
Systems Reference Library

IBM 1620 Data Processing System, Model 2
Binary Capabilities and Index Registers

This publication explains the 1620 Model 2
special features, Binary Capabilities and
Index Registers. The instructions for both
features are described and illustrated with
data flow diagrams. The Binary Capabilities
section includes a brief explanation of the
binary, octal, and decimal number systems.

© 1963 by International Business Machines Corporation

File No. 1620-13
Form A26-5764-0

Copies ofthis and other IBM publications can be obtained through IBM Branch Offices. Comments concerning the
contents of this publication may be addressed to: IBM, Product Publications Department, San Jose, California

Index Registers ••••••••••

Programming Advantages • • •
Effective Address Computation· • •
Indexing Execution Time • • • •
Indexing and Indirect Addressing
Index Register Modification
Program Indicators· ••••••

Index Register Instructions· ••••

Branch and Select (BS-GO)· •
Branch and Modify Index Register (BX-61)

Branch and Modify Index Register Immediate

(BXM-G2) •••••••••••••••••••

Branch Conditionally and Modify Index Register
(BCX-63) ••••••••••••••••••••

Branch Conditionally and Modify Index Register

5
5
5
6
6
6

6
6
7
7

7

8

Immediate (BCXM-64) • • • • • • • • • • • • • 8

Branch and Load Index Register (BLX-65) • • • • 8
Branch and Load Index Register Immediate (BLXM-66) • • 8
Branch and Store Index Register (BSX-67) 8
Move Address (MA-70) • • • • • • • • • • • • • • • • • • 9

CONTENTS

Binary Capabilities
Decimal
Binary· ••
Octal ••

Number Conversion
Binary to Octal Conversion
Octal to Decimal Conversion •

Decimal to Octal Conversion •
Instructions •••••••••••

Branch On Bit (BBT-90) •••

Branch On Mask (BMK-91)
OR and AND Logic • • • •
OR to Field (ORF -92) • • • • • • •
AND to Field (ANDF-93) •••••••

Exclusive OR to Field (EORF-95)
Complement Octal Field (CPLF-94)
Octal to Decimal Conversion (OTD-96)
Decimal to Octal Conversion (DTO-97). • •

Read Binary Paper Tape (RBPT-37, 08-9-33).
Write Binary Paper Tape (WBPT-37, 08_9-32) •

• • 10
·10

• ·10
• • ·10

• ·10
• ·10

-11

·11
• •• 11
• •• 11

011
• • 12

• • ·12
• • 12

·12
•••• 13

• • ·13
·14

• ·14
• 15

PREFACE

The Index Register and Binary Capabilities features
increase the programming flexibility and performance
of the 1620 Model 2. The fourteen 5-position index
registers are valuable for modification of instructions
and simplification of program loops. The Binary

Capabilities feature allows direct input and output
of binary data via the IBM 1621 Paper Tape Reader
and the IBM 1624 Tape Punch. No intermediate
steps are necessary. Once binary data is read into
the 1620, it can be processed in octal or decimal form.

Index registers offer savings in program steps,core
storage, and computer processing time. In addition,
the programming of repetitive calculations or opera­
tions is greatly simplified.

An index register allows modification of the P
and Q addresses of 1620 program instructions with­
out actually changing the addresses in the instructions
themselves - the address modifications take place
in the address registers. The contents of the index
register are algebraically added to the specified ad­
dresses during execution of the instruction.

With the 1620 Model II, two bands of seven
(total of 14) index registers (IX) are available. The
first seven (Band 1) are located in core storage
positions 00305 through 00339; Band 2 uses locations
00345 through 00379.

PROGRAMMING ADVANTAGES

The index register feature offers many programming
advantages, the greatest of which is the ability to
modify instructions in a program loop. For example,
without index registers, to add four fields to another
field, it is easier (and as efficient) to use four sepa­
rate add instructions rather than to program a loop
to use one add instruction four times. With index
registers, however, the operation can be programmed
with one add instruction and one instruction to modify
the index register.

