicators.

4-59

88A00508A-E

4.7.3 AND REGISTERS (AND)

15 14 13 12 1110 9 8 7 6 6 4 3 2 1 O

2.05 s
0 0 0 0] Rs Rd J1]0 1 1 1 oy 7e
L1 L1 L L1 X'0XX7

The contents of the source register are logically ANDed (A symbolizes the AND func-
tion) with the contents of the destination register and the result replaces the
contents of the destination register.

Rd)s_gMRsy5.0 > Rdj5 9

Indicators affected: Zero, Plus
Registers affected: Destination Register

Example:
AND A,B
If:
A =0 ... 01010
B =0 ... 01100
Result = 0 ... 01000

The result replaces the contents of register A. The contents of register B are
unchanged.

4.7.4 AND COMPARE REGISTERS (ANDC)

15 1413 12 1110 9 8 7 6 5§ 4 3 2 1 0 2058

0 0 0 01 Rs RdJO10 1 1 1] woxxy
L1 1 Lol Ll L1 X'0XX7

508-4-23
The contents of the source register are logically ANDed with the contents of the
destination register, and the results are reflected in the indicators. Neither the
source nor the destination register is changed.

RdlS-OARSIS-O - Data Bus

Indicators affected: Zero, Plus
Registers affected: None

4-60

88A00508A-E

4.7.5 OR REGISTERS (OR)

151413 12 1110 9 8 7 6 5 4 3 2 0 205u
0 0 0 o1 Rs I KB KK 1 e
L1 e L L1 X'OXXD

The contents of the source register are logically ORed (V symbolizes the OR function)
with the contents of the destination register and the result replaces the contents of
the destination register.

Rdjs_gVRs 5 ¢ ~ Rdis_g
Indicators affected: Zero, Plus
Registers affected: Destination Register
Example:

OR A,B

If:

A =0 ... 01010

B =0 .., 01100

Result = 0 ... 01110

The result replaces the contents of register A. Register B is unchanged.

4.7.6 OR COMPARE REGISTERS (ORC)

15 14 13 12 1110 9 8 7 6 56 4 3 2 1 O 2.05 us

0 0 0 O0}1 Rs Rd o1 1 0o 1 . .

L1 1 L1 1 1 L1 1 X'0XXD
508-4-24

The contents of the source register are logically ORed with the contents of the
destination register, and the results are reflected in the indicators. Neither -
the source nor destination register is changed.

RdlS-OVRSIS-O - Data Bus

Indicators affected: Zero, Plus
Registers affected: None

4-61

" 88A00508A-E

4.7.7 TRANSFER REGISTER (RTR)

16 14 13 12 1110 9 8 7 6 5§ 4 3 2 1 0 206us

0 0 0 0[1] FRs Rd [1]0 1 0 1| xoxxs
L1t R 104" |x0oxxs

The contents of the source register replace the contents of the destination register.
The contents of the source register remain unchanged.

Rs;50 ~ Rdysg

Indicators affected: Zero, Plus
Registers affected: Destination Register

Example:

RTIR D,X The contents of register X replace the contents
of register D. Register X is unchanged

4.7.8 SUBTRACT REGISTERS (SUB)

1 14 13 12 1110 9 8 7 6 5§ 4 3 2 1 O 2.05 s

0 0 0 0|1 Rs Rd |1]0 1 1
Lt 1 Ll 1l | S

508-4-26

0| xoxxe

The contents of the source register are subtracted from the contents of the destina-
tion register. The result is stored in the destination register; the source register
is unchanged.

Rd

Rd)s_g~Rsy5.0 ~ Rdysg

Indicators affected: Zero, Plus, Overflow, Link
Registers affected: Destination Register

4-62

88A00508A-E

4.7.9 SUBTRACT COMPARE REGISTERS (SUBC)

15 14 13 12 1110 9 8 7 6 6 4 3 2 1 0 2,05 s

0 0 0 o1 Rs Rd _Jo]o 1 1 o0 .
L1 L1 L L X'0XX6

The contents of the source register are subtracted from the contents of the destina-
tion register, and the results are reflected in the indicators. Neither the source
nor destination register is changed. '

RdlS_O-Rsls_0 - Data Bus

Indicators affected:. Zero, Plus, Overflow, Link
Registers affected: None

4.7.10 EXCLUSIVE-OR REGISTERS (XOR)

1% 14 13 12 1110 9 8 7 6 5 4 3 2 1 O 2.05 s

0 0 0 0|1 Rs Rd {111 0 O 0] xoxxs
| T | 11 1llXOXX8

6508-4-26

The contents of the source register are logically Exclusive-ORed (¥ symbolizes the
XOR function) with the contents of the destination register and the result replaces
the contents of the destination register.

Rd)5_o¥Rsy5_ o > Rdj5 4

Indicators affected: Zero, Plus
Registers Affected: Destination Register

Example:
XOR A,B
If:
A =0 ... 01010
B =0 .., 01100
Result = 0 ... 00110

The result replaces the contents of register A. The contents of register B are not
changed.

4-63

88A00508A-E

4.7.11 EXCLUSIVE-OR COMPARE REGISTERS (XORC)

16 14 13 12 1110 9 8 7 6 56 4 3 2 1 0O 2.06 us

0 00 o[1] re Rd Jo[1 0 0 0] xoxxe
L1t R Loy] XOxx8

608-4-27

The contents of the source register are logically Exclusive-ORed with the contents
of the destination register, and the results are reflected in the indicators.
Neither the source nor destination register is changed.

Rdls_oVRsls_0 + Data Bus

Indicators affected: Zero, Plus
Registers affected: None

4.7.12 PROGRAMMING EXAMPLES

1. This sequence subtracts the number in register A from the number in register B,
and places the result in register C if result >0 or clears register C if result

<0.
RTR c,B Transfer contents of register B to register C.
SUB C,A Perform subtraction.
SKP NEXT If result 1is positive, domne.
ZERO C If result is negative, zero register C.
NEXT .

[R¥]
.

This sequence tests for overflow before adding the A and B registers.

ADDC A,B Add compare registers A and B.

SKOT OFL Skip if overflow true.

ADD A,B Perform addition, leaving result in register A.
OFL : Overflow routine.

4-64

88A00508A-E

4.8 REGISTER OPERATE LITERAL and
REGISTER OPERATE LITERAL COMPARE INSTRUCTIONS

Register operate literal instructions perform load-register, arithmetic (additionm,
subtraction), and logical operations using a specified register and a literal value.
The results of an operation may be retained in the specified register and shown in
the indicators or may be shown in the indicators only.

There are eleven register operate literal instructions in this group. Each instruction
occupies two words and has the following format:
WORD 1
15 14 13 12 1110 9 8 7 6 56 4 3 2 1 0
0 0 0 0|0 0 0 1|R E G
L1 | Ll L

OP CODE : f
OPERATION
EXTENSION 0101 = LOAD VALUE
0110 = SUBTRACT
INSTRUCTION TYPE 0111 = AND
"1000 = XOR
0 = COMPARE 1000 - X0R
1 = LOAD 1101 = OR
WORD 2

1514131211109876543210

LITERAL VALUE

J WY U W N S W N T N R T T SR
L T L

466-4-47

If bit 4=1, the operation determined by bits 3 to 0 is performed. The result
replaces the contents of the specified register, and the properties of the result
are placed in the indicators. If bit 4=0, the operation determined by bits 3 to 0
is performed and the conditions of the result are placed in the indicators only;
the specified register is not changed.

The results of load value to register (LDV) and logical operations are shown in the
zero and plus indicators. The results of arithmetic operations are shown in the
zero, plus, overflow and link indicators.

The CAP-16 source statement format for this instruction group is as follows:
Command Parameters

ADDV 1
ADDVC
ANDV
ANDVC
LDV
ORV ; R,1it
ORVC
SUBV
SUBVC
XORV
XORVC)

4-65

88A00508A-E

where:

R specifies one of the eight general-purpose register; it determines the coding
of bits 7 to 5 in the first word of the instruction. :

1it 1is the literal value. The literal value may be coded in CAP-16 assembly
language in decimal, hexadecimal or octal form.or may be represented by
any allowable symbol or expression. The literal value comprises the
second word of the instruction.

Literal addressing mode is used for all register operate literal and register operate
literal compare instructions. The effective address is generated as the address of
the next sequential location. Effective address generation is shown in Figure 4=5.

FETCH LITERAL
VALUE

v

P+1—+P

v

FETCH LITERAL
VALUE

v

p+1->P

v

EXECUTE
INSTRUCTION

FETCH NEXT
INSTRUCTION

5074-29

Figure 4-5. Effective Address Generation, Literal Addressing Mode

4-66

88A00508A-E

4.8.1 ADD VALUE TO REGISTER (ADDV)

1 14 13 12 1110 9 8 7 6 56 4 3 2 1 0 3.10 s
0 0 0 0Jjo 0 O T"|/R E G|1]1Y O O 1 " .
L1 1 1 11 i 1 | I | X'01x9

The second word of the instruction (i.e., the literal) is added to the contents of
the register specified and the sum replaces that register's contents.

+(P+1) R

Ris5-0 15-0 ~ R15-0

Indicators affected: Zero, Plus, Overflow, Link
Registers affected: Specified Register

Example:
ADDV A,X'1F02' The binary equivalent of X'1F02' is added to

the contents of register A, and the result is
placed in register A.

4.8.2 ADD COMPARE VALUE WITH REGISTER (ADDVC)

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O 3.10 us
0 0 0 ofjo 0o 0 t|R E GJO|1 0 O 1 X'01X9’
1 | 1 1 | | 1 1 1 L1

508-4-29

The second word of the instruction (i.e., the literal) and the contents of the speci-
fied register are added together; the indicators are set according to the results.

R15_0+(P+1)15_0 -+ Data Bus

Indicators affected: Zero, Plus, Overflow, Link
Registers affected: None

Example:
ADDVC - X,50 The binary equivalent of (decimal) 50 is added
to the contents of register X with the results

appearing in the indicators only. Register X
is not changed.

4-67

88A00508A-E

4.8.3 AND VALUE WITH REGISTER (ANDV)

15 141312 1110 9 8 7 68 6 4 3 2 1 0 3108
0O 0 0 0o0lo 0 O 'R E GY1]0 1- ’ .
L1 Lok L1 (| xoix?

The second word of the instruction (i.e., the literal) is logically ANDed with the
contents of the register specified; the result replaces the register contents.

Ris_oM B+ 150 > Rysg

Indicators affected: Zero, Plus
Registers affected: Specified Register

Example:
ANDV B,X'0063"'
X'0063' = 0 ... 0l100011
If register B =0 ... 00011111
Result = 0 ... 00000011

The result is placed into register B.

4.8.4 AND COMPARE VALUE WITH REGISTER (ANDVC)

15 141312 1110 9 8 7 6 5 4 3 2 1 0 3.0 s

0 0 000 00 1]R EG|O[O 1 1 01X7"
Ll i 1 1 1 1 1 1] 1 ! X01x7

508-4-28

The second word of the instruction (i.e., the literal) and the contents of the regis-
ter specified are logically ANDed; the indicators are set according to the results.

RlS-OA(P+1)lS-0 -+ Data Bus

Indicators affected: Zero, Plus
Registers affected: None

4-68

88A00508A-E

4.8.5 LOAD VALUE TO REGISTER (LDV)

16 141312 1110 9 8 7 6 5 4 3 2 1 0 g0
0 00o0fo oo 1freacl[tfo 1 0 1] xoxs
— ‘ 1 L1 i1 : X'01X5

The second word of the instruction (i.e., the literal) replaces the contents of the
register specified.

(P+1) R

>
15-0 15-0

Indicators affected: Zero, Plus)
Registers affected: Specified Register’

Example:

LDV X,10 The binary equivalent of decimal 10 is loaded
into register X.

4.8.6 OR VALUE WITH REGISTER (ORV)

15 14 13 12 1110 9 8 7 6 6 4 3 2 1 0 3.10 s
0 0 0 o0fo o0 1]rEG|TI|1 1 01| xoxp
1 1 1

608-4-30

The second word of the instruction (i.e., the literal) is logically ORed with the
contents of the register specified; the results are placed in the specified register.

R s_oV(B+D)

15 R

15-0 ~ “15-0

Indicators affected: Zero, Plus
Registers affected: Specified Register

4-69

88A00508A-E

4.8.7 OR COMPARE VALUE WITH REGISTER (ORVC)

16 1413 12 1110 9 8 7 6 6 4 3 2 1 0 310

0 0 0 00 0 O t|R E GO 1 1 ‘01 XD’
L1 1 L1 1 L1 I\ LP 1 X'01XxD

The second word of the instruction (i.e., the literal) and the contents of the regis-
ter specified are logically ORed; the indicators are set according to the results.
RIS-OV(P+1)15—O -+ Data Bus

Indicators affected: Z2ero, Plus-
Registers affected: None

4.8.8 SUBTRACT VALUE FROM REGISTER (SUBV)

15 141312 1110 9 8 7 6 5 4 3 2 1 0 3.10 s

0O 0 0 0|0 0 0 1|R E G|1}jO0 1 1 O X'01X6°
L1 1 | . S | Ll L1 1

The second word of the instruction (i.e., the literal) is subtracted from the con-
tents of the register specified; the result replaces that register's contents.

R s_o= (B+1)

15 15-0 ~ R15-0

Indicators affected: Zero, Plus, Overflow, Link
Registers affected: Specified Register

4.8.9 SUBTRACT COMPARE VALUE WITH REGISTER (SUBVC)

1 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 3.10us

0 0 0 Ofj0o 0 O TR E Gi{OJ|O 1 1 0] X01X6
I | Ll 1 i1 1

The second word of the instruction (i.e., the literal) is subtracted from the con-
tents of the register specified; the indicators are set according to the results.

Rls_o-(P+1)15_O -+ Data Bus

Indicators affected: Zero, Plus, Overflow, Link
Registers affected: None

4-70

88A00508A-E

4.8.10 EXCLUSIVE-OR VALUE WITH REGISTER (XORV)

5 141312 1110 9 8 7 6 5 4 3 2 1 0 3.10 s
0 0 0 olo o 0 1fR E G|1]1 01X8"’
L.l 1 1 1 | 1 lO lolo X'01x8

The second word of the instruction (i.e., the literal) is logically Exclusive-ORed

with the contents of the register specified; the results are placed in the specified
register.

¥ (P+1)

R5-0 15-0 ~ R15-0

Indicators affected: Zero, Plus
Registers affected: Specified Register

4.8.11 EXCLUSIVE-OR COMPARE VALUE WITH REGISTER (XORVC)

156 141312 1110 9 8 7 6 6 4 3 2 1 0 3.10us
0 0 0 0o o o 1|r € Glo|1 o 0 o xoixs
R T O R Lo L1 X‘01x8

608-4-32

The second word of the instruction (i.e., the literal) and the contents of the regis-:
ter specified are logically Exclusive-ORed; the indicators are set according to the
results.

¥(P+1) - Data Bus

R1s-0 15-0
Indicators affected: Zero, Plus
Registers Affected: None

4.8.12 PROGRAMMING EXAMPLES

1. This routine searches for a specific item in an unordered list of 100 items.
The item to be found in the list is contained in register A. The list is stored
in memory, and the beginning address of the list is contained in the memory loca-
tion pointed to by the base address $$. Each element is accessed by indexing
this indirect address, using the contents of register Y for the index. The
search 1s started at the end of the list and works backwards. The first index
used, the highest element number, is loaded into register Y by the LDV instruc-
tion. The index is decremented to the next list item after a comparison has
been made by the CMR instruction. Upon successful completion of the search
(FOUND), the absolute address of the list item is placed in register B. If the
item is not in the list, B remains zero.

4-71

88A00508A-E

ZERO B Initialize answer register.
LDV Y,99 Start at end of the list.
SEARCH CMR A,*0,Y,1 Compare item with a list element.
SKZ FOUND If item equals list element, jump to FOUND.
DECR Y Else go to next list element.
SKM EXIT . If list is exhausted, item is not in list.
JMP SEARCH If more list items, go to next one.
FOUND LDR B,0,,1 Put beginning address of list in answer register.
ADD B,Y Add index position of element in list; answer is
EXIT . now in register B.

2. ANDVC may be used to test a byte or a bit of a register for zero. reg is the
register specified.

To test right byte:

ANDVC reg,X'OOFF'
SKZ ZERO Jump if right byte is zero.

To test left byte:

ANDVC reg,X'FF0O'
SKZ ZERO Jump if left byte is zero.

To test bit 'n' of register reg for zero (Osnsl5), the literal is a mask composed
of 15 zeros and a one in the bit position to be tested:

ANDVC reg,lit where lit = 20-
SKZ ZERO

For example, to test bit 3 of register A:

ANDVC A,X'0008" g=23
SKZ ZERO

3. A function of NUM, with NUM previously loaded into register A, is to be completed
according to the following formula:

£ (NUM) =NUM+£ (NUM=-2) for NUM 210
£ (NUM)=0 for NUM <10

In the sequence, successive values of NUM are added to the subtotal in register B
until NUM becomes less than 10.

ZERO B Zero answer register.
LooP :gﬁvc ga;g} Test for NUM less than 10.
ADD B,A Add NUM to subtotal.
SUBV A,2 Subtract 2 from NUM.
JMP LOOP Jump to test new NUM value.
DONE : Answer is in register B.

4-72

88A00508A-E

This sequence counts the number of times each letter of the alphabet occurs in

a plece of text. The ASCII text (see Appendix B) is contained in a 200-byte
array labeled TEXT; the beginning address (TEXT) is contained in location D+27.

A loop counter in register X is used to exit when all letters have been counted.
The letter counts will be tallied in 27 locations beginning at D. (It is assumed
that these locations initially contain zeros, and that TEXT contains only the
characters A to Z and blank.) This is illustrated as follows:

|
ETC. '
ARRAY = T T—T=< M
LETTER 3 : LETTER 4
LETTER 1 : LETTER 2
TEXT -
TEXT D+27
Z COUNT D+26
COUNT . .
ARRAY
A COUNT D+1
BLANK COUNT D
243-341
ZERO X Zero TEXT array index to start.
LOOP LDBY Y,*27,%,1 Load letter into register Y.
ANDV Y,X'1F' Strip three high-order bits to get count array
index. .
INCM 0,Y,1 Add one to letter count.
INCR X Next letter,
SUBVC X,200 End of table test.
SKM LOOP If not done, fetch next letter.

DONE E

4-73

88A00508A~E

4.9 SUBRQUTINE RETURN VIA INDIRECT VECTOR (RTNIV)

The primary use of this instruction is to return from subroutines entered via
non-inhibitable (NI) interrupts. To return from inhibitable (IN) interrupts, see

" RTRN, Section 4.10.11.. Another functilon of RINIV is to effect orderly context
switching. The memory mode mask word (32K/64K) will not take effect until an RINIV
instruction is executed (Section 4.15.2.4).

The RINIV instruction has the following format:

1614 1312 11 10 9 8 7 6 56 4 3 2 1 0

4.70 15
0 0 00 0 0 0 1 0O
’ L L1 | IS VY N N | 1

0 1 001 0lworp1 xo112
' WORD2 X'XXXX'

1
ADDRESS
1 3 1 1

111 L i1

. 5084-33

CAP-16 source statement for an RINIV instruétion‘is as follows:

Command Parameter
RTNIV address

where: address is the first address of the two-word dedicated memory location for
the particular NI interrupt (Table 4-4). Alternmatively, value may
be the first address of any two-word buffer which has previously
been loaded with address of the next instruction and the ISE status.

Table 4-4. Dedicated Memory for NI Interrupts

P-Register Save

NI Interrupt Vector (Address) ISE Save
Power Fail X'40' X'78°' X'79'
Auto Restart X'41' I\Ione(:> None
Memory Parity Protect X'42' X'74" X'7B'
TRAP and Undefined Op

Code X'44' x'7¢! X'7D’
Single Step/Break X'46' X'7E! X'7F'

<E>To use an RINIV to return from an auto restart, address must be predefined by an
operating system program or the interrupt service routine.

4-74

88A00508A-E

32K Mode

The contents of bits 15 to 0 of the location specified by word two are transferred
to register P. The content of bit 15 of the next location is transferred to the ISE.

((EA)) ;5.9 > Py5-0 (Bit 15 is forced .to zero)

((EA))+1)15 + ISE

64K Mode

The contents of the location specified by word two are transferred to register P.
The content of bit 15 of the next location is transferred to the ISE.

