
Order No. GC24-5037-10 ~

Systems Reference Library

DOS Supervisor and 1/0 Macros

This reference publication is for the programmer
planning to use the DOS Input/Output Control
System macro instructions and supervisor
communication macro instructions. These macro
instructions can be combined with problem programs
to produce generalized or specific file processing
programs for a foreground or background
environment. The major subjects describe the
macro system, label processing, multitasking
macros, physical IOCS, supervisor communication
macros, and sequential, direct, and indexed
sequential access methods. Prerequisite
information is contained in the following
publications.

Note: Although titles of some DOS publications
have been simplified, the change does not
affect the contents of the publications.

DOS System programmer's Guide, GC24-5073

DOS DASD Labels, GC24"-5072

IBM System/360 Principles of Operation,
GA22-6821

IBM System/360 Disk and Tape Operating Systems,
Assembler Language, GC24-3414

DOS Data Management Concepts, GC24-3427

For titles and abstracts of other associated
publications, see the IBM System/360 and
System/370 Bibliography, GA22-6822.

DOS Release 25

Eleventh Edition (April 1971)

This publication was formerly titled IBM system/360 Disk
operating System, supervisor and Input/Output Macros.
Although titles of some DOS publications (including this one)"
haye been simplified, the change does not affect the contents
of the publications.

This edition applies to Release 25 of IBM System/360 Disk
operating System and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.

----~~~~~~:r~ continually made to the specifications herein;
before using this publication in connection with the
operation of IBM systems, consult the latest system/360 and
System/370 SRL Newsletter, GN20-0360, for the.editions that
are applicable and current.

This edition, GC24-5037-10, is a major revision of, and
obsoletes, GC24-5037-9.

summary of Amendments

This edition reflects available programming support for the
following devices:

• IBM 1255 Magnetic character Reader

• IBM 2319 Disk storage Facility

• IBM 3210/3215 Console Printer-Keyboards

• IBM 3420 Magnetic Tape Unit

support is also included for ISAM Track Hold, Private Core
Image Library, and improvements to the forced end of volume
for disk (FEOVD) macro. Miscellaneous maintenance changes
are also included.

Changes or additions to the text and illustrations are
. indicated by a vertical line to the left of the change.

Requests for copies of IBM pUblicatfons should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Programming Publications,
Department G60, P. o. Box 6, Endicott, New York 13760.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1966, 1968, 1970" 1971

This reference publication is a guide for
the programmer planning to use the DOS
Input/Output Control System macro
instructions and supervisor communication
macro instructions. It describes the
macros and their various operands. The
publication has ten sections. The first
two sections, Introduction and Macro
system, introduce concepts and terminology.
The third section describes Label
Processing for all files. The fourth,.
fifth, and sixth sections describe the
logical IOCS macro instructions for the
Sequential Access Method, Direct Access
Method, and Indexed Sequential Access
Method, respectively. The seventh section
contains the Multitasking Macros and the
information required to use the
multitasking function. The eighth section
contains the Physical IOCS processing
information. The ninth section describes
the supervisor-communication Macros and the
procedures for checkpointing a program •.
The tenth section discusses Additional
Macro Instructions used in program linkage.

The problem programmer should be
familiar with the publications listed in
the abstract on the front cover of this
manual, with every pertinent device manual,
and with the following related
publications.

Note: Although titles of some DOS
publications have been simplified, the
change does not affect the contents of
the publications.

DOS System Control and Service,
GC24-5036

Preface

DOS System Generation, GC24-5033

IBM System/360 Disk Operating system:
Basic Telecommunications·Access Method,
GC30-5001

IBM System/360 Disk Operating System:
Queued Telecommunications Access Method,
Message Control Program, GC30-5004

IBM System/360 Disk Operating system:
Queued Telecommunications Access Method,
Message Processing Program Services,
GC30-5003

IBM 1419 Model 32 Attached to IBM
system/360 Models 25, 30, 40, 50, or 65,
GA19-0023

IBM 2671 Paper Tape Reader and IBM 2822
Paper Tape Reader Control, GA24-3388

IBM System/360 Component Descriptions:
2826 Paper Tape Control Unit, 1017 Paper
Tape Reader, and 1018 Paper Tape Punch,
GA33-4500

IBM 1219 Reader Sorter; IBM 1419
Magnetic Character Reader, GA24-1499

IBM 1259 Magnetic Character Reader
Component Description, GA24-3500

IBM System/360 Disk Operating system:
User's Guide, GC20-1685

IBM 1275 Optical Reader/Sorter Component
Description, GA19-0034.

Preface 3

4 DOS Supervisor and I/O Macros

INTRODUCTION • • • • • • • • • • •• 9
Machine Requirements • 9

Macro Similarities • • •• ' ••• 10'
compatibility of the Original and the
Present OOS • • • '. • • • • • • 10
Physical IOCS vs Logical IOCS • • • 11
Types of LIOCS Processing • 13

Sequential Access Method (SAM) • 14
Direct Access Method (DAM) • • • • • ~ 14
Indexed Sequential Access Method
(ISAM) • '. • • • • • • • • • • • • 15

Basic and Queued Telecommunications
Access Methods • • • • • • 15

MACRO SYSTEM • • • • • • • • 16
DTF Declarative Macro ••• 17

Symbolic Unit Addresses ,.. ••• 19
Logic Module Generation Macro
Instructions • _ • • • • • • • • 20
Interrelationships of the Macro
Instructions • • • • • _ • • • • • ~ • • 21

How the IOCS Module is Linked with
the DTF Table • _ • • • • • • • • • • 21
Generation of Module Names in DTF
Tables and Logic Modules • • _ • • • • 21
subset/superset Module Names • • • • • 21
Editing Logical IOCS Programs • 22
Linkage-Editing Preassembled Logic
Modules '. • '. • '. • • • '. • • • '. '. • 22

Macro-Instruction Format • • • • • • • • 24
Operand Cards for Declarative Macros • 24
Notation Conventions • • • • _ • • 25

Register Usage • • • • • • • • 26

LABEL PROCESSING • •
DASD Standard Labels
Tape Labels ••••

Tape output Files
Tape Input Files •

• • • • • • • • • • 27
• • 27

• 29
• • • • • • 29

• 32

SEQUENTIAL ACCESS METHOD (SAM) • • • • • 35
Declarative Macro Instructions • • 35

Card File (DTFCn) • '. • • • • 35
Card Module (CDMOn) •••• • 39
Console File (DTFCN) • • • • • • 40
Device Independent File (DTFDI) • 42
Device Independent Module (DIMOD) 45
Magnetic Reader File (DTFMR) • • • 46
Magnetic Reader Module (MRMOD) • 55
Magnetic Tape Files (DTFMT) 55
Magnetic Tape Module (lvlTMOD) '. • 63
Optical Reader File (DTFOR) • • 65
Optical Reader Module (ORMOD) 71
Printer File (DTFPR) _ • • • 72
Printer Module (PRMOD) • • • • • 74
Paper Tape File (DTFPT) • 76
Characteristics of a Paper Tape File • 80
Paper Tape Module (PTMOD) • 84
sequential DASD Files (DTFSD) •••• 85
Sequential DASD Module (SDMODxx) • 94
Serial Device File (DTFSR) for
BOS/360 Users • _ • • • • • • • • • • 97

Contents

Imperative Macro Instructions .111
Initialization Macros ••• 111

sequential Processing Macros. .114
Magnetic Reader Macros • • • .128
Optical Reader Macros •• _ ••••• 131
Work File Macros for Tape and Disk _ .133

Completion Macros • '. '. • .137

DIRECT ACCESS METHOD (DAM)
Record Types '. • • •

Direct Access IOAREAl '. • • •
Reference Methods • • • •

.140

.140

.140

.141
Creating a File or Adding Records by
DAM • • • • • ,. • • • • • '. •

Direct Access Macros • • • • • • •
.144
.145
.145 Direc~ Access File (DTFDA) _

Direct Access Module (DAMOD) • • .158

INDEXED SEQUENTIAL ACCESS METHOD (ISAM) 166
Record Types • • • • • • • • • • • .166
Storage Areas • '. • • '. • • • • .166
Organization of Records on DASD '. ,.168

Addition of Records and Overflow
Areas •• • • • • '. • '. • '. ,. '. .171
Example of an Organized File _ • __ .173

tndexed sequential Macros •••• .175
Indexed Sequential File (DTFIS) ••• 177
Indexed sequential Module (ISMOD) •• 184

Initialization - OPEN(R) Macro ••••• 187
ISAM Macros to Load or Extend a File .188
ISAM Macros for Adding Records •••• 189
ISAM Macros for Random Retrieval ••• 191
ISAM Macros for Sequential Retrieval .192

Completion - CLOSE(R) Macro .195

MULTITASKING MACROS • • '. •
Subtask Initiation and Normal
Termination Macros • • • _ • • •

Resource Protection Macros • •
Intertask Communication Macros
DASD Track Protection Macros •

Shared Modules and Files • _
Multitasking Considerations

PHYSICAL ICCS (PIOCS)
CCB Macro
EXCP Macro • • • • • •
WAIT Macro • • • • • •
Physical IOCS Considerations '.

Alternate Tape switching •
Bypassing Embedded Checkpoint
Records on Tape •••• •
CCW Routine considerations

.197

.198

.200
• .201'

• ••• 202
• .204

.204

• ••• 213
• ••• 213

.215

.215
• •• 215

.215

• .217
• • '. .218

.219 DTFPH Macro
OPEN(R) Macro
LBRET Macro

• • • '. • • .223

FEOV Macro • '.
SEOV Macro ••
CLOSE(R) Macro

SUPERVISOR-COMMUNICATION MACROS
Program Loading ••• • • • • •

.225
• ••• 225

.226
• ••• 226

.227

.228

Contents 5

FETCH--Fetch a Phase. • •• 228
LOAD--Load a Phase. • • .228

Communication Region • • • • • • • 229
COMRG--Get Address of Communication
Region •••••••••••••••• 230
MVCOM--Move to Communication Region .230
Release -- Release Temporary Assigns
(Batched Processing Only) • _ •••• 230

Time of Day Macro ••••••••••• 231
GETIME--Get Time of Day in Register 1 231

Interval Timer and User Exit Macros •• 231
Method-1 Macros • '. • • • • • • • • • .232

SETIME--Set Interval Timer •••••• 232
STXIT--Set Linkage to User Routine(s) 232
EXIT--Exit from User's Interrupt
Routine (s) • • • • • • • • '. • .235

Method-2 Macros ••••••• 235
TECB - Build Timer Event Control
Block • • • • • • _ •• 235
SETIME--Set Interval Timer. • .236
WAIT--Wait for Timer Elapse •• 236

Dump Macros • • • • • • • • • • .236
PDUMP--Partial Dump of Main storage .236
DUMP--Durnp Partition • • •••• 236

Cancel and EOJ Macros •••••• 237
CANCEL--CANCEL the Job •••• 237
EOJ--End-of-Job Step. • •• 237

Checkpointing a Problem Program •••• 237
Use of the CHKPT Macro •••••• 237
CHKPT Macro ••• • • • •••• 238
Checkpoint File •••••• 240
Reposition I/O Files. • .240
DASD Operator Verification Table ••• 242

ADDITIONAL MACRO INSTRUCTIONS: CALL,
SAVE, AND RETURN. • • ••••• 244
Linkage Registers •• 244
Save Areas. • • • • • •• 245

6 DOS Supervisor and I/O Macros

CALL--Call a Program. • • • .247
SAVE--Save Register Contents. .248
RETURN--Return to a Program ••• _ .248

APPENDIX A: LABEL FORMATS ••• '. .249
DASD Labels ••• • • .249

VolUme Labels ••••• .249
Standard File Labels. • .249
Standard File Label Formats .250
User-Standard DASD File Labels. .250

Standard Tape Labels •• ~ • • • • .251

APPENDIX B: CONTROL CHARACTER CODES
CTLCHR=ASA
CTLCHR=YES • • • • • •

APPENDIX C: ASSEMBLING THE PROBLEM

•• 253
.253
.253

PROGRAM, DTFs, AND LOGIC MODULES •••• 255

APPENDIX D: READING, WRITING, AND
CHECKING WITH NONSTANDARD LABELS •••• 270

APPENDIX E: MICR DOCUMENT BUFFER FORMAT 272

APPENDIX F: SPANNED RECORDS • , ,.276

APPENDIX G: SELF-RELOCATING PROGRAMS •• 278
Rules for Writing Self-Relocating
Programs ••••••••••• _ .278
Advantages of Self-Relocating
Programs • • • • • • • '. • • • • .281
programming Techniques. • • • .281

APPENDIX H: AMERICAN NATIONAL STANDARD
CODE FOR INFORMATION INTERCHANGE
(ASCII) • • • • • • • • ••• 284

GLOSSARY •

INDEX

.288

.291

I
I

Figure 1. Physical IOCS vs Logical
IOCS • • • • • • • • • • • • 12
Figure 2. Retrieving a Record Using -
Logical IOCS (One I/O Area) or
Physical IOCS • • • • • • • • • • 14
Figure 3. Schematic of Macro
Processing. • • • • • • • •• • •• 17
Figure 4. Sample DTFMT Macro
Instruction • • • • • • • • • 18
Figure 5. Relationship between Source
Program, DTF Table, and Job Control
I/O Assignment •••••••••••• 19
Figure 6. Relationship between Source
Program and Job Control I/O Assignment 20
Figure 7. Sequential Input/Output
Macro Instructions • 36
Figure 8. DTFCD Macro •• 37
Figure 9. DTFCN Macro • • 41
Figure 10. DTFDI Macro • • • • • • 43
Fiaure 11. DTFHR Macro • • • • • 47
Figure 12. MICR Document Buffer Area • 50
Figure 13. Stacker Selection Times
for IBM 2030 and 2040 Processors • 52
Figure 14. MICR Document- Processing • 54
Figure 15. DTFMT Macro (Part 1 of 2) • 55
Figure 16. DTFMT Error Options • • 59
Figure 17. DTFOR Macro ••••• 66
Figure 18. DTFPR Macro •• • • • 73
Figure 19. DTFPT Macro • • • • • 77
Figure 20. DTFSO Macro (Part 1 of 2) • 86
Figure 21. DTFSO Error Options • 90
Figure 22. I/O Area Requirements when
Processing Spanned Records •••••• 91
Figure 23. SDMODxx Operands 95
Figure 24. DTFSR Macro - Card (Part 1
of 5) • • • • • • • • • • • .109
Figure 25. CNTRL Macro Instruction
Command Codes • • • • • • • • • • • • .123
Figure 26. Bit Configuration for
Pocket Light Switch Area of IBM 1419 .130
Figure 27. Schematic of I/O Area in
Main storage, for DAM ••••••• 141
Figure 28. Types of Track Reference
Fields (Part 1 of 2) ••••••••• 142
Figure 29. Contents of Record 0 for
Capacity-Record Option • • • • • .145
Figure 30. ERRBYTE Error Status
Indication Bits (Part 1 of 5) ••••• 147
Figure 31. IO Supplied After a READ or
WRITE Instruction ••••••••••• 152
Figure 32. I/O Area Requirements for
DAM • • • • • • • • • • • • .153
Figure 33. DTFDA Macro (Part 1 of 2) .157
Figure 34. OAMOD Macro • • • • • .158
Figure 35. Schematic of I/O Area in
Main Storage, for ISAM •• -. • • .167
Figure 36. Schematic Example of a
Track Index • • • • • • • • • • • .169
Figure 37. Schematic Example of a
Cylinder Index •• _ • • • • • • .170
Figure 38. Schematic Example of a
Master Index •••• ••••••••• 170

Figures

Figure 39. Example of Data Records as
Originally Organized on Tracks 2 and 3 171
Figure 40. Example of Track Index
Entries Before and After Addition of a
Record on Track 2 •••• • • • • • • .172
Figure 41. Example of Sequence Link
Fields Adjusted for Addition of a
Record 135 •• '. • '. • • • • • '.
Figure 42. Schematic of a File on
2311 DASD Organized by ISAM
Figure 43. FilenameC--Status or
Condition Code Byte -- ADD, RETRVE,

.172

.174

and ADDRTR (Part 1 of 2) ••• _ ••• 175
Figure 44. ERREXT Parameter List .177
Figure 45. Output Area Requirements
for Loading or Adding Records to a
File by ISAM • • '. • • • • • ,. .179
Figure 46. I/O Area Requirements for
Random or Sequential Retrieval by ISAM 179
Fiaure 47. DTFIS Macro (Part 1 of 2) .183
Fi~ure 48. ISMOD Macro _ • • • • • • .186
Figure 49. A Multitasking Flowchart
Example • • • • • • • • • • • • • • • .197
Figure 50. Flowchart for Example 1 .. ,.206
Figure 51. Example 1 (Part 1 of 4) •• 207
Figure 52. Flowchart for Example 2 •• 209
Figure 53. Example 2 (Part 1 of 5) •• 210
Figure 54. Command Control Block
(CCB) • • • • • • • • • • •
Figure 55. Conditions Indicated by
CCB Bytes 2 and 3 (Part 1 of 2)
Figure 56. Channel Programming a File
Protected DASD • • • • • •
Figure 57. DTFPH Macro • • • •

.214

.216

.219

.220
Figure 58. communication Region (in
Supervisor) •••••• ,. • • • .230
Figure 59. Abnormal Termination Codes 233
Figure 60. Time Event Control Block
(TECB) • • • • • • • • • • • •
Figure 61. Repositioning Magnetic
Tape • • • • • • • • • •
Figure 62. Linkage Registers
Figure 63. Direct Linkage
Figure 64. Save Area Words and
Contents in Calling Programs
Figure 65. Assembling the Problem
Program DTFs and Modules Together
(Example 1) ,....... • • • '.
Figure 66. Logic Modules Assembled
separately (Example 2) •••••
Figure 67. Logic Modules and DTFs
Assembled separately (Example 3)
Figure 68. Separate Assemblies,
(Example 3) (Part 1 of 4)
Figure 69. Logic Modules and DTFs
Assembled Separately, I/O Areas with

.235

.243

.244

.245

.246

.257

.258

.260

.261

Main Program (Example 4) ••••••• 267
Figure 70. DTFs, and Logic Modules
Assembled separately; I/O Areas Label
Exit, EOF Exit with Main Program
(Example 5) •••••••• ••••• ,.268

Figures 7

Figure 71. Reading, Writing, and
Checking with Nonstandard Labels (Part
1 of 2) •••••••••••• • .270
Figure 72. MICR Document Buffer
Format (Part 1 of 4)272
Figure 73. Spanned Records (Unblocked) 276
Figure 74. segmented Spanned Records
(Blocked) •••• _ •••••••••• 276

8 DOS Supervisor and I/O Macros

Figure 75. Relocating Address
Constants in a Calling List
Figure 76. Self-Relocating Sample
Program • • • • • • • • • • • • •
Figure 77. ASCII Character Set
Figure 78. ASCII to EBCDIC
correspondence (Part 1 of 2)

.280

.283

.285

.286

/

(

MACHINE REQUIREMENTS

Minimum features required:

• 16K bytes of main storage (24K bytes
are required for multiprogramming
and/or MICR [Magnetic Ink Character
Recognition] document processing).

• standard instruction set. See Note 1.

• One I/O channel (either multiplexor or
selector). See Notes 2 and 3.

• One Card Reader (IBM 1442, 2501, 2520,
or 2540). See Note 4.

• One Card Punch (IBM 1442, 2520, or
2540). See Note 4.

• One Printer (IBM 1403, 1404, or 1443).
See Note 4.

• One Printer-Keyboard. For an IBM
system/360 Model 65 or larger, use the
multiplexor channel.

• One Disk Storage Drive.

Note 1: Language translators may require
extended instruction sets and/or additional
main storage.

Note 2: Telecommunications require two
channels, one for telecoromunications and
the other for a system resident device. An
IBM 2701 attached to a System/360 Model 25
must be placed on the multiplexor channel.

Note 3: MICR processing requires at least
two I/O channels. A DOS supervisor
supporting MICR devices on the multiplexor
channel cannot support burst mode devices
on the same channel. MICRs should be
attached as the highest priority device on

I
the multiplexor channels. The IBM 1255,
1259, 1270, 1275, 1412, or 1419 with Single
Address Adapter is supported on any
selector channel, but device performance is
maintained only if a selector channel is
dedicated to a single MICR device. The IBM
1419 or 1275 with Dual Address Adapter is
not attachable to selector channels.

Also, MICR processing requires either
the direct-control feature or the
external-interrupt feature.

Note 4: One 3420 or 2400-series magnetic
tape unit may be substituted for this
device. (7- or 9-track. If 7-track tape

Introduction

units are used, the data-conversion feature
is required, except when substituted for a
printer.)

Additional features supported:

• Timer feature.

• Simultaneous Read-While-Write Tape
Control (IBM 2404 or 2804).

• Any channel configuration up to one
multiplexor channel and six selector
channels.

• Tape switching Unit (IBM 2816).

• Storage-Protection ·feature (required
for multiprogramming)~

• Universal Character Set.

• Selective Tape Listing features (IBM
1403) for continuous paper tapes.

• Dual Address Adapter (IBM 1419, 1275)
to allow more stacker selection
processing. When this feature 1s used,
MICR devices with a Single Address
Adapter cannot be accessed by the
system.

• Additional main storage up to
16,777,216 bytes.

Problem programs can request I/O
operations on the following IBM devices:

• 1442 Card Read Punch

• 2501 Card Reader

• 2520 Card Read Punch

• 2540 Card Read Punch

• 1403 Printer

• 1404 Printer (for continuous forms
only)

• 1443 Printer

• 1445 Printer

• 1052 Printer-Keyboard (used for .
operator communication)

Introduction 9

• 2671 Paper Tape Reader

• 1017 Paper Tape Reader with 2826 Paper
Tape Control Model 1

• 1018 Paper Tape Punch with 2826 Paper
Tape Control Model 1

• 2311 Disk storage Drive

• 2314 Direct Access Storage Facility

• 2319 Disk storage Facility

• 2321 Data Cell Drive

• 2400-Series Magnetic Tape units

• 3420 Magnetic Tape Unit

• 1285 Optical Reader (maximum of 8
optical readers are supported)

• 1287 Optical Reader (maximum of 8
optical readers are supported)

• 1288 Optical Reader

• 1255 Magnetic Character R.eader

• 1259 Magnetic Character Reader

• 1412 Magnetic Character Reader (maximum
number supported depends upon system
configuration)

• 1419 Magnetic Character Reader (maximum
number of devices supported depends
upon system configuration)

• 2495 Tape Cartridge Reader

• Teleprocessing devices specified in
BTAM and QTAM publications referenced
in the Preface

• 1270 Optical Reader/Sorter (not
available in the United States of
America)

• 1275 Optical Reader/Sorter (not
available in the United states of
America)

• 3210 or 3215 Console Printer-Keyboard
(System/370)

Macro Similarities

Macro similarities and differences between
Basic Programming Support (BPS), Basic
Operating System (BOS), Tape Operating
system (TOS), and Disk Operating System
(DOS) are:

10 DOS supervisor and I/O Macros

• Imperative macro instructions and
supervisor Communication macro
instructions available for TOS have
identical expansions for DOS .•

• File definition macro instructions
available for TOS have identical
expansions for DOS.

• Symbolic programs written for BPS and
BOS can be assembled into the
functional equivalents for DOS.
However, the DTFSR macro instruction
substantially prolongs program
preparation time and, in many
situations, execution time when used on
DOS.

• The PRTOV macro implemented in BOS
differs from that in DOS. In BOS, once
a channel 9 or 12 is sensed during
printing or carriage spacing, the
overflow indicator is reset by every
print or carriage control command.
Thus, previous BOS programs used in DOS
should be checked to determine whether
the test for overflow after every
carriage motion is made.

• Certain register parameters for BPS and
BOS are enclosed in parentheses in DOS.
In general, DOS accepts the parameters
without the parentheses. For example,
in DOS the correct format is IOREG=(r).
DOS accepts the BOS operand IOREG=r.

• No change in register usage conventions
is planned for BOS or BPS. However, to
avoid compatibility problems resulting
from transition between 8K and 16K
support levels, installations using 8K
support should observe the 16K register
conventions indicated under Register
Usage.

Compatibility of the Original and the
Present DOS

To ensure compatibility between the present
DOS system and the original, or partially
updated original DOS, be aware of the
following conditions:

• Disk Operating System job control
information previously supplied on VOL,
DLAB, and XTENT statements (VOL, TPLAE
for tape) should now be supplied on the
simplified DLBL (DASD label) and EXTENT
(extent) statements (TLBL or tape label
statement for tape). However, DOS
still accepts the information in the
previous form.

• A user with previously assembled tape
DTF macro instructions may find that
the standard label track has been
modified because of error condition,
multifile, or multivolume processing.
To prevent modification of tape label
job control information on the standard
label track, the user must reassemble
the tape DTF macro(s). For more
information see OPTION STDLABEL in the
system Control and Service publication
listed in the Preface.

• User programs written for an earlier
release of DOS can usually be run under
the present release without change or
recompilation. However, there are
three main exceptions that may require
recompilation or linkage editing:

1. If higher level compilers (such as
COBOL, PL/I) undergo extensive
changes or modification, programs
compiled under an earlier release
may not be executable under a later
release.

2. If the user wishes to take
advantage of a newly supported
feature of DOS, recompilation of
user programs is always required.

3. If program modules undergo
significant changes (again to
support new features).

• A LABADDR routine that builds
user-standard labels in the IOCS area
of main storage cannot be executed in a
storage-protected environment. Thus,
it cannot be executed in a
mUltiprogramming environment.

.;.-'

• Programs written for the original DOS
can be run as background jobs in a
multiprogramming environment with this
restriction. The background program
must have control of the Interval Timer
feature when a program using the timer
(SETIME macro instruction) is executed
in a multiprogramming environment.

• Programs using PIOCS to process Direct
Access Storage Device (DASD) files,
such as disk or data cell, must open
the file if the program is executed in
a system that has DASD file protect.
The channel program for the DASD must
begin with a Seek (x'07') command.

• All data files created for the original
DOS can be used.

• Programs checkpointed in the original
DOS cannot be restarted in the present
DOS.

To ensure problem program compatibility
with future releases of the Disk Operating
System, the following coding practices are
recommended:

1. The problem program should initialize
its own registers, declare a save
area, and initialize register 13 to
point to the.save area. In'
particular, problem'programs should
not assume that register 0 contains
the origin of the problem program
phase, especially if the name of the
phase appears in the execute
statement.

2. Problem program references to file
data should logically follow an
OPEN(R) to the file. Whenever
possible, opened files should be
closed before terminating a program.

3. When exchanging information between
subprograms, use the CALL, SAVE~ and
RETURN macros, and avoid load register
and branch instructions whenever
possible.

4. Restrict problem program references to
the communication area to bytes 0
through 9 and 12 through 23.
References outside the defined
communication region or any other
system tables are not to be relied
upon.

5. In general, avoid macro expansions and
modifications because it is the
function that is supported and not the
expansion. In particular, use the
macro for the planned function and do
not modify it, or code a substitute.
For example, use DTFCD only with card
devices and not with tape units to
~aintain device independence.

Physical IOCS vs Logical IOCS

Consider the input/output control as
consisting of two parts: physical IOCS
(PIOCS) and logical IOCS CLIOCS).

Physical IOCS controls the actual
transfer of records between the external
medium and main storage. It performs the
functions of initiating the execution of
channel commands and handling associated
I/O interrupts. Physical IOCS consists of
the following routines:

Introduction, 11

• Start I/O routine

• Interrupt routine

• Channel scheduler

• Device error routines.

These physical laCS routines are part of
the supervisor, which is permanently
located in lower main storage while problem
programs are being executed. The device
error routine for SYSRES resides in the
supervisor area. other error routines are
called into the transient area.

Logical IOCS performs the functions a
user needs to locate and access a logical
record for process1ng. A logical record is .
one unit of information in a file of like
units, such as one employee's record in a
master payroll file, one part-number record
in an inventory file, or one customer
account record in an account file. One or
many logical records may be included within
one physical record, such as a physical
tape record (gap-to-gap). The term logical
IOCS refers to the routines that perform
the following functions:

• Blocking and deblocking records.

• Switching between I/O areas when two
areas are specified for a file.

• Handling end-of-file and end-of-volume
conditions.

• Translating American National Standard
Code for Information Interchange (ASCII)
into Extended Binary Coded Decimal
Interchange Code (EBCDIC) on input, and
EBCDIC into ASCII on output.

• Checking and writing labels.

Logical IOCS uses physical laCS to
execute I/O commands whenever it determines
that a transfer of data is required,. For
example, if a file consists of blocked
records and a block has been read into main
storage, logical IOCS makes each record in
succession available to the user until the
end of the block is reached. No physical
laCS is required. When logical IOCS
determines that the last record in the
block has been processed, it requests
physical laCS to start an I/O operation to
transfer the next physical record (gap to
gap) into main storage.

In Figure 1, only logical laCS is
required to make records 2 and 3 (and 5 and
6) available. Records 1-3 are already in
main storage. Physical laCS is also
required to make record 4 available

.12 DOS Supervisor and I/O Macros

(records 4 through 6 are transferred in one
block).

Block of 3 Records in Main Storage

I Record 1
(Record 4)

LlO

Record 2
(Record 5)

for
Record 2 (5)

LlO = Logical 10CS
PIO = Physical 10CS

Record 3
(Record 6)

LlO
for

Record 3 (6)

LlO and PIO
for

Record 4

Figure 1. Physical laCS vs Logical laCS

Logical laCS macros (such as GET, PUT,
READ, WRITE, etc) and physical laCS macros
(such as EXCP and WAIT) are available to
the programmer for handling records. The
logical laCS macro routines perform all the
functions of both logical and physical
laCS. Thus, when a GET instruction is
issued, a logical record is made available
for processing. Logical laCS routines use
registers 0, 1, 14, and 15.

The physical laCS routines are
completely distinct from the routines used
by logical laCS to perform functions such
as blocking and deblocking. They permit
the problem program to use physical laCS
functions directly. To transfer a physical
record (such as a DASD or tape record), the
problem program issues an EXCP macro
instruction (EXecute £hannel ~rogram).
This causes the channel scheduler to handle
a request for data transfer. Program
execution immediately continues with the
next problem program instruction. However,
the DASD or tape record is not available in
main storage until some later time. When
the record is needed for processing, the
program must test (WAIT macro instruction)
to determine if the transfer has been
completed. Physical laCS uses registers 0
and 1.

Figure 2 shows the functions of , physical
and logical laCS routines.

DASD File Protection

For a 24K or larger machine, logical and
physical laCS can provide DASD data file
protection. Users desiring to implement
DASD file protection in the future should
not include any seeks, other than the
initial full seek, within their DASD
channel programs (see DASD Channel
Programs).

DASD file protection means that the user
program is logically prohibited by the DOS
supervisor from reading or writing on

(

cylinders (disk) or strips (data cell)
other than those specified in the file
extent statements. The feature does not
protect the file itself from being
overwritten.

In order to obtain any DASD file
protection, the

DASDFP= (n, n [,Um}]>
operand in the FOPT supervisor generation
macro must be specified at system
generation time.

n,n indicates the range of "channels that is
to provide DASD file protection.

2321 indicates all disk and data cell
devices are to be file protected.

2311 or 2314 indicates disk only.

DASD file protection then becomes effective
when the file is opened and only if the
file involved contains unexpired labels.

LIOCS and ASCII Tape Files

Tape files may be written in EBCDIC or
ASCII, but DOS processes all files in
EBCDIC. Logical IOCS automatically
translates ASCII to EBCDIC on input and
EBCDIC to ASCII on output, as required.
The conversion takes place in the user's
I/O area. When the user wants to update
records in his I/O area, the records must
then be in the EBCDIC mode. If, however,
they have already been converted to ASCII,
the user himself can make use of the
translate tables in the supervisor. The
address of the ASCII to EBCDIC table is in

bytes 44-47 of the extension of the
communication region for each partition.
The address of the EBCDIC to ASCII table is
256 bytes higher than that of the ASCII to
EBCDIC table. The address of the extension
of the communication region is found in
bytes 136-139 of the communication region.

Note: Some EBCDIC characters have no
direct equivalent in ASCII, so logical
IOCS substitutes a character (SUB)
during translation~ If an EBCDIC file
is translated into ASCII, and then the
user translates back into EBCDIC, this
substitute character may not receive
the expected value. See Appendix H for
the correspondence between EBCDIC and
ASCII.

Types of LIOeS Processing

The logical IOCS routines process records:

1. In sequential order by the Sequential
Access Method (SAM),

2. In random order by the Direct Access
Method (DAM) " or

3. Randomly and sequentially by the
Indexed Sequential Access Method
(ISAM).

SAM processing applies to all files in
serial I/O devices (such as card reader,
tape, printer, etc), and to records on the
IBM 2311 Disk Storage Drive or IBM 2314
Direct Access Storage Facility, or IBM 2321
Data Cell Drive when they are processed
serially. The types of processing
performed by DAM and ISAM apply only to
files of Direct Access Storage Device
(DASD) records.

Introduction 13

Problem
Program

Logical
lacs

Physica I
lacs
(Channel
Scheduler)

Input
Device

Using
Logical
lacs

Issue GET • { Provide Record (Deblock)
__ ~ and Return to Problem Program

Next Instructi~ - OR-
(after GET) ~ If I/O Required, Issue EXCP

andWAIT~

{

When I/O Complete,
Return to Problem

Determine Channel.
Place Request in Queue
if Channel Busy, and Return
to Logical lacs.

If Channel Not Busy, } ~ I/O Starts
Issue START I/O
and Return to Logica I lacs.

Program "

{
When I/O Complete, go } I/O Cit
through Interrupt Routine ~ omp e e

=======---===---. ==========
Using
Physico I
lacs

Set Up CCW, CCB, and Issue EXCP -----------4~ Determine Channel.
Place Request in Queue

Next Instruction ~--_____________ _
(after EXCP)

if Channe I Busy, and Return
to Problem Program.

Issue WAIT

Next instruction
(after WAIT)

If Channe I Not Busy, } ~ I/O Starts
Issue START I/O
and Return to Problem Program.

{
When I/O Complete, go } ~ I/O' Complete
through Interrupt Routine

Figure 2. Retrieving a Record Using Logical IOCS (One I/O Area) or Physical IOCS

SEQUENTIAL ACCESS METHOD (SAM)

Sequential processing reads/writes and
processes successive records in a logical
file. For example, card records are
processed in the order the cards are fed.
Tape records are processed starting with
the first record after a header label and
continuing through the records to the
trailer label. DASD records are processed
starting with a beginning DASD address and
continuing in order through the records on
successive tracks and cylinders to the
ending address.

A sequential file on DASD is contained
within one or more sets of limits specified
by the job control extent cards. If the
logical file consists of more than one set
of limits, IOCS automatically processes
each set as required by the user. The
records within each set must be adjacent
and contained within one volume (disk pack
or data cell). The sets are not required
to be adjacent or on the same volume.
Sequential processing of a file written on

14 DOS Supervisor and I/O Macros

DASD by the direct access method can be
performed.

The basic macros used for sequential
processing are GET and PUT. These
instructions overlap data transfer and
processing. The extent of overlap depends
on the user's I/O area assignment. In any
case, when a GET or PUT has been executed~
the transfer of data is complete before the
instruction following the GET or PUT is
executed.

DIRECT ACCESS METHOD (DAM)

The Direct Access Method (DAM) processes
records contained on IBM 2311, 2314, 2319~
or 2321 that are usually organized in a
random manner. DAM "is a method of
processing records and not an
organizational method.

IOCS locates a DASD record for
processing by referring to a record
location reference supplied by the problem

program. The location reference consists
of two parts: a track reference and a
record reference. The track reference
specifies the track (or the first of
multiple tracks) to be searched for the
record. The record reference may be the
record key, if records contain key areas,
or the record identifier (ID) in the count
area of each DASD record. IOCS seeks the
specified track and searches for the record
on that track, or on the succeeding tracks
in the cylinder.

The basic macros for the direct access
method of processing are READ and WRITE.
variations within these macros permit
records to be read, written, updated,
replaced, or added to a file. Thus, this
method maintains a logical file in a random
(or sequential) order. when a READ or
WRITE instruction is executed, the actual
I/O operation either starts or is placed in
a queue for later execution. When the
record is required for processing, the
program must test (WAITF macro) to ensure
that the transfer is complete.

INDEXED SEQUENTIAL ACCESS METHOD (ISAM)

DASD records contained within an indexed
sequential file may be processed in a
random order or in sequential order by
control information. Both orders use the
control information of the records (such as
employee number, part number, etc), which
is available in the key area of each DASD
record. Any record stored at any location
in the logical file can be processed using
the random method. The user supplies ISAM
with the key (control information) of the
desired record. ISAM searches for the
record and makes it available for
processing. The ISMOD macro (combined with
the loading, adding, and retrieval
functions) is provided by the indexed
sequential access method (ISAM). This is
known as the Indexed sequential File
Management System (ISFMS).

In sequential processing, ISAM makes a
series of records available. The records
are available, one after the other in order

by the control information (key) in the
records. The user specifies the first
record to be processed. ISAM retrieves the
succeeding records (on demand) from the
logical file, in key order, until the
problem program terminates the operation.

ISAM makes it possible to create an
organized file and then add to, read from,
and update records in th~t file. "The file
is organized from records that have been
presorted by their control information. As
the records are loaded onto DASD, ISAM
constructs indexes for the logical file.
The indexes permit individual records to be
found in subsequent processing operations.
The indexes are created in such a way that
records can be retrieved randomly or
sequentially. If records are added to the
file at a later date, ISAM updates the
indexes to reflect the new records.

The basic macros for processing the
indexed sequential files are READ/WRITE and
GET/PUT. READ and WRITE are for random
operations. A READ or WRITE instruction in
the problero program starts the I/O
operation or places it in a queue, and
execution of the problem program continues.
When an instruction later in the program
requires that the transfer of data be
complete, a test must be made. A WAITF
macro is provided for the test. For
sequential operation, GET and PUT macros
are used. When a GET or PUT instruction
for a record is executed, the transfer of
data is completed before the n~xt
instruction in the problem program is
executed.

Basic and Oueued Telecommunications
Access Methods

Disk Operating System allows communication
with remote terminals by either the Basic
(BTAM) or Queued (QTAM) Telecommunications
Access Method. The publications listed in
the Preface gives a general description of
the available telecommunicaticns facilities
and specific information on the imperative
macro instructions, DTFs,and modules used
with BTAM and QTAM.

Introduction 15

Macro System

A macro is a group of computer
instructions •. Thus, for one macro
instruction, many computer instructions may
be assembled.

The macro system has two basic parts:

• Macro definitions. General routines
written as source statements and stored
in the 'Assembler sublibrary of the
Source statement Library. These
routines enable the user and IBM to
build source program macro
instructions.

• source-program macro instructions:

1. Imperative input/output control
macro instructions identify what
I/O operation is desired. For
example, in Appendix C, GET
indicates that the user wants to
obtain a card record.

2. Supervisor communication macro
instructions communicate with the
supervisor and give access to the
communication region.

3. For processing with IOCS, two
additional macro instructions are
used:

a. Declarative logic module
generation macro instructions
(with LIOCS) give information
about the type of module to be
generated. A module is an
object code routine that can
handle the conditions specified
in the module generation macro.
For example, in Appendix C, the
CDMOD generates a module to
handle card input on a 2540
using a work area.

b. Declarative DTFxx macro
instructions (with the LIOCS
and FIOCS) define the
characteristics of the specific
file to be processed. The
information in the macro
instruction is assembled into a
DTF Table. For example, in
Appendix C the DTFCD macro
instruction specifies that the
symbolic unit containing the

16 DOS supervisor and I/O Macros

file is SYS004, that the file
uses a work area and an I/O
area called Al, and that
control should be given to
EOFCD when the last card is
read •

A direct relationship exists between
these parts. During assembly, the macro
instruction specifies which macro '
definition is to be called. Figure 3 shows
how the macro definition is extracted,
tailored, and inserted into the program.
This is accomplished by a selection and
SUbstitution process using the general
information in the macro definition and the
specific information in ~he macro
instruction. The insertion is a module, a
table, or a small in-line routine and is
called the macro expansion.

Afte~ the insertion is made, the
complete program consists both of source
program statements and assembler language
statements generated from the macro
definition. In subsequent phases of the
assembly, the entire program is processed
to produce the machine-language program.

IBM provides a number of prewritten
macro definitions and specifies the macro
instructions that the programmer can use
for the definitions. Other macro
definitions can be written by the user.
See the Assembler publication listed on the
cover of this manual for additional
information on this subject.

The. IBM~supplied macro instructions that
are explained in this publication are
organized into these categories:

• Sequential Access Method (SAM) LIOCS
macro instructions.

• Direct Access Method (DAM) LIOCS macro
instructions.

• Indexed Sequential Access Method (ISAM)
LIOCS macro instructions.

• FIOCS macro instructions.

• Supervisor Communication roacro
instructions.

• Additional macro instructions.

SOURCE PROGRAM
{Before}

1
2------

ASSEMBLER
OPERATIONS

Locate Macro
Definition

Source
Program
Statements

SOURCE PROGRAM
{After}

1
2

Source
Program
Statements

15------
16 Macro Instruction --~~
17-----

Perform Indicated Selection
and Substitution

15------
16 Macro Instruction

Merge with }
Source Program ~

~Macro
Expansion

Figure 3. Schematic of Macro Processing

Self-Relocation and IOCS

To make LIOCS and PIOCS imperative and
Supervisor Communication macro instructions
self-relocating the user must:

1. Use the OPENR and CLOSER macro
instructions, and

2. Use register notation within all his
imperative macro instructions.

See the discussion on Register Notation
in this publication.

DTF Declarative Macro

Whenever logical IOCS imperative macro
instructions (GET, PUT, READ, WRITE, etc)
are used in a program to control the
input/output of records in a file, that
file must be defined by a declarative macro
instruction, called a DTF (Define The
File). The DTF macro instruction describes
the characteristics of the logical file,
indicates the type of processing, and
specifies main-storage areas and routines.

Source { 1:
Program •

Statements : =:==_ -==_=~ __ =~ __ ==_

For example, if a GET is issued, the
file definition supplies such factors as:

• Record type and length.

• Input device from which the record is
to be retrieved.

• Address of the main-storage area where
the record is to be located for
processing by the problem program.'

Device-oriented file-definition
declarative macro instructions are
available for defining files processed by
LIOCS. DTFPH is available for magnetic
tape or DASD files processed by PIOCS,.
Figure 4 contains an example of a DTF
source statement. For LIOCS operations,
the file-definition macro instructions used
depend on the type of processing that will
be performed for the file and in some
cases, the I/O device upon which the file
resides.

Macro System 17

IBM IBM SYItem/3SD ASlembler Coding Form kza ... SOf

PROGRAM

PROGR.A.MMER DATE

STATEMENT

No •• Operation O~~"d 1 8 10 " I, ,. 3. "

OL D~ 5TR DT FMT
B L K5 IZ E = 40 0,

DE VA DD R= 5Y 50 o 1 ,

EO FA DD R= EO FM 5T R,
FI LA B L = 5 T D,
10 A R EA 1 = AR EA ON E ,

E R R~ P T =C KO LD B L K,
HD RI N F 0= YE 5,

10 AR EA 2 = AR EA T~ 0,
10 R E G= (3)

LA BA DD R = CK OL DB L K,
RE AD = F OR WA RD,
RE C F OR M= F I XB L K,

RE C5 I Z E = 80 ,
RE WI ND =U NL OA D,
5E PA 5M B= YE 5.
TY P E F L E = IN PU T,
~L R E RR =R EGG

Figure 4. Sample DTFMT Macro Instruction

SEQUENTIAL PROCESSING: This applies to
input/output files in serial devices or to
2311, 2314, 2319, or 2321 DASD when records
are processed sequentially. The following
macros are used for sequential processing:

Macro Instruction

DTFCD

DTFCN

DTFDI

DTFMR

DTFMT

DTFOR

DTFPR

DTFPT

DTFSD

DTFSR

Defines the File for

Card Device

Console
(Printer-Keyboard)

Device Independence

Magnetic Reader (MICR)
and Optical
Reader/Sorter

Magnetic Tape

Optical Reader

Printer

Paper Tape Reader or
Punch

sequential DASD

serial type device (for
compatibility only)

18 DOS Supervisor and I/O Macros

"

,. I.U ••• 4.

PUNCHING L GRAPHIC L 1 I J PAGE OF

INSTRUCTIONS I PUNCH I 1 I I I CARO ELECTRO NUMBER

Id.nlific:oIIOl'l"

C-.. Sequuu
,.< ,.

" 6. " 71 73 8.

X
X
X
X

X
X

X
X
X
X
X
X
X
X
X
X
X

DIRECT ACCESS METHOD: Whenever a logical
DASD file is to be processed randomly~
DTFDA should be used.

INDEXED SEQUENTIAL SYSTEM: Whenever a
logical DASD file is to be organized or
processed by the indexed sequential access
method (ISAM), DTFIS should be used. .

PHYSICAL laCS PROCESSING: When Ploes
macro instructions (EXCP, WAIT, etc) are
used for a file, the DTFPH macro
instruction is required if standard labels
are to be checked or written en a DASD or
magnetic tape file, or if the DASD file is
file protected.

A DTFxx macro instruction generates a
DTF table that contains indicators and
constants describing the file. The user
can reference this table by using the·
symbol filename+constant or filenamex,
where x is a letter. When such a reference
is necessary, the constant or letter is
specified in the text. When referencing
the DTF table, the user must ensure
addressability through the use of an A-type
constant, or through reference to a base
register.

r---, I Supervisor I/O I
I Source Program DTF Table Tables (Job Con- I
I trol Initiated) I
I GET FILE FILE DTFCD SYSOOO,cuu I
I I • I I I L ______ J L------~DEVADDR=SYSOOO I L ___ J

Figure 5. Relationship between Source Program, DTF Table, and
Job Control I/O Assignment

SYMBOLIC UNIT ADDRESSES

In each of the DTF macro instructions,
except those for DTFIS, and DTFPH
MOUNTED=ALL files, the user can specify ·a
symbolic unit name in the DEVADDR=SYSnnn
operand. This symbolic unit name is also
used in the job control ASSGN statement to
assign an actual I/O device address to the
file. For DASD files, the symbolic unit
name is supplied in the job control extent
statement.

The programmer chooses the symbolic unit
name of a device from a fixed set of
symbolic names. He writes his program
considering only the device type (tape,
card, etc) of his file. At execution time,
the actual physical device is determined
and assigned to a given symbolic unit. For
instance, a programmer can write a program
that processes tape records and can call
the tape SYSOOO. At execution time the
operator (using ASSGN) assigns any .
available tape drive to SYSOOo.

Figure 5 shows the relationship between
the source program, the DTF table, and the
job control I/O assignment.

The fixed set of symbolic names that can
be used with a declarative macro for either
a background or batched job foreground
program are the same and are represented by
SYSxxx. If a foreground program is in the
single program mode (via START statement),
the system logical units for foreground
programs must be assigned to unit record
devices and SYSRLB, SYSSLB, SYSCLB, and
SYSLNK cannot be used. Use of SYSCLB and
SYSLNK for foreground programs is possible
only in systems which support the batch-job
foreground and private core image library
options. Except for the preceding, both
foreground and background programs can
reference the same logical unit providing
different devices, or DASD extents, are
assigned. These symbolic units are system
logical units and programmer logical units.

system Logical Units

SYSRDR Card reader, magnetic tape unit,
or disk extent primarily for job
control statements.

SYSIPT Card reader, magnetic tape unit,
or disk extent as the primary
input unit for programs .•

SYSPCH Card punch, magnetic tape unit, or
disk extent as the primary unit
for punched output.

SYSLST Printer~ magnetic tape unit, or
disk extent as the primary unit
for printed output.

SYSLOG Printer-keyboard for operator
messages and logging job control
statements. Can also be assigned
to a printer.

SYSRES System residence area on a disk
drive.

SYSLNK Disk extent as input to the
linkage editor.

SYSRLB Disk extent for a private
relocatable library.

SYSSLB Disk extent for a private source
statement library.

SYSCLB Disk extent for a private. core
image library.

Macro System 19

r--, I Source Program CCB . supervisor I/O Table I
I (Job Control Initiated) I
I EXCP ccbname r-~SYSxxx----------------~SYSxxx,cuu I
I I I I I L _____ J I
L _______________ ---______________ J

Figure 6. Relationship between Source Program and Job Control I/O
Assignment

Programmer Logical Units

SYSnnn SYSnnn represents all the other
symbolic units in the system.
These units vary from SYSOOO to
SYSmax, where SYSmax represents
the highest numbered programmer
logical unit available for a
partition. The largest number
available in the system is 222
when MPS=BJF, and 244 when MPS=YES
or NO. SYSmax can be determined
by the user's distribution of the
programmer logical units among the
partitions.

Each declarative macro, except DTFIS in
which SYSnnn applies, requiring a symbolic
unit to be specified has a list of symbolic
units that are valid for that macro. In
that list, SYSnnn represents only the
programmer logical units. However, SYSxxx
indicates either a system or a programmer
logical unit.

Note: For the direct-access method,
not only must the extent statements be
supplied in ascending order~ but the
symbolic units for multivolume files
must be assigned in consecutive order.

For files processed by either the
Sequential Access Method (SAM), or the
Direct Access Method (DAM), only one
symbolic unit may be assigned to a file
on one volume.

In physical IOCS, the symbolic unit name
is specified in the CCB (as well as the
DTFPH when used). Figure 6 shows the
relationship between the source program and
the job control I/O assignment.

Logic Module Generation
Macro Instructions

Each DTF except DTFCN and DTFSR must link
to an IOCS logic module. These modules
provide the necessary instruction to
perform the input/output functions required
by the problem program. For example, the
module reads or writes data, tests for
unusual input/output conditions, blocks or

20 DOS Supervisor and I/O Macros

deb locks records if necessary~ or places
logical records in a work area. Most
imperative macro instructions enter a logic
module to perform the necessary function.

Some of the module functions are
provided on a selective basis~ according to
the parameters specified in the xxMOD macro
instruction. The programmer has the option
of selecting (or omitting) some of these
functions according to the requirements of
his program. The omission of some of these
functions results in smaller main storage
requirements for a particular module.

Note: If the user issues an imperative
macro, such as WRITE or PUT, to a
module that does not contain that
function, an invalid supervisor call
(SVC 50) is generated~ the job is
terminated, and a message is displayed.

A logical IOCS module is defined as a
subset to another logic module if all the
functions available to the' subset module,
plus additional functions~ are also
available to the superset module. For
example:

Superset Module
Functions

Optional use of
CNTRL macro

Workarea and I/O
area processing

Support of printer
overflow

Read backward and
forward on magnetic
tape

Subset Module
Functions

CNTRL macro cannot
be used

I/O area processing
only

No printer overflow
support

Read forward only

The relationship between subsets and
supersets is shown in diagrams at the end
of the discussion for each module.

Some CDMOD, PRMOD, PTMOD, ISMOD, SDMOD,
DAMOD, and MTMOD macro instructions
correspond to two or more DTFCD, DTFPR,
DTFPT, DTFIS, DTFSD, DTFDA, and DTFMT macro
instructions. The functions required by
these DTFs are thus available in a single

xxMOD macro instruction, even if the DTFs
have slightly different parameters.

Interrelationships of the
Macro Instructions

HOW THE IOCS MODULE IS LINKED WITH THE DTF
TABLE

Regardless of the method of assembling
logic modules and DTFs (that is, with the
main program or separately), a symbolic
linkage results between the DTF table and
the logic module. The Linkage Editor
resolves these linkages at edit time.

The IOCS module and DTF table linkage is
accomplished by generating a v-type address
constant in the DTF table and a named CSECT
in the logic module. To resolve this
linkage, the module names (or linkage
symbols) must be identical.

The following example shows the
relationship of the program, the DTF, and
the logic module. Imperative macros
initiate the action to be performed on the
file by branching to the logic module entry
point generated in the DTF table.

r---,
Program DTF Table Module

r------------,
I I
I t

GET TAPE, WORK TAPE DTFMT r-~IJFFBCWZ

I
I
I

IJFFBCWZ--J

L __________________ ~----------------------J

TAPE is the name of the file. IJFFBCWZ
is the name of the logic module.

GENERATION OF MODULE NAMES IN DTF TABLES
AND LOGIC MODULES

A module name is generated in the DTF table
by one of two methods:

1. The user may explicitly specify the
module name by entering it in the DTF
operand MODNAME=name.

2. The user may allow the macro
definition that processes the DTF
macro instruction to generate the
module name as determined by the
functions required by the DTF macro
instruction.

A module name is generated for a logic
module in a similar manner. The generated
names are referred to as standard module
names. Information on standard module
names follows the discussions of the logic
module generation macros.

SUBSET/SUPERSET MODULE NAMES

When a DTF table is assembled (with the
main program or separately), a module name
is generated that exactly reflects the
functions required by the DTF macro
instruction. However, if similar DTFs are
assembled together, the services required
by the similar files are collected by the
macro definition during the assembly
process, and one superset module name is
generated. The problem programmer can
become familiar with the quick reference
Subset/Superset xxMOD Names charts
following the logic module description by
studying this example:

r---,
I * + + + * I
I I J x F B C W Y I
I U Z Z Z Z I
I v + + I
I WEN I
I Z S I
I Z I
I I
I + subsetting/supersetting permitted. I
I * No subsetting/supersetting permitted. I L _________________ ~ _______________________ J

The letters indicate several functions
that can be performed by the logic module.
A superset is a logic module that performs
all the functions of its subset module.
For example, the logic module name IJxWEBZZ
is a superset module for subset modules
IJxWE.§ZZ and IJxWE~ZZ. similarly" IJxWE.§ZZ
is a superset module for subset module
IJxWE!ZZ.

Macro System 21

An asterisk (*) over a column indicates
that~o subsetting or supersetting is
permitted, whereas a plus (+) sign in a
column indicates that both are permissible.
Two plus signs in a single column divide
that column into mutually exclusive sets.
In this example, C is not a superset of N,
S, or Z, and conversely N, S, or Z, is not
a subset of C.

The vertical arrangement of letters
within a column is always in alphabetical
order by group. The only significance of
the horizontal order is the letters
themselves that comprise the module name.

Do not use subset/superset charts to
decide functions to be performed. The
requirements of the problem program should
decide these functions. Then, the logic
module name is formed according to the
Recommended Module Name for xxMOD section.
These charts also make it possible to
obtain a compromise between the number of
functions a module can perform and the
resulting size of the module.

EDITING LOGICAL IOCS PROGRAMS

The programmer has the option of either
assembling DTFs and logic modules with his
main program or assembling them separately
for later linkage editing with the main
program. To take full advantage of the
linkage editing facilities for DTF tables
and logic modules, the operand SEPASMB=YES
should be specified when DTF tables or
logic modules are separately assembled.

Logical IOCS programs always generate
symbolic linkages between DTF tables and
logic modules. These linkages are resolved
by the Linkage 'Editor at edit,time.
Furthermore, if DTF tables are assembled
separately, the programmer must define any
additional symbolic linkages in the form of
EXTRN-ENTRY symbols. Appendix C contains a
full description of the different symbolic
linkages that must be defined when
separately assembled programs are edited.

When the operand SEPASMB=YES is
specified in a DTF macro instruction, a
CATALR card with the file name supplied to
the DTF is generated ahead of the object
deck. When the operand SEPASMB=YES is
specified in an xxMOD macro instruction, a
CATALR card with the module name is
generated ahead of the object deck. In
either case, a START card must not be used
in a separate assembly.

Cataloging DTF tables and logic modules
to the relocatable library is recommended
to reduce the user coding effort and to

22 DOS supervisor and I/O Macros

minimize total time needed to prepare and
test programs that use logical IOCS. Using
DTF tables cataloged in the relocatable
library requires standardization of the
labels referred to by the DTFs. This is
necessary if these tables are used by
different programs.

If the IIO modules,'DTF tables, and the
main program are assembled together, the
linkage editor searches the input stream
and resolves the symbolic linkages bet~een
tables and I/O modules. This is
accomplished by external-reference
information (V-type address constants
generated in DTF tables) and the
section-definition information (CSECT
definitions in logic modules). Further
information may be found in the Linkage
Editor section, under Structure of a
Program, in the System Control and Service
publication listed in the Preface.

If any of the elements that constitute a
program are assembled separately, the
different object 'modules (assemblies) may
be supplied to the input stream at
linkage-edit time. The linkage editor then
resolves the symbolic linkages between
them. If any of the separately assembled
elements have been cataloged to the
relocatable library, the linkage editor
finds unresolved external references in the
input stream and performs the AUTOLINK
function of the linkage editor. The
relocatable library then searches for a
relocatable module name identical to the
external reference. If the module is not
defined in the relocatable library, the
external references to this name remain
unresolved. Therefore, if the modules are
assembled separately and cataloged to the
relocatable library, the programmer must
determine that at least one of the DTFs in
his program includes a module name that can
be successfully autolinked from the
relocatable library. Programmer control of
the module to be autolinked from the
relocatable library is achieved by the
MODNAME operand in the DTF macro
instruction. This operand overrides the
standard module name generated by the macro
definition.

LINKAGE-EDITING PREASSEMBLED LOGIC MODULES

A ~mall number of IOCS logic modules can
serve a large number of DTF macros. (This
applies only to CDMOD, PRMOD, SDMOD, ISMOD,
DAMOD, PTMOD, and MTMOD.) For example, the
following module can serve 64 different
DTFMT files by using these options:
TYPEFLE=INPUT or OUTPUT, RECFORM=FIXUNB or
FIXBLK, WORKA=YES or NO, IOAREA2=Name or
(not used), CKPTREC=YES or NO, and

READ=FORWARD or BACK. The same module can
also serve files with varying block sizes,
record sizes, I/O area addresses, and exit
addresses.

r---,
I Col 72 I
I I
I MTMOD X I
I TYPEFLE=INPUT, X I
I RECFORM=FIXUNB, X I
I WORKA=YES, X I
I CKPTREC=YES, X I
I READ=BACK I L ___ J

A preas sembled logic module may be
furnished to the linkage editor in three
ways:

1. INCLUDE the module from SYSIPT.

2. INCLUDE the module from the system
relocatable library.

3. AUTOLINK the module from the system
relocatable library.

If a module is included from SYSIPT, its
name offers no problem. However, the user
assumes responsibility for a module name
and functional match to the DTFs in his
program.

If a module is included from the system
relocatable library, the situation is
similar. The user should verify that the
desired modules have already been cataloged
to the library by consulting a DSERV
listing of the library.

If the module is to be autolinked from
the system relocatable library, the user
must determine whether the module name
generated by the DTF (or furnished by the
MODNAME parameter) coincides exactly with
the name in the system relocatable library.
If the names are identical, the autolink
can be accomplished. Otherwise, the user
must either include some module that meets
these needs (from SYSIPT or from the system
relocatable library), or consider the logic
module needs of other DTFs in his program.·

If a needed module is not available in
the relocatable library, the user should
determine if any other DTF will need a
module that is named in the library and
furnishes at least the functions required
by the first DTF. For example, the
following DTFs generate a request for the
module named IJFFZZZZ.

DTF Example 1

r----------------------·-------------------,
I Col 72 I
I I
I FILE1 DTFMT X I
I TYPEFLE=INPUT, X I
I RECFCRM=FIXUNB, X I
I IOAREA1=A1" X I
I IOAREA2=A2 I L ___ J

DTF Example 2.

r---,
I Col 72 I
I I
I FILE2 DTFMT X I
I TYPEFLE=OUTPUT, X I
I RECFCRM=FIXBLK, X I
I IOAREA1=A3, X I
I WORKA=YES I L ___ J

If the module named IJFFZZWZ is
available in the system relocatable library
and the two files are defined in the same
assembly, the autolink facility can be
used. However, if only the first file is
defined in the assembly and no IJFxxxxx
modules are cataloged in the system
relocatable library, the user must either
furnish a private copy of the IJFFZZZZ
module at linkage~edit time or include the
larger module (IJFFZZWZ). In systems with
ample main storage and/or for small
programs, the user may choose to sacrifice
a modest amount of· main storage to achieve
this capability. If the name of a DTF
differs from that of a superset module,
entry points (in addition to the CSECT) are
generated within the logic module. This
condition could arise if the DTF does not
use all the functions provided for in the
module.

The entry points in the module define
all the subset module names that can be
handled by the superset module. V-type
address constants may then be resolved
against the entry points if they do not
match the CSECT name. For example, the
module named IJFFZZWZ has a secondary entry
point named IJFFZZZZ. This explains why
autolink works in the previous examples.
However, autolink can only be used with "
catalog names (which correspond to the
CSECT name) but not with secondary entry
points.

If the programmer gives an explicit
module name to the xxMOD macro instruction,
this name" overrides the standard module
name in the CSECT definition and no ENTRY
points are generated. The DTF tables that
access the module may employ the operand
MODNAME=name to link to a previously named
logic module.

Macro System 23

Each installation should generate a
certain set of IOCS logic modules when the
system residence volume is built. These
modules should reflect equipment
configuration, installation standards for
record formats and exits, etc. Any user
requiring a special tailored module can
generate it by using the logic module macro
instruction and its specific parameters.

Macro-Instruction Format

Macro instructions have the same format as
assembler statements. That is, each macro
instruction can consist of a name,
operation, and operand field.

The name field in a macro instruction
may contain a symbolic name. Some macro
instructions require a name; for example,
CCB, TECB, DTFxx.

The operation field must contain the
mnemonic operation code of the macro
instruction..

The operands in the operand field must
be written in either positional, keyword,
or mixed formats.

Positional Operands: In this format, the
parameter values must be in the exact order
shown in the individual macro discussion.
Each operand, except the last, must be
followed by a comma with no imbedded
blanks. If an operand is to be omitted in
the macro instruction and following
operands are included, a comma must be
inserted to indicate the omission. No
commas need to be included after the last
operand. Column 72 must contain a
continuation punch if the operands fill the
operand field and overflow into another
card. Any nonblank character in column 72
causes the next parameter to be read in the
following card. For example, GET uses the
positional format. A GET for a file named
CDFILE using WORK as a work area is
punched:

GET CDFILE,WORK

Keyword Operands: The exact parameters
used are equated to a keyword value. Thus,
an operand written in keyword format has
the form:

LABADDR=MYLABELS

where LABADDR is the keyword and MYLABELS
is the parameter and LABADDR=MYLABELS is
the complete operand. The operands in the
macroinstruction may appear in any order,
and any that are not required may be
omitted. Different keyword operands may be

24 DOS Supervisor and I/O Macros

punched in the same card, each followed by
"a comma. Or, they may be punched in
separate cards as in Figure 4.

Mixed Format: The operand list contains
both positional and keyword operands. The
keyword operands cari be written in any
order" but they must be written to the
right of any positional operands in the
macro instruction.

For additional information on coding
macro statements, see the Disk and Tape
Operating systems Assembler Language
publication.

OPERAND CARDS FOR DECLARATIVE MACROS

The operands of the DTFxx and the module
generation macro instructions can be
punched in a set of entry cards in the
assembler format. Figure 4 shows an
example of the entry cards used for a DTFMT
macro instruction. The macros may be
assembled in any order.

The first entry card is a header card,
and the continuation cards are detail
cards. The header card is punched with:

• The symbolic name of the file in the
name field. Programming Note: Avoid
defining symbols beginning with IJ
since they may conflict with IOCS
symbols beginning with IJ,. Avoid
symbols that are identical to a
filename plus a single character
suffix. Thus, for the filename RECIN,
IOCS generates the symbols RECINS,
RECINL, etc by concatenating the
filename with an additional character.

In a DTF, the symbolic filename may
be up to seven characters long. This
filename, if it is required on any of
the standard label job control
statements, must be the same as that
used in the DTF header card.

For a module generation macro, the
name mayor may not be specified. See
Generation of Module Names in DTF
Tables and Logic Modules.

• The macro instruction mnemonic
operation code in the operation field.

• Keyword operands in the operand field,
if desired.

• A continuation punch in column 72, if
detail cards are necessary.

The detail cards follow the header card,
and may be arranged in any order. Each

detail card is punched, beginning in column
16, with one or more keyword operands
separated by commas. All detail cards
except the final one must be punched with a
comma immediately following the last
operand and with a continuation punch in
column 72. comments may be included if a
space is left after the comma following the
last operand.

NOTATION CONVENTIONS

The following conventions are used in this
publication to illustrate macro
instructions:

1. Uppercase letters and punctuation
marks (except as described in these
conventions) represent information
that must be coded exactly as shown.

2~ Lowercase letters and terms represent
information that must be supplied by
the programmer. More specifically, an
n indicates a decimal number, an r
indicates a decimal register number,
and an x indicates an alphameric
character.

3. Information contained within brackets
[] represents an optional parameter
that can be included or omitted,
depending on the requirements of the
program.

4. An ellipsis (a series of three periods
enclosed by commas) indicates that a
variable number of items may be
included.

5. Options contained within braces {}
represent alternatives, one of which
must be chosen. When the alternatives
appear in a string, they are separated
by a vertical bar (logical OR).

6.

[
name J
label
address

7. filename

8.

9. length

A name-field symbol in
this assembly, or an
operand of an EXTRN
statement, or * (the
location counter).

symbol appearing in the
name field of a DTF macro
instruction.

self-defining value, such
as 3, X'04', (15), B ' 010'.

Absolute expression, as
defined in the Assembler
publication.

10.

11.

12.

{!}

{
name}

(r)

{

name 1 (0)
name

(1)

Underlined elements repre­
sent an assumed value in
the event a parameter is
omitted.

Ordina~y register notation.

Special register notation
(ordinary register notation
can be used.)

Register Notation

Certain operands can be specified in either
of two ways:

1. The user can specify the operand
directly.

2. The user can preload address of the
value into a register before executing
the macro instruction.

In the latter case, the user must
specify the register in the macro
instruction. (The registers that can be
used for this purpose are discussed under
Register Usage.) This method is known as
ordinary register notation. When the macro
instruction is assembled, instructions are
generated to pass the information specified
in the operand to IOCS or to the
supervisor. For example, if an operand is
written as (8), and if the corresponding
parameter is to be passed to the supervisor
in register 0, the macro expansion contains
the instruction LR 0,8.

The user can conserve main storage and
save execution time by using what is known
as special register notation. In this
method, the operand is expressed as either
(0) or (1). This notation is special for
two reasons:

• The register notation designation of
registers 0 and 1 is not allowed unless
specifically designated.

• The designation must be made by the
specific three characters (0) or (1).
When special register notation is
indicated by (0) or (1) in a macro
instruction, the user can use ordinary
register notation and the macro
expansion will contain the extra (LR)
instruction.

The fo~mat description for each macro
instruction shows whether special register
notation can be used, and for which
operands. For example,

Macro System . 25

GET

The format description shows that the
filename operand can be written as (1), and
the work name operand as (0). If either of
these special register notations is used,
the user's problem program must load the
designated parameter register before
execution of the macro expansion. ordinary
register notation can also be used.

Register Usage

Registers for Special Use

General registers 0, 1, 13, 14, and 15 have
special uses, and are available to the
problem program only under certain.
conditions.

The following paragraphs describe the
general uses of registers 0, 1, 13, 14, and
15 by IOCS, but the descript.ion is not
meant to be all inclusive. For more
informa~ion on problem program subroutine
linkage through registers, refer to the
Linkage Registers section. In addition,
special applications, such as a MICR user
stacker selection routine, may require
different registers,.

Registers 0 and 1: Logical IOCS macros,
the supervisor macros, and other
IBM-supplied macros use these registers to
pass parameters. Therefore, these
registers may be used without restriction'
only for immediate computations, where the
contents of the regist~r are,no~longer
needed after the computation.' However, if'
the programmer uses them, he must either
save their contents himself (and reload
them later) or finish with them before IOCS
uses these registers.

Register 13: Control program subroutines,
including logical IOCS, use this register
as a pointer to a 72-byte, doubleword
aligned save area. When using the CALL,
SAVE, or RETURN macros, the problem
programmer can set the address of the save,
area at the beginning of each program
phase, and leave it unchanged thereafter.
However, when sharing a reentrant (read
only) logic module among tasks, each time
that module is entered by another task,

26 DOS Supervisor and I/O Macros

register 13 must contain the address of
another 72-byte save area to be used by
that logic module.

Registers 14 and 15: Logical IOCS uses
these two registers for linkage. Register
14 contains the return address (to the
problem program) from DTF routines, called
programs, and user's subroutines. Register
15 contains the entry point into these
routines, and is used as a base register by
the OPEN, CLOSE, and certain DTF macros.
IOCS does not save the contents of these
registers before using them. If the
programmer uses these registers, he must
either save their contents himself (and
reload them later) or finish with them
before IOCS uses them.

Registers for Programmer Use

Registers 2-12 are available for general
usage by progra~mers. Registers 0, 1,
13-15 are used by the operating system.

Note: If these registers are used by
programmers, their contents should be
saved before use and restored before
returning control to the system.

The assembler instruction for translate
and test (TRT) makes special use of
register 2. It is the programmer's
responsibility to save the contents of this
register before executing the TRT
instruction if register 2 contains valuable
information (such as pointers or counters)
,for later use in his program. After TRT
instruction has been executed, the
programmer can then restore the contents of
register 2 from the save area.

Registers 2-12: If an ISMOD logic module
precedes an assembler language USING
statement or follows the problem program,
registers 2-12 remain unrestricted even at
assembly time. However, if the ISMOD logic
module(s) lies within the problem program,
the problem programmer should issue the
same USING statement [which was issued
before the logic module(s)] directly
following the logic module(s)~ This action
is necessary because the ISMOD logic module
uses registers 1~ 2, and 3 as base
registers, and the ISMOD CORDATA logic
module uses registers 1~ 2, 3, and 5 as
base registers. Each time either module is
assembled, these registers are dropped.

Label processing is currently a function
of:

• DASD

• 2400-series magnetic tape

• 3420 magnetic tape

This section discusses the laCS portion of
that function. Appendix A gives a complete
discussion of the actual physical labels.

Because of the direct access
capabilities of DASD devices, standard
labels are required for logically accessing
files by name and for adequate file
protection. Tape files do not require file
labels, but without them maximum file
security and control cannot be attained.
Also, tape file security can only be
maintained when the proper density is used
both on the ASSGN statements and on the
tape drive.

Other files generally are not labeled,
but processing for the file is similar.
The file is opened to make it available for
processing by logical laCS routines. When
laCS detects an end-of-file on input, it
branches to the EOFADDR address where the
user can close the file. On output, he can
close it at his discretion.

DASD Standard Labels

Labels are required when processing DASD
files. Thus, the user must supply both a
DASDlabel (DLBL) statement for each
logical file to be processed, and an extent
(EXTENT) statement area on a DASD device.
The OPEN macro uses the information
supplied in these cards and also certain
information from the DTF table for the
file. Also, when processing standard
labels, a LBLTYP statement may be required
to define storage for nonsequential DASD
file labels (see the System Control and
Service publication).

For input, the extent(s) for a file must
either coincide with, or be within, an
existing extent(s) that is defined in the
Volume Table of Contents (VTOC). That is,
on input, laCS opens only an existing file
or a subset of an existing file. For
output, the file to be written cannot
overlap existing unexpired files. laCS
does not destroy an unexpired file without

Label Processing

an explicit request from the user.
However, if OPEN determines that the output
file will overlay an existing file whose
expiration date has expired, OPEN deletes
the expired label(s) from the VTOC. This,
in effect, removes the file from the
volume. In a mUltivolume file, the file
may be removed from all the volumes that it
occupies or from only some of the volumes.

If OPEN determines that the expiration
date of an existing file to be overlaid by
the output file has not expired, the old
file cannot be destroyed automatically.
The user has the following choices.

• For sequential or physical laCS
processing:

1. Terminate the job.

2. Bypass the extent. That extent
and any remaining extents for that
file are bypassed and the job is
terminated.

3. Delete the unexpired file.

• For work file and direct access
processing:

1. Terminate the job.

2. Bypass the extent. That extent
and any remaining extents for that
file are bypassed and the job is
terminated.

3. Delete the unexpired file.

• For index sequential processing:

1. Terminate the job.

2. Delete the unexpired file.

For more information on processing
labels, see the OPEN macro under the
appropriate access method~

During processing, IOCS recognizes an
end-of-volume condition when the extents on
one volume have been processed and an
extent for another volume is encountered.

Label Processing 27

When this condition occurs, laCS branches
to the user's LABADDR routine (if provided)
to write or pass individually each user
standard trailer label to be processed.
After all user standard trailer labels are
processed (if any), laCS processes the
standard labels on the next volume and
branches to the user's routine to process
user standard header labels. After the
header labels are processed, laCS continues
to process the data.

When all records for an output logical
file have been written, the CLOSE
instruction must be issued to perform
normal end-of-file procedures. laCS then
branches to the user's LABADDR routine (if
provided) to write user trailer labels and
the file is made inactive. If the end of
the last extent specified for the file is
reached before the CLOSE instruction is
issued, laCS assumes an error condition.

For input logical file, laCS determines
an end-of-file condition by either the
ending address of the last extent specified
for the file in the extent statement, .or by
an end-of-file record read from the data
file. For sequential processing with DTFSD
or DTFSR, laCS branches to the EOFADDR
routine upon an end-of-file condition. For
sequential processing with DTFIS, laCS
posts the end-of-file condition in the
field referred to as filenameC. The user
can then test this bit and take action
necessary to close his file. However, when
processing in random order, the user must
determine the end-of-file by checking
filenameC (DTFIS) or ERRBYTE (DTFDA).

If further processing of a closed file
is required at some later time in the
program, the file must be reopened. When a
file is processed in sequential order, laCS
checks the label(s) on the first volume and
makes the first extent available, the same
as at the original OPEN. When a file is
processed by physical laCS with the DTFPH
operand MOUNTED=SINGLE, laCS opens the next
extent specified by the user's extent
statement. When a file is processed by the
direct access method (DTFDA), by the
indexed sequential system (DTFIS), or by
physical laCS with MOUNTED=ALL on the
DTFPH, all label processing is repeated and
all extents are again made available.

If user standard labels are desired, the
user must supply a LABADDR routine, unless
processing with physical laCS. The direct
and sequential access methods process both
user header and trailer standard labels.
The indexed sequential access method does
not process user standard labels. Also,
user labels cannot be created for a file
whose first extent is a split cylinder
extent. The direct access method writes a

2a DOS Supervisor and I/O Macros

user trailer label only on the first volume
of a multivolume file~

When the LABADDR routine· is entered,
laCS loads an alphabetic 0, V, or F in the
low-order byte of register o. a indicates
header labels, V indicates trailer
end-of-volume labels, and F indicates
end-of-file labels. The user's LABADDR
routine can test this character to
determine the labels to be processed. laCS
also loads the address of an aO-byte laCS
label area in register 1.

Within the LABADDR routine, the user
cannot issue a macro that calls a transient
routine (such as OPEN" CLOSE" DUMP, PDUMP,
CANCEL, and CHKPT). For multivolume files,
the LABADDR routine should save registers
14 and 15 upon entry, and restore them
before issuing the LBRET macro.

Writing User Standard Labels cn Disk

When the user specifies LAEADDR (see DASD
Standard Labels), OPEN reserves the first
track of the first data extent as a user
label area. When LABADDR is specified, at
least one user header and trailer label
must be written if the access method
processes it~ For the direct acc~ss
method, when TRLBL=YES is specified with
LABADDR, trailer labels are processed.

laCS uses bytes 1-4 of the aO-byte label
for the label identification (for example~
UxLy, where x = H or T and y = 1, 2, ••• ,
a). The user can use the other 76 bytes as
he wishes. The maximum number of header or
trailer labels is eight for a 2311 or 2314
file, and five of each for a 2321 file.
laCS stores the label information (UHLx or
UTLx) that it generates in bytes 1-4 of the
laCS label area. The user can test this
information, in addition to registers 0 and
1, to determine the type and number of the
label. (See User-Standard DASD File Labels
for the label formats.)

Labels are built in either of the
following ways:

1. Build an aO-byte (or a 76-byte) label
in the user area of main storage, and
load the address of the label area
(label area minus fOUr, if 76-byte)
into register 0 before issuing the
LBRET macro. When the label is moved
into the laCS area, laCS adds four
bytes to the address in register o.

2. Build a 76-byte label in the IOCS area
at the address (that laCS supplies in
register 1) plus four, and load the

contents of register 1 to register 0
before issuing the LBRET macro.

The IOCS area of main storage is a part
of the supervisor. If the program is
executed on a system with the storage
protection feature, method 1 must be used
because the user cannot write into the
supervisor area". Thus, no user standard
label routine using the second method can
be executed in a multiprogramming
environment.

When the label is ready to be written,
the LBRET macro returns control to IOCS.
If LBRET 2 is used, OPEN writes the label
and returns control to the user's label
routine unless the maximum number of labels
has been written. If LBRET 1 is used, the
label set is terminated and no more labels
can be created.

When IOCS receives control, the IOCS
routines move the label from the address
the user loaded in register 0 into the IOCS
label area. If the maximum number of
labels has n~t been written, IOCS increases
the identification number by 1 and returns
to the user's label routine unless LBRET 1
was used. If the maximum number of labels
has been created, IOCS automatically
terminates the label set.

Checking User Standard Labels on Disk

When a DASD file contains user standard
trailer and/or header labels, IOCS makes
these labels available one at a time to the
user if LABADDR is specified in the DTF for
the file (see DASD Standard Labels). If
the labels are to be checked against
information obtained from another input
file, that file must be opened ahead of the
DASD file.

When the" problem program has finished
checking a label, it can update it or leave
it unmodified. If it is to be updated, the
problem program simply updates the
appropriate label fields and issues the
LBRET 3 macro. This causes the OPEN
routine to Update (rewrit~) that label and
read the next label. Register 1 points to
the label (outside the problem program
area). In a multiprogramming environment,
the problem program must move the label to
an area within the problem program before
modifying it. After the label is modified,
the problem program must "initialize
register 0 with the address of the modified
label before issuing the LBRET 3 macro. If
the label is to remain unmodified, the
problem program can issue a LBRET 2 macro
so OPEN will read the next label. In

either situation, if the end-of-filerecord
is encountered at the end of the labels,
OPEN automatically terminates the label
checking.

If the user wishes to end label checking
before all the labels have been read, the
LBRET 1 macro may be issued (Direct Access
and Sequential Disk files only).

Tape Labels

TAPE OUTPUT FILES

For a magnetic tape output file, OPEN,
CLOSE, and an end-of-volume condition
rewinds the tape as specified in the DTFSR
or DTFMT REWIND operand. No rewind is
defined for the DTFPH, and tape file
positioning depends on the labels to be
processed and is the user's responsibility.

If a user writes any labels, a LABADDR
routine must be supplied. (For ASCII tape
files, the LABADDR routine may only be used
to process user standard labels.> The
user's LABADDR routine, specified in the
DTF, cannot issue a macro that calls a
transient routine." For example OPEN,
CLOSE, DUMP, PDUMP, CANCEL, and CHKPT
cannot be issued. Also when processing
multivolume files" the user" s label routine
must save and restore register 15 if any
logical IOCS macros other than LBRET are
used. When user standard labels are
written they always follow the standard
labels on the tape.

When all records for a file are
processed, CLOSE can be issued to execute
the end-of-file (EOF) routines. These
routines write any record or blocks of
records that are not already written. A
partially filled record block is truncated;
that is, a short block is written on the
tape. Following the last record~ IOCS
writes a tapemark,the trailer labels, and
two tapemarks~ and executes the rewind
option. If no trailer labels are written,
two tapemarks are written and the rewind
option is executed. In either case, if no
rewind is specified and no user positioning
occurs, the tape is positioned between the
two tapemarks at the end of the file.

If an end-of-volume (EOV) reflective
marker is sensed on an output tape before
CLOSE is issued, logical IOCS prepares for
closing the file by ensuring that all
records "are written on the tape. If the
programmer issues another PUT, indicating
that more records are to be written on this
output file, EOV procedures are initiated.

Label Processing 29

If the programmer issues a CLOSE, the EOF
procedures are initiated.

Under certain conditions, an unfilled
block of records may be written at an EOV
or EOF condition, even though the file is
defined as having fixed-length blocked
records. When this file is used for input,
logical IOCS recognizes and processes these
short blocks. The user need not be
concerned or aware of the condition.

Label processing for the EOV condition
resembles that for the EOF condition,
except that a standard label is coded EOV
instead of EOF. Also, only one tapemark is
written after the label set or after the
data for unlabeled files. In an ASCII
file, two tapemarks follow the end of
volume labels. When IOCS detects the EOV
condition, it switches to an alternate unit
as designated in a job control ASSGN
statement. If an alternate drive is not
specified, the operator is requested to
mount a new volume (on the same drive) or
cancel the job. When the operator mounts
the volume, IOCS checks the standard header
labels and processing continues.

In some cases, you may need to force an
end-of-volume condition at a point other
than the reflective marker,. You may want
to discontinue writing the records on ,the
present volume and continue on another
volume. This may be necessary because of
some major change in category of records or
in processing requirements. The FEOV
(forced EOV) macro is available for this
function. See FEOV Macro.

Writing Standard Labels on Tape (OUTPUT)

When standard labels are written (DTFMT or
DTFSR FlLABL=STD or DTFPH TYPFLE=OUTPUT),
the user must supply the TLBL statement for
standard label information. Also, when
standard labels are processed, a LBLTYP
statement may be required to define storage
for tape label files (see the System
Control and Service publication).

When OPEN is issued and the tape is
positioned at load point, the volume (VOL1)
label is checked. Whether at load point or
not, the old file header, if present, is
read and checked to make sure that the file
on the tape is no longer active and may be
destroyed. If the file is inactive or if a
tapemark was read, the tape is backspaced
and the new file header (HDR1) label is

30 DOS Supervisor and I/O Macros

written with the information the user
supplies in the tape label statement. The
volume label is not rewritten" altered, or
updated.

A comparison is made between the user
specified density (SOO or 1600 bpi) and the
VOLl density of the expired tape. If a
discrepancy is found and the tape is at
load point, the volume label(s) is
rewritten according to the user specified
density.

If an output file begins in the middle
of a reel, it is the user~s responsibility
to properly position the tape immediately
past the tapemark for the preceding file
before issuing the OPEN macro. The MTC
command can be used to do this. If the
tape is improperly positioned" IOCS assumes
an error condition and issues a message to
the operator.

If user standard labels are written, the
LABADDR operand must be specified in the
DTF (see Tape output Files). After writing
the standard label (header or trailer),
IOCS loads register 0 (low-order byte) as
follows:

o indicates header labels.
V indicates end-of-volume labels.
F indicates end-of-file labels.

The user's LAEADDR routine ,can test this
character to determine what labels should
be written. IOCS also loads the address of
an SO-byte IOCS label area in register 1.

Note: For ASCII files, the user
processes his standard labels in
EBCDIC.

A maximum of eight user standard header
(UHL), or trailer (UTL) labels can be
written following the standard header
(HDR1), or trailer (EOV1 or EOF1) labels.
The user standard labels are SO bytes long
and are built entirely by the user. Bytes
1-4 must contain the label identification
(UxLy, where x=H or T and y=l, 2, ••• , S);
the other 76 bytes can be used as desired.

For ASCII tape files, you can have any
number of user standard header or trailer
labels. To comply with the standards for
an ASCII file, these labels are identified
by UHLa and UTLa, where ~ represents an
ASCII character in the range 2/0 through
5/14, excluding 2/7 (quote). The remaining
76 bytes can be used as desired. It is the
user's responsibility to ensure that labels
contain UHLa and UTLa in the first four
bytes.

Note: When creating user header and
trailer labels for 7-track tapes~ only

unpacked data is valid in the 76-byte
data portion of the label.

The user can build his labels in either
of the following ways:

1. Build the label in the user area of
main stor'age, and load the address of
the label into register 0 before
issuing the LBRET macro.

2. Build the label in the laCS area at
the address that laCS supplies in
register 1, and load the address of
the area from register 1 to register 0
before issuing the LBRET macro.

The laCS area of main storage is part of
the supervisor. If the program is to be
executed on a system with the storage
protection feature, method 1 must be used
because the user cannot write into the
supervisor area. Thus, no user standard
label routine using the second method can
be executed in a multiprogramming
environment.

When the label is ready to be written,
the user issues the LBRET macro, which
returns control to laCS. If LBRET 2 is
used, laCS writes the label and returns
control to the user's label routine. If
LBRET 1 is used, the label set is
terminated and no more labels can be
created. When laCS receives control, laCS
writes the label on the magnetic tape and
either returns control to the user (LBRET
2) or writes a tapemark (LBRET 1).

When a standard trailer label is
written, laCS accumulates the block count
for the label when logical laCS is used.
However, if physical laCS (DTFPH) is used,
the user's program must accumulate the
block count, if desired, and supply it to
laCS for inclusion into the standard
trailer label. For this, the count (in
binary form) must be moved to the 4-byte
field within the DTF table named filenameB.
For example, if the filename specified in
the DTFPH header name is DELTOUT, the block
count field is addressed by DELTOUTB.

If checkpoint records are interspersed
with data records on an output tape, the
block count accumulated by logical laCS
does not include a count of the checkpoint
records. Only data records are counted.
Similarly, if physical laCS is used the
user's program must omit checkpoint records
and count data records only.

After all trailer labels (including user
labels, if any) are written at
end-of-volume or end-of-file, laCS

initiates the EOF or EOV routines (see Tape
output Files).

Writing Nonstandard Labels on Tape (OUTPUT)

Note: Nonstandard labels are not
permitted with ASCII.

To write nonstandard labels, the user must
specify FILABL=NSTD and LAEADDR=name. When
the file is opened, the tape must be
positioned to the first latel that the user
wishes to process. The MTC job control
command can be used to skip the necessary
number of tapemarks or records to position
the file. He must also write his own
channel program and use physical laCS
macros to transfer the labels from main
storage onto tape (see Appendix D).

When a file is opened or closed, or when
a volume is finished, laCS supplies the
hexadecimal representation (in the two
low-order bytes of register 1) of the
symbolic unit currently in use. See the
command control block bytes 6 and 7 for
these values. laCS also loads register 0
(low-order byte) as follows:

a indicates header labels.
V indicates ehd-of-volume labels.
F indicates end-of-file labels.

The user's LABADDR routine can then test
this character to determine the type of
labels to be written.

In the user's LAEADDR routine~ physical
laCS macros must be used to transfer labels
from main storage onto tape. For each
label record, a corr.mand control block (CCE)
and channel command word(s) (CCW) must be
established. Also, the EXCP macro must be
issued for each label record. (See
Physical laCS.) Other logical laCS macros
can be used for any processing other than
the transfer of the labels from main
storage to tape. Additional LABADDR
routine restrictions are discussed in the
Tape Output Files section.

After all labels are written~ the user
returns control to laCS by use of the LBRET
2 macro. For laCS processing after LBRET
is executed~ see Tape Output Files.

Writing Unlabeled Files on Tape (OUTPUT)

For program efficiency, the user with
unlabeled files should specify FILABL=NO
and omit TPMARK=NO in the DTF,. His file is
positioned properly with the MTC job

Label Processing 31

control command, if ne~essary, and writing
begins immediately. other processing
information is found under Tape Input
Files.

For unlabeled ASCII files, TPMARK=NO is
the only valid entry. If the parameter is
omitted entirely, TPMARK=NO is the default.
Tapemarks are not supported on unlabeled
ASCII files. Special error recovery
procedures facilitate reading backwards.

TAPE INPUT FILES

For a magnetic tape input file, OPEN,
CLOSE, or an end-of-volume condition
rewinds the tape as specified by the DTFSR
or DTFMT REWIND parameter. No rewind is
defined by the DTFPH. Tape file
positioning depends on the labels to be
processed and is the user's responsibility.

If any labels other than standard labels
are to be checked by the user, a LABADDR
routine must be supplied. The user's
LABADDR routine, specified in ~he DTF,
cannot issue a macro that calls a transient
routine.

-When an end-of-file condition occurs,
IOCS branches to the user's EOFADDR routine
specified in the DTF. Generally, the user
issues a CLOSE in this routine to initiate
rewind procedures for the tape (as
specified by the DTF REWIND parameter), and
deactivates the file. If CLOSE is issued
for any tape input file before the -
end-of-data is reached, the rewind option
is executed and the file is deactivated
without any subsequent label checking.

When reading backwards (READ=BACK) a
labeled tape must be positioned just past
the tapemark following the label set. An
unlabeled file must be positioned just past
the tapemark after the data set. Although
ASCII unlabeled tapes contain no leading
tapemark, a read backwards operation can be
performed due to special error recovery
procedures.

Label checking of both standard and
nonstandard labels is similar. That is,
IOCS still processes standard labels, and
the user's routine (if specified) still
processes user or nonstandard labels. The
only difference is that the volume label is
not read immediately for standard labels,
the trailer labels are processed in reverse
order (relative to writing), and header
labels are processed at EOF time, also in
reverse order. If physical IOCS macros are
used to read records backwards, labels
cannot be checked (DTFPH must not be
specified).

32 DOS supervisor and I/O Macros

Because backward reading is confined to
one volume, an end-of-file condition always
exists when the file header label is
encountered. At end-of-file for standard
labels, IOCS checks only the block count
(which was stored from the trailer label)
and then branches to the user" s EOFADDR
routine. At EOF for nonstandard labels,
IOCS branches to the user's LABADDR where
the header label may be checked. To check
labels, the user must evoke physical IOCS
macro instructions to read the label(s).
For exampl e, OPEN, CLOSE, DUMP, PDUMP I,
CANCEL, and CHKPT cannot be issued. Also~
when processing multivolume files" the
user's label routine must save and restore
register 15 if any logical IOCS macros
other than LBRET are used. When user
standard labels are checked, the checking
follows that for standard labels.

When logical IOCS senses a tapemark on a
tape input file, either an end-of-file or
end-of-volume condition exists. This­
condition is determined by IOCS or by the
user, depending on the type of labels (if
any) used for the file, and the appropriate
functions are performed.

IOCS can determine an end-of-volume
condition only when trailer labels have
been checked (see Checking Standard Labels
or Checking Nonstandard Labels). If labels
are not processed~ the user's EOFADDR
routine must process the condition (see
FEOV Macro). When IOCS does detect the EOV
condition, it switches to an alternate unit
as designated in a job control ASSGN
statement. If an alternate drive is not
specified, a message to mount a new volume
is issued. At this time~ t~e operator may
also cancel the job. When the operator
mounts the volume, processing resumes. If
the input file is processed by physical
IOCS (DTFPH), the user must issue an OPEN
macro for the new volume. Then,- IOCS
checks the header label(s) and processing
continues.

In some cases, the user may desire to
force an end-of-volume condition at a point
other than at the normal tapemark. He may
want to discontinue reading the records on
the present volume-and continue reading
records on the next volume. This may be
necessary because of some major change in
record category or in processing
requirements. An FEOV (forced
end-of-volume) is available to the
programmer for cases such as this. See
FEOV Macro.

/'

Checking Standard Labels on Tape (INPUT)

When standard labels are to be checked
(DTFMT or DTFSR FlLABL=STD or DTFPH
TYPFLE=INPUT), the user must supply the
TLBL statement for standard label
information. Also, when processing
standard labels, a LBLTYP statement may be
required to define storage for tape label
files (see the system Control and Service
publication).

When standard labeled files positioned
at load point are opened, IOCS requires
that the first record be a volume (VOL1)
label. The next label could be any HDRl
label preceding the file. IOCS locates the
correct file header (HDR1) label by
checking the file sequence number.

After checking the standard label (if
user standard labels UHL1-UHLa or UTL1-UTLa
for EBCDIC files, UHLa or UTLa for ASCII'
files), IOCS enters the LABADDR routine
(see Tape Input Files) and enters an
alphabetic 0, V, or F in the low-order byte
of register o.

o indicates header labels.
V indicates end-of-volume labels.
F indicates end-of-file labels.

The user's routine can test this character
to determine what labels should be checked.
IOCS also loads the address of an aO-byte
IOCS label area' in register 1 (register 1
must remain positive).

After each label is checked, a LBRET 2
macro can be issued for IOCS to read the
next label. However, if a tapemark is read
instead, label checking is terminated. If
the user wishes to end label checking
before all labels are read, he can issue a
LBRET 1 macro. After all trailer labels
are checked, IOCS initiates EOV or EOF

'procedures (see Tape Input Files).

Checking Nonstandard Labels on Tape (INPUT)

Any tape labels not conforming to the
standard label specifications are
considered nonstandard. It is the user's
responsibility to check such labels. The
MTC job control command can be issued to
skip the necessary number of tapemarks or
records to position the file. On input,
nonstandard labels mayor may not be
followed by a tapemark. This choice,
combined with the user's requirements to
check the labels, results in the following
possible conditions that can be
encountered:

1. One or more labels, followed by a
tapemark, are to be checked.

2. One or more labels, not followed by a
tapemark, are to be checked.

3. One or more labels, followed by a
tapemark, are not to be checked.

. 4. One or more labels, not followed by a
tapemark, are not to be checked.

For conditions 1 and 2, the DTFMT or
DTFSR operands FILABL=NSTD and LABAD~R=name
must be specified in the file definition.
For condition 3, the operand FILABL=NSTD
must be specified. If LABADDR is omitted,
IOCS skips all labels~ bypasses the
tapemark, and positions the tape at the
first data record to be read. For
condition 4, the entries FILAEL=NSTD and
LABADDR=naroe must be specified. In this
case, IOCS cannot distinguish labels from
data records because there is no tapemark
to indicate the end of the labels.
Therefore~ the user must read all labels
(even though checking is not desired) to
position the tape at the first data record.

Each time IOCS opens a file or reads a
tapemark it supplies the hexadecimal
representation (in the two low-order bytes
of register 1) of the symbolic unit
currently in use. See the CCB Format.,
bytes 6 and 7, for these values. IOCS also
loads an alphabetic 0 in the low-order byte
of register 0 when the file is opened.

When the user's routine gains control,
the tape is not moved by OPEN. Physical
IOCS macros must be used to transfer labels
from tape to main storage. Therefore, the
user must establish a command control block
(CCB) and a channel command word(s) (CCW).
The macro EXCP is used to initiate the
transfer. After all labels are checked,
the user returns control to OPEN by use of
the LBRET 2 macro.

When IOCS reads a tapemark, it checks to
determine if a user's LABADDR routine was
supplied. If a LABADDR routine was
supplied, IOCS exits to the routine.
Otherwise, IOCS skips the labels and
branches to the EOFADDR routine. In the
LABADDR routine, physical IOCS macro

'instructions must be used to read the
user' s label (s) • Furthermore., he must
determine the EOF and/or EOV condition and
indicate which to IOCS by loading either EF
(end-of-file) or EV (end-of-volume) in the
two low-order bytes of register o. When
this inforrration is passed to IOCS, it
initiates the end-of-file or end-of-volume
procedures (see Tape Input Files).

Label Processing 33

Unlabeled Input Files on Tape (INPUT)

The first record for unlabeled tapes
(FILABL=NO) mayor ·may not contain a
tapemark. Unlabeled tapes with ASCII
contain no leading tapemark. If a tapernark
is present, the next record is considered
to be the first data record. If there is

34 DOS Supervisor and I/O Macros

no tapemark, IOCS reads the first record,
determines that it is not a tapemark, and
backspa.¢.es to the beginning of that record •
The file can be properly positioned by use
of the job control MTC command. When the
tapemark following the last data record is
read, IOCS branches to the end-of-file
address.

r'

\
'-

This section consists of the sequential
declarative macros for particular I/O
devices followed by the imperative macro
instructions.

After input and output files are defined
by the file definition or declarative
macros, the imperative macro instructions
are issued to operate on those files.
Normal operation consists of initializing
the declarative macro by the CPENCR) macro.
This initialization begins the label
processing function (see Label Processing).
After the file is properly initialized, the
records for the file are made available for
processing. When processing for a file is
completed, the file should be deactivated
by the CLOSECR) macro. Figure 7 shows the
key to finding the proper macro
instructions for a particular I/O file,
which is defined by a declarative macro
CDTF) and processed accordingly by the
imperative macros.

Declarative Macro Instructions

There are two types of declarative macros:
DTFs and module-generation macros. Each
type of processing is divided by type of
file, card, magnetic tape, etc. The DTF
used with the file is discussed first, and
then (where applicable) the module
generation macro.

The examples in Appendix C show that the
user need not specify names for his
modules. In these cases, the user can skip
the discussion on module-naming conventions
following each module-generation macro
instruction.

Ten DTFs can be used for sequential
processing. The DTFCD, DTFCN, DTFDI,
DTFMR, DTFMT, DTFOR, DTFPR, DTFPT, and
DTFSD macros are subsets of the inclusive
declarative macro, DTFSR. DTFSR is
included for Basic Programming Support and
Basic Operating System users. Program
assembly and execution time is
substantially improved by specifying the
subsets instead of DTFSR.

Sequential Access Method (SAM)

CARD FILE CDTFCD)

Enter the symbolic name of the file
Cfilename) in the name field and DTFCD in
the operation field. The detail entries
follow the DTFCD header card in any order.
Figure 8 lists the keyword operands
contained in the operand field.

r---,
IBLKSIZE={nI80} I L ___ J

)

Enter the length of the I/O area (IOAREAi).
If the record format is variable or
undefined, enter the length of the largest
record. If this operand is omitted, the
length is assumed to be 80.

r---,
ICONTROL=YES I L ___ J

This operand is specified if a CNTRL macro
is to be issued for a file. If this
operand is specified, CTLCHR must be
omitted.

r---,
ICRDERR=RETRY I L ___ J

This operand applies to card output on the
IBM 2540 and 2520~ It specifies the
operation to be performed if an error is
detected.

If a punching error occurs~ it is
usually ignored and operation continues.
The error card is stacked in pocket Pi
(punch) and correct cards are stacked in
the pocket selected by the user. If the
CRDERR=RETRY operand is included and an
error condition occurs, IOCS also notifies
the operator and then enters the wait
state~ The operator can either terminate
the job, ignore the error, or instruct IOCS
to repunch the card. From this
specification, laCS generates a retry
routine and a save area for the card punch
record.

SAM: Card 35

DECLARA TIVE
MACRO INSTRUCTIONS

DTFCD
DTFCN
DTFDI1
DTFMR
DTFMT
DTFOR
DTFPR
DTFPT
DTFSD
DTFSR 2

iMPERATIVE
MACRO INSTRUCTIONS

Initialization
OPEN(R)
LBREP

Processing
CHECK
CHNG2
CNTRL
DISEN
DSPLY
ERET
GET
LITE
NOTE
POINTR
POINTS
POINTW
PRTOV
PUT
RDLNE
READ
RELSE
RESCN
TRUNC
WAITF
WRITE

Completion
HOV
LBREP
CLOSE(R)

~
Q)

]"E
ct g
N...o
It) >­o Q)
~~

X

X

X

CO
CO ..
N Q)
~'"O

~g
coo<:
N_
~ 0
'-.,.0
It) .­co
N C-
~O

X

X

x
X11

Notes: 1 Use only with system logical units.

X

X

X

X

2 Recommended for compatibility use only.
3 Applies only if LABADDR is specified •
.. Always required for this file.

X X

X X X' X
X

X X
X X

X X

X

X

X X 13 X X
X1 ..

X

X

XB
X

X X
X" X" X"

Qi
u
o
'0
o
N
C")
N

X

X

X

X

o
~
C") Q)

,:;;-g-
.!!! I-
.. 0
Q) .­

Vl
I Q)

o c
~ W·~
N:E::::>

X

X

X

X

X

X

X
X

!5 PUT rewrites an input DASD record if UPDATE is specified. GET and PUT cannot be used with workfiles.
6 Work files for DASD and magnetic tape only. .
7 Applies only to blocked input records.
8 Applies only to blocked output records.

Q)
C­
O

Co. ..

" Q) C;g
~o<:

:::::-Q)

" C­-0 0
N I-

Q)
C-

~ ..
Q)
C-
O

Co...r:
CO 0
~ C o ::;)
~Co.

X X

X 18

X

X

9 Applies only when 2 selector channels and one ormore 2-channel simultaneous-reod-while-write tape-controlled units
are installed.

10 Journa I tape processing only.
11 1287/1288 document processing only.
12 PUT punches an input card with additional information if TYPEFLE = CMBND is specified.
13 In the 2540, GET normally reads cards in the read feed. If TYPEFLE=CMBND is specified, GET reads cards at the

punch - feed - read station.
1" For the 1419 or 1275 with the Pocket Light Feature.
1 5 This macro cannot be used with DTFD I.
16 Applies only if ERREXT is specified.
17 Required if two I/O areas.
1 B Valid for 2671 only.

Figure 7. Sequential Input/Output Macro Instructions

36 DOS Supervisor and I/O Macros

X

X

X

X

X

X

IBM IBM SYltlm/360 A .. lmbler Codln~ Form

PROGRAM J PUNCHING I GRAPHIC I I , ,
PACE Of

'ROGRAMMER DATE
I IN~TRuCTIONS I PUNCH , , I , CAMDfUClkO NUMBER

S'ATfMfNT
APPll~STO_

~ W'M;/;"';w

1

No_ .
"

O~'OljOl'l

" "
O~7"d 3. .. "

,.
"

(--.. " .. " 71 •
~ ~s.q c.

" " ..
J III I II I II I I I I II"'"

~5~
-OU

'X

I
x X X X X X DT FC 0 Neme 01 card· reeder or card· punch file. This DTF requIre .. CDMOD. I 1 I I I I I I I I I I I I I x" " " R

I DE VA DO R = SY S X X X • Symbolic unit ISYSnnn) lor reeder· punch used lor thlsl~lcel file. X" " " 10 AR EA 1 = X X X X X X X X • Neme ollirst 110 eree, or IOparatalnput aree" TYPEFlE - CMBND and IOAREA2 are specified. X" " " - - - - - - - - - - - -- - --
length of one 110 are., In byte .. II omlned, 80 Is assumed. 1 I - - - - - --8 L KS IZ E = n n •

X " " " Opt'l Opt·l.

CO NT RO L = YE S • CNTRl macro usad lor thlsllle, Omit CTlCHR lor thlsllle, Doe, not apply to 2501. IX " " " CR DE RR = X X X X X • IRETRY) Rltry" punching error I, detected. Applies to 2520 and 2540 only, X " CT LC HR (YES or ASA) Data recordl have control character. YES 'or 5/360 character set; ASA for American National
X " = X X X • Standards Institute, Inc. cheracter set. Omit II TYPEFlE-CMBND. Omit CONTROL for this file.

DE VI C E = n n n n • (f442 or 2501 or 2520 or 2540) If omlned, 2540 Is essumed.' , X" " " EO FA DO R = X X X X X X X X • Name of user'. end .. of .. fila routine. I II " I I I I X" " 10 AR EA 2 = X X X X X X X X. Nema of second I/O aree. or seperate output area" TYPEFlE - CMBND. ~ X" " " 10 RE G = (n n) . Register number, " two I/O areas used and GET or PUT does not specify. work area. t Omit WORKA. X" " " MO ON AM E = X X X X xx X X • Name of CDMOD 1~lc module for this DTF.1f omlned, 10CS generate, standard name. X" " " OU 8 L KS Z = n n • ~e;!h~I?O~fJ:~~~WE~l~ -)CMIB~D'11f ~Uflfs~ 0'l'i~ed'lle7gt7 SIljclli"'j b~ B~K ,IZ X " RD ON LY = Y ES • i Generate 8 read onlv module. Requires a module save area for each task using the module. X" " " 1

RE C F OR M= X X X X X X IFIXUNB or UNDEF or VARUNB) If omlned. FIXUNB II assumed. Input or combined lI1es elways FIXUNB. X" " " R E CS IZ E = (n n) Raglster number" RECFORM - UNDEF.t I I , I I I I I X " S E PA SM 8 = YE S . DTFCD I, to ba assembled separately. I I I I I I I I I X" " " SS E L EC T= n. 11 or 2 or 3) for 2540.11 or 2) for 1442, 2520, or 2540. Stacker· select cher.cter.
X" "

TY P E F L E = X X X X X X • ~rN;~b ~~~~~~~~ ~~;;'~~~I~! ,If rm
\n1

lnT
jSS,mjd. fM,BN,D ia~ be, ,Cllled, fOI'r2~ ,/5fO~ 1, X" " " ~O RK A= YES GETorPUTspecllle,workera •• OmltIOREG. I I I I I I "" "

11I111111111111111111111111

-Header and each detail card, except the last one In each set, must have a continuation punch In column 72. Also, tGeneral registen 2·12, written In parentheses; for example: (12).
'88Ch detail card, except the last one, must contain. comma Immediate IV efter the operand. Space Is allowed for the
11~::r:;tom:tet~~~":n~! ~:i~I~r':~::b~b~~~~' the comma should be moved over accordingly. In the

Figure 8. DTFCD Macro

r---,
1 CTLCHR={ASAIYES} 1 l ___________________________ ~ _____________ J

This operand is required if first-character
control is to be used on an output file.
ASA denotes the American National Standards
Institute, Inc. character set. YES denotes
the System/360 character set. Appendix B
contains a complete list of codes. This
entry does not apply to combined files. If
this operand is specified, CONTROL must be
omitted.

r---,
1 DEVADDR={SYSIPTISYSPCHISYSRDRI SYSnnn} 1 L ___ J

This operand specifies the symbolic unit to
be associated with a file. The symbolic
unit represents an actual I/O device
address and is used in the job control
ASSGN statement to assign the actual I/O
device address to the file.

r---,
IDEVICE={1442125011252012540} 1 L ___ J

This operand specifies the I/O device
associated with a logical file. The
acceptable entries are 1442, 2501, 2520, or
2540. If this operand is omitted, 2540 is
assumed.

r---,
I EOFADDR=name I. L ___ J

This entry must be included for input and
. combined files and specifies the symbolic

name of the user's end-of-file routine.
lacs automatically branches to this routine
on an end-of-file condition. In his
routine, the programmer can perform any
operations required for the end of the
file, and he generally issues the CLOSE
instruction for the file.

IOCS detects end-of-file conditions in
the card reader by recognizing /* punched
in card columns 1 and 2. If cards are
allowed to run out without a /* trailer
card (and a /& card if end-of-job) an error
condition results.

SAM: Card 37

r---,
IIOAR~=name I L ___ J

This operand specifies the symbolic name of
the input or output area used by this file.
An address expression, name, is defined.

If issued for a combined file, this
operand specifies the input area. If
IOAREA2 is not specified, the area
specified in this operand is used for both
input and output.

r---,
I IOAREA2=name I L ___ J

This operand specifies a second 1/0 area.
An address expression is defined. If the
file is a combined'file and the operand is
specified, the desi~nated area is an output
area.

r---,
I IOREG=(r) \ L ___ J

If work areas are not used but two input or
output areas are~ this operand specifies
the register (2-12) in which IOCS puts the
address of the logical record. For output
files, IOCS puts the address where the user
can build a record. This operand may not
be used for combined files.

r---,
\ MODNAME=name \ L ___ J

This operand may be used to specify the
name of the logic module that will be used
with the DTF table to process the file. If
the logic module is assembled with the
program, the MODNAME in the DTF macro
instruction must specify the same name as
the CDMOD macro instruction. If this
operand is omitted, standard names are
generated for calling the logic module. If
two DTF macro instructions call for
different functions that can be handled by
a single module, only one module is called.

r---,
\OUBLKSZ=n I L ___ J

This operand is used in conjunction with
IOAREA2 for only a combined file. Enter
the maximum number n of characters to be
transferred at one time. If this entry is
not included and IOAREA2 is specified, the
same length as defined by BLKSIZE is
assumed.

38 DOS Supervisor and 1/0 Macros

r--~--------------------------------------,
IRDONLY=YES I L ___ J

This operand is specified if the DTF is
used with a read only module. Each time a
read only module is entered, register 13
must contain the address of a 72-byte
doubleword aligned save area. Each DTF
should have its own uniquely defined save
area. Each time an imperative macro
(except OPEN(R), LBRET, SETL, or SETFL) is
issued using a particular DTF, register 13
must contain the address of the save area
associated with that DTF. The fact that
the save areas are unique or· different for
each task makes the module reentrant (that
is, capable of being used concurrently by
several tasks). For more information see
Shared Modules and Files.

If an ERROPT or WLRERR routine issues
1/0 macro instructions using the same read
only module that caused control to pass to
either error routine, the problem program
must provide another save area. One save
area is used for the normal 1/0 operations.,
and the second for 1/0 operations in the
ERROPT or WLRERR routine. Before returning
to the module that entered the ERROPT
routine, register 13 must contain the save
area address originally specified for that
DTF. If this operand is omitted, the
module generated is not reenterable, and no
save area is required.

r---,
IRECFORM={FIXUNB\VARUNBIUNDEF} \ L ___ J

This operand specifies the record format of
the file. If the record format is FIXUNB.,
this entry may be omitted. If
TYPEFLE=CMBND, this operand must be FIXUNB.

r---,
\ RECSIZE=(r) I L ___ J

For undefined records, this operand
specifies the register (2-12) that contains
the length of the output record. The user
must load the length of each record into
the specified register before he issues the
PUT instruction for the record.

r---,
\SEPASMB=YES \ L ___ J

This operand must be specified if the DTF
assembled separately. It causes a CATALR
card with filename to be punched ahead of
the object deck and defines the filename as
an entry point in this assembly .•

\

r---,
ISSELECT=n I L ___ J

This operand specifies the valid
stacker-select character for a file. If
this entry is not specified, cards are
selected into NR (normal read) or NP
(normal punch) pockets. This entry is not
applicable to a combined file. See the
CNTRL Macro for further information.

Note: When this operand is used with a
device other than an IBM 1442, the
program ignores CONTROL=YES with input
files.

r---,
I TYPEFLE={INPUTIOUTPUT I CMBND} I L ___ J

This operand specifies if a file is input,
output, or combined. A combined file can
be specified for an IBM 1442 or 2520 or for
a 2540 with the Punch-Feed-Read feature.
TYPEFLE=CMBND is applicable if both GETs
and PUTs are issued to the same card file.
If TYPEFLE=CMBND is specified, the system
logical units SYSIPT, SYSPCH, orSYSRDR
must not be specified in the DEVADDR
operand.

r---,
IWORKA=YES I L ___ J

If I/O records are processed in work areas
instead of the I/O area, YES is specified
for this entry. The programmer must set up
the work area in main storage. The address
expression of the work area, or a general
purpose register must be specified in each
GET and PUT macro.

CARD MODULE (CDMOD)

Listed here are the user-supplied operands
for CDMOD. The first card contains CDMOD
in the operation field and may contain a
module name in the name field.

r---,
ICONTROL=YES I L ___ J

Include this operand if the eNTRL macro
instruction is used with the module and its
associated DTFs. The module also processes
files in which the CNTRL macro is not used.

If CONTROL is specified, the CTLCHR
operand must not be specified. Also, this

operand cannot be specified if IOAREA2 is
used for an input file.

r---,
ICRDERR=RETRY I L ___ J

Include this operand if error retry
routines for the 2540 and 2520
punch-equipment check are included in the
module. Whenever this operand is
specified, any DTF used with the module
must also specify the CRDERR operand. This
operand does not apply to an input or a
combined file .•

r---,
ICTLCHR={ASAIYES} I L ___ J

Include this operand if first character
stacker select control is used. Either YES
or ASA may be specified. Whenever this is
included, any DTF to be used with the
module must also specify the CTLCHR operand
with the appropriate YES or ASA parameter.
If CTLCHR is included, CONTROL may not be
specified. This operand does not apply to
a combined file or to an input file.

r---,
IDEVICE={2540114421252012501} I L ___ J

Include this operand to specify the I/O
device used by the module. Any DTF
assoicated with the module must have the
same operand.

r---,
I IOAREA2=YES I L ___ J

Include this operand if a second I/O area
is used. Any DTF used with the module must
also include the IOAREA2 operand. This
operand is not required for combined files.

r---,
IRDONLY=YES I L ___ J

This operand generates a read only module.
RDONLY=YES must be specified in the DTF.
For additional programming requirements
concerning this operand, see the DTF RDONLY
operand.

SAM: Card 39

r---,
I RECFORM={FIXUNBIVARUNBIUNDEF} I L ___ J

specifies the record format: fixed-length,
variable-length, or undefined. Any DTF
used with the module must include the
appropriate parameter in the RECFORM
operand. For INPUT and COMBND files, only
FIXUNB should be specified.

r---,
ISEPASMB=YES I L __ J

Include this operand if the logic module is
assembled separately. A CATALR card with
the module name (standard or user) is
punched ahead of the object deck.

r---, I TYPEFLE={INPUTI OUTPUT I CMBND} I L __ J

This operand generates a module for either
input, output, or combined file. Any DTF
used with the module must include the
appropriate parameter in the TYPEFLE
operand.

r--,
IWORKA=YES I L ___ J

This operand must be included if records
are to be processed in work areas instead
of I/O areas. Any DTF used with the module
must include the appropriate parameter in
the WORKA operand.

Recommended Module Name for CDMOD

Each name begins with a 3-character prefix
(IJC) and consists of a 5-character field
corresponding to the options permitted in
the generation of the module.

CDMOD name = IJCabcde

a = F RECFORM=FIXUNB (always for INPUT and
CMBND files)

b

= V RECFORM=VARUNB
= U RECFORM=UNDEF

= A
= Y
= C
= Z

CTLCHR=ASA (not specified if CMBND)
CTLCHR=YES
CONTROL=YES
CTLCHR or CONTROL not specified'

40 DOS Supervisor and I/O Macros

c = B RDONLY=YES and TYPEFLE=CMBND
= C TYPEFLE=CMBND
= H RDONLY=YES and TYPEFLE=INPUT
= I TYPEFLE=INPUT
= N RDONLY=YES and TYPEFLE=OUTPUT
= 0 TYPEFLE=OUTPUT

d = Z WORKA and IOAREA2 not specified
= W WORKA=YES
= I IOAREA2=YES
= B WORKA and IOAREA2
= Z WORKA=YES not specified (CMBND file

only)

e = 0 DEVICE=2540
= 1 DEVICE=1442
= 2 DEVICE=2520

3 DEVICE=2501
= 4 DEVICE=2540 and CRDERR
= 5 DEVICE=2520 and CRDERR

Subset/superset CDMOD Names

The following chart shows the sub setting
and supersetting allowed for CDMOD names.
All but one of the parameters are exclusive
(that is, do not allow supersetting) '. A
module name specifying C (CONTROL) in the ~
location is a superset of a module name
specifying Z (no control or CTLCHR). A
module with the name IJCFCIWO is a superset
of a module with the name IJCFZIWO. See
Subset/superset Module Names.

r---,
1 * * * * * I I I J C F ABE 0 I
1 V Y C I 1 I
I U+HW2 1
1 C I Z 3 1
I Z N 4 I
105 1
I I
1+ subsetting/supersetting permitted. 1
1* No subsetting/supersetting permitted. 1 L ___ J

CONSOLE FILE (DTFCN)

DTFCN defines an input or output file that
is processed on an IBM 1052
Printer-Keyboard, or a 3210 or 3215 Console
Printer-Keyboard. DTFCN provides GET/PUT
logic for the printer-keyboard file. The
symbolic name of the file is entered in the
name fi~ld, and DTFCN is entered in the
operation field. The detail entries, in
any order, follow the DTFCN header entry
with keyword operands in the operand field.
Figure 9 contains the DTFCN entries.