When more than one instruction address in a
program loop requires modification, an even greater
savings in core storage and programming time can
result with the use of an index register. For ex­
ample, assume that core storage contains two sets
of ten quantities, A1 through A10 and B1 through
B10. The problem is to program a loop to add A1
to B1, A2 to B2, ..• A10 to B10. Without index
registers, and disregarding initialization, this
requires a minimum of four instructions.

With the indexing feature, the 1620 Model 2 can
be programmed to solve the above problem in two
steps - one add instruction, and a combination
compare-modify-branch instruction (see the Branch
Conditionally and Modify Index Register instruction).

As stated previously, two bands of 7 index
registers are available. An instruction is pro-

INDEX RE GISTERS

vided to select the seven index registers (IX) in
Band 1, or the seven in Band 2, or to select the
"no IX" mode.

Only one IX of a band is used at a time. The
individual IX is selected by a combination of flag
bits in the tens, hundreds, and thousands positions
of the P and/or Q addresses of the instruction to
be modified. As shown in Table 1, an instruction
address with a flag bit in the tens position specifies
IX 1 (of the band previously selected). Likewise,
an instruction address with flag bits in all three
positions specifies IX 7 of the selected band.

An instruction address that contains an index
register flag is said to be indexed.

Table 1. Index Register Identification

Address IX

00000 1

00600 2

00060 3

00000 4

06060 5

00000 6

00000 7

EFFECTIVE ADDRESS COMPUTATION

Computation of the effective address uses five digits"
from the index register regardless of any flags in the"
IX. Flags in the IX are not added to the effective
address.

All indexed addresses are considered positive
even if a flag is over the units position; the IX value,
however, can be negative; and when the algebraic
sum of the two is negative, the result is expressed
in 10's complement form (see Figure l)e An invalid
effective address, such as that shown in Figure 1,
will result in a MAR check.

NOTE: The computation of an effective address does
not alter the condition of the High/Positive, Equal/
Zero, or Overflow indicators.

s

IX 1 IX 1

Branch
Address

99995

(Effective Q Address)

Figure 1. Indexing, Negative Result after Modification

INDEXING EXE CUTION TIME

An additional 5 memory cycles or 50 microseconds
are required during I-time for each address that is
indexed.

INDEXING AND INDIRECT ADDRESSING

Any P or Q address that is a core storage location
can be indexed. Any address that can be indexed
can also be an indirect address. When an address
is both indirect and indexed, the indexing takes
precedence - the resulting effective address then
becomes an indirect address. The address specified
by the indirect address can also be indexed and/or
indirect. This chain can continue until the final
effective address is not an indirect address.

INDEX REGISTER MODIFICATION

The new contents of a modified IX is the algebraic
sum of the former contents and the modifying
amount (see Figure 2). When a sign change occurs,
the correct result is in the IX. Negative amounts
are expressed in true form, e. g., minus 196 as
00196.

When the "no index register" mode is selected
and anIX operation code (61-67) is to be executed,
the operation is treated as invalid. When no IX is
selected for an IX operation code (due to no Q flags),
the operation is performed for IX "zero." Band 1
IX "zero" is located at positions 00300-00304; Band 2,
at pOSitions 00340-00344. The contents of IX "zero"
are not used to compute an effective address.

6

After 00196

Branch
Address

Figure 2. Index Register Modification

PROGRAM INDICATORS

Before 00206

Three additional indicators come with the IX feature.
These indicators provide the ab{lity to determine,by
programming,which band of IX is selected. The
condition of the indicators can be tested by the
Branch Indicator or Branch No Indicator instruc­
tions. The indicators are not affected by the test­
ing.

The indicators as shown in Table 2 are con­
sidered to be ON when the condition shown exists.

