File Number S360-30 (DOS)
Order No.'Gqu-SOBB—u

Program Logic

DOS LIOCS Volume 3
SAM and DAM for DASD

Program Numhérs
SDMOD 360N-10-455
DAMOD 360N-10-454

This reference publication is one of four Program Logic
Manuals that describe the internal logic of the Logical IOCS
(Input/Output Control System) programs for the IBM System/360
Disk Operating System. The four related Program Logic Manuals
are listed below.

Note: Although titles of some DOS publications have been
simplified, the change does not affect the contents of the
publications. '

Volume 1: Introduction, GY24-5020.

Volume 2: Unit Record, Magnetic Tape, and Device Independent
Files, GY24-5087.

Volume 3: SAM and DAM for DASD, GY24-5088.
Volume 4: ISFMS GY24-5089.

This manual is intended for use by persons involved in
program maintenance and by system programmers who are altering
the program design. Program logic information is not
necessary for the operation of the programs described.
Therefore, distribution is limited to those with maintenance
and alteration responsibilities. :

Effective use of this publication requires an understanding
of IBM System/360 operation and the Disk Operating System
Assembler language and its associated macro definition
language. Reference publications for this information are
listed in the Preface.

For the titles and abstracts of other related publications,
I refer to the IBM System/360 and System/370 Bibliography,
GA22-6822.

DOS Release 25

Fifth Edition (April 1971)

This publication was formerly titled IBM System/360 Disk
Operating System Logical IOCS Volume 3: Sequential and
Direct Access DASD Files. Although titles of some . DOS
publications (including this one) have been simplified, the:
change does not affect the contents of the publications.

This edition applies to Release 25 of IBM System/360 Disk
Operating System and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein;
before using this publication in connection with the
operation of IBM systems, consult the latest System/360 and
System/370 SRL Newsletter, GN20-0360, for the editions that
are applicable and current.

This edition is a major revision of, and obsoletes,
GY24-5088-3 and Technical Newsletter GN24-5421.

Summary of Amendments .

The changes to this manual reflect the program modifications
concerning data set security and improved forced end of
volume for disk. Support is also included for the IBM 2319
Disk Storage Facility. The flowchart symbols used in this
manual conform with the American National Standards
Institute, Inc. flowcharting standards. See Appendix F for
an explanation of the symbols. Miscellaneous maintenance
changes are also included. ’

Changes to the text and illustrations are indicated by a
vertical line to the left of the change.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Programming Publications,
Department G60, P.O. Box 6 Endicott, New York, 13760.

© Copyright International Business Machines Corporation 1966, 1968, 1970,

1971

This manual consists of four sections:
e General Information.
® Sequential Access DASD Files.
e Direct Access DASD Files.
e Detailed Flowcharts.

The first section supplies general
information pertinent to both sequential
access DASD files and direct access DASD
files, including LIOCS extensions for
Asynchronous Processing, DASD label
processing, and common logical transient
phases.

The second section supplies descriptions
of the declarative macros and DTF tables,
descriptions of the imperative macros, and
the initialization and termination
procedures for sequential access DASD
files.

The third section supplies information
about direct access DASD files, including
descriptions of the declarative macros and
DTF tables, discussion of the referencing
methods and addressing systems,
descriptions of the imperative macros, and
initialization and termination procedures.

The fourth section contains the detailed
flowcharts of the first three sections.

PREREQUISITE PUBLICATIONS

Note: Although titles of some DOS
publications have been simplified, the
change does not affect the contents of the
publications.

e -IBM System/360 Principles of Operation,
GA22-6821.

PREFACE

e DOS Data Management Concepts,
GC2u4-3427.

e DOS Supervisor and I/0O Macros,
GC24-5037.

e DOS System Control and Service,
GC24-5036.

e IBM System/360 Disk and Tape Operating
Systems, Assembler Specifications,
GC24-3414.

RELATED PUBLICATIONS

e Introduction to DOS Logic, GY24-5017.
GY24-5017.

e DOS IPL and Job Control, GY24-5086.

e DOS Supervisor and Related Transients,
GY24-5151.

e DOS Logical Transients, GY24-5152.

e DOS System Service Programs, GY24-5153.

e DOS Librarian, GY24-5079.

e DOS Linkage Editor, GY24-5080.

e IBM System/360 Disk Operating System,
Basic Telecommunications Access Method,
Program Logic Manual, GY30-5001.

e IBM System/360 Disk Operating System,
Queued Telecommunications Access
Method, Program Logic Manual,
GY30-5002.

e DOS Operating Guide, GC24-5022.

e DOS Messages, GC24-5074.

Preface 3

4 DOS LIOCS Volume 3 SAM and DAM for DASD

INTRODUCTION « « o o o « o o o o o

GENERAL INFORMATION . . . « « « «
Asynchronous Processing Extensions
Reentrant Modules . . . « « . .
Track Hold Function
DASD Label Processing « « « « « «
Commonly Used Logical Transients .

SEQUENTIAL ACCESS DASD FILES . . .
Record Formats « « « « « o o &
Fixed-Length Records (Format F)
Variable-Length Records (Format V
Undefined Records (Format U) .
Storage Areas . . o .
Input/Output Areas
Module Save Areas
DTFSD Macro . « «
Data Files . . -
Work Files . -
DTFPH Macro . . « o o
Module Generation Macros .
Fixed-Length Record Modules -
Variable-Length Record Modules
Undefined Length Record Modules
Work File Module
Initialization and Termination
Procedures « « « o o o o o o o @
Sequential DASD Open/Close Loglc

- -

DIRECT ACCESS FILES . .
Direct Access Method . .
DTFDA MacrOo . « « « «
DTFPH Macro . « « o« « o« =
Reference Methods and Addre551ng
SYStemMS .« « ¢ o o o o o o o o o
Track Reference <« « « <

e 8 8 8 & 8 8 8 ¢ b 3 s s N e

e 8 8 8 o 0

e 8 & & & 8 o & & .8 & 8 s & 8 o 2

CONTENTS

RecOrd ID . v ¢ ¢ o o o o o o =
Record K€Y « v 2 o o o o o o «
Conversion of Relative Addresses
Multiple Track Search
IDLOC &« o o « e o o o o s o o @
Control Field - Spanned Records
Error/status Indicator
Capacity Record (RZERO or RO)
WRITE RZERO Macro . « « « <« «
Formatting Macro . . « « « - .
DA Logic Module Macros
Direct Access Modules
Initialization and Termination .
Open Direct Access Chart 07 .

s 8 6 o 85 2 0 s 8 0 s 0 s

SEQUENTIAL AND DIRECT ACCESS CHARTS .
SEQUENTIAL ACCESS CHARTS « « « « o «
DIRECT ACCESS CHARTS « « « = s « o o &«
APPENDIX

A: LABEL CROSS-REFERENCE LIST

APPENDIX B: MESSAGE CROSS-REFERENCE
LIST « « « 2 2 « « o o« o« o« a o« o o « =

APPENDIX C: SUPERVISORVCALLS (svC's) .

APPENDIX D: MICROFICHE CROSS-REFERENCE
INDEX =« o ¢ o o o 2 o o o o o o o o o

APPENDIX E:

APPENDIX F: EXPLANATION OF FLOWCHART
SYMBOLS =« o 2 « o o « o a o o o o o =

APPENDIX G: DASD LABEL INFORMATION . .

INDEX "« o o o 2 e o o o o o a o a o o

.101
.101
127
127
.135
.154
.315

-375

.387

.392

-394

COMMAND CONTROL BLOCK (CCB) 396

-399
.400
413

Contents 5

FIGURES

Figure 1. Volume Table of Contents
(VTOC) for a Nonresident Disk Pack .
Figure 2. SYSRES DASD Label
Information .« « « ¢ o o o« o o o o o @
Figure 3. VTOC Display (DSPLYV
RESPONSE) ¢ « « « o o o o o o o o o «
Figure 4. VTOC Dump (CANCELV
RESPONSE) @ o o o o o o o o o o« o o @
Figure 5. Message Codes for Disk Open
Error Message Writer (part 1 of 3) .
Figure 6. Fixed-Length Record Format
(Format F) © e e e e e e o o e o o o

Figure 7. Variable-Length Record
Format (Format V) . « <« ¢« « « o « &
Figure 8. Spanned Records (Unblocked)
Figure 9. Segmented Spanned Records

(Blocked) o« o« o o o o o o o o o o «

Figure 10. Undefined Record Format .
Figure 11. SDMODFI Save Area . « « «
Figure 12. SDMODFO Save Area . « s« «
Figure 13. SDMODFU Save Area .« « « «
Figure 14. SDMODVI Save Area . . « «
Figure 15. SDMODVO Save Area . « «
Figure 16. SDMODVU Save Area . . « «
Figure 17. SDMODUI Save Area . . « «
Figure 18. SDMODUO Save Area . . « .
Figure 19. SDMODUU Save Area . « « .
Figure 20. SDMODW Save Area . « -« .
.Figure 21. DTFSD Table -- Data Flles
(Part 1 of 12)
Figure 22. DTFSD Table -- Work Flles
(Part 1 0£ 3) « o o e
Figure 23. DTFPH Table for Sequentlal
Disk (Part 1 of 2) e e e e e e e e
Figure 24. DTFSD Channel Programs
(Part 1 of 3) . .

Figure 25. DTFDA Table (Part 1 of 6)
Figure 26. DTFPH Table For Direct

Access e o % a s e 5 o s e e s o o
Figure 27. Record ID Returned to IDLOC

e o & & & & s o o s s

13
14
16
18
20
22

47
50

52
86

92
95

6 DOS LIOCS Volume 3 SAM and DAM for DASD

Figure 28. Spanned Record Control Field 96
Figure 29. Error/Status Indicator

(Part 1 of U4) . ¢ o ¢ ¢ o o o o o o « « 97
Figure 30. Multisegment Spanned

Record . <« <104
Figure 31. Direct Access Descriptor

BYtEE o ¢ o o o o o o o o o o o o o « « 2108
Figure 32. Direct Access Channel

Program Builder Strings109
Figure 33. Basic CCWs for Direct

Access Channel Program Builder « « « <110
Figure 34. Direct Access Channel

Program Descriptor Bytes B I i
Figure 35. Example of the Direct

Access Channel Program for a WRITE ID

MACYXO o o o o o o o o o o o o « « o« o« 2112
Figure 36. DA Channel Programs (Part

1 of 14) e e o o o o 2113
Figure 37. DSKXTNT Table for Relative
Addressing e o e e o o o o o o o o o 2127
Figure 38. Alteration Factors for

Relative Addressing . « « « « « o « « 127
Figure 39. Format of Extent

Information to User . . . « « « « « . .133
Figure 40. Message Cross-Reference

List (Part 1 of 5) « o = . 387
Figure 41. Supervisor Calls (Part 1)
of 2) . . . « o o e e o o o o <392
Figure 42. Command Control Block

(Part 1 0of£ 3) -396
Figure 43. Standard DASD Volume Label 403
Figure 44. Standard DASD File Label,
Format 1 (Part 1 of 3) .« « - o o404
Figure 45. Standard DASD F11e Label,
Format 2 (Part -1 . of 2) o o o« o« <407
Figure 46. Standard DASD File Label,
Format 3 e e e o o o o o e o e o =« o U409
Figure 47. Standard DASD File Label,
Format 4 (Part 1 of 2) e e o o o o o o410
Figure 48. Standard DASD File Label,
Format 5 e e e o o e o o e e o o o o o412

Chart 0l." Sequential Access DASD
Open, General FIOW « « « « « 2 o « o« «
Chart 02. Sequential Access DAS

Open, Input Files . .« « ¢ ¢ « o « o« «
Chart 03. Sequential Access DASD
Open, Output Files (Section 1 of 2) .
Chart 04. Sequential Access DASD
Open, Output Files (Section 2 of 2) .
Chart 05. Sequential Access DASD
open, WOork FileS . « « o ¢ « o o o o «
Chart 06. Sequential Access DASD
Close, Bll1 FileS . o« o o« o o o « o« o «
Chart 07. Open Direct Access, General
LOGiC @ 4 ¢ ¢ ¢ @ o e o o o o o o o
Chart AA. $$BOFLPT: DASD File Protect
(Section 1 of 4) . & . ¢ & & ¢ & & o &
Chart AB. $$BOFLPT: DASD File Protect
(Section 2 of 4) . . ¢ ¢ ¢ ¢ v & o & .
Chart AC. $$BOFLPT: DASD File Protect
(Section 3 0of 4) . . ¢ ¢ ¢ ¢ ¢ o o o .
Chart AD. $$BOFLPT: DASD File Protect
(Section 4 of 4) . . . ¢ ¢ ¢ ¢ ¢ o o &
Chart AE. 3BODSPV: VTOC Display,
Phase 1 . ¢ ¢ @ ¢« o o o e« « o o o« o o
Chart AF. 3BODSPW: VTOC Display,
Phase 2 (Section 1 0f 3)

. Chart
Phase
Chart

AG. $3BODSPW: VTOC Display,

2 (Ssection 2 0f 3)
AH. $$BODSPW: VTOC Display,
Phase 2 (Section 3 0of 3)
Chart AJ. $$BOVDMP: VTOC Dump
(Section 1 0of 2) . . & ¢« ¢ ¢ ¢ o o o .
Chart AK. $$BOVDMP: VTOC Dump
(Section 2 of 2) . .
Chart AL. $$BOWDMP:
(Section 1 of 2)
Chart AM. $$BOWDMP: VTOC
(Section 2 of 2) . .
Chart AN. 3BOMSGl: Disk Open Error
Message Writer, Phase 1 (Section 1 of
2) ¢ e e e e e e e e e e s
Chart AP. $$BOMSGl: Disk Open Error
Message Writer, Phase 1 (Section 2 of
2) @ 4 e e o e e o e s s e o s s o o o
Chart AQ. $$BOMSG2: Disk Open Error
Message Writer, Phase 2 (Section 1 of
3) i i i e e e e e e e e e e ae e
Chart AR. $$BOMSG2: Disk Open Error
Message Writer, Phase 2 (Section 2 of
3) i i i e e e e e e e e e e e e e e
Chart AS. 3BOMSG2: Disk Open Error
Message Writer, Phase 2 (Section 3 of
)
Chart AT. $$BODSMW: Data Security
Message Writer (Section 1 of 2) . . .
Chart AU. $$BODSMW: Data Security
Message Writer (Section 2 of 2) . . .
Chart BA. SDMODFI: With Truncation,
GET Macro (Section 1 of 5)
Chart BB. SDMODFI: With Truncation,
GET Macro (Section 2 0of 5)

- -

VTOC Label List

Label List

.129
.135
.136
.137
.138
.139
.140
.141
.142
.143
.184
.145

146

.147

.148

.149

.150

.151
.152
.153
.154

.155

Chart BC.
GET Macro
Chart BD.
GET Macro
Chart BE.
GET Macro
Chart BF.

Truncation,

Chart BG.

Truncation, GET Macro (Section 2

Chart BH.

Truncation,

Chart BJ.

Truncation, GET Macro (Section 4

Chart BK.
PUT Macro
Chart BL.
PUT Macro
Chart BM.
PUT Macro
Chart BN.
PUT Macro
Chart BP.
PUT Macro
Chart BQ.

SDMODFI: With Truncation,
(Section 3 0f 5)
SDMODFI: With Truncation,
(Section 4 of 5)
SDMODFI: With Truncation,
(Section 5 0f 5)
SDMODFI: Without

GET Macro (Section 1
SDMODFI: Without

SDMODFI: Without
GET Macro (Section 3
SDMODFI: Without

SDMODFO: With Truncation,
(Section 1 0f 5)
SDMODFO: With Truncation,
(Section 2 of 5)
SDMODFO: With Truncation,
(Section 3 0of 5)
SDMODFO: With Truncation,
(Section 4 of 5)
SDMODFO: With Truncation,
(Section 50f 5)
SDMODFO: With Truncation,

Close Routine, TRUNC MacCro . « « < «

Chart BR.

Truncation, PUT Macro (Section 1

Chart BS.

Truncation,

Chart BT.

Truncation, PUT Macro (Section 3

Chart BU.

Truncation, PUT Macro (Section 4

Chart BV.

SDMODFO: Without

SDMODFO: Without
PUT Macro (Section 2
SDMODFO: Without

SDMODFO: Without

SDMODFO: Without

Truncation, Close File Routine . . .

Chart BW.

SDMODFU: With Truncation,

GET Macro and CLOSE Routine (Section

of 10) .

