
Systems Reference Library

IBM 1410 Input / Output Control System

Progral,nming Systems Analysis Guide

This manual provides detailed information concerning
the internal logic of the IBM 1410 Input/Output Control
System. The manual is addressed to technical personnel
responsible for analyzing or modifying the program.
The charts and detailed descriptions herein are based
on Version 3, Level 0 of I/O 926.

File Number 1410-30
Form C28-0541-1

Preface

The reader of this manual should have a basic knowl­
edge of the IBM 1410 Autocoder language. Familiarity
with the information contained in the following
manuals is necessary to understand the material con­
tained in this manual:

IBM 1410 Input/Output Control System for Card
and Tape Systems, Form C28-0334

IBM 1410 Autocoder, Form C28-0309
IBM 1410 Principles of Operation, Form A22-0526

MINOR REVISION (January 1964)
This edition is a minor revision of the preceding edition, Form
C28-0541, but does not render that publication obsolete.

Revisions to the text are indicated by a vertical line to the
left of the change; revised illustrations are denoted by the
symbol (e) to the left of the Figure caption.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390 Poughkeepsie, N. Y., 12602

© 1963 by International Business Machines Corporation

Introduction,
Tape File and Channel Schedulers, Interrupt, , , , , , , , , , '

File Scheduling ,
Channel Scheduling , , , , , , , , , , , , " , , , , , , , , , , , , , , , , , , ,

Overall Descriptions,
Scheduler Operations, Interrupt, , , , , , ' ,

Channel Scheduling ,",,"","""',',",""",,""""
File Scheduler Operations,

OPEN, CLOSE, FEORL, RDLIN, and End of Reel, , , , , , , , , , ' , , '
Introduction , , , , , , , , , ' ,
Processing ,

General Error Operations , , . , . , , . , . , , . , , . , , . , , .. , , , , ,
Tape and Unit Record Error Routine Tables, . , . , .. , , , .

Detailed Description of Operations. , , , . , . , , , , , , , , , , , , , , , , , .
Scheduling . , , . , , , , . , . , , , , , , , , , . , , , , , , , , , , , , , , , , , , ,

Channel Schedulers, Including Interrupt. , , , , .. , . , , , , , . ,
One-Area Input File Scheduler, , . , ... , . , , , . , . , , , , , ,
One-Area Output File Scheduler, , .. , , , , , , , , , . , , . , ,
Two-Area Intput File Scheduler. ,
Two-Area Output File Scheduler.
Tape File Initialization Sequence.
Padding Routines "

Record Processing and Little Macros .. , , , . , , . , , . , ... , , , , . , , , , , ,
PUT, GET, and RELSE Macros, , , , . , .. , , .
Unit Record GET, PUT, and Close Operations.
Little Macros , . , , . , . , . , . , , , , ,

Open, Close, and End-of-Reel Procedures.
Priority Assignment Routine. , , , , , , . , , , , ,
Description of Priority Assignment. , .. , , . , , , , . , . ,
Open Procedures , , , . , . , ' , , . , . , , , , . , , , , . , . , , . , .
Standard Header Label Procedures , . , . , , , , , , , , .. , ..
End-of-Reel Procedures " , , , , , , , . , .. , . , .. , . , .
Close Procedures " . , . , ' . , , , , ...
Linkage Routines ,,'.
General 110 Routines, RDLIN. , .
Message and Wait Loop Routine, ..

Error Routines , . , . , , , , . , , , , , , , ,
Tape Error Routine - Part 1,
Tape Error Routine - Part 2.
Tape Error Routine - Part 3.
U nit Record Error Routine.

Program Condition Analysis Aids . , , , , , , , , , , , , , , , , , .
Storage Map and Loading Sequence, , , , , .. , , , . , , , . , , , , . , , , , , ,
File Reference Table , , . , , .. , . , , , . , , , . , , . , , , , . , , , , , , , , , ,

Appendix A - Glossary,

,Appendix B - List of Abbreviations,

Page
7
7
7
8

11
11
11
12
15
15
15
19
19

23
23
23
24
25
25
27
28
29
36
36
37
38
44
44
45
46
47
50
51
52
54
54
65
65
66
68
70

77
77
78

80

81

Appendix C - Cross Reference Indexes, , , , , , , , , , , , , , , , , , , " 82

Appendix D - Sample Autochart Symbols, , , , , , , , , , , , , , , , " 85

I Appendix E - DIOCS-Genera,ted Label Definitions, 86

I Appendix F - File-Dependent Label Definitions, , 94

Contents

Chart

A

AA

AB
AC

BA
BB
BB
BC
BD
BE
BF

CA
CB
CC

DA
DB
DC
DD
DE
DF
DG
DH

EA
EB
EC
ED

Chart
Page

10

14

18
22

30
31
31
32
33
34
35

41
42
43

57
58
59
60
61
62
63
64

73
74
75
76

Chart A.
Chart AA.
Chart AB.
Figure 1.
Chart AC.
Chart BA.
Chart BB.
Chart BC.
Chart BD.
Chart BE.
Chart BF.
Chart CA.
Chart CB.
Chart ce.
Figure 2.
Figure 3.
Figure 4.
Chart DA.
Chart DB.
Chart DC.
Chart DD.
Chart DE.
Ch:ut DF.
Chart DG.
Chart DB.
Figure 5.
Chart EA.
Chart EB.
Chart EC.
Chart ED.
Figure 6.
Figure 7.

List of Illustrations

Case Studies 1,2, and 3
Channel and File Scheaulers - Overall
Open, Close, EOR - Overall
Tape and Unit Record Error Routine Tables.
Tape Error Routine - Overall .. .
Channel Schedulers, Including Interrupt
One-Area File Schedulers - Input and Output
Two-Area Input File Scheduler.
Two-Area Output File Scheduler.
Tape File Initialization Routines
Padding Routines .. .
PUT, GET, and RELSE Macros
UR GET/PUT Macros and Schedulers
Little Macros
Pending Switch Network.
Table of Pending Switch Addresses
Header and Trailer Formats in Storage
Priority Assignment
Open Procedures .
Header Label Procedures
End-of-Reel Procedures
Close Procedures
Linkage Routines
General 110 Routines "
Message, Reply, Save, and Restore.
Table of File Reference Addresses.
Tape Error Routine - Page 1 of 3
Tape Error Routine - Page 2 of 3
Tape Error Routine - Page 3 of 3.
U nit Record Error Routine.
Storage Map
File Reference Table.

10
14
18
21
22
30
31
32
33
34
35
41
42
43
44
44
48
57
58
59
60
61
62
63
64
65
73
74
75
76
77
79

The Input/Output Control System for the IBM 1410
Data Processing System is comprised of program rou­
tines written by the IBM Programming Systems to pro­
vide users with efficient, pretested routines for reading
and wr:iting card and tape records.

Programming of input and output routines that
handle records efficiently is difficult. The routines used
in IOCS have been found through experience to be effi­
cient. By using this system in all programs, standard
input and output routines are provided. Such routines
simplify and standardize console operations.

IOCS provides the following features while satisfying
the requirements for reduced programming, efficient
routines, standardization, and elimination of input/out­
put programming errors:

I 1. Reading and writing of data records simultane,­
ously with processing.

2. Macro-instructions that handle records sequen··
tially, even though they are Jin blocked form on an input
tape, or are to be written in blocked form on an output
tape.

3. Checks for proper mounting of input tapes and
aids in the checking of each tape used. By the use of
label records, each reel of tape may be identified and
checked before being used in the program.

4. Routines for processing unit records. Unit records
may be read, punched, or printed on-line using macros.

5. Error routines for tape and unit records, that
correct errors whenever possible.

The functions provided by IOCS are incorporated
into the user's program during assembly by IBM 1410
Autocoder. Flexibility is given the user by allowing
him to specify in free form a variety of program
parameters with a minimum number of cards. Only
the necessary coding is generated to reduce storage
requirements.

Whenever programming or machine errors occur
during an input or output operation, they are often
difficult to diagnose because of the complexity of these
operations. If IOCS is being used as a standard input/
output routine, a thorough understanding of how it
operates becomes desirable in order to be able to diag­
nose quickly any difficulties in machine operation that
might occur in this area.

The manual describes general as well as detailed
flow charts to aid in understanding the operation of
IOCS. However, no attempt is made to describe IOCS

checkpoint and restart, real time, or disk applications.

IBM 141 0 Input/Output Control System

Two conventions are used throughout this manual in
reference to IOCS labels. The dollar sign ($) is used in
lieu of IOCS, as the first four label characters e.g., $ENTRY

instead of IOCSENTRY. The hyphen (-) is used in labels
that have variable prefixes. One hyphen is used in lieu
of the channel number (e.g., $CS-SFS), and two hyphens
in lieu of a file prefix (e.g., $--'FULL).

Tape File and Channel Schedulers, Interrupt
Scheduling is that part of IOCS that controls the man­
ner in which 110 needs for files are serviced. For tape
files, the scheduling is performed by file schedulers in
correlation with one or more channel schedulers.

File Scheduling

The specification of a tape file in the DTF, at compilation
time, causes the generation of one file scheduler. The
latter serves as a common subroutine for all GET or PUT

macros referring to the file. The file scheduler is
entered from a GET to make the next block of logical
records available to a GET macro when the current area
is empty, i.e., all logical records in the current block
have been processed. For a PUT macro, the file sched­
uler makes the next block area available for processing
when the current area is full, i.e., has been filled with
logical records. The 110 instructions to read a block of
records into storage or write a block out are initiated
in the file scheduler.

The file scheduler coding generated varies according
to the application specified by the DTF for the file. The
file type (e.g., output tape), the data characteristics
('e.g., variable-length, blocked records), and the op­
tional features (e.g., the specification of two buffer
areas in conjunction with the overlap and priority
special features) all influence the coding generated.

BUFFERED FILE SCHEDULER, TWO AREAS

Use of two areas for a file allows a look-ahead approach
that enables the overlapping of processing and 110.

Case Studies 1, 2, and 3, on Chart A, illustrate how
this is done. In Chart A, the number associated with a
block is a step number. In the case study descriptions,
the execution of a step is indicated by (n), where n
stands for the step number; reference to another step
by step n.

Introduction 7

Case Study 1: One file only on channell (file A). An
I/O operation has been started in area 2 and process­
ing is starting in area 1 (1).
While area 1 is being processed, the area 2 I/O opera­
tion terminates (2), and an interrupt to check it
occurs (3). Since no new I/O operation can be started
(4), control returns to complete the processing in
area 1 (6). Then, the file scheduler is entered. A test
indicates area 2 is available (7), the need for an I/O

in area 1 is flagged (12). The channel is free (13) and,
since an I/O operation is to be started (14), it is
started for area 1 (15). Processing is then resumed
with area 2 (16). Note that I/O and processing were
not overlapped during step 6.

PENDING SWITCH

Every two-area file scheduler has a pending switch.
The pending switch is set on to indicate that a tape
operation is to be initiated in an area and it stays on
until the needed I/O operation is started, completed,
and checked. In case study 1, the pending switch is set
on at step 1, turned off at step 3, and turned back on
at step 12.
Case Study 2: Same as case study 1, except there is an­

other file on the channel (file B). The pending switch
for file B is on.
At step 3, the channel is clear so the pending
switches are "interrogated" (4). Since the switch for
file B is on, a tape operation for file B is started (5).
Assuming the channel is still busy at step 13, steps
14 and 15 are omitted. Note how processing and I/O

are overlapped throughout the sequence traced.

FORCING SITUATION

A forcing situation for a two-area file occurs when
entry is made to the file scheduler and another area is
not available. Two possibilities, with resultant conse­
quences, can exist:

1. The channel is busy with another file's I/O

operation:
a. The channel is cleared.
b. An I/O operation for the forced file is started.
c. The channel is cleared.

2. The channel is busy with this file's I/O operation:
a. The channel is cleared.

Note that for a one-area file, every entry to the file
scheduler is a forcing situation.
Case Study 3: Same as case study 2, except that the I/O

operation for file A has not terminated by the time
step 7 is entered. Steps 2 through 5 consequently do
not exist.
Since the test of the pending switch at step 7 deter­

mines that file A does not have an available area, it is a

8

I

force situation. A force loop is now entered to wait till
the I/O operation terminates (8).

The I/O is then checked (9), completing the clear
channel operation. The pending switch is tested again
(10), and is now found to be off. Therefore; the force
situation comes to an end. The channel is not busy at
step 13, so step 14 is entered, but the I/O started at step
15 may be either for file A or B (since both pending
switches are on). Note that the pending switch tested
in step 10 would be on if the operation cleared on the
channel was for another file; an I/O operation for the
forced file would be started at step 11, and the force
loop would be re-entered.

PENDING NETWORK AND PRIORITY

The pending switches for all two-area files on a chan­
nel are linked together. This aggregate is called the
pending switch network for the channel. The linkage
from one pending switch to another is via their off­
status branch addresses. For the pending switch below:

Label Operation

NOP
BXPA

Operand Explanation
WM over BXPA = pending on

xxxxx No WM over BXPA = pending off

xxxxx represents the address of the NOP in another
pending switch. The next sequential instruction follow­
ing the pending switch is the I/O instruction for the file.

The pending switches in the network are linked in
high-to-Iow (0-9) relative priority for the respective
files on the channel. When the network is entered at
the top, control passes down the network via the off­
branches until a pending switch is found in on status.
Control then drops through the switch to the tape
operation. The pending network is ordered by the
priority assignment routine during an OPEN operation
for all two-area files named in the OPEN (or for files
already OPEN), unless PRIORITY ASSEMBLE was specified,
in which case the assignment was done at compilation
time.

In the case studies, the pending switch network is
entered in step 4 and in step 14. Note that the I/O

started in step 15 of case 3 depends on the priority
assigned files A and B.

Channel Scheduling

The channel scheduler is generated by the specifica­
tion of DIOCS CHANNEL. The file scheduler uses the
channel scheduler as a subroutine for two main opera­
tions. The entries and operations are:

1. Clear channel operation: This is done in a forcing
situation; e.g., case study 3, steps 8 and 9. The channel
must be forced clear of any unchecked I/O operation
before another I/O operation can be started for the
forced file.

2. Start channel operation: This is done just before
the file scheduler returns control to the macro; i.e.,
case studies, steps 13, 14, and 15. If the channel is not
busy (step 13), the pending network is entered (step
14). If there is an 110 operation to be started, it is
started for the highest priority pending switch found
on (step 15).

These operations are also executed, when necessary,
during end of reel and macro processing of OPEN,

CLOSE, etc.

INTERRUPT

Interrupt coding also links into the channel scheduler.
After the operation is checked and the pending switch
turned off, the channel is started again by going to the
pending network (see case studies, steps 3, 4, and 5).

TWO-CHANNEL OPERATIONS

When there are two channel schedulers, the channel 1
scheduler exits into the channel 2 scheduler for non­
forcing operations.

Introduction 9

A A 1***
.. START ..
.. CASE ..
" STUDY "
"

X 01 02 03 ····*83*·· .. ···· .. · .. "
* •••• 81 **.******* ***.*82 ** ••••••
.. "INTERRUPT"

" ..
PROCESSING :- X:

X 06 -·· .. el·······_·­
" " .. PROCESSING

INTERRUPT
CODING * x*

" "
CHECK

THE 1/0
.................. X­

" " ..
. ••• ***********

B4
" 15

" THERE AN
110 TO BE
"STARTED"

..
• NO

05
04 ••••• 85 ••••••••• ·• .. "

YES " START "
••••••••• X. AN I/O ..

" **** •• *.* ••• *** ••

x •
CONTINUf::S • x

" " " ••••••••••••••• *-

..

• AkEA COMPLETELY
.. PROCESSED

X
01 .. " 07

X 08
** .. ·*D2"·"""" ** **
.. FORCE LOOP- "

09
··03******* .. "

OTHER
AREA

NO WAIT FOR .. CHECK ..
........... x* OPERATION

" AVAILABLE" ..
.YES

X 12 ··_·*Et···-····_·
" FLAG THAT AN ..

.. TO TFRMINATE ..
••••••••• x.. THE 1/0 X.
.. «. ..

" •• ****** •••• *****

04 10 . "
.. wAS THE ..
1/0 FOR THIS
" FILE ..

..
• YES

" 1/0 I S TO BE " •
-STARTED FOR THE.X ••••••••••••••••••••••••• " •••
"FILE {INTO AREA"

:~~~! .. ~~~;~;;~~;:

X
FI 13

NO CHANNEL
...... FREE

" .YES

X
GI 14

.. IS
.. THERE AN NO

1/0 TO BE " ••••
STARTED

" ..
" .YES

X 15
*****Hl******··**

START ..
AN 1/0

. . .
••••••••••• x.x •.•••••••••

X 16
* .. ··*Jl***···***

PROCESSI"G

X
K 1 •• *

* *
" END ..
.. CASE ..
.. STUDY

Chart A. Case Studies 1, 2, and 3

10

• It
.. *** *05* •• ** *_._It
" ..

NO .. START 1/0 ..
* •••••••• X:FOR FOI'lCED FILE:

* ... *********.****

The overall processing in IOCS is covered by Charts AA
and AB and by Figure l. Chart AA is an overall chart for
£Ie and channel scheduling; Chart AB covers OPEN,
CLOSE, FEORL, RDLIN, and end of reel. These two charts
are described by functional operation rather than block
by block. Figure 1. is an overall table that summarizes
tape and unit record error procedures. The description
of Figure 1 discusses these procedures more fully.

Some of the descriptions refer to the file reference
address. This addr&.;s is the starting location of the file
reference table for the file. The reader may find it help­
ful to refer to this table, included as Figure 7, and
described in the Programming Condition Analysis Aids
section of the manual.

In the operational descriptions of Charts AA and AB,
the convention (xxnn) indicates the block whose proc­
essing is being described. The convention block xxnn,
or (at block xxnn) is used to refer to another block.
The reader is again reminded that in a label, the con­
vention of two hyphens (- -) designates the file prefix
(e.g., $ - -FULL) either generated by IOCS or specified
by the user. One hyphen (-) designates the channel
prefix (e.g., $CS-SFS). The donar sign ($) substitutes for
the first 4 characters in the label, viz., IOCS.

Scheduler Opercrtions, Interrupt
Chart AA is an overall flow chart for file and channel
scheduling. The channel scheduler, shown on columns
1-3 on Chart AA, is described for three operations: Start
Channel Operation, Interrupt Operation, and Force
Channel Clear Operation. The file scheduler, shown on
columns 4-5 on Chart AA, is described for three opera­
tions: Two-Area Operation" Non-Force; Two-Area
Operation, Force; and One-Area Operation.

Scheduling is covered on a detailed level in Charts
BA, BB, BC, BD, BE, and BF.

Channel Scheduling

START CHANNEL OPERATION

This operation occurs to restart the channels, and is
executed whenever appropriate in various IOCS rou­
tines. If a channel :is already in operation, control does
not wait for the operation to iterminate. A BOL on each
channel acts as a gate to further action. The following
table shows the possibilities:

Channell Channel 2

Busy Busy

Busy Free

Free Busy

Free Free

Overall Descriptions

Action

Start channel 2 if possible after check­
ing the previous I/O operation, if any.
Start channel 1 if possible after check­
ing the previous I/O operation, if any.
Start both channels if possible after
checking previous I/O operations, if any.

The operation starts by an SBR (AA01) to set the exit
linkage at $INTEXT, block AA:~3. A test of the disable
switch follows to determine if a start channel operation
can be made (AA02). If the disable switch is on, control
returns immediately to the original routine. Otherwise,
the channel 1 scheduler is entered at $CSlENT, block
AAO..J., by means of a BXPA.

If channell is in operation (AA04), the BOLl branches
to the channel 2 scheduler, $CS2ENT, block AAl3.
Otherwise, a BOPRl tests if there is an unchecked
lIO operation on the channel (AA05). If there is, the BOPR
branches to the file scheduler coding block to make
the check, block AA06. On return from checking, or if no
check is made, control drops through the force switch
which is off (AA09)'

The inquiry CBIPRU or unit record CBUPRl) request
latches are serviced (not shown) if applicable and then
the pending switch network is entered (AAln. If no
pending switch is on, an lIO operation cannot be
started, and control branches from the lowest-priority
pending switch on channel 1 directly to the channel 2
scheduler at $CS2ENT, block AA13. If an lIO is started, it
is for the file of highest priority whose pending switch
is on. Return to the channell scheduler in this case is
made at CSlRET (AA12) to set the address of the status
check, coding block AA06 (in the file scheduler for
which the lIO operation was started), into the branch
address of the BOPRl at block AAOtl. If the lIO instruction
was Nop'ed when executed, control remains in the file
scheduler to execute the status check immediately.
After a successful re-execution, the return to the chan­
nel scheduler is made to block AA09.

The channel 2 scheduler is then entered at $CS2ENT
(AA13). If channel 2 is in operation, the BOL2 branches
to block AA22. If channel 2 is not busy, the operation of
blocks AA14 to AA15 and AA18 through AA21 is identical
to the channel 1 operation already described. Control
then proceeds, via block AA22, which has no effect, to
$lNTEXT (AA23). An unconditional branch is made as set
by block AAOl and the priority alert mode is re-entered.

Overall Descriptions 11

INTERRUPT OPERATION

The operation is similar to a start channel except that
both channels cannot be busy because an I/O operation
terminating on one of the channels caused the interrupt.

The operation is begun at core storage location
00101. $INTEXT, block AA23, is set with the contents of
the B-register less 6, and the 1411 status is saved if
required (AA03). The channel 1 scheduler is then en­
tered at $CSIENT (AA04).

After channel scheduling operations are finished, the
1411 machine status is restored if it was saved (AA22).

Control then re-enters the priority alert mode (AA23)

and branches as set by block AA03 to the instruction at
which the interrupt occurred.

FORCE CHANNEL CLEAR OPERATION

This operation can be executed for either channel. It
forces an I/O operation in progress to terminate before
it is checkcd. It does not restart the channel or affect
the other channel. A channel is forced clear before
issuing an I/O command in a I-area file schedulcr, in
all unit record schedulers, and in a 2-area file sched­
uler when a forcing situation exists.

The operation for channel 1 starts by an SBR (AAOi)

to set the exit linkage in the channell force exit, $CSISFX

block AA 10. The force switch at block AA09 is set on
(AAmn. A sequence, BOLl to $CS1PR, BOPRI to $CSIPR, is
entered (AA09). If channel I is free and clear, control
drops through the sequence, the force switch is resct
off (AAIO), and control returns to the proper routine as
set by block AA07.

If channel I is free but not clear, control drops
through the BOLl to the BOPRI which branches to $CSIPR,

block AA05. At $CSlPR another BOPRl branches to the file
scheduler coding block to check the operation (AA06).

After checking, the force switch is on, so control returns
to the BOL, BOPR sequence (AA09) which is now dropped
through since the channel is free and clear.

If channel I is busy, the BOLl branches to $CSIPR,

block AA05. There control drops through the BOPRI to
block AA09, unless the overlap request latch for chan­
nell was just set. At AA09, control returns to the BOLl,

since the force switch is on. The loop is repeated until
the overlap request latch is set. The channel is then
free but not clear, and further processing is as pre­
viously described.

Processing for a force channel 2 clear operation,
blocks AAl6 through AAl9 and AA14 to AAI5, follows
logic identical to that for channell.

In a bootstrap force operation, entry is made at block
AA08, to utilize the already-established force exit link­
age at block AAlO, after the bootstrap operation is
forced clear.

12

File Scheduler Operations

Entry to the file scheduler is made from a macro when­
cver all logical records have been processed in an area.
The main function of the file scheduler is to make an­
other area available and prepare it for the macro.

TWO-AREA OPERATION, NON-FORCE

The file scheduler exit, block AA38, is set for return to
the macro. Housekeeping is performed if needed (AA3D,

e.g., an input file has I added to its block count. The
pending switch is tested to see if the other area is avail­
able (AA32). If it is (pending switch off), control
branches to $--PA. At $--PA, housekeeping is performed
to enable the macro to process the new area and the
pending switch is set on to signify the need for an I/O

operation in the just-processed area (AA33). Further
housekeeping is performed if necessary, such as reset­
ting the area limits for blocked records (AA34). $--TRIG is
normally (AA35) a branch to $ENTRY, block AAOI, to start
the I/O operation for this or a higher-priority file (AA36).

On return from starting an 110 operation, further house­
keeping is done such as adding I to the block count for
an output file (AA37). Control then exits the file sched­
uler to the macro that caused entry (AA38).

Note that $--TRIG is also used as a pivot for excep­
tional conditions. In these cases, $--TRIG is set by some
other IOCS routine. These conditions include WLR proc­
essing for input files (if specified), priming for input
files, and linkage to the end-of-reel routine for all files.
In WLR processing, $--TRIG is reset to normal. If the
user decides to accept the record, control returns to
$- -TRIG. If the record is rejected, another tape record
is read to replace it by returning to block AA32 to start
a force operation. In a prime operation, $--TRIG is reset
to normal and control returns to AA32 to begin a
force operation. The setting of $--TRIG to branch to
WLR or end-of-reel processing was done in the 10CS

error routine; the setting of $--TRIG to branch to prime
was done during open procedures either from an OPEN

macro or end-of-reel processing.

TWO-AREA OPERATION, FORCE

If the test at block AA32 indicates that the other area is
not available (pending switch on), a force situation
exists. A BXPA to the appropriate channel scheduler
force entry, block AA07 or AAI6, is made to force the
channel clear (AA39). After the channel is clear, $INTEXT,

block AA23, is set to go to the bootstrap force entry in
the channel scheduler at block AA08 or AAI7, in case a
bootstrap force is needed (AA40). The pending switch is
tested again to see if the area has been made available
(AA4D. There are two possibilities:

l. PeIllding switch off: The 110 operation cleared on
the channel was for this file. The force situation no
longer exists, and control branches to $--PA, block AA33.

2. Pending switch on: The 110 operation cleared on
the channel was for another file, and so the bootstrap
force is necessary.

Control drops through the pending switch which is a
NOP (AA42) to execute the 110 instruction (AA43). If the
110 operation was started, the BOL- branches to $ - RET in
the channel scheduler to set the status test linkage
(AA44). Channel scheduler operations eventually exit at
$INTEXT (block AA23) which has been set (by block
AA40) to re-enter the channel force routine at the boot­
strap entry of AAOS or AA17. The channel is forced clear
of the 110 operation just started, control returning to
block AA40 via the already established force exit link­
age (AA4~'). When the pending switch is tested, it is now
off (AA41), the force situation no longer exists, and con­
trol branches to $--PA, block AA33.

If the][10 at block AA43 was not started, control drops
through the BOL- to make the status check and turn the

pending switch off in-line (AA47 through AA49). The
channel scheduler is then entered with control going
via its exit, $INTEXT, block AA23, to the bootstrap force
entry as described before.

ONE-AREA OPERATION

The file scheduler exit, block AA3S, is set for return to
the macro and any necessary housekeeping is performed
(AA31). The channel is forced clear (AA39) and the 110

operation is executed (AA43). An SER or SFR follows the
latter when variable-length records with an WLR check
are specified. The status test is performed (AA47). This
forces the operation to terminate. If the tape error rou­
tine is entered, corrective procedures are performed
with or without manual intervention (AA4S). After any
necessary area-control housekeeping is performed
(AA34), $--TRIG branches to $ENTRY to restart the channel
(AA36, AA37). On return, further housekeeping is per­
formed, such as checking Form 4 records (AA37). Return
to the macro is made (AA3S).

Overall Descriptions 13

AA ,.,. -
- AI-

" " -.FRC" LCC
• I NTERRUPTEC

.
'/4A •
* A2' . "

00101 X 03 SENTRY X CI •.••• Al··········
-SET SI~TEXT FOR"
- RETUR~ "~C "

S,.VE 1411
S·TATUS IF

- NECESSARY "
: •••• /42 :

SEl $1"lEXT
FOR RETURN

'CSI ENT .x. .X.
el I. 04 E2 '. C2

.1 I. .'ARE TbE'.
NC.- IS '. YE'3 .' C ANNELS '.

•••••• C AJl,it-.iEL I .IX. ••••••••• AVAILABLE .'
I. F~EE .* '. FOR LSE ••
1..* ••••

I. •• ' •• *
• YES • N~'I'

:'CSIPR .X. _.11

e6
• ••• IC2·········· CI -. 05

:~!:;-;:~:~-:~~~: • I '.
• - PRICRITY *. YES

• .XI. RECUEST eN •••••••••• X.CH< I/O STATL~
•• C..,AN I .- 'llt-Ot;SEKEEP. TLR". · I. .' * PNCG S~ OFF *

• • C ••• * ••••• I •••• I •••• I'
• • T • NC : :C

.....
'Af •
" E1" ..

,!;CSISFS x 07 ... ··OJ·········· · . * SET FCRCE
• EXIT BRA~Ct- *
.... DDRESS (AAI 0) •
* •
••••• 1 •• 1.1 ••••••

BOOTSTR",P •
* '.
• C3 '.x. * •

x oe
••• "C 3 · .
·

SET •
CHA~~EL I

FORCING

II *.If •••.•••••••••

·
• • E .X •••
• .c x
• .t< .x. 1 C
• .E 01 '. 09 ••••• C2 ••••••••••

: :c •• ·;w~~~C~~: ••• ON : S~~N~~~~~~~GI :
• •••• LOOP TILL •••••••••• X.,aNC EXIT AS SET •••••
• 0" •• IIC IS .* Ct-ECKE[. flY ... A07 "

·.C~KC).· •
I. ... ••••••••••••••••• x

• OFF •••••

X II ·····E2· .. ··"·····
. . .

NCNE PE"DIN(:~!'::L;~~~~_:~~~: ~~I~O~A~E~~~Y •
••• •••• ••••••• ••••• START C AN 1 - ••••••••••••••••••

(VI .. AA42) • 1-0 OPER .. TION. (VIA Ao644 - NO)
• IF PCSS IBLE' • • ••••
•••••• ~.......... -lAB·

.1/0 !:TARTED • Fl" · . .(VIA AA44 - YES) ° ·0

· . •••••••••••)C.

.. F2 I.X. ·
SCS2ENT .X. !CS IRET X 12

Fl •• ,~ •••• IF2 •••••••• !t.

•• w. -ISET eRANCH AODR.
NC.- IS -. • OF $CSIPR AT •

•••••• Ct'AI'\NEL 2 .*X ••••••••• A/405 fa GO TO ..
'. FREE.. *S rATLS TEST AT ..

•• •• • AA47 ..
- •• *

• YES

:SCS2PR .x. 15
61 ... 14 *(2

• * *. .F ILE SCHEO AAt--!:* .* PR1CA1TY W. YES ._*_tf_'lt_*_._tf_._.
• •• '. RECUEST eN .* •••••••• X.C ... K I/O STATl"S ••

•• CH,.N 2 •• .t-CUSEKEEP. TLR". · ." *... • PNCG S~ OFF •
• • c w •• * •••••••••••••••••
• .T • NC

• .C ·

$CS2SFS X Iii

... ··F]·.·· .• ···· " .
SE T FCRCE

* EXIT B~A"Ct- ,
'ADDRESS (AAI9) , · ,

BOO!;!~AP •

: G3 :.X.
X 17 ·····G3····.····· · .

" 5E T

·
CH"'''''EL 2

FCRCI"C

.1 "

• .E • x •••
• .c
• .1< .X. 1 g
• .E ~l *. Ie 2 ••••••••••

.....
• AA •
• 11.4· .. · .FRCto< GET OR

.PUT to<ACRO
t--FULL •
t--E"'TY X 31

.. ••• .. ,14·· • *
• SET RETURN IN •

$--PA _13 •• ····Ac::;···· .. ·***·
• lJ I v[PROP~ ~ ..

I-AREAl S--EX IT. * • AREA TO ~Acr~o *
•••• * HOUSEKEEP AS •••••• XI AND ruol'~ •

• NECESS ... RY *PF'W 1'1(, S~ (TCH • · , :.* ~~ •• *.**.:
.2-AQE'"

.X. X ill
e4 *. 32 .AREA AS _.,..

._ W. .AVAIL

.' TEST ~. .(OFF). PERFOR~
•• PE"D INC .' ••• ""CCESSARY

*. SW ITCH.- X - HOUSEKEEP ING .. .' ..
- •• * · .AREA NOT

• AV"IL
• • (ON)
• •••••••••• X.

X 39 $--TRI(' .X. ·····C4"· es ... 3'1
"SCt-EC F'J/F3- .1

.. x ••• .

l-AHEA.-*-*-*-*-*-·-·-*
••••••• * FCRCE Ct-A"Nf:L •

YE 5
• •••• wLR OR FOF ••

- CLEAR • ·
• eOOTSTRAP .2-AREA
• RETUJU · . .. C4 ... x. .

X 40

·····C4···*··~··· .SET flNTEXT TO "
• BRANC~ TO •
• eCCTSTRAP FORCE.
- ENT RY •

.X.
E4 ". 41 .' ..

x "

." rES T •• •
•• PEND INC •••••

•• SWITe.., •• OFF
• ON

... .*
• NO

X 16

·····05··········
:!~~!~~-.-.-:~~~:
.START CHANNeLS.
• IF POSSIHLL •

X 17 ··*1::5····· .. It · . " PERFORM
" HOUSEKEEPING
• ... S NECESSARY ·•.......

.X. S--EXIT X 18
TC ~G~ST F4 I. 42
PRI PNCG.* w.

• SWITCt-. O PENDING *. ALL OFF
•• X'. SWITC~ ••••••

.
• *F4

• ••••• x* ·

•• "ETWCRK .*'
' .. -· • PEND INC

• ON

X 43

···(4········ " .

x
• F I *
.. OR • ... ~~ ..

EXECUTE * I-ARE'"
PRCPER 1/0 •••••

CO"''''~NC
.2-AREA

····*FS·······*** * ,
RETt;RN AS

SET BY AA_il

.. ...
.. ·F.lOlV'
• H5 .CHAN
" 'SCHED

••••••••••••• x •
x .X. • X.

t-4 •• 44 H5 *. 47
.* t-'AS W.

: :0 •• ·;W~~~C~N:· •• CN :!:E~0~~~~G2 A~g"-: • F 2' YES. • 1/ C ... NO • OK • II- I/O •• OK •
• •••• LOOF TILL •••••••••• X.EXIT AS SET e't CR *X. ••••• STARfEC ••••••
• O~ •• I/C IS •• Ct-ECKE[• BLOCK AA 16' X • K) If- -.PROPERLY .-

·.C~KC).· .. • •••• •••• ·.(BOL).·
- •• * ••••••••••• •

• OFF

U"IT _AS ELSY OR NCT READY.

··········(ViA·;.:.44·:·~ci··
• 20

.... " •• J 2*

.F ILE SCHED ... AF4* · .-.-.-*-.-.-*-.-. I/O STARTED
•••••••• •••••••• • X' START Ct-AN 2 * ••••••••••••••••••

• 1-0 OPERATION * (VIA ... A44 - YES).

: .. !: .. ~~;;!;~; •• :
."CNE
.PEND I"C
.(VIA IIA4~) · . ••• •••••••••••••••••••••••••••• •••• •• X.

'I ... TEXT 23 X 22 $CS2RET X 21
I I *1(, ••••••• *

BEP"
• I 115 SET .

X
. " ..

: •••• K2 ••••••••• : ·····K3·····SET BRA"CH ACDR.
RESTCRE. • OF $CS2PR AT ,

• x. ••••• ••• 1411 STATUS .X AA14 Te GC re ..

: IF NECESSARY : :STATl;;A:~ST "'T : " .. " " " _

• Chart AA. Channel and File Schedulers - Overall

14

... . ' ..
.YES
.(BOOTSTRAP)

X 45
...... *J4·· ••••••••
:~;:;~;~.-.~;~~::
.. CONT INUE C~"N •
• SCHEDULER •

: •• ;~;~:!!~~; .•• :
• V I A
."NTEXT

x 46
.. K 4." It ••••

::~~~ -~:~ ~.~ ~~~::
• FORCE Ct-ANNEL •
• SCt-ECULER •

: •• ~~;~:!!~~~"I:

X
• * • 04 • " .

• ••• '. STATUS .* .•••
.. • CHECK ... x

.2-AREA *. .* l-AI~EA • · • ERROR

48

·····J5*····***·· .seRROR ~A"'I'
.-*-*-.- *- .. - .. -*-*
• CORREC T I/O
, OPERATION IF .I-A~

: ••• ~~~;!~';;* ... *:
.2-APEA

X '.9

.····KS·········· " ,
... TLRN *
••• XIPf"NOING SWlfCH ..

• OFF ,
• $CS-SCN
.AT 01 OR HI

OPEN, CILOSE, FEOR!, RDLlN, and End of Reel

Introduction

The routines generated to process OPEN and CLOSE
macros depend on the specifications in the DIOCS card
packet. The inclusion of TAPE as an IODEVICE generates
the bulk of the coding. FEORL, RDLIN, and end-of-reel
are exclusively for tape.

The DIOCS routines generated form one logical unit
which is shown as Chart AB. Much of the coding is
shared· because of the similarity of the functions per­
formed. For example, the part of the end-of-reel proc­
essing that is concerned with opening a new reel of
tape is essentially the same as the open procedures
performed for an OPEN macro. Detailed charts for all
the operations are included as Charts DA, DB, DC, DD,
DE, DF, and DG. Subroutine blocks have been used in
Chart AB to show its relation to the detailed charts.

MACRO FORMAT

The out-of-line block of coding executed for a macro
is a subroutine to the macro. The macro itself is in-line
with respect to the user's coding. It consists of linkage
to the DIOCS routines and a calling sequence listing the
files to be processed by their file reference addresses
(file names). Each address is preceded by a check
character which is a code to designate the type of macro.
The last :file named in the calling sequence is always
followed by a termination character of J and a termina­
tion address. The files named in an OPEN or CLOSE macro
may be unit record or tape. The execution of the cod­
ing for a particular macro will be called an operation.
An OPEN macro is given as an example. The source
statement, "OPEN FILEA, FILER, FILEC," would be com­
piled into the one-for-one statements:

Label Operation Operand Explanation
B $CLOP Linkage to DIOCS routines.

C FILEA \
C is the check character for an

C FILEB
OPEN operation. FILEA, etc.,
are the file reference addresses

C FILEC or file names.

B $ENTRY Terminal character and address.

The OPEN operation starts by a branch to $CLOP. After
all files are opened in calling sequence order, control
returns to the branch to $ENTRY instruction.

END OF REEL

The out-of-line block of coding executed for end-of­
reel is a subroutine to the file scheduler. The exit link­
age from the file scheduler is set up by the tape error
routine after sensing a tape mark (input) or reflec­
tive spot (output).

Descriptions of Processing

PRELIMINARY PROCESSING, BLOCK ABOl

A description of the initialization which precedes filc­
by-file processing follows:

1. The first file to be processed is identified. This is
done by setting up a pointer to the beginning of the
macro calling sequence.

2. The program leaves the priority alert mode of
operation.

3. The channels are cleared of all unchecked two­
area tape operations that have been previously initiated.

4. IOCS is set so that if an 110 macro is executed in a
user routine, its execution cannot lead to the resumption
of normal channel operations (via $ENTRY). The interro­
gation of pending switches (two-area tape files) and of
priority request latches (inquiry, real-time, etc.) are
bypassed. See discussion of disable switch in Start
Channel Operation, Chart AA.

5. The contents of index register 15 arc saved so
that IOCS can use this index register for file processing.

INITIAL FILE-BY-FILE PROCESSING, BLOCKS AB02-AB03

File-by-file processing begins (or continues) by mov­
ing the first (or next) segment of the macro sequence
to a work area (AB02). A segment consists of the check
character addressed by the pointer (see step 1 under
"Preliminary Processing"), file reference address, and
the check character for the next file. The file reference
address is moved into index register 15 for processing
the current file; the pointer is then incremented by 6
to prepare for the next file. A test is then made to deter­
mine if it is a RDLIN macro. If it is, control branches to
block AB24.

Otherwise, a table look-up is executed by file type
in a table of routine linkages (AB03). For each file type,
there is a sequence of two addresses; one for OPEN, the
other for CLOSE (or FEORL) operations. The bit structure
of the check character in the calling sequence work
area is examined to determine which address to use.

PRIORITY ASSIGNMENT, BLOCKS AB04-AB07

The priority assignment routine, if generated, is exe­
cuted only during an OPEN operation. The considera­
tions for all DIOCS configurations are as follows:

A. Non-Overlay: The routine remains in storage at
all times, unless overlayed by the user in conjunction
with the use of the origin option. The routine is en­
tered and executed at block AB07 only for a two-area
file (file type = 2), as provided by the tape sequence
in the routine linkage table. (For a one-area file [file
type = 1], the tape sequence causes control to go
directly to open procedures, block AB08.) The pending
switch address and DTF-specified priority for the file
are entered into a table which contains such addresses

OPEN, CLOSE, FEORL, RDLIN, and End of Reel 15

and priorities for all files previously opened. The table
is sorted by relative priority on each channel. The
pending switch for the file is then inserted into the
pending-switch network on the respective channel. A
previously opened file is eliminated from the table
before assignment begins. Control then branches to
tape open procedures, block AB08.

B. Overlay (before the Second IOCS load): A dummy
sequence in the routine linkage table forces control to
pass through the priority assignment routine for every
file type. A test is made to determine if it is a two-area
tape file (AB04). If it is, the file is processed in the man­
ner described earlier (see entry A) . A test is then made
in the calling sequence work area to determine whether
there is another file to process (AB05). If there is, con­
trol returns to block AB02. Otherwise (the J terminal
character was encountered) the macro pointer is reset
to point to the first file in the calling sequence. The
dummy sequence in the routine linkage table is re­
placed by the tape sequence described under entry C.
Control then branches to the load program at core
location 00281. The second IDCS load is brought in to
overlay the priority assignment routine (AB06). The
load execute is to $EXIT, block AB02, to resume normal
file-by-file processing.

C. Overlay (after the Second IOCS load): The priority
assignment routine has been overlayed. Every tape file
named in the OPEN is processed according to the new
tape sequence in the routine linkage table. Control pro­
ceeds to block AB08 to start open procedures.

D. Assemble: Priority assignment was accomplished
at compile time. The tape sequence for an OPEN is
identical to that described under entry C.

TAPE OPEN PROCEDURES, BLOCKS AB08-AB12

Open procedures begin (AB08) by moving the file refer­
ence address for the file into a table which is arranged
by file identification. The table is used by the error
routine. Housekeeping for proper operation of the file
scheduler is then executed.

The rewind procedure for the file is executed (ABO\))

preparatory to header label procedures. If it is a stand­
ard label file, the header label is processed according
to the DTF options specified by the user (ABlO). These
procedures, for input and output files, are:

Input File: The label is read into the IDCS label area.
The label is checked completely, partially, or not at all,
depending on the CHECKLABEL entry of the DTF.

Output File: When a retention check is to be made,
the label is read into the IOCS label area and checked
before IDCS starts building the new label in the label
area. After the fields specified by the DTF have been
moved in, the user may modify the label information,
or add to it, by using exit 4. If the user wants to check
the label and build the new label himself, he can bypass

16

both IOCS coding blocks by using exit 3; however, he
must read the label himself. Finally, the tape is re­
wound and the contents of the IDCS label area are
written on the tape.

Input file processing continues (ABU) from ABO\) or
ABlO to exit 7 procedures. Exit 7 may be used to check
a non-standard header label or a label in addition to a
standard label; however, the user must read the label
himself. After exit 7 procedures, IDCS bypasses a tape
mark, if required (TM specified on the CHECKLABEL

entry in the DTF).

Output file processing continues CAB12) from ABO\) or
ABIO to exit 5 procedures. Exit 5 may be used for check­
ing and creating a non-standard header label or creat­
ing a label in addition to a standard label; however,
the user must write the label himself. After exit 5 pro­
cedures, IDCS writes a tape mark, if required (TM speci­
fied on the CHECKLABEL entry in the DTF) .

After handling exits 5 or 7, control branches to the
final tape procedures at block AB13 for all files.

FINAL TAPE PROCEDURES, BLOCK AB13

If required, a checkpoint identifier record, followed
by the checkpoint record, is written on the DIOCS­

designated tape. If the file has a pending switch (two­
area only), it is turned off. Control then passes to the
routine that tests if there is another file to process,
block ABH.

COMMON TEST AND EXIT PROCEDURES, BLOCKS AB14-AB17

A test is made in the calling sequence work area to
determine whether there is another file to process
(AB1 .. j.). If there is, control branches to block AB02. Other­
wise (the J terminal character is sensed), file-by-file
processing ends and the following final housekeeping
is performed CAB15):

1. The address of the J character in the macro call­
ing sequence (not the one in the work area) is set up
as exit linkage.

2. The user's contents of index register 15 are re­
stored.

3. IDCS is reset to permit the resumption of channel
scheduler operations (via $ENTRY).

In a macro operation, the return is to the instruction,
branch to $ENTRY, to restart the channels (AB16), and
re-enter the priority alert mode.

In an end-of-reel operation, the place of return is to
the file scheduler via one of two exceptional condition
vectors (AB17). The particular vector used depends on
whether it is an input or output file; the branch address
of the vector depends on whether it is a one-area or
two-area file (see Figure 7 or Chart DF for details).
The file scheduler restarts the channels (preceded by
a priming operation for an input file).

BEGIN CLOSE PROCEDURES, BLOCK ABlR

Processing begins by determining if the current file
named in the CLOSE or FEORL macro is a fixed, blocked,
output file. If it is, and if there is a partially filled block
waiting to be written, the block is padded with blanks
or the DTF-specified padding character, and written on
the output tape. If it is a CLOSE operation, the internal
reel sequence counter is set to O. Then both CLOSE and
FEORL procedures join end-of-reel processing at block
AB22 (input) or block AB21 (output).

END-OF-REEL PROCEDURES, BLOCKS ABl9-AB22

End-of-reel processing is entered from the file sched­
uler via the pivot linkage set up by the error routine
when the previous tape operation for the file was
checked and an EOF condition was sensed.

To facilitate processing, a single-file macro operation
is simulated (ABl9). The calling sequence work area is
set up with a check character of *, followed by the file
reference address for the file, and the terminal char­
acter J. The file reference address is set into index reg­
ister 15 after the user's contents are saved, the priority
alert mode is exited, the channels are cleared, and rocs
is set to prevent normal resumption of channel opera­
tions. The macro pointer is set to address one of two
exceptional condition vectors for exit linkage, depend­
ing on whether the file is input or output.

For an input file, trailer processing is begun (AB20).
For a standard label file, after the label is read into the
IOCS label area, the required internal counts are com­
pared to the corresponding trailer counts. A discrep­
ancy is noted by an appropriate message. After any
exit 6 processing that the user may have included for
trailer labels, the identifier field in the IOCS label area
is tested for lEOF. If so, control branches to the user's
DTF-specified end-of-file address. For a non-standard
label file, if there is a label, the user must employ
exit 6 to process it and establish whether it is the last
reel. The user must read the label himself. If the user
establishes that it is the last reel, he must inform IOCS
by moving lEOF into the IOCS label area in order to get
to his end-of-file address. If exit 6 is not used, control
branches, without a test for end of file, to the user's
end-of-file address.

For an output file, the coding block for trailer pro­
cedures, AB2l, is shared by FEORL and CLOSE. A test is
made to determine if there is a block waiting to be
written (two-area file only). If so, the block, followed
by a tape mark, is written. For a standard label file,
processing continues by preparing the trailer label with
the required count fields in the IOCS label area. Addi­
tional information may be entered by use of exit 1.
After the label is written, exit 2 is provided for con­
structing an additional label; the user must write this
label himself. For a non-standard label file, only exit 2
is provided for constructing the trailer(s). A tape mark
is written on the tape if necessary.

Output processing joins input processing at block
AB22. The tape is closed by executing the rewind option,
and the reel sequence number is updated.

For a CLOSE operation, control branches to block
AB13 to complete processing for the current file.

For an end-of-reel or FEORL operation, the new reel
for the file is set up. If an alternate tape drive is speci­
fied, rocs swaps base and alternate tapes automatically.
Otherwise, IOCS enters a waiting loop after typing an
identifying message so that the operator may mount
the new reel on the same drive. Control then joins open
procedures at block ABOR to open the new reel.

UNIT RECORD PROCESSING, BLOCK AB23

Little or no housekeeping is performed for a unit record
file named in an OPEN or CLOSE macro. For an OPEN
macro (assuming all of IOCS has been loaded), the
block count is reset to O. For a punch file named in a
CLOSE, a blank card is punched to move the last card
punched into the stacker. For a printer or reader file
on a CLOSE, no processing is done.

Control then proceeds to the coding block that tests
if there is another file to process, block AB14.

RDLIN PROCESSING, BLOCK AB24

The RDLIN card is read into storage and the label in­
formation is moved into the appropriate internal fields
for the file. Control then proceeds to the coding block
that tests if there is another RDLIN card to process,
block AB14.

OPEN, CLOSE, FEORL, RDl,IN, and End of Reel 17

AB

2" X C2 el.......... [2
"POLIN C~04' '![XIT OFF;'
I-If-I-I_'_If_If_I_1f RnLI~ *_I_If_If_I_I_If_If_*

FRO", OPE" .CLCSE
FEORL.OP [lOLl"

"'ACRe

.. AP ..
.. P. J'

• 0 I le3··········
:~~~~~.-.-.-~~~~:

FPC'" FILE SCHED
VIA UTILITY PIVOT

(fOP I

X 19 ·····E4······**·· :~;~~~.-.-.-~~:~: INPUT
• •••• PleVE RCLlf\I .X ••••••••• SeT fRA IN XI~ .x ••••••••• ACCESS 1ST FRA.- ISIMUL CALL sEa ••••••••••••••••••••

'SET FRA IN X IS * 'CARD I"FC I"TO • -~CCE~S ~EXT FPA' -CLEAR C~A""ELS.'

:!~!;~~:~.~!~;~;: :~;~.!~~~.;~:~~.: :~~~~.~:~.!~!~~~: :;';;:~.~~:~~;~~.:
.0
.U

• T .P
.U

• T 23 X (3 Ie X 21
tI •••• Cl.......... (2.......... C3.......... (4
:l,NI;E~~CCg~~~s.: ~~ ~E~~·:-.-.-.-*-.-.-.-: ~~g~~' :~~~;~~~.-.-~:!:: CUTPUT :~;~;~!~._._~::::
• r:::u~c ... CLCSE- .x ••••••••• FINe SCGLENCE X. IF OLTPLf •••••••••• X.wR LAST eLK IF"

PUNC~ BL"I\K • • FOP FILE I" - "PAD THE BLCCK' 'I\EC.E'UILC TRLA,,,

•••••• ~::5., •• ,.: :I~!~::~~.!:~~~.: :*~~k~~~~~~!::... :!.~2.~:!!~.!:~.:

X 20

·····es'·········
:~!~;~~_ 1-1-~~!::

•••••• 'CHECK TRAILCR ••
*00 EXIT 6 + EOF'

:~~~;;~~~;;:.; !;:
• EOF

.C

.P

.E

.N
• I P\Fl.. T ... x • x.x

• CPEN (IISSE'-'BLE OR AFT CVERLIIYI X 22 ·C4·········· . "
"

TO USER
[OOF AODR

.. • .. OT~ER UP ..

.(
.f:'
.E
.r CPEN (I\ON-OVE~LAYI :~S~!~._._._~:~:: CLOSE

.. • x .. x
.C
• V
.E
.R
.L
.A
• Y

.J

X (4 ·····E2.·····.·.· 4SP~~5K DA84'
*-1-1-1-1-1-1-1-'
'IF 2-ARI:A TAPE'
" ASSICN FILE "

:~~i:!!~;.~~!~~.·:

X CS " .. w. *F 2
(NCT "Sf.'AEX I T DAC4'

J) .-*-.-.-.-1-"-.-•
•••••• TEST FeR J.

• A
.C
.C
.E
.s
.5

.A

.N

.0
• T
.~

.E

.R

• F .1
.L
.E

* IF J. Sf. T TO

: ... ;;~!~.~~~~* ... :

X (6
.. * ••• (2* •• -I *
::~~~-~~~:~~~-.-:
" LOAD SECOND *

ICCS LOAD

· . •••••••••••• x.

'CLeSE OLe REEL,,'
"IF ECR OR FECRL'

:.~~!.~;:.:;~~ .. :
• FECRL
• EOR

• 07 X 08 'E3.......... E4•..•..
:~~~~~~-. -. -~~~ ~: :: ;~! ~ ,,- ,,-. -~~!~:
• ASSIG"'- FILE ••••••••• X. INITIALIZE •
• RELATIvE FPI 'FILE SCt-EOULER "
" ON C~AI\I\EL • *

X 09
··.'*F4 .. •• .. • ••• 'IEI\T.oB OBA2'

I\CN-STA"DARD *-.-*-.-*-,,-,,-*-* NON-STANDARD
• •••••••••••••••••• CPEN 1ST OR r-..EW* ••••••••••••••••••

• REEL *
.1 .0
.~ ••••••••••••••••• .U
.P • T
.L. .STANO .P
• T .LABEL .U

• T

X II X 10 X 12 G].......... (4.......... *G5- •••• ' ••••

:!~~!~.-.-.-;:;~: I"PUT :~;~~~.-.-.-~~:~: OUTPUT :!;~!~ .• -.-.-~~~~:
• DC EXIT 7 .x ••••••••• CI-II< LBL.IF OUT- ••••••••• x. 00 EXIT 5 ..
:PRCCEDL.RE. ETC: "PUT ['UILD t-DP, • :PROCEDURE, FTC:

..•..••..•....... :.~~.;~!!;.;;: •• : •••••• a __ a •• ". __ _

13

·····~4.*.· .. ···· '!EI\TJ 01!K4' · *-.-.-.-*-*-.-.-. x • •••••••••••••••• • xa TAKE Ct-KPT. IF ax •••••••••••••••••••••••••••••
* PEO.SET PENt.:: *

:.;~~.!~.~;:~~!.:

.. x.

X 14
•••• *J4·· ••••••••
"EX I TRU DFB3*

• ACCESS AI\OTt-'EP FILE (NCT J I .-,,-.-*-,,-.-,,-.-* · ... 'lI..• CHECK FOR J •

~[TLRI\ TO CET
OR PUT "'ACRO

• Chart AB. Open, Close, EOR - Overall

18

" (TEI<MINAT ION

: •• ~~:~:~~;~! ••• :
• J

I 7 X IS 16 ".t< 3 w..... *1<4.............. _ ••• *K5* .a.* f. 1- .. .
-FILE SCI-ED -. • 'MACRO *
--*-*_._*_*_*_w ECR W_4_1-_*_._-I_._._* MACRO *_._._._*_*_*_._il·

•••••••• ·INPT-pn[~E ,AREA.X •••••••• * RESTORE XIS ••••••••• X. START •
• 'OUH'liT-START' 'ALLOw EXTERNAL' "Ct-'ANNELS

...• : : ••• ~~:~~~~~ .••. : : .. !:!~~:~~!~ ••• : •••••••••••• _ •.••
RET TO : MAC~O+l

X

Generc'1l Error Operations

Two distinct error routines may be generated: one for
tape if TAPE is included as an IODEVICE; the other for
unit record if PUNCH, READER, or PRINTER is included.
The conditions and corrective procedures for tape and
unit record are summarized in the tables in Figure 1.
A description of the tables follows. An overall chart
for the tape errol' routine, Chart AC, follows Figure 1.
This chart is not described. The tape error routine is
shown jtn detail on Charts EA, EB, and EC. The unit
record error routine is shown on Chart ED.

Description of Tape and Unit Record Error
Routine Tables

TAPE ERlROR CONDITIONS

The tape error routine is entered for two reasons: first,
because of an unsuccessful 110 operation and second,
because of an exceptional condition (wrong length
record, first character of a record is a tape mark on
read, or sensing of the reHective strip on the tape on
write).