((BA)) 5.0 > Pysg

((EA))+1)15-+ ISE

An example of the use of an RTNIV for an NI subroutine return is illustrated for
TRAP instruction (Section 4.13.9). The following map shows a general case:

@ RTNIV address:
ADDRESS LAST INSTRUCTION OF
o117 SUBROUTINE ; ADDRESS MUST BE
APPROPRIATE TO TYPE OF NI
[]
@ : FIRST INSTRUCTION OF
> XXXX ‘INTERRUPTPROCES&NG
SUBROUTINE

INSTRUCTION AFTER RETURN
P+1 XXXX FROM NI ROUTINE

@ P XX XX INSTRUCTION IN EXECUTION
WHEN NI OCCURRED

ISE IN BIT 15 @ PROGRAM INFORMATION SAVED:
} ADDRESS + 1 : ISE SAVE
> P+ ADDRESS : P REGISTER SAVE
VECTOR

-\/’\N"\

CIRCLED NUMBERS IDENTIFY SEQUENCE OF OPERATIONS
466-4-56

4=~75.

88A00508A~E

4.10 REGISTER CHANGE INSTRUCTIONS

Register change instructions manipulate data in single registers and perform register
indicator transfer operations. This group also includes two imnstructions for subrou-
tine management. :

There are 17 register change instructions and each of these instructions has the
following format:

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 0 0 0jo0o 1 X X|IR E G|X X x X X
[| 1 | L1 lr i1 1

A '

(COMMAND)
01 RESTORE INTERRUPT SYSTEM ENABLE 00001 (RISE)
01 EXIT SUBROUTINE 00010 (EXIT)
01 SUBROUTINE RETURN 00011 (RTRN)
01 DISPLAY REGISTER CONTENTS 00100 (DSPL)
01 TRANSFER REGISTER TO STATUS 01000 (TRS)
01 EXECUTE REGISTER CONTENTS 10000 (XEC)
10 ZERO REGISTER 00000 (ZERO)
10 ZERO RIGHT BYTE 00001 (ZRBY)
10 ZEROQ LEFT BYTE 00010 (ZLBY)
10 EXCHANGE BYTES 00100 (EXBY)
10 TRANSFER STATUS TO REGISTER 01000 (TSR}
10 READ CONSOLE SWITCHES 10000 (RCSW)
11 COMPLEMENT REGISTER . 00000 (CMPL)
11 REGISTER ADD LINK .00001 (RLK)
11 DECREMENT REGISTER 00010 (DECR)
11 ADD SHIFT COUNTER TO REGISTER 01011 (ADDS)
11 INCREMENT REGISTER 01110 (INCR)
466-4-87

The DSPL and RCSW instructions are not used on a GA-16/110/220. The CAP-16 source
statement format for this instruction group is as follows:

Command Parameters

ADDS 1
CMPL
DECR
DSPL
-EXBY
EXIT
INCR
RCSW .
RISE > Register

RLK (One of the eight general-purpose registers
RTRN coded into bits 7 to 5)

TRS
TSR
XEC
ZERO
ZLBY
ZRBY /

4-76

. 88A00508A~F

14.10.1 ADD SHIFT COUNTER TO REGISTER (ADDS)

161413 12 11109 8 7 6 5 4 3 2 1 0 3g5u

0 0 0 0fjo 1™ 1 1R E GJO 1 0 1 1 ‘07XB’
11 1 1 1 1 1 XOJXB

508-4-34

The contents of the shift counter (bits 3-0 of the status register) are added to
the specified register.

S53-0™15-0 ~ Ri5-0
Indicators affected: Zero, Plus, Overflow, Link
Registers affected: Specified Register

ADDS is normally used after the SRLC instruction (Section 4.12.4). The SRLC instruc-—
tion shifts bits from bit 0 into the link indicator, stopping if a one is shifted
into the link (or until the specified count is exhausted). A shift count is tallied
in the shift counter, where O = 1 shift, 1 = 2 shifts, etc. The purpose of ADDS is
to read the shift counter following execution of the SRLC instruction.

The value of the shift counter (bits 3 to 0) specifies the bit position (15 to 0) of
the one bit that was shifted into the link indicator (i.e., the first low-order one
bit). The value of the shift counter plus one specifies the number of shifts that
were performed. (The link indicator should be tested to determine if the operation
halted as a result of the shift count being exhausted or by a one being shifted into
the link.)

Example:

To find the bit position of the first low-order one bit in register A and place the
bit position in register B: .

ZERO B Zero answer register.
SRLC A,l16 Shift until lower-order one bit is in 1link
indicator.
SKR NONE Exit 1if 1ink=0.
ADDS B Add shift count to register B.
NONE .

4-77

88A00508A-E

4.10.2 COMPLEMENT REGISTER (CMPL)

16 14 13 12 1110 9 8 7 6 6 4 3 2 1 0 3.06 s
0 0 0 0jo t 1 1|/R E G|lo 0 0 0 O] xo7x0
I | J - [T N S

[|]

T

The contents of the register specified is replaced by its one's complement.

Indicators affected: Zero, Plus, Link
If the initial contents of the register = 0, 0-L

If the initial contents of the register # 0, 1-L
Registers affected: Specified Register

Example:

CMPL B If register B contains 1110001011000000
The one's complement: 0001110100111111 replaces
the value in register B and the link is set.

4.10.3 DECREMENT REGISTER (DECR)

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2.56 18

000001 1 1[REG|[OO 0 1V 0] xqyxx

U | [.| 11 l' 1 i

The specified register is decremented by one.

Ris—0! > Ris_g

Indicators affected: Zero, Plus, Link (Overflow is not affected.)
Registers affected: Specified Register

Example:

DECR B Subtract one from the contents of register B.

4-78

88A00508A-E

4.10.4 DISPLAY REGISTER CONTENTS (DSPL)

151413 1211109 8 7 6 6 4 3 2 1.0 g5,

"00000101REGOO100X'05X4'
G | 11 1 11 L1 1 1

~ This instruction places data on the data bus and does a strobe. Because there is no
register display device normally installed, this instruction generates no observable

‘result. The instruction is provided for compatibility with the GA-16/440 and SPC-16
series computers.

R15—0 - data bus (and strobe signal generated)

Indicators affected: None
Registers affected: None

NOTE
On a GA-16/220 with SCI, the subroutine at
location X'FC61' (Table 3-5) to output (four)
ASCII charactesr to a TTY could be called from
a user's program to display data, if timing
permits, and registers A,Y, and B can be used.
Also D register contents must be saved, then D

set to X'FE00' before making the subroutine
call.

4.10.5 EXCHANGE BYTES (EXBY)

161413 12 11 10 9 8 7 6 56 4 3 2 1 0

00000110REGOO100
A1 1 | i 1 Illl

2.56 us
X‘06X4’

508-4-36

The left and right bytes of the register specified are interchanged.

R0 © > Ris_g

Indicators affected: None
Registers affected: Specified register

Example: _EXBY C If register C contains 1111111100000000, after exchanging
left and right bytes, register C contains 0000000011111111.

4-79

1

88A00508A~E

4.10.6 EXIT FROM SUBROUTINE (EXIT)

16 1413 12 1110 9 8 72 6 5 4 3 2 1 0 2.56 s

0 000010 1]|]REG|ooO O 1 0] xosx
[| | i 1 1 L1 L1 [| X'06X2

This instruction is used to transfer program execution to a location specified by

the contents of the register specified. There is no effect on the ISE. (To change
ISE, see RTRN, Section 4.10.11.)

32K MODE

Bits 14 to O of the register specified are transfe:red to‘the corresponding position
in register P. ISE is unchanged. N :

R14-0 > P14_0 ISE unchanged

64K MODE

The contents of the register specified are transferred to register P. ISE is
unchanged.

R15-0 - PIS-O ISE unchanged

4.10.7 INCREMENT REGISTER (INCR)

151413 12 11109 8 7 6 5§ 4 3 2 1 0 2.56 us

o o 0 0OJo 1+ 1+ 1]/]R E G|jO 1+ 1 1 O X'07XE’
[| I W | 1 1 L1 1 1

The specified register is incremented by one.

R15_0+l -> R15-O

Indicators affected: Zero, Plus, Link (Overflow is not affected.)
Registers affected: Specified Register

Example:

INCR A One is added to the contents of register A.

‘ 4-80

88A00508A-E

4.10.8 RCSW (INVALID INSTR‘UCTION)

%514 13 12 11 10 9 8 7 6 6 4 3 2 1 O

0 0 0 0JjO t 1 OJR E G|1 0 O O O
11 L1 1 11 1 1 1

2.56 s
X'06X0’

508-4-37

The RCSW instruction cannot be used on a GA-16/220. Any program containing
RCSW must be modified for execution on the GA-16/220. Use either Read Console

Switches into Memory (RCSM) or Read Console Switches into Register (RCSR). (See
Sections 4.15.1.1 and 4.15.1.2.)

4-81

88A00508A-E

4.10.9 RESTORE INTERRUPT SYSTEM ENABLE (RISE)

2.55 /5

15 141312 1110 9 8 7 6 5 4 3 2.1 0 4

o 0 o olo 1 o0 1R E G|O|O O O 1] x05X1
1 1 | | - | L L 1 1 i L

508438
32K MODE

This 1nstruction transfers the content of bit 15 of the register selected (by REG
bits 7,6,5) to the ISE. (Logical one enables IN interrupts.)

RIS*ISE

64K MODE

This instruction transfers the content of bit 15 of the status register to the ISE.
The REG bits (7 to 5) in the instruction are disregarded.

S, >ISE

15

Indicators affected: Nomne
Registers affected: None

The RISE instruction is used to restore the interrupt status following the execution
of a JSR if the interrupt status within the subroutine is to be the same as that in
the calling routine. In the 32K mode, register E is normally specified, since the
interrupt system enable status was stored in register E, bit 15, during the execu-
tion of the jump-to-subroutine (JSR) instruction.

1f the transferred status enables the interrupt system, IN interrupts may occur
immediately following execution of the RISE instruction.

Example:

Calling Program

ISR SUBR
Subroutine
SUBR SARS temp Subroutine SUBR will now have the same interrupt
RISE E status as the calling program.

4-82

88A00508A-E

4.10.10 ADD LINK TO REGISTER (RLK)

514 13 12 11710 9 8 7 6 6 4 3 2 1 0

0 0 0 0o 1 1 1"/RE G|o 0 0 0 1] 306
| 111 L1 Lo X'07X1"

608-4-39

The content of the link indicator is added to the contents of the register specified.
This instruction would typically be used to set up the dividend for a hardware DIV
instruction (Section 4.16.1) as shown in examples below. It can also be used when
multiple programmable registers are used for multiplication of very large numbers by
successive addition.

Ri5-0™ > Rysg

Indicators affected: Zero, Plus, Overflow, Link
Registers affected: Specified Register

Examples:

SINGLE PRECISION DIVIDEND

LDR C, DIVS Put unadjusted single precision dividend into
register C

ZERO B Be sure upper bits of dividend are zero

ADD c,C Shift bits left; bit 15 into link

RLK B If the link indicator is set (=1), register B

is incremented. If the link indicator is reset
(=0), the value in register B is not changed.

DOUBLE PRECISION DIVIDEND

LDR C, DIVL Put least significant bits of dividend into
register C

LDR B,DIVM Put most significant bits of dividend into
register B (cannot exceed 14 bits)

ADD B,B Shift MSBs left one bit

ADD c,C Shift LSBs left ome bit; (bit 15 into link)

RLK B Set bit O of register B from link (as described

in previous example)

4-83

88A00508A-E

4.10.11 RETURN FROM SUBROUTINE (RTRN)

1651413 12 11109 8 7 6 6 4 3 2 1 0 256
0 0 00Jo 1t 0 i|REGJo 0 0 1 1
[T 1 1 1 || l'lL

X'08X3’

508-4-40
32K MODE

The contents of the register specified (normally register E) are transferred to
register P and to the interrupt system enable.

Ri4-0 ~ P1a-0

RlS > ISE

64K MODE

The contents of the register specified are transferred to register P and the content
of bit 15 of the status register is transferred to the ISE.

Ris—0 ~ P15-0

S15 + ISE

Indicators affected: None
Registers affected: None

If the restored status enables the interrupt system, interrupts may occur immediately
following execution of the RTRN instruct:ion.

To return from NI interrupts, use an RINIV instruction (Section 4.9). To return
from a subroutine and not change ISE, see EXIT (Section 4.10.6).

Example:

RTRN E Control is returned to the calling program at
the location specified by the contents of regis-
ter E, bits 14 to 0. The ISE status of the
calling program prior to the jump-to-subroutine,
which was placed into bit 15 of rcgister E, is
placed back into the ISE, restoring the inter-
rupt status of the calling program.

C 4-84

88A00508A~E

4.10.12 TRANSFER REGISTER TO STATUS (TRS)

16 14 13 12 11 10 9 8 7 6 5 4 3 2 t O 2.55 s

0 0 0 0JOo 1 0 1|]RE GJO 1 0 0 0] yaexs
Ll L1 i L1 X'06X8

The appropriate bits of the register specified are loaded into the indicators and
shift counter. This instruction changes the state of the indicators and may, there-
fore, affect the mode (foreground, background). The 32/64K mode indicator (S14) is
unaffected. 8§15 (previous ISE status; also called ISE save status) is changed but
ISE itself is unaffected.

R3_0 - Shift Counter

R4 - Link

R5 -+ Overflow

R6 -+ Plus

R7 + Zero Register S
R8 ~+ Foreground

R13-9 7 S13-9

R15 + ISE Save Status ($l5)

Indicators affected: Zero, Plus, Overflow, Link, Foreground, ISE Save
Registers affected: None

4.10.13 TRANSFER STATUS TO REGISTER (TSR)

% 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 2.55Ms

0 0 0 0Jo t 1 O|R E G|O 1 0 O O] xo06x8
U .| L1 1 11 %lleosx8

508-4-41
The contents of the indicators and the shift counter are transferred to the register
specified.

Shift Counter - R3_0
Link > R4
Overflow -> R5
Plus - R6
Register S
Zero - R7
Foreground -+ R8
513-9 > Ri309
32/64K Mode Rl4
Indicators affected: None ISE Save (515)+ RlS

Registers affected: Specified Register

4-85

88A00508A-E

4.10.14 EXECUTE REGISTER CONTENTS (XEC)

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O 2.05 us

0 0 00J0 10 1|REG|1 000 0] xosxo
L1 TR BT il R R Rar i Bk

The contents of the register specified are loaded into the instruction register
(register I) and executed as a single-word instruction. Only single-word instructions
can be executed with the XEC instruction. This excludes two-word memory reference

and indexing instructions (i.e., ADDR/DISP = X'lF') and all other instructions

which require two words. The time of the normal instruction execution must be added
to the XEC time for the total instruction execution time.

RlS—O - 115—0; Execute I

Indicators affected: The same indicators as would be affected by the normal
execution of the instruction.

Registers affected: The same registers as would be affected by the normal
execution of the instruction.

NOTE
Interrupts may occur before register contents
are executed.
4.10.15 ZERO REGISTER (ZERO)
151413 12 11 109 8 7 6 5 4 3 2 1 0 255

0 0 0 0fo 1 1 OfJR E G|O O O O O} x06x0
el 1 | B L 1 —l

6508-4-42
The register specified is cleared.

0> Ry5_g

Indicators affected: None
Registers affected: Specified Register

Example: ZERO X The contents of register X are replaced with
zZeros.

The double-word instruction (Section 4.8.5) may also be used.

LDV X,0 Place all zeros in register X and, in addition,
affects the zero and plus indicators.

4-86

88A00508A~E

!

4.10.16 ZERO LEFT BYTE (ZLBY)

151413 1211109 87 65 43 2 1 0 g5

0000011109151600010X’OBX2'

a1 1 i 1 L1 1.1
L]

The left byte of the register specified is cleared. The right byte is not affected

0>Ris g

Indicators affected: None)
Registers affected: Bits 15 to 8 of the register specified.

Example:
ZLBY A - If register'A contained X'FFFF', ZLBY would
replace that value with X'OOFF'.

4.10.17 ZERO RIGHT BYTE (ZRBY)

1514 13 12 1110 9 8 7 6 56 4 3 2 1 0 2.56 us

0 00001 1 0[REG[0O OO 0 1] xoexr
L TR AT Ly oy | Xeex

Il
T

508-4-43

The right byte of the register specified is cleared. The left byte is not affected.

0~ R7_0

Indicators affected: None
Registers affected: Bits 7 to O of the register specified.

Example:

ZRBY C If register C contained X'FFFF', ZRBY would
replace this value with X'FF00'.

4-87

88A00508A-E

4.10.18 PROGRAMMING EXAMPLES

1.

To compute the absolute value of a number that is in register A:

ANDVC A,X'8000' Test sign bit.
SKZ EXIT2 Exit if number 1is positive.
CMPL A} Change negative number (two's complement)
INCR A to positive representation.
EXIT2 .

This example shows how the XEC instruction may be used to specify a parameter
of an instruction at execution time. The instruction to be executed is the
test bit (TBIT) instruction. : .

An array of 400 bits is stored in memory.in the first 25 words beginning at D:

3917300389388 387'386 385 384 399'398 397 396 395 394 393 392| D+24
1

L] ') L[]
30 738 137 136 135 134 '33 '32 |47 146 45 '44 43 '42 '41 40 | D+2
23 722 721 120 119 118 17 '16 | 31 130 '29 '28 27 '26 '26 24 | O+
7 '8 '5 4 '3 '2 1 _'0 ,15'14 1312 '11 '10'9 '8 D

The result of a calculation in the main program gives a bit element number
(from 399 to 0) in register X, which must be converted to reference the bit
element as bit 7 to 0 of the left or right byte of a particular word. For
each bit element number, the binary representation can be defined as follows:

Register X = bit number (399 to 0)

1514 13 12 1110 9 8 7 6 56 4 3 2 1 O

T
'
[i 1 1 | L 1 1 | 1 i i i]
m] [Rg———4
WORD ADDRESS BIT POSITION 0-7
0 = LEFTBYTE —
1 = RIGHTBYTE

243-3-52

The main program will then call the subroutine TSTB to test the bit.

4-88

88A00508A-E

The TBIT instruction will be defined in the subroutine TSTB as a literal value
with the bits set as follows:

15 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0

1 0 1 olm]r]mNnDox| BITID ADRS/DISP J
1 1 1 | 1 1 & 1 L1
| |
1 = BASE RELATIVE 0, SINCE ARRAY BEGINS AT D
0 = DIRECT —— USE 000; TO BE ADDED AT EXECUTION TIME
01 = REGISTER X 243383
This forms the number: binary — 1010100100000000

hexadecimal — A 9 0 0

Subroutine TSTB must take out the three lower bits of register X and put them
in bits 7 to 5 of the TBIT instruction. Then it shifts off the three bits,
leaving the correct byte address in register X. '

It is assumed that the main program will not need the original contents of any
of the registers or indicators changed by the subroutine, e.g., that it will
branch to a new operation depending upon whether the bit tested is zero or one.

Main:
. Calculations define word, byte, and bit in bit
: array (399 to 0) and place binary representation
in register X.
JSR TSTB Call subroutine to test bit.
SKN BONE Skip to routine for bit=l.
: Continue when bit=0.
BONE Routine to process bit=l,
Subroutine:
TSTB LDV A,X'0007' Set up mask for bit position.
AND A,X Put bit position (only) in register A.
SRC A,11 Shift bit position to bits 7 to 5 for TBIT
instruction.
ORV A,X"A900' Fill in rest of TBIT instruction.
SRA X3 Make byte index register X.
XEC A Execute TBIT instruction.
RTRN E Result is in zero indicator.

4-89

88A00508A-E

4.11 SHIFT LEFT INSTRUCTIONS

Shift left instructions shift the selected register one bit position left. The
most significant bit of the register is always transferred to link.
plus indicators also monitor the results of all left shifts. There are four
instructions in the shift left group. They have the following format:

The zero and

1514131211109878543 2 10
0 0 000 1 11
[| [|

VR E G|O O
1 4 1
T

1
L]

* S —,

0 o1 1 SLC

1 0o 11 SLCL
1 i00 sLIZ
1 1t 01 SLIO

The shift pétterns performed by the shift left instructions are as follows:

SLCL

-
SLC
>
15 REGISTER 0 l
SLC LINK |— 4‘ ~ 8LIZ 0
SLIO ALL
sLIZ SHIFTS SLIO
466-4-70

The CAP-16 source statement for this inmstruction group is as follows:

Command Parameters
SLC

SLCL Any Register
SLIO

SLIZ

4-90

88A00508A—E

4.11.1 SHIFT LEFT CIRCULAR (SLC)

161413 121110 9 8 7 6 6 4 3 2 1 0 g5

0 0 0 0|0 1 1 O|R E ‘06X3’
1 1 4 1 IIGQOIOJ1I1 X'06x3

The register selected is shifted left one bit position. Bit 15 is shifted into both
link and bit 0. The bit shifted out of link is lost.

Indicators affected: Zero, Plus, Link
Registers affected: Selected Register

4.11.2 SHIFT LEFT CIRCULAR THRQOUGH LINK (SLCL)

151413 121110 9 8 7 6 5 4 ‘3 2 1 0 ao5pus

0 0 0 0|0 1 1 1|R E Gi1o'!0 0 1 1 07X3’
1 11 TR T | lll}'lnnxon‘s

The register selected is shifted left one bit position. Link is shifted into bit O.
Bit 15 is shifted into link.