Chart BX.
GET Macro
Chart BY.
GET Macro
Chart BZ.
GET Macro
Chart CA.
GET Macro
Chart CB.
GET Macro
Chart CC.
GET Macro
Chart CD.
GET Macro
Chart CE.
GET Macro
Chart CF.
GET Macro
Chart CG.
PUT Macro
Chart CH.

Truncation,

SDMODFU: With Truncation,
(Section 2 of 10)
SDMODFU: With Truncation,
(Section 3 of 10)
SDMODFU: With Truncation,
(Section 4 of 10)
SDMODFU: With Truncation,
(Section 5 of 10)
SDMODFU: With Truncation,
(Section 6 of 10)
SDMODFU: With Truncation,
(Section 7 of 10)
SDMODFU: With Truncation,
(Section 8 of 10)
SDMODFU: With Truncation,
(section 9 of 10)
SDMODFU: With Truncation,
(Section 10 of 10)
SDMODFU: With Truncation,
SDMODFU: Without

GET Macro and CLOSE

Routine (Section 1 of 9)

CHARTS

of u)
of 4)
of 4)

of 4)

of 4)
of u4)
of 4)
of 4)

.156
.157
.158
.159
.160
.161
.162
.163
.164
.165
.166
.167
.168
.169
.170
71
172

.173

.174
.175
.176
.177
.178
.179
.180
.181
.182
.183

.184

.185

Charts 7

Chart CJ. SDMODFU: Without
Truncation, GET Macro (Section 2 of 9)
Chart CK. SDMODFU: Without
Truncation, GET Macro (Section 3 of 9)
Chart CL. SDMODFU: Without
Truncation, GET Macro (Section 4 of 9)
Chart CM. SDMODFU: Without
Truncation, GET Macro (Section 5 of 9)
Chart CN. SDMODFU: Without
Truncation, GET Macro (Section 6 of 9)
Chart CP. SDMODFU: Without
Truncation, GET Macro (Section 7 of 9)
Chart CQ. SDMODFU: Without
Truncation, GET Macro (Section 8 of 9)
Chart CR. SDMODFU: Without
Truncation, GET Macro (Section 9 of 9)
Chart CS. SDMODFU: Without
Truncation, PUT MACrO . « « « « « o« =

Chart CT. CNTRL, RELSE Macros:

Fixed-Length Record Modules
Chart DA. SDMODVI: GET Macro (Section
1 0f 6) & @ ¢ ¢« o o o o« o o o o o o @
Chart DB. SDMODVI: GET Macro (Section
20 6) ¢ ¢ 4 4 e 4 4 e o e o o o o @
Chart DC. SDMODVI: GET Macro (Section
B3 0f 6) & ¢ ¢ 4 o o a o o o o o e o @
Chart DD. SDMODVI: GET Macro (Section
U OF 6) o o o « o o o o o a s a o o =
Chart DE. SDMODVI: GET Macro (Section
5 0F 6) @ o o o o o o« o o @ o o« s o« @
Chart DF. SDMODVI: Get Macro (Section
6 OF 6) o o ¢ o o o o o « o o o o o o
Chart DG. SDMODVO: PUT Macro (Section
1 0f 11) @ ¢ o ¢ o o o o o o o« o o o
Chart DH. SDMODVO: Put Macro (Section
20f 11) ¢ ¢ o ¢ ¢« o e e e e e e e o
Chart DJ. SDMODVO: PUT Macro (Section
30f 11) @ ¢« o o o e o o o o o a o o o
Chart DK. SDMODVO: PUT Macro (Section
B 0f 11) @ 4 o o o e o o o s s e o o o
Chart DL. SDMODVO: PUT Macro (Section

50f 11) ¢ o ¢ ¢ o o e 4 o o o e e o

Chart DM. SDMODVO: PUT Macro (Section
6 OF 11) ¢ o o o ¢ o o o« o o o o o o =
Chart DN. SDMODVO: PUT Macro (Section
T Of 11) v ¢ ¢ o o o o o o o« a o a o @
Chart DP. SDMODVO: PUT Macro (Section
8 OfF 11) v & ¢ « o ¢ o o « a o o o o« o
Chart DQ. SDMODVO: PUT Macro (Section

9 Of 11) 2 o o o« o « o o o« a s s o = o
PUT Macro (Section

Chart DR. SDMODVO:

10 Of 11) @ ¢ 4 o o o o o o o s o o
Chart DS. SDMODVO: PUT Macro (Section
11 Of 11) v 4 o o o o o o o o o o o o
Chart DT. SDMODVO: Close Routine . .
Chart DU. SDMODVO: TRUNC Macro . .
Chart DV. SDMODVU: GET Macro (Sectlon

1 0f 11) o . o - o e

Chart DW. SDMODVU: GET Macro (Section
20f 11) ¢ 4 ¢« ¢« @ e e o e o a o o o
Chart DX. SDMODVU: GET Macro (Section
30f 11) @ o o o o o o o o o o o o o @
Chart DY. SDMODVU: GET Macro (Section
4 Of 11) v o o o o o a o o a @« o o« o« @
Chart DZ. SDMODVU: GET Macro (Section
5 0Ff 11) & ¢ o o « o o o o o o o o o
Chart EA. SDMODVU: GET Macro (Section
6 Of 11) ¢ & o o ¢ ¢ o o « o a « o = =

.186
.187
.188
.189
.190
.191
.192
.193
.194
.195
.196
.197
.198
.199
.200
.201
.202
.203
.204
.205
206
.207
.208
.209
.210
.211
.212
.213
.214
.215
.216
.217
.218
.219
.220

8 DOS LIOCS Volume 3 SAM and DAM for DASD

Chart EB. SDMODVU: GET Macro (Section
7 OF 11) v @ 4 o o o o o o« o a s o o« «
Chart EC. SDMODVU: GET Macro (Section
8 OF 11) v o o o o o o« o« « « o o o o «
Chart ED. SDMODVU: GET Macro (Section
9 OF 11) @ o o 2 o a o o o« a a o o o

Chart EE. SDMODVU: GET Macro (Section
10 Of 11) . 4 ¢ o o o o o o o o o« o o
Chart EF. SDMODVU: GET Macro (Section
11 0f 11) . & o o o o o @« o o o = o o
Chart EG. SDMODVU: PUT Macro (Section
1 O0E 6) o o ¢ o o« o ¢ @ o o o o o o @
Chart EH. SDMODVU: PUT Macro (Section
20 6) o @ o o o e o o @ o e o o o =
Chart EJ. SDMODVU: PUT Macro (Section
30F 6) o« ¢ 2o o @ o 2 o o a @ o o o @
Chart EK. SDMODVU: PUT Macro (Section

B Of 6) o o o o « @« o o o a o a o« o »
Chart EL. SDMODVU: PUT Macro (Section
5 0f 6) « o« o ¢ 2 @ o o o a o« o o o =
Chart EM. SDMODVU: PUT Macro (Section
6 OF 6) o ¢ ¢ o 4o o o o o o o o o o @
Chart EN. SDMODVU: Close Routine,
RELSE MAQcCrO =« « « o o « o o « o o o «
Chart EP. CNTRL Macro,
Variable-Length Record Modules . . .
Chart EQ. SDMODUI: GET Macro (Sectlon
1 0f5) - e e o o @
Chart ER. SDMODUI: GET Macro (Section
20 5) . i i i e e e e e e e e e
Chart ES. SDMODUI: GET Macro (Section
B30F 5) & 4@ ¢ @ o o o e o o a o o o @
Chart ET. SDMODUI: GET Macro (Section
B OF 5) @ @ o o o o @ a o o o o =« o o
Chart EU. SDMODUI: GET Macro (Section
5 O0OF 5) e o o o o o o 2 o o a s o a
Chart EV. SDMODUO: PUT Macro (Section
L1 O0E 5) i @ @ o o o o o o o o o o o @
Chart EW. SDMODUO: PUT Macro (Section
20f 5) i 0 @ i 4 e e e e e s e e e
Chart EX. SDMODUO: PUT Macro. (Section
3 0f£ 5) ¢ 4o ¢ 2o o o o ¢ a s s o o « @
Chart EY. SDMODUO: PUT Macro (Section
4 OF 5) @ ¢ o o o o o o o o a o o« o @

Chart EZ. SDMODUO: PUT Macro (Section
S50 5) i i 4 e o @ e o o 4 e e a o o
Chart FA. SDMODUO: Close Routine . .
Chart FB. SDMODUU: GET Macro (Section

1 0f 2) & i 4 6 4 @ @ 4 e e e e s e @
Chart FC. SDMODUU: GET Macro (Section
2 0f 2) 4 i i i d e e e e e e e
Chart FD. SDMODUU: PUT Macro . « « «
Chart FE. SDMODUU: Subroutines
(Section 1 0f 8) v ¢ ¢ o o o @ o = o @
Chart FF. SDMODUU: Subroutines
(Section 2 0of 8) « o o =
Chart FG. SDMODUU: Subroutlnes
(Section 3 Of 8) o o o 2 « o « a o o «
Chart FH. SDMODUU: Subroutines
(Section 4 O0f 8) . o o ¢ o o o « o « =
Chart FJ. SDMODUU: Subroutines
(Section 5 0f 8) &« & ¢ 2 o o o o @« o o
Chart FK. SDMODUU: Subroutines
(Section 6 Of 8) v o o o o o o o « o &«
Chart FL. SDMODUU: Subroutines
(Section 7 0f 8) . ¢ o o o o o e o « =
Chart FM. SDMODUU: Subroutines
(Section 8 of 8) . . . ¢ ¢ ¢ « o o o @

.221
222
.223
<224
.225
226
.227
.228
-229
230
-231
.232
.233
.234
235
.236
.237
.238
.239
<240
<241
.242

.243
.24y

. 245

.246
. 247

.2u8
.249
.250
.251
.252
.253
.254
.255

\

Chart GA. CNTRL Macro, Undefined
Length RecOrds « « « ¢« ¢ « « o o o o «

Chart GB. SDMODW: READ Macro . « « .
Chart GC. SDMODW: WRITE Macro . . . «
Chart GD. SDMODW: READ, WRITE Macros,
cCommon ROULINE « « o o « « o o« o o o &
Chart GE. SDMODW: Read/Write

Subroutine, Close Routine <« .

Chart GF. SDMODW: CHECK Macro
(Section 1 0of 5) . ¢ & & ¢ ¢ ¢« o o o @
Chart GG. SDMODW: CHECK Macro
(Section 2 0f 5) . & & ¢ o o o o o o @
Chart GH. SDMODW: CHECK Macro
(Section 3 0f 5) v« & & ¢ ¢ 4 4 @ o o @
Chart GJ. SDMODW: CHECK Macro
(Section 4 0f 5) . ¢ ¢ o ¢ ¢ o o o o «
Chart GK. SDMODW: CHECK Macro
(Section 5 0f 5) . & ¢ @ o o o « o« o @
Chart GL. SDMODW: NOTE, POINTR,
POINTW MacCXOS =« « o « « o o s o o o @
Chart GM. SDMODW: POINTS, FREE, CNTRL
MACYOS « « o o o = o o o o o o o« a o
Chart GN. SDMOD: FEOVD Macro . . « «
Chart HA. $$BOSD00: SD Open,

Initialization
Chart HB. $$BOSDO1: S
Extents <« ¢« ¢ ¢ o o o«
Chart HC. $$BOSDI1l: S
DLBL Extents (Section 1
- Chart HD. §$BOSDIl1l: SD
DLBL Extents (Section 2
Chart HE. $$BOSDI1: SD
DLBL Extents (Section 3 of 3)
Chart HF. $$BOSDI2: SD Open Input,
Extent to DTF (Section 1 of 3)
Chart HG. §3BOSDI2: SD Open Input,
Extent to DTF (Section 2 of 3)
Chart HH. $$BOSDI2: SD Open Input,
Extent to DTF (Section 3 of 3)
Chart HJ. $$BOSDI3: SD Open Input,
User Labels (Section 1 of 2)
Chart HK. $$BOSDI3: SD Open Input,
User Labels (Section 2 of 2)
Chart HL. $$BOSDI4: SD Open Input,
Initialization of DTF Table (Section 1
Of 2) & & i 4 4 4@ e o e o o o s o a @
Chart HM. $$BOSDI4: SD Open Input,
Initialization of DTF Table (Section 2
Of 2) & & & 4 @ o 2 o o o o « o s o @
Chart JA. $$BOSDOl: SD Open OQOutput,
Control (Section 1 of 4) « .
Chart JB. $$BOSDOl: SD Open Output,
Control (Section 2 of 4) . . « e e e

Open, DLBL
Open Input,
of 3)
Open Input,
of 3)
Open Input,

Chart JC. $$BOSDOl: SD Open Output,
Control (Section 3 of 4)
Chart JD. $$BOSDOl: SD Open Output,

Control (Section 4 of 4)
Chart JE. $$BOSIGN: SD Open Ignore .
Chart J¥. $$BOSDO2: SD Open Output,
Volume Label . + ¢ « o« ¢ ¢ o o o « o« &
Chart JG. $$BOSDO3: SD Open Output,
Extent Overlap (Section 1 of 4) . . .
Chart JH. $$BOSDO3: SD Open Output,
Extent Overlap (Section 2 of 4) . . .
Chart JJ. §$BOSDO3: SD Open Output,
Extent Overlap (Section 3 of #) . . .
Chart JK. $$BOSDO3: SD Open Output,
Extent Overlap (Section 4 of 4) . . .

.256
<257
.258
.259
.260
.261
262
.263
.264
<265
.266

267
.268

.269
.270
271
272
.273
274
275
.276
<277

.278

279

.280
.281
.282
.283

.284
.285

.286
.287
.288
.289

.290

Chart JL. $$BOSDO4: SD Open Output,
File Label (Section 1 0f 2)
Chart JM. $$BOSDO4: SD Open Output,
File Label (Section 2 of 2)
Chart JN. $$BOSDOS5: SD Open Output,
Format 3 Label (Section 1 of 2) . . .
Chart JP. $$BOSDOS5: SD Open
Format 3 Label (Section 2 of 2) . . .
Chart JQ. $$BOSDO6: SD Open
User Labels (Section 1 of 2)
Chart JR. $$BOSDO6: SD Open
User Labels (Section 2 of 2)
Chart Js. §$BOSDO7: SD Open Output,
Extents from Console « « « o « « o« « &
Chart KA. $$BOSDO8: SD Open Output,
Delete Label . .« & ¢ ¢ ¢ & ¢ o a o o «
Chart KB. SD Open Output Subroutines
(Section 1 of 2) . . ¢« ¢ &« & 2 ¢ o o @
Chart KC. SD Open Output Subroutines
(Section 2 0f 2) . 2 & ¢ & o ¢ o« o« o &
Chart KD. $$BOSDW1l: SD Open Work
file, Volume Label (Section 1 of 3) .
Chart KE. $§$BOSDW1l: SD Open Work
file, Volume Label (Section 2 of 3) .
Chart KF. $$BOSDW1l: SD Open Work
file, Volume Label (Section 3 of 3) .
Chart KG. $$BOSDW2: SD Open Work
file, File Label (Section 1 of 2) . .
Chart KH. $$BOSDW2: SD Open Work
file, File Label (Section 2 of 2) . .
Chart KJ. 4BOSDW3: SD Open Work
file, Extent to DTF (Section 1 of 2) .
Chart KK. §$BOSDW3: SD Open Work
file, Extent to DTF (Section 2 of 2) .
Chart LA. $$BOSDCl: SD Close Input
and Output (Section 1 0f 3)
Chart LB. $$BOSDCl: SD Close Input
and Output (Section 2 0f 3)
Chart LC. $$BOSDCl: SD Close Input
and Output (Section 3 of 3)
Chart LD. 3BOSDC2: SD Close - Free
Tracks Function . . « « o o « o o« « &
Chart LE. 4$BODQUE: Dequeue Extent
JIBS « o o o @« o« o o o o o a o o o
Chart LF. $$BOSDEV: Forced End of
Volume for Disk (Section 1 of 2) . . .
Chart LG. $$BOSDEV: Forced End of
Volume for Disk (Section 2 of 2) . . .
Chart NA. DAMOD: Input/Output Macros
(section 1 of 3) . & ¢ ¢ & & & o o o @
Chart NB. DAMOD: Input/Output Macros
(Section 2 of 3) . . ¢ & &« & o o & o &
Chart NC. DAMOD: Input/Output Macros
(Section 3 of 3) . . ¢ ¢ ¢ @ @ 4 & o @
Chart ND. DAMOD: WAITF Macro (Section
TLof) - e
Chart NE. DAMOD: WAITF Macro
20f8) . i 4 4 e e aee e«
Chart NF. DAMOD: WAITF Macro
3 of W)
Chart NG. DAMOD:
4 of) . . & 4 o & & .
Chart NH. DAMOD: CNTRL and
Chart NJ. DAMOD: Seek Overlap
Subroutine (Section 1 of. 2)
Chart NK. DAMOD: Seek Overlap
Subroutine (Section 2 of 2)

