Systems

GH20-1292-0

IBM System/360 and =
System/370 ASP Version 3
Asymmetric Multiprocessing
System

- System Programmer’s Manual

Program Numher 360A-CX-15X

The ASP system is a multiprocessing operating system
that provides a compatible extension to the Operating
System (OS). Designed for the user with a large computer
job-shop environment, ASP provides increased automation
of the computing-operation. The ASP system functions
as a programmed operator of OS. It provides advanced
scheduling facilities for optimizing total installation
production.

This manual contains information on how to generate
the ASP system from the distributed tape and how to
customize the ASP system to fill the needs of each
specific installation. It also provides a functional descrip-
tion of the ASP program and its many parts.

PREFACE

This manual is intended for the use of the IBM System Engineer, the IBM
Program Support Representative, or the system programmer at a current or
prospective ASP installation. It contains information on how to
generate the ASP system from the distributed tape and how to customize
the ASP system to fill the needs of each specific installation. In
addition it provides a functional description of the ASP program and its
many parts. User modification and Dynamic Support Program guidelines
are also provided. The material in this manual has been prepared on the
assumption that the reader is thoroughly familiar with the IBM Operating
System (QS).

Other publications currently available for ASP Version 3 are:

e ASP Version 3, Application Programmer's Manual GH20-1291

e ASP Version 3, General Information Manual GH20-1173
e ASP Version 3, Messages and Codes Manual GH20-1290
e ASP Version 3, Operator's Manual GH20-1289
e ASP Version 3, Reference Card. GX20-1927

Availability of the ASP Version 3 Logic Manual will be announced in a
Publications Release Letter.

First Edition (March 1973)

This is a new manual replacing the earlier System Programmer"s Manual,
GH20-0323. It applies to Versioe 3 of ASP (360A-CX-15X) and to all
subsequent versions and modifications until otherwise indicated in new
editions or Technical Newsletters.

Changes are continually made -to. the specifications herein. Therefore,
before using this publication, consult the latest System/360 and /370
SRL, Newsletter (GN20-0360) for the editions that are applicable and
current.

Copies of this and other IBM publications can be obtalned through IBM
branch offices.

A form has been provided at the back of this publication for readers®
comments. If this form has been removed, address comments to: IBM
Corporation, Technical Publications Department, 1133 Westchester Avenue,
White Plains, New York 10604. Comments become the property of IBM.

C) Copyright International Business Machines Corporation 1973

CONRTENTS

CHAPTER 1. INTRODUCTION. « « « « « «

-

CHAPTER 2. SYSTEM DISTRIBUTION AND MAINTENANCE

System Distribution . . . « «
System Maintenance. . . . -

The Method of Using the Delta Deck -

CHAPTER 3. OS SYSTEM GENERATION. . .
SYSGEN Preparation. « « « « o « « « «
ASP PREGEN. . . . - . - o @ -

0S Release 20 and 21 Modules and Macros

PREGEN « ©« <« 2 2« o 2 o 2 = 2 = « « =
ASP PREGEN Modifications . . « - «
SYSGEN Stage I « . «@ o « o « =«

SYSGEN Stage II. v« o« o« o « « o

Stage I OS SYSGEN . . +. v « = =« « «
JChiec o o ¢ o o o 2 « o« o = o a = =
JODEVICE M3Cro . « « « « « a« = « =
UNITNAME MACEO « « 2 o o « « = o =

SCHEDULR Macro - Console Definition.

SUPRVSOR MacCro . . « « < o o o o
SVCTABLE MAcCrO « o« ¢ « « o o = o o
RESMODS MACIO. . « « o« = « « « o =
Repro Cards. « « o« o o '« « « = = &
Stage II Of SYSGEN. - « 2 = o « = « =«

Special Considerations of ASP SYSGEN

ASP POSTGEN Job. . .

O0S Release 20 and 21 Modules Modlfled by ASP POSTGEN

POSTGEN Modifications. . . .

Generating HASP Remote Terminal Programs (RMTGEN) -

CHAPTER 4. FUNCTIONAL DESCRIPTION. .
ASP Initialization. -
Resident ASP Programs (ASP Nucleus) .
ASP DSP Dispatching.
Job Segment Scheduler (JdsS). . . .
Multifunction Monitor (MFM). . . .
Function Control Table (FCT) .

AWAIT Macro-Instruction. . . .

MFM Function - -

ASP System Control Blocks and Tables

Communication .. « « « « « « = «
Job Control Table Routines . . .

Resident Job Queue Table (RESQUEUE).
RESQUEUE Organization and Access . .
Generalized Resource Management. . .
Work-To-Do-Driver (WIDDRVR).
Tape and Unit Record I/0 Routine . .
Console Service. '« .« ¢ ¢ o o ¢ o« «
DSP-To-QOperator Communication. .
Operator-To-DSP Communication. .
Special Operator Fuanctions . . .
Console Message Buffer Pool. . .
Console EITOors « « ¢ o o« o « « =

Conscle Service Message Processing

Writing a CONSAUTH Module. . . .

ASP Disk Input/Output Program (ASPIO).

Single-Record Data Set
Multiple Record Data Set

ASP Disk Input/Output Macro—Instructlon.

ASPIO Track Allocation . « « . .
The Single Track Table

[]
LI Y SR S]

VO VOOV O Ne s W NN

-t

Error RECOVErY « « « « o = + o+ o
ASP Failsoft Facility. . « « « « « .
Main Device Scheduler (MDS) . . .

Dynamic Support Programs (DSP's) - Ba31c.

Input Service (CR, TR and DR). . . .
Input Service Reader Function. .

Input Service ASP Control Card Processor

Reader/Interpreter Service (ASP R/I)

ASP Reader/Interpreter (R/I) Job Flow. .

Post ASP Reader/Interpreter (R/I) Processing . .

Input Requirements
Main Service < . . « e .
Generalized Main sChedullng. «
Main Storage Fenc1ng “« o e a o

Print SErvice. . « « ¢ « 2 o« o « o o,

Train and Forms Modules.

Operator Control « . « . « « .«
Punch Service. . « « « o o o o « « =
Purge. . . . e ' « e o «
Dependent Job Control (DJC). .

L] L]

L] L]

] [

. L]] .]
. []
. .

L]
L]
[]
L]
[] . [L]
L]

L]
.

Dependent Job Control (DJC) Control Blocks < s e e .

Initialization of Job Network. .

Scheduling/Supervision of a Job Network.

Termination of a Job-Net
DJC ASP Interfaces . .« . <« « . .
Dependent Job Control - Access Routines
Use of the DJC Access Routines .
Callable Dynamic Support Programs . . .
Deadline Scheduling. . . « « « « .« .
Remote JOb ProCessSing « « « « « o « =« «
Functional Description . « « « «
Multileaving Line Manager. . .

Remote Terminal Access Method (RTAM)

RJP Operating Environment . . . « « «

°

* @ e e e

Requirements for Remote RJP Terminal Programming
ASP Programmable Terminal Teleprocessing

Data Format . « « « « . .« o =

Regquirements for Remote RJP Terminals.

Network Job Processing (NJP)
Functional Description
NJP Terminal Compatabilities . .
Terminal Transmittal Block Size.
Error Recovery . . . « e e o @
Internal Job Processing (IJP). - . .

ASP Created Data Sets (ACDS - TSO Support)

MAINTASK « . . . -
MAINTASK Controller (MAINTASK) -

Command Processor (ASPVER, ASPLOC, ASPFENCE)
Job Processors (ASPWRITR, -ASPQALL, ASPQRDR);

RAS and Performance (ASPCTCM, DYNDISP)

Job Isclation (AOUTPUT).

TSO Support (ADSGEN1, ADSGEN, ASUBMIT)

CHAPTER 5. ASP SYSTEM INITIALIZATION .
0S Control Cards for ASP Execution. . .
Initialization Control Cards. . « « . .
ACCOUNT. « v« « 2« o 2 e = = o« « s« =« =
ASPCORE. ¢ 2« 2 o o a e a o o« o a o &
BADTRACK . « ¢ 2 4« o o« « o a = o o @
BUFFER ¢« « « « 2« a o« a o« o o« a o o @
CLASS: o 4« « o o a« 2 2 a « o« a« o a «
COLDSTART. o « o 2 2 o a o = =« o « =
CONSOLEe ¢« « « o« e o o « a« = o « «
DEADLINE . .+« & & ¢ « ¢ « « « s « s =
DEVICE & ¢ @ o = o o a o « s =« =« « «
ENDASPIO . v «© & « o a a a o = = « =

ENDINISH « « =« '« 2 o ¢ o o « o o o -

FORMAT + « o« o o o o o « « o o » o

ii

Compressed

GROUP. .

TPL DECK 2 4 o o o o o o a « o« @« a o« o« o a « = =
MAINPROC « ¢ o o« o 2 o = a a« o« « a « 2 o @« « o =
NIPTERM. + « 2 « 2 o =« o @ = o 2 a « s o « o« = =
OPTIONS. -
PFKe 2 ¢« ¢« « o o o o o o« o o« @ s o o = s o« o« a =
PREJOB « « ¢ 2 2 o s o s @« a2 a o a o 2 o 2 o o« =
PRINTER. =« ¢ o 2 o @ ¢« = 2 = @« o« « s s a« = = =
RESCTLBK « « « o o =« s o o « a2 « 2 s s o« s =« = =
RESIDENT . © 2 2 o 2 « o o o s o « o o« s ® s« = =
RESTART. « « o « e « 2 o s o« a2 a =« =« a o a = « =
RI -
RIDATSTN . @ o o« o o @ o o o o« o = o o s 2 « =
RIPARM - - - - - - - - - - - - - - - o‘ - - - - -
RIPLINE. . ¢ ¢ ¢ @ « « 2 o a © o o o a o s o =
RIPTERM:. « « ¢« ¢ o o ¢« o o o o o o a o « o o« « =
SELECT « « « ¢« o« 2 « o o o = o o o o o o o« o o« =
SETNAME. <« o o o o o« s« = o o o s 2 @ o« s o =« = =
SETPARAM e = ° @ 8 % = ® ® w ®w e @ + @ 4 © o
STANDARDS. e ®» %+ ® 2 ® 2 @ % ® = % @ « a2 = a = =
SYSOUT o« « o« o o o o o o o o o o o s @ o « s « =
TRACK. . . . « e e o o @ o @ o a s o o a o o =
MAINTASK Executlon. e s o o o o @ s e s s s ° s e =

LI T T T)

4 8 & 0 8 4 0 & & & s b b b b

L A)

LI R I A

LI T BN DR Y T R I S I I |

[R T R N N D R D D TR Y T B]

¢ & 8 & 4

L] L] L] L]

L] . & . . L]

¢ & & & & B & & b s 0o

CHAPTER 6. ASP SYSTEM CONFIGURATION DESIGN CONSIDERATIONS.

e @& e @ e+ -

Minimum System Requirements
Minimuam Support Processor’'. . . -
ASP Region Size Estimation. « ¢« « « - c o o « o « =«
Minimum Region Calculation . . -

-
- e e @ ® & e e -
-

LI B

-

Region Requirements for Tables Built by Initialization.

ASPIO o v o o« o o 2 o o o = o« @« o« o a o o o o« o« o =
Guidelines for Determining‘a Minimum Require€ment
ASP Buffer Pool . .'. .

0S Reader/Interpreter Under ASP e o @ o .0 = o « o =
Support Device Grouping . « « « o o o o o « o « o =
Main Device Scheduling. « « « ¢« =« o « o 2 « o = « «
DJIC Design Considerations « « « « « « o o o o = « o
How to Change Internal Tables
Input Service Readers. . . . “« o o s o o o @
Determining What Modules to be Made Resident. . . .
CHAPTER 7. WRITING DYNAMIC SUPPORT PROGRAMS. . . .
Introdaction. « <« v o« 2 « o o o o o 2 o o s o ° o o
General DiSCUSSION. o <« o « « o o o s o o o o o o =
Programming Considerations. « « ¢« « ¢ ¢ o o ¢ « o «
Console Service ConsiderationsS. « « o« o« o o o < o «
ASP Input/Output Comnsiderations
Examples Of ASPIO USAgE€ « « « o o o = o o s« = « = =
Assembling a DSP. « v« 2« 2 2 o o = o @« o« o « a o« = =
DSP Checklist. . . o o @ ¢ o 0. e o o o o o o o @
DSP Initialization . . « « o o« ¢ ¢ ¢ o o o o o »
DSP Termination.« e = e - -

for

¢ & 6 & 2 4

Requirements For Writing Dynamlc Support Programs,For

DSP Failsoft e o ® o o & e e o e e =

CHAPTER 8. POLYASP v« 2 o o o o o « s s o = s o o @
POLYASP Reader Restrictions .

[}
L]
.
.
L]
L]
(]
L]
L)
L]

CHAPTER 9. DEBUGGING AIDS IN ASP .

ASP BBEND DUIIPS + « « « s o o o o o o o « o = o o =
Console Status Table . . &« &4 o ¢ ¢ « o« o = = = =
MAINPROC TableS. « o« « o o o o @« o« o o o = s =« =
Printer Resource Table . .« « &« ¢ ¢ ¢ o o « o o «
Support Units Table. .« ¢ ¢« ¢« ¢ o o ¢« o « s = «
SETNAMES Table . &« ¢ ¢ ¢ 2 o o o o a o o « = = =
SYSUNITS Table e o = o o o a o

ASP I1I/0 Trace Table. .
ASP Main StOrage Map . « « « « « = o =« « a = = =

iji

& & & & s 4 » s

¢ & 4 & b & & @

[)

M

[I Y)

oao.l!llQOunaon

L] [] L] . [] [] [] L] o [] L]) [] [4+ 0 L) []

e o ¢ o &

L] L] .] .] L} L]

LI R R SR TR B}] L R I T TR T R S S)

[L]] L] [

[L S) .

[] . [] . [] [[[] [.] [] [[[] . [] []

[] L] [] L] [] L]

. ¢ @ [L] [] L]

124
127
129
132
133
134
134
135
137
138
139
140
181
142
143
144
146
152
154
155
159
161
162

166
166
166
167
167
167
168

168
169
174
176

. 178

178
178
180

181
181
181

- 184

186
186
187
188
189
189
190
190
191

194
195

197
197

198 -

198
198
199
199
199
199
199

ASP Trace Table. « .« ¢« ¢« o « o o o 2.0 =
Function Control Table
RIP TAGbleS « « ¢« 4 e e« o s o o o o o o
Analysis at ASP Initialization.
Storage Dump on Initialization Error. . . .
Dump CoOre DSP (DC)e o o o« o o o« o o o o o =

CBPRNT DSP.

Terminating a DSP via the FAIL command.
Snap Dumping ASP Control Blocks Using DISPLAY/DC

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

$ 8 & & 2 4

Oé o s o ¢
@ .
e ¢ ¢ § o
[

MACRO-INSTRUCTIONS « « « o o o o o o o o o o
ASP NUCLEUS MODULES. « v « = o o o « « « « «
RESIDENT MODULE REQUIREMENTS . . « « « « - .
PROGRAM MODULES OF THE ASP SYSTEM.

MULTILEAVING <« « o @ ¢ « o o « « « o « « «

ILLUSTRATIONS

Figure 1.

Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Fiqure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Fiqure 20.
Figqure 21.
Fiqure 22.

Relationship Between the Basic Tables, Blocks,

and Files of the ASP Supervisor -

Arrangement of Fields in Input Message Preamble

Flow of an Input Message. . « « « « «
Flow of an Output Message
Track Allocator Table - 3330. .
Track Allocator Table - 2314. . .
Track Allocation Table - 2314 . .
Single Track Table Entry.
Access Method Exit. « ¢« ¢ 4 ¢ o o o« o «
Accounting Routine Exit
Find EXit « o« « o o o o = «
Queue Manager Exit.
Return Exit « o o o
Generalized Main Schedullng Example 1
Generalized Main Scheduling - Example 2 . . .
Print Service Parameter Cross Reference Chart
Sample JOb NetworK. « « o o o o o o o o « = =
Sample JOb NEetWOrk. « « « « 4« o o s = « o« =«
DJC Functional Relationship . « « « « « « &
DJCUPDAT ASP Interfaces

Interrelationship of ASP RJP Control Blocks
IJP ASP OVEIXVieW. o« o« o o o o o o o o o « =

.
»
L]

I ¢ o o
.

s & & 0

s & 8

s s e

iv

.

L] . L] L]

199
200
200
208
208
209
211
219
219

220
337
338
339

345

CHAPTER 1. INTRODUCTION ‘

This manual is designed to provide the necessary insight to install,
customize, service, and otherwise use the IBM System/360 and System/370
Asymmetric Multiprocessing System known as ASP.

If the reader is unfamiliar with ASP it is highly recommended that he
read the ASP Version 3 General Information Manual, GH20-1173, ASP
Version. 3 Operator's Manual, GH20—1289, and ASP Version 3 Application
Programmer's Manual, GH20-1291, prior to using this manual. These
manuals provide a broad view of the ASP system and serve as excellent
prerequisite reading to the more detailed information contained herein.

ASP has been written to satisfy the requirements of a wide spectrum of
large data processing users. Recognizing the need of each user to
initialize his ASP system to meet his own specific needs this manual
attempts to provide the tools necessary for such a task. Total system
performance is greatly dependent on many factors over which the user has
ultimate control. These factors include:

e Quality coding techniques in user modifications

* Selection of ASP Iﬁitialization control card parameters

* User job mix

e Amount of available storage

e System hardware configquration

® 0S Tuning
ASP provides great flexibility in tuning the system for maximum

performance. A thorough understanding of the material contained in this
manual will increase the probability of a very successful ASP system.

CHAPTER 2. SYSTEM DISTRIBUTION AND MAINTENANCE

SYSTEM DISTRIBUTION

The ASP system is distributed by the IBM Program Information Department
{(PID) as a nonlabeled, multifile tape. This tape contains:

1. AsP PREGEN and POSTGEN jobs for OS SYSGEN.

2. A source library containing programs and macros which are OS
release dependent. Object decks for these programs are in the
PREGEN and POSTGEN jobs.

3. An object deck library containing assembled ASP modules suitable
for link editing.

4. A source library containing all ASP programs and macros.

5. A sample program library containing maintenance decks and
procedures.

The ASP Program Directory accompanies the distribution tape with a
description of the tape's contents, data retrieval methods and
instructions for adding the ASP programs to the system.

When applicable, a PTF tape will be sent with the distribution tape,
which will contain updated maintenance changes to the ASP programs and
new versions of the ASP PREGEN 'and POSTGEN . jobs to support additional 0OS
releases. ASP Version 3 supports OS MVT release 20.7 through release 21
only.

SYSTEM MAINTENANCE

When it is necessary to make a correction to an ASP module, the normal
practice is to issue the fix as a source change which the user applies
to his system. These changes are broadcast by the Field Engineering
Retain system to all FE offices after the development group and the
initial requestor have validated the fix.

When a number of changes to an ASP release has accumulated, these
changes are packaged as a PTF which is shipped automatically by PID to
ASP users of record.

The user may elect to apply fixes selectively as they appear in the
Retain system or wait for a cumulative PTF before making a full update
to the system.

There is a standard method of applying APAR fixes which the user is
urged to follow. To implement the maintenance scheme (described below)
a set of maintenance procedures and decks (called delta decks) is
supplied on the ASP distribution tape.

There is a delta deck supplied for every module in the ASP system. The
delta deck is a job which executes a special procedure consisting of two
steps, an update step (using IEBUPDTE) and an assembly step.

THE METHOD OF USING THE DELTA DECK

The user punches the cards specified by the Retain fix for his problem.
The change cards are placed into the proper module's delta deck in
sequence number order. The delta deck is then placed in the users job
stream for execution. The procedure executed by the delta deck performs
an update against the ASP source library and the updated source is
placed in a temporary data set, for use by the assembly step. The
distributed source library should never be modified. Once the assembly
is completed successfully the user has an object deck which is then
linkage edited into a library of his choosing. It is advisable to
maintain a separate maintenance JOBLIB data set, to receive updated ASP
modules, to which the basic ASP JOBLIB is concatenated at execution
time. Using the delta deck method of applying changes maintains the
integrity of the ASP symbolic base because it is never altered directly.
This ensures a consistent base against which changes may be planned by
the ASP maintenance group.

The complete set of delta decks is maintained by the user and the change
cards are accumulated in the individual delta decks. This also provides
a convenient way to keep user modifications separate from the ASP
symbolic base. Thus, all module changes, both user modifications and
maintenance changes, are kept in one place where possible conflicts
between user and maintenance changes may be easily found.

Experience has shown that any maintenance procedure which does not
ensure the integrity of the ASP symbolic base causes unnecessary
problems whenever an error occurs in updating that base.

CHAPTER 3. OS SYSTEM GENERATION

SYSGEN PREPARATION

The generation of an Operating System (0S) to be used in an ASP
environment requires additiomal steps in the SYSGEN process to create
the interfaces which ASP needs to manage the resources of the system.

There are four basic steps to the ASP/0S SYSGEN: ASP PREGEN job, 0OS
Stage 1, 0S Stage 2, and ASP POSTGEN job. Each one of these steps will
require some special consideration by the ASP user and each step is
discussed in detail later in this section.

In planning an ASP/0S SYSGEN the user should be aware of certain basic
concepts of the ASP system which will help in understanding the detailed
discussion of SYSGEN which follows. There are two types of ASP systems
and certain commonly used terms which need to be understood.

1. Support Processor - CPU in which the ASP program resides

Note: When using mixed release levels of 0S, the highest level
must be on the Support system.

2. Main Processor - CPU used to run user programs
a. Real Main Processor — separate CPU from Support Processor .
b. Local Main Processor - same CPU as Support Processor

The ASP program communicates with the 0S system on a real or local Main
Processor via OS messages. These messages are sent over a channel-to-
channel adapter (CTC), which connects the Support Processor to the Main
Processor. In the case of a local Main the CTC connection is simulated,
but this does not make a significant difference in the SYSGEN process.
In the discussion that follows the terms real CTC, pseudo CTC, and CTC
dummy tape devices will be used and must be understood by the user.

1. Real CTC - Physically present hardware CTC adapter. Generated as
a 1052.

2. Pseudo CTC - Nonexistent CTC Adapter - represented by a 1052
console UCB in the 0S system and used to simulate the message
communication interface between the Support Processor and a local
Main Processor.

3. CTC Dummy Tape Device - A nonexistent device represented by a UCB
with a tape device type. Many of these dummy devices are needed
on each Main Processor for allocation of input and output data
sets used by jobs running on that processor.

Before starting the SYSGEN process the user must make certain decisions
about the type of processor on which he intends to run. If he expects
to produce a multipurpose system or one which may grow, then careful
planning at the beginning may save work in the long run. The decisions
basically concern the type and number of CTC devices to be generated for
a given machine configuration. '

Case 1. Single CPU - will be run as Support Processor and a local
Main Processor, requires one pseudo CTC 1052 and a number of

CTC tape devices (see Stage 1 details below for calculating
the number). All CTC devices may be generated on a
nonexistent channel.

Case 2. Two CPU's - one Support Processor with a local Main and one
real Main. The Support Processor needs one pseudo CTC
console to support the local Main, one real CTC console
device to support the real Main, and a number of dummy CTC
tapes for the local Main. The real CTC must be SYSGENed on a
real channel and all others may be on a nonexistent channel.
The real Main Processor requires one real CTC console device
for communications to support and a number of dummy tape
devices. The real CTC must be on a real channel and the
dummy devices may be on a nonexistent channel. At IPL time
all CTC tape devices will automatically be placed on the same
logical channel as the conscle CTC.

Case 3. Multiple CPUs. This case is an extension of Case 2. For
every real Main added to the system, a new real CTC device
must be generated on the Support Processor in addition to the
one pseudo CTC console used by the local Main. Each real
Main Processor must have at least one real CTC and a set of
dummy tape devices as noted under Case 2 above.

In systems using symmetrical configurations {CPUs of the same model), it
is possible to produce one SYSGEN which will run on any machine of that
type either as a real Main or as a Support/local Main by generating all
the necessary CTC devices to meet the conditions and then allowing ASP
to establish the proper. communications interfaces at initialization
time. This type of system was not possible under previous ASP releases,
without a great deal of work by the user, but changes in Version 3 have
greatly simplified this process.

ASP PREGEN

The ASP PREGEN job is applicable to both Support and Main Processor
SYSGENS. It is supplied as a complete job with JCL and is 0S release-
dependent. Always make sure that the PREGEN job is the proper one for
the 0S release being generated. A PREGEN job is supplied with the ASP
system tape from PID but is current only for the OS release being used
when the ASP system was released. New PREGEN jobs will be made
available via PTFs as new OS releases are issued. These PTF's will
generally be automatically shipped to ASP users and will contain
specific instructions for running the PREGEN job. If there is any doubt
concerning the applicability of a PREGEN job, contact ‘the IBM FE program
representative for clarification.

PREGEN allocates and cataloges two data sets: SYS1.ASP and SYS1.ASPMOD.
The user needs to indicate the volume serial and unit type through
symbolic parameters. The method of supplying this information is
contained in the Program Directory supplied with the system from PID.

The PREGEN job is used to modify OS SYSGEN macros from SYS1.GENLIB and
SYS1.MODGEN. The modified macros are placed in a new data set
{S¥YS1.ASPMOD) which is used later by Stage I of SYSGEN.

PREGEN also linkedits a Type I SVC module, (ASPSVC) into a new data set
(SYS1.ASP) for later inclusion in the OS nucleus, as SVC 246.

The main purpose of the PREGEN job is to include ASP modifications
necessary to support the CTC device under the 0OS I/0 supervisor. These
changes are made to the NIP, IODEVICE, SGIEC202, IEAQNU and IOS macros
before Stage I so that they are automatically included by SYSGEN.

0S RELEASE 20 AND 21 MODULES AND MACROS MODIFIED BY ASP PREGEN

ASP PREGEN MODIFICATIONS

SYSGEN Stage I

IODEVICE. Has been modified to permit FEATURE=CTC to be specified for
tape and 1052 devices. A bit is set to indicate the presence
of the CTC features omn the device.

SGIEC202. Has been modified to add a CTC bit to each UCB requiring it.
(The '04' bit is always set ON in the UCBTYP + 1 byte.) A
switch is set to indicate the presence of a CTC device.
After the IECIOS and IECXTCH macros are punched, the IECCTC
macro is punched if the CTC switch is set. Also, CTC is
added to the devices in IECTBL.

SYSGEN Stage II

I0s: Module IOS is assembled from several macros. ASP modifies
several of these macros and includes one new macro: IECCTC.

IECCTC: This macro contains CTC device-dependent start 1I/0 and trap
code routines.

IECINT: Macro modified for special CTC 1nterrupt handling of
attention interrupts.

IECIOS: Macro modified to provide posting of ASP on local Main
Processor and provide clearing of UCB flags in master CTC UCB
at completion of I/0 operation.

IECIOSB: Macro modified to provide special proce551ng of Halt I/0 on
CTC.

IECTBL: Macro modified to provide unique device table entries for
' CTC.

IECXTCH: Code added to prevent doing test channel on CTC I/O request
for local Main Processor.

IEAANIPO: Module NIP is assembled at SYSGEN from the IEAANIP macro.
ASP modifies NIP to provide special CTC console processing in
determining the master console of an .ASP real Main Processor.
IEAQNU: A change is made to the 0OS program check first level

1nterrupt handler to distinguish interrupts which occur in
supervisor state and protect key of zero.

STAGE I OS SYSGEN
ASP requires that certain items be included in Stage I of SYSGEN. They
are discussed below by topic.

JCL

One addition is made to JCL. The SYSLIB card for the assembly must
place the data set (SYS1.ASPMOD) first in orxrder of concatenation:

//SYSLIB DD DSN=SYS1.ASPMOD,DISP=SHR
s DD DSN=SYS1.GENLIB,DISP=SHR

It is also recommended that the SYSPUNCH output of Stage I be assigned
to a tape.

IODEVICE MACRO

an I/0 device macro must be included for each real or pseudo CTC device.

All such devices must be generated as a 1052 with FEATURE=CTC. This is
an important change from previous releases.

Example: IODEVICE UNIT=1052,ADDRESS=270,MODEL=7,FEATURE=CTC

A set of dummy tape devices must be defined by using the ICDEVICE and
ICCONTRL macros and should be designated as 2400 tape drives with
FEATUORE=CTC. These devices may be on a nonexistent channel; if so, a
CHANNEL macro must be included for that channel. See example below.
There are two restrictions concerning the assigning of dummy tape
devices:

1. All dummy tape devices must be on the same channel. This channel
may be different than the one used for the CTC conscle, however.

2. The addresses used for dummy tape devices must not duplicate the
second and third digits of the device address used for the CTC
console device, ‘even though these -devices may be on different
channels. For example, a system may be generated with CTC
console devices at addresses 270, 280, and 760 (these may be a
combination of real and pseudo CTC's) and all dummy tape devices
generated on-nonexistant Channel 7. In this case no dummy tape
device may use address 760, 770, or 780. Addresses 781 and
higher may be used for tape device addresses. The second and
third digits of the unit address are used by ASP to identify the
source of the data being transferred across the CTC.

To determine the number of dummy tape devices required, take the number
of initiators which will normally run on that Main Processor and
multiply by the average number of SYSIN and SYSOUT data sets per job
step. If, for instance, there will be six initiators being scheduled by
ASP on a Main and an average of five SYSIN or SYSOUT data sets per job
step, then 30 devices is a reasonable number to generate for that Main.
If the number is under estimated, the system performance will be
affected. OS allccation recovery will cause the job to be canceled.

The following example shows how to generate the CTC devices for a local
Main Processor which will also support a real Main.

Examples:
IODEVICE UNIT=1052,ADDRESS=370,MODEL=7, FEATURE=CTC - Real CTC
CHANNEL "ADDRESS=7,TYPE=SELECTOR nonexistent channel

IODEVICE UNIT=1052,ADDRESS=780, MODEL=7, FEATURE=CTC

TOCONTRL UNIT=2803,ADDRESS=78,MODEL=1, FEATURE=16-drive

IODEVICE UNIT=2401,MODEL=3,ADDRESS=(781, 15) , FEATURE= (9-TRACK, CTC)
TOCONTRL UNIT=2803,ADDRESS=79,MODEL=1,FEATURE=16-drive

IODEVICE UNIT=2401,MODEL=3,ADDRESS=(790, 16}, FEATURE= (3-TRACK,CTC)

Note: ASP does not support priority gueuing on CTC dummy tapes:

UNITNAME MACRO

The user must code a UNITNAME macro to include the name CTC as a unit
type for allocation purposes. The devices specified as CTC should
include all CTC dummy tape devices, but not those CTC devices defined as
consoles.

Example: UNITNAME ONIT=((371,31)),NAME=CTC

Also the user should supply an alternate unit name for 2400 tape drives
so that unit type 2400 may be avoided in JCL usage. The reason for this
is that CTC dummy tape drives are defined as 2400 tapes and problems in
allocation can occur if dummy tapes and r=al tapes are not
distingquishable by separate unit names.

Example: UNITNAME UNIT=(180,4),NAME=TAPE9

SCHEDULR MACRO - CONSOLE DEFINITION

ASP requires that the CTC (either real or pseudo) be designated the
alternate console for 0S. If a system includes both a pseudo and real
CrCc, the pseudo CTC must be the alternate conscle. If such a system is
IPLed as a real Main Processor (master console out of ready at IPL) the
real CTC will automatically be made the master console by ASP
modifications in NIP.

If the user wishes to use the ASP facility provided to write the ASP
MLOG to disk (DLOG=YES on the STANDARDS initialization card) the 0S LOG
facility must be included in the system. The OS LOG is a default option
on the SCHEDULR macro and will be generated if not specifically
excluded.

It is recommended that the MCS option not be used in an ASP system
unless it is needed to support a graphic console as a master OS5 consocle.
If MCS is required then certain rules must be followed:

1. The CTC is to be designated as the alternate console.

2. Take default route codes on SCHEDULR macro.

3. A SECONSLE macro must be coded for the CTC with no route codes
(default value) and ALTERNATE=MASTER (this is the default).

4. Do not code SECONSLE macros for consoles to be controlled by the
ASP program unless those consoles will be varied offline to MCS
before starting ASP.

5. Be aware that an MCS system with a graphic console requires a
hard copy log on a console or SYSLOG and adds overhead which is
redundant in an ASP system. Also, MCS may cause operational
problems in an ASP system because of operator capability to vary
and switch consoles at will.

Below are examples of SCHEDULR and SECONSLE macros coded for an MCS/ASP
system, showing only the parameters important to ASP.

SCHEDULR CONSOLE=1E(0, ALTCONS=780, CONOPTS=MCS
(Omit ROUTCDE parm and VLMOUNT=AVR)

SECONSLE CONSOLE=780 ,ALTCONS=1E0 (Omit ROUTCDE parm)

SUPRVSOR MACRO

The DDR parameter of the SUPRVSOR macro may be coded. However, to avoid
possible interlock ccnditions between ASP and DDR, it is advisable to
make the ASP queuve volumes and the ASP JOBLIB volume permanently
resident.

SVCTABLE MACRO

ASP requires one type I SVC, number 246, in the SVC table.

Example: SVCTABLE SVC-246-T1-S0

RESMODS MACRQO

The following example must be coded to include SVC 246 into the 0s
nucleus.

Example: RESMODS PDS=SYS1.ASP,MEMBERS={ASPSVC)

REPRO CARDS

Place the following cards near the end of the Stage I deck, just before
the GENERATE (or GENTS(Q) macro:

REPRO
//SYSLIB DD DSN=SYS 1. ASPMOD,DISP=SHR
REPRO
Va4 DD DSN=SYS 1. MODGEN,DISP=(SHR,PASS)

These are the DD cards which will be needed in Stage II assemblies of
NIP and IOS, and must be on the Stage I output tape if the user elects
to use the SYSGEN tape convert program. (See next section STAGE II OF
SYSGEN for details of tape convert program.)

STAGE II OF SYSGEN

A few changes to the Stage II job stream are necessary for ASP, but
because of the difficulty of handling this job stream in card form it
has become advisable to make available some assistance in this area. A
sample program is supplied on the ASP distribution tape, which will
produce a modified JOb stream on TAPE, from an input tape produced by
Stage I.

The program, called CONVERTT, is supplied in source form with
instructions for its use as comments in the source deck. It is supplied
as a sample program and although it has several optional functions such
as an assembler H option and a multiple job stream option, the user may
wish to add more capabilities for special needs. It is recommended that
the user punch the program from his distribution tape and examine the
instructions for its use even before decing the Stage I assembly. To
take advantage of the programs capability requires that repro cards be
added to the end of the Stage I deck, as noted in the discussion of
Stage I.

For those users who wish to mod1fy their Stage II job stream manually,
the following list of changes is provided:

1. Alter JCL for NIP program check FLIH and IOS assemblies.

a. Find the assembly steps for NIP program check FLIH and IOS.
Their OBJMOD member names are: IEAANIPO, IEAQNUOO and
IEAASUOQO respectively.

b. 1In the JCL for the above three assemblies, replace the
//SYSLIB DD cards with the following two cards:

//SYSLIB DD DSN=SYS1.ASPMOD,DISP=SHR
/7 DD DSN=SYS1.MODGEN, DISP=(SHR,PASS)

SPECIAL CONSIDERATIONS OF ASP SYSGEN

10

1.

0OS Maintenance

OS PTF's which affect ASP modified OS modules create some special
conditions for the ASP user. It is sometimes necessary to
reapply selected portions of the POSTGEN job following the
application of an 0S PTF. Field Engineering will be notified via
the Retain system when these special cases occur. It is a safe
practice to always ask for verification from the IBM FE program
support representative before applying new OS PTF's to an ASP
system.

Adding CPU's

When adding additional CPU's to an ASP complex always be sure to
provide the necessary CTC devices on the Support Processor to
handle the number of real Main Processors to be driven.

MP65 Considerations

a. When an MP65 CPU is used as a real Main, the CTC device must
be physically cabled to the CPU which is IPLed. It is
possible to attach the CTC through a switching device such as
the 2914 to the MP65 so that more flexibility is provided in
the use of the MP65. This allows IPL from either half of the
MP65 ands/or partitioning either half of the MP65 to remove it
from the ASP complex.

b. The MP65 is not supported as a Support Processor with local
Main capability.

c. In a full MP65 system the CTC device is nonsymmetrical which,
as noted in the 0S Planning Guide for MP65 systems, may
result in some degradation of performance.

CTC Lock-out condition.

Any control program requires unrestricted access to its vital
resources to avoid performance degradation or absolute lock-out.
Load module libraries or queue data sets are examples of critical
resources requiring frequent accesses.

In configuring a multiple-CPU environment, particular
consideration must therefore be given to the resources which are
shared between CPU's. In an ASP configuration, where commonly
used disk files are shared between the Support and Main
Processors, a potential for this performance or lock-out problems
exist.

These problems may be avoided by:

a. Ensuring that the channel used to access the CTC from the
Main Processor is not the same Main Processor channel used to
access the shared DASD control unit on which reside any data
sets referenced by the ASP region. In addition to the normal
data sets, such as JOBLIB, queue packs, and CHKPNT, the data
sets referenced by user DSP's must be examined.

b. Ensuring that no program which runs on a real Main Processor
reserves a shared disk pack on which reside any data sets
referenced by the ASP region. This can be avoided, for
example, by routing any program such as a SUPERZAP job which
is modifying ASP's JOBLIB, to the local Main Processor.

While it is not necessary, both of these conditions may be
satisfied by insuring that the ASP referenced data sets are not
shared with any other processor.

ASPDRDS - ASP DR Data Set

The ASP Disk Reader (DR) is another primary way of introducing
job streams into the ASP system, along with the card and tape
readers. This function uses as an input file an operator
designated member of a partitioned data set. This file (member)
may consist of any job stream material that is readable by CR
{except for card-image input, which is CR exclusive).

ASP does not require the existence of this PDS, but a write-to-
operator messageris issued at ASP initialization time if this
data set has not been described in the initialization deck.
Normal OS BPAM macros are used to access this data set. The OPEN
occurs during ASP initialization; DR itself issues the FIND,
READ, and CHECK macros.

A member (file) may be a job, a series of jobs, or a job network.
The data set and its members may be created and maintained using
an OS utility: IEBGENER, IEBUPDTE, etc. Actually, multiple data
sets may exist, but they all must be concatenated using only one
ddname card in the initialization deck.

The following DD cards are exemplary:

1. //ASPDRDS DD DISP=OLD,DSN=ASP.ALWAYS

2. /7 DD DISP=OLD,DSN=REPORTS.MONTHEND

3. /7 DD DISP=SHR,DSN=ACCOUNTING,UNIT=SYSDA, X
/7 VOIL~SER=ASPINP

4. /7 DD DISP=SHR,DSN=ASP.TESTING

As can be seen, the described data sets may be cataloged {1, 2,
4) or uncataloged (3). The data sets may be part of an index
structure (1, 2, 4) or they may not (3). If a2 data set is to be
modifiable while ASP is rumning, by a job that is either under
the control of ASP or a "hot job", the DD card must have DISP=SHR
{3, 4); stable data sets should have DISP=0LD (1, 2). Care
should be exercised in order to ensure that DR is not reading a
data set at the same time that maintenance is being performed on
one of its members. If a data set is forced into secondary
allocation, the overflow material will not be accessible.

The DD statement used to create a DR data set must include

DCB= (RECFM=F, LRECL~80,BLKSIZE=80) for an unblocked data set, or
DCB=(RECFM=FB,LRECL=80,BLKSIZE=multiple—-of-80). All data sets in
a concatenation must have identical DCB characteristics. An easy

11

way to ensure this, after the first one has been created, is
always to reference the "standard™ one. 'Using the example above:

//SYSUT2 DD DCB=ASP.ALWAYS,DSN-A.NEW.DR.INPUT,...

{See the 0S Data Management Services Guide manual for a
discussion of the concatenation of data sets.)

A large blocking factor makes efficient use of DASD space, but
may require that the ASP region size be increased to provide
sufficient main storage without impacting the rest of ASP.
Deblocking is done by ASP, directly from one input area (GET-
LOCATE type logic).

The data set is OPENed@ by INITGEN. The DCB is in RESPARAM, and
includes the following:

DCB DDNAME=ASPDRDS, KEYLEN=0,LREC1=80, RECFM=FB

ASP POSTGEN JOB

Once Stage II of SYSGEN is complete the new system is available as an 0S
system but does not yet have all the necessary modifications for ASP to
function.

The ASP POSTGEN job is supplied to complete the modification of the OS
system. Primarily, modifications are made to modules which are not
assembled by SYSGEN. Modifications are made using the service aid
IMASPZAP (Superzap) and in some cases program DELINK1 is also used.

The ASP POSTGEN job is supplied as an in-stream procedure which may be
tailored to a users system through EXEC card parameters. The job is OS
release dependent and all of the comments above concerning the
applicability and availability of the ASP PREGEN job also apply to
POSTGEN. Because of the release dependent nature of the POSTGEN job,
the instructions for its use are included with the job itself.

The basic functions of the POSTGEN job are:
1. Linkedit to a temporary data set two programs:
ASPPROGM (a small driver program used by POSTGEN)
DELINK1 (service aid delinkedit program)

2. Execute ASPPROGM to perform necessary renaming of programs and
generate condition codes for succeeding steps.

3. Linkedit the ASP CTCOPEN mcdule to SVCLIB.

4. Delinkedit and relznkedlt OS programs which need to be expanded
to provide superzap patch areas.

5. superzap modules in SYS1.SVCLIB and SYS1.LINKLIB which require
ASP modifications.

6. Add the program name MAINTASK to the table of system programs in
S¥S1.LINKLIB.

7. Marks the 0S Reader/Interpreter modules with a REENTRANT
attribute so they can be made resident in Main storage. See
"Main Storage Considerations®™ in the "0S Reader/Interpreter Under
ASP" section of Chapter 6 for a discussion of how and what to
make resident.

12

0S_ RELEASE 20 AND 21 MODULES MODIFIED BY ASP POSTGEN

POSTGEN MODIFICATIONS

All ASP POSTGEN modifications are made by linkedit or Superzap of 0OS

modules.

IFG0192Z:
IFG0193a:
IFGO194H:
IPG0552X:
IFFSD061:
IEFW21SD:

IEEVLNKT:
IGC0107B:
IGC0801C:
IGCOLO5SA:

IGC5403D:

IGGO190A:

IGGO190A:

IGGOS550N:
IGG0199C:
IGC0201C:

IGCO003E:

ASP supplies its own CTC OPEN module which becomes part of 0S
tape OPEN and provides special CTC OPEN handling. Release 21
only.

Tape OPEN modified to cause linkage to the CTC OPEN module
IFG0192%Z.

Tape OPEN modified to prevent sense commands being issued to
CTC devices during tape open.

End of volume modified to prevent CTC concatenation to unlike
devices unless unlike attribute bit set in DCB.

CSECT IEFW42SD modified to issue SVC246 for ASP unit
isclation at step termination.

CSECT IEFW21SD modified to issue SVC246 for ASP unit
isolation at step allocation time.

Modified to add name *MAINTASK' to OS table of system tasks.
Modified to remove the backspace character check.
Modified to change ABEND DCB BLKSIZE to 764.
Modified to change ABDUMP maximum block size to 764.

Modified
quote is

to bypass the second translate when a successful
found.

is an OS open module, renamed to IGG0190$. Release 20 only.
is an ASP module used to issue a WPOR to give unit
assignment, jobname, stepname and ddname for CTC devices.
Other open processing is bypassed in the area of label
checking. Control is passed to IGG0190$ for non-CTC tape
devices. Release 20 only.

is an 0S module. It is modified to treat CTC devices as a
unique device type. Release 20 only.

is an 0S module. It is modified to avoid issuing a sense to
CTC devices. Release 20 only.

is an 0S module. It is modified to make BLKSIZE=764 as in
IGCOLOSA. Release 20 only.

Is an OS module for WTO. It is modified to place jobnames in
WIO/WTOR messages, and to pass reply ID's directly to IJP.

GENERATING HASP REMOTE TERMINAL PROGRAMS (RMTGEN)

Intelligent (programmable) remote terminals, such as System/360
(including the Model 20), Systems/3, 2922, and the 1130, are supported by

ASP with the use of the HASP Remote Terminal Programs.

Generation of

the HASP Remote Terminal Program package is described in the

13

documentation supplied with Houston Automatic SPOOLing Prlorlty System
ITI (HASP II), Program #360D-05.1.014.

In general, the user is required to allocate and catalog HASP data sets,
execute the HASPGEN job, and then execute RMIGEN job(s). See the
section Remote Generation For Non-HASP Users in the HASP documentation
supplied with the system.

14

CHAPTER 4. FUNCTIONAL DESCRIPTION

The program that implements the ASP operating system resides in the
Support Processor. It is written in 0S Macro Assembler Language, using
the execute channel program (EXCP) level of OS to perform its
input/output operations. The ASP program is added to a private Job
Library, and is loaded and executed as an OS job on the Support
Processor.

Once ASP has been loaded and execution has been initiated, ASP assumes
control of its task on the Support Processor. From this time until ASP
is purposely quiesced or abnormally terminated, ASP assumes control of
all devices and consoles assigned to it via ASP initialization control
cards, and it becomes the primary job scheduler for all Main Processors
assigned to it. All os control program services and facilities
remain effective and many are utilized by ASP, however, the use of some
of these facilities by ASP is restricted. These restrictions are
discussed in this manual in the chapter on writing Dynamic Support
Programs (DSP's).

The ASP program consists of the following major components:

e ASP Resident Programs (ASP Nucleus)

e ASP Dynamic Allocated Resources (Buffers, Main Storage, Devices)

¢ ASP Dynamic Support Programs (DSP's).
The resident portion of ASP is composed of the service programs that are
common to the ASP dynamic support functions. The following are the
major components of the resident portion:

e ASP Disk Input/Output program

e ASP Console Service program

e Job Control Routines

e ASP Multifunction Monitor

e ASP Resident Parameter Table

e Call DSP Driver program

e ASP DSP LOAD and DELETE programs

‘- ASP GETMAIN and PUTMAIN programs

e ASP Unit Record and Tape Device programs (ASPEXCP, ASPOPEN)

e Channel-to-Channel Adapter Interrupt Handler

e ASP Unit Allocation programs {(GETUNIT and PUTUNIT)

e ASP Initialization driver
The above programs are linkedited together as the ASP nucleus-
(ASPNUC) and are loaded by OS when ASP is scheduled for execution.
(For a detailed description of all the modules that comprise the ASP

Nucleus, refer to the ASP Logic Manual.) The Initialization program
receives control and performs the system initialization by reading the

15

ASP Initialization control cards and performing the required tasks.
After ASP has been initialized, the ASP Initialization program releases
the storage that it occupied, and the system is ready for execution.
All ASP modules may optionally be made resident by use of the RESIDENT
Initialization control card.

The basic ASP buffer pool is built by the Initialization program.

It consists of a number of fixed-length buffers, which reside in a
contiguous area of storage. The number and size of the buffers should
be determined by the type of direct access storage devices being used
for ASP queue's, by the size of the Support Processor, and by the number
and types of support functions that may be active at one time. The size
of the buffer pool should be set to accommodate all primary functions
with their minimum requirements. At peak processing times, the ASP
system will construct temporary buffers in free storage areas to
satisfy any additional buffer requirements.

The remainder of storage is allocated to the Dynamic Support Programs
and modules loaded by initialization. DSP's are resident on the direct
access storage device that is allocated for ASP system residence
DSP's are loaded into storage by the ASP Job Segment Scheduler as they
are required and are scheduled on the basis of jobs to be processed and
available devices. Once a DSP is scheduled and obtains the devices
assigned to it, it becomes a specific support function. For example,
when Print Service is loaded and is assigned printer number 1, it
becomes the printer 1 (PR1) support function.

DSP's are loaded via the ASP load function (ALOAD), which verifies that
sufficient storage is available before 0S is called to perform the
actual loading and relocation. A DSP may, in turn, call subprogram
modules via ALOAD , provided that the DSP also deletes those modules
via ADELETE prior to terminating its execution. If a nonresident ASP
module is to be loaded into hierarchy 1 storage , a linkage editor

SETSSI control card must be added to the linkedit step for that
module. ASP modules that are to be made resident in hierarchy one core,
which are loaded via 0S LOAD at initialization time, must be linkedited
with the hierarchy attribute. The SETSSI control card format is:

SETSSI PXXXXXXX

where the x's represent normal SETSSI information. Scatter load modules
with CSECT's of differing hierarchy attributes are loaded within a
single hierarchy.

A DSP may be callable from an operator console, as well as from the job
stream. If the DSP is callable, it must be so identified in the .ASP

DSP Dictionary . Further, DSP's may be constructed to support
mualtiple devices simultaneously. For example, Print Service can process
output for jobs on as many printers as are attached to the Support
Processor. To support multiple devices, a DSP must be programmed to be
reentrant and to have a control section identified for loading each time
that it is scheduled. Reentrant DSP's are scheduled as long as
there are jobs to process and devices on which to process them.
Multiple copies of a nonreentrant DSP may also be active (in storage) if
so specified for that DSP in the ASP DSP Dictionary (MLOAD=YES).

ASP INITIALIZATION

The ASP initialization deck-1is actually an 0S job that is read into the
system as unblocked (i.e., BLKSIZE=80) via an 0S reader and enters the
0S job gqueue. When OS schedules ASP the ASP nucleus (ASPNUC) is loaded
into storage. At this point the INITIATE module is the first module of
ASP to gain control. INITIATE's function is to load other modules of
the ASP initialization program. The first modules loaded are INITDATA,

16

a CSECT used by the initialization modules, and INITRTNS, a module
containing common initialization routines.

The module INITIATE then loads INITIOCD. INITIOCD processes the ASP
initialization cards until it encounters the ENDASPIO card. Control
then returns to INITIATE which deletes INITIOCD and loads INITIO.
INITIOCD constructs the following:

¢ ASP save area pool

e ASP track table

INITIOCD issues the OS OPEN macros for the ASPABEND and ASPSADMP data
sets.

INITIO constructs the following:
e ASP Buffer Pool
e ASPIO IOBs
e All ASPIO Tables (AIOPARMS - TATPARMS)
e File Directory
e Track Allocation Table
¢ Formatted Queue Pagks (when required)
e Single-Track Table
e DCB's for ASP qﬁeue packs

INITIO issues OS OPEN macros for the ASP queue packs and then returns
control to INITIATE. INITIATE deletes INITIO and loads INITREST.

INITREST opens the ASP checkpoint data set and builds a job number
table. If initialization is being performed because of a restart of
ASP, INITREST rebuilds track allocation and job number table to reflect
jobs still present in the ASP job queue. INITREST is deleted and
INITIATE loads INITCARD.
INITCARD processes the remaining initialization cards until it
encounters the ENDINISH card. All cards read by INITCARD are spooled to
the ASP job quene by ASPIO routines. The name of each card determines
which multirecord file that card is spooled into. After initialization
card processing is complete INITIATE loads the module INITGEN.
INITGEN analyzes the initialization cards spooled to the ASP queue pack
and builds the following resident tables from information contained in
the cards:
e Preallocated Control Blocks
RESQUEUE
FCT's
e Assignment Table
® SYSUNITS Table

s SUPUNITS Table

17

e Printer Resource Tab;e

¢ Deadline Scheduling Table

e SYSOUT Class Table

e NJP Terminal Table
INITGEN loads the appropriate modules to create the following tables:

e Main Processor Control Table(s)

e MDS Table(s) (SETUNITS)

® RJP Table(s)

s Reader/Interpreter Table(s)
INITGEN also loads the module RIATTACH which loads the

"Reader/Interpreter resident modules, and attaches the 0S R/I as a

subtask of ASP.
INITGEN OPENS the partitioned data set containing jobs to be input via
DR, as defined on the //ASPDRDS DD statement.
INITGEN gives up control to INITCNS who initializes the ASP console
requirements:

e Load Attention Interrupt handler

¢ Console buffer pool

e Console Control Tables (CONSDATA, CONSUNIT,CONTVTBL)

e Device Dependent Parameters

* Dummy and RJP Entries

e Switch Master Console with Dummy CTC (local main)

e Program Function Key Table

RESIDENT ASP PROGRAMS (ASP NUCLEUS)

The resident ASP programs may be grouped into the following major
categories:

e ASP DSP Dispatching and Job Segment Scheduling

e ASP. Tables and Control Blocks, and other routines for inter-system
communication including Résource Management, Work-Tc-Do and Unit
Record 1/0 routines.

¢ ASP Console Service (CONSOLE SERVICE)

e ASP Disk I/0 Services (ASPIO)

e ASP DSP Failsoft (AFS)

The section that follows describes the above resident programs-of ASP.

These programs are those that are always resident. It should be noted
however that most of the above programs consists of several modules and

18

many of the modules do reside on disk. Among the functions of the
resident modules is the loading of associated nonresident modules as
required. ASP initialization provides the programmer with the facility
to make any module permanently resident. All ASP modules are discussed
in detail in the ASP Program Logic Manual.

ASP DSP DISPATCHING

ASP DSP Dispatching is accomplished initially by the ASP Job Segment
Scheduler (JSS) and after DSP initialization by the ASP
Multifunction Monitor (MFM) .

JOB SEGMENT SCHEDULER (JSS)

The Job Segment Scheduler (JSS) initiates the processing of a job
segment by a DSP. Job segments are defined as units of work
accomplished by DSPs, such as print, punch, or Main Processor execution.
Segments of the same job (for example, print and punch), if scheduled in
parallel, are considered to be non-sequence-dependent or asynchronous.
Other segments (for example, computing on the Main Processor) require
scheduling in specific order and, therefore, are sequence-dependent and
are considered to be synchronous. The Scheduler selects its work from
the ASP job queue , which is ordered by length of time in the system
within priority. The Scheduler begins its search for job segments with
the job at the top of the queue. If all segments in a job are already
active or complete, or may not be scheduled, the next job in the queue
is examined. The search continues until all resources are scheduled or
until there are no more jobs to schedule. If the examined segment is
not active, the basic criteria for scheduling it are:

e Availability of all required devices

e Satisfaction of any sequence-dependent or synchronous processing
requirements for the job

e Availability of sufficient storage in the Support Processor for the
required program and table entries

The requirement for sequence-dependent processing is also associated
with the DSP and is indicated by the presence of a flag in the DSP
Dictionary entry. This flag indicates that:

e All segments preceding this one must be completed prior to
initiation of this segment '

¢ No segment following this one may be initiated until this one is
complete.

An example of the use of this feature is the assurance that all
preprocessing segments are completed prior to the scheduling of the Main
Service function. ‘This feature also assures that the Main Service
function is completed prior to the scheduling of the postprocessing
segments.

When device requirements and synchronous processing requirements are
satisfied, ASP control blocks necessary for DSP processing are
constructed and the DSP programs required are ALOADed into storage. At
this point JSS initial DSP scheduling is complete. Further DSP
scheduling during the DSP's program execution is accomplished by the ASP
Multifunction Monitor (MFM) until the DSP processing is complete, at
which time it returns to JSS for DSP termination processing. JSS

DSP termination processing is essentially the reverse of JSS DSP
initiation processing in that obtained devices and control blocks are

19

returned to system availability, loaded programs are deleted from the
system, and the ASP Job Control Table (JCT) entry for this job is
updated to reflect the completion of the DSP and the job segment.

MULTIFUNCTION MONITOR (MFM)

The Multifunction Monitor (MFM), which is contained in the module

ASPCONTL , allows the routines within the Support Processor to share
processing time. Each routine operating in this time-sharing
environment is called a function. Each function within the Support
Processor reaches a point beyond which it cannot proceed until the
occurrence of an event. The event may be the completion of a print
cycle, the return of a buffer to the buffer pool, or some similar event.
When a function must wait for amn event, control reverts to the
Multifunction Monitor via an AWAITOFF or AWAIT macro. The Multifunction
Monitor then scans the Function Control Table for the function with the
highest priority whose AWAIT event is complete; control is given to that
function.

Function Control Table (FCT)

Each active function in the system has an associated entry in the

FCT . The function's entry in the FCT is ordered in an ASP assigned
priority. The FCT priority is a one-byte field with X'00' being lowest
and X'FF' being highest. FCT priority is relative to ASP functions in
handling jobs and is specified in the functions associated DSP
dictionary entry. It is in no way related to 0S job priority. For
example, the function, CONSOLES, has the highest FCT priority (255).
This allows the console operator highest priority in system control.

The FCT chain is expanded or contracted as functions become active or
terminate; thus, the FCT reflects the active components of the system at
any given time. The FCT entry, which is used for a register save area
when the function is not in control, contains pointers and flags
associated with the function. Register 11 points to the FCT entry for
the function in control, thereby providing access to the pointers and
flags.

AWAIT Macro-Instruction

By issuing the AWAIT macro-instruction, a function notifies the
Multifunction Monitor that it is unable to proceed. The operands of
this macro are a return point address, a mask containing a condition
code, an Event Completion Flag (ECF) address, or a list containing
multiple event completion flag addresses and their associated condition
masks. An ECF is a one-byte field. The mask indicates which bits
in the ECF are to be tested. The return point address is the location
within the function to which control passes when the event has occurred.
The condition code defines a satisfied condition.

Register 11 points to the FCT entry for the relinquishing function. The

contents of the FCT entry include the address of the ECF, the ECF mask

or the address of the ECF list that contains multiple ECF addresses and
ECF mask entries, and the return address.

MFM . Function

The MFM searches for a ready function (that is, a function whose event
is complete). Starting with the highest priority entry in the FCT, the
MFM picks up the address of the ECF. Using the mask supplied, it
examines the ECF. If the result of this test does not satisfy the

20

requirement, then the next entry in the FCT is tested. If an ECF list
is used, each entry in the list is tested to satisfy the ready function
requirement. If any entry in the list is satisfied, the function ready
requirement is satisfied. If the result of this test satisfies the
requirement, the registers are reloaded, and control returns to this
function.

ASP SYSTEM CONTROL BLOCKS AND TABLES FOR ASP SYSTEM COMMUNICATION

The primary means of intercommunication with the Multifunction Monitor,
the Job Segment Scheduler, and the Dynamic Support Programs is via a set
of interrelated tables and associated data sets. Figure 1 illustrates
the relationship between the basic tables, blocks, and files of the ASP
Supervisor. They are presented here for conceptual purposes only; the
reader should refer to the ASP Logic Manual for complete definitions of
the tables and blocks.

The disk-resident Job Control Table { JCT) defines all jobs in
the system and, in this manner, represents the ASP job queue. The JCT
is ordered by job priority (15 through 0), and jobs are entered on a
first-in-first-out basis within each priority. Job priorities 0 through
14 are programmer-assigned; priority 15 is reserved for operator use.

As a job enters the system, a JCT entry is constructed and is placed in
the table. The Job Segment Scheduler scans the JCT and schedules work
on the basis of the jobs in the system.

The Function Contrcl Table { PFCT) is used by the Multifunction
Monitor for sharing time between functions. Certain functions such as
CONSOLES, MDS, JSS, etc., are permanently resident. Their FCT entries
are contained in the Resident Parameter Table (RESPARAM). FCT's of
non-resident ASP functions are created dynamically when the function
becomes active. These FCT's are chained to the FCT list. The DSP
associated with the active function keeps a pointer to that entry in
general register 11. By using register 11, the DSP can access any
portion of its FPCT entry.

one of the fields in the FCT entry is a pointer to an entry in the
Active Job Description/aAccounting Block Table. This table identifies
all active DSP's except those with permanently resident FCT entries.
The entry contains the File Description Block (FDB) for the single
record data set containing the Job Description/Accounting Block (JDAB)
for the job processed. The DSP may access this JDAB by pointing to
the FDB and using an AREAD macro-instruction.

In the case of the Main Service function, two FPCT entries are
constructed at initialization for each Main Processor defined. These
entries work in conjunction with the Resident Job Queue Table

(RESQUEUE) to control scheduling and execution of the Main Service
job segment of every job that calls for Main Processor execution. The
Main Device Scheduler (MDS) FCT controls the pre-execution device
allocation for jobs requiring setup.

The FCT entry also contains a pointer to a GETUNIT list, which
describes the devices required by the DSP by type and may contain null
fields for undefined device requirements. After devices have been
allocated to the DSP, each GETUNIT list entry contains a pointer to the
Support Units Table (SUPUNITS) entry for that device. The SUPUNITS
entry contains such information as the type of device, its device nane,
device address, and UCB address , and a pointer to the appropriate
System Units Table (SYSUNITS) entry. The SYSUNITS Table provides
further information about the device and indicates whether the device is
allocated, assigned, or offliine.

21

Register 12 RESQUEUE
TV Table Entries for
{Resident) g Main Service AJDB
Jobs Job Description
ASP A
Routine RESPARAM JDAB
Pointers (Resident) Description
Resident |, Accounting L
ASP FCTs ¢
Control Blocks T Format
and Ad Parameters
Table Pointers o DSP ‘ for Each Job
’ Dictionary
ASP Job Track
Data and L Allocation Table
Miscelianeous Devi Track for
evice lt——
Pointers Requirements . each Job ¥
[¢
Job Data Sets
) Data Set
DB
Register 11 L FPBs L
‘ FCT Job Setup Table
o -~
JCT FDB Table Job Contro
Table
JCT Entries
A
e
Last JCT
(L JJ
SYSOUT Class Table
(L SETNAMES
: Support Units
T
System Urits”"
: WTD Queue ¢
1 A
Console Status
Figure 1. Relationship between the basic Tables, Blocks and Files of

22

the ASP Supervisor.

Another field in the FCT entry is a pointer to the entry in the DSP
Dictionary for this function. The DSP may access this information but
must not change it.

The main control table is the TVT. The TVT is always pointed to by
register 12 and contains pointers to the resident routines and system
related information.

The Scheduler Elements, which are located in the JCT, define the
processing tasks for the job. The Scheduler Element sequence number,
which is found in the JCT entry for the job, is copied into the FCT from
the JCT at the time this function is initiated. The DSP may use this
number to locate data associated with this function in the Job
Description/Accounting Block (JDAB). (Scheduler Elements are numbered
sequentially within a job, beginning with 1.)

The Job Description and Accounting Block (JDAB) is constructed for a
job at the time the job enters the system. It defines the job, its data
sets, and associated processing parameters. The JDAB contains its track
allocation table, accounting information for the job, and a pointer to
the Job Data Sets Block (JDs), where File Description Blocks are
placed for all data sets associated with the job. Entries are generated
for the system message data set (SYSMSG), JCL input (JCLIN), and each
data set defined by DD * or DD DATA.

The File Description Block associated with the Scheduler Elements
in the JDAB is used to access single record parameter buffers. These
parameter buffers contain any information required by the DSP. They
contain any data cards, follonwing a //*PROCESS card, that establish the
associated Scheduler Element. The parameter buffers for Print Service
and Punch Service are generated through the use of //*FORMAT control
cards and are in a specialized format. They may be accessed and altered
by a DSP. The Scheduler Elements and associated FDB's are not in any
fixed location in the JDAB relative to the DSP. The proper ones may be
located easily, however, by comparing the Scheduler Element sequence
number in the FCT entry with the sequence number portion of the
Scheduler Elements in the JDAB. In the same manner, the proper entries
for Job Accounting may be located to log time-on and time-off for a
portion of a job.

The DSP Dictionary entry contains a pointer to an entry in the Device
Requirements Table and a count of the number of requirements associated
with this program. The Device Requirements Table entries indicate the
types of devices required by the DSP.

The Job Control Table, Job Description Accounting Block, and Job Data
Sets block, are located on direct access storage devices and are brought
into storage as they are needed. The Function Control Table and the
GETUNIT list are established by the Job Segment Scheduler, as are the
Active JDAB Table and the Resident Job Queue Table. The Support Units
and System Units Tables are created during ASP Initialization. The DSP
Dictionary and the Device Requirements Table are located in the ASP
Resident Parameter (RESPARAM) module and are constructed when that
table is assembled.

JOB CONTROL TABLE ROUTINES

The Job Control Table (JCT) routines are used to access and alter
the JCT. For each routine, there is a macro-instruction creating a
calling sequence that branches to the corresponding JCT routine. These
macro-instructions are described in Appendix A. The JCT macros and
routines are:

23

MACRO JCT ROUTINE

TAADD Table Add
TADEL Table Delete
TAFIND Table Find
TAGET Table Get
TAPUT Table Put
TARESET Table Reset

The Job Control Table is a queue of work for the ASP system, ordered by
length of time in the queue within job priority. To allow for an
unlimited number of entries, this table is stored on a direct access
storage device and is accessed by the ASP Input/Output routines. Each
of the 16 priority levels is treated as a separate file of chained,
single buffer records (that is, the FPile Description Block for record n
+ 1 is found in record n).

The JCT single buffer record contains:

e The track address for the single record file

¢ The FDB for the next record in the chain

e The displacement of the terminator (X'FFFFFFFF') within the record

e JCT entries
Associated with the JCT routines is a table in the CKPTAREA called the

JCTFDB Table . This table contains a 32-byte word alligned entry for
each of the 16 priority levels. It is ordered with the entries for
priority 0 first and the entry for priority 15 last. The contents of
each entry in this table are:

e The FDB for the first record in the chain of this priority

* The FDB for the last record in the chain of this priority

e The priority of this level
Because several users could be attempting to update the same record,
access to this table must be synchronized. This is accomplished by use
of the AENQ and ADEQ routines discussed under Generalized Resource
Management later in this chapter.
Access to the JCT tables is made for a specific priority level only.
The AENQ must specify the priority level desired. Only one user (FCT-

DSP) may access a priority level at any given time. The priority level
is not available until an ADEQ for that priority is issued.

Example:
LA RO, 15
AENQ NAME=JCT , PRTY=(R0)
LA RO, 15
TAGET PRTY=(RO)
LA RO,15
ADEQ NAME=JCT,PRTY=(R0)

The following list describes the purpose of each JCT routine:

24

e Table Add routine. The Table Add routine is used to insert an entry
in the JCT. The AENQ routine must be used to gain access to the JCT
priority prior to using the Table Add routine. Table Add uses the
priority field of the entry to be added and the JCTFDB Table to
access the last record in the chain for the required priority. If
the last record of the chain contains sufficient room, the new entry
is inserted. If there is insufficient room or if the chain contains
no record, a new record is created. The newly created record is
attached to the end of the chain. WNote that when the first record
is created, it is also the end of the chain. The ADEQ routine must
be used following Table Add to make the JCT priority available for
other users.

s Table Get routine. The Table Get routine accesses the next entry in
the JCT. Prior to the first use of the Table Get routine, the AENQ
routine must be used to ensure that the table is available. The
first use of Table Get returns the address and length of the first
entry in the JCT of the priority specified. Each successive use of
the Table Get routine (with no intervening use of the Table Reset
routine) returns the address of the next entry. When there is no
next entry, an end-of-file return is made.

e Table Put routine. The Table Put routine writes the current record
in the chain on the direct access storage device. This routine is
used when a table entry has been altered. Note that the Table Get
routine must be used prior to the use of this routine.

e Table Find routine. The Table Find routine locates and returns the
address of a specific job's entry or the first entry in a given
priority as specified by the user. This routine allows the user to
access JCT entries within a given priority (using Table Get). The
first use of the Table Get routine following the use of the Table
Find routine returns the address and length of the next entry in the
specified priority level. 1If used, Table Find must be executed as
the first JCT routine following JCT table acquisition via the ASP
AENQ macro.

e Table Delete routine. The Table Delete routine deletes a completed
entry from the JCT. A completed JCT entry has the event completion
flag in each Scheduler Element of the entry equal to 1. As an entry
is removed, the record is compressed. When a record is empty it is
deleted.

e Table Reset routine. The Table Reset routine is used to reset the
JCT scan pointers to the top of the priority level currently being
accessed.)

RESIDENT JOB QUEUE TABLE (RESQUEUE)

When the job segment to be scheduled is for Main Service, no FCT entry
is created by the Job Segment Scheduler. Two FCT entries, MAIN and
MAINIO are created during system initialization for each Main Processor
defined. The MAIN FCT controls the system IPL, job scheduling,
execution monitoring, and job termination. The other MAINIO controls
all input/outpu: between the Main Processor and the Support Processor.
For each job segment scheduled for Main Processor service, an entry is
created by JSS in the Resident Job Queue Table (RESQUEUE) . Each
RESQUEUE entry contains the File Description Block (FDB) for the Job
Description Accounting Block (JDAB) and the Job Setup Table (JST), the
ASP job number, job priority, and other fields used by Main Service in
controlling the execution of the job on the Main Processor.

25

RESQUEUE ORGANIZATION AND ACCESS

RESQUEUE is chained from RQTOP in the TVTABLE through the RQNEXT
field, however this chain will not be in priority order. It will act as
a collector only. Both Main Service and MDS utilize subchains through
the RQGRPCHN field in priority order and based either in MDSDATA or a
Main Group Table. The chain in which a RQ entry exists is indicated by
the RQINDEX field in the RESQUEUE entry.

This chaining is controlled by three existing RQ macros RQTAADD,
RQTADEL, and RQTAPUT. RQTAADD and RQTADEL are used to enter/delete a RQ
entry with the addition that chaining and dechaining through RQNEXT is
implicit. RQTAPUT is used to move a RQ entry from one chain to another,
or change the priority within a chain. The RQTAADD and RQTAPUT macros
have an INDEX= operand to indicate into what chain the RQ is to be
entered. RQTADEL and RQTAPUT use the existing RQINDEX in the RQ entry
to determine from what chain to remove the entry. INDEX= may be omitted
with the following results:

RQTAADD will use the index in the entry (JSS for example builds the RQ
with either an index for MDS or Main therefore he might omit the INDEX
rather than having two RQTAADD macros) .

RQTAPUT will use the index in the entry for both the dechaining and
rechaining resulting in performing aging for Main and MDS and a priority
change from a MODIFY command.

The macros are presented in Appendix A.

GENERALIZED RESOURCE MANAGEMENT

ASP resources such as the Job Control Table (JCT) and the Resident Job
Queue Table (RESQUEUE) must only be accessed by one DSP at a time. To
protect against concurrent use of these system resources ASP provides
the resource management routines, AENQ and ADEQ. These routines,
located in the ASP nucleus, must be used to access the ASP resources.
ASP resources that are used serially are defined in the TVTABLE through
use of the RESOURCE macro.

The following macro-instructions access the resource management routines
which perform the function indicated:

» AENQ - Obtains exclusive use of the resource named in the macro
parameter. The macro will wait for the resource to become available
or return to a specified address.

e ADEQ - Releases control of the named resource.

e ATEST - Interrogates the status of the resource.

Additional information on the macro-instruction mentioned above is
contained in Appendix A.

WORK-TO-DO DRIVER (WTDDRVR)

The Work-To-Do Driver (WTDDRVR) periodically causes the JCT
records on the ASP queue to be compressed and also through the scan
module processes a created queue of JCT accesses.

Work-To~-Do Driver issues a TACMPR macro every 30 minutes and will

cause JCT records in the ASP queue to be compressed, i.e., get as many
JCT entries into a single ASP buffer as possible.

26

In addition, the Work-To-Do Driver issues an ATIME macro of five
seconds to initiate processing of the WTD queue. The WTD queue is
created by Inquiry, Modify and any other system function that requests
asynchronous JCT processing. A scan module, WTD-JCT , is ALOADED,
given control and processes the WID queue. The WTD queue is deleted and
work-to~do driver issues another ATIME and allows five seconds for
another WTD queue to accumulate. If, at the end of five seconds a WTD
queue does not exist, WIDDRVR issues an AWAIT and waits for a WTD queue
to accumulate.

TAPE AND UNIT RECORD I/0 ROUTINE

A resident module, ASPOPENX, is used by ASP for all tape and unit record
handling. BAll reading and writing to Support Processor devices, both
directly attached (local) and those devices attached via Remote Job
Processing (remote), is accomplished by use of the ASPOPENX routine.

Entry to ASPOPENX from a DSP is accomplished by issuing one of the
ASPOPENX related macro-instructions. The I/0 device affected is
identified to the macro. In order to designate an RJP (remote) device
in the ASPOPENX macro RJP must be active and the desired terminal must
be signed on.

The macro-instruction and the function ASPOPENX performs when they are
issued by the DSP are as follows:

e ASPOPEN - Initializes the DCB and DEB (created by the ASPDCB macro)
If a remote device is specified in the macro parameter, ASPOPENX
branches to the ROPEN routine of RJP. If a local device is
specified in the macro parameter, ASPOPENX inserts an abnormal end
appendage. '

e ASPEXCP - An 0S EXCP is issued for local devices (this normally
requires an ASPOPEN macro to be previously issued). Remote devices
will cause ASPOPENX to branch to either an RREAD or RWRITE routine
of RJP.

e ASPEOV - For RJP devices ASPOPENX sets a unique op code and then
branches to RWRITE of RJP. ASPEOV is essentially a NOP when
specified for a local device.

e ASPCLOSE - For local devices any outstanding I/0 requests will be
purged and the DCB is marked closed. For RJP devices, ASPCLOSE
marks the DCB closed and branches to the RJP routine RCLOSE.

CONSOLE SERVICE

Console Service, a resident group of modules of the ASP system, provides
communication between the operator and the ASP system. The two classes
of communication are:

* Input Messages, initiated by the operator, consist of command or
action responses directed to various DSP's within the ASP system.
Input messages may also be entered from the input stream from one of
the readers; CR, DR, or TR.

e Output Messages, initiated by the ASP DSP's or any Main Processor,
consist of job status messages, replies to operator inquiries, or
operator action required messages.

The Console Service functions are:

¢ Reading messages and responses into the system from the consoles

27

¢ Checking validity of messages entered from RJP workstations
according to the level specified on the appropriate RIPTERM card

¢ Interpreting the verbs in the messages and responses

¢ Routing the messages and responses to the system functions that
perform the required actioms

* Queuing messages and responses that are to be sent to the consoles
from the functions

e Writing messages and responses to the consoles

s Automatic switching in the event of console failure, if desired.

DSP+-to—-Operator Communication

DSP to operator communication is accomplished via a MESSAGE macro used
by the DSP. The MESSAGE macro allows the DSP to send a message to a
class of consoles. Each console is defined as receiving certain class
messages. This class is defined in each console's CONSOLE card

The MESSAGE macro also allows DSP communication to be directed to a
specific console.

The text format for messages includes a message identifier unique to the
DSP that issued it. For example, 'MSV0O1 identifies the first message
from Main Service. The message text, including the message number ,
may contain a maximum of 70 bytes. The format of the MESSAGE macro and
its options are discussed in Appeandix A, Macro Instructions.

Opeéerator-to-DSP Communication

The operator communicates with the DSP via the operator command
language. The link between the operator and the DSP is by device name
or the unit address of a device assigned to the DSP. In addition, an
operator may use the DSP name, provided that there is only one copy of
the DSP active at the time. When a DSP initiates execution, it must
identify itself to Console Service via the LOGIN macro . This macro
(defined in Appendix A) specifies the entry point of an asynchronous
program to which control should be passed for message processing. A
module within Console Service called INTERCOM allows the programmer
to simulate operator input messages from a DSP.

The asynchronous message processing program of a DSP receives control
directly from Console Service whenever a message is received for the
DSP. This message processing program must perform the following tasks:

1. Evaluate whether to accept, reject, or request that Console
Service queue the message on the FCT to be retrieved later.

2. Identify the command code and set the necessary flags, internal
to the DSP, which will cause the message to be acted upon when
the DSP is next entered from the Multifunction Monitor.

3. If necessary, satisfy any AWAIT condition to ensure entry
from the Multifunction Monitor.

4. Extract any pertinent data from the message for future
processing. This usually entails moving the entire message into
a temporary work area.

5. Return control to Console Service with an indication of whether
or not the message has been accepted, or if it should be queued.

28

6. Keep to a minimum the DSP processing within the message
appendage.

Console Service creates the following conditions upon entry to a DSP
asynchronous message processing program:

e Register 1 points to the message preamble. A DSECT for this
preamble can /be generated with the CONDSECT macro

e Register 14 establishes the return point to Console Service.
¢ Register 15 establishes the entry point of the message processing
program. Returning to Console Service Register 15 will contain the
following code to indicate the action taken:
0 normal return
4 message is to be queued
8 message is to be rejected
The DSP asynchronous message processing program is entered via the ASP
Save Routine which saves the working registers. It must return control

to0 Console Services via the ARETURN macro

The preamble for an incoming message is illustrated in Figure 2.

+0 +1 +2 +4 +5 +6 +7 +8
Buffer ‘
Authority { Console | Control| Char Action| Scan Text
Unused " Level Number ; Flag Count Code ‘Displ
1 Byte 1 Byte. 2 Bytes 1 Byte | 1 Byte| 1 Byte| 1 Byte

Figure 2. Arrangement of Fields in Input Message Preamble. The
preamble and flags are equated in CONDSECT.

The entries are defined as follows:

e Character count. A binary number that specifies the number of
characters in the message text, plus eight (for the preamble).

e Action code. A binary number that jidentifies the verb in the
message. The codes are:

VERB CODE
START 01
RESTART 02
CANCEIL 03
SEND 05
FAIL on
FREE 21

29

CALL 41

VARY 42
INQUIRY 43
MODIFY uy
DELAY 81
ERASE 82
MESSAGE Al
SWITCH Cc1
DUMP E1
RETURN E2
DISABLE 1
ENABLE. F2

e Scan displacement. A binary number which, when added to the
contents of register 1+8 (the beginning of the text), points to the
character in the message that follows the last character examined by
Console Service (that is, the first character of the first
parameter).

e Console number. The number of the console from which the message

was transmitted. This console number is the number used with the
MESSAGE macro to route a reply back to the console of origin.

Note: Consoles on RJP workstations have the high order bit on plus
the remote number in the two-byte console number.

s Message. The message text, a variable-length entry which may
contain a maximum of 128 bytes.

Special Operator Functions

The verbs START, RESTART, CANCEL, communicate with active DSP's.
Console Service interprets these commands and takes one of the following
actions:

e If the requested program is in storage, Console Service branches
directly to it.

e If the requested program is not in storage, Console Service will
reject the message, and send an indicative message to the operator.

(The remaining commands are processed internally by Console Service or

invoke programs, either resident or nonresident, to provide special
operator functions.)

conscle Message Buffer Pool

A preallocated buffer pool, 96 bytes per buffer, is used for both input
and output console messages. Each time a buffer is required for an
operator message, Console Service will obtain it from this buffer pool.

30

When the buffer is no longer needed it will be placed back in the pool.
If there are no available buffers or a message is too large to fit in
one buffer, another buffer will be obtained via an AGETMAIN. Each
buffer obtained via an AGETMAIN will be returned via an APUTMAIN.

When an output message requires an action or reply, the message will be
placed in the outstanding reply queue. When the reply is received the
DSP issues a macro, DEQMSG, to dequeue the outstanding reply buffer.

The number of buffers allocated to Console Service is defined in the

STANDARDS card . Buffer depth , the number of messages that may
be queued by DSP's for a specific console, is defined in the CONSOLE
card .

console Errors

Console Service will display the sense bytes, status bytes, and
operation code on all console error conditions. In the event that a
console is out of ready and buffer depth is reached, or a permanent I/0
error, Console Service will switch automatically to the alternate
console specified in the CONSOLE card, or to the first available console
in the console status table if an alternate was not specified. If there
is no alternate or available console in the console status table, ASP
will ABEND.

Console Service Message Processing

Console Service uses the Function Control Table (FCT) to route the
messages and responses to the appropriate functions. The appendage
entries are specified by each function through the use of the LOGIN
macro -instruction. Each message and response received by Console
Service from the operator contains a verb and either a communication
noun or a keyword. Console Service scans the FCT for a match between
the communication noun and the function names for currently active
functions. Upon encountering a match, Console Service branches to the
entry point specified in the FCT.

Console Service has an entry in the Function Control Table. While
Console Service is not processing messages, it is AWAITing. The event
completion flag (ECF), pointed to by the AWAIT macro of Console
Service and by the address portion of Register 0 of the FCT entry, is
posted when a message is ready to be sent either by the operator or by a
system function.

Figure 3 illustrates the fiow of an input console message Or response
(that is, from the operator to the system). The steps in the flow are:

31

Unsolicited Multifunction Console

Operator Interrupt Monitor service Function
Step 1

I
Presses the |
request key |
on console. |

Step 2

™ Posts the ECF

Step 3

for Console
Service=1.

Gives control
to Console

Step 4

!
|
I
|
|
Service IReads the
a1
I
I

| |
| I
I
| |
| 4 |
I | |
I because ECF=1.[||message. |
I | Interprets |
I the message.
Types the | X Gives control I
message. | | “flto the functionl
! lspecified in Step S
I | |lthe message. !
Accepts the
| | I lmessage.
| | | |Posts an
action flag
: I |Step 6 Ifor the
function.
I ’ IDequeues the |
| lmessage buffer I
| | Iand AWRITS for| |
Step 7 the next
| | / |message. I
I |‘Gives contro} }
| to the funct10n| IStep 8
| | when the ECF=1.
l lTakes the
I ! | laction re-
[| l ‘quired by
| i 'the message.
| | I
Figure 3. Flow of an Input Message.

1.

3.

32

The operator presses the request key (or equivalent) on the
console, causing an unsolicited inputs/output interrupt.

The processing of this interrupt causes the ECF for Console
Service to be posted. After the ECF is posted, control returns
to the function that was in execution when the unsolicited
interrupt occurred. This function eventually returns control to
the Multifunction Monitor via an AWAIT.

The Multifunction Monitor then passes control to Console Service.

When Console Service has control it looks sequentially at each
entry in the Console Status Table. The Console Status Table
contains information on each console based on initialization
parameters. An attention bit set, indicates a specific console
requires service. Console Service branches to the appropriate
device-dependent routine as directed by the Console Status Table.
Each console has a channel-end appendage as part of its device-
dependent routine . The appendage is entered after each I/0
channel end is received to perform error checking and to post the
Console Service ECF .

Console Service reads the message into storage and analyzes it
for proper authority level as defined in its CONSOLE card
The module, CONSAUTH, is used for local consoles and in the
distributed system will treat any non-designated authority as a
level 15. A user-written CONSAUTH may be implemented to meet
special console authority requirements. Refer to "Writing a
CONSAUTH Module" in this chapter. For RJP consoles the module,
CONSANAL, is used to analyze the authority specified in the
RIPTERM card.

The message, if allowed, is then interrogated as to command and
is processed if possibie.

When commands are entered through the input stream, the command
is queued on the console that called the particular reader. When
it is gueued it looks the same as if it was entered from that
console.

5. When Console Service passes control to a function, the function
either accepts or rejects the message, or requests that the
message be queued by Console Service off the functions FCT
The latter may be done if the function is currently processing
another message.

The function sets its own action flag. This action flag
indicates to the function (when it later receives control from
the Multifunction Monitor) that it has received a message upon
which action must be taken. The function posts its ECF only if
the event upon which the function is AWAITing is the receipt of a
message or response. For example, in the event that a function
has sent a message to the operator requesting a response, the
function AWAITs until the response has been accepted by the
function. Then, once the ECF has been posted, control can again
be passed to the function through the Multifunction Monitor. The
function returns control to Console Service. (Note that the
action required by the message response is not taken at the time
Conscle Service passes control to an asynchronous message
processing program of the function.)

6. Console Service either dequeues the message buffer or queues it
for the DSP to process at a later time, and AWAITs for the next
message or response. With the AWAIT , control passes to the
Multifunction Monitor. i

7. The Multifunction Monitor scans the FCT entries for an ECF that
has been posted. After the ECF has been posted for the function
that accepted the message or response, the Multifunction Monitor
passes control to the function.

8. The function checks its action flag (the flag set in Step 5) and
detects the receipt of a message or response that requires
action. The required action is taken by the function at this
time. Input console messages from RJP terminals are preprocessed
by CONSANAL to determine validity and to apply defaults
before being passed to CONSINPT for processing. Local
consoles may be preprocessed by CONSAUTH.

Fiqure 4 illustrates the flow of an output console message (that is,
from the system to the operator). The steps in the flow are:

33

Console Multifunction _
Function Service Monitor Console

Step 1

Executes a
MESSAGE macro-

Step 2¢

I
|
I
I
|
sage in the |
|
|
I
|
I

instruction.
Puts the mes-
queue. Posts
ECF=1 for
Step 3 Console
Service.
Continues

Either AWAITS Step 4 *
or terminates.

Gives control

I to Control
Step S Service be-
‘ cause ECF=1.

Sends the
message to
the console.

AWAITs for P Types the
message.
sage.

——— i ae s —— — — — — — —— — e, avoper ittt i, i, ettt i

|
I
|
I
I
I
I
I
|
processing. |
I
I
I
I
I
I
I
I
I

|
I
another mes- I
I
I

Figure 4. Flow of an Output Message.

1. The flow of an output message is initiated when a function

executes a MESSAGE macro-instruction. The expansion of the

MESSAGE macro includes a branch to a portion of Console
Service called the CONSQMGR routine.

2. The CONSQOMGR routine places the message from the function
into an output message queue for the appropriate console or
consoles as specified by the destination code. The CONSQOMGR
routine returns control to the function that executed the MESSAGE
macro-instruction. A DEQMSG macro dequeues console and
action messages in the buffer pool when they are no longer
required.

3. The function continues processing until it eventually AWAITs on
some event or terminates. In either case, control returns to the
Multifunction Monitor.

4. The Multifunction Monitor passes control to Console Service.

5. Console Service transmits the message to the console. Console
Service AWAITs for the next message.

There are two other conditions not mentioned above that can cause the
Console Service ECF to be posted and thereby gain control. They
are:

1. 2 console timer interrupt causes the ECF to be posted.

Time intervals are issued for 2740 Prepare commands and for user-
specified graphic console message delay intervals. Output

34

messages to the consoles are inhibited during the specified
interval. When the timer interrupt occurs, the Console Service
ECF is posted to allow any pending output activity.

2. When Console Service issues a message, the MESSAGE macro cbtains
buffers from the buffer pool, or, if there are no buffers
available, an AGETMAIN is issued. 1In the event the AGETMAIN
cannot obtain a buffer the BUSY exit is taken. When storage
becomes available the Console Service ECF is posted.

Writing a CONSAUTH Module

This module is provided as a user exit to perform local console
authority checking on input messages before they are processed.

CONSAUTH is called from CONSINPT. The registers are saved before entry
and therefore, must be restored before return. This is accomplished by
using the ARETURN macro to return control to CONSINPT.

Upon entry to CONSAUTH Register O points to the beginning of the message
prefix (mapped with CONDSECT TYPE=INPUT macro), and Register 9 points to
the Console Status Table entry for the input console. Register 1 points
to a word (the address of CONSAUTH) in the Console Service data area.
The zeroing of that word prohibits entry into the CONSAUTH module.

There are two valid return codes from CONSAUTH. A return code of 0 is
the normal return, indicating that message processing is to continue. A
return code of 4 indicates that the message is not allowable from that
console and results in message processing termination for that message
and the printing of the following:

CNS03 ‘message-text' REJECTED, UNAUTHORIZED REQUEST

The above mentioned return codes are the only two that may be used. A
further restriction is that a MESSAGE macro may not be issued from
CONSAUTH.

ASP DISK INPUT/OUTPUT PROGRAM (ASPIO)

The modules, '~ IONUC , IODATA , IORTNS , and TRACKS are
resident in the ASP nucleus and together constitute the ASP
Input/Output routines called ASPIO. These routines manage the flow of
data between the Support Processor and the direct access devices
assigned to the ASP system.

