
Systems Reference Library

File No. 1410/7010-22
Form C28-0326-2

IBM 1410/7010 Operating System (1410-PR-155)

Autocoder-1410-AU-968

This publication is a reference text for personnel engaged in writ­
ing programs in the Autocoder language for use within the frame­
work of the 1410/7010 Operating System. The Autocoder language
is composed primarily of symbolic one-for-one source statements.
Its associated processor (Program Number 1410-AU-968) is a
symbolic assembly program with macro-generation facilities.

MINOR REVISION (November 1964)
This publication is a minor revision of, and makes obsolete,
the publication IBM 141017010 Operating System; Autocoder,
Form C28-0326-1, with its associated Technical Newsletter,
N28-1126. Minor changes to the text have been indicated by a
vertical line to the left of the change; revised illustrations are
denoted by the symbol. to the left of their figure captions.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Department 637, Neighborhood Road, Kingston, New York 12401

Introduction 5
Purpose of this Publication. 5
Purpose of the Language and Processor. 5

The Autocoder Language. .. 5
The Autocoder Processor. 5

Prerequisites 5
Minimum Machine Requirements. 6

Basic Concepts and Functions 7
Autocoder Statements 7
Principal Elements of Autocoder Statements. 7

Label .. 7
Operation Code .. 7
Operand 7

Relocation 8
Upward Relocation 8
Downward Relocation 8
NO Relocation 8

Definition of COMMON " .. 8
Processing Options .. 9
Autocoder Multiple Compilation " 9
Terminating the Object Program. 9
Assembly Listing 10
Replacement Codes .. 11
Coding Sheet '" .. 12

Identification 12
Page Number and Line Number 12
Label 12
Operation Code 12
Operand 12

Types of Operand Entries. .. 14
Basic Addresses 14

Symbolic " 14
Asterisk (*) 14
Actual 15

Address Adjustment 15
The Form * + XOO. .. 16
Multiple Adjustment Factors. 16

Indexing 16
Addressing an Index Register. " 16
Indexing an Address 16
Indexing with Address Adjustment. 17

Literals 17
Numeric Literal " 17
Alphameric Literal .. 18
Area Defining Literal. .. 18
Address Constant Literal. 18

Linkage Symbols 19
System Symbols 20
Miscellaneous. .. 20

Operation Modifiers (d-Characters)............. 20
Blank Operand 20
Zero as a Basic Address. 20
Special Operand Elements. 20

Contents

Autocoder Operation Codes
Imperative Operation Codes....
Symbolic Machine Instructions
Special Imperative Statements

NOPWM - No Operation; Word Mark
NOP - No Operation

Declarative Operation Codes
DA - Define Area

DA Statement
DA Subentries
DA Statement Parameters
Sample Problem
Review

DA V - Define Area in COMMON.

Assignment of Data Areas in COMMON

Use of Labels Referencing COMMON

RSV - Reserve Assignment in COMMON.

DCW - Define Constant with Word Mark.
Numeric Constants
Alphameric Constants
Blank Constants
Address Constants '"
Signed Address Constants.
Implied DCW Operation Codes

DC - Defined Constant (no word mark)
DS - Define Symbol
EQU - Equate

Actual or Symbolic Address
Adjusted or Modified Address
Index Register
Asterisk

Linkage Loader Operation Codes.
TITLE - Title

Entries
Format Considerations

BASE1- Base Address
Actual
Symbolic
Asterisk Plus XOO (* + XOO)

BASE2 - Base Address (COMMON Data Area)
CALL - Subprogram Call .. ,
DCWF - Subprogram Address Constant
DCWS - Subprogram Branch Instruction
DE FIN - Definition
PRTCT - Protect
Control Operation Codes
Assembly Control Statements

HEADR - Header Line
RESEQ - Resequence
PST - Print Symbol Table (Cross Reference Listing)
EJECT - Eject

Subprogram Control Statements
ORG - Origin
L TORG - Literal Origin
END - End Subprogram and Assembly
SPEND - End Subprogram

21
21
21
21
21
21
23
23
23
23
24
25
25
26
26
27
27
27
28
28
29
29
29
29
30
30
30
30
30
31
31
32
32
32
32
33
33
33
33
33
33
33
34
34
34
35
35
35
35
35
36
36
36
38
38
38

The Macro System " 40 Pseudo-Macro Coding Example. 49
Definition of Terms " 40
Macro Operations .. 40
Pseudo-Macro Instructions 44

Permanent and Temporary Switches " 44
MATH - For Solving Algebraic Expressions " 44
BOOL - For Solving Logical Expressions " 46
COMP - To Compare Two Fields " 47

Appendix 51
A: Processor Error Diagnostic Procedures. 51
B: Autocoder Messages and Limits 52
C: 1410/7010 Autocoder Sample Program. 53
D: Autocoder Operation Codes , 59

NOTE - To Produce a Message " 48
MEND - End of Routine. " 48 Index 65

Purpose 01 this Publication
This publication is a reference text for personnel writ­
ing programs in the Autocoder language for use with
the IBM 1410/7010 Operating System.

Purpose 01 the Language and Processor

The 1410/7010 Autocoder is one of three programming
systems provided by the Operating System. (The other
two are FORTRAN and COBOL.) Autocoder consists of a
symbolic coding language and an assembly program
called a processor.

Utilizing the required elements provided by the
Autocoder language, a program can be created by cod­
ing the steps necessary for the solution of the problem,
and presenting them in the form of statements. The
Autocoder processor translates these statements into
the computer's internal language, and assembles them
in the form of a relocatable subprogram. The resulting
relocatable subprogram can then be processed by the
Linkage Loader and used whenever necessary.

The Autocoder Language: Elements of Source
Statements

The user's source program is written by using mnemonic
symbols to represent the principal elements of the
source statements. These elements are (1) the name of
the statement (a label), (2) the operation to be per­
formed by the statement (an operation code), and (3)
the program elements or parameters on which the
operation is to be based and/ or performed (the
operand).

Macro statements in a user's source program cause
additional symbolic source statements to be generated
and inserted into the program. The generated source
statements will be tailored according to the logic of the
macro routine the programmer has placed in the Macro
Library and the parameters in the source macro­
instructions.

The Autolcoder Processor: USled with the Operating
System

The 1410/7010 Autocoder processor is designed to op­
erate in conjunction with the Operating System. The
object programs produced are assembled and run ac­
cording to the conventions of the Operating System.

Introduction

THE ASSEMBLY PROCESS

The assembly process produces an assembly listing and
an object program in card-image form called, in this
publication, an object deck. The object deck is in re­
locatable format, ready for processing by the Linkage
Loader.

The programs assembled by the 1410/7010 Auto­
coder processor must be designed to run exclusively
within the framework of the Operating System. The
Resident Monitor, including the Resident laCS, provides
a great deal of power by simplifying the task of pro­
gramming. A minimum of programming need be
concerned with operating control and input/output
operations, since macro-instructions are available for
these functions.

THE OBJECT PROGRAM

The following points should be noted concerning the
object program as it is discussed in this publication,
and executed within the framework of the Operating
System:

l. The object program will be referred to as a sub­
program. (A subprogram is the basic program unit with
which the Linkage Loader performs its processing.)
This subprogram can be a self-contained program, or
it can be a subroutine to be executed in conjunction
with other subprograms, forming a multiphase pro­
gram.

2. Subprograms to be combined during one run of
the Linkage Loader can be assembled individually at
different times or during a single assembly run.

Prerequisites
It is assumed that the user has completed a basic course
in programming for the IBM 1410 or IBM 7010 Data
Processing System, and is familiar with information
contained in the following publications:

IBM 1410 Principles of Operation, Form A22-0526, or
IBft,,/ 7010 Principles of Operation, Form A22-6726,

and
IBM 1410/7010 Operating System; Basic Concepts,

Form C2B-031B
IBM 1410/7010 Operating System; System Monitor~

Form C2B-0319

The Autocoder user must know certain Operating
System conventions and requirements in order to write,

Introduction 5

assemble, and execute his programs properly. The
pertinent information is contained in the following
publications:

IBM 1410/7010 Operating System; System Monitor,
Form C28-0319.

IBM 1410/7010 Operating System; Basic Input/Out­
put Control System, Form C28-0322.

Operating instructions for the System are contained
in the publication, IBM 1410/7010 Operating System;
Operator's Guide, Form C28-0351.

This manual will indicate specific cross references
to the above-listed publications at the appropriate

6

places. The user will find that the many advantages
and conveniences of the Operating System can be
implemented through the use of Autocoder.

Minimum Machine Requirements
The minimum machine requirements for assembling
source programs written in the Autocoder language
are specified in the publication, IBM 1410/7010 Oper­
ating System; System Generation, Form C28-0352.

Machine requirements for the execution of the ob­
ject program depend upon the combined requisites
of the System Monitor and the user's program.

This section describes Autocoder statements and the
principal elements used in their construction; program­
ming concepts under the Operating System; the assem­
bly listing produced by the processor; and the coding
sheet upon which source statements are coded. Suc­
ceeding sections discuss the various types of permis­
sible operands, Autocoder operation codes, and the
Macro System.

Autocoder Statements
The source program, which is translated by the Auto­
coder processor into an object program, is composed
of five types of Autocoder statements:

Imperative (symbolic machine instructions)
Declarative
Linkage Loader
Control

Assembly Control Statements
Subprogram Control Statements

Macro
Imperative Statements are translated into thema­

chine instructions that appear in the object program.

Declarative Statements are translated into data
areas, data constants, and address constants used by
the object program. They are also used to define
symbols (or labels) in the assembly process.

Linkage Loader Statements enable the Linkage
Loader to properly convert the relocatable subpro­
grams assembled by the Autocoder processor into ab­
solute format (ready for execution).

Control Statements are directions to the Autocoder
processor, which control the performance of specified
operations at assembly time.

Macro-instructions enable the programmer to ex­
tract, from a library of macro routines, instruction se­
quences tailored (by means of parameters written in
macro-instructions) to meet programmer specifications.
These instruction sequences are inserted automatically
into the object program. (See the section entitled
"The Macro System.")

Principal Elements of Autocoder Statements
The principal elements of an Autocoder statement are:
a label, an operation code, and an operand.

Basic Concepts and Functions

Label

A label is a name assigned by the programmer to an
element in a program (e.g., a data area, constant, or
instruction). This enables operands of Autocoder state­
ments, referencing labeled elements, to have symbolic
form. The terms label and symbol will be used syn­
onymously throughout this publication.

A label can contain from one to ten alphameric char­
acters, which are left-justified in the label field (card
columns 6-15). The first character must be alphabetic.
A special case in which labels are not left-justified is
explained in the sections concerning DS, DC and DCW

statements.
Special characters must not be used in the label

field. (An exception is permitted in the DEFIN state­
ment. See "DEFIN - Definition," under "Linkage Loader
Operation Codes.")

Operation Code

The operation code field (card columns 16-20) con­
tains a one-to-five-character mnemonic that specifies
the nature of the Autocoder statement and indicates
to the processor the function to be performed during
the assembly process. A table of operation codes is
supplied in the section, "Autocoder Operation Codes."

Operation codes in machine language must never be
used. (The Compare, Add, and Subtract imperative
operations are exceptions, in that the machine-lan­
guage equivalent for each is identical to the corre­
sponding mnemonic.)

Blank operation codes are permitted in conjunction
with the following mnemonics: DC, DCW, DA, and DAV.

These mnemonics are discussed in the subsection en­
titled "Declarative Operation Codes."

The mnemonic operation codes are listed in Appen­
dix D. In studying this list, the programmer will note
that groups of mnemonic operation codes (for example,
the group of mnemonics for the scan instructions) are
represented in machine language by a one-character
operation code and an operation modifier (d-character)
which defines the precise function the operation is
to perform. This is true even though the mnemonic
may be as many as five positions long.

Operand

The operand field begins in card column 21. The form
and content of the various permissible operand ele­
ments vary according to the operation to be performed.

Basic Concepts and Functions 7

However, the basic elements in the operand field are
the A- and B-addresses, and the d-character (when
required). An A-address, a B-address, and a d-charac­
ter are separated from each other by single commas
(Figure 1).

The formats of these and the other permissible op­
erand elements are discussed in the section "Types
of Operand Entries." The use of these elements in
association with specific operation codes is discussed
in the sections "Autocoder Operation Codes," and
"The Macro System."

Relocation
All object programs produced by the compilers within
the Operating System are in relocatable format. The
aspects of relocation with which the Autocoder user
must be familiar are noted here. The reader interested
in a detailed discussion of this subject and the relo­
cation indicators that can appear in the assembly list­
ing should refer to the publication, IBM 1410/7010
Operating System; System Monitor, Form C28-0319.

Relocation is achieved in three steps:
l. The programmer codes subprograms with or

without regard to their actual location in core storage.
He can, however, specify a starting location for his
program.

2. The processor assigns relative addresses to the
program statements and constants, starting at the ad­
dress specified by the programmer, or zero (00000) if
not specified. The processor also indicates to the Link­
age Loader whether these addresses are to be given
upward, downward, or NO relocation, as explained
below.

3. When the program is loaded, the addresses arc
adjusted by a relocation factor calculated and applied
by the Linkage Loader. (The adjusted addresses main­
tain the same relative locations and relationships to
each other as specified in the source program.) This
subject is covered in more detail under "ORC - Ori­
gin," in the subsection "Subprogram Control State­
ments."

Each address within the program is assigned a code
by the processor, indicating to the Linkage Loader
one of three types of relocation. When the Linkage
Loader is executed, it calculates and applies to the ad­
dress the relocation factor called for by the associated
indicator.

line Label

The three types of relocation factors that can be
applied are:

Upward
Downward
NO

Upward Relocation

Upward relocation means that the address in the object
program will normally be incremented. For example,
if the compiled origin of the object program is 00000
and the relocation factor is 12,000, the program will be
loaded starting at core-storage location 12000. The
relocation factor is added to each load address and to
each address within the program to which an upward
relocation indicator is assigned by the processor.

Of the three relocation types possible, upward re­
location is the one most frequently applied.

Downward Relocation

Downward relocation means that the address in the
object program will be decremented by a value cal­
culated by the Linkage Loader. A downward reloca­
tion indicator is assigned by the processor to those ad­
dresses that refer to the COMMON data area.

NO Relocation

NO relocation means that the address in the object pro­
gram is to be unchanged by the Linkage Loader. A
NO relocation indicator will be assigned by the proc­
essor to those addresses whose absolute value is already
supplied and must be maintained. For example, the
addresses of index registers receive NO relocation indi­
cators.

Definition of COMMON
COMMON is the formal name, predefined in the proc­
essor's symbol table, of a relocatable work area that
can be referenced by more than one subprogram. Cer­
tain language conventions must be observed if sep­
arately-assembled subprograms are to achieve com­
patible addressing of shared data fields in COMMON.

During the assembly process, references to COMMON

are translated according to an addressing and reloca­
tion convention designed to make these references
suitable for resolution by the Linkage Loader. The
convention chosen is the assignment of the value 99999

OPERAND
13 56 ~~rat~121 25 30 35 40 U ~o ~~ 60 65 70

o I 1 : IA ,A, 0 P E.R,A,N.D. L L L.' LL._.LL .1L.-L-"----'--'---'---'-----'-----'-----'-. LL

I
IA,J,A o 2

o 3 1 1.4 .•. 11 .•. .1.
04 :

~-+-'--'---L..J.-'-7-'-.J.......L..-+---'-.....o......JL...L...p...z --"-.J..~~.J.....1 Jl.IA:IL' -"!.4OlJ.ILlON. ... D,L....I.I.OA~,Q P'-".£,~a..l:lA!DlNJ:bS..'--J L.L.....L--'-_.L.L.~--'---'---'--'--'-' -,-I --L.J.---'--''-'-----'l.-..L-.j

P""--+ -'---'--'--.L....L...-'-'--t-'-'-'---'--¥h' LR..I.-<--'-'--'---AI..A"-'---',,tLA "DL"'rJLL...".'/),BlL.....A,n..!IJI.P,..~,'E.kJ.O.R!Q.AillNu.&..Dw.IS'-'--,. ANJh... ,d, - c..H.A ,R A CL£R.---'--.-'---'---'----'----'-'~--I

Figure 1. The Basic Operand Entries

8

as the reference address of COMMON during the assem­
bly process. All relocatable addresses of data in COM­

MON are relative to 99999. For example, the 15th lo­
cation downward in COMMON is assigned the value
99985, and appears as the same relative address in all
subprograms. Labels referencing COMMON are assigned
downward relocation indicators for absolute adjust­
ment by the Linkage Loader.

Absolute adjustment involves changing the relative
values of the labels (assigned to them by the proc­
essor) to absolute values in the relocated COM.MON data
area. The adjustment factor applied is the difference
between the value of COMMON in the assembly process
(99999) and the absolute value of COMMON determined
by the Linkage Loader. Normally, the Linkage Loader
will place COMMON at the location represented by the
value of the system symbol I AMSI (Absolute Memory
Size). However, the programmer can specify a dif­
ferent absolute location for COMMON by means of a
BASE2 statement. (The interested reader will find a
fuller discussion of this subject in the publication,
System Monitor.)

The steps necessary to use COMMON in a subprogram
are discussed under "DAV - Define Area in COMMON,"

in the subsection "Declarative Operation Codes."

Processing Options
There are four processing options which can be exer­
cised by the user:

1. He can suppress the printing of the assembly list­
ing (on the Standard Print Unit).

2. He can suppress the punching of the object deck
(on the Standard Punch Unit).

3. If there are no macro statements in the source
deck, he can speed up the assembly process by indicat­
ing this fact.

4. He can suppress the diagnostic generation of an
"M" flag for uses of index registers 14 and 15 when
there is no true multiple definition. (See NOTE 1, under
"Indexing with Address Adjustment.")

These options are indicated by means of additional
parameters in the EXEQ card that calls the Autocoder
processor.

The four parameters are:
NOPRT - Suppress printing
NOPCH - Suppress punching
NO MAC - No macros present
NOFLG - Suppress "M" flag

Any or all of these parameters may be used in the
EXEQ card. They can appear in any order immediately
following the EXEQ parameters required by the System
Monitor. (See the publication, System Monitor, for
details concerning the EXEQ card.)

Specification of parameters in the EXEQ card is con­
cluded by the first blank encountered in the operand
field. The following examples illustrate the format:

LABEL

MON$$
MON$$

MON$$

OPERATION
CODE

EXEQ
EXEQ

EXEQ

OPERAND

AUTOCODER, SOF, SIU, NOPRT
AUTOCODER", NOMAC, NOPCH,
NOFLG
AUTOCODER, , , NOFLG, NOPRT,
NO MAC, NOPCH

Autocoder Multiple Compilation

Autocoder can compile any number of programs with a
single MON$$ EXEQ AUTOCODER card. The output is the
same as if it were produced by several separate com­
pilations.

Input for a multiple compilation consists of the
MON$$ EXEQ AUTOCODER card followed by the source
decks to be compiled. No control cards are necessary
between the END statement of one program and the first
card of the next program if the programmer wants the
subsequent compilation to receive standard treatment;
that is, printing, punching, and normal macro and flag
processing.

A different set of processing options (NOPRT, NOPCH,

NOMAC or NOFLG) can be specified for an ensuing pro­
gram in a multiple compilation by placing an Option
card after the preceding END statement. This card has
the same requirements and options as the MON$$ EXEQ

AUTOCODER card except that the label and operation
fields, card columns 6-20, must contain blanks (instead
of MON$$ EXEQ). The processing options specified in this
Option card will be applied until the next Autocoder
END card is read by the processor.

Autocoder multiple compilation has two potential
advantages:

1. It enables the programmer to process a series of
source decks from the Alternate Input Unit as well as
the Standard Input Unit.

2. It bypasses the monitor processing which normally
is necessary between compilations.

Terminating the Object Program

The object pro gam must terminate execution by means
of one of the following instructions:

B IEOpl Normal End of Program

B IUEPI Unusual End of Program

Both forms of termination are shown in Figure 2. Full
details can be found in the publication, System Monitor.

Basic Concepts and Functions 9

M015 SAMPLE SUBPROGRAM USING THE IH0l1010 AUTOCOOER PAGE SAMPL

SEQNO PGLlN LA8EL OPCOD OPERAND REL CT ADDRS INS TRUC TI ON CARD FLAG

AA020 TI rLE SEQUENCE 001

AA030 - THIS SUBPROGRAM CHECKS THE SEQUENCE OF THE PGLNI FIELD

3 S AOitO · IF THE PGLNI FIELD IS 99999, THE PROGRAM IS TERMINATED NORMALLY

it AA050 - A NON-ASCENDING SEQUENCE RESULTS IN AN UNUSUAL END OF PROGRAM.

AA060 SEQROUTlNE S8R EXITSEQRT&5 7 00000 G 00056 002

6 AA070 PGLN/,i99999i IS THIS THE LAST ENTRY 11 00007 C PGLNI 00153 002

AA080 BE ENDOFJ08 YES 7 00018 J 00058 002

AA090 NOPWM 1 00025 N 002

AAI00 CHECK SEQ EI 7 00026 J 00101 002

10 AAII0 SW e-12 SET FIRST TIME NOP SWITCH TO BRANCH 6 00033 , 00026 002

11 AA120 MLCW8 PGLN/,PGLNHOLDAl5 A 12 00039 o PGLNI 00156 P 003
L

12 AA130 EXITSEQRT EXIT - RETURN TO MAIN PROGRAM r 7 00051 J 00000 003

13 AA135 ·
lit AAlitO ENOOFJOB IOClL TYPE,MESSAGE NOTIfY OPERATOR Of END OF JOB

15 G AAlitO ENDOfJOB EQU 00058

16 G 01510 8ZN e-11,/CTBI C 12 00058 V 00058 ICTBI 2 003
L

17 G 01520 BXPA ICNCI T 7 00070 Y ICNCI 003

18 G 01530 DCW MESSAGE N 5 00081 00126 003

19 G 01580 BZN --11 ,ICTBI C 12 00082 V 00082 ICTBI 2 OOit
L

20 AAlit5 IEOPI NORMAL END Of PROGRAM T 7 0009it J IEOPI 004

21 M148 ·
22 AA150 CHECK SEQ PGLN/,PGLNHOLD 11 00101 C PGLNI 00158 004

23 AA160 BH EXITSEQRT-12 BRANCH IF pGLNI IS IN SEQUENCE EI 7 00112 J 00039 U 004
L

24 AA170 IUEPI UNUSUAL END OF PROGRAM T 7 00119 J IUEPI 004

25 AA175 ·

bit015 SAMPLE SU8PROGRAM USING THE 1410/7010 AUTOCODER PAGE SAMPL

SEQNO PGLIN LABEL OPCOD OPERAND REL CT ADDRS INSTRUCTION CARD FLAG

26 AA180 SEQRI DEFIN SEQROUTINE SEQRI Ll NKAGE SYMBOL FOR SUBPROGRAM 00000 005

27 AAl85 MESSAGE DCW iiEND OF JOBii,G CON SOL PRINTER NOTICE 11 00126 006

28 AA190 HAlf 12345 EXAMPLE Of AN ERRONEOUS STATEMENT A 12 00137 N 12345 ••••• 007 0

29 AA200 END

30 i99999ii 5 00153 008

31 pGLNHOLD '0005 5 00158 008

NUMBER Of FLAGGED STATEMENTS

28

1410/7010 AUTOCODER ••• SYSTEM I~IDI 0001

Figure 2. A Page from an Assembly Listing

3. Page number in the listing Assembly Listing
Each page of the assembly listing contains a page
heading line and a column heading line.

4. The identification supplied by HEADR or RESEQ

cards

The page heading line contains the following infor­
mation, from left to right:

1. The date contained at location IDATI (the system
symbol for the five-position date field in the Resident
Monitor)

2. Information supplied via HEADR card

10

The column heading line is illustrated in Figure 2,
which shows the assembly listing of a subprogram
assembled by the 1410/7010 Autocoder processor.
The subprogram contains a deliberate error contrived
to exhibit Autocoder's diagnostic flagging system. Fig­
ure 2 illustrates the following items, going from left
to right in the column heading line:

1. SEQNO - Sequence Number: The sequence
number of statements as they appear in the assembly
listing.

2. PGLIN - Page and Line Number: The page and
line number as it appears in columns 1 through 5 of
the cards in the source deck. Page and line numbers
must consist of five non-blank characters and must ap­
pear in ascending sequence.

Statements generated by the macro generator will
have a page and line number in this field supplied by
the generator. These numbers have no relationship to
the numbers of the hand-coded statements; they rep­
resent the order in which the statements appear in the
Macro Library.

The space between the SEQNO and PGLIN columns of
the listing are used by the processor to contain either
an "S" or a "G," under the following conditions.

S - The page and line number of the statement is
not in ascending sequence in relation to the preceding
source statement. This is only a warning to the pro­
grammer that his source statements may be out of
sequence.

G - This character differentiates statements pro­
duced by the macro generator from the hand-coded
source statements.

3. LABEL - L,abel: The contents of the label field,
columns 6 through 15, of the Autocoder statement.

4. OPCOD: The Operation Code, columns 16
through 20, of the Autocoder statement.

5. OPERAND: The contents of the operand field,
columns 21 through 72, of the Autocoder statement.

6. REL - Relocation Indicator: This is a code char­
acter that indicates to the Linkage Loader the type
of relocation to be applied to the element (s) in the
statement.

7. CT - Character Count: The length in characters
of the assembled imperative statement, or the number
of core-storage locations reserved for a constant de­
fined in a declarative statement.

8. ADD RS: The relative address assigned by the
processor to the instruction or constant. This address
is subject to relocation.

9. INSTRUCTION: The assembled machine-lan­
guage instruction or constants from which the object
deck is constructed.

10. CARD - Card Number: The sequence number
of the card in which the associated constants or in­
structions appear in the object deck. This sequence
number is automatically computed and placed in col­
umns 73-75 of each card in the object deck, in ascend­
ing order.

11. FLAG: An alphabetic character indicating an
actual or possible programming error. As many as five
flags can be assigned to one Autocoder statement. The
£lags provided are as follows:

F - invalid statement Format

M - Multiple definition of a label

N - macro generation Note

o - invalid Operation code

R - Restricted. operation code (if not generated
by a macro)

U - Unidentified label in the operand

W - Warning, general classification of error

Details concerning the above £lags can be found in
Appendix A. The total number of flagged statements
is indicated at the end of the assembly listing, followed
by a line which contains the sequence number of each
flagged statement, to a maximum of 20 numbers. The
presence of any Hag except "R" causes the processor
to set the "no-go" switch during assembly. This setting
of the "no-go" switch can cause a bypassing of all the
source cards up to the next job. See the System 111onito]'
publication.

The assembly listing can be supplemented by a cross
reference listing at the option of the user, by means
of the PST statement. This listing analyze~ the sub­
program (s) just assembled, and lists each label, fol­
lowed by the sequence number of the statement in
which it was defined, and the sequence number of
each statement in which the label is used as a reference
address. See "PST - Print Symbol Table," in the sub­
section "Control Operation Codes," for a more detailed
explanation.

NOTE: The system symbol /LIN/ controls the line
count on the listing page. However, if this system sym­
bol calls for the printing of less than 30 lines per page'
the processor will reject this direction and print the
assembly listing at the normal 55 lines per page. See
the System Monitor publication for details concerning
this system symbol.

Replacement Codes
The Autocoder processor utilizes a second line (nor­
mally blank) in the assembly listing, for the representa­
tion of non-printable characters. Each of these char­
acters is represented by two characters, one printed
above the other, at the appropriate place in the listing.
These two-character substitutions are called replace­
ment codes, and they appear most frequently as re­
location indicators or operation modifiers.

Basic Concepts and Functions 11

The two-character replacement codes with their con­
ventional graphic representations, card codes, and
names are listed in Figure 3.

Replacement Card
Code Graphic Code Name

0 ? 12-0 Plus Zero

0 ! 11-0 Minus Zero

G

*
M 12-7-8 Group Mark

Q

T +H- 0-7-8 Segment Mark

W
S rn 0-5-8 Word Separator

D
L 6. 11-7-8 Delta

C
T ¢ or 1> 2-8 Cent Sign or Substitute Blank

L
P [12-5-8 Left Bracket

R
P 1 11-5-8 Right Bracket

T
M V- 7-8 Tape Mark

L
T < 12-6-8 Less Than

G
T > 6-8 Greater Than

; ; 11-6-8 Semicolon

: : 5-8 Colon
II

b \ 0-6-8 Backslash

Figure 3. Replacement Codes

Coding Sheet
The Autocoder Coding Sheet (Figure 4) provides a
convenient form for coding source program statements.
Column numbers on the coding sheet have a one-for­
one correspondence to the columns on the card used to
punch the source statements (Autocoder Input Card,
Form A36199).

Each line of the coding sheet is punched into a sepa­
rate card. The source deck, therefore, consists of a
sequenced set of punched cards containing a line-by­
line representation of the coding sheets.

The following paragraphs explain the function of
each field. The heading information, Program, Pro­
grammed By, and Date, are only for documentation,
and are not punched.

12

Identification (Card Columns 76-80)

This five-position field can contain a name created by
the programmer to identify the program. This identi­
fication will be punched into 76-80 of the object deck
only if it appears in a HEADR or RESEQ control card. (See
"Control Operation Codes.") However, the :identifica­
tion is not checked on the other Autocoder statements,
and serves only to identify the program to which the
card belongs. Special, as well as alphameric, characters
are permitted.

Page Number and Line Number (Card Columns 1-5)

The page number (columns 1 and 2), in conjunction
with the line number (columns 3-5), provides a means
of sequencing the cards in the source deck. This enables
the programmer to identify and correlate the entries
on the coding sheet and assembly listing with the
entries in the source deck. Alphabetic, as well as nu­
meric, characters can be used. (If the standard collat­
ing sequence is not followed, the processor will place
a sequence (S) flag next to the PGLIN field in the as­
sembly listing, as previously explained.)

Label (Card Columns 6-15)

This field, if used, contains the label being defined in
this statement.

Operation Code (Card Columns 16-20)

This field contains the operation code.

Operand (Card Columns 21-72)

This field, if used, contains the operand element (s) of
the statement.

NOTE: Columns 73-75 should be left blank

COMMENTS

Comments are remarks or notes written by the pro­
grammer in the operand field. At least two blank spaces
must separate a comment from the last character of
the statement. The comment, punched in the source
deck, appears in the assembly listing but is not con­
tained in the object deck, and has no effect on the
object program.

COMMENTS CARD

It may, at times, be helpful to insert an entire line of
descriptive information. This is done by placing an
asterisk in column 6 and using the balance of the line
(up to column 72) for comments. When this line of
information is punched into a card of the source deck,
the asterisk will identify it to the processor as a com­
ments card. The comments will be printed on a single
line of the assembly listing at the point of encounter,

I which can be anywhere in the source deck. Comments

,---~

IBJ.1
Program _______________ _

Programmed by-----_____ _

Date ___ _

pperation
1516 2021

Line label
3 5 Ei

i

lNTERNAT10NAL BUSINESS MACHINES CORPORAT10N

IBM 1401 AND 1410 DATA PROCESSING SYSTEMS
AUTOCODER CODING SHEET

OPERAND
:50 40 45 50 55 60

Fo.m X24-1350·1
Printed in U.S.A

Identification '--' -O-.L--'....L.....J
76 80

Page No.l...J....J of __
I 2

65 70

o L~.L_ --L-"----L~--'--"--rL....L.....L...L.....;r...L.-O-L...J.--'-...L-.-'---'I.-i....L....I-L.....L--'-...L-.L....J-L.--'---'---'--'---'---'---'--'-i......I......l-J'---'----'-...l-L..L--'---'--'----"l....L.--'-.--'--L....I.--'---'-.J........<--'---"--l
o 2 ! ! , I! I

I
~ ~~.---'-~~~...I-~~...L..L....J--'-~~- ...J1.-i.....I....~--'-__'__.L....J__'_...L_~_'__...l_~_'__...I_~-L_'___~__"__..l_J__'_--'-.L....J__'_~_.L....J_'__...l_L.....L__'_...I_~

04 i

o 5

06

07

08

09

I 0

I I

I 2

-~

-~
I 5

-~
I 7

I 9

-~

2 0

2 I

2 2

2 :5

2 4

2 5

I

~~...JL....L..... -'--i-.L....J-r__'__.L....J_i..__'__..l_J'__'___'_--'--.L....J__'_....I......l-J_i.._'__~'__'___'___'__..l_J-i......I...._'___~_'___L_.L....J__'___'_..l_J_i.._L_'___'__'___'_...L_.L....J_i......I......l_J~

~__'__~-L~~-'--__'__Li_L__'__~-L_'___'___·.L....J_'____'__~__'_--'--..l_J~_'___'__.L....J__'___'__..l_JI._i._L_'___~__'___'_~__'___'__~I._i._'__~·.L....J_'____'__~_i..J_~

, I I I • i I
I

~~....I....~~_'__...L-~__'_--'--..l_J-L_'__--'--. ...l-L..L-L__'__..l_J~...L....L_J-i_'____'_~--'-...L....I-'__'___'_...I_.L....J_i..__'__~L....L.....L._'___.L....J_L...L_L..L_i......I......l_J'__'_~

I' I I

, I I
I

~~....I....~~....I.......L-~.--'-...l--'--'-L...L.--'--~-'--...l-.L....J-i..--'--.L....J'---'-...J--'---'--'---'---'--L..L-i......I......l-JL....L..--'-...I-~--'-~--.L....J--'-....I....~ -~....I....-'---L....L...--'--L1

I

I
I I

~~_~L~....I....~~~...L....I_~__'_I~I_i..I~I__'_'...JIL....L..I_I'__'_I_'__...I_.L....J_i.._L1 ~~.-,--IL.LJ-L

I

! I

~--'-4-_LJL....L......I....__'__L: ~_'__'_~--'--.L....JL....L..4_~~L.~I-L1 il-'--~-'--I~~-L~.~I--'-'....I....--'--LJ__'___'__.L....J_L--'--..l_J~_L·_'___.L....J__'_ __ ·....I......l_J__'_....I.....L....J_i..4

~--'-4--.L....J-i......1....__'__L: ~_'--'-~...L-L.....L-i..~-~I~IL....L..I~ILLI-LI-~I-'--I~I_'__--'--~--'--LI.~_~--'--_'___~_L

Figure 4. The Coding Sheet Form

cards inserted in a series of chained instructions will
break the chain. To avoid this, the operation code
should be re-stated and the appropriate operand en-

tered on the first source card following any comments
cards. (Comments cards have no effect on the object
program and are not included in the object deck.)