- - *a o e

(Section
(Section
WAITF Macro (Section

.291
292

.293

294

«295
.296
297
.298
.299
.300
.301
.302
-303
-304
.305
-306
<307
.308
.309
.310
.311
.312
.313
-314
.315
.316
.317
.318
.319
-320

.321

FREE Macros 322

.323

.324

Charts 9

Chart NL. DAMOD and DAMODV: Channel
Program Builder Subroutine325
Chart NM. DAMODV: Input/Output Macros
(section 1 of 11) . e « <« <326
Chart NN. DAMODV: Input/Output Macros
(Section 2 of 11) . e o « <327
Chart NP. DAMODV: Input/Output Macros
(Section 3 of 11) . . « < o <328
Chart NQ. DAMODV: Input/Output Macros
(Section 4 of 11) . . <« « o <« « « « o 2329
Chart NR. DAMODV: Input/Output Macros
(section 5 of 11) <« « < 2330
Chart NS. DAMODV: Input/Output Macros
(Section 6 of 11)331
Chart NT. DAMODV: Input/Output Macros
(Section 7 of 11) . . . « o o « « « o .332
Chart NU. DAMODV: Input/Output Macros
(Section 8 of 11)333
Chart NV. DAMODV: Input/Output Macros
(Section 9 of 11) . . ¢ .« <« « <« « « « <334
Chart NW. DAMODV: Input/Output Macros
(Section 10 of 11) « « . .335
Chart NX. DAMODV: Input/Output Macros
(Section 11 of 11)336
Chart NY. DAMODV: CNTRL and FREE

MAaCXOS « o o o o o o o o « « o« o o = « <337
Chart NZ. DAMODV: WAITF Macro

(Section 1 of 3) <« . . .338
Chart PA. DAMODV: WAITF Macro

(Ssection 2 of 3) . « . <« <« . .« . . < . 2339
Chart PB. DAMODV: WAITF Macro

(Section 3 of 3) . . . ¢« ¢« ¢ ¢« « « « . 300
Chart PC. DAMODV: IJIGET Subroutine . .341
Chart PD. DAMODV: IJISOVP Seek

Overlap Subroutine (Section 1 of 2) . .342
Chart PE. DAMODV: IJISOVP Seek

Overlap Subroutine (Section 2 of 2) . .343
Chart PF. $$BODAIN: DA Open

Input/Output (Section 1 of 3)344
Chart PG. $$BODAIN: DA Open

Input/Output (Section 2 of 3)345
Chart PH. $$BODAIN: DA Open

Input/Output (Section 3 of 3)346
Chart PJ. $$BODAIl: DA Open Input

(Section 1 of 4) ¢ ¢ ¢ o« « « o 347
Chart PK. $$BODAIl: DA Open Input

(Section 2 of 4)« <« . . 348
Chart PL. $$BODAI1l: DA Open Input

(Section 3 of 4) ¢ ¢ & & ¢ < o 349

e e © e e o
e e e e a o

10 DOS LIOCS Volume 3 SAM and DAM for DASD

Chart PM. $$BODAIl: DA
(Section 4 of 4) . . .
Chart PN. §$BODAOl: DA

Phase 1 (Section 1 of 4)

Chart PP. $$BODAOl: DA

Phase 1 (Section 2 of 4)

Chart PQ. $$BODAO1: DA

Phase 1 (Section 3 of #4)

Chart PR. $$BODAOl: DA

Phase 1 (Section 4 of 4)

Chart QA. $$BODAO2: DA

Phase 2 (Section 1 of #)

Chart QB. $$BODAO2: DA

Phase 2 (Section 2 of 4)

Chart QC. $$BODAO2: DA

Phase 2 (Section 3 of 4)

Chart QD. $$BODAO2: DA

Phase 2 (Section 4 of 4)

Chart QE. &$$BODAO3: DA

Phase 3 (Section 1 of 4)

Chart QF. $$BODAO3: DA

Phase 3 (Section 2 of 4)

Chart QG. $$BODAO3: DA

Phase 3 (Section 3 of 4)

Chart QH. $$BODAO3: DA

Phase 3 (Section 4 of 4)

Chart QJ. $$BODAO4: DA

Phase 4 (Section 1 of 4)

Chart QK. $$BODAO4: DA

Phase 4 (Section 2 of 4)

Chart QL. $$BODAO4: DA

Phase 4 (Section 3 of 4)

Chart QM. $$BODAO4: DA

Phase 4 (Section 4 of 4)

Chart RA. $$BODAUl: DA
Output (Section 1 of 5)
Chart RB. $$BODAUl: DA
Output (Section 2 of 5)
Chart RC. $§$BODAUl: DA
Output (Section 3 of 5)
Chart RD. $$BODAUl: DA
Output (Section 4 of 5)
Chart RE. $$BODAUl: DA
Output (Section 5 of 5)
Chart RF. $$BODACL: DA
Input/Output (Section 1
Chart RG. $$BODACL: DA
Input/Output (Section 2
Chart RH. &$$BODACL: DA
Input/Output (Section 3

Open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
Cio;e
of 3)
Close
of 3)
Close
of 3)

Input

Outp

Output,

ut,

Output,

ou
ou
ou
ou

tput,

tput,

tput,

tput,

Output,

Oou

Ou

tput,

tput,

Output,

output

output,

ou

tput,

Output,

Outp

Input,

Input,
Input,

Input,

Input,

ut

350
.351
.352
.353
.354
<355
.356
<357
.358
359
.360
.361
-362
.363
.364
.365
.366
.367
.368
.369
.370
.371
372
.373
.374

This volume of DOS LIOCS Program Logic
Manual provides detailed information on the
logical IOCS support of DASD (Direct Access
Storage Device) files processed by the
Sequential Access Method, and by the Direct
Access Method. It is intended for use by
trained maintenance personnel experienced
in the use of the Logical Input/Output
Control System (LIOCS) for file processing.

Beyond brief introductory descriptions
of the two DASD file processing methods
covered, this volume does not contain
information of a general nature. If the
reader requires basic knowledge or a review
of the general concept and function of
Logical IOCS, he should refer to Volume 1
of DOS LIOCS listed on the front cover of
this volume.

This volume contains information on all
the logical IOCS items (modules, DTF
tables, imperative macros, declarative
macros, open and close routines, etc.)
required for the two processing methods.
The only exceptions are certain common and
special purpose. routines that cannot be
related to any specific file. These
routines, namely the open and close
monitors, the open routines for
self-relocating programs, and the
Checkpoint/Restart routines are described
in detail in Volume 1.

The first section of this volume
contains general information which is
pertinent to both sequential access DASD
files and direct access DASD files. This
information includes:)

e LIOCS extensions for Asynchronous
Processing.

e DASD label processing.

e Logical transient phases that provide
special functions.

The next section supplies detailed
information on sequential access DASD
files. The information includes:

s Descriptions of record formats and main
storage areas.

ZINTRODUCTION

e Descriptions of the declarative macros
DTFSD, DTFPH, and SDMODxx, and DTF
tables.

e Discussions of imperative LIOCS macros
(GET, PUT, READ, etc.) wused with
sequential DASD files.

e Open and close logical transients.

The third section supplies detailed
information concerning LIOCS support of
direct access files. The information
includes:

o Descriptions of the declarative macros
DTFDA, DTFPH, and DAMOD.

e Discussion of the referencing methods
and addressing systems used by the
Direct Access Method.

e Discussion of imperative LIOCS macros
(READ, WRITE, WAITF, etc.) used with
direct access files.

e Description of direct access channel
program builder routine.

e Open and close logical transients.

The last section contains the detailed
flowcharts of the imperative logical IOCS
macros supported by the data handling logic
modules discussed in this manual. It also
contains flowcharts of the logical
transient routines required for Open,
Close, and other special functions. The
logic supporting each of the imperative
macros has been flowcharted from macro
language (source statement) listings. 1In
some instances, these charts contain
decision blocks to illustrate the logic
(i.e., coding) generated for certain module
generation macro parameter options. These
decisions do not appear in an assembly
listing, but they do determine the contents
of a particular module at module generation
time. If an assembly listing is not
available for a specific logic module, a
listing of the source statements used to
generate the module can be obtained from
microfiche cards (Appendix D).

Introduction 11

GENERAL INFORMATION

This section includes general information
that is applicable to both sequential
access DASD files and direct access DASD
files. The areas covered include the LIOCS
extensions for the Asynchronous Processing
function, DASD label processing, and
several logical transients that provide
special functions.

ASYNCHRONOQUS PROCESSING EXTENSIONS

Asynchronous Processing extensions for
Logical IOCS consist of six functions:

OPEN/IGN

e Sequential Disk End-of-Extent
e Relative Addressing

e Trailer Label Processing

e Reentrant Modules

e Track Hold

The OPEN/IGN function and Sequential Disk
End-of-Extent function are American
National Standard COBOL requirements, and
are provided mainly for American National
Standard COBOL use. These functions are
documented within this manual, but are not
covered in the general discussion.

The Relative Addressing and Trailer
Label Processing functions apply only to
direct access files. Discussion and
documentation of these functions are found
in the section, Direct Access Files.

Reentrant Modules and Track hold
functions apply to both sequential access
DASD files and direct access files. A
general discussion of both functions is
included in the following text.

REENTRANT MODULES

A reentrant module is a logic module that
can be asynchronously used, or shared, by
more than one file. A module is made
reentrant by including the parameter
RDONLY=YES in the operand of the module
generation macro (SDMODxx or DAMOD macro
instruction), and the DTFSD/DTFDA macro.

12 DOS LIOCS Volume 3 SAM and DAM for DASD

The RDONLY (read-only) parameter assures
that the generated logic module is never
modified, regardless of the processing
requirements of any file(s) using the
module. The reentrant feature is
implemented through the establishment of
unique save areas, one for each DTF using
the module. Each save area must be 72
bytes long and aligned on a doubleword
boundary. A task must provide the address
of the save area associated with the DTF in
register 13 before issuing an imperative
macro and entering the logic module.

TRACK HOLD FUNCTION

The track hold function provides DASD track
protection when the parameter HOLD=YES is
specified in the operand of the module
generation macro (SDMODxx/DAMOD) and the
DTFSD/DTFDA macro. If a task has
previously accessed a DASD track and is
currently modifying a record from that
track, DASD track protection prevents
another task in main storage from accessing
that track. The task attempting to access
the held track is put in the wait state
until the track has been released. For
direct access, the problem program must
issue the FREE macro to release a track
held on READ operation. The module
automatically holds and releases all tracks
for WRITE operations. For sequential DASD,
the problem program releases the track by
issuing the FREE macro, if work files have
been specified with the UPDATE=YES
parameter included, and if the record is
not updated. If the record is updated, the
module automatically releases the track
when the record is written.

For fixed-length, undefined-length and
blocked variable-length SD (Sequential

. DASD) files, the next GET macro that

actually causes an I/O operation releases
the track.

Exception: If blocked variable-length
records are specified and a PUT macro is
issued for the last record in a block, the
PUT macro releases the track. The PUT
macro also releases the track if unblocked
variable-length records are specified.

The track hold function is applicable to
three situations:

1. Sequential DASD update files (data).

2. Sequential DASD work files with the
UPDATE=YES parameter specified.

3. Direct access files.

For more information concerning the
track hold function, refer to DOS
Supervisor and I/0 Macros, listed in the
Preface.

DASD LABEL PROCESSING

Before a DASD file can be processed by
logical I0Cs, the file must be opened to
permit transfer of data. The function of
the open routines is to check the DASD
labels identifying the file. This is
accomplished by comparing the information
from the actual file labels in the Volume
Table of Contents (VTOC), with the label
information in the SYSRES label information
cylinder. Figure 1 illustrates the format
of the VTOC. Job control stores label
information, supplied by the user in job
control cards, in the SYSRES label
information cylinder.

Figure 2 illustrates the format of this
stored information as it appears in both
the label information cylinder and main
storage.

Filename = Filename =
ilename =
bast IVTOC heile | XXXXXX | Additional | enixX
Volume | File Label Labels | F 1 File Label Additional
Label (Format 4) els L:mer tle Labels | prtents -
e (Format 3)
l—Poim‘er to Pointer to
last active — additional _|
file label file extents,
if necessary

Volume Table of Contents (VTOC)
for a Nonresident Disk Pack

Figure 1.

Note: To simplify creation of DASD files
and label processing, Version 3 makes it
possible for the user to identify a
particular file through the use of two job
control statements, // DLBL and // EXTENT,
(instead of the three statements, // VOL,
// DLAB, and // XTENT required by previous
versions). The user, however, is not
obligated to change any job control
statements already in use because job
control handles both forms. Further
references made in this manual to the new
// DLBL and // EXTENT job control statement
also apply to the // VOL, // DLAB, and '
// XTENT statements

The standard DASD labels processed by DOS
logical IOCS are discussed and illustrated
in Appendix G. A more complete discussion
of DASD labels is contained in Volume 1.

General Information 13

E = Load extend function

Note: For Sequential Disk files, a complete 104-byte block is repeated for each new EXTENT.
For Direct Access and ISFMS files, only fields 13 through 18 are repeated for each EXTENT.

Figure 2.

SYSRES DASD Label Information

14 DOS LIOCS Volume 3 SAM and DAM for DASD

1 2|3 [ﬁ 5 6| 7 8 91 10|11 12 13|14{15 16 17 18] 19
5
8
2 File S Volume o | Extent | Extent |5 Another
— | Filename File ID Serial | Z K] System Serial Z | Lower | Upper |5 S|% 1 Extent if
z 5 Number | - 2 3 Code Number| 8 | &| Limit | Limit |£ ,,|O|O 7 DA or ISFMS
£ 5 a 18 15112 S8 S EH
& & 2 .15 |2 133 . S3|3%
A %)] g | = 5 | > | Z\|z g |2
3 DS £ 518 |e]§|2 E|E S|l /
a a L > |6 g | & |0 ol o SSIRIR //A
1 7 1 44 1 6 2 3 3 211 13 6 111 4 4 21 Bytes
e = @ |o 2D 3 |g 3 9 Ik 3 S = It B S |n|g| Displacement
Field Name Description : Field Name Description
1. DLBL-EXTENT SD I 2. System Code Initialized to contain DOS/360 VER 3.
. Bit 0: 1= Next extent on a new pack.! This field is not processed by DOS.
Bit 1: 1 = Last extent. I
' Bit 2: 1 = Bypass extent. I 13, Volume Serial No. Volume serial number for extent.
Bit 3: 1.= New volume on same unit. !
Bit 4: 1 = Extent limits omitted. ; 14. Extent Type Same codes as in Format ~ 1 label:
Bit 5: 1 = Extent converted to DASD | -X'00" = Next three fields do not indicate
address. any extent.
Bit 6: 1 = No EXTENT/XTENT card. ! X'01' = Prime data area (ISFMS) or
Bit 7: 1 = Unused. : consecutive area, etc., (that is the
DA or ISFMS I extent containing the user's data
Number of extents. | records).
| X'02' = Overflow area of an ISFMS file.
2. Filename I X'04' = Cylinder index or master index of an
- | ISFMS file.
_3. DA/IS Switch Bits 0-3: Unused. | X'40' = User label track area.
Bit 4: 1 = Extent limits omitted. | X'8n' = Shared cylinder indicator, where
Bit 5: 1 = Extent converted to DASD | n=1, 2, or 4.
address. ' |)
Bit 6 & 7: Unused. I 15, Extent Seq. No. Number of extent as determined by the extent
: card sequence.
4. File ID File identifier including generation
! and version numbers. [f field is | 16. Extent Lower - Before the OPEN, DLBL/EXTENT
missing on DLBL card, Filename : & and Upper information is in the relative track form of
padded with blanks is inserted. | 17. Limits HHNNT followed by three bytes of binary
zeros.
5. Format ID Numeric 1 is inserted. : HH = Relative (to 0) start address in tracks.
| NN = Number of tracks.
6. File Serial No. Volume serial number from first extent.| T =0 or upper track number for split
| cylinder in SD files.
7. Volume Seq. No. Always initialized to X'0001". | Following an OPEN on DLBL/EXTENT cards,
I or whenever DLAB/XTENT cards are used,
8. Creation Date Initialized with 3 bytes of X'00'. = the extent lower and upper limits are each
' | in the CCHH format. .
9. Expiration Date If date is in the form YYDDD, it is |
converted to YDD. If date is in re- } 18. Logical (Symbolic) This 2-byte field identifies the logical unit
tention period form, 1 to 4 characters, | Unit Address with the same code as that used in a CCB.
the field is padded with binary zeros. | The first byte identifies the unit class:
I X'00' = System Logical Unit
10. Reserved The retention period, if specified is } X'01' = Programmer Logical Unit
converted to a 2-byte number and | The second byte identifies the logical unit
inserted in this field. | within its class.
|
N
1. Open Code DLBL type: : Thus X'0003' denotes SYSLST and X'0103*
S = Sequential | denotes SYS003.
D= Direct Access l
C or E = Indexed sequential 1] 19. 2321 Lower Cell 2321 extent lower and upper cell
File Management System where: | 2321 Upper Cell limit. This 2-byte field contains
C = Load create function : zeros for 2311/2314/2319 disk.
I

COMMONLY USED LOGICAL TRANSIENTS

The logical transients included in this
section of the manual are those that
pertain to both sequential access DASD
files and direct access DASD files.