" /

\

(

I

IBM IBM SYIlem/3S0 A .. emhler Cadin~ Farm
JrI, U.5.A.

'ROGUM I PUNCHING I GRAPHIC I I I I ,ACE Of

I'RQCUMMU DATE
IINSlIIUCTIONS I PUNCH I I I I 'ARO fLECTItO NUMBU

STATEMENT
Jdl"'ifieotiOf'l-

I
No_

B 10
O~rolion

" "
O~':"d

10
'_"'I S.q"lICl

,a " '0 " " " 60 " 71·73 80

eq'd, X X X X X X X OT FCN Name 01 printer. keyboard 1110 (No. x,MOD requhed.1 I I I I I I I I I I I III I , r" r , , , X -Req R ·d.

1 DE VA 00 R'" SY S X X X • Symbolic unit lor the printer' keyboard used lor thll logical file. X J 10 AR EA 1 .. X X X X X X X X , Name 01 I/O oreL I I I I I I I I I I I I I I I I X
- - - - - -r= - - -8 'LK 'Length 01 onel/O~re-r. In byt~o;,1tECFOR'",,!UNDEF. m~.'11 256.

- - -- - -pl'l. S I Z E '" n n n • II omitted, SO II assumad. X Opt'

~O ON AM E .. X X X X X X X • Logic module name for this OTF. If omitted, IOCS generates I standard nama ••• X

RE CF OR M- X X X X X X • (FIXUNS or UNDEFI II omitted. FIXUNB II assumed. I I I I X

RE CSI ZE = (n n) : Regl:U: number II RECFORM - UNDEF. t I I I I I I I X

TY P E F L E = X X X X X X • ~NPUT or OUTPUTI II omitted. INPUT Is ass;'~d INPUT processal both Input and outp~t. X

WO RK A= YES GET or PUT specilla. wor;'.,rea.l11 I I 11 11.1 I

• Header and each detail card, except the last one In each set, must have I continuation punch In column 72. Also,
each detail card, except the last one, must contain I comma Immediatelv after the operand. Space I. allowed for the
longest operand plus the comma. If a smaller operand II used, the comma should be moved over accordingly. In the
last detail card Oil lOt. the comma position must be blenk.

Figure 9. DTFCN Macro

If a mistake is made when entering
information on the printer-keyboard,
simultaneously press the ALTERNATE CODE and
the CANCEL keys. This issues a new read
command, and you can retype the data from
the beginning.

r---,
IBLKSIZE=n 1 L ___ J

The number n designates the length of the
I/O area. For the undefined record format,
BLKSIZE m~st be as large as the largest
record to be processed. The input/output
records must not exceed 25'6 characters.

If the console buffering option is
specified at system generation time and the
printer-keyboard is assigned to SYSLOG,
physical IOCS can increase throughput on
each actual output record ~ot exceeding 80
characters. This increase in throughput
results from starting the output I/O
command and returning to the problem
program before output completion.
Regardless of whether output records are
buffered (queued on an I/O completion
basis) or not, they are always 'printed in a
first-in-first-out (FIFO) order.

r---,
I DEVADDR= {SYSLOG I SYSnnn} ·1 L ___ J

This operand specifies the symbolic unit
associated with the logical file. In a
multiprogramming environment,
DEVADDR=SYSLOG must be specified to obtain
Background (BG), Foreground 1 (F1), or
Foreground 2 (F2), prefixes for message
identification.

t General registers 2 - 12, written In parentheses; for example 112).
•• The logic module Is genereted 8S part of the OTF.

r---,
1 IOAREA1=name 1 L ___ J

This operand specifies the symbolic name of
the I/O area used by the file. The I/O
area is not cleared before or after a
message is printed, or when a message is
canceled and reentered on the console.

r---,
I MODNAME=name I L ___ J

This operand can specify the name of the
logic module generated by this DTFCN macro.

If this entry is omitted, standard
module names are generated for the logic
module.

A module name must be given when two
phases (each containing a DTFCN macro) are
linkage edited into the same program.
Under such conditions, omission of this
operand results in unresolved address
constants.

r---,
IRECFORM={FIXUNBIUNDEF} 1 L ___ J

This operand specifies the record format of;
the file. FIXUNB is assumed.

SAM: Console 41

r---,
IRECSlZE=(r) I L ___ J

For undefined records, this operand is
required for output files and is optional
for input files. It specifies a general
register (2-12) that contains the length of
the record. On output, the user must load
the length of each record into the
designated register before he issues a PUT
macro. If specified for input files, IOCS
provides the length of the record
transferred to main storage.

r---,
I TYPEFLE={INPUT\ OUTPUT} \ L ___ J

If INPUT is specified, coding is generated
for both input and output files. If OUTPUT
is specified, coding is provided for output
file only.

r---,
IWORKA=YES \ L ___ J

This operand indicates that a work area is
used with the file. For a GET or PUT macro
IOCS moves the record to or from the work
area.

DEVICE INDEPENDENT FILE (DTFDI)

The DTFDI macro is device independent for
system logical units. For any number of
DTFDI macros, if they are assembled within
one program and all of them have the same
RDONLY condition, only one logic module
(DIMOD) is required. Therefore, DTFDI
processing requires fewer parameters and
less main storage than multiple LIOCS
macros. Also, it allows the programmer to
change device assignments without
reassembling the logic module.

The restrictions on DTFDI prbcessing
are:

• Only fixed unblocked records are
supported.

• Only forward reading is allowed.

• Rewind options are not provided.

42 DOS supervisor and I/O Macros

• Combined file processing is not
supported for reader-punches.

• The CNTRL and PRTOV macros cannot be
used with this macro.

• Reading, writing, or checking of
standard or user-standard labels for
tape/disk is not supported.

." If ASA control character code is used
in a multitasking environment and more
than one DTF is using the same module
with RDONLY=YES, overprinting may
occur.

• If DTFDI is used with DASD, FOPT SYSFIL
must be specified at system generation
time.

The symbolic name of the file should be
entered in the name field and DTFDI in the
operation field. The entries for the DTFDI
macro are discussed here and summarized in
Figure 10.

r---,
\DEVADDR={SYSIPT\SYSLST\SYSPCHISYSRDR} I L __ J

This operand must specify the symbolic unit
associated with this system logical file.
Only these system names may be specified.

r---,
\ EOFADDR=name \ L ___ J

This operand must specify the symbolic name
of the user's end-of-file routine. It is
required only if SYSIPT or SYSRDR is
specified.

IOCS branches to this routine when it
detects an end-of-file condition. In this
routine, the programmer can perform any
operations necessary for the end-of-file
condition, although the CLCSE(R) "macro
instruction is generally issued.

IOCS detects the end-of-file condition
by recognizing a /* in positions 1 and 2 of
the record for cards, a tapemark for tape
and a filemark for disk. If the records
are allowed to run out without a /* (and a
/&, if end-of-job) an error condition
results.

IBM IBM SYltem/360 A ... mblor Coding Form

f---------------------,----------i ~~~;~~~~NS llr-GU_PH_'C--t-LI-+--+--t-II-+--Lt--I-+II--r:,.,CA='O'""""""C=lW"",N=UM",,,"-:-, ----/
PUNCH

71·7J

o T F 0 I Nome of tho syst.m logical iii •• x

Ide",ificolion­
!..q "c.

o E V ADD R = S Y S X X X , ISYSIPT. SYSLST. SYSPCH. or SYSROR) Syst.m logical unit. X I lOA REA 1 = X X X X X X X X, N.m. of first I/O ar... X