Basic Concepts and Functions 13

Types of Operand Entries

This section explains the form and use of the various
entries permitted in the operand field of imperative,
declarative, Linkage Loader, and control statements.

The operand field of an Autocoder statement is used
to specify a variety of information to the processor.
The function of a specific entry is dependent upon the
type of Autocoder statement in which it appears. The
normal operand usage with each of the five types of
Autocoder statements is as follows.

ST A TEMENT TYPE OPERAND CONTENTS

IMPERATIVE Symbolic addressees) to be operated
upon by the machine instruction, and
a d-modifier, when required

DECLARATIVE Constants, symbols, and/or control
parameters necessary to declare the
desired fields

LINKAGE LOADER Symbolic (or actual) addresses and/or
control parameters required to convert
the object deck into absolute format

CONTROL Symbolic (or a'ctual) addresses and
constant information indicated by the
operation code

MACRO Parameters of the macro statement
(These parameters are discussed in
the section entitled, "The Macro Sys­
tem.")

All permissible operand entries are explained and
illustrated under the following headings:

Basic Addresses
Address Adjustment
Indexing
Literals
Linkage Symbols
System Symbols
Miscellaneous

Basic Addresses

Basic addresses contained in the operand field of an
Autocoder statement are the primary elements of
information conveyed to the processor. They can be
altered or modified by means of additional elements
contained in the operand field.

A basic address is the symbolic or actual representa­
tion of a core-storage location of the data field or in­
struction referred to by the Autocoder statement.

14

A basic address can be in one of three forms:
Symbolic
Asterisk
Actual

Synibolic
A symbolic address is an operand entry that appears
elsewhere in the source program as a label. As a rule,
this symbol can be defined as a label either before or
after the Autocoder statement in which it appears as
an address. The exceptions to this rule are as follows:

1. All symbolic operands appearing in ORG, LTORG,

and EQU statements must have been previously defined
within the same program.

2. The symbolic address appearing in an RSV state­
ment must precede any other use of this symbol in a
program. (See "RSV - Reserve.")

3. The symbolic representations of index registers
(XO, XI-X15) and the common data area (COMMON),

must never appear in the label field. They cannot be
defined by the user because they are predefined labels
in the symbol table maintained by the Autocoder proc­
essor.

The instruction in Figure 5 illustrates the use of
symbolic addresses. The symbols TOTAL and ACCUMU­

LATE are defined as labels elsewhere in the program.
The assembled instruction will cause the contents of
the core-storage area labeled TOTAL to be moved to the
area labeled ACCUMULATE.

NOTE: A symbolic address will receive upward,
downward, or NO relocation, depending on the manner
in which the symbol is defined.

Line Lobel 1~loperotior
25 ~~ 3 56 I 16 2021

0,1, ~"(LSS : M.J..,,~ lT~~.A C,C U,M U,L.

o 2 : ---'---'--'--'-

Figure 5. Autocoder Instruction with Symbolic Addresses

Asterisk (*)

An asterisk (11-4-8 punch) can be used as a basic ad­
dress in an Autocoder statement. When compiling the
object program, the processor will replace the asterisk
with the relative core-storage address of the last char­
acter of the instruction or data field created by the
statement in which it appears. However, if an asterisk
address is used in a statement that does not cause the
generation of an instruction or data area in the object
program, the value substituted for the asterisk will be
the current location in the object program.

These uses of the asterisk address are illustrated by
means of the three Autocoder statements in Figure 6,
and are discussed in the order of their appearance.

