Systems Reference Library

IBM 1410 Input/Output Control System
for 1301 Disk Storage |

This publication contains the information necessary
to understand and use the IBM 1410 Input/Output
Control System for 1301 Disk Storage. Described in
detail are the types of processing peculiar to disk
storage (Single Reference, Random and Sequential),
as well as the macro-instructions, DIOCS entries,
DTF entries, and DA entries required for efficient
use of 1301 Disk Storage

© 1962 by International Business Machines Corporation

File No. 1410-30
Form C28-0251-0




MAJOR REVISION (March 1963)

This publication supersedes the bulletin, IBM 1410
Input/Output Control System for 1301 Disk Storage,

Form J28-0251, and the associated Technical Newsletter,
Form N28-1023,

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the content of this publication to:
IBM Corporation, Programming Systems Publications, Dept. 637, Neighborhood Road, Kingston, N.Y. 12401.



CONTENTS

INTRODUCTION . . . + & « ¢ + & « &+ « s o« 5 THE 'DIOCS'ENTRIES . . « « . « « « « « » « 40
Prerequisites . . . + . . . . . + . . . . . 5 Purpose . . . + .« ¢« « 4 4« ¢ ¢ « .« . . 40
Machine Requirements . . . . + . « . « « o+ 5 General Format. . o ¢« .« « .« + ¢« « .« +« + . 40

List of DIOCS Entries . . . . « « .« . . . . . 40

BASIC DISK PROCESSING CONSIDERATIONS . . . . . 6 FEATURES . . . « « + « ¢« « ¢« o o« « « « 4

Useof Disk Storage. « « « 4 + & « « & + o« + 6 CHANX . & « 4 4 o o o « o o o« & « « « 4
PROCESTYPE . . . + . ¢« + « « o« « o« . + 40

RANDOM PROCESSING AND THE 1301 I0CS . . . . 7 RNDMDEPTH ("Random Depth") . . . . . . . . 41
In-Line Processing . . . . . . . « . . . 7 STKAREA ("Stack Area”) ., ., . « . « . . . . 4
Information RetrievalOnly . . . . . . . . . . 7 STKINDEX ("Stacking Area™ . . « « + .+ + . . 42
Summary of In-Line Processing . . . . . . . . 7 SGMTLENGTH ("Segment Length") . . . . . . . 42
Overlapping of SEEK Operations ., . . . + . . 7 DISKARMS « ¢« v ¢ + o o o« o « o o o o o 42

Separation of the Disk Routine from the Main Routine ., 8 DISKOPTION . . . « . « « o « + o &« o« . 42
Summary of Main IOCS Functions for Random Processing 9 NORCDEXIT . « . « .« e+« e e o« . 43

Disk IOCS Macro-Instructions . . . . . . . . . 11

Summary of Macro-Instructions. . . , . . . . . 13 THE'DTF'ENTRIES . . o & ¢« « o « o & o« o« o 44
Independent Disk Routines . . . . . . . . . . . 13 Purpose. o« .+« « o o o 4 0 0 o e . o« . . 44
Dependent Disk Routines, . . + + &+ + « &+ + « . 13 General Format . . « . .+ +« +« + « « « . . 44

List of DTFEntries . +« . + « +« « « « o« o« o+ 44
The 'DTF'HeaderLine . . . . &« .+ +« 4+ o« « o 44
SINGLE-REFERENCE PROCESSING AND THE 1301 I0CS . 16 FILETYPE. . . & « o o v 0 v 0 v v 0 v . 44
Method 1+ o v v e e e e L 1 SIZEREC . . . v +« 6 ¢ o & & s o o o« o« « 45
Method 2 v v v v e e o1 Variable-Length Records (Sequential Files Only) . . 45
Fixed-LengthRecords . . . . .+ « « ¢ .. . 45

HOLDAREA . .« v & « « o « o o« o o« + o«

Number of Segments . . . . . .+« « .+ + . .

BASIC PRINCIPLES OF THE IBM 1301 IOCS. . . . . . 18 Size of Segments. . .+ . .+ . o o o 4 o . . 46
Relationship of Card/Tape IOCSto 1301 IOCS. . . . 18 INDEXREG ¢« o o o o o o o o o o« « o« o
Advantages of the 1301 I0CS . . . . . . . . . 19 FILEFORM v ¢ v v o o v v o o o o o o o a7
Using the 1301 10CS . . . . . . . « . . . . 19 Move Mode vs. LoadMode . + « « o o« . . . 47
Assembly of Programs Using the 1301 I0CS . ., . . . 20 SCRAMBLE v v v o o v v v o o o« o « o

DISKCHECK . « + & « & « & s o s o+ o« & « 48
RECFORM . ¢ & ¢ o o o s o o s o s o = 48

THE ELEVEN 1301 IOCS MACRO-INSTRUCTIONS . . . 21 Record Formats that can Be Handled by the 1301 IOCS 49
OPEN v v v 4 v e v e e e e e e e e e .20 BLOCKSIZE . . 4 4« o o « o« s o o« s o s » 50
Close & v v v v v 4 e e e e e e e e e . 22 NRECORDS . « o 4 « o ¢ o o o o s s« o o« 50
MVRSA . . . & v v 4 e + o o o « o + 4 23 PADDING, « « & + o &+ & o o o o s & o o+ 51

Format A . . . + + + & « + v +« « o« .« . 23 WORKAREA . . . ¢ &+ o o s « o o o » « « 51
FormatB . . . + & & 4 4 4 4 ¢ e 4 . . 24 FILESTART + « & o s s o o« s o s o o o« o 51
ENTDR (Enter Disk Routine). . . . .+ + . . . . 24 FILEND . .+ 4 ¢ ¢ ¢ ¢« o o s o o « s « o+ 51
GET & v v v v v s e e e e e e e e e . 24 EOFADDR., . . « + ¢ 4 o & o o o« o s + o+ 51
FOrmat A o v v« v o o o o o o s o o« o+ . 24 WLRADDR v &« & &+ &+ ¢ « o o + o o« o« o« o« 51
FormatB . . ¢« « o+ v ¢ o ¢ « o « + o« . 26
PUT & v v v v e e v v e e v v v ey . 26 DA(DEFINE AREA) ENTRIES NEEDED TO SUPPORT THE 1301
FormatA . . . . . . . « « + & « o« « . 26 IOCS v ¢ v & 4 s o 4« s & e s 4 s s+ . . 52
FormatB . . & ¢« & v « 4 o o o o & o o 27 DA Entry for the Transaction Stacking Area . . . . . 52
FSEQP (Force Sequential Processing) « « .+ « . . o« 27 DA Entries for Disk Record Holding Areas . . . . . . 53
LEVDR (Leave Disk Routine) . . . . . . . . . 29 DA Entries for Holding Area Control Records . . . . . 54
GETS . & 4« &« v ¢« o o 4 o s « « « o« « + 30 )
Format A . & v v v « o o + o« o o o « . 31 ADDITIONAL INFORMATION FOR PROGRAMMERS . . 55
FormatB . . + +« v ¢ & « « o o o o .« . 33 The Size of the 1301 IOCS Routines ., « « « + « . « 55
FormatC v v 4 +« o o o o o o o o o o o« 33 Use of Index Registers « « &« « o o o o o + o & 55
FormatD . . + 4 v 4\ e e . e . . . 35 CodingExample . + 4+ + + « « « + « « . . . 56
PUTS . . & 4 + & 4+ ¢ 4 & s o « o o « « 35 Modification of 'Seek-Only' Operations while Seek is in
Format A . . . & v « « « « « e o« v . . 37 Progress . « + . . + + « . .« . . . . . 56
FormatB .« v v v & v ¢ o + o « o « « . 37 IOCS Labels That May Be Useful . . . « . « « . 57
Format € v v v v v v & o o o o o o o . 37 GloSSaTY v 4 4 6 4+ e e s e e e e e e e e 57

FormatD . . . . +« « + « + o « o + o« o+ 39
WAITS ("Wait Single-Reference"). . . . . . . . 39 INDEX + & v & v o « o & 4 s o o o o o « 58






The purpose of this publication is to enable installa-
tions using IBM 1301 Disk Storage to avail themselves
of the many advantages offered by the IBM 1410 Input/
Output Control System for 1301 Disk Storage (here-
after referred to as the '"1301 IOCS'). The bulletin
explaing the functions and use of the 1301 IOCS macro-
instructions and describes the DIOCS, DTF, and DA
entries needed to incorporate the 1301 IOCS into
users' object programs. The publication augments
the bulletin describing the 1410 IOCS for card and
tape systems.

Prerequisites

It is assumed that the reader of this publication has
completed at least a basic course in programming
the IBM 1410 and is familiar with the following IBM
publications:

Reference Manual, "IBM 1410 Data Processing
System, " Form A24-1407

Reference Manual, "IBM 1410 Data Processing
System, 1301 Disk Storage,' Form A22-6670

INTRODUCTION

IBM 1410 Data Processing System Bulletin,
"Autocoder: Preliminary Specifications,"
Form J24-1433

IBM 1410 Data Processing System Bulletin, "IBM
1410 Input/Output Control System for Card
and Tape Systems, Preliminary Specifications,"
Form J28-1432

Machine Requirements

The 1301 IOCS can be incorporated into programs
written for any IBM 1410 system that meets the fol-
lowing minimum configuration:

20,000 positions of core storage

1 IBM 1301 Disk Storage Unit, Model 1 (or Model 2)

Processing Overlap and Priority special features.
Programs incorporating the 1301 IOCS can be
generated by the 1410 Autocoder processor which
requires the following minimum machine configura-
tion:

20,000 positions of core storage

4 IBM 729 II, 729 IV, or 7330 Magnetic Tape Units

1 IBM 1402 Card Read-Punch, Model 2, and

1 IBM 1403 Printer, Model 2.

Introduction S



BASIC DISK PROCESSING CONSIDERATIONS

Use of Disk Storage

The principal characteristics of disk storage are
large storage capacity and speedy access to records
regardless of their location in disk storage. A com-
parison of the basic characteristics of magnetic tape
and 1301 disk storage clearly indicates the superior-
ity of disk storage with respect to storage capacity
and access time. See Figure 1.

729 IV Magnetic Tape 1301 Disk Storage
Maximum 8,000, 000 characters 28,000, 000 characters
Storage per reel per module
Capacity
Maximum
Access more than 2 minutes 214 milliseconds
Time

Figure 1, Storage Capacity and Access Time of Magnetic Tape
and 1301 Disk Storage

File Maintenance Applications

It is evident from the above that disk storage is the
ideal storage medium for applications that call for
the speedy retrieval of single, non-sequential items
from a large body of stored information. One such
widely used application of disk storage is that of
maintaining inventory files. In this type of applica-
tion, records are obtained and adjusted as inventory
changes occur, so that the file stored in disk storage
always reflects the up-to-the-minute status of stocks
on hand. This important feature of disk processing
-- the ability to keep large files of information up

to date by recording transactions as they occur --is
common to most disk-processing applications. Today,
many different types of large business establish-
ments, including brokerage firms and insurance
companies, use IBM disk storage devices to furnish
their executives with up-to-the-minute reports of all
records and accounts.

Types of Disk Processing

Depending on the arrangement of the data in disk
storage and the nature of the application, users will
find it advantageous to choose one of three methods
of moving information to and from disk storage. The
three methods are known as "'Single-Reference Pro-
cessing," "Random Processing,' and '"Sequential
Processing," respectively. Each of these methods
can be handled by the 1301 IOCS.

SINGLE-REFERENCE PROCESSING. Single-Refer-
ence Procesging is the most flexible -- but also the
most uneconomical -- method of moving data to and
from disk storage. It enables the programmer to
move data of any record format to and from any area
in disk storage. The primary use of single-refer-
ence processing is in real-time applications where
the timing, the precise nature and the location of
the information to be moved to or from disk storage
are not known at the time the program is written.

The 1801 IOCS provides the input/output and error
routines needed for single-reference processing.
See the description of the GETS, PUTS, and WAITS
macro-instructions.

RANDOM PROCESSING. Random Processing is the
most widely used method of reading and writing disk
data. It is used to read and write disk data of uni-
form, predefined format stored within a predefined
area of disk stc?age. The method is used whenever
an application calls for data that belongs to a parti-
cular file of information and must be processed in
an arbitrary, or "random,' order.

Inventory maintenance and report writing are
typical applications using this method of processing.
When using this method, the programmer can use
all of the 1301 IOCS macro-instructions, but he must
define the file from or to which data is to be moved.

SEQUENTIAL PROCESSING. While the principal
advantage of disk storage is its facility to process
non-sequential information, there are applications for
which disk information is best handled sequentially.
Such applications include the loading and unloading of
disk storage. The latter is of special significance
when programs are stored in disk storage.

When information is transferred sequentially there
is virtually no seek time -- provided files are prop-
erly arranged on disk cylinders. Moreover, many
of the processing techniques that reduce machine
time in tape processing also apply to sequential
processing of disk data. Thus, at least two input/
output areas can be used for the reading and writing
of disk data, so that disk input/output operations can
be overlapped with processing. All of the above
factors make sequential processing the fastest meth-
od of moving information to and from disk storage.
However, the method cannot be used for the many
applications requiring arbitrary, or '"random,"
retrieval of disk data.

The 1301 IOCS furnishes all the routines needed
to handle sequential processing in the most efficient
manner. This includes routines for blocking and
deblocking of record blocks and for overlapping of
disk input/output operations with processing.



This section describes how random-processing ap-
plications are handled by the 1301 IOCS.

In-Line Processing

The most elementary approach to disk processing is
known as '"'in-line processing.' In this type of ap-
plication, information is obtained from disk storage
by SEEK and READ commands that are part of the
main routine. Processing halts, therefore, each
time a disk SEEK, READ or WRITE operation takes
place, and processing does not resume until the
desired disk information has been obtained.
Figure 2 illustrates this method of disk proces ~
sing, which calls for:
(1) reading of a transaction record;
(2) retrieval of the corresponding information
from disk storage;
(3) updating of this information, and
(4) return of the updated information to disk
storage.

NOTE: A good example of this type of application
is inventory control. This calls for the up-
dating of part records (which are kept in disk
storage) on the basis of receipts and disburse-
ments of parts (i.e., "transactions'). Up-
dating takes place as soon as transactions
have occurred, and in this manner the inven-
tory file is kept currently up to date.

Information Retrieval Only

A special case of in-line processing calls only for
the retrieval of information. Here information is
obtained frorn disk storage, but it is not updated and
it is not written back onto the disk. See Figure 3.

Summary of In-Line Processing

In-line processing represents the simplest but also
the most wasteful use of disk storage. It is wasteful
because the Central Processing Unit stands idle
during the disk SEEK, READ and WRITE operations.
This halt in processing occurs because the instruc-
tions calling for these disk operations are part of
the main routine.

Overlapping of SEEK Operations

The most time-consuming disk operation is the
SEEK, which requires from 0 to 180 milliseconds

RANDOM PROCESSING AND THE 1301 IOCB

Start

'

Initialize

Get Next
Transaction Recor

Develop
Disk Address

Seek and Read
Disk Record

Update
Disk Record

Write Disk RecoxD
Put Report RecorD

Transaction
Records

Complete
House-
keeping

Y

Halt

Figure 2. Random Processing - Type 1: In-Line Processing

Random Processing and the 1301 IOCS 7



Start

l

Initialize

>

Yes

Figure 3.

“Get Next
Transaction Recor

Develop
Disk Address

( Seek and Read )
Disk Record
( Put Report Record )

More

Transaction
Records
?

Complete
House-
keeping

Halt

Random Processing - Type 1: Information Retrieval Only

(i.e., 180,000 microseconds).* The coding re -
quired to handle the simultaneous execution of sev-
eral SEEK operations constitutes a considerable
programming task. The maintasks that mustbe ac-
complished are:

(1) the retention, or "stacking,'" of successive
transaction records until they can be proc-
essed;

(2) the holding of disk records obtained by the
various SEEK and READ commands until these
records can be processed;

(3) provisions insuring that disk records are up-
dated with the correct set of transaction data,
and

(4) the release, after processing, of areas used
to retain transaction records and disk records.

The 1301 IOCS provides all the functions listed

above, as will be explained in the next section.

SEPARATION OF THE DISK ROUTINE FROM THE
MAIN ROUTINE

The operating principles of the 1301 IOCS for ran-
dom - processing applications are illustrated in
Figure 4. Note that all instructions needed to obtain
or process disk data (henceforth referred to collec-
tively asthe ""Disk Routine') have been removed from
the main routine.

Although the main routine initiates processing of
the Disk Routine, the two routines are independent of
one another: the main routine obtains and stores
transaction records independently of any processing
in the Disk Routine, and the Disk Routine obtains
successive transaction records from the work area
independently of processing in the main routine.

NOTE: Separation of the Disk Routine from the
main routine is possible only if processing in
the main routine does not depend on the informa-
tion obtained by the Disk Routine. The most
widely used applications of disk storage, such as
inventory control and information retrieval,
permit this approach.

The different program steps, as executed by the
1301 I0CS, are indicated in Table I.

*Since a module of IBM 1301 Disk Storage has only one access arm,
multiple SEEKs can be used and overlapped only if the program
uses more than one rnodule of 1301 Disk Storage.



Main Routine

The main routine obtains a trans-
action record, stores it in Work
Area I, and branches control to
the Disk Routine.

Disk Routine

Processing continues in the Disk
Routine until the SEEK and READ
Disk Record command is encountered.
The Disk Routine initiates the SEEK
and then checks both work areas.

TEST OF If no disk record is ready for proc- If a previously read disk record is
WORK AREAS essing and a segment of Work ready for updating, processing
See also Area I is available, control will be continues in the Disk Routine
Figure 5. branched to the main routine: Point B):

Processing now continues at Point
A (return address of the main
routine). In Figure 4, this is the
branch to the instruction that calls
for the reading of the next transac-
tion record. This transaction
record is now moved to a free
segment of Work Area I, and con-
trol is branched to the Disk Routine.
(In this manner, the main routine
initiates the reading and processing
of each disk record required by a
given transaction record.) Proces-
sing then continues as described
above.

The waiting disk record is updated

with the correct transaction data, and
the WRITE operation that will write

the updated disk record back into disk
storage is initiated. (As indicated in
Figure 4, the segment of Work Area II
that contained the just-updated disk
record will be released upon completion
of the WRITE operation.) Processing

in the Disk Routine now continues: any
needed report is written, and the segment
of the transaction stacking area that held
the transaction record used to update the
disk record is released. The test of

the work areas indicated above is then
made again, and control is branched to
either (A) or (B), depending on the
outcome of the test, as described above.