Opt'l. E 0 FAD 0 R = X X X X X X X X, Nam. of user', .n~f·fII. routine. X Opt·l.

~~~~~~+-~~r+-rE+R+-RrO+p~T+=+-Xrx+X-rX+X~XrX+X-r,~~(+IG~NOrR+E'.S-KrIP+.o~r-Na+m'.-ofrU+se~~lr.r+ro'r-rorut+lne~)~Pr+w.'n-tsrt.+rm~lnrat+lon'o-nrer+ro~~r+~r+-r~-+~r+X-r++-r~~~ 

lOA REA 2 = X X X X X X X X, If two I/O erea. ar. used. name of second area. X 

lOR E G = ( n n) , Raglst.r number. If omitted and 21/0 area. are used raglster 2 II assumed. t X 

"'" 0 0 N A M E = X X X X X X X, OIMOO name for thl. OTF. If omitted. 10CS g.nerat ••• standard nama. X 

R E C S I Z E = n n n , No. of cha~ !n record. Assumed valu.s:1211SYSLST).811SYSPCH).80(otherwlse). I X 

ROO N L Y = YES , G.nerat. a reed only modula. Require. a module ... o ar.a for .ach task'uslng the module. X 

SEPASMB=YES, OTFOI to be assembled separately. X 

WLRERR=xxxxxXXX Name of user's wrong length record routine. 

-Header and each detail card, except the last one In each set. must have a continuation punch in column 72. Also, tGeneral register 2-12. written In parentheses; for example: (12). 
each detail card. except the last one, must contain a comma Immediately after the operand. Space Is allowed for the 
longest operand plus the comma. If a smaller operand is used, the comma should be moved over accordingly. In the 
last detail card 078 set, the comma position must be blank. 

Figure 10. DTFDI Macro 

r-----------------------------------------, 
IERROPT={IGNOREISKIPlname} I L _________________________________________ J 

This operand does not apply to output 
files. For output files, the job is 
automatically terminated after IOCS has 
attempted to retry writing the record. It 
does, however, apply to wrong-length 
records if WLRERR is omitted. If both 
ERROPT and WLRERR are omitted and 
wrong-length records occur, IOCS ignores 
the error. 

ERROPT specifies the function performed 
for an error block. If an error is 
detected when reading a magnetic tape or a 
disk pack, IOCS attempts to recover from 
the error. If the error is not corrected, 
the job is terminated unless this operand 
is included to specify other procedures to 
be taken. The functions of these three 
specifications are: 

IGNORE: The error condition is ignored and 
the address of the error record in register 
1 is made available to the user for 
processing (see CCB). 

SKIP: The error block is not made 
available for processing. The next record 
is read and processing continues. 

~: IOCS branches to the user's routine, 
where the user may perform whatever 
functions he desires or note the error 
condition. The address of the error record 
is supplied in register 1. The contents of 
the IOREG register may vary and should not 
be used for error records. Also, the 
programmer must not issue any GET 
instructions in his error routine. If he 
uses any other IOCS macros, he must save 
the contents of register 14. If RDONLY=YES 
is specified, he must also save the 
contents of register 13. At the end of his 
error routine, he must return to IOCS by 
branching to the address in register 14. 
When control returns to the problem 
program, the next record is made available 
to the user for processing. 

SAM: Device Independent 43 



r-----------------------------------------, 
I IOAREA1=narne I L _________________________________ ~ _______ J 

This operand must specify the symbolic name 
of the input or output area used with the 
file. The input and lor output routines 
transfer records to or from this area. 

If the DTFDI macro is used to define a 
printer file, or a card file to be 
processed on an IBM 2540 Card Read punch, 
the first byte of the main-storage output 
area must contain a control character. 

r-----------------------------------------, 
I IOAREA2=name . I L _________________________________________ J 

Two input or output areas can be allotted 
for a file to permit overlapped GET or PUT 
processing. If this operand is incl'-:1ed, 
it specifies the symbolic name of th_ 
second IIO area. 

r-----------------------------------------, 
IIOREG={(r)I (l)} I L _________________________________________ J 

When two IIO areas are used, this operand 
specifies the general purpose register 
(2-12) that paints to the address of the 
next record. For input files, it points to 
the logical record available for 
processing. For output files, it points to 
the address of the area where the user can 
build a record. If omitted, and two IIO 
areas are used, register 2 is assumed. 

r-----------------------------------------, 
I MODNAME=name I L _________________________________________ J 

This operand may be used to specify the 
name of the logic module used with the DTF 
table to process the file. If the logic 
module (DIMOD) is assembled with the 
program, the MODNAME parameter in this DTF 
must specify the same name as the DIMOD 
macro instruction. 

If this entry is omitted, standard names 
are generated for calling the logic module. 
If two different DTF macro instructions 
call for different functions that can be 
handled by a single module, only one 
standard-narned module is called. 

44 DOS Supervisor and IIO Macros 

r-----------------------------------------, 
IRDONLY=YES I L _________________________________________ J 

This operand is specified if the DTF is to 
be used with a read only module. Each time 
a read only module is entered, register 13 
must contain the address of a 72-byte 
doubleword aligned save area. Each DTF 
should have its own uniquely defined save 
area and each time an imperative macro 
(except OPEN(R), LBRET, SETL, or SETFL) is 
issued using a particular DTF, register 13 
must contain the address of the save area 
associated with that DTF. The fact that 
the saveareas are unique for each task 
makes the module reentrant (that is, 
capable of being used concurrently by 
several tasks). For more information see 
Shared Modules and Files. 

If an ERROPT or WLRERR routine issues 
IIO macro instructions using the same read 
only module that caused control to pass to 
either error routine, the problem program 
must provide another save area. One save 
area is used for the initial IIO 
operations, and the second for IIO 
operations in the ERROPT or WLRERR routine. 
Before returning to the module that entered 
the ERROPT routine, register 13 must be set 
to the save area address originally 
specified for that DTF. If the operand is 
omitted, the module generated is not 
reenterable and no save area need be 
established. 

r-----------------------------------------, 
IRECSIZE=n I L _________________________________________ J 

This operand specifies the length of the 
record. For input files (SYSIPT and 
SYSRDR), the maximum allowable record ~ize 
is 80 bytes. For output files, RECSIZE 
must include one byte for control 
characters. The maximum length 
specification is 121 for SYSLST and 81 for 
SYSPCH. 

For printers and punches, DIMOD assumes 
a System/360 control character if the 
character is not a valid ASA character. 
The program checks ASA control characters 
before System/360·control characters. 
Therefore, if it is a valid ASA control 
character (even though it may also be a 
System/360 control character)~ it is used 
as an ASA control character. Otherwise, it 
is used as a System/360 control character. 

Control character codes are listed in 
Appendix B with the following exceptions: 

• 2520 stacker selection codes must be 
used for the 1442. 

/ 



• 2540 stacker selection 3 must not be 
used if device independence is to be 
maintained. 

If this operand is omitted, the 
following assumptions are made: 

80 bytes for SYSIPT and SYSRDR. 
81 bytes for SYSPCH. 

121 bytes for SYSLST. 

The use of assumed values for the 
RECSIZE operand assures device 
independence. For disk files, the assumed 
values are required to assure device 
independence. 

r-----------------------------------------, 
ISEPASMB=YES I L _________________________________________ J 

This operand must be included if the DTF is 
assembled separately from the problem 
program. It causes the object deck to be 
preceded by a CATALR filename card. 

r-----------------------------------------, 
IWLRERR=name I L _________________________________________ J 

This entry applies to input files only. It 
specifies the symbolic name of a user's 
routine to which IOCS branches if a 
wrong-length record is read on a tape or 
disk device. 

Because only fixed-length records are 
allowed, a wrong-length record error 
condition results when the length of the 
record read is not equal to the RECSIZE 
parameter. If the record is less than the 
RECSIZE parameter, the first two bytes of . 
the CCB (first 16 bytes of.the DTF) contain 
the number of bytes left to be read 
(residual count). If the record to be read 
is larger than the RECSIZE parameter, the 
residual count is set to zero and there is 
no way to compute its size. The number of 
bytes transferred is equal to the RECSIZE 
parameter and the remainder of the record 
is truncated. 

The address of the record is supplied in 
register 1. In his routine, the user can 
perform any operation except issuing 
another GET for this file. Also if he uses 
any other IOCS macros in his routine, he 
must save the contents of register 14. If 
RDONLY=YES, he must also save the contents 
of register 13 as well. 

At the end of the routine, the user must 
return to IOCS by branching to the address 
in register 14 •. When control returns to 

the problem program, the next record is 
made available. 

If this operand is omitted, but a 
wrong-length record is detected by IOCS, 
the action depends on whether the ERROPT 
operand is includsd. 

• If the ERROPT operand is incl~ded~ the· 
wrong-length error record is treated as 
an error record and handled according 
to the ERROPT parameter. 

• If the ERROPT operand is omitted, IOCS 
ignores wrong-length errors and the 
record is made available to the user. 
If, in addition to a wrong-length 
record error, an unrecoverable parity 
error occurs, the job is terminated. 

DEVICE INDEPENDENT MODULE (DIMOD) 

Listed here are the user-supplied operands 
for DIMOD. The header card contains DIMon 
in the operation field and may contain a 
module name in the name field. If the name 
field is omitted, a system name is 
generated in a manner consistent with the 
recommended module name conventions. 

r-----------------------------------------, 
I IOAREA2=YES I L _________________________________________ J 

Include this operand if a second I/O area 
is needed. A module with this operand can 
process DTFDls with one or two I~O areas. 
If the operand is omitted or is invalid, 
one I/O area is assumed. 

r-----------------------------------------, 
IRDONLY=YES I L _________________________________________ J 

This operand causes a read only module to 
be generated. RDONLY=YES must be specified 
in the DTF. For the programming 
requirements of this operand, see the DTF 
RDONLY operand. 

r-----------------------------------------, 
ISEPASMB=YES I L _____________________ :-___________________ J 

This operand must be included if the logic 
module is assembled separately. This 
causes a CATALR card with the module name 
(standard or user) to be punched ahead of 
the object deck. 

SAM: Device Independent 45 



r-----------------------------------------, 
1 TYPEFLE={INPUT 1 OUTPUT} 1 L ________________________ ~ ________________ J 

Include this operand to specify whether the 
module is to process input or output files. 
If OUTPUT is specified, the generated 
module can process both input and output 
files. 

Recommended Module Name for DIMOD 

Each name"begins with a 3-character prefix 
(IJJ) followed by a 5-character field 
corresponding to the options permitted in 
the generation of the module. 

DIMOD name = IJJabcde 

a = F always 

b C always 

c = B TYPEFLE=OUTPUT(processes both input 
and output) 

I TYPEFLE=INPUT 

d = I IOAREA2=YES 
= Z IOAREA2=YES is not "specified 

e = C RDONLY YES 
0 RDONLY=YES is not specified 

subset/Superset DIMOD Names 

The following diagram illustrates the 
subsetting and super setting allowed for 
DIMOD names. All of the variable entries 
allow subsetting. A module name specifying 
B is a superset of the module specifying Ii 
for example, IJJFCBID is a superset of the 
module IJJFCIID. See subset/Superset 
Module Names. 

r-----------------------------------------, 
1 1 
1 + + * 1 
1 I J J F C B I C 1 
1 I Z D 1 
1 1 
1+ subsetting/supersetting permitted. 1 
1* No subsetting/supersetting permitted. 1 L _________________________________________ J 

I If two or more modules with the same 
entry pOints are included, message 21431 is 

46 DOS supervisor and I/O Macros 

given. This message can usually be 
suppressed by including a superset module. 

MAGNETIC READER FILE (DTFMR) 

DTFMR defines an input file processed on an 
IBM Magnetic Character Reader (1255; 1259, 
1412, 1419) or Optical Reader/Sorter (1270, 
1275). 

Enter the symbolic name of the file in 
the name field and DTFMR in the operation 
field. The entries are discussed here and 
illustrated in Figure 11. 

r-----------------------------------------, 
IDEVADDR=SYSnnn 1 L ___________ ----__________________________ J 

This operand specifies the syrrbolic unit 
(SYSnnn) associated with the primary 
address for the file. The symbolic unit 
represents an actual I/O device address 
used in the job control ASSGN statement to 
assign the actual I/O device address to the 
file. 

r-----------------------------------------, 
1 IOAREA1=name I L _________________________________________ J 

This operand specifies the symbolic name of 
the document buffer area used by the file. 
Figure 12 shows the format of the document 
buffer area. 

r-----------------------------------------, 
IIOREG={(r)1 (l)} 1 L _________________________________________ J 

This operand specifies the general-purpose 
register that the input/output and user 
routines use to indicate which individual 
document buffer is available for 
processing. IOCS puts the address of the 
current document buffer in the specified 
register each time a GET or READ is issued. 
Any register parameter from 2 to 12 may be 
specified, but 2 is assumed if this operand 
is omitted. 

The same register may be specified in 
the IOREG entry for two or more files in 
the same program, if desired. In this 
case, the problem program may need to store 
the address supplied by IOCS for each 
record. 



IBM IBM Sy.'.m/3GD A ... mbl.r Codjn~ Form . 

I---------------------r----------j, PUNCHING I~C.-.. H.::;IC~-_+_-+__t--+_I_t-_+_-_4I-__+,c,.., •• "'"D ,""'''r.''"''OO'"''N''''UM'''"'''::------j I INSTRUCTIONS I PUNCH I I 

OpelOlion 
71·' 73 

Id.n,i'i,olion· 
s.qu.nu 

I I I I I I 1111 I I I I 
Req'd X X X X X X X DTFMR Nom. of tho magn.tlc choraetar roeda, fll' (7 chorael." 0' 1 ... 1, Thll DTF tabl. requlr ••• n MRMOD. -r 

J ___ _ o E V ADD R '" S Y S n n n , Symbolic unll ... Ignod to tho megn'tlc ch.roct.r r.od.r. 

lOA R E iA 1 .. X X X X X X X X, Nom, of the document buffer or.L I I I I I I 
Opl'l. ~--I-+-t-+-+--HM++-t-+-+-j:.A~D=+=DfA+RfE=_+A4"'+nr:n+nj_!'+_H+4_jH_--1Ar-dd+ltl-40n_alt-d_4ocu-meHnt-but-f+lo-r ar_"+0__l(ArD+D-tAR-Et-A+-:-tR __ Ej-CS-tIZ-Et--2-t50-1't-I-tf o_mt-ltI+od_'t-nOt'-jr.t-°tll-j0_IiOtttod.-rH-t-t-H-t::rr-tTt-1rt-n 

ADD RES S '" 0 U A L , Mull bolncluded only II Iho davie. 110 1419 or 1275 with. duo' add"ss adopter. 

BUFFERS"nnn, Speclfl" tho numbe, of buffo .. needed. If omitted, 25 I. assumed. 

ERROPT"xxxxxXX X, Name of the UIOr' •• rror routlno. Requlrod only If tho CHECK macro 10 used. 

EXTADDR=xxxxxxxx, Nomo of tho UIOr'. lIocko, salactlon roulln •• Requlrod only If SORTMDE-ON. 

IOREG"'(nn) , Polnler rogillo, number. II omitted, regillor 2 I. ossumod. t 

MO 0 N AIM E .. X X X X X X X X Nom, of tho usar'. I/O modulL Required only If 0 nonotandord modulo II rol.ro~ 

RECS IZE"nnn, Speclf'" the maximum record length. If omitted, 80 Is assumed. : 
SECADDR=SYSnnn, SpeciliollOeondary symbolic unit .ssignod to (duol addressl 1275 or 1419. Roqulred only If LITE macro 10 used. 

SEPASMB=YES, Requlrod only If Ihe DTF II .... mblod lO"ralaly; otherwllO It should be omitted. 

SORTMDE=xxx ON·12551125911270 or progrom lort mod. u'ad; OFF·1412/141911275 10rt modo used. II omitted, ON II o .. umod. 

-Header and each detail card, except the last onl In each set, must have I continuation punch In column 72. Also, 
each detail card, except the last onl, must contain a comma Immediately after the operand. Space Is allowed for the 
longest operand plus the comma. If a smaller operand I. used, the comma should be moved OVer 8Ccordlng~. In the 
last detail card or. set, the comma posilion must be blenk. 

Figure 11. DTFMR Macro 

r-----------------------------------------, 
IADDAREA=n I L--------_________________________________ J 

This operand must be included only if 
additional buffer work area is needed. The 
parameter n specifies the number of 
additional bytes the user desires in each 
buffer. The ADDAREA and RECSIZE 
specifications (n) must total less than or 
equal to 250. This area can be used as a 
work area and/or output area and is reset 
to binary zeros when the next GET or READ 
for a file is executed. 

r-----------------------------------------, 
IADDRESS=DUAL I L--------_________________________________ J 

This operand must be included only if the 
1419 or 1275 contains the Dual Address 
Adapter. If Single Address Adapter is 
used, this operand must be omitted. 

tGeneral registers 2-12, written In parentheses: for example: (12). 

r-----------------------------------------, 
IBUFFERS={nI25} I L _________________________________________ J 

This operand is included to specify the 
number of buffers in the document buffer 
area. The minimum number is 12, the 
maximum is 254, and 25 is the assumed value 
if this operand is omitted. 

r-----------------------------------------, 
IERROPT=name I L----_____________________________________ J 

This operand may be included only if' the 
CHECK macro instruction is used. The 
parameter (name) specifies the name of the 
routine that the CHECK macro branches to if 
any error condition is posted in byte 0, 
bits 2-4 (and bit 5, if no control address 
is specified in the CHECK macro) of the 
buffer status indicators. It is the user's 
responsibility to exit from this routine 
(see the CHECK Macro instruction). 

SAM: Magnetic Reader 47 



r-----------------------------------------, 
I EXTADDR=name I L _________________________________________ J 

This operand specifies the address of the 
user stacker selection routine to which 
control is given when an external interrupt 
is encountered while reading and sorting 
the documents internally. The only case 
when this operand may be omitted is when 
SORTMDE=OFF is specified. 

r-----------------------------------------, 
I MODNAME=name I L __________________ ---________________ ~ ___ J 

This operand specifies the name of the 
logic module MRMOD. If omitted, IOCS 
generates the normal system module name. 

r-----------------------------------------, 
IRECSIZE={nI80} I L _________________________________________ J 

This operand specifies the actual length of 
the data portion of the buffer. The record 
size specified must be the size of the 
largest record processed. If this operand 
is omitted, a record size (n) of 80 is 
assumed. The ADDAREA and RECSIZE 
specifications (n) must total less than or 
equal to 250. 

r-----------------------------------------, 
ISECADDR=SYSnnn I L __________________ ----___________________ J 

This operand specifies the symbolic unit to 
be associated with the secondary control 
unit address if the 1419 or 1275 with the 
Dual Address Adapter and LITE macro are 
utilized. The operand should be omitted if 
the pocket LITE macro is not being used. 

r---------------~-------------------------, 
ISEPASMB=YES I L ___________________ ~ _____________________ J 

Include this operand only if the DTFMR is 
assembled separately. This causes a CATALR 
card with the filename to be punched ahead 
of the object deck and defines the filename 
as an ENTRY pOint in the assembly. If the 
operand is omitted, the program assumes 
that the" DTF is being assembled with the 
user program and no CATALR card is punched. 

48 DOS Supervisor and I/O Macros 

r-----------------------------------------, 
ISORTMDE={ONIOFF} I L _________________________________________ J 

This operand specifies the method of 
sorting done on the 1412/1419. SORTMDE=ON 
indicates that the program sort mode is 
being used. (For the 1259 or 1270, this is 
the only mode that can be used.) 
SORTMDE=OFF indicates that sorting is under 
control of the magnetic character reader. 
If omitted, the program sort mode is 
assumed. 

Characteristics of Magnetic Character 
(MICR) Processing and Optical Reader/Sorter 
Processing 

Logical IOCS allows the user to operate the 
Magnetic Ink Character Recognition (MICR) 
or Optical Reader/Sorter devices in either 
a foreground or background area. The MICR 
user is supplied with an extension to the 
DOS supervisor which monitors, by means of 
external interrupts, the reading of 
documents into a user supplied I/O area 
(document buffer area). The user must 
access all MICR documents through logical 
IOCS. Logical IOCS gives the user the next 
sequential document and automatically 
engages and disengages the devices, as 
necessary, to provide a continuous stream 
of input. Detected error conditions and 
information" are passed to the user in each 
document buffer. 

The magnetic character readers and 
optical reader/sorters are unique in that 
documents must be read at a rate dictated 
by the device rather than by the program. 
To allow time for necessary processing 
(including determination of pocket 
selection), the device generates an 
external interruption at the completion of 
each read operation for each document. The 
supervisor gives absolute priority to 
external interrupt processing. 

In a multiprograreming system with MICR 
document processing, any partition 
(background or foreground) can utilize MICR 
devices. For programs with one MICR 
device, the GET macro instruction is 
provided. For multiple MICR processing, 
READ, CHECK, and WAITF macro instructions 
are provided to allow user processing to 
continue as long as one file has documents 
ready for processing. 

Before the user can begin any type of 
MICR processing, he must be aware of the 
MICR document buffer format (see 
Appendix E). Each document buffer must not 
exceed 256 bytes, including the six-byte 
buffer status indicators, any additional 

/ 



user work area, and the maximum document 
data area. The minimum number of document 
buffers a 'user may specify is 12 and the 
maximum number is 254. 

Figure 12 is a storage map of the 
document buffer area utilized in MICR 
processing. Visualizing this makes the 
concept of MICR processing easier to 
understand. Before any data is read into a 
document buffer, logical IOCS sets the 
entire document buffer (including the 
status indicators) to binary zeros. The 
GET (READ if multiple MICR device 
processing) macro instruction then engages 
the device, and documents are automatically 
read into the I/O area until the MICR 
device is out of documents, or the I/O area 
is filled. The external interrupt routine 
of the supervisor continually monitors the 
reading in of data so that processing of 
other document buffers is never disrupted. 
Also, at the completion of each read for a 
MICR document, the external interrupt 
routine interrupts the user program to give 
control to the user stacker selection 
routine to determine pocket selection for 
that document. 

User Stacker Selection Routine for MICR 

The user stacker selection routine resides 
in the user problem-program area and gains 
control of the system whenever a document 
is ready to be stacker selected. This 
routine determines which pocket to select 
the document into and whether batch 
numbering update is to be performed (1419 
only). The entry point is specified in the. 
DTFMR operand EXTADDR=name. All registers 
are saved upon exiting from, and restored 
upon returning to, the problem program. 
The use of the general registers in this 
routine is as follows: 

Register 

0-4, 

6" 

8-15 

5 

7 

Comment 

These registers are available 
to the 
user stacker selection routine 
for 
any purpose. Because the 
program can be interrupted at 
any time, the contents of 
these registers is 
unpredictable. 

When the user stacker 
. selection routine is entered, 
this register contains the 
address of the user stacker 
selection routine. Register 5 
should be utilized as the base 
register for the routine. 

This register always contains 
the address of the first byte 
of the buffer for the document 
being selected. Bytes 2 and 3 
of this buffer (see 
Appendix E) indicate the read 
status of the document. 

Before entering the user stacker 
selection routine, IOCS aids in stacker 
selection by setting the entire document 
buffer to binary zeros, reading the 
document into the document data area, and 
posting information in bytes 2 and 3. When 
the user stacker selection routine has 
determined which pocket to select the 
document into, the actual stacker selection 
command code for this pocket must be placed 
into byte 4 of the document buffer pointed 
to by register 7. The final destination of 
the document is indicated in byte 5 of the 
buffer. This indication is the same as 
byte 4 except in the case of a late stacker 
select, an auto-selected document, a 
program malfunction, or a device 
malfunction. Any of these results in an 
I/O error. Reject code X'CF' is placed 
into byte 5, indicating the document went 
to the reject pocket. 

SAM: Magnetic Reader 49 



~ Beginning of document buffer area address specified in IOAREA 1) 

,...-. Byte 0- 5 buffer status indicators (address specified in IOREG and in register 7 for the user stacker selection routine) 

...... Batch numbering updates 

r-- Error indicator for MICR device 

,...-. Pocket user selected 

rr 
Pocket document selected into 

I II r Byte 6- user's additio~al work area 

so 00 00 00 AF AF 
User's work area. 

r Byte xxx- document data area 

CD 
CD SO SO 00 IF 5F 5F Length is specified in ADDAREA=n. 

-r- Document records right -adjusted within {} 
- this area. Length is specified in RECSIZE = S~ . 

-

~! l f II II I 
I' Maximum Length is 256 Bytes -----------------.... ~I 

CD Indicates the norma I condition (no errors) when the document is being processed and the stacker selection is complete to 
pocket A (1412). 

o Indicates the normal condition (no errors - all fields read) when the document is being processed and the stacker selection is 
complete to pocket 5 and batch numbering update was performed (1419 model 1 or 31). 

G Number of buffers is limited only by the amount of main storage available (see BUFFERS =. {2~} ). 

Figure 12. MICR Document Buffer Area 

The command codes to be used to select 
pockets are: 

Pocket Code 

A X'AF' (1270, except 
Models 1 and 3, 1275, 
1412 and 1419 only) 

B X'BF' (1275, 1412 and 1419 
only) 

0 X'OF' 
1 X'lF' 
2 X'2F' 
3 X'3F' 
4 ·X'4F' 
5 X'5F'~ 
6 X'6F' (except 1270 
7 X' 7F' , Models 1 and 3) 
S X, SF') 
9 X'9F' 

Reject X'CF' 

An invalid code placed in byte 4 puts the 
document into the reject pocket and posts 
bit 1 of byte 0 of the buffer. Byte 0, bit 
2 of the next buffer is posted. 

50 DOS Supervisor and I/O Macros 

Before returning to a 1419 external 
interrupt routine via the EXIT MR macro 
instruction (required method), the user can 
request a batch numbering update. He can 
do this only within his 1419 stacker 
selection routine by turning ON byte 1, bit 
o in the current document buffer 
(01 1(7), X'SO'). 

For the 1419 (dual address), the user 
cannot obtain batch numbering update on an 
auto-selected document (byte 2, bit 6-0N). 
Such requests are ignored by the external 
interrupt routine. 

TIMINGS FOR STACKER SELECTION: Because the 
MICR readers continuously feed documents 
while engaged, it is necessary to 
reinstruct the readers within a certain 
time limit after a read completion is 
signaled by an external interrupt. This 
period is generally called minimum stacker 



selection time. This available time 
depends on the reader model, the length of 
documents being read, single or dual 
address adapter (1419, 1275), and the 
fields to be read on the 1419 or 1275 (dual 
address) only. Refer to the MICR 
publications listed in the Preface for a 
more complete description of device 
timings. 

The minimum available stacker selection 
time for the MICR reader for 6-inch 
documents is: 

Device 

1255/1259 
(with the 
use of 
pocket 0) 

1255/1259 
(without 
the use 
of pocket 
0) 

1270 

1412 

1419 
(Single 
Address 
Adapter) 

1419 
(Dual 
Address 
Adapter) 

1275 

24 milli­
seconds 

40 milli­
seconds 

24 milli­
seconds 

7.5 milli­
seconds 

9.5 milli­
seconds 

15 milli­
seconds 

21 milli­
seconds 
27 milli­
seconds 

serial No. 
Read 
Field Key 

ON 

OFF 

OFF 

Transit 
Routine 
Read 
Field Key 

ON or OFF 

ON 

OFF 

(Refer to the IBM 1275 Optical 
Reader/Sorter publication listed in the 
Preface.) 

Note: Stacker selection times shown for 
the 1419 Dual Address Adapter are for the 
1419 Models 1 and 31 only. Stacker 
selection times for the 1419 Model 32 are 
found in the IBM 1419 Model 32 Systems 
Reference Library publication listed in the 
Preface. 

I Failure to reinstruct the 1255, 1259, 
1270, 1275, 1412, or 1419 (single address 
adapter) within the allotted time causes 
the document(s) processed after this time 
to be auto-selected into the reject pocket 
(late read condition),. Failure to 
reinstruct the 1419 or 1275 (dual address 
adapter) within the allotted time causes 
the document being processed to be 
auto-selected into the reject pocket (late 
stacker-select condition). 

To determine the amount of time 
available for the user stacker selection 
routine, and to minimize document rejects, 
the user should consider: 

1. The minimum available stacker 
selection time. This time depends on 
the MICR device, the type of adapter 
(1419), the length of the documents to 
be read, and the fields to be read 
(see the applicable MICR device 
publication,(s) listed in the IBM 
System/360 and System/370 
Bibliography). 

2. The model(s) of system/360 to be used 
(see the System/360 Model 
publication(s) listed in the IBM 
system/360 and System/370 
Bibliography). Also~ refer to Figure 
13. 

3. The maximum time required by the 
supervisor external interrupt routine. 
This time can be calculated as 
follows: 

If the device is a 1255, 1259, 1412, 
or a 1419 (single address), add 0.1 
(2030 Processor 1.5 mu)~ 0.13 (2030 
Processor 2.0 mu), or 0.06 (2040 
Processor) milliseconds for each MICR 
reader. 

SAM: Magnetic Reader 51 



r-------------T----------------------------------~--------------------------------, 
INumber of lBatched Job Environment IMultiprogramming Environment I 
IMICR Readers ~-----------T------------T---------+-----------T-----------T---------~ 
Ion Processor 12030 12030 12040 12030 12030 12040 I 
I I Processor I Processor I Processor I Processor 1 Processor IProcessorl 
I 1(1.5 micro-I (2.0 micro- I 1(1.5 micro-l (2.0 micro-I I 
I 1 second) I second) 1 I second) I second) I I 
~-------------+-----------+------------+---------+-----------+-----------+---------~ 
I 1 . I 2.5 I 3.3 I 1.5 I 2.5 I 3.3 1 1.5 1 
~-------------+-----------+------------+---------+-----------+-----------+---------~ 
I 2 I 5.3 1 7.0 1 3.2 1 6.2 1 8.3 1 3.8 1 
~-------------+-----------+------------+---------+-----------+-----------+---------~ 
I 3 1 7.2 1 9.6 1 4.4 I 8.1 1 10.8 1 4.9 1 
~-------------+-----------+------------+---------+-----------+-----------+---------~ 
1 4 1 9.1 1 12.1 1 5.5 1 10.0 1 13.4 1 6.0 1 
~-------------+-----------+------------+---------+-----------+-----------+---------~ 
I 5 1 11.0 1 14.6 1 6.6 1 11.9 1 15.9 1 7.2 1 
~-------------+-----------+------------+---------+-----------+-----------+--------~~ 
1 6 I 12.9 I 17.2 1 7.8 I 13.8 118.4 1 8.3 1 
~-------------~-----------~--------~---~---------~-----------~-----------~---------~ 
1 Notes: 1 
I 1 
I 1. The timings shown are in milliseconds. ·1 
I 1 
1 2. These timings include the most time consuming cases. That I 
I is, if all the MICR devices interrupt simultaneously, the I 
1 supervisor can successfully process them within the given I 
I time. 1 L __________________________________________________________________________________ J 

Figure 13. Stacker Selection Times for IBM 2030 and 2040 Processors 

4. Also, another timing consideration is 
the concurrent operation interference 
factor. These interference factors 
are: 

a. Any I/O operation(s) in progress 
use machine cycles for command 
execution and data transfer. The 
user must consider his I/O 
configuration and probable 
concurrent I/O operations and 
consult the appropriate System/360 
model publication to calculate 
this interference value. 

b. The external interruption may 
occur while the central processing 
unit is executing either some 
long-executing instruction such as 
an MVC (move), or'TR (translate), 
or an I/O interruption. For 
instance a 256-byte MVC 
instruction can prevent an 
interruption for 800 microseconds 
on a 1.5 microsecond Model 30. 
The I/O interruption ·interference 
may take an additional 380 (500, 
250) microseconds on the same 
model (2.0 Model 30, Model 40)". 

As an example of the previous steps, 
assume a hypothetical situation: 

52 DOS Supervisor and I/O Macros 

• A 2030 Processor (1.5) 

• A 1419 (single-address) MICR device 

• 6-inch documents to be read 

• A MICR batched-job program 

• A user stacker selection routine to be 
written 

The m1n1mum available stacker selection 
time for a 2030 Processor is 9.5 
milliseconds. If the external interrupt 
processing routine time is 2.5 milliseconds 
(for 6-inch documents), 7 milliseconds is 
available for the user stacker selection 
time. But from this 7 milliseconds, the 
timing consideration of the MICR batched 
job program must be subtracted. 

When writing the stacker selection 
routine, the functional characteristics 
publication associated with the user's 
system can be consulted for the time 
involved in executing his instructions. 

/ 



Programming Considerations for 1419 or 1275 
Stacker Selection 

The user stacker selection routine operates 
in the program state with the protection 
key of its problem program and with Iio and 
external interruptions disabled. If the 
user's stacker selection routine fails to 
return to the supervisor (loops 
indefinitely), there is no possible 
recovery. If such loop occurs, the system 
must be re-IPLed to continue operation. 
Because of this possibility, it is 
recommended that the user thoroughly debug 
his stacker selection routine in a 
dedicated environment. 

In the user stacker selection routine, 
no system macro instruction other than .EXIT 
MR can be used. The routine runs with an 
all zero program and system mask, but the 
machine check interruption is enabled and a 
program check cancels the program. 

Note: Any modification of floating 
point registers without saving and 
restoring them may cause errant 
processing by any concurrent program 
using floating-point instructions. 

When processing with the Dual Address 
Adapter (1419 or 1275), the user has more 
time for his user stacker selection 
routine. The only additional processing he 
must do within the main line is to check 
byte 2, bit 0, of the document buffer for 
stacker selection errors. 

Note: Batch numbering update is not 
performed with the stacker selection of 
auto-selected documents, and batch 
numbering is not available on the 1275 
Optical Reader/Sorter. 

MICR Document Processing 

Processing begins when the user issues a 
GET (or READ) to the MICR device (Figure 

14). The first time this GET (or READ) is 
executed, the supervisor engages the device 
for continuous reading~ Each time, 
thereafter, the GET (or READ) merely points 
(through IOREG) to the next sequential 
buffer within each document buffer area. 
When a buffer for a file becomes available~ 
the user's main line processing continues 
with the instruction after the GET (or 
READ-CHECK combination). 

Each time an end-of-document condition 
occurs on an MICR deVice, the user's main 
line processing routine, or any routine, is 
interrupted by the supervisor's external 
interrupt routine. The external interrupt 
routine branches immediately to the user's 
stacker selection routine. After the user 
selects a pocket, he exits from his stacker 
selection routine so that the supervisor 
can issue the stacker selection command. 
At this time, the MICR device(s) should be 
reading document data into its (their) 
respective document buffer area(s). The 
supervisor, in priority order, passes 
control to the user's main line processing 
routine, or the routine that was 
interrupted, at the point of its 
interruption. 

Thus, MICR document processing continues 
concurrently within the: 

1. User's main line processing routine~ 

2. Supervisor's external interrupt 
routine, and 

3. User's stacker selection routine. 

The order for exiting from these 
routines is the reverse of the indicated 
order •. Processing and monitor operations 
continue concurrently until the reader is 
disengaged, eiiher normally or due to an 
error. End-of-file processing must be 
detected and handled by the user's main 
line processing routine. 

SAM: Magnetic Reader 53 



Processing Operation (user) 

r - - - -M~i; U~ Pr~~sTn~ - - -l 

GET or 
READ- CHECK 

The above GET or READ 
provides the next buffer 
address in 10REG and 
the I,Jser processes the 
data. 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

------- _________ J 

• I 

I I I: ~ Buffer n~ 

Figure 14. MICR Document Processing 

The GET macro performs the functions of 
a READ except that it waits while the 
document buffer fills. Instead, the READ 
posts an indicator in the buffer (byte 0, 
bit 5) for the user to examine with the 
CHECK macro. If this indicator bit is ON, 
the buffer is not ready for processing and 
a branch is made to the second operand 
address of the CHECK macro. The user's 
routine at this operand address can then 
READ and CHECK another file for document 
availability. If this buffer is ready for 
processing, control passes to the next 
instruction. If a special nondata status 
exists, the user should analyze the. 
conditions in his ERROPT routine and issue 
a READ to· obtain a document unless an 
unrecoverable I/O error has occurred. If a 
second operand is not provided within the 
CHECK macro, control passes to the ERROPT 
routine address. 

54 DOS supervisor and I/O Macros 

Monitor Operation (DOS Supervisor) 

Supervisor starts and/or reads documents from 
a MICR device. 

Document data is placed into the I/O area. 

During data transfer, contro I is passed to the 
user's main line processing routine. 

When end - of- document occurs, the supervisor 
branches to the user stacker selection routine. 

Supervisor selects pocket according to the 
user's pocket selection. 

At least one WAITF macro must be issued 
between two successive executions of any 
one READ to the same file. The multiple 
WAITF is essential to the operation of the 
multiprogramming feature of the system. 
Its function is to test device operation 
availability or buffer processing 
availability. If work can be done on any 
specified file, control remains in the 
partition. If not, control passes to a 
lower priority partition until this 
partition is ready for processing. 

To obtain checkpoint information about 
MICR files see Notes for DASDand MICR 
Files under the CHKPT Macro section of this 
publication. Examples of GET-PUT MICR 
document processing and multiple 1412/1419 
operation (either all single or all dual) 
are found in the System Generation 
publication. 

,/ 



MAGNETIC READER MODULE (MRMOD) 

Listed here are the user supplied operands 
for MRMOD. The first card contains MRMOD 
in the operation field and may contain a 
user module name in the name field. If a 
module name is omitted, the system name 
generated by IOCS of 

buffers specified by a 
DTFMR associated with the 
module (rr.inimum 12, 
maximum 254). 

IJU {~} zzzz 

SEPASMB=YES Required only if the 
module is assembled 
separately. 

MAGNETIC TAPE FILES (DTFMT) 
is assumed. (S = single address adapter, 
and D = dual address adapter). 

ADDRESS=DUAL 

BUFFERS=nnn 

IBM 

Required only if the dual 
address adapter is 
utilized fo~ the 1419 or 
1275. If omitted, the 
single address adapter is 
assumed. 

A numeric value equal to 
the maximum number of 

A DTFMT entry is included for each EBCDIC 
or ASCII magnetic tape input or output file 
that is to be processed. The DTFMT header 
entry is followed by a series of detail 
entries that describe the file (Figure 15). 
The detail entries generate the DTF table. 
Enter the symbolic name of the file in the 
name field and DTFMT in the operation 
field. The entries following the header 
entry may appear in any order. 

IBM Syslem/360 Assembler Coding Form 
1'1-......... U.S.A. 

~ ___________________ '-______ --II PUNCHING I~GR_APH_lc __ +---+l_--l--_1-+-I--l_-t-_+-_",=","",",C=-_~ __ ---l 
PROGRAMMfR I DATE I INSTRUCTIONS r PUNCH - { 

1 
I CARD HEme APPliES TO 

f-

Operoliorl 

f- ::J ~ 
~ 5 ~ ;:~f:':~:~c.>e 

71 • ~o~ 

Req' X X X X X X X Name of logical file on tape. This OTF requries an MTMOD. J l _I 1 I I I I I I 

j 
B L K S I Z E = n n n n n , Length of on. I/O area In byt •• (maxlmum- 32,7671. 

D E V ADD R = S Y S X X X , Symbolic unit for tap. drlv. usad for thi' logical fil •. 

EO FAD DR = X X X X X X X X, Nam.ofuser'.end-of.fiI.routlne.j 

F I LAB L = X X X X , (STD or NSTD or NO). If NSTD spacified, inc Iud. LABADDR. If omitted, NO is assumed. 

_ _ _ I ~ ARE A 1 = X X X X X X X X, N~m. of first I/O area. I I I II II 
Opt·1. H--l-+-+++-'~-J.-I-+-1-+-+-t:-A+S=+=-C~I-t.:.-1 ~=+Y+E+=S~, l-+-1-+-++-+-I-+-A-tS_CIt-1 f-til • ...:.pr-ro+ce-tssi-.:ng\-is-trOQ...:.ur-ired+·+H+-H-+-+-H-f-H+-+-I-t-+-H+-HI-+-+-H-f-H-t-+-I-+-t-H 

DTFMT X J J J Req'd. 

X J J J 

1 X J J J 

X J 

X J J J 

X J J 

X J J Opt'l. 

B UFO F F = n n , Length of block prefix if ASCII-YES. X J J 

C K P T R E C = YES , Checkpoint record, ore Intersper.;ed with Input data records. 10CS bypasses checkpoint records. X J 

ERREXT=YES, Additional errors andERET ar. desired. X J J J 

ERROPT=x X X XXX XX, (IGNORE or SKIP or Name of error routine) Prevent job termination on error records. \ X .J " ,J 

HDRINFO=YES, Print header label information if FILABL-STD. I X J J J 

IOAREA2=xxxxxXXX, 

IOREG=( nn), Regist.r number. t Usa only If GET or PUT does not specify work area 'or if two I/O area. are used. Omit WORKA. X J J 

LAB ADD R = X X X X x;x X X , Name of user's label routine if FILABL- NSTD, or if FILABL-STD and user· standard label' or. processed. X " J 

LENCHK=YES, I Length check of physical records if ASCII-Yes and BUFOFF-4. X J 

MODNAME=xxxxxXXX, Nam. of MTMOD logic module for this DTF. If omitted, 10CS g.nerate. standand nam.. X J J J 

NOTEPNT=xxxxxx, (YES or POINTS) YES If NOTE, POINTW, POINTR, or POINTS macro usad. POINTS if only POINTS macro used. X 

RDONLY=YES, Generate read only module. Requires a module save area for each task using the module. X J J " 

READ=xxxxxxx, (FORWARD or BACK) If omitted, FORWARD Is assumed. X " 

R E C FOR M = X X X X X X , ir~~~t~:d, F~I~BULr:<B ~~~~~:d.VARBLK, SPNUNB, SPNBLK, or UN DE F) For work file" use FIXUNB or UNDEF. X J J J 

111111111111111111111111111111111111111111111111111111IIIIII}II filii 11111 11111 III II 

Figure 15. DTFMT Macro (Part 1 of 2) 

SAM: Magnetic Tape 55 



IBM IBM SYItem/360 A ... mblar CDding FDrm 

t------------------~-----__;I ~~~T;~~~~JNS ~I-:-~:-~~-C --+--I-+---1f---tI--+--+-I--f--+C= .. D<7.,,=ECT='C"""'A.'P=·PL=-fE-S T-O-----l 

5 ~-,~-, .. if-;,.-.;~----; 
71 • ~ 5 ~s.q .... nc:. O~ro'ion 

Opt'l, R E WIN 0 = x x x x x x • (UNLOAOorNORWOI Unloedon CLOSE or and.ol-voluma, Dr p"",ent rewindinG- If omlned, rewind only, X 0/ 0/ 0/ Opt'l, 

r+~~r+~~r+~~rS~E+p~A~SrM~B+=-ty-t-ErS~.+-t~r+~~OTrFrMT+ls~to~~~a_rrmb+led~.~pa-mralyr,++ 11~1-rr+~-rr+~rrr+~rr~~rrr+X~o/ro/ro/+-t-t-~ 

T PM ARK = N ~ • P...,ant writing a topamark IhOed 01 data records If FILABL- NSTO Dr NO. X 0/ 

T Y P E F L E = X X X X X X • UNPUTtOUTPUT,orWORKI lfomlned,INPUTlsassumad. X 0/ 0/ 0/ 

V ARB L 0 = ( n n ) • Regist.r num~r, If RECFORM-VARBLK and records ara built In tha outputarea. t X 0/ 

~ L R ERR = X X X X X X X X • Namaolusar'lwrong-ltngth'l1ICordrDutlna.1 X 0/ 

~ 0 R K A = YES GET Dr PUT speclfla. work are •. Omit IOREG. 0/ 0/ 

'"11"'''""' [I I i III I I Iii i I Iii iOI 1111 I I III iii iii I i iJ i II jill i I III II 11111 11111 11111 11111 III I [1111 n 
• Header and each detail card, except the last one In each I8t, must have. continuation punch In column 72. Also, 

each detail card, except the last one, must contain a comma Immediately after the operand. Space II allowed for the 

::g~~~r~:~~o~~~~~~~o":~~ :;s~~~I~r:~~r:db::~~' the comma should be moved over accordingly. In the 

Figure 15. DTFMT Macro (Part 2 of 2) 

r-------------------------------~---------, 
1 ASCII=YES 1 L _________________________________________ J 

This operand specifies that.processing of 
ASCII tape files is required. If this 
operand is omitted, EBCDIC file processing 
is assumed. ASCII=YES is not permitted for 
work files. 

r-----------------------------------------, 
IBLKSIZE=n 1 L _________________________________________ J 

Enter the length E of the I/O area. If the 
record format is variable or undefined, 
enter the length of the largest block of 
records. If a READ or WRITE macro 
specifies a length greater than n for 
workfiles, the record length is greater 
than BLKSIZE. The maximum block size is 
32,767 bytes (32K minus one). The minimum 
size physical tape record (gap to gap) is 
12 bytes. Eleven bytes or less are 
considered a noise record. 

For output processing of spanned 
records, the minimum physical record length 
is 18 bytes. If SPNBLK or SPNUNB and 
TYPEFLE=OUTPUT are specified in the DTFMT 
and the BLKSIZE is invalid or less than 18 
bytes, a new MNOTE is generated and 
BLKSIZE=18 is assumed. 

For ASCII files, the BLKSIZE includes 
the length of any block prefix or padding 
characters present. If ASCII=YES and 
BLKSIZE is less than 18 bytes (for 
fixed-length records only) or greater than 
2048 bytes, an MNOTE is generated because 
this length violates the limits specified 
by American National standards Institute, 
Inc. 

56 DOS Supervisor and I/O Macros 

t Genaral regist.rs 2 -12, wrlnan In parenth .... ; lor axample: (121 . 

r-----------------------------------------, 
I BUFOFF={nIQl 1 L _________________________________________ J 

This ~s the buffer offset operand 
indicating the length of the block prefix. 
Enter the length (n) of the block prefix if 
processing of the block prefix is required. 
The contents of this field are not passed 
on to the user. 

This operand can only be included when 
ASCII=YES is specified. If the BUFOFF 
operand is omitted, a value of 0 (no block 
prefix) is assumed. 

The values for n can be: 
r-----T-----------------------------------, 
IValuel Condition 1 
~-----+-----------------------------------~ 
10-99 1 If TYPEFLE=INPUT I 
10 1 If TYPEFLE=OUTPUT 1 
14 1 If TYPEFLE=OUTPUT and 1 
I 1 RECFORM=VARUNB or VARBLK. In thisl 
1 I case, the program automatically I 
1 1 inserts the physical record lengthl 
I 1 in the block prefix 1 L _____ ~ ___________________________________ J 

r-----------------------------------------, 
ICKPTREC=YES 1 L ___________________________ -' _____________ J 

This operand is necessary if a tape input 
file has checkpoint records interspersed 
among the data records. IOCS bypasses any 
checkpoint records encountered. This 
operand must not be included when 
ASCII=YES. 



r-----------------------------------------, 
IDEVADDR={SYSRDRISYSIPTISYSPCHISYsnnnl I 
I SYSLST} I L _________________________________________ J 

This operand specifies the symbolic unit 
(SYSxxx) to be associated with the logical 
file. An ASSGN statement assigns an actual 
channel and unit number to the unit. The 
ASSGN card contains the same symbolic name 
as DEVADDR. When processing ASCII tape 
files, specify DEVADDR=SYSnnn only. 

r-----------------------------------------, 
I EOFADDR=name I L _________________________________________ J 

This operand specifies the symbolic name of 
the user's end-of-file routine. IOCS 
automatically branches to this routine on 
an end-of-file condition. This entry must 
be specified for input and work files. 

In his routine, the programmer can 
perform any operations required for the end 
of file, and he generally issues the CLOSE 
instruction for the file. IOCS detects 
end-of-file conditions in magnetic tape 
input by reading a tapemark and EOF when 
standard labels are specified. If standard 
labels are not specified, IOCS assumes an 
end-of-file condition when the tapemark is 
read or /* if the unit is assigned to 
SYSRDR or SYSIPT. The user must determine, 
in his routine, that this actually is the 
end of the file. 

r-----------------------------------------, 
IERREXT=YES I L __________________ - ______________________ J 

This operand enables a problem program 
ERROPT or WLRERR routine to return to MTMOD 
with the ERET (error return) macro 
instruction. It also enables unrecoverable 
I/O errors occurring before data transfer 
takes place to be indicated to the problem 
program. To take full advantage of this 
option, the ERROPT=~ operand must be 
specified. 

r-----------------------------------------, 
I ERROPT={IGNOREISKIP I name} I L _________________________________________ J 

This operand specifies functions to be 
performed for an error block. 

If a parity error is detected when a 
block of tape records is read, the tape is 
backspaced and reread a specified number of 
times before the tape block is considered 
an error block. output parity errors are 
considered to be an error block if they 
exist after IOCS attempts to forward erase 

and write the tape output block a specified 
number of times. 

If either FILABL=STD or CKPTREC, or 
both, is specified, the error block is 
included in the block count that is taken. 
After this the job is automatically 
terminated unless this ERROPT entry is 
included to specify other procedures to be 
followed on an error condition. Either 
IGNORE, SKIP, or the symbolic name of an 
error routine can be specified in this 
card. The functions of these 
specifications are: 

IGNORE 

The error condition is completely ignored, 
and the records are made available to the 
user for. processing. 

When reading spanned records, the entire 
spanned record or a block of spanned 
records is returned to the user rather than 
just the one physical record in which the 
error occurred. On output, the physical 
record in which the error occurred is 
ignored as if it were written correctly. 
The remainder, if any, of the spanned 
record segments are written, if possible. 

SKIP 

No records in the error block are made 
available for processing. The next ~lock' 
is read from tape, and processing continues 
with the first record of that block. The 
error block is included in the block count. 

When reading spanned records, the entire 
spanned record or a block of spanned 
records is skipped rather than just one 
physical record. On output, the physical 
record on which the error occurred is 
ignored as if it were written correctly. 
The remainder, if any, of the spanned 
record segments are written, if possible. 

name 

IOCS branches to the problem program error 
routine named by.this parameter regardless 
of whether ERREXT=YES is specified. In 
this routine, the problem program processes 
or makes note of the error condition as· 
desired. 

If ERREXT is not specified" register 1 
contains the address of the physical record 
in error. When spanned records are 
processed, register 1 contains the address 
of the whole unblocked or blocked spanned 
record. Register 14 contains the return 
address. When processing in the ERROPT 
routine, the problem program references the 

SAM: Magnetic Tape 57 



error block, or records in the error block, 
by referring to the address supplied in 
register 1. The contents of the IOREG 
register or workarea (if either is 
specified) are variable and therefore 
should not be used for error processing. 
Also, the problem program must not issue 
any GET instructions for records in the 
error block. If any other IOCS macros 
(excluding ERET if ERREXT=YES) are used in 
this routine, the contents of registers 13 
(with RDONLY) and 14 must be saved and 
restored after their use. At the end of 
the routine, the problem program must 
return control to IOCS by branching to the 
address in register 14. IOCS skips the 
physical record in error and it makes the 
next logical record available for 
processing in the main problem program. 

A sequence error may occur if LIOCS is 
searching for a first segment of a logical 
spanned record and fails to find it. If 
WLRERR or ERROPT=name was specified, the 
error recovery procedure is the same as for 
wrong-length record errors. If neither 
WLRERR nor ERROPT=name was specified, LIOCS 
ignores the sequence error and searches for 
the next first segment. 

If ERREXT is specified, register 1 
contains the address of a two part 
parameter list containing the 4-byte DTFMT 
address and the 4-byte address of the 
physical record in error, respectively. 

Note: If ERREXT is not specified for 
an output file, no coding is generated 
and a MNOTE is issued. If an error 
condition occurs, the job is canceled. 

Register 14 contains the return address. 
Processing is similar to that described 
when ERREXT is not specified except for 
addressing the physical record in error. 
The data transfer bit (byte 2, bit 2) of 
the DTF should be tested to determine if a 
nondata transfer error has occurred. If it 
is ON, the physical record in error has not 
been read or written. If the bit is OFF, 
data was transferred and the routine must 
address the physical record in error to 
determine the action to be taken. At the 
end of its input processing, the routine 
returns to LIOCS by issuing the ERET macro. 
If any other IOCS macros are used in this 
routine, the contents of register 13 (with 
RDONLY) and register 14 'must be saved and 
restored after their use. At the end of 
the ERROPT output routine, the problem 
program must consider the device 
inoperative and must not attempt further 
processing on it. Another attempt to 
return to MTMOD results in job termination. 

58 DOS Supervisor and I/O Macros 

The ERET macro can specify one of two 
actions to the MTMOD logic module. The 
error condition can be ignored with an ERET 
IGNORE, or the physical record in error can 
be skipped to process the next physical 
record with an ERET SKIP. ERET RETRY is 
invalid and if issued results in job 
termination. 

Figure 16 shows the DTFMT error options. 
This figure is divided into two parts. The 
upper part lists the error Conditions 
Specified by the User in the DTF, and the 
lower part shows the Actions Resulting From 
these specifications when an error occurs. 
Refer to the shaded column in the figure. 
The user has specified WLRERR=name and also 
the RETRY option in his ERET macro. If the 
error occurring is either a wrong length 
record or other than a wrong length record~ 
the job is terminated. Refer to the 
remaining columns of the figure for other 
specifications and their resulting actions. 

The job is automatically terminated if a 
parity error still exists after IOCS 
attempts to write a tape output blcck a 
specified number of times. This includes 
erasing forward~ 

This entry applies to wrong length 
records if the entry WLRERR is not 
included. If both ERROPT and WLRERR are 
omitted and wrong-length records occur, 
IOCS assumes the IGNORE option~ 

Note: For ASCII tape files, the 
pointer to the block in error points to 
the first logical record following the 
block prefix. 

r-----------------------------------------, 
IFILABL={STDINOINSTD} I L _________________________________________ J 

The parameter STD indicates that standard 
labels will be processed. Enter NO if no 
labels are contained on the file. If 
nonstandard labels are contained on the 
file, enter NSTD. The user must furnish a 
routine to check or create the nonstandard 
labels by using his own I/O area and EXCP 
to read or write the labels. The entry 
point of this routine is the operand of 
LABADDR. 

The specification FILABL=NSTD is not 
permitted for ASCII files (that is, when 
ASCII=YES). Labels and tape data are 
assumed to be in the same mode. 

I 

\ 



Figure 16. DTFMT Error Options 

r-----------------------------------------, 
IHDRINFO=YES I L _________________________________________ J 

This operand, if specified with FILABL=STD, 
causes Ioes to print standard header label 
information (fields 3-10) on SYSLOG each 
time a standard label file is opened. It 
also prints the filename, symbolic unit, 
and device address each time an 
end-of-volume condition is detected. Both 
FILABL=STD and HDRINFO=YES must be 
specified for header label information to 
be printed. 

r-----------------------------------------, I IOAREA1=name I L---______________________________________ J 

This operand specifies the I/O area. Enter 
an address expression (name), which 
specifies the I/O area. When 
variable-length records are processed, the 
size of the I/O area must include four 
bytes for" the block size. This operand 
does not apply to work files. 

SAM: Magnetic Tape 59 



r-----------------------------------------, 
I IOAREA2=name . I L _________________________________________ J 

This operand specifies a second I/O area. 
Enter an address expression (name), which 
specifies the I/O area. When 
variable-length records are processed, the 
size of the I/O area must include four 
bytes for the blocksize. This operand does 
not apply to work files. 

r-----------------------------------------, I IOREG=(r) I L _________________________________________ J 

This operand specifies the register in 
which IOCS places the address of the 
logical record that is available for 
processing under the following conditions: 

• If two input or output areas are used. 

• If blocked input or output records are 
processed in the I/O area. 

• If variable unblocked records are read. 

• If undefined records are read 
backwards. 

• If neither BUFOFF=O nor WORKA=YES is 
specified for ASCII files. 

For output files, IOCS places in the 
specified register the address of the area 
where the user can build a record. Any 
register (2-12) may be specified. 

Note: This operand cannot be used if 
WORKA=YES. 

r-----------------------------------------, 
ILABADDR=Name I L __ ~ ______________________________________ J 

Enter the symbolic name of the user routine 
to process user-standard or nonstandard 
labels. See sections Writing and Checking 
User Standard Labels and Writing and 
Checking Nonstandard Labels. 

For ASCII files, this operand may only 
be used for writing and checking American 
National standards Institute, Inc. user 
standard labels·. The user must process 
these labels in': EBCDIC. User nonstandard 
labels are not permitted. 

60 DOS Supervisor and I/O Macros 

r-----------------------------------------, 
ILENCHK=YES I L _________________________________________ J 

This operand applies only to ASCII tape 
input files if BUFOFF=4 and RECFORM=VARUNB 
or VARBLK. It must be included if the 
block length (specified in the block 
prefix) is to be checked against the 
physical record length. If an inequality 
is detected, the action taken is the same 
as described under the WLRERR operand" but 
the WLR bit (byte 5, bit 1) in the DTF is 
not set .• 

r-----------------------------------------, 
I MODNAME=name I L _________________________________________ J 

This operand specifies the name of the 
logic module used with the DTF table to 
process the file. If the logic module was 
assembled with the program, the MODNAME in 
the DTF macro instruction must specify the 
same name as the MTMOD macro instruction. 
If this entry is omitted, standard names 
are generated for calling the logic module. 
If two DTF macro instructions call for 
different functions that can be handled by 
a single module, only one module is called. 
For example, if one DTF specifies 
READ=FORWARD and another specifies 
READ=BACK, only one logic module capable of 
handling both functions is called. 

r-----·------------------------------------, 
I NOTEPNT={POINTSIYES} I L _________________________________ ~ _______ J 

If the parameter YES is specified, the 
NOTE, POINTW, POINTR, or POINTS macro 
instructions are issued to a tape work 
file. If POINTS is specified, only POINTS 
macro instructions can be issued to tape 
work files. The NOTEPNT operand must· not 
be specified for ASCII tape files because 
work files are not supported. 

r-----------------------------------------, 
IRDONLY=YES I L _________________________________________ J 

This operand is specified if the DTF is 
used with a read only module. Each time a 
read only module is entered, register 13 
must contain the address of a 72-byte 
doubleword aligned save area. Each DTF 
should have its own uniquely defined save 
area and each time an imperative macro 
(except OPEN(R), LBRET~ SETL~ or SETFL) is 
issued using a particular DTF~ register 13 
must contain the address of the save area 
associated with that DTF. The fact that 
the save areas are unique for each task 
makes the module reentrant (that is, 



capable of being used concurrently by 
several tasks). For more information see 
Shared Modules and Files. 

If an ERROPT or WLRERR routine issues 
I/O macro instructions using the same read 
only module that caused control to pass to 
either error routine, the problem program 
must provide another save area. One save 
area is used for the normal I/O operations 
and the second for I/O operations in the 
ERROPT or WLRERR routine. Before returning 
to the module that entered the ERROPT 
routine, register 13 must be set to the 
save area address originally specified for 
that DTF. 

If the operand is omitted, the module 
generated is not reenterable and no save 
area is required. 

r--~--------------------------------------, 
IREAD={FORWARDIBACK} I L _________________________________________ J 

This operand specifies the direction the 
tape is read. READ=FORWARD may be omitted. 

r-----------------------------------------, 
IRECFORM={FIXUNBIFIXBLKIVARUNBIVARBLKI I 
I SPNBLKISPNUNBIUNDEF} I L ______________________________ ' ___________ J 

This operand specifies the type of EBCDIC 
or ASCII records (fixed or variable length, 
blocked or unblocked, or undefined) in the 
input or output file. One of the following 
may be entered immediately following the = 
sign. 

FIXUNB 

FIXBLK 

VARUNB 

VARBLK 

SPNBLK 

SPNUNB 

UNDEF 

For fixed-length unblocked 
records 

For fixed-length blocked 
records 

For variable-length unblocked 
records 

For variable-length blocked 
records 

For spanned variable-length 
blocked records (EBCDIC only) 

For spanned variable-length 
unblocked records (EBCDIC 
only) 

For undefined records. 

If the record format is fixed-length 
unblocked, this entry may be omitted. Work 
files may use only FIXUNB or UNDEF. 

r~----------------------------------------, 
IRECSIZE={nl (r)} I L _________________________________________ J 

For fixed-length blocked records, this 
operand is required. It specifies the 
number of characters~ n, in each record. 

When processing spanned records, the 
user must specify RECSIZE=(r) where r is a 
register. 

For undefined records, this entry is 
required for output files and optional for 
input files. It specifies a general 
register (2-12) that contains the length of 
the record. On output, the user must load 
the length of each record into the register 
before he issues a PUT macro. 
Spanned-record output requires a minimum 
record length of 18 bytes~ A physical 
record less than 18 bytes is padded with 
binary zeros to complete the 18-byte 
requirement. This applies to both blocked 
and unblocked records. If specified for 
input, IOCS provides the length of the 
record transferred to main storage. 

r-----------------------------------------, 
I REWIND={UNLOADI NORWD} I L _________________________________________ J 

If this specification is not included, tape 
files are automatically rewound to load 
point, but not unloaded, on an OPEN or 
CLOSE instruction or on an end-of-volume 
condition. If other operations are desired 
for a tape input or output file~ this entry 
specifies: 

UNLOAD, To rewind the tape on OPEN or 
to rewind and unload on a 
CLOSE or end-of-volume 
condi tion,. 

NORWD To prevent rewinding the tape 
at any time. This option 
positions the read/write head 
between the two tapemarks on 
the EOF condition. 

r-----------------------------------------, 
ISEPASMB=YES I L _________________________________________ J 

This operand must be included if the DTF is 
assembled separately. This causes a CATALR 
card with the filename to be punched ahead 
of the object deck and defines the filename 
as an entry point in the assembly. 

SAM: Magnetic Tape 61 



r-----------------------------------------, 
I TPMARK=NO I L _________________________________________ J 

This operand is included if the user does 
not want a tapemark written as the first 
record on a tape output file when no labels 
are specified. This entry is also included 
if no tapemark is to be written following 
nonstandard labels. If this entry is 
omitted for a tape output file, a tapemark 
will precede the first record if no labels 
are specified. If this entry is omitted a 
tapemark is written following nonstandard 
labels. For unlabeled tapes in ASCII, 
TPMARK=NO is the default. This parameter 
is ignored if FILABL=STD. 

r-----------------------------------------, 
I TYPEFLE={INPUTI OUTPUT I WORK} I L _________________________________________ J 

Use this operand to indicate whether tne 
file is an input or output file. If INPUT 
is specified, the GET macro is used. If 
OUTPUT is specified, the PUT macro is used. 
If WORK is specified, the READ/WRITE, 
NOTE/POINT, and CHECK macros are used. See 
Work Files for DTFMT and DTFSD (2321). The 
specification of WORK in this operand is 
not permitted for ASCII files. 

r-----------------------------------------, 
IVARBLD=(r) I L __________________ - ______________________ J 

Whenever variable-length blocked records 
are built directly in the output area (no 
work area specified), this entry must be 
included. It specifies the number (r) of a 
general-purpose register that always 
contains the length of the available space 
remaining in the output area. Any register 
(2-12) may be specified. 

IOCS calculates the space still 
available in the output area, and supplies 
it to the programmer in the VARBLD 
register, only after the PUT instruction is 
issued for a variable-length record. The 
programmer then compares the length of his 
next variable-length record with the 
available space to determine if the record 
will fit in the remaining area. This check 
must be made before the record is built. 
If the record does not fit, the programmer 
issues a TRUNC instruction to transfer the 
completed block of records to the tape 
file. Then, the current record is built as 
the first record of the next block. 

62 DOS Supervisor and I/O Macros 

r-------------------------------------~---, 
IWLRERR=name I L _________________ - _______________________ J 

This operand applies only to tape inFut 
files. It specifies the symbolic name of a 
problem program routine to receive control 
if a wrong-length record is read. 

If ERREXT is not specified, the address 
of the physical record in error is supplied 
by IOCS in register 1. If ERREXT is 
specified, register 1 contains the address 
of a two-part parameter list. The first 
four bytes of the list are the DTF address 
and the second four bytes are the address 
of the physical record in error. If the 
block read is less than the BLKSIZE 
parameter, the first two bytes of the DTF 
contain the number of bytes left to be read 
(residual count). Therefore, the size of 
the actual block is equal to the block size 

. minus the residual countw If the block to 
be read is larger than the BLKSIZE 
parameter, the residual count is zero~ and 
there is no way to compute the record size. 
The number of bytes transferred is equal to 
the BLKSIZE parameter, and the remainder of 
the original block is truncated. 

The problem program WLRERR routine can 
perform any processing desirable fcr wrong 
length records. However, it must not issue 
GET macro instructions to this file. If 
the routine issues any other IOCS macros 
(excluding ERET if ERREXT=YES) the contents 
of registers 13 (with RDONLY) and 14 must 
be saved before and restored after their 
use. At the end of the routine, control 
must be returned to IOCS by branching to 
the address in register 14, or, if ERREXT 
is specified, the ERET IGNORE or SKIP 
option can be taken. . 

When fixed-length unblocked records are 
specified (RECFORM=FIXUNB), a wrong-length 
record error condition is given when the 
length of the record read is not equal to 
that specified in the BLKSIZE parameter. 
For EBCDIC fixed-length blocked records, 
record length is considered incorrect if 
the physical tape record (gap to gap) that 
is read is not a multiple of the 
logical-record length (specified in DTF 
RECSIZE), up to the maximum length of the 
block (specified in DTFMT BLKSIZE). This 
permits the reading of short blocks of 
logical records without a wrong-length 
record indication. 

For EBCDIC variable-length records 
blocked and unblocked, record length is 
considered incorrect if the length of the 
tape record is not the same as the block 
length specified in the 4-byte block-length 
field. The residual count can be obtained 
by addressing the halfword at filename+98. 



For ASCII variable length records, 
blocked and unblocked, a check on the 
physical record length is performed if 
LENCHK=YES is specified. The physical 
record length is considered incorrect if 
the tape record is not the same as the 
block length that is specified in the 
4-byte block prefix,. In this case, 'the WLR 
bit (byte 5, bit 1) in the DTF is set off. 

The WLRERR option is taken for undefined 
records if the record read is greater than 
the size specified by the BLKSIZE 
parameter. 

If the WLRERR entry is omitted but a 
wrong-length record is detected by IOCS, 
one of the following condition results: 

• If the ERROPT entry is included for 
this file, the wrong-length record is 
treated as a error block, and handled 
according to the user's specifications 
for an error (IGNORE, SKIP, or 
name-of-error routine). 

• If the ERROPT entry is not included, 
IOCS assumes the IGNORE option of 
ERROPT. 

r-----------------------------------------, 
IWORKA=YES I L __________________ ---____________________ J 

If I/O records are processed in work areas 
instead of the I/O area, specify YES with 
this operand. The user must set up the 
work area in main storage. The address 
expression of the work area (or general 
register containing the address) must be 
specified in each GET or PUT. Omit IOREG 
if this operand is included. WORKA=YES is 
required for spanned record processing. 

MAGNETIC TAPE MODULE (MTMOD) 

Listed here are the user-supplied operands 
for MTMOD. The first card contains MTMOD 
in the operation field and may contain a 
user module name in the name field. 

r-----------------------------------------, 
I ASCII=YES I L __________________ -----------____________ J 

Include the operand if processing ASCII 
input or output files is required. This 
entry is not permitted for workfiles. If 
omitted, EBCDIC file processing is assumed. 

r-----------------------------------------, 
I,CKPTREC=YES I L _________________________________________ J 

Include this operand if tape input files 
processed by the module contain checkpoint 
records interspersed among the data 
records. The module also processes files 
that do not have checkpoint records; that 
is, those whose DTFs do not specify 
CKPTREC=YES. 

This entry is not needed for work files, 
and is not valid for ASCII·files. 

r-----------------------------------------, 
IERREXT=YES I L _________________________________________ J 

Include this operand if additional I/O 
errors are to be indicated and/or the ERET 
macro is used with this DTF and module. 
ERROPT=YES should be specified in this 
module for workfiles, but is not needed for 
input or output files • 

r-------------------------~---------------, 
IERROPT=YES I L~ ________________________________________ J 

Include this operand if the module is to 
handle any of the error options for an 
error block. Logic is generated to handle 
any of the three options (IGNCRE, SKIP, or 
name). The module processes any files in 
which the ERROPT operand is net specified 
in the DTF. This entry is needed for work 
files, but it is not needed for input or 
output files. 

r-----------------------------------------, 
I NOTEPNT={YES I POINTS} I L _________________________________________ J 

Include this operand if NOTE/POINT logic is 
used with the module. If YES, the module 
processes any NOTE, POINTR, POINTW, or 
POINTS macro instruction. If POINTS is 
specified, only the POINTS macro 
instruction is processed. 

Modules specifying either one of the two 
options also process work files for which 
the NOTE/POINT operand is not specified. 
Modules specifying YES also process wor~ 
files specifying only POINTS. This entry 
does not apply to input or output files. 
The NOTEPNT operand is not used for ASCII 
files. 

SAM: Magnetic Tape 63 



r-----------------------------------------, 
IRDONLY=YES I L _________________________________________ J 

This operand generates a read only module. 
RDONLY=YES must be specified in the DTF. 
For the programming requirements of this 
operand, see the DTF RDONLY operand. 

r-----------------------------------------, 
I READ={FORWARDI BACK} I L _________________________________________ J 

This operand generates a module that reads 
tape files forward or backward. If forward 
is specified, only logic to read tape 
forward is generated. Any DTF used with 
the module may not specify BACK in the READ 
parameter statement. 

If the parameter is BACK, logic to read 
tape both forward and backward is 
generated, and any DTF used with the module 
may specify either FORWARD or BACK as its 
READ parameter. READ=BACK does not handle 
multivolume files. 

This entry is not needed for work files. 

r-----------------------------------------, 
I RECFORM={FIXUNBI FIXBLKIVARUNBIVARBLKI I 
I SPNBLKISPNUNBIUNDEF} I 
I I 
I Note: FIXUNB and FIXBLK use identical I 
Itable formats and logic modules. I L _________________________________________ J 

This operand generates an input/output 
module that processes either EBCDIC or 
ASCII fixed-length, variable-length or 
undefined records. If either FIXUNB or 
FIXBLK is specified, a logic module is 
generated that allows processing of both 

. fixed-length record types. Similarly, a 
logic module is generated that allows 
processing of both types of variable and 
spanned records. ASCII files are not 
permitted in spanned record format. If 
UNDEF is specified, a logic module for 
processing undefined record types is 
generated. Any DTF used with the module 
must specify the ~ record format ~ as 
the module. For example, if the module has 
the entry RECFORM=FIXUNB, the DTFmay have 
either the entry RECFORM=FIXUNB or 
RECFORM=FIXBLK. This entry is not needed 
for work files. 

64 DOS Supervisor and I/O Macros 

r---------------------~--------~----------, 
ISEPASMB=YES I L _________________________________________ J 

This operand must be included if the logic 
module is assembled separately. This 
causes a CATALR card with the module name 
(standard or user) to be punched ahead of 
the object deck. 

r-------------------------~---------------, 
I TYPEFLE={INPUT I OUTPUT I WORK} I L _________________________________________ J 

This operand generates a logic module that 
processes either GET/PUT macro ~nstructions 
or READ/WRITE, NOTE/POINT and CHECK macro 
instructions for work files. If the 
parameter of the operand specifies WORK, 
logic to process work files is generated. 
Otherwise, a module to handle both input 
and output file types is assumed. Only 
DTFs for work files may be used with work 
file modules. Only DTFs for input or 
output files may be used with an 
input/output module. Work files are not 
supported with ASCII tapes. 

Note: INPUT and OUTPUT have the same 
table format and logic modules. 

r-----------------------------------------, 
IWORKA=YES I L _________________________________________ J 

This operand is to be included if records 
are to be processed in work areas instead 
of I/O areas for the GET/PUT reacros. This 
operand must be included if spanned records 
are processed. The module also processes 
files that do not use a work area. This 
entry is not needed for work files. 

Recommended Module Name for MTMOD 

Each name begins with a 3-character prefix 
(IJF) and consists of a 5-character field 
corresponding to·the options permitted in 
module generation. 

In MTMOD there are two. module classes: 
the module class for handling GET (PUT 
functions and the module class for handling 
READ/WRITE, NOTE/POINT, and CHECK functions 
(work files). Modules handling fixed 
length (F,X) and undefined (U,N) records 
are mutually exclusive of each other and of 
all forms of the variable length module 
(V,R,S). 



I 

Name list for GET/PUT type modules: 

MTMOD name = IJFabcde 

a = F RECFORM=FIXUNB (or FIXBLR) 
(EBCDIC mode) 

= X RECFORM=FIXUNB (or FIXBLK) 
(ASCII mode) 

= V RECFORM=VARUNB (or VARBLK) 
(EBCDIC mode) 

= R RECFORM=VARUNB (or VARBLK) 
(ASCII mode) 

= S RECFORM=SPNUNB (or SPNBLR) 
(spanned records) 

= U RECFORM=UNDEF (EBCDIC mode) 

= N RECFORM=UNDEF (ASCII mode) 

b = B READ=BACK 
= Z READ=FORWARD, or if READ is not 

specified 

c = C CRPTREC=YES 
= Z CKPTREC=YES is not specified 

d = W WORKA=YES 
= Z WORKA=YES is not specified 

e = M ERREXT=YES and RDONLY=YES 
= N ERREXT=YES 
= Y RDONLY=YES 
= Z ERREXT and RDONLY not specified 

Name list for work file type modules 
(TYPEFLE=WORR): 

MTMOD name = IJFabcde 

a = W always 

b E ERROPT=YES 
= Z ERROPT is not specifieu 

c = N NOTEPNT=YES 
= S NOTEPNT=POINTS 
= Z NOTEPNT is not specified 

d = Z always 

e = M ERREXT=YES and RDONLY=YES 
= N ERREXT=YES 
= Y RDONLY=YES 
= Z ERREXT and RDONLY not specified 

Subset/Superset MTMOD Names 

The following charts illustrate the 
subsetting and supersetting allowed for 
MTMOD names. Four of the GET/PUT 
parameters allow subsetting. For example, 
the module name IJFFBCWZ is a superset of 
IJFFBZWZ specifying fixed-length records. 
See Subset/Superset: (Module Names). 

For GET/PUT Type Modules: 

r-----------------------------------------, 
1*+ + + + 
I I J F F B C W M 
I N Z Z Z Y 
I R + 
1 U N 
1 X Z 
I + 
1 S 
1 V 
1 
1+ Subsetting/supersetting permitted. '* No subsetting/supersetting permitted. L _________________________________________ J 

For Workfile Type Modules: 

r-----------------------------------------, 1 + + + , 
1 I J F WEN Z M 1 
1 Z S Y 1 
1 Z + 1 
1 N , 
1 Z 1 
1 I 
1+ Subsetting/supersetting permitted. 1 
1 * No subsetting/supersetting permitted.. 1 L _________________________________________ J 

OPTICAL READER FILE (DTFOR) 

DTFOR is used to define an input file to be 
processed on an IBM 1285, 1287 Optical 
Reader or 1288 Optical Page Reader. Enter 
the symbolic name of the file in the name 
field and DTFOR in the operation field. 
The operands for DTFOR follow and are 
illustrated in Figure 17. 

SAM: Optical Reader 65 



IBM IBM Sys'am/3S0 Assambl •• Codln; Form 

PROGRAM 
PUNCHING r GRAPHIC I I I I PACE 0' 

PROGRAMMER DAn 
INSTRUCTIONS r PUNCH I I J I 'ARO ELECtRO NU~BER 

APPLIES TO-
STATEMENT ~ ~ ~ ~' .. ;~-

1 
No_ 

8 10 
O~l'Gtlon 

14 ~;"'d 30 
c_ ... -!:!!:! -'''' ,. 20 35 '" .. , 50 " 60 .5 71 * 80 

J 
·X XX X X XX DT FOR Name of the optical reader fila 17 characton or Iassl. Thl. OTF tabla requires an ORMOO. X" "" " r CO RE XI T= XX X X X X X X , Name of usa"s arror correction routine. X" "" " DE VA DD R= SV Sn n n , Symbolic unit assigned to Tth7 .;;ft;~1 ~Jar: X" "" " 

EO FA DD R= xx X X X X X X , N!,.;,r J u~1a~d~~f~lI~r.!.~~e. X" "" " 
10 AR EA 1 = X X xx X X X X , N!,.;,r ~r f~ \n~t ~ra~ X" "" " 

Opt' I. BL KF ~C =n n , If RECFORM-UNOEF In Journal tape mod .. X,,"J Opt'l. 

BL KS IZ E= n n Lan;th o~ I/O araals!. If omlttad, 38 II ..... mad. X" " J J 

CO NT RO L= VE S , Ifl C~T~L Im.'c~ Isltolbelu.!.t ~orlthls file.
1 

X" "" " DE VI CE =x X X X X, 0285, 12870,or 1287T) For 1288, specify 12870. If omitted, 1285 Is ..... mad. 
X " "" " HE AD ER =V E S , If a header racord Is to be road from th~ optical :.ooer keyboard .,y OPEN. 
X " "V 

HP RM TV =V ES , If hopper empty condition Is to be raturnad. X J J 

10 AR E A'2 = X X X X X X X x, ,If tWo Input ara .. ara usad, name of sacond Input ara .. X"" 
10 RE G = ( n n) R~ T~:' J ~n~ra~ .. ~r ~~~~F ~nI ai. ~o I,. ~.J. Ilf ~m\~, ~ 2 Is ..... mad. t X"" 

MO DN AM E= X X X X X X X X Name of OTF'I logic module. If omitted. 10es ganeratas a standard name. 
X " "" " R E CF OR M= X X xx X X , 1~lxIL~, ~I)Ju;rB:~r lIJJoJ) 1~~ml~.lI,lu~B lis !s..1....1.J. 
X " "" " RE CS IZ E = ( n n ) , Rag. no. containing record size, If RECFORM-UNOEF. t If omitted, rag. 3 Is ..... mad. 
X " v" " 

SE PA SM B= VE S, If I tJ ;rT~ol .It;';;; ~';;bl~ ~~Ii X" "" " WO RK A= YES If records 8ra to be procassad In a work 8rae. Omit 10REG. " " 

• Header and each detail card, except tha last one In aach sat. must h8llo a contlnuetlon punch In column n. Also, 
each detail card, except the last ona, must contain a comma Immediately after tha operand. Speca Is allowed for the 
longest operand plus the comma. If. smaller operand· I. usad, the comma should be moved CNer accordingly. In the 
last detail card ;;t;" sat. the comma position must be blank. 

Figure 17. DTFOR Macro 

r-----------------------------------------, 
IBLKFAC=n I L _________________________________________ J 

Undefined journal tape records are 
processed with greater throughput speeds 
when this operand is included. This is 
accomplished by reading groups of lines as 
blocked records. When undefined records 
are processed, BLKFAC specifies the 
blocking factor (n) that determines the 
number of lines read (through CCW chaining) 
as a block of data by one physical read. 
Deblocking is accomplished automatically by 
IOCS when the GET macro is used. The 
BLKFAC parameter is not used with 
RECFORM=FIXBLK, because the blocking factor 
is determined from the BLKSIZE and RECSIZE 
parameters. If the operand is included for 
FIXBLK, FIXUNB, or document processing, the 
operand is noted (MNOTE) and ignored. 

66 DOS Supervisor and I/O Macros 

t Genaral ra;lstars 2·12, written with peranth .... ; for example: (12). 

r---------------------------------------~-, 
IBLKSIZE={nI38} I L _________________________________________ J 

This operand indicates the size of the 
input area specified by IOAREA1. For 
journal tape processing, BLKSIZE specifies 
the maximum number (n) of characters that 
may be transferred to the area at anyone 
time. 

When undefined journal tape records are 
read, the area must be large enough to 
accommodate the longest record to be read 
if the BLKFAC parameter is not specified. 
If the BLKFAC parameter is specified, the 
BLKSIZE value must be determined by 
multiplying the maximum length that must be 
accommodated for an undefined record by the 
blocking factor desired. A BLKSIZE value 
smaller than this results in truncated 
data. 

If two input areas are used for journal 
tape processing (IOAREAl and IOAREA2), the 
size specified in this entry is the size of 
each I/O area. 



r-----------------------------------------, 
ICONTROL=YES I L _________________________________________ J 

This entry must be included if a CNTRL 
macro instruction is issued for a file. A 
control command issues orders to the 
optical reader to perform nondata 
operations such as line marking, stacker 
selecting, document incrementing, etc. 

r-----------------------------------------, 
ICOREXIT=name I L __________________ -------________________ J 

COREXIT provides an exit to the user's 
error correction routine for the IBM 1285, 
1287 Optical Reader" or 1288 Optical Page 
Reader. After GET, WAITF, or CNTRL macro 
(to increment or eject and/or stacker 
select a document) is executed, an error 
condition results in an error correction 
routine with an indication provided in 
filename+80. Filename+80 contains the 
following hexadecimal bits indicating the 
conditions that occurred during the last 
line or field read. Filename+80 should 
also be tested after issuing the optical 
reader macros DSPLY, RESCN, RDLNE, CNTRL 
READKB, and CNTRL MARK. More than one 
error condition may be present. 

X'20' 

X'Ol' 

X'02' 

X'04' 

For the 1288~ reading in 
unformatted mode, the end-of-page 
(EOP) condition has been detected. 
Normally, on an EOP indication, the 
problem program ejects and stacker 
selects the document. 

Filename+80 should also be tested 
after issuing the optical reader 
macros CNTRL ESD, CNTRL SSD, 
CNTRL EJD in user's COREXIT 
routine. These should only be 
tested for nonrecovery (X'10') and 
(X'20') late stacker select. 

For the 1287, a stacker select was 
given after the allotted elapsed 
time and the docume'nt was put in 
the reject pocket (1287 only). 

A data check has occurred. Five 
read attempts for journal tape 
processing or three read attempts 
for document processing were made. 

The operator corrected one or more 
characters from the keyboard (1285 
or 1287T) or a hopper empty 
condition (see HPRMTY=YES operand) 
has occurred (1287D). 

A wrong-length record condition has 
occurred (ten read attempts were 
made). Not applicable for 
undefined records. 

X'08' 

X'10' 

X'40' 

An equipment check resulted in an 
incomplete read (ten read attempts 
were made). 

If an equipment check occurs on 
the first character in the record~ 
when proc€ssing undefined journal 
tape records, the RECSIZE register 
contains zero~ and the IOREG (if 
used) pOints to the rightmost 
position of the record in the I/O 
area. The user should test the 
RECSIZE register before moving 
records from the work area or the 
I/O area. 

A nonrecovery error occurred. 

The 12870 scanner was unable to 
locate the reference mark (ten 
attempts were made). 

Filename+80 can be interrogated by the 
user to determine the reason for entering 
the error correction routine.. Choice of 
action in the user's error correction 
routine is determined by the particular 
application. 

If the user issues I/O macro 
instructions to any device other than the 
1285, 1287 and/or 1288 in the COREXIT 
routine, he must ~ave registers O~ 1, 14, 
and 15 upon entering the routine, and 
restore these registers before exiting. 
Also, if I/O macro instructions (other than 
the GET, WAITF, and/or READ, which cannot 
be used in COREXIT) are issued to the 1285~ 
1287, and/or 1288 in this routine, the user 
must also save, and later restore registers 
14 and 15 before exiting. All exits from 
COREXIT should be to ~he address specified 
in register 14. This provides a return to 
the point from which the branch to COREXIT 
occurred. If the command chain bit is ON 
in the READ CCW for which the error -­
occurred, IOCS completes the ch~in upon 
return from the COREXIT routine. 

Note: Do not issue a GET, REAt, or 
WAITF macro to the 1285" 1287" or 1288 
in the error correction routine. Do 
not process records in the error 
correction routine. The record that 
caused the exit to the error routine is 
available for processing upon return to 
the user's mainline program. Any 
processing included in the error 
routine would be duplicated after 
return to the mainline program. 

When processing journal tapes, a 
nonrecovery error (torn tape, tape jam, 
etc) normally requires that the tape be 
completely reprocessed. 

Restriction: In this case, th~ user 
routine must not branch to the address 

SAM: Optical Reader 67 



in register 14 from the COREXIT routine 
or a program loop will occur. 

Following a nonrecovery error: 

• The optical reader file must be 
closed: 

• The condition causing the 
nonrecovery must be cleared: 

• The file must be reopened before 
processing can continue. 

If a nonrecoverable error occurs while 
processing documents (indicating that a jam 
occurred during a document incrementatibn 
operation, or a scanner control failure has 
occurred, or an end-of-page condition~ 
etc), the document should be removed either 
manually or by nonprocess runout. 

R~striction: In such cases~ the user 
program should branch to read the next 
document. If the 1287 or 1288 scanner 
is unable to locate the document 
reference mark, the document cannot be 
processed. In this case, the document 
must be ejected and stacker selected 
before attempting to read the following 
document or a program loop will result. 
In any case" the user routine must not 
branch to the address in register 14 
from the COREXIT routine. If a 
nonrecoverable error occurs, the user 
routine should ignore any output 
resulting from the document. 

Eight binary counters are used to 
accumulate totals of certain 1285, 1287, 
and 1288 error conditions. These counters 
each occupy four bytes, starting at 
filename+48. Filename is the name 
specified in the DTF header entry. The 
error counters are: 

counter and 
Address Contents 

1 filename+48 Equipment check (see 
Note). 

2 filename+52 Equipment check 
uncorrectable after ten 
attempts (see Note). 

3 filename+56 Wrong-length records (not 
applicable for undefined 
records). 

68 DOS supervisor and I/O Macros 

4 filename+60 Wrong~length records 
.uncorrectable after ten 
read attempts (not 
applicable for undefined 
records) .• 

5 filename+64 Keyboard corrections 
(journal tape only). 

6 filename+68 Journal tape lines 
(including retried lines) 
or document fields 
(including retried fields) 
in which data checks are 
present. 

7 filename+72 Lines marked (journal tape 
only). 

8 filename+76 Count of total lines read 
from journal tape or the 
number of CCW chains 
executed during document 
processing. 

Note: Counters 1 and 2 apply to 
equipment checks that result from 
incomplete reads or from the inability 
of the 1287 or 1288 scanner to locate a 
reference mark (when processing 
documents only). 

All the previous counters contain binary 
zeros at the start of each job step and are 
never cleared. The user may list the 
contents of these counters for anaiysis at 
end of file, or at end of job, or he may 
ignore the counters. Binary contents of 
the counters should be converted to a 
printable format. 

r-----------------------------------------~ 
IDEVADDR=SYSnnn I L _________________________________________ J 

This operand specifies the symbolic unit 
(SYSnnn) to be associated with the logical 
file. The symbolic unit represents an 
actual I/O device address used in the job 
control ASSGN statement to assign the 
actual I/O device-address to this file. 



r-----------------------------------------, 
I DEVICE=£1285 I 1287DI 1287T} I L _________________________________________ J 

This operand must be included to specify 
the I/O device associated with this logical 
file. One of the following specifications 
must be entered immediately after the = 
sign: 

1285 For a 1285 journal tape file 

1287D For a 1287 or 1288 document file 

1287T For a 1287 journal tape file 

From this specification, IOCS sets up 
the device-dependent routines for this 
file. For document processing on the IBM 
1287 Optical Reader or IBM 1288 optical 
Page Reader, the user codes CCws. 

r-----------------------------------------, 
I EOFADDR=name I L _________________________________________ J 

This operand specifies the symbolic name of 
the user's end-of-file routine. IOCS 
automatically branches to this routine on 
an end-of-file condition. 

When reading data from documents, you 
can recognize an end-of-file condition by 
pressing the end-of-file key on the console 
when the hopper is empty. When processing 
journal tapes on a 1285 or 1287, you can 
detect an end-of-file by pressing the 
end-of-file key after the end of the tape 
is sensed. 

When IOCS detects an end-of-file 
condition, it branches to the user's 
routine specified by EOFADDR; The user 
must determine if the current roll is the 
last roll to be processed when handling 
journal tapes. For 1285, do this by keying 
in header information at the beginning of 
each roll. This header information can 
then be interrogated to determine whether 
it is the last roll~ Regardless of the 
situation, the tape file must be closed for 
each roll within the user's EOF routine. 
If the current roll is not the last, OPEN 
must be issued. The OPEN macro instruction 
allows header (identifying) information to 
be entered at the reader keyboard and read 
by the processor when using logical IOCS. 

The same procedure can be used for 1287 
processing of multiple journal tape rolls, 
as well as the method described under 
OPEN(R) Macros. 

r-----------------------------------------, 
IHEADER=YES I L _________________________________________ J 

This operand is required if the operator is 
to key in header (identifying) information 
from the 1285 or 1287 keyboard. The OPEN 
routine reads the header information only 
when this entry is present. If the entry 
is not included, OPEN assumes no header 
information is to be read~ The header 
record size can be as large as the BLKSIZE 
entry, and it is read into the high-order 
positions or IOAREA1. This operand cannot 
be used for 1288 files~ 

r-----------------------------------------, 
I HPRMTY=YES I L _________________________________________ J 

This operand is included if the hopper 
empty indication is to be passed to the 
user. This condition occurs when a READ is 
issued and no document is present, and is 

'recognized at WAITF time. When a hopper 
empty condition is detected, the user's 
COREXIT routine is entered with the 
condition indicated as X'02' in 
filename+80. 

This operand should be used when 
processing documents in the time dependent 
mode of operation~ which allows complete 
overlapping of processing with reading. 
(See Method 2 under Programming the 1287 in 
the IBM 1287 Optical Reader Componenf 
Description and Operating Procedures 
publication listed in the IBM S/360 and 
S/370 Bibliography.) With this method of 
processing, the HPRMTY parameter" allows 
the user to check for a hopper empty 
condition in his COREXIT routine. He can 
then stacker select properly the previously 
ejected document before return from COREXIT 
(via register 14). 

r-----------------------------------------, 
I IOAREA1=name I L _________________________________________ J 

This operand is included to specify the 
symbolic name of the input area used by the 
file. When opening a file and before each 
journal tape input operation to this area, 
the designated area is set to binary zeros 
and the input routines then transfer 
records to this area. For document 
processing, the area is cleared only when 
the file is opened. 

SAM: Optical Reader 69 



r-----------------------------------------, 
I IOAREA2=name I L ______________________ ~ __________________ J 

A second input area can be allotted only 
for a journal tape file. This permits an 
overlap of data transfer and processing 
operations and the IOAREA2 entry must be 
included. The specified second I/O area is 
set to binary zeros before each input 
operation to this area occurs. 

r-----------------------------------------, 
I IOREG={(r)I (l)} I L _________________________________________ J 

This operand specifies a general purpose 
register (r) that the input routines use to 
indicate the beginning of records for 
journal tape file only. Any register 
number 2-12 may be specified, but if the 
entry is omitted, register 2 is assumed. 
The same register may be specified in the 
IOREG entry for two or more files in the 
same program, if desired. In this case, 
the problem program may need to store the 
address supplied by IOCS for each record. 
Whenever this entry is included for a file, 
the DTFOR entry WORKA must be omitted, and 
the GET instruction must not specify a work 
area. 

A read by an optical reader is 
accomplished by a backward scan.. This 
places the rightmost character in the 
record in the rightmost position in the I/O 
area and SUbsequent characters in sequence 
from right to left. The register defined 
by IOREG indicates to the user the leftmost 
position of the record. 

r-----------------------------------------, 
I MODNAME=name I L _________________________________________ J 

This operand is used if a nonstandard, or a 
more inclusive module is referenced.. It 
specifies a user-named I/O module. 

r-----------------------------------------, 
IRECFORM={FIXUNBIFIXBLKIUNDEF} I L _________________________________________ J 

This operand specifies the type of records 
in an optical reader file. One of the 
following specifications may be entered 
immediately after the = sign: 

FIXUNB For fixed-length unblocked records 

FIXBLK For fixed-blocked records in 
journal tape mode 

UNDEF . For undefined records 

70 DOS supervisor and I/O Macros 

r-----------------------------------------, 
IRECSIZE={nl (r)l(l)} I L _________________________________________ J 

For fixed-length unblocked records, this 
operand shou'ld be omitted and no register 
is assumed.' 

For fixed-length blocked records 
(journal tape mode), this entry must be 
included to specify the number B of 
characters in an individual record. The 
input routines use this factor to deblock 
records, and to check the length of input 
records. If this operand is omitted, an 
MNOTE is flagged in the macro assembly and 
fixed-length unblocked records are assumed. 

For undefined journal tape records~ this 
entry specifies the number (r) of the 
general-purpose register in which IOCS 
provides the length of each input record. 
For undefined document records, RECSIZE 
contains only the length of the last field 
of a document read by the user-supplied 
channel coromand word chain. Any register 
2-12 may be specified, but if the entry is 
omitted, register 3 is assumed. 

Note: When processing undefined 
records in document mode, the user 
gains complete usage of the register 
normally used in the RECSIZE parameter. 
He can do this by ensuing that the 
suppress-length-indication (SLI) flag 
is always ON when processing undefined 
records .• 

r-----------------------------------------, 
ISEPASMB=YES I L _________________________________________ J 

This operand must be included if the DTF is 
assembled separately. This ca~ses a CATALR 
card with the filename to be punched before 
the object deck, and defines the filename 
as an entry point in the assembly. 

r-----------------------------------------, 
IWORKA=YES I 
L __________________ -----------------------J 
Input records (journal tape only) can be 
processed in a work area instead of the 
input area. If this is planned, the 
operand WORKA=YES must be included, and the 
programmer must set up the work area in 
main storage. The symbolic name of the 
work area (or a general register containing 
the address of the work area) must be 
specified in each GET macro. When GET is 
issued, Ioes left-justifies the record in 
the specified work area. Whenever this 
entry is included for a file, the DTFOR 
entry IOREG must be omitted. 



IBM 1288 Optical Page Reader Programming 
Considerations 

After an IBM 1288 Optical Reader file is 
defined, the OPEN(R) macro makes it 
available for input. Processing is then 
accomplished by the CNTRL, READ, RESCN, and 
WAITF macro instructions. When processing 
is completed, the CLOSE(R) macro 
deactivates the file. 1288 processing 
adheres closely to the macros and DTF 
specifications used for 1287 document 
processing. 

OPTICAL READER MODULE (ORMOD) 

The following list contains the parameters 
for a user-coded IIO module (ORMOD). The 
first card contains the module name in the 
name field and ORMOD in the operation 
field. 

r-----------------------------------------, 
IBLKFAC=YES I L _________________________________________ J 

Include this operand if RECFORM=UNDEF and 
groups of undefined journal tape records 
are to be processed as blocks of data. 
(See optical Reader File (DTFOR): 
BLKFAC=n.) The DTFOR used with this module 
must also include RECFORM=UNDEF and 
BLKFAC=n. 

r-----------------------------------------, 
ICONTROL=YES I L _________________________________________ J 

Include this operand if CNTRL macro 
instructions are to be used with the 
associated DTFs. The module also processes 
files that do not use the CNTRL macro 
instruction. 

r-----------------------------------------i 
IDEVICE=£128511287DI1287T} I L _________________________________________ J 

This operand must be specified to indicate 
that either the IBM 1285, 1287 or 1288 
(document mode), or 1287 (tape mode) is 
used as the input device. 

r-----------------------------------------, 
1 IOAREA2=YES 1 L _________________________________________ J 

Include this operand (journal tape only) if 
a second I/O area is used. The DTFOR used 
with this module must also include the 
IOAREA2 parameter. 

r-----------------------------------------, 
IRECFORM=£FIXUNBIFIXBLKIUNDEF} 1 L _________________________________________ J 

This operand generates a module that 
processes the specified record format. The 
DTFOR used with this module must also 
include the appropriate operand in the 
RECFORM parameter. 

r-----------------------------------------, 
I SEPASMB=YES ·1 L _________________________________________ J 

This operand must be included if the module 
is assembled separately from the DTF(s). 
This entry causes a CATALR card to be 
punched preceding the module. 

r-----------------------------------------, 
IWORKA=YES I L _________________________________________ J 

Include this operand (journal tape only) if 
records are to be processed in work area(s) 
instead of I/O areas. The DTFOR used with 
this module must include the appropriate 
operand in the WORKA parameter. 

Recommended Module Name for ORMOD 

Each name begins with a 3-character prefix 
(IJM) followed by a 5-character field 
corresponding to the options permitted in 
the generation of the module. 

SAM: Optical Reader 71 



ORMOD name = IJMabcde 

a = F RECFORM=FIXUNB 
= X RECFORM=FIXBLK 
= U RECFORM=UNDEF 
= D RECFORM=UNDEF and BLKFAC=YES . 

b = C CONTROL=YES 
= Z CONTROL=YES is not specified 

c = I IOAREA2=YES 
= W WORKA=YES 
= B both are specified 
= Z neither is specified 

d = T device is in tape mode 
= D device is in document mode 

e = Z always 

subset/Superset·ORMOD Names 

The following chart shows the subsetting 
and supersetting allowed for ORMOD names. 
One of the parameters allows subsetting. 
For example, the module IJMFCITZ is a . 
superset of the module IJMFZITZ. See 
Subset/superset: (Module Names). 

r-----------------------------------------, 
I * + * * I 
I I J M D C B D Z I 
I F ZIT I 
I U W I 
, X Z I 
I I 
I + supersetting/subsetting permitted. I 
I * No subsetting/supersetting permitted. I L _______ - _________________________________ J 

PRINTER FILE (DTFPR) 

A DTFPR entry is included for each printer 
file processed in the program. The first 
entry is the DTFPR header entry. The name 
field contains the symbolic file name, 
filename. The operation field contains 
DTFPR. The detail entries, in any order, 
follow the DTFPR header entry with keyword 
operands in the operand field. Figure 18 
contains DTFPR operands. 

r-----------------------------------------, 
IBLKSIZE={nI121l I L __________ ~ ______________________________ J 

This operand specifies the length of 
IOAREAl. If the record format is variable 
·or undefined, enter the length of the 
longest record. If this entry is omitted, 
121 is assumed. 

72 DOS Supervisor and I/O Macros 

r-----------------------------------------, 
ICONTROL=YES I L _________________________________________ J 

This operand is specified if the CNTRL 
macro will be issued to the file. If this 
operand is specified, omit CTLCBR. 

r-----------------------------------------, 
ICTLCHR={YESIASA} I 
L __ ---------------------------------------J 
This operand is specified if first 
character control is used. The parameter 
ASA specifies the American National 
Standards Institute, Inc. character set. 
The entry CTLCHR=YES specifies the 
System/360 character set. Appendix B 
contains the control character codes. If 
this parameter is specified, omit CONTROL. 

r-----------------------------------------, 
IDEVADDR={SYSLOGISYSLSTISYSnnn)} I L _________________________________________ J 

This operand specifies the symbolic unit to 
be associated with this printer. 

r-----------------------------------------, 
IDEVICE={1403114041144311445} I L _________________________________________ J 

This operand specifies that one of the 
following printers is used for the 
file: 1403, 1404 (continuous forms only), 
1443, or 1445. If this entry is omitted, 
1403 is the assumed device. 

r-----------------------------------------, I IOAREA1=name I L _________________________________________ J 

This operand specifies the output area. An 
address expression (name) is specified. 

r-----------------------------------------, 
I IOAREA2=name I L __________________ - ______________________ J 

This operand specifies a second output 
area. An address expression (name) is 
specified. 



IBM IBM Sy.t.ml3SD A.llmbl .. Cadln~ Farm 

r--------------------..-----------I :~~~~~~~NsTIt-c-.. -PH-IC--+-II---'r-+-~IIr--+--t---+--+.,W7: •• ""'O ''''"LfC'''''U''''O..,.,:NU''''M''''''':-------I 
PUNCH 1--

ldenti'lcation· 
s.~ .. ...,. 

~·rXi-XrXt-XrX~X-rX~rtDi-TtFi-PrR+-r~+~~Nar~t:~o~~:f~~nt~~t:,le~~xr:,I~~:f:~:~~F:f':~"r:+,~RMrO+D~·r:~+a:'~~-~~:f~~:_lt~:~:~-t:~.a+:-:~te~ru~~~.fo~r~th+II~I~~I~~4If-IIL~~+-~~~~~~-+~~-++-~~+-~~~~ 
X Roq'd. 

X L X 
Dpt'l. B L K S I Z E = n n n , Length of one output area, In "YIOL If omitted, 121 II assumed. X Opt'l. 

CON T R 0 L = V E S , C~T;\LI~rd~~lfJt~111 II~-dml In.'c~R lorllhille.' X 

X 
o E V ICE = n n n n , (1403 or 1404 or 1443 or 14451 II omitted, 1403.11 IllUmed. X 

X 
IOREG=(nn), Register number, If two output a .. u usod and PUT dool not specify I work area. t Omit WORKA. X 

MODNAME=xxxxxxxx, N~~1 of PRMOD logic module for thll DTF. If omltt~, IOes 9on""10I stt~dard Ina';".1 X 
PRINTOV=VES, PRTOV macro usod for thll fil •• X 

RDONLV=VES. Generate. read only module. Require. I module savlerel for 8ach task using the module. X 

RECFORM=xxxxxx, IFIXUNB or VARUNB or UNDEFI If omitted, FIXUNB II 8SSU~ i X 

RECSIZE=( nn), X 
SEPASMB=VES, DTFPR II to be assembled separ.tely. I X 

STLI ST=VES, 1403 selective taPI listing feature II to be ueod. Oper.nd v.lld for DOS only. X 

UCS=xxx, ION process data chockl. IOFFI Ignorel d.tl chockL Only for 1403 with UCS f •• ture; If omitted, OFF I. assumed. X 

WORKA=VES PUT specifies work ..... Omit IOREG • 

• Header and each detail card, IKeept the last one In each Jet, must have. continuation punch In column 72. Also 
each detail card, except the last one, must DOnuln • comma Immedl.tely Ifter the operand. Space II .lIowed for tho 
longest operand plul the comma. If a smaller operand II used, the comma should be moved over accordingly. I n the 
last detail card ora set, the comma position must be blank. 

Figure 18. DTFPR Macro 

r-----------------------------------------, 
I IOREG=(r) I L _________________________________________ J 

If two output areas and no work areas are 
used, the operand IOREG=(r) specifies the 
address of the area wher~ the user can 
build a record. The (r) represents a 
register 2-12. 

r-----------------------------------------, 
I MODNAME=name I L _________________________________________ J 

This operand may be used to specify the 
name of the logic module that is used with 
the DTF table to process the file. If the 
logic module is assembled with the program, 
the MODNAME in the DTF macro instruction 
must specify the same·name as the PRMOD 
macro instruction. If this operand is 
omitted, standard names are generated for 
calling the logic module. If two DTF macro 
instructions call for different functions 
that can be handled by a single module, 
only one module is called. 

t Gener.1 reglst ... 2·12, written In p.renth .... ; for ex.mple: 112). 

r-----------------------------------------, 
IPRINTOV=YES I L~ ___________________ ~ ____________________ J 

This operand is specified if the PRTOV 
macro instruction is included in the 
problem program. 

r-----------------------------------------, 
IRDONLY=YES I L _________________________________________ J 

This operand is specified if the DTF is 
used with a read only module. Each time a 
read only module is entered, register 13 
must contain the address of a 72-byte 
doubleword aligned save area. Each DTF 
requires its own uniquely defined save 
area. Each time an imperative macro 
(except OPEN(R), LBRET, SETL, or SETFL) is 
issued for a particular DTF, register 13 
must contain the address of the save area 
associated with that DTF. The fact that 
the save areas are unique for each task 
makes the module reentrant (that is, 
capable of being used concurrently by 
several tasks). For more information see 
Shared Modules and Files. 

SAM: Printer 73 



If an ERROPT or WLRERR routine issues 
I/O macro instructions using the same read 
only module that caused control to pass to 
either error routine, the problem program 
must provide another save area. One save 
area is used for the normal I/O, and the 
second for I/O operations in the ERROPT or 
WLRERR routine. Before returning to the 
module that entered the ERROPT routine, 
register 13 must be set to the save area 
address originally specified for that DTF. 
If this operand is omitted, the module 
generated is not reenterable and no save 
area need be established~ 

r-----------------------------------------, 
IRECFORM={FIXUNBIUNDEFIVARUNB} I L _________________________________________ J 

The operand RECFORM=FIXUNB is specified 
whenever the record format is fixed. When 
the record format is FIXUNB, this entry may 
be omitted. The entry RECFORM=UNDEF is 
specified whenever the record format is 
undefined. If the output is variable and 
unblocked, enter VARUNB. 

r-----------------------------------------, 
IRECSIZE=(r) I L _______________ ~ _________________________ J 

This operand specifies the general register 
(2-12) that will contain the length of the 
output record with an undefined format. 
The length of each record must be loaded 
into the register before issuing the PUT 
instruction. 

r-----------------------------------------, 
ISEPASMB=YES I L ______________ ~ ___ --_____________________ J 

This operand must be included if the DTF is 
assembled separately. This causes a CATALR 
card with the filename to be punched ahead 
of the object deck and defines the filename 
as an entry point in the assembly. 

r-----------------------------------------, 
ISTLIST=YES I L _________________________________________ J 

Include this operand if the selective tape 
listing feature (1403 only) is used. If 
this entry is specified, the CONTROL, 
CTLCHR, and PRINTOV entries are not valid 
and will be ignored if specified. Also, 
the RECFORM entry is forced to FIXUNB and 
records are handled ,accordingly. 

74 DOS supervisor and I/O Macros 

r-----------------------------------------, 
IUCS={ONIOFF} I L _________________________________________ J 

For a 1403 printer with the Universal 
Character set feature, this operand 
determines whether data checks occurring on 
unprintable characters are indicated to the 
operator, printed as blanks, or ignored. 
The entry is especially useful to 
programmers who are using first-character 
fbrms control and who have modules that 
cannot process the CNTRL maero. 

ON Data checks are processed with an 
operator indication. 

OFF Data checks are ignored and blanks 
are printed for the unprintable 
character. 

r-----------------------------------------, 
IWORKA=YES I L _________________________________________ J 

If output records are processed in 
workareas instead of the output area, the 
entry WORKA=YES is specified. The user 
must set up the workarea(s) in main 
storage. The address expression of the 
workarea (or a general register containing 
the address) must be specified for each GET 
or PUT macro. 

PRINTER MODULE (PRMOD) 

Listed here are the user-supplied operands 
for PRMOD. The first card contains PRMOD 
in the operation field and may contain a 
user module name in the name field. 

r--------------------------~--------------, 
ICONTROL=YES I L __________________ - ______________________ J 

Include this operand if CNTRL macro' 
instructions are used with the associated 
DTFs. The module also processes files that 
do not use the CNTRL macro instruction. If 
CONTROL is specified, the CTLCHR operand 
should not be specified. 



r-----------------------------------------, 
ICTLCHR={YESIASA} I L _________________________________________ J 

Include this operand if first-character 
carriage-control is used. Whenever this 
operand is included, any DTF used with the 
module must also specify CTLCHR with the 
appropriate YES or ASA parameter. If 
CTLCHR is included, CONTROL should not be 
specified. 

Note: If more than one DTF uses the same module in a multitasking 
environment with CTLCHR=ASA and 
RDONLY=YES, overprinting may occur. 

r-----------------------------------------, 
IDEVICE={1403114041 1443 11445} I L _________________________________________ J 

This operand specifies that one of the 
following printers is used for the file: 
1403, 1404 (continuous forms only), 1443, 
or 1445. Enter one of these numbers. If 
this entry is omitted, 1403 is the assumed 
device. 

r-----------------------------------------, 
I IOAREA2=YES I L __________________ --_____________________ J 

Include this operand if a second I/O area 
is used. Any DTF used with the module must 
also include the IOAREA2 operand. 

r-----------------------------------------, 
IPRINTOV=YES I L __________________ - ______________________ J 

Include this operand if PRTOV macro 
instructions are used with the associated 
DTFs. The module also processes any files 
that do not use the PRTOV macro 
instruction. 

r-----------------------------------------, 
IRDONLY=YES I L _____________ ~ __________________________ J 

This operand generates a read only module. 
RDONLY=YES must be specified in the DTF. 
For the programming requirements of this 
operand, see the DTF RDONLY operand. 

r-----------------------------------------, 
IRECFORM={FIXUNBIVARUNBIUNDEF} I L _________________________________________ J 

This operand generates a module that 
processes the specified record format: 
fixed-length, variable-length, or 
undefined. Any DTF used with the module 
must include the appropriate parameter in 
the RECFORM operand. " 

r-----------------------------------------, 
ISEPASMB=YES I L _________________________________________ J 

This operand must be included if the logic 
module is assembled separately. This 
causes a CATALR card with the module name 
(standard or user) to be punched ahead "of 
the object deck. 

r-----------------------------------------, 
ISTLIST=YES I L _________________________________________ J 

Include this operand if the selective tape 
listing feature (1403 only) is used. If 
this entry is specified, the CONTRCL~ 
CTLCHR, and PRINTOV entries are not valid, 
and are ignored if supplied. " Also, the 
RECFORM entry is forced to FIXUNB and 
records are handled accordingly. 

r-----------------------------------------, 
IWORKA=YES I L _________________________________________ J 

Include this operand if records are 
processed in work areas instead of I/O 
areas. Any DTF used with the module must 
include the appropriate parameter in the 
WORKA operand. 

Recommended Module Name for PRMOD 

Each name begins with a 3-character prefix 
(IJD) followed by a 5-character field 
correspondin~ to the options permitted in 
the generation of the module. 

PRMOD name = IJDabcde 

a = F RECFORM=FIXUNE 
= V RECFORM=VARUNB 
= U RECFORM=UNDEF 

b = A CTLCHR=ASA 
Y CTLCHR=YES 

= C CONTROL=YES 
= S STLIST=YES 
= Z neither is specified 

SAM: Printer 75 



c = P PRINTOV=YES 
= Z PRINTOV=YES is not specified 

d = I IOAREA2=YES 
= Z IOAREA2=YES is not specified 

e = V RDONLY=YES and WORKA=YES 
= W WORKA=YES 
= Y RDONLY=YES 
= Z neither is specified 

Subset/Superset PRMOD Names 

The following chart shows the subsetting 
and supersetting allowed for PRMOD names. 
Two of the parameters allow subsetting~ 
For example, the module name IJDFCPIW is a 
superset of the module names IJDFCZIW and 
IJDFZZIW. See Subset/Superset: (Module 
Names). 

r-----------------------------------------, 
1 * * + * * 1 
1 I J D F A P I V 1 
1 V Y Z Z W . 1 
1 u S Y 1 
1 + Z I 
I C I 
I Z 1 
I I 
1+ Subsetting/supersetting permitted. 1 
1 * No subsetting/supersetting permi tted.. 1 L _________________________________________ J 

PAPER TAPE FILE (DTFPT) 

A DTF entry is included for every paper 
tape input or output file that is processed 
by the program. The first entry must be 

76 DOS supervisor and I/O Macros 

the DTFPT header entry •. Enter the symbolic. 
name of the file, filename, in the name 
field, and DTFPT in the operation field. 
The detail entries follow the DTFPT header 
card in any order. Keyword operands are 
contained in the operand field (see Figure 
19) • 

r-------------------------·-----------.:...----, 
IBLKSIZE=n I L _________________________________________ J 

This operand specifies the length of the 
input or output a'rea. The maximum block 
size is 32,767 bytes (32K minus one). 

Input: For undefined records, this area 
must be at least one position larger than 
the longest record including all shift and 
delete characters included in the record. 
For fixed-length records, this area must be 
the same size as the record. If shift and 
delete characters are included in the 
record (the SCAN entry is specified), 
BLKSIZE indicates the number of characters 
required by the problem program after 
transla~ion and compression. OVBLKSZ 
contains the number of characters to be 
read in to produce the BLKSIZE number. 

Output: For undefined records. the area 
must be at least equal to the longest 
record, including all shift characters that 
are to be included in the record,. For 
fixed-length records. the area must be the 
same size as the record. For shifted codes 
(when the FSCAN and LSCAN entries are 
specified), BLKSIZE must contain the number 
of characters before translation and 
insertion of shift characters. OVBLKSZ 
must contain the number of characters after 
translation and insertion of shift 
characters. 



IBM IBM SYllem/360 A'sembler Coding Form 

f----------------------r----------il, ~~~;8~~~NS lrf-G'-""_IC---III'---+--I---II'--+--+-I'-f--+""~:=~:""'H"""C=,",,""O"'NU-M.=,,---~ 
PUNCH 

T " " , " D T FP T ~ ~;~ {i'~ ~ ~ ~'~ ;; ~~ ~~ ... ""~;:,,~;~~,~ -,. ,." ~,~ "'. ~ ~~ T 
OPI'I 1--t4--+-+-l4--+-+-l-+-+-+-1f-+-+-E+O=+-F+A-+-D+D-+-R+=+x+x4-X-+X+X-j-X+-X+X+'-+-+-f--N+a_mt-a +OI_Ut-se+"I_et-nd--t0_I-It-ila-t,_out-tl-t""'4--j-+-l-f--+-+-H-++-H-t--I-H-+-+f-H-+-+-Hx-t-.... -t-H-+--+--H-I Opt'l 

PEL C H A R = X ' n n' , Delete characte'.·· J I X 'V' 

DE V I ~ E = n n n n , '(2671,1017, 10IB). II omitted, 2671 I. assumed. X V V 
E OR C H A R = X ' n n ' End-ol-,ecord cha,ecte,_ (For RECFORM-UNDEF). v' 

ERR OPT = X X X X X X X X , !IGNORE, SKIP, or e'ro, ~outlna name). P,events job termination on arrO, ,ecords. X V'v' 

F S CAN = X X X X X X X X , (Fo, shilted codes). Nama 01 user'lscan tabla used to select ligure g'oups. ~ X V 

F T RAN S = X X X X X X X X (For shifted codas). Symbolic add",,, 01 U .. ,'I llgu,e shift translata table. X V 

lOA REA 2 = X X X X X X X X , Name 01 second I/O a", .. i X v'v 

lOR E G = ( n n) , Used"with two I/O areas. Registe, (2-12) containing cu,rent ,eco,d address. t X I .... V 

L S CAN = X X X X X X x, X , (For shifted codes). Name of user'. scan table used to select letter groups. 

L T RAN S = X X X X X xix X , (For shifted codes). Name of user'. letter shift translate table. X V 

~ODNAME=xxxxxXXX For mOdule'names other than standard. 

ojv B L K S Z = n , Used If 1/0 records are compressed or expanded. X vv' 

R E C FORM = X X X X X X , (FIXUNB 0' UNDEF). II omitted, FIXUNB I. assumed_ 

RECSliZE=(nn), Register containing the record length. t 

SCAN=xxxxxXXX, N arne of user's scan table for shift ~r delete character. XV 
SEPAS~B =YE S, DTF I. assembled separate IV. Xvv' 

TRANS =xxxxxxxx Name of user's table for code translation. XVV 
~LRERR=xxx XXXXX Name of user's wron~length·record er:..ror routine. I 

• Header and each detail card, except the last one in each set, must have a continuation punch In column 72. Also, 
each detail card, except the last one, must contain a comma immediately after the operand. Space Is allowed for the 
longest operand plus the comma. If 8 smaller operand is used, the comma shouid be moved over "accordingly. In the 
last detail card of a set, the comma position must be blank. 

Figure 19. DTFPT Macro 

r-----------------------------------------, 
IDELCHAR=X'nn' I L _________________________________________ J 

This operand specifies the configuration of 
the delete character and must be used for 
output files only, that is, when 
DEVICE=1018 is specified. The constant 
X'nn' consists of two hexadecimal digits. 
The delete character is used' in the error 
recovery procedure, and the user must 
specify the correct configuration in 
accordance with the number of tra'cks of the 
output tape, as follows: " 

• X'lF' for five tracks. 

• X'3F' for six tracks. 

• X'7F' for seven tracks. 

• X'FF' for eight tracks. 

Note: The delete character is required 
only if the IBM 1018 Paper Tape Punch 
has the Error Correction feature. 

t General registers 2·12, written In parentheses; for example: (12) or (2) . 

•• The delete character is required onlv if the IBM 1018 Paper Tape Punch has 
the Error Correction feature. 

r-----------------------------------------, 
IDEVADDR=SYSnnn I L _________________________________________ J 

This operand specifies the symbolic unit 
(SYSnnn) associated with this logical file. 

An actual channel and unit are assigned to 
the unit by an ASSGN card in the job 
control statement. The ASSGN statement 
contains the same symbolic name as DEVADDR. 

r-----------------------------------------, 
IDEVICE={26711101711018} I L _________________________________________ J 

This operand is required only to specify an 
I/O device other than 2671. If this entry 
is omitted, 2671 is assumed. 

r-----------------------------------------, 
I EOFADDR=name I L _________________________________________ J 

This operand specifies the symbolic name of 
the problem program end-of-file routine~ 
IOCS automatically branches to this routine 
on an end-of-file condition if the 
end-of-file switch is set ON." The problem 

SAM: Paper Tape 77 



program routine can execute any operation 
required for the end-of-file, issue the 
CLOSE instruction for the file, or return 
to IOCS by branching to the address in 
register 14. In the latter case, IOCS 
reads in the next record. The end-of-file 
condition cannot occur on the IBM 1018 
Paper Tape Punch. 

r-----------------------------------------, 
I EORCHAR=X'nn' I L _________________________________________ J 

This operand specifies the user-defined 
end-of-record (EOR) character, where nn is 
two hexadecimal digits, and must be used 
for output files with undefined record 
format only. IOCS writes this character 
after the last character of the undefined 
record. 

r-----------------------------------------, 
IERROPT={IGNOREISKIPlname} I L _________________________________________ J 

This operand is specified if the user does 
not want a job terminated when standard 
recovery procedure cannot recover from a 
read or write error.. If the ERROPT entry 
is omitted and a read or write error 
occurs, IOCS terminates the job. 

For input files, the IGNORE entry allows 
IOCS to handle the record as if no errors 
were detected. If the SKIP entry is 
specified, IOCS skips the record in error 
and reads the next record. For output 
files with shifted codes, no ERROPT can be 
specified. For unshifted codes, the 
options ERROPT=IGNORE and ERROPT=name can 
be specified. The entry IGNORE allows IOCS 
to handle the record as if no errors were 
detected. The ERROPT=SKIP option is 
ignored and causes IOCS to terminate the 
job. If two I/O areas are used, the CLOSE 
macro instruction checks the last record, 
and the ERROPT=name option is treated as 
the ERROPT=IGNORE option. 

If IGNORE and SKIP are not specified, 
the symbolic name of the problem program 
error routine must be supplied to process 
errors. On an error condition, IOCS reads 
or writes the complete record, including 
the error character(s), and then branches 
to the problem program error routine. At 
the end of the error routine, the problem 
program must return to IOCS by branching to 
the address in register 14. The next 
record is then read or written. The 
problem program must not issue any GET or 
PUT instructions for records in the error 
block. If the error routine contains any 
other IOCS macros, the contents of register 
14 must be saved and restored. 

78 DOS supervisor and I/O Macros 

r----------------------------------------·-, 
I FSCAN=name I L _________________________________________ J 

This operand must be included for every 
output file using a shifted code. It 
specifies the symbolic name of a problem 
program scan table used to select groups of 
figures. This table must conform to the 
specifications of the machine instruction 
TRANSLATE AND TEST. The entry in the table 
for each letter character must be the 
letter shift character, and all other 
entries must be hexadecimal zero. Any 
deviation from this results in incorrect 
translation. For an input file, omit 
FSCAN=name. 

r-----------------------------------------, 
IFTRANS=name I L _________________________________________ J 

This operand must be included for every 
input file using a shifted code.· It 
specifies the symbolic name of a problem 
program figure shift table. This table 
must conform to the specifications of the 
machine instruction TRANSLATE. For an 
output file, omit FTRANS=name and 
TRANS=name entries. 

r-~---------------------------------------, 
I IOAREA1=name I L _________________________________________ J 

This operand specifies the input or output 
area. Enter an address expression (name) 
that specifies the area. 

r-----------------------------------------, 
I IOAREA2=name I L _________________________________________ J 

This operand specifies a second input or 
output area. Enter an address expression 
(name) that specifies the input or output 
area. When two I/O areas are specified, 
IOCS overlaps the I/O operation in one area 
with the processing of the record in the 
other. 

r------------------------------------------, 
I IOREG=(r) I L _________________________________________ J 

This operand must be included if two input 
or output areas are used. For input, it 
specifies the register into which IOCS puts 
the address of the logical record available 
for processing. For output, it specifies 
the address of the area into which the 
problem program can build a record. Any 
register from 2 to 12 may be specified. 



r-----------------------------------------, 
I LSCAN=name I L _________________________________________ J 

This operand must be included for every 
output file using a shifted code. It 
specifies the symbolic name of a problem 
program scan table used to select groups of 
letters. This table must conform to the 
specifications of the machine instruction 
TRANSLATE AND TEST. The entry in the table 
for each figure character must be the 
figure shift character, and all other 
entries must be hexadecimal zero. Any 
deviation from this results in incorrect 
translation. For an input file, omit 
LSCAN=name. 

r-----------------------------------------, 
ILTRANS=name I L _________________________________________ J 

This operand must be included for every 
input file using a shifted code. It 
specifies the symbolic name of a problem 
program letter shift table. This table 
must conform to the specifications of the 
machine instruction TRANSLATE. For an 
output file, omit the LTRANS=name and 
TRANS=name entries. 

r-----------------------------------------, 
I MODNAME=name I L _________________________________________ J 

This operand may specify the name of the 
logic module used with the D~F table to 
process the file. If the logic module is 
assembled with the program, the MODNAME 
operand in the DTFPT macro instruction must 
specify the same name as the PTMOD macro 
instruction. If MODNAME=name is omitted, 
IOCS generates standard names for calling 
the logic module. 

r-----------------------------------------, 
IOVBLKSZ=n I L _________________________________________ J 

For input files, this operand specifies the 
number of characters to be read in, (before 
translation and compression) to produce the 
number of characters specified in the 
BLKSIZE entry. OVBLKSZ is used only when 
SCAN and RECFORM=FIXUNB are both specified. 
If OVBLKSZ is omitted, IOCS assumes the 
number of characters to be read is equal to 
the number specified in the BLKSIZE entry. 
The maximum value is 32,767 bytes (32K 
minus one). 

For output files,OVBLKSZ specifies the 
number of characters indicated in the 
BLKSIZE entry, plus the number of shift 
characters to be inserted. If the size of 

OVBLKSZ is large enough to allow the 
insertion of all the shift characters 
required to build the output record, a 
single WRITE operation results from a PUT 
macro. On the other hand~ if the size of 
OVBLKSZ (which must be at least one 
position larger than BLKSIZE) does not 
permit the insertion of all the shift 
characters, several WRITE operations 
result. OVBLKSZ is used only when LSCAN 
and FSCAN are specified with the FIXUNB 
format,. If OVBLKSZ is coded with UNDEF 
format, it is ignored. 

r-----------------------------------------, 
IRECFORM={FIXUNBIUNDEF} I L ________________________________________ ~J 

This operand specifies the record format 
for the file. Specify either format for 
shifted or unshifted codes, but if the 
record format is FIXUNB. this entry may be 
omitte~. 

r-----------------------------------------, 
IRECSIZE=(r) I L _________________________________________ J 

This operand specifies the number of a 
register (2-12) that contains the length of 
the input or output record. This entry is 
optional for input file and, if present, 
IOCS loads the length of each record read 
into the specified register. If input 
files contain shift codes or other 
characters requiring deletion, IOCS loads 
the compressed record length in the 
specified register. For output files, this 
eptry must be included for undefined 
records. Before translation, the problem 
program must load each record length into 
the designated register before issuing the 
PUT instruction for the record. 

r-----------------------------------------, 
ISCAN=name I L _________________________________________ J 

This operand must be included for all input 
files using shifted codes. It may also be 
included if the user wishes to delete 
certain characters from each record. The 
SCAN entry specifies the symbolic name of a 
table provided by the problem program. 
This table must conform to the 
specifications of the machine instruction 
TRANSLATE AND TEST. It must contains 
nonzero entries for all delete characters 
and, where appropriate, for the figure and 
letter shift characters. The table entry 
for the figure shift character must be 
hexadecimal 04, and for the letter shift 
character, hexadecimal 08. Delete entries 
must be hexadecimal OC. All other entries 
in the table must be hexadecimal 00. 

SAM: Paper Tape 79 



Otherwise, incorrect translation results 
and may produce a program check. 

The table must be large enough to hold 
the maximum binary value of coding for the 
tape being processed; that is, 255 bytes 
for 8-track tape. This prohibits erroneous 
coding on the tape from causing a SCAN 
function beyond the limits of the SCAN 
table. 

r------------------------------------~----, 
ISEPASMB=YES I L __________________ --_____________________ J 

This operand must be included if the DTF is 
assembled separately. This causes a CATALR 
card with the filename to be punched before 
the object deck and defines the filename as 
an entry point in this assembly .• 

r-----------------------------------------, 
ITRANS=name I L _________________________________________ J 

The TRANS operand specifies the symbolic 
name of a table provided within the problem 
program. This table. must conform to the 
specifications of the machine instruction 
TRANSLATE. For input files, include this 
entry if a non shifted code is to be 
translated into internal system/360 code. 
Omit the FTRANS and LTRANS entries if this 
entry is present. If. none of these three 
entries is present" no translation takes 
place. For output files, include this 
entry if the internal System/360 code is 
translated into a shifted or nonshifted 
code, depending on whether the FSCAN and 
LSCAN entries are present or omitted. 

r-----------------------------------------, 
!WLRERR=name ! L _________________________________________ J 

This operand applies only to paper tape 
input files when RECFORM=UNDEF is 
specified. 

When IOCS finds a wrong-length record, 
it branches to the sympolic name specified 
in the·WLRERR entry.. If this entry is not 
included and the ERROPT entry is included, 
IOCS considers the error uncorrectable and 
uses the ERR OPT option specified. Absence 
of both ERROPT and WLRERR entries causes 
the wrong-length record to be accepted as a 
normal record. Wrong-length checking is 
not performed for fixed-length records 
because a fixed number of characters is 
read in each time. IOCS detects overlength 
undefined records when the incoming record 
fills the input area. The input area must, 
therefore, be at least one position longer 
than the longest record anticipated. 

80 DOS Supervisor and I/O Macros 

At the end of the WLRERR routine, the 
problem program must return to IOCS by 
branching to the address in register 14. 
IOCS causes the next record to be read. If 
any other IOCS macros are included in the 
record-length error routines" the problem 
program must save and restore the contents 
of register 14 in the error routine. 

Note: A wrong-length condition appears 
during the first read operation (IBM 
1017) if the combined length of the 
tape leader and of the first record is 
greater than the length of the longest 
record anticipated. (length specified in 
BLKSIZE). 

CHARACTERISTICS OF A PAPER TAPE FILE 

Record Formats 

The paper tape reader and punch accept only 
fixed unblocked records and undefined 
records. Shifted and nonshifted codes are 
acceptable in both formats·. 

Fixed Unblocked Records 

Input File: Fixed unblocked records should 
not be followed by an end-of-record (EOR) 
character since it enters main storage as a 
normal character and does not stop the data 
transfer. The problem program must define 
the number of characters contained in each 
record in the BLKSIZE entry. A count 
controlled read causes .the number of 
characters specified (or fewer if an EOF 
condition occurs) to be read following a 
GET instruction. If shift codes and delete 
characters are included in the record, the 
record is translated and compressed. IOCS 
automatically reads until it obtains a 
translated record of the specified length. 
Control then returns to the problem 
program. 

When using fixed unblocked records, the 
problem program must not clear the input 
area beyond the length specified in the 
BLKSIZE entry because the next record has 
already been read, and remains until the 
next GET instruction is issued. 

Output File: The problem program must 
define the number of characters contained 
in each record in the BLKSIZE entry, and 
IOCS translates it if needed. A 
count-controlled write causes the specified 
number of records to be written as the 



result of a PUT instruction. For shifted 
code files, IOCS translates and expands the 
record by adding the letter and figure 
shift characters. IOCS performs additional 
writes until the specified record is 
written. Control then returns to the 
problem program. 

Undefined Records 

Input File: Each undefined record must end 
with an 'EOR character. The problem program 
must define an input area and a BLKSIZE 
entry that is at least one pOSition longer 
than the longest record anticipated. A 
modified read (under control of count and 
the EOR character) causes the number of 
characters specified (up to the next EOR 
character) to be read. This record is 
translated and then compressed, if SCAN is 
specified. There are nO rereads. However, 
consecutive EOR characters without 
intervening data are skippe~, no zero 
length record indication is passed back to 
the problem program, and the next data 
record is read. If the record fills the 
input area, it is assumed to be overlength, 
and IOCS takes the wrong-length record 
option specified by the user. 

output File: In an output file, undefined 
and fixed unblocked records have the same 
format with one exception. For undefined 
records, the problem program must define an 
output area and a BLKSIZE entry that is at 
least equal to the longest record 
anticipated. The end-of-record (EOR) 
character specified by the problem program 
is added by IOCS. 

Note: All processing is carried out in 
the problem program's input or output 
area(s)., Workareas are not utilized 
unless the problem program moves the 
record to or from the work area. The 
filename and workarea form of the 
GET/PUT macro instructions cannot be 
used for a paper tape file. Only the 
filename form ·is acceptable. If there 
are two input or output areas, the 
problem program must reference fields 
within the records by using 
displacements relative to the general 
register specified in the IOREG entry, 
or by using a DSECT,. 

Code Translation 

Input File: The TRANS entry is for records 
containing nonshifted codes. Translation 
is performed directly into internal 
System/360 code. If the input tape is 
punched in EBCDIC code, no translation is 
required and all translation entries may be 
omitted. 

If the input tape contains shifted 
codes, the FTRANS, LTRANS" and SCAN entries 
must be included. IOCS assumes that the 
first record read from the input tape 
starts in figure shift. Therefore, if the 
first record starts with letter shift 
coding, the problem program must ensure 
that the first character of the first 
record is a letter shift character. The 
shift status is carried from one record to 
the next and remains unchanged until 
another shift character is encountered. 

Translation of shifted codes is 
accomplished by IOCS as follows: 

1. The record is first scanned for shift 
characters. The segment between the 
shift characters is translated, using 
the appropriate shift table. 

2. The translated segment is moved to the 
left to remove the shift character. 

3. Steps 1 and 2 are repeated for each 
segment until the complete record has 
been translated and compressed. 

These steps result in a translated and 
compressed record left~justified in the 
input area. The record length is 
communicated to the user in the register 
designated in the RECSIZE entry, if 
present. 

If the record format is fixed unblocked, 
the number of characters specified in the 
OVBLKSZ entry is read, translated, and 
compressed,. If the resulting record is 
shorter than that specified in the BLKSIZE 
entry, additional reads are performed until 
the record length is equal to, or greater 
than, the BLKSIZE specification. The 
record is then available to the problem 
program. If the final read results in a 
record length that exceeds the BLKSIZE 
specification, the remaining characters are 
moved into the beginning of the input area 
when the next GET is issued. 

SCAN maybe used alone or in conjunction 
with TRANS to delete characters from 
re~ords that do not contain shifted code. 
There must not be any 04 or 08 entries in 
the scan table. 

SAM: Paper Tape 81 



The EaR character must be independent of 
shift status. That is, it must be 
effective whether the coding is in letter 
or figure shift. If there is valid 
character coding in either shift that 
corresponds to the EaR coding established 
for a particular job, the corresponding 
code must not be included in the input 
record. 

Output File: The TRANS entry is used for 
both shifted and nonshifted codes, and 
translation is performed from internal 
System/360 code into a shifted or 
nonshifted code. If the tape is punched in 
EBCDIC code, no translation is required and 
the TRANS entry may be omitted. 

For shifted codes, the following three 
entries must be included: TRANS, LSCAN, 
and FSCAN. 

If the OVBLKSZ entry is omitted, 
translation into shifted codes follows the 
procedure explained in step 1 if the first 
character of the record is a figure 
character. Translation with shifted codes 
follows the procedure explained in Step 2 
if the first character of the record is a 
letter character. 

step 1. The record is scanned for a 
letter character, using the scan table 
FSCAN (this table contains nonzero 
entries for letter characters). The 
segment so defined that contains figure 
characters only is then translated by 
the TRANS table and written out. laCS 
places the figure shift character before 
the segment. 

step 2. The record is scanned for a 
figure character, using the scan table 
LSCAN (this table contains nonzero 
entries for figure characters). The 
segment is so defined that it contains 
letter characters only, and is then 
translated by the TRANS table, and 
written out. laCS adds the letter shift 
character in front of the segment. 

In both cases, laCS then moves the 
rest of the record to the left and to 
the beginning of the output area, and 
proceeds as if an OVBLKSZ entry with the 
same contents as BLKSIZE were specified. 
That is, laCS performs one of these two 
operations: 

• If the OVBLKSZ entry is used, 
translation into shifted code 
follows the procedure explained in 
step 3, if the first character of 
the record is a figure character. . 

• Translation into shifted code 
follows the procedure inStep 4, if 

82 DOS supervisor and I/O Macros 

the first character of the record is 
a letter character. 

step 3. The record is scanned as in 
Step 1. Instead of writing out the 
segment of figure characters, laCS moves 
it with the rest of the record one 
position to the right, and places the 
figure shift character before the 
segment. 

step 4. The record is scanned as in 
step 2. The segment of letter 
characters and the rest of the record 
are moved one position to the right. 
laCS places the letter shift character 
in front of the segment. 

step 3 and Step 4 are repeated until 
the entire record is processed~ unless 
the number specified in OVBLKSZ is 
insufficient. The result is a 
translated and expanded record or part 
of a record, left-justified in the 
output area. laCS causes this record to 
be written out. If .the entire record is 
punched, control returns to the user. 
If not, any characters remaining to the 
right of the output area move to the 
beginning of this output area, and Step 
1 and Step 4 resume. 

EOF Condition (Input Only) 

The EOF condition occurs with an 
end-of-tape condition when the EOF switch 
is ON. When laCS detects this EOF 
condition (unit exception flag ON in first 
CSw status byte), it automatically branches 
to the user's end-of-file routine. 
However, at the end of his routine, the 
user can choose to return to laCS to read a 
new tape by branching to the address in 
register 14. If any laCS macro is· 
contained in this routine, the contents of 
register 14 must be saved and restored. 

If an end-of-tape condition is detected 
while reading characters other than blanks 
or deletes (all punched holes), the unit 
check bit in the first CSW status byte is 
set ON. This applies only to the IBM 1017 
Paper Tape Reader and c~uses the broken 
tape bit (bit 7) to appear in the sense 
byte. The broken tape condition may occur 
in addition to the EOF condition if the EOF 
switch is ON. 



Trailer Length (Input Only) 

To avoid a broken tape condition that would 
result if the tape trailer is too short, 
the length of the trailer must be greater 
than: 

• For undefined records (read-EOR 
command): 2 inches. 

• For fixed unblocked records (read 
command): 

(BYi~ count + 2) inches 

Note: Byte count is either the count 
specified in BLKSIZE (record without 
shifted codes or records with shifted 
codes but without using the OVBLKSZ 
operand in the DTFPT), or the count 
specified in OVBLKSZ (records with 
shifted codes using the OVBLKSZ 
operand). 

However, when processing undefined 
records, if a trailer greater than 

(BL~~IZE +2)inches 

is read, this trailer will be mistaken for 
a wrong-length record. 

Error Conditions 

The paper tape reader or punch stops 
immediately on an error condition. If the 
error cannot be corrected and the job is 
not terminated, IOCS causes the entire 
record containing the error to be: 

• Translated and compressed, if needed, 
if an input record 

• Translated, expanded, and puncHed, 
before taking the error option 
specified by the problem program if an 
output record. 

Wrong Length 

For input files, the only wrong~length 
condition that can be detected is an 
overlength undefined record. This should 
be reflected in the BLKSIZE entry. 
Wrong-length record indication is 
impossible with fixed unblocked records, 
because each record is a sequence of a 
specified number of characters. Use the 
FIXUNB record format carefully, because 

specifying one character too few or too 
many in any record causes all subsequent 
records to be out of phase. The problem 
program should use the RECSIZE entry to 
check for the correct length of the last 
record of any file. A record must be 
entirely on one reel of input tape. 

Data Check 

The following shows the decision taken by 
logical IOCS, or possible operator actions. 
after an unrecoverable data check occurs: 

r------------------T----------T-----------, 
I Type of Record I Input I Output I 
I Processed I Operation I operation I 

~------------------+----------+-----------~ 
I Fixed unblocked I I I 
I record in I Action 1 I Action 1 I 
I shifted code I I I 

~------------------+----------+-----------~ 
I Fixed unblocked I I I 
I record in I Action 2 I Action 2 I 
I nonshifted code I I I 

~------------------+----------+-----------~ 
I Undefined I I I 
I record in I Action 2 I Action 2 I 
I nonshifted code I I I 

t------------------+----------+-----------~ 
I Undefined I I I 
I record in I Action 2 I Action 1 I 
I shifted code I I I L __________________ i __________ i _______ ~ ___ J 

Action 1: The system automatically cancels 
the job. 

Action 2: The operator may choose to: 
CANCEL the job 
IGNORE the error 

or RETRY the operation (For 2671 
only) 

SAM: Paper Tape 83 



Following an IGNORE decision, logic'al 
IOCS takes action in accordance with the 
user's option specified in ERROPT. 

ERROPT=IGNORE The record is handled as 
if no errors were 
detected. 

ERROPT=SKIP The erroneous record is 
(Input file only) skipped and the next 

record is read in. 

ERROPT=name 

ERROPT omitted 

The record is handled as 
if no errors were 
detected, and control is 
given to the user's error 
routine. At the end of 
this routine, return must 
be made to IOCS by 
branching to the address 
in register 14, and the 
next record is read in or 
written out. 

The job is canceled. 

Note 1: The character in error is 
repunched preceded by its corresponding 
shift character. 

• For output records expressed in a 
paper tape code where the delete 
character and one of ~he shift 
characters have the same 
configuration. 

• Following a data check. 

Note 2: The entire erroneous record is 
repunched as if no errors were 
detected: 

• If an unrecoverable error occurs 
and the ERROPT operand's name or 

. IGNORE was coded in the DTFPT. 

• In the case of output records with 
two I/O areas, the CLOSE macro 
instruction checks the successful 
completion of the last operation. 

Note 3: No error condition occurs on 
the IBM 1018 Paper Tape Punch if the 
setting of the Tape Width Selector does 
not match the tape code specified in 
the problem program. 

Note 4: When reading paper tape with 
physical IOCS, the programmer must 
restore the CCW address in the CCB 
before using the EXCP instruction. 

84 DOS Supervisor and I/O Macros 

programming Considerations 

For information about special equipment 
considerations for paper tape devices, 
refer to the IBM 2671 Paper Tape Reader and 
the IBM System/360 Component Descriptions: 
2826 Paper Tape Control Unit, 1017 Paper 
Tape Reader, 1018 Paper Tape Punch 
publications listed in the Preface. 

PAPER TAPE MODULE (PTMOD) 

Listed here are the user-supplied operands 
for PTMOD. The first card contains PTMOD 
in the operation field and may contain a 
user module name in the name field. 

r-----------------------------------------, 
!DEVICE={26711101711018} I L ________________________________ ~ ________ J 

Required only to specify an I/O device, 
other than 2671, used by the module. Any 
DTF used with the module must have the same 
operand. If this entry is omitted, 2671 is 
assumed. 

r-----------------------------------------, 
IRECFORM={FIXUNBIUNDEF} I L _________________________________________ J 

Required only if the entry SCAN=YES is 
present. If records of undefined format 
using the SCAN option are translated, 
specify the UNDEF parameter. If record~ of 
fixed unblocked format are translated~ the 
FIXUNB parameter may be specified or 
omitted. 

r-----------------------------------------, 
ISCAN=YES ! L _________________________________________ J 

Required for records containing shift 
characters and/or characters that are 
automatically deleted by IOCS. 

r-----------------------------------------, 
ISEPASMB=YES I L __________________ - ______________________ J 

This parameter must be included if the 
logic module is assembled separately. This 
causes a CATALR card with the module name 
(standard or user) to be punched before the 
object deck. 



r-----------------------------------------, 
ITRANs=YES 1 L _________________________________________ J 

Required only if records using an unshifted 
code are translated and if the entry 
SCAN~YES is not present. 

summary of PTMOD 

The following are the only possible 
combinations of entries (with or without 
SEPASMB=YES): 

1. No parameters specified, or 
DEVICE=2671. Module does not provide 
routines for translation or for shift 
or delete characters. 

2. TRANS=YES[,DEVICE=26711. Module 
handles translation of unshifted 
codes, but not delete characters. 

3. SCAN=YES,RECFORM=FIXUNB[DEVICE=2671]. 
Module handles shift and delete 
characters for records of fixed 
unblocked format. 

4. SCAN=YES,RECFORM=UNDEF[,DEVICE=26711. 
Module handles shift and delete 
characters for records of undefined 
format. 

5. DEVICE=1017. Module handles neither 
translation nor shift or delete 
characters. 

6. TRANS=YES,DEVICE=1017. Module handles 
translation of unshifted codes, but 
not delete characters. 

7. SCAN=YES,RECFORM=FIXUNB,DEVICE=1017. 
Module handles shift and delete 
characters for records of fixed 
unblocked format. 

8. SCAN=YES,RECFORM=UNDEF,DEVICE=1017. 
Module handles shift and delete 
characters for records of undefined 
format. 

9. DEVICE=1018 [,TRANS=YESl 
[,RECFORM=UNDEF1. Module handles 
translation of unshifted code, if 
specified in DTFPT, for records of 
fixed unblocked or undefined format. 

10. SCAN=YES[,RECFORM=UNDEF1,DEVICE=1018. 
Module handles shift characters, for 
records of fixed unblocked or 
undefined format. 

Recommended Module Name for PTMOD 

Each name consists of a 3-character prefix 
(IJE) followed by a 5-character field 
corresponding to the options permitted in 
the generation of the module, as follows: 

PTMOD name =IJEabcde 

a = S SCAN=YES 
= Z SCAN=YES is not specified 

b = T TRANS=YES (SCAN=YES is not specified) 
= Z TRANS=YES is not specified 

c = F RECFORM=FIXUNB, and SCAN=YES 
= U RECFORM=UNDEF, and SCAN=YES 
= Z SCAN=YES is not specified, and/or 

DEVICE=1018 

d = 1 DEVICE=1017 
= 2 DEVICE=1018 
= Z DEVICE=2671, or if this entry is 

omitted 

e = Z always 

subsetting and supersetting of PTMOD Names 

The following chart shows the PTMOD names. 
No subsetting or supersetting is allowed. 
See Subset/Superset: (Module Names). 

r-----------------------------------------, 
* * * * I J E Z Z Z Z Z 
Z T Z Z 
S Z F Z 
S Z U Z 
Z Z Z 1 
Z T Z 1 
S Z F 1 
S Z U 1 
S Z Z 2 
Z T Z 2 

1* No subsetting/supersetting permitted. L ________________________________________ _ 

SEQUENTIAL DASD FILES (DTFSD) 

The DTFSD macro instruction defines 
sequential (consecutive) processing for a 
file contained in a DASD. Only IBM 
standard label formats are processed. The 
DTFSD macro instruction can be' used with 
the 2311, 2314, 2319, and 2321 DASDs. 

A DTFSD entry is included for each 
sequential input or output DASD file that 

SAM: DASD 85 



is processed in the p~ogram (Figure 20). 
The DTFSD header entry and a series of 
detail entries describe the file. Symbolic 
addresses of routines and areas are 
specified in the detail entries. Enter the 
symbolic name of the file in the name field 
and DTFSD in the operation field. The 
detail entries can follow in any order. 
Keyword operands are contained in the 
operand field. 

r-----------------------------------------, 
IBLKSIZE=n I L _________________________________________ J 

Enter the length (n) of the I/O 'area. If 
the record format is variable or undefined, 
enter the length of the I/O area needed for 
the largest block of records. 

When processing spanned records, the 
length of the user's define storage 
statements for his I/O areas must be at 
least as large as the smaller of the 
following values: 

r------------------T--------------~-------, 
I Device I Length I 
~------------------+~---------------------~ 
I 2311 Disk Drive I 3625 or BLKSIZE I 
I I decimal I 
~------------------+----------------------~ 
I 2314, 2319 Disk I 7294 or BLKSIZE I 
j Drive I decimal I 
~------------------+----------------------~ 
I 2321 Data Cell I 2000 or BLKSIZE I 
I I decimal I L __________________ ~ ________ ~ _____________ J 

r---------------------~-------------------, 
ICONTROL=YES I L _________________________________________ J 

This operand is specified if a CNTRL macro 
is to be issued to the file. A CCW is 
generated for control commands. 

r-----------------------------------------, 
IDELETFL=NO I L _________________________________________ J 

Specify this operand if the CLOSE macro is 
not to delete the Format-1 and Format-3 
label for a work file. The o~erand applies 
to work files only. 

IBM IBM SYItem/36D Assembler Coding Form 

t-----------------------,--I---------tJ
I 
i~~;~~~NSIt-IGR-AP-Hlc---IIII--+--+---IIII--+--+---+----tr.c.:O-;RD"'El"'EC"'TR"CA:-:P~PL-:-:1E:C:S'"'T::::O---1 ~ ___________________________ LO_AT_E __________ ~ ___ ~P_UN_C_H ____ ~ __ ~-~~--~---L-~-~----r.-~~------~ 

Operation 

~.~ ~'ntifiCOlion-
20 O~~nd * ~ 5 ~s.quenu 

Req'd X X X X X X X 0 T F S 0 Neme of sequential OASO' fila. _ Thl. OTF requl~n- SDMODxx. I I I II 1.1 X J J " Req'd 

1
· B L K S I Z E = n n n n .Length of One I/O ...... In b~es. I X J J J l' 

E 0 F A 0 0 R = X X X X X X X X, N.me of user's end-af·file rautine~ X J 
_ ~-+-~+-I-+--+-+-Ir+-+-+-~-r1~0~A~RrE~A~11-=rX~XrX~XrX~X+X~X+Yr+-Nra,m~el-orflf~ilm-r.lI/~OI-arlre~a.I-~!!-~IIIIr+-+-+-r+-+-+-~-r~~-+;-~r+-+-+-~-r~~X~~~r-.+-I-+;-~~ _ 

Opt·l. CON T R 0 L = YES , CNTRL m.cro used' for thl. iile. X J J J Opt·l. 

Figure 20. 

o E LET F L = NO, CLOSE macro Is not to delete Format· 1 .nd Format· 3 labels for work files. X " 

o E V ADO R = S Y S X X X , Symbolic unit required only when not provided on an extent statament. X " J" 

ERR EXT = YES , Additional errors and ERET are desired. Specify ERROPT. X J J " 

ERR 0 P T = X X X X X X X X , g~~~RfTt~r SKIP or Name of error routine) Prevent job termln.tion on error records. Do not use SKIP for X J J J 

FEO!VD=YES 

H 10 L 0 = YES 

IOAREA2=xxxxxXXX, 

10REG=(nn), 

LABADOR=xxxxxxxx, 

~ODNAME=xxxxxxxx, 

NOTEPNT=xxxxxxx, 

RDONLY=YES, 

RECFORM=xxxxxx, 

RECSIZE=nnnnn, 

SEPASMB=y'ES, 

TRUNCS=YES, 

TYPEFLE=xxxxxx, 

UPOATE=YES, 

DTFSD Macro (Part 1 of 2) 

Forced end of volume for disk is desired. i X J J 

Employ the track hold function. I X J 

If two 110 areas are used, name of second area. X "J 
~~~st~A.number. t Use only If GET or PUT does not specify work area or If two I/O areas are used. Omit X"" 
Name of user's routine to check/write user-standard labels. X J"
Name of SDMODxx logic module fpr this DTF. If omitted, IOCS generates standard name. I X J J
~~~ or POINTRW) YES if NOTE/POINTR/POINTW/POINTS used. POINTRW if only NOTE/POINTR/POINTW X 

Generate a read only module .. Requires a module save area for each task using the module. 

(FIXUNB. FIXBLK. VARUNB. VARBLK. SPNUNB. SPNBLK. or UNDEF) For work files. use FIXUNB or 
UNDEF. If omitted. FIXUNB .ssumed. 

DTFSD Is to be .ssembled sep.rately. 

RECFORM - FIXBLK or TRUNC macro used for this file. 

(INPUT. OUTPUT. or WORK) If omitted. INPUT is essumed. 

I nput file or work file Is to be updated. I 

X"" " 
X".J J 

X" J 

X " J 

X J J 

X J J J 

X J 

86 DOS supervisor and I/O Macros 



IBM IBM SYIlom/360 A .. omblor Coding Form 

PRO CUM I PUNCHING I GRAPHIC I T T T T T T 'ACE OF 

PROCUMoW:I OAT[ 
I INSTRUCTIONS I PUNCH 1 1 T T T T T CARD fl""'APPLIES TO 

S'A1fM(NT !; ~ ~"';I;'.';w 
""- Ope,alion O~~nd Com_n" a.. 05.quence 

1 . I. .. I. 3 • 3. 31 .. .- , . " .. ., 71. Z 0 3: .. 
Op t'l. VA RB LD = ( n n ) . Reglstor number If RECFORM-VARBLK ond recordl oro built In the output or ... t Omit If WORKA-YES. X J Opt' 

I VE RI FY = Y ES. Check disk recordl ofter they ere written. For DOS: DEVICE - 2321, YES II ..... med. I I I I X J J I ~L RE RR = X X X X X XX X • Name of UIOr'1 wrong· length· record routlno. I I I I I I I I I I I I I T 1 T 11 X J 

~o RK A'" YES GET or PUT speclfle. work area. OmltIDREG. Required for RECFORM - SPNUNB or SPNBLK. J" 

I 1 1 1 1 1 1 IJII 111111 IfTTTTITT1T-1111TI J .1l1 

• Heador ond each detail card, except the last ona In each lOt. must have a continuation punch In column 72. Also 
each detail card, except tho last ono, must contain a comma Immediately after tho operand. Space II allowed for tho 
longest operand plul the comma. If 0 amaller operand II ulOd, tho comma Ihould be moved ovor accordingly. I n the 
last detail card ora lOt. the comma position must be blank. 

Figure 20. DTFSD Macro (Part 2 of 2) 

r-----------------------------------------, 
IDEVADDR=SYSnnn I L _________________________________________ J 

This operand must specify the symbolic unit 
(SYSnnn) associated with the file if an 
extent statement specification is not 
provided. An extent statement is not 
required for single-volume input files. 
If an extent statement is provided, its 
specification overrides any DEVADDR 
specification. This specification, or 
symbolic unit, represents an actual IIO 
address, and is used in the job control 
ASSGN statement to assign the actual IIO 
device address to this file. 

A list of symbolic units applying to 
DTFSD can be found in the Symbolic Unit 
Addresses section. The only symbolic unit 
within this list not applicable is SYSLOG. 

r-----------------------------------------, 
IDEVICE={23111231412321l I L _________________________________________ J 

This operand is included to specify whether 
the data file is located on an IBM 2311, 
2314, or 2321. If the location is 
unspecified, 2311 is assumed. 

Note: Specify 2314 for 2319. 

111.111111111 I I l~~1 I I I I 

t General reglsten 2·12, written In parentheses; for example: (12) • 

r-----------------------------------------, 
I EOFADDR=name I L _________________________________________ J 

This operand specifies the symbolic name of 
the user's end-of~file routine. IOCS 
automatically branches to this routine on 
an end-of-file condition. The user can 
perform any operations required for the end 
of the file in this routine. However~ he 
generally issues the CLOSE macro. 

r-----------------------------------------, 
IERREXT=YES . I L _________________________________________ J 

This operand enables a problem program 
ERROPT or WLRERR routine to return to SDMOD 
with the ERET macro. It also enables 
unrecoverableI/O errors (occuring before a 
data transfer takes place) to be indicated 
to the problem program. For ERREXT 
facilities, the ERROPT operand must be 
specified~ However, to take full advantage 
of this option give the ERROPT=name 
operand. 

SAM: DASD 87 



r-----------------------------------------, 
I ERROPT={IGNOREISKIPI name} I L _________________________________________ J 

This operand is specified if the user does 
not want a job terminated when a read or 
write error cannot be corrected in the disk 
error routines. If a parity error is 
detected when a block of records is read, 
the block is reread 256 times before it is 
considered an error block. After 
unsuccessfully reading 256 times, the job 
is terminated unless the ERROPT entry' is 
included. Enter one of the following 
parameters after the = sign if the ERROPT 
entry is desired. 

IGNORE 

The error condition is ignored. The 
records are made available to the user for 
processing. When reading spanned records, 
the whole spanned record or block of 
spanned records is returned to the user, 
rather than just the one physical record in 
which the error occurred. On output, the 
physical record in which the error occurred 
is ignored as if it were written correctly. 
If possible, any remaining spanned record 
segments are written. 

SKIP 

No records in the error block are made 
available for processing. The next block 
is read from the disk, and processing 
continues with the first record of that 
block. When reading spanned records, the 
whole spanned record or block of spanned 
records is skipped, rather than just one 
physical record. On output, the physical 
record in which the error occurred is 
ignored as if it were written correctly .• 
If possible, any remaining spanned record 
segments are written. 

name 

IOCS branches to the problem program error 
routine named by this parameter regardless 
of whether ERREXT=YES is specified.. In 
this routine, the problem program can 
process or make note of the error condition 
as desired. 

If ERREXT is not specified, register 1 
contains.the address of the block in error. 
When spanned records are processed, 
register 1 contains the address of the 
whole unblocked or blocked spanned record. 
Register 14 contains the return address. 
When processing in the ERROPT routine, the 
problem program. must reference the error 
block (or records within the error block) 
by referring to the address supplied in 

88 DOS Supervisor and I/O Macros 

register 1. The contents of the IOREG 
register or workarea (if either is 
specified) are variable and therefore 
should not be used for error block 
processing. Also, the problem program must 
not issue GET instructions for records in 
the error block. If any other IOCS macros 
(excluding ERET if ERREXT=YES) are used in 
t'his routine, the contents of register 13 
(with RDONLY) and 14 must be saved and 
restored after their use. At the end of 
the routine, the problem program must 
return control to IOCS by branching to the 
address in register 14. For a read error 
IOCS skips that error block and makes the 
first record of the next block available 
for processing in the main problem program. 

A sequence error may occur if LIOCS is 
searching for the first segment of a 
logical spanned record and fails to find 
it. If WLRERR or ERROPT=name is specified, 
the error recovery procedure is the same as 
for wrong-length record errors. If neither 
WLRERR nor ERROPT=name is specified, LIOCS 
ignores the sequence error, and searches 
for the next first segment. Write errors 
are ignored. 

If ERREXT is specified, register 1 
contains the address of a two part 
parameter list containing the 4-byte DTFSD 
address and the 4-byte address of the error 
block respectively. Register 14 contains 
the return address. Processing is similar 
to that described above except for 
addressing the error block and for the 
following considerations. The data 
transfer bit (byte 2, bit 2) of the DTF is 
tested to determine if a nondata transfer 
error has occurred. If this bit is ON, the 
block in error was not read or written. If 
the bi~ is OFF, data was transferred and 
the routine must address the block in error 
to determine the necessary action. At the 
end of its processing, the routine returns 
to LIOCS by issuing the ERET macro. 

For an input file: 

• The problem program skips the block in 
error and reads the next block with an 
ERET SKIP. 

• Or, it ignores the error with an ERET 
IGNORE. 

• Or it makes another attempt to read the 
block with an ERET RETRY. 

For an output file: 

• The problem program ignores the error 
condition ERET IGNORE or ERET SKIP. 



• Or, attempts to write the block with an 
ERET RETRY macro. 

Also, for an output file, the only 
acceptable parameters are IGNORE or name. 
On an UPDATE=YES file, the parameter SKIP 
ignores write errors. 

If an error occurs while rereading the 
physical block while updating spanned 
records, and neither WLRERR nor ERROPT is 
specified, the entire logical record is 
skipped. Likewise, if an error occurs when 
rereading the physical block that contains 
the last segment for blocked spanned 
records, the next entire logical record is 
skipped. If WLRERR and/or ERROPT were 
specified, the error recovery procedure is 
the same as for nonspanned records. 

This operand applies to wrong-length 
records if the WLRERR operand is not 
included. If the ERROPT routine is used to 
process wrong-length records, the ERET 

RETRY option cannot successfully retry the 
option. ERET RETRY for this condition 
results in job termination. If both ERROPT 
and WLRERR are omitted and wrong length 
records occur, IOCS assumes the IGNORE 
option. 

The DTFSD error options are shown in 
Figure 21. The following description shows 
how to use Figure 21. The figure is 
divided into two parts. The upper part 
lists the error conditions Specified by the 
User in the DTF, and the lower part shows 
the Action Resulting From these 
specifications when an error occurs. Refer 
to the shaded column in the figure. The 
user has specified WLRERR=name and also the 
RETRY option in his ERET macro. If the 
error occurring is either a wrong length 
record, or other than a wrong length 
record, the job is terminated. Refer to 
the remaining columns of the figure for 
other specifications and their resulting 
actions. 

SAM: DASD 89 



Figure 21.DTFSD Error Options 

r----~------------------------------------, 
IFEOVD=YES I L _________________________________________ J 

This operand is specified if the forced end 
of volume for disk feature is desired. It 
forces the end-of-volume condition before 
physical end of volume occurs. When the 
FEOVD macro instruction is issued, the 
current volume is closed, and I/O 
processing continues on the next volume. 

90 DOS Supervisor and I/O Macros 

r-----------------------------------------, 
I HOLD=YES I L _________________________________________ J 

This operand is specified only if the track 
hold function is specified at system 
generation time and if it is employed when 
a data file or a work file is referenced 
for updating. SDMOD must also contain this 
operand. See the Track Protection Macros 
for more information. 



r-----------------------------------------, 
I IOAREA1=name I L _________________________________________ J 

This operand specifies the symbolic name of 
the I/O area used by the file. IOCS either 
reads or writes records using this area. 
For output records, the first 8 bytes of 
IOAREA1 must be allotted for IOCS to 
construct a count field. When 
variable-length records are processed, the 
size of the I/O area must include four 
bytes for the block size. The I/O area 
must begin on a half-word boundary. 

r--------------------T--------------------, 
I Device I Length I 
~--------------------+--------------------~ 
1 2311 Disk Drive 136251 or BLKSIZE I 
1 1 decimal 1 
~--------------------+--------------------~ 
1 2314, 2319 Disk 172941 or BLKSIZE I 
1 Drive 1 decimal I 
t--------------------+--------------------~ 
1 2321 Data Cell 120001 or BLKSIZE I 
1 . 1 decimal I 
~--------------------~--------------------1 
11Add 8 for output file~ I 
1 decimal I L~ ________________________________________ J 

Figure 22. I/O Area Requirements when 
Processing Spanned Records 

When processing spanned records, the 
length of the user's define storage 
statements for his I/O areas must be at 
least as large as the smaller of the values 
given in Figure 22. 

r-----------------------------------------, 
1 IOAREA2=name I L __________________ - ______________________ J 

If two I/O areas are used by GET or PUT, 
this operand is specified. When variable 
length records are processed, the size of 
the I/O area must include four bytes for 
the block size. Also, the I/O area must 
include eight bytes to build a count field 
for output files. 

r-----------------------------------------, 
I IOREG=(r) I L __________________________________ ~ ______ J 

This operand specifies the general purpose 
register (2-12) in which IOCS puts the 
address of the logical record that is 
available for processing. At OPEN time, 
for output files, IOCS puts the address of 
the area where the user can build a record. 
The same register may be used for two or 
more files in the same program, if desired. 
If this is done, the problem program must 
store the address supplied by IOCS for each 
record. 

This entry must.be specified if blocked 
input or output records are processed in 
one I/O area, or if two I/O areas are used 
and the records are processed in both I/O 
areas. 

r-----------------------------------------, 
ILABADDR=name I L _________________________________________ J 

Enter the symbolic name of the routine that 
enables the user to process his own labels. 
See the sections Writing and Checking User 
Standard DASD Labels for a discussion of 
what the LABADDR should do. 

r-----------------------------------------, 
I MODNAME=name I L _________________________________________ J 

This operand ffiay be used to specify the 
name of the logic module to process the 
file. If the logic module is assembled 
with the program, the MODNAME in the DTF 
macro instruction must specify the same 
name as the SDMODxx macro instruction. If 
this entry is omitted, standard names are 
generated for calling the logic module. If 
two DTF macro instructions call for 
different functions that can be handled by 
a single module, only one module need be 
called. 

r---------~--------------------------~----, 
I NOTEPNT={POINTRWIYES} I L _________________________________________ J 

The parameter POINTRW is specified if a 
NOTE, POINTR, or POINTW macro is issued to 
the file. If the parameter YES is 
specified, NOTE, POINTR, PCINTW, and POINTS 
macros may be issued to the file. 

SAM: DASD 91 



r-----------------------------------------, 
IRDONLY=YES I 
L _________ ---------------~----------------J 

This operand is specified if the DTF is 
used with a read-only module. Each time a 
read only module is entered, register 13 
must contain the address of a 72-byte 
doubleword aligned save area. Each DTF 
should have its own uniquely defined save 
area. When an imperative macro (except 
OPEN(R), LBRET, SETL, or SETFL) is issued 
using a particular DTF, register 13 must 
contain the address of the save area 
associated with that DTF. The fact that 
the save areas" are unique for each task 
makes the module reentrant (that is, 
capable of being used concurrently by 
several tasks). For more information see 
Shared Modules and Files. 

If an ERROPT or WLRERR routine issues 
I/O macro instructions using the same read 
only module that caused control to pass to 
either error routine, the problem program 
must provide another save area. One save 
area is used for the normal I/O operations, 
and the second for I/O in the ERROPT or 
WLRERR routine. Before returning to the 
module that entered the ERROPT routine, 
register 13 must be set to the save area 
address originally specified for that DTF. 
If the operand is omitted, the module 
generated is not reenterable and no save 
area need be established. 

r-----------------------------------------, 
I RECFORM={FIXUNBI FIXBLKIVARUNBIVARBLKI I 
I SPNUNBISPNBLKIUNDEF} I L ____ ~ ____________________________________ J 

This operand specifies the type of records 
(fixed or variable length, blocked or 
unblocked, spanned, or undefined) in the 
input or output file. One of the following 
parameters may be entered immediately 
following the = sign. 

FIXUNB 

FIXBLK 

VARUNB 

VARBLK 

SPNUNB 

SPNBLK 

UNDEF 

For fixed-length unblocked records 

For fixed-length blocked records 

For variable-length unblocked 
records 

For variable-length blocked 
records 

For spanned variable-length 
unblocked records. 

For spanned variable-length 
blocked records~ 

For undefined records. 

92 DOS Supervisor and I/O Macros 

If RECFORM=SPNUNB or RECFORM=SPNBLK was 
specified and RECSIZE=(r) was not 
specified, an assembler diagnostic (MNOTE) 
is issued, and register 2 is assumed. If 
WORKA=YES was omitted, an MNOTE is issued 
and WORKA=YES is assumed. If RECFORM is 
omitted, FIXUNB is assumed. 

r-----------------------------------------, 
IRECSIZE={nl (r)} I L _________________________________________ J 

For fixed-length blocked records, this 
operand is required. It specifies the 
number of characters, n, in each record,. 

When processing spanned records, the 
user must specify RECSIZE=(r) where r is a 
register. 

For undefined records and variable 
length spanned records, this entry is 
required for output files, is optional for 
input files, and is invalid for work files. 
It specifies a g~neral register (2-12) that 
contains the length of the record. On 
output, the user must load the length of 
each record into the designated register 
before he issues a PUT instruction. If 
specified for input, IOCS provides the 
length of the record transferred to main 
storage. 

r-----------------------------------------, 
ISEPASMB=YES I L _________________________________________ J 

This operand must be included if the DTF is 
assembled separately. This causes a CATALR 
card with the filename to be punched ahead 
of the object deck, and defines the 
filename as an entry point in the assembly. 

r-----------------------------------------, 
ITRUNCS=YES I L ____________________________________ ~ ____ J 

This operand is specified if FIXBLK" rAse 
files contain short blocks embedded within 
an input file. This entry is also 
specified if the TRUNC macro is issued for 
a FIXBLK output file. 

r-----------------------------------------, 
I TYPEFLE={INPUT I OUTPUT I WORK} I L _________________________________________ J 

Use this operand to indicate whether the 
file is an input or output file. If WORK 
is specified, a work file is used. (See 
work file macros.) If INPUT/OUTPUT is 
specified, the GET/PUT macro is used. If 
WORK is specified, the REAr/WRITE, 
NOTE/POINT, and CHECK macros are used. 



r-----------------------------------------, 
IUPDATE=YES I L _________________________________________ J 

This operand must be included if the DASD 
input or work file is updated. That is, if 
disk records are read, processed, and then 
transferred back (PUT) to the same disk 
record locations from which they were read, 
this operand is required. CLOSE writes any 
remaining records in sequence onto the 
disk. 

r-----------------------------------------, 
IVARBLD=(r) I L _________________________________________ J 

Whenever variable-length blocked records 
are built directly in the output area (no 
work area specified), this entry must be 
included. It specifies the number (r) of a 
general-purpose register (2-12), which will 
always contain the length of the available 
space remaining in the output area. 

Ioes calculates the space still 
available in the output area, and supplies 
it to the programmer in the designated 
register. Only after the PUT instruction 
is issued for a variable-length record. 
The programmer then compares the length of 
his next variable-length record with the 
available space to determine if the record 
fits in the area. This check must be made 
before the record is built. If the record 
does not fit, the programmer issues a TRUNe 
instruction to transfer the completed block 
of records to the file. Then, the present 
record is built at the beginning of the 
output area in the next block. 

r-----------------------------------------,' 
IVERIFY=YES I L _________________________________________ J 

This operand is included if the user wants 
to check the parity of IBM 2311, 2314, or 
2319 records after they are written. If 
this entry is omit~ed, any records written 
on these devices are not verified. VERIFY 
is assumed when 2321 records are written. 

r-----------------------------------------, 
IWLRERR=name I L _________________________________________ J 

This operand applies only to disk input 
files. It specifies the symbolic name of a 
problem program routine tc receive control 
if a wrong-length record is read. 

If ERREXT is not specified, the address 
of the error block is supplied by Ioes in 
register 1. If ERREXT is specified, 
register 1 contains the address of a two 

part parameter list. The first four bytes 
of the list are the DTF address, and the 
second four bytes are the address of the 
error block. If the block read is less 

'than the BLKSIZE parameter, the first two 
bytes of the DTF contain the number of 
bytes left to be read (residual count). 
Therefore, the size of the actual tlock is 
equal to the block size minus the residual 
count. If the block to be read is larger 
than the BLKSIZE parameter, the residual 
count is zero, and there is no way to 
compute its size. In this case, the number 
of bytes transferred is equal to the 
BLKSIZE parameter and the remainder of the 
original block is truncated. 

The problem program WLRERR routine 
performs any processing desirable for 
wrong-length records. However, GET macro 
instructions must not be issued in this 
routine. If the routine issues any other 
Ioes macros (excluding ERET if ERREXT=YES) 
the contents of registers 13 (with RDONLY) 
and 14 must be saved before and restored 
after their use. At the end of the 
routine, control returns to Ioes by 
branching to the address in register 14. 
If ERREXT is specified, the ERET IGNORE or 
SKIP options can be taken. The ERET RETRY 
terminates the job. 

If the WLRERR entry is omitted from the 
set of DTFSD ent~ies but a wrong-length 
record is detected by IOeS, one of the 
following conditions result: 

• If the ERROPT entry is included for 
this file, the wrong-length record is 
treated as an error block and handled 
accoiding to the user's specificaticns 
for an error (IGNORE, SKIP, or name of 
error routine). 

• If the ERROPT entry is not included, 
the error is ignored. 

The WLRERR entry does not apply to 
undefined records. Undefined records are 
not checked for incorrect record length. 
The record is truncated when the BLKSIZE 
specification is exceeded. 

SAM: DASD 93 



r-----------------------------------------, 
I WORKA=YES . I L __________________ ---____________________ J 

Input/output records can be processed, or 
buil t, in workareas instead o.f the 
input/output areas. If this is planned, 
WORKA=YES must be included, and the 
programmer must set up the workarea(s) in 
main storage. In this case, the symbolic 
name (or a general register containing the 
address), must be specified in each GET or 
PUT instruction. For a GET or PUT 
instruction, IOCS moves the record to, or 
from, the specified work area. WORKA=YES. 
is required for SPNUNB and SPNBLK. 
Whenever this entry is included for a fiie, 
the DTF entry IOREG must be omitted. 

SEQUENTIAL DASD MODULE (SDMODXX) 

Sequential DASD module generation macros 
differ from other IOCS module generation 
macros. The file characteristics are 
separated into ten categories, and each 
category has a unique macro instruction 
associated with it. 

SDMODFI 

SDMODFO 

SDMODFU 

SDMODVI 

SDMODVO 

SDMODVU 

SDMODUI 

SDMODUO 

SDMODUU 

SDMODW 

Module Generated 

~equential ~ASD Module, Fixed 
length records, Input file 

~equential ~ASD Module, Fixed 
length records, Qutput file 

~equential QASD Module, Fixed 
length records, ~pdate file 

~equential ~ASD Module, yariable 
length records (including spanned 
records), Input file 

Sequential DASD Module, Variable 
length records (including spanned 
records), Qutput file 

§equential QASD ModUle, yariable 
length records (including spanned 
records), Qpdate file 

§equential ~ASD Module, Qndefined 
records, Input file 

§equential ~ASD Module, Qndefined 
records, Qutput file 

~equential ~ASD Module, Qndefined 
records, Qpdate file 

§equential QASD Module, ~ork file 

94 DOS supervisor and I/O Macros 

The macro operation and the keyword 
operands define the characteristics of the 
module. The advantages to generating 
modules for sequential DASD files this way 
are: 

1. Maintenance changes can be made to the 
module more easily. 

2. A module can be generated to handle a 
specific file more quickly than if 
there were only one macro. 

The operands for the ten macro 
instructions are shown in Figure 23 and 
explained in the following section. 

SDMODxx Operands 

A module name may be contained in the name 
field of the macro instruction. The macrc 
o~eration is contained in the operation 
field (SDMODFI, for example). The operands 
are contained in the operand field. 

r-----------------------------------------, 
lCONTROL=YES I L _________________________________________ J 

This operand is specified if a CNTRL macro 
is issued to the file. This entry applies 
to all SDMCDxx macro instructions. The 
module also processes any CTF in which the 
CONTROL parameter is not specified. 

r-----------------------------------------, 
IERREXT=YES I L _____________________________________ ~ ___ J 

Include this operand if nondata transfer 
errors are returned to a problem program 
ERROPT routine or if the ERET macro is used 
with the DTF and module. The ERROPT 
operand must be specified for this module. 



r-----------------------T----------------------------------T----------------------------, I Operand I Required I comments I 
~-----------------------+----------------------------------+----------------------------~ 
ICONTROL=YES IIf the CNTRLmacro is to be IApplies to all SDMODs. I 
I lissued to the file. I I 
~-----------------------+----------------------------------+----------------------------~ 
IERREXT=YES IIf the module returns nondata IApplies to all SDMODs. I 
I Itransfer errors or is .used with I I 
I I the ERET macro. I I 
~-----------------------+----------------------------------+----------------------------~ 
IERROPT=YES IIf the module is to handle error IApplies to all SDMODs. I 
I loptions for an error block. I I 
~-----------------------+----------------------------------+----------------------------~ 
IFEOVD=YES IIf the FEOVD macro is to be IApplies to all SDMODs I 
I lissued to the file. lexcept SDMODW. I 
~-----------------------+----------------------------------+----------------------------~ 
I HOLD=YES IIf the track hold function is to IApplies to update and work I 
I Ibe employed. Ifile logic modules. I 
~-----------------------+----------------------------------+---------------------~-----~~ 
I NOTEPNT={POINTRWIYESI IIf NOTE, POINTR, POINTS, or IThis parameter applies to I 
I IPOINTW macros are to be issued ISDMODW only. The operand I 
I Ito the file. IPOINTRW generates logic for I 
I I I NOTE, POINTR, and POINTW. I 
I I IThe operand YES generates I 
I I Ilogic for all macros. I 
~-----------------------+----------------------------------+----------------------------~ 
IRDONLY=YES IIf a read only module is to be IApplies to all SDMODs. I 
I I generated. I I 
~-----------------------+----------------------------------+----------------------------~ 
IRECFORM={SPNUNBISPNBLKIIIf unblocked or blocked spanned IApplies to SDMODVI, SDMODVO,I 
I Irecords are to be processed. land SDMODVU only. I 
~-----------------------+------------------~---------------+----------------------------~ 
ISEPASMB=YES IIf the module is assembled IApplies to all SDMODs. I 
I Iseparately from the DTF. . I I 
~-----------------------+----------------------------------+-----------------------~----~ ITRUNCS=YES IIf the TRUNC macro is to be IApplies to all SDMODs for I 
I lissued to the file. Assumed for Ifixed length records. I 
I Ivariable length blocked records. I I 
~-----------------------+-----------------~---------------+----------------------------~ 
IUPDATE=YES IIf SDMODW is to process the IApplies to SDMODW only. I 
I IWRITE UPDATE macro instruction. I I L _______________________ ~ __________________________________ ~ ____________________________ J 

Figure 23. SDMODxx Operands 

r-----------------------------------------, 
IERROPT=YES I L _________________________________________ J 

This operand applies to all SDMODxx macro 
instructions. This operand is included if 
the module handles any of the error options 
for an error block. Logic is generated to 
handle any of the three options (IGNORE, 
SKIP, or name) regardless of which option 
is specified. The module processes any DTF 
in which the ERROPT operand is not 
specified. 

If this operand is not included, the 
user's program is canceled whenever any 
uncorrectable error except wrong-length 
record error (which LIOCS ignores) is 
encountered. 

r-----------------------------------------, 
I HOLD=YES I L ________________ ~ ________________________ J 

This operand applies to update (SDMODFU, 
SDMODVU, and SDMODUU) and to work files 
(SDMODW) only. The operand is included if 
the track hold function is employed. (See 
the HOLD operand under DTFSD.) 

r-----------------------------------------, 
IFEOVD=YES I L _________________________________________ J 

This operand is specified if the forced end 
of volume for disk feature is desired. It 
forces the end of volume condition before 
physical end of volume occurs. When the 
FEOVD macro instruction is issued, the 
current volume is closed, and I/O 
processing continues on the next volume. 

SAM: DASD 95 



r-------~---------------------------------, I NOTEPNT={POINTRWIYES} I L _________________________________________ J 

This operand applies to SDMODW (work files) 
only. This entry is included if any NOTE, 
POINTR, POINTS, or POINTW macro 
instructions are used within the module. 
If the operand specifies POINTRW, logic to 
handle only NOTE, POINTR, and POINTW is 
generated. 

If YES is specified, the routines to 
handle NOTE, POINTR, POINTS, and POINTW are 
generated and any files that specify 
NOTEPNT=POINTRW in the DTF are processed. 

In any case, any files that do not 
specify the NOTEPNT parameter in the DTF 
are processed. 

r-----------------------------------------, 
IRDONLY=YES I L _________________________________________ J 

This operand generates a read only module. 
RDONLY=YES must be specified ~n the DTF. 
For the programming requirements of this 
operand, see the DTFSD RDONLY operand. 

r-----------------------------------------, 
IRECFORM={SPNUNBISPNBLK} I L __________________ ---____________________ J 

This operand applies to SDMODVI (input 
files),SDMODVO (output files), and SDMODVU 
(update files) only. It generates a module 
that processes the specified record format. 
The DTFSD used with this module must also 
include the appropriate operand in the 
RECFORM parameter. If RECFORM=SPNUNB or 
SPNBLK is specified for other than SDMODVI, 
SDMODVO, or SDMODVU, an assembler 
diagnostic (MNOTE) iS,issued, and 
generation is terminated. 

r-----------------------------------------, 
ISEPASMB=YES I L __________________ --_____________________ J 

This operand must be included if the logic 
module is assembled separately. This 
causes a CATALR card with the module name 
(standard or user) to be punched ahead of 

,the object deck. 

96 DOS Supervisor and I/O Macros 

r-----------------------------------------, 
ITRUNCS=YES I L _________________________________________ J 

This operand applies to all SDMOD macro 
instructions for fixed-length records. It 
generates a logic module that supports ,the 
TRUNC macro instruction. Also, this 
operand is assumed for VARBLK output files. 
It must be specified if any FIXBLK DASD 
files (processed by the module) contain 
short blocks embedded within them. The 
module cannot process any DTF, for 
fixed-length records, in which the TRUNCS 
operand is not specified. 

r-----------------------------------------, 
IUPDATE=YES I L _________________________________________ J 

This operand 'applies to the SDMODW only. 
It is assumed for SDMODFU, SDMODUU, and 
SDMODVU and generates a logic module that 
supports the WRITE UPDATE macro instruction 
with work files. 

Recommended Module Name List for SDMODxx 

Each name begins with a 3-characterprefix 
(IJG) and consists of a 5-character field 
corresponding to the options permitted in 
the generation of the module. 

In SDMOD there are two'module classes: 

• For handling GET/PUT functions 

• For handling READ/WRITE, NOTE/POINT, 
and CHECK functions (work files). 

Name List for GET/PUT 'Type Modules 

SDMODxx name = IJGal:cde 

a = C SDMODFx specifies HOLD=YES 
= F SDMODFx does not specify HOLD=YES 
= R SDMODUx specifies HOLD=YES 
= U SDMODUx does not specify HOLD=YES 
= P SDMODVx specifies HOLD=YES (spanned 

records) 
= Q SDMODVx does'not specify HOLD=YES 

(spanned records) 
- S SDMODVx specifies HOLD=YES 
= V SDMODVx does not specify HOLD=YES 

b = U SDMODxU 
= I SDMODxI 
= 0 SDMODxO 

c = C ERROPT=YES and ERREXT=YES 
= E ERROPT=YES 
= Z neither is specified 



d = M TRUNCS=YES and FEOVD=YES 
= T TRUNCS=YES 
= W FEOVD=YES 
= Z neither is specified 

e = B CONTROL=YES and RDONLY=YES 
= C CONTROL=YES 
= Y RDONLY=YES 
= z· neither is specified 

Name List for Workfile Type Modules 
(TYPEFLE=WORK) 

SDMODxx name = IJGabcde 

a = T HOLD=YES 
W HOLD=YES not specified 

b = C ERROPT=YES and ERREXT=YES 
= E ERROPT=YES 
= Z neither is specified 

c = N NOTEPNT=YES 
= R NOTEPNT=POINTRW 
= Z NOTEPNT is not specified 

d = C CONTROL=YES 
= Z CONTROL=YES is not specified 

e = T RDONLY=YES and UPDATE=YES 
= U UPDATE=YES 
= Y RDONLY=YES 
= Z neither is specified 

subset/Superset SDMOD Names 

The following diagrams illustrate the 
subsetting and supersetting allowed for 
SDMOD names. For the GET/PUT type modules, 
four parameters allow supersetting. For 
example, in the GET/PUT type module" the 
module IJGFUETC is a superset of a module 
with the name of IJGFUZTZ. See 
subset/Superset Module Names. 

For GET/PUT Type Modules: 

r-----------------------------------------, 
+ * + + + 

I J G C U C M B 
FIE T Y 
+ 0 Z + + 
R W C 
U Z Z 
+ 
P 
Q 
V 
+ 
P 
S 
V 

+ subsetting/supersetting permitted. 
* No subsetting/supersetting permitted. L ________________________________________ _ 

For Workfile Type Modules: 

r-----------------------------------------, I +++++ I 
I I J G T C N C T I 
1 W E R Z Y I 
I Z Z + 1 
lUI 
I Z 1 
1 I 
1+ Subsetting/supersetting permitted. 1 
1* No subsetting/supersetting permitted. 1 L _________________________________________ J 

SERIAL DEVICE FILE (DTFSR) FOR BOS/360 
USERS 

The DTFSR macro instruction is provided as 
a compatibility aid to users of the Basic 
Operating system/360. For Disk Operating 
system/360 users, the DTFCB, DTFPT, DTFMT, 
DTFOR, DTFPR, DTFCN, and DTFSD macros are 
recommended instead of the DTFSR macro. 
Enter the symbolic name of the file in the 
name field and DTFSR in the operation 
field. The entries for DTFSR are discussed 
here and illustrated in Figure 24. 

The begin-definition card must be 
punched with DTFBG in the operation field 
and DISK in the operand field. The name 
field is blank. It is included in DOS to 
provide compatibility with the BOS DTFSR 
macro instruction. 

SAM: Serial Device 97 



r-----------------------------------------, 
IALTTAPE=SYSnnn I 
L __________________ -----------------------J 
This operand is provided for BPS and BOS 
compatibility. 

r-----------------------------------------, 
IBLKFAC=n I L _____________________________________ ~ ___ J 

Undefined journal tape records are 
processed faster whe.n this operand is 
included because it reads groups of lines 
as blocked records. When undefined records 
are processed, BLKFAC specifies the 
blocking factor (n) that determines the 
number of lines read (through CCW chaining) 
as a block of data by one physical read~ 
Deblocking is accomplished automatically by 
IOCS when the GET macro is used. The 
BLKFAC parameter is not used with 
RECFORM=FIXBLK, because the blocking factor 
is determined from the BLKSIZE and RECSIZE 
parameters. If this operand is included 
for FIXBLK, FIXUNB, or document processing, 
an assembler Qiagnostic (MNOTE) results, 
and the operand is ignored. 

r-----------------------------------------, 
IBLKSIZE=n I L _________________________________________ J 

This operand indicates the size of the 
input or output area specified by IOAREA1. 
BLKSIZE specifies the maximum number (n) of 
characters that may be transferred to or 
from the area at anyone time. When 
variable-length records are read or 
written, the area must be large enough to 
accommodate the largest block of records, 
or the longest single record if the records 
are unblocked. 

When undefined journal tape records are 
read, the area must be large enough to 
accommodate the longest record to be read 
if the BLKFAC parameter is not specified. 
If the BLKFAC parameter is specified, the 
BLKSIZE value must be determined by 
multiplying the maximum length that must be 
accommodated for an undefined record by the 
blocking factor desired. A BLKSIZE value 
smaller than this results in truncation of 
data. 

If card-punch or printer output records 
include control characters (that is, DTFSR 
CTLCHR specified) and/or record-length 
fields for variable-length records 
(RECFORM=VARUNB), the BLKSIZE 
specifications must include the extra bytes 
allotted in the main-storage output area. 

If two input, or output, areas are used 
for a file (IOAREA1 and IOAREA2), the size 

98 DOS Supervisor and I/O Macros 

specified in this entry is the size of each 
I/O area. 

IOCS uses this block size parameter to: 

• Construct the count field of the CCW 
for an input file,. 

• construct the count field of the CCW 
for an output file of fixed-length 
records. 

• Check physical record length for a file 
of fixed-length blocked input records .• 

• Determine if the space remaining in the 
output area is large enough to 
accommodate the next variable-length 
output record. 

r-----------------------------------------, 
ICHECKPT=n I L _________________________________________ J 

This operand is for compatibility with BPS 
and BOS and is ignored by DOS. 

r-----------------------------------------, 
ICKPTREC=YES I L _________________________________________ J 

This operand is required if a tape input 
file contains checkpoint records 
interspersed among the data records. When 
this entry is included, IOCS recognizes the 
checkpoint records and bypasses them. 

r-----------------------------------------, 
ICONTROL=YES I L ______________________________ ~ __________ J 

This operand must be included if a CNTRL 
macro instruction is issued for a file. A 
control command issues orders to the I/O 
device to perform nondata operations such 
as card-stacker selection~ carriage 
skipping, marking of doubtful 1287 or 1285 
tape records, tape rewinding~ etc. When 
CONTROL is included, the DTFSR entry CTLCHR 
must not be included. 



r-----------------------------------------, 
ICOREXIT=name I L _________________________________________ J 

COREXIT provides an exit to the user's 
error correction routine for the IBM 1285, 
or 1287 Optical Reader, or 1288 Optical 
Page Reader. If an error occurs after a 
GET, WAITF, or CNTRL macro (to increment or 
eject and/or stacker select a document) is 
executed, the error correction routine is 
entered with an indication provided in 
filename+80. Filename+80 contains the 
following hexadecimal bits indicating the 
conditions that occurred during the last 
line or field read. Filename+80 should 
also be tested after issuing the optical 
reader macros DSPLY" RESCN, RDLNE, CNTRL 
READKB, and CNTRL MARK. More than one 
error condition may be present. 

X'20' 

X'Ol' 

X'02' 

X'04' 

X'08' 

For the 1288, reading in 
unformatted mode, the 
end-of-page (EOP) condition 
was detected. Normally, on an 
EOP indication, the problem 
program ejects and stacker 
selects the document. 

A data check has occurred. 
CThat is, five read attempts 
for journal tape processing Or 
three read attempts for 
document processing were 
made. ) 

The operator corrected one or 
more characters from the 
keyboard (1285 or 1287T) or a 
hopper empty condition (see 
the HPRMTY=YES operand) has 
occurred C1287D). 

A wrong-length record 
condition has occurred after 
ten read attempts were made. 
Not applicable for undefined 
records. 

An equipment check resulted in 
an incomplete read after ten 
read attempts were made. 

If an equipment check occurs on the 
first character in the record when 
processing undefined journal tape records, 
the RECSIZE register contains zero, and the 
IOREG (if used) points to the rightmost 
position of the record in the I/O area. 
The user should test the RECSIZE register 
before moving records from the I/O or 
workareaCs). The test conditions are: 

X'10' A nonrecovery error occurred. 

X'20' A stacker-select command was 
given after the allotted time had 

elapsed and the document is sent 
to the reject pocket. 

X'40' The 1287D scanner was unable to 
locate the reference mark after 
ten read attempts were made. 

Filename+80 can be interrogated by the 
user to determine the reason for entry into 
the error correction routine. The choice 
of action in the user's error correction 
routine is determined by the particular 
application. 

If the user issues I/O macro 
instructions to any device other than the 
1285, 1287, and/or 1288, in the COREXIT 
routine; he must save registers 0,1, 14, 
and 15 upon entering the routine and 
restore these registers before exiting. If 
I/O macro instructions, other than the GET 
and/or READ, are issued to the 1285, 1287, 
and/or 1288 in this routine, the user must 
first save, and later restore registers 14 
and 15. All exits, except as noted, from 
COREXIT should be to the address in 
register 14. This returns control to the 
point from which the branch to COREXIT 
occurred. If a READ document command chain 
is broken, IOCS completes the chain upon 
return from the COREXIT routine. 

Note: The user cannot issue a GET or a 
READ macro to the 1285, 1287, or 1288 
in his error correction routine. Also, 
the user should not process records in 
this routine. The record that caused 
the exit to the error routine is 
available for processing upon return to 
the user's mainline program. Any 
processing attempted in the error 
routine is duplicated after return to 
the mainlineproqram. 

When processing journal tapes, a 
nonrecovery error (torn tape, tape jam, 
etc) normally requires the tape to be 
completely reprocessed. In this case, the 
user must not branch to the address in 
register 14 from the COREXIT routine or a 
program loop will result. Following a 
nonrecovery error, the optical reader file 
must be closed, the condition causing the 
nonrecoverable error must be cleared, and 
the file must be reopened before processing 
can continue. 

When processing documents, a 
nonrecoverable error requires that the 
document be removed, either manually or by 
nonprocess runout. Such an error could 
result from a jammed document or a scanner 
control failure. In such cases, the user's 
program should branch to read the next 
document. Also, if the 1287 or 1288 
scanner is unable to locate the document 

SAM: Serial Device 99 



reference mark, the document cannot be 
processed. In this case, the document must 
be ejected and stacker selected before 
attempting to read the following document 
or a program loop will result. In any 
case, the user must not branch to the 
address in register 14 from the COREXIT 
routine. The user should ignore any output 
resulting from the document under any 
circ~mstances. 

Eight binary counters are used to 
accumulate totals of certain 1285, 1287, 
and 1288 error conditions. These counters 
each occupy four bytes, starting at 
filename+48,. Filename is the name 
specified in the DTF header entry. The 
error counters are: 

counter and 
Address Contents 

1 filename+48 Incomplete read 
(equipment check) 

2 filename+52 Incomplete read 
uncorrectable after ten 
read attempts 

3 filename+56 Wrong-length records (Not 
applicable for undefined 
records.) 

4 filename+60 Wrong-length records 
uncorrectable after ten 
read attempts Not 
applicable for undefined 
records. 

5 filename+64 Keyboard corrections 
(journal tape only~ 

6 filename+68 Journal tape lines, 
including retried lines, 
or document fields, 
including retried fields, 
in which data checks are 
present. 

7 filename+72 Lines marked (journal 
tape only) 

8 filename+76 count of total lines read 
from journal tape or the 
number of CCW chains 
executed during document 
processing. . 

. All of these counters contain binary 
zero at the start of each job step and are 
never cleared. The user may list the 
contents of these counters for analysis at 
end of file, or at end of job, or he may 
ignore the counters,. (Binary contents of 
the counters should be converted to a 
printable format,.) 

100 DOS Supervisor and I/O Macros 

r-----------------------------------------, 
ICRDERR=RETRY \ L _________________________________________ J 

This operand applies only to a card output 
file for the IBM 2540 or 2520. It 
'specifies the operation performed if an 
error is detected. 

Normally, if a punching error occurs, it 
is ignored and operation continues. The 
error card is stacked in pocket Pi (punch). 
Correct cards are stacked in the pocket 
specified by the user. If this CRDERR 
entry is included, however, IOCS also 
notifies the operator and then enters the 
wait state whenever an error condition 
occurs. The operator can then either 
terminate the job or instruct IOCS to 
repunch the card,. IOCS automatically 
generates a retry routine and constructs a 
~ area for the card punch record if this 
entry is included. 

r-----------------------------------------, 
\CTLCHR=YES I L _________________________________________ J 