The purpose of ASPIO is to block, deblock and transmit data in the most
expeditious manner. This program provides the only available means of
accessing the direct access storage devices allocated to ASP on the
Support Processor. The program is organized to optimize the transfer of
data to and from a uniform pool of direct access storage devices. The
data sets managed by the Input/Output program are unique to ASP and
cannot be accessed by 0S Data Management access methods.

ASPIO has the capabilities to perform the following functions:
e Block data records into a data set
e Deblock data records from a previously blocked data set.
e Provide pool buffering of all output data sets and schedule

input/output activity in accordance with the priorities of all
active data sets.

35

* Control buffer allocation.

e Allocate tracks from a pool of direct access storage device tracks.
e Read or write a single buffer of data.

o Provide dedicated buffers for input files as an option.

The devices supported by ASPIO routines are the 2314 or the 3330. The

RPS feature of the 3330 is fully supported. The ability to mix 3330
and 2314 queues is not supported. A queue pack may not be varied
offline to the ASP system. Additional queue modules may be added on an
ASP restart. Any additional modules (DD names) specified on a restart
must be of a higher collating sequence than those DD names that already
comprise the ASP system. :

ASPIO uses the EXCp access method for all I/0 transmissions.

The use of dedicated buffers is provided as an option for input files
opened by Print Service. This provides a new facility to ensure that
once an input file has been opened to be read, three buffers will be
used to read all the data records. These buffers will not be available
to other active functions until the open input file is closed.

Every ASP DSP communicates with ASPIO by means of a set of macro-
instructions. These macro-instructions enable the user to pass to the
Input/Output program parameters that identify the data set to be
referenced and the action to be performed. The user is subsequently
signaled when the requested action has been completed. If the requested
action is not performed immediately, the user is automatically placed
into an AWAIT status by the Input/Output program until the action
can be completed. ASPIO works with two kinds of data sets, single-
record and multiple record (multiple file). A single-record data set
resides in a single buffer and is written onto the ASP job queue as a
physical record. This type of data set is used to record small
quantities of data on direct access storage such as a parameter buffer
or the Job Description Aeccounting Block . A six-byte File
Description Block (FDB) describes a single-record data set. A
miltiple record data set resides in one or more buffers on one or more
tracks of a direct access storage device. This type of data is used to
record large data sets on direct access storage. A 20-byte FDB is
required to describe this data set. A File Description Block (FDB) is a
work area that is used by ASPIO. Whenever a DSP issues an ASPIO request
(macro) it must first set up a pointer to its FDB. The first four bytes
of the FDB contain either the buffer address or track address of the
file. The next two bytes of the FDB contain flag bits. When a DSP
creates a new file the flag bits must be set to zero. From then on
ASPTIO will maintain the FDB for the file.

Single-Record Data Set

A single-record data set can be read, written, released, or purged. An
ASPIO request to write a single-record file will create an entry in a

File Directory (FD) if the allocated I/0 device is not
immediately available. Entries in the FD are ordered by the priorities
of the data sets they represent.

When the data set is written, the buffer address in the FDB is
changed to a track address and record address. If the data set is being
written for the first time, a track is allocated for it. If the data
set has been written before, the ASPIC routines extract the address of
the track on which the data set resides from the buffer designated in
the FDB. In this manner, single-record data sets are automatically

36

rewritten in place. The DSP must clear the FDB when a data set is being
originated.

A request to purge a single-record data set causes the track associated
with the data set to be returned to the colliection of available tracks.
Only single record files that obtained their tracks from the Single
Track Table (STT) may be purged. Once a single record data set is read
or written, any File Directory entry created is removed. Hence, the
Input/Output program is aware of a single-record data set only when a
request is made to read, write, or purge such a data set. Once the
request is satisfied, the Input/Output program has no further cognizance
of the data set.

All single-record data sets that are read must be either rewritten or,
if the data they contain has not been changed, released. Releasing a
single-record data set restores the FDB for the data set from a buffer
address to a track address in the first four bytes. The buffer
associated with the file is returned by the ASPIO routines.

The macros associated with single-record data sets, and their functions,
are as follows:

MACRO FUNCTION
AREAD Reads a single-record data set
AWRITE Writes a single-record data set

ARELEASE Releases a single-record data set that has been read

APURGE Purges a single record file whose track allocation was
obtained via the STT, also purges JBTAT's.

AGETBUF Obtains a buffer from the ASP buffer pool
APUTBUF Returns a buffer to the ASP buffer pool

The precise definitions of the above macros are found in Appendix A.

Multiple Record Data Set

A multiple record data set contains many logical records, which
may, in turn, be organized into logical files. After a data set is
opened, data records may be put into the data set (blocking) or
extracted from the data set (deblocking). After processing, the data
set may be retained (by closing). A request to open a multiple record
data set causes the Input/Output program to create an entry in the

File Directory and to set the open/closed indicator in the FDB
to 0. The I/0 required bit is set to 1 whenever transmission is
required on an input or output file. The File Directory enables the
Input/Output routines to remember which data sets are active and which
of these require data transmission. Opening either an input or an
output data set causes several pointers, required only by ASPIO routines
themselves, to be initialized. These are the current buffer pointer and
remaining space left in the buffer.

The closing of a multiple record data set causes the setting of the
open/closed indicator in the FDB to 1 and the deletion of the File
Directory entry for the data set. When a data set has been closed,
the Inputs/Output program has no knowledge of it.

Data records may be blocked into an output data set (a data set going to

direct access storage) or deblocked from an input data set (a data set
coming from direct access storage). All blocking and deblocking takes

37

place in the locate mode; the responsibility for moving data to and from
the buffer remains with the user of the program.

Two calls to the Input/Output program are required to block a single
data record. The first of these calls (ALOCATE) requests room for n
characters, where n may not be larger than the buffer size minus 24.

The Input/Output program responds to this call by pointing to a location
within a buffer into which the data can be placed. If no room and no
buffers are available, the Input/Output program AWAITs until the
location is available before returning to the user. The second call

(ABLOCK) indicates that the data has been placed in the buffer
previously indicated and that m characters (m < n) should be blocked.
The user may locate room for n characters; he may move or read them into
a buffer; and he may then block all of them, block some of them, or
block none of them.

A single call (ADEBLOCK) is sufficient to deblock a data record.

The user indicates a File Description Block, and the Input/Output
program returns a pointer to the start of the next record and a count of
the number of characters in the record. A request to deblock a record
terminates the availability in storage of any previous record. For
example, if a user deblocks record 1 and record 2 of a data set, he
cannot be certain that the deblocking of record 2 leaves record 1
intact.

ASP Disk Input/Qutput Macro-Instructions

The macros associated with multipié record data sets and the functions
of the macros are as follows: :

MACRO FUNCTION
ABACKR Backspaces a logical recorxrd
ABLOCK Blocks a logical record into a data set being written

ABLGCKS Blocks a logical record into a data set being written.
However if the record spans across a buffer boundary, the
user is required to move the data into two buffers.

ACLOSE Closes a data set that is in use

ADEBS Deblocks a logical record and returns two pointers to the
data when the record spans a buffer (used by Print
Service).

ADEBLOCK Deblocks a logical record and if the data spans a buffer
the data is combined and one pointer is returned.

ALOCATE Locates space for a logical record in a data set being
written .

ALOCATES Locates space for a logical record that spans across a
buffer boundary and returns two pointers to the user
(used by Main Service)

ANOTE Notes the current position of a data set so that it may
later be repositioned via APOINT

AOPEN Opens a data set for multiple record input/output

AOPEND Opens a previously written data set at the end of the

data set for subsequent writing

38

APOINT Repositions a data set that was previously noted (via
ANOTE)

AWEOF Records a logical file mark

The detailed definitions of the above macros can be found in Appendix A.

ASPIO Track Allocation

Track allocation is designed to minimize arm motion of the queue
devices. The track allocator routine is designed to provide the
tracks that are close to the center of a gueue device. The data for any
particular job in the system is thus spread over all the queue devices
in the most general case. Track allocation will be in logical groups of
tracks rather than a single-record allocated at each request for a
track. These groups are assigned tc a job as needed, always with the
logical group closest to the center of a device being chosen. So, the
particular queue device chosen is the one that has a track group closest
to the center of that device.

Note: The size of a logical track group can be either one cylinder or
one half cylinder as optioned at initialization in the BUFFER
card

During ASP initialization, the module INITIO will comstruct the track
allocator table with each bit representing a logical track group. The
new table will be built into two logical parts. The first half of the
table contains all cylinders from the center cylinder to the highest
cylinder number on the queue device. The second or lower half
represents the center cylinder minus 1 to cylinder 0 in descending
order.

The logical track group bits are set on with the first bit representing
the track group for the first module, and next bit representing the
track group for the second module and so forth until the number of
modules are reached. The same pattern is repeated until all logical
track groups are allocated in the upper and lower parts of the table.
This occurs within the extents that are allocated for each module.

Figures 5, 6, and 7 illustrate a created Track Allocation Table

(TAT) based on varying initialization conditions. Because the
number of bits in the TAT will vary, the logical size of the TAT will
also vary. Maximum TAT size is limited to the size of an ASP buffer
minus 24 bytes.

39

See\below

202 tttifteee-e

All Bits

ceec I 403

201 | FEEbRbeeee..
All Bits

R R RN RN A

Given:

Number of Queue Modules = Two

Queue device type = 3330

Number of cylinders/heads= 404(0-403)/19(0-18)

ASP Initialization Track Group = one half cylinder {first bit
represents head 0-9; secondbit represents head 10-18)

202 Y.
\

Quéue Module 1, Cylinder 202, Head 0-9
AN

je—Queue Module 2, Cylinder 203, Head 0-9

Queue Module 1 Cylinder 202, Head 10-18

Fiqure 5. Track Allocator Table - 3330.

40

100 y TR

All Bits

ceees L | 199

29 R R NN ERRRE

All Bits

Given:

Number of Queue Modules Assigned = Three
Queue device type = 2314 o
Number of cylinders/heads = 200(0-199)/20(0-19)

ASP Initialization Track group = one cylinder (each bit represents
heads 0-19) '

~
~
100 Filfeee ™~ -
~
~
AN ™~
i \ v\\~ .
N Queue Mmodule 1 Cylinder 100
AN

100 ?M—Queue Module 3 Cylinder 100

Queue Module 2 Cylinder 100

Figure 6. Track Allocator Table - 2314,

41

See below

100 [lleeenen

All Bits

--e--HEHEN 199

99 P

All Bits

Given:

Number of Queue Modules Assigned - Two

Queue device type = 2314

Number of cylinders/heads = 200(0-199)/20(0-19)

ASP Initialization Track Group = one half cylinder (first bit
represents heads 0-9, second bit represents heads 10-19)

100 S
1 i N
~N
~N
N\ N ,
N\ Queue Module 1, cylinder 100, Head 0-9
\ (’ N
\\ |- Queue Module 2, cylinder 100, head 0-9

Queue Module 1, Cylinder 100, Head 10-19

Figure 7. Track Allocation Table - 2314.

After initialization, the track allocator routine, TRACKS, begins
allocating logical track groups to each job as required. The first four
bytes in the upper and lower half of the TAT are loaded into two
registers, RO and R1. Bits are tested and shifted until' the first
available bit (or track module) is located. The bit is turned off in:
the TAT and turned on in the job's track allocation table, JBTAT. The
job's JBTAT is created at Input Service time by ASPIO. The FDB for this
JBTAT becomes part of that job's JCT.

The JBTAT contains an area which is a "mirror image®™ table of the TAT.
Bits of the JBTAT turned on represent track groups allocated to that
job. These same bits are zeroed in the TAT. 1In addition, the JBTAT
contains control information such as the track address of the track
group assigned to the job. The first track address of the track
group is the actual track address for that job's JBTAT. Each subsequent
track used by the job will create a "next available track address" entry

42

in the JBTAT. Account field is decremented and when zero is reached a
new track group must be allocated to the job. The FDB for a job's JBTAT
is contained in that job's JCT.

AOPEN , AWRITE , AOPEND , and APOINT are macros available
to DSPs for creating files. They all have a TATPTR parameter which
may be used to supply the address of the six-byte FDB (newly created
files must provide an FDB with all flag bits off). If TATPTR is not
specified, ASPIO assumes the pointer AJDTRFDB in the AJDB for the
active function.

Note: It is important that any permanent file associated with a job (or
‘ DSP) in the system use the JBTAT belonging to the job (or DSP)
when the file is created.

When a job has finished all of its processing in the ASP system, all
tracks allocated to that job are purged or returned to TAT (the JIBTAT is
OR'd with the TAT) via the APURGE macro issued by the DSP, Purge.

The Single Track Table

There are many cases where certain DSP's and control blocks of short
duration require only two or three single-record files, that is, need
only two or three buffers (or sectors) of a track. To eliminate wasted
space by allocating each of these files a track group which may be an
entire cylinder, a separate JBTAT is created for a table that will
allocate space from a track group to such single-record file requests.
This table is called the Single Track Table (sTT). The six-byte
FDB for the STT resides in the TVIABLE and is labeled MNTRKFDB .

The STT is an area of storage defined during initialization. It is 500
bytes if queue devices are 2314s or 1012 bytes if the queue devices are
3330s.

In order to use the STT, the user issues the AWRITE macro with the
TATPTR=MNTRKFDB specified. ASPIO will allocate a track group if this is
the initial STT request. ASPIO will also create an entry in the STT
that will identify the module, beginning head number, and remaining
space for additional single records (buffers) that can be contained in
the track group. Another field in the STT entry contains bits that
represent available record space remaining in the track group. As each
additional single-record is written to the file the number field is
reduced by one and the corresponding bit for that record is zeroed.
When the count_reaches zero ASPIO will allocate another track group,
update the STT JBTAT, and create a second entry in the STT. The first
four bytes of each STT contains a pointer to the next table when the
originally allocated space is used up. The four bytes of the first
entry will be zero until the second table is created. Figure 8 is an
example of a Single Track Table entry.

Single-records purged from the file will cause the corresponding bits
and count in the STT to be reversed. This action makes the space just
purged available to subsequent single file requests. Track groups
allocated to the Single Track Table are not returned to the TAT by space
within each group, being of short duration and purged upon completion
means that single file requests normally find space in existing track
groups and STT track group buildup is minimized.

43

+0
MODULE
+1
CYLINDER
+2
FIRST HEAD NO.
+3
NO. OF RECORDS LEFT
(THIS TRACK GROUP)
+5
FIXED AREA - EACH
A BIT REPRESENTS AN ~
~ ALLOCATED RECORD IN ~
THIS TRACK GROUP

Figure 8. Single Track Table Entry.

Error Recovery

The error recocovery routine provided by the 0S routines are used to
attempt error recovery. If the OS error recovery routines determine
that the error is permanent and uncorrectable, ASPIO will then provide
its own error recovery procedures. For an uncorrectable write error,
where the data is a single-record file and is being written for the
first time, a new track will be assigned to write the data. This
procedure is used also when writing data in a multiple record data set.
A permanent read error will result in a DM760 ABEND.

All accesses to the ASP job queue are done via EXCP by the ASPIO
routines. All errors and error recovery are handled by the IOS
routines. When the error is determined as permanent, the abnormal end
appendage in the module IONUC places the IOB containing the error into
an error IOB pool. The module IONUC tests the post of an entry in the
error pool. Following the job FCT in RESPARAM is an FCT for ASPIO error
recovery called JOERREC . This FCT is chained to the JSS FCT by
IONUC and a JSSDR entry point is placed into register 0 and is posted to
allow control from the MFM.

The satisfied AWAIT gives JSSDR control and the module IOERREC is
ALOADed and control is passed to IOERREC via JSSDR.

The ASPIO error recovery module IOERREC analyzes the I/0 error and
attempts recovery.

When all errors have been processed by IOERREC, control is returned to
JSSDR, who dechains IOERREC FCT and deletes IOERREC.

All write errors are corrected by obtaining a new track and re-issuing
the I/0. The bad track is placed into the BADTRACK table.

Read and write errors that are due to overrun and seek checks are
reissued until corrected. No upper limit on the number of retries.

Permanent FCT's on RESPARAM PCT chain:
CONSOLES
ASPIO

a4

CALLDRVR

SETUP

WTD

Jss

IOERREC - Chained to JSS only when errors need correcting.

ASP FAILSOFT FACILITY

ASP Failsoft support greatly improves total system reliability by
reducing system restart time through Automatic Job Recovery based on
installation- and/or programmer—-supplied restart parameters. This is
accomplished via the ASPCKPT module in the ASP nucleus which checkpoints
the necessary tables and parameters onto a direct access storage device.
A checkpoint is taken whenever a Job Control Table entry is added or
deleted. In addition, Hot Jobs will remain active during an ASP system
restart. For ASP-initiated jobs, a checkpoint of ASP data sets is
available. 1In case of system failure, all output up to and including
the last complete job step can be recovered, however the job must be
restarted from the beginning if restart is specified.

The following table shows the system failure action:

Type of Hot Jobs , Hot Jobs: ASP Jobs ASP Jobs

Failure on the on the on the on the
Local Main | Real Main(s) Local Main Real Main(s)

System FailurejMust be Remain AJR AJR

of Support Restarted Active

(L.ocal Main)

Processor

ASP Program Remain Remain AJR AJR

Failure on Active Active

the Support

Processor

System Failure{Remain AJR Remain AJR

a Real Main Active Active

Processor

AJR 1s Automatic Job Recovery. Action taken is dependent upon the
FAILURE option specified in the //*MAIN supplied by the programmer,
CLASS or STANDARDS cards in the initialization deck.

ASP, itself, is extremely reliable for those installations with a
minimum number of user-modifications. Additions of user-modifications
and user-written DSPs can impact the reliability to varying degrees.
ASP DSP Failsoft support minimizes the impact of ABENDs that occur as a
result of DSP program checks.

Functionally, the ASP Failsoft facility can be discussed in three
general catagories:

45

46

ASP
a.
b.

IPL

ASP

program failure on the Support Processor

An ASPABEND dump is taken.

Control is returned to OS. ASP may be restarted.
of a main after an ASP RESTART.

All ASP jobs not specified as Hot Jobs that were active on
the Main Processors (local and real) at the time of a Support
Processor faillure are processed according to the FAILURE
option. This option can be defined in these ways:

1) On the //*MAIN control card. This FAILURE option
applies only to a single ASP job.

2) The FAILURE option on the CLASS control card is used to
override the FAILURE option on the STANDARDS control
card. The CLASS card will affect all jobs in that class
and can be overriden by the //*#MAIN card for an
individual job within a class.

3) On the STANDARDS control card. This FAILURE option
applies to all ASP jobs. It may be overridden by the
CLASS control card and //% MAIN card FAILURE options.
The FAILURE options,available are:

a) RESTART the job on Main. This is the default option.

b) CANCEL the job from Main. PRINT and PUNCH will
follow. ’

c) Put the job in HOLD for restart on Main.

d) Print the job and then put the job in the HOLD for
restart on Main.

An operator message is issued for each ASP job that was
active on Main which indicates the FAILURE action taken.

No special action is taken to support the 0S Advanced
Checkpoint/Restart facility.

Whenever a Main Processor failure occurs, all active jobs are
processed according to their FAILURE options. . This
processing takes place when the Main Processor is re-IPLed.
During Main Processor IPL, all SYSMSG output from
incomplete ASP jobs will be recovered.

DSP Failsoft

DSP Failsoft isolates a failing DSP and where applicable
attempts intelligent recovery of the DSP through system
programmer problem correction, operator interaction, or
reinitialization of the DSP. This action allows continued
ASP operation following abending of a noncritical ASP
resource and minimizes the occurrence of situations requiring
an ASP system restart.

A failing DSP is intercepted via a STAE or SPIE . The
INITIATE routine of ASP contains the SPIE and STAE macros and
exit to the ABENDMON module. ABENDMON will give control
to AFSDRVR if recovery is possible. AFSDRVR ALOADs
appropriate recovery modules. Recovery modules for user-
written DSP's may be provided by the user.

c. Operator intervention is required to continue. AFSINIT
issues operator messages identifying the failure. The
operator has the following options:

1) WAIT - Message AFS03 is issued every five minutes
requesting action unless the WAIT reply is given. The
WAIT reply indicates the failure was noted and
appropriate action is being taken.

2) CANCEL - This message requests DSP Failsoft to attempt to
return the failing DSP's resources and place the DSP in a
permanent AWAIT.

3) BYPASS - This response will cause the user-written
recovery routine to be bypassed and prepares for the
diagnosing of the problem using the Dump Core utility
DSP.

4) RETRY - This response causes DSP Failsoft to schedule the
user-written retry module.

d. If recovery isn't possible or fails, DSP Failsoft will
quiesce the failing DSP. This results in the return of
system resources (JCT Queue, RESQUEUE, etc.), the return of
all units on the FCT GETUNIT list and placing of the DSP in a
permanent AWAIT.

MAIN DEVICE SCHEDULER (MDS)

The Main Device Scheduler (MDS) controls the allocation,
mounting, and deallocation, also referred to as setup, of I/0 devices
associated with job execution on a Main Processor. MDS runs under its
own FCT servicing jobs in RESQUEUE that require setup. MDS services
are included as part of the Main scheduler element in normal job
processing. A job is selected from RESQUEUE for a Main Processor, based
on scheduling constraints specified in the SELECT initialization card,
and device allocation is attempted. Following allocation of devices to
a job, mount messages are directed to the operator indicating the
volume(s) to mount on specified device(s). The operator's actions are
monitored and a VERIFY is done each time an MDS managed device becomes
ready. This VERIFY indicates the volume serial, label status, and other
pertinent information to MDS. When all devices have been properly
mounted, the job becomes a candidate for Main Processor execution.
Following its execution the job is again processed by MDS to return
devices and/or volumes to the available status. ’

The devices to be managed by MDS are either tape or direct access and
are defined to the system by means of DEVICE cards in the initialization
deck. A volume on a managed device is either considered permanently
resident or removable. A volume is considered permanently resident if
indicated by the UCB status at the time the processor is IPLed or the
operator may request that a volume be "mounted"™ until he "unloads" it.
MDS will recognize requests for volumes that are permanently resident
and while no mount will be required, the job will be routed to the Main
Processor on which that volume is mounted.

MDS is posted by JSs when jobs requiring setup are added to
RESQUEUE . A job's setup requirements are indicated in the Job
Setup Table (JST) created by the ASP R/I DSP. Setup allocation
makes use of the System Units (SYSUNITS), Setup Units
(SETUNITS), and Setup Names (SETNAMES) tables. The SYSUNITS
table contains the current allocation status of devices, volume serial
numbers of the last volume mounted, and the Main Processor(s) to which
the device is attached. The SETUNITS table for each Main Processor

47

has an entry for each managed device attached to that Main and contains
the RESQUEUE address of the first job to which the device is assigned
and the console destination to which messages pertaining to this device
should be directed. The SETNAMES table correlates the device types
specified in the JCL UNIT parameter and the devices satisfying that
designation. The SETNAMES entries must therefore include all 0OS
SYSGENed generic names referencing MDS managed devices.

Every device in the total system has a unique SYSUNITS table entry in
which allocation status is kept. Therefore devices may be shared
between two or more Main Processors or between the Support Processor and
one or more Main Processors. The allocation algorithm considers volume
serial numbers as well as device type when allocating. A Volume
Unavailable Table (VUT) , maintained by the operator, is searched and
if a job requires a volume that is in the table its setup is delayed
until that volume is available. If the SYSUNITS entry shows a
volume mounted but not in use that is required by a job in setup, MDS
will utilize the volume if possible on the device where it is presently:
mounted. If the volume is direct access and referenced with a SHR
disposition, more than one job specifying SHR may be allocated to that
volume. Units are selected for mounting with a consideration of
dismounting requirements.

wWhen allocation is successful, the volume mount messages will be
directed to the console class destination indicated in the DEVICE card
for the unit selected. Messages encountered in execution of the job,
such as 0OS RETAIN, MOUNT and KEEP will also be directed to the
destination requested for that device. The serial number information in
these messages will be used to update the SYSUNITS volume serial to
indicate the change in volume to MDS. Any errors detected by MDS in
setup processing will result in a diagnostic in the SYSMSG data set for
the job and the canceling with print of the job.

MDS is divided into one resident, five transient, and one data CSECT
modules. The resident module (MDSDRIVR) contains the wait-post
logic for MDS processing as well as the message processing analysis.

MDSALLOC provides device allocation and the issuance of mount
commands to the operator. MDSVERFY validates the operator mounting
and writes checkpoint information for use in an ASP restart.

MDSBRKDN unallocates devices used by a job and completes setup
processing for the job. MODMDS processes the operator MODIFY
commands relating to MDS. MDSREST ensures the same jobs will be in
setup following a system failure.

48

DYNAMIC SUPPORT PROGRAMS (DSP's) - BASIC

The Dynamic Support Programs (DSP's) perform the support functions of
the ASP system. These programs, which are stored on the ASP JOBLIB ,
operate as transient subroutines of the ASP Supervisor.

Each DSP has an entry in the Dynamic Support Program Dictionary. This
entry contains the program name, internally assigned program number,
control section name if the DSP is reentrant, priority, sequence-
dependent operation indicator, reentrant or reusable indicator, callable
or not callable indicator, and a pointer to the Device Requirements
Table , which defines the device types required by this program.

As a job is introduced into the ASP system, an entry is created for it
in the Job Control Table (JCT). Within the JCT entry, a Scheduler
Element is created for each job segment. This Scheduler Element
contains, among other things, a DSP number. The program indicated by
this number is brought into Support Processor storage from the JOBLIB
when the job segment is initiated by the Job Segment Scheduler

(Jss).

When a job segment is scheduled, the DSP and the associated data sets
become known to the ASP system as a function. The DSP must be written
to operate in the environment dictated by the Multifunction Monitor.

The basic ASP DSP's are:

e CR, TR and DR. Spools the input stream on the Support Processor;
passes control to Input Service which recognizes control cards and
takes the appropriate action; and creates a Job Control Table entry,
Job Data Sets Block, Job Description and Accounting Block for each
job.

* Reader/Interpreter. Interprets the OS job control language to
determine system resources required by a job before being sent to a
Main Processor.

e Main Service. Manages the flow of data (for example, system input,
system print, and system punch data sets) via the Channel-to-Channel
Adapter to and from the Main Processor.

® Print Service. Prints data sets.
e Punch Service. Punches data sets.

e Purge. Removes the job from the system, returning to the system all
direct access storage device tracks allocated to this job.

Other DSP's have been implemented to support special operator functions,
such as background utility functions. The maximum number of DSPs that
may exist under control of the Multifunction Monitor is 256.

DSP's are multiprogrammed components operating in a time-shared (non-
time-sliced) environment. Since many DSPs may be active simultaneously,
and all are competing for available CPU time and storage, it is
important that they be written to permit the sharing of these resources.
Most DSP's achieve this sharing naturally, since they release control at
many logical points, consequently permitting other DSPs to execute.
DSP*'s without logical points at which they may release control should be
assigned very low priorities and should be programmed to release control
artificially (by issuing an AWAIT to a satisfied event) to permit higher
priority DSP's to be executed.

Normally, DSP's are transient programs loaded via ALOAD The main
program (or driver) for a DSP may optionally be made resident by

49

N3

including it in the ASP RESIDENT card . DSP"s communicate with the
ASP resident programs by means of the Transfer Vector Table

(TVTABLE). This table is a series of entries that define the
location (or entry points) of all resident programs and tables of the
ASP system. The TVTABLE is established by means of a macro that appears
as a dummy section (DSECT) in all DSP's and as a control section (CSECT)
in the TVTABLE program in the ASP Nucleus.

As stated earlier, DSP's are scheduled for execution and, if necessary,
loaded by the ASP Job Segment Scheduler. Entry is made via a direct :
branch to the entry point of the DSP, with the return point in register
14. When a DSP terminates execution, it should return to the Job
Segment Scheduler via register 14, with the appropriate Job Segment
Scheduler completion code in register 15. For an additional discussion
on DSP action after it has been scheduled refer to Chapter 7, Writing
Dynamic Support Programs.

DsSP's may be defined as either reentrant or reusable. Reusable DSP's
are, in general, restricted to a single copy active at a time. However,
single-module reusable programs may be allowed to have more than one
copy active concurrently through the use of the MLOAD option of the
DSPDC macro -instruction. For example, multiple copies of Card-to-
Printer may execute concurrently if the required devices are available.
Reentrant DSP's may actively process several jobs simultaneously,
provided that sufficient devices are available. Each reentrant DSP must
have a data control section, a copy of which will be loaded for each
function for which the DSP is scheduled. 2All modules of a reentrant DSP
must be reentrant and must use the loaded data control section. Input
Service, Punch Service, and Print Service are reentrant DSP's, as are
Main Service and the background utility Tape-to-Printer program. A
functional description of the primary DSP's in the ASP system follows.

INPUT SERVICE (CR, TR, and DR)

Input Service is the support function that accepts and queues all jobs
entering the ASP system.

Input Service operates on the split-spool concept. (Split-spooling is
closely related to the OS Automatic SYSIN Batching (ASB) Readers.) Cards
are read from an input device, blocked, and placed on an intermediate
DASD storage device; when physical input has finished, the accumulated
card images are read from DASD and processed at high speed. The main
storage requirements are low during physical input, which takes a
relatively long time. Interpretation and analysis of cards has a
greater main storage requirement, but is accomplished in a relatively
short time. Utilization of resources is improved through the time-
separation of the reading and interpreting functions. Input Service
consists of two phases, each consisting of several nonresident modules
that process the incoming jobs.

The first function is the Reader. The Reader transfers the job's card
images from an external device to an ASP DASD device. A Reader device
may be an IBM card reader, a tape unit, or a DASD device supported by 0S

BPAM . Jobs being submitted from RJP terminals , either
programmable or nonprogrammable, are processed by Input Service as
though they were coming from a local card reader.

An Input Service Reader will transfer a predetermined number of jobs to
the "spool DASD". This becomes a job "batch". As each job batch is
read in, Input Service proceeds to the second phase, the ASP control
card processing phase which analyzes the ASP control cards and writes
the jobs to the ASP gueue, along with the ASP control blocks ‘necessary
to process the job. '

50

Input Service Reader Function

The Reader function is comprised of six nonresident modules. Three of
these modules are callable DSP's, invoked via the operator CALL command.

The Input Service callable DSPs are directly related to the input medium
through which jobs are to be introduced. They are:

. Card Reader (CR)
. Tape Reader (TR)
e Disk Reader (DR)

These DSP's when invoked (called) act as the drivers for the other three
modules of the Reader function. CR and TR use OS EXCP level
programming via the ASPEXCP macro -instruction. DR uses standard OS

BPAM . Device errors and error messages are also handled by these
three DSP's.

A Reader function module, RDLOGIC , deblocks any blocked input
records, examines the ‘card' as to type, that is, JOB, DD, etc., and
transfers the cards as a multirecord file (MRF) to an ASP DASD via
ASPIO. The incoming cards are examined at this time only for the
purpose of separating 0S jobs, and of properly grouping data sets, that
is, scanning for a data delimiter. A separate MRF is written for each
OS job. Each MRF is represented by an entry in an ASP Job Data Sets
(IJDS) table. The JDs entry contains the MRF FDB for each job
written to DASD via a Reader. A JDS table is created for each job.
*batch' and is passed to the second phase of Input Service, the control
card processing phase. The JDS table is placed on disk and located via
an FDB in the Job Description and Accounting Block (JDAB)
created by RDLOGIC for the interpreter function. RDLOGIC also
creates the JCT entry for the interpreter of Input Service. .

Before RDLOGIC gains control, RDINISH , another module of the Reader
function of Input Service, checks disk resident control blocks to see if
the reader was called as the result of'an ASP restart or if this is an
initial call, sets certain standard (default) operating parameters,
acquires main storage for an input area, and allocates the input devices
for CR or TR. For DR, RDINISH controls the FIND for the designated PDS
member.

Whenever the operator includes operands with a command to a reader,
RDOPRMS is loaded into main storage to analyze the message.

The six modules of the Reader function, CR, TR, DR, RDLOGIC, RDINISH,
and RDOPRMS comprise the reading portion of Input Service. They are
all fully reentrant; there need be only one copy in storage to handle
multiplessimultaneous readers.

The Readers, specifically RDLOGIC, recognize the DD * or DD
DATA[,DLM=xx] and stops scanning for a JOB card until the /% or
specified delimiter is read. RDLOGIC also examines the input stream for
the ASP //* DATASET card . If one is found, the input stream is
scanned for the //%* ENDDATASET card (and for a JOB card if J=NO;
if J=YES an ENDDATASET card is the only recognized termination).

CR normally uses a chain of five CCWs to read in a "block"™ of 400 bytes.
However, an *X CR,C causes the reader to be set up for an unchained CCW.
This is a prerequisite for any job stream that includes card-image
(column binary) input since the location of data mode 2 cards is
unpredictable. When a DATASET card with the MODE=C parameter is
encountered, the CCW for that reader is modified for card image (mode 2)
reading. The CR module then scans for the ENDDATASET card, which is the

51

only acceptable terminator; when it is found, the CCW is reconverted for
normal EBCDIC reading. All card-image input to ASP-spooled Main
Processor jobs must be delimited by the //#DATASET MODE=C -
//*ENDDATASET cards. : '

TR accepts labeled and unlabeled tapes containing blocked or unblocked
card images.

DR uses BPAM to read one block at a time from an OS partitioned data
set. Deblocking is done by ASP.

The nature and extent of error recovery depend upon the device being
used. CR offers the greatest opportunity for operator-initiated
correction; TR uses OS error recovery; and DR uses a SYNAD exit to
intercept permanent errors that would otherwise terminate ASP. When a
device is not ready, reading will restart automatically when it is made
ready.

DR is a high-performance reader intended for low-volatility
(infrequently changed) job streams. The DCB for the PDS is located in
the RESPARAM module in the ASP nucleus and is OS OPENed at ASP
initialization time by the INITGEN module. Because there is only
one copy of the 0S control blocks available, only one DR is permitted in
the system.

Input Service ASP Control Card Processor

After the Reader function of Input Service has placed the input jobs in
the ASP queue in uninterpreted form the ASP control card processing
phase must now interpret and place them in the ASP queue as ASP jobs
along with the control blocks necessary to process the jobs. As
described previously the Reader function creates the Jcr , JbasB ,
and JDS for this ASP 'job'.

The ASP control card processing phase consists of several modules where
ISDRVR is the name of the DSP, and the name of the module first
invoked by JSs . »

The control card processing function, through appropriate modules, reads
the input JDS created for each *'batch' by the Reader. For each job, it
creates a Job Control Table (JCT), a Job Data Set (JDS) and a Job
Description and Accounting Block (JDAB).

The control card processing phase analyzes the //* ASP control cards.
Each ASP control card is processed by its own module.

The absence of //* PROCESS cards in a job's JCL indicates a standard
OS job and this job will be scheduled by ASP in a Standard Scheduler
Element (SE) sequence. The sequence of SE's in the created JCT for each
job is ordered as follows: ASP Reader/Interpreter, Main Service, Print,
Punch, and Purge.

The //*#PROCESS cards are used in the job's JCL to alter the ordering of
ASP scheduler elements. Created JCT SEs reflect the order of //*PROCESS
cards.

If a //7%# FORMAT card is included in the job's JCL the Translator

function of Input Service will create a Format Parameter (FRP) table for
that job.

52

READER/INTERPRETER SERVICE (ASP R/I1)

After Input Service has processed a job the next function scheduled is
the ReadersInterpreter (ASP R/I) DSP. ASP R/I working in conjunction
with the OS Reader/Interpreter, resident in the Support Processor,
performs Reader/Interpreter functions for all Main Processors. During
execution of the 0OS Reader/Interpreter several exit routines are used as
an interface between the ASP R/I DSP and the unmodified 0S R/I. These
exit routines are:

e Access Method Exit - Passes a JCL statement from the ASP queue
(JCLIN) to the 0S R/I

s Accounting Routine Exit - Converts JCL for use by ASP, that is,
SYSOUT=X changed to UNIT=(CTC,,DEFER). This change does not appear
in the SYSMSG data set.

¢ Find Exit - Locates a procedure within SYS1.PROCLIB on the Support
Processor when referenced by an EXEC statement

* Queue Manager Exit - Simulates the OS Job Queue Manager by reading
OS control blocks from, or writing them to, the ASP queue.
"Enqueuing"” a job is simulated.

o Return Exit - Intercepts an OS return as a result of an unusual 0S
Reader/Interpreter, event.

Figures 9 through 13 show the relationship in the Support Processor
between ASP R/I DSP, ASP Exit routines, and the unmodified OS R/I.

53

After Input Service,

But Before Main Service

Note 1-

Note 2-

Note 3-

Figure

54

Note 3

-(°) --..

RICONTL

Initialize
ASP R/I DSP

Note 1

B

Note 2

RICONTL

Get a JCL
Statement

from ASPQ

0S
the

Time, Waiting for

The Cycle Repeats from this
Point to End of Job: 3, 4,5...11, Etc.

{ADEB JCLIN)

(o

Post 0S

I; o]
e.‘@ -
8

R/ is
Point, from

in Wait State at

Initialization
its First JCL.

Access Method Exit

Circled Numbers Show
Sequence of Events

9.

Access Method Exit.

0S R/I —m
‘Get a JCL
e Stmnt
L]
‘RIEXITS Continue
Request a JoL
JCL Stmnt Processing
from ASP
Post ASP
R/1 DSP
@ Pass the
JCL Stmnt
] to 0S R/1
Wait
6

of Job ?
{JCLINEOF)

Construc a
NULL Stmnt

RIEXITS |t

SYSQUT

IEFACT

User
Routine

Note 1

Specified

Change
SYSOUT to,
UNIT= (CTC."),
DSN=8 ASR..

.
*
L]

Y

08 R/I

Build
Internal
text from

JCL

Prepare to
Enter JCL
Processor

Execute
the JCL
Processor

(JOB, EXEC

or DD)

.
L)
.

Continue
JCL
Processing

Note 1 :

Figure 10. Accounting Routine Exit.

The USER Routine, Named IEFACT, is Linkedited With
RIEXITS in Order to Become Part of the System.

-‘ ces

OS'R/I1

| EXEC Stmnt
Processor
Detects a
Procedure
Reference

Pass

Processing

Continue JCL

Location of
PROC to
-¢—| PROCLIB DCB

YES

Figure 11.

56

Find Exit.

I

Is
Procedure
in BLDL
List
?

NO

User
Want

Control

[R71BLOL LIST)
:Residenf List |
jof Directory

|Entries for |
|Commonly Usod‘
IprOCS ~ BUILD!
lat ASP INISHI

—4Time (by

| INITRI) !
L |

YES

Search PDS

Directory for
PROC Name

el —

y

IEFACTF

User Routine

SYsi procL1®

Resides on
Support Processor

_o‘c .

oo o
=

RICONTL ' 0S8 R/I
Perform Q MGR EXIT R/W Control
Requested Blocks on OS
=1 Function Ll Job Queue
| o AsPQ ! RIEXITS _ :
sing - .
| ASPIO ' Simulate 0S Continue
| : Q Manager JeL
} + I R'7:°B'~ ASP Processing
| | R SP to -
| Po: /?S == ' Perform ‘
| . Service
| ' i 1
| |
Y @ |
RIOTABLE [
in Storage 4 [! _
; - i | Does Service
Logical - o Require RICONTL
TTRs of Lo Function No
R/1 BLKS : : ,
T |
! |
: Await : |
| ! Lo o] Post ASP
! } R/1 DSP
|
|
i
I
R/t conTL BLY® !
|
| .
[Wait
|
i
1
1
|

L —-Refurn 10 leg—
0S R/I1

Note: Circled Numbers Show
Sequence of Events

Pigure 12. Queue Manager Exit.

57

Await H
Y
. 0S8 R/1
Detection of

Unusual Event

Return to
Control Progrom

e

Return
RICONTL Exit
Close JCLN
Free R/I
Central Blocks ~ ’
CALL RIATTACH &) + " RIEXITS
|Identify Faiture Issue
to Operator and RIATTACH Abend
Dm SYSMSG. Reinstate Code 922
ump Storage. 0S R/I By
Detach OS R/I
Delete RIEXITS +®) LngAg?eﬁr"rds

with
RIQMSERV

@
Asynchronous (173 ‘
with 0S CONTL PROG
r @— Process Task

Abend. Enter
<9> End of Task

Retur_n Exit “Routine
Code = 16 (in Module RIDATA
y
JSS - RIDABTRM
Bypass Main Notify ASP | @ Continue in
Service R/I DSP [0S CONTL PROG
Because of of ABEND
Return Code
from ASP
Causes ECF R/1
R/1 DSP to be Posted ?S' v
nitialize
. *) for R/I
To Print Service | (OPEN DCBs, etc.)
Get a JCL
Statement

Note: Circled Numbers Show
Sequence of Events +

See Figure 9 for CYCLE from this Point

Figure 13. Return Exit.

58

ASP R/I performs several functions for the exit routines, such as
AGETBUF, ADEBLOCK, etc. Besides performing functions for the 0S R/I
exits, the ASP R/I performs the following functions:

* General housekeeping that allows ASP to control job flow through the
0S R/1

e Flush a job with JCL errors prior to entering Main Service in
ASP

* Automatic determination of job setup requirements based on
interpreted JCL

* Issue fetch messages for necessary volumes

¢ Handle 0OS messages (in SMB's) so they can be printed by ASP when an
error condition exists

e Issue error messages for unexpected conditions detected by ASP R/I

e Allows operator to cancel a job being processed by ASP R/I

ASP Reader/Interpreter (R/I1I) Job Flow

After a job has been processed by ASP R/I and OS R/I, that is, entirely
interpreted and "enqueued" on the ASP queue, the 0S R/I goes into the
"wait™ state until the next job enters the ASP R/I. If the job had any
JCL errors, ASP control statement errors (detected by Input
Service), or unusual conditions such as using an ASP-reserved ddname,
the job is flushed and its interpreted JCL is written along with an
appropriate error message to the ASP SYSMSG print data set. If
there were no errors, processing of the job continues with construction
of a Job Setup Table (JIST).

Job Setup processing is based upon information from each DD
statement of the job, stored in OS control blocks (SIOT and

JFCB). If a DD statement specified a tape or direct access device,
that was specified in the ASP SETNAMES table, it is eligible for setup.
Volume information is also extracted from the DD statements. When
volume information is absent, it is obtained from the catalog of a Main
Processor; the selected Main is either from a //* MAIN statement
submitted with the job or to the first Main defined at ASP
initialization time (MAINPROC statement). When connecting volumes
(CVOL) are used, they must be mounted prior to being referenced.
Generic names used (UNIT=2400) must have also.been defined to ASP
through a SETNAME statement. Demand allocation addresses (UNIT=181)
must be known to ASP from the MAIN parameter of a DEVICE statement.

If any EXEC step of the job specifies a program name of JCLTEST, the ASP
R/I will flush the entire job with its interpreted JCL written to the
ASP SYSMSG print data set accompanied by a JCLTEST message. This
facility allows a programmer to test only JCL, without using a Main
Processor or any devices eligible for setup.

If any EXEC step of the job specifies a program name of JISTTEST, the ASP
R/1I wiil calculate the setup requirements and will print the results to
SYSMSG. After this is performed, the job will be flushed with the
interpreted JCL written also to SYSMSG.

Fetch .messages are not issued for volumes noted as permanently mounted.
It should be noted that fetch messages for volumes listed in the

Volume Unavailable Table (VUT) will be issued in a different format
than normal.

59

Finally the ASP R/I finishes processing the job by issuing fetch
messages to a tape-fetch console or disk-fetch console (if any specified
on the R/I Initialization control card). The message(s) lists any
volume(s) needed by the job. Fetch messages are not issued for volumes
listed in the Volume Unavailable Table (VUT) , or for volumes noted
as permanently resident.

The ASP R/I exits to the Job Segment Scheduler (JSS) with a return

code indicating a job either is to continue ASP processing, be canceled
with Print Service only, or to be rescheduled for another pass through

RICONTL because no main was available when attempting to make a catalog
reference.

If a Main Processor is not available for catalog references during ASP
R/I proce551ng, the job will be rescheduled for processing wlthln ASP
R/I again (when a Main becomes available).

‘If the OS R/I abnormally terminates, it will be reinstated again
automatically as a subtask along with a message to the operator. If it
abnormally terminates twice in succession, it is marked offline to the
systen.

Post ASP Reader/Interpreter (R/I) Processing

Control blocks created by the 0S R/I must be updated at Main Service
time to reflect actual TTR assignments in the now selected Main
Processors SYS1.SYSJOBQE data set. The Support Processor and Main
Processor are in communication during this process until all control
blocks have been "mapped®”.

The selected Main Processor obtains its input job stream in the form of
queue record control blocks stored in ASP Q (JCBIN). The queue reader
on Main places the control blocks into locations of the 0S job queue
assigned during the previous mapping phase, and then enqueues the job on
the appropriate input queue to inform an initiator that work is waiting.

Input Requirements

ASP R/I expects a JDS table with entries for JCLIN , SYSMSG , and

JCBTAB . <The JCLIN data set in ASPQ is the primary input and
consists of user-submitted JCL and ASP control statements. Other
control blocks and tables used as input to ASP R/I are:

. TVT
. FCT
L AJDB
. JDAB
. JsST

Only a table called the R/I I/0 Table (RIOT) is created by ASP R/I
for use outside the DSP. It contains information necessary to retrieve
any OS R/I control block being maintained in the ASPQ. It is maintained
in ASPQ (JCBTAB).

The JSsT is modified when job step entries and device entries are

created after scanning the JCL. Other tables are used solely for
internal DSP use.

60

MAIN SERVICE

The Main Service support function controls job processing on the Main
Processor(s). The Main Service DSP interfaces directly with each Main
Processor via the Channel-to-Channel Adapter (CTC). This program
performs the following functions:

e Establishes the system initialization of OS5 at IPL time
e Controls the 1oading of the appropriate control program
e Initiates Main Processor execution

e Provides input/output support for data sets transmitted across the
CTC or within the Support Processor

e Monitors job execution by analysis of Main Processor console
messages and performance statistics (line and card output volume) to
detect abnormal performance and to take a user-specified action when
difficulty is detected

e Provides operator communication to, and control of, the Main
Processor

To provide these functions, the Main Processor system is generated with
the CTC assigned as the operator console. Consequently, all operator
messages are transmitted across the CTC, thereby providing Main Service
with all of the operational controls that the operator has. Main
Service scans incoming messages and generates the appropriate messages
to initiate and terminate job execution. The Main Processor initiates
all data transmissions to and from the Support Processor.

The Input/Output Supervisor (I0S) of the Main Processor provides the
necessary interface between the user and the CTC. The adapter appears
to the Main Processor programmer as a series of nine-track tape units,
with data sets assigned to separate units. All execute channel program
(EXCP) calls for these units are intercepted by ASP modifications to

I0S and are directed toward the channel-to-channel adapter. When
ASP is running in the local mode, the CTC is simulated. If a
transmission request is for a data set other than the previous data set,
I0s prefixes the transmission with a Data Set Title Label (DSTL). On
the other hand, if a transmission is for the same data set as was the
previous transmission, no DSTL is sent. DSTL's are indicated to
Main Service by special WRITE commands for ease in distinguishing
between the DSTL and data.

To achieve maximum performance with the ASP system, Main Service handles
CTC Input/Output calls directly rather than via interface with IOS.

Main Service interprets input/output requests from the Main Processor
and responds with the appropriate read or write for the requested data
set. If the data set does not have a JDS entry and the request is for a
write, Main Service creates a data set and processes the request. If
the request is a read for a nonexistent data set (no JDS entry), or if,
in reading, the Main Processor tries to go beyond the end of a data set,
Main Service automatically terminates processing for the job, with an
appropriate diagnostic message and the job is canceled.

wWhen ASP is running in the local mode, IOS notifies the Main Service
interrupt handler that this operation is to be simulated. At this
point, IOS has been modified to bypass the actual SIO and proceeds as if
the operation had been started normally. After Main Service has
simulated the operation of data movement, it then simulates input/output
interrupts.

61

Programmer estimates for lines and cards of output are compared to
actual values in order to detect abnormal performance of a job. Actual
lines and cards are tabulated for system output and system punch data.
If either of these estimates is exceeded, Main Service takes the action
dictated by the user; that is, it issues a warning to the operator,
cancels the job, or cancels the job with dump.

Main Service is comprised of both resident and nonresident modules.
Those made resident during initialization are: MAIN and MSVMVT .
A real or local Main uses MAINIO and MPCDATA. A dummy Main (used with

POLYASP) uses MSVDUMMY and MPDDATA. A local Main (combined
Support/Main Processor) uses MSVLOCAL for CTC simulation. Other modules
are ALOADED during Main Service execution.

Generalized Main Scheduling

During ASP initialization, four initialization control cards are used to
establish the parameters used by Main Service. . These are the MAINPROC,
SELECT, CLASS, and GROUP cards. Initialization creates an MPCDATA CSECT
for each Main. SELECT card parameters are stored in the MPCDATA
area for each Main. INITMN1 and INITMN2 are the initialization routines
that process these control cards.

Job class and group control cards are read into permanent class and
group tables. The size of these tables is dependent upon the number of
control cards and class constraints defined. The tables are defined in
the MPCLSTAB and MPGRPTAB .macros. There must be a group entry
for every group name defined on a CLASS control card. For every CLASS

MLIMIT or TLIMIT constraint the corresponding Main Processor or
job class must be defined. Figure 15 shows the initialization cards and
the control block chaining for the MAINPROC, SELECT, CLASS, and GROUP
cards.

Figure 14 illustrates the scheduling algorithms of just one job, JOBA.
This example has been simplified for illustrative purposes and assumes
selection mode SHIFT1 is the only currently active scheduling mode.
Note that JOBA must fit a SELECT, MAINPROC, GROUP and CLASS combination
in order to qualify for scheduling on a Main Processor. The
specification of SY2 on the //*MAIN card limits scheduling to SY2 even
though the selection mode SHIFT1 is also active on SY1. JOBA's
specifications of CLASS=A causes GROUP selection of TSO12. The example
shows three selection modes; SHIFT1, SHIFT2, and SHIFT3 defined during
initialization. Reinitialization is not necessary to alter the
selection mode on a Main as it can be done dynamically via the operator
*MODIFY command.

62

Submitted
job:

//JOBA Job -
+s CLASS=

/7 *MAIN
SYSTEM=SY2

ASP Initialization Parameters

STANDARDS ,CLASS=C,PRTY=10

SELECT ,NAME=SHIFT1,GROUP=(TS012,3),CLASS=(A,C) ,MINIT=5 [—

SELECT, NAME=SHIFT2,GROUP=/PAY05,CLASS=(A,B,C) ,MINIT=6

SELECT, NAME=SHIFT3,GROUP=/ACCT2,CLASS=/B, MINIT=5

MAINPROC,NAME=SY1,SYSTEM=DUMMY, ADAPTER=270, MAINCTC=270, *
JOBCLASS=(A,B) ,CTCCUA=(7,8) , SELECT=SHIFT1

MAINPROC,NAME=SY2,SYSTEM=REAL,ADAPTER=370,MAINCTC=270, * |
JOBCLASS=(A,B) ,CTCCUA=(9,A,B),SELECT=SHIFT1

GROUP ,NAME=ACCT2,EXRESC=(SY2,1) , PRTY=5

GROUP ,NAME=PAY05, EXRESC=(SY1, 1) ,PRTY=8

L

GROUP,NAME=TS012,EXRESC=(SY¥1,3) ,EXRESC=(SY2,3) ,PRTY=13

Lo}

CLASS ,NAME=A , PRTY=8,GROUP=TS012

1]

CLASS ,NAME=B ,GROUP=ACCT2

CLASS ,NAME=C , PRTY=7 ,GROUP=TS012

CLASS ,NAME=D, PRTY=5,GROUP=PAY05

CLASS,NAME=E,PRTY=4,GROUP=PAY05,SYSTEM=SY2

CLASS ,NAME=F,PRTY=0,GROUP=PAY(05, SYSTEM=SY2

SY1

PRTY 13 GROUP TSO12

PRTY10 CLASS A Job

SY2

SHIFT1 (//+*MAIN SHIFT1 (//*MAIN

specified specified

Figure 14. Generalized Main Scheduling - Example 1.

The module MAIN controls job scheduling and execution resource

allocation.
Main into the

Processing begins when Jss queues the first job for

RESQUEUE table. MAIN ALOADs MSVIPL to initialize the

Main Processor for scheduling. MSVIPL returns to MAIN to begin job
selection. Permanent execution resources are allocated to the necessary
job class groups. Enough initiators (MINIT parameter on the SELECT
card) and 0OS job classes (JOBCLASS parameter on the MAINPROC card) must
be defined to accomplish this allcocation. One OS job class is assigned
to each group requiring permanent resources. Therefore, all initiators
allocated to a group will execute under the same 0S job class. If

63

insufficient resources are defined, an error message will be issued for
each group that could not complete its resource allocation.

MAIN scans RESQUEUE for jobs that are eligible for execution. Since
MAIN runs off a different FCT for each Main Processor in the system, it
schedules jobs for only one Processor at a time. Therefore RESQUEUE is
reduced to the subset of jobs that are awaiting Main execution and can
run on the Main Processor currently being scheduled. MAIN operates
under the SELECT mode constraints currently in effect as well as any job
class constraints (that is, TDEPTH, MDEPTH, TLIMIT, or MLIMIT), that may
apply to the current job mix on Main. In each group table entry there
is a pointer to the first RESQUEUE entry for that group. A subchain in
RESQUEUE chains together all jobs of a job class group. MAIN then scans
this chain trying to select a job for execution. Each eligible job is
examined according to the current scheduling CHOICE, (CHOICE parameter
on the SELECT card). The selection scan continues until either a job is
accepted for scheduling or the scan ends based on SELECT mode c¢riteria.
If a job from a group was not selected, the next available group is
tried. The process then repeats itself until all groups are exhausted,
at which time the scheduling pass ends. When a job is selected, MAIN
ALOADs MSVINIT to initiatize the job for execution on a Main Processor.
MSVINIT updates the job counters in both MPCDATA and the Job Class
Table. Other job classes whose TLIMITs or MLIMITs refer to this class
are checked to see if their scheduling limits are now exceeded. If so,
those class entries are flagged as disabled from scheduling. MSVINIT
then ALOADs a MSVDATA CSECT, initializes it with job related
information, and enqueues it on the active job queue in MPCDATA.

MSVINIT then calls MSVQMAP to transmit the 0S job queue records to Main.
When the job starts execution on a Main Processor, the module MAIN will
attempt to schedule another job. Throughout job execution all CTC I/0
(for the SYSIN and SYSOUT data sets) is processed by MAINIO, MSVMVT, and
for a local Main, MSVLOCAL. Dataset Header information will be created
by IOS on the Main Processor and passed to Main Service. When a data
set is opened the IECASPO message is issued via a WTOR. This message is
used to specify the data set information and the allocated CTC device
address. This information is used to find the proper JDS entry or to
create a new JDS entry. Thereafter a Data Set Title Label (DSTL) is
used to correlate the data set and the JDS entry. The CTC device
address is stored in the JDS entry.

The DSTL will contain the logical CTC device address, logical record
length (LRECL), physical blocksize (BLKSIZE), record format (RECFM), and
a Mode byte. The Mode byte specifies card-image (column binary) or
EBCDIC information. The DSTL is created for every OPEN or when the
passing of information for this data set is resuwmed after being
interrupted by a different I/0 operation.

The CCW that points to the DSTL has a command code of FD and is command
chained to the next CCW for the actual data. If no intervening data set
has been written across the CTC, the DSTL CCW will not be used.

The data set information from the DSTL is temporarily saved by MAINIO to
be used to count records and create an ASP Header Record (ASPHDR). The
ASPHDR will be written into the first buffer assigned to the data
set. The first six characters of the record are ASPHDR and will be used

by Print and Punch Service to determine the LRECL, BLKSIZE, and RECFM.

When a job ends, MSVMVT updates the MAIN Service tables and posts Main
to begin another job selection pass. The job counters in both MPCDATA
and the Job Class Table are reduced. Other job classes whose
constraints refer to this class are checked for disabled scheduling. If
the limits are no longer exceeded, the class is enabled for scheduling.
In addition, the MSVDATA CSECT for the job is removed from the active
Jjob queue and placed in the queue awaiting WTR SMB output. MSVMVT sends
a QWTR command to Main to start this process. A QWTR WAITING command

64

signals the end of SMBs and the MSVDATA is then enqueued for job
termination. MAIN is posted for job termination and will ALOAD MSVTERM
to remove the job from Main Service. MSVTERM terminates job tables
created by MSVINIT and ADELETEs the MSVDATA CSECT. MSVTERM will
terminate all jobs in its queue unless MAIN is posted for another
scheduling pass. If this post occurs, MSVTERM returns to MAIN for job
selection and will be ALOADed again when the scheduling pass is
complete.

When ASP is restarted the initialization module INITREST will
analyze the JCTs and flag those jobs that were active at the time of the
failure. The sequence number of the Main Processor that a job was
executing on will be put in the job's JCT. JSS will do a first time
pass to verify that all required RESQUEUE entries are built before
posting MAIN for a restart.

MSVIPL will determine which jobs were active on a Main Processor via the
FENCE, LIST and DISPLAY, N= SOUT comwands. MSVIPL will pass these jobs
to MSVINIT to get a MSVDATA entry and have it initialized and then
process the MSVDATA in the following manner:

Hot Jobs:
Active - fill in initiator ID and place on active queue
sSouTQ - place on WTR queue

Non Hot Jobs:

Active - £ill in initiator ID, place on active queue, flag IPLed
off, and CANCEL

SOuUTQ - place on WIR queue, flag IPL‘ed off
Restart Opionts - processed by MSVTERM

The operator may communicate with Main Service using the START, RESTART,
CANCEL, or MODIFY ASP console verbs. Upon receipt of an operator
message MAINIO will ALOAD MSVOPER2 for a MODIFY command or MSVOPER1 for
START, RESTART or CANCEL command to process the messages. Job selection
modes can be switched dynamically by referencing a SELECT mode in a
MODIFY command. MSVOPER2 will then search the SELECT records. An
error message is issued if the SELECT cannot be found. Otherwise, the
new selection mode parameters are moved into the select card position of
MPCDATA. Main is posted if the number of initiators is altered causing
resource reallocation to be necessary. Resources may be released by an
ASP MODIFY command. All resources are allocated and unallocated in
Main. JSS posts MAIN for allocation when the first job is enqueued for
a Job Class Group that requires resources. MAIN is posted for
unallocation by MSVMVT when the last job in this Job Class Group ends on
a Main Processor. MSVOPER2 also posts Main for unallocation when
resources are released. MAIN will then scan the Group Table in priority
order performing the necessary allocation or unallocation.

65

TVTABLE MPCDATA | MPCDATA
I— —l » sY1 . sy2 —_l
CLASS CLASS CLG GROUP EXRESC MSVDATA
Constraints fa— (GROUP BATCH |—py SY1, GROUP svy2
BATCH) BATCH Job 2
CLASS GROUP EXRESC EXRESC
ONLINE —1 PROD —p»| SY1, GROUP —»{ SY2, GROUP
GROUP PROD) PROD PROD
CLASS CLASS GROUP EXRESC
Constraints l«— UPDATE TEST = SY2, GROUP
UPDATE [eroup TEST) TEST
- T
{ vy ¥ Y
CLASS RESQUEUE RESQUEUE RESQUEUE RESQUEUE
OVERNITE Job 1 Job 2 Job 3 CLASS Job 4
(GROUP CLASS CLG [] CLASS ONLINE ™1 OvERNIGHT | ™]CLASS UPDATE
BATCH) {GROUP BATCH) (GROUP PROD) (GROUP BATCH) {GROUP TEST)
MAIN SERVICE CONTROL TABLES
MAINPROC,NAME=SY1,ID=SY1,MDEST=M1, SYSTEM=LOCAL, CTCCUA=(7,8) X
ADAPTER=270,MAINCTC=270,JOBCLASS=(A,B),SELECT=SHIFT1
MAINPROC,NAME=SY2,ID=SY2,MDEST=M2, SYSTEM=REAL, CTCCUA=(9,A,B) X

ADAPTER=370,MAINCTC=270,JOBCLASS=(A,B) ,SELECT=SHIFT1
SELECT,NAME=SHIFT1,MINIT=5,MBAR=10,CLASS=/0OVERNITE
SELECT,NAME=SHIFT2,MINIT=7,GROUP=(BATCH, 2, TEST,3)
CLASS,NAME=CLG, GROUP=BATCH, TLIMIT= (ONLINE, 0)
CLASS,NAME=ONLINE, GROUP=PROD, FAILURE=PRINT
CLASS, NAME=UPDATE, GROUP=TEST , ML IMIT=(SY2,ONLINE, 1)
CLASS,NAME=OVERNITE, GROUP=BATCH, IORATE=HIGH, PRTY=6
GROUP,NAME=BATCH,EXRESC=(sY1,2,,IPL, MANUAL)
GROUP, NAME=PROD, EXRESC=(SY1, 2, 400K, I PL,MANUAL) , EXRESC= (SY2, 2)
GROUP, NAME=TEST, EXRESC=(SY2, 3)

Figure 15.

66

Generalized Main Scheduling - Example 2.

Main Storage Fencing

Main Storage Fencing enables the ASP user to structure Main Storage into
predefined areas called Fences . Each Fenced area is associated with
a group of ASP job classes. When a Fenced job is scheduled on an ASP
Main Processor its region size is allocated from the Fenced area. A
Fenced job cannot obtain Main Storage outside of its Fenced area and
likewise Unfenced jobs cannot obtain Main Storage from within a Fenced
area. As a result, once a Fenced area is constructed the jobs running
within the Fence are isolated from other jobs on that Main Processor.

In effect, a Fenced area is like an OS MFT partition.

Fencing a long running job solves a number of Main Storage management
problems. First, storage fragmentation can be eliminated by allocating
the Fenced area at the top of available Main Storage. Also, if the job
has multiple steps with large region sizes the Fence prevents other jobs
from taking this job's region space during a step change. And finally,
if the job abends and must be restarted Fencing will reserve the Job's
region until the restart can be accomplished.

A Fenced area is built whenever an ASP Job Class Group requiring a Fence
becomes enabled for scheduling. This can occur in three ways, IPL time,
Dynamically, or manually (operator). A Fence will be built for every
permanently enabled Job Class Group whenever the corresponding Main
Processor is IPLed. A Job Class Group is defined as permanently enabled
on the GROUP control card. A Fence can alsc be dynamically built
whenever a disabled Job Class Group becomes enabled. A group can become
enabled for scheduling either by an ASP operator command or when a job
of this group enters the ASP job queue. When a Fence is built, Main
Storage is allocated below and adjacent to the MAINTASK region or a
previously created fence. If Unfenced jobs are running in this area,
their region space will be absorbed into the Fence upon job termination.
Once the entire Fenced area is available, ASP will begin scheduling jobs
in that Fenced area.

Fences remain in effect until the corresponding Job Class Group is
disabled from scheduling. This can be done through an operator command
or when the last job in a Fenced group ends on Main. When a Fence is
reset the storage space is returned to the 0OS dynamic area and becomes
available for allocation to Unfenced jobs.

Main storage fences cannot be built in LCS (hierarchy 1) storage. Jobs
requiring region space both in hierarchy 0 and hierarchy 1 cannot obtain
their hierarchy 1 region from a fenced area. Since main storage fence
space is allocated directly below the MAINTASK region, MAINTASK must be
started in hierarchy 0 if the main storage fencing feature is used.

As in the case of starting OS system tasks, care must be exercised to
avoid both storage fragmentation and storage allocation delays when
starting main storage fences. The fence space allocation technique is
designed specifically to prevent storage fragmentation, in that fence
space is always allocated contiguously starting either from the bottom
of the MAINTASK region when no other fences are built, or from the
bottom of the highest fence in storage below which enough unfenced space
exists to hold the fence about to be allocated. If unfenced jobs are
found to be executing in the storage area allocated to a fence, jobs
from that fenced job class group will be prevented from scheduling until
the unfenced jobs terminate.

67

The examples below represent OS dynamic area configurations prior to

allocating a 200K fence:

1. MAINTASK 2. MAINTASK 3. MAINTASK ., MAINTASK
no jobs or 300K unused Job XYZ Fence A
fences Fence B (100K)

Job ABC
(200K)

The new 200K fence will be allocated directly below MAINTASK in the

first three examples.
allocated directly below Fence

storage will be fragmented after the new fence is allocated.

In the last example the new fence will be

A. Note that in example 2 100K of

In this

example the 300K unused space was a fenced area when Fence B was

allocated.
terminate.

PRINT SERVICE

In example 3 the new fence cannot be used until both jobs

The Print Service DSP processes the system cutput for a job on printer

(local or remote RJP) attached

to the Support Processor. This DSP

provides the necessary carriage control translation and deblocking of
print lines, as well as handling the necessary error recovery.

Print Service expects data to be in EBCDIC format, ready for printing

with either O0S channel command
channel command code supported
by USASI FORTRAN as a subset.

blocked, fixed, fixed blocked,
written by Main Service as the
Service will get record format

forms control or the extended USASI

by 08, which includes those codes defined
0S cutput may be variable, variable

or undefined. An ASPHDR record is
first record in each output file. Print
(RECFM), logical record length (LRECL),

and block size (BLKSIZE) for each file from the ASP header record.
output to the printer is command chained and unprintable characters are
translated to blanks prior to printing to reduce printer overhead. A
full ASP buffer is output for each EXCP call to IOS.

Print Service has the ability to request the mounting of special forms,
carriage tapes or print trains; to load UCS buffers for. printers with
UCS; to load forms control buffers (FCB) for 3211 printers; to vary the
mode of forms control; and to print additional original copies. The
primary vehicle for communicating such requirements is the SYSOUT
card in the ASP Initialization deck. The SYSOUT card allows the
system programmer, by keyword option, to indicate his special
requirements for a SYSOUT class and hence for the printer(s) which
support that output class. These requirements can be temporarily
overriden for a data set via a //*FORMAT card for the referenced data
set. The printer confiquration is retained in the Printer Resources
Table and updated as printer characteristics (train, forms, and
carriage tape) are changed. The SYSOUT class requirements are retained
in the SYSOUT class table (SCT) built from SYSOUT cards at
initialization time.

Print Service processes the SYSMSG data set and any existing data sets
for which SYSOUT classes were defined in the SYSOUT class table (via ASP
initialization SYSOUT cards). Additional data sets may be specified by
/7 *FORMAT cards.

The method by which output is allocated among the printers in an
installation (printer resource scheduling) is controllied by parameters
in the ASP initialization standards card, which establishes the basic
installation guidelines; the ASP initialization printer card for_each
printer on the Support Processor, which provides the initial status of
the printer and its setup status (that is, whether forms and/or the
print train may be changed to another configuration); the ASP

68

initialization SYSOUT card for each supported SYSOUT class; and the
//7*FORMAT card for each data set.

The STANDARDS card names the installation-standard forms, carriage
tape (forms control buffer module for 3211), and print train. These are
the names used whenever the corresponding parameter in the printer
cards, SYSOUT card, or //* FORMAT card is omitted or specifies
STANDARD. Two additional standards card parameters affect printer
allocation. The FLOCATE parameter indicates whether the printer
resources table is to be searched to locate a printer which is already
setup as required (minimizing operator intervention but possibly
scattering data sets for a job between two Or more printers) or whether
the first printer available which may be set up to be used (minimizing
the number of printers to be used by a job but requiring operator
intervention to change forms, trains, etc). The parameter DLOCATE=NO
may be used to override the DEST parameter from the SYSOUT class table
or the //*FORMAT card, in the event that a disproportionate number of
data sets are assigned to a given printer, in order to allocate
processing more evenly among the available printers.

If the combination of DLOCATE=YES in the standards card and use of the

DEST parameter in a SYSOUT card or //*FORMAT card causes a
printer to be assigned for which setup has been barred by the printer
card for the device, Print Service overrides the printer card parameter
and requests a configuration change if required by the data set.

To assist the operatof in collating printer output, a header page
precedes the output for each data set, identifying the output by job
name, job number, and data set name in large block letters. The output
for the last data set on each printer used by the job is followed by a
trailer page, the trailer page on the last printer used by the job
included a tabulation of all data sets printed on all printers and job
statistics. Header ands/or trailer pages may be eliminated by specifying
HEADER=NO and/or BURST=NO on each PRINTER initialization card where this
option is requested. This option may be desirable when slow printers
are being used on remote RJP workstations.

Figure 16 is a Print Service parameter cross-reference chart. 1In the
lefthand column are listed those parameters that affect the printers
output. The next columns to the right are the defaults assumed if no
specific parameters are entered in those functions represented by the
remaining columns. An (X) in a column indicates the corresponding
parameter may be specified by that function. For example, the HEADER
default is YES and may only be changed by an entry on the PRINTER card.
Where two or more functions specify the same keyword parameter but of
different values the keyword of the function to the extreme right is
used. For example, if the TRAIN parameter is HN on the PRINTER card for
printer PR1 and PN on the //*#FORMAT card in a job whose printed output
is destined for PR1 PN is assumed and the program scans the Printer
Resource Table to check for the train mounted. A message to the
operator informs him to mount the PN train if it is not mounted.

If the SYSOUT parameter is specified on a DD card that is referenced by
a //*%*FORMAT card, DDNAME=, the SYSOUT parameter will be ignored.

69

Mutually

Exclusive
P R U —
v m —
9 o A -~ Qo
. ™ »* o
Prln? 3N %R %; © ® A ;_:;
Service z % oS o% oG % % °
Parameters\ 2%\ 33 \ %3 \ %2 \ 3% \ 33 \ 2
arameters o D o ® o ® ° S o TR)
CARRIAGE 6 # Inch X X X X X
CONTROL Program X X X
COPIES 1 X X
. Group
DESTINATION Original X X X
Name
DLOCATE Yes X
Yes, X X
X
FORMS 1 Part X | X X X
FLOCATE Yes X
HEADER Yes X X
Yes, X X
TRAIN PN X X X X X X
ucs Yes X
TYPE Prt
BURST Yes X X
OVFL ~ ON X X

Figure 16. Print Service Parameter Cross Reference Chart.

Train and Forms Modules

Print Service ALOADs the appropriate ASP print train module and, for
3211 printers, the appropriate Forms Control Buffer (FCB)
module. The 1403 print train modules consist of the 240 byte . UCS
Buffer array, followed by a 256 byte translate table for the array.
If the universal character set (UCS) feature is available, the
translate table is used to tramslate to blanks all unprintable

70

characters in a print line in order to maximize printer performance.

The 3211 print train modules consist of three fields: the first 432
bytes are the train-image, the next 15 bytes (433 through 447) and the
last byte (512) are reserved for future use, and the remaining 64 bytes
(448 through 511) are the associative field. Fach character present in
the train-image field has the appropriate bit turned on in the
associative field. The Forms Control Buffer (FCB) modules
contains one byte for each line on the form, to a maximum of 180 lines
at eight lines per inch. Bits 4-7 at each position can contain one of
twelve channel codes, hex 0 through C corresponding to the channel codes
in carriage skip commands. Bit 3 is used as a flag bit in the first and
last FCB position. Bit 3 on at position 1 causes six lines per inch
spacing. Bit 3 off at position 1 causes eight lines per inch spacing.
Bit 3 on at any position other than 1 identifies the corresponding line
as the last line of the form. Unused bits should be set to zero. The
FCB load module contains two bytes in front of the image. The first
byte is X'80"' and the second byte is the length of the image.

If the UCS FCB module specified does not exist in the ASP library, Print
Service notifies the operator, who may respond with a message specifying
the proper name. Additional UCS and FCB modules may be added to the
system by assemblying the desired module and linkediting it into the ASP
library with the print train name or FCB2 and the first four characters
of the carriage tape name as the module name.

Operator Control

The operator commands *START, *RESTART, and *CANCEL are supported by
Print Service. *START is used to notify Print Service that an operator
action, such as forms mounting, has been completed and that processing
may continue. The operator may also force a data set to be printed
under single-space carriage control. #*CANCEL causes the printing of a
data set to be terminated and printing of the next data set to begin.
Optionally, this command causes job processing to terminate immediately.

Under normal operation, *RESTART causes reprinting of an entire data
set. Optionally, the entire job may be restarted (on the same printer
or on a different one, depending on whether the current printer is
online) at the beginning or at a position approximately two pages back
from the current print line. 1In addition, the operator may request that
the Universal Character Set Buffer be loaded on a local printer with a
restart approximately two pages back from the current data position.

In addition to noting the current printer position for restart purposes,
Print Service checkpoints the current print position approximately every
20 pages. In the event that a catastrophic error occurs in processing
on the Support Processor and an ASP restart is made, Print Service
automatically starts processing at the point of the last checkpoint.
Assuming 65 lines to a page, this restart point will be no more than 20
pages from the point of abnormal termination. In addition printing will
take place in the same printer(s) as were active before the ASP failure.

All equipment failures detected by Print Service result in an
intervention required message with an appropriate diagnostic message.
Printing resumes when the printer in question is readied or when an
operator command is issued.

71

ASPNEWS Facility

The ASPNEWS facility of Print Service provides a DSP that will create an
output data set that is printed after every job. This facility can be
used to broadcast general information to the ASP system users. Print
Service prints the ASPNEWS prior to the final burst page.

ASPNEWS is invoked as a normally submitted OS job by the following JCL
input:

7/ /ASPNEWS JOB. ..
//*¥PROCESS ASPNEWS
//7*DATASET DDNAME=ASPNEWS
DATA CARDS
(each data card produces one line of print)
//*ENDDATASET

The ASPNEWS output data set can be terminated by resubmitting the
ASPNEWS job without data cards.

PUNCH SERVICE

The Punch Service DSP processes any output data sets for which SYSOUT
classes were defined in ASP ianitialization SYSOUT cards for TYPE=PUNCH
(SYSOUT, CLASS=B, TYPE=PUNCH) and any additional data sets described by
//%¥FORMAT PU control cards, on the punches (local or remote) attached to
the Support Processor. Processing is on a card-image basis; USASI
stacker selection characters are ignored if they are present.

Each data set that is punched is identified by a header and a trailer
card containing the ASP job number, job name, and data set name. This
separator card also appears between multiple copies of a given data
set's output. If special card forms are required, or if standard forms
are required following the use of special card forms on the punch unit,
the operator is notified to place the required forms in the punch unit.

The operator commands *START, *RESTART, and *CANCEL are supported by
Punch Service:

e *START,punch-name A requested forms change has been made,
and processing may commence.

e *RESTART, punch-name When the job is restarted, only those
data sets not already completed will be
processed. : :

e *RESTART,punch—-name,J At restart time, the job will be

restarted from the beginning; all data
sets already processed will be repeated.

e *RESTART,punch-name, The job will be restarted with the
P=punch-name . current data set. Output for the
current data set will be switched to
the named punch.

e *CANCEL, punch-name Processing of the current data set is
canceled; processing resumes with the
next data set (if any).

e *CANCEL, punch-name,J The remaining PUNCH data processing for
the entire job is canceled.

72

PURGE

The Purge function is the last processing step for a job in the ASP
system. It accesses the JDAB and the IJDS for a job and, through ASPIO,
releases all disk tracks assigned to the job. The APURGE macro
returns the tracks of a job by oring the bits of the job's Job
Allocation Table back into the system Track Allocation Table. This
effectively makes these tracks available for allocation to subsequent
jobs. (Refer to ASPIO discussed earlier in this chapter). A message is
issued to the operator indicating that the job has been purged from the
system and upon return to JSS the JCT entry for the job is deleted.

Since Purge is the last processing step for a job, it is the point
at which the installation accounting program can be placed to summarize
the accounting data for a job.

The ASP installiation accounting routine punches master and detail cards
as specified in the ASP initialization ACCOUNT card . An
installation may use these cards or may modify the program to produce
cards tailored to its needs.

An Accounting Print and Summary Routine (ACCPR) is distributed as a
Dynamic Support Program with the ASP system to process the output of the
Purge accounting routine. Any modifications to the Purge accounting
routine output should be reflected in the DSP ACCPR.

The accounting routine may be removed entirely from Purge and, if
desired, replaced with an installation-written routine. Purge is
scheduled and determines. during execution whether it requires punching
to be performed. Only in this event does Purge attempt to acquire a
punch unit. If an installation-written accounting routine requiring
additional units is substituted, or if it is more desirable to ensure
the availability of the required device prior to entering Purge, the
device requirements entry, as defined by the DSPDC macro in the RESPARAM
module, should be altered accordingly.

DEPENDENT JOB CONTROL (DJC)

Characteristically, large commercial data processing applications are
complex systems composed of many interactive dependent jobs. Dependence
within these systems requires a series of jobs to be executed in a
specific order. Operations personnel are generally extensively involved
in supervising the execution of these systems to ensure that they are
executed in the proper order.

Dependent Job Control (DJC) is a function within ASP that relieves
this situation by managing and supervising jobs that are dependent upon
one anocther. A collection of dependent jobs is called a job network.
Figure 17 describes a simple job network where Job C is dependent upon
the completion of Job B and Job B is dependent upon completion of Job A.

73

JOB

Figure 17. Sample Job Network.

Job dependencies of a more complex nature are typical. DJC manages both
simple and complex job networks., Figure 18 describes a more complex
network.

Figure 18. Sample Job Network.

Job dependent networks are defined by the application programmer's
specifications in the job's JCL. WNormally, no operator action is
required to invoke DJC, however, *INQUIRY and *MODIFY commands are
provided to interrogate and alter DJC specifications. Additional
information about Dependent Job Control is provided in both the ASP
Operator's Manual and the ASP Application Programmer's Manual. It is
recommended that the reader refer to DJC in the above manuals as the

following discussion assumes knowledge of information contained therein.

T4

Dependent Job Control (DJC) Control- Blocks

There are two control blocks pertinent to DJC. The Job Net Control
Block (JOBNET) reflecting total net information and the Net
Control Block (NCB) reflecting specific job information. The
control block structure is as follows:

TVTABLE

JNCBTOP n JNCB1 JNCB2 e o o JNCBn

NCB-FIXED

NCB 1

NCB 2

The JIJNCB's are core-resident areas chained off the TVTABLE. They
reflect such information as total number of jobs in the network, number
of jobs completed processing, network-id, and NCBFDB pointer. The
NCB's are packed into chained single-record files. An NCB is
constructed for each job of a given network. It contains job pertinent
information such as: jobname, jobnumber, successor jobnames, and //#*NET
parameter information.

Internally, Dependent Job Control consists of three phases of DJC
network-management :

e Initialization of a job-network

e Scheduling/Supervision of a job-network

e Termination of a job-network

Initialization of Job Network

A job network is defined to the ASP system during Input Service
processing of JCL with detection of a //*#NET control card. A search is
made to determine if the job-network defined already exists. If it does
not, Input Service constructs a Job Net Control Block (JNCB) for the
newly defined job network. <The JNCB is added to an existing JNCB
chain. An ASP buffer is obtained and its FDB is placed in the
respective JNCB. Next, a Net Control Block (NCB) is created and
moved into the NCB buffer.

Nonstandard DJC jobs are defined with the inclusion of a //*PROCESS DJC

control card. In this case a scheduler element (SE) is created to
invoke the DJC process routine when the SE is scheduled by JSS. The

75

location of the //%# PROCESS DJC card within a given set of //*PROCESS
cards will determine at what point in the job DJC processing should be
invoked, so that any dependent successor jobs can then be scheduled by

DJC.

In the event that a

preserved.
//7% NET card

DJC designated job fails during Input Service,
its NCB is preserved and marked resubmitable provided the job did not
fail as a result of a syntax error.
When it is reentered, the NCB for that job is updated to reflect the
change in status unless the job's NCB had been updated by a predecessor
or had previously completed, in which case the original NCB is

originally submitted //*NET card.

In this case no NCB is constructed.

A restriction imposed upon the resubmitted job is that the
must contain the same number of successor jobs as the

The last phase of initializing a DJC job is flagging its JCT entry to
was specified in the //*NET
control card then, the JCT constructed by Input Service for this job is

indicate it as a DJC job. If

placed in DJC hold status.

NHOLD

the Reader/Interpreter scheduler element.

Scheduling/Supervision of a Job Network

DJC uses four major functions within ASP.
JSS, Main Service and the DSP, DJCUPDAT.
relationship between these major functions.

in the previous section.

They are:

DJC hold occurs prior to the scheduling of

Input Service,
Figure 19, shows the
Input Service was discussed

INPUT/SERVICE JSS DJC UPDATE MAIN SERVICE
Modules Modul es Modules Modules
ISNET JSS DJCUPDAT MSVTERM
ISPROCESS

ISLOGIC MSVMVT
ISENDTSK

Major Function

Major Function

Major Function

Major Function

DJIC CONTROL NORMAL SCHEDULING SERVICE NET DJC STANDARD
BLOCK CREATION PROCESS DJC PARAMETERS JOB TERMINATION
(IJNCBs and NCBs) EFBs CREATED UPDATE SUCCESSOR
BY THE UPDATE JOBS DJC STANDARD
ROUT INE CREATE EFBs JOB STEP
FOR JSS TRANSITION
SCHEDULE UPDATING
NET TERMINATION

Figure 19.

76

DJC Functional Relationship.

JSS schedules the next segment of & job. For a DJC job, scheduling is
bypassed as long as the job is in a DJC-hold or DJC-operator-hold state.
If a job is submitted without an NHOLD count specified it is
considered as an origin node (no predecessor jobs) and is eligible for
immediate scheduling by JSS. Origin nodes initiate net processing.

When a DJC job completes, it must update the NHOLD count of any
dependent successor jobs. A job's NCB contains a NHOLD count
specifying the number of predecessor jobs that must complete before it
is made eligible for scheduling. For a standard job (no //*PROCESS
cards) DJC completion is at the end of Main Service processing of that
job. For a nonstandard DJC job, the update occurs when the //*PROCESS
DJC Scheduler Element is scheduled by JSS. If the special WTO
scheduling option is used, as described in the Applications Programmers
Manual, the update occurs when a DJC WTO is received from a problem
program.

JOB completion of a DJC job invokes the DJC update routine. DJCUPDAT
" decrements the NHOLD count of each successor job. When the NHOLD count
of a job is decremented to zero all predecessor jobs have completed. 1In
this case an Ending Function Block (EFB) is created by

DJCUPDAT and placed on an EFB queue chained off of the TVTABLE, JSS
is then posted. A function of JSS is to scan for EFBs and take
appropriate action when one is encountered. A DJC EFB causes JSS to
search for the corresponding job's JCT and release it from DJC hold.

Instead of decrementing the NHOLD count two other options, Flush or
Retain, are available when DJCUPDAT services the NCB of a DJC job.

Flush causes a Work-To-Do (WTD) cancel entry to be created and the job
and its successor jobs are flushed (reference Work-to-do Driver
routine). The Retain option means that no action will be taken. This
suspends the job and its successors until positive action is taken by
the operator or by resubmitting its predecessor job. When a predecessor
Jjob is resubmitted, only successors that specified the retain option
will be updated.

Specifying the RELSCHCT parameter on the //* NET card allows the job
to be released at a NHOLD count other than zero. In this case the job
is scheduled up to, but not including, Main Service and then placed in
DJC-hold in RESQUEUE. When the NHOLD of this job decrements to zero,
DJCUPDAT accesses RESQUEUE and releases the job for Main scheduling.

The optional NETREL parameter of the //*NET card is also acted upon
by the DJCUPDAT routine. The NCB for the jobname specified in the
NETREL parameter is accessed and updated via the JNCB of the net
specified in the same manner as a successor of the major job network.

In the case of a predecessor job abnormally ending, an ABNORMAL
parameter may specify Retain, Flush, or Decrement in which case action
taken is as described above. If a predecessor is terminated because of
a JCL error, it must be corrected and resubmitted. No action is taken
toward successors in this case.

Abnormal completion is assumed when a message is received for a job with
the prefix "IEF45". This applies to standard jobs only. Nonstandard
jobs are considered to always complete normally.

Termination of a Job-Net

Each time a DJC job completes, the DJCUPDAT routine accesses the
associated JNCB. The JNCB job-completed count is incremented and when
the count equals the JNCB total-job-count the net is purged. Situations
can arise where all jobs have been submitted in a network and have been
purged, but the network has not completed. This happens when there are

77

missing successors, and/or when some net jobs failed at Input Service
time. If a system failure occurs when a network is in this state, the
network will be lost over a system restart. A checkpoint of the net can
be preserved in this situation if a pseudo job is included in the
network in net-hold status. When all jobs of the net have completed,
the pseudo job can be canceled by the operator or flushed by the last
real job of the net. Net termination will then occur.

DJC ASP Interfaces

The DJCUPDAT module serves as both a driver module and an update module.
It is composed of three major areas; (1) initialization, (2) update
logic, (3) console message appendage. Its interface within the ASP
system is via utilization of the INTERCOM function. There are seven
modules that interface with DJCUPDAT via INTERCOM. Refer to Figure 20.

DJCUPDAT

ISENDTSK DJIN

|

INITIALIZATION

DJC
DJCPROC UPDATE
‘ROUTINES MSVMVT

CONSOLE
MESSAGE
APPENDAGE

/

MODDJC

WTDJCT

Figqure 20. DJCUPDAT ASP Interfaces.

78

DJC INTERCOM MESSAGE FORMAT

Issuing Specify Specify

Module Command Module ’ Jobname , NETID r Flagl Flag2
1. ISENDTSK *X DJCUPDAT

2. ISENDTSK *5 DJCUPDAT ’ NO ’ NO ’ F6 40

3. DJCPRQOC *5 DJCUPDAT . YES ’ YES . F2 40

4. MVTERM *5 DJCUPDAT ’ YES ’ YES ’ F1 40/F0 *
5. WTDJCT *S DJCUPDAT v NO . YES r F4 40

6. MCDDJC *S DJCUPDAT ’ YES ¢ YES ’ F5 40

7. MSVMVT *S DJICUPDAT . YES , YES , F3 40/F0 %
8. DJI& *X DJCUPDAT

*

A X'FO*' in FLAG2 denotes abnormal termination.

DJC INTERCOM MESSAGE FUNCTION

1.

2.

3.

ISENDTSK on first encountering of a DJC job, calls DJCUPDAT.
ISENDTSK when adding a DJC job to the system, checks Network status
for missing successor jobs. If this situation exists, ISENDTSK
intercoms a START command to DJCUPDAT.

DJCPROC intercoms to DJCUPDAT for nonstandard DJC job updating.

MSVTERM intercoms to DJCUPDAT as a result of a DJC job completing
Main Processor execution.

WTDJCT intercoms to DJCUPDAT as a result of a network being canceled.

MODDJC intercoms to DICUPDAT for DJC job scheduling as a result of a
modify network command.

MSVMVT INTERCOMs to DJCUPDAT for DJC updating at problem program time
as a result of receiving a DJC WTO message.

DJIN intexcoms to DJICUPDAT if a network is dumped back into the
system when DJC is not active.