1. If the entry is due to an unsuccessful tape opera­
tion, the routine:
a. Determines the nature of the failure.
b. If possible, corrects the operation and returns

control to the instruction immediately follow­
ing the BA or BEX instruction which originally
sent control to the error routine. (Note that
the BA or BEX instruction just described will be
referred to as the channel BA or BEX instruction
in the following descriptions and charts.)

c. If unable to correct the operation, types out
an error message and enters a wait loop for
operator action. An exception, explained later,
to this last statement exists if autodump has
been specified by a DIOes READERROR entry with
an operand of only TAPE,CU and the error is a
data check on a normal read operation.

2. If the entry is due to an exceptional condition,
the routine provides linkage between the file, for
which it was entered, and the programmer's
wrong-length-record routine or the IOCS end-of­
reel routine.

The tape error routine is covered in more detail in
the following description and in the left side of Figure
1. In the description, it is assumed that whenever an 110

operation is corrected through re-execution, control
returns to the instruction immediately following the
channel BA or BEX instruction. It is also assumed that
the action taken for a described conditiQn applies to
situations where only that condition exists.

BUSY: The routine loops until the device is not busy,
executes the 110 instruction and returns control to the
instruction immediately following the Channel BA or
BEX instruction.
NOT READY: The routine types a Not Ready message,
loops until the device is made ready, executes the 110

instruction, and returns control to the instruction im­
mediately following the Channel BA or BEX instruction.
DATA CHECK (Write): The routine attempts to
correct the condition by performing the following
s~quence:

1. Backspace, rewrite, and check (once).
2. Backspace, skip, rewrite, and check (eighteen

times).
3. Types a data check on write message (20114 DCK)

and enters a wait loop for operator action. (The
only possible option on a output tape error is to
attempt the write operation again. This option is
assumed by the error routine if the operator
presses the INQUIRY REQUEST key and then the
INQUIRY RELEASE key.)

4. Backspace, skip, rewrite, and check (20 times).
After twenty attempts, the message and wait loop
routine at step 3 is re-entered.

ZERO LENGTH RECORD (Write): The routine
types a message (201l7ZRU indicating that the first
character in the tape record core storage area was a
group mark/word mark. A wait loop for operator action
is entered. The only possible option is to proceed as if
the operation were a success. This is accomplished if
the operator presses the INQUIRY REQUEST key, enters
the code word PROC, and presses the INQUIRY RELEASE

key. Control returns to the instruction immediately fol­
lowing the Channel BA or BEX instruction.
DATA CHECK (Read): The routine attempts to cor­
rect the condition by executing the following sequence:

1. Backspace, re-read, and check (19 times).
2. If autodump has been speCified by a DIOCS READ­

ERROR entry of only TAPE, cu and the record in
error is not a label, control goes to step 5.

3. The routine types a message indicating a data
check on a read operation. The message is
401l9LRE if the error was on a label record, or
X01l3DCK, if the error was on a data record (x in­
dicates the number of options minus one). A wait
loop for operator action is entered. The options
available depend, in part, on the DIOCS READERROR

entry.
A. If there is no entry, the options available are

PROC, RETRY, and SKIP.

B. If the entry is SCAN, the options available are
PROC, RETRY, SKIP, and *SCAN.

C. If the entry is TAPE, GUJ no options are avail­
able.

General Error Operations 19

D. If the entry is SCAN, TAPE, CU, the options
available are PROC, RETRY, SKIP, *SCAN, and
DUMP.

The operator selects an option by pressing the
INQUIRY REQUEST key, entering the code word and
pressing the INQUIRY RELEASE key. The actions
initiated by the various options are:
A. If PROC is entered, the routine ignores the error

and returns control to the instruction immedi­
ately following the Channel BA or BEX instruc­
tion. Processing continues as if the operation
had been a success.

B. If RETRY is entered, control goes to step 4
where an attempt is made to re-read the rec­
ord successfully.

C. If SKIP is entered, the routine ignores the error
record, reads the next record on the tape, and
returns control to the instruction immediately
following the Channel BA or BEX instruction.

D. If *SCAN, is entered, the location(s) of the
asterisk(s) in the error record are typed on the
console printer, and the message and wait
loop routine at step 3 is re-entered.

E. If DUMP is entered, the record in error is writ­
ten on the DIocs-specified dump tape and
control re-enters the message and wait loop
routine at step 3.

4. Backspace, re-read, and check (20 times). Con­
trol returns to the message and wait loop routine
at step 3.

5. The record in error is written on the DIocs-speci­
fied dump tape. The routine reads the next record
on tape and returns control to the instruction
immediately following the Channel BA or BEX in­
struction.

NOISE LENGTH RECORD (Read): The routine
reads the next record on tape and checks it. If it too is
a noise record, another read operation is performed.
This sequence is repeated until ten consecutive noise
records are read. At that time the message, 20118NLR, is

20

typed and a wait loop for operator action is entered.
The only possible option is to retry the read operation.
This is assumed if the operator presses the INQUIRY

REQUEST key and then the INQUIRY RELEASE key. Ten
more attempts are made to read the record success­
fully. If the condition is not corrected, control re-enters
the message and wait loop routine.
WRONG LENGTH RECORD (Read): The routine
attempts to correct the condition by executing the
following sequence:

1. Backspace, re-read, and check (10 times).
2. If unsuccessful in correcting the condition, the

routine sets up linkage in the file scheduler, from
which it was entered, to get to the programmer's
wrong-length-record coding. Control returns to
the instruction immediately following the Chan­
nel BA or BEX instruction for a two-area file or to
the instruction at the file reference address (ad­
dress of file name label) minus 7 for a one-area
file.

I/O CONDITION (Tape Mark on Read or Reflective
Strip on Write): The routine sets up linkage between
the file scheduler, from which it was entered, and the
IOCS end-of-recl routine. Control returns to the instruc­
tion immediately following the Channel BA or BEX in­
struction for a two-area file or to the instruction at file
reference address minus 7 for a one-area file.

UNIT RECORD ERROR ROUTINE

Because of the nature of unit record devices, the
error routine is unable, in most instances, to take any
corrective action. Therefore, the main function of the
routine is to notify the operator of the type of error
and to enter a wait loop for manual intervention.

The reasons for entry to the routine and the actions
taken by it are shown in the unit record error routine
table on Figure 1.

For a more detailed treatment, refer to Chart ED

and its description.

TAPE UNI T RECORD

: REASON FOIl
• ENTRY TO : ACTION TAK~N BY THE TAPE ERROR

:NO OF: GO:
.TIMES.TO •

• ROUTINE ROUTINE ') ... "
••••••••••• I •••

• NOT READY

: BUSY

• DAT'A CHECI(
• ON WRI TE

• A. TYPE NOT READY MESSAGE - - - - - - : • B •• NOT READY • A. TYPE NOT READY MESSAGE - - - - - - :

: B. RE-EXECUTE I/O INSTRUCTION • : B. RE-EXECUTE I/O INSTRUCTION •
AND CHECK - - - - - - - - - - - - -. • B •• AND CHECK - - - - - - - .- - - - - -.

: A. RE-EXECUTE I/O INSTRUCTION • • :: BUSY : A. RE-EXECUTE I/O AND CHECK - - - - -.
AND CHECK - - - - - - - - - - - - -. • A ••

• A. BACKSPACE. WRITE. AND CHECK - - - -: • B

• B. BACKSPACE. SKIP. WRITE. AND CHECK -: 18 • C

• C. TYPE DATA CHECK ON WRITE MESSAGE - • 0 ••

DATA CHECK • A. TYPE DATA CHECK ON READ MESSAGE -
ON READ

• B. ENTER WAIT LOOP FOR OPERATOR
ACTION. THE ONLY OPTION IS TO
TRY AGA I N - - - - - - - .- -

• C. RE-EXECUTE I/O INSTRUCTION
AND CHECK - - - - - - - - - - -

• B •

• B •

• A •

• B •

• C •

• A • • D. ENTER WAIT LOOP FOR OPERATOR
ACTION. THE ONLY OPTION IS TO
RE TRY. - - - - - - - - - • E .. " ••••••••••••••••••

• E. RETRY OPTION. BACKSPACE. SKIP. DATA CHECK • A. RE-EXECUTE I/O INSTRUCTION
WRITE. AND CHECK - - - - - - - • 20 • C •• ON WRITE AND CHECK - - - - - - - - - - - - -.

••• It ••••••• ,t ••

• ZERO LENGTH • A. TYPE ZERO LENGTH RECORD MESSAGE
• RECORD ON
• WRITE • B. ENTER WAIT LOOP FOR OPERATOR

ACTION. THE ONLY OPTION IS TO
PROCEED. - - - - - - - - - - - - -

• C. PROC OPTION. CONTROL IS RETURNED

• 8 ••

• c ••

• B. TYPE DATA CHECK ON WRITE MESSAGE - :

• C. ENTER WAIT LOOP FOR OPERATOR
ACTION. THE ONLY OPTION IS TO
TRY AGAIN - - - - - - - - -

• D. RE-EXECUTE I/O INSTRUCTION
AND CHeCK - - - - - - - - - - -

• B •

• C •

• 0 •

• B •

TO THE INSTRUCTION SEQUENTIALLY. • •• e ••••••••••••••••••

• • FOLLOWING THE CHANNEL BA OR BEX - -: .:: WRONG LENGTH: A. CONTROL RETURNS TO THE INSTRUCTION:
•••••••••••. , •• RECORD IN SEQUENTIALLY FOLLOWING THE CHANNEL •

• DATA CHECK • A. BACKSPACE. READ. AND CHECK - - - - : 19

: ~~A:~tDREAD • B. TYPE DATA CHECK ON READ MESSAGE - -:
• OR NO AUTI)
• DUMP SPEC) • C. ENTER WAIT LOOP Fon OPERATOR

ACTION. THE CODE WORD FOR THE
DESIRED OPTION IS ENTERED. -

• D. OPTIONS

PROC- CONTROL RETURNS TO THE
INSTRUCTION SEQUENTIALLY
FOLLOWING THE CHANNEL BA OR BEX

•• LOAD MODE BA OR BEX INSTRUCTION
• B ••

• C

• 0

WRONG LENGTH: A.
RECORD IN
MOVE MODE • B.

TYPE WRONG LENGTH RECORD MESSAGE - :

ENTER WAIT LOOP FOR OPERATOR
ACTION. THE ONLY OPTION IS TO
TRY AGA I N - - - - - - - - -

• C. RE-EXECUTE I/O INSTRUCTION
AND CHECK - - - - - - - - - - -

RETRY- BACKSPACE. READ. AND CHECK

SKIP- READ NEXT ReCORD AND CHECK -

*SCAN- TYPE OUT LOCATION/S OF
ASTERISK/S IN ERROR RECORD - - - -

20 • B NO TRANSFER • A. TYPE PROGRAMMING ERROR MESSAGE - - :

· DATA CHECK A.

· ON READ

· I AUTO DUMP B.
SPEC AND · NOT LABEL · READ) C.

D.

DUMP- WRITE ERROR RECORD ON DIOCS •
SPECIFIED DUMP TAPE - - - - - - - -.

BACKSPACE. READ. AND CHECK - - - -
WRITE ERROR RECORD ON DIOCS
SPECIFIED DUMP TAPE - - - - - - - -.
TYPE AUTO DUMP MESSAGE - - - - - -
READ NEXT RECORD AND CHECK - - - -

• NOISE LENGT~: A. READ AND CHECK - - - - - - - - - -
• RECC'RO-READ •

• B. TYPE NO I SE LENGTH RECORD MESSAGE - :

• C. ENTER WAIT LOOP. THE ONLY OPTION •
IS TO RETRY THE OPERATION - - - - -.

19

• A ••

• B ••

• e ••

· B ..
C

D

A ..

CARD READER •

I/O COND
PRINT OR
PUNCH

• B. ENTER WAIT LOOP FOR OPERATOR
ACTION. THE ONLY OPTION IS TO
TRY AGA I N - - - - - - - - - -

• C. RE-EXECUTE I/O INSTRUCTION
AND CHECK - - - - - - - - - - -

• A. TYPE LAST LINE PRINTED OR LAST
CARD PUNCHED IN ERROR MESSAGE

• B. ENTER WAIT LOOP FOR OPERATOR
ACTION. THE ONLY OPTION IS TO
TRY AGA I N - - - - - - -' - -

• C. RE-EXECUTE I/O INSTRUCTION
AND CHECK - - - - - - - - - - - -

• B •• END OF FILE. A. TYPE NOT READY MESSAGE
•• CARD READER.

• C •• NOT CHECKED. B. RE-EXECUTE I/O INSTRUCTION (MAKES

• 0

•• BY PROGRAM READER NOT READY) AND GO TO B OF
NOT READY SEQUENCE

• D. READ AND CHECK • to. B ••
•• • • •• END OF FILE.
••••••••••• ••••• ••• ••••• CARD READCR •

• WRONG LENGTH. A. BACKSPACE. READ. AND CHECK - - - - : 10
RECORD

•• CHECKED BY
• B •• PROGRAM

A. CONTROL RETURNS TO THE INSTRUCTION.
SEQUENTIALLY FOLLOWING THE CHANNEL •
BA OR BEX INSTRUCTION

• B •

• C •

• A •

• B •

• C •

• A •

• B •

• C •

• A •

• B •

• B. SET WRONG LENGTH RECORD LINKAGE - -: • c ••• & ••••••••••••••••••

• I/O CONO
• CTAPE MARK
• ON READ Ol~
• REFLECTtVlo
• STRIP ON
• WRITE

• C. EXIT TO FILE REFERENCE ADDRESS-7
FOR A I-AREA FILE. EXIT TO THE •
INSTRUCTION SEQUENTIALLY FOLLOWING.
THE ONe WHICH CAUSED ENTRY FOR A
2-AREA FILE.

• A. SET LINKAGE TO IOCS END-OF-REEL •
ROUTINE - - - - -. - - - - - - - - -.

• B. EXIT TO FILE REFERENCE ADDRESS-7
FOR A I-AREA FILE. EXIT TO THE •
INSTRUCTION SEQUENTIALLY FOLLOWING.
THE ONE WHICH CAUSED ENTRY FOR A
2-AREA FILE.

• B •

IF UPON CHECKING. IT IS DETERMINED THAT THE OPERATION WAS A
SUCCESS. CONTROL IS RETURNED TO THE INSTRUCTION SEQUENTIALLY
FOLLOWING THE CHANNEL BA OR BEX INSTRUCTION.
THE SEQUENCES OF PROCEDURES SHOWN IN THE TABLES ARE THOSE TAKEN
FOR SITUATIONS WHERE THE CONDITION WHICH CAUSED ENTRY TO THE
ROUT I NE CANNOT BE CORRECTED

Figure 1. Tape and Unit Record Error Routine Tables

General Error Operations 21

AC

09

·····Al·····**··· .SCS1SFS BAG3"

.......
"AC ..
.. "A~"

SERROR X 01
: •••• A2 ••••••••• :

.-*-*-.-.-.-.-._" " INITIALIZE
"CLEAR CHAN ONE ••••••••• X" ERROR
• OF UNCHECKED "RETURN " ROUTINE
"I/O OPERATIONS "TO CHECK"

A3

"

• It .. : BRANCH

X SJUG 03 SERSA "
.. " 02 """A4*""""""" AS 04 .. "

YES .. RE-EXECUTE " CHAN
BUSY ••••••••• X. THE. •••••• ••• X. BA OR SEX

"I~STRUCTI~N" "~/O INSTRUCTIO~"

••••••••••••••••• CHAN 2 ••••••••••••••••• ***** ••••••••
X X ERROR

SLMWTGR • 08
·····81·········· .SAVE LINKAGE TO"

X .. " 07

.CHAN 2 FILE AND" NO " " "BETWEEN CHAN 1 "X CHAN I FREE
"SCHED AND FORCD"
.. CHAN 1 FILE

CI 15 .
NO " "

" "

NO "

C2 . 14

•••• R~AD OPERATIO~ .X DATA CHECK

X
". .YES
: H3 : :WRONG
••• " .LENGTH

SHRHL T .RECORD
TYPE ZRL X
ON WRITE 01 "" 16
MESSAGE· •

"RE-EXECUTED·
10 TIMES

.
.YES

X
• C4 ..

" . •• * ..
$ERDLY

UNCORRECTABLE
WRONG LENGTH REC

"

" *... . YES . ". : 02 :.X.
SERD~··* X

02 " "
" NO "WRITE

... •• • • • • • x* TAPE MARK OR
" NOT WLR

" .
" .NO

X

17

E2 ... 18
" TEN "

·CONSECUTIVE"
" NOISE LENGTH

" RECORDS " .. "
.NO

X
" " .. A4 • .. "
*.**
SJUG

NO

B3 ..

" .NO

NOT READY

" .NO

l(

..
••• *

" " .x .• A4 ...

.NO BRANCH

.. " ... -
SERNR • II

10 ••••• 84 ••••••••••
.. TYPE OUT "

YES "A NOT READY " "

X
B5 .. " OS

YES
- •••••••• X.MESSAGE IF THIS­

.. IS THE FIRST ..

.. PASS " •••••• *.* ••••••••

BRANCH ANY It ••••

....
" ... C4 ••••

" "

"

" .NO
" C5 -.X. ..
...X *... ..

SERDLY X 13 SERLV X 06
•• ***C4** ••••••• * ••• *.CS •••••••• **
" SET LINKAG~ " "EXIT TO *

YES " BETwEEN FILE " " LOCATION SET "
*X

"C3 " " " 12
"END OF FILE"

OR ••••••••• X. SCHEDULER AND ••••••••• X. BY BLOCK ACOI *
"E~D OF RE~L" EOF TESTED" WLR OR EOR" X" OR BY *

BY CHAN SA" ROUTINES " ~LOCK ACI3 ~
OR SEX *.*** ••••••• ***.. • ••• ********* ••• * ..

.YES
· EOF· NOT· TEsTED··························

..~*.
" "

BY CHAN BA OR DEX

YES
* •••••••••••••••••••••••••••••••••.••••••.•••

SERH 19
*****E3**····"***
"SHALT DHAI"

YES *-*-*-*-*-*-*-*-*

SERH+7 X
E4 " ..

" " " EXECUTED
••••••••• X. TYPE MSG AND ••••••••• x* 20 TIMES
TYPE NOISE"ENTER WAIT LOOP"
RECORD MSG: ~~~ .. ~;~"~",,*:

X ..
...... .YES

" ". " F4 ".X.
$ERCTL X

F4 " ..

• NO ..

20

22

" ••••••••••••••••• • ·READ
TYPE WRITE •
ERROR MSG

OPERATIO~

SERQLB

" .YES

X
G4 .. "

" "
23

YES "LABEL READ "

· H3 .. X.

" " .. *.* •

TYPE ERROR
ON LABEL
READ MSG

SERHLT X 25
·.···H3···**····· "SHALT DHAI"
--*-*-*-*-*-*-* NO

OPERATION

..
• NO

X
H4 ".. 2

..
EXIT TO FILE REFERENCE
ADDRESS-7 FO~ WRONG
LENGTH RECORD OR EOF/EOR
ON I-AREA FILE.
OTHERWISE EXIT TO THE
INSTRUCTION SEQUENTIALLY
FOLLOWING THE ONE WHICH
CAUSED ENTRY TO THE
ROUTINE

21
····ES*· .. ···** .. "BACKSPACE AND"

NO " EXECUTE SKIP •
" •••••••• X" INSTRUCTION *

"(ONLY EFFECTIVE"
.. ON WRITE) "
..... *** •• * •••

X
* •. *

... A4 " *.*. $JUG
*X •••••••••••••••••

••• X. TYPE MSG AND *X ••••••••• AUTO DUMP

PROC
x

• C5 ..
" it
SERLV

;NONE

Jl . ..
:HICH OPTION

..
.RETRY

X
•• **

" " : 02 :
SERDC

32

it OTHER
*X •••••••• * ..

J2

" " WHICH OPTION ..

" .SKIP

X
" A4 "
" "

$JUG

Chart AC. Tape Error Routine - Overall

22

31 ..
..

OTHER

"ENTER WAIT LOOP"TYPE READ
.. FOR REPLY "ERROR MSG *.

" .YES

X X 27
J3 •• 26 •• *J4 ••••••• * .. "WRITE AUTO OR" DUMP "OPTION DUMP "

*X ••••••••• WHICH OPTION ••••••••• X*LABEL AND ERROR* •••••••• X* .. " " RECORD ON THE "

..
."SCAN

SERSCN X 30
·····K3········.· " TYPE OUT THE "
"LOCATION OF THE"
• ASTERISKS "
• IN THE
:.;~~~~.~~~~~~ .. :

SERCTL
X .. ' .. · ..

• F4 * · .

" DUMP TAPE "
***.**

;NO

J5 28

"
AUTO DUMP

.
.YES

$JUG
X ._*.

" * " A4 *
* "

The 10CS operations, treated on an over-all basis by
Chart AA, Chart AB, and Figure 1, are covered on a
lower level and supplemented by the following block­
by-block descriptions and detailed charts. Scheduling is
covered by Charts BA, BB, BC, BD, BE, and BF; record
processing by Charts CA, CB, and CE; OPEN, CLOSE, FEORL,

RDLIN, and end of reel by Charts DA, DB, DC, DD, DE, DF,

DG, and DH; and the error routines by Charts EA, EB, EC,

and ED. In these charts, much of file processing depends
on the file reference table. The reader may find it
helpful to refer to this table, included as Figure 7 and
described in the Program Condition Analysis Aids
section of the manual.

The reader is again reminded that in a label, the
convention of two hyphens (- -) designates the file
prefix (e.g., $--FULL) either generated by 10CS or speci­
fied by the user. One hyphen (-) designates the chan­
nel prefix (e.g., $CS-SFS). The dollar sign ($) substitutes
for the first four characters in the label, viz., 10CS.

Scheduling

Channel Schedulers, Including Interrupt

Block BA01, 00101: A machine interrupt, which
occurs in priority alert mode when an 110 operation has
been completed and an interruptable instruction is en­
countered, causes an automatic branch to core loca­
tion 00101 and an exit from priority alert mode. At
location 00101, the B-address register is stored, saving
the seventh character of the interrupted instruction,
and control branches to $ATTN.

Block BA02, $ATTN: The address at which the in­
terrupt occurred is decremented by six. This adjusted
address, which points to the operation code of the
interrupted instruction, is stored in $INTEXT, block
BA20. Control branches to $CSIENT, block BA05.

Block BA03, $ENTRY: The normal entrance to the
channel scheduler from end of macro operations is
made at $ENTRY. The return linkage is set in $INTEXT,

block BA20.

Block BA04: If $ENTRY has been disabled, the chan­
nels are not available, and control returns directly to
the 110 request without altering the mode of operation,
i.e., without going through $INTEXT, which causes entry
to priority alert mode. Disabling of channel operations
is caused by clearing a word mark at $ENTRY+ 8.

Detailed Description of Operations

Block BA05, $CS1ENT: The BOLl determines if chan­
nellis busy. If it is, control passes to $CS2ENT, block
BA18. For interrupt operation, a busy condition means
it cannot have been a channel 1 operation which
caused the interrupt. For normal operation (start
channels), a busy condition means channel 1 is already
in operation.

Block BA06, $CS1PR: Channel 1 is not busy. A
BOPRl is executed. If a branch is taken, control goes
to the file scheduler coding (represented by block
BA10) that makes the status check for the file. The
linkage to the proper scheduler was set into the BOPRl

branch address by $CS1RET, block BA17 immediately
after the tape operation was started.

Block BA07, $CS1SCN: This block represents the
force switch. If the switch is on, it is a forcing opera­
tion, and control goes to $CS1SF, block BA13.

Block BA08: It is not a forcing operation. The nec­
essary branch or priority request instructions are exe­
cuted to determine if there are any other interrupts
on this channel, e.g., console, real time. If there is
any priority request, it is served by the appropriate
routine.

Block BA09, $CS1S3: This block represents the exit
from the channel scheduler to the highest priority
pending switch on the channel. The pending switch
network is represented by block BA22.

Block BA10: The status of the 110 operation is
checked. For a two-area file, the pending switch for
the file is turned off. Control passes to $CS1SCN, block
BA07.

Block BAll, $CS1SFS: The entrance to the force
routine, $CS-SFS, sets the return address by storing the
contents of the B-address register in $CS-SFX, block
BA16, the force exit.

Block BA12: The force switch, $CS1SCN (block BA07)

is set on, i.e., set to branch to $CS1SF, block BA13.

Block BA13, $CS1SF: A BOLl instruction is executed
to determine if the channel is in use. If it is, the channel
scheduler enters (or continues) a forcing loop by
branching to $CS1PR, block BA06.

Block BA14: The channel is not busy. A BOPRl is exe­
cuted. If the branch is taken, control transfers, via
block BA06, to the 110 condition check at block BA10

within the file scheduler. If there is no branch, indicat­
ing that the channel entered is already clear, control
passes to block BA15.

Scheduling 23

Block BA15: The channel is reset to non-forcing by
setting the force switch, at $CS1SCN, block BA07, off.

Block BA16, $CS1SFX: The channel scheduler re­
turns to the file scheduler whose address was set by
$CS1SFS, block BAll.

Block BA17, $CS1RET: At $CSlRET, the branch ad­
dress of $CS1PR, block BA06, is set to the file schedule"
.;ocHng which will make the 110 status check for the
file for which a tape operation has just been started.

Block BA18, $CS2ENT: The BOL~ determines if
channel 2 is busy. If it is, control branches to $INTEXT,

block BA20. If the channel is not busy, control passes
to block BA2l. For interrupt operation, a busy condi­
tion means it cannot have a been a channel 2 operation
which caused the interrupt. For nonnal operation
(start channels), a busy condition means channel 2
is already in operation.

Block BA19, $CS2RET: At $CS2RET, the branch ad­
dress of $CS2PR is set to the file scheduler coding which
will make the 110 status check for the file for which a
tape operation has just been started.

Block BA20, $INTEXT: At $INTEXT is the BEPA in­
struction which causes entry into the priority alert
mode. The three possible types of exits from this block
are:

1. The interrupt exit (set at blocks BAOl and BA02)

returns the program to the point at which the
interrupt occurred.

2. The normal exit (set at block BA03) is a return
to the file scheduler as set by $ENTRY.

3. The bootstrap force exit (set by block BC05 or
BD07) returns control to the file scheduler via the
force routine which is entered at block BA12 and
exited at block BA16.

Block BA21: With the exception of the entrance
and exit, the logic of the coding is the same for channel
2 as for channell. In most instances, the coding itself,
except for the beginning of the tags ($CS2 as against
$CSl for channell), is also the same.

Block BA22: The pending switch network is entered
at the highest-priority pending switch on the channel.
If no pending switch is on, control passes down the
network along the pending switch off-branches and
exits to $CS2ENT for channel 1 or to $INTEXT for channel
2. If a pending switch is on, control takes the on-branch
of that switch (shown as block BC07 or BD09) to start
an 110 operation.

One-Area Input File Scheduler

Block BB01, $--EMTY: Entry from a GET macro is
made at $--EMTY. The return to the macro is set in
$--EXIT, block BBlO. Control passes to the channel
scheduler (represented by block BB03) by a BXPA in­
struction to cause exit from the priority alert mode.

24

Block BB03: The appropriate channel is cleared.
Block BB04: $--IOA: The read instruction is ex­

ecuted.
Block BB05: The 110 status check for the channel is

executed. The test is a BA if a wrong-length record
check is being performed. It is a BEX if wrong-length
records are not being checked for and/or if the DTF

specified variable-length records. If all indicators are
off, i.e., the read was valid, control passes to block
BB06; if any indicator is on, control passes to the error
routine represented by block BBll.

Rinck BB06: This coding is included only if blocked
records \'\-;"'J. ~ specified in the DTF. The area or record
limits are reset. If wrong-length records and/or check­
point records are specified for variable-length blocked
records, a check is made for these records.

Block BB07, $--TRIG: The BXPA instruction at
$--TRIG is a branch to $ENTRY, the entrance to the chan­
nel scheduler at block BA03. The pending 110 operation
of highest priority on each channel is executed after
checking the last one on the channel, if any. Priority
.:i.l('~t mode is re-entered.

Block BBub; ::." ~1"C'1c ('()unt is incremented by + 1.
Block BB09, $--EXIT: Control returns to the main

line program address set up at $--EMTY, block BBOL

Block BB11: The tape error routine, entered at block
EA01, attempts to correct any error resulting from the
tape read operation. If possible, corrective action is
taken and control returns to block BB06. If an end-of­
reel condition is encountered, control branches to the
end-of-reel routine at block DD01; if a wrong length
record is found, control branches to block BB12.

Block BB12: If checkpoint records are specified, a
test is made to determine if a checkpoint record has
been read. Otherwise, cOhtrol goes immediately to the
wrong-length record routine supplied by the user. If it
is determined that this is a checkpoint record, control
passes to block BB13.

Block BB13: The checkpoint record is bypassed by
executing another read instruction. Control returns to
block BB04 to read the next record.

Block BB14: The user's wrong length record routine
detennines whether to accept or reject a wrong length
record. If the record is accepted, control returns to
block BB06 to process the record. If the record is re­
jected, control returns to block BB04 to get the next
record.

Block BB15: (Only for Form 4 records.) The block
character count is compared to the number of charac­
ters read to determine if a wrong-length record has
been read. If the record read is not as specified, control
passes to the Form 4 WLR sequence at block BB16.

Block BB16, $--WLR: This is the Fonn 4 WLR se­
quence. The record in question is backspaced to enable

a re-read. If a successful read is not completed after
nine tries, control branches to the user's wrong-length
record routine.

One-Area Output File Scheduler

Block BB2l, $ --FULL: Entry from a PUT macro is
made at $ - - FULL. The return to the macro is set in
$--EXIT.

Block BB22: The block count is incremented by + 1.
If the file scheduler is for variable-length, blocked rec­
ords, a group mark/word mark is set one location be­
yond the last data character position, and the block
character count is placed in the first four positions of
the record. Control passes to the channel scheduler
(represented by block BB24) by a BXPA instruction to
cause exit from the priority alert mode.

Block BB24: The appropriate channel is cleared.
Block BB25, $--10A: The write instruction is ex­

ecuted.
Block 13B26: For a write operation, the 110 channel

status check is always a BA. If a branch occurs, control
transfers to block BB31.

Block BB27: The file scheduler controls are reini­
tialized with the area limits for a fixed-length record
or with the record-size limits for a variable-length
record.

Block BB28, $--TR1G: The BXPA instruction at
$--TRIG is usually a branch to $ENTRY, the entrance to
the channel scheduler (represented by block BB29 on
this chart). However, it can also be used as a pivot by
those IOCS routines concerned with the file schedulers,
e.g., end-of-reel and error routines.

Block BB29: The channel scheduler is entered at
block BA03, $ENTRY. The pending 110 operation of highest
priority is executed after checking the last one on the
channel, if any. Priority alert mode is re-entered.

Block BB30, $--EX1T: Control returns to the main­
line program location set by is - - FULL, block BB2l, or to
the close routine as set by $-"PADS, block BFOl or BFll.

Block BB31: The tape error routine, entered at block
EA01, attempts to correct any error resulting from the
tape write operation. If possible, corrective action is
taken and control returns to block BB27. If there is an
end-of-reel condition, control passes to the routine be­
ginning at block DDOl.

Two-Area Input File Scheduler

Block BCOl, $--EMTY: Entry from a GET macro is
made at $ - - EMTY. The return to the macro is set in
$--EXIT, block BC24.

Block BC02, $ --WTG: The pending switch, block
BC07, for the file is tested. If variable-length, blocked
records were specified in the DTF and wrong-length

records are being checked, the wrong-length record
count is set to zero prior to testing the pending switch.
If the pending switch is off, the other record area is
available for processing and a branch is taken to $--PA,

block BC12. If the pending switch is on, the other area
is not available and a forced read operation for this
file must be initiated to make the area available. A
BXPA, to leave the priority alert mode, is taken to the
channel scheduler force routine (represented by block
BC04) .

Block BC04: The channel is set to forcing and is
cleared.

Block BC05: The branch address of $INTEXT, block
BA20, is set with the bootstrap force entry address; it is
set to go to block BA12. This is to insure the completion
of the 110 operation to be started.

Block BC06: A second test of the pending switch is
made. For the first time through, the switch is off if the
110 operation cleared at block BC04 happened to be for
this file. Otherwise, it is on and the forcing operation
is continued. For the second time through (bootstrap
return) after the forcing operation is completed, it is
always off.

Block BC07, $-OOOON: When the pending switch is
NOP, it is on. When the pending switch is BRANCH, it
is off. The entrance to the pending switch is either
from the file scheduler itself, or from the greater
priority pending switch (N-1) immediately prior to this
one. If there is no pending switch of greater priority
on this channel, the entrance is from the channel sched­
uler. If the pending switch is on, control falls through
to the read operation of the file scheduler. If the pend­
ing switch is off, it is a branch to the next-lower priority
pending switch (N + 1) or if there are no lower priority
pending switches on the channel, the branch is either
to $CS2ENT or to $INTEXT, for channell and channel 2,
respectively.

Block BC08: A test is made to determine which area
is to be used.

Blocks BC09, $--10A, and BClO, $--10B: These
two blocks represent the actual read operations for
this file. Block BC09 reads into area A; block BC10 reads
into area B.

Block BCl1: A test is made to determine if the read
operation has been successfully started. If the opera­
tion has been started, control branches to $CS-RET in the
channel scheduler where the return address to the
110 status check is set in $CS-PR, block BA06. If the read
operation has not been started, the 110 status check
is made immediately at block BC29.

Block BC12, $--PA: A test to determine which area
was used last is made by testing for a word mark on
the read operation. If a word mark is present, area B
is indicated, and control passes to $--SA, block BC15.

Scheduling 25

Block BC13: Area A was read into last; therefore
the switches are changed so that area B will be read
into next.

Block BC14: The file scheduler controls are reini­
tialized with the area or record limits depending upon
the use of fixed- or variable-length records, respec­
tively. The address of the first record character is
placed into $--SAVE. The ending address, $--ENDD, is
set with the address of the last character in the input
record. Control passes to block BC17.

Block BC15: The read operation is changed to read
into area A next.

Block BC16: This is identical with block BC14, ex­
cept that the source of information is the B area limits
rather than the A area limits.

Block BC17: The pending switch is set on to indi­
cate that one of the areas has been used and to request
the refilling of that area.

Block BC18: This block is included only when the
SOURCE DTF specifies one of the following conditions:
(1) fixed-length, blocked records using index registers
and checkpoints, or (2) variable-length, blocked rec­
ords and checkpoints. If included, this block tests for a
checkpoint record. If such a record is found, control
passes to $--BYP, block BCl!); otherwise, it goes to block
BC20.

Block BC19, $--BYP: The checkpoint record sensed
a t block BC18 is bypassed.

Block BC20, $--TRIG: The BXPA instruction at
$ - - TRIG is usually a branch to $ENTRY, the entrance to
the channel scheduler (represented by block BC21 on
this chart). It may also be set, for certain exceptional
conditions, as a branch to the routines concerned with
processing those conditions. The exceptionals con­
ditions and the associated processing are:

End-of-Reel: After the sensing of a tape mark, $--TRIG

is set by the error routine to branch to end-of-reel
procedures at $EORU, block DDOl.

Prime Operation: The execution of open procedures
(in an OPEH operation, or while opening a new reel
in a FEORL or end-of-reel operation) causes $--TRIG

to be set to branch to the linkage, block BC25, to the
prime routine.

WLR Operation for Fixed-Length Records: After ten
additional unsuccessful attempts to read the record
in question, the error routine sets $--TRIG to branch
to the linkage, block BC25, to the user's WLR routine.

Block BC2l: This block is included only for variable-
length, blocked records. If a wrong-length record check
is specified, the check is made at this point. A branch
to the Form 4 WLR sequence, block BC3:'5, is made if a
wrong-length record is found.

26

Block BC22: If the channel is free, an 110 operation
is started either because of the pending request for
this file or for higher-priority file. The priority alert
mode is re-entered.

Block BC23: The block count is incremented by + 1.

Block BC24, $--EXIT: The return is to the GET

macro as set by block BCOl.

Block BC25: The purpose of the coding in this block
is to reset $--TRIG to the normal exit, i.e., a BXPA to
$ENTRY. The two possible exits from this block are (1)
to the wrong-length record routine, block BC27, or (2)
to the IOCS prime routine, block BC26.

Block BC26: To ensure correct usage as a two-area
file, a priming of this file is forced. Control passes to
block BC02.

Block BC27: A test is made to determine if a check­
point header record was read. If so, the checkpoint
record itself is read. Control then returns to $--WTG,

block BC02, to read a data record into the file.

Block BC28: The user's wrong-length record routine
determines if the record should be accepted or rejected.
If the record is rejected, control returns to $ - - WTG,

block BC02. If the record is accepted, control returns to
$--TRIG, block BC20.

Block BC29: The 110 channel status check for this
file is a BA instruction if wrong-length records are being
checked or a BEX instruction if there is no wrong-length
record check. If it is a BEX instruction, the 110 interlock
has not yet been turned off, unless a branch is taken on
the particular indicator. Control passes to block BC30

if an error is sensed; otherwise, it goes to block BC31.

Block BC30: The tape error routine is entered at
block EAO I. An attempt is made to correct any error
or $--TRIG is set to indicate and end-of-file or wrong­
length record condition.

Block BC31: A branch any to self plus one to prevent
the machine 110 interlock is executed if wrong-length
records were not checked for.

Block BC32: If there are variable-length, blocked
records and wrong-length records are to be checked
for, the E or F register is stored to enable the wrong­
length check.

Block BC33: The pending switch is turned off.

Block BC34: The channel scheduler is entered at
BAOi. Any pending 110 on this channel is started or the
channel is cleared and control returns to the file sched­
uler. There are two possible returns. One is a return to
the main program through $INTEXT, block BA20, if this
file scheduler was entered from an interrupt. The other
returns is to the file scheduler at block BC05 via $INTEXT

and the bootstrap force routine.

Block BC35, $--WLR: This is the Form 4 WLR se­
quence. The record in question is backspaced to enable
a re-read. If a successful read is not completed after
nine tries, control branches to the user's wrong-length
record routine, block BC28.

Two-Areal Output File Scheduler

Block BD01, $--FULL: Entry from a PUT macro is
made at $ - - FULL when the current record area has been
filled with logical records. The return to the macro is
set in $--EXIT, block BD19.

Block BD02: The block count, accumulated in
$--TBC, is increased by 1.

Block BD03: This block is pertinent only for a
variable-length, blocked record file. A group mark/
word mark is placed at one location beyond that of the
last character of the blocked record. The block charac­
ter count is placed in the first four positions of the
record to enable the correct handling of this record.

Block BD04, $ _ .. WTG: The pending switch, block
BD09, is tested. If the pending switch is off, the other
record area is available for processing (filling) and a
branch is: taken to $--PA, block BD10. If the pending
switch is on, the other area is not available. A forced
write operation for this file must be initiated to make
the area available. A BXPA, to leave the priority alert
mode, is taken to the channel force routine (repre­
sented by block BD06) .

Block BD06: The channel is set to forcing and is
cleared.

Block BD07: The branch address of $INTEXT, block
BA20, is set with the bootstrap force entry address, i.e.,
set to go to block BA12. This is to insure the completion
of the 110 operation to be started.

Block BD08: A second test of the pending switch is
made. For the first time through, it is off if the 110

operation cleared at block BD06 happened to be for this
file. Otherwise, it is on and the forcing operation is
continued. For the second time through (bootstrap
return) after the forcing operation is completed, it is
always off.

Block BD09, $-OOOON: When the pending switch is
at NOP, it is considered to be on. When the pending
switch is a branch instruction, it is considered off. The
entrance to the pending switch is either from the file
scheduler itself, or from the greater priority pending
switch (N-1) immediately prior to this one. If there is
no pending switch of greater priority on this channel,
the entrance is from the channel scheduler. If the pend­
ing switch is on, control falls through to the write op­
eration of the file scheduler. If the pending switch is
off, it is a branch to the next-lower priority pending
switch eN + 1) or if there are no lower priority pending

switches on the channel, the branch is either to $CS2ENT

or to $INTEXT, for channell and channel 2 respectively.
Block BD10, $--PA: The area last used is determined

by testing for a word mark. If area B was last used, con­
trol passes to $ - - SA, block BD13; otherwise, it goes to
block BDI1.

Block BDll: Area A was written from last; therefore,
the switches are changed so that area B will be written
from next.

Block BD12: The file scheduler controls are reinitial­
ized with the area or record limits depending upon
the use of fixed- or variable-length records. The address
of the first record character is placed into $--SAVE.

The ending address, $ - - ENDD, is set with the address
of the last character in the record. Control passes to
block BD15.

Blocks BD13, $--SA, and BD14: These blocks are
essentially the same as blocks BDll and BD12 except that
the change is from utilization of area B to area A and
the limits set are those for area B.

Block BD15: The pending switch is set on so as to
indicate that one of the areas has been used and to
request the writing of it.

Block BD16, $--TRIG: The BXPA instruction at
$--TRIG is usually a branch to $ENTRY, block BD17. It
may also be set, for certain exceptional conditions, as
a branch to those routines concerned with processing
those conditions. The exceptional conditions and the
associated processing are discussed below:

End of Reel: After a reflective spot is sensed, $ - - TRIG

is set by the error routine as a branch to $EORU, block
DDOt.

CLOSE and FEORL Operations: $--TRIG is set by
block DEll in the close procedures to return to those
procedures after writing the final block of records
(if any).

Block BD17: If the channel is free, an 110 operation
is started either because of the pending request for
this file or for a higher-priority file. The priority alert
mode is re-entered.

Block BD18: This block is applicable only for vari­
able-length, blocked records. The block character
count is set to zero.

Block BD19, $--EXIT: Control returns to the PUT

macro as set by block BDOl.

Block BD2l: The area from which data are to be
written is determined. For area A, control passes to
block BD22; for area B, it goes to block BD23.

Block BD22, $--IOA, and Block BD23, $--10B:
These two blocks represent the actual write operations
for the file. Block BD22 writes from area A; block BD23

writes from area B.

Scheduling 27

Block BD24: A test is made to determine if the write
operation has been successfully started. If the opera­
tion has been started, control branches to SCS-RET in
the channel scheduler where the return address to
the 110 status check is set in SCS-PR, block BA06. If the
read operation has not been started, the 110 status check
is made immediately, block BD25.

Block BD25: For a write operation, the 110 channel
status check is always a BA. If a branch occurs, control
transfers to block BD26. If no branch occurs, control
passes to block BD27.

Block BD26: This block represents the error routine.
If the error is correctable, it is rectified and control is
returned to block BD27. An attempt is made to correct
any error or S--TRIG is set to indicate an end-of-file or
wrong-length record condition.

Block BD27: The pending switch is set off.
Block BD28: This block represents the channel

scheduler, entered at BA07. Any pending 110 on this
channel is started or the channel is cleared and control
returns to the file scheduler. There are two possible
exits. One is a return to the main program via SINTEXT,

block BA20, if this file scheduler was entered from an
interrupt. If this file scheduler was in a forcing posi­
tion, the other return is to the file scheduler at block
BD07 via $INTEXT and the bootstrap force routine.

Tape File Initialization Sequence

The tape file initialization routines are described in
a logical rather than a coding fashion and are based
on a pseudo decision table containing in its condition
stub entries from the DTF for the file. The number of
areas used, the record format, and, for input files,
whether wrong-length records are checked, define the
coding blocks required for initialization. All possible
coding blocks are shown in an in-line, logical sequence,
but all blocks will not be included for any given file.

Blocks BE06 through BE09 and blocks BE17 through
BE19 will not be generated for a file unless the DIOCS

contains a CHANCHANGE entry; this condition overrides
any specifications for block inclusion which are derived
from the decision table.

INPUT FILE SCHEDULER INITIALIZATION SEQUENCE

Block BE01, $--INIT, and Block BE02: The opera­
tion code and the X-control field (from S--ACT+6, the
base tape identification for the file) are moved into
S - - lOA + 6 (and $ - - lOB + 6), the area A (area B) read
instruction (s) for the file.

Block BE03: (Included only for blocked records.)
$ - - SAVE is loaded with the address of the last location
of area A.

28

Block BE04: (Included only for a one-area, variable­
length, blocked file.) $ - - ENDD is set to zero. This field
will contain the block character count for each tape
record.

Block BE05: (Included only for two-area files.)
$- -TRIG, block BC20, is set to enter the priming routine,
i.e., to branch to $--PRIM.

Block BE06: The branch address of $--SFX, the file
scheduler linkage to the channel scheduler force rou­
tine, is reset to refer to the proper channel.

Block BE07: (Included only for two-area files) The
110 status check, block BC29, is reset. It may now require
a different channel operation code. The file scheduler
return to the channel scheduler (SCS-RET, block BA17

or BA19), is reset to the proper channel.
Block BE08: (Included only for one-area, blocked

files): The 110 status check is reset as it may now re­
quire a different channel operation code.

Block BE09 (Included only when the Form 4 WLR

routine is used): The d-modifier of the store E- (F-)
address register instruction is reset so as to store the
proper register.

Block BE10: Control returns to the common initial­
ization sequence beginning at SENTAB, block DB11.

OUTPUT FILE INITIALIZATION SEQUENCE

Block BEll, $- -INIT, and Block BE12: The operation
code and the X-control field (from $--ACT+6, the base
tape identification for the file) are moved into S--IOA+6

(and $ - - lOB + 6), the area A (area B) write instruc­
tion (s) for the file.

Block BE13: $--SAVE is loaded with the address of
the first character of area A.

Block BE14: (Included only for a variable, blocked
file.) $ - - SA VE is loaded with the address of the block
character count. The record length is set to plus zero.

Block BE15: (Included only for blocked, fixed-length
records.) S - - ENDD is loaded with the address of the last
character of area A.

Block BE16: (Included only for two-area files.)
$--TRIG, block BD16, is set to branch to SENTRY, block
BA03.

Block BE17: The branch address of $--SFX, the file
scheduler linkage to the channel scheduler force rou­
tine, is reset to refer to the proper channel.

Block BE18: (Included only for two-area files.) The
110 status check, block BD25, is reset. It may now require
a different channel operation code. The file scheduler
return to the channel scheduler ($CS-RET at block BA17

or BA19) is also reset to the proper channel.
Block BE19: (Included only for one-area, blocked

files.) The 110 status check is reset in a fashion similar
to that of block BE07.

Block BE20: Control returns to the common initial­
ization sequence beginning at $ENTAB, block DB1l.

Padding Routines

P ADDING ROUTINE FOR A FILE USING AN INDEX REGISTER

Block BFOl, $--PADS: Entry is from the RELSE

macro or from the close procedures; $--EXIT (the exit
from the associated file scheduler) is set to return to
the propel' routine.

Block BF02: A test is made to determine whether the
output block requires padding. If no padding is re­
quired (i.e., the area index register points to the end
of the area), control returns to the proper routine via
the $--EXIT address set upon entering. If the file needs
padding, control passes to $ - - PLB2, block BF03.

Block BF03, $--PLB2: If the index register is point­
ing at a record mark (end of record), control branches
to block BF06.

Block BF04: The area end address is compared to
the address in the index register to determine if ad­
ditional padding is required. If no more padding is
needed, the record is ready to be written, and control
branches to block BlF07. If more padding is needed, con­
trol passes to block BF05.

Block BF05: The padding character is moved to the
address specified by the index register.

Block BF06, $--PTRC or $--PLBl: The index regis­
ter is increased by 1. Control branches to block BF03.

Block BF07: This block represents the file scheduler
entered at $ - - FULL + 7, blocks BB22 or BD02. After the
padded block is written, control returns to the proper
routine as set by block BFOl.

P ADDING ROUTINE FOR A FILE NOT USING AN INDEX REGISTER

Block BFJl, $--PADS: Entry is from the RELSE

macro or from the close procedures; $ - - EXIT (the exit
from the associated file scheduler) is loaded with the
return address.

Block BF12: This is a test to determine if the output
block needs padding. This is accomplished by compar­
ing the address of the last character put into the output
area to the address which defines the end of the area.
If no padding is needed, control returns to the proper
routine via $--EXIT. If padding is required, control
passes to block BF13.

Block BF13: A word mark is moved to the high-order
position of $--PSVE. This sets up an area where the con­
tents of X15 can be saved.

Block BF14: The contents of X15 are stored in
$ - - PSVE. Index register 15 is then loaded with the con­
tents of $ - - SAVE.

Block BF15, $--PLB2: If X15 is pointing at a record
mark (end of record), control branches to block BF18.

Block BF16: The contents of X15 are compared to
the final address of the area to determine if the file is
ready to be written. If it is, control branches to block
BF19.

Block BF17: The padding character is moved to the
address specified by index register 15.

Block BF18, $--PTRC or $--PLB1: The contents of
X15 are increased by 1. Control returns to block BF15.

Block BF19: The contents of $--PSVE are restored to
X15.

Block BF20: This block represents the file scheduler
entered at $ - - FULL + 7, block BB22 or BD02. After the
padded block is written, control returns to the proper
routine as set by block BF1l.

Scheduling 29

SA

.....
·SA *
• SI-. -

SCSIRET X 17
: •••• 81 ••••••••• :

• SET RETURN TO -
• SAl OR SEXI *
• IN SCSIPR -.................
· ..
: C 1 :.X.

SCS2ENT X

YES

C I •• . 18

RETURN TO THE
PO I NT OF ENTRY
W/OUT MODFY I NG

THE HARDwARE
(NO SEPAl

_ ••• *
-SA -
.... A~*

· FROM. FILE
• SCHEDULER

SENT~Y X 03

YES

....... A3*····.·.** · . * SSR IN BRAIli:CH •
- ADDRESS OF •

SINTEXT --..................

X
B3 • -. 04

......
·B~ •
• A4.
" " .

FROM • INTERRUPT

00101 X 01 * ·A4 * · . SBR

ENTER IOCS _._
.BXPA

~ATTN X 02

.............. DISABLED

·.·**84··***** •••
" OECREMENT •
• AND STORE •
• RETURN IN THE.
"BRANCH ADDRESS •
• OF SINTEXT •

x · .NO

· X ..

SCSIENT X

YES

C4 •• . 05

..... SOL 2 *x ... * SOL I

.
• NO .NO

X 21 SCSIPR X 10 ·····01***·····.· - SAMe COOING *
04 " • . 06 .*e.eos* .. *******e

.F.S. BCAS/BDDS"
-AS FOR CHAN I. - YES .-.-.-.-.-,,-.-,,-.
• REPLACE SCSI.
• IN TAG WITH -
• SCS2 -.................

.. .. X Xit BOP R I •.•..•.•• x. PERFORM I/O I­
.STATUS CHK AND"
• HOUSEKEEPING • • *

CHANNEL 2 SCHEO
CONTINUES WITH

SCS2PR
(SLOCK 06)

E2 . .YES .
14

SCSISF

NO

E3 - 13

" *e.. .NO · . .BA -.x.
• E4· * •••

SCSISCN X
.E4 ••

YES

07

BOP R I *X B 0 L I ·x * FORCING *x •••••••••••••••••
·SA •
-.F!.

:SCS2RE T X 19
.. ····Fl··*****·** · -• SET RETURN TO -
• SA2 OR BEX2 •
• IN SCS2PR -.......... _ _-

.
.NO

X IS *****F2······.··4 .
SlOT CHANNt;;L
NON-FORCING

* ~
ENTRANCE TO THE
FORC~.~~~TINE

-BA •
.. G3-. . ·

x

.NO

X 08 ·F4···· ... · ...•
" .
- SERVICE ANY •
.OTHER INTERRUPT.
.ON THIS CHANNEL. ·

SCSISFX X 16 SCSISFS X II SCSIS3 X 09

. .
••••••••••• X.

_ ...

.. ····G2·*·******. . .
RETURN •

TO THE FILE
SCHEDULER

· . . -BA -.X. ..X. *
.. MI-

·· ••. G3····· .•... · . - SBR IN BRANCH •
- ADDRESS OF •
• SCSISFX · . • * •••••••••••••••

SINTEXT X 20 CONTINUE FORCE OPERATION X 12
••••• Hi ••••••••• * ••••• H3 ••••••••••

INTRPT * •• * .FORCING (BOOTSTRAP) • SET CHANNEL •

• ·G4· •••••••••
• BRANCH TO •
• THE HIGHEST •
"PRIORITY PENDNG •
" SWITCH ON •

:*!~!;.;~!~~;; •• :

X 22
•• •• ·H4 ••• e*e** ••

:~:~~-:~.~~!:~~~: " .
••• : 8 EPA : •••••••••••••••••••••••••••••••••• X: FORCING : •••• •••• CHECK FOR ANY ••••• X. CI •

• • *
X ••••••• ***.**** ••

••••• .NORM~L " .
RETURN TO

THE POINT

x " - . . .
AT WHICH RETURN TO

INTERRUPT FILE SCHED

OCCURED AS SET BY

10CSENTRY

Chart BA. Channel Schedulers, Including Interrupt

30

• PENDING I/O. • • - " "ON THIS CHANNEL. .._ .. -.......... . x·· .. ·········
BRANCH •
TO BCGI
OR BDJI

IF ANY I/O
PENDING ON

THI S CHANNEL

x · .
• HI • · "

IF THERE IS NO
I/O PENDING

ON CHANNEL 2

IF THERE
IS NO I/O

PENDING ON
CHANNEL I

I N PUT

*.***
"SB "
" 'Bl"
* " "

FRO M • GET

S--EMTY X 01
·····el········.· " " * SET RETURN
* ADDRESS AT
* S--EXIT

" _.-
• BXPA

X 03
· •... Cl·········· "CHAN SCHED DAG3"
-e--*-*-*-*-*-*
" CLEAR CHANNEL "
* AND RETURN TO "
"FILE SCHEDULER * -.......... -... _.
-.*. " . -BB •• X •

ONE ARE A F I L ESC H E 0 U L E R S

• 01* .x •••••••••..•••••••••••• ' .•••••••••••••••.••••••••••••••• IlI ••••••••
$--IOA X 04 .··01.···****

" " * * : EXECUTE READ :X., ••••••••••••• •• ~ ••••••••••••

X

* * 05

It I/O "
••••• *CONDITION CHECK*

.. "BA/BEX "

" .ON

X 11
w· *F 1"."**.****-

• *SERROR EAAI*
• CORR*-"-*-"-'*-"-"- ,,- tlWLR

• 13
···E2··**.**·
* * * BYPASS THE
* CHECKPOINT

RECORD

••••• * •••••• -._.­
X

:VES

" F2 12
* IS

.X.... ATTEMPT TO ••••••••• X.
* CORRECT ANY "

* THIS A
CHECKPOINT

* "RECORD
* ERROR "
••••• __ ft •••••••••

• EOR · .. •• X"DD "TO SEORU
" AI" . _.-

.NO

06 X 14 GIU......... .*.**GZ* ••••• * •••
"FOR BLKD REC - "* "

• "RESET AREA/REC " ,,-,,-*-*-*-*-,,-,,-*
•••• x. LI~ITS. -x ••••.••. - USERS WLR * ••••

"VAR REC - WLR." ACCEPT" ROUTINE *REJT
" CHKPT NOW"" "•..•...... --_.*.-.. _._

X

$--TRIG X 07 15 S--WLR :10TH 16 * •••• Hl~ ••• * •• *** ••••• HZ.......... *H3 .. ***** •• *
CHAN SCHEO BAA3 *FORM 4 RCD ONLY* "FORM 4 WLR SEa" •
--*-*-*-*-*-*-* *-*---*-*-.-*-.-*VES *-*-*-.-*-*-*-*-*1-9.
EXECUTE ANY 1/0 •••••••• X. IS. TtlIS A ••••••••• X. MAKE NINE •••••
• REENTER ALERT * * WRONG-LENGTH * * ATTEMPTS TO *
" MODE * * RECORD" *READ THE RECORD" ._ ... * •• *_ •• -..... ••••••••••••••••• •

• NO

· . • x •••••••••••••••••••••••••
X 08

: •••• Jl ••••••••• :

: ADD +1 TO :

BLOCK COUNT *
* _-

S--EXIT X 09
·.···KI·······.·­* * : RETURN AS SET :

: BY IOCS MACRO :
.............. __ .