Table 1. Program Steps Executed by the 1301 IOCS

Summary of Main IOCS Functions for Random
Processing

As indicated in Figure 4 and the subsequent descrip-
tion, the IBM 1301 IOCS accomplishes each one of
the tasks that were clraracterized above as necessary
prerequisites for the simultaneous execution of
several SEEK operations. The following summarizes
these functions of the 1301 IOCS:

1. The retention, or "stacking," of successive
transaction records until they can be processed.
As indicated in Figure 4, successive trans-
action records are stored in a work area, which
will henceforth be called the "Transaction
Stacking Area.' Whether a new transaction

record is to be stored or a disk record is to be
updated is determined immediately after the
initiation of the SEEK operation and after
processing of the transaction is completed.

The updating of a disk record ready for
processing takes precedence over the reading of
another transaction record. Only if no disk
record is ready for processing and a free seg-
ment of the Transaction Stacking Area is avail-
able, is control passed back to the main routine
for the reading (and storing) of another trans-
action record. (If two transaction records
request the same disk record, the 1301 I0CS
does not process the second request until proc -
essing of the first has been completed.) See
Figure 5.

Random Processing and the 1301 IOCS



MAIN ROUTINE

_@_

Initialize

next trans-
action record

Move transaction

-
’

R |
|

| 1st segment |

b e —

|

’JI 2nd segment !
e
| I
L—-——\-~"‘—"’J

T
I |

| nth segment]|

DISK ROUTINE

L
record to Work
Area 1 WORK AREA 1
Store
g return address
Branch to
Disk Routine \
Develop disk
address from
® A data in Work
Area I
Branch |
COXHOIB Initiate 'Complete
fo A or seik | READ
(see text) |
———— _' ”,/’
r a7 D B
| 1st segment |l ---- '
| |
| | Update disk record in
| 2nd segment I ‘Work Area II using
|__ e _l transaction record in
e Work Area I
! ' y
| I | | Complete
- ' Initiate |WRITE _
[ segment | WRITE lRelease
| R | Work Area
Complete |II
Housekeeping WORK AREA II
Halt
Branch
Control Release
to AorB Work Area I
(see text)

Figure 4. Separation of the Disk Routine from the Main Routine

10




Branch to
(B) in
appropriate
Disk Routine
Segment Branch to (A)
of Work Area I following last

available

executed branch in
N 7 Main Routine

Figure 5. Control Switching

2, The holding of disk records obtained by the
various SEEK and READ commands until these
records can be processed.

As indicated in Figure 4, records obtained
from disk storage are held in another workarea,
which will henceforth be referred to as the '"Disk
Record Holding Area." The 1301 IOCS holds
disk records in this area until they are nolonger
required. See the section on ""Additional Func-
tions of the FSEQP Macro-Instruction' for a
detailed description of the release procedure of
disk records.

3. Provisions insuring that disk records are updated
with the correct set of transaction data.

As indicated in Figure 4, the removal of the
Disk Routine from the main routine permits the
simultaneous execution of several SEEK and
READ commands. As described, each time a
disk record has been successfully sought and
read, it is made ready for updating. The 1301
IOCS insures that whenever control is branched
to the Disk Routine for the updating of a disk
record, this disk record is updated with data
from the correct transaction record stored in
the Transaction Stacking Area.

4. Release of work areas after their contents are no
longer required. Segments of the Transaction
Stacking Area are released upon completion of
processing in the Disk Routine., Segments of the
Disk Record Holding Area are released at the
completion of each WRITE operation, and as
explained under '""Additional Functions of the
FSEQP Macro-Instruction. '

Sequence of Disk Operations

Although transaction records are released to the Disk
Routine in the order in which they were obtained by
the main routine, updated disk records are not neces-
sarily written back onto the disk in the same order.
This is due to the different access time for informa-
tion in disk storage. Information access time de -
pends not solely on the order in which disk requests
are given but also on the location of the requested
information indisk storage.

For example, if one arm receives a request for
information with an access time of 100 ms, and 10 ms
later another arm receives a request with access
time of 50 ms, the second request will be met be-
fore the first. In this case, the disk informationre-
quested last will be obtained before that requested
just prior to it.

If disk records are to be processed in the same
order as the incoming transaction records, proces-
sing of the data obtained by the second arm in the
example must be delayed until the data obtained by
the first arm has been processed.

Digk IOCS Macro-Instructions

The 1301 Disk IOCS permits the use of the following
macro-instructions:

OPEN "Open Disk File(s)"
This macro-instruction may be used to open disk
files used for random or sequential processing.

CLOSE "Close Disk File(s)"
This macro-instruction may be used to close disk
files used for random or sequential processing.

MVRSA '"Move Record to Stacking Area"
This macro-instruction may be used to move
transaction records to the Transaction Stacking
Area. It can be used only for random protessing,

ENTDR '"Enter Disk Routine"
This macro-instruction may be used to enter the
Disk Routine and store the return address to the
main routine. It can be used only for random
processing.

GET "Get Disk Record"
This macro-instruction may be used to seek and
read disk records. It can be used only for random
and sequential processing.

FSEQP "Force Sequential Processing'

This macro-instruction can be used to insurc that
records are processed sequentially, i.e., written

Random Processing and the 1301 IOCS 11



MAIN ROUTINE DISK ROUTINE

GET

next trans-
action record

Branch

to
Disk Routine

Develop
Disk Address

® A

Branch
Control
to AorB
/
More
Transaction
e !
Records Update
Disk Record

Branch
Control
to Aor B

Figure 6. The 1301 IOCS Macro-Instructions for Random Processing

12



back onto disk storage in the same order in which
their corresponding transaction records. were ob-
tained by the main routine. This macro-instruc-
tion can be used for random processing only.

PUT "Put Disk Record"
This macro-instruction may be used to write a
single disk record. It can be used only for random
and sequential processing.

LEVDR ''Leave Disk Routine'
This macro-instruction may be used to release the
segment of the Transaction Stacking Area just pro-
cessed and to return control to the main routine,
It can be used only for random processing.

GETS "Get Single-Reference"
This macro-instruction may be used to seek a
specified disk cylinder or to seek and read a single
disk record, a full track, or a full cylinder (op-
tional feature).

PUTS '"Put Single-Reference"
This macro-instruction may be used to seek a
specified disk cylinder, to write a format track,
or to seek and write a single disk record, a full
track or a full cylinder (optional feature).

WAITS "Wait"
This macro-instruction may be used to develop
the coding required to suspend processing until
a specified disk record has been read into core
storage or written onto disk storage.

Summary of Macro-Instructions

The use of the 1301 IOCS macro-instructions for
random processing is summarized in Figure 6. A
detailed description of each macro-instruction may
be found in the section on '"The Eleven 1301 IOCS
Macro-Instructions. "

INDEPENDENT DISK ROUTINES

The applications discussed above use only one Disk
Routine, and all information obtained by the disk
arm(s) from the Transaction Stacking Area was
always used by the same set of instructions.

Some applications require two (or more) independ-
ent Disk Routines. A typical application of this type

is the updating of a job record and an employee
record on the basis of one transaction record. Both
routines use the same Transaction Stacking Area.
See Figure 7.

As indicated in Figure 7, the same set of trans-
action data is required by more than one Disk Rou-
tine. The 1301 IOCS insures that no segment of the
Transaction Stacking Area is released until all Disk
Routines requiring data from this segment have been
completed. The IBM 1301 IOCS can handle any
number of independent Disk Routines.

DEPENDENT DISK ROUTINES

Some applications use data from one transaction
record to update two dependent disk records. Two
records are considered dependent on one another if
neither of them can be updated without data from the
other. When dependent records are processed, both
disk records must be obtained before either of them
can be updated. This requires that disk records be
retained in the Disk Record Holding Area until all
Disk Routines requiring data from the same Holding-
Area segment have been completed. The 1301 IOCS
insures this.

The first FSEQP macro-instruction in Figure 8 is
needed to retain the disk record obtained by Disk
Routine A for use by Disk Routine B. The second
FSEQP macro-instruction is used to synchronize the
output of Disk Routine B with the incoming trans-
action records.

(For a detailed description of the functions of the
FSEQP macro-instruction, see the section on "Addi-
tional Functions of the FSEQP Macro-Instruction. ')

NOTE 1: The order of the PUTs takes place as

indicated. In general, arms that have obtained
information from disk storage remain in posi-
tion until the updated information is returned to
storage. This eliminates SEEK time for PUTs
since the disk arms are already in position.

NOTE 2: The 1301 IOCS can handle any number

of dependent Disk Routines.

It is possible to contain a random Disk Routine
within a real-time routine. The following three
points must be observed:

1) the MVRSA macro-instruction must be con-
tained within the real-time routine, 2) care must be
taken that real-time interrupts do not cause the Disk
Routine to be executed before the disk file has been
opened and after it has been closed and 3) when the
Disk Routine requests exceed the number specified in
the 'RNDMDEPTH' DIOCS entry, the real-time
routine will control until more random disk requests
may safely be accepted.

Random Processing and the 1301 IOCS 13



MAIN ROUTINE

Initialize
incl.

OPEN

GET
next trans-
action record

MVRSA

Y

DISK ROUTINE B

DISK ROUTINE A

Branch to
Disk Routine
A

More
Transaction
Records

Complete
Housekeeping
incl.

CLOSE

Branch

Control -¢—
to Ag or B2

P Aq ENTDR
1
Branch to *
Disk Routine
B Develop
Disk Address
® A,
Branch GET FILE 1
Control

to A2 orB

Initiate I Complete|
SEEK ' READ

2

® B,
\

Update
Disk Record

PUT FILE 1
| Complete
WRITE
Release
Holding
Area

Initiate
WRITE

LEVDR

Release
Stacking Area

ENTDR

Y

Develop
Disk Address

GET FILE 1
Branch I
Control
to Ay or Bl
® By
Y
Update
Disk Record
PUT FILE 1
WRIRE "
i I
Initiate Release
WRITE ! Holding
Area
Branch
Control -4—— LEVDR
to A1 or B1

Figure 7. Random-pProcessing -- Two Independent Disk Routines Use Data Obtained by the Main Routine

14



MAIN ROUTINE
—_— Start

Initialize

incl.
OPEN

GET
next trans-

action record

MVRSA

'

Branch to

DISK ROUTINE B

DISK ROUTINE A

Disk Routine
A

¢ u

Branch to

Disk IB{outine

Yes Transaction

Records

Housékeeping
incl,
CLOSE

Branch GET FILE 2
Control Initate
toA,orB, SEEK | READ
Branch
P FSEQP
Control @
to A2 or B3 ‘
B3
Update
Disk Records
PUT FILE 2
I Complete
Initiate Write
WRITE Release
Holding
Area
PUT FILE 1
|Complete
Initiate '}/{ve}}IeESEe
WRITE  |Holding
|Area
Branch LEVDR
Control ¢ | Release
to AorB Stacking Area

ENTDR

'

Develop
Disk Address

ENTDR

¥

Develop
Disk Address

GET FILE 1

Branch
Control

Initate ! Complete

to A1 or B3

Branch

Control FSEQP

to A 1 or B 4 .
4

Branch

Control ~#——— LEVDR

to A1 or B3

Figure 8. Random-Processing - Two Dependent Disk Routines Use Data Obtained from the Main Routine

Random Processing and the 1301 IOCS



SINGLE-REFERENCE PROCESSING AND THE 1301 I0CS

Initialize

ol
Get Transaction
Record

Develop
Disk Address

Update
Disk Record

Are
There More
Records

Complete
Housekeeping

Figure 9. Method 1 of Single~Reference Processing

16

This section describes how single-reference proces-
sing can be handled by the 1301 IOCS,

METHOD 1

Figure 9 illustrates one method of single-reference
processing available to users of the 1301 IOCS.
It will be referred to as '""Method 1."

As shown in Figure 9, Method 1 falls into the
category of "in-line processing' described above
because processing halts while a disk SEEK, READ,
or WRITE operation is in process.

As indicated, the program reads a transaction
record and develops the address of the disk informa-
tion required to process the record. If a SEEK for
the same record is not already in progress, a SEEK-
and-READ command for the record is initiated, and
processing halts until the record has been read into
core storage. The record is then updated, put back
into disk storage, and the next transaction record is
read.

The shaded areas in Figure 9 indicate the functions
that are performed by the GETS and PUTS macro-
instructions when the programmer chooses this
method of single-reference processing. See the
sections on the GETS and PUTS macro-instructions
for a detailed description of the functions of these
macro-instructions.



Initialize

Get Transaction
Record

Develop
Disk Address

for this Address
Now in Process

Continue Processing |
(Not Requiring

| Disk Detail until
Seek Is Completed)

P

Record been
Read
?

Are
there more
Records

Complete

Housekeeping

Figure 10, Method 2 of Single-Reference Processing

METHOD 2

Figure 10 illustrates a second method of single-
reference processing available to users of the 1301
IOCS. This method will be referred to as ""Method 2."

As illustrated, Method 2 enables the user to over-
lap the SEEK and READ operations of the disk SEEK-
READ operation with processing -- provided such
processing does not require the disk record for which
the SEEK was initiated.

As shown in Figure 10, the program reads a trans-
action record and develops the address of the disk
information required to process the transaction rec-
ord, If a SEEK for the same record is not already
in progress, the SEEK is initiated. As soon as this
has been done, processing resumes and continues
until an interrupt signal provided by the 1301 IOCS
indicates that the SEEK has been completed. The
disk READ operation is then initiated, and processing
resumes, Upon completion of the READ operation,
the 1301 IOCS sets a switch indicating that the READ
operation has been completed.

The test for completion of the disk READ opera-
tion is made just prior to the time the disk informa-
tion is needed by the program. This permits over ~
lapping of the SEEK and READ operations with
processing, as described. If the disk record has
not yet been obtained when it is needed by the pro-
gram, the latter enters a waiting loop until the rec-
ord has been obtained. At this point, Method 2
assumes the characteristics of in-line processing
because processing halts until the required disk
record has been obtained. See Figure 10.

NOTE: When Method 2 is used, the test for com-
pletion of the disk READ operation must be
provided by the user unless he uses the WAITS
macro-instruction. For details, see the des-
cription of the SWITCH operand of the GETS
macro-instruction and the WAITS macro-in -
struction.

Single-Reference Processing and the 1301 IOCS 17



BASIC PRINCIPLES OF THE IBM 1301 IOCS

Relationship of Card/Tape IOCS to 1301 IOCS

The 1301 IOCS augments the IBM 1410 Card/Tape
IOCS by adding to the latter the routines required to
include IBM 1301 Disk Storage in the resulting com-

bined IBM 1410 Input/Output Control System. The 1301

Channel 1

Channel 2

IOCS furnishes the error routines and the disk arm

and file schedulers for random, sequential, and

single-reference processing. The Card/Tape I0CS
provides the remaining routines required to include

1301 Disk Storage in the general IBM 1410 IOCS.

See Figure 11.

Card/Tape
Error Routines

TAPE FILE
Scheduler

TAPE FILE
Scheduler

Channel
Scheduler

Random Proc-
essing Routine,
including FILE
Scheduler

Disk Arm

[}

Schedulers

I} )

Unit Record
File Scheduler

1410 CARD/TAPE IOCS

Single-Reference
Routine

Sequential-
Processing
Routine, in-
cluding FILE
Scheduler

L Disk Error

Routine

L

1301 10CS

The IBM 1410 Input/Qutput Control System

1

Figure 11,

18

Relationship of the IBM 1410 C/T IOCS to the 1301 IOCS




Each time the 1410 program issues a disk SEEK,
READ or WRITE request, the 1301 IOCS determines:
(1) which input or output area is to be used and

(2) whether the disk arm needed to handle the
specified operation is available,
The disk arm schedulers then pass the request on
to the channel scheduler furnished by the Card/Tape
IOCS.

Advantages of the 1301 IOCS

The IBM 1301 Disk Input/Output Control System con-
sists of a set of tested routines that free the user
from all coding of input and output routines for IBM
1301 Disk Storage.

Random Processing

The 1301 IOCS provides the coding required for the
simultaneous execution of any number of SEEK,
READ, and WRITE operations and for the over-
lapping of all disk input and output operations with
processing.

Sequential Processing

The 1301 IOCS enables the programmer to handle
logical records in sequential applications merely by
using GET and PUT and related macro-instructions,
thereby relieving him of all blocking and deblocking
of disk records.

Single-Reference Processing

The 1301 IOCS provides input/output and error-check-

ing routines for single-reference processing. The
IOCS also furnishes an interrupt signal upon com-
pletion of each SEEK, READ and WRITE operation.
The user has the option of
(1) having the 1301 IOCS automatically halt proc-
essing until each SEEK, READ or WRITE
operation is completed, or
(2) using the interrupt signal furnished by the 1301
IOCS to test whether READ operations have
been completed.

NOTE: The coding required for this test can be
furnished by the WAITS macro-instruction.

Available IOCS Routines

The 1301 IOCS routines will automatically:

e schedule several SEEK-and-READ operations
for simultaneous execution;

e overlap disk input/output operations with proc-
essing;

o schedule all available arms of the 1301 Disk
Storage Units;

¢ seek, read and write disk records;

o check for read and write errors;

e correct (all correctable) read and write errors,
and

e block and deblock sequential disk records.

Substantial Savings

The design and coding of an efficient input/output con-
trol system permitting the overlapping of processing
and disk operations, including the simultaneous
scheduling of arms, is a difficult programming task.
By providing tested routines that handle all of these
functions, the IBM 1301 Input/Output Control System
offers users substantial savings in program writing,
testing and operating expenses.

Using the 1301 IOCS

For Random and Sequential Processing

For each such program that is to utilize the 1301
IOCS, the programmer must:
(1) use the appropriate 1301 IOCS macro-
instructions in his program;
(2) write the required DIOCS entries;
(3) write the required DTF entries, and
(4) write DA (Define Area) statements for the
Transaction Stacking and Disk Record Holding
Areas used by his program.

For Single-Reference Processing

For each such program that is to utilize the 1301
I0CS, the programmer must:
(1) use the GETS and PUTS macro-instructions in
his program;
(2) write the required DIOCS entries; and
(3) write DA (Define Area) statements for the
Holding Area Control Records used by his
program.

Basic Principles of the IBM 1301 IOCS 19



Assembly of Programs Using the 1301 IOCS

The DIOCS and DTF entries are punched into IBM
cards and must precede the source program during
Autocoder assembly. The DIOCS cards are entered
following the DIOCS header card of the Caxd/Tape
I0CS. The DIOCS cards of the two systems may be
intermixed.

The required sets of disk DTF cards, each preceded
by the appropriate disk DTF header card, are entered
together with the sets of DTF entries for the Card/
Tape IOCS. The two sets may be intermixed. See
Figure 12.