DEPENDENT JOB CONTROL - ACCESS ROUTINES

The BJC table routines are used to access and manipulate the DJIJC control
blocks. For each routine, there is a macro-instruction which generates
a calling sequence that branches to the corresponding DJC routine via
the TVTABLE. The following are the DJC routines that comprise the
module NETCONTL:

Macro ' DJC Routine
JNADD JNCB ADD
JNDEL JNCB DELETE

79

JNGET JNCB GET

JNCBHLD JNCB HOLD
JNCBREL JNCB RELEASE
NCBTAFND NCB FIND
NCBTAADD NCB ADD
NCBTAGET NCB GET
NCBTAREL NCB RELEASE
NCBTAPUT NCB WRITE

Use. of the DJIC Access Rout ines

The IJNCB is a core-resident chain of control blocks representing DJC
job-nets within the ASP system. These control blocks are accessed
synchronously via utilization of the DJC access macros.

The following represents the functions of the JIJNCB access routines. The
AENQ and ADEQ functions reference JNCB's via the parameter NAME=JNCBCTL.

To add a JNCB to the JIJNCB chain requires the following:

1. Use the ASP AENQ function to provide synchronous access to the
JNCB's.

2. Use the JNADD routine to insert the JNCB entry.

3. Use the ASP ADEQ function to make the JNCB's available to other
functions.

To delete a JNCB from the JIJNCB chain requires the following:

1. Use the ASP AENQ function to provide synchronous access to the
JNCB's.

2. Use the JNDEL routine to remove the entry from the JNCB chain and
make it available to other routines.

3. Use the ASP ADEQ function to release the JNCB chain.

To get the next entry in the IJNCB chain requires the following:
1. Use the ASP AENQ function to access the JIJNCB's.
2. Use JNGET to get the first entry.

3. Use successive JIJNGETs to get successive entries. The EOF exit
must be taken before dequeuing the JIJNCB chain.

4., Use the ASP ADEQ function to make the IJNCB's available to other

routines.

The NCBs are defined in ASP as chained single-record files. NCBs are
sequentially added to a given buffer. Once the buffer is saturated, a
new one is gotten and chained to the previous.

The following represents the functions of the NCB access routines:

To add an NCB to the applicable buffer requires the following:

1. Use the JNCBHLD routine to provide synchronous access to the
applicable JNCB.

80

2. Use the NCBTAADD routine to add the specified entry.

3. Use the JNCBREL routine to make the JNCB available to other
routines.

To get the next NCB entry from a buffer requires the following:
1. Use the JNCBHLD routine to gain access to the applicable JNCB.
2. Use the NCBTAGETVroutine to get the first NCB.
3. TUse successive NCBTAGET's to get successive entries.
4. Use the NCBTAREL routine to release the NCB buffer if unchanged
or the NCBTAPUT routine to write the NCB to disk if it was

changed.

5. TUse the JNCBREL routine to make the JNCB available to other
routines.

To locate a specific NCB reguires the following:
1. Use the JINCBHLD rocutine to gain access to the applicable JINCB.
2. Use the NCBTAFND routine to locate requested entry.
3. Use the NCBTAREL routine if the requested entry was found.
4. Use the JNCBREL routine to make the JNCB available to other

routines.

CALLABLE DYNAMIC SUPPORT PROGRAMS

In addition to those routines that are an integral part of every ASP
nucleus and the basic DSP's (for example, ASP R/I, Main Service, etc.),
there exists a group of callable DSPs that meet specific needs of many
ASP installations. The modules of these optional DSPs are normally
nonresident until invoked via operator request through the resident DSP,
CALLDRVR. A DSP may be invoked either by an operator *CALL or an
internally issued INTERCOM macro -—-instruction which simulates an
operator message.

These callable DSP's are provided to all ASP users on the distributed
tape and are designed to meet general needs of most installations. The
performance of the callable DSP's can be increased by specifying that
frequently called modules be made resident. This is accomplished during
ASP initialization via the RESIDENT card

Callable DSP's include the Input Service DSP's; CR, TR, and DR
discussed in Chapter 4, Background Utilities such as Card-to-Tape {CT),
Tape-to-Print (TP), etc..

This section describes those callable DSP's not of a basic or utility
nature, but providing important ASP support. They are:

* Deadline Scheduling - Invoked via a //% MAIN card parameter with
a specified deadline type that was defined during ASP
initialization. Once invoked, it can be canceled and recalled from
the operator console., This ASP function considerably increases the
job's chances of completion on time by dynamically increasing the
job priority.

* Remote Job Processing - Invoked via an operator *CALL. This ASP
function allows jobs to be submitted from remote ASP terminals.

81

e Network Job Processing - Invcked via an operator *CALL or a
//*PROCESS card. This function allows work to be transmitted
between ASP Support Processors, allowing work load balancing or
taking advantage of specific system capabilities or configuration.

e Internal Job Processing - Invoked via an operator *CALL. This
function allows a program executing on a Main Processor to submit
work to Print ands/or Punch Service to be outputted before the
programs termination, or the program may create a job to be sent to
Input Service, to be placed in the ASP queue.

e ASP Created Data Sets (ACDS — TSO Support) - Invoked via a //*FORMAT
or //%¥ PROCESS card , this function allows the TSO terminal user
to have his job processed and scheduled by ASP.

DEADLINE SCHEDULING

For the majority of data processing installations, there exists a class
of jobs that must be processed within a specified timeframe in order to
meet required schedules. The callable DSP, DEADLINE, increases the ASP
priority of a job based on a Deadline type assigned to the specified
job. Deadline types are defined during initialization in the DEADLINE
card . Deadline Scheduling normally functions without operator action,
however, console commands INQUIRY, MODIFY, CALL, and START are provided
and are described in the ASP Operator's Manual. The MODIFY command can
override the initialization parameters.

Any job entering the ASP system may be specified for Deadline Scheduling
via a //%¥ MAIN card with a DEADLINE parameter. Input Service,
recognizing the DEADLINE parameter will call the nonresident module

DEADLINE if it is not in the system. Input Service places an entry
in a Deadline queue to enable Deadline Scheduling to control the job.

Deadline examines the Deadline gqueue and issues an ATIME macro for
the shortest time interval until a job priority change is required.
Unless another job with a shorter time interval is entered by Input
Service, Deadline will remain in an AWAILT until the time expires at
which time the appropriate priority change is made. If there are no
jobs in the Deadline queue, an ATIME is set to expire at midnight and
Deadline will AWAIT until it is operator canceled or Input Service
enters another Deadline job. Deadline Scheduling, canceled via a
*CANCEL, DEADLINE, PURGE command will not be automatically called by
Input Service. In this case, DEADLINE will not resume unless ASP is
reinitialized or an operator *CALL, DEADLINE is issued.

REMOTE JOB PROCESSING

The ASP system uses the Remote Job Processing (RJP) facility for support
of batch processing requests from remote terminals. The mode of
transmission used is Binary Synchronous Communication (BSC). RJP is
written at an EXCP level and provides the control interface between the
Dynamic Support Programs (DSP*s) and the terminals.

The structure of RJP is comprised of two logical sections. There is the
RJP line manager which controls all the line activities, and the Remote
Terminal Access Method (RTAM) which is the DSP interface for blocking
and deblocking data into the appropriate transmittal buffers.

ASP RJP provides two data formats and control philosophies. The first
format, is the intelligent terminal support. This is compatible with
the ASP/HASP Remote Workstation Packages for the System/360, Systenv3,
1130, Model 20, and the 2922. With this format, interleaving and the
ASP operator console with limited- or full-function are supported.

82

The second data format is compatible with hardware terminals such as the
2770, 2780, and the 3780. This format is unidirectional and provides no
console support.

All error checking and error recovery is automatic and does not require
any local operator intervention. Line error statistics are accumulated
automatically and may be printed on a console via the RJP INQUIRY line

statistics operator command.

Functional Description

At DSP Initialization, a resident RJP table is built from the RJIJPTERM
and RIPLINE initialization control cards. BAn entry is created for each
defined line and terminal. Within each entry is a pointer to a file
which contains all the required preformatted control blocks for normal
RJP operations. This includes the Line/Remote Device Control Table(s),
SUPUNIT(S), and buffer requirements.

To initiate the RJP mode of operation, the local operator will invoke a
call for RJP. This will give the RJP driver module control. From the
driver, the RJPMAIN module is loaded, followed by a RJIP active message
to the console. RJP is now ready to service the lines. RJPMAIN load
module consists of six modules linked together. They are: RJIPMAINT,
RIJPMAIN2, RJPMAIN3, RJPMAIN4, RIPMAINS, and RIJPMAING.

RIJPMAIN1 is the RJP line manager, which handles DSP dispatching along
with all non-data line communications. The RJIJPMAIN2 module is the
Remote Terminal Access Method (RTAM) which provides the access to the
RJP facility (that is, OPEN, GET, PUT, and CLOSE routines). Both the
RJP Line Manager and,RTAM, call subroutines in the RJIJPMAIN3 and RJIJPMAINY4
modules. RJPMAINS contains an overlay for the RJP TP buffer and is used
to initialize the transmittal buffers. RJIPMAIN6 is a data CSECT for
RJP.

Only one copy of RJP may be active at any one time and the line manager
runs off the RJP Function Control Table (FCT) entry. During the
initialization of the RJP DSP, entries in the Transfer Vector Table
(TVT) are updated to point to the corresponding access routines in the
RIPMAINZ module. The ASPOPEN, ASPEXCP, and ASPCLOSE nucleus routines
can now make the appropriate entry into the RTAM access routines. When
RTAM facilities are used, the caller's FCT will be used for any AWAITs.
Dispatching of these FCTs will be controlled by the Line Manager.

Multileaving Line Manager

This processor controls all line activity with remote terminals,
including line initiation/termination, remote terminal synchronization,
line error recovery, and sign-on/sign-off processing. It interfaces
very closely with the Remote Terminal Access Method described below.

When this processor receives control from the dispatcher, it first
determines whether an I/0 operation has completed. If not, it scans
each line (via the Line Device Control Tables) to check for requested
processing. When all processing has been completed, the processor
returns control to the Multifunction Monitor (AWAITs) until more work
becomes available.

When a channel end is detected, the channel end routine determines the
sequence type of the Channel Command Word Chain and branches to the
appropriate section to analyze the channel end and‘:initiate any error
recovery procedures required.

83

The Line Device Control Tables (LDCT's) are scanned. When one is found
to be available, the line initiation routine is entered to acquire the
DCT and a TP buffer, construct an initial CCW chain, and initiate I/0 on
the line.

A single timer queue element is maintained by the Line Manager to

initiate delays in line processing in order to delay a null response to
a remote terminal and decrease the associated degradation.

Réemote Terminal Access Method (RTAM)

The Remote Terminal Access Method provides an interface between the ASP
DSP and the remote terminal. RTAM provides blocking/deblocking,
compression/decompression, and synchronization with the remote terminal
in such a way that the DSP need not be concerned with the
characteristics of the remote terminal with which it is communicating.
The Multileaving Line Manager synchronizes very closely with RTAM
through a series of subroutines.

RTAM consists of four main sections and some miscellaneous subroutines,
which are described in the ASP Logic Manual. The four main sections
are:

e The OPEN routines, which convert the line from an idling mode of
operation to a transmit and/or receive mode of operation. In the
case of the multileaving interface, this routine also generates the
request or permission to begin a new function.

e The GET routines, which convert data received from the line into
EBCDIC images suitable for processing by the ASP DSP's. This
conversion includes deblocking, decompression, and conversion from
line code to EBCDIC.

¢ The PUT routines, which convert data from EBCDIC into a form ready
to be transmitted to the remote terminal. This conversion includes
compression, blocking, and conversion from EBCDIC to line code.

¢ The CLOSE routines, which convert the line from a transmit or
receive mode of operation to an idling mode of operation.

RJP OPERATING ENVIRONMENT

Data transmission to a remote terminal will start after the terminal has
signed on to the local ASP system. The following sequence of events are
required for signing on:

1. With RJP active, a line can be activated by a start line command.
This will dynamically build the line DCT (LDCT), SUPUNITS, and
the signon buffer. The line adapter will now be conditioned to
service calls from a remote terminal.

2. The line manager will monitor for a terminal /*SIGNON card, after
the phone connection has been established.

3. If a SIGNON request is invalid, a message is issued and is
followed by the line being automatically canceled. This will
cause the phone to disconnect.

4. With a valid request, the required SUPUNITS, Remote DCT's

(RDCT's), and terminal buffer will be dynamically built along
with any printer resource entries when required.

84

5. From this point, the terminal and RJP are ready to accept data
transmissions.

Some of the available facilities in RJP are:

After signon, the remote terminal conscle will be available to the
user.

After signon, the terminal device will be available to the ASP
system. Use of these devices will be the same as operating with any
local device.

After signon, line error statistics and total number of
transmissions are accumulated automatically. INQUIRY command can be
invoked for displaying of these statistics.

Line error recovery is automatic and appropriate error messages are
issued.

A RJP line CANCEL command is available with two options. The line
(and terminal) can be canceled immediately, which implies critical
DSP's (that is, Print and Punch Service) will be specialized
rescheduled. The normal line cancel, which allows currently active
DSPs to end, prior to canceling the line. This command can be
invoked anytime after the line has been started.

After signon, the remote terminal may terminate transmissions by

submitting a signoff card. This will operate the same as normal
line cancel, followed by the line being restarted automatically.

85

ASP TVT

RESIDENT RJP TABLE

—- LINE
I
i
Establ ished |
at start Line I Established at Terminal
i TERMINAL SIGNON
i -
| | |
LINE SUPUNITS | | TERMINAL DEVICE SUPUNITS
_________ J L .

TERMINAL RDCT's

- T 1
i
|
|
l
|

. I

Established when a t

DSP is active with !

a terminal device |
|

. !
e
[4

DSP*'s FCT

Figure 21. Interrelationship of ASP RJP Control Blocks.

REQUIREMENTS FOR REMOTE RJP TERMINAL PROGRAMMING

ASP Programmable Terminal Teleprocessing Compressed Data Format

Data transmitted to or from programmable terminals is first compressed
(or pressed into blocked transmission groups, with all strings of three
or more (up to 31) duplicate characters reduced to two-byte control
groups. Duplicate blanks are reduced to one character. This compressed
format allows improved transmission speed by not transmitting redundant
information. Print records have the first character reserved for

86

carriage control, the extended USASI code supported by OS which includes
those codes defined by USASI FORTRAN. Punch records are 80-character
EBCDIC card images for punching in data mode 1. Appendix E of this
manual provides a detailed description of this compressed format.

The RIJPMAIN2 module contains the Remote Terminal Access Method (RTAM)
routines which blocks and compresses data transmitted to and from the
programmable terminals. Blocking, but not compression is supported from
the nonprogrammable RJP terminals. The RJPGET routine handles
deconmpression and deblocking of data and the RIPPUT routine services all
the output requirements.

Regquirements For Remote RJP Terminals

ASP RJP is designed to support the HASP II remote terminal packages.
These are presently available for 1130, Systems/360, System/3, 2922, and
Model 20 operating in Binary Synchronous Communication transmission
mode. The HASP II STR terminal packages are not supported by ASP RJP.

Care must be taken in generating the HASP II remote terminal packages to
assure compatibility in specifications of devices and buffer sizes with
those specified at ASP Initialization time.

The remote workstation terminal name must be exactly five characters in
length. It can be composed of any combination of valid alphanumeric
characters. Device rniames on the terminals have a fixed format. The
first five characters are the terminal name, followed by a PRn for a
printer, PUn for a punch, and RDn for a reader. When a terminal is
defined with a remote console, the user is not required to specify it
with a unique device name. Examples of device names are:

TERM1PR1 PRINTER 1 ON TERMINAL TERM1
TOCO3PR2 PRINTER 2 ON TERMINAL TO0003
T2780PU1 PUNCH 1 ON TERMINAL T2780

CALIFRD2 READER 2 ON TERMINAL CALIF

Devices supported on the various terminals supported are described in
the ASP General Information Manual (GH20-1173).

NETWORK JOB PROCESSING (NJP)

Network Job Processing permits two or more ASP Support Processors to
schedule and route ASP jobs from one Support Processor to another via
communication lines.

ASP NJP support uses the 0OS Basic Telecommunications Access Method
(BTAM) for all input/output between NJP ASP Support Processor terminals.
Data transmission is in an EBCDIC data mode with full transparency.

NJP supports only dedicated lines. The lines are opened by the ASP
operator and are immediately placed into listen mode, waiting to receive
data. The operator may close a line only when it is in the listen mode.
Canceling a line when it is active cancels only the job active on the
line.

Transmission of a job via NJP is accomplished by transmitting all ASP
control blocks and data sets to the remote ASP system. The first
transmission sent to an NJP terminal is an 18-byte record containing
initial information.

87

The initial write sequence, initiating communication, is a write initial
for 18 characters:

SOH- (8-character jobname)-DLE-STX-INISH-DLE-ETB

The first character, the SOH, is required to be the first character of
every transmittal block. It is followed in every transmittal block by
the jobname of the job being transmitted. The next two characters, the
data-link-escape (DLE) and start—of-text (STX), are also required in
every transmittal block. The next portion begins the data area and in
the initial transmission block, the word INISH is used to signal the
first transmission. It is followed by the characters X'1002' (DLE-ETB),
which are used as an end~of-block terminator for all transmissions by
NJP. '

All succeeding transmissions are of the form:
SOH- (8-character jobname)-DLE-STX-data-DLE-ETB

The data area varies with every transmission, so the writes are done for
a count of the data area size +13 bytes.

At the receiving end, the initial read is for 20 bytes, and all
succeeding reads are for the size of the transmittal block.

Succeeding transmissions begin by transmitting all of the single-record
file belonging to the job being transmitted. Each single-record file is
moved into a transmittal buffer, and the buffer is transmitted. The
transmittal buffer size must be greater than the ASP buffer size by at
least 13 bytes. For example, if the ASP buffer size is 1000 bytes, the
length of the transmittal blocks must be at least 1013 bytes. The ASP
data sets in the JDS single-record file are then transmitted. Each data
set is partially pressed and blocked into the transmittal buffer.
Partial pressing of the data sets is accomplished by compressing blank
characters when four or more blanks appear consecutively. Since ASP
data sets reside in the job queue in record formats, each record is
pressed if possible and then blocked into the transmittal buffer. When
there is no room in the transmittal buffer for another record, it is
transmitted. This continues until all data sets have been transmitted.
An EOT is then transmitted, signaling the end of the job. The line
sending and receiving is placed into listen status at both locations and
is available to send or receive at each location.

Functional Description

The module NJP is the driver module that is loaded by CALLDRVR when the
operator issues the *CALL,NJP command. A console LOGIN is performed and
a signon message is issued. When the operator responds the module
NJPCOMM is loaded and control is passed to it to process the operator
request.

NJPCOMM scans the input message for a communication verb. The SEND verb
is used to schedule jobs in the system for NJP processing at a remote
NJP location. The remainder of the input message is scanned to
determine the type, amount, time requirements, and priority of the jobs
to be rescheduled. Each job to be rescheduled is checked for functions
currently active, for current setup status, and for current RESQUEUE
status. When it is determined a job can be processed, the JCT and JDAB
for the job are rebuiit to include the NJP Scheduler Elements. The old
JCT entry is deleted and the new rebuilt JCT is added to the Job Control
Tables. When the entire request is satisfied, control is returned to
the module NJP. .

88

The OPEN verb is used to open the NJP communication lines. The input
message is scanned to determine which iines are to be opened. A job
called NJPOPEN is created for each line to be opened. The NJPOPEN job
has two Scheduler Elements, NJPOPEN and PURGE. JDAB and JCT are created
and the line ddname is placed intc the JDAB parameter buffer for the
NJPOPEN Scheduler Element. The jcb is added to the Job Control Tables
at priority 15. Control is then returned to the NJP module.

The Q verb is used to reguest job queue status from a remote NJP
terminal. The input message is scanned to determine the terminal
location and what information is to be requested. A job called NJPQUEUE
is created by building a JCT and JDAB. The job has two Scheduler
Elements, NJPIO and PURGE. The input parameters are placed into the
parameter buffer for the NJPIO Scheduler Element. This job, called
NJPQUEUE, is added to the Job Control Tables at priority 15. Control is
returned to the NJP module.

The validity of all parameters is checked, and appropriate messages are
issued for all bad parameters. The success or failure of each input
message is indicated by an appropriate console message.

The NJPOPEN module performs the opening and closing of all
communications lines for Network Job Processing. The module handles all
operator communication for canceling or restarting lines.

A CSECT, NJODATA is created for each open line. This NJODATA contains
the BTAM control blocks, the DCB, the DECB and the LERB. NJPOPEN does a
console LOGIN to provide operator communication with each active line.
The line is opened and placed into listen status. An AWAIT macro is
issued to wait for activity on the line.

When data is received on the line, NJPOPEN uses the macro-instruction
INTERCOM to call the module NJPIO to process all activity on the line.
The NJPOPEN module then awaits for either an operator. message or for the
activity on the line to complete. When an operator request to close the
line is received, NJPOPEN issues a BTAM CLOSE and returns to JSS.

The NJPIO module first determines whether it is to receive or send data.
When data is to be sent, the JCT entry for the job to be transmitted is
obtained from the JCT and saved in the NJPDATA CSECT for the line. The
parameter buffer for the NJPIO Scheduler Element is read to obtain the
terminal destination. The NJP terminal table is scanned to verify that
JSS has scheduled the correct line connecting the two terminals. A
reschedule buffer is built if the wrong line has been assigned and
control is returned to JSS.

The NJODATA CSECT pointer for the line is obtained from the terminal
table. An AGETMAIN is issued for a transmittal buffer. A load module,
NJPDJ, is loaded. This module places all data to be transmitted into
the transmittal buffer. A HALT I/O is then issued to the line to halt
the current read initial listen status.

A write initial is then issued to initiate transmission on the line.
Control then passes alternately between NJPDJ and NJPIO. NJPDJ fills
the transmittal buffer and NJPIO issues write continues until all data
is transmitted. An EOT is issued and the NJPOPEN module is posted to
reestablish the listen status. The transmittal buffer is freed via
APUTMAIN, the NJPDJ module is deleted, and control is returned to JSS.

When data is to be received, the parameter buffer for the NJPIO
Scheduler Element is read. The message in the parameter buffer is the
message built by the INTERCOM macro-instruction in NJPOPEN when the read
initial was satisfied. The terminal table is scanned to obtain the line
entry and the NJODATA CSECT pointer. A transmittal buffer is obtained
via AGETMAIN. The initial read information is examined and the NJPDJ

89

module is ALOADed. A read continue is issued, and controcl passes
alternately between NJPDJ and NJPIC until an EOT is received. The
NJPOPEN module is then posted to reestablish listen status. The
transmittal buffer is returned anc¢ the module NJPDJ is deleted. Control
is then returned to JSS.

The NJPQUEUE job, when scheduled by JSS via the NJPIO Scheduler Element,
processes through NJPIO in the mamner described above for receiving and
'sending queue information. Instead of the NJPDJ module being loaded,
the module NJPINQ is loaded to place the data into the transmittal
buffer.

The NJPDJ module places into the transmittal buffer, all ASP control
blocks and all ASP data sets for the job being transmitted to the NJP
terminal. In receive mode, it also writes the received ASP control
blocks and data sets to the ASP job queue.

NJP Terminal Compatabilities

The NJP network must have the following characteristics:

¢ ASP buffer size must be the same for all Support Processors
connected via an NJP line

e The transmittal block size must, be the same for all Support
Processors connected via the NJP line

e The transwittal block size must -be greater than the ASP buffer size
by at least 13 bytes

e Jobs transmitted to remote ASP systems may contain setup
instructions provided that any requested volumes needed are at the
remote location. This information about requested volumes should be
known before an attempt is made to transmit such a job.

o The DSP Dictionary entries in RESPARAM must have matching DSP
numbers in all systems

Terminal Transmittal Block Size

Transmittal block size must be the same at the receiving and sending
locations, and must be greater than the ASP buffer size by at least 13
bytes. Size consideration is based upon line speed and ASP transient
area storage. Larger sizes are desirable for higher speed lines. Block
size can be changed at ASP coldstart time.

NJP Restriction

When transmitting jobs via NJP, which uses BTAM, the 270X being used
must have power on. A permanent lockout condition will occur if
transmission is done to a 270X that is offline or powered down.

Error Recovery

Standard OS BTAM error recovery procedures are used. BTAM attempts to
send or receive seven times before posting ASP with a permanent error.
The operator has at that time an option of restarting or canceling the
line. If he chooses to restart the line and this results in a permanent
error with no new data transmitted, NJP automatically cancels all
activity- on the line. The job that was being transmitted goes back into
the queue and is scheduled again. Canceling the line places it into

90

listen mode, and any active job on thé line at that time goes back into
the job queue to await scheduling at a later time.

If an error occurs on the initial write sequence, NJP attempts to send
three times at one-minute intervals. If this fails, the line is varied
offline to all jobs that could schedule to use the line, assuming that
the receiving location is not currently open to receive data. The
operator may initiate activity for the line again by varying the line
online.

INTERNAL JOB PROCESSING (IJP)
The IJP routines fall into two distinct classes:

e ASP routines that follow all normal ASP programming and operating
conventions

e The interface routine, which is "attached" from the task desiring to
make use of the ASP system capabilities. This routine follows
standard 0S programming conventions.

The interface is accomplished by passing the data requiring ASP
processing from the requesting task to ASP via the CTC adapter. The
interface routine establishes communication with the ASP I1IJP routines
via the WITO/WTOR macro . All messages to the operator go across the

CTC adapter , which has been defined at SYSGEN time as the alternate
console. When a WTOR message of prescribed format is received by the
ASP IJP DSP from the IJP interface subtask, it performs the necessary
preparation for Main Service to receive data from the user and indicates
this through a reply, to the user message. The data that requires
processing is then written across the CTC, and the user task issues
another WIOR message which indicates that all data has been sent. The
ASP IJP routine then replies that it has received the data and proceeds
to input the data to the ASP DSP that was requested to process it. The
ASP side of the IJP interface is started by calling the IJP DSP for
the logical Main Processor that will be submitting data. The user side
of the interface is started by "attaching”™ the IJPWTR interface subtask
with appropriate parameters and JCL statements describing the data to be
processed. The requirement is:

The OS assembler macro ATTACH is used to create a subtask which
may execute independently of the originating or ATTACHing task.
A parameter list is passed via the ATTACH macro ; the 1list
contains:

° The address (first word in the parameter list) of the six-
character volume serial of the disk or tape containing the
data set to be processed

° The address (second word in the parameter list) of the u44-
character name of the data set to be processed:

. The address (third word in the parameter list) of the eight-
character member name if the data set is partitioned;
otherwise, the address of an area containing eight blanks

. The address (fourth word of the parameter list) of the eight-
character name of the ASP DSP that is to process the data set

° The address (fifth word of the parameter list) of a four-
character processing options indicator area. The first of
these four characters indicates that the parameters are to be
added to a checkpoint data set (C), after which the ATTACHing
task may resume execution while the subtask processes the

91

parameters from the checkpoint data set; or (S) indicates
serial processing, where the ATTACHing task waits for all
subtask services to complete before continuing. The second
character indicates that the input is on direct access (D) or
on tape (T). The third character, if (S), indicates that a
direct access data set to be sent to ASP is to be scratched
after being sent to ASP. The fourth character is presently
unused. The example options are C, D, blank, blank
(checkpoint, direct access, no-scratch, null).

The address (sixth word of the parameter list) of a fullword
ECB, which is posted by the subtask at the end of serial
processing or checkpointing of parameters. (Initially.
hexadecimal zeros.)

The address (seventh word of the parameter list) of an 8-byte
word aligned work area (initially hexadecimal zero) used by
the IJPWTR subtask to determine whether to continue
processing or to cease processing and return. The ATTACHing
task indicates cease processing to the IJPWTR subtask by
moving hexadecimal *OF*' to the first byte of the work area.
The ATTACHing task may then determine when the IJPWTR subtask
has completed by examining the TCBLTC field in the ATTACHing
task's TCB. When this field is zero, no subtasks are
outstanding.

For further information refer to the ASP Application Programmer's

Manual.

92

Figure 22 provides an overview of the IJP/ASP interface.

ASP Logical Main
Processor

Parent task (e.g., CRJE) {Parent Task)
desiring to input data to OS Task Using Other 0S/360
ASP uses ATTACH macro to ASP 1JP
create IJPWIR subtasks.
IJPWTR subtask processes ATTACH Tasks Control
parameters passed by parent | |
task which points to infor-
mation to be sent to ASP for (Attached Subtask) Program
processing. ’
IJPWTR and ASP IJP DSP commu- IJPWTR subtask to
nicate and pass information interface with ASP
to be processed via the channel- IJP DSP
to-channel adapter. (real or M f
logical) o |

i !

o

o

|

| |

]

| | ASP. Logical Support Processor
ASP IJP Dynamic Support Program ASP IJP DSP Other 0S/360
processes information sent by T;
IJPWTR and provides interface - T T T T
to pass data to processing DSP.

____________ Tasks Control

Processing DSP requested by DSP requested by Program
parent task on Main then task on Main to
processes the data according process data
to DSP's function. (ISDRVR,
PRINT, PUNCH)

Other ASP Functions

Figure 22. 1IJP ASP Overview.

IJP is invoked via an operator *CALL command. The IJP driver module is
loaded and it in turn loads and calls the necessary modules to interface
with Main Service to handle data from the CTC and to interface with the
user-requested DSP. IJPINISH is loaded, called and deleted to
establish operator communication.

IJP issues a RECEIVE macro for the expected WTO/WTOR message from the
IJPWTR module, and IJP then waits for the IJPWTR message or a cancel
from the operator. If the RECEIVE is satisfied, the IJPSTART module is
loaded, called, and deleted to establish the Main Service interface
required to accept the input data from the CTC. When all the data has

93

been received and another WTO/WTOR message is received indicating end-
of-data, the IJPEND module is loaded, called, and deleted to remove the
IJP interface to Main Service and to give the JDS containing the data
set across the CTC to the user-requested ASP DSP. The routine then
AWAITs further processing messages or a cancel from the operator, at
which time a return is made to JSS.

ASP CREATED DATA SETS (ACDS - TSO SUPPORT)

Background jobs from a terminal, submitted to TSO for execution on a
Main Processor, are temporarily placed in the 0S job queue. The job is
then submitted to ASP via the ASUBMIT function of MAINTASK and
ASP IJP DSP on the support processor. The job is read in via the ASP
interface, ISDRVR , and placed in the ASP queue for scheduling. At
this point the job will be scheduled per the TSO user's request or by
system default values.

The TSO job will complete the normal Input Service (ISDRVR), ASP R/I,
MAIN, PRINT, PUNCH, and PURGE scheduler elements. (211l ASP control
cards may be included in TSO submitted jobs.)

The TSO terminal user may direct output data sets of his job to any ASP
-defined local or remote printer via the //*FORMAT card. In addition,
the TSO user may direct output data sets to his own or some other TSO
terminal via a //*FORMAT card with the AC parameter specified.

The ACDS DSP is a callable DSP invoked as a result of Input Service
processing of a //*FORMAT AC ASP control card or a SYSOUT data set DD
card, the class of which is specified in an initialization deck SYsSoUT,
TYPE=TSO card. A scheduler element, AC, is inserted and executed
immediately following the Main.Service SE. The ACDS DSP's function is
to provide the necessary interfaces in the ASP system for the ADSGEN
subtask of MAINTASK to read user-supplied job output across the CTC
adapter to the Main Processor where ADSGEN resides. This is
accomplished in a manner similar to the IJp DSP interface with the
IJPWTR job subtask or the ASUBMIT subtask of MAINTASK. Essentially
this interface for either IJP or ACDS involves the construction of a
dummy job and related ASP control blccks in order to allow ASP Main
Service £TC¢ I/0 routines to be used for data transfer on the CIC.

The ACDS DSP is invoked via the //#PROCESS ASP control card or by
inclusion of //#*FORMAT AC ASP control cards in a job submitted through
ASP IJP processing or through specification of SYSOUT = a class of type
= TSO. When the ASP ISFORMAT Input Service module encounters

/7 *FORMAT AC cards it construcis a parameter buffer for the ACDS DSP.
This parameter buffer contains the ddname of the ASP JDS entry which the
user desires to send across the CTC to the ADSGEN module for processing.

The DDNAME parameter specifies the ddname of the ASP JDS entry to be
ACDS/ADSGEN processed. The optional ERDEST parameter indicates the
name of an ASP-defined local or remote printer where the data specified
by the DDNAME parameter is to be printed in the event of unrecoverable
errors encountered by ADSGEN. The USER parameter specifies the user
identification of the TSO user who is to receive notification of the
creation of a TSO EDIT command—-accessible data set by the ADSGEN
module. The USER parameter is mandatory for non-IJP submitted jobs
(that is, through local or RJP readers). For iJp submitted jobs it
may be used to indicate that a user other than the job submitter is to
receive the data.

The PRINT parameter indicates to the ACDS DSP whether or not the
DDNAME= output is to be printed after successful creation of the TSO
EDIT accessible data set. If this parameter is not specified or
PRINT=NO is specified, the ACDS DSP will ensure that the effected data

94

set is not processed by ASP Print Service after completion of ACDS
processing. If PRINT=YES is specified this action is not taken.

The output of ACDS processing is a TSO EDIT command-accessible data
set. This data set is constructed by the ADSGEN subtask of MAINTASK
which interacts with the ACDS DSP to effect the transfer of the user-
specified job output across the CTC adapter to the ASP Main
Processor where ADSGEN resides.

Further information and/or requirements for TSO/ASP may be obtained as
follows:

e DEVICE initijalization card required for IJP/TSO:
See ASP System Programmer's Manual - DEVICE card

¢ JCL requirements for AOUTPUT/ADSGEN/ASUBMIT subtasks of MAINTASK:
See ASP System Programmer's Manual - MAINTASK Execution.

e Use of IJP DSP (necessary for TSO JOB submission):
See ASP Console Operator's Manual - IJP DSP

e Operator communication with MAINTASK:
See ASP Console Operator's Manual - MAINTASK

e Operator communication with ACDS DSP:
See ASP Console Operator's Manual - ASP-Created Data Sets

e ASP control cards:
See ASP Application Programmer's Manual

¢ Using ASP/TSO support:
See Application Programmer‘'s Manual - Using ASP/TSO support

MAINTASK

Those functions which were required on an ASP Main Processor, in
previous versions, were implemented through changes to existing OS
modules or by extending the function of O0S modules. These modifications
were performed during the pre- and post-generation steps. With ASP
Version 3, many of these required functions, as well as those required
for TSO, Hot Jobs, RAS, R/I, and performance feature, have been brought
together under control of a single monitor which operates as a system
task on the ASP real Main or local Main Processor. This task, called
MAINTASK, will monitor and control job processing through the use of the
OS MODIFY command and the OS timer. Each time a MAINTASK service is
required, the Support Processor will transmit a MODIFY command over the
channel-to-channel to MAINTASK. MAINTASK will then analyze the text of
the MODIFY command and route the request to the appropriate subtask for
action.

Since MAINTASK is an OS system task, its name must be a member of the
system task table. This is accomplished by a post-generation step of
the ASP generation. A sample JCL procedure is included in Chapter 5 in
this manual and will be added to the system procedure library by another
post-generation step of ASP generation.

The MAINTASK region is made up of the MAINTASK controls and its
subtasks. Some subtasks are required for the normal operation of ASP
Version 3 while others are only required if the special support such as
TSO or Hot Job is being used. The RAS and performance features are also
optional, but their use is recommended.

The diagram below describes the relationship of the subtasks to the
MAINTASK controller.

95

MAINTASK

CONTROLLER
COMMAND JoB RAS and JOB TSO
PROCESSORS PROCESSORS PERFORMANCE ISOLATION

Maintask Controller (MAINTASK)

This module is the command router for the MAINTASK region and will be
started as a system task by ASP initialization. The S MT command is
entered into the ASP initialization deck as an IPL text card for a real
Main Processor. For a local Main Processor MAINTASK is started
automatically. The format and options of this IPL text card are covered
in a later section of this manual. Once started the MAINTASK Controller
will load those other modules which were called for as parameters of the
START command. The region size required will vary according to those
features requested. The region size is also a possible parameter of the
start command.

If no override parameters were specified, the PARM= and REGION=
specified in the MT (MAINTASK) procedure will be used. If no PARM= or
REGION= is in the start command or procedure only those subtasks
required for normal ASP execution will be loaded into a default region
size.

Careful attention should be given to creating the MT procedure and the
IPL text card for starting MAINTASK. This is described in detail in a
later section of this manual.

Once initialized the MAINTASK controller will receive the MODIFY command
from the Support Processor and pass it on to the task which will process
the request.

Command Processor (ASPVER, ASPLOC, ASPFENCE)

These are three modules which make up the command processors. These
three modules are required for the normal operation of ASP Version 3.
The commands which are processed by these modules are:

Module Command (s)

ASPVER VERIFY and ISOLATE
ASPLOC LOCATE

ASPFENCE SIZE and FENCE

These commands are sent by the Support Processor to a Main Processor
during setup and job scheduling.

ASPLOC: LOCATE command processor receives requests from ASP to locate
cataloged data sets. Uses 0OS catalog management to locate the data sets
and returns the name and type of volume containing the specified data
set.

96

ASPVER: Performs volume mount verification and unit isolation function
for ASP Main Device Scheduling. Issues messages pertaining to mount
status of ASP SETUP devices.

ASPFENCE: The SIZE command is used by Main Service to determine the
size of the largest region currently available on Main. A job is then
selected from the resident job queue that will fit in this region. The
response from a SIZE command has the message ID MTSZ001 and is described
in the ASP Messages and Codes Manual. This message will be displayed on
the MDEST console if a size display is specified on the SELECT card or
the operator issued the MODIFY command, *f main-name, D=SIZE.
The format of the SIZE command is:

F MT,S1ZE[,0S-job-class]
where 0OS-class is the 0S Job Class assigned to Main Storage Fence. If
OS-class is omitted, the largest region available in the 0S dynamic area
will be given. If OS-class is used, the largest region available within
the corresponding Main Storage Fence will be given.
The FENCE command is used by Main Service to reserve Main Storage for an
ASP Job Class Group (see Main Storage Fencing description in Chapter 4).
Three types of FENCE commands are used; the Fence build, the Fence
reset, and the Fence list. The responses to these commands have the
message ID MTFNxxx and are described in the ASP Messages and Codes
Manual.
The format of the FENCE command is:

F MT,FENCE T=task-name, {nnnnnkjRESET|LIST}{,0S-job~-class]
Examples:
To build a 500K fence for 0OS Class A:

F MT,FENCE 500K,A
To determine the largest available region in this fence:

F MT,SIZE A
To reset that fence:

F MT,FENCE RESET,A
To fence a system task such as TSO:

F MT,FENCE T=TSO, 200K
To reset that fence:

F MT,FENCE T=TSO,RESET

To list the status of all fences:

F MT,FENCE LIST

Job Processors (ASPWRITR, ASPQALL, ASPQRDR)

An ASPWRITR is included as a subtask of MAINTASK and eliminates the
need for the 0S writer. This writer will be started when MAINTASK is
initjalized and will wait until it receives a MODIFY command requesting

97

a job (SMB's) be dequeued from a particular job output class and sent to
the Support Processor to be printed with the job's output. Once a job
has been transmitted the "WTR WAITING FOR WORK" message will be sent to
the Support Processor. This will be the signal that a job has been
dequeued and another job's SMB's can be requested via a MODIFY command.

In addition to the ASPWRITR, there are two other modules required for
job processing. The first (ASPQALL) is used by the
Reader/Interpreter DSP and allocates space and actual TTR®*s on the 0OS
job queue on the Main Processor for the queue records which are built by
the Reader/Interpreter DSP on the support. The ASPQRDR module is
the queue record reader which reads the preformatted job gueue records
from the Support Processor. Once this reader has placed all the control
blocks onto the 0OS job queue, the complete job will be enqueued and the
job will be immediately scheduled for execution. The queue record
reader replaces the normal OS Reader on a real Main or local Main
Processor.

These three modules are required for normal ASP Version 3 operations.

These modules replace the standard OS modules at a substantial reduction
in the amount of main storage required.

RAS and Performance (ASPCTCM, DYNDISP)

Two modules operate asynchronously, from MAINTASK and are dispatched by
time intervals rather than MODIFY commands. These modules are designed
to increase the reliability of an ASP complex by keeping a real Main
Processor active, even if the Support Processor has terminated, and
improve the throughput of jobs operating on any Main Processor.

A Channel-to-Channel Adapter Moanitor (ASPCTCM) module is
provided as an optional feature, but its use is recommended. This
module will monitor the adapter, at the interval selected by the user at
initialization, to ensure it is functioning. If it is determined that
the adapter is permanently busy, which means the main has tried to
initiate a request but the support does not respond, the request will be
halted thereby freeing that channel for other activity. The console,
which is also the adapter, will be switched back to the primary consocle
on the main. This will allow those jobs which are isolated from the
adapter, such as Hot Jobs, to continue execution. When the support
machine is restarted the CTC monitor will recognize the restart i
condition and again switch the primary console back to the adapter.

This will allow the support machine to again communicate with the main.

The ASPCTCM module is also used to normally detach a real main processor
and return it to 0S standalone status. This function is performed for
real main systems only and is activated when a P MT command is received
by MAINTASK. Before MAINTASK terminates, it posts the CTC monitor to
perform a console switch from the CTC to the primary OS console.
Logically this should only be invoked by the operator when all ASP
scheduled jobs, on that main, have been quiesced and the main has been
varied offline to ASP.

Caution: When using the CTC Monitor and it becomes necessary to hit
STOP on the support machine, the operator must hit STOP on
the main also.

Also ASP dumps on support, written to the printer, can cause ASP to be
nondispatchable long enough to create a time-out of the CTC MONITOR and
the temporary loss of a real main processor. It is advisable when in a
testing mode to run without the CTC MONITOR and when in production to
write ASP dumps to tape or disk.

98 -

The throughput of ASP scheduled jobs on a Main Processor can be
increased by another optional module, the Dynamic Dispatcher

(DYNDISP). This module is also time driven with the interval set
each time the module is initialized. Each time the Dynamic Dispatcher
gets control it will check the time used by each job since the last time
interval and reorder the TCB chain in an attempt to give a higher
priority to 1/0-bound jobs to improve system throughput. A MAINTASK
restriction is that Dynamic Dispatching is mutually exclusive with 0S
Time Slicing for the same priority levels.

Job Isolation (AOQUTPUT)

This feature allows installations to isolate important high-priority
jobs from failures on the Support system. By executing jobs defined as
* Hot Jobs " and assigning the SYSOUT data sets to classes not
intercepted by ASP (that is, output classes not defined in the SYSOUT
initialization card), the jobs can continue to execute in the event of a
Support failure. The subtask AOUTPUT may then be directed to
retrieve these data sets via the operator MODIFY MT command, sending
them, via the IJP DSP on Support, to the proper DSP; Input, Print or
Punch Service.

TSO. Support (ADSGEN1, ADSGEN, ASUBMIT)

ASP TSO support extends the advantages of ASP multiprocessing to the TSO
user. This support encompasses the uniprocessor environment as well as
the multisystem environment.

Main features are:

1. To allow the TSO terminal user to submit jobs to the centralized
ASP job queue for processing.

2. To allow a TSO submitted job to run on any ASP Main Processor in
the ASP complex for which it is qualified.

3. To allow the TSO user to inquire as to STATUS or cancel his job.

4. To allow the TSO terminal user to obtain selected output back at
his terminal even though his job ran on another processor in the
ASP complex.

5. To allow the continuing execution of either TSO or ASP in the
event of failure of either. :

Background jobs submitted to TSO for execution by a terminal user will
be temporarily placed in the 0S job queue data set. The job will then
be read by an ASP interface routine (ASUBMIT) and sent to the ASP
IJP DSP for execution scheduling. The processing of jobs submitted to
TSO and scheduled by ASP can be transparent to the user or he may take
advantage of ASP's unique capabilities.

Subsequent to execution, user-specified data sets are read by an ASP DSP
(ACDS) and sent to an interface routine (ADSGEN). The terminal user
is notified and he may then access the data set using standard TSO
commands.

99

CHAPTER 5. ASP SYSTEM INITIALIZATION

The initialization of ASP defines the system configuration and
processing options. The initialization process is controlled by 0S JCL
and ASP initialization control cards. This process, being controlled by
user-supplied control cards, allows the greatest amount of flexibility
to the user to create or modify the ASP system operation. The
initialization options can be quickly and easily changed without having
to make alterations to the established 0S system. Initialization
consists of:

e Loading the resident portion of the ASP system

e Loading optional modules

. Foimatting the ASP queue devices if necessary

e ‘Allocating disk space for ASP data sets

e Defining job scheduling algorithms

e Defining installation standarxds

e Defining console message routing

e Defining the number of Main Processors and the operating
characteristics of each

¢ Establishing Support Processor device allocation tables
e Starting of procedures on selected Main Processors
Initialization can be broken into three sections:
1. Starting ASP as a problem program to OS
2. Defining the ASP configuration and processing options

3. IPLing of each Main Processor

0OS 'CONTROL: CARDS FOR ASP EXECUTION

ASP executes as a problem program with a nonzero protect key in
supervisor state. When required ASP will get a zero protect key for
short intervals. To initiate the execution of the ASP system normal OS
JCL is required, for which an example and explanation follows:

//EXASP JOB 836 ,SUPPORT,REGION=250K,PRTY=13

//3J0BLIB DD DSN=ASPMNT,VOL=SER=111111,0NIT=2314,DISP=0OLD

7/ DD DSNAME=ASP,UNIT=2314,DISP=0OLD,VOLUME=SER=111111

//STEP EXEC PGM=ASPNUC,TIME=1440

// CHKPNT DD DSNAME=ASPCKPNT,UNIT=2314,SPACE=(CYL, (1)) ,DISP=0LD,
VOLUME=SER=111111

7/ /ASPO1 DD DSNAME=ASPIO,UNIT=3330,SPACE=(CYL, (403)),DISP=0LD,
VOLUME=SER=ASPQ1

7/ /ASPQ2 DD DSNAME=ASPIO,UNIT=3330,SPACE=(CYL, (403)) ,DISP=0OLD,
VOLUME=SER=ASPQ2

7/ /ASPQ3 DD DSNAME=ASPIO,UNIT=3330,SPACE=(CYL, (403)) ,DISP=0LD,

VOLUME=SER=ASPQ3
/ /ASPOUT DD SYSOUT=A

100

//ASPABEND DD SYSOUT=A,DCB=BLKSIZE=764

//ASPSNAP DD SYSOUT=A,DCB=BLKSIZE=764

//SYSABEND DD SYSOUT=A

//ASPSADMP DD DSN=ASP.DUMP,DISP=0OLD

//NJIPLA1 DD UNIT=053

//1EFRDER DD DUMMY

//IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR

//1EFDATA DD DUMMY

//ASPDRDS DD DSN=DISKRD,DISP=SHR,VOL=SER=222222,UNIT=SYSDA
//7ASPIN DD DATA

In the JCL example the JOBLIB DD card has two concatenated data sets
called ASPMNT and ASP.. The DSN=ASP contains the ASP programs and
modules as received from the IBM Program Information Department (PID),
and DSN=ASPMNT could contain maintenance. For further information on
ASP maintenance refer to the table of contents.

ASPNUC is the program name to be executed and TIME=1440 negates OS
job step timing. .

When the initialization process has been completed, a checkpoint is
written on the specified ASPCKPNT device. This checkpoint contains the
information that is necessary to restart the system should a failure
occur. This record is repetitively updated during execution to reflect
the current status of the system. DDNAME CHKPNT defines the device and
space allocation. The SPACE parameter must indicate 1 cylinder (CYL).

ASPQ1, ASPQ2, ASPQ3 are the DD names used for examples to define the ASP
gqueue devices. The ASP queue devices may be 2314 or 3330. The DD names
selected by the user are to be referenced in the ASP initialization
FORMAT and TRACK control cards. The space must be specified as
cylinders, SPACE=CYL.

The // ASPOUT DD card designates the data set for the printing of the
COLDSTART deck by initialization processing.

The // ASPABEND DD card designates the data set for the snap of the
OS/ASP region by ASPABEND when the DUMP parameter is used on the OPTIONS
card in the ASP initialization deck.

The // ASPSNAP DD card could be allocated to a device (such as a
printer), which will allow the data to be printed during or immediately
following ASP initjialization. It is used by initialization when the
option ANALYZE=YES is used on the RESTART card to SNAP possible
illegal control blocks due to user modifications. It is also used for
the output from the Dump Core DSP.

The DCB=BLKSIZE=764 parameter is required on both the //ASPSNAP and
//ASPABEND DD cards.

The //ASPABEND, //SYSABEND, and //ASPSNAP DD cards may be directed to
different SYSOUT classes or may be assigned to one unit through the use
of the UNIT=AFF= designation in the JCL.

The //ASPSADMP DD card designates the data set for core-image dumps. If
a direct access device, the data set must be preallocated and
initialized the same as the 0S SYS1.DUMP data set, but must not be
SYS1.DUMP. A non-labeled tape data set may be used also. Refer to 0S8
Service Aids Manual under IMDPRDMP for allocation and initialization
requirements.

if Network Job Processing (NJP) is to be used in the ASP system, the
associated line connecting the terminals has to be defined. In the
example //NJPL1 defines a line for NJP usage. The DD name used will be
referenced by the NJPTERM card in the initialization deck.

101

The IEFRDER, IEFPDSI and IEFDATA DD cards are required and are used by
the ASP R/I DSP. If the IEFPDSI DD card is left out initialization will
be terminated and an error message provided.

7/ ASPDRDS describes a previously created partitioned data set that
contains jobs to be input via the Disk Reader facility.

//ASPIN DD DATA defines the data set which contains the ASP
initialization deck. This data set normally is part of the input
stream; however, it can reside on a system input device, a magnetic tape
volume, or a direct access volume. The data set must be unblocked and
fixed format. After reading the END,IPL card in the imitialization
deck, ASP will leave the tape or the card reader positioned at the
record or card following. ASP will not scan to an end-of-file.

INITIALIZATION CONTROL CARDS

The ASP system configuration and processing options are specified by
means of initialization control cards, which appear in the input stream
when ASP is loaded. Because many of the options will affect the overall
performance of the system, initialization control cards should be
specified by the installation's system programming staff. The selection
and specification of the options should be given considerable thought
because of the impact on system performance. The deck that is submitted
will be validity checked during the initialization process.

The initialization deck can be used for a system COLDSTART or

RESTART . A COLDSTART is signified by placing the COLDSTART
initialization control card as the first card in the initialization
deck. In conjunction with the COLD START card the FORMAT card
defines the ASP queue devices that are to be formatted. Once the ASP
queue devices have been formatted future COLDSTARTs should use the TRACK
control card in place of the FORMAT card unless the buffer size is
changed. If the buffer size is changed a FORMAT card must be used to
reformat the ASP queue. The TRACK card identifies the queue devices
previously formatted. The jobs existing in the queues will be ignored
during a cold start using TRACK cards.

A RESTART can be used on subsequent ASP initializations to reference the
last checkpoint entry made and execute the jobs remaining in the queues.
The TRACK control card is to be used in conjunction with the RESTART
card. The RESTART and -TRACK cards are to replace the COLDSTART and
FORMAT cards for a restart. If the COLDSTART is left out of the deck,
the initialization process will default to a restart.

When restarting the ASP system, the ASP RESTART deck must specify BUFFER
card options (except for AMOUNT and IOBS, which may change) which are
identical to those used during the previous cold start when the queue
was formatted. The same parameters should be used on the TRACK cards as
were used on the FORMAT cards for the COLDSTART of the current ASP
execution. All other ASP control cards may be varied between restarts
to alter the configuration or execution options.

ASP initialization control cards are identified by a keyword starting in
column 1 of the card. When required, continuation cards may be used by
paunching a nonblank character in column 72 of the first card and
continuing the data in column 1 of the next card. A keyword parameter
may not be split between two cards; each keyword and its parameters must
be complete in one card. Except where noted, all parameters must be
spelled out completely. The keywords and parameters may not contain
embedded blanks. If a keyword is used more than once on an
initialization card, the last one encountered will be used unless the
error is severe enough to cause a diagnostic message. There are some
instances, noted in the initialization statement descriptions, when a

102

duplicate keyword is treated as an operand continuation of the previous
matching keyword. The first card of an ASP initialization control card
deck identifies the type of initialization, either COLDSTART or RESTART.
The control card deck terminates with the ENDINISH card. All other
control cards for initialization are placed between these cards. If a
given control card is not applicable (such as the NJPTERM card in an
installation without remote terminal equipment), or if the use of
default options results in a null parameter field, the control card
should be omitted. Comments cards may appear at any point in the ASP
initjalization deck. Comments cards are identified by placing an
asterisk in column 1. Continuations of a comment card are not allowed.

The ASP IPL deck must immediately follow the ASP initialization
control card deck. It controls IPL of the control program on each Main
Processor in the system and may contain the operator IPL dialogue.

The ASP system operation is defined by use of initialization cards, some
cards are required and some have sequence dependencies. The following
tables list the initialization cards that are required and those cards
that are sequence dependent. The final list is an alphabetical list of
all of the cards.

Required Control Cards

BUFFER
CONSOLE
DEVICE
ENDASPIO
ENDINISH
FORMAT | TRACK
STANDARDS
SYSOUT

Sequence Dependent Control Cards

The following required or optional cards must be the first cards in the
deck. The first card must be COLDSTART or RESTART if supplied and the
last must be ENDASPIO. The sequence of cards between these two cards is
not critical. These cards are required to be placed first for
initialization to determine required storage needs. The inclusion of
any initialization control card that is not in this grouping will be
flagged as an error.

[COLDSTART| RESTART} optional

BADTRACK optional
BUFFER

TRACK | FORMAT

OPTIONS opticnal
ASPCORE optional
ENDASPIO

Alphabetical Listing

ACCOUNT
ASPCORE
BADTRACK
BUFFER
CLASS
COLDSTART
CONSOLE
DEADLINE
DEVICE
ENDASPIO

 ENDINISH
FORMAT

103

104

GROUP
IPL
MAINPROC
NIPTERM
OPTIONS
PFK
PRINTER
RESCTLBK
RESIDENT
RESTART
RI
RIDATSTHN
RIPARM
RJPLINE
RJIPTERM
SELECT
SETNAME

- SETPARAM

STANDARDS
SYsSOoUT

"TRACK

ACCOUNT

The ACCOUNT card gives the specifications to be used by the ASP

PURGE DSP in producing job accounting information by PURGE. If the

ACCOUNT card is omitted, no accounting cards will be produced. The
keyword parameters defined are:

ACCOUNT {, CARDS={NQ| YES}]
{,DETAIL={NO|YES}]
{, PUNCH={ (PUN) | device}]
CARDS ={YES|NO}

Master cards:

YES Master accounting cards will be produced for all jobs
processed.

NOC No accounting will be done; ensuing parawmeters are
ignored.

DETAIL ={YES|NO}
Detail cards:

YES A detail card will be produced for each Scheduler Element
executed in conjunction with each job processed.

NO No detail cards will be punched.
PUNCH ={(PUN)}|device}

The output device on which accounting output is to be produced. The
format of PUNCH is identical to that described in the ASP Operator's
Manual for the IN= and OUT= parameters of callable DSPs; that is, it
may be given as a specific device by device-name or device-address,
or generalized by type as (PUN) or (PUN2540P), or restricted to a
group as (PUN, group) or (,group). If a specific device is named,
all accounting output will be punched on the stated device; this
method will cause a delay in purging a job if another function is in
control of that punch as a job is terminating. If the parameter is
generally specified, output will occur on the first appropriate punch
available at the termination of each processed job. ASP account
cards are stacker selected to the center pocket of a 2540 and
therefore do not get intermixed with job output. If a generalized
specification is given, a merge operation for all punches will
probably be required to put the accounting data into the proper
sequence for further processing.

example of an ACCOUNT card that will cause master and detail cards to

An
be produced on punch PU1 is:
ACCOUNT , CARDS=YES ,DETAIL=YES, PUNCH=PU1

The master and detail cards produced may be summarized and printed by
using the ASP Accounting Print (ACCPR) utility program.

The format of the master card is: The format of the detail card is:
Columns . Contents Columns Contents

1-8 Account number 1-8 Account number

9-12 ASP job number 9-12 ASP job number

105

13-20
21-25
26-35

36-40
41-44
45-48

49-50
51-58

59-60

61

62-67
68-73
74-79

80

106

Job name
Date job completed
Programmer's name

Number of lines
printed

Number of cards
punched

Number of cards
read

Job priority
Main Processor name

Number of devices
set up

Deadline switch -
on if Deadline
Schedul ing was used

Job time on . .
from Input, hhmmss

Job time off
from Purge, hhmmss

Elapsed time on
Main Processor

Master/detail and
CALLDSP/ Input . Service
origin indicator

13-20
21-25
26-33

36-40

41-44

45-48

62-67

68-73

T4-79

80

Job name
Date job completed
DSP name

Number of lines
printed

Number - of cards
punched

Number of cards read

DSP time on
DSP time off
Elapsed time of DSP

Master/detail and
CALLDSP/Input
Service origin
indicator

ASPCORE

The

ASPCORE
scheduling work in the ASP region.

card defines free storage operating minimums for

ASPCORE [, MINCORE= { 14K|nnnK}}
[, MARGCORE={20K|nnnK}]
[,ASPOCL={0|0-127}

MINCORE

MARGCORE

ASPOOL

specifies the remaining free
current jobs. At this level
scheduled. JSS will however
schedul ed. :

specifies a marginal amount
level is reached, scheduling
at a time. .

The parameter definitions are:

storage to be reserved for
no new work will be:
allow Dump Core (DC) to be

of free storage. When this
is limited to one function

defines the subpool ASP is to use when obtaining storage.

When the amount of free storage exceeds the MARGCORE value normal

scheduling will resumwe.

6K bytes.

A reasonable span from MINCORE to MARGCORE is

107

BADTRACK

The BADTRACK card inhibits the use of a disk track in an ASP direct
access storage device on the Support Processor. - The cylinder and track
address can be obtained from the 0OS Input/Output Supervisor message, -
IEAQCO0I, which is issued when a permanent input/output error occurs.
Only one track may be specified on each BADTRACK card, and the maximum
number of BADTRACK cards permitted defaults to 100, see BUFFER card.
The keyword parameters are:

BADTRACK, DDNAME=device-name
»CYL=nnnn
+TRE=nann
DDNAME=device—name

The one- to eight-character name of the DD card that defines the
space on the device containing the bad track.

CYL=nnnn

A four-digit field that specifies the cylinder containing the bad
track. This field is in hexadecimal notation.

TRK=nnnn

A four-digit field that specifies the track in error. This field is
also in hexadecimal notation.

The first example below shows a BADTRACK card to inhibit the use of
track S5 in cylinder 102 on an IBM 2314 Disk Storage Drive.

BADTRACK, DDNAME=ASPQ1,CYL=0066, TRK=0005
BADTRACK, DDNAME=ASPQ1,CYL=0066, TRK=000A

BADTRACK,DDNAME=ASPQ2,CYL=000F,TRK=0010

108

BUFFER

The BUFFER card establishes the ASP buffer pool and fixes the
relationship between the buffer pool and the disk track format. All
parameter specifications, except for AMOUNT and IOBs, must be the same
in the COLDSTART deck and its associated RESTART deck. Guidelines for
selecting values are contained in Chapter 6 under ASPIO. The keyword
parameters are: -

BUFFER, BUFSIZE=nnnnn
+RECORDS=nn
» AMOUNT=nnn
» IOBS=nnn
[,DASD={3330]2314}]
[,FD={128|nnn}]l
[,MAXBTS={100|nnn}]
[,TRACE={YES | NG}]
[,HIARCHY={0] 1}1
[,TAT={FULL| HALF}1]

BUFSIZE=nnnnn -

A three- to five-digit field specifying the size in bytes of each:
buffer, as well as the size of each record on the ASP direct access
storage device. The buffer size should never be smaller than 792
bytes (preferably: 1020), and should be coordinated with the RECORDS
parameter. Buffer size must be a multiple of 4 (fullword).

RECORDS=nn

A one- or two-digit field specifying the number of physical records
per track on the ASP direct access storage device.

The following table gives the maximum buffer size for the range of
possible record modes on the 3330:

Records Per Track Buffer Size
14 804
13 876
12 . 960
11 1060
10 118¢C

9 1324
8 1508
7 1744
6 2056
5 2496
4 3156
3 4252
2 6444
1 13028

IBM 2314 Record Sizes

Records Per Track Buffer Size

792

920
1092
1332
1692
2296
3520
7292

= NWwEsNONd®

109

AMOQUNT=nnn

A one- to three-digit field that specifies the number of buffers to
be created for the system.

IOBS=nnn

A one- to three-digit field that specifies the maximum depth of
buffering for the Support Processor.-

DASD={3330]| 2314}
The type of direct access storage device used for the ASP queue.
{Space is defined on DD cards referenced by the FORMAT or TRACK
cards). All such space must be on the device type specified here,
that is; 3330 or 2314.
FD ={128[nnn}
Defines the number of entries to be made available in the File
Directory. A File Directory contains a four-word entry for every
open data set.
MAXBTS={100|nnn}

A one- to three-digit field for limiting the number of BADTRACK
cards.

TRACE={YES|NO}
Generates the ASPIO Trace Table in.a free core storage area.
HIARCHY={0]| 1}
Indicates the number of the hierarchy (0 or 1) from which the buffer
pool is to be allocated. Storage will always be obtained from
hierarchy 0 when the 2361 Core Storage Unit (LCS) is switched
offline.
TAT ~ ={FULL| HALF}
Determines the incremental quantity of queue space allocated to a
job. FULL specifies a full cylinder. HALF specifies half cylinder
increments.

Example:

BUFFER, BUFSIZE=792,RECORDS=8, IOBS=3, DASD=2314, AMOUNT=90, X
HIARCHY=0, TAT=HALF

110

CLASS

The CLASS card defines the characteristics of the ASP job classes.
Up to 255 job classes can be defined. A CLASS card must define each Job
Class that may appear on an 0S job card or on a //*MAIN control card.

If an undefined Job Class is used the job will be canceled. If a CLASS
keyword is not used on the 0S jocb card or //#MAIN card the default class
name on the STANDARDS control card will be used. If a default is not
supplied the class name ASPBATCH will be assigned. This class
definition consists of CLASS card default values. The following
keywords are available:

CLASS ,NAME=job-class-name

[, IORATE={MED|HIGH| LOW}]

[,FAILURE={CANCEL| HOLD| PRINT| RESTART}]

[,JOBSTEP={CHKPNT | NOCHKPNT}]

[,PRTY=nnl

[,JPRTY={ASP|JOB}]

[,GROUP={defaul t| job-class—group-name}]

[,TDEPTH=depthl] .

[,MDEPTH=(main-processor—name,depth, main......)1

[, TLIMIT={class-name,limit,class—name, limit...)]

[,MLIMIT=(main-proc-name,class-name,limit,class—-name,limit,...)]

[,SYSTEM={ANY|LOCAL|REAL|main-name | (main-name,main-name,...)|
/(main-name,main-name,...)1}]

NAME=job-class-name

One- to eight-alphameric characters specifying the name of the job
class. This name corresponds to the CLASS keyword on the JOB card or
//*MAIN control card. The NAME parameter must be the first parameter
on the CLASS card.

The CLASS keyword may be used on the JOB card only if the CLASS name
is A through 0. Otherwise the CLASS keyword must be placed on the
//*MAIN control card.

IORATE={LOW| HIGH| MED}

This parameter describes the I/0O to CPU ratio for the jobs in this
class as being Low, High, or Medium I/0. Main Service attempts to
balance the mixture of jobs executing on a Main Processor based upon
this IORATE . If this parameter is omitted, the relative I/0
usage by jobs in this class will be assumed medium I/C. This
parameter can be overriden on a job basis with the IORATE parameter
on the //*MAIN control card.

FAILURE={CANCEL| HOLD | PRINT | RESTART}

Specifies the job recovery option to be used in case of system
failure. CANCEL cancels the job on Main. HCLD holds the job for
restart on Main. PRINT prints the job and then puts the job in hold
for restart on Main. RESTART restarts the job on Main. This
parameter may be overriden on a job basis with the FAILURE keyword on
the //#MAIN control card. If this parameter is omitted, the

FAILURE option from the STANDARDS initialization control card
will be used.

JOBSTEP={CHKPNT|{ NCCHEKPNT}

Specifies the job step checkpoint option. CHEKPNT causes a checkpoint
to be taken at the end of each job step on Main. This checkpoint
contains the current status of all ASP data sets for the job (that
is, the ASP JDS record for the job). NOCHKPNT stops the checkpoint
facility. This parameter may be overriden on a job basis with the

11

JOBSTEP keyword on the //*MAIN control card. If this parameter is
omitted, the JOBSTEP option from the STANDARDS control card will be
used.

JPRTY={ASP| JOB}

If JOB is specified, the job will be run on Main using the PRTY
parameter from the JOB card. If PRTY is not supplied on the 0s JOB
card the PRTY value from the CLASS or STANDARDS card is used. If
this parameter is omitted or JPRTY=ASP is used, the execution
priority will be assigned by ASP using the DPRTY value from the
SELECT card. Job priority is changed after job selection but before
job execution. Therefore the original priority is used for job
selection and for any post—-execution processing.

PRTY =nn

The ASP job priority to be assigned to each job in this job class,
expressed as a decimal number from ¢ to 14. This parameter may be
overriden on a job basis with the PRTY keyword on the job card. If
this parameter is omitted, the PRTY parameter from the STANDARDS
control card will be used.

GROUP ={default|job-class—group-name}

The name of a Job Class Group to which this Job Class is to be
assigned. This parameter should correspond with the NAME parameter
on a GROUP initialization control card. If this parameter is
omitted, the Job Class will be-assigned to the default group name
defined on the STANDARDS control card.

TDEPTH =depth

The maximum number of jobs of this class that can be run on the total
ASP system at any one time; expressed as a decimal number from 0 to
255. If this parameter is omitted there wilil be no TDEPTH constraint
on this class.

MDEPTH ={(main-processor—-name,depth,main-processor-name,depth,...)

The maximum number of jobs of this class that can be run on a
particular Main Processor at any one time. Each Main Processor name
mast correspond with the NAME keyword on a MAINPROC control card.
Each depth operand is expressed as a decimal number from ¢ to 15. If
this parameter is omitted, there will be no MDEPTH constraints on
this class.

TLIMIT ={class-name,limit,class-name,limit,...)

The maximum number of jobs of other job classes that can run on the
total ASP system and still allow jobs in this job class to be
scheduled. If any class limit is exceeded, a job of this class will
not be scheduled. Each class name must correspond with the NAME
keyword on another CLASS control card. Each limit operand is
expressed as a decimal number from 0 to 255. If the TLIMIT parameter
is omitted, there will be no TLIMIT constraints for this class. For
example, suppose Job Class ABC defined Job Class XYZ as being a
TLIMIT of one job. The CLASS card would be:

CLASS, NAME=ABC, TLIMIT={XYZ, 1)
Under this constraint an ABC class job would be scheduled on an ASP

Main Processor only when one or less class XYZ jobs were running in
the ASP system.

MLIMIT =(main-processor-name,class-name,limit,class-name,limit,...)

The maximum number of jobs of other job classes that can run on a
particular Main Processor and still allow jobs in this job class to
be scheduled. The MLIMIT keyword should be repeated for each Main
Processor's class limitations. If any class limit is exceeded, a job
of this class will not be scheduled on that particular Main
Processor. Each Main Processor name must correspond with the NAME
keyword on a MAINPROC control card. Each class name must correspond
with the NAME keyword on another CLASS control card. Each limit
operand is expressed as a decimal number from 0 to 15. If the MLIMIT
parameter is omitted, there will be no MLIMIT constraints for this
class. For example, suppose Job Class ABC defined classes NOP and
ORS as being MLIMITs of zero jobs on Main Processor SY1 and MLIMITs
of one job on SY2. The CLASS card would be:

CLASS, NAME=ABC ,MLIMIT=(SY1,NOP, 0,QRS,0) ,MLIMIT=(SY2,NOP, 1,0RS, 1)
An ABC class job would be scheduled on SY¥1 only when no NOP and QRS
jobs were running on SY1. An ABC job would be scheduled on SY2 only
when one or less NOP and QRS jobs were running on SY2.

SYSTEM =(listed-above)

The SYSTEM parameter defines the Main Processor name(s) or type
of system to be used for this class.

ANY defaults to any system (real or local) that will satlsfy
the job: requirement.

LOCAL job is to be run on a local Main Processor only. The
LOCAL Main Processor is the main in which ASP is
resident.

REAL job is to run on any real Main Processor that will

satisfy the job requirements.

main—-name or (main-name,main-name,...) defines the only Main
Processor(s) to be considered for this job.

/ {main-name,main-name) defines the Main Processor(s) to be excluded
from consideration for this job.

COLDSTART

This card signifies that the Support Processor is to be started with all

of

its queues empty.- All space assigned to ASP on the direct access

storage device is made available.

COLDSTART [,JOBNO={{1,999)| (start,end)}}

JOBNO =(start,end)

Specifies that numbering of jobs by ASP will occur within a specified
range. When the end of the range is reached, numbering resumes at
the beginning of the range, skipping those numbers that are still

‘assigned to jobs in the system. The range may be from 1 through

9999. leading zeros are not required. 1If all job numbers are
assigned, the next ASP DSP requesting a number will be put into a
wait and a message will be written to the operator stating that no
job numbers are available.

Example: COLDSTART ,JOBNO=(100,9000)

CONSOLE

The CONSCLE card describes an operator console attached to the
support Processor and the message classes to be assigned to the console.
One card is entered for each operator console. Console definition is
independent of printer definition; the same unit may be assigned both
functions.

Care should be taken when assigning a unit to two functions; that is,
console and printer, to avoid intermixed printing.

CONSOLE, DDNAME={ console-name |rjp-line-name}

LTYPE={1052] 1053 1403] 1443[2250]2260}2740]3060|3066]3210[3211]
3215|3277 3284|3286 5450}RJP}

(UNIT=device-address (not req. for TYPE=RJP)
DEST={destination]| (dest1,dest2,...)}
[,MAIN=main-processor—name]l
[,ALTCON=console-ddnamel
[,LEVEL={15|nn}]
[,DEPTH={50|nnn}]
[,TIME={2|nn}]
[,LL=i{device-default|physical-line-lengthl}]

DDNAME={console-name|rjp-line-name}

Console name is the name to be used to define the console. This name
is to be used in operator commands; for example, SWITCH, and in
initialization cards; for example, DEVICE.

The rip-line-name defines an RJP line which contains a remote
workstation with a console and the name is to be identical with that
used in the RJIPLINE initialization card. The line-name is used
only with the parameter TYPE=RJP on the CONSOLE card.

TYPE=
Specifies the type of device to be used as a console.

UNIT=device-address

The device address of the console. This parameter should not be
specified when TYPE=RJP.

DEsT={destination| (destt,dest2...)}

DEST defines the message class(es) to be directed to this
console. There are 96 message classes available. 1If a message class
is not covered by a console, that message class will print on the
master console for the support system or on the first console defined
in the ASP initialization deck if no master console exists.

The valid message classes are:

ALL Messages pertinent to all consoles. This class will be
assigned autcomatically to all consoles unless DEST=NONE is
specified.

ERR Messages pertinent to equipment failure and ASP Failsoft
messages.

LOG Messages defining an active job and function.

MN Messages pertinent to the Main Processor.

MLG If MLOG=YES has been specified in the- STANDARDS control carad,
all input and output messages, except SEC, will be recorded
on the MLOG console in addition to their original source or
destination consolel(s)}.

SEC Security messages. Messages sent to this console will be
written here only.

sup Messages pertinent to the general operation of the Support
Processor. ’

TAP Messages pertinent to ASP background utilities with tape unit
requirements such as Tape-to-Print, Card-to-Tape.

TP Messages pertinent to teleprocessing equipment.

UR Messages pertinent to the operation of the unit record
eguipment.

The terms NONE, OUTPUT, and TOTAL are not specific message classes to
be counted in the 96 available classes.

NONE No messages to be sent to this console.
OUTPUT All message classes except MLG to be sent to this console.

TOTAL All 96 message classes including MLG are to be sent to this
console.

The remaining 86 message classes are combined into three groups;

DGROUP , MGROUP , and SGROUP . 1Individual classes may be
selected or by entering the group name in the DEST= parameter all of the
classes in that group will be destined for this console.

MAI

DGROUL

D1 to D22 Messages pertinent to a user-defined console
configuration.

MGROUP

M1 to M32 May be used to define a destination class unigue to a
Main Processor.

SGROUP

S1 to 832 Setup console. Refer to the MAIN and SUPPORT parameters
on the DEVICE card for an example of usage.

N=main—processor—name

The MAIN parameter defines this consocle as a main input console for
the specified Main Processor. The name must correspond to the name
given on a MAINPROC card. Any console may be designated as a Main
input conscle and be associated with a specified Main Processor.
This console may then communicate with OS commands without the need
for the SEND verb. On such consoles, ASP commands must be preceeded
by an * (asterisk).

ALTCON=consocle-ddname

In the event that a console goes out of ready and buffer depth is
reached, or a console has an unrecoverable error, the console will be
automatically switched to the specified alternate console. If this
parameter is omitted it will default to the 0S primary console, or,

if that console is not available, it will default to the first
available console in the Console Status Table. If the user does not
want this console to automatically switch, the ALTCON ddname must be
the same ddname as this console being defined.

LEVEL={15|nn}

The LEVEL parameter defines the authority level (0-15) for issuing
commands. Each console should be defined with a specific level. It
is the user's responsibility to define the levels and write (if he
chooses) a CONSAUTH module to replace the skeleton module supplied
with the system. The CONSAUTH routine determines if a given
console is authorized to issue a given command.

DEPTH={50| nnn}

The number of messages to be queued to a console. When a console has
its full complement of messages queued (reaches depth), any ASP
function subsequently issuing messages to it must wait until the
required buffers become available. From 1 to 255 may be specified.
If this parameter is omitted, the assumed number of messages is 50.

TIME={2|nn}

A one- or two-digit number specifying the delay, in seconds, between
output messages on a graphic device. This field must not exceed 20
seconds. This parameter affects graphic devices only, for example;
2250, 2260, 3060, 3066, 3277, and 5450. Care must be taken not to
set this value too high, which may cause a large backlog of messages
and cause the system to wait because depth has been exceeded. A

page mode facility may be implemented on the 3277 by entering a
delay time of zero. The Page Mode is particularly effective when the
total number of messages queued for the 3277 exceeds 22 message
lines. When the delay is set to zero, the 3277 will display messages
until the screen is full. The display will then freeze with the
message "DISPLAY HALTED-CLEAR TO RESTART"™ on the bottom line. After
examing the screen the operator must depress the CLEAR key to release
this "page" of display and procede to the next "page®". After a
fifteen-second interval the display will automatically be stepped to
the next "page".

LL={device-default|physical-line-length}

The LL parameter defines the longest line to be printed on this
console. If the actual line to be written is longer than the
specified value the line will be continued to a second line. A line
that is to be continued will be broken at a comma or a blank. The
default values are:

Graphic: 74 for 225073060
80 for 2260/5450/3066 and other graphic consoles
Hard Copy: 120 for all hard copy consoles.

Examples of the use of the CONSOLE cards on a system that has an IBM
3277 Display Station to display all output messages; an IBM 1443 Printer
as the master log console; an IBM 1052 Printer/Keyboard for Main
Processor and Support Processor operation; an IBM 2740 Communications
Terminal for device mounting, tape, unit record, and teleproce581ng, and
a 2740 to monitor all user-defined setup messages.

CONSOLE, DDNAME=CN1,UNIT=041,TYPE=3277, DEST=OUTPUT

CONSOLE, DDNAME=CN2, UNIT=00E, TYPE=1443, DEST=MLG, DEPTH=150
CONSOLE, DDNAME=CN3, UNIT=01F,TYPE=1052, DEST= (MN, SUP, ERR)

117

CONSOLE, DDNAME=CN4 , UNIT=0BA, TYPE=2740, DEST= (TP, TAP, UR)
CONSOLE, DDNAME=CN5 , UNIT=0BB, TYPE=2740, DEST=SGROUP

Note: When using RJP,
one CONSOLE card
must be provided for each line specified on an RJPLINE card.
These CONSOLE cards should be provided as follows:
DDNAME=rjpline-name
as specified on the RJPLINE Initialization control card.
TYPE=RJP
DEST={NONE|D1,...D22}
[DEPTH=nnnl

Examples are:

CONSOLE, DDNAME=TULSA , TYPE=RJP, DEST=NONE
CONSOLE, DDNAME=BOSTONO 2, TYPE=RJP, DEST=NONE

Destination classes may be assigned to RJP consoles (for example,

DEST=D3) giving the operator the ability to broadcast messages to those
consoles.

118

DEADLINE

Deadline Scheduling is used to increase a job's priority to enable it to
complete by a specific time (the deadline time). The DEADLINE card
defines the types of algorithms available for affecting a job's
scheduling. '

DEADLINE,type=(prty,lead(,pinc,int])

type

Is any single character identifier {(A-Z or 0-9) parameter and is
referenced in the //*MAIN card, DEADLINE parameter.

prty

Specifies the initial change in priority. Prty is a priority level
to be set or an incremental value to be added to a job's priority.
If it is an incremental value, it must be preceded by a plus sign
(+).

lead

Specifies the amount of lead time, in hours and minutes, prior to the
job's deadline that the initial priority change (prty) should be
made.

pinc

Specifies the subsequent priority change or subsequent increments to
be added to the priority. If it is an increment it must be preceded
by a plus sign {(+).

int

Specifies the time interval between application of the subsequent
priority change (pinc).

There are no default values for the subsequent values, pinc and int.
Therefore only the initial change (prty and lead) will be made if the
subsequent values are omitted.

The time values for lead and int may be specified in minutes or hours,
that is, 10 minutes, 10M or 2 hours, 2H.

Examples:

DEADLINE, A=(10,1H,+1,30M) specifies deadline type A. Type A will
cause priority 10 to be set one hour prior to a job's deadline and
will increment the priority by 1 every 30 minutes until the job is
complete.

DEADLINE, B=(+4,3H,11,2H) specifies deadline type B. ~ Type B will
cause the job's priority to be incremented by # three hours prior to
the deadline and will set the priority to 11 if the job hasn't
completed two hours later.

DEVICE

The DEVICE card identifies the devices attached to the Support
Processor and/or the Main Processor. One card is entered for each
device (card reader, card punch, printer, disk unit, and tape unit) that
may be assigned to the Support Processor or that is mountable on the
Main Processor and, hence, is assigned to and controlled by the Support
Processor. When devices are shared between the Support Processor and
Main Processor or between Main Processors, this condition is indicated
with a single DEVICE card with multiple entries. For each physical
device, there should be one, and only one, DEVICE card. If a device is
on the Support Processor, only the STYPE, SUPPORT, GTYPE must be
provided. For a Main device, the MTYPE and MAIN parameters must be
provided. If a device is shared between Support and one or more Main
Processors, all five parameters must be provided. The DEVICE card is
also used to define pseudo devices on the Support Processor. The pseudo
devices are used to control TSO support (ACM), Internal Job Processing
(IgM), the ASP Reader/Interpreter (ARI), each Main Processor {SYS), and
Network Job Processor (NJP). A pseudo device is to be defined for each
function that is to be active. These devices can be varied on or
offline as any real device and have entries created in the internal
tables (SUPUNITS and SYSUNITS).

DEVICE,STYPE={1403] 2400 2501]2540|3211|3400|3505}3525|35251]

ACMP{IJMP|LINEjMAIN|{OSRDR | user-specified}

»SUPPORT= (unit-address, name, [console~dest-class|LOG]1 [, (ON|OFF}1]

,GTYPE={ACM|ARI| IJM|{NJP | PUN|PRT|RDR|SYS | TA7 | TA9 |

user-suppl ied-device-type}

[,MSTATUS= ({TA|DA}, {RM|PR|ND},vol-ser)]

«MTYPE=main-device-type-~from SETNAMES card

(MAIN={unit-address, system~-name, {console-class|
MDSLOG-parm] {, {ON|OFF} 1)

[,GNAME={LOCAL{ group—name}]

STYPE

STYPE, in conjunction with the GTYPE parameter, defines the specific
types of devices attached to the Support Processor. The STYPE
parameter contains those devices supported by ASP and indicates that
the user may define a unique type. If the user defines his own STYPE
he is restricted to names of five characters or less and must provide
the support for that device. The STYPE parameter must precede the
SUPPORT parameter. Because of the flexibility of user STYPE's, no
test is made for valid types. '

SUPPORT

The SUPPORT parameter is used in conjunction with the STYPE and GTYPE
to define a Support Processor unit. The unit address, device name,
console destination class, and optional OFF parameters are
positional. Unit address and device name must be specified where
NONE is a valid unit address if needed. If console class is not
specified, the class LOG is assumed. The unit address is the system
addressable address; device-name is user-defined and is restricted to
one to eight characters and cannot be the same as the GNAME or its
default. For IJP and ACDS DEVICE cards (STYPE=IJMP or ACMP,
GTYPE=IJM or ACM), the unit address must be NONE and the device name
must be a Main Processor name prefixed by IJ or AC, respectively.

The console class is the console destination supporting this device,
typically the console physically nearest this device; it may be any
of the 96 possible classes (refer to the CONSOLE card). The optional
OFF parameter, if used, specifies that the device is to be offline to
the ASP system initially.

120

GTYPE

Is a general classification name. This parameter is used to combine
associated machine types, that is, a GTYPE of PRT might be combined

with an STYPE of 1403 or 3211. A user-supplied GTIYPE must be three

characters. Refer to Chapter 6, Support Device Grouping.

MSTATUS

MSTATUS will be used to indicate device type, volume removability,
and an expected volume serial for permanently resident devices,
Device type is either TA or DA indicating tape or direct access
devices. Removability is indicated by RM; PR indicates the volume on
that device is considered permanently resident. A permanently
resident volume indicates that the volume will not be dismounted and
no MOUNT messages will be issued for that volume by SETUP. ND
implies PR and additionally that any request for the volume on the
device will be allowed to access the volume without regard to the
DISP of the reference. The volume serial can be used to indicate the
volume mounted on the device, to inform MDS of its presence, prior to
IPLing the Main Processor to which it is attached. If MSTATUS is
used it must precede the MAIN parameter.

MTYPE

The type of Main Processor device that the DEVICE card is specifying.
This is a one- to eight-character identifier that equates this device
to a SETNAME card MTYPE. The MTYPE parameter must precede the MAIN
parameter or MSTATUS parameter.

MAIN

Used when the dévice is attached to one or more Main Processors. The
MAIN parameter must be used in conjunction with MTYPE to define Main
Processor device. The physical device address and the system name,
as specified in a MAINPROC card, to which the device is attached must
be specified. If the device is shared between two or more Main
Processors, pairs of device addresses and Main Processor names are
used to identify this condition. If a tape is shared between two
channels of the same Main Processor via a Tape Switching Unit, the
tape address that was SYSGENed should be the only one to appear. For
an explanation of the console class and OFF parameter see the SUPPORT
parameter. All SETUP messages for this unit will be routed to the
class specified in this parameter. If a console class is not
specified, the console class supplied on the MDSLOG parameter
(SETPARM card) will be used.

GNAME

A group classification name to be used to combine devices by physical
location. If input is received from a device in this GNAME category,
an attempt will be made by ASP to send the associated output to the
same GNAME location. Refer to group discussion in Chapter 6 of this
manual.) '
Examples:

1. Defining a 1403 for the Support Processor.

DEVICE,STYPE=1403,SUPPORT=(00F,PR1,UR) , GTYPE=PRT

Defining a 3211 prihter would be done the same way except that
STYPE=3211.

2. Defining a card reader and a card punch.

121

122

DEVICE,STYPE=2540,SUPPORT=(00C,RD1,UR) , GTYPE=RDR
DEVICE,STYPE=2540,SUPPORT=(00D,PU1,UR) ,GTYPE=PUN

Defining a Main Processor. A DEVICE card must be supplied for
each Main Processor.

DEVICE,STYPE=MAIN,SUPPORT=(NONE,SY1) ,GTYPE=SYS

Defining two pseudo readers for the ASP R/I. To support a Main
Processor at least one pseudo reader must be defined.

DEVICE,STYPE=0SRDR, SUPPORT= {NONE, OSRD1) , GTYPE=ARI
DEVICE, STYPE=OSRDR, SUPPORT= {NONE, MYRDR1) , GTYPE=ARI

Defining an NJP line.
DEVICE,STYPE=LINE,SUPPORT=(050,HARRY) , GTYPE=NJP
The corresponding DD card in the ASP JCL would be:
//7HARRY DD UNIT=050

Defining the IJP support. At least one device must be specified
for each Main Processor that will communicate with IJP.

DEVICE,STYPE=IJMP, SUPPORT={NONE,IJSY1) , GTYPE=IJM

Defining TSO support. One device must be specified for each Main
Processor that will communicate with the ADCS DSP.

DEVICE,STYPE=ACMP,SUPPORT= (NONE,ACSY 1), GTYPE=ACM

The next DEVICE card descriibes a printer (GTYPE=PRT) as a 1403
(STYPE=1403) with a unit address of 00F. The unique name for
this printer is PR2 and the associated console class is UR. The
group name associated with this printer is MACHROOM.

DEVICE,GTYPE=PRT,STYPE=1H03,SUPPORT=IOOF,PRZ,UR),GNAME=MACHROOM

The next DEVICE card describes a nine-track tape on Support and
two Mains. It is initially offline to Support and SY2. The
console class for support is S7, for SY1 it is S9 and SY2 it is
S6. The double comma (S9,,) indicates the absence of the offline
parameter for SY1. By default the group name (GNAME) is LOCAL.

DEVICE, GTYPE=TA9,STYPE=2400,SUPPORT={180,T90,S7,0FF) , MTYPE=SYSSQ,

MAIN=(180,s5Y1,59,,280,5Y2,56,0FF)

10. To utilize the interpreter feature on the 3525.

DEVICE, STYPE=3525I,SUPPORT= (00D, PU2, UR) ,GTYPE=PUN

ENDASPIO

The ENDASPIO card is used to note the end of the required
initialization cards. This card has no parameters.

ENDASP IO

ENDINISH

ENDINISH must be the last card in the initialization deck. The IPL
deck should follow if supplied.

ENDINISH

FORMAT

The FORMAT card specifies the direct access storage devices for the
ASP queue to be formatted during initialization. This card should be
used only when a new, unformatted volume is being introduced into the
system or when the ASP buffer size is changed on the BUFFER card. After
formatting has been completed, a TRACK card may be substituted for the
FORMAT card. This FORMAT card must be used only during cold start
initialization. Its use during a restart will destroy the queue and
cause the user to do .a cold start. DDNAME provides the one- to eight-
character name of the DD card that defines the space on the device to be
formatted.

FORMAT , DDNAME=ddname
Examples of the FORMAT card are:

FORMAT , DDNAME=ASPQ1
FORMAT , DDNAME=ASPQ?2

123

GROUP

The GROUP card defines the characteristics of an ASP Job Class
Group. A GROUP card must define each Job Class Group used on a CLASS
control card. Up to 255 Job Class Groups can be defined.

GROUP,NAME=job-class—-group—name

» EXRESC=(main-processor—-name
,1dedicated-initiator-count|system—task—-name}
[,dedicated-main-storage-sizel
[,allocation—optionl
[,deallocation-optionl]
[,storage-protect—optionl)

[,PRTY=1{0]|nn}]

NAME=job-class—group-name

One to eight alphameric characters specifying the name of the job
class group. The NAME parameter must be the first parameter on the
GROUP card. A job class is assigned to a job class group by placing
the group name on its CLASS control card.