Indicators affected: Zero, Plus, Link
Registers affected: Selected Register

4.11.3 SHIFT LEFT INSERT ONE (SLIO)

151413 121110 9 8 7 6 5 4 3 2 1 0 255u
0 00001 1 1|R E Gi0j0 1 0 1] xo07x5°
11 1 [| f 41 ¢ 11 1

v

The register selected is shifted left one bit position. Bit 15 is transferred to
link, the bit shifted out of link is lost, and a one is shifted into bit O.

Indicators affected: Zero, Plus, Link
Registers affected: Selected Register

4.11.4 SHIFT LEFT INSERT ZERQ (SLIZ)

1% 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 2.55 us

0O 0 0 0o 1 1 1/{R E G|O]O 1 0 O] Xo7x4
1 1 1 1 1 1 1 1 1 1 1

508-4-44

The register selected is shifted left one bit position. Bit 15 is transferred to
link and a zero is shifted into bit 0. The bit shifted out of link is lost.

Indicators affected: Zero, Plus, Link
Registers affected: Selected Register

4-91

884.00508A~E

4.12 SHIFT RIGHT INSTRUCTIONS

Shift right instructions shift the bits of the selected register a specified number
of positions to the right. Results of the shift are reflected in the zero, plus and
link indicators. The shift proceeds bit by bit until the shift count has been satis-
fied; the shift right logical and count, however, will terminate as soon as a one bit
is shifted into the link. For all other shifts, the number specified by the shift
count (n) is always one less than the actual number of bits shifted. There are four
instructions in the shift right group; each has the following format:

1514 13 12 11 10 9 8 7 6 56 4 3 2 1 0

0 0 0 0ol0o O 1 R E G N-1
PR S | TR | i 1 1
} A
SRLC O 0
SRA 0 1
SRC 1 0
SRCL 1]
]
OPCODE' SHIFT
EXTENSION TYPE
SHIFT COUNT:

X0 TO X'F=1TO 18 SHIFTS
466-4-72

“The CAP-16 source statement format for this instruction group is as follows:

Command Parameters
SRA
SRC
SRCL Register,number
SRLC

where:
Register is a general-puspose register, coded into bits 7 to 5.

Number is the actual number of shifts to be performed. The assembler subtracts
one from the number (n); therefore n-1 is coded into bits 3 to 0 of the

machine instruction.
The shift patterns performed by the shift instructions are diagrammed as follows:

SAC
SRA
REGISTER
51413 1211109 8 7 6 6 4 3 2 10
L O L A BB I AL 1 SRC
SRA
e I
0's SRLC
—
————>
SRCL 243-3.66

The processor time required to execute a shift instruction is a function of the
number of shifts performed. -

4-92

88A00508A-E

4.12.1 SHIFT RIGHT ARITHMETIC (SRA)

151413 121110 9 8 7 6 5 4 3 2 1 0 305:1.00N1) s

0O 0 0 0|0 0 1 O|R E N-1 02X X’
T T | " | lle1lllx°2xx

The register selected is shifted right (N) positions as specified by the shift
count. The sign position (bit 15) is maintained and propagated to the adjacent
right bit positions as specified by the shift count. Bits are shifted out of bit 0
into the link. Bits shifted out of the link are lost.

Indicators affected: Zero, Plus, Link
Registers affected: Selected Register

Examples:

SRA A, 10 If register A originally contains 0000111100001111.
then after completing ten shifts, register A conta:n:
0000000000000011 and the link contains the
original bit 9 (=1).

SRA B, 15 If register B originally contains 1000000000000000.
then after completing fifteen shifts, register B
contains 1111111111111111 and the link contains
the original bit 14 (=0).

4.12.2 SHIFT RIGHT CIRCULAR (SRC)

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 3.05+1.00(N-1) u's

0O 0 0 OjOo O 1 1]/R E Glo N-1 NV Y
L1 1 a1 L1 L1 g] X03xx

608446

The register selected is shifted right (N) positions as specified by the shift
count. Bit O is shifted into bit 15, and bit 0 is shifted into the link. Bits
shifted into bit 15 move to the right for each subsequent shift. Bits shifted out
of the link are lost.

Indicators affected: Zero, Plus, Link
. Registers affected: Selected Register

Examples:

SRC A,l If register A originally contains 1111000011110000,
then after completing one shift, register A contains
0111100001111000 and the link contains the original
bit 0 (=0).

SRC A,5 " If register A originally contains 1111000011110000,
then after completing five shifts, register A
contains 1000011110000111 and the link contains the
original bit 4 (=1).

4-93

88A00508A-E

4.12.3 SHIFT RIGHT CIRCULAR THROUGH LINK (SRCL)

1514131211109 8 7 6 6§ 4 3 2 1 0 306+1.00(N-1)us
0 o0 0 0jo 0 1 1}R E 1 N-1 . .
"R | 'O | | |G [X03XX

The register selected is shifted right circular (N) positions as specified by the
shift count. The content of the link is shifted into bit 15. Bits are shifted out
of bit 0 into the link. '

Indicators affected:
Registers affected:

Zero, Plus, Link
Selected Register

Example:

1f register~A originally contains 0000000011110000
and the link is set (=1), then after completing
five shifts, register A originally contains
0000100000000111 and the link contains the original
bit 4 (=1).

4.12.4 SHIFT RIGHT LOGICAL AND COUNT (SRLC)

SRCL A,5

16 14 13 12 MM109 8 7 6 5 4 3 21 0 3.05+1.00(N-1) us

0 0 0O
e

o o 1. 0
L a1

R E G
1

0

N-1
1

X'02XX’

508-4-48

The register selected is shifted right (N) positions as specified by the shift count
or until the link contains one, whichever occurs first. For each shift made, a zero
is placed into bit 15. Bits are shifted out of bit O into the link. Bits shifted
out of the link are lost.

The shift counter will contain the bit position of the one bit that terminates the
shifting; this number is also the number of shifts performed minus one. The value
in the shift counter may be read by the ADDS instruction (Section 4.10.1) or by the
TSR instruction (Section 4.10.13).

Indicators affected: Zero, Plus, Link
Registers affected: Selected Register

Examples:

SRLC B, 10 If register B originally contains 1101000000000000,
then after completing ten ghifts, register B contains
0000000000110100 and the link contains the original

bit 9 (=0). The shift counter will contain nine.

SRLC c,6 1f register C originally contains 1000000000011100,
then only three shifts will be made. After comple-
tion, register C contains 0001000000000011 and the
link contains the original bit 2 (=1). The shift

- counter will contain two.

4-94

88A00508A-E

4.12.5 PROGRAMMING EXAMPLE

' This program will count the number of ones in register A and leave the count in

; register X.

Upon completion, register A contains all zeros.

ZERO X . Zero count to begin.
LOOP SRLC A, 16 Shift until link contains a one.
SKR DONE Skip if no one was shifted into link.
INCR X Count the ones.
JMP LOOP Go to shift again.
DONE -

4.13 CONTROL INSTRUCTIONS

The control instructions perform the fo}ldwiqg functions:

Enable/inhibit interrupt system

Set foreground/background mode

Pulse the operations monitor alarm (OMA) timer

Generate a sync pulse

Set or reset the link indicator

Cause program execution to "halt" in a wait state

Cause program to TRAP (interrupt) out of program sequence

The instructions in this group have the following formats:

15 14 1312 11 10 9 8 7

6 6 4 3 2 1 0

100000100
L i S

| 1

.%e””

1 = OSCILLOSCOPE SYNC PULSE — (2T
1 = PULSE MONITOR ALARM— R i)

1 =ENABLE CHANGE LINK

O-UNKTOO} (LKR)
1=LINKTO 1 (CK3})

1 = ENABLE CHANGE REGISTERS FOREGROUND (BMS, FMS)

0= BACKGROUND (BMS)

1= FOREGROUND (FMS)
1 = ENABLE CHANGE ISE (NE, INH)

0=ISEOFF} (INH)

1=ISE ON (INE)

15 14 13 12 11 10 9 8 7

[@ 0 0 0(0 O O 010 O 0O X X X X
L [TR WO N R T T A DA DA
T 1
— omn—
0=WAIT Coon
1= TRAP

4-95

ALL EXCEPT WAIT OR TRAP
(COMMAND MNEMONICS)

WAIT OR TRAP

X CAN BE 1 OR O

4664-75

88A00508A~E

The source statement format for this group is as follows:

Command Parameters

BMS
FMS
INE
INH
LKR
LKS
PMA
SYNC B
TRAP) . [number]
WAIT ' [number]
No mnemonic parameters are specified for control instructions except for WAIT and

TRAP, n=X'O-F'. As showm, all sixteen bits are used as an operations code, with
" the exceptions of WAIT and TRAP.

4-96

88A00508A-E

4.13.1 SET BACKGROUND MODE (BMS)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0 o285

0O 0 0 ofo 1+ o 0fj0 0 O ‘0408’
[I 11|°1|°1010 X'0408

Following execution of this instruction, the eight background registers (A', X', Y',
z', B', ¢', D', E') are used by all instructions that specify registers. The fore-
ground registers (A, X, Y, Z, B, C, D, E) are not addressable while the computer is
operating in the background mode.

0 » Foreground (SS)
Indicators affected: Foreground (Sg)
Registers affected: Set of eight background mode registers become .accessible;
' set of eight foreground mode registers are not accessible.
Background mode may also be set by execution of the LARS (4.5.4) or the TRS (4.10.12)

instructions.

4.13.2 SET FOREGROUND MODE (FMS)

1514 131211 10 9 8 7 6 5§6 4 3 2 1 0 2.56 s

0O 0 0 0j0o 1 0 O0jO O O OfJ1 1t O O] xwo4a0C
[I | L1 1

508447

Following execution of this instruction, the eight foreground registers (A, X, ¥,

Z, B, C, D, E) are used by all instructions that specify registers. The background
registers (A', X', Y', 2', B', C', D', E') are not addressable while the computer is
operating in the foreground mode.

1 - Foreground (58)
Indicators affected: Foreground
Registers affected: Set of eight foreground mode registers become accessible;
set of eight background mode registers are not accessible.
The computer will always be placed in the foreground mode by pressing the console

RESET switch (Section 3.3), and may be placed in foreground by execution of the
LARS (4.5.4) or the TRS (4.10.12) instructionms.

4-97

88A00508A~E

4.13.3 ENABLE INTERRUPTS (INE)

1614 1312 11 10 9 8 7 6 6 4 3 2 1 0. ,g5s
0 0 0ofo 1 o ofo o0 o 1 ‘0403
1 1 | 1 | 1 1 I lo ol'ol l“ X'0403

Following execution of this instruction, inhibitable (IN) interrupt requests may
interrupt the normal program sequence and demand service by an interrupt subroutine.
The interrupt system will allow an IN interrupt immediately following execution of
the INE instruction.

1 »- ISE

Indicators affected: None
Registers affected: None

4.13.4 INHIBIT INTERRUPTS (INH)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0 255us
[0.000010001000001ox'0402'
1 1 L1

L 1 1 L | |

Following execution of this command, normal program sequencing will not be inter-
rupted by IN interrupt requests. 1IN interrupts are inhibited immediately following
execution of the INH instruction. INH does not affect the non-inhibitable (NI)
interrupts. NI interrupts are summarized in Section 4.9.

0: - ISE
'ndicators affected: None
Registers affected: None

4.13.5 RESET LINK (LKR)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0 2.55 s
o 0 0 0|0 1 0 0O0J]O O 1 OO O O O " '
[) I | || 1 1 L1 i 1 1 I X'0420

508-4-48
Execution of this instruction places a zero into the link.

Q. >~ Link

Indicators affected: Link
Registers affected: None

4-98

88A00508A-E

4.13.6 SET LINK (LKS)

1614 1312 11 10 9 8 7 6 56 4 3 2 1 O 2.56 us

0 0 0 ojOo 1+ 0 O0jO 01 1]0 0 0 O
I S | . L1 1 11 1

© X'0430’

Execution of this instruction places a one into the link.
1 - Link

Indicators affected: Link
Registers affected: None

4.13.7 PULSE OPERATIONS MONITOR ALARM"(PMA)

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0 g5

0 0 0 0jO 1+ O OjO 1 0 0|0 O O O} x'0440
L1 1 L1 1 | A | L1 1

This instruction resets the operations monitor alarm (OMA) timer each time the
instruction is executed. Failure to execute this instruction within 150-300 ms
of the previous execution causes the computer to automatically switch from RUN
mode to IDLE mode and the safe signal to be removed from the safe line.(SFEC-)
Recovery from this mode can be effected only by operator intervention. The OMA
timer will not initially start until a PMA instruction is executed for the first
time. Thereafter, it must be periodically executed to prevent the OMA from
becoming activated. This alarm 1s also described in Section 4.15.4, Special
Features and Standard I/O.

Indicators affected: None
Registers affected: None

4.13.8 GENERATE SYNC PULSE (SYNC)

1514 131211 109 8 7 6 5 4 3 2 1 0 255us

0 0 0 0Jo t 0 0[]1 0 0 oflo o o O] xo480
L 1 1 I — 1 1 i 1 1 1 LJ
508449

Execution of this instruction places a 120 ns pulse on the SYNG-line on the

I1/0 cable. It is the purpose of this instruction to provide a synchronizing pulse

for hardware/software debugging and is usually used to synchronize an oscilloscope.
Pulse -+ Sync

Indicators affected: None
Registers affected: None

4-99

88A00508A-E

4.13.9 PROGRAM SEQUENCE INTERRUPT (TRAP)/RESERVED OP CODES

1514 131211 109 8 7 6 5 4 3 2 1 0 880
ooooooooooo1xxxx|x°?1°
Ll .l | - 1 1 | i | i X‘001F’

508-4-50

Execution of this instruction generates a non-inhibitable (NI) firmwarxe interrupt
through vector address 44. All op codes from X'0010' to X'001F' perform traps. The
status of ISE is stored in bit position 15 of location 7D. The least significant

15 bits of the TRAP instruction are transferred to the corresponding bit positions
of location 7D. The tontents of register P are stored in location 7C. The next
instruction address is the contents of location 44.

ISE -> 7D15
(TRAP Code) 140 - 7D‘14_0
P -+ 7C
(44) > P

0 -+ ISE

Indicators affected: None
Registers affected: None

The operation of the TRAP instruction is illustrated in the following core map:

g:,g ;::1) } RTNIV X‘7C’ : LAST INSTRUCTION OF ;,
) TRAP SUBROUTINE |
300 XXXX « FIRST INSTRUCTION OF TRAP SUBROUTINE "
202 XXXX NEXT INSTRUCTION
201 0018 « TRAP MAIN
PROGRAM

200 0403 « INE ; SETS ISE (IF NOT ALREADY SET)

STORED BY TRAP { 70 8018 « ISE AND TRAP CODE

INSTRUCTION 7C 0202 STORAGE OF REGISTER P

' 4 0300 «~ ADDRESS OF TRAP SUBROUTINE

Reserved Op Codes

Certain op codes have been reserved for future expansion. They are listed below.

They should never be used, as it may result in future operating system incompatibilities.
151413 12 11 10 9 8 7 6 5§ 4 3 2 1 0

0 000100 C 0, X X X X . ,
1||l||1%|1|llllxooxx

' A A AR
200 1 0
7 +0 1 : 11 RESERVED OP CODES
9 -1 0 0 1 FOR FUTURE EXPANSION
B=>1 0 1 1
Fo>1 1 1 1 507-4-54

Execution of any reserved op code will perform the same functions as a TRAP
instruction. TFor a more detailed discussion of interrupts, see Section 2.6.

4-100

88A00508A-E

4.13.10 WAIT (WAIT)

1514131211109 8 7 6 5 4 3 2 1 0 256s
000 0]00O0O0]O0O0OoO0][x x x x| X000
I | T | I | 1 1 1 x'000F’

Execution of this instruction causes program execution to halt; the microconsole WAIT
and RUN indicators are illuminated. The WAIT instruction operates by preventing the
program counter (register P) from advancing; the processor continues to cycle the
same memory location (i.e., the location containing the WAIT instruction).

An operand entry may be coded in bits 3 to 0 of the WAIT instruction.
"NOTE -

This value is8 in register I upon execution;
however, there is no means to examine this
value on a GA-16/110/220.

Both interrupts and direct memory transfers can be serviced while the computer is in
the WAIT mode. 1If an interrupt occurs, control is transferred to the interrupt ser-
vice routine as usual. The interrupt routine, after completion, returns control to
the location containing the WAIT instruction provided the return address is taken as
the stored contents of register P (in register E for IN interrupts or in a dedicated
address for NI interrupts).

The program can be advanced past the WAIT condition if the CPU is in the RUN mode
provided the following conditions are met:

« The TTY break‘capability is available (Section 3.7.2).

« A pending I/0 interrupt routine contains an instruction which advances the
stored program counter past the WAIT instruction prior to return.

Otherwise, the WAIT instruction should only be used if CPU reset 1is permissible
following the WAIT instruction.

4-101

88A00508A-E

4.14 PROGRAMMED INPUT/OUTPUT INSTRUCTIONS

Programmed I/0 instructions (PIO) cause information to be transferred over the I/0-
Bus between the CPU and a device (typically an I/0 controller for a peripheral)
installed in the I/O section or expansion chassis. Programmed I/O instructions are
also used to transfer infromation between the CPU and a teletype, console switches,
or an internal mask word. (This latter type of programmed I/0 is also called stan-
dard I/0 because the functions are carried out within the CPU.)

The type and sequence of information which may be -transferred is dependent on the
design of the I/0 controller, which in turn is determined by the peripheral it
controls. Generally, the types of PIO information are as follows:

. Send one of eight possible control signals (CTRL instruction) to an I/0 controller
to control interrupt capability, prepare it or its peripheral for some operation,
or initiate an operation such as a Direct Memory Access (DMA) transfer via the
Multiple High-Speed Data Channel (MHSDC).

. Test the condition of one of eight possible functions (TEST instruction) of an I/0
controller which causes a program branch when the condition tested is satisfied.
Alternatively, an interrupt may be used to effect a branch on some conditioms.

- Output a data word (or byte) from a register (DTOR instruction) or from a memory
location specified in a register (DTOM instruction) to an I/0 controller. The
I/0 controller may either transfer this data to the peripheral or it may treat
the word as a control signal.

- Input a data word (or byte) from a peripheral device via its I/0 controller (or
from the I/0 controller itself to indicate a status condition) to either a register
(DTIR instruction) or memory location contained in a register (DTIM instruction).

« On a GA-16/220 only, input a data word entered via console switches to either a
register (RCSR instruction) or to a memory location specified in a register (RCSM
instruction).

The purpose of this section is to describe the general coding of the I/0 instructions.
Device-specific I/0 is treated in Section 6 (and in controller manuals) which also
describes MHSDC and DMA transfers. Inhibitable (IN) interrupts which are closely re-
lated to I/0 operation are described in Sectiomn 2.6.

All instructions in the programmed input/output group have the following machine
instruction format:

1514 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0O

[o 0 0 1 DEV ADRS
| I | 1]) I | L 1
J) A '

REGISTER/MEMORY SELECT l—— INSTRUCTION TYPE:
0 = MEMORY 00 = CONTROL
1 = REGISTER 01 = OUTPUT
REGISTER OR FUNCTION :?= 'T'\:E';‘.JrT
OR TEST NUMBER]

466-4-82

4

4-102

88A00508A-E

The CAP-16 source statement format for the Programmed Input/Output instructions is
as follows:

Command Parameters

CTRL . " function, device address
DTIM

DTIR

DTOM register, device address
DTOR

RCSR

RCSM} - register

TEST function, device address

where:

register specifies one of the general—purbose registers for data in/out instruc-
tions (DTOR, DTIR, DTOM, DTIM, RCSR, RCSM).

function specifies one of eight control functions.
or

specifies one of eight tests.

device specifies one of 64 possible device addresses. Device address X'3E' is
address implied for RCSR and RCSM. (RCSR and RCSM are described in Section 4.15.1
and 4.15.2.)

For a data word to/from a register, the destination/source register is specified in
bits 10 to 8. For a data word to/from a memory location, the contents of the regis-
ter specified is taken as the address of the memory location.

The instructions presented in this section may be used to control any peripheral
interfaced to the GA-16/110/220. A peripheral may constitue one or more devices and
each device has a unique device select code or combination of codes. The individual
device controller is responsible for recognizing its own select code(s) and inter-
preting and performing the required functions when it is selected. For example,
TEST 2 sent to device X is a hardware function of X and may not be the same operation
as TEST 2 sent to device Y.

When the CPU executes an I/0 instruction, it outputs the device select code (DEV
ADRS) specified in the instruction, together with control signals or data appropri-
ate to the instruction via the I/0 bus. The specified unit, having recognized its
device select code, responds with signals (and sometimes data) that are sent back
to the CPU via the I/0 bus.

The following subsections describe each of the programming I/0 instructions with
general examples. Additional examples specific to particular devices are included
in Section 6, which summarizes individual peripheral controller instructions

and data.