The CTLCHR (control character) operand 
applies only to printer and punch output 
files. It is included if each logical 
record written or punched contains a 
control character (carriage control or 
stacker selection) in the record itself, or 
in the main storage output area. For 
fixed-length or undefined records, the 
control character must be the first 
character. For variable-length records, it 
is the first character after the , 
record-length field. The control character 
codes are the same as the modifier bytes 
used for a punch or print command. 

When this operand is specified, lacs 
routines cause the designated control 
character for printer or card punch order 
to be issued to the I/O device. Printing 
or punching begins with the second 
character in the record. When the CTLCHR 
entry is not included, any control 
functions desired must be performed by the 
CNTRL macro. 



r-----------------------------------------, 
IDEVADDR=SYSxxx I L _________________________________________ J 

This operand specifies the symbolic unit 
name to be associated with the file. The 
symbolic unit name represents an actual I/O 
device address and is used in the job 
control ASSGN statement to assign the 
actual I/O device address to this file. 
For a complete list of symbolic unit names 
that can be used for particular devices see 
Symbolic Unit Addresses. SYSOPT, if used, 
is processed as if SYSPCH were. specified. 

A reel of tape may bamounted on any 
tape unit available at the time the job is 
ready to run. This is done by assigning 
the device to the specified symbolic unit 
name. Whenever two devices are used for 
one logical file (such as an alternate tape 
unit specified in the ASSGN cards), this 
DEVADDR entry specifies the symbolic unit 
name for the first device. 

The symbolic unit name must be specified 
for all units except the 2311 disk drive. 
For files on this device, DEVADDR may be 
omitted. If DEVADDR is omitted, the 
symbolic unit name for a disk drive is 
supplied by a job control extent card. 

r-----------------------------------------, 
IDEVICE= I L _________________________________________ J 

This operand must be included to state the 
I/O device associated with this logical 
file. One of the following parameters must 
be entered immediately after the = sign,. 

DISK11 

I 'TAPE 

PRINTER 

READOl 

READ20 

READ40 

READ42 

CONSOLE 

PTAPERD 

For an input or output file on 
disk (2311). 

For an input or output file 
recorded on magnetic tape (3420 or 
2400-series). 

For output printed on a 1403, 
1404, 1443, or 1445. 

For an input card file in a 2501. 

For an input or output card file 
in a 2520. 

For an input or output card file 
in a 2540. 

For an input or output card file 
in a 1442. 

For input from and output to the 
printer-keyboard. 

For input from a 2671. 

READ87T For a journal tape input file on a 
1287. 

READ87D For a document input file on a 
1287 or 1288. 

READ85 For a journal tape input file on a . 
1285,. 

This operand causes IOCS to set up the 
device dependent routines for a file. For 
document processing on the IBM 1287 or 1288 
Optical Reader, or 1288 optical Page 
Reader, the user codes CCWs~ 

r-----------------------------------------, 
I EOFADDR=name I L _________________________________________ J 

This operand must be included for: 

• Card reader files 

• Magnetic tape input files 

• Paper tape input files 

• Sequential disk input files 

• Optical reader files 

It specifies the symbolic name of the 
user's end-of-file routine. IOCS 
automatically branches to this routine on 
an end-of-file condition. 

IOCS detects end-of-file conditions as 
follows: 

• Card Reader. By recognizing /* punched 
in card columns 1 and 2. If cards are 
allowed to run out without a /* trailer 
card (and a /& card if end-of-job), an 
error condition is signaled to the 
operator (intervention required). 

• Magnetic Tape Input. By reading a 
tapemark and EOF in the trailer label 
when standard labels are specified, or 
by reading /* if the unit is assigned 
to SYSRDR or SYSIPT. If standard 
labels are not specified, IOCS assumes 
an end-of-file condition when the 
tapemark is read. The user must 
determine, in his routine, that this 
actually is the end of the file. 

• Paper Tape Reader. By recogn~z~ng the 
end of tape when the end-of-file switch 
is set ON,. 

• Seguential Disk Input. By reading an 
end-of-file record or reaching the end 
of the last extent supplied by the 
user,. 

SAM: Serial Device 101 



• Optical Reader Input. When reading 
data from documents on a 1287 or 1288, 
end-of-file condition is recognized by 
pressing the end-of-file key on the 
console when the input hopper is empty. 
When processing journal tapes on a 1287 
or 1285, end-of-file is detected by 
pressing the end-of-file key after the 
end of the tape has been sensed. 

When Ioes detects the end of file, it 
branches to the user's routine specified by 
EOFADDR. If journal tapes are being 
processed, it is the user's responsibility 
to determine if the current roll is the 
last roll to be processed. For 1285, we 
suggest that you key in header information 
at the beginning of each roll. This 
information can then be interrogated in 
this routine to determine whether it is the 
last roll. Regardless of the situation, 
the tape file must be closed for each roll 
within this routine. If the current roll 
is not the last, the OPEN macro must be 
issued. The OPEN macro instruction allows 
header (identifying) information to be 
entered at the reader keyboard and read by 
the processor when using logical Ioes. 

The same procedure can be used for 1287 
processing of multiple journal tape rolls 
as well as the method described under the 
OPEN(R) operand. 

r-----------------------------------------, 
IERROPT={IGNOREISKIPlname} I L _________________________________________ J 

This operand applies to disk or magnetic 
tape input files, and it specifies 
functions to be performed for an error 
block. 

If a parity error is detected when a 
block of sequential disk records is read, 
the disk block is reread 256 times before 
it is considered an error block. If a 
parity error is detected when a block of 
tape records is read~ the tape is 
backspaced and reread 100 times before the 
tape block is considered an error block. 
Unless the ERROPT operand is included to 
specify other procedures, the job is then 
automatically terminated. Either IGNORE, 
SKIP, or the symbolic name of an error 
routine can be specified in this entry. 
One of these parameters is entered 
immediately after the = sign in this 
keyword operand. The functions of these 
three parameters are: 

102 DOS Supervisor and IIO Macros 

IGNORE 

The error condition is completely ignored, 
and the records are made available to the 
user for processing. 

SKIP 

No records in the error block are made 
available for processing. The next block 
is read from disk or tape, and processing 
continues with the first record of that 
block. The error block is included in the 
block count, however. 

name 

Ioes branches to the user's routine, where 
he may perform whatever functions he 
desires to process or note the error 
condition. Register 1 contains the address 
of the block in error, and register 14 
contains the return address. 

In his error routine, the programmer 
should address the error block (or records 
in the error block) by referring to the 
address supplied in register 1. The 
contents of the IOREG register or the work 
area (if either is specified) may vary and, 
therefore, should not be used. Also, the 
programmer must not issue any GET 
instructions for records in the error 
block. If he uses any other Ioes macros in 
his routine, he must save and later restore 
the contents of register 14. At the end of 
his routine, the programmer must return to 
Ioes by branching to the address in 
register 14. When control returns to the 
problem program, the first record of the 
next block is available for processitig in 
the main program. 

The ERROPT entry does net apply to disk 
or tape output files. The job is 
automatically terminated if a parity error 
still exists after Ioes attempts to write a 
disk output block ten times, or to write a 
tape output block 15 times. The tape 
procedure includes 15 forward erases. This 
entry applies to wrong-length recerds if 
the DTFSR entry WLRERR is not included. If 
both ERROPT and WLRERR are omitted, Ioes 
ignores any wrong-length records that 
occur. 

r-----------------------------------------, 
IFlLABL=NOISTDINSTD I L _________________________________________ J 

This operand may be included for. a tape 
input or output file. One of the following 
parameters is entered immediately after the 
= sign: 



STD 

NSTD 

For a tape file that does not 
contain labels. The entry FILABL=NO 
may be omitted, if desired, and IOCS 
assumes that there are no labels. 

For a tape input file if standard 
labels are checked by IOCS, or for a 
tape output file if standard labels 
are written by IOCS. 

For a tape input or output file that 
has nonstandard labels. These 
labels may be processed by the user 
(see Writing Checking Nonstandard 
Labels). NSTD is specified for 
standard input labels if they are 
not to be checked by IOCS. 

r-----------------------------------------, 
IHEADER=YES I L _________________________________________ J 

This operand is required if the operator 
must key in header (identifying) 
information from the 1285 or 1287 keyboard. 
The OPEN routine reads the header 
information only when this entry is 
present. If the entry is omitted, OPEN 
assumes no header information is to be 
read. The header record size can be as 
large as the BLKSIZE specification and it 
is read into the high-order positions of 
IOAREA1. This operand cannot be used for 
1288 files. 

r-----------------------------------------, 
I HPRMTY=YES I L _________________________________________ J 

This operand is included if the hopper 
empty indication is passed to the user. 
This condition occurs when a READ is issued 
and no document is present. When hopper 
empty is detected, the user's COREXIT 
routine is entered with the condition 
indicated as X'02' in filename+80. 

This operand should be used when 
processing documents in the time dependent 
mode of operation. This allows complete 
overlapping of processing with reading. 
(See method 2 under Programming the 1287 in 
the IBM 1287 Optical Reader Component 
Description and Operating Procedures 
publication listed in the IBM system/360 
and System/370 Bibliography.) Using the 
HPRMTY parameter is used with this method 
of processing, the user is able to check 
for a hopper empty condition in his COREXIT 
routine. This allows him then to stacker 
select properly the previously ejected 
document, before returning from the COREXIT . 
routine (via register 14). 

r-----------------------------------------, 
IINAREA=name I L _________________________________________ J 

This operand applies only to a card file in 
an IBM 1442 that is updated (TYPEFLE=CMBND) 
and for which separate input and output 
areas are required. INAREA specifies the 
symbolic name of the input area to which 
the card record is transferred. OUAREA is 
used in conjunction with INAREA, and both 
IOAREAl and IOAREA2 must be omitted. 

When·the same I/O area is used for both 
input and output in a combined file for a 
2520 or 2540, INAREA and OUAREA are 
omitted. IOAREA1 specifies the name of the 
I/O area used for both input and output 
files. This entry does not apply to 
combined files in an IBM 2520 or 2540 .• 

r-----------------------------------------, 
IINBLKSZ=n I L _________________________________________ J 

This operand is used with INAREA for a 
combined file in the 1442 when separate 
input and output areas are required. It 
specifies the maxim~m number, n, of 
characters that are transferred to the 
input area (INAREA) at anyone time. 
Whenever this entry is included, the 
corresponding entry OUBLKSZ must also be 
included, and BLKSIZE must be omitted .• 

r-----------------------------------------, 
I IOAREA1=name I L _________________________________________ J 

This operand is included to specify the 
symbolic name of the input, or output~ area 
used by this file. The input/output 
routines transfer records to or from this 
area. 

For a disk output file, the user must 
reserve eight bytes at the beginning of his 
I/O area, ahead of the positions allotted 
for data records. These eight bytes are 
necessary to allow IOCS to construct the 
count area for the disk record. For 1285 
and/or 1287 readers, this area is set to 
binary z~ros before each input operation 
and before each tape input operation to 
this area. For document processing, the 
area is cleared only when the file is 
opened. 

This operand must n2! be included for a 
1442 combined file if INAREA and OUAREA are 
specified for the file. For a 2520 and 
2540 combined file, IOAREA1 must be used 
for both the input and output area. 

SAM: Serial Device 103 



r-----------------------------------------, I IOAREA2=name ! L _________________________________________ J 

TWo input, or output, areas can be allotted 
for a·file, to permit an overlapping of 
data transfer and processing operations. 
When this is done, this IOAREA2 entry must 
be included and specify the symbolic name 
of the second I/O area. 

For a disk output file, the user must 
reserve eight bytes at the beginning of .his 
I/O area, ahead of the positions allotted 
for data records. These eight bytes are 
necessary to allow IOCS to construct the 
count area for the disk record. For 1285 
and/or 1287 readers (journal tape only) 
this area is set to binary zeros before 
each input operation to this area. This 
entry must not be included if TYPEFLE=CMBND 
(1442), if DEVICE=READ87D. For a 2520 or 
2540 combined file, IOAREA2 cannot be 
specified. IOAREA1 in this case must be 
used for both the input and output areas. 

r---------·-------------------------------, 
!IOREG=(r) I L _____________________________ · ____________ J 

This operand specifies the general-purpose 
registers 2-12 (r) that the input/output 
routines can use to indicate which 
individual record is available for 
processing. IOCS puts the address of the 
current record in the specified register 
each time a GET or PUT is issued. 

The same register may be specified in 
the IOREG entry for two or more files in 
the same program, if desired. In this 
case, the problem program may need to store 
the address supplied by IOCS for each 
record. 

This operand must be included whenever: 

• Blocked input or output records (from 
disk, magnetic tape, or journal tape) 
are processed directly in the I/O area. 

• Variable-length unblocked. or undefined 
tape records are read backwards and 
processed dir.ectly in the input area. 

• Two input, or output, areas are used 
and the records (either blocked or 
unblocked) are processed in the I/O 
areas. 

• Undefined records for journal tape are 
read. 

Whenever this entry is included for a 
file, the DTFSR entry WORKA must be 
omitted,·and the GET or PUT instructions 
must not specify work areas. 

104 DOS Supervisor and I/O Macros 

since a read by an optical reader is 
accomplished by a backward scan, the 
rightmost character in the record is placed 
in the rightmost position of the I/O area. 
Subsequent characters are placed in 
sequence from right to left. ~he register 
specified indicates the leftmost position 
of the record to the user. 

r-----------------------------------------, 
ILABADDR=name I L _________________________________________ J 

The user ·may require one or more of his own 
disk or tape labels in addition to the 
standard file header label or trailer label 
(on tape). If so~ he must include his own 
routine to check or build the label(s). 
The symbolic name of his routine is 
specified in this entry. IOCS branches to 
this routine after it has processed the 
standard label. This entry is also 
required whenever nonstandard labels are 
checked or written by the problem program. 
(DTFSR FILABL specifies NSTD.) 

LABADDR allows one users' label routine 
to be specified for all types of labels for 
the file: header labels, end-of-file 
labels, and end-of-volume labels. For an 
input file, the user can determine the type 
of label that was read by the 
identification in the label itself. For an 
output tap~ file, however~ IOCS indicates 
to the user the type of label. In this 
case, IOCS supplies a code in the low-order 
byte of register 0, as follows: 

o indicates header labels. 
F indicates end-of-file labels. 
V indicates end-of-volume labels. 

In his routine the user can test this 
byte and then build the appropriate type of 
label. At the end of his routine~ the 
programmer must return to IOCS by use of 
the LBRET macro. The user may not issue a 
macro instruction that calls in a transient 
routine. For example, the OPEN, CLOSE, 
DUMP, PDUMP, CANCEL, or CHKPT macro cannot 
be issued in the LAEADDR routine. For a 
more complete discussion, see Label 
processing. 

r-----------------------------------------, 
!OUAREA=name I L _________________________________________ J 

This operand is used with INAREA for a 
combined file on an IBM 1442) that requires 
separate input and output areas. It 
specifies the symbolic name of the output 
area from which the updated card record is 
punched. If only one area is used for 
input and output, IOAREA1 should be used. 

/ 



r-----------------------------------------, 
!OUBLKSZ=n I L~ ________________________________________ J 

This operand is used with OUAREA for a 
combined file. It is similar to INBLKSZ, 
and specifies the maximum number, n, of 
characters that are transferred from the 
output area (OUAREA) at anyone time. If 
combined files use IOAREA1, BLKSIZE must be 
used. 

r-----------------------------------------, 
!PRINTOV=YES ! L _________________________________________ J 

This operand must be included whenever the 
PRTOV macro instruction is included in the 
problem program. 

r-----------------------------------------, 
!READ={FORWARD!BACK} I L _________________________________________ J 

This operand may be included for a magnetic 
tape input file to specify the direction in 
which the tape is to be read. If this 
entry is omitted, IOCS assumes forward 
reading. One spec1fication or the other is 
entered 'immediately after the = sign: 

FORWARD For a tape read in the normal 
forward direction. 

BACK For a tape read backwards. 

r-----------------------------------------, 
IRECFORM={FIXUNB!FIXBLK!VARUNB!VARBLK! I 
! UNDEF} I L _________________________________________ J 

This operand specifies the type of records 
(fixed or variable length, blocked or 
unblo6ked, or undefined) in the input or 
output file. One of the following 
parameters may be entered immediately after 
the = sign: 

FIXUNB 

FIXBLK 

VARUNB 

For fixed-length unblocked 
records. 

For fixed-length blocked records. 
This applies only to disk and 
magnetic tape input or output and 
optical reader journal tape input. 

For variable-length unblocked 
records. This applies only to 
disk input or output (2311), 
magnetic tape input or output 
(2400 or 3420), card punch output 
(1442, 2520, or 2540), and printer 
output (1403, 1404, 1443, or 
1445). 

---_ ...... _--_ ..... - ._---_ .. 

VARBLK For variable-length blocked 
records. This applies only to 
disk and magnetic tape input or 
output. 

UNDEF For undefined records. This 
applies to any file except card 
input (1442, 2501, 2520,.or 2540). 

The records in a file can'be specified 
as: 

• Disk and magnetic tape input or output. 
FIXUNB, FIXBLK, VARUNB, VARBLK, or 
UNDEF. 

• Card input. FIXUNB. 

• Card output. FIXUNB, VARUNB, or UNDEF. 

• Optical reader input. 
All modes: FIXUNB or UNDEF. 
Journal tape mode: FIXBLK. 

• Paper tape input. FIXUNB or UNDEF. 

• Printer-keyboard input or output. 
FIXUNB or UNDEF. 

• Printer output. FIXUNB, VARUNB, or 
UNDEF. 

r-----------------------------------------, 
!RECSIZE={n!(r)} ! L _________________________________________ J 

For input or output files, this operand 
must be included for disk, magnetic tape, 
and optical reader journal tape records 
that are fixed-length blocked 
(RECFORM=FIXBLK) or undefined 
(RECFORM=UNDEF). For paper tape records, 
this entry may be included for fixed-length 
unblocked or for undefined records 
(RECFORM=FIXUNB or =UNDEF). For other 
devices, this entry must be included 
whenever records are undefined 
(RECFORM=UNDEF). 

For fixed-length blocked disk~ magnetic 
tape or optical reader journal tape \ 
records, this entry specifies the number, 
n, of characters in an individual record. 
The input/output routines use this factor 
to block or deblock records, and to check 
record length of input records. 

SAM: Serial Device 105 



For undefined records, this entry 
specifi~s the number, (r), of the 
general-purpose register (2-12) that 
contains the length of each individual 
input or output record. When undefined 
records are read, IOCS supplies the 
physical record size in the register. In 
the case of paper tape records, this 
applies to both fixed unblocked and 
undefined records. When undefined records 
are built, the programmer must load the 
length of each record (in bytes) into the 
specified register b~fore he issues the PUT 
instruction for the record. This becomes 
the count portion of the CCW that IOCS sets 
up for the file. Thus, it determines the 
length of the record to be transferred to 
an output device. If an undefined punch or 
printer output record contains a control 
character in the main-storage output area 
(DTFSR CTLCHR specified), the length loaded 
into the RECSIZE register must also include 
one byte for this character. 

For undefined document records, REcsizE 
contains only the length of the last field 
of a document ~ead by the user-supplied 
channel command word chain. 

Note: When processing undefined 
records on an optical reader in 
document mode, the user gains complete 
usage of the two registers normally 
used in the RECSIZE operand. To do 
this, make sure that the suppress 
length indicator is always on when 
processing undefined records. 

r-----------------------------------------, 
I REWIND= {UNLOAD I NORWD} I L _________________________________________ J 

If no specifications are given by the 
programmer, tape files are automatically 
rewound, but not unloaded, on an OPEN or 
CLOSE instruction or on an end-of-volume 
condition. If other operations are desired 
for a tape input or output file, this entry 
may be included with one of the following 
entered immediately after the = sign: 

UNLOAD 

NORWD 

To rewind the tape on OPEN, and to 
rewind and unload' on CLOSE or an 
end-of-volume condition. 

To prevent' rewinding the tape at 
any time. 

106 DOS supervisor and IIO Macros 

r----------------------------------------~, 
\ TPMARK=NO \ L ________ ~ ________________________________ J 

This operand is included if the user does 
not want a tapemark written as the first 
record on a tape output file if labels are 
not specified. This entry is also included 
if no tapemark is written following 
nonstandard header labels. If this entry 
is omitted for a tafe outp'ut file~ a 
tapemark is the first record if no labels 
are specified. Also, if this entry is 
omitted, a tapemark is written following 
nonstandard header labels. 

r-----------------------------------------, 
ITRANS=name \ L _________________________________________ J 

This entry applies to an input file read 
from the IBM 2671 Paper Tape Reader, and it 
specifies the symbolic name of a code 
translation table. The tatle must conform 
to the specifications of the machine 
TRANSLATE instruction. 

The input file records may be punched in 
5-, 6-, 7-, or 8-channel paper tape, using 
anyone of several different recording 
codes. If a code other than EBCDIC is 
used, it must be translated to EBCDIC code 
for use in System/360 programming. For 
IOCS to perform this translation, the user 
provides a translation table and specifies 
the symbolic name of the table in this 
TRANS entry. Then, the logical IOCS 
routines translate the paper tape code and 
make·the record available to the programmer 
in usable form directly in the input area. 

r-----------------------------------~-----, 
\TRUNCS=YES \ L _________________________________________ J 

This operand afplies to disk files with 
fixed-length blocked records 
(RECFORM=FIXBLK) when short blocks are 
processed. It must be included: 

• For an output file if the TRUNC macro 
instruction is issued in the problem 
program. 

• For an input file if the TRUNC macro 
was issued to write short blocks when 
the file was originally created. 

r-----------------------------------------, 
\TYPEFLE={INPUTIOUTPUT\CMBND} I L ________ ~ ________________________________ J 

This operand must be included to specify 
the type of file (input, output, or 
combined). 



Must be specified for: 

• 2311 disk input files (with or without 
updating) 

• 2400, 3420 magnetic tape input files 

• 1442, 2501, 2520, 2540 card files 

• 1052, 3210, 3215 keyboard input (both 
GET and PUT instructions may be issued) 

• 1285 Optical Reader files 

• 1285 Optical Reader files 

• 1287, 1288 Optical Reader files 

OUTPUT 

Must be specified for: 

• 2311 disk output files 

• 2400, 3420 magnetic tape output files 

• 1403, 1404, 1443, 1445 printer output 

• 1442, 2520, 2540 card punch 

• 1052, 3210, 3215 printer output (only 
PUT instructions may be issued). 

CMBND 

Must be specified for a 1442, 2520, or 2540 
card file that is updated. That is, card 
records are read, processed, and then 
punched (PUT) in the ~ cards from which 
they were read. Thus, input and output 
operations are combined for the same file. 
This operation can be performed in the IBM 
1442, 2520, or 2540 if the PUnch-Feed-Read 
special feature is installed and cards are 
fed and read in the punch feed. (See PUT 
Macro: Updating.) 

If this entry is omitted, INPUT is 
assumed. 

r-----------------------------------------, 
IUPDATE=YES I L _________________________________________ J 

This operand must be included if a disk 
input file (TYPEFLE=INPUT) is updated. 
That is, disk records are to be read, 
processed, and then transferred back (PUT) 
to the same disk record locations from 
which they were read. 

r-----------------------------------------, 
IVARBLD=(r) I L _________________________________________ J 

Whenever variable-length blocked records 
are built directly in the output area (no 
work area specified), this entry must be 
included. It specifies the number, (r), of 
a general purpose register (2-12), which 
always contains the length of the'available 
space remaining in the output area. 

After a PUT instruction is issued for a 
, variable-length record, IOCS calculates the 

space still available in the output area 
and supplies it to the programmer in the 
designated register. The programmer then 
compares the length of his next variable 
length record with the available space to 
determine if the record fits in the area. 
This ch~ck must be made before the record 
is built. If the record does not fit, the 
programmer issues a TRUNC instruction to 
transfer the completed block of records to 
the tape file. Then, the present record is 
built at the beginning of the output area 
in the next block. 

r-----------------------------------------, 
IVERIFY=YES I L ________________ ~ ________________________ J 

This operand is included if the user wants 
disk records to be parity checked after 
they are written. If this entry is 
omitted, any records written on disk are 
not verified. 

r-----------------------------------------, 
IWLRERR=name I L _________________ - _______________________ J 

This operand applies only to disk, magnetic 
tape, or paper tape input files. It 
specifies the symbolic name of a user's 
routine to which IOCS branches if a 
wrong-length record is read. In his 
routine, the user can perform any operation 
he desires for wrong-length records. 
However, he must not issue any GET macro 
instructions for this file. Also~ if he 
uses any other IOCS macros in his routine, 
he must save the contents of register 14. 
The address of the wrong-length record is 
supplied by IOCS in register 1. At the end 
of his routine, the user must return to 
IOCS by branching to the address in 
register 14. 

Whenever fixed-length blocked records or 
variable-length records are specified 
(RECFORM=FIXBLK, =VARUNB, or =VARBLK), a 
machine check for wrong-length records is 
suppressed. In this case, IOCS generates a 
program check for the wrong record length. 
For fixed-length blocked records, record 

SAM: serial Device 107 



length is considered incorrect if the 
physical disk or tape record (gap-to-gap) 
is not a multiple of the maximum logical 
record length· specified in DTFSR RECSIZE .• 
This permits the reading of short blocks of 
logical records, without a wrong length 
record indication. 

For variable-length records on disk or 
tape, the record length is considered 
incorrect if it is not the same as the 
block length specified in the 4-byte block 
length field. . 

When fixed-length unblocked records are 
specified (RECFORM=FIXUNB), IOCS checkS for 
a wrong-length-record indication that may 
result from an I/O operation. 

If this WLRERR entry is omitted and a 
wrong-length record is detected by IOCS, 
one of the following conditions results: 

• If the DTFSR ERROPT entry is included 
for this file, the wrong-length record 
is treated as an error block and 
handled according to the user's 
specifications for an error (IGNORE, 
SKIP, or name of error routine). 

• If the DTFSR ERROPT entry is not 
included, the wrong-length record is 
ignored. 

The WLRERR operand does not apply to 
undefined records. Undefined records are 
not checked for incorrect record length. 

r-----------------------------------------, 
IWORKA=YES I L _________________________________________ J 

Input/output records can be processed, or 
built, in workareas instead of the 
input/output areas. If this is planned, 
WORKA=YES must be included, and the 
programmer must set up the workarea(s) in 
main storage. The symbolic name used in 
the DS instruction that reserves the 
workarea (or general register containing 
the address of the workarea) must be 
specified in each GET or PUT instruction. 
IOCS then moves the record to, or from, the 
specified workarea. 

108 DOS Supervisor and I/O Macros 

Whenever this entry is included for a 
file, the DTF entry IOREG must be omitted. 
Also, for optical character records, a 
workarea can only be used when processing 
journal tape. 

The DTFEN Card 

An end-of-definition card must follow the 
last set of DTFSR cards that applies to a 
magnetic tape file or to a DASD file. If 
two or more DTFSR macros are used in the 
same program, they may not be assembled 
separately from each other because 
duplicate labels may be generated. 
However, the set of DTFSR macros may be 
assembled separately from the user program. 
The DTFEN card must be punched with DTFEN 
in the operation field and blanks in the 
name field. The operand field may be blank 
or it may contain OVLAY as a parameter (to 
provide compatibility with BOS). DOS 
interprets the DTFEN card as a signal to 
begin generation of the required disk or 
tape I/O modules. 



IBM IBM SYItem/360 A .. embler Coding Form 

T GRAPHIC f-,_.o_G._AM ____________________ ~-------_II PUNCHING I IN~UUCTIONS I I I I 
I PUNCH 

C ... kDfLtCIRC" .. " .. ··U I I I I APPLIES TO 
c,---~ 

~1,_Tl~--II-r-r·TI~IOTO,~r .. T"~_r"~r"TirT_r'°T_ro_r°,~~;r"d._"rT3~°rT_.~r1"T-lroll_roll=·Oroll-"II-TI·~'I-~II-~II~'OT,llr~lroll~"r,lc---r"."-·T·;°-r.-~~"~~-r,-~'~I~. ~ ~ Ir~~~::,~~·~~·O 

C ROE R R = RET R Y • RIt,JllpunChlng error II detected. Appll .. ' only to 2520 bUTPLT and to 2540 OUTPUT or CMBND. X J" 

I N ARE A = X X X X X X X X • ~~;:"toOfl:i I~~I~~ rra~ f~r 1144~ ~M~N~ flle·IAI, i""f 0lu~REIA'la"'l °lltll~A~E~l indl I~A~E~2. X " 
I N B L K S Z = n n • L!n~h ~f :N~R~A. Also specify OUBLKSZ, and omit BLKSIZE.: X " 

IDA REA 2 = X X X X X X X X. II two I/O are .. ora usad, name of IOCOnd I/O areo.l I I I I X " " " 

R E C S I Z E = n n n n • Register number If RECFDRM-UNDEF.t I I I I I L I I X " 

W 0 R K A = YES GET or PUT speclfiOi work araa. Omit 10REG. I I I I I I " " J 

I 1111111111111111111 III II 11111 111111111111\\11\\\\1\\\\\\ \\1\\\11 1\1\\11 \\ II 

• Header and each detail card, except the last one In each set- must have 8 continuation punch In column 72. Also 
each detail card, except the last one, must contain 8 comma immediatelv after the operand. Space Is allowed for the 
longest operand plus the comma. If 8 smaller operand Is used, the comma should be moved over accordlnglv. In the 
last detail card 0'T"'8"" I8t, the comma position mu,lt be blank. 

t General registers 2-12. written In parentheses; for example: (12). 

Figure 24. DTFSR Macro - Card (Part 1 of 5) 

IBM IBM SYltem/360 Assembler Coding Form 

PROGRAM PUNCHING I Gue"" I I I 
INSTRUCTIONS I PUNCH I I I PROGRAMMER DATE 

STATEMENT 

~ .. o~rGljOl'i O~~Qnd CQrll .... nll 1 8 10 " " '" 30 " '0 " '0 " .0 " 

.X X X XX X X OT F S R Name of logical fila on disk. 

DE VI CE =0 IS K1 1. 
B L KS IZ E= n n n n , Length of ona I/O erea, In bylas. 

EO FA DO R= X X X X X X X X • Name of user's end· of· fila routlna. 

10 AR EA 1 = X X X X X X X X • Nama of first I/O ara .. 

TY P E F L E= X X X X X X • (INPUT or OUTPUT) 

- - - -- -I 
Opt'l CO NT RO L = YE S, CNTR l macro usad for this fila. 

E R RO P T = X X X X X X X X. (IGNORE or SKIP or Name of error routine) Prevent Job termination on error records. 

10 AR EA 2= X X X X X X X X If two I/O areas are used. name of second area. i 
I 

10 RE G = ( n n ) Register number. t Use only If GET or PUT do .. not specify work area. Omit WORKA: 

LIA BA DO R= X X X X xx X X. Name of user's routine to check/write user-standard labelL 

RE C F OR IM= X X X X X X • (FIXUNB or FIXBLK or VARUNB or VARBLK or UNDEF) If omitted, FIXUNB Is assumed. 

PAGE 0' 
CARD ELECTRO NUMBER 

APPLI,~~".Is!,;w ... s.q .... no;. 

" . ...:> 

~§ 
X" " 

X" " 
XJ" 

XJ 

X " J 

X" " --
X" " 
X" 

X" " 

X" " 

X" " 

X" " 
R E CS IZ E= n n n n n. ~th~~~C~~~-FIX~LK, ~o. of,ch~rafe~ n "F 'd. I If I R 'CI~07MI- ~N~tFI' 'jgifer no.t Not req d for 

X J " 

TR UN C S = V E S • I 
TR UNC macro used for thl. file. 

UP OA T E =Y E S • I I nput fila Is to ba updated. 
" 

VA RB L 0 = ( n n ) Register number If REFORM-VARBLK and record. ara built In the oulput ar ... t 

VE RI FY =Y E S , Check disk records after they ara written. 

WL RE R R = X X X X X X X X, • Name of user's wrong-length-record routine. 

WO RK A= YES G,ET or PUT spaclfl .. work ar.a. Omit IDREG. 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

• Header and each detail card, except the last one In each set. must have a continuation punch In column 72. Also, 
each detail card, except the last one, mus"; contain a comma immediately after the operand. Space is allowed for the 
longest operand plus the comma. If a smaller operand is used, the comma should be moved over accordingly. In the 
last detail eard 0i'8 set, the comma position must be blank. 

t General registers 2·12 written with .parentheses, for example: (12) • 

Figure 24. DTFSR Macro - 2311 Disk (Part 2 of 5) 

SAM: 

X J" 

X" 

X J 

X " 
X" 

J " 

I I I I I I I I I I I I 

Serial Device 

... 

80 

R 

I 
Opt'l. 

I I I 

10~ 



IBM IBM Sy.tem/360 Assembler Coding Form 

PROGRAM I PUNCHING l GRAPHIC I I I 
PROGRAMMER DATE 

I INSTRUCTIONS I PUNCH I I I 
STATEMENT 

No~ Operglion O~;nd Commentl 

" 1 8 10 " " 20 30 35 '0 .- 50 55 60 

Req 'd, X X X X X X X DT FSR Name of 1285, 1287, or 1288 optical reader file 17 characters or lessl. I I 1\ I I I I I 
CO RE XI T= X X X X X X X X , Name of user's error correctIon routloe,1 I 
DE VA DD R = SY S n n n , Symbolic unit assigned to the optical reader. I DE VI CE = X X X X X XX, IREAD87T, READ87D, or READ85) For 1288, speclly READ87D. If omitted, READ85 Is assumed. 

EO FA DD R= X X X X X X X X Name of user's end-of-file routine. I I I 
10 AR EA , = X X X X X X X X 'Name of first Input area. I I I I I I I 

-
o pt'l. BL K F AC = n n , If RECFORM-UNDEF In lournal tape mode. 

BL KS IZ E = n n , l!n~h ~f :/6 a~el~l. If ~ml~~, :Is I. ~'med. 
CO NT RO L = YE S , If CNTRl macro Is to be usad for this file. 

HE AD E R = Y ES, If a header record Is to read from the optical reader keyboard by OPEN. 
I 

HP RIIV TY =Y ES, If hopper empty condition Is to be returned. I I 

10 AR E A 2 = X X X X X X X X , If two Input areas are used, name of second Input area. : 

10 RE G = ( n n ) R~g. I no~..J ,J,., Iln~t ~re~, ~r lun~ef.1 re~~s,lere tJ ~ u~ lan~ ~ w~rk aree is not speclfled.t 

RE CF OR M= X X xx X X , IFIXBlK, FIXUNB. or UNDEF) If omlttad, FIXUNB Is assumad. 

RE CSI ZE = ( n n ) , ! R~I~erl nu~r 'If ~EtF6R~-~NbE~ t.1 
If I O~lttad.' r~ist~r ~ I~ ~~ed~ 

TY PE F L E= X X X X xix, If not specified, INPUT Is assumed. I I I i 

I~ 0 RK A= YES If GET Is specified with a work araa. Omit 10REG. 

* Header and each detaIl card. except the last one In each set, must have 8 continuation punch In ,olumn 72. Also, 
each detail card, except the last one, must contain a comma Immediately after the operand. Space Is allowed for the 
longest operand plus the comma. If a smaller operand Is used, the comma should be moved over accordingly. I n the 
last detail card ofa set, the COmma position must be blank. 

t General registers 2 .. 12 written with parentheses; for example: (12). 

Figure 24. DTFSR Macro - Optical Reader (Part 3 of 5) 

IBM IBM Syst,m/360 Assembler Coding Form 

PRO GUM I PUNCHING l GUPHIC I I 
PROGRAMMER DATE 

I INSTRUCTIONS I PUNCH 1 T 
STATEMENT 

No., Operation O~~"d ConI .... n'. 
1 8 10 " 16 20 30 " '" .- '0 " 60 

'd. X X X X X X X DT FSR Nome of printer fll •• 1111 III I I I 

I 
10 E VI C E =P RI Nil E R , II III U ILl 
B L KS IZ E = n n n , Length of one output area, In bytes. 

DE VA DD R= SY S n n n , Symbolic ~nlt f~r the ~rlnter u~ I for this logical file. 

10 AR EA , = X X X X X X X X , Name of first output area. I 
TY P E F L E = OU TP U T, III I III I I I 

Req 

pt'l. CO NT RO L = YE S, CNTRl macro usad for this file. Omit CTlCHR for this file. 

CT LC H R = YES, D'ata' re~~s ~av~ c:.nt'rol
l ch~ra~e: In' II:" ~sltl~n. Omit CONTROL for this file. 

10 AR EA 2 = X X xx X X X X , I f two output areas are used, name of second area. 

I 

65 

10 RE G= ( n n ) Register number If two output ara .. are usad and PUT does not ","clly I work area. t Omit WORKA •• 

P R IN TO V= YE S, PRTOV macro Is usad for this file. 

RE C F OR M= X X X X X X , IFIXUNB or VARUNB or UNDEF) If omlttad, FIXUNB assumed. 

RE CS I Z E = n n n n , R~I~erl n~m~er Ilf ~EbF6R~_IU~D~F.+ 
!WO RK A= YE S. Put specifies work lrea. Omit 10REG. 

eq·d. DT F S R Name of printer· keyboard fila. III I III I I I 

o 

ID E VI CE =C ON SO L E , I II I III I I I 
B L II< S I Z E = n n n , l~nJh ~f 1/0

1 .~a,'ln Ib~ ... 1 

DE VA DD R= SY Sn n n , SymbOlic unit for the printer. keyboard usad for this logical file. 

10 AR EA , = X X X X X X X xi, N~me o~ I/O ~rea. I I I I 
TY P E F L E = X X X X xx, IINPUT or OUTPUT) I I I 

-
pt'l. IA E C F OR M= X X X X xx I~IX~N'B ~r ~N6E~) \f oml'ttad, FIXUNB ossumed. 

RE CS IZ E = n n n n, Raglster number If RECFORM - UNDEF.t 

IVIO RK A - YES GET or PUT specifies work areo. Omit 10REG. 

• Header and each detail card, except the last one In each set, must have a continuation punch In column 72. Also 
each detail card, except the last one, must contain a comma Immediately after the operand. Space Is allowed for the 
longest operand plus the comma. If a smaller operand Is used, the comma should be moved over accordingly. In the 
last detail card ora set, the COmma position must be blank. 

t General raglsters 2·12, written In parentheses; for example: (12)., 

Figure 24. DTFSR Macro - Printer/Printer Keyboard (Part 4 of 5) 

110 DOS Supervisor and I/O Macros 

PAGE Of 
/ 

CARD ElfCTRQ NUMBER 

APPLIES TO_ 

.;; 1:::I2'&l<";~' 
~ ~,~!~.nce 

80 
71 * 

X J J J J . R 

X J J " J 

X J " J J 

X" J J J 

X J J V J 

X J "" " ,... I"- c-

[ 
X"" Opt'l. 

X J J J J 

XJ " J " 

XJ J J 

X J J 

XJv 

X J J 

X" "" " 
Xv 

J " " 
X" "" " 
" " 

... 
PAGE 0' 

CARD ELfCTRO NUMBER 

Id.n,jfico';on~ 

Sequence 
71·73 80 

X R.q' d. 

X 

I X 

X 

X 
X 

~ Opt' 

X 
X 

P< 
P< 
P< 

P< 
IX 
P< 
X 
X 
X 
X 
X 

j 
X Op 1'1. 

X 



IBM IBM Sy.tlm/360 A.llmbll, Coding Fo,m 

~---------------------.---------i PUNCHING "I~C'_AP_"'C __ -il_-t-_-+_,I_-+_-ilf--tl_-+r~=~=-:--___ -i 
INSTRUCTIONS J PUNCH J L J J I ~AIID ELECTRO NUMBER 

Roq·d. X X X X X X X DTFSR Name 01 'og'ca' lilIan tape. 

DEVICE=TAPE, 

X" " 

X " " 

Roq'd. 

B L K S I Z E = " " " " " , langth alan. '/0 area, In bytes. X" " 
o E V ADD R = S Y S " " " , Symbolic unit 10' the tlpe drive usad lor thl. 'oglcal lIIe. 

X " " 
EO FAD 0 R = X X X X X X X X, Nama of user's Ind·ol·lII. routine. X " 
lOA REA 1 '" X X X X X X X X, Name 01 lint I/O area. X " " 

T Y P E F L E = X X X X X X , (INPUT or OUTPUT) X " " 

Opt'l. H-t--t-H-++-H-++-H-t-,A-+L+T-+T+A-+P+E-+=+S-+Y,S-t-"-t-" t-"-+'-' H-t-~S:,-:ym~bo-:I:,-:lc~un;-::lt:,:-':;-,or~a'7lte:::,rn~.tt-e :-\ta;-pe:,:-d::"rlv-;;,;,:-:u-:fsad~'o.,.,.r t-:;:hL:,IS .,.,.log-:-lca.".'.,..f,:-lIe:,:-. ±'""":-i~-7:..I....:'~~~~-=':-..I-H-t-X-t-" t-"+--+-t-H-+-t Opt". 

C H E C K P T = " , ~~~~e~r~I~~~I~o id~ntl:y nytj "jld,'O,Ojh, tar f'~O filll~ It" 1,lnt, para":'etir 01 CHKPT macro X " " 

C K P T R E C = YES , Chackpolnt records are Inta"porsad with Input data records. \ X " 

CON T R 0 L .. YES, CNTRl macro usad for this Ille. X"" 
ERR 0 P T = X X X X X X X X , !IGNORE or SKIP or Name 01 orror routlnel Prevent lob termination on arror records. X" 
F I LAB L = X X X X , (STD or NSTD or NO) II NSTD specilled, Include LABADDR. II omitted, NO Is assumed. X" " 
lOA REA 2 = X X X X X 'x X x, II twO I/O areas ero usad, nema 01 second area. X"" 
lOR E G = ( "" ) , Register numbor.t Use only If GET or PUT doao not specify work 'erea. Omit WORKA. X" " 
LAB ADD R = X X X X X X X X, Neme 01 user'. lebel routln. If FILABL-NSTD or II F'LABl-STD end user· standard 'abels are procassad. X"" 
REA 0 '" X X X X X X X , (FORWARD or BACK) " omitted, FORWARD I. assumed. X" 
RECFORM=xxxxxx (FIXUNB or FIXBLK or VARUNB or VARBLK or UNDEFI II omitted, F'XUNB Is assumed. X,," 
RECS IZE=""""", ~th~~~s.RM-FIX~LK, ~umber 01 characters In rod. " RECFORM-UNDEF, regi~er numbor.t Not req d. lor X " " 

REWIND=xxxxxX, (UNLOAD or NORWD) Unloed on CLOSE or end 01 voluma, or prevent rewinding. 
X" " 

TPMARK:NO, Prevent writing a tapamark ehoad 01 data records II FILABL- NSTD o~ NO. X 

VARBLD=("") • Register numbor II RECFDRM-VARBLK and record. are built In the output area.t 
X " 

WLRERR=xxxxxXXX. Name of user's wrong-length-record routine. X" 
!wORKA=YES GET or PUT speclfl .. work area. 'Omit 'OREG. " " 

• Header end each, detail card, except the last one I~ each set, "must have a continuation punch In column 72. Also, 
each detail card. except the last one, must contain a comma Immediately after the operand. Space Is allowed for the 
longest operand plus the comma. If a smaller operand Is used. the comma should be moved over accordingly. In the 
last detail card 0f'I set, the comma position must be blank. 

Figure 24. DTFSR Macro - Tape (Part 5 of 5) 

Imperative Macro Instructions 

After the files are defined by the 
declarative macro instructions, the 
following groups of imperative macros can 
be applied to open, process, and close the 
sequential files involved. 

• Initialization Macros 

• sequential Processing Macros 

• Completion Macros 

For a guideline of macros to use for a 
particular I/O file, see Figure 7. 

INITIALIZATION MACROS 

Before processing a logical file, ready it 
for use by issuing an OPEN(R) macro. OPEN 
need not be used with DTFCN and DTFPT 
files, however. OPENCR) optionally checks 
or writes standard labels or nonstandard 
labels. 

t General registers 2·12 written with parentheses, for example: (12). 

Information on labels is contained in 
the Label Processing section, in Appendix 
~, and in the Data Management Concepts 
publication. 

OPEN(R) Macro 

r-----T-----------------------------------, 
lOp I Operand I 
~-----+-----------------------------------~ 
Ifor self-relocating programs I 
I I I 
IOPENRI{filename1} I 
I I Cr1) I 
I I I 
I I [,{filename2} ••• ,{filenamen}] I 
I I (r2) (rn) I 
~-----+-----------------------------------~ 
Ifor programs that are not self-relocating I 
I I I 
IOPEN l{filename1} I 
I I (r1) , I 
I I I 
I I [,{filename2} •• '. ,{filenamen}] I 
I I (r2) (rn) I L _____ ~ ___________________________________ J 

SAM: Imperative Macros 111 



Note: To write the most efficient code 
(in a multiprogramming environment)" we 
recommend that the self relocating form 
of OPEN be used. (See also 
Appendix G.) 

The OPEN macro instruction activates all 
files processed with LIOCS. 

When the operation OPEN is used, the 
symbolic address constants that OPEN 
generates from the parameter list are not 
self-relocating. When OPENR is. specified, 
the symbolic address constants are 
self-relocating. 

••••••••••••••••••••••••••••••••••• 
Restriction: Self-relocating 
programs using LIOCS must use the 
OPENR macro instruction to activate 
all files, including printer keyboard 
files. The OPENR macro, in addition 
to activating files for processing, 
relocates all address constants 
(except zero constants) within the 
DTF tables specified in the operand 
field(s) in register notation. 

••••••••••••••••••••••••••••••••••• 

If OPEN attempts to activate a logical 
IOCS file (DTF) whose device is unassigned, 
the job is terminated. If the device is 
assigned IGN, OPEN(R) does not activate the 
file but turns on the DTF byte 16, bit 2, 
to indicate the file is not activated. If 
DTF byte 16 bit 2 is ON after the file is 
opened, input/output operations should not 
be performed on this file. 

The symbolic name of the file (DTF 
filename) is entered in the operand field. 
A maximum of 16 files may be opened with 
one OPEN (or OPENR) by entering the 
filenames as additional operands. 
Alternately, the user can load the address 
of the DTF filename in a register and 
specify the register using ordinary 
register notation. The high-order 8 bits 
of this register must be· zeros. Filename 
may be preloaded into any register, 0-15. 

Note: If you use register notation, we 
recommend using only registers 2-12,. 
This will make your programs more 
compatible with the Operating System 
(OS). 

Whenever an input/output DASD or 
magnetic tape file is opened and the user 
plans to process user-standard labels (UHL 
or UTL), or nonstandard tape labels, he 
must provide the information for checking 
or building the labels,. If this 

112 DOS supervisor and I/O Macros 

information is obtained from another input 
file, that file must also be opened, if 
necessary, ahead of the DASD or tape file. 
To do this, specify the input file ahead of 
the tape or DASD file in the same OPEN, or 
issu~ a separate OPEN for the file. 

If an output tape (specified to contain 
standard labels) is opened that does not 
contain a volume label, an operator message 
is issued. This message gives the operator 
the opportunity to type a volume serial 
number so that a volume latel'can be 
written on the output tape. 

When opening other files such as the 
card reader, card punch,. MICR document 
reader, paper tape reader, paper tape 
punch, printer, and printer-keyboard, OPEN 
simply makes the file available for input 
or output. For a paper tape punch file 
with two I/O areas, OPEN loads the user's 
IOREG with the address of an I/O area. 

If the user wishes, a DTFCN (console) 
file can be opened if device type checking 
is desired. The unit record OPEN permits 
the logical unit assignment to be either to 
a 1052 printer-keyboard or to a printer. 
An assignment to any device other than 
these two is invalid and the job is 
canceled. 

For 1403 printers with the Universal 
Character Set feature, data checks are 
ignored and blanks are printed unless the 
user specifies UCS=ON in the DTFPR for the 
file. 

For MICR devices, the OPEN macro sets 
the entire I/O area to binary zeros. 

When LIOCS is used for processing 
journal tapes on the IBM 1285 Optical 
Reader, the OPEN macr0 must be issued at 
the beginning of each input roll. LIOCS 
journal tape processing on the 1281 may be 
done in the same way. 

To process two or more rolls on the 1287 
as one file (when an end-of-tape condition 
occurs), run out the tape by pressing the 
start key on the optical reader. This 
creates an intervention-required condition 
instead of the end-of-file key. The next 
tape can then, be loaded and processed as a 
continuation of the previous tape. 
However, because OPEN is not reissued, no 
header information can be entered between 
tapes. 

When processing documents on the 1287, 
OPEN must be issued to make the file 
available. If the program is to be 
self-relocatable, OPENR must be used and 
for any CCW chain the user writes, 
addressability must be provided for his 
data addresses. 



OPEN allows header (identifying) 
information to be entered at the 1285 or 
1287 keyboard, for journal tape or cut 
documents (1287). When header information 
is entered, it is always read into IOAREA1, 
which must be large enough to accommodate 
the desired header information. 

DASD OUTPUT: When a multivolume DASD file 
is created using sequential processing, 
only one extent is processed at a time. 
Therefore, only one pack need be mounted at 
a time. When processing on a volume is 
completed, message 

4n55A WRONG PACK, MOUNT nnnnnn 

will be issued so that the next volume may 
be mounted. 

When a file is opened, OPEN checks the 
standard VOLl label and the specified 
extents: 

1. The extents must not overlap each 
other. 

2. The first extent must be at least two 
tracks long if user standard labels 
are created. 

3. Only extent types 1 and 8 are valid. 

The data exterits of a sequential DASD 
file can be type 1, type 8, or both. Type 
8 extents are called split cylinder extents 
and use only a portion of each cylinder in 
the extent. The portion of the cylinder 
used must be within the head limits of the 
cylinder and within the range of the 
defined extent limits. For example, two 
files can share three cylinders--one file 
occupying the first two tracks of each 
cylinder and the other file occupying the 
remaining tracks. In some applications, 
the use of split cylinder files reduces the 
access time. 

OPEN checks all the labels in the VTOC 
to ensure ,that the file to be created does 
not destroy an existing file whose 
expiration date is still pending. It also 
checks to determine that the extents do not 
overlap existing extents. After the VTOC 
checks, OPEN creates the standard labelCs) 
for the file and writes the label(s) in the 
VTOC. 

If the user wishes to create his own 
user standard CUHL or UTL) labels for the 
file, he must include the DTF entry 
LABADDR. OPEN reserves the first track of 
the first extent for the user header and 
trailer labels. Then, ,the user's label 

'routine is given control at the address 
specified in LAEADDR. 

After the header labels are built, the 
first extent of the file is ready to be 
used. The extents are made available in 
the order of the sequence numbers on the 
actual extent statements. When the last 
extent on the mounted volume is filled, 
user standard trailer labels can be built. 
Then, the next specified volume in the 
extent statements is mounted and opened. 

For a file-protected DASD, when OPEN 
makes the first extent of the new volume 
available, it makes the extent(s) from the 
previous volume unavailable. When the last 
extent on the final volume of the file is 
processed, OPEN issues an operator message. 
The operator has the option of canceling 
the job or typing in an extent on the 
printer-keyboard and continuing the job. 

DASD INPUT: In a multivolume 'file (a file 
having extents on more than one disk pack), 
only one extent is processed at a time, and 
thus, only one pack need be mounted at a 
time. When processing on a volume is 
completed, message 

4n55A WRONG PACK, MOUNT nnnnnn 

will be issued so that the next volume may 
be mounted. 

When a volume is opened, OPEN checks the 
standard VOLl label and goes to the VTOC to 
check the file label(s). OPEN checks the 
specified extents in the extent statements 
against the extents in the latels to make 
SUre the extents exist. If LABADDR is 
specified, OPEN makes the user standard 
header (UHL) labels available to the user 
for checking (one at a time). 

After the labels are checked, the first 
extent of the file is ready to be 
processed. The extents are made available 
in the order of the sequence number on the 
extent statements. The. same extent 
statements that were used to build the file 
can be used when the file is used as input~ 

Note: If EXTENT cards with specified 
limits are included in the job stream, 
or if an EXTENT was created by replying 
with an extent to message 

4450A NO MORE AVAILABLE EXTENTS 

when the file was built, then an 
additional EXTENT card must be 
submitted on input to process that 
extent. If no EXTENT cards are 
submitted, however, this additional 
extent is processed normally. 

SAM: Imperative Macros 1~3 



When the last extent on the mounted 
volume is processed, th( user standard 
trailer labels are made available for 
checking one at a time. The next volume is 
then opened. 

For DASD devices that are file protected 
when OPEN makes the first extent of the new 
volume available, OPEN makes the extent(s) 
from the previous volume unavailable. 

LBRET Macro 

r------T---------T------------------------, 
I Name I operation I Operand I 
~------+---------+------------------------~ 
I [nameliLBRET 1{1,2,3} I L ______ ~ _________ ~ ________________________ J 

The LBRET macro is issued in user 
subroutines when the user has completed 
processing labels and wishes to return 
control to laCS. LBRET applies to 
subroutines that write or check DASD or 
magnetic tape uSer standard labels, write 
or check tape nonstandard labels, or check 
DASD extents. The operand used depends on 
the function to be performed. See Label 
Processing. 

CHECKING USER STANDARD DASD LABELS: laCS 
passes the labels to the user one at a time 
until the maximum allowable number is read 
(and updated), or until the user signifies 
he wants no more. In his label routine, 
the user issues LBRET 3 if he wants laCS to 
update (rewrite) the label just read and 
pass him the next label. LBRET 2 is issued 
if he simply wants ICCS to read and pass 
him the next label. If an end-of-file 
record is read when LBRET 2 or LBRET 3 is 
used, label checking is automatically 
ended. If the user wants to eliminate the 
checking of one or more remaining labels, 
LBRET 1 should be issued~ 

WRITING USER STANDARD DASD LABELS: The 
user builds the labels one at a time and 
uses LBRET to return to laCS, which writes 
the labels. LBRET 2 is used if the user 
wants control returned to him after laCS 
writes the label. If, however, laCS 
determines that the maximum number of 
labels has already been written, label 
processing is terminated. LBRET 1 is used 
if the user wishes to stop writing labels 
before the maximum number of labels is 
written. 

114 DOS Supervisor and I/O Macros 

CHECKING USER STANDARD TAPE LABELS: laCS 
reads and passes the' labels to the user one 
at a time until a tapemark is read, or 
until the user signifies he does not.want 
any more labels~ LBRET 2 is used if the 
user wants to process the next label~ If 
laCS reads a tapemark., label processing is 
automatically terminated. LBRET 1 is used 
if the user wants to bypass any remaining 
labels. 

WRITING USER STANDARD TAPE LABELS: The 
user builds the labels one at a time and 
returns to IOCS, which writes the labels. 
When LBRET 2 is used, laCS returns control 
to the user (at the address·specified in 
LABADDR) after wr~ting the label. LBRET 1 
must be used to terminate the label set. 

WRITING OR CHECKING NONSTANDARD TAPE 
LABELS: The user must process all his 
nonstandard labels at once. LBRET 2 is 
used after all label processing is 
completed and the user wants to return 
control to IOCS. Appendix D shows an 
example of this. 

Sequential Processing Macros 

The sequential processing macro 
instructions permit the programmer to store 
and retrieve records without coding 
blocking/deblocking routines. The 
programmer can, therefore, concentrate on 
processing his data. Another major feature 
of these macro instructions is the ability 
to use one or two I/O areas and to process 
records in either a workarea or an I/O 
area. 

The sequential processing routines 
provide for overlapping the physical 
transfer of data with processing. The 
amount of overlapping actually achieved is 
governed by the problem program through the 
assignment of 1/0 areas and workareas. An 
I/O area is that area of main storage to or 
from which a block of data is physically 
transferred by logical IOCS. A workarea is 
an area used for processing an individual 
logical record from the block of data. A 
workarea cannot be used with paper tape 
records. The I/O area(s) is specified in 
the associated DTF macro, while the 



workarea is specified in the sequential 
processing macro. 

The following combinations of I/O areas 
and workareas are possible: 

1. One I/O area without a workarea 

2. One I/O area. with a workarea 

3. Two I/O areas without a workarea 

4. Two I/O areas with a workarea 

When processing spanned records, the 
user may use: 

1. One I/O area with a workarea, or 

2. Two I/O areas with a workarea. 

Although two I/O areas are permitted, 
normal overlap is curtailed because each 
I/O command from the user may require 
multiple I/O operations by MTMOD. 

GET Macro 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [name] I GET I{filename} [ ,{workname}] I 
I I I (1) (0) I L ______ ~ _________ ~ ________________________ J 

*********************************** 
Recommendation: To write the most 
efficient code (in a multiprogramming 
environment), reqister notation 
should be used for this macro in 
conjunction with the OPENR macro. If 
this is done, user programs will be 
self relocating, will run in any 
partition of storage, and will be 
more compatible with the Operating 
System (OS). For additional 
information on writing self 
relocating code, see Appendix G. 

*********************************** 
GET makes the next sequential logical 
record from an input file available for 
processing in either an input area or a 
specified workarea. It is used for any 
input file in the system, and for any type 
of record: blocked or unblocked, fixed or 
variable length, and undefined. 

If GET is used with a file containing 
checkpoint records, the checkpoint records 
are bypassed automatically. 

Filename: GET requires the first operand. 
The'parameter value must be the same as 
specified in the header entry of the DTF 
for the file from which the' record is to be 
retrieved. The filename can be specified 
as a symbol or in either special or 
ordinary register notation. The latter is 
preferable (see Recommendation). 

Workname: This is an optional parameter 
specifying the workarea name or a register 
(in either special or ordinary register 
notation) containing the address of the 
workarea. The workarea address should 
never be preloaded into register 1. This 
parameter is used if records are to be 
processed in a workarea that the user 
himself defines (for example, using a DS 
instruction). If the operand is specified, 
all GETs to the named file must always use 
a register or a workname. Using the second 
operand causes GET to move each individual 
record from the input area to a workarea. 

All records from a logical file may be 
processed in the same workarea, or 
different records from the same logical 
file may be processed in different 
workareas. In the first case, each GET for 
a file specifies the same workarea. In the 
second case, different GET instructions 
specify different workareas. It might be 
advantageous to plan two workareas, for 
example, and to specify each area in 
alternate GET instructions. This permits 
the programmer to compare each record with 
the preceding one. In this manner, he 
checks for a change in a control field 
within the record. However, only one 
workarea can be specified in anyone GET 
instruction. 

Required DTF Entries 

The input area must be specified in the 
entry IOAREAl of the DTF macro. Fer any 
file other than a combined file, two input 
areas may be used to permit an overlapping 
of data transfer and processing operations. 
The second area is specified in IOAREA2. 
Whenever two input areas are specified, the 
IOCS routines transfer records alternately 
to each area. They completely handle this 
flip-flop so that the next sequential 
record is always available to the problem 
program for processing. 

For a combined file, the input area is 
specified in IOAREAl and the output area in 
ICAREA2. If the same area is used for both 
input and output, IOAREA2 is omitted. 

SAM: Sequential Processing Macros 115 



When records are processed in the input 
area(s), a register must be specified in 
the entry IOREG of the DTF macro if: 

1. Records are blocked, or 

2. Undefined or variable-length magnetic 
tape records are read backwards, or 

3. Two input areas are used, for either 
blocked or unblocked records, or 

4. Neither BUFOFF=O nor WORKA=YES is 
specified for ASCII files 

This register identifies the next single 
record to be processed. It always contains 
the absolute address of the record 
currently available,. The GET routine 
places the proper address in the register. 

If a workarea is used, WORKA=YES must be 
specified. IOREG should not be specified. 

When the GET macro detects an 
end-of-file condition, IOCS branches to the 
user's end-of-file routine (specified by 
EOFADDR). For MICR document processing, 
the user does not regain control until 
either a buffer becomes filled with a 
stacker selected document, or error 
conditions are posted in the buffer status 
indicators. 

An example of GET/PUT processing is 
shown in the following coding. The 
parameter IOAREAl pOints to the first I/O 
area for this file. IOAREA2 points to the 
second·I/O area. GET points to the 
file-definition block and to the workar~a 
(A3) to which logical records are moved 
from areas Ai and A2 by LIOCS. 

Operation Operand Col. 72 

r--------------------------, 
I I 

FNAME ... J DTFMT I 
I 

r----------~ IOAREA1=Al, I X 
I.r---------~ IOAREA2=A2, I X 
II. WORKA=YES I 
II • I 

Ai .. _J IDS 500C I 
A2 ~--JDS 500C I 

I 
I 

l----------J 

A3 

GET FNAME,A3 

~, DS 
+ 
I 

100C I 
I . I 
I I L ___________________ J 

116 DOS Supervisor and I/O Macros 

Unblocked Records 

Records retrieved from any input file are 
considered fixed unblocked unless otherwise 
specified. 

Whenever records are unblocked (either 
fixed or variable length) and only one 
input area is used, each GET transfers a 
single record from an I/O device to the 
input area. The record is then transferred 
to a workarea if one is specified in the 
GET instruction. If two input areas are 
specified, each GET makes the last record 
that was transferred to main storage 

. available for processing in the input area 
or workarea. The same GET also starts the 
transfer of the following record to the 
other input area. 

When an IBM 2540 Card Read Punch is used 
for a card input file, each GET instruction 
normally reads the record from a card in 
the read feed. However. if the 2540 has 
the Punch-Feed-Read special feature 
installed and if CMBND is specified in the 
entry TYPEFLE, each GET reads the record 
from a card in the punch feed, at the 
punch-feed-read station. This record can 
be updated with additional information that 
is then punched back into the same card 
when the card passes the punch station and 
a PUT instruction is issued. (See Put: 
Macro Updating.) -----

Blocked Records 

When records on DASD or magnetic tape are 
specified as blocked in the entry RECFORM" 
each individual record must be located for 
processing (deblocked). Therefore, blocked 
records (either fixed or variable length) 
are handled as follows: 

1. The first GET instruction transfers a 
block of records from DASD or tape to 
the input area. It also initializes 
the specified register to the absolute 
address of the first data record. or 
it transfers the first record to the 
specified workarea. 

2. Subsequent GET instructions either add 
an indexing factor to the register or 
move the proper record to the 
specified workarea, until all records 
in the block are processed. 

3. Then, the next GET makes a new block 
of records available in main storage~ 
and either initializes the register or 
moves the first record. 



Spanned Records 

When unblocked or blocked spanned records 
are processed, the entry RECFORM=SPNUNB or 
RECFORM=SPNBLK, respectively, must be 
included in both the file definition 
(DTFMT, DTFSD) and the appropriate module 
(SDMODVI, SDMODVU, or MTMOD). GET 
assembles spanned record segments into 
logical records in the user's work area. 
Null segments are recognized and skipped. 
They are not assembled into logical 
records. The length of the logical record 
passes to the user through a register 
specified under RECSIZE in the DTF. 

If the user chooses to update logical 
records using SDMODVU, the pointer to the 
physical record in which a logical record 
starts is saved on each GET so that the 
device may be repositioned. The extent 
sequence number (byte 40 of the DTF) is 
also saved in case the logical record spans 
disk extents. 

Undefined Records 

When undefined records are handled, the 
entry RECFORM=UNDEF must be included in the 
file definition. GET treats undefined 
records as unblocked, and the programmer 
must locate individual records and fields. 
If a RECSIZE register is specified, IOCS 
stores the lerigth of the record read in 
that register. Undefined records are 
considered to be variable in length by 
IOCS. No other characteristics of the 
record are known by IOCS. They are the 
responsibility of the user. 

Read Backwards, Tape 

If records on magnetic tape are read 
backwards (BACK specified in entry READ), 
blocks of fixed-length records, blocks of 
blocked-variable records, or unblocked 
records, are transferred from tape to main 
storage in reverse order. The last block 
is read first, the next-to-last block, 
second, etc. For blocked records, each GET 
instruction also makes the individual 
records' available in reverse order. The 
last record in the input area is the first 
record available for processing (either by 
indexing or in a workarea). 

Any 9-track tape can be read backwards. 
7-track tape can be read backwards only if 
the data conversion special feature was not 
used when the tape was written. 

PUT Macro 

r------T-----T----------------------------, 
I 10per-/ / 
/Name /ation/Operand / 
~------+-----+----------------------------~ 
/ [namel/PUT /{filename}r.{WOrkname}] / 
/ / / (1) L (0) / 
/ / / / 
/ / / [ {STLsp=contrOlfield}] / 
I / / (r) / 

/ / /, / 
/ / / {STLSK=controlfield} / 
/ / / (r) / L ______ ~ _____ ~ ____________________________ J 

••••••••••••••••••••••••••••••••••• 
Recommendation: To write the most 
efficient code (in a multiprogramming 
environment), register notation 
should be used for this macro in 
conjunction with the OPENR macro. If 
this is done, user programs will be 
self relocating, will run in any 
partition of storage, and will be 
more compatible with the operating 
System (OS). For additional 
information on writing self 
relocating code, see Appendix G. 

••••••••••••••••••••••••••••••••••• 
PUT writes or punches logical records that 
are built directly in the output area or in 
a specified workarea. It is used for any 
output file in the system, and for any type 
of record: blocked or unblocked, fixed or 
variable length, and undefined. It 
operates much the same as GET but in 
reverse. It is issued after a record has 
been built. -----

When a PUT is issued, the printer 
automatically spaces one line. Neither the 
CNTRL macro nor a control character need be 
'speci f ied. 

Filename: PUT requires the first operand. 
The parameter value must be the same as 
specified in the header entry of the DTF 
for the file being built. The filename can 
be specified as a symbol or in either 
special or ordinary register notation. The 
latter is preferable (see Recommendation). 

Workname: An optional parameter specifying 
the workarea name or a register (in either 
special or ordinary register notation) 
containing the address of the workarea. 
The workarea address should never be 

SAM: Sequential Processing Macros 117 



preloaded into register 1. This parameter 
is used if records are built in a workarea 
that the user himself defines (for example, 
using a DS instruction). If the operand is 
specified, all PUTs to the named file must 
always use a register or a workname. Using 
the second operand causes PUT to move each 
record from the workarea to the output 
area. 

Individual records for a logical file 
may be built in the same workarea or in 
different workareas. Each PUT instruction 
specifies the workarea where the completed 
record was built. However, only one 
workarea can be specified in anyone PUT 
instruction. 

Whenever an output data record is 
transferred from an output area (or 
workarea) to an I/O device (by a PUT 
instruction), the data remains in the area 
until it is either cleared or replaced by 
other data. IOCS does not clear the area. 
Therefore, if the user plans to build 
another record whose data does not use 
every position of the output area or 
workarea, he must clear that area before he 
builds the record. If this is not done, 
the new record will contain interspersed 
characters from the preceding record. For 
example, in the case of output to a 
printer, the forms design may require 
printing in selected positions on one print 
line and in different positions on another 
line. In this case, the output area or 
workarea for the printer file should be 
cleared between lines. 

STLSP=control field: This optional operand 
specifies a one-byte control field that 
allows for spacing while using the 
Selective Tape Listing feature on the 1403 
printer. You can also use ordinary 
register notation to provide the address of 
the control field. Registers 2 through 12 
are available without restriction. The 
spacing (after printing occurs) is set by 
the bit configuration of ones in the 
one-byte control field as follows: 

r----------------T--T--T--T--T--T--T--T---' 
IData Byte Bits I 01 11 21 31 41 51 61 7 1 
~----------------+--+--+--+--+--+--+--+---~ 
ITape Position I 81 71 61 51 41 31 21 1 I L ________________ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ ___ J 

The tape position 1 is the leftmost tape on 
the selective tape listing device. 

Note: Double width tapes must be 
controlled by both bits of the control 
field. 

118 DOS Supervisor and I/O Macros 

STLSK=control field: This optional operand 
specifies a one-byte control field that 
allows for skipping while using the 
selective tape listing feature on the 1403 
printer. You can also use ordinary 
register notation to provide the address of 
the control field. Registers 2 through 12 
are available without restriction. The 
skipping (after printing occurs) is set by 
the bit configuration in a one-byte control 
field. 

Selective tape listing support in the 
DTFPR declarative macro instruction allows 
the user to independently space or skip up 
to eight paper tapes. This feature is 
widely used in conjunction with MICR 
document processing. 

Required DTF Operands 

The output area must be specified in the 
entry IOAREAl of the DTF macro. For any 
file other than a combined file, two output 
areas may be used to permit an overlapping 
of data transfer and processing operations. 
The second area is specified in IOAREA2. 
Whenever two output areas are specified, 
the IOCS routines transfer records 
alternately from one to the other area. 
The routines completely handle this 
flip~flop. so that the proper output record 
area is always available to the program. 

For a combined file, the input area is 
specified in IOAREAl and the output area in 
IOAREA2. If the same area is used for both 
input and output, IOAREA2 is omitted. 

When records are built in the output" 
area(s), a register must be specified in 
the entry IOREG if: 

1. Records are blocked, or 

2. Two output areas are used for either 
blocked or unblocked records. 

This register always contains the 
absolute base address of the currently 
available output-record area. IOCS places 
the proper address in the register. The 
user should always address the I/O areas by 
using the IOREG as the base register and 
should not assume which I/O area is 
presently being used. If a workarea is 
used, WORKA=YES must be specified; IOREG 
should not be specified. 

If blocked records are variable length 
and are built in the output area(s), an 
additional register must be specified in 
the entry VARELD. IOCS stores the number 

/' 

( 
\ 



of bytes rema1n1ng in the output area in 
the VARBLD register each time a PUT 
instruction is executed. 

Unblocked Records 

Records transferred to any output file 
except DASD or magnetic tape are always 
considered fixed unblocked unless otherwise 
specified. Records for DASD or tape output 
are treated as unblocked if this is 
specified in the entry RECFORM. 

Whenever records are unblocked (either 
fixed or variable length), each PUT 
transfers a single record from the output 
area (or input area if updating is 
specified) to the file. If a workarea is 
specified in the PUT instruction, the 
record is first moved from the workarea to 
the output area (or input area) and then to 
the file. For fixed DASD unblocked 
records, IOCS follows the rule that if 
there is not enough space for another 
record in the extent specified, then there 
is not enough space for an EOF record. 

Blocked Records 

When blocked records are written on DASD or 
magnetic tape, the individually built 
records must be formed into a block in the 
output area. Then, the block of records is 
transferred to the output file. The 
blocked records may be either fixed or 
variable length. 

Fixed-length blocked records can be 
built directly in an output area or in a 
workarea. Each PUT instruction for these 
records either adds an indexing factor to 
the register (IOREG), or moves the 
completed record from the specified 
workarea to the proper location in the 
output area. When an output block of 
records is complete, a PUT instruction 
causes the block to transfer to the output 
file and initializes the register, if one 
is used. 

Variable-length blocked records can also 
be built in either an output area or a 
workarea. The length of each variable 
length record must be determined by the 
problem program and included in the output 
record as it is built. The problem program 
can calculate the length of the output 
record from the length of the corresponding 
input records. That is, variable length 
output records are generally developed from 
previously written variable length input 
records. Each variable length input record 

must include the field that contains the 
length of the record. 

When variable-length blocked records are 
built in a workarea, the PUT instruction 
performs the same functions as it does for 
fixed-length blocked records. The PUT 
routines check the length of each output 
record to determine if the record fits in 
the remaining portion of the output area. 
If the record fits, PUT immediately moves 
the record. If it does not fit, PUT causes 
the completed block to be written and then 
moves the record. 

However, if variable-length blocked 
records are built directly in the output 
~, the VARBLD entry, the TRUNC macro, 
and additional user programming are 
required. The user's program must 
determine if each record built will fit in 
the remaining portion of the output area. 
This must be known before record processing 
for a subsequent record begins, so that the 
completed block can be written. Thus, the 
length of the record must be precalculated 
and compared with the amount of remaining 
space. 

The amount of space available in the 
output area at any time can be supplied to 
the program (in a register) by the IOCS 
routines. For this, the user must specify 
a general purpose register in the DTF entry 
VARBLD. This register is in addition to 
the register specified in IOREG. Each time 
a PUT instruction is executed, IOCS loads 
into the specified register the number· of 
bytes remaining in the output area. The 
problem program uses this to determine if 
the ~ variable-length record will fit. 
If it will not fit, a TRUNC macro 
instruction must be issued to transfer the 
block of records to the output file. The 
entire output area is then available for 
building the next block. 

Spanned Records 

When PUT handles unblocked or blocked 
spanned records, the entry RECFORM=SPNUNB 
or RECFORM=SPNBLK, whichever applies, must 
be included in both the file definition 
(DTFMT, DTFSD) and the appropriate module 
(SDMODVO, SDMODVU, or MTMOD). Logical 
records in the user's workarea are divided 
into spanned record segments according to 
the length specified in the RECSIZE 
parameters. In constructing the segments, 
full use is made of the space available in 
each physical record and device track. On 
output, spanned records do not span 
volumes. If there is not enough space on 
the current volume to contain a spanned 
record, SDMODVO: 

SAM: Sequential Processing Macros 119 



1. Rereads the last block of the previous 
spanned record. 

2. Rewrites the last block (truncated to 
the last segment of the previous 
spanned record. if necessary) 'to erase 
the remainder (if any) of the track; 

3. Writes an eight-byte record-block 
descriptor word and one null segment 
on each remaining track on the current 
volume. 

4. Attempts to put the entire spanned 
record on the next volume. 

For update files. SDMODVU repositions 
the device to the first block of the 
logical record by using the pointer saved 
in GET processing. If the logical record 
spans extents, the extent sequence number 
that was also saved in GET processing is 
used to ensure that updating starts in the 
proper extent; that is, from the beginning 
of the logical record. 

Undefined Records 

When undefined records are handled, PUT 
treats them as unblocked. The programmer 
must provide any blocking he wants. He 
must also determine the length of each, 
record (in bytes) and load it in a register 
before he issues the PUT instruction for 
that record. The register used for this 
purpose must be specified in the DTF entry 
RECSIZE. 

Updating 

A sequential file on 2311, 2314, 2319, or 
2321 DASD, a card input file in a 1442 or 
2520, dr a card file in the punch feed of a 
2540 equipped with the Punch-Feed-Read 
special feature can be updated. That is, 
each DASD or card record can be read, 
processed, and transferred back to the same 
disk location, or card, fr,om Which it was 
read. In the case of a card file, the file 
must be specified as a combined file 
(CMBND) in the entry TYPEFLE. 

When updating a file, one 1/0 area can 
be specified (entry IOAREA1) for both the 
input and output of a card record. If a 
second I/O area is required, it can be 
specified with IOAREA2. 

A PUT for a card or DASD record must 
always be followed by a GET before another 
PUT is issued. GETs can be issued as many 
times in succession as desired. When 

120 DOS Supervisor and 1/0 Macros 

updating a disk file, the record is not 
actually transferred with the PUT but with 
the next GET for the file,. 

For a file in a 2540 with the 
Punch-Feed-Read special feature, a PUT 
instruction must be issued for each card. 
A PUT instruction may be omitted. however,. 
if a particular card does not require 
punching by a 1442 or 2520. The operator 
must run out the 2540 punch following a 
punch-feed-read job. 

In the following example, data is 
punched in the same card that was read. 
Information from each card is read, 
processed, and then punched into the same 
card to produce an updated record. 

r-----T---------T---------------T---------, 
IName I Operation I Operand I Col. 72 I 
~-----+'---------+---------------+---------~ 
IFILEC DTFCD X 
I TYPEFLE=CMBND, X 
I IOAREA1=AREA, X 
I DEVADDR=SYS005, X 
I RECFORM=FIXUNB, X 
I IOAREA2=AREA2 
I 
I 
I 
I GET FILEC 
1 
I 
I 
I PUT FILEC 
I 
I L _____ ~ _________ ~ _______________ ~ ________ _ 

Punch and Printer Control 

Stacker selection in a card read punch~ and 
line spacing or skipping in a printer, can 
be controlled either by specified control 
characters in the data records or by the 
CNTRL macro instruction. Either method~ , 
but not both, may be used for a particular 
logical file. 

When control characters in data records 
are'used, the DTF entry CTLCHR must be 
specified, and every record must contain a 
control character in the main-storage 
output area. This control character must 
be the first character of each fixed-length 
or undefined record, or the first character 
following the record-length field in a 
variable-length record. The BLKSIZE 
specification for the output area must 
,include the byte for the control character. 
If undefined records are specified, the 
RECSIZE specification must also include 
this byte. 



When a PUT instruction is executed, the 
control character in the data record 
determines the command code (byte) of the 
channel command word (CCW) that IOCS 
establishes. 

If CTLCHR=ASA: the control character is 
translated into the command code. 

If CTLCHR=YES: the control character is 
used directly as the command code. 

If the problem program using ASA control 
characters sends a space and/or skip 
command (without printing) to the printer, 
the output area must contain the 
first-character forms control and the 
remainder of the area must be blanks 
(X'40'). 

The particular character included in the 
record is determined by the function to be 
performed. For example, if double spacing 
is to occur after a particular line is 
printed, the code for double spacing must 
be the control character in the output iine 
to be printed. The first character after 
the control character in the output data 
becomes the first character punched or 
printed. Appendix B gives a complete 
listing of control characters. 

RELSE Macro 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [name] IRELSE Ufilename} I 
I I i\ (1) I L ______ ~ _________ ~ ________________________ J 

The RELSE (release) macro instruction is 
used with blocked input records read from a 
DASD device, or with blocked spanned 
records read from, or updated on, a DASD 
device. This macro is also used with 
blocked input records read from magnetic 
tape. It allows the programmer to skip the 
remaining records in a block and continue 
processing with the first record of the 
next block when the next GET instruction is 
issued. When used with blocked spanned 
records, RELSE makes the next GET skip to 
the first segment of the next record. 

If RELSE immediately precedes FSL or BSL 
(tape spacing for spanned records), then 
logical record spacing is ignored. 

The symbolic name of the file, specified 
in the DTF header entry, is the only 
parameter required for this instruction. 
It can be specified as a symbol or in 
register notation. 

The release instruction discontinues the 
deblocking of the present block of records, 
which may be either fixed or variable 
length. RELSE causes the next GET 
instruction to transfer a new block to the 
input area, or switch I/O areas, and make 
the first record of the next block 
available for processing. GET initializes 
the register or moves the first record to a 
workarea. 

For example, this function can apply to 
a job in which records on DASD or tape are 
categorized. Each category (perhaps a 
major grouping) is planned to start as the 
first record in a block. For selective 
reports, specified categories can be 
located readily by checking only the first 
record in each block. 

TRUNC Macro 

r------T---------T------------------------, 
I Name 10perationiOperand I 
~------+---------+------------------------~ 
I [name] I TRUNC IJfilename} I 
I . I It (1) I L ______ ~ _________ ~ ________________________ J 

The TRUNC (truncate) macro instruction is 
used with blocked output records written on 
DASD or magnetic tape. It allows the 
programmer to write a short block of 
records. Elocks do not include padding. 
Thus, the TRUNC macro can be used for a 
function similar to the RELSE instruction 
for input records, but in reverse~ That 
is, when the end of a category of records 
is reached, that block can be written and 
the new category can be started at the 
beginning of a new block. 

The symbolic name of the file, specified 
in the DTF header entry, is the only 
parameter required in this macro. If the 
TRUNC macro is issued for fixed-length 
blocked DASD records, the DTF entry TRUNCS 
must be included in the file definition. 

When TRUNC is issued, the short block is 
written (on DASD or tape) and the output 
area is made available to build the next 
block. The last record written in the 
short block is the record that was built 
and included in the output block by the 
last PUT preceding the execution of the 
TRUNC macro. Therefore, if records. are 
built in a workareaand the problem program 
determines that a record belongs in a new 
block, the TRUNC instruction should be 
issued first to write out the block. This 
should be followed by the PUT instruction 
for this particular record to move the 
record into the new block. If records are 
built in the output area, however, the 

SAM: Sequential Processing Macros 121 



programmer must determine if a record 
belongs in the block before he builds the 
record. 

Whenever variable-length blocked records 
are built directly in the output area, 
TRUNC macro must be used to write a 
complete block of records. When the PUT 
macro is issued after each variable length 
record is built, the output routines supply 
the programmer with the space (number of 
bytes) remaining in the output area. From 
this, the programmer determines if his next 
variable length record fits in the block. 
If it does not fit, he issues the TRUNC 
macro to write out the block and make the 
entire output area available to build the 
record. The amount of remaining space is 
supplied in the register specified in the 
entry'VARBLD (see PUT Macro and DTFMT 
VARBLD). 

CNTRL Macro 

r------T---------T--------------~---------, 
I Name I Operation I operand I 
~------+---------+------------------------~ 
I [namel ICNTRL iffilename},cOde[,nll [,n2l I 
I I i\ (1) I L ______ ~ _________ ~ ________________________ J 

The CNTRL (control) macro instruction 
provides commands for these input/output 
units: magnetic tape units, card read 
punches, punches, printers,DASD, and 
optical readers. Commands apply to 
physical nondata operations of a unit and 
are peculiar to the unit involved. They 
specify such functions as rewinding tape, 
card stacker selection, line spacing on a 

122 DOS Supervisor and I/O Macros 

printer, etc. For optical readers, 
commands specify marking error lines, 
correcting a line for journal tapes, 
document stacker selecting, or ejecting and 
incrementing documents. The CNTRL macro 
does not wait for completion of the command 
before returning control to the user~ 
except for certain mnemonics for optical 
readers. 

CNTRL is used with a logical file in a 
unit, and it usually requires two or three 
parameters. The first parameter must be 
the name of the file specified in the DTF 
header entry. It can be specified as a 
symbol or in register notation. 

The second parameter is the mnemonic 
code for the command to be performed. This 
must be one of a set of predetermined codes 

. (Figure 25). 

The third parameter, ni, is required 
whenever a number is needed for stacker 
selection or immediate printer carriage 
control. The parameter, n2, applies to 
delayed spacing or skipping. In the case 
of a printer file, the parameters nl and n2 
may be required. 

The CNTRL macro instruction must not be 
used for printer or punch files if the data 
records contain control characters and the 
entry CTLCHR is included in the file 
definition. 

Whenever CNTRL is issued in the problem 
program, the DTF entry CONTROL must be 
included (except for DTFMT) and CTLCHR must 
be omitted. If control characters are used 
when CONTROL is specified~ the control 
characters are ignored and treated as data. 



IBM Unit Mnemonic Code nl n2 

3420, 2400 Series Magnetic Tape Units REW 

RUN 

ERG 

WTM 

BSR 

BSF 

BSL 

FSR 

FSF 

FSL 

2540 Card Read Punch PS 1 
2 
3 

2520, 1442 Card Read Punch SS I 
2 

E 

See Note 

1403, 1404, 1443, 1445 Printers SP c d 

SK c d 

1403 Printer with Universal Character Set UCS ON 
Feature 

OFF 

2321 Data Cell Drive SEEK 

RESTR 

231 I Disk Storage Drive SEEK 

2314,2319 Direct Access Storage Facility 

1285 Optical Reader MARK 

READKB 

1287 Optical Reader MARK 

READKB 

EJD 

SSD I 
2 
3 
4 

ESD 1-4 

INC 

1288 Optical Page Reader ESD I 
3 

INC 

Note: c = An Integer that Indicates Immediate Printer Control (before printing). 
d = An Integer that Indicates a Delayed Printer Control. 

Figure 25. CNTRL Macro Instruction Command Codes 

Command 

Rewind Tape 

Rewind and Unload Tape 

Erase Gap (Writes Blank Tape) 

Write T apemark 

Backspace to Interrecord Gap 

Backspace to T ape mark 

Backspace Logical Record 

Forward Space to Interrecord Gap 

Forward Space' to Tapemark 

Forward Space Logical Record 

Select Pocket I, 2, or 3 

Select Stacker I or 2 

Eject to Stacker 1 (1442 only) 

Carriage Space I, 2, or 3 lines 

Skip to Channel c and/or d 

Data Checks are Processed with an Operator 
Indication 

Data Checks are Ignored and Blanks are Printed 

Seek to Address 

Return Strip to Subcell 

Seek to Address 

Mark Error Line 

Read 1285 Keyboard 

Mark Error Line in Tape Mode 

Read 1287 Keyboard in Tape Mode 

Eject Document 

Select Stacker A, B, Reject, or-Alternate 
Stacking Mode 

Eject Document and Select Stacker 

Increment Document at Read Station 

Select Stacker A 
Reject Stacker (R) 

Increment Document at Read Station 

SAM: Sequential Processing Macros 123 



, 

Magnetic Tape Unit Codes 

The CNTRL macro instruction controls 
magnetic tape functions that are not 
concerned with reading or writing data on 
the tape. These functions are grouped in 
the following categories: 

Rewinding tape to the load point 
REW - Rewind 
RUN - Rewind and unload 

Moving tape to a specified position 
BSR - Backspace to interrecord gap 
BSF - Backspace to tapemark 
FSR - Forward space to interrecord gap 
FSF - Forward space to tapemark 

Forward or backward logical record spacing 
FSL - Forward space logical record 
BSL - Backward space logical record 

Writing a tapemark 
WTM - Write tapemark 

Erasing a portion of the tape 
ERG - Erase gap (writes blank tape) 

The tape rewind (REW and RUN) and tape 
movement (BSR, BSF, FSR, and FSF) fUnctions 
can be used before a tape file is opened. 

Note: If you are using a 
self-relocating program, you must open 
the file before issuing any commands to 
the file. 

This allows the tape to be positioned at 
the desired location for opening a file, so 
that: 

• The file is located in the middle of a 
multifile reel. 

• The entry REWIND specifies NORWD, but 
for some conditions rewinding is 
required for the file. 

The tape movement functions (BSR, BSF, 
FSR, and FSF) apply to input files only. 
and the following factors should be 
considered: 

1. The FSR (or BSR) function permits the 
user to skip over a physical tape" 
record (from one interrecord gap to 
the next). The record passes without. 
being read into main storage. The FSF 
(or BSF) function permits the user to 
skip to the end of the logical file 
(identified by a tapemark). 

2. The functions of FSR, FSF, BSR, and 
BSF always start at an interrecord 
gap. 

124 DOS Supervisor and 1/0 Macros 

3. If" blocked input records are processed 
and if the user does not want to 
process the remaining logical records 
in the block:, as well as one or more 
succeeding blocks (physical records), 
he must issue a RELSE macro before the 
CNTRL macro. Then, the next GET makes 
the first record of the new block 
available for processing. If the 
CNTRL macro (with FSR for example) is 
issued without a preceding RELSE:, the 
tape is advanced. The next GET makes 
the next record in the old block 
available for processing. 

4. For any 1/0 area combination except 
one 1/0 area and no workarea; IOCS is 
always reading one physical tape 
record ahead of the one that is being 
processed. Thus., the next physical 
record (block) after the current one 
is in main storage ready for 
processing. Therefore, if a CNTRL FSR 
function is performed, the second 
physical tape record beyond the 
present one is passed without being 
read into main storage. 

5. If FSR or BSR is used, LIOCS does not 
update the block count. Furthermore, 
IOCS cannot sense tapemarks on an FSR 
or BSR command. Therefore, IOCS does 
not perform the usual EOV or EOF 
functions in these cases. 

The tape spacing functions (FSL or BSL) 
apply to spanned record input files only .• 
These codes are used when logical record 
spacing is desired. Consider these factors 
when FSL or BSL is specified: 

1. Logical record spacing is ignored if 
it immediately follows a RELSE macro 
instruction. 

2. Forward and backward spacing refer to 
the absolute direction of the spacing. 
For example, if BSL is specified on an 
input file with READ=BACK, only one 
logical record is skipped. 

3. If an end-of-file, end-of-volume, or 
an error condition occurs while a FSL 
or BSL spacing function is being 
executed," the coridition is handled as 
if it occurred during a normal GET 
operation. 

Printer Codes 

The CNTRL macro instruction can be used for 
any printer forms control. The codes for 
printer operation cause spacing (SP) over a 



specified number of lines, or skipping (SK) 
to a specified location on the form. The 
third parameter is required for immediate 
spacing and skipping (before printing). 
The fourth parameter is required for 
delayed spacing or skipping (after 
printing). 

The SP and SK operations can be used in 
any sequence. However, two or more 
consecutive immediate skips (SK) to the 
same carriage channel on the same printer 
result in a single skip immediate. 
Likewise, two or more consecutive delayed 
spaces (SP) and/or skips (SK) to the same 
printer result in the last,space or skip 
only. Any other combination of consecutive 
controls (SP and SK), such as immediate 
space followed by a delayed skip or 
immediate space followed by another 
immediate space, causes both specified 
operations to occur. 

1403 Printer With Universal character Set 
Codes 

The CNTRL macro can be used before a PUT 
for the file to change the method of 
processing data checks. They can be 
either: 

1. Processed with an indication given to 
operator, or 

2. Ignored with blanks printed in place 
of the unprintable characters. 

A data check occurs on a 1403 with the 
UCS feature when a character (except null, 
00000000, or blank, 01000000) sent to the 
printer does not match any of the 
characters in the UCS buffer. 

Before opening a file, the UCS job 
control command (BLOCK parameter) 
determines data check processing. That is, 
if BLOCK is specified, the data check is 
ignored and a blank is printed. Otherwise, 
an indication is given to the system 
operator. After opening a file, data 
checks are controlled according to the 
DTFPR UCS parameter until a CNTRL macro is 
used to change the method of processing 
data checks. 

If the UCS form of the CNTRL macro is 
used for a printer without the UCS feature, 
the CNTRL macro is ignored. 

2540 Card Read Punch Codes 

Cards read or punched on the 2540 normally 
fall into the pocket specified in the DTF 

. entry SSELECT (or the R10r P1 pocket if 
SSELECT is omitted). The CNTRL macro with 
code PS is used to select a card into a 
different stacker, which is specified by 
the third operand (n1) of the CNTRL macro 
The possible selections are: 

Feed Pocket Value of n1 

Read R1 1 
Read R2 2 
Read RP3 3 
Punch P1 1 
Punch P2 2 
Punch RP3 3 

Input File: CNTRL can be used only when 
one I/O area, with or without a workarea, 
is specified for the file. To stack a 
particular card, the CNTRL instruction 
should be issued after the GET for that 
card. Before the next GET instruction is 
executed, the card is stacked into the 
specified pocket 

Note: If CNTRL is not issued after 
each GET, the same card remains at the 
read station. 

Output File: CNTRL can be used with any 
permissible combination of I/O and 
workareas. When the user wants to select a 
particular card, CNTRLmust be issued 
before the PUT for that card. However, 
CNTRL does not have to precede every PUT. 

1442 and 2520 Card Read Punch Codes 

Cards fed in the IBM 1442 and 2520 -are 
nor~ally directed to the stacker specified 
in the DTF entry SSELECT. If SSELECT is 
omitted, they go to stacker 1. The CNTRL 
macro can be used to override the normally 
selected pocket temporarily. 

Input File: CNTRL can be used only when 
one I/O area, with or without a workarea, 
is specified for the file. To stack a 
particular card, the CNTRL instruction 
should b~ issued after the GET for that 
card, and before the GET instruction for 

SAM: Sequential Processi-ng Macros 125 



the following card. When the next card is 
read, the previous card is stacked in the 
specified stacker. 

Note: If CNTRL is not issued after 
each GET, the same card remains at the 
read station. 

Output File: CNTRL can be used with any 
permissible combination of I/O areas and 
workareas. To stack a particular card, the 
CNTRL instruction should be issued before 
the PUT for that card. After the card is 
punched, it is stacked into the specified 
pocket immediately. 

Combined File: CNTRL can be used with any 
permissible combination of I/O areas and 
workareas. If a particular card is to be 
selected, the CNTRL instruction for the 
file should be issued after the GET and 
before the PUT for the card. When the next 
card is read, the previous card is stacked 
into the specified stacker. 

I DASD (2311, 2314, 2319, and 2321) Codes 

The CNTRL macro instruction to seek (SEEK) 
on a DASD or restore (RESTR) on a 2321 
permits access movement to begin for the 
next READ, WRITE, GET, or PUT instruction 
for a file. While the arm is moving for a 
SEEK or the strip is being restored on a 
data cell, the programmer can process data 
and/or request I/O operations on ot~er 
devices. 

For sequential files, IOCS seeks the 
track that contains the next block (or 
physical record) for that file and the user 
does not supply a track address. If the 
CNTRL macro is not used, IOCS performs the 
seek or restore operations when a 'READ, 
WRITE, GET, or PUT instruction is issued. 

1285, 1287, and 1288 Optical Reader Codes 

The CNTRL macro instruction for the 1285, 
1287, and 1288 is used for' the nondata 
functions of marking a journal tape line, 
incrementing a document, and ejecting 
and/or stacker selecting a document. It is 
also used to read data from the 1285 or 
1287 keyboard when processing journal 
tapes. 

When the CNTRL macro is used with the 
READKB mnemonic, it allows a complete line 
to be read from the 1285 or 1287 keyboard 

126 DOS Supervisor and I/O Macros 

when processing journal tapes. This 
permits the operator to ~ey in a complete 
line on the keyboard if a 1285 or 1287 read 
error makes this type of correction 
necessary. When IOCS exits to the user's 
COREXIT routine, the problem program may 
issue the CNTRL macro instruction to read 
from the keyboard. The 1285 or 1287 
display tube then displays the full line 
and the operator keys in the correct line 
from the keyboard, if possible. The line 
read from the keyboard is always read 
left-justified into the correct input area. 
The macro resets this area to binary zeros 
before the line is read. After CNTRL 
READKB is used, the contents of filename+80 
are meaningful only for a wrong-length 
error indication (X'04'). Therefore, the 
user must determine whether.the operator 
was able to recognize the unreadable line 
of data. The CNTRL macro with the REAtKB 
mnemonic waits for completion of the order 
before returning control to the user. 

When processing journal tapes, the CNTRL 
macro instruction with the MARK mnemonic 
marks (under program-control) a line on the 
input tape that results in a data transfei 
error or is otherwise suspect of error. To 
ensure that the proper line is marked, the 
CNTRL macro instruction must be issued in 
the user's error correction routine 
(specified in DTFOR COREXIT). If CNTRL is 
issued at any other time, the line 
following the one in error is marked. 

When processing is done in document mode 
on the 1287, each document may be ejected 
with a CNTRL macro instruction. The EJD 
mnemonic causes the document to eject and 
the next document is fed. Documents may 
also be stacker selected by using the CNTRL 
macro instruction with the SSt mnemonic. 

The CNTRL macro instruction with the ESD 
mnemonic combines the ejection and stacker 
selection functions. To satisfy the 
alternate ejection and stacker selection 
functions, the combined mnemonic must not 
be immediately preceded by an eject or 
immediately followed by a stacker select. 

A document may be directed to stacker A, 
B, or R (reject stacker) by specifying a 
selection number of 1, 2, or 3 
respectively. Also, documents may be 
selected into stackers A and B in an 
alternate stacking mode, with automatic 
stacker switching when one stacker becomes 
full. The selection number for alternate 
mode is 4. If selection number 4 is used 
in the first stacker selection macro, 
stacker A is filled first. If selection 
number 4 is used after other selection 
numbers, the last preceding selection 
number determi"nes the first stacker to be 
filled. Selection numbers 1 and 3 only are 
available for the 1288. 

( 

\ 



If a CNTRL macro is issued in COREXIT 
routine and a late stacker select or 
nonrecovery error condition occurs, IOCS 
branches to the next sequential 
instruction. Filename+80 should therefore 
be tested for these conditions after 
issuing a CNTRL macro. 

The CNTRL macro with the INC mnemonic 
may be used for document incrementation. 
This macro is not used with documents 
having a scannable area shorter than 6 
inches. When this mnemonic is issued, the 
document is incremented forward 3 inches. 
This macro may be used only once per 
document. 

For the 1288, the CNTRL macro with the 
INC mnemonic can increment only documents 
with a scannable area longer than 6.5 
inches. The document is incremented to the 
next stopping point as selected by console 
switches on the 1288. More than one CNTRL 
macro can be used per document. 

Document ejection and/or stacker 
selection and document increment functions 
can also be "accomplished by including the 
appropriate CCW(s) within the channel 
command word list addressed by the READ 
macro, rather than by using the CNTRL 
macro. This technique results in increased 
document throughput. 

Note: For processing documents in a 
multiprogramming environment where the 
partition containing 1287 support does 
not have highest priority, the eject 
and stacker select functions must be 
accomplished by a single command. 
However, when processing documents in a 
dedicated environment, the stacker 
select command can be executed. It 
must follow the eject command within 
270 milliseconds if the document was 
incremented, or"within 295 milliseconds 
if the document was not incremented. 
The eject and stacker select functions 
must occur alternately. If the timing 
requirements are not met, a late 
stacker selection condition occurs. 

CHNG Macro for BPS and BOS Systems Only 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ I [namel ICHNG , SYSnnn , L ______ ~ ___ ~ _____ ~ ________________________ J 

This macro instruction is provided only for 
Basic Programming Support and Basic 
Operating System upward compatibility. No 
code is generated from this macro 
instruction. In the Disk Operating System, 

tape channel switching is handled 
automatically by physical IOCS. 

ERET Macro 

r----------T-------------T----------------, 
,Name ,Operation, Operand , 
~----------+-------------+----------------~ 
, , , {SKIP} I 
, [namel ,ERET ,IGNORE , 
, , 'RETRY' L __________ ~ _____________ ~ ________________ J 

This macro instruction enables a problem 
program ERROPT or WLRERR routine to return 
to IOCS and specify an action to be taken. 
The macro applies only to DTFMT-MTMOD, 
DTFIS-ISMOD, and DTFSD-SDMOD files with the 
ERR EXT operand specified. 

The SKIP operand passes control back to 
the logic module to skip the block of 
records in error and process the next 
block. The IGNORE operand passes control 
back to the module to ignore the error and 
continue processing with the block in 
error. The RETRY operand causes the module 
to retry the operation that resulted in the 
error. 

Note 1: For sequential disk output, an 
ERET SKIP is treated as an ERET IGNORE. 

Note 2: With MTMOD for any error or 
with SDMOD wrong-length record errors, 
ERET RETRY cancels the job with an 
invalid SVC message. 

PRTOV Macro 

r------T---------T------------------------, 
,Name ,Operation, Operand , 
~------+---------+------------------------~ 
,[namel,PRTOV '{filename},{9} , 
, , ,(1) 12" , 
, " , 
I I I ['{ routine-name}] , 
, , , (0) , 
L ______ ~ _________ ~ ________________________ "J 

The PRTOV (printer overflow) macro 
instruction is used with a logical p~inter 
file to specify the operation to be 
performed when a carriage overflow 
condition occurs. Whenever this macro 
instruction is issued in a problem program, 
the DTFPR or DTFSR entry PRINTOV=YES must 
be included in the file definition. 

PRTOV requires two or three parameters. 
The first parameter must be the filename, 
either as a symbol or in register notation. 

SAM: Sequential Processing Macros 127 



The second parameter must specify the 
number of the carriage tape channel (9 or 
12) used to indicate the overflow. When an 
overflow condition occurs, IOCS restores 
the printer carriage to the first printing 
line on the form (channell), and normal 
printing continues. 

A third parameter is required if the 
programmer prefers to branch to his own 
routine on an overflow condition, rather 
than skipping directly to channell. It 
specifies the symbolic name of a user's 
routine. The name can be specified either 
as a symbol or in register notation. 
However, the name should never be preloaded 
into register 1. . 

In this case, IOCS does not restore the 
carriage to channell. In his routine, the 
user may issue any IOCS macro instruction 
to perform whatever functions he desires. 
The CNTRL macro cannot be issued to the 
file unless CONTROL=YES is specified in the 
DTF. For example, he can print total 
lines, skip to channell, and print 
overflow page headings. At the end of his 
routine, the user can return to IOCS by 
branching to the address in reg.ister 14. 
IOCS supplies this address upon entry to 
the user's routine. Therefore, if other 
IOCS macros are used in the routine (for 
example, the CNTRL macro), the user must 
save and restore register 14 himself. 

The PRTOV macro causes a skip to channel 
1, or branches to the user's routine if an 
overflow condition (punch in channel 9 or 
12) is detected on the preceding space or 
print command. An overflow punch is not 
recognized during a carriage skip 
operation. After the execution of any 
command that causes carriage movement (PUT 
or immediate CNTRL)" the user should issue 
a PRTOV macro before issuing the next CNTRL 
or PUT. This ensures that the user's 
overflow option is executed at the correct 
time. 

MAGNETIC READER MACROS 

Within a particular program, the user 
should utilize either the GET or the READ, 
CHECK, WAITF combination. For a program 
opera ting with two or more MICR devices" 
the READ, CHECK, WAITF combination allows 
processing to continue within the program 
when any document buffer is ready for 
processing. On the other hand, the GET 
macro instruction (suggested for a program 
operating with one MICR device) includes an 
inherent wait for a document buffer to 
become available within the file before 
processing begins. In a multiprogramming 
environment, control always passes to 

128 DOS supervisor and I/O Macros 

another partition whenever a WAIT condition 
occurs. 

Before any MICR document prQcessing can 
be performed, the file(s) must be opened. 
If an unrecoverable I/O error occurs when 
using the GET macro logic, no more GETs can 
be issued for the file. If an 
unrecoverable I/O error occurs when using 
the READ, CHECK, WAITF logic or when 
document processing for that file is 
complete, the user can effectively continue 
by closing the file. Further READ, CHECK!I 
WAITFs treat this file as having no 
documents ready for processing (see byte 0, 
bits 5 and 6 of Appendix E). 

READ Macro' 

The READ macro instruction makes the next 
sequential buffer available to the user,. 
but it does not verify that it is ready for 
processing. The CHECK macro is provided to 
make that test. If the buffer is not ready 
for processing, the next READ to that file 
points to the same buffer. 

r------T------~--T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namellREAD I{filename} ,MR I 
I I I (1) I L ______ ~ _________ ~ ________________________ J 

*********************************** 
Recommendation: To write the most 
efficient code (in a multiprogramming 
environment), register notation 
should be used for this macro in 
conjunction with the OPENR macro. If 
this is done, user programs will be 
self relocating, will run in any 
partition of storage, and will be . 
more compatible with the Operating 
System (OS). For additional 
information on writing self 
relocating code, see Appendix G. 

*********************************** 

The first operand specifies the name of the 
file associated with the record to be read. 
This name would be the same as that 
specified in the DTFMR header entry for the 
file. It can be given as a symbol or in 
register notation. The second operand 
signifies that the file is for a magnetic 
character reader (MICR). 



CHECK Macro 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I (name1ICHECK I{filename} I 
I I I (1) I 
I I I I 
I I I [, {control address}] I 
I I I (0) I L ______ ~ _________ ~ ___________ ~ ____________ J 

**************************.**.*.*.* 
Recommendation: To write the most 
efficient code (in a multiprogramming 
environment), register notation 
should be used for this macro in 
conjunction with the OPENRmacro. If 
this is done, user programs will be 
self relocating, will run in any 
partition of storage, and will be 
more compatible with the Operating 
system (OS). For additional 
information on writing self 
relocating code, see Appendix G. 

.**.****.*********.******** •• ****** 

A READ macro instruction must· already have 
been issued to the file before a CHECK 
macro instruction is issued. 

The CHECK macro instruction examines the. 
buffer status indicators to determine 
whether the buffer contains data ready for 
processing, is waiting for data, contains a 
special nondata status, or the file 
(filename) is closed. If the buffer has 
data ready for processing, control passes 
to the next sequential instruction. If the 
buffer is waiting for data, or the file is 
closed, control passes to the control 
address, if present. If the buffer 
contains a special nondata status, control 
passes to the ERROPT routine for the user 
to examine the posted error conditions 
before determining his action. (See 
Appendix E, byte 0, bits 2, 3, and 4.) The 
user may return from the ERROPT routine to 
the next sequential instruction via a 
branch on register 14, or to the control 
address in register O. 

If the buffer is waiting for data, or 
the file is closed, and the control address 
is not present, control is given to the 
user at his ERROPT address specified in the 
DTFMR macro. If an error, a closed file, 
or a waiting condition occurs (with no 
control address) and no ERROPT address is 
present, control is given to the user at 
the next sequential instruction. If the 
waiting condition occurred, byte 0, bit 5 
of the buffer is set to 1. If the file was 
closed, byte 0, bits 5 and 6 of the buffer 
are set to 1 (see Appendix E). 

The first operand specifies the name of 
the file associated with the record to be 
checked. This name is the same as that 
specified for the DTFMR header entry for 
the file. It can be given either as a 
symbol or in register notation. 

The second operand indicates the address 
to which control passes when a buffer is 
waiting for data or the file is closed. 
This parameter can be given either as a 
symbol or in register notation. 

WAITF Macro 

r------T-----T----------------------------, 
I lOper-I I 
I Name lationlOperand I 
~------+-----+----------------------------~ 
I rname1lWAITFUfilename1} I 
I I ~ (rl) I 
I I I I 
I I I [,{filename2} •• !I{filenamen}] I 
I I j. (r2) (rn) I L ______ ~ _____ ~ ____________________________ J 

* ••••• ** •• ** •• * •• ******.***.****.*. 

Recommendation: To write the most 
efficient code (in a mUltiprogramming 
environment), register notation 
should be used for this macro in 
conjunction with the OPENR macro~ If 
this is done, user programs will be 
self relocating, will run in any 
partition of storage, and will be 
more compatible with the Operating 
System (OS). For additional 
information on writing self 
relocating code, see Appendix G. 

****** ••• ***********.*.*** •• ******* 

The WAITF macro instruction is essential to 
the multiprogramming feature of the system. 
It allows processing of programs in other 
partitions while waiting for document data. 
If any device within the WAITF macro list 
has records or error conditions ready to be 
processed, control remains in the partition 
and processing continues with the 
instruction following the WAITF macro 
instruction .. 

One WAITF macro instruction must be 
issued after a set of READ-CHECK 
combinations before the problem program 
attempts to return to a previously issued 
combination. Thus, the (multiple) WAITF 
macro instruction must be issued between 
successive executions of a particular READ 
macro instruction. 

The operands required are for the files 
waiting to be processed. The names given 

SAM: sequential Processing Macros 129 



are those found in the DTFMR header 
entries. 

DISEN Macro 

This macro instruction stops the feeding of 
documents through the magnetic character 
reader or optical reader/sorter. The 
program proceeds to the next sequential 
instruction without waiting for the 
disengagement to complete. The user should 
continue to issue GETs or READs until the 
unit exception bit (byte 0, bit 3, Appendix 
E) of the buffer status indicators is set 
ON. 

r------T---------T------------------------, 
lName lOperationl Operand I 
~------+---------t------------------------~ 
I [namellDISEN l{filename} I 
I I I (1) 1 L ______ ~ _________ ~ ________________________ J 

The only required operand specifies the 
name of the file to be disengaged. This 
name is the same as that specified for the 
DTFMR header entry for the file. The 
operand can be given either as a symbol or 
in register notation. 

LITE Macro 

r------T---------T------------------------, 
I Name lOperationl Operand 1 
~-----t---------t------------------------~ 
1 [namel I LITE I{.filename} 1 
1 I I (1) I 
1 I I 1 
I I I [,{ light sWitches} ] I 

. 1 1 1 (0) 1 L ______ ~-------__ ~ ________________________ J 

This macro instruction lights any 
combination of pocket lights on an IBM 1419 
Magnetic Character Reader or 1275 Optical 
Reader/Sorter. Before using the LITE 
macro, 'the DISEN macro instruction must be 
issued to disengage the device. pro~essing 
of the documents should be continued until 
the unit exception bit (Appendix E byte 0, 
bit 3) of the buffer status indicators is 
set ON. When this bit is ON, the follow-up 
documents have been processed, the MICR 
reader has been disengaged, and the pocket 
LITE macro can be issued. 

The first operand indicates the header 
entry for the DTFMR table that contains the 
address for the particular device. The 
second operand indicates a 2~byte area 
containing the pocket light switches. Both 
operands can be given either as a symbol or 
in register notation. 

The bit configuration for the pocket 
light switch area is shown in Figure 26. 
The pocket lights that are turned eN should 
have their indicator bits set to 1. If an 
error occurs during the execution of the 
pocket lighting I/O commands, bit F is set 
to 1. This error condition normally 
indicates that the pocket light operation 
was unsuccessful. 

r------T---T---T---T---T---T---~--~---T---T---T---T---T---------T----------, 
I Bits I 0 1 1 1 2 I 3 I 4 I 5 J 6 1 7 I 8 I 9 I A I B I C D E IF I 
r------t---+---t---t---+---t---t---t---t---t---t---t---t---------+----------~ 
I I I I I I I I I I I I I I I I 
I Pocket I I I I I I I I I I I I I I I 
I Lights I A I B I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I Reserved I Error I 
I 1 I I I I I I I I I I I I with lindicator I 
I I I I I I I I I, I I I I I binary I bit I 
I I I I I I I I I I I I I I zeros I I L ______ ~ __ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ ___ ~ _________ ~ __________ J 

Figure 26. Bit Configuration for Pocket Light Switch Area of IBM 1419 

130 DOS Supervisor and I/O Macros 



OPTICAL READER MACROS 

GET Macro 

(See sequential Processinq Macro: GET 
Macro. 

CNTRL Macro 

(See Sequential Processing Macro: CNTRL 
Macro. ) 

DSPLY Macro 

r------~-------T~-----------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namellDSPLY ~filename},(r),(r) I 
I I 11 (1) I L ______ ~ _________ ~ ________________________ J 

The DSPLY macro displays the document field 
on the 1287 display scope. A complete 
field may be keyboard-entered if a 1287 
read error makes this type of correction 
necessary. An unreadable character may be 
replaced by the reject character either by 
the operator (if processing in the on-line 
correction mode) or by the device (if 
processing in the off-line correction 
mode). The user may then use the DSPLY 
macro to display the field in error. The 
1287 display tube displays the full field 
and the operator keys in the correct field 
from the keyboard, if possible. The field 
read from the keyboard is always read into 
the area (normally within IOAREA1) that was 
originally intended for this field as 
specified in the CCW. The macro first 
resets this area to binary zeros. At 
completion of the operation, the data is 
left-justified in the area. 

This instruction always requires three 
parameters. The first parameter is the 
symbolic name specified in the DTFOR header 
entry for the 1287 file. The second 
parameter specifies a general purpose 
register (2-12) into which the problem 
program places the address of the load 
format CCW giving the document coordinates 
for the field to be displayed. When the 
DSPLY macro is used in the COREXIT routine, 
the address of the load format CCW can be 
obtained by subtracting 8 from the 3-byte 
address that is right-justified in the 
fullword location beginning at filename+32. 
(The high-order fourth byte of this full 
word should be ignored.) If the DSPLY 
macro is not used in the COREXIT routine, 

the user must determine the load format ccw 
address. The third parameter specifies a 
general purpose register (2-12) into which 
the problem program places the address of 
the load format CCW giving the coordinates 
of the reference mark associated with the 
displayed field. 

The contents of filename+80 are 
meaningful only for X'40' (1287 scanner 
cannot locate the reference mark) and X'04 1 

(wrong-length record) after the DSPLY macro 
is issued. Therefore, the user must 
determine whether the operator was able to 
recognize the unreadable line of data. 

Note: When using the DSPLY macro" the 
user must ensure that the load format 
CCW is command chained to the CCW used 
to read that field. This provides the 
document coordinates for the field to 
be displayed. 

READ Macro 

The READ macro instruction is used in 
sequential processing to cause the next 
sequential IBM 1287 or 1288 Optical Reader 
(document mode only) record to be read. 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---~-----+------------------------~ 
I [namellREAD ~filename},OR,{name} I 
I I It (1) (r) I L ______ ~ _________ ~ ________________________ J 

*********************************** 
Recommendation: To write the most 
efficient code (in a multiprogramming 
environment), register notation 
should be used for this macro in 
conjunction with the OPENR macro. If 
this is done, user programs will be 
self relocating, will run in any 
partition of storage, and will be 
more compatible with the Operating 
System (OS). For additional 
information on writing self 
relocating code, see Appendix G. 

*********************************** 
The first parameter specifies the name in 
the DTFOR header for this file, and'it is 
always required. The parameter OR is 
required to indicate an optical character 
reader. The parameter [namel is always 
required.. This parameter specifies the 
address of the user provided channel 
command word list to be used to read a 
document from the 1287 or 1288 file. The 
register entry may be used in this 
parameter to provide the address of the 

SAM: Sequential Processing Macros 131 



channel command word list. The first 
channel command word in the list cannot be 
a transfer-in-channel CCW. 

To accomplish document ejection and/or 
stacker selection and document increment 
functions, include the appropriate CCW(s) 
within the channel command list addressed 
by the read macro. This technique results 
in increased processing throughput. This 
method is preferable to using the CNTRL 
macro. 

Note: The WAITF macro must be issued 
after the READ macro and before the 
program attempts to process an input 
record for the file. . 

RESCN Macro 

r------T----T--------·--------------------, 
I lOper-I I 
I Name lationlOperand I 
~------+-----+----------------------------~ 
I [name] I RESCN (ffilename } . I 
I I It (1) I 
I I I I 
I I I, (rl), (rl) [,ni) (:n21 I L ______ ~ ___ ~ ____________________________ J 

Note: For the 1287 Models 3 and 4 and 
the 1288, this macro can only be used 
with READ BACKWARD commands. If used 
with READ FORWARD commands, the input 
area is not cleared. 

The RESCN macro selectively rereads a field 
on a document when a defective character(s) 
makes this type of operation necessary. 
The field is always right-justified into 
the area (normally within IOAREA1) that was 
originally intended for this field as 
specified in the CCW. The macro first 
resets this area to binary zeros. 

The first.parameter specifies the 
symbolic name of the 1287D file specified 
in·the DTFOR header entry for the file. 
The second parameter specifies a general 
purpose register (2-12) into which the 
problem program places the address of the 
load format CCW. 

When this macro is used in the COREXIT 
routine, the address of the load format CCW 
is obtained by subtracting 8 from the 
3-byte address that is right-justified in 
the fullword location beginning in 
filename+32. (The high-order fourth byte 
of this fullword should be ignored.) If 
the RESCN macro is not used in the COREXIT 
routine, the user must determine the load 
format CCW address. The third parameter 
specifies a general purpose register (2-12) 
into which the problem program places the 

132 DOS Supervisor and I/O Macros 

address of the load format CCW for reading 
the reference mark. The previous three 
parameters are always required, and result 
in one attempted reread for the field. 

The fourth parameter, nl, allows the 
user to specify the number of attempts (one 
to nine allowed) to reread the unreadable 
field. If this parameter is omitted, one 
is assumed. The fifth parameter, n2, 
indicates one more reread,. It forces 
on-line correction of any unreadable 
character(s) by individually projecting the 
unreadable character(s) on the 1287 display 
scope. The operator must key in a 
correction (or reject) character(s). This 
operand cannot be used for 1288 processing. 

If the reread of the field results in a 
wrong-length record, incomplete read" or an 
unreadable character, it is indicated in 
filename+80. 

Note: When using the RESCN macro, the 
user must ensure that the load format 
CCW (giving the document coordinates 
for the field ~o be read, second 
parameter) is command chained to the 
CCW used to read that field. When 1288 
unformatted fields are read, the RESCN 
macro should not be used. 

RDLNE Macro 

r------T---------T------------------------, 
I Name 10perationioperand I 
~---~--+---------+------------------------~ 
I [namel1RDLNE Ufilename} I 
I I ~ (1) I L _____ ~ _________ ~ ________________________ J 

The RDLNE macro provides selective on-line 
correction when processing journal tapes on 
the IBM 1285 or the IBM 1287 Optical 
Reader. This macro reads a line in the 
on-line correction mode while processing in 
the off-line correction mode. If the 
reader cannot read a character, IOCS first 
resets the input area to binary zeros and 
then retries the line containing the unread 
character. If the read is unsuccessful, 
the user is informed of this condition via 
his error correction routine (specified in 
DTFOR COREXIT). The RDLNE macro may then 
be issued to cause another attempt to read 
the line. If the character in the line 
still cannot be read, the character is 
displayed on the 1285 or 1287 display 
scope. The operator keys in the correct 
character, if possible. If the operator 
cannot readily identify the defective 
character, he may enter the reject 
character in the error line. This 
condition is posted in filename+80 for user 
examination. Wrong-length records and 

( 
\ 

/ 



incomplete read conditions are also posted 
to filename+80. RDLNE should be used in 
the COREXIT routine only, or the line 
following the one in error is read in 
on-line correction mode. 

This macro requires only one parameter, 
the symbolic name of the 1285 or 1287 file 
from which the record is to be retrieved. 
This name is the same as that specified in 
the DTFOR header entry for the file. 

WAITF Macro 

r------T---------T------------------------, . 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [name] IWAITF ~filename} I 
I I n. (1) I L ______ ~ _________ ~ ________________________ J 

The WAITF macro instruction is. used in 
sequential processing to ensure that the 
transfer of an IBM 1287 or 1288 Optical 
Reader record (document mode only) is 
completed. It must have only one 
parameter: the symbolic name of the file 
containing the record. 

I This instruction must be issued 
following a READ and before the problem 

I program attempts to process an input record 
for the file concerned. The program waits 
until the transfer of data is complete. 

The WAITF macro instruction accomplishes 
all checking for read errors on the 1287 or 
1288 file and exits to the user-provided 
COREXIT routine for user handling of these 
conditions, if necessary. 

WORK FILE MACROS FOR TAPE AND DISK 

A work file can be used for disk and tape 
input, output, or both. If TYPEFLE=WORK is 
specified in the DTF macro instruction, 
work file macro instructions READ, WRITE, 
and CHECK are provided. Also, if 
NOTEPNT=YES is specified, work file macro 
instructions NOTE, POINTR, POINTW, and 
POINTS are provided. Work files process 
only fixed-length unblocked records and 
undefined record formats. Work files are 
not permitted for tape files written in 
ASCII mode. 

A tape work file is a single-volume file 
used for both input and output, even within 
a single program phase. It passes 
intermediate results between successive 
phases or job steps. However, work files 
also can be written, read, and rewritten 

within a single phase~ without requ1r1ng 
additional OPEN or CLOSE processing. Work 
files are defined as an option of the DTFMT 
and MTMOD macro instructions and are 
accessed by the READ/WRITE and CHECK macro 
instructions. 

The first time a work file is opened, it 
is opened as an output file. OPEN examines 
the tape to determine whether the tape 
contains standard labels. The DTFMT entry 
FILABL is ignored. If the tape is labeled 
and the date in the header label has 
expired, a new label consisting of HDR1 and 
followed by 16 binary zeros is created. 
The job control label information cards are 
not required. If the tape does not already 
contain standard labels, labels are not 
created for the work file. Trailer labels 
are not processed. 

If a work file with standard labels is 
reopened, OPEN determines from the HDR 
label that the file is a work file and does 
not rewrite the labels. 

When a tapemark is sensed during a read 
operation, or when an end-of-reel 
reflective spot is sensed during a write 
operation, laCS exits to the address 
specified by the user by the entry ECFADDR. 

Disk work files are supported as single 
volume single pack files. They are always 
opened as output files. Standard label 
information must be supplied by the user. 
Both normal extents (type 1) and split 
extents (type 8) are supported. File 
protection for work files is ensured only 
if the labels are unexpired. 

DELETING A WORK FILE AFTER USE: The entry 
DELETFL=NO must not be used. OPEN creates 
a format 1 label for the file, and CLOSE 
destroys this label. The next job 
requiring a work file can use the same 
extents and filename. 

SAVING A WORK FILE AFTER USE: The 
expiration date in the DLBL job control 
card must not be the current date. The 
entry DELETFL=NO must be specified in the 
DTF for the file. OPEN creates a format 1 
label, but CLOSE does not delete it. Thus, 
the file can be saved until the expiration 
date is reached. 

DELETING AN UNEXPIRED FILE: When the user 
tries to use the limits of an unexpired 
file, an operator message is printed to 
indicate the overlap condition. The 
operator can then delete the label, after 
which OPEN creates a label for the new file 
and the job continues. 

SAM: Sequential Processing Macros 133 



READ Macro (for TAPE or DISK Workfiles) 

The READ macro instruction reads the next 
sequential physical record, or part of it, 
from the file associated with the filename. 
The record is read into the area of main 
storage indicated by the third operand. 

The DTF entry READ=FORWARD or BACK 
should specify the type of read for a tape 
file. 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namel I READ lffilename}, SQ,{ area} I 
I I 11 (1) (0) I 
I I I I 
I I I [{length}] I , I I, (r) I 
I I I S I L ______ ~ _________ ~ ________________________ J 

*********************************** 
Recommendation: To write the most 
efficient code (in a multiprogramming 
environment), register notation 
should be used for this macro in 
conjunction with the OPENR macro. If 
this is done, user programs will be 
self relocating, will run in any 
partition of storage, and will be 
more compatible with the operating 
System (OS). For additional 
information on writing self 
relocating code, see Appendix G. 

*********************************** 
The first parameter specifies the name 

of the file associated with the record to 
be read and is always required. This name 
is the same as the name specified in the 
DTFMT or DTFSD header entry for the file. 
The name can be given as a symbol or in 
register notation. 

The parameter SQ (for sequential) is 
always required. Area specifies the name 
(as a symbol or in register notation) of 
the input area used by the file. If tape 
is to be read backwards, area must be the 
address of the rightmost byte of the input 
area. 

The length parameter is used only for 
records of undefined format 
(RECFORM=UNDEF). To read only a portion of 
a record, an actual length (or a register 
containing the number) can be specified. 
Or, an S can be provided to indicate that 
the entire physical record should. be read. 

If the work file records are fixed 
length unblocked records (RECFORM=FIXUNB), 
the length parameter, including S, must not 

134 DOS Supervisor and I/O Macros 

be specified in the READ macro. The number 
of characters to be read is specified in 
the BLKSIZE entry. The user can change 
this number (which is stored in the DTF 
table) at any time by referencing the 
halfword filenameL. 

Note: The CHECK macro must be issued 
after the READ macro and before the 
program attempts to process an input 
record for the file. 

WRITE Macro 

The WRITE macro instruction writes a record 
from the indicated area into the file 
associated with the filename. The record 
is stored sequentially following the last 
record written in this file. 

r------T---------T------------------------, I Name ,operationl Operand , 
~------+---------+------------------------~ 
I [namellWRITE ,{filename}, { SQ}, I 
I I I (1) UPDATE I 
, 'I I 
I I I {area} [, {length} ] I 
I I I (0) (r) I 
L ______ ~ _________ ~ ______ ~-----------------J 

*********************************** 
Recommendation: To write the most 
efficient code (in a multiprogramming 
environment), register notation 
should be used for this macro in 
conjunction with the OPENR macro. If 
this is done, user programs will be 
self relocating, will run in any 
partition of storage, and will be 
more compatible with the Operating 
System (OS). For additional 
information on writing self 
relocating code, see Appendix G. 

**********************************. 
The first parameter specifies the name of 
the file associated with the record to be 
written and is always required. This name 
is the same' as the name specified in the 
DTFMT or DTFSD header entry for this file,. 
The name can be given as a symbol or in 
register notation. 

The second parameter specifies the type 
of WRITE to be executed. For magnetic 
tape, this parameter is always SQ. If SQ 
is specified for disk work files. a 
formatting WRITE (write count key and data) 
is executed. If UPDATE is specified, a 
nonformatting WRITE (write data) is 
executed. An update WRITE should always be 
directly preceded by a READ macro 
instruction. A CLOSE macro (following an 

/' 
I 

( 



update write) protects the updated file by 
not writing an end-of-file record. If SQ 
is specified and a CLOSE immediately 
follows an OPEN (no formatting WRITE 
commands were issued), an end-of-file 
record is not written. 

The parameter ~ specifies the name, 
as a symbol or in'register notation, of the 
output area used by the file. 

The last parameter is used only for 
records of undefined format 
(RECFORM=UNDEF). Length specifies the 
actual number (or register containing the 
number) of bytes to be written. 

If fixed-length unblocked records 
(RECFORM=FIXUNB) are written, length is not 
used in the WRITE macro. The number of 
characters to be written is specified in 
the BLKSIZE entry. The user can change 
this number, which is stored in the DTF 
table, at any time, by referencing the 
halfword filenameL. For disk, the BLKSIZE 
entry should not include eight bytes for 
the length of a count field. 

Note: The CHECK macro must be issued 
after the WRITE macro to allow for 
completion ,of the input/output 
operation. 

CHECK Macro 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+--------~+------------------------~ 
I [nameliCHECK I{filename} I 
I I I (1) I L ______ ~ _________ ~ ________________________ J 

This macro instruction must be used after 
each READ or WRITE. It prevents user 
processing until completion of the 
input/output operation, started by either a 
READ or a WRITE, for the device associated 
with the filename. 

If the I/O operation is completed 
without any error or other exceptional 
condition, CHECK returns control to the 
next instruction. If the operation results 
in a read error, CHECK processes the user's 
option specified in ERROPT. If CHECK finds 
an end-of-file condition, control is passed 
to the routine specified in,EOFADDR. 

NOTE Macro 

r------T---------T------------------------, 
I Name 10perationi Operand I 
~------+---------+------------------------~ 
I [namellNOTE I {filename} l 
I I I (1) I L ______ ~ ________ ._~ ________________________ J 

The NOTE macro instruction obtains 
identification for a physical record that 
is read or written during processing. 

Note: The CHECK macro must be issued 
before the NOTE macro to ensure that 
the last operation has completed. 

For magnetic tape, the last record read 
or written is identified by the number of 
physical records read or written in the 
specified file from the load point. The 
information is returned in register 1 in 
the form Obbb, where 

• U ~ Eight binary zeros. 

• bbb = Physical record number in binary. 

For disk, if a READ precedes the NOTE, 
the record identified is the last record 
read. If a WRITE precedes the NOTE, the 
record just written is the identified 
record. The identification is returned in 
register 1 in the form Ochr, where 

• 0 = Eight binary zeros. 

• c = Cylinder number, 

• h = Track number, 

• r = Record number within the track. 

c, h, and r are binary numbers. If NOTE 
follows a WRITE to a disk file, the unused 
space remaining on the track following the 
end of the identified record returns in 
register 0 as the binary number OOnn. 

For magnetic tape, the user must store 
the identification (in the Obbb form) so 
that it can be used later in either a 
POINTR or POINTW instruction. For disk, 
the user must construct a six-byte field 
and store in it the identification of the 
record and the remaining track capacity (in 
the form Ochrnn) so that it can be used 
later in a PPINTR or POINTW instruction to 
find the noted record again~ 

SAM: Sequential Processing Macros 135 



POINTR Macro 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [name] I POINTR l{ filename}, { address} I 
I I I (1) (0) I L ______ ~ _________ ~ ________________________ J 

The POINTR macro instruction repositions 
the file for reading a record identified by 
the NOTE macro. 

For magnetic tape, address specifies a 
4-byte main-storage location containing the 
required record identification. It can be 
expressed as a symbol or in register 
notation. The four-byte number must be in 
the form obtained from the NOTE macro 
(Obbb). POINTR repositions the file to 
read the record that was read or written 
immediately before the NOTE that was used 
to create the record identification field 
was issued. For magnetic tape, a WRITE 
must not follow POINTR. 

For disk, address specifies a six-byte 
main-storage location containing the 
required record identification and the 
remaining track capacity. It can be 
expressed as a symbol or in register 

I 
notation. The six-byte number must be 
supplied in the form obtained from the NOTE 
macro (Ochrnn) where nn is the length 
remaining on the track. POINTR repositions 
the file to read the record identification 
(in the Obbb form) returned when a previous 
NOTE macro was issued. If a WRITE UPDATE 
follows the POINTR macro, the noted record 
is overwritten. If a WRITE SQ follows the 
POINTR macro, the record after the noted 
record is written, and the remainder of the 
track is erased. 

Some programs using disk work files may 
include multiple WRITE instructions 
following a NOTE macro. If a POINTR 
instruction is issued and the work file 
records are in undefined 'format, there may 
be occasions when a replacement record 
longer than the original record cannot be 
written in the space available on the 
track. In this case, the original record 
remains as the last record on the track 
when the next WRITE is performed. The 
replacement record is written as the first 
record on the next track of,the file. 

136 DOS Supervisor and I/O Macros 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [name]IPOINTW l{filename}, {addreSS} I 
I, I 'I (1) (0) I L ______ ~ _________ ~ ________________________ J 

The POINTW macro instruction repositions a 
file to write a record. 

For magnetic tape, address specifies a 
four-byte main-storage location containing 
the required record identification. It can 
be expressed as a symbol or in register 
notation. The four-byte number must be in 
the form obtained from the NOTE macro 
(Obbb). POINTW repositions the file to 
write a record after the, one previously 
identified by the NCTE. When a READ is 
issued to a tape file following a POINTW, 
the tape is positioned to read the record 
following the one identified by the NOTE. 

I 
For dis'k. address specifies a six-byte 

main-st~rage location containing the 

I 
required record identification. The disk 
address can be expressed as a symbol or in 
register notation. The six-byte number 
must be supplied in the form obtained from 
the NOTE macro (Ochrnn) where nn is the 
length remaining on the track. POINTW 
repositions the file to write at the record 
location that was read or written 
immediately before the last NOTE macro was 
issued. If a WRITE UPDATE is then issued, 
the noted record is overwritten. If a 
WRITE SQ is issued, the record following 
the noted record is written and the 
remainder of the track is erased. A READ 
macro can follow the POINTW macro. The 
record identified by the NCTE is the record 
read. 

Some programs using disk work files may 
include multiple WRITE instructions 
following a NOTE macro. If a POINTW 
instruction is issued and the work file 
records are in undefined format, there may 
be occasions when a replacement record 
longer that the original record cannot be 
written in the space available on the 
track. In this case, when the next WRITE 
is performed, ~he original record remains 
as the last record on the track. The 
replacement record is written as the first 
record on the next track of the file. 

POINTS Macro 

The POINTS macro instruction repositions a 
file to the beginning of the file. 



r------T---------T------------------------, 
I Name I operation I Operand I 
~------+---------+------------------------~ 
I [namel I POINTS I{ filename} I 
I I I (1) I L ______ ~ _________ ~ ________________________ J 

For a tape file, the tape is rewound. If 
the file contains any header labels, they 
are bypassed, and the tape is positioned to 
the first record following the label set. 

For disk, the file is repositioned to 
the lower limit of the first extent. An 
example of POINTS with workfile processing 
follows: 

L 12, LENGTH (load length of var-
length record to reg) 

A WRITE F,SQ,OUT,(12) (write a record) 
(processing of data 
unrelated to OUT) 

CHECK F (wait until record is 
written) 

BNZ A . (finish processing) 
POINTS F (reposition to begin-

ning of file) 
B READ F,SQ,IN,S (read physical 

record 1) 

(processing data un-
related to IN) 

CHECK F (wait until record is 
read) 

BNZ B (finish processing) 
EOJ 

On disk or magnetic tape, a POINTS 
followed by a WRITE (SQ) causes the new 
record to be written and the remainder of 
the track is erased. On disk, POINTS 
should not be followed by a WRITE (UPDATE). 

Completion Macros 

FEOV Macro 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namellFEOV I{filename} I 
I I I (1) I L ______ ~ _________ ~ ________________________ J 

The FEOV (forced end-af-volume) macro 
instruction is used for either input or 
output files on magnetic tape (programmer 
logical units only) to force an 
end-of-volume condition before sensing a 
tapemark or reflective marker. This 
indicates that processing of records on the 

current volume is finished, but that more 
records for the same logical file are to be 
read from, or written on, a following 
volume. If a spanned record is begun on an 
output file and there is not enough space 
to contain it, MTMOD issues an FEOV at the 
end of the last completed spanned record. 
The last spanned record (for which there 
was no room) is rewritten on a new volume. 
For system units, see the SEOV Macro. 

The name of the file, specified in the 
header entry, is the only parameter 
required in the operand. The name can be 
specified either as a symbol or in register 
notation. 

When logical laCS macro instructions are 
used for a file, FEOV initiates the same 
functions that occur at a normal 
end-of-volume" condition, except for 
checking of trailer labels • 

For an input tape, FEOV immediately 
rewinds the tape (as specified by REWIND) 
and provides for a volume change (as 
specified by the ASSGN cards). Trailer 
labels are not checked. FEOV then checks 
the standard header label on the new volume 
and allows the user to check any 
user-standard header labels if LABADDR is 
specified. If nonstandard labels are 
specified (FILABL=NSTD), FEOV allows the 
user to check these labels as well. 

For an output tape~ FEOV writes 

• A tapemark (two tapemarks for ASCII 
files.) 

• A standard trailer label and 
user-standard labels (if any). 

• A tapemark. 

If the volume is changed, FEOV then 
writes the file header label(s) on the new 
volume (as specified in the entries REWIND, 
FILABL, LABADDR, and the ASSGN cards). If 
nonstandard labels are specified, FEOV 
allows the user to write trailer labels on 
the completed volume and header labels on 
the new volume, if desired. 

SAM: Completion Macros 131 



FEOVD Macro 

r------T---------T------------------------, 
I Name I Operation I Operand . I 
~------~--------+------------------------~ 
I [name] I FEOVD I {filename} I 
I I I (r) I L-_____ ~ _________ ~ ________________________ J 

The FEOVD (forced end-of-volume for disk) 
macro instruction is used for either input 
or output files to force an end-of-volume 
condition before it actually occurs. This 
indicates that processing of records on one 
volume is finished, but that more records 
for the same logical file are to be read 
from, or written on, the following volume. 
If extents are not available on the new 
volume, or if the format 1 label is posted 
as the last volume of the file, control is 
passed to the EOF address specified in the 
DTF. 

The name of the file is the only 
required operand. The name can be 
specified either symbolically or in 
register notation. 

When FEOVD is issued to an input file, 
an end of extent is posted in the DTF. 
When the next GET is issued to this file, 
any remaining extents on the current volume 
are bypassed, and the first extent on the 
next volume is opened. Normal processing 
is then continued on the new volume. 

When FEOVD is issued to an output file, 
a short last block is written, if 
necessary, with a standard end-of-file 
record containing a key length of one 
(indicating end of volume).' An 
end-of-extent condition is posted in the 
DTF. When the next PUT is issued to the 
file, all remaining extents on the current 
volume are bypassed.. The first extent on 
the next volume is then opened, and normal 

I processing continues on the new volume. 
'fhe DOS FEOVD EOV marker is compatible with 
the OS EOV marker. 

If the FEOVD macro is followed 
immediately by the CLOSE macro, the end of 
volume marker is rewritten as an end of 
file marker, and the file is closed as 
usual. 

138 DOS Supervisor and I/O Macros 

CLOSE(R) Macro 

r------T----------------------------------, 
lOp I Operand I 
~------+----------------------------------~ 
Ifor self-relocating programs I 
I I . I 
I CLOSER!ifilename1} I 
I It (r1) I 
I I I 
I I .[,{filename2} ••• ,{filenamen}] I 
I I (r2) (rn) I 
~------+----------------------------------~ 
Ifor programs that are not self-relocating I 
I I I 
ICLOSE Ijfilename1} I 
I (\ (r1) I 
I I I 
I I [.,{filename2} •.•.• ,{filenamen}] I 
I I ( r 2 ) ( rn ) I L ______ ~ __________________________________ J 

Note: To write the most efficient code 
(in a multiprogramming environment), we 
recommend that the self relocating form 
of OPEN be used. (see also 
Appendix G.) 

The CLOSE macro instruction must be issued 
to deactivate any file that was previously 
opened in any input/output unit in the 
system. Console files cannot be closed. A 
CLOSE normally deactivates an output file 
by writing an EOF record and output trailer 
labels, if any. CLOSE sets a bit in the 
format 1 label to indicate the last volume 
of the file. A file may be closed at any 
time by issuing this macro. 

No further commands can be issued for 
the file unless it is reopened. Sequential 
DASD files cannot be successfully reopened 
for output unless the DTFSD table is saved 
before the file is first opened, and 
restored between closing the file and 
reopening it again as an output file. 

When the operation CLOSE is used, the 
symbolic address constants that CLOSE 
generates from the parameter list are not 
self-relocating. When CLOSER is specified, 
the symbolic address constants are 
self-relocating. The self-relocating 
format of close is recommended. 



The symbolic name of the logical file 
(assigned in the DTF header entry) to be 
closed is entered in the operand field. A 
maximum of 16 files may be closed by one 
instruction. Alternately, the user can 
load the address of the filename in a 
register and specify the register using 
ordinary register notation. The high-order 
8 bits of this register must be zeros. The 
address of the filename may bepreloaded 
into any register, 0-15. 

• If you use register notation, we 
recommend using only registers 2-12. 
This will make your programs more 
compatible with the Operating System 
(OS). 

• If CLOSE is issued to a magnetic tape 
input file that has not been opened, 
the option specified in the DTF 
rewind option is performed. If CLOSE 
is issued to a magnetic tape output 
file that has not been opened, no 
tapemark or labels are written, and 
no rewind option is performed. 

For a paper tape punch file with two I/O 
areas, CLOSE checks for the successful 
completion of the last operation. 

SAM: Completion Macros 139 



Direct Access Method (DAM) 

DASD records can be processed in random 
order by the Direct Access Method (DAM). 
In this method, the user specifies the 
address of the record to IOCS and issues a 
READ or WRITE macro instruction to transfer 
the specified record. Variations in the 
parameters of the READ or WRITE 
instructions permit records to be read, 
written, updated, or replaced in a file. 
Whenever this method of processing records 
is used, the logical file and main-storage 
area(s) allotted to the file must be 
defined by the declarative macro DTFDA 
(Qefine !he Kile for Qirect hccess). 

Record Types 

DASD records that will be processed by DAM 
can exist on the DASD in either of two 
formats: with a key area, or without. 

With key area: 

r-----' 
I Count I L ____ J 

r---, 
IKeYI L ___ J 

r----' 
IDatal L ____ J 

Without key area: 

r-----' r----' 
I Count I IDatal L _____ J L ____ J 

When processing spanned records, this 
format applies only to the first segment. 
For additional information on spanned 
records, see Appendix F. 

Whenever records in a file have keys 
that are to be processed: 

• Every record must have a key, and 

• All keys must be the same length. 

Whenever the DTFDA entry KEYLEN is not 
specified for a file, IOCS ignores keys, 
and the DASD records mayor may not contain 
key areas. A WRITE ID or READ ID reads or 
writes the data portion of the record. 
However, when KEYLEN is not specified in 
the DTF for a file, WRITE AFTER cannot be 
used to extend a file that has keys,. 

lQO DOS Supervisor and 1/0 Macros 

IOCS considers all records as unblocked 
(one logical record per one physical 
record). If the user wants blocked 
records, he must provide his own blocking 
and deblocking. Records are also 
considered to be either fixed, variable, or 
undefined length. A spanned record 
indicates. variable blocks where the size of 
each segment is a function of the track 
size and record size. The record size is 
set by a formatting WRITE macro 
instruction. All the variable record 
segments of a given spanned record are 
logically contiguous. The type of records 
in the file must be specified in the DTFDA 
entry RECFORM. Whenever records specified 
as undefined are written to a file, the 
user must determine the length of each 
record and load it in a register (specified 
by the DTFDA entry RECSIZE) before he 
issues the WRITE instruction for that 
record. 

DIRECT ACCESS IOAREAl 

The DTFDA entry· IOAREAl defines an area of 
main storage in which records are read cn 
input or built on output. 

Format 

The format of the 1/0 area is determined at 
assembly time by the following DTFtA 
entries: AFTER, KEYLEN., READID, WRITEID, 
READKEY, and WRITEKY. Figure 27 describes 
the types of DTF macros and the 1/0 areas 
that they define. The information in this 
figure should be used to determine the 
length of the 1/0 area specified in the 
BLKSIZE entry~ The 1/0 area must be large 
enough to contain the largest record in the 
file. If the DTF used requires it, the 1/0 
area must include room for an B-byte count 
field. The count is provided by laCS • 

Contents 

The phrase contents of the IOAREAl refers 
to the information provided by or to laCS 
for a specific imperative macro 
instruction. Figure 27 gives a summary of 
what the contents are for each type of 
READ/WRITE. When the user builds a record, 

( 



he must place the contents (Figure 27) in 
the appropriate field of the I/O area. The 
contents that IOCS provides on input are 
always placed in the appropriate field of 
the I/O area. For example, if the DTF used 
for the file resulted in the uppermost 
format shown in Figure 27, the data would 
be located to the right of the count and 
key area. 

Using a DTF for which AFTER and KEYLEN are specified. READID, 
WRITEID, READ KEY, and WRITEKY may also be specified. 

Count Key I Data I 
1 1 I 

..... 1 ~------r----""I BLKSIZE =n -----~.! 

(~~~;!~: t 8 KEYLEN=n: Largest Record 

IOAREAl 

Using a DTF for which AFTER is specified, but KEYLEN is not. 
READID and/or WRITEID may be specified, but READKEY and 
WRITEKY may not" 

Count Data 

1:...

1 

..... -----.--- BLKSIZE = n -------:. : 
Length~ 8 largest Record 1 

(Bytes) 1 t 1 

IOAREAl 

Using a DTF for which KEYLEN, READID, and/or WRITEID are 
specified, but AFTER is not. READKEY and/or WRITEKY may also 
be specified, 

Key 

I ~ I 
I I 

Length~ KEYLEN=n I 
(Bytes) I t I 

IOAREAl 

Data 

1 BLKSIZE=n -----.I~I 
Largest Record I 

Using a DTF for which READID and/or WRITEID is specified, but 
AFTER, KEYLEN, READKEY, and WRITEKY are not. 

or 
Using a DTF for which KEYLEN, READKEY, and/or WRITEKY are 
specified, but AFTER, READID, and WRITEID are not. 

Data 

:-BLKSIZE=n----~, : 
Length ~ t Largest Record 1 

$~M) I I 
IOAREAl 

Figure 27. Schematic of I/O Area in Main 
Storage, for DAM 

REFERENCE METHODS 

With the direct access method of 
processing, each record that is read or 
written is specified by providing IOCS with 
two references: 

• Track reference. This gives the track 
on which, the desired record ii located. 

• Record reference. This may be either 
the record key (if the records contain 
key areas) or the record identifier 
(ID). 

IOCS seeks the specified track, searches 
it for the individual record~ and reads or 
writes the record as indicated by the macro 
instruction. If a specified record is not 
found, IOCS sets a no-record-found 
indication in the user's error/status byte, 
as specified by the DTFDA entry ERRBYTE. 
This indication can be tested by the 
problem program, and additional processing 
can be programmed to suit the user~s 
requirements. 

Multiple tracks can be searched for a 
record specified by key (SRCHM). If a 
record is not found after an entire 
cylinder (or the remainder of a cylinder) 
is searched, an end-of-cylinder bit is 
turned on instead of NRF in ERRBYTE. 

when an I/O operation is started, 
control returns immediately to the problem 
program. Therefore, when the program is 
ready to process the input record, or build 
the succeeding output record for the same 
file, a test must be made to ensure that 
the previous transfer of data is complete. 
Do this by issuing a WAITF macro 
instruction in the problem program. 

After a READ or WRITE instruction for a 
specified record has been executed, IOCS 
can make the ID, of the next record 
available to the problem program. The 
WAITF macro should be issued to assure that 
the data transfer is complete. The user 
must set up a field (in which IOCS can 
store the ID) to request that IOCS supply 
the ID. He must also specify the symbolic 
address of this field in the DTFDA entry 
IDLOC. 

When record reference is by key and 
multiple tracks are searched, the ID of the 
specified record (rather than the next 
record) is supplied. The function of 
supplying the ID is useful for a random 
updating operation, or for the processing 
of successive DASD records. If the user is 
processing consecutively on the basis of 
the next ID and does not have an 
end-of-file record, he can check the ID 
supplied by IOCS against his file limits to 

Direct Access Method (DAM) lql 



determine when he has reached the end of 
the logical file. 

Track Reference 

To provide IOCS with the track reference, 
the user sets up a track reference field in 
main storage, assigns a symbolic name in 
the DTFDA entry SEEKADR, and determines by 
DTFDA operand specifications which type of 
addressing system to use. Before issuing 
any read or write instruction for a record, 
the user must store the proper track 
identifier in either the first seven 
hexadecimal bytes (mbbcchh), first three 
hexa.decimal bytes (ttt), or first eight 
zoned decimal (tttttttt) bytes of this 
field. The latter two track references, 
along with the DSKXTNT and RELTYPE 
operands, indicate that relative addressing 
is to be performed. Thus, instead of 
providing the exact physical track location 
(mbbcchh), only the track number relative 
to the starting track of the file need be 
provided. If these operands are omitted, 
the physical addressing system is assumed. 

The fields for each of these track 
reference systems are shown in Figure 28. 
For reference to records by record number, 

r or rr is used (see Record Reference: 
Identifier). When the READ or WRITE is 
executed, IOCS refers to this field to 
select the specific track on the 
appropriate DASD. 

Record Reference 

The direct access method allows records to 
be specified by either record key or record 
identifier. 

If records contain key areas, the records 
on a particular track can be randomly 
searched by their keys. This allows the 
user to refer to records by the logical 
control information associated with the 
records, such as an employee number, a part 
number, a customer number, etc. 

For this type of .reference the 
programmer must specify the symbolic name 
of a main-storage key field in the DTFDA 
entry KEYARG. He then stores each desired 
key in this field. 

r-------T~------------T----------------T------------------------------------------------, 
I I Decimal ,Contents in I I 
I Bytes I Identifier I Zoned Decimal I Information I 
~-------+-------------+----------------+------------------------------------------------~ 
I 0-7 ,tttttttt I 0-16777215 ITrack number relative to the first track of the I 
I I I I file. I 
I.' J I I 
I 8-9 I rr I 0-99 IRecord number relative to the first record on I 
I I I Ithe track. If reference is by key, rr should bel 
I I I I zero. I 
~-------+-------------+----------------+------------------------------------------------~ 
I I Hexadecimal , Contents in I I 
I Bytes I Identifier I Hexadecimal I Information , 
~-------+-------------+----------------+---------------------------------~--------------~ 
, 0-2 I ttt , O-FFFFFF ITrack number relative to the first track of the I 
I I 'I file. , 

" " I I 3 I r I O-FF ,Record number relative to the first record on I 
I' , Ithe track. If reference is by key, r should be I 
I I 'I zero. I L _______ ~ _____________ ~ ________________ ~ ________________________________________________ J 

Figure 28. Types of Track Reference Fields (Part 1 of 2) 

142 DOS Supervisor and 1/0 Macros 

/' 



r-------r-------------T----------------T------------------------------------------------, 
I I Physical I ,Contents in I I 
I Bytes I Identifier I Hexadecimal I Information I 
~-------+-------------+----------------+------------------------------------------------~ o m O-DD INumber of the volume on which the record is 

1-2 b,b 

3-4 c,c 

5-6 . h,h 

1 r 

0,0 (disk) 
0,0-9 (cell) 

0,0-C1 (disk) 
0-13,0-9 
(cell) 

0,0-9 (2311 
disk) 

0,0-13 
(2314 or 2319 
disk) 

0-4,0-13 
(2321 cell) 

O-FF 

I located. Volumes and their symbolic units for a 
Ifile must be 'numbered consecutively. The first 
Ivolume number for each file must be zero, but 
the first symbolic unit may be any SYSnnn 
number. The system references the volume by 
adding its number to the first symbolic unit 
number. 

Example 1: The first extent statement // EXTENT 
SYS005, ••• and M=O results in the system 
referencing SYS005. 

Example 2: 1/ VOL SYS005,... and M=2 results 
in the system referencing SYS001 (previous job 
control standard label card). 

For 2321 the first byte is 
zero. The cell number (0-9) is specified in the 
second byte. These two bytes are always zero 
for disk storage references. 

For disk the number of the 
cylinder (0-199) in which 
the record is located. The first byte is always 
zero, and the second byte specifies one of the 
available cylinders in a disk pack,. These two 
bytes with the next two (hh) provide the track 
identification. For 2321 the number of the 
subcell (0-19) is located in the first byte~ 
One of the ten strips (0-9) is located in the 
second byte. 

Note: The last four strips on each cell 'are 
reserved for alternate tracks. 

For disk the number of the 
read/write head that 
applies to the record. 
The first byte 
is always zero, 
and the second byte specifies 
one of the disk surfaces in a disk pack. For 
2321 the first byte (0-4) specifies one of the 
five head bar positions (equivalent to cylinder 
on disk)., The second byte (0-19) specifies one 
of the twenty head elements. 

sequential number of the record on the track. 

Note: r = 0 if reference is by key. 
-------~-------------~----------------~------------------------------------------------

Figure 28. Types of Track Reference Fields (Part 2 of 2) 

Identifier (ID) 

Records on a particular track can be 
randomly searched by their position on the 
track, rather than by control information 
(key). To do this, use the record 
identifier. The record identifier, which 

is part of the count area of the DASD 
record, consists of five bytes (CCHHR). 
The first four bytes (cylinder and head) 
refer to the location of the track and the 
fifth byte (record) uniquely identifies the 
particular record on the track. When 
records are specified by ID~ they should be 
numbered in succession without missing 

Direct Access Method (DAM) 143 



numbers on each track. The first data 
record on a track should be record number 
1, the second number 2, etc. 

Whenever records are identified by a 
record ID, the r-byte of the 
track-reference field (Figure 28) must 
contain the number of the desired record. 
When a READ or WRITE instruction that 
searches by ID is executed, laCS refers to 
the track-reference field to determine 
which record is requested by the program. 
The number in this field is compared with 
the corresponding fields in the count areas 
of the disk records,. The r-byte or bytes 
specifies the particular record on the 
track. 

CREATING A FILE OR ADDING RECORDS BY DAM 

The problem program can pre£ormat a file or 
an extension to an existing file in one of 
two ways depending on the type of 
processing to be done. If the WRITE AFTER 
macro is used exclusively, the WRITE RZERO 
macro is enough for preformatting the 
tracks. If nonformatting functOions of the 
WRITE macro are used, the tracks should be 
preformatted with an IBM-supplied utility 
program (Clear Disk). The Clear Disk 
utility also resets the capacity record to 
reflect an empty track. 

In addition to reading, writing, and 
updating records randomly, the'direct 
access method permits the user to create a 
file or write new records on a file~ When 
this is done, all three areas of a DASD 
record are written: the count area, the 
kevarea (if present), and the data area. 
The new record is written after the last 
record previously written on a specified 
track. The remainder of the track is 

144 DOS supervisor and I/O Macros 

erased. This method is specified in a 
WRITE instruction by the parameter AFTER. 

laCS ensures that each record fits on 
the track specified for it., If the record 
fits, laCS writes the record. If it does 
not fit, laCS sets a no-room-found 
indication in the user',s error/status byte 

,(specified by the DTFDA entry ERRBYTE). If 
WRITE AFTER is specified~ laCS also 
determines (from the capacity record) the 
location where the record is to be written. 

Whenever the AFTER option is specified(, 
laCS uses the first record on each track 
(RO) to maintain updated information about 
the data records on the track. Record 0 
(Figure 29) has a count area and a data 
area, and contains the following: 

Count Area 

Flag (not normally transferred to main 
storage) 

Physical Identifier 

Key Length (KL) 

Data Le·ngth (DL) 

Data Area (8 bytes) 

5 Bytes--Physical ID of last record 
written on track (cchhr). 

2 Bytes~-Number of unused bytes remaining 
on track. 

1 Byte--For the DAM on the Operating 
system/360. 

Each time a WRITE AFTER instruction is 
executed, laCS updates the data area of 
this record. 



Bytes ~ 

COUNT AREA 

I 
I 
I 
I 

Cl a 
u: 

0 1 

Identifier 

5 

Contains ~: Standard Information 
I 
I 
! 

Kl 

6 

DATA AREA 

Dl 
Identifier 
of last Record 

7 8 0 

I 
I 
I 

Ie C H 
I 
I 
I 
I 

Cl c 
-':0 

Cl E~ 
c QJ ...... 

'c Q.E 
VI '0 °2:E 
2 E ~~~ >"QJ 
cc 0:: 

4 5 6 7 

I 
I 
I Number 

H Rl of Unused 
I Bytes 
I 
I 
I 

Figure 29. Contents of Record 0 for Capacity-Record Option 

Direct Access Macros 

Before a direct access file can be 
processed, it must be defined by the DTFDA 
declarative macro. After defining the 
file, the user can operate with that file 
using imperative macros. The file must be 
initialized, processed, and deactivated. 

DIRECT ACCESS FILE (DTFDA) 

The DTFDA detail entries that apply to a 
file when records are processed by the 
Direct Access Method are explained here and 
shown in Figure 33. 

Enter the symbolic name of the file in 
the name field and DTFDA in the operation 
field. 

r-----------------------------------------, 
IAFTER=YES I L _________________________________________ J 

This operand must be included if any 
records (or an additional record) are 
written in a file by a format WRITE (count, 
key and data) following the last record 
previously written on a track. The 
remainder of the track is erased. That is, 
whenever the macro instruction WRITE 
filename, AFTER or WRITE filename, RZERO is 
used in a program, this entry is required. 

r-----------------------------------------, 
IBLKSIZE=n I L _________________________________________ J 

This operand indicates the size of the I/O 
area by specifying the maximum number, n, 
of characters that are transferred to or 
from the area at anyone time. When 
undefined records are read or written, the 
area must be large enough to accommodate 
the largest record. 

If key length is specified by DTFDA 
KEYLEN, and if macro instructions that 
transfer the key areas qf records are 
issued, this area must provide for both the 
key area ,and data area of a record (see 
IOAREA1 and Figure 32). The length must 
specify 'an additional eight bytes if 
AFTER=YES is specified. If a file is 
created or additional records are written 
in a file, the count area of the records 
must be specified~ and the AFTER=YES 
operand must be ~ncluded. 

When processing variable-length records~ 
the value of n must be within the track 
capacity of the device containing the file. 
When processing spanned records, the value 
of n includes the eight bytes required for 
the block descriptor word" but it does not 
include the key length, if specified, or 
the count. For spanned records, the value 
of n must be larger than eight bytes and 
less than 32,768 bytes. 

IOCS uses this specification to 
construct the count field of the CCW for 
reading or writing fixed-length and 
variable length records. 

Direct Access Method (DAM) 145 



r-----------------------------------------, 
ICONTROL=YES I L _________________________________________ J 

This operand must be included if a CNTRL 
macro instruction is issued for this file. 
The CNTRL macro for seeking on the 2311, 
2314, or 2319 allows the user to specify a 
track address to which access movement 
should begin for the next READ or WRITE 
instruction for a file. While the arm is 
moving, the programmer may process data 
and/or request I/O operations on other 
devices. 

For the 2321, the CNTRL macro enables 
the user to seek to a specific address or 
to restore the strip to its subcell. 

r-----------------------------------------, 
IDEVADDR=SYSnnn I L _________________________________________ J 

This operand must specify the symbolic unit 
(SYSnnn) associated with a file if the 
extent statement symbolic unit is not 
provided. If such a unit is provided, its 
specification overrides the DEVADDR 
parameter. This specification, or symbolic 
unit, represents an actual I/O address and 
is used in the job control ASSGN statement 
to assign the actual I/O device address to 
the file. 

r-----------------------------------------, 
I DEVICE=£2311 I 231412321} I L _________________________________________ J 

This operand specifies whether the logical 
file ~s on a 2311, 2314, 2319, or 2321 
DASD. If this entry is omitted, 2311 is 
assumed. 

Note: Specify 2314 for 2319. 

r-----------------------------------------, 
I DSKXTNT=n I L _________________________________________ J 

The n indicates the maximum number of 
extents (up to 256) that are specified for 
a file. When RECFORM=FIXUNB, VARUNB, or 
UNDEF, and DSKXTNT=n, is specified, it 
indicates that a relative ID is used in the 
SEEKADR and IDLOC locations. If DSKXTNT=n 
is omitted, a physical ID is assumed in the 
SEEKADR and IDLOC locations. 

146 DOS Supervisor and I/O Macros 

If RECFORM=SPNUNB is specified" then 
DSKXTNT is required. If relative 
addressing is used" RELTYPE=DEC or HEX must 
also be specified. 

r-----------------------------------------, 
IERRBYTE=name I L _________________________________________ J 

This operand is required for IOCS to supply 
indications of exceptional conditions to 
the problem program. The symbolic name of 
a 2-byte field (in which IOCS can store the 
error-condition or status codes) is entered 
after the = sign. 

The ERRBYTE codes are available for 
testing by the problem program after the 
attempted transfer of a record is complete. 
After testing the ERRBYTE status code, the 
problem program can return to IOCS by 
issuing another macro instruction. One or 
more of the error status indication bits 
may be set to 1 by IOCS as in the bits 
indicated in Figure 30. 

r-----------------------------------------, 
IERREXT=YES I L _________________________________________ J 

This operand enables unrecoverable I/O 
errors (occurring before a data transfer 
takes place) to be indicated to the problem 
program. This error information is 
indicated in the ERRBYTE-name bits and is 
available after the WAITF macro instruction 
is issued. 

r-----------------------------------------, 
IFEOVD=YES I ·L _________________________________________ J 

This operand is specified if coding is 
generated to handle end-of-volume records. 
It should be specified only when reading a 
file that was built using sequential disk 
and the FEOVD macro was used. 



r-----T-----T-------------------------T-------------------------------------------------, 
IByte I Bit I Error/Status Code I Explanation I 
I I I Indication I I 
~-----+-----+-------------------------+-------------------------------------------------~ 

o 0 

o 1 Wrong-length record 

I . 

The wrong-length record indication is applicable 
for undefined records or fixed-length records. 

Fixed-Length Records: This bit is set on under 
the following conditions: 

• A READ KEY or WRITE KEY is issued. and the 
keylength differs from the length as 
specified by KEYLEN=n. No data is 
transferred. 

• A READ KEY is issued. and the data length 
differs from the specified length (BLKSIZE 
minus KEYLEN. or BLKSIZE minus the value of 
KEYLEN plus 8 if AFTER=YES was specified). 

• A READ ID is issued, and the record lenqth 
differs from the specified .length (BLKSIZE. 
or BLKSIZE minus 8 if AFTER=YES was 
specified). 

• A WRITE KEY is issued, and the data length 
of the record is greater than specified in 
the count field in the DASD record on disk. 
The original record positions are filled. 
and the remainder of the updated record is 
truncated and lost. 

Note: If an updated record is shorter than 
the original record, it is padded with 
binary zeros to the length of the original 
record. The wrong-length record bit is not 

Figure 30. ERRBYTE Error Status Indication Bits (Part 1 of 51 

Direct Access Method (DAM) 147 



r-----T-----~------------------------T-------------------------------------------------, 
IByte I Bit I Error/status Code I Explanation I 

~-----~-----~-:~~~:::~~~-------------~----------------------------------------------~ (' o 1 Wrong-length record Undefined-Length Records: This bit is set un I 
(continued) under the following conditions: I 

I 
• A READ KEY or WRITE KEY is issued, and the I 

keylength differs from the length as I 
specified by KEYLEN=n. No data is I 
transferred. I 

I 
• A READ KEY is issued, and the data length is~ 

greater than the maximum data size (BLKSIZE 
minus KEYLEN, or BLKSIZE minus the value of 
KEYLEN plus 8 if AFTER=YES was specified). 
IOCS supplies the actual data length of the 
record read in the RECSIZE register. 

• A READ ID is issued, and the record length 
is greater than the maximum record length 
(BLKSIZE, or BLKSIZE minus 8 if AFTER=YES 
was specified). IOCS supplies the actual 
data length of the record read in the 
RECSIZE register. 

• A WRITE (KEY, ID, or AFTER) is issued, and 
the data length of the record (loaded into 
the RECsIZE register) is greater than the 
maximum data size (BLKSIZE minus KEYLEN" or 
BLKSIZE minus the value of KEYLEN plus eight 
if AFTER=YES was specified) '. The length of 
the record written is equal to the maximum 
data size. 

• A WRITE KEY is issued and the data length 
(loaded into the RECSIZE register) is 
greater than specified in the count field of 
the DASD record on disk. The original 
record positions are filled~ and the 
remainder of the updated record is truncated 
and lost. 

• A WRITE ID is issued, and the record length 
is greater than specified in the count field 
of the DASD record on disk. The original 
record positions are filled, and the 
remainder of the updated record is truncated 
and lost. 

Note: If an updated record is shorter than 
the original record, it is padded with 
binary zeros to the length of the original 
record. The wrong-length record bit is not 
set on. _____ i _____ i _________________________ i _________________________________________________ J 

Figure 30. ERRBYTE Error status Indication Bits (Part 2 of 5) 

148 DOS Supervisor and I/O Macros 



r-----T-----T-------------------------~------------------------------------------------, 
IByte I Bit I Error/status Code I Explanation I 
I I I Indication I I 
~-----+-----+-------------------------+-------------------------------------------------~ 

o 1 Wrong-length record I Variable-length records: This bit is set on I 
(continued) I under the following conditions: I 

I I 
I • When a READ is issued and the LL count is I 

greater than the maximum value specified by I 
the BLRSIZE operand, the wrong-length record 
indicator is set on. 

• When a nonformattirig WRITE is issued and the 
record is larger than the physical record on 
the device, the record is written with the 
low-order bytes truncated and the 
wrong-length record indicator is set ON. 
The indicator also is set ON if the record 
is shorter than the physical record, but the 
low-order bytes of the physical record are 
padded with binary zeros. 

• When a formatting WRITE is issued and the LL 
count is greater than the maximum specified 
block size, the record is written with the 
low-order bytes truncated and the 
wrong-length record indicator is set on. 

spanned Records: This bit is set on under the 
following conditions: 

• When a READ is issued and the logical record I 
size is larger than the value specified, I 
only the number of bytes specified by I 
BLKSIZE is read and the wrong-length I 
indicator is set on.. I 

I 
• When a non formatting WRITE is issued and thel 

record length is not the same length as the I 
record being processed~ the wrong-length I 
record indicator is set ON. If the length I 
specified is longer than the record being I 
processed, the low-order bytes are ignored. I 
If the length specified is less than the I 
record being processed, it is padded with I 
binary zeros. I 

• If a formatting WRITE is issued, the 
wrong-length indicator is set ON when the 
logical record size is larger than the size 
specified with BLKSIZE and the record is 
truncated to the size specified with 
BLKSIZE. 

• If the first physical record encountered is 
not an only or first segment, the 
wrong-length indicator is set on. The 
no-record-found indicator is also set ON. 

• If another first segment is encountered 
after the first segment is read out before 
middle or last segment~ the wrong-length 

I 
I 
I 
I 
I' 
I 
I 
I 
I 
I 
I 
I 
I 
I 

al 
I 

indicator is set ON. I _____ ~ _____ ~ _________________________ ~ _________________________________________________ J 

Figure 30. ERRBYTE Error Status Indication Bits (Part 3 of 5) 

Direct Access Method (DAM) 149 



r----~-----T-------------------------T--------------~----------------------------------, 
'Byte ~ Bit, Error/Status Code , Explanation , 
, , , Indication, , 

~-----+-----+-------------------------+-------------------------------------------------~ o ,2 Nondata Transfer Error The block in error was neither read nor written. 
, If ERREXT is specified and this bit is OFF, 
, transfer took place and the problem program 
r should check for other errors in the ERRBYTE 

field. 

o 3 

4 

o 5 

o 6 

o 7 

1 o 

1 1 

1 2 

1 3 

1 4 

, , , , , , , , 

No room found 

Reference outside 
extents 

Data check in count area 

Track overrun 

End of cylinder 

Data check when reading 
key or data 

No record found 

The no-room-found indication is applicable only 
when the WRITE AFTER form of the macro is used 
for a file. The bit is set on if IOCS 
determines that there is not enough room left on 
the track to write the record. The record is 
not written. 

The relative address given is outside the 
extent area of the file. No I/O activity has 
been started and the remaining bits should be 
OFF. If IDLOC is specified, its value is set to 
9s for a zoned decimal ID or Fs for hexadecimal 
ID. 

This is an unrecoverable error. 

The number of bytes on the track exceeds the 
theoretical capacity. 

The end-of-cylinder indicatiON bit is set on 
when SRCHM is specified for READ or WRITE KEY 
and the end-of-cylinder is reached before the 
record is found. If IDLOC is also specified, 
certain conditions also turn this bit ON. For 
further information, see IDLOC under DTFDA. 

This is an unrecoverable error. 

The no-record-found indication is given when a 
search ID or key is issued and a record is not 
found. This applies" to both READ cemmands and 
WRITE commands and may be caused by: 

a. 

b. 

The record searched for does not exist in 
the file. 

The record cannot be found because of a 
machine error (that is, incorrect seek). 

For spanned record processing, if the first 
physical record encountered is net the first or 
only segment, then the no-reeord-found indicator, 

, is set on. , ___ ~_~ _____ ~ _________________________ ~ ____________________________ ~ ____________________ J 

Figure 30. ERRBYTE Error Status Indication Bits (Part 4 of 5) 

150 DOS Supervisor and I/O Macros 



r-----T-----T-------------------------T-------------------------------------------------, 
IByte I Bit I Error/Status Code I Explanation I 
I I I Indication I I 
~-----+-----+-------------------------+-------------------------------------------------~ 
I 1. 5 End of file I The end-of-file indication is applicable only I 
I I when the record to be read has a data length of I 
I I zero. The ID returned in IDLOC, if specified, I 
I I is hexadecimal FFFFF. The bit is set only after 
I I -all the data records are processed. For 
I I example, in a file having n data record (record 
I I n + 1 is the end-of-file record), the 
I end-of-file indicator is set ON when the user 
I reads the n + 1 record. This bit is also posted 
I when an end of volume marker is detected. It is 
I the user's responsibility to determine if this 
~ bit means true EOF or end of volume on a SAM 

file. 

1 6 End of volume The end-of-volume indication is given in 
conjunction ~ith the end-of-cylinder indication. 
This bit is set ON if the next record ID (n + 1~ 
0, 1) that is returned on the end of the 
cylinder is higher than the volume address 
limit. The volume address limit is cylinder 
199, head 9, for a 2311 disk pack cylinder 199, 
head·19, for a 2314 or 2319 disk pack, and 
subcell 19, strip 5, cylinder 4~ head 19 for a 
data cell. These limits allow for the reserved 
alternate track area. 

If both the EOC and EOV indicators are set 
on, the ID returned in IDLOC is FFFFF. 

1 7 Not used _____ ~ _____ ~ _________________________ ~ _________________________________________________ J 

Figure 30. ERRBYTE Error Status Indication Bits (Part 5 of 5) 

r-----------------------------------------, 
I HOLD=YES I L _________________________________________ J 

This operand is specified only if the track 
hold function is specified: 

• At system generation time, or 

• Included in the DAMOD macro, or 

• Use when the file is referenced. 

If the SRCHM operand is used, only the 
first track laCS seeks is protected. 

When a READ is issued while processing 
spanned records, the track containing the 
first segment is held until the user 
releases it. If a formatting WRITE macro 
is issued, DAMOD reads ahead to determine 
if enough space exists to write the record. 
All the tracks required to write the record 
are held and then released, one by one, as 
they are written. 

r-----------------------------------------, 
IIDLOC=Name I L _________________________________________ J 

This operand is included if the programmer 
wants IOCS to supply the ID of a record 
after each READ or WRITE (ID or KEY) is 
completed. The symbolic name of a record 
reference field (in which laCS is to store 
the ID) is specified after the = sign in 
this operand. WAITF should be used before 
referencing this field. 

laCS supplies the ID in the same form 
used in the SEEKADR location. The ID 
forms, given in Figure 28, are supplied in 
IDLOC in the same format except when 
physical IDs are used. Only the l~st five 
bytes of the physical ID (cchhr> are 
supplied as compared with the complete 
relative ID including preceding zeros. 

laCS supplies the ID of the record 
specified in the READ/WRITE instruction, or 
the ID of the next record location. The 
following may OCCUr when this option is 
taken. 

Direct Access Method (DAM) 151 



• Whenever a READ or WRITE ID (or if a 
READ or WRITE REY without SRCHM) is 
issued, the address returned is that of 
the next record location. 

Exception: When the record to be read 
or written is the last record of the 
cylinder, an end-of-cylinder indication 
is posted in ERRBYTE1, bit 2, and the 
address returned is that of the first 
record of the next cylinder.. If, in 
addition, the end-of-volume indication 
is posted, the address returned in . 
IDLOC is all 1 bits. 

• Whenever a READ or WRITE REY with SRCHM 
is specified, the address returned is 
that of the same record location. 

Exception: When the record is not 
found, an end-of-cylinder condition is 
posted and the information returned is 
unpredictable. 

If a READ or WRITE (ID or REY) is issued 
for spanned records, the address returned 
is that of the first segment of the record 
whose IDLOC is requested. The ID (physical 
ID only), is located in the fi.rst five 
bytes of the count field in the IOAREA1 
area. This information also appears in the 
I/O area on successful completion of a 
WRITE AFTER, WAITF macro sequence. 

For more information on the SRCHM 
specification see Figure 31 .• 

ID SUPPLIED 
(Normal I/O Completion) 

MACRO INSTRUCTION 
With SRCHM Without SRCHM 

READ Filename, KEY Same record Next record 

READ Filename,lD Next record Next'record 

WRITE Filename, KEY Same record Next record 

WRITE Filename,lD Next record Next record 

WRITE Filename, RZERO 
Dummy Dummy 
Record Record 

WRITE Filename,AFTER[, EOF] 
Dummy Dummy 
Record Record 

Figure 31. ID supplied After a READ or 
WRITE Instruction 

If IDLOC is specified and end of 
cylinder is reached on a 2311, 2314, or 
2319 file, the cylinder number is increased 
by 1, the head number is set to 0, and the 

152 DOS Supervisor and I/O Macros 

record number is set to 1.. On a 2321 .file, 
an end-of-cylinder condition with IDLOC 
specified causes the high-order position of 
the head number to be increased by 1, the' 
low-order position of the head number ~s 
set to 0, . and the record number is set to 
i.. An overflow from the high-order 
position of the head number causes the 
low-order position of the cylinder number 
to be increased by 1, and the high-order 
position of the head number is set to O. 
The low-order position of the head number 
is 0, and the record number is set to 1. 
Subsequent overflows of address locations 
increase the next higher'positions of the 
addresses. It is the user's responsibility 
to check the validity of the address 
returned in IDLOC .• ) When using relative 
addressing with IDLOC specified, all user 
extents (except the last extent for each 
file) should end on cylinder boundaries~ 

r-----------------------------------------, I IOAREA1=Name I L _________________________________________ J 

This operand must be included to specify 
the symbolic name of ·the input/output area 
used by the file. The input/output 
routines transfer records to or from this 
area. The specified name must be the same 
as the name used in the DS instruction that 
reserves this area of main storage. 

The main-storage input/output area must 
be large enough to contain the maximum 
number of bytes required in any READ or 
WRITE instruction issued for a file in the 
problem program. This is affected by the 
length of record data areas, and by the use 
of the count and key areas as follows: 

• If undefined records are specified in 
the DTFDA entry RECFORM, the area must 
provide space for the largest data 
record that will be processed. 

• If variable or spanned records are 
specified in the DTFDA entry RECFORM., 
the area must be large enough to 
contain the largest logical record in 
the file, plus an additional eight 
bytes for ·control words. The user must 
place the first byte of his record in 
the ninth byte of the I/O area for all 
wr~te operations. He must also place 
the record length in the length field, 
bytes 4 and 5 of the I/O area. 

When a READ macro is issued, the record 
length is in bytes 4 and 5 of the I/O 
area and the first byte of the record 
is in the ninth byte of the I/O area. 

• If the DTFDA entry REYLEN is specified 
and any instructions that read or write 
the key area of a record are issued in 



the problem program, the input/output 
area must provide room for the key area 
as well as the data area. The length 
needed for the key is the length 
specified in KEYLEN. 

• If any write instructions that transfer 
the count area to a disk record are 
issued in the problem program, eight 
bytes of main storage must be allotted 
at the beginning of the I/O area. In 
these eight bytes, IOCS constructs the 
count field to be transferred to disk~ 

Whenever a WRITE instruction is issued, 
IOCS assumes that the input/output area 
(see Figure 27) contains the information 
implied by the type of instruction that is 
being executed (Figure 32). 

I/o AREA CONTENTS 
MACRO I NSTRUCTIO N 

With KEYLEN Without KEYLEN 

READ Filename,KEY Data 

READ Filenamerl D Key and Data Data 

WRITE Filename,KEY Data 

WRITE Filename,ID Key and Data Data 

WRITE Filename,RZERO Anything Anything 

WRITE Filename,AFTER[, EOFj Count, Key, Count and Data 
and Data 

Figure 32. I/O Area Requirements for DAM 

r-----------------------------------------, 
IKEYARG=Name I L _________________________________________ J 

This operand.must be included" if records 
are identified by key. That is, if the 
macro instruction (READ filename, KEY) or 
(WRITE filename, KEY) are issued in the 
problem program, this entry and the 
corresponding KEYLEN operand is required. 
KEYARG specifies the symbolic name of the 
key field in which the user supplies the 
record key for the READ/WRITE routines. 

The KEYARG operand is required for 
formatting WRITE (WRITE filename AFTER) 
operations for files containing keys. It 
is required also when READ filename ID is 
specified and if KEYLEN is not zero. When 
record reference is by key, IOCS uses this 
specification at assembly time to construct 
the data address field of the CCW for 
search commands. 

r-----------------------------------------, 
IKEYLEN=n I L ______________________________________ .. ___ J 

This operand must be included if record 
reference is by key or if keys are read or 
written. It specifies the number, n~ of 
bytes in each key. All keys must be the 
same length. If this card is omitted" IOCS 
assumes a key length of zero. 

If there are keys recorded on DASD and 
this entry is absent, a WRITEID or READID 
reads or writes the data portion of the 
record. 

When record reference is by key, IOCS 
uses this specification to construct the 
count field of the CCW for this file. IOCS 
also uses this in conjunction with IOAREA1 
to determine where the data field in the 
main-storage I/O area is located (see 
IOAREA1). 

r-----------------------------------------, 
ILABADDR=name I L _________________________________________ J 

The user may require one or more user 
labels in addition to the standard file 
label. If so, he must include his own 
routine to check, or write, the labels. 
The symbolic name of such a routine is 
specified in this entry. IOCS branches to 
this routine after it has processed the 
standard label. See writing and Checking 
User Standard Labels for a complete 
discussion of the function of the LABADDR 
rqutine. 

r-----------------------------------------, I MODNAME=name I L _________________________________________ J 

This operand specifies the name of the 
logic module that is used with the DTF 
table to process th~ file. If the logic 
module is assembled with the program, the 
MOD NAME in the DTF macro instruction must 
specify the same name as the DAMOD macro 
instruction. If this entry is omitted, 
standard names are generated for calling 
the logic module. If two DTF macro 
instructions call for different functions 
that can be handled by a single module, 
only one module is called. 

Direct Access Method (DAM) 153 



r-----------------------------------------, 
IRDONLY=YES I L _________________________________________ J 

This operand is specified if the DTF is 
used with a read only module. Each time a 
read only module is entered, register 13 
must contain the address of a 72-byte 
doubleword aligned save area. Each DTF 
should have its own uniquely defined save 
area. Each time an imperative macro 
(except OPEN(R), LBRET, SETL, or SETFL) is 
issued using a particular DTF, register 13 
must contain the address of the save area 
associated with that DTF. The fact that 
the save areas are unique for each task 
makes the module reentrant (that is, 
capable of being used concurrently by 
several tasks). For more information see 
Shared Modules and Files. 

If an ERROPT or WLRERR routine issues 
I/O macro instructions using the same read 
only module that caused control to pass to 
either error routine, the problem program 
must provide another save area. One save 
area is used for the normal I/O, and the 
second for I/O in the ERROPT or WLRERR 
routine. Before returning to the module 
that entered the ERROPT routine: register 
13 must be set to the save area address 
originally specified for that DTF. If the 
operand is omitted, the module generated is 
not reenterable and no save area need be 
established,. 

r------------------------------·,·----------, 
IREADID=YES I L _________________________________________ J 

This operand must be included if any input 
records are specified by ID (identifier) in 
the problem program. That is, whenever the 
macro instruction READ filename,ID is used 
in the program, this entry is required. 

r-----------------------------------------, 
IREADKEY=YES I L _________________________________________ J 

This operand must be included if any input 
records are specified by key in the problem 
program. That is, whenever the macro 
instruction READ filename,KEY is used in 
the program, this entry is required. 

154 DOS Supervisor and I/O Macros 

r-----------------------------------------, 
IRECFORM={FIXUNBISPNUNBIUNDEFIVARUNB} I L _________________________________________ J 

This operand specifies the type of records 
in the input, or output, file. Either of 
the following specifications may be entered 
immediately after the = sign: 

FIXUNB 

SPNUNB 

UNDEF 

VARUNE 

For fixed-length records. All 
records are co'nsidered unblocked 
in the DAM method. If the user 
wants blocked records, he must 
provide his own blocking and 
deblocking. 

For spanned records. This 
specification is for unblocked 
variable length logical records of 
less than 32,768 bytes per record. 

For undefined records. This 
specification is required only if 
the records are not fixed length. 

For format V (variable length) 
records. This specification is 
for unblocked variable length 
records. 

r-----------------------------------------, 
IRECSIZE=(r) I L _________________________________________ J 

This operand must be included if undefined 
records are specified (RECFORM=UNDEF). It 
specifies the number (r) of the 
general-purpose register that contains the 
length of each individual input or output 
record. This may be any register 2-12. 

Whenever each undefined record is read, 
ICCS supplies the length of the data area 
for that record in the specified register. 

When an undefined record is written in a 
file, the programmer must load the length 
of the data area of the record (in bytes) 
into this register, before he issues the 
WRITE instruction for the record. IOCS 
adds the length of the key when required. 

When records are written in the file 
(AFTER specified in the WRITE instruction), 
IOCS uses the length to construct the count 
area written on DASD. IOCS adds the length 
of both the count and the key when 
required. 



r-----------------------------------------, 
I RELTYPE={DECI BEX} I L _________________________________________ J 

This operand specifies whether the zoned 
decimal (DEC) or hexadecimal (HEX) form of 
the relative ID is being used. When 
RECFORM=FIXUNB, VARUNB, or UNDEF, then 
RELTYPE should only be supplied if the 
DSKXTNT operand (relative ID) is specified. 
If omitted, a hexadecimal relative ID is 
assumed. However, if DSKXTNT is also 
omitted, a physical ID is assumed in the 
SEEKADR and IDLOC addresses. 

When RECFORM=SPNUNB, RELTYPE must be 
specified when relative addressing is used. 
If RELTYPE is omitted, a physical ID is 
assumed in the SEEKADR and IDLOC addresses. 

r-----------------------------------------, 
ISEEKADR=name I L _________________________________________ J 

This operand must be included to specify 
the symbolic name of the user's 
track-reference field. In this field, the 
user stores the track location of the 
particular record read or written. The 
READ, WRITE, and CNTRL routines refer to 
this field to determine which volume and 
which track contains the desired record. 
Whenever records are to be located by 
searching for a specified ID, the 
track-reference field must also contain the 
number of the record on the track. See 
Figure 28 for the types of track reference 
fields that can be used. 

r--------------~--------------------------, 
ISEPASMB=YES I L _________________________________________ J 

This operand must be included if the DTF is 
assembled separately. This causes a CATALR 
card with the filename to be punched ahead 
of the object deck and defines the filename 
as an entry point in the assembly. 

r-----------------------------------------, 
ISRCHM=YES I L _________________________________________ J 

If input/output records are identified by 
key, this entry may be included to cause 
IOCS to search multiple tracks for each 
specified record. The instruction (READ 
filename, KEY) or (WRITE filename, KEY) 
searches the track specified in the 
track-reference field and all following 
tracks in the cylinder, until the record is 
found or the end of the cylinder is 
reached. If the logical file ends before 
the end of the cylinder and the record is 
not found, the search continues into the 

next file, if any, on the cylinder. EOC, 
instead of NRF, is indicated. Without 
SRCHM=YES, each search is confined to the 
specified track. 

r-----------------------------------------, 
ITRLBL=YES I L _________________________________________ J 

This operand, if specified with the LABADD~ 
operand, indicates that user standard 
trailer labels are to be read or written 
following the user standard header labels 
on the user label track. Both operands 
must be specified for trailer label 
processing. For more information on 
processing labels, see the Label Processing 
section. 

r-----------------------------------------, 
I TYPEFLE= {INPUT I OUTPUT} I L _________________________________________ J 

This operand must be included to indicate 
how standard volume and file labels are to 
be processed: 

INPUT Standard labels are to be read. 

OUTPUT Standard labels are to be wri,tten. 

Because logical files on DASD must 
always contain labels, this entry is always 
required. 

r-----------------------------------------, 
IVERIFY=YES I L_· ________________ · ________________________ J 

This operand is included if the user wants 
to check the parity of disk records after 
they are written. VERIFY is always assumed 
when 2321 records are written. If this 
operand is omitted, any records written on 
2311, 2314, or 2319 are not verified. 

r-----------------------------------------, 
IWRITEID=YES I L _________________________________________ J 

This operand must be included if the DASD 
storage location for writing any output 
record or updating an input file is 
specified by a record ID (identifier). 
That is, whenever the macro instruction 
(WRITE filename,ID) is used in the program, 
this operand is required. 

Direct Access Method (DAM) 155 



r-----------------------------------------, 
IWRITEKY=YES I L _______ ~ ________________________________ J 

This operand must be included if the DASD 
location for writing any output record or 
updating an input file is specified by 
record key. That is, whenever the macro 
instruction WRITE filename,KEY is used in 
the program, this operand is required. 

156 DOS Supervisor and 110 Macros 

r-------------------------------------~---, 
IXTNTXIT=name I L _________________________________________ J 

This operand is included if tbe programmer 
wants to process label extent information,. 
It specifies the symbolic name of toe 
user's XTNTXIT routine. During an OPEN, 
IOCS branches to the user" s routine after 
each specified extent is checked and 
validated. Upon entering the user's 
routine, IOCS stores in register 1 the 
address of a 14-byte field that contains 
the label extent information (in binary 
form). 

Bytes Contents 

o Extent type code (as specified 
in the extent statement) . 

1 Extent sequence number 

2-5 Lower limit of the extent (cchh) 

6-9 Upper limit of the extent (cchh) 

10-11 Symbolic unit number (in 
hexadecimal format) 

12 Old bin number 

13 Present bin number of the extent 
(B2) 

The user returns to IOCS by use of the 
LBRET macro instruction. 



IBM IBM Sy.tem/360 Assembler Coding FOrm 

PROGR .... M I PUNCHING l CUPHIC 1 J 'ACE' 0. 

P~OCRAMMllt CAIE 
I INSTRUCTIONS I PUNCH 1 1 

c,"o fl(ClOAPPLIES TO 

sr .... 'fMcNT ~ ~ Idlnlifi,otion-
No., Oporo.i_ O~~O"d Com .... " •• O-::J Seq .... "C. 

I , /0 " " " 30 " " " '0 " .0 ., 71. Z a 80 

Req'd .X X x x x X X DT FDA Name of direct access file on disk. For OOS, OTFOA requlr .. OAMOO. 1 1 1 1 X" " R eq'd. 

BL KSI ZE .. n n n n • Length of ona I/O area, In bytas. X" " 

DE VI C E .. n n n n • (231" 2314, or 23211 for DOS; If omitted, 2311 I. assumed • 
X" " 

ER RB VT E = X X X X X X X X. Nama of 2· byta flald for errorlst.atu. codes sUpplied by 10CS. 
X" " 

10 AR EA 1 = X X X X X X X X • Nama of I/O area. 1 1 1 1 X" " 

S E E K AD R= X X X X X X X X • Name of track· reference field. 
X" " 

TV P E F L E = X X X X X X • (INPUT or OUTPUT) I I 1 
X" " - - -

Opt'l AF TE R = VE S. WRITE filename AFTER or WRITE filename RZERO macro Is used for this fila. X " Opt'l. 

Cp NT RO L= VE S. CNTR L macro Is used for this fila. 
X" " 

DE VA DO R= SV S n n n • SVmbOlic, unit required only when no extant statement is provided. ! 
X" " 

ER RE XT =V E S • Nondata transfer errors are to be Indicated In EARBYTE. ~ X" " 
FE OV 0= VE S. Support for sequential disk end of yolume records Is desired. X" 

HO LD =V E S • Employ tha track hold function. X" 

OS KX TN T = n • Indicates the number (nJ of extent for a relative 10. 
X" " 

10 LO C = X X X X X X X X • Name offield In which IOCS stores the 10 of. record. 
X" " 

IK E VA RG = X X X X X X X. Nama of key field If READ filename, KEY or WRITE fllenama, KEY macro Is used for this file. 
X" " 

IK E VL EN = n n n Number of bytes In record key If keys are to be processed. If omitted, ICCS assumes zero (no key). 
X" " 

LA BA DO R= X X X X X X X X • Name of user's routine to check/write user l1mels. X" " 

MO ON AM E = X X X X X X X X • Name of OAMOO logic module for this OTF. If omitted, 10es generat .. standard name. 
X" " 

RD ON LV =V E S • Generate a read only module. Requires a module save·area for each task using the module. 
X" " 

RE AD 10 =V E S • READ filename, 10 macro Is used for this file. 1 X" 

RE AD K E V= VE S. READ filename. KEY macro Is used for this file. X" 

RE C F OR M= X X X X X X • (FIXUNB, SPNUNB, VARUNB, or UNOEFI If omitted, FIXUNB is assumed. 
X" " 

I 1 1 1 1 1 1 1 I 1 I I I I 1 1 1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Figure 33. DTFDA Macro (Part 1 of 2) 

IBM IBM System/360 As.embler Coding Form 

1-____________________ ,...-______ --11 PUNCHING 1 CRAPHIC 1 1 1 
I INSTRUCTIONS t PUNCH t I I CARD fLECTA APPLIES TO 