Table 2. IX Band Program Indicators

Indicator Condition

30 Neither Band Selected

31 Band I Selected

32 Band 2 Se lec ted

INDEX REGISTER INSTRUCTIONS

Eight additional instructions are provided with the
index register feature: seven for loading, storing,
and modifying, and one Move Address instruction.
Provision is made through the Branch and Select
(BS-60) instruction to select Band 1, Band 2, or
"no band. "

The Q addresses of the new instructions either
specify the location of data or contain data (immedi-

ate instructions). Flag bits are used in the QS' Q9'
and Ql0 positions to specify the IX (see Table 1).
The P address is a branch address.

Five of the instructions are unconditional branch
instructions - after IX loading, storing, or modify­
ing, the computer branches to the P address. Two
instructions are of the conditional branch type­
after modification of an IX, a branch is initiated only
if the contents of the modified IX are not zero or
have not changed sign.

Branch and Select (BS-60)

Description. The Branch and Select instruction pro­
vides for IX band selection or no band selection. The
selected band remains selected until another Branch
and Select ins truction is executed or until power is
removed from the system. The Reset key has no
effect on band selection. The "no band" mode is
selected automatically when power is applied to the
system. The Q7-Q10 positions of the instruction
are not used. The selection desired is indicated
by the Q11 digit as shown below:

o - IX Band 0 (no band)
1 - IX Band 1 (IX 1-7)
2 - IX Band 2 (IX 1-7)

The P address specifies the next instruction to be
executed.

Execution time. 60 microseconds

Branch and Modify Index Register (BX-61)

Description. The BX instruction is used for IX
modification. The field designated by the Q ad­
dress is added to the selected IX. The IX is se­
lected by flags in the QS-10 positions of the in­
struction (Figure 3).

The field to be added to the IX is not limited
to five digits; thus, one or more IX can be modi­
fied with one instruction. It is the high order
flag bit in the P and Q fields that defines the length
of the field to be modified and the length of the
modifying field.

The High/Positive or Equal/Z ero indicator is
set according to the results of the modification.
The Overflow Check indicator is turned ON only if
the Q field is longer than the IX field. If the length
of the Q field is less than or equal to the length of
the IX field, an overflow may result from a "carry"
out of the high order position of the IX field. How­
ever, in this case the Overflow Check indicator is
not turned ON and the overflow digit is lost.

The P address specifies the next instruction
to be executed.

IX Selected by Q Flags

~~ ____ ~ __ ~~~ \r-_IX __ 7~
I 61 I PPPPP QQQQQ After 00200

Branch
Address ~

Q Address

\
10101010141

Before 00196

Figure 3. Branch and Modify Index Register (BX-61)

Execution time. 6.5 + • 5Lq + Lx (average) memory
cycles, where Lq is the length of the
Q field, Lx is the length of the IX
field. (A memory cycle is 10 micro­
seconds.)

Branch and Modify Index Register Immediate (BXM -62)

Description. The BXM instruction is similar to the
Branch and Modify Index Register instruction except
that the five digits in the Q portion of the instruction
are usedas the modifier (see Figure 4). Flags in the
Q field specify the IX to be modified.

Execution time. 140 microseconds.

IX Selected by Q Flags

Branch
Address

After

Before " IX 7

00204

00200

Figure 4. Branch and Modify Index Register Immediate (BXM-62)

7

Table 3. Conditional Branch Examples

Modifier IX (before) IX (after) Branch

00005 00015 00010 Yes

00010 00010 00000 No

00010 00008 00002 No

00005 00025 00020 Yes

00020 00020 00000 No

00010 00005 00005 No

00006 99995 00001 No

00040 99970 99930 Yes

00035 99985 00020 No

Branch Conditionally and Modify Index Register (BCX-63)

Description. The BCX instruction is similar to the
Branch and Modify Index Register instruction except
that a branch to the P address is conditional. The
P address specifies the next instruction to be exe­
cuted if (after modification) the sign of the IX has
not changed or the result is not zero. If the sign
has changed or the result is zero the next sequential
instruction is executed. If an overflow would result
from a carry out of the high order position of the IX
field, the next sequential instruction is executed (see
Table 3).