EXRESC=(main-processor-name
({dedicated-initiator—count |system—task-name}
[,dedicated-main-storage-sizel
[,allocation-optionl
[,unallocation-option]
[,storage-protection-optionl)

This keyword parameter defines the execution resources (that is, 0OS
initiators and Main Storage space) to be assigned to a Job Class Group.
The EXRESC keyword should be repeated for each Main Processor's
execution resources. The keywords are position dependent.

Each Main Processor name must correspond with the NAME keyword on a
MAINPROC control card.

The dedicated jinitiator count defines the number of initiators to be
assigned exclusively to the Job Class Group. When scheduling jobs from
this Group on Main only these dedicated initiators will be used.
Therefore, this count defines the maximum number of jobs of this group
that can run concurrently on a particular Main Processor. Dedicated
initiators that become idle will not be used for scheduling any other
Job Class Group. A maximum of 16 initiators can be assigned to a Job
Class Group. Each initiator will have a six-character identifier. The
first three characters are always ASP. The fourth character is the 0S
job class assigned to the ASP job class group. The fifth and sixth
characters are a two-digit sequence number. The 0S job classes that ASP
will use can be defined with the JOBCLASS parameter on the MAINPROC
control card. Using the default JOBCLASS the initiator IDs will be
ASPAO1, ASPAO2, etc. The dedicated initiator count for the default
group ASPBATCH is the value MINIT less the number of IPL allocated
initiators assigned to other Job Class Groups. (The MINIT parameter is
defined on the SELECT card; the default value is 2.)

The name of an OS system task may be used in place of the dedicated
initiator count. If the task fencing option is used only the task named
by this parameter will be allowed inside the fence. Since a system task
must be started by the operator, the dynamic allocation and unallocation
fencing options are not available.

The dedicated Main Storage size option defines the size of the Main
Storage area to be assigned exclusively to this Job Class Group. This
Main Storage area (also referred to as a Main Storage Fence) is a

124

contiguous block of storage in which one or more jobs of this Group will
execute. Therefore this parameter defines the maximum amount of Main
Storage to be used by this Group on a particular Main Processor. If
region space within this Fence becomes available it will not be used for
scheduling any other Job Class Group. If Main Storage Fencing is not
used, the jobs in this Group will compete for region space on a Group
priority basis with any other unfenced Job Class Groups. The Fence size
is specified as nnnnnK, where nannn is a two- to five-digit decimal
number expressing the Fence size as a multiple of 1024. The fence size
cannot be less than the 0S5 minimum initiator region size (MINPART as
defined at SYSGEN time or at IPL time).

The allocation option determines when the execution resources are to be
allocated to the Job Class Group. There are three options available:
DYNAMIC| IPL| MANUAL. If DYNAMIC is used, the execution resources are
allocated when the first job of this Job Class Group becomes eligible
for scheduling on Main. If IPL is used, the resources are allocated
whenever the Main Processor is IPLed. If subsequent reallocation is
required, it must be done manually. Or if MANUAL is used, the resources
will be allocated whenever the operator enters one of the following ASP
Modify commands (see the Operator's Manual for the format of these
Modify commands) :

1. A Modify command to turn the Group on.

2. A Modify command to alter the number of initiators assigned to
the Group.

3. A Modify command to change to a new Select mode and this new
Select mode causes the Group to be turned on (see the description
of the GROUP keyword on the SELECT control card).

The unallocation option determines when the execution resources are to
be released from the Job Class Group. Two options are available:
DYNAMIC|MANUAL. If DYNAMIC is used, the resources are released after
the last job of the Group terminates on Main. If MANUAL is used, the
execution resources will not be released until the operator disables the
Job Class Group with an ASP MODIFY command. The option for the default
GROUP ASPBATCH is MANUAL. :

The storage protection option determines the type of storage protect key
to assign to the jobs in the Group. This option can be used only when
the Job Class Group is fenced. Two options are available: .
OSKEY|{ONEKEY. If OSKEY is used, each job in the Group that executes
on Main will be assigned a unique storage protection key and therefore
is protected from storage violations from all other jobs on the Main
Processor. If the ONEKEY option is used, all jobs in the Group that
execute on Main will be assigned the same storage protection key. This
option protects these jobs from storage violations by jobs in other job
class groups and protects other job class groups from storage violation
by jobs in this jobk class group. However, -jobs in this job class group
are not protected from storage viclations by jobs in this same job class
group. This option permits more than 15 0S initiators to be active at
the same time on a particular Main Processor.

PRTY={0|nn}

The GROUP priority, expressed as a decimal number from 0 to 15, If
this parameter is omitted, priority level zero will be used. Groups
compete for execution resources (that is, initiators and Main storage
space), on a group priority basis. Jobs in a high pricrity job class
group will be scheduled on Main before jobs in a low priority job
class group. Execution resources are allocated to job class groups
on a group priority basis.

125

For example, to dedicate three initiators and #00K of Main Storage to
Job Class Group ABC on a dynamic basis on Main Processor SY1, the
following Group card would be used:

GROUP, NAME=ABC, EXRESC=(5Y1, 3, 400K)
To dedicate dynamically one initiator and 150K of Main Storage on Main
Processor SY2 and to release the resources under operator control, the
following Group card would be used:

GROUP , NAME=HOT , EXRESC=(SY2,1, 150K, , MANUAL)

126

IPL DECK

The IPL deck controls IPL of the MVT control program on each Main
Processor in the system. It should contain the operator dialogue

required to start up the system, in order to minimize operator action.
The IPL deck is not required for a local or dummy mode Main Processor.

The IPL deck must immediately follow the ENDINISH card. Each IPL set
must begin with:

IPL,NAME=main-processor—namel ,TYPE=MVT]

The parameter NAME= specifies the name of the Main Processor, as defined
in a MAINPROC card.

The operator IPL dialogue may be manual or automatic. In the manual
mode, IPL messages from the Main Processor appear on the console,
prefixed by R=. The operator must respond to these messages, using the
*SEND verb. The input messages then appear on the console, prefixed by
S=. When the IPL dialogue is complete, processing is initiated with the
reply by the ASP operator:

*START ,main~-processor—-name, END IPL

In the automatic mode, the operator dialogue is punched into a series of
cards that follow each IPL card. Both the output and the input messages
must be specified and must be in the order in which they occur. Output
messages that do not hdve corresponding IPL text cards are allowed and
will always be printed. The Main Processor output messages may be
shortened to include just the alphameric prefix (such as R=IEE101A}; the
text will be printed on the console if the MAINPROC card DISPLAY option
specifies IPL or ALL. The operator responses must be prefixed by S= and
mast be written out’ completely.

A PREJOB card may be included in the IPL deck if a PREJOB is
desired. The format is: '

PREJOBI ,SYNC| ,ASYNC] ,START jobnamel,valid start command parameters]

The PREJOB START command will be sent to the Main Processor, and if SYNC
was specified, Main Scheduling will not occur until the PREJOB has
terminated.

Noté: The initjation of 0OS functions, readers, writers, and initiators
is performed by ASP. Commands for initiation of these functions
should not be put in the auto-IPL text.

The last card of the IPL deck is IPL,END. There must be only one
IPL,END card and it must be behind the last set of IPL text and is
required for all Main Processors; Real, Local, or Dummy.

The following cards should be included.

the S=SET DATE
As a result, the WTOR message IEE114A will be logged on the master
console. The operator can then respond with the applicable message by
using the SEND verb. (If the auto feature has been sysgened, AUTO=NONE

should be included in the response.) The MSV06 format message will not
be issued to the operator in this case.

127

IPL Deck Example:

IPL,NAME=SY1,TYPE=MVT
R=IEAMVTA

S=R **,°'U"

R=IEE101A

S=SET DATE

R=IEE103A

S=S MT,REGION=70K

PREJOB, ASYNC,START MPPREJOB,REGION=40K
R=AMTROY4 MT INIT COMP
IPL, NAME=MAIN2

R=IEAMVTA

S=REPLY *#%,'RSVC=01,SQS=4"
S=MN JOBNAMES

S=SET DATE

S=V 180,0FFLINE
IPL,NAME=TSOSYS

IPL,END

128

MAINPROC

A MAINPROC control card is required for each Main Processor in the
ASP system.

MAINPROC, NAME=main-processor—name
+TMAINCTC=device—-address
»ADAPTER=device-address
+CTCCUA={ctc-control-unit-address,...}

[,MDEST={console-dest|M1}]

[,SYSTEM={REAL| LOCAL|DUMMY}]
[,PROC={CATL|device-address}]

[,0=1CATL| device-address}]

[, OFORMAT={ASK| YES|NO}]
[,SELECT={job-selection-mode-name | ASPBATCH}]
[, ID=main~processor—-message-identifier]

[, MSGCLASS={B|msgclass}]

[, JOBCLASS={a| (0s-jobclass,os-jobclass,...-)}]
[,RID={receive-message—id|Ril}]
[,SID={send-message-id|S#1}]
[,SMFID={smf-id|00}]}

NAME=main-processor—-name

One- to eight-alphameric characters specifying the external name of
the Main Processor. This name is used in ASP consocle commands to
communjicate with the Main Processor. A DEVICE control card using
this Main Processor name must appear in the ASP initialization deck.

MAINCTC=device~address

A three-digit field specifying the device address of the Channel-to-
Channel Adapter (CTC) on the Main Processor. If SYSTEM=LOCAL is
specified, this parameter must specify the address of the dummy CTC
that is to be simulated. If SYSTEM=DUMMY (used with POLYASP) is
specified, this parameter is not required.

ADAPTER=device-address

A three-digit field specifying the device address of the CTC on the
Support Processor. If SYSTEM=LOCAL is specified, this address must
be the same as the MAINCTC specification. If SYSTEM=DUMMY is
specified, this parameter is not required.

CTCCUA=(ctc-control-unit-address,ctc-control-unit-address,...)

One to sixteen hexadecimal digits defining the Channel-to-Channel
{CTC) control unit addresses on which CTC devices are SYSGENed on the
Main Processor (that is, the CTC control units defined by the SYSGEN
IOCONTRL macro). This permits identification of I/0 messages for
these devices so that they will not be routed to tape setup consoles.
For example, if four CTC control units, 370, 380, 390, and 3A0 were
SYSGENed on Main the following wouid be used:

CTCCUA=(7,8,9,A)
MDEST={console-dest|M1}
The ASP operator console class (M1-M32) to which Main Processor
messages should be directed for the Main Processor that is being
defined. If this parameter is omitted, messages for this Main

Processor will be logged on the M1 console destination class {see the
CONSOLE initialization card).

129

SYSTEM={REAL| LOCAL| DUMMY}

If REAL is specified, the Main Processor is separate from the Support
Processor. If LOCAL is specified, the Main Processor is to reside in
unoccupied regions of the Support Processor. If DUMMY is specified,
a real Main Processor is simulated by passing jobs through the Main
Service function without actual execution.

PROC={CATL| device-address}

o=1{

If this parameter is omitted or the CATL operand is used, the
SYS1.PROCLIB data set is assumed to be cataloged on the Main
Processor. A three-digit field specifying the address of the
procedure library may also be used. This parameter is not required
if SYSTEM=LOCAL or SYSTEM=DUMMY is specified.

CATL| device-address}

If this parameter is omitted or the CATL operand is used, the
SY¥S1.SYSJOBQE data set is assumed to be cataloged on the Main
Processor. A three-digit field specifying the address of the direct
access device on which the volume that contains the 0S job queue
resides may also be used. This parameter is not required if
SYSTEM=LOCAL or SYSTEM=DUMMY is specified.

QFORMAT={ASK| YES|NO}

If this parameter is omitted or the ASK operand is used, the operator
must reply to the MSV06 ISSUE SYS1.SYSJOBQE FORMAT OPTION message.

If YES is specified, a SET command requesting SY¥YS1.SYSJOBQE
formatting will be sent to Main. If NO is specified, no
SYS1.SYSJOBQE formatting is requested. If either YES or NO is used,
no MSV06 message is issued and therefore no operator assistance is
required.

SELECT={job-selection-mode-name| ASPBATCH}

The initial job selection mode for the Main Processor. This name
must correspond with the NAME parameter on a SELECT contrel card.
If this parameter is omitted a selection mode consisting of SELECT
card default values will be used. This default SELECT mode is named
ASPBATCH.

ID=main-processor-message—id

One to eight alphameric characters to be prefixed to every Main
Processor message logged on the MDEST console. If this parameter is
omitted, all messages received from a Main Processor and logged on
MDEST are prefixed with R=. If DISPLAY=ALL or IPL is in effect, all
messages sent to a Main will be logged on MDEST and prefixed with S=.
The specified message ID will prefix the R= or S=. For example,
ID=SY2 will log a received message as SY2 R=message-text. A message
sent to Main will be logged as SY2 S=message-text.

MSGCLASS={Bfmsgclass}

130

One OS message class is reserved for ASP. This output class is
assigned by ASP to every job scheduled on Main. As each job
terminates on Main the ASPWRITR routine in MAINTASK retrieves the job
scheduler messages for the job from this output class. If this
parameter is omitted, MSGCLASS=B will be used.

JOBCLASS={A| (0S-jobclass,0S~jobclass,..)}

One to fifteen 0OS job classes reserved for ASP. A different 0S job
class is required for each active ASP Job Class Group. If this
parameter is omitted, 0S job class A is used. An 0OS job class should
be reserved for each GROUP initialization card plus one for the
default group, ASPBATCH.

RID={receive-message-id{R#}

One to eight alphaweric characters to be prefixed to every message
received from the Main Processor and logged on the MDEST console.

For example if RID=SY2 is used the messages received will be logged
as SY2 R—message-text. However if a pound sign is the last character
of the RID operand, the operand will immediately precede the equal
(=) sign. For example if RID=2# is used the messages received will
be logged as 2=message-text. If this parameter is omitted and the ID
keyword is not used the messages received will be logged as
R-message-text.

SID={send-message—id|S#}

This parameter is identical to RID except that it applies to the
messages sent to the Main Processor that are logged on MDEST. For
example if SID=2S# is used the messages sent to Main will be logged
as 2S=message-text. If this parameter is omitted and the ID keyword
is not used the messages sent to Main will be logged on MDEST as
S=message-text. Note that the DISPLAY parameter on the SELECT card
controls which messages are logged on MDEST.

SMFID={smf-id| 00}

A two-character CPU ID for SMF. This ID is inserted into the OS SMF
job queue records before a job is scheduled for the Main Processor.

131

NJPTERM

The NIPTERM card identifies the remote NJP ASP Support Processor
terminals to and from which ASP may send and receive data. It
establishes the name for both operator and programmer use. It describes
the terminal block size for use in obtaining transmittal buffers and
defines the name of the line linking the two ASP terminals.

NJPTERM, NAME=terminal-name
»BLKSIZE=nnnn
LINES={ddnamel, {A|B}) (ddname2, {A|B})....

The keyword parameters are:
NAME=terminal-name

One to eight alphameric characters designating the name of a remote
ASP terminal to which this system is connected via a communication
line. This name is to be used on the //*FORMAT NJPIO card when a job
is to be sent to a remote location and by the console operator when
sending jobs to the remote terminal. Note the difference in
terminal-name length with that of RJP.

BLEKSIZE=nnnn
A decimal number specifying the size of the transmission blocks to be
used to transmit the data over the line. This parameter must be
greater than the ASP buffer size by at least 13 bytes and must be
.exactly equal to the BLKSIZE used at the remote location defining the
same line connection.

LINES=(ddname1, {A|B}) (ddname2, {A|B})....
Defines the line connecting the two terminals. This ddname must
appear on a DD card associated with the unit address for the line. A
or B specifies the adapter interface.
Examples of the NJPTERM card are:

NJPTERM,NAME=LAX ,BLKSIZE=2000,LINES=(TRMRDR,A)

NJPTERM,NAME=CHICA,BLKSIZE=1000,LINES={ALINE,A) (BLINE,A)
(CLINE,B)

132

OPTIONS

There are a number of execution options for the ASP system that assist
in the testing of the system. They are implemented by keyword

parameters

and are defined as follows:

OPTIONS{,DUMP={ASP|OS|SA}}

DUMP

ASP

0s

SA

ADDSAVE=nn

[,ADDSAVE=nn)
[, TRACE=nnnl

Specifies the type of dump to be taken in the event ASP
abnormally terminates or program checks.

Specifies a dump of the O0S control blocks and ASP region with
the ASP control blocks formatted and is written to the
ASPABEND data set.

Specifies a dump of the OS nucleus, SQS, 0S control blocks,
and ASP region with the ASP control blocks formatted.
Written to the ASPABEND data set.

Specifies a core-image dump to be written to the ASPSADMP .
data set. The core-image dump can be printed with the
IMDPRDMP OS service aid program with the ASP modification to
format the ASP control blocks.

Specifies the number of additional save areas for use by ASP. This
number will be permanently allocated. A suggested value is one per

FCT.

TRACE=nnn

The TRACE parameter is used to generate a log of the Dispatching and
Calis of ASP functions, where nnn is the number of entries. Refer to

Chapter
feature

Example:

9, Debugging Aids In ASP, for a sample trace table. This
cannot be controlled by an operator. Each entry is 32 bytes.

OPTIONS,DUMP=0S,ADDSAVE=30, TRACE=100

133

PFK

The Program Function Key -(PFK) initialization card defines the
operator command to be entered via the program function keys of a 3277.
A table is created in main storage to contain the defined message. The
size of the table is determined by the length of the longest message
multiplied by the highest key number {K=nn) used. The key number is
used to index into the table to locate the message to be submitted. An
undefined program function key may be used by the operator to cancel a
message being entered. The text can not be continued onto another card.

PFK,K=nn{,E={YES| NO}] ,M=<text>
K=nn

This parameter defines the program function key number. The nn value
may be 1 through 12 for a 3277.

E={YES|NO}
Determines when the message is to be entered. YES specifies that the
message is to be entered upon function key depression. . NO specifies
that the message is to.be displayed with the cursor at the end of the
partial message, enabling the operator to complete the message.
M=<text>

Message text to be associated with this key. This must be the last
parameter on the PFK card..

iExamples:
PFK,K=1,M=<*X RJIP>
PFK,K=2,E=NO,M=<*S RJP,L=>
RPK,K=i ,M=<#*X DC>

PFK,RK=5,E=NO,M=<*S DC,>
PFK,K=6 ,M=<*¥C DC>

PREJOB

The PREJOB card is described under the IPL deck, of which it is an
optional part. It is not an initialization card.

134

PRINTER

The PRINTER card describes a printer attached to the Support
Processor. One card is entered for each printer. The parameters
describe the cold start or restart status of the printer and its setup
characteristics. This information is used by Print Service to perform
printer resource scheduling. If no PRINTER card is supplied for a given
printer, default values will be taken from the STANDARDS carg.

PRINTER,NAME=name from DEVICE card
[,TYPE={1403]3211|RJP}]
[,UCS={¥ES|NO}]
[,FORMS={{YES|NO}, {STANDARD|starting-forms—namel}l)]l
[,CARRIAGE={STANDARD}| starting-carriage—-tape-namel]
{,TRAIN=({YES|NO}, {STANDARD|AN| HN|PN|QN|QNC|RN|SN| TN|XN| YN|
PCSAN| PCSHN})]
[,HEADER={YES |NO}]
[,BURST={YES|NO}]
[, BUFDED={RO|YES| (YES, {3]1})1]

NAME=name

The name of the printer being described. This name must be the same
as that in the DEVICE card for the printer, except for TYPE=RJP. A
DEVICE is not required for RJP and this name may be any name.

TYPE={1403[3211|RJP}

Defines the printer type. RJP indicates the printer is on a remote
RJP workstation.

UCS={YES |NO}

Specifies whether the printer is equipped with an IBM 2821 Control
Unit with a Universal Character Set buffer. For remote RJP printers,
this parameter should be specified as UCS=NO.

FORMsS=({YES|NO}, {STANDARD| starting-forms-name})

Specifies whether the forms on this printer may be removed and
different forms mounted during execution; also, gives the name of the
forms that are on the printer when the system is initialized. The
forms name may be from one to eight characters in length. Standard
forms are those defined in the ASP initialization STANDARDS card. If
the combination of DEST=printer in the //*FORMAT card and DLOCATE=YES
in the ASP initialization STANDARDS card causes the printer to be
assigned, FORMS=YES is forced for the data set. If the FORMS
parameter is specified the YES|NO must be specified.

CARRIAGE={STANDARD|starting-carriage-tape-name}

Specifies the name of the carriage tape that is on the printer when
the system is initialized. The name may be from one to eight
characters in length. The standard carriage tape is the one defined
in the STANDARDS card. If FORMS=NO is specified, it is assumed that
the carriage tape also may not be changed during execution. For 3211
type printers a module must be included in the ASP library for each
carriage tape name. The FCB name is FCB2 plus the first four
characters of the carriage tape name.

TRAIN=({YES|NO}, {STANDARD|AN|HN|PN|QN|ONC|RN}SN|TN}|XN] ¥N|PCSAN| PCSHN})
Specifies whether the train on this printer may be removed and a

different train mounted during execution. Also gives the name of the
train that is on the printer when the system is initialized. The

135

standard train is the one defined in the STANDARDS card.
TRAIN=STANDARD may not be used in conjunction with the STANDARDS card
specification TRAIN=ANY. If the combination of DEST=printer in the
//*FORMAT card and DLOCATE=YES in the ASP initialization STANDARDS
card causes this printer to be assigned, TRAIN=YES is forced for the
data set. TRAIN modules for 3211 printers must be named the same as
their 1403 equivalents with the suffix 11; for example, PN for a 1403
and PN11 for a 3211. These should be specified in the TRAIN
parameter as PN. If the TRAIN parameter is specified the YES|{NO must
be specified. '

HEADER={YES | NO}

Specifies whether block header pages should be printer for each data
set on this printer. If HEADER=NO is specified, no header pages will

be printed for the job or its data sets.
BURST={YES|NO}

Specifies whether burst pages should be printed after each job. If
BURST=NO is specified, no burst pages of any kind will be printed on
this printer.

BUFDED={NO| YES | (YES, {3]1})}

BUFDED specifies that dedicated buffers are to be used by Print
Service. By dedicating buffers, printer output can be optimized.
YES indicates that three buffers are to be dedicated, (YES,1)
indicates one dedicated buffer..

The PRINTER card fills in the Printer Resource Table {(PRT). For each
DEVICE card with STYPE=1403 or 3211 an entry is made in the PRT and is
completed with the information from the STANDARDS card. The PRINTER
card will overlay the information from the STANDARDS card.

136

RESCTLBK

The RESCTLBK card is an optional ASP initialization control card which
allows the user to preallocate main storage for the high usage ASP
Function Control Table (FCT) and Resident Jcb Queue (RESQUEUE) tables.
This can reduce GETMAIN overhead and its associated core fragmentation
problems. This control card is not optional if the installation intends
to utilize the ASP device-to-device or group-to-group reassignment
capabilities as described in the ASP Operator's Manual (MODIFY -
ASSIGN). The format of the RESCTLBK card is:

RESCTLBKI[,ASG=nnnl
[, FCT=nnnl
{,R0=nnnl
[,VUT=nnn]l
ASG=nnn

This indicates the number of assignment table entries. nnn is a
decimal number from 1 to 999. nnn represents the maximum number of
device-to-device or group-to-group assignments that will be allowed.
If it is not specified, none will be allowed. Each entry is the 16
bytes and ten is a recommended number of entries.

FCT=nnn

This indicates the number of Fanction Control Table (FCT) entries to
preallocate. nnn is a decimal number from 1 to 999. Each FCT is
constructed so as to. inciude: a GETUNIT list large enough to include
two device entries, a save area as used by the ASP ASAVE routines.
The ASP Transfer Vector Table (TVT) has pointers to the beginning
(PAFCTTOP) and end (PAFCTBTM) of the preallocated FCTs which are not
in use.

RO=nnn
This indicates the number of Resident Queue (RESQUEUE) entries to
preallocate. nnn is a decimal number from 1 to 999. As with the
FCT, the ASP TVT has pointers to the preallocated RESQUEUE entries
not in use {PARQTOP, PARQBTM).

VUT=nnn

Indicates the number of resident volume unavailable table entries to
be reserved. nnn represents a decimal number from 1 to 999.

137

RESIDENT

The RESIDENT card instructs the ASP initialization program to make
an ASP system module permanently resident. Each parameter specifies the
one- to eight-character name of Each parameter specifies the one- to
eight-character name of the designated modules. Multiple RESIDENT cards
may be used to load additional data control sections for reentrant
programs such as Input Service or Print Service. If the number of
resident copies is insufficient at any given point in processing,
additional copies will be loaded as required via ALOAD, and subsequently
deleted via ADELETE. RESIDENT cards must never be submitted for members
of ASPNUC (which is permanently resident).

RESIDENT,MODULE={name| (name,name,...)}
Examples:

RESIDENT, MCDULE=JSS
RESIDENT, MODULE=(PRTDATA, PRTDATA, PN) , MODULE=PCHDATA

If JSs is made resident appropriate flags are set so no further ALOAD or
ADELETE- processing for the JSS module will occur.

Note: If OS R/I modules are to be included in the ASP partition via ASP
"RESIDENT" cards, prlace the "RESIDENT" cards for alias modules
‘before the Main module resident cards. This should. prevent
multiple copies of the same module from being loaded.

Recommended modules to be made resident:

MSVDATA (Multiple copies)
RDDATA (Multiple copies)
PRTDATA (Multiple copies)
MSVINIT

JSS

MSVTERM.

MDSALLOC

MDS BRKDN

PN (or Train used most heavily)

Further information may be obtained in the section: "Determining What
Modules to be made Resident"™ in Chapter 6.

138

RESTART
The format of the - RESTART card is:
RESTART [,ANALYZE=YES] [,JOBNC=(1,999)] (start,end)]

This card signifies that the Support Processor is to resume execution of
the jobs, if any, in its job queues. The internal numbering of jobs
resumes where it ceased when the system was stopped, and all space on
the ASP direct access storage device that was allocated to existing jobs
remains aliocated throughout the remainder of the job processing.

If ASP system processing was terminated abnormally due to equipment or
system failure, it is possible that a job that was being executed on the
Main Processor may not have terminated correctly and will not be
processed correctly when restarted. In this case, the job must be
returned to the programmer for corrective action. Whenever ASP is
terminated abnormally, the event should be noted and ANALYZE=YES
specified on the RESTART card for the next system restart.

The ANALYZE parameter specifies that an analysis of the ASP job queue
should be made during the restart processing, deleting any job or jobs
that would result in an inability to restart the system. The operator
is informed of the action taken, and snaps are taken to assist the
system programmer. Using restart without analysis, if normal restart
fails, the machine can then be restarted with analysis. The snaps are
taken to the data set or unit designated by the //ASPABEND DD card. The
JOBNO parameter should be coordinated with the COLDSTART JOBNC
parameter.

139

RI

The RI card is used to initialize the 0S Reader/Interpreter in ASP.
If it is not used, the BLDL function will be null and the PARM options
will default.

RI,BLDL={proc1l,proc2,...),
{,TAFETCH={dest|S1}1
{,DAFETCH={dest|S51}]

BLDL=(procl,proc2,...)

The BLDL keyword identifies a list of procedure names that are
frequently used at an installation. A directory entry will be
maintained in Main storage for each name in the list that is found in
SYS1.PROCLIB on the Support Processor. Directory I/0 search time is
eliminated for a procedure name that appears both in an EXEC
statement and the resident BLDL table.

TAFETCH={dest|S51}
The TAFETCH keyword is used to direct tape volume fetch messages to a
console class (S1-532). The message will be displayed on the
console(s) with a destination class that matches the dest operand
specified in this keyword [see DEST in the CONSOLE statement for a
description of destination classesl.

DAFETCH={dest |S1}

The DAFETCH keyword is used for the same purpose as TAFETCH, except
it is oriented to direct access volume fetch messages.

Example:

RI,BLDL~(ASMFC,ASMFCL,ASMFCLG) , TAFETCH=52, DAFETCH=S3

140

RIDATSTN

The RIDATSTN statement is used to specify a list of data set names that
are to be maintained by the ASP Reader/Interpreter in main storage.
Setup will be bypassed for all dsnames appearing in the list when they
appear as catalog references on a DD statement. If the statement is not
used, the function is null.

When the name of a data set appears in a 7job as a system catalog
reference {(that is, no UNIT and VOLUME parameters are present on a DD
statement), the list of data set names built from the RIDATSTN statement
is searched for a matching name. If a match is found, setup for that
data set name is bypassed. If a dsname is not found in the list, setup
requirements are determined by issuing a LOCATE command to extract unit
and volume information from the system catalog of the Main Processor
specified in a //#MAIN statement or from the first Main Processor
defined by a MAINPRCC statement at Initialization time. The data set
names cannot be continued to a second card, an additional RIDATSTN card
should be supplied.

RIDATSTN,data-set1,data—set2,...
Example:
RIDATSTN,S¥S1.PROCLIB,SYS1. LINKLIB,SYS 1. MACLIB,SYS 1.SVCLIB

RIDATSTN,SYS1.ASPLIB

141

RIPARM

The RIPARM statement is used to pass a set of options to the Operating

System Reader/Interpreter when it is being initialized. If it is not

used, the option list will default. '
RIPARM,PARM=(option-list)

PARM={0xx99905001024905231S¥SDA E000114)
bpptttoocommmiiicccrlssssssssaaaaefh

The PARM keyword specifies a set of options used by the 0S
Reader/Interpreter. The list must consist of 35 characters and is
explained in 0S/360 MVT Guide GC28-6720 under "READER". The list shows
the defaults used if you do not include an RIPARM statement during
initialization. Positions in the list without an underline are always
sent to the Reader/Interpreter as shown regardless of what appears on
the RIPARM statement. Positions marked "xx" signify it is of no
consequence in the ASP environment.

Example:

RIPARM, PARM=(00099905001C24905230SYSDA EOC0011A)

142

RIPLINE

The RIJPLINE card identifies to the ASP Support Processor the
characteristics of a line to be used for RJP transmissions. Optiocnally,
there are provisions for pre-establishing an RJP terminal to this 1line.

RJIPLINE, N=ddname

F=DIAL

F=NTRS

O=AUTO

sA=line-adapter-address
(,I={A| B}]

[,P=password]l
[,5=1{2000}{1ine speed}]
[,F=DIAL]

{,F=NTRS]

[,G=Line-group-name]
[,T=terminal-namel} .

[,0=AUTO]

Line ddname, up to eight alphameric characters. The name may not
be the same as the terminal name, RJPTERM card.

Line adapter address, three alphanumeric characters.
Line interface address, one alpha character with default of A.

Line password, up to eight alpha characters. The default is
eight blanks. (No password protection).

Line baud rating, up to six numeric characters. The default is
2000 baud. :

Line feature,.when specified indicates a switched line.
Otherwise, a dedicated or leased line environment will be
assumed.

No transparency feature installed on terminals on this line. If
omitted, transparency feature is assumed.

The line-group-name, up to eight alphabetic characters. The
default is eight blanks (no group name).

Preassignment of the given terminal name (5 characters) which is
associated with a line. This parameter is restricted to non-
programmable terminals, for example, 2780, 2770 or 3780. When
using T= no /*SIGNON card should be submitted.

Line option, when specified, indicates the RJP line will be
started automatically (no operator START command is required).

The use of multiple F parameters is permissible, for example
F=DIAL, F=NTRS.

RIPLINE examples:

Illustration of the RJPLINE card:

1.

2.

RJIPLINE,N=LINE0O1,A=050

RJPLINE,N=001,A=050,I=B,P=SECRET,S=4800,F=DIAL, T="TERM5 ,T=TERMS,

143

RJPTERM

The RJIJPTERM card defines to the ASP Support Processor a remote RJP
terminal. Without this definition a terminal signing on under the ASP
RJP support will be canceled immediately. This card provides a
description of each terminal device along with the operating
characteristics of the terminal. A groupname facility is available on a
terminal basis.

RIPTERM,N=terminal-ddname
,T=11130]2770]|2780{2922|3780|M202 |M205 |S360|SYS3}
[,RD=1{0|n}]
[,PU={0|n}]
[,PR={0|n}]
[,B={400|nnnn}]
[,C={0jnn}]
[,PRW={132|nnnn}]
[,PUW={80|nnnn}]
[,F=HTABI
[, F=NTRS]
(,0=BFIX]
[¢G={terminal-ddname| group name}]
[,F=XBUF]
[,0=AUTRI]

RIPTERM, keyword-parameters

N= Terminal ddname, must be five alphameric characters. The
name may not be the same as the line name, RJPLINE card.

T= Terminal describtioa type ‘as follows:
2770 - 2770 hardware terminal
2780 - 2780 hardware terminal
2922 - 2922 programmable terminal
3780 - 3780 hardware terminal
1130 - 1130 CPU terminal
5YS3 - System 3, Model 10 CPU terminal
5360 - All System/360 CPU terminals, Model 22 and
above.
M202 - Model 20, Submodelrz CPU terminal
M205 - Model 20, Submodel 5 CPU terminal
RD= Number of remote reader devices, one numeric character

with an upper limit of seven.

PU= Number of remote punch devices, one numeric character
with an upper limit of seven.

PR= Number of remote printer devices, one numeric character
with an upper limit of seven.

B= Terminal buffer size, up to four numeric characters, and
must correspond with the workstation package.

C={0|nn}

144

Remote terminal console support authority level. The value for
nn may be 0 to 15. RJP will convert the value supplied to one of
the following four levels:

Cc = 15 converts to level 15

C = 14-10 converts to level 10

C = 9-5 converts to level 5

C = 4-0 converts to level 0

Levels:

0 - no remote terminal console support

5 - INQUIRY (*I) and MESSAGE (*Z), CANCEL (*C),
START (*S), or RESTART (*R) facility.

10 - INQUIRY (*I), MESSAGE (*Z), CALL (*X), START
(*sS), CANCEL (*C), VARY (#V), MODIFY (#*F), or
RESTART (*R) facility for jobs submitted by
this terminal or devices attached to this
terminal.

15 ~ All

PRW= Maximum print record size, up to terminal buffer size.

The default is 132-byte print record.

PUW= Maximum punch record size, up to terminal buffer size.
The default is 80-byte punch record.

F=HTAB Terminal printer feature, when specified indicates a
278072770 with the horizontal format control feature.

F=NTRS Terminal feature, when specified indicates the
transparency feature is not included. Otherwise, the
transparency feature is assumed.

O=BFIX Terminal option, when specified indicates the output
buffers used by RJP will be dedicated and will not be
swapped.

G= ‘'Groupname, eight characters or less. The default will be
the terminal ddname.

F=XBUF When specified indicates the extended buffer feature
(2770 and 2780) is available on the RJP hardware
terminal.

O=AUTR Terminal option, when specified will provide the
automatic call ASP reader function in the local system.

Note: The use of multiple F or O parameters on the same card is
permissible, for example F=XBUF,F=NTRS.
Examples:
1. RJPTERM,N=LOSAN,T=SYS3,RD=1,PU=1,PR=1,B=800
2. RJPTERM,N=NEWYK,T=S360,RD=2,PU=2,PR=4,B=600,C=2, X
PRW=144,0=BFIX,G=SECRET

145

SELECT

A SELECT card defines the scheduling controls for a particular job
selection mode. A job selection mode is assigned to an ASP Main
Processor by the SELECT parameter on the MAINPROC card. If this
parameter is omitted, a selection mode consisting of SELECT card default
values will be used. The selection modes may also be changed
dynamically with the ASP MODIFY verb. A SELECT card must define each
SELECT mode used on a MAINPROC control card or referenced in an ASP
MODIFY command.

SELECT, NAME=job-sel ection—mode—name

[,MINIT={2|nn}]

[,MBAR={15|nn| PRTY}]

[,SBAR={15|nn} PRTY}]

[,MISPAN={ALL{nnn}l

[,SISPAN={ALL|ann}]

[,MPSPAN={ALL|{nn}]

{,SPSPAN={ALL{nn}]

[,MAGE={NQ|YES}]

[,SAGE={NO| YES}]

[,MAGER={1]|nnn}]

{,SAGER={1|nnn}l

[,MAGEL={14}{nn}]

[,SAGEL={14|nn}]

{,DISPLAY={NONE|ALL| IPL|SIZE|MLOG}]

[,DPRTY={2]|nn}]

[,SDEPTH={5|nnn}]

f,INCR={1|nn}]

{,INCL={14|nn}]

{,JOBMIX=(n1,n2,n3....,n45)1

[,CHOICE=({BJOB| ,BMIX| ;BFIT|,FMIX|,FJOB|,FFIT})]

[,CLASS={ (job-class-name, job-class—name,...) |
/(job-class—name,...)}]

[, GROUP={(job-class—group-name,initiator-count,...) |
/(job-class~group—-name, job-class—group—name,...)}1

NAME=job-selection-mode-name.

One to eight alphameric characters specifying the name of the job
selection mode. The NAME parameter must be the first parameter on
the SELECT card.

This name can be referenced using the SELECT keyword on either the
MAINPROC control card or the ASP MODIFY command.

MINIT={2{nn}

The maximum number of OS initjiators to be started on the Main
Processor(s) using this job selection mode; expressed as a one- or
two-digit decimal number. The total numker of active initiators as
defined by the EXRESC parameter in the group cards will not be
allowed to exceed the MINIT value. If this value is exceeded the
excessive initiators will not be started and an unable to allocate
message will be issued.

MBAR={ 15| nn| PRTY}

A job priority level below which job selection will not be attempted,
expressed as a decimal number between 0 and 15. Instead of a
priority level, PRTY may be specified to cause every priority level
to be treated as a barrier. In the PRTY mode, a scan for. jobs in the
next lower priority level will not occur until all jobs of the
current priority level have been scheduled. 1If the parameter is
omitted, priority level 15 is assumed. For example, if barrier was

146

set to 10, priority levels 10-15 would always be eligible for
scheduling and priority levels 0-9 would not be eligible for
scheduling until all jobs in priority levels 10-15 had been
scheduled.

SBAR={15|nn| PRTY}

A job priority used to reserve devices for jobs by MDS. Jobs above
this priority will be selected first for setup and have their devices
reserved. If all of the job's devices are available, it is scheduled
for the Main selection process. In the event all of the required
devices are not available for a job, it will retain the reserved
devices until the next pass by MDS. After all jobs above the barrier
have been examined, MDS will setup jobs below the barrier that do not
need any of the reserved devices. PRTY may be specified to cause
every priority to be treated as a barrier or a decimal number from 0
to 15 may be specified The default is priority 15.

MISPAN={ALL|nnn} and SJISPAN={ALL{nnn}

The number of jobs in the gueue to be examined in selecting a job to
be scheduled for MAIN or SETUP, expressed as a one- to three-digit
decimal number. If this parameter is omitted or the operand ALL is
used, all jobs in the queue, if necessary, will be examined. The
default value for ALL is 32,767.

MPSPAN={ALL|nn} and SPSPAN={ALL|nn}

The number of priority levels to be examined in the selecting of a
job to be scheduled for MAIN or SETUP, expressed as a decimal number
between 1 and 16. 1If this parameter is omitted or the ALL operand is
used, all jobs in the queue, if necessary, will be examined.

MAGE={NO|YES} and SAGE={NO|YES}

If YES is specified, a job bypassed during MAIN or SETUP job
selection that is at the top of its priority gqueue will be put at the
bottom of the next higher priority queue. If this parameter is
omitted or the NO operand is used, no job aging will occur.

MAGER={1] nnn} and SAGER={1}nnn}

An aging rate, expressed as a decimal number between 1 and 255,
specifies the number of times a job must be eligible for aging before
its job priority is actually incremented. For example, MAGER=10
means that a job must be passed over during Main job selection and be
at the top of its priority queue ten times before that job is put at
the bottom of the next higher priority queue. If this parameter is
omitted or the value one is used, a job wilil be aged each time it
becomes eligible for aging.

MAGEL={14{nn} and SAGEL={14|nn}

An aging priority limit past which a job cannot be aged; expressed as
a decimal number between 0 and 15. For example, MAGEIL~=10 means that
a job will not be aged if its priority is 10 or greater. If this
parameter is omitted or the wvalue 14 is used, jobs will not be aged
past priority level 14.

DISPLAY={ALL| IPL|MLOG| NONE|SIZE}
Specifies the type of Main Processor messages to be displayed on the

MDEST and MLOG operator console. If ALL is specified, every message
received from the Main Processor or sent to the Main Processor will

147

be logged on the MDEST console. If IPL is specified, every message
sent or received from Main will be logged when the Main Processor is
being IPLed. If MLOG is specified, every message received from the
Main Processor or sent to the Main Processor will be logged on the
MLOG console. The other DISPLAY options control the message logged
on MDEST. If SIZE jis specified, the MTSZ001 response from the SIZE
command will be logged on MDEST. If the DISPLAY parameter is omitted
or NONE is specified, none of the messages sent to Main will be
logged on MDEST. In addition, the following messages received from
Main will not be logged.

AMTKXXX MAINTASK messages IEF2811 Device offline
ASPXXXX 'ASP" prefixed messages IEF2841I Dataset not deleted
MTFNXXX Fence CMD messages IEF285I bDataset status
ATTRXXX QASIGN responses IEF301I WTR closed

IEEASPO Size response IEF3841 Dataset not deleted
IEE301I Job canceled IEF4291I Initiator waiting
IEE600I MCS accepted reply IEF8681 WIR waiting

IEF161I RDR closed THCOO02I Fortran STOP
IEF2371 Device allocated MTSZ002 Job step change

The following will not be logged if they are for a CTC device.

IEF234X REMOVE/DISMOUNT MSG
IEF233X MOUNT MSG

IEF280X VOLUME KEEP MSGS
IECXXXX DATA MNGMT MSGS

DPRTY={2| nn}

The priority level assigned to jobs for execution on Main when
JPRTY=ASP is used on the CLASS or //*MAIN control card for the job,
expressed as a decimal number from 0 to 13. If this parameter is
omitted or DPRTY=2 is used, priority level 2 will be assigned to all
jobs scheduled on a Main Processor. The dispatching sequence of jobs
executing on a Main Processor at this priority level will be
dynamically adjusted based upon their ratio of CPU to I/0 usage.

SDEPTH={5| nnn}

The maximum number of jobs that may be set up at one time on this
Main Processor, expressed as a decimal number from 0 to 255. This
parameter limits pre-execution setup so that it will not get too far
ahead of the Main Processor. If this parameter is omitted or the
value 5 is used, no more than 5 jobs will be setup at one time.

INCR={1] nn}

A decimal number from 0 to 15 that is automatically added to the
priority of the job which has been set up. If a job has a priority
of 5 when it is set up, and INCR=4 is specified, the job's priority
will be elevated to 9 after the devices have been allocated and set
up. This parameter expedites the processing of jobs once devices
have been assigned to them. If this parameter is omitted or the
value 1 is used, a job's priority will be incremented by 1 after set

up.

INCL={14|nn}

148

A setup priority increment limit past which a job's priority cannot
be incremented by setup, expressed as a decimal number from 0 to 15.
If this parameter is omitted or the value 14 is used, jobs.will not
be incremented past priority level 14 by setup.

JOBMIX=(iorate-mix-parameters)

One to 45 decimal numbers between 1 and 15 specifying the optimal
TORATE job mix for 1 to 15 active initiators. These parameters will
update the distributed job mix table which consists of a 3 by 15
matrix. Each matrix column represents the job mix for a particular
number of active initiators. Each row expresses the three job counts
for low IORATE, high IORATE, and medium IORATE. The JOBMIX
parameters enter the table columnwise. That is, the first three
numbers are the optimal low, high, and medium IORATE job counts when
one initiator is active, the next three numbers are the job mixes
when two initiators are active, etc. If this parameter is omitted,
the following jobmix values are used:

ACTIVE INITIATORS 1 2 3 4 5 6 7 8
Low 1I/0 Jobs 1 1 1 1 1 1 1 2
High I/0 Jobs 1 1 1 2 3 3 4 4
Medium I/0 Jobs 1 1 1 1 1 2 2 2
ACTIVE INITIATORS 9 10 11 12 13 14 15
Low I/0 Jobs 2 2 2 2 2 3 3
High I/0 Jobs 5 5 6 7 7 7 8
Medium I/O Jobs 2 3 3 3 4 4 4

When the number of JOBMIX operands required to change an Initiator's
jobmix values cannot be contaimned on a single card, the values may be
resumed on a continuation card in another JOBMIX keyword.

Example: To change the JOBMIX for the high I/O jobs for three
initiators: :

JOBMIX=(1,1,1,1,1,1,1,2) or JOBMIX=(,,,sss¢2)
N S e~ .

INIT1 hud INIT (changed value)

Example: To change the JOBMIX for initiators 3 and 4 when no more
space exists on the first card:

JOBMIX=(2,4,2) ...,JOBMIX=(,,,s50s¢2,2,2),C
\'v< \‘\',-_J
INITYH INIT3 COL 72
CHOICE={ (job-selection-choices) | (BJOB,BFIT)}

One to three job selection choices to control the order in which jobs
are selected for execution on Main. During a scheduling pass each of
the specified scheduling choices are tried until a job is selected or
the scheduling choices are exhausted. Six scheduling choices are
available; however, only the last three listed below may be followed
by alternate choices. A job is defined as meeting the IORATE
requirements when the number of active jobs of this job's IORATE is
less than the job count in the JOBMIX table for this IORATE and
current initiator depth. To determine the Best Mix IORATE, the
IORATEs are examined in the following order: Low, High, and Medium
IORATE. The first IORATE that can be scheduled based on the JOBMIX
table is defined as being the Best Mix IORATE.

. FJOB - The first job in the queue will be scheduled if it fits on
Main. Otherwise, no job will be scheduled.

® FFIT - The first job in the queue that fits ‘on Main will be

scheduled. If none of the jobs fit on Main, no job will be
scheduled.

149

. BFIT - The largest job in the queue that fits on Main will be
scheduled. If none of the jobs fit on Main, no job will be
scheduled.

. FMIX - The first job in the queue that fits on Main and also
meets any of the current IORATE requirements will be scheduled.
If none of the jobs in the gueue meet this criteria the next
- scheduling choice, if supplied, will be tried.

. BMIX - The first job in the gueue that fits on Main and has a
Best Mix IORATE will be scheduled. If none of the jobs in the
queue meet this criteria, the next scheduling choice, if
supplied, will be tried.

. BJOB - The largest job in the queue that fits on Main and has a
Best Mix IORATE will be scheduled. If none of the jobs in the
queue meet this criteria, the next scheduling choice, if ’
supplied, will be tried.

When determining the largest job in the queue, only the hierarchy
0 region size is examined. Therefore, jobs that execute entirely
in hierarchy 1 (ICS) will be treated as though they have a zero
region requirement.

If the CHOICE parameter is omitted, CHOICE=(BJOB,BFIT) will be used.

CLASS={{job-class—name,job-class—name, ...) | /{job-class—-name,
job-class—-name,...)} :

The Job Classes that can be schediled under this SELECT mode. Or, if
all the Class names are preceded by a /, the Job Classes that cannot be
scheduled under this SELECT mode.

Example: If only Job Classes A and B can be scheduled under SELECT
mode SHIFT2, use:

SELECT,NAME=SHIFT2,CLASS=(A,B)

Example: If all Job Classes except Class A and B can be scheduled
under SELECT mode SHIFT2, use:

SELECT, NAME=SHIFT2,CLASS=/(A,B)

GROUP={ (job-class-group-name,initiator-count,...)}|
/ (job-class-group-name, job-class-group-name,...)}

The Job Class Groups that can be scheduled under this SELECT mode and
the number of initiators to be assigned to each of these groups. Or if
all the Group names are preceded by a / the Job Class Groups that cannot
be scheduled under this SELECT mode.

Example: If only Job Class Group G1 using 3 initiators can be
scheduled under SELECT mode SHIFT2, use:

SELECT,NAME=SHIFT2,MINIT?3,GROUP=(G1,3)
Example: If all Job Class Groups except Group G1 can be scheduled and
all Job’ Classes except Class A and B can be scheduled under
SELECT mode SHIFT2, use:
SELECT,NAME=SHIFT2,GROUP=/G1,CLASS=/(A,B)
The CLASS and GROUP keywords may be repeated on a SELECT card “if the

Class or Group names cannot fit on one card. However, when repeating
these keywords, including and excluding Class or Group names is not

150

allowed. For example CLASS=A, CLASS=/B is not allowed. Instead use
CLASS=A, which includes Class A and excludes all other classes from
scheduling, or use CLASS=/B, which excludes Class B and includes all
other classes for scheduling. If the CLASS (or GROUP) keyword is
omitted from the SELECT card, all Classes (or Groups) will be made
eligible for scheduling. . All Classes and Groups are eligible for
scheduling at ASP Cold Start time unless this status is changed by the
initial SELECT mode (see the SELECT keyword on the MAINPROC card). Jobs
in a Group that is eligible for scheduling will not be scheduled until
the Group's execution resources are allocated. Allocation is controlled
by allocation option on the Group control card. The current status of
all Classes and Groups and all Select mode parameters is checkpointed so
that if ASP is restarted the current Class, Group and Select status will
be restored.

151

SETNAME

The SETNAME card
UNIT subparameter of a DD statement to
class. Through proper organization of
programmer can provide the ability for
unit allocation requirements including
tape allocation and channel balancing.

identifies the keywords that may be used in the

identify a device or a device
device class names, a system

programmers to identify their
specific seven- or nine-track
Class names for tapes, seven-

track tapes, nine-track tapes, shared-channel tapes, tapes on a specific
channel, and so forth, can be established, thus providing ample means
for the programmer to identify his needs. Refer to Chapter 6 for a
further discussion on SETNAME card usage. The keyword parameters are:

SETNAME,MTYPE=type
NAMES=(name 1,name2,name3,...)

MTYPE=type
The type of device the card is describing.

MTYPE field in the DEVICE control card.
precede the NAMES parameter.

This field equates to the
The MTYPE parameter must

NAMES=(name1,name2,... ,namen)

Identifies all of the possible device and class names that are
satisfied by the selection of the device type being described. The
names are one to eight characters long, separated by commas, and are
specified successively on the card. The names specified must be the
same as those specified on the 0S SYSGEN macros UNITNAME.

Although a name may appear in more than one SETNAME card, all MTYPE's
thus referred to must be of the same type.

The example below illustrates a two—-channel, four-tape-drive Main
Processor with seven-track and a nine-track drive on each channel. The
device type names chosen are those that comply with the SYSGEN generics.

24009cC1 nine-track, channel 1
24007C1 seven~track, channel 1
24009C2 nine-track, channel 2
24007C2 seven—track, channel 2

The device classes defined by those cards are:

TAPE any tape

TAPE9 any nine-track tape

TAPE7 any seven-track tape

1TAPE any tape on channel 1

2TAPE any tape on channel 2
24009¢1,24007C1

24009C2,24007C2 specific device identifiers

152

The SETNAME cards for the above definitions are:
SETNAME, MTYPE=24009C1,NAMES=(24009C1, TAPE, TAPE9, 1TAPE)
SETNAME, MTYPE=24007C 1, NAMES=(24007C1, TAPE, TAPE7,, 1TAPE)
SETNAME, MTYPE=24009C2, NAMES=(24009C2, TAPE, TAPE9 , 2TAPE)
SETNAME,MTYPE=24007C2 ,NAMES=(24007C2, TAPE, TAPE7 , 2TAPE)

Note: The following OS unit names must be specified if allocation of
cataloged data sets specifying these units is to be achieved in

ASP:

2314 2400-1 3400-2
3330 2400-2 3400-3
2311 2400-3 3400-4
2400 2400-4

153

SETPARAM

" This card sets a number of setup execution parameters that control the

way in which jobs are scheduled by MDS for device allocation and

subsequent execution. Each of these parameters applies a separate
constraint to the setup algorithm to provide installation control of

device scheduling. If the SETPARAM card is omitted, no MDS

processing will be provided. Volume fetch operation is independent of

MDS and is controlled by the FETCH option on the STANDARDS card. Refer to
Chapter 6 for a further discussion of SETPARAM. The keyword parameters are:

SETPARAM, DEPTH=nn
[, ADDRSORT={YES| NO}]
{,ALLOCATE={AUTO| MANUAL}]
[,MDSLOG={S1]dest}]

[, REMOUNT={0| 1|{nn}]

DEPTH=nnn

A decimal number from 0 to 255 that defines the maximum number of
jobs that may be set up at one time. This parameter limits pre-
execution setup so that it will not get too far ahead of the Main
Processor. This DEPTH value applies to the total system (total for
all Main Processors). The jobs in execution plus those jobs in SETUP
are counted.

ADDRSORT={YES | NO}

This parameter specifies the sequence of the SETUNIT table entries.
The entries are always sorted by device type (one type is assigned to
each unique MTYPE on DEVICE cards) within Main Processor; however,
the ADDRSORT determines whether devices are to be sorted within type.
YES indicates units are to be put in order of ascending device
address by doing a hexadecimal sort. NO will leave then in the order
they appear in the DEVICE initialization control cards.

ALLOCATE={AUTO| MANUAL}
The manner in which device setup is to be performed:
AUTO As many jobs as possible will be set up concurrently
immediately after the GET messages are issued with no

operator intervention.

MANUAL The operator must reply *S SETUP,nnn to the GET
messages for a job to enable it to be set up.

MDSLOG={S1|console-dest}
Defines the console class to which error and log messages will be directed.
REMOUNT={0| 1| nn}
A decimal number defining the number of times a job will attempt
reverification. When errors are detected in volume mounting for a
job, mount messages for the volumes in error will be issued until the
remount value is reached. The job's devices are then deallocated and
the job reenters SETUP. REMOUNT=1 will allow the operator two
attempts to correctly mount the job's volumes, the original MOUNT
messages and one retry.

An example of a SETPARAM card that limits the depth of setup to ten jobs
and logs error messages on the console with a DEST=S4 is:

SETPARAM, DEPTH=10, ALLOCATE=MANUAL, MDSLOG=S 4

154

STANDARDS

The STANDARDS card establishes basic installation standards. Among
these are default parameters, any one of which is applied to a job only
if the corresponding information is not otherwise available. Printer
resource standards parameters are applied to define STANDARD (the
assumed option) in the //*FORMAT and PRINTER control cards. Estimate
parameters, system failure and job step options are used if the
corresponding fields are omitted from the //#MAIN control card. The
priority and class parameters provide default options for the
corresponding JOB card specifications, if the class name is a single
character (A-0), it may be specified on the JOB card. The remaining
parameters establish installation-determined standards that apply to all
jobs entered into the system.

STANDARDS [, FORMS=forms—-name]
{,CARRIAGE=carriage-tape—name]
[, TRAIN={AN|GN|HN|PN] QN|QNC|RN|SN|TN|XN|¥YN|PCSAN|PCSHN|ANY}]
[,LINES=({1|nnn}[, {IWARNING | CANCEL|DUMP}1) 1
[,CARDS=({2{nnn} [, {WARNING| CANCEL|DUMP}1)1
{,PRTY={0|nn}] '
[,CLASS={cl ass-name | ASPBATCH}]
{, GROUP={ASPBATCH| group—name}]}
[, FLOCATE={YES|NO}]
{,DLOCATE={YES | NO}1
[,CONSBUF={nnnn| 10}1]
[,50S={nnnnK| 3K}]
{,SEQCHR={YES| NO}1
[,NOPR={A[C}H}]
[,NOPU={A|C|H}]
[,HIARCHY={0} 1|D}]
[, FAILURE={CANCEL| HOLD| PRINT | RESTART}]
[,JOBSTEP={CHKPNT { NOCHKPNT}]
[,MLOG={NO}JYES}]
[,DLOG={NO| YES}]
[,NJPNAME=support-processor—terminal-name]
[, FETCH={ALL| SETUP| NONE}]

FORMS=forms-name

The name of the installation-standard printer forms. This field may
be from one- to eight-characters in length.

CARRIAGE=carriage-tape-name

The name of the installation—-standard carriage tape. This field may
be from one to eight characters in length. :

TRAIN={AN| GN| HN| PN| QN| ONC| RN| SN| TN| XN| YN| PCSAN | PCSHN|ANY}

The name of the installation-standard printer train. If ANY is
specified, Printer Resource Scheduling will accept any print train
mounted on a printer that otherwise fulfills processing requirements
unless a specific print train is designated in the //*FORMAT control
card for a particular data set.

LINES=({1|nnn} [, {WARNING| CANCEL|DUMP} 1)
The estimated number of physical lines of data, in thousands, to be
printed for a given jobk. The nnn value may be one to ten digits.

. The second subparameter specifies the action to be taken when the
line estimates are exceeded: :

155

WARNING (or W) Issue operator warning and continue

processing
CANCEL (or ©) Cancel the job
DUMP (or D) Cancel the job with O0S ABEND dump

CARDS=({2| nnn}n ([, {WARNING| CANCEL | DUMP} 1)

The estimated number of cards, in hundreds, to be punched for a given
job. The nnn value may be one to ten digits. The second
subparameter is identical to that of LINES, above.

PRTY={0| nn}

Standard job priority, expressed as a one- or two-digit value in the
range 0 through 14.

CLASS={ASPBATCH|class—name}

The name of the installation-standard job class. This job class will
be assigned to all jobs that do not include the CLASS keyword on
either the JOB card or the //#MAIN control card. If a class—-name
other than ASPBATCH is specified, a CLASS initialization control card
defining that class is required.

GROUP={ASPBATCH|group—-name}l

The name of the installation—-standard job class group. This group
will be assigned to all job classes that do not include the GROUP
keyword on the CLASS control card. If a group-name other than
ASPBATCH is specified, a GROUP control card defining that group is
required.

FLOCATE={YES | NO}

If YES is specified, Print Service will scan the setup status of each
defined Support Processor printer to find a unit on which the
required forms, carriage tape, and print train are mounted. This
method minimizes the amount of operator intervention, but may
increase the number of printers used by a job. If NO is specified,
the first available printer that allows forms ands/or train changes
will be used by each data set. In this event, the amount of operator
intervention may be increased, but output will tend to be on the
minimum number of printers.

DLOCATE={YES | NO}

Specifies whether the DEST= parameter in the //#*FORMAT card is to be
honored. DLOCATE=NO causes the DEST= parameter to be ignored, that
is, treated as ANY. This option may be used if a disproportionate
number of data sets are directed to a given printer, in order to
allocate processing more evenly.

CONSBUF={10| nnnn}
Specifies the number, omne to four digits, of console buffers to be
allocated and formatted. If required buffers are not available from

the Console Buffer Pool, they will be obtained via the AGETMAIN
routines.

156

SQS={3K| nnnnK}

Minimum system queue space for OS/MVT, where nnnn is a one- to four-
digit decimal: number stating the S¢S size as a multiple of 1024. ASP
will not schedule an MVT job when the minimum SQS is not available.

SEQCHK={YES|NO}

Specifies whether Imput Service is to sequence check input object
decks. Sequence checking is performed in columns 73 through 80 and
requires an increment of t. If a sequence error is found, a message
is written on SYSMSG; after the entire deck is read, the job is sent
to Print Service to print SYSMSG and is then purged.

NOPR={A|C|H}

Specifies the action to be taken by Print Service if a //#*FORMAT card
DEST= parameter assigns a data set to an undefined printer.

A Reassign the data set to any local printer.
C Do not print the data set.
H Put the data set into hold status.

If a data set was put into hold status, the job will be put into HOLD
status after all other data sets are processed, and it may be
released by the operator, at which time Print Service will ask the
operator for the correct printer name. If the data set has been
printed or canceled, no operator response is required.

NORU={A| C| H}

Specifies the action to be taken by Punch Service if a //*FORMAT
DEST= parameter dssigns a data set to an undefined punch:

A Reassign the data set to any local punch.
C Do not punch the data set.
H Put the data set into hold status.

If the data set was put into hold status, the job will be put into
HOLD status after all other data sets are processed and it may be
released by the operator, at which time Punch Service will ask the
operator for the correct punch name. If the data set has been
punched or canceled, no operator response is required.

HIARCHY={0| 1| D}

Indicates the number of the hierarchy (0 or 1) from which storage is
-to be allocated by the AGETMAIN macro. If the D operand is used,
storage will be allocated from the hierarchy in which the routine
issuing the AGETMAIN resides. Storage will always be obtained from
hierarchy 0 when the 2361 Core Storage Unit (LCS) is switched
offline.

FAILURE={CANCEL| HOLD| PRINT | RESTART}
Specifies the job recovery option to be used in case of Main system
failure. CANCEL cancels the job on Main. HOLD holds the job for

restart on Main. PRINT prints the job and then puts the job in hold
for restart on Main. RESTART restarts the job on Main.

157

JOBSTEP= { CHKPNT | NOCHKPNT}

Specifies the job step checkpoint option CHKPNT causes a checkpoint
to be taken at the end of each job step on Main. This checkpoint

. contains the current status of all ASP data sets for the job (that
is, the JDS record for the job).

MLOG={NOJ YES}
If MLOG=yes is specified, all input and output messages will, in
addition to their original source or destination console(s), be
written on the console designated as MLG in the CONSOLES control card
to provide a master log of system activity.

DLOG={NO| YES}
If DLOG=YES is specified, all input and output messages will, in

addition to their original source or destination console(s), be
written to disk in the 0S SYSLOG data set via the OS WIL macro.

Note: This facility should not be specified before first exploring
any performance impact caused by the additional WTL overlay.
NJPNAME=support-processor-terminal-name

NJPNAME=support-processor-terminald-name
Specifies the terminal name for this ASP Support Processor for
Network Job Processing (NJP). For a line connecting this ASP Support
Processor with a remote ASP Support Processor for NJP use, that
remote terminal uses this name as the destination terminal name on an
NJPTERM card defining the connection.

FETCH={ALL| NONE| SETUP}

The ASP R/I will issue FETCH messages to the console designated for
tape and disk setup.

ALL

messages will be issued for all ddnames allocated for ASP managed
devices to be setup.

NONE
no fetch messages. -

SETUP
Only messages for the ddname specified in the SETUP parameter on
the //7*MAIN card. If no SETUP parameter is supplied the FETCH
parameter will default to ALL.

Example:
STANDARDS, FORMS=SINGLE, CARRIAGE=SINGLE6, TRAIN=PN, LINES=(20) ,X

CARDS=(10,CANCEL) ,PRTY=0,CLASS=A, NOPR=A,NOPU=A, MLOG=YES, X
NJPNAME=LAX

158

SYSOUT
The SYSOUT card is used to define SYSOUT classes that will be
processed by ASP. The values specified in this card will override the
STANDARDS and PRINTER cards value for a class. Refer to Figure 16 for
the default values. Use of the SYSOUT card can eliminate use of the
/7*FORMAT card in many cases. One SYSOUT card is required for each
class defined. The MSGCLASS defined on the MAINPROC card must be
defined by SYSOUT cards.
SYSOUT,CLASS={A-Z| 0-9} .
[,DEST={printer-name|punch—name}]
{, FORMS=forms-namel '
[, CARR=carriage-tape—name]
[,TRAIN=same as FORMAT cardl
[, CONTROL= {PROGRAM| SINGLE | DOUBLE}]
[,COPIES={1|nn}]
[,OVFL={ON| OFF}]
[, INT={YES|NO}]
[, TYPE={PRINT| PUNCH| USER1| USER2]|TSO|DSIS0}]
CLASS={A-%]0-9}
Defines the specific SYSOUT class.
DEST={printer—name|punch-name}
Defines a specific printer to print this class.
FORMS=forms-name
Defines the form name-to be used for this class.
CARR=carriage-tape-name
Defines the carriage tape.
TRAIN=same as format card
Defines the train type.
CONTROL={PROGRAM| SINGLE | DOUBLE}
Defines the carriage spacing control.
COPIES={1|nn}
Specifies from 0-99 original copies to be printed.
OVFL={ON|OFF}
Specifies the overflow option desired.
INT={YES |NO}
Specifies the interpret option for punch output (35251).
TYPE={PRINT| PUNCH| USER1|USER2| TSO|DSISO}
Determines what postprocessing action ASP should take. USER1 or
USER2 specify that the data generated on the Main Processor .should be
returned to ASP for postprocessing but no postprocessing action will
be taken. This facility may be used for user plotter or paper tape

output. TSO specifies that if this job originated at a TSO terminal,
the data sets of this class should be returned to the TSO terminal

159

160

user. When TSO is specified all parameters other than class are
ignored. DSISO indicates that each data set created by ASP Main
Service which specified this case is to have its own track allocation
table (TAT)Y. That is, tracks allocated by ASPIO routines for a data
set of this class will not be allocated from the job's TAT but rather
a new TAT will be constructed for this data set's track allocation.
Thus a data set of this c¢lass can be processed and purged
independently of the rest of a job's data sets.

Examples:

SYSOUT, CLASS=P,DEST=PR1, FORMS=PAYCK, TRAIN=QNC, CARR=PAY
SYSOUT, CLASS=9, DEST=PUN, TYPE=PUNCH, COPIES=2

TRACK
The format of the TRACK card is:
TRACK, DDNAME=ddname

The TRACK card identifies the number of tracks that have been
allocated (and previously formatted) on each ASP direct access storage
device. The ddname is used to refer to the space allocated in a DD
card. After the direct access storage device has been formatted, this
card must be substituted on a one-for-one basis with a corresponding
FORMAT card in the initialization COLDSTART deck, and must always be the
one that appears in the RESTART deck. When entering new TRACK cards
during a RESTART, care should be taken in selecting the new DD name.
ASP, during a COLD START will internally sort the DD names from the
FORMAT or TRACK cards and will reference these DD names in the sorted
sequence. The new DD entries should have DD names that will follow
those in the COLDSTART, FORMAT or TRACK cards.

161

MAINTASK EXECUTION

One of the procedures that will be started on an ASP Main Processor is
the MAINTASK (MT) procedure, which will cause MAINTASK to be executed.
The starting of the MT procedure will occur during the IPL deck
processing phase of ASP initialization. This is accomplished by
including the following card in the ASP IPL text:

S=S MT,PARM='values' ,REGICN=xxK

The values which can be specified in the PARM field and the REGION=
field are discussed below.

For a local main system, the IPL deck is not required. If the user
elects not to use it, the S MT will be issued automatically by the
MSVIPL module. 1In this case the PARM= and REGION= fields which appear
on the //MT EXEC card in the procedure will be used. If there is no
PARM= on the S MT command or in the procedure, the default is
PARM="ABC"'.

The following is an example of the JCL statements which will be needed
if all MAINTASK functions are to be used:

1. //MT EXEC PGM=MAINTASK, PARM=*ABCDE',REGION=52K
2. //STEPLIB DD DSN=ASP.STEPLIB,DISP=SHR
3. //ASPQRDR DD UNIT=(CTC,,DEFER),LABEL=(,NL), JOL=SER=ASPQRDR,

/7 DSN=ASP.QRDR

4. //ASPQWTR DD UNIT=(CTC,,DEFER),LABEL=(,NL),

S. /7 DCB=(BLKSIZE=133,LRECL=133,RECFM=FB)

6. //SYSABEND DD SYSOUT=F,SPACE=(CYL, {1,1))

7. //ASPDATA DD DUMMY ,

8. //CTCDD DD UNIT=(CTC,,DEFER),LABEL=(,NL)

9. //ADSGO1 DD UNIT=2314,DISP=0OLD, VOL=SER,ASPSR1, SPACE=(CYL, (1,1))
10. //ADSGO2 DD UNIT=2314,DISP=OLD, VOL=SER=ASPSR2,SPACE= (CYL, (1,1))
11. //ADCTC DD UNIT=(CTC,,DEFER)

12. //OUTDATA DD DUMMY
13. //CTCDD2 DD UNIT=(CTC,,DEFER),LABEL=(,NL) ,DCB=BLKSIZE=760
14. //SNAPDD DD SYSOUT=F,SPACE=(CYL, (1, 1))

The DD statements in the above example represent all the DD statements
required, if all functions of MAINTASK are to be used. Since all
functions are not required some DD statements may be omitted as
described below.

Required JCL for MAINTASK execution:

//MT EXEC PGM=MAINTASK,PARM="'values',REGION=xxK
//STEPLIB DD DSN=ASP.MAINTASK,DISP=SHR

//ASPORDR DD uNIT=(CTC, ,DEFER) , LABEL=(, NL) , VOL=SER=ASPQRD,
Va4 DSN=ASP.QRDR

//ASPOWTR DD UNIT=(CTC,,DEFER) ,LABEL=(,NL),

7/ DCB=(BLKSIZE=133,LRECL=133, RECFM=FB)
//SYSABEND DD SYSOUT=F,SPACE=(CYL, {1,1))

//SKRAPDD bD SYSOUT=F,SPACE={(CYL, (1,1))

The EXEC card names the program {MAINTASK) to be executed, passes to
MAINTASK at execution time through the parameter field the information
concerning which subtasks are to be attached and allocates the region
size. The PARM and REGION fields can be overriden by the PARM and
REGION operands associated with the S MT in the IPL deck used during ASP
INITIALIZATION.

162

The PARM values are as follows:
PARM="A"

Specifies the attaching of the command mocdules { ASPVER ,

ASPLOC , ASPFENCE) required to process thie VERIFY, SIZE,
FENCE, ISOLATE, and LOCATE commands and the modules for the
Reader/Interpreter (ASPQALL , ASPQRDR) and the SMB writer
(ASPWRITER). 'ABC' is the default and will be assumed if the
PARM field does not appear on the EXEC card or as an operand of the s
MT command. If a PARM field-is present, then the A must be included.
If it is not, the command modules will not be attached.

PARM="B*' or 'B(tt,11,hh)’

Specifies the attaching of the dynamic dispatcher (DYNDISP) to
monitor the execution of jobs.

tt - Designates, in tenths of seconds, the time interval between
the dispatching of the monitor itself. The default is one
second (10).

11 - Designates the lowest priority job which will be monitored.
The default is zero (00).

hh - Designates the highest priority job which will be monitored.
The default is two (02).

PARM="C' or "C{tt)"*

Specifies the attaching of the Channel-to-Channel Monitor
{(ASPCTCM). This function is not used on a Local main.

tt - Designates, in seconds, the time interval between the
dispatching of the monitor itself. The default is 10
seconds. .
PARM="D"

Specifies the attaching of the modules required to submit TSO jobs to
an ASP system and return TSO output to the TSO terminal operator.
These modules are ADSGEN1 ADSGEN , ASUBMIT .

PARM='E' or 'E{x,y,z}"'
Specifies the attaching of the AOUTPUT writer for. sending print and
punch data sets from a Main Processor output gueue to an ASP system

for printing and punching, or execution.

X - Designates the output class to be transmitted to Print
Service. The default is Class 1. :

y - Designates the output class to be transmitted to Punch
Service. The default is output class 2.

z - Designates the output class to be transmitted to Imput
Service. The default is output class 3.

Example 1: PARM='ABCDE' - Starts all functions with the defaults.
Example 2: PARM='AB(20,4,15)C"' - Starts the command processor,.R/I
modules, the SMB writer; the dynamic dispatcher with a two-

second interval, low priority of # and "high priority of 15;
and the Channel-to-Channel Monitor with its default.

163

Example 3: PARM="B(,,5)' - Starts only the dynamic dispatcher with the
default time interval and low priority, but changes the high
priority to 5. The command modules are not started unless
explicitly requested.

Example 4: PARM='C(5)DE(C,D)"' - Starts the Channel-to-Channel Monitor
with a five-second interval; the TSO modules; and the AOUTPUT
writer with a print class of C and a punch class of D.
Again, the command modules will not be started.

The REGION requirements will change depending upon the functions which
are to be used. The requirements are:

A MAINTASK, with the command processors, R/I

modules, and SMB writer 32K
B Dynamic Dispatcher 1K
C Channel-to-Channel Monitor 1K
D TSO Modules 14K + ASP buffersize
E Qutput Writer 6.4K + 2(CTCDD2 Blocksize)

+ 2(Blocksize of output
data set to be
transmitted)

Example 1: PARM='ABCDE',REGION=56K. {Assumes 1K ASP buffersize and 1K
blocksize of output data sets).

Example 2: PARM="ABC',REGION=34K
Example 3: PARM='A',REGION=32K
Example 4: PARM='AD',REGION=44K (Assume 1K ASP buffersize)

Example 5: PARM='AE',REGION=38K (Assume 1K CTCDD2 blocksize and 1K
output data set blocksize).

Additional DD statements are required when the TSC and output functions
are to be used.

For TSO:

//ASPDATA DD DUMMY

//CTCDD DD UNIT=(CTC,,DEFER),LABEL={,NL)

//ADSG0T DD UNIT=2314,DISP=OLD,VOL=SER=serial-1,SPACE=(CYL, (1,1))
//ADSGnn DD UNIT=2314,DISP=OLD,VOL=SER=serial-2,SPACE=(CYL, (1,1))
//ADCTC DD UNIT=(CTC,,DEFER)

The first two DD statements (ASPDATA, CTCDD) are required for submitting
TSO jobs to ASP. The last three are used to send output back to the TSO
user. The number of ADSGnn DD statements is not fixed. The user may
include as many as he wishes as long as the first four characters of the
ddname are ADSG. The ADSGEN module will use them one at a time from
first to last and then cycle back to the first again. This allows the
user to use as many DD statements-as he wishes and have the output
distributed to different disk packs.

For AQUTPUT writer:

//0UTDATA DD DUMMY
//CTCDD2 DD UNIT=(CTC,,DEFER) ,LABEL=(,NL),DCB=BLKSIZE=XXX

164

These statements are required for transmitting print and/or punch data
sets from a Main Processor to a Support Processor for printing,
punching, or execution by ASP. The DCB=BLKSIZE=xxxX parameter on the
CTCDD2 DD statement is required and the values xxx must be equal to or
less than the ASP buffersize on the support system which will accept the
data. (This is the ddname that was referred to in the region
calculation section.)

In addition to the initialized starting functions at MAINTASK initiator
time, the operator can also start additional functions, or stop]
functions through an operator command. If this facility is permitted,
then the region size specified at MAINTASK initiation must be large
enough to hold ail the modules which will be active at any one time. In
addition, the JCL statements which are required for the function to be
exercised must have been provided in the MT procedure.

165

CHAPTER 6. ASP SYSTEM CONFIGURATION DESIGN CONSIDERATIONS

The selection of devices that comprise an ASP system is dictated by
installation requirements. Consequently, it is very difficult to state
general recommendations concerning equipment configurations. The local
system programmer must establish the local confiquration requirements
and must evaluate them relative to the operating characteristics of the
ASP system, augmenting the original equipment configuration with
components that will enable the installation to realize the full
potential of its configuration. This chapter defines some of the
options, both for equipment and for ASP program initialization, that
will affect the performance, throughput, and tuning of an ASP
configuration.

The physical configuration of the Main Processor is dictated strictly by
the programs and applications used. The placement of the Channel-to-
Channel Adapter should be made according to the same criteria used in
placing two tape units for system input and output. Since the adapter
is not subject to channel overrun conditions, it generally should be
attached to the lowest priority channel of the Main Processor. This
rule applies also to the Support Processor. Refer to Chapter 3, 0OS
SYSTEM GENERATION, for a discussion on CTC lockout conditions under
Special Considerations of ASP SYSGEN., '

The configquration of the Support Processor is dictated by the number of
support functions to be supported simultaneously, by the volume of work
to be handled, and by the number and type of telecommunication terminals
to be attached. There is no fixéd rule concerning the selection of the
Support Processor model. The selection is determined by the
teleprocessing requirements and throughput objectives of the
installation. The equipment decisions for a Support Processor should
involve the size of storage, the size of the ASP direct access storage
gueue device, the selection of console operator terminals, and
telecommunication units and are strictly a function of local
requirements. However, a shortage of printing and punching output
devices tends to backlog the job queue and, as a result, requires a
larger direct access storage device gqueue.

MINIMUM SYSTEM REQUIREMENTS

The configuration reguirements for the Main Processor are identical with
those of a stand-alone processor operating under OS control program with
F-level components except that the channel-to-channel adapter replaces
the normal system input and output devices. The modifications to the
OS-MVT Control Program nucleus that are required for operation as an ASP
Main or Support Processor increase the nucleus by approximately 3000
bytes. Most ASP functions required on the 0S Main Processor are
incorporated in the module MAINTASK, which operates as a system task on
the Main Processor. MAINTASK size is approximately 35K without TSO
support and 48K with TSO support.

MINIMUM SYSTEM REQUIREMENTS

The minimum Support Processor for execution is a System/360 Model S50HG
or Systems370 Model 145HG with two selector channels, an Operator
Console, one 2540 or 3525 and 3505 Card Read Punch, one 1403 or 3211
Printer, and two 2314 or two 3330 Disk Storage Drives.

166

ASP REGION SIZE ESTIMATION

To calculate the ASP region required for a system, add to the ASP
nucleus size your typical operating ASP functions. To this total add

the control blocks built by initialization.

To this sum add any

additional storage for user modifications, ASP background utilities,
resident modules and a factor for core fragmentation. Make sure you .
include the proper number of buffers which is a considerable part of the

area built by initialization.

MINIMUM REGION CALCUIATION

Basic ASP
Includes:

ASPNUC
JSS
PURGE
PURGE
CONSOLES
MDsS
INQUIRY

First Main Processor (Local)
Each additional Main Processor
Each Job on a Main Processor

First Card RDR or RJP Remote Reader
Each additional Reader

First Printer or RJP Remocte Printer
Each additional Printer

First Punch or RJP Remote Punch
Each additional Punch

First OS R/I subtask (R/I DSP)
Each additiocnal 0S R/I Subtask

First RJP Terminal (Signed 0On)
Each additional terminal

Size Buffers
72 K 7
17 K
1 K
. 06K 5
11 K 8
.7 K 2
10 K 3
1 K 3
5 K 3
.8 K 3
14 K 7
3 K 7
19 K
1.2 K

REGION RECUIREMENTS FOR TABLES BUILT BY INITIALIZATION

Initialization Parameter on
Card Control Card
BUFFER BUFSIZE ,AMOUNT
TRACE=YES
IOBS,RECORDS
CONSOLE
DEVICE (EACH)
SUPPORT
MAIN
OPTION ADDSAVE
TRACE
PRINTER
RESCTLBK RQ
ASG

Size
(Bytes)

BUFSIZE x AMOUNT
2048
I0BS x (32+(Records x 24))

1 x 188

‘'x 20

1 x 44
EACH MAIN x 24

ADDSAVE x 64
TRACE x 32

1 x 48
RQ x 76
ASG x 20

167

vuT VOT x 12

FCT FCT x 304
RESIDENT SIZE OF MCDULES
RI BLDL EACH NAME; x 14
RIDATSTN EACH NAME SIZE +%t
RIPARM 1 x 48
RJIJPLINE. 1 x 28
RIPTERM 1 x 28
SETNAME MTYPE 1 x 10

NAMES EACH NAME x 10
STANDARDS CONSBUF CONSBUF x 96
SYsour 1 x 30

ASPIOQ

ASPIO permits a system programmer, to design the track format and buffer
pool to meet local requirements. A minimum of 40 buffers is usually
recommended. Although ASPIQO will obtain buffers from available storage
when the buffer pool is exhausted,: a buffer pool should be established
which is large enough to accommodate the minimum requirements for the
maximum number of DSP's expected to be active at one time. ASPIO is
designed to optimize transmissions of records to disk and, therefore, to
permit smaller-than-track size records to be handled efficiently. In
single-record mode, the smaller the record, the more efficient the
processing of that record and, therefore, the more efficient the
scheduling of jobs. Offsetting the requirement for small records for
the scheduler is the limitation of Channel-to-Channel transmissions to
buffer size. Since blocked transmissions are desirable for performance
reasons, the minimum buffer size should be chosen to accommodate the
largest record size that the Channel-to-Channel Adapter (CTC) is
expected to accept. In addition, the physical device characteristics of
the direct access storage devices being used must be considered.

ASPIO permits the system programmer to specify the depth of queuing of
disk Inputs/Output requests at the I0S level. The precise effect of this
parameter cannot be stated generally since it depends on buffer pool
size and on the balance of direct access storage device input/output
activity within a system. Toc few input/output blocks (IOB's) will
result in some loss of efficiency in transmitting data to the direct
access storage devices, while too many will reduce the effectiveness of
the priority scheduling of input/ output by ASPIO. Unless local
evaluation proves otherwise, it is recommended that three I0B's be
specified for every direct access storage device assigned to the ASP
direct access storage device pool. For example, if five IBM 2314 disk
drives are assigned to ASPIO, then the IOB parameter is set to 15.

GUIDELINES FOR DETERMINING A MINIMUM REQUIREMENT FCR THE ASP BUFFER POCL
Seven to eleven buffers for each active job on a Main Processor
Seven buffers for each 0S R/I subtask

Three buffers for each reader

168

Three bnffers for each printer
Ten buffers for other active ASP functions (optional)

In selecting the size of the buffer pool, consideration should be given
to the fact that all functions might be active at the same time. It
should also be noted that when all functions are active, there will be
fewer GETMAIN areas for buffers available due to the number of locad
modules and CSECT's in the dynamic area.

To dynamically evaluate the buffer usage and storage availability the
INQUIRY command may be used to determine the buffer usage and the number
of times buffers were obtained via a GETMAIN request. Refer to the ASP
Operator's Manual, Chapter 5, INQUIRY for ASP Buffer Pcol.

Effective buffer sizes are in the range from 900 to 1400 bytes. A
consideration should be made in MVT ASP Support Processors when the
dynamic area is being used for buffers. Storage allocation is assigned
in 2048-byte blocks when a request for space is made. A buffer size of
1024 bytes or greater would allow only one ASP buffer per 2K block.
This would cause storage fragmentation problems in regard to obtaining
ASP buffers in the dynamic area. Whereas there would be ample space
available in the dynamic area once all the 2K blocks are in use, there
would be no areas of contiquous storage large enough to obtain an ASP
buffer.

The number of records per track is dependent upon buffer size and is on
the BUFFER Initialization control card in the ASP System Programmer's
Manuai. A minimum number of buffers should be determined using the
estimates shown. BAn effective buffer size can then be chosen based on
the number of buffers and the amount of the ASP region to be devoted to
the buffer pool. The ASP region will essentially consist of three
distinct areas: - ‘

e A fixed area which includes the ASP nucleus and all of the generated
ASP tables :

e The buffer pool
e A free or dymamic area

The dynamic area will be available to all GETMAIN requests and for the
locading of all nonresident modules, and is available for use to the
buffer pcol when no fixed buffers are available for use. The size of
this area should depend on the imstallation's use of the various
facilities of the ASP system. With the use of the RESIDENT card in the
Initialization deck, heavily used modules can be made resident and will
occupy part of this dynamic area. Careful consideration should be given
in selecting the size of the ASP region to ensure that active ASP
functions are not continually awaiting for storage in the dynamic area.
Such a condition will degrade overall performance, and can (and should)
be avoided when possible by selecting a region size sufficient to meet
all of the AsSP facilities that will be used.

OS READER/INTERPRETER UNDER ASP

1. Testing JCL. A facility exists in the ASP R/I controlling DSP
(module RICONTL) to allow a job to be processed by the OS
Reader/Interpreter {(R/I) in order to obtain interpreted JCL,
including diagnostic messages when applicable, but to suppress
entry into Main Service thereby avoiding Setup and/or Main
Processor time. The job's interpreted JCL is printed by ASP
Print Service, enabling the programmer to visually verify JCL
results before allowing further progression of the job through

169

170

the system. This facility is activiated whenever any step of a
job contains an EXEC statement with PGM=JCLTEST on it. This is
similar to the 0S facility of PGM=IEFBR14, except no Main
Processor time is used with the ASP facility.

User-supplied Exit Routine. There are five user exits provided
within the ASP R/I DSP facility. BAll of these exits must be
written in reentrant code and must be included with the linkedit
of the ASP module which gives it control. An example of the
linkedit control cards would be as follows:

RIEXITS is the ASP module that gives the exit control.
IEFACT is the user exit module.

INCLUDE DD1{IEFACT)
INCLUDE DD2 (RIEXITS)
ENTRY RIEXITS

HAME RIEXITS (R)

The five user exits described below are referenced by their ASP
assembly label. It is the users responsibility to maintain the
integrity of the ASP control blocks and verify that OS control
block formatting has not changed.

ASPX001: ASP R/I1I Accounting Routine Exit (Internal Text Exit).

This exit is provided within the ASP module RIEXITS.
Control is given to a user module named IEFACT if
that name was resolved by the O0S Linkage Editor.

This exit will provide the user a pointer to the 0S
internal list that was created from each JCL
statement processed by the 05 R/I. The internal list
will not have been modified by the ASP module RIEXITS
{entry point = RIXACCT)} before the user gains
control. Once the ASP exit and user exit returns,
the 0S R/I will pass the internal text to its JCL
processors (JOB, EXEC or DD). As an extension of the
above, it should be noted that if this user exit
abends, it will abend the 0S R/1 subtask under ASP
(see ASP R/I subtask failure considerations).

This exit might be taken by a user if he wishes to
extract or modify selected JCL parameters before the
O0S R/I creates control blocks from the internal list.
Modifying or extracting JCL parameters can be
accomplished via the exit in a convenient keyword
scan technique (for more detailed information refer
to the 0S MVT Job Management PLM, GY28-6660,
"Internal List Entry Format" and the assembled
listing of RIEXITS, cross-reference label ASPX001).

The user routine, IEFACT, must save registers 0 i
through 15 -upon entry and restore registers 0 through
15 at exit. Return to the caller must be by using
register 14. The routine must be reentrant. The
following input is available at entry to the user
routine:

Reg 1 - address of a four-word parameter list.

Wword 1 - Address of the internal text buffer for
the JCL statement

Word 2 - Address of the QMPA for the input queue
entry

ASPX002:

ASPX003:

ASPX004:

Word 3 -

Address of the Queue Manager Routine

entry point

Word 4 -
processed

Address of the JCL statement image being

Reg 12- Address of the Interpreter Work Area (IWA)

ASP R/1 Find Routine Exit (Procedure Library Find

Exit).

This exit is provided
Control is given to a

within the ASP module RIEXITS.
user module named IEFACTF if

that name is resolved by the 0S5

This exit will provide the user
procedure name requested and of
procedure library. If the user
of the ASP R/I BLDL processing,

linkage editor.

the addresses of the
the DCB for the

is taking advantage
the user exit will

not receive control if the procedure name matched one
of BLDL names. If no match was found, it is the
responsibility of this user exit to issue the 0S FIND
macro before returning to the 0S R/I. As an
extension of the above, it should be noted that a
user abend will create an abend in the 0S R/I subtask

under ASP {see ASP R/I Failure Considerations).

This exit might be taken by a user if he wishes to

modify which library a procedure will be found.

(For

more detailed information refer to the assembled
lJisting of RIEXITS, cross-reference label ASPX002 and

the OS Supervisor and
Instructions - FIND).

ASP R/I JCT Exit (JCT

This exit is provided
Control is given to a
that name is resolved
exit wili provide the

Data Management Macro

Access Facility Exit).

within the ASP module RICBSCAN.
user module named ASPEX(C03 if

by the 0S linkage editor. The
user with the address of the 0S

JCT {(refer to 0OS MVT Job Management PLM, GY28-6660 -

"Job Control Table").

This exit is taken before any

ASP R/I DSP JCT analysis occurs; therefore, an abend
or an incorrect modification of the JCT in the user
module could cause the ASP R/I DSP to abend.