~~~ __________________________________ L_~ _____ ~----~---~-------~-~~L-~-~--~-~-~--__ ~~~ ____ ~ 
71 * ~ § Id.;::~:~. Operation

Opt'l. H-+-+-+-I-+-++-II-+++-I-++R4-=-Ef.:C+S=+=I-j.Z:::.f.=E+=.j-:(~n+n4.!..)+'~+-I-++-+-Regt-l-tst_ert-n-tum_be1-r..,l~f 1-RE...,C_F0"j-R-;Mr-"-r-U-;Nr-0-r-EF_'r-t-+-1f-1+-IH-+-t-H-+-t-~H--t-+-H-++H-++X+"-t-"+-H-++HOPt'L
R E LTV P E = X X X • (DEC or HEX I Indicates decimal or hexadecImal relative addressing. X " "

S E pIA S M B = V E S , OTFOA Is to be essembled seperetely. 1 I 1 1 X " "

S R C H M = V E S • Saan:h multlpl. track .. If record reference II by key. X "

T R L B L = V E S • Pro~ traIler label~ LABAOOR must ba specified. I X

V E R I F V = V E S • Check disk records oftar they ere written. For ~OS: DEVICE" 2321, YES Ilossumed,l X "

~ R I TEl 0 = V E S • WRITE filename, 10 macro Is used for this fil.. 1 X ,; "

~ R I T E K V - V E S • WRITE filename, KEY macro II used for thll fil .. 1 X ,; 1/

X TNT X I T = X X X X X X X X Nama of user'. routine to process extent Information. " "

III I I I 1 I I I I 1 1 I III J

11111111111111 nmrrrn 11111 RlIIITITIl iii i 1111J11til1111fmml I IIETIIfnrrrn
• Header and each detail card. except the last one In each set, must have a continuation punch In column 72. Also

each detail card. except the last one. must contain a comma immediately after the operand. Space is allowed for the
longest operand plus the comma. If a smaller operand is used. the comma should be moved over accordingly. In the
last detail card of a set. the comma position must be blank.

Figure 33. DTFDA Macro (Part 2 of 2)

t General registers 2 .. 12. written in parentheses; for example: (12) •

Direct Access Method (DAM) 157

DIRECT ACCESS MODULE (DAMOD)

A set of DAMOD entries is included for each
DAM logic module necessary to support each
DTFDA macro in a particular problem
program. The logic modules are described
by a DAMOD header entry and a series of
keyword parameters.

The header entry contains DAMOD in the
operation field and may contain a user
module name in the name field. The
parameters are explained here and shown in
Figure 34.

Name Operation Operand Remarks

[ModnameJ DAMODl Must be included.
DAMODV2

AFTER =YES When WRITE with the
operand AFTER or RZERO is
used.

ERREXT =YES Required if nondata transfer
error conditions are to be
indicated in the ERRBYTE
status bits.

FEOVD=YES Required if support for
sequential disk end of
volume records is desired.

HOLD =YES Required if the track hold
function is to be used.

IDLOC =YES Required if IDLOC specified
in DTFDA.

RDONLY=YES Required if a read only
module is to be generated.

RECFORM= Describes record format.

rXUNBI l UNDEFl
VARUNB~
SPNUNB

RELTRK =YES Required if the module is to
process relative identifiers
along with physical
identifiers.

SEPASMB =YES If the module is assembled
s~parately •

1 - DAMOD is for fixed length unblocked and undefined records.
2 - DAMODV is for variable length unblocked and spanned unblocked

records.

Figure 34. DAMOD Macro

158 DOS supervisor and 1/0 Macros

r---,
IAFTER=YES I
L __________ ~------------------------------J

This operand generates a logic module that
can format write (count, key, and data).
It performs the functions required by WRITE
filename,AFTER and WRITE filename,RZERO.
The module al.so processes any files in
which the AFTER operand is not specified in
the DTF.

r---, I HOLD=YES I L ___ J

This operand is specified if the track hold
function is:

• Specified at system generation time,

• Included in the DTFDA macro,

• Referenced.

For more information see the HOLD
operand under the DTFDA macro.

r---,
IERREXT=YES I L ___ J

Include this operand if nondata transfer
error conditions are indicated in the
ERRBYTE status indication bit.

r---,
IFEOVD=YES I L ___ J

This operand is specified if coding is to
handle end-of-volume records. It should be
specified only if the user is reading a
file built using sequential disk and the
FEOVD macro.

r------------------~----------------------,
IIDLOC=YES I L ___ J

This operand generates a logic module that
returns record identifier (ID) information
to the user. The module also processes any
files in which the IDLOC operand is not
specified in the DTF.

r---,
\RDONLY=YES \ L ___ J

" '

This operand generates a read only module.
RDONLY=YES must be specified in the DTF.

r---,
IRECFORM={UNDEFIFIXUNBISPNUNBIVARUNB} I L ___ J

If UNDEF is specified, the logic module
generated can handle both unblocked fixed
length and undefined records. If the entry
is omitted, or if FIXUNB is specified, the
logic module gener.ated can handle only
fixed-length unblocked records. If SPNUNB
is specified, the module can handle both
format V (variable length) and spanned
format records. If VARUNB is specified,
the module can handle only format V
records.

r---,
IRELTRR=YES I
L __________ ~------------------------------J

This operand generates a logic module that
can process with both physical and relative
identifiers. If the operand is omitted,
the module can process only with physical
identifiers.

r---,
ISEPASMB=YES I L ____________ ..; ___________________________ J

This operand must be included if the logic
module is assembled separately. This
causes a CATALR card with the module name
(standard or user) to be punched ahead of
the object deck.

Recommended Module Name List for DAMOD

Each name begins with a 3-character prefix
(IJI) and consists of a 5-character field
corresponding to the options permitted in
the generation of the module.

DAMOD name = IJIabcde

a = F RECFORM=FIXUNB
= B RECFORM=UNDEF (handles both UNDEF and

FIXUNB)
= S RECFORM=SPNUNB
= V RECFORM=VARUNB

b = A· AFTER=YES
= Z AFTER is not specified

c = E IDLOC=YES and FEOVD=YES
= I IDLOC=YES
= R FEOVD=YES
= Z neither is specified

d = H ERREXT=YES and RELTRK=YES
= P ERREXT=YES
= R RELTRK=YES
= Z neither is specified

e = W HOLD=YES and RDONLY=YES
= X HOLD=YES
= Y RDONLY=YES
= Z neither is specified

subset/Superset DAMOD Names

The following chart shows the sub setting
and supersetting allowed for DAMOD names.
Five parameters allow supersetting. For
example, the module IJIBAIZZ is a superset
of the module with the name IJIFAZZZ. See
subset/Superset: (Module Names).

r---,
I + + + + + I
I I JIB A E H W I
I F ZIP X I
I + Z Z Z I
I S + + + I
I V E H W I
I R R Y I
I Z Z Z I
I I
I+subsetting/supersettingpermitted. I L ___ J

Initialization - OPEN(R) Macro

After the file is defined with the DTFDA
macro, the OPEN(R) macro can initialize the
file, labels can be processed using the
LBRET macro (see Label Processing), and the
CNTRL" READ, WAITF, and WRITE macros can be
.used to process the file. When processing
is complete, the CLOSE(R) macro instruction
can deactivate the file.

r-----T-----------------------------------,
lOp I operand I
~-----+-----------------------------------~
Ifor self-relocating programs I
I I I
IOPENRI{filenamel} I
I I (rl) I
I I I
I I [,{ filename2} ••• , {filenamen}] I
I I (r 2) (rn) . I
I I I
~-----+-----------------------------------~
Ifor programs that are not self-relocating I
I I I
IOPEN I{filenamel} I
I I (rl) I
I I I
I I [,{ filename2} ••• , {filenamen}] I
I I (r2) (rn) I L _____ ~ ___________________________________ J

Direct Access Method (DAM) 159

Note: To write the most efficient code
(in a multiprogramming environment), we
recommend that the self relocating form
of OPEN be used. (See also
Appendix G.)

When the operation OPEN is used;, the
symbolic address constants that OPEN
generates from the parameter list are not
self-relocating. When OPENR is specified,
the symbolic address constants are
self-relocating.

Self-relocating programs using LIOCS
must use the OPENR macro instruction to
activate all files, including
printer-keyboard files. The OPENR macro,
in addition to activating files for
processing, relocates all address constants
(except zero constants) within the DTF
tables specified in the operand field(s) in
register notation. If symbolic notation is
used, the user needs to establish
addressability through a base register.

If OPEN attempts to activate a logical
IOCS file (DTF) whose device is unassigned,
the job is terminated. If the device is
assigned IGN, the OPEN(R) does not activate
the file and turns ON the DTF byte 16, bit
2, to indicate the file is not activated.

The symbolic name of the file (DTF
filename) is entered in the operand field.
A maximum of 16 files may be opened with
one OPEN (or OPENR) by entering the
filenames as additional operands.
Alternately, the user can load the address
of the DTF filename in a register and
specify the register using ordinary
register notation. The high-order 8 bits
of this register must contain zeros. A
filename may be preloaded into any
register, 0-15.

Whenever an input/output DASD file is
opened and the user plans to process
user-standard labels (UHL only), he must
provide the information for checking or
building the labels. If this information
is obtained from another input file, that
file must be opened, if necessary, ahead of
the DASD or tape file. Tq do this, specify
the input file ahead of the DASD file in
the same OPEN or issue a separate OPE,N
preceding the OPEN for the file.

If an output file is created using the
direct access method of processing, all
volumes used must be mounted at the same
time, and all the volumes are opened before
the processing is begun.

For each volume, OPEN checks the
standard VOLl label and checks the extents
specified in the extent cards:

160 DOS Supervisor and 1/0 Macros

1. The extents must not overlap,.

2. Only type-l extents can be used,.

3. If user standard header labels are
created, the first extent must be at
least two tracks long~

OPEN checks all the labels in the VTOC
to ensure that the created file does not
destroy an existing unexpired file. OPEN
then creates the .standard label(s) for the
file and writes the label(s) in the VTOC.

If the user wishes to create his own
user labels (UHL) for the file, he must
include the DTF entry LABADDR. OPEN
reserves the first track of the first
extent for these header labels and gives
control to the user's label routine.

If the XTNTXIT entry is specified, OPEN
stores the address of a 14-byte extent
information area in register 1. (See DTFDA
for the format of this area.) Then, OPEN
gives control to the user" s extent routine.
The user can save this information for use
~n specifying record addresses.

After the user labels are written~ the
next volume is opened,. When all the
volumes are open, the file is ready for
processing. If the DASD device is file
protected, all extents specified in extent
cards are available to the user.

Direct access input processing requires
that all volumes containing the file be
on-line and ready at the same time. All
volumes used are opened before any
processing can be done.

For each volume, OPEN checks the
standard VOLl label and then checks the
file label(s) in the VTOC. OPEN chebks
some of the information specified in the
extent cards for that volume. If LABADDR
is specified, OPEN makes the user standard
header labels available one at a time for
checking.

If the XTNTXIT entry is specified~ OPEN
stores the address of a 14-byte extent
information area in register 1. (See DTFDA
for the format of this area.) Control is
then given to the user's extent routine.
The user can save this information for use
in specifying record addresses. Then, the
next volume is opened. After all the
volumes are open, the file is ready for
processing. If the DASD device is file
protected, all extents specified in extent
cards are available for writing.

LBRET Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+-----~------------------~ I [namellLBRET 1{1,2,3} I L ______ ~ _____ ----~ ________________________ J

The LBRET macro is issued in user
subroutines when the user has completed
processing and wishes to return control to
IOCS. LBRET applies to subroutines that
write or check DASD user standard labels.
The operand used depends on the function to
be performed. See Label Processing.

CHECKING USER STANDARD DASD LABELS: IOCS
passes the labels to the user one at a time
until the maximum allowable number has been
read and updated, or until the user
signifies he wants no more. In his label
routine, the user issues LBRET 3 if he
wants IOCS to update (rewrite) the label
read and pass him the next label. LBRET 2
is issued if he simply wants IOCS to read
and pass him the next label. If an
end-of-file record is read when LBRET 2 or
LBRET 3 is issued, label checking is
automatically ended. If the user wants to
eliminate the checking of one or more
remaining labels, he uses LBRET 1.

WRITING USER STANDARD DASD LABELS: The
user builds the labels one at a time and
uses LBRET to return to IOCS to write the
labels. LBRET 2 is used if the user wants
to have control return to him after IOCS
writes the label. If, however, IOCS
determines that the maximum number of
labels are written, label processing is
terminated. LBRET 1 is used if the user
wishes to stop writing labels before the
maximum number are written.

CHECKING DASD EXTENTS: When using the
direct access method, the user can process
his extent information. After each extent
is processed, the user should issue a
LBRET 2 to obtain the next extent. When
extent processing is complete, control
returns to IOCS by using the LBRET 1 macro.

READ Macro

r------T---------T------------------------, I Name I Operation I Operand I
~------+---------+------------------------~
I [narnel I READ I{ filename}" {KEY} I
I I I (1) ID I L ______ ~ _________ ~ ________________________ J

•••••••••••••••••••••••••••••••••••
Recommendation: To write the most
efficient code (in a multiprogramming
environment), register notation
should be used for this macro in
conjunction with the OPENR macro. If
this is done, user programs will be
self relocating, will run in any
partition of storage, and will be
more compatible with the Operating
System (OS). For additional
information on writing self
relocating code, see Appendix G.

•••••••••••••••••••••••••••••••••••
The READ and WAITF macro instructions
transfer a record from DASD storage to an
input area in main storage. The input area
must be specified in the DTFDA entry
IOAREA1.

The READ macro instruction is written in
either of two forms depending on the type
of reference used to search for the record.
Both forms may be used for records in any
one DTFDA-specified logical file if the
logical file has keys.

This macro always requires two
parameters. The first parameter specifies
the name of the file from which the record
is to be retrieved,. This name is the same
as that specified in the DTFDA header entry
for the file and can be given either as a
symbol or in register notation. The second
parameter specifies the type of reference
used for searching the records in the file_

If records in the file are undefined
(RECFORM=UNDEF), DAM supplies the data
length of each record in the designated
register in the DTF entry RECSIZE.

Record Reference by Key

If the record reference is by key (control
information in the key area of the DASD
record), the second parameter in the READ

Direct Access Method (DAM) 161

instruction must be the word KEY, and the
DTFDA entry READ KEY must be included in the
file definition.

Whenever this method of reference is
used, the problem program must supply the
desired record key to IOCS before the READ
instruction is issued. For this, the key
must be stored in the key field (specified
in the DTFDA entry KEYARG). When the READ
instruction is executed, IOCS searches the
previously specified track (stored in the
a-byte track-reference field) for the
desired key. When a DASD record containing
the specified key is found, the data area
of the record is transferred to the data
portion of the main-storage input area.

Only the specified track is searched
unless the programmer requests that
multiple tracks be searched on each READ
instruction. A search of multiple tracks
is specified by including the DTFDA entry
SRCHM in the file definition. with this
entry, the specified track and all
following tracks are searched until the
desired record is found or the end of the
cylinder is reached. The search of
multiple tracks continues through the
cylinder even though part of the cylinder
may be assigned to a different logical
file.

Record Reference by ID

If the record reference is by ID
(identifier in the count area of records),
the second parameter in the READ
instruction must be the letters ID, and the
DTFDA entry READID must be included in the
file definition.

Whenever this method of reference is
used, the problem program must supply both
the track information and the record number
in the track-reference field. When the
READ instruction is executed, IOCS searches
the specified track for the particular
record. When a record containing the
specified ID is found, both the key area
(if present and specified in DTFDA KEYLEN)
and the data area of the record are
transferred to key and data portions of the
main-storage input area.

162 DOS Supervisor and 1/0 Macros

WRITE Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I 1 1 {KEY ~I I [namellWRITE I {filename}, ID I
1 I I (1) AFTER [, EOF 1 I
I I ·1 RZERO I L ______ ~ _________ ~ _______________ ~ ________ J

Recommendation: To write the most
efficient code (in a multiprogramming
environment), register notation
should be used for this macro in
conjunction with the OPENR macro. If
this is done, user programs will be
self relocating, will run in any
partition of storage, and will be
more compatible with the Operating
system (OS). For additional
information on writing self
relocating code, see Appendix G.

The KEY, ID, or AFTER form of the
instruction transfers an output record from
main storage to DASD storage. The output
area must be specified in the DTFDA entry
IOAREA1, and the WAITF macro must be used .•

The first parameter specifies the
symbolic name of the file to which the
record is transferred. This name is the
same as the one specified in the DTFDA
header entry for the file and can be given
either as a symbol or in register notation.
The second parameter specifies the type of
reference that is used to find the proper
location to write the output record. The
third parameter is optional and applies
·only to the WRITE filename,AFTER form of
the macro instruction.

The WRITE filename,AFTER,EOF form of the
macro instruction writes an end-of-file
record (a record with a length of zero) on
a specified track after the last record on
a track. The WRITE filename,RZERO resets
the capacity record of a specified track to
its maximum value and erases this track
after record zero.

If records in the file are undefined
(RECFORM=UNDEF), the programmer must
determine the length of each record and
load it in a register for IOCS use before
he issues the WRITE instructions for that
record. The register for this purpose must
be specified in the DTFDA entry RECSIZE.

Record Reference by Key

If the DASD storage location for writing
records is determined by the record key
(control information in the key area of the
DASD record), the word KEY is entered as
the second parameter of the WRITE macro
instruction. Also the DTFDA entry WRITEKY
must be included in the file definition.

Whenever this method of reference is
used, the problem program must supply the
key of the desired record to laCS before
the WRITE instruction is issued. The key
must be stored in the key field (specified
by the DTFDA entry KEYARG). When the WRITE
instruction is executed, laCS searches the
previously specified track (stored in the
track-reference field) for the desired key.
When a DASD record containing the specified
key is found, the data in the main storage
output area is transferred to the data area
of the DASD record. This replaces the
information previously recorded in the data
area. The DASD count field of the original
record controls the writing of the new
record. If a record is shorter than the
original record, it is padded with zeros.
A record longer than the original record is
written only to the extent of the area
indicated in the count field on the track,
and any excess bytes are lost. laCS turns
on the wrong-length-record bit in the
error-status field if any short or long
records occur.

Only the specified track is searched
unless the programmer requests that
multiple tracks be searched on each WRITE
instruction. Searching multiple tracks is
specified by including the DTFDA entry
SRCHM in the file definition. In this
case, the specified track and all following
tracks are searched until the desired
record is found or the end of the cylinder
is reached. The search of multiple tracks
continues through the cylinder even though
part of the cylinder may be assigned to a
different logical file.

Record Reference by 10

If the DASD storage location for writing
records is determined by the record 10
(identifier in the count area of records),
the letters 10 are entered as the second
parameter of the WRITE instruction. Also,
the OTFDA entry WRITEID must be included in
the file definition.

Whenever this method of reference is
used, the problem program must supply both
the track information and the record number
in the track-reference field. When the
WRITE instruction is executed, laCS
searches the specified track for the
particular record. When the DASO record
containing the specified IO is found, the
information in the main storage output area
is transferred to the key area (if present
and specified in DTFOA KEYLEN) and the data
~ of the OASO record. This replaces the
key and data previously recorded. IOCS
uses the count field of the original record
to control the writing of the new record.
If a record is shorter than the original
record, it is padded with zeros. A record
longer than the original record is written
only to the extent of the area indicated in
the count field on the track, and any
excess 'bytes are lost. IOCS turns on the
wrong-length-record bit in the error/status
field if any long records occur. If an
updated record is shorter than the original
record, it is padded with binary zeros to
the length of the original record. The
wrong length record bit is not set on.

Record Reference: After

If a record is written following the last
record previously written on a track
(regardless of its key or 10), the second
parameter of the WRITE instruction must be
the specification AFTER. For this
operation the OTFDA entry AFTER must be
included in the file definition.

Whenever this method of reference is
used for writing records, the problem

·1 program must supply the track information
in the track-reference field. When WRITE
is executed, laCS examines the capacity
record (record 0) on the specified track to
determine the location and amount of space
available for the record. If the remaining
space is large enough, the information in
the main-storage output area is transferred
to the track in the location immediately
following the last record. The count area,
the key area (if present and specified by
OTFOA KEYLEN), and the data area are
written. laCS then updates the capacity
record. If the space remaining on the
track is not large enough for the record,
IOCS does not write the record and,
instead, sets an indication in the user's
error/status byte (specified by the DTFDA
entry ERRBYTE).

Direct Access Method (DAM) 163

Whenever a new file is built in an area
of the disk pack or da~a cell containing
outdated records, the capacity records must
first be set up to reflect empty tracks by
issuing the WRITE RZERO macro.

If one record is written on a track, and
this record is near the maximum size, the
capacity record will show a negative number
of bytes remaining on the track. For
example, on a 2311, a 3625 byte record can
be written, but the value in the capacity
record will be negative because the track
tolerance will be subtracted from the
number of bytes remaining on the track.

Record Reference: RZERO

The RZEROinstruction resets the capacity
record to reflect an empty track. The
problem program must supply, in SEEKADR,
the cylinder and track number of the track
to be reinitialized. Any record number is
valid but will be ignored. IOCS writes a
new RO with the maximum capacity of the
track (3625 for an IBM 2311, 2000 for an
IBM 2321, 7294 for an IBM 2314 or 23i9) and
erases the full track after RO.

This macro should be issued every time
the problem program reuses a certain
portion of a pack. It may be used as a
utility function to initialize a limited
number of tracks or cylinders.

WAITF Macro

r------T---------T------------------------,
I Name I Operation I Operand I

~------+---------+------------------------~
I [namell wAITF I {filename} I
I I I (1) I L ______ ~ _________ ~ ________________________ J

The WAITF macro instruction makes sure
the transfer of a record is complete.
requires only one parameter: the name
the file containing the record. The
parameter can be specified either as a
symbol or in register notation.

164 DOS Supervisor and I/O Macros

that
It
of

This instruction must be issued before
the problem program attempts to process an
input record or build another output record
for the file concerned. The program does
not regain control until the data transfer
is complete. Thus, the WAITF'macro
instruction must be issued after any READ
or WRITE instruction for a file, and before
the succeeding READ or WRITE instruction
for the same file,. The WAITF macro makes
error/status information, if any" available
to the problem, program in the field
specified by DTFDA ERRBYTE.

CNTRL Macro

r------T---------T------------------------,
I Name I Operation I Operand I

~------+---------+------------------------~
I [namellCNTRL I {filename}, code I
I (I (1) I L ______ ~ _________ ~ ________________________ J

The CNTRL (control) macro instruction can
begin DASD access movement, (SEEK) or
restore a data cell strip (RESTR), for the
next READ or WRITE for a file. It requires
two parameters.

The first parameter specifies the name
of the file, which is the same name as that
specified in the DTFDA header entry for the
file, and can be given either as a symbol
or in register notation. The second
parameter must be the word SEEK (for 2311,
2314, 2319, and 2321) or RESTR (for 2321
only). The seek address must be provided
in the field with the symbolic name given
in the DTFDA entry SEEKADR before issuing
the CNTRL macro.

Completion - CLOSE(R) Macro

r------T----------------------------------,
lOp I Operand I
~-~----+----------------------------------~
Ifor self-relocating programs I
I I" I
ICLOSER,{filename1} I
I I (r1) I
, I I
I I [,{filename2} ••• ,{filenamen}] I
'I (r2) (rn) ,
I , I
~------+----------------------------------~
I for programs that are no~self-relocatingl
I I I
ICLOSE ,{filename1} I
I , (r1) ,
I I I
I I [, {filename2} ••• , {filenamen}] I
I I (r2) (rn) I L ____ " __ J. __________________________________ J

Note: To write the most efficient code
(in a multiprogramming environment), we
recommend that the self relocating form
of OPEN be used. (See also
Appendix G.)

The CLOSE macro instruction deactivates any
file that was previously opened in any
input/output unit in the system. If

trailer labels are specified, they are
written on output, and checked on input. A
file may be closed at any time by issuing
this macro instruction. No further
commands can be issued for the file unless
it is reopened.

When the operation CLOSE is used, the
symbolic address constants that CLOSE
generates from the parameter list are not
self-relocating. When CLOSER is specified,
the symbolic address constants are self
relocating. This latter form of CLOSER is
therefore recommended.

The symbolic name of the logical file
(assigned in the DTF header entry) to be
closed is entered in the operand field. A
maximum of 16 files may be closed by one
instruction by entering additional filename
parameters as operands. Alternately, the
user can load the address of the filename
in a register and specify the register
using ordinary register notation. The
high-order 8 bits of this register must be
zeros. The address of the filename may be
preloaded into any register, 0-15.

Note: If you use register notation, we
recommend using only registers 2-12.
This will make your programs more
compatible with the Operating System
(OS).

Direct Access Method (DAM) 165

Indexed Sequential Access Method (ISAM)

The Indexed sequential Access Method (ISAM)
permits DASD records to be processed in
either random or sequential order. For
random processing, the user supplies the
key (control information) of the desired
record to ISAM and issues a READ or WRITE
macro instruction to transfer the specified
record. For sequential processing, the
user specifies the first record to be
processed and then issues GET or PUT macro
instructions until all desired sequential
records are processed. The successive
records are made available in sequential
order by key. Variations in macro
instructions permit:

• A logical file of records to be loaded
onto DASD (created).

• Individual records to be read from,
added to, or updated in the file.

Whenever the indexed sequential system
of processing is used, the logical file and
main-storage areas allotted to the file
must be defined by the declarative macro
DTFIS (Define The File for Indexed
§equentIal system): For the detail
parameter entries for this definition, see
Declarative Macro Instructions.

Record Types

When an ISAM file is originally organized,
it is loaded onto the volume(s) from
presorted input records. These records
must be sorted by key and all records in
the file must contain key areas:

r-----' r--,
tCountl IKeYI
L _____ J L __ J

r----'
IDatal
L ____ J

All keys must be the same length, and
the length must be specified in the DTFIS
entry-KEYLEN.

166 DOS supervisor and I/O Macros

The logical records must be fixed
length, and the length must be specified in
the DTFIS entry RECSIZE. Logical records
may be either blocked (two or more logical
records in one physical record) or
unblocked (one logical record per one
physical record). This must be specified
in the DTFIS entry RECFORM. When blocked
records are specified, the key of the
highest record (last) in the block is the
key for the block and, therefore, ISAM
stores it in the key area of the record.
The number of records in a block must be
specified in the DTFIS entry NRECDS.

Storage Areas

Records in one logical file are transferred
to, or from, one or more I/O areas in main
storage~ The areas must always be large
enough to contain the key area and a block
of records, or a single record if unblocked
records are specified. Also, space must be
allowed for the count area when a file is
loaded, or when records are added to a
file. For the functions of adding or
retrieving records, the I/O area must also
provide space for a sequence-link field
used with overflow records (see Addition o£
Records and Overflow Areas). When an
overflow record is brought into the I/O
area, the sequence-link field should not be
altered by the problem programmer. The I/O
area requirements are illustrated
schematically in Figure 35 and described in
detail in the DTFIS entries IOAREAL,
IOAREAR, IOAREAS, and IOAREA2.

Records may be processed directly in the
I/O area or in a work area for either
random or sequential retrieval. If the
records are processed in the I/O area~ a
register must be specified in the DTFIS
entry IOREG. This register is used for
indexing, and points to the beginning of
each record.

Length
(Bytes)

LOAD

Count

,
-J 8

I t
IOAREAL or
IOAREA2

Key Data

I I
KEYLEN=n ... 'It--------REcsIZE x NRECDS--------to-\, I

I (Minimum size = 10) I

ADD - Unblocked Records

Count

I
Data

Key ~--s-L--~I-------or---Da-t-a----~--------~

. I

(Unused)

, , I , I
Length -I 8
(Bytes) I t ,KEYLEN=n I 10 ... , __ -----RECSIZE=n ,I

, I' NRECDS=I-----~,

Length
(Bytes)

Length
(Bytes)

Length
(Bytes)

Length
(Bytes)

IOAREAL

ADD - Blocked Records

Key (of last
Count record in the Data

block) .

I I
--J 8 KEYLEN ==n 'I RECSIZE x NRECDS

, t I (Minimum size = One record + 10)

IOAREAL

SEQUENTIAL RETRIEVE - Unblocked Record

Data I I (Unused)
Key or

SL Data

I I I RECSIZE =n -I KEYLEN =n I 10 ,--

I t I , NRECDS = I

IOAREAS or
IOAREA2

RANDOM RETRIEVE - Unblocked Records

I
Data I (Unused)

Of

SL I Data
I

I 10 I RECSIZE =n

it I' NRECDS = I
IOAREAR

,

RETRIEVE - Sequential or Random Blocked Records

Record I Record 2 Record 3

SL 1 Record Length

I I
-~III"'II.--------------RECSIZE x NRECDS -----------lI~1

I t
IOAREAR,
IOAREAS, or
IOAREA2

(Minimum size = One record + 10) I

SL = Sequence Link

Figure 35. Schematic of I/O Area in Main Storage, for ISAM

I
'I
I

I
,I
I

I
'I

I

Indexed sequential Access Method (ISAM) 167

If the records are processed in a
workarea, the DTFIS entry WORRL, WORKR, or
WORKS must be specified. ISAM moves each
individual input record from the I/O area
to the workarea where it is available to
the problem program for processing.
Similarly, on output ISAM moves the
completed record from the workarea to the
I/O area where it is available for transfer
to DASD storage. Whenever a workarea is
used, a register is not required.

Organization of Records on DASD

When a logical file of presorted records is
loaded onto DASD, ISAM organizes the file
in a way that allows the user to access any
record. For ~ny type of processing, the
entire ISAM file must be on line. If an
ISAM file is assigned ignore, no I/O
processing can be done for that file.

Reference can be made to records at
random throughout the logical file, or to a
series of records in the file in their
(collated) presorted sequence. " The
organization also provides for additions to
the file at a later time, while still
maintaining both the random and sequential
reference capabilities.

ISAM loads the records (one after the
other) into a specified area of the DASD
volume. This area is called the prime area
of the logical file on DASD. Both the
starting and ending limits of this area are
specified by the user in job control extent
statements. At least one record must be
written at load time if an ISAM file is
referenced.

Indexes

As ISAM loads a file of records sorted by
key, it builds a set of indexes for the
file. The indexes are utilized for both
random and sequential reference to records
as follows:

• They permit rapid access to individual
records for random processing.

• They supply the records in key order
during sequential processing.

Two or possibly three indexes are built,
depending on the user's specifications.
Both a track index and a cylinder index are
always constructed. A master index is also
constructed if the DTFIS entry MSTIND is
included in the file definition.

168 DOS Supervisor and I/O Macros

Once a file is loaded and the related
indexes are built" the ISAM routines search
for specified records by referring to the
indexes. When a particular record
(specified by key) is requested for
processing, ISAM searches the master index
(if used), then the cylinder index, then
the track index, and finally the individual
track. Each index narrows the search by
pointing to the portion of the next-lower
index whose range includes the specified
key. Because of the high speed and
efficiency of the direct access devices in
a System/360, a master index should be
established only for exceptionally large
files, for which the cylinder index
occupies several tracks (possibly five or
more)~ That is, it is generally faster to
search only the cylinder index (followed by
the track index) when the cylinder index
occupies four or less tracks.

The indexes are made up of a series of
entries, each of which includes the address
of a track and the highest key on that
track or cylinder.

r-------,
I Highestl
IRey I L _______ J

Rey Area

r-------,
ITrack I
IAddressl L _______ J

Data Area

Each entry is a separate record composed
of both a key area and a data area. The
key area contains the highest key on the
track or cylinder, and its length is the
same as that specified for logical data
records (in the DTFIS entry REYLEN). The
data area of each index is ten bytes long,
it contains track information including the
track address ..

The indexes are terminated by a dummy
entry that contains a key of all one bits,.
To avoid any possibility of errors, the
user should not use a key of all one bits
for any of his records.

Track Index

The track index is the lowest-level index
for the logical file. A separate track
index is built for each cylinder used by
the file, and contains index entries for
that cylinder only. Each track index is
located on the cylinder that it "is
indexing. It always begins on track zero,
and it may extend over more than one track.

TRACK INDEX

I COCR @] Track 1 ~ Track 1 lliJ 75 Address 75 Address 150
Track 2 lliJ Track 2
Address 150 Address

D K D K D K D K 0

Wi] Track 3 Qli] Track 3 --------1 ~;~ I 240 Address 240 Address
Track 8 lliU Track 8
Address 980 Address

K

!Ar'l
~

D

K D

Dummy Entry

K = Key Area
0= Data Area

K

COCR = Cyl i nder Overfl ow Control Record (RO)

D K D K 0

Figure 36. schematic Example of a Track Index

When the track indexes are originally
constructed, they contain two similar
entries (normal and overflow) for each
track used on the cylinder. For example;
if the prime area of the logical file uses
eight tracks on a cytinder, the track index
might contain the entries shown in Figure
36. The use of two index records for each
track is required because of overflow
records that occur if more records are
inserted in the file at a later time (see
Addition of Records and Overflow Areas).
When overflow records for a track exist,
the second (overflow) index record contains
the key of the highest record in the
overflow chain and the address of the
lowest record in the overflow chain for the
track. The dummy entry indicates the end
of the track index. Any following records
are logical-file data records.

Cylinder Index

The cylinder index is an intermediate level
index for the logical file. It contains an
index entry for each cylinder occupied by
the file. This index is built in the
location specified by the user in a job
control extent. The cylinder index may not
be built on one of the cylinders that
contains prime data records for a file.
Also, it should not be built on a cylinder
that contains overflow records as this
could prevent future expansion of the

overflow area. The cylinder index should
be on a separate cylinder~ or it may be on
a separate volume that is on-line whenever
the logical file is processed.

The cylinder index may be located on one
or more successive cylinders. Whenever the
index is continued from one cylinder to
another, the last index entry on the first
cylinder contains a linkage field that
points to the first track of the next
cylinder. A cylinder index may not be
continued from one volume to another,
however.

This index contains one entry for each
cylinder occupied by the data file. The
key area contains the highest key
associated with the cylinder, and the data
area contains the :address of the track
index for that cylinder. For example" if a
file requires nine cylinders, the cylinder
index might contain the entries shown in
Figure 37. The dUff,my entry indicates the
end of the cylinder index.

References to a cylinder index also
apply to the 2321. The bar-position
address of a data cell corresponds to the
cylinder of a disk drive in ISAM.

Indexed sequential Access Method (ISAM) 169

Master Index.

The master index is the highest-level index
for a logical file built by the IBM
System/360 Disk Operating System. This
index is optional, and it is built only if
it is specified by the DTFIS entry MSTIND.
A master index is built in the location
specified by a job control extent
statement. Like the cylinder index, it may
be located on the same volume with the
logical-file records or on a different
volume that is on-line whenever the records
are processed.

The master index must immediately
precede the cylinder index on a volume, and
it may be located on one or more successive
cylinders. Whenever it is continued from
one cylinder to another, the last index
entry on the first cylinder contains a
linkage field that paints to the first
track of the next cylinder. A master index

CYLINDER INDEX

may not be continued from one volume to
another.

The master index contains an entry for
each track of the cylinder index. The key
area contains the highest key on the
cylinder index track, and the data area
contains the address of that track. For
example, if a master index is located on
track x and a cylinder index is located on
tracks x+l through x+20, the master index
might contain the entries shown in Figure
38. The dummy entry indicates the end of
the master index.

@U Cylinder 1 § Cylinder 2 ---------1 ~;rO I Cyl inder 9
Track 1 Track'l Track 1

980
Address

1850
Address Address

K

fAiIl
~

D

K D
Dummy Entry

K = Key Area
D = Data Area

K D

Figure 31. Schematic Example of a Cylinder Index

MASTER INDEX

§ Track X + 1
4730 Address

K

fAIIl
~

0

K 0
Dummy Entry

K = Key Area
D = Data Area

~
Track X + 2 ~

Track X + 3
8560 Address 12750 Address

K 0 K 0

Figure 38. Schematic Example of a Master Index

110 DOS Supervisor and I/O Macros

K D

----------I~~o I Track X + 20
Address

K 0

(

(

ADDITION OF RECORDS AND OVERFLOW AREAS

After a logical file is organized on DASD,
it may subsequently become necessary to add
records to the file. These records may
contain keys that are above the highest key
presently in the file and, thus, constitute
an extension of the file. Or, these
records may contain keys that fall between
keys already in the file and therefore
require insertion in the proper sequence in
the organized file.

If all records to be added have keys
that are-higher than the highest key in the
organized file, the upper limit of the
prime area of the file can be adjusted (if
necessary) by the specification in a job
control extent statement. The new records
can then be added by presorting them and
loading them into the file. No overflow
area is required, and the file is merely
extended further on the volume. However,
new records can be batched with the normal
additions and added to the end of the file.

However, if records must be inserted
among those already organized, an overflow
~ is required. ISAM uses the overflow
area to permit the insertion of records
without necessitating a complete
reorganization of the established file.
The fast random and sequential retrieval of
records is maintained by inserting
references to the overflow chains in the
track indexes, and by using a chaining
technique for the overflow records. For
chaining, a seguence-link field is prefixed
to the user's data record in the overflow
area. The sequence-link field contains the
address of the record in the overflow area
that has the next-higher key. Thus, a
chain of sequential records can be followed
when searching for a particular record.
The sequence-link field of the highest
record in the chain indicates the end of
the chain.. All records in the overflow
area are unblocked, regardless of the
specification (in DTFIS RECFORM) for the
data records in the logical file.

To add a record by insertion, ISAM
searches the indexes first to determine on

DATA RECORDS

which track the record must be inserted.
After the proper track index is located,
the point of insertion can then be
determined. The keys of the last records
on the tracks in the originally organized
file determine the track where an inserted
record belongs. A record is always
inserted on the track where:

1. The last key is higher than the
insertion, and

2. The last key of the preceding track is
lower than the insertion.

For example, assume tracks 2 and 3 are
organized with the record keys shown in
Figure 39. Then, records with keys such as
151, 175, 199, 215, and 239 are inserted on
track 3 (or in the related overflow chain
that has developed). Any key lower than
150 is added to either track 1 or track 2;
any key higher than 240 belongs to track 4
or above. The track indexes always retain
the highest key of each track as it was
originally organized.

After the proper track is determined,
ISAM searches the indiVidual records on the
track or overflow area (if necessary) to
find where the record belongs in key order.
This results in either of two conditions:

1. The record falls between two records
presently on the track. In this case,
ISAM adds the record by inserting it
in the proper sequence and shifting
each succeeding record one record
location higher on the track, until
the last record is forced off the
track. ISAM transfers this last
record to the overflow area, and
prefixes the record (data area) with a
sequence-link field. The first time a
record is inserted on a track, the
sequence-link of the overflow record
indicates that this is the highest
record associated with the track.
Thereafter, the sequence-link field of
each overflow record points to the
next-higher record for that track.

~ @iJ Data 1-------\ ~Z 1 Data []ill Data
Track 2 100 Data 125 150

Track 3\ ~;~ 1
\

1-------\ ~;~ 1 Data ~ Data Data [}ill Data
205 240

Figure 39. Example of Data Records as Originally Organized on Tracks 2 and 3

Indexed sequential Access Method (ISAM) 171

ISAM also updates the track index
to reflect this change. The first
index record for the track has the key
field changed to indicate the new
last-record located on the track. The
second index record for the track has
the track address (in the data area)
changed to point to the address of the
lowest overflow record. If a record
with a key 105 is added to a file
organized as shown in Figure 39, and
if the overflow area is located on
track 9, the track index records
contain the information shown in
Figure 40.

INDEX ENTRIES FOR ONE TRACK

Before
Addition

After
Addition

@TI 150

[§J 140

Track 2
Address

Track 2
Address

@TI Track 2
150 Address

@TI Track 9
Record X

150 Address

Figure 40. Example of Track Index Entries
Before and After Addition of a
Record on Track 2

2. The record falls between the last
record presently on the track and the
last record originally on the track.
Thus, it belongs in the overflow area.
ISAM writes the record ,in the overflow
area following the last record
previously written. ISAM searches
through the chain of records
associated with the corresponding
track for this record and identifies
the sequential position the record
should take. Then the sequence-link
fields of the new record, and of the
record preceding it by sequential key,
are adjusted to point to the proper
records. If records 150, 140, and 130
are already in the overflow area and
record 135 is to b~ added, for
example, the sequence-link fields of
records 130 and 135 must be adjusted
(Figure 41).

RECORD
SEQUENCE-LINK FIELD

Before Addition After Addition

130 140 135

135 - 140
(New Record) ,

Figure 41. Example of Sequence Link Fields
Adjusted for Addition of a
Record 135

172 DOS supervisor and IIO Macros

Overflow-Area Option: The location of the
overflow area(s) for a logical file may be
specified by the user~ The overflow areas
may be built by one of three methods:

1. Overflow areas for records may be
located on each cylinder within the
prime area. In this case, the user
must specify the number of tracks that
are reserved for overflow on each
cylinder occupied by the file. The
overflow records that occur within a
particular cylinder are written in the
cylinder overflow area for that
cylinder.

2.

The number of tracks to be reserved
for each cylinder overflow area must
be specified in the DTFIS entry CYLOFL
when a file of records is loaded and
when records are added to an organized
file.

An independent overflow area may be
specified ,for storing all overflow
records for the logical file. In this
case, a job control extent statement
must be included when the program is
executed to specify the a~ea of the
volume to be used for the overflow
area. This area 'may be on the same
volume with the data records" or on a
different volume that is on-line,.
However, it must be contained within
one volume, and the device must be the
same kind as that containing the prine
data area. If an independent overflow
area is not specified, you can add it
only during a LOAD, ADD, or ACDRTR
job. You cannot add it during a
RETRVE job.

3. Both cylinder overflow areas (method
1) and an independent overflow area
(method 2) may be used. In this case,
overflow re~ords are placed first in
the cylinder overflow areas within the
data file. When any cylinder overflow
area becomes filled~ the additional
overflow records from that cylinder
are written in the independent
overflow area. The specifications
required for both methods 1 and 2 must
be included for this combined method
of handling overflows.

All records placed in the overflow area
are in the unblocked format and have a
sequence-link field prefixed to each
record. There must always be one prime
data track available for a DASD EOF record
when additions are made to the last track
in the prime data area containing records.

EXAMPLE OF AN ORGANIZED FI~

Figure 42 shows schematically a simplified
example of a file organized on DASD by the
Indexed Sequential Access Method. This
figure illustrates an organized file for an
IBM 2311 DASD with the last two tracks on
each cylinder used for the overflow area.
The same file would have similar
characteristics if it was created on
another IBM DASD type. The assumptions
made and the items to be noted are:

1. The track index occupies part of the
first track, and prime data' records
occupy the rest of the track. This is
called a shared track.

2. The data records occupy part of track
o and all of tracks 1-7. Tracks 8 and
9 are used for overflow records in
this cylinder.

3. The master index is located on track X'
on a different cylinder. The cylinder
index is located on tracks X+1 through
X+20.

4. A dummy entry signals the end of each
index.

5. The file was originally organized with
records as follows:

Track Records

o 5-75
1 100-150
2

7 900-980

6. The track index originally had two
similar entries for each track. It
now shows that overflow records have
occurred for tracks 1 and 7.

7. Records 150, 140, and 130 were forced
off the track by insertions on the
track. Record 135 was added directly
in the overflow area.

8. A sequence-link field (SL) was
prefixed to each overflow record. The
records for track 1 can be searched in

sequential order by following the SL
fields:

Record

130

135

140

150

sequence-Link Field (SL)

SL points to record with key
135.

SL po~nts to record' with key
140.

SL points to record with key
150.

End of search. (Rey 150 was
the highest key on track 2
when the file was loaded.>

9. When the file was loaded, the last
record on cylinder 1 was record 980;
on cylinder 2, record 1850; and on
cylinder 9, record 4730. This is
reflected in the cylinder index. The
first entry in the master index is the
last entry of the first track of the
cylinder index.

10. When cylinder overflow areas are used,
the first record (record 0) in the
track index for a cylinder is the
Cylinder Overflow Control Record
(COCR). It contains the address of
the last overflow record on the
cylinder and the number of tracks
remaining in the cylinder overflow
area. When the number of remaining
tracks is zero, overflow records are
written in the independent area~ The
format of record zero data field is as
follows: hhrbbtxx

hh - last cylinder overflow track
containing the records.

r - last overflow record on the
track.

bb - the number of bytes rema1n1ng on
the track (for fixed-length
records this is binary zeros).

t - the number of remaining tracks
available in the cylinder
overflow area.

xx - reserved (with binary zeros).

Indexed sequential Access Method (ISAM) 173

~ ~
~ ""-~ .1.0 Track s:: 0

11
tj CD
0
tI) ~

tv
tI) • s::
to
CD tI)
11 0
<: ::r
""- CD
en a
0 PJ
11 rt

""-PJ 0
::s
CI 0

H\
H
"- PJ
0

~ :s: ""-PJ I-'
0 CD
11
0 0 en ::s

tv
W
~
~

tj
!J::>I en
t:J

0
11

\.Q
PJ
::s
""-N
CD
CI

tr
"<
H
en
!J::>I
:3:

o

Track
1

Track
2

•

Track
7

Track
8

Track
9

Track
X

Track
X + 1

Track
X +2

Track
X +20

DATA RECORDS

1175 i Data 1

o
DATA RECORDS

o o o K 0

1 '00 [- '"'0 -1,;;-1 - ~~ - - - - - - II T~ ,"'0 I"o! 00'0

K 0 K 0 K 0 0

DATA RECORDS

I ~O 1- '"·I'~o ! ,"'0 1 -- -- II 1230 ,"'0 I'" 00'0 ._j
K 0 K 0 0 K 0

DATA RECORDS

I :,!- --I ~ r- '"'0 - - - - - -ie 1,>0 ! '". I",! ~.o
K 0 K 0 K 0 K 0 ---

OVERFLOW DATA RECORDS

I I SL I SL I I i SL {! 1 150 I SL Data 140 : to I Data 130 I to Data 980 : S.L Dota 135 : to Data

I • 150 I I 135 I I 140

K o K 0 0 K 0 o
OVERFLOW DATA RECORDS

~--------~II~ __________ ~
MASTER INDEX

Track
X +2
Address

o o K o
CYLINDER INDEX

I I 1 Cylinder 1 i i Cylinder 2 I I Cylinder 10
Track 0 11850 I Track 0 14730 I Track 0
Address: I Address ! 1 Address

o 0 K 0

I I - -I I Cylinder 11 I I Cylinder 12 I I I Cylinder 20
4800 I Track 0 14900 I Track 0 I 18560 1 Track 0

I Address : I Address I ! ! Address .

K 0 K 0 K 0

K o K o K o

K = Key Area
0= Data Area
SL = Sequence Link ·SL indicates the end of the overflow chain.
COCR ~ Cylinder Overflow Contral Record (Contained in RO)

Indexed Sequential Macros

Before an indexed sequential file can be
processed, it must be defined to IOCS by
the DTFIS declarative macro. After
defining the file, the user can operate
with the file using imperative macros. The
file must be initialized, processed, and
deactivated.

Status or Condition Code Indication

The DTF macro instruction provides a 1-byte
field where all status or condition codes
are placed after execution of each macro
instruction. The problem program must take
responsibility for checking these condition

ADD, RETRVE, and ADDRTR

Bit Cause

codes after each imperative macro by
referencing .the field called filenameC.
Figure 43 shows the format of the filenameC
byte. Filename should be the same as that
specified in the DTF header entry for the
file. ISAM provides addressability for
filenameC by returning the address .of the
DTF table, or the address of the ERREXT
parameter list if ERREXT is speci~ied~ The
address is returned in register 1 after
each ISAM imperative macro is executed.
The FilenameC byte is in the format shown
in Figure 43.

The problem program will also be
responsible for checking byte 16~ bit 7 of
the DTF for a blocksize compatibility error
when adding to, or extending a file. If
the blocksize of the problem program is not
equal to the blocksize of the previously
built file, this bit will be posted.

Explanation

0 DASD error Any uncorrectable DASD error has occurred (except wrong length record).

1 Wrong length record A wrong length record has been detected during an I/o operation.

2 End of fi Ie The EOF condition has been encountered during execution of the sequential retrieval function.

3 No record found The record to be retrieved has not been found in the data file. This applies to Random (RANSEQ)
and to SETl in SEQNTl (RANSEQ) when KEY is specified, or after GKEY.

4 Illegal ID specified The ID specified to the SETL in SEQNTL (RANSEQ) is outside the prime data file limits.

5 Duplicate record The record to be added to the file has a duplicate record key of another record in the me.

6 Overflow area full An overflow area in a cylinder is full, and no independent overflow area has been specified, or
an independent overflow area is full, and the addition cannot be made. The user should assign
an independent overflow area or extend the limit.

7 Overflow The record being processed in one of the retrieval functions (RANDOM/SEQNTL) is an overflow
record.

Figure 43. FilenameC--Status or Condition Code Byte -- ADD, RETRVE,
and ADDRTRCPart 1 of 2)

Indexed sequential Access Method CISAM) 175

LOAD

Bit Cause Explanation

0 DASD error Any uncorrectable DASD error has occurred (except wrong length record).

1 Wrong length record A wrong length record has been detected during an I/O operation.

2 Prime data area full The next to the last track of the prime data area has been filled during the load or extension of the
data file. The problem programmer should issue the END Fl macro, then do a load extend on the
file with new extents given.

3 Cylinder Index area full The Cylinder Index area is not large enough to contain all the entries needed to index each
cylinder specified for the prime data area. This condition can occur during the execution of the
SETFL. The user must extend the upper limit of the cylinder index by using a new extent card.

4 Master Index full The Master Index area is not large enough to contain all the entries needed to index each track
of the Cylinder Index. This condition can occur during SETFL. The user must extend the upper
limit, if he is creating the file, by using an extent card. Or, he must reorganize the data file
and assign a larger area.

5 Duplicate record The record being loaded is a dupl icate of the previous record.

6 Sequence check The record being loaded is not in the sequentia I order required for loading.

7 Prime data area overflow There is not enough space in the prime data area to write an EOF record. This condition can occur
during the execution of the ENDFL macro.

Figure 43. FilenameC--Status or Condition Code Byte -- LOAD
(Part 2 of 2)

ERET (Error Return) Macro:

r----------T-------------T----------------, I Name I Operation I Operand I
~---------+-------------+----------------~
I I I {SKIP} I I (name] I ERET I IGNORE I
I I I RETRY I L __________ ~ _____________ ~ ________________ J

At the completion of each imperative macro
instruction, filenameC should be checked by
the problem program error routine. This
macro instruction enables a problem program
specifying the ERREXT operand to return to
IOCS and specify an action to be taken for
each error condition.

The IGNORE (or SKIP) operand passes
control back to the module to ignore the
error and continue processing with the
block in error. The RETRY operand causes
the module to retry the operation that
caused the error.

When ERREXT is not specified and a data
transfer error condition is detected in
filenamec, control is passed back to ISAM
only by issuing another macro instruction.
However, no special action is taken by ISAM
to correct or check this error. Also, no
information is passed to the problem
program except for what is contained in
filenameC.

176 DOS Supervisor and I/O Macros

If ERREXT is specified, register 1
contains the address of an 1S-byte
parameter list. The content of this
parameter list is found in Figure 44. When
ERREXT is specified, nondata transfer error
conditions are indicated in· the DTF data
transfer bit (byte 2, bit 2) and the
problem program error processing routine
can return to ISAM via the ERET macro. The
ERET IGNORE or ERET SKIP macro returns to
ISAM to ignore the error condition and
process the record. The ERET RETRY macro
returns to ISAM to make ancther attempt at
reading or writing the record.

Note: The ERREXT coding does not
handle nonrecoverable errors that are
posted in FilenameC. Examples of
nonrecoverable type errors are: no
record found, prime data area full,
master index full, etc.

If ERREXT is specified, the problem
program error processing routine should
determine whether or not data was
transferred. This can be done by checking
the data transfer bit (byte 2, bit 2) in
the DTF. If the data transfer bit is ON,
the data was not read or written. If it is
OFF, data transfer did take place.

·If any IOCS macro instructions,
excluding ERET, are. issued in the error
routine, the contents of registers 14 and

13 (with RDONLY) should be saved before use
and restored afterward.

If HOLD=YES is specified, you must issue
the ERET macro to return to ISAM during an
ERREXT to free any held tracks.

r-------T------T--------------------------,
I Bytes I Bits I Contents I
~-------+------+--------------------------~

0-3 DTF address I
I

4-7 Main storage address of I
the record in error. I

I
8-15 DASD address of the e'rror I

16

17

o
1
2
3

(mbbcchhrl where m is the
extent sequence number
and r is a record number
which can be inaccurate
if a read error occurred
during a read of the
highest level index. For
more information see
Track Index.

Record identification:
Data record
Track index record
Cylinder index record
Master index record

Type of operation:
4 Not used
5 Not used
6 Read
7 Write

Command code of failing
CCW L _______ ~ ______ ~ __________________________ J

Note: If the error occurred on an
index record, the user should not
IGNORE this record unless it is first
checked for accuracy. If the record
was read inaccurately, the user should
RETRY to read the record.

Figure 44. ERR EXT Parameter List

INDEXED SEQUENTIAL FILE (DTFIS)

The DTFIS detail entries that apply to a
file when records are processed by the
Indexed Sequential Access Method are
explained here and summarized in Figure
47. A DTFIS header entry and a series of
detail entries describe the file.

The symbolic name of the file,
filename, is entered in the name field.
DTFIS is entered in the operation field.

r---,
ICYLOFL=n I L _________________ -----___________________ J

This entry must be included if cylinder
overflow areas are reserved for a logical
file. Do not include this entry if no
overflow areas are reserved.

When a file is loaded or when records
are added, this operand is required to
reserve the areas for cylinder overflow
(optional for retrieval operations). It
specifies the number n of tracks to be
reserved on each cylinder. The maximum
number of tracks that can be reserved on
each cylinder is 8 for 2311 and 18 for
2314, 2319, or 2321.

If an independent overflow area is
specified (by an extent card) along with
the CYLOFL entry, overflow records are
written in the independent overflow area
after a cylind~r overflow area becomes
filled.

r---,
IDEVICE={23111231412321} I L ___ J

This entry specifies the unit that
contains the prime data area or overflow
areas for the logical file.

Note: Specify 2314 for 2319 .•

r---,
I DSKXTNT=n I L ___ J

This entry must be included to specify the
maximum number n of extents for this file.
The number must-include all the data area
extents if more than one DASD area is used
for the data records, and all the index
area and independent overflow ar~a extents
that are specified by extent statements.
Thus the minimum number specified by this
~ntry is 2: one extent for one prime data
area, and one for a cylinder index. Each
area assigned to an ISAM data file is
considered an extent.

Note: Master and cylinder indexes
are treated as one area. When there
is one master index extent, one
cylinder index extent, and one prime
data area extent, DSKXTNT=2.

Indexed Sequential Access Method (ISAM) 17~

r---,
IERREXT=YES I L ___ J

This operand enables a problem program
error routine checking filenameC to return
to ISMOD with the ERET macro. Also, it
enables unrecoverable I/O errors occurring
before a data transfer takes place to be
indicated to the problem program.

If HOLD=YES and ERREXT=YES, you must
issue the ERET macro to return to the ISAM
module to free any held tracks.

r---,
I HINDEX={2311 I 231412321} I L ___ J

This entry specifies the unit containing
the highest index.

Note: Specify 2314 for 2319.

r---,
I HOLD=YES I L _____________ •. ___________________________ J

This operand provides for the track hold
option. Track hold prevents t~o or more
programs from updating the same record at
the same time. For ISAM, the hold applies
to both data records and index records.

Because track hold cannot be performed
on a LOAD file, HOLD=YES cannot be
specified when IOROUT=LOAD. Also, if
HOLD=YES and ERREXT=YES, the problem
program must issue the ERET macro to
return to·the ISAM module to free any held
tracks. If the HOLD parameter is omitted,
the track hold function is not performed.

For further information, see the DASD
Track Protection Macros section.

r--,
IINDAREA=name I L ___ J

This operand specifies the symbolic name
of the area assigned to the cylinder
index. If specified, all or part of the
cylinder index resides in main storage
thereby increasing throughput. If this
operand is included, INDSIZE must be
included.

If the area assigned to INDAREA is
large enough for all the index entries to
be read into main storage at one time and
the index skip feature (INDSKIP) is not
specified, no presorting of records need
be done. If the area assigned to INDAREA
is not large enough, the records processed

178 DOS Supervisor and I/O Macros

should be presorted to fully utilize the
resident cylinder index.

r---,
IINDSKIP=YES I L __ J

When cylinder index entries reside in main
storage, this operand specifies the index
skip feature. This feature allows ISFMS
to skip any index entries preceding those
needed to process a given key.

This feature may only be specified with
the INDAREA and INDSIZE operands and
increases throughput only when

• The records are presorted.

• The allocated main storage is
insufficient for storing all of the
cylinder index.

• A large segment(s) of the file is not
referenced.

If the index skip operand is omitted,
the cylinder indexes are processed
sequentially.

r--,
IINDSIZE=n I L ___ J

This operand specifies the number of bytes
reserved at the INDAREA parameter name for
the cylinder index entries. The minimum
number of bytes (n) must be:

(m+3) (keylength+6)

where m is the number of entries to be
read into main storage at a time, 3 is the
number of dummy entries, and 6 is an
abbreviated pointer to the cylinder. If m
is set equal to the number of prime data
cylinders+1~ all the cylinder index is
read into main storage at one time.

The resident index facility is
suppressed if this operand is omitted or
the minimum requirement is not met at
assembly time, or an unrecoverable read
error is encountered while reading the
index.

r---,
I IOAREAL=name I L ___ J

This operand must be included when a file
is created (loaded) or when records are
added to an organized file. It specifies
the symbolic name of the output area used
for loading or adding records to the file.
The specified name must be the same as the
name used in the DS instruction that
reserves the area of main storage. The
ISAM routines construct the contents of
this area and transfer records to DASD.

This main-storage output area must be
large enough to contain the count area,
key area, and data area of records.
Furthermore, the data-area portion must
provide eno~gh space for the sequence-link
field of overflow records whenever records
are added to a file (Figure 45).

If IOAREAL is increased to permit the
reading and writing of more than one
physical record on DASD at a time, the
IOSIZE operand must be included when
records are added to the file. In this
case, IOAREAL must be at least the
equivalent number of bytes in IOSIZE.

When simultaneously building two ISAM
files using two DTFs. do not use a common
IOAREAL. Also, do not use a common area
for IOAREAL, R, and S in multiple DTFs.

r--------------------------------------~-,
I IOAREAR=name I L ___ J

This operand must be included whenever
records are processed in random order. It
specifies the symbolic name of the
input/output area for random retrieval
(and updating). The specified name must
be the same as that used in the DS
instruction that reserves this area of
main storage.

The I/O area must be large enough to
contain the data area for records.
Furthermore, the data-area portion must
provide enough space for the sequence-link
field of overflow records (Figure 46).

OUTPUT AREA REQUIREMENTS (IN BYTES)

FUNCTION Sequence Count Key Data
link

Load Unblocked Records 8 Key Length - Record Length

Load Blocked Records 8 Key Length - Record Length x Blocking Factor

Add Unblocked Records 8 Key Length 10 Record Length

Add Blocked Records 8 Key Length - Record Length x Blocking Factor
OR*

8 Key Length 10 I Record Length

* Whichever Is Larger

Figure 45. Output Area Requirements for Loading or Adding Records to a File by ISAM

I/O AREA REQUIREMENTS (IN BYTES)
FUNCTION

Count Key Sequence Data
Link

Retrieve Unblocked Records - Key Length for sequen-
tial unblocked records 10 Record Length

Retri eve B locked Records - - - Record Length (including keys) x
Blocking Factor

OR*
- - 10 I Record Length

* Wh ichever is Larger

Figure 46. I/O Area Requirements for Random or sequential Retrieval by ISAM

Indexed sequential Access Method (ISAM) 179

r---,
I IOAREAS=name I L ___ J

This operand must be included whenever
records are processed in sequential order
by key. It specifies the symbolic name of
the input/output area used for sequential
retrieval (and updating). The specified
name must be the same as that used in the
DS instruction that reserves this area of
main storage.

This main-storage I/O area must be
large enough to contain the key and data
areas of unblocked records and the data
area for blocked records. Furthermore,
the data-area portion must provide enough
space for the sequence-link field of
overflow records (Figure 46).

r-----------------·------------------------,
I I OAREA2=name I L ___ J

This operand enables overlapping of I/O
with indexed sequential processing for
either the load (creation) or s~quential
retrieval functions. The parameter [name]
represents the symbolic name of an I/O
area used when loading or sequentially
retrieving records. The I/O area must be
at least the length of the area specified
by either the IOAREAL parameter for the
load function or the IOAREAS parameter for
the sequential retrieval function. If the
operand is omitted, one I/O area is
assumed. If TYPEFLE=RANSEQ, only one I/O
area is supported.

r---,
I IOREG=(r) I L ___ J

This operand must be included whenever
records are retrieved and processed
directly in the I/O area. It specifies
the register that ISAM uses to indicate
which individual record is available for
processing. ISAM puts the address of the
current record in the designated register
(2-12) each time a READ, WRITE, GET, or
PUT is executed.

r---,
I IOROUT={LOADIADDIRETRVEIADDRTR} 1 L ___ J

This entry must be included to specify the
type of function to be performed. One of
the following specifications is entered
after the = sign:

LOAD To build a logical file on DASD or
to extend a file beyond the

180 DOS Supervisor and IIO Macros

highest record presently in an
organized file.

ADD To insert new records. into an
organized file,.

RETRVE To retrieve records from a file
for either random or sequential
processing and/or updating.

ADDRTR To both insert new records into a
file (ADD) and retrieve records
for processing and/or updating
(RTR).

r-------------------------------------~---,
I IOSIZE=n I L _________________ -----___________________ J

This operand specifies the number of bytes
in the main-storage area assigned to the
ISFMS add function using IOAREAL. Its
size (n) is a decimal number and specified
by

m(8+keylength+blocksize+32)+24

where: m is the maximum number of
physical records that.~an be read into
main storage at one time; 8 is the count
field; 32 and 24 are ISAM CCWs; and n must
be at least equal to

[8+keylength+blocksize+32+10] +24

The 10 bytes account for a needed sequence
link field for unblocked records or short
blocks (see Figure 45).

If omitted, or if the m~n~mum
requirement is not met, no increase in
throughput is realized when adding records
to a file.

r---,
IKEYARG=name I L ___ J

This operand must be included for random
READ/WRITE operations and sequential
retrieval initiated by key. It specifies
the symbolic name of the main-storage key
field in which the user must supply the
record key to ISAM.

r---,
IKEYLEN=n I L ___ J

This operand must be included to specify
the number, n, of bytes in the record key.
All keys must be the same length.

r---,
IKEYLOC=n I L ___ J

This operand must be included if an add,
load, or retrieve function is performed
and blocked records are specified in DTFIS
RECFORM. This entry must always be
included for blocked records. It supplies
ISAM with the high-order position of the
key field within the data record. That
is, if the key is recorded in positions
21-25 of each record in the file, this
entry should be 21.

ISAM uses this specifica~ion to locate
(by key) a specified record within a
block. The key area of a DASD record
contains the key of the highest record in
the block. To search for any other
records, ISAM locates the proper block and
then examines the key field within each
record in the block.

r---,
I MODNAME=name I L ___ J

This operand may be used to specify the
name of the logic module used with the DTF
table to process the file. If the logic
module is assembled with the program, the
MOD NAME in the DTF macro instruction must
specify the same name as the ISMOD macro
instruction. If this entry is omitted,
standard names are generated for calling
the logic module. If two DTF macro
instructions call for different functions
that can be handled by a single module,
only one module is called.

r---, I MSTIND=YES I L ___ J

This operand is included whenever a master
index is used for a file. It is required
when a file is loaded (to instruct ISAM to
build the index) and when records are
added to or retrieved from a file with a
master index.

ISAM always builds a track index and a
cylinder index, but the master index is
optional. The master index, if used, is
the highest level index, and includes an
index record for each track of the
cylinder index. Thus, it points to the
cylinder index on a search for a
particular record (see Indexes: Master
Index). The location of the master index
is specified by a job control extent
statement.

r---,
INRECDS=n I L ____ ~ ____________________________________ J

This operand specifies the number, n, of
logical records in a block (called the
blocking factor). If RECFORM=FIXUNB, n is
assumed to be 1,.

r---,
IRDONLY=YES I L ___ J

This operand is specified if.the DTF is
used with a read-only module. Each time a
read.only module is entered, register 13
must contain the address of a 72 byte
doubleword aligned save area. Each DTF
should have its own uniquely defined save
area. Register 13 must contain the
address of the save area associated with
that DTF each time an imperative macro
(except OPEN(R), LBRET, SETL, or SETFL) is
issued using a particular DTF. The fact
that the save areas are unique, or
different for each task makes the module
reentrant (that is, capable of being used
concurrently by several tasks). For more
information see Shared Modules and Files.

If an ERROPT or WLRERR routine issues
I/O macro instructions using the same read
only module that caused control to pass to
either error routine, the problem ~rogram
must provide another save area. One save
area is used for the normal I/O, and the
second for I/O in the ERROPT or WLRERR
routine. Before returning to the module
that entered the ERROPT routine, register
13 must be set to the save area address
originally specified for that DTF. If the
operand is omitted, the module generated
is not reenterable and no save area need
be ·established.

r---,
I RECFORM={FIXUNBI FIXBLK} I L-__ J

This operand specifies the ty~e of records
in the logical file. All logical records
in the file must be fixed length.
However, they may be either blocked or
unblocked. One or the other of these
specifications must be entered after
the = sign:

FIXUNB For unblocked records.

FIXELK For blocked records. If FIXBLK is
specified, the key of the highest
record in the block becomes the
key for the block and must be
recorded in the key area.

Indexed sequential Access Method (ISAM) 181

The specification that is included when
the logical file is loaded into DASD
storage must also be included whenever the
file is processed.

Records in the overflow area(s) are
always unblocked (see Addition of Records
and Overflow Areas) I, but this has no
affect on the entry. RECFORM refers to
records in the prime data area only.

r---,
IRECSIZE=n I
L __________________ -----------------------J
This operand must be included to specify
the number, n" of characters in a logical
record. This is the length of the data
area of each individual record. All
logical records must be the same size.
Also, this operand should specify the same
number for additions and retrieval as
indicated when the file was created.

r---,
ISEPASMB=YES I L __________________ -------________________ J

This operand must be included if the DTF
is assembled separately. This .causes a
CATALR card with the filename to be
punched ahead of the object deck and
defines the filename as an entry point in
the assembly.

r---,
ITYPEFLE={RANDOMISEQNTLIRANSEQ} I L ___ J

This operand must be included when a
retrieval function is performed. It
specifies the type(s) of processing
performed by the problem program for the
file. One of the following specifications
is entered after the = sign:

RANDOM For random processing. Records
are retrieved from the file in
random order specified by key.

SEQNTL For sequential processing. The
problem program specifies the
first record retrieved, and
thereafter ISAM retrieves records
in sequential order by key. The
first record is specified by key,
ID, or the beginning of the
logical file (see SETL Macro).

182 DOS Supervisor and I/O Macros

RAN SEQ For both random and sequential
processing. Only one I/O area is
supported.

TYPEFLE is not required for loading or
adding functions.

r------------~----------------------------,
IVERIFY=YES I L ________________________________ · _______ J

This operand is included if the user wants
to check the parity of disk records after
they are written. VERIFY is always
assumed when 2321 records are written. If
this operand is omitted, any records
written on 2311, 2314, or 2319 are not
verified.

r---,
IWORKL=name I L ___ J

This operand must be included whenever a
file is created (loaded) or records are
added to an organized file. It specifies
the symbolic name of the workarea in which
the user must supply the data records to
ISAM for loading or adding to the file.
The specified name must be the same as the
name used in the DS instruction that
reserves this area of main storage.

This workarea must provide space for
one logical data record when a file is
created (for blocked records, data; for
unblocked records, key and data).

The original contents of WORKL are
changed due to record shifting in the ADD
function.

r--,
IWORKR=name I L ___ J

When records are processed in random
order, this entry must be included if the
individual records are processed in a
workarea rather than the I/O area. It
specifies the symbolic name of the
workarea. This name must be the same as
the name used in the DS instruction that
reserves this area of main storage. This
area must provide space for one logical
record (data area). When this entry is
included and a READ or WRITE instruction
is executed, ISAM moves the individual
record to, or from, this area.

/

IBM IBM SYlt.ml360 AII.mbllr Coding Form

t----------------------r----------t PUNCHING Lt--G._AP_HIC __ -jIf--+_-+-_-jIf--+ __ +-II_t----+='""""'"".".=,.,.,.... ___ -l
IN~'RUCTIONS I PUNCH I I CARD H[C'R0A"pp'ries TO

L-______________________ L-_______ -L ___ ~~ ___ ~_~_L_~_~ _ _L_~_~_~~-~-------~

Opera'i,," O~';nd ~ ~ rd.;:~'~::~on.
r._r"rT._.,-r~ .. _r~rT._"~,_"_r~rT_r"rT._"I~~II-"II-rol-r~rT.-"-r~"-r"rT-r"rT~"-r~,,_r'-rT--1"~' ~~~;T'~~~~

Req·d. x. X X X X X X DT F IS Name 01 Indexed sequential Iile on disk. 7 charactero or ie ... DTFIS requires ISMOD. X""" " R ... ·d.

o S K X TNT = n , Maximum number 01 extent. specilied lor this lile. X " " " "

lOR OUT = X X X X X X , (LOAD. ADD. RETRVE. or ADDRTR) X " " " "

KEY LEN = n n n , Number 01 byte, In record key (maximum 1.255 for DOS). X " J J J

N R E CDS = n n n , Number of records in I block. For DOS. required lor blocked records only; if unblocked. 1 Is assumed. X J " " J

R E C FOR M = X X X X X X , (FIXUN8 or FIXBLK) X " " " "

R E C S I Z E = n n n n , Number 01 characters in I logical record. X J " J "

Opt·l. H-++-H-++H_++H-+-I-C+Y-I-L+0-l-F+L+=+n+n+-, H-++H-+++N-iuf-mbe-f-rf-0l+t_rac+-k+' l_o+-re-+ac_h+-cY-jIi_nd+"'-j0_va+rf-jlo_w+ar-jea_. +M-jax_lm+u_mf-"+8 _'o+-r 2_3_11t-0-jr_18+'-j0r_2+3..,14_a+nd-j2r-3+21_. H-+-+-HX_-+-J+"+-J+J+-Ir-+--H Opt·l.

DEV I C E= n n n n, (2311. 2314. or 2320 II omitted. 2311 Is assumed. I I X,,"""
ERR EXT = YES , Nondata transfer error returns and ERET desired. ~ X J J " J

H I NO E X = n n n n , (2311.2314. or 2320 Unit containing highest level Index. If omitted. 2311 Is assu";ed. X J J J J

H OLD = YES , Track hold function i. desi,ed. XJJ

I N 0 ARE A = X X X X X X X X , Symbolic name of cylinder Index erea. X J

I NOS KIP = YES , Index skip feature Is to be used. X"
I NOS I Z E = n n n n n , Number of bytes required for the cylinder index aree. X J

IOAREAL=xxxxxxxx,) 1II111 X J J

lOA REA R = X X X X X X x. X , (Name 01 I/O erea. X J

IOAREAS=xx xxxxxx,) 1I1111 X

lOA REA 2 = X X X X X X X x, Name 01 second I/O erea. X J"
lOR E G = (n n) , Register number. tOmit if WORKR or WORKS is specified lor DOS. XJJ

IOSIZE=nnnn, Bytes alloted to 10AREAL. X

KEYARG=xxxxxxxx, Name of key field in main storage, for random retrieval or sequential retrieval staning by key. X J J

11111]

Figure 47. DTFIS Macro (Part 1 of 2)

Opt'l.

IBM IBM Syslem/360 Assembler Coding Form

I_------------------------r----------t ~~~T;~~~~N' :1-~:-:C-H~C---l:--+--+--l:--+---t-:-I-:-t7.C",.,.,RD'"'fl".,fC""T.""0A"'"'P".,P·L."'IE,-S-T-O----l
L-__ L-______________ -L ________ ~ ______ ~ __ ~ __ ~~ __ ~ __ _L __ ~ __ ~ __ --,~a:;.~a:;-Id-~-qi~-~:-~----~

Operation O~;nd

1--r-r-...,-r-r-r-"""":'..-.-"',---.-.,..-,-,---r""""'-,--,-"'-r-r-T-r---r-..-.-..---.-.,..-,r-r-.--,--":':"'-r-...,-.,........-"',---.-.,..-,r-r-.--r-r-r-r--r-r-T-r-...,-r-r-r--r--r-1r-r-,-...,-,.......-r-,-.,..-,-r'.,' -j" ~ ~ ~ g r- - r- 80

c:: (Il..J 0:(

KEYLOC=nnnn, Number of high-order position of key field within record. if RECFORM- FIXBLK. X" " J J

MODNAME=xxxxxxx Name of ISMOD logic module for this OTF.lf omitted, IOCS generates standard name. X J J J J

MSTIND=YES, Master index used for this file. X J J " J

RDONLY=YES, Generate a read only module. Requires a module save area for 8ach task using the module. X J J J J

SEPASMB=YES, OTFIS is to be assembled separately. X J J J J

TYPEFLE=xxxxxx, (RANDOM. SEONTL or RANSEO). X J "

VERIFY=YES. Check disk records efter they are written. FortlOS: DEVICE" 2321. YES is essumed. X J J J J

WORKL=xxxxxxxx, Name of work area for loading or adding to the file. X J J

WORKR=xxxxxxxx, Nama of work area for random retrieval. Omit IOREG. i X J

WORKS=YES GET or PUT specifies work area. I

Opt' I.

[IIJIII [1111111111111111111111111111111

• Header and each detail card, except the last one in 88ch set, must have 8 continuation punch in column 72. Also,
each detail card, except the last one, must contain a comma immediately after the operand. Space is allowed for the
longest operand plus the comma. If a smaller operand is used, the comma should be moved over accordinglv. In the
last detail card of8"Set. the comma position must be blank.

Figure 47. DTFIS Macro (Part 2 of 2)

t General registers 2~ 12. written in parentheses; for example: (12).

Indexed sequential Access Method (ISAM) 183

r---,
IWORKS=YES I L ___ J

When records are processed in sequential
order, this entry must be included if the
individual records are processed in
workareas rather than the I/O area. Each
GET and PUT instruction must specify the
symbolic name of the workarea to or from
which ISAM is to move the record. When
processing unblocked records, the area
must be large enough for one record (data
area) and the record key (key area). For
blocked records, the area must be large
enough for one logical record (data area)
only.

The ISAM workarea requirements are as
follows:

r-----------T----------T----------,
I IUnblocked IBlocked I
I I Records I Records I
~-----------+----------+----------~

Load

Add

Random
Retrieve

sequential

I
(KL + DL) IDL or 10*
or 10* I

I
(KL + DL) IDL or
or 10* I(KL + 10)*

DL

I
I
IDL
I
I

Retrieve KL + DL I DL .
~-----------~----------~----------~
I Where: I
I K=Key, D=Data, L=Length I
~~--------------------------------~
I*Whichever is greater. I L _________________________________ J

INDEXED SEQUENTIAL MODULE (ISMOD)

A set of ISMOD parameters is included' for
each logic module necessary to support
each DTFIS macro in a particular problem
program. The logic modules are described
by a ISMOD header entry and a series of
operand 'entries. The header entry
contains ISMOD in the operation field, and
may contain a user supplied name in the
name field. The parameters are explained
in this section and shown in Figure 48.

Note: If an ISMOD logic module precedes
an assembler language USING statement or
follows the problem program, registers
2-12 remain unrestricted even at assembly
time. However, if the ISMOD logic
module(s) lies within the problem program,
the problem programmer should issue the
same USING statement [which was issued

184 DOS supervisor and I/O Macros

before the logic module(s)] directly
following the logic module(s). This
action is necessary because the ISMOD
logic module uses registers 1~ 2~ and 3 as
base registers, and the ISMOD CORDATA
logic module uses registers 1~ 2, 3~ and 5
as base registers. Each time either
module is assembled, these registers are
dropped.

r---------------------------------,
ICORINDX=YES I L _________________________________ J

Include this operand to generate a logic
module that can process DTFIS files (add
or random retrieve functions) with or
without the cylinder index entries
resident in main storage. If omitted, the
module generated cannot process the
resident cylinder index entries.