$SBOFLPT: DASD File-Protect Charts AA-AD

Objective: To place the upper and lower
extent limits into Job Information Blocks
(JIBs) to provide file protection for DASD
files.

Entry:

e From phases $$BOSDI2, $$BOSDW2,
$$BOSDOY, $$BOSDO5, or $$BOSDO6 for
sequential DASD files.

e From phases $$BODAIN or $$BODAOU for
direct access files.

e From phase $$BOIS07 for indexed
sequential files (refer to Volume 4).

Exits:

e To the open monitor, $$BOPEN, if more
files are to be opened and a specific
phase name is not supplied.

e To phase $$B0OQO01 (not documented in
this PLM) if the file is a QTAM file.

o To the problem program if a specific
phase name is not supplied and no more
files remain to be opened.

e To the transient phase specified by the
calling phase.

Method: The $$BOFLPT phase provides file
protection for DASD files by storing extent
1imit information in the JIB table. For
the IBM 2311 Disk Storage Drive, the IBM
2314 Direct Access Storage Facility, and
the IBM 2319 Disk Storage Facility, the
lower and upper cylinder limits are stored
in a single JIB. For the IBM 2321 Data
Cell Drive, subcell and strip information
is stored in two chained JIBs, the first
containing the lower extent limit, and the
second containing the upper extent limit.
The extent JIBs are chained to the Logical
Unit Block (LUB) entry to which the device
is assigned. Further information
pertaining to the JIBs and LUBs is found in
DOS_Supervisor and Related Transients
listed in the front of this manual.

The $$BOFLPT phase begins by determining a
number of factors:

e The number of extents to be processed.

e The addresses of the DLBL-EXTENT card
image, FAVP (the pointer to the first
available JIB), and the JIB table. ‘

e The file type.

e The device type.

When these factors are known, the phase
determines the address of the LUB entry for
the logical unit used by the file. The
contents of the LUB are then loaded into a
pair of registers, LUBADRLL (lower limit)
and LUBADRUL (upper limit), that are used
tu insert the extent information into

- extent type JIBs.

The second byte of the LUB contains a
pointer to the first JIB in the chain for
the LUB (if the byte does not contain hex
*FF', indicating that no JIBs are chained
to the LUB). This pointer calculates the
address of the JIB. The JIB, in turn,
contains a similar pointer that calculates
the address of the next JIB in the chain.
A pointer of hex °'FF' indicates the end of
the chain.

If extents for the file remain to be
processed and one of the following
conditions is reached, phase $$BOFLPT
obtains and builds a new JIB entry:

e No JIBs are chainea to the LUB.

e No extent type JIBs remain in the
chain.

e The end of the JIB chain is reached and
more JIBs are required.

The address of the new JIB (or the first
new JIB, in the case of a 2321) is
calculated by using the pointer to the
first unused JIB in the JIBs available
chain, found in location FAVP in the
supervisor. As in the case of JIBs chained
to the LUB, this new JIB contains a pointer
to the next available JIB that will be used
if needed.

After the extent information is stored
in the JIB(s), the pointers are modified
(as required), to complete the chain and
the registers are restored. ' From
information passed by the calling phase,
$$BOFLPT determines the next action
required and issues either an SVC 2 to
fetch the proper transient phase, or an SVC
11 to return to the problem program.

General Information 15

$$BODSPV: VTOC Display, Phase 1 Chart AE

$$BODSPW: VTOC Display, Phase 2 Charts’

Objective: To determine the logical unit
(SYSLOG or SYSLST) on which the operator
wants the VTOC displayed, and to print an
error message if SYSLST is the unit
selected but not assigned to a printer.

Entry: From phases $$BOSDO7 or 3BOMSG2
when the operator's response is DSPLYV. |
Exit:

e To the second phase of VTOC display,
$$BODSPW.

¢ To job control via an SVC 11 if the
operator's response to message UVI5A is
EOB or CANCEL and the open was for job
control.

e To phase $$BCNCL via an SVC 6 to cancel
the job if the operator's response to
message UV96A is EOB or CANCEL and the
open was not for job control.

‘'Method: The first phase of VTOC display
issues a message on SYSLOG to determine
whether the operator wants the VTOC
displayed on SYSLOG or on SYSLST. If the
operator's reply is SYSLST, a check is made
to ensure that SYSLST is a printer. If
SYSLST is not a printer, error message
4v96A is issued. If the VTOC is to be
displayed on SYSLST, preparation is made to
start the display on a new page. Phase
$$BODSPV then fetches phase 2 of VTOC
display, $$BODSPW.

DSPLYV DISPLAY Serial No. Volume No.

VOLUME SERIAL NO. IS 111111

FILEA
0100 00330000_006E0009\>Extenrs

1111111 0001

SYSTEM WORK FILE NO. 1
0100 00970000-009D0009

1111111 0001

2311 DTFPH-SEQUENTIAL OPEN
0100 00AF0000-00AF0002

'NO' USER LABELS.1111,1L1
0101 O00AF0003-00AF0003

0001

VTOC LISTING COMPLETED

Figure 3. VTOC Display (DSPLYV Response)

16 DOS LIOCS Volume 3 SAM and DAM for DASD

AF-AH

Objective: To display, on either SYSLST or
SYSLOG, the Volume Table of Contents for
the volume (pack or cell) currently being
opened.

From the first phase of VTOC
$$BODSPV.

Entry:
display,

Exit: To 3BOSDO7, $$BOMSG1l, or 4BODSMW.

Method: The volume label on the current
volume (pack or cell) being opened is read
to retrieve the pointer (CCHHR address) to
the VTOC and the volume serial number. A
header line is printed to indicate the date
and identify the volume by the volume
serial number. Next, the first label in
the VTOC (Format 4 label) is read to
determine the limits of the VTOC, and the
CCW chain is initialized to read the file
labels (Format 1) contained in the VTOC.

The file label for each file on the
volume (pack or cell) is displayed by
printing the contents of the label. The
first line printed for each Format 1 label
contains the first 59 bytes of the label
and includes:

e Filename

e Format identifier

e File serial number

¢ Volume sequence number

e Creation date

e Expiration date

11/04/66

420043-420043 =~ Creation & Expiration Dates

42006E-63016D

41014D~4201.2C
01,02 00AF0004-00AF0004

Succeeding lines printed for a Format 1
label contain extent information. Each
line contains a maximum of three extents.
(If more than three extents are specified
for the file, the additional extents are
contained in a Format 3 label.) When all
extents for a file have been printed, phase
$$BODSPW initializes to process the next’
Format 1 label in the same manner.

When all Format 1 labels in the VTOC
have been processed, message 4V09I is
issued and the job is cancelled. Figure 3
is a sample of the VTOC display printed by
this phase.

$$BOVDMP: VTOC Dump Charts AJ-AK

Objective: To provide a list of all the
labels in the Volume Table of Contents
(VTOoC), for the volume (pack or cell) being
opened.

Entry: From phase 2 of the Disk Open
Message Writer, $$BOMSG2, or $$BOSDO7, when
the operator's response is CANCELV, or from
the problem program.

. Exits: To phase $$BCNCL via an SVC 6 to
cancel the job if $$BOVDMP is entered from
the message writer phase $$BOMSG2, or to
the problem program, or to $$BOWDMP to
continue CANCELV.

Method: Phase $$BOVDMP reads the VOL 1
label to retrieve the volume serial number
and the CCHHR address of the VTOC for the

volume (pack or cell) being opened. A
header line is then printed on SYSLST to
indicate the date and identify the volume
with the volume serial number. If SYSLST
is not assigned to a printer, the VTOC Dump
is ignored.

$SBOWDMP : List VTOC Charts AL-AM
Objective: To provide a listing of all the

labels in the VTOC.

Entry: From phase 1 of the VTOC dump,
$SBOVDMP.
Exits: If no record is found, exit is to

the disk message writer, $$BOMSG1l.
Otherwise, control returns to job control
or to the user's program.

Method: All the VTOC labels for unsecured
files (except blank labels) and for the
file being accessed (whether secured or
unsecured) are listed. Any other secured
files are not listed. A maximum of five
extents are printed on a line. When all
labels have been printed, an EOJ message is
printed, and control returns to the user or
to job control.

Figure 4 is a sample of the VTOC Dump
printed by this phase.

General Information 17

Figure 4. VTOC Dump (CANCELV Response)

$$BOMSG1 Disk Open Error Message Writer,
Phase 1 Charts AN-AP

Objective: To initialize the message
output area, SYSLOG CCB and CCWs, and to
fetch phase 2 of the message writer,
$$BOMSG2.

Entry:

e From the disk VTOC display phase,
$$BODSPW.

e From a DASD open or close phase.

e From the DTFCP open phases, $$BOCPO1,
$3BOCP02, $$BOCP11 or $$BOCP12.

Exit: Phase 2 of the open error message
writer, $$BOMSG2.

Method: The calling phase supplies the
following information to the message
writer:

e Register 0 contains the last four
characters in the name of the phase
requesting the message. On cancel
messages, register 0 need not be

18 DOS LIOCS Volume 3 SAM and DAM for DASD

CANCELV DISPLAY
VOLUME SERIAL NUMBER IS 11111L
00C7000001L FORMAT 4 LABEL
04040404 04040404 04040404 04040404 04040404 04040404 04040404 04040404 04040404 04040404 04040404 F4000000
0000009E 00000000 001E9001 000000CB 000AOE29 51141401 021,9100A 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00010000 C7000000 C7000400 00000000 00000000 00000000 00000000 ' 00000000 00000000
00C7000002 FORMAT 5 LABEL
05050505 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 F5000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 = 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00C7000003 FORMAT 1 LABEL
FILEA SERIAL NO. 1121131 VOL NO. 0001 420043-420043 010000 SYS. CODE IS 16 K DISK BOS
0000000000 0000400000 0000000000 0000000000 0000000000 0000000000
0100 00330000—006E0009 0000 00000000-00000000 0000 00000000-00000000 POINTER IS 0000000000
00C7000004 FORMAT 1 LABEL
SYSTEM WORK FILE NO. 1 SERIAL NO. 111111 VOL NO. 0001 42006E-63016D 010000 SYS. CODE IS DOS
0000000000 0000400000 0000000000 0000008000 0000000000 0000000000
0100 00970000-009D0009 0000 00000000-00000000 0000 00000000-00000000 POINTER IS 0000000000
00C7000005 FORMAT 1 LABEL
2311 DTFPH-SEQUENTIAL OPEN 'NO' USER LABELS. SERIAL NO. 111111 VOL NO. 0001 41L0L4D-41012C 030000 SYS. CODE IS % SIMONIK 3k
0000000000 0000400000 0000000000 0000000000 0000000000 0000000000
01,00 00AF0000-00AF0002 0101, 00AF0003-00AF0003 0102 00AF0004-00AF0004 POINTER IS 0000000000
VTOC LISTING COMPLETED
-]
WW

initialized. §$BO is assumed for the
first four characters of the phase
name.

e Register 2 contains the address of the
DTF table for the current file. '

e Register 3 contains the message code
(in binary) for the message to be
printed. This code is converted to the
last two digits of the message number
(XX in the example 4nXXI).

e Transient reqgion +1185 contains the
numeric decimal value assigned to the
various open/close phases for message
numbering. (X in the example 4XnnI.)

e Transient region +1000 contains the
start of the CCB.

The message writer overlays the first 888
bytes of the transient region. Therefore,
any information that the calling phase
needs to save is located beyond that point.

This phase first saves the last four
characters in the name of the phase
requesting the message. It initializes the
SYSLOG message output area with the

organization type numeric code, DTF
filename and symbolic unit and constant.
-It builds the SYSLOG CCWs for writing the
message and reading the response and
determines if the required message is in
this phase of the message writer. If it is
not in this phase, the routine determines
in which overlay phase the message is
located (either 5BOMSG3, $$BOMSGH4,
$$BOMSG5, $$BOMSG6, or $$BOMSG7) and
fetches $$BOMSG2 to load the required
overlay phase.

$$BOMSG2 Disk Open Error Message Writer,
Phase 2 Charts AQ-AS

Objectives: To issue an error message to
the operator, read the operator's reply (if
an IBM 1052 Printer-Keyboard is assigned to
SYSLOG) or exit to the phase that requested
the message (after ensuring the validity of
the operator's response). Also, to cancel
the job either by operator request or if
the message type indicates, end of job.

Entry: From phase 1 of the disk open error
message writer, $$BOMSG1.

Exit:
e To the VTOC dump phase, $$BOVDMP,

e To phase 1 of the VTOC display routine,
$$BODSPV,

e To the DASD open/close organization
phase requesting the message (if a
cancel was not encountered).

Method: 4BOMSG1 supplied the following
information to this phase:

e Register 1 contains the name (last four
characters) of the message overlay
phase to fetch if the required message
appears in some phase other than
SSBOMSG1.

e Register 3 contains the address of the
message to be written on SYSLOG.

This phase determines the message type.
It can be either a file overlap pack, wrong
pack, or other.

For a file overlap type, the last
character of the message is initialized to
a 'D', the CCW is initialized to write the
4u4-byte file key, and the file overlap
switch is set to NO-OP. The file overlap
switch set to NO-OP allows a test for
deleting an unexpired file later in the
routine.

For wrong-pack type, the message is
initialized with the pack number and the
wrong-pack switch is turned on. This
switch is interrogated later in the routine
to test if the operator has mounted the
correct packe.

Next, the routine determines if the
message to be written on SYSLOG is in main
storage. If the message is not in main
storage, the message overlay phase
containing the required message is loaded
into main storage. The message overlay
phases consist of $$BOMSG3, $$BOMSGH,
$$BOMSG5, $$BOMSG6, and $$BOMSG7. These
phases contain messages only. The message
is then moved to the SYSLOG output area,
and an SVC 0 is issued to type the message
and read the reply.

If the message indicates the job is not
to be canceled, the routine determines if
the user wants a VTOC display. If he does
want a VTOC display, the routine issues an
SVC 2 to fetch $$BODSPV, the VTOC display
phase. If the user does not want a VTOC
display, the routine tests for a D-type
message.

If the message is a D-type, the message
return indicator is set, the address of the
next phase name is retrieved, and an SVC 2
is issued to fetch the return phase. 1If
the message is not a D-type, the routine
tests the file-overlap switch and the
wrong-pack switch as previously mentioned.
During this portion of the routine, a 'B'
for bypass, or a 'D' for delete is stored
in the transient region +1186 for use by
the calling phase.

The message writer issues an illegal
response message for the following
conditions:

1. Operator reply of IGNCRE for a D-type
message.

2. Message for ISFMS.

3. Equal file ID méssage.

4. No EXTENT to be bypassed.
’5. Next pack not mounted.

If the job is to be canceled, a test
determines if the job control open switch
(in communications region) is on. If so,
an SVC 11 is issued to return to job
control. If the switch is not on, the
routine checks to determine if a request
has been made for a VTOC dump. If yes, an
SVC 2 is issued to call the VTOC dump
transient, $$BOVDMP. If a VTOC dump has
not been requested, an SVC 6 is issued and
the job is cancelled.