line
3 56

I

~~~~.~~~~~-~~~~,~~~~~j 

Figure 6. Asterisk Addresses in Autocoder Statements 

1. The first statement in Figure 6 illustrates the use 
of the asterisk in an imperative instruction. Assume 
that this instruction is assigned to core-storage posi­
tions 12340-12351 and that the reference address of 
WKAREA is 13598 (the low-order position). The as­
sembled instruction is IH235113598T. 

2. The second statement in Figure 6 illustrates the 
use of the asterisk in an Autocoder control statement. 
In this case, the asterisk represents the current address 
in the processor's relative location counter. For ex­
ample, if the last address assigned was 12351, the rela­
tive location counter will contain the address 12352 
( the representative value of the asterisk). 

It should be noted that no data or instructions are 
generated by the asterisk in this statement. The value 
the asterisk represents is the location where a specific 
function is to be performed. In this case, the asterisk 
means the beginning address for the assignment of 
previously-encountered literals in the subprogram. 
(Literals are discussed later in this section; the LTORG 
statement is discussed under "Control Operating 
Codes.") 

3. The third statement in Figure 6 illustrates the 
use of the asterisk in a declarative statement. (The 
Dew statement is discussed under "Declarative Opera­
tion Codes.") In this case, a five-position address con­
stant is defined which is the low-order address of the 
generated field. For example, if the asterisk repre­
sented the address 12356, this address would be con­
verted by the processor into a five-position constant 
assigned to positions 12352-12356, with a word mark 
over the high-order position. 

The asterisk address is used most often in imperative 
statements with address adjustment, as a means of re­
ducing the number of labels required in a program. 
(See "Address Adjustment.") 

NOTE: Asterisk addresses are assigned upward re­
location indicators. 

Actual 

An actual address is the numeric designation for a 
core-storage location. Thus, the actual addresses of a 

1410 or 7010 with 40,000 core-storage positions range 
from 00000 to 39999. In coding, the high-order zeros 
of actual addresses can be omitted (except for loca­
tion 00000, which must be represented by at least one 
zero ). 

Figure 7 illustrates the mixing of actual and sym­
bolic addresses. The statement represents a data move 
of the contents of the area whose low-order position 
is at location 22101 to the area labeled MONEY. 

CAUTION 
All programs written to be run within the frame­
work of the 1410/7010 Operating Systems are re­
locatable. Since actual addresses are assigned a NO 
relocation indicator, the programmer must exercise 
extreme caution when using actual addresses. This 
is especially true when previously-coded programs 
written for the IBM 1410 are being converted for use 
with the Operating System. 

Figure 7. An Actual and a Symbolic Address 

Address Adjustment 

A basic address, specified in the operand field, can be 
altered or modified to refer to a different position of 
core storage. The basic address can be altered during 
program assembly by means of address adjustment; 
during program execution by means of indexing. Ad­
dress adjustment is discussed below; indexing will be 
explained in the next subsection. 

Address adjustment enables the programmer to ref­
erence a location which is a specified number of core­
storage positions away from a basic address. Address 
adjustment is indicated by writing after the basic 
address a plus or minus sign followed by a one-to-five­
digit number that specifies the adjustment factor. 

Assume that in Figure 8 the label MANNO is assigned 
address 15000 and TOTAL is assigned the location 
20075. The assembled instruction is A1501220075. The 
contents of MANNO + 12 (15012), not MANNO (15000), 
will be added to TOTAL. 

Figure 8. Address Adjustment 

Types of Operand Entries 15 



The Form * + XOO 

Asterisk and actual basic addresses, as well as symbolic, 
can be address adjusted with similar results for the 
same adjustment factor. However, there is a special 
adjustment factor unique to the asterisk address, whose 
use is limited to ORG, LTORG, and BASEl statements. This 
special form is * + XOO (asterisk-plus-X-zero-zero). Its 
function in ORG and LTORG statements is to advance the 
processor's relative location counter to the address of 
the next hundreds position in core storage during pro­
gram assembly (Figure 9). The BASE1 * + XOO value is 
resolved by the Linkage Loader. 

For example, if the relative location counter contains 
07214 when the processor encounters the statement in 
Figure 9, the counter will be automatically incremented 
to 07300, and subsequent entries will be assigned core­
storage locations beginning at this address. The ORG 
and LTORG statements are discussed in the subsection, 
"Control Operation Codes." The BASEl statement is dis­
cussed in the subsection, "Declarative Operation 
Codes." 

NOTE: The BASEl * + XOO statement must appear pre­
vious to the ORG * + XOO card or the "no-go" switch will 
be set. 

Line Label 
5 56 

pperation ( 
1516 2021 25 30 35 40 

0,1, 'LL . .L- : 

o 2 : 

Figure 9. Use of the Special Form * + XOO 

Multiple Adiustment Factors 

Basic A- and B-addresses can be address adjusted, and 
both can contain more than one address adjustment 
notation. The number of adjustment factors permitted 
is limited only by the length of the operand field (up 
to card column 72). 

Indexing 
Indexing is a form of address modification which takes 
eHect at the time the object program is executed. Auto­
coder statements can be used to initialize or modify the 
contents of an index register, or indexing can be used 
to modify an address within a statement. (See either 
the 1410 or 7010 Principles of Operation reference man­
ual, listed as prerequisites, for a complete description 
of index register usage.) 

The following discussion explains how the Autocoder 
language can be used to (1) address an index register, 
( 2) initialize or modify the contents of an index regis-

16 

tel', (3) index an address, and (4) combine indexing 
with address adjustment. 

Addressing an Index Register 

Index registers are symbolically referenced within the 
operand of an Autocoder statement by placing an X 
before its number. Thus, the predefined symbols Xl 
through XI5 designate index registers 1 through 15, 
respectively. 

Autocoder statements that initialize or modify the 
contents of an index register contain the notation for 
the index register as a basic address (Figure 10). 

In Figure 10, the operation code "ZA" moves the con­
tents of the location labeled EIGHTY into index register 
10 and inserts high-order zeros. Thus, if EIGHTY contains 
"+ 80", the contents of index register 10 will become 
+ 00080, after the execution of the assembled instruc­
tion. (The plus sign will be placed in storage as AB bits 
over the units position. ) 

NOTE: When an index register is used as a basic ad­
dress, it is assigned a NO relocation indicator. 

Line Label bperation 
3 56 1516 2021 25 30 

0,1, --'. __ J._i_L __ ...L.. ZA. IE,I,,"dLLY"'L-XLQL~_.L -' 
I o 2 

Figure 10. Entering a Numeric Value into an Index Register 

Indexing an Address 

A basic address is indexed by following the basic ad­
dress with a plus sign and the notation for the index 
register (Figure 11). 

In Figure 11, assume that the basic address MANNO 
is relocated to core-storage location 15000 (by the 
Linkage Loader). If index register 10 contains 00100 
(or + 00100), the effective address of MANNO + X10 is 
15100. Thus, the operation code "MLC" will cause the 
data at location 1.5100 to be moved to the location 
labeled ACCUM. However, if index register 10 contains 
-00100, the effective address of MANNO+XI0 is 14900. 
Thus, the data at location 14900 is moved to ACCUM 
by the execution of the assembled instruction. 

Both the A-address and the B-address can be indexed. 

Figure 11. Indexing an Address 



Indexin~g with Address Adiustment 

Indexing and address adjustment are permitted in the 
same operand. The indexing indicator can follow or 
precede the adjustment factor notation (Figure 12). 

The actual location represented by the A-address in 
Figure 12 will be the basic address ( TOTAL), minus 12, 
plus the contents of index register 1. Assuming that 
TOTAL is the label for location 03101 and that index 
register 1 contains 00080, the address of TOTAL -12 
+Xl will be 03101-12+00080, or 03169. However, 
the assembled instruction will be D030Y900140C, as­
suming that ACCUM is the label for location 00140. The 
"Y" in the tens position of the A-address is an 8-punch 
with a zero-zone punch. The zero-zone punch in the 
tens position is the tag for index register 1. 

Line Label Operation 

" ~ .. ~ ~ 3 56 1516 :>0 
I 

M.L C 0, Ii -----L-L.~I 
I IT.a~~: -:1.:Z.:f-:~:1:' :A:C~:'~~_~ = o 2 I I I I I I 

Figure 12. Address Adjustment and Indexing 

N aTE 1: Index registers 14 and 15 are reserved for 
use by the System Monitor. If index registers 14 and 
15 are used in an Autocoder program, the processor 
will properly assemble all references to them, but will 
flag these references with an "M" (multiple defini·· 
tion ), unless the NOFLG parameter is supplied in the 
appropriate EXEQ or Option card. 

By convention, index register 13 is designated as the 
index register used for linkage with subroutines. The 
reader will find further details in the publication, 
System Monitor. 

NOTE 2: The programmer can assign a label to an 
index register and subsequently reference it, for the 
balance of the assembly run, by his own symbolic 
designation. (See "EQU - Equate," under "Declarative 
Operation Codes.") 

NOTE 3: The special symbolic adjustment notation, 
XO, indicates to the processor that the associated basic 
address should be assembled without its tag. That is, 
if a label has been established in the program as 
relating to an address that is to be adjusted by an 
index register, it may be used without index register 
adjustment by following the symbolic address with 
+ XO (plus-X-zero). See "DA - Define Area," under 
"Declarative Operation Codes," for an example of 
index negation. 

Literals 
Literals permit the programmer to specify a pre .. 
viously-undefined constant within an imperative 

statement that refers to the constant. Autocoder's 
ability to process literals enables the programmer to 
specify a field of constant data, and in the same im­
perative statement perform a function using the spec­
ified field. 

As the processor allocates core storage, it automati­
cally reserves a field in which it constructs the constant 
data. When the imperative statement is translated into 
machine language, the address to which the constant 
data was assigned becomes a basic address referencing 
the field at its low-order position. The processor as­
signs a word mark to the high-order position of the 
constant field. Literals can be address adjusted andl 
or indexed. 

All literals are assigned upward relocation indicators. 
The four kinds of literals are discussed under the 

following headings: 
Numeric Literal 
Alphameric Literal 
Area Defining Literal 
Address Constant Literal 

NOTE: Neither a literal nor its label can be used in 
the operand field of an EQU statement. (See "EQU­
Equate," under "Declarative Operation Codes.") 

Numeric Literal 

A numeric literal represents a data field of numbers 
with a sign. Its form in a statement has the following 
characteristics: 

1. It is coded as the basic A- or B-address. 
2. It is preceded by a plus or minus sign. When it 

is assigned to core storage, the sign is placed over the 
units position. 

3. It is an integer whose length is limited only by 
the available operand positions. 

4. Blanks and other non-numeric characters are not 
permitted within a numeric literal. 

In Figure 13, the instruction causes the value" + 80" 
to be added to the contents of the core-storage loca­
tion labeled TOTAL. 

-
Line Label !operation 

3 56 1516 2021 Zli 3Q 3li 4Q 

QJ_ 1.1 
• '_~ __ ~-"--'--L __ ~L....L..J.._ ~O~l :~(l:~A:L: : : : : : : : o 2 I 

Figure 13. Use of the Numeric Literal 

When a numeric literal does not exceed nine digits 
in length (excluding the sign), it is assigned a relative 
location only once per program segment (a program 
is separated into segments by LTORG, SPEND, or END 
statements), no matter how often it appears in the 
source program. Longer numeric literals are assigned 
a relative location each time they are encountered in 

Types of Operand Entries 17 



the source program. Consequently, to conserve core 
storage, in cases where multiple use of a "long literal" 
is necessary, it should be defined as a Dew. (See "Dew 
- Define Constant with Word Mark," in the section 
"Declarative Operation Codes.") 

If an unsigned numeric literal is desired, it must be 
entered as an alphameric literal (see below). 

Alphameric Literal 

An alphameric literal can consist of one or more char­
acters, including the blank. The literal must be pre­
ceded and followed by the @ character (4-8 punch). 
The @ character is permitted within the body of the 
literal itself; however, a comment on the same line 
must not contain the @ character. Also, only one alpha­
meric literal can appear in the operand field. These 
considerations are necessary because the processor as­
sumes everything between the initial and terminal @ 
characters in the operand field to be part of an alpha­
meric literal. 

NOTE: The word separator character (0-5-8 punch) 
must never be coded as the first character of an alpha­
meric literal. 

In Figure 14, the alphameric literal JUNE 14, 1964, is 
compared to the contents of the core-storage location 
labeled FLAGDAY. 

Line Label pperatiOl' OPE , 56 1518 2021 25 ~o 35 40 45 

O-,-J--.i _ _ -'---_L C !t6l.J:U.N.£. . t.4 .1.9·'tL~A'i , • 
I 

o Z 

Figure 14. Use of the Alphameric Literal 

An alphameric literal, one to nine characters in 
length (excluding preceding and terminal @ char­
acters ), is assigned a relative location only once in a 
program segment, no matter how often it is used in the 
source program. Longer alphameric literals are as­
signed a relative location each time they are encoun­
tered in the source program. Consequently, to conserve 
core storage, in cases where multiple use of a long 
literal is necessary, the literal should be entered as a 
Dew. (See "Dew - Define Constant with Word Mark.") 

Area Defining Literal 

The area defining literal affords a convenient method 
for simultaneously defining and labeling a field of 
blanks within the same Autocoder instruction in which 
it is required. The generated field is assigned a relative 
location along with other literals in the subprogram, 
and has a word mark in its high-order position. The 
field can be referenced by its associated label in other 
statements in the subprogram. 

The area defining literal can be specified only as a 
basic address in an imperative statement (Figure 15). 

18 

It consists of a user-created label, followed by a pound 
sign (#) character (3-8 punch), and a number speci­
fying the length of the field required. Since the pound 
sign notation is used to define the label only once, it 
should not be attached to the label in other references. 

Figure 15 illustrates how an area defining literal can 
be used in an Autocoder statement. This literal causes 
the processor to allocate ten successive positions of 
core storage, and label the area BUFFERTWO. Ten suc­
cessive blanks will be loaded into storage at object 
program load time. Assuming that AMOUNT refers to lo­
cation 00796, and BUFFERTWO refers to location 00596 
(the low-order position of the field), the assembled 
machine-language instruction that moves the contents 
of AMOUNT to the area BUFFERTWO is D0079600596C. 

NOTE: The following restrictions should be con­
sidered when using a label created by means of the 
area defining literal: 

1. When the processor encounters a LTORG or SPEND 
statement, it terminates the availability of previously 
defined labels that were created by means of area de­
fining literals. Thus, subsequent references to the label 
will not be effective. (See "LTORG - Literal Origin," 
and "SPEND - Subprogram End.") 

2. A symbol defined by an area defining literal must 
never appear in the label field. 

3. The area which can be reserved by an area de­
fining literal is limited to 500 positions of core storage. 
If this limit is exceeded, the processor will reserve only 
the maximum (500 positions), and attach an "F" Hag 
to the statement in which it appears. 

Line Label "P.P".tI~" ,., , 56 

O_.L_1-L -' . : 
I ~L ~ ~~Q:~:'~:~E:~:g:: o 2 

Figure 15. Use of the Area Defining Literal 

Address Constant Literal 

When a label is used in a source program, the machine 
address assigned to it by the processor can be defined 
as a constant (hereinafter referred to as an address 
constant), and used as such by the programmer. The 
label that is to be defined as an address constant is 
written as a symbolic basic address of an instruction, 
with a plus sign preceding this symbol. This signals the 
processor to create the address constant in a five­
position area of core storage. The area contains the 
machine address assigned to the label by the processor. 
The relative location assigned to the address constant 
becomes the basic address represented by the address 
constant literal. (See ®, Figure 16.) 

Figure 16 illustrates how an address constant literal 
can be used. (The numbers in column 36 correspond 
to the numbered references in the text which describe 



"Line! 6 
Label pperati ~ 12 '11 30 as 401, I~hs 1 

~I ~.X. T.T. : IA IA .• B, (i) 
1 o , , , . I . , 

o a 

04 

l4nC:O,N.l 
, 

05 , IML.AI. +F XII r. ~ 1,N....s., TL,-t,S. ~ 

06 

07 

08 , I , .( 

09 IT.Ns...r. I lB. In. !b .( 

10 

Figure W. Use of an Address Constant Literal 

the functions performed by the statements in the 
figure. ) 

1. Assume that the label EXIT is assigned by the 
processor to location 20600. 

2. When the processor assembles the instruction 
labeled ADCqN, the address of the symbolic operand 
+ EXIT will be assigned a five-position area in core 
storage in a manner similar to other literals. That is, 
the address of EXIT (20600) becomes the constant data. 
field addressed by the statement. 

3. Assume that 32797 js the location of the address 
constant literal and the location of the instruction 
labeled INST is 11401. The assembled machine-language 
instruction of ADCON will be D3279711406A. 

When the instruction labeled ADCON is executed in 
the object program, the address constant 20600 is 
moved to 11406. The instruction labeled INST now be·· 
comes j20600b. When the instruction is executed, an 
unconditional branch to EXIT takes place. Thus, the 
programmer can write an instruction which moves an 
actual address into the operand of another instruction 
at program execution time. 

NOTE 1: If address adjustment and/or indexing are 
used in the operand with an address constant literal, 
they modify the address of the address constant literal, 
not the constant itself. (That is, in the example given, 
address 32797, not 20600.) Both addresses will be as .. 
signed upward relocation indicators. 

NOTE 2: The address constant (20600) will be un .. 
signed in core storage. 

An address constant can also be created by means 
of the new statement. See "new - Define Constant 
with Word Mark." 

Linkage Symbols 
Relocatable subprograms that have been independ­
ently compiled, but designed to run together, require 
communication. This communication is supplied by 
the Linkage Loader when it combines the subpro·· 

grams and converts them to absolute format. The use 
of linkage symbols facilitates the communication by 
indicating to the Linkage Loader that a reference ad­
dress from a different subprogram is required. 

The two formats of the linkage symbol are: 
1. A conventional label (up to ten alphameric char­

acters in length) which can be established as a linkage 
symbol only by appearing either as the name parameter 
in the TITLE card or as the label of a DEFIN statement. 

It can be referred to, in an assembly, only by one of 
the following statements. These statements are dis­
cussed later, under their individual headings: 

DCWF - Subprogram Address Constant 
DCWS - Subprogram Branch Instruction 
BASEl - Base Address of the Subprogram 
BASE2 - Base Address of COMMON 
PRTCT - Protect . 
CALL - Subprogram Call 

This type of linkage symbol is used to reference en­
tire subprograms by means of operation codes men­
tioned in its description. Its specification is described 
in the discussion of statements permitting its use. 

2. A special five-position symbol consisting of four 
alphameric characters (the first of which must be, al­
phabetic) with a slash (/) in the fifth position. It is 
established as a linkage symbol by appearing as the 
label in a DEFIN statement. This type of linkage symbol 
can be used in the operand field of any Autocoder 
statement except EQU, ORG, LTORG, END and SPEND; it 
cannot be indexed or address adjusted. 

It is imbedded within subprogram instructions, and 
is not assigned an address, but is placed in its corre­
sponding position in the generated machine instruction, 
as supplied in the Autocoder statement. 

This second type of linkage symbol can be used to 
communicate with a subprogram at a point designated 
by the symbol. When the instruction is processed by 
the Linkage Loader the linkage symbol is converted 
into an absolute machine address. 

Figure 17 illustrates the use of a linkage symbol in 
an Autocoder instruction. The assembled instruction 
will be ALABE/00029. The Linkage Loader will deter­
mine and supply the absolute value for LABE/. Thus, 
the instruction will be loaded as Axxxxx00029, where 
xxxxx is the absolute address supplied by the Linkage 
Loader.-

NOTE: Linkage symbols are assigned a NO reloca­
tion indicator. 

Figure 17. Use of the Five-Position Linkage Symbol 

Types of Operand Entries 19 



System Symbols 
Various elements of the Resident Monitor (including 
the Resident IOCS) can be referenced in the Autocoder 
language by the use of their assigned system symbols. 
All system symbols have the format / ABC/, where ABC 

is the symbolic name of a location within the Resident 
Monitor. System symbols are discussed in detail in the 
publication, System Monitor. 

System symbols are treated by the Autocoder proc­
essor in the same manner as linkage symbols. That is, 
they are passed intact to the Linkage Loader, where 
they are resolved into absolute addresses. 

Figure 18 illustrates the use of a system symbol in 
an Autocoder instruction. The assembled instruction 
will be D/DAT/00029T. The Linkage Loader will 
search its table of system symbols and substitute the 
absolute value for /DAT/. Thus, the instruction will be 

v 
loaded as Dxxxxx00029T, where xxxxx is the absolute 
value for the system symbol, /DAT/. 

NOTE: A system symbol is assigned a NO relocation 
indicator. (The absolute addresses for system symbols 
are a permanent part of the Linkage Loader's symbol 
table. ) 

Figure 18. Use of the System Symbol 

Miscellaneous 
There are several additional elements that are valid in 
the operand field. These elements are discussed under 
the following headings: 

Operation Modifiers (d-characters) 
Blank Operand 
Zero as a Basic Address 
Special Operand Elements 

Operation Modifiers (d-Characters) 

The programmer using the Autocoder language is re­
quired to supply the operation modifiers associated 
with certain conditional branch instructions. They are 
indicated under "Logical Operations" in Appendix D 
of this publication. The reader is also directed to the 
appropriate sections in either of the Principles of 
Operation manuals listed as prerequisite reading. 

Blank Operand 

A blank operand is valid in the following types of 
operations: 

1. In operations where valid A- and /01' B-addresses 
are supplied by the chaining method. For example, in 

20 

Figure 19 the second A (add) instruction is chained. 
It takes its addresses from the A- and B-address 
registers. 

label !operation ;g 
1516 lIO Z I :1'5 30 :5 4 

'" _L~L--,_-,---~_~_~ __ iAuJtL~L4_'--L~~--L __ ~_C_i _. _>_ 

: IA --L-..1-l.-L...l...-....L--'----L.--L...-L_ . ...L_...L 

! A ---1.......-....J..... .-1..-•. .1 __ .1.. j_ 

o Z 

o 3 

line 
3 56 

Figure 19. Blank Operand when Chaining 

2. In operations that do not require an operand; for 
example, an ORG statement that directs the processor 
to use the address in the high assignment counter plus 
one. (See "ORG - Origin," under "Control Operation 
Codes"; also, "NOP" and "NOPWM" under "Imperative 
Operation Codes," for additional examples of the use 
of the blank operand.) 

Zero as a Basic Address 

A zero in the operand field is treated as the value 00000 
by the processor. Address adjustment and indexing 
can be used. If this value is address adjusted by a neg­
ative factor, a complement number is created. For 
example, the operand 0-5 means address 99995 (Fig­
ure 20). 

In Figure 20 the contents of the location indicated 
by the value 00000 - 5, plus the contents of index 
register 10, will be added to tI0LD. The assembled ma­
chine instruction will be A99RR501000 (assuming 
HOLD is assigned address 01000). The Rs in the A­
address are the result of B bits being placed over 9s 
in the tens and hundreds position to tag index register 
10. 

A NO relocation indicator will be assigned by the 
processor to a zero address. 

Figure 20. Use of the Zero Operand 

Special Operand Elements 

Some Autocoder statements require certain special 
types of information which must appear in the oper­
and field in a specified manner. These statements are 
listed below. (The interested user is directed to the 
appropriate subsection of this publication for a full 
explanation of each statement's format requirements.) 

1. DA and DA v statement parameters 
2. DA and DAV subentries 
3. TITLE statement 
4. HEADR statement 



This section explains the functions performed by Auto­
coder operation codes, and the permissible formats of 
the statements in which they appear. (Macro operation 
codes, because they are a special form, are explained 
separately in the next section.) 

Every statement written in the Autocoder language 
must have a specified or implied operation code in the 
operation field (card columns 16-20). Every permis­
sible operation code belongs to one of four major 
categories and is discussed in this section according 
to the functional grouping of the Autocoder statement 
it represents. The four major categories and their func­
tional groupings are as follows: 

Imperative Operation Codes 
Symbolic Machine Instructions 
Special Imperative Statements 

Declarative Operation Codes 
Linkage Loader Operation Codes 
Control Operation Codes 

Assembly Control Statements 
Subprogram Control Statements 

Imperative Operation Codes 
Imperative operation codes appear in Autocoder state­
ments that are translated by the processor into ma­
chine instructions. 

Symbolic Machine Instructions 
A symbolic machine instruction is an Autocoder state­
ment that is translated by the processor into a 
machine-language instruction. Permissible symbolic 
machine instructions include all arithmetic and gen­
eral data operations, as well as most miscellaneous 
and branch operations not related to input/output 
channel status indicators. The processor attaches an 
"R" Hag to mnemonics which can violate the conven­
tions of the Operating System. These mnemonics are 
listed in Figure 21, which groups and lists every opera­
tion code that can be handled by the 1410/7010 Auto­
coder processor. 

The machine-language equivalents of all valid Auto­
coder operation codes are grouped and listed in 
Appendix D. 

Details concerning the form and use of machine 
instructions and the operations they perform can be 
found in the following publications: 

Autocoder Operation Codes 

IBM 1410 Principles of Operation, Form A22-0526 
IBM 7010 Principles of Operation, Form A22-6726 

Special Imperative Statements 

Two special imperative operation codes have unique 
meanings for the Autocoder processor, and are pro­
vided to add Hexibility to program coding. 

NOPWM - No Operation; Word Mark 

The NOPWM operation code results in the creation of a 
NOP instruction, and directs the processor not to as­
sign a word mark to the operation code of the next 
sequential instruction. The operand field of this state­
ment is left blank (Figure 22). 

At assembly time, the NOPWM instruction (Figure 
22) causes the processor to insert in the object pro­
gram, the machine operation code N (No Operation) 
with a word mark, followed by an unconditional 
branch instruction (J01950) with~ut a word mark. 
The assembled instruction will be NJ01950b. (Assume 
NEXT is assigned to location 01950.) At execution 
time the branch will be inoperative, and the machine 
will proceed to the next sequential instruction. 

Other instructions in the subprogram can be used 
to set or clear the word mark over the operation code 
of the branch instruction, as needed. If there is no 
word mark, the branch instruction is ignored; if 
the word mark is present, the branch instruction 
is executed. Thus, the NOPWM operation permits the 
programmer to set "N 0 Op" switches easily. 

NOTE: The effect of NOPWM before a DCWS state­
ment is the same as a simple NOP. That is, an N is 
generated and a word mark is assigned to the J opera­
tion code of the seven-position DCWS. 

NOP - No Operation 

The NOP operation code results in the creation of a 
one-character machine instruction. The operand field 
must be blank (Figure 23). 

The NOP statement can also be used to define a pro­
gram switch. As shown in Figure 23, the processor 
will translate the mnemonic NOP to N (No Operation) 
with a word mark. The unconditional branch instruc-

y 

tion will be translated as }01950b, with a word mark 
over the "J" operation code. (Assume NEXT to be the 

Autocoder Operation Codes 21 



CONTROL OPERATION CODES IMP ERA T I V E COD E S (Cont'd) IMP ERA T I V E COD E S (Cont'd) 

ASSEMBL Y CONTROL CODES MOVE OPERATION CODES LOGICAL OPERATION CODES .. 

Mnemonic Meaning Mnemonic Meaning Mnemonic Meaning 
HEADR Reader Line MLNS Move Left Numeric Single B Branch Unconditionally 
RESEQ Resequence Object Deck MLZS Move Left Zone Single BU Branch If CompJre Unequal 
EJECT Eject Page MLCS Move Left Charac Single BE Branch If Comp!Jre Equal 
PST Print Symbol Table MLWS Move Left WM Single BL Branch if Comp!Jre Low 

MLNWS Move Left Num and WM Single BH Branch if Comp!Jre High 
SUBPROGRAM CONTROL CODES MLCWS Move Left Charac and WM Single BCE Branch if Charac Equal 

MLZWS Move Left Zones and WM Single BBE Branch if Bit Equal 
ORG Origin MLNA Move Left Num to A-Fld WM BAV Branch if Arith ovn 
LTORG Literal Origin MLZA Move Left Zones to A-Fld WM BDV Branch if Divide ovn 
END End of Source Program MLCA Move Left Charac to A-Fld WM BZ Branch if Zero Balance 
SPEND Subprogram End MLWA Move Left WMs to A-Fld WM BW Branch if Word Mork 

MLNWA Move Left· Num and WM to A-Fld WM BZN Branch if No Zones 
MLZWA Move Left Zones WM to A-Fld WM BWZ Branch if WM and No Zones 

DECLARATIVE OPERATION CODES MLCWA Move Left Charac and WM to A-Fld WM BXO Branch if Exponent Ovfl 
MLNB Move Left Num to B-Fld WM BXU Branch if Exponent Unfl 

SUBPROGRAM DECLARATIVE CODES MLZB Move Left Zones to B-Fld WM 
MLCB Move Left Charac to B-Fld WM 

Define Area MLWB Move Left WM to B-Fld WM MISCELLANEOUS OPERATION CODES 
DA 

MLNWB Move Left Num and WM to B-Fld WM DCW Define Constant with WM 
MLZWB Move Left Zones and WM to B-Fld WM NOP No Operation 

DC Define Constant 
MLCWB Move Left Charac and WM to B-Fld WM NOPWM No Opn, Suppress WM 

DS Define Symbol 
MLN Move Left Numeric SAR Store A-Register 

EQU Equate 
MLC Move Left Characters SBR Store B-Register 

L1NKAG~ LOADER OPERATION CODES MLZ Move Left Zones SW Set WM at A-Field 
MLW Move Left Word Marks CW Clear Word Mark 
MLNW Move Left Num and WMs CS Clear Storage 

TITLE Title of Subprogram 
MLZW Move Left Zones and WMs STC Store Time Cloc:k 

BASEl Base Address 
MLCW Move Left Charac and WMs SR Store Register 

BASE2 Base Address of COMMON 
MRN Move Right Numeric STCPU Store CPU Status 

CALL Call Subprogram 
MRZ Move Right Zones RSCPU Restore CPU Status 

DEFIN Definition 
PRTCT Protect Definitions MRC Move Right Characters 

MRW Move Right Word Marks 

SUBPROGRAM LINKAGE CODES MRNW Move Right Num and WMs 
MRZW Move Right Zones and WMs RESTRICTED OPERATION CODES * 
MRCW Move Right Charac and WMs 

DCWF Subprogram Address Const 
MRNR Move Rt Num to A-Fld RM BEXl Branch Ext Indic Chan 1 

DCWS Subprogram Branch Instr 
MRZR Move Rt Zones to A-Fld RM BEX2 Branch Ext Indic Chan 2 

COMMON DECLARATIVE CODES MRCR Move Rt Charac to A-Fld RM BEX3 Branch Ext Indic Chan 3 
MRWR Move Rt WMs to A-Fld RM BEX4 Branch Ext Indic Chan 4 

DAV Define Area in COMMON MRNWR Move Rt Num and WMs to A-Fld RM BOll Branch Ovlp Proc Chan 1 

RSV Reserve Label In COMMON MRZWR Move Rt Zones and WMs to A-Fld RM BOL2 Branch Ovlp Proc Chan 2 
MRCWR Move Rt Charac and WMs to A-Fld RM BOL3 Branch Ovlp Proc Chan 3 
MRNG Move Rt Num to A-Fld GM-WM BOL4 Branch Ovlp Proc Chan 4 

IMPERATIVE OPERATION CODES MRZG Move Rt Zones to A-Fld GM-WM BBl Branch if Binar)' Cd Chan 1 
MRCG Move Rt Charac to A-Fld GM-WM BB2 Branch if Binary Cd Chan 2 

ARITHMETIC OPERA nON CODES WRWG Move Rt WM to A-Fld GM-WM BPCB Branch if Prntr Carr Busy 
MRNWG Move Rt Num and WM to A-Fld GM-WM BPCBl Branch if Prntr Busy Chan 1 

A Add MRCWG Move Rt Charac and WM to A-Fld GM-WM BRCB2 Branch if Prntr Busy Chan 2 
S Subtract MRZWG Move Rt Zones and WM to A-Fld GM-WM BCV Branch if Prntr Carr ovn 
M Multiply MRNM Move Rt Num to RM or GM in A BCVl Branch if Carr Ovfl Chan 1 
D Divide MRZM Move Rt Zones to RM or GM in A BCV2 Branch if Carr Ovfl Chan 2 
ZA Zero and Add MRCM Move Rt Charac to RM-GM In A BC9 Branch if Carr Chan 9 
ZS Zero and Subtract MRWM Move Rt WMs to RM-GM in A BC91 Branch if Carr Chan 9 Chan 1 
FA Floating Add MRNWM Move Rt Num and WMs to RM-GM in A BC92 Branch if Carr Chan 9 Chan 2 
FS Floating Subtract MRZWM Move Rt Zones and WMs to RM-GM in A BXPA Branch and Exit Priority Alert 
FM Floating Multiply MRCWM Move Rt Charac and WMs to RM-GM in A BEPA Branch and Enter Priority Alert 
FD Floating Divide MCS Move Charac and Suppress Zeros JID Test and Branch 
FRA Floating Reset and Add MCE Move Characters and Edit BPI Priority Test and Branch 
FST Floating Store STATS Store and Restore Status 

SCAN OPERATION CODES SSF Select Stackr and Feed 
COMPARE AND LOOKUP OPERATIONS CC Prntr Carriage Control 

SCNRR Scan Rt to A-Fld RM BSP Backsp!Jce Tape 
C Comp!Jre SCNRG Scan Rt to A-Fld GM-WM WTM Write Tape Mark on Tape 
LL Lookup Low SCNRM Scan Rt to A-Fld RM or GM-WM RWD Rewind Tape 
LE Lookup Equal SCNR Scan Rt to WM in A- or B-Fld RWU Rewind and Unl,oad Tape 
LLE Lookup Low or Equal SCNLA Scem Left to A-Fld WM CU Control Unit 
LH Lookup High SCNLB Scan Left to B-Fld WM MU Move Mode I/O Command 
LEH Lookup Equal or High SCNL Scan Left to WM in A- or B-Fld LU Load Mode I/O Command 
LLH Lookup Low or High SCNLS Scan Left to Single Position H Halt 

'----. 

*See Appendix D 

• Figure 21. Mnemonic Operation Codes 

22 



Figure 22. No Operation; Word Mark 

Figure 23. No Operation 

label for location 01950.) Thus, the assembled instruc­
tions will be NJ01950b, with word marks over Nand J. 

NOTE: The processor will automatically substitute a 
twelve-position NOP machine instruction for any state­
ment in the source program containing an invalid 
operation code. This is done to permit patching of the 
object deck. 

Declarative Operation Codes 
Declarative operation codes are used in Autocoder 
statements that are translated by the processor into 
data areas, data constants, and address constants used 
by the object program, and to define and identify 
labels. 

Declarative operations enable the programmer to 
refer to work areas and constants by their descriptive 
names (labels) without regard to their actual locations 
in core storage. For example, if the programmer wants 
to reserve 20 consecutive core-storage positions for 
accumulati.ng a final sales total, a declarative operation 
enables him to reserve the area and refer to it by a 
label, without concern for the actual address of the 
field. In this case the label may be TOTAL or ACCUM, 
or some other label descriptive or meaningful to the 
programmer. 

There are seven declarative operation codes. Their 
use, function and formats are discussed in the following 
order. 

OPERATION CODE 

DA 
DAV 
RSV 
DCW 
DC 
DS 
EQU 

STATEMENT FUNCTION 

Define Area 
Define Area in COMMON 
Reserve Assignment in COMMON 
Define Constant with Word Mark 
Define Constant (no word mark) 
Define Symbol 
Equate 

DA - Deline Area 
The functions of the DA statement are to reserve and 
define areas of core storage, such as input, output, 
or work areas. Fields within each area can be defined 
by the use of successive statements (called DA sub­
entries), with a blank operation code (columns 16-20). 
The label associated with the DA statement refers to 
the high-order address of the reserved area. The label 
associated with a subentry within the area refers to 
its low-order address. 

DA Statement 

The area or areas to be reserved must be defined in 
the operand field of the DA statement. The operand 
field of the DA statement contains a parameter of the 
form B x L, where B (blocking factor) is the number 
of identical areas to be defined, and L is the length of 
each area: B x L = Defined Area. In Figure 24, B = 1 
and L = 80. Thus, 1 x 80 = 80 positions of core storage. 

Figure 24. One Area of 80 Positions Defined in a DA Statement 

Note that in Figure 25, B = 24 and L = 80. Thus, 
24 x 80 = 1,920 positions of core storage to be re­
served. The label refers to the high-order position of 
the total area defined. (The number of positions re­
served will be increased if certain additional elements 
are specified in the operand field. These elements are 
explained in succeeding paragraphs.) 

Figure 25. Defining 24 Identical Areas of 80 Positions Each 

DA Subentries 

The programmer frequently wants to process fields 
and subfields within a single area, or successive identi­
cal areas. These fields must be defined in the DA 
subentry statements immediately following the DA 
statement. The operation fields for these subsequent 
entries must be blank. If a label is used, it refers to 
the low-order position of the field. 

The operand of each subentry must specify the 
relative location of the field within the defined area. 
The first location (high-order position) of each defined 
area is considered location 1. The high-order and low­
order positions of the subentry field (relative to loca-

Autocoder Operation Codes 23 



tion 1) are placed in the operand field. These two 
numbers must be separated by a comma. The proc­
essor places a word mark over the high-order position 
of each field thus defined. 

If no word mark is desired, it is necessary to place 
only the relative low-order position in the operand 
field. The label will refer to this low-order position, 
and no word mark will be assigned by the processor. 
A word mark can, however, be associated with a 
single-position field by writing the relative location 
of the position twice, and separating the two numbers 
by a comma. This is illustrated in Figure 26. 

DA Statement Parameters 

Five optional parameters can be specified in the 
operand field subsequent to the B x L parameter in 
a DA statement. Any or all of these parameters can 
be used in any order; however, the B x L parameter 
must be first. These parameters are explained under 
the following headings: 

Field Indexing 
Group Mark with Word Mark 
Record Mark 
Relative to Zero Addressing 
"N o-Clear" Option 

FIELD INDEXING 

The labels of all DA subentries will be automatically 
indexed by the index register noted in the DA state­
ment (Figure 27). However, the label of the DA 

statement can be indexed only when used as an 
operand. That is, the label of the DA statement must 
have the index register notation affixed to it, each 
time it is referenced, if index adjustment is desired. 

In Figure 27, the labels defined in the DA subentries 
will be automatically indexed by the contents of index 
register 2. However, if one of the labels used as a 
symbol in the operand field of an instruction is fol­
lowed by an indexing notation, this indexing overrides 
the indexing specified in the DA statement. 

Overriding indexing, as explained above, is effective 
only for the instruction in which it appears. In sub­
sequent instructions, the index indication of the DA 

30 

Figure 27. Indexing Fields in a DA Statement 

statement will be effective. In Figure 28 GROSS is 
indexed by the contents of index register 3, regardless 
of the index register indicated in the DA statement 
in which it was defined. 

Figure 28. Overriding the DA Statement Index of a Field 

The programmer can negate the effect of indexing 
in a field by putting an XO (X-zero) in the operand of 
each instruction in which indexing is not wanted. Here, 
again, the original index indication is effective in 
subsequent instructions (Figure 29). 

Figure 29. Negating the DA Statement Index of a Field 

GROUP MARK WITH WORD MARK 

If a group mark with word mark ($:) is desired after 
the total defined area, the character =1= (12-7-8 punch), 
preceded by a comma; or the letter G, precedes:l by 

OPERAND 

~~O-LlI~("l:.,.a.u'.J:Ll'!LlL..-'----¥l~---L......<-I'~l.dLIt~_..J..._~_-L-.. .L.~.i.-..L-..l __ L-J..-----l....-..L------'-----~ __ ~----"---...!----.J. __ .L_----'--------'-~L-I--'--L~-'---..L.-~--l.. ____ .l.'_..l 1 

p'o-,-"Z,-,---+,'-"1J.LJ.Iii.-'---'-~--'--Y-~-'--'-t"'--""",""",,-,'-'----'---'-.L-. .....L I , , ! , --L...........L_.1.._-'---'--...L __ LJ~........l.._---L-...L.L-L._."l._ . ....;.-L...._~~~.J_~---1...-.1_~-----'-------'-...L 

p'0~3~1I.o.WJ,Cl.LL...cLL~--'--Y-~-'--'-t"'-~c.uo<.W.~ MaRK MA RI<.~L-.1 .• NLA.,1. ,P,O,,$,l.T.l~1.,T,E.LD. 

p!0...:!4~:r..a.ID1IO..L..L~~'--t--'--'--1-L--t"'-u.u"""'''''--'---'-.L...L.~....l.-~--'-......J_----------'--_i-....J..~----l~..L-...l.. I , I ! !....L.......L..--'-.-' , , , I , , '--L-.J. 

06 

07 

08 

, .N.D. ,W,o,R,D, .MA.R.I<. , , I , , , I I I I I I I I I -L-L-LL-l_-L--'--l_'--'.J-_'-_.LL 

• Figure 26. Areas and Fields Defined in a DA Statement 

24 



a comma, must be used as a parameter of the DA 

statement (Figure aO). 

Line Lobel p,~,at;~ ~ 3 56 1516 2021 . 5 30 3§ 40 

o I Il'.c 4 1> 4 D:.c d lD~: : =2.'1:.:X:8.~:2:G: : : : : : : : : : : : :~ f o 2 
I 

I I I I 

Figure 30. Group Mark with Word Mark after Total Area 

RECORD MARK 

If a record mark (=1==) is desired after each area, when 
multiple areas are defined, the character =1== ( 0-2-8 
punch), preceded by a comma; or the letter R, pre­
ceded by a comma, must be used as a parameter of 
the DA statement (Figure 31). 

Figure 31. Indicating Record Marks in a DA Statement 

The DA statement in Figure 31 will cause the proces­
sor to generate a record mark after each area. This 
means that there will be a total of 1,945 positions of 
core storage reserved: (24 x 80) + 24 record marks + 
group mark with word mark = 1,945 positions of core 
storage. When indexing this statement in a loop to 
process each area consecutively, 81 positions should be 
allowed to include the record mark with each area. 

RELATIVE TO ZERO ADDRESSING 

By writing the character zero, preceded by a comma 
( ,0), as a parameter of the DA statement, the processor 
will assign addresses to the labels of fields as though 
the high-order position of the defined area were core­
storage position zero. However, the label of the DA 

s~atement will still be assigned the address of the high­
order position of the area actually reserved by the 
processor (Figure 32). 

Figure 32. Relative to Zero Addressing 

NOTE: If relative to zero addressing is used, the fields 
will be assigned a NO relocation indicator. Field index­
ing is required. 

"NO-CLEAR':> OPTION 

The area reserved by the DA statement is normally 
cleared to blanks before setting word marks and/or 

record marks. By writing the character N preceded 
by a comma (,N) as a parameter of the DA statement, 
the area reserved by the ·DA statement will not be 
cleared to blanks when the program containing the 
area is loaded into core storage from the MJB. (See 
Figure 33 for an example.) This option is not effective 
when the program is loaded from the SOF. 

35 40 

Figure 33. Negating the Clearing of an Area to Blanks 

Sample Problem 

In this problem, data is to be read from magnetic tape 
into an area of storage, where it is to be processed. 
This area, labeled READAREA, is indexed by index 
register 2 and will have a final group mark with word 
mark. This is a payroll operation, and each record 
refers to a different employee. The records are writ­
ten on tape in blocks of 24. Each record is 80 characters 
long, and has the following format: 

LABEL 

MANNO 
NAME 
DATE 
GROSS 
WTAX 
FICA 

POSITIONS DATA 

4-8 Man Number 
11-30 Employee name 
32-37 Date 
45-64 Gross wages 
66-71 Withholding tax 
74-79 FICA deductions 
35 Month 
22-28 Employee first name 

The labels and their associated fields can be listed 
in any order. (Labels are not assigned to month and 
employee first name because they will not be needed 
in this problem.) One way of coding the required 
elements is illustrated in Figure 27. 

The programmer can now, in his source program, 
write an 10CS macro-instruction to cause data to be 
read from tape into a storage area labeled READAREA. 

This causes a block of 24 eighty-character data records 
to be placed in the 1,920 reserved positions of core 
storage. This data can now be referred to by the 
labels DATE, NAME, FICA, etc., in the first of the 24 
records that occupy READAREA. The 10CS controls the in­
dexing used to reference and process the data in the 
subsequent records, 2 through 24. 

After all the processing required in the first record 
is complete, index register 2 is incremented by 80. 
Because all, labels defined by this DA statement are 
increased by the contents of index register 2, the 
routine now processes the second data record of the 
block read into core storage. This process is repeated 
until all the records have been processed. 

Review 

Figure 34 summarizes the main points covered in the 
preceding discussion of the DA statement parameters, 

Autocoder Operation Codes 25 



and shows the various entries which can be written 
in the DA statement. The B x L entry must be first; 
the other entries can be written in any order. 

Z5 30 35 

CLl-,-+,~D..o..Io!LL1Lll~"'-----__ fM-'I'4-'-_L _ 4X .atlJ.x2JJ-L'~GuJ1.} .M_ '.L. L.< 

o 2 

Figure .34. Possible Elements in a DA Statement 

The following chart summarizes the main points of 
the processor's treatment of areas and subentries. Al­
though the index register indication appears in the DA 

statement, only the subentries are indexed. The DA 

statement label can be indexed in any instruction in 
which it appears. 

WORD MARK LABEL 

SET WHERE SET REFERENCED 

AREA(s) NO ............. HIGH-ORDER 
FIELD 

FORM(X, Y) YES HIGH-ORDER LOW-ORDER 
FORM(Y) NO ............. LOW-ORDER 

SINGLE 
POSITION 
FIELD 

FORM(X, X) YES LOCATION LOCATION 
FORM(X) NO ............. LOCATION 

DAV - Define Area in COMMON 
The DA v statement is used to define an area in COMMON 

in a manner similar to the DA statement. However, 
labels of fields are automatically assigned downward 
relocation indicators (except when relative to zero 
addressed, resulting in a NO relocation indicator). 

The format of the two statements is identical, except 
for the operation code. For a discussion of conventions 
for specifying a DA v statement, its subentries, and the 
five optional parameters available in the DA v operand 
field, see "DA - Define Area." 

Before proceeding to examples illustrating the use 
of the DA v statement, the following discussion on 
COMMON is included for those users unfamiliar with 
its requirements and function. 

The Autocoder processor makes the following as­
sumptions when assembling the object deck: 

1. The Linkage Loader will relocate downward all 
addresses referring to COMMON. The downward reloca­
tion factor applied will be such that the value con­
tained at the system symbol / AMS/ will be the topmost 
limit of COMMON; or, if furnished in the program, the 
BASE2 statement will specify the topmost limit. 

2. The topmost address in COMMON will be assigned 
the value 99999 by the processor, and go downward. 

3. The processor will not assemble data or instruc­
tions to be loaded into COMMON. For example, a DC 

or a DCW cannot be used to load data into COMMON. 

26 

Data can be placed into COMMON only through the 
execution of the object program. 

4. The label COMMON is an indelible entry in the 
processor's symbol table. It has the address value of 
99999, and has a downward relocation i.ndicator at­
tached. If the user defines COMMON as the label of a 
source statement, it will receive an "M" (Multiple 
Definition) flag. 

Two steps must be taken by the programmer to 
make use of COMMON in his subprogram. The steps are 
discussed under the following subheadings: 

Assignment of Data Areas in COMMON 

Use of Labels Referencing COMMON 

Assignment of Data Areas in COMMON 

The programmer must define the assignment of data 
fields and areas within the COMMON data areas. Since 
COMMON starts at 99999 and goes downward, the pro­
grammer determines the total number of positions he 
requires and assigns space upward for each data 
field and area. The highest position he can use is 
99998. (This technique is illustrated in Figures 61 
and 62.) 

If a program contains two or more subprograms, 
each of which contains references to the same data 
fields in COMMON, these subprograms must assign core 
storage in COMMON in the same way (or in a way 
compatible with each subprogram's needs). That is, 
the same data field must be assigned the same relative 
address in each of the subprograms. 

One way of assuring compatible COMMON area 
referencing is to include identical COMMON area source 
statements in each of the subprograms involved (i.e., 
identical DAV, EQU, or RSV statements). 

Labels referencing the COMMON Data Area can be 
defined in any of the following ways: 

1. The EQU statement. For example, for the state­
ment A EQU COMMON -10, the label (A) will be as­
signed the value 99989 (that is, 99999 -10). Subse­
quent labels in the source program can be equated to 
this label (A). Under these conditions, this label and 
subsequent labels will be assigned downward reloca­
tion indicators. 

2. The DAV statement and associated DAV subentry 
statements. (Normally DAV statements follow an ORC 

statement that places the DAV area within COMMON.) 

Labels used in the DAV and subentry statements will be 
assigned downward relocation indicators. 

3. The RSV statement followed by an EQU statement 
for an actual address value in COMMON. For example: 

LABELB 
RSV 
EQU 

LABELB 
99985 



If a subsequent label is to be equated to LABELB, 
the RSV statement must be used, with the subsequent 
label as the operand. For example: 

LABELC 
RSV 
EQU 

LABELC 
LABELB 

Use of Labels Referencing COMMON 

Once the programmer has defined labels referencing 
COMMON, he can use them as if they were labels as­
signed to fields and areas within the usual boundaries 
of the subprogram. Thus, data can be manipulated and 
operated upon, and IOCS can be employed to read data 
into and OUlt of areas contained in COMMON. 

RESTRICTION 

The processor will not assemble data or instructions to 
be loaded into COMMON. Data can be placed into 
COMMON only through the execution of the object pro­
gram. Hence, Autocoder declarative statements, such 
as the DC and DCW statements, cannot be used to enter 
data into COMMON. 

The effect of the DA v statement is different in several 
respects from the DA statement, since the defined area 
is not located within the body of the subprogram, but 
within the COMMON data area. Hence the user of the 
DAV statement must note the following: 

l. The programmer must specify the exact point 
within the COMMON data area where the defined area 
will start. This can be done by means of an ORG state­
ment, the technique of which is illustrated in Figure 
61. (The ORG statement is explained in the next section, 
under the subheading "ORG - Origin.") 

2. The defined area in COMMON can be used by 
other subprograms; the "No-Clear" option enables the 
programmer to retain the desired contents of COMMON. 

Line 
~ 56 

Lobel 
---,- 25 30 35 40 

3. The DAV subentry statements can be used to set 
word marks in their respective fields. 

4. The DAV statement can be used to clear the area 
it will occupy in COMMON, and to set record marks 
and a group mark with word mark. 

The coding examples in Figure 61 illustrate the as­
signment of labels within COMMON. The relative ad­
dresses assigned are shown as comments. All labels are 
assigned downward relocation indicators. 

The second part of Figure 35 illustrates all the ele­
ments that can appear in the DAV statement. 

NOTE: A group mark with word mark will be placed 
at the topmost usable position in COMMON (99998). 

An alternative way of assigning the same labels is 
illustrated in Figure 36. In this example, the fields are 
not cleared and no word marks are set automatically. 
Word marks are set during program execution by 
means of imperative statements. 

RSV - Reserve Assignmenl' in COMMON 
The RSV statement is used to direct the processor to 
affix a downward relocation indicator to a label that 
references a field in COMMON. The label is used as the 
operand of the RSV statement (Figure 37). The RSV 
statement must precede the use of the label as an oper­
and in the source program. 

In Figure 37, the operand ALPHA will be assigned 
a downward relocation indicator each time it appears 
in a subsequent instruction. 

Dew - Deline Constant with Word Mark 
A DCW statement is used to enter a numeric, alpha­
meric, blank, or address constant into a core-storage 

OPERAND 
45 50 55 60 65 70 

~ QA1.Jj(),tL-iS£_~ .. _~ .. ~~.:;;:.!:l.2.9J4,{2 __ .L .• •• L .. ~_.~~ __ ._L. .. -'-~~ _ ~._~_J __ L ~ ~_L.~_.L _. .• • . 

--J'--1'~~"~---'-'---J-L"~'-----'--J.L-..4 ... a---'-.L.-'- L___l._LL_--LLA8.£l...L .AaD.l2.£'s, )J.=9~a~.£L~'JlJJiH.::CJR.D.£RJ~_ ".>_ •. _J. ___ _ 

-'-I--~~-----'------'____+'_..".......~-~~-'----'--.J''--'-' .>A..1L 04,8£1 Z .Aj),DU££..."--.9~~9~~.LLO.JfL-1J./li).u.L~_~~~-J-~. 
, , , ALSO ..5.£ 7:$, ,.vQ,e1J MARK_ jI, T. 99 94.Q _~_ ... ---'--~ 
~~ ,/,5. ,E.,eaM..9.ll9.S~.J£l.jl,9,9.6.7.L __ .L_L_LL_LL---'--_.LL" 

I ,LA.8E,L 3, .4110,R.l,f, £,",9.9.9,57 ,(,lOW o.RIJf",R). , L 

,/ ABEL -4 A,aaR.E. S" for ,9,9.96 Z ~'£M.J)Ee.l.L~_"'_u~ 
~"--!'lIS.....L-'--~--'-.L..L.---'--'----+---,~---'-~~~-"-"~~..L....O.-,--L-..j.IJ,~"",O"".R,-"D~M""f1='ID!R ... K. .... Su_.c-"'A:u.,R~ ..... £'--""'5CLE>-I-L1 L.AL ,9.99SQAMJ2....939....sJi __ L 

~...J--.JL~---'--A..R.£..4... IS ,F,RQM ,9,29,6.8, ,TO. ,9,99,98, .L..L!-..i--'--' LL-'_---L...J._ 

'---I""-'+"'"'-''---'-'----~___'_____'_____ LA8£,L~H~U~].2;tJ'~ ___ L_'_____l._L_'__L.LL.L . .L.'_ _.L.L.L._ 

~~---'--'-. LABEI.6 A,/),f),~~..9.,8.J~f)(.6_L'_' _ _'___'~____'____'__'__~ 

._.L_...l. ---L~J_J __ .L_J._~_.l....._L.~~~_££L ... AL. __ l_.L .J. ••• 1_-.....L .• _1.. . .1_ .• 1 __ L __ .l. • .&-.1._ 

, I , , ! , , , ! '--..l-'! ! I 

• Figure 35. Label Assignment in COMMON and DAV Statement Elements 
Autocoder Operation Codes 27 



OPERAND 

~~-~J2 "". AP.f)J?,£.S,Sl=,9,9.9,61h 1-L LL ____ L_Ll 1 -L __ L_~ __ LL_L' LL-L-L_-L_L-~.l"_ 

~"LI-.lJj~..u-:2i~LA&L4~,5L, WOgCl .t!4,g!:..S.1££LAJ: _L9g.9S0,AN/), ,9,981£8 
'J).M,)t{),N.~2,Z.f-~6L " , 1 AJ),[).R.£S's'=.9.9.9,7,Z,+X,6, , LJ __ ~~-'---'~-L __ Li ___ J L.LL~ 

• Figure 36. Label Assignment in COMMON 

Figure 37. The RSV Statement 

location assigned by the processor. The processor 
places a word mark over the high-order position of the 
defined constant. 

The label of the Dew statement makes reference to 
the address of the low-order position of the constant. 
The high-order position will be referenced if the label 
is indented one column in the label field; that is, if it 
begins in column 7. In all cases the constant being 
defined must be left-justified in the operand field. 

Five types of constants can be defined by means of 
the Dew statement. They are discussed under the fol­
lowing headings: 

Numeric Constants 
Alphameric Constants 
Blank Constants 
Address Constants 
Signed Address Constants 

Numeric Constants 

A numeric constant, defined in a Dew statement by the 
numeric characters in the operand field, can be pre­
ceded by a plus or minus sign, or it can be unsigned. 
A plus sign causes A and B bits to be placed over the 
units digit. A minus sign causes a B bit to be placed 
over the units digit. Unsigned constants will be un­
signed in storage (Figure 38). 

The first blank column encountered in the operand 
field terminates a numeric constant. A numeric constant 
cannot be more than 51 characters long if it is signed; 
52 if unsigned. 

Figure 38. N umerie Constants Defined in Dew Statements 

Alphameric Constants 

An alphameric constant must be preceded and fol­
lowed by the @ character (4-8 punch). Blanks and 
special characters, including the @ character itself, 
may be used in the body of the constant:. The proc­
essor, in scanning the operand field, will consider every­
thing to the left of the rightmost @ character a part 
of the constant being defined. For this reason, the @ 
character is not permissible in comments on the same 
line. An alph,lmeric constant can contain up to 50 
characters, excluding the initial and terminal @ charac­
ters. A comma preceding a G (,G) following the trail­
ing @ character causes the processor to put a group 
mark with word mark in storage following the last 
character in the constant. (The label refers to the low­
order position of the field, not the group mark posi­
tion. ) 

In Figure 39, the group mark with word mark was 
used with a Dew statement to be written by the console 
printer. The label of the message was indented to ref­
erence the high-order position. A group mark with 
word mark is required to halt message typing on the 
console printer. 

NOTE: The word separator character (0-5-8 punch) 
must never be coded as the first character of a Dew 
alphameric constant. 

1-"-0-'-"--'-l'-~~'--'-+--'-~'-Il-'~:lLJ_-Fad.oW.bJ..A.-oULJ.~_-'lE-,-~.o~J_@L.1..n, ,c. E.L{. 7: S, .£A.CM~£-.L_~l_~L_1-J.-1_.J __ -' ___ ~ 
~O~2:.-J11~&Jjjuatll'UDJ..~YU'A.UJ'lL..._~..:J.,JJldUuw~~-1.~~~~_~-'--------1-----L_--L .. _L_.l __ 1.. __ ... --.L .. l .. ".L .. L . ......l..-L.......L_L....L--.LJ-.l._.L_..L ___ L-...I...-........ L----L-

1-"-0...!!3----+....oJIIL.J!U>l...;L.L.~~'__t'_I:a....r~-P~~4-tn..udJ.o.--AJ.uOIL.t.&L8'--'-'~fi.'-L~.G-'---'--'---'---'--L-'--L-'--'-- -,--, -'---L.~-'-' ~'__'__'_-A. __ L_-"--1-_'_. 

04 
, I , I , I , ! • I I ! , I .L-J.---'-1--'-'-' 

Figure 39. Alphameric Constants Defined in Dew Statements 

28 



Blank Constants 

A field of blanks can be reserved by placing a # char­
acter (3-8 punch) in column 21, followed by a number 
indicating how many consecutive blank core-storage 
positions are to be defined (Figure 40). A word mark 
is set in the high-order position of this field. 

NOTE: The number of successive blank constants 
that can be reserved by a DCW statement is limited to 
500 positions of core storage. If this limit is exceeded, 
the processor will reserve only the maximum (500 
positions), and attach an "F" flag to the statement on 
the assembly listing. 

Line Label pperation 

~ 3 56 1516 2021 25 30 35 

0,1_, ~L1A~~~~-,--~~~~~: : : : : : : o 2 
I 

-'---'---'-

Figure 40. Field of 14 Blanks Defined in a Dew Statement 

Address Constants 

A DCW statement can be used to define an address con­
stant. The constant is the address of the field whose 
label is written in the operand. For example (Figure 
41), assume that the label MANNO is used in the sym­
bolic program, and that it was assigned the address 
00500 by the processor. The programmer can refer to 
the address of MANNO by using the symbolic label of 
the DCW statement. 

Line Label 15~perati~ 21 

<'J 
3 56 25 30 35 

0 1 ' . .1 ~~ i»,c,w. U.A.N..~Q: : : : : : : : : : : : o 2 
I 

1 

Figure 41. Address Constant 

The five-character data field labeled SERIAL (Figure 
41) will contain the address of the label MANNO 

(00500). The Linkage Loader will recognize address 
constants and adjust them by the proper relocation 
factor. Thus, SERIAL will contain the relocated address 
of MANNO. 

If an address constant is address adjusted in a DCW 

statement, the constant is adjusted before it is assigned 

a storage location. In Figure 42, MANNO (actual address 
00500) has been address adjusted by + 12. Thus, the 
location labeled FICA will contain the address constant 
00512. 

Figure 42. Address Constant with Address Adjustment Defined 
in Dew Statement 

Address constants defined in a DCW statement can 
be indexed. The zone bit( s) indicating the specified 
index register becomes part of the constant. 

NOTE 1: All address constants receive the same relo­
cation indicators that were assigned to the symbol 
specified in the operand field. 

NOTE 2: An address constant of a linkage or system 
symbol can be specified, and the desired address will 
be~utomatically supplied by the Linkage Loader. 
However, this form of address constant cannot be 
address adjusted or indexed. 

Signed Address Constants 

An address constant defined in a DCW statement can be 
signed. A and B bits will be generated by the processor 
over the units position, if the plus ( + ) sign was placed 
before the operand. The units position will contain a 
B bit if the minus ( - ) sign was used (Figure 43). 

40 

Figure 43. Signed Address Constants Defined in Dew Statement 

Implied DCW Operation Codes 

If a number of constants are to be defined in succession, 
only the first statement requires the mnemonic DCW, 

in the operation field (Figure 44). 

3 Lines 6 Label 15 ~perati~ 21 25 30 35 40 0!sERANC 50 55 60 65 70 

0, I L r!;l"_L~ -'~'------'- D,C,W ~_ LL~_---'-----'- __ LL_~_._LL.L-'~_L_---,-_,. __ "'----L_-,--,-_.~._L---'-~-'----'----'-----__ --'------'-I--'----'~-'-----'----L-L~'----'--'-----'---'--'------'--' --'--'. --'------'--------'----

o 2 D,A T l;_~--'----LL --'----'-~__'_ _L@]j},/1,L..JlP, , .1.9l5~~L--'------'-- _L~_L-,----,-I---"-"-"~''------'-----I J-I -,---' --'-----'----'----'-----'--'----'-----'--'-'-'------J'---'-----'-----'-----'-----'---'----'----'----l 

03 MESSA:GE@EOJ·,S.TART, PHA.SE TWQ·,@,-'-G=-'-,----'----"-'-'~'______'_____'______'_____'______'______'____'_____'____'__, -'--,. ~--'---'----''---'----'~ 
: 04 

Figure 44. Successive Dew Statements with Blank Operation Columns 

Autocoder Operation Codes 29 



DC-Define Constant (no word mark) 
The function performed by the DC statement, and the 
permissible forms of the constants, are identical to 
those described for the DCW statement. The only differ­
ence is that the word mark is absent when the constant 
is assigned to core storage (Figure 45) . 

Figure 45. Successive DC Statements with Blank Operation 
Columns 

NOTE: The restriction on the use of an initial word 
separator character in the DCW statement defining an 
alphameric constant does not apply to the DC statement. 

OS - Define Symbol 
The DS statement is used to label and define an area 
within the subprogram. No information is entered into 
the area, no word mark is assigned by the processor, 
and the area is not cleared prior to reservation. The 
programmer specifies the size of the area, and desig­
nates the symbolic label by which it will be referenced. 
The number of desired consecutive positions of core 
storage is written in the operand field (Figure 46). The 
label refers to the low-order position of the area. 
However, if the label is indented one place, that is, 
if it begins in column 7, the label will refer to the high­
order position. A label is not mandatory. 

line Lobel Operation 
40 ( 3 56 1516 2021 25 30 35 

o I 7).11. 7 J: AI I D.!i. If 2. ~_._.l __ ..L...-l __ .l..-...L._ < 

o z F.I.V.r-
I 

11 . .';. I..r: _.J.~.J...... • ....L-..l-J.. __ l..-L-L_..l __ .L......L..-L...L_J_ ... .L-1.~ 
o 3 

I ~ 

Figure 46. Defining Twelve-Position and Five-Position Areas in 
DS Statements 

Figure 46 illustrates the form of the DS statement. 
The first entry, labeled DOZEN, defines an area twelve 
positions long. The second entry, labeled FIVE, defines 
an area five positions in length. 

EQU-Equate 
The EQU statement is used to define either a second 
symbol to reference a specific location, or a symbol 
for a location not previously labeled. The symbol to 
be defined is specified in the label field, and the rep-

30 

resentation of the location to be "equated" is specified 
in the operand field. 

An EQU statement can be used to assign a symbolic 
label to each of the following: 

Actual or symbolic address 
Adjusted or modified address 
Index register 
Asterisk address 

Actual or Symbolic Address 

The symbol to be defined is specified in the label field. 
The operand field can contain an actual or symbolic 
address. If a symbolic address is specified in the op­
erand field, it must have appeared as a label prior to 
this point in the subprogram. If this condition is not 
met, the label will not be defined. 

SYMBOLIC ADDRESS 

The EQU statement in Figure 47 will cause the processor 
to assign the same address to the label INDIVIDUAL 
that is assigned to the symbol MANNO. Thus, INDIVIDUAL 
has been equated to MANNO - both labels refer to the 
same core-storage location and are assigned the same 
relocation indicator by the processor. 