The remainder of this publication consists pri-
marily of a detailed explanation of the four program-
ming steps required to utilize the IBM 1301 Input/
Output Control System, namely, the writing of:

1. IOCS macro-instructions;

2. DIOCS entries;

3. DTF entries; and

4. DA entries.

The final section of this bulletin contains information
regarding the size of the 1301 I0CS; a coding example,
and a brief glossary.

20

1410 Program
including
DAs & IOCS
Macro~

Instructions

/o )

entries

One set of DTF
entries for each file,
(Card, tape and disk
DTF sets may be
intermixed.)

nth DTF header

1st set DTF

entries

Card, tape and disk
DIOCS cards may
be intermixed.

1st DTF header

/ DIOCS entries /

DIOCS header

Control Cards
that may be
I

included —— -
Lo e )
' COMMENTS Vo
r--=--=-=-=-=- -
! OB Y
rd-- R
' PST \ t

,.. J
AUTOCODER | |
RUN

Figure 12, Assembly of Programs using the 1410 Card/Tape and 1301

Disk IOCS
/



FOR RANDOM PROCESSING: The eight macro-
instructions for random processing are:

OPEN "Open File(s)"

CLOSE "Close File(s)"

MVRSA "Move Record to Stacking Area"
ENTDR "Enter Disk Routine"

GET "Get Logical Record"

FSEQP "Force Sequential Processing"
PUT "Put Logical Record"

LEVDR "Leave Disk Routine"

FOR SEQUENTIAL PROCESSING: The four macro-
instructions for sequential processing are:

OPEN "Open File(s)"
CLOSE "Close File(s)"
GET "Get Logical Record"
PUT "Put Logical Record"

FOR SINGLE-REFERENCE PROCESSING: The
three macro-instructions for single-reference pro-
cessing are:

GETS "Get, Single Reference'
PUTS "Put, Single Reference"
WAITS "Wait, Single Reference

Each macro-instruction is described in detail below.

OPEN

By using the OPEN macro-instruction, the program-
mer can let the 1301 IOCS handle the various initial-
izing tasks which must be performed before data on a
disk file can be used by the object program. These
initializing functions differ for random and sequen-
tial processing and are explained separately below.
The OPEN macro-instruction must be given in the
main routine and is written as indicated in Figure 13.
The operand in Figure 13 contains the name or
names of the file(s) to be activated. The name(s)

THE ELEVEN 1301 IOCS MACRO-INSTRUCTIONS_

Line Label perati OPERAND

3 6 . 1541 20)21 25 30 35 49 45 9

0.1, UINY LABEL, OPEN DLSHETLE o i s v iintaaid a1
U

0.2 PRV B ST S Lot o Aid T I S S S H SRR W't
o3 WaYLABEL . loPEN DTS KEILLDIS KFLILER, DISNELLET, |
'

0.4 PR . " o -

U SR

PR S U W SN U B S R

must be those used to describe the file(s) in the DTF
header line. If more than one file is named in the
operand, the names must be separated by commas.
Only one OPEN macro-instruction is needed to open
all files used by the program, including any non-disk
files.

What This Macro Will Do

RANDOM AND SEQUENTIAL PROCESSING. For
each file named in the operand of the macro-instruc-
tion, the 1301 IOCS -- on the basis of the information
contained in the DTF entries -- will:

(1) make the appropriate Disk Record Holding
Area available;

(2) insert a Group Mark with Word Mark immedi-
ately to the right of each segment of the Disk
Record Holding Area; and

(3) move the Word Marks specified in the first
section of the Disk Record Holding Area into
all other sections of the Disk Record Holding
Area. See Figure 14.

RANDOM PROCESSING. The OPEN macro-instruc-
tion will cause the Transaction Stacking Area to be
made available for incoming transaction records.

SEQUENTIAL PROCESSING. The OPEN macro-
instruction will cause the track address of the first
record of the file to be inserted into the Track Ad-
dress Counter of the 1301 IOCS. The initial track
address is obtained from the information supplied
by the DTF 'FILESTART' entry.

The Eleven 1301 IOCS Macro-Instructions 21



Word Marks
specified by
the programmer.

AN

WM< S~ wMm TwM |

1st Segment of Disk Record Holding Area
WM WM WM

|

|
!
1
|

GM

2nd Segment |
WM WM |

M |

3rd Segmen |
|

|

|

|

|

@\ /// |z

WM

GM N
Word Marks inserted by the
OPEN macro-instruction.

~ /\ -
A AN 1
wm < DN wM |
GM |
nth Segment |

Disk Record Holding Area

This area must be specified by the programmer by means of an
appropriate DA (Define Area) entry. See section describing
"Define Area Entries Needed to Support the IOCS. "

Figure 14, Word Marks and Group Marks inserted by the
OPEN macro~instruction

CLOSE

The programmer may use the CLOSE macro-instruc-
tion to have the 1301 IOCS develop all the coding re-
quired to close the disk file(s), i.e., to remove the
disk file(s) from use by the object program, The
CLOSE macro-instruction must be given in the main
routine and is written as indicated in Figure 15.

Line Label Operati OPERAND
3 _ 56 | 1slie 20f21 25 30 35 40 as 5
o1, ANY LABEL CLOSED L SKF LE et et

1
0.2 Py N PESEY L P n s Loay ed '
0.3 |ANY LA dEL (I405§|D/SKF/ LE2,9,00,5 KALEERY D! SKELES
0.4 T R S P G

Figure 15.

The operand in Figure 15 contains the name or
names of the file(s) to be closed. The name(s) must
be those used to describe the file(s) in the DTF header
line. If more than one file is named in the operand,

22

Group Marks with
Word Marks in-
serted by the OPEN
macro-instruction.

the names must be separated by commas. Any file
used by the program, including any non-disk files,
may be named. See Figure 16.

Line|  Lobel ere uf:aﬂ» OPERAND %
35 490 4% 59,
A ANYLA B;El C.L,05E|D/.5 KF/.L z:z', 01,5, A’ﬂ/i_EA.ZA-!‘T‘/LP‘!,/lA/‘F—'A/ALAc?

4 n

Figure 16.

What This Macro Will Do

RANDOM AND SEQUENTIAL PROCESSING. The
1301 I0CS will develop all the coding required to:
(1) check whether all pending disk operations in-
volving the files named in the operand have
been completed, and
(2) close the file(s) named in the operand after all
pending disk operations have been completed.

SEQUENTIAL PROCESSING. The 1301 IOCS will
develop all the coding required to:

(1) check whether partially filled output blocks
remain to be written on the output file(s)
named in the operand of the macro-instruction;

(2) write out any partially filled output blocks;

(3) pad partially filled output blocks with the char-
acter specified by the DTF "PADDING" entry;
and

(4) pad partially filled output blocks with blanks if
the DTF "PADDING" entry was omitted.

NOTE 1: The following characters may not be used
for padding: Asterisk, Tape Mark, Word Sepa-



rator Character, Record Mark, Cent Sign and
Group Mark.

NOTE 2: When a sequential input file is closed by
means of the 1301 IOCS 'CLOSE' macro-instruction,
the last address written will be made available
to the user in two ways: 1) a message contain-
ing the address will be typed on the console
printer and 2) the address will be stored within
the IOCS. The field within the IOCS that will
contain this address is labeled 'IOCSCLFLD'.

It is a 26-position field. The label refers to the
high-order position of this field. The address
may be used by the next program to specify file
limits for other sequential files. In the case of
single-record operation, however, the record
address supplied in the message does not necces-
sarily apply to the final address or any address
used in the program. ‘

MVRSA (Move Record to Stacking Area)

All data developed by the main routine and required
by the Disk Routine(s) must be placed into the Trans-
action Stacking Area. This insures that the main
routine does not alter the data before it has been
used by the Disk Routine(s). This transfer of data
from the main routine to the Disk Routine(s) permits
the separation of the Disk Routine(s) from the main
routine discussed above,

The programmer may use the MVRSA macro-
instruction to transfer data developed in the main
routine to a segment of the Transaction Stacking
Area specified by the DIOCS "STKAREA'" entry. The

Initialize
incl,
OPEN

DISK ROUTINE

Branch p= ENTDR

Disk Routine

A

Figure 17. Use of the MVRSA Macro-Instruction

data will be retained in the Transaction Stacking Area
until all disk operations using the data have been com-
pleted.

The MVRSA macro-instruction must be given in the
main routine before control is branched to the Disk
Routine. See Figure 17.

The two formats of the MVRSA macro-instruction
are written as indicated in Figures 18 and 21.

Format A

Format A is written as indicated in Figure 18. The
operand identifies the high-order position of the area
from which information is to be moved to the Trans-
action Stacking Area. The areas from which infor-
mation is to be moved must have a Record Mark or a
Group Mark with Word Mark immediately to the right
of the low-order position. See Figures 19 and 20.

Line Label
3 6

erati
: |5||op '?4& 25 30

o1, [AMYLABIEL, N VASHINFoLABEL, |, .\ .. PR
|
0.2 PRSI ST L4 PR SRR

T S S S S G S

Figure 18,

I |+

! T

INFOLABEL INFOLABEL + 80

Figure 19. Area Referred to by the Operand of the MVRSA
Macro-Instruction

N
! 1

INFOLABEL

INFOLABEL + 80

Figure 20. Area Referred to by the Operand of the MVRSA
Macro-Instruction

What This Format of the Macro Will Do

This format of the MVRSA macro-instruction will
cause the 1301 IOCS to:

(1) select an available segment of the Transaction
Stacking Area specified by the DIOCS
"STKAREA'" entry;

(2) have the program enter a waiting loop if no seg-
ment of the Transaction Stacking Area is avail-
able;

(3) insert the address of the selected segment into
the indexing register specified by the DIOCS
"STKINDEX" entry; and

(4) move the information and the Word Marks con-
tained in the area specified by the operand into
the segment of the Transaction Stacking Area
selected by the 1301 1I0CS.

The Eleven 1301 IOCS Macro-Instructions 23



Format B

Format B of the MVRSA macro-instruction has no
operand and is written as indicated in Figure 21,

Line Label fperaiid a
3 5|6 15it6 21 25 30 35 490
ot AMY L ABIEL WV ESA s e
0,2 R IV B ; P .3
Figure 21.

This format of the MVRSA macro-instruction en-
ables the programmer to move information into the
Transaction Stacking Area by actual move commands.

NOTE: When doing so, the programmer must index

the B-Address with the index register specified by

the "STKINDEX" entry.

What This Format of the Macro Will Do

This format of the MVRSA macro-instruction will
cause the 1301 IOCS to:

(1) select an available segment of the Trans-
action Stacking Area specified by the DIOCS
"STKAREA" entry;

(2) cause the program to enter a waiting loop
if no segment of the Transaction Stacking
Area is available at the time of the request;
and

(3) insert the address of the selected section of
the Transaction Stacking Area into the index-
ing register specified by the DIOCS
"STKINDEX" entry.

Thus, the programmer is free to move the
desired data into the Transaction Stacking Area by
means of actual move commands, using the speci-
fied indexing register.

ENTDR (Enter Disk Routine)

The ENTDR macro-instruction must be the first
instruction used in any Disk Routine of a program
using the 1301 IOCS.

This macro-instruction develops the coding
required to store the return address of the main
routine. This is the address to which control will
be branched by the 1301 IOCS to continue process-
ing of the main routine. See Figure 22.

The ENTDR macro-instruction does not have an
operand and is written as indicated in Figure 23.

Line Label
3 6

1
0. v. |ANY L.2.8\6.4,
1

0.2 s PU B Aaa ...‘....AAL;....L.JAA

Figure 23.

24

DISK ROUTINE

Develop
Disk Address

Branch
Control
to Aor B

Initiate

Figure 22. Use of the ENTDR Macro-Instruction

What This Macro Will Do

The coding provided by the ENTDR macro-instruc-
tion stores the return address of the main routine.
This permits resumption of processing in the main
routine as soon as the next disk operation has been
initiated.

GET

The programmer may use the GET macro-instruc-

tion to make a disk record available for processing.
The two formats of the GET macro-instruction are

described below.

Format A

This format of the GET macro-instruction is written
as indicated in Figure 24.

Line Label fperutid i
5 sle : 1s)ie olz1 25 30 35 407

.......

0.\, |Axv YL, pB8EL, |6 ET,  |PTSKEILE,
i
0.2 TR BV S .%

Figure 24.

The operand in Figure 24 is the name of the disk
file from which records are to be obtained. The
name must be that used to describe the file in the
DTF header line.

What This Macro Will Do

The functions of this macro-instruction depend on
whether it is used for random or sequential process-
ing.



RANDOM PROCESSING. Before using this macro-
instruction for random processing, the programmer
must store the appropriate address in the eight-char-

acter field labeled IOCSDSKAD, as shown in Figure 25.

Number
of Disk
Channel|Unit Track or Record Address
@ or *
IOCSDSKAD J
Figure 25.

A corresponding coding example is shown in

Figure 26,

Line Label }peroﬂ 1
3 s|s : 1516 ;o‘z 1 25 30 _35 40
0,1, ol Nen b WO0F8ALEL O, L0, SO0, SARO. ,
02 |\ i e |orsmezee
0,3, T I B .
Figure 26.

In either single-record or full-track random pro-
cessing, the user must store in IOCSDSKAD the
channel designation and the number of the disk unit,
as indicated. The remainder of IOCSDSKAD is either
HA1l and HA2, the track address, or the six-character
record address of the desired record.

If the single-record mode is used in a random pro-
cessing application, the user must place the four-
digit track address into the field labeled IOCSSEKAD.
(This field is located within the IOCS and is the four-
character field immediately to the left of IOCSDSKAD.

If the disk address is a track address, IOCSDSKAD
must contain the four-digit HA1 followed by the two-
digit HA2. In full-track operations, there is no re-
cord address and the field IOCSSEKAD is not used.
Each time the programmer uses the GET macro-
instruction in full-track mode, the 1301 IOCS will
develop the coding required to:

(1) check whether another disk operation is using
the disk track specified by the disk address in
the IOCSDSKAD location;

let the program enter a waiting loop if the re-
quired disk track is being used by another
disk operation;

assign a disk arm to read the information;
assign the segment of the Disk Record Hold-
ing Area into which the disk record is to be
read;

seek the track specified by the disk address;
read the disk record into the assigned seg-
ment of the Disk Record Holding Area;

check whether another disk record is ready
for processing in the Disk Record Holding
Area;

@)

3)
(4)

)
(6)

(M

(8)

)
(10)
(11)

(12)
(13)

branch control to the disk routine if another
disk record is waiting to be processed;
check whether a segment of the Transaction
Stacking Area is available;
branch control to the main routine if a Stack-
ing~Area segment is available;
_check for disk read errors;
correct correctable read errors*, and
release the segment of the Disk Record Hold-
ing Area used by a GET immediately preced-
ing the present GET macro-instruction. (See
section describing the FSEQP macro-instruc-
tion.)

* On DATA CHECK indications, eight additional attempts to
execute the command are made before an error message is
printed on the console printer.

SEQUENTIAL PROCESSING. Format A of the GET
macro-instruction causes the 1301 IOCS to develop
the coding required to:

@)
@)

3)
4)
®)

(6)

0

make the next logical record available for
processing;

take the next logical record from the next
track, if a block of records has been
exhausted;

check for read errors;

correct correctable read errors*;

increase the Track Address Counter whenever
records of the current track have been
exhausted;

check whether the address contained in the
Track Counter is a valid disk address for
the system defined by the DIOCS entries for
this program, and

branch the program to the location specified
in the DTF "EOFADDR'" entry if the track
address exceeds the address specified in the
DTF "FILEND'" entry.

The area into which records are placed by this
format of the GET macro-instruction depends on
record type and the number of input/output areas,
as follows:

1.

For blocked files using only one input/output
area and for all files using two input/output
areas:

a. If indexing is used, this macro-instruction
leaves the logical record in the input area
and places the address of the record's
high-order position into the specified index
register.

b. If indexing is not used, this macro-instruc-
tion places the next logical record into the
work area specified by the DTF
"WORKAREA" entry.

The Eleven 1301 IOCS Macro-Instructions 25



2. For unblocked files using only one input/out-
put area:
This macro-instruction leaves the next logi-
cal record in the input areas,

Format B
This format of the GET macro-instruction is used

only for sequential processing and is written as in-
dicated in Figure 27.

Line Label j.ﬁpemr lu,i; }

3 25 30 35 40
0,1, AtrLﬂmEL NPT S KELLE TO, ﬂo/fKﬂRElj
o2 |, ., 1, P T S S S S R
Figure 27.

The first entry in the operand of Figure 27 is the
name of the disk file from which records are to be
obtained. The name must be that used to describe
the file in the DTF header line. The second entry
is the name (label) given to the work area to which
the record is to be moved. This format of the GET
macro-instruction may be used for all record for-
mats except unblocked records that use only one
input area.

PUT

The programmer may use the various formats of the
PUT macro-instruction to develop the coding re-
quired to include processed or unprocessed records
in a disk output file.

What the PUT Macros Will Do

In addition to the functions listed under each format,
all PUT macro-instructions will cause the 1301
IOCS to develop the coding required to:

(1) check that the disk arm required to write the

information is available;

(2) check for disk write errors;

(3) correct correctable write errors*, and

(4) release the segment of the Disk Record Holding

Area that contained the information placed
into disk storage.

For the purpose of discussion, PUT macro-in-
structions will be divided into three types: that
used to return updated records to disk storage, that
used to load information into sequential locations in
disk storage, and that used to load information into
non-sequential locations in disk storage.

* On DATA CHECK indications, eight additional attempts to
execute the command are made before an error message is
printed on the console printer,

26

RETURNING UPDATED RECORDS TO DISK STOR-
AGE, This type of PUT macro-instruction is used
to return updated disk records to the locations in
disk storage in which they were originally contained.
It may be used for both random and sequential proc-
essing and is written as indicated in Figure 28,

Line l Lobel ?Eperaﬁﬁi
I3 6 . (5] 1 25 30
0,1, /V.YLLJIJ}@:;. AT N ZAMELEE

0.2 PRSI SRR R P SR Gt At

Figure 28.

The operand in Figure 28 is the name of*the disk
file from which information was taken for updating.
The name must be that used to describe the file in
the DTF header line.

What This Macro Will Do

This type of PUT macro-instruction will develop

the coding required to return arecord (which contains

the updated information) from the Disk Record Hold-

ing Area to the disk file named in the operand of the

macro-instruction,

NOTE: When using this type of PUT macro-in-

struction, the programmer must process the
disk records in the Disk Record Holding Area.

LOADING RECORDS INTO SEQUENTIAL DISK-
STORAGE LOCATIONS. This type of PUT macro-
instruction has two formats. Both are used to load
records into sequential disk-storage locations as
described below,

Format A
This format is written as indicated in Figure 29,

Line Label Fgmmaq OPERAND 5

s 8 150 20 35 40 a3 3

0.1, |AMY.L ABIEL, If’.mr ‘ OB KAREAR T,0 S £60v T FLLE 4 AA,i
]

0.2 .