This exit might be taken by a user if he wishes to
access or modify the JCT or any 0S5 control block
pointed to by the JCT {(via TTR). &An example of the
above might be a user requirement to check the
accounting information contained on the JOB card.
Since the JCT contains the TTR of the ACT, the user
could check the ACT contents for installation
standards. (For more details check assembled listing
of RICBSCAN, cross-reference label ASPX003.)

ASP R/I SCT Exit (SCT Access Facility Exit).

This exit is provided within the ASP module RICBSCAN.
Contrel is given to a user module named ASPEX004 if

that name is resclved by the 0S linkage editor. This
exit will provide to the user the address of the 0OS

SCT (reference 0OS MVT Job Management PLM, GY28-6660 -
"Step Control Table®"). This exit is taken before any
ASP R/I DSP SCT analysis occurs, therefore, an abend

171

or an incorrect modification of the SCT in the user
exit could result in the abend of the ASP R/I DSP.

This exit might be taken by a user if he wishes to
access or modify the SCT or any of the 0S control
blocks pointed to by the SCT (via TTR). An example
of the above might be a user requirement to monitor
region requests within the system. The exit could
check all SCT region sizes to ensure that no job
would run if it exceeded installation standards.
(For more details, check the assembled listing of
RICBSCRAN, cross-reference label ASPX004.)

BASPX005: ASP R/I SIOT/JFCB Exit (SIOT/JFCB Access Facility
Exit).

This exit is provided within the ASP module RICBSCAN.
Control is given to the user module ASPEX005 if that
name is resolved by the 0S5 linkage editor. This exit
will provide to the user, the address of the SIOT and
its associated JFCB (reference OS MVT Job Management
PLM, GY28-6660 "Step Inputs/Output Table"™ and "Job
File Control Block"). This exit is taken before any
ASP R/I DSP SIOT/JFCB processing occurs; therefore,
an abend or an incorrect modification of the
SIOT/JFCB in the users exit could cause the ASP RI
DSP to abend.

This exit might be taken by a user if he wishes to
access or modify the SIOT or JFCB. An example of the
above might be a user requirement to monitor the use
of demand allocated devices (UNIT=1A0). By looking
at the unit field of the SIOT, this exit could cancel
all jobs requesting demand allocation. (For more
details about this exit check the assembled listing
of RICBSCAN, cross-referenced label ASPX005.)

The internal text buffer codes are mapped by macro IEFVKEYS and the IWA
is mapped by IEFVMIWA. More detailed information can be found in MVT
Job Management PLM, GY28-6660.

172

3.

In-Stream Procedures. It is recommended that an in-stream
procedure be used discriminately in a job, since an in-stream
procedure can take an inordinate amount of interpreter time to
process compared to processing from the procedure library.

Multiple Reader/Interpreter. Since the RI DSP processes jobs in
a serial fashion, jobs may begin to backlog waiting for the R/I
DSP to process them. When this happens consistently at your
installation, you may wish to consider increasing the number of
R/I functions active simultaneously under ASP. This is
accomplished by specifying a DEVICE initialization card with
GTYPE=ARI and STYPE=0OSRDR for each R/I desired. The R/I DSP may
be varied offline and online by using the dewvice name specified
on the DEVICE statement for each R/I. For example, if an R/I was
specified as DEVICE, STYPE=OSRDR, GTYPE=ARI,
SUPPORT=(NONE,OSRI1), you would issue a *V OSRI1,OFF.

Updating the Procedure Library data set SYS1.PROCLIB. When you
have specified a resident BLDL list for PROCLIB on the R/I
initialization statement, you should be aware that if you update
a procedure on SYS1.PROCLIB with the same name as one in the
list, the updated procedure will not be accessed until the next
ASP initialization has been completed.

SYS1.PROCLIB alterations for ASP prior to Version 3. It is
important that the contents of the procedure library used on the
ASP Support Processor be specified as though it were intended to
run on a standalone 0S system. That is, SYSOUT references must
not be converted to UNIT=(CTC,,DEFER) as was done for Main
Processors on versions of ASP prior to Version 3. All procedures
are referenced on the Support Processor only, regardless of the
final Main Processor destination for a job.

The ASPNOTE ASPN001 gives the user an idea of how he might obtain
the 0S Data Set Name on his fetch messages. If this facility is
desired, check the assembled listing of RIFETCH at the cross-
reference lLabel ASPNOO1.

Main storage considerations. The Resident 0S Reader/Interpreter
modules occupy 58K of Main storage. The installation has an
option to either make the modules resident in the Link Pack Area,
or in the ASP reqgion. See Appendix C for a list of which modules
must be resident, including alias names. The modules must be
resident to prevent severe main storage fragmentation in the ASP
region due to LINK,LOAD, and XCTL issued by the 0S R/I. If the
modules are resident in LPA, the main storage required to start
an OS RDR is reduced by 26K; this should be reflected in the
REGION parameter of the RDR procedure or in the RDR START command
if it is a practice at the installation to occasionally start an
0S RDR (for example, S RDR,REGION=22K).

To make the modules resident in Link Pack Area, you must add the
module names to the standard list of reenterable module names in
SYS1.PARMLIB {member IEAIGG00), or to an alternate list(s)
{IEAIGGxx where xx can be any two alphameric characters). See
MVT Guide, GC28-6720 "Using Link Pack Area"™ for further
discussion of how this is done.

To make the modules resident in the ASP region, you must add the
names to RESIDENT statements at ASP initialization time. This
technique alsc requires the REGION parameter on the ASP EXEC
statement to be increased by 58K to accommodate the additional
storage required.

If the modules are not resident in the Link Pack Area, it will be
necessary to increase MINPART by 6K. This happens because the
REENTRANT 0S R/I modules coming from SYS1.LINKLIB during START
command processing fragment subpool storage in such a way to
require 6K of additional region space. This additional MINPART
requirement is eliminated after START command processing is
complete (that is, when the program that was started begins
execution). You can supply the new MINPART at SYSGEN in the
SCHEDULR macro, or at IPL in response to the IFA101A SPECIFY
SYSTEM PARAMETERS message (MIN keyword).

The R/I SMF exit (IEFUJV) will be activated within the 0S R/I
subtask if SMF is included and activated within the support
processor. When the exit is activated during OS R/I subtask
initialization, either the user's copy or the IBM copy of IEFUJV
will be loaded into the ASP region.

If the user can gain Access to the 0S IWA (Interpreter Work Area)
on entry to his SMF exit, a means of referencing ASP control
blocks does exist. The field 'IWANELJC' in the IWA contains a
pointer to the "RIDATA™ of the ASP R/I DSP. Examples of
information contained within "RIDATA" are as follows: jobname,
ASP assigned job number, ASP TVTABLE pointer, SYSMSG FDB pointer,
and the user reserved save area.

173

10. The ASP R/I DSP has the responsibility of supplying ASP with the
region requirements of all OS jobs. The basic logic in this area
is to obtain the region size from the first 0S Step Control Table
{SCT). The regqgion paraweter at this point is the same one the
normal 0S system runs from; that is, the normal 0S rules of
region determination of a step apply. The user should be aware
that if there is no regicn specified on the 0S JOB card and if
increasing region parameters are specified on successive 0S EXEC
cards, his job can wait for region space in his second thru nth
steps while running on the OS main. This condition is not unlike
the normal OS response to increasing region sizes.

SUPPORT DEVICE GROUPING

General description of the use of device group name (GNAME parameter on
DEVICE card) in ASP. The GROUP name is used on the ASP device
initialization control card as a means of grouping together input and
output devices. The normal reason for grouping a pool of I/0 devices is
physical -or geographical location of these devices. The purpose of
device grouping is to insure that job output will be directed to
appropriate output devices within the group from which the job
originated. Some examples of where grouping might be desirable are:

1. A large installation has readers, printers, and punches on more
than one floor of a building or it has a remote reader, printer,
and punch on a channel repeater some distance away from the local
installation. Through assignment of a GROUP name on the
appropriate device cards in -the ASP initialization deck, job
output for jobs submitted fiom a device on a floor within the
building or from a device attached to the channel repeater would
be directed to an output device in the same group (that is,
physical location).

2. By default all devices attached to an ASP RJP terminal have the
terminal-name as their groupname. Thus, output of a job
submitted from an RJP terminal is returned to the same terminal.
However, more than one RJP terminal may have the same groupname;
this is specified via the G= parameter on the RJPTERM ASP
initialization control card. Thus two or more RJP terminals in
close physical proximity may share the same groupname with the
result that a job submitted from any RJP terminal in the group
may have its output directed to any appropriate device on any
terminal in the group. This provides an automatic balancing of
output activity between the terminals in the group. Another use
of this type of grouping would be to group one high-speed
terminal on a high-speed line with one or more low-cost, low-
speed, dial line terminals. The dialup terminals woculd be used
essentially as input devices and the majority of job output of
jobs from these terminals would be processed on the high-speed
terminal. <This approach, if applicable to the user installation,
could result in both line cost and terminal cost savings.

3. The use of device groups in ASP is dynamically alterable via the
ASP MODIFY operator command (see ASP Conscle Operator Guide,
MODIFY verb) or via the ORG= parameter which may be specified by
the application programmer on the ASP //*#MAIN control card. (See
ASP Application Programmer's Manual, //*MAIN card.) The default
for groupname on DEVICE cards in the ASP initialization deck,
when it is not specified is "LOCAL". It should be noted that an
ASP input device (RDR, TA7, TA9) should not be defined with a
groupname unless there are appropriate output devices (printers,
punches, etc.) that have the same groupname.

174

4.

A unique group name which may be used in "ANYLOCAL".
Specifications of ANYLOCAL on a device card in the GNAME=
parameter (Input Devices only) will allow output for jobs
submitted from these devices to be processed on any local (non-
RJP) device of the appropriate type. This parameter may also be
specified via the ORG= parameter on the //#MAIN card or the DEST=
parameter on the //*FORMAT card. This group name (ANYLOCAL)
should not be referenced in any assignment by group (see ASP
Operator's Manual, under MODIFY verb).

Explanatory diagrams of the foregoing discussion follow.

1.

Installation Device Configuration/Location.

Physical

Location:

FLOOR1 READER-NAME=RD1,GROUPNAME=FLOOR 1
PUNCH-NAME=PU1,GROUPNAME=FLOOR1
PRINTER-NAME=PR1,GROUPNAME=FLOOR1
PRINTER-NAME=PR2,GRCUPNAME=FLOOR1

FLOQR2 READER-NAME=RD2,GROUPNAME=FLOOR2
PUNCH-NAME=PU2, GROUPNAME=FLGOR2
PRINTER-NAME=PR3, GROUPNAME=FLOOR2

Devices READER-NAME=RD#4 , GROUPNAME=CHANREP

attached to a PRINTER-NAME=PRY4,GROUPNAME=CHANREP

channel PUNCH-NAME=PU3,GROUPNAME=CHANREP
repeater

RIJP terminal READER-NAME=RM(001RD1, GROUPNAME=REMOTEA

Name=RM001 PRINTER-NAME=RMO001PR1,GROUPNAME=REMOTEA
PUNCH-NAME=RM(0 1PU1,GROUPNAME=REMOTEA

physically TERM TYPE=5360,LEASED LINE,HI-SPEED

near each

other

RJP terminal READER-NAME=RMO02RD1,GROUPNAME=REMOTEA

RJP terminal READER-NAME=RMOO3RD1,GROUPNAME=RM0O03
name=RM003 PRINTER-NAME=RMO03PR1,GROUPNAME=RM003

In the

Jobs in
cutput

Jobs in

PUNCH-NAME=RM0O03PU1,GROUPNAME=RMO03
TERM TYPE=S360,LEASED LINE,HI-SPEED

diagram for examples:

putted from RD1 (FLOOR1) would have their output directed to
devices on FLOOR1 only (PU1,PR1, or PR2).

putted from RD2 {(FLOOR2) would have their output directed to

output devices on FLOORZ2 only (PU2, PR3)

175

Jobs inputted from RDU4 {(connected to channel repeater) would have their
output directed only to output devices also on the channel repeater
(PU3, PRU4)

Jobs inputted from remote readers RMOO1RD1 or RMOO2RD1 would have their
output directed to the RM00O1 output devices. (RMOO1PU1, RMOOTPR1) i.e.,
RM002 has no output devices but shares groupname REMOTEA with RMOO1.

Jobs inputted from remote reader RMOO3RD1 would have their output
directed to RM003 ocutput devices. (RMO03PU1, RMOO3PR1).

A job submitted from any of the input devices previously described which
contained in its JCL a //*MAIN control card with ORG=ANYLOCAL may have
its output directed to any of the appropriate local (non-RJP) devices,
(PU1, PR1, PR2, PU2, PR3, PU3, PRO).

MAIN DEVICE SCHEDULING

Main Device Scheduling (MDS) is requested by the presence of the
SETPARAM initialization card. To omit MDS, do not include the SETPARAM
card. All tables (i.e., SETNAMES, SETUNITS) will be generated if needed
but no MDS processing will be possible.

The operation of the MDS is affected by the parameters chosen for the
ASP initialization cards: DEVICE, SETPARAM, SETNAME, and SELECT.

DEVICE

The MAIN subparameter of the DEVICE card contains a console class for
the device being defined. By using the same destination for devices
in a specific location, messages pertaining to these devices will be
routed to the specified class. For example, given two 2314
facilities and one tape:

DEVICE, MTYPE=2314 ,MSTATUS=DA,MAIN=(130,5Y1,55, ON)

-

[]

[]
DEVICE, MTYPE=2314 ,MSTATUS=DA,MAIN=(137,5Y1,55,0N)
DEVICE, MTYPE=2314,MSTATUS=DA,MAIN=(230,SY1,S6,0N)

L]

[

®
DEVICE, MTYPE=2314 ,MSTATUS=DA,MAIN=(237,SY1,S6,0N)
DEVICE,MTYPE=24009,MAIN=(180,5Y1,57,0N)

messages could be split specifying:

CONSOLE, DDNAME=CNDISKA,DEST=S5
CONSOLE, DDNAME=CNDISKB, DEST=56

CONSOLE, DDNAME=CNTAPE, DEST=57
CONSOLE, DDNAME=MDSLOG, DEST=SGROUP

The MSTATUS subparameter allows the specification of device
removability and expected volume serial. These parameters, normally
defaulted to removable (RM) and no volume serial, can be used to
indicate a managed device that contains a permanently resident
volume. This will inform MDS of the volumes present prior to the
Main Processor being IPLed. For example:

DEVICE,MTYPE=2314 ,MSTATUS=(DA,PR,JOBLIB) ,MAIN=(230,5Y1,S5,0N)

176

would establish the JOBLIB volume-ras permanently resident on Main
Processor SY1 unit 230 and prevent MDS from requesting it to be
mounted on another system.

Note: When the Main is IPL'ed the status of all managed devices is
interrogated and overrides specifications established by the
DEVICE card at initialization.

Volume removability may be specified as ND indicating that no
disposition checking is to be done for the volume. All references to
this direct access volume will be treated as if they were DISP=SHR
even though they are not, and the volume is considered as ASP
mounted. Care should be exercised in the use of this option since
data set contention andsor invalid volume updating (in a shared DASD
environment) since normal MDS checking is bypassed.

In a multiple main configuration problems can occur if duplicate
volume serials exist for direct access devices. If a pack must be on
more than one main and cannot be physically placed on a shared
device, the devices should be defined as "logically™ shared and made
non-removable (either ASP mounted or OS permanently resident or 0OS
reserved). For example:

DEVICE, MFYPE=2314,MSTATUS=DA,MAIN=(230,5Y1,51,132,SY2,52)

If this is not done jobs referencing the duplicated volume will not
be setup and will remain in the MDS mount queue.

SETPARAM

The ADDRSORT subparameter can be used to dictate the order in which
MDS looks at devices in attempting allocation. This is accomplished
by coding ADDRSORT=NO and results in the SETUNITS table(s) being
ordered in the same sequence as the DEVICE cards in the
initialization deck. This may be useful in cases when device
locations are not physically ordered by ascending device address.

SETNAME

It is required that all names specified in the NAMES subparameter
must be those specifiable as UNIT parameter in the 0OS DD card. That
is, all generic names for managed direct access and tape devices must
be included in SETNAMEs.

By specifying the same names in a different order for the same MTYPE
it is possible to create a "preference" order of device selection.
This preference might be to achieve channel separation if possible
while still allowing this job to run if separation can not be
achieved. For example with devices on three channels:

DEVICE,MTYPE=2314CH1,MSTATUS=DA,MAIN=(130,5Y2,51,0N)
DEVICE,MTYPE=2314CH2 ,MSTATUS=DA,MAIN=(230,5Y2,S1,0N)
DEVICE,MTYPE=2314CH3,MSTATUS=DA,MAIN=(330,5Y2,51, ON)

SETNAME,MT'YPE=2314CH1,NAMES={DACH1)
SETNAME,MTYPE=2314CH2,NAMES={(DACH1, DACH2)
SETNAME,MTYPE=2314CH3, NAMES=(DACH1,DACH2 ,DACH3)
SETNAME,MTYPE=2314CH1,NAMES=(DACH2,DACH3)
SETNAME,MTYPE=2314CH2,NAMES=(DACH3)

Requests for DACH1 would attempt allocation on Channel 1 then Channel

2 and finaily on Channel 3. Similarly requests for DACH2 would
attempt alliocation first on Channel 2 then Channel 3 then Channel 1.

177

Although a name may appear in more than one SETNAME card, all MTYPEs
applying to the name must be the same type (either DA or TA).

Note: To use devices outside of MDS control define 0S names to
include the desired devices and then do NOT include these
names as SETNAMES. -

SELECT

Several subparameters on the SELECT card affect the operation of MDS
allocation on a Main Processor basis (SDEPTH, SBAR, SPSPAN, SJSPAN,
INCR, INCL, SAGER, SAGEL, SAGE). Through these MDS allocation may be
biased toward one Main Processor (a larger SDEPTH, SPSPAN and
SJISPAN) , devices may be pooled but still made more available to one
Main Processor (a higher SBAR), and jobs on a specific Main Processor
may be favored for selection (a higher INCR, INCL and AGEing
parameters). :

Note: The DEPTH parameter on the SETPARAM card applies to all jobs

Ain setup while SDEPTH is for one Main Processor only.

DJC DESIGN CONSIDERATIONS.

For integrity of complex networks, .it is suggested that a prototype of
the net be created using the specified DJC control cards with IEFBR14
jobs and executed in a production environment.

HOW.TO CHANGE INTERNAL TABLES

INPUT SERVICE READERS

Some of the default values used by the readers phase of Input Service
are set by EQUATE statements placed at the beginning of the RDINISH
module assembly. These are:

RDIBTCHS=10 Batch size - number of OS jobs per

BSP Input Service interpreter job

Range: 1 ton n = ASP buffer size - 12 - L'JDSFSIZE
L'JDSVSIZE

A buffer size of 792 bytes, for example, gives a maximum n=19. For a 2K
buffer, n=50. For a 4K buffer, n=101.

RDIMXJDS=50C Absolute maximum batch size permitted. The actual

range: 1 to n maximum used is the lesser of RDIMXJDS or a maximum

that is internally calculated (as for RIDBTCHS).
An operator over-specification results in the use
of the "actual maximum" herein defined.

RDIBLKCR=5 Number of CCW's to be chained for CR. A value

range: 1 to 5 greater than 5 requires restructuring the data
CSECT. "One" is equivalent to *X CR,C.

RDIBLKTR=1 Default tape blocking factor. If most tapes read

178

range: 1 to 200 by TR have the same blocking factor, respecify

this value to save operator entry of the TBLK=
parameter.

RDIPRTY=15 . Priority of scheduling the ASP interpreter job.
range: O to 15 Reducing this value has two possible benefits. It

reduces the size of the ASP job queue, since each
interpreter job represents (RDIBTCHS) O0S jobs.
And it reduces the ASP DASD space for these jobs,
since an interpreted job requires several files.
The chief disadvantage is that these uninterpreted
jobs are inaccessible to all of the system
outside of the interpreter, and thus cannot be
modified or inquired upon.

RDITAPMD=X"'C3"* Default tape mode = 9/1600.
other: - ‘cg*' = 9,800, *93* - 7,800, "53' = 7/556,
13 = 7/200.
RDITAPND=X'07" Tape unit action at EOF = Rewind.
other: *03' No Rewind, '0OF' Rewind-Unload.

EDRGPORG SETC ‘ANYLOCAL' The 'device group' for DR. In order to get
cutput from jobs entered via DR at least one
output device_ (punch, printer) must be in the
same group.

EPOLYGRP SETC "ANYLOCAL" The attributed group for a POLYASP reader.

179

DETERMINING WHAT MODULES TQO BE MADE RESIDENT

ALOADS - ALOAD Statistics DSP

The ALOADS DSP is designed to assist the system programmer in choosing
which modules are candidates to be made resident in the ASP region of
main storage. When the DSP is activated it accumulates statistics for
eath ALOAD macro issued within the ASP region. The data includes module
name and how many times each moduie was referenced by an ALOAD. The
statistics are summarized and printed on the SUP console when the ALOADS
DSP is canceled. .

To invoke ALOADS - *X,ALOADS
To start recording - *S,ALOADS
To stop recording - *C,ALOADS (causes data printout)

Signon
The following module residency suggestions are based on account
experience and use of the ALOADs DSP. They are suggestions only and
each user should evaluate their own requirements in this area.

Reason Suggested Resident

High Main Processor Activity MSVINIT
MSVTERM
MSVQMAP
MSVDATA (1 per ASP scheduled
initiator)

High INQUIRY/MODIFY ATIVITY INQDRVR
MODDRVR
WEDJICT

High Job Setup Activity MDSALLOC
MDSBRKDN
MDSVERFY

High Reader/Interpreter Activity RICONTL
RICBSCAN
RIFETCH

High Print Service Activity PRTSETUP
PRINT
PRTOUT
PRTDATA (1 per normally active
printer (local or RJP))

High Input Service Activity RDLOGIC
(see also High Reader/Interpreter CR
Activity) RDDATA (1 per normally active input

device (local or RJP)})

Generally, unless some unique situation dictates otherwise, the JSS
module should definitely be made resident.

180

CHAPTER 7. WRITING DYNAMIC SUPPORT PROGRAMS

INTRODUCTION

Support functions of the ASP system are implemented by Dynamic Support
Programs (DSPs). DSP's are multiprogrammed ASP system components that
are scheduled via the ASP Job Segment Scheduler (JSS). DSP's can be
directly related to a job's execution, such as, Reader/Interpreter,
Main, or can be a background utility, such as, Card-to-Tape. All of the
resources of ASP are available to the DSP's.

The user has the option of defining and writing his own DSP's. When
defining a function or program to be written that is not directly
related to JOB execution the user should consider all of the options
available for executing the function. Some of the options are:

e Writing the program to execute as a normal OS job
e Writing the program and entering it as a procedure in SYS1.PROCLIB
® Writing the program to execute as a DSP in the ASP region

An advantage of using either of the first two options is in the event of
an abnormal termination. ASP, having the responsibility of scheduling
many Main Processors concurrently as well as the supporting functions,
could be impacted by a failing DSP. The DSP should be completely
checked out under control of POLYASP before being placed in a production
system.

ASP has provided a feature, Disk Reader, that can read members of a
partitioned data set and then have them submitted to ASP for scheduling
as jobs on a Local or Real Main Processor. This is comparable to 0S
starting jobs via the START command, that is, START INIT. Jobs started
via the Disk Reader can take advantage of the 'HOTJOB' feature in ASP.

GENERAL DISCUSSION

Time sharing in the ASP program is accomplished via repetitive
relinquishing of control to the ASP Multifunction Monitor. The
multifunction monitor's allocation of control is based upon the priority
assigned to the DSP when it was introduced into the ASP systen.
Consequently, the DSP's with the highest priorities have more
opportunities for CPU time than do DSP's with lower priorities.

A DSP is scheduled for execution when a job requiring its function is
ready for processing and the required resources (printer, card reader,
tapes, and so forth) if necessary for scheduling, are available. The
Job Segment Scheduler scans the Job Control Table (JCT) for jobs that
are ready for processing. This scan occurs when a job enters the system
(for example, from a card reader), or when a support function terminates
and returns to the Job Segment Scheduler. When all devices that are
necessary for scheduling for a DSP are available, the DSP is loaded from
the system residence device (using the 0S LOAD facility via the ASP
ALOAD macro).

When the DSP is activated, it becomes a support function, and an entry
is made in the Function Control Table (FCT) for that function. This
entry contains the general reqgister save areas and the return point for
the function when it relinquishes control. (Control is relinquished by
a support function when the function issues an AWAIT macro.) In

181

addition, the FCT entry contains a pointer to the Active Job
Description/Accounting Block Table (Active JDAB Table) for the scheduled
job. This FCT entry also contains the Scheduler Element sequence number
for the scheduled DSP.

A DSP communicates with the Job Segment Scheduler, through a series of
tables, to locate the job and the data to be processed. The primary
table that identifies a job is the Job Description/Accounting Block
(JDAB). A JDAB entry is created for each job by Input Service or the
call DSP function when the job enters the system. The entry contains
job control information, such as job name, job number, and estimates of
execution parameters; it also contains the Scheduler Element for each
segment of processing for the job. In addition, the JDAB contains a
pointer to the Job Data Sets block (JDS). The JDS contains the File
Description Block (FDB) information and the data set name for each data
set created for the job.

When a DSP becomes active, it locates it's scheduler element and the
associated parameter cards (located in conjunction with the Scheduler
Element). At entry to the DSP, the Support Processor devices specified
by type in its Device Requirements Table entry may have already been
allocated to it. If these devices satisfy the processing requirements
of the DSP, no GETUNIT is required. If, however, the parameters
associated with this job specify by name units other than the ones
assigned, the DSP should return the devices via PUTUNIT macro and obtain
the new set of devices by means of the GETUNIT macro. The discussions
of GETUNIT and PUTUNIT in Appendix A describe the various means of
obtaining and releasing devices.

Data sets to be processed are located by a pointer in the Job
Description Accounting Block to the Job Data Sets Block. The JDS
contains an FDB and a data set name for each data set associated with
the job.

If a driver module is being executed, it must ALOAD (and later ADELETE)
any other modules it requires during execution. However, a reentrant
program that requires a discrete data area for each execution does not
load its own CSECT. The Job Segment Scheduler performs this task, since
the name of the CSECT is included in the DSP Dictionary. The Job
Segment Scheduler loads the appropriate CSECT address into register 13
prior to execution of the reentrant DSP. The only required statement to
address this CSECT is:

USING CSECT-name,R13

Additional storage, if required, is obtained by use of the AGETMAIN
macro-instruction, and unit record and tape devices are opened using the
ASPOPEN macro-instruction.

Once the DSP has verified its parameters and has successfully obtained
its devices, it issues a signon message to notify the operator that the
job is on the system, and then issues the LOGIN macro-instruction.
LOGIN establishes the means by which the operator may communicate with
the DSP and obtains the DSP's time-on the system via the OS TIME macro-
instruction.

The DSP has now satisfied all its preprocessing requirements, and
processing of the data sets may commence. Processing should consist of
short segments (one or two milliseconds). For most DSPs these breaks
occur naturally. If lengthly computation is required, however, AWAIT
macros should be interspersed at reqular intervals. This permits DSP's
of higher priority to execute. A DSP designed for lengthy computation
must be assigned a low priority to ensure that the higher priority DSP's
have adequate time for execution.

182

When processing is complete, the DSP issues a LOGOUT macro-instruction
to terminate operator communication and to post the JDAB with the DSP's
time-on and time-off. It then uses the APUTMAIN and ADELETE macro-
instructions to free storage and to delete any processing modules that
it ALOADed, and closes its devices using ASPCLOSE. Finally, the DSP
updates the JDS, and JDAB, returns them to the direct access storage
device, and returns control to the Job Segment Scheduler.

Note that specialized ASP macro-instructions ALOAD, ADELETE, AGETMAIN,
APUTMAIN, ASPOPEN, ASPEXCP, ASPCLOSE, and ASPDCB are to be used in place
of the corresponding 0S functions.

Return to the Job Segment Scheduler may be made under circumstances
other than normal end-of-job. Erroneous DSP parameters that preclude
processing should be indicated by a console message, followed by an
immediate return to the Job Segment Scheduler. If the required devices
are not available when the job is scheduled, the DSP may cancel the job
so that it may be reentered into the system at a later time, or it may
return to the Job Segment Scheduler for specialized rescheduling, in
which case, the DSP is rescheduled when the devices become available for
its use. A DSP may allow the operator to issue a *RESTART or *CANCEL
command during processing, or it may be forced to terminate prematurely
because of unrecoverable error conditions. For consistency of
accounting operations, a DSP should always issue a LOGOUT instruction if
it has commenced processing, regardless of the reason for termination.
However, if the #*CANCEL command is received as a reply to the signon
message, the LOGOUT should be omitted to avoid time posting, and the Job
Segment Scheduler will assume the function of terminating operator-DSP
communication.

When the DSP returns control to the Job Segment Scheduler, any devices
allocated to the DSP are released, the DSP is deleted, its CSECT (if
any) is deleted, and the Job Segment Scheduler performs end-of-function
processing. The DSP may return to the Job Segment Scheduler with one of
the following return codes in Register 15:

code Definition

0 The function is completed. The Scheduler Element in
the JCT for this job and function is set complete,
and this job is returned to the queue.

4 The function has returned for later scheduling. The
Scheduler Element in the JCT for this job and
function is set not-active and not-complete, and the
job is returned to the queue in operator hold status.
It must be released for further processing to occur.

8 The function has returned for specialized
rescheduling. The rescheduling requirements may be
in a buffer or the DSP's FCT GETUNIT list if two or
less devices are required. Register 1 must contain
the address of the buffer or list. If a buffer is
used the first four bytes of the buffer must be zero
followed by 1list(s) containing the reschedule
requirements in the format of the GETUNIT list. The
job will be rescheduled when the device requirements
in the 1list can be satisfied.

12 The FCTJPURG return to JSS by a DSP indicates that
all job scheduler elements except PURGE are to be set
complete and the job should be-purged from the system
without any further activity.

183

Code Definition

16 The function has returned for canceling with print.
The Scheduler Elements in the JCT for this job for
all functions except Print and Purge are set
complete, and this job is returned to the gqueue.

- PROGRAMMING CONSIDERATIONS

The writing of a DSP is governed by a number of programming conventions
unique to ASP. These conventions were established to implement the
rmltiprogrammed environment in the most efficient manner possible. They
include general register assignments, loading conventions, table
referencing techniques, DSP communication conventions, and restrictions
on the use of 0OS Control Program Services.

DSP's are coded in the 0S Macro Assembler Language. BAll macros and
resident ASP programs have been programmed with the following general
register assignments:

Register Description
0-1 Parameter registers —-- not saved by called program
2-9 DSP scratch registers —- saved by called program
10 Standard base register for all DSP's
11 Pointer to Fumction Control Table entry for DSP
12 Pointer to ASP Transfer Vector Table (TVTABLE)
13 Used by DSP to establish CSECT base, or as a pointer
to a save area for 0S
14 Return address of calling program
15 Address of calied program

Registers 0 through 9 and registers 13, 14, and 15 are available to a
DSP except when the DSP is calling another program, either an ASP
resident program, an OS supervisor program, or a subprogram of the DSP.
Because registers 0, 1, 14, and 15 are used in program calls, it is
advisable to restrict the use of these registers.

Register 10 is the standard base register for all DSP's. DSP's may be
coded with other base registers, but adherence to the standard base
register convention will facilitate program checkout.

Register 11 points to the FCT entry for the DSP. The Multifunction
Monitor depends upon the correct setting of register 11 at all times to
maintain control of the system. Register 11 must never be altered by a
DsSP.

Register 12 locates the TVTABLE. Since all DSP's and their subprograms
are loaded dynamically, they must not contain unresolved symbols.
Consequently the TVTABLE is designed to provide a communication link
between the DSP's and the ASP resident functions. All ASP macros depend
upon the TVTABLE to provide this communication. Note that the ASP
system must be totally reassembled whenever the order of the entries in
the TVTABLE is changed.

184

To provide flexibility and insulation over subroutine calls in the ASP
system, a linkage routine was written to save and restore registers over
subroutine calls. The calling sequence was implemented by three macros:

1. ACALL: generates linkage through ASAVERTN to any other ASP
subroutine.

2. ARETURN: generates return linkage with return codes back through
ASAVERTN to the original calling routine.

3. SAVENTRY: dgenerates a map of the register save area used by
ASAVERTN.

The save areas are obtained from one of three sources: (1) a chain of
save areas reserved for an FCT, (2) a pool of save areas available to
all PCT's, and (3) a save area obtained by AGETMAIN. Reserved save
areas are obtained by AGETMAIN and are chained off the FCT prior to
their use. The pool of save areas is built at ASP initialization time
as specified by the ADDSAVE parameter on the OPTIONS card. AGETMAIN
save areas are obtained as needed.

All tables in the ASP system are referenced via dummy sections
(DSECT's). This convention facilitates changes to these tables and
permits the reference to these tables to be standardized. Reference to
table fields assuming contiguity or a given order in the table should
not be made. All DSECT's are controlled by ASP macros. These macros
are always placed at the head of a program for ease of reference and
should be followed by a control section (CSECT) for the program being
assembled. A TVTABLE-macro, which establishes the DSECT for the
TVTABLE, should be included for every program in the ASP system.

DSP's must be writtlen as serially reusable modules or reentrant. They
are loaded via the ALOAD macro and may not contain any unresolved
symbols. It is desirable to organize a DSP into a serially reusable or
reentrant driver and one or more serially reusable or reentrant
subprograms that may be dynamically loaded. When dynamic subprogram
loading is used by a DSP, the loading must be via the ALOAD macro. The
DSP is responsible for deleting (via the ADELETE macro) all subprograms
that it loads.

Task switching in the ASP system is accomplished via the AWAIT or
AWAITOFF macros. These macros signify that the DSP is waiting for an
event to be completed before the DSP can proceed. A DSP with a long
compute cycle (several milliseconds) should issue an AWAIT macro, with
the event it is waiting for already posted as completed. This permits a
DSP with higher priority to execute. The normal time interval between
AWAITs is one-to-two milliseconds. (Note that the ASP Input/Output
routines will usually cause an AWARIT macro to be used as each buffer is
emptied.)

All OS Control Program Services are available to ASP; however, a DSP
should not use a WTO, WTOR, WAIT, or LINK macro, nor use any component
of 0OS that uses one of these macros. Note that the queued access
methods (QSAM or QISAM) use these macros. The use of these macros
disrupts the flow of processing on the Support Processor and may cause a
degradation in system performance, by possibly causing ASP itself to
wait. Care should be taken also to ensure that any OS function that is
used does not cause a system ABEND following a noncatastrophic error)
exit.

185

CONSOLE SERVICE CONSIDERATIONS

All DSP operator communication is effected through the ASP Console
Service routines. Messages are routed to operator consoles by Console
Service via the MESSAGE macro on the basis of the console number and/or
the destination code (DEST). Each console waintains bit indicators for
the message destination codes it accepts.

For two-way communication with the operator, Console Service permits a
DSP to define a program entry point for accepting asynchronous entries.
This entry point is defined via the LOGIN macro. The asynchronous
program entry point must be in the resident portion of the DSP or the
DSP's CSECT and must be programmed to permit entry at any time during
processing. The asynchronous program provides the interface between the
Console Service routine and the DSP. After LOGIN, the operator may
refer to a DSP by using the ddname or unit address of any of its
associated (via GETUNIT) devices. The DSP name itself may also be used
if there is only one copy of the DSP currently logged in.

Messages sent by an operator from a console may be answered via the
MESSAGE macro. This macro permits a reply to be routed back to the
operator console of origin. The console number of the originating
console is in the input console message format.

ASP. INPUT/OUTPUT CONSIDERATIONS

The ASP Input/Output programs (ASPIO) provide complete management of the
direct access storage devices assigned to the ASP system. The program
provides dynamic direct access storage device storage allocation,
buffering, blocking, and deblocking for DSP's on sequential data sets.
In addition, there is a single r'ecord transmission facility for
accessing the disk resident tables of ASP, such as the JDAB and JDS.

A 20-byte control block, the File Description Block (FDB), is
established for each multiple record data set to be read or written.
The FDB is referenced on all calls to ASPIO programs in order to define
the data to be processed. The ASPIO programs work in a locate mode
under control of the programmer. The programmer is responsible for
performing all the necessary data moves into or out of the buffer pool
after the ASPIO programs have located the space. In addition, the
programmer is responsible for issuing an AOPEN and the corresponding
ACLOSE macro for all data sets referenced, as well as for ensuring that
there is a corresponding Liula macro for each ALOCATE macro that is
issued.

Occasionally the ASPIO programs are unable to respond immediately to an
input/output request and are forced to issue an AWAIT for the calling
DSP. This AWAIT is issued internally, outside the control of the DSP
programmer. Consequently, the programmer must allow for this AWAIT to
take place whenever an ASPIC macro is used and must remove any time-
dependency from that area of his program.

ASP tables are read from and written to disk by a separate set of
input/output macros. Since these tables are single record data sets,
their treatment differs from that of normal ASP data sets. The FDB
associated with these tables is only six bytes in length. Since the
tables are not read in a buffered mode, there is no requirement to open
or close them. Rather, the AREAD macro calls for the read of a track,
and the AWRITE macro rewrites the track to disk. If a table is read and
is not updated (and consequently does not have to be rewritten), it may
be released via the ARELEASE macro. An AREAD must be followed: by either
an AWRITE or an ARELEASE. To create a new single-track record, an
AWRITE macro is issued with zeros in the last two bytes of the FDB, and
the data buffer address stored in the first four bytes.

186

EXAMPLES OF ASPIO USAGE

The following examples illustrate the use of ASPIO in the four basic
modes: single-record read, single-record write, multiple record read,
and multiple record write. There are, of course, many optional uses of
these macros; the examples below illustrate only the most common, direct
usages of ASPIO:

e Single-record read. This example illustrates the reading of a
single-record data set. It is assumed that a six-byte single-record
File Description Block (FDB) has already been created, such as a
parameter buffer FDB in the Job Description Accounting Block (JDAB).
Assuming that location AFDB contains the FDB for the record to be
read, the following sequence should be used:

LA R1,AFDB
BAREAD FDB=(R1)
*
]
*
LA R1,AFDB

ARELEASE FDB=(R1)

The AREAD causes ASPIO to get a buffer and to read the required
record. Upon return from AREAD, the address of the buffer that
contains the record is in the first four bytes of the FDB. After
processing is complete, the user should either write the buffer back
with an AWRITE or release it, as illustrated, with ARELEASE.

® Single-record write. The example below illustrates the writing of a
single-record data set. To create a new single-record data set, a
programmer must use a six-byte FDB with the last two bytes set to
zero to signify to ASPIO that this is a new single-record data set.
In addition, the programmer must obtain a buffer from ASPIO via the
GETBUF macro and must place the address of the buffer into the first
four bytes of the FDB. On the other hand, if the record to be
written had been read previously, the FDB that was used to read the
record should be used so that the record will be replaced in its
original location. This example illustrates the writing of a new
record and assumes that an FDB, AFDB, exists. The write sequence
is:

AGETBUF

ST RO,AFDB
LA R1,AFDB
AWRITE FDB=(R1)

When the instruction sequence above has been executed, the record
will have been transcribed to disk and the buffer will have been
returned to the buffer pool.

e Muitiple record read. BAll multiple record disk data sets are
controlled by. ASPIO, which is responsible for track allocation,
blocking of logical records into physical records, buffering, and
physical disk input/output. The ASPIO program works in locate mode,
and it is the responsibility of the user to perform the necessary
processing tasks on the data as it resides in the ASPIO buffer.

Each successive locate for data releases the previous logical
record; consequently, either the ASPIO user must complete processing
of the current record before requesting the next record, or he must
move the current record out of the ASPIO buffer in order to retain
it.

A 20-byte FDB, which is usually located in the Job Data Sets Block
(IJDS) for the job, is used for controlling multiple record

187

transmissions. Processing is initialized by the use of the AOPEN
macro, after which the programmer must issue an ADEBLOCK for each
successive record he reads. When processing is complete, the ASPIO
user must issue an ACLOSE macro to terminate reading.

In the following example, it is assumed that the FDB is located at
AFDB, that the DSP requires low priority, and that transmission is
to be single record. The instructions necessary to read the data
are:

LA R1,AFDB
AOPEN FDB=(R1) , PRTY=3, TYPE=IN
X LA R1,AFDB

ADEBLOCK FDB=(R1) ,EOF=Y,EOD=Z (not illustrated)
(Register 1=location of first byte of record)

(Register O=byte count of record)
[J
.
L 4

B X
Y LA R1,AFDB
ACLOSE FDB=(R1)

e Multiple record write. To write a multiple record disk data set,
the ASPIO user follows a procedure that is very similar to that for
reading. The FDB, AOPEN, and ACLOSE processes are identical.
However, in using locate mode to write, the ASPIO user issues two
macros per logical record instead of one. The first macro, ALOCATE,
locates the required space, after which the user must move the data
to be written into the located area. The second macro, ABLOCK,
signals to ASPIO that the data has been moved. The byte count for
ALOCATE must always be equal to or greater tham the ABLOCK count.

As in previous examples, the following sample program assumes an FDB
at location AFDB and, in this case, a count in a field COUNT.

LA R1,AFDB

AOPEN FDB=(R1) ,PRTY=2,TYPE=OUT
LA R1,AFDB

L RO ,COUNT

ATLOCATE FDB=(R1) ,COUNT=(R0)

(Register t=pointer to the first byte of the located area, and the
user must now move data into that area.)

LA R1,AFDB
L RO,COUNT
ABLOCK FDB=(R1) ,COUNT=(R0O)

(Data is now blocked into the buffer, and ASPIO is ready to -accept
another request.)

LA R1,AFDB
ACLGSE FDB=(R1)

ASSEMBLING A DSP

All components of the ASP system are maintained in data sets called
ASP.SOURCE and ASP.MACROS. These data sets contain the program modules
and the macros unique to ASP. When existing modules are to be modified,
the OS IEBUPDTE program is used to move and to update the module to be
assembled into a scratch data set prior to assembly. If the module to
be assembled does not exist in ASP.SOURCE, it is placed directly into

188

the

input stream. 1In either case, during the assembly phase, the 0S

Macro Library (SYS1.MACLIB) is concatenated with ASP.MACROS to provide
access to the ASP macros.

Note: All ASP modules are to be linkedited with the "RENT" parameter in

Dsp

The

the linkedit step. When writing a DSP an excellent reference
source would be an ASP DSP of similar function.

CHECKLIST
following list represents the requirements for writing DSP's:

The REGISTER macro-instruction or equivalent equate statements must
be used.

All ALOCATEs must have associated ABLOCKs even if the count is zero.
DSP's are to be serially reusable or reentrant.

An ALOAD macro is to be used when subprogram modules are to be
loaded.

Dynamically loaded subprogram modules are to be written as reentrant
programs.

All modules that are ALOADed must be deleted via the ADELETE macro
prior to termination.

DSP's may not have unresolved external references. Access to
resident components is achieved via the Transfer Vector Table.

DSP's must issué a LOGIN for operator communication and must support
all verbs with a positive response (that is, a DSP may not ignore a
console message).

Upon termination, a DSP must issue a LOGOUT unless it has done no
processing.

A DSP must never cause the ASP system to terminate abnormally.
Unrecovered error conditions should be signaled to the operator for
a decision concerning the appropriate action. The user should take

. advantage of the Failsoft facility.

Dsp

The
for

In general, all unit record input/output should be performed at the
execute channel program (EXCP) level, using ASPOPEN, ASPEXCP,
ASPCLOSE, and ASPDCB.

DSPs that execute without interrupt for more than a few milliseconds
should issue dummy AWAITs to allow higher priority DSPs to execute.

The 0S macros WTO, WTOR, LINK, and WAIT must not be used, directly
or indirectly.

0s functions that use ABEND as an error exit must not be used,
directly or indirectly.
INTTIALIZATION

following list represents the recommended sequence of required tasks
the initialization phase of a DSP: (This outline is only a guide

since, at times, steps are omitted or the sequence'is varied to reflect
particular processing requirements.) ’

189

1. Establish base register for DSP.
2. Locate JDAB for the job via the Active JDAB Table (AJDAB).
3. Read the JDAB.

4. Locate Scheduler Element for the support function and read the
parameter buffer, if any.

5. Extract necessary information from the parameter buffer and
release the buffer.

6. Inspect devices that were assigned (if any) and request
reassignment of devices via GETUNIT as required. Cancel or
request specialized rescheduling if required devices are
unavailable.

7. Locate and read the Job Data Sets Cohtrol block (JDS), if
applicable.

8. Extract pertinent FDB(s) for data set(s) to be processed and
release the JdJDS, if applicable.

9. Release the JDAB.
10. Issue a signon message.
11. TIssue the LOGIN macro-instruction.

12. Begin execution.

DSP TERMINATION

The following list represents the recommended sequence of required tasks
for terminating processing by a DSP:

1. Close all open data sets.

2. Read the JDAB.

3. Read the JDS.

4., Update the FDB(s) for all data sets written.
5. Write the JDS.

6. . Post required accounting information (lines printed, cards
punched, etc.) in the JDAB.

7. Issue LOGOUT macro-instruction.

8. Write JDAB to disk.

9. Load JSS return from TVT table.

10. Return to the Job Segment Scheduler with the appropriate

completion code in R15.

REQUIREMENTS FOR WRITING DYNAMIC SUPPORT PROGRAMS FOR RJP

The code required for initiation of I/0 to a local device is the same as
to a remote device. That is, the user must issue an ASPOPEN, ASPEXCP,
and ASPCLOSE sequence. Use of the ASPDCB control block macro is

190

required for interface standardization between the user and RTAM. The
RIPCAN parameter in the ASPEXCP macro must specify a close exit path,
meaning the user must issue an ASPCLOSE. For issuing console messages
to and from the remote terminal, the ASSOCNTL=D console number will be
in the allocated SUPUNITS entry. Data chaining is only supported for
print type devices, and command chaining is supported for all output
devices. The Writing Dynamic Support Programs Chapter within this
manual provides a detailed discussion of DSP standardized conventions.

For support of callable DSP's using both remote input and output
devices, the user must follow the following logic. Prior to opening of
any devices, all START processing commands must be satisfied (that is,
*S CC in response to the CC logon message). The output must be ASPOPEN
prior to any input device.

DSP FAILSOFT

ASP DSP Failsoft provides an interface to allow recovery from
program checks which would otherwise result in loss of the ASP system.
The interface is provided through use of the SPIE facility of OS and a
set of user-supplied loadable recovery modules. The SPIE exit routine
will save the program check status and cause an entry to the retry
scheduler code upon return to 0S. The retry scheduler calls ASPABEND
and then ALOADs and calls the retry driver module. Upon return, a check
is made of the return code to determine if the failing DSP should be
retried or terminated 'and the appropriate action is taken.

Modules:

AFSDRVR: ASP Failsoft Driver - Controls the flow between the recovery
modules. ALOADS, CALLS, and ADELETEs the general and/or special
recovery routines and returns to the retry scheduler with a return code
specifying retry or terminate. The code is passed to the driver module
by the recovery routines.

AFSINIT: ASP Failsoft Initialization - Initiate the recovery CSECT and
notify the operator of the failure. Causes control to pass to AFSDC,
AFSRCVY, or AFSxxxxn special recovery module depending on availability
of special recovery modules and operator input.

AFSDC: ASP Failsoft Dump Storage Interface - Provides the operator with
the information necessary to call the ASP DC DSP in order to attempt
recovery by displaying and/or altering storage. The operator may cause
control to go to the driver and a retry or to the standard recovery
routine.

AFSRCVY: ASP Failsoft Termination - Frees units belonging to the DSP.
ADELETEs loaded modules and data CSECTs where possible.

AFSTERM: ASP Failsoft Termination - Restores the DSP for a retry
attempt. _

AFSxxxn: DSP Failsoft Speicalized Recovery Modules - Special modules
written to handle unique recovery considerations for specific DSP's.
¥Xxx is replaced by a unique name from the DSP dictionary for the DSP
and n is the suffix supplied by the DSP in FCTFSSUF field 01 for FCT to
indicate which load is desired. n may be any alphameric character other
than blank and must be placed in the FCT dynamically.

ABENDMON: Contains SPIE and STAE exits and retry scheduler.

191

AFSCOMN: Issues messages to the recovery console when no action is
required. The message must be moved to location AFSMSG and has a
maximum length of 65. Linkage is BAL R9, AFSCOMN.

AFSCOMA: Same as AFSCOMN except action type messages are issued.
Linkage is BAL R9,AFSCOMA. The address of the action buffer is saved at
location AFSBUFSV and is returned in RO. It is the callers
responsibility to issue a DEQMSG macro at the appropriate time.

AFSWAIT: AWAITs for one of two events: 1. An operator input message
which is moved to AFSMBUF and bit AFSMPEND in byte AFSECF Set. 2. An
ATIME interval expires in which case bit AFSTPEND in byte AFSECF is set.
Linkage is BAL R9,AFSWAIT.

Programming Interfaces:

AFSDRVR ALOADs, ACALLs, and ADELETs each module required to handle a
specific error. Addressability to called modules is provided in
register 10 and addressability to the AFSDRVR CSECT is provided in
register 13. Return to AFSDRVR is on Register 14 with an offset. The
meaning of each offset is as follows:

Offset
Return Function
0 - Recovery was unsuccessful
4 - Recovery was successful, retry the DSP
8 - Schedule the next specialized recovery module
12 - Terminate the recovery

For a module to use offset 8, the suffix of the next module to receive
control must be put in the FCTFSSUF field of the FCT. The FCT is
addressable on register 11. Registers 0 and 1 are preserved and are
passed to the next module called. Thus parameters can be passed between
modules.

The offset 12 return is for use when a catastrophic error occurs. The
system does not attempt any further recovery. The DSP is permanent
AWAITed immediately.

There are three subroutines in the AFSDRVR CSECT for use of the recovery
modules. They are:

1. A message routine when no action is required by the operator.
2. BA message routine when action is required of the operator.

3. A WAIT routine for an ATIME completion or a comnsole messadge.

Macros:

AFSDSECT - Maps the recovery work area and generates AFSDRVR CSECT.
FAILDSP - Generates linkage to the retry scheduler to cause a DSP to
fail. Used by ASP routines to fail a DSP when invalid data or usage is
detected.

Work Area:

The Failsoft work area is mapped and generated by the AFSDSECT macro.

When TYPE=CSECT is coded, AFSDRVR is generated which is also the work
area. The format is as follows:

192

AFSDRVR control routine.

Message routine where no action is required.
Message routine where action is required.
AWAIT routine for use of recovery modules.
ATIME exit routine.

Message acceptance routine.

Constants and work cells for recovery modules including message
buffers.

Area for saved FCT fields.

Area for STATUS at time of failure.
a) Completion code

b) PSW

c) Registers 0 through 15

193

CHAPTER 8. POLYASP

POLYASP permits concurrent execution of the ASP system in two or more
regions of the same processor. Each region contains the complete ASP
system and therefore each region will run independently of the others.

POLYASP is particularly useful in system testing. For example, a
production version of ASP might be running in one region while system
programmers are checking out a test version of ASP in another region. A
further use of POLYASP is in NJP (Network Job Processing) testing. It
is now possible for one POLYASP region to send ASP jobs over TP lines to
a second POLYASP region.

Only one POLYASP region can run .in the local Main Processor mode.

Running POLYASP requires an ASP Initialization deck for each POLYASP
region. In addition, the following changes should be made to each deck:

1. Provide a different ASP queue and ASP checkpoint data set for
each POLYASP region.

2. Allocate the ASP output data sets (ASPOUT, ASPABEND, and ASPSNAP)
to a different device for each POLYASP region.

3. Determine the ASP support devices to be used by each POLYASP
region. These devices may be defined in more than one
initialization deck, but only one region can use a particular
device at a time.

To facilitate ASP system checkout in a POLYASP environment, production-
type jobs are frequently required for execution under the test version
of ASP. To accomplish this checkout, a POLYASP reader capability may be
used to pass ASP jobs from one POLYASP region to another. The ASP jobs
are transferred in card-image form only; no ASP control blocks are
passed. This method allows complete ASP release independence. If a
control block or buffer size is changed in one of the POLYASP regions,
ASP jobs may still be interchanged between the ASP regions with the
POLYASP reader. The technique is as follows:

The POLYASP region from which jobs are to be taken is called the
sending region. The Dump Job (DJ) DSP is called in this region
specifying the receiving POLYASP region as the output device (see
below for details).

The POLYASP region in which the jobs are to be executed is called the
receiving region. The Input Service (CR) DSP is called in this
region specifying the sending POLYASP region as the input device.

The following ASP Initijalization control cards are necessary to use
the POLYASP reader facility.

1. A device card defining the sending POLYASP region as an input
device. On this card the first four characters of the device
name must be POLY. Also, GTYPE must be PLY; STYPE must be POLYI;
and GNAME must be the 0S job name of the sending POLYASP region.

2. A device card defining the receiving POLYASP region as an output
device. The first four characters of the device name must be
POLY. 1In addition; GTYPE must be PLY, STYPE must be POLYO, and
GNAME must be the 0S job name of the receiving POLYASP region.

194

As an example, one ASP Initialization deck has an OS jobname of EX50PLY1
and the POLYASP region is called POLY1; this is the production version
of ASP. The second ASP Initialization deck has a jobname of EX50PLY2
and the POLYASP region is referred to as POLY2; this is the test version
of ASP.

The additional control cards required for deck EX50PLY1 are:

DEVICE,STYPE=POLYI, SUPPORT= (NONE, POLY2) ,GTYPE=PLY, GNAME=EX50PLY2
DEVICE, STYPE=POLYO, SUPPORT=(NONE, POLY20UT) , GTYPE=PLY, GNAME=EX50PLY2

The additional control cards required for deck EXS50PLY2 are:

DEVICE,STYPE=POLYI, SUPPORT= (NONE, POLY1) , GTYPE=PLY, GNAME=EX50PLY 1
DEVICE,STYPE=POLYO, SUPPORT= (NONE, POLY10UT) , GTYPE=PLY,GNAME=EX50PLY1

To send production jobs from POLY1 to POLY2, the following would be
entered on a POLY2 console:

*¥X CR,IN=POLY1
And the following would be entered on a POLY1 console:
*X DJ,OUT=POLY20UT

Communication is now established between the two POLYASP regions. All
output options of DJ are available when operating in the POLYASP reader
mode. For example, to send all jobs in the POLY1 (production) queue to
the POLY2 (test) region, ‘this command should be entered:

*S DJ,0

This command will cause DJ to transfer all production jobs in POLY1 to
the CR DSP in POLY2. CR will then enter each job into the POLY2 queue.

As a testing aid, two new DJ output parameters, HOLD and PURGE, have
been added. The default is PURGE, in this event each job is purged from
the ASP queue after it has been transferred. The HOLD option will put
the job in hold status (in the sending region only) after the job is
transfered. These options may be used in the START command after any DJ
output parameter. For example, to send ASP job 0053 to POLY2 and also
keep the job in hold status in the POLY1 queue for later execution, this
command should be used:

*5 DJ,J=53,HOLD

POLYASP READER RESTRICTIONS

The current DJ rules for dumping jobs apply when using the POLYASP
reader. That is, a job cannot be dumped if it has been set up or if it
is active in a DSP function. In addition, the POLYASP reader will
transfer only input data sets; therefore, a job that was sent to another
POLYASP region for execution cannot be transferred back to the
originating region for printing or punching.

It should be noted that DJ will transfer card images only when operating
in the POLYASP reader mode. The normal mode of DJ is to dump ASP
control blocks and data records to tape.

When the POLYASP reader facility is used, the TCBUSER field is used in
the sending POLYASP region's TCB.

Dunmy Main allows ASP jobs to be processed by the Main Device Scheduler
and Main Service without the presence of either the setup devices or a

195

Main Processor. This feature is intended for ASP system checkout and is
particularly useful in a POLYASP environment.

A dummy Main Processor is defined by specifying SYSTEM=DUMMY on the
MAINPROC control card. All other MAINPROC parameters, as well as
definition of any Main Processor SETUP devices, are specified as though
the durmmy Main were a real Main Processor. These SETUP devices,
however, are treated strictly as dummy devices.

When a dummy Main Processor is used, module MSVDUMMY is loaded in place
of module MAINIO. All other modules remain unchanged. MSVDUMMY replies
to messages sent by ASP to the dummy Main Processor; these replies are
assembled as part of the MSVDUMMY module. When a job is scheduled on
the dummy Main Processor, the JCLIN data set is duplicated into the
SYSMSG data set. The job is then terminated on the dummy Main
Processor.

196

CHAPTER 9. DEBUGGING AIDS IN ASP

The following discussion describes the debugging aids available in an
ASP environment.

ASP ABEND DUMPS

This discussion assumes that the first step taken is to obtain a dump of
Support Processor storage and that the reader is familiar with the dump
format. Dumps may be obtained in one of three ways; standard OS ABEND
dump, standalone dumps, and the ASP *DUMP command. When a catastrophic
error is detected by 0S, an automatic dump is initiated if possible. If
such a dump is not possible, a standalone dump (using, for example, the
IBM standalone dump programs IMDSADMP) must be taken. On the other
hand, if the system is operating abnormally and the operator wishes to
initiate a dump, the *DUMP command may be issued. If this command is
ignored, the standalone dump may be used.

0S system dumps contain status codes indicating the reason for the dump.
ASP-initiated dumps (via ABEND) provide user codes as documented in the
ASP Messages and Codes, Manual. All other codes are 0OS codes. These
codes are identified in IBM System/360 Operating System, Messages and
Codes (GC28-6631). If the user specified DUMP=ASP/0OS in his ASP
Initialization deck OPTIONS card, all ASP control blocks and tables are
formatted and written to the //ASPABEND DD data set, if DUMP=SA is
coded, a core-image dump is taken. When formatting core image dumps
(standalone dumps), with IMDPRDMP be sure there is a JOBLIB or STEPLIB
DD card pointing to the ASP load module library. This is required in
order to get the ASP control blocks formatted. One load module for
IMDPRDMP (IMDPRFSR) is modified by ASP and must be used instead of the
0S5 version. System dumps will identify, through the load 1list or
request blocks (RB's), the currently active and in-core programs and
their beginning locations. 'In the case of a program check, the next
doubleword following the interrupt location is the program check old
PSW, followed by 16 words containing the contents of the general
registers at the time of the interrupt. With this information and with
the program and linkage editor listings for ASP, the programmer can
begin to isolate the problemn.

In most cases when a dump is obtained, Register 10 is the base register
of the DSP in control at the time, and Register 11 contains the FCT
entry for the DSP. Each FCT entry contains the contents of registers
that are saved for the DSP, the base register for the DSP, the AWAIT
mask, and the event completion flag address. Therefore, by means of the
FCT entries, it is possible to determine the status of all active DSP's.
The FCT entry also contains the address of the DSP Dictionary entry for
the DSP. By tracing the DSP Dictionary entry, the programmer may
identify the DSP associated with this FCT entry. The FCT entry also
contains the address of the CSECT (if any) associated with the DSP, and
a pointer to the GETUNIT List for the DSP, which, in turn, contains
pointers to the Support Units Table entries. Each FCT entry also
contains pcinters to the following FCT entry, so that the progress of
the job may be traced. '

Location 54 (hexadecimal) contains the address of the 0OS trace table. A
scan of this table will obtain the last SVC issued, the start)
input/output address, and the device-end interrupt.conditions for
devices that have or had input/output activity. Each entry contains
either the device address or the SVC number; it also contains the

197

contents of registers 15, 0, and 1 when interrupt input/output activity
was issued.

Finally, in any active FCT entry, Register 12 contains the address of
the ASP TVTABLE. This table contains the addresses of all resident
programs, such as all internal ASPIO routines, GETUNIT, PUTUNIT, LOGIN,
and LOGOUT; it also contains pointers to some tables, such as the
Support Units and System Units Tables, the DSP Dictiomary, the Main
Processor Control Table, and the first and last entries in the FCT
queue.

Certain conditions may cause the ASP system to produce a deliberate
ABEND dump. In each of these cases, the reason for the dump may be
identified by the user completion code. The ASP Messages and Codes
Manual documents the meanings of these completion codes.

In the event of a non-critical DSP failure, the ASP system will not
terminate. Instead, DSP Failsoft will interrupt the DSP and allow a
system programmer to use the DC DSP for further analysis of the failure.

In the event ASP abnormally terminates, a Qump will be provided as
defined in the OPTIONS initialization card.

The following are excerpts from a sample dump created by using the DC
DSP:

The DC (Dump Core) DSP produces a dump by calling ASPABEND with the PSW
printing to *CALL. In other types of failures the invalid instruction
or an ASP DMxxx completion code will be printed on line four. The
bottom line of the first page gives the active FCT at the time of the
dump and its address.

CONSOLE STATUS TABLE

The Console Status Table lists all of the consoles defined via the
CONSCLE initialization card. The last entry (location 178FA0Q0) is
created internally to be used by the ASP routines to communicate with
each other without having the message printed on an operator console.
Console CN1 (DDNAME) has seven untyped messages, which are listed with
location specifying the console buffer address. By examining the format
of the untyped messages for console CNPR2, you will see that it is the
MLOG console.

MAINPROC TABLES

A Main Processor Control Table is created for every Main Processor
defined by a MAINPROC initialization card. The table for SY1 (location
142040) lists the last two messages sent or received by that Main
Processor. By examining the DSTL number it can be seen that the last
reference to the CTC was for the console (70). This Main Processor has
a job, job number four. The RESQUEUE entry for this job is at location
17EC68.

PRINTER RESOURCE TABLE

The Printer Resource Table is created as a result of the PRINTER
initialization card or DEVICE cards referring to 1403 or 3211 printers.

198

SUPPORT UNITS TABLE

The SUPUNITS Table defines all of the devices to be used by the Support
system. The SUPPORT, GTYPE, STYPE, and GROUP parameters are supplied on
the DEVICE initialization card. Each SUPUNITS entry points to the entry
in the SYSUNITS entry. The SYSUNITS table contains all devices defined
to ASP by the DEVICE cards.

SETNAMES TABLE

The SETNAMES Table is created by the SETNAMES initialization card. 1It's
here that the names supplied are correlated to a type to be used in the
SETUNITS Table. The SETUNITS Table describes all of the devices on a
particular Main Processor that are managed by ASP. There is a SETUNITS
Table for each Main Processor defined. The MTYPE parameter on the
DEVICE card is used to generate this table.

SYSUNITS TABLE

The SYSUNITS Table printout shows that unit 180 is shared by the Support
and Main Processor. The volumes mounted on these devices are also
listed along with their Main Processor and status.

ASP I/0 TRACE TABLE

To read the ASP I/0 Trace Table, read across the line. Look at the
routine and caller that is indicated at the end of the table. The
caller is ISDRVR, to be determined by locating the return address
(CALLER column) in a 'storage map (location 135156). It can be
determined that this was a read request by following the entries. The
sequence is the READ, OPEN, Disk, GETBUF which gets the buffer located
at 16F14C, GETIOB and the address of the IOB is 164A78. At this time
the I/0 operation is started. After it is completed the IOB is returned
via the PUTIOB, IOB 164A78 and then back to DISK to determine if any
more work is to be done. By comparing the buffer address on the GETBUF
and the buffer pool it can be seen the buffer is out of the pool. By
comparing the address of a buffer gotten with an address in the buffer
pool it can be determined if it was obtained by a GETMAIN.

ASP MAIN STORAGE MAP

ASP will sort the subpool entries and free core elements by address-
starting with the low storage address. The module names within a
subpool are indicated with their size. The change may be used to
determine how Main Storage is utilized. The enclosed example is only
partial.

ASP TRACE TABLE

TRACE specified on the OPTIONS initialization card will create the ASP
TRACE Table. This table displays the entries into the ASAVE routine and
the passing of control by the Multifunction Monitor. This table is read
across. The first entry is a call by MAIN, FCT address of MAIN is
164008. The information passed to GETPUTMN (enter 136C30) is register 0
and 1, the address of the save area to be used by the ASAVE routine and
the return address (13B998) to MAIN.

The next entry is a passing of control to MAIN, FCT number two at
17D048. COND= 5 indicates an AWAIT condition, COND= 8 indicates an

199

AWAITOFF condition. The address (13B5E8) after - AWAIT is the entry point
at the AWAIT routine.

FUNCTION CONTROL TABLE

Now look at the formatted FCT entry for ISDRVR, location 17D410. This
FCT is posted but not in control because the prior FCT, DSP name DC, is
active. ISDRVR has made a call to routine in IONUC, as shown by the
entry point in the Active Save Area Chain. Register 1 points to an FDB
and the saved base is register 10, the module base of the caller. The
remaining registers, 2 through 9 are the saved registers at the time of
the call. When the FCT is placed in an AWAIT, the registers are saved
in the FCT. Registers 10, in the FCT, is the module base at the time of
the AWAIT and register 14 is the return address to ASAVE.

RJP TABLES

On the last page of the dump is a Resident RJP line and Terminal Table.
This table is built from the RJPLINE and RJPTERM initialization card.
The SUPUNITS entry for TYPE=LINE will be filled in at the time the #*S
RIP,I~ is issued. The FDB address is for the formatted control blocks.

The TYPE=TERM SUPUNITS is filled in when the terminal enters the SIGNON
card. The preformatted control blocks are pointed to by its FDB.

200

* ASP ABENG GUMP & , HHNMMSS=062417, UAT E=72268

SYSTENM ABEND CODE IS OC1
PROGRAM ABENBED IN MCDULE COC s LOCATION 14DES4 (REL LOC OOOF3C}, MODULE BASE IS5 14CF58
INTERRUPTING INSTRUCTION IS *CALL

REGISTERS AT TIME OF INTERRUPT
REGS 0-7 0014EGEB 00000048 0014DE94 0014E1C3 00000000 00000000 QL17F6A8 6016832C
REGS 8-15 001683FC 9c14DG6 0014CF58 00170170 00134128 00140F58 4014D5F0 0014004C

MAF OF ASP NUCLEUS
1357¢C CONSINPT
136380 CONSQMGKR
136C30 GETPUTMN
136EAE «JSSDR
137490 FUNCTLTB
137BEE DSPGLTNY
138340 DEVREQ
138490 JUDAT A
1391A8 JGNUC
13A12¢€ TVTABLE
134690 CETPUTUN
134AFGC ALDADEL
138270 ASAVERTN
1385¢£8 ASPCONTL
13C 230 TRACKS
13C808 CONSOLES
13CF6¢E METCONTL
13053¢& ®RIDODRWR
130690 JOBCONTL
13E6B & CONSCONS
13e8A8 ASP ABEND
13F508 ASPCKPT
13F 638 LKPTDATA
13F978 ASPGPEN
13FCFO CALLERVR
L3FF1E INITIATE
140470 ANT COM
1406BC JGB NUM
140918 LUGINOUT
140400 ABENCMOUN
14117C A1 G
141238 I0RINS
141598 CONSAUTH
141580 AUDEQUE UE

ACTIVE FCY ENTRY IS OC AT 17D170

CONSOLE STATUS

LGC CUN-NAME CUA C(NUM TYPE FLAGS FLAG2 DVFLG SwWTU DEPTH DEPQD
7

17830 (Nl Q1F 0001 1052 22 60 18 99
UNTYPED MESSAGES THIS CUNSOLE
LGC PRTY TI1ME TEXT
L1£958 G5 062405 PUROL JOB 0002,0R PURGED
178988 €5 062405 ISVO1 JUB 0004 IS JAL s PRTY=00 NET-ID=N1
178838 05 0624G7 DSPO1 J4OB 0005 IS DJCUPDAT, CALLED BY INTERCOM
17684048 G5 062409 15v0L JOB Q006 IS JA2 + PRTY=0Q0 NET-ID=N1
178688 05 062412 15v01l JOB 0007 IS JA3 s+ PRTY=00 NET-10=N1
178838 a5 062415 AMSVOL JGB 000%s44l IS GN SY1 NET~1D=N1
1785F8 €3 G6z415 1Sv01 JOB 0008 IS JA4 + PRYY=00 NEY-10=N1
Lec CON-NAME CUA C(NUM TYPE FLAGS FLAGZ OVFLG SWTO DEPTH DEPGQD
178E8C C(N2260 G041 Q0G2 226¢ 22 oo 10 50 3
UNTYPED MESSACGES TEIS CONSOLE
Lcc PRTY TIME VEXT
1787D8 C5 062412 1Sv01 JOB 0007 IS JA3 s+ PRTY=00 NET-ID=N1
178598 05 062415 AMSYOL JOB 0004,JA1 IS ON SYL NET—ID=N1
1178ADS 05 062415 ISV01 JOB 0008 IS JA4 + PRTIY=00 NET-10=N1
LOC CON-NAME CUA CNUM TYPE FLAGS FLAGZ DVFLG SKTU DEPTH DEPGD
178EEB CNPR1 O0E 0003 1403 00 co 00 20 o
Lac CON-NAME CUA CNUM TYPE FLAGS FLAGZ DVFtG SWI0O DEPTH DEPQD
178F44 CNPR2 00F 0004 1403 22 (1Y 10 20 1
UNTYPEC MESSAGES THIS CONSGLE
10cC PRIY TIME TEXT
1788F8 05 062417 MLG SYL S=F MT,ATTROO1* JAl
1178658 09 62417 {N2260 +5S DC,L,FORMAT

Lac CON-NAKE CUA (NUM TYPE. FLAGS FLAGZ DVFLG SWTQ DEPTH DEPGD
178FAQ DuMMY TFFF DUMY 00 Q0 00 32 [+

201

Lac NAME CSECT TYPE ACT SW DEV BAR DEPTH DUEEP"OSTL SNS J0B RDRFUB
142040 SY1 170548 LOCAL M¥T 00 270 1 70 00 17eC68 00000U
SYL R= ATTR
SYL S=F M1 ATTROOL' JAl CASPBATCH

LGC NAME NUMBER Jos RESQ MSG ACT INIT
170948 JAl 0004 CLOSED 17EC68 8

LG NAME CSECT TYPE ACT SW DEV BAR DEPTH DEEP DSTL SNS 408 RORFDB
146370 sY3 IDLE REAL MYT 00 370 1 00 000060 000000
5Y3 R=
S¥3 s=

RESQUEUE TABLE
Loc JOUB-NO JOB-NAME SETUP REGIGN CLASS PRICGRITY FUNCTIGN MAIN
17ECOH8 4 JAl NO Q0052 A 0 ON MAIN FF
PRINTER RESUURCES TABLE
Lac NAME FORMS CARRIAGE TRAIN ucs C—FORMS C-TRAIN

179420 PR 1PART 67 1INCH PN YES YES NO

179A50 PR2 1PART &6/ INCH PN YES YES NO

179a8Q PR3 LPART 6/ INCH PN YES YES NO

175480 PR4 1PART &/71NCH PN YES YES NO

1794A€0 RMOOZPR1 1PART &/ INCH PN NO YES NO

SUPUNITS TABLE
LG TYPE DONAME GROUP UNIT FLAGL FLAGZ2 SYSUNIT ODCTADD ucs

178850 ACMACMP ACSYL LOCAL 00 00 17EADO 0000

17888C ACMALMP ACSY2 LOCAL 00 00 17EAES 0000

178BC8 ARLQSRDBR HMYROR1 LacaL 00 00 17€8C0 6000

178004 Fomigmp 1JsY1 LQocaL 00 00 17EAAD 0000

178C40 AIMIIMP 1J4sY2 LOCAL o (]} 17eAB8 0000

178C7C PRTL403 PR1 LCcCAL 00E o0 oo LT7EB9C 1848

178CB8 PRT1403 PR2 LOCAL OOF 8Q o 17EBA8 1868

178CF4 PRTL403 PR3 LOCAL G38 80 00 17€8C0 19C0

178030 PRT1403 PR4 LoCAL 038 80 4] L7€808 1A10

17806C PUNZ2540 PUL LOCAL aon a0 ao LIECLO 1830

178048 PUNZS540 P2 MACHZ 03a 80 Q0 17eC 38 19F 8

1780E4 RDR 2540 RDL LacaL 00C 00 00 17E£8F0 1818

178E20 RORZ540 RLz MaCH2 639 80 00 17eC08 1980

17BESC SYSMAIN Syl LGCAL 270 00 Q0 17E8DS8 21A0

176€98 SYSMAIN SY3 LOCAL 80 Q0 17E8FO 0000

178EL4 TA924009 1391 LoCAL 180 A0 00 176908 1E10

178F 10 TAS240CS 192 LOCAL 181 AO 00 17€920 1E44
1TBF4C TA92400% 194 MACHZ2 1A1 AQ 00 17e938 1F2¢

178F88 TAS24009 193 MACH2 140 AC 00 17E950 1EF 8

SETNAMES TaABLE
Lo TYPE NAKME ALT-TYPE CLASS

178714 433 2314 KRG DA

178724 al SYSUA NO DA

1m72e [#2Y SYSDX NO DA

178742 02 TAPES NG TA

17874C 02 2400 NO TA

178156 02 240G-3 NO TA

178760 02 SYSSQ NO TA

178774 G3 DCH4 YES DA

178788 Q4 UCHa YES DA

178792 04 BCHS YES DA

118748 05 bDCH4 NG CA

178780 05 DCHS YES DA

178184 05 DCHe YES oA

178 CE Q3 DCHS NO 0A

178708 03 DCHE YES DA

1787€C C4 OCHe NG 573

SETUNITS TABLE FOR SY1
Lac TYPE ADBRESS OFFLINE MOUNT-1D R ESQUEUE SYSUNIT

178538 L1 130 X 17€980

17854C 331 431 NG 17E968

17B5€0 229 132 NO 17E998

1185174 1 133 NO 17€980

178568 L1 134 NG 17E9CE

17859C ci 230 NG 17€£9€0

178580 (9} 231 NG 17E9F8

1785C4 ol 232 NG 17EA10Q

118508 [233 NG 17EA28

1785¢&C 01 234 NU L7EA4O

178600 o1 235 NC 17EA58

1186l L1 236 NG 17EAT0

178028 o1 237 NO 17EA88

17863C cz 180 NO 17E£908

171865C Ca isl NG 17€920

178664 02 1AC YES 17E 950

178678 L2 141 YES 17£938

SETUNITS TABLE FOR SY3
Loc TYPE AGERESS GFFLINE MOUNT-1D R ESQUEUE SYSUNIT

178690 P! 33s JES HEB48

178044 02 380 YES 17e878

178688 G2 382 YES 17€860

1786CC <3 430 YES 17€830

1786EC 04 530 YES 176818

17B6F 4 s 630 YES 17EB00C

MAIN PRUCESSOR CONTROL TABLES

202

RC

RC

£

RJP
NO
NO
NO
NO
YES

SECT

000000

SECT

000000

LGZ
04

WTRFDB WCSECT

000000

WTRFDB WCSECT

000000

ACTIVE
YES

REL

000000

REL

000000

H3ILO
NO

207

SYSUNITS TABLE

LGC MAINADD SUPAUD VOL—IC LABEL MAIN ALLOCATED ASSIGNEQ BARRIER
l7e8C0Q ol¢] NG
17E808 270 ao NO NO NO NO
17E 8F Q 00 NO NO NO NQ
17E9¢C8 180 18¢C o1 NO NG NO NO
17¢920 181 181 LGLOOL N ai NO NU NO NO
17£538 iAl 1Al (21 NO NO NO NQ
17£950 140 140 ol NG NO NO NGO
17E968 131 +JOBL L8 o1 NO NO NO NO
17e980 136 ASPUTL 01 NO NG NO NO
17E998 132 ASP 305 a1 NG NG NO NO
17€980 133 ASP206 01 NO NO NO NO
17e9C8 134 ASPCUE ol NO NO NO NO
17E9E0 230 ASPUT2 (7% NO NO NO NU
17€9F 8 231 ASPUT3 o1 NO NG NO NO
17EALD 232 ASPQUE [NG NO NO NQ
17eA28 233 APT 360 a1 NO NO NG NO
17EA 40 234 APTWRK oL NG NG NO NO
L7EASS 235 TS0207 31 NO NG NO NO
17EATC 236 CNCSYS o1 NO NO NO NO
17ca88 237 STURG2 o1 NQ NO NO NG
17EAAQ [e]¢] NO NO NO NO
17eA88 00 NO NO NO NG
1TEABD (1] NO NO NG NO
17EAES [e]0] NO ND NO NO
17800 &3¢ [¢73 NO NG NG NG
17EBi8 530 Q2 NG NO NG NO
17E830 430 02 NO NO NO NG
17TEB48 335 02 NG NO NG NO
17£860 382 TAP 382 Q2 NQ NO NO NO
17e8 18 380 TAP380 [+74 NO NO NO NO
17EB90 00E [o]3] NO NO NO NO
17e84A8 QOF 00 NO NO NG NO
17E8CQ 038 Qo NO NU NO NO
17tB08 038 Go NO NO KO NO
17EBFQ [+1e19 00 NO NO NO NO
L7ECQOE 039 e1¢] NO NO NO NO
17eC20 [els]] [+]Y] NO NO NO NO
17€C38 034 00 NO NO NO NO
ASP 1 /0 TRACE TABLE
RCUTINE CALLER ROUT INE CALLER ROUTINE CALLER
PUTBUF 13955C 173620 PUTIOB 1399AE 164858 PUTBUF 1399EE
RO/WRITE 150&F8 OPEN 139398 DIsSK 13920E
Gerius 139024 164858 RO/WRITE 145074 aPEN 139398
GETIOB 1395024 164AES PLTIOS 1399AE 164858 DISK 139412
PLTBUF 13997C 16832C OPEN 14F1586 LOCATE 14F 178
HLOCK 14F 192 CLOSE 14F1A2 LOCATE 139502
DISK 139400 GETlug 139024 164858 PUTIOB 1399AE
BISK 139412 RO/WRITE 13D2CE OPEN 139398
GETBUF 139884 16E388 Getigs 1?9026 164AE8. PUT 08 1399A&
DISK 139412 PUTBUF 14F 382 169EB4 RO/WRITE 14F284
DI SK 1392D0¢€ GETIOB 139024 164858 PUTICB 1399A€
RO/WRITE 13D464 GPEN 139398 DISK 13920€
PUTIOSB 1399AE 164858 PUTBUF 1399EE 167568 D1SsK 139412
BLOCK L4F 420 LOCATE l4F4l6 BLOCK 14F42C
LOCATE 139502 ouTPuLT 1395F 0 DISK 139400
PLUTLCH 1399AE 164AL8 PUTBUF 1399€E 16£388 DISK 139A12
UPEN 139398 RU/WRITE 139314 UPEN 139398
GETBUF 139884 164C1C GETIOB 139024 164AE8 PUTIUB 13994€
DISK 139412 RO/WRITE l4F2F6 0P EN 139398
GETIOB 135024 164858 PUTIOB L1399AE 164AES DISK 139412
GETI(B 139024 le4AEs PUTIOB 1399AE 164B58 PUTBUF 1399EE
RD/WRITE 14094C OPEN 139398 DIsSK 13%20¢
GETIOB 139024 164858 PUTIDE 1399AE 164At8 PUTBUF 1399¢€E
RO/WRITE 145284 UPEN 139398 DISK 13920¢
BEENS 13920¢ GET 108 139024 164478 PUTIOB 1399AE
DISK 139412 RD/WRI1TE 1302CE OPEN 139398
GETBUF 139884 1659€EQ GETIOB 139D24 l64A78 PUTIGE 1399AE
KD/WRITE 130464 CPEN 139398 0I s 13920€
PUTIOB 1399AE 164A78 PUTBUF 1399EE 1659E0 DISK 1394a12
UPEN 139398 RU/WR I1TE 139314A OPEN 139398
GETBUF 139B84 171A98 GETi0B 139024 164478 PUT 108 1399AE
OISK 13920 GEYIOB 139024 164A78 PUTICE 1399AE
DISK 139412 ROZWRITE 145284 OPEN 139398
GETIOS 139024 164A78 PUTIOB 13994 164478 PUTBUF 1399EE
ROZWRITE 130730 OPEN 139398 UISK 1392D&
GETIOB 139024 164478 PUT L0B 1395AE 164A78 DI SK 139412
OPEN 139398 DisSK 1392D€ GETIOB 139024
PUTBUF 1399EE 1l667a4 DIsSK 139412 KD/WRITE 135156
D1 SK 1392DE GETBUF 139884 16Fl4&C GETIGB 139D 24
C1SK 139412
ASP BUFFER PCOL
Lac FD8 STATUS Loc FDB STATUS Lac FOB STATUS
164C1C 18BAB4 IN 16590 17£80C IN 1667A4 13F648 IN
16832C (00COC IN 1690F0 17ECT% IN 169EB4 144318 N
L6BA3C 17DSEC oLy 16800 13E340 IN 1605L4 Q000GOD IN
16F14C 144340 Gut 16FF1Q¢ 00C00Q auT 170L04 14A340 IN
17285C 17€83Q N 173620 144A3&C out 174384 14A32C IN

203

DEMAND NO-ALT

NU
NO
NO
NU
NU
NO
NO
NU
NO
NU
NO
NO
NU
ND
ND
NO
NO
NO
NO
NG
NO
ND
NO
NO
NO
NG
NO
NO
NG
NO
NG
NO
NO
NO
NO
NO
NO
NO
ROUTI NE
16D5C4 DISK
GET BUF
DISK
RELEASE
GETBUF
GUTPUT
L64AES PUTBUF
DISK
164858 PUTBUF
OPEN
164AE B 01 5K
GET 108
LOCATE
CLOSE
GET 108
RD/WRITE
015K
164858 PUT BUF
015K
DISK
17285¢C DISK
GETBUF
16BA3C DISK
GET108
164A78 PUTBUF
DISK
164A78 DISK
GETIOB
RO/WRITE
DISK
164A78 DISK
164A78 PUT BUF
. : DISK
171498 DISK
GETBUF
RD/WRITE
164A78 PUTIOB
OPEN
164278 PUTIOB
Lo FD8
167568 000000
16AC T8 0060GU
16E388 17E80C
171498 14A2F0
17518 000000

CALLER
139412
139884
1392DE

141€E2E

138526
1395F 0
1399EE
13920€
1399EE
139398
139412
139024
14416
14F2E6
139024
145274
13920k
1399€EE
1392DE
13920€
139412
139884
139412
139024
1399EE
1392DE
139412
139024
145274
1392DE
139412
1399EE
13920€
139412
139884
130798
1399aE
139398
1399A€

STATUS
IN
IN
IN
IN
ouTt

1675568

‘17%43C4

16AC78

L743E4
164AES8
164858
16%0F0

16FF10

164 AES8
16ACT8

164A78

16050 4

166TA4
164478

164478

sP START END LENGTH
251 135000 1<4l7FF 0OGC80G 51200
135000 135047 000048 12
135G4€ 1356AF 00Ge68 1640
135680 1356FF 000050 80
1357CG 1417FF 00Cl00 49408
251 1418CG 141FFfF GCGAGG 2G48
141800 14182F 000030 48
141€2G 141CAF 0QC480 1152
141CB0 141CEF 0QO0G040 &4
144 CFQ 141FFF 000310 T84
251 14200C 1427FF 00C8GC 2048
142000 14203F 0U0040 64
142040 142407 0003(8 %68
1424C& 14257F QQO178 316
142580 1427FF 00026C 640
142800 142FFF 000800 2048
251 143U00 §44TFF 001800 &l44
143000 143007 0U0008 8
143GC8 14322F 0GL228 552
143230 1447FF GGL500 5584
144860 1457FF 001000 4096
251 1€1€00 1617FF 0C08GC 2048
161000 16112F 0GCL3G 304
161130 161247 Q00178 376
1612KE 161727 0C048C 1152
161728 1617FF JCOLUB 21&
1618C0 163FFF Q02800 10240
0 1&4LCL L772FF Q13800 798712
164000 164007 Q00008 8
1778CG LTTFFF 0GCHGC 2048
0 178000 178FFF QQLCOC 4056
173000 178G77 G£00078 120
L784&C 178497 GCOOLE 24
0 179800 LTATFF 001000 4096
€ LIBCGC LTBTFF 000BOO 2048
138C0C 128017 00CCLIE 24 .
¢ 178800 178FFF 000800 2048
LIBECC L7BELF GCO02C 32
251 3170000 17CTIFF (CGBOG 2G48
17CCCC 17C16F QO0l70 308
1ICE7C 1733F GCOlBC 464
170340 17C7FF 0004CO 1216
17C80G 17CFFF 0GQBOO 2048
0 17L00G LIDTFF Q0C8OC 2C48
170000 170007 0C0U08 8
TYPL FCTPTR RO
CALL 164608 PARMO 00000010
UISPATCH 170048 HMASK=L3 COND=5
OISPATCH 137598 CCNo=5%
DISPATCH 17D41C COND=5
DISPATCH 17D410 HMASK=1C COND=3
CALL 170410 PARMO 1014A331
CALL AMW4LG PAKMO OGLl4A2FO
J1SPATCH 000000 CGOND=0
DISPATCH CCOGGO CGRD=0
UISPATCH 137598 COND=5
OISPATCH 17DaelO CGND=5
CALL 1410 3 CGCOo000G
DISPATCH QO00Q0C MASK=0G COND=0
DISPATCH 13756¢ MASK=80 CCND=3
UISPATCH 170410 MASK=10 CONG=S
CaLL 170410 PARKO 00GGO0000
CALL 11410 PARMO G5CG000C
CALL 17D %10 PARML (GOGOOLI4
CALL 170410 PARMO 1017L800
CALL 1410 PARMG 1017800
DISPATCH 137490 MASK=GU COND=5
DISPAICH .CCO000 #ASK=0G COND=0
DISPATCH €00G00 MASK=0Q CGM=0
UISPATCH Q00000 MASK=0Q C(GND=0
VISPATCH 13749C MASK=00 CCND=5
caLt 137430 PARMG O0L3E6BE
OISPATCH 17D048 MASK=(3 COND=5
cALL 170048 PARMG CCCGO00Q
UISPATCH 137490 MASK=00 COKO=S
DISPATCH 137598 PMASK=60 (GNB=5
DESPATCH 170418 MASK=10 CGLND=5
AL 170410 PARMO 1017E8LL
CALL 1M 411G PARMO OG13A4CC
DISPATCH 137490 MASK=00 COND=5
CALL 137490 PARMO D013E688
OISPATCH 1375%6 HMASK=80 COND=5
DISPATCH 170410 MASK=10 CDND=5
CALL 141C PAREKD 1017EB11
CaLL 170410 0Q14A2FC
caLL 17410 0014A2F0
O ISPATCH €GOQ0C COND=0
UISPATCH 000000 COND=0
JISPATCH £CO0OC CONG=0
DISPATCH 137598 CGND=5
DISPATCH 17D410 ¥}
DISPATCH <£G0O0COO CChD=0
DISPATCH 137598 COND=5
QISPATCH 1706410 COND=5
CALL 17410 GCCGoooe