4-103

88A.00508A-E

4.14.1 OUTPUT CONTROL FUNCTION (CTRL)

1 1413 12 11 10 9 8 7 6 5 4 3 2 1 0 2.06 us

0 0 0 t1]0 FUN 0o 0 DEV ADRS o '
| - 11 1 ! | I | X“1Xxx

One of eight possible control functions (specified by the FUN bits) is decoded by the
device controller addressed. Typically, a control function may be used to put a \
device in a particular mode (e.g., transmit or receive) or to enable/disable interrupt
masks within a device controller.

Instruction = I/0 BUS OUTPUT LINES (controller decodes DEV ADRS and FUN bits)
CNTL~ + I/0 Bus (for more detail see Section 6)

Indicators affected: None
Registers affected: None

If the control function O enables interrupts and device X'08' is the paper tape
reader controller:

CTRL 0,x'08' Execution of this instruction will enable
interrupts from the paper tape read controller
when certain conditions in the paper tape reader
are satisfied.

4.14.2 DATA TRANSFER IN TO MEMORY (DTIM)

151413 12 1110 9 8 7 6 5 4 3 2 1 0 4.10 s

1 lo] REG |1 o DEV ADRS rxexsee
0.0 0, Ll i e XxxX

508-4-62

The contents of the specified register are used as the address of the memory location
whose contents are replaced by a word of data from the addressed device.

I/0 BUS DATA INPUT LINES - *R

15-0
Indicators affected: None
Registers affected: None
Example:
DTIM c,X'17' Register C contains the address of the memory

location whose contents will be replaced by data
read from the device controller whose device
select code is X'17'.

4-104

88A00508A~-E

4.14.3 DATA TRANSFER IN TO REGISTER (DTIR)

1614 1312 11 10 9 8 7 6 56 4 3 2 1 O 3.06s

o 0o 1/1] REG [1 O] ~DEVADRS XAXXX

2 1 1 1 1 1 1 1 1
]

A word of data from the addressed device controller replaces the contents of the
specified register. If the selected device controller inputs a word of less than
16 bits, the extra bits will contain zeros.

I/0 BUS DATA INPUT LINES - Ri5-0

Indicators affected: None
Registers affected: Specified Register

Example:

DTIR B,Xx'21' A word of data from the device controller whose
select code is X'21' is input to register B.

4.14.4 DATA TRANSFER OUT FROM MEMORY (DTOM)

151413 12 11 10 9 8 7 6 56 4 3 2 1 O 3.10

0 0 0 1]o} REG |0 1 DEVADRS | xeqxxx’

R N A N S SN NN N T |
1

6508-4-53

The register specified contains the address of the memory location from which a
word of data will be output to the address device.

*RIS—O -+ I/0 BUS DATA OUTPUT LINES
Indicators affected: None
Registers affected: None
Example:

DTOM B,X'12' Register B contains the address of the memory
: location whose contents are output to the device
controller whose select code is X'l12',

4-105

88A00508A~E

4.14.5 DATA TRANSFER OUT FROM REGISTER (DTOR)

1614 13 12 11 10 9 8 7 6 6 4 3 2 1 0 2.55 8
0 0 0 1}1 REG 0 1 DEV ADRS 4 4
11 11 1 | I T T | XXxX

The contents of the specified register are output to the addressed device controller.

R15_0 + I/0 BUS DATA OUTPUT LINES

Indicators affected: None
Registers affected: None

Example:
DTOR A,X'10' The contents of register A are output to the

device controller whose select code is X'10'.

4.14.6 TEST DEVICE (TEST)

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 255 us(faise)
© 0 0 1]0] FUN |1 1 DEV ADRS 3.05 s {true)
1 L1 ; I X"IXXX

6508-4-564

One of the eight possible tests (specified by the FUN bits) is performed by the
device controller selected. The result is returned via the TEST- line. If the test
condition is met, the next instruction will be skipped.

Instruction - I/0 Bus Output Lines (controller decodes DEV ADRS and FUN bits)
CPU « TEST- (for more detail see Section 6)

1f the test condition is not met (TEST-line low) no skip is made. The test functions
performed might be typically labeled ready," "operation complete," "error," etc.,
and could be for a condition in the peripheral device or within the device controller.

TEST FALSE P+1-P
TEST TRUE P+2-P

Certain conditions which may be tested via the TEST instruction may also generate an
inhibitable interrupt when the condition is satisfied. The capability to generate
an IN interrupt depends on the design of the controller. A controller designed for
interrupt capability usually provides a means of enabling or disabling interrupts by
means of a CTRL instruction or by setting an internal interrupt mask word. The
interrupt system enable (ISE) flip-flop in the CPU must also be set. 1In this way
either test driven or interrupt driven I/0 may be selected under program control in

4-106

88A00508A-E

accordance with a software design philosophy. When a controller's interrupt
capability is enabled, an interrupt routine must be provided which begins at an
address contained in the interrupt vector for the controller. When the condition
is satisfied the following occurs: '

P-E; ISE—*S15

(interrupt vector)-P

When several conditions may cause an interrupt a series of TEST instructions may be
used in the interrupt routine to determine which condition caused the interrupt.
Alternatively, depending on the controller design, it may be necessary to input

a status word via a DTIR or DTIM instruction.

Example:

For a device controller whose address is X'8' (high-speed paper tape reader), test
condition 0 corresponds to READY and means data is ready for input. The following
sequence first inhibits interrupt capability, then repeatedly tests for ready. When
ready is true, data is input to register B.

INH Inhibit interrupt system.

TEST 0,x'8' Test for ready.

JMP $-1 If test false, continue testing.
DTIR B,X'8' Input data if test is true.

4.15 SPECIAL FEATURES

Features on the GA-16/110 and GA-16/220 deserving special mention are:

+ Read Console Switches (GA~16/220 only)

« Internal Mask Words (GA-16/220 only)

. Consble Interrupt (GA-16/220 only)

+ Real-Time Clock (GA-16/220 only)

+ Memory Mode Change (Jumper on GA-16/110; program control on GA-16/220)
+ Teletype Controller (GA-16/110 external; GA-16/220 internal)

« Operations Monitor Alarm

+ Power Fail Interrupt

*+ Automatic Restart Interrupt

4-107

88A00508A~E

NOTE

Two special instructions are provided for
the GA-16/220 which work in conjunction
with the SCI program. They are I/0 reset
and enable single-atep interrupt, described
in Section 4.17.

4.15.1 READ CONSOLE SWITCHES (GA-16/220)

These instructions are used to read the GA-16/220 console switch register into a
memory location specified by a register (RCSM) or into a register (RCSR). Comnsole
data entry switches are used to enter the data as described in Section 3.3, Table
3—3,(:)and(:>. Placing a switch in the "OPEN" position sets the corresponding
bit=0. Placing the switch in the other position sets bit=l. A program using these
instructions will usually contain routines to decode the data and perform some oper-
ation based upon the contents of the data. These instructions may be executed on a
GA-16/110 without creating an error condition; however, without the data entry
switches, no effect would be obtained.

NOTE

- These ingtructions are an alternative to
DTIM and DTIR addressed to device address
X'3Ef ag desceribed in Section 4.14.

- On a GA-16/220 with SCI, the subroutine at
location X'FC73' (Table 3-5) which inputs
four hexadecimal characters via TTY could be
called from a user's program, if timing
permits and registers A, B, and C can be
used. D register contents must be saved
then set to X'FE00' before subroutine
eall.

4-108

88A00508A-E

4.15.1.1 Read Console Switches Into Memory (RCSM)

1514 1312 1110 9 8 7 6 5 4 3 -2 1

0 0 0 11}o0 REG |1 o0 1t 1]t 1 1
111 L1 11 1 [T |

3.06 us
X'1XBE’

Thé édhténts.af the console swiﬁcheé oﬁ“thé microcohsole are loadéamihfbrthér
memory address indicated in the register specified. The device address is always
X'3E'.

*
(CNSL SW)IS—O -+ (R‘15-0)
Indicators affected: None
Registers affected: None

4.15.1.2 Read Console Switches Into Register (RCSR)

15 14 13 12 1110 9 8 7 6 6 4 3 2 1 0 4.10ps

0o 0 0 1|1 REG 10 1 1}t l1 l0 X'1XBE"
1 | - | I T | 1
— 508455

The contents of the console switches on the microconsole are loaded into the
register specified. The device address is always X'3E'.

(CNSL SW) R

15-0 15-0

Indicators affected: None
Registers affected: Specified register

4.15.2 INTERNAL MASK WORDS (GA-16/220)

PIO control commands (CTRL 7 to 0) are normally used to enable or disable IN inter-
rupt masks for peripheral devices with an external controller housed in the I/O
chassis. However, three IN interrupts have their logic mechanized internal to the
CPU and are contrdlled by outputting (DTOR/DTOM) a mask word to a mask register.
The three internal interrupts are:

+ Console Interrupt (CNSL INT)
« Real-Time Clock (RTC)

+ Teletype (TTY)

An additional mask word can be output to select the 32K or 64K memory mode. The
appropriate mask word is loaded into a register or memory location and output
(DTOR/DTOM) to device X'3E' (the mask register). A one will enable and a zero will
disable the mask or effect a mode change. Figure 4-6 shows the DTOR and DTOM
instruction format, and the internal interrupt and the memory mode mask words.

4-109

88A00508A-E

ASSEMBLER MNEMONICS: DTOR R, X°3E’
DTOM R, X‘3E°

o DTOR/M INSTRUCTION FORMAT

1514 1312 11 10 9 8 7 6 &§ 4 3 2 10

06 0 0 1 REG lo 1|1 1 1 1 1 0] x1x7E
1 1 i] L 1 1 1 i 1 -

| | | L
ADDRESS X'3E’

- MODE (OUTPUT)

MASK IS IN: 0= MEMORY
1= REGISTER

INTERNAL INT. MASK WORD

1 - MASK BIT ENABLES INTERRUPT
1514 1312 1110 9 8 7 6 5§ 4 3 2 1 0

0 0 0 X X X X X X X X X X
11 1 | I | 1 | I S Y N
L]] L)
MUST BE 1 =CONSOLE INT i 1 = RTC

000

1=TTY NOT BUSY——j

NOTE: POWER UP DISABLES AL.L IN'INTERRUPTS (ISE = 0) AND RESETS INTERNAL MASK BITS

MEMORY MODE MASK WORD

1514 131211 109 8 7 6 5 4 3 2 1 0
P>01xxxx X X X X X X X X
lll!lll!lll!ll
—— !

MUST BE 1 = 64K

001 0 = 32K

NOTE: PROVIDED 32K +—PROG SWITCH IS IN PROG POSITION;
SYSTEM RESET SETS 32K MODE.
AN IPL SETS 32K MODE (BUT THE IPL ROM IN THE SCI !
SETS IT BACK TO 64K)
IN AND NI INTERRUPTS SET 64K MODE

466-4-87

Figure 4-6. Internal Mask Words (GA-16/220 Only)

4-110

88A00508A-E

4.15.2.1 Console Interrupt (CNSL INT)

A console interrupt switch is mounted on the CPU-2 module of the GA-16/220 (see
Section 3.3, CNSL INT switch). This switch allows an operator to generate an
inhibitable interrupt from the front panel. The conditions necessary to generate
this interrupt are as follows: '

* ISE set = 1 (see RISE, INE, RTRN and RINIV instructions)
* CNSL INT bit in internal mask word set = 1

The console interrupt uses dedicated memory location X'47' for its transfer vector.

4.15.2.2 Real-Time Clock Interrupt (QTC)

This feature provides a periodic interrupt (one millisecond) when the interrupt mask
from the RTC is enabled. An operating system (such as RTOS-16) may use this inter-
rupt to simulate a real-time clock for multiprogramming applications. The interrupt
may also be used to protect against unusual conditions by periodically returning
control to a monitor program.

The RTC interrupt can be enabled or disabled under program control. The state of
the interrupt mask for the RTC is controlled by the internal mask word (device
select code X'3E'), which is illustrated in Figure 4-6.

The RIC derives its time base from the internal crystal-controlled master clock.
Every one millisecond, an RTC interrupt is requested if this interrupt level and the
master interrupt system (ISE) are enabled. The interrupt forces a JSR indirect
through memory location X'43'. Location X'43' must contain the address of the inter—
rupt service routine for the RTC.

NOTE

The first RTC interrupt will occur immediately
after enabling the RIC. The next interrupt
will occur from 0 to 1 ms after ISE is8 re-
eanbled after return from processing the first
interrupt. Thereafter RTC interrupts will
oceur at 1 ms intervals. From thie it fol-
lows that two interrupts are required after
enabling before the RTC is synchronized.

CAUTION

The RTC mask bit should not be turned off
while ISE 1is on.

4-111

88A00508A-E

4.15.2.3 Teletype Interrupt

The GA-~16/220 CPU contains a built-in serial I/0 controller for a teletype. When

the TTY BUSY bit in the mask word is set, it enables the interrupt capability for

the TTY controller. When the controller has a byte of data (input) or 1is ready to
receive a byte of data (output), NOT BUSY is true; and interrupt occurs the, which
forces a JSR indirect through dedicated memory location X'45' to the address of the
routine to service the TTY interrupt. If the TTY BUSY bit in the mask word 1s reset,
the interrupt is disabled, and NOT BUSY true causes a branch to P+2 (when P is address
of TEST 0, X'3F' instruction). Further detail on the teletype controller is described
in Section 4.15.3.

4.15.2.4 Memory Mode Change Mask

Both the GA-16/110 and 220 have two basic addressing modes: 32K and 64K. The 32K mode
operates identically with GA's SPC~16/40 series computers and, therefore, allows for
software compatability. The 64K mode allows program execution in 64K of memory by
making the P counter a full 16 bits (ISE is removed from Py5). Many instructions and
their functions are affected by the mode change as tabulated in Table 4-5. 1If the

32K mode is used, only 32K address translations will take place; i.e., the upper half
of memory range (32K to 64K) will not he addressed.

On a GA-16/110, memory mode is set by a jumper (see Section 4.15.7) while a GA-16/220
changes mode in accord with the following: an IPL places the CPU in 32K mode. It is
placed in 64K mode by either NI or IN interrupts. Under program control, the CPU can
beplaced in either 32K or 64K mode by outputting (DTOR/M) the memory mode mask word
ta address X'3E'. This sets a 32K or 64K mode flip-flop. To activate the mode, it
is necessary to execute an RINIV instruction (see Section 4.9). 1If a DTOR/M has been
executed to place the CPU in a 32K mode, and an IN or NI interrupt occurs before the
RTNIV has been executed, the CPU will remain in the 64K mode. In returning to the
interrupted program, it is not necessary to re-execute another DTOR/M command.
Executing an RINIV will activate the mode selected by the DTOR/M that was issued
prior to the interrupt.

The memory mode indicator is part of the status register (S14). Although CPU
instructions (LARS and TRS) can load register S, they do not load the memory mode
indicator nor change the memory mode.

4.15.3 SERIAL I/0 CONTROLLER

The GA-16/220 has a built-in serial I/O controller for communicating directly with

a teletype device such as the ASR-33 Teletype while a GA-16/110 may provide equiva-
lent capability by installing a Model 1582 TTY Controller. The ASR Model 33 Teletype
(TTY) has a keyboard, printer, paper tape reader and paper tape punch. The teletype
can be operated independently (LOCAL mode) or it can be used on-line (LINE mode) to
input or output data to the CPU. The maximum data transmission rate is 110 baud,
approximately ten characters per second. The teletype controller can interrupt

when it requires service, or an executing program can test the teletype to see if

it is ready to be serviced. In LOCAL mode the teletype reads or punches standard
ASCII character codes. These codes are compatible with other peripheral units

which handle eight-channel paper tape. In LINE mode, any eight-level code may be
read or punched.

4-112

88A00508A-E

Table 4~5. Effects of Memory Mode Change
Operation 32K Mode 64K Mode
JSR Instruction P - E P -+ E
or 14-0 14-0 15-0 15-0
IN Interrupt ISE ~ E15 and S15 ISE - 815
NI Interrupt Pi4o ~ (ADDR) ! Pys_o * (ADDR) !
ISE — (ADDR+1)15 ISE ~ (ADDR+1)15
RTRN Instruction R15 -+ ISE 815 - ISE
Ri4-0 > Pr4-0° Ri5-0 ~ P15-0
RISE Instruction R15 - ISE S15 -+ ISE
RTNIV Instruction ((EA)+1)15 + ISE ((EA)+1) 5 » ISE
((EA))15-0 + P15-0 R
(Bit 15 is forced to 0) EA1s—-0 ~ F1s-0
EXIT Instruction R14—0 > P14-0 R15-O > P15—O
ISE unchanged ISE unchanged
15 14 0 15 . 0
P Register (P)
Contents PSEI ADDRESS I ADDRESS
Status Register (S) Same in both modes except bits 14 and 15 as shown:
Contents
15 14 8 7 6 5 4 3 2 1 0
o - ———— ——
I
AP TR P I S Ry |
{% A A Y Y
0/1 = 32/64K MODE SHIFT COUNTER
INDICATOR L LiNk
64K MODE ——— OVERFLOW
ISE SAVE STATUS PLUS
ZERO
FOREGROUND
507-4-60

1 Each NI interrupt has a pair of low core locations (beginning at ADDR) dedicated

for storage of register P and ISE status.

4-113

Refer to Section 4.9 and Table 4-4.

88A00508A-E

As an alternative to teletype such as the model 33,>a teletype-compatible CRT terminal
such as GA model 3381 video display terminal may be used at 110 or 9600 baud (baud
rates are selected by baud select switch on the CPU-2 module, Section 3.3, Table 3-3,

The controller for the console teletype is housed in the computer chassis as an
internal serial/parallel and parallel/serial converter operating on the I/0-Bus.

This internal controller operates in an identical fashion as an external Model 1582
controller. In addition to the intermal TTY controller, there is a TTY paddleboard
mounted external to the CPU. It provides electrical isolation and a 20-ma, 3-wire
current loop between the CPU and the TTY. (An RS-232C paddleboard is also available.)

The operational status of the console teletype is reflected by the state of one
indicator on the TTY controller: TTY NOT BUSY. One test instruction code has been
assigned to interrogate the state of TTY NOT BUSY. To enable or disable the TTY in-
terrupt, see Section 4.15.2.3. The mask word is implemented in the Model 1582 TTY
Controller when used on a GA~16/110. - -

TTY NOT BUSY is a service request; it is true whenever the TTY controller is '"not
busy" transmitting a character to or from the teletype. When TTY NOT BUSY changes
from false to true, an interrupt flip-flop on the TTY controller is set, thereby
requesting an interrupt: if the TTY interrupt mask is enabled. Upon receiving
acknowledgement of the interrupt from the CPU, the interrupt flip-flop is cleared.
TTY NOT BUSY then goes false when the controller's character buffer has been filled
by data from the teletype or from the CPU (depending on the operating mode). TTY NOT
BUSY also goes false when the teletype's operating mode is changed.

The teletype controller operates in four modes (summarized in Table 4-6):

o TRANSMIT

« RECEIVE ONLY

*+ RECEIVE AND ECHO
+ BREAK

Mode selection is accomplished by four control (CTRL) instructions. Additionally,
when the CPU is initialized, the console teletype is placed into the RECEIVE ONLY
mode in a "busy'" state (NOT BUSY false). The mode can be changed by executing a CTRL
instruction.

4-114

88A00508A-E

During TRANSMIT mode operation, the controller sends CPU data to the teletype's
printer and/or paper tape punch. After the data is sent to the teletype (via a
DTOR/DTOM instruction), TTY NOT BUSY goes true and initiates another service request.

During RECEIVE ONLY mode operation, the controller sends teletype data to the CPU.
During RECEIVE & ECHO operation, this data is also sent to the teletype printer and/r
punch. In either of these receive modes, a TTY NOT BUSY service request is initiatel
after the teletype has sent a character to the controller. The service request is
removed when the character has been input.

The BREAK mode is intended to be a '"transmission ended" mode, during which a timer

may cause the teletype to shut off if the mode is not changed within a predetermined
time period.

Any of the four data in/out instructions (DTOR, DTIR, DTOM, DTIM) may be used with
the teletype device select code X'3F'-to transfer byte data between the computer
and the console teletype. The following data format is used:
TTY DATA FORMAT 4
151413 1211109 8 7 6 6 4 3 2 1 0

| I IO I N N T |

v | | J

INPUT AS ZEROS MOST LEAST
AND IGNORED SIGNIFICANT SIGNIFICANT
WHEN QUTPUT BIT BIT

466-4-88

4-115

Mode

Table 4-6.

Description

88A00508A-E

TTY Modes

To Remove Service
Request

Specific Rules

TRANSMIT

RCV ONLY

RCV & ECHO

BREAK

The console teletype I/O instructions are summarized in Table 4-7.