At + P P T S W S S SR TR S ST

Figure 29.

The first entry in the operand field in Figure 29
is the name of a work area defined by a DA state-
ment. The name of the file must be that used to
describe the file in the DTF header line.

What This Format of the Macro Will Do

This macro-instruction will develop the coding re-
quired to write successive logical records from a
work area into sequential locations in disk storage.



Format B

This format may be used to load records contained
in a tape file into sequential disk-storage locations
and is written as indicated in Figure 30,

Line Label perati OPERAND Jj
3 6 T 15)ie ' 25 30 38 49 45

0.0, AM Y. A8kl Py T, | TAPELNPVT To SEQRIVTELLE 4 #ﬂ)
oz | . i

A

P L P

Figure 30.

The first entry in the operand in Figure 30 is the
name of the tape file from which records are to be
taken. The last entry in the operand is the name of
the disk file into which the tape records are to be
loaded. The names of both files must be those used
to define the files in their respective DTF header
lines.

What This Format of the Macro Will Do

This macro-instruction will develop the coding re-
quired to write successive records from the speci-
fied tape file into the specified disk file. Thetaperec-
ords are placed into the Disk Record Holding Area.

LOADING RECORDS INTO NON-SEQUENTIAL DISK-
STORAGE LOCATIONS, This type of PUT macro-
instruction may be used to load records into nonse-
quential locations in disk storage. (An example of
this kind of application is the loading of new part
records into an existing inventory file.) Before
using this type of PUT macro-instruction, the pro-
grammer must:

(1) place the address of the disk location (into
which the information is to be placed) into the
location labeled IOCSDSKAD, and

(2) place the information to be written into disk
storage into a segment of the Disk Record
Holding Area (which is addressed by the in-
dexing register that was specified by the DTF
"INDEXREG" entry of the file).

This type of PUT macro-instruction is written as

indicated in Figure 31.

QEperufigvg\L L . N - §

T
o b, |ANY L ABIEL, P UT, M OMAUT FIL,
1

0.2 " RN W B S S RIS lllLlAlJA_AlllLJllt‘LA%

Line Label
5 56

.......

Figure 31.

The operand in Figure 31 is the name of the disk
file into which records are to be loaded. The name
must be that used to describe the file in the DTF
header line.

What this Macro Will Do

This PUT macro-instruction will develop the coding
required to load records contained in the Disk
Record Holding Area into specified locations in

~disk storage.

NOTE 1: This type of PUT macro-instruction
cannot be used to return updated disk records
to disk storage.

NOTE 2: This macro-instruction causes the re-
placement of the entire contents of a disk
track, depending on the record format used.
The programmer is cautioned against inad-
vertently destroying disk data when using this
macro-instruction.

FSEQP (Force Sequential Processing)

The programmer may use the FSEQP macro-instruc-
tion to insure that disk records obtained by the disk
routine(s) will be processed and returned to disk
storage in the same order in which the correspond-
ing transaction records were obtained by the main
routine, See Figure 32.

Such synchronization of the disk routine(s) with
the main routine is important whenever reports are
written by the disk routine(s).

For example: Assume that Module 1 receives a
request for information with an access time of 100
ms, and that 10 ms later Module 2 receives a re-
quest with access time of 50 ms. In this case, the
arm of Module 2 will obtain the specified informa-
tion before the arm of Module 1.

If the Disk Routine does not use the FSEQP macro-~
instruction, the information obtained by the arm of
Module 2 will be processed and the result returned
to disk storage before the information sought by the
arm of Module 1 can be read. In this case, the up-
dated information will not be returned to disk stor-
age in the order in which the corresponding trans-
action records were read by the main routine.

If the Disk Routine uses the FSEQP macro-
instruction, the information obtained by the arm of
Module 2 will not be processed until the information
obtained by the arm of Module 1 has been processed
and written back into disk storage.

The FSEQP macro-instruction has no operand and
is written as indicated in Figure 33. It may be used
anywhere in the program.

What This Macro Will Do

Each time the programmer inserts a FSEQP macro-

The Eleven 1301 IOCS Macro-Instructions 27



——ee——— ENTDR
Develop
Disk Address
_
Branch GET
Control Initiate |Complete

to AorB

SEEK | READ

Branch
Control
to A or B

Update

Disk Record

Figure 32. Use of the FSEQP Macro-Instruction
Line Label tpero'ia:l
3 5|6 1516 20§21 25 30 A9

T
o, ANY.LABEL,
1

FSEQP

FU S WY

Lodeda

0.2 PR

U S R

Ll

Figure 33.

Continue

Disk -
Routine

Branch

to (A) in
Main Routine

FSEQP

Di
R
Yes

for updating in Disk

ecord ready

)

Record Holding

free segment of
Transaction Stacking
Area available?

instruction in his program, the 1301 IOCS will de-
velop the coding required to:

(1) halt the processing of all transaction data until
all data from previous transactions have been
processed;
check whether another disk record is ready
for processing in the Disk Record Holding Area;
(3) branch control to the disk routine if another
disk record is waiting to be processed;
check whether a segment of the Transaction
Stacking Area is available;

(5) branch control to the main routine if a Stack-
ing Area segment is available, and

(6) branch control to a waiting loop if neither a
disk record nor a transaction record can be
processed. See Figure 34.

@)

(4)

NOTE: If the FSEQP macro-instruction is given
in the main routine, processing in the main
routine will not continue until all disk-storage
data has been processed.

Additional Functions of the FSEQP Macro-Instruction

The FSEQP macro-instruction has two important
additional functions. It can be used to prevent:
(1) the release of a segment of the Disk Record
Holding Area by the second of two successive
GET macro-instructions, or
(2) the release of a segment of the Disk Record
Holding Area by an LEVDR macro-instruction.
Both functions are described below.

RETENTION OF DISK DATA AFTER SECOND GET
MACRO. Each time two disk GET macro-instruc-
tions follow one another in a program, the second
GET causes the release of the information obtained
by the first GET macro-instruction. Thus, the cod-
ing sequence:

GET DISKFILE1

GET DISKFILE2

PROCESS

PUT DISKFILE2

will cause the release of the information obtained
by the first GET; and only the information obtained
by the second GET can be moved to PUT. The
FSEQP macro-instruction may be used to prevent
the release of the information obtained by the first
GET macro-instruction, as indicated by the follow-
ing coding sequence:

GET DISKFILEL

FSEQP

GET DISKFILE2

PROCESS

PUT DISKFILE2

PUT DISKFILEL



In this case, the FSEQP macro-instruction pre-
vents the release of the information obtained by the
first GET.

NOTE 1: The order of the PUTs takes place as
indicated. In general, arms that have ob-
tained information from disk storage remain
in position until the updated information is re-
turned to storage. This eliminates SEEK
time for PUTs, since the disk arm is already
in position,

NOTE 2: The FSEQP macro-instruction cannot
be used to hold information obtained by the
first of two GETs involving the same file.
Thus, in the coding sequence:

GET DISKFILEL

FSEQP

GET DISKFILE1

PROCESS
the FSEQP macro-instruction cannot prevent
the release of the information obtained by the
first GET.

RETENTION OF DISK DATA AFTER THE 'LEVDR'
MACRO. The LEVDR macro-instruction, too, re-
leases the information obtained by the last GET, as
described in the discussion of the LEVDR macro-
instruction. Thus, the coding sequence:

GET DISKFILE1

PROCESS

LEVDR
will cause the release of the information obtained
by the GET macro-instruction.

The FSEQP macro-instruction may be used to pre-
vent the release of disk-record information by the
LEVDR macro-instruction. Thus, in the coding
sequence:

GET DISKFILEL

FSEQP

LEVDR
the information obtained by the GET will be re-
tained in the Disk Record Holding Area for process-
ing by a subsequent disk routine.

NOTE 1: A FSEQP macro-instruction can cause
erasure of information in the Disk Record
Holding Area followed by rereading of the
disk record. For this reason, the contents
of a segment of the Disk Record Holding Area
must not be changed between the GET and the
FSEQP macro-instructions. Thus, the coding
sequence: :

GET DISKFILE1l
UPDATE
FSEQP
might result in the retention of the non-proc-

DISK ROUTINE

Update
Disk Record

| Complete

Initiate WRITE,

!
WRITE | Release
! ) Holding

Area

Branch
Control
toAorB

Figure 35. Use of the LEVDR Macro-Instruction

Line Label ‘}‘Bpwrt:niad;z
I3 IS} 20!21 25 30 as 4

|
o NV LABEL  ENVDAR v v ks et
0.2 " P : PR PP SIS T S SR S S

TR SO W O S Y

Figure 36.

essed information contained in the Disk Record
Holding Area.

NOTE 2: The FSEQP macro-instruction may fol-
low only those GET macro-instructions that
refer to disk storage data.

LEVDR (Leave Disk Routine)

Each time processing of a set of transaction data
has been completed by the disk routine, the work
areas used by the data must be released and control
must be returned to the main routine, The LEVDR
macro-instruction, when used by the programmer
as the last instruction in a disk routine, will cause
the 1301 IOCS to develop all the coding required to
handle these functions. See Figure 35.

The LEVDR macro-instruction does not have an
operand and is written as indicated in Figure 36,

What This Macro Will Do

Each time the programmer uses the LEVDR macro-
instruction, the 1301 IOCS will develop the coding
required to:
(1) check whether the segment of the Transaction
Stacking Area is required by another disk
routine;

The Eleven 1301 IOCS Macro-Instructions 29



(2) free the segment of the Transaction Stacking
Area used by a completely processed trans-
action;

(3) check whether another disk record is ready
for processing in the Disk Record Holding
Area;

(4) branch control to the Disk Routine if another
disk record is waiting to be processed;

(5) check whether a segment of the Transaction
Stacking Area is available;

(6) branch control to the main routine if a Stack-
ing Area segment is available, and

(7) release the segment of the Disk Record Hold-
ing Area used by a GET immediately pre-
ceding the present LEVDR macro-instruction.
(See the section describing the FSEQP macro-
instruction.)

GETS

The programmer may use the GETS macro-instruc-
tion to perform any of the following 1301 disk
operations:
1. Seek a specified disk cylinder;
2. Seek and Read a single disk record;
3. Seek and Read a full track with or without
addresses, and
4. Seek and Read a full cylinder (optional
feature).

When a 'GETS' macro-instruction is used within a
Disk Routine, single-reference logic takes preced-
ence over random logic. Therefore, no return to the
main-line routine takes place as in the random pro-
cessing use of the 'GET' macro-instruction. Any
fields that are constructed or referenced in the user's
program prior to the 'GETS' macro-instruction re-
main unchanged and may be used after resumption of
the user's program.

NOTE: The GETS macro-instruction thus can be
used to perform the operations identified by
the mnemonic operation codes SD, RD, RHA,
RFT, RDT and RCY.

What This Macro Will Do

Each time the programmer uses a GETS macro-
instruction, the 1301 IOCS will develop the coding
required to:
(1) check whether the disk arm required to per-
form the operation is available;
(2) "stack" the request for the required disk arm
if that arm is not available;
(3) issue a Seek Disk command to position the
access arm on the cylinder containing the re-
quired information;

30

(4) set a switch to indicate that the disk READ
operation has been completed.
Additional functions of the GETS macro-instruc-
tion are described below.

HOLDING AREA CONTROL FIELD. Before using
the GETS macro-instruction, the programmer must
furnish the 1301 IOCS with information describing
the precise nature of the operation to be performed.
The programmer must enter this information in a
30-character area known as the "Holding Area Con-
trol Field," or, simply, "Control Field." The pro-
grammer must reserve this control field in core
storage by means of a DA entry, as indicated in
Figure 37,

Line Label _EE)P”O” }
I3 ;L 135)te ' 25 30 35 40
fo. MpAREACTIPA ~ |2429,6
o2 AREANAME. . | . lz,5 0o i)
0.3 JcopE | | N
o |l AlZe
os WAz 1. ... 8]
0.6 DISATMSTR | o B, 25 i \
0.7 PMODE . . . o2
oo lcHpamEL | 23 s (
1,9, P.LP.ERATION. N A
v PMOPLATER | o o |Lb, Ll ,
v, SMITCHADR | v |27, 82 (v i i i
W3 DI SKARN . | RALRR s e
Lo DISKADR | i A3 AT )
TN IR .Y A . 7 i ,
6 VORREA o | oo o) e e s
2% A R S B R
Figure 37 .

The control field must immediately precede the
input area to be used. See Figure 38.

The following information must be placed into the
Holding Area Control Field before the GETS macro-
instruction is encountered by the program:

AREANAME (Positions 1-5).
served for the 1301 IOCS.

This field is re-

CODE (Position 6). This field contains one BCD
character whose bit configuration is determined
as follows:
B = ON if wrong-length-record checking is to be
performed by the 1301 IOCS; otherwise OFF,
A= OFF
8 = OFF
4 = ON if Write Disk Check operation is to be
performed; otherwise OFTF.
2 =ON if only a SEEK operation is to be per-
formed; otherwise OFF. Modification of
SEEK only operations while the SEEK is in




=]
° o
3177 g 2:
38 38 S
3 A 8 9
T T TR . p
0 m a e}
3 Q q) . S
2 - g gl & T 2 & g
o [ = o
i | o [¢] o b1 o O g § s}
£ $3 = s & Zl¢ 2 2 :
3 3 3 5 & O & 3 g A al &
| N N
v vivIv Y v]v vIv V; '
F =+
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 2 3
( High Order Position of Holding Area Control Record
Figure 38. The Holding Area Control Record

progress is described in the section "Addi-
tional Information for Programmers. "
1= OFF
The BCD characters formed by these various bit
configurations are listed in Figure 91.
"Additional Information for Programmers. "

None (Position 7). Reserved for use by IOCS.

HAL (Positions 8-11), Contains Home Address 1.

NOTE: Needed only if single records are to be
read or written.

DISKINSTR (Positions 12-15).
language operation code of the operation to be per-
formed. This is of the form ABFn, where:
A = M if the operation is to be performed in
the Move- mode;
L if the operation is to be performed in the
Load mode.
B = @ if the disk unit is attached to Channel 1;
* if the disk unit is attached to Channel 2,
F=F
n = 1 if a single record is to be read;
2 if a full track without addresses is to be
read;
5 if a full track with home address is to be
read;
6 if a full track with addresses is to be
read;
@ if a full cylinder is to be read.

DMODIFIER (Position 16).

disk instruction. This is
R

unless a '"'to-end-of-core' read operation is to be

performed, in which case the entry is

$

SWITCHADR (Positions 17-21), Contains the
address of the core-storage location of the charac-

The d-character of the

See section,

Contains the machine-

ter used as the Read-Operation-Complete Switch
(see description of Formats C and D of the GETS

- macro-instruction).

NOTE: This field is left blank if Format A or B
of the GETS macro-instruction is used.

DISKARM (Position 22). The digit '"9" must be
placed into this field before the program encounters
the first GETS macro-instruction. The ""9" can be
assembled in this field as a constant.
NOTE: The contents of this field must not be
changed by the programmer.

DISKADR (Positions 23-29). This field must con-
tain the B-field of the disk instruction to be per-
formed.

None (Position 30). This field must contain a group
mark with word mark.

Position 31. This is the first location of the input
area into which the disk information is to be read.
NOTE 1: The programmer may use any labels

he wishes, but he must insure that they are
unique if more than one control field is de-
fined.
The four formats of the GETS macro-instruction
are described below.

Format A

This format of the GETS macro-instruction has no
operand and is written as indicated in Figure 39.

-

GCETS,

e Lobel
L Any.ea 3;5.1.‘
PR R SR W NS R

AAAAAAAAAAAAAA

.......

Figure 39.

NOTE: Before using this format of the GETS
macro-instruction, the programmer must place

The Eleven 1301 IOCS Macro-Instructions 31



the high-order address of the Holding Area
Control Record (see Figure 38) into Index
Register 14.

What This Format of the GETS Macro Will Do

In addition to the functions listed at the beginning of
this section, this format of the GETS macro-instruc-
tion will cause the 1301 IOCS to develop the coding
required to:

(1) branch control to a waiting loop while the
disk seek operation is in progress;

disk read operation is in progress;
interrupt waiting loop upon completion of the
disk read operation:

(6) check for disk read errors, and

(7) correct correctable disk read errors. *

As indicated in Figure 40, the 1301 IOCS causes
the program to enter a waiting loop until the disk
record defined by the contents of the Holding Area
Control Record has been read into core storage.

Program execution, therefore, proceeds as fol-
lows: Upon encountering a GETS macro-instruction,
the program initiates the SEEK and then immediately
branches control to the Operation-Complete Test.

®)

(2) interrupt waiting loop upon completion of the (See Figure 40.) When the SEEK is completed, an
Seek operation: ips s : * On DATA CHECK indications, eight additional attempts to
(3) initiate the specified dls_k read opel.'atlon; execute the command are made before an error message is
(4) branch control to a waiting loop while the printed on the console printer.
—
GETS

"Stack" Arm
Request

Were 8
Attempts Made

at Error
Conngction

G\h‘ite Error Messagg

Completed

Without Error

Y

?

?

Figure 40, The GETS Macro-Instruction

Continue
Processing

32



IOCS-provided interrupt causes processing to

initiate the READ operation, The program then again
branches control to the Operation-Complete Test, and
program execution does not continue until this test
indicates that the READ operation has been com-
pleted. Processing then continues.

Operation-Complete Switch - The test for comple-
tion of seek and read operations is made by the 1301
IOCS as follows:

When the program encounters a GETS macro-
instruction, the IOCS sets a word mark in the core-
storage position designated by the contents of the
location labeled SWITCHADR. See Figure 38,

The IOCS indicates completion of the SEEK and
READ operations by clearing this word mark. The
program, consequently, enters a waiting loop until
the SEEK and READ operations are completed (i.e. ,-
until the word mark is cleared), whereupon the IOCS
causes program execution to continue.

Format B

Format B of the GETS macro-instruction is written
as indicated in Figure 41.

Line l Label _,Bpsra'i?gjz ) [
s 151 ! 25 30 _35 40

o, |ANYLABEL GCETS (CTLinBEL, (o o o o\ . ...
|
0.2 FETENTO TE -

Figure 41,

The operand is the label of the high-order posi-
tion of the Holding Area Control Record.

What This Format of the GETS Macro Will Do

This format of the GETS macro-instruction performs
the same functions (and develops the same coding)
described above for Format A. However, when
using Format B of the GETS macro-instruction, the
programmer need not place the high-order address
of the Holding Area Control Record into Index
Register 14 prior to issuing the GETS macro-in-
struction. '

NOTE: The functions provided by Formats A and
B of the GETS macro-instruction correspond to
Method 1 described in the section on "Single-
Reference Processing."