If an unrecoverable I/O error occurs
while reading indexes into main storage,
the program does not take advantage of the
resident cylinder index entries.

r---------------------------------,
ICORDATA=YES I L _________________________________ J

Include this operand if the module is to
add records to files with the IOSIZE DTFIS
operand. If this operand i~ included~ .the
module cannot add records to DTFIS files
unless the IOSIZE operand is properly
specified. If you omit the CORDATA=YES
operand, you will not have an increase in
throughput when adding records to a file.

r-------------------------~-------,
IERREXT=YES I
L __________________ ---------------J
Include this operand if the ERETmacro is
to be used with this module or if nondata
transfer error conditions are returned in
filenameC.

If HOLD=YES and ERREXT=YES, the problem
program must issue the ERET macro to
return to the ISAM module to free Rny held
tracks.

(

r---,
I HOLD=YES I L ___ J

This operand provides for the track hold
option. Track hold prevents two or more
programs from updating the same record at
the same time. For ISAM, the hold applies
to both data records and index records.

Because track hold cannot be performed
on a LOAD file, HOLD=YES cannot be
specified when IOROUT=LOAD. Also, if
HOLD=YES and ERREXT=YES, the problem
program must issue the ERET macro to
return to the ISAM module to free any held
tracks. If the HOLD parameter is omitted,
the track hold function is not performed.

For further information, see the DASD
Track Protect-ion Macros section,.

r---,
I IOAREA2=YES I L _______________________ ~ _________________ J

Include this operand if a second I/O area
is to be used. This module can process
DTFs with one or two I/O areas specified.
If TYPEFLE=RANSEQ, only one I/O area is
supported.

r---,
I IOROUT={LOADIADDIRETRVEIADDRTR} I L ___ J

This operand specifies the type of logic
module required to perform a given
function. The entries follow.

LOAD

Generates a logic module for creating a
file.

ADD

Generates a logic module for adding new
records into an existent file.

RETRVE

Generates a logic module to retrieve
'(randomly/sequentially) records from an
organized file.

ADDRTR

Generates a logic module that combines the
features of the ADD and RETRVE modules.
This module also processes any file in
which only ADD or RETRVE is specified in
the IOROUT operand statement of the DTF for
the file, and in which the TYPEFLE entry
contains the corresponding parameter (or a
subset of it).

r---,
IRDONLY=YES I L ___ J

This operand generates a read only module.
RDONLY=YES must be specified in the DTF.
For the programming requirements of this
operand, see the DTF RDONLY operand.

r---,
I RECFORM={FIXUNBI FIXBLRI BOTH} I L ___ J

This operand generates a detailed logic
module that creates, adds to, or processes
an unblocked (FIXUNB) or blocked (FIXBLR)
data file. If BOTH is specified, a module
is generated to process both unblocked and
blocked f~les, and the DTF entry for the
file may specify either FIXUNB or FIXBLR in
the RECFORM operand statement. The RECFORM
operand is required only when IOROUT
specifies ADD or A~DRTR. If IOROUT
specifies LOAD or RETRVE, a module that
handles fixed-length blocked and unblocked
files is generated, and the operand is not
required.

(---,
ISEPASMB=YES I L ___ J

This operand must be included if the logic
module is assembled separately. This
causes a CATALR card with the module name
(standard or user) to be punched ahead of
the object deck.

r---,
I TYPEFLE= {RANDOM I SEQNTLI RANSEQ} I L ___ J

This operand is required when IOROUT
specifies RETRVE or ADDRTR. RANDOM
generates a logic module that includes only
random retrieval capabilities. SEQNTL
generates a logic module that includes only
sequential retrieval capabilities. RANSEQ
generates a logic module that includes
random and sequential capabilities. It
also processes any file in which the
TYPEFLE parameter statement of the DTF

I ·specifies either RANDOM or SEQNTL. If
TYPEFLE=RANSEQ, only one I/O area is
supported.

When all operands are omitted, the ISMOD
logic module can process files where '
IOROUT=RETRVE, TYPEFLE=RANSEQ, CORINDX,
CORDATA, HOLD, and RDONLY are not
specified. In this event~ the module name
assumed is IJHZRBZZ.

Indexed Sequential Access Method (ISAM) 185

Name Operation Operand Remarks

[ModnameJ ISMOD

ERREXT==YES Required if nondata transfer
error conditions or ERET are
desired.

CORDATA==YES Required to add records
using the DTF 10SIZE
operand.

CORINDX==YES Required to add or retrieve
records with the cylinder
index entries in main storage.

HOLD==YES Specifies the track hold
option.

IOAREA2==YES Required if two I/O areas
are to be used.

10ROUT== Specifies function to be

rOAD} performed •
ADD
RETRVE
ADDRTR

RDONLY==YES Required if a read only
module is to be generated.

RECFORM== Describes file. Required if

f'XUNB} 10ROUT specifies ADD or
FIXBLK ADDRTR. If 10ROUT specifies
BOTH LOAD or RETRVE, BOTH is

assumed •

SEPASMB==YES If the module is assembled
separately.

TYPEFLE== Required if 10ROUT

{RANDOM} specifies RETRVE or ADDRTR.
SEQNTL
RANSEQ

Figure 48. ISMOD Macro

Recommended Module Name List for ISMOD

Each name begins with a 3-character prefix
(IJH) and consists of a 5-character field
corresponding to the options permitted in
the generation of the module.

ISMOD name = IJHabcde

a = A RECFORM=BOTH, IOROUT=ADD or ADDRTR
= B RECFORM=FIXBLK, IOROUT=ADD or ADDRTR
= U RECFORM=FIXUNB, IOROUT=ADD or ADDRTR
= Z RECFORM is not specified.

(IOROUT=LOAD or RETRVE)

b = A IOROUT=ADDRTR
= I IOROUT=ADD
= L IOROUT=LOAD
= R IOROUT=RETRVE

c = B TYPEFLE=RANSEQ
= G IOAREA2=YES, TYPEFLE=SEQNTL or

IOROUT=LOAD
= R TYPEFLE=RANDOM
= S TYPEFLE=SEQNTL
= Z neither is specified (IOROUT=LOAD or

ADD)

186 DOS Supervisor and I/O Macros

d = B CORINDX=YES and HOLD=YES
= C CORINDX=YES
= 0 HOLD=YES
= Z neither is specified

e = F CORDATA=YES, ERREXT=YES, RDONLY=YES
= G CORDATA=YES and ERREXT=YES
= 0 CORDATA=YES and RDONLY=YES
= P CORDATA=YES
= S ERREXT=YES and RDONLY=YES

T ERREXT=YES
Y RDONLY=YES

= Z neither is specified

subset/superset ISMOD Names

The following chart shows the sub setting
and supersetting allowed for ISMOD names.
Five parameters allow supersetting. For
example, the module IJHBABZZ is a superset
of the module IJHBASZZ. See
Subset/Superset: (Module Names) .•

r---,
+ + + + +

I J H A A B B F
B I ROO
Z + + + +
+ ABC S
A R S Z Y
U * + +
Z L G G

S P
+
G
Z

+
T
Z

+ Subsetting/supers~tting permitted.
* No subsetting/supersetting permitted. l __ _

If two or more modules with the same
entry point are included, the linkage
editor message 21431 (invalid duplication
of entry point label) is generated. This
message can usually be suppressed by
including a superset module. However,
modules with and without prime data in main
storage cannot be combined. Therefore, the
user should take either of the following
actions:

1.

2.

specify prime data in core for each
ADD type DTF in his program. In this
case, superset modules are generated.

Specify the MODNAME operand in the
DTF, and "include an ISMOD of that
name. The DTF then generates only the
specified module.

I
I

(

Initialization·OPEN(R) Macro

r-----T-----------------------------------,
lOp I Operand I
~-----+-----------------------------------~
Ifor self-relocating programs I
I I I
10PENRI{filenamel} I
I I (rl) I
I I I
I I [,{filename2} ••• ,{filenamen}] I
I I (r2) (rn) I
I I I
~-----+-----------------------------------~
Ifor programs that are not self-relocating I
I I I
10PEN I{filenamel} I
I I (rl) I
I I I
I I [,{filename2} ••• , {filenamen }] I
I I (r2) (rn)· I L _____ ~ ___________________________________ J

Note: To write the most efficient code
(in a multiprogramming environment), we
recommend that the self relocating form
of OPEN be used. (See also
Appendix G.)

When the OPEN macro instruction is ,used,
the symbolic address constants that OPEN
generates from the parameter list are not
self-relocating. When OPENR is specified,
the symbolic address constants are
self-relocating. The latter form (OPENR)
is therefore recommended.

self-relocating programs using LIOCS
must use the OPENR macro instruction to
activate all files, including
printer-keyboard files. The OPENR macro,
in addition to activating files for
processing, relocates all address constants
(except zero constants) within the DTF
tables specified in the operand field(s) in
register notation. If symbolic notation is
used, the user must establish
addressability through'a base register.

If OPEN attempts to activate a logical
IOCS file (DTF) whose device is unassigned,
the job is terminated. If the device is
assigned IGN, the OPEN(R) does not activate
the file and turns on the DTF byte 16, bit
2, to indicate the file is not activated.

The symbolic name of the file (DTF
filename) is entered in the operand field.
A maximum of 16 files may be opened with
one OPEN (or OPENR) by entering the
filenames as additional operands.
Alternately, the user can load the address
of the DTF filename in a register and
specify the register using ordinary
register notation. The high-order 8 bits
of this register must contain zeros. A

filename may be preloaded into any
register, 0-15.

Note: If you use register notation, we
recommend using only registers 2-12.
This will make your programs more
compatible with the Operating Systems
(Os).

Whenever an input/output DASD is opened,
the user must provide the information for
checking or building the labels. (See
Label Processing.)

When a file is created or extended by
using index sequential output processing,
those volumes of the file to be written on
are opened as output files. If the file
consists of more than one volume, all the
volumes must be on line and ready when the
file is first opened. '

For each volume, OPEN checks the
standard VOL1 label and performs extensive
checks on the extents specified in the
extent cards for that volume. The extents
must meet the following conditions:

1. All prime data extents must be
continuous.

2. The master and cylinder index extents
must be continuous and on the same
unit.

3. No extents must overlap,

4. Only type 1, 2, or 4 extents are
valid.

5. The extent sequence numbers must be in
the following order:

o for master index, when present.

1 for cylinder index.

2, 3, 4, ••• for the prime data and
independent overflow tracks.

The extent cards for the independent
overflow tracks can be placed either
before or after all the extent cards
for the prime data extents.

OPEN checks all the l~bels in the VTOC
to ensure that the file to be created does
not destroy an existing file. Any expired
labels are deleted from the VTOC. After
the VTOC check, OPEN creates the standard
labels for the file and writes the labels
in the VTOC. If the DASD device is file
protected, all extents specified in the
extent cards are available for writing.
All volumes containing an indexed
sequential file must be on-line and ready
when the file is first opened.

Indexed Sequential Access Method (ISAM) 187

For each volume, OPEN checks the extents
specified in the extent cards for that
volume (for example, checks that the data
extents are continuous). OPEN also checks
the standard VOLl label and then goes to
the VTOC to check the file label(s) before
opening the next volume. After all the
volumes are opened, the file is ready for
processing. If the DASD device is file
protected, all extents specified in extent
cards are available to the user.

ISAM MACROS TO LOAD OR EXTEND A FILE

The functions of originally loading a file
of presorted records onto DASD, or
extending the file by adding new presorted
records beyond the previous high record,
are the same. Both are considered a LOAD
operation (specified by the DTFIS entry
IOROUT), and use the same macro
instructions in the problem program.
However, the type field in the ·DLAB card
must sPecify ISC for load creation and ISE
for load extension.

The areas of the volumes used for the
file are specified by job control extent
cards. The areas are:

The prime area where the data records
are written.

A cylinder index area where the user
wants ISAM to build the cylinder
index.

A master index area if a mastex index
is to be built (specified by the DTFIS
entry MSTIND).

During a load operation, ISAM builds the
track, cylinder, and master indexes.

Three different macro instructions are
always required in the problem program to
load original or extension records into the
logical file on DASD.

188 DOS Supervisor and IIO Macros

SETFL Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+--------------------------~
I [nameliSETFL I {filename} I
I I I (0) I L ______ ~ _________ ~ ________________________ J

The SETFL (set file load mode) macro
instruction causes ISAM to set up the file
so that the load or extension function can
be performed. When loading a file, SETFL
pre formats the last track of each track
index. When extending a file, SETFL
pre formats only the last track of the last
track index plus each new track index for
the extension of the file. This allows
prime. data on a shared track to be
referenced even though no track indexes
exist on the shared track,. The name of the
file loaded is the only parameter required
in this instruction and is the same as that
specified in the DTFIS header entry for the
file. It can be specified as a symbol or
in register notation. Register notation is
necessary to allow use of the macro in a
self relocating program. This macro must
be issued whenever the file is loaded or
extended.

WRITE Macro

r------T---------T----------------------~-,
I Name I Operation I Operand. I
~------+---------+--------~---------------~
I [namellWRITE I {filename} ,NEWKEY I
I I I (1) I L ______ ~ _________ ~ ________________________ J

Recommendation: To write the most
efficient code (in a multiprogramming
environment), register notation
should be used for this macro in
conjunction with the OPENR macro. If
this is done, user programs will be
self relocating, will run in any
partition of storage, and will be
more compatible with the Operating
System (OS)·. Fo~additional
information on writing self
relocating code, see Appendix G.

When a WRITE macro instruction with the
parameter.NEWKEY is issued in the problem
program between a SETFL instruction and an
ENDFL instruct"ion (the third macro required
for loading), ISAM loads a record onto
DASD.

A WRITE macro instruction requires two
parameters. The first parameter is the
name of the file specified in the DTFIS
header entry. The filename can be
specified as a symbol or in register
notation. The second parameter must be the
word NEWKEY.

Before issuing the WRITE instruction,
the problem program must store the key and
data portions of the record in a workarea
(specified by OTFIS WORKL). The ISAM
routines construct the I/O area (see Figure
35) by moving the data record to the data
area, moving the key to the key area, and
building the count area. When the I/O area
is filled, ISAM transfers the records to
OASO storage and then constructs the count
area for the next record. The WAITF macro
should not be used when loading or
extending an ISAM file.

Before records are transferred, ISAM
performs both a sequence check and a
duplicate-record check. This ensures that
the records are in order by key.

After each WRITE is issued, ISAM makes
the 10 of the record or block available to
the problem program. The 10 is located in
an 8-byte field labeled filenameH, which
cannot exceed 7 characters. For example,
if the filename in the OTFIS header entry
is PAYRO, the ID field is addressed by
PAYROH. The 10 of any selected records can
be punched or printed for later use by
referencing this field. Filename H is
required if the user plans to retrieve
records in sequential order starting with
the 10 of a particular record (see SETL
Macro) •

As records are loaded or added on DASO,
ISAM uses the I/O areas to write:

• The new track address each time a track
is filled.

• Two track index records (one prime
data, one overflow) each time a track
is filled.

• A cylinder index record each time a
cylinder is filled.

• A master index record (if DTFIS MSTIND
is specified) each time a cylinder
index is filled.

ENDFL Macro

r------T---------T------------------------,
I Name 10perationi Operand I
~------+---------+------------------------~
I [nameliENDFL I {filename} I
I I I (0) I L ______ ~ _________ ~ ________________________ J

The ENDFL (end file load mode) macro
instruction ends the mode initiated by the
SETFL macro. The name of the file loaded
is the only parameter required in this
instruction and is the same as the name
specified in the OTFIS header entry for the
file~ The filename can be specified either
as a symbol or in register notation.
Register notation is necessary to allow use
of the macro in a self relocating program.

The ENDFL macro performs an operation
similar to close for a blocked file. It
writes the last block of data records~ if
necessary, and then writes an end~of-file
record after the last data record. Also,
it writes any index entries that are needed
followed by dummy index entries for the
unused portion of the prime data extent.

ISAM MACROS FOR ADDING RECORDS

After a file is organized on DASD, new
records can be added. Each record is
inserted in the proper place sequentially
by key. To provide this function specify
ADD, or ADDRTR in the OTFIS entry IOROUT.

The file may contain either blocked or
unblocked records, as specified by the
DTFIS entry RECFORM. When the file
contains blocked records, the user must
provide ISAM with the location of the key
field provided through the OTFIS entry
KEYLOC. The inserted records are written
one record at a time. The records must
contain a key field in the ~ame location as
the records already in the file. Whenever
the addition of records follows sequential
retrieval (ADDRTR), the macro instruction
ESETL must be issued before a record is
added. Two macro instructions (WRITE and
WAITF) are used in the problem program to
add records to a file.

Indexed Sequential Access Method (ISAM) 189

WRITE Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [name11WRITE I {filename} ,NEWKEY I
I I I (1') I L ______ ~ _________ ~ ________________________ J

Recommendation: To write the most
efficient code (in a multiprogramming
environment), register notation
should be used for this macro in
conjunction with the OPENR macro. If
this is done, user programs will be
self relocating, will run in any
partition of storage, and will be
more compatible with the Operating
system (Os). For additional
information on writing self
relocating code, see Appendix G.

The operand filename is the same name that
is contained in the DTFIS header entry.
The name can be specified either as a
symbol or in register notation.

Before the WRITE macro is issued for
unblocked records, the program must store
the record (key and data) to be added into
a workarea specified in the DTFIS entry
WORKL. For blocked records, the program
must store only the data since the key is
assumed to be a part of the data. Before
any records transfer, ISAM checks for
duplicate record keys. If none are found,
ISAM inserts the record into the file.

To insert a record into a file, ISAM
performs an index search at the highest
level. This search determines if the key
of the record to be inserted is lower or
higher than the key of the last record in
the file. If it is lower, the record can
be inserted, and searching of the master
index (if available), the cylinder index,
and the track index determines the
appropriate location to insert the record.

To add an entry to an unblocked file, an
equal/high search is performed in the prime
data area of the track. When such a
condition occurs, the record is read from
the track and placed in main storage (in
the I/O area). The two records are then
compared to check for duplicate records.
If a duplication is found, this information
is posted to the user in the DTF table at
filenameC. If none is found, the
appropriate record (in the user's work
area) is written directly to the track.
The record (just displaced from the track)
in the I/O area is moved by ISAM to the

190 DOS Supervisor and I/O Macros

user's work area, and the next record on
the track is read into the I/O area. Then,
the record in the .workarea is written on
the track. succeeding records are shifted
until the last record on the track is set
up as an overflow record.

If the add I/O area (IOAREAL) is
increased to permit the reading or writing
of more than one record on DASD at a time,
an equal/high search is performed ~n the
prime data area of the track. When such a
condition occurs, as many records as can
fit into the I/O area (specified in the
DTFIS operand IOAREAL) are read from the
track and placed in the I/O area. The
added record is compared with existing
records in the I/O area. If a duplicate
key is found, the condition is posted to
the user in the DTF table filenameC. If no
duplicate is found, the records are shifted
in main storage, leaving the record with
the highest key remaining in the user's
workarea. The other records are rewritten
directly onto the track. Any remaining
record(s) on the track are then read into
the I/O area. This process continues until
the last record on the track is set up as
an overflow record. The last record is
then written into the appropriate overflow
area, and the track index 'entries are
updated. This. area becomes the cylinder
overflow area, if CYLOFL is specified for
this file and the area is not filled.

If the cylinder overflow area is filled,
or if only an independent area is specified
by a job control extent card, the end
record is transferred to the independent
overflow area. If an independent overflow
area was not specified (or is filled) and
the cylinder area is also filled~ no room
is available to store the overflow record.
ISAM posts this condition in the DTF table
at filenameC. In all cases, ISAM
determines if room is available before any
records are written.

For an entry to a blocked file, the
workarea (WORKL) is required in the DTFIS
entries. Each added record must contain a
key field in the same location as the
records already in the file. The user must
specify the high-order position of the key
field (relative to the leftmost position of
the logical record). Use the DTFIS'entry
KEYLOC for this purpose.

When a WRITE macro is issued in the
problem program, ISAM first locates the
correct track by referring to the necessary
master (if available), cylinder~ and track
indexes. Then, a search on the key areas
of the DASD records on the track is made to
locate the desired block of records. The
block of records is read into the I/O area.
If IOREAL is included for reading and
writing more than one record cn DASD at a

time, several blocks may be read into the
I/O area.

ISAM then examines the key field within
each logical record to find the exact
position in which to insert the new record
and then checks for any duplicate records.
If a duplicate key exists the condition is
posted in filenameC. If the key of the
record inserted (contained in the workarea
WORKL) is low, it is exchanged with the
record presently in the block. This
procedure continues with each succeeding
record in the block until the last record
is moved into the workarea. ISAM then
updates the key area of the DASD record to
reflect the highest key in the block. If
IOAREAL was included, succeeding blocks in
the I/O area are also updated. The block
(or bloc~s) is then written back onto DASD.
The remaining blocks on the track are
similarly processed until the last logical
record 'on the track is moved into the
workarea. This record (set up as an
overflow record. with the proper
sequence-links) is then moved to the
overflow area. The indexes are updated and
ISAM returns to the problem program for the
next record to be added. If the overflow
area is filled, the information is posted
in filenameC.

If the proper track for a record is an
ove~flow track (determined by the track
index), ISAM searches the overflow chain
and checks for any duplication. If no
duplication is found, ISAM writes the
record (preceded by a sequence-link field
in the data area of the DASD record) and
adjusts the appropriate linkages to
maintain sequential order by key. The new
record is written in either the cylinder
overflow area or an independent overflow
area. If these areas are filled, a bit is
posted in filenameC.

If the new record is higher than all
records presently in the file
(end-of-file), ISAM checks to determine if
the last track containing data records is
filled. If it is not, the new record is
added, replacing the end-of-file record.
The end-of-file record is written in the
next record location on the track, or on
the next available prime data track,.
Another track must be available within the
file limits. If the end-of-file record is
the first record on any track, the new
record is written in the appropriate
overflow area. After each new record is
inserted in its proper location, ISAM
adjusts all indexes affected by the
addition.

ISAM MACROS FOR RANDOM RETRIEVAL

When a file is organized by ISAM~ records
can be retrieved in random order for
processing and/or updating. Retrieval must
be specified in the DTFIS entry IORQUT
(IOROUT=RETRVE or IOROUT=ADDRTR). Random
processing must be specified in the DTFIS
entry TYPEFLE=RANDOM or RANSEQ.

Because random reference to the file is
by record key, the problem program must
supply the key of the desired record~ To
do this, the key must be stored in the main
storage key field specified by the DTFIS
entry KEYARG. The specified key designates
both the record to be retrieved and the
record to be written back into the file in
an updating operation.. Adding and updating
should not be interspersed. Records that
are added to a file (between the read and
write macro for a particular record to be
updated) can result in a lost record and a
duplicate key.

The RECSIZE entry in the DTFIS should
specify the same value as entered at load
time. If these values differ, no error
will result; however, the RECSIZE from the
load DTFIS is used. The necessary
information for a retrieval operation comes
from the Format 2 label and not the RETRVE
operand in the DTFIS.

READ Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~~-----+---------+------------------------~
I [namellREAD I{filename} ,KEY I
I I I (1) I L ______ ~ _________ ~ ________________________ J

Recommendation: To write the most
efficient code (in a multiprogramming
environment), register notation
should be used for this macro in
conjunction with the OPENR macro. If
this is done, user programs will be
self relocating, will run in any
partition of storage, and will be
more compatible with the Operating
System (OS). For additional
information on writing self
relocating code, see Appendix G.

Indexed Sequential Access Method (ISAM) 191

The READ instruction causes ISAM to
retrieve the specified record from the
file. This instruction requires two
parameters. The first parameter specifies
the name of the file from which the record
is to be transferred to main storage. This
name is the same as the name specified in
the DTFIS header entry for the file and can
be specified as a symbol or in register
notation. The second parameter must be the
word KEY.

To locate a record, ISAM first searches
the indexes to determine the track on which
the record is stored and then searches the
track for the specific record. When the
record is found, ISAM transfers it to the
I/O area specified by the DTFIS entry
IOAREAR. The ISAM routines also move the
record to the specified workarea if the
DTFIS entry WORKR is included in the file
definition.

When records are blocked, ISAM transfers
the block that contains the specified
record to the I/O area. It makes the
individual record available for processing
either in the I/O area or the workarea (if
specified). For processing in the I/O
area, ISAM supplies the address of the
record in the register specified by DTFIS
IOREG. The ID of the record can be
referenced using filenameG.

WRITE Macro

r------T--------~------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [namellWRITE l{filename} ,KEY I
I I I (1) I L ______ ~ _________ ~ ________________________ J

Recommendation: To write the most
efficient code (in a multiprogramming
environment), register notation
should be used for this macro in
conjunction with the OPENR macro. If
this is done, user programs will be
self relocating, will run in any
partition of storage, and will be
more compatible with the operating
system (OS). For additional
information on writing self
relocating code, see Appendix G .•

The WRITE instruction with the parameter
KEY is used for random updating. It causes
ISAM to transfer the specified record from
main storage to DASD storage. This
instruction requires two parameters. The

192 DOS Supervisor and I/O Macros

first parameter specifies the name of the
file to which the record is transferred.
The specified name is the same as that used
in the DTFIS header entry and in the
preceding READ instruction for the file.
The name can be specified as a symbol or in
register notation~ The secona parameter
must be the word KEY.

ISAM rewrites the record following a
read instruction for the same file. The
record is updated from the workarea (if one
is specified) or the I/O area. The key
need not be specified again ahead of the
WRITE instruction.

WAITF Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [nameliWAITF I{filename} I
I I I (1) . I L ______ ~ _________ ~ ___________ ~ ____________ J

The WAIT~macro instruction is issued to
ensure that record transfer is completed.
The only required parameter is the name of
the file to which the record is
transferred. The name can be specified as
a symbol or in register notation.

This instruction must be issued before
the problem program attempts to process an
input record or build another output record
for the designated file. The program.does
not regain control until the previous
transfer of data is complete, unless
ERREXT=YES was specified and an error
occurs. In this case, the ERET macro
should be issued to handle the error and
complete the transfer of data.

The WAITF instruction posts any
exceptional information in the DTFIS table
at filenameC. The WAITF instruction
applies to the fUnctions described in ISAM
Macros for Adding Records, and ISAM Macros
for Random Retrieval.

ISAM MACROS FOR SEQUENTIAL RETRIEVAL

When a file is organized by ISAM, records
can be retrieved in sequential order by key
for processing and/or updating. The DTFIS
entry IOROUT=RETRVE must be specified .•
sequential processing must be specified in
the DTFISentry TYPEFLE=SEQNTL or RANSEQ.

Although records are retrieved in order
by key, sequential retrieval can start at a
record in the file identified either by key

/

or by the IO (identifier in the count area)
of a record in the prime data area.
Sequential retrieval can also start at the
beginning of the logical file. The user
must specify, in SETL, the type of
reference he uses in the problem program.

Whenever the starting reference is by
key and the file contains blocked records
(RECFORM=FIXBLR), the user must also
provide ISAM with the position of the key
field within the records. This is
specified in the DTFIS entry REYLOC. To
search for a record, ISAM first locates the
correct block by the key in the key area of
the DASO record. The key ar~a contains the
key of the highest record in the block.
ISAM then examines the key field within
each record in the block to find the
specified record. As with random
retrieval, the RECSIZE operand should
specify the same number as indicated when
the OTFIS was loaded.

SETL Macro

r------T---------~-----------------------,
I Name I Operation I Operand I
~------+---------f------------------------~
I [name] ISETL ,{filename}, jidname! I
/ I / (r) (r) I
/ I I REY I
/ / / BOF I
I 1 I GREY I L ______ ~ _________ ~_-______________________ J

The SETL (set limits) macro instruction
initiates the mode for sequential retrieval
and initializes the ISAM routines to begin
retrieval at the specified starting
address. The first operand (filename)
specifies the name of the file (supplied in
the DTFIS header entry) from which records
are to be retrieved.. The name can be given
as a symbol or in register notation.
Register notation is necessary to allow the
macro to be used in a self-relocating
program.

The second operand specifies where
processing is to begin. If the user is
processing by the record ID, the operand
idname or (r) specifies the symbolic name
of the main-storage field in which the user
supplies the starting (or lowest) reference
for ISAM use. The symbolic field contains
the following information:

Pointer to First Record to be Processed by
sequential Retrieval:

r----T------T--------T--------------------,
I IIden- I 1 I
I Byteltifier/Contents/Information /
~----+------+--------+--------------------~
I 0 I m 12-245 INumber of the extent I
I I I lin which the /
I I I Istarting record is I
I I I I located. I
~----+------+--------+--------------------~
I 1-2t b,b 10,0 IAlways zero for I
I I 1 (disk) I disk. . I
I I ~--------+--------------------~
I I 10, 0-9 Icell number for I
I I I (cell) Idata cell. I
~----+------+--------+--------------------~
I 3-41 c,c 10, 1-199lCylinder number for I
I 1 I (disk) I disk. I
I I ~--------+--------------------~
I 1 10-19,0-9ISubcell and strip I
I I I (cell) Ifor data cell. I
I I I I I
I I I INote: The last four 1
I I I Istrips on each cell I
I I I lare reserved for I
I I I 'alternate tracks. I
~----+------+--------+--------------------~
/ 5-61 h,h 10,0-9 IHead position for 1
I 1 1(2311 12311, 2314 1 or 2319 1
1 I I disk) 1 disk. I
I I 10,0-19 I I
I I 1(2314 orl I
I I 12319 I I
/ I Idisk) I I
I I ~--------+--------------------~
I I 10-4,0-19ICylinder and head I
I I I (cell) Ifor data cell. I
~----+------+--------+--------------------~
I 7 I r 11-254 IRecord location. / L ____ ~ ____ -_~ ________ ~ ____________________ J

If processing begins with a key supplied
by the user, the second operand is KEY.
The key is supplied by the user in the
field specified by the DTFIS entry KEYARG.
If the specified key is not present in the
file, an indication is given at filenameC.
The second operand BOF specifies that
retrieval is to start at the beginning of
the logical file.

Selected groups of records within a file
containing. identical characters or data in
the first locations of each key can be
selected by specifying GKEY in the. second
operand. The GKEY specification allows
processing to begin at the first record (or
key) within the desired group. The user
must supply a key that identifies the
significant (high order) bytes of the
required group of keys. The remainder (or
insignificant) bytes of the key must be
padded with blanks, binary zeros, or bytes
lower in collating sequence than any of the
insignificant bytes in the first key of the
group to be processed. For example, a GKEY

Indexed Sequential Access Method (ISAM) 193

specification of 06420000 would permit file
processing to begin at the first record (or
key) containing D642xxxx, regardless of the
characters represented by the x's.The
problem program must determine when the
generic group is completed. Otherwise,
ISAM continues through the remainder of the
file.

Note: If the search key is equal to or
greater than the highest key on the
file, the Filename status byte is set
to

X'10' NO RECORD FOUND

GET Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [namellGET I{filename}[,{workname}] I
I I I (1) (0) I L ______ ~ _________ ~ ________________________ J

•••••••••••••••••••••• * ••• *.* ••••••

Recommendation: To write the most
efficient code (in a multiprogramming
environment), register notation
should be used for this macro in
conjunction with the OPENR macro. If
this is done, user progr·ams will be
self relocating, will run in any
partition of storage, and will be
more compatible with the Operating
System (OS). For additional
information on writing self
relocating code, see Appendix G.

* •••••••• *.* •••••• * ••• *.*.*.*.* ••• *

The GET macro instruction causes ISAM to
retrieve the next record in sequence from
the file. It can be written in either of
two forms, depending on where the record is
to be processed.

The first form is used if records are to
be processed in the I/O area (specified by
DTFIS IOAREAS). The only required
parameter is the name of the file from
which the record is to be retrieved. This
is the same name as that specified in the
DTFIS header entry and can pe specified as
a symbol or in register notation. ISAM
transfers the record from the file to the
I/O area after which the record is
available for the execution of the next
instruction in the problem program. The
key is located at the beginning of IOAREAS
and the register (IOREG) points to the
data. If blocked records are specified,
ISAM makes each record available by
supplying its address in the register

194 DOS supervisor and 1/0 Macros

specified by the DTFIS entry IOREG. The
key is contained in the record .•

The second form of the GET instruction
is used if records are to be processed in a
workarea (DTFIS specifies WORRS). It
requires two parameters both of which can
be specified as symbols or in register
notation. The first is the name of the
file, and the second is the name of the
workarea. When using register notation,
workname should not be pre loaded into
register 1.

If blocked records are specified in the
file definition, each GET that transfers a
block of records to main storage will also
write the preceding block back into the
file in its previous location. GET writes
the preceding block if a PUT instruction is
issued for at least one of the records in
the block. If a PUT instruction was not
issued, updating is not required for the
block and GET does not rewrite the block.
Whenever an unblocked record is retrieved
from the prime data area, ISAM supplies the
ID of that record in the field addressed by
filenameH. If blocked records are
specified, ISAM su~plies the ID of the
block.

PUT Macro

r------T----~----T------------------------,
I Name I Operation' Operand ,
~------+---------+------------------------~
I [name] 'PUT I{filename} [,{workname}] I
I I ,(1) (0) , L ______ ~ _________ ~ ________________________ J

••• ***.* ••••••••••••••••••• **.* ••••

Recommendation: To wr~te the most
efficient code (in a multiprogramming
environment), register notation
should be used for this macro in
conjunction with the OPENR macro. If
this is done, user programs will be
self relocating, will run in any
partition of storage, and will be
more compatible with the Operating
System (OS). For additional
information on writing self
relocating code, see Appendix G.

•••• *.*.*.*.*.* •• ***.* •••• * •••••• *.

The PUT macro instruction is used for
sequential updating of a file, and causes
ISAM to transfer records to the file in
sequential order. PUT returns a record to
a file. It may be written in either of two
forms, depending on where records are
processed. A GET macro must precede each
PUT macro.

The first form is used if records are
processed in the I/O area (specified by
DTFIS IOAREAS). It requires only the name
of the file to which the records are to pe
transferred. The specified macro is the
same as that used in the DTFIS header entry
and can be specified in register notation
or as a symbol.

The second form of the PUT instruction
is used if records are processed in a
workarea. It requires two parameters, both
of which can be specified either as a
symbol or in register notation. The first
parameter is the name of the file, and the
second is the name of the workarea. When
using register notation, workname should
not be loaded into register 1. The
workarea name may be the same as that
specified in the preceding GET for the
file, but this is not required. ISAM moves
the record from the workarea specified in
the PUT instruction to the I/O area
specified for the file in the DTFIS entry
IOAREAS.

When unblocked records are specified,
each PUT writes a record back onto the file
in the same location from which it was
retrieved by the preceding GET for the
file. Thus, each PUT updates the last
record that was retrieved from the file.
If some records do not require updating, a
series of GET instructions can be issued
wi thout intervening PUT instructions'.
Therefore, it is not necessary to rewrite
unchanged records.

When blocked records are specified, PUT
instructions do not transfer records to the
file. Instead, each PUT indicates that the
block is to be written after all the
records in the block are processed. When
processing for the block is complete and a
GET is issued to read the next block into
main storage, the GET also writes the
completed block back into the file in its
previous location. If a PUT instruction is
not issued for any record in the block, GET
does not write the completed block. The
ESETL macro instruction writes the last
block processed, if necessary, before the
end-of-file.

ESETL Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [namellESETL I {filename} I
I I I (1) I L ______ ~ _________ ~ ________________________ J

The ESETL (end set limit> macro instruction
ends the sequential mode initiated by the
SETL macro. The name of the file must be
the same as the name specified in the DTFIS
header entry. It can be specified as a
symbol or in register notation. If blocked
records are specified, ESETL writes the
last block back if a PUT was issued.
Register notation is necessary to allow use
of the macro in a self relocating program.

Note: If ADDRTR and/or RANSEQ are
specified in the same DTF, ESETL should
be issued before issuing a READ or
WRITE: another SETL can be issued to
restart s~quential retrieval.

Completion - CLOSE(R) Macro

r------T----------------------------------,
lOp I Operand I
~------+----------------------------------~
Ifor self-relocating programs I
I I I
I CLOSER I {filename1} I
I I (r1) I
I I I
I I [. {filename2} •••• {filenamen}] I
I I (r2) (rn) I
I I . I
~------+----------------------------------~
Ifor programs that are not self-relocating I
I I I
ICLOSE l{filename1} I
I I (r1) I
I I I
I I [.• {filename2} •••• {filenamen}] I
I I (r2) (rn) I L ______ ~ __________________________________ J

Note: To write the most efficient code
(in a multiprogramming environment), we
recommend that the self relocating form
of OPEN be used. (See also
Appendix G.)

The CLOSE macro instruction deactivates any
file that was previously opened in any
input/output unit in the system. A file
may be closed at any time by issuing this
macro instruction. Once a file is closed,
no further commands can be issued for the
file unless it is reopened.

Indexed sequential Access Method (ISAM) 195

If a load or load extension file is not
closed, the format~2 label associated with
the file is not updated with the
information that is in the DTF. Further
processing of such a file may give
unpredictable results.

When the operation CLOSE is used, the
symbolic address constants that CLOSE
generates from the parameter list are not
self-relocating. When CLOSER is specified,
the symbolic address constants are
self-relocating. This latter form (CLOSER)
is therefore recommended.

196 DOS supervisor and I/O Macros

The symbolic name of the logical file
(assigned in the DTF header entry) to be
closed is entered in the operand field. A
maximum of 16 files may be closed by one
instruction by entering additional filename
parameters as operands. Alternately, the
user can load the address of the filename
in a register and specify the register
using ordinary register notation.. The
high-order 8 bits of this register must be
zeros. The address o£ the filename may be
preloaded into any register, 0-15. See
Label Processing.

When multitasking is' specified at system
generation time, the inultitasking group of
macros allows more than one program (task)
to execute within a partition. This not
only increases overlapping of I/O activity
and computer processing, but also increases
throughput by eliminating operator
intervention to initiate these programs.

The multitasking function enables nine
additional subprograms, or subtasks, to be
added to the three-partitioned Disk
Operating System. Thus, a partition to be
multitasked consists of the main task and
one to nine subtasks. Each subtask must be
initiated (attached) by the main task, at
which time control passes to the subtask.
The storage protection key and priority of
the partition (Fl, F2, BG) remain the same,
but the priority of a task within a
partition is determined according to the
order in which a subtask is attached. That
is, if subtask 1 through subtask n (n less
than or equal to 9) are attached, in
ascending order, the priority of the
partition is. from subtask 1 to subtask n
followed by the main task. Thus, to
facilitate maximum I/O overlap, the subtask
with the most I/O activity should be
attached first within the foreground-l
partition.

As an example of multitasking, assume a
situation where input/output overlapping is
to be achieved by running three programs in
one partition. The main task attaches each
subtask, checks to ensure each subtask is
properly attached, and ends the job when
the subtasks are completed. Furthermore,
it is assumed that this partition has the
highest priority. For this case,
processing occurs as follows:

1. The main task initializes the program,
attaches subtask 1 and passes control
to this subtask.

2. Subtask 1 processes until it issues an
I/O command or enters the wait state
at which time it passes control to the
main task.

3. The main task similarly initiates the
second and third subtasks. This
achieves not only I/O overlap, but
also initiates new jobs without
operator intervention.

If an unrecoverable error occurs in the
main task, the problem program abnormal

Multitasking Macros

termination routine closes the files and
terminates the job. If an unrecoverable
error occurs in a subtask, a second
abnormal termination routine must be
provided to close that subtask's files and
cancel the subtask. Figure 49 describes
this operation more fully.

There are three main types of
multitasking within a partition. Subtasks
can:

1. Be independent of each other, or

2. Be interrelated with macro
instructions used for intertask
communication, or

3. Consist of one physical set of coding
.that is reenterable. This set of
coding can be attached up to nine
times to operate as if up to nine
subtasks were being executed. For
multitasking examples of types 2 and
3; see Multitasking Considerations.

Subtasks share main storage with the
main task in any way determined by the
problem program. The subtask operates
independently of the main task and
effectively has its own registers. A task
need not be affected by other operations
and can include its own program check
and/or abnormal termination exit through
the STXIT macro instruction.

To synchronize tasks, the proper
intertask communication macro instructions
WAIT, WAITM, and POST must be executed.
The WAIT or WAITM enables a task to wait
for an event to occur. The task remains
waiting until allowed to continue by an I/O
completion, a timer interrupt, a task
termination, or a POST macro.

If data is manipulated in main storage
by one task, it can also be manipulated by
a task with a lower priority unless the
resource protection macros (RCB, ENQ, and
DEQ) are used by all the tasks in the
partition. Likewise, shared data
manipulated on a DASD device is not
protected unless all the files concerned
(DTFSD or DTFDA) specify the HOLD option.

Multitasking Macros 197

Attach
Subtask 1

Attach
Subtask 2

YES

Attach
Subtask 3

YES

Perform I/O and
Process Data

Perform I/O and
Process Data

Perform I/O and
Process Data

Determine
which Subtask
is Terminating

Figure 49. A Multitasking Flowchart
Example

198 DOS Supervisor and I/O Macros

Subtask Initiation and Normal
Termination Macros

ATTACH Macro

r------T------T---------------------------,
I Name lOp I Operands \
~------+------+---------------------------~
I £namelIATTACHI{entrypt}, SAVE={savearea} \
I I I (rO) (r1) I
I I \ \
I I I [,ECB={ecbname}] I
I I I (r2) I
I I I \
I 1 1 [,ABSAvE={savearea}] 1
I I I (r3) I L ______ ~ ______ ~ ___________________________ J

A subtask can only be initiated by issuing
the ATTACH macro within the main task. The
entry point of the subtask must be in main
storage before the subtask can be
successfully attached.

The first operand must be the entry
point of the subtask and can be specified
as a symbol or in register notation.
Register 1 should not be used.

The second operand must be the address
of the savearea for the subtask. The
second operand can be given as a symbol, or
in special or ordinary register notation.
The save area must be aligned on a
doubleword boundary and is 96 or 128 bytes
in length depending upon whether the
floating point option (CONFG FP=YES) was
specified at system generation time.

Savearea without Floating Point Option

r----T----T-----------T----------------,
INAME\PSW \REGS 9-8 \USED BY DOS \ L ____ ~ ____ ~ ___________ ~ ________________ J

o 8 16 80 96

Savearea with Floating Point Option

r----T----T-----------T----------------,
\NAMEIPSW \REGS 9-8. IUSED BY DOS \ L ____ ~ ____ ~ ___________ ~ ________________ J

o 8 16 80

r--------T-----------------,
IFP REGS \USED BY DOS I L ________ ~ _________________ J

88 120 128

The area (as shown) contains the subtask's
PSW, general purpose registers, floating

/

pOint registers (option dependent), and a
16-byte area used by the Disk Operating
System. A subtask name should be provided
in the first 8 bytes of the save area.
This identifies the subtask in the event of
a possible abnormal termination condition.

The third operand must be specified if
other tasks can be affected by this
sUbtask's termination, or if the ENQ and
DEQ macros are used within the·subtask.
This parameter is the address of the task's
event control block (ECB), and is a
fullword defined by the problem program.
At the time a subtask is attached, byte 2

. bits 0 and 1 are set to O. When a subtask
terminates, the supervisor sets byte 2 bit
o of the ECB to 1. In addition, if AB=YES
is generated in the supervisor, byte 2 bit
1 is posted when the subtask abnormally
terminates; that is, if task termination is
not the result of issuing the CANCEL,
DETACH, DUMP, or EOJ macro instructions.
The remaining bits of an ATTACH ECB are
reserved for future use. However, the
intertask communication ECB may be any 4
byte (or larger) field with the following
format:

rTermination Indicator
I
I rAbnormal Indicator
II

r--------T--------T!!------T--------,
1012345671012345671012345671012345671
~--------+--------+--------+--------~
10-Byte Ii-Byte 12-Byte 13-Byte I L ________ ~ ________ ~ ________ ~ ________ J

The fourth operand should only be
specified if the subtask is to execute the
main task abnormal termination routine .•
See STXIT--Set Linkage to User Routine(s).
The problem program can have separate
subtask STXIT AB routines with or without a
main task STXIT AB routine, or it can have
neither. The parameter specified in this
operand must be the address of a 72-byte
(doubleword aligned) STXIT save area for
the subtask. When an abnormal termination
occurs, the supervisor saves the old PSW
and general registers 0-15 in this area
before the exit is taken.

If the ATTACH macro successfully
initiates a subtask, control passes to the
subtask. Register 1 of the subtask
contains the address of the main task save
area and the contents of registers 2-15
remain unchanged. The address in register
1 can be used as the second operand of a
POST macro later in the job if specific
task-to-task communication is desired.

Upon return from a successful ATTACH, the
main task register 0 contains the address
of the byte immediately following the
subtask save area~ as determined by the
supervisor. Register 0 can be tested to
ascertain whether the supervisor contains
the floating point option.

If nine subtasks are already attached
within the system" any attempt to attach
another subtask is unsuccessful. In such
an event, the main task keeps control and
register 1 (main task) contains the address
of an ECB within the supervisor that is
posted when the system can initiate another
subtask. Register 1 also has the high
order bit 0 ON to aid the main task in
testing for an unsuccessful ATTACH.

DETACH Macro

r------T---------T------------------------,
I Name I Operation I Operands I
~------+---------+------------------------~
I [namellDETACH I [SAVE={savearea}] I
I I I (1) I L ______ ~ _________ ~ ________________________ J

A subtask is normally terminated by issuing
a DETACH macro, and no operand is required
in this case. The main task can also
terminate a subtask it initiated by issuing
the DETACH macro with an operand. The
operand provides the address of the save
area specified in the ATTACH macro of the
subtask to be terminated.

Note: If the main task issues the
macro without specifying an operand,
the whole partition is terminated,.

The DETACH macro posts the. ECa, if
specified in the ATTACH macro, (byte 2 bit
0) to indicate normal termination,. All
tasks waiting on this ECB are taken out of
the wait state, and the highest priority
task obtains control.

Note:' For systems operating in a QTAM
environment, QTAM files must be closed
before issuing this macrO:--

Multitasking Macros 199

RESOURCE PROTECTION MACROS

RCB Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------~-----------------~
I [name1lRCB I I L ______ ~ _________ ~ _______________________ J

When more than one task. manipulates a
resource (data in the same area, an 1/0
device, a set of instructions, etc),
protection should be provided to prevent
the resource from being used concurrently
by these tasks. If every task within the
partition uses the RCB, ENQ, and DEQ
macros, such protection is possible.

The RCB macro generates an a-byte
word-aligned gesource £ontrol ~lock, which
protects a user defined resource if the ENQ
macro is issued before and the DEQ macro is
issued after each use of the resource.
Byte 0 of this field is set to binary ones
to indicate that the resource is placed in
a priority queue by the ENQ macro. RCB
bytes 1-3 are reserved for future use.

If bit 0 of the flag byte is ON, it
indicates that another task is waiting to
use the resource. At this time, RCB bytes
5-7 contain the ECB address of the current
resource owner. The format of the RCB is:

r-----T-----------T---~-----------------,
I I I I ECB Address of I
I Queue I IFlaglcurrent Resource I
IByte I Reserved I Byte I Owner I
~-----+---~--T---+----+-----T-----T-----~
10 11 12 13 14 15 16 17 I L _____ ~ ___ ~ __ ~ ___ ~ ____ ~ _____ ~ _____ ~_~ ___ J .

200 DOS Supervisor and 1/0 Macros

ENQ Macro

r------T---------T------------------------,
I Name I Operation I operand I
~------+---------+---~-------------------~~
I [name11ENQ I {"rCb-name} I
I I 1(0) I
L ______ ~ ____ ~----~------------------------J

A task protects a resource by issuing an
ENQ (enqueue) macro. When the RCB,
(identified by the rcb-name) is enqueued,
the task requesting the resource is either
queued and executed, or it is placed in a
wait condition. When a task using that
resource completes, the DEQ (dequeue) macro
is issued. All other tasks that were
waiting for the dequeued resource are freed
from their wait condition" and the highest
priority task either obtains or maintains
control.

If a task is terminated without
dequeuing its queued resources, any task
subsequently trying to enqueue that
resource is abnormally terminated. If a
task issu~s two ENQs without an intervening
DEQ for the same resource" the task is
canceled. Also, any task that does not
control a resource attempting to dequeue
that resource is terminated, unless the DliQ
appears in the abnormal termination
routine. If DEQ appears in the abnormal
termination routine, it is ignored.

Although the main task does not require
the problem ·program to set up an intertask
communication ECB to enqueue and dequeue,
every subtask using that facility must have
the ECB operand in the ATTACH macro, and
that ECB must not be used for any other
purpose. Also, a resource can only be
protected within the partition containing
the ECB.

DEQ Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [name] I DEQ I {rcb-name } !
I I I (0) I
L_-----~ _________ ~ _____ ~ __________________ J

A task releases a resource by issuing the
DEQ macro. If other tasks are enqueued on
the same RCB, the DEQmacro frees all other
tasks that were waiting for that resource
from their wait condition. In such cases,
the highest priority task either obtains or
maintains control. A task that attempts to
dequeue a resource that was not enqueued or
that was enqueued by another task is
abnormally terminated. Dequeuing under
these two ,conditions (within an abnormal
termination routine) results in a no
operation instruction.

The operand is the same as that in ENQ
and specifies the address of the RCB either
by a symbolic name, special register
notation, or ordinary register notation.

The following example shows how an RCB
can be used to protect an area in main
storage:

MTASK START

ATTACH
ATTACH

STASKl ENQ
update
DEQ

STASK2 ENQ
update
DEQ

RCBA RCB

o Example

STASK1,SAVE=SAVE1,ECB=ECB1
STASK2, SAVE=SAVE2, ECB=ECB2

RCBA
TOTAL
RCBA

RCBA
TOTAL
RCBA

TOTAL DS or DTFxx

TOTAL can be simply an area in main
storage or a file defined by a declarative
macro. In either case, TOTAL is protected
from subtask 2 while subtask 1 is operating
with it. Thus, if all tasks enqueue and
dequeue around all references to TOTAL,
TOTAL is protected during the time each
task takes to process instructions from the
task's ENQ instruction to its DEQ
instruction. This is readily apparent if
TOTAL is an area in main storage. However,

if TOTAL is a file, the record that is
being 'operated upon is protected while in
'main storage, but it is not necessarily
protected on the external storage device.
If the file is on a DASD, the HOLD function
should be used.

INTERTASK COMMUNICATION MACROS

WAITM Macro

r------T---------T------------------------,
I Name I operation I Operand I
~------+---------+------------------------~
I [name] IWAITM l{eCb1,ecb2"~ •• } I
I I I listname I
I I I (1) . I L ______ ~ _________ ~ ________________________ J

If ~he option is specified at system
generation time, the WAITM macro enables
the problem program or task to wait for one
of a number of events to occur. Control
returns to the task when at least one of
the ECBs specified in the macro is posted.

The operand provides the address of the
·ECBs to be waited upon. The symbolic names
of ecbl,ecb2... are assumed when at least
two operands are supplied. If one opera~d
is supplied, it is assumed to be the
symbolic name (listname) of a list of
consecutive full word addresses that point
to the ECBs to be waited upon. The first
byte following the last address in the list
must be nonzero·to indicate the end of the
list. The listname parameter can be given
as a symbol, in speciai register notation,
or in ordinary register notation.

When control returns t6 a waiting task~
register 1 points to the posted ECB that
had byte 2 bit 0 ON. Other blocks can be
used as ECBs if their byte 2 bit 0
indicates a completed event. Examples .of
these blocks are CCBs and TECBs. However,
a task never regains control if it is
waiting for a CCB to be posted by another
task's I/O completion. A MICR CCB gets
posted only when the device stops, not when
a record is read. Furthermore"
telecommunication ECBs, QTAM control
blocks, and all RCBs must not be waited for
because their format would never satisfy a
WAIT or a WAITM (that is, byte 2 bit 0
would not be posted).

A task that issues the WAITM macro
should ensure that the waiting task allows
an eventual outlet if it is possible that
an event will not occur. (Such a condition
could occur if a task posting an event is
terminated.) This outlet can also wait for
the termination ECB of the task that is to

Multitasking Macros 201

perform the preferred event. An example of
a successful intertask communication is:

ECB1A

ECB1

WAITM
B

DC
B
DC
B

ECB1A,ECBl
4(1)

F'O'
PEVENT
F' 0'
TEVENT

In this example, the WAITM macro
contains a preferred event as the first
operand, and a secondary event as the
second operand. The preferred event is the
posting of ECB1A after subtask 1 completes
its processing. If subtask 1 terminates
before its processing is completed, the
supervisor posts the ATTACH macro ECB of
subtask 1, ECB1, and the secondary event
can satisfy the WAITM macro. In either
case, after the WAITM macro is satisfied,
the address of the posted EC~ is contained
in register 1. This address can be used to
select a problem program routine. In this
particular case, a branch instruction
points to a table containing a list of ECBs
with corresponding branch instructions to
the routine to be given control when the
ECB is posted. This table can easily be
expanded to include up to a maximum of 16
ECBs.

POST Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [·name] I POST I {ecbname } I
I I I (1) I
I I I I
I I I [,SAVE={SaVearea}] I
I I I (0) I L ______ ~ _________ ~ ________________________ J

This macro provides intertask
communication by posting an ECB (turn byte
2 bit 0 ON). A POST issued to an ECB
removes a task waiting for the ECB from the
wait state. The first operand provides the
address of the ECB to be posted. It can be
provided as a symbol, in special register
notation, or in ordinary register notation.

If the SAVE operand is present, only the
task identified by the address of its save
area is taken out of the wait state. This
task normally is waiting for the specified
ECB to be posted. Although time is saved
by specifying this operand, other tasks
waiting for this ECB are not taken out of
the wait state for this event unless
another POST is issued. When a POST is

202 DOS Supervisor and I/O Macros

issued without the SAVE operand, all tasks
waiting for the ECB are taken out of the
wait state, and th~ highest priority task
regains control.

DASD TRACK PROTECTION MACROS

DASD track protection means that when a
record on a DASD track is being modified by
a task in main storage, that track is
prevented from being accessed by another
task. Within a partition, track protection
can be accomplished for a particular DASD
by the resource protection macros or the
intertask communication macros. With the
resource protection macros, an RCB can be
enqueued before each reference to the DASD.
With the intertask communication macros, a
subtask can wait for an ECB to be ~osted
before each reference to the DASD.

For programs using the DTFSD-SDMOD (data
files with updating, or work files with
updating), DTFIS-ISMOD, and/or DTFDA-DAMOD
macros, the track hold function can provide
DASD track protection~ In these cases,
DASD track protection within the entire
system can be accomplished if the track
hold option is specified at system
generation time, and if every task uses the
DTFSD-SDMOD, DTFIS-ISMOD, and/or
DTFDA-DAMOD HOLD=YES macros to access the
DASD. If protection is required within a
partition, the track hold function must be
used for every read within the partition.

The track hold function can be used in
four specific situations:

1. DTFSD updating files without work
files.

2. DTFSD updating files with work files.

3. DTFDA files.

4. DTFIS files.

In the first situation, the track being
held is freed automatically by the system.
More specifically, for situation 1, the
next GET issued to a new track for the file
frees the previous hold. For situation 2,
the track is automatically freed by the
system if the record that was read and held
is then updated. If it is not updated, the
problem program must issue the FREE macro.
For situation 3, the problem program must
issue the FREE macro for each hold placed
on the track. A hold is placed on a track
each time the track is accessed with a GET
or a READ, and each hold is released by
issuing either a FREE or CLOSE macro to
that file, or a DETACH macro to that task.
For situation 4, the method of

I implementation depends on the function
being performed.

The format of the FREE macro is:

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [name] I FREE I{ filename} I
I . I I (1) I L ______ ~ _________ ~ ________________________ J

The maximum number of tracks that can be
held within a system is specified at system
generation time. The maximum that can be
specified is 255, with a system default
option of 10. If a task attempts to exceed
the limit, the task is placed in the wait
state until a previously held track is
freed.

The same track can be held more than
once without an intervening FREE if the
hold requests are from the same task. The
same number of FREEs must be issued before
the track is completely freed. However, a
task is termin.ated if more than 16 hold
requests are recorded without an
intervening FREE, or if a FREE is issued to
a file that does not have a hold request
for that track.

For DTFDA files using WRITE or
WRITE AFTER, DAMOD initially places a HOLD
on the track. Before returning control to
the problem program, DAMOD automatically
issues a FREE to that track. However, a
WRITE AFTER issued to a track that has the
maximum number of HOLDs already in effect
cancels the task (or partition).

If a task requests a track that is being
held by another task, that task is placed
into the wait state at the GET or WAITF
macro associated with the I/O request. The
request is fulfilled after the track is
freed and when control returns to the
requestor.

If mOre than one track is being held, it
is possible for the problem program to
inadvertently put the entire system in the
wait state. This occurs if each task is
waiting for a track that is already held by
another task. A way to prevent this, is to
FREE each track held before another track
hold is attempted.

For DTFIS files, bit 2 of byte 72 in the
format 2 label is reset to 0 whenever a
file is opened for ADD or ADDRTR. If this
bit is already 0 when HOLD=YES, the problem
program is canceled because another program
is already using the file for an ADD or
ADDRTR. When the file is closed, the bit
is set to 1. This switch prevents two
programs from trying to update the same
file because it does not allow a second

open for ADD or ADDRTR on the same file
when HOLD=YES.

If for any reason a file is not closed
during execution of a job in which ADD or
ADDRTR is specified, this file cannot be
opened if the next job using this file
specifies ADD or ADDRTR when HOLD=YES.. Bit
2 of byte 72 of the format 2 label must
first be set to 1 by'issuing a CLOSE to
that file in any job in which ADD, ADDRTR,
or LOAD is specified and HOLD does not
equal YES.

The method of implementation for ISAM
track hold depends on the function being
performed:

• Sequential Retrieval - The track index
is held at the beginning of retrieval
from each cylinder. A search and hold
is issued for the data track, the index
track is released, and a wait is issued
for the data track. When the system is
finished with the data track (prime or
overflow), it is released" and the next
track is held. The problem program
must release the track hold function by
issuing either a PUT Cif the file is
updated) or a GET (no update) for the
next record, or an ESETL.

• Random Retrieval - The track index is
held while the needed entries from it
are read in. The data track is held,
and the desired record is searched for.
When the record is found, the track
index is released. The problem program
must release the data track by issuing
a WRITE (if the file is updated) or a
FREE (no update).

• Add - The track index and the data
track are held. If the record is not
going onto the prime data track, the
track index is released. All tracks
being changed are held during
modification. The track index is again
held while it is updated to reflect the
added records. After alteration, the
tracks are released by the system..

• SETL Macro - SETL issues a hold on the
track index on which processing will
begin. This hold is released by the
system at the appropriate time.

• ESETL Macro - ESETL frees any tracks
that are held by sequential retrieval
when the ESETL is issued. Since the
ESETLmacro issues a FREE whether or
not any tracks are held, the user
should not issue ESETL if SETL has not
been successful.

Multitasking Macros 203

Shared Modules and Files

The DTF and logic modules for the card,
device independent, direct access, indexed
sequential, printer, sequential disk, and
tape macro instructions must contain the
operand RDONLY=YES to generate a read only
module. Each time a read-only module is
entered, register 13 must contain the
address of a 72-byte, doubleword aligned
save area. Each DTF requires its own
unique save area. The fact that the module
save areas are unique, or different for
each task, makes the module reentrant (that
is, capable of being used concurrently by
several tasks). The 72-byte save area
required by the RDONLY modules should not
be confused with save areas required for
multitasking macros.

If the operand is omitted, the module
generated is not reenterable, and no save
area need be established. If an ERROPT or
WLRERR routine issues I/O macro
instructions that use the same read-only
module that passed control to either error
routine, the problem program must provide
another save area. One save area is used
for the initial I/O and the second for I/O
operations in the ERROPT or WLRERR routine.
Before control returns to the module that
entered the ERROPT routine, register i3
must contain the address of the save area
originally specified for that DTF.

Problem programs using devices such as
an optical reader can make use of the
multitasking function to increase I/O
overlap without reentrant modules. However
if the problem program ignores module
considerations, two tasks may attempt to
use a single nonreentrant module. When
this occurs, unpredicatable results occur
because values for the first task using the
module are modified by the second task'. To
circumvent this situation, several methods
can be used.

One method is to assemble a module with
a different module name for each task that
could attempt to use the module
simultaneously. This method requires each
module name to be specified in the
corresponding DTF MODNAME operand.

Another method is to link-edit each DTF
and module separately for each task that
could simultaneously attempt to use the
same module. Then, before a task attempts
to reference a device through that module,
the DTF and module can be fetched or loaded
into main storage.

Either of these methods prevents the
linkage editor from resolving linkage to
ORe module. Thus, separate modules can be
provided to perform each function. For

204 DOS Supervisor and I/O Macros

more information on the linkage between the
DTF and logic module" see the section
Interrelationships of the Macro
Instructions.

If several tasks are to share processing
or reference data on the same file, not '
only should reentrant modules be employed
but each task must contain its own DTF
table for that file (unless you use the ENQ
and DEQ macros). Each task can either open
its own DTF or the main task in the
partition can open all files for the
subtasks.

There are two methods that can be used
for a' shared file,. The problem programmer
can either supply a separate set of label
statements (DLBL-EXTENT, TLBL, etc) for
each corresponding DTF filename, or he can
assemble each DTF and program (subtask)
separately with the same filename and one
set of label statements. In the latter
case, each separately assembled program
must open its DTF.

Special consideration must be made for
shared multivolume files on a 2321 data
cell if DASD file-protect is specified in
the supervisor. Within a partition, each
task must have its own logical unit.
assigned to the data cell unless all tasks
switch volumes at the same time.

Multitasking Considerations

When the multitasking macros are used~
these considerations may be helpful:

1. Only main tasks can issue checkpoints,
attach subtasks, or contain an
interval timer (STXIT IT) and/or
operator communication (STXIT OC) exit
routines.

2. Because only one set of system logical
units (SYSIN, SYSLOG, etc) exist per
partition, interspersed usage by
several independent programs is
generally not feasible, unless either
the resource protection macros or the
intertask communication macros are
employed.

3. Shared use of SYSLST must be expected
by the use of the DUMP, PDUMP, or
DSPLYV (display VTOC) functions.

4. Because only one communication region
exists in a batched job partition, it
is likely that only one independent
program per partition has meaningful
access to it.

I

5. If several tasks are writing on or
updating the same file (shared file),
use either the hold function or the
intertask macros to prevent improper
modification of data during I/O
operations.

6. When using ENQ and DEQ macros with
shared DTFs, timing considerations may
result in the higher priority subtask
not relinquishing processing control
during its I/O operations.

In addition to these considerations
Figures 50-53 show the detailed flowcharts
and coding necessary for two example
programs that use multitasking macros.

Example 1, (Figures 50 and 51) shows the
use of the intertask communication macros,
POST and WAIT, to indicate to subtask 2
that the control cards for subtask 1 were
read. This communication is necessary

because both tasks are reading control
cards from the same symbolic device
(SYSIPT). The abnormal termination routine
for subtask 1 enables subtask 2 to be
processed even if subtask 1 abnormally
terminates.

Example 2, (Figures 52 and 53) shows a
reenterable set of coding (SUBTASKR) that
is attached three times as three
independent subtasks. In this example,
100-byte tape input records, blocked four
logical records to a physical record, are
used to update 100-byte disk records. The
disk record address is always located in
the first 8 bytes of each logical record.
Each subtask updates its record
independently of the other subtasks. For
optimum throughput, the number of subtasks
that should be attached depends upon record
sizes~ main storage availability~ subtask
availability, and the amount of processing
to be performed.

Multitasking Macros 205

Attach
Subtask 1

Attach
Subtask 2

Figure 50.

Set Ab. Term.
Routine Linkage

Post ECB
Indicating
Subtask 1 Control
Cards Read

Tape (SYS004)
to Printer
(SYS005)
Processing

Tape (SYS006)
to Printer
(SYS007)
Processing

Flowchart for Example 1

206 DOS supervisor and I/O Macros

IBM IBM Syatem/36D A .. emblor Coding form

PROGRAM Example 1
PUNCHING I GUPHJC 1 1 1 ' CE 1 OF 4

PROCRAMMfR
INSTRUCTIONS I PUNCH I 1 1

CARD fLECTRO NUM8ER
OATE

STATEMENT
Idenlific:oliOtl-

I
No_

8 I. O~l'OtiOfl

" 16 20
O~~ncl 3. .. " ,. Com_nl, S.q rlC.

" " 6. 65 " 73 8.

MA IN TA SII< S T ART 10 4 B 0

BA LR 2 , 0

US INO . , 2

AT TA C H 1 AT TA CH SU BT AS K 1 , SA VE = S AV E 1 , E CB =T P 1 ECB
L T R 1 , 1 Control passed to aubtask If reg. 1 not

BNM AT TA CH2 negative. If reg. 1 negative, walt until

r.v A IT (1) aupe"lIsor posts .. ellable task ECB.

B AT TA C H 1
AT TA CH2 AT TA CH SU BT !\S K2, SA VE =S AV E 2 , EC B= TP 2 E CB !

L T R 1 , 1 Sam. attach tast. I
BNM WA I T 1 I

I

WA IT (1)
B AT TA C H2

WA I T 1 WA IT TP 1 E CB Walt for task completion on each task, close the file.

CL OSE TA P E 1 , P R IN Tl for each task, and end·th ... job.

WA IT TP 2 E CB
CL OSE TA P E 2, P R IN T2
EOJ

SU BT AS K 1 BA LR 2 , 0 Use reg. 2 as" base reg. for each task •

US INO . ,2
ST XIT AB ,A BT E R Ml ,A B 1 SA VEA Sat AB termination linkage.

OP EN TA PEl PRI NT 1
PO ST RE AD ECB

Figure 51. Example 1 (Part 1 of 4)

IBM IBM SYltam/36D A .. embler Coding Form

PROGRAM Example 1 PUNCHJNG I GRAPHIC I I I PACE 2 OF 4

PROGRAMMER DATE
I INSTRUCTIONS I PUNCH I I I CARD EUCTRO NUMBER

STATEMENT
IdentifiCOlion-

No_ O~f'CItion Qp";;nd COIM'Ie"ft Seq nc.
I 8 I. " 16 2. ,.

J>, ,.
" 6. 6' " 73 8.

LA 1 3 , TM 1 S AV EA Load reg. 13 with tape module save area and process

tape data.

LA 1 3 , PM 1 S AV EA Load reg. 13 with printer module save area and process

printer data.

TA P E 1 E OF DE TA CH Note that actual comments In this card act as an operand.

SU BT AS K2 BA LR 2 , 0

US INO * , 2

r.v A ITM RE AD E C B, TP 1 E CB Walt for aubtask 1 to read Ita controlatatamenta or AB

OP EN TA P E 2 , P R IN T2 termination. I n either condition. read aubtask 2

controlatatementa on SYSIPT.

LA 1 3, TM 2S AV E~
I

LA 1 3 , P M2 SA VEA

TA PE 2 E OF DE TA CH
AB TE RIM 1 TM RE AD EC B + 2 , X' B 0 ' 11 allaubtask 1 cards are read cancelaubtask 1.

BO CA NT AS K 1 Otherwise skip aubtask 1 control cards on SYSIPT

and then cancel.

CA NT AS K 1 CA NC E L
TA PEl DT FMT DE VA DD R= SY SO 04, 10 AR EA 1 = TA P E 1 A 1 , 10 AR EA 2= TA PE 1~ 2, X

10 RE 0= (1 2) , B LK S I Z E = 1 2 1 , EO FA DD R= TA PE 1 E OF, F I LA BL = S TD, X
RE WI ND =U NL OA D, RD ON LY =Y E S

Figure 51. Example 1 (Part 2 of 4)

Multitasking Macros 207

IBM IBM SYIteml360 Allembl,. Coding Form
'"

PROGRAM Example.1 PUNCHING l GRAPHIC L I I I PAGE 3 Of 4

PROGRAMMER
INSTRUCTIONS r pUNCH I I I I CARD ELECTRO NUMBER

DATE

STATEMENT
Identification-

1
No_

lO
Operation

"
O~~nd C~"" Seq nc. .

"
20 30 3' SO " .0 " 71 73 80

TA P E 2 DT FMT DE VA DO R= SV SO 06. 10 AR EA 1 .. TA P E 2A 1 • 10 AR EA 2- TA P E 2A 2 • X

RD ON LV "V E S • 10 RE G .. I 1 2) • B LK S I ZE .. 1 2 1 • E OF AD DR =T AP E2 E~ F • X

F I LA B L = S TO • R EW IN D- UN LO AD
MT MOD RD ON LV =V ES • R EA Om FO RW AR D. TV P F L E .. I NP UT

P R IN T 1 DT FPR DE VA DO R= SV SO 05. 10 AR EA 1 .. PR 1 A 1 • 10 AR EA 2= P R 1 A 2 • 10 RE G = I 1 1) . X

RD ON LV =V ES X

P R IN T2 DT F P R DE VA DO R= SV SO 07. I~ AR E~ 1 .. PR 2A 1 • 10 AR EA 2" P R 2A 2 • 10 RE G=I 1 1)

RD ON LV =V ES.
PR IMOD 10 AR EA 2 = I" E S. RD ON LV =V ES

TA P E 1 A 1 DC CL 1 2 1 • I/O .. 1.1 for OTF'L

TA P E 1 A 2 DC CL 1 2 1 • I

TA PE 2A1 DC CL 1 2 1 • 1

TA PE 2A2 DC CL 1 2 1 •

P R 1 A 1 DC CL 1 2 1 •

P R 1 A 2 DC C L 1 2 1 •

P R 2A1 DC C L 1 2 1 •

P R 2A2 DC CL 1 2 1 •

OS 00
TM 1: S AV EA DC CL 72' ToPe Ind printer modulI save lreas.

TM 2S AV EA DC C L 72'

PM 1 S AV EA DC C L 72'
PM 2S AV EA DC CL 72 •

AB 1 S AV EIA DC CL 72' Subtlsk 1 AB routine IIVI Ire ..

SA V E 1 DC C' TP ST AS K 1 • Abnormll termination nlmas Ind IIVI Ire" for subtask. 1 Ind 2.

Figure 51. Example 1 (Part 3 of 4)

IBM IBM Sy.tem/360 A •• lmbla. Coding Form ..
PROGRAM Example 1 PUNCHING L GIIAPHIC

1 I I I '.Of 4 0f 4

PROGRAMMER DATE
I INSTRUCTIONS r PUNCH I I I I CARD EUCTRO NUMBER

ST TEMENT
ldentiflcatlon-

1
No_ . 10

Operolion

" " 20
O~;-"d

30
COItW"IInti s.quePICe

3' '" .. , SO " 60 " 71 73 80

OS CL 1 2 0';

SA VE2 DC C' TP ST AS K2'
OS CL 1 2 0':'

TP 1 E CB DC F • O' Subtosk 1 and 2 termlnltlon ECBL

TP 2E CB DC F • O'
RE AD E CB DC F • o • Subtask 1 ECB poated It Its control card r .. dlng complltlon.

END MA IN TA SK

Figure 51. Example 1 (Part 4 of 4)

208 DOS Supervisor and I/O Macros

Initialize Regs.
and
Attach Subtask I

Initial ize Regs
and
Attach Subtask 2

Figure 52.

Initialize Regs.
and
Attach' Subtask 3

Free the Track
Being Held

Flowchart for Example 2

YES Prablem Pregram
Pracessing

YES Problem Program
Precessing

Multitasking Macros 209

IBM IBM System/3SD Assembler Coding Form

PROGRAM Example 2 PUNCHING l GRAPHIC I I I PACE 1 Of 5
INSTRUCTIONS

_I PUNCH J 1 I
C.A.RD ELECTRO NUM8ER

PROGRAMMER DATE
/

STATEMENT
ldentlfication-

No_ Operation O~;nd ClII'IIIMntl Seq..-flC.

I . 10 1A " 20 30 35 '" .. , 50 " .0 .5 71 7, '0

MA IN TA SK ST ART 1 0 480
BA LR 2, 0 ,.

US ING * , 2
ST XIT AB ,. S OA BT ER M, SO AB SA VE Set AB linkage.

OP EN SO F I LE , S 1 F I L E , S2 F I LE , S 3 F I L E
SU CC ES S 3 WA IT S 1 EC B WIlt for IUbtask 1 ...,Inablllty

GET SO F I LE Get first logical record.

LA 1 3 , S 1 R DO NLY Sat '- 13-10 with module

LA 1 2 , S 1 F I LE,e lnil, fnename, ERRBYTE,

LA 1 1 , S 1 E RR BY Ind 1/0 lrel for IUbtask 1.

LA 1 0 ,S 1A REA
MVC T!l RE F 1 (8) , 0 (9) :Move disk record add, ... to SEEKADR bucklt

AT TA CH S 1 AT TA CH SU BT AS KR, SA VE = S AV E 1 , E CB =S 1 E CB
LTR 1 , 1 Control passed to IUbtosl< If rIg 1

BNM SU CC ES S 1 not negatlv.. If reg 1 negative,

WA IT (1) walt until IUpelVloor posts

B AT TA CH S 1 ...,anable task ECB

SU CC E S S 1 WA IT S 2 ECB Sime prooadure for IUblaak 1 Ind 2.

GET SO F I L E
LA 13 , S 2 R DO NLY
LA 1 2 , S 2 F I L E
LA 1 1 , S 2 E RR BY
LA 10 , S 2A REA
MVC TR RE F 2 (8) , 0 (9) MOVtdlsk ricord add to SEEKADR bucket

Figure 53. Example 2 (Part 1 of 5)

IBM IBM SYltem/3SD Assembler Coding Form
"".d .• U.I.A.

'IPROGRAM Example 2
PUNCHING I GRAPHIC I I I 'ACE 2.0.5

PROGRAMMER DATE
INSTRUCTIONS I PUNCH I I I CARD ELECTRO NUMBER

STATEMENT
IdentlficotlO'l"

I
Nom. . 10

O~rot;on

" 20 O~;"d 30
C~nt. Sequenu

I. 35 '0 " 50 " .0 .5 71 73 80

AT TA CH S 2 AT TA CH SU BT AS KR , S AV E .. SA V E 2 , E CB .. S 2 E CB
LTR 1 , 1
BN~ SU CC ES S 2
WAI T (1)
B AT TA CH S 2

S U CC ES S 2 WAI T S 3 ECB
GET SO F I L E
LA 1 3 , S 3 R DO NLY
LA 1 2 , S 3 F ILE
LA 1 1 , S 3 E RR BY
LA 1 0 , S 3A REA
MVC TR RE F 1 (8) , o (9) Move disk record addr:e" to SEEKADR bucket

AT TA CH S 3 AT TA CH SU BT AS KR, SA VE =S AV E3 , E C B =S 3 E CB
LTR 1 , 1
BNM SU CC E S S 3
WA IT (1)
B AT TA CH S 3 i

EO FR OUT C L OSE SO F I L E , S 1 F IL E , S 2 F I L E , S 3 F I L E Clooo fU .. Ind end Job on tape EOF.

EOJ
SU BT AS KR BA LR 2,0 Use reg 2 II b ... reg for en task~

US ING * , 2
RE AD (1 2) , 10 Read disk record .nd tnt

WA ITF (1 2) ERRBYTE for "'captlonll

TM (1 1) , X' F F ' conditions. Brench to error

Figure 53. Example 2 (Part 2 of 5)

210 DOS Supervisor and I/O Macros

IBM IBM SYItem/360 A .. embllr Coding Form

PROG.AM Example 2 _I PUNCHINQ I CRAPHIC I I , c£ 3 OF 5
DATE

I INSTRUCTIONS I PUNCH I I CARD fUCTli:O NUMBER
PROGRAMMER

STATlMENT Ide"tific:olion-

No_ OptifUlion O";;nd c ," Sectuer'lU

1 8 10 " 16 '0 30 " .. " " " 60 ., 71 73 80

BM ER UT routine.
I

RO
Updatl disk record, reg 10, at least moving In count orel, rag 9.

WR IT E (1 2) , ID Writ. updlted disk racord, test for orror conditions, ond

WA IT F (1 2) detach subtasl<, Also free tho h~ld track.

TM (1 1) , X' F F'

BM ER RO UT
FR E E (1 2)
DE TA CH

E R RO UT Problem program ERRBYTE routlno.

80 AB TE RM ~A IT 8 1 ECB Walt for subtask. to d.t~h: cl~ .. \II~S, ond cancel tho job.

WA IT 82 ECB

~A IT 83 ECB
C L 08 E 80 F I L E , 8 1 F I L E ,8 2 F I L E , 83 F I L E I
CA NC E L ALL :

80 F I LE DT FMT BL K8 IZ E= 40 0, R E C F OR Moo F I XB LK, RE C 8 IZ E = 1 0 o , DE VA DD R= 8V 80 04 , X
EO FA DD R= EO FR OU T, FI LA BL = 8 TD, 10 AR EA 1 = 80 AR EA 1, X

10 AR EA 2 = 80 AR EA 2 , 10 RE G= (9)

MT MOD RE AD = F OR IV'iA RD , T VP E F LE = I NP UT

8 1 F I L E DT FDA BL K8 IZ E= 1 0 0, DE VI CE =2 3 1 1 , ER RB VT E= 81 ER RB V, 10 AR EA 1 = 8 1 AR E A, X

8 E E K AD R= TR RE F 1 , T VP EF L E = I NP UT , H o L D= VE 8, RD ON LV =V E8, X

RE AD ID =V E 8 , IVI RI T E ID =V ES
82 F I L E DT FDA BL K8 I Z E = 1 0 0, DE VI CE = 2 3 1 1 , ER RB VT E= S 1 ER RB V, 10 AR EA 1 = S2 AR EA, X

8E EK AD R= TR RE F2 , T VP E F LE = I NP UT ,H OL D= VE 8 , RD ON LV =V E8, X

RE AD ID =V E8 ,VI RI TE ID =V E8

Figure 53. Example 2 (Part 3 of 5)

IBM IBM SYItom/36D Aa.emhlor Coding Form

PROGRAM Example 2 PUNCHING I GUPHIC I I J PAGf 4 OF 5
INSTRUCTIONS I PUNCH I I 1 ' kD ELECTRO NUMBER

PROGRAMMER DATE

STATEMENT
ldentification-

1
No_ Opero1iOl'l O~;"d c_ ... s.~nc. . 10 " " 20 30 35 .. " so " 60 ., 71 73 80

S 3 F I L E DT FDA BL K8 I Z E = 1 0 o , DE VI CE = 2 3 1 1 , E RR BV TE = S 3 E RR BV, 10 AR EA1 =8 3A RE A, X

8E EK AD R= TR RE F 3 , T VP EF L E = I NP UT , H OL D= VE 8 , RD ON LV =Iv ES, X

RE AD ID =V E8 ,VI RI T E ID =V ES
DA MOD RD ON LV =V ES, HO LD =V E 8

D8 OD
SA V E 1 DC C ' DA TA 8 K 1 ' Task, module, and abnormal terminatIon save areas."

D8 C L 1 20
SA VE2 DC C' DA TA 8 K 2 '

D8 CL 120
SA VE3 DC C' DA TA S K 3 '

D8 CL 1 20 ~
S 1 IRD ON LV DC CL 72 ' 1

8 2 RD ON LV DC CL 72 '
S 3 RD ON LV DC CL 72
SO AB 8A VE DC CL 72 ' :

81 EC B DC X' o 0 00 80 00' Task .. ent control block ..

S2 EC B DC X' o 0 00 80 00'
S 3 EC B DC, X' o 0 00 80 00'

SO AR EA1 DC C L 40 o ' Direct access fll. I/O are .. and aoak add

SO AR EA 2 DC CL 40 o '
S 1 AR EA D~ C L 1 0 0'
S 2 AR EA D~ C L 1 0 o '
S 3 AR EA DC CL 1 00
TR RE F 1 D~ 2 F ' 0 '

Figure 53. Example 2 (Part 4 of 5)

Multitasking Macros 211

IBM IBM SYItem/36D A.lemhler Coding Form

t--PRO_G.AM_Ex_am-'-ple_2 _________ ,..-------i PUNCHING I GRAPHIC I
INSTRUCTIONS I PUNCH I I I

I I

.
TR RE F2
TR RE F3
S 1 ER RBV
S 2 ER RBV
S 3 ER RBV

Operation
.0 " " 20

DC 2 F • 0 •

DC 2 F • 0 •

DC H' o •
DC H' o •
DC H' o •
END MAINTASK

Operond

2'

ERRBYTES for direct access file.

I
I

I PAGE 5 OF 5 I CARD ELECTRO NUMBER

Identificotion·
s.q nc:.

[111111111111111] Ell [II [11111111111111 I III I I If III II 0 [111111111111111] 111111 [111111

Figure 53. Example 2 (Part 5 of 5)

212 DOS supervisor and I/O Macros

Records can be transferred to or from an
input/output device by issuing physical
IOCS macro instructions. These
instructions relate directly to the
physical IOCS routines and are distinct
from logical IOCS routines. See Physical
IOCS vs Logical IOCS.

The user must provide any of the
functions that are required for a problem
program such as blocking or qeblocking
records, performing programmed wrong-length
record. checks, testing (the CCB) for
certain errors, switching I/O areas when
two areas are used, and setting up channel
command words (CCW). He must also
recognize and bypass checkpoint records if
they are interspersed with data records on
an input tape. .

Physical IOCS routines control the
transfer of data to or from the external
device. These routines are:

• Start I/O

• I/O .Interrupt

• Channel Scheduler

• Device Error

Thus, physical IOCS macro instructions
provide the us.er with the capability of
obtaining data and performing nondata
operations in I/O devices, with exactly the
CCWs that he requests. For example, if he
is handling only physical records, he does
not need the logical IOCS routines for
blocking and deblocking logical records.

Three macro instructions are available
to the programmer for direct communication
with physical IOCS: CCB (command control
block), EXCP (execute channel program), and
WAIT. Whenever physical IOCS macro
instructions are used, the programmer must
construct the channel command words (CCW)
for input/output operations. He uses the
assembler instruction C~W statement to do
this.

Macros normally used with files that are
processed by logical IOCS are necessary
when standard DASD or magnetic tape labels
are processed, or when DASD file protect is
present. The DTFPH, OPEN(R), CLOSE(R),
LBRET, FEOV, and SEOV macros can be used in
this processing. See DTFPH Macro. The

Physical IOeS (PIOeS)

OPEN and the DTFPB macros are als.o
necessary when a 2311 or 2314 is used as a
checkpoint file.

CCB Macro

r---------T---T---------------------------,
I Name lOp I Operand I
~--~------+---+---------------------------~
IblocknameICCBISYSnnn,command-list-name I
I I I [,X'nnnn'] [,sense address] I L _________ ~ ___ ~ ___________________________ J

A CCB (command control block) macro
instruction must be specified in the
problem program for each I/O device that is
controlled by physical IOCS macro
instructions. The first 16 bytes of all
the generated DTF tables, except DTFOR and
DTFSR (optical reader), contain the CCB.
For optical reader macros, the CCB begins
at filename+24 which includes the DTFPH.
This block (see Figure 54) is necessary to
communicate information to physical IOCS so
that it can perform desired operations (for
example, notify the problem program of
printer channel 9). The command control
block also receives status information
after an operation and makes this available
to the problem program. The user should
ensure proper boundary alignment of the CCB
if this is necessary for his program.

Blockname: The CCB instruction must be
labeled (blockname) with a symbolic name.
This name can be used as the operand in the
EXCP and WAIT macro instructions that refer
to the command control block.

SYSnnn: Two operands are required in tnis
CCB macro instruction. The first operand
specifies the symbolic unit (SYSnnn) for
the actual I/O unit with which this control
block is associated. A list of symbolic
units applying to CCB can be found in the
Symbolic Unit Addresses section. The
actual I/O unit can be assigned to the
symbolic unit by a job control ASSGN
statement.

Command-list-name: The second operand
(command-list-name) specifies the symbolic
name of the first CCW used with a CCB.
This name must be the same as the name
specified in the assembler CCW statement
that constructs the channel command word.

Physical IOCS (PIOCS) 213

Count Transmission CSWl:1 Symbolic Unit CCW Address Rese rved for CCW Address Sense CCW
Information Status Bits Address Physical 10CS in CSW (Optional)

Bytes -0 I 2 3 4 5 6 7 8 11 12 13 15 16 23

I
Residual Count '1- -liTe '4 - -1 Byte 5 L - -, Hexadecimal Address of CCW X '80' -CCB beong I ~ddress of CCW 1 This CCW contains

r--------r--------J Representation Associated with used by ERP. . on the CSW Stored I data for returning
Used For-l

BIT DESIGNATION BIT DESIGNATION of SYSxxx This CCB X'40'-Channel I at Channel End, sense information
\ SYSRDR = 0000 Appendage Routine 1 or Address of the I to the problem
\ 32 Attention 40 Program-controlled SYSIPT = 0001 Present for Tele- I Channel Appen- Iprogram.

\
33 Status modifier interruption SYSPCH = 0002 processisng Dev

i
i~e.\ dage Routine for I

34 Control unit end 41 Incorrect length SYSLST = 0003 X'20' - ense n or- Teleprocessing \
I 35 Busy 42 Program check SYSLOG = 0004 mation Desired. I Devices
I 36 Channel end 43 Protection check SYSLNK = 0005 X'IO' -Message \ I

37 Device end 44 Channel data check SYSRES = 0006 Writer. \ I
\ 38 Unit check 45 Channel control check SYSSLB = 0007 X'08' -EU Tape
I 39 Unit exception 46 Interface control check SYSRLB = 0008 Error. I \

\
47 Chaining check SYSUSE =0009 X'02'-TapeERP I \

SYSREC = OOOA Read Opposite I \
I SYSCLB = OOOB Recovery.
I SYSOOO =0100 X'01'-Seeksepo-1 \
1 SYSOOI = 0101 I ration or Console \ \

SYS221 = 01 DO Buffering.

11 Bytes 4 and 5 contain the status bytes of the Channel Status Word (Bits 32 -47). If byte 2, bit 5 is on and device end results as a separate interrupt, device end
status will be ORed in.

Figure 54. Command Control Block (CCB)

X'nnnn': A hexadecimal value sets the CCB
user option bits. Column 5 of Figure 55
gives the value used to set a user option
bit ON. If more than one bit must be set,
the sum of the values is used. For
example, to set user option bits 3, 5, and
6 of byte 2 ON, X'1600' is used.

(X'1600'=X'1000' + X'0400' + X'0200')

It is possible for the macro to set ON
any of the bits in bytes 2 or 3, but
normally, the user need not be concerned
with setting the remaining bits ON.

Sense Address: This operand, when
supplied, indicates user error recovery
(see Figure 55 byte 2, bit 1) and generates
a CCW for reading sense information as the
last field of the CCB. The name field
(sense address) of the area that the user
supplies must have a length attribute
assigned of at least one byte. Physical
laCS uses this length attribute in the CCW
to determine the number of bytes of sense
information the user desires.

214 DOS Supervisor and I/O Macros

CCB Format

From the specifications in this CCB
instruction, the macro sets up a 16-byte or
24-byte field (Figure 54) as follows:

0-1

2-3

Contents

After a record is transferred, laCS
places the residual count from the
CSW in these two bytes. By
subtracting the residual count from
the original count in the CCWi, the
problem program can determine the
length of the record that was
transferred. This residual count
is set at zero for negative values.

The next two bytes are for
transmission of information between
physical laCS and the problem
program. The problem program can
test any bit in bytes 2 and 3"
using the mask given in column 6 of
Figure 55. More than one bit can
be tested by the hexadecimal sum of
the test values.

All bits are set at 0 (OFF) when
the problem program is assembled
unless the third parameter is
specified. ,If the third parameter
is specified, it is assembled into
these two bytes. The user may turn
on bits 5 and 1 in byte 3 and bits
3 through 1 in byte 2. During
execution, each bit may be set at 1
(ON) by the problem program or by a
condition detected by physical
IOCS. Any bits that can be turned
ON by physical laCS during program
execution are reset to zero by
PIOCS the next time an EXCP macro
using the same CCB is executed.

4-5

6-7

8-11

12

13-15

16-23

Figure 55 shows the condition
indicated by the setting of each
bit.

These two bytes are the status
bytes of the CSW. If device end
posting is requested (byte 2, bit
5), device end status is ORed in.
Byte 4 is set to X'OO' at EXCP
time.

Note: For nonteleprocessing
devices, a program-controlled
interruption (PCI) is ignored by
the Channel Scheduler.

These two bytes are a hexadecimal
representation of the symbolic unit
for the I/O devices, as specified
in the first operand of this CCB.

These four bytes contain the
address of the CCW (or first
address of a chain of CCWs)
associated with this CCB and
specified symbolically in the
second operand.

This byte must not be modified by
the user.

These bytes contain the address of
the CCW in the CSW stored at
channel end interrupt for this I/O
operation.

Note: Bytes 13-15 contain the
address of the channel appendage
routine when bit X'40' is set in
byte 12.

These bytes are allotted only when
the sense address operand is
supplied in the CCB macro. They
contain the CCW for returning sense
information to the problem program.

EXCP Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [name 1 I EXCP I { blockname } I
I I I (1) I L ______ ~ _________ ~ ________________________ J

The EXCP (execute channel program) macro
instruction requests physical IOCS to start
an input/output operation for a particular
I/O device. The blockname of the CCB
established for the device is the only
operand required in this instruction.
Blockname can be specified as a symbol or
in register notation.

Physical IOCS determines the device from
the command control block specified by
blockname~ and places the command control
block (CCB) in a queue of such CCBs for
this device. If the channel and device are
available. the channel program is started
and program control is returned to the
problem program. I/O interruptions are
used to process I/O completion and to start
I/O for requests if the channel or device
was busy at EXCP time.

WAIT Macro

r------T---------T------------------------, I Name I Operation I Operand I
~------+---------+------------------------~
I [name1lwAIT I{blockname} . I
I I I (1) I L ______ ~ ________ ~ ________________________ J

This macro instruction is issued whenever
the program requires that an I/O operation
(started by an EXCP instruction), be
completed before execution of the problem
program continues. For example,
transferring data (a physical record)
main storage must be completed before
can be added or moved to another area
main storage, or otherwise processed.

to
data
of

When
the WAIT instruction is executed in a
batched job environment, processing is
suspended until the traffic bit (byte 2,
bit 0) of the related CCB is turned ON.
Then, programming automatically continues
and the data can be processed. In a
multiprogramming environment" the
supervisor gives control to another program
until the traffic bit is set eN.

The blockname (as a symbol or in
register notation) of the CCB established
for the I/O device is the only operand
required in this instruction. This is also
the same name as that specified in the EXCP
instruction for the device.

Physical IOCS Considerations

ALTERNATE TAPE SWITCHING

Alternate tape drives cannot be used on
"input processed by PIOCS. On output,
automatic alternate switching can be
accomplished by the DTFPH and FEOV macro
instructions. FEOV writes the standard
trailer labels, and any user-trailer labels
(if DTFPH LABADDR is specified). When the
new volume is mounted and ready for
writing~ IOCS writes the standard header
labels, and the user-standard header
labels, if any.

Physical IOCS (PIOCS) 215

Condition Indicated On Values Mask for
for Th ird Test Under

Byte Bit
Operand in Mask 1 (ON) o (OFF)
CCB Macro Instruction

2 0 Traffic Bit (WAIT) I/O Completed. Normally I/O requested and not X'80'
set at Channel End. Set at completed.
Device End if bit 5 is ON.

1 End of File on System Input /* or /& on SYSRDR or X'40'
SYSIPT. Byte 4, Unit
Exception Bit is also ON.

2 Unrecoverable I/O Error I/o error passed back due to No program or operator X'20'
program option or operator option error was passed
option. back.

3 1 Accept Unrecoverable I/O Error Return to user after physica I Operator Option: X'1000' X'10'
(Bit 2 is ON) 10CS attempts to correct Dependent on the Error

I/O error. 2

4 1 2671 data check Operator Options: Operator Option: X'0800' X'08'
Ignore, Retry, or Cancel. Retry or Cancel.

1017/1018 data checks Ignore or Cancel. Cancel
Return any DASD data checks Return to user.

51 Post at Device End Device End condition is Device End conditions X'0400' X'04'
posted; i.e., byte 2, bit 0 are not posted. Traffic
and byte 3, bits 2 and 6 set bit is set at Channel End.
at Device End. Also byte 4,
bit 5 is set.

6 1 Return: Uncorrectable tape read data Return to user after physico I Operator Option: X'0200' X'02'
check (3420,2400- series, or 2495); 10CS attempts to correct Ignore or Cancel for
1018 data check; 2540 or 2520 punch tape or DASD error. Return tapes, punches, or paper
equipment check; or DASD read or to user when 1018 data tape punch (1018). Retry
verify data check. (Data checks on check .4 or cancel for DASD.
count not returned.)

7 1 User Error Routine User handles error recovery. 3 A physical 10CS error X'01 00' X'OI'
routine is used unless the
CC B sense address oper-
and is specified. The
latter requires user error
recovery.

3 0 Data check in DASD count Field. Yes-Byte 3, bit 3 is OFF; No X'80'
Byte 2, bit 2 is ON.

Data check - 1285, 1287 or 1288 Yes No

1 ·DASD Track overrun. Ye·s No X'40'
1 01 7 broken tape Yes No
Keyboard correction 1285 or 1287 Yes No

2 End of DASD Cylinder Yes No X'20'
Hopper Empty 1287/1288 Document Mode Yes No

3 Tape read data check (3420, 2400-series, Operation was unsuccessful. No X'10'
or 2495); 2540 or 2520 punch equipment Byte 2, bit 2 is also ON •
check; or any DASD data check. Byte 3, bit 0 is OFF.
1017/1018 data check Yes No
1285, 1287 or 1288 equipment check Yes No

Figure 55. Conditions Indicated by CCB Bytes 2 and 3 (Part 1 of 2)

216 DOS Supervisor.and I/O Macros

Condition Indicated On Values Mask for
for Third Test Under

Byte Bit
Operand in Mask 1 (ON) o (OFF)
CCB Macro Instruction

3 4 Questionable Condition Card: Unusua I command X' 081

sequence ·(2540). DASD:
No record found.

Nonrecovery 1285/1287/1288: Document
jam or tom tape.

51 No record found condition Retry command if no record Set the questionable X 100041 X ' 041

found condition occurs condition bit ON and
(disk). return to user.

6 Verify error for DASD or Carriage Yes. (Set ON when Chan- No X ' 02 1

Channel 9 overflow nel 9 is reached only if
Byte 2, bit 5 is ON.)

1287 document mode - late stacker Yes No
select
1288 End-of-Page (EOP) Yes No

71 Commanq Chain Retry Retry begins at last CCW Retry beings at first X ' OOOl l X '01 1

executed. CCW of channel
program.

User Option Bits. Set in CCB macro. Physical 10CS sets the other bits OFF at EXCP time and ON when the condition
specified above occurs.

2 I/O program check, command reject, or tape equipment check always terminates the program.
3 For System/360, the user must hand Ie all error or exceptional conditions except Channel Control Check, Interface

Control Check, I/O Program Check, and I/O Protection Check. For System/370, the user may handle Channel
Control Checks and Interface Control Checks. The occurrence of a channel data check, unit check, or chaining
check causes a byte 2, bit X'20 ' of the CCB to turn on, and completion posting and dequeuing to occur. I/O
program and protection checks always cause program termination. Incorrect length and unit exception are
treated as normal conditions (posted with completion). Also, the user must request device end posting (CCB byte 2,
bit X'04 1

) in order to obtain errors after channel end.
.. Error correction feature for 1018 is not supported by physical 10CS. When a 1018 data check occurs and CCB byte 2,

bit X'02 1 is on, control returns directly to the user with CCB byte 3, bit X' l0 ' turned on.

Figure 55. Conditions Indicated by CCB Bytes 2 and 3 (Part 2 of 2)

BYPASSING EMBEDDED CHECKPOINT RECORDS ON
TAPE

The checkpoint information saved is written
as a set of magnetic tape records: a
20-byte header record, as many core-image
records as required to save the necessary
parts of core, and a 20~byte trailer record
identical to the header. The format of the
header and trailer record is:

0-11

12-13

14-15

16-19

Contents

/// CHKPT //

The number, in binary, of core
image records following the header.

The total number, in unpacked
decimal, of records following the
header. .

The serial number of the
checkpoint.

If checkpoint sets are embedded in a
file being read with physical IOCS, they
must be recognized and bypassed. For any
mode on an input tape, checkpoint sets may
.be .identified by the first 12 bytes of the
header or trailer records. When reading
backwards, the checkpoint header occupies
the 20 low-order bytes of the input area.

When bypassing checkpoint sets, three
methods are possible:

1. Go into a read loop (forward or
backward) until the checkpoint trailer
(header if backward) is encountered.

2. Extract the count from bytes 12-13 of
the header (or trailer if backwards),
add 2 to this, and forward space (or
backspace) that number of records.
Read commands could also be used.

3. Extract bytes 14-15 of the header (or
trailer if backwards), pack and

Physical IOCS (PIOCS) 217

convert the field to binary, and
forward space (or backspace) that
number of records. Read commands
could also be used.

,When bypassing checkpoint sets on
7-trac~ tapes in translate mode, only
method 3 can be used and only forward space
(or backspace) record commands (not reads)
can be used. Reads would create data
checks.

CCW ROUTINE CONSIDERATIONS

printer-Keyboard Buffering

If the console buffering option is
specified at system generation time and the
printer-keyboard is assigned to SYSLOG,
physical IOCS can increase throughput on
each actual output record not exceeding 80
characters. This increase in throughput is
the result of starting the output I/O
command and returning to the problem
program before· the output is complete.
Regardless of whether output records are
buffered (queued on an I/O completion
basis) or not, they are always printed in a
first-in first-out (FIFO) order.

Console buffering is performed on output
only when the following conditions are
maintained.

1. The actual record to be written does
not exceed 80 characters.

2. Data or command chaining is not
performed.

3. The CCB associated with this operation
does not indicate the acceptance of
unrecoverable I/O errors, posting at
device end, or user error routines
(that is, CCB byte 2 bits 3, 5, and 7
posted respectively).

4. The CCB does not request sense
information (CCB byte 12 bit 2).

Command Chaining Retry

If the user generates his system to support
command chaining retry, he can use this
option for his physical IOCS channel
programs by setting CCB bit 7, byte 3 ON.
If this bit is ON and an error involving
retry occurs, the retry begins with the
last ccw executed. If the bit is OFF, the
entire channel program is reexecuted.

218 DOS Supervisor and I/O Macros

If a conmand chain is broken by a
condition (such as wrong-length record or
unit exception) that does not result in
device error recovery by physical IOCS, the
user can determine the address of the last
CCW executed and, if necessary, restart at
that point. To obtain the address of the
last CCW executed, subtract 8 from the
address stored in bytes 13-15 of the CCB.

When the command chaining retry bit is
ON, the user must move the address of the
first CCW in the channel program to bytes
9-11 of the CCB before each EXCP issued.
This ensures that the correct address is
there. because physical IOCS modifies this
field when retrying after an I/O error and
never restores it to the original value.

The command chaining retry bit should
not be used to read multiple records from
SYSIPT or SYSRDR. The bit should never be
ON for DASD channel programs. If command
chaining, or data chaining. is employed on
an IBM 2495 Tape Cartridge Reader, the
problem programmer must specify command
chaining retry at system generation time
and in the CCB.

Note: A chain is broken by a 1403
printer after sensing channel 9 or 12.
In such cases, the problem program must
determine if the entire chain was
printed.

Channel Command Word

The format of the Channel Command Word is:

Contents

0-7 Command code.

8-31 Data address.

32 The address portion of next CCW is
used.

33

34

35

36

48-63

Command code and data address of
next CCW is used.

Suppresses incorrect length.

Suppresses transfer of information
to main storage.

Program control interrupt.

Byte count.

Data Chaining

When using data chaining, each CCW should
contain the command code of the operation
being executed to ensure proper I/O error
recovery. If the CCWs were formed by IOCS,
they contain this code automatically.
Because recovery frequently depends on the
command being executed, the command in the
last ccw executed is often examined. See
Command Chaining Retry.

DASD Channel Programs

The user must begin his DASD channel
programs with a full seek (command code
X'07') and if embedded seeks are used, they
must also be full seeks.

If embedded seeks are used, a program
can never run under DASD file protection
(system generation option DASDFP) nor can
it take full advantage of the seek
separation feature (system generation
option SKSEP). With DASD file protection,
an embedded seek causes cancellation of the
errant program (see DASD File Protection
for more information).

The seek separation feature initiates a
seek and separates it from the channel
command chain. In this manner, the channel
is available for other input or output
operations on the same channel. This
feature, however, applies only to the first
seek in the channel command chain.

When executing a channel program (Figure
56), the supervisor sets up three commands
in the channel Erogram that it builds: a

r-------~SIO ------,
I
I
I
I

I SEEK ~ ___ J
Set File Mask
TIC ------,

I I I
Supervisor I I

seek that is identical to the user's seek,
a se~ file mask that prevents any other 07
seeks from being executed:, and a transfer
in channel (TIC) that transfers control to
the command following the user's seek.

DTFPH Macro

When physical IOCS macro instructions
(EXCP, WAIT, etc) are used in a program,
DASD or tape files with standard labels
need to be defined by DTFPH entries (DTF
for a file handled by physical IOCS).
DTFPB must also be used for a checkpoint
file on a 2311, 2314, or 2319.

Checkpoint File on a 2311 or 2314:
following parameters can be used:

CCWADDR=name
DEVADDR=SYSnnn
DEVICE=2311 or 2314
LABADDR=name
MOUNTED=SINGLE
TYPEFLE=OUTPUT
XTNTXIT=name

optional
optional
required
optional
required
required
does not apply

The

If a DASD or tape file with standard
volume and file labels is processed, a
DTFPH header card and detail cards may be
used (Figure 57). This indicates to IOCS
that labels are to be read and checked (on
input) or written (on output). The header
card is punched with DTFPH in the operation
field and the symbolic name of the file in
the name field. The symbolic name may be
seven characters long.

Channel program set up
by the Supervisor to
protect the DASD device.

-------------+--------------------+-------------------------------------
Problem I I
Program L--CCB~-, I

I EXCP--J I
I I
t I

SEEK
I
I

SEARCH ID~-------J
TIC *-8
Write Count, Key and Data

Channel program written
by the user.

Figure 56. Channel Programming a File Protected DASD

Physical IOCS (PIOCS) 219

IBM IBM SYItem/360 As.embler Coding Form

/ PROGR.A.M 1 I I f r--------------------r-------~ PUNCHING GRAPHIC I PROGRAMMER INSlRUCTIONS rt-PUN-::C-H --r-I-t---t--tI--t--1-I-t-+'CA:;;;'D,"ElE;?';C1C;;;RO:-;:;NU~M"""R'------l

Opel'Olion
71·73

Id.ntific:al;oo­
Sequence

Req'd. X X X X X X X 0 T F P H Neme 01 tape lite with standard lebels or DASD lite. X _1 TV P .E F L E = X X X X X X , (tNPUTorOUTPUTI Speclliestypeoflite. X R1

d

.

Opt'l. H-rH-rH-rti-t-ti-t-tA±S t:Ctltl t:=tV:t=-EfSf'+H+H+H_At-SC+"-tIi_le pt-roc+"'+lngt-is-treq:..:,uf--lra+d~. ++-+++-+++-l+~--1--1-I-+-1-f....t.--+-W-+-W+~X~W--+-W--+-W OPt,j"
C C Iw ADD R = X X X X X X X X , II CCB generated by DTFPH Is to be used, X

DEV I C E= X X X X, ITAPE,2311,2314,or23211110mltted,TAPEI.essumed. X

o E ~ ADD R = S V S X X X , Symbolic unit required only when not provided on an extent stetement. X

H 0 R I N F a = V E S , Print heeder label Inlormation. X

LAB ADD R = X X X X X X X X, Routine to check or build user standard labels. X

M au NT ED = X X X X X X , IALLorSINGLEI RequlredlorDASDlilesonly. X

X TNT X I T = X X X X X X X X II extent card. ere to be processed, DASD only. T

* Header and each detail card, except the last one In 8ach set, must have a continuation punch In column 72. Also.
e8ch detail card, except the last one, must contain 8 cumrntt hrunediatelY aftar the operGnd. SP:lCC I: a!!c\-.. ed for the
longest operand ~ the comma. If. smaller operand is used, the comma should be moved oyer accordingly. In the
last detail card of 8 set, the comma position must be blank.

Figure 57. DTFPH Macro

r---,
1 ASCII=YES 1 L ___ J

This operand is required to process ASCII
tape files. If this operand is omitted,
EBCDIC file processing is assumed •.

r---,
1 CCWADDR=name I· L ___ J

This operand allows the user to use the CCB
generated within the first 16 bytes of the
DTFPH table. CCWADDR specifies the
symbolic name of the first CCW used with
the CCB generated within the DTFPH macro.
This name must be the same as the name
specified in the assembler CCW statement
that constructs the channel command word.

If this parameter is omitted" the
location counter value of the CCB-CCW table
address constant is substituted for the CCW
address.

220 DOS Supervisor and I/O Macros

t General registers 2-12, written in parentheS8!; for example: (12).

r---,
IDEVICE={TAPE.231112314123211 1 L ___ J

If the file is contained on DASD, enter the
proper identification: 2311. 2314, or
2321: TAPE applies to any 3420 or
2400-series tape unit. and is the only
valid entry in this operand for ASCII
files.

Note: Specify 2314 for 2319.

r---,
IDEVADDR=SYSxxx I L ___ J

This operand must specify the symbolic unit
(SYSxxx) associated with the file if an
extent statement symbolic unit is not
provided. If an extent statement symbolic
unit is provided, its specification
overrides a DEVADDR specification. This
specification. or symbolic unit, represents
an actual I/O address, and is used in the
job control ASSGN statement to assign the
actual I/O device address to this file.

For a list of symbolic units applying to
DTFPH, see Symbolic Unit Addresses. The

only symbolic unit in that section that is
not applicable is SYSLOG.

If SYSLST or SYSPCH are used as output
tape units and alternate tape switching is
desired upon detecting a reflective spot,
the SEOV macro instruction must be used.
(See SEOV Macro.) When processing ASCII
tape files, the only valid specification is
a programmer logical unit (that is SYSnnn).

r---,
IHDRINFO=YES I L ___ J

This operand, causes IOCS to 'print standard
header label information (fields 3-10) on
SYSLOG each time a standard label file is
opened. Likewise, the filename, symbolic
unit, and device address are printed each
time an end-of-volume condition is
detected. If HDRINFO=YES is omitted, no
header or end-of-volume information is
printed.

r---,
ILABADDR=name I L ___ J

The user may require one or more DASD or
tape labels in addition to the standard
file labels. If so, he must include his
own routine to check (on input) or build
(on output) the user label(s). The
symbolic name of the user's routine is
specified in this entry. IOCS branches to
this routine after the standard label is
processed.

LABADDR may be included to specify a
user routine for user header or trailer
labels as follows:

• DASD input or output file: neader
labels only

• Tape input or output file: header and
trailer labels

Thus, if LABADDR is specified for the
file, user header labels can be processed
for an input/output DASD or tape file" and
user trailer labels can be built for a tape
output file. Physical IOCS reads input
labels and makes them available to the user
for checking, and writes output labels
after they are built. This is similar to
the functions performed by logical IOCS.
For a complete discussion of the LABADDR
routine, see Label Processing.

If physical IOCS macros are used for a
tape file, an OPEN instruction must be
issued for the new volume. This causes
IOCS to check the HDR1 label and provides

for user checking of user standard labels~
if any.

When physical IOCS macros are used and
DTFPH is specified for standard tape label
processing, FEOV may not be issued for an
input file.

r---,
I MOUNTED={ALLI SINGLE} I L ___ J

This entry must be included for a DASD file
to specify how many extents (areas) for the
file are available for processing when the
file is initially opened. The entry must
not be included for a tape file. One of
the following specifications is entered
after the = sign:

ALL

Is specified if all extents are available
for processing. When a file is opened,
IOCS checks all labels on each disk pack
and makes available all extents specified
by the user's control statements. Only one
OPEN is required for the file,. ALL should
be specified whenever the user plans to
process records in a manner similar to the
direct access method. In any case , the
user must supply a L'ELTYP statement.

After an OPEN is performed~ the user
must be aware that the symbolic unit
address of the first volume containing the
file is in bytes 30 and 31 of the DTFPB
table rather than in the CCB. Before
executing any EXCPs the user must place the
symbolic address in bytes 6 and 7 of the
CCB •

SINGLE

Is specified if only the first extent on
the first volume is available for
processing. SINGLE should be specified
when the user plans to process records in
sequential order. IOCS checks the labels
on the first pack and makes the first
extent specified by the user's control
cards available for processing. The user
must keep track of the extents and issue a
subsequent OPEN whenever another extent is
required for processing. The user will
find the information in the DTFPH table
helpful in keeping track of the extents:

Physical IOCS (PIOCS) 221

DTFPH table (referenced by filename)

0-15

54-57

58-59

60-63

Contents

CCB (Symbolic unit has
been initialized in
the CCB)

Extent Upper Limit
(cchh)

Seek Address (bb-bin or
cell number, if a
one-celled device such
as disk it must be zero .•

Extent Lower Limit
(cchh).

On each OPEN after the first, lOCS makes
available the next extent specified by the
control cards. When the user issues a
CLOSE for an output file, the volume on
which he is currently writing records is
indicated, in the file label, as the last
volume for the file.

r---,
ITYPEFLE={INPUTIOUTPUTl I L ___ J

This entry must be included to specify the
type of file (input or output). One
specification or the other is entered
immediately after the = sign.

r---,
IXTNTXIT=name i L ___ J

This entry is included if the programmer
wants to process label extent information.
It specifies the symbolic name of the
user's extent routine. The DTFPH entry
MOUNTED=ALL must also be specified for the
file.

Whenever XTNTXIT is included, IOCS
branches to the user's routine during the
initial OPEN for the file. It branches
after each specified extent is completely
checked and after conflicts, if any,
resolved.

Upon entry to the user's routine, IOCS
stores the address (in register 1) of a
14-byte area from which the user can
retrieve label extent information (in
binary form). This area contains:

222 DOS supervisor and I/O Macros

\
\

r------T----------------------------------,
IBytes I Contents I
~------+----------------------------------~

o

1

2-5

6-9

10-11

Extent type code (as specified
in the extent statement). See
Extent Type Hexadecimal Codes~

Extent sequence number

Lower limit of the extent
(cchh)

Upper limit of the extent
(cchh)

Symbolic unit (see Figure 54)

12 Old bin (cell) number. If a
one-celled device such as disk,
byte 12 contains zero.

113 Present bin number of the
I extent (b2) L ______ ~ __________________________________ J

The user returns to IOCS by using the
LBRET macro instruction,.

Extent Type Hexadecimal Codes:

r------T----------------------------------,
I Code I Meaning I
~------+----------------------------------~

00 Next three fields dd not indicate
any extent.

01

02

04

Prime area (indexed sequential) 'I

or consecutive area, etc (that is,
the extent containing the user's
data records, • .)

Overflow area of an indexed
sequential file.

Cylinder index or master index of
an indexed sequential file.

40 User label track area~

180 Shared cylinder indicator. L ______ ~ __________________________________ J

OPEN(R) Macro

r-----T------------------------------,
lOp I Operand I
~-----+-----------------------------------~ Ifor self-relocating programs I
I I I
IOPENRI{filenamel} I
I I (rl) I
I I I
I I ['{ filename2} ••• ,{ filenamen}] I
I I (r2) (rn) I
~-----+-----------------------------------~
Ifor programs that are not self-relocating I
I I I
IOPEN I{filenamel} I
I I (rl) I
I I I
I I ['{ filename2} ,{filenamen}] I
I I (r2) (rn) I L _____ ~ __________________________________ J

Note: To write the most efficient code
(in a multiprogramming environment), we
recommend that the self relocating form
of OPEN be used. (See also
Appendix G.)

The OPEN macro instruction activates files
processed with the DTFPH macro. When OPEN
is used, the symbolic address constants
generated from the parameter list are not
self-relocating. When OPENR is specified,
the symbolic address constants are
self-relocating. For this reason, use of
OPENR is recommended.

self-relocating programs using LIoes
must use the OPENR macro instruction to
activate all files, including
printer-keyboard files. The OPENR macro
also relocates all address constants
(except zero constants) within the DTF
tables specified in the operand field(s) in
register notation. If symbolic notation is
used, the user must establish
addressability through a base register.

If OPEN attempts to activate a logical
Ioes file (DTF) whose device is unassigned,
the job is terminated. If the device is
assigned IGN, the OPEN(R) does not activate
the file and turns ON the DTF byte 16, bit
2, to indicate the file is not activated.

The symbolic name of the file (DTF
filename) is entered in the operand field.
A maximum of 16 files may be opened with
one OPEN (or OPENR) by entering the
filenames as additional operands.
Alternately, the user can load the address
of the DTF filename in a register and
specify the register using ordinary
register notation. The high-order 8 bits
of this register must contain zeros. A
filename may be preloaded into any
register, 0-15.

Note: If you use register notation, we
recommend using only registers 2-12.
This will make your programs more
compatible with the Operating System
(OS).

Whenever an input/output DASD or
magnetic tape file is opened and a user
plans to process user-standard labels (UHL
or UTL), or nonstandard tape labels, he
must provide the information for checking
or building the labels.) If this
information is obtained from another input
file, that file must be opened, ahead of
the DASD or tape file_ Do this by
specifying the input file ahead of the tape
or DASD file in the same OPEN, or by
issuing a separate OPEN preceding the OPEN
for the file.

If an output tape (specified to contain
standard labels) is opened and does not
contain a volume label, a message is issued
to the operator. He can then enter a
volume serial number allowing the volume
label to be written on the output tape.

PIoeS--Single Volume Mounted--Output

When processing with physical IOeS, OPEN is
used only if the user wants to build
standard labels. When the first OPEN for
the volume is issued, OPEN checks the
standard VOLl label and the extents
specified in the extent cards for the
mounted volume:

1. The extents must not overlap each
other.

2. If user standard header labels are
written" the first extent must be at
least two tracks~

3. Only types 1 and 8 extents are valid.

OPEN checks all the labels in the VToe
to ensure that the file and file label
created does not destroy an existing file
whose expiration date is still pending.
After this check, OPEN creates the standard
label(s) for the file and writes the
label(s) in the VToe.

If the user wishes to create his own
user standard header labels (UHL) for the
file, he must include the DTF entry
LABADDR. OPEN reserves the first track of
the first extent for these labels and gives
control to the user's label routine. After
this, the first extent of the file can be
used. Each time the user determines that
all processing for an extent is completed"
he issues another OPEN for the file to make
the next extent available. When the last

Physical Ioes (PIOeS) 223

extent on the last volume of the file is
processed, OPEN issues a message. The
system operator has the option of canceling
the job, or typing in an extent on the
printer-keyboard and continuing th~ job.
If the system provides 'DASD file
protection, only the extents opened for the
mounted volume are available to the user.

PIOCS--Sinqle Volume Mounted--Input

When processing with physical, IOCS, OPEN is
used only if the user wants to check
standard labels.