Execution time. 6. 5 + • 5Lq + Lx (average) memory
cycles, where Lq is the length of the
Q field, and Lx is the length of the
IX field. (A memory cycle is 10
microseconds.)

Branch Conditionally and Modify Index Register
Immediate (BCXM-64)

Description. The BCXM instruction is similar in
operation to the Branch Conditionally and Modify
Index Register jnstruction except that the five digits
in the Q portion of the instruction are used as the
modifier (see Figure 4). Flags in the Q field
specify the IX to be modified.

Upon completion of the IX modification, a branch
to the P address is conditional as described for the
BCX instruction.

Execution time. 140 microseconds.

Branch and Load Index Register (BLX-65)

Description. The Branch and Load Index Register
instruction loads the five digits of data specified

8

IX 3

\
65 1 PPPPP QQQQQ

Branch \ Address
Q Address

\

Figure 5. Branch and Load Index Register (BLX-65)

by the Q address to the selected IX. The flags in
QS-10 positions select the IX.

A flag bit in the units position of the Q field is
transferred to the IX and a flag is automatically
placed over the high order position of the IX field.
No other flags are transferred (see Figure 5).

The P address specifies the next instruction
to be executed.

Execution time. 140 microseconds

Branch and Load Index Register Immediate (BLXM-66)

Description. The BLXM instruction is similar to
the Branch and Load Index Register instruction ex­
cept that the Q portion of the instruction is used
as the data.

Execution time. 140 microseconds.

Branch and Store Index Register (BSX-67)

Description. The BSX instruction stores the five
digits of the selected IX at the Q address (see Fig­
ure 6). If the contents of the IX are negative, a
flag is stored with the units position. A flag is

ppppp

Branch
Address

IX Selected by Q Flags

I
I QQQQQ I

\
Q Address

I 0 10 10 1 01 5 1 -------11

Figure 6. Branch and Store Index Register (BSX-67)

automatically placed in the high order position of the
stored data. No other flags are transmitted.

Execution time. 140 microseconds.

Move Address (MA-70)

Description. The Move Address instruction causes
the five digits specified by the Q address of the in­
struction to be moved to the P address (see Figure
7). Flags in the P field remain unchanged.

Execution time. 140 microseconds.

I 70 I 00500 I 00600 I
"-v--''-.r-'

~r I 11/
Before I 6 I 4 I 41 511 I 1 31 7 11 16 1 61

~

After 1 3\ 7 \1 I 61 61 • I

Figure 7. Move Address (MA-70)

9

BINARY CAPABILITIES

The Binary Capabilities feature enables the 1620-2
to process binary data for such applications as proc­
ess control, missile and satellite tracking, and
weather observation. Binary data is collected in
octal form, can be converted to decimal form for
computation, and processed for binary, octal, or
decimal output. A brief treatise of each number
system follows.

Decimal

Mankind was endowed with ten fingers - the prob­
able reason for universal acceptance and use of the
decimal or base ten system. The decimal number
1375, for example, can be expressed as 1(103) +
3(102) + 7(101) + 5(100) which equals 1000 + 300 +
70 + 5. (Any number with a zero exponent equals
one.)

Binary

Binary data consists of two digits, zero and one.
Thus, the decimal digits 0 through 9 are expressed
in binary form, as follows:

Decimal Binary Decimal Binary
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

Note that a one in the low-order position of the bi­
nary number is equivalent to a decimal one; a one
in the second position is equivalent to a decimal
2; a one in the third position, to a 4; a one in the
fourth position, an 8; a fifth position would be 16;
the sixth, 32, and so on. The decimal equivalent
of each position is twice that of the position to its
right.