Format C

This format of the GETS macro-instruction is writ-
ten as indicated in Figure 42. The operand is
"SWITCH".

Label _"EBperaﬁoﬂlL -
15t 20021 25 30 3% 4

NYLAREL,  CETS \SLULTCH o o vosvon s vs s
!

0.2 PO G U SR S R S U S S S N G R S S

Figure 42,

NOTE: Before using this format of the GETS
macro-instruction, the programmer must
place the high-order address of the Holding
Area Control Record into Index Register 14,

What This Format of the GETS Macro Will Do

In addition to the functions listed at the beginning of
this section, this format of the GETS macro-instruc-
tion will cause the 1301 IOCS to develop the coding
required to:

(1) branch control to the main routine to con-
tinue processing while the disk seek opera-
tion is in progress;

(2) interrupt processing upon completion of the
seek operation;

(3) initiate the specified disk read operation;

(4) branch control to the main routine to continue
processing while the disk read operation is
in progress;

(5) interrupt processing upon completion of the
disk read operation;

(6) check for disk read errors, and

(7) correct correctable disk read errors, *

Operation-Complete Switch, In contrast with For-
mats A and B of the GETS macro-instruction, the
programmer may place the Operation-Complete
Switch anywhere in his program.

NOTE: This means that the programmer can use
Method 2 described in the section on '"Single-
Reference Processing.'" See Figures 10 and43.

* On Data Check indications, eight additional attempts to
execute the command are made before an error message
is printed on the console printer.

The Eleven 1301 IOCS Macro-Instructions 33



As indicated in Figure 43, the test for completion

of the disk SEEK and READ operations is made just
prior to the time the disk information is needed by
the program.

This permits overlapping of the SEEK and READ

operations with processing until such time as the
disk record is needed for further processing. At
this point, the program enters a waiting loop, and
processing halts until the disk record has been
obtained.

NOTE: The 1301 IOCS will set and clear a word-
mark switch, in the manner described under

Format A of the GETS macro-instruction, to
indicate completion of SEEK and READ opera-
tions. The location of this word-mark switch
is defined by the programmer, who must place
the address of the core-storage location of the
desired word-mark switch into the SWITCHADR
entry of the Holding Area Control Record. This
must be done before the program encounters
the GETS macro-instruction., The programmer
must provide the coding required to test the
(word-mark) switch unless he uses the WAITS
macro-instruction,

Figure 43. The GETS, SWITCH Macro-Instruction

34

GETS, SWITCH

"Stack" Arm
Request

SEEK

Initiate

Complete
READ

-y

{

Continue Proc-
essing (Not Re-
quiring Disk
Data)

Operation
Completed

Were 8
Attempts Made
at Error
Conn%ction

Write Error Message

Update
Disk Record

'

Continue

Processing




Format D

This format of the GETS macro-instruction is writ-
ten as indicated in Figure 44.

rati
J_{EPQ ‘ Iﬁy 25 30 35 4‘(24

G E75 |CTLLABEL, SWETCH o o
0.2 PUNT S S US T E P Lo sy
Figure 44 .

Line Label
3 6

o1 ANY.LABEL
|

FUT U S T S S U S S Bt n{

The first operand shown in Figure 44 is the label
of the high-order position of the Holding Area Con-
trol Record. The second operand is "SWITCH',

NOTE: The operands may be listed in any order.

What This Format of the Macro Will Do

This format of the GETS macro-instruction per-
forms the same functions (and develops the same
coding) described above for Format C. However,
when using Format D of the GETS macro-instruc-
tion, the programmer need not place the high-order
address of the Holding Area Control Record into
Index Register 14 prior to issuing the GETS macro-
instruction.

PUTS

The programmer may use the PUTS macro-instruc-

tion to perform any of the following 1301 disk opera-

tions: :

1. Seek a specified disk cylinder;

2. Seek and write a single disk record;

3. Seek and write a full track with home address;

4, Seek and write a full cylinder (optional feature),
and

5. Write a format track.

When a 'PUTS' macro-instruction is used within a
Disk Routine, single-reference logic takes preced-
ence over random logic. Therefore, no return to
the main-line routine takes place as in the random
processing usc of the 'PUT' macro-instruction.

Any fields that are constructed or referenced in the
user's program prior to the 'GETS' macro-instruc-
tion remain unchanged and may be used after the re-
sumption of the user's program.

NOTE: The PUTS macro-instruction thus can be
used to perform any of the operations identi-
fied by the mnemonic operation codes SD,
WD, WHA, WCY and WFO,

What This Macro Will Do

Each time the programmer uses a PUTS macro-
ingtruction, the 1301 IOCS will develop the coding
required to:

(1) check whether a disk arm required to perform
the operation is available;

(2) "stack' the request for the required disk arm
if that arm is not available;

(3) issue a Seek Disk command to position the
access arm on the cylinder on which the infor-
mation is to be written, and

(4) set a switch to indicate that the disk WRITE
operation has been completed.

Additional functions of the PUTS macro-instructton

are described below.

Before using the PUTS macro-instruction, the pro-
grammer must furnish the 1301 IOCS with information
describing the precise nature of the operation to be
performed. He does this by means of the same Hold-
ing Area Control Field described in the section on
the "GETS" macro-instruction,

The Holding Area Control Field is reserved in the
same manner and contains the same information as
the corresponding area described in the section on
the "GETS'" macro-instruction, except as follows:

DISKINSTR (Positions 12-15). This may contain the
following (see description of the Holding Area Con-
trol Record):
1 if a single record is to be written;
2 if a full track without addresses is to be
written;
5 if a full track with home addresses is to be
written;
6 if a full track with addresses is to be written;
if a format track is to be written, and
@ if a full cylinder is to be written.

-a

DMODIFIER (Position 16). This contains the d-
character of the disk instruction. This is
W
unless a "to-end-of-core' write operation is to be
performed, in which case the entry is

X

SWITCHADR (Positions 17-21). This contains the
address of the core-storage location of the charac-
ter used as the Operation-Complete Switch (sce
description of Formats C and D of the PUTS macro-
instructions).

NOTE: This field is left blank if Format A or B
of the PUTS macro-instruction is used.

The Eleven 1301 IOCS Macro-Instructions 35



DISKARM (Position 22). The digit '"9" must be
placed into this field before the program encounters
the PUTS macro-instruction.

NOTE: The contents of this field must not be
changed at any other time.

ANYLABEL (Position 31). This is the first location
of the output area from which information is to be
written into disk storage.

The four formats of the PUTS macro-instruction
are described below.

Format A

This format of the PUTS macro-instruction has no
operand and is written as indicated in Figure 45.

Line I Label ' peroﬁzd;l 2 50 3 w0 {

o ANYIABEL PoTs | o, o
0.2, .....:..- s U SV S S S S S VT S S S S S S N .(
Figure 45 .

NOTE: Before using this format of the PUTS
macro-instruction, the programmer must
place the high-order address of the Holding
Area Control Record (see Figure 38) into In-
dex Register 14.

[ PUTS

—

8 Attempts

\Made at Error
Correction
?

WRITE
Completed

Written
Without Erro;

"Stack" Arm
Request

\

Figure 46. The PUTS Macro-Instruction

Continue
Processing

36



What This Format of the Macro Will Do

In addition to the functions listed at the beginning of
this section, this format of the PUTS macro-instruc-
tion will cause the 1301 IOCS to develop the coding
required to:

(1) branch control to a waiting loop while the disk

seek operation is in progress;

(2) interrupt waiting loop upon completion of the

seek operation;

(3) initiate the specified disk write operation;

(4) branch control to a waiting loop while the disk

write operation is in progress;

(5) interrupt waiting loop upon completion of the

disk write operation;

(6) check for disk write errors, and

(7) correct correctable disk write errors. *

As indicated in Figure 46, the 1301 IOCS causes
the program to enter a waiting loop until the disk
record defined by the contents of the Holding Area
Control Record has been written into disk storage.

Program execution, therefore, proceeds as fol-
lows: Upon encountering the PUTS macro-instruc-
tion, the program initiates the SEEK and then im-
mediately branches control to the Operation-Com-
plete Test. (See Figure 46.) When the SEEK is
completed, an interrupt causes IOCS to initiate the
WRITE operation. The program then again branches
control to the Operation-Complete Test, and program
execution does not continue until this test indicates
that the WRITE operation has been completed. Pro-
cessing then continues.

Operation-Complete Switch, The test for completion
of the SEEK and WRITE operations is the same as
that described above for completion of read opera-
tions.

When the program encounters a PUTS macro-
instruction, the IOCS sets a word mark in the core-
storage position to which control will be branched
upon initiation of the SEEK and WRITE operations.
See Figure 46,

The IOCS indicates completion of the SEEK and
WRITE operations by clearing this word mark., The
program, consequently, enters a waiting loop until
the SEEK and WRITE operations are completed (i.e.,
until the word mark is cleared), whereupon the IOCS
causes program execution to continue.

Format B

Format B of the PUTS macro-instruction is written
as indicated in Figure 47.

* On DATA CHECK indications, eight additional attempts to
execute the command are made before an error message is
printed on the console printer.

Figure 47 ,

The operand shown in Figure 47 is the label of the
high-order position of the Holding Area Control
Record.

What This Format of the Macro Will Do

This format of the PUTS macro-instruction performs
the same functions (and develops the same coding)
described above for Format A. However, when
using Format B of the PUTS macro-instruction, the
programmer need not place the high-order address
of the Holding Area Control Record into Index Regis-
ter 14 prior to issuing the PUTS macro-instruction.

NOTE: The functions provided by Formats A and
B of the PUTS macro-instruction correspond
to Method 1 described in the section on ''Single-
Reference Processing."

Format C

This format of the PUTS macro-instruction is writ-
ten as indicated in Figure 48. The operand is

"SWITCH".
Label }Eperati:d‘
151 1 25 30 1 E— -]
ANYLABEL, Pyl (CTLLABEL, o\ o h
|
" PO R R U 'Y FE S P T S Y WIS NGV W S S W G S S ) s
Figure 48 «

NOTE: Before using this format of the PUTS
macro-instruction, the programmer must
place the high-order address of the Holding
Area Control Record into Index Register 14,

What This Format of the PUTS Will Do

In addition to the functions listed at the beginning of
this section, this format of the PUTS macro-in-
struction will cause the 1301 IOCS to develop the
coding required to:

(1) branch control to the main routine to continue
processing while the disk seek operation is in
progress;

(2) interrupt processing upon completion of the
seek operation;

(3) initiate the specified disk write operation;

(4) branch control to the main routine to continue
processing while the disk write operation is in
progress;

The Eleven 1301 IOCS Macro-Instructions 37



(5) interrupt processing upon completion of the
disk write operation;

(6) check for disk write errors, and

(7) correct correctable disk write errors, *

Operation-Complete Switch. In contrast with For-
mats A and B of the PUTS macro-instruction, the
programmer may place the Operation-Complete
Switch anywhere in his program.

* On DATA CHECK indications, eight additional attempts to
execute the command are made before an error message is
printed on the console printer.

NOTE: This means that the programmer can use
Method 2 described in the section on "Single-
Reference Processing.'" See Figures 11 and
49.

As indicated in Figure 49, the test for completion

of the disk SEEK and WRITE operations is made

just prior to the time the updated disk record is
replaced into disk storage. This permits overlapping
of the SEEK and WRITE operations with processing.

PUTS, SWITCH

"Stack" Arm
Request

Initiate i Complete

SEEK | WRITE
Continue
Processing

(Not Requiring

Disk Data)
L

oy

Operation
Completed
?

Written

Y

Without Error

8 Attempts
Made at Error
Correction

Write Error Message

Continue
Processing

Figure 49. THE PUTS, SWITCH Macro-Instruction

38



NOTE: The 1301 IOCS will set and clear a word-
mark switch, in the manner described under
Format A of the PUTS macro-instruction, to
indicate completion of the SEEK and WRITE
operations. The location of this word-mark
switch is defined by the programmer, who must
place the address of the core-storage location
of the desired word-mark switch into the
SWITCHADR entry of the Holding Area Control
Record. This must be done before the program
encounters the PUTS macro-instruction. The
programmer must provide the coding required
to test the (word-mark) switch, unless he uses
the WAITS macro-instruction.

Format D

This format of the PUTS macro-instruction is writ-
ten as indicated in Figure 50.

Label perati é
r 5]t 25 39 3 40
. A.MYAA.F:EL WIS ICTLLABEL,, SULETCH, |

i A(

The first operand in Figure 50 is the label of the o

high-order position of the Holding Area Control
Record. The second operand is "SWITCH",

NOTE: The operands may be listed in any order,

What This Format of the Macro Will Do

This format of the PUTS macro-instruction per-
forms the same functions (and develops the same
coding) described above for Format C. However,
when using Format D of the PUTS macro-instruc-
tion, the programmer need not place the high-order
address of the Holding Area Control Record into
Index Register 14 prior to issuing the PUTS macro-
instruction,

WAITS (""Wait Single-Reference')

The programmer may use the WAITS macro-instruc-
tion to develop the coding required to test the word-
mark switch that is set and cleared by the IOCS to
indicate the completion of disk input/output opera-
tions. See the description of Formats C and D of

the GETS and PUTS macro-instructions.

The WAITS macro-instruction is written as shown
in Figure 51. The operand of this macro-instruction
('SWITCHTAG' in Figure 51) can be any label as-
signed by the user, but must not be defined by the
user in his source program. The label will be gen-
erated by the macro-instruction.

Line | Label ‘iEperuﬁgdz T

3 , 19| ! 25 39 35 40

o1, ANV LABFLL, (WALTS|SWITCHTAG | o i v i
[

0.2 PG TSR S G WOT OO 0 S S S P SRV S S S S S S S TS N S S »

Figure 51.

What This Macro Will Do

This macro-instruction will cause the program to
enter a waiting loop until the input/output operation
initiated by the preceding GETS or PUTS macro-
instruction has been completed. When the operation
is complete, the loop will be interrupted, the word
mark cleared, and control returned to the user at
the point beyond this macro-instruction.

"NOTE: The programmer must place the address
of the label specified in the operand of the
WAITS macro-instruction (and generated by
IOCS) in the Holding Area Control Record, in
the field labeled 'SWITCHADR. ' (See Figure 38)

The Eleven 1301 IOCS Macro-Instructions 39



THE 'DIOCS' ENTRIES

Purpose

Before the programmer can use the 1301 IOCS, he
must supply the 1410 Autocoder processor with the
information needed to determine which of the 1301
10CS routines are required for the object program,
This information consists of several card entries
listed individually on the IBM 1401/1410 Autocoder
Coding Sheet. These entries specify the sections
of the 1301 Input/Output Control System to be in-
cluded in the object program, and are known col-
lectively as the DIOCS ('Define Input/Output Control
System'") entries. Each entry is described in detail
below.

General Format

The first DIOCS entry is mandatory and consists of
the mnemonic code DIOCS in the operation field, It
is known as the "DIOCS header line." This card
must be the first card (except for special control
cards) to enter the system during Autocoder assem-
bly.

NOTE: Only one DIOCS header card is permitted.

It is normally supplied by the DIOCS header
line written for Card/Tape IOCS. See Figure
12.

Each subsequent 1301 IOCS entry has a blank
operation field and must have one of the labels listed
below. * All DIOCS entry cards may contain com-
ments. These must be separated from the DIOCS
entry by at least two adjacent blanks. The DIOCS
entries may be listed in any order and may be inter-
mixed with the Card/Tape DIOCS cards. See Figure
12,

List of DIOCS Entries

This section describes the purpose of each of the
following DIOCE entries:

FEATURES STKINDEX
CHANx SGMTLENGTH
PROCESTYPE DISKARMS
RNDMDEPTH DISKOPTION
STKAREA NORCDEXIT

* Labels used in programs to be assembled by the 1410 Autocoder
processor must not have more than 10 characters.

FEATURES

This DIOCS entry is mandatory. Its operands are
OVERLAP, PRIORITY. See Figure 52.

Line I Label ti
+] 6 J&E”m 'dzl 25 30 1] 40 i

o1, LEAT U RIES. OVERLAP  PRIORIT Y. . . . 4
0.2 PERSRSTSRST ST AU SR S S SO YU S S S S S S S SR S S S S
Figure 52 .

CHANx

This DIOCS entry is mandatory. It is used to indi-
cate the channel to which the 1301 Disk Storage unit
used by the program is attached. The "x' in the
CHANX label is
1 if the 1301 Disk Storage unit is attached to
Channel 1, and
2 if the 1301 Disk Storage unit is attached to
Channel 2,
The operand of the CHANx entry is '"1301".

NOTE: If there is a 1301 Digk Storage unit
attached to each channel, a CHANI and a
CHAN2 entry must be made.

Line Label
&

o1, ICHANZ | . .
0.2 PR

Figure 53

The entry in Figure 53 indicates that the 1301 Disk
Storage unit used by the program is attached to
Channel 2,

PROCESTYPE

This entry is not needed for single-reference process-
ing.

This DIOCS entry causes the inclusion in the ob-
ject program of the file schedulers required for
sequential and/or random processing. Its operands
are:

RANDOM -- if the program calls for random
processing of disk files, and

SEQUENTIAL -- if the program calls for sequen-
tial processing of disk files.



If both operands are used (i.e., if the program
calls for both random and sequential disk processing),
the operands must be separated by a comma. They
may be listed in any order.

Line Label Eperoﬁ 2
3 sle ; 15)i6 2021 25 30 35 40
0,1, |PROCESITY PEl , | M e
o2 i

RA.¥ 0.0/,

s U ST B PR I SRR

Figure 54.

The operand in Figure 54 indicates that the pro-
gram calls for random processing of one or more
disk file(s).

Line Label perati é
5 sle 15|16 | 25 30 35 40
01, |PRocesImyPE | ISERUENTT AL, RANL0M

|
0.2 P P L P U S T S Y U T ST S )
Figure 55.

The operand in Figure 55 indicates that the pro-
gram calls for both random and sequential disk
processing operations.

RNDMDEPTH ("Random Depth")

This entry is required only for random files that are
used for input operations. The operand indicates the
maximum number of pending operations that are to
be stacked. This number is the greater of two
amounts: the number of arms used by a random file,
or the number of random files serviced by a single
arm.

STKINDEX
STACKAREA
1st Segment 1
2nd 2
2
| 3rd 3

N

R ——
M

nth Segment

GM w. WM

Transaction Stacking Area

Figure 57, The Transaction Stacking Area

NOTE: For optimum arm scheduling, it is sug-
gested that the programmer specify the total
number of available arms (not exceeding ten).