~~~30 ~5 40 
o I

o 2

Figure 47. Equating a Symbolic Address

ACTUAL ADDRESS

The EQU statement in Figure 48 will cause the processor
to assign the label ACCTNO to machine location 25000.

NOTE: Labels equated to actual addresses will be
treated as absolute values and given a NO relocation
indicator.

Figure 48. Equating an Actual Address

Adiusted or Modified Address

The operand of an EQU statement can be address ad­
justed or indexed. The same relocation indicators
assigned to the address adjusted and/or indexed op­
erand will be given to the defined label.

EQUATING TO AN ADDRESS ADJUSTED OPERAND

In Figure 49, the processor assigns the label WHTAX
to a location ten storage positions lower than the loca­
tion labeled FICA. That is, if FICA is assigned location
00890, WHTAX will be equated to FICA -10, or 00880.

Line Label !operation

" " ~ 3 56 IS 16 2021 2~

~~- Iw,u. TA,){. I 1~.(J,tJ. 'F.l.C:A:-: t:Q: I : ~:-~~-~7-L-L,,= o 2

Figure 49. Equating with Address Adjustment

EQUATING TO AN INDEXED OPERAND

A label can be equated to an indexed operand. In
Figure 50, CUSTNO is equated to JOB indexed by index
register a, not JOB alone. That is, CUSTNO will be as­
signed the address of JOB, with A and B bits over the
tens position (the tag for index register 3) .

An indexed operand can also be address adjusted.

UM ~

Figure 50. Indexing in an EQU Statement

EQUATING TO TWO LABELS

A label can be equated to the algebraic sum or dif­
ference of the values represented by two symbolic
labels, in the form C EQU A±B (+ or -), where A and
B are previously defined labels (Figure 51). (The
treatment of the form C EQU A + B, where B is the label
for an index register, is explained under the sub­
heading '"Index Register.")

Figure 51. Equating a Label to Two Symbolic Labels

In Figure 51, if WHTAX references core-storage loca­
tion 08000 and SECOND references location 01500, the
label NEXT will be assigned the value equal to the sum
of both; that is, 09500. If a minus sign is used instead
of a plus sign, the label NEXT will be assigned a value
equal to their difference, that is, 06500.

NOTE 1: No further adjustments (or indexing) are
allowed.

NOTE 2: If either A or B is assigned a NO relocation
indicator, C will be assigned the relocation indicator
of the other label. If neither A nor B is assigned a NO

relocation indicator, C will be assigned a NO reloca­
tion indicator.

Index Register

The label of an EQU statement can be defined as an
alternative symbolic name for an index register. The
processor's predefined label for the index register to be
equated (XI-XI5) is written in the operand field.
Figure 52 illustrates this technique.

O~II~~~~~~~~

o 2

Figure 52. Labeling an Index Register with an EQU Statement

In Figure 52, the label LOOP will be assigned by the
processor to index register 9. Thus, index register 9
can be referred to as LOOP, instead of X9. This use of
a symbolic index register is illustrated in Figure 53.

Line Label pperation
3 56 1516 2021 25 30 35 40

Q~-1-'--'-- : lA, J_.L __ .-t-~~J!.o,Il.Mr£& 'J-J.L.DML. , _L.L ~
I

o 2

Figure 53. Use of a Symbolic Index Register

NOTE 1: Symbolic index registers must be equated
before they can be used in an instruction.

NOTE 2: A label can be equated to an actual or
symbolic operand indexed by a symbolic index register,
in the form C EQU A + B. The label B represents the in­
dex register. The label C will be assigned the same
relocation indicator assigned to A.

Asterisk

A label can be equated to an asterisk address, with
or without address adjustment and/or indexing (Fig­
ures 54 and 55) .

Figure 54. Equating an Asterisk Operand

In Figure 54, the label FIELDA refers to the location
next available in the program. If the next available
location in the program is 00698, FIELDA is equated to
00698.

Autocoder Operation Codes 31

Figure 55 illustrates the use of the EQU statement
with an address adjusted asterisk operand. If the aster­
isk refers to location 00698, the label FIELDA is equated
to 00710.

Line Lobel Operation
3 56 1516 2021 25 30 35 40 <

, , < , , , ". L.'.' , <)
I

~~ ----L...J._--L-.J~.L_ .. J.. __ -.l..-l ... 1- _~L ...L ___ • l __ .--1.. __ 1-___ L_.J. __ L_ . .L_.L~_.l_ J.~~L. __ J. __ -L_-",,- ~

Figure 55. Asterisk Operand with Address Adjustment

Linkage Loader Operation Codes
The output of an Autocoder assembly is in the inter­
mediate form of a relocatable object deck. It is during
the execution of the Linkage Loader that the object
deck is converted into absolute form. The absolute
object program consists of relocated subprograms with
linkages to each other, as well as to the Resident
Monitor. In order to accomplish this conversion, the
Linkage Loader requires certain specific information,
presented according to the conventions of the System
Monitor.

The Autocoder language provides eight statements
by which the programmer can communicate the sub­
program's requirements to the Linkage Loader. Al­
though these statements can be added to the object
deck of a subprogram after its assembly, their inclusion
in the form of an Autocoder statement affords the
following benefits:

1. Automatic conversion of the statement into the
format required by the Linkage Loader

2. Error diagnosis of the statement as it relates to the
subprogram being assembled

3. Automatic sequencing (card columns 73-75) and
identification (card columns 76-80) of the statement
within the relocatable object deck

The Linkage Loader statements permitted in a sub­
program assembly contain the following operation
codes:

OPERATION CODE

TITLE
BASEl
BASE2

CALL
DCWF
DCWS
DEFIN
PRTCT

STATEMENT FUNCTION

Title of Subprogram
Base Address
Base Address (COMMON Data
Area)
Subprogram Call
Subprogram Address C<;mstant
Subprogram Branch Instruction
Definition
Protect

In the following descriptions of these statements,
only permissible formats and a brief description of their
functions are given. The reader is directed to the pub­
lication, System ~f onitor, for details concerning the
functions performed by these Linkage Loader control
operations.

32

TITLE - Title
The TITLE statement is used to establish an identify­
ing name for a subprogram, to indicate the size of
the COMMON data area the subprogram will use, and to
state the lowest origin point in the subprogram.

Entries

The name of the subprogram must be a con~entional
label (1-10 alphameric characters in length), and ap­
pears as the first entry in the operand field. This name
can be used in DCWS, DCWF, BASEl, BASE2, PRTGr, and
CALL statements. (These statements are individually
explained in this publication.)

NOTE: All names of IBM-provided modules in the
Operating System start with "IB". The user should be
aware of this standard to avoid duplicating the name
of a module when naming a relocatable subprogram.

The specified size of the COMMON data area required
is written as the second operand entry in the form of
an integer, one to five positions in length, and is
optional. If it is omitted, the processor will leave the
corresponding field in the object program's TITLE card
blank, and the Linkage Loader can subsequently give
no warning if the program and COMMON data area
should overlap.

The lowest origin point is the third operand entry
and can be omitted. If it is omitted, the processor will
place into the object program's TITLE card the lowest
address assigned during the assembly. If the third
entry is included, the automatic computation of the
processor is negated, and the value declared by the
entry is passed on to the Linkage Loader through the
TITLE card. This entry can be an actual value or a label
within the assembly.

Although the third entry is normally omitted, it can
be useful under the following conditions:

1. When a program being assembled contains one
or more SPEND statements and,

2. When the low origin points of the subprograms
are different and it is necessary that these differences
be indicated.

Format Considerations

The entries are written in the operand field, and sep­
arated by commas. If the second entry is omitted and
a third entry is used, the third entry must be sep­
arated from the first entry by two commas. If both the
second and third entries are omitted, only the name
is required, with no trailing commas (Figure 56).

N OTE1: The TITLE card should be the first source
statement in a subprogram, with the exception of any
of the Assembly Control statements explained later.

NOTE 2: The TITLE card is the first card in the object
deck, with the parameters rearranged to meet the re­
quirements of the Linkage Loader.

Figure 56. Permissible Forms of the TITLE Statement

NOTE 3:: The contents of the system symbol /DAT/,

the date currently stored in the Resident Monitor, will
be placed in the date field (columns 6-10) of the re­
arranged TITLE card in the object deck. This date will
also appear in the heading line of the assembly listing.

BASE J -. Base Address
The BASEl statement can be used to control the Link­
age Loader's relocation factor. The following operands
are permissible in a BASEl statement:

Actual
Symbolic
Asterisk plus XOO (* + XOO)

Actual

The actual core-storage location is written in the op­
erand field (Figure 57) .

line Lobel joperation

: :oJ 3 56 1516 2021 Z5 30 35

O.LI~ -L-~----,----,-T ---'------'- B.A. . .s.~.1t.S.O.()():
: : : : : : : : : : : : ~--"--'----"-L ~,--"----,--,-

Figure 57. Use of an Actual Address in a BASEl Statement

Symbolic

A symbolic address can be a subprogram name or a
linkage symbol defined in a subprogram that is
processed by the Linkage Loader prior to the sub­
program in which the BASEl statement appears. This
symbolic address is defined by means of the TITLE or
DEFIN statements (see below) .

In Figure 58, the operand PROGRAM2 is the name of a
subprogram that is defined by a TITLE statement.

line LOalb1 perotion ~ 356 1516 2021 25 30 35 40

~~~~ I tS.~~IDD~~ ~:A:~Z: : : ! : : : : : : : : : 

Figure 58. Symbolic Address in a BASEl Statement 

NOTE: A blank operand sets the relocation factor to 
base zero. 

.Asterisk Plus XOO (* + XOO) 

If an * + XOO is the operand of a BASEl statement, the 
relocation factor will be incremented so that program 

loading will continue at the next even-hundred loca­
tion: For example, if the asterisk has the relocated 
value of 18279 the relocation factor will be adjusted 
to 18300. If the value of the asterisk is already an even­
hundred address, that value will remain the relocation 
factor. 

NOTE: The * + XOO form of the BASEl statement must 
be used in conjunction with an ORG statement contain­
ing * + XOO in the operand field. (See "ORG - Origin," 
under "Control Operation Codes.") 

BASE2 - Base Address (COMMON Data Area) 
The BASE2 card is used to set the upper limit of the 
COMMON data area. The operand of the BASE2 card, 
which can be either a linkage symbol or an actual 
address, is as described under the BASEl statement. The 
form * + XOO is not valid in a BASE2 statement. 

CALL - Subprogram Call 
The CALL statement provides the Linkage Loader with 
the name of a subprogram that is to be loaded from 
the System Library file or from the GO file. The oper­
and of the CALL card is the name of the subprogram 
to be processed by the Linkage Loader (Figure 59). 
When the CALL card produced by the processor is 
loaded with the object deck, the operand of the CALL 

statement is passed directly to the Linkage Loader. 
In Figure 59, the linkage symbol 10 MODULE must 

have been defined by a TITLE statement in the subpro­
gram being called. 

line 
3 5.6 30 35 40 

o 2 

Figure 59. The CALL Statement 

DCWF - Subprogram Address Constant 
The DCWF statement is used to specify an address 
constant (similar to the DCW unsigned address con­
stant) and to create an imbedded call for the named 
subprogram. The operand of the DCWF statement must 
be the name of the requested subprogram as specified 
in its TITLE card if the operand has not yet been located 
and processed (forward reference). Otherwise, it may 
be any linkage symbol. 

The label of a DCWF always refers to the high-order 
position of the address constant. This label must not 
be indented. 

The DCWF statement instructs the Linkage Loader 
to perform the following functions: 

Autocoder Operation Codes 33 



1. Include the named subprogram with the pro­
gram that contains the DCWF statement. 

2. Provide an address constant of the relocated 
origin point of the named subprogram. This address 
constant is placed into the position in which the 
DCWF statement appears in the source program (Fig­
ure 60). 

This operation code assumes a higher mnemonic 
value if thought of as representing a Dcw-Five-position 
address. 

In Figure 60, assuming that the subprogram THIRD 
was relocated to start at location 10400, the address 
constant at object time will be i0400. 

Figure 60. Use of the DeWF Statement 

DCWS - Subprogram Branch Instruction 
The DCWS statement has the same format as the DCWF 
statement (Figure 61); however, a seven-position un­
conditional branch is constructed instead of a five­
position address constant. This statement causes the 
following: 

1. The named subprogram will be located and 
processed by the Linkage Loader. 

2. A seven-position unconditional branch instruc­
tion (branching to the relocated origin point of the 
named subprogram) will be constructed by the Link­
age Loader, and placed into the position in the sub­
program in which the DCWS appears. 

This operation code assumes a higher mnemonic 
value if thought of as representing a Dcw-Seven­
position branch. 

The DCWS statement in Figure 61 results in an un­
conditional branch instruction being placed into that 
position in the subprogram in which the DCWS appears. 
If the subprogram THIRD is relocated to the origin point 
14000, the resulting branch instruction is j14000b. 

6 15 16 0 I 30 31t 40 

:::' : : :: : i : : :;§i~r# : : : :~ : : : :~ : : : :~ ~1I_ ~ L~1 ~.tiq ~ 

Figure 61. Use of the Dews Statement 

DEFIN - Definition 
The DEFIN statement is used to define a linkage symbol. 
This linkage symbol can represent an entry point or 
data field within the subprogram being assembled. This 
symbol can be referenced by other subprograms, which 

34 

may be assembled separately. The DEFIN statement can 
be used to establish linkage symbols of both formats: 
LABE/ or the conventional label type. 

Figure 62 illustrates the format and use of the Auto­
coder DEFIN statement together with the object card 
produced. Consider the linkage symbol TABL/ to be an 
address appearing in one or more subprograms to 
be loaded with the subprogram containing the DEFIN 
statement. When PROGl is loaded, the operand of the 
DEFIN card is relocated by the PROGI relocation factor, 
producing an absolute address for each usage of 
TABL/. The Linkage Loader will replace every usage 
of TABL/ with the relocated DEFIN value. For example, 
if in another subprogram the instruction 

MLCA SAM # 5,TABL/ 

appears, the object card produced by the Auto­
coder processor contains D00700T ABL/T (assuming 
00700 is the value of SAM). When the subprogram 
containing this instruction is loaded with PROG1, the 
Linkage Loader resolves both the A and B operands. 
The A operand is incremented by the upward reloca­
tion factor. The B operand, TABL/, is replaced by the 
relocated DEFIN value. If 14000 is the relocation factor 
for the subprogram containing TABL/ as the label of 
the DE FIN statement, and 15600 is the relocation factor 
for the program containing TABL/ as an operand, the 

v 
instruction in storage is D1630015}?OT. 

NOTE: The DEFIN statement is the only one in which 
the five-position linkage symbol LABE/ can appear in 
the label field. 

B Line~ 6 Lobel pperation 
25 35 40 1516 2021 30 

01 : 'rr.I.T..1 r DD/\ Co 4 f 
02 : IO.R.G. [1.(>.0.0. -'--'---1-1. 

( 

o 3 [TAB.LE. : ~.C.w. 1#.1.0.0. 
04 1 . 
05 1 < 

06 1 . 
~ 

07 IT.A./U1. : In&'J:. T.ItJ IT . .4.R.1 .J:.+'Jl.1 ·1. ~~ 
I 

08 
I ( 

09 I I 1'1 I 

10 
I 

I I 
I I I 

I 
I I I I I 

Figure 62. The DEFIN Statement 

PRTCT - Protect 
The PRTcr statement is used to set a limit for erasure 
of linkage symbols from the Linkage Loader's symbol 
table. The Linkage Loader will retain in its symbol 
table all linkage symbols equal to or higher than the 
address value specified by the operand of the PRTcr 
statement. 

The operand of a PRTCT statement can be either a 
linkage symbol or an actual value (Figure 63). Neither 
indexing nor address adjustment is permitted. 



Line I.abel Ioperati~ .. ~ , 56 30 35 

CLh_ -'------'--'-- : "I'~~~'E~ : : : : : : : : : : : : o 2 
t : :~= 

Figure 63. The PRTCT Statement 

Control Opera'tion Codes 
Control operation codes are used in Autocoder state­
ments that give directions to the processor in perform­
ing specified operations at assembly time. There are 
two types of control statements, discussed under the 
following subheadings: 

Assembly Control Statements 
Subprogram Control Statements 

Assembly Control Statements 
Assembly control statements are related to the assem­
bly listing, object program cards, and the cross 
reference listing. They do not affect the subprogram 
being assembled. The assembly control operation 
codes are: 

OPERA'I'ION CODE 

HEADR 
RESEQ 
EJECT 
PST 

HEADR - Header Line 

STATEMENT FUNCTION 

Header Line 
Resequence Object Cards 
Eject Listing Page 
Print Symbol Table 

The HEADH statement (Figure 64) is used to direct the 
processor to perform the following functions: 

1. Cause printing of specified information in the 
header line on each page of the assembly listing. The 
header line contains the contents of the HEADR card, 
columns 21-72. If the header card is absent from the 
source deck the processor win move blanks into the 
printing positions. 

2. Cause punching of the identification in columns 
76-80 of the HEADR (!ard into the same columns of each 
output card in the object deck This identification will 
also appear in the header line of the listing page. 

3. Cause the card sequence count to be set at 001 
in the object deck. 

4. Cause printing to begin on a new page during 
listing. 

The information printed in the header line can be 
written anywhere in the operand field, columns 21-72, 
of the HEADR statement. 

The identification written in the identification field, 
columns 76-80, can consist of special, as well as alpha­
meric, characters. This identification can be changed by 
a RESEQ statement. (See "RESEQ -- Resequence.") 

If another HEADR statement appears elsewhere in the 
source program, it causes printing to begin on a new 

page during listing; the new information will appear 
in the heading line and all subsequent heading lines, 
and in the object deck. The card sequence count of 
the subsequent program will start at 001. (See Fig­
ure 64.) 

NOTE: The HEADR statement is permitted between 
the SPEND and TITLE statements, allowing the next sub­
program in the assembly to be listed under its own 
page heading, and the object deck to contain the new 
information. 

RESEQ - Resequence 

The RESEQ statement allows the programmer to sep­
arate his object deck into logical groups or blocks by 
controlling the sequence number and identification 
field of the object program cards produced by the 
processor (Figure 65). In this respect it is similar to 
the HEADR statement. 

The RESEQ control operation directs the processor to 
perform the following functions: 

1. Punch the new identification supplied by this 
statement, card columns 76.:80, into columns 76-80 of 
subsequent object cards, and replace the identification 
in the header line. 

2. Set the card sequence count to 001 in the object 
deck. 

3. Direct printing to begin on a new page during 
listing. 

There are only two entries in a RESEQ statement: 
RESEQ in the operation code field, and the identification 
of columns 76-80 (Figure 65). 

NOTE 1: A RESEQ statement can appear between the 
SPEND and TITLE statements. 

NOTE 2: The execute card, produced by the proc­
essor from the END statement, contains the card se­
quence number 999. This permits the insertion of 
sequenced patch cards. 

EJECT - Eiect 

The EJECT statement causes printing to continue on a 
new page of the assembly listing, thereby separating 
routines or program sequences in the output listing. 
The statement consists of EJECf in the operation code 
field. The rest of the card remains blank (Figure 66). 

NOTE: An EJECf statement can be placed between 
a SPEND and TITLE statement, if the next subprogram 
listing is to start at the top of a new page. 

PST - Print Symbol Table (Cross Reference Listing) 

The PST statement (Figure 67) is used to indicate to 
the processor that a cross reference listing is desired 
of all symbols used in the program. 

This cross reference listing appears after the assem­
bly listing, and has the following features: 

Autocoder Operation Codes 35 



Columns 76-80 contain the identification of the subprogram that is printed in the 
heading line and punched into the object cards. 

Figure 64. The HEADR Statement 

Line label !Operation OPERAND 
, S 6 15 16 20 21 25 30 35 40 45 SO 55 lin illS 70 

Columns 76-80 contain the identification of the subprogram that is printed in the 
heading line and punched into the object cards. 

Figure 65. The RESEQ Statement 

Figure 66. The EJECT Statement 

1. It provides a list of every symbol used, in alpha­
betic order, followed by the sequence number of the 
statement in which it was defined and the sequence 
number of every statement referencing it within the 
program. 

2. Undefined symbols and multiple definition of 
symbols are indicated. 

3. It distinguishes between index registers used as 
basic addresses and those used for indexing. 

4. It separates the literals according to program 
segment. (This literal separation is ineffective on pro­
grams containing more than nine segments.) 

NOTE 1: Since the cross reference listing does not 
require previous definition of the symbolic operands 
in ORG, LTORG and EQU statements,. the undefined indi­
cations for these statements will appear in the cross 
reference listing only if the label is not subsequently 
defined. 

NOTE 2: The sequence numbers of equated index 
registers used as basic addresses are listed with the 
associated symbolic index registers. The sequence num­
bers of symbolic index registers used as modifiers are 
listed with the associated actual index registers 
(i.e., XI-XI5). 

The PST statement consists of the mnemonic opera­
tion code and a blank operand field (Figure 67) . 

Line label 15fsperati~21 40 ~ 13" 56 25 30 35 

o I : Ip_<:T ::::::=:-L.. ............. ··-'--'--.... -~..L.. ..... -t 
02 

I 

Figure 67. The PST Statement 

36 

Subprogram Control Statements 
Subprogram control statements govern the form and 
sequence of subprograms, and supply the programmer 
with flexible control over the assembly process. The 
subprogram control operation codes are: 

OPERATION CODE 

ORC 
LTORC 
END 
SPEND 

ORG-Origin 

STATEMENT FUNCTION 

Origin 
Literal Origin 
End Subprogram and Assembly 
End Subprogram 

Sequential core-storage addresses are automatically 
assigned by the Autocoder processor to instructions, 
constants, and work areas. These assignments are ordi­
narily made in the order in which the source program 
is read during the assembly process. The ORG state­
ment, however, can be used to instruct the processor 
to break the sequential order of address assignments, 
and continue from another specified address. 

It should be noted that the ORG statement does not 
absolutely determine where the program will reside 
in core storage after relocation. The ORG statement 
controls address assignment during the assembly 
process, and the assembly listing indicates the relative 
placement of the various program elements within a 
subprogram. In this respect, the programmer retains 
the traditional freedom of controlling the relative loca­
tions of blocks of coding and data within a subprogram. 

Unless a low origin is specified as the third param­
eter of the source TITLE card, the Autocoder processor 
determines the low origin and places it into the object 
TITLE card. It is this low origin, whether specified or 
automatically generated, which, in conjunction with 
the BASEl value, determines the relocation factvr to be 
applied to each upward-relocatable element in the 
object program. 

The relocation factor is the BASEl value minus the 
low origin value in the TITLE card. The address occu-



LOW ORG. LOW ORG. 
LOW ORG. FROM PLACED iN 

FROM SOURCE OBJECT BASE 1 
ORG. CARD TITLE CARD TITLE CARD VALUE 

00000 None 00000 12000 

05000 None 05000 12000 

05000 07000 07000 12000 

05000 None 05000 10000 

12000 None 12000 12000 

Figure 68. Determining the Load Address 

pied by a unit of information in core storage is equal 
to the compiled address plus the relocation factor. See 
Figure 68 for representative examples. 

If the low origin in the object TITLE card equals 
the true compiled low origin of the program (the nor­
mal case):1 the program will load at the BASEl value. 

If the BASEl value equals the low origin, the program 
will load at the low origin, and the address within 
the program in core storage will equal the addresses in 
the assembly listing .. 

When assembling a program containing SPEND cards, 
the programmer can force the TITLE card to reflect the 
true low origin of each subprogram by specifying the 
respective low origin in each TITLE statement. Other­
wise, Autocoder will place the lowest origin point 
of the entire set of subprograms into each TITLE card. 
(The use of identical TITLE statement values is useful 
in designing program overlays.) 

If an ORC statement is not used, address assignment 
(by the Autocoder processor) will automatically begin 
at 00000. 

The following types of operands are permissible in 
an ORC statement: 

Actual 
Symbolic 
Blank 
Asterisk 
Asterisk plus XOO (* + XOO) 

ACTUAL 

An actual address directs the processor to start assign­
ing locations at the address specified. For example, in 
Figure 69 the address assignment will begin at 00500. 

Figure 69. Actual Address in an ORC Statement 

LOW ORG. 
RELOCATION IN 

FACTOR CORE STORAGE 

12000 \2000 

07000 12000 

05000 10000 

05000 10000 

00000 12000 

SYMBOLIC 

A symbolic operand is permissible only if the symbol 
has been previously defined. 

In Figure 70 the ORC statement will direct the proc­
essor to continue address assignments from the address 
labeled PHASEONE. Address adjustment is permitted. 

NOTE: Neither linkage symbols nor system symbols 
are permitted in an ORC statement. 

Figure 70. Symbolic Address in an ORC Statement 

BLANK 

An ORC statement with a blank operand instructs the 
processor to assign addresses to subsequent entries, 
beginning at the address that is one greater than the 
highest address thus far assigned by the processor. 

ASTERISK 

An asterisk operand can be address adjusted. The ORC 
statement in Figure 71 instructs the processor to assign 
storage locations consecutively, beginning 200 loca­
tions above the current address. 

'0 

Figure 71. Asterisk Operand with Address Adjustment 

ASTERISK + xoo 

The operand * + XOO instructs the processor to begin 
address assignment at the next available storage loca­
tion whose address is a multiple of 100. For example, 

Autocoder Operation Codes 37 



in Figure 72, if the last address assigned was location 
10926, address assignment would continue at core­
storage location 11000. 

pperatiOl'l ~ 
1516 2021 25 30 35 ,!Q 

"Line label 
56 

01 : 
I 

02 

03 : 
! • ! I I -'_ ~ 

04 : 
05 : 
Figure 72. ORG Statement Advancing Address Assignment to 

Next Multiple of 100 

NOTE: Unless the ORG * + XOO card is preceded by a 
BASEl * + XOO card, the processor will assign a 'W" flag 
to the ORG statement to warn the programmer that this 
subprogram must be loaded at an even-hundreds 
address. 

LABELING AN ORG STATEMENT 

The ORG statement permits the programmer to break 
the. sequential assignment of a program temporarily, 
and to return subsequently to that point in the program 
sequence. This is done by labeling an ORG statement 
that breaks the sequence. When the programmer wants 
to return to the original point, an ORG statement with 
the label in the operand field can be used. The state­
ments after the second ORG statement will be inter­
preted by the processor as though the sequence had 
never been interrupted. 

The ORG statement, in Figure 73, shows how the 
programmer can direct the processor to save the ad­
dress of the last storage allocated. The label ADDR is 
the symbolic address of the next available location 
before re-origin occurs. The processor will continue to 
assign addresses, beginning at the relative address of 
COMMON-59. 

• Figure 73. Saving the Address of Last Storage Allocated 

The programmer can insert another ORG statement 
later in the source program to direct the processor to 
begin assigning storage at ADDR. This statement is 
shown in Figure 74. 

IS I 16 I 25 39 ~5 40 ~UM~ L~I ~~;$ I 
::;: : : : : : 1 : : : G:~~:~: : : : : ~ : : : :: : : : :~ 
Figure 74. ORG Statement Referencing Last Storage Allocated 

38 

L TORG - Literal Origin 

LTORG statements are coded in the same way as aRC 

statements. Their function is to direct the processor 
to assign storage locations to previously-encountered 
literals. Storage assignment begins at the address writ­
ten in the operand field of the LTORG statement. 

A LTORG statement can appear anywhere in the 
source program. If no LTORG statement appears (Figure 
75), the processor begins assigning addresses to literals 
when it encounters an END or SPEND statement. 

Figure 75 illustrates one way of directing the proces­
sor to assign storage to all literals that have previously 
appeared within the subprogram segment in which the 
LTORG statement appears. 

NOTE: Since the LTORG statement signals the proces­
sor to assign storage to previously-defined literals, the 
programmer who wishes to use similar literals must 
re-create them. Thus, the programmer cannot use a 
previously-defined area defining literal, or its contents, 
after a L TORG. The area defining literal must be re­
defined. 

Figure 75. The LTORG Statement 

END - End Subprogram and Assembly 

The END statement must be the last card in the source 
program. The END statement directs the processor to 
start assigning all unassigned literals at this relative 
address in the subprogram. 

If the operand field is blank, END signa.ls the proc­
essor that all source program entries have been read. 
This form of the END statement is used to specify the 
end of a secondary subprogram. 

If the operand field is not blank, it also specifies the 
end of a primary subprogram and indicates its entry 
point (Figure 76). 

~~~~ 
I! • ! I I .)

Figure 76. The END Statement

SPEND - End Subprogram

The SPEND statement is used when assembling two or
more subprograms with the same symbol table used
throughout the assembly. The SPEND statement indi­
cates the end of a subprogram and directs the proc­
essor to process all unassigned literals at this point

of the subprogram. The SPEND statement implies that
another subprogram to be assembled will follow.

The same formats used for the END statements are
used for the SPEND statements. If the SPEND statement
is written with an operand, the resultant output will
be the same as that produced by an END statement with
an operand (primary subprogram). If there is no oper­
and, the output will be exactly the same as for the
END statement without an operand (secondary sub­
program). (See Figure 77.)

NOTE: The SPEND statement must be followed by the
TITLE card of the next subprogram. (HEADR, RESEQ, and
EJECT statements can intervene.)

If a source statement that can produce a load card
in the object deck appears after a SPEND statement, and
before a TITLE statement, the processor places a "W"
flag on the first statement of the load card.

-
Line label pperation

3 56 1516 2021 it~

o I : S.P.&.JJD
I

02

Figure 77. The SPEND Statement

Autocoder Operation Codes 39

The Macro System

The macro system enables the programmer to extract
from a library of macro routines a sequence of instruc­
tions tailored by the processor to fit his particular pro­
gram needs. This sequence of instructions is inserted
automatically in the object program. This ability of
Autocoder to process macro-instructions relieves the
programmer of much repetitive coding.

Definitions of Terms

The special terms used in describing the requirements
and characteristics of the macro system are defined
below.

Macro-Instructions: A symbolic instruction written
in the source program that causes a series of machine­
language instructions to be inserted in the object
program.

Obiect Routine: The specific machine-language in­
structions needed to perform the functions specified by
a macro-instruction. An object routine is inserted
directly into a program without a linkage or calling
sequence. The routine is placed in the object program
each time its associated macro-instruction is encoun­
tered by the processor.

Model Statement: Model statements appear in the
macro library routines. They establish the conditions
for inserting parameters in the object routine and de­
fine the basic structure of the symbolic program entries.
They include pseudo-macro statements and symbolic
entries.

Macro Routine: The complete set of model state­
ments from which an object routine is developed by
the processor. The form of an object routine depends
upon the parameters given in the macro-instruction.

Macro Library: The macro library contains the com­
plete set of macro routines stored on the System Oper­
ating File. Each routine has an identifying label.

Librarian: The librarian is that phase of the System
Generator that produces and maintains the macro
library on the System Operating File. The user should
refer to the publication, System Generation, Form C28-
0352, for information concerning the procedures for
the production and maintenance of the macro library.

Parameters: Parameters are the elements in the oper­
and fields of macro-instructions. Parameters can refer­
ence literals, actual addresses, or data fields to be
inserted in symbolic program instructions generated
from the model statements.

40

Pseudo-Macro Statements: A pseudo-macro state­
ment appears only within the macro library. It is used
internally by the processor to control the production
of a series of object program instructions.

Macro Operations
The entries that will subsequently appear in the object
program are placed on the library tape at system gen­
eration time. The function of the macro-instruction is
to direct the processor in selecting the specific entries
desired by the programmer. The entries selected be­
come a routine designed to perform a specific function.

To illustrate the basic operation of the macro system,
a hypothetical macro called CHECK, with a simple
library routine, is used. The routine is designed to com­
pare the contents of an input area to the contents of
another area, test the compare indicator for a high,
equal, or low condition, or any combination of the
three.

Figure 78 shows the Library Coding Form used with
the 1410/7010 Macro System.