.. : ..
* *

" * "

Chart BB. One-Area File Schedulers - Input and Output

OUT PUT

.....
"BB *
""B!*

FRO M : PUT

S--FULL X 21
····*84·····*··.·
* * SET RETURN *

ADDRESS AT
* S--EXIT :
... _*_ *_.-
* • -Be •• x.
* C4*

X 22

·.···C4*******··· :ADD 1 TO BLKCNT:

* IF VAR-BLKD •
" SET GM AND "
*PLACE CHAR CNT *

• BXPA

X 24 ••••• 04·*··***·*.
"CHAN SCHED BAG3" *-*-.-*-*-.-*-.-. "CLEAR CHAN AND "
*RETURN TO FILE *
" SCHEDULER *

S--IOA X 25
·*·E4····***·

* "
" * * EXECUTE WRITE *
* "

It

F4
*

X

* " 26

TO SEORU

*
* " "DO "

* Al* * ••••
X

:EOR 31

·····FS·········· *SERROR EAA1*
ON *-*-*-*-.-*-.-*-.

"BRANCH ANY • •••••••• x* ATTEMPT TO •

* """* .OFF
" * • .OB •• x.

* CORRECT ANY •
" ERROR .. * ••••••••••••••••

.CORR

. G4. .X
X 27

.···*G4······.**· "REINITIALIZE "
"FILE SCHEOULER "
* CONTROLS WITH *
* AREA/RECORD *
* LIMITS ..
• •••• * •• * •••• *.**

S--TRIG H4 ~. 28

" * *USUAL EX IT" SET
* TO CHAN SCHEO

* ~R AS SE! *
* ••••••••

..
.USUAL

~ 29
*****J4···***·.··
CHAN SCHED BAA3
--.-*-*-.-*-*-*
"EXECUTE ANY 1/0*
* REENTER ALERT *
* MODE It •••• * ••••••••••••

$--EXI T it 30
••••• K4* •• ··**···
" * * RETURN AS "
* SET BY IOCS *
" MACRO
* * ** •••••• * ••••••••

X
* " .. *
" * *

X EXIT AS SEr BY
:".*: 10CS SUBRTNS

* •
" * *

BB

Scheduling 31

Be
·ec •
• ,II"

I I

FRO !4 • GET

I--EIITY X 0 I
..... AI·········· " .
• SET RETURN I
• ... CDRESS ... T •

'--EX IT
" · • 81 I.X. ·

'--WTG .X.
el ". 02 • _ I.

T III 0 ARE A INPLT FILE

t--P,I ••• S--SA 1<;
A2 I. 12 ••••• A3 ••••••••••

• * I. • •
• * IIII- I C ~ '. e * SE T TO L SE •

• •••• X*.AREA _AS USED.* •••••••• X. AREA-A NEXT
I. LAST.I •

'. .'
'. .' •• I •••• I

" A

X 13 X Iti P2···· ••••• S3 ·1 II I. I. · . • INITIALIZE'

5 C ~ E D U L E R

••• **
lAC ...
* A5~
* •

]0 • X • "4.......... A5 -. 29
'SERRCR EAIII' •• I •
1_._'_f_I_*_I_I_1 YES .t WLR - 8A *.
• CORRECT ERROR .X •••••••••• NO IoILR - B~X .'
'eR SET $--TR IG • I. ••

'eR TYPE "'ESS~GE' 1..< '. .'
• NO

. .
• •••••••••••••••••••••••• x •

X 31 • •• ··es'.···.·.·. · . •• IS Tt-E ". NO • SET TO LSE • FILE SCHED •
• CC~TRCLS VdTH •

• SA. * I ..
"PENDING SWITC~ ••• x. ARE"'-B NEXT

I. cto. .' a. ._
a •• _

• YES

.eXFjII

X 04

·····Cl·········· "CH ... N SCHED ejllG3.
--*-*-1- *_1_*_*
" SET CHjIINNEL •
"TO FORCI"G ,I"D •
" CLE ... R Ct-jIINNEL " · ". : El :.X.

X 05

·····el·········· " SET ER .. NC,", •
" JIIDDRESS CF •
"$INTEXT TO T~E •
-eOCTSTRjIIP FORCE.
" ENTRY CEjII121 •

• AREA/RECCRD •
• LI"ITS
II •••••••••••••• t

X 1'1 X 17 C2.......... C3 ...•.•....
" INITIALIZE·' •
• FILE SCHEDLLER • • SET TI<E •
• CONTROLS" wIT X.PENOING S\IIITCH •
• AREA/RECORD • .. C~ •
• LI~ITS·· • ••.•..•.......•.

S--BYP Ie; 18 •.... C2.......... • 03 ...•.••.•.
• "'FOR VAR-RLKD OR'

eYFASS T~E - • FXD-RLKD-XREG •
CHECKPO INT IX... •••••• RECCRDS - •

RECORD' • PERFOR" Ct-KFT •
• 'CHECK IF NEEDED'

. .
•• Xt E3 •

I •
: EJ :.)(• . ,"

21 S--TRIG X 20 . • E2.......... • •••• E3 •...•.....
.FOR'" • FOR VIIR-BLKD • • NCR~AL BRA"CH •
• 4 .LR' RECORDS ONLY.. NORMAL. TO SE"TRY 'ECR

•••• IF WLR C ... I<. SPEC.X ••••••••• OR AS SET ev •••••••••
'FERFOR~ Ct-K ~~O. • 10CS RCUT I"ES I X

; : •••• ~:::~~ ••••• : :.** •••••••••••• : :~~.:
.* ••••• .SET" .A!-
•• H5 • •
.' • TO fECRl;

• IF NO WLR CHK • · . * t

X .l2
• ••• *CS··········
• VAQ-OLK R~C ..
• STORE E OR F ..
I REG TO ENAOLE ..
I wLR CHK IF'
I SPEC IF H:D • . ..••..... , ,

X 33 ..I.'DS···**··, •. · . • SE T THE •
.PENO ING Sw I rCH •
I OFF .. · . • ••• 1 ••••••••••••

X 3"

.'.'·ES-··'*'··*-•••• 'CHAN SCHED AAE'l •
• *F ORC E*-*- .-*-*- .. - .-*-­
• El .X ••••• START PNDG I/O •
• .. • OR CLE ... R CHAN •
•••• -AND RET TO F.S.*

VIA SINrEXT .INTRPT

X ., ...
.X. X 22 X 25 2E

F 1 ". OE . ' '.
." IS 't-E •• NO •

"PENDING sWIre,", •••••
•• Ch .-'. .. -.. -

• YES

1-0000" .X.
Gl ". 07 .. '. 0" N Tt- •• ERjIINC~

•• X"PENDING SWITCH •••••
". IN ejilNIC •• -.

• NCF

x
'N •

·I+!·

..... F2··········
• SENTRY BAA~ • 1_'_ ._1_1_'_'_'_'
• START I/O IF ..
.POSS. RE-ENTER'

: •• ~~~:! .:~~i ... :

X 23
: •••• ~2.* ••••••• :

ADD + 1 TO
eLOCK COUNT

·

...... FJ.......... F4
RESET .PRI",E • •

• $--TRIG ••••••••• x.loes PRI",E RTN •
• TC NOP~ EXIT •• •
.................. • •••••••• II I ••• I.

.~LR

~ ?7

·.··.GJ·········· · . YES'IF C~ECKPOI"T- •
••••• BYP ... SS ... RECCRD • · . ·"C

X •• I. .. .
: B 1 :

.. . .
TO MA I N PROG

vIA $INTloXT

. .
"" . • -1· • x •••

.x.
HI ". OE

e .e *.
•••• e. WtiICt-' .aREA ._ w. ._

w. •• · ...
:'--ICjII x 09 ·.·JI········ . .

" .. RTC .. RE ... -,l

"
:

:S--108 10
•••• Kl •••••••••

t--E~IT X 24

·····~2··········
• I RETLRN liS •

SET BY 10CS
~jIICRO

X
-

AS SET BY
loes ~ACRO

.* •
K2 •• 11

•• I.

X 2e .· ... ~3······· .. · · . '-'-'-·-·-·-·-'-'ACPT •
• ' •••• XI E3 •
: USERS IILR Rl": I ••....

.RE JT . .
••••••••••• x.

x
I •••

• I

: 81 :

. " ... x: x.. •. ~ES
••••••••• x.. [) a L •••••••••• SCS1RET
• '. .1 X CR

•••• ·····SCS2RET
' •• ' 'SA •

.. NO ...

x
.. Ae • . .

• Chart BC. Two-Area Input File Scheduler

32

le ... el)

I e,lF I)

$--WLR • 10TH 35

·····~5··*·····~· "FOR!4 'I IoILR SEa ..
1-*-'-*-'-*-*-1-1

: ~5 : •••• x: A~~~~p~~N~O •

.... :~~:~.!~~.~;;~~~:
.1-9

x ..,. . .
: 81 :

.tf.
·El[) "
" AI" . "

FRO M .. PUT

$--FULL ; 01
•• ***Al*U****.**_ · " II SET RETURN *

ADDRESS AT
S--EX I T

" " *n ... * •• *** · . • BO *.Xt,
" BI*

X 02
• •• ··81*********·
" ADD·"1 TO

BLOCK COUNT

* **** ••• ****** •• *.

)(03
····*Cl***·**····
.. FOR VA~I-BLKD *
* RECORDS - SET "
" GM AND PLACE •
" CHAR/ICTER

: ••••• ~~~~!.**.*:
.. .. 4,

-Bo -.Xt'
.. 01"

$--WTG X
01 "" 04 ..

$--PA

••• X·

TWO ARE A 0 U T PUT F I L E

A2 10 . "
.WHICH AREA ..

WAS USED
LAST

.A

S--SA 13
* ... * ... A 3*"'''' - *.

B SET TO USE
* ••• ~ •••• X* AREA-A NEXT .

X II X 14
• *·*·~2*·**·· ••• * *. *. *A3* * ... - *.*

.. INITIALIZE ..

.FILE SCHEDULER "

.. CON'TROLS WITH •
" AREAIRECORD "
* LIMITS "
****** •••••••••••

.. ..

"

SET TO USE ..
AREA-B NEXT "

•• ****.*** ••• * •• *

X 12 X IS
••••• C2*.*****.** *****C3*.*.***.**
• INITIALIZE·· •
.F ILc SCHEDULER • .. SET •
* CONTROLS WITH ••••••••• X.PENDING SWITCH.
• AREA-RECORD * " ON •

:.***;!~!!;.***.: :**.****.* ••• ****

. .
*BO *.X.
* 03"
•• ** •

17 $--TRIG X 16
** ***02 **. **** - ** **_ ... *03*. * * •••• *.
.CHAN SCHED BAA3" • NORMAL BRANCH •

S C H E 0 U L E R

A * ..

**.* · " • AS *
• *

X
AS ••

WHICH AIlEA ..
.
.B

21

$--IOA X 22 $--106 X 23
·*·B4.*.****- ***BS****.** •

" " It "

WTO AREA-A *
" ·

" WTO AREA-6 "

. .
•••••••••••••.•••••••••• • x.

X

" "

• C5 ." 24

YES
SCSIRET (BAOII ••••••••• B 0 L

OR X
$CS2RET IBAFII"" •••

"SA " • * •
• * •••• .NO
" . . -so •• x.

• 05*
.*.*

26 X
.*.**04** ••••• *** 05 25
*SERROR EAAI" "

" IS THE " NO •
"PENDING SWITCH " •••• X.

.-.-,,-*-.-,,-*-.-* NORMAL. TO SENTRY "EOR

.. START 1/0 IF .X ••••••••• OR AS SET OY * ••••
--.-*-*-.-.-*-* YES I
" CORRECT ERROR "x......... BRANCH ANY

" ON to

" "YES

"OXPA

*POSS. RE-ENTER II • 10CS CONTROL •
• ALCRT MODE. • ROUTINES •
****** •• ********* .*.******.*.****.

X 18
··*£2********
• INITIALIZE •
• FILE SCHEDULER.

DEBLOCKING •
CONTROLS "

.SET

X
* •• *.

" " ..
FEORL/CLOSE

ROUTINES
TO BLOCK DE 13

X 06 : $--E X I T X I 9
..... ··Fl·4I*****··*
.CHAN SCHED BAG3.
• -.-*-*- ... -*-*-*-*
• SET CHAN
• TO FORCING •
.. TO CLEAR CHAN "
• ~ •• * •• *~.*.* •• ** .. -. · . • Gl -.Xt.

• II

): 07

·····Gl····**·*** .. SET BRANCH •
.. ADDRESS OF "
"$INTEXT TO THE"
.BOOTSTRAP FOnCE"
" ENTRY (BAB5) to ••••••• * •••••••• *

~:

• HI." 08

" IS l'HE .. NO •
• PENDING SWITCH * ••••••

" ON • .
• YES

09

II N TH " BRANCH
•• X"PENDING SWITCH

" IN EIANK "
* ••••

" " itN " ::.;!:

" " .
• NOP

X *
II *
: ~,5 :

X *.,It ••
*N •
",,'.! •

.***·F2**······*·
* •

"

RETURN *
AS SCT BY

10CS MACRO

*** •• ************

x .* •••
"

AS SET BY
10CS MACRO

Chart BD. Two-Area Output File Scheduler

X
.***.
·00 •
**A!-.

TO SEORU

"OR SET $--TR I G " '"
*OR TYPE MESSAGE" • •••• * _.*._

.NO

. .
• •••••••••••••••••• It ••••• x •

X 27 :* ... ES ••••••••• :

" SET ..
"PENDING SWITCH.
" OFF "
" ** •••••••••••••••

X 28
··FS**····*

"""* "CHAN SCHED BAE4"
• "FORCE"-*-"-"-"-·- .-,,-. * GI .X ••••• STARf PNDG 1/0 •
• " " on CLEAR CHAN "

"RETURN TO F.S. " _ •• * •••••••••••••
VIA SINTEXT .INTRPT

x .* ...
* " · " " .

TO MAIN PROG
VIA SlNTEXT

Scheduling 33

so

BE
I N PUT F I L ESC H E D U L E R

: NO OF : BLKNG : RECRD: WLR

: AREAS : USED : FORM • CHKD

CODING BLOCKS

GENERATED
NO N/A NO : 01.06.08.10

NO N/A YES : 01.06.08.09.10

YES FXD NO

YES FXD YES : 01.03.06.08.09.10

YES VAR NO : 01.03.04.06.08.10

YES VAR YES : 01.03.04.06.08.09.10

2 NO N/A NO

..............................
NO N/A YES • 01.02.05.06.07.09.10

YES N/A NO

YES N/A YES • 01.02.03.04.05.06.07.09.10

• NO. OF

AREAS

OUT PUT F I L ESC H E D U L E R

BLKING

USED

RECORD

FORMAT

CODING BLOCKS

GENERATED

.. ..
NO N/A • 11.17.19.20

YES FXD • 11013.17.19.20

YES VAR

NO N/A .11.12.13.16017018.20 ...
YES FXD : 11.12.13.15.16.17.18.20

YES VAR : 11.12.14.16.17.18.20

Chart BE. Tape File Initialization Routines

34

I N PUT

.......
"BE"
" A4"
" "

$--INIT X 01
....... ··A4**********
"LOAD THE INST. "
" FOR AREA-A "
"WITH THE CU AND"
" CORRECT MODE "
" FOR READING "
..... ********** •••

X 02
....... *84*·.·*'" ... -
"LOAD THE INST. "
" FOR AREA-B "
"WITH THE CU AND"
" CORREC T MODI:c "

:*.~~~.~;~~!~~*.:

X 03
.. ** .. *C4* .. ·.ft *
" LOAD S--SAVE: "
" WITH THE "
"ADDRESS OF THE "
"LAST CHARACTER "

:.**~~.!~i~;!**.:

X 04
··*.*04*····****-
" " SET S--ENDD

TO ZERO

X 05 :** ... E4 ** •• :
" SET S--TRIG "
" TO BRANCH TO
" S--PRIM

X 06

···**F4········· . " " " SET FORCE "
"ENTRY TO CLEAR "
" THE CHANNEL "

" " ••••••••••• ******

X 07
···G4········ " SET I/O "
"CONDITION CHECK" .. "
" SET RETURN TO " : ... ~=:~.~~~~ ... :

X 08
·····H4**····**·· " ..
" SET I/O "
"CONDITION CHECK"

" -

X 09 :.*** J4 ••••• **.*:
"SET WLR BRANCH " .. "
" •••••• * ••••••••••

X 10
••• •• K4 •• *·····*. .. "
" BRANCH TO
" SENTAB

..
• TO SEN TAB
X

•••• *
"DB "
... A2*

" "

••• **
"OE " •• Ai-

OUT PUT

S--INIT X II ···*·AS-··_·_--··
"LOAD THE INST. "
" FOR AREA-A "
"WITH THE CU AND"
" CORRECT MODE "
• FOR WRITING * _ _ .

X 12 *·***65***·*·*·*· "LOAD THE INST. "
• FOR AREA-B "
.W I TH nil: CU AND"
• CORRECT MODE ..
" FOR wRITING .. .* •••••••••••••••

X 13
*·***C5********··
" LOAD S--SAVE "
• WITH THE "
"ADIJRES5 OF THE ..
"F I RS T CHARACTER"
• OF AREA-A " -._.*.* •• _* •• _.* •

X 14
··***05******··**
" LOAD $--SAVE *
" WITH ADDR OF "
"THE BLK CHAR CT"
*SET S--RLAC TO •
" PLUS ZEROS __ ._

X 15 -····ES·-···_··_·
" LOAD S--ENDD "
" WITH THE "
"ADDRESS OF THE *
"LAST CHARACTER ..
.. OF AREA-A ..
•• - .. *-_.*._ ••• -.*

X 16
·****FS*· ••• *
" ..
" SET $--TRIG "
.. TO BRANCH TO
" SEN TRY

" " *-.*** ... **.-•.. *.*

X 17
*****GS·*****···*
" * .. SET THE FORCE ..
"ENTRY TO BRANCH"
: TO CLEAR CHAN : *.-.. _--**-*._*.*

X 16
·-·H5********
* SET I/O *
"CONDITION CHECK"

" " " SET ReTURN TO "
" CHAN SCHED • *-*.* .. -*_.*-*--*

X 19
·*JS·*···** .. " * SET I/O •
:CONDITION CHECK: .
•• _-*.** •••• *.- ...

X 20
:****KS**.** ••• *:

"

BRANCH TO
$ENTAB

_ •• _*.** •••••• *_ •

.TO SENTAB
X .* •••

"DB *
" A2'
* "

PAD 0 I N G R 0 UTI N E S

FILE USING AN
INDEX REGISTER

***** -BF ..
• B2· .. ·

$·--PADS X 0 I
*****82****#****-

• * • LOAD $--EXIT •
• WITH RETURN *

ADDRESS * · •• ***************

X
C2 * *

*
02

NO * DOES •
•••••••• *THIS FILE NEED *
X • PADDING • . *.*. * ..

*
* .YES
• x ••••••••••••

EXIT VIA $--EXIT

07
'It****E 1" *.***tt ***

$--PLB2 X
02 * - 03

* * I S THE XREG* YES.
* POINTING AT A - •••••

R~CORD-MA~K

* .NO

X

:~:~:-.~~~:~~~~~: YES
E2 - * 04

• IS-
• THIS FILE.

~ ~RITE FILE *X •••••••• - READY TO BE
- WRI·TTEN * . . ~ AND RETURN TO •

~ CLOSE PROCn •
D •• *.* •••• *** •• *.

•• !**

. -..
ExIT VIA $--EXIT

-.NO

X 05
.... *- *F 2" ** It .. *** - -* MOVE PADDING
* CHARACTER TO
• 0 + XREG

· ..
• X •• , ••••••••••

$--·PTRC •

FILE NOT USING
INDEX REGISTER

***.*
-BF -* B4-

- *

$--PADS X II
.**.*84* •• ******. · -- LOAD $--EXIT
- WITH RETURN

ADDRESS -***.**** •• ****.* •

C4 : .. 12

NO - DOES *
• ••••••• -THIS FILe NE~D ..

.~. - .PADDING. *

. · .YES

EXIT VIA $--EXIT

X 13
•• ***04********-. .
- MOVE A WM •
• TO HI GH ORDER •
:POS OF $--PSVE :

***********.*.*.*

X 14
*****E4**.**.·*·*
• SAVE XI5 IN -
* $--PSVE -
- LOAD XI5 WITH.
- CONTENTS OF •
- $--SAVE *
.*..*.*******

• x ••••••••••••

$--PLB2 X
F4 • - 15 · - IS X15 • YES.

.. POINTING AT A ••••••
-RECORD-MARK· · . · .NO

$---PLBI X 06 • $--PFOR 19 X
·****G2******·*·*
- * INCREASE

XREG BY +1

Chart BF. Padding Routines

* •••••
*

*****G3********** G4 •• 16 · - • IS •
YES

RESTORE X15 :X •••••••• *
• THIS FILE -

REAOY TO BE
• .WRITTEN. -

X 20
*****H3*·********
• F.S. BBC4/BDBI.
--*-*-*-*-*-*-*
• WRITE FILE *
- AND RETURN TO -
• CLOSE PRoeD *

X
***.*

. -
*

*

EXIT VIA $--EXIT

· .NO

X 17
·.*H4*****.**** - . - MOVE PADDING
• CHARACTER TO
- 0 + XI5 -********* •••• ****

· .. • x ••••••••••••
$--PTRC •
$--PLBI X 16

*****J4*.******· •

• * INCREASE
XI5 BY +1 * ••••• .

SF

Scheduling 35

Record Processing and little Macros

The record processing macros for tape files with speci­
fied DTF'S are GET, PUT, and RELSE shown on Chart CA.

The GET macro, sometimes referred to as a deblocking
routine, makes the next logical record in a block avail­
able for processing; a PUT adds the next logical record
to a block. The many formats for GET and PUT are
covered. The record processing macros for unit record
Rles with specified DTF'S are shown on Chart CB. The
little macros RTAPE, WTAPE, CONSL, RTLBL, WTLBL, STACK,

SKIP, IOBSP, IORWD, IORWU, IOWTM, IOSYS, and PSTAC are
shown on Chart CC.

PUT, GET, and RELSE Macros

The PUT, GET, and RELSE macros are charted logically,
independent of generated coding. In other words, the
blocks do not represent actual coding but represent the
logic behind the coding. The description indicates
some of the possibilities that can be coded. The PUT

and GET macros, in particular, vary from file to file, de­
pendent upon the source DTF specifications and format
of the PUT or GET being used. For example, if a work
area were PUT to a £Ie, the coding is different than if a
£Ie, were simply PUT or if a different file were PUT to
that £Ie. The coding also differs if the £Ie is blocked
or unblocked, variable or fixed, and uses one or two
areas. Similarly, for the GET macro the coding is dif­
ferent depending upon format and the usage of index
words, :blocked records, or variable records. The RELSE

macro usually causes only a few instructions to be
generated. Essentially, it is the replacement of the cur­
rent logical record address with the ending (input) or
the writing of the record (output).

PUT MACRO

Block CA01: This is a logical in-line connection to
the user's coding.

Block CA02: The initialization for a move may be
the moving of the address from $ - - SAVE to an index
register, or to the actual move instruction. It is not
generated if the move does not need initialization, e.g.,
if both £Ies use index words and £Ie 1 is being PUT to
£Ie 2.

Block CA03: The actual movement of the record
may not be a physical movement of the data but a
movement of addresses for the next logical record.

Block CA04: In the updating for the next PUT macro,
the addresses that will be used for the file being PUT

are increased to reflect the correct location. In other
words, $ - - SAVE is increased by the length of the record.

Block CA05: If hash totals have been specified, the
contents of the field designed for hash total is added
to $--THT.

36

Block CA06: If record counts have been specified,
a + 1 is added to $--TRC.

Block CA07: $--SAVE is tested to determine if the
current 110 area is available. If it is, control returns to
the user's program. Otherwise, the area is full and the
£Ie scheduler is entered at $--FULL (represented by
block CAOS).

Block CA08: (Two-area.) After the other area is made
available to the macro (by a forced write operation if
necessary), the £Ie is set pending to record the need to
write the full area. (One-area.) The area is written to
make it available again.

Block CA09: This represents the logical in-line con­
nection with the user's coding.

GET MACRO

Block CAll: This represents the logical in-line con­
nection with the user's coding.

Block CA12: A test is made to determine if the cur­
rent 110 area is available. If it is, control branches to
block CAB. Otherwise, the area is empty, and the £Ie
scheduler is entered at $ - - EMTY (represented by block
CA13).

Block CA13: (Two-area.) After the other area is made
available to the macro (by a forced read operation if
necessary), the £Ie is set pending to record the need to
read into the empty area. (One-area.) The area is read
into to make it available again.

Block CA14: The initialization for a move may be
the moving of the address from $ - - SAVE to an index
register, or to the actual move instruction.

Block CA15: The actual movement of the record
may not be a physical movement of the data but a
movement of addresses for the next logical record.

Block CAI6: In the updating for the next GET macro,
the addresses that will be used for the £Ie are increased
to reflect the correct location. In other words, $ - - SAVE

is increased by the length of the record.
Block CAi7: Hash totals, if they have been specified,

are accumulated in $--THT.

Block CAl8: If record counts are specified, a + 1 is
I added to $--TRC.

Block CA19: This is the in-line connection with the
user's coding.

RELSE MACRO, INPUT

Block CA2l: This represents the in-line connection
with the user's program.

Block CA22: The address of the logical record being
operated upon is replaced by the address of the last
character in the area.

Block CA23: This is the logical connection to the
user's program.

RELSE MACRO, OUTPUT

Block CA24: This represents the in-line connection
with the user's program.

Block CA25: Control transfers to the padding rou­
tine for this file. If the block requires padding, it is
padded before being written.

Block CA26: This represents the in-line connection
with the user's program.

Unit Record GET, PUT, and C~ose Operations

The function of unit record file schedulers, when used
with GET/PUT macros, is to execute and check the 110

operation requested by the macro, keep an accumula­
tive count of the number of records, and, if applicable,
provide linkage to the user's end of file routine.

An additional function of the punch file scheduler,
when entered during a close macro, is to punch a blank
card so that all the punched data cards are in the
stacker when the punch file is closed.

A detailed treatment of the file schedulers and the
GET/PUT macros follows.

GET CARD MACRO AND SCHEDULER

Block CB01: If the GET macro specifies an end-of­
file address for the card reader file, the specified
EOFADDR address is placed in the I -address of the file
scheduler's end-oF-file test instruction (block CB07).
Note that this replaces the DTF EOFADDR if one had been
specified. (Refer to the description of block CB07.)

Block CB02, $--EMTY: This is the labeled entry to
the file scheduler. The contell1ts of the B-address regis­
ter are stored in the scheduler's exit, $--EXIT (block
CB12).

Block GB03, $--SFX: A branch and exit priority alert
mode to $CS-SFS, the force entry to the channel sched­
uler, is executed. The channel for which the GET macro
was issued is forced clear of all unchecked 110 opera­
tions. This is done to prevent an 110 interlock when the
card read instruction is executed at $--IOA (block CB04).

Block CB04, $--IOA: The card read instruction is
executed. If the program uses overlap, the instruction
is executed in overlap mode. This is done to preserve
overlap mode of operation if an overlapped operation
is in progress on the other channel. If the instruction
were not given in overlap mode, it would not be exe­
cuted until the 110 operation on the other channel is
completed.

Block CB05: A test is made to determine if any 110

channel status indicators are on. If they are all off,
control goes to block CB07. If any are on, control passes
to the unit record error routine (represented by block
CB06).

Block GB06: The reason for entry to the error routine
is determined and appropriate action is taken. Oper-

ator action may be required. Control returns to block
CB07.

Blocks CB07, CBOB, and CB09: A test is made to
determine if the condition 110 channel status indicator
is on. If it is, it indicates an end-of-file condition on the
card reader and control is sent to one of three places.

1. EOF ADDR specified in the last GET READ, EOF ADDR
macro used for this file.

2. EOFADDR specified in the DTF for this file if condi­
tion 1 does not apply.

3. $--IOA in the file scheduler if neither conditions 1
nor 2 apply. The card read instruction is re­
executed (block CB04). In this case, it is NOP' ed
and the not ready indicator is turned on. The
error routine is entered (block CB06) and a not
ready message is typed out indicating that the
reader is out of cards. The program enters a wait
loop for operator action. If more cards are placed
in the reader, the program continues.

Block CB10, $--TRIG: A branch and exit priority
alert mode to $ENTRY is executed. There is no signifi­
cance in the fact that the instruction is a BXPA. It is
used as an unconditional branch. 110 operations are
started on the channels, if possible, and priority alert
mode is entered.

Block CBll: The card count, $--TBC, is incremented
by +1.

Block CB12, $--EXIT: Control exits from the file
scheduler to the location set by block CB02.

Blocks CB13 and CB14: If the macro is of the for­
mat, GET READ TO WORK, the contents of the DTF speci­
fied 110 area for this file are moved to the work area
specified by the macro. Control returns to the user's
program.

UNIT RECORD PUT MACRO AND SCHEDULERS

Block C B2l: Before entering the file scheduler on a
PUT WORK AREA to :FILE macro, the contents of the macro
specified workarea are moved to the DTF-specified 110

area of the printer or punch file. If the macro is of the
PUT FILEA to FILEB format, the current logical record of
FILEA is moved to the DTF-specified 110 area of the
printer or punch file.

Block CB22, $--FULL: The contents of the B-address
register are stored in the I-address of a branch at $--EXIT
(block CB29). This initializes the file scheduler's exit.

Block CB23: The record count, $--TBC, is incre­
mented by + 1.

Block CB24, $--SFX: A branch and exit priority alert
mode to $CS-SFS, the force entry to the channel sched­
uler, is executed. The channel for which the PUT macro
was issued is forced clear of all unchecked 110 opera­
tions. This is done to prevent an 110 interlock when
the 110 instruction is executed at $--IOA (block CB25).

Record Processing and Little Macros 37

Block CB25, $--IOA: A punch a card or write a line
instruction, depending on the file type, is executed.
The data punched or printed is contained in the file's
DTF-specified 110 area. If the program uses overlap, the
instruction is executed in overlap mode.

Block C B26: A test is made to determine if any 110
channel status indicators are on. If they are all off, con­
trol goes to $--TRIG (block CB28). If any indicators are
on, control passes to the unit record error routine (rep­
resented by block CB27) .

Block CB27: The reason for entry to the error rou­
tine is determined and appropriate action is taken.
Operator action may be required. Control passes to
block CB28.

Block CB28, $--TRIG: A branch and exit priority
alert mode to $ENTRY is executed. There is no signifi­
cance in the fact that the instruction is a BXPA. It is
used as an unconditional branch. 110 operations are
started on the channels if possible and priority alert
mode is entered.

Block CB29, $--EXIT: Control exits from the file
scheduler to the location set by block CB22.

CLOSE PUNCH SEQUENCE

Block CB31, $--ACT + 11: This block is entered from
the close sequence for a punch file. The high-order
address of the punch file's 110 area is placed in the
A-address register by executing a dummy BCE instruc­
tion. The contents of the A-address register are stored
in the B-address of a move instruction executed in
block CB32.

Block C B32: A blank character is moved to the
address initialized by block CB31. The B-address of the
move just executed is initialized to address the next
character of the 110 area by storing the contents of the
B-address register, after the move is executed, in the
B-address of the move.

Block CB33: A test is made to determine if the ad­
dress specified by the B-address of the move instruc­
tion executed in block CB32 contains group mark/word
mark. If it does not, it indicates the end of the 110 area
has not been reached and control goes to block CB32 to
blank another location. When the end of the area is
reached, control passes to block CB34.

Block C B34: A blank card is punched.
Block CB35: A test is made to determine if any 110

channel status indicators are on. If they are all off,
control goes to $EXITRU (Chart DF, block 11) to con­
tinue the close sequence. If any indicator is on, con­
trol passes to the unit record error routine (repre­
sented by block CB36) .

Block CB36: The reason for entry to the error routine
is determined and appropriate action is taken. Oper­
ator action may be required. Control then passes to

38

$EXITRU (Chart DF, block 11) to continue the close
sequence.

Little Macros

IOCS must provide 110 control other than that afforded
by the OPEN, CLOSE, GET, and PUT macros. This addi­
tional control is available through the use of the 10CS
little macros.

These macros ena ble the programmer to position
tape on a unit, to select the pocket into which cards
are stacked on card read or punch operations, to posi­
tion paper on the printer through carriage control, to
use the console printer, to read or write records on
any tape unit, and to read and write tape labels.

Some restrictions in the use of the little macros
follow:

The STACK little macro may only be used to select
cards into specified pockets when the file for which it
is issued has a DTF CARDPOC 9 entry.

The RTAPE, WTAPE, and IOBSP little macros do not
adjust block counts if used for DTF-specified files.

No little macros pertaining to tape may be used be­
fore the first OPEN macro if there is no DIOCS PRIORITY
entry. The reason they may not be used is that the
tape error routine is not yet in core storage. The error
routine overlays the priority assignment routine during
the first OPEN.

A detailed description of how these little macros are
executed is presented in the text for Chart CC, which
follows.

RTAPE <READ TAPE) AND WTAPE (WRITE TAPE)

Block CC01: If the program uses the overlap special
feature, a BXPA to $CS-SFS is executed. The channel for
which the macro was issued is cleared of unchecked
110 operations. This block does not exist for the non­
overlap situation.

Block CC02: If parameter 4 (fourth operand of the
macro) is specified, a word mark is set in the core
storage location labeled by parameter 4. This is a
switch used by IOCS to indicate to the programmer the
availability of the input record <RTAPE) or the output
area (WTAPE). The branch instruction at $INTEXT is set
to return control to the user's program. Parameter 4 is
specified only for overlapped operations.

Block CC03: The format of the 110 instruction is
determined by parameters 1, 2, and 3. Parameter 1
specifies the manner (e.g., write tape with word
marks) in which the operation is executed, parameter
2 specifies the channel and unit, and parameter 3 speci­
fies the label of the core storage area used. These
parameters must be specified for the macro. The 110
instruction is executed. If the operation is read tape
and the program does not use overlap, the contents

of the B-·address register are stored in an area labeled
$ERNOIS at the completion of the read. This initializes
the tape error routine's noise length record coding.

Block CC04: If parameter 4 is specified in the macro,
it indicates that the operation is to be overlapped and
a branch on overlap instruction is executed. If the oper­
tion started successfully, control goes to $CS-RET (block
CC05). If not, control goes to block CC06 to determine
the reason for failure. This block does not exist if
parameter 4 is not specified.

Block CC05: The branch at $CS-PR, in the appropri­
ate channel scheduler, is set to go to block CC06. If
applicable, channel 2 operation is started and control
returns to the user's program in priority alert mode via
$INTEXT (set by block CC02). Upon completion of the
tape operation, control returns to block CC06 via $CS-PR.

Block CC06: The tape operation is checked by a
BEX instruction. The d-modiHer of the instruction is 7
if parameter 5 is specified. Otherwise, it is a tape mark.
Parameter 5 indicates that the user wishes control to
go to his end-of-Rle/reel routine if the 110 condition
channel status indicator is on as a result of the tape
operation. Note that wrong length records are not
checked. However, 10CS provides the user with infor­
mation from which he can compute record length if
parameter 6 is specified.

Block CC07: The tape error routine corrects the
operation if possible and passes control block CC08.

Operator action may be required.

Block eC08: If parameter 6 is specified, it indicates
the user wishes 10CS to store the contents of the E­
(channel 1) or F -(channel .2) address register in an
area labeled by parameter 6. An SER or SFR instruction
is executed to accomplish the store operation. This
block only applies to RTAPE macros.

Block CC09: If parameter 5 is specified, the user
wishes control to go to his end-of-file/reel coding on
end-of-file or end-of-reel conditions. A BEF instruction,
to the user's routine, is executed.

Block CC10: A branch any to itself + 1 is executed
to satisfy the 110 channel status test requirements. Con­
trol goes to one of three places:

1. Parameter 4 is specified block CCll

2. Not overlap block CC13

3. Overlap, not parameter 4 block CC14

Block CCll: The word mark in the core location
specified by parameter 4 is cleared, indicating to the
user the availability of the input record <RTAPE) or
output area (WTAPE) for processing.

Block CC12: After channel servicing is completed,
control returns to the place of interrupt via $INTEXT.

Note that if control dropped through the BOL instruc­
tion at block CC04, no interrupt has occurred and

$INTEXT is still set to go to the user's program. Control
leaves this block in priority alert mode.

Block CC13: If parameter 6 is specified, the contents
of $ERNOIS (set by block C003) are moved to the area
labeled by parameter 6. The user may use this for
wrong -length -record checking.

Block CC14: 110 operations are started on the chan­
nels, if possible, and priority alert mode is restored
by the execution of the BEPA instruction at $INTEXT.

The branch at $INTEXT, set by block CC02, returns con­
trol to the user's program.

CONSL (CONSOLE OPERATION)

Block CC2l: If a channel 1 scheduler exists, the
channel must be cleared of 110 operations before the
console printer is used. A BXPA to $CS1SFS is executed
and channell is cleared of all unchecked operations.

Block CC22: The 110 operation specified by param­
eters 1 and 2 of the macro is executed. Parameter 1
indicates the manner (e.g., read with word marks)
in which the console operation is to be performed and
parameter 2 is the label of the area in core storage to
be used.

Block CC23: A test is made to determine if any 110

channel status indicators are on. If all indicators are
off, control goes to block CC25. If any indicators are on,
control passes to the console printer error routine (rep­
resented by block CC24).

Block CC24: The console printer error routine de­
termines if the busy, data check, 110 condition, or the
no-transfer indicators are on. If any are on, the opera­
tion must be retried and control returns to block CC22.

Block CC25: If the program uses the overlap feature,
control goes to $ENTRY. 110 operations are started on
the channels, if possible, and control returns to the
user in priority alert mode via the BEP A instruction
at $INTEXT. This block is bypassed if the assembly is
non-overlap.

OTHER LITTLE MACROS

Other little macros are:
RTLBL (Read Tape Label)
STACK (Select Stacker and Feed)
10BSP (110 Backspace)
10RWU (110 Rewind and Unload)
WTLBL (Write Tape Label)
SKIP (Skip Carriage)
10RWD (110 Rewind)
10WTM (110 Write Tape Mark)
Block CC3l: If the program uses the overlap feature,

a BXPA to $CS-SFS is executed to clear the appropriate
channel of unchecked 110 operations.

Block CC32: The 110 instruction, specified by the
macro parameters, is executed. If the instruction is a

Record Proce,ssing and Little Macros 39

RTLBL in a non-overlap program, the contents of the
B-address register are stored in $ERNOIS at the comple­
tion of the read operation. This initializes the tape
error routine's noise record coding.

Block CC33: A BEX instruction is executed to check
the 110 operation. The d-modifier of the instruction is
7 for label operations. It is a group mark for all others.
Wrong-length records and end-of-file/reel conditions
are not checked on label operations. If none of the
indicators tested are on, control goes to block CC3S. If
any indicator tested is on, control passes to the ap­
propriate error routine (represented by block CC34).

Block CC34: The appropriate error routine (tape or
unit record) corrects the operation if possible and
passes control to block CC35. Operator action may be
required.

Block CC35: This block represents a NOP in the
coding of a RTLBL macro. It is used by the tape error
routine to determine if the operation which caused
entry to it was a label read.

Block CC36: If the macro was a label operation, a
branch any to the next sequential instruction is exe­
cuted to satisfy the 110 channel status test requirements.

Block CC37: If the program uses the overlap feature,
control goes to $ENTRY to start channel operations, if
possible. Control returns to the user's program in
priority alert mode via a BEPA at $INTEXT.

40

10SYS FORCE (CLEAR CHANNELS)

Block CC41: A BXPA to $CS1SFS is executed if the
operand is FORCE, or FORCE with 1 specified as the sec­
ond or third parameter. Channel 1 is cleared of
unchecked 110 operations. This block does not exist
if there is no channel-l scheduler.

Block CC42: A BXPA to $CS2SFS is executed if the
operand is FORCE, or FORCE with 2 specified as the
second or third parameter. Channel 2 is cleared of
unchecked 110 operations. This block does not exist if
there is no channel-2 scheduler. Control returns to the
user's program.

10SYS RESUME (START CHANNELS)

Block CC51: If the program uses the overlap feature,
a BXPA to $ENTRY is executed. Channel operations are
started, if possible. Control returns to the user's pro­
gram in priority alert mode via the BEPA instruction
at $INTEXT.

PSTAC (SELECT PUNCH STACKER>

Block CC61: The 1/0 instruction in the file scheduler
specified by parameter 2 is set to stack cards in the
pocket specified by parameter l. This is accomplished
by an instruction which moves parameter 1 to $ - - lOA + 3,

where -- is parameter 2.

PUT

AI*.... 01
" .. * USERS "

"PROGRAM" .. "

X 02 ····*81·····****· .. "
.. INITIALIZE
• FOR MOllE

"

X 03

···**Cl···*····*· .. .
MOllE "

THE
RECORD · •••••• * ••• ** ••• **

X 04

··· .. 01······*·*­" ..
• UPDATE

FOR !>;EXT
PUT

; 05

·····El····*····. · .. ACCUMULATE "
HASH

TOTALS · •••••• ** ••••••• **

X 06 ·····Fl··.·
" " " ACCUMULA TE
" RECORD
• COUNT

08 X
Gl .. * . 07 ** ••• G2*******.*.

FULL :~:::-*~~~!:~~~~:
TEST FULI_ * •••••••• X" WRITE ..

" TAPE •
.. RECORD •
•• *******.w ... ***.

" .NOT FULL

. .

.X •• 'I •••• " •••••••••••••••••

X
HI.... 09 . "

" USERS "
"PROGRA""
" " . .

Chart CA. PUT, GET, and RELSE Macros

GET

A3".. 11

" " " USERS •
.PROGRAM·
" .

13 X
83 • • .. 12 *****84 ••••••••••

• F.S. BCAI/BBBI • . EMPTY *-*-*-*-*-*-*-*-*
TEST EMPTY . * •••••••• x* READ ..

• TAPE
" RECORD "
* ••• ***** ••• *.*.* ..

.NOT EMPTY

. .
.x •••••••••••••.•••••••••••
X 14-* •••• C3*.* ••••• *. · .' INITIALIZE

FOR
MOllE

.' ••••••••• *** •••••

X 15
.*03···*···
• it MOVE

THE
RECORD · ••• ** ••••••••••••

X 16
***··E3·.** •• ***-· . UPDATE

FOR NEXT
GET

X 17 F3*·······** · " ACCUMULATE
HASH

TOTALS

" ** ••• ***** •••••••

X 18
*****G3***·****** · . ACCUMULATE

RECORD
COUNT .

• •• *******.*****.

X
H3 •• " 19 . .

.. USERS •

.PROGRAM·
" .

R E L S E

INPUT

A5*." 21 .. .
.' USERS ..
.PROGRAM"
.' it .

X 22
***·*85·······**.
• REPLACE ..
it CURRENT
• ADD'RESS WITH
" ENDING
.. ADDRESS •
••••••••••••••• **

;
.C5" " 23

• USERS "
.PROGRAM" .. "

OUTPUT

.05 24

• USERS "
:PROGRAM: .

••• * •

X 25
··**·ES·***····**
.$--PADS BFB2/B4.
--*-*-*-*-*-*_ .•
" IF NECESSARY ..
• PAD REMAINING ~
" RECORDS ." *.* ••••• *.*.** •••

X
FS... 26 .. .

" USERS ..
:PROGRAM:

CA

Record Processing and Little Macros 41

... ***
«CB "
« BI"

" "
"

GET READ. EOf-ADDR

*.***
"CB "
" 1l2"

" " "
$--EMTY ; 02 X 01

** •• *81 · ** .** •• 8~.*.*.*****
" SBR I N THE" " MOVE MACRO "
.. I-ADDRESS OF " *FOFADOR TO THE ..
"THE BRANCH INST*X •••••• •• * I-ADDR OF THE"
" AT S--EXIT * .. BEF INST AT *
" (BLOCK CBI2) " BLOCK CB07
•• ***.**.******.. *****************

S--SFX X 03
••••• Cl*****.****

:~~:;~~:.~!~;:~~:
" CLEAR CHANNEL "
.. OF UNCHECKED *
:!~~*~~;~~!!~~;.:

S--IOA X 04 ... Dl······ .. ·
EXECUTE. "

PUT WORK OR FILE-A
TO PRINT OR PUNCH

.**
*CIl *
" 83*
" *
"

PUT PRINT OR
PUT PUNCH

......
*CB *
* B4*

* " *

; 21 S--FULL X 22
.83.***...... .****84 •• *****.*.
" MOVE CONTENTS * .. SBR IN THE •
• OF WORK OR" " I-ADDRESS OF •
FILE-A I/O AREA •••••••• X*THE BRANCH INST"
" TO PRINT OR " • AT S--EXIT ..
"PUNCH I/O AREA' " (BLOCK CB29' •
•••••••• ***.***.. *** •••••• **** .. ·f**

; 23
:.***C4 •••••• **.:
" ADD +1 TO THE ..
.. CARD OR LINE *
:COUNT AT S--TBC:

••••• *.** •• ***.**

$--SFX X 24

CARD READ *X •••

••• **04** ••• ** •••
"SCS-SFS BAG3/DI.
-.--*-*-.-*-*-.
" CLEAR CHANNEL ..
.. OF UNCHECKED "
*1/0 OPERATIONS.
••••••••••••••• * •

.. INSTRUCTION "

"

*
*

X 06
E I • " 05 ••• **C2***.*.***.

"
BRANCH AI\Y

.
• NO

YES :~~~~~~-*- •. -~~!~:
- •••••••• X. UNIT RECORD ..

.. ERROR ROUT I NE ..

" " •• **.*** ••••••• **

. .

.X •••••••••••••••••••••••••

X
F I *.. 07 .

YES

F2 OB
" ..

NO * " • END-OF-FILE .. * •••••••• x*
"EOFAOOR IN "
MACRO EITHER
" PR I OR OR "

* •.•••••• x.

" .NO

S--TRIG; 10 .. ···Gl·· .. ··.··· "SENTRY BAA3*
-4-4--4-*-*-*-*
" SERVICE. ..
.CHANNELS. ENTE~*
.PRIORITY ALERT"
••• *.***.*.** •• **

X 11
.*Hl* •• **** · " • ADD +1 TO THE"
.. CARD COUNT AT ..
: S--TBC •

••••••• * •••• * ••• *

S--EXIT X 12
*····Jl****··****
It ..

.. EXIT TO THE

.. LOCATION SET "
• BY BLOCK CB02 *
.. *
••• * *'* * ••• **** ** ..

K1 .. = "
13

.. .. NOW

.YES

X

MACRO SPECIFIED
EOFADDR

14
......... *K2 '*.* *
" MOVE CONTENTS *

• GET • YES "OF READER FILE ..
.. READ TC WORK * •••••••• X.I/O AREA TO THE-

.. MACRO. "MACRO SPECIFIED.
* WORKAREA ..
*.** .•• *** ••••••••

RETURN TO
.NO USERS PROGRAM •
• X •••••••••••••••••••••••••
X .*.*.

" "
*

Chart CB. UR GET/PUT Macros and Schedulers

42

.NO ..
F3 09 . ..

.. EOFADDR *
SPECIFIED IN
" ~TF ENTR~ ..

* .YES

X
" ..

DTF SPECIFIED
EOFADOR

$--IOA X 25

NO

"E4.* •• **
" .

* EXECUTE *
"PRINT OR PUNCH"
• !/O INSTRUCTIO~ •

* ••• * ••••••••

."
"

X
F4 ... 26

.BRANCH ANY

.
.YES

; 27
.. • .. ··G4 •••• *.····
.SURERR EDA1.
--.-*-*-*-*-,*-*
" UNIT RECORD •
: ERROR ROUTINE:

.................

. .
••••••••••• X.

$--TRIG ; 28 .. ···H4·.········
:~~~!~~-.-.-~~!~:
• SERVICE ..
.CHANNELS. ENTER"

:~~!~~!!~,,!;~:!.:

$--EXIT ; 29
.J4 •••• **** ••
" " .. EXIT TO
• LOCATION SET •
: BY BLOCK CB22 :

* .. ** **.*

X
" " " .

RETURN TO
USERS PROGRAM

SEGMENT OF CLOSE
PUNCH SEQUENCE

ENTERED FROM CHART)F

..... -
"CB •
• B5·

* "

S--ACT+11; 31
.**·.85 .. ·***· .. •••
.. GET STARTING "
• ADDRESS OF *

PUNCH FILE
I/O AREA

X 32
···**cs*····*····
" MOVE A BLANK ..
*TO THE I/O AREA"

••• X.AND INITIALIZE"
* TO BLANK THE *

:,,~~~! .. ;~;!!!~~.:

05

"
X

"" 33

• NO *
• ••• • E~D OF

NO

" .YES

X 34 ***ES······· .. * •
"EXeCUTE A CARD "
• PUNCH INST •
"(PUNCH A BLANK ..

* CARD' •
** •• *** •• * •••

"

X

F5 * "
*

3S

...... .BRANCH ANY

.
.YES

X 36

···**Gs •• •••••••• .SUHERR EDAI*
--*-*-*-.-*-.-*
• UNIT RECORD •
: ERROR ROUTINE:

. ••••••• **** • . .
•••••••.••• x.

X •••• *
"OF·
*.Bi· .

SEXITRU

RTAPE.WTAPE

.AI ••••

- USERS -:PROGRAI-',:

***** • BXPA

X 01
4·*81*··****···
:!~~;~~~.~=~~~~~:
- FORCE CHANNEL *
- CLEAR OF -
- UNCHECKED I/O -
.*****._ ••• **

X 02 _.C.·._.· ... ·­
-IF P4 IS SPEC. *
* SET WM IN P4 *
-AND SET SINTEXT*
*TO GO TO USERS *

:~~~~~!~*~!.;;~;:

X 03
··"01···*****

• EXECUTE I/O *
.AS SPEC BY PI. *
*P2. IINO P3. IF -
NON-OVRLP RTAPC

* SBR-SERNO I S * -.. -.-.. --*.-

X
EI * * 04

- IF P4 *

NOTE---- P PARAMETER

CONSL

A3***

- * - USERS *
:PROGRAM:

***** .BXPA

X 21
*****83*********-

:!~~ !~~~ *-*-~~~::
-FORCE CHANNEL I­
* CLEAR OF -
- UNCHECKED I/O -_.-...... __ ._-_.-

X 22
.. *.*C3*"****** ..

* EXECUTE I/O
.................. x* (Rep OR WCP) ..

* AS SPEC BY PI *
- AND P2 *
... It It It It It It It Itlt._

:RETRY
• 24

*****D2*********-
$CPERR DHG2
--*-*-*-u-*-*-* BRANCH
.CONSOLE PRINTER-X •••••••• -
- ERROR ROUTINE -
.. * __ .. _ ... ____ n*_* ___ _

.PROCEED

X

• * 23

* *BRANCH ANY

* .NO BRIINCH

. .
•• f) •••••••••••••••••••••• x.

05
*****E2**********
SCS-RET BAOI/FI

BRANCH *-*-*-*-*-*-*----VIA

X 25

* I S SPEC. *
EXECUTE BOL

INSTRUCTION
* •••••• o.x* SET BRANCH A.T It ••••••

*****E3··********
SENTRY BAA3
--*-*-*-*-*-*-*
*START CHANNELS *
* AND RE-ENTER *
* ALERT MODE
****.************ * *

-- ...
* • *cc *.x.
* FI* ... -

X
F I * * 06

·EXECUTC*

-$CS-PR TO GO TO- .$
* BLOCK CC06. .1 _._. _____ *._n._.*_. .N

07
"*·**F2***U*****.

BRANCH :~;~~~~-*- .. -;~!~:

.T

.E

.X

.T

.VIA

.$INTEXT

X
F3***

* * * USERS I' • BEX INST. *
*IF P5 D-MOD=7. * •• ~ ••••• X* TAPE ERROR .. :PROGRAM:

• OTHERWISE *
... = TM *

: ROUTINE *

* * *.***************

. .

.x ••••••••••••• CJ •••••••••••

X 06
*····Gl**********
• IF P6 IS SPEC *
• SER (C~AN-IJ OR.
* SFR (CHAN-2J *
* IN ARFA •

:!~~!~:!~~*~!*:~:

X
HI. * 09

- IF P5 *

14
.****G2***u****** G3***
.SENTRY BAA3*. * *
--*-*-*-*-*-*-*VIA X .. USERS ..
-START CHANNELS * •••••••••••• X*PROGRAM*X •••••••
* AND RE-ENTER *$INTEXT * *
* ALERT MODE *
***************** *****

x X

• NO P4

10 • lei
H2***** *****H3**********

* * NON * IF P6 IS SPEC •
• I S SPEC *

EXECUTE BEF
I' INST TO *

* P5 *

* BRANCH ANY * OVERLAP * MOVE CONTENTS •
* •••••• e.X*TO SELF PLUS 1 * •••••••• X* OF $ERNOIS TO •

I'

* .BRANCH

X .*.*. * •
* *
*

* * * THE FIELD •
.INDICATED BY P6*

*******{I-*** *****************
.P4

X II 12
.****J2********** *****J3**********
* * *$CS-SCN BAE4/DI* •

RTLBL.WTLBL
10BSP.IOWTM
IORWD.IORWU
STACK.SKIP

A4***
* * * USERS *

:PROGRAM:

.*.*. .BXPA

X 31
*****84******.**­
$CS-SFS BAG3/DI
--*-*-*-*-*-*-*
• FORCE CHANNEL -
- CLEAR OF •
* UNCHECKED I/O -
** **********.

X 32
*.· .. C4·*******

* EXECUJE *
* THE I/O INST •
(IF NON-OVERLAP
*LABEL READ SBR •

**!~*:;~~~~~!.*

X
D4 • * 33

IF READ
IILABEI... EXEC*

.SEX wI TH D-MOD * ••••
* =7. IF NOT*

* BA .. - * .BRANCH

X 34
*"'***E4**********

:-*-*-*~!~~:;~!~:
APPROPRIATt:: *

ERROR

:****~~~!!~;****:

· . • x •••••••••••
X 35

*****F4**********
THIS BLOCK IS A
IINOP IF THIS IS -
* A LABEL READ *
.OPERATION (USED*

:~~*~~~~~.~!~;!*:

*

X
G4 * I' . 36

YES
*BRANCH ANY * ••••

* .NO

· . .x •••••••••••

X 37
*****H4*·********

:~;~!~~-*-*-~~=::
*START CHANNELS -
* AND RE-ENTER -
- ALERT MODE •
.. *.**************

.VIA

.SINTEXT

X
J4***

* •

IOSYS-FORCE

A5*··
* II

* USERS *
*PROGRAM.