Octal

Octal data is expressed to the base 8 just as decimal
and binary data are expressed to the base 10 and 2.
Thus, equivalent octal numbers progress as follows:

10

Decimal Octal Decimal Octal
1 1 17 21
2 2 23 27
7 7 24 30
8 10 31 37
9 11 32 40

15 17 39 47
16 20 40 50

The octal number 2537, for example, is equal
to the decimal number 1375; this relationship is
explained in the follOwing section.

Numbers in systems other than decimal are
identified by subscripts. Thus, the preceding octal
number 2537 is expressed as 25378.

Numbers without subscripts are assumed to be
decimal.

NUMBER CONVERSION

The Read Binary instruction of the Binary Capabilities
feature reads binary data from the 1621. The binary
data is stored in octal form as it enters core storage.
Although this conversion is done automatically, a
brief comparison of the two forms is given to show
their relationship.

Binary to Octal Conversion

The first three positions of the binary number system
can have a maximum decimal equivalent of 7 (1112=7).
Because seven is the highest number in the octal
system, a binary number can be separated into 3-
position groups - each group representing the
equivalent octal number. 0101010111112 for
example, can be separated as follows:

~ ~ &!L J!1
2 5 3 7

Thus, 0101010111112 = 25378

Octal to binary conversion is, of course, simply the
reverse of binary to octal.

Octal to Decimal Conversion

Octal numbers are converted to decimal numbers by
expanding each position, as follows:

25378 equals 2(83) + 5(82) + 3(81) + 7(8 0)
2(512) + 5(64) + 3(8) + 7(1).

25378 = 137510

Decimal to Octal Conversion

Decimal numbers are converted to octal numbers by
successive divisions by eight until a zero quotient is
obtained. The remainders, in the reverse order,
form the octal number. For example, 137510 is con­
verted to 25378 as follows:

Divisions Remainders

171
81137510 7

21
81171 3

2

8/21

o
8r2 :=J

25378

INSTRUCTIONS

Ten instructions are provided with the Binary Capa­
bilities feature. Octal fields have the same flexibility
and restrictions that exist for decimal fields. Gen­
erally, the field length must be at least two digits in
length, a flag is used to specify the high-order digit
of the field, etc.

Branch On Bit (BBT-90)

Description. The Q8 through Q11 digits of the in­
struction specify a four digit core storage address
(0000-9999). The bit configuration of the data at
this address is compared with the bit configuration
of the Q7 digit of the instruction. If any bit of the
Q7 digit corresponds to any bit in the data specified

by Q8-Q11 (the C bit is excluded from this compari­
son), the 1620-2 branches to the P address. If no
successful comparison occurs, the next instruction
in sequence is executed. Both the P address and the
Q8-Q11 address may be indirect addresses. The
Q8-Q11 address is restricted to the first 10,000
positions of core storage. An indirect Q8-Q11 ad­
dress, however, makes possible the placement of
data at any core storage address.

Figure 8 shows that data at 00500 is compared
with the Q7 digit. Since there is no 1-bit in the data
at 00500, the branch does not occur.

Execution time. 70 microseconds.

I 90 I P Address 11 I 0 5 0 0

'-t-'''-.-''

I

Branch to P Address

Figure 8. Branch on Bit (BBT-90)

Branch on Mask (BMK-91)

-k~
14141812121

No Branch

Description. The Q8 through Q11 digits of the in­
struction specify a four digit core storage address
(0000-9999). The bit configuration of the data at
this address is eompared with the bit configuration
of the Q7 digit of the instruction. A branch to the
P address occurs when the 8,4, 2, and 1 bits that
make up the Q7 digit are also present in the field
specified by the Q8-Q11 address. The flag bit is
also considered in the comparison only if the mask
digit at Q7 contains a flag bit. If the mask does not
contain a flag bit, the presence of a flag bit in the
data at Q8-Q11 is of no consequence. If the com­
parison is not successful, the next instruction in
sequence is executed.