General Information 19

Figure 5 shows the message code (passed
via register 3) together with the last two
digits and action indicator of the
associated message number. For reference
purposes, the text of the message is also
included.

$$BODSMW Data Security Message Writer
Charts AT-AU

Objective: To issue the data security
message 4n99D and read the reply from the
operator.

Entry: From $$BODSPW, $$BOSDI2, $$BODAI1,
$SBODA02, $$B0OIS06, $$BORTV1, and return
from $$BODSPV.

Exits: The exit depends on the operator's
reply to message 4n99D..

e If the reply is YES, control returns to
the problem program.

e If the reply is EOB, NO, CANCEL, or
CANCELV, the problem program is
canceled. If a VTOC dump is requested,
$$BOVDMP is fetched. If $$BODSMW was
fetched by job control, an exit is made
to job control. .

e If the reply is DSPLYV, $$BODSPV is
© fetched.

Method: After gathering preliminary data
about the calling routine, $$BODSMW issues
message 4n99D, "DATA SECURED FILE
ACCESSED". If the operator types YES on
SYSLOG, the file is made available.

20 DOS LIOCS Volume 3 SAM and DAM for DASD

{MessageiMessageI i
!Code !Number !Message }
{0 TQQA IOVERLAP ON UNEXPRD FILE }
ll }SSA =WRONG PACK, MOUNT nnnnnn {
}2 IQOA {EXTENT OVERLAP ON ANOTHER:
=3 }41A %EXTENT OVERLAPS ON VTOC }
:u {QZA {NO MATCHING EXTENT {
=5 =33A !EQUAL FILE ID IN VTOC {
{6 }66A |1 TRACK USER LBL EXTENT }
}7 }59A }INVALID EXTENT ‘
=15 =84D =NEED FILE PROTECT RING {
=16 I310 }VOLUME SEQUENCE ERROR =
=17 =380 }USER HDR LBL IS NOT STD }
}18 =39D :USER TRL LBL IS NOT STD :
!19 }OBD |[NO UTLO FILE MARK FOUND :
:20 }47A :EXTENTS NOT ON SAME UNIT }
=21 I D =Reserved for D type msgqg. ‘
{22 }oor {NO RECORD FOUND :
{23 :011 =NO RECORD FOUND :
{24 ’021 =No RECORD FOUND I
}25 =o31 }NO RECORD FOUND }
=26 =ou1 INO RECORD FOUND }
I27 losr INO RECORD FOUND =
l28 }061 =No RECORD FOUND {
=29 =07I {NO RECORD FOUND {
=3o' }osn =N0 RECORD FOUND }
=31 }091 =NO RECORD FOUND }
=32 }oor }NO LABEL SPACE IN VTOC =
=33 ;011 INO FORMAT 1 LABEL FOUND {
=3ﬂ }021 :NO FORMAT 2 LABEL FOUND =
i35 i03I iNO FORMAT 3 LABEL FOUND i
Figure 5. Message Codes for Disk Open

Error Message Writer (Part 1 of 3)

{Message}MessageI] {Message]Messagei }
!Code {Number lMessage } !Code !Number !Message }
{36 {OQI iNO FORMAT 4 LBL IN VTOC] {68 i981 iOVLAP UNEXPRD SECRD FILE]
{37 =06I {NO STANDARD VOL1 LABEL = }69 {691 }FILE IS OPEN FOR ADD l
}38 !ulI }EXTENT OVERLAPS ON VTOC : {70 }971 {OVLAP EXPIRED SECRD FILE {
!39 =u6I | DISCONT INDEX EXTENTS { iNONE i99D iDATA SECURED FILE ACCESSEDi
=40 }511 }SYSUNITS NOT IN SEQUENCE { Figure 5. Message Codes for Disk Open

| | | | Error Message Writer (Part 3 of 3)
ju1 |521 | DISCONT TYPE 1 EXTENTS |

!uz =5uI }DSKXTN ENTRY TABLE FULL {

=u3 }621 :Nd PRIME DATA EXTENT =

}uu {451 {TOO MANY EXTENTS :

}45 =u91 :DATA TRACK LIMIT INVALID I

=46 {591 lINVALID EXTENT i

=u7 {601 lNO EXTENTS, ALL BYPASSED l

Ius }611 ‘:INVALID DLBL FUNCTION }

{ug }631 :LOAD FILE NOT CLOSED l

=50 laox }INVALID FILE TYPE }

}51 {811 }NO LABEL INFORMATION =

}52 =831 }INVALID LOGICAL UNIT =

{53 }901 {NO AVAILABLE JIB }

isu {871 ;sys FILE EXTENT EXCEEDED {

=55 :351 ,DELETED WORKFILE LABEL :

{56 =3u1 }CURRENT FILE LBL DELETED ‘

}57 {QOI :EXTENT OVERLAP ON ANOTHER}

}58 =361 }NO MORE AVAIL/MATCH XTNT {

}59 {uax }SYSIN/SYSOﬁT UNSUPPORTED {

{60 =701 }1ST XTNT CD NOT INDX VOL =

=61 {711 :EXTENT INFO NEEDED =

{62 }721 }MOD AND DTF INCOMPATIBLE =

=63 }581 =NO EXTENT FOR OUTPUT FILE{

iau iBBI iEOF ON SYSTEM INPUT FILE i

Figure 5. Message Codes for Disk Open
Error Message Writer (Part 2 of 3)

General Information 21

SEQUENTIAL ACCESS DASD FILES

Sequentially-organized DASD (SD) files are
contained on 2311, 2314, 2319, or 2321 DASD
devices, and are processed by the
Sequential Disk Access Method. These
files, defined by the DTFSD macro, are
either input or output data files, or work
files.

A sequential DASD file contains DASD
records that are processed with a beginning
DASD address and that continue in order
through the records on successive tracks,
cylinders, and volumes to the ending
address.

A sequential DASD file is contained
within one or more sets of limits called
extents. These extents are specified by
the user with job control cards (// DLBL
and/or // EXTENT). If the logical file
consists of more than one extent, each
extent is accessed in the sequence
specified by the user. The records within
- each extent must be adjacent and contained
_within one volume (pack or cell). The

extents need not be adjacent, and they may
be on more than one volume.

The data handling logic modules for
- files defined for logical IOCS by the DTFSD
macro are provided by the associated module
generation macro, SDMODxx, where the xx is
determined by the record format and
function of the file.

Sequential DASD files are opened and
closed by logical transient routines that
are fetched by the open and close monitors
(refer to Volume 1). The open routines
provide procedures for checking each file
before any records are processed. The
close routines provide procedures for
terminating each file after all records are
processed.

Sequential DASD files can also be
defined for physical IOCS if the user
intends to use physical IOCS macros, such
as EXCP, WAIT, etc. These files are
defined by a DTFPH macro.

In addition, sequential DASD files can
be defined by the device independent
macros, DTFDI and DTFCP. These files are
described under Device Independent Files in
Volume 1.

22 DOS LIOCS Volume 3 SAM and DAM for DASD

RECORD FORMATS

Logical records in a sequential access DASD
file may be blocked or unblocked records
and may be in one of four formats:
fixed-length, (Format F) variable-length or
spanned (Format V), or undefined (Format
U). The format of the record and whether
the file is blocked, is specified by the
user in the DTFSD macro instruction used to
define the file.

FIXED-LENGTH RECORDS (FORMAT F)

Fixed-length records may be blocked or
unblocked. The number of logical records
within a block (blocking factor) is
normally constant for every block in the
file unless the block is truncated (short
block). In unblocked format, the logical
record constitutes the block (refer to
Figure 6).

Logical Record

C Data

N
\\ Blocked Records /"

Logical
Record

Logical
Record

Logical
Record

Fixed Length

Unblocked Records

Logical Record

Fixed Length

Figure 6. Fixed-Length Record Format

(Format F)

VARIABLE-LENGTH RECORDS (FORMAT V)

Variable-length records may be in blocked
or unblocked format. Either format may be
spanned or unspanned. Since the length of
the record is not constant, each record
describes its own length. For blocked
records, each block describes its own block
length.

Figure 7 illustrates the format of
variable-length records. The first four
characters (bytes) of each logical record
contain control information; 'Ly’
represents the length of the logical record
and 'bb' represents two bytes reserved for
system use. The user must provide these
characters when he is creating the record.
An optional control character, represented
by C in Figure 7 may be specified as the
fifth character of each logical record.

For blocked records, 'L,' represents the
block length and 'bb' represents the two
bytes reserved for system use. Although
these four bytes do not appear in the
logical record furnished to the user, input
and output areas must be large enough to
accommodate them.

For unblocked records, the logical
record and the block control information
constitute the block, unless the logical
record is larger than the physical block
and spanned processing has been specified.
In such a case, the logical record is
divided into segments, which are written
into each block until all the bytes of the
logical record have been written. The last
block, therefore, contains only enough
space to hold the remaining bytes of the
logical record plus the block control
‘information.

Blocked Records

L1
L bb Logical Logical Logical
1 Record Record Record
i TSsa
|
! Logical Record \‘\\
L2 bb C DQfCI
— E———A N
: 2
! Unblocked Records \\\
L4 bb Logical Record
- ¥
Figure 7. Variable-Length Record Format

(Format V)

SPANNED RECORDS: Spanned records are
format V records, each of which specifies
its own length. Spanned record processing
is an extension of variable-length record
processing. In this technique the user
need not be concerned with the restrictions
the system imposes on the length of
physical records. Thus, he can maximize
his secondary storage efficiency, while
organizing his data files with logical
record lengths most suited to his needs.
The Sequential DASD access method allows a
logical record, either blocked or
unblocked, to span multiple physical
records. This implies that:

1. The user only concerns himself with
logical records. The IOCS segments
and blocks his logical records for
him, while it makes a most efficient
use of the track capacities on his
DASD devices.

2. The user is allowed greater
flexibility in transferring logical
records from one type of DASD device
to another, when he uses the
Sequential DASD access method.

Figure 8 shows spanned records. The
first four bytes of every spanned record,
whether blocked or unblocked, constitute
the Block Descriptor Word, which describes
the information portion of the block that
immediately follows it. The first two
bytes contain the block length (LL)
supplied by data management when the data
set is written. The last two bytes (RR)
are reserved and set to binary zeros. The
user is required to reserve, for use by
I0Cs, the four bytes occupied by the block ,

Sequential Access DASD Files 23

descriptor word, at the beginning of his
input and output areas.

The length of each logical record (£2),
including two bytes for the length field
and two bytes for system use (rr), must be
supplied by the problem programmer when the
record is written.

Block
LL
IL oL
T T T 1
LL ; RR { 28 : rr : Logical Record
] ! I |
yw_J
L_ Segment
L Descriptor Word 7
Block Descriptor Word
Figure 8. Spanned Records (Unblocked)

Because the length of a logical record
may exceed the size of a single physical
record on the associated device, IOCS may
write a spanned record in sections called
segments. Figure 9 shows segmented spanned
records.

I TR Y I ———

First Segment

LL

|
g 2L

T T T
LL | RR | !
L1 I
k__Y.__/;Y_J
L_ Segment
l— Descriptor Word
- Block Descriptor Word

£L | fr | Record Segment

LL
[e—————— Segment Segment ————~
| e 2L
1 1] 1 1 I 1
LL |I RR ll 2L : fr : Record Segment ! 2L : fr || Record Segment
| | l ! | 1 |
|\ —
L_ Segment L_ Segment
L Descriptor Word Descriptor Word
Block Descriptor Word
Figure 9. Segmented Spanned Records
(Blocked)

24 DOS LIOCS Volume 3 SAM and DAM for DASD

When the logical record is written in
segments, each segment includes a segment
descriptor word. The segment descriptor
word is an additional four-byte field that
describes the data portion of the segment
which immediately follows it.

The segment length, including the four
bytes occupied by the segment descriptor
word itself, is contained in bits 1-15 of
the first two bytes (££). The value must
lie in the range. 4<££<32,763.

Bit 0 describes the segment type. If
the bit is off, it indicates that the
segment is a normal one. If the bit is on,
it indicates a null segment containing the
eight descriptor bytes only.

The last two bytes of the segment
descriptor word are reserved and set to
binary zeros, with the exception of bits 6
and 7, which contain a value (f). This
value specifies the relative position of
the segment with respect to other segments,
if any; that is, whether it is a single
segment or whether it is the first, the
last, or an intermediate segment of a
multisegment logical record. when a
spanned record is read, the segment lengths
specified in each segment descriptor word
are added together to provide the problem
program with the length (££) of the logical
record.

The first segment of a spanned record
may begin at any point in the physical
record on the associated device.

UNDEFINED RECORDS (FORMAT U)

Undefined records are treated as unblocked
records, and any deblocking must be
performed by the problem program. The
optional control character may be used in
each logical record (refer to Figure 10).

STORAGE AREAS

INPUT/OUTPUT AREAS

The logical IOCS GET-PUT macro instructions
allow the programmer to use one or two I/0
areas and process records either in a work
area or in an I/0 area.

When blocked records are to be processed
in an I/0 area with no work area specified,
(or when unblocked records are to be
processed in two I/O areas, with no work
area specified) the DTFSD macro instruction
defines the register IOREG. Logical IOCS
uses this register to specify the address
of the logical record that is currently
available for processing by the problem
program.

If variable-length blocked records are
built directly in an output area(s) with no
work area specified, the DTFSD macro
instruction specifies another register,
VARBLD. This register provides the
programmer with the remaining space in the
output area after each PUT instruction has
been issued.

Logical Record

C Data

Unblocked Records

Logical Record

Figure 10. Undefined Record Format

MODULE SAVE AREAS

If the RDONLY=YES parameter is included in
the module generation macro, the module is
reentrant and must never be modified by the
problem program. Each DTF referencing the
module must be associated with a 72-byte,
doubleword aligned save area which is used
by the module during execution. The
address of the save area is passed to the
module in register 13.

If the module is to be shared by DTFs in
different tasks, the module must be made
reentrant. This is done by associating a
unique save area with each DTF.

In sequential DASD, the save area
contains user general registers, module
general registers, switches and other
information needed by the module. Figures
11 through 20 illustrate the format of the
save area for each logic module.

Sequential Access DASD Files 25

SDMODFI - Fixed-Length Input

r T 1

| Byte 0 1 2 3 4 5 6 | 71 |

L 1]

r 1

| Displ. | User Register 9 User Register 10 |

|DEC HEX ’ | |

o "o i |
T 1

| 8 8 User Register 11 User Register 12 |

| i

|16 10 User Register 13 User Register 14 |

I 5 - 1

|24 18 | Module Register 15 Module Register 0 |

| ! t T 1

|32 20 | Module Register 1 ** |[X'FF"* | |

| t L

|40 28 Module Register 10 | Module Register 11

' +

ju8 30 Module Register 12 | Module Register 13

| t +

|56 38 | | Maximum Block Size

| | | (SDMODFI With Truncation)

' +

|64 40 Not used |

L . L

*Indicates to OPEN that there are no more DTFs to be opened.
**If ERREXT=YES, bytes 32-39 contain the parameter list that includes the
address of DTF and core address of the block in error.

Figure 11. SDMODFI Save Area

26 DOS LIOCS Volume 3 sAM and DAM for DASD

SDMODFO - Fixed-Length Output

T 1 T L] bl 1

Byte 0 1 | 2 | 3 | & | 5 | 6 7 |

L L Jf L L1 _=

Displ. | User Register 9 | User Register 10 |

| DEC HEX | | |

| 0 0 | | |

b + {

8 8 | User Register 11 | User Register 12 |

[l L J

L 3 L 1

|10 10 | User Register 13 | User Register 14 |

| t + {
|24 18 | Module Register 15 | Module Register 0 | .

| k + T {

|32 20 | Module Register 1 ** | X'FF'+ | |

| 'f H : 1

|40 28 | Module Register 10 | Module Register 11 |

| b t 1

|48 30 | Module Register 12 | Module Register 13 |

| + T .|

|56 38/ Count Field of | | Previous|

| Previous Record | H H R | I/0 Areal

| | |Address |

l . 1 i T L {

|64 40 Previous I/0 | Current I/0 Area | |

| | Area Address | Address | |

| | (continued) | | |

L L L L]

*Indicates to OPEN that there are no more DTFs to be opened.
**If ERREXT=YES, bytes 32-39 contain the parameter list that includes the
address of DTF and core address of the block in error.