* -* **.* •
.BXPA

X 41
·****B5******····
$CSISFS BAG3
--*-*-*-*-*-.-*
-FORCE CHANNEL I­
* CLEAR OF *
* UNCHECKED I/O -
• •• ***** ••• ** ••••

• BXPA

X 42
···**cs ••• *·**.*·
$CS2SFS BADI
--*-*-*-*-*-*-*
FORCE CHANNEL 2
* CLEAR OF *
* UNCHECKED I/O *
******* •• * •• *.*.*

X
D5**-

* * • USERS *
:PROGRAM:

-

IOSYS-RESUME

... ES ••••

* USERS ..
·PROGRAMII - .
* ••• **

.BXPA

~ 51
*****FS·****·***·
*$ENTRY BAA3-
--*-*-*-*-*-*-*
*START CHANNELS -
II AND RE-ENTER *

:**!;;~!*:~~;.**:
.VIA
.SINTEXT

X
G5*-*

.. II

• USERS *
:PROGRAM:

..
.-***

PSTAC

H5**·
-, USERS *
.'PRoGRAMII
* *

X 61

cc

CLEAR WORD * *-*-*-*-*-*-*-.-*VIA.$INTEXT * USERS *
IIPROGRAM·

.····JS**········
*SET FILE SCHED -
*1/0 INSTR SPEC.
-BY P2 TO STACK II
* I N POCKET SPEC *
* BY PI *
.** •••• *.***** •••

TO EOF ADDRESS
SPECIFIED BY P5

Chart CC. Little Macros

MARK AT P4 * •••••••• x* CONTINUE CHAN •••••
* * SCHEDULER -DROPPED
* * OPERATIONS *THRU BOL

.. *********ft·****** *****************AT CC04

• VIA SINTEXT.
• DOL EXECUTED
X AT BLOCK CC04

* *

TO PLACE OF INTERRUPT

* *
*

X
K511*1I

.. II
II, USERS *
"PROGRAM­
*' II

Record Processing and Little Macros 43

Open, Close, and End-of-Reel Procedures

Priority Assignment Routine

File priority allows the user to determine the order in
which non-forcing 110 requests for two-area tape files
on a channel are serviced. Such requests are interro­
gated in the pending switch network. This network
is an aggregate of the linkages of the respective file
scheduler pending switches in their relative priority
order (high to low), and the linkage from the channel
scheduler to the highest-priority pending switch, and
the exit linkage from the lowest-priority pending switch
(Figure 2).

PRIORITY ASSIGNMENT-DEFINITION AND USAGE

Assignment of file priorities is the process of ordering
the pending switch network to the priority order de­
sired. The 1410 IOCS allows the user to set the priority
order at source or object time according to the DIOCS

PRIORITY option chosen:

H -IPO~IP1~jPn~IP8--;;-IP9 Off

On On On On On

Start Start Start Start Start
I/O I/O I/O I/O I/O

H is the instruction labeled $CS-S3 in the associated channel scheduler.
Pn is the instruction representing a pending switch of priority n.
L is $CS2ENT for channell, $INTEXT for channel 2.

Figure 2. Pending Switch Network

, L

DIOes PRIORITY
Option

NONOVERLAY

ASSEMBLE

Omission of
DIOes PRIORITY

Results

A priority assignment routine is generated
and remains in storage at all times. Pri­
orities are assigned during OPEN and re­
OPEN operations for all two-area files
named in the OPEN macro and for those
not named but active.

A priority assignment routine is not gen­
erated. The assignment of file priority
is made at compilation time; the priority
order is determined by the sequence of
source DTF cards. The priority order may
not be modified at object time.

A shorter priority assignment routine is
generated, which is overlayed immedi­
ately following its execution. File prior­
ities are assigned only during the first
OPEN operation and may not be modified
later. A two-area file opened subse­
quently is treated as a one-area file.

A non-forcing 110 request for a file is recorded dur­
ing scheduling operations by the file scheduler when
an area is empty (input) or full (output); however,
only the request of highest priority on the channel is
honored at a time through the channel scheduler entry
to the pending network.

PRIORITY ASSIGNMENT-METHODOLOGY

The priority assignment routine builds a table of pend­
ing switch addresses, each address being a DCW defin­
ing the low-order location of a pending switch instruc­
tion. A two-character DCW, representing the priority
and channel-overlap identification for the file, precedes

Pending Network Portion of Tabl e

r~l
bb
bbbbb
bb

As Compiled DCW $CS2S3+5
DC @b
Dew $CSI S3'+5

$PARG Dew bb

bb

f-+' bbbbb
P ~L bb

Step A _ 7
Dew $CS2S3+5
DC @b
Dew $CSI S3+5

$PARG DCW @7

StepB -{

bb
Dew $CS2S3+5
DC @b
Dew $CSIS3+5
DC @7
DCW xxxxx

$PARG Dew @7

StepC -{H~P7~

Figure 3. Table of Pending Switch Addresses

44

Explanation

Chan 2 dummy arg
Chan 2 sched entry to pend net
Table arg for H
H (low-order)
Search arg position

Function from look-up (SBR XIS)

Search arg for P
7

Table moved 7 positions down

H re-inserted from saved loc
Table arg for P7
P
7

(low-order)
Search arg for P7

each address. Each pair in the table act as function and
table argument for table look-up operations; the start­
ing location in the table is low priority for channelL

The assigning of file priorities is done on a file-by­
file basis and the assignment of each file is complete:

1. The file is inserted into its relative channel-prior­
ity order in the table.

2. The file is inserted into its relative priority order
in the pending switch network for the channel.

This methodology is illustrated in Figure 3 for the
case of the first two-area file at the time of the first
OPEN operation. PRIORITY overlay and a file priority of
7 on channel 1 are assumed.

Description of Priority Assignment

Block DA01, $PAHSK: (Overlay) Because the link­
age table routine causes control for all files named in
the OPEN macro instruction to go to the priority assign­
ment routine (due to the 9 in the all-inclusive sequence
at $POX in the linkage table described in Chart DF,

block 08):. a file type test is made to determine if the
file is two-area tape. If it is not a two-area tape file,
control branches to $PAEXIT, block DA25. For two-area
tape files, control passes to block DA02.

(N On-01)erlay) Because the linkage table routine
directs only two-area tape files to go to the priority
assignment routine, block DAOI does not exist.

Block DA02, $P AHSK: The file is two-area tape. The
operand of the $PENSWE indexed label entry ($--WTG)

is moved to the B-address of the $OUT instruction, block
DAI6, and a + 44 is added to it. The resulting address,
$--WTG+H, points to the low-order location of the file's
pending switch instruction.

Block DA03: The priority code (indexed label,
$DTF ACT-l) and the channel identification (indexed
la bel, $DTF ACT + 4) for the file are moved to $P ARG.

$PARG is a two-position DCW used as search argument
for the look-up operation in the table of pending switch
addresses"

1. Non-·overlay: Control then proceeds to the block
sequence DA04 through DAl2 for processing in case
the file is being re-opened.

2. Overlay: Control proceeds directly to block DAl3;

blocks DA04 through DAI2 do not exist. File prior­
ities are sorted only during the first OPEN opera­
tion, since the priority assignment routine is over­
laid immediately following its execution for all
the HIes named in the first OPEN.

PROCEDURE IN CASE OF RE-OPEN (NON-OVERLAY ONLY)

Block DA04: A SBR into index register 15 is executed
to point to the first pending switch address in the table
(first table function).

Blocks DA05, $COMP, DA06, and DA07: A loop
is performed to determine if the file's pending switch
address (contained in the B-address of $OUT) is in the
table. A test for blank table argument (o-6+XI5) at
block DA05 precedes the accessing of the next function
(SBR into Xl5) at block DA06 and the comparison of the
previous function (7+XI5) to the file's pending switch
address performed at block DA07. A blank table argu­
ment means the file is not represented in the table and
control branches to $END, block DAI3.

Blocks DAOS through DA12: The pending switch is
eliminated from the file scheduler pending network
on the channel and from the table. (It will later be
reinserted according to its new priority.)

At blocks DA08 and DA09, the contents of the function
which represent the next-higher priority pending ad­
dress (o+XI5) and the contents of the previous function
which represent the file's pending address (7+Xl5) are
moved to the A- and B-addresses, respectively, of $LINK.

At $LINK, block DAlO, the file's pending instruction is
moved to overlay the higher-priority pending instruc­
tion, thus eliminating the file from the network.

At blocks DAll and DAl2, a loop is performed, suc­
cessively overlaying each table function (starting with
file's 7+Xl5) with the next-higher priority function
(O+Xl5). After each move, the next function is accessed
(SAR into X15) and the table argument (6+Xl5) is tested
for non-blank. When a blank table argument is reached,
control proceeds to $END at block DAl3.

COMMON PROCEDURE TO INSERT FILE INTO PENDING

NETWORK AND TABLE

Blocks DA13, $END, and DA14: A look-up low or
equal with $PARG as search argument is performed in
the table of pending switch addresses. The look-up is
followed by an SBR into Xl5 instruction. Note that the
function addressed by index register 15 has a 2nd­
higher than file priority on the respective channel.

Block DA15: The A-address of $OUT is initialized
with the next-higher priority pending switch address
(7+XI5).

Block DA16, $OUT: The file is partially inserted ill to
the pending network by overlaying the branch address
of the pending switch to be inserted with the address
of the higher-priority pending switch. (this corresponds
to Figure 3, step A.)

Blocks DA17 through DA20: The file is now inserted
into the table in its relative channel-priority position.
(This corresponds to Figure 3, step B.)

At block DAl7, a MRCWG moves the entire table down
7 positions, starting at lower storage, up to the next­
higher priority pending address (where a high-order
group mark has been placed). At blocks DAl8 through
DA20, chained MLC commands overlay the next-higher

Open, Close, and End··of-Reel Procedures 45

priority pending address (7+XHD by the file's pending
address (from the B-address of $OUT), move $PARG to
the vacated table argument (2+X15), and overlay the
vacated 2nd-higher priority address (Q+X15) by the
1st-higher priority pending address (from the A-address
of $OUT).

Blocks DA2l, DA22, and DA23: The insertion of the
file into the pending network, started at block DA16,

is now completed by overlaying the branch address
of the 1st-higher priority pending instruction to point
to the new file's pending switch. (This corresponds to
Figure 3, step C.)

At blocks DA21 and DA22, the B-address of $IN, block
DA23, is initialized with the 1st-higher priority pending
address (Q+X15) and +6 is subtracted from the file's
pending address at the B-address of $OUT (to adjust
the address to high-order).

At $IN, 5 chained MLCS commands move the adjusted
B-address of $OUT to the branch address of the 1st
higher priority pending switch instruction.

Block DA24: If the non-overlay option is in effect,
blocks DA25 through DA28 do not exist. After the file
reference address for the file is restored to index reg­
ister 15, control branches to $ENTA (block DB01) to
start open procedures for the file.

Blocks DA25 and DA26: If the overlay option is in
effect, block DA24 does not exist. After + 6 is added to
the file counter, $COUNT, a test is made here to deter­
mine whether the next check character in the calling
sequence work area (at $DTFBX + 1) is the terminal
check character, J. If not, there is another file to process
and control branches to $EXIT, block DF03.

Blocks DA27 and DA28: All files have been handled
by the priority assignment routine. The contents of
$COUNT (which contains the count for all files handled,
(i.e., 6 times n, where n is the number of files) are
subtracted from the A-address of $EXIT (the file-access­
ing instruction, block DF03) so that $EXIT is reinitialized
to point to the beginning of the macro calling se­
quence. The following specific tape sequence is then
moved in over the all-inclusive sequence at $POX in
the routine linkage table. The all-inclusive sequence is
described at block DF08.

$POX

Tape Sequence

DCW
DC
DC
DC

$TPCLOS
@J@
$ENTA
2

Control now branches unconditionally to the load
program at location 00281 to bring in the remaining
IOCS routines to overlay the priority assignment routine.
The load execute is to $EXIT, block DF03 in the linkage
table routine, where the files are now processed ac­
cording to file type.

46

Description of Open Procedures

Blocks DB01, $ENTA, and DB02: The base channel
and unit identification for the file (indexed labels,
$AD-6 and $AD-8, respectively) are moved to $ARG. A
look-up (LLE) is then executed in the table of file refer­
ence addresses with $ARG as the search argument. The
format of the table is shown in Figure 5.

Block D B03: The contents of index register 15, the
file reference address for the file, are moved to the table
function.

Block DB04: The various internal count fields (e.g.,
record count, if specified) are blanked out.

Block DB05: The address of the file scheduler initial­
ization coding block for the file, (indexed label,
$DTFl), is moved to $FINIT, block DB09. For applications
not specifying CHANNEL CHANGE, blocks DB06 through
DB08 do not exist and control passes to block DB09.

Blocks DB06 through DB08 are executed for CHANNEL

CHANGE applications.
Block D BOO: Two dummy clear word mark instruc­

tions are executed to initialize the A- and B-address
registers. The A -address register is set to point to

'$CCTAB+27 in the channel change table. The B-ad­
dress register is set to point to indexed label $AB-7.

The contents of the A-register are placed in index
register 15.

Block DB07: A branch if bit equal instruction (with
an Ad-modifier) is used to test $AD-7 for a channel 2
file indicator. (An @ indicates channel 1, an * channel
2.) If the file is a channel 2 file (the B bit in the A char­
acter matched the B bit in the *), control branches
directly to the common exit, block DB09. For a channel
1 file, control passes to block DB08.

Block DB08: It is a channel 1 operation. A dummy
clear word mark instruction is executed to initialize
the A-address register to point to $CCTAB+ 1 in the
channel change table. The contents of the A-register
are placed in index register 15.

Block DB09, $FINIT: At $FINIT, control exits to the
file scheduler initialization coding block as set by block
DB05. Block DB10 represents this initialization block.

Block DB10: The file scheduler is initialized accord­
ing to the file characteristics (e.g., file type, number of
areas, and WLR procedure). A table of initialization
function performed versus the file characteristics is
presented in Chart BE. Control passes to $ENTAB, block
DB11.

Block DBll, $ENTAB: $ENTAB is the place of return
after file scheduler initialization or after a standard
header label error when a retry is desired. Index reg­
ister 15 is reinitialized with the file reference address
from $DTFBX in the calling sequence work area. When
DlOCS CHANNEL CHANGE is in effect, this block does not

exist and $ENTAB becomes the label of the next block
(DB12).

Blocks D B12 and D B13: The rewind indicator for
the file (indexed label, $DTFVi) is tested, If no rewind
is specified (code == 0), control branches to block DB14.
Otherwise, control passes to the utility subroutine at
$RWDRU to rewind the tape. Control returns from the
subroutine to block DB14.

Block DB14: The label type indicator (indexed label,
$DTFLB) is tested. If it is a standard label file (code
= 0), control branches to $ENTC on Chart DC, block 01.
The return after standard header-label procedures is
to $ENTD, block DBH>, for input, or $ENTF, block DB27, for
output.

Block DB15: The file type code (indexed label,
$DTFLl) is tested. A 1 indicates an input file; control
passes to $ENTD, block DBI6. A 0 indicates an output
file; control passes to $ENTF, block DB27.

Block DB16: It is an input me (code = 1). The user's
Exit 7 address (indexed label, $E7) is moved to the
exit routine (at $SWBXA) in case the file uses Exit 7.

Block DB17: The Exit 7 indicator for the file (in­
dexed label, $D7) is tested. If Exit 7 is not used, control
branches to block DB21.

Block DB18: The exit routine at $SWBX executes an
SBR which sets the return address, block DB21, into the
re-entry routine (at $STLEXT), Index register 15 is re­
stored for the user, and control branches (as set by
block DBl!)) to the Exit 7 address.

Block DB19: Exit 7 can be used for checking of input
header labels in lieu of, or in addition to, standard
label processing. To process an additional label, the
user mus1t give a RTLBL macro instruction. For non­
standard labels, the user must give a RTLBL macro in­
struction for each label before processing,

Block DB20: The re-entry routine is executed at
$REENT to save index register 15 for the user, to restore
it for IOCS (from $DTFBX), and to branch to block DB21
(set by block DB18) .

Blocks DB21 and DB22: An indicator (indexed label,
$DTFL4) is tested to determine if the file has a tape mark
after the header. If so (code= 1), the subroutine at
$READRV, block DB22, is executed to bypass the tape
mark. If there is no tape mark, (code = 0), control
passes to block DB23.

Blocks DB23, $ENTI, and DB24: $ENTI is a common
gathering point for an input or output file in OPEN,
FEORL, and end-of-reel operations. If DIOCS CHECKPOINT
is in effect, the $CHKPT subroutine, block DB24, is exe­
cuted to take a checkpoint on the specified checkpoint
tape.

Blocks DB25, $ENT], and DB26: $ENTJ is a common
coding block executed for an input or output file in
OPEN, CLOSE, FEORL, and end-of-reel operations. The

file type indicator (indexed label, $DTFACT) is tested
for number of areas. If it is two-area (code=2), the
pending switch for the file is set off at block DB26. If
the file is not a two-area file, control passes to $EXITRU,
on chart DF at block 11. $EXITRU is the termination rou­
tine which tests if there is another file to process.

Block DB27, $ENTF: It is an output file (code=O).
The user's Exit 5 address (indexed label, $E5) is moved
to the exit routine (at $SWBXA) in case the file uses
Exit 5.

Block DB28: The Exit 5 indicator for the file (in­
dexed label, $D5) is tested. If Exit 5 is not used, control
branches to block DB32.

Block DB29: The exit routine at $SWBX executes an
SBR which sets the return address, block DB32, into the
re-entry routine at $STLEXT. Index register 15 is restored
for the user, and control branches (as set by block
DB27) to the Exit 5 address.

Block DB30: Exit 5 can be used for the writing of
output header label (s) in lieu of, or in addition to,
standard label processing. For standard labels, the user
can build the label in the IOCS label area and give a
WTLBL macro instruction, to write his additional label.
For non-standard labels, the user must give a RTLBL
macro instruction if he wishes to check the output
label and, after checking, execute an IORWD macro to
rewind the tape before building his label.

Block D B31: The re-entry routine at $REENT saves
index register 15 for the user, restores it for IOCS (from
$DTFBX), and branches to block DB32 (set by block
DB29).

Blocks D B32 and D B33: An indicator (indexed
label, $DTFL4) is tested to determine if a tape mark is
to be written following the header label(s). If so
(code = 1), the utility subroutine at $WTMRU, block
DB33, is executed to do so. Otherwise, or after the tape
mark is written, control branches to $ENTI, block DB23.

Description of Standard Header Label Procedures

Block DC01, $ENTC: The file type indicator (in­
dexed label, $DTFLl) is tested. If it is an output file
(code = 0), control proceeds to block DC26. If it is an
input file (code = 1), control goes to block DC02.

Block DC02, $ENTCR: The header label is read into
the IOCS label area. For an output file, this block is en­
tered only when the test at block DC27 indicates the
label is to be checked (DTF CHECKLABEL IDENT or ALL).

Block DC03: The label check indicator for the file
(indexed label, $DTFL3) is tested. If no check is to be
made (code = 1), control leaves label procedures to
continue input processing on Chart DB at block 16. For
an output file, control cannot exit (see block DC27).

Block DC04: The label identifier is compared to
IHDRb. Unless they match, the label is non-standard or

Open, Close, and End-of-Reel Procedures 47

there is no label. A branch unequal is made to $NHL,
block DC23, to process the error.

Block DC05: The file type indicator for the file (in­
dexed label, $DTFLl) is tested. If it is output (code = 0),
control branches to $OPHD, block DC14.

Block DC06: It is an input file. The header label
fields (included by the DIOCS and specified by the DTF
for the file) are compared to their file reference coun­
terparts. Assuming DIOCS LABELDEF CHECK:

1. If the user specified IDE NT in the DTF CHECKLABEL
card, only the file name is checked.

2. If the user omits the DTF card, SERIALNUM, the file
serial is not checked.

Blocks DC07 and DC08: The fields compared do not
match. An identifying message, 30122bFILbxxxn, where
xxxn represents the base tape identification, is set up
in the console message area, and the $NOTE subroutine
(represented by block DC08) is executed to type the
message.

Blocks DC09 and DC10: The label fields in positions
11-35 of the IOCS label area (see Figure 4) are set up
in the console message area, and the $NOTE subroutine
(represented by block DCIO) is executed to type the
message.

Block DCll: The internal fields corresponding to
the fields in the message typed at block DCIO are set
up in the console message area.

Label Operation Operand

Block DC12, $NIH: The $HALT subroutine is exe­
cuted to type either the message set up by block DCll
or by block DC23, and to enter a waiting loop for op­
erator reply.

Block DC13: The first character in $REPLY, the input
area for the operator's reply, is tested. If it is an A
(indicating the ACCEPT option was chosen), the input
header error is ignored and control branches to $ENTD,
block DB16, to continue input processing. Otherwise,
the operator has replaced the incorrect input tape reel
with the proper one and control branches to $ENTAB,
block DBll, to prepare to process the new label.

Block DC14, $OPHD: It is an output file. The re­
tention cycle is added to the creation date in the IOCS
label area.

Blocks DC15 and DC16: If the sum exceeds 366,
635 is added to the sum in order to obtain the actual
retention date.

Block DC17: If today's date (in core locations 00115-
00119) is beyond the retention date, the tape can be
used and control branches to $OPHDAB, block DC28, to
assemble the output header.

Block DC18, $DATER, and Block DC19: Today's
date lies within the retention date. An identifying mes­
sage, 40131bDATbxxxnbyyddd, where xxxn is the base
tape identification and yyddd is the computed reten­
tion date, is prepared in the console message area.

Explanation

lHDRb

11
Tape serial
File serial

1 Reel sequence

1 I v-l~~li:;Ed:;:"
@xx@

Header

blOCSLBA DCW

DC

Trailer

blOCSLBA DCW

DC

______ -L============~:_- Spare information
@'~-;;xxxxxxxxxxxxXXXXXX'xxxxxxxxxxxxxxxxxxx~G

,---------------Trailer identifier
1 EORb or 1 EOFb

,-------------Block count
,------------Record count

,----------Hash total overlaid by

1 rec count (6 pos)
,-------Effective hash total (10)

r--'---.r--'-"'\r-~----': I I Spare information
@xxxxxxxxxxxxxxxxxxx~xxxxxxxxxx\xxxxxxxx>l.@
~ ______ c=====~=-Spare information

@xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx G

• Figure 4. Header and Trailer Formats in Storage

48

Block DC20, $NOH: The $HALT subroutine is exe­
cuted to type either the message set up by blocks DCl8
and DCl!) or by block DC25, and to enter a waiting loop
for operator reply.

Blocks DC21 and DC22: The first character in $REPLY
is tested.

l. If an A (indicating the operator chose the ACCEPT
option), the output header error is ignored and
control branches to $OPHDAB, block DC28, to as­
semble the new output header.

2. If numerical, $REPLY contains the correct day's
date inserted by the operator. The correct date
is moved into core locations 00115-00119 and
control branches to $ENTAB, block DB]l, to prepare
to reprocess the output header label.

3. If neither, the operator has replaced the incorrect
output tape reel with the proper one and control
branches to $ENTAB, block DBl1, to prepare to re­
process the new label.

Block DC23, $NHL: It is not a standard header label.
An identifying message, 301 33bNIHbxxxn, where xxxn
is the base tape identification, is prepared in the console
message area.

Block DC24: The file type indicator (indexed label,
$DTFL 1) is tested. If it is an input file (code = 1), con­
trol branches to $NIH, block DC12.

Block DC25: It is an output file (code=O). The
first part of the message is altered to so indicate. The
message is now, 40130bNoHbxxxn. Control passes to
block DC20 to type the message.

Block DC26: The test at block DCOl indicates it is an
output file. The Exit 3 indicator (indexed label, $D3)
is tested" If this file uses exit 3 (code = 1), control goes

I to block DC4l; IOCS checking of the header label is
bypassed.

Block DC27: The label check indicator for the file
(indexed label, $DTFL3) is tested. If the output label
is to be checked (code = 0), control goes to $ENTCR,
block DC02. Otherwise (code = 1), control proceeds to
block DC28.

ASSEMBLE STANDARD OUTPUT lIEADER LABEL

Block DC28, $OPHDAB: $OPHDAB is reached directly
from block DC27, if no output label checking is to be
done for the file, or via connector A4 (from block DC17
or DC21),' after the output label has been checked. The
indicator (indexed label, $D9) is tested to see if the file
serial is to be made equal to the tape serial of the first
reel of the file. If not (code = 0), control branches to
block DC31.

Block DC29: The check character in the calling
sequence work area ($DTFBX-5) is tested for an * to
distinguish between an OPEN and end-of-reel operation.
If it is end-of-reel (*), control branches to block DC31.

Block DC30: It is the first reel of the filc (OPEN oper­
ation). The tape serial in the IOCS label area is moved
into the file serial field for the file (indexed label, $I1FS).

Block DC31: Today's date in core locations 00115-
00119 is moved to the creation date field for the file
(indexed label, $HCD).

Block DC32: The last 40 positions of the IOCS label
area are blanked out.

Block DC33: After the various header fields for the
file are chain-moved into the lOCS label area with word
marks (see Figure 4, positions 11-40), the identifier
1HDRb is moved to positions 1-5.

Blo~k DC34: The user's Exit 4 address (indexed label,
$E-l) is moved to the exit routine (at $SWBXA), in case
the file uses Exit 4.

Block DC35: The Exit 4 indicator (indexed label,
$D-l) is tested. If this file does not use Exit 4 (code = 0),
control branches to block DCW.

Block DC36: The exit routine at $SWBX executes an
SBR which sets the return address, block DC39, into the
re-entry routine (at $STLEXT). Index register 15 is re­
stored for the user, and control branches (as set by
block DC3-l) to the Exit 4 address.

Block DC37: Exit 4 can be used for altering the first
40 header positions in the label area and/or entering
additional information into the last 40 positions.

Block DC38: The re-entry routine (at $REENT) saves
index register 15 for the user, resets it for IOCS (from
$DTFBX), and branches to block DC39 (as set by block
DC36) .

Block DC39, $ENTE: The utility subroutine is exe­
cuted at $RWDRU to rewind the output tape.

Block DC40: The subroutine at $WRITRU is executed
to write the assembled header label on the tape. Con­
trol then exits to continue processing the output file
at $ENTF, block DB27.

Block DC41: The user's Exit 3 address (indexed
label, $E3) is moved to the exit routine (at $SWBXA).

Block DC42: The exit routine at $SWBX executes an
SBR which sets the return address, block DC39, into the
re-entry routine (at $STLEXT). Index register 15 is re­
stored for the user, and control branches (as set by
block DC-ll) to the Exit 3 address.

Block DC43: Exit 3 can be used for assembling a
label in the IOCS label area. This label is in lieu of IOCS
label-building (blocks DC28 through DC33). If there is a
label on the tape and the user wishes to check it, he
must issue a RTLBL before he can check it and assemble
the new label.

Block DC44: The re-entry routine (at $REENT) is exe­
cuted to save index register 15 for the user, reset it for
IOCS (from $DTFBX) and branch to block DC39 (as set
by block DC-l2).

Open, Close, and End-ot-Reel Procedures 49

Description of End-of-Reel Procedures

Block DD01, $EORU: End-of-reel processing shares
many of the routines and coding blocks used for OPEN
and CLOSE macro processing. These macros furnish
the information needed for processing by means of
the calling sequence. An end-of-reel operation is proc­
essed as a one-file calling sequence operation. The
reader should refer to the description of the linkage
routine at blocks DFOl through DF14. An SBR into the
A-address of $EXIT, block DF03, furnishes the termina­
tion routine (which will be entered on completion of
the end-of-reel operation) with the address of the
necessary termination character (see block DFll). This
address, which is the file reference address, also serves
to furnish the termination routine with the linkage
pivot back to the file scheduler (see blocks DF13 and
DF14). An SBR into $DTFBX is executed to set the calling
sequence work area with the file reference address,
with which index register 15 will be initialized (see
block DD02). An * is moved into the calling sequence
work area at $DTFBX-5 to serve as the defining check
character for an end-of-reel operation.

Block DD02: The clear channels routine is executed.
Both the channels are cleared of unchecked 110 opera­
tions, and IOCS is set to ignore start channel operations.
After the contents of index register 15 are saved for
the user, it is set with the file reference address (from
$DTFBX).

Block DD03: The file type indicator (indexed label,
$DTFLl), is tested to distinguish between an input and
an output operation. If the latter (code = 0), control
branches to $OPEOR, block DD25.

INPUT TRAILER PROCEDURES

Block DD04: The A-address of $EXIT, which was set
at block DDOl to point to the file reference address, is
incremented by 7 to serve as the input file's termina­
tion character address and linkage pivot return to the
file scheduler.

Block DD05: The label code for the file (indexed
label, $DTFLB) is tested. For standard labels, control
goes to block DD06; for non-standard, it goes to block
DD23.

Block DD06, $IPEOR: It is a standard label file
(code = 0). The subroutine, $READRU, is executed to
read the trailer label into the IDCS label area.

Block DD07: An identifying message, l0134bTIEbxxxn,
where xxxn is the base tape identification, is prepared
in the console message area, in case of a trailer label
count discrepancy.

Block D D08: Word marks are set into the IDCS label
area according to the length of the fields to be
compared.

50

Blocks DD09 and DD10: The count fields (if any)
specified by DIOCS COUNTS (HASH and/or RECORD) and
the block count are, in turn, compared to the corre­
sponding trailer label fields.

Blocks DDll: The $NOTE subroutine is executed to
type the identifying message set up by block DD07.

Blocks DD12 and DD13: The counts in the IDCS
label area are moved into the console message area,
and the $NOTE subroutine is executed to type them.

Blocks DD14 and DD15: The internal counts for the
file are moved into the console message area with the
left-most six positions of the hash total field, if speci­
fied, truncated (see Figure 4). The $NOTE subroutine
is executed to type the message.

Block DD16, $BCRT: The user's Exit 6 address (in­
dexed label, $E6) is moved to the exit routine (at
$SWBXA), in case the file uses Exit 6.

Block DD17: The Exit 6 check indicator (indexed
label, $D6) is tested. If this file does not use Exit 6
(code = 0), control branches to block DD21.

Block DD18: The exit routine at $SWBX executes an
SBR which sets the return address, block DD21, into the
re-entry routine (at $STLEXT). Index register 15 is re­
stored for the user, and control branches (as set by
block DD16) to the Exit 6 address.

Block DD19: Exit 6 can be used for various purposes
depending on the characteristics of the input file. For
a standard label file, it can be used to read and process
additional trailer labels. For a non-standard label file,
it can be used to read and process the trailer label(s).
In the latter case, the user must test for end of file.
If it is, the user can get to his end-of-file address by
moving an F to $LBA + 3 in the IOCS label area to overlay
the R (see block DD24). Note that if the user branches
directly to his end-of-file address, start channel opera­
tions will be ignored until another end-of-reel or macro
has been processed; also, there is a possibility that the
file may start an 110 operation.

Block DD20: The re-entry routine (at $REENT) saves
index register 15 for the user, resets it for IOCS (from
$DTFBX), and branches to block DD21 (as set by block
DD18).

Block DD21: The fourth position in the label identi­
fier field in the IDCS label area ($LBA + 3) is compared to
an R. If it is an R, a branch-equal is made to $ENTH,
block DE28, to continue input end-of-reel processing.

Block DD22, $ENTG: This block is reached either
from block DD21 when it is end of file (F) or from block
DD23 for a non-standard label file that does not use
Exit 6. The user's end-of-file address (indexed label,
$DTFA) is moved to the A-address of $EXIT, to substitute
this address as the terminal address for use of the termi­
nation routine. Control then goes to the termination
routine via $ENTJ. Note that since the linkage to the file

scheduler at $EXIT is destroyed, the user cannot return
to IOCS. The user must use Exit 6 when processing a
multi-reel, non-standard file.

Blocks DD23 and DD24: It is a non-standard label
file (see block DD05). The Exit 6 indicator for the file
(indexed label, $D6) is tested. If Exit 6 is not used, the
file is treated as if it is at end of file and control branches
to $ENTG, block DD22. Otherwise, the IOes label area is
made to appear as end of reel by placing lEORb into its
identifier field for the proper operation of blocks DD16
through DD2l.

Block DD25, $OPEOR: It is an output end of reel.
The Exi1t 8 check code for the file (indexed label, $D8)
is tested. If Exit 8 is not used, control branches to
$OPEORA" block DE05.

Block DD26: The operand of the SAR instruction at
block DD28 is set with the contents of $TRIGEN (indexed
label-file reference address + 18) in case a two-area
file is being used.

Block DD27: The file type code (indexed label,
$DTF ACT) is tested for number of areas. Control passes
to block DD30 for a one-area RIe.

Block DD28: It is a two-area file. The contents of the
A-register, which is the I-address of the instruction at
block DD27, are stored into the branch address of $--TRIG
(see block DD26). Control branches to $--WTG in the file
scheduler (represented by block DD29).

Block DD29: At $--WTG, the pending switch for the
file is tested. If it is on, the last block is written on tape
by a force operation. If it is off, or after the force, con­
trol retu:rns to block DD30 from $ --TRIG (as set by block
DD28).

Block DD30: The user's Exit 8 address (indexed
label, $E8) is moved to the exit routine (at $SWBXA).

Block D D31: The exit routine at $SWBX executes an
SBR which sets the return address $OPEORA, block DE05,
into the re-entry routine (ait: $STLEXT). Index register
15 is restored for the user, and control branches (as set
by block DD30) to the Exit 8 address.

Block D D32: Exit 8 requires special programming
to tailor its use for normal user requirements. It is rec­
ommended that the user make use of Exits 1 and 2 in
lieu of Exit 8 for these purposes.

Block DD33: The re-entry routine (at $REENT) saves
index register 15 for the user, resets it for IOCS (from
$DTFBX), and branches to $OPEORA, block DE05 (as set
by block: DD31).

Description of Close Procedures

Block DEOI, $l'PCLOS: The contents of $DTFA (in­
dexed label) are moved to the I-address of the instruc­
tion at block DE02 to handle the case of a blocked out­
put file.

Block DE02: The file type code (indexed label,
$DTFL1) is tested. If it is an output file (code = 0), con­
trol branches to the address as set by block DEOL This
address is to $--PADS in the file scheduler (represented
by block DE03) for a blocked file, or to $CLSABA, block
DE04 (since padding does not apply) for an unblocked
file. If it is an input file (code = 1), control goes to
block DE04.

Block D E03: The block is padded and the file is put
on pending, if necessary.

Block DE04, $CLSABA: The check character in the
calling sequence work area ($DTFBX-5) is checked for
an * to distinguish between a FEORL and a CLOSE opera­
tion. If the character is an *, the operation is FEORL and
control passes to block DE05; otherwise, control goes to
block DE06.

Block DE05, $OPEORA: It is an FEORL operation,
or an output end-of-reel operation (from block DD25).
The label identifier lEORb is moved to the IOCS label
area identifier field. Control passes to block DE08.

Blocks DE06 and DE07: It is a CLOSE operation. The
label identifier lEOFb is moved to the IOCS label area
identifier field. The reel sequence field for the file (in­
dexed label, $HRS-1) is zeroed.

Block DE08, $CLSA: The file type code (indexed
label, $DTFL1) is tested to distinguish between an input
and an output operation. If it is an input file (code = 1),
control goes to block DE28.

OUTPUT TRAILER PROCEDURES

Block DE09: The operand of the SAR instruction at
$PRIME3, block DEll, is set with the contents of $TRIGEN
(indexed label-file reference address + 18) in case it
is a two-area file.

Block DEIO: The file type code (indexed label,
$DTFACT) is tested for number of areas. For a one-area
file, control passes to $PRIMER, block DE13; for a two­
area file, to $PRIME3, block DEll.

Block DEll, $PRIME3: It is a two-area file. The
contents of the A-register, the address $PRIMER (from
the I-address of the instruction at block DEW), are
stored into the branch address of $--TRIG (see block
DE09). Control branches to $-'-WTG in the file scheduler
(represented by block DE12) .

Block DEI2: At $--WTG the pending switch for the
file is tested. If it is on, the last block is written on tape
by a force operation. If it is off, or after the force, con­
trol returns to $PRIMER, block DE13, from $--TRIG (as set
by block DEll).

Block DEI3, $PRIMER: A tape mark is written on
the output tape by the utility subroutine at $WTMRU.

Block DEI4: The label indicator for the file (in­
dexed label, $DTFLB) is tested. If it is a standard label
file (code = 0), control proceeds to the block sequence

Open, Close, and End-ot-Reel Procedures 51

beginning at $CLSB, block DE15. Otherwise (code = 1),
control goes to $SUSXA, block DE22.

Block DEl5, $CLSB: After the last 50 positions of
the IOCS label area are blanked, the various internal
counts are moved into the first 30 positions as shown
in Figure 4. The trailer identifier was moved at block
DE05 or DE06.

Block DEl6: The user's Exit 1 address (indexed
label, $El) is moved to the exit routine (at $SWBXA), in
case this file uses Exit 1.

Block DEl7: The Exit 1 check indicator is tested.
If Exit 1 is not used (code = 0), control branches to
block DE21.

Block DEl8: The exit routine at $SWBX executes an
SBR which sets the return address, block DE21, into the
re-entry routine (at $STLEXT). Index register 15 is re­
stored for the user, and control branches (as set by
block DE16) to the Exit 1 address.

Block DEl9: Exit 1 is used for entering additional
information into the standard output trailer label.

Block DE20: The re-entry routine is executed (at
$REENT), to save index register 15 for the user, to reset
it for IOCS (from $DTFBX), and to branch to block DE2l
(as set by block DE18).

Block D E2l: The trailer label is written on the out­
put tape by the subroutine at $WRITRU.

Block DE22, $SUSXA: The Exit 2 check indicator
(indexed label, $D2) is tested. If Exit 2 is not used
(code = 0), control branches to block DE28.

Block DE23: The user's Exit 2 address in the DTF
(indexed label, $E2) is moved to the exit routine (at
$SWBXA).

Block D E24: The exit routine at $SWBX executes an
SBR which sets the return address, block DE27, into the
re-entry routine (at $STLEXT). Index register 15 is re­
stored for the user, and control branches (as set by
block DE23) to the Exit 2 address.

Block DE25: Exit 2 is used for writing non-standard
labels in addition to, or in lieu of, standard labels.

Block DE26: The re-entry routine (at $REENT) saves
index register 15 for the user, resets it for 10CS (from
$DTFBX), and branches to block DE27 (as set by block
DE24).

Block DE27: A tape mark is written after the label
by the utility subroutine at $WTMRU.

POST TRAILER PROCEDURES

Block DE28, $ENTH, and Blocks DE29, DE30,
DE3l, and DE32: The rewind indicator for the file (in­
dexed label, $DTFL5) is tested for rewind (code = 1)
and rewind unload (code = 2). If either is called for,
the appropriate utility subroutine at $RWDRU or $RWURU
is executed. The reel sequence number (indexed label,
$HRS-l) is then updated by 1.

52

Block DE33: The check character in the calling
sequence work area ($DTFBX-5) is checked for an * to
test the kind of operation. If it is an * (EOR or FEORL),
control goes to block DE34 to prepare for a new tape
reel. Otherwise, it is a CLOSE operation and control
branches to $ENTJ, block DB25.

BlockDE34: An identifying message, 2012obEoRbxxxn,
where xxxn is the base tape identification, is set up in
the console message area.

Blocks DE35 and DE36: The alternate reel indicator
for the file (indexed label, DTFL2) is tested. If the code
is 1, source DTF ALTDRIVE was specified and control
branches to block DE37. Otherwise, the $HALT subrou­
tine is executed to type the message and a waiting loop
is entered to permit the operator to mount the new
reel. Control then branches to $ENTA, block DB01, to
open the new reel.

Block DE37: The base and alternate tape identifica­
tions for the file (indexed labels, $AD and $AD- 5, re­
spectively) are swapped.

Blocks DE38 and DE39: After the first position in
the console message is decremented by 1, the $NOTE
subroutine is executed to type l0120bEoRbxxxn where
xxxn represents the former base tape identification.
Control then branches to $ENTA, block DB01, to open the
new reel.

Linkage Routines

COMMON ENTRY FROM OPEN, CLOSE, FEORL,
AND RDLIN MACROS

Block DFOl, $CLOP: An SBR into the A-address of
$EXIT, block DF03, is executed. This sets $EXIT to point
to the first check character in the macro calling
sequence.

Block D F02: The clear channels subroutine is exe­
cuted to clear both channels of unchecked 110 opera­
tions, and 10CS is set to ignore start channel operations.
The contents of index register 15 are saved for the user.

CALLING SEQUENCE AND LINKAGE TABLE ROUTINE

Block DF03, $EXIT: The next (or first) segment of
the macro calling sequence, consisting of the check
character, file reference address, and next check char­
acter, is moved to the calling sequence work area. The
work area format is:

Label Operation Operand Explanation

@x@ Check character for file
$DTFBX DCW @nnnnn@ File reference address

@x@ Check character for next file
or terminal character

Each macro has its unique check character as follows:

Macro Check Character Presence of 2-hit

OPEN C y9
CLOSE 0 or) (lozenge or right paren) no
FEORL * (asterisk) no

+
RDLIN ? or 0 (question mark or plus zero) not used

The terminal check character is always a J.
Blocks DF04 and DF05: The calling sequence

pointer (A -address of $EXIT) is set to point to the next
file's check character (or terminal character) in the
macro calling sequence.

Block D F06: Index register 15 is initialized with the
file reference address for the file (from $DTFBX in the
calling sequence work area).

Block DF07: The check character for the file (from
$DTFBX-5 in the calling sequence work area) is com-

+ +
pared to 0 (plus zero). If it is a 0, control branches to
process the RDLIN operation at $RDLIN, block DG31.

Block DF08: A look-up high or equal with the file
type as the search argument (indexed label, $DTFACT)

is made in the routine linkage table. Each table argu­
ment (file type) is preceded by the OPEN and CLOSE

linkages. For example, the one-area tape linkages are:

Operation Operand Explanation

DCW $TPCLOS Close linkage
DC @bJ@ Needed for the move
DC $ENT A Open linkage
DC 1 File type (table arg)

When PRIORITY overlay is specified, the beginning
of the table is compiled with an all-inclusive sequence
shown below. The 9 in the DC at $POX causes open link­
age to the priority assignment routine regardless of
file type.

Label

$POX

Operation

DCW
DC
DC
DC

Operand

$EXITRU
@bJ@
$PAHSK
9

After all two-area files have been processed in the pri­
ority assignment routine (the others are passed by),
the all-inclusive sequence is overlayed with a tape
sequence before the second IOCS load (see Chart DA,

block DA28) •

Block DF09: After an SBR into the A-address of a
MLCA, the latter moves the OPEN and CLOSE linkages
into a double branch, which is shown as the exits from
block DF10.

Block DF10: The check character for the file (from
$DTFBX-5 in the calling sequence work area) is tested
for the presence of a 2-bit to determine which branch
to take. The presence of a 2-bit causes control to go to
the OPEN branch; its absence, to the CLOSE branch. (See

table at block DF03.) Chart DF shows a summary of link­
ages for each branch, OPEN, or CLOSE, by file type. The
file types are in the left-most column of the tables.

TERMINATION ROUTINE

Block DF11, $EXITRU: The next check character
in the calling sequence work area is compared to the
termination character J. If it is not J, there is another
file to process and control branches to $EXIT, block DF03.

Block D F 12: The $ENTRY routine is reset to permit
the resumption of channel operations.

Block D F 13: The address of the termination charac­
ter in the calling sequence pointer at $EXIT is moved to
the exit routine at $SWBXA, block DF33.

Block DF14: The exit routine is executed (blocks
DF31 through DF33) to restore index register 15 for the
user, and control branches (as set by block DF13) to
the termination instruction. The table below block DF14

shows the effective branch location taken (the operand
of the branch instruction) for an end-of-reel operation.

CLEAR CHANNEL ROUTINE

Block DF21, $STLE or $SCS: An SBR into the re­
entry routine (at $STLEXT) is executed to establish the
return linkage.

Blocks DF22 and DF23: Channels 1 and 2 are cleared
of unchecked 110 operations, to prevent any interrupts
during label processing, etc., in the DIOCS routines.

Block DF24: The $ENTRY routine is set to prevent the
resumption of normal channel operations.

Block DF25: The re-entry subroutine is executed to
save the contents of index register 15 for the user.
Control then branches to the location as set by block
DF21.

EXIT ROUTINE

Block DF31, $SWBX: An SBR into the re-entry rou­
tine at $STLEXT, block DF43, is executed in case IOCS will
be re-entered from user coding at one of the 8 stand­
ard exits.

Block DF32: Index register 15 is restored for the
user with its previous contents saved in $X15HD.

Block DF33, $SWBXA: Control branches to the
address as set by the DIOCS routine exited from, or to
the termination instruction as set by block DF13.

RE-ENTRY ROUTINE

Block DF41, $REENT: The contents of index regis­
ter 15 are saved for the user in the hold area, $X15HD.

Block DF42: Index register 15 is initialized with the
contents of $DTFBX, in case this is a re-entry from user
coding during DIOCS routine processing.

Block DF43, $STLEXT: Return is made to the main
IOCS routine as set by the SBR at block DF31 or block
DF21.

Open, Close, and End-of-Reel Procedures 53

Description of General 1/0 Routines, ROLIN

READ OR WRITE LABEL ROUTINE

Block DG01, $READRU: An SBR is executed into
the routine's exit, block DG10.

Block DG02: All 80 positions of the 10CS label area
are blanked.

Block DG03: The 110 command at $LBOP, block DG06,
is set to a read by moving an R into its d-modifier.

Block DG04, $LBIN, and Block DG05: The X-con­
trol of the base tape identification (indexed label,
SAD-6) is moved to the X-control of the 110 command
at $LBOP, and the R or X channel status operation code
(indexed label, $AD-5) is moved into the operation
codes of the BEX and BA instructions that follow the 110
command.

Block DG06, $LBOP: The 110 command is executed
to read the label into the IOCS label area or write the
label from the IOCS label area (see Figure 4).

Block DG07: A BEX is executed for the channel to
$ERROR, block DG08. A branch is taken only for busy,
not ready, or data check indications. The BEX forces
an interlock on further processing until the operation
has been completed.

Block DG08: The error routine is executed, correct­
ing the error if possible.

Block DG09: A BA to the next sequential instruction
is executed to prevent interlock on the next 110 com­
mand given.

Block DG10: Control exits to the location as set by
block DGOl or DG11.

Block DGll, $WRITRU: An SBR is executed into the
routine's exit, block DG10.

Block DG12: The 110 command at SLBOP, block DG06,
is set to a write by moving a W into its d-modifier. Con­
trol then branches to block DG04.

110 UTILITY ROUTINE: REWIND, REWIND UNLOAD,
AND WRITE TAPE MARK

Blocks DG2l, DG22, and DG23: $RWDRU, $RWURU,
and $WTMRU represent the entry points to the utility
routine for rewind, rewind unload, and write tape
mark operations, respectively. In each case, an SBR is
executed to set the common exit, block DG30. The SBR
is followed by a I-character DCW, which contains the
d-modifier that applies for the operation (R, U, or M).

Block DG24: The address of the DCW is moved to the
A-address of the move instruction at block DG26.

Block DG25: The R or X channel status operation
code for the file (indexed label, $AD-5) is moved to
the operation code for the BA instruction at block DG28.

Block DG26: The character in the DCW is moved to
the d-modifier of the 110 utility instruction at block
DG27. The X-control of the base tape identification

54

(indexed label, $AD-6) is chain-moved to the X-control
of the liD utility instruction.

Block DG27: The 110 utility command is executed.
Block DG28: A BA on the channel to $ERROR is exe­

cuted. The BA forces an interlock on further processing
until the operation has been completed for a write tape
mark operation only.

1. For a rewind or a rewind unload operation, a
branch can only occur for busy or not ready.

2. For a write tape mark operation, a branch can
only occur for busy, not ready, or data check.

3. The BA also serves to satisfy the interlock require­
ment for the next I/O command.

Block DG29: The error routine is executed, cor­
recting the error if possible.

Block DG30: Control returns to the user's program
at the address set by block DG21, DG22, or DG23.

PROCESS RDLIN

Block DG3l: The RDLIN card is read into the IOCS
label area.

Block DG32: When the operation has been com­
pleted, a BAl is executed to $ERROR.

Block DG33: An error has occurred. A halt is pro­
vided to reload the card, before a re-execution of the
I/O command in the error routine.

Block DG34: Card columns 16-20 of the card in the
10CS label area are compared to the identifier,
@RDLlN@. A branch unequal is made to block DG36.

Block DG35: A RDLIN card was recognized. A series
of chained moves are executed to move card columns
21-50 to the several internal fields that relate to label
processing in the file table. Control then branches to
the termination routine at $EXITRU, block DFll.

Block DG36: It is not a RDLIN card. An identifying
message, 20136bRLNb, is prepared in the console mes­
sage area.

Block DG37: The $HALT subroutine is executed. The
message is typed, followed by a waiting loop to allow
the operator to insert the proper RDLIN card. Control
then branches to block DG31 to read it.

Description of Message and Wait Loop Routine

The function of this routine is to type a message
and to enter a wait loop for an operator reply. After the
reply is entered, control is returned to the instruction
immediately following the one which originally caused
entry to the message and wait loop routine.

Block DH01, $HALT: The contents of the B-address
register are stored in the I-address of the branch in­
struction at $HALTX (block DH08). This sets the routine's
exit.

Block DH02: The contents of an area labeled $ERFLD

are typed on the console printer. $ERFLD is the area
used by IOCS to assemble its messages.

Block DH03: A message, "20183 CI," is moved to
$ERFLD. This message is typed if the information en­
tered through the console printer by the operator is
invalid, or if the operator cancels during inquiry.

Block DH04: A read console printer instruction is
executed. If the INQUIRY REQUEST key has not yet been
pressed by the operator, the no transfer indicator is
turned on and control goes to block DH05.; If, however,
it has been pressed, an I is typed to indicate an inquiry
operation and the keyboard is unlocked to allow entry
of data by the operator. If, during inquiry, the operator
presses the INQUIRY CANCEL key, the condition I/O

channel status indicator is tmned on and control goes
to block DH05. After entering data, the operator presses
the INQUIRY RELEASE key.

Block DH05: A test is made to determine if the no
transfer indicator is on. If it is, it indicates the operator
has not yet pressed the INQUIRY REQUEST key and con­
trol returns to block DH04 to retry the read console
printer instruction.

Block DH06: A test is made to determine if the 110

condition or data check 110 channel status indicators
are on. If either is on, it indicates that a validity error
was detected on the entry of data or the INQUIRY

CANCEL key was operated during inquiry; control
passes to block DH02 to type the console entry error
message.

Block DH07: The 110 channel status test is satisfied
by executing a branch any to the next sequential in­
struction.

Block DH08, $HALTX: Control branches to the loca­
tion set by block DHOl.

WRITE CONSOLE PRINTER ROUTINE

The function of this routine is to type the contents of
$ERFLD on the console printer and to return control to
the instruction immediately following the one which
caused entry to the write console printer routine.

Block DH11, $NOTE: The contents of the B-address
register are stored in the I -address of the branch in­
struction at block DH15. This sets the routine's exit.

Block DH12: The contents of $ERFLD are typed on
the console printer.

Block D H 13: A test is made to determine if any 110

channel status indicators are on. If they are all off,
control goes to block DH15 to exit from the routine. If
any indicators are on, control enters the console printer
error routine (represented by block DH14).

Block DH14: The console printer error routine deter­
mines if the operation must be retried because of a

busy or data check condition. If either condition is
present, control returns to block DH12 to retry typing
of the message.

Block D H 15: Control branches to the location set by
block DH11.

CONSOLE PRINTER ERROR ROUTINE

If this routine is entered because of a data check, 110

condition, no transfer, or busy condition, it sends con­
trol back to the unsuccessful console printer instruc­
tion. If entered for some other channel status indicator,
it returns control to the instruction immediately follow­
ing the one which caused entry to it. Wrong length
records are not checked.

Block DH21, $CPERR: The contents of the B­
address register are stored in the I-address of the
branch at $CPEX. This sets the normal (no error)
return.

Block DH22: A test is made to determine if the data
check, 110 condition, no transfer, or busy indicators are
on. If any are on, the operation must be re-executed;
control goes to block DH23. If none are on, the operation
is considered a success, and control goes to block DH24.

Block DH23: A + 17 is subtracted from the I-address
of the branch at $CPEX. This sets the routine's exit to
return to the unsuccessful console printer instruction.

Block DH24, $CPEX: Control branches to the loca­
tion set by block DH21 or by block DH23.

SAVE ROUTINE

The save routine translates the settings of the zero
balance and compare indicators into a code which is
saved in core storage. If the program uses any special
interrupts, e.g., URREQUEST or INQUIRY, the save routine
will appear in the interrupt coding. Otherwise, it ap­
pears in the tape error routine. The code generated
by the save routine is used by the restore coding, de­
scribed later, to restore the indicator settings before
control is given back to the user.

The results of the save routine for various combina­
tions of the zero balance and compare indicators are
shown in the following table. (Note: Units position
is labeled $ps.)

Zero Balance No Zero Balance

vvv v v
Low 102 102

vvv v v
Equal 101 101

vvv v v
High 100 100

Block DH31, $PSV: The contents of the B-address
register are stored in the I -address of the branch at
$psx. This sets the routine's exit.

Open, Close, and End-oi-Reel Procedures 55

Block DH32: The code, located at $PS, $PS-l, and
$PS-2, is set to 101 with word marks over all three char­
acters.

Block DH33: A test is made to determine if the zero
balance indicator is on. If it is, control goes to block
DH35.

Block DH34: The word mark at $PS-l is cleared.
Block DH35: A test is made to determine if the equal

compare indicator is on. If it is, control goes to block
DH39.

Block DH36: A test is made to determine if the low
compare indicator is on. If it is, control goes to block
DH38.

Block DH37: The units position of the code ($PS) is
made equal to zero by subtracting it from itself.

Block DH38: The units position of the code ($PS) is
added to itself.

56

Block DH39, $PSX:Control branches to the location
set by block DH31.

RESTORE ROUTINE

The restore coding appears in line in various places
in IOes. It is not a subroutine. The function of the re­
store coding is to recreate the 1411 machine status, as
it existed before the save routine was executed, using
the code generated by the save routine.

Block DH41: The units position of the code ($PS) is
compared to a 1. This instruction restores the high,
low, or equal compare indicator.

Block DH42: The zero balance status is restored by
executing a zero and add instruction. The field added
is the tens position of the code ($PS-l).

04 :.**.Bl ..••.•• **:

FROM LINKAGE
TABLE ROUTINE-
2-AR TAPE

"DA "
" B3"
" "

NON:OVERLAY

03 SPAHSK X 02
** ••• 82 •••• ***.** 83*.**
" MOVE FILE" " SET B-ADDRESS "

FROM LINKAGE
TABLE ROUTINE­
ALL FILES

$PAHSK

"

........
"DA "
" B4"
" " "

:OVERLAY

X
B4 01

SBR X15" "PRIORITY + CHAN" " OF SOUT WITH" YES " [S FILE "
.. (TO POINT TO *X •••••••• *IDENT TO SPARG .X •••••••• *LOW-OROER ADDR -X •••••••• -
" FIRST PEND[NG" NON- "SEARCH ARGUMENT" " OF F[LE PNOG "

,,2-AREA TAPE"

"ADDR [N TAPLEl " OVERLAY" "" INSTRUCTION " --_ _._._-**--- .. _.-_ _.--_ ..