Although the Q8-Q11 address is restricted to
the first 10, 000 positions of core storage, an in­
direct Q8-Q11 address makes possible the place­
ment of data at any core storage address. Both the

11

P address and the QS-Q11 address may be indirect
addresses.

Execution time. 70 microseconds.

OR and AND Logic

OR and AND logic consists of two or more inputs
and a resulting output based on the presence or
absence of input data. As shown in Figure 9, the
OR logic provides an output which is a composite
of all the inputs.

Input Bits Output Bits

0011
0111

0100

Figure 9. OR Logic

The AND logic (Figure 10) provides an output
which consists only of those bits that appear on each
and every input line.

Input Bits Output Bits

0011
0001

0101

Figure 10. AND Logic

OR to Field (ORF-92)

Description. The 4, 2, and 1 bits of each digit of
the P field and the 4,2, and 1 bits of the correspond­
ing digits of the Q field become OR logic inputs. C
bits and S bits are ignored. The resulting output
replaces the P field data. C bits are added where
required for correct parity. Flag bits in the P field
are retained. Eight bits in the P field are destroyed.
The first flag bit in the Q field terminates the opera­
tion. Q field data is not altered.

Figure 11 shows data flow for the instruction
92 00500 00600. The resulting data 3767 replaces
the original P data 9127. The flag bit in the tens
position of the P field is not disturbed. The Equal/
Zero indicator is turned on if the resultant field has
no numerical bits.

Execution time. 60+20Lq microseconds.

12

I 92 I 00500 I 00600 I

, ~~ i' ill
Before ,9 11 121 71 21 6 13 16 14 11 I
After 13 1 7161 71 '--v-'

3767 (Output)

Figure 11. OR to Field (ORF-92)

AND to Field (ANDF-93)

Description. The ANDF instruction operates in the
same manner as the ORF instruction except that
AND logic is used in place of OR logic.

For example, using the same data as that used
in Figure 11, the resulting output is 1001, as shown
in Figure 12. The Equal/Zero indicator is turned
on if the resultant field has no numerical bits.

Execution time. 60 + 20Lq microseconds.

I 93 I 00500 I 00600 I

L;yl: il/
Before 19 11 12 I 7 1 I 2 1 6 1 31 6 1 4 11 1

After 11 1 a 1 0 11 I l

1001 (Output)

Figure 12. AND to Field (ANDF-93)

Exclusive OR to Field (EORF-95)

Description. The operation of the Exclusive OR to
Field instruction is similar to that of the ORF (92)
instruction. The only difference is that the octal
data in the P and Q fields is exclusive ORed - that
is, the 1, 2, and 4 bits that are in either (not both)
the P field or Q field are stored in the resultant P
field. For example:

OR to Field Exclusive OR to Field

Input Bits Output Bits Input Bits Output Bits

0011 0011
0111 0110

0101 0101

The Equal/Zero indicator is turned on if the
resultant field has no numerical bits.

Execution time. 60 + 20Lq microseconds.

Complement Octal Field (CPLF-94)

Description. The Q data is complemented on an octal
basis and transmitted to the P field. Conversion and
transmission are terminated by the first flag bits de­
tected in the Q data field even if a flag bit is present
in the units position. The flag in the Q field is trans­
mitted.

Since the octal system has no digit higher than 7,
only the 4, 2, and 1 bits of each digit are comple­
mented and transmitted. The 8 bits are neither
complemented nor transmitted. The C bit is added
to each complemented digit when required for parity.
For example, a 4 digit is complemented to a 3 digit,
and a C bit is added for parity. All replaced P data
is lost. The Equal/Zero indicator is turned on if the
resultant field has no numerical bits.