Line Label _Epemﬁon

3 sle : 1516 2021 25 30 35 ... 40

o, RyorDELTH |, , 1T i s s a
1

0.2 N P T L P SR U SR ST U S ST S S S U YU S S §

Figure 56,

The operand in Figure 56 indicates that up to three
pending operations can be stacked at one time.

STKAREA (''Stacking Area'')

This entry is required only for random files used
for input operations. The operand of the STKAREA
entry is the label of the DA (Define Area) statement
that defines the Transaction Stacking Area. See
Figures 57 and 58.

The operand in Figure 58 indicates that the label
of the DA statement that defines the Transaction
Stacking Area of the program is labeled STACKAREA.
See Figure 57.

Line Label perufiov:I_

3~ sls 15)16 20[21 25 30 35 40

o [STIKAREA | .. . |STACKAREA (..., .. ..,
: [

0.2 NI PR P S O S S S S S T P ST R S X

Figure 58.

4|<— Contains the address

of the segment from
which or to which
transaction data is to
be transferred. The
address is updated by
the 1301 IOCS.

The DIOCS Entries 41



STKINDEX (''Stacking Index'')

This entry is required only for random files used
for input operations.

The operand of the STKINDEX entry is:

y where "y" is X1, X2,..., X12 and identifies
the index register assigned to the Transaction
Stacking Area. This index register contains
the address of the segment of the Transaction
Stacking Area from which successive sets of
transaction data are to be taken. See Figures
4 and 6.

NOTE: Index Registers 13-15 may not be used for
this purpose.

Line Label _EperaﬁzL Z
s sle — 15}16 L 25 30 35 40
o.1, IS THINDIEAX, i X7

|

Loaax L . i USRS N S S

2.2 TSV SR B PRI S SO SU S S Y UAE S S S A S SR T

Figure 59.

The operand in Figure 59 indicates that Index
Register 7 has been assigned to the Transaction
Stacking Area of the program.

SGMTLENGTH ('"Segment Length'")

This entry is required only for random files used
for input operations.
The operand of the SGMTLENGTH entry is:
x where "x" is an integer indicating the number
of positions of each segment of the Transaction
Stacking Area.

NOTE 1: If variable-length transaction records
are to be moved to the Transaction Stacking
Area, the segments must be large enough to
hold the maximum-size record.

NOTE 2: Each segment must contain a location
for the Record Mark or Group Mark with
Word Mark that terminates the move operation.

Line Label ineraﬁ 4
3. 5|6 15/18 ol2) 25 39 35 40

o1, 1S6MTLENGTH . . |92 . . .
1

0.2 I U PRV P S

Figure 60 .

The operand in Figure 60 indicates that each seg-
ment of the Transaction Stacking Area has 81 posi-
tions. See also Figure 57.

DISKARMS
The operand of the DISKARMS entry is the maximum

number of modules of 1301 Disk Storage used by the
program.

42

Line Label —t)peruﬁ i

5 sle : 15} 1 25 30 35 40
o, (PISKARIMS. | . BN
Figure 61.

The operand in Figure 61 indicates that the pro-
gram uses three modules of 1301 Disk Storage.

DISKOPTION

This entry is needed only
(1) if the program reads or writes single disk
records, or
(2) if the program calls for one or more write
disk check operations, or
(3) if the 1301 Disk Storage unit addressed by
the program is shared with a 7000-series
computer,
The entry is used to indicate whether the program
calls for any of the above disk operations.
The operands of the DISKOPTION entry are:

SINGLERCD -- if the program reads and/or writes
single records.

WRITECHECK -- if the program calls for at least
one Write Disk Check operation,

SHARED -- if the 1301 Disk Storage is shared by a
7000-series computer,

The operands may be listed in any order.

Label peraﬁ:rpi; {
T U ] 25 30 35 40
. Rl._sx.o.P:U.ko e PINGLERCLD | .

TU S W B P

......

Figure 62.

The operand in Figure 62 indicates that the pro-
gram is to write and/or read at least one single
disk record.

NOTE 1: If the SHARED operand is used, the IOCS
will provide the coding required to enable the
sharing system to have access to disk storage
and to prevent interrupts from operations
issued by the sharing system.

At the completion of all disk operations and
immediately prior to returning control to the
main program, IOCS will execute a Prevent
Seek Complete (PSC) operation to inhibit
interrupts from the completion of seek opera-
tions and a Release (REL) operation to permit
the sharing system to have access to the 1301
disk storage unit.



NOTE 2: The first system to issue a disk instruc-
tion or a command to the 1301 gains control
of the disk storage unit and retains it until
the execution of a Release instruction. A
P3C (Prevent Seek Complete ) instruction
should be executed first by any program on
a computer using a shared 1301; otherwise,
interrupts caused by seeks issued by the
sharing system will have to be serviced,

NORCDEXIT

This DIOCS entry is needed only if the program calls
for the use of single record mode of the disk oper-
ation. This entry enables the programmer to have
control branched to his own routine in the event of a
No-Record-Found Condition.

The use of the 'NORCDEXIT' entry will cause con-
trol to be branched to the routine specified by the
operand of the entry each time a No-Record-Found
Condition is encountered. The first instruction in
the user's No-Record-Found Routine must be a Store
B-Register (SBR) that stores the return address to
the I0CS.

NOTE: Under no circumstances may the user's
No-Record-Found Routine perform any I/0
function, with or without the IOCS, In effect,
the user's No-Record-Found Routine is oper-
ating within the structure of the IOCS and
any I/0 operation will destroy the IOCS con-
trol.

Before branching control to the user's routine, the
1301 1IOCS places into Index Register 14 the high-
order address of the B-field of the disk instruction
that led to the No-Record-Found Condition (see
'DISKADR', Figure 38), Upon completion of the
user's No-Record-Found Routine, the IOCS checks
whether the user has changed the B-field, HA 1 or
the channel specified in the Holding Area Control

Record. If a change was made, the IOCS will
attempt to locate the record in an alternate address
developed by the user's No-Record-Found Routine.

This is normal in random processing.

When no record can be produced from disk, the
transaction may be ignored by the IOC§ or retained
by the IOCS for the user. Placing an S in the ad-
dress portion (2+X14) of the 'DISKADR' in the Holding

. Area Control Record while in the No-Record-Found

Routine causes the IOCS to ignore the transaction
and skip the remainder of the disk routine. In this
case, the transaction is not retrievable. By plac-
ing a P in the same position the transaction will be
retained by the IOCS for the user. The use of the P
allows the user to test for the P after the IOCS re-
turns to GET +1 or PUT +1. For form 1, 2 or 3
records, the % may be located by subtracting 7 from
the index register associated with that file. Form 4
records require that 11 be subtracted from this index
register because of the block character-count field,
which is four positions long (see Figure 75), After
return to GET +1 or PUT +1, the transaction may
then be processed as the user desires. This means
of communicating with the IOCS (by using the b or é)
is necessary because at the time the users no-record-
found routine is being executed neither the address
of the transaction that caused the no-record-found
condition is known, nor may any I/0 operation be
performed to dispose of the transaction, even if the
address were known.

If nothing is changed in the Holding Area Control
Record after four attempts to locate the record on
disk, the IOCS will withdraw the access mechanism
completely, reposition it at track number 0000, re-
issue the SEEK command for the desired track and
try again to execute the disk instruction. If the no-
record-found ¢ondition then recurs, the IOCS will
enter a waiting loop and an appropriate message
will be typed on the console printer.

The DIOCS Entries 43



THE 'DTF' ENTRIES

Purpose

In addition to the DIOCS entries, the programmer
who wishes to use the 1301 Input/Output Control
System must write one set of DTF (Define The File)
entries for each disk file used by his program. This
information consists of up to 14 entries listed indi-
vidually on the IBM Autocoder 1401/1410 Coding
Sheet.

Each set of DTF entries describes the character-
istics of the file for which it was written and indi-
cates the methods to be used by the 1301 IOCS in
handling the file, Using the information supplied in
the DTF entries, the Autocoder processor develops
the File Scheduler and the coding required for the
proper handling of each file.

NOTE: DTF entries are not required for single-
reference processing because files need not be
defined for this mode of processing.

General Format

The first DTF entry is the "DTF header line." It
consists of the mnemonic code "DTF" in the opera-
tion field followed by the name of the file in the
operand field. All subsequent DTF entries have
blank operation fields and must have the labels listed
below. All disk DTF entries may be followed by
comments., These must be separated from the DTF
entries by at least two adjacent blanks. The entries
following the header line may be listed in any order.
All operands of disk DTF entries may use address
modification provided that the operand consists of
no more than 13 characters. Thus, 'LABEL + 110’
is a valid operand if LABEL consists of no more
than nine characters. All symbolic operands of DTT
entries, except those of input/output areas, may be
indexed. (The number of characters used to desig-
nate the index must be included in the count of 13.)
The sets of Disk DTF cards may be intermixed
with the sets of the Card/Tape DTF cards and enter
the system immediately after the DIOCS cards dur-
ing Autocoder assembly. See Figure 12, Each Disk
DTF entry is described below under a subheading
indicating the label of the entry.

NOTE: DTF cards without operands are not
permitted.

List of DTF Entries

This section describes the function and use of each
of the DTF entries listed below.

44

The following entries apply to both random and se-
quential processing:

DTT header line
FILETYPE
SIZEREC
HOLDAREA
INDEXREG
FILEFORM
BLOCKSIZE
DISKCHECK
WLRADDR
The following entries apply only to sequential
processing:
RECFORM
SCRAMBLE
NRECORDS
PADDING
WORKAREA
FILESTART
FILEND
EOFADDR

THE 'DTF' HEADER LINE

The first DTF entry is mandatory and consists of the
mnemonic code DTF in the operation field, followed
in the operand field by the name of the file defined
by this DTF.

Label iEperotig#L }
: 1s)ie 1 25 30 35 40
Ll TF, ARTHUASTER o o o v oo i 1’

i
-t

.
L i PR PRI T E WG SH SO R S SO Y O SN S S 'Y 4

0.2

Figure 63.
The operand in Figure 63 indicates that the set of

DTF entries following this header line defines a
file called PARTMASTER.

FILETYPE

The FILETYPE entry indicates that the file des-

cribed by this DTF is a disk file and specifies

whether it is a random or a sequential file, and

whether it is used for input or for output operations.
The operands of the FILETYPE entry are:

DISK -- This entry is mandatory and indicates that
the file described by the DTF is a disk file. (The
DISK operand is needed because the "FILETYPE"
DTF entry is also used by the Card/Tape I0CS.)

* Note that data from a disk input file may be returned to that file
after updating.



INPUT -- if the file described by the DTF is used
for input operations. * _
OUTPUT -- if the file described by the DTF is used

only for output operations.

SEQUENTIAL -- if the file described by the DTF is
a sequential file.

RANDOM -- if the file described by the DTF is a
random file.

NOTE 1: The operands INPUT and RANDOM may
be listed but are not required.

The operands of the FILETYPE entry may be
listed in any order and must be separated by commas.

SIZEREC

The SIZEREC entry is mandatory.
pends on record size as follows:

Its operand de-

Variable-Length Records (Sequential Files Only)

The operand of the SIZEREC entry is:
n where '"'n" indicates that the low-order position
of each record's character-count field is the
"nth" character of each record. See the
example below.

Line Label perati
3 sle 16 o021 25 39 3%
OPERAND ?
Line, Label ‘FPQW"ZQJZ ™ 0 a5 29 o IsrerfEc, L B L e
J'LETY\I.TE owPu"»DJsx SERQUENT AL . E 0.2 R R P P
ozl e Flgure66-

Figure 64

The operands in Figure 64 indicate that the disk
file described by this DTF is a sequential output file.

Line Label peration| 3

s ___sle ——— 156 oj21 25 30 35 40

0.1, | L ETYIPE, MPYT G BLS o e 3
1

9.2 L Cl - T R R S S T S S }

Figure 65

The operands in Figure 65 indicate that the file
described by this DTF is a random input file,

- The entry in Figure 66 indicates that the low-order
position of the character-count field in each record
of this disk file is the 10th position of the record.

See also Figure 67,

Fixed-Length Records

The operand of the SIZEREC entry is:

m where "m'" is the number of characters in the
record, including the record mark. (Thus,
the operand is ''80" for eighty-character
records. ) See Figure 68.

Record
Character-count
Field Record Character-count Field Record Character-count Field
—r— —*— —r
! T 1 T T
1|2[34|s|6|78]o o: : : : |
d I | I { I
TJ 1 | | ]
Low-order
position of
Record
Character-count
Field
High-order
position of
Record 1

Figure 67. The Record Character~count Field

The DTF Entries 45



Line Label I?perction %
3 56 - 15116 20)21 25 30 35 40
o ISZZEAES L . 18 . )
0.2 1 P P S S S S T U S N ST S SOV DA S IAS
Figure 68 .

NOTE: In random processing and in single-

reference mode, variable-length records are treat-
ed by IOCS as fixed length records. (See DTF
'RECFORM' eantry.)

HOLDAREA

The operand of the HOLDAREA entry is the label of
the DA (Define Area) statement that defines the Disk
Record Holding Area assigned to the file. The loca-
tion represented by this label is the high-order posi-
tion of the Disk Record Holding Area.

defined by the programmer in his DA entry for the
first segment.

The size of the Holding Area is determined as
shown in Figure 86 and explained in the accompany-
ing description.

- The DA statements required for a Holding Area
which contains six segments for 120-character rec-
ords are shown in figure 69A.

Number of Segments

The number of segments is determined as follows:

Sequential Processing. Either one or two segments
may be used. The total output per unit of time is
usually greater if two Holding-Area segments are
used.

Random Processing. The number of segments de-

fperaﬁon J
1S/ 20|21 40

DISHAREA v

25 30 35

RN

PRI RO 't 11y

X N 1

Figure 69.

The operand in Figure 69 indicates that the label
of the Disk Record Holding Area of the file is
DISKAREA. (See Figures 14 and 86.)

The holding area consists of n sets of two fields.
The fields in each set consist of a 30-character
Holding Area Control Field immediately followed by
an input/output segment. (See the description of
the GETS macro-instruction for a complete explana-
tion of the Holding Area Control Field.) In both
random and sequential processing applications, the
user need only define the areas for these fields by
means of DA statements. IOCS will place the nec-
essary information in these fields as required.

The length of a Holding-Area segment is speci-
fied in the DTTF '"BLOCKSIZE' entry, and depends on
the record format and the mode in which the infor-
mation is recorded. (See Figure 87.) If more than
one segment is used, the IOCS will set up the word
marks in all segments in the same manner as

pends on
(1) the number of arms available to service a
file,and
(2) the number of transaction records which may
be stacked and request disk records from the
file.

For optimum arm scheduling, the number of seg-
ments should not be less than the number of arms
available to the file.

Size of Segments

The size of each segment of the Disk Record Holding
Area depends on the record format and the mode in
which the information is to be read or written. See
Figure 87, For a detailed description of the Disk
Record Holding Area see Figure 86 and the descrip-
tion of the DTF '"BLOCKSIZE' entry.

INDEXREG

This entry is not needed for sequential files if an
index register is not to be assigned to the files

Line Labe! Epmmd OPERAND

3 5\6 15116 021 30 35 A9 435 50 $5 60 85 70
0.1, CoNTROLFLDDA 1x29.,.6. 3.0-CHARRBCT.ER CONTRo.L FLELP

o2 |SEGNENTL (DA X2y 0 g ALy ot v it e e e e
l:s FLELDI A WORD. MARKS FOR FIELDS TN THE RECORD. . . .

los Freipal L0 e e e
o5, [FTLELPN . | ... 80,107 i e
0.6, | . . .  JORG  ICONTROLELD o oo v v v vva s e .
07 DISKARER . DA . |6XL5Z2, & . . DISK RECORD HelDINE AREA, SPECIFIED AS, THE
0.8 . :‘ \ , L OPERAND. &F THE DTF. HolD HARER ENTRY... . e
09, | o ., L T A S PO S S A S s L
Figure 69A.

46



described by the DTF. The entry is mandatory for
all random disk files.

The operand of the INDEXREG entry is:

X1, X2,..., X12,
indicating the index register assigned to the file.

NOTE 1: Index Registers 13, 14 and 15 may not
be assigned to a disk file,

NOTE 2: The programmer must refer to disk
data stored in the Disk Record Holding Area
by means of the index register specified by
the DTF "INDEXREG" entry for that file,
This index register will contain the address
of the high-order position of the disk record.
Therefore, if the programmer designates the
index register specified by the DTF "INDEX-
REG" entry in the DA entry for the Disk Rec-
ord Holding Area, the fields in that area will
be automatically addressed by the index
register,

FILEFORM

This entry is mandatory.
The operands of the FILEFORM entry are:

MOVE -- if the file described by the DTF is read
or written in the MOVE mode;

LOAD -- if the file described by the DTF is read
or written in the LOAD mode;

SINGLE -- if the file described by the DTF con-
sists of single records.
is used, the SCRAMBLE entry must be given:

CYLINDER -- if the file described by the DTF is
contained on an entire cylinder. (The cylinder
optional feature must be attached.)

TRACK -- if the file described by the DTF con-
sists of full-track records.

NOADDRESS -- if full tracks without record ad-
dress are to be read or written.

Move Mode vs. Load Mode

On magnetic tape, word marks are represented by
word separator characters in disk storage., Word
marks are represented by actual bits. Hence, when-
ever the programmer desires to place information
into disk storage with word marks, each character
in disk storage must be associated with an additional
disk-storage bit for the word-mark bit. The char-
acter storage-capacity of a given track of disk stor-
age, therefore, varies with the mode in which the
information is read or written.

'"MOVE" MODE. When written in the MOVE mode
(i.e., word marks are not required), each character

NOTE: if this operand

is represented by seven bits: six BCD-bits plus one
space bit. Each track can hold up to 2,800 charac-
ters written in the MOVE (or "6-bit'") mode.

"LOAD' MODE. When written in the LOAD mode
(i.e., word marks are required) each character is
represented by nine bits: six BCD-bits, one word-
mark bit, and two space bits. Each track can hold
up to 2,165 characters written in the LOAD (or ''8-
bit'") mode. See Figures 70 and 71.

SCRAMBLE

This entry is used only for sequential files, with

" single-reference processing. The user must save

the B-address register to effect the return to IOCS.
IOCS will take the SCRAMBLE exit whenever it needs
a new record address.,

Before branching control to the user's routine
specified in the operand of this mac¢ro-instruction,
IOCS places into Index Register 14 the high-order
position of the Holding Area Control Record (see
Figure 38). The track address is located in the field
labeled 'HAL.' (See the DTF 'NRECORDS' entry for
a description of how sequential track addresses are
updated.)

The record address developed by the routine must
be placed in the B-field of the Holding Area Control
Record.

DISKCHECK

This entry is only required if a Write Disk Check
operation is to be performed. The operand of this
DTF entry is YES.