Figure 79 shows the following:
1. The entries on the Library Coding Form.
2. The macro-instruction that specifies to the proc­

essor that all the instructions in the library routine are
required and must appear in the object program.

3. The symbolic program entries generated by the
processor. (The processor will subsequently translate
these symbolic entries into machine language and in­
sert them in the proper juncture of the object deck.)

General Description: Model statements are used to
describe all entries in a macro routine. They include
pseudo-macro as well as symbolic program statements.

The Programmer: The programmer plans and codes
the following:

1. Designs a general routine to perform specific
functions (depending upon the parameters supplied)
when it is executed in the object program.

2. Writes the model statement as follows:
a. If the entry is complete (no substitution), it is

written on the library coding sheet as if it were
an entry in a source program. This entry will
be included in all object routines unl~ss a by­
pass condition exists (see "BaaL"). This is il­
lustrated in Figure 80.

b. If the entry is incomplete, the programmer
writes a special four-character code to indicate

IBM INTERNATIONAL BUSINESS MACHINES CORPORATION
FORM X24-6568-0
Printed in U.S.A.

IBM 1410 DATA PROCESSING SYSTEM
LIBRARY CODING FORM

DATE PROGRAM PROGRAMMED BY

Pa~e
and l label Operation Operand and Comments Identification
line

I 2 3 4 !; 6 7 8 910111213141516171819202'1 223242526 2728293031323334353637383940414243444546474849505152 53 54 SS 56 57 58 59 60 6162636465 666768697071727374 757677787980
r- --

f---- 1-1- e-- -f--

I- -f-- I- -

-

I- --f--

-\-- l-

t-

I-

I----- j--- - -

-

j---

l- t-- - t--

I-

I- I- -- /---- - - f---

Figure 78. IBM 141017010 Library Coding Form

Library Entry

Page
Operand I and l label Operation

line
-

1 2 3 4 5 67 II 9101112131415161718192021 223242521 2728293031 32333435363738394041 4243444546474849

tl
Macro -Instruction

Assembled Symbol ic Program Entry

ABCD C
BH
BE:
Bl.

Itt

~1'·~J~1. Il!!IJ. Ir:lICiOifo _ __

B~ IIllc Dlr

IBll :~~~~ J __ - --

II 10 30 40 45 OPE~

PAR1,PAR2
PAR3
PAR4
PARS

Figure 79. Macro Operations

- -

-f--

-

/-- - - -

-l- I-

-

-l- I-

I------ t--

--

1--

/--

~- 1------

I-

I----- /---

~ --

~- -

label Operation

Figure 80. Model Statement for a Complete Instruction

that a corresponding parameter from the macro­
instruction operand field must be inserted in its
place. This code is a 0 followed by a number
from 001 to 199, that indicates the position of
the parameter in the macro-instruction. The
macro-instruction in the source program will
give the parameter entries to be inserted in the
object routine. The model statement is illus­
trated in Figure 81.

The Macro System 41

Label Operation

Figure 81. Model Statement for an Incomplete Instruction with
Required Parameters

Page
and

c. If the entry is incomplete, the programmer writes
a 0 followed by a number from 001 to 199 with
AB bits over the units position (parameter 001
is oOOA, parameter 2 is oOOB, etc.). This indi­
cates that the entry is to be included in the
object routine only if the parameter is specified
by the macro-instruction. For example, if pa­
rameter 003 does not appear in the macro­
instruction, the instruction shown in Figure 82
will be deleted from the object routine.

Label Operation

Figure 82. Model Statement for an Incomplete Instruction with
Conditional Parameters

Labeling: If the model statement represents an in­
struction entry point for a branch instruction elsewhere
in the program, it should have a label.

If additional external labels are required and speci­
fied as parameters in the macro-instruction they can
be inserted in the label field of the symbolic program
entry by using the 0001-199 code.

The label of the macro-instruction causes the genera­
tion of an equate statement in the assembled object
routine. The label is equated to an *, as shown in
Figure 83.

Macro Instruction (Source Program)

Model Statement

Assembled Symbol ic Program Entry

TEST2

Figure 83. Labeling

42

EQU
B STARTl

Another example is shown in Figure 84.
Symbolic Addressing within the Library Routine:

To allow a symbolic reference to other instructions in a
library routine a 0 followed by a number from 001 to
199 with a B bit over the units position (oooJ = sym­
bolic address 1, oOOK = symbolic address 2, etc.) can
be used. For example, the processor generates the sym­
bolic address if the code oooJ is used as a label for one
entry and as an operand of at least one other entry in
the same library routine.

Internal labels within flexible routines are generated
in the form onnnmmm, where nnn is the code (OOJ-
09R), and mmm is the number of the macro within
the source program. This is done to avoid duplicate
address assignments for labels.

Example: Use the generated symbolic address of
oOOJ as an operand for entry 3 and as the label for
entry 6. UPDAT is the 23d macro encountered in the
source program (Figure 85).

Address Adjustment and Indexing: The parameters
in a macro-instruction and the operands in partially
complete instructions in a library routine can have
address adjustment and indexing.

If address adjustment is used in both the parameter
and the instruction, the assembled instruction will be
adjusted to the algebraic sum of the two. For example,
if the address adjustment on one is +7 and the other
is -4, the assembled instruction will have address
adjustment equal to + 3.

Model statement operands can be indexed. This in­
dexing takes precedence over any indexing of a param­
eter supplied by a macro-instruction. The model state­
ment index is used.

Literals: Operands of instructions in library routines
may use literals as required. However, these literals
may not contain the @ symbol within an alphameric
literal.

Macro Instruction (Source Program)

Model Statement

Page
and
Line

Label

Assembled Symbol ic Program Entry

TEST2
START2

EQU
SBR

Operation

ENTRYA

Figure 84. Additional External Labels

Macro Instruction (Source Program)

Line
" 56

label

o I :
0.2

Model Staternent

Page I and L Label Operalion
Line

1 2 3 <I 5 6 7 8 9101112131<115161718192021 223242526 272829303132333<135363738394041 <l24H .
A no 01

.
~,O Dig Z~ J.lO OJ J20 O~

-

Assembled S),mbolic Program Entry

B oOOJ023

oOOJ023 ZA COST ,AMOUNT

Figure 85. Internal Labels

NOTEl: A model statement in the library routine for
a macro-instruction may not be another macro-instruc­
tion.

NOTE 2: END statements cannot be used in library
routines.

The Processor enters model statements in the library
tape immediately following the header statement dur­
ing System Generation.

Result: Any library routine can be extracted by writ­
ing the associated macro-instruction in the source
program.

Figure 86 is a summary of the codes that can be
used in the model statements of library routines.

CODE POSITION FUNCTION

0001 - 1:1199 Statement Substitute parameter
(parameter must be present)

Substitute parameter (if
oooA - 1:1191 Statement parameter is missing,

delete statement)

oooJ - [119R Label Field and Assign internal label
Operand Field

Figure 86. Model Statement Codes

General DescripUon: A macro-instruction is the entry
in the source program that causes a series of instruc­
tions to be inserted in a program.

The Programmer:
1. Writes the name of the library routine in the

operation field.

)

J

J

2. Writes the label that is to reference the first as­
sembled model statement. A LABEL EQU * is generated
to do this.

3. Writes the parameters that are required for the
particular object routine desired. These parameters,
used by the model statements, are written as follows:

a. Parameters must be written in the sequence in
which they are to be used by the codes in the
model statements. For example, if cost is
parameter 001, it must be written first so that it
will be substituted wherever a 0001 or oOOA
appears as a label, operation code, or operand
of a model statement.

b. As many parameters may be used as can be
contained in the operand fields of five or fewer
coding sheet lines. If more than one line is
needed for a macro-instruction, the label and
operation fields of the additional lines must be
left blank. Parameters must be s~parated by a
comma. They cannot contain blanks or commas
unless they appear between @ symbols. The
@ symbol itself cannot appear between @ sym­
bols. Also, the @ symbol can be used only in
pairs as a literal identifier. It cannot be used
in any other way; e.g., a single @ symbol could
not be used to represent the d modifier of a
macro-instruction. If parameters for a single
macro-instruction require more than one coding
sheet line, the last parameter in each line must
be followed immediately by a comma. The
last parameter in a macro-instruction should
not be followed by a comma.

c. Parameters that are not required for the par­
ticular object routine desired can be omitted
from the operand field of the macro-instruction.
However, if a parameter is omitted, the comma
that would have followed the parameter must
be included, unless the omitteq parameter is
behind the last parameter which is included in
the macro-instruction. These commas are nec­
essary to count parameters up to the last in­
cluded parameter. All parameters between the
last included parameter and parameter 199 are
assumed by the processor to be absent.

Figures 87, 88, 89 and 90 show how parameters can
be omitted. The hypothetical macro-instruction called
EXACf is used. EXACT can have as many as nine
parameters.

The Processor extracts the library routine and selects
the model statements required for the obj~ct routine
as specified by the parameters in the macro-instruc­
tions, and by substitution and switches set by BOOL or
COMP in the model statements.

The Macro System 43

Figure 87. Parameter for EXACT. 006-199 Missing

Line Label OperatiOl1
25 30 35 40 '5 56 15 III 201::'1

o I : EXACT FLD.1.. F L 1>2 .• F L D3 .•.• F L.D.S
I

0.2

Figure 88. Parameters 004 and 006-199 Missing

I-lUne
, II

Label I~eperatl~ OPE)
I ll'& 30 311 40 45

o I EXAC.T FL D2 FLD3 .•.• F L.D.7 F loO.9 J
o·~

I
. ,j

Figure 89. Parameters OOl, 004-006, 008 and 010-199 Missing

Line Label I~ ~perati~ 121
~

~- 56 25 30 35 40\

o I : EXAC.l F.L OZ ,l
02

I)

Figure 90. Parameters 001 and 003-199 Missing

Pseudo-Macro Instructions
These statements never appear in a user's source pro- ~

gram or in the output listing of an assembled Auto­
coder program. However, they are used in library
routines to signal the processor that certain conditions
exist which can affect the assembly of an object routine.
For example, the presence of a pseudo-macro­
instruction in a library routine can cause a group of
model statements to be deleted. Thus, pseudo-macros
provide the writer of library routines with a coding
flexibility which exceeds the limitations of the substitu­
tion and condition codes described previously.

Pseudo-macro-instructions may be written anywhere
in a library routine. The five pseudo-macros incorpo­
rated in the Autocoder processor are MATH, BaaL,

CaMP, NOTE, and MEND.

Permanent and Temporary Switches

The MATH, BaaL, and CaMP pseudo-macros use internal
indicators (switches) to signal the processor of exist­
ing status conditions.

There are 099 permanent and 199 temporary
switches available for recording status conditions. Each
switch occupies one core-storage position during the

44

macro generator phase of Autocoder. If a storage posi­
tion contains the character A (AB 1 bits), the switch is
ON; if it contains a ? (CAB 82 bits), the switch is OFF.

At the beginning of assembly all switches are OFF.

Permanent Switches: Permanent switches retain
status conditions during the entire macro generator
phase unless changed by a pseudo-macro. They are
addressed by using a # symbol followed by the three­
digit number of the switch to be set or tested. For
example, #001 addresses permanent switch 001; #002
addresses switch 002; and #099 addresses switch 099.

Temporary Switches: When the processor encounters
a macro-instruction, the temporary switches are set to
the condition (presence or absence) of the parameters
in the operand of the macro field. If the parameter is
present, the corresponding switch is set ON. If the
parameter is missing, the switch is set OFF. For ex­
ample, if parameter 001 is present, temporary switch
001 is turned ON. If parameter 002 is missing from the
macro-instruction, temporary switch 002 is OFF. Tem­
porary switches retain status throughout the processing
of a macro-instruction unless changed by a pseudo­
macro. After the macro-instruction has been completely
processed, all temporary switches are set OFF. Tempo­
rary switches are addressed by using a 0 symbol fol­
lowed by the three-digit number of the switch to be set
or tested. For example, 0001 addresses temporary
switch 001; 0002 addresses switch 002; and 0199 ad­
dresses switch 199.

If a macro with a maximum of nine parameters is
encountered, the processor sets the first nine temporary
switches to indicate the presence or absence of these
nine parameters. Temporary switches 010·199, which
are OFF, can be used by the pseudo-macros to com­
municate conditions to the processor while it is working
on this particular macro-instruction. This use of tempo­
rary switches is recommended because it reserves the
permanent switches for communicating information
from one macro to another.

MATH - For Solving Algebraic Expressions

A MATH pseudo-macro contains as operands: sum
boxes, arithmetic expressions, and sign switches.

Sum Boxes: A sum box is a group of five core­
storage positions used to store the result of an arith­
metic expression. Autocoder makes available 20 such
sum boxes. A sum box is addressed by using a #
symbol followed by the three-digit number (ending
in zero or five) of the sum box to be referenced. For
example, the address of the first sum box is #005; the
address of the second sum box is #010; and the address
of the twentieth sum box is #000.

At the, beginning of the macro phase, a sum box
contains 00000. Any number may be placed in a sum

box or added to its contents. The units position of the
sum box always contains the sign of the result. Sum
boxes retain information placed in them throughout the
macro phase, and their contents may be used and/or
changed from one macro-instruction to another.

Sum boxes can be used by model statements as well
as by a pseudo-macro. For example, in Figure 91, as­
sume that sum box #005 contains 12345 and sum box
#010 contains 00015.

NOTE: ZA FLD1 +0001N,FLD2 is processed as ZA
FLDl-15,FLD2.

Moacro InstrlJction

Line Label Operation

'9 1 ,- 56 Is116· 20 ., ~ ~' ~': o I : il?.E..D.R6

: : : : 0.2
I IF .1.D:l~:E IL:D:2.:~ ~ : :~ :

Model Statement

Page
and l Lobel Operation
line

1 2 3 4 5 6 789101112131415161718192021 2223242526 27282930313233343536373839404142 43 ~

"mITill
, -

OR
H005 +:' ,. lZ~ OP1~ _ 1kJl'~Ov~

Assembled Symbolic Program Entry

ORG 1234E
ZA FLDl+OOOl N,FLD2

Figure 91. Sum Boxes

Arithmetic Expressions: Arithmetic expressions within
the MATH pseudo-macro use add (+), subtract (-),
multiply (*), and divide (/). An @ symbol represents
both the left and right parentheses if they are required
for the expression. For example,
(001+12-5) 20 is written: @001+12-5@*20.

Multiplication and division are done before addition
and subtraction by the MATH pseudo-macro, unless
otherwise indicated by the use of @s. The quotient
resulting from the divide operation is not half-adjusted,

Page
and
line

label

Figure 92:. Format for the MATH Pseudo-Macro

Page
and
Line

O,)eration

and the remainder is lost. At the end of a multiplica­
tion operation the five low-order positions of the
product are used for the result. (The high-order digits
are lost.) An overflow is ignored.

The result of the arithmetic expression is inserted
with its sign in the designated sum box.

Sign Switches: Permanent and temporary switches
may be used to store the sign of the result of an arith­
metic expression. The first switch specified in the oper­
and field of the pseudo-macro represents a positive
result; the second represents a zero result; and the
third represents a negative result. Consequently, one
switch is on and the other two are off if the result is
either positive or negative. A zero result causes both
the zero and positive switches to be set ON. It is not
necessary to specify all three switches. However, if a
switch code is omitted from the operand field, the
comma that would have followed the switch code must
be present. (This is the same rule that applies to
omitted parameters in a macro-instruction.)

The Programmer:
1. Writes the name of the pseudo-macro (MATH) in

the operation field.
2. Writes in the operand field:

a. The code for the sum box in which the result
of the arithmetic expression is to be stored.

b. The arithmetic expression.
c. The code for the switch in which the sign(s) of

the result are to be stored.
NOTE: A comma must follow the sum box code, the

arithmetic expression, and the individual sign-switch
codes. Figure 92 shows the format for a MATH pseudo­
macro.

The Processor:
1. Produces the result of the arithmetic expression.
2. Stores the result in the sum box.
3. Sets the sign switches.

Example: The MATH pseudo-macro shown in Figure
93 multiplies parameter 07 by 401 and adds 12 to the

Operand and Cpmments

Operand and Comments

F===99· -- =======F====~===-==9===~
1 2 3 4 5 6 7 8 9 101112131·115161718192021 22324252 272829303132 33 34353637 38394041424344454647 48 4950515253545556575859606162636465 666768697071727374 757677787980

t-+-+-+-++--l[ffifffi ~2ffiOlotl·14rl' I' mIl) MOiOi61' MOI~911111 HIHHH-+-+-+-+-+-+--+
Figure 9a. MATH Pseudo-Macro

The Macro System 45

Page
and
line

Label

Figure 94. Format for the BOOL Pseudo-Macro

result. The answer is stored in SUMBOX 6 (# 30). If the
result is positive, permanent switch 04 is set ON; if the
result is zero, switches 04 and 06 are set ON; if the re­
sult is negative, switch 09 is set ON.

BOOl - For Solving logical Expressions

General Description: The BOOL pseudo-macro can be
used to set a permanent or temporary switch as the re­
sult of a logical expression, or to cause the processor
to skip over certain model statements if the logical
expression is false. If the statement is true, the proc­
essor goes to the next sequential model statement.

The Programmer:
l. Writes the name of the pseudo-macro <BOOL> in

the operation field.
2. May write a special one-character label, the

logical expression (statement), and a switch code in
the operand field in the format shown in Figure 94.

Labeling: A special one-character label permits skip­
ping forward in the library routine as the object rou­
tine is being assembled by the processor. This one­
character label is written in the first position of the
operand field of the BOOL pseudo-macro and also in the
label position (column 6 of the library coding form)
of the first model statement (or command) to be exam­
ined after the skip has been initiated. Skipping occurs
only if the logical statement is false. The label may be
omitted if a skip is not desired, but the comma that
would have followed the label must be written in the
BOOL statement to indicate that the label is missing.
The label can be any alphabetic or numeric character.
Special characters are not permitted.

Logical Expression: The BOOL pseudo-macro can
have any combination of three logical operations:
* (and), + (or), and - (not). The operators are de­
fined in Figure 95. The combination of these operators
and the switches to be tested make up the logical ex­
pression. (See, for example, Figure 96.)

The @ symbol is'used to represent both the left and
right parentheses.

* + -
1·* 1 = 1 1 + 1 = 1 -1=0
1 * 0 = 0 1 + 0= 1 -0=1
0* 1 = 0 0+ 1 = 1
0*0=0 0+0=0

Figure 95. Table of Operators

46

Operand and Camments

Switches: Either a permanent or temporary switch
may be used to store the result of the logical expres­
sion. If the expression is true, the specified switch will
be set ON. If the expression is false, the specified switch
is set OFF. If no switch setting is desired, a comma must
be used to indicate that the switch is missing.

The Processor:
l. Examines the status switches to determine

whether all conditions specified in the logical expres­
sion are satisfied. If they are, the expression is true. If
the logical condition is not met, the expression is false.

2. Sets the specified status switch to ON or OFF to
reflect the true or false condition.

3. If a false condition exists and a label appears in
the BOOL operand, the processor skips forward to the
command or model statement containing a correspond­
ing label in its label position.

To determine if a logical expression is true or false:
a. Consider all ON conditions true and all OFF con­

ditions false.
b. Let 1 = true and 0 = false.
c. Calculate the logical value of the expression.

If the logical value of the expression is zero, the ex­
pression is false. If the logical value is one, the expres­
sion is true. For example, if switches 001, 002, 003 and
004 are on, the expression

@oOOI *o002@ + @o003*oOO4@
is true because:

(ON*ON) + (ON*ON) =
(1*1)+(1*1) =

1+1 = 1
Examples: Figure 96 shows how the BOOL pseudo­

macro can be used. The BOOL entry states:
l. If temporary switches 001 and 002 are ON, the

statement is true. Therefore, set temporary switch
015 ON.

2. However, if either temporary switch 001 or 002

Page

) and L Label Operatian
line

1 2 3 4 5 6 7 8 9101112131415161718192021 22324 25 2~ 272829303132333435363738394041424344

BO OIL.: L, 110 01 -1:1 00 2, 110 , 5

A FI EL DA ,F IE LD8
B EOJ

l C ~R EA 1, AiR ~~?

• Figure 96. Using the BOOL Pseudo-Macro

is OFF, the statement is false. Therefore, set temporary
switch 015 OFF and skip to statement 004.

The example shown in Figure 97 states:
1. If both temporary switches 001 and 002 or both

temporary switches 003 and 004 are ON, the state­
ment is true. Therefore, set temporary switch 015
ON.

2. However, if either temporary switch 001 or 002
and either temporary switch 003 or 004 is OFF,

the statement is false. Therefore, set temporary
switch 015 OFF and skip to the model statement
whose label is L.

Figure 97. BOOL Pseudo-Macro

Figure 98 is a table showing all conditions that will
cause the BaaL statement shown in Figure 97 to be
true.

Figure 99 is a ta hIe showing all conditions that will
cause the BaaL statement shown in Figure 97 to be
false.

COMP -10 Compare Two Fie~ds

General Description: The CaMP pseudo-macro com­
pares an A-field to a B-field (maximum of 15 charac­
ters), and sets permanent or temporary switches to
indicate the result of the comparison.

The Programmer':
1. Writes the name of the pseudo-macro <CaMP)

in the operation field.

VI
Z
o
i=
o
Z
o
u

001

ON
1

OFF
0

ON
1

ON
1

OFF
0

ON
1

ON
1

* 002

ON
* 1

OFF
* 0

ON
* 1

ON
* 1

ON
* 1

ON
* 1

OFF
* 0

SWITCHES

+ 003 *
OFF

+ 0 *

ON
+ 1 *

ON
+ 1 *

ON
+ 1 *

ON
+ 1 *

OFF
+ 0 *

ON
+ 1 '"

Figure 98. True Conditions

004 LOGICAl VALUE

OFF
0 = 1

ON
1 = 1

ON
1 = 1 w

~
OFF I-

0 = 1

ON
1 = 1

ON
1 = 1

ON
1 = 1

VI

Z
o
i=
o
Z
o
u

001

OFF
0

ON
1

OFF
0

OFF
0

OFF
0

OFF
0

ON
1

OFF
0

ON
1

* 002

OFF
* 0

OFF
* 0

ON
* 1

OFF
* 0

OFF
* 0

ON
* 1

OFF
* 0

ON
* 1

OFF
* 0

SWITCHES

+ 003 *

OFF
+ 0 *

OFF
+ 0 *

OFF
+ 0 *

ON
+ 1 *

OFF
+ 0 *

OFF
+ 0 *

ON
+ 1 *

ON
+ 1 *

OFF
+ 0 *

Figure 99. False Conditions

004·

OFF
0

OFF
0

OFF
0

OFF
0

ON
1

ON
1

OFF
0

OFF
0

ON
1

=

=

=

=

=

=

=

=

=

=

LOGICAl VALUE

0

0

0

0

0

0

0

0

0

w
VI
-I « u..

2. Writes the operand field in the format shown in
Figure 100. The first and second entries are the A- and
B-fields. The A- and B-fields may be any of the
parameters 001-199, sum boxes #005-#000, or literals.
They cannot be switches.

NOTE 1: For the CaMP pseudo-macro, alphameric
literals are not enclosed by @ symbols. Entries 3, 4,
and 5 are high, equal, and low switches.

NOTE 2: The codes for the two fields to be compared
must be present in all COMP pseudo-macro-instructions.
Codes for the switches may be omitted if they are not
needed to store the result of the compare operation.
However, if a ·switch is omitted, the comma that
would have followed it must be included in the
operand field.

NOTE 3: B-field controls compare. (High-order posi­
tion of B-field ends compare.)

Page
and l label
line

Figure 100. Format for COMP Pseudo-Macro

The Processor:
1. Compares the A-field to the B-field.
2. Sets one status switch ON and two switches OFF

to reflect the result of the comparison.
a. The first switch is set ON, if the value of the

B-field is greater than that of the A-field.

The Macro System 47

b. The second switch is set ON, if the B-field is
equal to the A-field.

c. The third switch is set ON, if the value of the
B-field is less than that of the A-field.

Examples: Figure 101 shows a COMP pseudo-macro
which states:

1. Compare parameter 002 of the macro statement
to WORKAREA.

2. If parameter 002 is equal to WORKAREA, turn on
temporary switch 25.

3. If WORKAREA is less than parameter 002, turn on
temporary switch 26.

Page
and L Label Operation
Llno

Figure 101. COMP Pseudo-Macro

Figure 102 shows a COMP pseudo-macro which
states:

1. Compare the contents of sum box 005 to param­
eter 003 of the macro statement.

2. If the result is HIGH, set temporary switch 024 ON.

3. If the result is EQUAL, set temporary switch 025
ON.

4. If the result is LOW, set temporary switch 026 ON.

Page
and L Label
Line

Figure 102. Comparing a Parameter to the Contents of a
Sum Box

NOTE: Standard 1410/7010 collating sequence deter­
mines HIGH, EQUAL, or LOW conditions. Comparisons
are controlled by the B-field. Thus, the statement
shown in Figure 103 will cause temporary switch 025
to be set ON if the low-order position of parameter
002 is a 3.

NOTE - To Produce a Message

General Description: The NOTE pseudo-macro is used
to write messages concerning conditions that can arise
during the processing of a macro-instruction.

Figure 103. Checking for a Single Character

48

The message is printed in line on the output device
(tape or on-line printer). In addition, an '''N'' will be
automatically inserted in the flag field of the assembly
listing.

The Programmer:
1. Writes the name of the pseudo-macro (NOTE) in

the operation field.
2. Writes the message in the operand field.
The Processor: })rints the message on the Standard

Print Unit (tape or on-line printer).
Examples: Figure 104 shows how the NOTE pseudo­

macro can be used in combination with the BOOL

pseudo-macro. The BOOL pseudo-macro tests to ensure
that parameters 001 and 002 are present in the macro­
instruction. If either parameter is missing, the proc­
essor skips to the NOTE pseudo-macro and prints:

PARAMETER ABSENT FROM MACRO.

-.
Pogo
and L Label Operation Operand and Comm,
Lin.

1 2 3 4 5 6 7 • "10111213141516171819202 1 22324252~ vu~~~~»~tlUD~~~~~~«~~o~~~~nnM
, , -

80 OIL L IbOO lid 0012

L Hin ,!E ~~~ t.1E 11ER IA 511: ItlT -F ~ fI1lA IClliU

• Figure 104. NOTE Pseudo-Macro

MEND - End of Routine

General Description: This pseudo-macro signals the
end of generation for a macro-instruction. It may ap­
pear anywhere 'in a library routine.

The Programmer:
1. Writes the name of the pseudo-macro (MEND> in

the operation field.
2. Leaves the operand field blank.
The Processor: Stops processing the macro-instruc­

tion when it encounters a MEND statement. Figure 105
shows a MEND pseudo-macro.

NOTE: A BOOL pseudo-macro can be used to skip
over a MEND pseudo-macro which appears within the
library routine if conditions indicate that more model
statements must be processed.

Figure 105. MEND Pseudo-Macro

Pseudo-Macro Coding Example

Example: Figure 106 shows the library entry for a
hypothetical macro called PRLlT. This library routine
uses all of the five pseudo-macros. It illustrates the
effect of the pseudo-macros on the processing of a
macro-instruction. The meaning of each line in the
library routine is:

Entry 1: If parameter 001 is present, set temporary
switch 050 OFF and go to entry 3. If parameter 001 is
missing, go to entry 2.

Entry 2: Print the note: OPERAND 001 ABSENT.

Page
and l label Operation
line

OI~~3 ~~~IL ~ ~~l~

~~rlr~r~HH~-~~~~++++++~~_~R W'v~15
~I~~~~ ~~~H W~ I~ ~VI~I~~l~~

I~~" IsIBIJ:l
~~r'rOrIQI7HH-~~~++++~~ ~ll~IA ~

- I--

-1---

I--

-I-- -

1--

t-Ii'rl H--'IjHHir+-l~-+++I-~-I-+~ I~ l. '" IA .,., 1 }-. +-

t-~rIVRHI~;I~~+++++~HH~~~_I~~~I~ - - t-

• Figure 106. PRLIT Library Routine

Macro Instruction

Entry 3:lf permanent switch 010 is OFF, go to entry
5. If permanent switch 010 is ON, take entry 4.

Entry 4: ORG at the contents of sum box #005.

Entry 5: Put the contents of sum box #005 plus 100
in sum box #005.

Entry 6: Store the contents of the B-address register
in an address equal to the address assigned to the
internal label (oOOK) + 5.

Entry 7: Move five zeros to the field whose symbolic
address is parameter 003 of the macro-instruction.

Entry 8: Add the literal + 3 to the field specified by
the parameter 003.

Entry 9: Branch to parameter 004.

Entry 10: If parameter 002 is a literal, the EQUAL

switch (0051) is set ON.

Entry 11: If the EQUAL switch (temporary switch 51)
is OFF, skip to entry 15. If the EQUAL switch is ON go
to entry 12.

Entry 12: Move parameter 002 to parameter 001.

Entry 13: Subtract parameter 002 from parameter
006. (If parameter 006 is missing, this statement will
be bypassed.)

Entry 14: Move parameter 003 to parameter 005.

Entry 15: Branch to 0

Entry 16: If temporary switch 051 is ON, skip to entry
18. If temporary switch 051 is OFF, go to entry 17.

Entry 17: Insert parameter 002 as a literal, and
move it to the field indicated by parameter 001.

Entry 18: End of library routine.

Assume that:
1. The macro shown in Figure 107 is encountered in

the source program.
2. Permanent switch 010 is ON.

3. Sum box #005 contains 12345 .

"li ne! I.
label rnrt'~ O~~ND :~:I I ,~: o I , , I I, ,

10,2
I ,''' ~:L: I--?:~e~, ~:~~8~, :F~~:L:fl:~~I~::W'O'8~~R • A:', , ~.: .. : L "." .. :::.:: ! !

Assembled Symbolic Program Entry

ORG 12345
SBR [] OOK023+5
MLCA @O()()()()Q:', FIELD1
A +3. FIELD1
B EXITl
MLCA @'~2AB@,AREAA
MLC FIELD1, WORKAREA
B 0

• Figure 107. Using the PRLIT Routine

The Macro System 49

SOURCE PROGRAM

S
y
M ____________________ __

B o ____________________ _
L
I
C

P
R o ____________________ _
G
R
A
M

E
N
T
R
I
E
S

Source Program statement
following macro-Instruction

PROCESSOR OPERATIONS

Insert assembled symbol ic pro­
gram entries as an open routine
in the symbol ic program

When a macro-instruction is encountered in the
source program, the processor extracts the specified
library routine, tailors it, and inserts it in-line
in the users source program.

Figure 108. Macro Processing

50

Appendix A: Processor Error Diagnostic Procedures

The following chart lists the seven flag codes which
the Autocoder processor will affix to an Autocoder

statement upon diagnosing an error. The circumstances
which will produce each flag are also described.

FLAG

F

M

N

o

R

U

W

DEFINITION

Format Invalid

Multiple Definition

Note Generated

Operation Invalid

Restricted Operation

Undefined Label

Warning

CIRCUMSTANCES

The operand of each statement is analyzed for correct format. Invalid for­
mat testing is not 100% exhaustive. The list included below indicates the
areas in which format t~sting is conducted. (See NOTE 2.)

A label (or labels) in the operand has been defined more than once in the
source program. The address of the first encountered label is used. NOTE 1:
See indexing restriction of XI4 and XI5.

This flag is caused by a macro generation and is not necessarily a program­
ming error. (See "Note - To Produce a Message" under "The Macro
System.")

The operation code of the statement is a mnemonic that does not exist in the
Autocoder language and is not one of the macro-instructions contained in
the macro library. (See "Mnemonic Operation Codes," Figure 21.)

The operation code of the statement is one of the restricted operation codes.
(See Appendix D.) The "R" flag does not set the "no-go" switch.

A label (or labels) in the operand has not been defined by another state­
ment in the source program. (See NOTE 2.)

This flag is used to indicate improper program conditions. For example, the
processor must encounter a TITLE card after a SPEND card before it gen­
erates another card in the object deck. Another example is: an ORG * +XOO
must be preceded by a BASEl * + XOO.

NOTE 1: If a label is defined as an area defining literal and as
a label in another Autocoder statement, this error will not re­
ceive the "M" flag. The cross reference listing, however, will
diagnose this condition and give notice of the multiple definition.

5. Invalid sequence of sensitive characters. Sensitive charac-
ters in the operand are:

BLANK -b
COMMA

NOTE 2: Certain labels are exempt from these requirements.
They are linkage symbols, system symbols, index register sym­
bols (XI-I5, +XO) and common.

Invalid Operand Relationships Causing the "F" Flag:

1. No operand information in a statement that requires addi­
tional information.

2. Comments not separated from operand elements by at least
two blanks.

3. Incorrect DA or DA V header configuration.

4. A label used as an address adjustment is not equated to
an index register, and the statement is not a DC or DCW entry.

PLUS - +
MINUS
At Symbol - @

Asterisk '"
Pound Sign - #

6. Incorrect information following a sensitive character,
such as

+b or "'A.
7. A pound sign not followed by a pure numeric count less

than or equal to 500.
8. A literal without a literal character, for example, @@.

Appendix A 51

Appendix B: Autocoder Messages and Limits

This appendix contains a listing of all the messages
produced by Autocoder, a description of the circum­
stances causing the message, and" a table of the limits
of the Autocoder processor.

The processor can produce the following messages
on the console printer and on the / SPR/ file. When the
message is found necessary, the GO mode will be can­
celled and the assembly terminated at the point where
the condition occurred. If the job is not in the TEST
mode, this will cause the System Monitor to cancel
the remainder of the job.