SCOMP X
CI .. " 05

" " "

:OVERLAY

SEND X 13
*****C2 u .*.*.****
" LOOK UP LOW "

YES ... OR EtlUAL IN
END OF TAHLE

" "
* ••• ~ •••• X* PENDING SORT •

X :TABLE ON SPARG :
______ *ft •••••••••

" .NO

X 06
•• ••• 01*·********
" " " SBR XI5 "

X 14
*****D2~*********
It SBI~ X 15 It

* (TO POINT TO

21
*****C3-·*******-
* " "MOVE 1ST HIGHER"

• •• X*PNDG ADDRESS TO"
" B-ADDR OF SIN "
************ ••• **

X 22

" .NO

$PAEXIT X 25
****·C4*****."*.·
" .
" ADO +6 TO ... X: FILE COUNTER

"
.
" * ••••• ** ••• *

X
D4 •• 26

" " " I S THERE " YES
" ITO NEXT PNDG "
:ADDR IN TADLE) :

" 2ND HIGHER ..
* PRIOR[TY PNDG "

··***03******····
" ADJUST B-ADDR "
" OF SOUT TO PT "
" TO HIGH-ORDER"
" ADDR or FILE "
" PNDG INSTR "
.*.~.**.**.*.* •• *

" !NOTHER FILE" * ••••••••

••••••• _--- •••• -* ::~~:*!~*!:~~~!*:

X X IS :SIN x 23
EI "" 07

.. IS 4

• NO " PEND[NG "
•••• " ADDR [N TABLE"

" THIS FILE"

" "
" .YES

~: 08

····-FI-----*·_-­" MOVE NEXT "
"HIGHEk PRIORITY"
" PNDG ADDR IN "
"TABLE TO A-ADDR"

:.*.~~*:~!:~.***:

)(09

·····Gl******···· "MOVE FILE PNDG "
" ADDR [N TABLE "
" TO B-ADOR "

OF Sl.INK

SLINK ;< 10
•• •• *Hl*u****** ••
" OVERLAY 1ST "
"HIGHER PRIOR[TY.
*PNDG INSTR WITH"
"THIS F[LE PNDG "
.. INSTR *
••••• **.ff ••••• * ••

SMOVE ;< II
.*4··JI·~**·*··**
.. OVERLAY EACH "
"PNDG ADOR W[TH "

••• X"HIGHER PRIORITY"
"ADDR ONE BY ONE"
"SAR XI5 TO NXT "
**** •••• 4**.* ••••

X

K I ." 12
" " "

*****E.2 1t .. ·*******
" SET A-ADDRESS "
" OF $OUr W[TH "
"1ST HIGHER PNDG"
" AD DR IN TABLE It .. "
******* ... ********

:SOUT X 16

YES •

****·F2**********
.. OVERLAY FILE ..
.. PENDING INSTR "
"W[TH 1ST H[GHER"
" PRIORITY PEND"
" INSTR "

X 17
*****G2**********
" MOVE TABLE "
.. DOWN 7 POS IN "
"STORAGt TO SET "
: UP NEXT ENTRY :

*****-***********

X 18
*****H2**********
"MOVE FILE PNDG *
"ADDR TO OVERLAY.
"1ST HIGHER PNDG.
" ADDR IN TABLE "

" " *****************

X 19
····*JZ**********
.. MOVE: SPARG TO ..
*OVERLAY VACATED"
:TAOLE ARGUMENT :

..
******t *.*.******

X 20
*****KZ******·***
*MOVE 1ST HIGHER"

• NO END OF TABLE * ••••••
.. PNDG ADDR TO * •
*OVEI~LAY VACATED- ••••••
" FUNCTION : " "
************.****

Chart DA. Priority Assignment

*****E3***·****·*
"MOVE H-O LOC OF"
"F[LE PNDG INSTR" •
.. (IN SOUl) TO * ••••••
"BRANCH ADDR OF "OVERLAY
"HGHR PNDG INSTR"

:NON-OVERLAY

X 24
***.·F3·** •• ***It*
" " RESTORE DTF "

ADDRESS TO
XIS

" ********* •••• ****

x
"DB"
* AI"
* "

TO SENTA

.NO

X 27
*·***E4·· •••• **.·
* SUBTRACT "
" COUNTER FROM
" A-ADDRESS

OF $EXIT

X 28
• ••• ·F4* •• * ••• ·**
" MOVE " * TAPE SEQUENCE "
" INTO LINKAGE •
: TABLE :
........•.•......

x
•• ***

"

TO LOAD PROGRAM

X
*.**.
"OF "
• B2"

" "
TO SEXI T

DA

Open, Close, and End-of-Reel Procedures 57

DB
"DB "
""A!"

"
SENTA X 01

····.Al·········· " " " SET UP SARG "

.
"DB ..
" A2·
" * * .LABEL

.RETRY

SENTAB X II
••••• A2* ••• **.... A3
* " " .. REINITIALIZE * • REWIND

13
12 •••• *A4.* ••• *.*.*
" :~~~~~~-,,-,,-~~~::

" WITH FILE "
:IDENT FOR FILE:

••••• x. INDEX WORD 15 ••••••••• X.OPTION FOR FILE* •••••••• x. RE~IND TAPE

.................

X 02 ·····Sl*········· " " " LOOK UP FILE "
"IDENT IN TABLE "
"OF DTF ADDRESS "

" "

: FROM ~DTFBX : .. * RWD=I "
RWU=2 .. "

*********** •• ****

RET FROM LABEL
PROCESSING (OUTPUT)

.** ...
*OB *
•• c~*

*

* "NO RWD
• .:0

: x •••••••••••••••••••••••• :
X

B3 " " " ..
.. STANDARD

" "LABEL FILE

" .NO

14

YES *
X

"DC"
.. AI" . "

"

RET FROM LABEL
PROCESSING (INPUT)

* ••••
"DB •
" C4"
" "

TO $ENTC

X 03 SENTF X 27 X
C3 ••

$ENTD X 16
·····el·········· " " " MOVE XIS "
" TO FUNCTION ..
" "

X 04
··.··01·········· " ..
" BLANK DTF
: COUNT FIELDS

"•••.....••..

X 05
NO ••••• EI ••••••••••

CHAN" MOVE ADDRESS "
CHNG" OF FILE SCHEO "
••••• INIT CODING ..

X

" INTO SFINIT
.. IBLOCK DB09)

• CHAN
.CHANGE

X 06
.···.Fl··~······· " ..
" DUMMY CW "
" INSTR TO SET ..
:XIS, SAR IN XIS:
..•..............

: " 07

.... - CHANNEL 2
• ves

" .NO

X 08
·.···HI·····_···· " ..
" DUMMV CW "
" INSTR TO SET "
:XIS. SAR IN XIS:
.••..............

NO

·····C2·*····**** " MOVE USERS *
"EXIT S ADDRESS ..
• TO SSWBX EXIT -X
: (BLOCK DB29) * OUTPUT=O

X
02 " " .. 28

••••• * EXIT S
USED .

.YES

X 29
..···*E2** .. ***** .. *
:~~~~~ .. -,,-,,-~~~::
"SBR IN RE-ENTRY"
* EXIT. RESET "
" XIS FOR USER ..
• * •••• *****.* ••••

X 30
: •• ""F2 ••••••• **:
.-*-.-*-*-*-*-.-*
" USERS EXIT S
: ROUTINE ..
• ••••• * ••• * ••••••

X 31

··· .. ·G2·····.·· .. * *SREENT DFGS"
--*-*-*-*-*-*-*
"RESTORE X 15 FOR"
"IOCS. RETURN AS.
" SET BY DB29 " •••••••••• ** •••••

X

" " 32

NO
•••• X·

• TM "
!FTER HEADER. *

" .YES

"
FILE TYPE

15 **C4.** ••••• **
* MOVE USERS *
*EX I T 7 ADDRESS " * •••••••• X. TO SSWBX ExtT ..

INPUT=I : (BLOCK DBI8) *

• •• **

X

* * 17

NO EXIT 7
USED

* .YES

X 18 ···**E4*···.··· .. · *SSWBX DFBS"
-.--*-.-*-*-*- ..
SBR IN RE-ENTRY
" EXIT. RESET "
.. XIS FOR USER* ... * *** ••

X 19 ·····F4·· ••. •· •••
* * *-.-*-*-*-*-*-*-*
" USERS EXIT 7
: ROUTINE "

• * *.*.

X 20
·**··G4····***···
"SREENT DFGo"
--*-*-*-*-.-.-*
"RESTORE XIS FOR •
*IOCS. RETURN AS"
* SET BY OBIS " • ****

X

" * 21
22

•• **'*H5*"**·*****
"$READRU OG61.

YES *-*-.-*-.-*-*-*-*
••• X· " TM "

!FTER HEADER" x: TA~~A~ARK '*

" .NO

.** *.* .. * ... *.***

· . • x •••••••••••••••••••••••••

:SFINIT X 09 X 33 SENTI X 24

·····Jl*········· " " • "EXIT AS SET "
••• X" BV BLOCK DBOS " .. "

X 10
....... t<, I ••••••••••
"S--INIT BEA4/AS*
.-*-*-*-*-*-*-*-* •
" INITIALIZE * ••••
"F I LE SCHEDULER *
• *

Chart DB. Open Procedures

58

··J2**···**
$WTMRU DGB5
.-*-*-*-*-*-*-.-. X
• WRITE *.9 •••••••••••••••••••••••••••••••• x.

TAPE MARK "
" * •• ** ••••••••••••

$ENTJ

••••••• x*

* J4 " "
" TAKE

CHECKPOINT
* "AT EOR

* .NO

23 *.*.*J5*··"**.·.*
YES :!~~~~!-*-.-*-*-: x: CHE~~~5INT *

.'** •••••• ** •••• **

· . • x •••••••••••••••••••••••••
X

" * 25

I-AREA

26
:****K5.***** ••• :

NO SET FILE'S
• •••••••• x* PENDING

* SWITCH OFF

" * .. '* **- •• ************
• YES
.TO $EXITRU •
• x •••••••••••••••••••••••••
x

* ••••
"OF " .. _ B~'*

..

'11. I.
·ee *
.. /I. ••

" . . -• A4 .. - .
tEt-..T(ox. .*. .'. lCF ... CAE .x. . ••

_. •• 01 A2 •• 2f A3 '. 27 ~4 •• 28 AS I. 29
... •• •••• • I It. • •

•• •• CUTPLT.* I. ~c .* *. NO .-FILE SERIAL •• YES .* C~ECK *. Y~5
. FILE TYPE •••••••••• X. EX[T :3 L.5EC .* ••• ~ •••• x •• LABEL Ct-1ECK •••••••••• X •• TC EGUAL •••••••••• X •• C ... ARACTER ••••••

. . I. •• *. .' .TA~E SERIAL* *. .* I... *. ." *..* *..*
it" •• • •• * w. •• • •• * w •••

- • YES • YES • NC - NO
• I NFUT

.x ... " .. .

!E"TCR X 02
''.El~*I •••••• *
:~~: !~~~~ tI- *- ~ :;~:

READ lH1EL

.X. .- . c. •• O~ C2 '. Ct . - co ...
NC •• *. YES .- SPECIFIED •• ~O

X 41

.. ····e4·········· • MOVE USERS •
'EXIT 3 ACDRESS •

X 30 :* ••• 85 ••••••••• :

• MAKE INTERNAL'
• FILE SERIAL; • * TAPE SERIAL •

X 31
·*··"C5·*··· •••.••
• MOVE •

• • TODAY'S DATE •
•• • W. LASEL c eCK •• ••••• FIELCS •••••••••••••••••••• • TO SSWBX EXIT' ••• X. TO INTERNAL .X •••

*. ••
X .. _ ...

ODe •

- C4-. --TC tENTD

I. .' w •• _

- YES

•• M.A Tet- •• . _ ...
-DE •
- C4" . -.
TO rENTC

·.L/l.BEL.· .. . -
x

:II-<PT .x. . •.
Cl *. 04 [2 •• ce

•• IDENTIFIERS •• YES.. ••
•• "-:_TCH (tt-'CR) •••••••••• X.. FILE TYPE .-..'

- NC

~NI"L X 23
........ e 1
-~OVE I-C ICE"T -
.. A"C -
• '30133 "IH ' TC'
"NCTE ~S(; ,1REA • · _ I ...

• X.
FI -. 24

I~PT •• ••
••••• FILE TY~E .-

X
.. -. · ..

• J3 •
• CUTPUT

· -
X 25 ••• • -e 1

• MCVE -
.. '40130 NC '
• TC SNCTE ",S(;
• ""EA ·

'NCH X 20 . ····~l .. * .. •••••••

....
-.Cl-PT

tOFI"C X 14 ·····E.2·········· .SET ~ORO MARKS.
• I,," LABEL AREA, •
• ACD RETENTIO" *
• CYCLE TO *
- CREATIO,," CATE • ·

.x •
f 2 •• I!:

I\C •• SU~ ...
•••••• (; JE~ ••

' .. .-.. . .
• YE S

X 1(;
... -".C 2
• ADD t35 ..
• ADC to 3~ TO •
""ETEt'TIO~ CATE •
• IN I.ABEL AREA. · . ••••• ~ ... ** •••••••

. .
••••••••• ,. x.

.x •
1-2 •• 17

• * w. :~~~~~.-.-*-~~:!: •• SHOULD •• 1\0
• CC~SCLE ~SG .X •••••
"LOCP TC PERf;IT -

:~:~::!~~.:~~~:.:
:STJlRT

•• rAPE CE ••••••
·.RETAINED ••

... .*
• YE S

x _
- . .. A4

X 07 ·····03·········· .,",CVE (-C (DE"T -
• A~D •
*'30122 FIL ' Te'
.'NOTE ~SG AREII -
* •

x oe
.... ·E3··········
'SNOTE 0 ... A2' .-*-.-.-*-.-.-*-.
• TYPE "ESSAC?E •
-ON THE CC"SClE •
• PRI"TER *

X 09

·.···F3······ .. ···
- to<CVE *

LAOEL AREA
- FIELDS Te •
'SNOTE ",SG ~"EA •

.. -.........................

X 10

··· .. ·G3··········
:!~~!:. -,*-" -.~~:::
- WRITE CCN~ClE •
• f;ESSAGE -- -.

X II

·····~3·········· • ,,"CVE •
'INTERNAL FIELDS.
• TO SNOTE toISG •
• AREA

• IELCCK CC42) • ·

X 42
• .. ··*C4·*···****·
:!;~~~.-.- .. -~~~::
• SET 11015 FOR •
'USER, S8R INTO"

:. ~;; ;~! ~:. ~~!! *:

X 43
····*E4····· •• ••• · . w_w_*_._*_._._._*
'SBR IN RE-ENTRY"
• EXIT, RESET -

: .. ~!~.~~~.~~~~*.:

X 44 ••• ··F4' ••••••• W.
:~~~;~ L._._~~~::
'RESTCRE XI5 FOR­
'IOCS. RETURN AS •
• SET BY OC42 •
• w ••••••••••••• ,*

• CREATION DATE"

:* •••• ~:!i ••• * •• :

X 32
.·It***os·***'···'*
• BLANK OUT •
I FIRST 40
'. POSITIONS IN
• LABEL ARE A

X 33 ·····ES········· .. · • MOVE •
'INTERNAL FIELDS"
-INTO 10CS LABEL"
• AREA * * •

X 34 ·····FS·*···**·· .. • MOVE USER'S •
'EXIT 4 ADDRI;'SS"
• TO SSWBX EXIT.
• (BLOCK OC3f>l •
• EXIT •
••• M

'Er-TE X 39 .X. *G4.......... G5 *. 35
'SRWDRU DGB3" ~."
-1--*-*-*-*-*-. NO .* •. .x •••••••••• EXIT,. USED ••

REWIND T~PE "X '. .' w. ._
.......•......•..

X 40

·····~4· .. •·•··•·· :~:~ !~~~ .-.-~~~~: - . WR ITE LAeEL

• YES

X 36 ··· .. ·f-ls·········· :~~~~~ .. -.-.-~~~::
-SBR IN RE-ENTRY'
• EXIT. RESET •

:.:!;*~~~.~;;~ •••

.X. :'C~TER x 18 $N I.... x 12

X
IDE! •
... c~. X 37

J I '. 21
A .* w. CT~ER.

••• w. IS1' REPLy •••••••

x - . * A4 • · -

·.CI"M;"CTER." -. .' II •• _

-."U"E" IC

X 22
..... •• K 1
• MCVE "EFLY TO ..

·····J2 .. ········ .. - ,,"eVE CO,,"Pl-TED •
*RETE"TIO~ OATE *
• ~ND 1-0 (DENT'
• TO SNOTE "SG "

: :~;: :
X 19

····*~2···*··*··· * *
• TCDA'''S DATE •
:ISTOR CELL 119):

••• MCVE • .
•••••• fl

• ••••• ·4C131 OAT' TO.
",,,"eTE ,,"SC AREA •
" _ ...

:(RETRY) •
TC SEf\TAB .X •••••••••••

x
~t ••••
itoe •
~. ~ 2"

" "

• Chart DC. Header Label Procedures

···**J3*···'····-
'$HAL T CI"A I' *-.-.-*-.-.-.-*-. • •
*TYPE~RITER ~SG,.X •••• * J3 •
'LOOP TC PER",IT • • •

:~~~~:!;~.~;~~~*:

• X •
1<3 ... 1.1

•• *. AIACCEPT)
w. 1ST REPLy ••••••••••

".CHARACTEJ;.. X
.. ••• * •

.
TC SEI-<TF

• •• * 'DR .TO SENTO
• • C4*
.CT~ER

TO SE"TAB .IRETRY) •
X

Ice •
.. A2· .. .

: •• ··JS**··· •••.•. :
--.-.-.-*-*-.-.
" t,SER'S "
"EXIT 4 ROUT(NE •

.' "

X 38 ·····1<5·· .. ••·· .. ·• *SREENT DFGS' • *_. -1-* _ ._*_. _I_I

••••• t,.RESTORE)(15 FOR*
"IOCS. RETUf.lN AS-

: •. ;~!.~~.~~:~*.:

DC

Open, Close, and End-of-Reel Procedures 59

DO
·00 •
• AI· . . · .FROM FILE SCHED

seORU X 01 ·····"1···· .. ··· • SBR INTO "
"seXIT. SDTFBX ••
• SET" INTO ..
.SOTFBX CHK CHAR. · " ... '

X 02
·····St·········· • SSTLE DFB4.
--*-*_*_e_*_*_*
• CLEAR CHANNELS ..
• SAve + SET XIS" .. "

X 04 · . 03 ••••• e2 ••••••••••
• ADO +7 TO •

INPUT • A-ADDRESS

SIPEOR 06
····*AS··.*.***** .SREADRU DGB1*
--*-*-*-*-*-*-*

• ••• eX: READ LABC:L

• YES

" • C3 * 05

• READ LABEL •
• ••••••• _** ••••••

X 07
·**·*85· •••• •••• •
.MOVE I/O IDENT "
• AND •
.'10134 TIE' TO •
.SNOTE MSG AREA •

" " ..-... -.. _ .. -._ ..
X 08

·····es*-······_· .SET WORD MARKS "

FILE TYPE ••••••••• X. IN SEXIT •••••••••• X.
: (BLOCK DFB2) •

• STANDARO
"LABEL FILE

" IN LABEL AREA "
• TO COMPARE "
• FIELDS "

· .OUTPUT

X · . 2S

.................

NO
EXIT 8

USED
-....... .

" .YES

X 26
.·.··EI··········
"SET OPERAND OF "
• 8LOCK 0028 TO "
.FRA+18 (IN CASE.
• FILE IS 2-AREA). · . • ~ •••••••••••• * ••

X

X
·DE •
• 01" .. "

" TO SOPEORA

28
FI •• . 27 ••••• F2 •••••••••• · . NO • SET S--TRIG "
I AREA ••••••••• x. TO BRANCH TO ..

• BLOCK 0030 •

" • YES

·

X 30 X 29 G........... G2
• MOVE USERS" .S--lHG BDDI.
• ex I T 8 ADDRESS • ,,-.-,,-,,-.-to-.-.-.
" TO SSW8X EXIT .X......... WRITE BLOCK
: (BLOCK 0031) : : IFp~~6~N~S

X 31
.···.HI·········· .SSWBX DFBS.
-e--*_*_4_*_*_*
• S8R IN RE-ENTRY.
" EXIT. RESET •
• XIS FOR USER •

X 32
··~··Jl······**** · " .-*-*-*-*-*-*-*-*
• USERS EXIT 8
• ROUTINE · "

X 33 .····Kl·········· .SREENT DFGS" *-.-*-*---.-.-*-* .RESTORE XIS FOR.
.IOCS. RETURN AS.
• SET BY 0031 •

• TO CLOSE PROCEDURES
.AT SOPEORA
X

"DE·
• 01"
" . ·

Chart DD. End-of-Reel Procedures

60

· .NO

X

.D3 • "
EXIT 6

USED

· .NO

23
24

: •••• 04 •••••• **.:
YES • ••••••••• x. MOVE 'IEOR' •

: TO LABEL AREA :
SBCRT X 16

·····e4·········· " MOVE USERS •

"
X

05 ". 09

" " "HASH TOTAL " NO .= TRAILER HASH
" TOTAL "

" .YE~

X
ES •• 10

" RCD •
*EX I T 6 ADDRESS .. YES • .. BLOCK "

COUNTS '" TRLR "
• COUNTS "

SENTG X 22

·····K3········** • MOVE USERS "

... TO SSWBX EXIT .X •••••••••
: (BLOCK 0018) : X

"COUNTS " . .

NO

.
X

F4 • " . 17

..... EXIT 6
USED .

.YES

X 18

·····G4···· .. ···· .SSWBX DFBS*
• -*-*-.-.-*-*-*-.
.SBR IN RE-ENTRY.
" EXIT. RESET "
* XIS FOR USER "

X 19 :* ••• H4 ••••••••• :

-.-.--*-*-*-4-•
" USERS EXIT 6
: ROUTINE

X 20
·····J4···· .. ··.· .SREENT DFGS. .-.-*-.-.-.-*-*-* .RESTORE XIS FOR.
.IOCS. RETURN AS"
• SET BY DDI~ "

. .
••••••••••• x.

"
X

K4 ... 21

* .NO

X II
···FS·*·*···· .SNOTE DHA2.
--.-*-.-*-4-*-* •
" WRITE CONSOLE .X •••
: MESSAGE :
• ••• _.-•••• _ •••• *

X 12
·····G5*.·*·*···· • MOVE •
• LABEL •
"COUNTS TO SNOTE"
: MSG AREA :

X 13
•·· •• HS···*··· •• • "SNOTE DHA2" .-.-*-.-*-.-.-*-* " WRITE CONSOLE"
• MESSAGE " ·

X 14
·····Js*····.···· .. MOVE "
" INTERNAL "
"COUNTS TO SNOTE"
: MSG AREA :

X IS
·····KS·········. "SNOTE DHA2"

• EOF ADDRESS • F • .-*-*-*-.-*-.-*-*
• A-A68RESS :x•
• OF SEXIT "

:VIA SENTJ
.TO SEXITRU
X

"DB .. •• K:* ·

R OR F •• • • • •• WR I TE CONSOLE ..
: MESSAGE :

" R .TO CLOSE PROCEDURES
.AT SENTH
X

·DE ..
•• G~ •

"

......
*CE "
•. A2" . " · .CLOSE.FECRL

.INPUT CR Ol.TPLT

STPCLOS X CI SCLS"'+7 09 ••• SPRIME3 II ···14.2*········· • SET I-ACDRESS "
:.;;;A~~:~~~.~;.: .• A4 •.•. to : •••• AS ••••••••• :
.SPHI,..E3(BLI< II). •• •• NO " SET S--TRIG • OF BLOCK DEC:? •

" TO FRA+25 (II'< •
• CIISE FILE IS •

• •• XI TO FRA+tB (IN ••••••••• X*. I-AREA •••••••••• x* TO BRANCH

: •••• ~~!~;!! •••••

03 .x. el.~........ e2 *. (2
:~;:~~~:I~:~~~~~: FILE -.".

PAC IF .x •••••••• *. .-
NECESSARY • CUTPl.T •• TYPE .-

BLCCKED -. ."
-INPUT CR
.Cl. TPl. T
.l.N8LOCKED .. .

,)(.
SCLSIIBA .X.

C2 •• e4
VES.* C~ECK *.

•••••• *. Ct-A.RACTER ••
• (FECRL)-. .-

FRO", EOR •• " ••
CUTFUT .DE:.

• I: I" . -
'OFEOR~;; cs

•• ···ot·n •••••••• · . • MCVE 'lEOR' " •
" TC loes LIIBEL "X •••
• ~RE_ • · " •••••••• fl ••••••••

...
·NO
• (CLOSE)

X C6 .. ···02·········· · -• ,..OVE' IEOF' •
- TO 10CS LA8EL •
• "'RE~ -: .. ~!~~~.:~~~ ... :

X C7 ····*E2·········· · " • ZERO REEL •
• SEO(';EI'<CE

I'<UMBER
"

SCLS/I .X.
F2 -. ce

• .* FILE •• • X·. .* ••••••

FRC,.. EOR
II'<PUT

•• TYPE •• OLTP(';T '. .*
• t .-· .INPUT

" . • eE •• 1(.

• .(;2"

• C ... SE FILE IS • •• •• " TO 'PRIMER

: •••• ~;!~~!! •••• : I. *. •••• : ••••••••••••••••
• YES

SPR I ",ER X 13 X 12
• •••• e4.. •••• • BS
.SWTMRU DG85" .'--WTG 8001. .-.-._*_._*_._._. 4-*-*-.-"-.-*-*-'
: WRI!~R~APE :X : ~~I~~L~L~;K :

• •• PENDING • • ••••••••••••••• - .* •••••••••••••••

SSUSXA ••• .x.
C4 •• 22 C5 •• 14

•••• .* ••
NC.. EXIT 2.. NO 0* STANO ... RO •••. .ex....... .•.. . •

•• USED.. X •• L ... BEL ••
.~.. *..w

' •• * ••••
• YES • YES

X 23 ·····C4·········· • "'OVE USERS •
"EXIT 2 ... CORESS •
* TO SSWBX EX IT •
* (BLOCK DE24) •
"

X 24

·····E4·········· "SSW8X OF8S. • -*-*-.-.-.-.-.-.
• SBR IN RE-ENTRY.
• EXIT. RESET •
t XIS FOR USER •

X 25

.····F4·········· · . .-.-.-.-.-.-.-.. -.
• USERS EXIT 2 •
• ROUTINE • ·

SCLse X 15

.····05·········· • BLANK LAST 50 •
• POSITIONS OF •
.IOCS L ... BEL ... RE
" AND MOVE IN ..
.INTERNAL COUNTS.

X 16 .···· .. ES·········· • MOVE USERS •
.EKIT 1 ... DORESS •
• TO 5SWBX EXIT •
: (BLOCK OE18) :

.X.
F5 •• 17 .. -.

•• eXIT I •• NO
*. • •••••

•• USED .* -
• YES

29 tEN;:·· ,X. 21 X 26 X. 18 •.••. GI.......... (2 .. 2e .••.. G3........... . •••• G4 •••••• • •••
• SRWDRU D(;83. ••••• *SWT",RU OGB5. .fREE~T DFG5. • -*-.-*-4-4-*-*-. .* RE" I"'D '. X .-.-.-.-*-*-.-.-* .-*-*-.-.-.-.-.-.
• RE.Il\D .X •• ,........ ..x...• \IIRITE TAPE .. x• RESTCRE X15 FOR.

• IlWD'" I •• OPTION •• • MIIRK • .IOCS. RETURN AS. : ... ~ .. -. : : : .. ~~!.~:.~~~: .. : · .OTl-ER

· •••••• x_

31 oX. •...• ~l.......... ~2 .. 3C
• SRWURU CG84. •••• • -*-.-.-4-.-.-.-4 .• REfll~O ••

34

·····H3·········· • "'OVE I-C •
• IDE"T A"D ECR •

37 ·····J-I4·········· · " • SWAP B~SE AND •
RE.I~C ANC .X •• Q....... .- ... X. ",ESS ... GE TC • • •• X LTERNATE I/O •

UNLCIID • FlWU=2 •• OPTICN .-
'. .-••••••••• * · .cn·ER

· . •••••••••••• e •••••• •••••• >e.

; 32

····*J2·········· · .
·

... CD + I TO •
REEL

SEQL.ENCE

••••••• ti •••••••••

.X.
K2 *. _

.* •• • * C~ECK •• ~ES •
•• C~ARACTER •••••••• •. =. .* (FEORL.

•• •• EOR) '

• CONSOLE •
• MESS ... GE AREA •

.X.
J3 •• 35

.' •• YES • '. ALTER"'ATE .•......
' •• * • NC

X 36

.'···K3··*··*····
:!~~~~._._._S~!~:
.LOOP TC PE~"'IT •
* OPER ... TOR TC •
.MO(.;NT "EW REEL.

• IDENTS • ·
X 38

*. ···J4• · . SUBTR ... CT I •
FROM 'NOTE

MSG AREA ..

:.~~~~!~~.!~~: .. :

X 39 K4.·.······· .SNOTE D~A2"

-. --.-.-.- *- .-.
• WRITE CCNSOLE •
" "'ESS~GE • ·

·····Gs·········· .'SW8X OFB5 • .-.-..... -.-.-*-.-.
.SBR IN RE-ENTRY.
• EXIT. RESET •
• XIS FOR USER •

X 19

·····H5 •• ••·••··· · . .-*-.~*-.-.-.-.-.
• USERS EXIT I •
: ROUTINE :

X 20 Js········ .. · .'REENT DFGS. 4-.-.-.-.-*-.-.-*
.RESTORE XIS FOR.
"IOCS. RETURN ... S.
• SET BY DElS •

)(21 . .. ··K5·········· .'WR I TRU OG82. *-.·_*_·.-.-.-.-4-•
• ••••• : WRITE LABEL :X ••• ..* · ."C(CLC~E) : START : TO OPEN PROCEDURES

• Chart DE. Close Procedures

.TO SENTJ
X

* ••••
·OB •
• Kit-..

••••••••••••••••••••••••• X.AT SENTA .. : ..
·DB •
• AI· . . ·

DE

Open, Close, and End-ol-Reel Procedures 61

OF F~g:Mg=E~~~~~SE CALLING SE­
aUENCE AND

TABLE LINKAGE

TERMI"ATIC"
ROUTH;E TC

CHECK Fel<
TERII ~~=~; ETC

ROUT INETO
CLEAR C~ANNELS

AND SET INDEX FEORL AND
ROLIN M~CflOS

·OF • · s.· . . .
flOLTINE

·DF •
•• B~.

• OF •

•••• • .B;. · B3 •• X. · .

WORD 15
·DF • ... 8: •

'CLOP ~ o.
....

SEXIT X CJ SEXITR\, .X. SSTLE.SSCS X 21

··· •• e.·········· · *e2.......... 03 ... 11
• MeVE CALL ING • ••••

• seR I"TO • • SEa C .. K C~AR. • NO •• ••
• A-AODflESS OF ••• X. FR,." Ct-eCK .X •••••••••• NEXT CtfECK .-
• SEXIT • • CliAR TO CALLING. ••).OR C •• CHAR=J •• · • weRK AREA • ••••

••••••••••••••••• w •• *

~ 02
·····CI··········
.'STLE OFB4. • -e-*-*_._._e_*_. .
• CLEAR C .. ANNELS •••••••
:SAVE + SET XIS:

.................

x C" .····C2 .• ···••· .• • SET A-ADDRESS •
• OF 'EXIT TO •
.PO INT TO LOC OF.
• NEXT CALLING •
• ADDRESS •

X C5 ·····C2········ .. • ~OJUST A-ADOR •
• OF SEXIT TO •
.POINT TO LOC OF.
.CALL ING ADDRESS.
• C .. K C .. AR •

X C6 •.. ··E2·· .. ··•·•·· · . • MOVE FRA •
• AOORESS TO XIS. · . ·

.X.
F2 •• 01

.* e.
YES.. ROLIN •• · .

• GI • · .
............ CHECK CHAR .-
X *. :+C .-••••• *..*

*OG .. * •• -•• 0:. • NO .
TO SIIOL I"

• YES

X 12

••••• C3· .. •••••••• • SET TO ALLC. •
• ENABLE NORIIAL •
• E"TIIY TO CliAN •
• OPEIIATIO"S "

X 13 .·.··03·········· • MOVE A-ADDIlESS •
• OF SEXIT TC •
• EXIT ROUTI"E
• EXI T
• (eLOCK OFJJ) •

)(14 ·····E3········· .. · • sswex CFB5.
~ACRO·-·-·-·-·-·-·-I-.

• ••• EXIT AS SET BY •
• BLOCK DFI5 •

• 1 X.····· .. ·······.·EOIl . . · . .
flET TO
MACRe

x
• I ""PUT • *
• I-AR • S--ICA-I. eeDI •
• 2-AR • $--IIITG • BCel •
w
• Ol:TPUT • •
• I-All • S--BA+7 • eeC4 •

·····e4········ .. · . • S8R INTO •
.ENTER IOCS EXIT.
1 (eLOCK CF43) • ·

X 22

·····(4·········· .SCS I SFS BAGJ.
• -*-*-*-.- *-*-.-.
• CLEAR •

CI-ANNEL I

X 23 ·.···C.·· ... ···.· .SCS2SFS BAD I"
*- .. - *-.-*-.-.-*-*
• CLEAII
• C .. ANNEL 2

X 2" ·····e.··
1 •

.DISABLE NOIIMAL 1

• ENTRY TO CHAN •
• OPEIIATIONS • ·

X 25 F4········ .. "REE"T DFGS' .-*-.- *-. -.-.-*-..
.SAVE USER'S XIS •
.ANC EX IT AS SET.

:.~~.~~~~~.~:~!.:

x

SUflOPEN ~ SI X ce
• 2-AR • S--TRIG • BDD3 •

·····Gl·········· · . • ZERO BLOCt(
• COUNT · ·

x · .
: BJ :

·····<;2·········· .LOOK UP LINKAGE.
• TABLE ON 1-0 •
• OEV ICE •
: (ACTIVITY) :

X C9 · .. ·.·~2·········· • SET Fl:NCTION •
• AND ASSOCIATE.
• FUNCT ION INTO •
: DOUBLE BIIANC~ :

..

.x. • .. .
J2 •• Ie .1-5 .OVERLAY-BEF 2ND LOAD. SPAHSK • DAB3.

•••• .1-2 .OVERLAY-AFT 2ND LOAD. SENTA • OBAI.
•• 2 BIT •• OPE" .1-2 .ASSE~BLE • !ENT~ • DBAI.

.IN C~ECK CliAR ••••••••• X.I .NO,," OVEI<LAY • SENT A • DBAI*
•• •• .2 .NO,," eVEflLAY • SPAliSK • DAB4.
•••• .J .REAOER • SUROPEN. OFGI.

•• • * *4 .PU,,"CIi • SUROPEN. DFGI.

:C :; ••• ;~:!~!~~ ;.:~:~~~~;.~:~!:
.L
.0

:~
)(........................

'I-AfI.STPCLOS .OEA2*
'2-AR.STPCLOS .CEA2.
IJ RC.SEXITII\,; .CF83"
*" F'L.SDTFACT+II .CBA5.
'5 PfI.SEXITRL .CFB3 •

• Chart DF. Linkage Routines

62

ROUT INE TO
EXIT IDes

*DF •

.. * B;*

SSWBX X :II .. ···*ss· .. ·· .. ·· .. **· · .. • SElR INTO •
.ENTER 10CS EXIT •
• (BLOCK OF4J) .. · . • •• , •••• 1.""',.*

X 32 ·····C5*·····*.·* · .. .RESTORE XI5 TO •
.USER'S PREVIOl:S*
• CONTENTS •

SSWBXA X 33
""'05""'·"'· .EXIT TO ADDRESS •
.AS SET BY tocs *
.ROUT INE EX I TED •
• FROM 011 BY .. : •. ~~~~:.~:!~.**:

X

ROUTINE TO
REENTER IOCS ., ...

·DF •
• GS* . .

SREENT X 41 ·•·· .. Gs·······***
* •
• SAVE USER'S XIS. · .. · ,-.. .

X 42
: •••• HS •••••• **.:
.RESTORE XIS TO *
.. 10CS PREVIOUS ..
• CONTENTS ..

• * WI

'STLEXT X 43
: Js :

• EXIT AS SET *
.BY BLOCK OF'}I, ..
• OR OF21 .. · _,_1.-

X
* * .

...... tI'.

"CG *
.. 81' ..

"READRU X 0 I :.**.P.l ••••••••• :
" S[JR I~,TO

RFAD/WRITE
EX[T

WRITL LABEL

'11G *
It 132 •

• I

lWRITRU X II
*··**B2·~I.**.**.
" I
" SBR INTO "

REAr)/I~R I TE
EX[T

...... .
·CG ..
.. 01-

" " I

1iRlODRU X 21 ··*··n3··***····· " SBR INTC "
I UTILITY EXIT
" CALLlt-;G 5£00-
• Dew' ~ I

RLw[ND UNLOAD

.... -
*DG "
.. 84'
" .
"

SRWURU X 22
····*84···***···· " SBR INTO "
" UTILITY EX[T
" CALLING SEa-
• ccw 'V'

WRIH: TAPt:. MARK

••• It •

!tOG"
It B5"

" " "

"WTMRU X 23 ·· .. ··85*····
• SBR INTO "
" UTIL[TY EXIT
" CALLING SEa

Dew 1M'

. . .
•)(••••• , •••••••••••••••••••• x

:< 02
··'*'Cl*·*'···'*'
I "
" BLA~K OUT

[OCS LABEL
ARE A

X 0]
: *0 1 :

SET $LBCP "
TO REAC

fLB[" X 04
: •••• El ••••••• **:

X 12 ····.C2*· .. ••••••·•
I "
" SfT ~LBOP "

TO lOll [TE

$RWDRUA X 24

··*··C3·········· " STORE CALLI"G "
"ADDRESS IN SET'
" D-MOD INSTR "
" (ALOCK r)G261
*•............

X 2')
···**03····*****·
" MOVE CHAt-; •
"STATUS FRO~ 1-0"
IIDENT(R OR XI1"C.
"SA INSTRUCTICN •

: .. ~ ~ ';~; ~ .. ~ ~; ~ ! •• :

X 26

·····EJ·········· "S~T CONTENT OF "
"~OVE x-ceNTRCL " •
*FRCM 1-0 ICENT IX •••••••••••••••••

• CALLI~G DCw •
" INTO D-~OD OF "
" SRWOB " " TO 'LEOP "

X 0'5

····.Fl·········· "~VE CHAN STATUS"
"FROM [-0 [CE~T "
I(R OR XITO ElA +"
"BEX INSTRUCTION"

:;~~;~~.;~~~~~~.:

'LEOP K 06 :* .. 'Gl****' ••• *:
1-0 REAC
OR WRITE

1"1

"
x . . 07

$R~OEl X 27

···_.F3*·*······· ". 1-0 UTILITY
COMMAND

29 X
••••• C2* ••• *..... G3 ... 28

:~;~~~~-~-.-;~:~: ..
:1~O~~~~£c~~~~~ :XORA~C~"* .BRANCH A"Y
I •

. .
••••••••••••• II ••••••••••• x.

CA ····*1-2· .. ·•••· .*. "!!ORROR EAAI'
--.-*- .. -*-*-.-*

X 10
-***·H3***·_··**· · . " EX[T AS SET •

EEX. ••••••••• x. CORPEcr lRROR .. .ElY BLOCK OG21 ••
: r)G29 OR DG30 : B"A"'C~ : IF CORRCCTABLE :

•••••• fI

. .
.>c. •••••••••••••••••••••••••

X 09
_ .. *J 1". f· 11-

I

• EA"" 1 ..
I "

"

X 10 ····.Kl*·'········ • I

" EXIT ~s SET
" BY Fl.eCK
: OGOI CR OCII

*

X
• If l­

I

• Chart DG. General I/O Routines

..*****

........ -. .

PROCESS ROL IN

.... It.
"OG "
" 01\· " .

.. 04 •• X.
" I -.... .

~ROL IN X 1 I

·····C4···.······ .. "
READ CARD
INTO 10CS

LABEL AREA

33 X

E4 " " .. ·j2 ••••• ES ••••••••••

" BRANCH ANY

""ERROR EAA I •
-tl--*-*-*-tl-.-*

• ••.•••.. x. CORRECT ERROR ..

" BRANCH :IF CORRECTABLE:

•• **.**

. .

.x ••••••••••••••••.••••••••

X
F4 .. "

" • ROLIN

34
35

: ••• ·.F5*** ••• ** .. :

NO " MOVE "
.IDENTIFIER ••••••••• X.'2013 RLN • TO.

• YES

X 37
* **·*G4 W

"MOVE INFO FROM •
" ROLIN CARD TO "
.. APPROPRIATE *
:INTERNAL FIELOS:

** •••••••••••••••

x
••• **
"OF ..
" B J* " .

I

Te $EXITRU

:SNOTE MSG AREA :

...... * ** ••• *

X :16 ·····Gs··········
:~~~;~.-.-*-~~!::
.HALT TO PERMIT"
" OPERATOR TO •
" RELOAD CARO •

x
••• *

.. 04 •
* ..

DG

Open, Close, and End-of-Reel Procedures 63

DH
"0,", "
" AI"
" " "

.... -
"DH "
" A2"
" "

SH ... L. T X 0 I SNOTE X II

·····AI·········· • SBR IN I-ADDR "
.OF BRANCH INST •
.... T SHALTX. THIS"
• SETS THE EXIT"
" ... T BLOCK DH08 ..
••••••••••••• ****

· .. ··*AZ*·*······· .. SBR IN I-ADDR "
.OF BRANCH INST "
.... T BLOCK DHI5 ...
" THIS SETS THE ..
" ROUTINES EXIT ..
* *** * *

• x •••••••••••••••••••••• x.
X 02

·····el····**···· "SNOTE DHA2"
--*-*-*-*-*-*-*
• TYPE CONTENTS "
• OF SERFLD ON "
:~~~~~~;,,~~!~!;~:

X 03

·····el·········· • ,",OVE CONSOL.E "
• ENTRY ERROR "

MESSAGE
" '20183 CI'

: ... !~*:;~~~~***:

X 04

···01···*···· .. READ "
CONSOL.E.

• .R

X 12
··*El2··****·*

II TYPE THE •
CONTENTS OF "

$ERFL.D ON
THE CONSOL.E

****~:!~!;~***

X
C2 "" 13

" " NO

"
BR ANCH ANY " ••••

" .YES

• .E X 14

••• X. PRINTER

• • T ••••• 02.** •••••••
•• R "$CPERR DHG2"
•• v *-*-*-*-*-*-*-*-*
• ••••• CONSOL.E PRINTER"-

• INTO

:YES
•••• *

• ••• :~i~~! •• **·

X
E I ". 05

IS
.. T,",E "

NO TRANSFER
.. INDICATOR"

II ON II

" · .NO

Fl ~ II
II

" I/O CDND
OR

06

*D ... TA CHECK •

.

II •

II

• NO

X
Gl II II

II

BRANCH ANY ..
..
.NO

07

YES.
* ••••

YES
* ••••

· . • x •••••••••••
SH ... L. rx X 08

" ERqOR "

: •• **~~~!!~S •• **:
• NO ERROR

X IS
··· .. *EZ·········· " ~XIT TO ..

L.OCATION
SET BY .X •••

BL.OCK ..
DHII " _ .. -.....
......

"

_.**­
"DH "
" G2" " ..

$CPERR X 21 .·.··G2······ ... ···
" " SBR IN

$CPEX+5
(SETS EXIT)

X
H2 "" 22

.. DATA "

23
*** •• H3···
" SU8 +17 FROM "

..... HI-·*-·_····
" eXIT TO •

L.OCATION • CHECK. NO II
"TRANSFER. BUSY

YES " $CPEX+5 "
SET BY

BL.OCK DHOI

X
II •

"

" OR I/O "
••••••••• x- (SETS EXIT TO •

" RETURN TO I/O ..
" COND

" " " .NO

SCPEX X 24

·····J2·········· * EXIT *
" TO L.OCATION

:.!~;!~~~!!~~!.*:

• SET BY BLOCK .X ••••••••••••••• ".
* DH21 OR BY "
.. BL.OCK DH23

X
..

Chart DR. Message, Reply, Save, and Restore

64

.
·OH ..
" A4"

" .SAVE

SPSV X 31

YES

.. •• A4*· **·***
" SBR IN I-ADDR ..
" OF THE BRANCH *
"INSTRUCTION AT "
.. $PSX "

:*~~~~;~*~~;~!*.:

X 32
·····84···· .. *.·· " SET VVV ..
.. CODE 101 ..
.. $..

P ..

: * ... **~.:

X

* C4 " " 33

. ZERO
BAL.ANCE.

" .NO

X 34
•• ·04·**·· .. ' .. •• .. •
" SET V V *
.. CODE 101 "
.. S ..

P " • 5 _ _*

· . •••••.••• •• x.

"
X

E4 ...

EaUAL

35

ON
INDICATOR * ••••

ON

" .OFF

X

F4 " " 36

...... L.OW
INDICATOR

..

.OFF

X 37
: •• · ... G4 :

.. ZERO UNITS
"POSITION OF
" CODE

· . • •••••••••• x •
X 38

...... H4 •••••• ••••

" " DOUBL.E
.. UNITS
" POS IT I ON OF : ;~~; :

. .

.x •••••••••••
~PSX X 39

••••• J4 ••••
" EXIT TO "
.. L.OCATION SET"
: BY BL.OCK OH31 :

.1.* ..
*OH ..
" AS"

I •

* .RESTORE

X 41
·"-·-AS-·*'··*'-" .. COMf>ARE ..
.. SPS TO SI01
.. (RCSTORE HI.
.. LOW. EaUAL)

X 42
****'''85-·********
" ZERO AND •
.. AOO SPS-I TO •
.. $101-1 ..
* (RESTOHE ZERO ..

:*.*~:~.:~~;~ .••• :

ZD NZB

VI/V V V
102 102
VI/V V V
101 101
VVV V II

H 100 100

V OVER CHARACTER
INDICATES WORD MARK

Error Routines
LOOKUP OF FILE REFERENCE ADDRESS

The table of file reference addresses is used by the
tape error routine to look up (low or equal) the start­
ing address of a file reference table knowing only the
file identiHcation (channel and unit).

The tab1e is in order by unit number (9 to 0) and
holds ten or twenty entries, depending on whether
there are one or two channels operative. Each entry is
a seven-position DCW. The first five positions (function)
hold a file reference address or, for an inactive file,
blanks. The sixth and seventh position (table argu­
ment) identify channel and unit respectively. The for­
mat of the table of file reference addresses is shown for
two-channel operation in Figure 5.

Label Operation Operand Notes

DCW bbbbbO J:l Channel 2, unit 0
DCW bbbbbO"/o Channell, unit 0

DCW bbbbb9t:1 Channel 2, unit 9
DCW bbbbb9"/o Channell, unit 9

$CU [QU *-1

Figure 5. Table of File Reference Addresses

The address of the table argument at the start of
a table look-up operation is location $CU. The table is
searched until a match is made on file identification.
The function of the matching entry contains the start­
ing address of the file reference table for the file corre­
sponding to the search argument. Note that the percent
sign (%) and lozenge (D) for channel-mode is used
regardless of whether the assembly is overlap or non­
overlap; their collating sequence is lower than an at­
sign (@) or asterisk (*), respectively.

Tape Error Routine - Part 1

Block EA01, $ERROR: The contents of the B-reg­
ister are stored in the I -address of the branch instruc­
tion at $EREX (normal exit at EB29). The contents of the
B-register are decremented by 1 to get the address of
the low-order character of the Channel BA or BEX in­
struction, and are then stored in the A-address of a
move instruction labeled $ERENT, block EA02.

Block EA02, $ERENT: A move instruction, initial­
ized by block EAOI, is executed. Its execution places
the Channel BA or lBEX instruction in an area labeled
$ERBA (block EA23). After the move is executed, the
content of the A-register, which is now the address of
the low-order character of the instruction preceding

the Channel BA or BEX instruction, is stored in the A­
address of a move instruction at $ERPU, block EA04.

This initializes a loop which gets the 110 instruction to
$JUG (label of the re-execute area). The loop is nec­
essary because of the instruction format of two-area file
schedulers.

Block EA03: A word mark is cleared at $JUG. This
initializes the instruction length test.

Block EA04, $ERPU: A move instruction is executed.
If entered from block EA03, the instruction preceding
the Channel BA or BEX instruction is moved to $JUG

(re-execute area). If entered from block EA06, it moves
the instruction preceding the last one it moved to $JUG

(re-execute area). A SAR instruction is executed to re­
initialize the move at $ERPU for another pass, if required.

Block EA05: A test is made to determine if the last
instruction moved to $JUG is ten characters in length.
If it is, control goes to $ERIO (block EAI0).

Block EA06: A test is made to determine if the in­
struction at $JUG is a 5-character instruction. If it is not
five characters in length, control goes to block EA04

to move another instruction to $JUG.

Block EA07: A move instruction is executed to left
justify the 5-character 110 instruction in the re-execute
area. The label ($Jum now refers to the operation code
of the 110 instruction. A NOP word mark is moved to the
location immediately following the instruction to allow
its proper execution.

Block EA08: The console message field ($ERFLD> is
set to 15 characters in length.

Block EA09: The 5-character 110 instruction is moved
to the console message field ($ERFLD>. Control goes to
block EA12.

Block EA10, $ER10: The console message field
($ERFLD> is set to 21 characters in length.

Block EAll: The 10-character 110 instruction is
moved to the console message field.

Block EA12: If the interrupt routine stores the 1411
status indicators because of URREQUEST, INQUIRY, 1414
on Channel 1 or 2, or Disk on Channel 1 or 2, control
goes to block EA14.

Block EA13: The 1411 status (compare and zero
balance indicators) is saved by a subroutine labeled
$psv.

Block EA14: The channel and unit of the tape file
being checked are moved to $ARG.

Block EA15: A table look-up instruction is executed.
The search argument is $ARG (channel and unit) and
the table is labeled $CU. The table and its description
are shown in Figure 5. The function found is the file
reference address (address of file name label). The
contents of the B-register (low-order address of the
function) are stored in the A-address of the move in­
struction executed in block EA19.

Error Routines 65

Block EA16: The retry ($ERCT) and noise record
($ERCT-2) counts are zeroed.

Block EA17: The I-address of the branch instruction
at $EREX is moved to the B-address of a BCE instruction
at $ERQLB (block EC45). This initializes a test which
determines if this entry to the error routine was from a
label record read operation.

Block EA18: A word mark is set at $ERNR + 13 (block
EBll), a I-time switch used to prevent multiple print­
outs of the not ready message. A word mark is cleared
at $ERSK, a I-time switch which is used to disable the
skip and blank instruction at block EC15 on the first
pass. The execution of the cw instruction also initial­
izes a SAR instruction. The contents of the A-register
are stored in the I -address of the branch at $ERBA. This
initializes the branch at $ERBA (block EA23) to allow
entry to block EA19.

Block EA19: The move instruction, initialized by
block EA15, is executed. It moves the file reference
address to the A-address of a move instruction at $ERFA

(block EB31). This move initializes the exceptional con­
dition (WLR or EOF condition) segment of the error
routine. This segment is labeled $ERDLY (block EB30).

Block EA20: The subroutine $ERCHOP initializes the
BCB at block EA21 in order to check the proper channel
for the file under test.

Block EA21: A test is made to determine if the busy
110 channel status indicator is on. If the channel is not
busy, control goes to block EA26.

Block EA22, $JUG: An attempt is made to re-execute
the 110 instruction.

Block EA23, $ERBA: A test, initialized by blocks
EA02 and EA18, is made. This causes processing to stop
until the 110 operation is terminated. The test instruc­
tion has the same operation-code and d-modifier as the
Channel BA or BEX instruction. If any of the indicators
tested are on, control returns to block EA19.

Block EA24: The BA instruction at block EA25 is
initialized, to check the proper channel for the file
under test.

Block EA25: A BA instruction to the next sequential
instruction is executed to satisfy the 110 channel status
test before another 110 operation. Control goes to $ERLV

(block EB26) •

Block EA26: A test is made to determine on which
channel the 110 operation was executed. If it occurred
on Channell, control goes to block EBOL If it occurred
on Channel 2, Channel 1 must be checked and cleared
before proceeding so that the error routine may use the
console printer.

Block EA27: The address of the instruction following
the Channel 2 BA or BEX instruction is stored in the 1-
address of a branch at $WTGX (block EA35) to initialize
the return to finish checking the Channel 2 operation.

66

Block EA28: A test is made on Channell to deter­
mine if an overlapped operation is in progress or has
been completed and not checked. If neither condition
exists, Channel 1 is clear and control proceeds to block
EBOl where further checking of the 110 operation is
performed.

Block EA29, $LMWTGR: The I-address of a branch
instruction at $WTGX is decremented by 7. This sets
$WTGX (block EA35) to return to the Channel 2 BA or
BEX instruction.

Block EA30: The I-address of the branch at $CS1SFX

is saved. This is necessary as this linkage to the Chan­
nell file scheduler may be destroyed if the error routine
forces the Channel 1 110 operation.

Block EA31: If the interrupt routine stores the 1411
status indicators because of URREQUEST, INQUIRY, 1414
on Channel 1 or 2, or DISK on Channel 1 or 2, control
goes to block EA33.

Block EA32: The zero balance and compare indi­
cators are restored.

Block EA33: Channel one is cleared of all unchecked
110 operations now in progress or already completed by
giving control to $CS1SFS.

Block EA34: The linkage saved in block EA30 is re­
stored.

Block EA35, $WTGX: Control returns to the error
routine ($ERROR, block EA01) via the Channel 2 BA or
BEX instruction. A brief summary of what has occurred
follows:

The error routine was entered for a Channel 2 file.
Once in the routine, it was determined that Channel
1 must be cleared and checked. Linkage to the Chan­
nel2 file was saved and the Channell operations were
cleared and checked. The error routine was re-entered
for the Channel 2 file.

Block EA36, $ERCHOP: The address of the opera­
tion code of the BEX instruction being initialized is
placed in the B-address of a move instruction at EA37.

The address is also stored in the I -address of the exit
branch instruction at block EA38.

Block EA37: The move instruction, initialized by
block EA36, is executed. It moves the operation code
of the Channel BA or BEX instruction to the operation
code of the BEX instruction being set to test the proper
channel.

Block EA38: A branch is executed to the location set
by block EA36.

Tape Error Routine - Part 2

Block EB01: The BNR instruction at block EB02 is
initialized to test the proper channel for the file being
checked.

Block EB02: A test is made to determine if the not
ready 110 channel status indicator is on. If the unit is
not ready, control goes to $ERNR (block EB10).

Block EB02.l: With a non-overlapped assembly,
block EB03 does not exist. Instead, for an input file, the
contents of the B-register, after the read operation, are
stored in $ERNOIS to initialize the noise length record
test. This is accomplished in the file scheduler before
checking the 110 operation.

Block EB03: A test is made to determine on which
channel the 110 instruction was executed. If it was
Channel I} the contents of the E-register are stored
in $ERNOIS. If Channel 2, the contents of the F -register
are stored in $ERNOIS. This initializes the noise length
record test starting at block EC04.

Block EB04: The BEF instruction at block EB05 is ini­
tialized to test the proper channel for the file being
checked.

Block EB05: A test is made to determine if the 110

condition channel status indicator is on. If it is, a
branch to ~;EREF (block EB14) is executed.

Block EB06: The BER instruction at block EB07 is
initialized to check the proper channel for the file
being tested.

Block E807: A test is made to determine if the data
check 110 channel status indicator is on. If it is, a
branch to $ERDC (block ECOl), is executed.

Block EB08: A test is made to determine if the 110

operation was a read instruction. If it was, a branch to
block EB16 is executed.

Block EB09: The zero length record message,
"20117 ZLR," is moved to the console message field, $ERFLD.

This message indicates that the first character in the
core storage area used for a write operation was a
group mark/word mark. This condition sets the WLR

indicator which caused the entry to the error routine.
A branch to $ERHLT (block EB1S) is executed.

Block EB10, $ERNR: (Entry from block EB02.) The
not-ready message, "10100 NR," is moved to the console
message field ($ERFLm.

Block EB11: If a word mark exists at $ERNR+13, a
branch is executed to block EB12. If not, control goes to
block EB13. The word mark over the branch operation
acts as a I-time switch and prevents multiple print-outs
of the not ready message.

Block EB12: The contents of $ERFLD (not-ready mes­
sage) are typed on the console printer.

Block EB13: The word mark at $ERNR + 13 is cleared
to prevent typing multiple not ready messages. A
branch to fl;JUG (block EA22) is executed.