Transmit to printer
and/or punch

Teletype input to
processor buffer
only

Teletype input to
processor buffer and
to teletype printer
and/or punch
Characters are printed/
punched as they are
struck on the keyboard
independently of input
to CPU. ’

Transmit line to tele-
type is forced to
quiescent condition
(space=open=zero).
This mode remains
active until system
is reset or a differ-
ent mode is invoked.
Transmit mode must
have been established
to have BREAK mode
effective.

- 1. Output character

2, Change mode

1. Input character

2. Receive subse-
quent sync
character

3. Change from one
receive mode to
another receive
mode

New character starts
when DTOR or DTOM
occurs.

Service request
occurs when not
busy.

New character starts
when not busy and
mark-to-space
transition occurs.
Mark=current flow
Mark=logical one.
Space no current
flow=logical zero

To avoid data over-
run, character must
be input within

4 ms after service
request.

Service request
occurs when not busy
and character has
been received.

The mode (ini-

tialized to RECEIVE ONLY) can be changed by executing a CTRL instruction.

4-116

88A00508A-E

Table 4-7. Instruction Summary for Serial I/0 Controller

Device Select Code = X'3F'; Interrupt Vector = X'45'
Data Channel Locations = Not Applicable

.
s

Instruction Function
10FF TEST 0,X'3F' Skip 1if TTY NOT BUSY is true
103F CTRL 0,X'3F' TRANSMIT mode
123F CTRL 2,X'3F! RECEIVE ONLY mode
143F CTRL 4,X'3F' RECEIVE & ECHO mode
103F CTRL 6,X'3F!' BREAK mode
Q188 DTIR A,X'3F' Input character byte to register A
10BF DTIM A,X'3F! - Input character byte to memory
" (location contained in register A)
D187F DTOR A,X'3F Output character byte from register A
107F DTOM A,X'3F' Output character byte from memory
(location contained in register A)

OThese instructions shown with register A used. Register A could be replaced by a
XY,z2,8,C,D, or E.

A working program using the teletype is shown in Figure 4-7. This program operates
with TTY busy interrupt inhibited. (The DSPL instruction produces no observable result.}

0001 TITLE 'TTY EXERCISE PROGRAM'
0002 DATE '04/01/76"
: 0003 PRINT X'27'
0000 0004 DSECT
0000 0005 TYBUF DS 25 ALLOCATE CHAR BUFFER - 50 BYTES
0019 0006 DSIZE EQU $-TYBUF

0000 0007 PSECT
0000 0008 DS DSIZE
0019 0105 0009 BEGIN LDV D,TYBUF GET BUFFER ADDRESS
001A 0000 D
0018 143F 0010 - CTRL 4,X'3F' TTY IN RCV ECHO MODE
001C 0620 0011 ZERO X
001D 0600 0012 ZERO A CLEAR REGISTER A
001E 011D 0013 ORV A,X'0080"
001F 0080
0020 187E 0014 DTOR A,X'3E' TURN OFF TTY INTERRUPT
0021 0602 0015 INCH ZLBY A CLEAR UNUSED BYTE AND BEGIN INPUT
0022 0106 0016 SUBVC A,X'87' TEST FOR BELL
0023 0087
0024 2C11 0017 5Kz oUTY BELL, DO OUTPUT
0025 0126 0018 SUBVC X,X'32' TEST FOR INDEX=50
0026 0032
0027 2COE 0019 SKZ ouTY LAST CHARACTER, DO OUTPUT
0028 0106 0020 SUBVC A,X'8D' TEST FOR CR
0029 008D
002A 2C0B 0021 sKZ ouTY CR, DO OUTPUT
0028 10FF 0022 TEST 0,X'3F' TEST FOR BUSY
002C 73FE 0023 JMP $-1
002D 18BF 0024 DTIR A,X'3F' INPUT CHARACTER
002E 9900 0025 STBY A,TYBUF,X PLACE IN MEMORY BYTE
002F 072 0026 INCR X INCREMENT INDEX
0030 0680 0027 ZERO B OPTIONAL CODE TO DISPLAY CHAR COUNT
0031 099D 0028 OR B, X AND CHAR
0032 0684 0029 EXBY B
0033 0890 0030 OR B, A
2034 0584 0031 DSPL B DISPLAY COUNT AND CHAR HEX
9035 73E8 0032 JMP INCH GET ANOTHER CHARACTER

0033 EJECT 466-4-89

Figure 4-7. TTY Exercise Program (Sheet 1 of 2)

4-117

0036
0037
00138
00139
003A
0038
003C
0030
003E
003F
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
004A
0048
004C
004D
004E
004F
0050

0051
0000

103F 0034
0600 0035
011D 0036
008D
10FF 0037
73FE 0038
187F 0039
0600 0040
011D 0041
008A
10FF 0042
73FE 0043
187F 0044
0995 0045
0620 0046
10FF 0047
73FE 0048
8900 0049
187F 0050
072E 0051
0524 0052
0986 0053
2C01 0054
73F7 0055
0195 0056
AAAA
0584 0057
0058
0000
0019 P 0059
ERRS
Figure 4-7.

88A00508A-E

ouTY CTRL
ZERO
ORV

TEST
JMP
DTOR
ZERO
ORY

TEST
JHP
DTOR
RTR
ZERO
OUTCH TEST
JHP
LDBY
DTOR
INCR
DSPL
SUBC
$KZ
JMP
DONE LOV

DSPL
WAILT

END

$LOAD

0,X'3F'
A,X'8D'
0,X'3F’
$-1
A,X'3F!
A
A,X'8A"
0,X'3F'
$-1
A, X'3F
B,X
X
0,X'3F'
$-1
A,TYBUF,X
A,X'3F'
X
X
B,X
DONE
QUTCH
B,X'AAAA®
B
BEGIN
A .0000
B8 0004
BEGIN 0019 P
BI$ 0003
80% 0004
c 0005
ccs 0000
C1$ 0008
COND$ 0000
D 0006
DM$0 0000
DM$1 1000
DM$2 2000
DM$3 3000
DONE 004E P
DSIZE 0019
DV$S0 0000
DV31 0400
Dv$2Z 0800
DV$3 0C00
E 0007
INCH 0021 P
[RTNS 8000
IS% 0006
LBS 0009
LOS 0005
oMs$ 0007
QUTCH 0045 P
OuTY 0036 P
SI1$ 0001
SL$ 000A
S0§ 0002
SY$ 0000
TYBUF 0000 D
UNCONS0020
X 0001
Y 0002
z 0003

TTY IN TRANSMIT
SET CR CHARACTER

SET LF CHARACTER

OUTPUT LF
STORE NO CHAR INPUT

GET CHAR FROM MEM BYTE
OUTPUT TO TTY
INCREMENT INDEX .
DISPLAY COUNT

YES, FINISH UP
NO, OUTPUT ANOTHER CHARACTER

DISPLAY END PATTERN
FINISHED

TTY Exercise Program (Sheet 2 of 2)

4-118

88A00508A-E

4.15.4 OPERATIONS MONITOR ALARM (OMA)

The operations monttor alarm (OMA) feature can be used to provide automatic processing
shutdown if program control fails to return periodically to a system program. The
OMA feature comprises an alarm counter that is initially enabled by execution of a
pulse monitor alarm (PMA) instruction. The alarm counter is not armed until PMA is
executed for the first time; but, thereafter, it must be periodically reset by a PMA
instruction. Failure to issue a PMA instruction within 150 to 300 ms causes an OMA
timeout.

If the OMA times out, the computer automatically switches from the RUN mode to the
IDLE mode. In addition, the SFEC signal on the I/0 bus goes false, indicating that
the system is in an "unsafe" condition. This signal can be used to control an
audio-visual alarm or automatic switchover.

The OMA may be cleared by an auto-restart interrupt sequence or by pressing the
RESET (Table 3—3,), switch on the microconsole. When cleared manually with RESET,
the 220 will either enter the auto-restart routine or enter the console ROM program.
See description of RESET(i§)and (on a 220) CNSL(15)in Table 3-5.

The OMA indicator on the front panel will turn on when the alarm has time out (Secticn
3.3, Table 3-3,(9)). |

The PMA instruction is classified as a control instruction described in Section 4.13.7
Its format is as follows:

PULSE OPERATIONS MONITOR ALARM, PMA, INSTRUCTION

16 14 13 12 11 10 9 8 7 6 56 4 3 2 1 O 1218
o0 00 O 1t 00O O 1 0O OO OUO X'0440'
1 1 } 11 1 : 1 1 1 § I . |

L
' .

466-4-90
4,15.5 NI POWER-FAIL INTERRUPT

When the primary AC input to the GA~16/220 drops below a predetermined value (less
than 105 vac under full load), the Power-Fail Detect circuit request a Power-Fail
Interrupt via the power-fail interrupt transfer vector at location 40. The regula-
ted direct current voltages are guaranteed to be good at this time. This interrupt
is of highest priority and cannot be inhibited.

At the same time that the interrupt is requested, the power fail timer is initializec
to time out in 90 - 150us. Therefore, after the power—fail interrupt occurs, the
processing routine has 90 - 150us to execute. After 90 - 150us the power fail timer
times out and the CPU goes to idle; the SFEC line indicates a safe condition and
SYRT- is on.

4-119

88A00508A-E

4.15.6 AUTOMATIC RESTART INTERRUPT

When the computer is powered up and the primary AC power input goes above a
predetermined value (guaranteed not to be greater than 105 vac), a powering-up sequence
ig initiated. During the powering-up sequence, the entire system is initialized.
Initialization synchronizes the CPU timing, turns off ISE, and resets the mask register
for RTC, CI, and TTY. The interrupt then occurs. If the 32K«—PROG switch is in the
PROG position, the CPU will be set to 64K mode by the interrupt, but may be forced

back to 32K by pressing RESET or by pressing IPL switch. (If IPL ROM or SCI is entered,
it will set the system back to 64K.) Location X'41' has been assigned to the auto-
restart's interrupt vector. This location must contain the address of the routine
responsible for servicing the auto-restart interrupt.

4.15.7 GA-16/110 MEMORY MODE SET

Memory mode in a GA-16/110 is set by means of the +64KM line, accessable via the
remote line connector (J20 on a compact MIB, J27 on a jumbo MIB, or pin 90 on the
GA-16/110 module itself). The mode setting is as follows:

64K mode +64KM ungrounded
32K mode +64KM to GND

Refer to Section 4.15.2.4 for description of the effects of memory mode on operation
of the system.
4.16 HARDWARE MULTIPLY AND DIVIDE

Multiplication and division are performed by hardware circuitry. These instructions

operate on fixed-point, positive numbers only. Hardware multiply and divide instruc-
tions are of the following format:

‘1514‘312111093785‘3 1.0
o 00 0oflo 0 0 Oj1 0 0 n X‘008X’ (MULTIPLY)
| I . i1 1 1 U | X'00AX’ (DIVIDE)
0= MULTIPLY
1= DIVIDE
466-4-91

Tndicators affected: Link
Registers affected: B,C

The CAP-16 source-statement format for the hardware multiply and divide instructions
is as follows:

Command Parameters
MPY
DIV } n
where:
o is a positive integer, contained in bits 3 to 0 as n. n determines the number

of shift/add operations in multiplication or the number of shift/subtract
operations in division. A CAP-16 source statement of "MPY 10" will assemble
as X'8A'. The statement "DIV 6" will assemble as X'A6'.

NOTE

If n is omitted, n=15 is assumed.

4-120

88A00508A~E

4.16.1 HARDWARE DIVIDE (DIV)

16 14 13 12 1110 9 8 7 6 5 4 3 2 1 O
0 0 0 0o0j0o 0 0 O|1T O 1 O n y '
i 1 [l | I 1 X'00AX

This instruction divides a double-word dividend taken as the contents of registers B
and C by the contents of register A. The quotient is stored in register C, and
register B holds the remainder. The number in register B before division must be
less than the number in register A. The contents of the source/destination registers
are summarized as follows:

A
. . 15141312 11 109 8 7 6 6 4 3 2 1 0
(A) = Divisor (15 bits) 0! . SIVISOR
o I | ! l. L1 ! | 1 1 ! L1 1
(B,C) = Dividend (30 bits)

B [od
151413121110987_6543210 1514 1312 11 10 9 8 7 6 56 4 3 2 1 O
0 MOST SIGNIFICANT LEAST SIGNIFICANT io

[S N TR M T T Y T T W A TR NOUY WO WU N D U A MO T N R N |
T T T T L T
w)
. v
DIVIDEND
(c) = Quotient (B,C)/(A) c
(0 to 15 bits long) 1614 13 12 11 10 9 8 72 6 56 4 3 2 1 O
0. , QUOTIENT
[I A W N Y M T T T T I S T
L) M T
(B) = Remainder (15 bits) B
151413 12 11 10 9 8 7 6 6 4 3 2 1 O
0 REMAINDER
IR T Y TR O W T T S T

243-3-60

All 15 bits of the divisor (register A) are used. Bit 15 of register A must be
zero. During the divide operation, the bits of the dividend are shifted (left) as
a unit; for example, after one shift, bit 15 of register C is moved left one place
to bit O of register B. With each shift/subtract, one digit of the quotient is
formed (at Cp). The number of quotient digits (n) must be large enough so that

n shifts will remove all one bits of the dividen from register C. Bits 15 of reg-
ister B and 0 of register C must both be zero prior to the divide operation. Upon
completion of the division, the quotient is contained in register C and the remain-
der is in register B. Bit 15 of both registers will be zero.

The remainder is formed such that after division, multiplying the quotient by the
divisor and adding the remainder, with any carry bit out of C added to B, will
result in the original dividend in B and C. The link indicator will be set to the
status of bit (15-n) of register C at the end of the division.

4-121,

88A00508A~E

The instruction time required for the divide operation is given by:
3.50 us plus 2.00 us times number of bits (n) in the divisor

The 15-bit divisor can represent integers in the range O to X'7FFF' and may include
0 to 15 fractional digits. The 30-bit dividend can represent integers in the range
0 to X'3FFFFFFF' and may include O to 30 fractional digits. Locating the binary
point in the answer depends upon two things:

1. The location of the binary points in the divisor and dividend. As in decimal
division, the number of fractional digits in the quotient can be found by sub-
tracting the number of fractional digits in the divisor from the number of
fractional digits in the dividend, and the remainder has the same number of

fractional digits as the dividend (e.g., decimal 0.0649 + 0.03 = 2.16, remainder
of 0.001). : ‘ :

2. The value of n. This determines where the quotient and remainder lie within the
15 digits of the respective answer (registers C and B). With n=15, 15 digits of
the quotient are considered significant, with the last significant digit of the
quotient in bit O of register C and the last significant digit of the remainder
in bit 0 of register B.

8 AND C FORMAT
1614 13 12 11 10 9 8 7 6 6§ 4 3 2 1 O

Ll T S T I B T T O Y S

L

ANSWER f]

T
LAST SIGNIFICANT
DIGIT

-

For each decrement of n, the last significant digit is to the left one bit.
For example:

8 AND C FORMAT
16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[]
s | 1

)
T N B U N A | R
1

Al

ANSWER

-

LAST SIGNIFICANT DIGIT
243-3-83

The binary point in the quotient can be determined either as a count of the number
of integer digits or the number of fractional digits.

4-122

88A00508A-E

' The following formula calculates the binary point relative to the high-order bit of
the quotient (bit 14 of register C):

BPC = BPB,C_BPA-(n_ls)
where: .
BPB C is the number of integer digits in the dividend.
2
BP is the number of integer digits in the divisor.
BPC is the number of integer digits in the quotient. (15—BPC would be the
number of fractional digits.)
(n-15) is the number of trailing zeros. (When n=15, this term is zero, indicatinj

that the last significant digit of the result is bit O of register C.)

The binary point in the remainder is calculated as follows:

BPB = BPB,C_n
where:)
BPB c is the number of integer digits in the dividend.
b
BPB is the number of integer digits in the remainder.
Examples:

1. Given the following bit configurations prior to division:

A=2
16 1413 12 1110 9 8 7 6 5 4 3 2 1 0
o 0 1 0| BPy=15
T T S VO S Sl 4
°
B c =14 BPgc=3)
16 1413 12 1110 9 8 7 6 5 4 3 2 1 0 1514131211 109 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0.0
[T T O R Y I O I S | | I I N N O T S R A B N N N |
T L 1 | | | D 4
°
243484

4-123

88A00508A-E

DIV 15 Divide the contents of registers B and C by the contents of register A,
(or DIV) using all 15 bits of the dividend in register C.

Result: BPC = BPB,C_BPA (n-15)

= 30-15-(15-15)

= 15

[
15 1413 12 11 10 9 8 7 6 56 4 3 2 1 0

QUOTIENT =7 0-L |0 1 1 1

BP, = BP -n

= 30~15

8
1514 13 12 1110 9 8 7 6 6§ 4 3 2 1 0

REMAINDER =0 [0 i

| WSO TSR NN (N IO TR N L1
v

' }

l
+

2. Given the following bit configurations prior to division:
A=2
1614 13 12 1110 9 8 7 6 5 4 3 2 1 0
]
' g 1 0 P, =15
[ol AN Y AN TR NS WU NN SO W N SN NN N 1 8Pa
1 -1 I
3
e
B ' C=15 BPg ¢ = 20
15 14 13 12 11 10 9 8 7 6 6§ 4 3 2 1 0O 1514 131211 109 8 7 6 5 4 3 2 1 0
o, 4o 1 1 1t 1 o :
|11}1:1;|ln!||:|lllllllllinnlaniq

243-3-84

4=124

88A00508A-E

a. DIV 15 Divide the contents of registers B and C by the contents of
(or DIV) register A, using all 15 bits of the dividend in register C.

Result; BPC = BPB,C_BPA-(H-IS)

20-15-(15-15)

=5
c
1514 13 12 11 10 9 8 7 6 § 4 3 2 1 0

QUOTIENT=7 [0.0 O 1 1 1 o
11 1 1 1

| I I T T | # [I |

\ ’
A
)
BPB = BPB,C n
= 20-15
=5' B
1514 13 12 11 10 9 8 7 6 6 4 3 2 1 O
- 0i—— 0 1 0 o
REMAINDER =1 T R B e B A B I I R
¥ ’ 1 1
(]
b. DIV 5 Divide the contents of registers B and C by the contents of

register A, using the five high-order bits of register C.

Result: BP

C BPB’C—BPA—(n-15)

20-15-(5-15)

= 15
c
15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 0

QUOTIENT=7 |0 | 01 1 1
| | | . | 1 1 1 | 1 | 1

| I | i

BP, = B -
g - BPp ¢
= 20~-5
= 15
B .
151413 12 11109 8 7 6 6 4 3 2 1 0
]
- 0
REMAINDER =1 | 0 1 —— L 1 1 1 1%
L) L T
A
[}
®
243-3:85

4-125

88A00508A-E

3. Given the following bit configuration prior to any attempted division, the result
will be meaningless. The value in register B must be less than the value in reg-
ister A prior to division (regardless of the values determined by the binary
points). Attempting to perform the division with register B initially containing
a value greater than the value contained in register A is equivalent to omitting
the computation of the first significant digits of the answer. The way to avoid
this problem is to place the decimal point in the divisor so that the binary value
in register A is greater than that in B. This is i{llustrated by example b.

15 14 13 12 1110 9 8 7 6 5§ 4 3 2 1 0

ae 0
A=1, 0 1 1 1]|8P, =13
e R T R T T A
¥ v ¥ i
b. I 16 141312 13 10 9 & 7 6 6 4 3 2 1t 0
A=1.750 o; 0 1 1 1 0]lgpa=12
[1 i i 1 1 1 L 1 1 £ i 1 | i
) L 1 t
B : _ " C=1.5625 BPgc =12
16 1413 12 1110 9 8 7 6 5 4 3 2 1 0O 16 1413 121110 9 8 7 6 5§ 4 3 2 1 0
rog 0 1 1.0 oOof]1 0O
T DY T T T T T A T I A T
T T v * 1 I 1
°
4. Given the following bit configuration prior to division:
A=175
15141312 1110 9 8 7 6 6§ 4 3 2 1 0
0. o1 1 1 -
I R R U U T T M T T T TR T T BPA=13
! 1 1 ‘
I
)
C = 1.5625 o
. BPg =14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 131211 10 9 8 7 6 5 4 3 2 1 0

g 1 1]lo o 1 o i 0
{oi 1 1 | i N L 1 1 1 1 1 L 1 Ijrl |] g |] 1 1 i N | [i 1 1
L4 “ T
|

¥ I 4

DIV 3 Divide the contents of registers B and C by the contents of register A,
using the three high-order bits of register C.