RECFORM

This entry is needed only for sequential disk files
containing other than fixed-length,unblocked records. *
The operands of the RECFORM are:
VARIABLE -- if the file described by the DTF con-
sists of variable-length records, and
BLOCKED -- if the records described by the DTF
are blocked.
The operands must be separated by a comma and
may be listed in any order.

NOTE: The operands FIXED and UNBLOCKED,
referring to fixed-length and unblocked rec-
ords, respectively, may be used but are not
required.

A description of the record formats that can be

handled by the 1301 IOCS follows.

* Random input files are treated as fixed-length, blocked files;
random output files are treated as fixed-length, unblocked

files.

The DTF Entries 47



7 bits each per BCD character

\

/o \/ \/ \
‘ 112

3141516

1 ¥ } A

Bit

Figure 70. MOVE Mode: Seven Disk Bits per BCD Character, 2800 Characters per Track

9 bits each per BCD character

((

Space = * - ’ - ’ )] ’ - ‘
Bit 2 - 2 o

e + . %

& & 5 5

; ; : :

E: T T =

o <] o o

S ES z z

Figure 71. LOAD Mode: Nine Disk Bits per BCD Character, 2,165 Characters per Track

Index
Point Record Record
HA1 HA2 Address 1 Record 1 b Address 2 Record 2 F

GAP GAP GAP GAP GAP

]

Figure 72, Disk Track with Form-1 Records, with Record Marks

Index
Point
on Record
HA1 HA2 Add

] GAP GAP

1

GAP E

GAP

Figure 73, Disk Track with Form-1 Records, without Record Marks

Record 8
Record 7
Record 6
Record 5

Record 4
Record 3
Record 2
Index Record 1
Point Record Record

Address 1 * ¥ b ¥ 1 * t ¥

Address 2

GAP

Figure 74. Disk Track with Form-2 Records

48



Index Record-Character-Count Field

Point
Block- \<>
Record Character
‘ HA2 Address 1 Count Field, . ¥ | ) E3 ) i ¥ )
fLcar B GAP aar [ 1 v 77/ A/ T
1
\ ' /\_ VAN ! /
/S \% —V
Record 1 Record 2 Record 3
Figure 75. Disk Track with Form-4 Records
Each block has a variable number of variable-length records ‘
Ny SO
BLOCK RECORD May use | Omit May use | May use
Un- Fixed Variab . Record Record indexing | work
blocked | Blocked 1xed- ariable- Fixed- Variable- | o Marks registers | Areas
Length Length Length Length
Form 1 1 Needed only if
X - - X Yes Yes 2 I/O areas are
used.
Form 2 X X X Yes No Yes Yes
F 3 X ) 1 Needed only if
orm - - X Yes Yes 2 1/0 areas are
used.

Form 4 X X X2 Yes No Yes Yes

1Recorcl marks are required only if the output files are to be blocked.
2Record Character~count is contained in Record Character-count Field of each record.

Figure 76. Summary of Record Formats for Sequential Processing Using 1301 I0CS

IOCS as fixed-length records because of format-
track requirements.

Record Formats That Can Be Handled by the 1301
I0CS

Form-4 Records. These are variable-length,
blocked records, with Record Marks and Block
Character-Count Field, and Record Character-
Count Field in each record. See Figure 75.

Form-1 Records. These are fixed-length, unblocked
records -- with or without Record Marks. See Fig-
ures 72 and 73.

Form-2 Records. These are fixed-length, blocked
records -- with Record Marks -- with padding of
short-length blocks. * See Figure 74.

NOTE: In random processing and in single-
reference operations, Form-2 and Form-4
records (blocked records) are logically treated
as unblocked records by IOCS. The disk re-
cords are read or written as requested, but
unblocking cannot be performed by I0CS.

NOTE 1: Fixed-length, blocked records that are
only partially filled are padded -- either with
the character specified in the DTF "PADDING"
entry or with blanks if the PADDING entry was

omitted. BLOCK. CHARACTER-COUNT FIELD. A four-

NOTE 2: Form-3 Records (i.e., variable-length,
unblocked records) will be handled by the 1301

% Blocked records must always have a record mark in the low-order
position. Unblocked records may or may not contain record
marks. Howgmd records which are to be moved by
"GET DISKFILE TO WORKAREA" or "PUT RNDMOUTFIL" macro-
instructions must have either a record mark or a group mark with
word mark immediately to the right of the low-order position.

character Block Character-Count Field at the be-
ginning of each block contains a count of the total
number of characters in the block including the
four-character Block Character-Count Field, it-
self, The Block Character-Count Field has AB
zone bits over the units position. The count is used
for checking and correcting wrong-length-record
conditions. See Figure 76.

The DTF Entries 49



RECORD CHARACTER-COUNT FIELD. A Record
Character-Count Field of up to four characters in
each record contains a count of the number of
characters in that record, including itself and the
record mark.

The principal characteristics of permissible rec-
ord formats are summarized in Figure 76,

Examples of RECFORM entries are given in
Figures 77 and 78.

Line Label fperoﬁ
3 s[e 1s|ie ‘z:o 21 25 30 35

&
=]
~d

T
o lRecFofM, |\ JFINED BLOCKES |, .
0.2 R S B AR R S S S W S R
Flgure77

The operand in Figure 77 indicates that the file
described by the DTF contains Form-2 (i.e., fixed-
length, blocked) Records. The same DTF statement
could have been written as indicated below:

Line Label J?peroh;z‘z )
3 5|6 35 49 ‘3

0.t .ECFDRIM,A
0.2 el
Flgure78

......

The entry indicated in Figure 78is equivalent to
that shown in Figure 77 because the operand FIXED
need not be written.

BLOCKSIZE

This entry is required. The operand specifies
the number of positions occupied by each segment
of the holding area reserved for an input or output
disk record.

NOTE: The 30-character Holding Area Control
Record and the terminating group mark with
word mark are not included in this count.
(These must be included in the DA entries
for the Disk Record Holding Area.)

Lubel[ 'aﬁperoh ' 2 " 0 (
LOCKSI2E ] oGPl v {
PURE RIS NN T U U0 WA W S DU T T W T NN UUN G T W U S T S W 1 PR S U Y T S 4

Figure 79.

The entry in Figure 79 indicates that disk-record
segments of the holding area for the file defined by
this DTF are each 2800 characters in length.

50

NRECORDS

This entry is required for all sequential disk files
from or onto which single records are read or writ-
ten.

The operand of the NRECORDS entry is
n where '"n'" is the number of records per track.

NOTE 1: The operand 'n' can be any number from
1 to 99. For every 'n' requests for a record,
the track address is stepped by one. The user
is provided with the track address in HA1 of
the Holding Area Control Record when IOCS
exits to the routine specified in the user's DTF
'SCRAMBLE' entry.

NOTE 2: Files of this type always require the DTF
"SCRAMBLE" entry.

Line Label gperanzd }
3 5|6 30 35 40 _}

0,1, ,f:’camas* I e e
0.2 ...|.,..,.. ..Ll..........A...S
F1gure80

The operand in Figure 80 indicates that each disk
track of this file contains three records.

PADDING

This entry is needed only for sequential disk output
files containing fixed length, blocked records.*
The operand of the PADDING entry is:
x where "X" is the character with which the
block is to be padded.

The following characters may not be used for
padding: asterisk, tape mark, word separator char-
acter, record mark, cent sign and group mark.

Line Label _{EPGNHZOBJZ 3
s sle 156 1 25 30 35 40
o, [PAooTMs | . |7, N

Y N T .
Figure 81,

The entry in Figure 81 indicates that partially
filled blocks are to be padded with the digit 9.

* If the PADDING entry is omitted, partially filled blocks of this
record type will be padded with blanks.



Disk Address
A

-

Channel Number of
Disk Unit

Track Address

(1 or2)

Figure 82, Operand of the DTF "FILESTART" and "FILEND" entries

WORKAREA

This entry is needed only for sequential files that

use a work area and do not use the DTF "INDEXREG"

entry. .
The operand of the WORKAREA entry is the label
of the work area used by the input or work file.

FILESTART

This entry is needed only for sequential files. The
operand of the FILESTART entry is:
XXXxxXxx where "xxxxxxxx'" are eight digits defin-
ing the first track of the (sequential)
file, as indicated in Figure 82.

Line Labe! peration| j
s sle : sli6 20f21 25 30 35 40
OV AL LESTBRAT | v\ o R IRELEEL i o
Q.2 PR n 1 N N I U U S S U SR S S R s 3
Figure 83,

The operand in Figure 83 indicates that the first
track of the file defined by this DTF is track 2415
with HA2 of 80 in Disk Unit 1, which is attached to
Channel 2 of the system.

FILEND

This entry is needed only for sequential files, The
operand of the FILEND entry is:
XXXXXXXX Wwhere "xxxxxxxx'" are eight digits defin-
ing the last track of the (sequential)
file, as indicated in Figure 84.

peration
S 20j21 25 30 35 49
TZZS TSP e s

“
FUNITUNS [P U ST (U W eer S WU WS U S S R SRS St

The operand in Figure 84 indicates that the last
track of the file defined by this DTF is track 2549
stored in Disk Unit 1, which is attached to Channel
2 of the system.

EOFADDR

This entry is required for sequential files only.

The operand of the EOFADDR entry is the label of
the routine (written by the programmer) to which
control is to be branched if the program develops an
address exceeding that defined by the DTF "FILEND"
entry.

WLRADDR

This DTF entry, when used for a disk file, elimi-
nates the normal wrong-length record checking per-
formed by the IOCS for that disk file. It is useful

if the programmer is expecting a wrong-length re-
cord indication and wishes the IOCS to ignore it.
The operand in the disk "WLRADDR' DTF entry is
'NO!, to indicate that no checking is to be done.

NOTE: The use of the '"WLRADDR' DTF entry
for files assigned to disk storage is different
from the use of this entry for any other type
of device.

The DTF Entries 51



DA (DEFINE AREA) ENTRIES NEEDED TO SUPPORT THE 1301 1I0CS

All areas required by the 1301 IOCS (i.e., Trans-
action Stacking Areas, Disk Record Holding Areas,
and Holding Area Control Records) must be re-
served by the programmer by means of appropriate
DA entries. (A general discussion of how DAs are
written may be found in the IBM Data Processing
Systems bulletin, "Basic Autocoder for the IBM 1410:
Preliminary Specifications, ' Form J24-1413.) All
such areas must be terminated by a group mark with
word mark immediately to the right of the low-order
position of the area.

The following describes how DA entries are writ-
ten for the Transaction Stacking Area for Disk Rec-
ord Holding Areas.

DA ENTRY FOR THE TRANSACTION STACKING
AREA

Each 1410 program written for random processing
that is to utilize the IBM IOCS requires one Trans-
action Stacking Area. The Transaction Stacking
Area permits the "stacking' of incoming transaction
records for use by the disk routine(s).

NOTE: The segment of the Transaction Stacking
Area assigned to a given transaction may also
be used for storage during the processing of the
transaction. Information so stored will be
protected until the segment of the Transaction
Stacking Area is released. Information stored
by the disk routine in any other field in storage
might be destroyed during the processing of
another transaction record. See Figures 4 and5.

The DA entry for a Transaction Stacking Area is
of the form shown in Figure 85.

Line Label Epuraﬁ i
s~ sie 15)18 ol21 25 30 35 40
0 |Ary L AL DA . WA, G L s T AKX o o

0.2 FI.E‘LL..Z:.,. PP b 2 N S SR S S S S
03 ¥.16..02 R XA L
o4 Plecos | . g e
N R D D
Figure 85 .

In Figure 85,

N indicates the number of identical segments
to be reserved;

M indicates the number of positions to be
reserved for each segment;

G specifies that a group mark with word mark
(needed by the 1301 I0CS) is to follow
immediately to the right of the area reserved
by this DA, and

INSTACKX is the label (name) of the index

register assigned to the Transac-
tion Stacking Area. See the 1301
IOCS "STKINDEX" entry, and
Figure 39.

NOTE 1: For applications requiring more than
one disk routine, the number of segments N
should be calculated by the following formula:

N =(§3p__ , where:

Op = Operand of the DIOCS "RNDMDEPTH"
entry, and

S = Number of SEEKS per transaction that can
be executed simultaneously. .

NOTE 2: If variable-length transaction records
are to be moved to the Transaction Stacking
Area, each segment must be large enough to
hold the maximum-size record.

NOTE 3: Each segment must contain a location
for the record mark or the group mark with
word mark that terminates the move operation
and is moved together with the input informa-
tion.

NOTE 4: The word marks specified for Fields 1,
2 and 3 are needed only if the programmer
desires to move data to the Transaction
Stacking Area by actual move commands.

NOTE 5: The label of the DA statement is used to
describe the area in the DIOCS "STKAREA
entry.



DA ENTRIES FOR DISK RECORD HOLDING AREAS

Each program utilizing the IBM 1301 IOCS requires
one Disk Record Holding Area for each disk file
used by the program. The Disk Record Holding
Areas are used for the storing and processing of
information obtained from disk storage. Each Disk
Record Holding Area must be reserved by the pro-
grammer by an appropriate DA entry.

The size of each Disk Record Holding Area (i.e.,
the number of segments of the area and the size of
each segment) depends on the record format and the
type of application. The number of segments re-

quired has been described in the discussion of the
DTF "HOLDAREA" entry.

Figure 86 indicates the general format of a Disk
Record Holding Area. As indicated in Figure 86,
each segment of the Disk Record Holding Area must
be preceded by a 30-position area required by the 1301
I0CS. Each segment must be followed by a loca-
tion for a group mark with word mark to be inserted
by the 1301 IOCS. (See OPEN macro-instruction and
Figure 14.) The entire Disk Record Holding Area
must be followed by one location for a final group
mark with word mark that must be specified by the
programmer,

DISKAREA —>= 30-Position Area Required by the 1301 IOCS

1st Segment of the Disk Record Holding Area

GM w. WM

30-Position Area Required by the 1301 IOCS

2nd Segment

GM w. WM

30-Position Area Required by the 1301 IOCS

3rd Segment

GM w. WM

30-Position Area Required by the 1301 IOCS

nth Segment

GM w. WM

GM w. WM

Figure 86. Format of Disk Record Holding Area

DA Entries Needed to Support 1301 IOCS 53



The size of each segment of the Disk Record Hold-
ing Area depends on the record format and the mode
in which the information is to be read or written.

See Figure 87.

Figure 88 shows an example of the type of DA
entries that must be written for a sequential disk
file containing three 65-character records per block
that are read and written in the MOVE mode.
also section on '""Move Mode vs. Load Mode. "

block and’the wo
third hiocks are provi

See

rk for each

by the OPEN

instructipn; See thﬁeX)_leN
macpo-instruction, including Figure 14.

NOTE 2: All random files must be indexed (rela-
tive to zero) with the indexing reg1ster specified
by the DTF "INDEXREG" entry.

NOTE 3: Information in sequential files may be
either indexed or moved. See description of
the GET macro-instructions.

DA ENTRIES FOR HOLDING AREA CONTROL
RECORDS

See description of the GETS macro-instruction.

Total number of positions Use of the Reserved Area
Record Format and Mode which must be reserved For Disk
by that programmer for For I0CS Control For
each segment. Disk Data Information GMw. WM

Full TRACK, LOAD 2195 2165 29 1

Full TRACK, MOVE 2830 2800 29 1
Figure 87. SIZE and USE of the segments of Disk Record Holding Areas
Line Label Eperuh OPERAND
3 sle 26 30 35 40 45 55 80 65 70
0.1, IFI.L EﬂﬂEﬁ Zx,3,8. . DEFINE cONTifaol AREA . . . . (. . . . et a ]
02 { .. ... DA, 265, JOOEXNWORD | o h iy iy s L .
0.3 FLfLoA IR AP0 AN s AREL NEEDED | 4 4 ., e a
0.4 fI,EL‘D.J[ PR (LFOR TIME, i a4 e d 4k
i(gls, LELDA ) RN 4 5 X 3t A VI N =N A S
N N Y Ty e e e
o7, el 04, . |7rx225, L+M¢%&,Mud £ _3EcoMp Mok Ano, | |
08, PV IS I - AN Y .7 XY N 2. A . RN
o5, R IS B NN ey
Figure 88.

- ) / b /;,\«,W/M }C’I Q/Z‘é

NITEN f& ‘EAM{%M w(ﬂwa—kdbx"-’bl[/é‘llé?( ’W(Z,m ward

AP A"B?MM (2! W’*’* %
W’}‘ ‘}w’(l © . _)‘1) ,.\:,Q).«‘L\. 7\1 ?u,u«-\

U ) adeden o whidd Nasneso (5. Fotl ange /u),uuua’ for N £

G PEN M athd s e v )“-\J/»:’u\: 3 )-:‘y”‘*— re.

54

Tw O PLN Ameche

1@’1 oar ?Awy »’bamf(s [V s d Y vl A 7?& )[r\hq,e

s /ﬂud-fn-. . L}UMM/ 7h w-zef

(k R .bu 00«1(}\.4/’["7"‘ //LL



ADDITIONAL INFORMATION FOR PROGRAMMERS

THE SIZE OF THE 1301 IOCS ROUTINES

The approximate number of storage locations re-
quired by the 1301 IOCS Routines are as follows:
2,500 locations

3,000 locations
Sequential-Processing Routine: 1,000 locations

Error Routines: 3,500 locations

See Figure 11,

Single Reference Routine:
Random-Processing Routine:

IBM

USE OF INDEX REGISTERS

Index Registers X13-X15 are used by the 1301 IOCS,
and their contents may change each time a macro-
instruction is encountered. The programmer may
use these index registers, but he should consider
the effect of the above on his program.