Block EB14, $EREF: The address of $EORU (address
of end of reel routine) is stored in $ERAD. The contents
of $ERAD may be used by the error routine to initialize
linkage for exceptional conditions (WLR or EOF).

Block EB15: A test is made to determine if the EOF

condition was tested by the Channel BA or BEX instruc­
tion. If it was, the error routine must set up linkage
for the EOF exceptional condition and control goes to
$ERDLY (block EB30). If EOF was not tested, it indicates
the main program treats this condition and control goes
to $ERLV (block EB26).

Block EB16: A test is made to determine if the read
operation, which is generating WLR checks, has been
retried ten times. If it has not, control goes to $ERDC

for another attempt at correcting it. If it has been
retried ten times, it is considered by 10CS to be un­
correctable and control goes to block EB17 to initialize
the exceptional condition linkage for the WLR condition.

Block EB17: The file reference address (address of
the file name label) is moved to $ERAD. A +33 is sub­
tracted from the contents of $ERAD to set up linkage
to the user's wrong-length-record routine. Control goes
to $ERDL Y (block EB30).

Block EB18, $ERHLT: The contents of $ERFLD (con­
sole message) are typed out on the console printer.
The message can indicate a label read error, zero length
record, or data check on read. A wait loop is entered,
allowing the operator to select an option and enter it
through the console printer. After the option is entered,
control passes to block EB20.

Block EB20: The first character of the option entry
(content of the high-order location of $REPLY) is
moved to the d-modifier position of a BCE instruction.
This initializes the option test instruction.

Block EB21: The option test instruction is a BCE

which compares the contents of a location in the
$EROPTN field to the d-modifier set by block EB20.

The contents of the $EROPTN field (six characters)
are modified by the DIOCS read error entry in the fol­
lowing manner:

DIOes READERROR Entry

No entry - no * scan or dump routines generated
SCAN - no dump routine generated
TAPE, CU - no * scan routine generated
SCAN , TAPE, CU - both generated

$EROPTN Field

@bbSRPb@
@b*SRPb@

@DbSRPD@
@D*SRPb@

The character at $EROPTN-l is compared to P. If this
d-modifier is a P, IOCS ignores the error and control
goes to $ERLV (block EB26) to exit the error routine.

Block EB22: If the d-modifier is an R, 10CS will
again attempt to execute the 110 operation and control
goes to $ERDC (block EC01).

Block EB23: If the d-modifier is an S, IOCS will ignore
the 110 operation in error and will read in the next
record or block of records. Control goes to $JUG (block
EA22).

Block EB24: If the d-modifier is an asterisk and SCAN

has been specified in the DIOCS READERROR entry, 10CS

Error Routines 67

will type out the location (s) of the asterisk (s) in the
record. Control goes to $ERSCN (block EC31).

Block EB25: If the d-modifier is a D and a dump
tape has been specified in the DlOCS READERROR entry,
IOCS will write the record in error on the specified
dump tape. Control then goes to $ERDMP-19 (block
EC23). If none of the option branches are taken, control
goes to $ERHLT (block EB18) to notify the operator
that another option must be selected.

Blocks EB26, $ERL V and EB27: If the error routine
saves the 1411 status indicators they are restored be­
fore exiting from the routine. A branch to $EREX (block
EB29) is executed.

Block EB29, $EREX: The I-address of the branch
at $EREX is normally that address which had been set
at block EAOl($ERRom. If, however, an exceptional con­
dition (WLR or EOF) exists for a one-area tape file, the
I -address is the file reference address (address of
file name) minus seven. The branch is executed.

Block EB30, $ERDLY: The I-address of the branch
at $EREX is moved to the I-address of the branch instruc­
tion at $EREX + 7. The A-address of a move instruction
labeled $ERFA is incremented by 18.

Block EB3l, $ERF A: A move instruction, initialized
by blocks EA19 and EB30, moves the contents of the file
reference address + 18 (address of $EREX + 5 for a one­
area file or the address of $ - - TRIG + 5 for a two-area file)
to the C-address of a SBR instruction executed in block
EB33.

Block EB32: The contents of $ERAD (address of $EORU

for EOF condition or the file reference address - 33
for WLR condition) are moved to the I -address of a
branch located at file reference address -7.

Block EB33: The file reference address -7 is stored
in the address set by block EB31.

Block EB34: The address of the NOP, preceding a
one-area tape file 110 instruction, is moved to the 1-
address of a branch instruction located at $EREX + 14.

Block EB35: A test is made to determine if the 110

instruction was a read operation. If it was, control goes
to $ERLV (block EB26).

Block EB36: The 110 channel status test instruction,
executed at block EB37, is initialized to check channel.

Block EB37: This block is entered if the 110 instruc­
tion was a write operation and the EOF 110 condition
exists. A test is made to determine if the data check
110 channel status indicator is on. If it is, the record
just written on tape is in error and control goes to
$ERDC (block EG01) to attempt to correct it. If it is not,
control goes to the error routine exit coding at $ERLV

(block EB26).

Tape Error Routine - Part 3
Block EGOl, $ERDG: A test is made to determine if

the 110 instruction is a write tape mark operation. If

68

it is, the noise record sequence starting at block EC02

is bypassed and control goes to $ERH + 7 (block EC08)

to initialize for a re-execute attempt or to type a con­
sole message and enter a wait loop for operator action.

Block EG02: The 5-character starting address of the
110 area, specified by the 110 instruction, is placed in
$ERFLD + 14 through $ERFLD + 18. This operation initializes
the asterisk scan routine.

Block EG03: The starting address of the 110 area is
placed in the B-address of a write instruction at $ERDA

(block EC27). This initializes the dump routine to
write the record, or block of records, in error, on the
specified dump tape (specified by DlOCS READERROR

ENTRY).

Block EG04: The starting address of the 110 area is
placed in $ERBL. This initializes the noise length record
test.

Block EG05: The contents of $ERNOIS (contents of
E- or F -register as set by block EB03) are subtracted
from the contents of $ERBL (the starting address of the
110 area). The contents of $ERBL, after the subtract in­
struction is executed, is a negative number equal to
the number of characters read into core plus one.

Block EG06: This block exists only for a non-over­
lapped IOCS assembly. The noise record test is by­
passed on a non-overlapped write tape operation as
$ERNOIS is not initialized for a noise record test.

Block EG07: The contents of $ERBL are compared to
-13. If the number of characters read is 13 or more,
the high compare indicator is set. A branch high is
executed; if the branch is taken, 10CS does not con­
sider the record a noise record and control goes to
$ERH+7 (block EC08). If the number of characters read
is 12 or less, 10CS considers the record a noise record
and control passes to block EC08.

Block EG08, $ERH + 7: The contents of $ERBL are
incremented by 1, making it equal to the number of
characters read into core. The record length (contents
of $ERBL) is included in the typing of read data check
messages. The retry counter ($ERCT) is incremented by
1 to accumulate the number of executions of the 110

instruction.

Block EG09: A test is made to determine if the retry
counter is equal to 20. If it is, it indicates that the 110

operation was executed 20 times in an attempt to cor­
rect the error but the failure still exists, and control
goes to $ERCTI. (block EC38) .

Block EGlO: The X-control field of the 110 instruc­
tion is moved to the X-control field of the skip and
blank instruction at $ERSK (block EC15). The X-control
field of the 110 instruction is moved to the X-control
field of the backspace instruction (block ECll). This
initializes the instructions for execution on the proper
channel and unit.

Block ECll: The backspace instruction (initialized
by block EC10) is executed.

Block EC12: The branch any instruction, executed
in block EC13, is initialized to check the proper channel.

Block EC13: A branch any instruction is executed.
It is primarily to satisfy the 110 channel status test re­
quirements since, at this point in the error routine, no
110 channel status indicators should be on. If the branch
is taken, an attempt is made to re-execute the back­
space and control passes to block EC11.

Block EC14: If a word mark does not exist at $ERSK

(block Ee15), the skip and blank instruction is bypassed
and control goes to block EC16.

Block EC15, $ERSK: A skip and blank instruction,
initialized by block EC10, is executed.

Block EC16, $ERCHOP: The branch any instruction
at block EC17 is initialized to check the proper channel.

Block EC17: A branch any instruction is executed.
If the branch is taken, control returns to $ERSK (block
EC15) to re-execute the skip instruction. The instruction
satisfies the 110 channel status test.

Block EC18: A word mark is set at $ERSK (block
EC15). This sets the one-time switch (block EC14) off
to allow :the execution of the skip instruction on addi­
tional reo-execute passes. Control goes to $JUG (block
EA22).

Block EC19: The noise record count, $ERCT-2, is in­
cremented by 1 to accumulate the number of consecu­
tive noise records.

Block EC20: A test is made to determine if ten con­
secutive noise length records have been read. If not,
control goes to $JUG (block EA22) to re-execute the 110

instruction.
Block EC2l: The noise record counter, $ERCT-2, is

set to zero.
Block EC22: A noise length record message is moved

to the console message area, $ERFLD. Control goes to
$ERH (block EC41).

Block .23, $ERDMP-19: This block is entered from
block EB25 (DUMP option). The data check message,
"60113 DCK," is moved to the console message field,
$ERFLD. The message indicates that the record in error
was read 20 times without success. A waiting loop was
entered after typing a read data check message, and
the operator speciHed the dump option. Control goes to
block EC25.

Block EC24, $ERDMP: This block is entered only if
the operand of the mocs READERROR entry is TAPE,CU.

The contents of the console message field, $ERFLD, are
changed from "60113 DCK" 1tO "10113 DCK." The new
message indicates the writing of the error record on
the dump tape is the result of the mocs specifications
and not because of operator action.

Block EC25: A write tape instruction is executed on
the channel and unit specified by the DIOCS READERROR

entry. The data written are the contents of the console
message field, $ERFLD.

Block EC26: A branch any is executed to the next
sequential instruction. This satisfies the 110 channel
status test requirements.

Block EC27, $ERDA: A write tape instruction is exe­
cuted on the channel and unit specified by the mocs
READERROR entry. The record in error is written on
the dump tape.

Block EC28: A branch any is executed to the next
sequential instruction. This satisfies the 110 channel
status test requirements.

Block EC29: A test is made to determine if the
character at $EROPTN is a blank. If it is, it indi­
cates that the dump routine was entered via the
option test sequence; 10CS will retype the initial error
message and allow the operator to select another
option. Control, in this case, goes to $ERCTL (block
EC38). If it is not a blank, it: indicates that 10CS has
automatically written the record in error on the mocs
specified dump tape and control passes to block EC30

to type out an auto-dump data check message.
Block EC30: The contents of the console message

field (auto-dump message) are typed out. Control goes
to $JUG (block EA22) to read the next record.

Block EC3l, $ERSCN: This sequence of coding does
not exist if the mocs READERROR entry does not specify
SCAN. It is entered from the option test sequence
(block EB24) if the operator selects the *SCAN option.

Word marks are set in $ERFLD to facilitate the move
instructions used in the routine.

Block EC32: A move instruction is executed which
places the starting address of the 1/0 area (contents
of $ERFLD+ 14 through $ERFLD+ 18) in the B-address of
a BCE instruction at block EC33. The starting address of
the 110 area was placed in $ERFLD+ 14 through $ERFLD+ 18

by a move instruction at block EC02.

Block EC33: A test is made to determine if the loca­
tion specified by the B-address of the BCE instruction
(character under test) contains an asterisk. If it does,
control goes to block EC34. If it does not, control goes
to block EC36.

Block EC34, $ERP A: The console message field is
set to five characters in length. The location of the
asterisk is moved to the console message.

Block EC35: The location of the asterisk is typed
by the console printer.

Block EC36: The B-address of the BCE instruction
is incremented by + 1. This initializes the BCE to test
the next location. The record length field ($ERFLD+25)

is decremented by one. The record length was placed

Error Routines 69

in $ERFLD+21 through $ERFLD+25 by a move instruction
at block EC43.

Block EC37: A test is made to determine if the sub­
tract instruction executed in block EC36 turned on the
zero balance indicator. If it did, it indicates that all
characters were tested and control passes to $ERCTL

(block EC38). If the zero balance indicator is not on,
control returns to block EC33 to test another character.

Block EC38, $ERCTL: The retry counter ($ERCT)

is set to zero.
Block EC39: A test is made to determine if the 110

operation was a read instruction. If it was, control goes
to block EC43.

Block EC40: "20114 DCK" is moved to the console
message field, $ERFLD. This message indicates a data
check on a write tape or write tape mark operation.
10CS first backspaced the tape and attempted to rewrite
it but the error persisted. A backspace-skip-rewrite
sequence was executed 18 times but the record could
not be written successfully.

Block EC41, $ERH: A branch is executed to $HALT.

The message in the console message field, $ERFLD, is
typed and a wait loop is entered to allow operator
action. The only option available is to retry the opera­
tion. When the operator selects the option, control goes
to $ERH + 7 (block EC08) •

Block EC43: The contents of $ERBL (record length)
are moved to the console message ($ERFLD+25). This is
initialization for the asterisk scan routine. The record
length is included in the typing of the read data check
message.

Block EC44: "40119 LRE" is moved to the console mes­
sage, $ERFLD. This message indicates that the error
occurred while reading a label.

Block EC45, $ERQLB: A test is made to determine
if the 110 operation in error was a label read. If it was,
control goes to $ERHLT (block EB18) to type the label
read message.

Block EC46: "60113 DCK" is moved to the console mes­
sage field, $ERFLD. The message indicates a tape read
error. 10CS has attempted to read the record success­
fully 20 times but the error persists.

Block EC47: A test is made to determine if IDCS is to
automatically write the error record on the DIocs-speci­
fied dump tape. If it is, control goes to $ERDMP. Other­
wise, control goes to $ERHLT (block EB18) where the
contents of the console message field, $ERFLD, are typed
and a wait loop is entered, allowing operator inter­
vention.

Unit Record Error Routine

Block ED01, $URERR: The contents of the B-regis­
ter are stored in the I -address of a branch instruction at

70

$UREXIT (block ED34). This initializes the routine's exit.
The contents of the B-register are stored in the B-ad­
dress of a compare instruction at $URQE (block ED27).

This initializes a test made in the reader EOF sequence
of the error routine.

Block ED02: The contents of the B-register are decre­
mented by + 7 to obtain the op-code address of the
Channel BA or BEX instruction (the instruction which
branched to the error routine). This address is stored
in the A-address of a move instruction at $URPKUP

(block ED05) .

Block ED03, $URENT: A message switch is set on
by setting a word mark at $URNR + 13 (op-code address
of a branch to $NOTE at block ED29). The switch is used
to prevent multiple print-outs of the not ready message.

Block ED04: An area is set up for the re-execution of
the 110 instruction. The instruction may be of a 2- or
10-character format.

r------- Nap ($URBAN -11)

l i

lO-character 1/ a instruction

N xxxxxxxxxx

~ $URBAN-1

2-character II a instruction

Block ED05, $URPKUP: The move instruction, ini­
tialized in block ED02, is executed. It moves the opera­
tion code of the Channel BA or BEX instruction to the
operation code location of the BA instruction at $URBAN

(block ED33) to check the proper channel. The 110 in­
struction is moved right-to-Ieft to the re-execute area
at $URBAN-11 (block ED32).

Block ED06, $URANY: The BCB instruction at block
ED07 is initialized to check the proper channel.

Block ED07: A test is made to determine if the unit
was busy at the time the 110 instruction was attempted.
If it was, control goes to $URBAN-11 (block ED32) to
re-execute the 110 instruction.

Block ED08: The BEX instruction at block ED09 is
initialized to check the proper channel.

Block ED09: A test is made to determine if any 110

channel status indicator (excluding WLR) is on. If an
indicator is on, the load mode test at block ED10 is by­
passed and control goes to block EDll via a BXPA in­
struction.

Block ED10: A test is made to determine if the 110

instruction is a 10-character instruction executed in
load mode. If it is, control goes to $UREXIT (block ED34)

to exit from the routine since wrong length records
occurring in load mode have little significance.

Block EDll: Channell is cleared of the 110 opera­
tion and control passes to block ED12.

Block ED12: A wrong length record message, "20114

WLR," and the 110 instruction are moved to the console
message Held, $ERFLD.

Blocks ED13, ED14: A test is made to determine if
the 110 instruction is 10 characters in length. If it is not,
it must be a 2-character instruction and the message in
the console message field, $ERFLD is shifted 8 places to
the left so that the message is left justified in $ERFLD.

Block ED15: The BWL instruction at block ED16 is
initialized to check the proper channel.

Block ED16: A test is made to determine if the
wrong length record 110 channel status indicator is on.
If it is, control goes to $URTY (block ED35) where a
wrong length record message is typed out and a wait
loop is entered to enable operator action.

Block ED17: A data check message, "20116 DCK," is
moved to the console message field, $ERFLD.

Block ED18: The BER instruction at block ED19 is ini­
tialized to check the proper channel.

Block ED19: A test is made to determine if the data
check 110 channel status indicator is on. If it is, control
goes to $URDCK (block ED37).

Block ED20: A message, "20143 STK," indicating a pro­
gramming error, is moved to the console message field,
$ERFLD.

Block ED21: The BNT instruction at block ED22 is
initialized to check the proper channel.

Block ED22: A test is made to determine if the no
transfer][10 channel status indicator is on. If it is, it
indicates a programming error in the object program,
and control goes to $URTY to type the program error
message and enter a wait loop for operator action.

Block ED23: The BNR instruction at ED24 is initialized
to check the proper channel.

Block ED24: A test is made to determine if the not­
ready 110 channel status indicator is on. If it is, the unit
is not ready and control goes to $URNR (block ED28).

If it is ready, the 110 channel status indicator which
caused this entry to the error routine is the 110 condi­
tion indicator since at this point all others are off.

Block ED25: A message, "20115 LLC," indicating that
the last Hne printed or the last card punched contained
an error, is moved to the console message field, $ERFLD.

Block ED26: A test is made to determine if the 110

instruction is a 10-character print or punch instruction.
If it is, control goes to $URTY (block ED35) to type the
message assembled in block ED25 and enter a wait loop
for operator action.

Block ED27, $URQE: A test is made to determine if
the Channel BA or BEX instruction is followed sequen­
tially by a BEX instruction on the same channel. If it is,
lOGS assumes that the user checks for EOF on the reader
and control goes to $UREXIT (block ED34) to exit the
routine.

Block ED28, $URNR: This block is entered if the
unit is not ready or if the reader is at EOF and the user
does not test it. A not-ready message is moved to the
console message field, $ERFLD.

Block ED29, $URNR + 13: If a word mark is in loca­
tion $URNR + 13, it indicates that this is the first attempt
to type-out the not ready message and control passes
to block ED30. If the word mark does not exist, it indi­
cates that the message has been typed once for this
condition and the write console printer routine is by­
passed to prevent multiple type-outs of the not ready
message. Control goes to block ED31.

Block ED30: The not ready message, "10100 NR," is
typed by the console printer.

Block ED31: The word mark at $URNR+13 is cleared
and control goes to $URBAN-11 to re-attempt the execu­
tion of the 110 instruction. A loop in the error routine
exists until the device is made ready, at which time the
110 instruction is executed.

Block ED32, $URBAN -11: An attempt is made to
execute the 110 instruction.

Block ED33, $URBAN: A test is made to determine
if any 110 channel status indicators are on. If none are
on, the operation has been performed successfully and
control passes to $UREXIT (block ED34) to exit from the
routine. If any are on, control returns to $URANY (block
ED06) to determine which 110 condition exists and take
appropriate action.

Block ED34, $UREXIT: A branch is executed to the
location set by block EDOl.

Block ED35, $URTY: The message switch is set on
(swat $URNR + 13) so that a not ready message may be
printed, if that condition exists, after the operator re­
turns control to the error routine.

Block ED36: The contents of the console message
field, $ERFLD, are typed out. A wait loop is entered until
the operator requests the option of a re-execution of the
110 instruction. He does this by first pressing the INQUIRY

REQUEST key and then the INQUIRY RELEASE key. No
code word is necessary. Control goes to $URBAN-11

(block ED32) .

Block ED37, $URDCK: This block is entered after
it is determined that the data check 110 channel status
indicator is on. If the data check occurred on a card
read operation, control returns to $URTY (block ED35)

to type a data check message and enter a wait loop for
operator action.

Blocks ED38 and ED39: A + 1 is added to a counter
and a test is made to determine if the count is odd
or even. If odd, it indicates that an attempt has not
been made to correct the data check and control goes
to $URBAN -11 (block ED32) to re-execute the instruction.
If even, it indicates the operation has been tried twice
and is still in error and control goes to $URTY (block

Error Routines 71

ED35) to type a data check message and enter a wait
loop for operator action.

Block ED40, $URCHOP: The contents of the B­
register are stored in the B-address of the move instruc­
tion executed in block ED42.

Block ED41: The contents of the B-register are stored
in the exit.

72

Block ED42: The operation code of the test instruc­
tion at $URBAN (block ED33) is moved to the operation
code position of the instruction indicated by the B­
register.

Block ED43: An exit is made to the location set by
block ED40.

.....
*EA *
• AI· ..

$ERROR ~ 01 16
·*·.*A3·****·~*·* *ZERO NOISE RCD *
*COUNT (SERCT-2)"

••• **
"lOA"
• AS*
" *

SERCHOP X 36

·····A5·········· " SBR IN B AODR *
••••• A 1 * ••••
.SBR IN $ERcX+5 •
• (BLOCK EB29) •
* DECREMENT THE *
.B-ADDR REG BY I.
SUR IN $ERENT+5
•••• **** •• *******

••• X*AND ZERO RETRY *
• COUNT (SERCT) *

"OF MOVE INST AT.
" BLOCK EA37 "
* SBR IN EXIT "

SERENT ~ 02
· .. ···81··**·**·· .. · .MOVE C ANNE:L SA.
.OR BEX INST TO *
• $ERBA (EA23). *
*SAR IN SERPU+5 •

:*!~~~;~.;:~:~*.:

X 03
.."C 1 •• " •••••••
• CLEAR wM IN *
*SjUG (A SET UP *
FOR INSTRUCTION
* LENGTH TEST) *
* * _._

•)(••••••••••••••••••••••• CI.
SERPU ~ 04

·····01··*··**··· • MOVE INST TO *
* SJUG (EA22) *
-SAR IN SERPU+5 *
* (SET MOVE TO *
.GET NEXT INST) •
••••• * ••••••••• **

X

••• X·

NO •

.NO
* 02 06

• IS • *INSTRUCTION·
AT SJ\JG FIVE
* CHARS IN *

*LENGTH *
* * .

• YES

~ 07
E I * * 05

* IS·
*INSTRUCTION·

AT SJUG TEN
····*E2 H •••••••••
* SHIFT INST IN *
RE-EXECUTE AREA
- (SJUG) FIVE •
• CHARACTERS TO •
• THE LEFT •
•• *.***u*****.**.

• CHARS IN *
·LENGTH •

« • · .YES

SERIO ~ 10

·····Fl·········· - SET CONSOLE -
* MESSAGE AREA *
- TO TwENTY-ONE *
- CHARACTERS IN *
:~;~~!~.!:;~~~~!:

X II
·····Gl·· .. ··*··**
• MOVE TEN CHAR •
1/0 INSTRUCTION
*TO CONSOLE MSG •
:FIELD (SERFLD) :

••••••••••• ******

X 08

*****F2*·****···· • SET CONSOLE •
• MESSAGE AREA *
• TO FIFTEEN •
* CHARACTERS IN •
LENGTH ($ERFLD)
..*** •• ***.**

X 09
.··**G2 D *** ••• ***
*MOVE FIVE CHAR *
1/0 INSTRUCTION
*TO CONSOLE MSG *
• FIELD (SERFLD) * · . *******D******** •

· . .X •••••••••• O •••••••••••• Il.

X
HI •• 12

* DOES *
• INTERRUPT •

• ROUTINE SAVE
• THE 141 I *

.S!ATU; •

· .YES

13
*****H2~*··**···* *$PSV OHA4.

NO .-.-.-.-.-*-*-.-. * •••••••• X* SAVE ZERO SAL.
* AND COMPARE •

: •• !~~!~!!~~~* •• :

· .
•••••••••••• 0 ••••••••••••)(•

X 14
:****J2U ••• * ••• *:
• MOVE FILE'S •
IICHANNEL + UNIT.
: TO $ARG :

• *.*.**~* *.*

: •••• ;~~~~~ •• *.*:

it 17
***·*83··**··*···
• MOVE I AODR OF *
BRANCH AT SEREX
• TO B ADD OF BCe.
AT SERQLB (INIT
.LABEL READ TST).
* ••••••• ** -

X 16
·····C3·*········ *SET 1ST TIME Sw"
"ON(EB!1 + ECI4)*
• SET [lRANCH AT *
*SERBA TO GO TO *

:*.~i~;~*;e!~***:

X 19
·····D3······**·· • MOVE FILE REF.
.ADDR TO A ADCIR *

:.!:;~~~,,;:=:!.*:

X 37 ····*S54 •••••••••
.MOVE OP.CODE OF •
" CHANNEL BA OR *
"BEX INST TO LOC •
" SET BY *
" BLOCK EA36 " *

X 38

·····es·········· " EXIT TO •
• LOCATION

SET BY
[lLOCK EA36

x
*

• OF MOVE AT .X •••••••••••••••••
" $ERFA (SET UP *
"FOR wLR OR EOR)* ••••••••••••••• **

X 20
*····EJ****·**···
:~;~5~~~*-.-;~:~:
SET BCB AT EA21
" TO CHECK THE "
*PROPER CHANNEL *
..**.********

X

SERB A
;YES

*E4 * 23
CHANNEL

SA OR BEX
"INSTRUCTION* . .

* * •
X

24
···**E5*········· *$·ERCHOP EAA5*

NO *-*-.-.-*-*-*-*-*
* •••••••• X-SET 8A AT EA25 ...

* TO CHECK •

.... *~~~:;~.;~:~.*:

SJUG • 22 X
F3 • *

*
21 *"*F4*.*.***. F5 * * 25

* * * YES * RE-EXECUTE * * • YES
BUSY * •••••••• X:I/O INSTRUCTION: BRANCH ANy" ••••

"
" • NO

X
G3 ." 26

* • * CHI

._.** •• - •••• *
X

* * "EA *
• F4*
•••• *

" .
.X •••••••••••

x _
• EB "
• A4"
* " " SERLV

* wHICH CHANNEL
* •

" .CH2

X 27 .··.·H3***··*···· *MOVE I ADDR OF "
*BRANCH AT $EREX.
* TO I ADDR OF •
BRANCH AT $wTGX

:~;:~;*5~~. ~!~~;:

X
j3 * * . 28

X X ·
• *Ea ..
• .. AI·

" * · . • NOT READY
• CHECK

• 30
.··**H4· •• ••••••• *SAVE I ADDR OF *
" BRANCH AT *

• ••• X " $C S I SF X •
"(LINKAGE TO CHI*
" FORCED FILE) *
.***.*4 ••••••• * ••

YES
X

H5 •• 31
* DOES •

• INTIORRUPT •
ROUTINE SAVE
*1:11 STAT~S. .

.NO

33 X 32
•••• *J4.......... • ••• *Js* •••••••••

BOLl
OR

BOPRI

NO ••
.SCSISFS BAG3.." DHA5 •
--.-*-*-*-*-*-* X *-*-.-.-.-.-.-*-*
"CLEAR CHANNEL I*X •••••••• * RESTORE ZERO •
• FOR CONSOLIO * * BALANCE AND •
- PRINTER USE " *COMPARE STATUS •
••••• *** ••••• *... *+ ••••••••••••••• .

• YES

~ 15 : SLMwTGR X 29 X 34 SWTG): 35
****·K2~*****·*"'·
• SEARCli TABLE II
• (SCU) FOR $ARG * •
TO GET FILE REF ••••••
II ADOR I AOOR OF *

:~!~;~:~;,,;:~;~!:

Chart EA. Tape Error Routine - Page 1 of 3

··K3*·_····
" SUBTRACT +7 •
FROM $WTGX+S TO •
"GET ADDRESS OF •••••••
"CHAN SA OR BEX •
• INSTRUCTION • ••••••••••• ** ••• *

..*K4* •• **.**.. • •••• K5 ••••••••••
* RESTORE" • RE-ENTER THE •
• LINKAGE * -TAPE ERROR RTNE"

SAVED ••••••••• X.VIA THE CHANNEL-
IN * • TWO SA OR BEX •

:**~;~~~,,;:~~*.,,: :*,,!~;!~~~!!~~"*:

: SERROR
X

" *
• AI * · " ****

EA

Error Routines 73

EB
"EB "
""A!"

NOT ROY
CHECK

X 01
•·· .. Al·········· "SERCHOP EAAS"
--*-.-*-*-*-*-*
"SET BNR AT EB02"
"TO CtiECK PROPER"
" CHANNEL " -._._

X
Bl " " 02

" YES

SERNR 10 ·····A2······· .. ·.
" MOVE "
" -10100 NR-

••• X" TO CONSOL~
* MESSAGE

:*",,!:~~:~~:** •• :

.SEIlNR+13 X
B2 " * II

" . NO
NOT READY * •••••• FIRST TIME * ••••

" .NO

Cl ~ • 02.1

" . .
.NON-OVERLAP*

" .NO

YES
* ••••

"

" .YES

X 12
·····C2·········· "SNOTE DHA2"
--*-*-*-*-*-*-*
" TYPEOUT "
" NOT READY
* MESSAGE --_. __ ... _ -

.......
lOEB"
.... A~.

*

SERHLT X 18 ·**··A3··········
:!~~~!*-.-.-~~:~:

••• X. MESSAGE AND
" WAIT LOOP
" ROUTINE "

X 20 · .. ···C3*·· .. ***·*­
" MOVE CONTENTS "
* OF HIGH ORDER"
" LoC OF SREPL Y *
"TO OPTION TEST "
* INSTRUCTION " _--

........
lOEB"
• A4*
* "

" *
" AS " * ..

••••••••••• x. x •••••••••••••
• $ERLV X

A4 •• 26
• DOES "

• INTERRUPT •

. .

.SERDLY X 30 .. *.* .. AS* •• It _ .. *
MOVE seREX+S TO

YES "SE~EX+12 AOD IB"
• ROUTINE SAVE

*1411 STATUS.
" . *..... *TO -A- ADDRESS *

" OF MOVE AT "
* S~RFA ..

.NO

X 27
··.·*84*····**· .. " DHAS*
--*-*-*-*-*-*-*
" RE STORE lERO "
" BALANCE AND •

:;~~P,:~;*~!~!~~*:

.

. . .
•• SERFAX 31

····*05***····***
" MOVE CONTENTS "
" OF FRA+18 TO •
"-C- AD::JRESS OF It

* AN SBR AT "
" EB33 " •••••• _ ••••• * ••••

. . .
• x •••••••••••• . .

.SEREX X 29
··***C4·*········ " EXIT TO FRA-7 "
"IF WLR. EOF. OR"
"EOR AND I-AR~A "
"FILE. OTHERWISE"
"AS seT BY EAO I " -............ .

X 32
··***cs .. ···**·· .. · * MOVE CONTENTS "
* OF SERAD TO "
*UTILITY BRANCH ..
* AT FILE REF ..
" ADDRESS-7 " *.-.. -.. **-.- •• *-

. . .
• x ••••••••••••

X
X 03

····.01··**······ lOSER IN SERNOIS •
: IF CHANNEL I •

"SFR IN SERNOIS •

: ... !~.;~!~~~~.~**:

. .
• X •••••••••••

X 04

·····EI··········
:~~~;~~~*-*-;~!~:
• SET BEF AT EBOS*
.TO CHECK PROPER.
• CHANNEL " •• ~ •••••• * •• *.***

X 13 :****02****.*.**:
" SET " "NOT FIRST TIME *
: AT BLOCK EBII :
........... -.....

X
"EA " * F4"
" " " SJUG

SEREF 14 X
Fl· * . 05 •••• *F2 ••••••••••

* STORE " . YES "ADDRESS OF
.BRANCH EOF X* SEORU IN

" .NO

X 06

·····GI·········· .SERCHOP EAA5*
--*-*-*-*-*-*-*
.SET BER AT EB07"
.TO CtiECK PROPER"
• CtiANNEL " ••••••••••••••• _*

X

" " 07

" YES

" SERAD

NO
X

" *
: A4 :
SERLV

X

G2 " ". 15
" WAS " "BEF TESTED *

BY CHANNEL
• BA Of.!

BEX
* " " .YES

X
" " " A5 " .» * .* ••
SERDLY

.DATA CHECK It ••••••••

.
.NO

X

"Jl "" 08
YES

X .• -.*
*EC *
""A!*

" SERDC

16

NO

X .. " 21

" * " ~HARAC~ER 15*

"

"

*

NO

E3

" ..

" .NO

X .. "
CHARACTER

" R

*
.NO

X
F3 " " " ..

CHARACTER
* S

" .NO

X
G3 " " " " CHARACTER

* •

*
.NO

X
H3 " " " " CHARACTER

" 0

22

" IS
*

23

" IS
*

24

" IS

"

2S .
IS

"

READ OP * •••••••• X.

"J2
RETRY

CTR 10 *

" .NO

X 09 Kl··········
" MOVE "
• -20117 ZLR- "
• TO CONSOLE "
• MESSAGE
• ISERFLO)

X
" * -It A3 •

" "

SERHLT

" .YES

X 17 .·.**K2········ .. • " COMPUTE FILE *
"REF ADDRESS-33 "
" IN * SERAD

X
" "
: A5 :

SERDLY

Chart EB. Tape Error Routine - Page 2 of 3

74

X
"EC "
• AI"

" " " SERDC

YES •
It ••••••

YES
It ••••••••

X ._.*.
"EC *
" AI"

* " " SERDC

YES
X

"EA ..
* F4"

" " *
SJUG

YES
* ••••••••

X
"EC "
" AS* .. *

" SERSCN

YES
x

"EC " .. A4"

" *
" SERDMP-19

* It

*
X 33

** ... *05·11- •• _ •• *
.SBIl IN ADDRESS"
" INDICATED BY
" CONTlNTS OF

FILe REF

:*.!~~:;;;!!~*.*:

X 34
..... *ES* .. ** * *.***
" MOVE LOCATION *
" OF 1/0 INST
* MINUS I TO *
"-1- ADURESS OF "
" SER~X+14 "
- •• *******.**

.YES

.x •. *

X

FS * "
"

READ OP

" .NO

35

X 36
*****GS·**·***.·*
:!;~~~~~,,-,,-;~!~:
SET BER AT EB37
"TO CHECK PROPER"
" CHANNEL ..
...... ***.*** ••• ****

X
H5 .." 37

* • NO "
••••• OATA CHE.CK

"
" .yes

.*~.*
"EC "
"lOA!"

" SERDC

SERDC

.,,~.**

"EOC "
* ... A!*

"
x
" "

WHITE
TAPE MARK

01

" OPEHATION "
" *

" .NO

**.­
" " : A2 :

***.

SERH+7 X 08
*"**·A2·-·_·*·_·*
"INCREMENT RETRY"

YES *COUNTER BY ONE,"
* •••••••• X*INCREMENT SERBL*

X "BY ONE TO GET "
" -(REC LENGTH) " ._ .. _._.-.4 .. ** ••

.NO

***.­
"EC •
• A3" . " ·

SERDMP X 24
.**·*A3**********
• CHANGE CONSOLE "
* MESSAGE IN
" SERFLD FROM "
"'60113 OCK' TO •
" '10113 DCK' •
.****** ... - ••• * ••••

.....
·EC "
" "4" . .

SERDMP-19 X 23
*****A4*-**··****
"MOVE'60113 DCK' •
"TO CONSOLE MSG "
• FIELD AT "

SERFLD

.************

****.
"EC •
" A5"
" "

SERSCN X 31 · -* ... * AS * ** ••••• **
• SET UP FIELDS *
" IN SERFLD FOR *
• CHAR ADDR AND "
" AREA LENGTH "

· . • X

X 02
·····81****-*****
" PUT SlARTING "
" (HI-ORO) ADDR "
"OF I/O AREA IN "
"SERFLD.14 THRU *

:.*.:~:~~~:!: •. *:

X 03
* •• *.C1~··*·**·**
" PUT STARTING "
" (HI-ORO) ADDR "
"OF I/O AREA IN "
" DUMP I~OUT I NE "
:::!!~,,!!:~,,!::!:

X 04
• •• **01** ••••• **­
• PUT STARTING "
" (HI-ORO) ADDR "
"0F I/O AREA IN "
" SERBL "

X 05
·.···E1··*****·**
" SUBT SERNOIS "
" FROM SER8L, "
" ANSWER EO~ALS "
" MINUS THE OTY "

:;!:~~*~;~~!~:!!:

X

F 1 " " 06

x X 25

" " 09 ***83**·*****

* RETRY
* COUNTER

* YES
20 - ••••

.WRITE CONSOLE"
" MESSAGE ON "
*DIOCS SPECIFIED.
" DUMP TAPE " *

* .NO

"

X 10
*-***e2·* •••• -· ••
"MOVE X CTL FLO "
"OF THE I/O INST"
" TO X CTL FLDS "
"OF INSTRUCTIONS"

:!!.;;:!!.:*~~!~ .:

X 11
.***D2*.**.***.

X .* ..
" " * E4 " " .
**** SERCTL

YES
•••• * "

*

X
C3 " •

*
BRANCH ANY

* .NO

. .
••••••••••• x.

26

SERDA" X 27
'**·03**·***-*

BACKSPACE *x ••• . "WR I TE RECORD "
"IN ERROR ON THE*
*DIOCS SPECIFIEO"
• DUMP TAPE •

X 12
··-*-E2-*··*·*·*­
"SERCHDP EAA5"
--*-*-4-*-*-*-*
"SET OA AT ECI3 "
TO CHECK PROPER
" CHANNEL "
************.** ••

*

X
F2 " "

"
13

YES ·

.
**********.**

·
"

X
E3 "* 26

"
BRANCH ANY

· .NO

· . . • ••••••••••• x.

" YES.

X
F3 • " 29

SERPA 34
*****C4**********
*SET CONSOLE MSG"
*FLD (SERFLD) TO" YES

X 32
···**65**·**·····
" MOVE STARTING.
" (HI-DRD) ADDR •
*OF I/O AREA TO •
" ASTERISK TEST.
" INSTRUCTION *
* •• **.*-* •••••• *.

C5 ~ " 33 · " * ASTERISK "
*FIVE CHAR. MOVE*X •••••••• -
*ADDR OF AST TO •

IN CHARACTER
" .ADDRESS" •

*x •••
.CONSOLE MSG FLO •
••• ***.**_ •••• *_.

* .NO

X 35 X 36
.*.**04*.*.***.** *****05*.-***.*.*
"SNOTE DHA2" * INCREMENT THE "
,,-,,-,,-,,-,,-.-*-.-. .CHARACTER ADDR "
* ~RITE CONSOLE ••••••••• X. BY ONE. ...
• PRINTER" *DECREMENT AREA • "" ••• ".""".,,",, •• : :,,;~:~!~.~~.~~;.:

• E4
"

SERCTL X 38
···E4·** •• *···.

• * " ZERO " YES

X · "
" ALL

37

••• X*RETRY COUNT AT -X •••••••• * CHARACTERS
• CHECKED

NO •
* ••••

* ,

NO ,

" SERCT •

" " *.*._***._ ••• * •• *

X
F4 ." 39

• *

· ..

43
··-F5*********.
.. MOVE CONTENTS"

YES .. OF SERBL *
" NON "

OVERLAP
lORITE
TAPE

"BRANCH ANY * •••• AUTO DUMP * •••••• .R~AD OPERATlO: ••••••••• X*(RECORD LENGTH).
*TO CONSOLE MSG "
.. AT SERFLD+25 "
************** .. *.

NO

" INST
" " " • NO

X
G I "" 07

" REC "
" IS LESS " NO.

• THAN 13 CHARS •••••
" IN "

" ~ENG"

" .YES

X 19 ····-H1·· ... *--**
" INCREMENT THE "
" NO I SE RECORD "
" COUNT AT "

SERCT-2 ElY
" PLUS ONE -... _._*-

x
" " 20

" TEN "

" ON "

" .NO

X
(;2 *. 14

•••• " FIRST TIME

"

" .OFF

:SERSK X 15
••• H2*******.

" .YES

X 30
.*G3·******

:~:~!:.-.-.-~~:::
" WRITE CONSOLE"
• PRINTER " · " *.* •• *._*.*******

X
.***"*
"EA.
• F4"
" . . " " • SKIP + BLANK SJUG

* OPERATION *X •••••••••••••••••

"

X 16
·****J2****·*****

:~~~~~~~,,-.-~~!~: ·
J3

"

.YES
* 17

... - CONSECUTIVE ••• X.SET SA AT EC17 * •••••••• X*
"TO CHECK PROPER"

BRANCH ANY

x
ilEA "
" F4·
" ."
" S,JUG

" NOISE "
"R~:COR~S"

" .YES

:*.**;~~~~;~****:

X 21 22
•••• *Kl**.*** •• ** •••• *K2.**** •• * ••
• ZERO • "MOVE'20118 NLR'.
" NOISE" • TO CONSOLE "

RECORD " •••••••• X" MESSAGE FIELD.
COUNT" • (SERFLD) •

:**:!.~~~;!~~**.: :**************.:

:SERH

X
_.** . "

* H4 "
* "

Chart EC. Tape Error Routine - Page 3 of 3

·
" .NO

X 16
*****K3******····
* " *SET FIRST TIME.
"SlOITCH AT ECI4 *
" TO OFF STATUS "

" " * •• * •••••• * •••• _*
:SJUG

X
*** ••
"E" *
.F!

"

.
.NO

X 40
·*G4.**.***
"MOVE'20114 DCK'"
• TO CONSOLE •
* MESSAGE FIELD "
: AT SERFLD *

.*****.****** •• *.
... *.

" : H4 :.X.
**** •

SERH X 41
*****H4**********
"SHALT DHAI"
--*-*-*-*-*-*-*
" MESSAGE AND •

WAIT LOOP
" ROUTINE
*_.*_ ••• _* •••• *-.

X
••• * . "

: A2 : *.*. SERH+7

X 44
.*.**GS**********
*MOVE'40119 ·LRE'"
.. TO CONSOLE "
.. MESSAGE FIELD •
• AT SERFLD ..

SEROLB X
H5 "" 45

" ENTRY ..
YES .BECAUSE OF "
•••• LABEL READ

XNO

• ERROR

" .NO

X 46
**···Js·········. "MOVE'60113 DCK'"
• TO CONSOLE •
" MESSAGE FIELD "
.. AT SERFLD • · . _ ••• **.* •••••••••

X
K5 ". 4 7 · ••• * AUTO DUMP

x
"EB '. · .YES

SERHL T" * A~·" • SERDMP
X

" .* ••
" " : A3 :

Errol'Routines 75

EC

ED
·Eo •
• AI·

SURERR ; 01
• ... ·.AI··········
.SBR IN SUREXIT ..
.. (SETS EXITI ..
• SBR IN SURQE+IO"
.(INITIALIZE EOF.
• SEQUENCE 1 • • *** •••••••••••••

; 02
.·~··Bl·········· " STORE OP-COOE •
.AooR OF CHAN BA.
.OR BEX INST IN •
.A AOOR OF MOVE •
• AT SURPKUP •

SURENT ; 03
:.· ••• Cl :

• SET ..
• MESSAGE S.ITCH •
• ON ..
• (BLOCK E0291 •
•• J ••••••••••••••

; 04

··· .. Dl······~··· • SET UP AREA FOR"
.RE-EXECUT I ON OF"
• DIFFERENT •
• LENGTH I/O
"INSTRUCTIONS "

SURPKUP ; 05

·····Sl·········· "SET BA (URBAN) "
"TO CHECK PROPER.
.CHAN, MOVE I/O "
"INST TO EXECUTE"
• AREA (E032) "

SURANY X 06

·····Pl·········· .SURCHOP EDAS.
--*-.-*-*-*-*-*

••• X.SET BCB AT E007"
"TO CHECK PROPER"
" CHANNEL •

x
• GI " • 07

08
····.A2·····.···* "SURCHOP EOAS"
--. -*- *- *- *- *- ..

•••• • X"SET 8EX AT E009"
• TO CHECK PROPER"
• CHANNEL • •••••••••••• * ••••

x
* B2 ••• 09

YES • BRANCH ON •
" ANY INDICATOR . " ...

• "BUT WLR ••

· .NO

X
C2 • * 10

*10 CHAR.

. ... · . .. 113 •
.. "

X 18 ····.A3 ••• ·· ••• •• • SURCHOP EDAS.
.-*-*-.-.- .. -*-*-*
.SET BER AT EDI9 •
• TO CHECK PROPER •
• CHANNEL •

X
B3 · . 19

" . NO
it DATA CHeCK * ••••

"

· .YES

$UROCK X
C3 · " 37

it

yES . .. YES * I/O INST •
• •••• " EXECUTED IN

• ~01l0 MOO'; *
••••• C!RD READ INST . ..

· .NO

· .. · x........... .
X 11

·····02·········· • sCSISFS BAG3 •
• -*-*-*-*-*-*-e-* • CLEAR CHAN I OF.
• UNCHECKED I/O *
• OPERATIONS • **

; 12

··· .. ·E2*·*······· • MOVE I/O INST •

· .NO

X 38
·····03·········· " " ADD ONE •

TO COUNT

..

.ANO '20144 WLR'.
• TO CONSOLE •
" MESSAGE FIELD •
" (SERFLo) "

• NO
.X •• • COUNT ODD

x
" " 13

• TEN • YES
• Ct-jARACTER I/O

.I~STRUCTI~N.
..... .

" .NO

X 14

·····G2·········· .SHIFT CONTENTS "

.
·YES "
•• X. HI ..

it •
20

·····F3······ •• •• · " .MOVE·20143 STK·. •
"TO CONSOLE MSG .X •••
:FIELO ISERFLDI :

X 21
·····G3·········· .SURCHOP EDAS"

BRANCH
CHANNEL

• BUSY

NO • • *.... . • OF CONSOLE MSG •
.FIELD (SERFLOI ..
"8 POSITIONS TO •
• THE LEFT " •••• ** •••••••••••

.-*-.-*-.-.-*-*-*

.SET BNT AT E022"

.TO CHECK PROPER.
" CHANNEL ..

·YES · " . .. HI •• X.

"
.SWRBAN-II X 32

•• .. HI·······. . "

· .. · X........... .
; 15

·····H2··········

.
x

"H3 .". 22

23 ··.·.F4·· ••••• ••• .$URCHOP EOAS. *-.-*-*-.-.-*-.-.
••• X.SET BNR AT ED24"

"TO CHECK PROPER"
.. CHANNEL "

. ...
• it " A5 * · .

SURCHOP; 40
••• *.A5~**·**··**
" ..
• SOR IN B ADOR •
• OF Move INST it
• EXECUTED IN ..
.. BLOCK ED42 • _

X 41
*****65-.·*******
.. SBR IN THE ..
"I ADDRESS OF A ..
• BRANCH INST ..

EXECUTED IN
• BLOCK ED43

X 42
* •••• cs·········· .MOVE OP-CODE OF"
.BA AT SURBAN TO.
.OP-CODE OF THE •
• BRANCH BEING ..
• INITIALIZED . .•.•.•......•.•.

X 4.1
····.05······.··· · . .. EXIT TO "
.LOCATION SET BY •
: BLOCK ED41 :
••••••••• * •••••••

X

.*** · .. · it

SURNR 28
* G4

X · . 24 •• ***GS •• *** •••• * · " YES .MOVE'IOIOO NR' •
NOT READY * •••••••• X.TO CONSOLE MSG -

X "FI~LD (SERFLDI to

..
.NO

X 25
•• · •• H4·.· •• ·*··· . .

· _. __

:SURNR+13 x
HS •• 29 . :~~~~~~~.-.-;~!:: NO • OFF • RE-EXECUTE •

: I/O OPERATION: .SET BWL AT EOI6"
• TO CHECK PROPER.
• CHANNEL •

NO
TRANSFER "MOVE'201IS LLC'.

"TO CONSOLE MSG •
.FIELO ISERFLDI • . .

. .
.M';SSAGE. SW rrc~ * ••••

"

:.URBAN x · "
:YES . JI . 33

..... .BRANCH ANY

· •••• .NO · Kl _.X. •
.. .. .X •••••••••••••

SUREXIT X 34
: •••• Kl ••••••••• :

• EXIT TO "
• LOCATION SET BY"
: BLOCK 6001 :
• *

:EXIT
; · . · . . .

to INDICATOR •
• • ON •

X
J2 .. • . 16

..
.YES

. .
••••••••••• x.

SURTY X 35
: •• · •• J3 :

YES • SET " YES wRONG
LENGTH

" "RECORD
••••••••• X.MESSAGE SWITCH .X •••••••••

" ON •

· .NO

; 17
: •••• K2 ••••••••• :

• BLOCK E029 •

X 36
·····K3·········· .SHAL T DHA I.

SURQE

X · .
PRINT

OR PUNCH

26

• ~PERATIO~ ..

.

· .NO

X
K4 •• 27

• IS
"MOVE ·201160CK·.
"TO CONSOLE MSG •
:FIELO ($ERFLDI :

.-.-*-.-*-.-*-*-. ... RITE CONSOLE.

.. PRINTER AND •
• O~

CHAN BA • NO •
BEX FOLLOwED •••••••
BY A BEX •

X
" .
: A3 :

:~~!;~ .. :!!!.~n~:
• SURBAN-II
x

• HI " · ..

• !NST ••

· .YES
• SUREXIT .:

• KI ..
"

Chart ED. Unit Record Error Routine

76

· .ON

X 30
·····Js·········· .SNOTE DHA2 •
-.-.-.-.-*-*-*-.
• WRITE CONSOLE ..
• PRINTER • · "

· . • x •••••••••••

; 31
: •• **KS ••••••••• :

.. SET •

.MESS AGE SW ITCH •

.. OFF •
• BLOCK ED29

: SURBAN-II

.! ••
" .
• HI .. " ..

Storage Map and Loading Sequence

The over-all storage requirements of 10CS may vary
considerably from job-to-job, depending on the liD

specifications. These specifications determine the start
of IOCS, the presence or absence of certain routines, the
size of coding blocks within the routines, etc. Figure 6
shows the order of the IOCS routines by storage group
in low-to-high storage sequence for a typical appli­
cation.

S TOR AGE MAP

••• « • If ••••• It ... w." _* ••••• If" ... If If •••• _· ••• * " * •• fl.. * •••••••••••
.. If

.. Sf.:, .. ROUTINE .. LABEL" COMMENTS* .. It * ••••• * tf.""" Itt!: •••••• 1t •• ,.If tf. If _ •••

••• If"" If."" If •• ·.If 11- IHI.· _ .. " If_._"" _If ** •• If •••••••••••••
: t .. rIvOT FOR RESTART.. : LOCATIONS 00000 - 00024 :

••••••• .-It w .. t! •••••• tI ·
: 2: I f\;OEX WORDS .. : LOCA r (ONS 00025 - 00099 :

.......... " .. *. (" If _.-11 " ... __ .. *_ •• ___ "
* 3" 1I\jTEn~fUPT PIVOT" .. LOCATIONS 00101 - 00115 ..
It It It •••• _ •••• 1·*.* It ••••• If If If ._ •••••••••••••••• *
• .. • * •
: 4: STANDARD AUTOCOOCR : LOCATIO~S 00116 - 00349 :

.................. ** t. It ••••••••••••••••••••• It •••••• it If If
tI it •• •

.. 5. PROCEDURl. FOR • LOCAT IONS 00350 - 00499 •
: : AUTOMATIC TESTING.: :

It •••••• * Itlt •• fl.It* ••• * •••• It* ••••• _ It ••••• * tI •• * ••••• **._ •.••.••••• _ ••• _ ••• _
.. 6. WHEN IOCS IS QRIGlt-jED .. LOCATIONS FROM 500 TO

ABOVE LOCATION 500" .. ORIGIN
.. THe LOCATIONS FROM

500 TO THE ORIGIN
• "HE AVAILABLE FOR

T~E Mt\ I N PROGRAM · . - -_ •••• II •••••• '1.*.4. It ••••• *._ •• fI ••••• *.*_ ••••• It If·¥, ••• *
• • • * -• 7. CHANNEL SCHeDULERS • IOCSC5-ENT • eACH uses APPROXIMATELY *
: : :: 90 LOCATIONS :

If •• II •••• * ••• 11 ••••••••• * ... if •• If* •••••• *. * •••• If ••••••.•••••••••••••••••••• · .. "
• f' * CONSOLE INTERRUPT • IOCSCIPR "USES APPROXIMATeLY
: : SEOUE~..jCE : : 110 LOCATIONS If

•••• " 1f •••••• If" •••• "." •• "" ft ••• " "* ". * ••• "*"." *" If. * •••. " •••••• · . ." " 9. OPEN/CLOSE SUSRQU1INE • IOCSCLOP • USES APPRoxIMATELY
: : :: 300 LOCATIONS •

• If .* •••••••• u If If ••••••• * •• tJ** _" •• " ••••• " ••••• *_." .•• " If" * •••••• If If •••••••
• * •• •
- 10 • MESSAGE AND wAIT LOOP. IOCSHJ\LT * USES AI-lPROXIMATELY
: : ~~OUTINC : : 125 LOCATIONS "

•• "*" * If •• " _* n •• " ." •••••• " if.** •• " •••••• _ ••••••• " •••.•• "" •• " ••••• " ••• ,,* ••
.11 If CONSOLE r>RINTER ERnOR. IOCSCPERR • USES APPRQXIMATf:.LY 30 •
: : I~OUTINE : : LOCATIONS :

.. _« *. If ••• "_.,, .*.* .(f._" ••• ·" •••• "*If ••••• " ••• 11'*.**."." If •••••• _ · . -" . .. 17 • UI\IIT I~CCORD ERROR • IOCSURERR • USES Af")PPOXIMATCLY
: : I~OUT I NE : : 1,30 LOCAT IONS MAX I MUM •

•• If •••••• " •• ' ••••••• _ •••••• "If •••••••• " •••• * •••• _._ ".* .*"*_ •••• " ••••• If*"
" .. "
• 13 " PRIORITY ASSIGN""CNT IOCSPAHSK. USES APPROXIMATI:.LY

HOUTINE • 420 LOCATIONS. IT IS
• OVERLAYED FlY A PORTION
• OF THE T APt:: ERROR
• ROUTINE IF NON-OVERLAY

• " ,,: HAS NOT BeeN SPECIF lED •

*" •• til *" •••• * •••••• e •• ,,_ If ... * * •••• " •••••• * ••••••••••• ___ ._ •••• It* · . ,,- .
• 14 * RESIDENT PORTION OF .. • OCCUf'lIES APflROXIMATCLY ..
• .. ThE T APE ERROR - 600 LOCAT IONS
• • /'?OUT I NJ:: •
: : .. e •• *" ,,_ ••••••• * ••••• _.: •• _ * If
- 1 ~ • T APE opeN 9 (LeSE 9 AND * • OCCUpy APPROX I MATELY
: : END-OF-Rt:EL ROUTINES : : 500 LOCATIONS •

•••• "._" * •••••••• 11 •• " •• * •••• " "" •.•• · . .
: 16 : LABEL ROUTINES • OCCUpy APPROX I MATELY

.. 900 LOCATIONS •
.... " .. It •• It ••• It* _ .. *. * •••••• * * ••••••••••••• It ·

1 ST FILE SCHEDULER • IOCS-ENT • TAPE FILES USC UP TO
• 300 LOCATIONS
• UNIT RECORD FIL"S USE

• • UP TO 150 LOCATIONS
• • •• It
,,_ •• III *." * ••• " •••• * _ •••••••••• «- It * · .. .
: If' : 1ST FILE TABLE : : i~~CL6~~i~o~~E UP TO •

...... It ••• It* •••• " _* •••• It •••••••••••••• '" •••• " ••••• * ••• " *·*.11 ••••••• If ••
SUCCEEDING FILE SCHEDULERS AND TABLES

: It: *. e _* •• : * * •• _ It •••••• :. __ It _ ••.• *. It ... *:
: 19 : MA1N PROGRAM :: •

• " •• ** _ It •••••••••• _. _ It._ ••• *._ .. " •••. _ .. _ * ••••••
Figure 6. Storage Map

Program Condition Analysis Aids

If the DIOCS PRIORITY entry of NONOVERLA Y has not
been specified, the 10CS routines are loaded in two dis­
tinct loads. The storage load sequence is shown in
Figure 6.