Result: BPC = BPB,C_BPA.(H-IS)

=13 c
15141312 11 109 8 7 6 5 4 3 2 1 0

TIENT= 0.75 [' o 11
QuoTIE T W T

BPB = BPB ,C—n

= 11 B
151413 12 1110 9 8 7 8 56 4 3 2 1 0

REMAINDER = 0.25 IO: 0 0 1 0 O
1 1 ! 1 [1 e 1 1 | | 1 1 L

243-3-86
4-126

88A00508A-E

4.16.2 HARDWARE MULTIPLY (MPY)

1514 1312 11 109 8 7 6 5 4 3 2 1 o
0O 0 0 0jo 0 O Ol1t 0 0 O n
L1 i i 1 1 11 1 1

X'008X’

This instruction multiplies the contents of register A by the contents of register C
and places the result as a double-word product in registers B and C.

The operand registers are summarized as follows:
A
1614 131211 10 9 8 7 6 56 4 3 2 1 0

Multiplicand (15 bits) 0 MULTIPLICAND
1 1 | | | 1 'I B] 1 5 1 1 |

(4)

; [
1614 1312 11 10 9 8 7 6 5 4 3 2 1 o

Multiplier (0 to 15 bits) 0! MULTIPLIER
) N N TR T T WO SN T TR TS S WO N O

(©)

(B,C) = Product (A) x (C), (0 to 30 bits)

B c
15141312 11 10 9 8 7 6 56 4 3 2 1 0 151413 12 1110 9 8 7 6 5 4 3 2 1 0
0 MOST SIGNIFICANT LEAST SIGNIFICANT o
L1 l' : 1 | 1 l 1 { 1 5 1 1 1 1 ! | 1 1 % | 1 1 ll | L1
N J
PRODUCT

243-3-77

All 15 bits of the multiplicand (register A) are used. Bit 15 of registers A and C
must be zero. The answer will be contained in registers B and C, with the digit in
bit 15 of register C considered as immediately following the digit in bit 0 of
register B. Bit 0 of register C and bit 15 of register B will always be zero.

During a multiply operation, the multiplier bits are shifted (right) out of bit 0.
Register C and product bits are shifted (right) into bit 15 of register C from
register B. n must be large enough so that all one bits of the multiplier are
shifted out of register C. After a multiply, the content of the link indicator

is indeterminate.

The instruction execution time required for the multiply operation is given by:
1 bit MPY = 3.50 us; plus 1.50 us times number of bits (n) in the multiplier plus
0.50 us times number of one bits in register C

. The 15-bit multiplicand and multiplier can each represent integers in the range 0O
to X'7FFF'. By keeping track of a binary point, this range also includes up to
15 fractional digits, yielding a product containing from O to 30 fractional digits.

4-127,

88A00508A-E

For an integer term, the binary point is to the right of bit O.

A term can also be

considered as having a fractional part, with the binary point between the integer

and fractional portions. For example:

INTEGER TERM OF i4
1514 13 12 11 10 9 8 7 6 § 4 3 2

FRACTIONAL TERM OF 3.5

1 0

6 5§ 4 3

15 14 13 12 11 10 9 8 7
1

11 0.
N DR N TN N N N N S N e I |

[}
[Oi 1 % P4 ¢t 1t 11 1 1

? | | .

[
Locating the binary point in the answer depends upon two things:

1. The location of the binary points in the multiplicand and multiplier.

This

determines the relative location of the binary point among the product's sig-

nificant digits.

As in decimal multiplication, the number of fractional digits

in the product is the sum of the number of fractional digits in the two terms

(e.g., decimal 2.16 x 0.03 = 0.0648).

The value of n.
the answer registers.
of the multiplier are processed, which shifts the answer to the far right:

B
15§ 14 13 12 11 10 9 8 7 6 5 4 3 2

c

1 15 14 13 12 11 10 9 8 7

0 6 56 4 3 2

This determines where the product lies within the 30 digits of
With n=15, all leading zeros and all significant digits

1 0

T
Q.
|

Lt e+ £ 1 1 1+ 1 1 | ! L i .t [1

T
:0

ANSWER “_J
~——————|
LAST SIGNIFICANT DIGIT

For each decrement of n, the last significant digit is to the left one bit.
For example:

B
15 14 13 12 1110 9 8 7 6 5 4 3 2

n=14[°:
LLI}III![]L

c

1 0 1514 13 12 11 109 8 7 6 5 4 3 2 1§

0
0

e . e}

i1 1 | N NS U N N [N U N N N N

|
™ ! ! !

ANSWER _J
e —— s —)

LAST SIGNIFICANT DIGIT
243-3-78
certain number of bits
B) or as a certain num-
(bit 1 of C). The high
including leading zero,

The binary point in the product can be located either as a
from the high-order bit of the answer registers (bit 14 of
ber of bits from the low-order bit of the answer registers
order count is the number of integer digits in the answer,
and the low-order count is the number of fractional digits in the answer, including
trailing zeros. The following formula calculates the binary point relative to the

high-order bit of the answer registers:

BP

B,C = BPA+BPC-(15-n)

4=-128

where:

BPA

BPC

BPB,C

(15-n)

Examples:

is

is

is
of

is

the number

the number

the number
fractional

the number

that the last

88A00508A-E

of integer digits of the multiplicand.
of integer digits of the multiplier.

of integer digits in the answer (30-BP

would be the number
digits). '

B,C

of trailing zeros. (When n=15, this term is zero, indicating
significant digit of the result is bit one of register C.

1. Given the following bit configuration for two integer terms prior to
multiplication:
A=2
16 14 13 12 11 10 9 8 7? 6 56 4 3 2 1 0
0! 0 1 BP, =
T T W T N N NI Bl T A™18
1 T 1 1
°
B = ANY
1514 13 12 11 10 9 8 7 6 56 4 3 2 1 o0
X X
[T T [S TN Y N T TN N A U T
L} 1 1
c=7
156 14 13 12 1110 9 8 7 6 56 4 3 2 1 0
]
0 =
A L | Tt 1] 8RS
)
a. MPY 15 Multiply the contents of register A by the low-order 15 bits of

(or MPY) regis

Result: BP

ter C, with the answer in registers B and C.

BP +BPC—(15-n)

BC A
= 15+15-0
= 30
B c
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 151413 121110 9 8 7 6 56 4 3 2 1 0
(1 i
0 ¥ 0 1 1 1 0,0
L1 1 | N I W Y N N N N B S | A R R R | T T I N | i
T T T T I
\ 2x7 = 14 /0
\'4
30 INTEGER DIGITS 243378

4-129

88A00508A-E

b. MPY 5 Multiply the contents of register A by the low-order five bits of the
C register, with the answer in registers B and C.

Result: BPB,C = BPA+BPC-(15-n)

= 15+15-(15-5)

= 20

B c
15 14 13 12 11 10 9 8 7 6 § 4 3 2 1 O 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0O

(o ' | o ,v,1,1,0,0 1o
lllllllllllslll lll;lllllll||ll

L\ ¥ 1 v

v
20 INTEGER DIGITS

c. MPY 3 Multiply the contents of regisfer A By the low-order three bits of
register C, with the answer in registers B and C.

Result: BPB,C = BPA+BPC-(15-n)

= 15+15-(15-3)
= 18 .
B c
16 141312 1110 9 8 7 6 5 4 3 2 1 0 151413121 109 8 7 6 5 4 3 2 1

(=28 -]

0: . . 0o 1111 1 06 O
| A | [N NS N (U VUUN U U SN N S - | P11 | I T N S TR WO RN U W |

T T v 1 1 1

v
18 INTEGER DIGITS

2. Given the following bit configuration for onme integer term and one fractional

term:
A=15
151413 12 11109 8 7 6 5§ 4 3 2 1 O
[V} o 1 1} BP,=14
T 1 L L 4 1t t 3 Lo 141 A
¥ 1 L ?
o
B = ANY
16 1413 12 11 10 9 8 7 6 5 4 3 2 1 0
xl T T N T T e
I 1 1
c=5
1 14 13 12 1110 9 8 7 6 56 4 3 2 1 0
[b 0 1 0 1|BP.=15
" T | [I c :
¥ 1 v i *
®
243-3-79

4-130

~ 88A00508A-E

a. MPY.15 Multiply the contents of register A by the low-order fifteen bits of
(or MPY) register C, with the answer in registers B and C.

Result: BPB,C = BPA+BPC-(15-n)
= 14+15-(15-15)
= 29
8 , c
1514131211 10 9 8 7 6 6 4 3 2 1 0 151413 12 1110 9 8 7 6 56 4 3 2 1 0
0, ' 01 1 1 110
N T Y T T T S N W W S M U NN S RN U TR T |

-

—1—

>V
. 29 INTEGER DIGITS

b. MPY 10 Multiply the contents of. register A by the low-order ten bits of
register C, with the answer in registers B and C.

H = + - -
Result BPB,C BPA BPC (15-n)
= 14+415~(15-10)
= 24
B8 C
15614 13 12 11 10 9 8 7 6 56 4 3 2 1 0 1514 13 12 1110 9 8 7 6 5 4 3 2 1 o
[] []
o I WV W S W T W W W N T A T R A A I R i
T T T 1 1 T L)
\ 16x6=75 f
24 INTEGER DIGITS ® 243-3-80

4-131

88A00508A-E

3. Negative (two's complement) numbers can be multiplied by using the hardware
multiply instruction by multiplying their absolute values, then converting the
(positive) result back to negative 1if the signs of the terms are different.

ZERO X Bit 0 of X will be sign bit of answer.

ANDVC A,X'8000'

2§§L EFEG Get absolute value of multiplicand.

INCR A :

INCR X If negative, change sign of answer.
CREG ANDVC C,X'8000'

2§§L g XT Get absolute value of multiplier.

INCR C , .

INCR X If negative, change sign of answer.
NEXT MPY Perform multiplication.

ggég g’i } Position result in registers.

’

SRA X,1 Put sign bit into link.

SKR DONE If positive, domne.

CMPL B

ggg; g Otherwise, change B,C result to negative.

RLK B
DONE °

4-132

88A00508A-E

4.17 SPECTAL INSTRUCTIONS

Two special instructions are provided for the GA-16/220 computer. These are PIO
control instructions addressed to device X'3E' which provide for (1) resetting I/0
controllers and (2) executing a single instruction. These instructions are primarilxy
designed to be used with the SCI console ROM program, and have the following format:

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ©
0 0 0 1]X X X|X o o1t 1 1 1 1 0
1 1 | [

! 1 1 1 | -
1

' DEVICE ADDRESS = X'3E’

- { -10 = 1/O RESET

01 = SINGLE STEP

The CAP~16 Source Statements for these instructions are:

Command Parameter
CTRL 2,X'3E' (for IORST)
CTRL 1,X'3E' (for SSTEP)

Detailed description is provided in the following sections.

4.17.1 1/0 RESET (IORST)

16 14 13 12 11 10 9 7 6 5 4 3 2 1
1 1 1 X"123E’
0.01011=X1X| :0'0—L11IL11 I1L0 23

8
X
1

508-4-56

This instruction is a special-case PIO control instruction with bit 9 always on to
device code X'3E'. It generates a reset signal on the I/O bus.

RESET -~ I/0 BUS

Indicators affected: None
Registers affected: None

4-133

88A00508A-E

4.17.2 ENABLE SINGLE STEP INTERRUPT (SSTEP)

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0,001 X X X 1,001 11,1 1 0fxN3E

This instruction is a special-case PIO control instruction with bit 8 always on to
device code 3E. The interrupt via vector X'46' occurs immediately after execution
of the first instruction outside the upper 1K of memory. You cannot single step
through WAIT or XEC instructions.

4.18 SAMPLE GA-16/220 PROGRAM

Figure 4-8 is a CAP-16 assembly listing of a “sample program which illustrates usage
of instructions discussed in this section. The annotations added to this listing
identify the paragraph where the instruction 1is described in detail.

NOTE

The NTRC, CARGM and NTRD instructions identified
as "macro" are among the extended stack and
argument transfer instructions of the GA-16/440,
which are not implemented on the GA-16/110/220.
Still, all extended instructions may be used as
macros in writing programs for the GA-16/110/220.
The CAP-16 Assembler (Rev. 1l or higher) simply
responds to such macros by producing in-line
object code for GA-16/110/220 software routines
equivalent to the GA-16/440 hardware functions.

4-134

0000
0000
0009
000A
0008
000C
000D
000E
0000

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009

000A
0008
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015

F4co
coco
0EB5
01B9
000F
DOAO
0186
0006
05E1
38CE

6445
0402
C4BF
0000
C45F
0000
05E1
403F
602C
D88C
A8CE
2406

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035

0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047

0048
0049

0050
0051

0052

0053
0054
0055
0056
0057
0058

88A00508A-E

TITLE 'GA-16 TIME SUBROUTINE'

*

* GENERAL AUTOMATION, INC. ALL RIGHTS RESERVED *

* *
* PROGRAM NAME: TIME SUBROUTINE

* B *
* MODEL NUMBER: 6MX41 *
* *
* PURPQSE: TIMES$ WILL RETURN THE CURRENT TIME OF DAY *
* IN HOURS, MINUTES, AND SECONDS TO THE *
* CALLER IN ASCII. *
* TIME$B WILL RETURN THE CURRENT TIME OF DAY *
* IN HOURS, MINUTES, AND SECONDS IN INTEGER *
* FORMAT. *
* CALLING SEQUENCE: *
* CALL TIMES$B (I,J,K) *
* CALL TIMES (I,J,K) *
* RETURNS I = HOURS, J = MINUTE, K = SECOND. *
* *
* - . *
khkdkkkdkhkdhkkhkkhkhdk REVISION LIST .*********************************
* bad . *
* RV DATE SCO # BY REASON FOR CHANGE *
F ae mhemcmee mmcas mes CreeeecemceesecEeeAae e e e mcececemeeemeemee—o-aa *
* . *
* 01 12/01/72 72289 JINO INITIAL RELEASE *
* 06 08/15/75 75056 JWN UPDATE FOR GA-16/440 COMPATIBILITY *
* CORRECT USE OF STATUS SAVE FOR FLAGS *
* *

07 03/31/76 76161 DAR CORRECTED CARGM ERRORS
*

K de e e e e e ke ke e e e o ke e ek ke ok ke e ke ok ke ok e K e e e e ok ke e ok ok ok e ok ok e ok o o o ok o ok T e ok o ok o o e o o o o ok o
LR R AR R LR SR R R R L R g T L X]

EJECT
Discussed in
Paragraph No.
DEF TIMES,TIMESB)
REF ESLO,EFST,SIMS$,E$CPM
DSECT 0
DS 9 REGISTER SAVE
ARG1 DS 1 Assembler
ARG2 DS 1 > Directives
ARG3 DS 1
SAVE DS 1
DS 1
STAT DS 1 ASCII/BINARY FLAG
PSECT)
TIME$ NTRC 0,15 maecro
RBIT 6,STAT SET ASCII FLAG. 4.5.7
T2 CARGM FETCH ARGUMENTS maero
INH 4.13.4
LDR C,*E$SLO GET MINUTES. 4.5.6
LDR Y,*E$FST GET BST'S. 4.5.6
RISE E 4.10.9
LDA =60 4.4.3
JSR TDIV SEPARATE HOURS/MINUTES. 4.4.2
STR B,SAVE SAVE MINUTES. 4.5.11
TBIT 6,STAT 4.5.12
SKN T4 RETURN BINARY. 4.6.2
5084-57

Figure 4-8. Sample GA-16/220 Program (Sheet 1 of 2)

4-135

0016
0017
0018
0019
001A
0018
001C

. 001D

Q01E
001F
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
0028
002¢
002D
002E
002F
0030
0031
0032
0033
0034
0035
0036
037

0038
0039
003A
0038
003C
0030
003E
003F
0040
0041
0042
0043
0044

0045
0046
a047
0048
0049
004A
0048
004C
0040
004E
004F

Qgso
0051
0052
0053

0000 ERRS.

4038
6027
06A4
0CBD
018D
8080
DCA9
C8AC
A8CE
2405
601E
06A4
0CBD
018D
8080
DCAA
402A
0ABS
2614
6429
008F
C4lF

0000 X

6425
00AF
38CE
2406
4020
600C
06A4
0CBD
018D
BOBO
DCAB

0402
DoCo
F880
0815
0SE3
06A0
73F6
0F35
0680
00B9
6410
00AF
0523

F4co
coco
0EBS
0189
000F
DOAO
0186
0006
0SE1
B8CE
73BA

0000 X
003C
000A
0000 X

0059
0060
0061
0062
0063

0064
0065
0066
0067
0068
0069
0070
0071

0072
0073
0074
0075
0076
0077
0078

0079
0080
0081
0082
0083
0084
0085
0086
0087

0088
0089

0090
0091
0092
0093
0094
0095
0096
0097
0098

0099
0100
0101

T4

T6

T10

T12
RTRN1

T20
TDIV

TIMESB

LDA
JSR
EXBY

ORV

STR
LDR
TBIT
SKN
JSR
EXBY

ORV

STR
LDA
RTR
SKM
JSR
MPY
LDR

JSR
DIV
RBIT
SKN
LDA

- JSR

EXBY
ORV

STR
RTND

ZERO
JMP
RTR
ZERO
ADD
JSR
DIV
RTRN
NTRC

SBIT
JMP
END

88A00508A-E

=10
TDIV
c

C,B
c,'00'

C,*ARG1
C,SAVE
6,STAT
T6

TDIV

c

c,B
c,'00°

C,*ARG2
=260

15
A,*ESCPM

SIMS$
15
6,S5TAT
T12
=10
TDIV

c

c,B
c,'00'

C,*ARG3
0

. -
2O Mo
o

OXr=~WUVOWM>X—O
Gy

—
(3,

6,STAT
T2

SEPARATE HOURS

STORE HOURS.

RETURN BINARY.
SEPARATE MINUTES.

STORE MINUTES.

- COUNTS*60 SEC/MIN

(COUNTS*SEC/MIN)/(COUNTS/MINUTE)
RETURN BINARY.
SEPARATE SECONDS.

FORM ASCII
STORE SECONDS.

SAVE RETURN.

SET BINARY OUTPUT FLAG.

Figure 4-8.. Sample GA-16/220 Program (Sheet 2 of 2)

Discussed in
Paragraph HNo.

My R R B [NN NN
5 s o o s o = o e s 8 o ®
@ N\ R oty
PR « e o o

o

LS N NN
« 8 s o
[~ P RN

NN
e
O
oy
Y

(S [
0D N
cn ~

[N NN NN NN
o s o v o s s s
@ en e

QN3 ROy

L
en
~
~

maero

.10.15
.4.1
7.7
.10.18
. 7.1

LS NN NN

4.16.1
4.10.11
maero

4.5.9
4.4.1
Assembler
Directive

88A00508A-E

memory parity protect (MPP) 5

The GA-16/110 and GA-16/220 Memory Parity Protect Option (MPP), Model 1622-0050
provides both memory parity and write protection. Its features include:

+ Independent enabling of features.

+ Parity error, write protect error, .or program timeout are signaled by a non-
inhibitable (NI) interrupt.

s+ Separate program and- DMA write protect maps.

+ Each map contains sixty-four, 1K segments.

+ DMA and program write protection are individually enabled.

¢« Switch or program enabling of memory parity error detection.

+ Switch enabling to stall the CPU if a'parity error occurs.

Hardware for MPP requires the use of memory modules with 18-bit words and the
inclusion of the MPP board. The use of MPP is the same for a GA-16/110 and GA-16/220
with the exception of DMA write protect. DMA is not available on a GA-16/110.

|

5.1 MEMORY PARITY

" During all memory write operations, odd parity is generated and written into memory
for both bytes of words being written. Memory write operations include DMA

inputs and instructions which write into memory. These are DECM, DTIM, INCM, RBIT,
SARS, SBIT, STA, STBY, and STR.

During all memory read operations, both bytes of the data word are checked for odd
parity. If either byte does not have odd parity, a parity error bit is set in the MI'P
status register to indicate a program or DMA parity error. At the same time, the up*
per and lower parity bits are copied into the MPP status register. Thus, the program
can do a pair of DTIR/M instructions to input both the data word and the MPP status
word in order to monitor the bits associated with the error. Memory read operations
which check parity include: DMA output, LDA, LDR, CMR, LDBY, STBY. LARS.

INCM, DECM, SBIT, RBIT, TBIT, DTOM, Literal operation, and the access of an instruc—
tion. The 18-bit memory modules, which are designed for use with MPP, have switches
which enable and disable the parity protect for the module. Assuming the switches
are set to enable parity, the parity check feature may then be enabled by program
control. A parity error stall switch is provided on the MPP module which will enable:
a memory management stall (MSTAL) condition 1f an error is detected. 1In this con-
dition, the CPU is in a run mode and is also busy, that is, cannot execute instruc-
tions. The only way to exit this condition is by pressing RESET (Table 3—3,).

5-1 -

88A00508A~E

NOTE

The parity error stall switch ie accessible
only when the MPP module is out of the
chassis (Figure 5-1).

If the parity check is enabled only by program control, a parity error will generate
a non-inhibitable interrupt (through vector X'4l'). (See Sections 2.6 and 4.9 for
discussion of NI processing.) The program routine, processing the NI interrupt, may
determine the cause of the error and reset the error indicator by means of 1/0 in-
structions to the MPP. The routine may also provide the means to recover from the
fault (if possible).