ASP REGION USAGE

CONTENTS

SPACE ASSIGNED YO DQE
FREE SPACE

PODULE ISDRVR

MODULE TRCERTN
MGDULE ASPNUC

SPACE ASSIGNED Tu DGE
FREE SPACE

MODULE PRIDATA

FREE SPACE

HUDULE RICBAM

SPALE ASSIGNED TGO DQE
FREE SPACE

MOUULE MPCDATAS

FREE SPACE

HMOUULE CGNS2260

FREE BLGCK QUEUE ELEMENT

SPACE ASSIGNED TU DQE
FREE SPACE

HOUULE CENS1403
MODULE JSS

FREE HLCCK WJUEUE ELEMENT

SPACE ASSIGNED TG DQE
FREE SPACE

HMGBULE CONS 1052
MODULE PRTDATA

FREE SPACE

FREE BLGCK QUEUE ELEMENT

SPACE ASSIGNED TU DQE
FREE SPACE

FREE BLUCK QUEUE ELEMENT
SPACE ASSIGNED TU OQE
FREE SPACE
FREE SPACE
SPACE ASSIGWED TG OGE

"

SPACE ASSIGNEL TO LQE
FREE SPACE

SPACE ASSIGNED TO LQE
FREE SPACE

SPACE ASSIGRED TC DGE
FREE SPALE

MUDULE MDSDATA

FREE SPACE ~

FREE BLOCK QUEUE ELEMENT

SPACE ASSIGNED TO DOt
FREE SPACE

ASP TRACE TABLE

R1 Rz R3 R4
PARML FFFEEFFF RETURN 50138996 ENTER 00136C30 SAVEAREA
ECFAD 14239 RETURN 147 A9E AwAIT S5013RSEB FCT NUM
ECFAD 139F35 RETURN 139986 AwALT 5013B5E8 FCT NUM
tCFAD 144333 RETURN 139600 AKAIT S013BSE8 FCT NUM
ECFAD 144331 RETURN 13B3BE ANAIT S5013B5E8 FCT NuM
PARMI 0014A32C RETURN 401457AC ENTER 0013550 SAVEAREA
PARAL 0014A208 RETURN 40135620 ENTER U013936E SAVEAREA
ECFAD 0000600 RETURN 000000 AnAIT 00000000 FCT NUM
ECFAD 000000 RETURN 000000 AWAIT 00000000 FCT NUM
ECFAD 139F35 R:TURN 139986 AwAIT 5013BSEB FCT NUM
ECFAD 14A20D RETURN 13B3BE AWAXT 50138B5E8 FCT NUM
PARML 0GL14A2F0 RETURN 40145074 ENTER OUL3936E SAVEAREA
ECFAD C00000 RETURN 000000 AWAIT 00000000 FCT NaM
ECFAG 139F35 RETURN 139986 AWAIT 501385£8 FCT NUM
ECFAD 14A2F% RETURN 138B3BE AWALT 5013B5E8 FLT NUM
PARML 801451D8 RETUKN 401451E8 ENTER 00136380 SAVEAREA
PARML 00144520 RETURN T01451FE ENTER 0013D060 SAVEAREA
PARRL 0000GO012 RETURN S013D07T6 ENTER OO13EO0BE SAVEAREA
PARM1 0014A4A8 RETURN 60145216 ENTER Q013D29C SAYEAREA
PARMI OOLTESBOC RETURN 601302CE ENTER 00139338 SAVEAREA
ECFAD '13E6C 7 RETURN 13CDA% AWAIT 51138568 FCT NUM
tCFAD 000000 RETURN 000000 AWAIT 00000000 FCT NUM
ECFAD 000000 RETURN GO0Q00 AWAIT 00000006 FCT Num
ECFAD 000000 RETURN 000000 AWAIT 00000000 FCT NuM
ECFAD 13€6C7 RETURN 13CDA4 AWAIT 511385E6 FCT NUM
PARML 0GCO00OC RETURN 4013C002 ENTER 03141580 SAVEAREA
ECFAD 1423E9 RETURN {47ASE AWAIT SO13B5E8 FCT NUM
PARML 0014218C RETURN 40148314 ENTER 00136380 SAVEAREA
ECFAD 136607 RETURN 13CDA4 AWAIT SL1385€8 FCT NUM
ECFAD 139F35 RETURN 139980 AWAIT SOL3BSEB FCT NUM
ECFAD 17t811 RETURN 13836t ARAIT S013B568 FCT NUM
PARM1 1G17EBO0 RETURN 40145242 ENTER 00130434 SAVEARER
PARML GOLTES0C RETURN 6013D4&% ENTER 0013936E SAVEAREA
ECFAD 13E6C7 RETURN 13(CDA4 AMAIT 511385E8 FCT NUM
PARML 00000000 RETURN 4013CD02 ENTER 001415B0 SAVEAREA
ECFAD 139F35 RETURN 139986 AWAIT SO13B5ES €CT NUM
ECFAD 1T7ESB11 RETURN 1383BL AWALT 50138568 FCT. NUM
PARFL 0014A520 RETURN 50145250 ENTER 0013D104 SAVEAREA
PARML 0014A2E8 RETURN 40145274 ENTER 0013936E SAVEAREA
PARM1 0014A2F0 RETURN 50139314 ENTER 00139338 SAVEAREA
ECFAD 000000 RETURN ARAIT FCT NUM
ECFAD 000000 RE TURN 000000 AMAIT 00000000 FCT NUM
ECFAD 000000 RETURN 000000 AwALT 00000000 FCT NUM
ECFAD 139F35 RETURN 139986 AMAIT 50138568 FCT NUM
ECFAD 14A2FS RETURN 13B3BE AHALT 50138568 ECT NUM
ECFAD 00000QU RETURN 000000 ARRIT 00000000 FCT NUM
ECFAD 139F3% RETURN 139986 AWAIT S013BSE8 FCT NUM
ECFAD 14A2E0 RETURN 13B3BE AWALT 501365£8 £CT Num
PARML 0014A2F0 RETURN 40145284 ENTER O013936E SAVEAREA

204

17F2A0
2

[

9

9
L7260
176240
13
13

6

9
116260
i3

6

9
17F260
177260
17F240
17F260
17F 200

17F260
177 200
1
137558
6
9
17TF260
1TF260
17F2A0
13
13
13
€
9
13
&

9
17F 260

OSPNAME

MAIN
FAIN
ASPIO
1 SDRVR
ISDRVR
ISDRVR
1SDRVR

ASPIO
ISDRVR
150RVR

ASPIO
ISDRVR
ISDRYR

1 SDRVR
ISDRVR
ISORVR

1 SDRVR
CONSOL €5

CONSQLES
CONSOLES
MAIN
MaIn
CONSOLES
ASPIO

i SORVR
LSDRVR

1 SORVR
CONSOLES
CONSOLES
ASPID
TSDRVR

1 SDRVR
ISHRVR
tSDRVR

ASPIO
ISDRVR

ASPIC
ISDRVR
1 SDRYR

137490 PRCGRAM NAME IS CONSGLLES

ECF OF X*Ci* AT 13EeC7 IS POSTED

FUNMCTION CONTROL TABLE

ECF OF X'00Y AT 000000 S NOT POSTED
RESAV SAVLH SESEQ-AJDB PRTY-DSPOC CSECT TIMON LAGIN
00137558 FFL37BEE 00000000
TNEXT TUID TIMEL TFLAG-TIME X CBPTIR GLIST RJECF—RJPTR
£40C00000 00000000 DAOG0R00 00000000 00137550 00000000
FCTFLAGS FAILSOFY TEESYSERTREES
L 23w £ S STAE TRFDB HALF FULL HWORK FsCan
G Q000 4TFOECOOF4F1FT50
RSCNY Fs5LOC FSRTN RSVD RSVD RSVD RSYD
oaao aeG0000g 90000000 47F0A488 41F0A3 14 9110601C 4780AE24
FCT REGISTER SAVE AREA AWALT RETURN IS I3CDA4
REG O~7 OCOL3E6BS Q01780C0 14 1T8BF8 O0L3E6C7 00178734 001784C0 23178E20 0G0000600
REG 8-15 CCCogoae GUL78FFC G013C8D8 00137490 0013A128 0013t688 4013CDAL 511385E8

170048 DSP NamME 1S MAIN JOE NUMBER 1S [JGB PRIGRITY IS O LSP PRIORITY IS 21
LUAD MUDULE IS KAINIO MODULE BASE IS5 147A8C SE SEQUENCE 15 [JD8 FOB IS ¥F0600808000
ECF OF X*(3* AY 1423ES 1S PUSTED
RESAV SAVCH SESEG-AJDB PRTY-DSPDC CSECT TIMON LOGIN
00170130 €CQQaGo0 Q0000000 15137078 00000300 EEEEEEEE 00142114
TREXT TUiG TIMEL TELAG-T IMEX CBPTR GLIST RJECF-RJIPTR
0€CC0000 00000000 00000000 Q06000000 Q0170108 00000000
FCTFLAGS FAILSOFT AR EYSERKE TS
12 3.u F 5 STAE TRFDB HALF FuLL HGRK Fscan
[] GO 0000 00060000 47FOEQO4F4FIFT20
RSCNT FSLUcC FSRIN RSVD RSVD RSYD RSYD
0000 (o {ei]e]ele o] 4] 00000000
GETUNET LIST - DENAME TYPE SUPURI T
sY1 L7BESC
FCT REGISTER SAVE AREA ANALIT RETURN [S 147A9E
REG 0-7 C31423E9 0013£6€C7 AQ34826E 50148226 BO13B6EQ QUi4esFa8 Q00QOULF 90148224
REG 8-15 €00oL000 00142040 00147480 00170048 0013A128 €00C0000 4014 TASE 501385E8
178920 USF NAKE IS rain JOB NUMBER IS [H] J40B PRIORITY IS O DSP PRIGRITY IS5 21
LOAD MGDULE IS MSYDUMMY MUDULE BASE IS 149303 SE SEQUENCE IS 0 JCB FOB IS FF0600808000
4
ECF OF X*FB* AT 14671S IS NOT POSIED
RESAV SAvVCH SESEQ-AJDB PRTY-DSPOC CSeCY TIMUN LOGIN
0GL7uADE G0U00000 00000000 15137078 00000000 EEEEEEEE 00146440
TNEXT TUi TINEX TFLAG-TIMEX CBPTR GLIST RJECF—RJPTR
€GCOo0000 00000000 00000000 00000000 QO1MSEC 00000000
FCTFLAGS FAILSUFTY *EERYSERSE L 22
123U F S STAE TRFOB HALF FuiL F5C00
a 00 ' 00000000 G000 0000 00000000 Q000000000000000
RSCNY FSLOC FSRIN RSVO RSVYD RSYD RSYD
Q006 Q0000000 60000000
GETUNIT LIST — DODNAME TYPE SUPUNIT
SY3 17BESSB
FCT REGISTER SAVE AREA AKAIT RETURN IS 149308
REE 0-7 FBleoT1Y L Q 0¢ 00000000 40900000 00000000
REG 8-13 66000000 00146370 00149308 0178920 00134128 00000000 00149308 50000000
L64008 GSF NAKE 1S MAIN JO8 NUMBER IS 0 408 PRIORITY IS O DSP PRIGRITY IS 20

LOAD MODULE IS MSVIKRIT

ECF OF X'FF°®

MODULE BASE IS 14F918

SE SEQUENCE IS [}

AY 142238 1S NGY POSTED

JDB FU8 IS FFO600808000

RESAV SAVEH SESEQ-AJDB PRYY¥-DSPOC CSECT TIMGN LOGIN
Q0GC0000 0G1640D0 00000000 14137078 00000300 EEEEEEEE 00000000
TNEXY Tuio TIME] TFLAG-TIKEX TBPTR CLIST RIECF-RIPTR
G&CG60000 00000000 D00G0000 00000000 00L640CE 00000000
FCTFLAGS FALLSGFT FEELUSERFEFEE
123U F S STAE TRFO6 HALF FuLt W FsCoo
CEGCCCO00 00000000 000000000000 G000 000GU000 4TFOECQO0000F OF 1
RSCNT £5L0C FSRIN RSVD RSYD RSVO RSVD
Qaog ¢0a00000 €6G000a0 00000000 06000000
FCT REGISTER SAVE AREA AWAIT RETURN 1S 14F1CC
REE O-7 FF142238 QQ17F658 00142040 00178498 00000015 0000000E 00142250 00178378
REG 8-15 J0L7F658 00142040 Q014EF 98 00164008 0013A128 Q01 783A0 5014F1CC 5013B5E8
ACTIVE SAVE AREA CHAIN
Lec FLG/CRALN MORK REFURN ENTRY PNT REG © REG 1 SAVED BASE
16400 FOO0GOGGC Q¢GOa000 4014FCAS S0L4EFY8 O014E£F98 Q0000016 0014F918
REG 2-3 0CGO00G1 40 L4FASC 006600002 Q0168A40 00L79926 QUL TEC68 001690F0 ' 00142040

1375498

112c0

01710

17D410

PROGRAM NAME 15 ASPIC

ECF OF X*80% AT 139F35 IS NOT POSTED

RESAV SAVCH SESEQ-AJDB PRTY-DSPDC
00137660 00600000 44000000 oD137C10
TNEXT TUID TIREL TFLAG-TIME X
Q00000cce 00000000 DGC00000
FCTFLAGS FAILSUFT R YSERSC X
1234 F 5 STaAE TRFDB HALF FULL
9GC04000 00000000 Q00000000000 0000 00000000
RSENT FSLOC FSRIN RSVD
[1e]¢] 00000000 000060000 D207301C
FCT REGISTER SAVE AREA AWAIT RETURN IS 139986
REG 07 8013935 FFFFFFF4 0G13A118 BO139AFA 05166744
REG 8-15 C0164A50 00164110 001391 A8 00137598 00134128
DSP NAME IS DJCUPLCAT JOB NUMBER IS

LOAD MODULE IS DJCUPDAT MODULE BASE 1S 14FELQ

ECF OF X'40' AT 13A378 IS NOT POSTED

RE'SAV SAVCH SESEQ-AJDB PRTY-DS PDC
001703CC 00000000 01178440 07138228
TNEXT L) TIMEL TELAG-TIMEX
0G€00000 00000000 100000000
FCTELAGS FAILSOFT e HUSERSE S
123u F S STAE TRFDB HALF EULL
20000400 06000000 000000000000 0000 00000000
RSCNT ESLOC ESRTN RSVD
0000 00000000 00000000 00000000
FCT REGISTER SAVE AREA AWAIT RETURN IS 14FE36
REG 0-7 4013A378 0072268F 00000000 00000000 00000000
REE 8=15 00000000 GOI4FEL0 80I702C0 B
DSP NAME IS DC JG8 NUMBER IS 1

LOAD MODULE IS DC MODULE BASE IS 14CF58

ECF OF X'FF' AT 14EQFC IS POSTED

RESAV SAVCH SESEG-AJDB PRTY-DSPDC
00000000 0017D27C Ql17F 6AB 03138160
TNEXT TUiO TIMEI TFLAG-TIMEX
004000000 Q0000000 D0000000
FCTFLAGS FAILSCOFY FEFFYSERFEEEE
1234y F § STAE TRFDB HALF AILL
20000400 00006000 000000000000 0000 06000000
RSCNT FSL0C FSRIN RSVD
0000 ¢GC00000 00000000 ¢G0000000
GETUNIT LIST - DONAME TYPE SUPUNIT
000000
FGT REGISTER SAVE AREA AWAIT RETURN IS 14D5F0
REG 0-7 FF14EQFC 0013E6C7 0014DE94 0014E1C3 00000000
REG 8~15 COL683FC $014DQ76 GO14CF58 00170170 0013A128
ACTIVE SAVE AREA CHAIN
LGC FLG/CHAIN WORK RETURN ENTRY PNT REG ¢
17027C £0000000 45060000 4014D5F 0 0014D04C 0014E0€EB
RES 2-9 0014DE94 0014E1C3 00¢00000 00000000 0l17F 6A8
DSP NAME IS ISDRVR JOB NUMBER 1S

LGAD MODULE IS ISDRVR MODULE BASE IS 135048

ECF OF X*10' AT 144345 IS POSTED

RESAY SAVCH SESEQ-AJDSB PRTY-DSPDC
00000000 0017051C alL17mo0s 03138188
TNEXT TUID TIMEL TFLAG-TIMEX
00000000 $0000000 00000000
FCTFLAGS FAILSOFT FEFEYSERFH XS
1L23u F S STAE TRFOB HALF FULL
20000400 060000300 000000000000 9000 00000000
RSCNT FSLOC FSRTN RSVD
0006 ¢GQ00000 00000000 00000000
FCT REGISTER SAVE ARES AWAIT RETURN 1S 13B3BE
REG 0-7 l014A345 00144340 00164AA8 Q0164AlE 001641E8
REG 8-15% 06000000 00164110 00139148 00170410 0013A128
ACTIVE SAVE AREA CHAIN
LCC FLG/LHAIN HORK RETURN ENTRY PNT REG O
17C051C F00000G00 00GC0000 60135156 00139338 00062416
REG 2-9 00000000 4G000002C 00000000 60000000 00144340

2086

JOB PRIORITY IS 15
SE SEQUENCE IS 1

JOB PRIORIYY IS 15
SE SEQUENCE IS 1

JOB PRIORITY IS 15
SE SEQUENCE 15 1

CSECT TIMON LOGIN
00000000 000G0000 00000000
CBPIR GLIST RJECF-RJIPTR
Q0000000 00137658 00000000
KDRK Fscao
0000000000000000
RSVD RSVD RSYD
70184530 A38 69101 90044780
00000000 00000002 00164478
000000Q0 00139986 5013B85E8

DSP PRICRITY IS 7
JDB FDB IS 01026307E400

CSECT TIMON - LOGIN
0001DESS 06240779 001507C8
CBPIR GLIST RJECF-RJPTR
000000060 QF17D380 00000000
WORK FsSCcap
4TFOEO0000Q000000
RSYD RSVD RSVD
00000000 0000000¢ 00000000
nn0a00o0 00000000 Q7138228
001 TDD8Y 5014FE36 5013B5E8

DSP PRIORITY IS 3
JDB FOB IS 01016305E4F0

CSECT TIMON LGGIN
00000000 06224028 0014EDAE
CBPTR GLIST RJECF-RJPTR
00000000 OF17D230 00000000
FSCOD
4TFOEQOOF3F3F841
RSYD RSVD RSVD
00000000 00000000 00000000
00000060 O0l17F6A8 0016832C
0014DF58 401405F0 5013B5€8
REG 1 SAVED BASE
00000048 Q014CF58 .
00l16832C 001683FC 9014D076

OSP PRIQRITY IS 3
J0B FO8 1S 01026404E480

CSECT TIMON LOGIN
O00CLECAQ 06240290 J014A298
CBPTR GLIST RJECF~RJIPTR
00000000 OF17D400 00000000
FSCOD
47TFOEQOODF4FLF519
RSVD RSVD RSVD
00000000 00000000 00000000
FFFFFFFS 50138 3BE 90139398
00144298 501383BE 5013B5€8
REG 1 SAVED BASE
00144340 00135048
0014432C 00000000 eleleliloleloly

137508

LoC
17840C
178428
178444
178460
i7v41C

PRCGRAM NANME 1S JSS

ECF UF X'FF" AT 13A4DA IS POSTED

RES AY SAVCH SESEQ-AJDS PRYY-DSPDC
Q01374A0 ageoeeao 00000000 U0137CBO
TNEXT Tul TIME] TFLAG~TIMEX
04GCo000 00000000 D0O0CO0OO0,
FCTIFLAGS FAILSCFT wREEUSER KX R # %
L23vu F S STat TRFDB HALF FUuLL
QGCC4000 d¢Co0C00 000000000G00 Q000 00000000
RSCKRT FSLGC FSRTN RSVD
8600 00000060 00000000 D3A38725
FCT REGISTER SAVE ARLA AWALIT RETURN IS 1373F6
REG 0-7 FFL3A40A 000000090 O0LTECC4 QULTEC 68 QGi43614A
REG 8-15 0016C800 00laCAls O0136EAE 00137908 Q0i3A128
HES IDENT RJP L INE AND TERMINAL TABLE
DUNAME TYPe GROuUP PASSWURD SUPUNITS FtGl FLGZ FLG3
LINEOL LiNt CCU0u0 10 00 us
LINEG2 LINE Q00030 10 o1} 06
L INEC3 LINE 00u000 10 GO ug
RMO02 TERM RMOO2 0000635 00 [e]s} uo
RMGCe TERM . RFOO4 600000 00 00 (¢19)

207

CSECT TIMON
00000000 00600000
CBPIR -GLIST
00000000 00137498
WORK
4TFOECGOOF 1F 3F 350
R3VD RSVD
41300343 02033008
0013€338 00000000
00144230 501373F 6
FCB
01026301 €400
01016302400
010263028400
01016303t400
010263C3E4DC

00137078
S501385E8

LOGIN
001373FA

RIECF-RIPTR
00000000

FSCOD

RSVD
02480207

ANALYSIS AT ASP INITIALIZATION

In addition to the above ABEND duwmps, the system provides snapshots of
any control blocks that contain errors causing one or more jobs to be
deleted from the ASP job queue during ASP restart amalysis. Each
snapshot contains the registers at the time of the snap and the contents
of the control block containing the error. The snap ID code identifies
the control block printed:

SNAP . ID CONTROL_ BLOCK
01 JCT list of FDBs for priority 00-15
02 JCT record
03 JST record
04 JDAB record
0s R/I LTTR table
06 JDS record
07 Parameter buffer
09 Job TAT
0A DJC NCB buffer

This information is to assist the system programmer in diagnosing the
nature and cause of erroneous control block data.

STORAGE DUMP ON INITIALIZATION ERROR

A storage dump can be obtained upon occurrence of a specific error
message issued to ASPOUT during ASP Initialization. This is activated
by:

*INTDEBUG,n,message-test $$

*INTDEBUG (starting in column 1) activates the debugging monitor in
INITRTNS. N (1 to 9) means to dump on the nth occurrence of the message
being monitored. Message text (columns 13-71) is text to compare
against the message up to the $$.

A new debugging interval starts (the previous one is reset) each time an
*INTDEBUG card is read and interpreted. The INISH deck is read and
interpreted, one card at a time, until ENDINISH is read. At that point,
final processing is done, which could result in error messages issued by
INITGEN, INITMDS, INITRJP2, INITRI, RIATTACH, INITCNS, and INITJOB.

Example 1

The third appearance of message ERR#53 contains unmeaningful data. A
dump is needed to analyze the cause. Since ERR453 is issued by INITMDS
after ENDINISH is read, the *INTDEBUG, 3, *ERR453W MAIN $$ can be placed
in front of the ENDINISH CARD.

Example. 2

It is not apparent why message ERR061 is being issued for a BUFFER card.
A dump is needed to analyze the cause. Since ERR061 is issued by
INITRTNS before ENDINISH is read, the message "*INTDEBUG,1,*ERR061C BAD
KEYWORD, IOBS$$" is placed in front of the BUFFER card.

208

DUMP CORE DSP (DC)

A further debugging aid in ASP is the DSP Dump Core (DC). The Dump Core
program displays selected areas of core, named FCTs, and load-list entry
points on the operator console. It also allows the ASPABEND module to
be called to provide a complete formatted printout of the ASP tables and
to snap both SDATA and PDATA parameters on the //ASPSNAP DD unit.

Note: This module is provided primarily as a debugging tool for the
exclusive use of the system programmer. It should be used only
under controlled circumstances and with full knowledge of its
impact on system performance. It nonetheless provides the system
programmer with a powerful tool to aid in problem diagnosis, and
in system maintenance and checkout.

The format of the operator input message to call the program is:
*CALL,DC[,KEY=nnn]

where nnn is an installation password protect key (see discussion
below). When the program is scheduled in response to the above call, it
responds with a message requesting that a start or cancel be issued.

Pdssible responses to this message are:
e *CANCEL DC
e *RESTART DC
e *START DCI,keyword-parameters]

The CANCEL response indicates that the services of the program are no
longer required. DC closes the assigned units, resets all active traps,
restores apprcpriate pointers, and returns to JSS to be deleted from the
active functions of the system.

The RESTART response is significant only if the facilities available
with password protection are being used (see discussion below).

The keyword parameters associated with the START response are:

*START DC{,FCT=namel,UNIT=device—-namel]
or (,FIND={modul e-name|module-name,nn}]
or [,C=XXXXXX,B=nn|BASE=SSSSSS,C=YYYYYY, B=nnl
or [, FORMATI
or [,SNAP,SD=sparms, PD=pparms, FORMAT]

[FCT=name]l [, UNIT=device-namel

The DSP Dictionary name of an active function can be entered in the
name field. The contents of the FCT will be displayed on the
console. If more than one function is active with this name, the
first function encountered in the FCT chain will be displayed, unless
the parameter UNIT= is also given, stating the ASP device name (PR1,
RD2, etc.).

The display format for this option is:

THE FOLLOWING IS THE FCT=core-location, DSP=dictionary-name, followed
by:

Registers 0-4

Registers 5-9
Registers 10, 12-15

209

and the named fields of the FCT; for example, 'FCTLOGIN, FCTNEXT,
FCTSAVCH, etc. When the FCT has been displayed, the start or cancel
request is reissued, and a new request may be entered.

{FIND=module-name | module-name, nn]

This parameter requests the entry point address and base of the named
module. If more than one such module exists on the load list, the nn
parameter should be used, specifying which module in the sequence of
load 1list occurrences should be displayed. CSECT=YES modules can be
requested with or without the AsP-appended asterisk; for example:

FIND=RDDATA or FIND=RDDATA*
[C=xxxxxx,B=nn| BASE=ssssss,C=yyyYYY.B=nnl

This parameter requests nn (hexadecimal) bytes of storage, starting
at location xxxxXX or at base ssssss, plus displacement yyyyyy. The
contents of the specified storage location are displayed on the
operator console. Note nn is rounded up to a multiple of 10
(hexadecimal) bytes.

[FORMAT]

This parameter requests that the module ASPABEND be given control in
order to provide a formatted ASPABEND printout of the ASP tables,
after which control is returned ,to DC for the next request. Note
that this does not result in an ABEND of the ASP program; it does,
however, dominate the entire system, placing all other ASP functions
in abeyance during the execution of ASPABEND. Note also that
ASPABEND uses the //ASPSNAP DD for ASPABEND output. This unit should
be assigned to a printer or tape, or to an OS data set. If assigned
to SYSOUT, the output will not be available to a WTR until the ASP
execution ends (for example, *RETURN or ABEND) when the output is
queued by OS.

[SNAP,SD=sparms,PD=pparms, FORMAT]

The positional parameter SNAP calls for the facilities of the 0S SNAP
macro. SD=sparms is the specification of SDATA as defined for the 0S
SNAP macro. PD=pparms refers to the PDATA specification of the 0S
SNAP macro. Note that, ASPABEND is called to take the SNAP and, as
with ASPABEND, SNAP issues no AWAITs; thus, the system is tied up
while the snap is being taken. Note also that the SNAP output will
go to the //ASPSNAP DD unit. The parameter FORMAT is defined above.

In addition to the above facilities, certain other facilities are
provided under password protection call. The password is entered when
the DSP is called, as:

*#CALL DC{,KEY=passwordl

Allowable passwords are assembled into an internal table, which the
installation should tailor to its own needs as to both size and content.
The table is referenced by the location symbol KEYTBL. Two other tables
of interest are the active trap storage areas, named TABLE, and a
dynamic patch area, named PATCH, which can also be tailored to the needs
of the installation. These tables are located in DC DSP modules.

210

Additional keyword parameters associated with the START response when
password protection is in effect are:

e [[,BASE=xxxxxx]1,C=yyyyyYy,S=aaaal

where aaaa is from two to sixteen characters, which are the EBCDIC
representation of from one to eight hexadecimal bytes to be stored
in core location yyyyyy or in location xxxxxx, displaced yyyyyy-

e [,ACTIVE]

displays the active trap storage area.
e [,PATCHI]

displays the dynamic patch area.
e [,SNAPONI]

causes the TVTABLE entry DYNDUMP (coded DC A(ARETURN)) to be changed
to point to a location in DC (coded DC A(DYNDUMPX)), which
implements the ASPSNAP macro and the dynamic traps.

e [,SNAPOFF]

resets the TVTABLE entry DYNDUMP to its original contents, thus
turning off the SNAP facility of the ASPSNAP macro and dynamic
traps. Note that. a *S DC,SNAP,... is effective whether the SNAPON
command has been issued or not.

e {,TRAP=xxxxXX,START=aaaaaa,END=bbbbbb]
or
{,BASE=yyyyyy,TRAP=xxxxXX, START=aaaaaa, END=bbbbbb]

A trap will be established at location xxxxxx, or at location xxxxxx
plus yyyyyy. which must be an instruction, must not -be a branching
type operation, and must be at least six bytes away from any other
trap. The core area to be snapped may be defined by START and END
as absolute addresses, or by BASE, START, and END, in which case
START and END are displacements from BASE. The instruction at
location xxxxxx will be saved, a zero OP code will be stored in its
place, and a SPIE filter will be implemented so that the start-to-
end area will be snapped when the location is executed. The
original instruction wili then be executed and return made to the
next instruction location.

Note: A routine which executes in protect key zero cannot be
trapped. Any attempt to trap such routine will cause ASP to
terminate. :

To reset the active traps, issue this command:

*R DC

CBPRNT DSP

The CBPRNT DSP can be used to snap ASP and OS control blocks. The
control blocks will be written to the SYSMSG data set, and printed at
the job's termination. The user may select the control blocks to be
printed or he may take the default list.

211

The default list is:

TAT Track Allocation Table

JDAB Job Description Accounting Block
JDs Job Data Sets

JSsT Job Setup Table

FRP Format Parameter Buffer

OSCB 0S Control Blocks

An example is:

//SAMPLE JOB 836,ASP,MSGLEVEL=1
//%*PROCESS RICONTL

//*PROCESS CBPRNT

BLOCK=JST, JDAB

//*PROCESS MAIN

//*PROCESS CBPRNT

//%*PROCESS PRINT

//SS1 EXEC PGM=IEFBR14

The following is an example of CBPRNT usage. In the example a
//*PROCESS card was placed before RICONTL and after MAIN to show the
affect of the Reader/Interpreter (R/I) on the job's JCL. The default
control blocks were selected, if the user has specified BLOCK=, only the
selected control blocks will be printed.

The first JDAB control block formatted shows fixed portion and the
generated Scheduler Elements (SE). The first SE is created by ISDRVR to
provide the time-on and the time-O0ff for when Input Service was creating
this job. This information is provided to the user for accounting
information. The SE's one through seven are for the supplied //*PROCESS
cards plus PURGE.

The FRP control block is the formatted //*FORMAT cards supplied for
Print and Punch Service.

JDS control block entries are the data set entries for this job. Some
of the entries are created by Input Service for the R/I. JCLIN is a
data set of the actual JCL as used by the physical card reader. SYSMSG
is the data set to contain the 0S SMB's.

The JCBTAB data set entry is created by Input Service for ASP R/I to
place the logical TTR table to be used by ASP R/I control block access
method. JCBIN is the data set reserved for the 0OS control blocks which
are read by the ASPQRDR routine on the Main Processor. This data set
will contain the actual SYS1.SYSJOBQE TTRs of the OS control blocks.
ASPI0001 contains the DD* or the DD DATA information. ASP0001 is a
dummy entry created because a //*¥FORMAT control card was supplied.

The Job Setup Table (JST) is created by Input Service but will not be
completed until the ASP R/I has completed all of the required work. A
completed JST is shown later in this example. The JOB TAT control block
(JBTAT) indicates the one-track group has been allocated to this job.
Following the JBTAT are the LOCATE and responses generated by the ASP
R/I DSP. The OS SMB's that are retrieved via the ASPQWTR interface in
MAINIO. By comparing the SMB output with the supplied JCL it should be
noted that the ASP R/I DSP does not process the ASP control cards. The
ASP control cards are not placed in the JCLIN data set.

The next JDAB, FRPs formatted indicates how it appears after Main
Service. By comparing the JDS control block entry now with the
previous, it can be seen that the JCBTAB and JCBIN are completed and
have been utilized.

Compare the present JST with the previous JST and the supplied JCL.

212

ISV40 JCB ORIGIN FROM GRCUP=MACH2 s+ DSP=CR , OEVICE=RD2 s 039

/ /CBPRNT JGE 8364ASP

//7%PROCESS CBPRNT

//*PROCESS RICONTL

//#PRCCESS MAIN

/ /#PROCESS CBPRNT

//#PROCESS PRINT

//4FGRMAT PR,CONAME=ASPO001+0EST=MACK2, TRAIN=PN,COPIES=2

/ /*PROCESS PUNCH

//%FORMAT PU,CONAME=JCLIN

//S1 EXEC PGM=1EFEBR14

//45P0001 0D SYSGUT=A

7/71 0D SYSGUT=Z

/1182 EXEC PGM=IEFBR14

//C02 DD DSN=ASP.HWOOF305,01SP=SHR

//SYSIN oD *

/%
FESXDE LI NERLEREREARELRNERR IR RE SR IR ERAFREF DA I XBERE A RXE B R T ERE TR RSN FXE S X BT BR SRR AXBRERER IR AT E KR
SURBEEREERFLRER ARSI R R RR AL B AL F L ERA B R AS SRRBEERAK FRERAERRRBRAIE SEXREREXREE IR RERERER
B R ey e R e e e e e Ly R L Rt L e
* ASP CCNTROL BLOCK PRINT QUTPUT *
e e g g e s it s
FEEECALTREIER B L RREL SR ER BRIV R RSR DR LRSS H SV ELE DL BR XA KK * * HRRSERERREER *
e L R e e L L e e i R e e i L s

CEFAULTS USED — BLOCK=0SCB,JST3J0S+FRP,T2T,JCAR

FREE BB RN DL S LR ERB R AR RN EASEA ST B IR TR DA AR TR AR BB A B F AN A B EE LRSI IR R L E NP F AR E I RRRF XA X TG R R A KR KR

® JDAB CCNTROL BLOCK *
FRXRBRALERIRSARE RS R E R EE AV E SRS RR X AR R E TR AR RAR LTS E IR RAE R X DR H IR LI LR RS H LR AR EB R KRR IR UKD

FIXED CCCC 01023001000000000000005001013001 £4900001C3C207D905E34040D4C1C3CE *uaaavcosnnaaceaalas sdCBPRNT MACH®
0020 F2404040F0FO0FQF3FFFFFFFFO0000000 0000000001013000E69000000005C005 2 0003... eseeeteccanne
€040 (00000000000000008000C¢1000000000 Q000000C000000006161C3C2DTDID5ES Feanoaonns . eesCBPRNT*
0060 4C4040D1D6C24040FBF3F66BCIEZDT40 4C404040404040404040404040404040 * JOB 836.A5P *
0080 4C404040404040404040404040404040 40404040404040404040404040404040 * *
00AQ 4C404040404040400270000000000000 G0000000000000GC00060CA00000000C * cecsssscnctncsscrsenassas®
¢0CO 0C000006000000000000000000000000° Keeosoeonan *

SE # 60CO 6C0000006000002520372620372806C0 G6C000000000000000006000000010600¢C

0000 0020 0000003400000008000060CCC000Q00CE CCO00000

SE 4 000G CCOCG0C000000012BEEEEEEEEEEEEQOCO G0C00000000G00006000000CQ000G0000C

agol 0020 000000340000000000000000000000C0 €Q000000

SE # 0000 0C0000000000020FEEEEEEEEEEEEQOCC 0C00000000000000000000C0000060000

ago2 0020 ¢000083400000€0Q000000C0000C00CE TOGO0000

SE # 0000 000000000000030BEEEEEEEEEEEECOQC CG000600000000000000060000000000

Qg03 €020 0000003400000G0000000¢00000CA000 ©C000000 Feseonsssncrecasassan

SE # 00C0 CGOOCOCO000D0042BEEEEEEEEEEEEQQNC0 GG0000000000000C0000CC00000000C0 caassecccacnas®

0004 0020 00000G34000000000000000000000CCO €€000000 e

SE # 0000 01033000E4900509EEEEEEEEELEEEDQOCO COU000000000000C00000C000000C000 *eavellevcrsensvacscsassasnssaccas®

0005 0020 0000003400000000000000006000000¢ 00000000 ¥eeaosassssosascosncsen

SE # 0000 01043000E490060AEEEEEEEEEEEEGQUQ0 €0000000C0000000000C00000000C000 *euaeloseosevsasconcsssccassansas?

€g0e& 4020 00000034000000000080000C000000000 €CO0OC000 *

SE ¥ Q000 0C0000000000C708EEEEEEEEEEEEQOCC €COAC00000000000000000C0000008C000 *

<Co7 €028 00000€34000¢80000060066C000000CC TCAOO000 *

213

*

FIXED

FRP #
[+1s10 }

*

ARRAEFRBIASBRATRALIERAIXAENUES IR VU OD AR SRS ERRBRE K REE RKATL K WA
* FRP CONTROL BLOCKS: FOR PRINT ¢ PUNCH DSPS
P T R L e T L e Rl R s g

GO0

02

Q000
0020
0040

PRINT SCHEDULER ELEMENT

01033000000G606000000002€006C00C0

0 000000000040000000000000

D4C1C3C8F240404000000000600000C00
D7D54040404C40400302006000000G00
FOFQF140

PUNCFE SCHEQULER ELEMENT

P, SRR REREE

*

smesasencsrsencracssnce?

000000000000000C0000CCO0000CC00C *uavvons

Feaaoons

<« STANDARDSTANDARD*
cssssvesscanss ASPOR

E2E3CIDSC4C109C4E2EICINSC4CI09C 4 *MACH2
004400000000000000000000CLE207FQ *PN
*001

FIXED €0GQ 01043000000G00G00000062C00600000 000000000000000000000C0000000000 Tasasacasas
0020 00000G000000030G00000000 Feeeraoasanen

FRP # Q000 D4C1C3C8F24C€40400000000000000000 E2€3C105C4C109C4E2E3L105C4C109C4 #MACHZ weaeaees STANDARDSTANDARD®

0001 0020 E2E3C1D5C4C1D9C40301006C00000000 6C440000000000000000000001C3D3CY *STANDARD s ceevnasacscaneanesaJCLI®
0040 D5404040 *N *
FREEBEBERERELILE IR ELIRAP XX BBRABEFSE TR EESEXDREE XS REFSE RN DERRE D ESE XS RADRIDERD
* JOS CONTROL BLOCK R *
FEIFLHSEVBNIHFBE DR EISENSESA LB ED AR FIFGX RS LR R L) ® SRR RVVLEIFRRERT BRI RS SR XERGR RN

FIXED €O0C 01013001000000000000012800200060 06000000000000000000000000000000 #eecsacsenascocasasacsascaccrccss®

JOS # €000 €108300010980000000000680006054C C1CB300000000044002CCE000000CO0C Fueeavenasoasoccncsanvanssas

0001 0020 00000C00TIC303C9ID5404C40 *....JCLIN

JGS # COCO 0COS5F9AE10880000010002690005EAC8 0106300000000080002C0C0000000000 #*.aFasaens

€002 0020 0Q000COOE2ESE204E2C74C40 ¥eeeaSYSHSG

JDS & 0000 0C000C0000000000000C0CCA000000C0 0CA0G00000001000002C000000000000 ¥uuneressessasasenscsccnvacanne

0603 0026 00000000DLCIC2E3C1C24040 %..4.JCBTAB

JCS # 0000 0000000000000000G0000000000000CA €000000000000000002C 000000000000 *.. cevssann

CC04 €020 0C0Q0000BLC3C2C905404040 LIS

JOS # €0CO 0107300010980000000003040006062C 0107300000000000002CCC000000000C *.:

G005 €020 0CO000Q0CLE20TCSFOFOFOFL #....ASP10001

JCS § 00CC 0C0G0G0000060C0000000C0000000000 00G0000000000088002C000000G0000C *..:

€006 0020 0000000CCLE2DTFOFOFCFL40 ¥e...BSP
BREREFE X BLBRBBRE EAE LS 22 2] FERIVACRERE PR RIS O ARV AR RS ARSI L NSRS QBER CXRR X R R BAR D RN XS BTN DR ES
» JST COGNTROL BLOCK *
AEXYB G LB ELED IS DL R LT RE DRSSV ORACO RS SRS OE S EAGBRI AR A LAR IR EASLREFC LR AAA LN ERA LA A DR XX KA EEREBEROH S

FIXED 0000 010230000000000000000C268000C00CC CCO00G28000G0GGC0000C0000000C000C Faaassssorsassarasanssosssansasna®
0020 0000000000000000 Teneeeees *
HEDERE R I BII AR BB REE % SohEERR SRR ERFRKS % L2
* JOB TAT CONTROL BLOCK .
ICGEEERXREEIRETEE DX PR CGEEDR AL AR IR RGN ABRE RS CRRABX FORI LA FIBOPR R DRI OB EBED LRI RKXKBE AR OB DR BBSRK R K

FIXED C€GCO 010130000106300200880014E3C1E300 0000000100010000 *®

JETAY 0000 0€000000000000000000000000000000 6000CG00000001000000000600000C00C *
G020 0C000COG00aC0C000000000000000000 G0000600000000000006000000000000 *
0040 00000003000CC0000000000000000060 €£CO00000CEC000CA0000CA0C000C00G *
€060 000000000000000000000000000000600 0¢000000030000000060000000000000 «
€020 000000000000000000000000000600CC 0G600000000000000603060000000000 =
0040 0000000G0000¢00000060000C¢0000000 00006000000000000000000000000000 *
00CO 000€000000000GG0000000CC000C0000 0£000000000000¢0000000000000000C -
0GE0 00000006000000J000000000000600000 CGCO0000000000G00000000000000000 =
0100 00000¢000006000000000€00CA0000C0 0C00AQ0000GA0A0000000C00000CC00 x
€120 00000000600000000000000000000000 *

LCCATE* 0QO03ASP.WOOF305

ALOQ030EQ0QL/ASP3050004

#MDSO1 JOB 0003 (CBPRNT)}

A¥DSO2
/ JCBPRNT
/751
/7450000
/171
LEF2361
1€F2371
TEF23TI
TEF1421
TEF2851
TEF2851
1782
4/C02
//SYSIN
7/

/17
1£F2361
TEF2371
TEF237E
1EF142]
LEF2851
LEF2851
1€F2851
LEF2851
IEF3751
TEF3761
AMDSOS

602

1

ALL
27¢
131
- S

S5Y57227G.T203644.5V001.CBPRNTL.R0O0C000]

v

0O UNIT={(TC,,DEFER),DSNAME=EEASPIOCOL,

ML
232
37e
- S

USING D ASP305 ON 232
836,ASP
PGM=[EFERL4

A

Ja8
EXEC
B0 SYSCU
DU SYSGUT=Z
0C. FOR CEPRNT s1

ALLOCATED TG ASPOOOL

ALLOCATED T0 T1
TEP WAS EXECUTED - COND CODE 00GO

OL SER NCS= ASPUT3.
EXEC PGM=1EFBR14
DU DSN=ASP.WGOF305,015P=SHR

IN SETUP CON MAIN=SY2

DELETED

VOLUME=SER=010003,[CB={LRECL=80,8LKS{ZE=80,RECFM=F}

GC. FOR CBPRNT 52
ALLOCATED To DOD2
ALLOCATED 70 SYSIN
TEP WAS EXECUTEQ - COND CODE 0000

ASP.WOOF305

VOL SER NOS=
SYS72270.T203644.RV001.CBPRNT.ASPIQO0L

v
Jo
JG

Jas

ASP30s.

OL SER NOS= 010003,

B /CBPRNT / START 7227¢.2037

B /CBPRNT / STOP 72270.2037 CPU
0GG3 {CBPRNT } IN BREAKDCHWN

KEPT

DELETED

OMIN 00.06SEC

214

FIXED

SE ¥
Q00¢

SE #
0001

SE #
0002

SE #
cca3

SE #
0Co4

SE #
aGos

SE #
0006

SE #
0007

Ot!‘t#t“i“tn#t‘8#t#lﬁ#*t“t#lt*tl#l#‘tn#t#t"#ttttt‘t*k*‘!tt#ﬁ#ttltt‘tll‘ttﬁt

*

GoCe
0020
0040
€068
6080
G0AQ
Goca

€oco
0020

0000
Qg20

8000
002¢

0ago
Q02¢

¢Qco
€020

[elole]e)
€020

0000
0020

0000
0020

JOAB CCNTRCL BLOCK
FEIFREANFASE RSN DA RDRRAKIEH RS F AR AR ER KRR SR ERERRTR S S E AR BB OR TR IR A PUEF LR IS AR ERXR R SRR ERRRERIER LD

01023¢0100000000000000C0010130G01
F2404040F0FOFOF3FFFFFFFFEZEBF240
06000000000090001800001000000000
404040D1D6C24040F8F3F66BC1E2DT40
4040404040404040404G404040404040
40404040404040400270000000000000
06000€0000000000000Q0CC0C0C00GACO

0€0006000000002520372620372800CC
00000034000000G000000000C000000CC

000006000000012B203172820373000C0
00000034000C00000000000000800C0C

0G0000000000020F26373020373400CC
£0000€340000000000000000000000CC

0G000000000G030B820374120375600CC
00000034000000000000000000000000

000000G000000042BEEEEEEEEEEEEQQOCC
00000€340000000000000G0C000000000

01033000E4900509EEEEEEECEEEEQQQ0
000000340000000¢00000000000C00CE

01043000E490060AEECEEEEEEEEEQOQU
00000034000000000000000000000000

00000C00C000CCTOBEEEEEEFEEEEEQOCE
00000€34000£00060060000000000000

E4900001C3C20709C5E34040D4C1C3CE
4040404001013000E630000000050005
Q0000000010000006161C3C207D305€E3
40404040404040404040404040404040
404040404040404040404C4040404040
000000000000000€00000C0000G00000

0¢000000000000000000C0000010GC000
€€000000

(¢0000000000000060000000000000000
G0000000

€¢€000000000000000000000060000000
00000000

0€C000000€0000060000000000000000
00000000

00000000000000000000CC00G0000000CC
00000000

¢00000000000600000000C0000000000
¢€Q00000

000000000000000000000000C0000000
€Q000000

0Ca00000000000000000000000000000
006000000

P

*

Heueosevesevasaecleas CBPRNT MACH®
*2 0003....5Y2 *
Fevevenocsasnsecsasnsossaeas CBEPRNT®
* JOB B36.AS5P
*

ceseleceoran

* sececcsonsscrcancaaracan

» B %

Feasooencncscoane

-

Feuasossesesssensesssercscsonaacac?
*

¥easeonrsassavssacnae

x

Xesseecseassacescnaccssnccnessonne

¥eeoeoncssscssasncces

*

Heuevssossancscsenucsosovsaveanes

#oeessssnosancsssncose

B eeeeececssscccsssensoncncasacean

*
*

¥eevoscessscoceccvacns

*

¥eeocessessacsccsrasctasssnansoasen

¥eassssoccscnsessenss

*

Beaesllecacenscscvcrscsncesoovsoaca

¥eeseavosascanccncvne

*

FeaeslUovassonsnccacccscaccacancas

Foevetsacncenrenacnccne

¥eesovsavesasacsanccesccccnncsccnes?

Feesasesacsossssscsas

FREEFEIEEFS VLA IDH R AR KK DD S AR H SRR IR AR BT RS RARF IR AXE IR I LB A B ET AR IR ATALE RIS VRS ARAN G KA AR XA ERDERH

*

FRP CONTROL BLOCKS FOR PRINT + PUNCH DSPS

*

LR PURTRAN PR IRE VDGR ERA LN IDAE P B H R AR EARECERE R IR A B S ISR AL AR INT IS AR DXL SO RXSRRARIRB R KR TRE S Y

* PRINT SCHEDULER ELEMENT

FIXED

FRP 4
GCo1

[oo1s]¢]
€C20

0000
0020
0040

01033000000004000000002C000Q00GC
€0000G00000C€C00000000000

D4C1C3C8F24C4040000000000G0C0000
D 705404 0404C40400302000000000000
FOFQOF140

* PUNCkR SCHEDULER ELEMENT

FIXED

FRP #
acol

FIXED

JOs #
¢col

JOS #
0Qo2

JCS ¥
Cgo3

30S #
0004

JES #
G005

JCS #
Qaoe

[doLe[s]
0020

Q000
0020
GQ40

01043000¢00600000000062C00000000
00006000000040000000000CC

D4C1C3C8F24C40400600000000000000
E2E3C105C4C 10SC40301000000000000
05404040

0000000000000000000C0C0000000C0C

EZE3C1D5C4C109C4E2E3C 1D5C4C109C4
004400000000000000000000C1E207FQ

00¢000000000000000000C0060000000

E2E3C1D5C4C109C4E2E3CID5C4C109C4
0C0440000000000000000000001C303C9

Feeesnarecesscssescssamscsascsaas®
Fessuacesnasne

XMACH2 seeesees STANDARDSTANDARD*
*PN ceescsssassssnssseesASPOX
*001 *
Heswvononessencsssanaccsncscsscunce®
Feseenecancsa

AMACH2 eesveaaes STANDARDSTANDARD®

*STANDARDe evesssnasccvaacenaaJCLI®
=N *

BEBXAR SR ESREKGC R PG RDE SRR AERIRRBA LRI KRNI ARIL AL LSRR EBXXX B BDALEASCHE R AXBERABE R B R DR S AR R EEE LAV E A IR T S
JOS CONTRGL BLOCK
EREEEXLLRILRERRE IR LXK DL KRR LI AL LA S FEHE R TR TSGR B IRRTR R RE R ER RS AR LG L ARG RN EXRR AR R LS TG DA SRR KK

*

€0C0 01013¢0100000€0000000128002¢0000 000000000000Q000000000000000Q0000

cogo
Q020

00GQ
0020

[oalels]
0020

voaa
0020

G000
00240

[degels)
go20

01083000%03800000000006800060290
0000000081C303C305404C40

0005ED3810680000020000040005F04C
Q0000000E2EBEZ2D4E2C 714040

01033004E03€0C0CCC0001B40005E548
0000000001 C2C2E3C1C24040

U I0%300%F

0380000000000 ESFS
0C0C000001C3C2C 905404040

0107300010980000000003040C06062C
0C0CO0Q00CIE207CSFOFQFOF1

00000000000000000000000000000000
00000000CL E2D7FCFOFUF140

0108300000001044002CCC0000€00000C

0105300500001080002C€00000000L00C

0103300400001000002€000000000000

0107300000001000002C0€0000000000

0000000000000088602C000000000000

216

*

*

eccescsssssecvensacsescavassnses

Feeesssovrarncssccccsnacsscasccacs ¥

FeeeodCLIN x

&

¥eevonvnvscsesvslecsecncccosanncase

FaweaSYSHSG

#eeeosasanenssseVeccecccnonnaanaae®
ToeeadCETAB *

L R R R x s P T
*eaaeJCBIN *

Feeeaseasesenanevsssevacesssances®

*eeesASPI000L

¥eeessansssvsoseavesavecsecsonnans®

*...+ASPC001

FIXEQ

STEP
[+

STEP
6C02

oo
aaoi

JCT
cgol

SMB
GQQ7

s»r8
coo8

SM8
0013

ACT
0003

DSNG
¢o18

SCo
aQ1p

JER
0gas

sCr
00a2

ACT
@011

2EERE

P

FEIEFES

JST CONTRCL BLOCK

* SEXIREERREE

G000
Go2¢

Good
ao20

€oao
egz0

¢ogo
G020

01023G00000¢000000000CACAC0000CE
0000000000000000

F1000002E2F 1404040404040404C4040
41000000000(G00CCA0000C0

F1000000E2F240404040404040404040
02004000000€0000000C000C

F2E20000C4C4F24040%04C40F2F3F1F4
0600000000080000000000C0

00000028002C00C1000100033801020C

40404040F0FOF 5F 2FCF OF CF0C002C00C

40404040F0FOFSF2FOF CFOF 000600000

4C404040CLE2DTF3FQFSFZF3F200400.

*
=

Feeseotacecacsanasscssvsssmnnmeus

Fecasssas

*1l..051

Focecescsonse

00520000....%
x

*]leeeS2

*eeeosncvevann

00520000....%
E]

25..002 ALP305232, .

¥eeeeorssnnsea

2314

*

%

ASP R/I CGNTROL BLOCKS BEFORE MAIN SERVICE *

SERES

0000
ao2¢a
€040
0060
€aag
[¢[eF.1]

©aaa
Q020
0040
€060
0080
G0AC

¢oeo
0020
€040

6O60G
0080
QQAQ

0000
0020
€040
0060
0089
COAG

€0co
0020
0040
0060
€080
00AQ

[ele1e]¢]
0020
G40
0060
o114
Q0aAC

aoco
0020
€040
€060
Q080
coac

€000
0020
0040
0060
aoso0
0040

0000
G020
€040
G060
€080
00AQ

00040
ao2c
8040
0060
€080
coag

000001000L00C190CIC207CICSE3404¢C
00000200000007000000030000001DC0

0CC00000000C000C000GCEC000000600C
0000000000000000000003000000000C

000060000000G0G0 4} 0000
o 000000000! 0000000000000

40404040404C00000600A0CC00000000
00000¢ 000G

ac 00000001 01
00000200000040404040404040404040
000000000000000€00000C0000C0CA0C

000006705000G6080¢ 00A30000
4600000000060000000€0000000000G0
06¢9000000000000000040000C0000000

00000000000000000000000000
ac 000

0400000000000600000000000000C000
Q0CQ0 00000

660003600000 00go00
000006000000000000000006000000G 00
00006000000006000000000CA00CCACO

0000080500000900000000000062FE 19
FBF3F66BC1E2DTFELAO46161E2F10704
FkFElAOQGlélClEZOTFCFGFGF10202C4

00000000000C

ca

aco

s 0000

0£6161C3C2070905€303020106C2C207
CSETCSC3020BDTC TD4TECSC5C6C209F1
C40208E2EBE206E4E3TECIFEL504€161

“ﬂ""OCOOOOCOOOOOOOGOOO

000000000VIVVBATGCAGITGEEATCACO0

00001305000000000CG000C00003FFE3A
FOF1FOFOFOF 36BC4C3C27E4003D9C5C3
DSCS5C3C6D4 TEC65DFEN5026161000060
00000004¢000000000000000C00000000
0000000000000000000000600000000C
0€000000000000000000CCCGHG0ACO000

00000301000C0C00C1E£2D74040404040

0261610D33E506D3E404CSTEE2CSDITE
D!7EF8F068620302&2C9ECCSTEFBFOGB
0000
0COOOOOOOOOCOOOOOOO0000000000000

Qi 000

4C04040404040404040404C4000000001
00(

03F8F3F600 0600G0
000000000000000000000666C0000000
0¢000000000000000000000000000000

00000000000000000000000000000000
060

0000180F000000000000000800018008
0¢000600000000000000000000000000
00¢00600000000000000003C00CA0000CTH
00000000000000000000000000000000
ac (0000CC00Q0CG0
00000000000000000000000G000000C0

€1000201000001E$07110301071 1CC0C
00004000000 ¢00000000000000000000
ago 10000000G000000
0000000000000000000OOOCOOOOOOCCO

1000000000000000000000
0€000000000€000C0CACLC00006AC000
06000000000000000000000000000000
aCeca0800c08000060000000000000000

C1E2074BE6D6D6CEFIFOF 50000000000
00000000000000000000000000000000
0¢£00000000€0000C0000C0000000000
ogo 1000

06a0(©0000000

Q9 0
0C0000

006000000000000040000CC0000CAC000
00000000000000000000GC0030000000
cc)000¢00000C 0C00¢

040000000000

000000(Q0000UG! a6

GL0Cc0c00000Lac000LCcocacccococccan

C3C20709D5E34C40006714C25007227CF
000000000000000000714CCA007227CF

EZF1F5F04040404640404C4002A0C000
0C0600000000A0000000000000000000

060 0000

0¢000000000000000006000000000000
OCOOOOOOOOO000000000000000000000
04000000000 0004000

00000202005B7610000000020000050€
0000110060 040

02000000000000000000000001000000
00)000C9IC5C6C2
GC000600¢000000000000600000000G0
000 0000

000411010000000€000€00000000Q000C

0000£€060C6G06000C000
60000000000000000000000000000000
000C 0000

oG c8o¢
404G4040E2F140404040404000000000
6C000000C00000000034C00000001008
0SFLF440000000000000G€0000000000
¢C0000000000006000000000030008000

0CCe00b000000000000000C0000000000

00000 00000000
000000000000900000000080C0000000
¢C0600600000000000CC0000CCCO0C0CT
0€000000000000000000000000000000
€C0C000000060000060CCCCELTCCLCOCC

00
0000000000000000000¢000000000000
0€000004C000C00C00000C00000ACACT
00000000000000000000C¢0000000000

216

FER R ERERRE RN EERRERE

csasenccavacceas®

¥ouaeaeaALCBPRNT

¥ervcesevasesssneesCBPRNT..J0B..*
836.A5P. «SleoEXEC..PGM.TEFBRL
*40eeaaASPGO0L.0D.SYSOUT Acaaan®

10000 %712 oD0e o SYSOUT o Zusoscanannosanes®

Beevesesssesssussassdcnncscscncact

Xeeneesacssnscnane

Xqaevnsenveanssanacsses s VOLUMELSER.*
*010G03.00B8..LRECL.B0.BLKSIZE.80.%
*RECFMoFeaa ;

sIeY
€005

JFCB
cga%

sforv
[{]iF}

JFCB
QooF

s16¥
€gos

JFCB
ecoc

SICT
0012

cves

JCr?
4505

SKB?
4608

SMB?
4€0C

S¥87
460D

S¥B?
4€QE

2CT?
4507

CSNG?
4518

aceo AGO *

01000400020400C3E3C340

€000 QCOCUS03CLE2DTFOFOFCF1400G00000C
€020 00000 Q

0040 4C4G40404040404040640404040404040 4 a 00000800
€060 0CGOO 1E2DTR6CLFO
[1:14) FDF14060404540604060404040406040 C404040 04040404C: 404040
COAG 4C4
aco0 EZEBEZF7F2FZF7F04853F2FDF3F6F6F4 SBDYESFOFOF 148C3C2DTLIDSE34BCLE2 *SYST22TC.T203644.,RVO01.CBPRATLAS®
0020 DID6CIFOFOF14040404G *POAQQO)L cecenas®
G040 800002 0000 [} 4£C10EQC00CCOOC1C00GCCO0COR0COA0 *aa
€060 00404%C40: 06060
€080 0 0404040 o 04040 44040
Q0AQ GC 100
€0CG 0J000A03E3F 140406 040 B80C
€020 000 L oo G1LO OCE2EBE2C4
€040 C1464C40404 T4 C 464040 E500000000000E0600001C000000C000
0050 4040
COBC 4C404C40404C C4C4C4C 4C4Q 04040 0404040404040
COACG &G €4040404C40 04000300
0060 EZEBE2F1F2F2F1F068E3F2FOF3F6F4F4 GBEZESFOFOF148C3C2010905E363£9F0
6020 FOFOFOFOFOF14040404C404040 0 *@00001
€040 €GCCC2000000¢C000000000000000008 4EC1050000000051OOUOOCOOOGOOUOO0 Bereavasae
G060 0C00000 < 0000404040404C4040404040 *eeosvoose
€080 40604040404040&040404(4040404040 G404 3 AQQ #
Q0ACG ©CocCoCca 1cc ¥eseooacen
€oao 3C4C4F24040404 1200
G020 G00CAC 101]
€046 46404060406040604C6€4€404046404C 4C €300
0060 00 0300000 0G6000008000Q06000004C404048404C
GOEC 4(5646 (404C4C4C4C4C404C 40404040404804040404040404040404C
GGAD 4040404040440 Q. 0
0000 CLEZDT4BEGDGDACOF3FCF540404C404C 4C4C%040: €4040404040
0020 4C404040404C4040404C%C4040404040
€Q4C €QOQG2: Q 48010EQ0000Q0GE: oo
0060 €CQQ0 400C0aeoae 0G0 CoLc $00040404040404C40404040
0080 4€404040404040404040404040404040 404 *
G@ac oc Clee
€0CO COOQOK203EZEEE2CID54CAC 176C
¢02G Q0001 £GC10001020100040002G400C3E3C340
€040 4C4C40404040404040404G4040404040 4 ¢ecosce caga acocan
006G 0CO) [efele]els] IEZDTCQFOFO ¥acorsoscconancassssas «ASPI0O*
€080 FOF14040404040404G4C4C404C4C4C4C 4G €40 0 C =01 *
ODAD 4(C404040404GC40404040404040400000 = .. *
L sd et PPy
*

ASP R/I CONTROL BLOCKS AFTER MAIN SERVICE
*

*
SESERELEAE

G060 C3C2E7C9D5E340400106E10500000228 0CG2000006F1GICACCGGCCGOGUC6AEFC *CBPRNT

€020 60020050

COCO 0045050001 0CC290C3C2D7EID5E34040

€020 €045060000460800004507000045L9C0

*s

FEERSTH

c

0¢000000000000CCC0ACCCC0000C00C0
51

0040
€06C
€080
coaa

0CCLGCO0G00000G00000CAUCCLCCCO0G0
40404040404000450A004¢0000000000
€€060C000000U0000CGLACACACOLRTACO

60C

¢C450. 04040 040 a

¢ 00C

coca
€020
0040

€6400600000060000000000000600000C000

a0 CC

€CQQ06CCo0e
$0¢000008006000006CG0C0G00080000
CECC0006C00COCEL0B0CCCO00000GR0C

6060

<080
Qa0

QC0G
Qg

00GC00GC

€0460C0500460000000C0C000062FELS
FBF3F66BC1E2DTFELAG46 16 1E2F 10704
F4FELAQS6161CLE2DTFCFCFOF10202C4
€3F10702C4C40208E2EBE206E4E 3TEEY

adca
€020
co4o
006G

ace o

CE6161C3C2070905E303030106C20207

CSETC5C3020807CTDSATECSCSC6C209FL

C4020BE2EBE2DGE4E3TECIFELS504£161
o

000

€080

Q0A0 £0000C00000000¢C000000GACGAGAGE000

acao
€020
G040
€060

TIFELA
TECICSCHL20SFLF4FE26056161C4C4F2
B6CEFIFOFS6BLACIE2DTTEE2(8DGFE2?
CSE3ITE4LCIE3L 36B6BL4CS5CEC5095068

€0000 acooe

046161E2F20704CSETC5C30208D7CT04
C&Q2C4C40218C%E2DSTECLE20TABEODS
076161E2EBF2C9D50102C4C40124E4D5
C4E205C104C57ES5050CLEZDTCIFQFOFQ

cosa
COAC

Fl6B18015C
0€¢00400000€00000C0C0GCLAAG0000C0

GGao
€020

00460€£0500000QC00C0ACGAC0C0O3FFE3A
FOFIFCFOFOF368C4C3IC2TE4DOD3DSCSC3

aocooe

0Z2€1610D33E50603E404C5TEE2CSDSTE
D3TEFB8FG6BC2D302E2C9EICSTEFBFI6E
oc

G040 D9CS5C3C6D4 TEC65DFE0S5026161

[n:1-11]

cogq 0GC
Q040 6000000000Q000000000C300030G0000

€GGO 06450701 LE2074040 [

04040% 0404 040

€a20

03F8F3F6000¢00000000000000000000
G040 000 Geol

¢060
casQ

Q0RO 0000000000000

Qoeo
8020

0C45180F00000060000000CB00018008

Cl1E€20T4BEGDED6CEFIFOF

[Q

G040

€060

0080

006c00
CCAQ 0€CT0000000QCEC00CEUCUBLCCI0CAGCE

217

I *eeaeane ASP

ACHASETTRLI IR IBEARAILL SR ESRSPEE RS E

ne ecslenccaces0®

LITEYY

%ereeeaB.CBPRNT .

asncsncscannsce?

*

scemasscvsacucat

... eeeseasCAPRNT. . JGB. . *
836. ASP.. 2SlesEXEC. s PGHLIEFBRL
*haeoaesASPO001acDD. o SYSOUTAcaaea®
SYsaut.z.

semesat

PP

$2..EXEC. PGN*
«DD..0SN.ASP.KO*
*0F305.DTSP.SHRecaa o SYSIN.OD. L UN®
IT..CTC..OEFER..DSNAMEL . LASPTQQO

*

Fecaessannannerossnsas VGLUMELSER 2
LRECL.B0.BLKSIZE.B8C.*

*(310003. 0CR.
*RECFK
®o.
*o

#eesooononvascann *

SCT?
4506

ACT2
450F

SIgT?
4509

1722
4508

s1072
4508

1227
4702

Jere?
4703

sI1av?
450C

goco
0020
0040
0060
0080

C0AQ

qogo
0020
G40
€060
ccee
00a0

a0dca
0020
€040
Q060
co80
CoAQ

cogo
0020
004G
C0&0
0080
0QAQ

4000
€020
0040
0060
[0X:14)
0040

0008
0020
4040
G060
co80
COAQ

caco
00290

004506020058761000000002004509C¢C
00450F0000000000000000C040404040C
4206000000000000000C000CC10000CO
000000000000000000060C00LIC5CEC2
40000000000C0000000000C0000ANNACA

0¢0CQac00000006000000000CC00C0000

00450F01000Q0000000C0000C00C0000
20000600000000000000000000000000
0000000000000000G00000000C000000
0Q00000000000000006GQ00C000000000
€€000000000€000000Q00QCC000000Ca
4000000000000000G00000000G000CA0

0045CG903C1EZDTFCFOFCF14C000C0000
0045080000000C800000000000000000C
4C40404040404€404046404040404040Q
00060000000600000000000CC00C00CO
FCF14040404040404040404040404040
4C404040404C404C9C404C40404GC000

E2EBE2FTF2F 2FTF04BE3FZFOF 3F6F 4F 4
D7D6C1IFOFQOF140404040404040404040
00000200000000000000000000000000
00000¢00000006000000000000C00000
4040404040404040404C404040404040
0€0000000000G0000800000000000010Q

00450B03E3F140404040404000000000
004 70200000000000000000000000000
C1404040404040404C404040404C404C
00000000006000000000000000000000
4G4C4040404040404C0404040404C4040
40404040404040404040404040400000

E2E8E2FTF2F 2F TFO4BEIF2FQF3F6F4F4
FOFOFOFQOFOF1404040404C4040404040
400¢02000000000006000000G00000Q0
00060€0000000000000000000000C0CT
4(0404040404040404040404040404040
0¢0000000000000060QQ00GC000C0100

ﬂCOGO000000000000006000000000006
0000060000000000000000000000Q000

€040 060C0000009C000000000G00000CC000

G060
€080
0040

4000
€020
G040
0060
[3]
a0ag

0C000000C0450EQQCQ46C000C0460C00
40404040€E2F140404040404000000000
00¢€0000000000000CG0348C0000001008
D9F 1F4400000000000000C0000000000
€C0000000006000000G00€000000C00CC

000000000000006Q060000C0C000CE00
40000000000000000000000000000000
0€0000000000000C0000000Q00000000C
¢C00000000000000000000000000C000
0000000060000€0000060000C0000000C

0C€00000000000000900000000045Q800
0C0000000101000400020400C3E3C34C
40000000000000000000000000000000
0€0000000000C0000000C1E2D7D6CLFO
40404040404040404040404040404040

4BD9ESFOFOF14BC2C207C0905E348C1E2
40404040000000000000000000000000
4801C0E00G00000C10C060CA0CO00L000
00000000000040404040404040404040
4C404040000€000000000C000000GC000

04¢000000060000006C0000C000045CC00
000000000201000400000C00E2EBE2C4
€£5000000004701000G47¢3000000000C
0£000000000600000000404040404040
4C404040404C40404040404040404040

4BEZESFOFQF148C3C20709D5E34809F0
4040404020000000C0008€ 00000006000
48010E00000000810000000000000000
$0€00000000040404040404040404040
4040404000000000000032800000GA00

€Q00000000600006000000C0000000000
06¢0000000000003000000€0000000000
0£6000000000000CC00C¢6CC00000C00C

00000000600000000000000000000000
0€000000000¢000000000C0C000G00CO

400000000000000000000¢0000000000
€CC000000000000C0000CC000000€000

06000000000000000000090000000000

00450C03C4C4F24040404C4000000000
004500000000000000000000060C00000
40404040404040404040404040404040C
60000000000 000000000000000000000
4C4C4C405040404C4C4G4C04C4C4C4040
4040404040404040404C4040404C0000

0¢G00000000000000000C00000451000
00000000010100000000010040404040
4€€00000000000000000€0000000C000
000000000000000000004L4040404040
4GC404040404C4040404040404040404G

218

x
*
%
*

«IEF8R14

#eevvevccaccosncavann

Faesesscssvenccns

¥eeevenocasancans

%, 44 -ASPCOOL
*eeeesnosmssnanss
%

¥qaaeovsessncnscsavoceveasesASPOADS
*0} *
* *

SYST2270.T203644,RVA01.CBPRNT . AS
*POAQOL

Feaseoscoaesasssnsscsecvncfosoneane

ee ¥
*

.ee

.n

*eweaoll

Pevvesecasroen

A

Keanenesenscessrecvssanacan

* *
* .. *

#5YST72270.T203644.5Y001 .CBPRNTLRO*
*000001
*

ssecveassanessvenas

%eeosscaacerscsanane

x

Fraeeeecssececcscns

R
LR A

eeeaDD2

eescecscscsecosnccccnannee

*
*

.o

TERMINATING A DSP VIA THE FAIL COMMAND

There may be conditions where a DSP will not respond to an operator
*CANCEL command. The *FAIL comrand causes the specified function to
immediately terminate and enter ASP Failsoft recovery, which will return
the resources held by the function. If DUMP is specified, an ASPABEND
dump will be taken and the system will proceed normally.

Operation Operands

FAIL {dspname|device-namejdevice-address} [,DUMP]

SNAP DUMPING ASP CONTROL BLOCKS USING DISPLAY/DC DSP
Under some circumstances it wmay be desirable to examine ASP control
blocks (see below) for all jobs in the system (for example to determine
flag settings and field values in these control blocks which may be
incorrect or adversely affecting the system). This can be accomplished
using the display DSP in conjunction with the DC DSP (password mode) in
the following manner:

1. *X DC[,KREY=password] (See Dump Core DSP)

2. *S DC,SNAPON

Note: This will enable SNAP processing for any DSP coded
with this capability (for example, RJP).

3. #*X DISPLAY,SNAPS{,OUT=printer name]

4. *C DC
The following ASP control blocks will be snapped to the SNAP data sét
(ASPSNAP DD card in the ASP initialization deck) for all ASP jobs in the
system:

1. Job Control Table - ID=001

2. Job Description and Accounting Block - ID=002

3. Job Setup Table - ID=003

4. Specialized Reschedule Block - ID=004

See ASP Console Operator's Manual for a discussion of normal DISPLAY
usage. '

219

APPENDIX A: MACRO-INSTRUCTIONS

This appendix contains a discussion of each of the macro-instructions
used in the ASP system. Each discussion consists of three elements:

e A functional description defining the purpose and use of the macro
e An illustration of the macro format
e A definition of each of the operands used in the macro

For the convenience of the reader, the macros are arranged in
alphabetical order.

The symbols used to express the operands are:

addr A symbol of from one to eight characters, with the first
: character alphabetic

(reqg) Absolute register notation in the range 2 through 9 and 13.
This type of specification must be enclosed in parentheses.
If the user has included the ASP REGISTER macro in his
program, either form (n) or (Rn) may be used.

(Rn) Where n is shown as a specific register number, it represents
the register used by the called routine to receive this
parameter. If the register specified as (n) or (Rm) is
given, no redundant load instruction is generated.

n A decimal number

X'xx’' A hexadecimal number for X in the range 00 through FF
t 1 An optional operand

{ 1} A mandatory operand containing alternative entries

| A separator used between alternate operands

Where an operand defining a return location to the program is shown as
optional, such as [NORMAL~{(req) |addr}l, omission causes resumption of
the program at the location immediately following the expansion of the
macro—-instruction. In this event, a branch instruction is not
generated; this is, therefore, the most efficient usage of the macro-
instruction. Registers 0, 1, 14, and 15 are loaded destructively by the
macro-expansions and cannot be used to pass parameters except as
specifically noted in the individual descriptions of the macro-
instruction.

SAVE={YES|NO}, which appears as an optional parameter in most ASP macro-
instructions generating calling sequences, allows the user to specify
whether registers 2 through 9 are to be saved across the call.

Registers 10 through 13 are always restored before returning to the
callexr. The normal use of the option, which is the default, is
SAVE=YES. SAVE=NO, which is faster, is recommended only where the user
has no further use of registers 2 through 9, for example, on a macro
call immediately preceding the exit from the calling function. In the
macros herein defined, where the option is not shown, SAVE=YES is forced
(that is, registers 2 through 13 are saved) unless specifically noted in
the text.

220

Several macro-instructions are provided to define as DSECTs the fields
of blocks and tables used by the system; for example, AJDENTRY,
JDABDSCT, and TVTABLE. Each routine that uses such ASP blocks and
tables should use the macro-instructions for field definition in order
to ensure consistency in the labels used and to simplify modification of
the size and/or format of the blocks and tables.

Several of the tables consist of a fixed area plus a variable number of
entries. The following addressing conventions are recommended to
provide maximum flexibility in table expansion with a minimum of
reassembly.

To access the fixed area:
* Load a register with the address of the table.

e Issue a USING statement on this register for the fixed area DSECT
name.

To access the first entry in the variable area:

e Load a second register with the address of the fixed area (this step
may be omitted if no further reference is to be made to the fixed
area).

s Add to this register the halfword length of the fixed area
(contained in the fixed area).

e Issue a USING statement on this register for the variable area DSECT
name.

To increment to succeeding entries in the variable area:

» Add to the variable-area base register the (halfword) length of the
current entry. This length field may occur either in the fixed or
the variable area depending upon the individual table.

The "end™ and "size" fields which appear in most table DSECTs should be
utilized only by the functions creating the tables, which calculate the
halfword length fields subsequent functions should use for
incrementation. By adherence to these conventions, expansion of a given
table requires reassembly only of the function creating it and those
functions addressing the added area. All other functions using the
table are unaware of the expanded area but dynamically correct
incrementation to the next element.

221

ABACKR

Functional Description

The ABACKR macro-instruction is used to reposition a multiple record
data set immediately in front of the previous record or end-of-file
indicator. ~ .

Name Operation Operands

{symbol] ABACKR FDB={ (R1) | (reqg) |addr}
+AREA={(RO) | (reg) | addr}
+EOD={ (req) |addr}

[,SAVE={YES|NO}]
[,NORMAL={ (req) |addr}]

Operands

FDB The File Description Block address for the data set to be
repositioned.

AREA The address of a two-fullword work area to be used by the
ABACKR routine.

EOD The location to which the ABACKR routine returns if end-of-
data has been reached.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the ABACKR routine returns after the
data set has been repositioned.

ABLOCK -

Functional Description

The ABLOCK macro-instruction is used to block a logical record into
a data set being written. This macro may be issued only after an
ALOCATE macro.

Name Operation Operands

[symbol]l ABLOCK FDB={ (R1) | (reg) {addr}
¢COUNT={ (RO) | (reg) [n}
[,SAVE={YES| NO}1]
(,NORMAL={ (reg) |addr}]

Operands

FDB The File Description Block address for the data set being
blocked.

COUNT The number of bytes to be blocked. If the number is located

in a register, it is represented in binary. If the number is

222

specified absolutely, it is represented as a decimal number.
The number is in the range from 0 to buffer size minus 24.

SAVE Indicates whether the contents of registers 2 through 9 are-
to be saved across the macro call.

NORMAL The 1ocat10n to which the BLOCK routlne returns when the.
record has been blocked into the data =et.

ABLOCKS

Functional Description

The ABLOCKS macro-instruction is used to block a logical record that
may span a buffer boundary. This macro may be issued only after an
ALOCATES macro-instruction.

Name Operation Operands

[symbol] ABLOCKS® FDB={ (R1) | (reg) jaddr}
+COUNT={(R0O) | (reg) |n}
[,SAVE={YES|NO}]
(,NORMAL={ (reg) {addr}l]

Operands

FDB The File Description Block address for the data set being
blocked.

COUNT The number of bytes to be blocked. If the number is located
in a register, it is represented in binary. If the number is
specified absolutely, it is represented in decimal. The
number is in the range from 0 to buffer size minus 24.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the BLOCKS routine returns when the

record has been blocked into the data set.

223

ABNCODE

Functional Description

The ABNCODE macro-instruction is used by ASPABEND format routines to
control the CSECT name of a module. The module erntry code uses ABNCODE
to set a global symbol to the CSECT name. The format routines then use
ABNCODE to pick up the CSECT name from the global symbol.

Name Operation Operands
{symbol]l ABNCCODE [CODE={ENTRY |EXIT}]
Operands
Code CODE=ENTRY causes generation of a CSECT statement and

initialization code for the format module named by "symbol".
The symbol is required in this form but is invalid for the
other forms of CODE. CODE=ENTRY is valid only once per
module. CODE=EXIT causes generation of termination code for
a format module. If CODE is omitted, a CSECT statement is
generated using the symbol generated with the CODE=ENTRY
form; this usage must be the first statement in each format
routine within the module.

ABNCVDEC

Functional Description

The ABNCVDEC macro-instruction, the use of which is restricted to
ASPABEND, converts a fullword of hexadecimal data to ten decimal d1g1ts.

Name Operation Operands

{symbol] ABNCVDEC [DATA={(R1) | (reqg) |addr}]
[,NORMAL={ (reg) |addr}]}

Opérands
DATA The location of the data to be converted.
NORMAL The location to which the ABNCVDEC routine returns when the

data has been converted. Register 1 contains the address of
the ten-digit decimal field.

224

ABNCVHEX

Functional Description

The ABNCVHEX macro-instruction, - the use of which is restricted to
ASPABEND, converts four bytes of data to eight bytes of printable
hexadecimal notation. '

Name Operation Operands

[symbol] ABNCVHEX (DATA={(R1) | (reg) |addr}]
[,NORMAL={ (reqg) |addr}]

Operands

DATA The location of the data to be converted.

NORMAL The location to which the ABNCVHEX routine returns when the
data has been converted. Register 1 contains the address of
the eight-byte printable hexadecimal field.

ABNDSECT

Functional Description

The ABNDSECT macro-instruction is used to establish a DSECT that
defines entries in a work area used by ASPABEND.

Name Operation Operands
ABNDSECT
Operands

This macro-instruction contains no operands.

ABNGET

Functional Description

The ABNGET macro-instruction, the use of which is restricted to
ASPABEND, obtains the core storage address of a specified area.

Name Operation Operands
[symboll ABNGET AREA={ (R1) | (reqg) |addr}

{ ,NORMAL={ (reg) jaddr}l]

225

Operands

AREA The address of the field to be obtained.

NORMAL The location to which ABNGET returns when the area has been
‘ obtained. Register 1 contains the core storage address of
the area. The field has the length of the alignment :
attribute of the specified area; e.g., double-word alignment
obtains 8 bytes of data, half-word alignment obtains 2 bytes.

ABNPUT

Functional Description

The ABNPUT macro-instruction, the use of which is restricted to
ASPABEND, causes a line to be printed on the output data set.

Name Operation Operands

[symbol] ABNPUT PCW={ (R1) | (reqg) | addr}
{,NORMAL={ (reqg) {addr}]

Operands

PCW The print control word for the line to be printed (see PCW
macro-instruction).

NORMAL The location to which the ABNPUT routine returns when the
line has been printed.

ABNVRFY

~Functional Description

The ABNVRFY macro-instruction, the use of which is restricted to
ASPABEND, verifies the validity and fullword alignment of a specified
address.

Name Operation Operands
{symbol] ABNVRFY ERROR={(reqg) |addr}

[,DATA={(R1) | (reg) |addr}]
[,NORMAL={ (reg) |addr}]

Operands

ERROR The location to which the ABNVRFY routine returns if the
address is invalid or not on a fullword boundary.

DATA The address to be verified.

NORMAL The location to which the ABNVRFY routine returns if the

address is acceptable.

226

ACALL

Functional Description

The ACALL macro-instruction allows the user to enter any routine
through the ASAVE linkage routine, assuring the inteqgrity of registers
10 through 13 or registers 2 through 13.

Name Operation Operands

{symbol] ACALL ENTER={ (R15) | (req) [addr}
{,SAVE={YES|NO}1]
[,EOD={(reg) {addr}l
[,EOF={ (reg) |addr}]

[,NAVAIL={ (reg) |addr}l}
[,ERROR={ (reqg) |addri]}
[,IPL={ (reqg) |addr}]
{,BUSY={ (reg){addr}]

[LREJECT={ (reg) [addr}l]
{ ,RIPCAN={ (reqg) jaddr}l}
[,NORMAL={ (reg) |addr}]

Operands
ENTER The address of the routine to be entered.
SAVE Indicates whether the contents of registers 2 through 9 are

to be saved across the macro call.

EOD, EOF, Return points. Only those used by the called routine
NAVAIL, may be specified, as required by the called routine.
ERROR, IPL,

BUSY, REJECT,

RIPCAN, NORMAL

ACCARD

Functional Description

The ACCARD macro-instruction defines the fields of the accounting
cards created by the accounting routine within the PURGE DSP. These
cards can be processed later using the Accounting Print DSP.

Name Operation Operands
ACCARD
Operands

This macro-instruction contains no operands.

227

ACDSECT

Functional Description

The ACDSECT macro-instruction is used to describe the data area used
by the ACDS (ASP-Created Data Sets) DSP.

Name Operation 0perands
ACDSECT [TYPE={CSECT|DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

ACENTRY

Punctional Description

The ACENTRY macro-instruction is used to define a DSECT for the
fields of a //#FORMAT AC parameter buffer

Name Operation © Operands
ACENTRY
Operands

This macro-instruction contains no operands.

ACLOSE

Functional Description

The ACLOSE macro-instruction is used to close a multiple-record data
set.

Name Operation Operands
[symboll ACLOSE FDB={ (R1) | (reqg) |addr}

[,SAVE={YES|NO}]}
{ ,NORMAL= {(reg)laddr}]

228

Operands
FDB

SAVE

NORMAL,

ADEBLOCK

Functional

The: address of the File Description Block (FDB) . for the data
set being. closed.

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

The location to which the CLOSE routine returns when the data
set has been closed.

Description

The ADEBLOCK macro-instruction deblocks a logical record from: a. data
set. being read. When the logical record spans a buffer boundary, the
ADEBLOCK routine combines the record into a contiguous area.

Name

[symbol]

Operands
FDB

Operation Operands

ADEBILOCK FDB={ (R1) | (reqg) |addr}?
+EOP={ (reg) |addr}
«EOD={ (reqg) |addr}
[,SAVE={YES| NO} 1
[,NORMAL=1{(reg) jaddr}l

The File Description Block address for the data set being
deblocked.

The location to which the DEBLOCK routine returns when an
end-of-file has been reached.

The location to which the DEBLOCK routine returns when an

"end-of-data has been reached.

SAVE

NORMAL

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

The location to which the DEBLOCK routine returns when the
record has been deblocked. Register 1 contains the address
of the record, and register 0 contains the number of bytes in
the record represented as a binary number.

229

ADEBS

Functional

Description

The ADEBS

" macro-instruction deblocks a logical record from a data

set being read. When that logical record spans a buffer boundary, a

pointer to
Name

(symboll

operands
FDB

EOD
EOF
NAVAIL
SAVE

NORMAL

each segment of the record will be provided.
Operation Operands

ADEBS FDB={ (R1)-] (reg) |addr}
EOD={(req) jaddr}
«EOF={ (reqg) |addr}
+NAVAIL={ (REG) | ADDR}
[,SAVE={YES| NO}1
{,NORMAL={(req) [addr}l

The File Description Block address for the data set being
deblocked.

The location to which the ADEBS routine returns when end-of-
data has been reached.

The location to which the ADEBS routine returns when end-of-
file has been reached.

Next buffer not available. -This implies end of current
buffer. No pointers to data are returned.

Indicates whether the contents of registers 4 through 9 are
to be saved across the macro call. See Note below.

The location to which the ADEBS routine returns when the
record has been deblocked.

Note: Upon normal return, if the record is not split between two
buffers, register 1 contains the address of the record; register
0 contains the number of bytes in the record, represented as a
binary number. If the record just deblocked fits perfectly in

the

buffer or if there is no more data in the current buffer,

register 2 will be -1. 1In either event, registers 0 and 1 give

the

complete count and the starting location of the data.

However, if the record is split between two buffers, register 2
contains the number of bytes in the second buffer; and register 3
contains the location of those bytes. The NAVAIL return for
print service simulates a perfect fit condition without passing a
data record.

230

ADELETE

Functional Description

The ADELETE macro-instruction is used to delete a module from core
storage. :

Name Operation Operands

[symbol] ADELETE {EPLOC={ (R0O) | (reqg) {addr} | EP=name}
[, {CSECT=NO| CSECT=YES,CDE={ (R1) | (reg) [addr}]
[SAVE={YES |NO}]
(NORMAL“{(reg)laddr}]

Operands

EPLOC A pointer to the name of the module to be deleted. If
register notation is used, the specified register contains
the address of the name, left-justified, in an eight-
character field padded with blanks. If the module has not
been ALOADed previously, the ADELETE request is ignored.

EP The name of the module to be deleted.

CSECT CSECT=YES indicates that the ADELETE is being issued for a
data control section. This option is normally used only by
the Job Segment Scheduler and DSP Failsoft.

CDE The address of the Contents Directory Element for the CSECT
to be deleted, as returned by ALOAD.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the ADELETE routine returns when the
module has been deleted.

ADEQ

Functional Description

The ADEQ macro- 1nstruct10n releases a system resource (JCT,
RESQUEUE, etc.) for use by other functions. v

Name Operation Operands
[symboll ADEQ {NAME | FCT}={(R1) | (reqg) |addr}

+PRTY={ (RO) | (reqg) | n}
[,NORMAL={ (req) |addr}]

Operands

NAME The name of the function to be released. Refer to the
RESOURCE macro expansion in the TVTABLE for the valid names.

231

FCT Used by JsSS and DSP Failsoft to release all resources
enqueued on the specified Function Control Table.

PRTY A number that specifies the priority associated with the.
resource entries in the range 0 to 15. If the number is in a
register, it is represented in binary. If the number is
specified absolutely, it is represented as a decimal number.

NORMAL The location to which the ADEQ routine returns when the
specified resource has been released.

AENQ.

Fun¢tional Description

The AENQ macro-instruction obtains exclusive use of a system
resource: (JCT, RESQUEUE, etc.).

Name Operation Operands

{symboll AENQ NAME={ (R1) | (reg) |addr}
#PRTY={ (RO} | (req) |n}

[,BUSY={WAIT]| (reqg) |addr}]
[,NORMAL~{ {reqg) Jaddr}l

Operands

NAME The name of the resource to be obtained. Refer to the
RESQURCE macro expansion in the TVTABLE for the valid names.

PRTY A number that specifies the priority associated with the
resource entry in the range 0 to 15. If the number is in a
register, it is represented in binary. If thé number is
specified absolutely, it is represented as a decimal number.

BUSY The location to which the AENQ routine returns if the
resource is in use by another function. If WAIT is
specified, the AENQ routine AWAITs until the rescurce becomes
available, then takes the NORMAL exit. If WAIT is not coded,
register 0 upon return to the caller will contain a mask and
address that may be used in an AWAITOFF to wait for the
resource to become available.

NORMAL The location to which the AENQ routine returns when the
resource has been obtained.

232

AFSDSECT

Functional Description

The AFSDSECT macro-instruction is used to define a general data area
used by ASP Failsoft.

Name Operation Operands
AFSDSECT [TYPE={CSECT|DSECT}]
Op erands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

AGETBUF

Functional Description

The AGETBUF macro-instruction is used to get a buffer from the
buffer pool.