When the non-overlay option is specified in the DIOCS,

the IOCS priority assignment routine is needed in stor­
age during running program time. In this instance, all
of 10CS is loaded along with the main program.

STORAGe LOAO
SEGU['NCE

1ST LOAD
····"AS·····*····

::~~~ -~:~~~~~-.-:
• LOAD TO useRS •
• END CARD ..

• •• If ••••••• * ... · •••

X
*·**·SS··········

:~: :~- ~~~~~~~ _.-:
.eXECUTE PROGRAM­
• TO FIRST •

: •• ~~;~. ~:;~~* •• :

X ·····C5········ .. :: ~~;_._ ._._ .. -It_:
.. ASS I GN "
.PRIORITIES FOR It

:.;:~~;:,,~~;;~ .. :

2ND LOAD ; ·····05·········· ::~~~_~~~9~~: _._=
.LOAD RCMA INDE:.R •
• OF TAPE I:.RROR •

: •••• ~~~!!~i •••• :

X ··· .. ·ES*·······." :r ~:; _._ .. _ *_._ *_:
• OPEN FILES ..
• NAMED IN Or>EN •

: •••• *:~;~~ •• " •• :

x
•• * •• FS ••• "* ••• e.

:~:: ~ -~~~~~~~ - .. -:
• CONT I NUE *
• EXECuT I ON OF

:.:~!~. ~~~~~:~It.:

Program Condition Analysis Aids 77

Description of File Reference Table

Figure 7 illustrates the contents of a maximum file ref­
erence table. References 1 through 3 in the table are
exceptional condition vectors; references 4 through 37
are known collectively as the file table. The structure
of the table depends on the mocs entries (e.g., the mocs

COUNTS entry governs the presence of references 24 and
2.5). When an entry is missing, the table is compressed.
The number of file reference entries generated for each
tape file is fixed according to the cumulative number
of different entries for all files. The file type (or area
indicator for tape), reference 5, is always generated;
it is the only reference in the table which is fixed and
not compressed; its location is always file reference
address + 20; reference 5 is the only reference gener­
ated for unit record files.

The file reference tables correspond to an indexed
label table. The indexed label table is a DA relative to
zero and is referenced by index register 15. lacs can
process the file reference entries for any given file by
loading index register 15 with the appropriate file refer­
ence address and then executing instructions that refer
to the indexed labels. In Figure 7, each reference
number is followed by the indexed label, if any. The
actual prefixed label, if any, follows the indexed label.

The file reference table provides the information for
interrogation by the various lacs routines to control
what procedures are performed. In general, a file refer­
ence may be modified by the user during program
execution. Note, however, that the IOCS will refer to a
file reference (counts excepted) only during the proc­
essing of OPEN, CLOSE, FEORL, and RDLIN macros and at
end-of-reel. In some instances, to make a change e:flec-

78

tive, the file must be reopened. Some general comments
follow to indicate which references may be changed.

References 1-3: The exceptional condition vectors
may not be changed due to the structure of the file
scheduler.

Reference 4: Priority may be changed only if the
mocs PRIORITY is NONOVERLAY.

Reference 5: File type (or number of areas for tape)
may not be changed due to the structure of the file
scheduler.

Reference 6: May not be changed.
Reference 7: May be changed. In most cases, the file

should be reopened.
Reference 8: May be changed.
Reference 9: lacs linkage. May not be changed.
Reference 10: Input - May be changed. Output-

May be changed to $CLSAB to prevent padding for a
fixed, blocked file. The user must move a group mark/
word mark to terminate a short block himself.

References 11-16: These label fields can be changed
by programming and/or RDLIN cards.

Reference 17: May be changed to effect or skip label
processing for a given reel.

Reference 18: May not be changed.
Reference 19: May be changed only in conjunction

with references 7 and 8. The file may have to be re­
opened.

References 20-22: May be changed.
References 23-25: May be changed; however, it may

cause a count discrepancy.
References 26-37: The exit indicators and/or exit

addresses may be changed.

• _* _ - **. _.* ... M- *.* * e •• , ••• w ** _ ... _. **
• PEF. INOEXEC. AeTUAL • 01' • • FILE • ~INO OF .~C • •
• NO • LAeEL • LAeEL • COCE. OPERA~ID • TYPE • INOICATOR .FCS • DESCI<lPTICN OF INCICATOR AND CODES IF ANY •
... _ .. ee.* * *.** _._. _ _ * .. w*.* * •• _ ** ..
: I : E : SEREX H : I-ARE A : IIEe TOR • 7 : LI NKAGE P IVeT TO SCI-ECULER FOR INPUT tOR •
•• • •• S--TRIG • 2-AREA • VECTOR ••
: ... :!

• 2 : SPENSWE: : SEREX H 4 : I-AREA : IIEC TOR • 7 : LI N~ AGE PIVOT TO SCI-ECULER FOR OUTPUT EOR
... • •• S--WTG • 2-AREA • VECTOR ••
•••••••••••••••••••••••••••••••••••••• , ... »

: 3 : STAIGEN: : cew : $EREX~S : I-AREA: VECTOR : 5 : LIN~AGE CCNSTANT USED BY ERROR ROUTINE FOR WLR AND EaR: •. . $. S--T~IG+5. 2-AREA • VECTOR •• ..
••••••••••••••••••••••••••••••••••••• ~ ••• G ••••••••••••••• • ·
• 4 • • •• N • • PRIORITY • I • N= 0-9 IN ~IGI- TO LOW PRIORITY ORDER
•••••••••••••••••••••••• ~ •••••••••••• 41 ••• *
: S : SOTF"CT: '--ACT • 'N' • TAPE : N\;MBER OF AREAS: I : 1= I-"REA FILE. 2= 2-AREA FILE *
•• • •• • UR • FILE TYPE •• 3= READER FILE. 4= PUNe~ FILE. 5= PRINTER FILE
•••••••••••••••••••••••• o •••••••••••• iJI

• a • • • ..
• 6 • • • cell • ' •• • 2 • 0= OPEN, EL"N~= CLOSEC (T APE FILE ONL Y)
•••••••••••••••••••••••• 0 •••••••••••• " ••• 0 ••••••••••••••• * ·
• 7 • • $--eASE • cell. ')(XXNX·. • BASE TAPE • 5 • MCDE,PARI·TY.CI-AN.ANc uNIT FOR CURRENT eASE-E.G. M'U?X *
•••••••••••••••••••••••• .., •••••••••••• fl ••• 111 ••••••••••••••• *
• • ~. • .. • *
• 8 • SAD. • CCW • ')(XXNX'. • ALT TAPE • 5 • I'ODE,PARITY,et-AN,ANC UNIT FOR CURRENT ALT -E.G. M'UIX *
•••••••••••••••••••••••• "' .. *
• • o. • • • •
• 9 • SOTFf • • c~W • S--INIT. • FILE INIT .oDOR • 5 • FOR INIT CF FILE SCI-EC CURING OPEN. FEORL, AND EOR •
•••••••••••••••••••••••• ., (l ... J-

: 10 : SOTF" : $--EOF : CC. : Xx ••• XX : INP\;T : \;SER EOF AODR : 5 : ACCESSEC W~EN REaUIREC ey T~E EOR ROUTINE *
• • !--PADS • Ol.;TPUT • PAD ROUTINE AODR. • TO PAD PARTIAL BLoe~ IF FIXED, BLoe~ED FILE ON CLOSE
•• • •• SCLSAn • O\; TPUT • NO PADO I NG ADDR. • DUMMY TC PRVENT PAOC I NG WI-EN NOT FIXED. BLOC~EO
...................................... 0 ••• 0 ••••••••••••••• *
•• • ... •• • • *
: II : S09 : $--FSeK : CCW : 'N' : At~~~T : FILE SERIAL IND : I :~: ~~¥C~f ~~U:~ C~~C~APE SERIAL FOR 1ST REEL. 0= DONT :
• ••••••••••••••••••••••• 0 •••••••••••• 0 ••

: 12 : S .. FS : S--HFS : cew : 'NNNNN-' : INPI.T : FILE SERIAL N\;MB: 6 • I'<NNN~= OTF SPEelFIEC SERIAL NUMBER. OR BLANKS •
•• • •• • OI.TPUT • • • NNNNN= DTF SPEelFIEC, OR TAPE SERIAL. OR BLANKS
...................................... 0 ••• * • .. II. . • . •
• 13 • SHAS. • CC • 'NNN'. • REEL SEa NUMBER • 4 • NNN= 001 CR DTF REEL SEa, FOR 1ST REEL. UPDATED AT LOR*
•••••••••••••••••••••••• 0 •••••••••••• I' .. * • . t.. . . . •
• 14 • SHAN. • CC • 'x ••• X'. • FILE NAME • 10 • ~EAOER ~A~E
•••••••••••••••••••••••• , ••••••••••••• t

• • tt. • • • ..

• IS. SHCD. • De • 'YYDCO'. • CREATION DATE .5 • YY= YEIIR, 000= DAY. DTF SPEC,OR FOR OUTPUT DATE IN 119*
•••••••••••••••••••••••• , ••••••••••••• It ••• *
• • 'I. • • • ..
• 16 • SHAC. • CC • '-NNN'. • RE TENT I ON CYCLE • 5 • N~N = NUI'EEJ; CF D~YS. DTF SPEC IF I ED
•••••••••••••••••••••••• t ••••••••••••• It ••• * .. . '..
• 17 • SOTFLE • '--TFLE • CCII • 'N' • • LABEL TYPE • 1 • 0= ST ... NDARD, 1= NONE, 2'" NON-STANDARD
• ••••••••••••••••••••••• t ••••••••••••• ,t ••• * *. • ... •
• 18 • SCTFLI • S--TFLI • ce •• 'N' • • FILE TYPE • I • 0= OUTP\;T, Is INP\;T * ••••••••••••••••••••••• " •••••••••••• ,t •••. w-
•• • ". • • • *
• 19 • SCTFL2 • '--TFL2 " oew • 'N' • • ALT DRIVE IND • 1 • 0= NO ALTERNATE, 1= ALTERNATE IS SPECIFIED " , '
•• • '.. • • • *
• 20 • SOTFL3 • '--TFL3 '. cell • 'N' • • LABEL CHEC~ I NO • I • 0= C~K CC,.PLETELY, 1 = NO CI-K, 2= C~~ FILE NAME ONL Y , " '
• 21 • SOTFL4 • S--TFL4 '. CCW • 'N' • • TM AFTER '"OR I~D. 1 • 0= NO, \=YES * , ', .. *
• 22· • SOTFL!5 • '--TFL!5 • CC •• 'N' • • REWIND INC • I • 0= NO REWIND, 1= REWIND, 2= REWIND UNLOAO , ... "
• 23 • STee • '--TEC • cell • 'NNNNN'. • ELOC~ COU~T • 5 • RUNNINC eLOCK CCU~T FOR CURRENT REEL
... It
• 24 • STAe • '--TPC • cell • ·N ••• N'. • RECORD CCI.NT • 10 • RUI'<N I NG REeORC COUNT FOR CURRENT REEL *
...................................... ' II .. *
• 25 • STHT • S--TI-T • CCW • 'N ••• N'. • hASH TOTAL • 16 • RUNNING ~ASI- TOTAL FOR CURRENT REEL
... *
: 26 : SD6 : $--06 • CCII • 'N' : I"'P\;T : EXIT 6 INO : I : 0= NOT USED, I=USEO •
• • SOl • S--DI • Ccw • 'N' • O~TP~T • EXIT lIND • • '
: 27 : SE6 • cell. 'X ••• X' : INF~T : EXIT 6 ADORESS • 5 : USED TO OVERRIDE CR I" LIEU OF ST"'ND IDENTIFIER •
• • SEI. • cew • 'x ••• X' • OI,,;TP\;T • E)(IT I ADDRESS. • USED TO MCOIFY STANDARD TRAILER
... 41

: 28 : S07 : '--01 • ce •• 'N' : INPI.Tl : EXIT 7 IND : I : 0= NOT USEC, 1= USED •
• • SC2 • '--02 • cew • 'N' • O~TPUT • EXIT 2 IND • ,0= NOT USED, 1= USEC * ••••••••••• 1II, .. to •••••••••••••••••• *
: 29 : SE7 • CCW • 'x ••• x' : INP\;Y : EXIT 7 ADDRESS • 5 : USED TO el-ECK NON-STA~D ~EADER OR AOOITIONAL HEADER *
• • SE2. • CCW • 'x ••• X' • OUTPUT. E)(IT 2 ADDRESS. • USED TO BUILD NON-STA~D TRAILER OR ADO TRLR AFT STANO *
.............. lilt ,. .. 41 •••••••••••••••••• *
• 30 • ,.03 • $--03 • ce •• 'N' • O\;TP\;T • EXIT 3 INC • I • 0= NOT USED, 1= USEC
• ••••••••••• "., ••••••••••••••••••••••••••••••••••••• tI •• " ••••••••••••••••••••

• • •••• • • *
• 31 •• E3. • DC~ • 'x ••• X' • O~TPUT • EXIT 3 ADDRESS • 5 • USED TO CI-ECK STANDARC ~EADER AND/OR BUILD HEADER
•••••••••••• tI ••••••••••••••••••••••••••••••••••••• G ... ~u ••••••••••••••••••• · ..
•• • •• •• • • *
• 32 • SC4 • '--04 • cell. 'N' • O\;TP~T • EXIT 4 IND • 1 • 0= NCT USED. 1= USEC * ••••••••••• 0 •• " ••••••••••••••••••• *
• • •••• • • *
• 33 • SE4. • CCW • 'X •••)(' • O~TPUT • E~IT 4 ADDRESS • 5 • USED TO MCDIFY ST~NCARD ~EADER
•••••••••••• u ••••••••••••••••••••••••••••••••••••• e •••••••••••••••••• <t •• 1 *
•• • •• ... • • *
• 34 • S05 • '--015 • CCIII • 'N' • O\;TPl.iT • EXIT 5 INO • I • 0= NOT USED, 1= USEC * ... ~ ·
• 35 • SES. • CC •• 'X ••• X' • O~TPUT • EXIT 5 ADDRESS • 5 • USED TO CI-EC~ AND/OR EUILC I'<ON-STAND AND/OR ADD HEAOER'
• ••••••••••• 0 ••••••••••••••••••••••••••••••••••••• 9 •••••••••••••••••• '

•• • •• ... • • *
• 36 • S08 • s--oe • DCW • 'N' • O\;TP\;T • EXI T BIND • 1 • 0= NCT USED. 1= USEC •
• ••••••••••• 0 ... *
• • ••• w. •
• 37 • SE8. • cell. ')(••• X' • Ol.;TP\;l· • EXIT e ADDRESS • 5 • •
• ••••••••••• 1 •••••••••••••••• *.** •• * ••• * ... * ••••• _. ***. **.* * * * *. _ •• _ * •• **** *.* ** II- * * *** * .. *

• Figure 7. File Reference Table

Program Condition Analysis Aids 79

Appendix A - Glossary

ASSIGN: To modify and complete table entries and instructions
that will be used by the running program.

BLOCK: One or more data records grouped to form one con­
tinuous record which will be written or read from tape, from
or to storage.

BLOCKING FACTOR: The number of data records making up a
tape record.

CHECKPOINT: A reference point at which error-free operation
of the program has been verified and where the program may
return for restart in the event of subsequent failure.

CHECKPOINT FILE: A tape record or records that contain the
contents of storage and machine conditions necessary to restart
a program at a checkpoint.

CHECKPOINT TAPE: The tape on which checkpoint records are
written.

CLOSE: To terminate a file. For output files - write a tape mark
and, if specified, an end-of-reel trailer and another tape mark.
For both input and output files - rewind the tape and take a
checkpoint, if specified.

CONTROL: The apparatus used to direct, guide, or restrain a
mechanism or machine in operation. In computers, control is
maintained through the sequence of instructions in a program.
Control is often used in referring to the next instruction to be
executed, by such phrases as, control goes to, or, control
branches to.

DATA RECORD: A number of words of information grouped in
a known manner which will be used as data for a given opera­
tion.

EOF (END OF FILE): The logical end of an organized collection
of information directed toward some purpose. For multiple-reel
files, it is recognized at the end of the last reel.

EOR (END OF REEL): The end of all records on a single tape.
The trailer on labeled input tapes contains information defin­
ing end of reel. EOR on unlabeled input tapes must be recognized
by a user's routine. The user is able to identify an end of reel
by recognizing the last record of a reel. EOR for output files
is normally indicated by recognition of the end-of-tape reflector.

FIXED LE~GTH DATA RECORDS: Data records within a tape file,
all of whICh contain the same number of characters.

FORCE CONDITION: An indication that there is no record in the
read-in area available for processing or that the write-out area
is unavailable to receive information. When this condition
exists, IOCS will take steps to fill the read-in area with informa­
~ion or to execute a write from the write-out area, thus freeing
It for processing.

HASH COUNT (HASH TOTAL): The cumulative total of the sets
of characters in a hash field for all records, (in a file, in a reel,
or that are processed in a particular way). The total is made
for auditing or control purposes.

HASH FIELD: The position in a record from which hash counts
or hash totals are derived.

80

INITIALIZATION: The resetting of counters, switches, and ad­
dresses at specified times in a program.

laCS (INPUT/OUTPUT CONTROL SYSTEM): A program devel­
oped to handle all necessary unit record or tape input and out­
put procedures to relieve programmers of duplicating their
efforts for most programs they write.

LABEL: A record or records, written on tape, containing identi­
fying information concerning the file on the tape. For specifica­
tions, see IOCS bulletin.

LINKAGE: A series of instructions which enable a transfer to and
return from one program routine to another.

MACRO: An open-ended sequence of machine instructions pro­
duced by a processor on recognition of a source-language state­
ment. These instructions can perform a function defined by
the parameters given in the source statement. They may con­
sist, in part, of a linkage to a closed subroutine.

MULTI-FILE REEL: A tape reel which contains more than one
tape file.

NOISE RECORD: A redundant non-data pulse which is picked
up by the read head.

PARAMETER: A quantity left unspecified at some stage of an
operation and to which the user may assign arbitrary values.
Also, a field in the operand of a macro statement. It may be
given different names or values which allow the macro gen­
erator to generate machine instructions that have the correct
address, index words, etc., for a large variety of programming
situations.

PlUME: To fill input areas.
RECORD COUNT: A count of the number of records in a file,
in a reel, or that are processed in a particular way.

RETENTION CYCLE: The number of calendar days following the
creation date that a file is to be saved if standard headers are
used.

REQUEST: The I/O operations which the main program seeks
to perform in IOCS.

SUBROUTINE: A small routine that can be included as part of
several larger routines. Two major types exist;

1. Open - This routine is inserted directly, wherever needed,
in such a way that control enters and exits in a sequential
manner.

2. Closed - A routine which occurs only once, non-sequen­
tially, in a program. It may have several entry and exit
points. It is entered and left via linkage.

TAPE RECORD: The information contained between two suc­
cessive inter-record gaps.

VARIABLE LENGTH DATA RECORDS: Data records within a tape
file, at least two of which do not contain the same number of
characters.

V ARIABLE LENGTH TAPE RECORDS: Data tape records in a file
that contain variable length data records, or data tape records
in a tape file at least two of which have different blocking
factors.

ACPT
ADDR
AFT
AR
AST
AUTO
BAL
BKSP
BLKCNT
BLKD
CHAN
CHAR
CIIK
CHKPT
CLS
CNT
COND
CORR
CTR
CTL
CU
CW
D-MOD
EOR
EXT
F.S.
FLD
FORC
FORCD
FRA
GPR
FXD
GM
II-O
HDR
HGHST
III
HI-ORD
I/O
IDENT
IND
INFO
INIT
INPT
INST
INTRPT
L-O
LBL
LENG

ACCEPT
ADDRESS
AFTER
AREA
ASTERISK
AUTOMATIC
BALANCE
BACKSPACE
BLOCK COUNT
BLOCKED
CHANNEL
CHARACTER
CHECK
CHECKPOINT
CLOSE
COUNT
CONDITION
CORRECTED
COUNTER
CONTROL
CHANNEL AND UNIT
CLEAR WORD MARK INSTRUCTION
d-MODIFIER
END-OF-REEL
EXTERIOR
FILE SCHEDULER
FIELD
FORCING
FORCED
FILE REFERENCE ADDRESS
GREATER PRIORITY
FIXED
GROUP MARK
HIGHEH ORDER
HEADER
HIGHEST
IIIGH
HIGH ORDER
INPUT/OUTPUT
IDENTIFICATION
INDICATOR
INFORMATION
INITIALIZATION
INPUT
INSTRUCTION
INTERRUPT
LOW ORDER
LABEL
LENGTH

LOC
MSG
MVE
NEC
NO.
NOP
NORM
OP
OP-CODE
OVRLP
P
PA
PNCH
PNDG
POS
PRE V
PRI
PRIM
PROCD
PROG
PT
PTR
QTY
RCD
RCP
RD
REF
REG
REJT
REQ
RET
RTN
RWD
RWU
SCHD
SCHED
SKP
SPEC
STG
SUB
SW
TM
UR
USUL
VAR
WLR
WM
WR
XCTL
XREG

Appendix B - List of Abbreviations

LOCATION
MESSAGE
MOVE
NECESSARY
NUMBER
NO OPERATION
NORMAL
OPERATION
OPERATION CODE
OVERLAP
PARAMETER
PRIORITY ALERT
PUNCH
PENDING
POSITION
PREVIOUS
PRIORITY
PRIME
PROCEDURE
PROGRAM
POINT
PRINTER
QUANTITY
RECORD
READ CONSOLE PRINTER INSTRUCTION
READER, READ
REFERENCE
REGISTER
REJECT
REQUIRED
RETURN
ROUTINE
REWIND
REWIND AND UNLOAD
SCHEDULER
SCHEDULER
SKIP
SPECIFIED
STORAGE
SUBSTRACT
SWITCH
TAPE MARK
UNIT RECORD
USUAL
VARIABLE
WRONG LENGTH RECORD
WORD MARK
WRITE
X-CONTROL
INDEX REGISTER

Appendix B -- List of Abbreviations 81

Appendix C - Cross Reference Indexes

Three cross references are included to provide quick
access to specific points on the How chart.

Part 1: The connector cross reference lists the off­
page entry connector under ENTRY CONN, the off-page
exit connectors associated with that entry connector
under EXIT CONN, and the associated block number
under BLOCK NUMBER. For example, DBA2 under ENTRY

CONN is an off-page entry connector on Chart DB; DCKl

and DCK3 under EXIT CONN are the chart locations which
have off-page exit connectors to DBA2; and DC22 and
DC13 under BLOCK NUMBER are the respective block
numbers.

Part 2: The subroutine cross reference lists the sub­
routine name under SUBROUTINE; the entry connector
to the subroutine, if any, under ENTRY CONN; and each

ENTRY ExIT BLOCK ENTRY EXIT OLOCI<
CONN CCNN NUI/BER CONN CCNN NUMBER

OBAl DAF3 DA24 DFB2 DAD4 OA26
DEK4 DE3,)

DFB3 COG5 CB36
OBA2 8EK4 BEIO DBK4 0825

8EK5 8E20 DCG4 DG37
OCKI DC22
DCK3 DCI3 DGD4 DFF2 DF07

DBC2 DCl-i4 DC4C EAF4 EED2 EOl3
E81-3 E8c]

OBC4 DCCI OCO] ECG3 EC30
DCC2 DC06 ECll EC20
DCK3 OC13 ECK3 ECI8

DBK4 00K3 0022 E8Al EAG3 EA26
DEK2 DE33

E8A] ECK5 EC47
OCAI DElB3 0814

E8A4 EAF5 EA25
OOAI BBFl 8811

El8F5 88]1 ECAI E8E3 E822
BCE3 8C20 EElI-iI E807
B003 8016 E8 5 I:B37

EBJ2 E816
DEDI 0001 0025

OoKI 00]3 ECA4 EOH3 EB25

OEG2 00K4 0021 ECA5 EGG3 £824

SUBROUTINE ENTRY BLOCK BLOCK
NAME CONN LOC NUMBER

A8C2 ABO]
ABK4 ABI5
B8G2 8B14
8CH3 BC28
OBF2 0830
OBF4 0819
OCE4 OC43
oCJ5 DC37
OoH4 0019
DoJI 0032
oEF4 DE2S
oEH5 oE19

82

block which represents the subroutine under BLOCK

LOCATION and BLOCK NUMBER. For example, $WTMRU

under SUBROUTINE and DGB5 under ENTRY CONN indi­
cates that DGB5 is the off-page entry connector to the
detail chart of the $WTMRU subroutine; DBJ2 and DEB4

under BLOCK LOCATION, and DB33 and DE27 under BLOCK

NUMBER are the chart locations and bloek numbers,
respectively where the subroutine is represented.

Part 3: The label eross reference lists the symbolic
or actual label under LABEL, the ehart loeation(s)
where the label oceur(s) under BLOCK LOCATION, and
the block number (s) under BLOCK NUMBER. For exam­
ple, $INTEXT under LABEL is shown at chart loeations
AAKl and BAHl under BLOCK LOCATION and at block
numbers AA23 and BA20 under BLOCK NUMBER.

SUBROUTINE ENTRY BLOCK BLOCK
NA",E COf'.N Lec NU",Bt:R

DI-A5 E:AJ5 EA]2
EBB4 E027

EAAI/EDAI CCE4 CC]4

$--lNIT 8EA4/A5 OOKI DOlO

$--PAoS 8FB2/04 CAE5 CA25
DEDI oE03

$--WTG 8GOI 00G2 oD29
DeB5 DEI2

$CHKPT DBJ5 0824

$CLOP DrBI 883 ABOI

SCLSA+7 oLA3 AUC4 AB21

$CPERR DHG2 CCD2 CC24
DH02 oHI4

$CS-RET F2/K3 AAJ4 AA45

$CS-RcT 8AOI/FI CCI:.2 CC05

SCS-SCN 8AE4/Dl CCJ3 CC12

SCS-SFS BAG3/01 COCI COO]
C804 CI:l24
CCBI CCOI
CCB4 CC31

SCSISFS BAG3 ACA I AC09
CCB3 CC21
CCB5 CC41
OFC4 oF22
EAJ4 EA33
Eo02 EOll

SCS2SFS 8AOI ceC5 CC42
OAol OF04 DF23

SENTA DOAI ABE4 A80S

SENTA8 DCA2 A8F4 AB09

SENTC OCAI ASG4 AB10

SENTO 08C4 AOG3 ASII

SUBROUTINe
NAtJE

$ENTF

$ENTI-'

$ENTJ

$ENTRY

$EORU

$ERCI-'OP

$CRROR

$EXIT

$EXITRU

$HALT

$IPEOR

$NOTE

$PAEXIT

$PAHSK

$PSV

$RDLIN

$REAOPU

$REENT

Ei'.TRY
(CNN

OLC2

OLG2

Ot'K4

AAA2
PAA3

OOAI

EAAS

EAAI

OF02

01-03

OHAI

ODA5

OHA2

OAC4

OAE3
DA04

DHA4

0(,04

CGOI

OrG5

OLOCK
LOC

AOG5

A;]04

AOH4

AAOS
BCE2

GLOCK
f.JUtJBER

AOl2

A022

AOl3

AA36
OC21

CBGI COlO
COH4
CCE)
CCFS
CCG2
CCH4

11004

EAE)
EAC':>
EGAI

C£28
CC2S
CC51
CCI4
CC.37

AEll9

EA20
EA24
EBOI

EOEI ED04
E:BGI
EBGS
ECE2
ECJ2

AAJ5
08FI
BBF5
BCA4
BDD4
CCF2
DGE5
DGG2
OGH2

ABB2

AUJ4

ACE:3
ACH3
DCHI
DCJ3
Df:K3
DGG5
EGA3
ECH4
ED!<-3

ABC5

ACKS
DCE3
DCG3
DOF5
DDI-'5
DDKS
DEK4
DHBI
EOC2
ECD4
ECG3
EDJ5

AOF2

ABf.:.J
ABE2

EAI-'2

A801

DBHS
OCBI
DOAS

DOG2
OBG4
DCF4
DCK,)
DDJ4
DDKI
DEG4
OEJS
OFF4

E006
£836
£C12
I::CI6

AA46
BAil
OE!31
DC30
8026
CC07
DG33
DG29
OGO!:l

A802

A814

ACI9
AC25
OC20
OCI2
OE36
['G36
2818
I:;C41
E0.36

AD20

AC29
ocoe
OCIO
DOli
0013
DDIS
OE39
DH02
EOl2
EC35
EC30
E030

ABOS

A807
A.B04

EAI3

A.E124

0822
OC02
0006

0831
0020
OC44
DC38
0020
0033
DE26
DE20
OF25

SUBROl.TINC
NAME

$RWDRU

$RWURU

$STLE

$SWBX

STPCLOS

$URCHOP

$URERR

$WRITRU

$WTMRli

CHAN SCHED

EI'.TRY
CONN

DGB3

C'GB4

OFB4

CfBS

DLA2

EDA5

EOAI

0(,05

OAA3
BAB5

BAE3

BAG4

F.S. B8C4/0[;BI

F.S. BCAI/BLBI

F.S. BCA5/R005

F.S. BUAI/oe04

FILE SCHED
AAF4

AAH5

FORM II RCO ONLY

FORM 4 wLR SEa

laCS

LOAD PROGRAtI

MACRO

MAIN PROGRAtI

PNDG SW NETWORK

SCHED B3/F3

SCHED C3/G3

GLOCK
LOC

0£3A4
CCG4
DEGI

OCHI

DDBI
OFCI

DOE2
DB£:4
DCD4
OCHS
DDG4

8LOCK
NUMBeR

DBI3
OC)9
Df-29

DE31

OD02
OF02

DB29
OBI8
OC42
OC36
DDI8

DDHI 0031
DEE4
DEGS
DFE)

ABC3

EOA2
CDA3
£OOFI
EOF4

OE24
DEI8
DF1.4

A018

ED08
EDl8
C006
E023

EDG3 E021
EOH2

CBE2
CBG4
COGS

OCH4
DEK5

OBJ2
OEB4
DEG3

BSHI
BOJ4
0002
BCES
BOF5
BBCl
BB04
OCOI
BOFI

BFEI
8FH3

CAB4

BADS

CAG2

AOK)
AAE2
AAJ2
AAC2
AAG2

8BH2

D8H3
8CHS

RRCS
RRES

AOG2
RRA5
RRD5

ARK5

RR8S
RRFS

BAH4

AAC4

AAK4

ED15

C006
CEI27
C836

DC40
DE21

DB33
DEI)
OE27

BEl07
B[l29
8017
OC34
BD28
BB03
0024
OC04
OD06

BF07
BF20

CII13

BA10

CAoe

AB17
AA II
IIA20
AA06
AAIS

01315

81316
8C35

A1306

ABI6

BA22

AI139

AI146

Appendix C - Cross Reference Indexes 83

BLOCK
LABEL

S--"CT+ll

S--BVP

$--E~TV

S--EXIT

$--FULL

S--INIT

$--IOA

$--IOB

S--PA

$--PADS

S--PFOR

S--PLBI

S--PLB2

S--SA

$--SFX

S--TRIG

S--wLR

S--wTG

S--OOOON

SATTN

SBCRT

SCLOP

SCLSA

SCLSA+7

SCLSABA

SCLSB

84

BLOCK
LOC

CBBS

BCD2

AAA4

[3LOCK
NUMBE~

CB31

[3CI9

AA31
B081 0801
BCAI
CBBI

AAFS
B8KI
81:1K4
8CH2
8CF2
C['JI
C[3J4

B004

ACOI
C802

IIA38
0809
8830
[3C24
8019
CBI2
CB29

8821
BOAI BOOI
C004

BEA4
8EA5

BnDI
8BE4
ACJI
BD84
CBDI
CBE4

8CKI
0085

AAA5
OCA2
BDA2

B,82
BF84

flFG3

OFG2
OFJ4

BF-D2
BrF4

OCA3
BOA3

CHCI
COD4

AAC5
8E'HI
BOH4
BCE3
!:lDD3
CBGI
C['H4

88H3
£lCHS

BCBI
8001

BCGI
BCJI

BAB4

DDE4

DFBI

DcF2

DEA3

DEC2

DLDS

CB22

flEOI
t3EII

13004
t3B2~i

BC09
8022
CB04
C025

8CIO
0023

IIA33
OCI2
8010

HFO I
~lF II

f.1F 19

8F06
DFI8

BF03
eFI5

BCI5
BDI3

C803
C824

AA35
H807
(1828
!1C20
BDI6
CBIO
C028

(1816
(1C35

(1C02
BD04

EC07
OD09

8A02

0016

OFOI

DEoe

DE09

DE04

OEI5

BLOCK
LABEL

SCOMP

SCPERR

SCPEX

SCSIENT

SCSIPR

SCSIRET

SCSISCN

SCSISF

SCSI::iFS

SCSISFX

SCSIS3

SCS2ENT

SCS2PR

seS2RET

SCS2SFS

SDATER

SEND

SENTA

SENTAB

SENTC

SENTCR

SENTD

SENTE

SENTF

SENTG

SENTH

SENTI

SENTJ

SENTRY

SEORU

SERB A

SERCHOP

SERCTL

SERDA

SEROC

SERDLY

SEROMP

BLOCK
LOC

OAel

DHG2

DI-'J2

AABI
I::lAC4

AACI
BAD4

AAF2
BABI

OAE4

O/lE3

AAB3
BAG3

BAG2

8AG4

AI\FI
O/ICI

AAGI

AAK3
OAFI

AAF3

DCJ2

DAC2

DUAl

DOA2

DCAI

DCBI

DBC4

OCG4

00C2

OCK3

0lcG2

0E1J4

06K4

AAA2
BAA3

DCAI

ACA5
CIIE4

EIIA5

ACF4
ECE4

ECD3

ACD2
ECAI

Ace4
EBA5

ECA3

8LOCK
NUM8ER

DA05

DH21

DH24

AA04
BA05

AA05
8A06

AAI2
OAI7

OA07

BAI3

AA07
8AII

OAI6

OA09

AAI3
8AI8

AAI4

AA21
OAI9

AAI6

DCI8

OAI3

OBOI

OBI I

DCOI

DC02

0816

OC39

0827

0022

0(28

D023

0025

AAOI
8A03

0001

AC04
EA23

EA36

AC22
['C38

EC27

ACI7
ECOI

ACI3
EB30

I:C24

BLOCK
LABEL

SEROMP-19

SEREF

SERE NT

SERE X

SERFA

SERH

SERH+7

SERHLT

SERLV

$ERNR

SERNR+13

SERPA

SERPU

SERQL8

SERROR

SERSCN

SERSK

SERIO

SEXIT

SEXITRU

SFINIT

SHALT

SHALTX

SIN

SINTEXT

SIPEOR

SJUG

SLBIN

SLBOP

SLINK

SLM~TGR

SMOVE

SNHL

SNIH

SNOH

SNOTE

SOPEOR

BLOCK
LOC

ECA4

EBF2

EA81

EOC4

I:OB5

ACE3
ECH4

ACE4
ECA2

ACH3
EDA3

ACC5
EliA4

AC84
Ef<A2

EBB2

CCC4

EAOI

ACG4
ECHS

ACA2
EAAI

ACK3
ECAS

ECH2

'EAFI

DFB2

DFB3

DDJI

Ol-·A I

OhHI

DAE)

AAKI
8AHI

DDA5

ACA4
E.AF4

DGGI

DAHl

AC81
EAK3

OAJI

DCEI

DCJ3

DCHI

OHA2

0001

8LOCK
NUMBER

EC23

EBI4

EA02

E029

E831

ACI9
EC41

AC20
EC08

I\C25
E818

AC06
(826

AC II
E810

EBII

EC34

EA04

/l.C23
EC45

ACOI
EIIOI

AC 30
EC31

EelS

EAIO

DFO)

OFI!

oooq

OHOI

OH08

OA23

AA23
OA20

0006

AC03
(A22

OG04

DG06

OAIO

AC08
EA29

OAII

DC23

DCI2

DC20

DHII

0025

BLOCK
LABEL

SOPEORA

SOPHD

SOPHOAB

SOUT

SPAEXIT

SPAHSK

SPRIMER

SPRIME3

SPSV

SPSX

SROLIN

SREADRU

SREENT

SRwD8

$R~DRU

SRlIIDRUA

SRWURU

BLOCK
LOC

DeDI

OCE2

OCA4

()AF2

DAC4

DA03
DAB4

Ol:.B4

DLA5

DHA4

DHJ4

uGD4

DGBI

OrG5

DGF3

DG83

DGe3

Ot,84

SSTLE.SSCS OFB4

SSTLEXT D,J5

'SSUSXA DEC4

SS1II8X DF-OS

SSW8XA DF05

STPCLOS DcA2

SURANY EDFI

SUR8AN EDJI

SUR8AN-I! COI-<l

SURCHOP ECAS

SURDCK EDC3

SURENT EDCI

SUREflR EDAI

SUREXIT ECKI

SURNfI EDGS

SURNfI+13 EOH5

SUROPEN DJCGI

SURPKUP EDEI

SURQE EDK4

SURTY EDJ3

SlIIRI1RU OG02

SwTGX EAK5

SlIITMRU DGBS

00101 8AA4

1ST LOAD RRA5

2ND LOAD RR05

OLOCK
"lUMBER

OEO~

OCI4

OC28

DAI6

OA25

DA02
DAOI

DEI3

DE II

DH31

DH39

DG31

DGOI

OF41

DG27

OG21

OG24

DG22

DF21

DF43

OE22

OF 31

OF33

DEOI

E006

ED33

E032

E040

E037

E003

EDOI

ED34

ED28

ED29

DF51

EOO')

E027

E035

OGII

EA35

DG23

BAOI

Appendix 0 - Sample Autochart Symbols

... _ if •• * * * .. ** ** ** *** ... * ... * .. ** ·It __ * _. _* * ****** .. ** It * ... * *.* If-"
* •

FUNCTIONAL SYM~OLS

···**el-********·
• *

*

* .** ••••••••••••••

CI
*

····Dl········· * *

*
*

El*****
* *

···FI..··.···· .

*
*

* •••• n •• ******

····*Gl**··******
* * *-*-*_a_*_*_*_*_*

Hl-·-* •

*

*

PROCESSING
GLOCK

DE:CISION
BLOCK

HAL T
ALOCK

MODIFICATION
BLOCK

INPUT / OUTPUT
BLOCK

SUBROUT INE
BLOCK

LOGICAL
CONNECTOR

ON-PAGE
ENTRY

CONNECTORS

ON-PAGE:
EX IT

CONNECTORS

LINES

OFF-PAGIO
ENTRY

CONNECTORS

OFF-PAG~~
EX IT

CONNECTORS

FLOW AND CONNECTOR SYMBOLS

(REPRESENTATIVE SAMPLES SHOWN.)

X AT END OF LINE SHOWS DIRECTION OF FLOW
POINT AT eND OF OFF-PAGE IONTRY

CONNECTOR ALSO SHOWS FLOW DIRECTION

* * * C4 * * •

X ····.C4·· ... ·· * •
.. x­

*
:

........ *** ... ***.*

* *
• C4 *
• *

.....
X

* * * C4 *
*

04

*

X -_.-
* * * C4 •
* *

CONNeCTORS
BOTH EXIT TO

BLOCK C4
ON THIS

CHART

.X.... LINE JUNCTION

x •••••••••••••••••••••••••• CROSSING LINE
*F4 *
• *
* * . .

.x .••..•••.•.
X

.... ***F4" ._*_
* *

.* •• ~*
*F4 *
* ..
* .' . .

• ct x: :X....... ..
* • AN OFF-PAGE ENTRY CONNECTOR*
.****.**********. MAY ALSO BE REFERRED TO *

BY AN ON-PAGL CONNECTOR
* * ON THIS CHART

*F4 •

• *

X ... _*­
*ZB ..
**A.~*

X
G4 * *

* .B

X .* •••
*ZC *
* A3*
* *

C
* ••••••••

x --_.*
*ZB *
... A~"

Goes TO
EXIT CHART BLOCK

C

IB

ZC

IB

A2

A3

AI

* * * •••••• **.*******.** .. *****.*** •• ****0 •••• ** •• ** •••••••••• ***** •••••••••• **.*.* ••• ** ••••••••••••• **** •••••••••••• 4 •••••••••••••••• **

Appendix D - Sample Autochart Symbols 85

Appendix E - DIOeS-Generated Label Definitions

This section lists the labels in IOes that are generated
because of DIoes entries. With each label is an explana-

10CSAD - ALTERNATE DRIVE.
RELATIVE POSITION OF THE FILE SCHEDULERS ALTERNATE

DRIVE INFORMATION.

10CSARG - ARGUMENT.
WHEN THE I/O COMMAND IN ERROR IS PROCURED. THE ERROR

ROUTINE USES THE CHANNEL SYMBOL AND UNI r NUMBER TO LOOK
UP AGAINST THE CHANNEL UNIT TABLE TO OBTAIN THE
FILE. SCI-'EDULER ADDRESS.

10CSATTN - ATTENTION.
SEQUENCE OF INSTRUCTIONS FOR STORING THE PROGRAM

STATUS LATCHES PRIOR TO ENTRY INTO 10CS.

10CSBCRT - BRANCH CHECK - REW I NO TAPE.
MOVE EX IT 6 ADDRESS TO THE SWI TCH BOX, TURN OFF THE

PENDING SWITCH FOR THE FILE, BRANCH TO EXIT 6 ROUTINEoIF
SPECIFIED, AND CONTINUE TO THE RWD/RWU SEQUENCE, IF AT
END OF REEL.

10CSBLANK - BLANKS.
BLANKS USED TO CLEAR THE LABEL AREA BEFORE CONSTRUC­

TION OF HEADER LABELS,

10CSCCTAB - CHANNEL CHANGE TABLE AB,
TABL[CONTAINING CONSTANTS NECESSARY TO CHANGE A FILE

SCHEDULER TO 'THE ALTERNATE CHANNEL ACCORDING TO THE CON­
TENTS OF THE FILE SCHEDULER CHANNEL INDICATOR DURING THE
OPEN.

10CSCHKPT - CHECKPOINT.
CHECKPO I NT SEQUENCE - I:'NTERED VI A THE CHKPT MACRO I N­

STRUCT ION OR OUR ING THE END-OF-REEL SEQUENCE A T I OCSENT I.
WILL WRITE THE CHECKPOINT IDENTIFICATION HEADER AND THE
CHECKPOINT RECORD.

10CSCIA - CONSOLE INQUIRY AREA.
AREA USED TO STORE INDEX REGISTERS AND PROGRAM STATUS

LATCHES DURING AN INQUIRY REQUEST INTERRUPT.

10CSCIE - CONSOLE INQUIRY ENTRY.
BRANCH TO THE USER'S INQUIRY ROUTINE. THE USER'S ROUTINE

MUST HAVE A SBR INSTRUCTION AS ITS FIRST COMMAND TO ROUTE
THE RETURN FOR RESTORATION OF THE PROGRAM STATUS LATCHES
ANO INDEX REGISTERS.

10CSCIPR - CONSOLE INQUIRY PRIORITY ROUTINI:'.
ROUTINE STORING PROGRAM LATCHES AND INDEX REGISTERS

TI-'AT MAY BE USED IN THE USER'S INQUIRY ROUTINE.

10CSCKBSP - CHECKPOINT BACK SPACE.
BACKSPACE INSTRUCTIONS FOR ERRORS WHEN WRITING CHECK­

POINT RECORDS ONLY. IF DURING THE PROCESS OF WRITING A
CHECKPOINT, A REFLECTIVE SPOT IS ENCOUNTERED, 10CS
WILL BACKSPACE OVER BOTH CHECKPOINT AND HEADER RECORD AND
FORCE END OF REEL. 10CS WILL THEN OPEN THE NEXT FILE
AND PROCEED TO WRITE THE HEADER AND CHECKPOINT RECORD.

10CSCKEXIT - CHECKPOINT EXIT.
EXIT FROM THE CHECKPOINT ROUTINE TO THE USER'S PROGRAM.

10CSCKHLDA - CI-'ECKPOINT HOLD AREA.
I-'OLD AREA, DURING CHECKPOINT WRITING, FOR MEMORY LOCA­

T IONS 00001 TI-'RU 00024. THESE LOCAT IONS WILL BE STORED
HERE PRIOR TO WRITING OF THE CHECKPOINT RECORD.

10CSCKMSG - CHECKPOINT MESSAGE.
CONSOLE INDICATION AFTER THE CHECKPOINT RESTART HAS

BEEN SUCCESSFULLY COMPLETED. '20186 RST'.

10CSCKREC - CHECKPO INT RECORD.
INFORMATION THAT wiLL BE WRITTEN AS THE HEADER OF EACH

CHECKPOINT WRITTEN. THIS INFORMATION IS USED BY THE RE­
START PROGRAM TO FINO THE LOCATIONS OF INFORMATION NECES­
S ARY TO RESTORE TI-'E PROGRAM TO A PR lOR S TA TUS.

10CSCKRCC - CHECKPOINT COMPLETE - COUNT.
CONSOLE INDICATION THAT A CHECKPOINT HAS BEEN wRITTEN.

LAST THREE POSITIONS OF THE MESSAGE CONTAIN THE SEQUEN­
TIAL NUMBER IDENTIFYING THIS CHECKPOINT. '10185 CPT XXX'.

10CSCLOP - CLOSE OPEN.
BEGINNING OF THE ROUTINE FOR OPEN, CLOSE, FEORL. AND

ROLIN MACRO INSTRUCTIONS.

10CSCLOSO - CLOSE DUMP.
DUMP TAPE CLOSE SEQUENCE - ENTEREO V I A THE CLOSD MA­

CRO.

10CSCLOSDD - CLOSE DUMP DUMMY.
THE CONTROL UNIT INSTRUCTION THAT IS MODIFIED BY THE

OPERANO OF T HE CLose MACRO.

10CSCLOSDX - CLOSE DUMP EXIT.
DUMP TAPE CLOSE EX I T TO RE TURN TO THE USER' 5 PROGRAM.

10CSCLSA - CLOSE A.
MODIFY AN OUTPUT FILE SCI-'EDULER. IF A 2-AREA FILE, FOR

RETURN TO 10CS AT END OF REEL.

10CSCLSAB - CLOSE AB.
TESTS FOR A FEORL. IF NOT. WILL PROCEED TO CLEAR THE

REEL SEQUENCE NUMAER.

IOC$CLSB - CLOSE B.
ASSEMBLE AND WR I TE TRA ILER LABEL - E X IT 1 SEQUENCE

CONSTRUCTS THE TRAILER LAAELS IN THE LABEL AREA. SETS
UP FOR THE POSSIBILITY OF AN EXIT 1 ROUTINE AND WRITES
THE TRAILER LABEL.

JOCSCOMP - COMPARE.

86

SEQUENCE USEe TO DETERMINE IF THE FILE CURRENTLY BEING
OPENED IS ALREADY IN fHE SORT TABLE.

tion of the routine or data area the label addresses.

10CSCPERR - CCNSOLE PRINTER ERROR ROUTINE.
TESTS ALL LATChES EXCEPT WRONG-LENGTH RECORD AND NOT

READY.

10CSCPEX - CONSOLE PRINTER ERROR EXIT.
EX IT FROM THE CONSOLE ERROR ROUT INE.

10CSCSNENT - Ct-oANNEL SCHEDULER N ENT RV.
ENTRY USED DURING 1405/1301 10CS OPERATIONS. NOT NEC­

ESSARY FOR CARD/TAPE OPERATIONS ALTHOUGH SEQUENCE IS GEN­
ERATED.

10CSCSXAI - CHANNEL SCHEDULER X AREA I.
AREA USED TO STORE INDEX REGISTERS AND PROGRAM STATUS

LATCHES DUR[NG A UNIT RECORD PRIORITY INTERRUPT.

10CSCSXENT - CHANNEL SCHEDULER X ENTRY.
ENTRY PO I NT INTO T E CHANNEL SCHEDULER ROUT I NE. W [LL

TEST FOR OVERLAP IN PROCESS ON THIS CHANNEL AND BYPASS
ANY TESTING OF ThE LATC ES ON THIS CHANNEL [F IN OVERLAP.

IOCSCSXEI - CHANNEL SCHEDULER ENTRY I.
BRANCH TO USER'S UNIT RECORD PRIORITY ROUTINE. USER'S

ROUTINE MUST INCORPORATE A SOR INSTRUCTUON AS THE FIRST
COMMAND TO ROUTE THE RETURN TO IOCS FOR RESTORATION
OF PROGRAM STATUS LATCHES AND INDEX REGISTERS.

IOCSCSXPR - ChANNEL SCHEDULER X PRIORITY REQUEST.
A TEST OF THE CHANNEL PRIORITY REQUEST LATCH FOR THE

CAUSE OF INTERRUPT. THE I-FIELD OF THIS INSTRUCTION WILL
CONTAIN THE ADDRESS OF THE INTERRUPTING FILE SCHEDULERS
10CSXXBA - STATUS INDICATOR TEST.

IOCSCSXRET - CHANNEL SCHEDULER X RETURN.
POINT OF RETURN FOIl ALL FILE SCHEDULERS ON THE CHANNEL

AFTER AN I/O OPERATION HAS BEEN STARTED. THE STORE B REG­
ISTER COMMAND WILL TRIGGER IOCSCXPR TO ORANCH TO A STATUS
TEST ON THE NEXT INTERRUPT.

IUCSCSXSCN - ChANNEL SCHEDULER X SCHEDULER CLEAR NOP.
FILE SCHEDULER ENTRY POINT AFTER ERROR CHECK FOR I/O

COMMAND JUST COMPLETED. PENDING I/O OPERATIONS MAY BE
STARTED. THIS [S ALSO USED TO START THE FORCING OF THE
CHANNEL WHEN IT [S NECESSARY TO COMPLETE ONE I/O COMMAND
BEFORE STARTING A SECOND. ThE FIRST GET AFTER AN OPEN
MACRO WILL CAUSE THI~ CONDITION.

10CSCSXSF - ChANNEL SCHEDULER X SCHEDULER FORCE.
STARTING OF THE CHANNEL CLEARING OY FORCING THE PROC­

ESS TO THE ERROR ROUTINE IF OVERLAP IS IN PROCESS ON
T IS CHANNEL.

10CSCSXSFS - CHANNEL SCHEDULER X SCHEDULER FORCE STATUS.
WHEN A FILE SCHEDULER IS CONFRON TED WITH THE COND I TI ON

THAT ANOTHER I/O OPERATION HAS TO BE STARTED FOR THE SAME
FILE BEFORE ThE PREVIOUS OPERATION IS STARTED OR COM­
PLETED. THE FILE SChEDULER WILL BRANCH HERE TO FORCE THE
CHANNEL TO CLEAR.

10CSCSXSFX - ChANNEL SCHEDULER X SCHEDULER FORCE EXIT.
BRANCH BACK TO T~E FILE SCHEDULER THAT FORCED THE

CLEARING OF THIS CHANNEL.

IOCSCSXS3 - CHANNEL SCHEDULER X SCHEDULER 3.
A BRANCH EXIT PRIORITY ALERT TO THE HIGH PRIORITY FILE

SCHEDULERS PENDING SWITCH. WILL START THE TEST OF ALL
FILE SChEDULERS ON THE CHANNEL FOR PENDING OPERATIONS.

IOCSCSXUPR - ChANNEL SCHEDULER X UNIT PRIORITY ROUTINE.
ROUTINE FOR STORING PROGRAM LATCHES AND INDEX REGIS­

TERS THAT MAY BE USED DURING THE USER'S UNIT RECORD IN­
TERRUPT ROUTINE.

10CSCU - C~ANNEL UNIT.
A 140-POSITION TABLE CONSISTING OF SEVEN-POSITION DCW'S

CONTAINING A DTF ADDRESS. CHANNEL. AND UNIT OF EVERY TAPE
FILE OPENED BY THE PROGRAM. USED BY THE ERROR ROUT! NE TO
DETERMINE WHICH FILE SCHEDULER INITIATEO THE ERROR.

10CSDATER - DATE ERROR.
RETENT ION PER 100 eRROR SEQUENCE. SET UP THE DATE ERROR

MESSAGE.

10CSDTFA - DTF ADDRESS.
THE RELAT IVE LOCAT ION OF THE FILE SCHEDULER END-OF­

FILE ADDRESS.

10CSDTFACT - DTF ACTIVITY.
RELATIVE LOCATION OF THE FILE SCI-'EDULER ACTIVITY

DIGIT.

10CSDTFBX - DTF BOX
WILL CONTAIN THE DTF ADDRESSES USED AS PARAMETERS FOR

ThE OPEN. CLOSE. FEORL. AND ROLIN MACROS. A ONE-POSITION
CHARACTER 8EFORE AND AFrER THE DTF BOX WILL CONTAIN THE
MACRO IDENTIFIER EXPLAINED UNDER IOCSEXIT.

10CSDTFI - DTF INITIAI-IZER.
RELATIVE LOCATION OF AN AREA WITHIN THE FILE SCHEDULER

CONTAINING ITS INITI"LIZATION ADDRESS.

10CSDTFLB - DTF LABEL.
RELATIVE LOCATION OF THE LABEL TYPE CHECK CHARACTER.

10CSDTFLI - DTF LABEL I.
RELATIVE LOCATION OF THE FILE I/O TYPE CHARACTER.

IOCSDTFL2 - DTF LABEL 2.

IOCSDTFL3 -.

I OCSDTFL4 _.

IOCSDTFL5 --

RELATIVE LOCATION OF THE ALTERNATE DRIVE CHECK CHARAC­
TER.

DTF LABEL 3.
RELATIVE LOCATION OF THE LABEL CHECK CHAR"CTER.

DTF LABEL 4.
RELAT IVE LOCATION OF THE HEADER T /M CHECK CHARACTER.

DTF LABEL ". RELATIVE LOCATION OF THE REWIND OPTION CHECK CHARACTER

Appendix E - DIOCS-Generated Label Definitions 87

I DCSDI - DIGIT I.
RELAT IVE LOCATION OF THE: EX I T I CHECK CHARACTER.

IOCSD2 - DIG IT 2.
RELATIVE: LOCAT ION OF THE EXIT 2 CHECK CHARACTER.

IOCSC3 - DIG IT 3.
RELATIVE LOCAT ION OF THE EXIT 3 CHECK CHARACTER.

IOCSD4 - DIG IT 4.
RELATIVE LOCAT ION OF THE EXIT 4 CHECK CHARACTER.

IDCSD5 - DIG IT 5.
RELATIVE LOCATION OF THE EXIT 5 CHECK CHARAC TER.

IOCSD6 - DIGIT 6.
RELATIVE LOCATION OF TI-<E EXIT 6 CHECK CHARACTER.

IOCSD7 - DIG IT 7.
RELATIVE LOCAT ION OF THE E:XIT 7 CHECK CHARACTER.

IOCSD8 - DIGIT 8.
RELAT IVE LOCAT ION OF THE EXIT 8 CHECK CHAflACTER.

IOCSD9 - DIG IT 9.
RELATIVE LOCAT ION OF THE FILE SERI AL CHECK CHARACTER

W ITI-'IN THE FILE SCHEDULER.

I DCSEND - EI\D.
LOOKS UP AGAINST THE SORT TABLE FOR THE PROPER POSI-

TION TO INSERT Tt-E FILE BEING OPENED.