Figure 12. SDMODFO Save Area

Sequential Access DASD Files 27

SDMODFU - Fixed-Length Input with Update

r 1) T T T T L] T T 1
| Byte | o | 1 | 2 | 3 | &« | 5 | 6 | 7 |
}_ Jl L L 1 % L L L _j'
| Displ. | User Register 8 | User Register 9 |
|DEC HEX | | |
| 0 0| | I
| t {
| 8 8 | User Register 10 User Register 11 |
| 'r]
|16 10 | User Register 12 | User Register 13 |
| F t {
| 24 18 | User Register 14 | Module Register 9 |
| ; + {
|32 20 | Module Register 10 | Module Register 11 |
I b t {
|40 28 | Module Register 12 | Module Register 13 |
| : H 1
|48 30 | Module Register 14 | Module Register 15 |
l b ¢ 4
|56 38 | Module Register 0 | Module Register 1 ** |
| } T % T 4
|64 40 |X'FF'#* |Last Record Switch | Block Length| |
L 1 L 1 L J

*Indicates to OPEN that there are no more DTFs to be opened.
**If ERREXT=YES, bytes 60-67 contain the parameter list that includes the
address of DTF and core address of the block in error.

Figure 13. SDMODFU Save Area

SDMODVI - Variable-Length Input

r T T Ll L] L] T T T 1
| Byte | o0 | 1 | 2 | 3 | & | 5 | 6 | 7 |
|r % L L L + L 4 L 1I
| Displ. | User Register 8 | User Register 9 |
|DEC HEX | | |
| 0 0| I I
| F . + {
| 8 8 | User Register 10 | User Register 11]
| b + {
|16 10 | User Register 12 | User Register 13 |
| 5 1 i
|24 18 | User Register 14 | Module Registers 12 or 15 |
| ¢ t H
|32 20 | Module Register 0 | Module Register 1 ** |
| t T +) 1
|40 28 |X'"FF'* | | Read Data CCW (Bytes 0-3) |
| —ooood t 1‘
|48 30 |Read Data CCW (Bytes 4-7) | |
| b + {
|64 40 | Not used | |
L i L |

*Indicates to OPEN that there are no more DTFs to be opened.
**If ERREXT=YES, bytes 36-43 contain the parameter list that includes the
address of DTF and core address of the block in error.

Figure 14. SDMODVI Save Area

28 DOsS LIOCS Volume 3 SAM and DAM for DASD

SDMODVO - Variable-Length Output
r T L] T T] 1
| Byte | 0 | 1 | 2 | 4 | 5 6 7 |
b ¢ L ' + L {
Displ.	User Register 6	User Register 7
DEC HEX		
0 0	I	
F t 4		
8 8	VUser Register 8	User Register 9
b t H		
116 10	User Register 10	User Register 11
b } i		
24 18	User Register 12	User Register 13
I t H i		
132 20	Module Registers 6,	' Module Registers
7, or 10	7 or 8	
+ i		
40 28 Module Registers	Module Register 0 or 15	
: 8 or 14 I		
v		
u8 30 Module Register 0	Module Register 1 **	
+ T :		
Module Register 1	X'FF'*	
’ ; : 1		
56 38	Not used	
1 b t {		
64 4o	Not used	
L L L J

*Indicates to OPEN that there are no more DTFs to be opened.

**If ERREXT=YES, bytes 52-59 contain the parameter list that includes the

address of DTF and core address of the block in error.

Figure 15.

SDMODVO Save Area

Sequential Access DASD Files

29

SDMODVU - Variable-Length Input with Update

r T 1 L] T L] T 1
| Byte | o | 1 2 | 3 | 4 5 | 6 | 7
b t L L + -——-1 L 1
Displ.	User Register 8	User Register 9
DEC HEX		
0 0	I	
F + , 1		
8 8	User Register 10	User Register 11
I t t

|16 10 | User Register 12 | User Register 13

| t t

| 24 18 | | Module Register 12

| t + 1
132 20 | Module Register 14 | Module Registers 12 or 15 |
| b t {
ja0 28 | Module Register 0 | Module Register 1 ***x |
| ’ T + {
|48 30 |X'FF'"#* | | Read Data CCW (Bytes 0-3) |
I L i
|56 38 |Read Data CCW (Bytes 4-7) |
| T 1
|64 40 | | | X'FF %+ |
L 1 L]]

*Indicates to OPEN that there are no more DTFs to be opened:
**Last Record Switch

+**If ERREXT=YES, bytes 44-51 contain the parameter list that includes the
address of DTF and core address of the block in error.

Figure 16. SDMODVU Save Area

30 DOS LIOCS Volume 3 SAM and DAM for DASD

SDMODUI - Undefined Input

1 T T T T T T T 1

Byte | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

= L 1 L : L L L _Jl

Displ.	User Register 8	User Register 9
DEC HEX		
0 0		
b - t i		
8 8	User Register 10	User Register 11
t + 4		
16 10	User Register 12	User Register 13
¢ t 1		
24 18	User Register 13 or 14	
t 4		
132 20 Module Register 15	Module Register 0	
b t T {		
40 28	Module Register 1 **	X'FF'*
t L 4		
48 30 Read Data CCW		
t i		
56 38	Not used	
ot + 4		
64 40	Not used	N
L L L]

*Indicates to OPEN that there are no more DTFs to be opened.

**1f ERREXT=YES, bytes 40-47 contain the parameter list that includes the
address of DTF and core address of the block size in error.

Figure 17. SDMODUI Save Area

SDMODUO - Undefined Output

r T T 1
| Byte 0 1 2 3 | 4 5 6 | 7 |
b + L {
| Displ. | User Register 7 | User Register 8 |
|DEC HEX ‘ I |
| 0 Y | |
| b H . 1
| 8 8 | User Register 9 | User Register 10 |
| + , + 4
16 10 | User Register 11 | User Register 12 |
1 4 |
r L] i
24 18 | User Register 13 | Module Register 12 |
L i (]
v 1
32 20 | Module Register 13 | Module Register 14 |
L + 1
r T N 1
|40 28 | Module Register 15 | Module Register 0
1 4
r L) T
48 30 | Module Register 1 ** |X'FF'#* |
| t L
|56 38 Not used |
| t
|64 40 | Not used | |
L L 4 J

*Indicates to OPEN that there are no more DTFs to be opened.

**If ERREXT=YES, bytes 45-55 contain the parameter list that 1ncludes the
address of DTF and core address of the block in error.

Figure 18. SDMODUO Save Area

Sequential Access DASD Files 31

SDMODUU - Undefined Input with Update

r T T 1] L] T T T 1
| Byte | 0 | 1 | 2 | 3 | 4 | 5 | 6 7 |
Ir _=, L i 1 .=, L L jl
Displ.	User Register 8	User Register 9
DEC HEX		
0 0		
b , t : {		
8 8	User Register 10	User Register 11

l F t

|16 10 | User Register 12 | User Register 13

| F t+

|24 18 | Module Register 8 | Module Register 9 |
| ’ ¢ :
132 20 | Module Register 12 | Module Register 13 |
| F + ' {
j40 28 | Module Register 14 | Module Register 15 |
| ’ + {
|u8 30 | Module Register 0 | Module Register 1 ** |
| b T + {
|56 38 |X'FF'* |Last Record Switch | Read Data CCW (Bytes 0-3) |
| 3 L } i
|64 40 | Read Data CCW (Bytes 4-7) | |
L L 1 J

*Indicates to OPEN that there are no more DTFs to be opened.

**If ERREXT=YES, bytes 52-59 contain the parameter list that includes the

address of DTF and core address of the block in error.

Figure 19. SDMODUU Save Area

32 DOS LIOCS Volume 3 SAM and DAM for DASD

SDMODW - Work File

r T T T T T T T T |
| Byte | o0 | 1 | 2 | I & | 5 | 6 | 7 |
Ir % L L L % L L L _=
| Displ. | User Register 2 | User Register 3 |
il | |
| b +

| 8 8 | User Register 4 | User Register 5

| 5 +

116 10 | Module Register 14 | Module Register 15 |
| b } 1
|24 18 | Module Register 0 | Module Register 1 |
| t t T {
| | Module Register 1 | X*FF** | ** |
| b= + 1 {
132 20 | Ochr - NOTE Macro | |
| | Record Identification | |
| i + 4
|40 28 | Not used | |
| k t 1
|48 30 | Not used | |
| t +

|56 38 | Not used |

| F——- +

|64 40 | Not used | |
L L L J

*Indicates to OPEN that there are no more DTFs to be opened.

**If ERREXT=YES, bytes 28-35 contain the parameter list that includes the

address of DTF and core address of the block in error.

Figure 20.

SDMODW Save Area

Sequential Access DASD Files

33

DTFSD MACRO
DATA FILES

To process a sequentially-organized DASD
file of data records by the Sequential
Access Method, the file must first be
defined by the declarative macro DTFSD
(Define The File for Sequential DASD).
This describes the characteristics of the
logical file, indicates the type of
function being performed, defines the
format of the record being processed, and
specifies the main storage areas and
routines used for the file.

A DTF table is then generated according
to the parameters specified in the operand
of the DTFSD macro instruction. Figure 21

34 DOS LIOCS Volume 3 SAM and DAM for DASD

illustrates the DTF table generated for
sequential DASD files.

WORK FILES

If a TYPEFLE=WORK parameter is specified in
the operand of a DTFSD macro instruction,
the file being defined is a work file, and
work file macro instructions READ, WRITE,
CHECK, etc., are provided. This type of
file is used in applications where records
are to be alternately read and written from
and to a DASD device, which is used as a
temporary extension of main storage.

Figure 22 illustrates the DTF table that
is generated when the TYPEFLE=WORK
parameter is specified.

r T T T 1
| DTF Assembly| | | |
| Label | Bytes |Bits| Function |
1 4 [} [l 4
T T]] 1
| §Filename | 0-15 | | Command Control Block (CCB). |
| | ©-® | | |
| | 16 | 0 |1 = Dequeue old volume extents. ,
	(10)	T	i = Dummy OPEN to obtain extents from
			label track.
		2	1 = File assigned 'IGN"' (COBOL).
		3	1 = Track hold option specified.
		&	1 = DTF relocated by OPENR.
		5	1 = Input trailer labels to be processed
			at close time (COBOL only).
		6	1 = Spanned processing.
		7	1 = COBOL end-of-extent option specified.
	17-19		Address of logic module.
	(11-13)		
	20		DTF type for OPEN/CLOSE (X°'20' = sequential
	as)		access DASD files).
			I
	21	0	1 = 2321, 0 = 2311, 2314, 2319.
	(15)	1	1 = Blocked file.
		2	1 = Work file.
		3	1 = Work area specified.]
		4	1 = Not a Version 1 type table.
		1 5	1 = Open, 0 = Closed.
		6	1 = Input, 0 = Output.
		7	1 = User labels specified.
	22-28		Filename (DTF Name).
	(16-1C)		
	29		Device Type Code (Version 3)
	(@1D)		X'00' = 2311
			x*'01* = 2314, 2319
			X*'02' = 2321
			Note: In previous versions, last byte of
			filename contains device type code.
I	I I		
}	30-35		Address of Format 1 label in VTOC (BCCHHR).
	(LE-23)		
	36-37		Volume sequence number.
	(24-25)		
	38		Open communications byte.
I (26)			
			Input File
		0	1 = No more extents.
		1	1 = Update file.
		2	1 = Process trailer labels.
		3	1 = Exit to user's EOF routine.
		4	1 = Next extent on new volume.
] 5	1 = Return to close routine.	
		6	1 = Process header labels.
		7	1 = Extent switch.
L 1 L L i)

Figure 21. DTFSD Table —-- Data Files (Part 1 of 12)

Sequential Access DASD Files

35

r T T T 1
| DTF Assembly| | | |
| Label | Bytes |Bits] Function |
k + + + -—1
| | | |Qutput File |
| | | 0 |1 = No more extents. |
| | | 1 |1 = Extents needed at close time.

| | | 2 |1 = Process trailer labels.

| | | 3 |1 = Process header labels. |
| | | 4 |1 = Next extent on new volume.

| | | 5 |1 = Extents entered via 1052.

| | | 6 |1 = Process trailer labels at close.

		7	1 = Check extent for minimum of 2 tracks.
	39	0	1 = Extent bypassed before file is opened
	27)		(Input only).
		1	1 = FEOVD has been issued (input only)
		0-7	Sequence number of current extent opened

| | | | (Output only).

| | | |

| | 40 | | Sequence number of last extent opened.

| | 28) | | |
| | | | |
| | 41-43 | |Address of user's label routine.

| | (29-2B) | |

| | | | |
| | u4-47 | |Address of IOAREAl.

= : (2C-2F) : { I
	u48-51		CCHH address of user's label track
	(30-33)		(X*80000000").
	52-53		Lower head limit (HH).
	(34-35)		
	54-57		Extent upper limit (CCHH).
	(36-39)		
			.
éFilename.S	58-59		Seek address (BB):
	(3a-3B)		X*'0000" if 2311, 2314, or 2319.
			X*00nn' if 2321, where nn = bin number.
	60-63		Search argqument (CCHH).
	(3c-3F)		
	64		Record number.
	(u0)		
		o ,	
	65-67		EOF address if input file. Key length
	(41-43)		and data length if output file.
	68-71		CCHH control field
	au-47)		CCHH=X'00C80009* if 2311 type 1
			CCHH=X'00C80013" if type 1 2314, or 2319.]
			CCHH=X'13090413" if 2321 type 1
			CCHH=X"'00C700nn' if type 128 2311, 2314, 2319
			CCHH=X'130904nn"' if 2321 type 128 where
			nn = current upper head number.
I			
	72		Number of records per track (computed
	(u8)	Jat generation time).	
I			
	73		Switch byte used by the logic modules for
	(49)		various switching purposes. Functions
			indicated are for the ON condition (1) of
			the respective bit.
L 1 L 1 Jd

Figure 21. DTFSD Table -- Data Files (Part 2 of 12)

36 DOS LIOCS Volume 3 SAM and DAM for DASD

~

\

DTF Assembly
Label

Bytes

Bits

Function

e ——]

T T
| |
| |
k t
| |
I I
| |
| |
| |
| |
| I
| |
| |
| |
| |
| |
i |
] |
| |
| |
| |
| |
| |
| |
I |
] |
| I
| |
| |
] |
| |
| I
| |
] |
| |
| |
| |
| |
| |
| |
| |
| |
I |
| |
| I
I |
| |
| |
| |
| |
I I
] |
| |
| |
| I
| |
| I
| |
| |
| |
| |
| |
| |
L L

74-75
(4A-4B)

76-80
(4c-50)
81
(51)

81-83
(51-53)

|
g
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
1
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
u
|
|
4
!
!
|
|
|
|
|
|
!
i

SouswNeRo

0

£ W e

N0y »

~ <)) aEw [S]

| Fixed Length Record Modules:

| Not first entry after Open (INPUT and
UPDATE) .

Not first write after Open (OUTPUT).
Short record (INPUT and UPDATE without
| txruncation).

Partial block written (OUTPUT).
ERROPT=SKIP (INPUT).

TRUNCS=YES (OUTPUT).

End-of-file record written (OUTPUT).
End of extent (UPDATE).

| Truncation not specified (used by OPEN
| routines).

|Write block of records (UPDATE).

|End of file (UPDATE).

|Variable Length Record Modules:
| Not first entry after OPEN (INPUT and

| UPDATE) .

|Write record (OUTPUT).

|Wrong length record . (INPUT).

| TRUNCS=YES (OUTPUT).

| Second GET operation performed (UPDATE).
|Return to close routine (OUTPUT).

| Update specified (UPDATE).

|Not first entry after OPEN (OUTPUT).

| New extent required by CLOSE.

|capacity of I/0 area exceeded (OUTPUT).
| second GET required (UPDATE).

|Not first read (INPUT).

| sSecond GET issued (UPDATE).

Unnecessary to read (INPUT).

Track capacity exceeded (OUTPUT).

Save record count (UPDATE).

Undefined Length Record Modules:

Not first entry after OPEN (ALL modules).
| save record count (UPDATE).

| Return to close routine (OUTPUT).

| Second GET issued (UPDATE).

Not used.

PUT command issued (UPDATE).

End of file reached (UPDATE).
Multi-track operation (UPDATE).

Block size minus one.