Figure 13 shows that Q data at 00600 is comple­
mented to 76035 and stored at the P address. The
original Q data remains at the Q address. Table 4
shows how the numerical bits of each digit are com­
plemented. Although the 8 bit is shown with the 4,
2, and 1 bits of each digit, it, like the C and F bits,
is not complemented. Note, however, that the 8, 4,
2, and 1 bits actually form the binary representation
of the decimal digit.

Execution time. 60 + 20Lq microseconds.

Table 4. Complementing Octal

Q Data (Decimal) 8 9 7 4 2

Bit configuration of 1000 1001 0111 0100 0010
each Q digit

Q Data (Octal) 0 1 7 4 2

Bit configuration after 0111 0110 0000 0011 0101
complementing (8 bits
disregarded)

Resulting P Data (Octal) 7 6 0 3 5

I 94 I 00500 I 00600

Figure 13. Complement Octal Field (CPLF-94)

Octal to Decimal Conversion (OTD-96)

Description. The principle of octal to decimal con­
version has been previously explained. The 1620-2
accomplishes this conversion by using a table of
numbers to the base eight. (A table of any number
system less than or equal to nine can be used to con­
vert numbers to base ten.)

If the octal fields to be converted do not exceed
13 digits, the table need not contain any powers of
eight higher than 12, as follows:

From the table it can be seen that 812 equals 68,719,
476,73610 which equals 10000000000008 (13 digits).
The larger the size of the octal field, the higher the
power of eight number that must be stored. A 14
digit octal number would require that the table be
expanded to include 813• The table may be stored
anywhere in core storage.

The core storage address of the units digit of
each power of eight number must be known to the
programmer. If the 80 number (01) is stored at
00399, the 81 units digit would be stored at 00397,
the 82 units digit at 00395, the 83 units digit at 00393,
etc.

The P address of the OTD instruction specifies
the address of the units digit of the 80 number in the
table -- 00399 in the example above.

The Q address specifies the address of the units
digit of the octal field to be converted. A flag bit
determines the length of the Q field.

The decimal equivalent of the octal number is
developed from the power-of-eight table, as follows:
Recall the principle of octal to decimal conversion,

13

where 24378 = 2(83) + 5(82) + 3(81) + 7(8 0). Note
that each digit of the octal number correlates with
a power-of-eight number - the units digit with the 80,
the tens digit with 81, the hundreds digit with 82,
etc. Each power-of-eight number is multiplied by
its associated octal digit. The multiply table is used
and the products of these multiplications are de­
veloped and summed in the product area. The units
digit and sign of the converted number is located at
00099; the high-order digit is automatically flagged.

Execution time. 280 + 10Lq (2Lq-1) microseconds
maximum).

Decimal to Octal Conversion (DTO-97)

Description. The principle of decimal to octal con­
version has been previously explained. The 1620-2
accomplishes decimal to octal conversion in a
similar manner, as follows:

The P address of the DTO instruction specifies
the address where the high-order digit of the resul­
tant octal number is to be stored.

The Q address specifies the address of the units
digit of the power-of-eight number to be used in the
first subtraction. Recall that decimal to octal con­
version is a series of divisions. Automatic Division
is accomplished in the 1620 by successive subtractions.
The power-of-eight number that must be addressed
is one less than the number of digits that will be in
the resultant octal field e If the octal number is to
be five digits long, the fifth table entry (84 or 4096)
is addressed. The programmer must know the size
of the octal field that will be developed.

The decimal field to be converted must be located
at 00099 before the DTO instruction is executed. The
divisor, specified by the Q address, is successively
subtracted from the decimal number. Because the
Q address specifies a divisor whose value is in close
proximity to the value of the dividend, the remainder
has no significance and no more than seven success­
ful subtractions should occur. An eighth successful
subtraction would turn on the Overflow indicator.