When the mounted volume is opened for
the first time, OPEN checks the extents
specified in the extent cards (for example,
checks that the extent limit address for
the device being ,opened is valid). OPEN
also checks the standard VOLl label and
then checks the file label(s) in the VTOC.
If the system provides DASD file
protection, only the extents opened for the
mounted volume are available to the user.

If LABADDR is specified, OPEN makes the
user standard header labels (UBL) available
to the user one at a time for checking.
Then, OPEN makes the first extent available
for processing.

Each time the user determines that all
processing for an extent is completed, he
issues another OPEN for the file to make
the next extent available. If another
extent is not available, OPEN stores the
character F (for EOF) in byte 31 of the
DTFPB table. The user can determine the
end of file by addressing and checking the
byte at filename+30,.

PIOCS--All Volumes Mounted--Output

If all output volumes are mounted when
creating an output file with physical IOCS,
each volume is opened before the file is
processed. OPEN is used o~ly if standard
labels are checked or written.

For each volume, OPEN checks the
standard VOLl label and checks the extents
specified in the extent cards:

1. The extents must not overlap each
other.

2. Only type-l extents can be used.

3. If user standard header labels are
created, the first extent must be at
least two tracks long.

224 DOS Supervisor and I/O Macros

OPEN checks all the labels in the VTOC
to ensure that the created file does not
destroy an ex~sting file with an expiration
date still pending. After this check, OPEN
creates the standard label(s) for the file
and writes the label(s} in the'VTOe.

If the user wishes to create his own
user standard header labels for the file,
he must include the DTF entry LABADDR,.
OPEN reserves the first track of the first
extent for these labels and gives control
to the user' s label routine,.

If the XTNTXIT entry is specified, OPEN
stores the address of a 14-byte extent
information area in register 1. (See
Physical IOCS (PIOes): DTFPB Macro for the
format of this,area.) Then, OPEN gives
control to the user's extent routine. The
user can save this information for later
use in specifying record addresses. If the
user's DASD file is file protected, he
cannot write on any extents while in the
XTNTXIT routine. When checking is
complete, the user returns control to OPEN
by issui~g the LBRET 2 macro. The next
volume is then opened. After all the
volumes are opened, the file is ready for
processing.

PIoeS--All Volumes Mounted--Input

When all volumes containing the file are
on-line and ready at the same time, ea,ch
volume is opened one at a time before any
processing is done. OPEN is used only when
standard labels are processed. For each
VOlume, OPEN checks the extents specified
in the extent cards, and checks the
standard VOLl label on track 0 and the file
label(s) in the VTOC. If LABADDR is
specified, OPEN makes the user standard
labels available, one at a time, for

'checking.

If XTNTXIT is specified, OPEN stores the
address of a 14-byte extent information
area into register 1. (See Physical Ioes
(PIOeS): DTFPB Macro for the format of
this area.) Then OPEN gives control to the
user's extent routine. For example, the
user can save this area and use the
information for later use in specifying
record addresses. If the DASD file is file
protected, the user cannot write on any
extents while in the XTNTXIT routine.

/

LBRET Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [nameliLBRET I {11213} 1 L ______ ~ _________ ~ ________________________ J

The LBRET macro is issued in user
subroutines when processing is completed
and the user wishes to return control to
IOCS. LBRET applies to subroutines that
write or check DASD or magnetic tape user
standard labels, write or check tape
nonstandard labels, or check DASD extents.
The operand used depends o~the function to
be performed. See Label Processing.

CHECKING USER STANDARD DASD LABELS: IOCS
passes labels to the user one at a time
until the maximum allowable number are read
and updated, or until the user signifies he
wants no more. If the user issues LBRET 3
in his label routine, IOCS updates
(rewrites) the label read and passes him
the next label. If LBRET 2 is issued, IOCS
reads and passes the next label to the
user. If an end-of-file record is read
when LBRET 2 or LBRET 3 is used, label
checking is automatically ended. If the
user wants to eliminate the checking of one
or more remaining labels, he should issue
LBRET 1.

WRITING USER STANDARD DASD LABELS: The
user builds the labels one at a time and
uses LBRET to return to IOCS to write the
labels. LBRET 2 is used if the user wishes
to regain control after IOCS writes the
label. If, however, IOCS determines that
the maximum number of labels has been
written, label processing is terminated.
LBRET 1 is used to stop writing labels
before the maximum number is written.

CHECKING DASD EXTENTS: When using physical
IOCS on an input file with all volumes
mounted, the user can process his extent
information. After each extent is
processed, the user should issue a LBRET 2
to receive the next extent. When extent
processing is complete, the LBRET 1 macro
returns control to IOCS.

CHECKING USER STANDARD TAPE LABELS: IOCS
reads and passes the labels to the user one
at a time until a tapemark is read, or
until the user signifies he does not want
any more labels. LBRET 2 is used if the
user wants to process the next label. If
IOCS reads a tapemark, "label processing is
automatically terminated. LBRET 1 is used
if the user wants to bypass any remaining
labels.

WRITING USER STANDARD TAPE LABELS: The
user builds the labels one at a time and
returns to IOCS, which writes the labels.
When LBRET 2 is used, IOCS returns control
to the user (at the address specified in
LABADDR) after writing the label. LBRET 1
must be used to terminate the label set.

WRITING OR CHECKING NONSTANDARD TAPE
LABELS: The user must process all his
nonstandard labels at once. LBRET 2 is
used after all label processing is
completed and the user wants to return
control to IOCS. For an example see
Appendix D.

FEOV Macro

r------T---------T------------------------,
I Name 1 Operation 1 Operand 1
~------+---------+------------------------~
I [namellFEOV I{filename} I
1"1 1 (1) 1 L ______ ~ ________ ~~ ________________________ J

The FEOV (forced end-of-volume) macro
instruction is for files on magnetic tape
(programmer logical units only) to force an
end-of-volume condition before sensing a
reflective marker. This indi~ates that
processing of records on one volume is
considered finished, but" that more records
for the same logical file are to be read
from, or written on, the following volume.
For system units, see SEOV Macro.

The name of the file, specified in the
header entry, is the only parameter
required in the operand. The name can be
specified either as a symbol or in register
notation.

When physical IOCS macro instructions
are used and DTFPH is specified for
standard label processing" FEOV may be
issued for an output file only. In this
case, FEOV writes a tapemark, the standard
trailer label, and any user-standard
trailer labels if DTFPH LAEADDR is
specified. When the new volume is mounted
and ready for writing" IOCS writes the
standard header label and user-standard
header labels, if any.

Physical IOCS (PIOCS) 225

SEOV Macro

r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
I [namel ISEOV I filename I L ______ ~ _________ ~ ________________________ J

The SEOV (system End-Of-Volume) macro
instruction must only be used with physical
IOCS to switch automatic volume for
magnetic tape output files if SYSLST or
SYSPCH are assigned to a tape output file.
The routine writes a tapemark, rewinds,
unloads the file, and checks for an
alternate tape. If none is found, a
message is issued to the operator who can
mount a new tape on the same drive and
continue. If an alternate unit is
assigned, the macro fetches the alternate
switching routine to promote the alternate
uni~, opens the new tape, and makes it
ready for proce~sing. When using this
macro, the user must detect the
end-of-volume condition in the CCB.

CLOSE(R) Macro

r------T----------------------------------,
I Op 10perand· I
~------+~---------------------------------~
Ifor self-relocating programs I
I I I
ICLOSER~filenamel} I
I ft (rl) I
I I I
I I [,{filename2} ••• ,{filenamen}] I
I I (r2) (rn) I
~------+----------------------------------~
Ifor programs that are not self-relocating I
I I I
ICLOSE ~filenamel} I
I R (rl) I
I I I
I I [,{filename2} ••• , {filenamen}] I
I I (r2) (rn) I L ______ ~ __________________________________ J

Note: To write the most efficient code
(in a multiprogramming environment, we
recommend that the self relocating form
of OPEN be used. (See also
Appendix G.)

226 DOS Supervisor and I/O Macros

The CLOSE macro instruction is used to
deactivate any file that was previously
opened in any input/output unit in the
system. (Console files cannot be closed.)
A file may be closed at any time by issuing
this macro instruction. No further
commands can be issued for the file unless
it is opened.

When the operation CLOSE is used, the
symbolic address constants that CLOSE
generates from the parameter list are not
self-relocating. When CLOSER is specified,
the symbolic address constants are
self-relocating. For this reason, the
self-relocating form of CLOSE is
recommended.

The symbolic name of the logical file
(assigned in the DTF header entry) to be
closed is entered in the operand field. A
maximum of 16 files may be closed by one
instruction by entering additional filename
parameters as operands. Alternately, the
user can load the address of the filename
in a register and specify ~he register by
using ordinary register notation. The
high-order 8 bits of this register must be
zeros. The address of the filename may be
preloaded into any register, 0-15.

Notes:

• If you use register notation, we
recommend using only registers 2-12.
This will make your programs more
compatible with the Operating System
(OS).

• If CLOSE is issued to an unopened
magnetic tape input file, the option
specified in the DTF rewind option is
performed. If CLOSE is issued to an
unopened magnetic tape output file,
no tapemark or labels are written.

Supervisor-Communication Macros

The supervisor is a control program that
provides specialized services to problem
programs. These services differ slightly,
depending on the execution environment. In
the batch-job environment the supervisor
processes interruptions, I/O requests, and
program retrieval. In addition to these
functions, the supervisor also determines
which program (Foregroundl, Foreground2, or
Background) is to be executed in a
multiprogramming environment.

The interruptions handled by the
supervisor r~sult from five conditions:

• Input/Output

• Program Check

• Machine Check

• External Signal (including timer)

• Supervisor Call

CANCEL

CHKPT

COMRG

DUMP

EOJ

EXIT

FETCH

The user can request the supervisor to GETIME
set up linkages so that his routines can
handle program check, and operator LOAD
communication and/or timer interrupts.

If a batched-job foreground environment MVCOM
is specified at system generation time,
individual communication regions (Figure
58) are defined for each of the three
partitions. This facility allows each PDUMP
partition to modify and check its
respective communication region between job
steps. However, if the batched-job RELEASE
foreground environment is not specified,
only one communication region is generated
and only the background program can modify
its contents. Any program can read from
the communication region of its choice. If
a program attempts to modify another SETIME
partition's communication region, the
program is canceled.

Several macro instructions are available
to the programmer to enable him to STXIT
communicate with the supervisor. Thus, he
can utilize the functions performed by the
supervisor or have access to the
communication region in the supervisor. To
make use of the supervisor functions
requires switching from problem state to
supervisor state. Therefore, most macro TECB
instructions used for this purpose generate '
a Supervisor Call (SVC) instruction. The
macro instructions included in this section WAIT
are:

Terminates all remaining steps of
the job.

Takes checkpoints in a batched
partition.

Obtains the address of the
appropriate communication region.

Terminates the job step and dumps
main storage.

Informs the supervisor that the
current problem-program job step
is completed.

Returns to the "point of
interruption from a user routine
for interval timer, program
check, or operator communication.

Loads and gives control to a
program phase.

Obtains the time of day.

Loads a program phase and returns
control to the calling phase.

Modifies the content of the
user's portion of the appropriate
communication region.

Obtains a selective (snapshot)
dump of main storage.

Releases devices at execution
time. Changes a temporary assign
to its permanent assign" or to
unassigned status if there is no
permanent assignment.

Requests the control program to
take a program exit or set a bit
in the TECB after a specific time
interval.

Activates a problem program" s
abnormal termination program
check, interval timer, or
operator communication routine,
or cancels the use of such a
routine.

Generates a timer event control
block.

Yields control until the
"expiration of the interval timer.

Supervisor-Communication Macros 227

Multiprogramming Restrictions on Use of
supervisor Macros: If MVCOM is used to
modify another partition's communication
region, the program executing MVCOM is
canceled. Thus, if SUPVR MPS=YES is
specified at system generation time, the
MVCOM macro cannot be used in a foreground
program. The interval timer macros
SETIME,STXIT IT, and EXIT IT can be used in
only one program at a time (Foreground1,
Foreground2, or Background). This timer
macro may be specified at system-generation
time but can be changed by the system
operator. CHKPT is ignored in a foreground
job in the single program mode.

Program Loading

Phases may be loaded into main storage from
the system core image library or a private
core image library with the FETCH and LOAD
macro instructions •. FETCH gives control to
the phase that was loaded while LOAD
returns control to the phase that issued
the macro instruction. Self relocating
phases must be loaded using the LOAD macro
instruction (rather than the FETCH) with
the load address specified in a register.

All IBM supplied $$A and $$B phases
(transients) must be placed in the system
core image library. When a phase is
requested, the system core image library
and the private core image library are
searched, if necessary. If the phase
starts with $, the system core image
library is searched first. If the phase
requested is an IBM supplied $$A or $$B
transient which is not located in the
system core image library, the system
enters the wait state with an error message
of 04W (X'04E6') in bytes 0 and 1 of low
main storage. For other phases starting
with $, if the phase is not located in the
system core image library, the private core
image library assigned to the partition is
then searched. If the requested phase does
not begin with $, the private core image
library is searched first, followed by a
search of the system core image library.

Support of a private core image library
is a system generation option.

FETCH--FETCH A PHASE

r------T-----T----------------------------,
I Name lOp I Operand I
~------+-~---+----------------------------~
I [namel I FETCH I {Phasename} [,{entryname}] I
I I I (1) (0) I L ______ ~ _____ ~ ____________________________ J

228 DOS Supervisor and I/O Macros

The FETCH macro instruction loads the phase
specified in the first parameter. The
phase name can be 1-8 characters long.
Control is passed to the address specified
by the second operand. If the second
operand is not specified, control is passed
to the entry point determined at linkage
edit time.

The parameters can be specified either
as symbols or in register notation. When
register notation is used for phasename,
the register must be preloaded with the
address of an 8-byte field that contains
the phasename as alphameric characters. If
necessary, the phasename should be
left-adjusted and padded with blanks.

If ordinary register notation is used
for entryname, the absolute address of the
entry point of the phase should not be
preloaded into register 1. If, instead, a
symbolic name is used for entryname, the
macro expansion results in a V-type address
constant. The entryname does not have to
be identified by an EXTRN statement.

If the physical transient overlap option
is specified at system generation time, an
increase in throughput can result by
overlapping FETCH I/O operations of one
partition with problem program processing
in another partition.

LOAD--LOAD A PHASE

r------T-----T----------------------------,
I Name lOp I Operand I
~------+-----+-------~--------------------~
I [nameliLOAD I{Phasename}[,{loadaddr}] I
I I I (1) (0) I L ______ ~ _____ ~ __________________________ ~_J

The LOAD macro instruction loads the phase
specified in the first parameter and
returns control to the calling phase. The
phasename can be 1-8 characters long. The
user should code his LOAD in such a manner
that it cannot be overlaid by the new
phase.

After execution of the macro, the
entry-point address of the called phase is
returned to the programmer in register 1.
This entry-point address is determined at
linkage-edit time.

If an optional address parameter is
provided, the load-point address specified
to the linkage editor is overridden, and
the phase is loaded at the specified
address. The address used must be outside
the supervisor area. When an overriding
address is given, the entry-point address
is relocated and returned in register 1.

None of the other addresses in the phase
are relocated •.

The parameters can be specified either
as symbols or in register notation. When
register notation is used for phasename,
the register must be preloaded with the
address of an 8-byte field that contains
the phasename. If necessary, the phasename
should be left-justified and padded with
blanks. If ordinary register notation is
used for loadaddr, this parameter should
not be preloaded into register 1.

If the physical transient overlap option
is specified at system generation time, an
increase in throughput can result by
overlapping LOAD I/O operations of one
partition with problem program processing
in another partition.

Communication Region

As Figure 58 shows, the communication
region is a storage area within the
supervisor. Programs can check any
communication region available (three in a
batched-job foreground environment).
However, a program can only modify its own
communication region. Single program mode
programs in a batched job foreground
environment do not have their communication
regions updated.

Figure 58 shows the portion of the
communication region that contains
information of interest to the user. For a
complete layout of the communications
region, see the System Programmer's Guide
listed on the cover of this manual.

Field
Length

8 bytes

2 bytes

2 bytes

Information

Calendar date. Supplied from
system date whenever. the JOB
statement is encountered. The
field can be two forms: mm/dd/yy
or dd/mm/yy where mm is month, dd
is day, yy is year. It can be
temporarily overridden by a DATE
statement.

Address of the first byte of the
problem program area.

Address of the first byte
following the supervisor area.

If storage protect is specified,
the address is that of the first
byte with a storage protect key
of 1. If storage protect is not
specified, the address is that of
the first byte of the problem
program area.

11 bytes User area for inter job or
intrajob step communications.
All 11 bytes set to zero when the
JOB statement for the job is
encountered .•

1 byte UPSI (user program switch
indicators). set to binary zero
when the JOB statement for the
job is encountered. Initialized
by UPSI job control statement.

8 bytes

4 bytes

4 bytes

4 bytes

2 bytes

Job name as found in the JOB
statement for the job-.

Address of the uppermost byte of
the program area. When the first
phase of a foreground or
background program is loaded and
given control, register 2 .
contains the address of the
uppermost byte of the respective
program area.

Address of the uppermost byte of
the current phase placed in the
problem program area by the last
FETCH or LOAD macro instruction
in the job.

Highest ending main storage
address of the phase among all
the phases having the same first
four characters as the operand on
the EXEC statement. For the
background partition only, job
control builds a phase directory.
of these phases~ The address may
be incorrect if the program loads
any of these phases above its
link edited origin address~ If
the EXEC statement has no
operand, job control places in
this location the ending address
of the phase just link edited.

Length of batch or background
program label area.

Macro instructions (COMRG and MVCOM)
allow the problem program to communicate
with the supervisor and the appropriate
communication region.