CCHHR = Extent lower limit and record
| number. Field is used as a search argument
bucket by the logic modules.

|1 = FEOVD has been issued (output only)
I

|Address of user wrong-length record routine
|if input file.

| Track capacity counter if output file

L

bt e cmets oot — — — A —— — —— ——— —— — — —— — — S G S A G— S G G G S — G G GE f— T G— T — —— — —— —— — — — a———— —— ——— ——— ——— ——— — iy — — o]

Figure 21. DTFSD Table -- Data Files (Part 3 of 12)

Sequential Access DASD Files

r T T T 1
| DTF Assembly| | | |
| Label | Bytes |Bits| Function |
| t + + 1
{ | 8u-87 | | Instruction to load user's register IOREG. |
	(54-57)		(NOTE: This field is a NOP unless blocked
			records are processed in one I/0 area, oOr
			two I/0 areas are specified and records are
			processed in the I/O areas.)
o]			
	88-91		Address of current available input/output
	(58-5B)		area. } I

	92-95		Logical record size.
	(5C¢-5F)		
	96-99		Address of end of input/output area.
	(60-63)		
	100		Logical indicators
	(64)	0	1 = ERROPT = address.
		1	1 = ERROPT = IGNORE.
		2	1 = ERROPT = SKIP.
		3	1 = VERIFY = YES.
		4	1 =2 I/0 areas.
		5	1 = WLRERR = address (Fixed-length and
			variable records).
			1 = Output file (Undefined length records).
		6	1 = Fixed-length records.
			0 = variable or undefined length records.
		7	Control parameter specified.
	101-103		Address of user's read error routine.
	(65-67)		:
	104-111		Seek CCW.
	(68-6F)		
	112-119		Search ID Equal CCW.
	(70-77)		
	120-127		TIC CCW.
	(78-7F)		
	128-135		Read/Write Data CCW.
	(80-87)		
L L 1 L]

This is the end of the common portion of the DTFSD table. The following
sections are added depending on the parameters specified in the operand
of the DTFSD macro instruction. Refer to Figure 24 for the sequential
access CCW chains which are generated by the DTFSD macro according to
parameters specified in the operand of the DTFSD macro instruction.

Figure 21. DTFSD Table —-- Data Files (Part 4 of 12)

38 DOS LIOCs Volume 3 SAM and DAM for DASD

fhe following section is added to the DTFSD table for fixed-length record
input files.

r L] T 1
|DTF Assembly| | |
| Label | Bytes |Bits]| Function |
L L L L |
r ;|
| If RECFORM=FIXBLK and TRUNCS=YES: |
L i
|
| | 136-143 | |Read Count CCW. |
| | (88-8F) | | |
| | | | i
	144-151		Count field input area.
	(90-97)		
t 1			
	If CONTROL=YES, the following section is added:		
k T 1			
	152-167		¢ontrol CCB.
	(98-a7)		
	168-175		Control CCW.
	(A8-AF)		
=_ L i L _=			
Lf UPDATE=YES:			
=’ T T T '{			
	136-143		Search ID Equal CCW.
	(88-8F)		
	144-151		TIC CCW. N
	(90-97)		
	I		
	152-159		Verify CCW.
	(98-9F)		:
t L 1			
	If CONTROL=YES, the following section is added:		
t T 1			
	160-175		Control CCB.
	(A0-AF)		
	176-183		Control CCW.
	(BO-B7)		
L L 4 L |

Figure 21. DTFSD Table -- Data Files (Part 5 of 12)

Sequential Access DASD Files

39

|If TRUNCS or UPDATE are not specified, no additioné are made to the
| DTFSD table except when CONTROL=YES is specified. Then, the following
| section is added:

l’ T 1 L]
| 136-151 | | Control CCB.
| | (88-97) | |
| I | I
| | 152-159 | | Control CCW.
| | (98-9F) | |
L L L L

r T T T 1
| DTF Assembly| | | |
| Label | Bytes |Bits]| Function |
L 1 A L J
r |
| If RECFORM=FIXBLK, TRUNCS=YES, and UPDATE=YES: |
1 J
r T 1 1 1
	136-143		Read Count CCW.
-	(88-8F)		
I			
	144-151		Search ID Equal CCW.
	(90-97)		
			I
	152-159		TIC CCW. (Bytes 158-159 contain saved block
	(98-9F)		length if two files are using same logic
			module.)
	Lo		
	160-167		verify CCW.
	(a0-A7)		
	168-175		Count field input area.
	(A8-AF)		
t 1 L i			
	If CONTROL=YES, the following section is added:		
3 T T {			
	176-191		Control CCB.
	(BO-BF)		
	I		
	192-199		Control CCW.
	(co-Cc7)		
1 L L L J			
v 1			
4			
I			
I			
]			

Figure 21. . DTFSD Table -- Data Files (Part 6 of 12)

40 DOS LIOCS Volume 3 SAM and DAM for DASD

The following section is added to the DTFSD table for fixed-length record

output files.

r L] L) 1 1
| DTF Assembly| | | |
| Label | Bytes |Bits]| Function

1 1 [l R 4
r T T 1]
| | 136-143 | | Search ID Equal CCW. |
| | (88-8F) | | |
| | | | I
	144-151		TIC CCW.
	(90-97)		
	Lo		
	152-159		Verify CCW.
	(98-9F)		
t L 1 4			
	If CONTROL is not specified:		
k -7 T 1			
	160-163		End-of-extent routine address (primarily
	(AO-A3)		used by COBOL compiler).
I I, L L

| | If CONTROL=YES:

l lL T k]

| | 160-175 | | control cCB. |
| | (A0-AF) | | |
i | | | I
	176-183		Control CCW.
	(BO-B7)		
	I , o		
	184-187		End-of-extent routine address (primarily
	(B8-BB)		used by COBOL compiler).
L L L L]
Figure 21. DTFSD Table -- Data Files (Part 7 of 12)

Sequential Access DASD Files

41

The following section is added to the DTFSD table for variable-length

record, undefined length record, and spanned record input files.

r T T T -
| DTF Assembly| | | |
| Label | Bytes |Bits]| Function |
F + $——1 :
| | 136-1u43 | |Read Count CCW.

| | (88-8F) | | |
lr L L 1 ‘{
| If UPDATE is not specified: |
lf T T T "I
| | 144-151 | |Count field input area.

| | (90-97) | | |
| F 1 L 1
| | If CONTROL=YES:* |
| 3 T T 1
| | 152-167 | | Control CCB. |
| | (98-a7) | | |
I | | | |
] I | | I
| | 168-175 | |]Control CCW.

| | (A8-AF) | | |
| | I . l
| | 176-179 | |Logical record length.

| | (B0O-B3) | | |
| [T , |
| | 180-183 | |RX type instruction. |
| | (B4-B7) | | |
| I | | I
	184	0	Not used.
	(B8)	1	1 = sSkip segment.
] 2	1 = Spanned first time.	
		3	Not used.
		4	Not used. .
		5	Not used.
		6	[Not used.
		7	Not used.
	185-187		Pointer in logical record.
	(B9-BB)		
L L L L J

*These bytes are always generated when spanned processing

Figure 21. DTFSD Table -- Data files (Part 8 of 12)

42 DOS LIOCS Volume 3 SAM and DAM for DASD

is specified.

The following section is added to the DTFSD table for variable length
record and undefined length record input files

r T T T -
|DTF Assembly| - |) |
| Label | Bytes |Bits]| Function |
i_ L i L {
| If UPDATE=YES: |
t T T T 1
	144-151		Search ID Equal CCW.
	(90-97)		
	152-159		TIC CCW.
	(98-9F)		
	160-167		verify CCW. 1
	(A0-AT)		
	[o		
	168-175		Count field input area.
	(A8-AF)		
	I , .		
	176-183		Count field save area if one I/O area.
	(BO-B7)		
l	I . ,		
	184-191		Count field save area if two I/0 areas.
	(B8-BF)		
t L i			
	If CONTROL=YES:#*		
t T T 1			
	192-207		Control CCB.
	(co-CcF)		
	208-215		Control CCW.
	(DO-D7)		
L | N L L 1
The following section is added to the DTFSD table for variable length
spanned record update files.

r a) 1 1 |
| DTF Assembly]| | | |
| Label | Bytes |Bits]| Function |
L L 1 L i |
r T 1} L) 1
	216-219		Logical record length.	
	(D8-DB)			
	220-223		RX type instruction.	
	(DC-DF)			
	224	0	Not used.	
	(E0)	1	1 = Skip segment.	
		2	1 = spanned first time.	
		3	1 = Null segment.	
		4	1 = Spanned PUT return.	
		5	[Not used.
		6	Not used.	
		7	1 = No update	
	225-227		Pointer in logical record.	
	(E1-E3)			
	228-235		Count save area.	
	(E4-EB)			
	236-239		Extent status save area.	
	(EC-EF)			
L L []

*These bytes are always generated when spanned processing is specified.

Figure 21. DTFSD Table =-- Data Files (Part 9 of 12)

Sequential Access DASD Files 43

The following section is added to the DTFSD table for variable-length
record output files.

r T T 1
| DTF Assembly]| | |
Label Bytes |Bits| Function
4 i
v L
136-143 | | Search ID Equal CCW.
(88-8F) | |
.
144-151 | | TIC ccw.
(90-97) | |
| |
152-159 | |verify CCW.
(98-9F) | |
| |
160-163 | | Space remaining in output area.
(A0-A3) | |
| |
164-165 | | Track capacity.
(A4-A5) | |
I | ‘
166-169 | | Instruction to load user's register VARBLD.
(A6-A9) | | (If VARBLD is not specified, instruction
|

L

|is NO-OP.)
L

If CONTROL=YES:*

[e o S e e e e e e e e . e e e e . o . e e e e

|
+
|
I
I
|
I
I
I
|
I
I
|
[
I
|
|
|
I
|
I
k
|
k
I
I
|
|
I
|
|
I
I
|
|
L

170-172
(AA-AC)

173-175
(AD-AF)

176-191
(BO-BF)

192-199
(co-c7

T
I
I
|
I
I
I
I
|
I
|
I
L

T
| Not used.

| End-of-extent routine address (primarily
|used by COBOL compiler).

|

| Control CCB.
| .

|

| Control CCW.

I
1

e s s —— — — — — — — v —) c— kil o c— —— — — — —— — — — ——— — — — — —— i e c—)

Figure 21. DTFSD Table -- Data Files (Part 10 of 12)

44 DOS LIOCS Volume 3 SAM and DAM for DASD

The following section is added to the DTFSD table for variable length

spanned record

output files.

r] 1 T 1
|DTF Assembly| | | |
| Label | Bytes |Bits| Function

b + =t

| | 200-203 | |Logical record length.

| | (c8-cB) | |

| | | | |
| | | |

| | 204-207 | |RX type instruction.

| | (cc-cF) | |

| | | |

| | 208 | 0 |Not used.

| | (D0) | 1 |Not used.

		2	1 = Leading segment.
] 3	1 = Output block truncated.	
		8	1 = End of track.
		5	1 = Track truncated.
		6	1 = save count.
] 7	1 = Volumes spanned.’	
	209-211		Pointer in logical record.
	(D1-D3)		
	212-219		Count save area.
	(D4-DB)		
			I
	220-223		Extent status save area.
	(DC-DF)		
L L L 4L i |

*These bytes are always generated when spanned processing is specified.

Figure 21. DTFSD Table -- Data Files (Part 11 of 12)

Sequential Access DASD Files

45

The following section is added to the DTFSD table for undefined length
record output files. ‘ .

r T T T 1
|DTF Assembly| o | I
| Label | Bytes |Bits| Function |
1 1 4 1 J
v T T] 1
| | 136-143 | | Search ID Equal CCW. |
: ’ (88-8F) { i {
| | 1uu4-151 | {TIC CCw. I
{ = (90-97) : } :
| [152-159 | | Verify CCW. |
= (98-9F) : : =
| 160-161 | | Track Capacity.

| (A0-A1) | | |
| . L L {
I If CONTROL=YES: I
I T T 1‘
| | 162-164 | |Not used. |
} (a2-A4) } }

| | 164-167 | | End-of-extent routine address (primarily

| | (au-A7) | |]used by COBOL compiler).

I I

| 168-183 | | Control CCB.

= = (a8-B7) = :

| 184-191 | | Control CCW.

l (B8-BF) l 1

Numbers in parentheses are displacements in hexadecimal notation.

Figure 21. DTFSD Table -- Data Files (Part 12 of 12)

46 DOS LIOCS Volume 3 SAM and DAM for DASD

r T T T 1
| DTF Assembly| | | |
| Label | Bytes |Bits]| Function |
’ t -t 4
§Filename	0-15		Command Control Block (CCB).
	(0-F)		
	16 }0-1	Not used	
	(10)	2	1 = File assigned 'IGN' (COBOL).
		3	1 = Track hold option specified.
		4	1 = DTF relocated by OPENR.
		5-7	Not used.
	I I		
	17-19		Address of logic module.
	(11-13)		
	I]	
	20		DTF type for OPEN/CLOSE (X'20" = sequential
	(14)		access DASD files).
	21	0	0 = 2311, 2314, or 2319.
	(@15)	1	1 = CLOSE macro is not to delete Format 1
			and Format 3 file labels.
		2	1 = Work file.
		3	Type of open: 1 = Point, 0 = Normal.
		4 1 = Routine entered from close routine.	
		5	1 = File opened. :
			0 = File closed.
		6	Not used.
		7	1 = Reentry to close routine.:
	22-28		Filename (DTF Name).
	(16-1C)		
	29		Device Type Code (Version 3):
	((1D)		X'00* = 2311
			x*'01' = 2314, 2319.
			NOTE: In previous versions, last byte of
			filename contains device type code.
		:	
	30-31		Track capacity counter.
	(1E-1F)		
I			
	32-35		address of Format 1 label in VTOC (CHHR).
	(20-23)		
	36		Extent sequence number.
	@y		i
	37		Open Communications Byte.
	(25) [0-2	Not used. -

| | | 3 |1 = Symbolic unit in DTF.

| | | & |1 = Next extent on new volume.

| | | 5 |1 = Extent opened. |
| | |6-7 |Not used.

| | | |

| | 38 | | Lower head limit.

| | (26) I |

| | | |

| | 39 | | Upper head limit.

| | @27 | |

L L L L

bhn e s a—

Figure 22. DTFSD Table -- Work Files (Part 1 of 3)

Sequential Access DASD Files

47

r T T 1 1
| DTF Assembly| | | |
| Label | Bytes | | Function |
1 [4 1]
r T T 1 1
| | I | |
| [I

|¢Filename.L | 40-41 | Record Length.

| | (28-29) | |
| | I L. o I
| | 42-45 | Initial extent lower limit.

| | (2a-2D) |

| | | N

| | u6-u49 | |Current extent lower limit.

| | (2E-31) |

| | I

| | 50-53 | | Extent upper limit. |
| | (32-35) | | |
| | | | I
| éFilename.S | 54-55 | | Seek address (BB=X'0000'). |
| | (36-37) | | |
| | | I I
| | 56-59 | | Search address (CCHH). |
| | (38-3B) | | |
I | | [|
| | 60 | | Record number. |
| | 6o | | |
L L L L]
Figure 22. DTFSD Table -- Work Files (Part 2 of 3)

48 DOS LIOCS Volume 3 SAM and DAM for DASD

r T 1 T 1
| DTF Assembly| | | |
| Label | Bytes | Bits| Function |
t + } + .|
	61		switch byte used by logic module.
	(3D)	0	1 = First write entry indicator.
		1	1 = Write update indicator.
		2	1 = POINTS macro issued.
		3	Not first entry after OPEN for
			READ (RECFORM=UNDEF) .
		4	1 = Track upper limit reached.
		5	Not used.
		6	1 = Check after read/write.
		7	Not used.
	62-63		Maximum record length.
	(3E-3F)		
	64		Verify chain bit.
	(40		
	65-67		Address of user®s EOF routine.
	(41-43)		.
	68		Logical indicators.
	yg)	0	1 = ERROPT = address.
		1	1 = ERROPT = IGNORE.
		2	1 = Fixed-length unblocked records.
		3	1 = Verify specified.
		4	1 = ERROPT = SKIP.
] 5	1 = Reread after read error.	
		6	Not used.
		7	Not used.
	69-71		pddress of user read/write error routine.
	u5-47)		
	72-143		CCW chain for work files (see Figure 24).
	(48-8F)		
	144-151		Input area for Verify CCW and Read Count
	(90-97)		CCw.
L L L L]

Numbers in parentheses are displacements in hexadecimal notation.
Figure 22. DTFSD Table -- Work Files (Part 3 of 3)
DTFPH MACRO PHysical IOCS) macro. To define a

sequentially-organized DASD file in this
manner, the parameters specified in the

When physical IOCS macro instructions are operand of the DTFPH macro instruction must
used to process a sequential DASD file with include DEVICE=2311,/2314,/2321 and

standard labels, and the user wishes to MOUNTED=SINGLE. Figure 23 illustrates the

have the labels checked, the file must be DTF table generated to define the file for

defined by a DTFPH (Define The File for physical IOCS.