Form X24-13501
Printed ia USA

Program INTERNATIONAL BUSINESS MACHINES CORPORATION Identification %&&Eé
Programmed by ———— IBM 1401 AND 1410 DATA PROCESSING SYSTEMS Page No.\BZi of o~
Date AUTOCODER CODING SHEET - )

Line I Label zl?pemnmL OPERAND

3 5(6 15]16 20[21 25 30 35 40 45 50 55 60 [} 70
ot [¥ .CopTne eWAMPLE.. 1410 Tocs. FOL 1301, DISK STORAGE s « oo o ris o oan s
0.2 R TR /= 2 ¥ =8 | T S S S P R SN
03 |[FEATURES VR LAP, PRISRITY. « «xnio o KEQUILEP. i i i vas s i itsosasaa
04 ICARNZ | |\ READER, THLE \ 2 sssrosss s RPRyy TP OM CHL o vaa o s 11 s
0,5, CHANA 1. . R 17 Y A SO ORI - - - L A =N A A R
0.6, |P.RO.CESTN.LE o RAKNDPOM, i o BNDM PROCESSING i s v s
0.7, [FNDMPLELTH, R R SGANTS, LN, HOLDARER « 4 « 11
0.8, |S.TKAREA e TRAMS.BCTN, i vy cvvvas vi 2 JLRANSACT.IONS, STACKED HERE, .
0.9, STKENMPEX, | oo KA e TNDEX REG. [EOF, TRANS KPS, |
Lo ISEMTLENGTH] oo v 8L e Cree o CREP RCDS ARE. 8.0, L FOoR H .
L PJ,S.K.H.R;[ESJ B i i B DODULES, s u e e e e

IBM

Program

L2 i il  PTE READER, o bst b et e b A e b b a4
L3, FLLETYCE | oo |REAOEL o o\ TRANSACTION, INPUT, FROM CHEDS. . i1 o2 toessis
L4 JCARDPOIC «adin s a e i  (SEMECT. REAP, POCKET o\ 4 i h s aa a4
s [TOAREAS, | o NINPUT o TRANSACTION, READ HERE. o« o o tottssteaas ot s
1.6, JEOFADDIR ot ou o MENP o EOE ROUTINME | 0w ah i i aaa ks
et el 1P MRS TERELEE. o o\ ot oot d e vttt e ek
Lo, [FILETYIPE s LS K RANDOM, TNLUT. DS K FLLE o icas s it s s
Lo, [ST2EREC, . . e A0 i RGP ENGT M ks i sk s ks
2,0, [FTLEFORM 1] oo [MOVE,SINGLE 4 s SINGLE RCDy,, MOV.E MEDE  \ v 11
20, oL paRed | ... |oEsKkowPuT i HOLDTNG, BREFA i i
2.2, [TADENXREG: | w0 JM& e ia v i vas o TMDEN REG 0K, DLSK RCPS. v e vt s
2,3, A‘JIA:A LJPITE, s REPERT. 1 tv Lt b 4t bttt L4 tdd Ea ok d el L 4 Led a4 L a
2.9, |FILETIPE o | ot [LAPELOUTPUT. s 11 o s WPDATES KPS FOR OFF-LINE LY 0L
25, KAONDRSYE | o Moy oy PRIWMTGING
ke |ToARess, | L RPTRECL .. vtis s TABBRER o i d it daa s

Form X24-1350-1
Printed ia U.S.A.

Programmed by —

INTERNATIONAL BUSINESS MACHINES CORPORATION

IBM 1401 AND 1410 DATA PROCESSING SYSTEMS

Identification iﬂﬁ.L_Ea
Page No. &.ﬁr oi 1L

Date AUTOCODER CODING SHEET

Line Label J?peratioi OPERAND

3 5|6 15016 20§21 25 30 35 490 45 50 5% 60 [-}] 19 B
N WREAS. « o | ia i e e et
o2 WRANSACTHDA o . |bAB L0t TG s s TRANSACT.LON, STACKING. AREA, it sk
0.3 Le.CAT.IEN N P e EQURBLS, TRACK APDRESS « o i wtiiiiis oo v
0.4 PART NG . . . st CHANKEL(A),, MODULE,, b RECORD. ADIRESS. |
08, TYPE wb v g e e e e
0.6, WC.T.Tv IIT.Y. R A - ST S U S S T
0.7, INPUT, o s PA . |1X90,60 . o o o oo  TBANS, CARD TlPYUT o sttt st toas srn o s
08, IDISKINCWLT A |1XR29,6 o« vns . HSLPLNG AREH. COMNT. EGARP i ik
09 | o il PA . |LXT20,,.0,,. 02,6 . . LENCTH &F S EQHENT, WLTH oo oo osvossnn .
1.9, |BALANCE. e T sy i inas o FLELR DEFINITLONS.. TLHESE WORD-MARLS. . |
Lo RESCRIe TN | o |te, .50, . u.,._LL/J Le, BE LLECED LN EACH, SECAENT. of. T.AE]
L2 N ITcosT | o |5y Sl s iy HOb BING ARER.. THE. 30 CHAR, CTh KD ..o .
VI WBCATLON | T, B0 o WTLL BE, SET, WP LPRECEIING EBCH. o i i sonn
W sl JORG  DISKINPUT o o o SEGILENT 0. o dostodos ottt ok bttt dd s a bt eotte
N SR R Y. N X ) X EFINIT.I.o0 OF HOLDING BREL o vovoeeos
16, B PR X L300, G s o REPSRT, RECORD. UL LPYT FREL (o i in. ]
R4 $@1, ., |PC ., RTHAL- S ALLO o i it itts s s et a1
1.8, - Jv. DCW, ,MLI‘I:IA}JAv,,”‘_,‘llll,lkktllk el PRSI T et tb i 4

Figure 89,

Additional Information for Programmers

55



IBM

Progrom

Programmed by — —— ——.

INTERNATIONAL 8USINESS MACHINES CORPORATION

IBM 1401 AND 1410 DATA PROCESSING SYSTEMS

Form X24.1350.1
Printed in U.S.A.

Idenhfncahon.%ﬂ..ﬁ.l:.é
Page No. lﬁll of —0f

Date AUTOCODER CODING SHEET
Llne Label Jgpem";o 21 25 30 3§ 40 OQF;ERAND 50 6% 1] _65 70
SF).NPILE PRec.RAM. RERD A CARP.,. GEL ARANDOM PLSK RECORD ANP ADP. . .. ..
u“_A,MELQJ:I v.I7Y. |FLELD, PUT DISK RECORP BACK AP PUT DISK RECORPD .
0.3 [, .&/v NALE AR e F-LINE 1404 REPORT s + 1o v v o i w i as " .
0.4 . | " L IS " " P S O SO O S SV St W G G S S O SO TR SN SR SO0 W P GOV ST WY A S S S S Sl S S S 'S
gé.h,iLLK.L@4 o PEN. |READER, r\ﬂsrmafu: REPORT. + 1« . GPEN BLL ELLES 1 o 1as
lo.s. ¥, MATM ReUT.LNE . N Lt N
07, REA vm_ai&n GET. . |READER. . . . .&Emz mms.a@m.em BECORD v iv visn i vas]
o6, | .. . 1. .. MVRSAINPUT. .. . ., ME.V.E RCD, 10 STACKING BREA. . . .. .. ‘o
lo,e R _|pIskRreuTIM T8 DISK ROUTINE . o i o vvisis st
o |ty B |READCARD . . . . RETURN. FREN DR CET MUT, TRAEMS . 11
A t,_fﬂ,p.ﬁn ALLe AROGCERVRE . 4 . . e e e A ke b 4
L2 JEAD C.AQJEMMTQ&FLLL,J&EMA&LA i LLSE ..ILL.L FLLES i\ caas
03 | g eNSUINCP  MS6 L s e e e L b b
v e KRS DERD, P
15l il pcw 0t L. NeRD MARK AETER LAST LINSTRes o ot isse st e i ]
IEM e
Program INTERNATIONAL BUSINESS MACHINES CORPORATION Identification -.Jlfh._é
Programmed by —— IBM 1401 AND 1410 DATA PROCESSING SYSTEMS Page No. ol O' _L!_
Date AUTOCODER CODING SHEET 12
Line Label Fperohﬂ QOPERAND
H 6 a5 30 55 60 85 70
0.1, % DJS/(. Rt} T.IAE |- f/i/vpa/'l ?Racf_s.sf/«e R s s .. et
Ls Kﬁﬁum’ ENT.DR S.TART. of. DISK ReUTINE, , . , ]
0.3 L MLCB |PARTNG:, I eCSPDSKAD. uL,SquuuS&&LMMMM‘MAM
0,6 R IR . VX 1 it L0 TBCSSENAD o o o o R
l;_S_LvAL_L__L,iLJ’_... ET, ﬂSTE&fIfo‘LJ.Ln-l‘.‘- P S RN T S T S S S Y S S SR S
0,6, ¥, PROCIES S JRECORIP o o o o ot oo v e e ettt s
ot b i 18 NACTIVITY.  BALANCE. .  ULDATE DILSK /zEc.mz.p s
o8 | i, geM 104X 2, RATRECY, | | L MEVE RC.p To REPBRT. .
oo |l lPUT  MASTERELLE, . o\ o ri oo PUOT. DLIK REP BRCKA v st tinn i sion ]
ol PUT.  REFBRT - LRITE, REPORT .. . e i
ol L EVDR i RETURN, Tt SIBIN, LINE . o . osasesr o]
Figure 90,

CODING EXAMPLE

The following coding example illustrates the incor-
poration of the 1301 IOCS into a 1410 program. It
illustrates a parts-inventory application. The
inventory file is updated on the basis of transaction
records showing receipts and disbursements. The
program also calls for the writing of a report show-
ing the warehouse location and retail price of each
part listed under disbursements. See Figures 89 and 90.
This type of application has been described
above under "Random Processing."

MODIFICATION OF 'SEEK-ONLY' OPERATIONS
WHILE SEEK IS IN PROGRESS

The programmer can modify an initiated SEEK op-
eration by taking three steps before the completion
of the SEEK. He must:

1. mask priority interrupts by means of the
Branch to Exit Priority Alert (mnemonic op-
eration code BXPA) instruction;
check the specified switch for completion of
the SEEK operation (See formats C and D of
the GETS macro-instruction), and

56

3. change bit position 2 from ON to OFF. (ONis
indicated by the presence of a bit; OFF is

indicated by the absence of a bit.)

This will cause completion of the SEEK operation
to be followed by the operation specified by the
D-modifier.

This technique enables the programmer to initiate
the SEEK operation and while the SEEK is in prog-
ress determine by processing whether the SEEK is
to be followed by a READ or WRITE operation.

In each case, the turning OFF of bit position 2 will in-
volve a change of the character entered in CODE (position
6) of the Holding Area Control Record. See Figure 91.

Let it be assumed, for example, that the prog-
rammer placed a W into DMODIFIER, and a K into
CODE. In this case the presence of the 2 bit (BCD
representation for K = B2) indicates that only a SEEK
operation is to be performed. (See explanation of
the CODE entry in the Holding Area Control Record.)

If the programmer determines by processing
(while the SEEK is in progress) that the SEEK op-
eration should be followed by a disk READ opera-
tion with wrong-length-record checking by 10CS, he
need only change the contents of CODE from K to
- (minus sign). The elimination of the 2-bit in



CODE now causes the SEEK to be followed by the
operation specified by the contents of the DMODI-
FIER entry (in this case a READ operation) followed
by a wrong-length-record check provided by IOCS
because of the presence of the B-bit. (The BCD
representation of the minus sign is a B-bit.)

IOCS LABELS THAT MAY BE USEFUL

IOCSxxBFLD - A seven-position field containing the
module number and six-position disk address for a
sequential track file. It may be altered to control
changes in the ''sequential" order.

I0CSxxDKAD - A four-position field containing a
track address for single-record files.

IOCSxxINCR and IOCSxxCONS - These two fields are
used to insure accessing the first record of a new
track address in single-record files the maximum
number of times after a change to 'IOCSxxDKAD'.

A ZA TIOCSxxINCR, IOCSxxCONS instruction must
be given when accessing records from other than
the next sequential track, The maximum number of
times data may be accessed from a track is equal to
the number of data records on that track, as defined
in the 'NRECORDS' DTF entry.

'"TOCSxxSTRT' - An eight-position field that contains
the information supplied to the IOCS by the user's
'FILESTART' DTF entry. The field may be modi-
fied at any time; however, the change will not be in
effect until an 'OPEN' macro-instruction has been
executed for that file.

'TOCSxxEND' - An eight-position field that contains
the information supplied to the IOCS by means of the
user's 'FILEND' DTF entry. It may be modified at
anytime; however, it must be greater than the cur-
rent address as given in 'TOCSxxBFLD' or
'TOCSxxDKAD'.

The 'PREFIX' macro-instruction may be used to
define xx in the above labels.

GLOSSARY

The following Glossary is restricted to basic terms
used or introduced in this bulletin.

Disk Record Holding Area. A work area, used by
the 1301 I0CS, in which records obtained from disk
storage are temporarily retained for processing
and/or subsequent return to disk storage.

Disk Routine. A series of object-program instruc-
tions needed to obtain or process disk-storage data.

Holding Area Control Record. A body of control
information defining the specific operation to be
performed by a GETS or PUTS macro-instruction.
This information must be entered into core storage
-- in an area reserved by the programmer for this
purpose -- before the associated macro-instruction
is encountered by the program.

Random File. A file of information contained on
disk storage for use in a RANDOM PROCESSING
application.

Random Processing. Processing of disk records of
uniform format and belonging to specific files in any
(arbitrary) order of addresses.

Sequential Processing. Processing of disk records
in the order of ascending addresses.

Single-Reference Processing. Processing of disk
records of any format (and located anywhere in disk
storage) in any (arbitrary) order of addresses.

Transaction Stacking Area. A work area used by

the 1301 IOCS to store transaction records for sub-
sequent processing and updating by the Disk Rou-
tine(s).

Disk Operation
to be performed

CODE-Field Entry

SEEK only
WRITE Disk Check

SEEK + Write Disk Check
SEEK + Length Check

Wrong-Length ~-Record Check

Write Disk Check + Length Check
SEEK + Write Disk Check + Length Check

2
4
6
K
M
(e}

Figure 91. BCD Characters entered in CODE field of Holding Area

Control Record

Additional Information for Programmers 57



INDEX

Advantage of the 1301 IOCS 19
Assembly of 1301 IOCS 5,20
Assembly of programs using the 1301 10CS

Block Character-Count Field 49, 50
"BLOCKSIZE" DTF¥ Entry 50

Card/Tape 10CS 18
Channel Scheduler 18,19
"CHANx" DIOCS Entry 40
CLOSE macro-instruction 22
Coding example 56

DA's for Disk Record Holding Area 53
DA's for Holding Area Control Record 52
DA's for Transaction Stacking Area 52
Deblocking of disk records 19
Dependent Disk Routines 13,14
DIOCS "CHANx'" Entry 40
DIOCS "DISKARMS'" Entry 42
DIOCS "DISKOPTION" Entry 42
DIOCS Entries

general 40

list of 40
DIOCS "FEATURES" Entry 40
DIOCS, general format 40
DIOCS header line 40
DIOCS "IODEVICES" Entry 40
DIOCS "NORCDEXIT " Entry 43
DIOCS "PROCESTYPE" Entry 40
DIOCS "RNDMDEPTH?" Entry 41
DIOCS "SGMTLENGTH" Entry 42
DIOCS "STKAREA" Entry 41
DIOCS "STKINDEX" Entry 42
Disk Arm Scheduler 18,19
"DISKARMS" DIOCS Entry 42
"DISKCHECK" DTF Entry 48
"DISKOPTION" DIOCS Entry 42
Disk Record Holding Area

definition (see Glossary) 57

general 11
number of segments of 46,53,54
size of segments of 46,53,54

Disk Routine
general 9
definition (see Glossary) 57
dependent 13-15
independent 13
DTF "BLOCKSIZE" Entry 50
DTF "DISKCHECK" Entry 48 .
DTF Entries
general 44
general format 44
list of 44
DTF "EOFADDR" Entry 51
DTF "FILEFORM" Entry 47
DTF "FILEND" Entry 51

58

5,20

DTF "FILESTART" Entry 51
DTF "FILETYPE" Entry 44
DTF Header Line 44

DTF "HOLDAREA" Entry 46
DTF "INDEXREG" Entry 46
DTF "NRECORDS' Entry 50
DTF "PADDING" Entry 51
DTF "RECFORM" Entry 48
DTF "SCRAMBLE" Entry 48
DTF "SIZEREC" Entry 45
DTF "WORKAREA" Entry 51

ENTDR macro-instruction 24
"EOFADDR" DTF Entry 51

"FEATURES" DIOCS Entry 40

"FILEND" DTF Entry 51

"FILEFORM" DTF Entry 47

"FILESTART " DTF Entry 47

"FILETYPE" DTF Entry 44

Form-1 Records 49

Form-2 Records 49

Form-3 Records 49

Form-4 Records 49

FSEQP macro-instruction 27
additional functions of 28

GET macro-instruction 24
GETS macro-instruction 30
Format A 31
Format B 33
Format C 33
Format D 35
Glossary 57

Group Marks inserted by OPEN macro

"HOLDAREA" DTF Entry 46

Holding Area Control Record
for GETS macro-instruction
for PUTS macro-instruction

Independent Disk Routines 13
"INDEXREG" DTF Entry 46
Index registers, restrictions 55
In-Line Processing 7
IOCSDSKAD, location labeled

LEVDR macro-instruction 29
"Load" Mode 47
Machine requirements 5
Macro-Instructions
list of 11,21
summary of 13
Main Routine 9
"Move" Mode 47
MVRSA macro-instruction 23

30
30, 35

25



"NORCDEXIT" DIOCS Entry 43
"NRECORDS" DTF Entry 50

OPEN macro-instruction 21
Operation-Complete Switch
for GETS macro-instruction 33
for PUTS macro-instruction 37,38

"PADDING" DTF Entry 51
"PROCESTYPE" DIOCS Entry 40
PUT macro-instruction 26
PUTS macro-instruction 35~39

Format A 37

Format B 37

Format C 37

Format D 39

Random File (see Glossary) 57
Random Processing

definition (see Glossary) 57

general 6,19
Read-error treatment 32
"RECFORM" DTF Entry 48
Record Address 49
Record Character-Count Field 49,50

Record formats 49
Release of segments of Disk Record Holding Area 11,28
Requirements (see Machine Requirements) . 5

"RNDMDEPTH" DIOCS Entry 41

"SCRAMBLE" DTF Entry 48

SEEKS
modification of 'Seek-Only' operations 56
simultaneous execution of several 19

Segments of Disk Record Holding Area
general 10
number required 46,53,54

size required 46,53,54

. Sequential File

definition (see Glossary) 57
Sequential Processing

definition (see Glossary) 57

general 6,19
"SGMTLENGTH'" DIOCS Entry 42
Single-Reference Processing

general 6,19

Method 1 16

Method 2 17
Size of 1301 IOCS Routines 55
"SIZEREC" DTF Entry 45
"STKAREA" DIOCS Entry 41
"STKINDEX " DIOCS Entry 42
SWITCH Operand

GETS macro-instruction 33

PUTS macro-instruction 37

Transaction Stacking Area
definition (see Glossary) 57

general 9
size of 41
WAITS macro-instruction 39

Word Marks inserted by OPEN macro-instruction 22
"WORKAREA'" DTF Entry 51

"WLRADDR" DTF Entry 51

Work Areas, release of by FSEQP macro-instruction
Write-error treatment 33

27

Index

59



C28-0251-0

IBM

International Business Machines Corporation
Data Processing Division
112 East Post Road,- White Plains, New York

'Y *S ‘N ut pajunlg

0-1520-820



	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	xBack