Name Operation Operands

[symbol}l AGETBUF [SAVE={YES|NO}]
[,NORMAL={ (reg) {addr}]

Operands

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the GETBUF routine returns when a

buffer is available. The buffer address is located in
register 0.

233

AGETMAIN

Functional

Description

The AGETMAIN macro-instruction is used to get a contiguous area of
core storage.

Name

[symbol]

Operands

SIZE

BUSY

SP

HIARCHY

SAVE

NORMAL

AGETPUTM

Operation Operands

AGETMAIN SIZE={(R0) | (reg) jaddr}
¢«BUSY={ (reqg) |addr}
[,SP={{(reqg) |n}]
[AIARCHY={ (R1) | (xreqg) |O]| 1}]
[,SAVE={YES|NO}]
[,NORMAL={ (reqg) |addr}]

The number of bytes of core storage desired.

The location to which the GETMAINX routine returns if there
is insufficient core to satisfy the user's request. Register
0 contains an ECF mask and address which the calling program
may use to AWAIT for available core storage.

The number of the subpool from which to obtain storage, where
n is 0 to 255. If SP is omitted, the value specified for
ASPOOL on the ASPCORE initialization card is used.

The number of the hierarchy (0 or 1) from which storage is to
be allocated. If register notation is used, storage will be
allocated either from hierarchy O if the register contains
zero or from hierarchy 1 if the register is positive. If the
register is negative or if the HIARCHY keyword is omitted,
storage will be allocated based upon the HIARCHY parameter on
the STANDARDS control card.

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

The location to which the GETMAINX routine returns when it is
able to satisfy the user®s request. Register 0 and register
1 both contain a pointer to the start of the obtained core
storage. -

Functional Description

AGETPUTM
AGETMAIN

234

is an inner macro which services the common parameters of
and APUTMAIN .

AIOPARMS

Functional Description

The ATIOPARNMS macro-instruction establishes a DSECT, used by the Disk
Input/Output Routines (ASPIO), that defines a table of I/0 parameters.

Name Operation Operands
ATIOPARMS
Operands

This macro-instruction contains no operands.

AJDENTRY

Functional Description

The AJDENTRY . macro instruction is used to define fields of an entry
in the Active JDAB Table.

Name Operation Operands
AJDENTRY
Operands

This macro-instruction contains no operands.

235

ALOAD

Functional Description

The ALOAD macro-instruction is used to load a module into core
storage. If the module requested has already been ALOADed, an 0S/360
LOAD will still be issued to increment the use count for the module. It
is the responsibility of the programmer to ensure that modules that may
be called simultaneously by different programs are reentrant.

Name Operation Operands

[symbol]} ALOAD {EPLOC={ (RO) | (reg) |addr} | EP=name}
{,CSECT={YES|NO}]
[,SAVE={YES|NO}]
[.ERROR={ (reg) |addr}l
[,BUSY={ (reg) |addr}]
[,NORMAL={ (reg) |addr}]

Operands

EPLOC A pointer to the name of the module to be loaded. If
register notation is used, the specified register contains
the address of an eight-character field. This field contains
the left-justified name of the module to be loaded and is’
filled with blanks.

EP The name of the module to be loaded.

CSECT CSECT=YES indicates that the ALOAD is being issued for a data
control section. This option is normally used only by the
Job Segment Scheduler and DSP Failsoft.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

ERROR The location to which thé ALOAD routine returns if it cannot
load the module due to error. Register 15 contains the error
code:

04 Module does not exist
08 Permanent 1/0 error in Directory

If this parameter is omitted, the above conditions will
result in a DM80 for a non-existent module or DM81 for an 1I/0
error.

BUSY The location to which the ALOAD routine returns if there is
insufficient core to satisfy the user's request. Register 0
contains an ECF mask and address which the calling program
may use to AWAIT for available core storage. If this
parameter is omitted, ALOAD performs an AWAIT until
sufficient core becomes available for loading, then takes the
NORMAL exit.

NORMAL The location to which the ALOAD routine returns when the
module has been loaded. Register 0 contains the entry point
address of the module. If CSECT=YES was specified, register
1 contains the address of the Contents Directory Element for
the module.

236

ALOCATE

Functional Description

The ALOCATE macro-instruction is used to locate space for a logical
record in a data set being written. The ALOCATE macro is used in
conjunction with the ABLOCK macro. There must be a corresponding ABLOCK
macro after every ALOCATE macro for a given data set.

Name Operation Operands

{symbol] ALOCATE FDB={ (R1) | (reqg) | addr}
+COUNT={ (RO) | (reg) {n}
{,SAVE={YES|NO}]
[,NORMAL={ (reg) [addr}]

Opérands .

FDB The File Description Block address for the data set in which
space is being located.

COUNT The number of bytes in the record for which space is being
located. If the number is in a register, it is represented
in binary. If the number is specified absolutely, it is
represented as a decimal number. The number is in the range
from 1 to buffer size minus 24.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the LOCATE routine returns when space
has been located. Register 1 contains the address of the
location for the data.

ALOCATES

Functional Description

The ALOCATES macro-instruction is used to locate space for a logical
record that may span a buffer boundary.

Name Operation Operands

{symboll ALOCATES FDB={ (R1) | (reg) jaddr}
»COUNT={ (RO) | (xreqg) |n}
«AREA={ (R2) | (reqg) |addr}
{ ,SAVE={YES|NO}]
[,NORMAL=1{ (reg) |addr}l

237

Operands
FDB

COUNT

SAVE

NORMAL

ALTHMSG

The address of the File Description Block for the data set in
which space is being located.

The number of bytes in the record for which space is being
located. If the number is in a register, it is represented
in binary. If the number is specified absolutely, it is
represented as a decimal number. The number is in the range
from 1 to buffer size minus 24.

A four-fullword area to be used by the called routine to
return information.

Indicates whether the contents of registers 3 through 9 are
to be saved across the macro call.

The location to which the LOCATE routine returns when space
has been located. The following information is returned in
the location designated in the AREA parameter:

1st word First data area
2nd word First count
3rd word Second data area
4th word Second count

If the ALOCATES results in only one data area being obtained,
the 3rd and 4th words will be zero.

Functional Description

The

ALTHMSG

macro-instruction is used to establish the ASP logical

track header message format for each ALTH message as either a dummy or
defined work area control section.

Name

Operands
TYPE

MSG

238

Operation Operands

ALTHMSG [TYPE={DSECT|NULL}]

[,MSG={ALL|OPR| 001}]

DSECT establishes a dummy control section data area. NULL
establishes a defined control section data area which can be
a part of another real control section.

MSG=OPR creates the operator ALTH message with the label
ALTHO (if TYPE=NULL is specified, ALTHO is in ASP message
format). MSG=001 creates the ALTH001 message with the label
ALTH1 (if TYPE=NULL is specified, ALTH1 is in OS WTO message
format). MSG=ALL creates both messages.

ANOTE

Functional Description

The ANOTE macro~-instruction is used to note the location of a data
set for possible repositioning of the data set to this location at
another time.

Name Operation Operands
[symboll ANOTE FDB={ (R1) | (reqg) |addr}

[,SAVE={YES|NO}1]
{,NORMAL={ (reg) |addr}l]

Operands

FDB The address of the File Descrlptlon Block for the data set
being noted.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the NOTE routine returns when the note
operation has been completed. Register 1 contains a pointer
to a doubleword field containing the checkpoint information.

AOPEN

Functional Description

The AOPEN macro-instruction is used to open a multiple record data
set for subsequent blocking or deblocking of data.

Name Operation Operands
{symbol] AOPEN FDB—{(RI)I(reg)Iaddr}
+PRTY=n .

TYPE={IN|OUT}

[, TATPTR={ (RO) | (reg) |addr}]
[,BUFDED={NO|1|3}]
{,SAVE={YES| NO}]
{,NORMAL={ (reqg) |addr}]

Operands

FDB The File Description Block address for the data set being
opened.

PRTY A decimal number in the range from 0 to 15. Specifies the
priority in which ASPIO will service the requests for this
data set. with 15 as the highest priority.

TYPE Specifies whether the data set is to be opened for input or

output.

239

TATPTR The address of the Track Allocator Table FDB for this AOPEN.
If the TATPTR is not specified, the JBTAT from the callers
AJDB will be used.

BUFDED In conjunction with TYPE=IN, BUFDED=1|3 provides one or three
dedicated buffers for the caller, which will be dedicated to
the file until it is closed. BUFDED=NO specifies no buffers
are to be dedicated.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the OPEN routine returns after the data
set has been opened.

AOPEND

Functional Description

The AOPEND macro-instruction is used to open a multiple record
output data set so that more data may be blocked into the data set.

Name Operation Ooperands

[symboll AOPEND FDB={ (R1) | (reg) | addr}
[,TATPTR={ (RO) | (reqg) |addr}]
[,SAVE={YES| NO}1]
[,NORMAL={ (reg) |addr}}

Operands

FDB The File Description Block address for the data set to be
opened.

TATPTR The address of the Track Allocator Table FDB for this AOPEND.
If omitted, the JBTAT from the callers AJDB will be used.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the OPEND routine returns after the

data set has been opened.

240

APOINT

Functional Description

The APOINT macro-instruction is used to reposition a data set to the
location that the user noted with an ANOTE macro-instruction. This
macro must not reference an open file.

Name Operation Operands

{symboll APOINT FDB={ (R1) | {reg) | addr}
POINTER={ (RO) | (reqg) | addr}
[,SAVE={YES|NO}]
[,NORMAL={ (reqg) |addr}]
[,BUFDED={NO{1]|3}]

Operands

FDB The File Description Block address for the data set to be
repositioned.

POINTER A pointer to a three-word field that contains the information
saved from the ANOTE in the first two words. The third word
should be set to zeros if the file being opened via APOINT is
to become an input file, or contain a pointer to the JBTAT
FDB (TATPTR) if it is to become an output file. This
information is used to restart processing at a specific point
within the data set. '

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the POINT routine returns when the data
set is repositioned to the requested location.

BUFDED BUFDED=1| 3 provides one or two dedicated buffers for the
caller, which will be dedicated to the file until it is
closed. BUFDED=NO specifies no buffers are to be dedicated.

APURGE

Functional Description

The APURGE macro-instruction is used to purge a single record file
out of STT or job TAT FDB. ’

Name Operation Operands
[symbol] APURGE FDB={ (R1) | (reg) |addr}

{,SAVE={YES]|NO}]
(,NORMAL={ (reg) |addr}]

2u1

Operands

FDB The File Description Block address of the data set being
purged.
SAVE Indicates whether the contents of registers -2 through 9 are

to be saved across the macro call.

NORMAL The location to which the PURGE routine returns when the data
set has been purged.

APUTBUF

Functional Description

The APUTBUF macro-instruction is used to return a buffer to the
buffer pool.

Name Operation Operands

{symbol] APUTBUF BUFFER={ (R0) | (req) |addr}
[, SAVE={YES | NO}]
{,NORMAL={ (reqg) |addr}]

#

Operands

BUFFER ‘The address of the buffer being returned to the buffer pool.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the PUTBUF routine returns when the
buffer has been returned.

APUTMAIN

Functional Description

The APUTMAIN macro-instruction is used to return a contiguous area
of core storage, obtained by a previous AGETMAIN request, to the pool of
available core storage.

Name Operation Operands

{symboll APUTMAIN : SIZE={(RO) | (reqg) |addr}
+AREA={ (R1) | (reqg) jaddr}
[,SP={(reqg)|0]|n}]
{,SAVE={YES|NO}]
[,NORMAL={ (reqg) |addr}l

242

Operands

SIZE The number of bytes of core storage to be returned.

AREA A pointer to the start of the contiguous storage area to be
returned.

SP The subpool in which the area resides, where n is 0 to 255..

SAVE Indicates whether the contents of registers 2 through 9 are

to be saved across the macro call.

NORMAL The location to which the PUTMAINX routine returns when it is
-able to satisfy the user's request.

AREAD

Functional Description

The AREAD macro-instruction is used to read a single-record data set
from a direct access storage device.

Name Operation Operands
[symbol]l AREAD FDB={ (R1) | (reg) |addr}

[,SAVE={YES|NO}]
[,NORMAL={ (req) |addr}]

Operands

FDB The File Description Block address of the data set to be
read.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the READ/WRITE routine returns when the

read request has been satisfied. When the data set is read,
the first four bytes of the FDB contain the buffer address of
the data set. .

243

ARELEASE

Functional Description

The ARELEASE macro-instruction is used to restore the track address
in the File Description Block for a single-record data set to allow two
successive AREADs of the data set.

Name Operation Operands
[symbol]l ARELEASE FDB={ (R1) | (reqg) |addr}

{,SAVE={YES |NO}]
[,NORMAL={ (reqg) |addr}]

Operands

FDB The File Description Block address of the single-record data
set.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAIL The location to which the RELEASE routine returns when the
track address in the FDB has been restored.

ARETURN

Functional Description

The ARETURN macro-instruction generates a return sequence through a
SAVE-supported call (i.e., ACALL or any macro-instruction supporting the
SAVE keyword).

Name Operation Operands
{symbol} ARETURN [RC={(reg) {0|n}]
Operands
RC The return code, representing the displacement from the

return point for the desired macro exit. The contents of the
register, or n, must be 0 or a multiple of 4. Any register
except 0, 11, 12, or 14 may be specified.

244

ASGDSECT

Functional Description

The ASGDSECT macro-instruction establishes a DSECT which defines
entries in the Assignment Table (see ASP Initialization card
"RESCTBLK"). This table is used by the MODIFY verb (see ASP Console
Operator's Manual).

Name Operation Opérands
ASGDSECT
Operands

This macro-instruction contains no operands.

ASPCKPNT

Functional Description-

The ASPCKPNT macro-instruction causes a checkpoint to be written.
Name Operation Operands

fsymboll ASPCKPNT [SAVE={YES| NO}]
[,NORMAL={ (reg) |addr}]

© Qperands
SAVE . Indicates whether the contents of registexrs 2 through 9 ar
to be saved across the macro call.
NORMAL The location to which the checkpoint routine returns after

the checkpoint has been written.

e

245

ASPCLOSE

Functional Description

The ASPCLOSE macro-instruction is used to close a unit record or
tape device on the Support Processor. Writing of tapemarks and/or tape
positioning is not provided.

Namnme

[symbol]

Operands
DCB

NORMAL

ASPDCB

Operation Operands

ASPCLOSE DCB={ (R1)] (reg) | addr}
{,NORMAL={ (reg) |addr}]

The address of the Data Control Block associated with the
device to be closed.

The location to whlch the ASPCLOSE routine returns when the
device has been closed.

Functional Description

The ASPDCB macro-instruction generates a Data Control Block,
overlaid with a Data Extent Block, in a special format used by ASPOPEN
and ASPCLOSE.

Name

symbol

Operands
DEB

DEVD

DEN

246

Operation Operands

ASPDCB DEB=label
+DEVD={UR| TA}
[,DEN={0]| 1{2]|3}]
[, TRTCH={C|E|T|ET}]

The label to be assigned to the starting location of the Data
Extent Block.

The type of Data Control Block to be generated, unit record
or tape.

Tape density indicator. 0=200 bpi, 1=556 bpi, 2=800 bpi,
3=1600 bpi. This parameter is required if DEVD=TA. If the
density is not known until execution of the DSP, it must be
OR'"ed with the TRTCH in the 33rd byte of the DERBR prior to the
issuance of ASPOPEN.

TRTCH Tape recording technique. . The options are:

Parity Data Converter Translator
C odd on off
E even off off
T » odd off " on
ET even off on
Operand
omitted odd off off

If the TRTCH is not known until execution, it must be OR'ed
with the density in the 33rd byte of the DEB prior to
issuance of ASPOPEN.

ASPDUMPS

Functional Description

The ASPDUMPS macro-instruction is furnished to provide user
completion codes used by ASP for ABEND conditions. It consists entirely
of EQU statements. 'The following statements are typical of those
generated:

ASPDMO0OO1 EQU 1 TERMINAL ERRORS IN INITIALIZATION DECK
ASPDMQO02 EQU 2 NOT ENOUGH CORE TO INITIALIZE ASP
ASPDM0OOS8 EQU 8 OPERATOR INITIATED VIA *DUMP
ASPDMO40 EQU 40 ILLEGAL JCT ACCESS
ASPDMO8O EQU 80 ALDADEL- CANNOT LOAD MODULE - DOES NOT EXIST
Name Operation Operands
ASPDUMPS
Operands

This macro-instruction contains no operands.

247

ASPEOV

Functional Description

The ASPEOV macro-instruction operates in conjunction with Remote Job
Processing (RJP). It is issued by various DSP's after end-of-file has
been detected by ASPEXCP and triggers transmission of the remaining
records blocked in the transmission buffer. If ASPEOV is not executed,
this function is performed by ASPCLOSE. If RJP is not active for the
DSP, ASPEOV is essentially a NOP.

Name Operation Operands
[symboll ASPECV 10B={ (R1) | (reg) {addr}

+RIPCAN={ (reqg) [addr}
[, NORMAL={ (reg) |addr}]

Operands
IOB The label, or a register containing the address, of the

Input/Output Block (IOB) associated with the request.

RJPCAN The location to which the ASPEOV routine returns if a cancel
command is issued from the remote workstation.

NORMAL The location to which the ASPEOV routine returns when it has
normally completed its functions.

ASPEXCP

Functional Description

The ASPEXCP macro-instruction is used to request input/output for a
specific device.

Name Operation Operands
[symbol] ASPEXCP I0B={(R1) | (reg) jaddr}

+RIPCAN={ (reqg) |addr}
[,NORMAL={ (reg) jaddrl}]

Operands
I0B The label, or a register containing the address, of the
Input/Output Block (IOB) associated with the input/output
request.
RIJPCAN The location to which the ASPEXCP routine returns if a cancel
command is issued from a remote workstation.
NORMAL The location to which the ASPEXCP routine returns when it has

normally completed its functions.

248

ASPHDR

Functional Description

The ASPHDR macro-instruction establishes a data area, used by Print
and Punch Services, that defines the fields and format of the output
data set header record.

Name Operation Ooperands
ASPHDR [{TYPE={CSECT|DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

ASPHIO

Functional Description

The ASPHIO macro-instruction is used by RJP and Console Service to
terminate I/0 and dequeue the Request Element.

Name Operation Operands

[symboll ASPHIO ucB={ (R1) | (reqg) | addr}
« ERROR={ (reg) |addr}
¢« REJECT={ (reqg) {addr}
[,SAVE={YES|NO}]
[,NORMAL={ (reqg) {addr}l

Operands
UcB - The address of the Unit Control Block of the device to be
halted.
ERROR The location to which the ASPHIO routine returns if an error
was encountered. Register 1 contains one of these codes:
1 Device not operational
2 Invalid control block
3 ' cCatastrophic channel error
REJECT The location to which the ASPHIO routine returns if the
specified device is not active.
SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.
NORMAIL, The location to which the ASPHIO routine returns after

completing its functions.

249

ASPMTCIB

Functional Description

The ASPMTCIB macro-instruction is used to establish a dummy work
area control section which defines the OS Communications Input Buffer
used by ASP MAINTASK.

Name Operation Operands
ASPMTCIB
Operands

This macro-instruction contains no operands.

ASPOPEN

Functional Description

The ASPOPEN macro-instruction is used to open a unit record or tape
device on the Support Processor-

Name Operation Operands

[symbol] ASPOPEN DCB={ (R1) | (reqg) |addr}
+IOB={(R0O) | (reg) |addr}
«SUPUNIT=(req)
[,NORMAL={ (reg) |addr}]

Operands
DCB The address of the Data Control Block associated with the
device to be opened. The DCB must be in the format
generated by the ASPDCB macro-instruction.
IOB The address of the Input/Output Block associated with the
device to be opened.
SUPUNIT The address of the Support Units Table entry for the
device to be opened. The address is found in the GETUNIT
List entry for the device.
NORMAL The location to which the ASPOPEN routine returns when

. the device has been opened.

250

ASPSNAP

Functional Description

The ASPSNAP macro-instruction is used as a debugging tool during
development of a user-written module.to call for 0OS snaps and/or
ASPABEND execution. It is used in conjunction with the Dump Core (DC)
callable DsSP, which enables the ASPSNAP facilities.

Name Operation Operands

[symbol] ASPSNAP [DUMP={NO| YES| 0S| ASP|SA|STD}]
[,FORMAT={YES|NO}]
{,IDD={00|n}]
[,SD=sdatal
[,PD=pdatal
[,LST=addr]
{ ,SAVE={YES|NO} 1
[,NORMAL={(reqg) jaddr}]

Operands
DUMP Specifies the type of dump to be taken:
NO No core dump
YES Dump as identified by IDD, SD, PD, and LST
0Ss SYSABEND dump
ASP UDUMP
SA - Standalone dump
STD As stated on Initialization OPTIONS card
FORMAT Indicates whether tables are to be formatted.
iDD This operand, applicable if DUMP=YES, provides the 0S SNAP ID
code.
SD The values for this operand are identical to the operands for
SDATA= as documented in the 0S macros for the 0OS SNAP facility.
PD The values for this operand are identical to the operands for
PDATA= as documented in the OS macros for the 0S SNAP facility.
LST The values for this operand, the location symbol of a list of
fullwords, are identical to the LST= parameter of the 0S SNAP
macro.
SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.
NORMAL The location to which the ASPSNAP routine returns when the

snap has been taken.

Note: Execution of the ASPSNAP macro will result in only a BR R14 until
the ASPSNAP facility is implemented by calling the debugging DSP
Dump Core (DC). DC contains the code that interfaces to OS SNAP
and ASPABEND. When called, it changes the BR R14 pointer in the
ASP TVTABLE to the portion of the DSP that causes the ASPSNAP
request to be honored. When DC is canceled, the facility is
discontinued. Thus, the output of the ASPSNAP calls can be
controllied in a debugging environment.

251

ATEST

Functional Description

The ATEST macro-instruction determines the availability of a system
resource.

Name Operation Operands
[symbol] ATEST , NAME={(R1) | (reqg) |addr}

, {ITYPE=FCT | [TYPE=TEST, 1ERROR={ (reg) |addr}}
{,NORMAL={ (req) [addr}]

Opérands

NAME The name of the resource to be tested. Refer to the RESOURCE
macro expansion in the TVTABLE for the valid names.

TYPE I1f TYPE=FCT is specified, the address of the Function Control
Table using the resource is returned to the caller. If
TYPE=TEST is specified, control is returned to the normal
return point if the issuing function has the resource, to the
error return point if not.

ERROR In conjunction with TYPE=TEST, the location to which ATEST
returns if the caller does not have the resource.

NORMAL In conjunction with TYPE=TEST, the location to which ATEST
returns if the caller has the resource. With TYPE=FCT, the
only return point; register 1 contains the address of the FCT
using the resource or zeros if the resource is not in use.

ATIME

Functional Description

The ATIME macro-instruction is used to request an asynchronous entry
to a timer appendage after a specified time interval has elapsed, or to
cancel a previous request for such an entry. The ATIME macroc may not be
used out of an ATIME exit.

Name Operation Operands

[symboll ATIME TIME={CANCEL]| (RO) | (reg) |n}

«ENTER={ (R1) | (reg) |addr}
[,AREA={ (reqg) |addr}l]
[,ID={'name’|(req) {addr}]

[,FCT={ (reqg) |addr}l

[,SAVE={YES|NO}]
[{,BUSY={ (reqg) |addr}]

[,NORMAL={ (reg) |addr}]

252

Operands

TIME CANCEL indicates that a previously requested time-interval
entry is to be canceled. Any other specification represents
the time interval to elapse prior to an asynchronous entry to
the appendage, specified in hundredths of seconds. An
interval of zero is equivalent to "cancel™.

ENTER- The address of an appendage which is to be entered after the
specified interval has elapsed.

RAREA The address of a four—-fullword area to be used by ATIME as
the timer queue element. If omitted, this area is generated
by ATIME.

1D The name to be associated with the ATIME queue element. The

ID length is limited to five characters.

FCT The FCT for which this ATIME is to apply. If omitted, the
current FCT is assumed.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

BUSY The location to which the ATIME routine returns control if it
is unable to obtain core for a timer queue element. This
parameter 1s required if AREA is not specified.

NORMAL The location to which the ATIME routine returns when the
timer entry has been placed on the queue or canceled.

In addition to the above form, ATIME may be issued in execute and list
form.

The execute form consists of the parameters noted above (except that
TIME and ENTER are optional) plus the parameter MF=(E,{(reg)j]addr}) in
which the second parameter provides the address of the list-form
expansion of the macro.

The list form consists of the optional parameters TIME, ENTER, AREA, and
ID (none of which may use register notation in this form) plus the
parameter MF=L. The parameter AREA represents a four-fullword timer
queue element to be generated.

The timer appendage routine may use either of two return points. They
have the following meanings:

R14+0 - The time element is to be removed from the ASP timer
gueue.
R14+4 - The timer element is to be reused. The ASP timer queue

element is left on the queue in an inactive status.

253

ATRACK

Functional Description

The ATRACK macro-instruction is used to obtain a track address for
use in writing data or single-record files to the ASP job queue.

Name Operation Operands
[symboll ATRACK TATPTR={ (R0O) | (reqg) jaddr}

BUSY={ (reg) {addr}
[,NORMAL={ (reg) |addr}]

Operands

TATPTR The address of the Track Allocation Table FDB (JIBTAT) for the
file requesting tracks.

BUSY The location to which the TRACKS routine returns control when
no tracks are available in the ASP job queue.

NORMAL The location to which the TRACKS routine returns control when

a track has been assigned.

Register O Contains the track address.

ATTRMSG

Functional Description

The ATTRMSG macro-instruction is used to establish the 0S job queue
allocation message format for each ATTR message as either a dummy or
defined work area control section.

Name Operation Operands

ATTRMSG [TYPE={DSECT| NULL}] :
[MSG—{ALL|001|002|003|00u|010|011}]

Operands

TYPE DSECT establishes a dummy control section data area. NULL
establishes a defined control section data area which can be
a part of another real control section.

MSG MSG=nn creates the ATTRnnn message with the label ATTRn (the

labels for 010 and 011 are ATTRA and ATTRB, respectively).

If TYPE=NULL is specified, message ATTR1 and ATTRYU4 are in ASP
message format, the remaining messages in 0S WTO format.
MSG=ALL creates all of the above messages.

254

AWAIT

Functional Description

The AWAIT macro-instruction is used by a function to share

processing time on the Support Processor. This macro specifies that
control is to return to the function issuing the macro only when at

least one of the specified events has occurred. An event can be the
completion of any other operation. The completion of an event is
indicated by setting the appropriate bit in the event completion flag to 1.

More than one AWAIT macro can specify the same bit of an ECF. An ECF
bit may be referred to by an AWAIT macro when the bit is 1 or 0. Note
that the 05/360 WAIT macro-instruction does not function in this manner.

Name Operation Operands

[symbol]l AWAIT {ECFMASK={ (R0O) | (reg) | X"xx"}
+ECFADD={ (RO) | (reqg) {addr}]
ECFLIST={ (RO) | (reg) |addr}}
{,SAVE={YES|NO}]
[,NORMAL={(reg) |addr}]

Operands

ECFMASK The mask that specifies the bits (events) to be tested in the
ECF. The test is satisfied if any or all of the events are
complete. If the mask is represented with register notation,
the leftmost byte of the register contains the hexadecimal
mask. If the mask is represented absolutely in the operand,
it is represented as a one-byte hexadecimal character.

ECFADD The label of the one-byte event completion flag. If register
notation is used, the rightmost three bytes of the register
contain the address of the ECF.

Note: If the ECF address is represented as the label of the
ECF (instead of with register notation), the ECF mask
will be represented in the form X'xx'. If the ECF
mask is represented by register notation, the ECF
address must also be represented by the same register.

ECFLIST The label of the event completion list. If register notation
is used, the register contains the address of the event
completion list.

The event completion list must contain from 1 to n fullword
entries, positioned on a fullword boundary, of the event
completion mask and the event completion address. The first
byte of each entry must contain the event completion mask,
and the remaining three bytes must contain the event
completion address. The list must be terminated with a
fullword entry containing binary 1's.

Note: If the ECFLIST operand is used, the ECFMASK and
ECFADD operands must be omitted. Any satisfied event
completion encountered in the event completion list
will enable the DSP to gain control at the address
specified by the NORMAL operand.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which control is returned when one or more of
the specified events have. been completed.

255

AWAITOFF

Functional Description

The AWAITOFF macro-instruction is used by a function to share
processing time on the Support Processor. The macro specifies that
control is to be returned to the function issuing the macro only when
all of the specified events have occurred. An event can be the
completion of any other operation. The completion of an event is
indicated by setting the appropriate bit in the Event Completion Flag
(ECF) to 0. ’

More than one AWAITOFF macro-instruction can specify the same bit of an
ECF. An ECF bit may be referred to by an AWAITOFF macro when the bit is
0 or 1.

Name Operation Operands

[symbol] AWAITOFF {ECFMASK={ (RO) | (reg) | X'xx"'}
+ECFADD={(R0) | (reqg) |addr}|
ECFLIST={ (RO) | (req) |addxr}}
(,SAVE={YES|NO}]
{,NORMAL={ (reg) |addr}]

Operands

ECFMASK The mask that specifies. the bits (events) to be tested in the
ECF. The test is satisfied if all of the events are
complete. If the mask is represented with register notation,
the leftmost byte of the register contains the hexadecimal
mask. If the mask is represented absolutely in the operand,
it is represented as a one-byte hexadecimal character.

ECFADD The label of the one-byte event completion flag. If register
notation is used, the rightmost three bytes of the register
contain the address of the ECF.

ECFLIST The label of the event completion list. If register notation
is used, the address of the event completion list.

The event completion list must contain from 1 to n fullword
entries, positioned on a fullword boundary, of the event
completion mask and the event completion address. The first
byte of each entry must contain the event completion mask,
and the remaining three bytes must contain the event
completion address. The list must be terminated with a
fullword entry containing binary 1°'s.

Note: If the ECFLIST operand is used, the ECFMASK and
ECFADD operands must be omitted. BAny satisfied event
completion encountered in the event completion list
will enable the DSP to gain control at the address
specified by the NORMAL operand.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which control is returned when one or more of
the specified events have been completed.

256

AWEQOF

Functional Description

The AWEOF macro-instruction is used to place an end-of-file
indicator in a multiple record output data set.

Name Operation Operands
[symbol] AWEOF FDB={ (R1) | (reg) |addr}

(,SAVE={YES|NO}]
[, NORMAL={ (reg) |addr}]

Operands

FDB The File Description Block address for the data set in use.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the WEOF routine returns after the end-
of-file indicator has been placed in the data set.

AWRITE

Functional Description

The AWRITE macro-instruction is used to write a single record data
set on a direct access storage device.

Name Operation Operands

[symbol] AWRITE FDB={ (R1) | (reqg) | addr}
{,PUTBUF={YES|NO}]
{,TATPTR={ (R0O) | (reqg) jaddr}]
[,SAVE={YES| NO}] ,
{,NORMAL={ (req) |addr}]

Operands

FDB The File Description Block address for the data set to be
written.

PUTBUF If PUTBUF=NO is specified, the buffer is not returned.
Effectively, use of this operand is equivalent to an AWRITE
followed by an AREAD.

TATPTR The address of the Track Allocator Table FDB for this AWRITE.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAIL The location to which the READ/WRITE routine branches when
the write request has been satisfied.

257

CKPTDATA

Functional Description

The CKPTDATA macro-instruction provides a map of the checkpoint area
used by ASPCKPNT.

Name Operation Operands

CKPTDATA (TYPE={CSECT|DSECT}]
[,CRPT={YES | NO}]

Operands

TYPE CSECT establishes a real control section data area. DSECT
establishes a dummy control section data area.

CKPT CKPT=YES provides a map of the entire data area. -CKPT=NO
limits expansion to the checkpoint data.

CONBUFCB

Functional Description

The CONBUFCB macro-instruction establishes a DSECT used to define a
Console Buffer Control Block.

Name Operation Operands
CONBUFCB
Operands

This macro-instruction contains no operands.

258

CONCNVRT

Functional Description

The CONCNVRT macro-instruction converts a console destination class
to a displacement and mask suitable for use in the MESSAGE macro.

Name Operation - Operands
[symboll CONCNVRT " CLASS={ (R0O) | (reg) |addr}

[,SAVE={YES|NO}]
[,NORMAL={ (reg) |addr}l

Operands

CLASS The pointer to the destination class name.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the CONCNVRT routine returns when the
class name has been converted. Register 0 contains the
displacement and mask in the low-order two bytes. If the
result is zero in these two bytes, the class name was
invalid.

CONDSECT

Functional Description

The CONDSECT macro-instruction generates various tables used to
communicate information between Console Service and functions within the
ASP system.

Name Operation Operands

CONDSECT [TYPE={INPUT | OUTPUT | MLOG | FCTQ}]
(,CODES={YES|NO}]

Operands

TYPE Defines the tables to be generated. The parameters may also
be grouped in any order within parentheses -- e.q.,
TYPE=(MLOG,OUTPUT) -— to generate multiple tables. The first

occurrence of CONDSECT within a control section also causes a
set of buffer control equate statements to be generated. The
TYPE field is required if CODE=NO is specified. The types of
tables are:

INPUT Format of input message buffer
OUTPUT Format of console message buffer
MLOG Format of MLOG message buffer
FCTQ Format of action message buffer

259

CODES If TYPE=INPUT is specified or the TYPE parameter is omitted,
CODES=YES causes generation of a group of equate statements
defining the console input command action codes, e.g., START,
CALL, VARY. CODES=NO may be used to suppress generation of
these statements with TYPE=INPUT; however, it is invalid if
TYPE is omitted.

CONSCONS

Functional Description

The CONSCONS macro-instruction is used to define a general data area
used by Console Service.

Name Operation Operands
CONSCONS [TYPE={CSECT|DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

CONSDATA

Functional Description

The CONSDATA macro-instruction generates a DSECT, used by Console
Service, which contains status and control information about each
console defined for the system.

Name Operation Operands
CONSDATA
Operands

This macro-instruction contains no operands.

260

CONSUNIT

Functional Description

The CONSUNIT macro-instruction generates a DSECT, used by Consocle
Service, that describes the unit control tables for each console. These
include the 1I0B, ECB, DCB, and DEB.

Name Operation Operands
CONSUNIT
Operxands

This macro-instruction contains no operands.

CONTVT BL

Functional Description

The CONT'VTBL macro-instruction generates a DSECT, used by Console
Service, that defines positional entries in a device-dependent routine.

Name Operation Operands
CONTVTBL
Operands

This macro-instruction contains no operands.

DELDSECT

Functional Description

The DELDSECT macro—-instruction is used to establish either a real or
a dummy work area control section used by the DEADLINE DSP.

Name Operation Operands
DELDSECT [TYPE={CSECT|DSECT}}
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

261

DEQMSG

Functional Description

The DEQMSG macro-instruction is used to dequeue input ands/or action
messages from the Function Control Table.

Nanme Operation Operands

[symbol] DEQMSG [TYPE={ACTICN| INPUT | CONSOLE | ALL}]
L BUFFER—{(reg)Iaddr}]
[,FCT=(reg)]
{,CONS=(reg)]
[,SAVE={YES| NO}]
[,NORMAL={ (reqg) |addr}l

Operands

TYPE The type of buffers to be dequeued from the FCT chain. The
term CONSOLE is reserved for Console Service to dequeue
console buffers from the Console Status Table, and ALL is
used by JSS to ensure removal of all queued messages when a
DSP has completed processing.

BUFFER The address of the buffer to be dequeued. If omitted, all
buffers of the specified type are dequeued. This parameter
may not be used with TYPE=ALL.

FCT The address of the FCT from which to dequeue the buffers. If
omitted, the active FCT is used.

CONS This parameter is reserved for Console Service and is valid
only for TYPESCONSOLE. It specifies a Console Status Table
entry. If TYPE=CONSOLE is specified and CONS is omitted, the
entry is assumed to be the currently active entry pointed to
by register 9.

SBAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the DEQMSG routine returns when jits
dequeuing functions have been completed.

DEVREQ

Functional Description

The DEVREQ mécro-instruction is used in the generation of the Device
Requirements Table of RESPARAM. It uses global symbols set by the macro
DSPDC which specify required entries for the DSP's defined by DSPDC.

Name Operation Operands
DEVREQ
Operands

This macro-instruction contains no operands.

262

DEVSCAN

Functional Description

The DEVSCAN macro-instruction analyzes the operands of the IN and
OUT keyword parameters allowed by the callable DSP's and moves the
parameter fields into an area designated by the user.

Name Operation Operands

[symboll DEVSCAN FROM={ (RO) | (reqg) |addr}
«TO=1{(R1) | (req) | addr}
+ERROR={ (reqg) |addr}

[,NORMAL={ (reqg) |addrl}]}

Operands

FROM The location at which the scan is to begin; that is, the byte
following the equal sign of IN= or OUT=.

TO The location of a 16-byte field to which the parameters are
to be moved.

ERROR The location' to which DEVSCAN returns if the scan cannot be.
completed. Register 15 contains one of the following error
codes:

04 Length error
08 Delimiter error
0C No operand

NORMAL The location to which the DEVSCAN returns when the fields
have been moved. If the parameter was given in parentheses,
the first field is in the first 8 bytes of the TO field and
the second field is in the second 8 bytes, with binary zeros
substituted if either field is omitted. If the parameter was
given without parentheses, the first 8 bytes of the TO field
are zeros and the second 8 bytes contain the parameter field.
Register 1 contains the address of the byte following the
delimiter which terminated the scan.

DJCDSECT

Functional Description

The DJCDSECT macro-instruction is used to describe the data area
used in Dependent Job Control updating processing.

Name Operation Operands
DJCDSECT [TYPE={CSECT|DSECT}1]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

263

DIJDSECT .

Functional Description

The -DIDSECT macro-instruction is used to describe the data area used
by Dump Job.

Name Operation Operands
DJDSECT [TYPE={CSECT |[DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

DLFQUEUE

Functional Description

The DLFQUEUE macro-instruction establishes a DSECT, used by Deadline
Scheduling, that defines entries in the Deadline job queue. The
Deadline queue is maintained as a data set on the ASP job queue.

Name Operation Operands
DLFQUEUE
‘Operands

This: macro-instruction contains no operands.

DLTENTRY

Functijonal Description

The DLTENTRY macro-instruction establishes a DSECT, used by Deadline
Scheduling, that defines entries in the Deadline table. The Deadline
table is generated during Initiadization from DEADLINE cards.

Name Operation Operands
DLTENTRY
Operands

This macro-instruction contains no operands.

264

DSLENTRY

Functiocnal Description

The DSLENTRY macro-instruction defines a save area for Print Service
burst page statistics.

Name Operation Operands
DSLENTRY
Operands

This macro-instruction contains no operands.

DSPDC

Functional Description

The DSPDC macro-instruction is used to generate entries for the
Dynamic Support Programs in the Resident Parameter Table. An entry in
the table is required for each DSP in order for it to be recognized as
being present in the .systen.

Name Operation Operands

symbol DSPDC (PRTY={1{n}]
[,SYNCH={YES |NO}]
[,REENT={YES|NO}]
[, XABLE={ YES | NO}]
[,NOREQ={0{n}]
{ ,REQ=(typel,...,typen)]
[,CSECT=name]
[,MLOAD={ YES |NO}
[,GETUNV={C|R}]
[,FSNAME=name]
[,INIGET={Q§E|JSS}]

Operands

symbol The name of the Dynamic Support Program.

PRTY The priority to be assigned to the DSP, in the range from 1
through 14.

SYNCH If SYNCH=YES is specified, the DSP is sequence-dependent;
that is, it may not be scheduled until all preceding segments
of the job are complete, and no succeeding segment of the job
may be scheduled until it is complete.

REENT REENT=YES indicates that the DSP is reentrant.

XABLE XABLE=YES indicates that the DSP may be called from the

console by the operator.

265

NOREQ

REQ

CSECT

MLOAD

GETUNV

FSNAME

INIGET

266

The maximum number of devices required by the DSP. The
number of entries in the GETUNIT list associated with the
Function Control Table will be equal to this value. Should
be specified when known.

The types of devices known to be required by the DSP. The
valid device types are specified on the DEVICE initialization
card. Should be specified whenever the DSP unit requirements
are known. If more than one device is required, the
subparameter list must be enclosed in parentheses. For
example, a DSP requiring two seven-track tape devices and a
printer could specify NOREQ=3 and REQ=(TA7,TA7,PRT).

For reentrant DSP's, the name of the control section to be
loaded by the Job Segment Scheduler for each use of the DSP.
This name is restricted to seven characters.

If MLOAD=YES is specified, the DSP may be multiply loaded;
that is, more than one copy may be active concurrently. This
option is limited to single-module reusable programs. If it
is used, the DSP name is restricted to seven characters.

Desired disposition of function if devices are not available
when GETUNIT is issued. GETUNV=R indicates function is to
return for specialized rescheduling, GETUNV=C indicates it is
to cancel. Bit DSPRESCH in the DSP Dictionary may be tested
during DSP execution to determine which option.is desired.
All callable DSP's in the distributed ASP system also provide
an operator override via keyword parameter to alter the basic
disposition for an individual job.

The unique four-character function identifier to be inserted
into the ASP Failsoft recovery name (AFSxxxxn).

Indicates whether the initial GETUNIT is to be dene by the
DSP or Jss.

Note: Parameters NOREQ and REQ must be specified if
INITGET=JSS is specified, and should always be
specified when NOREQ and REQ are known as these
values are used in JSS scheduling. In the
distributed ASP system the Print, Punch, and RICONTL
DSP's specify INIGET=JSS. All other DSP's are
scheduled without units and obtain them via GETUNIT
macro.

DSPENTRY

Functional Description

The DSPENTRY macro-instruction is used to define the fields of an
entry 'in the Dynamic Support Program (DSP) Dictionary and an entry in
the Device Requirements Table.

Name Operation Operands
DSPENTRY
Operands

This macro-instruction contains no operands.

EFENTRY

Fuanctional Description

The EFENTRY macro-instruction is used to define the fields of the
ending function control block used in Job Segment Scheduler (JSS)
processing.

Name Operation Operands
EFENTRY
Operands

This macro-instruction contains no operands.

267

EQUATE

Functional Description

The EQUATE macro-instruction is furnished to provide standardized
symbolic references for condition codes. It consists entirely of EQU
statements and is intended to simplify coding and interpretation of the
program listings. v

The following examples illustrate its usage:

Without Equate With Equate
Compare BCR 8,7 BCR EQ,7
Arithmetic BCR 2,7 BCR PLUS,7
Test Under Mask BCR 5,7 BCR ALLON+MIXED,7
Name Operation Operands
EQUATE

Operands

This macro-instruction contains no operands.

FATLDSP

Functional Description

The FAILDSP macro-instruction allows the user to enter ASP DSP
Failsoft upon recognition of an error situation. The ASPDUMPS macro
mast be issued prior to using the FAILDSP macro.

Name Operation Operands

{symbol] FAILDSP CODE={ASPDMnnn| (R1) | (req) |addr}
[,FCT={(R0O) | (reg) |addrt}l]
[,DUMP={YES |NO{ (reg) }1
[,SAVE={YES|NO}]
[, NORMAL={ (reqg) |addr}]

Operands

CODE The ASPDMnnn failure code identifying the type of failure, or
the numeric (binary) equivalent in a register.

FCT The address of the Function Control Table to be failed with
the associated code. 1If omitted, the current.FCT is used.

DUMP Indicates whether an ASPABEND dump is to be taken before the

DsP is failed. (reg) is only valid when FCT=(reg) ‘is used
and must specify the same register. If the register is

268

positive a dump will be taken. 1If the register is a
complement no dump wili be taken.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the FAILDSP routine returns. This may
be either a location at which the failing situation can be
retried or the label on the FAILDSP macro-instruction.

FCTDC

Functional Description

The FCTDC macro-instruction is used to generate the permanent
Function Control Table entries in the Resident Parameter Table for the
ASP Nucleus portions of Console Service, the ASP Disk Input/Output
routines, the Main Device Scheduler, Call DSP, and the Job Segment
Scheduler.

Name Operation Operands

symbol FCTDC ECFMASK=xx
+ECFADD=addr
,COND=xx,
,PRTY=xx

s NAME=function-name

[,R10=1labell

[,R13=1abell

[,R14=1labell

[,R15=1abel]

{ ,ANAME=(alternate-function—-namel,...,
alternate-function-namen)]

[,30CC=addr]

{,LOGIN=addr]

[,FSNAME-namel

[,INISH={YES|NO}]

Operands

ECFMASK The mask that specifies the bits (events) to be tested in the
ECF. The test is satisfied if any or all of the events are
complete.

ECFADD The label of the one-byte event completion flag.

COND The hexadecimal value of the mask field of the Branch on
Condition instruction used to test ECFMASK. For example,
AWAIT specifies 50 to branch one plus mixed; AWAITOFF
specifies 80 to branch zero.

PRTY Function priority. May be any hexadecimal value, except that
00 and FF are reserved for the Job Segment Scheduler and
Console Service, respectively.

NAME The name by which the operator may communicate with the

function.

269

R10

R13

R14

R15

SuUcCc

LOGIN

FSNAME

INISH

FCTDSP

The external label of an instruction whose address will be in
register 10 before the function is entered for the first
time. ’

The external label of an instruction whose address will be in
register 13 before the function is entered for the first
time.

The external label of an instruction whose address will be in
register 14 before the function is entered for the first
time. This parameter is required if the FCT is dispatchable.

The external label of an instruction whose address will be in
register 15 before the function is entered for the first
time.

The alternate names by which the operator may communicate
with the function.

The label of the FCTDC macro of the succeeding function,
which must have an equal or lower priority.

The label of the function's console appendage if the function
is to be permanently logged in. '

The unique four-character function identifier to be inserted
into the ASP Failsoft recovery name (AFSxxxxn).

NO indicates that the FCT is non-dispatchable until

‘Initialization is complete, YES indicates the FCT is always

dispatchable.

Functional Description

The

FCTDSP macro-instruction is used in the generation of the DSP

Dictionary of RESPARAM. It uses the global symbols set by the macro
FCTDC which specify entries in the DSPDC macro. The DSPDC macro is
issued by FCTDSP to generate entries in the DSP Dictionary.

Name

Operands

Operation Operands

FCTDSP

This macro-instruction contains no operands.

270

FCTENTRY

Functional Description

The FCTENTRY macro-instruction is used to define the fields of an
entry in the Function Control Table and an entry in the GETUNIT list.

Name Operation Operands
FCTENTRY
Operands

This macro-instruction contains no operands.

FDBENTRY

Functional Description

The FDBENTRY macro-instruction is used by the Disk Input/Cutput
Routines (ASPIO) to define the fields in a Flle Description Block for
Slngle and Multiple Record Data Sets.

Name Operation Operands
FDBENTRY
Operands

This macro-instruction contains no operands.

FDDSECT

Functional Description

The FDDSECT macro-instruction establishes a DSECT, used by ASPIO,
that defines the fields in the File Directory (FD).

Name Operation Operands
FDDSECT
Operands

This macro-instruction contains no operands.

271

FINDIJNUM

Functional Description

The FINDINUM macro-instruction determines whether a specific job
number is currently in use.

Name Operation Operands
[symbol] FINDJINUM JOBN={ (R0O) | (¥reg) | addr}

¢« ERROR={ (reqg) |addr}
[,NORMAL={ (reg) |addr}]

Operands

JOBN The job number to be tested. The number is to be specified
as a binary-halfword.

ERROR The location to which the FINDIJNUM routine returns if the job
number is not in use.

NORMAL The location to which the FINDIJNUM routine returns if the
number is currently assigned to a job in the ASP system.

FRPENTRY

Functional Description

The FRPENTRY macro-instruction is used to define a DSECT for the
fields of a //#*FORMAT parameter buffer.

Name Operation Operands
FRPENTRY
Operands

This macro-instruction contains no operands.

272

GETUNIT

Functional

Description

The GETUNIT macro-instruction is used to request one or more
devices. This macro may be used by a function whenever it requires

devices.
Name

[symboll

Operands
LIST

NAVAIL

ERROR

ALLO

SAVE

NORMAL

Operation Operands

GETUNIT [LIST={(R1) | (reg) |addr}]
«NAVAIL={ (reqg) jaddr}
«ERROR={ (reqg) |addr}

{ ,ALLO={ YES | NO}]
{,SAVE={YES| }]
{,NORMAL={ (reg) jaddr}]

The address of a list containing sublists in the format of
the GETUNIT List. This parameter should be omitted if the
GETUNIT List pointed to by the Function Control Table is to
be used. Each sublist contains the eight-byte name fields
with each sublist terminated by a double-word of FF's. The
total list is terminated by a double-word of 7F‘'s.

The location to which the GETUNIT routine returns if none of
the sublists can be allocated. Register 1 points to the
first unavailable device in the last sublist of the list.

The location to which the GETUNIT routine returns when the
last sublist contains a request for a device which does not
exist in the Support Units Table and no previous sublist
could be satisfied. Register 1 points to the entry in error
in the last sublist.

Indicates whether or not the specified devices are to be
allocated. ALLO=NO is primarily used to check the validity
of a unit request. On a normal exit with ALLO=NO, no devices
will have been allocated to the calling DSP.

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call. '

The location to which the GETUNIT routine returns when it is

able to satisfy a sublist. Register 1 points to the
satisfied sublist.

273

ICARDRD.

Functional Description

The ICARDRD macro-instruction is used-exclusively by the ASP
Initialization modules to read each Initialization control card.

Name Operation Operands
[{symboll ICARDRD [NORMAL={ (reg) |addr}]
Operands
NORMAL The iocation to which control is returned when the control

card has been read. The card image is contained in field
INAREA, and field INPOINT is initialized to the address of
INAREA.

ICONVBIN

Functional Description

The ICONVBIN macro-instruction is. used exclusively by the ASP
Initialization modules to convert a field from decimal to binary format.
The data to be converted must be in field SOPER and its length in field
LOPER upon issuance of this macro-instruction.

Name Operation Operands
{symboll ICONVBIN [NORMAL={ (reg) |addr}]
Operands
NORMAL The location to which control is returned when the data has

been converted. Register 1 contains the converted number.

274

ICONVHEX

Fuanctional Description

The ICONVHEX" macro-instruction is used exclusively by the ASP
Initialization modules to convert a field from decimal to hexadecimal
format. The data to be converted must be in fieid SOPER and its length
in field LOPER upon issuance of this macro-instruction.

Name - Operation Operands
[symbol] ICONVHEX INORMAL={ (reg) | addr}]}
Operands
NORMAL The location to which control is returned when the data has

been converted. Register 1 contains the converted number.

IJPDSECT

Func¢tional Description

The IJPDSECT macro-instruction is used to describe the data area
used by the IJP DsSP.

Name Operation Operands
IJPDSECT [TYPE={CSECT |DSECT}1]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

275

ILOCUCB

Functional Description

The ILOCUCB macro-instruction is used by Console Service to find the
location of a specified Unit Control Block.

Name Operation Operands
[symboll ILOCUCB {DEVADD=device-address|DEVNAME=device—-name}

»ERROR={ (reqg) |addr}
[,NORMAL={ (reqg) |addr}]

Operands

DEVADD = A pointer to a fullword containing the UCB device address
(e.g., label DC X'000C001F').

DEVNAME A pointer to a fullword containing the UCB device name (e.g.,
label DC X'FOFOF1C6°).

ERROR The location to which control is returned if the UCB cannot
be located.

NORMAL The location to which control is returned when the UCB has
been located. Register 1 contains the location of the UCB.

INCNDATA

Functional Description

The INCNDATA macro-instruction establishes a DSECT which defines a
Console Status Table used for Imitialization.

Name Opefation Operands
INCNDATA
Operands

This macro-instruction contains no operands.

276

INITMWLE

Functional Description

The INITMWLE macro-instruction is used exclusively by the ASP
Initialization modules to scan fcor the ending right parenthesis of a
control card parameter. The starting location of the scan is in a
pointer field cailed INPOINT, which is maintained by the ICARDRD, ISCAN,
and ISCAN2 macro routines.

Name Operation Operands
{symbol] INITMWLE [NORMAL={ (reqg) [addr}]
Operands
NORMAL The location to which control is returned when the terminator

has been located. INPOINT is updated to point to the byte
following the right parenthesis, unless that byte contains a
comma, in which event the pointer is incremented past the
comma.

INTDSECT .

Functional Description

The INTDSECT macro-instruction is used to describe the data area
used by ASP Initialization.

Name Operation Operands
INTDSECT [TYPE={CSECT|DSECT}1]
Operands
TYPE CSECT establishes a real control section data area. = DSECT

establishes a dummy control section data area.

277

INTERCOM

Functional

Description

The INTERCOM macro-instruction is used by a DSP to simulate operator

input of a
message.

Name

[symbol]

Operands
CONS

TEXT

PREFIX

MSG

CHK

SAVE

BUSY

NORMAL

278

console message. The text must be a legitimate operator

Operation Operands

INTERCOM CONS={ (R0) | (reqg) | DUMMY}

(TEXT={(reg) |addr}
[,PREFIX={YES|NO}]
{,MSG={YES|NO}]

{,CHR={YES|NO}]

[,SAVE={ (YES[NO}]
[,BUSY={(reqg)|addr}]

{ ,NORMAL={ (reqg) laddr}]

A register containing a halfword console ID number; this
console will receive the INTERCOM message and any response to
the message. If DUMMY is specified, the message and response
will appear only on theé MLOG console.

The address of a string of characters (ranging from 2 to 71
bytes) that contains the count and message text. The first
byte of the character string contains the text - -count,
represented in binary, in the range from 1 to 70.

If NO is specified, the name of the DSP issuing INTERCOM will
be displayed at the beginning of the message. If YES is
specified, a user-supplied eight-byte prefix will be
displayed before the message; this prefix must be the eight
bytes preceding the count and text.

Indicates whether the message is to be displayed on the
specified console. In either case, the message will appear
on the MLOG console.

Specifies whether console authority checking is required for
the message via CONSAUTH for local consoles or CONSANAL for
remote consoles.

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

The location to which the INTERCOM routine returns if no
buffers are available to queue the message. Register 0
contains an ECF mask and address which may be used to wait
for available buffers. If BUSY is not specified, INTERCOM
will AWAIT off the caller's FCT until buffers become
available, then take the NORMAL exit.

The location to which the INTERCOM routine returns when the
message has been enqueued.

TOBASPIO

Functional Description

The IOBASPIO macro-instruction establishes a DSECT that defines the
fields of the Input/Cutput Block used by the Disk Input/Output Routines
(ASPIO).

Name Operation Operands
IOBASPIO
Operands

This macro-instruction contains no operands.

IOBENTRY

Functional Description

The IOBENTRY macro-instruction is furnished to define fields of the
0S Input/Output Block and to provide labels for frequently referenced
fields therein.

Name Operation Operands
IOBENTRY
Operands

This macro-instruction contains no operands.

IONTABLE

Functional Description

The IONTABLE ‘macro-instruction establishes a DSECT, used by ASPIO,
that defines a table of parameters specified during Initialization from
information on the BUFFER card.

Name Operation Operands
IONTABLE
Operands

This macro-instruction contains no operands.

279

ISCAN

Functional Description

The ISCAN macro-~instruction is used exclusively by the ASP
Initialization modules to isolate the fields of an Initialization
control card. The beginning location of the scan is in field INPOINT.

Name Operation Operands
[symbol] ISCAN EOD={ (reqg) |Jaddr}

[, TYPE={KEY| CARD}]
{ ,NORMAL={ (reg) |addr}]

Ooperands

EOD The location to which control is returned if no operand can
be found, that is, the end of the card has been reached.

TYPE TYPE=KEY scans for a keyword and either a single operand or
the first operand of a string. TYPE=CARD scans for the
positional parameter identifying the control card.

NORMAL The location to which control is returned when the requested
data has been found. 'INPOINT is incremented to the next scan
location. If TYPE=KEY was specified, the keyword is returned
in field SPARAM, the first or only operand in field SOPER,
and the length of the operand in field LOPER. If TYPE=CARD
was specified, the card name appears in field SPARAM. SPARAM
and SOPER are 11-byte fields in which the data is left-
justified and padded with blanks.

ISCAN2

Functional Description

The ISCAN2 macro-instruction is used exclusively by the ASP
Initialization modules to locate the second or later subfield of a
keyword parameter within an Initialization control card. The beginning
location of the scan is in field INPOINT.

Name Operation Operands

[symbol] ISCAN2 EOD={ (reqg) |addr}
[,NORMAL={ (reg) jaddr}l]

Opéerands

EOD The location to which control is returned if no operand can
be found, i.e., the end of the parameter has been reached.

NORMAL The location to which control is returned when the subfield

has been found. INPOINT is incremented to the next scan
location. The subfield is in field SOPER and its length in
field LOPER. SOPER is an eleven-byte field in which the data
is left-justified and padded with blanks.

280

ISDSECT

Functional Description

The ISDSECT macro-instruction is used to define a general data -area

containing flags and pointers used by Input Service.

Name Operation Operands
ISDSECT [TYPE={CSECT|DSECT}1
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

ISORT

Functional Description

The ISORT macro-instruction is used exclusively by the ASP
Initialization modules to sort a group of internal table entries.

Name Operation Operands

(symboll ISORT LIST={(R1) | (reqg) |addr}
[,NORMAL={ (reqg) |addx}]

Operands

LIST The location of a fixed-form list describing the entries to
be sorted.

NORMAL The location to which control is returned when the entries

have been sorted.

281

ITREAD

Functional Description

The ITREAD macro-instruction is used exclusively by the ASP
Initialization modules to read an internal table entry from disk.

Name Operation Operands
[symboll ITREAD SPOOL={ (R1) | (reqg) | addr}

+EOD={ (reqg) |addr}
{ ,NORMAL={ (reqg) |addr}]

Opérands

SPOOL The location of a list (in the form generated by the SPOOL
macro-instruction) defining the set of table entries to be
read.

EOD The location to which control is returned when the end of the
table has been reached.

NORMAL The location to which control is returned when a table entry
has been read. Register 1 contains the address of the entry.

ITWRITE

Functional Description

The ITWRITE macro-instruction is used exclusively by the ASP
Initialization modules to write an internal table entry to disk.
Name Operation Operands
[symbol] ITWRITE SPOOL={ (R1) | (reg) {addr}

[,LENGTH={ (R0) | (reqg) | addr}]
[,ADDR={(reg) |addr}]
[, NORMAL={ (req) {addr}]

Operands

SPOOL The location of a list (in the form generated by the SPOOL
macro-instruction) defining the set of table entries to be
written.

LENGTH The length of each entry in the table. This field must be
supplied to the ITWRITE routine, either by use of this
parameter, an assembled value in the spool 1list, or storing
it in the length field before this macro-instruction is
issued.

ADDR The address of the entry to be written. This field must be
supplied to the ITWRITE routine, either by use of this
parameter, an assembled value in the spool list, or storing
it in the address field before this macro-instruction is
issued.

NORMAL The location to which control is returned when the entry has

been written to disk.

282

IWASPOUT

Functional Description

The IWASPOUT © macro-instruction is used exclusively by the ASP
Initialization modules to write out messages descrlblng errors in the
Initialization control cards.

Name Operation Operands
[symboll IWASPOUT ERRMSG={ (R1) | (reqg) {addr}

[,NORMAL={ (reg) |addr}]
{,ERRLVL={C|E|W|N}]

Operands

ERRMSG The location of the error message to be issued.

NORMAL The location to which control is returned when the message
has been issued.

ERRLVL The error level for the message:

. W - warning - indicates. that an ASP function may 90851bly
be impacted. The system continues.

e E - error - indicates that a failure is likely within
ASP, but the system will attempt to continue.

. C - catastrophic - this is the default and indicates
further execution beyond initialization is
impossible. ASP is terminated at the end of
initialization with a DMOO4 completion code.

. N - no error — indicates a message is to be issued
without any error level flag being set.

At the end of initialization, if any ERRLVL has been
issued, a message will be directed to the operator
(ERR003) describing the most severe level encountered,
and whether or not ASP will continue.

JBTDSECT

Functional Description

The JBTDSECT macro-instruction establishes a DSECT, used by ASPIO,
that defines fields of a Track Allocator Table buffer.

Name Operation Operands
JBTDSECT
Operands

This macro-instruction contains .no operands.

283

JCTENTRY

Functional Description

The JCTENTRY macro-instruction is used to define the fields of an
entry in the Job Control Table. :

Name Operation Operands
JCTENTRY
Operands

This macro-instruction contains no operands.

JDABDSCT

Functional Description

The JDABDSCT macro-instruction is used to define the fields of a Job
Description-Accounting Block.

Name Operation Operands
JDABDSCT
Operands

This macro-instruction contains no operands.

JDSENTRY

Functional Description

The . JDSENTRY macro-instruction is used to define the fields of a Job
Data Sets Block. .

Name Operation Operands
JDSENTRY
Operands

This macro-instruction contains no operands.

284

JNADD

Functional Description

The JNADD macro-instruction is used to add a JNCB entry to the Job-
Net-Control-Block chain. Only syanchronous access is allowed to the JNCB
chain.

Name Operation Operands
[symboll JNADD ENTRY={ (R1) | (xeg) |addr}

{,SAVE={YES|NO}1
[,NORMAL={ (reqg) |addr}]

Operands

ENTRY The address of the JNCB to be added to the chain.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.)

NORMAL The location to which the JNADD routine returns when the JNCB
has been added.

JNCBHLD

Functional Description

The JNCBHLD macro-instruction is used to hold a specific JNCB
within the Job-Net-Control-Block chain. Only synchronous access is
allowed to a specific JINCB.

Name Operation Operands
{symboll JNCBHLD ID={(R1) | (reqg) |addr}

{,SAVE={YES|NO}]
[,NORMAL={ (reg) |addr}]

Operands

iD The address of the Net-ID of the JNCB to be placed in hold. -

SAVE Indiéates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the JNCBHLD routine returns after-

placing the specified JNCB into hold. Register 1 contains
the address of the JNCB.

285

JNCBREL

Functional Description

The JNCBREL macro-instruction is the converse of the JNCBHLD macro
and is used to release a previously held JNCB from hold.

Name Operation Operands
{symbol]l JNCBREL ID={ (R1) | (reqg) | addr}

[,SAVE={YES|NO}]
{,NORMAEL={ {reg) |addr}l

Operands

ID The address of the Net-ID of the JIJNCB to be released from
hold.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the JNCBREL routine returns after
releasing the specified IJNCB from hold.

JNDEL

Functional Description

The JNDEL macro-instruction is the converse to JNADD and is used to
delete a given JNCB from the Job-Net-Control-Block chain. Only
synchronous access is allowed to the JNCB chain. .

Name Operation Operands
[symboll JNDEL , ID={(R1) | (reqg) | addr}

[,SAVE={YES|NO}]
[,NORMAL={(reqg) |addr}]

Operands

ID The address of the Net-ID of the JINCB to be deleted.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across -the macro call.

NORMAL The location to which the JNDEL routine returns after

deleting the specified JNCB.

286

JNGET

Functional Description

The JNGET macro-instruction is used to access the next JNCB in the
Job-Net-Control-Block chain. Only synchronous access is allowed to the
JNCB chain.

Name Operation Operands
[symbol] JINGET - EOF={ (regq) }addr}

[,SAVE={YES|NO}]
[, NORMAL={(reg) |addr}]

Operands

EOF The location to which the JNGET routine returns when no
further JNCBs are encountered in the chain.

SAVE Indicates whether the contents of Registers 2 through 9 are
~to be saved across the macro call.

NORMAL The locatijion to which the JIJNGET routine returns when the next
JNCB has been found. Register 1 contains the address of the
JNCB.

JOBNET

Functional Description

The JOBNET macro-instruction is used to define a Job-Net Control
Block DSECT.

Name Operation Operands
JOBNET
Operands

This macro-instruction contains no operands.

287

JOBNUMBR

Functional Description

The JOBNUMBR macro-instruction is used to define the storage area
for parameters used by the Job Number routine (JOBNUM).

Nane Operation Operands -
JOBNUMBR
Operands

This macro-instruction contains no operands.

JSTENTRY

Functional Description

The JSTENTRY macro—instruction is used to define the fields of a
Job Setup Table.

Name Operation Operands
JSTENTRY .
Operands

This macro-instruction contains no operands.

JSWKDSCT

Functional Description

The JSWKDSCT macro-instruction defines an area, pointed to by the
Job Setup Table, containing information supplied by the SETUP parameter
on the //*MAIN control card.

Name ' Operation Operands
JSWKDSCT
Operands

This macro-instruction contains no operands.

288

LOCDSECT

Functional Description

The LOCDSECT macro-instruction defines a Locate reply message and
fields defining a Locate entry.

Name Operation Operands
LOCDSECT
Operands

This macro-instruction contains no operands.

LOGIN

Functional Description

The LOGIN macro-instruction permits a two-way communication and
transfer of data between Console Service and the function using the
macro-instruction. This macro must be executed by each function that
allows the receipt of messages and responses from the consoles. A
function must log in prior to any communication with Console Service.
LOGIN also obtains time-on for the function via the 0S/360 TIME macro
and stores it in the Function Control Table pending LOGOUT.

Name Operation Operands
[symbol] LOGIN ENTER={ (R1) { (reg) |addr}

[,SAVE={YES|NO}]
[{,NORMAL={ (reg) |addr}l

Operands

ENTER The label of an instruction within the resident link of the
function. LOGIN puts this address into the Function Control
Table, where it becomes available to Console Service.
Console Service passes control to this location when a
message is to be passed to this function. The function, at
this time, accepts or rejects the message and returns control
to Console Service. The function cannot take any action on
the message at this time.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the LOGIN routine returns when the

entry defined by this macro has been added to the Function
Control Table and time-on has been obtained and stored.

289

LOGOUT

Functional Description

The LOGOUT macro—-instruction moves a function®s time-on from the
Function Control Table to the Job Description-Accounting Block and
obtains and stores the function®’s time-off in the Job Description-
Accounting Block. It also removes an entry from the Function Control
Table that was created by the LOGIN macro. If a function does not log
out, the removal of the entry is performed by the Job Segment Scheduler,
and no time accounting is done. Depending upon user specification,
LOGOUT will perform both the AREAD and AWRITE of the JDAB, either one,
or neither.

Name Operation Operands

[symboll LOGOUT iSE={ (R0O) | (reg) |addr}]
[,AWRITE={YES|NO}1
[,SAVE={YES |NO}]
[,NORMAL={ (reg) |addr}]

Operands

SE The address of the Job Description-Accounting Block Scheduler
Element for the function to be logged out. If specified,
LOGOUT assumes the user has performed the AREAD; if omitted,
LOGOUT performs an AREAD and scans for the regquired entry.

AWRITE Indicates whether LOGOUT is to perform the AWRITE of the JDAB
before returning to the user. If NO is specified, the user -
may elect to have LOGOUT AREAD and locate the SE and, on’
return, he may post any additional accounting information in
that entry; the user is then required to perform the AWRITE.

SAVE Indicates whether the contents of registers_z through 9 are
to be saved across the macro call.

NORMAL The location to which the LOGOUT routine returns when it has
completed its functions. If AWRITE=NO was specified,
register 0 contains the address of the JDAB SE and register 1
contains the AJDJDFDB address to be supplied to AWRITE; if
AWRITE=YES was specified, both these registers are zeroed.

MDSDSECT |

Functional Description

The MDSDSECT macro-instruction is used to define the Main Device
Scheduler Table. : '

Name ' Cperation ~~ Operands
MDSDSECT [TYPE={CSECT | DSECT}]
Operands
TYPE CSECT establishes a real contrcl section data area. DSECT

establishes a dummy control section data area.

290

MESSAGE

Functional Description

The MESSAGE macro-instruction is used by the system functions to
transmit a message to a specific console or defined group of consoles.

Name Operation Operands

{symbol] MESSAGE TEXT={ (reg)}addr} -
[,CLASS={ALL|D1...D22|ERR|FET|LOG |MLG |
MN|M1...M32|SUP|S1...S32|TAP|TP|UR| (reg)}1
[,CONS={ (RO) | (req) |addr}]
[,ACTION={ YES|NQ|MDS}]
[,PRTY={5]0...11}]
{,SAVE={YES|NO}]
[,BUSY={ (reg)|addr}l]
(,NORMAL={ (reqg) |addr}]
(,MF={ (E, { (reg) |addr}) |L}]

Operands

TEXT The address of a string of characters (ranging from 2 to 71
bytes) that contains the count and message text. The first
byte of the character string contains the text count,
represented in binary, in the range from 1 to 70.

CLASS The message class, as defined in the ASP Initializatijon
control cards, to which the message is- directed:

ALL All consoles.

D1...D22 User-defined configuration.

ERR System error console.

LOG System log console.

MLG Master log console.

MN Main Processor consoles.

M1...M32 Alternate Main Processor confiqurations.
SsUP Support Processor consoles.

S1...832 Alternate Support Processor configurations.
TAP Tape consoles.

TP Teleprocessing consoles.

UR Unit record consoles.

SEC Security messages. (Not logged on MLOG).

If register notation is used, the register must contain a
halfword (one-byte mask and one-byte displacement) converted.
from the class name (see CONCNVRT).

CLASS is required if CONS is omitted (both may be specified).

CONS If register notation is used, the halfword console number of
the console to which the message is directed. Else, the
address of a halfword containing this number. CONS is
required if CLASS is omitted (both may be specified).

ACTION Indicates whether the message is to be entered into an action
queue, which may be inquired upon. Messages soliciting
operator action fall into this category. Action messages
must be dequeued via DEQMSG when the requested action has
been completed. The buffer address of the message in the
action queue is returned in register 0. MDS is a special
designation whose use is restricted to the Main Device
Scheduler.

291

PRTY The priority at which the message is to be entered into the
transmission queue. The following priorities have special
meanings:

0 The message will not be printed unless directed to MLG.
This option may be used to place a message in the action
queue only. In this one case, CLASS and CONS may both be
omitted.

9-11 Messages may be queued past the depth specified in the
ASP Initialization CONSOLE cards.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

BUSY The location to which the MESSAGE routine returns if no
buffers are available to queue the message. Register 0
contains an ECF mask and address which may be used to AWAIT
for buffer availability. If this parameter is omitted,
MESSAGE will AWAIT off the user's FCT until able to queue the
message, then return via the NORMAL exit.

NORMAL The location to which the MESSAGE routine returns when the
message has been successfully queued for transmission. If
ACTION=YES was specified, register 0 contains the address of
the action queue buffer. '

In addition to the above form, MESSAGE may be issued in executable and
list form.

The executable form consists of the parameters noted above (except that
TEXT is optional), plus the parameter MF=(E,{(reqg)|addr}) in which the
second parameter provides the address of the list-form expansion of the
macro.

The list form consists of the text of the message plus the parameter
MF=L. This form requires a label.

MOVEDATA

Functional Description

The MOVEDATA macro—-instruction, used by ASPIO, facilitates moves of
data longer than 256 bytes.

Name Operation Operands
[symboll MOV EDATA [TO={(R2) | (reg) |addr}]

[,FROM={ (R3) | (reg) |addr}]
[,COUNT={ (R4) | (reqg) |n}]

Operands

TO The location to which the data is to be moved.
FROM The location from which the data is to be moved.
COUNT The number of bytes to be moved.

292

MPCLSTAB

Functional Description

The MPCLSTAB macro-instruction defines a Main Processor Job Class
Table. ' '

Name Operation Operands
MPCLSTAB [TYPE={CSECT |DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

MPCTLTAB

Functional Déscription

The MPCTLTAB macro-instruction is used to define the Main Processor
Control Table. The FCTENTRY macro-instruction must be issued prior to
using this macro. i

Name Operation Operands

MPCTLTAB {TYPE={CSECT|DSECT}1}
{, SYSTEM={REAL] DUMMY}]

Operands

TYPE CSECT establishes a real control section data area. DSECT
establishes a dummy control section data area.

SYSTEM DUMMY causes the inclusion of the dummy Main Processor
extension to the MPCDATA control section.

MPENTRY

Functional Description

The MPENTRY macro-instruction, used by Main Service, defines an area
containing information supplied by the Initialization MAINPROC control
card.

Name Operation Operands

MPENTRY [TYPE=CSECTI]

293

Operands

TYPE CSECT establishes a real control section data area.
Otherwise, the statements are generated as part of the
existing control section. ’

MPGRPTAB

Functional Description

The MPGRPTAB macro-instruction defines a Main Processor Job Class
Group Table.

Name Operation Operands
MPGRPTAB [TYPE={CSECT|DSECT}]
Operands
TYPE ‘CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

MSENTRY

Functional Description

The MSENTRY macro-instruction, used by Main Service, defines an area
containing information supplied by the Initialization SELECT control
card.

Name Operation Operands
MSENTRY {TYPE=CSECT]
Operands
TYPE CSECT establishes ‘a real control section data area.

Otherwise, the statements are generated as part of the
existing control section.

294

MSQDATAX

Functional Description

The MSQDATAX macro-instruction is used to establish a dummy work
area control section used by the MSVOMAP module of Main;Service,

Name Operation Operands
MSQDATAX
Operands

This macro-instruction contains no operands.

MSVDSECT

Functional Description

The MSVDSECT macro-instruction is used to describe the data area
used by Main Service.

Name Operation Operands
MSVDSECT [TYPE={CSECT|DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

MTSVC

Functional Description

The MTSVC macro-instruction gets addressability to the Maintask
Vector Table.

Name Operation Operands
[symbol] MTSVC [VECTOR={ MTVT{ATN}1]
Operands
VECTOR If MTVT is given, register 1 upon return from issuance of

SVC246 contains a pointer to the beginning of the Maintask
Vector Table. If ATN is specified, in addition, the index
value of the CTC attention entry in the IOS Attention Table
is placed in the Maintask Vector Table.

295

MTVEREQU

Functional Description

The MTVEREQU macro-instruction generates the ID character equates
used in the MAINTASK VERIFY responses. It also defines the control
characters used in the VERIFY command.

Name Operation Operands
MTVEREQU [(TYPE={ASP|MT}]
Operands
TYPE TYPE=ASP generates both external and internal eQuates.
TYPE=MT generates only the internal VERIFY response
characters.
MTVT

Functional Description

The MTVT macro-instruction generates a CSECT or DSECT of the
MAINTASK Vectaor Table.

Name Operation Operands
MTVT [TYPE={CSECT |DSECT}1}
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

NCB.

Functional Description

The NCB macro-instruction is used to define a Net-Control-Block
DSECT.
Name Operation Operands
NCB
Opérands

This macro-instruction contains no operands.

296

NCBTAADD

Functional Description

The NCBTAADD macro-instruction is used to add a given Net-Control-
Block to the applicakle JNCB. Only synchronous access is allowed.

Name Operation Operands
{symbol] NCBTAADD NCSECT={ (R1) | (reqg) | addr}

[,SAVE={YES|NO}]
[,NORMAL={ (reqg) |addr}l}

Operands

NCSECT The address of the Job-Net-Control CSECT which contains the
calling parameter list.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which NCBTAADD returns when the given NCB has
been added to the applicable JNCB. Register 1 contains the
address of the NCB.

NCBTAFND

Functional Description

The NCBTAFND macro-instruction is used to locate a specific Net-
Control-Block within a given Job—Net-Control-Block. Only synchronous
access is allowed.

Name Operation Operands

[symboll NCBTAFND ENTRY={ (R0O)] (reqg) | addr}
) +NCB={ (R1) | (reqg) |addr}
[,SAVE={ YES| NO}]
[,NORMAL={(req) {addr}]

Operands

ENTRY This operand specifies the INCB of which the given Net-
Control-Block is a member.

NCB The address of the job name associated with the Net-Control-
Block to be found.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the NCBTAFND routine returns after

locating the requested NCB. Register 1 contains the address
of the requested NCB.

297

NCBTAGET

Fanctional Description

The NCBTAGET macro-instruction is used to access the next Net-
Control-Block within a given IJNCB. Only synchronous access is allowed.

Name Operation Operands

[symbol] NCBTAGET - ENTRY={ (R0) | (reg) |addr}
+EOF={ (reqg) |addr}
{,SAVE={YES | NO}]}
[,NORMAL={ (reg) |addr}l}

Operands

ENTRY The address of the JNCB to be accessed.

EOF The location to which NCBTAGET returns when all NCB's have
been accessed.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call. ‘

NORMAL The location to which ,NCBTAGET returns when the next NCB has
been located. Register, 1 contains the address of the NCB.

NCBTAPUT

Functional Description

The NCBTAPUT macro-instruction is used to write to disk an updated
NCB buffer. '

Name Operation Operandé
[symbol]l NCBTAPUT , ENTRY={ (R1) | (reg) |addr}

{ ,SAVE={ YES | NO}]
[NORMAL={ (reg) |addr}l

Operands

ENTRY The address of the JNCB of which the applicable NCB is a.
member.)

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the NCBTAPUT routine returns when the

NCB buffer has been written to disk.

298

NCBTAREL

Functional Description

The NCBTAREL macro-instruction is used to release a previously read
NCB buffer.) '

Name Operation Operands
{symbol] NCBTAREL ENTRY={ (R1) | (reqg) {addr}

[,SAVE={YES|NO}] '
(,NORMAL={ (reqg) jaddr}]

Opéerands

ENTRY The address of the JNCB of which the applicable NCB is a
member. ‘

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the NCBTAREL routine returns when the
NCB buffer has -been released.

NETDSECT

Functional Description

The NETDSECT macro-instruction is used to describe the data area
used in Dependent Job Control net-creation processing.

Name Operation) Operands
NETDSECT [TYPE={CSECT|DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

299

NJODSECT

Functional Description

The NJODSECT macro-instruction is used to establish either a real
or a dummy data area control section to be used by the NJP routines. It
contains the DCB, DECB, and LERB for an NJP line.

Name Operation Operands
NJODSECT [TYPE={CSECT [DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

NJIPDSECT

Functional Description

The NJPDSECT macro-instruction is used to establish either a real
or a dummy data area control section to be used by the NJP routines.

Name Operation Operands
NJIPDSECT [TYPE={CSECT |DSECT}]
Ogerahds
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

NJPENTRY

Functional Description

The NJPENTRY macro-instruction defines the fields in the NJP
Terminal Table.

Name Operation Operands
NJPENTRY
Operands

This macro-instruction contains no operands.

300

NJPPARBF

Functional Description

The NJPPARBF macro-instruction defines the fields in the NJPIO
Scheduler Element Parameter Buffer.

Name Operation Operands
NJPPARBF
Operands

This macro-instruction contains no operands.

PCHDSECT

Functional Description

The PCHDSECT macro—-instruction is used to define data storage areas
and a console message acceptance routine for Punch Service. :

Name Operation Operands
PCHDSECT [TYPE={CSECT|DSECT1}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

PCW

Functional Description

The PCW macro-instruction, the use of which is restricted to
ASPABEND, describes the location and attributes of a print line.

Name Operation Operands
[symbol] PCW LINE=addr

{,INDENT={0|n}]
[, LAST={YES|NO}]

301

Operands

LINE The address of the print line, which consists of a halfword
spacing code and text.

INDENT - ‘The number of leading blanks to be inserted before the text.

LAST LAST=YES indicates that this is the last print line of a

sequence; LAST=NO indicates other lines will follow.

PFKENTRY

Functional Description

The PFKENTRY macro-instruction is used by Console Service to
generate a DSECT to map a Program Function Key Table entry.

Name Operation Operands
PFKENTRY
Operands

This macro-instruction contains ‘no opeérands.

PRTABLE

Functional Description

The PRTABLE macro-instruction is used to define the fields of a
table describing the characteristics of printers attached to the Support
Processor (Printer Resources Table). The table is generated during
Initialization from PRINTER control cards and is used by Print Service
in assigning tasks to the printers.

Name Operation Operands
PRTABLE
Operands

This macro-instruction contains no operands.

302

PRTDSECT

Functional Description

The PRTDSECT macro-instruction defines the data control section
required by Print Service for each printer attached to the ASP system.

Name Operation Operands
PRTDSECT [TYPE={CSECT |DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

PURCHAIN

Functional Description

The PURCHAIN macro-instruction is used to purge chained single-
record files. The single-record files must have obtained their tracks
from the Single Track Table (STT) via TATPTR=MNTRKFDB.

Nanme Operation Operands

[symbol] PURCHAIN FDB={ (R1)] (reg) | addr}
«BAREA={ (RO) | (reg) |addr}
[,SAVE={YES|NO}1
{ ,NORMAL={ (req) |addr}]

Operands

FDB The File Description Block address for the data set being
purged.

AREA The address of a four-fullword work area to be used by
PURCHAIN. The halfword at area+6 must contain the
displacement to the chain FDB in each buffer.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the PURCHAIN routihe returns when all

files in the chain have been purged.

303

PURDSECT

Fanctional Description

The PURDSECT macro-instruction is used to define a genetal data area
used by PURGE.

Name Operation Operands
PURDSECT LTYPE={CSECT |DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

PUTUNIT

Functional Description

The PUTUNIT macro-instruction is used to return one or more devices
to availability for allocation to other functions. The devices being
returned were received via the GETUNIT macro-instruction or by initial
allocation by the Job Segment Scheduler. 1If, in either case, the
devices were obtained by the list associated with the Function Control
Table and are required for the duration of the function, PUTUNIT may be
omitted, and the Job Segment Scheduler will return the allocated devices
when the function returns control to it. PUTUNIT may be used to return
units when they are required for only a small fraction of the running
time (for example, reading control cards) in order to make the device
available to other functions. PUTUNIT must be used if the GETUNIT
specified a series of sublists (LIST parameter) in order to supply the
location of the list.

Name Operation Operands
[symboll PUTUNIT [LIST={ (R1) | (req) |addr}l

{,SAVE={YES|NO}]
{,NORMAL={ (req) |addr}]

Operands

LIST The address of the list which was used by GETUNIT for
allocation. This operand should be omitted if the sublist
pointed to by the Function Control Table is used.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the PUTUNIT routine returns after the

devices have been returned.

304

RDDSECT

Functional Description

The RDDSECT macro-instruction is used to define a data area control .
section used by the Input Service DSP's (CR, DR, TR).

Name Operation Operands
RDDSECT [TYPE={CSECT |DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

RECEIVE

Functional Description

The RECEIVE macro-instruction is used by system functions to access
the console output messages from a particular Main Processor.

Nane Operation Operands

[symbol] RECEIVE {BUFFER|FDB}={ (R1) | (req) |addr}
« {ID={(RO) | (reqg) |addr}|{ TYPE={ANY | PURGE}}
MPC={ (R2) | {(reqg) jaddr}
[,DEQ={AUTO| USER}]
{,WAIT={YES|NO}]
[,SAVE={YES|NO}]
(,IPL={(reg) jaddr}]
[,BUSY={(reg)|addr}l
[,NORMAL={ (req) jaddrl}]

Operands

BUFFER The location of a buffer containing control information and a
data area into which the received message will be moved. The
format of the buffer is:

Byte 0 An ECF which isvposted as follows:
X*80'.- when the requested message is received
X'u40' if an IPL occurs
X'20' if DEQ=USER jis specified and the buffer is
still posted (not available). This posting
means that a requested message has been
missed.
Byte 1. The lehgth in binary of the following data area.

Bytes 2-x The data area, the maximum length of which is 120
bytes.

305

FDB

Ib

TYPE

DEQ

WAIT

SAVE

IPL

BUSY

NORMAL

306

The FDB specification is used only to receive Locate
responses from a Main Processor. It specifies the location
of an ECF followed by two fullwords containing pointers to a
buffer and an FDB. The Locate response will be placed into
the buffer if only a single response is necessary. A single
response will contain from one to three volume serials. The

" Locate responses will -be ABLOCKed into the multirecord FDB if

multiple responses are necessary. The ECF will be posted as
follows:

X'80* A single Locate response was placed into the
provided buffer. The FDB remains open.

X'40°" An IPL occurred before the last response was
received.
x'o8' Multiple Locate responses were received and

ABLOCKed into the FDB. The FDB was closed.

The location of a field containing a one-byte binary count of
ID characters followed by the one- to eight-byte ID
characters of the message to be received.

The TYPE parameter is used in conjunction with the BUFFER
parameter and is invalid with FDB. TYPE=ANY is used to
receive any message that occurs on a particular Main
Processor. TYPE=PURGE causes all receive entries with the
supplied buffer address to be dequeued.

The address of the Main Processor Control Table for the Main
Processor from which the message is to be received.

DEQ=AUTO causes the receive entry to be dequeued when the ECF
is posted. DEQ=USER causes the receive entry to remain
active after a message has been received; the user must
subsequently issue a "RECEIVE TYPE=PURGE,BUFFER=addr"' to
dequeue the receive entry. DEQ=USER is invalid with the FDB
parameter. :

WAIT=YES causes the receive routine to AWAIT until the
receive occurs and the ECF is posted before returning control
to the user. WAIT=NO causes control to be returned before
the receive has been satisfied; the user must check the ECF

" to determine when the receive has been satisfied. If it is

later desired to await for a message, either an AWAIT on the
ECF, or another RECEIVE may be used. If another RECEIVE
is used the BUFFER and ID must be the same as before, however
the operands SAVE, IPL, BUSY, or NORMAL may be changed,
WAIT=NO is invalid with TYPE=PURGE.

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

The location to which control is returned if an IPL occurs
while RECEIVE is AWAITing for a response.

The location to which RECEIVE returns if no main storage is
available for the entry. Register 0 contains an ECF mask and
address which may be used to AWAIT for storage availability.
If the parameter is omitted, RECEIVE will AWAIT until able to
receive the message, then return via the NORMAL exit. This
parameter is invalid with TYPE=PURGE.

The location to which RECEIVE returns when it has
successfully completed its functions.

REGISTER

Functional Description

The REGISTER . macro-instruction provides standardized symbolic
register notation. It consists of EQU statements as shown below:

RO
R1
R2
R3
R4
RS
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Name

Operands

EQU 0
EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 1
EQU 8
EQU 9
EQU 10
EQU 11
EQU 12
BQU 13
EQU 14
EQU 15
Operation Operands
REGISTER

This macro-instruction contains no operands.

RELSAVE

Functional Description

The RELSAVE macro-instruction releases the register save areas
obtained by RSVSAVE. :

Name

[symbol]

Operands
NUMBER

ERROR

Operation Operands

RELSAVE NUMBER={ALL{ (RO).| (reg) |n}
+» ERROR={ (req) jaddr}
{,FCT=1 (R1) | {reqg) {addr}]
[,NORMAL={ (reg) |addxr}]

The number of save areas to be released. If n is zero, all

- reserved save areas are released.

The location to which the RELSAVE roﬁtine returns if the
nunber of save areas available to be released is less than
the number specified. Register 1 contains the residual
count.

307

FCT The address of the Function Control Tdble containing the save
areas to be released. If omitted, the current FCT is used.

NORMAL The location to which the RELSAVE routine returns when the
save areas have been ;eturned.

RESQURCE

Functional Description

The RESOURCE macro-instruction specifies the names of critical ASP
system resources for use with ADEQ, AENQ, and ATEST. . .

Name Operation Operands

[symboll RESOURCE {NAMES= (name 1, name2, . . .namen) | LIST}
Operands
NAMES Generates a series of equate statements equating each

specified resource name with a unique decimal number.