10CSENTA - E~TRY A.
COMMON FILE SCHeDULER INITIALIZATION SEQUENCE. MOVES

Tt-E DTF ADDRESS TO THE TAPE ASSIGNMENT TABLE. USES THE
DTF ADDRESS TO FIND THE FILE INITIALIZATION ADDRESS. TIIEN
PROCEEDS TO EXECUTC TI-'E I NIT I AL I ZA T ION.

10CSENTAB - ENTRY Ae.

I CCSENTC

COMMON RIO-ENTRY POINT FROM ALL TAPE FILE INITIALIZA­
TION ROUTINES. T[STS FOR HEWIND PRIOR TO OPEN AND STARTS
TI-<E STANDARD LAAEL TESTS.

- E"TRY C.
INPUT/OUTPUT COMMON TCSTS.
EX IT TI-'REE SEQUeNCE - OUTPUT.
TESTS FOR A USER EXIT J ROUTINE. MOVES THE EXIT 3 AD­

DRESS TO THE S~ITCH HOX AND R~ADS THE OUTPUT HEADER. THEN
IT WILL EXECUTE TI-'E USER EXIT 3 ROUTINE. IF THERE IS NO
EXIT 3 ADDRESS AND THERE IS NO LABEL CHECKING. 10CS
WILL BYPASS LABEL READING ON A"l OUTPUT FILE.

10CSENTCR - EI\TRY CR.
CALLS FOR READING OF ALL INPUT LABELS AND ALL OUTPUT

LABELS NOT CONTROLLED BY AN EXIT 3 ROUTINE DR NO CHECK.
IF INPUT LABEL IS NOT TO BE CHECKED. CONTROL IS RETURNED
TC I OCSENTD. IF Tt-.C LABEL I S TO BE CHECKED OR WR I TTI:oN. A
COMPARE IS MADE FOR A • IHOR ' ANO AN ERROR OCCURS IF NOT
TRUE. IF AN INPUT LAAEL IS TO BE CHECKED. PROCESSING
CONTINUES TO CHECK CREATION DATE. FILE SEQUENCE. IDENT ••
AI'<O SER I AL NUMElEfl. IF NEce SSARY. ETC. I F THE I NPUT HEADER
IS INVALID. AN ERROR MESSAGE IS CONSTRUCTED AND TYPCD.

10CSENTD - ENTRY D.
EXIT 7 SE~UENCE - INPUT. MOVES EXIT 7 AOORESS TO THE

SWITCt- BOX AND TESTS IF THERE IS AN EXIT 7 ROUTINE. EXAM­
I NES THE OTF T ABLE FOR A TAPE MARK AF TER THE HEADER.

10CSENTE - E~TRY E.
ROUTINE FOR REWINDING THE FILE PRIOR TO ANO WRITING

OF TI-'E CONSTRUCTI:oD LABEL.

10CSENTF - E"TRY F.
CXIT 5 SEQUENCE. MOVES EXIT 5 ADDRESS TO THE SwITCH

BOX AND CHECKS FOR A USER'S EXIT 5 ROUTINE. CHECKS THE DTF
TABLE FOR.TI-'E POSSIEILITY OF A WRITE TAPE MARK AFTER THE
OUT PUT t-EADER.

10CSENTG - ENTRY G.
END-OF-F ILE EX IT SEQUENCE. MOVE THE FILE SCHEDULERS

E"D-OF-F ILE AODRESS TO IOCSEX IT.

10CSENTH - ENTRY H.
TEST THE REWIND OPTION AND uPDATE REEL SEQUENCE NUM­

BER BY ONE. IF A FEORL. [lRANCH TO THE REEL CHANGE SE.QUENCE
AND SET UP CONSOLE MESSAGE CONCERNING A REEL CHANGE.

10CSENTI - ENTRY I.
TESTS FOR A FEORL AND BRANCHES TO WRITE A CHECKPOINT

RECORD.

10CSENTJ - E~TRY J.
SETS TI-'E FILE SCt-EDULER OCING OPENED INTO A NOT-PENDING

STATUS IF THE FILE t-AS TWO I/O AREAS.

10CSENTRY - ENTRY.
SEQUENCE USED. AFTEH ALL MACRO EXECUTIONS. TO rEST

10CS FOH PENDING OPERATIONS PRIOR TO RETURNING TO THE
USER'S PROGRAM.

10CSEORU - END-OF-REEL ROUTINC.
INITIALIZATION FOR END OF REEL. SETS FOR FEORL. CLEARS

TI-'E CHANNELS AND TESTS FOR AN OUTPUT FILE. FOR AN
INPUT FILE. EXIT (, ADDRESS IS TESTED.

10CSERAD - ERROR ADDRESS.
ADDRESS OF Tt-E DTF IN ERROR DURING WRONG-LENGTH RECORD

CHECK. WILL BE DI:oCREMENH'D BY 33 FOR POSITIONING OF THE
DTF ROUTINE TO OBTAIN Tt-E WRONG-LENGTH RECOHD ADDRESS. IF
A"'IY.

10CSERBA - EHROR BRANCt- ANY.
WORK ARE II FOR THE Sl II TuS rcs T OF THE I/O COMMAND IN 1-

TIATING THE ERROR SEULJENCl:.

10CSEROL - ERROR BIIO LOCATION.

88

t-'UL T I-PURPOSE AREA.
I. WILL CONTAIN THE CONTENTS STORED OY THE SER OR

SFR FOR NOISE RECCRD CfECK.
2. DURING II DATA CbECK EROL WILL CONTAIN THE RELA-

T IVE POSIT ION OF TI<E CHARACTER IN LRROR WI THIN THE I/O
AREA.

rOCSERCHOP - ERROR C~ANNEL - OP~RATION,
SEQUENCE FOR MODIFICATION OF OPE~ATlON CODES ON STATUS

lES TS USED RY Tt-E ERHOR ROUT I NE ACCORD I NG TO THE CHANNEL,

rOCSERCT - ERROR COUNT.
CONSISTS OF TWO 2-POSITION DCW'S USED AS ERROR COUNTS.

l"E FIRST, OR UNLABELED, DCW IS FOR CONTROLLING THE NUM­
EIER OF RETRIES ON A NOIS~ RECORD READ - 10 ATTEMPTS. THE
SECOND, OR LABELED DCW CONTROLS THE NUMBER OF RETRIES
INITIATED BY A DATA CHECK BEFORE AN ERASE FORWARD IS GIV­
EN - 20 ATTEMPTS.

HOCSERCTL - ERROR CONTROL.
TESTING THE TYPES OF DATA CHECKS.

I. LABEL READ ERROR, '40119 LRE'.
2. READ DATA Ct-ECK. '60113 DCK'.
3. WRITE DATA CHECK. '20114 OCK'.

UOCSERDA - ERROR DUMP AREA.
WR IT I NG ERROR I/O AREA ON THE DUMP TAPE.

HOCSERDC - ERROR DATA CHECK.
SEQUENCE FOR TES T ING I F THE ERROR I S A NO I SE RECORD OR

A DATA CHECK. '20118 NLR'.

10CSERDLY - ERROR DELAY.
MOVES NORMAL Ef1ROR EXI T TO MAKE THE EXI T AVA ILABLE

FOR WRONG-LENGTt- RECORD ERROR ROUTINES SPECIFIED BY THE
USER.

10CSERDMP - ERROR DUMP.
DUMP TAPE - WRITING OF 10CSERFLD TO IDENTIFY THE FOL­

LOWING ERROR RECORD.

10CSEREF - ERROR END FILE,
SET UP OF THE ERROR EXIT TO BRANCH TO THE END-OF-REEL

IlOUTINE AT AN END OF FILE.

10CSEREX - ERROR EXIT.
EXIT FROM THE ERROR ROUTINE TO THE FILE SCHEDULER FOR

'"E WRONG-LENGTt- RECORD ROUT INE OR THE COMPLETI ON OF THE
[/0 ROUTINE.

10CSERFA - ERROR FUTURE ADDRESS,
MOOIFIES AND INITIALIZES THE FILE SCHEDULER WHEN THE

ERROR IS A WRONG-LENGTH RECORD ERROR.

10CSERFH - ERROR FUTURE HOLD.
MOVES THE DTF ADDRESS OF THE FILE IN ERROR FOR THE

I~ODIF ICAT ION AND USE OF THE FILe SCHEDULER WHEN THe Er1ROR
IS A WRONG-LENGT" RECOHD. '20117 lLR'.

10CSERFLD - ERROR FIELD.
A 29-POSITION DCw FOLLOWED BY A GROUP MARK

WORD MARK FOR HOLDING CONSTRUCTED ERROR MESSAGES FOR
10 C SIN I T I AL L Y '20 I 83 C I ' ,G.

10CSER" - ERROR HALT I.
SEQUENCE TO TYPE ERROR MeSSAGE, UPDATE AND TEST eRROR

COUNTS, AND SET UP OF "N ERASE FORWARD,

10CSERHLT - ERROR HALT 2.
ROUTINE FOR TESTING OF THE CONSOLE REPLY RECEIVED FROM

THE CONSOLE OPERATOR FOR THE OPTION DESIRED.

10CSERLV - ERROR LEAVE.
EXIT FROM THE ERROR ROUT[NE TO THE FILE SCHEDULER FOR

THE WRONG-LENGTt- RECORD HOUT INE OR THE COMPLEr I ON OF THE
[/0 ROUTINE.

10CSERNOIS - ERROR NOISE.
T"E WORK AREA USED TO STORE THE E OR F REG[STER ACCORD­

ING TO THE CHANNEL DETECTING THE ERROR. USED TO CHECK
FOR NOISE RECORDS ONLY [F A VAL 10 WRONG-LENGTH RECORD.

10CSERNR - ERROR NOT READY.
NOT READY MESSAGE ROUT[NE AND LOOP. '10100 'lR '.

10CSEROPTN - ERROR OPTION.
A DCW CONTAINING THE F[RST CHARACTER OF THE VARIOUS

REPL[ES THAT MAY BE REQUESTED BY THE ERROR ROUTINE.

[OCSERPA - ERROR PRINT ADDRESS.
MOD[FYING OF TI-'E: [OCS!;RFLD WHEN AN ASTERISK IS DETECTED

DURING THE SCAN. MOVES THE MEMORY ADDRESS OF THE AS­
TERISK FOR TYPING WITH THE ERROR MESSAGE.

10CSERPU - ERROR PICK UP.
SEQUENCE FOR FINDING THE [/0 COMMAND CAUSING THE ERROR.

[OCSERQLB - ERROR QUESTION LAST BRANCH ANY.
TEST TO CHECK [F THE ERROR WAS GENERATED DUR[NG THE

LABEL READ/WRITE ROUTINE,

10CSERROR - ERROR.
T APE ERROR ROU T [NE SEOUENCE.

10CSERSCN - ERROR SCAN.
SEQUeNCE FOR SCANN[NG THE ERROR 1/0 AREA FOR DETECTION

OF THE ASTER[SKS R~PLAC[NG THE INVAL[D CHARACTERS.

10CSERSK - ERROR SKIP.
ERASE FORWARD.

10CSERI0 - ERROR 10.
MOVES THE I/O COMMAND IF THE COMMAND [S TEN POSI­

T[ONS [N LENGTH TO [OCSJUG.

10CSEXIT - EX[T.
MOVES THE OTF ADDRESS OF THE TAPE FILE BEING OPERATED

UPON TO THE DTF BOX ALONG W[TH THE OPe CODE [DENT[F[ER
TI-'AT DEFINES THE MACRO TYPE.

C DEF[NES OPEN.
+ DEFINES RDL [N •
• DEFINES FEORL.
) DEFINES CLOSE.
J DEF[NES THE END OF MACRO.

10CSEXITRU - EXIT ROUT[NE.
ROUTINE TESTS FOR THE COMPLET[ON OF THE OPEN. CLOSE,

FEORL. AND RDLIN MACROS. IF NOT. CALSES A BRANCH TO
BRING IN THE NEXT PARAMETLR - DTF ADDRESS.

Appendix E- DIGCS-Generated Label Definitions 89

10CSEI - EX I T I.
RELAT IVE LOCATION OF Tt<E EXIT I ADDRESS.

IOCSE2 - EXIT 2.
RELAT IVE LOCAl ION OF THE EXIT 2 ADDRESS.

IOCSE3 - EXIT 3.
RELATIVE LOCAT ION OF THE EXIT 3 ADDRESS.

IOCSE4 - EXIT 4.
RELAT IVE LOCATION OF THE EXI T 4 ADDRESS.

IOCSE5 - EXIT S.
RELAT IVE LOCATION OF THE EXIT 5 ADDRESS.

IOCSE6 - EXIT 6.
RELATIVE LOCATIOr.. OF THE EXIT 6 ADDRESS.

IOCSE7 - EXIT 7.
RELATIVE LOCATIOr.. OF THE EXIT 7 ADDRESS.

IOCSE8 - EX I T 8.
RELAT IVE LOCATION OF THE EXIT 8 ADDRESS.

10CSGM - GROUP MARK.
BLANK FOLLOWED BY A GrWUp MARK WORD MARK USED BY

10CS IN THE CONS TRUC T ION OF ITS VIIR 10US MESSAGES AND
AREAS

10CSt<ALT - HALT.
CONSOLE RePL Y lOA I T I NG LOOP. lOA I T I NG FOR THE OPERA TOR TO

REPLY TO AN 10CS ERROR MESSAGE.

10CSHALTX - HALT EXIT.
BRANCH BACK TO 10CS ROUTINE WHICH DETERMINED THE

ERROR. USUALLY Tt-'E ROUT INE RETURNED TO WILL TEST THE OP­
ERATOR REPLY FOR THE ACTION TO BE TAKEN.

10CSHAr.. - HEADER ALPHABETIC NAME.
RELATIVE LOCATION OF THE HEADER IDeNTIFICATION.

IOCSt<CD - HEADER CREIITION DATE.
RELATIVE LOCATION OF THE HEADER CREATION DATt;;.

10CSHDBL - HEADER BLANKS.
BLANKS US EO TO CLEAR THe LABEL AREA BEFORE CONSTRUC­

nON OF HEADER LAElELS.

10CSHFS - HEADER FILE SERIAL.
RELATIVE LOCATION OF THE HEADER FILE SERIAL NUMBER

WITt<IN THE FILE SCHEDULER.

10CSt<ITBL - HIGH TABLE.
I-'IGH-OROER POSIT ION OF TI-'E PENDING-SWITCH SORT TABLE.

140 POSITIONS CONSISTING OF 7-CHARACTE~ SEGMENTS CONTAIN­
ING THE UNITS POS IT ION OF TI-'E FILE PENDING SOIl TCH. CHAN­
NEL SYMBOL. AND PRIORITY NUMBER.

10CSHRS - HEADER REEL SEQUENCE.
RELATIVE LOC,6TIOr.. OF THE HEADER REEL SEQUENCE.

I OCS IN - I r...
UPDATES THE t-'ICHER PRIORITY PENDING SWITCH OPERAND TO

Tt<E ADDRESS OF TI-'E CURRENT OPENING FILE'S peNDING SWITCH.
RESETS INDEX REGISTER 15 TO THE DTF ADDRESS CONTAINED IN
Tt<E DTF BOX.

10CSINTEXT - INTERRUPT EXIT.
THE BRANCH ENTER PRIORITY ALERT TO THE USER'S PROGRAM

AFTER AN 10CS RELEASE.

10CSIPEOR - INPUT END OF REEL.
STANDARD INPUT TRAILER LABEL SEQL;ENCE. READS THE TRAILER

LABEL AND Ct-'ECKS I-'ASI-< TOTALS. RECORD AND BLOCK COUNT.
AN UNeQUAL COMPARISON CAUSES AN ERROR MESSAGE.

10CSJUG - ERROR JUG.
WORK AREA FOR I/O COMMAND INI T IA TING THE ERROR SEQUENCE.

10CSLBA - LABEL AREA.
EIGHTY-POSITION AREA FOR BUILDP,G OR I~EADING STANDARD

LABELS.

10CSLBAREA - LABEL AREA.
EIGHTy-POSITION AI~EA FOR BUILDING OR READING STANDARD

LABELS.

10CSLBIN - LABEL INPUT.
T'OVING INFORMATION FROM THE DTF TO THE LABEL I/O COM­

MAND. CI-'ANNEL. UNIT. AND CHANNEL STATUS OPERATION CODE.

IOCSLBOP - LABEL OUTPUT.
READ/WRITE COT'MAND TO OR FROM THE LABEL AREA. STATUS

TEST FOR II NOT READY. Ct-'ANNEL BUSY. OR DATA CHECK.
BRANCt-'ES BACK TO THE CONTROLLING ROL;TINE.

IOCSLINK - LINKAGE.
T'ODIF[ES OPERANDS OF PENDING SWITCHES IF CURRENT FILE

HAS BEEN OPENED PREVIOUSLY. CAUSES AN OPE~ING OR M[SSING
L[NK IN THE PENDING SWITCH CHA[N.

10CSLMWTGR - L~ST MINUTE WAITING ROUTINE.
ENTERED WHEN AN ERROR ENCOUNTERED ON CHANNEL 2 wILL

CAUSE A MESSAGE TO BE TYPED ON THE CONSOLE PR[NTER WHILE
CHANNEL I [5 STILL IN OVERLAP PROCESS.

IOCSMDC - MOVE 0 CONTROL.
INITIALllATION FOR AN ALTERNATE DRIVE. SET UP FILE

SCHEDULER WITI-' THE ALTERNATE DRIVE BECOM["lG THE PRIMARY
DRIVE AND VICE VERSA.

IOCST'OVE - MOVE.
MOD IF [ES T I-'e PEND [NG Sw I TCH SORT TABLE TO CORRESPOND

TO THE CHANGE MADE IN TI-'E PEND[NG SwiTCH CHAI~. OPENING
TI-<E SORT TABLE FOR A NEW INSERTION.

10CSNEPO - OPEN - (SPELLED BACKWARDS).

90

UNITS POSIT[ON 01' THE TAGLE CONTAINING THE ADDRESS OF
VARIOUS OPEN AND CLOSE ROUTINES RELATING TO THE FILE AC­
T IV ITY CODF.

10CS~HL - NO ~EADER LABEL.
MOVES UNIT INFORf>'ATION ON AN ERROR CAUS,"D BY AN [NVALID

HEADER WHEN T~E FILE SPECIFIES STANDARD HFADERS.
SETS UP BOTH THE NO [NPUT AND NO OUTPUT HEADER ERROR
MESSAGES. '40130 NOI-'. ANO 'J()[JJ N[H'.

10CSI\IH - NO [NPUT "CIIDER.
SE~UENCE FOR WR[T[NG THC INPUT [NFORMAT[ON [F IN ERROR

ON T .. E CONSOLE TYPEWR[TeR. THC ROUTINE ALSO TESTS THE
OPERATOR REPLY.

10CSI\OH - NC CUTPUT HEADER.
TYPES THE OIITPUT HEIIDER ERROR MESSAGES. TESTS OPERATOR

REPLY.

10CSI\OTE - NCTE.
ROUT INC FOR TYP[NG 10CS INDICAT[ONS liND ERROR MES­

SA GES.

ICCSCPEOR - CUTPUT END OF REEL.
EXIT 8 SEQUENCE. SET UP EXIT 8 ADDRESS IN THE SWITCH

BOX IF DESIRED.

ICCSCPEORA - OUTPUT END OF REEL AREA.
OUTPUT END-OF-REEL 3EQUENCE. SET UP 'IEOR • IN THE

LABEL AREA.

10CSCPHD - OUTPUT ~EADER.
RETENTION PER[OD rESTS. CHECKS IF AN OUTPUT FILE IS

AVAILABLE FOR WRITING. OTHERW[St. IT WILL CAUSE A DATE
ERROR.

10CSOPHDAR - OUTPUT HEADER AU.

10CSCUT

MOVE NEEDED INFORMATION FROM OLD OUTPUT HEADER TO THC
FILE DTF AREII. MOVE THE CURRENT DATE FROM OOIIS THRU
00119 TO THE DTF ARLII. ASSEM~LE A NEw OLTPUT HEADER AND
TEST FOR THE POSSIRIL[TY OF AN EXIT 4 ~OUT[NE.

- OUT.
CPEN THE PEND[NG Sw[TC" SOHT TABLE TO [NSERT THE PEND­

ING SWITCH AnDRESS OF THE CURRENT OPEN[NG FILE [N CHANNEL
PR[ORITY SEQUENCE.

10CSPACXIT - PRIORITY ASSIGNMENT EX[T.
BRANCHES TO [OCSENTA TO CONT[NUE OPEN[NG OF THE F[LE.

10CSPAHSK - PR lOR IT Y ASS [GNMENT HOUSEKEEP [NG.
BEG[NN[NG OF TH~ PEND[NG SwiTCH SORT ROUT[NE. SETS UP

SEQUENCE FOR ACTUAL sw [TCH SORT [NG.

10CSPARG - PR[ORITY ARGUMENT.
TWO-POS[T[ON ARCA USED FOR CONSTRUCTION OF THE CHANNEL

PRIORITY ARGUMENT WI-EN LOOK[NG UP AGAINST TliE PENDING
Sw[TC~ SORT TAULE.

IOCSPENSWE - PEND[NG SW[TCt- ENTRY.
RELAT [VE LOCAT [ON OF AN AREA CONTAINING THE ADDJ~ESS OF

THE PEND I NG SOl I TCH INS TRUC T [ON TE ST FOR EACH F [LE SCHED­
ULER.

ICCSPRIMER - PR[MER.
WRITE A TAPe MARK AFTER THE LAST BLOCK.

ICCSPR[ME3 - PRIME J.
WR[TE THE LAST OUTPUT BLOCK.

IOCSPS - PROGRAM STATUS.
FOUR MEMORY LaC AT [ONS USED FOR S TOR I NG THE PROGRAM

STATUS LATC~ES AFTER AN INTCRIlUPT. '101' ,G.

10CSPSR - PROGRAM STATUS RESTORE.
SEQUENCE FO'l RLSTORAT[ON OF THE PROGRAM STATUS LATCHES

PRIOR TO TURN[NG ON PRIOR[TY ANO RETURNING TO TIlE USER'S
PROGRAM.

IOCSRC - HEADER RETENTION CYCLE.
RELATIVE LOCAT[ON OF THE RETENTION CYCLE.

[OCSRDL[N - READ LAeEL [N.
READING OF Tt-E ReL[N CARDS AND MOV[NG OF THE [NFORMA­

T[ON TO THE DTF AREA OF THE APPROPR[ATE FILES.

10CSREADRU - READ ROUTINE.
LABEL READ/WR[TE ROUT[NE.
STORES T~E B REG[STER FOR THC RETURN. CLEARS THE LABEL

AREA. AND SETS Tt-E D-MOD[FIER FOR A LABEL READ.

10CSRENTRY - RE ENTRY.
RE-ENTRY POINT INTO [OCS AFTER HEADER AN[) TRAILER

EXITS. AND CLEAR[NG OF CHANNELS DUE TO AN OPCN. CLOSE.
FEORL, OR RDL[N MACRO. STORES USER'S INDEX REG[STER IS IN
A HCLD AREA AND RESETS XI5 TO THE CONTENTS OF DTF BOX BE­
FORE GO[NG INTO lacs.

IOCSREPLY - REPLY.
FIVE-POSIT[ON AREA FOR TI-E OPERATOR REPL[ES DUR[NG AN

ERROR ROUT[NE.

IOCSRSCLCT - RESTART CHECKPO[NT LOAD ON TAPE.
POINT OF ENTRY FROM THE CHCCKPDINT RESTART PROGRAM TO

THE PROGRAM BE[NG RESTARTED.

IOCSRWDB - REW[ND URANCH.
CONTROL UN[T COMMAN[). RELAT[NG C~ANNEL STATUS TESTS.

IOCSRWDRU - REWIND ROUT[NE.
M[SCeLLANEOUS CONTROL UN[T OPERAT[ONS. STOR[NG OF THE

RETURN ADDRCSS, AND PASS CONTROL TO THE REw[ND ROU-
TINE AREA WHERE T~E O-MODIFIER FOLLOwS THE BRANCH.

[OCSRWDRUA - REWIND ROUT[NE ~REA.
PICK UP OF TI-E D-MOD[F[ER ANO THE CHANNEL UNIT [NFOR­

MATION TO BC USED IN THE CONTROL UN[T OPERATION.

IOCSRWDXT - REw[ND EX[T.
EXIT FOR RETURN TO TFE MA[N [OCS ROUTINE.

IOCSRWURU - REWIND UNLOAD ROuT[NE.
STORING OF TI-E RETURN POINT AND ARANCH[NG TO THE RE­

W[ND ROuT[NE ARFA. e~ANCH [S FOLLOWED OY THE D-MOD[FIER
FOR A CONTROL UN[T OPERAT[ON RELATING TO REwiND/UNLOAD.

Appendix E - DIGGS-Generated Label Definitions 91

10CSSTLE - STALL ENTRY.
LINKAGE TO CLEAR CHANNELS OF ALL CURRENT AND PENOIN~

OPERATIONS PRIOR TO AN OPEN, CLOSE, FEORL, OR ROLIN.

10CSSTLEXT - STALL EXIl.
RETURN TO 10CS AFTER CLEARING THE CHANNELS AND EX­

ECUTING EXIT ROUTINES.

10CSSWBX - SWITCH BOX.
THIS ROUTINE RESTORES INDEX REGISTER 1'5 TO THE USER'S

CONTENTS AFTER AN OPEN, CLOSE, FEORL. OR ROLIN. USED BY
10CS TO BRANC~ TO T~E USER ROUTINES IF USING EXNADDR
DIOCS ENTRIES.

10CSSWBXA - SWITCH eox AREA.
BRANCH INSTRUCTION WHOSE OPERAND IS LOADED WITH AN EXIT

ADDRESS.

10CSTBC - TAPE BLOCK COUNT.
RELAT IVE LOCAT ION OF THE BLOCK COUNT

10CSTBL - TABLE.
UNITS POSITION OF THE PENDING SWITCH SORT TABLE.

10CSTFINIT - TAPE FILE INITIALIZE.

10CSTHT

SKELETON BRANC~ INSTRUCTION MODIFIED WITH THE ADDRESS
OF THE FILE INITIALIZATION ROUTINE.

- TAPE HASH TOTALS.
RELATIVE LOCATION OF THE HASH TOTAL.

10CSTPCLCS - TAPE CLOSE.

10CSTRBL

10CSTRC

TAPE CLOSE SEQUENCE. W ILL BRANCH OUT FOR PADD I NG POS­
SIBILITIES IF TI--'E FILE BEING CLOSED IS AN OUTPUT FILE.

- TRAILER BLANKS.
BLANKS TO CLEAR THE FIRST TEN POSITIONS OF THE LABEL

AREA BEFORE CONSTRUCTING A TRAILER LABEL.

- TAPE RECORD COUNT.
RELATIVE LOCATION OF THE RECORD COUNT.

10CSTRIGEN - TRIGGER END.
RELATIVE LOCATION OF A DCW CONTAINING THE ADDRESS OF

THE FILE SCI--'EDULEll BRANCH TO 10CS AFTER SIGNALING
THE NECESSITY OF AN 1/0 OPERATION FOR THE FILE.

10CSURANY - UNIT RECORD ANY.
SEQUENCE FOR TESTIN~ THE STATUS LATCHES AND CONSTRUCT­

ING ASSOCIATED CONSOLE Mt;:SSAGES TO BE TYPED OUT ON UNIT
RECORD ERRORS. '20116 DCK','20143 STK', AND '20115 LLC'.

10CSURBAN - UNIT RECORD BRANCI--' ANY.
BRANCH ANY AFTER THE ERROR ROUTINE RETRtES A UNIT RE­

CORD OPERATION BEFORE RETURNING TO THE MAIN PROGRAM.

10CSURDCK - UNIT RECORD DATA CHECK.
RETRY ROUT INE FOR DATA CHECKS. WILL ATTEMPT TWIC(ON

PRINTER OR PlJNC~ ERRORS BEFORE TYPING THE ERROR MESSAGE.
wILL NOT RETRY A READER FILE.

10CSURERR - U~IT RECORD ERROR ROUTINE.
UN I T RECORD ERROR SEQUENCE.

10CSUREXIT - UNIT RECORD EXIT.
BRANCH FOR RE TURN TO THE UN I T RECORD FILE SCHEDULER.

10CSURNR -"UNIT RECORD NOT READY.
SET UP A CONSOLE TYPEWA I TEI"l MESSAGE FOR A NOT READY

INDICATION ON UNIT RECORD FILES. '10100 NR '.

10CSUROPEN - UNIT RECORD OPEN.
CLEARS THE BLOCK COUN T ON ALL UN I T RECORD FILES DUR­

I~G THE OPENING.

10CSURPKUP - UNIT RECORD PICK UP.
INSTRUCTIONS MOVI'<G THE UNIT RECORD COMMAND Mm ITS

CORRESPONDING STATUS TEST FROM THE UNIT RECORD FILE SCHED­
ULER TO THE ERROR ROUTINE FOR RETRY.

10CSURCE - UNIT RECORD QUESTION ENTRY.
TEST OF A UNIT RECORD FILE SCHEDL-LER FOR A BI::.X FORM OF

INSTRUCTION AS NEXT INSTRUCTION AFTER THE BRANCH TO THE
ERROR ROUTINE. COULD BE CONSIDERED AS LOOKING FOR A READER
FILE SCt-'EDULER.

10CSURTY - UNIT RECORD TYPE.
SEQUENCE THROUGH WHICH ALL UNIT RECORD ERRORS, EXCEPT

NOT READY, PASS TO ~ALT FOR OPERATOR INTERVENTION.

10CSUSXA - USER SET EXIT A.
EXIT 2 SEQUENCE - MODIFY THE SWI TCH BOX TO THE EXIT 2

ADDRESS IF NECESSARY. OTHERWISE WRI TE A TAPE MARK.

10CSWRITRU - WRITE ROUTINE.
STORING OF T~E RETURN ADDRESS AND SETTING OF A

D-MODIFIER IN T~E LABEL 1/0 COMMAND.

10CSWTGX - WAITING EXIT.
EXIT. AFTER FORCING CHANNEL I TO BE CLEARED, TO PRO­

CEED WITH THE TYPING OF A CHANNEL 2 CRROR MESSAGE.

10CSWTMRU - WRITE TAPE MARK ROUTINE,
STORING OF T~E RETURN POINT AND BRANCHING TO THE RE­

WIND ROUTINE AREA. BRANCH IS FOLLOW~D BY A wTM D-MODIFIER
FOR THE CONTROL UN IT OPcnAT (ON.

IOCSXI5HD - INDEX 15 HOLD.
WILL CONTAI"I T~E uscn's CONTENTS OF INDEX REGISTER I~

DURING PROCFSSING IN 10CS.

I OC S 101 - 101.
TWO DCW'S - 10 AND 1. USED IN A COMPARE INSTRUCTION

AGAINST 10CSPS FOR RESTORATION OF THC PROGRAM STATUS
LATCt-'ES PRIOR TO THE RETURN TO THE INTERRUPTED USER PRO­
GRA~.

IOCS20 - 20.
END-OF-REEL MESSAGE. '20120 EOR'.

92

IOCS31

IOCS32

IOCS3]

IOCS]4

10CSJb

I OC S44

00000

100

101

1 DB

II':>

- 31.
CREATION RETENTION PERIOD ERROR MESSAGE. '40131 OAT',

- 32.
INPUT HEADER CHECK ERROR MESSAGE. ']0132 FIL'.

- 33.
NO INPUT HEADER MESSAGE. '30133 NIH'.

- 34.
INPUT TRAILER ERROR MESSAGE. '10134 fiE'.

- 16.
ROLIN ERROq MESSAGE. '20136 RLN'.

- ~~4.
'20144 WLR ' - UNIT RECORD WRONG LENGTH RECORD MESS;<\GE,

- ACTUAL 00000.
ACTUAL LOCATION 00000 - RELATIVE POSITIONING OF A DE­

FINE AREA USED IN CONJUNCTION WITH THE DTF ADDRESS TO
FIND THE NECESSARY ITEMS WITHIN ALL FILE SCHEDULERS.

- /ICTUAL 00100.
LOCATION OF A GROUP MARK WORD MARK USED WHEN STORING

YHE CONTENTS OF INDEX REGISTERS 13 THRU 15 INTO A SAVE
AREA DURING AN INTERRUPT CAUSED BY AN INQUIRY OR OUT-
(lU I RY.

- /ICTUAL 00101.
LOCATION OF TI-E INTERRUPT SEQUENCE. WHEN USING THE

PRIORITY FEATURE, TI-E SYSTEM AUTOMATICALLY BRANCHES TO
THIS LOCATION WI-EN THE PRIORITY ALERT LIGHT IS ON AND A
PRIORITY REQUEST INDICATOR LATCH IS TURNED ON. THIS LO­
CATION WILL CONTAIN A STORE B REGISTER INSTRUCTION.

- /ICTUAL 00 I 08.
LOCATION OF A BRANCH EXIT PRIORITY ALERT. ANOTHER IN­

lrERRUPT CAN NOT BE SERV ICED DURING 10CS.

- ACTUAL 00115.
A DEFINE AREA USED AS A SPACER BETWEEN THE FIXED IN­

fERRUPT AND THE BEGINNING OF IOCS MINIMUM AREA DEFINED
Iii LL BE ENOUGI-' TO SK IP OVER THE PROGRAM LOAD ROUT I NE.

Appendix E -DIGCS-Generated Label Definitions 93

Appendix F - File-Dependent Label Definitions

This section lists the labels that are generated, primarily
because of DTF entries. These labels are for instructions
and data areas in the file schedulers or file tables. With

IOCSEOOOOX - FILE PENDING SWITCH - C~ANNEL I.
TAPE FILES - SYMBOLIC IDENTIFIERS FOR FILE PENDING

SW I TCf"'Es ON C~ANNEL ONE.

10CSFOOOOX - FILE PENDING SWITCH - C~ANNEL 2.
TAPE FILES - SYMBOLIC IDENTIFIERS FOR FILE PENDING

SW I TC~ES ON C~ANNEL TWO.

10CSXXACT - ACTIVITY.
ALL FILES - T~E NUMERIC IDENTIFIER DESCRIIJING THE KIND

OF FILE.
I. I DEFINES A ONE-AREA TAPE FILE.
2. 2 DEFINES A TWO-AREA TAPE FILE.
3. J DEFINES A CARD READER FILE.
4. 4 DEFINES A CARD PUNCH FILE.
5. 5 DEFINES A PRINTER FILE.

PRIOR TC THt 10CSXXACT IS A ONE-POSITION DCw CONTAIN­
ING TH, C~ANNEL PRIORITY DIGIT FOR TWO-AREA TAPE FILES.

10CSXXBA - BRANC~ ANY.
TAPE FILES - Tt-E LOCATION OF THE CHANNEL STATUS TEST

FOR Tt-E FILE SC~EDULEP.

10CSXXBASE - BASE.
ALL TAPE FILES - A FIVE-POSITION DCW CONTAINING MODE.

X-CONTROL FIELD. AND STATUS TEST CHANNEL OPERA T ION CODE.
FOLLOWING T~IS MAY BE ANOTHER FIVE-POSITION DCW CUNTAIN­
ING THE SAME FOR AN ALTERNATE DRIVE. IF APPLICABLE.

IOCSXXBLKL - ALOCK LENGTt-.
VARIABLE ALOCKED INPUT TAPE FILE - WILL CONTAIN THF.

CONTENTS OF TI-E E OR F REGISTER AFTER A READ OPERATION
FOR USE DURING Tt-E WRONG LENGTH RECORD TEST.

10CSXXDI - EXIT DIGIT I.
ALL OUTPUT TAPE FILES - USER EXIT I CHECK CHARACTER.

o DEFINES NO EXIT I ADDRESS.
I DEFINES AN EXIT I ADDRESS.

the label is an explanation of the routine or data area
the label addresses.

FOLLOW I NG TI-E CHoCK CHARAC TER W ILL BE THE USER' SEX I T I
ADDRESS IF APPLICABLE. OTI-ERWISE. A FIVE-POSITION
BLANK DCw.

IOCSXXD2 - EXIT DIGIT 2.
ALL OUTPUT TAPE FILES - USER EXI T 2 CHECK CHARACTER.

o DEFINES NO EXIT 2 ADDRESS.
I DEFINES AN EXIT 2 ADDRESS.

FOLLOW I NG T I-E CI-ECK CHARACTER W ILL BE THE USER' S EX IT 2
ADDRESS IF APPLICABLE. OTI-ERWISE. A FIVE-POSITION
BLANK DCW.

10CSXXDJ - EXIT DIGIT J.
ALL OUTPUT TAPE FILES - vSER EXI T 3 CHECK CHARACTER.

o DEFINES NO EXIT 3 ADDRESS.
I DEFINES AN EXIT 3 AIJDRESS.

FOLLOWING TI-E CHECK CHARACTEI~ WILL AE THE USER'S EXIT 3
ADDRESS IF APPLICA3LE. OTt-ERWISE, A FIVE-POSITION
ALANK DCw.

ICCSXXD4 - EXIT DIGIT 4.
ALL OUTPUT TAPE FILES - USER EXIT 4 CHECK CHARACTER.

o DEFINES NO EXIT 4 ADDRESS.
I DEFINES AN EXIT 4 AODRESS.

FOLLOWING TI-E CI-ECK CHARACTER WILL BE THE USER'S EXIT 4
ADDRESS IF APPLICA8LE. OTI-ERWISE, A FIVE-POSITION
BLANK DCW.

10CSXXDS - EXI~ DIGIT 5.
ALL OUTPUT TAPE FILES - USER EXIT 5 CHECK CHARACTER.

o DEFINES NO ~XIT 5 ADDRESS.
I DEFINES AN EXIT 5 ADDRESS.

FOLLOWING TI-E CI-ECK CHARACTER WILL BE THE USER'S EXIT 5
ADDRESS IF APPLICABLE. OTHERWISE. A FIVE-POSITION
BLANK DCW.

IOCSXXD6 - EXIT DIGIT 6.
ALL INPUT TAPE FILES - USER EXIT 6 CHECK CHARACTER.

o DEFINES NO \::XIT 6 ADDRESS.
I DEFINES AN EXIT 6 ADDRESS.

FOLLOWING TI-E CI-ECK CHARACTER WILL BE THE USER'S EXIT 6
ADDRESS IF APPLICABLE. OTHERWISE. A FIVE-POSITION
BLANK DCw.

IOCSXXD7 - EXIT DIGIT 7.
ALL INPUT TAPE FILES - USER EXIT 7 CHECK CHARACTER.

o DEFINES NO EXIT 7 ADDRESS.
I DEFINES AN EXIT 7 ADDRESS.

FOLLOWING TI-E C~ECK CHARACTEoR WILL BE THE USER'S EXI T 7
ADDRESS IF APPLICABLE. OTI-ERWISE, A FIVE-POSITION
BLANK DCW.

IOCSXXD8 - EXIT DIGIT fl.
ALL OUTPUT TAPE FILES - USER EXIT B CHECK CHARACTER.

o DEFINES NO tXIT e ADDRESS.
I DEFINES AN EXIT e ADDRESS.

FOLLOWING TI-E CI-ECK CHARACTER WILL BE THE USER'S EXIT 8
ADDRESS IF APPLICAElLE. OTt-ERWISE. A FIVE-POSITION
BLANK DCW.

10CsXXEMTY - EMPTY.
CARD READER AND INPUT TAPE FILES - THE ENTRY POINT TO

Tt-E FILE sCI-EDULtR FROM A GET MACRO-INSTRUCTION WHEN A
RE AD OPERAT ION I S TO BE PERFORMED.

10CSXXENDA - END A.
FIXED BLOCKED FIL~s - ADDRESS OF THE LAST RECORD MARK

OF I/O AREA A. TI-IS IS INStRTED INTO IDCSXXENDD WHEN IN­
FOR~ATION IN THE AREA IS READY TO BE PROCESSED.

10CSXXENDB - E~D B.

94

FIXED BLOCKED FILES - ADDRESS OF THE LAST RECORO ~ARK
OF I/O AREA U. TI-IS IS INSfRTEO INTO 10CsXXENDD WHEN IN­
FOR~ATION It>l THE AREA IS READY TO BE PROCESSED.

10CSXXENDD - END DIGIT.
BLOCKED TAPE FILES - LOCATION OF THE CURRENT INFOR­

MAT ION AREA RECORD MARK. USED BY THE GET TO COMPARE
AGAINST IOCSXXSAVE FOR INITIATING A BRANCH TO THE FILE
SCHEDULER ON FIXED BLOCKED FILES AND VARIABLE BLOCKED IN­
PUT FILES. ON VARIABLE BLOCKED OUTPLT FILES. THIS FIELD
IS COMPARED AGAINST 10CSXXRLAC BEFORE INITIATING THE
BRANCI-'.

rocsxXENDI - END INITIALllER.
ElLOCKED TAPE FILES - ZERO ADDED TO IOCSXXSAVE DURING

INITIALIlATION TO FORCE A BRANCH TO THE FILE SCHEDULER
ON TI-'E FIRST GET TO AN INPUT FILE. ALTHOUGH DEFINED FOR
OUTPUT FILES. IT IS NOT USED.

10CSXXEOF - E~D OF FILE.
CARD READER liND ALL INPUT TIIPE FILES - WILL CONTAIN

TI-'E USER'S END-OF-F ILE ROUT INE ADDRESS.

10CSXXEXIT - EXIT.
ALL FILES EXCEPT PASSIVE TAPE FILES - BRANCH BACK TO

THE USER'S ROUT INE,

10CSXXFSCK - FILE SERIAL C~ECK,
ALL TAPE FILES - THE CHECK CHARACTER FOR FILE SERIAL.

FOR INPUT FILES. WILL CHECK THE FILE SERIAL NUMBER
~,GAINST 10CSXXHFS. OUTPUT FILES. 10CS WILL READ LABELS
~,"D RETAIN THE FILE SERIAL DURING TI-'E CONSTRUCTION OF A
NEW LABEL AND INSERT THE ORIGINAL FILE SERIAL NUMBER INTO
1'I-'E,NEW LABEL PRIOR TO WRITING IT.

o DEFINES CHECKING OF THE FILE SERIAL NUMBER.
I DEFINES NO C~ECKI;\IG OF THE FILE SERIAL NUMBER.

LOCSXXFULL - FULL.
PRINTER. PUNCH. AND OUTPUT TAPE FILES - THE ENTRY

POINT INTO THE FILE SCHEDULER FROM A PUT INSTRUCTION WHEN
~, WRITE OPERATION IS TO BE PERFORMED.

10CSXXHFS - HOLD FILE SERIAL.
ALL TAPE FILES - THE HOLD AREA FOR THE FILE SERI AL

NUMBER WILL CONTAIN THE SI~RIAL NUMBER TO CHECK AGAINST
LABELS ON INPUT FILES. ON OUTPUT FILES. THE FILE SERIAL
NUMBER IS MOVED HERE AND IS USED IN THE CONSTRUCTION OF
THE NEW HEADER LABEL, FOLLOWING THIS HOLI) AREA WILL BE
THE REMAINING INFORMATION NECESSARY TO CONSTRUCT OR CHECK
THE HEADER LABEL FOR THE FILE.

10CSXXINIT - INITIALIZATION.
TAPE FILES - SEQUENCE TO INITIALIZE FILE I/O COMMANDS

AND FORCE A DOUBLE READ ON TWO-AREA FILES DURING THE
FIRST GET COMMAND TO THAT FILE. INDEX REGISTERS ARE INI­
TIALIZED ON OUTPUT FILES.

10CSXXIOA - I/O A.
ALL FILES EXCEPT PASSIVE TAPE FILES - THE I/O COMMAND

THAT WILL CAUSE READING TO OR WRITING FROM I/O AREA A. IN
UNIT RECORD FILE SC~EDULERS. IT WILL BE THE I/O COMMAND
FOR THAT SCHEDULER.

rOCSXXIOAR - I/O AREA.
UNIT RECORD FILES - AN EQUATE TO THE AREA SPECIFIED

BY THE IDAREA DTF ENTRY.

rOCSXXIOB - I/O B.
TAPE FILES - THE I/O COMMAND THAT WILL CAUSE READING

1'0 DR WRITING FROM I/O AREA B.

rOCSXXPA - PRIMARY AREA.
TAPE FILES - TESTS FOR THE LAST I/O AREA USED AND SETS

UP NEXT I/O COMMAND TO USE I/O AREA A.

IOCSXXPADS - PADDING SEQUENCE.
BLOCKED OUTPUT FILES - FIXED. WRITING OF THE LAST OUT­

PUT BLOCK. TESTS FOR THE NECESSITY OF PADDING. SAVES AND
SETS THE CONTENTS OF INDEX REGISTER 15 WITH THE ADDRESS
OF THE FIRST LOCATION TO START PADDING. VARIABLE. WRITING
OF THE LAST BLOCK ONLY.

rOCSXxPFOR - PADDING FORCE.
FIXED BLOCKED OUTPUT FILES - RESTORE INDEX REGISTER 15

AND BRANCH TO ~RITE THE PADDING RECORD.

rOCSXXPLBI - PADDING LAST BLOCK I.
FIXED BLOCKED OUTPUT FILES - UPDATE INDEX REGISTER 15

1'0 PASS THE PADDING OF A RECORD MARK POSITION AND BRANCH
BACK TO THE PADDING ROUTINE.

10CSXXPLB2 - PADDING LAST BLOCK 2.
FIXEU BLOCKEC OUTPUT FILES - TEST FOR RECORD MARKS

wlTblN THE AREA TO BE PADOED. TESTS FOR END OF PADDING
ROUTINE.

10CSXXPRIM - PRIMARY.
INPUT TAPE FILES - SETS UP TO FORCE TWO CONSI::CUTIVE

READS ON THE FIRST GET INSTRUCTION TO THE FILE.

10CSXXPSVE - PADDING SAVE.
FIXED BLOCKED OUTPUT FILES - A FIVE-POSITION DCW FOR

STORING THE CONTENTS OF INDEX REGISTER 15 DURIN~ TH~ PAD­
DING OF TbE LAST BLOCK.

10CSXXPTRC - PADDING - TAPE RECORD COUNT.
FIXED BLOCKED OUTPUT FILES - ACCUMULATE HASH TOTALS.

10CSXXRCLN - RECORD LENGTH.
FIXED BLOCKED FILES - CONTAINS THE RECORD LENGTH rOR THIS

FILE.

10CSXXRLAC - RECORD LENGTH AT CURRENT.

10CSXXSA

VARIABLE OLOCKED OUTPUT TAPE FILE - WILL CONTAIN THE
~,DDRESS OF THE LAST LOCATION USED FOR STORING DATA. IT IS
USED TO DETERMINE WbEN THE I/O AREA HAS BEEN FILLED.

- SECONDARY AREA.
TAPE FILES - SETS UP NI::XT I/O COMMAND TO USE I/O AREA B.

10CSXXSAVE - SAVE.
TWO-AREA TAPE FILES- WILL CONTAIN THE LOCATION OF THE

AREA OR SEGMENT OF THE AREA THAT HOLDS CURRENT INFORMA­
TION. T~E GET AND PUT MACROS UPDATE THIS AREA UNTIL THE
COMPLETE AREA HAS BEEN USED. AT THIS TIME. A GET OR PUT
MACRO WILL CAUSE THE NEXT AREA TO BECOME AVAILABLE
AND CONDITION T~E FILE SCHEDULER TO INITIATE ANOTHER I/O
C:PERATION.

Appendix F - File-Dependent Label Definitions 95

10CSXXSFS - SCHEDULER FORCE SEQUENCE.
FORCES T E CI-'IINNEL TO CLEIIR. liND BACKSPACES THE TAPE

FOR A RETRY

IOCSXXSFX - SCHEDULER FORCE EXIT.
IILL FILES EXCEPT PASSIVE TAPE FILI::S - BRANCHING TO THE

CHANNEL SCHEDULER WI-'EN FORCING THE PREVIOUS OPERATION TO
BE STARTED OR COMPLI::TED. WILL FORCE THE CHANNEL TO BE
CLEARED.

10CSXXSVRL - SINGLE VIIRIABLE RECORD LENGTH.
VARIIIBLE BLOCKED OUTPUT TAPE FILES - DURING A PUT OP­

ERATION. THIS W ILL BE LOADED WiT THE CURRENT RECORD
LENGTH. THIS IS ADDED TO 10CSXXRLAC TO CHECK IF THE OUT­
PUT AREA HAS BEEN FILLED.

10CSXXTBC - TAPE BLOCK COUNT.
ALL FILES - DTF WORK AREA FOR OL OCK COUNT.

IOCSXXTFLB - TAPE FILE LABEL.
ALL TAPE FILES - THE CHECK CHARACTER DEFINING TYPE OF

TAPE LABELS.
o DEFINES STANDARD LABELS.
I DEFINES AN UNLABELLED FILE.
2 DEFINES NON STANDARD LABELS.

IOCSXXTFLI - TAPE FILE LABEL I.
ALL TAPE FILES - FILE TYPE CHECK CHARAC TER.

o DEFINES OUTPUT OR PASSIVE TAPE FILES.
I DEFINES INPUT FILES.

IOCSXXTFL2 - TAPE FILE LABEL 2.
ALL TAPE FILES - ALTERNATE DRIVE CHECK CHARACTER.

o DEFINES NO ALTERNATE DRIVE.
I DEF I NES liN AL TERNA TE OR I VE.

IOCSXXTFL3 - TAPE FILE LABEL 3.
ALL TAPE FILES - CHECK LABEL CHECK CI-'.ARACTER.

o DEFINES A CHECK OF THE COMPLETE LABEL.
I DEFINES NO LABEL CHECKING.
2 DEFINES IDENTITY CHECKING ONLY.

IOCSXXTFL4 - TAPE FILE LABEL 4.
ALL TAPE FILES - TAPE MARK AFTER HEADER CHECK CHARAC­

TER.
o CEFINES NO TAPE MARK.
1 DEFINES A TAPE MARK.

IOCSXXTFL5 - TAPE FILE LABEL 5.
ALL TAPE FILES - REWIND OPTION CHECK CHARACTER.

o DEFINES NO REWIND.
1 DEFINES REWIND ONLY.
2 DEF I NES REW IND UNLOAD.

10CSXXTHT - TAPE HASH TOTAL.
ALL TAPE F IL ES - THE DTF WORK AREA FOR ACCUMULAT I NG

HASH TOTALS FOR TI-'E FILE.

10CSXXTRC - TAPE RECORD COUNT.
ALL TAPE FILES - DTF WORK AREA FOR RECORD COUNT. REC­

ORD COUNT IS UNOBTAINABLE FOR UNBLOCKED FILES.

10CSXXTRIG - TRIGGER.
ALL FILES EXCEPT PASSIVE TAPE FILES - BRANCH BACK TO

10CSENTRY AFTER THE SETTING OF THE PENDING SWITCH. INI­
TIALLY SET TO FORCE TWO READS FOR AN INPUT FILE ON THE
FIRST GET OPERATION. ON VARIABLE BLOCKED INPUT FILES. IT
CHECKS THE LAST I/O OPERATION FOR A WRONG-LENGTH RECORD.
UNIT RECORD FILES BRANC TO 10CSENTRY.

10CSXXVBCA - VARIABLE BLOCK COUNT A.
FIXED BLOCKED OUTPUT AND VARIABLE BLOCKED FILES - FOR

A FIXED BLOCKED OUTPUT FILE. THIS CONTAINS THE ADDRESS OF
THE GROUP MARK WORD MARK·LOCATION FOR I/O AREA A. wILL BE
USED DURING THE PADDING ROUTINE. FOR VARIABLE BLOCKED
FILES. WILL CONTAIN THE UNITS POSITION OF THE BLOCK CHAR­
ACTER COUNT FOR I/O AREA A.

10CSXXVBCB - VARIABLE BLOCK COUNT B.
FIXED BLOCKED OUTPUT AND VARIABLE BLOCKED TAPE FILES -

WILL CONTAIN THE LOCATION OF THE GROUP MARK WORD MARK
POSITION OF I/O AREA B. WILL BE USED DURING THE PADDING
ROUTINE FOR A FIXED BLOCKED OUTPUT FILE. WILL CONTAIN THE
IIDDRESS OF THE BLOCK CHARACTER COUNT UNITS POSITION FOR
VARIABLE BLOCKED FILES.

10CSXXVBSA - VARIABLE BLOCK SINGLE A.
VARIABLE BLOCKED TAPE FILES - AN ADCON OF THE UNITS

POSITION OF I/O AREA A. MOVED INTO 10CSXXENDD TO CONTROL
THE AMOUNT OF TI-'E I/O AREA REMAINING TO BE USED BY A GET
OR PUT INSTRUCTION.

10CSXXVBSB - VARIABLE BLOCK SINGLE B.
VARIABLE BLOCKED TAPE FILES - AN ADCON OF THE UNITS

oOSITION OF I/O AREA B. MOVED TO 10CSXXENDD TO CONTROL
THE AMOUNT OF TI-'E I/O AREA REMAINING TO BE USEO BY A GET
OR PUT INSTRUCTION.

10CSXXWLR - WRONG-LENGTH RECORD.
VARIABLE BLOCKED INPUT FILES - WRONG-LENGTH RECORD

SEQUENCE. UPDATES TI-'E WRONG-LENGTH RECORD COUNT AND TI::STS
FOR TEN RETRIES. IF SO. WILL BRANCH TO 10CSXXWLX.

10CSXXWLRC - WRONG-LENGTH RECORD COUNT.
VARIABLE BLOCKED INPUT TAPE FILES - A COUNT OF THE

NUMBER OF TIMES THE WRONG-LENGTH RECORD ROUTINE WAS
ENTERED.

10CSXXWLRX - WRONG LENGTI-' RECORD EXIT.
VARIABLE BLOCKED INPUT - IF THE BLOCK CHARACTER COUNT

DOES NOT AGREE WITH THE NUMBER OF CHARACTERS READ. THIS
WILL BRANCH TO THE WRONG-LENGTH RECORO ROUTINE.

10CSXXWLX - WRONG LENGTI-' EXIT.
VARIABLE BLOCKED INPUT FILES - BRANCH TO THE USER'S

WRONG-LENGTH RI::CORD ROUTINE AODRESS.

10CSXXWORK - WORK.
ALL FILES EXCEPT PASSIVE TAPE FILES - THE ADDRESS OF

THE WORK AIlEA ASSIGNt:D TO THIS FILE.

10CSXXWTG - WAITING.

96

TAPE FILES - fl::5T5 THE PENDING SWITCH FOR PENDING OP­
ERATIONS. IF NOT, CONTINUE TO READ OR WRITE OPERATION.

EVALUATION SHEET

IBM 1410 INPUT/OUTPUT CONTROL SYSTEM

PROGRAMMING SYSTEMS ANALYSIS GUIDE. FORM C28-0541-1

FROM

NAME

OFFICE NO.

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED FOLD

o SUGGESTED ADDITION (PAGE , TIMING CHART, DRAWING, PROCEDURE, ETC.)

o SlJGGESTED DELETION (PAGE

o ERROR (PAGE

EXPLANA TION

FOLD FOLD

NO POSTAGE NECESSARY IF MAILED IN U. S. A.
FOLD ON TWO LINES, STAPLE, AND MAIL

FOL.D

FOL.D

STAPL.E

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAIL.ED IN U. S. A.

POSTAGE WIL.L. BE PAID BY

IBM CORPORATION

P. O. BOX 390

POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS, DEPARTMENT D91

STAPL.E

~ '-A L.t:.

FOL.J:)

FIRST CL.ASS
PERM IT NO. 81

POUGHKEEPSIE. N.Y.

FOL.J:)

STAPL.E

w
z
-'
C)
Z
o
-'
(

I­
:J
U

2/64::5M-VO-lOC

C28·0541·1

ITmOO
(!)

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

.:..

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	replyA
	replyB
	xBack