5.2 WRITE PROTECT FEATURES

The MPP module contains a 128-bit memory which is loaded under program contr&i_(by
programmed I/0). Each bit represents the protect bit for one segment of 1024 words

as illustrated below. One 64-bit half of the memory is for program protect and the
other half is for DMA protect. When the block protect is enabled by outputting
(DTOR/M) an output command word, any attempt to write into any word of a protected
block will be inhibited and an NI interrupt will be generated. In addition to the
protect maps the MPP module contains status information which may be read for diagnos-
tic purposes.

1/Q BUS

1 .

DMA BUS PARITY DETECTION
MEMORY PROTECT MEMORY
BUS STATUS REGS STATUS REGS MAPS BUS
PROG REF | [PROG REF | |© 15 MEMORY
cPU 16 31 1K SEGMENTS
DMA REF omaRer | |32 &7
e

8 83
>
NI | aooress | | ADDRESS | [G T
INTERRUPT 6 T 0
CONTENTS = o

1 48 63
I BYTE M/L
' INTERRUPT TIME OUT

466-6-2

5=2

88A00508A-E

JUMPERS SHOWN FOR 960 - 970 us

-0 o2 +6 ~ O oe®

~O o cno a8l

L lle) o +6 ;/@

*:0 3 o] GND § (o)

0|0 O GND O = O GND
ol@” e 5 @ e 5
"h +6 @’-\' +6 .
© 0 O @ GND o) O®GND|

DETAILA

SEE DETAIL A
PTO TIME

/ PERIOD
JUMPERS

CRSE CR4 CR3 CR2 CR1 T

C%G
«[= 7] o a BT e
O ol 1O O Q]

ME PPT LPB uPs DPY PPY

Figure 5-1. GA-16/220 Memory Parity Protect Module

88A00508A-E

5.3 PROGRAM TIMEOUT (PTOQ)

MPP provides a program timeout function which monitors two conditions: the state

of ISE and the execution of non-interruptable instructions. ISE must be set for the
duration of at least two consecutive interruptable instructions in order to reset
the PTO timing function. If ISE is on, the timing function is reset each time an
interruptable instruction is executed, thus preventing endless JMP and JSR loops.
The standard timing period is 960 to 970 microseconds. Other timing periods down to
20 to 25 microseconds can be obtained by changing jumpers on the MPP circuit cards.
See Table 5-1 for PTO time periods and Figure 5-1 for jumper locatioms. When PTO
detection is enabled by output of a command word, any sequence of instructions which
inhibits the interrupt system beyond the timeout period will cause an NI interrupt.
The interrupt routine can then determine that PTO has occurred by input of the status
word, and can determine the address the last instruction executed by input of the
memory address word. . -

Table 5-1. PTO Time Period Jumpers

Delay On: - Delay Off:

Jumper Hardwired To Hardwired To Time Period
Zone Ground Logic Ground (us)
(93) 9 e | o 10 20-25
(93) 12 6 e | » 11 40-45
(9H) 12 el _» 10 80-85
(9H) 9 6 o | o 1l 160-165
(94) b e | A 14 3 320-325
(9H) 2 o | 215 1 640-645

1. Jumper zone refers to the location of jumpers on module (Figure 5-1); jumpers
connect between numbered board points in the zone, either LOGIC to GROUND (for
enabling DLY) or LOGIC to +5 VOLTS (for disabling DLY).

2. Time periods shown are enabled by jumpering LOGIC to GROUND; all other LOGIC
points are jumpered to +5 VOLTS.

3. More than one LOGIC point may be connected to GROUND to provide additive time
period (e.g., (9J) 12 to 6 and (9H) 9 to 6 to provide 200-210 us time) and
remaining jumpers to +5 VOLT (e.g., (9J) 7 to 10, (9H) 7 to 10, (9H) 14 to 3,
and (9H) 15 to 1).

4. Normal jumper connections (actually etched on board) are for 960-970 us as
illustrated in Figure 5-1.

NOTE

CPU interrupts stop the timer (but do not reset 1t)
from counting. To start the timer counting again (from
where 1t left off) it must be pe-enabled (Section 5.6.1.2).

88A00508A-E

5.4 MPP CONTROLS AND INDICATORS

The controls and indicators for the MPP module are described in Section 3, Table 3-3,
key numbers through @

5.5 NON-INHIBITABLE MPP -INTERRUPT

The interrupt generated by MPP is not affected by the state of the interrupt system
enable (ISE). The interrupt vector for MPP is location X'42'. The register P and
ISE status storage locations are X'7A' and X'7B', respectively. For a more detailed
discussion of interrupts, refer to Section 2.6.

5.6 MPP COMMANDS

5.6.1 OUTPUT WORDS

MPP recognizes two data output instructions. It decodes the REG field of the output
instructions to determine how to interpret the data output from the register or from
a memory location specified by the register contents.

5.6.1.1 Output Map Address or Map Data
INSTRUCTION FORMAT

1514 13 121110 9 8 7 6 5§ 4 3 2 1 0
0 0 0 1 xX|o X Xjo 1}t 1 1t 0 0 1] xX1X79
1 1 11 1 1 1

1
L

|
| DEVICE CODE = X'39'

INSTRUCTION TYPE = OUTPUT

REGISTER=A, X, Y,orZ

0=DTOM
1 =DTOR 466-563

DATA FORMAT

1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
X0 0 0 X]X X X|x X X X X X X X
11 L1 L1 1 } | I
A A S S

LMAP DATA (IGNORED IF

LOAD MAP ADDRESS)

e

MAP ADDRESS

‘ 0 = PROGRAM MAP
1 = DMA MAP

1 = LOAD MAP ADDRESS ONLY FOR

0 = WRITE MAP
INPUT OF MAP DATA (SEE 5.6.2.4)

507-5-2

5-5

88A00508A-E

The MPP module contains two write protect maps for (1) program protection and (2) for
direct memory access protection. Each map is organized as eight words of eight bits !
each. The maps are either loaded or their contents accessed by output of one to '
eight words in the data format shown.

Map selection is specified by bit 11, and each word in the map is specified by bits
10, 9, and 8. A map word is loaded with bits 7 to 0 if bit 15=0. The word is
accessed for subsequent input when bit 15=1. Refer to Section 5.6.2.4 to input map
word.

Figure 5-2 shows a typical data table containing all map data. As each word is

. output, the data in bits 7 to 0 will set the map to protect the corresponding 1K
segment in core. Figure 5-3 illustrates the way in which a typical program map word
and DMA map word protect memory provided write protect has been enabled by output of
a command word.

5.6.1.2 Output Command Word (Resets Status)
INSTRUCTION FORMAT

15141312 11 10 9 8 7 6 5§ 4 3 2 1 0

0 00 1]x[1 X XJ]0 11 1.1 00 1| xixw
L1 L | L Xk
DEVICE CODE = X ‘39’

INSTRUCTION TYPE = QUTPUT
REGISTER=B,C, D, E,

| o=pTOM
1=DTOR
COMMAND WORD DATA FORMAT
1514131211109 8 7 65 4 3 2 1 0
o 00 o ofulLjo 0o 0 0 0fTIDJBIP| xoxox

§ 1 1 1
I

I

o

S
{ 1 = ENABLE PARITY CHECKING

0 = DISABLE PARITY CHECKING

1 = ENABLE PROGRAM WRITE PROTECT
0= DISABLE PROGRAM WRITE PROTECT

1= ENABLE DMA WRITE PROTECT
0= DISABLE DMA WRITE PROTECT

1= ENABLE PROGRAM TIME OUT
0= DISABLE PROGRAM TIME OUT

1 = FORCE EVEN PARITY IN LOWER BYTE PARITY BIT
0 = DO NOTHING

[1 = FORCE EVEN PARITY IN UPPER BYTE PARITY BIT
0= DO NOTHING

*FUNCTIONS OF BITS 1, 3,9, AND 10 ARE RESET AFTER ANY MPP INTERRUPT
507-6-3

5-6

88A00508A~E

o]

e e A ——
14, 13 , 12 11 0 , 9 , 8
o o o 1 R
0 o 0 1 1 1 0
o ()} 0 1 1 0 1
[0 o 1 1 0 0
o 0 0 1 0 1 1
0 o 0 1 0 1 0
0 0 0 1 0 o 1
o o ° 1 0 0 0
;-f}_.—g— _J—-—;—-z—-_}_-
0 0 0 0 1 1 0
0 [0 0 1 o 1
0 0 0 0 1 0 0
0 o 0 0 0 1 1
0 0 [0 o 1 0
0 0 o o 0 0 1
o ()} 0 0 o 0 0

 ®

MAP ADDRESS (WITHIN MPP) @ @

NOTES:

(:)Bit 15=0 to load map data (bits 0 to 7) into MPP map

Bit 15=1 to access map word

<:>Bits 14,13,12 always

0

(:)Bit 11=0, program protect map
Bit 11=1, DMA protect map

(:>Map address (within MPP)

<:)<:>Boundaries of DMA protect map as it exists in MPP module

(:)[:]1ndicates 1024 word segment protect bit}

=1, protected
=0, unprotected

(e.g., 1if =1, memory segment from 7168 to 8191 is DMA protected)
@Boundaries of program protect map

Same as 7 but for program protect map

Map data is accessed by output of map address word with bit 15=1,

followed by input of protect map data, Section 5.6.2.4.

Figure 5-2.

MPP Protect Maps

5-7

88A00508A-E

Control bits U and L are used to test MPP parity circuits. By outputting the above
data word, the various features of MPP are enabled and disabled. Program protection
would then enable or disable those 1K segments previously sent to the MPP protection
map. PTO and PE checking apply blanket coverage for all memory; no map is needed.
Bits 10 and 9 (upper and lower byte) force the next data read to cause an even parity
error on the byte specified for testing the MPP parity circuits. This command also
resets the MPP status register.

5.6.2 INPUT WORDS

MPP recognizes four data input instructions. It decodes the REG field of the
instruction to determine which input word is to be sent to the register or to the
memory location specified by the register contents.

5.6.2.1 Input Status Word

The input status word operation inputs to the;CPU the sik error bits, two parity
bits, the position of the parity stall switch, and indicates which MPP features are
currently enabled.

INSTRUCTION FORMAT 1514131211 109 8 72 6 6 4 3 2 1 0
ololola X x|°|° 1‘0 1|1=1|o|ol1 X' 1XBO*

4‘ N, o — “~et—p—
A A I
DEVICE CODE = X'39’

INSTRUCTION TYPE = INPUT

REGISTER =Aor B
{ 0=DTIM

1=0TIR

MPP STATUS WORD DATA INPUT WORD FORMAT 466-5-7

15141312 11 109 8 7 6 5 4 3 2 1 0

xoooxxxxxx[xlxx‘xxx
| R I T S A |

A NN YR

il

PROGRAM PARITY ERROR = 1
DMA PARITY ERROR = 1
PROGRAM PROTECT ERROR = 1
DMA PROTECT ERROR = 1
PROGRAM TIMEOUT = 1
LOWER BYTE PARITY BIT CONDITION
UPPER BYTF PARITY BIT CONDITION
PARITY ERROR STALL SWITCH ON = 1
PARITY CHECKING WAS ENABLED = 1
PROGRAM WRITE PROTECT WAS £NABLED = 1
DMA WRITE PROTECT WAS ENABLED = 1
PROGRAM TIME OUT WAS ENABLED = 1
MULTIPLE ERROR

507-5-4

5-8

!

9883238

88A00508A~-E

DECIMAL SEGMENT NUMBERS SHOWN IN FIGURE 5-2

64K MEMORY DIVIDED INTO EIGHT 8K BLOCKS NUMBERED 0 TO 7 TO CORRESPOND
TO MEMORY MAP ADDRESSES DESIGNATED BY BITS 10,9, 8

-
=NWLHON

-
O=NWAOABNOWVO

FFFF :
DMA PROTECTION
15141312[1_11093 7 665 4 3 2 1 0
7
‘W/' 1|11o1oo1oo11
R [[| R T O S E |
e o—]
£000 BLOCK 6
prre | PROTECTED
NOT PROTECTED HRCOO-DEFF
NOT PROTECTED | DBOO-DBFF
PROTECTED | D400-D7FF
6 NOT PROTECTED | QUB-DELT
NOT PROTECTED |egeet :
PROTECTED
PROTECTED C400-C7FF
Cc000 - C000-C3FF~ Mf-’
BFFF :
|
I
5 [
'
[}
______ Lo
‘;2‘,’:‘,’: TEACH 8K BLOCK 1S DIVIDED INTO EIGHT |
1K SEGMENTS. EACH BIT IN A MAP WORD
| DETERMINES PROTECTION FOR A SEGMENT |
| INTHE BLOCK. 0 = NOT PROTECTED }
4 | 1=PROTECTED
e e e e e —-J
T
1
[
8000 (
7FFF !
I
__PROGRAM X
PROTECTION 0
3 - -
16 1413 12 11 10 8 8 7 6 54 3 2 1 0
w/I l
6000 IR, ., lofo, 0 1]0 101 1 000
SFFF —— f
BLOCK 1
2 WRITE/READ BIT
HAS NO EFFECT
DURING ACTUAL
PROTECT OPERA.-
4000 TIONS
3FFF
NOT PROTECTED =
PROTECTED -SEEF
NOT PROTECTED |SS0033EE
1 PROTECTED SO IrFE
PROTECTED SR IErE
NOT.PROTECTED |2500:2CF
o | METTICTESES BB
1FFF 2000-23FF
SEGMENTS IN BLOCK 1 GIVEN PROGRAM PROTECTION
PROVIDED PROGRAM WRITE PROTECT ENABLED
BY COMMAND WORD OUTPUT
o SEGMENTS IN BLOCK 6 GIVEN DMA WRITE
PROTECTION PROVIDED DMA WRITE PROTECT
ENABLED BY COMMAND WORD
0
466-5-6
Figure 5-3., 1Illustration of Memory Protection

5-9

88A.00508A-E

Bits 1 and O of the Status Word tell which type of memory access had the parity error.
Bits 3 and 2 tell if a program or DMA store operation caused a protect error. Bit 4
indicates that a program timeout occurred. Bits 6 and 5 (the lower and upper byte
parity bits) are meaningful only if a parity error bit is set. Bit 7 provides the
program a means of sensing the state of the parity error stall switch. Bits 8, 9,

10 and 11 have the state of the command register of the MPP at the time of the last
interrupt. These bits may be used to restore the MPP to its original status after the
interrupt has been processed. The MPP status register 1s reset by outputting a new
command (Section 5.6.1.2).

5.6.2.2 Input Memory Address Word

INSTRUCTION FORMAT ' -
1514131211109 8 7 6 6 4 3 2 1 0

0 0 0 1iX|]xXx 01]1T O]t 1 1 0 0 1| x1x8B9
| 11 1 | I X"1xB9

L DEVICE CODE = X'39’

— REGISTER=XORC

J 1

0=DTIM
1=DTIR,

MEMORY ADDRESS WORD DATA INPUT FORMAT

1514 13 12 1110 9 8 7 6 6 4 3 2 1 0
MEMORY ADDRESS WORD
4t 1t 1 1 : | S

1 1 1

Interpretation of this word depends on the contents of the status word. The memory
address word contains the address of the location being accessed which caused a parity '

or protect error. In the case of a program timeout, the contents will be the address
of the last instruction executed.

5.6.2.3 Input Memory Data Word

INSTRUCTION FORMAT
1514 131211 109 8 7 6 5§ 4 3 2 1 0

00 0 1]x]|x 10]1 ol11 1 o0 o 189"
L Ll \ gt 0,0 | xxee

‘} S — .
A t
DEVICE CODE = X'39’

REGISTER=YORD

| o-poTm
1 =DTIR 466-6-9

5-10

88A00508A-E

DATA INPUT WORD FORMAT

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

MEMORY DATA WORD
1 1 1 1 i 1

L1 1

L1

The memory data word is used in diagnosing memory parity errors. It contains the
16 data bits which, along with the two parity bits contained in the status word,
make up the 18~bit memory word which includes parity.

5.6.2.4 Input Protect Map Data
INSTRUCTION FORMAT

1514 13 12 11 10 9 8 7 6 56 4 3 2 1 0

000 1[x[x 1 1]1 o]1 1 1 0 0 1] x1xse
L1 L | R Rl Rl X1XB9

“ “— —

L DEVICE CODE = X'39'

\—- REGISTER=ZOR E

0=DTIM
1=DTIR

DATA FORMAT

114 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 00 0 0 0 0 O]X X X X X X X X
| | 11 L1 1 } [| :

N— _,

L MAP DATA

The input protect map data function is used to input the MPP protect memory data.
This function is included as a diagnostic tool. The address for the protection map
is determined by the output map address function. (See Section 5.6.1.1 with bit 15

on in Data Format.)

466-5-10

88A00508A-E

5.7 MPP_OPERATION
INITIAL CONDITIONS

The following conditions will exist on power-up or after system reset:
 Parity, Program Timeout, and protect disabled.

. All error bits reset.

5.8 INSTRUCTION AND DATA SUMMARY

Table 5-2 lists the machine code and assembler directives for the instructions
described in the preceding sectioms. ‘

Figure 5=4 illustrates the output data formats an& also shows the format of the
program and DMA map within the MPP module. Figure 5-=5 illustrates the input data
formats. Figure 5-6 1s a listing of an MPP demonstration program.

NOTE

The MPP demonstration program i8 presented
for illustration of instruction sequences to
MPP., It will run only on a GA-16/220 equipped
with an SCI, TTY, and disk drive. As shown,
the DSPL instructions will cause no observable
effect. This program could be modified by
using an SCI subroutine as follows:

For each DSPL instruction, substitute:

RTR B,D Put status pointer
into B

LDV D,X'FE0Q' Set up ROM DATA address

JSR X'FC61' Call SCI subroutine to output
characters on ITY
RTR D,B Restore pointer

5-12

88A00508A-E

Table 5-2. Instruction Summary for MPP Module
Device Select Code: X'39'
Interrupt Vector: X'42' (non-inhibitable)
Data Channel Locations: N.A.
P-Storage: X'7A'; ISE: X'7B'
Instruction Function
Machine Code Source‘Code

0 A Output map address word or map data
1 ;f 79 DTOM{ & » X'39" from memory

3 z)

8) A} Output -map address word or map data
1 Z 79 pror{ X+, x'39" -from register

B \z)

4 B Output command word (resets status)
142879 prom{ o, x'39" from memory

7 E

C B Output command word (resets status)
1 D 79 DTOR C , X'39" from register

E D

F E
1 {0 }B9 DTIM {A} , X'39" Input MPP status word to memory

4 AB
1 {2 }B9 DTIR-{%} , X'39" Input MPP status word to register
1 {; }B9 DTIM {§ }’ X'39" Input memory address word to memory

9 X VAot Input memory address word to
1 {D} B9 DTIR{ C} , X739 register

2 Y 'ag 1 Input memory data word to memory
1{g} 89 priM{ } , X'39
1{ g} B9 DTIR{ g} , X'39' Input memory data word to register

@ d

1{ 3} B9 DTIM{ g} , X'39" Input protect map data to memory

B / 121 GDInput protect map data to
l{ F} B3 DTIR{ E} » X739 register

DnNon-inhibitable interrupts cause storage of the contents of register P+1 and ISE

in dedicated locations before transfer of control via interrupt vector.
@must be preceded by output map address word.

5-13

88400508A-E

IN, OR ADDRESSED BY, _
REGISTERS A, X, v,0R 2 | 1+ 0 0 04 XX . X X} X X_X. X x_‘xTx,'

0 = PROGRAM MAP {
1 = DMA MAP NOT USED

=—— MAP ADDRESS

MAP ADDRESS WORD 18 14 1312 11 10 9 8 7 6 8 4 3 2 1
x| x'xxx:

15 14 13 12 11 10 9 8 72 6 6 4 3 2 1

MAP DATA WORD IN,
OR ADDRESSED BY, 0jo Y 0.| 01X, .x.l. X .l.x X LXLIXEXIX XXX X'OXXX'
REGISTERS A, X,Y,0R 2
p— N — p——
X =1 PROTECT
0 = PROGRAM MAP . MAPDATA { X = 0 UNPROTECT
1 = DMA MAP :
MAP ADDRESS
A

|
r=-----4

— v - o — — — -

—————
/ Lo
HEX VALUES FOR MAP |
SELECT AND ADDRESS - PROGRAM OR DMA MAP WITHIN MPP MODULE
PROGRAM DMA 7 8 5 4 3 2 1 0
7 F 63 | 62 | 681 |60 | 69 | 88 | 67 | 66
6 E 55 | 564 | 63 | 52 | 61 | 60 | 49
5 D 47 | 48 | 46 | 44 | 43 | 42 | M
4 c 3 | 38 (37 |3 | 35| 34 | 33 | 32
3 B 31 |30] 20 | 28| 27 | 26 | 25 | 24
2 A 23 | 22| 21 (20| 19} 18 | 17 | 16
1 9 %1413 (12 11| 10]| 9 8
0 8 7 8 5 4 3 2 1 0

MULTIPLY NUMBERS IN SQUARES BY 1024 TO OBTAIN

. THE LOWER BOUNDRY OF 1024 WORD MEMORY SEGMENT
WHICH 1S PROTECTED WHEN MAP BIT = 1, AND PROTECT
IS ENABLED BY COMMAND WORD (8 OR P BITS)

508-6-2

Figure 5-4. Output Data to MPP (Sheet 1 of 2)

5-14

‘o0
>
IS
'S

508A-E

Command word in, or addressed by, registers B, C, D or E.