The quotient digit is developed in the Multiplier
Quotient register and automatically transferred to
the P address. This first quotient digit, which is
the high-order digit of the octal number is automatic­
ally flagged. The next lower power-of-eight number
is then subtracted from the remaining dividend and
the second quotient digit is developed and transferred
to the P address plus one. This series of divisions
of power-of-eight numbers into remaining dividends
continues until the last entry (80) has been used as
a divisor. The last entry is defined by a :t to the
right. Figure 14 shows how the decimal number

14

Instruction: 97 00500 00386
Stored

Decimal number at 00095-00099 99999 octal digits

85 number at 00382-00386 32768
First subtraction 67231 T

32768
Second subtraction 34463 2

32768
Third subtraction 01695 "3

84 number at 00387-008390 4096

No successful subtraction 01695 30

83 number at 00391-00393 512
Fi rst subtraction 01183 301

512
Second subtraction 00671 302

512
Th i rd subtract ion 00159 303

82 number at 00394-00395 64
First subtraction 00095 3031

64
Second subtraction 00031 3032

8 1 number at 00396-00397 ~

After three subtractions 00007 30323

80 number at 00398-00399 01

After seven subtractions 00000 303237

Figure 14. Decimal to Octal Conversion

99999 is converted to the octal number 303237. The
instruction 97 00500 00386 causes the 85 number to
be subtracted from the decimal number. Three
successful subtractions occur and the quotient digit
3 is stored at the P address 00500. The 84 number
cannot be successfully subtracted from the remain­
ing dividend (overdraws and corrections are not
shown) and a zero is transferred to 00501. The 83

number is successfully subtracted three times, and
a 3 is transferred to 00502. Two successful sub­
tractions occur with the 82 number and a two is
transferred to 00503. The 81 number and the 80
number are successfully subtracted 3 and 7 times,
respectively. The detection of the :t at 00400 stops
the instruction execution. The developed quotient
digits form the octal number 303237 at core storage
locations 00500-00505.

Read Binary Paper Tape (RBPT-37, Q8,9-33)

Description. The Read Binary Paper Tape instruc­
tion operates similar to the Read Alphamerically
(paper tape) instruction. Both instructions trans-

EOL--------~~­

X ----------+_-­
o
C hec k ------------'10.---

8

4
2
1

• Paper
"'-Tape

Motion

•••••••

Figure 15. Read Binary Translation

• • • • • • • • • • •

late a single column to the 1620 two-digit form.
The difference is that the RBPT instruction trans­
fers the 8,0, and X tracks to even-numbered core
storage locations as 1,2, and 4 bits, respectively.
The 1, 2, and 4 paper tape tracks are entered as 1,
2, and 4 bits into odd numbered core storage posi­
tions. C bits are added to the core storage posi­
tions wherever necessary to maintain correct parity.

The P address of the RBPT instruction must
refer to an odd numbered storage location. Reading
continues until an End of Line (EOL) character is
interpreted. Note that the tape feed code is con­
verted to 77 in core storage as shown in Figure 15.

Execution time. Depends on size of input record.

Write Binary Paper Tape (WBPT-37, Q8,9-32)

Description. The Write Binary Paper Tape instruc­
tion causes the 1,2, and 4 bits of two adjacent core
storage positions to be punched into one column of
paper tape. The 1,2, and 4 bits of odd-numbered
core storage positions are punched into the 1,2, and
4 tracks, respectively. The 1,2, and 4 bits of even
numbered core storage pOSitions are punched into the
8,0 and X tracks, respectively.

The P address of the RBPT instruction must
refer to an odd numbered position of core storage.
Writing (punching) continues until an alphameric
record mark (Ot) character is encountered in core
storage. The record mark is translated to an EOL
(end-of-line) punch in paper tape.

Execution time. Depends on size of output record.

15

A26-5764..Q

TIrn~
®

International Business Machines Corporation
Data Processing Division

112 East Post Road, Whi te Plains, New York

~

0'\
N o

;J>
N
0'\
I

(JJ

" 0'\
~
I
o

G3

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16