10701 AUTOCODER NOT COMPLETED. INCORRECTABLE lIO
ERROR <ON Mwm TERMINATED IN PHASE X

This message will have been preceded by the standard
IOCS message on the console printer indicating a data
check or wrong-length record. In some cases the work
file number is given.

10701 AUTOCODER NOT COMPLETED. UNUSUAL <or UNEX­
PECTED) END OF FILE ON MW1 TERMINATED IN
PHASE X

(A similar message may be produced which indicates
MW2 and MW3.) This message will be produced on an
unexpected end-of-file or end-of-reel indication when
the system is using tape work files, or an end of the
·tracks assigned to the given 1301 disk work file.

10701 AUTOCODER NOT COMPLETED. LIBRARY DIRECTORY
NOT FOUND TERMINATED IN PHASE 1

This message will be produced when the library direc­
tory is not contained in the SOF.

Maximum

10701 AUTOCODER NOT COMPLETED. MACRO LIBRARY NOT
FOUND TERMINATED IN PHASE 1

This message will be produced when the macro library
is not contained in the SOF.

10701 AUTOCODER NOT COMPLETED. RECURSION CAPACITY
EXCEEDED TERMlNATED IN PHASE 3

This message will be produced when the maximum
number of literals is exceeded in a source program (see
chart below). The source program will have to be
altered before assembling.

10701 AUTOCODER NOT COMPLETED. MAXIMUM NUMBER
OF DTFS EXCEEDED TERMINATED IN PHASE 1

This message will be produced when the maximum
number of DTF'S has been exceeded in a source pro­
gram (see chart below). The source program will have
to be altered before assembling.

10701 AUTOCODER NOT COMPLETED. ERROR IN MACRO
LIBRARY READ TERMINATED IN PHASE 2

This message will be produced when an error is read
in the Macro Library.

10701 AUTOCODER NOT COMPLETED. MACRO XXXXX NOT
FOUND ON DISK TERMINATED IN PHASE 2

This message will be produced when the specified
Macro Library routine, xxxxx, is not found on the
disk file.

10702 NOGO SWITCH SET
This message is produced when a source statement is
flagged (except for the "R" flag).

AUTOCODER LIMITS

Affecting

Macro­
Instructions

240 different macros in the macro library

Reason

Table size is limited

Results when Exceeded

Diagnostic message and
System Generation ter­
mination

52

Autocoder
Statements

Literals

9999 macro-instruction usages within one
assembly run

25 DTF usages in one assembly run

The total number of Autocoder statements
(source and generated) is limited by one
reel of tape, or by the number of disk cylin­
ders assigned to each work file.

Approximate literal limit = x - [6 - z

Where: x = contents of / AMS/
y = address of IBAU30SUBR de­

fined in the System Generation
memory map.

z = 3,000 plus 16 times the number
of EQU, ORG, and LTORG
statements containing symbolic
operands within each assembly.

Limit of generated
labels

Table size is limited

No multi-reel process­
ing on tape, or end of
tracks assigned to a
work file on disk

Work area in core
storage of the SOF has
been exceeded

Possibility of multiple
label definitions

Diagnostic message and
assembly termination

Diagnostic message and
assembly termination

Diagnostic message and
assembly termination

Appendix C: 1410/7010Autocoder Sample Program

The following sample program is provided both as a
test deck for the user's System Operating File and as a
teaching aid. It is an Autocoder source program with a
set of dummy input which is combined with control
cards to constitute a Monitor job run. The card deck
(Exhibit I) is loaded via the Standard Input Unit. The
job run includes the assembly of the source program
by the Autocoder processor, the creation of the ab­
solute program by the Linkage Loader, and the execu­
tion of the sample program which results in output on
the Standard Punch Unit.

The assembled object program will perform the fol­
lowing functions:

1. Reproduce card decks in card columns 6-75.
2. Sequence the deck, punching the sequence num­

ber into columns 1-5.
3. Gang punch the contents of columns 76-80 of the

first card into the corresponding columns of the
remainder of the deck.

4. Type the message "EO]" on the console printer at
end of job.

The exhibits are as follows:

Exhibit I

Exhibit II

Exhibit III

Exhibit IV

Exhibit V

The assemble-and-go input deck.

The console printer output during
the run.

A listing of the object program deck.

The Standard Print Unit output of
the job run, showing:

A. Monitor Control Cards
B. Assembly Listing
C. Cross Reference Listing
D. Linkage Loader Control Cards

A listing of the cards which are the
output of the executed sample pro­
gram.

Appendix C 53

MON$$
MONU
MONU
MONU
MONU
MONU

0001
0002
0003
0004 *
0005 *
0006 *
0007 *
0008 *
0009 *
0010 *
0011 START
0012
0013
0014 LOOP
0015
0016
0017
0018 *
0019 READ
0020
0021 RDXT
0022 *
0023 CHNG
0024
0025
0026
0027
0028
0029 CHNGX
0030 *
0031 PUNCH
0032
0033 PCHXT
0034 *
0035 EOF
0036
0037 *
0038 ERROR
0039
0040 *
0041
0042 *
0043 AREA
0044 AR04
0045 AR80
0046 *
0047 EOJ
0048 ERR
0049
0050

MON$$

DATE 64015
JOB SAMPLE
ASGN MJB,Al
MODE GO
ASGN MGO,A6
EXEQ AUTOCODER
HEADRSAMPLE PROGRAM USING 1410/7010 AUTOCODER
TITLERESEQUENCE
BASEl*&XOO

THIS PROGRAM WILL RESEQUENCE SOURCE DECKS
RENUMBERING FROM 0001 IN THE FIRST FOUR
COLUMNS AND WITH THE IDENTIFICATION FIELD
SUPPLIED BY THE FIRST CARu GANG-PUNCHED INTO EACH
CARD PRODUCED.

BREAD
MLCB AR80,IDENT#5
B *&8
BREAD
B CHNG
B PUNCH
BLOOP

SBR RDXT&5
STDIOREAD,AREA,EOF,ERROR.M
B 0

SBR CHNGX&5
MLCA IDENT,AR80
MLCA @ @
MLCS @ @,AR04&1
A &l,CNU4
MLCA CNT,AR04
B 0

SBR PCHXT&5
STDIOPUNCH,AREA
B 0

IOCTLTYPE,EOJ
B IEOPI

IOCTLTYPE,ERR
B IUEPI

LTORG*

DA lX80,G
4
80

DC @ EOJ@,G
DC @ERROR@,G
PST
END START
EXEQ LI NKLOAD
PHASESAMPLE
CALL RESEQUENCE

MON$$ EXEQ SAMPLE,MJB

.54

AUTOCODER SAMPLE PROGRAM DECK OF DUMMY INPUT CARDS
THIS DECK OF CARDS IS PROVIDED WITH THE SAMPLE PROBLEM TO SUPPLY A
FEW DUMMY INPUT CARDS FOR OPERATING IN THE ASSEMBLE-AND-GO MODE.
NOTE THAT THE FIRST CARD - THREE CARDS EARLIER IN THIS DECK - CONTAINS
FIVE CHARACTERS IN CARD COLUMNS 76 THROUGH 80. AFTER EXECUTION OF THE
SAMPLE PROGRAM, ALL THE CARDS PRODUCED WILL CONTAIN THESE CHARACTERS
IN THE CORRESPONDING CARD COLUMNS. NOTE ALSO THAT EACH OF THE CARDS
PRODUCED WILL CONTAIN A SEQUENCE NUMBER IN CARD COLUMNS 1 THROUGH 5.
MON$$ END

Exhibit I

SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPL
SAMPl
SAMPL
SAMPL
SAMPL
SAMPL

XXXXX

S 149¢¢ 1bbbb 11622 bb bbb QQQQ

D ¢¢¢¢¢
D bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

A AL%BIHH1¢12$t:J

R DATE 64¢15
R S¢l JOB SAMPLE
R ASGN MJB,Al
R t10DE GO
R ASGN MGO,A6
R EXEQ AUTOCODER
R l¢l¢l NRI M@40144.0w
R EXEQ LINKLOAD
R EXEQ SAMPLE,MJB
R EOJ
REND
REND SIU
RENTER B MESSAGES

Exhibit II

64015 TITLERESEQUENCEOOOOO
BASE1'uXOO

00000 OOO~
00040 00035
00075 0004·3
00118 00037
00155 00044
00199 00005
00204 00036
00240 0004·3
00283 00019
00302 00013
00315 00395
00395 00001
00396 00012

E ooooe

Exhibit III

J00054 o0039400306L J00033 J00054 J00118
J00185 J00026 600116B J/RSII J00216
W00259/MCS/M 0/CRo/001041 000000003155 JOOOOO
G00183B o0030600394T 000309 D00309003193
A0031000314 o0031400318T JOOOOO G00214B V/PCH/X

00315 JOOOOO V00216/CTB/2 V/CNC/X 00396
V00240/CTB/2 J/EOPI V00259/CTB/2 V/CNC/X 00402
V00283/CTB/2 J/UEPI

A

EOJ EFtROR

MONSS 501 JOB SAMPLE
MONSS ASGN MJB,Al
MONSS MODE GO
MONSS ASGN MGO,A6
~ONSS EXEQ AUTOCODER

Exhibit IV, Part A

PAGE 001

5001SAMPL
4002SAMPL

II)DII003SAMPL
I 1111004SAMPL

AACI005SAMPL
0-DII006SAMPL
I U41007SAMPL

1008SAMPL
N C N1009SAMPL
1\1 C CI010SAMPL

C1011SAMPL
1012SAMPL

NV013SAMPL
1014SAHPL
1015SAMPL
3999SAMPL

Appendix C 55

64015

SEQNO PGLIN LABEL

0002

2 0003

3 0004

4 0005

5 0006

6 0007

7 0008

S 0009

9 0010

10 0011

11 0012

12 0013

13 0014

14 0015

15 0016

16 0017

17 0018

18 0019

19 0020

20 G 00090

21 G 00100

22 G 00110

23 G 00140

24 G 00150

25 0021

26 0022

27 0023

28 0024

29 0025

30 0026

31 0027

32 0028

33 0029

34 0030

35 0031

START

lOOP

READ

RDXT

CHNG

CHNGX

PUNCH

Exhibit IV, Part B

56

SAMPLE PROGRAM USING 1410/7010 AUTOCODER

OPCOD OPERAND

TITLE RESEQUENCE

BASEL -&XOO

THIS PROGRAM WILL RESEQUENCE SOURCE DECKS

RENUMBERING FROM 0001 IN THE FIRST FOUR

COLUMNS AND WITH fHE IDENTIFICATION FIELD

SUPPLIED BY THE FIRST CARD GANG-PUNCHED INTO EACH

CARD PRODUCED.

B READ

MLCB AR80,IDENT,5

B

B READ

B CHNG

B PUNCH

B LOOP

SBR RDXT&5

STDIO READ,AREA,EOF,ERROR,M

B IRSII

B EDF

SBE ERROR,/MCS/,M

MLNA ICRD/,-&.6

MRCG O,AREA

B o

SBR CHNGX&.5

MLCA IDENT,AR80

MLCA

MLCS iilt AR04&l

A &1,CNU4

MLCA CNT,AR04

B o

SBR PCHXT&5

REl

c

D

c

[J

[J

c

c

c

L
T

c

C

A

A
L
T

c

o

D

4

D
L
T

c

PAGE

CT ADORS INSTRMCTION

1 00000 J 00054

12 00007 D 00394 00306 L

7 00019 J 00033

7 00026 J 00054

7 00033 J 00118

7 00040 J 00185

1 00041 J 00026

1 00054 G 00116 B

7 00061 J IRSII

7 00068 00216

12 00075 W 00259 IMCSI M

12 00087 D ICRDI 00104 I

12 .00099 D 00000 00315 $

7 00111 J 00000

7 00118 G 00183 B

12 00125 0 00306 00394 T

6 00131 D 00309

12 00143 D 00309 00319 3

11 00155 A 00310 00314

12 00166 D 00314 00318 T

7 00178 J 00000

7 00185 G 00214 B

SMIPl

CIIRD FLAG

001

002

003

003

003

003

003

004

004

004

004

004

005

005

005

005

006

006

006

006

007

007

007

007

64015

SEQNO PGLIN LABEL

36 0032

37 G 00320

38 G 00330

39 G 00340

40 0033 PCHXT

41 0034

42 0035

43 G 0035 EOF

44 G 01510

45 G 01520

46 G 01530

41 G 01580

48 0036

49 0037

50 0038 ERROR

64015

SEQNO PGLIN LABEL

51 G 0038 ERROR

52 G OL510

53 G 01520

54 G 01530

55 G 01580

56 0039

57 0040

58 0041

59 IDENT

60

61

62 CNT

63 0042

64 0043 AREA

65 0044 AR04

66 0045 AR80

67 0046

68 0047 EOJ

69 0048 ERR

10 0049

11 0050

Exhibit IV, Part B

SAMPLE PROGRAM USING 1410/7010 AUTOCODER

OPCOD OPERAND

STDIO PUNCH,AREA

BXPA IPCtil

DCW .5

Dew AREA

B o

IOCTL TVPE,EOJ

EQU

BIN

8XPA

Dew

BIN

B

•
·-u,/eTBI

ICNCI

EOJ

.-U,/CTBI

IEOPI

IOCTL TYPE,ERR

SAMPLE PROGRAM USING 1410/70LO AUTOCODER

OPCOD OPERAND

EQU

BIN .-lIl,/C TBI

BXPA ICNGI

DCW ERR

BIN .-ll'/CTBI

B IUEIlI

lTORG

'0005

iA@

.0004

DA lX80.G

4

80

DC @ EOJOl,G

DC OlERROR@,G

PST

END START

NUMBER Of fLAGGED STATEMENTS NONE

1410/7010 AUToeODER ••• SYSTEM IMlol 0001

REl

l
r

N
L
T

C
l
T

N

C
l
T

REL

C
L
T

N

C
L
T

PAGE 2

CT ADDRS INSTRUCTION

7 00192 Y IPeHI x

5 00203

5 00208 00315

0020!} J 00000

00216

12 00216 V 00216 ICTBI 2

7 00228 Y ICNCI X

5 00239 00396

12 00240 V 00240 ICTBI 2

7 00252 J IEOPI

PAGE 3

CT ADDRS INSTRUCTION

00259

12 00259 V 00259 ICTBI 2

1 00211 V ICNCI X

5 00282 00402

12 00283 V 0028"3 ICTBI 2

7 00295 J IUEPI

00302

5 00306

3 00309

00310

4 00314

81 003L5

00318

00394

6 00396

6 00402

00000

SAMPL

CARD FLAG

007

OOB

009

009

009

009

009

010

010

SAMPL

CARD FLAG

010

010

010

011

011

012

012

012

012

015

015

Appendix C 57

*****C R 0 S S REF ERE N C E LIS TIN G*****

SAMPLE PROGRAM USING 1410/7010 AUTOCODER

SYMBOL LABEL SEQNO OPERAND SEQUENCE NUMBERS

ICNCI 0045 0053

ICRDI 0023

ICTBI 0044 0047 0052 0055

IEOPI 0048

IMCSI 0022

IPCHI 0031

IRSlI 0020

IUEPI 0056

AREA 0064 0024 0039

AR04 0065 0030 0032

AR80 0066 0011 0028

CHNG 0021 0014

CHNGX 0033 0027

CNT 0062 OOH 0032

EOF 0043 0021

EOJ 0068 0046

ERR 0069 0054

ERROR 0051 0022

IOENT 0059 0011 0028

LOOP 0013 0016

PCHXT 0040 0035

PUNCH 0035 0015

ROXT 0025 0018

READ 0018 OOLO 0013

START 0010 0071

SYMBOL LABEL SEQNO OPERAND SEQUENCE NUMBERS FOR LITERALS IN SEGMENT 1

0060 0029 0030

ialACi 006L 0031

Exhibit IV, Part C

MON$$ EXEQ LINKLOAD
iI1ESSAGE CARD NAME VALUE SYMBOL VALUE SYMBOL VALUE

PHASE SAMPLE 18324
BASEL 18400

TITLE RESEQUENCE 18400 REL FACTOR 18400

UNRESOLVEU ENTRIES NONE
MON$$ EXEQ SAMPLE,MJB
MONU END

Exhibit IV, Part D

0001
0002
0003
0004
0005
0006
0007
0008

AUTOCODER SAMPLE PROGRAM DECK OF DUMMY INPUT CARDS
THIS DECK OF CARDS IS PROVIDED WITH THE SAMPLE PROBLEM TO SUPPLY A
FEW DUMMY INPUT CARDS FOR OPERATING IN THE ASStMBLE-AND-GO MOOE.
NOTE THAT THE FIRST CARD - THREE CARDS EARLIER IN THIS DECK - CONTA
FIVE CHARACTERS IN CARD COLUMNS 76 THROUGH 80. AFTER EXECUTION OF
SAMPLE PROGRAM, ALL THE CARDS PRODUCED WILL CONTAIN THESE CHARACTER
IN THE CORRESPONDING CARD COLUMNS. NOTE ALSO THAr EACH OF THE CARD
PROOUCED WILL CONTAIN A SEQUENCE NUMBER IN CARD COLUMNS 1 THROUGH 5

Exhibit V

58

SYMBOL VALUE

XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX

SYMBOL VALUE

This appendix contains a complete listing of Autocoder
language statements and, where applicable, their
machine-language equivalents. In this listing, A-ad­
dresses in operands have been equated to location
12345, B-·addresses have been equated to location
34567, and I-addresses have been equated to location
56789. C-·addresses (for the Store Register instruc­
tions) have been equated to 45678. The character "D"
in an operand indicates that an appropriate machine­
language d-modifier is to be coded in the Autocoder
source statement.

Included in the listing are several generalized forms
for source statements. For example, the programmer

AUTOCODER MNE~ONIC OPERATION CODES

Appendix 0: Autocoder Operation Codes

can cause the generation of any machine-language in­
struction with an operation code of "J" by using the
generalized form JID I,D. Place JID in the op code field,
and the branch address (I-address) and appropriate
d-modifier in the operand field. The generalized forms
permit the coding of instructions for which there are
no specific Autocoder mnemonics. Addresses in the
operand of the generalized forms can be specified sym­
bolically with labels, and can have address adjustment
and indexing.

No diagnostics are performed on the d-modifiers as­
sociated with generalized mnemonics.

LABEL OPCOD OPERAND INSTRUCTION

PROCESSOR CONTROL OPERATIONS

ORG 10000 ORIGIN

LTORG LITERAL ORIGIN

HEADR THIS INFORMATION WILL BE THE HEADING OF LISTING

RESEQ RESEQUENCE AT 001, NEW PAGE, NEW IDENT

EJECT CONTINUE LISTING ON NEW PAGE

SPEND START END PRIMARY SUBPROGRAM

SPEND END SECONDARY SUBPROGRAM

END START END PRIMARY SUBPROGRAM AND AUTOCODER RUN

END END SECONDARY SUBPRGRM AND AUTOCOCER RUN

NOPWM NO OPERATION WORD MARK

LINKAGE LOADER CONTROL OPERATIONS

BASEl 12000 CONTROLS RELOCATION FACTOR

BASEZ 38000 UPPER LIMIT FOR COMMON DATA AREA

TITLE COSINE.20.0 DECLARES NAME OF SU~PROGRAM.

SIZE OF COMMON, ORIGIN POINT

SINEI CEFIN COSINE+42 DECLARES LINKAGE SYMBOL

PRTCT ABCDI PREVENTS ERASURE OF LINKAGE SYMBOLS

FROM LINKAGE LOADER TABLE

CALL THIRD SUBPROGRAM CALL

DECLARATIVE CPERATICNS

A Eeu 12345 THE EQUATE INSTRUCTION

B EOU 34567

C Eau 45678

Eeu %78<1

N

Appendix D 59

LABEl

•

60

AUTOCODER MNEMCNIC OPERATION CODES

OPCOD OPERAND

DA

OAV

DCW

DC

OS

DCWF

DCWS

1X2,G

lX2.G

+2

NAME

NAME

DEFINE AREA

DEFINE AREA IN COMMON AREA

DEFINE CONSTANT WITH WORD MARK

DEFINE CONSTANT

DEFINE SYMBOL

AOCON FOR ENTRY POINT OF NAMED SUBPROGRAM

BRANCH TO NAMED SUBPROGRAM

RSV LABEL APPLY DOWNWARD RELOCATION TO LABEL

ARITHMETIC OPERATIONS

A

S

ZA

ZS

M

o

A,B

A,B

A,B

A,B

A,a

A,a

ADD A-FIELD TO a-FIELD

SUBTRACT A FROM B

ZERO AND ADD A TO a

ZERO AND SUBTRACT A FROM a

MULTIPLY

DIVIDE

MOVE RIGHT TO LEFT COMMANDS

MCVE SINGLE POSITION

MLNS A,B

MLZS A,B

MLCS A,B

MLWS A,B

MLNWS A,B

MLZWS A,e

MLCWS A,B

MOVE LEFT NUMERIC SINGLE

ZONES SINGLE

CHARACTERS SINGLE

WORD MARKS SINGLE

NUMERIC AND weRD MARK SINGLE

ZONE AND WORD MARK SINGLE

CHARACTER A~D WORD MARK SINGLE

STOP MOVE AT WORD MARK IN A-FIELD

MLNA A,B

MLZA A,B

MLCA A,B

MLWA A,B

MLNWA A,B

MLZWA A,B

MLCWA A,B

MOVE LEFT NUMERIC TO A-FIELO WCRD MARK

ZONES TO A-FIELD WORD MARK

CHARACTERS TO A-FIELD WORD MARK

WORD MARKS TO A-FIELD WORD MARK

NUMERIC AND WM TO WORD MARK IN A

ZONES AND WM TO WURD MARK IN A

CHARACTERS AND WM TO WORD MK IN A

STOP MOVE AT WORD MARK IN B-FIELD

MLNB A,B

MLlB A,B

MLCB A,B

MLWB A,a

MLNWB A,B

MLZWB A,B

MLcwa A,a

MOVE LEFT NUMERIC TO a-FIELD WCRD MARK

ZONES TO B-FIELD WORD MARK

CHARACTERS TO B-FIELD WORD MARK

WORD MARKS TO B-FIELD WORD MARK

NUMERIC AND WM TO WORD MARK IN B

ZONES ANC 101M TO WORD MARK IN B

CHARACTERS AND 101M TO WORD MK IN R

STOP MOVE AT WORD MARK IN A- OR B-FIELD

MLN

MLZ

A,B

A,B

MOVE LEFT NUMERIC

ZONES

INSTRUCTION

3 10001

3 10004

10007

10008

10009

5 10010

7 10015

A 12345 34567

S 12345 34567

+ 12345 34561

- 12345 34567

- 1234.5 34561

12345 34567

D 12345 34567

o 12345 34567 2

D 12345 34567 3

D 12345 34567 4

D 12345 34567

D 12345 34567 6

o 12345 34567 7

o 12345 34567

D 1234') 34567

D 12345 "34567

D 12345 34567 U

D 1234:; 34561 V

D 12345 34561 W

D 12345 34567 X

o 12345 34567

D 12345 34567 K

D 12345 34567

D 12345 34567 ~,

D 12345 34567 N

D 12345 34567 0

o 12345 34567 P

D 12345 34567 A

D 12345 34567 B

LABEL

*

AUTOCODER MNEMONIC OPERATION CODES

OPCOO OPERAND

MLC A,(3 CHARACTERS

MLW A,B WORD MARKS

I-ILNW A,B NUMERIC AND WORD MARKS

fJ:LlW lONES AND WORD MARKS

MLCW A,B CHARACTERS AND WORD ~ARKS

MOVE LEFT TO RIGHT COMMANDS

STOP MOVE AT WORD MARK IN A- OR B-FIELO

MRN A,b MOVE RIGHT NUMERIC

I-IRl laNES

tJ.RC A,B CHARACTERS

MRW A,B WORD MARKS

MRNW NUMERIC AND WORD MARKS

MRlW lONES AND wORD MARKS

MRCW CHARACTERS AND wORD MARKS

STep MOVE AT RECORD MARK IN A-FIELD

MRNR A.B

MRlR A"B

MRCR A.B

MRWR A.B

MRNWR A,B

MRlWR A,B

MRCWR A,B

I-IRNG A,B

MRlG A,B

MRCG A,B

MRWG A,B

MRNWG A,B

MRlWG A,B

MRCWG A,B

MOVE RIGHT NUMERIC TO RECORD MARK IN A-FLO

lONES TO RECORD MARK IN A-FIELD

CHARACTERS ro RECORD MARK IN A

WORD MARKS TO RECORD MARK IN A

NUMERIC AND WM TO RM IN A-FIELD

laNES AND WM TO RM IN A-FIELD

CHARACTERS AND WM TO RM IN A

MOVE RIGHT NUMERIC TO GM-WM IN A-FIELD

laNES TO GM-WM IN A-FIELD

CHARACTERS TO GM-WM IN A-FIELD

WORD MARKS ro GM-WM IN A-FIELD

NUMERIC AND WM TO GM-WM IN A

lONE5 AND WM TO GM-WM IN A-FIELD

CHARACTERS AND WM TO GM-WM IN A

STOP AT RM OR GM-WM IN A-FIELD

MRNM A,B MOVE RIGHT NUMERIC TO RM OR GM-WM

MRlM A,B laNES TO RM OR GM-WM

MRCM A,B CHARACTERS TO RM OR GM-WM

MRWM A,B WORD MARKS TO RM OR GM-WM

MRNWM A,B NUMERIC AND WM TO RM OR GM-WM

MRlWM A,B laNES AND WM TO RM OR GM-WM

MRCWM A,B CHARACTERS AND WM TO RM OR GM-WM

SCAN LEFT AN~ RIGHT COMMANDS

SCNRR A,B SCAN RIGHT TO RM IN A-FIELD

SCNRG A,B TO GM-WM IN A-FIELD

SCNRM A,B TO RM OR GM-WM IN A-FIELD

SCNR A,B TO WORD MARK IN A- OR B-FIELD

INSTRUCTION

o 12345 34567 C

o 12345 34567 0

o 12345 34567 E

o 12345 34567 F

o 12345 34567 G

o 12345 34567 q

o 12345 34567 0

o 12345 34567

o 12345 34567 -,

o 12345 34567 •
G

o 12345 34567 r
T

o 12345 34567 ~I

o 12345 34567

o 1234') 34567 t

o 12345 34567 .'

o 12345 34567 (
W

o 12345 34567 S

o 12345 34567
Q

D 12345 34567 T

o 12345 34567 R

o 12345 34567 0

o 12345 34567 $

o 12345 34567 •
R

D 12345 34567 P

D 12345 34567,
D

o 12345 34567 L

o 12345 34567

o 12345 34567 0

o 12345 34567 •

o 12345 34561 I
L

o 12345 34567 P
L

o 12345 34561 T
G

o 12345 34567 M

o 12345 34561 Y

o 12345 34567 Q

o 12345 34567 H

o 12345 34567 8

Appendix D 61

LABEl

62

AUTOCCDER MNEMONIC OPERATION CODES

OPCOC OPERAND

SCNLA A,B SCAN LEFT TO WORD MARK IN A-FIELD

SCNLB A,B TO WORD MARK IN B-FfELD

SCNL A,~ TO WM IN A- OR B-FIELD

SCNLS A,B SINGLE POS IT I ON

SPECIAL MOVE COMMANDS

MCS

MCE

C

II

LE

llE

U·I

LLH

LEH

Bioi

BlN

BlN

BlN

BIN

BIN

BIN

BlN

BWl

BWl

BWZ

BWl

BWl

BWZ

BWI

BCE

BBE

B

BU

BE

Bl

BH

BZ

BAV

BDV

A,B MOVE CHARACTERS AND SUPPRESS lEROS

MOVE CHARACTERS AND EDIT

COMPARE AND LOOKUP COMMANDS

COMPARE B-FIELD TO A-FIELD

A,B LOOKUP LOw

A,B LOOKUP EQUAL

A,B LOOKUP LOW OR EQUAL

A,B LOOKUP HIGH

A,B LOOKUP LOW OR HIGH

A,B LOOKUP EQUAL OR HIGH

LCGICAL OPERATIONS

I,B

I, B

I,B,AB

I,B,+

I,B,A
C

I,B,T

I,B,-

I,B

I,B,AB

I,B,+

I,B,A
C

I,B,T

I,B,B

I,B,-

I,B,D

I,B,D

BRANCH TO I-ADDR IF WORD MARK AT B-ADDRESS

BRANCH TO IF B HAS NO AB-BITS

IF B HAS A-BIT AND B-8IT

A-BIT AND 8-BIT

IF 8 HAS A-BIT AND NO B-BIT

A-BIT AND NO B-BIT

IF B HAS B-BIT AND NO A-BIT

B-BIT AND NO A-BIT

BRANCH TO I IF B HAS WM AND NO AB-HITS

AND AB-BITS

AND AB-B ITS

AND A-BIT

AND A-BIT

AND B-B IT

AND B-BIT

BRANCH TO I IF CHARACTER AT B EQU D-MOD

BRNCH IF ANY BIT AT B MATCHES BIT IN D-MOD

UNCONDITIONAL BRANCH

BRANCH IF CDMPARE UNEQUAL

EQUAL

lOW

HIGH

BRANCH IF ZERO BALANCE

BRANCH IF ARITHMETIC OVERFLOW

BRANCH IF DIVIDE OVERFLOW

INSTRUCTroN

C
D 12345 34567 T

D 12345 34567 -

o 12345 H567 +

o 12345 34561

I 12345 34567

E 12345 34561

C 12345 34567

12345 34567

T 12345 34567

12345 34567 3

12345 34567 4

T 12345 34567 5

T 12345 34567 6

V 56789 34567

V 56781 34567 2

V 56789 34567 B

V 56789 34567 B

V 56789 34567 S

V 56789 34567 S

V 567B9 34561 K

V 56781 34567 K

V 56789 34567

V 56789 34567 C

V 56789 34567 C

V 56789 34567

V 56789 34567 T

V 56789 34567 L

V 56789 34567

B 56789 34567 0

W 56789 34567 0

J 56789

J 56789

J 56789

J 56789

J 56789

J 56789

J 56789

J 56789

S

u

v

I

w

AUTOCODER MNEMONIC OPERATION CODES

LABEL OPCOD OPERAND INSTRUCTION

MISCELLANEOUS OPERATIONS

SAR C STORE A-REGISTER G 45678

SBR C STORE B-REGISTER G 45678

SW A SET WORD MARK AT A , 12343

SW A,B SET WORD MARK AT A AND B , 12345

CW A CLEAR WORCMARK AT A 12345

CW A,B CLEAR WORD MARK AT A AND B 12345

CS B CLEAR STORAGE 34567

CS I, B CLEAR STORAGE AND BRANCH 56789

NOP NO OPERATION N

STC A STORE TIME CLOCK G 12345

SR C:,D GENERALIZED STORE REGISTER G 45678

STCPU STORE CPU STATUS $ 56189

RSCPU RESTORE CPU STATUS 56789

FLOATING POINT ARITHMETIC INSTRUCTIONS

FRA t\ FLOATING RESET ADO 12345

FST A FLOATING STORE 12345

FA A FLOATING ADO 12345

FS A FLIJATING SUBTRACT 12345

FM A FLIJATING MULTIPLY 12345

FD II FLIJATING DIVIDE 12345

BXO BRANCH EXPONENT OVERFLOW 56189

BXU BRANCH EXPONENT UNOERFLOW J 56789

NOTE: The remainder of this listing pn!sents in­
structions that are (or can be) related to input/output
functions, including the use of priority and overlap.
They are "restricted" in that special care must be
given to their use, since they are potential hazards
to such Resident Monitor control functions as input/
output scheduling and assignment of input/output units.
Because all programs within the Operating System

system IS 10CS, the majority of these instructions will
not normally be used in coding an Autocoder program.
The programmer who wishes to use any of these in­
structions is advised to be familiar with the extended
use of the 10CS, as explained in the publication IBM
1410/7010 Operating System: Basic Input/Output
Control System, Form C28-0322.

are provided with input/output facilities by the

• CONDITIONAL BRANCHES FOR 1/0. OVERLAP, AND PRIORITY

BEXl I,D BRANCH EXTERNAL INDICATOR - CHANNEL R 56789

BEX2 X,D

BEX) X ,0

BEX4 X ,0

NOTE: The Branch External Indicator instructions
must not be used in any form, for any purpose, by
dependent programs within the Operating; System.
These instruetions reset certain interrupt indicators

BOll BRANCH OVERLAP

BOL2

BOL3

BOL4

- CHANNEL 2 X 56189

- CHANNEL 3 3 56189

- CHANNEL 4 56189

and can result in either an I/O interlock error or
failure of 10CS functions. The BEX mnemonic is
included in this li.sting merely as an aid for reading
assembly listings of the Resident 10CS.