LIST RESOURCE LIST must be preceded by a previous expansion of the
NAMES forms. It generates a list of 8-byte constants of the
previously-defined names. : ' '

RESQUEUE

Functional Description

The RESCUEUE macro-instruction is used to define a Resident Job
Queue Table DSECT.) i

Name Operation Operands -
RESQUEUE
Operands

This macro-instruction contains no operands.

308

RIAMEP

Functional Description

The RIAMEP macro-instruction establishes either a dummy or defined
work area control section used to establish the RICBAM entry points.

Name Operation Operands
RIAMEP [TYPE={DSECT | NULL}]
Operands
TYPE DSECT establishes a dummy control section data area. NULL

establishes a defined control section data area which can be
a part of another real control section.

RICBAMX

Functional Description

The RICBAMX macro-instruction is used to generate instructions which
represent the ASP Reader/Interpreter control block access method.

Name Operation Operands
RICBAMX TYPE={RIAM]RIQM}
Operands
TYPE RIAM generates code for the RICBAM module. RIQM generates

code for the RIQMSERV module.

RICLOSE

Functional Description

The RICLOSE macro-instruction is used to close the ASP
Reader/Interpreter control block file. Register 13 is assumed to be
pointing to the RIODATA CSECT.

Name Operation Operands
[symboll RICLOSE [NORMAL={ (reqg) | addr}]
Operands .
NdRMAL The location to which the RICLOSE routine returns when the

close has been satisfied.

309

RICRE

Functional Description

The RICRE macro-instruction is used to create a new LTTR entry
within the ASP R/I LTTIR table. Register 13 is assumed to be pointing to
the RIODATA CSECT.

Name Operation Operands
{symbol] RICRE [NORMAL={ (reg) {addr}]
Operands
NORMAL The location to which the RICRE routine returns when the
entry has been created. Register 0 contains the LTTR entry
number.
RIDATAX

Functional Description

The RIDATAX macro-instruction is used to establish either a real or
dummy work area control section used by the ASP Reader/Interpreter DSP.

Nanre ’ Operation Operands
RIDATAX [TYPE={CSECT | DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

RIEXITX

Functional Description

The RIEXITX - macro-instruction establishes either a dummy or defined
work area control section used to establish the RIEXIT entry points.

Nane Operation Operands
RIEXITX {TYPE={DSECT | NULL}1]
Operands
TYPE DSECT establishes a dummy control section data area. NULL

establishes a defined control section data area which can be
a part of another real control section.

310

RIGET

Functional Description

The RIGET macro-instruction is used to read an 0S
Reader/Interpreter control block from the ASP queue packs. Register 13
is assumed to be pointing to the RIODATA CSECT.

Name Operation Operands

[symboll RIGET ' LTTR={ (RO) | (reqg) | addr}
[,NORMAL={(reqg) |addr}]

Operands

LTTR The logical TTR which is associated with this control block
to be read.

NORMAL The location to which the RIGET routine returns when the read
request has been satisfied. Register 1 contains a pointer to
the record. Register 15 contains the return code:

0 Valid return

4 Zero LTTR given

8 Oout-of-table extent
RIODATAX

Functional Description

The RIODATAX macro-instruction is used to establish either a real,
a dummy or a defined work area control section used by the ASP
Readers/Interpreter control block access method.

Name Operation Operands
RIODATAX [TYPE={CSECT|DSECT | NULL}]
Operands
TYPE CSECT establishes a real control section data area named

RIODATA. DSECT establishes a dummy control section data area
named RIOSTART. NULL establishes a defined control section
data area which can be a part of another real control
section.

311

RIOENTRY

Functional Description

The RIOENTRY macro-instruction is used to define the LTTR table
header and entries for the ASP Reader/Interpreter control block access
method.
Name Operation Operands
RIOENTRY
Operands

This macro-instruction contains no operands.

RIPUT

Functional Description

The RIPUT macro-instruction i$§ used to write an 0OS
Reader/Interpreter control block to the ASP queue packs.
assumed to be pointing to the RIODATA CSECT.

Name Operation Operands
(symboll RIPUT LTTR={ (RO) | (reqg) | addr}

«DATA={(R1) | (reqg) |addr}
[,NORMAL={ (reqg) jaddr}]

Register 13 is

Operands

LTTR The logicai TTR which is associated with the control block to
be written.

DATA The address of the record to be written.

NORMAL The location to which the RIPUT routines returns when the

write request has been satisfied. Register 15 contains the

return code:
0 valid return
4 Zero LTTR given

8 OQut-of-table extent

312

RIREC

Functional

Description

The RIREC macro-instruction is used to describe the control block

entries of

Name

Operands

the ASP R/I control block file.
Operation Operands

RIREC

This macro-instruction contains no operands.

RISERV

Functional

Description

The RISERV macro-instruction is used to perform any one or a
combination of the following functions for the ASP Reader/Interpreter

interface:

create a RIODATA work area, read in the LTTR tables, write

OS SMB's to SYSMSG (with or without an error message), free the LTTR

tables, or
Name

[symbol]

Operands
JDSFDB

IOAREA

TABLE

free the RIODATA work area.
Operation Operands

RISERV JDSFDB={ (R9) | (reg) |addr}
[,IOAREA={SUPL| CREATE|DELETE}]
[, TABLE={SUPL|CREATE| DELETE}]
[,SMBDEB={YES|NO}]
[,MSG={ (R8) | (reg) | addr}]
[,NORMAL={ (reqg) |addr}]

The JDS FDB pointer which is associated with the job to be
handled. If register 9 is used, no load is generated;
however, if register 9 is not used, it will not be destroyed
on exit from the routine. The JDS will be in the same status
on exit from the routine as it was on entry, that is, in core
or not in core.

Note: If either MSG and/or SMBDEB=YES is specified and the
FCT does not contain the job's TAT pointer (such as
Main Service), the caller should have the JDS in core
and SYSMSG opened on entry.

SUPL if register 13 points to the RIODATA on entry. CREATE
if user requests a RIODATA to be built or if user requires a
RIODATA temporarily for SMBDEB=YES. DELETE if register 13

points to the RIODATA obtained from a previous RISERV macro.

SUPL if user has LTIR table in core on entry (table pointer
contained in RIODATA). CREATE if user requests LTTR tables

313

to be read into core or if user requires LTTR tables
temporarily for SMBDEB=YES. DELETE if user requests the LTTR
tables to be deleted from core.

Note: Tables will be read from the JDS entry of JCBTAB.

SMBDEB . NO if user does not require SMB deblocking into SYSMSG. . YES
if user requests SMBs to be deblocked into SYSMSG {(Note:
SYSMSG open status will remain the same as on entry to the
macro).

MSG Address of a one-byte length field followed by the message
text. This message will be written to SYSMSG prior to the
deblocked SMB's if specified with SMBDEB=YES.

NORMAL The location to which RISERVX returns when the requested
service has been accomplished. If IOAREA=CREATE and
SMBDEB=NO, register 13 will point to the RIODATA area
requested by the user. Otherwise, the contents of register
13 remain unchanged. In either case, registers 2 through 12
will not be destroyed.

RITABLE

Functional Description

The RITABLE macro-instruction generates a table of pointers to R/I
data areas that are accessed by the ASP Reader/Interpreter modules.
Name Operation Operands
RITABLE
Operands

This macro-instruction contains no operands.

314

RITPT

Functional Description

The RITPT - macro-instruction is used to poeint at .a .record entry
within the ASP R/I LTTR table. . Register 13 is assumed to be pointing to
the RIODATA CSECT. ‘

Name Operation Operands

{symbol]l RITPT : : LTTR={ (RO) | (reg) {addx}
[, NORMAL={ (req) |addr}]

Operands

LTTR The logical TTR which is associated with the control block
entry to be accessed.

- NORMAL The location to which the RITPT routine returns when the
point has been satisfied. Register 1 contains a pointer to
the entry. Register 15 contains the return code:

0 Valid return

4 Zero LTTR given

8 Out-of-table extent
RIPBUF

Fanctional Description

The RJPBUF macro-instruction is used to define the fields of the RJP
TP buffer. ; : . .

Name Operation Operands
RJIPBUF [TYPE={CSECT|DSECT}1
Operands

TYPE CSECT establishes a real control section data area. DSECT
‘ establishes a dummy control section data area.

315

RIPDCT

Functional Description

The RIPDCT macro-instruction is used to establish a map of a line
and/or device control block. It is used by the Remote Job Processing
routines.

Name Operation Operands

RJPDCT {TYPE={CSECT|DSECT}1
[,DEVICE={REMOTE|LINE|ALL}]

Operands

TYPE CSECT establishes a real control section data-area. DSECT
establishes a dummy control section data area.

DEVICE -~ - REMOTE generates a Remote Device Control Block (RDCT), LINE

: © -~ "generatés a line control block, and ALL, the default option,

generates a composite control block for both line and
devices.

RIJPDSECT

Functional Description

The RJIPDSECT macro-instruction is used to establish either a real or
a dummy data area control section used by the Remote Job Processing.
routines.

Name - Operation Operands
RJPDSECT [{TYPE={CSECT|DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

316

RIPTABLE

Functional Description

The RIPTABLE macro-instruction is used to establish either a real or
dummy data area section. It defines entries in a resident table used by
the Remote Job Processing routines. It contains file pointers and other
information related to each terminal and/or line used by RJP.

Name Operation Operands

RJPTABLE {TYPE={CSECT|DSECT}]
[,ENTRY={RESIDENT| INISH|ALL}]

Operands

TYPE CSECT establishes a real control section data area. DSECT
establishes a dummy control section data area.

ENTRY RESIDENT, the default option, means the defined CSECT will be
resident in core after ASP Initialization. INISH specifies
the table is being created for either a line or terminal at
Initialization. ALL specifies the DSECT defines all RJP
terminal and line entries.

ROUTE

Functional Description

The ROUTE macro-instruction is used by Main Sexvice to route the
console message from a Main Processor to any engueued receives for the
message. Register 9 must be preloaded with the address of the
appropriate Main Processor Control Table.

Name Operation Operands
[symboll ROUTE (TYPE=IPL]

[,SAVE={YES|NO}]
{ ,NORMAL={ (reqg) jaddr}]

Operands

TYPE If TYPE=IPL is specified, all receive ECF's will be posted
with X"40°". :

SAVE Indicate whether the contents of registers 2 through 9 are to
be saved across the macro call.

NORMAL The location to which control is returned when ROUTE has

completed its functions.

317

RQTAADD

Functional Description

The - RQTAADD macro-instruction is used to add an entry to the
Resident Job Queue. The entry will remain at the present core location.

Name Operation ‘Operands
{symboll ROTAADD ENTRY={ (R1) | (reg) |addr}

{,INDEX={ (RO} | (reqg) {rgindex}]
[,NORMAL={ (reqg) |addr}]

Operands

ENTRY The Resident Job Queue entry address.

INDEX The chain into which the entry is to be placed. 1If the
rgindex form is used, the specification must be one of the
terms defined for field RQINDEX in the RESQUEUE macro-
instruction. If omitted, the index in the entry is used.

NORMAL The location to which the RQTAADD routine returns control
when the entry has been added. '

ROTADEL

Functional Description

The RQTADEL macro-instruction is used to delete an entry from the
Resident Job Queue. The entry will remain at its present core location
and its area will not be freed.

Name Operation Operands

[symbol] RQTADEL ENTRY={ (R1) | (reg) |addr}
[,NORMAL={ (reg) |addr}]

Operands

ENTRY The Resident Job Queue entry address.

NORMAL ‘The location to which the Table Delete routine returns
control after the entry has been deleted.

ROTAGEN

ROTAGEN is an inner macro which services the common parameters of
RQTAADD , ROQTADEL , and ROTAPUT

318

ROTAPUT

Functional

Description

The RQTAPUT macro-instruction is used to move a RESQUEUE entry from
one chain to another or change the priority within a chain.

Name

{symbol]

Operands
ENTRY

INDEX

NORMAL

RSVSAVE

Functional

Operation Operands

ROTAPUT : - ENTRY={ (R1) | (reqg) | addr}
: [,INDEX={ (RO)| (reqg) | rgindex}]
[,NORMAL={ (reg) |addr}]

The Resident Job Queue entry address.

The chain into which the entry is to be placed. If the
rgindex form is used, the specification must be one of the
terms defined for field RQINDEX in the RESQUEUE macro-
instruction. If omitted, the index in the entry is used.

The location to which the Table Put routine returns when a -
Resident Job Queue entry has been processed.

Description

The RSVSAVE macro-instruction obtains register save areas for the
exclusive use of the specified Function Control Table.

Name

{symbol]

Operands
NUMBER

BUSY

FCT

SAVE

NORMAL

Operation Operands

RSVSAVE NUMBER={ (R0) | (reqg) |n}
,BUSY={ (reqg)|addr}
(,FCT={ (R1) | (reg) |addr}
[,SAVE={YES | NO}] :
[,NORMAL={ (reg) jaddr}]

The number of save areas to be obtained.

The location to which the RSVSAVE routine returns if there is
insufficient core available to obtain the required areas.
Register (¢ contains an ECF mask and address which may be used
to AWAIT for sufficient core.

The address of the Function Control Table to receive the savé
areas. If oritted, the current FCT is used.

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

“~

The location to which the RSVSAVE routine returns when the
save areas have been obtained.

319

SAVENTRY

Functional Description

The SAVENTRY macro-instruction provides a map of the save area used
by the ASAVE routine.

Name Operation Operands
SAVENTRY
Operands

This macro-instruction contains no operands.

SCTABLE

Functional Description

The SCTABLE macro-instruction establishes a DSECT used to define
fields of a table describing the resource characteristics of the SYSOUT
output classes.

%

Name Operation Operands
SCTABLE
Operands

This macro-instruction c¢ontains no operands.

SEND

Functional Description

The SEND macro-instruction is used by system functions to send
console messages to a Main Processor.

Name Operation Operands

[symbol] SEND TEXT={ (R1) | (req) | addr}
JMPC={(RO) | (reqg) |addr}
{,TYPE={MODIFY|F}]
[, SAVE={YES | NO}]
[,BUSY={ (reg) {addr}]
[,NORMAL={ (reqg) |addr}l

320

Operands

TEXT The address of a character string from 2 to 121 characters
long, containing the count in binary in-the first byte
followed by the data to be sent.

MPC The address of the Main Processor Control Table for the Main
Processor to which the message is being sent.

TYPE TYPE=MODIFY or TYPE=F indicates that a prefix of 'F MT' is to
precede the text. This specification causes a modify of
MAINTASK and passes the message to a subtask of MAINTASK.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

BUSY The location to which the SEND routine returns if no main
storage is available for the message. Register 0 contains an
ECF mask and address which may be used to RWAIT for storage
availability. If this parameter is omitted, SEND will AWAIT
until able to transmit the message, then return via the
NORMAL exit.

NORMAL The location to which the SEND routine returns when the
message has been successfully transmitted.

SETNAMES

Functional Description

The SETNAMES macro-instruction is used to define the fields of a
table of devices that may be set up. The table is generated during
Initialization from SETNAME cards and is used by the Main Device
Scheduler to correlate unit parameters to device types in the Setup
Units Table (SETUNITS).

Name Operation Operands
SETNAMES
Operands

This macro-instruction contains no operands.

321

SETONITS

Functional Descrig;ion

The SETUNITS macro-instruction is used to deflne the flelds of a
Setup Units Table entry for devices on a Maln Processor. :

Name Operation Operands
SETUNITS
Operands

This macro-instruction contains no operands.

SMRENTRY"

Functional Description

The SMRENTRY macro-instruction is used to define the fields of a
chained single-record file which contains the select mode records.
These records are generated durlng initialization from SELECT control
cards and are used by Main Service when a SELECT mode change is
requested via the ASP MODIFY command. The FDB for the first SMRENTRY
record is in the SMRFDB field in TVTABLE.

Name Operation Operands
SMRENTRY
Operands

This macro-instruction contains no operands.

SORTLIST

Functional Description

The SORTLIST macro-instruction deflnes an internal sort list used by
ASP Initialization. ’

Name Operation Operands
SORTLIST
Operands

This macro-instruction contains no operands.

322

SPOOL

Functional Description

The :SPOOL: . macro-instruction is used exclusively by the ASP- ‘
Initialization modules to generate a three-word list defining a set of
tables which are processed by the ITREAD and ITWRITE macro-instructions.

Name Operation Operands

symbol SPOOL {LENGTH=nn}
[,ADDR=addr]

Operands

LENGTH A decimal value representing the length of each entry in the
associated table. If omitted, this halfword value must be
stored at symbol+2 prior to issuance of the ITWRITE macro-
instruction or supplied to that macro.

ADDR The address of the associated table. If omitted, this
fullword value must be stored at symbol+4 prior to issuance
of the ITWRITE macro-instruction or supplied to that macro.

STTABLE.

Functional Description

The STTABLE macro-instruction defines the fields in the ASPIO Single
Track Table.

Name Operation Operands
STTABLE
Operands

This macro-instruction contains no operands.

SUPUNITS

Functional Description

The SUPUNITS macro-instruction is uséd’to define the fields of a
Support Units Table entry for devices on the Support Processor.

Name: ' Operation Operands
SUPUNITS
Operands

This macro-iastruction contains no operands.

323

SVCTABLE

Functional Description

The SVCTABLE macro-instruction generates a table that contains
pointers used by ASP when intercepting all SVC6é and SVC34 commands
issued while ASP is in operation.

Name Operation Operands
SVCTABLE [TABLE={CSECT|DSECT | NULL} 1
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area. NULL :
establishes a defined control section data area which can be
a part of another real control section.

SYSUNITS

Functional Description

The SYSUNITS macro-instruction is used to define the fields of a
System Units Table entry.

Name . -Operation . Operands
SYSUNITS
Operands

This macro-instruction contains no operands.

324

TAADD

Functional Description

The TAADD macro-instruction is. used to add an entry to the Job
Control Table.

Name Operation Operands

[symbol]l TAADD ENTRY={ (R1) | (reg) jaddr}
«PRTY={ (RO) | (reqg) |n}
{,SAVE={YES | NO} ¥
{ ,NORMAL={ (reg) |addr}l

Operands

ENTRY The Job Control Table entry address.

PRTY A number that specifies the job priority associated with the
Job Control Table entry in the range 0 to 15. If the number
is in a register, it is represented in binary. If the number
is specified absolutely, it is represented as a decimal
nunmber. C

SAVE Indicates whether the contents of registers 2 through 9 are

" to be saved across the macro call.

NORMAL The location ‘to which the Table Add routine returns when an
entry has been added to the Job Control Table.

TACMPR

Functional Description

The TACMPR macro-instruction compresses a specified Job Control
Table priority level by removing extraneous space from it.

Name Operation Operands
[{symboll TACMPR PRTY={ (RO) | (reg) | n}

{,SAVE={YES|NO}]
[,NORMAL={(req) jaddr}]

Operands

PRTY A number that specifies the job priority associated with the
Job Control Table entries in the range 0 to 15. If the
number is in a register, it is represented in binary. If the
number is specified absolutely, it is represented as a
decimal number.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the Table Compress routine returns when

its functions have been completed.

325

TADEL

Functional Description

The TADEL macro-instruction is used to delete a completed entry from
the Job Control Table. .

Name

[symboll

Operands
PRTY

SAVE

NORMAL

TAFIND

Operation Operands

TADEL PRTY={ (ROY | (reg) |n}-:
[, SAVE={YES|NO}]
[,NORMAL={ (reg) {addrl}]

A number that specifies the job priority associated with the
Job Control Table entries in the range 0 to 15. If the
number is in a register, it is represented in binary. If the
number is specified absolutely, it is represented as a
decimal number.

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

The location to which the Table Delete routine returns when

.an entry has been deleted from the Job Control Table.

Functional Description

The TAFIND macro-instruction is used to obtain a specific job's
entry or the first entry in a Job Control Table priority.

Name

[symboll

Operands
PRTY

EOF

326

Operation ’ Operands

TAFIND PRTY={ (RO) | (reg) |n}
¢ EOF={ (reqg) jaddr}
[, {JOBNUM={ (R1) | (reg) |n}|
JOBNAME={ (R1) | (reqg) |addr}}]
[,SAVE={YES|NO}]
[4 NORMAL={ (reg) jaddr}]

A number that specifies the job priority associated with the
Job Control Table entries in the range 0 to 15. If the
number is in a register, it is represented in binary. If the
number is specified absolutely, it is represented as a
decimal number.

The location to which the Table Find routine returns if an
entry is not found at the specified priority.

JOBNUM

JOBNAME

SAVE

NORMAL

TAGET

Functional

Job number. If specified, the Job Control Table is scanned
for the entry associated with this job number. The job
number is specified as binary-halfword.

Job name. If specified, the Job Control Table is scanned for
the entry associated with this job name. The job name is
specified as an eight-byte, left-justified, EBCDIC field and
padded with blanks.

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

The location to which the Table Find routine returns when a

job has been located. Registers 0 contains the entry length
and register 1 contains the address of the table obtained.

Description

The TAGET macro-instruction is used to access the next entry in the
Job Control Table.

Name

(symboll

Opérands
PRTY

EOF

SAVE

NORMAL

Operation Operands

TAGET PRTY={ (RO) | {reg) | n}
«EOF={ (req) |addr}
{,SAVE={YES | NO}]
[,NORMAL=1{ (reg) |addr}]

A number that specifies the job priority associated with the
Job Control Table entries in the range 0 to 15. If the
number is in a register, it is represented in binary. If the
number is specified absolutely, it is represented as a
decimal number.

The location to which the Table Get routine returns when the
Job Control Table contains no next entry.

Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

The locatlon to which the Table Get Routine returns when 1t
has accessed the next entry in the Job Control Table.
Register 1 contains the address of the entry, and register 0
contains the size of the entry, represented in binary.

327

TAJENTRY

Functional Description

The = TAJENTRY macro~-instruction defines a work area for each priority
level within the Job Control Table. It is used by the JCT table access
routines and by JSS for scheduling purposes.

Name Operation Operands
TAJENTRY
Operands .

This macro-instruction contains no operands.

TAPUT

Functional Description

The TAPUT macro-instruction is used to write the current Job Control
Table record in the chain on the direct access storage device.

Name Operation Operands
[symboll TAPUT - PRTY={ (RO) | (reg) | n}

[,SAVE={YES|NO}1
{ ,NORMAL={ (req) |addr}]

Operands

PRTY A number that specifies the job priority associated with the
Job Control Table entries in the range 0 to 15. If the
number is in a register, it is represented in binary. If the
number is specified absolutely, it is represented as a
decimal number.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the Table Put routine returns when the

current Job Control Table record has been wrltten on the
direct access storage device.

328

TARESET

Functional Description

The TARESET macro-instruction resets the Job Control Table scan
pointers to the top of the JCT queue for the priority level specified.

Name Operation Operands
[symboll TARESET PRTY={ (RO) | (reqg) | n}

[,SAVE={YES|NO}1]
[,NORMAL~-{ (req) jaddr}]

Opérands

PRTY A number that specifies the job priority associated with the
Job Control Table entries in the range 0 to 15. If the
number is in a register, it is represented in binary. If the
number is specified absolutely, it is represented as a
decimal number.

SAVE Indicates whether the contents of registers 2 through 9 are
to be saved across the macro call.

NORMAL The location to which the Table keset routine returns when
the scan pointers have been reset.

TATPARMS

Functional Description

The TATPARMS —macro-instruction establishes a DSECT, used by ASPIQ,
that defines a table of track allocator. parameters. -

Name Operation operands
TATPARMS
Operands

This macro-instruction contains no operands.

329

TPCDSECT

Functional Description

The TPCDSECT macro-instruction defines the Tape-to-Printer
checkpoint buffer. ' . . .
Name Operation Operands
TPCDSECT - [TYPE={CSECT|DSECT}]
Operands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

TPRDSECT -

Functional Description

The TPRDSECT macro-instruction defines the data control section
required by the Tape-to-Printer DSP for each printer attached' to the ASP
system.

Name Operation Operands
TPRDSECT [TYPE={CSECT |DSECT}]
Operands
TYPE" CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.

330

TRACE

Functional Description

The TRACE = macro-instruction allows the user to perform a specified
form of trace.

Name Operation Operands

{symboll TRACE - TYPE={C| D}
{ ,NORMAL={ (reg) |addr}]

Operands

TYPE A character identifying the type of trace required.
Registers 0 through 4 must be preloaded with the data to be
traced. (See Chapter 9, Debugging Aids in ASP for an
explanation of the available types of trace.)

NORMAL The location to which the TRACE routine returns when it has
completed the trace.

TVTABLE

Functional Description

The TVTABLE macro-instruction is used to define a Transfer Vector
Table. The Transfer Vector Table allows non-resident routines, which
are loaded into core storage by the ALOAD macro-instruction, to branch
to resident routines.

The table also contains pointers to several systems tables and various
data, or pointers to data, shared by two or more functions within the
ASP system.

Name Operation Operands
TVTABLE [TYPE={CSECT|DSECT}1]
Opeérands
TYPE CSECT establishes a real control section data area. DSECT

establishes a dummy control section data area.
Register 12 is loaded with the location of the Transfer Vector Table.

All routines that define the table as a dummy control section use
register 12 as the beginning location of the table.

331

UCBENTRY

Functional Description

The UCBENTRY macro-instruction is furnished to define the fields of
the 0S Unit Control Block and to provide labels for frequently
referenced fields therein.

Name Operation Operands
UCBENTRY
Operands

This macro-instruction contains no operands.

VIOLATE.

Functional Description

The VIOLATE macro-instruction is used to execute instructions which
violate storage protection, such as setting the not-ready bit in the
Unit Control Block. It may also be used to alter the setting of the
system mask and protection key. :

Name Operation Operands
{symbol] VIOLATE [ENTER={ (R1) | (xeqg) |addr}]

[,SSM={ON|OFF}]
{,KEY={ASP| ZERO}]

Operands

ENTER The address of an appendage containing the instructions that
violate storage protection. The appendage may not contain
any supervisor call or other status-switching instructions
and must be terminated by a return on register 14. If
omitted, only the protect facility is invoked.

SsM Indicates whether the system mask is to be enabled (ON) or
disabled (OFF). If neither ENTER noxr KEY is specified,
omission of SSM causes KEY=ASP tc be assumed. Specification
of SSM as the only parameter leaves the protection key
unchanged.

KEY Indicates whether the protection key is to be set to the key

of the ASP region or to zero. 1If ENTER is specified,
KEY=Z2ERO is assumed and KEY=ASP is invalid. If ENTER is
omitted, KEY=ASP is assumed but either specification is
valid.

332

VUTDSECT

Functional

Description

The VUTDSECT macro-instruction defines the fields of the volume-
unavailable table, which is used by MDSALLOC to determine whether a
volume is available for setup. The entries are maintained by the MODIFY

command.

Name

Operands

Operation Operands

VUTDSECT

This macro-instruction contains no operands.

WRTCHAIN

Functional

Description

The WRTCHAIN macro-instruction is used to write a group of chained
single-record files.

Name

[symboll

Operands
FDB

Operation Operands

WRTCHAIN FDB={ (R1) | (reg) jaddr}
+TATPTR={ (R0O) | (reg) | addr}
«DISP={(R2) | (req) |addr}

[,PUTBUF={YES|NO}]
{,SAVE={YES|NO}]
{,NORMAL={ (reg) |addr}]

The File Description Block address of the flrst single-record

file in the chain.

TATPTR

DIspP

PUTBUF

SAVE

NORMAL

The FDB address of the JBTAT FDB to be used. If the single-
record files obtain their tracks from the Single Track Table
(STT) , FDB=MNTRKFDB should be used. When the single-record

file chain consists of records belonging to the entire job's

allocation, such as a JST or JDS, the JBTAT FDB in the AJDB

should be used.

The displacement into the single-record file of the chain
FDB. '

If PUTBUF=NO is specified, no buffers are returned.

Indicates whether the contents of registers 3 through 9 are
to be saved across the macro call.

The location to which the WRTCHAIN routine returns control
when all records in the chain have been written.

333

WTDSECT

Functional Description

The WI'DSECT macro-instruction establishes a DSECT, used by the Work-
to-Do-Driver (WIDDRVR), that defines fields and flags of a work-to-do
table.

Name Operation Operands
WTDSECT
Operands

This macro-instruction contains no operands.

ZCALL

Functional Description

ZCALL is an inner macro which generates a calling sequence and/or
return points.

Name Operation Operands

- [symbol] ZCALL [tvaddl
{,SAVE=§6SAVE]
{ ,EOD=§EOD]
([,EOF=§EOF]
[,NAVAIL=ENAVAIL]
[,ERROR=6 ERRCR]
[,IPL=§61IPL]
[,BUSY=6BUSY]
[,REJECT=EREJECT]
{ ,RIPCAN=ERJIPCAN]

{ , NORMAL=§ NORMAL]

Operands

tvadd Indicates by its presence that a calling sequence is to be
generated. It is the label of the address constant (usually
found in TVTABLE) of the routine to be branched to. If the
user of the outer macro supplied a label and the outer macro
. passes that label to ZCALL, it is attached to the first
generated instruction.

SAVE Specifies whether the user's registers 2 through 9 are to be

saved across the execution of the called routine. This
parameter is normally passed from the user's outer macro
specification.

EOD, BEOF, 'Return points from the called routine, generated in

NAVAIL, the order shown, if present. If no specification
ERROR,IPL, is given by the user and the return point is required
BUSY, by the outer macro, the outer macro passes an

REJECT, asterisk as the specification to generate an error
RJPCAN, message in the assembly. Each return pcint may be
NORMAL specified in register form or as the label of the

return point. Register notation, however, may not be
used with SAVE=NO, and is otherwise restricted to
registers 2 through 9 or 13.

334

ZEROCORE

Functional Description

The ZEROCORE © macro-instruction, used by ASPIO, clears an area of
core to binary zeros.

Name Operation Operands

{symbol] ZEROCORE AREA={ (R3) | (req) |addr}
+COUNT={ (R4) | (reg) |n}

Ooperands

AREA The address of the area to be cleared.
COUNT The number of bytes to be cleared.
ZLOAD

Functional Description

Z1.0AD is an inner macro which generates a load instruction, if
required, to the specifications passed by the outer macro. If the
target register and the input register-are identical, no LR instruct.
is generated. If the user of the outer macro supplied a label and th.
outer macro passes that label to ZLOAD, it is attached to the load
instruction, or a DS OH is generated for the label if no load
instruction is generated. The notations (n) and (Rn) are considered
equivalent in all cases.

Name Operation Operands

{symboll ZLOAD {req) ,key,&keyl,load~typel
Operands
{(reqg) The register which the outer macro wishes to have loaded. .
key The keyword of the parameter the outer macro is specifying.

This term may be used in error messages.

Ekey The source location for the load instruction,~as specified by
the user of the outer macro. If this value is null, an error
message is issued.

load-type Determines the type of load instruction:

Load-type: Generates: If:
LA or LR -&key is (n) or (Rn)
omitted LA &€key is numeric

LA All other

335

RLA LA gkey is {(n) or (Rn) and n is not 0

LR+N tkey is (n) or (Rn) and n is O
LA &¢key is numeric
LA All other
L LR §key is (n) or (Rn)
LA gkey is numeric
L All cther

ZMNOTE

Functional Description

ZMNOTE is an inner macro which issues one of a set: of MNOTEs to
indicate a user specification error during macro generation.. The outer
macro issues ZMNOTE to assure consistency in text and severity level
specification.

Name Operation Operands
ZMNOTE number[,param1][,param2][,param3]£,péram4]
Operands
number The number of the MNOTE desired in the 1list.

paraml,2, The text of the inserts required for the chosen message.
3,4 For example,-if the user has given an incorrect
specification, the outer macro issues ZMNOTE 2,KEY,&§KEY to
generate message 2: MNOTE 7, 'ERROR, "KEY=specification"
ILLEGAL SPECIFICATION®.

ZTYPE

Functional Description

ZTYPE is an inner macro utilized by outer macros with the
TYPE={CSECT| DSECT} parameter to assure consistent treatment thereof.

Name Operation . Operands
ZTYPE §TYPE, name
Operands
ETYPE The type of control section specified by the user of the

outer macro. If CSECT, a CSECT is generated. If DSECT or
null (omitted), a DSECT is generated. Any other
specification results in a warning MNOTE with a default
generation of DSECT.

name The label to be attached to the CSECT or DSECT statement.

336

APPENDIX B: ASP NUCLEUS MODULES

This appendix lists the modules, and approximate size of each, that are
contained in the nucleus.

Module: name ASPNUC
entry INITIATE

size 49096

CONTROL . SECTION

Name Length
IONUC 3900
JOBCONT L 4130
CONSCONS 1260
ASPABEND 2390
ALDADEL 870
ASPCKPT 300
CKPTDATA 820
ASPCONTIL, 3142
ASPOPENX 880
CALLDRVR 540
CONSOLES 1640
CONSOMGR , 2220
GETPUTMN - 620
GETPUTUN 2150
INITIATE. 1360
INTCOM 570
IODATA 3330
JOBNUM 610
JSSDR 1400
LOGINGUT 230
RESPARAM 3860
TVTABLE 1380
ABENDMCN 1900
AHIO 190
ASAVERTN 1280
CONSINPT 3190
TRACKS 1690
IORTNS 860
CONSAUTH 20
NETCONTL 1470
ADEQUEUE 5390
WIDDRVR 280

337

APPENDIX C: RESIDENT MODULE REQUIREMENTS

This appendix lists the modules, and approximate size, that are required
to be resident. :

READER/ INTERPRETER MODULES RESIDENT IN MAIN STORAGE

Module o
Name : Alias Entry size (dec) Alias For
IEFHRFK2 YES - IEFMVTHR
IEFMVTHR 1224
IEFMVTJIA 6192
IEFVGM1-19 5016
IEFVGM70-71 480
IEFVGM78 248
IEFVHA : YES 34688
IEFVHECB YES - IEFVHA
IEFVHF YES - IEFVHA
IEFVHREP YES - , IEFVHA
IEFVINA : 6040 | 7
IEFVJA YES YES - IEFMVTJA
IEZDCODE 208

TOTAL 54096

338

APPENDIX D: PROGRAM MODULES QF THE ASP SYSTEM

The following is a representative module list and can be used for
storage requirement estimation.

DSP Name oOr
Function

ABEND

ABENDMON
ASPABEND
ASPABNDA
ASPABNDB
ASPABNDC
ASPABNDD
ASPABND1
ASPABND2
ASPABND3
ASPABNDY
ASPABNDS
ASPABND6
ASPABND7
ASPABNDS
ASPABND9
ASPDMPRT

CONSOLE
SERVICE

CONSANAL
CONSAUTH
CONSCONS
CONSINPT
CONSOLES
CONSQMOR
CONS RMT

CONS 1052
CONS 1053
CONS 1403
CONS2260
CONS2740
CONS3060
CONS3066
CONS 3277
CONS3284
CONTRAP

DEADLINE
DEADLINE
DELINIT
DELTIME
DELWORK

DEPENDENT

JOB. CONTROL

DJCDATA
DJCPROC
DJCUPDAT
NETCONTL
NETDATA

3.0

Size (Approximate)

7D8
960
668
4B8
4C8
440
7D0
608
758
760
4C0
640
618
738
7A8
3728

360

18
4F0
D48
690
8D0
388
170
110
228
280
638
3A0
3B8
510
1AD
178

280
268
ucs

F8

280
98
A28

298

339

DSP Name or 3.0
Fanction. Size
FAILSOFT.

AFSDRVR 2E8
AFSCDRV1 88
AFSCNSL1 30
AFSDC 1F8
AFSINIT 340
AFSRCVY 138
AFSRICO1 2F0
AFSTERM 108
INITIALIZE

INITIATE 558
INITANAL a0
INITCARD 2218
INITCNS F60
INITDATA DOO
INITGEN CDO
INITIO 1220
INITIOCD D38
INITJOB 4D8
INITMDS ADO
INITMN1 13A8
INITMN2 1690
INITQUE 2Cc0
INITREST c8s
INITRI 558
INITRJIP1 SEQ
INITRIP2 8C8
INITRTNS cco
INPUT

SERVICE.

ISLOGIC 770
ISDATA 368
ISDLN 7B0O
ISDRVR 668
ISDTASET 318
ISENDTSK B10
ISFORMAT A70
ISJCLIN 5CO0
ISJOBCRD 6F8
ISMAIN DB8
ISNET 900
ISPROCES 6A8
ISSEQ 198
INQUIRY

INQDRVR 900
INQACSR 978
INQBACK 350
INQCONS 3A8
INQDISP 890
INQDJC 460
INQDLN 298
INQMDS A40
INQQUE 470
INQRJP 748

340

DSP Name or
Function

INTERNAL
JOB PROCESSING

1iJp
IJPDATA
IJPEND
IJPINISH
IJPSTART
IJPWTR

MAIN DEVICE
SCHEDULING

MDSALLOC
MDSBREKDN
MDSDATA
MDSDRIVR
MDSREST
MDSVERFY

MAIN SERVICE

MAIN
MAINIO
MPCDATA
MPDDATA
MSVCBUP
MSVDATA
MSVDUMMY
MSVLOCAL
MSVINIT
MSVIPL
MSVMVT
MSVOPER1
MSVOPER2
MSVQMAP
MSVTERM

MAINTASK

ADSGEN
ADSGEN1
AQOUTPUT
ASPCTCM
ASPFENCE
ASPLOC
ASPQALL
. ASPORDR
ASPSVC
ASPVER
ASPWRITR
ASUBMIT
DYNDISP
MAINTASK

MODIFY

MODACC
MODASG
MODCNPR
MODCONS
MODDJC

518
500
TF8
348
1F8
E18

Fu0
368
1Co
760
360
5B0

DAS
DAS

3A0°

468
658

‘C4D
509
598

1240

10E8
5F0
B90
870
4D8

1B68
FO
17D0
318
1760
6D0
3Cs8
490
2B0O
FCO
5C8
DAO
410
cu8

1a0

- 6F8

538
5C0
5E8

341

DSP Name or 3.0
Function Size
MODDLN uBs
MODDRVR 858
MODHRQ 428
MODMDS B20
MODRJP 6F8
NETWORK JOB

PROCESSING

NJP 178
NJPCOMM 1880
NJPDATA i 1B8
NIPDJ 8ES
NJPINQ 600
NJPIO B4g
NIPOPEN 470
NJODATA 1FO
PRINT

SERVICE

PRINT 128
PRTDATA 478
PRTERROR 348
PRTINISH uB8
PRTOUT 11C8
PRTSETUP 1688
PRTTERM 8F0
PUNCH

SERVICE

PUNCH 1020
PCHDATA 300
PURGE

PURGE 8D0
PURDATA 190
READER/

INTERPRETER

IEFQDELE 24
RIATTCH 428
RICBaM 3a0
RICBSCAN 12D7
RICONTL CF2
RIDATA 398
RIEXITS 9BC
RIFETCH B38
RISERVX 500
Readers.

CR 420
DR 280
TR 4C0O
RDDATA 2C0
RDINISH DOO
RDLOGIC ECO
RDOPARMS 780

342

DSP Name or
Function.

REMOTE JOB
PROCESSING

RJP

RIPMAIN1
RIPMAINZ
RIPMAIN3
RIPMAINY
RIPMAINS
RIPMAING

0S_Modules

1GG0190$
IFG0192%
IKJEFFHR
IKJEFFRO
IKJEFFS53

Service
RoOutines

CALLDSP
IOERREC
JSS
TRCERTN
VARY
WTDJCT

UCs Loads

AN
ANT1
GN11
HN
HN11
PCSAN
PCSHN
PN

PN 11
ON
ONC
RN

SN
TN
TN11
XN

YN

Utilities

ACCPR
ACDS
ACDATA
ALOADS
ASPNEWS
CBPRINT
CC

CNT

CP

cT

DC

170
D20
FDO
1020
BSO

578

400
400
4cs
A78
1F8

678
670
1630

50

B30
1648

1F0

1257
cs8s8
4B0O
c10
100

1330

1070
670
ABO

10A0

1895

343

DSP Name or
Fanction.

DISPDIC
DISPLAY
DI
DJDATA
DFIN:
DJINETOQUT
DJouT
PRUT

TC

D

TL

TP
TPRDATA
TPRERROR
TPRINISH
TPROUT
TPRTERM
TT

344

APPENDIX E: MULTILEAVING.

"Multileaving®™ is a term that describes a computer-to-computer
communication technique developed for use by the HASP system and used by
ASP RJP. In a gross sense, multileaving can be defined as the fully
synchronized, pseudo-simultaneous, bidirectional transmission of a
variable number of data streams between two or more computers using
Binary Synchronous Communications facilities.

MULTILEAVING PHILOSOPHY

The basic element for multileaved transmission is the character string.
One or more character strings are formed from the smallest external
element of tranmsmission, the physical record. These physical records
are input to muitileaving and may be any of the classic record types
(card images, printed lines, tape records, etc.). For efficiency in
transmission, each of these data records is reduced to a series of
character strings of two basic types:

1. A variéble—length-nonidentical series of characters
2. A variable number of identical characters

An eight-bit control field, termed a String Control Byte (SCB), precedes
each character string to identify the type and length of the string.
Thus, a string as in 1 above is represented by an SCB followed by the
nonduplicate characters. A string of consecutive, duplicate, nonblank
characters (as in 2 above) can be represented by an SCB and a single
character (the SCB indicates the duplication count, and the character
following indicates the character to be duplicated). ' In the case of an
all-blank character string, only an SCB is required to indicate both the
type and the number of blank characters. A data record to be
transmitted is segmented into the optimum number of character strings
{to take full advantage of the identical character compression) by the
transmitting program. A special SCB is used to indicate the grouping of
character strings that compose the original physical record. The
receiving program can then reconstruct the original record for
processing.

In order to allow multiple physical records of various types to be
grouped together in a single tramsmission block, an additional eight-~bit
control field precedes the group of character strings representing the
original physical record. This field, the Record Control Byte (RCB),
identifies the general type and function of the physical record (input
stream, print stream, data set, etc.). A particular RCB type has been
designated to allow the passage of control information between the
various systems. Also, to provide for simultaneous transmission of
similar functions .(that is, multiple input streams, etc.), a stream
identification code is included in the RCB. A second eight-bit control
field, the sub-Record Control Byte (SRCB), is also included immediately
following the RCB. This field is used to supply additional information
concerning the recordé to the receiving program. For example, in the
transmission of data to be printed, the SRCB can be used for carriage
control information.

For actual multileaving transmission, a variable number of records may
be combined into a variable block size, as indicated previously {(that
is, RCB,SRCB,SCBt,SCB2,...,SCBn,RCB,SRCB,SCB1,...,etc.). The
multileaving design provides for two (or more)} computers to exchange
transmission blocks, containing multiple data streams as described

345

above, in an interleaved fashion. To allow optimum use of this
capability, however, a system must have the capability to control the
flow of a particular data stream while continuing normal transmission of
all others. This requirement becomes obvious if one considers the case
of the simultaneous transmission of two data streams to a system for
immediate transcription to physical I/0 devices of different speeds
(such as two print streams). To provide for the metering of the flow of
individual data streams, a Function Control Sequence (FCS) is added to
each transmission block. The FCS is a sequence of bits, each of which
represents a particular transmission stream. The receiver of several
data streams can temporarily stop the transmission of a particular
stream by setting the corresponding FCS bit off in the next transmission
to the sender of that stream. The stream can subsequently be resumed by
setting the bit on.

Finally, for error detection and correction purposes, a Block Control
Byte (BCB) is added as the first character of each block transmitted.
The BCB, in addition to control information, contains a modulo 16 block
sequence count. This count is maintained and verified by both the
sending and receiving systems to exercise a positive control over lost
or duplicated transmission blocks.

In addition to the normal binary synchronous text control characters
{STX, ETB, etc.), multileaving uses two of the BSC control characters,
ACKO and NAK. ACKO is used as a "filler™ by all systems to maintain
communications when data is not available for transmission. NAK is used
as the only negative response and indicates that the previous
transmission was not successfully received.

A typical multileaving transmission block looks like this:

DLE BSC Leader (SOH if no transparency feature)
STX BSC Start-of-Text

BCB Block Control Byte

FCs Function Control Sequence

FCs Function Control Sequence

RCB Record Control Byte for record 1

SRCB Sub-Record Control Byte for record 1

SCB String Control Byte for record 1

DATA . Character String

SCB String Control Byte for record 1

DATA Character String

SCB Terminating SCB for record 1

RCB RCB for record 2

SRCB SRCB for record 2

SCB SCB for record 2

DATA Character String

SCB Terminating SCB for record 2

RCB Transmission Block Terminator

DLE BSC Leader (SYN if no transparency feature)
ETB BSC Ending Sequence

MULTILEAVING CONTROL SPECIFICATION

This section describes the bit-by-bit definitions of the various
multileaving control fields and includes notes concerning their use.

346

Record Control Byte (RCB)

OIXIITTTT

0
Usage:

Bits:

7

To identify each record type within a transmission block

OIIITTTT
or:

o

1110000

II1

TTTT

00000000

000

001

010

011

100

101

0001
0010

- 0011

0100
0101

0110
0111
1000-1100

1101-1111

End of transmission block.

Non-EOT RCB

III is control information:
Reserved

Request to initiate a function
transmission (prototype RCB for
function in SRCB)

Permission to initiate a function
transmission (RCB for function
contained in SRCB)

Reserved

Reserved

-Available for location modification

General Control Record (type
indicated in SRCB)

Non-EOT RCB

IIT is used to identify streams
of muntiple identical functions.
{such as multiple print streams
to a multiple printer terminal).
TTTT is the record type identifier.
Operator’' message display request
Operator command

Normal input record

Print record -

Punch record

Data set record

Terminal message routing request

Reserved -

Available to user

347

Sub-Record Control Byte (SRCB)

Usage: To provide supplemental information about a record

Bits: The contents of this control block depend upon the
record type. Several types are shown below.

~»SCRB for General Control Record

- --character...

0 7
Usage: To identify the type of generalized control record
Bits: character A Initial terminal sign-on
B Final terminal sign-off
. C Print initialization record
D Punch intialization record
E ﬁInput intialization record
F -Data set transmission
injtialization
G ‘ System configuration status
H ‘; . Diagnostic control record
I-é - Reserved
S-i Available to user
SRCB for Print Records
oM C‘C,C ccc
o 7
Usage: To provide carriage control information for print records
Bits: (o] 1.
M o Normal carriage control
1 Reserved
cccceec 000000 Suppress space
0000nn ‘Space nn lines after print
01nnnn skip to channel nnnn after print
1000nn - Space ‘immediate nn spaces
11nnan Skip immediate to channel nnnn

348

SRCB for Punch Records

OMMBRRSS

Usage:

Bits:

7

To provide additional information for punch records

e} 1
MM 00 SCB count units = f
01 SCB countrunits = 2
10 SCB count units = 4§
11 Reserved
B -0 EBCDIC card image
1 Column Binary card image
RR Q0 Reserved
SS nn Stacker select information

SRCB for Input Recor@

OMMBRRRR

0

Usage:

Bits:

7

To provide additional information for input records

o 1
MM 00 SCB count units = 1
01 SCB count units = 2
10 SCB count units = §
1 Reserved
B 0 EBCDIC card image
1 Column Binary card image
RRRR 0000 Reserved

349

SRCB for Terminal Message Routing Record

OTTTTTOTCT

0 7
Usage: To indicate the destination of a terminal message
Bits: 0 1
TTTTTTT 0000000 Broadcast to all remote systems
nnnnnnn Remote system number (1-99) or
remote system group as HASPGENed
(100-127)

String Control Byte (SCB)

OKLJIJFIJIJTJI

0 7

Usage: Control field for data character strings
Bits: OKLJéJJJ 000060000 End of record
or:
OKLJJJIJ 10000000 Record is continued in next
transmission block
or:
O | 1 Non-EOR SCB
K 0 Duplicate character string
L 0 7 Duplicate character is blank
1 Duplicate'character is nonblank
and follows SCB
JJIJIIT nnnnn Duplicate count
or:
o] 1 Non-ECOR SCB
K 1 Nonduplicate character string
LJJ3JJdg nnnnn Character string length

Rote: Count units are normally 1 but may be in any other units.
The units used may be indicated at function control sign-on
or dynamically in the SRCB.

350

Block Control Byte (BCB)

oxXxXXcccc

o

Usage:

Bits

7

Transmission block status and sequence count

0 1
XXX 000
001

010

011
100
?01
110
111

CCCC nnnn

Function Control Sequence. (FCS)

Reserved
Bypass sequence count validation

Reset expected block sequence count
to CCCC

Reserved

Reserved
Available to user
Available to user
Reéerved -

Modulo 16 block sequence count

OSRRABCDORRRWIXYZ

Usage:

Bits

Note

-
.

78

15

To control the flow of individual function- streams

0...0 Teoel
S 0

1

RR...RRR 00...000
ABCD nnnn

WXYZ nnnn

Normal processing

Suspend all stream transmission
{Wait-a-Bit)

Reserved
Print or input stream identification

Punch stream identifiers

These function stream identifiers are oriented only to the
recipient. Presence of a bit indicates that function
transmission is to be continued; its absence indicates that
function transmission is to be suspended.

351

MULTILEAVING IN BSC/RJP

The previocus sections have grossly outlined the specifications of a
comprehensive, multileaving communications system. While the HASP/ASP
support for programmable BSC workstations is completely consistent with
the multileaving design, it does not use certain of the features
provided in multileaving: _ ' i :

e The transmission of record types other than print, éunch. input,
console, and control is not supported.

® The only general control record type used is the terminal sign-on
control.

s Only SCB count units of 1 are used.

e No support is included for column binary cards.

352

INDEX

(CR), Card Reader
(DR), Disk Reader . . .

(RESQUEUE), Resident Job Queue Table . . .

(TR), Tape Reader
(VUT), volume unavailable

*FAIL command «

ABACKR v «. v « v o o« o «
ABENDMON . « « o« o o « «
ABLOCK « « o o « « o o =
ABLOCKS « « « « o « « « o
ABNCODE « 4 o « « = o « «

ABNCVDEC « « « ¢« & o « &
ABNCVHEX o « o « o o o @
ABNDSECT . + « « « « o« «
ABNGET
ABNORMAL « « o « o o o o
ABNPUT . . . « « « o« . .

ABNVRFY . . . ¢ ¢ o « « «
ACALL ¢ « ¢ o « 2 o« o « =
ACCARD . . . ¢ . « o« 4+
ACCOUNT v v« o « o o o = «
" card « « « o+ o o
ACCPR . « « o « o « « « «
ACDSECT « « ¢ ¢ ¢ o o« o« «
ACENTRY « ¢ ¢ « o o o o «
ACLOSE . . .

adapter, CTC . . « « . .
address, UCB . . . « . .
ADEBLOCK . ¢ « o« o o « «

ADEBS - « + + o o « « «
ADELETE . « ¢ o o o « « «
ADEQ . « o 4 ¢ ¢« ¢ o o
ADSGEN « « « o ¢ o o « @
ADSGENT . . . & « & & <
AENQ « « < o o o o o o «
AFSDRVR « « ¢ o ¢ o o o «
AFSDSECT . . « . . . « .

-t

& s s s
L S)
R T T Y S)
& & 0 0 s s
TR T R I S}

s & & 8 e 0

AJDTRFDB .
allocation, Track
BLOAD -« « 2 4 « o o o o =
ALOCATE . ¢ o o o o o « =
ALLOCATES -« @« o « o « o
ALTHMSG « <« ¢ <« o o o « =
ANOTE « =« ¢ o« o« ¢ o o o o
BOPEN . . 2 ¢« ¢ o o « o« o
AOPEND« ¢ « o
BOUTPUT « ¢ « « o o o o
APOINT . . ¢« « o o « o o
APURGE . 2 2 2 o « o« o
- MACKO « « o o o o

s & & & 0 s

51
51
25
51
60

Table . 48, 59,
. 219

38, 222

e e e e e e . . U6
e« « « . 138, 222
e - - « - . 38, 223
e e e e e e . . 228
e e e e e e . 224
e e e e e e . 225
e e e s e . . 225
e e e e e .. 225
S X
e e e e e - . 226
e e e e e e . . 226
e e e e e e e . 221
e e e e e e . 227
S T
S £
S &
e e e e e e . . 228
e e e e e e . . 228
- - -« . . 38, 228
e e e e« .91, 95
e e e e e e .21
. « . .« . 38, 229
e e « « . . 38, 230
e e e e e e . . 231
e e e e e e . 231
. 94, 95, 99, 163
e e e e e . . 163
e e e e e e . 232
e e e e e e . . U6
e e e e e - . 233
Y |
e e = < « . 37, 233
e e e e e . . 234
e e e e e e . 234
e e e e e e . 235
e e e e e e .. 60
e e e e« . . 235
e e e e e .. U3
e e . 39

16, 49, 236
38, 237
38, 237
. 238
- 38, 239

e« @ o o o o

- « - o 38, 43, 239
- -« - 38, 43, 240

« e a o o e « - 99
-39, 43, 241

e o e « o 37, 241
e o o e o o 43, 73

APUTBUF . « ¢ « « ¢ o « =
APUTMAIN . . 4 ¢ o« o o
AREAD . « v ¢ o « o o o =
ARELEASE . . . « -« « . .
BRETURN . ¢« o« « ¢ « « o @

" MACYO o o = « o o
ASGDSECT
ASP buffer pool

" control statement errors .

" job queue
- JOBLIB « ¢ « o« =« « o
" nucleus « « « « « « «
" NUCLEUS . « « « « « »
. nucleus
" RESIDENT card
n

system residence . .
ASPABEND« <« . . .
e dump « « « « o .
ASPCKPNT . . « ¢« ¢ « « «
BASPCLOSE o« =« « o « « o =
ASPCONTL . « 2 o o « « =«
ASPCORE « v 2 o o o o « =
ASPCTCM .+ o & o o o o « o
ASPDCB .« . ¢ o o o o« o =
ASPDRDS . .« o & o« o o o «
ASPDUMPS + « « «
ASPEOV . . @« ¢ ¢ o o « o
ASPEXCP . ©. ¢ v« « « o o =
- MACYO « « o o =« o
ASPFENCE . « v« « o « «
ASPHDR . + .« o« o o « o «
ASPHIO . . .« & o o« « o« =«
ASPIO v v« 4 o o o o o o o
BASPLOC <« o o « o o « < @
ASPMTCIB . « ¢ « o « o =
ASPNEWS . . <« 4 o o « « «
ASPNUC . 4 ¢ o o o '« « «
ASPOOL « o « o o o o o =
ASPOPEN . . . ¢ « « o « =«
BASPOUT v« o« « o« ¢ « « « o«
ASPOALL . « « o « ¢ o «
ASPORDR . .« « o o « « o «
ASPSNAP .« ¢« ¢ « ¢ « o o o
ASPVER . . .« ¢ 2« « o « =
ASPWRITER . « ¢ ¢« o« « « =«
ASPWRITR .« &« o« o« o « o o«
ASUBMIT . . .
ATEST
ATIME
- macro .
ATRACK ¢« ¢ « o o o « o =
ATTACH MACYO « « o « « =«
ATTRMSG o o« « o o o « o o
AWAIT « o« v o o o o o o«
" MACXO o « o o o o =
AWAITOFF . . -« «. ¢ o« « «
AWEOF ¢ ¢ &« o« o «
AWRITE . -« . ¢« & ¢ & « o«
- MACXO o o o o «

‘a s &
LR R 'Y
. . L[] .
. . . .
. . L] .

BADTRACK « « « .
batch, job
Block, Ending Function .
" File Description .
. Job Data Sets . .

L T T T

28, 33, 36,

&« & 0 8

. 37, 244
« < o o 244
e e e s 29

- e o - 16
<« « « 59
-« - . 19
e .« o o U9
« « « « 15
- < « - 18
- - 35, 52
« + o « 50
« o -« - 16
- . . 101
e e o o U6
e o o 245
« o « 246
e o o o 20

246

« « - o 102
i1
- - - 248

e « « o 208

« - « « 51

« -« o« 163
64, 68, 249
249

. « 35, 36
« « - 163
« - « 250

e e e o 12
. 15, 101
« « - 107

e - o« o 250
« « « 101

.« - 98, 163
. . 98, 163
. 101, 251

163
.. 163

27
163
252
252

82
254

91
.« o « 254
82, 255
31
e « « 256
. 39, 257
43, 257
43

94, 99,

27,

« e o

« o o o

108

e « « o« 50
N X
. « 23, 36
e o « o« 23

353

" Job Description Accounting
- Job Net Control . -« . « « « « « & &
- Net Control « o o« o« ¢ « « o o o « «
BPAM . & &« v ¢ @ o o o o o o o o s =
BUFFER card . ¢« « « ¢ o o « a o o o »
Buffer depth « « ¢ o « o « o a o o o o« o o
Buffer, Forms Control
- UCS v« ¢« ¢« o« o o o a o« o o o « s =
buffers, temporary . .

CALL . . e e e e @ e s o s o s = « 30
Callable DsP's e e s = e a a s s = s+ o « « 81
CANCEL -« « « o s o o s« 2 a a « s « « o« « « 29
Card Reader (CR) « <« « « o« 2 o o« = « « « « 91

card, ACCOUNT <« o « o o o« o s o o« a « « =
ASP RESIDENT . « o o o « ¢ » o s o «
BUFFER « v « 2« « « o o « o« o« « 39,
CLASS « « « o o o s o o« « o o s o =
CONSOLE . « « « ¢ o = 33,
DATASET . o« « o o o « a o o o o« o o
DEADLINE . . . 82,

50
109
111
115

51
119

0
N
©

-

DEVICE o« o« ¢ ¢ o o a o « @« o s o = 120
ENDASPIO « « « « « « =« « « « « « - 123
ENDDATASET « - « o « « o« o « « « « « 51
FORMAT . « - « « « « « « « 52, 69, 123

GROUP « ¢« « ¢ o o « « « « o o o o o
JOB ¢ ¢ 2« ¢ o o o a o a a o o s o =
MAIN « & « o ¢ o o o = @« « «
NET . . .

NIJPTERM . . ¢« « « « « « - « - 101, 132
PRINTER ¢« « 2 « « o « « ¢« « =« « « « 135
PROCESS « ¢ o« o« « « « o =« o« o« o « =« 82
PROCESS DJC . ¢ o o o « a o o o « - 16

RESIDENT ¢« « o ¢« ¢ « o o « o o
RESTART ¢« « « « o o o @ o o o
RI & ¢ 4 ¢ ¢ o o« o s « o« « o« s « =
RIPTERM ¢ o« o « @ o o« a a o o a o o
SELECT « « o « « o o « a = o« o°
SETNAME . ¢ 2 2 ¢ o o ¢ o o o« » o =«
SETSSI control . ¢« -« & & o o ¢ o « o
STANDARDS « ¢« « o o ¢ o o o o o
SYSOUT ¢« « ¢« o o o o o o o
TRACK ¢« « ¢ o « o o « o o« o o
CARDS . . . e o e « o o @ @ o « @« @
cards, PROCESS e e o e e 2 o ® a + a s «
Cards, Required Control
" Sequence Dependent Control . . .
Channel-to-Channel Adapter Monitor
CRPTDATA . © ¢ ¢« « o o s a o« o s o « o =
CLASS Card «. « =« « « o o « = « o o« « o
COLDSTART + o o« « o« o « © a « a o o
command, *FAIL

2 2 2 2 3 2 3 3 3 2 3 3 32 3131232 32 12 223 3333323

CONBUFCB . ©« « 2 o ¢ « « « « o a o o« a4 258
CONCNVRT v« ¢ o o « o o o a « o o o o a = 259
CONDSECT « « o « o o o s o o = « « « « « 259

e MACLTO « o « o s o « a o o =« o« o« « 29
CONSANAL . 2 o« « « = o s o« o« o« « o« « =« « « 33
CONSAUTH . + = « « « o « « « =« « « « 35, 117
CONSCONS « « o « o « o 2 @« o « a a« « « = 260
CONSDATA ¢ ©o ¢ o o s o o a a = o o o o« = 260
CONSINPT . « « « o o o« o o« o = o« o« « o« o« « 33
CONSOLE card . .« -« . . . - . 28, 31, 33, 115
COoNsSole €rror ¢« . « ¢ o 4 o 4 e o o o « « 31
Console Service ECF . . . « « « « « « 32, 34
console timer interrupt 34

354

CONSOMGR « « o « o «

CONSUNIT . « ¢« « « & P
Control, Dependent Job .«
CONTVTBL « « ¢ ¢ o o« o ¢ o

CTC v« o ¢ o o o o o o o =
" adapter . .«

DATASET card « « « « o« o«
DCB ¢« ¢ ¢ ¢ o o o « e o «
DEADLINE <« « ¢ ¢ o o « o o
" card « « . . .
DEB ¢ o ¢« o o o « o o
deck, IPL
DECK, " USING THE DELTA -
DETAY o v« o o o o o o =
DELDSECT « o« « ¢ « o « «
DEN ¢« o« ¢ ¢ o ¢ o o .« o «
Dependent Job Control . .
depth, Buffer
DEOMSG « « o o « o o
" MACTO o« o o o« &
DEST « ¢ o < o o o «
" parameter
DETAIL « « o« o = o o o
DEVD v ¢ ¢ o & o o o «
DEVICE card « « « « « « &
Device Requirements Table
device-dependent routine .
DEVREQ . ¢« « ¢ « o o o o o
DEVSCAN .« ¢« ¢ o ¢ ¢ o o @
DGROUP '« « ¢ o o « o = « &
Dictionary, DSP . « . . .
Directory, File
DISABLE e o e e
Disk Reader (DR) « o o s @
Dlspatcher, Dynamic . . .
DIC o o o o @ o a o o o «
DICDSECT v« « « 2 « o o o =
DICUPDAT « « o o o « o o« «
DIDSECT « ¢« o « o o o o «
DLFQUEUE . . .

DLTENTRY o o o « « o o o =
DSLENTRY « 2 o ¢ o o o« « =
DSP Dictionary . « « « . .
" Failsoft . . « « « « «
DSP's, Callable
" Reentrant
DSPDC . « o o o o « o o &«
- MACYO o o o o o o o
DSPENTRY . . « o 2 ¢ « « «
DSTL <« o o o o « o o o o @
DUMP . 2 2« 2 2 « o o a o «
dump, ASPABEND
Dynamic Dispatcher

DYNDISP 4 < « « o « « « =

ECF ¢ ¢ « o« ¢ o o o o o =
- MASK o « o « o o o« o @
ECF, Console Serv1ce e e e
EDIT, TSO v« ¢ o « o o« o« @
EFB @« ¢« ¢« o o« o o a o o «
EFENTRY . . ¢« ¢ ¢ o« o « =«
ENABLE . . ¢« ¢ ¢« o « o« o «
ENDASPIO card « « ¢« « « «
ENDDATASET card

e s s 0

L S)

* e o &
o o 8 o

LR T T
i s e 0 @&

LI Y S

.
D B}

L]

0

N
¢

.) L] L] .
-
o.
w
-

" s 6 s s
L T S R R }

L T S B)
¢ s e

S 0 s & o

77
123
268

30

94

31

59

59

51

Ending Function BlOCK . « ¢ ¢« o ¢ ¢« o «
ENDINISH . <« 2« o o « o o o o o o o s o =
EQUATE « ¢ ¢ ©v o o o o o o o o « o « o =
ERASE ¢« &« 4 o 4 ¢ ¢ 2o ¢ « o @« a « « «a o =
ERDEST paArameter « « « « o« « o « o o o o =
error, console “- o o o e o @
errors, ASP control statement « = = = o »
" JCL ¢ o ¢ o o o o « o« o o o o o =
EXCP & v« o ¢ o o o o a o« o« « = s« o« « « 36,
FAIL . . ¢ ¢ 4 o o = a o o« o« o« o o« .2 « « 29
FAILDSP « . « = « s « ¢ a o « =« o o« « « o 268
Failsoft « o« ¢ « ¢ ¢ ¢ o o o o o o = . « 45
Failsoft, DSP . « & 4 o o o« « = « o« = 46, 191
FAILURE Option . ¢« « « « « « « « « « U6, 111
FCB v « o o o = o o o o« o = o « « o« « 10, 71
FCT « o o o o o o = « « = 21, 31, 33, 60
FCIDC ¢« o« 2 « o o a« o« s » o « s « o » o« o« 269
FCTDSP v « ¢ o ¢ o @ s o a o s « 270
FCTENTRY « « « ¢ ¢ ¢ ¢ o o o o « 271
110
75
271
. 271
36
67
36
37

e o e

. 36,
37, 51,

FD o 40 0 ¢ v 4 4o o o o a0 o o @

FDB v« ¢« « o« « « < « s« « « « « 36,
FDBENTRY . . o ¢ ¢ ¢ o o o o o « =«
FDDSECT . « « « ¢« o o o o« o o = « o « o
feature, RPS
Fences « .
File Description Block . 23,
" Directory 36,
file, multirecord . « « « o« o « ¢ o o « =
FINDINUM . . -« ¢ ¢ ¢ ¢ ¢ o o o o « o =
FLOCATE parameter . « « « « o « « o o o o
FORMAT ¢« ¢ ¢ ¢ ¢ ¢ o s = o « « o =

¢ s 0
LI T B}
o a o »
LI T T)

- card 4 2 e e« « « « 52, 69, 123
Forms Control Buffer « « « « « 70, 71
FREE o ¢ ¢ o o ¢ o o o« o« o« a = « a o o« « o« 29
FRPENTRY . . . e e s = e « s o« & 272
Function Control Table e e o @« o o = s « o 21

GETUNIT + « 2 « o « « « o s a @« o« o =
GNAME . . o 4« o 2 o 2 @« 2 « a o « s« s » =
GROUP .
- Card . . i i i 4 e e e e s e e e .
group, track « ¢« « « « o o o « o o o o o =
GTYPE &« ¢ « ¢ ¢ o o @ o o @« @« o s o a o =

hierarchy 1 storage « « « &« « . .
HOt JODS o ¢ o ¢ 4 o o o ¢ o« o e o « o &

ICARDRD . . 4 ¢ ¢« ¢ o o o o o o o o o o
JCONVBIN . «v ¢ « o« « o« o = o o o o o o @
ICONVHEX . v & 4 ¢ 2 o o o « o o o o o =
ITP & 4 4 e e 4t 4 2 o e 2 e a o = o a o =
" interface . « ¢ ¢ ¢ ¢« @ e e o o o @
ITPDSECT « ¢ o « 2 = « o o o o o o o o a
ITJPINISH « ¢ o o 2 o « o« o o @« o o o o« « =
ITPHTR -« = ¢ o o o o a o« o a =« o o o o« o =
ILOCUCB « -2 o « 2 o « o o a = o o « o «
INCNDATA . « o o « 2 o o « « o« o o = o =
INITGEN . « o« o o o a o s o o o o o o « «
INITMWLE « <« &« ¢ ¢ o o o « o o o o o o =
INITREST o « ¢ ¢ ¢« ¢ o o o 2 o o o o« s s @
INQUIRY -« o «¢ 2 « o « @ o o © o o « « « =
INTDSECT -« « « o« « o o o o o o o o s o =
INTERCOM e o o o ® o o % @ ® e s o @
MACYO o o « o« a o o o s « o o o @

interface, IJP
interrupt, console timer .
TOB 4@ 4 @ o e o o o o o =
JOBASPIO o ¢ o o o o« o « =
IJOBENTRY « o« o ¢ o« o o« o o«
TODATA « o ¢ o o o o o o @
JOERREC « <« o « o o « o «
IONTABLE . . ¢« ¢« o o ¢ « o
IJONUC . . ¢ o o o o o o @
IORATE o« « o ¢ o « o o « »
IORTNS .« . .« o o o« o o « =«
JOS v« « o« o o o o o o o o
IPL deck « ¢« « ¢ ¢ o o . .
ISCAN o o« ¢ o ¢ o « o « »
ISCAN2 o v o o o « o o o &
ISDRVR . & ¢ ¢ o o o o« o =«
ISDSECT o« -« o o« o o o o =
ISFORMAT -« « « « o « & « «
ISORT &« « o o o o « = o o
ITREAD . . « o o o« o o« =« &«
ITWRITE o o o« o o o o « o
IWASPOUT & ¢ ¢ o« o o o o

IBTAT -« o o« o o o « o« « =
JBTDSECT « « o o « o« « o« «
JCBTAB . . ¢« o« o « o o o« &
JCL €XYOrS « « « « « & .+ =«
JCLIN « o « o ¢ « o o « @
JET © 4 o ¢ o o o o o o @
" records
JCTENTRY . .
JCTFDB Table
JDAB
JDABDSCT . .
IDS @ 4+ 4 4 s e e e
" table
JDSENTRY « « o o o o « «
JFCB « ¢ < v & o o o o « «
JNADD
JNCB & <« 2 ¢ ¢ o o o o o =
JNCBHLD .

L] . . L]
L[] L] . L]
TR T)
s s 0
-8 L] . .
» e 0

JNCBREL o« « « o o o o o o
INDEL « o o ¢ ¢ « o o o @
JNGET « « o ¢ o « o o « =
job batch

JOB card . « « ¢« « 4 o« o o
Job Control Table
- Data Sets Block . . .

" Description Accounting Block

- Net Control Block . .-
job segment -
Job Segment Scheduler . .
- Setup « ¢ o ¢ o o« . .
- Setup Table
JOBLIB, ASP « « ¢« « o« o
JOBNET « « o o o o o o o «
JOBNO . & v o o o « o« =« =
JOBNUMBR . « < « ¢« o ¢ «
Jobs, Hot
JSS ¢« ¢« o o . o 4 19,
IS8T v v« o« o o o o o o o o
JSTENTRY ¢ o ¢ o o o o o o«
JSWEDSCT « « o« = ¢ « o « o

Key, Program Function . .

. .
«
- e
.« .
—
«

. .
-) -

. .
-

e . . 279
e « « o 35
e e o« o U
e« o 279
e « « o« 35
e e o 1M
e « « « 35
. . . 61
. 103, 127
e e « o 280
. « o 280
+ . 52, 94
e e . o 281
e e o o904
e - < . 281
. . . 282
e e « . 282
.« ... 283
. . 42, 43

- <. - 60
e « « « 59

DRt
.« . . 284
&« « . . 59

e - . . 285
R

. « . . 285

. . . . 286

. < ... 286

. . . . 287

.« - .« . 50
e « . . 51

. . 21, 23

e < .. .23
v e . . 36

e e . 15

. e ... 19

e e e . 19

e e« . 59

. <« 47, 59

e e . . W9
. 75, 287

R I
. .. 288

T

ﬂ7, 49, 52 60 63, 17

47, 60

. . . 288
. . . 288
e - < . 134

355

LOCDSECT & = « <« o « « o« o a o o o o o =
LOGIN +. v v 4 « o o o o o o o @ o a s =
" MACLO o o« « « « o o o a = o« « =
LOGOUT « « ¢ « ¢ ¢ @ « o o o o o« o o o =

macro, APURGE . . . ¢ 4 2 « o 2 « « »
" BRETURN . & o 2 « o o o o o« « o « o

ASPEXCP +« « o« o o « o o o a o « o o
ATIME . v ¢ 4« o« a o « « a a =« «
ATTACH « « « o o o o o o o a o o =
BWAIT . &« 4 o « = o o @« o o a o« o =
AUWRITE . ¢ ¢ @ o o « « o o« s o o
CONDSECT « v 2 ¢ o o « o « o o o =
DEOMSG ¢ o« o « o o o o o o o « o o
DSPDC v 2 « 2 « 2 o o« « o =« o o 2 =
INTERCOM o« o o o « « o o« o « = o «
LOGIN @« &« v 2« « o « o o 2 o o o
MESSAGE . v« o ¢ o « « « a o o &«
TACMPR « ¢ =« « o « o a o o a o « =«
WETO/WTOR « « o o« o o o o o o o o «
MAIN .+ ¢ ¢ ¢ o « o o a « o « o« « o« o =

" CaArd <« o« ¢ 4 e 2 « 2 e @« o @
Main Device Scheduler « « « « =

" Service

MAINPROC + « o« o ¢ o o o o o o « o« « 59, 129
MAINTASK « « « « o « o « ¢ « o« = « o« « 94, 95

- restriction . « < . . 99
MARGCORE ¢ 2 v¢ o o o o o o o« o « « o« « « 107

MASK, ECF -« v « o o o o o « = « o« o '« o «
Maximum TAT S1Z€ . « ¢« o« o o « o o « o « =
MDEPTH « « « « « o « o « = « = = « .o «

MDS & o « o « o o o = o = @« @ o o o o o =
MDSALLOC 2 2 ¢« o o o o o o = o o =

MDSBRKDN . « « o o v e e o = « o o o o o « U8
MDSDRIVR « « « « o o « o = « « « o « o « o UB
MDSDSECT « « =« « o « « o o = o « « o = o 290

MDSREST . +« ¢« ¢ ¢ o o « o o = s o a o o =
MDSVERFY ¢ « o o o o o o o = o« » « = o « =«
MESSAGE e o 2 o o s e o o o o o s o =
MACLO « o« o« o o o o o« o o » =
message number ¢ o . 4 4 4 e e
MGROUP ‘v v o o« o« o o o o o a a =« o« = « =
MINCORE . o« ¢ ¢ ¢ ¢« o o o o o o o a « « =
MLIMIT . . .

MNTREFDB . « ¢ ¢ o o o o « « « « o« « « o« « 83
mode, PAge + « « « « o o o a 2 + o + 117
MODIFY « o 2 o o o o o o o o o o« o 30

MODMDS o o o o

Monltor, Channel-to—channel Adapter « e
Multifunction«

MONITOR, MULTIFUNCTION . .

MOVEDATA . « &« ¢ o« o o ¢ o o « o o« « « « 292
MPCLSTAB . « -« ¢ o ¢ « « o « « =« « « 62,293
MPCTLTAB . & ¢+ o « ¢ « o « a o« o « « « « 293

MPENTRY « 2 « ¢ o o o « o « o o o o =
MPGRPTAB « <« 4 ¢ ¢ o « o o o o o o =
MSENTRY « < ¢ ¢ o« o o « o o o o,0 « o =
MSODATAX <« o o o o o o o o o = o o s o o
MSTATUS . . 2 ¢ o o o « o = o @« o« a o « =
MSVDSECT « « « « « o o
MSVIPL . . + « « « + &

MSVMVT & « 4 ¢ o 4 2o o o o « o o« o o o « &
MSVOPER2 . « . & o «

MTSVC @ ¢ & 4 o o o o o o o o o o o o =
MIVEREQU « o v ¢ o ¢ o o o o« o « o « o

356

MIVT o ¢ o « o o« @ e o o =
Multifunction Monltor e« e e ®
MULTIFUNCTION MONITOR .
multiple record
maltirecord file

NCB . . & ¢ ¢ o ¢« ¢ o o o o &
NCBFDB « .« . &

NCBTAADD . « ¢ ¢« « o o « o .=
NCBTAFND - « ¢« ¢« ¢« & 2 o « =
NCBTAGET <« « ¢« « ¢ o o o o -
NCBTAPUT . v« o« ¢ « o « o« « @
NCBTAREL . & ¢« ¢ « o « o o «
NET card . e« o o o e @

Net Control Block « o e o s o
NETDSECT « ¢« o « o « o « o »
NETREL parameter . « « « . «
Network Job Processing . . .
NHOLD « ¢« « « « o o« « o « o« =
NJODSECT « . o =« o o o « o o
NJP Restriction
NJPDSECT

NIPENTRY . .« ¢ o o « o o o «
NJPPARBF . &« « ¢ ¢ ¢ o o « @
NIJPTERM card@ . « « « « « o «
nucleus, ASP . . . « . . .« <
NUCLEUS, ASP . « ¢ « « « « «
nucleus, ASP« . .

number, message

ONEKEY . . <« & ¢« o o o o « &
option, FAILURE
OPTIONS o« « o o « ¢ o o « & «
OS @ v ¢ e @ 4 e o & o o o
OSKEY . . v o ¢ 2 o o a o o« «

page mode ¢ . o o o .
parameter, DEST « « ¢ o o « «
ERDEST - ¢ « « «

" FLOCATE . . « «
i NETREL « . « w « «

" PRINT « « <« « « &
PCHDSECT . o« o o « o o o o o
PCW ¢ & ¢ ¢ o o o o o o o o @
PFK .
PFKENTRY « v ¢ o ¢ o o o o o
POLYASP PR - o -
READER RESTRICTIONS -

pool, ASP buffer
POSTGEN . ¢« & o v v « v o « &
PREGEN « ¢ o © ¢ o « o o o «
PREJOB ¢ ¢« « « o« o o o« o o @
PRINT parameter < .
PRINTER card . . . « “ o .
Printer Resources Table « o
PROCESS card . . « o« « o o «
" CaArdsS « ¢« .+ 4 o o . .

- DIC card « « « « « «
Processing, Network Job . . .
Program Function Key
PROGRAMS, RESIDENT ASP . . .
PRTABLE . . ¢« &« o o« o « & « &«
PRTDSECT . o o o« « ¢ o « o« «
PRTY @ v « o o « o « o « o =
PUNCH ¢« « ¢ ¢ o o o o o o o «

75, 7117,

O T T S T)

': 299
7

296
. 75
297
297
298
298

- 2,5

PURCHAIN . ¢ o« ¢ o« o = o o« &
PURDSECT . . &« & o & = o o &
Parge . . .+ . . 0
PUTBUF « v o v « o o o = o «
PUTUNIT « . ¢« & o o« o« o « »

queue, ASP job

RDDSECT

RDINISH o« <« « o o o o o « =
RDLOGIC =« « « 2 « o « o« « =
RDOPRMS <« « « « « o « « « =
RECEIVE e e e e e e e

record, multlple « o o o
records, JCT o« « o« o « « o« =
Reentrant DSP' 5 ¢ - - - .
REGISTER « « o o o o o-o « o
RELSAVE « o e
Required Control Cards « o
residence, ASP system . . .
RESIDENT ASP PROGRAMS .
card
JOB QUEUE TABLE . .

Resident
RESOURCE . . ¢ o a o o o o« =
RESPARAM . 2 ©¢ ¢ o o o <« o
RESQUEUE 21,
RESTART * * & & & & & @« + @
CAYA ¢ « o o o o o o
restriction, MAINTASK . . .
Restriction, NJP
RESTRICTIONS, POLYASP READER
RETURN . & 4« ¢ ¢« o o o« « o o
RI card « « ¢ ¢ ¢ ¢ o o o« «
RIAMEP . o o o « « « o« o o o
RICBAMX
RicLosEe
RICRE .
RIDATAX
RIEXITX
RIGET .
RIODATAX « « o o o o o o « o
RIOENTRY « ¢« ¢« ¢« « o « 2 o =
RIOT &« @ o o o a o o o« « o »
RIPUT @« ¢ ¢ ¢ « o « o« « o o
RISERV . ¢ o o o o o « o o «
RITABLE . « ¢ ¢ 2 ¢ o « «
RITPT « ¢ o o ¢ o o o o o o
RJP terminals . « . « « o«
" workstations

¢ ¢ 8 s e
L T T R S ¥
I T T T T
I S R T TS
I S T S}
R S T SR S Y
LI T N I I)

RIPBUF « « ¢ ¢ « o o o o« o =
RIPDCT o « ¢ o o « o o o « «
RIPDSECT . . « & o « o« o« o =

RIPLINE . ¢ o« 2. 2 o o o a .
RIPTABLE . . ¢ ¢. 2 o ¢« « o =
RIPTERM cardie.. « o« o o « o «
ROUTE ¢« ¢ @« ecea o o o = -
routlne, dev1ce—dependent
track allocator . .
RPS feature .

ROTAADD . . .« ¢« ¢ o o o« .« «
ROTADEL . . . « « &« « « « «
ROTAGEN . « ¢ ¢ o ¢ o o « »
ROTAPUT « « « o o« o o o « =
RSVSAVE . . « ¢« ¢« & o « o &

-

25, 26, 47,

a ¢ 8 & s

Job Queue Table (RESQUEUE)

63,

o ¢ s s e s

21, 23,
77,

- 29,
101,

. 25
308
52
308
102
139
- 99
. 90

195
. 30
. 140

309

SAVENTRY « ¢ o« ¢ 4 o o o o o =« o
8chedu1er, Job Segment
Main Device

SCTABLE . ¢ « « « « o « o « « o «

segment, job
SELECT v o « « « = o = « « o « &
" €card + « « 4 o 4 o o @ e
SEND - .« .
Sequence Dependent Control Cards
Service, Main « « « + « o o o« o« =
SETNAME . .« o o o o o o o o « o =

" card« o o . . .
SETNAMES « « o o o o o o o o « =
" table
SETPARAM v ¢ o « o o o o o « o «
SETSSI control card .« . . « . .
SETUNITS « « « « « « o « o 2 « o

. table
Setup, JOb . .« .+ « & + < 4 & o .
SGROUP . & « o o o o o o o « « «

SHR . . . « . c o o s e o o @
Single Track Table e e e e e o o
SIOT « « o « « o
size, Maximum TAT . « « « « « o« «
SMRENTRY - . . .
SORTLIST .
SPIE . . .
STAE . . . ,
STANDARDS « « « o « s « o « o = o
. CaATd < 4 4 4 e e e s
START ¢ o « o o « « o s o a o = @
storage, hlerarchy T o ¢ o o o
STT « o « o o o s« o o o o o «
STTABLE .« ¢ ¢ « o« « o o o« o« « o =
SUPUNIT « « o « ¢ ¢ o o o o o o =
SUPUNITS - o « « « « o « « « o =
SVCTABLE <« « ¢ « ¢ « 4 @ « « o =
SHITCH « « « « « « = o o « o « =
SYNAD o v 4 ¢ o o o o o o o « o =
SYSMSG o « ¢ o o ¢ « o o « o « =
SYSOUT Card « « « « o « o o« o « =
SYSTEM . . ¢ ¢ ¢ o ¢ o o« o o o @
SYSUNITS « « « o o o o o o «
SYST.SYSJOBOE o« & v o o o o o o

LI T |
. L] L] [
. L[] L] L]
. 1] * .

TAADD « ¢ o ¢ ¢ a o o o @« o o« o o
Table, Device Requirements . . .
.. Function Control
JCTFDB <.« « o « o, ¢ o« o =
IDS &« ¢ o « o o o o

table,

Table, Job Control
- Job Setup . . .+
" Printer Resources
TABLE, RESIDENT JOB QUEUE
table, SETNAMES . « ¢« « « « « « =
- SETUNITS « « « « o « s o @
Table, Single Track
- Track Allocation

Transfer Vector
TACMPR 2 ¢ 2 ¢ « « « 2 « s o o o
- MACYO 4 o« « o « = o o = =
TADEL ¢ « ¢ o o ¢ « o o o o o« o o
TAFIND . ¢ ¢ o @« o ¢ o o o o o o
TAGET . . ¢ 4 4 ¢ o « o o « o o«
TAJENTRY . &« &2 ¢ o o o « « =« « «

LR Y T}

D SR }

46,
68, 69,

.. . 19
. . . U7
. . 320
e .. 19
. . 130

.. 19
.. 59
.. 152
47, 321
. . . U8
. . 154
. . 16

- « 322
« « o U6
- < . U6
« « 69
31, 155
« o 29

. . 323
.. 250

59 60
159
113

47, 48, 324

L R)

. . 60
24, 325
. 23, 49
21
24
51
23
59

- - 25
. . 48
- <« 47
« - U3
« - 39

357

Tape Reader (TR) . « .« & o ¢« o« o« ¢« &« « « « 51
TAPUT « o « « o o« o o o« o « « «.« « « 24, 328
TARESET . . ¢ 4« o« o o = « o o« = « « « 24, 329
TAT <« o o 2 o o o o« o o a o« = = « « « 39, 110
TATPARMS © ©. ¢ 2« o o o o« « o« o« =« « « « « 329
TATPTR « ¢ « ¢« ¢ o o o o« o o« =« o « « 43, 257
TDEPTH ¢« ¢ 2« ¢« ¢ o o o a o « « = e e o« 112
temporary buffers 16
terminals, RJP . e e« o« + 50
TLIMIT « « « « « . 62, 112
TPCDSECT . . « -« « - « 330
TPRDSECT « « « « « o « 330
TRACE . ¢ ¢ ¢ ¢ o o o o « o a =« « ¢« « « « 331
TRACK « « « « « e o o s e e e o o « o« « 102
Track allocation e o e = s e e o s s s « 39

e Allocation Table « 39
track allocator routine 39
TRACK CArd « « « o« « o =« o = =« =« « « 102, 161
track group « .« . ¢ 4 4 e e 4 o e e e o o 42
TRACKS « « 2 « « o o o o o o« = o« = « « o« « 35
Transfer Vector Table . . . « « « « « . - 50
TRTCH ¢ « ¢ o o o o o o s 2 = o o « « « « 247
TSO EDIT . « ¢ « o« o ¢« « =« « « =« « « « 94, 95
TVT @ @ o &4 o o o o o o o =« o« « o « o « « 60
TVIABLE « . ¢ ¢« ¢ 2 o ¢« o« o« « « o « « 50, 331

UCB addresSsS « « o « o o « o o « ¢« o« « « o« 21
UCBENTRY « -« « « = = « o « = « « « ¢ o « 332
UCS v @ = o ¢ « o o a o a a a = o » oo - 10
" Buffer . . ¢ v @ i e 4 4 e e e e e« o 70
USING THBE DELTA DECK ¢ 2 2 « « « « «*2 « « 3

VARY ¢ ¢ © o o o e o o o o o o« =« a « =« « « 30
VIOLATE o ¢ « o <« o o o « o o = 2% & « - 332
volume Unavailable Table (VUT) . . 48, 59, 60
VUTDSECT « + « 4 o o « « o« o =« a o« « « « 1333

workstations, RIP « . « o « o« ¢« 2« o« « « « 28
WRTCHAIN . & ¢ o o u o o o « =« =« o« « « « 333
WID-JCT © &« & o ¢ o o« « o « « =« s o« « o« « 27
WIDDRVR ¢ ¢ ¢ o 2 2 o 2 o« o o« o« o o« o o« « 26
WIDSECT &+ « v « o 2 o o « «a e = « « o« « « 334
WIO/WTOR MBCXO o o o« « o « a « a « « =« « « 91

ZCALL « = o « o « o o o = = o« « « o« = - . 334
ZEROCORE « « « « o « o'« o o« « = o« « « « 335
ZLOAD © & ¢ v ¢ & o o « « « '« a o « « « . 335
ZMNOTE « « 2 o o = o o « o = « o « o« « o 3
ZTYPE « ¢« <« « « « 2« « o « « o « « « 336, 336

358

cesmsssmcccasense

eee

READER’'S COMMENT FORM

System/360 and System/370 GH20-1292-0
ASP Version 3 Asymmetric Multiprocessing System
System Programmer’s Manual

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of mm. If you wish a reply, be sure to include your name and address.

R

sesrescsmecccsnoss

COMMENTS

fold fold

fold fold

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

GH20-1292-0

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold Fold
First Class
Permit 40
Armonk
New York
]
L]
Business Reply Mail I
No postage stamp necessary if mailed in the U.S.A. ra—
I
Postage will be paid by: ———
International Business Machines Corporation .
Department 813 R
1133 Westchester Avenue IR

White Plains, New York 10604

(dSV) € uoisiap OLE/S Pue 09E/S

..

Fold Fold

BN

international Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation ,
821 United Nations Plaza, New York, New York 10017
(international)

0-C6CL-0THD "V'S'N ul palulld WdS

	#FrontCoverA
	#FrontCoverB
	$001
	$002
	$003
	$004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	reply
	xBackCover