supervisor-Communicaticn Macros 229

Date

Mo/Day/Yr
v

c -= v
~ Ol c

or

v E .;:
c

-= ~ ~ ~ Ol]« 0 e
va.. .. 2 g

~~~ 
V) >-.,._ 
(fl co c: 

.... -..0 .... - V 
""C ~ 0 "U V> c.. 
~U:c': ~~~ 

Day/Mo/Yr 

User Area--set to zero when 
J OS statement is read. Vi 
(Inter- or Intra-Job Step a.. 

2-
Communication) 

(fl 
...c 
~ .;: 
V') 

E 
~ 
Ol e a.. 

Job Name 

(Entered from 
Job Control) 

c 
E ~ v« 
:D-o v 
......0 

a.. c 
..... ...J 
o E 

-£ e 
0l0l 
c 0 v .... 

...J a.. 

J 
( 

7 8 9 10 11 12 22 23 24 Sytes.~0~ ________ ~~ __ ~~ __ ~~ ____________________ ~~ ________________ 3_1~3~2 __ ~35~3_6 ____ 3_9~4_0 ____ 4_3~M _____ 45~ 

t 
Address of first 
byte supplied 
in register 1 
by COMRG Note: If SUPVR MPS=YES is specified at system generation time, the information in bytes 12-45 pertain only to the background program. 

Figure 58. Communication Region (in Supervisor) 

COMRG--GET ADDRESS OF COMMUNICATION REGION 

r------T---------T-------------------------, 
I Name I operatl0n I Operand I 
~------+---------+------------------------~ 

. I [nameliCOMRG I I L ______ ~ _________ ~ _______________________ J 

When COMRG is issued, the address of the 
appropriate communication region is placed 
in register 1. A problem program can read 
any portion of its own communication region 
by using register 1 as a base register. 

MVCOM--MOVE TO COMMUNICATION REGION 

r------T---------T-------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I enamel IMVCOM I to, length, {from } I 
I I I (0) I l ______ ~ _______ ~ ________________________ J 

The MVCOM macro instruction modifies the 
content of bytes 12-23 of the appropriate 
communication region. This macro cannot 
modify another partition's communication 
region. 

The operand from represents the address 
(either as a symbol or in register 
notation) of the bytes to be inserted. The 
operand length represents the number of 
bytes (1-12) inserted. The operand to is 
the relative address of the first 
communication region byte modified (12-23) ,. 
(The to address is relative to the first 
byte of the region.) 

230 DOS Supervisor and IIO Macros 

The following shows how to move three 
bytes from the symbolic location DATA into 
bytes 16-18 of the communication region. 
The execution of this macro fetches a 
routine into the physical transient area,. 

r------T---------T------------------------l 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namellMVCOM I 16,3,DATA I L ______ ~ _________ ~ ___ ~ ____________________ J 

RELEASE -- RELEASE TEMPORARY ASSIGNS 
(BATCHED PROCESSING ONLY) 

Note: This macro not valid for Single 
. Program Initiation. 

The problem program supplies the names of 
the units (SYSxxx) to be released. The 
format of the RELEASE macro is: 

r------T----------T-----------------------, 
I Name IOperation IOperand(s) I 
~------+----------+-----------------------~ 
I [namelIRELEASE I (SYSxxx, ••• ,n) I 
I I I [,saveareal I L ______ ~ __________ ~ _______________________ J 

n may be up to a maximum of 16 units to 
be released. 

The savearea parameter is optional. If 
provided, it should be the name of an 
8-byte word aligned area where registers 0 
and 1 are saved for the problem program. 
If not provided, the contents or registers 
o and 1 are destroyed. 

All the units in the operand sublist are 
checked to assure that no system logical 



units are requested for release. If there 
are system logical units specified, an 
MNOTE is issued and the unit is ignored. 

After all checking is done, a unit table 
is set up and register 0 is loaded with the 
table address. If the savearea option is 
specified, registers 0 and 1 are saved. 

If there is no permanent assignment, the 
device is unassigned. If the device is at 
permanent assignment level, no action is 
taken on the unit. 

Before any release is attempted, a check 
is made for ownership of the unit. If the 
requesting partition does not own the unit, 
or if the unit is. already unassigned, the 
request is ignored. 

Recommendation: The user should inform 
the system operator via a message that 
the assignment was released. 

Time of Day Macro 

GETIME--GET TIME OF DAY IN REGISTER 1 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
l(nameJIGETlME I {STANDARDIBlNARYITU} I L ______ ~ _________ ~ ________________________ J 

The GETIME macro instruction obtains the 
time of day at any time during program 
execution. STANDARD is assumed if no 
operand is given. 

If STANDARD is specified, the time of 
day is returned in register 1 as a packed 
decimal number: hhmmss where h is hours, m 
is minutes, and s is seconds with low-order 
sign. The time of day may be stored, 
unpacked, or edited. 

Note: Lengthy conversion routines are 
generated (in line) each time STANDARD 
is used. Therefore, this function 
should be put into a subroutine if it 
is used frequently. 

If BINARY is specified, the time of day 
is returned in register l'as a binary 
integer in seconds. 

If TU is specified, the time of day is 
returned in register 1 as a binary integer 
in units of 1/300 second. 

GETIME can be used only if the timer 
featfire was specified at system generation 
time and if the CPU has the timer feature. 

Note: The timer feature is independent 
of the interval timer options (SETIME 
and STXIT). GETIME can be used by any 
area in a multiprogramming environment, 
regardless of which area is using the 
timer. 

Interval Timer and User Exit Macros 

Programs using the interval timer macros 
(SETIME, WAIT, TECB, STXIT IT, EXIT IT) 
must be executed with a supervisor 
containing the optional interval timer 
routines and on a CPU with the timer 
feature. The user specifies at system 
generation time whether the supervisor is 
to be generated with the interval timer 
routines. Any other STXIT or EXIT macros 
also require the option to be specified at 
system generation time. 

In a multiprogramming environment, only 
one program or task at a time can use the 
interval timer macros. The partition of 
the program or task is specified at system 
generation time but can be temporarily 
changed by the operator. There are two 
distinct methods of using the interval 
timer macros. Only one method can be used 
at a time. 

The first method allows the problem 
program to set the timer and enter a 
routine in the problem program when the 
time elapses. The SETIME, STXIT, and EXIT 
macros do this. However, only the main 
task of the partition controlling the timer 
can issue these instructions. 

If the problem program uses QTAM, 'refer 
to the QTAM Message Control Program 
publication listed in the Preface. 

In the second method" a given routine 
can be performed at timed intervals. The 
time set is a real time interval and is not 
stopped or adjusted when the program using 
the timer does not have control. The 
SETIME, TECB, and WAIT macros are used. 
However, if multitasking, only one task in 
the partition can use the method and the 
WAIT on the TECB must appear in that task. 
In this case, the priority of the program 
or task assigned to process interval timer 
interruptions must be considered. 

Supervisor-Communication Macros 231 



Method 1 . Macros 

SETIME--SET INTERVAL TIMER 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namelISETIME I {secOnds} I 
I. I I (1) I L ______ ~ _________ ~ ___ ~ ____________________ J 

The SETIME macro instruction sets the 
interval timer to the value that is 
specified in the operand. The largest 
allowable value is 55918 (equivalent to 15 
hours, 31 minutes, 58 se.conds). A register 
may be specified as the operand. The 
register must contain the number of seconds 
in binary. When the specified timer 
interval has elapsed, the interval timer 
routine supplied by the user is entered. 

If a routine is not supplied to the 
supervisor (via the STXIT macro 
instruction) by the time of the 
interruption, the interruption is ignored. 
When a program is restarted from a 
checkpoint, any timer interval set by a 
SETIME macro is not restarted. 

STXIT--SET LINKAGE TO USER ROUTINE(S) 

r------T------T---------------------------, I Name IOpera-loperand I 
I Ition I I 
~------+------+---------------------------~ 
ITo establish linkage I 
I I I I 
I [namellsTXIT I{AB} I 
I I I IT {rtnaddr} {savearea} I 
I I I PC, (0) , (1) I 
1 I I OC I 
~------+------+----~----------------------~ 
ITo terminate linkage I 
I I I I 
I [namelISTXIT IIABIITIPCIOC} I L ______ ~ ______ ~ ___________________________ J 

The STXIT.(set exit) macro establishes or 
terminates linkage from the supervisor to a 
problem program routine for abnormal task 

232 DOS supervisor and I/O Macros 

termination, interval timer, program check, 
or operator communication interrupts 
processing. To return from these routines, 
refer to the EXIT macro. This linkage must 
be established for a program or task by 
issuing the STXIT macro at the inception of 
main program or task execution. If only 
the first operand is present,. linkage to 
the problem program routine is terminated. 

r----------------------------------------, 
lAB I L _________________________________________ J 

An abnormal task termination routine is 
entered if a job or task is terminated for 
some reason other than a CANCEL, DETACH, 
DUMP, or EOJ macro issued by either the 
problem program or the supervisor.. Upon 
entry to the task's abnormal termination 
routine: 

• Byte 2 bit 1 is posted in the task's 
attachment ECB, if AB=YES is generated 
in the supervisor. 

• Register 0 contains the abnormal 
termination code in its low order byte 
(Figure 59). 

• Register 1 contains the address of 
task's abnormal termination save area, 
which contains the PSW and the contents 
of registers 0-15 at the time of the 
abnormal termination. 

The abnormal termination routine can 
then examine this data and take whatever 
action is necessary. 

Instructions that might be used in this 
routine are 'the DEQ, POST~ and CLOSE. 
However, if an abnormal termination 
condition occurs in an abnormal termination 
routine, the job or task is abnormally 
terminated without regard to an abnormal 
termination exit. Thus, the problem 
program abnormal termination routine should 
avoid instructions such as ENQI, CHKPT" and 
any other I/O instructions that may cause 
an abnormal termination. 

Note: For systems operating in a QTAM 
environment, QTAM files must be closed 
before issuing this macrO:--

./ 

( 



r----------------T----------------------------------------------, I Hexadecimal I I 
I Representation I Specific Abnormal Termination Code Meaning I 
~----------------+----------------------------------------------~ I 17 I Main task issued a CANCEL macro with subtask I 
I I still attached I 
~----------------+---------------------------------~------------~ I 18 I Main task issued a DUMP macro with subtask I 
I I still attached I 
~----------------+---------------------------------------~------~ I 19 I Operator replied cancel as the result of an I 
I I I/O error message I 
~----------------+----------------------------------------------~ I 1A I An I/O error has occurred (see PSW) I 
~----------------+----------------------------------------------~ I 1C I CANCEL ALL macro issued in another task I 
~----------------+----------------------------------------------~ 
I 1D 1 Main task terminated I 
~----------------+-------------~-------------------------------~ I 1E I A DEQ macro was issued for a resource I 
1 I but tasks previously requesting a resource 1 
I I cannot be found because their save areas I 
I I (containing register 0) were modified .1 
~----------------+----------------------------------------------~ I 20 I A program check occurred I 
~-------~--------+-------------~-------------------------------~ I 21 I An invalid SVC was issued by the problem I 
I I program or macro instruction I 
~----------------+----------------------------------------------~ I 22 I Phase not found in the core image library I 
~----------------+----------------------------------------------~ I 23 I CANCEL macro issued I 
~---------~-----+----------------------------------------------~ I 24 I Canceled due to an operator request I 
~----------------+----------------------------------------------~ I 25 I Invalid main storage address given (outside I 
I I partition) I 
~----------------+----------------------------------------------~ I 26 I Device not assigned I 
~----------------+----------------------------------------------~ 
1 27 1 Undefined logical unit 1 
t----------------+----------------------------------------------~ 
I 30 1 Read past a /& statement I 
t----------------+----------------------------------------------~ 
1 31 I I/O error queue overflow during syste~ error 1 
I I recovery procedure I 
~----------------+----------------------------------------------~ 
I 32 1 Invalid DASD' address 1 
t----------------+----------------------------------------------~ 
I 33 I No long seek on a DASD I 
t----------------+----------------------------------------------~ I Others I Reserved for future systems use I L ________________ ~ ______________________________________________ J 

Figure 59. Abnormal Termination Codes 

After the appropriate action is taken, 
the problem program abnormal termination 
routine should end with a CANCEL DETACH, 
DUMP, or EOJ macro instruction. However, 
DUMP forces a storage map of the partition 
even if option NODUMP was specified. At 
this time, the subtask's attachment ECB bit 
o of byte 2 is posted, all held tracks are 
freed, messages to identify the reason for 
abnormal termination are given, and the 
subtask is detached. If the main task 

issued the CANCEL macro, the entire 
partition is terminated with every subtask 
abnormal termination exit taken in order of 
priority. 

If the system was generated with the 
multitasking option, each task may require 
its own abnormal termination routine. A 
main task can attach a subtask with an 
AESAVE operand. This assumes the subtask 
will use its abnormal termination routine. 

supervisor-Communication 'Macros 233 



However, the subtask may override this 
specifica~ion by issuing its own STXIT AB 
macro. 

r-----------------------------------------, 
lIT I L _________________________________________ J 

An Interval Timer interruption routine is 
entered when the interval timer elapses. 
If multitasking, only the main task can 
process the condition. 

r-----------------------------------------, 
10C I L _________________________________________ J 

An Operator Communication interruption 
routine is entered in a background job when 
the external interrupt key on the console 
is pressed. In a foreground program, the 
ocroutine is entered when you press the 
request key on the 1052 and request the 
foreground OC routine. If multitasking, 
only the main task can process this 
condition. 

r-----------------------------------------, 
IPC , L _________________________________________ J 

A Program Check interruption routine is 
entered when a program check occurs. If a 
program check occurs in a routine being 
executed from the logical transient area, 
the job containing the routine is 
abnormally terminated. A program check 
interruption routine can be shared by more 
than one task within a partition. Do this 
by executing the STXIT macro in each 
subtask with the same routine address but 
with separate save areas. To successfully 
share the same PC routine, the routine must 
be reenterable. That is, it must be 
capable of being used concurrently by two 
or more tasks. 

r---------------------------------------~-, I rtnaddr I L _________________________________________ J 

Entry pOint address of the routine that 
processes the condition described in the 
first operand. 

234 DOS supervisor and I/O Macros 

r-----------------------------------------, . 
Isavearea I 
L __________________ -----------------------J 

Address of a 72-byte area in which the 
supervisor stores the old PSW and general 
registers 0-15 in that order. The problem 
program must have a separate save area for 
each routine that is included. 

The routine address and the savearea 
address can be supplied as a symbol or in 
special or ordinary register notation. 

If a STXIT macro is issued and the 
supervisor is not generated to handle the 
requested facility, the job is abnormally 
terminated. This also applies to a program 
that requests the timer interrupt and the 
timer is not allocated. 

If an abnormal termination condition 
occurs and linkage has not been established 
to a problem program or main task abnormal 
termination routine, the partition is 
abnormally terminated. However, if the 
abnormal termination condition occurs in a 
subtask without exit linkage, only the 
subtask is terminated. An interval timer, 
or operator communication condition 
occurring without exit linkage is ignored. 

If a program check condition occurs in a 
main task without exit linkage, the 
partition is terminated. However, if this 
same condition occurs in a sUbtask, only 
the subtask is terminated. 

The following shows what happens when a 
condition occurs where a STXIT routine is 
being processed within a particular 
partition: 

r---------------T-----------------------, 
I Routine Being I Condition Occurring I 
I ~-----T------T------T---~ 
I Processed 'AB' IT , OC ,PC, 
~---------------+-----+------+------+---~ 
I AB 'T I I I I I I I 
~---------------+-----+------+------+---~ 
I IT I S I I I H I H I 
~---------------+-----+------+------+---~ 
I oc I S I H lIb Ef IH I 
~---------------+-----+------+------+---~ I PC ,s I H , H , T , L _______________ ~ _____ ~ ______ ~ ______ ~ ___ J 

Ef Error message issued in foreground 
program, and control returns to . 
interrupted OC routine. 

H Condition honored. When processing of 
new routine completes, control returns 
to interrupted routine. 



I Condition ignored for all partitions. 

Ib Interrupt ignored in a background 
partition. 

S 

T 

Execution of the routine being 
processed is suspended, and control 
transfers to the AB routine. 

Job abnormally terminated. If AB 
routine present and there has not been 
an interruption in the AB routine, its 
exit is taken. Otherwise, a system 
abnormal termination occurs. 

Note 1: When restarting a program from 
a checkpointed position, any STXIT 
linkages established prior to the 
checkpoint are destroyed. 

Note 2: If a program is using a 
logical transient routine when a timer 
interrupt occurs, the user timer 
routine is not entered until the 
logical transient routine is released. 

Note 3: Each routine should provide 
its own addressability by initializing 
its base register. 

Note 4: If a program issues a QTAM SVC 
WAIT, the routine specified as linkage 
must store register 1 in the save area 
(savearea + 12) specified in the third 
operand. 

EXIT--EXIT FROM USER'S INTERRUPT ROUTINE(S) 

r------T---------T------------------------, I Name I Operation I Operand I 
~------+---------+--------~---------------~ 
I [namellEXIT I {PCIITIOCIMR} I L ______ ~ _________ ~ ________________________ J 

The EXIT macro instruction is used to 
return from the user routine, to the 
instruction in the interrupted program 
immediately after the instruction where the 
interruption occurred. The user routine is 
specified in the STXIT macro (except for 
MR) • 

For PC, IT, and OC, the PSW and 
registers are restored from the save area; 
thus, the save area contents should not be 
destroyed. The operands have the following 
meanings: 

PC Exit from the user's program check 
routine. 

IT 

OC 

MR 

Exit from the user's interval timer 
routine. 

Exit from user 1 s routine that handles 
the operator attention interrupt. 

The MR indicates that the user stacker 
selection routine (MICR document 
processing) is exiting to the external 
interrupt routine of the supervisor. 
The name of the user stacker selection 
routine is specified in the DTFMR 
macro instruction. 

Method 2 - Macros 

TECB - BUILD TIMER EVENT CONTROL BLOCR 

r--------T---------T----------------------, 
I Name I Operation I Operand I 
~--------+---------+----------------------~ 
ItecbnamelTECB I I L ________ ~ _________ ~ ______________________ J 

The TECB generates a timer event control 
block (Figure 60) at the address of 
tecbname. This block contains an event bit 
that indicates when the time interval 
specified in SETIME has elapSed. 

Reserved 

Byte 2 3 

Event Reserved 
Bit 

Bit a 1 -7 

The Event Bit is set ON by the Supervisor's Timer Routines 

Value Indication 

a time specified in SETIME has not elapsed 

time specified in SETIME has elapsed 

Figure 60. Time Event Control Block (TECB) 

supervisor-communication Macros 235 



SETIME--SET INTERVAL TIMER 

r------~--------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namellSETIME I{seconds},{tecbname} I 
I I I (1) (r) ! L ______ ~ _________ ~ ________________________ J 

The SETIME macro sets the amount of time 
that must elapse before the TECB event bit 
is set to 1 and the routine following the 
WAIT macro can be processed. When SETIME 
is issued, the event bit is set to o. 

The number of seconds can be specified 
directly or in register notation. The 
largest allowable value is 55918, 
(equivalent to 15 hours, 31 minutes, 58 
seconds). If a register is specified, the 
register must contain the number of seconds 
in binary. 

The user can specify the tecbname or 
specify the register (r) (r cannot be 0 or 
1) in which is placed the address of the 
corresponding TECB. After SETIME is 
executed, the supervisor returns the TECB 
address in register 1. 

WAIT--WAIT FOR TIMER ELAPSE 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namellWAIT I {tecbname} I 
I I I (1) I L ______ ~ _______ ~_~ ________________________ J 

The WAIT macro ensures that the time 
interval specified in SETIME has elapsed 
(event bit turned ON) before execution of 
the program issuing the wait continues .• 
When a WAIT macro is processed in a 
multiprogramming environment, control is 
given to the supervisor, which makes the 
time available to another partition. 

The user can either specify the tecbname 
or use register notation. The WAIT macro 
instruction loads the TECB address into 
register 1 unless register (1) is 
specified. 

Note: The SETIME macro instruction 
leaves the TECB address in register 1. 

236 DOS Supervisor and I/O Macros 

Dump Macros 

PDUMP--PARTIAL DUMP OF MAIN STORAGE 

r------T---------T------------------------, I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namellPDUMP l{address1},{address2} I 
I I I (r) (r) I L ______ ~ _________ ~ ________________________ J 

This macro instruction provides a 
hexadecimal dump of the general registers 
and of the main storage area contained 
between the two address expressions 
(addressl and address2). One or both of 
the addresses can be given in registers. 
The contents of registers 0-1 are 
destroyed, but the CPU status is retained. 
Thus, PDUMP furnishes a dynamic dump 
(snapshot) useful for program checkout. 
Processing continues with the next user 
instruction .' 

The dump is always directed to SYSLST 
with 121 byte records. The first byte is 
an ASA control character. When SYSLST is a 
disk drive, the user must issue an OPEN 
macro to any DTF assigned to SYSLST after 
each PDUMP that is executed. The OPEN 
macro updates the disk address maintained 
in the DTF table to agree with the address 
where the PDUMP output ends. If the OPEN 
is not issued~ the address is not updated~ 
and the program is canceled when the next 
PUT is issued. 

DUMP--DUMP PARTITION 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namellDUMP I I L ______ ~ _________ ~ ________________________ J 

This macro terminates the job step and 
gives a hexadecimal dump of the supervisor, 
the partition that issued the macro, and 
the general registers, if the program or 
main task issued the macro. If a aubtask 
issues the macro, the subtask is detached~ 
the partition is not terminated, and the 
dump, as described, is given. The dump is 
always directed to SYSLST upon DUMP macro 
execution. SYSLST, if disk or tape, must 
be opened, and if tape, it must be 
positioned as desired. 



Cancel and EOJ Macros 

CANCEL--CANCEL THE JOB 

r--------T-----------T---------, 
I Name I Operation I Operand I 
~--------+-----------+---------~ 
I [name] I CANCEL I [ALL] I L ________ ~ ___________ ~ _________ J 

The CANCEL macro issued by a subtask 
abnormally terminates the subtask without 
branching to any abnormal termination 
routine. A CANCEL ALL macro issued in a 
subtask, or a CANCEL issued in the main 
task, abnormally terminates the partit10n 
(job). Job termination in multitasking 
causes all abnormal termination exits (via 
STXIT AB) to be taken for each task except 
the task that issued the CANCEL macro. 
Once these exi~s are taken, the job is 
terminated. Upon task termination, system 
messages (using the first 8 bytes of each 
subtask save area) are issued to identify 
each subtask terminated. 

Note: If the CANCEL macro is issued 
without an operand, the card cannot 
contain a comment unless the comment 
begins with a comma. If CANCEL ALL is 
issued, the card may contain a comment. 

If the DUMP option was specified, and 
SYSLST is assigned, a system dump will 
occur 

• If a CANCEL ALL macro is issued by a 
subtask, or 

• If a CANCEL macro is issued by a 
maintask with subtasks attached. 

EOJ--END-OF-JOB STEP 

r--------T-----------T--------------------, 
I Name I Operation I Operand I 
~--------+-----------+--------------------~ 
I [name] I EOJ I I L ________ ~ ___________ ~ ____________________ J 

The EOJ macro is issued in the main task, 
or only program within a partition, to 
inform the system that the job step is 
finished. If a subtask issues an EOJ, the 
subtask is detached and the remainder of 
the partition continues. The operand field 
is ignored. 

Checkpointing a Problem Program 

Checkpoint records the status of a problem 
program at designated intervals. If 
processing is terminated for any reason 
before the normal end of program, restart 
resumes the execution of the program from 
one of the checked points rather ~han from 
the beginning,. For example, a job of 
higher priority may require immediate 
processing, or some malfunction such as a 
power failure may occur and cause an 
interruption. The checkpoint ability is 
provided through the CHKPT macro while the 
restart ability is provided through job 
control. (For information on restarting a 
checkpointed program, see the system 
Control and Service publication listed in 
the Prefu.ce.) 

Note: The checkpoint 'facility is not 
available for ASCII tape files. 

A checkpoint cannot be taken following 
an end-of-file condition because both 
checkpoint and close routines are 
transients. If a user wishes to take 
advantage of checkpointing, a good time to 
take a checkpoint is immediately after 
opening files. If the checkpoint is not 
successful at this time, the program will 
cancel before any processing of files 
begins. The following illustrates the 
principle: 

r-----------------------------------------, I START 
I 
I 
I 
I 
I 
I 
I 
I 
I 

OPENR 
BAL 

ICHECKPT CHKPT 
I LTR 
I BNZ 
I 
I 
I 
I 

CANCEL 

I EOJ 

(RTAPEOUT),(RCHKPTF) 
RLINK, CHECKPT (Trial 
checkpoint) 

SYSOOO, ••• 
0,0 (Test for success) 
O(,RLINK) (Return if 
success) 
ALL (Checkpoint failed) 

L _________________________________________ J 

USE OF THE CHKPT MACRO 

Any partition" except a foreground 
partition in a single program mode, can 
issue the CHKPT macro successfully. CBKPT 
cannot be issued for a BTAM program. If 
multitasking, only the main task can 

Supervisor-Communication Macros 237 



I 

successfully checkpoint. CBKPT is ignored 
when issued by a subtask, a foreground 
partition in single progra~ mode, or in 
any of the following additional 
conditions: 

1. The device on which the checkpoint 
records are written is not a magnetic 
tape or a disk pack. (The device 
must be a 2311~ 2314, or 2319 disk if 
the filename operand is present.) 

2. End-of-reel is detected while writing 
the checkpoint on tape. 

3. The area on disk is not large enough 
for a single checkpoint. 

~. The macro is issued by a 
telecommunications program that has 
any I/O operation(s) pending on a 
telecommunications device. 

5~ The user-specified end address is 
greater than the end of the problem 
program area. 

6. The CBKPT macro is issued before the 
disk checkpoint file is opened. 

7. Any of the required DTFPB parameters 
for the disk checkpoint file contain 
errors. 

8. If a subtask is attached in the 
partition being checkpointed. 

9. If any DASD track for the partition 
being checkpointed is in the HOLD 
condition. 

If a checkpoint is ignored, control 
returns to the user with binary zeros in 
register o. Otherwise, register zero 
contains the appropriate checkpoint number 
(in unpacked decimal). 

Checkpoints are usually taken after a 
specified period of time has elapsed, or 
after a certain volume of input is 
processed. 

Note: The maximum number of 
-checkpoints in anyone job is 9999 

(decimal). If the user wishes 
additional checkpoints, the job must 
be forced to end-of-job and then 
restarted. 

If multitasking, the method to use is 
not readily apparent. However, use the 
following two situations as a guide. 

1. The multitasking operation requires 
checkpoints to be taken on a time 
interval basis. Therefore, at ma~n 
task execution time, a STXIT macro 

238 DOS Supervisor and I/O Macros 

establishes linkage for an interval 
timer interrupt. In the main task 
interval timer routine, the problem 
program issues WAIT macros to wait 
for the detachment of each subtask in 
the partition, and then takes the 
checkpoint. If the main task must 
take an immediate checkpoint(, the 
interval timer routine must first 
detach all subtasks before issuing 
the CHKPT macro;. 

2. The multitasking operation requires 
checkpoints to be taken on a volume 
basis. Therefore, the main task 
attaches the subtasks necessary to 
perform the job, and then issues WAIT 
macros to wait for each subtask in 
the partition to detach. Each 
subtask keeps a count on the unit of 
work to be performed and detaches 
when it is finished. When all 
subtasks are detached the main task 
can take the checkpoint. 

After the checkpoint is taken, the main 
task can then either attach more, or the 
same, subtasks to continue processing. 

CHKPT MACRO 

r------T-----T----------------------------, I Name lOp I Operand I 
~------+-----+-------------------~--------~ 
I [namellCBKPTlsysnnn,{restart address} I 
I I I (r1)· I 
I I I I 
I I I [Je. nd address}] [;jtpointer}] I 
I I I t (r2) t (r3) I 
I I I I 
I I I [,JdPointer}] ["Filename}] I 
I I I t (r~) t (r5) I L ______ ~ _____ ~ ____________________________ J 

Special register notation cannot be 
used with any of these operands. 

SYSnnn 

specifies the logical unit on which the 
checkpoint information is stored. It must 
be an EBCDIC magnetic tape or a disk pack. 
(See Checkpoint File~) 



Restart address (or r1) 

Specifies a symbolic name of the problem 
program statement (or register containing 
the address) at which execution is to 
restart if processing must be continued 
later. 

End address (or r2) 

A symbolic name (or register containing 
the address) of the uppermost byte of the 
problem program area required for restart 
(see Communication Region). This address 
must follow the logic modules being 
included from the relocatable library. If 
this operand is omitted, all main storage 
allocated to the partition is 
checkpointed. 

This operand has two advantages: 

1. Less time and space is required for 
recording the checkpoint record set. 

2. If a program using 24K of storage is 
being run in a larger system and only 
24K is checkpointed, that program can 
be restarted either on a 24K or 
larger system. 

In a multiprogramming environment, 
checkpoints must be restarted in the same 
partition that was checkpointed. 

Tpointer (or r3) 

The symbolic name of an a-byte field 
contained in the problem program area. 
(See Repositioning Magnetic Tape.) 

Dpointer (or r4) 

The symbolic name of a DASD operator 
verification table that the user can set 
up in his own area of main storage. (See 
DASD Operator Verification Table.) 

Filename (or r5) 

Used only for checkpoint records on disk. 
It is the name of the associated DTFPH 
macro. (See Checkpoint on Disk.) 

Information That Is and Is Not Saved 

When the CHKPT macro is issued, the 
following information is saved: 

• Information for the restart and other 
supervisor or job control rou~ines. 

• The general registers. 

• Bytes 8-10 and 12-45 of the 
communication region. 

• The ·problem program area (see 
End-Address operand). 

• All DASD file protection extents 
attached to logical units belonging to 
the checkpointed program. 

The following information is not saved: 

• The floating-point registers. (If 
needed, these registers should be 
stored in the problem program area 
before issuing CHKPT, and restored in 
a user restart routine.) 

• Any linkages to user routines set by 
the STXIT macro. (If needed, STXIT 
should be used in user's restart 
routine.) 

• Any timer values set by the SETIME 
macro. (If needed, SETIME should be 
used in user's restart routine.) 

• The program mask in problem program 
PSW. (If other than all zeros is 
desired, the mask should be reset in 
user's restart routine.) 

Notes for DASD and MICR Files: DASD 
system input or output files (SYSIPT, 
SYSLST, etc) must be reopened at 
restart time. In the user's restart 
routine, the programmer must be able 
to identify the last record processed 
before the checkpoint. 

For MICR files, the problem program 
must disengage the device and process 
all follow-up documents in the 
document buffer before taking each 
checkpoint. MICR files require the 
DTFMR supervisor linkages to be 
initiated at restart time. Do this by 
reopening the MICR file in the user's 
restart routine which clears the 
document buffer. 

supervisor-Communication Macros 239 



CHECKPOINT FILE 

The checkpoint information must be written 
on a disk pack or an EBCDIC magnetic tape, 
either 7- or 9-track. The 7-track tap·e 
can be in either data conversion or 
translation mode. However, the magnetic 
tape unit must have the data conversion 
feature. On 7-track tapes, the header and 
trailer labels are written in the mode of 
the tape and the data records are written 
in data convert mode, odd parity. 

Checkpoints on Tape 

The programmer can either establish a 
separate file for checkpoints or embed the 
checkpoint records in an output data file. 
When the data file is read at a later time 
using logical IOCS, the checkpoint records 
are automatically bypassed. If physical 
IOCS is used, the user must program to 
bypass the checkpoint record sets. See 
Physical IOCS (PIOCS). 

If a separate magnetic tape checkpoint 
file with standard labels is maintained, 
the labels should be either checked by an 
OPEN or bypassed by an MTC command before 
the first checkpoint is taken. 

Checkpoints on Disk 

If checkpoints are written on disk, the 
following must be observed: 

• One continuous area on a single pack 
must be defined at execution time by 
the job control cards necessary to 
define a DASD file. 

• The number of tracks required is 
computed as follows: 

where 

[

X :t. 
n 1+30+20 

18 

n = The number of sets of checkpoint 
records to be retained. (When 
the defined extent is full, the 
first set of checkpoint records 
is overlaid.) 

c = The number of bytes to be 
checkpointed in the user's 
problem program up to the end 
address specified in the CHKPT 
macro operand. 

240 .DOS Supervisor and I/O Macros 

x = The number of disk extents 
including nonoverlapping 
split-cylinder extents. If 
split-cylinder extents overlap on 
the same cylinder, the number of 
extents counted is one used by 
the program. (This number is 
zero if DASD file protect is not 
used. ) 

y = For 2321, same as x. 

z = 3625, if checkpoint records are 
to be written on a 2311. 

7249, if checkpoint records are 
to be written on a 2314 or 2319. 

For each division" the remainder is 
rounded up to the next highest whole 
number before multiplying by n. 

• Each program can use a common 
checkpoint file or define a separate 
one. If a common file is used, only 
the last program using the file can be 
restarted. 

• The checkpoint. file must be opened 
before the CHKPT macro can be used. 

• A DTFPH macro must be included for use 
by OPEN and the checkpoint routine. 
See Physical IOCS (PIOCS)·: DTFPH 
Macro. 

REPOSITION I/O FILES 

The I/O files used by the checkpointed 
program must be repositioned on restart to 
the record the user wants to read or write 
next. Checkpoint provides no aids for 
repositioning unit-record files. The 
programmer must establish his own 
repositioning aids and communicate these 
to the operator when necessary. Some 
suggested ways are: 

• Taking checkpoints at a logical break 
point in the data, such as paper tape 
end of reel. 

• switching card stackers after each 
checkpoint. 

• Printing information at checkpoint to 
identify the record in process. 

• Issuing checkpbints on operator 
demand. 



User sequential DASD input, output, and 
work files require no repositioning. 

When updating DASD records in an 
existing file, the programmer must be able 
to identify the last record updated at 
checkpoint in case he needs to restart. 
This can be done in various ways, such as: 

• Creating a history file to record all 
updates. 

• Creating a field in updat~d records to 
identify the last transaction record 
that updated it. This field can be 
compared against each transaction at 
restart time. 

Repositioning Magnetic Tape 

Checkpoint provides some aid in 
repositioning 3420 or 2400-series magnetic 
tape files at restart. Files can be 
repositioned to the record following the 
last record processed at checkpoint. 

This section and Figure 61 present the 
procedure. The fourth operand of the 
CHKPT macro points to two V-type address 
constants that the user specifies in his 
coding. The order of these constants is 
important. 

1. The first constant points to a table 
containing the filenames of all 
logical ICCS magnetic tape files to 
be repositioned. 

2. The second constant points to a table 
containing repositioning information 
for physical ICCS magnetic tape files 
to be repositioned. 

3. If the first, second, or both 
constants are zero, no tapes 
processed by logical, physical, or 
both types of IOCS, respectively, are 
repositioned. 

If the tables are contained in the same 
CSECT as the CHKPT macro, the constants 
may be defined as A-type constants. 

The user must build the tables 
discussed. Each filename in the logical 
IOCS table points to the corresponding DTF 
table where IOCS maintains repositioning 
information. 

• Magnetic tapes with nonstandard labels 
should be repositioned past the labels 

at restart time (presumably the labels, 
are followed by a tapemark so that 
forward-space file may be used). 

• If either a nonstandard label or 
unlabeled magnetic tape file is to be 
repositioned for reading backwards, 
the problem programmer must position 
the tape immediately past the tapemark 
following the last data record. 

• Restart does not rewind magnetic tapes 
when repositioning them. 

• A multifile reel should be 
prepositioned to the beginning of the 
desired file. 

• The correct volume of a multivolume 
file must be mounted for restart. 

• For tapes with a standard VOL label, 
restart writes the file serial number 
and volume sequence number on SYSLOG, 
and gives the operator the opportunity 
to verify that the correct reel is 
mounted. 

• ICCS can completely reposition files. 
on system logical units (SYSIPT, 
SYSLST, etc), if the tape is not 
shared with any other program and if 
the user keeps a physical IOCS 
repositioning table. However, if a 
system logical unit file is shared 
with other programs, a problem exists. 
Output, produced after the qheckpoint, 
is duplicated at restart. Input 
records must be reconstructed from the 
checkpoint, or the user restart 
routine must find the last record 
processed before checkpoint. 

The entries in the physical ICCS table 
~re: 

• First halfword. Hexadecimal 
representation of the symbolic unit 
address of the tape (copy from CCB). 

• Second halfword. Number of files 
within the tape in binary notation. 
That is, the number of tapemarks 
between the beginning of tape and the 
position at checkpoint. 

• Third halfword. Number (in binary 
notation) of physical records between 
the preceding tapemark and the 
position at checkpoint. 

Supervisor-Communication Macros 241 



DASD OPERATOR VERIFICATION TABLE 

If the Dpointer operand is used, the user 
can build a table (in his own area of main 
storage) to provide the symbolic unit 
number and the bin (cell) number of each 
DASD file used by his program. At 
restart. the volume serial number of these 
files is printed on SYSLOG for operator 
verification. 

The entries in the DASD operator 
verification table must consist of the 
following two halfwords, in the order 
stated: 

242 DOS Supervisor and I/O Macros 

1. The symbolic unit in hexadecimal 
notation copied from the CCB bytes 6 
and 7. 

2. The bin (cell) number in hexadecimal 
notation. The bin number is always 
zero. except for a 2321, in which 
case the bin number varies with the 
cell (0-9) being verified. 

There must be one entry for each DASD 
unit to be verified by the operator. 



r---------------------------------------------------------------------------------------, 
Name Operation Operand 

CHKPT SYSOOx,(r1)"POINTEP,DASD 
I I 

r--------------------------------------------------------------f-----J 
I 

r------------------------------------------------------___ J , 
POINTER r--------V(LOGICL) DC 

I 
I 
I 
I 
I 
I 

r------------------------------J 

t· CNOP 

LOGICL DC 

V (PHYSCL) 
I 
I 

r-----------J 

I 
I 
I 
I 
I 
I 
I 

2,4 

H'n' number of entries in 
the following table. 

r--------------------------------J 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I , 

PHYSCL 

DC 

DC 

r------V 
I V 
I 
I 

(filename1) 
(filename2) 

Symbolic DTF 
name of each 
tape file to 
be repositioned 
at restart I 

I 
I 
I 

V (filenamen) 

I 
I 
I 
I 

H'n' number of entries in 
the following table. 

r--------------------------------J 

I 
I 
I 
I 
I 
t . 

filename1 

~ASD 

DTFxx 

3H 

3H 

six bytes (3 halfwords) 
for each tape file 
that is to be 
repositioned at restart. 

H'n' number of entries in 
the following table. 

2H 4 bytes 

2H 

(2 halfwords) are 
required for each DASD unit 
so that the operator can 
verify each volume sequence 
number at restart time. 

L _______________________________________________________________________________________ J 

Figure 61. Repositioning Magnetic Tape 

supervisor-Communication Macros 243 



Additional Macro Instructions: Call, Save, and Return 

A program may consist of several phases or 
routines produced by language translators 
and then combined by the linkage editor. 
The CALL, SAVE, and RETURN macro 
instructions are used for linkage between 
routines. These macros, with conventional 
regist'er and save area usage, allow 
branching from phase to phase, and delivery 
of parameters. Also" the parameters can be 
delivered to another program. Passing 
control from one routine to another within 
the problem program is referred to as 
direct linkage. 

Figure 63 shows linkage between a main 
program and two subroutines. Linkage can 
proceed through as many levels as 
necessary, and each routine may be called 
from any level. The routine given control 
during the job step is initially a called 
program. During execution of a program, 
the services of another routine may be 
required, at which time the current program 
becomes a calling program. For example, 
when main program passes control to B, B is 
a called program. When control is passed 
from B to C, B is the calling program and C 
is the called program. 

Linkage Registers 

To standardize branching and linking, 
registers are assigned specific roles 
(Figure 62). Registers 0, 1, 13, 14, and 
15 are known as the linkage registers. 
Before a branch to another routine, the 
calling program is responsible for the 
following calling sequence: 

1. Loading register 13 with the address 
of a register save area in that 
program which the called program is to 
use. 

2. Loading register 14 with the address 
to which the called program will 
return control. 

3. Loading register 15 with the address 
from which the called program will 
take control. 

244 DOS supervisor and IIO Macros 

4. Loading registers 0 and 1 with 
parameters, or loading register 1 with 
the address of a parameter list. A 
typical calling sequence could read: 

CNOP 2,4 
CAL SEQ LA 13,SAVAR Load save 

area address 
LA 1,PARLST Load address of 

a parameter list 
L 15,=V(BUBR) Load entry 

point address 
BALR 14,15 Load return 

address 

SAVAR DS 
PARLST DC 

9D 
A (PAR1, PAR2) 

The address of save area (SAVAR) and the 
parameter list (PARLST) containing two 
parameters (PAR1 and PAR2) are passed to a 
subroutine (SUBR)~ SUBR returns control to 
this program at the next sequential 
instruction after the BALR instruction. 

REGISTER 
REGISTER NAME CONTENTS 

NUMBER 

0 Parameter register Parameters to be passed to the ca lied 
program. 

1 Parameter register Parameters to be passed to the ca lied 

or 
program. 

Parameter list Address of a parameter list to be 
register passed to either the control program 

or a user IS subprogram. 

13 Save area register Address of the register save area to be 
used by the called program. 

14 Return register Address of the location in the calling 
program to which control should be 
returned after execution of the called 
program. 

15 Entry point register Address of the entry point in the 
called program. 

Figure 62. Linkage Registers 



Main Program (A) 

• 

• 
• 

LA 13,SAVEA 

• 
• 

• 

CALL 

• 

• 

• 
RETA 

• 
• 

• 
SAVEA OS 90 

(Word 1: Optional) 

(Word 2: Not Set) 

(Word 3: SAVEB) 

(Word 4: RET A) 

(Word 5: SUBRB) 

First - Level Subroutine (B) 

-+-SUBRB SAVE (14, r2) 

BALR--

USING--

ST 13,SAVEB+4 

LA 13,SAVEB 

• 

• 

• 
CALL 

. . 
• 

• 
RETB 

L 13,SAVEB+4 

RETURN (14, r2) 

• 
• 
• 

SAVEB OS 90 

(Word I: Optional) 

(Word 2: SAVEA) 

(Word 3: SAYEe) 

(Word 6 - 18: Remaining registers) (Word 4: RETB) 

(Word 5: SUBRC) 

Second - Level'Subroutine (C) 

~SUBRC SAVE--

• 

• 

• 

RETURN--

• 
• 
• 

SAVEC OS 90 

(Word I: Optional) 

(Word 2: SAVEB) 

(Word 3 - 18: Not Set) 

(Word 6 -18: Remaining registers) 

Figure 63. Direct Linkage 

After execution of the calling sequence, 
the following should occur as a result of 
called program execution: 

1. The contents of registers 2 through 
14, and the program mask are 
unchanged. 

2. The contents of registers 0, 1, and 
15, and the contents of the floating 
point registers, and the condition 
code may be changed. 

3. The parameter list addresses contains 
the results obtained from called 
program execution. 

Save Areas 

A called program should save and restore 
the contents of the linkage registers, as 
well as the contents of any register that 
it uses. The registers are stored in a 
save area that the higher level (calling) 
program provided. This procedure conserves 
main storage because the instruction to 
save and restore registers need not be in 
each calling sequence. 

Every program must provide a save area 
and place its address in register 13 before 
it executes a direct linkage. This address 
is then passed to the called routine. A 
save area occupies nine doublewords and is 

Additional Macro Instructions 245 



WORD DISPlACEMENT CONTENTS 

1 0 Indicator byte and storage length; used by PLjI 
language program. 

2 4 The address of the previous save area;. that is, the save 
area of the subprogram that called this one (used for 
tracing purposes). 

3 8 The address of the next save area; that is, the save 
area of the subprogram to which this subprogram refers. 

4 12 The contents of register 14 containing the address to 
wh i ch return is made. 

5 16 The contents of register 15 containing the address to 
which entry into this subprogram is made. 

6 20 (The contents of) register O. 

7 24 (The contents of) reg ister 1 • 

8 28 (The contents of) register 2. 

9 32 (The contents of) reg ister 3. 

10 36 (The contents of) reg ister 4. 

11 40 (The contents of) register 5. 

12 44 (The contents of) register 6. 

13 48 (The contents of) reg ister 7. 

14 52 (The contents of) register 8. 

15 56 (The contents of) register 9. 

16 60 (The contents of) reg ister 10. 

17 64 (The contents of) register 11. 

18 68 (The contents of) register 12. 

Figure 64. Save Area Words and Contents in Calling Program~ 

aligned on a doubleword boundary. For 
programs to save registers in a uniform 
manner, the save area has a standard format 
(Figure 64) as follows: 

• Word 1: An indicator byte followed by 
three bytes that contain the length of 
allocated storage. Use of these fields 
is optional, except in programs written 
in the PL/I language. 

• Word 2: A pointer to word 1 of the 
save area of the next higher level 
program. The address passed to a 
routine in register 13. The contents 
of register 13 must be stored by a 

246 DOS supervisor and I/O Macros 

calling program before the calling 
program loads register 13 with the 
address of the current save area that 
is passed to a lower level routine 
(Figure 64, ST 13,SAVEB+4) • 

• Word 3: A pointer to word 1 of the 
save area of the next lower level 
program, unless this called program is 
at the lowest level and does not have a 
save area. (The called program 
requires a save area only if it is also 
a calling program.) Thus, the called 
program, if it contains a save area~ 
stores the save area address in this 
word. 



• Word 4: The return address, 'which is 
register 14, when control is given to 
the called program. The called program 
may save the return address in this 
word. 

• Word 5: The address of the entry point 
of the called program. This address is' 
in register 15 when control is given to 
the called program. The called program 
stores the entry-point address in this 
word. 

• Words 6 through 18: The contents of 
registers 0 through 12, in that order. 
The called program stores the register 
contents in these words if it is 
programmed to modify these registers. 

In any routine, the contents of register 
13 are saved so that the registers may. be 
restored upon return. For purposes .of 
tracing from save area to save area, the 
address of the new save area is stored. 
Only the registers to be modified in the 
routine need be saved. However, the safest 
procedure is to store all registers to 
ensure that later changes to the program do 
not result in the modification of the 
contents of a register that was not saved. 

CALL--CALL A PROGRAM 

The CALL macro instruction passes control 
from a program to a specified entry pOint 
in another program. The program issuing 
the call macro instruction is the calling 
program. The program receiving control is 
the called program. The called program 
must be in main storage when the CALL macro 
instruction is executed. The called 
program is brought into main storage in one 
of two ways: 

1. As part of the program issuing the 
CALL. In this case, the CALL macro 
instruction must specify an entry 
point by symbolic name. The phase 
containing that entry point is 
included in the phase containing the 
CALL macro instruction by the linkage 
editor. 

2. As the phase specified by a LOAD macro 
instruction. In this case, the CALL 
macro instruction specifies register 
15 (the entry-point register) into 
which was loaded the address of the 
program to be called. The LOAD macro 
instruction must precede the first 
CALL for that program. 

r------T---------T------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------~ 
I [namellCALL l{entrYPoint} I 
I I I (15) I 
I I I I 
I I I [,(parameter, ••• )] I L ______ ~ _________ ~ ________________________ J 

entrypoint 

Specifies the entry point to which control 
is passed. If the symbolic name of an 
entry point is written, an instruction 

L 151 =V(entrypoint) 

is generated as part of the macro 
expansion. The linkage editor makes the 
called program part of the calling program 
phase.. The symbolic name must be either 
the name of a control section (CSECT) or an 
assembler language ENTRY statement operand 
in the called program. Control is given to 
the called program at this address. 

If register 15 is specified, the 
entrypoint address should have been lo~ded 
into that register previously. The operand 
may be written as a self-defining value 
equal to 15 and enclosed in parentheses, 
inwhich case, the V-type address constant 
instruction is not generated. Control is 
given to the called program at the address 
in register 15. The (15) entrypoint 
operand and LOAD macro instruction 
combination is most useful when the same 
program is called many times during 
execution of the calling program, but is 
not needed in main storage throughout 
execution of the calling program. 

If the CALL macro instruction is used 
and a symbolic name is written for the 
entry operand" the called program resides 
in storage throughout execution of the 
calling program. This wastes main storage 
if the called program is not needed during 
all of the calling program execution. 

Additional Macro Instructions 247 



parameter 

specifies an address (relocatable or 
absolute expression) to be passed as a 
parameter to the called program. Terms in 
the address must not be indexed. The 
parameter operands must be written in a 
sublist, as shown in the format 
description. If one or more parameter 
operands are written. a problem program 
parameter list is generated. It consists 
of a fullword for each operand. Each 
fullword is aligned on a fullword boundary 

'and contains the address to be passed in 
its three low-order bytes. The addresses 
must appear in the parameter 'list in the 
same order as in the macro instruction. 
When the called program is entered, 
register 1 (the parameter list register) 
contains the address of the problem program 
parameter list. 

In the following examples, EX1 gives 
control to an entry point named ENT. EX2 
gives control to an entry point whose 
address is contained in register 15., Two 
parameters, ABC and DEF, are passed. 

Examoles 

EXl CALL ENT 
EX2 CALL (15),(ABC,DEF) 

A typical macro expansion for the macro 
instruction CALL SUBR,(Pl,P2 •••• Pn) is: 

CNOP 
NAME 
L 
LA 
BALR 
DC 
ORG 
DC 
ORG 

2,4 

15,=V(SUBR) 
14,*+6+4*n (return address) 
1,15, 
A(Pl,P2 ••• ,Pn) 
*-4 
X'80' 

NAME is the symbol in the name field of 
the macro instruction. n is the number of 
fullwords in the parameter list. SUBR is 
the symbolic name of the entry point of the 
called program. Pl through Pn are the 
addresses to be passed to the called 
program. 

SAVE--SAVE REGISTER CONTENTS 

The SAVE macro stores the contents of 
specified registers in the savearea 

248 DOS supervisor and I/O Macros 

provided by the calling program. It is 
written at the entry point of a program, 
before any registers can be modified by the 
new program. 

r------T---------~------------------------, I Name I Operation I Operand I 
~------+---------+------------------------~ I [nameliSAVE I (rl[,r2l) , I L ______ ~ _________ ~ ________________________ J 

The operands rl.r2 specify the range of the 
registers to be stored in the save area of 
the calling program. The address of this 
area is passed to the program in register 
13. The operands are written as 
self-defining values so that they cause 
desired registers in the range of 14 
through 12 (14, 15, 0 through 12) to be 
stored when inserted in an STM instruction. 
Registers 14 and is, if specified, are 
saved in words 4 and 5 of the save area. 
Registers 0 through 1-2 are saved in words 6 
through 18 of the save area. The contents 
of a given register are always stored in a 
particular word in the save area. For 
example, register 3 is always saved in word 
9 even if register 2 is not saved. If r2 
is omitted-, only the register specified by 
r1 is saved. 

RETURN--RETURN TO A PROGRAM 

The RETURN macro instruction restores the 
registers whose contents were saved and 
returns control to the calling programs. 

r------T---------T------------------------, 
IName' I Operation I Operand I 
~------+---------+---------------------~--~ 
I [namel I RETURN I (rl [, r2 1 ) I L ______ ~ _________ ~ ________________________ J 

The operands rl,r2 specify the range of the 
registers to be reloaded from the save area 
of the program that receives control. The 
operands are written as self-defining 
values. When inserted in an LM (load 
multiple) instruction, the operands cause 
the registers in the range from 14 through 
12 (14, 15, 0 through 12) to be restored 
from words 4 through 18 of the save area. 
If r2 is omitted, only the register 
specified by rl is restored. To access 
this save area, register 13 must contain 
the save area address. Therefore, the 
address of the save area is loaded into 
register 13 before execution of the RETURN 
macro instruction~ 



DASD Labels 

Whenever files of records are written on 
DASD, each volume must contain standard 
labels to identify the pack or cell and the 
logical file(s) on it. When logical IOCS 
is used for a file, the IOCS routines read, 
check, and/or write standard labels. When 
physical IOCS is used, IOCS processes the 
labels if the DTFPH macro instruction is 
included in the user's program., The entry 
TYPEFLE must be specified to indicate 
whether the file is an input file (read 
and/or write labels) or an output file 
(check old labels and write new labels). 

The standard labels include one volume 
label for eac'h pack or cell and one or more 
file labels for each logical file on the 
DASD. The section describes briefly the 
organization of labels on disk packs or 
data cells. Additional information about 
labels is given in the Data Management 
concepts publication. 

VOLUME LABELS 

The standard volume label identifies the 
entire volume and offers volume protection. 
For systems residence, the volume label is 
always the third record on cylinder 0, 
track o. The first two records on this 
track of SYSRES are initial program loading 
CIPL) records. On all other volumes, these 
records contain binary zeros. The 
volume-label record consists of a count 
area, a 4-byte key area, and a~ SO-byte 
data area. Both the key area and the first 
four bytes of the data area contain the 
label identifier VOLle The remaining 76 
bytes of the data area contain other 
identifying information such as the volume 
serial number, and the address of the set 
of file labels for the pack or cell (see 
standard File Labels). The volume label is 
generally written once, when the DASD is 
received, by an IBM-supplied utility 
program. 

The standard volume label may be 
followed by one to seven additional volume 
labels (starting with record 4 on cylinder 
0, track 0). These labels must contain the 
label identifier VOL2, VOL3, etc in the 
4-byte key areas and in the first four 
bytes of the data areas. The other 76 
bytes may contain whatever information the 
user requires. The additional volume 

Appendix A: Label Formats 

labels are also written by the utility 
program that writes the standard volume 
label. However, IOCS does not make them 
available to the user for checking or 
rewriting when problem programs are 
executed. These labels are for use with 
Operating System/360 and are always 
bypassed by the Disk Operating System OPEN 
routines. 

STANDARD FILE LABELS 

The standard file labels identify the 
logical file, give its location(s) on the 
disk pack or data cell, and offer file 
protection. The labels for all logical 
files on a volume are grouped together and 
stored in a specific area of DASD called 
the Volume Table of Contents (VTOC). 

The number and format of labels required 
for anyone logical file depends on the 
file organization (see Standard File Label 
Formats) and the number of separate areas 
(extents) of the pack or cell used by the 
file. The data records for a logical file 
may be contained within one area of the 
pack or cell, or they may be scattered in 
different areas of it. The limits 
(starting and ending addresses) of each 
area used by the file are specified by the 
standard file label(s). 

Because each file label contains file 
limits, the group of labels on the volume 
is essentially a directory of all files on 
the volume. The VTOC itself becomes a file 
of records (one or more standard-label 
records per logical file) and, in turn, has 
a label. The label of the VTOC is the 
first record in the VTOC. This label 
identifies the file as the VTOC file', and 
gives the file limits. The VolUme Table of 
Contents is contained within one cylinder 
of a disk pack or data,cell. It does not 
overflow onto another cylinder. 

If a logical file of data records is 
recorded on more than one volume, standard 
labels for the file must be included in the 
VTOC of each volume used. The label(s) on 
each volume identifies the portion of the 
logical file on the pack or cell and 
specifies the extent(s) used on it. 

Appendix A 249 



STANDARD FILE LABEl. FORMATS 

All standard file label records have a 
count area and a 140-byte key/data area. 
Five standard label formats are provided. 

Format 1. This format is for all 
logical files, and has a 44-bytekey area 
and a 96-byte data area. It is always the 
first of the series of labels when a file 
requires more than one label on a disk pack 
or cell (see Format 2 and Format 3). 

The format-1 label identifies the 
logical file (by a file name assigned by 
the user and included in the 44-byte key 
area), and contains file and data record 
specifications. It also provides the 
addresses .for three separate DASD areas 
(extents) for the file. If the file is 
scattered over more than three separate 
areas on one pack or cell, a format-3 label 
is also required. In this case, the 
format-1 label points to the second label 
set up for the file on this volume. If a 
logical file is recorded on more than one 
volume, a format-1 label is always created 
in the VTOC for each volume. 

Format 2. This format is required for 
any file that is organized by the Indexed 
Sequential Access Method. The 44-byte key 
area and the 96-byte data area contain 
specifications unique to this type of file 
organization. 

If an indexed sequential file is 
recorded on two or more volumes, the 
format-2 label is used only on the volume 
containing the cylinder index. This volume 
may, or may not, contain data records. The 
format-2 label is ~ repeated on the 
additional packs (as the format-1 label 
is). 

Format 3. If a logical file uses more 
than three extents on any pack or cell, 
this format specifies the addresses of the 
additional extents. It is used only for 
extent information. It has a 44-byte key 
area and a 96-byte data area that provide 
for 13 extents. 

The format-1 label for the logical file 
points to the format-3 label. In a DTFSD 
file, a format-3 label may also pOint to 
another format-3 label. It is included, as 
required, on the first pack or cell, or on 
additional volumes if the logical file is 
recorded on two or more volumes. 

Format 4. The format-4 label defines 
the VTOC itself and is always the first 

250 DOS Supervisor and I/O Macros 

label in the VTOC. This label also 
provides the location and number of 
available tracks in the alternate track 
area. 

Format 5. The format-5 label is used by 
the Operating System/360 for Direct Access 
Device Space Management. 

USER-STANDARD DASD FILE LABELS 

The user may include additional labels to 
defines his file further, provided the file 
is processed sequentially (DTFSR or DTFSD 
macro specified), by the direct access 
method (DTFDA macro specified), or by 
physical Ioes (DTFPH macro specified). 
User standard file labels are not processed 
in a file organized and processed by the 
Indexed sequential Access Method (DTFIS 
specified). A file that is processed in 
sequential order (using DTFSR or DTFSD) may 
have up to eight user header labels and 
trailer labels for a 2311~ 2314, or 2319 
file. It may have up to five user header 
labels and trailer labels for a 2321 file. 
The trailer labels can be written to 
indicate an end-of-volume or end-of-file 
condition. That is, when the end of an 
extent or end of file on one volume is 
reached and the next extent is on a 
different volume, user trailer labels can 
be included to contain whatever trailer 
information the user desires (for example, 
a record count for the completed volume). 

User-standard latels are not stored in 
the Volume Table of eontents-.--Instead, 
they are written on the first track of the 
first extent allotted for the logical-file 
data records. In this case, the user's 
data records start with the second track in 
the extent l regardless of whether the 
labels require a full track. If a file is 
wri tten on two or more packs or cells., the 
additional labels are written on each of 
the packs or cells. 

All user-standard labels must be 80 
bytes long, and must contain standard 
information in the first four bytes. The 
remaining 76 bytes may contain whatever 
information the user wants. A four-byte 
key area supplied by Ioes precedes all 
labels. 

The standard information in the first 
four bytes is used for the record key when 
reading or writing header labels. The 
header labels are identified by UHL1, 
UHL2, ••• ,UHL8. The trailer labels, when 
applicable,'ar~ identified in the key field 
by UTLO, UTL1, ••• ,UTL7 (or UTL4) although 
the first four bytes of the labels contain 

/ 



UTL1-UTLS (or UTL5). Each user-label set 
(header or trailer) is terminated by a 
filemark (a record with data length 0 
preceded by a four-byte key area). which is 
written by IOCS. For example. if a file 
has five header labels and four trailer 
labels. the contents of the user-label 
track are: 

RO Standard information 
R1 UHL1--user's 1st header label 
R2 UHL2--user's 2nd header label 
R3 UHL3--user's 3rd header label 
R4 UHL4--user's 4th header label 
R5 UHL5--user ' s 5th header label 
R6 UHL6--filemark 
R7 UTL1--user's 1st trailer label 
RS UTL2--user's 2nd trailer label 
R9 UTL3--user's 3rd trailer label 
R10 UTL4--user's 4th trailer label 
R11 OTL5--filemark 

If only header labels are used. the 
user-label track contains: 

RO Standard information 
R1 UHL1--user's 1st header label 
R2 UHL2--user's 2nd header label 

R(n) UHL(n)--user's nth header label 
where n is S S 

R(n+1) UHLCn+1)--filemark 
R(n+2) UTLO--filemark 

The user's label routine can determine 
if a label is a header or trailer label by 
testing the first four bytes of the label 
(see Label Processing). 

Standard Tape Labels 

When an EBCDIC or ASCII· tape input or 
output file with standard labels is opened. 
IOCS can handle the label checking (on 
input) or writing (on output). When 
logical IOCS macros are used. the entry 
FILABL=STD must be included to specify IOCS 
processing of labels. When physical IOCS 
macros are used. the DTFPH entry TYPEFLE 
must be included to indicate whether this 
is an input file (check labels) or an 
output file (write labels). 

The standard labels for a tape file 
are: a volume label. a file header label. 
and a file trailer label. The volume label 

(the first record. SO characters on a reel 
of-tape) identifies the entire volume 
(reel) and offers volume protection. It 
contains the label identifier VOL1 in the 
first four positions. and other identifying 
information such as the volume serial 
number. This is a unique number generally 
assigned to the reel when it is first 
received in the installation. The volume 
label is generally written once. when the 
reel of tape is received. by an 
IBM-supplied utility program. The standard 
volume label may be followed by a maximum 
of seven additional volume labels .• if 
desired. These must be identified by VOL2. 
VOL3, etc in the first four positions of 
each succeeding label. However, IOCS does 
not permit the checking or writing of 
additional volume labels by the user in the 
problem program. These labels are 
available for use with the Operating 
system/360 and are always bypassed on the 
input for the Disk Operating System. 

Only one American National Standards 
Institute, Inc. standard volume label can 
be used for ASCII tape files. This may be 
followed by a maximum of nine user standard 
volume labels (identified by UVL1 •••• UVL9 
in the first four positions of the label). 
These additional labels are bypassed on 
input and are not created by DOS on output. 

The volume label set is followed by a 
standard file header label. This label (SO 
characters) identifies the logical file 
record on the tape and offers file 
protection. It contains the label 
identifier HDR1 in the first four 
positions, and other identifying 
information such as file identifier. file 
serial number, creation date. etc. An 
input tape may contain standard header 
labels HDR1-HDRS. IOCS checks label HDR1 
and bypasses HDR2-HDRS (these labels are 
for use with the Operating System/360). An 
ASCII input tape may contain American 
National Standards Institute. Inc. standard 
header labels HDRl through HDR9. IOCS 
checks label HDR1 and bypasses HDR2-HDR9. 

For EBCDIC files, the standard file 
header labels may be followed by a maximum 
of eight user-written standard labels, if 
desired~ If so. the file header labels 
must be identified by UHL1. UHL2, etc. 
Labels UHL1-UHLS may be processed if the 
DTF entry LABADDR is specified. A tapemark 
follows the last file header label. 

A standard file trailer label is located 
at the end of a logical file (EOF), or at 
the end of a volume (EOV) if the logical 
file continues on another volume. The 
trailer label has the same format as the 
header label. It is identified by EOF1 or 
EOV1 (instead of HDR1) and contains a 
physical record count (block count). Like 

Appendix A 251 



the file header label, the standard file 
trailer label may be followed by user 
standard trailer labels. These must be 
identified by UTL1, UTL2, etc (for EBCDIC 
files). A tapemark must follow the label 
set. 

American National standards Institute, 
Inc. user standard header and trailer 
labels are identified by UBLa and UTLa 
respectively. ~ represents an ASCII 
character in the range 2/0 through 5/14 
excluding 2/7 (quote). 

All user-written standard labels must be 
80 characters long and must contain the 
standard identification in the first four 

252 DOS Supervisor and I/O Macros-

positions. The remal.nl.ng 76 positions may 
contain whatever information the user 
wants. Additional information about tape 
labels is given in the Data Management 
Concepts publication. 

Note 1: On 7-track tape, standard 
labels are written on the same density 
as the data on the tape. All 
information on a tape reel must be 
written in single density. These 
standard labels are written with even 
pari ty in the translation mode .• 

Note 2: The last file on any volume is' 
followed by two consecutive tapemarks. 



Appendix B: Control Character Codes 

CTLCHR=ASA 

A control character must appear i~ each 
logical record if the ASA option is chosen. 
If the control character for the printer is 
not valid, a message is given and the job 
is canceled. If the control character for 
the card punch is not V or W, the card is 
selected into pocket 1. The codes are: 

Code Interpretation 

(blank) Space one line before printing 
o Space two lines before printing' , 
- Space three lines before printing 
+ Suppress space before printing 
1 Skip to channel 1 before printing 
2 Skip to channel 2 before printing 
3 Skip to channel 3 before printing 
4 Skip to channel 4 before printing 
5 Skip to channel 5 before printing 
6 Skip to channel 6 before printing 
7 Skip to channel 7 before printing 
8 Skip to channel 8 before printing 
9 Skip to channel 9 before printing 
A Skip to channel 10 before printing 
B Skip to channel 11 before printing 
C Skip to channel 12 before printing 
V Select st,acker 1 
W Select stacker 2 

CTLCHR=YES 

The control character is the command-code 
portion of the system/360 channel command 
word used in printing a line or spacing the 
forms. If the character is not one of the 
following characters, unpredictable events 
will occur. 

r---------T---------T---------------------, 
1 Hexa- 1 Punch 1 1 
1 decimal ICombina- 1 Function 1 
1 Code Ition 1 1 
~---------~---------~---------------------i 
1 1 
IStacker Selection on 1442 1 
~---------T---------T-~-------------------i 
1 1 1 1 
I '81 112,0,1 ISelect into stacker 11 
1 1 1 I 
I C1 112,1 ISelect into stacker 21 
~---------~---------~---------------------i 
1 1 
IPocket Selection on 2540 1 

~---------T---------T---------------------~ 
I I 1 1 
1 01 112,9,1 ISelect into pocket 1 1 
I I I I 
1 41 112,0,9,1 ISelect into pocket 2 I 
I I 1 1 
1 81 112,0,1 ISelect into pocket 3 I 
~---------~---------~-------------------~-~ 
I I 
IStacker Selection on 2520 1 

~---------T---------T---------------------~ 
I I I I 
1 01 112,9,1 ISelect into stacker 11 
1 I I I 
1 41 112~O,9,1 ISelect into stacker 21 
~---------~---------~--------------------~ 
1 1 
IPrinter Control 1 
~---------T---------T---------------------~ 

1 
01 12,9,1 IWrite (no automatic 

Ispace) 
1 

09 12,9,8,1 IWrite and space 1 
Iline after printing 
1 

11 11,9,1 IWrite and space 2 
Ilines after printing 
1 

19 11,9,8,1 IWrite and space 3 
Ilines after printing 
I 

89 12,0,9 IWrite and skip to 
Ichannel 1 after 
I printing , 

---------~-------~-~---------------------

Appendix B 253 



r------ , -------~--------------------, 
I Hexa- I Punch I I 
I decimal ICombina- I Function I 
I Code Ition I I 
~---------+---------+---------------------~ 

I 
91 12,11,1 Iwrite and skip to 

Ichannel 2 after 
I printing 
I 

99 12,11,9 IWrite and skip to 
Ichannel 3 after 
I printing 
I 

Al 11,0,1 IWrite and skip to 
Ichannel 4.after 
I printing 
I 

A9 11,0,9 IWrite and skip to 
Ichannel 5 after 
I printing 
I. 

Bl 12,11,0,1IWrite and skip to 
Ichannel 6 after 
I printing 
I 

B9 12,11,0,9IWrite and skip to 
Ichannel 7 after 
I printing 
I 

Cl 12,1 IWrite and skip to 
lchannel 8 after 
I printing 
I 

C9 12,9 . IWrite and skip to 
Ichannel 9 after 
I printing 
I 

Dl 11,1 Iwrite and skip to 
Ichannel 10 after 
I printing. 
I 

D9 11,9 IWrite and skip to 
Ichannel 11 after 
I printing 
I 

El 11,0~9,1 ,write and skip to 
Ichannel 12 after 
I printing L _________ ~ ________ ~ _____________________ J 

254 DOS Supervisor and I/O Macros 

OB 

13 

IB 

8B 

93 11,11,3 

9B 12,11,8,3 

A3 11,0,3 

AB 11,0,8,3 

Space 2 lines 
immediately 

Skip to channel 
immediately 

Skip to channel 
immediately 

Skip to channel 
immediately 

Skip to channel 
immediately 

2 

3 

4 

5 

B3 12,11,0,3ISkip to channel 6 
I immediately , 

BB 12,11,0, ISkip to channel 7 
8,3 I immediately , 

C3 12,3 ISkip to channel 8 
I immediately 
I 

CB 12,0,9, ISkip to channel 9 
8,3 I immediately 

I . 
D3 11,3 'Skip to channel 10 

l'immediately , 
DB 12,11,9, ISkip to channel 11 

8,3 I immediately , 
E3 Or3 'Skip to channel 12 

,immediately 
I 

03 12~9,3 INO operation 
---------~---------~---------------------

./ 



Appendix C: Assembling the Problem Program, DTFs, and 
Logic Modules 

All the programs described in this appendix 
perform the same function, namely, a 
card-to-disk operation with the following 
equipment and options: 

1. Card reader: IBM 2540 (SYS004). 

2. Disk: IBM 2311 with user labels. 

3. 'Record size: 80 bytes. 

4. Block size: 408 bytes including 
8-byte count field (blocking factor of 
5). 

5. One I/O area and workarea for the card 
reader. 

6. Two I/O areas for the disk. 

The following methods may be used to 
furnish the DTFs and IOCS logic modules to 
the card-to-disk program. 

1. DTFs, IOCS logic modules, and problem 
program assembled together. 

2. Logic modules assembled separately. 

3. DTFs and logic modules assem~led 
separately, label exit, EOF exit, and 
I/O areas assembled with DTFs. 

4. Same as in 3 except that I/O areas are 
moved back into main program .• 

5. Same as in 4 exce,pt that label exit 
and EOF exit are also moved hack into 
main program .• 

An example of each of these five methods 
of assembling the main program, modules, 
DTFs, and related functions follows. In 
the figures that accompany the examples, 
each dashed arrow represents a symbolic 
linkage~ with an external reference at the 
base of the arrow" and a label or section 
definition designating the same symbol at 
the head of the arrow. 

At the points where an arrow is marked 
with a circle, it is the programmer's 
responsibility to define an ENTRY or EXTRN 
symbol, as applicable. 

Each dotted arrow represents a direct 
linkage. Components are represented by the 
small rectangles. Assemblies are 
represented by the larger bordered areas. 

The examples are followed by a 
Comparison of the Five Methods. 

Appendix C 255 



EXAMPLE 1: ASSEMBLING THE PROBLEM PROGRAM, DTFs, AND LOGIC MODULES TOGETHER 

Figure 65 shows the assembly of the DTFs, logic modules, and problem program. The 
assembly source deck is: 

(1) 

CDTODISK 

NEXT 

SAVEAREA 

EOFCD 

MYLABELS 

CARDS 

DISK 

Ai 
A2 
A3 

START 
BALR 
USING 
LA 
OPEN 
GET 
PUT 
B 
DS 

CLOSE 
EOJ 

LBRET 

DTFCD 

DTFSD 

DS 
DS 
DS 

CDMOD 

SDMODFO 

END 

o 
12,0 
*,12 
13,SAVEAREA 
CARDS,DISK 
CARDS, (2) 
DISK 
NEXT 
9D 

CARDS,DISK 

2 

DEVADDR=SYS004, 
EOFADDR=EOFCD, 
IOAREA1=Al, 
WORKA=YES 

BLKSIZE=408, 
IOAREA1=A2, 
IOAREA2=A3, 
IOREG=(2), 
LABADDR=MYLABELS, 
RECFORM=FIXBLK, 
RECSIZE=80, 
TYPEFLE=OUTPUT 

SOC 
408C 
408C 

DEVICE=2540, 
TYPEFLE=INPUT, 
~ORKA=YES 

CDTODISK 

256 DOS Supervisor and 1/0 Macros 

Col. 72 

X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 

Initialize base register. 
Establish addressabil i ty,. 
Use reg 13 as pointer to save area. 
Open both files. 
Read one card and move it 
to the disk output buffer. 
Return for next card. 
Save area is 72-Lyte, doubleword 
aligned. 

At card-reader EOF, close 
both files and exit to job 
control. 

User's label-processing 
routine. 
Return to main program. 

Card-input buffer 
First disk buffer 
Second disk buffer 

Program-start address 

/ 



Problem Program 
• • • 

DTF's 

OPEN 

GET 
CARDS,DISK ••••·••••••••••••••••••••••••••••••••• •••• ·.·.··~DJSK 
CA~DS,(2) : •••••••• '~CARDS 

• • • • • • 

. .......... ~--------------------~ 

CARDS DTFCD 

DEVADDR=SYS004 
•••••••••••••••••••••••••••••••••••••••••••• EOFADDR=EOFCD : L·············· lOA. REA1=Al : : WORKA=YES · . 
~ ~--~I~--~ 

· . · . · . · . · . · . . . 
· · 
· 
· I 

. 
A 1 (Buffer Area) : 

111111111111111111111111111-0· · i·· : 
· 

--:-------------~ , 
EOFCD (End-of-File Processing) 

• • • • • 

r---------.J 
I 
J 

CDMOD 

(Logic for a Card File) 

• • • • • • 

DISK DTFSD 

BLKSIZE=408 
IOAREAl =A2 •••••••••••••• 

• ••••••• IOAREA2=A3 I: 
: IOREG= (2) : 
: LABADDR=MYLABELS····· • 
: RECFORM=fIXBLK : : 
: RECSI ZE=80 : : 
: TYPEFLE=OUTPUT • • . . · . . · . . "--"T".-: : : 
: . : . . 

MYLABElS I : : 
(User's Routine)~· • • ••• • • :' : 

I ~ • • • 
'"--------~ 

I 
. 

A2 {Buffer Area} : 

11111111111111111111111111 r . . . . . . . .. : 
A3 (Buffer Area) 

: ..•.. ·111111111111111111111111111 

I 

SDMODFO 

(Logic for a Disk File) 

• • • • • • 

Figure 65. Assembling the Problem Program DTFs and Modules Together (Example 1) 

Appendix C 257 



EXAMPLE 2: ASSEMBLING THE LOGIC MODULES 
SEPARATELY 

The main-program source deck is identical 
to that in Example 1 until (1); at this 
pOint, the user simply furnishes the END 
card. Figure 66 shows the separation of 
the I/O logic modules. 

The two logic modules are assembled as 
follows: 

Problem Program 

Card logic 
module 

Disk logic 
module 

: DTF's 
• 

OPEN CARDS,DISK ••••••••••••••••••••••••••••••••••••••••• •••••• ~.DISK 

GET CARDS,(2) ••• • • • • • • ·~CARDS 
: : ~----------------------~ 

CDMOD 

END 

SDMODFO 

END 

DEVICE=2540, 
SEPASMB=YES, 
TYPEFLE=INPUT, 
WORKA=YES 

SEPASMB=YES 

Col. 72 
X 
X 
X 
X 

x 

• • • • 
.......... 

CARDS DTFCD DISK DTFSD 

: DEVADDR=SYS004 
•.• • • • • • • • • • • .: • • •••• • •• • • • • • • • • • • • • • • •• • • • • • • EOFADDR=e:OFCD : L·············· IOAREA1=A 

1 
: : WORKA=YES 

~ ~. I 
: : I . 
: : I · 

. 

I · A 1 (Buffer Area) : 

IIIIIIIIIIIIIIIIIIIIIIIIII~ · · i·· : 
· · ~.------------------, 

EOFCD (End-of-File Processing) 
• • • • • 

I 
I 
I 
I 
I 
I 
I 
I 
I 

r---------..J 
I 

J 
CDMOD (Separately Assembled) 

(Logic for a Card File) 
• • • • • • 

BLKSIZE=408 
IOAREA1=A2 •••••••••••••• 

• •••••• ·IOAREA2=A3 I : 
: IOREG= (2) : 
: LABADDR=MYLABELS·····: 
: RECFORM=fIXBLK :: 

. . 
RECSIZE=80 : 
TYPEFLE=OUTPUT· : 

· · . · · . '--~I---.----------------~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~ 

· · . · . · 
MYLABELS I ~ ~ 
(UT'S Routine) ...... T·: ~ 

· · 
A2 (Buffer Aroa) I j 
11111 n 1I11111111111111111t~· . . . • • • . . : 
A3 (Buffer Area) 

: · · i·· · -111111111111111111111111111 

SDMODFO (Separately Assembled) 

(Logic for a Disk File) 

• • • • • • 

Figure 66. Logic Modules Assembled separately (Example 2) 

258 DOS supervisor and I/O Macros 

/ 



After assembly, each logic module is 
preceded by the appropriate CATALR card. 
The modules may be added to the system 
relocatable library during a maintenance 
run. Thereafter, logic modules are 
automatically included in the user program 
by the linkage editor while it prepares the 
preceding main program for execution. 

EXAMPLE 3: ASSEMBLING THE DTF's AND LOGIC 
MODULES SEPARATELY 

The main program is assembled: 

CDTODISK 

NEXT 

SAVEAREA 

(2) 

START 
BALR 
USING 
LA 
OPEN 
GET 
PUT 
B 
DS 

EXTRN 
END 

o 
12,0 
*,12 
13,SAVEAREA 
CARDS,DISK 
CARDS, (2) 
DISK 
NEXT 
9D 

CARDS,DISK 
CDTODISK 

The logic modules are assembled as in 
Example 2. Figure 67 shows the separation 
of the DTFs and logic modules. 

The card-file macro instruction and 
related functions are assembled: 

Col. 72 

CARDS DTFCD X 
DEVADDR=SYS004, X 
SEPASMB=YES, X 
EOFADDR=EOFCD, X 
IOAREA1=A1, X 
WORKA=YES 

USING *,14 

EOFCD CLOSE CARDS,DISK 
EOJ 

EXTRN DISK 

(3) A1 DS 80C 
END 

The disk-file macro instruction and 
related functions are assembled: 

Col. 72 

DISK 

MYLABELS 

(4) A2 
(5) A3 

DTFSD 
BLKSIZE=408, 
SEPASMB=YES" 

TYPEFLE=OUTPUT 
BALR 10,0 
USING *,10 

LBRET 2 

DS 
DS 
END 

408C 
408C 

In the card-file and the disk-file 
assemblies, a USING statement was added 
because certain user routines are 

X 
X 
X 

. segregated from the main program and moved 
into the DTF assembly. 

When user routines, such as error, label 
processing, or EOF routines, are segregated 
from the main program, it is necessary to 
establish addressability for these 
routines. The user can provide this 
addressability by assigning and 

. initializing a base register. In the 
special case of the EOF routine, the 
addressability is established by logical 
IOCS in register 14. For error exits and 
label processing routines~ however, this 
addressability is not supplied by logical 
IOCS. Therefore, if the user segregates 
his error routines, it is his 
responsibility to establish addressability 
for them. 

Figure 69 contains the printer output to 
show how the coding of Example 3 would look 
when assembled. . 

In Figure 68, the standard name for the 
logic modules was generated: statement 13 
of the DTFCD--V (IJCFZIWO)" and statement 12 
of the DTFSD--V(IJGFOZZZ). These module 
names appear in the External Symbol 
Dictionary of each of the respective logic 
module assemblies. 

Appendix C 259 



Problem Progrom 
• • • 

DTF's (AsSE mbled Separately) 

OPEN CARDS,DISK-O·~------------·.DrSK 

GET CARDS,(2) r-- ..... CARDS 
: L-O_-J r---------------------~ 
: CARDS DTFCD DISK DTFSD 
• 
• DEVADDR=SYS004 
• •••••••••••••••••••••••••••••••••••••••••• • EO FADDR=EOFCD : L .............. IOAREAl =A 1 
• : WORKA=YES . " 
: : SEPASMB=YES . 
· · · · 
· · 

----:--------------~ . 
A 1 (Buffer Area) I ~ 
IIIIIIIIIIIIIIIIIIIIIIIIII~ · · i· .. : 

r-, 
EOFCD (End-of-File Processing) 

• • • • • 

r---------"-.J 
I 

• CDMOD (Separately As~embled) 

(Logic for a Card File) 
• • • • • • 

BLKSIZE=408 
IOAREA1=A2 •••••••••••••• 

• ••••••• IOAREA2=A3 I: 
: IOREG= (2) : 
: LABADDR=MYLABELS •••• : 
: RECFORM9=IXBLK :: 
: RECSIZE=80 ~ 
: TYPEFLE=OUTPUT • 
: SEPASMB=YES 

~~I--.----------------~ 

· · . . 
: MYLABELS I 1 
: (UT" Routine} .. ••• ·r··· · 

• A3 (Buffer Area) 

: ...... ~1II11111111111111111111111 
I 

SDMODFO (Separately Assembled) 

(Logic for a Disk File) 
• • • • • • 

. 

Figure 67. Logic Modules and DTFs Assembled Separately (Example 3) 

260 DOS Supervisor and I/O Macros 

/ 



~---------------------------------------------------------------------------

MAIN PROGRAM 
EXTERNAL SYMBOL DICTIONARY PAGE 

SyMBOL TYPE ID ADDR LENGTH LD 10 

CDTODISK SD 01 000000 000090 Section definition. Control section defined by START statement. 
CARDS ER 02 Externa I reference. 

} Defined by EXTRN statement. DISK ER 03 External reference. 

---------------------------------------------------------_._-----------------

EXAMPLE 3 PAGE 

LOC OBJECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT D0200CT66 10/26/66 

000000 1 CDTODISK START 0 
000000 05CO 2 BALR 12,0 INITIALIZE BASE REGISTER 
000002 3 USING *,12 ESTABLISH AODRESSABILITY 
000002 4100 C036 00038 4 LA 13,SAVEAREA USE REGISTER 13 AS POINTER TO SAVE 

5 QPEN CAROSrOISK OPEN BOTH FILES 
6+* SYSTEM CONTROL AND BASIC IOCS 360N-CL-453 CHANGE LEVEL 2-0 

000006 0700 7+ CNOP 0,4 
000008 8+ DC OF'O' 
000008 4110 C07E 00080 9+ LA 1,=C'$$SOPEN • 
0000 DC 4500 C016 00018 10+IJJOOOOl BAL 0, *+4+4* 1 3-11 
000010 00000000 11+ DC A( CARDS 1 
000014 00000000 12+ DC AIDISKI 
000018 OA02 13+ SVC 2 

14 NEXT GET CARDS, (21 READ ONE CARD, MOVE TO WORK AREA 
15+* CHANGE LEVEL 2-0 

OOOOlA 5810 C086 00088 16+NEXT L 1,=AICARDS) GET DTF TABLE ADDRESS 
DOODlE 1802 17+ LR 0,2 GET WORK AREA ADDRESS 
000020 58Fl 0010 00010 18+ L 15,16(11 GET LOGIC MODULE ADDRESS 
000024 45EF 0008 00008 19+ BAL 14,8(15) BRANCH TO GET ROUTINE 

20 PUT DISK WR ITE ON 01 SK 
21+* CHANGF. LEVEL 2-0 

000028 5810 COaA 0008C 22+ L 1,=AIDISK) GET DTF TABLE ADDRESS 
00002C 58Fl 0010 00010 23+ L 15,16(1) GET LOGIC MODULE ADDRESS 
000030 45EF 00 DC OOOOC 24+ BAL 14,121151 BRANCH TO PUT ROUTINE 
000034 47FO C018 0001A 25 B NEXT GO FOR NEXT CARD 
000038 26 SAVEAREA OS 90 72-BYTE SAVE AREA 

27 EXTRN CARDS,DISK 
000000 28 END CDTOOISK 
000080 5S5BC2D6D7C5D540 29 =C'$$BOPEN 
000088 00000000 30 =AI CARDS) 
00008e 00000000 31 =A(DISK) 

[--------------------------------------------------------------------------] 
Figure 68. separate Assemblies, (Example 3) (Part 1 of 4) 

Appendix C 261 



r---------------------------------------------------------------------------

'DTFCD ASSEMBLY 
EXTERNAL SYMBOL DICTIONARY PAGE 

SyMBOL TYPE ID ADDR LENGTH LD 10 

CARDSC SO 01 000000 OOOOAO 
CARDS LD 000000 01 

Section definitiol1. } . . 
Lobel definition (entry point). Gen~rated by specifYing SEPASMB=YES in DTFCD macro instruction. 

IJCFZIWO ER 02 
DISK ER 03 

External reference. Corresponds to V- type address constant generated in DTFCD. 
External reference. Defined by EXTRN statement. 

EXAMPLE 3 PAGE 

lOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT DD200CT66 10/26/66 

000000 

000000 
000000 000080000000 
000006 01 
000007 04 
000008 00000020 
OOOOOC 00000000 
000010 00 
000011 000000 
000014 02 
000015 01 
000016 02 
000017 02 
000018 00000048 
00001C 00000034 
000020 0200004820000050 
000028 4700 0000 
00002C D24F DOOO EOOO 00000 
000032 
000032 

000032 0700 
000034 
000034 4110 E066 
000038 4500 E012 
00003C 00000000 
000040 00000000 
000044 OA02 

000046 OAOE 

000048 

000098 5B5BC2C3D3D6E2C5 

00000 
00000 

0009B 
00044 

CARDS 

2+* SYSTEM 
3+ 
4+CARDSC 
5+ 
6+ 
7+CARDS 
8+ 
9+ 

10+ 
11+ 
12+ 
13+ 
14+ 
15+ 
16+ 
17+ 
18+ 
19+ 
20+IJCXOOOI 
21+ 
22+ 
23+IJJZOOOl 
24 
25 EOFCD 
26+* CHANGE 
27+ 
28+EOFCD 
29+ 
30+IJJC0002 
31+ 
32+ 
33+ 
34 
35+* CHANGE 
36+ 
37 
38 Al 
39 
40 

DTFCD DEVADDR=SYS004, 
SEPASMB=YES, 
EOFADDR=EOFCD, 
IOAREA1=Al, 
WORKA=YES 

CONTROL AND BASIC laCS 360N-CL-453 CHANdE LEVEL 2-0 
PUNCH' CATALR CARDS' 
CSECT 
ENTRY 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
CCW 
NOP 
MVC 
EQU 
USING 
CLOSE 
lEVEL 
CNOP 
DC 
LA 
BAL 
DC 
DC 
SVC 
EOJ 

CARDS 
00'0' 
X'000080000000' RES. COUNT,COM. BYTES,STATUS BTS 
AL1(1) LOGICAL UNIT CLASS 
ALlI4) LOGICAL UNIT 
A(IJCXOOOl) CCW'ADDRESS 
4X'OO' CCB-ST BYTE,CSW CCW ADDR. 
ALlIO) 
VL3IIJCFZIWO) ADDRESs OF LOGIC MODULE 
X'02' DTF TYPE IREADER) 
ALlIU SWITCHES 
AL1(2) NORMAL COMM.CODE 
AL1(2) CNTROL COMM.CODE 
A(AI) ADDR. OF IOAREAl 
AIEOFCD) EOF ADDRESS 
2,Al,X'20',80 
o LOAD USER POINTER REG. 
0(80,13),0(14) MOVE IOAREA TO WORKA 

* *,14 
CARDS,DISK 
2-0 
0,4 
OF'O' 
1,=C'$$BCLOSE' 
0,*+4+4*(3-11 
AICARDS) 
A(DISK) 
2 

ESTABLISH ADDRESSABILITY 
END OF FILE ADDRESS FOR CARD READER 

LEVEL 2-0 
SVC 14 
EXTRN DISK 
OS 80C CARD I/O AREA 
END 

=C'$$BCLOSE' 

X 
X 
X 
X 

[---------------~----------------------------------------------------------] 
Figure 68. separate Assemblies, (Example 3) (Part 2 of 4) 

262 DOS Supervisor and I/O Macros 

/ 



~--------------------------------------------------------------------------

DTFSD ASSEMBLY 
EXTERNAL SYMBOL DICTIONARY PAGE 

SYMBOL TYPE 10 ADDR LENGTH LD 10 

DISKC SO 01 000000 000304 
DISK LD 000000 01 
IJGFOZZZ ER 02 

Section definition. } G db 'f' SEPASMB YES' DTFSD ' • 
Lab I d f' 't' It' t) enerate y speci ylng = In macro instruction. e e Inl Ion \en ry POin • 
External reference. Corresponds to V- type address constant generated in DTFSD. 

r--------------------------------------------------------------------------

LOC OBJECT .CODE 

EXAMPLE 3 

ADORI ADDR2 STMT SOURCE STATEMENT 

DISK DTFSD BtKSIZE=408, 
SEPASMB=YES, 
IOAREAl=A2, 
IOAREA2=A3, 
IOREG=(2), 
LABAODR=MYLABELS, 
RECFORM=FIXBLK, 
RECSIZE=80, 

. _ ... TYPErL~=Q.UTPUT 

PAGE 

DD200CT66 10/26/66 

X 
X 
X 
X 
X 
X 
X 
X 

2+*~ONSECUTIVE DISK PROCESSING IOCS 360N-l0-455 
3+'· . PUNCH' - . - CA TAlR OrSK'-

CHANGE LEVEL 2-0 

000000 

000000 
000000 000080000000 
000006 FF 
000007 FF 
000008 00000068 
OOOOOC 00000000 
000010 00 
000011 000000 
000014 20 
000015 49 
000016 C4C9E2D240404040 
OOOOlE 000000000000 
000024 0000 
000026 08 
000027 00 
000028 00 
000029 OOOOAD 
00002C 000000A4 
000030 80000000 
000034 0000 
000036 00000000 
00003A 0000 
00003C OOOOFFOO 
000040 00 
000041 00 
000042 0190 
000044 00000000 
000048 06 
000049 00 
00004A 018F 
00004C 0000000000 
OOOOSI 00 
000052 OE29 
000054 5821 0058 
000058 OOOOOOAC 
00005C 00000050 
000060 0000023B 
000064 OA 
000065 000000 
000068 0100003A40000006 
000010 3100003C40000005 
000078 0800007000000000 

00058 

4+DISKC CSECT 
5+ ENTRY 
6+ DC 
1+DISK DC 
8+ DC 
9+ DC 

10+ DC 
11+ DC 
12+ DC 
13+ DC 
14+ DC 
15+ DC 
16+ DC 
11+ DC 
18+ DC 
19+ DC 
20+ DC 
21+ DC 
22+ DC 
23+ DC 
24+ DC 
25+ DC 
26+ DC 
27+0ISKS DC 
28+ DC 
29+ DC 
30+ DC 
31+ DC 
32+ DC 
33+ DC 
34+ DC 
35+ DC 
36+ DC 
37+ DC 
3H+ DC 
39+ L 
40+ DC 
41+ DC 
42+ DC 
43+ DC 
44+ DC 
4S+IJGCOOOl CCW 
46+ CCW 
47+ CCW 

DISK 
00'0' 
X'OOOOSOOOOOOO' CCB 
AL112SS) LOGICAL UNIT CLASS 
AL1125S) LOGICAL UNIT NUMBER 
A(IJGCOOOl) CCB-CCW AODRESS 
4X'00' CCB-ST ~YTE,CSW CCW ADDRESS 
ALlIO) 
VL3IIJGFOZZZ) LOGIC MODULE ADDRESS 
X'20' DTF TYPE 
AL1(73) OPEN/CLOSE INDICATORS 
CL8'DISK' FILENAME 
6X'OO' BCCHHR ADDR OF Fl LABEL IN VTOC 
2X'OO' VOL SEQ NUMBER 
X'Q8' OPEN COMMUNICATIONS BYTE 
X'OO' XTENT SEQ NO OF CURRENT EXTENT 
X'PO' XTENT SEQ NO LAST XTENT OPENED 
AL3IMYLABELS) USER'S LABEL ADDRESS 
AIA21 ADDRESS OF IOAREA 
X'SOOOOOOO' CCHH AODR OF USER LABEL TRACK 
2X'00' LOWER HEAD LIMIT 
4X'OO' XTENT UPPER LIMIT 
2X'00' SEEK ADDRESS-BB 
X'OOOOFFOO' SEARCH ADDRESS-CCHH 
X'OO' RECORD NUMBER 
X'OO' KEY LENGTH 
H'400' DATA LENGTH 
4X'00' CCHH CONTROL FIELD 
AL1(6) R CONTROL FIELD 
X' 00' SWI TCHES 
H'399' SIZE OF BLOCK-l 
5X'OO' CCHHR BUCKET 
X'OO' 
H'362S' TRACK CAPACITY CONSTANT 
2,88(1) LOAD USER'S IOREG 
AIA2+8) DEBLOCKER-INITIAL POINTER 
F'80· DEBLOCKER-RECORD SIZE 
AIA2+8+400-1) DEBLOCKER-LIMIT 
ALl(10) LOGICAL INDICATORS 
AL3(0) USER'S ERROR ROUTINE 
1,*-46,64,6 SEEK 
X'31',*-52,64,S SEARCH 10 EQUAL 
8,*-8,0,0 TIC 

[ ____________________________________________________ ----------------______ 1 

Figure 68. Separate Assemblies, (Example 3) (Part 3 of 4) 

Appendix C 263 



DTFSD (Continued) 

EXAMPLE 3 

LaC OBJECT CODE AOORI AOOR2 STMT SOURCE STATEMENT 

000080 1000023COOOOO198 
000088 3100003C40000005 
000090 0800008800000000 
000098 1EOOO09830000001 
OOOOAO 
OOOOAO 05AO 
0000A2 

48+ 
49+ 
50+ 
51+ 
52+IJJZOO01 
53 MYLABELS 
54 

CCW 
CCW 
CCW 
CCW 
EQU 
BALR 
USING 

X'10',A3,0,400+8 WRITE COUNT KEY AND DATA 
X'31',OISKS+2,64,5 SEARCH 10 EQUAL 
8,*-8,0,0 TIC 
30,*,48,1 VERIFY 

* 10,0 
*,10 

INITIALIZE BASE REGISTER 
ESTABLISH AOORESSABILITY 

PAGE 2 

00200CT66 10/26/66 

55 * USER'S LABEL PROCESSING ROUTINE 
56 * 
57 
58+* 

0000A2 OA09 59+ 
0000A4 60 A2 
00023C 61 A3 

62 

CHANGE 
LBRET 
LEVEL 
SVC 
DS 
OS 
END 

2 RETURN TO IOCS 
2-0 
9 BRANCH BACK TO IOCS 
408C FIRST DISK I/O AREA 
408C SECOND DISK I/O AREA 

f-------------------------------------------------~-----~-------------~-----
CDMOD ASSEMBLY 

ExtERNAL SYMBOL DICTIONARY 
SYMBOL TYPE 10 ADOR LENGTH lO 10 

IJCFlIWO SO 01 000000 000060 Section definition. CSECT name generated by CDMOD macra instruction. 

LaC OBJECT CODE ADDR1 ADDR2 STMT 

2 
3 

73 

EXAMPLE 3 

SOURCE STATEMENT 

PRINT NOGEN 
CD MOD 

END 

DEVICE=2540. 
SEPASMB=YES, 
TYPEFLE=INPUT, 
WORKA=YES 

X 
X 
X 
X 

--------~------------------------------------------------------------------

SDMODFO ASSEMBLY 

EXTERNAL SYMBOL DICTIONARY 
SYMBOL TYPE 10 ADDR LENGTH LD 10 

IJGFOZZZ SO 01 000000 000104 Section definition. CSECT name generated by SDMODFO macra instruction. 

" 

--------~------------------------------------------------------------------

LOC OBJECT CODE ADDR1 ADDR2 STMT 

2 
3 

169 

EXAMPLE 3 

SOURCE STATEMENT 

PRINT NOGEN 
SDMODFO 

SEPASMB=YES 
END 

X 

l _________________________________________________________________________ ~ 

Figure 68. separate Assemblies, (Example 3) (Part 4 of 4) 

264 DOS Supervisor and I/O Macros 



The DTF assembly generates a table that 
contains no executable code. Each of the 
DTF tables is preceded by the appropriate 
CATALR card. These two object decks can be 
cataloged into the relocatable library 
together with the logic modules: 

// JOB CATRELOC 

// EXEC MAINT 

(DTFCD Assembly) 

(DTFSD Assembly) 

(CDMOD Assembly) 

(SDMODFO Assembly) 

/* 

Alternately, the object decks from these 
assemblies (DTF tables and logic modules) 
can be furnished to the linkage editor 
along with the main program object deck. 
The sequence follows: 

// JOB CATALOG 

// OPTION CATAL 

INCLUDE 

PHASE name,* 

(Object deck, main program) 

(Object deck, DTFCD assembly) 

(Object deck, DTFSD assembly) 

(Object deck, CDMOD assembly) 

(Object deck, SDMODFO assembly) 

/* 

// EXEC LNKEDT 

/6 

Note: It is not necessary to remove 
the CATALR card because the linkage 
editor bypasses it. 

EXAMPLE 4: DTFs AND LOGIC MODULES 
ASSEMBLED SEPARATELY, I/O AREAS WITH MAIN 
PROGRAM 

The main program is identical to Example 3 
except the following four cards are 
inserted after the card marked (2): 

Ai 
A2 
A3 

DS 
DS 
DS 
ENTRY 

80C 
408C 
408C 
Al.,A2,A3 

The separate assembly of logic modules 
is identical to Example 3. 

In the card-file assembly of ExamFle 3, 
replace the card marked (3) with the 
following card: 

EXTRN Al 

Similarly, in "the disk-file assembly of 
the previous example, replace the cards 
marked (4) and (5) with the following card: 

EXTRN A2,A3 

Figure 69 shows the separation of the 
logic modules, DTFs and I/O areas. 

EXAMPLE 5: ASSEMBLING DTFs AND LOGIC 
MODULES SEPARATELY: I/O AREAS, LABEL EXIT, 
AND END-OF-FILE EXIT WITH MAIN PROGRAM 

In addition to the changes in ExamFle 4, 
the label exit and the end-of-file exit may 
be assembled separately. Figure 70 shows 
these separate assemblies~ The main 
program is assembled: 

Appendix C 265 



CDTODISK START 0 
BALR 12,0 
USING *,12 
LA 13" SAVEAREA 
OPEN CARDS, DISK 

NEXT GET CARDS, (2) 
PUT DISK 
B NEXT 

SAVEAREA DS 9D 

EOFCD CLOSE CARDS,DISK 
EOJ 

MYLABELS 

LBRET 2 

EXTRN CARDS, DISK 
Ai DS 80C 
A2 DS 408C 
A3 DS 408C 

ENTRY Al,A2,A3,EOFCD,MYLABELS 
END CDTODISK 

266 DOS Supervisor and I/O Macros 



• 
Problem Program 

• 
DTF's(Assembled Separately) 

• • 
OPEN CARDSjDISK - 0 - - - - --- - - - - - - ----. DISK 

GET CARDS,(2) 
: L.. - -0- - -"~ARDS · ~----------------~ 
: CARDS DTFCD DISK DTFSD 
• 

DEY AD DR =SYS004 
••••••••••••••••••••••••••••••••••••••••••••• EOFADDR=EOFCD 
. r -0- -IOAREA1=Al 
: I WORKA=¥ES 
: SEPASMB=YES 

: 1 I 
: I I 
: A 1 (Buffer Area) I I 
• 111111111111111111111111111- - -0- J : 
• A2 (Buffer Area) 

B LKS IZE=408 
r- - - - -0-IOAREA1=A2 
I r - -0- -IOAREA2=A3 
I I IOREG= (2) 

••••• LABADDR=MYLABELS 
1 I : RECFORM=FIXBLK 
I I : RECSIZE=SO 

1 
: TYPEFLE=OUTPUT 

I : SEPASMB=YES 

1 I I ~ 
: 1II""IfIllIllIllIllJIIII~ - -0- - - - 1- - - - - - ...J I 

A3 (Buffer Area) : I 
I : 
I : I MYLABELS 

II III 111111111 III II IIIIIIIJ.- - -0 - - - -, - - - - - ~ - J 

~:------------------~ 
~.--------------~ i . 

EOFCD (End-of-File Processing) 
• • • • • 

I 
I 
I 
1 

I 
• ___________ J 
I . 
i 

CDMOD 

(Logic for a Card File) 
• • • • • • 

I : .... ~(Userls Routine) 

I I : 
I 
I 
I 
I 
I 
I 
1 . 
+ 

SDMODFO 

(Logic for a Disk Fi Ie) 
• • • • • • 

Figure 69. Logic Modules and DTFs Assembled separately, I/O Areas with Main Program 
(Example 4) 

Appendix C 267 



Problem Progrom I 
• " DTF's (Assembled Separotely) 

OP~N CARDS,DISK -0- - - -" - - - - - - - - -1-~ DISK 
GET CARDS, (2) 

: L... - -0- ~ - -+~CARDS · ~-------------------------
: CARDS DTFCD DISK DTFSD 
• 

DEY ADDR=SYS004 
r -. - - - - - - - - - -O-EOFADDR=EOFCD 

I r 0 - -IOAREA l=Al BLKSIZE=fOS 

I WORKA=YES ~ - - - -O-IOAREA 1 =A2 
I SEPASMB=YES I r - -0- -IOAREA2=A3 

I I T II I rOo ~~~!~~~~~YLABELS 
I I I 1 I RECFORM=FIXBLK 

I 1 ( ) I I I I I RECSIZE=aO 
A Buffer Areo I I I TYPEFLE =OUTPUT 

I I~I~I!~!~!~I~~~\I- - -0 J: I I II SEPASMB~~ES 
I 
I 1II11111111111111111111111f.- - -0- - - - 1. - - - - _...J I I 
I A3 (Buffer Area) : I I I MYLABElS 

! Ollillmlllllllllllllllll- - -0- - - -I - - - - - - J L,-(Ur" Routine) 

9 I 

EdF.CD (End-af-Fil. Proc .. 'i~) : 

• 
: I • 

I 
• ___ . ________ J 
I . 
I 

* CDMOD 

(Logic for a Card File) 
• • • • • • 

• 
+ 

SDMODFO 

(Logic for a Disk Fi Ie) 
• • • • • • 

Figure 70. DTFs, and Logic Modules Assembled separately; I/O Areas Label Exit" EOF Exit 
wi th Main Progra.m (Example 5) 

26S· DOS Supervisor and 1/0 Macros 

I 
I 
I 
\ 



The file definition instructions are 
separately assembled: 

CARDS 

DISK 

DTFCD 

EXTRN 
END 

DTFSD 

EXTRN 
END 

DEVADDR=SYS004, 
WORKA=YES, 
EOFADDR=EOFCD, " 
SEPASMB=YES, 
IOAREA1=Al 
EOFCD,Al 

BLKSIZE=408, 
TYPEFLE=OUTPUT, 
SEPASMB=YES, 

IOAREA1=A2, 
IOAREA2=A3 
A2,A3,MYLABELS 

Col. 72 

x 
X 
X 
X 

X 
X 
X 

X 

The separate assembly of logic modules 
is identical to Example 3 and Example 4. 

Comparison of tne Five Methods 

Example 1 requires the most assembly time 
and the least linkage-edit time. Because 
the linkage editor is substantially faster 
than the assembler, frequent reassembly of 
this program requires more total time for 
program preparation than Examples 2 through 
5. 

Example" 2 segregates the IOCS logic 
modules from the remainder of the program. 
Because these modules are generalized, they 
can serve several different applications. 
Thus, they are normally retained in the 
system relocatable library for ease of 
access and maintenance. 

When a system pack is generated or when 
it requires maintenance, the IOCS logic 
modules that are required for all 
applications should be id~ntified and 
generated onto it. Each such module 
requires a separate assembly and a separate 

catalog operation, as shown in Examples 2 
through 5. Many assemblies, however, can 
be batched together as can many catalog 
operations. 

Object programs produced by COBOL, PL/I, 
and RPG require one or more IOCS logic 
modules in each executable program. These 
modules are usually assembled (as in 
Example 2) during generation of a system 
pack and are permanently cataloged into the 
system relocatable library. 

Example 3 shows how a standardized IOCS 
package can be separated almost totally 
from a main program. Only the imperative 
IOCS macro instructions remain: OPEN, 
CLOSE, GET, and PUT. All file parameters, 
label processing, other IOCS exits, and 
buffer areas are preassembled. If there 
are few IOCS changes in an application 
compared to other changes, this method 
reduces to a minimum the total 
development/maintenance time. This 
approach also serves to standardize file 
descriptions so that they can be shared 
among several different applications. This 
reduces the chance of one program creating 
a file that is improperly accessed by 
subsequent programs. In Example 3, the 
user need only be concerned with the record 
format and the general register pointing to 
the record. He can virtually ignore the 
BLKSIZE, LABADDR, etc parameters in his 
application program, although he must 
ultimately consider their effect on main 
storage, job-control cards, etc. 

In Example 4, a slight variant of 
Example 3, the I/O cuffer areas are moved 
into the main program rather than being 
assembled with the DTFs. In Example 5, the 
label processin~ and exit functions are 
also moved into the mqin program. Examples 
4 and 5 show how buffers and IOCS 
facilit~es can be moved between main 
program and separately assembled modules. 
If user label processing is standard 
throughout an installation, label exits 
should be assembled together with the DTFs. 
If each application requires special label 
processing, label exits should be assembled 
into the main program. 

Appendix C 269 



Appelldix D: Reading, Writing, and Checking with 
Nonstandard Labels 

EXTERNAL SYMBOL DICTIONARY PAGE 
SYMBOL TYPE 10 ADCR LENGTH LD 10 

PC 01 003COO OC048C 
lJCFZ{ZQ ER 02 
IJFFZZZZ ER 03 
I J FFBlZZ ER 04 
IJDFZZZZ ER 05 
IJ2LOO06 SO 06 C03490 00C064 

TEST CREATING AND PROCESSING NON-STANCARD LABeLS PAGE 

LOC OBJECT CODE ADDR1 AOCR2 STMT SOURCE STATEMENT DOS CL3-2 011C7/69 

003000 

0031AC 0520 
0031AE 

003106 47FO 2010 

003216 47FO 2050 

003252 47FO 208C 

031BE 

031FE 

0323A 

00327A 4900 22A6 03454 
00327E 4770 20FO 032gE 
003282 0227 221C 21CC 033CA 0337A 

2 
3 
4 * 
5 READER 

26 * 
27 TAPEOUT 

58 * 
59 TAPEIN 

93 * 
94 TAPEIN2 

129 * 
130 PRINT 
151 * 
152 CONSOLE 

PRINT ON,NOGEN,NODATA NSTCOC04 
START 12288 NSTC0005 

NSTC0006 
DTFCD OEVICE=2540,DEVADDR=SYSIPT,BLKSIZE=80,TYPEFLE=INPUT, *NSTC0007 

EOFADDR=ENDCARD,IOAREA1=IOAREA NSTD0008 
NSTDOC09 

DTFMT DEVADDR=SYS004,IOAREA1=IOAREA,BLKSIZE=80,TYPEFLE=OUTPUT,*~STD0010 
LABADDR=LABELOUT,READ=FGRWARD,FILABL=NSTD 

DTFMT D~VADDR=SYS004,IOAREA1=[OAREA,BLKS[ZE=80,TYPEFLE=INPUT, 
EOFADDR=ENDTAPE,READ=FGRWARD,FILABL=NSTD,REWIND=NORWO, 
LABADDR=LABELIN 

DTFMT DEVADDR=SYS004,[OAREA1=[OAREA,BLKSIZE=80,TYPEFLE=INPLT, 
EOFADDR=ENDTAPE2,READ=BACK,FILABL=NS~D 

OTFPR DEVLCE=1403,DEVADDR=SYSLST,IOAREA1=IOAREA,BLKSIZE=80 

DTFCN BLKSIZE=80,DEVACDR=SYSLCG,IOAREA1=CAREA,RECFORM=FIXU~B, 
WORKA=YES 

NSTDOOll 
NSTD0012 

*NSTDOC13 
*NSTD0014 
~STD0015 
NSTD0016 

*NSTCOC17 
NSTD0018 
NSTCOC19 
NSTDOC20 
NSTCOC21 

221 * 
222 * 

*NSTDOC22 
NSTD0023 
NSTDOC24 
NSTC0025 
NSTDOC26 
NSTDOC27 
t\STD0028 
NSTDOC29 
NSTD0030 
NSTDOC31 
NSTDOC32 
NSTD0033 
~STCOC34 

NSTD0035 
NSTCOC36 
NSTDOC37 
NSTD0038 
NSTDOC39 
NSTDCC40 
NSTD0041" 
NSTDOC42" 
NSTD0043 
NST00044 
NSTD0C45 
NST00046 
NSTD0047 
NSTCOC48 
NSTD0049 
NST00050 
NSTD0051 
NSTDOC52 
NSTDOC53 
NSTD0054 

223 START BALR 2,0 
USING *,2" 224 

225 
226 

• ** ROUTINE TO WRITE TAPE 
OPEN TAPEOUT 

234 GETCARC GET READER 
PUT TAPEOUT 
a GETCARD 

ENOCARD CLOSE TAPEOUT 
• ** ROUTINE TO READ TAPE FORwARD 

OPEN PRINT,TAPEIN 
GETTAPE GET TAPEIN 

PUT PRINT 

SET UP A BASE REGISTER 

TO WRITE NSTD RECORDS 
READ A CARC FRO~ CARD READER 
WRITE CARD I~AGE ON TAPE 
BRANCH AND GET ANOTHER CARD 
TO wRITE NSTD TRAILER LABEL 

TO PROCESS NSTD LABEL 
GET A CARD IMAGE FROM TAPE 
PRINT CARD IMAGE ON PRINTER 

239 
244 
245 
253 
254 
263 
268 
273 
274 
282 
283 
291 
2<;6 
301 
302 
311 
317 
320 
321 
322 
323 
324 
328 
334 

8 GETTAPE 
ENDTAPE CLOSE TAPEIN 

BRANCH AND GET ANOTHER TAPE RECORD 
PROCESS NSTD LABELS 

* ** RCUTINE TO READ TAPE BACKWARDS 
OPEN TAPEIN2 

GETTAPE2 GET TAPEL~2 
PUT PRINT 
B GETTAPE2. 

ENCTAPE2 CLOSE PRLNT,TAPEIN2 
CNTRL TAPEIN2,REW 
EOJ 

* ** LABEL CREATION ROUTINE 
LABELCUT CH O,ALPHAO 

BNE TRALLOUT 

BRANCH 

MVC lOAREA(40I,HEADER 
RITELAB EXCP DUTceB 

wALT OUTCCB 
LBKET 2 

BYPASS NSTD LABELS 
READ A"TAPE RECORD 
PRINT RECORD 
AND GET ANGTHER TAPE 
BYPASS NSTC RECORDS 
REWIND TAPE TO LOAD 
NORMAL END OF JOB 

OPEN OF CLOSE 
BRANCH IF CLOSE 

RECORD 

POINT 

~OVE HEADER TO 110 AREA 
WRITE LABEL 
WAIT FOR CCMPLETION 
RETURN CONTROL TO IOCS 

-~-~--------~~----------------------------------

Figure 71. Reading, Writing, and Checking with Nonstandard Labels (Part 1 of 2) 

270 DOS Supervisor and I/O Macros 



TEST CREATING AND PROCESSING NON-STANDARD LABELS PAGE 

LOC OBJECT CODE ADDRI ADDR2 STMT SOLRCE STATEMENT DOS CL3-2 07/C7/69 

00329E 0227 221C 21F4 033CA 033A2 
0032A4 47FO 20DA 03288 

0032A8 4900 22A6 
0032AC 4780 212C 

0032C4 9101 2270 0341E 

03454 
032CA 

0032C8 4710 2164 03312 
OO~2CC 0527 221C 21F4 033CA 033A2 
003202 4780 2102 032BO 
003206 47FO 2152 03300 

0032EE 9101 2270 0341E 
0032F2 4710 2168 03316 
0032F6 D527 221C 21CC 033CA 0337A 
0032FC 4780 212C 032CA 

003312 5800 22A2 

003318 4040404040404040 
00334A E4E2C5D940D3CIC2 
00337A E4E2C5D940C8C5Cl 
0033A2 E4E2C5D940E3D9Cl 
0033CA 4040404040404(40 

00343A 000000000000 
003440 020033CAOOOO(C28 
003448 010033CAOOOOC028 
003450 0000C5C6 
003454 00D6 
0031AC 
003458 5B58C20607c50540 
003460 5B5BC2C3D3D6E2C5 
003468 00003000 
00346C 00003038 
003470 00003090 
003474 00003150 
003478 000030FO 
00347C 0000342A 
003480 0000341A 
003484 00003180 
003488 0000334A 

03450 

337 TRAILOLT MVC IOAREA(401,TRAILER 
338 8 RITElAB 
339 * ** LABEL P~OCESSING ROUTINE 
340 lABELIN CH O,ALPHAO 
341 BE HEADIN 
342 TRAILIN EXCP INCCB 
346 wAIT INCCS 
352 TM INCCB+4,X'OI' 
353 bO EXITEOF 
354 CLC JOAREA(401,TRAILER 
355 BE TRAIlIN 
356 8 ERRLAB BRANCH 
357 HEADIN EXCP INCCB 
361 WAIT INCCB 
3(;7 TM INCCB+4,X'01' 
368 BO EXIT 
369 CLC IOAREA(401,HEADER 
37C BE HEADIN 
371 ERRL~B PuT CONSULE,LABElERR 
377 EOJ 
380 EXITEOF l O,EOFIND 
381 EXIT LBKET 2 

MOVE TRAILER LA8EL TO 110 AREA 
8RANCH TO wRITE THE LABEL 

OPEN OR CLOSE 
OPEN TIME 
READ A TRAILER LABEL 
WAIT FeR 110 COMPLETION 
TEST FOR A TAPE ~ARK 

BRANCH I F YES 
CCMPARE TRAILER LABEL 
BRANCH TO GET ANOTHER RECORD 
IF LABELS CC NOT COMPARE 
READ A HEADER LABEL 
WAIT FOR CQ~PLETION 
TEST FOP A TAPE MARK 
BRANCH IF YES 
DOES HEADER LABEL COMPARE 
IF YES, BRANCH ANC READ TAPE 
PUT LABEL ERROR MESSAGE 
TERM INATE JOB 
INCICATE ECF TO IOCS 
RETURN CONTROL TO 10CS 

384 * CONSTANTS 
385 CAREA DC 
386 LABELERR DC 
387 HEACER DC 
388 TRAILER DC 
389 ICAR EA GC 
390 INCCB eca 
4Cl CUTCCS eCB 

eL50' , CONSOLE 110 AREA 

412 INCCW 
413 OUTCC\.; 
414 E[FINC 
415 ALPHAC 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
42C 
427 

CCW 
CCW 
DC 
DC 
END 

C'USER lABELS DC NOT CCMPARE. ABNORMAL END 
CL40'USER HEADER lABEL' 
Cl40'USER TRAILER LABEL' 
ClBO' , INPUT/OUTPLT AREA 
SYS004,INCCw READ TAPE CCB 
SYS004,OUTCCW WRITE TAPE cce 

X'02', IOAREA,X'OO' ,40 READ TAPE CCW 
X'0I',IOAREA,X'OO',40 WRITE TAPE CCW 
X'0000C5C6' 
X'OOD6' 
START 
=C'$$BOPEN ' 
=C'$$BCLOSE' 
=A(ii.EACERI 
=A IT AP EOUT! 
=A(TAPEIN) 
=A(PRINTI 
=AITAPEIN21 
=idOUTCCBI 
=A(INCCBI 
=A(CONSOlEI 
=A(LABELERRj 

OF JOB.' 

(40 characters) 
-'>!. 

)J 
~ (40 characters) ~ 

~ 0 0 

Tape Output 

Tape Input 

E 
Q) Q) a. a. 

USER HEADER LABEL 0 Data ... 0 USER TRAILER LABEL l- I-

Notes: I. 10CS wrote the first tapemark because the TAPEMARK =NO parameter was omitted. 
2. 10CS always writes the tapemark following the data. 
3. 10CS wrote the two tape marks after the user trailer label. 

(40 characters) 

USER HEADER LABEL 

~ 
o 
E 
Q) 

a. 
o 
I- Do'o ... ~ 

( -'>!. 
{; 

} E 
Q) 

( a. 
0 
l-

Notes: I. 10CS reads the first tapemork or bypasses it if user labels are not checked. 
2. Upan encountering the second tape mark 10CS branches to the user label address. 

USER TRAILER LABEL 

(40 characters) 

3, After the user reads the third tapemark he should issue a LBRET I and 10CS wi II branch to the end - of - fi Ie address', 

E 
Q) 
a. 
0 
l-

-'>!. 

~ 
Q) 
a. 
0 
I-

Figure 71. Reading, Writing, and Checking with Nonstandard labels (Part 2 of 2) 

..Yo 
{; 
E 
Q) 

NSTD0055 
NSTD0056 
NSTCOC57 
NSTD0058 
NST00059 
NSTC0060 
NSTC0061 
"ST00062 
NSTD0063 
NSTDOC64 
NSTD0065 
NSTDOC66 
NSTD0067 
NSTCOC68 
NSTD0069 
NST00070 
NSTDOC71 
NSTOOC72 
NSTD0073 
NSTC0074 
NSTC0075 
NSTC0076 
NSTCOC77 
NSTC0078 
NSTDOC79 
NSTD0080 
NSTD0081 
NSTDOC82 
t\STD0083 
~STC0084 

NSTC0085 
NSTD0086 
NSTCOC88 
NSTC0089 
NSTOOC90 

J 
I 

a. 
0 

( I-

~ 

? 
0 
E 
Q) 
a. 
0 
I-

Appendix D 271 



Appendix E: MICR Document Buffer Format 

r------------------------------------~--------------------------------------------------, I Buffer Status Indicators I 
~-------~T--------T---------------------------------------------------------------------~ 
I Byte I Bit I Comment I 
~--------+--------+---------------------------------------------------------------------~ 

0, I 0 The document is ready for processing (the user need never test this 
I bit). 
I 
I 1 Unrecoverable stacker select error, but all document data is 

present. The user may continue to issue GETs and READs. 

2 Unrecoverable I/O error~ An operator I/O error message is issued. 
The file is inoperative 'and must be closed. 

3 Unit Exception. User requested disengage and all follow-up 
documents are processed. The LITE macro may now be issued,. and the 
next GE~ or READ engages the device for continued reading. 

4 Intervention required or disengage failure.. The next GET or READ 
continues normal processing. This indicator allows the user 
program to give the operator informqtion necessary to select 
pockets for documents not properly selected and to determine unread 
documents. 

5 The program issued a READ, no document is ready for processing" 
byte 0, bits 0-2 are OFF, or the file is closed (byte 0 .. bit 6 is 
ON). The CHECK macro interrogates this bit. 

Note: The user must test bits 1-4 and take appropriate action. 
Any data from a buffer should not be processed if bits 2, 3,. or 
4 are ON. 

6 The program has issued a GET or READ and the file is closed. Bit 5 
is also ON. 

7 Reserved with zero. L ________ ~ ________ ~ ______________________________ ~ __________________________________ ~ __ J 

Figure 72. MICR Document Buffer Format (Part 1 of 4) 

272 DOS supervisor and 1/0 Macros 



r---------------------------------------------------------------------------------------, 
I Buffer status Indicator (Continued) I 
~--------T--------T---------------------------------------------------------------------~ 
I Byte I Bit I Comment I 
~--------+--------+---------------------------------------------------------------------~ 

1, 0 I The user stacker selection routine turns this bit ON to indicate 
I that batch numbering update (1419 only) is to be performed in 
I conjunction with the stacker selection for this document. The 
t document is imprinted with the updated batch number unless a late 
I stacker selection occurs (byte 3, bit 2). 
I 

1-7 I Reserved with zero. 
I 
I 
I 
I 

Note: If bits 6 or 7 (byte 2) are ON, bit 0 is ignored by the 
external interrupt routine. With the 1419 (dual address) only, 
batch numbering update cannot be performed with the stacker 

I selection of auto-selected documents. 
~--------+--------+---------------------------------------------------------------------~ 

2*, 0 For 1419 or 1275 (dual address) only. An auto-select condition I 

1-3 

occurred after the termination of a READ command but before a I 
stacker~select command. The document is auto-selected into the I 
reject pocket. I 

I 
Reserved with zero. 

4 Data check occurred while reading. Byte 3 should be interrogated 
by the user to determine errant fields. 

5 Overrun occurred while reading. Byte 3 should be interrogated to 
determine the error fields. Overruns cause short length data 
fields. When the 1419 or 1275 is enabled for fixed-length data 

I ,fields, bit 4 is set. 
I' 

6&7 I The specific meanings of bits 6 and 7 depend on the device type~ 
the model, and the Engineering Change level of the MICR reader~ but 
if either bit is ON, the document(s) concerned is auto-selected 
into the reject pocket. 

I 
I 
I 
I 
I 1. 
I 
I 
I 
I 
I 

1412 or 1270: Bit 6 ON indicates that a late read condition 
occurred. Bit 7 ON indicates that a document spacing error 
occurred. (Unique to the 1412 or 1270, both the current 
document and the previous document are auto-selected into the 
reject pocket when this bit is ON. This previous document 
reject cannot be detected by IOCS, and byte 5 of its document 

I buffer does not reflect that the reject pocket was selected.) 
~--------~--------~---------------------------------------------------------------------~ I *Byte 2 (bits 4, 5, 6, and 7),and byte 3 contain MICR sense information. I 
I **Only for the 1259 Model 34 or 1419 Model 32. Bits 0 and 1 are not used for other I 
I models. ' I L _______________________________________________________________________________________ J 

Figure 72. MICR Document Buffer Format (Part 2 of 4) 

Appendix E 273 



r---------------------------------------------------------------------------------------, I Buffer Status Indicators (Continued) I 
~--------T--------T----------~----------------------------------------------------------~ 
I Byte I Bit I Comment I 
~--------+--------+---------------------------------------------------------------------~ 
I I I 2. 1275 and 1419 (single address) without Engineering Change I 
I I I #125358: Bit 6 indicates either a late read condition or a I 
I I I document spacing error occurred. Bit 7 indicates a document I 
I I I spacing error for the current document. I 
I I I I 
I I I 3. 1255, 1259, 1275, and 1419 (single or dual address) with I 
I I I Engineering Change #125358: Bit 6 indicates that an I 
I I I auto-select condition occurred while reading a document. The I 
I I I bit is set at the termination of the READ command before entry I 
I I I into the stacker select routine. Bit 7 is always zero,. I 
~--------+--------+------------------------------------------------------------------~--~ 

3*, 0 Field 6 valid. ** 

1 Field 7 valid.** 

2 A late stacker selection (unit check late stacker select on the 
stacker select command). The document is auto-selected into the 
reject pocket. 

3 Amount field valid (or field 1 valid).** 

4 Process control field valid (or field 2 valid).** 

5 Account number field valid (or field 3 valid).** 

6 Transit field valid (or field 4 valid).** 

7 Serial number field valid (or field 5 valid).** 

Note: 

1. For the 1412 or 1270, bits 3-7 are set to zero when the 
fields are read without error. 

2; For the 1255, 1259, 1275, and 1419, bits 3-7 set ON when 
each respective field, including bracket symbols, is read 
without error. This applies to bits 0, 1, and 3-7 on the 
1259 and 1419 Model 32. 

3. For the 1255, 1259, 1275, 1412, and 1419, unread fields 
contain zero bits,. Errors are indicated when an overrun 
or data check condition occurs while reading the data 
field~ 

~--------~-------~---------------------------------------------------------------------~ I *Byte 2 (bits 4, 5, 6, and 7) and byte 3 contain MICR sense information. I 
I **Only for the 1259 Model 34 or. 1419 Model 32. Bits 0 and 1 are not used for other I 
I models. I L ________________________________________ -------------__________________________________ J 

Figure 72. MICR Document Buffer Format (Part 3 of 4) 

274 DOS Supervisor and I/O Macros 



r------------------------------------------------~--------------------------------------, 
I Buffer Status Indicators (Continued) I 
~--------T--------T----------------------------------------------------------------~----~ 
I Byte I Bi t I Comment I 
~--------+--------+---------------------------------------------------------------------~ 
I 4 User inserted pocket code determination by the user stacker select 
I routine. Whenever byte 0, bits 2, 3, or 4 are ON, this byte is 
I X'OO' because no document was read and the user stacker selection 
I routine was not entered. Whenever auto-selection occurs, this user 
I value is ignored. A no-op (X'03') is issued to the device, and a 
I reject pociket value (X'CF') is placed in byte 5. The pocket codes 
I are: (byte 2, bit 6 or 7 ON). 
I 
I 
I 
I 
I 
I 
I 

Pocket 
Pocket 
Pocket 
Pocket 
Pocket 
Pocket 

A* - X'AF' 
B** - X'BF' 
a - X'OF' 
1 - X'lF' 
2 - X'2F' 
3 - X'3F' 

Pocket 
Pocket 
Pocket 
Pocket 
Pocket 
Reject 

5 -
6 -
7 -
8 -
9 -

X'5F'l X'6F' 
X' 7F" 
X'8F' 
X'9F' 

Except 1270 
Models 1 and 3 

I Pocket 4 - X'4F' Pocket - X'CF' 
~--------+--------+---------------------------------------------------------------------~ 

5 The actual pocket selected for the document. The contents are 
normally the same as that in byte 4. 

Note: 

1. X'CF' is inserted whenever auto-selection occurs (byte 2, 
bit 6; byte 2" bit 7; byte 2, bit 0; or byte 3 bit 2). 
These conditions may result from late READ commands, 
errant document spacing, or late stacker selection. 

a. start I/O far stacker selection is unsuccessful (byte 
0, bit 1). 

b. An I/O error occurs (for example, invalid pocket code) 
on the 1419 (dual address) secondary control unit when 
selecting this document. 

~--------~--------~---------------------------------------------------------------------~ 
I Additional User Work Area I 
~---------------------------------------------------------------------------------------~ 
IThis additional buffer area can be used as a workarea and/or output area. Its size is I 
Idetermined by the DTFMR ADDAREA=n entry. The only size restriction is that this area, I 
Iplus the 6-byte status indicators and data portion must not exceed 256 bytes. I 
I I 
I Note: This area may be omitted. I 
~---------------------------------------------------------------------------------------~ 
I Document Data Area I 
~---------------------------------------------------------------------------------------~ 
IThe document data area immediately follows the user workarea. The data is I 
Iright-adjusted in the document data area. The length of this data area is determined I 
Iby the I 
I {n } I 
I DTFMR RECSIZE= 80 entry. I 
~------------------------------------~--------------------------------------------------~ 
I *1275, 1412, 1419, and 1270 Models 2 and 4 only. I 
I **1275, 1412, and 1419 only. I L_----------------------------------------------------__________________________________ J 

Figure 72. MICR Document Buffer Format (Part 4 of 4) 

Appendix E 275 



Appendix F: Spanned Records 

Spanned records are format V records, each 
of which specifies its own length. Spanned 
record processing is an extension of 
variable-length record processing. In this 
technique, the user need not be concerned 
with the restrictions the system imposes on 
the length of physical records. Thus, he 
can maximize his secondary storage 
efficiency, while organizing his data files 
with logical record lengths most suited to 
his needs. The sequential DASD access 
method allows a logical record, either 
blocked or unblocked, to span multiple 
physical records. This implies that: 

1. The user only concerns hims'elf wi ttl 
logical records. The laCS segments 
and blocks his logical records for 
him, while it makes the most efficient 
use of the track capacities on his 
DASD devices. 

2. The user is allowed greater 
flexibility in transferring logical 
records from one type of DASD device 
to another, and between tape and 
sequential DASD devices, when he uses 
the sequential DASD access method. 

Figure 73 shows spanned records. The 
first four bytes of every spanned record, 
whether blocked or unblocked, constitute 
the block descriptor word, which describes 
the information portion of the block that 
immediately follows it. The first two 
bytes contain the block length (LL), which 
is supplied by data management when the 
data set is written. The last two bytes 
(RR) are reserved and set to binary zeros. 
The user is required to reserve (for use by 
laCS) the four bytes occupied by the block 
descriptor word at the beginning of his 
input and output areas. 

The length of each logical record (ii), 
including two bytes for the length field 
and two bytes for system use (rr), must be 
supplied by the problem programmer when the 
record is written. 

Because the length of a logical record 
may exceed the size of a single physical 
record on the associated device, laCS may 
write 'a spanned record in sections called 
segments. Figure 74 shows segmented 
spanned records. 

276 DOS Supervisor and I/O Macros 

T~gment 
Descriptor Word 

Block Descriptor Word 

Figure 73. Spanned Records (Unblocked) 

t===-S~:=-=:J 
I I--u~ 

I: 

LL 

Segment 

:i .e..e. 

Record Seg ment I .e..e. I fr I 
I I I 

Segment 

.e..e. 

Record Segment 

Figure 74. segmented Spanned Records 
(Blocked) 

When the logical record is written in 
segments, each segment includes a segment 
descriptor word. The segment descriptor 
word is an additional four-byte field that 
d~scribes the data portion of the segment 
that immediately follows it. 

The segment length, including the four 
bytes occupied by the segment descriptor 
word itself, is' contained in bits 1-15 of 
the first two bytes (ii). The value must 
lie in the range 4~ ii ~32" 763. 



Bit 0 describes the segment type. If 
the bit is OFF, it indicates that the 
segment is a normal one. If the bit is ON, 
it indicates a null segment containing the 
eight descriptor bytes only. 

The last two bytes of the segment 
descriptor word are reserved and set to 
binary zeros, with the exception of bits 6 
and 7, which contain a value (f). This 
value specifies the relative position of 
the segment with respect to 'other segments, 

if any (that is, whether it is a single 
segment; or first, last, or intermediate 
segment of a multisegment logical record). 
When a spanned record is read, the segment 
lengths specified in each segment 
descriptor word are added together to 
provide the problem program with the length 
·(ll) of the logical record. . 

The first segment of a spanned record 
may begin at any point in the physical 
record on the associated device. 

Appendix F 277 



Appendix G: Self-Relocating Programs 

A system supporting multiprogramming has 
the capability of executing self-relocating 
programs. A self-relocating program is one 
that can be executed at any location in 
main storage. Writing a self-relocating 
program is an efficient coding technique 
because self-relocating programs are 
linkage edited only once for execution in 
any partition. When linkage editing, use 
OPTION CATAL and a PHASE card, such as: 

PHASE Phasename,+O 

This causes the linkage editor to assume 
that the program is loaded at core location 
zero, and to compute all absolute addresses 
from the beginning of the phase. The job 
control EXEC function recognizes a zero 
phase address and adjusts the origin 
address to compensate. for the current 
partition boundary save area and label area 
(if any)~ Control is then given to the 
updated entry address of the phase. 
Programs that are written using self 
relocating techniques can be cataloged as 
either self relocating or non-self­
relocating phases. 

RULES FOR WRITING SELF-RELOCATING PROGRAMS 

In general, if a problem program is written 
to be self-relocating, these rules must be 
followed: 

1. The supervisor must support 
multiprogramming (that is, MPS=YES or 
BJF must be specified as a parameter 
in the SUPVR macro at system 
generation time). 

2. The PHASE card must specify an origin 
of +0. 

3. The program must relocate all address 
constants used in the program. 
Whenever possible, use the LA 
instruction to load an address in a 
register instead of using an A-type 
address constant. For example, 

278 DOS supervisor and I/O Macros 

Instead of Using: 

EOF 

AEOF 

Use: 

EOF 

USING 
BALR 
LA 
BCTR 
BCTR 
LA 
ST 

*,12 
12, O· 
12,0(12) 
12,0 
12,0 
1,EOF 
1,AEOF 

L 10,AEOF 

EOJ 

DC 

USING 
BALR 
LA 
BCTR 
BCTR 

A(EOF) 

*,12 
12,0 
12,,0(12) 
12,0 
12,0 

LA 10,EOF 

EOJ 

4. If logical IOCS is used, the program 
must use the OPENR and CLOSER macros 
to open and close files. The console 
typewriter should also be opened by 
using the OPENR macro. 

5. If physical IOCS is used, the program 
must relocate all CCW address fields. 

6. Register notation must be used when 
issuing an imperative macro (I/O~ I/O 
control, and supervisor 
communication). Register notation 
utilizes less main storage and perrrits 
faster execution. An example of 
coding the GET macro with a work area 
in self-relocating format follows: 

( 

" 



RCARDIN 
RPRTOUT 
RWORK 

EQU 
EQU 
EQU 
LA 
LA 
LA 
OPENR 

GET 

4 
5 
6 
RCARDIN,CARDIN 
RPRTOUT,PRTOUT 
RWORK,WORK 
(RCARDIN),(RPRTOUT) 

(RCARDIN),(RWORK) 

Note: Since the DTF name can be a 
maximum of seven characters, an R 
can be prefixed to this name to 
identify the file. Thus, RCARDIN in 
this example can immediately be 
associated with the corresponding 
DTF name CARDIN. 

1. Use // LBLTYP before // EXEC card. 

Note: Items 8, 9, and 10 apply to 
rnultimodule programs. 

8. The relocation factor should be 
calculated and stored in a register 
for future use. For register economy, 
the base register can hold the 
relocation factor. 

For example: 

USING 
BALR 
LA 
BCTR 
BCTR 

*,12 
12,0 
12,0(12) 
12,0 
12,0 

Register 12 now contains the 
relocation factor and the program 
base. 

9. When branching to an external address, 
use one of the following techniques: 

L 15,=V(EXTERNAL) 
BAL 14iO(12,15) 

L 
AR 
BALR 

or 

15,=V(EXTERNAL) 
15,12 
14,15 

where register 12 is the base register 
containing the relocation factor. 

10. The calling program is responsible for 
relocating all address constants in 
the calling list(s)~ See Figure 15 
for an example of the calling program 
relocating the address constants in a 
calling list. 

Appendix G 219 



r-------------------------------------------------------------------------, 
// JOB A 
// OPTION LINK 
// EXEC ASSEMBLY 
CSECT1 START 0 

USING *,12 
BALR 12,0 
LA 12,0(12) 
BCTR 12,0 
BCTR 12,0 

1,A 
2,B 

Use load point value as the base to 
find the load pOint value. 

LA 
LA 
LA 
LA 
STM 
OI 
LA 
L 
AR 

3,C Modify the CALL address constant list. 

CALL 

4,D 
1,4,LIST 
LIST+12,X'80' Restore end of list bit in last adcon. 
13,SAVEAREA 
15,=V(EXTERNAL) 
15,12 Adjust CALL address by relocation 

factor. 
(15),(A,B,C,D) 

LIST EQU *-16 For address constants (4 bytes each). 
EOJ 

SAVEAREA DC 
END 

90'0' 

/* * 
// EXEC 
CSECT2 

EXTERNAL 

/* * 

ASSEMBLY 
START 0 
ENTRY EXTERNAL 
SAVE . (14,12) 
USING *,12 
BALR 12,0 

RETURN(14,12) 
END 

1// EXEC LNKEOT 

Establish new base. 

L _________________________________________________________________________ J 

Figure 75. Relocating Address Constants in a Calling List 

280 DOS Supervisor and I/O Macros 



ADVANTAGES OF SELF-RELOCATING PROGRAMS 

Self-relocating programs have the ability 
to run in any problem program partition 
without needing linkage editing again. The 
program can also be loaded anywhere within 
a partition. The restriction of specific 
partition allocations need not be followed 
with a self-relocating program because it 
relocates itself. 

Also, once a program is written in 
self-relocating format, the program can be 
run under the Operating System (OS) with a 
minimum of changes. 

PROGRAMMING TECHNIQUES 

A program is self-relocating if it is 
capable of proper execution, regardless of 
where it is loaded. DTFDI should be used 
to resolve the problem of device 
differences between partitions. A . 
self-relocating program must also adjust 
all its own absolute addresses to point to 
the proper address. This must be done 
after the program is loaded, and before the 
absolute addresses are used. 

Within these self-relocating programs, 
some macros generate self-relocating code. 
For example, the MPS utility macros are 
self-relocating (that is, they modify all 
their own address constants to their proper 
values before using them). OPENR and 
CLOSER macros are used in self-relocating 
programs. OPENR and CLOSER can be used in 
place of OPEN and CLOSE, and adjust all the 
address constants in the DTFs opened and 
closed. OPENR and CLOSER can be used in 
any program because the OPENR macro 
computes the amount of relocation. If 
relocation is 0, the standard open is 
executed. In addition, all the module 
generation (xxMOD) macros are 
self-relocating. 

The addresses of all address constants 
containing relocatable values are listed in 
the relocation dictionary in the assembly 
listing. This dictionary includes both 
those address constants that are modified 
by self-relocating macros, and those that 
are not. The address constants not 
modified by self-relocating macros must be 
modified by some other technique. After 
the program has been linkage edited with a 
phase origin of +0, the contents of each 
address constant is the displacement from 
the beginning of the phase to the address 
pointed to by that address constant. 

The following techniques place relocated 
absolute addresses in address constants. 

These techniques· are required only when the 
LA instruction cannot be used. 

Technique 1 

Named A-type address constants: 

L 
AR 
ST 

ADCON DC 

Technique 2 

4,ADCON 
4,12 
4,ADCON 

A (ADCONAME) 

A-type address constants in the literal 
pool: 

LA 
LA 
ST 

LTORG 

3,=ACADCONAME) 
4,ADCONAME 
4,0(3) 

=A(ADCONAME) 

Technique 3 

A-type address constants with a specified 
length of three bytes~ and a nonzero value 
in the adjacent left byte (as in CCWs): 

1. If the CCW list dynamically changes 
during program execution: 

IC 3,TAPECCW 
LA 4, IOAREA 
ST 4,TAPECCW 
STC 3,TAPECCW 

TAPECCW CCW 1,IOAREA,X'20',100 

IOAREA DS CL100 

or 

Appendix G 281 



TAPECCW 

IOAREA 

USING 
BALR 
LA 
BCTR 
BCTR 

L 
ALR 
ST 

CCW 

OS 

*,12 
12,0 
12,0(12) 
12,0 
12,0 Register 12 contains 

relocation factor. 

11,TAPECCW 
11,12 
11,TAPECCW 

1,IOAREA,X'20',100 

CL100 

2. If the CCW list is static during 
program execution: 

LA 4,IOAREA 
ST 4,TAPECCW 
MVI TAPECCW,l 

TAPECCW CCW 1,IOAREA,X'20',100 

OS CL100 

Technique 4 

Named V-type or A-type address constants: 

LA 
S 

L 
AR 
ST 

ADCONAST DC 
ADCON DC 

3,ADCONAST 
3,ADCONAST 

4,ADCON 

Determine 
Relocation 
factor 

4,3 Add relocation factor 
4,ADCON 

282 DOS supervisor and I/O Macros 

The load point of the phase is not 
synonymous with the relocation factor as 
developed in register 3 (Technique 4). If 
the load point of the phase is taken from 
register 0 (or calculated by a BALR and 
subtracting 2) immediately after the phase 
is loaded, correct results are ·obtained if 
the phase is linkage edited with an origin 
of +0. If a phase is linkage edited with 
an origin of * or S, incorrect results will 
follow. 'This is because the linkage editor 
and the problem program have both added the 
load point to all address constants. 
Figure 76 shows an example of a self 
relocating program. 

/ 



SOURCE STATEMENTS 
REPRO 

PROGRAM 

PHASE EXAMPLE,+O 
PRINT NOGEN 
START 0 
BALR 12,0 
US I NG ::, 12 

ROUTINE, TO RELOCATE ADDRESS CONSTANTS 
LA 1,PRINTCCW 
ST 1,PRINTCCB+B 
LA 1,TAPECCW 
ST 1, TAPECCB+8 
IC 2,PRINTCCW 
LA 1, OUTAREA 
ST 1,PRINTCCW 
STC 2,PRINTCCW 
LA 1,INAREA 
ST 1,TAPECCW 
MVI TAPECCW,READ 

+0 ORIGIN IMPLIES SELF-RELOCATION 

RELOCATE CCW ADDRESS 
IN CCB FOR PRINTER 

RELOCATE CCW ADDRESS 
IN CCB FOR INPUT TAPE 

SAVE PRINT CCW OP CODE 
RELOCATE OUTPUT AREA ADDRESS 

IN PRINTER CCW 
RESTORE PRINT CCW OP CODE 
RELOCATE INPUT AREA ADDRESS 

IN TAPE CCW 
SET TAPE CCW OP CODE TO READ 

.. MAIN ROUTINE ... READ TAPE AND PRINT RECORDS 
READTAPE LA 1,TAPECCB 

EXCP (1) 

CHECK 

CHA12 

EOFTAPE 

PRINTCCB 
TAPECCB 

PRINTCCW 
TAPECCW 
OUTAREA 
INAREA 
SLI 
READ 
PRINT 
SKIPT01 

WAIT (1) 
LA 10,EOFTAPE 
BAL 14,CHECK 
MVC OUTAREA(10),INAREA 
MVC OUTAREA+15(70),INAREA+10 
MVC OUTAREA+90(20),INAREA+BO 
LA 1,PRINTCCB 
EXCP (1) 
WAIT (1) 
LA 10, CHA12 
BAL 14,CHECK 
B READTAPE 
TM 4(1),1 
BCR 1,10 
BR 14 
MVI PRINTCCW,SKIPT01 
EXCP (1) 
WAIT (1) 
MVI PRINTCCW,PRINT 
BR 14 
EOJ 
CNOP 0,4 
CCB SYS004,PRINTCCW,X'0400' 
CCB SYS001,TAPECCW 

CCW PRINT,OUTAREA,SLI,L'OUTAREA 
CCW READ,INAREA,SLI,L'INAREA 
DC CLI10" 
DC CL100" 
EQU X'20' 
EQU 2 
EQU 9 
EQU X'BB' 
END PROGRAM 

Figure 76. self-Relocating Sample Program 

GET CCB ADDRESS 
READ ONE RECORD FROM TAPE 
WAIT FOR I/O COMPLETION 
GET ADDRESS OF TAPE EOF ROUTINE 
GO TO UNIT EXCEPTION SUBROUTINE 
EDIT RECORD 
IN 
OUTPUT AREA 
GET CCB ADDRESS 
PRINT EDITED RECORD 
WAIT FOR I/O COMPLETION 
GET ADDRESS OF CHAN 12 ROUTINE 
GO TO UNIT EXCEPTION SUBROUTINE 

CHECK FOR UNIT EXEC. IN CCB 
YES-GO TO PROPER ROUTINE 
NO-RETURN TO MAINLINE 

SET SEEK TO CHAN 1 OP CODE 
SEEK TO CHAN 1 IMMEDIATELY 
WAIT FOR I/O COMPLETION 
SET PRINTER OP CODE TO WRITE 
RETURN TO MAINLINE 
END OF JOB 
ALIGN CCB'S TO FULL WORD 

Appendix G 283 



Appendix H: American National Standard Code for Information 
Interchange (ASCII) 

In additiqn to the EBCDIC mode, the IBM 
Disk Operating system accepts magnetic tape 
files written in ASCII (American National 
Standard Code for Information Interchange), 
a 128-character, 7-bit code. The 
high-order bit in this 8-bit environment is 
zero. ASCII is based on the specifications 
of the American National Standards 
Institute, Inc. 

DOS processes ASCII data files in 
EBCDIC. At system generation time, if 
ASCII=YES is specified in the SUPVR macro, 
two translate tables are included in the 
supervisor. Using these tables, logical 
IOCS translates from ASCII to EBCDIC as 
soon as the data is read into the I/O area. 
For ASCII output, logical IOCS translates 
data from EBCDIC to ASCII just before 
writing the record. The address of the 
ASCII to EBCDIC translate table is in bytes 
44-47 of the extension of the communication 
region for each partition. The address of 
the EBCDIC to ASCII table is 256 bytes 
higher than that of the first table. The 
address of the extension of the 
communication region is found in bytes 
136-139 of the communication region. 

284 DOS supervisor and I/O Macros 

Figure 77 shows the relative bit 
positions of the ASCII character set. An 
ASCII character is described by its 
column/row position ,in the table. The 
columns across the, top of Figure 77 list 
the three high-order bits~ The rows along 
the 'left side of Figure 77 are the four 
low-order bits. Because the letter P in 
ASCII is under column 5 and in row 0, it is 
described in ASCII notation as 5/0. ASCII 
5/0 and EBCDIC X'50' represent the same 
binary configuration (B W0101 OOOO~). 
However, P graphically represents this 
configuration in ASCII and & in EBCDIC. 
ASCII notation is always expressed in 
decimal. For example. the ASCII Z is 
expressed 5/10 (not 5/A). 

For those EBCDIC characters that have no 
direct equivalent in ASCII, the substitute 
character (SUB) is provided during 
translation. (See Figure 78 for ASCII to 
EBCDIC correspondence.) 

Note: If an EBCDIC file is translated 
into ASCII, and then the user 
translates back into EBCDIC, this 
substitute character may not receive 
the expected value. 



b7 • 0 0 0 0 1 

~ • 0 0 1 1 0 
b5 • 0 1 0 1 0 

~bt b3 b2 b1 ~ 0 1 2 3 4 i i i Row t' 
0 0 0 0 0 NUL DLE SP 0 @ 

0 0 0 1 1 SOH DCl I<D 1 A 

0 0 1 0 2 STX DC2 II 2 B 

0 0 1 1 3 ETX DC3 H 3 C 

0 1 0 0 4 EOT DC4 '$ 4 D 

0 1 0 1 5 ENQ NAK % 5 E 

0 1 1 0 6 ACK SYN & .6 F 

0 1 1 1 7 BEL ETB I 7 G 

1 0 0 0 8 BS CAN ( 8 H 

1 0 0 1 9 HT EM ) 9 I 

1 0 1 0 10 LF SUB * : J 

1 0 1 1 11 VT ESC + i K 

1 1 0 0 12 FF FS , < L 

1 1 0 1 13 CR GS - = M 

1 1 1 0 14 SO RS > N 

1 1 1 1 15 SI US / ? 0 

CD The graphic I (Logical OR) may also be used instead of I (Exclamation Point). 

o The graphic '(Logical NOT) may also be used instead of A (Circumflex). 

1 1 1 
0 1 1 

1 0 1 

5 6 7 

P 
, 

p 

Q a q 

R b r 

S c s 

T d t 

U e u 

V f v 

W g w 

X h x 

Y i y 

Z i z 

[ k { 

\ I I 
I 

] m } 

A® n ,.." 

- 0 DEL 

@ The 7 bit ASCII code expands to 8 bits when in storage by adding a high order 0 bit. 

Example: Pound sign (H) is represented by 

b7 b6 b5 b4 b3 b2 bl 

0 0 0 0 0 

Control Character Representations 

NUL Null DLE Data Link Escape (CC) 
SOH Start of Heading (CC) DCl Device Control 1 
STX Start of Text (CC) DC2 Device Control 2 
ETX End of Text (CC) DC3 Device Control 3 
EOT End of Transmission (CC) DC4 Device Control 4 
ENQ Enquiry (CC) NAK Negative Acknowledge (CC) 
ACK Acknowledge (CC) SYN Synchronous Idle (CC) 
BEL Bell ETB End of Transmission Block (CC) 
BS Backspace (FE) CAN Cancel 
HT Horizontal Tabulation (FE) EM End of Medium 
LF Line Feed (FE) SUB Substitute 
VT Vertical Tabulation (FE) ESC Escape 
FF Form Feed (FE) FS File Separator (IS) 
CR Carriage Return (FE) GS Group Separator (IS) 
SO Shift Out RS Record Separator (IS) 
SI Shift In US Unit Separator (IS) 

DEL Delete 

(CC) Communication Control 
(FE) Format Effector 
(IS) Information Separator 

Figure 77. ASCII Character Set 

Special Graphic Characters 

SP Space 
I Exclamation Point 
I Logical OR. 

Quotation Marks 
H Number Sign 
$ Dollar Sign 
% Percent 
& Ampersand 

Apostrophe 
Opening Parenthesis 
Closing Parenthesis 
Asterisk 

+ Plus 
Comma 
Hyphen (Minus) 
Period (Decimal Point) 

/ Slant 
Colon 
Semicolon 

< . Less Than 
Equals 

> Greater Than 
? Question Mark 
@ Commercial At 
[ Opening Bracket 
\ Reverse Slant 
J Closing Bracket 
" Circumflex 

Logical NOT 
Underline 
Grave Accent 
Opening Brace 
Vertical Line (This graphic 
is stylized to distinguish it. 
from Logical OR) 
Closing Brace 
Tilde 

Appendix H 285 



ASCII EBCDIC 

I Bit Col : Row Bit 
Character Col I Row Comments 

I 

I Position (in Hex) Position 
I l 
I 

NUL 0 I 0 0000 1 0000 0 I 0 0000 I 0000 
SOH 0 1 1 0000 1 0001 0 I 1 0000 I 0001 
STX 0 I 2 0000 0010 0 I 2 0000 I 0010 
ETX 0 I 3 0000 0011 0 3 ·0000 I 0011 
EaT 0 1 4 0000 I 0100 3 1 7 0011 0111 
ENQ 0 5 0000 I 0101 2 1 D 0010 I 1101 
ACK 0 6 0000. I 0110 2 I E 0010 1 1110 
BEL 0 I 7 0000 I 0111 2 I F 0010 1 1111 
BS 0 1 8 0000 I 1000 1 I 6 0001 I 0110 
HT 0 1 9 0000 I 1001 0 I 5 0000 0101 
LF 0 I 10 0000 1010 2 I 5 0010 0101 
VT .0 -1 11 0000 1011 0 I B 0000 I 1011 
FF 0 I 12 0000 I 1100 0 1 C 0000 , 1100 
CR 0 13 0000 1 1101 0 1 D 0000 I 1101 
SO 0 14 0000 1 1110 0 1 E 0000 1 1110 
SI 0 I 15 0000 I 1111 0 I F 0000 I 1111 
DLE 1 1 0 0001 0000 1 0 0001 

-I 
0000 

DC1 1 1 1 0001 0001 1 I 1 0001 0001 
DC2 1 1 2 0001 I 0010 1 I 2 0001 I 0010 
DC3 1 3 0001 1 0011 1 I 3 0001 I 0011 
DC4 1 4 0001 I 0100 3 I C 0011 I 1100 
NAK 1 I 5 0001 I 0101 3 1 D 0011 I 1101 
SYN 1 I 6 0001 

, 
0110 3 2 0011 I 0010 

ETB 1 I 7 0001 0111 2 6 0010 I 0110 
CAN 1 I 8 0001 I 1000 1 I 8 . 0001 1000 . 
EM 1 I 9 0001 1 1001 1 1 9 0001 I 1001 
SUB 1 10 0001 I 1010 3 I F 0011 1 1111 
ESC 1 11 0001 I 1011 2 1 7 0010 1 0111 
FS 1 I 12 0001 I 1100 1 

, 
C 0001 1 1100 

GS 1 I 13 0001 I 1101 1 D 0001 
-I 

1101 
RS 1 1 14 0001 I 1110 1 E 0001 

I 
1110 

US 1 I 15 0001 1111 1 I F 0001 , 1111 
SP 2 U 0010 I 0000 4 I 0 0100 I 0000 
((1) 2 1 0010 I 0001 4 1 F 0100 I 1111 Logical OR 
" 2 2 0010 1 0010 7 1 F 0111 1 1111 
If 2 ., ~ 0010 I 0011 7 

, 
B 0111 1 1011 

$ 2 4 0010 I 0100 5 B 0101 I 1011 
% 2 I 5 0010 0101 6 C 0110 1100 
& 2 I 6 0010 0110 5 I 0 0101 0000 
I 2 1 7 0010 0111 7 I D 0111 I 1101 
( 2 

, 
8 0010 1 1000 4 I D 0100 I 1101 

f 2 9 0010 1 1001 5 I D 0101 I 1101 
* 2 , 10 0010 I 1010 5 I C 0101 I 1100 
+ 2 I 11 0010 I 1011 4 I E 0100 I 1110 

2 I 12 0010 1100 6 B 0110 I 1011 
- 2 I 13 0010 1101 6 0 0110 0000 Hyphen, Minus 

2 I 14 0010 I 1110 4 I B 0100 1011 
i 2 I 15 0010 1 1111 6 1 1 0110 1 0001 
0 3 0 0011 I 0000 F I 0 1111 I 0000 
1 . 3 I 1 0011 I 0001 F 1 1111 I 0001 
2 3 I 2 0011 I 0010 F 2 1111 I 0010 
3 3 I 3 0011 0011 F 3 1111 0011 
4 3 I 4 0011 0100 F I 4 1111 01 00 
5 3 I 5 0011 0101 F I 5 1111 I 0101 
6 3 6 0011 I 0110 F I 6 1111 I 0110 
7 3 7 0011 I 0111 F I 7 1111 I 0111 
8 3 , 8 0011 I 1000 F 8 1111 I 1000 
9 3 I 9 0011 1001 F 9 1111 

-, 
1001 

: 3 I 10 0011 1010 7 I A 0111 . 1010 
i 3 I 11 0011 I 1011 5 I E 0101 I 1110 
< 3 12 0011 I 1100 4 I C 01 00 I 1100 
- 3 13 0011 I 1101 7 I E 0111 I 1110 
> 3 1 14 0011 I 1110 6 I E 011 0 I 1110 
? 3 I 15 0011 I 1111 6 I F 0110 I 1111 

Figure 78. ASCII to EBCDIC Correspondence (Part 1 of 2) 

286 DOS Supervisor 'and I/O Macros 



ASCII EBCDIC 
I , 
I Bit Col I Row Bit 

Character Col I Row .1 Comments 
I 

Pattern 
(in H'ex) 

Pattern 
I 

@ 4 I a 0100 : 0000 7 
I 

C 0111 
I 

1100 
·A 4 

, 
I 0100 I 0001 C I I 1100 I 0001 

B 4 2 0100 I 0010 C I 2 1100 I 0010 
C 4 I 3 0100 I 0011 C I 3 1100 I 0011 
D 4 , 4 0100 I 0100 C I 4 1100 

, 
0100 

E 4 I 5 0100 I 0101 C I 5 1100 I 0101 
F 4 I 6 0100 0110 C I 6 1100 0110 
G 4 I 7 0100 I 0111 C 7 1100 , 0111 
H 4 

, 
8 0100 , 1000 C ., 8 1100 I 1000 

I 4 9 0100 , 1001 C , 9 1100 I 1001 
J 4 I 10 0100 I 1010 D I 1 1101 I 0001 
K 4 I II 0100 

, 
1011 D I 2 . 1101 I 0010 

L 4 I 12 0100 1100 D 3 1101 I 0011 
M 4 I 13 0100 I 1101 D I 4 1101 I 0100 
N 4 14 0100 I 1110 D I 5 1101 '- 0101 
0 4 15 0100 , 1111 D _I 6 1101 , 0110 
P 5 I 0 0101 I 0000 D I 7 1101 , . 0111 
Q 5 I I 0101 I 0001 D I 8 1101 

, 
1000 

R 5 I 2 0101 I 0010 D I 9 1101 I 1001 
S 5 I 3 0101 

. 
0011 E I 2 1110 0010 

T 5 I .4 0101 I 0100 E 3 1110 I 0011 
U 5 5 0101 I 0101 E I 4 1110 , 0100 
V 5 6 0101 I 0110 E , 5 1110 , 0101 
W 5 I 7 0101 I 0111 E I 6 1110 I 0110 
X 5 , 8 0101 I 1000 E I 7 1110 I 0111 
y 5 I 9 0101 I 1001 E I 8 1110 

, 
1000 

Z 5 I 10 0101 . 
1010 E I 9 1110 1001 

[ 5 I II 0101 1011 4 A 0100 , 1010 

"- 5 12 0101 I 1100 E 0 1110 , 0000 Reverse Slant . 
] 5 13 0101 , 1101 5 I A 0101 I 1010 
-'(2) 5 14 0101 , 1110 5 I F 0101 I 1111 LOQical NOT 

- 5 I 15 0101 I 1111 6 I D 0110 I 1101 Underscore , 
6 I 0 0110 0000 7 9 0111 

, 
1001 Grave Accent 

a 6 I I 0110 , 0001 8 I 1000 0001 
b 6 2 0110 I 0010 8 2 1000 0010 
c 6 I 3 0110 I 0011 8 , 3 1000 , 0011 
d 6 , 4 0110 I 0100 8 I 4 1000 I 0100 
e 6 I 5 0110 I 0101 8 I 5 1000 I 0101 
f 6 I 6 0110 I 0110 8 I 6 1000 I 0110 
9 6 I 7 0110 0111 8 I 7 1000 0111 
h 6 I 8 0110 1000 8 8 1000 I 1000 
i 6 I 9 0110 I 1001 8 I 9 1000 I 1001 

i 6 10 0110 I 1010 9 , I 1001 I 0001 
k 6 II 0110 I 1011 9 I 2 1001 I 0010 
I 6 I 12 0110 I 1100 9 , 

3 1001 
, 

0011 
m 6 I 13 0110 I 1101 9 I 4 1001 I 0100 
n 6 I 14 0110 1110 9 5 1001 0101 
0 6 I 15 0110 1111 9 6 1001 I 0110 
p 7 0 0111 I 0000 9 I 7 1001 I 0111 
q 7 I 0111 I 0001 9 I 8 1001 I 1000 
r 7 I 2 0111 I 0010 9 I 9 1001 I 1001 
s 7 , 3 0111 I 0011 A I 2 1010 I 0010 
t 7 I 4 0111 0100 A I 3 1010 0011 
u 7 I 5 0111 0101 A 4 1010 0100 
v 7 

, 
6 0111 , 0110 A I 5 1010 I 0101 

w 7 7 0111 I 0111 A J 6 1010 , 0110 
x 7 I 8 0111 I 1000 A I 7 1010 , 0111 
y 7 I 9 0111 , 1001 - A I 8 1010 I 1000 
z 7 I 10 0111 1010 A I 9 1010 lUUI 
{ 7 I II 0111 1011 C I a 1100 0000 
I 7 I 12 0111 I 1100 6 A 0110 I 1010 Vertical Line I .. 
} 7 I 13 0111 I 1101 D 0 1101 . I 0000 
"oJ 7 14 0111 , 1110 A I I 1010 I 0001 Tilde 
DEL 7 , 15 0111 I 1111 0 I 7 0000 I 0111 

CD The graphic! (Exclamation Point) can be used instead of I (Logical OR). 

@ The graphic" (Circumflex) can be used instead of -, (Logical NOT). 

Figure 78. ASCII to EBCDIC Correspondence (Part 2 of 2) 

Appendix H 287 



Glossary 

For a more complete list of data processing 
terms, refer to IBM Data Processing 
Techniques, A Data Processing Glossary, 
GC20-1699. 

access method: Any of the data management 
techniques (sequential, indexed sequential, 
or direct) available to the user for 
transferring data between main storage and 
an input/output device. 

ASCII (American National Standard Code for 
Information' Interchange): A 128-character, 
7-bit code. The high order bit in the 
System/360 8-bit environment is zero. 

Basic Telecommunications Access Method 
(BTAM): A basic access method that permits 
a READ/WRITE communication with remote 
devices. 

block: 

1. To group records physically for the 
~urpose of conserving storage space or 
1ncreasing the efficiency of access or 
processing. 

2. A physical record on tape or DASD. 

block prefix: An optional, 0-99 byte field 
preceding an ASCII record. It contains 
user specified data or, for variable length 
(format D) records, the physical record 
length. 

buffer: 

1. A storage device in which data is 
assembled temporarily during data transfer. 
An example is the IBM 2821 Control Unit, a 
control and buffer storage unit for card 
readers, card punches, and printers. 

2. During I/O operations, a portion of 
main storage into which data is read or 
from which data is written. 

channel program: One or more Channel 
Command Words (CCWs) that control(s) a 
specific sequence of channel operations. 
Execution of the specific sequence is 
initiated by a single start I/O 
instruction. 

checkpoint record: A record containing the 
status of the job and of the system at the 
time the checkpoint routine writes the 
record. This record provides the necessary 
information for restarting a job without 
returning to the beginning of the job. 

288 DOS Supervisor and I/O Macros 

Checkpoint/Restart: A means of restarting 
execution of a program at some point other 
than the beginning. When a checkpoint 
macro instruction is issued in a problem 
program, checkpoint records are created. 
These records contain the status of the 
program and the machine. When it is 
necessary to restart a program at a point 
other than the beginning, the restart 
procedure uses the checkpoint records to 
reinitialize the system. 

checkpoint routine: A routine that records 
information for a checkpoint,. 

Command Control Block: A sixteen-byte 
field required for each channel program 
executed by physical IOCS,. This field is 
used for communication between physical 
IOCS and the problem program. 

communication region: An area of the, 
supervisor set aside for interprogram and 
intra program communication. It contains 
information useful to both the supervisor 
and the problem program., 

control program: A group of programs that 
provides functions such as the handling of 
input/output operations, error detection 
and recovery, program loading, and 
communication between the program and the 
operator. IPL, supervisor, and job control 
make up the control program in the Disk and 
Tape Operating Systems. 

control section: The smallest separately 
relocatable unit of a program; that portion 
of text specified by the programmer to be 
an entity, all elements of which are to be 
loaded into contiguous main storage 
locations. 

core storage: See main storage. 

data'conversion: The process of changing 
data from one form of representation to 
another. 

data file: A collection of related data 
records organized in a specific manner. 
For example, a payroll file (one record for 
each employee, showing his rate of pay, 
deductions, etc) or an inventory file (ene 
record for each inventory item, showing the 
cost, selling price, number in stock~ etc). 

data set security: ,A feature th,at provides 
protection for disk files. A data secured 
file cannot be accidentally accessed by a 
problem program. 



device independence: The capability of a 
program 'to process the same type of data on 
different device types (punched card 
devices/printers, tape, or disk). 

Disk Operating system: A disk resident 
system that provides operating system 
capabilities for 16K and larger IBM 
System/360 and System/370 systems. 

DTF (define the file) macro instruction: A 
macro instruction that describes the 
characteristics of a logical input/output 
file, indicates the type of processing for 
the file, and specifies the main storage 
areas and routines to process the file. TO 
do this, use the appropriate entries in the 
keyword operands associated with the DTF 
macro instruction. 

DUMP: Displaying the contents of main 
storage. 

extent: The physical locations on 
Input/Output devices occupied by or 
reserved for ~ particular file. 

fetch: 

1. To bring a program phase into main 
storage from the core image library for 
immediate execution. 

2. The routine that retrieves 
requested phases and loads them into main 
storage. 

3. The name of a macro instruction 
(FETCH) used to transfer control to the 
System Loader. 

4. To transfer control to the system 
loader. 

file: See data file. 

fixed length record: A record having the 
same length as all other records with which 
it is logically or physically associated. 

header label: A file label that precede~ 
the data records on a unit of recording 
media. 

I/O area: An area (portio~) of main 
storage into which data is read or from 
which data is written. In Operating System 
publications, the term buffer is often used 
in place of I/O area. I/O means 
Input/Output. 

IOCS (input/output control system): A 
group of macro instruction routines 
provided by IBM for handling the transfer 
of data between main storage and external 
storage devices. 

load: TO fetch, that is, to read a phase 
into main storage returning control to the 
calling phase. 

load point: The beginning of the recording 
area on a reel of magnetic tape. 

logic module: The logical IOCS routine 
that provides an interface between a 
processing program and physical IOeS. 

main storage: All addressable storage from 
which instructions can be executed or from 
which data can be loaded directly into 
registers. 

main task: The main program within a 
partition in a multiprogramming 
environment. 

MPS: Mul tiprogramming system .• 

multifile volume: A unit of recording 
media, such as a tape reel or disk pack, 
that contains more than one data file. 

multiprogramming system: A system that 
controls more than one program 
simultaneously by interleaving their 
execution. 

multi task operation: Multiprogramming; 
called multitask operation to express not 
only concurrent execution of one or more 
programs in a partition~ but also cf a 
single reenterable program used by many 
tasks. 

multivolume file: A data file that, due to 
its size, requires more than one unit of 
recording media (such as a tape reel or a 
disk pack) to contain the entire file. 

nonstandard labels: Labels that do not 
conform to the System/360 standard label 
specifications. They can be any length, 
need not have a specified identification~ 
and do not have a fixed format. 

operating system: A collection of programs 
that enables a data processing system to 
supervise its own operations, automatically 
calling in programs,. routines,' languages, 
and data as needed for continuous 
throughput of a series of jobs. 

phase: The smallest complete unit that can 
be referenced in the core image library. 
Each program overlay is a complete phase. 
If the program has no overlays, the program 
itself is a complete phase. 

physical record: A record identified from 
the standpoint of the manner or form in 
which it is stored and retrieved; that is, 
one that is meaningful with respect to 
access. (Contrasted with Logical Records.) 

Glossary 289 



private library: A relocatable, core 
image, or source statement library that is 
separate and distinct from the system 
library. 

problem program: 

1. The user's object program. It can 
be produced by any of the language 
translators. It consists of instructions 
and data necessary to solve the user's 
problem. 

2. A general term for any routine that 
is executed in the data processing system's 
problem state; that is, any routine that 
does not contain privileged uperations. 
(Contrasted with supervisor.) 

processing program: A general term for any 
program that is both loaded and supervised 
by the control program. Specifically, a 
collection of certain IBM supplied 
programs: the language translators, 
Linkage Editor, Librarian, Autotest, 
sort/Merge and Utilities. All user written 
programs are processing programs. The term 
processing programs is in contrast to the 
term control program. 

record: A general term for any unit of 
data that is distinct from all others when 
considered in a particular context. 

reenterable: The attribute of a set of 
code that allows the same copy of the set 
of code to be used concurrently by two or 
more tasks. 

relocatable: A module or control section 
whose address constants can be modified to 
compensate for a change in origin. 

resource: Any facility of the computing 
system or operating system required by a 
job or task, and including main storage, 
input/output devices, the central 
processing unit, data files, and control 
and processing programs. 

restart: See Checkpoint/Restart. 

self relocating: A programmed routine that 
is loaded at any doubleword boundary and 
can adjust its address values so as to be 
executed at that location. 

self relocating program: A program that is 
able to run in any area of storage by 
having an initialization routine to modify 
all address constants at object time. 

290 DOS Supervisor and I/O Macros 

subtask: A task in which control is 
initiated by a main task by means of a 
macro instruction that attaches it. 

supervisor: A component of the control 
·program. It consists of routines to 
control the functions of program loading, 
machine interruptions, external 
interruptions, operator communications and 
physical IOCS requests and interruptions. 
The supervisor alone operates in the 
privileged (supervisor) state. It coexists 
in main storage with problem programs. 

symbolic I/O assignment: A means by which 
problem programs can refer to an I/O device 
by a symbolic name. Before a program is 
executed, job control can be used to assign 
a specific I/O device to that symbolic 
name. 

telecommunications: A general term 
expressing data transmission between remote 
locations. 

teleprocessing: A term associated with IBM 
telecommunication systems expressing data 
transmission between a computer and remote 
devices. 

track hold: A function for protecting DASD 
tracks that are currently. being processed. 
When track hold is specified in the DTF, a 
track that is being modified by a task in 
one partition cannot be concurrently 
accessed by a task or subtask in ·another 
partition. 

undefined record: A record having 'an 
unspecified or unknown length. 

variable length record: A record having a 
length independent of the length of other 
records with which it is logically or 
physically associated. (Contrasted with 
fixed length record). It contains fields 
specifying physical and logical record 
lengths. 

volume: That portion of a single unit of 
storage media that is accessible to a 
single read/write mechanism. For example, 
a reel of magnetic tape on a 2400-series 
magnetic tape drive or a disk pack on an 
IBM 2311 Disk Storage Drive. 



Indexes to systems reference library 
manuals are consolidated in the publication 
DOS Master Index, GC24-5063. For 
additional information about any subject 
listed below, refer to other publications 
listed for the same subject in the Master 
Index. 

abnormal termination codes 233 
access methods 

BTAM/QTAM, description of 15 
declarative macros 18 
definition 288 
direct (DAM), description 140 
direct (DAM), introduction 14,15 
indexed sequential (ISAM), description 

166-196 
indexed sequential (ISAM), 

introduction 15 
sequential (SAM) 35-139 
sequential (SAM), description of 14 
sequential (SAM), introduction 14 

address adapters 
(MICR) 9,48 

address communications region 229 
address constant, relocation of 2aO 
addresses, symbolic unit 19 
alternate tape switching 215 
appendixes 

A. label formats 249 
B. control character codes 253 
C. assembling DTF'S and logic modules 

255 
D. read, write, check nonstandard 

labels 270 
E. MICR document buffer format 

272~275 
F. spanned records 276-277 
G. self-relocating programs 278-283 
H. ASCII 284-287 

area(s) 
(see also input/output area) 
document buffer (MICR) 272 
I/O, definition of 114 
MICR document buffer 50 
storage for DAM 141 
storage for ISAM 166 
work area requirements for indexed 

sequential 184 
work, definition of 114 

ASA (control character codes) 253 
ASCII 

character set 285 
comparison to EBCDIC 286 
definition 288 
description of 284 
end-of-volume 30 
LABADDR routine restriction 30 
nonstandard labels, restriction 31 
processing standard labels 30 
translation. 13 

assembling 
macros 22 

Index 

problem programs, DTF'S and ~ogic 
modules 255-269 

ATTACH subtask macro 198,199 
attention interrupt, operator 234 
auto-selection (MICR) 272-275 
auto-selection magnetic reader 49 
autolink function for logical IOCS modules 

22,23 

basic telecommunications access method 
(BTAM), descr. 15 

batch numbering MICR document buffer area 
50,272-275 . . 

batch numbering update restr~ct~on for 1419 
53 

begin-definition card (DTFSR) 97 
block definition 288 
block prefix, definition 288 
blocked records 

GET macro 116 
PUT macro sequential processing 119 

blockname (CCB macro) 213 
braces, brackets, notation. conventions 25 
BTAM (basic telecornmunicat~ons access 

method) 15 
BTAM, definition 288 
buffer 

console 41 
definition 288 
MICR document area 50 
MICR document format 272 
MICR format 272-275 
Printer-keyboard 218 

buffering, console option 41 

CALL a program macro 247 
called program 247 
calling program 247 
CANCEL the job macro. 237 
capacity record 

negative number 164 
resetting of 164 

card/punch codes 125 
card 

DTFCD macro 35-40 
file 35 
module (CDMOD) 40 

cataloging declarative macros 22 
CCB macro 213-215 

format 213 
ccw routine considerations 218 
CDMOD 40 
chaining 

data 219 
link-sequence 171 
retry 218 

Index 291 



channel program DASD 219 
channel program, definition 
CHECK macro 

for magnetic readers 
tape or disk workfiles 

checking 
nonstandard labels 33 

288 

129 
135 

output file in volume table of 
contents 113 

standard labels 27,33 
user standard labels 29,33 

checkpoint 
bypassing on tape 
d pointer 239 
disk 240 
end address 238 

217 

file entries for DTFPH 
files 240 
header format 
macro 238 

217 

219 

operator verification table 
problem program 237 
records for tape 31 

242 

repositioning I/O files 240 
repositioning magnetic tapes 240 
restrictions concerning restart 11 
saved information 239 
t pointer 239 
tape 240 
tracks required 240 

CHNG macro tape channel switching for 
BPS/BOS 127 

close processing of standard DASD labels 
28 

CLOSE(R) macro 
direct access processing 165 
indexed sequential processing 
physical IOCS processing 226 . 

. sequential processing 138,139 
CNTRL macro 122 

direct access processing 164 
code translation (paper tape reader) 
codes 

abnormal termination 233 

195 

81 

CNTRL macro instruction command codes 
123 . 

condition codes for index sequential 
processing 175 

control character 
DASD codes 126 

253,254 

magnetic reader (MICR) pocket 
printer 124 

50 

unit for magnetic tape 124 
universal character set 125 
1285/1287/1288 optical reader codes 

126 
1442/2520 card read punch 
2540 card read punch 125 

coding form example 

125 

DTFCD card macro for seq. proc. 
DTFCN console macro seq. proc. 
DTFDA macro direct acqess proc. 
DTFDI macro for seq. proc. 43 
DTFIS macro ind. seq. proc. 183 

292 DOS Supervisor and I/O Macros 

37 
41 

157 

coding form example (CONT.) 
DTFMR magnetic reader seq. proc. 
DTFMT magnetic tape seq. proc. 
DTFOR optical reader seq. proc. 
DTFPH macro physical IOCS proc. 
DTFPR printer for seq. proc. 73 
DTFPT macro for seq. proc. 77 
DTFSD macro for seq. p~oc. 86 
DTFSR macro for seq. proc. 109 
Multitasking examples 206-212 

coding practices recommendations 11 
command chaining retry . 218 
command codes for CNTRL macro 
command control block 

123 

47 
55 

66 
220 

conditions shown in bytes 2-3 216, 
217 

definition 288 
format (PIOCS) 
macro (PIOCS) 

214 
213-215 

communication region in supervisor, 
restrictions 11 

communication 
macros 201 
region in supervisor 229 
region, definition 288 

compatibility of DOS 10,11 
completion macros 

direct access processing 165 
indexed sequential processing 
sequential processing 137 

195 

COMRG, get address of communications region 
macro 230 

condition codes for indexed sequential 
processing 175 

console 
buffer 41 
file (DTFCN) 40-42 

continuation punch, use with positional 
operands 24 

control block 
conditions indicated in bytes 2-3 

216,217 
format PIOCS 214 
macro for PIOCS 213-215 

control character codes 253 
control macro 

card read punch codes 125 
direct access method 164 
restrictions concerning use with DTFDI 

42 . 
control program, definition 
control section, definition 
conventions, notations 25 
core image library, private 
count area 162 
cylinder index for IS~l 169 

288 
288 

228 

d pointer, checkpoint macro 239 
DAM (see direct access method) 
DAMOD-direct access module 159 
DASD 

channel program 219 
codes 126 



DASD (CaNT.) 
file labels 249 
file protection 12,219 
files, opening 112 
header labels 28 
input OPEN sequential processing 113 
label end-of-file 29 
labels 249-251 
labels (see also standard labels) 
nonsequential files, LBLTYP statement 

27 
operator verification table 239 
output OPEN sequential processing 

113 
restriction concerning physical laCS 

11 
standard labels 27 
track protection macros 203 
user standard labels 250 

data set security, definition 289 
data 

area direct access read 162 
chaining 219 
check for paper tape (DTFPT) 83,84 
conversion, definition 288 
file, definition 288 
record example for ISNvl 171 

declarative logic module, definition of 
16 

declarative macro 
(see define-the-file), 
definition of 16 
description of 17 
detail card 24 
header card 24 
operand cards 24 
symbolic unit addresses 19 
symbolic units required 20 
types 18,35 

define-the-file 
(see also coding form examples) 
assembly with logic modules example 

255-269 
begin definition card (DTFSR) 97 
cataloging tables 22 
definition 289 
description of 17 
D'l'FCD card 35 
DTFCN console 41,42 
DTFDA direct access file 145-157 
DTFDI device independent 42-45 
DTFIS indexed sequential 177 
DTFMR magnetic reader 46-48 
DTFHT error options magnetic tape 59 
DTFl'lT magnetic tape 55-63 
DTFOR optical reader 65-70 
DTFPH physical laCS 219 
DTFPR macro sequential processing 

72-74 
DTFPT paper tape 76-80 
DTFSD error options 90 
DTFSD sequential DASD files 85 
DTFSR serial device file 97-108 
end of definition card 108 

define-the-file (CaNT.) 
GET macro sequential processing 

115-117 
GET, required entries 115 
PUT macro sequential processing 117 

definition of 
DASD file protection 12 
declarative macro 17 
in-line routine 16 
logic module 16 
logical and physical IOCS 11 
logical record 12 
machine language programs 16 
macro expansion 16 
.macros 16 
programmer logical units 20 
subset/superset modules 21 
supervisor communications macros 16 

density, tape output label checking 30 
DEQ macro 201 
DETACH subtask macro 199 
detail card, declarative macros 24 
device independent 

definition 289 
files 42 
macros 42-45 
module (DIMOD) 45 

DIMOD 46 
direct access method 140-165 

(see also direct access) 
(see also macros) 
contents of record 0 for DAM 145 
creating a file or adding records 

144 
description of 14,15 
EXTENT statement restrictions 20 
keys 142 
macros 159-165 
multi-volume files restrictions 20 
reference methods 141-144 
track and record references 15 
when to use 18 

direct access 
file opening 159,160 
macros 159-165 
method (DAM), description of 14 
method (DTFDA), description of 140 
module 159 
record types 140 

direct linkage table 245 
D~SEN macro 130 
disengage (DISEN) macro for magnetic 

readers 130 
Disk Operating System, definition 289 
disk 

(see also DASD) 
files (DTFSR) 113 
operating system compatibility 

display macro for optical readers 
DLAB - disk label extent information 
DLBL - disk label extent card 27 
DLBL - disk label extent information 
document 

buffer area (MICR) 50 

10,11 
131 

10 

10 

Index 293 



document (CONT.) 
buffer format (MICR) 272 
processing (MICR) 52-54 

DOS compatibility 10,11 
. DSPLY macro for optical readers 

DTF (see define-the-file) 
DTF, definition 289 
dummy entry 

cylinder index 169 
master index 170 
track index 169 

DUMP partition macro 236 
DUMP, definition 289 

ECB - event control block 
editing 

200 

logical IOCS programs 22 
preas sembled logic modules 

end address, checkpoint 238 
end-of-file condition 

DTFCD card reader 37 
57 

69 
87 

DTFMT magnetic tape 
DTFOR optical reader 
DTFSD sequential disk 
DTFSR card reader 101 
DTFSR magnetic tape 101 
DTFSR sequential disk 101 
tape input files 32,32 

end-of-file 
disk output 28 
record for DASD labels 
tape input files 32 

29 

131 

22 

end-of-record character for paper tape 
reader 78 

end-of-tape for paper tape reader 
end-of-volume 

101 

ASCII files 30 
condition, tape input files 
disk 27 
forced 30,32,137,225 
forced disk 138 
tape input files 
tape output 29 

ENDFL macro for ISAM 
ENQ macro 200 

32 

189 

entry points in modules 23 
EOJ, end of job step macro 
ERET (error return macro) 

indexed sequential proc. 
sequential proc. 127 

ERRBYTE 

237 

32 

176 

DTFDA coding errbyte 147-151 
error statistics infor~ation for 

147-151 
error/status codes (ERRBYTE) 147-151 
error 

conditions for paper tape 83 
options, DTFMT 59 
options, DTFSD macro 90 
return macro 127,176 
statistic information for DAM 

147-151 

294 DOS Supervisor and I/O Macros 

DAM 

ESETL macro for ISAM sequential retrieval 
195 

event control block (ECB) 
example 

200 

(see coding form examples) 
data records (ISAM) 171 
file organization (ISAM) on 2311 
index entries (ISAM) one track 
multitasking flowchart example 

206-212 
organized ISAM file 173 

174 
172 
198, 

EXCP, execute channel program (PIOCS) macro 
215 

execute channel program macro. 215 
EXIT from user's interrupt routines macro 

235 
extent statement, information 10 
extent 10,27 

definition 289 
types 1 and 8 113 

external interrupts for MICR devices 49 
external references in DTF table 22 

features supported on DOS system 9 
FEOV 

forced end of volume macro (PIoes 
processing) 225 

forced end of volume macro (seq. 
processing) 137, 138 

FEOVD macro 138 
FETCH a phase macro 228 
fetch, definition 289 
file 

checkpoint 239 
creation/deletion for direct access 

144 
DASD (DTFSR) 113 
definition 289 
device (DTFSD) 
disk (DTFSR) 
DTFIS 177 

85-94 
113 

header label (tape) 251 
indexed sequential file management 

/ system 15 
label type format 250 
labels 27 
opening an index sequential file 187 

174 
219 

opening physical IOCS 223 
organization example for ISAM 
protection DASD channel program 
protection DOS, restrictions 12 
protection of DASD data file 12 
repositioning I/O following a 

checkpoint 240 
repositioning input/output 
repositioning magnetic tape 
security for unexpired file 
sequential (DTFSD) 85 
tape input 32 

240 
240 
27 

tape input sequential processing 
tape output 29 
tape output sequential processing 

112 

112 



file (CONT.) 
unlabeled input 34 

filemark 251 
filename DTF macro 24 
FILENAME+48 - FILENAME+76 for optical 

readers 68 
FILENAME+48 - FILENAME+76, DTFSR macro 

100 
FILENAME+80, DTFSR macro 99 
FILENAME+80, testing after using optical 

reader macros 67 
filenamec 175 
filenameh 189,251 
fixed length records 

definition 289 
GET macro 116 
PUT macro sequential processing 

fixed unblocked records 
optical reader 70 
paper tape reader 80 

forced end-of-volume 30,32 
physical IOCS 225 
sequential processing 137,138 

format 
CCB macro 213 
checkpoint header 
file label types 
keyword 24 
macro instruction 
macros 24 
mixed 24 

217 
250 

24 

optical reader records 
paper tape reader records 
positional 24 

70 

standard file labels 250 
FREE macro 203 
function(s) 

autolink 22 

80 

performed by logical IOCS 12 
physical and logical IOCS routines 

12 

GET macro 

119 

index sequential processing 194 
optical reader sequential processing 

131 
sequential processing (spanned 

records) 115-117 
GETIME, get time of day 231 
glossary 288 

header labels 
DASD user 28 
definition 289 
tape user 30 

header 
card, declarative macros 24 
DTFSR macro 113 

hexadecimal control, character codes 253, 
254 

hold 
track, direct access 151 

hold (CONT.) 
track, ISAM 178 
track, ISMOD 184 

I/O area, definition 289 
identifier (ID) reference fields for DAM 

143 
IJCXXXXX (CDMOD) 
IJDXXXXX (PRHOD) 
IJEXXXXX (PTNOD) 
IJFXXXXX (MTMOD) 
IJGXXXXX (SDMOD) 
IJHXXXXX (ISMOD) 
IJIXXXXX (DAMOD) 
IJJXXXXX (DIMOD) 
IJMXXXXX (ORMOD) 
IJUXXXXX (MRMOD) 
imperative macro 

40 
76 
85 
65 
96 
186 
159 
46 
72 
55 

definition of 16 
module functions restriction 20 
types for sequential processing 

in-line routine, definition of 16' 
INCLUDE statement 23 
index 

entries for ISAM 172 
track for ISAM 168 

indexed sequential access method 
(see also file) 
condition codes 175 
description of 15 
file management sys 
macros 175-196 
module 184-186 
random retrieval 
when to use 18 

191 

15 

initialization macros, sequential 
processing 111 

initialization 

111 

OPEN(R) macro for direct processing 
159,160 

OPEN(R), indexed sequential processing 
187 

input file(s) 
tape 32 
unlabeled 34 

input logical ~ile 28 
input nonstandard labels 
input/output area 

33 

contents for direct access method 
141 

defini,tion of 114 
format for direct access method 140 
I SAlvI main storage schematic 167 
main storage schematic for DAM 141 

input/output, repositioning files 240 
input/output 

list of supported devices 
interrupt routine user exits 
interruptions, interval timer 
intertask communications macros 
interval timer 

interruption 235 
user exit macros 231 

9,10 
235 

235 
201 

Index 295 



laCS 
(see logical or physical laCS) 
definition 289 
end-of-file condition 32 

ISAM track hold 178' 
implementation 203 

I SAM 
access method 166-196 
cylinder index 169 
data record example . 171 
end file load mode 189 
example of an organized file 173 
file organization on 2311 174 
GET macro sequential retrieval 194 
index entries 172 
indexed sequential access method, 

description of 15 
macros for adding records 189 
macros for random retrieval 191 
macros for 'sequential retrieval 192 
macros to load or extend a file 188 
module 184-186 
overflow area 171 
READ macro 191 
record organization 168 
record types 166 
status code 175 
storage areas 166 
work area requirements 184· 

ISMOD 186 

key area direct access files 
keys, direct access method 
keyword format 24 
keyword operands for macros 

LABADDR routine 
ASCII restriction 30 
multivolume files 28 
restriction 11 

161,162 
142 

24 

tape output files 29 
labeled tape, read backwards 32 
labels 

building 28 
checking 29 
checking by OPEN 27 
checking/writing user standard 114 
DASD 249-251 
processing 27,30 
processing at end-of-file 29 
restrictions concerning 

mul tiprogranuning 2.9 
standard DASD 27 
user standard output 28 
user-trailer 28 

language translators, requirements 9 
LBRET macro 

direct access pro~essing 161 
label processing 29 
physical laCS processing 225 
sequential processing 114 

296 DOS Supervisor and I/O Macros 

library, private core image 228 
light, pockets macro for magnetic readers 

130 
limitations (see restrictions) 
link, sequence for chaining 171 
linkage editing 

logicat laCS modules 21 
logical laCS programs 22 
modules with DTF'S 21 
preas sembled logical modules 22,23 

linkage'registers 244 
LIOCS (see logical laCS) 
listing, selective tape (DTFPR) 74 
listing, selective tape PUT macro 

sequential processing 118 
LITE, light pockets for magnetic readers 

130 
LOAD macro 228 
load point, definition 
load, definition 289 
loading 

phase 
program 

logic module 

228 
228 

assembly examples 
definition 289 
generation of 20 

logical laCS 

289 

255.;.269 

autolink function 22 
cataloging modules and DTF tables 
functions performed 12 
logic modules, definition of 
macro self-relocation 17 
module linkage 21 
module linkage with DTF 
module, definition of 
processing types 13 
program editing 22 
record processing 12 
record retrieval example 
routine functions 13 
types of processing 13 

21 
20 

14 

16 

22 

use of declarative macro instructions 
16 

vs physical laCS 11 
logical record, definition of 
logical units, list for system 

12 
19 

machine language programs, definition of 
16 

machine requirements for DOS 9 
macro definition 

(see also macro) 
ATTACH subtask 198 
CALL a program 247 
CANCEL the job 237 
CCB' (PIOCS) command control block 

213-215 
CCB macro format 213 
CHECK for magnetic readers 129 
CHECK for tape or disk workfiles 135 
CHKPT checkpoint macro 238 
CHKPT checkpoint macro use 237 



macro definition (CONT.) 
CHKPT saved information 239 
CHNG tape channel switching BPS/BOS 

127 
CLOSE(R) for direct processing 165 
CLOSE(R) for ISAM 195 
CLOSE(R) for physical IOCS processing 

226 
CLOSE(R) for sequential processing 

138 
CNTRL control for direct processing 

164 
CNTRL control sequential processing 

122 
COMRG 230 
DEQ macro 201 
DETACH subtask macro 199 
DISEN disengage for magnetic readers 

130 
DSPLY display for optical readers 

131 
DTFCD card' 35 
DTFCN console 41 
DTFDA direct access 
DTFDI 42-45 

145-157 

DTFIS indexed sequential 
DTFHR magnetic reader 46 
DTFMT magnetic tape 55-63 

177-184 

DTFOR optical reader 65-70 
DTFPH physical IOCS 219 
DTFPR printer 72-74 
DTFPT paper tape 76-80 
DTFSD sequential DASD 85 
DTFSR serial device 97 
DUMP partition 236 
ENDFL end file load mode 
ENQ macro 200 

189 

EOJ end of job step macro 237 
ERET error return ISAM processing. 

176 
ERET error return SAM processing 
ESETL for ISAM 195 

127 

EXCP execute channel program (PIOCS) 
215 

EXIT from user's interrupt routine 
235 

FEOV forced end of volume 137,138 
FEOV forced end of volume (PIOCS) 

225 
FEOVD 138 
FETCH 228 
FREE 203 
GET for ISAM 194 
GET SAM processing (see GET macro) 

117 
GETIME get time of day 231 
LBRET label return for DAM processing 

161 
LBRET label return PIOCS processing 

225 
LBRET label return SAM processing 

114 
LITE pocket light magnetic readers 

130 

macro definition (CONT.) 
LOAD 228 

macro 

MVCOM move to communications region 
230 

NOTE 135 
OPEN(R) for direct processing 159 
OPEN(R) for indexed SAM processing 

187,188 
OPEN(R) for physical IOCS processing 

223,224 
OPEN(R) OPEN for SAM processing 

111-114 
PDUMP partial dump of main stroage 

236 
POINTR 136 
POINTS 137 
POINTW 136 
POST intertask communications 202 
PRTOV print overflow 127 
PUT for ISAM 194 
PUT, SAM processing (see PUT macro) 

117-121 
RCB macro 200 
RDLNE read line for optical readers 

132 
READ for direct processing 161 
READ for indexed SAM processing 191 
READ for magnetic readers 128 
READ for tape or disk workfiles 135 
READ optical readers document mode 

131 
RELEASE 230 
RELSE macro sequential processing 

121 
REseN resend for optical readers 132 
RETURN to a program 248 
SAVE register contents 248 
SEOV system end of volume (PIOeS) 

226 
SETFL for indexed SAM processing 188 
SETIME following TEeB 232 
SETIME set interval timer 232 
SETL for ISAM 193 
STXIT set linkage to user routines 

232 
TECB 235 
TRUNe (truncate) SAM processing 121 
WAIT for timer elapse 236 
WAIT physical Ioes processing 215 
WAITF 164 
WAITF for indexed SAM processing 192 
WAITF for magnetic readers 129 
WAITF for optical readers 133 
WAITM intertask communications 201 
WRITE for direct processing 162 
WRITE for indexed SAM processing 

188-191 
WRITE for tape or disk workfiles 134 

(see also macro definition) 
assembling 22 
cataloging declarative macros 22 
categories, list of 16 
coding (DTFMT) sample 18 

Index 297 



macro ( CONT. ) 
completion macros 137 
DASD track protection 203 
declarative (DTF), description of 
declarative (DTF), symbolic units 
declarative macro (DTFXX) types 
declarative macro symbolic units 
declarative operand cards for DTF 
definition of 16 
definitions 16 
direct access 159-165 
DTFCD card reader/punch 
DTFCN console 41 
DTFDA direct access 145 

35 

DTFDI device independent 42-45 
DTFEN end-of-definitioncard 108 
DTFIS condition codes 175 

17 
19 

18 
19 

24 

DTFIS I/O area requirements 179 
DTFIS output area requirements 179 
DTFMR magnetic reader 46 
DTFMT magnetic tape 55 
DTFOR optical reader example 66 
DTFPH coding form example 220 
DTFPH physical IOCS file 219-222 
DTFPR printer macro example 73 
DTFPT macro example 77 
DTFSD coding form example 
DTFSD error options 90 

86 

DTFSD sequential DASD files 85 
DTFSR coding form example 109-111 
DTFSR serial device file 97-108 
ENDFL end file load mode (ISAM) 
format 24 
format of instructions 24 

189 

how to make self-relocating for IOCS 
17 

illustration notation conventions 25 
imperative macro types sequential 

processing 111 
indexed sequential 175-196 
initiation macros 111 
intertask communications 201 
interval timer and user exit 231 
keyword operands 24 
magnetic reader sequential processing 

128-130 
method-1 for timer 232 
method-2 for timer 235 
mixed format operands 24 
modification restrictions 11 
multitasking 197-212 
optical reader sequential processing 

131-133 
organization types 16 
positional operands 24 
processing schematic 17 
self-relocating IOCS, how to 17 
sequential I/O instructions 36 
sequential processing PUT macro 

117-121 
similarities between BPS, BOS, TOS & 

DOS 10 
supervisor restrictions 228 
supervisor-communications 227-243 

298 DOS Supervisor and I/O Macros 

macro (CONT.) ,/ 
symbolic units for declarative macro 

19 
track protection 202 
user exit 231 
workfile macros for tape and disk 

133 
magnetic character processing, 

characteristics of 48 
magnetic reader 

characteristics 48 
file (DTFMR) 46 
macros sequential processing 128-130 
module (MRMOD) 55 

magnetic tape unit codes 124 
magnetic tape 

channel switching (BPS/BOS) 127 
checkpointing 239 
file (DTFMT) .55-63 
macro (DTFMT) 55-63 
module (MTMOD) 63-65 
repositioning 241 
unit codes (CNTRL macro) 124 

main storage, definition 289 
main task, definition 289 
master index 

dummy entry 170 
for indexed sequential processing 

170 
method-1 macro (timer) 232 
method-2 macro (timer) 235 
MICR 

address adapters 9,48 
document buffer area 50 
document buffer format 272-275 
document processing 52-54 
external interruption 49 
files for checkpoint 239 
magnetic character characteristics 

48,49 
multiprogramming partition 49 
processing requirements 9 
programming considerations for 141.9 

stacker 53 
stacker selection ·restriction for 1419 

53 
stacker selection routine 49,50 
stacker selection times 50,51 
stacker selection timing 51,52 

mixed format 24 
module definition 

(see also module) 
card (CDMOD) 39,40 
DAHOD direct access 159 
device independent (DIMOD) 45 
DTFMT error options tape 59 
ISMOD indexed sequential 184-186 
magnetic reader (MRMOD) 55 
magnetic tape (MTMOD) 63-65 
optical reader (ORMOD) 72 
P~10D printer 74 
PTMOD paper tape 84,85 

module 
(see also module definition) 



module (CONT.) 
assembly examples 255-269 
cataloging 22 
definition of 16 
direct access 159 
DTFDA direct access file 159 
DTFDI device independent 45,46 
DTFIS index sequential file 184-186 
editing preassembled modules 22,23 
entry points 23 
function 20 
generation of 20 
linkage with DTF 21 
name, methods to generate 21 
names for CDMOD 40 
names for DAMOD 159 
names for DIMOD 46 
names for ISMOD 186 
names for MRMOD 55 
names for MTMOD 65 
names for ORMOD 72 
names for Pro-l0D printer 76 
names fqr PTMOD paper tape 85 
naming convention 21 
operands for SDMODXX 94-97 
overriding names 23 
recommended module names for SDMODXX 

96 
recommended names for DAMOD 159 
restriction concerning missing 

functions 20 
sequential DASD (SDMODXX) 94-97 
shared modules and files 204 
subset/superset names 21 
subset, definition of 20 
superset, definition of 20 

MRMOD 55 
MTMOD 65 
multifile volume, definition 289 
multiprogramming for MICR devices 49 
multiprogramming restrictions supervisor 

macros 228 
multiprogramming system, definition 289 
multi task operation, definition 289 
multitasking 

considerations 204 
flowchart example 198,206-212 
macros' 197-212 

multivolume file, definition 289 
MVCOM, move to communications region macro 

230 

name field, macro instruction 24 
names 

card modules (CDMOD) 40 
device independent modules (DIMOD) 

46 
direct access modules (DAMOD) 159 
indexed sequential modules (ISMOD) 

186 
magnetic reader modules (MRMOD) 
magnetic tape modules (MTMOD) 
optical reader modules (ORMOD) 

55 
65 

72 

names (CONT.) 
paper tape modules (PTMOD) 85 
printer modules (PRMOD) 76 
recommended for modules 186 
sequential DASD modules (SDMOD) 96 

nonstandard labels 
ASCII restriction 31 
checking 33 
checking/writing for tape 114 
deffnition 289 
input for disk- 33 
reading, writing, and checking 270 
writing tape 31 

notations, conventions 25 
NOTE macro 1 3 5 ~ 
numbering, batch (see MICR document buffer 

area) 

OPEN processing of standard DASD labels 
27 

OPEN(R) macro 
direct access processing 159 
indexed sequential processing 187 
physical IOCS processing 223,224 
prime data extents 187 
sequential processing 111-114 

opening 
direct access file 159-
direct access sequential file 

111-114 
indexed sequential file 
physical IOCS file 223 
tape output file 112 

operand(s) 

187 

cards for declarative macros 
positional/keyword for macros 
SDMODXX 94-97 

24 
24 

operating system, definition 289 
operation field, macro instructions 
operator 

24 

verification table for DASD 
optical reader 

codes 126 
DISPLAY macro 131 

242 

fixed unblocked records 70 
GET macro sequential processing 
header information 113 
macro (DTFOR) 65-70 
module (ORMOD) 71,72 
opening a file (DTFSR) 
read line (RDLNE) macro 
record format 70 
resend macro 132 

113 
132 

restriction concerning GET or READ 
99 

70 undefined records 
WAITF macro 133 

ordinary register notation 
ORMOD 72 
out,put 

logical file 28 
nonstandard labels 
standard tape labels 

25 

31 
30 

131 

Index 299 



output (CONT.) 
tape files 29 

overflow area 
indexed sequential processing 171 
option "172 

overflow records, track index 169 
overlap, physical transients 228 
overlapping extents 168 

paper tape 
characteristics 80-84 
code tr~nslation 81,82 
end-of-file (input only) 
end-of-record character 
end-of-tape (DTFSR) 101 
error conditions 83,84 
file characteristics 80 
macro (DTFPT) 76-80 
module (PTMOD) 84,85 
programming considerations 
record formats 80 
summary of PTMOD 85 
undefined records 81 

82 
81 

84 

parameter list register 248 
parenthesis, use of in macro instruction 

10 
PDUMP partial dump of main storage macro 

236 
phase, definition 290 
phases, searching for 
physical IOCS 

228 

all volumes mounted 224 
alternate tape switching 
CCB macro 213 
checkpoints 218 
CLOSE macro 226 

215 

command control block format 214 
command control block macro" 213-215 
considerations 215 
DTFPH macro 219-222 
EXCP macro 215 
general information 
macro self-relocation 
opening files 223 

213 
17 

processing, when to use 
record processing 213 

18 

record "retrieval example 14 
restriction concerning DASD file 
retrieving a record 14 
routine 2"13 
routine functions 12 
routines, action of 11 

11 

single volume mounted for input 224 
single volume mounted for output 223 
symbolic unit names, when specified 

" 19 
vs logical IOCS 
WAIT macro 215 
when to use 18 

11 

physical record, definition 
physical transient overlap 
PIOCS (see physical IOCS) 

290 
228 

300 DOS Supervisor and I/O Macros 

pocket code (MICR) 
pocket lights (MICR) 
POINTR macro 136 
POINTS macro 137 
POINTW macro 136 

49 
130 

positional operands for macros 24 
positioning, tape input/output file 

31 
POST intertask communications macro 
pre loading registers 25 
print overflow 

30, 

202 

basic operatitig system differences 
10 

DTFPR macro for sequential processing 
72-74 

macro 127 
printer and punch control PUT macro SAM 

processing 120 
printer-keyboard 

buffering 218 
file (DTFCN) 41 

printer 
codes 124 
control PUT macro sequential 

processing 120 
macro (DTFPR) 72-74 
module (PRMOD) 74 

private core image library 
private library, definition 
PRMOD 76 
problem program 

228 
290 

255-269 assembly example 
definition 290 
register initialization 

processing (sequential) 
DTFCD 35 
DTFCN 41 
DTFDI 42 
DTFMR 46 
DTFMT 55-63 
DTFOR 65 

11 

DTFPR macro for SAM processing 
DTFPT macro for SAM processing 
DTFSD macro 85-94 
DTFSR macro 97-111 
macros 114 
macros, list of 18 

processing program, definition 
processing 

logical IOCS records 
MICR documents 52-54 
physical Ioes records 
records sequentially 

12 

213 
14 

290 

72-74 
76-80 

program machine language, definition of 
16 

program 
called 244 
calling 244 
channel 219 
check interruption 234 
checkpoint 237 
loading 228 

programmer logical units 20 
definition of 20 



programming considerations for p~per tape 
devices 84 

programming technique for unity 
self-relocating code 281,282 

protection macro 
disk track 202 
resource 200 

protection, of resources 200 
PRTOV (print overflOW macro) 127 
PTMOD (paper tape module) 84,85 
punch and printer control, PUT macro SAM 

processing . 120 
PUT mac,ro 

indexed sequential processing 194 
punch and printer control 120 
sequential processing 117-121 
spanned records, sequential processing 

119 

queued telecommunications access method 
(QTAM) 15 

random (see also DASD) 
random retrieval, ISAM macros 191 
RCB macro 200 
RDLNE, read a line macro for MICR 
read backward feature, restriction 
read backward, labeled tape 32,117 
read backward, 7-track restriction 
read line macro for optic~l readers 
READ macro 

direct access processing 161 
for ISAM 191 
magnetic readers 128 

132 
32 

117 
132 

optical readers (document mode) 131 
tape or disk workfiles 134 

read-punch 
IBH 1442 or 2520 (CNTRL) 125 
IBM 2540 (CNTRL) 125 

reader, end-of-file condition DTFCD 37 
reader 

magnetic tape (DTFNR) macro 46-48 
optical (DTFOR) macro 65-70 
read-punch, IBM 1442 or 2520 (CNTRL) 

125 
record formats 

optical reader file 
paper tape reader 

record(s) 

70 
80 

(see fixed unblocked) 
blocked 116 
blocked PUT macro sequential 

processing 119 
capacity direct access 
definition 290 
fixed length 116 

164 

organization for ISA1-1 168 
reference fields for DAM 142 
reference, use in direct access method 

15 
retrieval example, using IOCS 14 
spanned 117 

record (s) (CONT.) 
spanned, PUT macro sequential 

processing 119 
types for direct access method 140 
types for ISAM 166 
unblocked 116 
unblocked PUT macro sequential 

processing 119 
undefined PUT macro sequential 

processing 120 
updating PUT macro sequential 

processing 120 
variable length PUT macro SAM 

processing. 119 
o contents for DAM 145 

reenterable, definition 290 
reference methods 

indexed sequential 166-196 
physical IOCS 213-226 
sequential 35 

register(s) 
calling programs 244 
floating point restriction for 1419 

53 
initialization, problem program 11 
linkage 244 
'notation 25 
notation, special 25 
parameter list 248 
pre loading 25 
register 14 restriction 67 
return 248 
saving and restoring 244 
special usages 26 
usage 26 
user stacker selection for MICR 49 

RELEASE macro 230 
release 

macro sequential processing 121 
relocatable, definition 290 
RELSE macro 121 
repositioning 

I/O files 240 
magnetic tape 240 

requirements 
language translators 9 
MICR processing 9 
storage protection feature 9 
telecommunications 9 

RESCN macro for optical readers 132 
resource protection macros 200 
resource, definition 290 
restart 

address for checkpoint 238 
checkpoint restriction 11 
definition 290 

restore registers 244 
restrictions 

batch numbering updates for 1419 53 
concerning DASD files 11 
control macro with DTFDI 42 
direct access method extent statement 

20 
direct access method multivolume file 

20 

Index 301 



restrictions (CONT.) 
error correction routines optical 

reader 67 
GET or READ macros for optical readers 

99 
journal tape processing 67 
LABADDR routine 11 
MICR processing 9 
missing function in logic module 20 
nonrecoverable error for optical 

readers 67 
read backward feature 32 
register 14 usage 100 
sequential access method symbolic 

units 20 
SETIME macro 11 
standard.label routine 29 
supervisor macro 228 
user header/trailer labels 30 
1419 stacker selection I 53 

retry command chaining 218 
RETURN 

maCro 248 
register 248 

SAM (see sequential access method) 
SAVE macro 248 
save registers contents macro 248 
savearea . 245-247 

checkpoint 239 
SDMOD (sequential DASD module) 94-97 
SDMODXX operands, chart 95 
searching for phases 228 
segmented spanned records 276 
selective tape listing 74,118 
self-relocating program 278-283 

advantage 281 
definition 290 
programming techniques 281,282 
rules for writing 278,279 
sample program 283 

SEOV (system end of volume) macro for PIOCS 
226 

sequence link 171 
sequential access method (SAM) list 18 
sequential access method (SAM) 35-139 

description of 14 
sequential processing 14 

description of 14 
DTFCD 35 
DTFCN 41 
DTFDI 42 
DTFNR 46 
DTFMT 55-63 
DTFOR 65 
DTFPR macro for SAM processing 72-74 
DTFPT macro for SAM processing 76-80 
DTFSD macro 85-94 
DTFSR macro 97-111 
macros 114 
macros, list of 18,36 
usage of 14 

sequential 
file contents 14 

302 DOS Supervisor and I/O Macros 

sequential (CONT.) 
files (DTFSD) 85 
I/O macro instructions 36 
open file 111-114 
processing coding form examples for 

DTFCD 37 
processing coding form examples for 

DTFCN 41 
retrieval macro for ISAM 192 

serial device file (DTFSR) 97-108 
set linkage 232 
SETFL macro for ISAM 188 
SETIME 

interval timer macro 232 
macro usage restrictions 11 

SETL macro for ISAM sequential retrieval 
193 

shared 
modules and files 204 
track 173 

SLI indicator, optical reader 70 
source program macro instructions 16 
spanned records 

format 276 
GET macro 117 
PUT macro sequential processing 119 
segmented 276 

special register notation 25 
split-cylinder) concept 113 
SSELECT restriction (DTFCD) 39 
stacker. selection 

how to determine for MICR devices 51 
52 

minimum times for MICR 51 
routine for MICR 49,50 
1419 programming considerations 53 

standard file labels 
DASD 249 
formats 250 

standard labels 
(see also tape labels) 

ASCII processing 30 
checking 27,33,161 
DASD 27-29 
DASD build 28 
DASD checking 29 
DASD CLOSE 28 
DASD format 250 
DASD input/output logical files 28 
DASD OPEN 27 
DASD user LABADDR routine 28,29 
DASD user standard 28,29 
DASD writing user standard 28,29 
format for DASD 250 
routine, restriction 29 
tape output files 29,30 
writing for DAM 161 
writing tape 30 

standard module names 21 
standard tape labels 251,252' 
statistics, error information for direct 

access 147-151 
status code (ISAM) 175 
storage area 

DAM 141 



) 
storage area (CONT.) 

indexed sequential processing 166 
STXIT set linkage to user routines 232 
subset module, definition of 20 
subset/superset 

CDMOD names 40 
DAMOD names 159 
DIMOD names 46 
ISMOD names 186 
module names & examples 21 
MRMOD names 55 
MTMOD names 65 
ORMOD names 72 
PRMOD names 76 
PT,HOD names 85 
SDMOD names 97 

subtask initiation/termination macros 198 
subtask, definition 290 
superset module, definition of 20 
supervisor 290 

communications macros 227-243 
communications macros, definition of 

16 
communications region 229 
macro restrictions 228 

suppress length indicator, optical reader 
70 

symbolic filename 24 
symbolic I/O assignment, definition 290 
symbolic unit addresses 19 
symbolic units for declarative macro 19 
system end-of-volume macro 226 
system logical units 19 
system resident device 9 

t pointer, checkpoint macro 239 
tables 

direct linkage 245 
operator verification for checkpoint 

242 
tape checkpointing 239,240 
tape input files 32 
tape input files, opening for sequential 

processing 112 
tape label card information 10 
tape label cards 30 
tape labels 

checking nonstandard 33 
checking/writing 114 
file header 251 
header labels 30 
input files label checking 32,33 
output files 29,30 
unlabeled input files 34 
user standard 30 
writing nonstandard 32 
writing standard 30,30 
writing unlabeled 31 

tape output files 29 
tape output files, ope.ning for sequential 

processing 112 
tape positioning 

input 32 

tape positioning (CONT.) 
output 30 

tape 
DTFMT macro 55 
input file 32 
input file opening sequential 

processing 112 
output file opening for sequential 

processing 112 
repositioning 240 
selective listing 74,118 
switching 215' 
switching (BPS/BOS) 127 
unit codes 124 
unlabeled file 31 

TECD build timer event control block 235 
telecommunication ,requirements 9 
telecommunications, definition 290 
teleprocessing, definition 290 
termination codes, abnormal 233 
time, get time of day macro 231 
timer 

event control block, building TECB 
235 

macro 232 
timing, MICR stacker selection 
track protection macros 202 
track(s) 

hold 151,178 
hold, definition 
hold, direct access 
hold, ISAM 178 

290 
151 

hold, ISAM implementation 
hold, ISMOD 184 
index dummy entry 169 
index for ISAM 168 
index overflow records 168 

50-52 

203 

reference fields for DAM 142,143 
reference, use in direct access method 

15 
required for checkpoint 
shared 173 

trailer labels 
DASD 27 
tape 30 

240 

trailer length (DTFPT) input only 
transient overlap, physical 228 
translation of ASCII-EBCDIC 13 
TRUNe macro sequential processing 

unblocked records 
GET macro 116 

83 

121 

PUT macro sequential processing 119 
undefined records 

definition 290 
GET macro ·117 
optical reader files 70 
paper tape files 81 
PUT macro sequential processing 120 

universal character set codes 125 
unlabeled input files on tape 34 
unlabeled tapes, writing 31 
updating records (PUT) macro sequential 

processing 120 

Index 303 



user 
user 

user 
49 

user 

user 

exit macros 232 
header label 
disk 28 
maximum allowable 
tape 30 
stacker selection 

standard labels 
checking 29,33 
checking/writing 
description of 
disk output 28 
how to build 30 
tape output 30 
writing 28 
writing on disk 
trailer labels 
DASD input file 
disk 27 
maximum allowable 
tape 30 

number 30 

routine for MICR 

DASD 114 
250 

28 

250 

number 30 

variable length record, definition 290 
variable length records (PUT) macro SAM 

119 
volume card information 10 
volume label on output 30 
volume labels for DASD 249 
volume table of contents (VTOC) 27 
volume, definition 290 
VTOC - volume table of contents 27 

WAIT 
macro PIOCS 215 
timer elapse macro 236 

Index 304 

WAITF macro 
indexed sequential file 192 
magnetic readers 129 
optical readers 133 

WAITM intertask communications macro 201 
work area 

definition of 114 
NICR document buffer 50 
requirements for indexed sequeritial 

files 184 
work file macros 133 
WRITE 

macro direct access processing 162, 
163 

macro for indexed sequential 
processing 188-191 

macro for tape or disk workfiles 134 
nonstandard labels 31 
standard tape labels 30 
user standard labels 28 

wrong length records 83 

1285/1287/1288 optical reader codes 
127 

1287/1288 optical reader programming 
considerations 71 

1442 card read punch codes 125 

2520 card read punch codes 125 
2540 card read punch codes 125 

126, 

( 
\.1 





GC24-5037 -10 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10S04 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, }'lew York, New York 10017 
[International] 

c 
o 
en 
en c 
"0 
CD 

:2 
in' 
o ., 
OJ 
::J 
a. 

a 
s: 
OJ 
C') ., 
o 
en 

C) 
n 
r-..;) 
~ 

I 

0'1 o 
tAl ...., 

I -o 



· · · · · • • I · I 
I 
I 
I 
I 

i 
I 
I 

I· 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Reader's Comments Form 

DOS Supervisor and I/O Macros GC24-S037-10 

Your comments, accompanied by answers to the following questions, help us produce 
better publications for your use. If your answer to a question is "No" or requires 
qualification, please explain in the space provided below. Please give specific page 
and line references with your comments when appropriate. All comments will be 
handled on a non-confidential basis. Copies of this and other IBM publications can 
be obtained through IBM br~ch offices. 

Yes No 

• Does the publication meet your needs? 0 0 

• . Did you find the material: 
Easy to read and understand? 0 0 
Organized for convenient use? 0 0 
Complete? 0 0 
Well illustrated? 0 0 
Written for your technical level? 0 0 

• What is your occupation? _______________________ _ 

• How do you use this publication: 
As an introduction· to the subject? 0 
For advanced knowledge of the subject? 0 
For information about operating procedures? 0 

Your comments: 

As an instructor in a class? 0 
As a student in a class? 0 
As a reference manual? 0 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
If you would like a reply, please supply your name and address on the reverse side of 
this form. 



GC24-5037 -1 0 

Your comments, please ... 

This publication is one of a series that serves as a· reference source for systems 
analysts, programmers, and operators of IBM systems. Your answers to the 
questions on the back of this form, together with your comments, help us 
produce better publications for your use. Each reply is carefully reviewed by 
the persons. responsible for writing and publishing this material. All comments 
and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in using 
your IBM system should be directed to your IBM representative or to the IBM 
sales office serving your locality. 

Fold Fold 

~ - - - - - - - '- - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - -

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P. O. Box 6 

Endicott, N. Y. 13760 

FIRST CLASS 
PERMIT NO. 170 
ENDICOTT, N. Y. 

Attention: Programming Publications, Dept. G60 

Fold 

If you would like a reply, please print: 

Your Name _______________________________________________________ ~ ___________________________________________________________________________ __ 

Company Name ________________________________________________ _____ 
Department _________________________________________________________________________________________________________ _ 

Street Address _______________________________ _ 

a~ __ --------------------------------------------Srore ______________________ __ 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

z~ Code------------

Fold 

~' 

n 
S 
> 
0-
:::J 

CQ 

r-s· 
" 

c 
0 
en 
en c 
"0 
(1) 
~ 

< 
iii· 
0 
~ 

III 
:::l 
a. -0 
s: 
III 
0 
~ 

0 
en 

en 
w 
m 
0 

I 

W 
.9 

-0 
~ 

3· 
r-+ 
(1) 

I 
a. - 3· 
C 
en 
~ 
C) 
n 
I'.) 
~ 

I 

t.TI 
0 
W ...... 

I -0 