L
15 14 13 12 11 10 9 8 7
0 0 0 0 OjujLjOo O
N I

! \ \ I

olnN
w
b

X'0X0X’

>l 4]

1 = ENABLE PARITY CHECKING
0 = DISABLE PARITY CHECKING -

DISABLE PROGRAM WRITE PROTECT

1= ENABLE DMA WRITE PROTECT

l ENABLE PROGRAM WRITE PROTECT
{ 0= DISABLE DMA WRITE PROTECT

1= ENABLE PROGRAM TIME OUT
0= DISABLE PROGRAM TIME OUT

1 = FORCE EVEN PARITY IN LOWER BYTE PARITY BIT
0= DO NOTHING

{ 1 = FORCE EVEN PARITY IN UPPER BYTE PARITY BIT
' 0 = DO NOTHING

*FUNCTIONS OF BITS 1, 3,9 AND 10 ARE RESET AFTER ANY MPP INTERRUPT.

508-5-2

Figure 5-4. Output Data to MPP (Sheet 2 of 2)

5-15

88400508A-E

MPP status word in or addressed by registers A or B:

15 14 13 12 11 10 9 8

X{000 X X X X
||1l |

A 4”1\1

X
X]l®
xX|o
x|
X|w
XN
x

X|0

>
>
.
'

PROGRAM PARITY ERROR = 1

L—— DMAPARITY ERROR = 1

PROGRAM PROTECT ERROR = 1

DMA PROTECT ERROR = 1

e PROGRAM TIMEOUT = 1

LOWER BYTE PARITY BIT CONDITION

UPPER BYTE PARITY BIT CONDITION

PARITY ERROR STALL SWITCH ON =1
PARITY CHECKING WAS ENABLED = 1
PROGRAM WRITE PROTECT WAS ENABLED = 1
DMA WRITE PROTECT WAS ENABLED = 1
PROGRAM TIME OUT WAS ENABLED = 1
MULTIPLE ERROR

Memory address word in or addressed by registers X or C: . 507-64

514 1312 11 10 9 8 7 8 6 4 3 2 1 0
MEMORY ADDRESS WORD
I N T N N S B

| T | | I . |
T T

Memory data word in or addressed by registers Y or D:

1514 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0
MEMORY DATA WORD
L1 1 l L 11

il

e

L—- LOWER BYTE AND LOWER BYTE PARITY
BIT SHOULD BE ODD

UPPER BYTE AND UPPER BYTE PARITY
8IT SHOULD BE ODD

Protect Map (previously addressed with output map address word) in or addressed
by registers Z or E:

1614 13 12 11 10 9 8 7 8 6 4 3 2 1 O
000 0 0 0 0 OJX X X X X X X X
| I SN U (U U N | | N T N T U N |

I 1
- .,

L MAP DATA (REFER TO FIGURE 56-3)
466-5-9

Figure 5-5. Input Data from MPP

5~16

3000
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
300A
300B
300C
300D
300E
300F
3010

3011
3012
3013
3014
3015
3016
3017
3018

3019
301A
301B
301C
301D
301E
301F

3020
3021
3022
3023
3024
3025
3026
3027

' 3028
3029
302A
302B
302¢C

0039
0001

0402
0115
3089
DO1F
0042
0115
AAAA
0135
0068
Di11F
4000
0722
2FFC
01D5
4000
0600
187E

0195
0201
DO9F
3085
1C79
01D9
0008
05Cc4
0002

0115
FFFF
DOLF
3086
01D9
0008
05c4
0003

0195
0401
DO9F
3085
1C79
01D9
0008
05C4
0004

DO1F
3087
01D9
0008
05Cc4
0005

88A00508A-E

INITIALIZE INTERRUPT VECTOR

INITIALIZE STATUS TABLE TO AAAA

INITIALIZE TABLE POINTER
DISABLE INTERNAL INTERRUPTS.

BYTE. NO ERROR SHOULD OCCUR.

SAVE MPP COMMAND WORD

UPDATE STATUS POINTER

UPDATE STATUS POINTER

SAVE MPP COMMAND WORD

UPDATE STATUS POINTER

UPDATE STATUS POINTER

466-6-14

* % &k % ¥ ¥ ¥

(Lo o L X 22 2 2 2 2 aldd il et lad o el ot a2 otz et zzs 22ty sly
0002 *
0003 * MPP DEMONSTRATION PROGRAM
0004 * _
0005 * DATE: 02/26/76
0006 *
0007 * ALL RIGHTS RESERVED
0008 *
0009 36 3 63 e b A BB I B U 6 U TN 3 3 b3 U B 63 U 6 I B I A I I I
0010 *
0011 MPP EQu x'39'
0012 CTR SET 1
0013 PSECT X'3000'
0014 START INH
0015 LDV AYMPPERR
0016 STR Arx'42"
0017 LDV AvX'AAAA'
0018 LDV Xy TBLSIZ
‘0019 STRTBL STR A+ TABLE + X
0020 DECR X
0021 SKP STRTBL
0022 LDV D+TABLE
0023 ZERD A
0024 DTOR AsX'3E'
0025 *
0026 * TURN ON FORCE ERROR IN RIGHT
0027 * -
0028 LDV By 1+1@9
0029 STR B1MPPCMD
0030 DTOR BiMPP
0031 ADDV D:8
0032 DSPL D DISPLAY IT
0033 CTR SET CTR+1
0034
0035 * WRITE INTO MEMORY: NO ERROR SHOULD OCCUR.
0036 LDV AVX'FFFF'
0037 STR A+PERRRB
0038 ADDV D+8
0039 DSPL D DISPLAY IT
0040 CTR SET CTR+1
0041 * TURN ON FORCE ERROR IN LEFT BYTE. NO ERROR SHOULD OCCUR.
0042 *
0043 LDV Bs1+1@10
0044 STR ByMPPCMD
0045 DTOR B1MPP
0046 ADDV D+8
0047 DSPL D DISPLAY IT
0048 CTR SET CTR+1
0049 * WRITE INTO MEMORY. NO ERROR SHOULD OCCUR.
0050 *
0051 STR A+PERRLB
0052 ADDV D:8
0053 DSPL D DISPLAY IT
0054 CTR SET CTR+1
Figure 5-6. MPP Demonstration Program (Sheet 1 of 4)

5-17

0055

0056

0057

302D 0195 0058
302E 0001

302F DOSF. 0059
3030 3085

3031 1C79 0060

3032 DO1F 0061
3033 3088

3034 01D9 0062
3035 0008

3036 05C4 0063

0006 0064

0065

0066

3037 CO4F 0067
3038 3086

3039 041D9 0068
303A 0008

303B 05C4 0069

0007 0070

0071

0072

0073

0074

303C CO1F 0075
303D 3087

303E 04iD9 0076
303F 0008

3040 05C4 0077

0008 0078

0079

0080

3041 COLF 0081
3042 3088

3043 01D9 0082
3044 0008

3045 05C4 0083

0009 0084

0085

0086

o087

o088

3046 0115 0089
3047 0050

3048 1879 0090

3049 0119 0091
304A 0800

304B 1879 0092

304C 0195 0093
304D 0006

304E DO9F 0094
304F 3085

3050 1C79 0095

3051 01D9 0096
3052 0008

3053 05C4 0097

000A 0098

0099

0100

3054 DOLF 0101
3055 1000

3056 01D9 0102
3057 0008

3058 05C4 0103

000B 0104

Figure 5-5.

88A00508A-E

TURN OFF FORCE» WRITE INTO MEMORY.

NO ERROR SHOULD OCCUR.
»

SAVE MPP COMMAND WORD

UPDATE STATUS POINTER
DISPLAY 1IT

UPDATE STATUS POINTER
DISPLAY IT

LDV By2
STR ByMPPCMD
DTOR ByMPP
STR A+NOERR
ADDV D8
DSPL. D
CTR SET CTR+1
READ FROM PERRRBs ERROR SHOULD OCCUR.
*
LDR A+ PERRRB
ADDY D+8
DSPL D
CTR SET CTR+1

READ FROM PERRLB» ERROR SHOULD OCCUR.
*

UPDATE STATUS POINTER
DISPLAY IT

* READ FROM NOERRs NO ERROR SHOULD OCCUR.

LDR A+PERRLB
ADDY Dy8
DSPL D

CTR SET CTR+1

»*
LDR A¢NOERR
ADDY D.8
DSPL D

CTR SET CTR+1

»

UPDATE STATUS POINTER
DISPLAY IT

* TURN ON PGM AND DMA WRITE PROTECT FOR 4K-8K BLOCK.

NO ERROR SHOULD OCCUR.
»
LDV AryX'FO'!

DTOR AJMPP
ADDV Ar1@11

DTOR AsMep

SAVE MPP COMMAND WORD

UPDATE STATUS POINTER
DISPLAY IT

WRITE INTO PROTECTED CORE+ ERROR SHOULD OCCUR.
»

LDV Bs6
STR ByMPPCMD
DTOR BiMPP
ADDV D8
DSPL D

CTR SET CTR+1
STR AsX'1000'
ADDV D8
DSPL D

CTR SET CTR+1

5-18

UPDATE STATUS POINTER
DISPLAY IT

MPP Demonstration Program (Sheet 2 of 4)

3059
305A
305B
305C
305D
305E
305F
3060
3061
3062
3063
3064
. 3065
3066
3067
3068
3069
306A
306B
306C
306D
306E

306F
3070
3071
- 3072
3073

3074
3075
3076
3077
3078
3079
307A
307B

307¢C
307D
307E

307F
3080
3081
3082
3083
3084
3085

3086
3087
3088

0105
0106
0115 0107
0001
DOLF 0108
0022,
0115 0109
1000 :
DO1F - 0110
0023
188E o111
0117 0112
0060
25FC 0113
0115 0114
4000
184E 0115
188E 0116
0117 0117
0060
25FC 0118
01D9 0119
0008
os5c4 0120
oooc 0121
0122
0123
0124
0600 0125
1879 0126
0119 0127
0800
1879 0128
0129
0130
0131
0132
3074 0133
0195 0134
0008
DO9F 0135
3085
1€79 0136
0600 0137
0702 0138
25FE 0139
307¢C 0140
01D9 0141
0008
05C4 0142
000D 0143
0144
0145
0680 0146
DO9F 0147
3085
1C79 0148
7400 0149
3A00 0150
0151
0152
0153
0154
0155
0156
0157
0158
Figure 5-6.

88A00508A-E

* DMA INTO PROTECTED COREs» ERROR SHOULD OCCUR.
*

DSTAT1

DSTAT2

CTR

* TURN

*

LDV Ard

STR ArX'22!
LDV A1X'1000"'
STR AsX'23"
DTIR AvX'E'
ANDV AyX'60"
SKN DSTAT1
LDV Ay X'4000"'
DTOR AVX'E'
DTIR A X'E’
ANDV AiX'60'
SKN DSTAT2
ADDV- D.8

DSPL D

SET CTR+1

OFF WRITE PROTECT.

ZERO A

DTOR AWYMPP
ADDV Ay l@1ll
DTOR A'MPP

* TURN ON PROGRAM TIME OUT,
* ERROR SHOULD OCCUR.
»*
LAST EBU s
LDV Bs8
STR ByMPPCMD
DTOR ByMPP
ZERO A
DECR A
SKN $-1
LSTRTN EQU s
ADDV D,8
DSPL D
CTR SET CTR+1
*
* TURN OFF PTO, JUMP TO BUS AT
ZERO B
STR - B+MPPCMD
DTOR ByMPP
JMP *$41
DC X'3A00'
MPPCMD DS 1
»*
»*
ERROR LOCATIONS
PERRRB DS 1
PERRLB DS 1
NOERR DS 1
EJECT

DISK CAR

UPDATE STATUS POINTER
DISPLAY IT

WAIT FOR ERROR.

SAVE MPP COMMAND WORD

UPDATE STATUS POINTER

DISPLAY IT

3A00.

SAVE MPP COMMAND WORD

PARITY ERRORy» RIGHT BYTE
PARITY ERROR,» LEFT BYTE
NO PARITY ERROR

MPP Demonstration Program (Sheet 3 of 4)

5-19

88A00508A-E

0159 * MPP INTERRUPT ROUTINE,

0160 #

3089 0161 MPPERP EQU s
3089 FODF 0162 SARS SAVE
308A 30A4
3088 0620 0163 ZERO X
308C D900 0164 STR Ar0rXsd
308D O072€ 0165 INCR X
308E COAF 0166 LDR ArX'TA® RETURN ADDRESS
308F 007A :
3090 D900 . 0167 STR ArOsXs1
3091 072E 0168 INCR X
3092 1CB9 0169 DTIR BMPP STATUS
3093 D980 0170 STR BsOsXed
3094 072E 0171 INCR X
3095 1DB9 0172 DTIR CsMPP MEMORY ADDRESS
3096 D9AD 0173 STR Cs0vXsl
3097 072€ 0174 INCR X '
3098 1AB9 0175 DTIR Y.MPP MEMORY DATA
3099 D940 0176 STR Ys04Xed ,
309A 0406 0177 SUBVE AsLAST
3098 3074 -
309C 2FDF 0178 SKP LSTRTN

0179 * RE-ENABLE MPP & CLEAR STATUS

309D CO9F 0180 . LDR B1MPPCMD
309E 3085
309F 1C79 0181 DTOR ByMPP
30A0 FO9F 0182 LARS SAVE
30A1 30A4
30A2 0112 0183 RTNIV X'7A'
30A3 007A
30A4 0184 SAVE DS 9
4000 0185 ORG X'4000'
4000 0186 TABLE DS 8*CTR

0068 0187 TBLSIZ EQU $-TABLE

3000 0188 END START

0000 ERRS

Figure 5-6. MPP Demonstration Program (Sheet 4 of 4)

88A00508A-E

‘input /output operations

There are two basic types of I/0 operations on a GA-16/110 computer:

1. Programmed I/0 (PIO)

2. Interrupt-Driven Programmed I/0O
Two additional basic types are added for a>GA—16/220:

1. Direct Memory Access via Data Channel I/0 (DCIO)
2. Direct Memory Access (DMA) Direct I/0

A serial I/O controller for TTY/CRT is also added on a GA-16/220 which utilizes
PIO (with or without interrupts).

They may work separately or in conjunction with one another. However, DCIO
operations are always initiated by a PIO instruction (Section 4.14). The purpose
of these operations is to transfer data, status, and commands between the CPU and
a peripheral device. 1In some cases, another CPU may be the peripheral device.
These types of operations will be discussed separately in the following sections.

6.1 PIO OPERATIONS

Programmed I/0 derives its name from the fact that it is part of a program. Each
PIO operation is derived from an instruction in a program stream. These PIO in-
structions are sometimes referred to in a general sense as execute I/0 (XI0) in-
structions. They really mean the same thing. To be consistent in this manual,
they will always be referred to as PIO. The PIO implies that a program "knows'"'
when these instructions will occur, since they are part of a program. This is not
true for interrupt-driven programmed I/O, DCIO, or DMA.

All peripheral units associated with a GA-16/110/220 communicate with the CPU via

the I/0 Bus. Each PIO instruction specifies the controller to which it refers by a
6-bit device select code. Each controller interfaced to a particular GA-16/110/220
must have a unique select code and a selection network to recognize that select code
when it appears on the I/0 Bus. When an instruction is executed, only the controller
whose select code is specified will respond to the indicated operation. A number of
device select codes have been assigned to standard GA controllers; these assignmente
are listed in Table 6-1. The six select code bits ar: the least significant bits of
the PIO instruction. To simplify logic and programming, the interrupt vector asso-
ciated with a controller is usually equal to the device select code plus forty.

6-1

88A00508A-E

Table 6-1. Standard Device Select Codes and Interrupt Assignments
(Sheet 1 of 2)

Hexadecimal Hexadecimal
Device Interrupt
Select Vector

Code Controller Location
00)

01

02

82.» Floating Point Processor 3 NA
05

06 4 . o)

07 GAARD ‘ S

08 Paper Tape Reader - ; 048
09 Paper Tape Punch 049
0A 1Floppy Disk or Cassette 04A
0B lCard Reader ' 04B
oc 1ine Printer 04C
0D lcard Punch 04D
OE lpisk 04E
OF IMagnetic Tape 04F
10 lgelectric 050
11 Plotter 051
12 lFixed-Head Disk 052
13 12nd Fixed-Head Disk 053
14

15

16

17

18 2nd Paper Tape Reader 058
19 2nd Paper Tape Punch 059
1A 12nd Cassette 05A
1B 12nd Card Reader 05B
1C 12nd Line Printer 05C
1D 12nd Card Punch 05D
1E 12nd Disk 0SE
1F 12nd Magnetic Tape OSF
20 1590 Communication MUX or. 060
21§ 2 1561 or 1581 Asynchronous 061
22 Controller 062
23 201 Synchronous Controller 063

lCommonly used DMA devices (GA-16/220 only) (see Table 6-3) for data channel, scan
control register (SCR), and channel address register (CAR) assignments. To use
these devices on a GA-16/110, a DMT controller must be specified.

2Two consecutive codes for Process I/0 AC Input/Output, Variable Threshold Digital

input, Digital input, or Digital output control up to 3F, depending on availability
of channels. No interrupt vectors used.

6-2

88A00508A-E

Table 6-1. Standard Device Select Codes and Interrupt Assignments

(Sheet 2 of 2)

Hexadecimal Hexadecimal
Device Interrupt
Select . Vector

Code Controller Location
2nd 1590 Communication MUX or 064
} 1561 or 1581 Asynchronous 065
Controller 066
27 2nd 201 Synchronous Controller 067
28 3rd 1590 Communication MUX or 068
29 } 1561 or 1581 Asynchronous 069
2A Controller .
2B 3rd 201 Synchronous Controller 06B
2C 4th 1590 Communication MUX or 06C
2D } 1561 or 1581 Asynchronous 06D
2E Controller 06E
2F 4th 201 Synchronous Controller 06F
30 5th 1590 Communication MUX or 070
31 }1561 or 1581 Asynchronous 071
32 Controller 072
33 4
34 r 6th 1590 Communication MUX or 074
35 }1561 or 1581 Asynchronous 075
36 Controller 076
37)
38 High-Speed Data Channel SCR Input
39 MPP
3A High-Speed,
3B Signed NA
3C Multiply/
3D 5 Divide
Memory Mode Mask
6Interrupt Mask Output
3E 6Console Switches - Input
6Real-Time-Clock Interrupt 043
6Console Interrupt 047
3F 6TTY 045

3Range of select codes used for Process I/0 Analog-to-Digital controllers.

“Range of select codes used for Process I/0 Digital-to-Analog controllers.

532K /64K memory mode (Section 4.15.2) (GA-16/220 only).
6Interrupts enabled by setting interrupt mask (Section 4.15.2).

On a GA-16/220,

mask is internal. On a GA-16/110, mask is contained in 1582 Controller, but only

TTY interrupt bit is used.

88A00508A-E

PIO instructions provide four types of operations:
* Data Input (DTIR/M)

« Data Output (DTOR/M)

» Control (CTIRL)

+ Test (TEST)

When the CPU executes an I/0 instruction, it generates a sequence of signals on the
I/0 Bus and responds to signals generated by the selected controller. A controller
must recognize and respond to the signals generated by the CPU and thereby perform

the operation dictated by an instruction. Often only a subset of the I/0 instruec-

tions apply to a particular controller; in these cases, the controller must ignore

irrelevant instructions. 1In all cases, it is the responsibility of the programmer

to know what effect, if any, a particular I/0 instruction will have on a particular
controller. : '

The basic PIO interface signals associated with the PIO instruction mnemonics are
listed in Table 6-2. These signals (and others required for timing, interrupts, etc.)
will be described in greater detail beginning with Section 6.9 to aid in designing an
I/0 controller. The description that follows is primarily to familiarize the reader
with the interactions which occur when the various PI0O instructions are executed.
Additional descriptions of PIO instructions are contained in Section 4.14.

During any PIO instruction, FAP (Function/Address Pulse) occurs to signal controllers
to decode the six address bits. If a controller detects its own address combination,
it is to respond to the function bits in the proper mode, READ, WRIT, CNTL, or TEST.
In a READ or WRIT mode, one word of data is transferred to or from the CPU on the
In-Bus (INBOO-15) or Out-Bus (OTBO0-15). A Data Transfer<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>