IN PROCESS - CHANNEL J 56189

- CHANNEL 2 J 56189

- CHANNEL 3 J 56789

- CHANNEL 4 56189

BB1 BRANCH IF BINARY CARO - CHANNEL J 56189

BB2 - CHANNEL 2 J 56789

A

B

34567

34567

34567

0

S

R

R

L

A

S

M

0

Y

X

D

D

D

D

2

3

4

M

Appendix D 63

AUTOCOOER MNEMONIC OPERATION CODES

LABEL OPCOD OPERAND INSTRUCTION

•

•
•

•
•

B

BPCBl

BPCB2

BCV

BCVl

BCV2

BC9

BC91

BC92

HXPA

BEPA

JIO 1,0

BRANCH PRINTER CARRIAGE BUSY - CHANNEL

- CHANNel

- CHANNEL 2

BRANCH CARRIAGE OVERFLOW - CHANNEL

- CHANNel

- CHANNel 2

BRANCH CARRIAGE CHANNEL 9 - CHANNEL

- CHANNEL

- CHANNEL 2

BRANCH AN~ EXIT PRIORITY ALE~T

BRANCH AND ENTER PRIORITY ALE~T

GENERALIZED TEST AND BRANCH

THE ABOVE IS A GENERALIZED FORM, PERTAINING TO

THE J OPCOOE. THE PROPER 0 MODIFIER MUST BE

SUBSTITUTED BY THE USER FOR THE D SHOWN IN THE OPERAND

BPI I,D GENERALIZED PRIORITY TEST AND BRANCH

THE ABOVE IS A GENERALIZED FORM, PERTAINING TO

THE Y OPCODE. THE PROPER 0 MODIFIER MUST BE

SUBSTITUTED BY THE USER FOR THE D SHOWN IN THE OPERAND

56789

56789

J 56789

56789

J 56789

J 56789

56789

J 56789

J 56789

Y 56789

Y 56789

NOTE: The Priority Test and Branch instructions
reset indicators tested by the Resident roes and.
therefore. should be used with special care. A

thorough knowledge of the internal functions of the
roes is prerequisite for use of these instructions in
a dependent program.

STATS I,D GENERALIZ~O STORE AND RESTORE STATUS $ 56789

THE ABOVE IS A GENERALIZED FORM. THE PROPER

o MODIFIER MUST BE SUBSTITUTED FOR THE 0 SHOWN.

• FOUR EXAMPLES OF THIS USAGE ARE

STATS I,E STORE CI-IANNEL STATUS $ 56789

STATS I,G STORE CHANNel) STATUS $ 56789

STATS 1,1 RESTORE CHANNEL STATUS $ 56789

STATS 1,4 RESTORE CHANNEL 4 STATUS $ 56789

SSF 0 SELECT STACKER 0 AND FEED - CHANNel K

CC CARRIAGE CONTROL 1/0 CHANNEL 1 F

BSP IB1 BACKSPACE TAPE U IB1

WTM IBI WRITE TAPE MARK U IBl

RWD IB1 REWIND U IBl

RWU IBl REWIND AND UNLOAD U (B1

CU IBl,W CONTROL UNIT U (B1

MU (Bl,B,O TO BUILD HOVE MODE lID COMMAND M IB1

LU IB1,8,0 TO BUILD LOAD MODE lID COMMAND L 181

H HALT AND BRANCH . 56789
NOTE: The Halt instruction. although not necessarily machine halts. This convention is especially signifi-
related to input/output functions, is included in the cant for dependent programs that run under control
"restricted" category because its use is in opposition of a Resident Monitor that includes the Tele-process-
to the Operating System convention that dependent ing Supervisor.
programs should not interrupt Monitor control with

EOJ END

64

34567

34567

It

R

L

<)

o

X

E

D

E

G

4

0

B

M

R

U

W

0

0

Absolute Adjustment ,..................... 9
Absolute Format 7,19
Address Adjustment ' .. 15

Adjustment Factor , .. 15
The Form * + xoo .. 16
Multiple Adjustment ,..................... 16

Address Constant (Definition) .. ,..................... 18
ADDRS (Address),..................... 11
Alphameric: Constant 28
Alphameric: Literal , .. 18
Area Defining Literal " 18
Assembly Control Statements ... ,..................... 35
Assembly Listing ,..................... 10
Asterisk Address (Types) 15
Asterisk plus XOO , 16, 33, 37
Autocoder ... 5

Language , 5
Operation Codes 5, 7, 21
Processor,..................... 5
Statements , , .. 7

BASEl - Base Address , , , ... , .. , . , ' 33
Actual .. 33
Asterisk plus XOO 33
Symbolic .. 33

BASE2 - Base Address (COMMON Data Area) ., .. , ,. 33
Basic Addresses 14

Actual .. 15
Asterisk ... 14
Symbolic .. 14

Blank Operation Field ... ,23, 29
Blank Operand 20
BOOL (Pseudo-Macro) , 46

CALL - Subprogram Call 33
CARD (Card Number) 11
Coding Sheet 12
COMMENTS and COMMENTS CARD , , .. , ... , .. 12
COMMON (Definition) 8

Assignment of Data Areas 26
Restriction 26
Use of Labels, , .. 27

COMP (Pseudo Macro) ., '.................. 47
Control Operation Codes 35

Assembly .. 35
Subprogram .. 36

Control Statements (Definition) 35
Cross Reference Listing . 36., 11
CT (Character Count) 11

DA - Define Area 23
Statement 23, 24
Subentries 23
Parameters 24
Sample Problem ,..................... 25
Review ... 25

DAV - Define Area in COMMON 26
The COMMON Data Area ., 26
Coding Examples 35, 36

DC - Define Constant 30
DCW - Define Constant with Word Mark 27

Address Constant 29
Alphameric 28
Blank , 29
Implied DCW " 29
Numeric .. 28
Signed Address Constant .,. . . , .. 29

Index

DCWF - Subprogram Address Constant 33
DCWS - Subprogram Branch Instruction 34
Declarative Operation Codes .. 23
Declarative Statements 23
DEFIN - Definition 34
Downward Relocation 8
DS - Define Symbol 30

EJECT - Eject , .. 35
END - End Subprogram and Assembly 38
EQU - Equate 30

Actual or Symbolic Address .. 30
Adjusted or Modified Address .. 30
Index Register .. 31
Asterisk ... 31

EXEQ Card... 9

Flags (Definition) 11
Assembly Listing 11
Causes ' 11, 51
Diagnostics 51
Types .. 11

Group Mark Word Mark 24, 28
DA Statement , 24
DCW Statement 28

Heading Lines (Assembly Listing) 10
HEADR - Header Line ' , 10, 35

Identification, Program 10, 35
Imperative Operation Codes 21
Imperative Statements (Definition) 7

Symbolic Machine Instructions .. 21
Special Imperative Statements .,.................... 21

Indexing (Definition) 16
Addressing an Index Register 16
Addresses .. 16
With Address Adjustment ,.................... 17

INSTRUCTION (Assembly Listing) .,.................... 11

Label (Definition) 7
As Address Constant 18
Assembly Listing 11
As Symbolic Address 14
Coding Form 12

Labeling (Definition) ,.................... 7
COMMON .. 26
EQU Statement 30
Index Register .. 31
Macros , 42
ORC Statement .. 38

Linkage Loader Statements 7
Functions 32
Operation Codes 32

Linkage Symbols (Definition) 19
Conventional Label 19
The Form LABEl. .. 19

Literals ... 17
Address Constant 18
Alphameric "................... 18
Area Defining 18
Numeric .. 17

Load Address '................... 37
Long Literal (Definition) ,. 17

Numeric .. 17
Alphameric 18

L TORC - Literal Origin 38

Index 65

Machine Instructions 21
Assembly Listing 11
Machine Language 11,59
Symbolic .. 21

Machine Requirements .. 6
Library, Macro 40
Macro Operations40
Macro Routine 40
Macro Processing 50
Macro System 40
MATH (Pseudo-Macro) 44
MEND (Pseudo-Macro) 48
Mnemonic Operation Codes 11, 22, 59
Multiple Compilation. .. 9

MON$$ EXEQ Card 9
Option Card 9

No Clear Option (DA Statement) 25
NO Relocation 8
NOP - No Operation 21
NOPWM - No Operation; Word Mark 21
NOTE (Pseudo-Macro) 48

Assembly Listing 11
Flag .. 11,51

Numeric Constants ' 28
Numeric Literal 17

Object Deck (Definition) 5
Object Program (Definition) 5
OPCOD (Operation Code) 11
Operand (Definition) 7

Assembly Listing 11
Types of Operands .. 14

Operand Entries 14
Adjustment Factors 15
Basic Addresses 14
d-Characters 20
Index Notations 16
Parameters (DA and DA v) 24
Special Elements 20

Operating System 5
Operation Code (Definition) 7

Assembly Listing 11
Coding Sheet Form 12
Machine Language Instruction 11, 59

Operation Modifier (d-Character) 7,20,51
Option Card 9
Options, Processing 9
ORG - Origin 36
Origin Address 36

Actual .. 37
Asterisk ... 37
Asterisk + XOO 37
Blank ... 37
Symbolic ... 37

Overriding Indexing 24
Page-and-Line Number 11
Parameters 24, 26, 32

DA and DAV Statements .. 24
TITLE Card 32

PGLIN (Page-and-Line Number) 11
Predefined Symbols 16

COMMON .. 26

~~-Xi5 . :~:' ~~

66

Prerequisites 5
Processing Options 9
Processor, Autocoder 5
Program Execution (Assembly) 9, 53
PRTCT - Protect 34
Pseudo-Macro Instructions 43

Coding Examples 49
PST - Print Symbol Table. .. 35
Reference Address (Basic Addr~ss) 14
REL (Relocation Indicator) 11

I Relocation 8, 36
Downward 8
NO•...•.•.........•.• 8
Upward >....................... 8

Repla.cement Codes (Definition) 11
Representations .. 12

RESQ - Resequence 35
Restrictions

Area Defining Liberal 18
COMMON .. 8
DCW (Blank Constants) 29
Operation Codes 22, 59, 63
X13 .. 17
X14 and XI5 17

RSV - Reserve 27
Sample Program 53
SEQNO (Sequence Number) 11
Sequence Number 11,35
SPEND - Subprogram End 38
Statements, Autocoder (Definitions) 7
Subprogram (Definition) 5

Control Statements .. 36
Primary ... 39
Secondary 39

Sum Box .. 44
Symbol (Definition) 7
Symbolic Address 14
Symbolic Machine Instructions 21
System Symbol (Definition) 20

~~~:: . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :~' i~ 
IEOpl .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 9 
ILINI ..................................... , ..... 11 
IUEPI .......................................... 9 

Termination, Object Program. . . . . . . . . . . . . . . . . . . . . . . .. 9 
TITLE - Title .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 

Entries .......................................... 32 
Format .......................................... 32 

Types of Operands .................................. 14 
Address Adjustment ............................... 15 
Basic Address .................................... 14 
Indexing ........................................ 16 
Linkage Symbols ................................. 19 
Literals ......................................... 17 
Miscellaneous ........................... ........ 20 
System Symbols .. "............................... 20 

Upward Relocation (Definition) ....................... 8 
XO (Index Negation) ................................ 24 
XI-XI5 (Predefined Symbols) ........................ 16 
X13 (Considerations) ............................... 17 
XI4-XI5 (Restrictions) .............................. 17 
Zero Addressing, Relative to ................... . . . . . .. 25 
Zero Operand .............................. ,....... 20 



Technical Newsletter File Number 1410/7010-22 

Re: Form No. C28-0326-2 

This Newsletter No. N27-1223 

Date June 24, 1965 

Previous Newsletter Nos. 

IBlV[ 1410/7010 AUTOCODER 

This Technical Newsletter amends the publication IBM 1410/7010 Operating System; 
Autocoder, Form C28-0326-2, to include new information concerning the DCW statement, 
the chaining of instruetions and the use of zoned switches, and to correct minor errors. 

The attached replacement pages (11-14, 29-30, and 41-42) should be substituted for the 
pages currently in the publication. Text changes are indicated by a vertical line at the 
left of the affected text. 

In addition, the following changes should be made to the publication: 

22 

26 

27 

47 

51 

Amendment 

Change the Meaning of the mnemonic "HEADR" (under "Assembly 
Control Codes") to read 

Header Line 

Under the heading "Assignment of Data Areas in COMMON", the 
first paragraph refers to "Figures 61 and 62". Change this refer­
ence to read: 

Figures 35 and 36 

In the section "Use of Labels Referencing COMMON, " there are two 
references to "Figure 61". Change these references to read: 

Figure 35 

The first complete sentence on the page ends with "skip to state­
ment 004". Change this to read: 

skip to the statnlent labeled L. 

The second sentence in Note 2 ends with the word "conlmon". The 
word "common" should be capitalized to read: 

COMMON 

Please file this cover letter at the back of the publication. It provides a method of de­
terrnining that all changes have been received and incorporated into the publication. 

IBM Corporation, Programming s.ystems Puhiications, Dept. 637, Neighborhood Road, Kingston, N.Y. 12401 

None 

PRINTED IN U. S.A. N27-1223 (C28-0326-2) Page 1 of 1 



1. SEQNO - Sequence Number: The sequence 
I number of statements as they appear in the assembly 

listing. 
2. PGLIN - Page and Line Number: The page and 

line number as it appears in columns 1 through 5 of 
the cards in the source deck. Page and line numbers 
must consi.st of five non-blank characters and must ap­
pear in ascending sequence. 

Statements generated by the macro generator will 
have a page and line number in this field supplied by 
the generator. These numbers have no relationship to 
the numbers of the hand-coded statements; they rep­
resent the order in which the statements appear in the 
Macro Library. 

The space between the SEQNO and PGLIN columns of 
the listing are used by the processor to contain either 
an "S" or a "G," under the following conditions. 

S - The page and line number of the statement is 
not in ascending sequence in. relation to the preceding 
source statement. This is only a warning to the pro­
grammer that his source statements may be out of 
sequence. 

G - This character differentiates statements pro­
duced by the macro generator from the hand-coded 
source statements. 

3. LABEL - Label: The contents of the label field, 
columns 6 through 15, of the Autocoder statement. 

I 4. OPCOD: The Operation Code, columns 16 
through 20, of the Autocoder statement. 

5. OPERAND: The contents of the operand field, 
columns 21 through 72, of the Autocoder statement. 

6. REL - Relocation Indicator: This is a code char­
acter that indicates to ·the Llinkage Loader the type 
of relocation to be applied to the element ( s) in the 
statement. 

7. CT -. Character Count: The length in characters 
of the assembled imperative statement, or the number 
of core-storage locations reserved for a constant de­
fined in a declarative statement. 

S. ADDRS: The relative address assigned by the 
processor to the instruction or constant. This address 
is subject to relocation. 

9. INS1'RUCTION: The assembled machine-lan­
guage instruction or constants from which the object 
deck is constructed. 

10. CARD - Card Number.: The sequence number 
of the card in which the associated constants or in­
structions appear in the object deck. This sequence 
number is automatically computed and placed in col­
umns 73-75 of each card in the object deck, in ascend­
ing order. 

11. FLAG: An alphabetic character indicating an 
a~tual or possible programming error. As many as five 
Rags can be assigned to one Autocoder statement. The 
Rags provided are as follows: 

F - invalid statement Format 

M - Multiple definition of a label 

N - macro generation Note 

o - invalid Operation code 

R - Restricted operation code (if not generated 
by a macro) 

U - Unidentifi.ed label in the operand 

W - Warning, general classincation of error 

Details concerning the above Rags can be found in 
Appendix A. The total number of Ragged statements 
is indicated at the end of the assembly listing, followed 
by a line which contains the sequence number of each 
Ragged statement, to a maximum of 20 numbers. The 
presence of any Rag except "R" causes the processor 
to s.et the "no-go" switch during assembly. This setting 
of the "no-go" switch can cause a bypassing of all the 
source cards up to the next job. See the System Monitor 
publication. 

The assembly listing can be supplemented by a cross 
reference listing at the option of the user, by means 
of the PST statement. This listing analyzes the sub­
program ( s) just assembled, and lists each label, fol­
lowed by the sequence number of the statement in 
which it was defined, and the sequence number of 
each statement in which the label is used as a reference 
address. See "PST - Print Symbol Table," in the sub­
section "Control Operation Codes," for a more detailed 
explanation. 

NOTE: The system symbol /LIN/ controls the line 
count on the listing page. However, if this system sym­
bol calls for the printing of less than 30 lines per page 
the processor will reject this direction and print the 
assembly listing at the normal 55 lines per page. See 
the System Monitor publication for details concerning 
this system symbol. 

Replacement Codes 
The Autocoder processor utilizes a second line (nor­
mally blank) in the assembly listing, for the representa­
tion of non-printable characters. Each of these char­
acters is represented by two characters, one printed 
above the other, at the appropriate place in the listing. 
These two-character substitutions are called replace­
ment codes,' and they appear most frequently as re­
location indicators or operation modiRers. 

Basic Concepts and Functions 11 



Form C28-0326-2 
Page Revised 6/24/65 
By TNL N27-1223 

The two-character replacement codes with their con­
ventional graphic representations, card codes, and 
names are listed in Figure 3. 

Replacement Card 
Code Graphic Code Name 

0 ? 12-0 Plus Zero 

0 ! 11-0 Minus Zero 

G 

* M 12-7-8 Group Mark 

Q 

T +++ 0-7-8 Segment Mark 

W 
S rv-'I 0-5-8 Word Separator 

D 
l 6 11-7-8 Delta 

C 
T c;: or JJ 2-8 Cent Sign or Substitute Blank 

l 
P [ 12-5-8 left Bracket 

R 
P ] 11-5-8 Right Bracket 

T 
V-M 7-8 Tape Mark 

l 
T < 12-6-8 less Than 

G 
> T 6-8 Greater Than 

i i 11-6-8 Semicolon 

: : 5-8 Colon 

" b \ 0-6-8 Backslosh 

Figure 3. Replacement Codes 

Coding Sheet 
The Autocoder Coding Sheet (Figure 4) provides a 
convenient form for coding source program statements. 
Column numbers on the coding sheet have a one-for­
one correspondence to the columns on the card used to 
punch the source statements (Autocoder Input Card, 
Form A36199). 

Each line of the coding sheet is punched into a sepa­
rate card. The source deck, therefore, consists of a 
sequenced set of punched cards containing a line-by­
line representation of the coding sheets. 

The following paragraphs explain the function of 
each field. The heading information, Program, Pro­
grammed By, and Date, are only for documentation, 
and are not punched. 

12 

Identification (Card Columns 76-80) 

This five-position field can contain a name created by 
the programmer to identify the program. This identi­
fication will be punched into 76-80 of the object deck 
only if it appears in a HEADR or RESEQ control card. (See 
"Control Operation Codes.") However, the identifica­
tion is not checked on the other Autocoder statements, 
and serves only to identify the program to which the 
card belongs. Special, as well as alphameric, characters 
are permitted. 

Page Number and Line Number (Card Columns 1-5) 

The page number (columns 1 and 2), in conjunction 
with the line number (columns 3-5), provides a means 
of sequencing the cards in the source deck. This enables 
the programmer to identify and correlate the entries 
on the coding sheet and assembly listing with the 
entries in the source deck. Alphabetic, as well as nu­
meric, characters can be used. (If the standard collat­
ing sequence is not followed, the processor will place 
a sequence (S) Hag next to the PGLIN field in the as­
sembly listing, as previously explained. ) 

Label (Card Columns 6-15) 

This field, if used, contains the label being defined in 
this statement. 

Operation Code (Card Columns 16-20) 

This field contains the operation code. 

Operand (Card Columns 21-72) 

This field, if used, contains the operand element ( s) of 
the statement. 

NOTE: Columns 73-75 should be left blank. 

COMMENTS 

Comments are remarks or notes written by the pro­
grammer in the operand field. At least two blank spaces 
must separate a comment from the last character of 
the statement. The comment, punched in the source 
deck, appears in the assembly listing but is not con­
tained in the object deck, and has no effect on the 
object program. 

COMMENTS CARD 

It may, at times, be helpful to insert an entire line of 
descriptive information. This is done by placing an 
asterisk in column 6 and using the balance of the line 
(up to column 72) for comments. When this line of 
information is punched into a card of the source deck, 
the asterisk will identify it to the processor as a com­
ments card. The comments will be printed in a single 
line of the assembly listing at the point of encounter, 
which can be anywhere in the source deck, except as 



IBJ.1 

Form C28-0326-2 
Page Revised 6/24/65 
By TNL N27-1223 

Form X24·1350.1 
Printed in U,S.A. 

Program _____ . ______ ._ 
INTERNATIONAL BUSINESS MACHINES CORPORATION Identification, , 

Programmed by __________ _ 

Date ___ _ 
IBM 1401 AND 1410 DATA IPROCESSING SYSTEMS 

AUTOCODER CODING SHEET 

76 80 
Page No. LL.J of __ 

I 2 

Sline
56 

label JOperati ~ 1_ 
1:>18 zOlzl 35 25 30 

o I 

o 2 

03 

04 

05 

06 

07 

08 

09 

I 0 

I I 

I 2 

13 

I 4 

I 5 

I 6 

I 7 

I 8 

19 

20 

2 I 

2 2 

2 3 

2 4 

25 

Figure 4. The Coding Sheet Form 

noted under "Implied Dew Operation Codes." Com­
ments cards have no eHect on the object program and 
are not included in the object deck. However, a com­
ments card inserted in a series of chained Autocoder 
operation codes will break the chain. It is, therefore, 

40 
OPERAND 

45 50 55 60 AS 70 

, I 

necessary to restate the operation code and to provide 
the proper operand on the first source card statement 
following the comments card, in order to resume a 
chained action. In summary, a chain which is broken 
by a comment must be made into two chains. 

Basic Concepts and Functions 13 



Types of Operand Entries 

This section explains the form and use of the various 
entries permitted in the operand field of imperative, 
declarative, Linkage Loader, and control statements. 

The operand field of an Autocoder statement is used 
to specify a variety of information to the processor. 
The function of a specific entry is dependent upon the 
type of Autocoder statement in which it appears. The 
normal operand usage with each of the five types of 
Autocoder statements is as follows. 

STATEMENT TYPE OPERAND CONTENTS 

IMPERATIVE Symbolic address(es) to be operated 
upon by the machine instruction, and 
a d-modifier, when required 

DECLARATIVE Constants, symbols, and/or control 
parameters necessary to declare the 
desired fields 

LINKAGE LOADER Symbolic (or actual) addresses and/or 
control parameters required to convert 
the object deck into absolute format 

CONTROL Symholic (or actual) addresses and 
constant information indicated by the 
operation code 

MACRO Parameters of the macro statement 
( These parameters are discussed in 
the section entitled, "The Macro Sys­
tem.") 

All permissible operand entries are explained and 
illustrated under the following headings: 

Basic Addresses 
Address Adjustment 
Indexing 
Literals 
Linkage Symbols 
System Symbols 
Miscellaneous 

Basic Addresses 

Basic addresses contained in the operand field of an 
Autocoder statement are the primary elements of 
information conveyed to the processor. They can be 
altered or modified by means of additional elements 
contained in the operand field. 

A basic address is the symbolic or actual representa­
tion of a core-storage location of the data. field or in­
struction referred to by the Autocoder statement. 

14 

A basic address can be in one of three forms: 
Symbolic 
Asterisk 
Actual 

Symbolic 
A symbolic address is an operand entry that appears 
elsewhere in the source program as a label. As a rule, 
this symbol can be defined as a label either before or 
after the Autocoder statement in which it appears as 
an address. The exceptions to this rule are as follows: 

1. All symbolic operands appearing in ORG, LTORG, 

and EQU statements must have been previously defined 
within the same program. 

2. The symbolic address appearing in an RSV state­
ment must precede any other use of this symbol in a 
program. (See "RSV - Reserve.") 

3. The symbolic representations of index registers 
(XO, X1-X15) and the common data area (COMMON), 

must never appear in the label field. They cannot be 
defined by the user because they are predefined labels 
in the symbol table maintained by the Autocoder proc­
essor. 

The instruction in Figure 5 illustrates the use of 
symbolic addresses. The symbols TOTAL and ACCUMU­

LATE are defined as labels elsewhere in the program. 
The assembled instruction will cause the contents of 
the core-storage area labeled TOTAL to be moved to the 
area labeled ACCUMULATE. 

NOTE: A symbolic address will receive upward, 
downward, or NO relocation, depending on the manner 
in which the symbol is defined. 

Figure 5. Autocoder Instruction with Symbolic Addresses 

Asterisk (*) 

An asterisk (11-4-8 punch) can be used as a basic ad­
dress in an Autocoder statement. When compiling the 
objed program, the processor will replace the asterisk 
with the relative core-storage address of the last char­
acter of the insttuction or data field created by the 
statement in which it appears. However, if an asterisk 
address is used in a statement that does not cause the 
generation of an instruction or data area in the object 
program, the value substituted for the asterisk will be 
the current location in the object program. 



Blank Constants 

A field of blanks can be reserved by placing a # char­
acter (3-8 punch) in column 21, followed by a number 
indicating how many consecutive blank core-storage 
positions are to be defined (Figure 40). A word mark 
is set in the high-order position of this field. 

NOTE: The number of successive blank constants 
that can be reserved by a ocw statement is limited to 
500 positions of core storage. If this limit is exceeded, 
the processor will reserve only the maximum (500 
positions), and attach an "F" flag to the statement on 
the assembly listing. 

0" 1-, 

o 2 --'--'--'--'--'----L-L-'-----L--L-

Figure 40. Field of 14 Blanks Defined in a Dew Statement 

Address Constants 

A Dew statement can be used to define an address 
constant. The constant is the address of the field whose 
label is written in the operand. For example (Figure 
41), assume that the label MANNO is used in the sym­
bolic program, and that it was assigned the address 
00500 by the processor. The programmer can refer to 
the address of MANNO by using the symbolic label of 
the DCW statement. 

Figure 41. Address Constant 

The five-character data field labeled SERIAL ( Figure 
41 ) will contain the address of the label MANNO 

( 00500 ). The Linkage Loader will recognize address 
constants and adjust them by the proper relocation 
factor. Thus, SERIAL will contain the relocated address 
of MANNO. 

If an address constant is address adjusted in a DCW 

statement, the constant is adjusted before it is assigned 

Form C28-0326-2 
Page Revised 6/24/65 
By TNL N27 -1223 

a storage location. In Figure 42, MANNO (actual address 
00500) has been address adjusted by + 12. Thus, the 
location labeled FICA will contain the address constant 
00512. 

30 35 

Figure 42. Address Constant with Address Adjustment Defined 
in Dew Statement 

Address constants defined in a DeW statement can 
be indexed. The zone bit( s) indicating the specified 
index register becomes part of the constant. 

NOTE 1: All address constants receive the same relo­
cation indicators that were assigned to the symbol 
specified in the operand field. 

NOTE 2: An address constant of a linkage or system 
symbol can be specified, and the desired address will 
be automatically supplied by the Linkage Loader. 
However, this form of address constant cannot be 
address adjusted or indexed. 

Signed Address Constants 

An address constant defined in a DCW statement can be 
signed. A and B bits will be generated by the processor 
over the units position, if the plus ( + ) sign was placed 
before the operand. The units position will contain a 
B bit if the minus (-) sign was used (Figure 43). 

Figure 43. Signed Address Constants Defined in Dew Statement 

Implied DCW Operation Codes 

If several constants are to be defined in succession, only 
the first statement (or any statement preceded by a 
comments card) requires the mnemonic ocw in the 
operation field (Figure 44 ) . 

Line! Lobel bperotionl' OPERAND l 
: I 'ITEN ~'5!~c~w~2=OI~'~I~o __ ~ZS~_--~30~ __ ~3~5 __ ~4~O ____ ~45L ___ 25~O __ ~5~5 __ ~6~O ____ ~65L-__ 27~O_ll 

02 !DATE . i@JUNE 30,1965@ , 
o 3 I ME S SA E --tI@!"'E::-:O~J;=·:"--'!:S:-=T~A-::Rj=T"""P'='H~A~:S;::-;E;::--:T::-W.'-::O~·""::@-,~G,-~-...!..----'------'--~-~'-j 
o 4 I. I I 

Figure 44. Successive Dew Statements with Blank Operation Columns 

Autocoder Operation Codes 29 



DC-Define Constant (no word mark) 
The function performed by the DC statement, and the 
permissible forms of the constants, are identical to 
those described for the DCW statement. The only differ­
ence is that the word mark is absent when the constant 
is assigned to core storage (Figure 45) . 

Figure 45. Successive DC Statements with Blank Operation 
Columns 

NOTE: The restriction on the use of an initial word 
separator character in the DCW statement defining an 
alphameric constant does not apply to the DC statement. 

DS - Define Symbol 
The DS statement is used to label and define an area 
within the subprogram. No information is entered into 
the area, no word mark is assigned by the processor, 
and the area is not cleared prior to reservation. The 
programmer specifies the size of the area, and desig­
nates the symbolic label by which it will be referenced. 
The number of desired consecutive positions of core 
storage is written in the operand field (Figure 46). The 
label refers to the low-order position of the area. 
However, if the label is indented one place, that is, 
if it begins in column 7, the label will refer to the high­
order position. A label is not mandatory. 

Z5 30 35 

<LJ~Ul.lu~~--'----'L-L-.1I.I' 
o z 

o 3 

Figure 46. Defining Twelve-Position and Five-Position Areas in 
DS Statements 

Figure 46 illustrates the form of the DS statement. 
The first entry, labeled DOZEN, defines an area twelve 
positions long. The second entry, labeled FIVE, defines 
an area five positions in length. 

EQU-Equate 
The EQU statement is used to define either a second 
symbol to reference a specific location, or a symbol 
for a location not previously labeled. The symbol to 
be defined is specified in the label field, and the rep-

30 

resentation of the location to be "equated" is specified 
in the operand field. 

An EQU statement can be used to assign a symbolic 
label to each of the following: 

Actual or symbolic address 
Adjusted or modified address 
Index register 
Asterisk address 

Actual or Symbolic Address 

The symbol to be defined is specified in the label field. 
The operand field can contain an actual or symbolic 
address. If a symbolic address is specified in the op­
erand field, it must have appeared as a label prior to 
this point in the subprogram. If this condition is not 
met, the label will not be defined. 

SYMBOLIC ADDRESS 

The EQU statement in Figure 47 will cause the processor 
to assign the same address to the label INDIVIDUAL 
that is assigned to the symbol MANNO. Thus, INDIVIDUAL 
has been equated to MANNO - both labels refer to the 
same core-storage location and are assigned the same 
relocation indicator by the processor. 

Figurc 47. Equating a Symbolic Address 

ACTUAL ADDRESS 

The EQU statement in Figure 48 will cause the processor 
to assign the label ACCTNO to machine location 25000. 

NOTE: Labels equated to actual addresses will be 
treated as absolute values and given a NO relocation 
indicator. 

Figure 48. Equating an Actual Address 

Adiusted or Modified Address 

The operand of an EQU statement can be address ad­
justed or indexed. The same relocation indicators 
assigned to the address adjusted and/or indexed op­
erand will be given to the defined label. 



IBM INTERNATIONAL BUSINESS MACHINES CORPORATION 
FORM X24·6568·0 
Printed in U.S.A. 

IBM 1410 DATA PROCESSING SYSTEM 
LIBRARY CODING FORM 

DATE _________ PROGRAM ________ _ 

Pa~e 
and 
Line 

l.abel Operation 

PROGRAMMED BY------------

Operand and Comments Identification 

1 23456 7 8 9 lOll 12131415161718192021~223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 

I--

I-+-+--it--+-+-+-+--+-+-+--H--+--i-++-+-+-I-- - - r- f-.- - .. - . _.-1--

-1-

I-- f--

- f--

1--'--

1-- 1-- -

r- -I-

r"-

+-- I-

Figure 78. IBM 1410/7010 Library Coding Form 

Library Entry 

Operand ( 
Page 
and L Label Operation 
line = ... = -=I==I===========-=j-F=-._.- -= 'C_ 

'" i" _'111I!i'"'~i~l~~]'11 
Macro -Instruction 

Assembled Symbol ic Program Entry 

ABCD C 
BH 
BE 
BL 

PAR1,PAR2 
PAR3 
PAR4 
PARS 

Figure 79. Macro Operations 

-r--
1-- 1--. 

--I-- 1--

f-- - _.f-- I-- I--

I--

'1-- t-- _._f-- --- -I-- I-- -

I-- -1--' 

I--

.1- l-

I-- i-' 

f-- 1-- i--

f- i 

I--

i·- -l-

I-- I-- f-

-f--- --I-- I- I-- -- --f--

I--

i- I-- l- t--

1-' - f--

-- I-- t--- -- I-- -~- - I-- -

1-- -I--

t--- 1-- - i-

Label Operation 

Figure 80. Model Statement for a Complete Instruction 

that a corresponding parameter from the macro­
instruction operand field must be inserted in its 
place. This code is a 0 followed by a number 
from 001 to 199, that indicates the position of 
the parameter in the macro-instruction. The 
macro-instruction in the source program will 
give the parameter entries to be inserted in the 
object routine. The model statement is illus­
trated in Figure 81. 

The Macro System 41 



Form C28-0326-2 
Page Revised 6/24/65 
By TNL N27-1223 

Page 
and 
Line 

Lobel Operation 

Figure 81. Model Statement for an Incomplete Instruction with 
Required Parameters 

c. If the entry is incomplete, the programmer 
writes a 0 followed by a number from 001 to 199 
with AB bits over the units position (parameter 
001 is oOOA, parameter 2 is oOOB, etc.). This 
indicates that the entry is to be included in the 
object routine only if the parameter is specified 
by the macro-instruction. For example, if pa­
rameter 003 does not appear in the macro­
instruction, the instruction shown in Figure 82 
will be deleted from the object routine. 

I NOTE: If parentheses are used, the programmer can­
not use zoned switches in a MATH or BaaL statement. 

Page 
and 
Line 

Lobel Operation 

123456 78 9101112131415161718192021 22324252627282930313233343536373839404142434 

Tllll [ 1 I I [ 
Figure 82. Model Statement for an Incomplete Instruction with 

Conditional Parameters 

Labeling: If the model statement represents an in­
struction entry point for a branch instruction elsewhere 
in the program, it should have a label. 

If additional external labels are required and speci­
fied as parameters in the macro-instruction they can 
be inserted in the label field of the symbolic program 
entry by using the 0001-199 code. 

The label of the macro-instruction causes the genera­
tion of an equate statement in the assembled object 
routine. The label is equated to an *, as shown in 
Figure 83. 

Macro Instruction (Source Program) 

Model Statement 

Page 
and 
Line 

Lobel 

Assembled Symbolic Program Entry 

TEST2 

Figure 83. Labeling 

42 

EQU 
B 

Opera~on 

1 I1JIJl1[ltU. 

STARn 

Another example is shown in Figure 84. 
Symbolic AddreSsing within the Library Routine: 

To allow a symbolic reference to other instructions in a 
library routine a 0 followed by a number from 001 to 
199 with a B bit over the units position (oOOJ = sym­
bolic address 1, oooK = symbolic address 2, etc.) can 
be used. For example, the processor generates the sym­
bolic address if the code oOOJ is used as a label for one 
entry and as an operand of at least one other entry in 
the same library routine. 

Internal labels within flexible routines are generated 
in the form Onnnmmm, where nnn is the code (OOJ-
09R), and mmm is the number of the macro within 
the source program. This is done to avoid duplicate 
address assignments for labels. 

Example: Use the generated symbolic address of 
o()()J as an operand for entry 3 and as the label for 
entry 6. UPDAT is the 23d macro encountered in the 
source program (Figure 85) . 

Address Adjustment and Indexing: The parameters 
in a macro-instruction and the operands in partially 
complete instructions in a library routine can have 
address adjustment and indexing. 

If address adjustment is used in both the parameter 
and the instruction, the assembled instruction will be 
adjusted to the algebraic sum of the two. For example, 
if the address adjustment on one is + 7 and the other 
is -4, the assembled instruction will have address 
adjustment equal to +3. 

Model statement operands can be indexed. This in­
dexing takes precedence over any indexing of a param­
eter supplied by a macro-instruction. The model state­
ment index is used. 

Literals: Operands of instructions in library routines 
may use literals as required. However, these literals 
may not contain the @ symbol within an alphameric 
literal. 

Macro Instruction (Source Program) 

Model Statement 

Assembled Symbol ic Program Entry 

TEST2 
START2 

EQU 
SBR ENTRYA 

Figure 84. Additional External Labels 



/ IB; Technical Newsletter File Number 1410/7010-22 

Re: Form No. C28-0326-2 

This Newsletter No. N27-1267 

Date December 30, 1966 

Previous Newsletter Nos. N 27 -12 2 3 

IBM 1410/7010 AUTOCODER 

This Technical Newsletter amends the publication IBM 1410/7010 Oper­
ating System; Autocoder, Form C28-0326-2, to include new information 
concerning the NOTE and MACRO statements, and to make other necessary 
changes and additions. 

The attached replacement pages (9-10, 41-44, 47-48) should be substi­
tutE=d for the corresponding pages now in the publication. Text changes 
are indicated by a vertical line to the left of the affected text; 
figure changes are indicated by a bullet (-) to the left of the af­
fected figure caption. 

Please file this cover letter at the back of the publication. It 
provides a method of determining if all changes have been received 
and incorporated into the publication. 

IBM Corporation, Programming Publications, Dept. 63'7, Neighborhood Road, Kingston, N. Y. 12401 

PRINTED IN U.S.A. N27-1267 (C28-0326-2) Page 1 of 1 



as the reference address of COMMON during the assem­
bly process. All relocatable addresses of data in COM­

MON are relative to 99999. For example, the 15th lo­
cation downward in COMMON is assigned the value 
99985, and appears as the same relative address in all 
subprograms. Labels referencing COMMON are assigned 
downward relocation indicators for absolute adjust­
ment by the Linkage Loader. 

Absolute adjustment involves changing the relative 
values of the labels (assigned to them by the proc­
essor) to absolute values in the relocated COMMON data 
area. The adjustment factor applied is the difference 
between the value of COMMON in the assembly process 
(99999) and the absolute value of COMMON determined 
by the Linkage Loader. Normally, the Linkage Loader 
will place COMMON at the location represented by the 
value of the system symbol / AMS/ (Absolute Memory 
Size). However, the programmer can specify a dif­
ferent absolute location for COMMON by means of a 
BASE2 statement. (The interested reader will find a 
fuller discussion of this subject in the publication, 
System Monitor.) 

The steps necessary to use COMMON in a subprogram 
are discussed under "DAV - Define Area in COMMON," 

in the subsection "Declarative Operation Codes." 

Processing Options 
There are four processing options which can be exer­
cised by the user: 

1. He can suppress the printing of the assembly list­
ing (on the Standard Print Unit). 

2, He can suppress the punching of the object deck 
(on the Standard Punch Unit). 

3, If there are no macro statements in the source 
deck, he can speed up the assembly process by indicat­
ing this fact. 

4. He can suppress the diagnostic generation of an 
"M" flag for uses of index registers 14 and 15 when 
there is no true multiple definition. (See NOTE 1, under 
"Indexing with Address Adjustment.") 

These options are indicated by means of additional 
parameters in the EXEQ card that calls the Autocoder 
processor. 

The four parameters are: 
NOPHT - Suppress printin.g 
NOPCH - Suppress punching 
NOMAC - No macros present 
NOFLG - Suppress "M" flag 

Any or all of these parameters may be used in the 
EXEQ card. They can appear in any order immediately 
following the EXEQ parameters required by the System 
Monitor. (See the publication, System Monitor, for 
details concerning the EXEQ card. ) 

Specification of parameters in the EXEQ card is con­
cluded by the first blank encountered in the operand 
field. The following examples mustrate the format: 

LABEL 

MON$$ 
MON$$ 

MON$$ 

OPERATION 
CODE 

EXEQ 
EXEQ 

EXEQ 

OPERAND 

AUTOCODER, SOF, SIU, NOPRT 
AUTOCODER, , , NOMAC, NOPCR, 
NOFLG 
AUTOCODER, , , NOFLG, NOPRT, 
NOMAC, NOPCR 

Autocoder Multiple Compilation 
Autocoder can compile any number of programs with a 
single MON$$ EXEQ AUTOCODER card. The output is the 
same as if it were produced by several separate com­
pilations. 

Input for a multiple compilation consists of the 
MON$$ EXEQ AUTOCODER card followed by the source 
decks to be compiled. No control cards are necessary 
between the END statement of one program and the first 
card of the next program if the programmer wants the 
subsequent compilation to receive standard treatment; 
that is, printing, punching, and normal macro and flag 
processing. 

A different set of processing options (NOPRT, NOPCH, 

NO MAC or NOFLG) can be specified for an ensuing pro­
gram in a multiple compilation by placing an Option 
card after the preceding END statement. This card has 
the same requirements and options as the MON$$ EXEQ 

AUTOCODER card except that the label and operation 
fields, card columns 6-20, must contain blanks (instead 
of MON$$ EXEQ ). The processing options specified in this 
Option card will be applied until the next Autocoder 
END card is read by the processor. 

Autocoder multiple compilation has two potential 
advantages: 

1. It enables the programmer to process a series of 
source decks from the Alternate Input Unit as well as 
the Standard Input Unit. 

2. It bypasses the monitor processing which normally 
is necessary between compilations. 

Terminating the Object Program 
The object pro gam must terminate execution by means 
of one of the following instructions: 

B /EOP/ Normal End of Program. 

B /UEP/ Unusual End of Program 

Both forms of termination are shown in Figure 2. Full 
details can be found in the publication, System Monitor. 

Basic Concepts and Functions 9 



Form C28-0326-2 
Page Revised 12/30/66 
By TNL N27-1267 

64015 SAMPLE SUBPROGRAM USING THE I1t10/1010 AUTOCODER PAGE SAMPL 

SEQNO PGlIN LABEL OPCOD OPERAND REL CT ADDRS INSTRUCTION CARD FLAG 

AA020 TI rLE SEQUENCE 001 

U030 • THIS SUBPROGRAM CHECKS THE SEQUENCE OF THE PGLNI F I HD 

3 S A040 • IF THE PGLN/ FIELD IS 99999, THE PROGRAM IS TERMINATED NORMALLY 

4 AA050 • A NON-ASCENDING SEQUENCE RESULTS IN AN UNUSUAL END OF PROGRAM. 

AA060 SEUROUTINE SBR EXI rSEQRT&5 D 1 00000 G 00056 002 

AA070 PGLN/,i99999i IS THIS THE LAST ENTRY 11 00007 C PGLNI 00153 002 

A4080 BE ENDOFJOB YES D 7 00018 J 00058 002 

AA090 NOPWM 1 00025 N 002 

AA100 CHECK SEQ D 7 00026 J 00101 002 

10 AA110 SW e-12 SET FIRST TIME NOP SwITCH TO BRANCH i 6 00033 , 00026 DOl 

11 AA120 MlCWB PGlN/, PGLNHOLD'5 A 12 00039 o PGLNI 00158 P 003 
L 

12 AA130 EXITSEQRT 0 EXIT - RETURN TO MAIN PROGRAM T 1 00051 J 00000 003 

13 AA135 · 
14 AA140 ENOOFJOB IOCTL TYPE ,MESSAGE NOTIFY OPERATOR OF END OF JOB 

15 G AA140 ENDOFJOB EQU 00058 

16 G 01510 BlN .-11 ,1CTBI C 12 0005B V 00058 ICTBI 2 003 
L 

17 G 01520 BXPA ICNCI T 7 00070 Y ICNCI 003 

IB G 01530 DCW MESSAGE N 5 OOOBI 00126 003 

19 G 01580 BZN e-11,/CTBI C 12 00082 V 00082 ICTBI 2 004 
L 

20 AA145 IEOPI NORMAL END OF PROGRAM T 1 00094 J IEOPI 004 

21 AA148 · 
22 AA150 CHECKSEQ PGlNHOlD, PGLN/ 11 00101 C PGLNI 00158 004 

23 AA160 BH EXITSEQRT-12 BRANCH IF pGLNI IS IN SEQUENCE 1 00112 J 00039 U 004 
l 

24 AA170 IUEPI UNUSUAL END OF PROGRAM T 7 00119 J IUEPI 004 

25 AAl75 · 

64015 SAMPLE SUBPROGRAM USING THE 1410/7010 AUTOCODER PAGE SAMPl 

SEQNO PGLIN lABEl OPCOD OPERAND REl CT ADDRS INSTRUCTION CARD FLAG 

26 AA180 SEQRI DEFIN SEQROUTINE SEQRI LINKAGE SYMBOL FOR SUBPROGRAM 00000 005 

27 U185 MESSAGE DCW iiEND OF JOBiil,G CONSOL PRINTER NOTICE 11 00126 006 

2B AA190 HAlf 12345 EXAMPLE OF AN ERRONEOUS STATEMENT 12 00131 N 12345 ••••• 007 0 

29 AA200 END 

30 iil99999iil 5 00153 008 

31 PGlNHOlD '0005 5 00158 008 

NUMBER OF FLAGGED STATEMENTS 

2B 

1410/7010 AUTOCODER ••• SYSTEM 1"10/ 0001 

• Figure 2. A Page from an Assembly Listing 

Assembly Listing 3. Page number in the listing 

Each page of the assembly listing contains a page 
heading line and a column heading line. 

4. The identification supplied by HEADR or RESEQ 

cards 

The page heading line contains the following infor­
mation, from left to right: 

1. The date contained at location IDATI (the system 
symbol for the five-position date field in the Resident 
Monitor) 

2. Information supplied via HEADR card 

10 

The column heading line is illustrated in Figure 2, 
which shows the assembly listing of a subprogram 
assembled by the 1410/7010 Autocoder processor. 
The subprogram contains a deliberate error contrived 
to exhibit Autocoder's diagnostic flagging system. Fig­
ure 2 illustrates the following items, going from left 
to right in the column heading line: 



IBM 

DATE 

Page 
arid 
Line 

PROGRAM 

Lobel Operation 

INTERNATIONAL BUSINESS MAOIINES CORPORATION 

IBM 1410 DATA PROCESSING SYSTEM 
LIBRARY CODING FORM 

Operand and Comments 

PROGRAMMED BY 

FORM X24·6568·0 
Printed in U.S.A. 

Identification 

1 2 3 4 5 6 7 8 9 101112131415161718192021 223242526 272B2930313233343536373B39404142~3444546474B4950515253545556575859606162636465666768697071727374757677787980 

f- + 'I-+-+-+-+-I-++-+--I-H- - I- -

-I- I- -

I- f--

I- 1-. 

. I-

1-. 

1-f-+-+--+-...... I-+-+-+-+-+--I-I-+-+-t--+--I-t+·I-+-t-I-t· I- --11--1--+-+--11++-+-+-+-+-+-1-+-++ I·· I- f-. -+ -I- ++-+-+-+-+-+-1-++-+-+. . I- 1-' 

1-.. 

I· I- - I-

Figure 78. IBM 1410/'7010 Library Coding Form 

Library Entry 

Page 
and 
Line 

Lobel Operation 

1-.- -

Operand! 

===~-F====o=========o=====9F====4==========o===============4 
123456 7 8 9101112131415161718192021 2232425262728293031323334353637383940414243444546474849 

Macro-Instruction 

Assembled Symbol ic Program Entry 

ABCD C 
BH 
BE 
BL 

PARI,PAR2 
PAR3 
PAR4 
PARS 

Figure 79. Macro Operations 

I- . -+'++-+-1-+-+--1--+-+-++-1--1 

I- .. 

.-1-- I-

Lobel Operation 

Figure 80. Model Statement for a Complete Instruction 

that a corresponding parameter from the macro­
instruction operand field must be inserted in its 
place. This code is a D followed by a number 
from 001 to 199, that indicates the position of 
the parameter in the macro-instruction. The 
macro-instruction in the source program will 
give the parameter entries to be inserted in the 
object routine. The model statement is illus­
trated in Figure 81. 

The Macro System 41 



Form C28-0326-2 
Page Revised 12/30/66 
By TNL N27-1267 

Page 
and 
Line 

Lobel Operation 

Figure 81. Model Statement for an Incomplete Instruction with 
Required Parameters 

c. If the entry is incomplete, the programmer writes 
a 0 followed by a number from 001 to 199 with 
AB bits over the units position (parameter 001 
is oOOA, parameter 2 is oOOB, etc.). This indi­
cates that the entry is to be included in the 
object routine only if the parameter is specified 
by the macro-instruction. For example, if pa­
rameter 003 does not appear in the macro­
instruction, the instruction shown in Figure 82 
will be deleted from the object routine. 

NOTE: If parentheses are used, the programmer can­
not use zoned switches in a MATH or BOOL statement. 

Page 
and 
Line 

Lobel Operation 

Figure 82. Model Statement for an Incomplete Instruction with 
Conditional Parameters 

Labeling: If the model statement represents an in­
struction entry point for a branch instruction elsewhere 
in the program, it should have a label. 

If additional external labels are required and speci­
fied as parameters in the macro-instruction they can 
be inserted in the label field of the symbolic program 
entry by using the 0001-199 code. 

The label of the macro-instruction causes the genera­
tion of an equate statement in the assembled object 
routine. The label is equated to an *, as shown in 
Figure 83. 

Macro Instruction (Source Program) 

Model Statement 

Assembled Symbol ic Program Entry 

TEST2 

Figure 83. Labeling 

42 

EQU 
B STARTl 

Another example is shown in Figure 84. 
Symbolic Addressing within the Library Routine: 

To allow a symbolic reference to other instructions in a 
library routine a ofollowed by a number from 001 to 
199 with a B bit over the units position (oOOJ = sym­
bolic address 1, oOOK = symbolic address ,2, etc.) can 
be used. For example, the processor generates the sym­
bolic address if the code oOOJ is used as a label for one 
entry and as an operand of at least one other entry in 
the same library routine. 

Internal labels within flexible routines are generated 
in the form onnnmmm, where nnn is the code (OOJ-
09E ), and mmm is the number of the macro within 
the source program. This is done to avoid duplicate 
address assignments for labels. 

Example: Use the generated symbolic address of 
oOOJ as an operand for entry 3 and as the label for 
entry 6. UPDAT is the 23d macro encountered in the 
source program (Figure 85). 

Address Adjustment and Indexing: The parameters 
in a macro-instruction and the operands in partially 
complete instructions in a library routine can have 
address adjustment and indexing. 

If address adjustment is used in both the parameter 
and the instruction, the assembled instruction will be 
adjusted to the algebraic sum of the two. For example, 
if the address adjustment on one is +7 and the other 
is -4, the assembled instruction will have address 
adjustment equal to +3. 

Model statement operands can be indexed. This in­
dexing takes precedence over any indexing of a param­
eter supplied by a macro-instruction. The model state­
ment index is used. 

Literals: Operands of instructions in library routines 
may use literals as required. However, these literals 
may not contain the @ symbol within an alphameric 
literal. 

NOTE: Area defining literals and area defining con­
stants cannot be used in a MACRO statement. 

Macro Instruction (Source Program) 

Model Statement 

Lobel Operation 
Page 
and 
Line 

F====t=+-~=-=-~~=---==-~-> .. ---> .. --.=--4~~~~oc====~.,~·,=,~_=c_cc_ ... __ ,=,o~." 
1 2 3 4 5 6 7 8 9 101112131415161718192021 22324252627282930313233343536373839404142434 

L...J.....L.-J-~..L-J.-L-L....J...lIIIrr srI1!. '1orFltlTIIillO 
Assembled Symbol ic Program Entry 

TEST2 
START2 

EQU 
SBR ENTRYA 

Figure 84. Additional External Labels 



Macro Instruction (Source Program) 

C)~"ti~ l 15115 021 30 5 40 
Line label 

, 56 

: 
1 

Model Statement 

Page 
and L Label Operation 
Line 

c=== --
I 2 3 4 5 6 7 13 9101112131415161718192021 2223242526 27282930313233343536373839404142434 

I - ,- ,-- --r--y-o--r-r- --- r--.-, -,- ) . 
~- - ~- -

I~ lJ;lo 017 --1---

~--- H 

):lo 01:7 ZA ~ 00 jfJ-~O t(l~ 1 
- -~ 

Assembled Symbolic Program Entry 

B oOOJ023 

o OOJ023 ZA COST ,AMOUNT 

Figure 85. Internal Labels 

NOTE 1: A model statement in the library routine for 
a macro-instruction may not be another macro-instruc­
tion. 

NOTE 2: END statements cannot be used in library 
routines. 

NOTE 3: A comments card can be included in the 
model statements. It must be written with an asterisk 
in column 7. 

The Processor enters model statements in the library 
tape immediately following the header statement dur­
ing System Generation. 

Result: Any library routine can be extracted by writ­
ing the associated macro-instruction in the source 
program. 

Figure 86 is a summary of the codes that can be 
used in the model statements of library routines. 

CODE POSITION FUNCTION 

0001 - [1199 St'atement Substitute parameter 
(parameter must be present) 

oooA-r:1191 St'atement 
Substitute parameter (if 
parameter is missing, 
delete statement) 

oOOJ - CI19R Label Field and Assign internal label 
Operand Field 

Figure 86. Model Statement Codes 

General Description: A macro-instruction is the entry 
in the source program that causes a series of instruc­
tions to be inserted in a program. 

The Programmer: 
1. Writes the name of the library routine in the 

operation field. 

Form C28-0326-2 
Page Revised 12/30/66 
By TNL N27-1267 

2. Writes the label that is to reference the first as­
sembled model statement. A LABEL EQU * is generated 
to do this. 

3. Writes the parameters that are required for the 
particular object routine desired. These parameters, 
used by the model statements, are written as follows: 

a. Parameters must be written in the sequence in 
which they are to be used by the codes in the 
model statements. For example, if cost is 
parameter 001, it must be written first so that it 
will be substituted wherever a 0001 or oOOA 
appears as a label, operation code, or operand 
of a model statement. 

b. As many parameters may be used as can be 
contained in the operand fields of five or fewer 
coding sheet lines. If more than one line is 
needed for a macro-instruction, the label and, 
operation fields of the additional lines must be 
left blank. Parameters must be separated by a 
comma. They cannot contain blanks or commas 
unless they appear between @ symbols. The 
@ symbol itself cannot appear between @ sym­
bols. Also, the @ symbol can be used only in 
pairs as a literal identifier. It cannot be used 
in any other way; e.g., a single @ symbol could 
not be used to represent the d modifier of a 
macro-instruction. If parameters for a single 
macro-instruction require more than one coding 
sheet line, the last parameter in each line must 
be followed immediately by a comma. The 
last parameter in a macro-instruction should 
not be followed by a comma. 

c. Parameters that are not required for the par­
ticular object routine desired can be omitted 
from the operand field of the macro-instruction. 
However, if a parameter is omitted, the comma 
that would have followed the parameter must 
be included, unless the omitted parameter is 
behind the last parameter which is included in 
the macro-instruction. These commas are nec­
essary to count parameters up to the last in­
cluded parameter. All parameters between the 
last included parameter and parameter 199 are 
assumed by the processor to be absent. 

Figures 87, 88, 89 and 90 show how parameters can 
be omitted. The hypothetical macro-instruction called 
EXACT is used. EXACT can have as many as nine 
parameters. 

The Processor extracts the library routine and selects 
the model statements required for the object routine 
as specified by the parameters in the macro-instruc­
tions, and by substitution and switches set by BOOL or 
COMP in the model statements. 

The Maero System 43 



I,Line Label pperation OPEl 
5 II 1516 20121 25 30 35 40 45 I 

o I : EXACT FL01 .• FL02 F L D.3 .• FL D+ FLD.S. ,I 
I 

02 

Figure 87. Parameter for EXACT. 006-199 Missing 

Line Label I~ pperati ~12 
25 30 35 5 56 I 16 I 40 

o I I EXACT F.LD.I .• FLD2 .• FLD3 .•.• F L.D.S 
I 

0.2 .-

Figure 88. Parameters 004 and 006-199 Missing 

Line Label 1~~perati~21 OPE) 
3 56 25 30 35 40 45 
o I j EX A(T F L D2 FLD3 .•.• F L.D.7.o,)-9_,F,L,D,9L...) 

I 
, 

o 2 

Figure 89. Parameters 001, 004-006, 008 and 010-199 Missing 

Line Label joperation ~ 
5 56 1516 '0121 25 30 35 40 1 
o I I EXACT I. FLOZ ,j 

o 2 
I J ,-

Figure 90. Parameters 001 and 003-199 Missing 

Result: The resulting program entries are merged 
with the source program entries behind the macro­
instruction. 

Pseudo-Macro Instructions 
These statements never appear in a user's source pro­
gram or in the output listing of an assembled Auto­
coder program. However, they are used in library 
routines to signal the processor that certain conditions 
exist which can affect the assembly of an object. routine. 
For example, the presence of a pseudo-macro­
instruction in a library routine can cause a group of 
model statements to be deleted. Thus, pseudo-macros 
provide the writer of library routines with a coding 
flexibility which exceeds the limitations of the substitu­
tion and condition codes described previously. 

Pseudo-macro-instructions may be written anywhere 
in a library routine. The five pseudo-macros incorpo­
rated in the Autocoder processor are MATH, BOOL, 

COMP, NOTE, and MEND. 

Permanent and Temporary Switches 

The MATH, BOOL, and COMP pseudo-macros use internal 
indicators (switches) to signal the processor of exist­
ing status conditions. 

There are 099 permanent and 199 temporary 
switches available for l\.:~ording status conditions. Each 
switch occupies one core-storage position during the 

44 

,j 

macro generator phase of Autocoder. If a storage posi­
tion contains the character A (AB 1 bits), the switch is 
ON; if it contains a ? (CAB 82 bits), the swJLtch is OFF. 

At the beginning of assembly all switches are OFF. 

Permanent Switches: Permanent switches retain 
status conditions during the entire macro generator 
phase unless changed by a pseudo-macro, They are 
addressed by using a # symbol followed by the three­
digit number of the switch to be set or tested. For 
example, #001 addresses permanent switch 001; #002 
addresses switch 002; and #099 addresses switch 099. 

Temporary Switches: When the processor encounters 
a macro-instruction, the temporary switches ~re set to 
the condition (presence or absence) of the parameters 
in the operand of the macro field. If the parameter is 
present, the corresponding switch is set ON. If the 
parameter is missing, the switch is set OFF. For ex­
ample, if parameter 001 is present, temporary switch 
001 is turned ON. If parameter 002 is missing from the 
macro-instruction, temporary switch 002 is OFF. Tem­
porary switches retain status throughout the processing 
of a macro-instruction unless changed by a pseudo­
macro. After the macro-instruction has been completely 
processed, all temporary switches are set OFF. Tempo­
rary switches are addressed by using a 0 symbol fol­
lowed by the three-digit number of the switch to be set 
or tested. For example, 0001 addresses temporary 
switch 001; 0002 addresses switch 002; and 0199 ad­
dresses switch 199. 

If a macro with a maximum of nine parameters is 
encountered, the processor sets the first nine temporary 
switches to indicate the presence or absence of these 
nine parameters. Temporary switches 010-199, which 
are OFF, can be used 'by the pseudo-macros to com­
municate conditions to the processor while iUs working 
on this particular macro-instruction. This use of tempo­
rary switches is recommended because it reserves the 
permanent switches for communicating information 
from one macro to another. 

MATH - For Solving Algebraic Expressions 

A MATH pseudo-macro contains as operands: sum 
boxes, arithmetic expressions, and sign switches. 

Sum Boxes: A sum box is a group of five core­
storage positions used to store the result of an arith­
metic expression. Autocoder makes available 20 such 
sum boxes. A sum box is addressed by using a # 
symbol followed by the three-digit number (ending 
in zero or five) of the sum box to be referenced. For 
example, the address of the first sum box is #005; the 
address of the second sum box is #010; and the address 
of the twentieth sum box is #000. 

At the beginning of the macro phase, a sum box 
contains 00000. Any number may be placed in a sum 



is OFF, the statement is false. Therefore, set temporary 
switch 015 OFF and skip to statement labeled L. 

The example shown in Figure 97 states: 
1. If both temporary switches 001 and 002 or both 

temporary switches 003 and 004 are ON, the state­
ment is true. Therefore, set temporary switch 015 
ON. 

2. However, if either temporary switch 001 or 002 
and either temporary switch 003 or 004 is OFF, 

the statement: is false. Therefore, set temporary 
switch 015 OFF and skip to the model statement 
whose label is L, 

Page 
and L Label Operation 
Line 

--. ~.----~-=F===F= 
1 2 3 " 5 6 7 8 ~, 10 11 12 13 14 15 16 17 lei 19 20 21 223242526 2728 293031 32 33 34 35 36 3138 39 40 41 4243 44 45 46 47 48 49 50 51 525354555 

1 I1Tunl11'-'--1-l-L..L.L..l .. , 
Figure 97. BOOL Pseudo-Macro 

Figure 98 is a table showing all conditions that will 
cause the BaaL statement shown in Figure 97 to be 
true. 

Figure 99 is a table showing all conditions that will 
cause the BaaL statement shown in Figure 97 to be 
false. 

COMP - To Compare Two Fields 

General Description: The CaMP pseudo-macro com­
pares an A-field to a B-field (maximum of 15 charac­
tel's), and sets permanent or temporary switches to 
indicate the result of the comparison. 

The Programmer: 
1. Writes the name of the pseudo-macro <CaMP) 

in the operation field. 

V) 

z 
o 
i= 
Ci 
Z 
o 
u 

001 

ON 
1 

OFF 
0 

ON 
1 

ON 
1 

OFF 
0 

ON 
1 

ON 
1 

* 

* 

* 

* 

* 

* 

* 

* 

002 

ON 
1 

OFF 
0 

ON 
1 

ON 
1 

ON 
1 

ON 
1 

OFF 
0 

SWITCHES 

+ 003 * 
OFF 

+ 0 * 

ON 
+ 1 * 

ON 
+ 1 * 

ON 
+ 1 * 

ON 
+ 1 * 

OFF 
+ 0 * 

ON 
+ 1 * 

Figure 98. True Conditions 

004 LOGICAL VALUE 

OFF 
0 = 1 

ON 
1 = 1 

ON 
1 = 1 

OFF 
0 = 1 

ON 
1 = 1 

ON 
1 = 1 

ON 
1 = 1 

V) 

Z 
o 
i= 
Ci 
Z 
o 
u 

001 

OFF 
0 

ON 
1 

OFF 
0 

OFF 
0 

OFF 
0 

OFF 
0 

ON 
1 

OFF 
0 

ON 
1 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

002 + 

OFF 
0 + 

OFF 
0 + 

ON 
1 + 

OFF 
0 + 

OFF 
0 + 

ON 
1 + 

OFF 
0 + 

ON 
1 + 

OFF 
0 + 

SWITCHES 

003 * 

OFF 
0 * 

OFF 
0 * 

OFF 
0 * 

ON 
1 * 

OFF 
0 * 

OFF 
0 * 

ON 
1 * 

ON 
1 * 

OFF 
0 * 

004 

OFF 
0 

OFF 
0 

OFF 
0 

OFF 
0 

ON 
1 

ON 
1 

OFF 
0 

OFF 
0 

ON 
1 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

Form C28-0326-2 
Page Revised 12/30/66 
By TNL N27 -1267 

LOGICAL VALUE 

0 

0 

0 

0 

0 

0 

0 

0 

0 

w 
V) 

-I « 
u. 

Figure 99. False Conditions 

2. Writes the operand field in the format shown in 
Figure 100. The first and second entries are the A- and 
B-fields. The A- and B-fields may be any of the 
parameters 001-199, sum boxes #005-#000, or literals. 
They cannot be switches. 

NOTE 1: For the CaMP pseudo-macro, alphameric 
literals are not enclosed by @ symbols. Entries 3, 4, 
and 5 are high, equal, and low switches. 

NOTE 2: The codes for the two fields to be compared 
must be present in all CaMP pseudo-macro-instructions. 
Codes for the switches may be omitted if they are not 
needed to store the result of the compare operation. 
However, if a ,switch is omitted, the comma that 
would have followed it must be included in the 
operand field. 

NOTE 3: B-field controls compare. (High-order posi­
tion of B-field ends compare. ) 

Page 
and L Label Operation 
line 

Figure 100. Format for COMP Pseudo-Macro 

The Processor: 
1. Compares the A-field to the B-field. 

2. Sets one status switch ON and two switches OFF 

to reflect the result of the comparison. 

a. The first switch is set ON, if the value of the 
B-field is greater than that of the A-field. 

The Macro System 47 



Form C28-0326-2 
Page Revised 12/30/66 
By TNL N27-1267 

b. The second switch is set ON, if the B-field is 
equal to the A-field. 

c. The third switch i~ set ON, if the value of the 
B-field is less than that of the A-field. 

Examples: Figure 101 shows a CaMP pseudo-macro 
which states: 

1. Compare parameter 002 of the macro statement 
to WORKAREA. 

2. If parameter 002 is equal to WORKAREA, turn on 
temporary switch 25. 

3. If WORKAREA is less than parameter 002, turn on 
temporary switch 26. 

Page 
and l label Operation Operand and Comm 
Line 

Figure 101. CaMP Pseudo-Macro 

Figure 102 shows a CaMP pseudo-macro which 
states: 

l. Compare the contents of sum box 005 to param­
eter 003 of the macro statement. 

2. If the result is HIGH, set temporary switch 024 ON. 

3. If the result is EQUAL, set temporary switch 025 
ON. 

4. If the result is LOW, set temporary switch 026 ON. 

Page 
and l label Operation Operand and Com 
line 

Figure 102. Comparing a Parameter to the Contents of a 
Sum Box 

NOTE: Standard 1410/7010 collating sequence deter­
mines HIGH, EQUAL, or LOW conditions. Comparisons 
are controlled by the B-field. Thus, the statement 
shown in Figure 103 will cause temporary switch 025 
to be set ON if the low-order position of parameter 
002 is a 3. 

NOTE - To Produce a Message 

General Description: The NOTE pseudo-macro is 
used to write messages concerning conditions that can 
arise during the processing of a macro-instruction. 

Page 
and label Operation 

Figure 103. Checking for a Single Character 

48 

The message is printed in line on the output device 
(tape or on-line printer). In addition, an "N" will be 
automatically inserted in the flag field of the assembly 
listing. 

The Programmer: 
1. Writes the name of the pseudo-macro (NOTE) in 

the operation field. 
2. Writes the message in the operand field. 

NOTE: Two successive blanks terminate the operand 
of a NOTE statement. 

The Processor: Prints the message on the Standard 
Print Unit (tape or on-line printer). 

Examples: Figure 104 shows how the NOTE pseudo­
macro can be used in combination with the BOOL 

pseudo-macro. The BOOL pseudo-macro tests to ensure 
that parameters 001 and 002 are present in the macro­
instruction. If either parameter is missing, the proc­
essor skips to the NOTE pseudo-macro and prints: 

PARAMETER ABSENT FROM MACRO. 

Page 
and l label Operation Operand and Comm 
line 
~ - -.-
12345 678910111213141516111819202 122324252 627282930313233343536373839404142434,U5464748495051525354 

OOIL L,it1 001 "11 00z. 

I~ L NO TE p~ IRA .~EIT ~ AS SE NI 

Figure 104. NOTE Pseudo-Macro 

MEND - End of Routine 

General Description: This pseudo-macro signals the 
end of generation for a macro-instruction. It may ap­
pear anywhere in a library routine. 

The Programmer: 
1. Writes the name of the pseudo-macro (MEND) in 

the operation field. 
2. Leaves the operand field blank. 

The Processor: Stops processing the macro-instruc­
tion when it encounters a MEND statement. Figure 105 
shows a MEND pseudo-macro. 

NOTE: A BaaL pseudo-macro can be used to skip 
over a MEND pseudo-macro which appears within the 
library routine if conditions indicate that more model 
statements must be processed. 

label Operation 

Figure 105. MEND Pseudo-Macro 



C28-0326-2 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	_1_00
	_1_11
	_1_12
	_1_13
	_1_14
	_1_29
	_1_30
	_1_41
	_1_42
	_2_00
	_2_09
	_2_10
	_2_41
	_2_42
	_2_43
	_2_44
	_2_47
	_2_48
	xback