Sequential Access DASD Files 49

b

T 1
Bytes Bits | Function }
1
L] 1
]0-15 | | cCB. |
| (0-F) | | |
| | |
16 | 0 | 1 = Dequeue old volume extents.
(10) | 1 | Not used.
| | 2 | 1 = File assigned 'IGN' (COBOL).
| | 3 | Not used. |
| | 4 | 1 = DTF relocated by OPENR. |
| | 5-7 | Not used.
| | |
[17-19 | | 3x'00°*
] (11-13) | |
		/
20		DTF type (X'21").
(1w)		
121		Open/Close indicators.
(15)	0	1 = 2321; 0 = 2311, 2314, 2319.
	1	1 = Blocked files.
	2	1 = Work file.
	3	1 = Work area.
	4	1 = Not Version 1 table type.
5	¥ = Open; 0 = Closed.	
6	1 = Input; 0 = Output.	
7	1 = User labels specified.	
22-28	Filename (see byte 29).	
(16-1C)		
129	Version 3 device type code:	
(1D)	X*00*' = 2311	
	Xx'01* = 2314, 2319	
	X*02' = 2321	
	Last byte of filename in previous versions.	
30		C'F' = EOF indicator for DTFPH.
(1E)		
30-35		(BCCHHR) Address of F1 label in VTOC (output).
(LE-23)		(BCCHHR) Address of next DLBL-EXTENT record (input).
}]36-37		Volume sequence number.
(24-25)		
138		Open communications byte.
(26)		OQutput
0	1 = No more EXTENTS.	
1	1 = EXTENTS for LIOCS at close.	
2	1 = Process trailer labels.	
3	1 = Process header labels.	
	4	1 = New volume on next EXTENT.
5	1 = EXTENTS entered via 1052.	
6	1 = Process trailer labels at close.	
7	1 = Check EXTENT for minimum of 2 tracks.	
	Input	
	0	1 = No more EXTENTS.
	1	Not used.
2	1 = No F1 label, process EXTENTS only.	
3	Not used.	
	4	1 = New volume on next EXTENT.
	5	Not used.
	6	1 = Process header labels.
	7	Not used.
L 1 (]

Figure 23. DTFPH Table for Sequential Disk (Part 1 of 2)

50 DOS LIOCS Volume 3 SAM and DAM for DASD

[o S . e o S e i S e . S, . S, . S G, S . . S, S o —— ——— f—— . S e S T .

I) b}
| Bytes | Bits | Function
S —
139 | | Sequence number of current EXTENT being opened.
1 (27 | |
| ‘
‘140 Sequence number of last EXTENT opened (not a 1050
| (28) EXTENT entry).
| |
| 41-43 | | Address of user's label routine.
| (29-2B) | |
|
|u4-u7 Address of IOAREAl.
| (2c-2F) | ‘
| | |
| 48-51 | | CCHH address of user's label track. Initially
] (30-33) | | X'80000000°".
| | |
|52-53 | | Lower head limit (HH) X'0000' if type 1; X'00nn' if
| (34-35) | | type 128 (n = head limit).
| |
54-57 | | EXTENT upper limit (CCHH).
| (36-39) | |
| | |
| 58-59 | | BB seek address:
| (3a-3B) | | =X*0000"' if 2311, 2314, or 2319.
| | =X'00nn' if 2321 where 'nn' = bin number.
| | ‘
60-63 | | EXTENT lower limit (CCHH).
(3c-3F) | i
| |
64 | | Record number. 1 = Input, 0 = Output.
(40) | |
| |
65-67 | | Not used.
(41-43) | |
| |
68-71 | . | CCHH control bucket.
(44-47) | |
| .] CCHH = X'13090413" if 2321 - type 1.
| | CCHH = X'00C80009' if 2311, or X'00C80013' if 2314,
| | 2319 - type 1.
| | CCHH = X'130904nn*' if 2321 - type 128.
| | CCHH = X'00C800nn*' if 2311, 2314, 2319 - type 128
| | where n = current upper head number.
| |
72 | | Record number.
(48) | |
| |
73 | | Not used.
(49) | |
- |
74-75 | | Not used.
| (4A-4B) | |
| |
76-80 | | CCHHR bucket = extent lower limit and record number.
(4c-50) | |
| |
81-83 | | Not used.
(51-53) | |
L L

— . — ——— —— — — —— —— — ———— ———— — — — — —————

b v e c— — — —— — —— — —

Numbers in parentheses are displacements in hexadecimal notation.

Figure 23.

DTFPH Table for Sequential Disk (Part 2 of 2)

Sequential Access DASD Files 51

dsv¥d I0F WYd pue WYS € amnTOA SDOOIT Sod 2§

1z L2anbta

(€ 30 T 3xeg) suweaboid ToUURYD gSILA

Input

Fixed - Length Records

Typefile

FIXUNB

. _FIXBLK

Notes:

1. Shaded Areas - Assembly Time
2. Unshaded Areas - Execute Time

(UPDATE =YES
T T T
X'07', &Filename.S,X'40',6 : SEEK X'07', & ilename.S,X'40',6 1 SEEK X'07', &Filename.S,X'40',6 : SEEK
1 ! 1
X'31', &Filename .S +2,X'40',5 : SIDE X'31', &Filename.S +2,X'40',5 : SIDE _ X'31', & ilename.S +2,X'40',5 : SIDE
1 ! |
X'08',*-8,0,0 1 TIC ’ Xt'o08',*-8,0,0 : TIC X'o8',*-8,0,0 1 TIC
| > I
I
X'06', &IOAREAT, 0, Block Length : RD X'06', &IOAREAT, 0, Block Length : RD X'06', {IOAREAT, X'40', Block Length : RD
I 1
! i X'92',%+8,0,8 I RID
T
| 1
! ! DC 2F'0' Count Area :
l ']
I 1
I : I
I I |
1] |
|] |
1 I 1
! L |
- I T : T
X'07', &Filename.S,X'40',6 : SEEK X'07', &Filename.S,X'40',6 | SEEK X'07', &Filename.S,X'40', 6 | SEEK
. I 1
I
X'31", &Filename.5+2,X'40',5 1 SIDE X'31", &Filename.S +2,X'40',5 | SIDE X'31", &Filename .S +2 X'40',5 | SIDE
| | |
X'08',%-8,0,0 I Tic X'08',*-8 0,0 I TIC X'08',*-8,0,0 I TIC
I
X'06', RIOAREA1, 0,Block Length | RD X'06', 8IOAREAI, 0,Block Length | RD X'06', IOAREAT, X'40", Block Length | RD
| 1 1
X'31', &Filename.S +2,X'40',5 : SIDE X'31', &Filename.S +2,X'40',5 I’ SIDE X'92',*+32,0,8 : RID
| |
X'08',*-8,0,0 ; TIC X'08',*-8,0,0 I TIC X'31', &Filename.S +2,X'40',5 | SIDE
1 |
| |
X'06',*,X'30',1 | VERIFY X'06',*,X'30',1 : VERIFY X'08',*-8,0,0 1 TIC
[1
I
: | X'06',*,X'30',1 : VERIFY
| | l
: : DC 2F'0' Count Area :

SoTTd dSVYd SSsaoov Tetjusnbag

€6

*Hz 2aInbta

(€ 30 Z 3xeg) Ssweaboxg Tauueyd 4SJILA

Output

All Record Types

Typefile

X'o8',*-8,0,0

X'o8',*-8,0,0

X'30*,*,X'30,1

X'07', &Filename.S, X'40', 6

X'31', &Filename .5+2,X'40', 5

X"1D', &IOAREAZ2, 0, Block Length+8

X'31', &Filename.S+2,X'40', 5

SEEK
SIDE
TIC
WCKD
SIDE
TIC

VERIFY

Input

Variable - Length Records

Typefile

Notes:
1. Shaded Areas- Assembly Time
2, Unshaded Areas- Execute Time

X'07', &Filename.S, X'40', 6

X'31', &Filename .S+2,X'40', 5

X'08',*-8,0,0

X'06', &IOAREAT,X'40',Block Length

X192!,%+8,0,8

DC 2F'0* Count Area

RID

- —— e e]

X'07', &Filename .S, X'40', 6

X'31', &Filename .S+2,X'40',5
X'08',*-8,0,0

X"1D', &IOAREAT1, 0, Block Length+8
X'31', &Filename.S+2,X'40', 5
X'08',*-8,0,0

X'30,*,X'30',1

SEEK
SIDE
TIC
WCKD
SIDE
TIC

VERIFY

}

X'07', 8Filename .S, X'40', 6 : SEEK
X'31', &Filename .S +2, X'40", 5 E SIDE
X'08',*-8,0,0 | TIC
X'06', BIOAREAT, X '40", Block Length : RD
X'92',*+32,0,8 E RID
X'31", Filename .S +2,X'40',5 ! sIDE
X'08',*-8,0,0 i TIC
X106',%,X130", 146 ! VERIFY
DC 2F'0' Count Area i

DC 2F'0' Count Save Area l:

DC 2F'0' Count Save Area for 2 1/0 Alreas

dsvd I03 WYd pue WYS € auwnyoA SD0IT Sod 4§

"z 2anbta

(€ 3O € 33xRg) sweiboxdg TauUuURYD ASALA

Input

Undefined Records -

Typefile

Notes:
1. Shaded Areas - Assembly Time
2. Unshaded Areas - Execute Time

X'07*, &Filename .S, X'40', 6

X*31', &Filename .5 +2,X'40', 5

X'08',*-8,0,0

X'06', &IOAREAT, X'60',Block Length

X'92',*+8,0,8

DC 2F'0' Count Area

SEEK
SIDE
TIC
RD

RID

X107, &Filename .S, X'40',6 Dseec
X'31", &Filename .S+2,X'40', 5 i SIDE
X'08',*-8,0,0 i TIC
X'06', SIOAREAT, X'60",Block Length | RD
X'92',* +32,0,8 E RID
X'31", &Filename .S+2,X'40', 5 ! sipE
X'08',*-8,0,0 b
X106, *,X'30",146 E VERIFY
DC 2F'0' Count Area !

DC 2F'0' Count Save Area E

DC 2F'0' Count Save Area for 2 1/0 Arleas

Workfile

Fixed - Length or
Undefined Records

Typefile

X'07', &Filename .S, X'40', 6
X'31', &Filename .5+2,X'40', 5
X'08',*-8,0,0
X'03',*,X'20',1
X105!,*,X'20',1

X'31', &Filename .S+2,X'40', 5
X'o08',*-8,0,0
X'1E',*+16,X'30',8

X'12',*+8,0,8

" DC X'0000000001000000' Count Area

SEEK

SIDE

TIC

WCKD or RD
WD or RID
SIDE

TIC

VERIFY

T
|
|
1
|
|
I
|
|
|
!
[
I
1
!
|
1
|
1
1
1
1
!
1
1 RID
1

1

1

1

MODULE GENERATION MACROS

Logical IOCS provides a number of
logical-file accessing routines called
logic modules. These modules provide an
interface between the user's processing
function and physical IOCS. They are
generated by module generation macros
(SDMODxx), and are executed in response to
imperative macro instructions issued by the
problem program.

The sequential access DASD logic modules
and module generation macros differ from
other IOCS logic modules and module
generation macros in that the
characteristics of the sequential access
DASD modules are separated into ten
categories. Each category has a unique
macro instruction associated with it. The
categories vary according to record form
(fixed, variable, or undefined length) and
function (input, output, input with update
function, and work files).

The user must define his file by the
DTFSD macro and issue the appropriate
modulé generation macro to process that
file.

If the ASSGN IGN function is to be used
for an SD LIOCS file, it is the user's
responsibility to test for the IGNORE
indicator posted in the DTF after an OPEN
has been issued to the file. If this
indicator is on, the user should not issue
I/0 to that file.

FIXED-LENGTH RECORD MODULES

The basic modules for accessing
fixed-length records are:

e SDMODFI - Fixed-length input records.
e SDMODFO - Fixed-length output records.

¢ SDMODFU - Fixed-length input records
for update.

Each of these modules actually consists of
two modules (depending on whether TRUNC=YES
is specified as an SDMODFx parameter) to
provide a total of six different modules
for sequential DASD fixed-length record
formats.

The modules are generalized routines
that work with one or more unique DTF
tables to perform their various functions.
Each module can function using:

o A work area (optional).

e 1 or 2 I/0 areas.

e Error options (if specified at module
generation time).

e ERET macro (if ERREXT=YES is specified
‘ at module generation time).

. Blocked or unblocked fixed-length
records.

e CNTRL macro (control function, if
specified at module generation time).

e Update function (input files).

e RDONLY option (if specified at module
generation time).

e Track hold function, if specified at
module generation time (input files
with update function).

The options listed must be defined by the
DTFSD macro statement.

SDMODFI With Truncation:
BA-BE

GET Macro Charts

Objective: To read fixed-length blocked or
unblocked records from a sequential DASD
file with provisions for truncation.

Entry: From the GET macro expansion.
Exit: To the problem program.

Method: This logic module reads
fixed-length blocked or unblocked records
and makes the logical record available to
the user in a work area, if one is
specified.

If blocked records are being read, and
TRUNCS=YES parameter has been specified,
truncated records may be included in the
file. The module must use the data length
from each count field to determine the
length of the record to be read. The first
GET macro issued to the file results in two
separate read operations. The first
operation reads the count information to
determine the address and length of the
data area of the record. The search
argument is initialized with the count
identifier field. The data length from the
count field is compared with the defined
block size from the DTF table. If the data
length is greater than the block size, this
routine initializes the Read Data CCW with
the block size and sets the incorrect
length indicator in the CCB. Otherwise,
the Read Data CCW is initialized with data
length.

Sequential Access DASD Files 55

The second read operation reads the data
area of the record and the count field of
the next consecutive record in the file.
The count field is used to update the
search argument and byte count field of the
Read Data CCW. Subsequent GET macros read
the data area of the record and then the
count field of the next consecutive
record.If unblocked records are being read,
or TRUNCS=YES parameter has not been
specified, only one read operation is
performed at a time, and only the data area
of the record is read.

If the extent upper limit is exceeded,
this module issues an SVC 2 to fetch
SBOPEN to open the next extent for the
file. Errors are also processed if ERROPT
is specified as a DTF and module parameter
and if the problem program has specified
error routines. If ERREXT is specified,
additional errors are returned to the
problem program for processing.

SDMODFI Without Truncation, GET Macro
Charts BF-BJ

Objective: To read fixed-length blocked or
unblocked records from a sequential DASD
file without provisions for truncated
records.

Entry: From the GET macro expansion.
Exit: To the problem program.
Method: This logic module reads

fixed-length blocked or unblocked records

and makes the logical record available to

the problem program in a work area, if one
is specified.

If ERROPT is specified as a parameter,
errors are processed as each record is
read. If ERREXT is specified, additional
errors are returned to the problem program
for processing. In the case of a
wrong-length record, this routine tests the
residual count. If the residual count is
zero, a genuine wrong length record error
exists. Otherwise, the residual count is
decreased by the logical record size until
the result is negative or zero. If
negative, a wrong-length record exists. If
zero, the record is a valid short record
and is processed as a normal record.

If there are no errors, or after all
errors are processed, the search argument
is updated to the address of the next
consecutive record in the file.

56 'DOS LIOCS Volume 3 SAM and DAM for DASD

SDMODFO With Truncation:
BK-BP

PUT Macro Charts

Objective: To write records in sequence on

a DAasD file.

Entry: From the PUT macro expansion.
Exit: To the problem program.
Method: This logic module writes truncated

blocks of records as well as fixed-length
blocked, or unblocked records. A block can
only be shortened by some multiple of the
logical record size. Since various size
records can be written, a count of the
nunmber of bytes remaining on the track must
be kept.

The first PUT macro issued to the file
initializes the count field in the I/O area
with the search argument, and initializes
the track capacity counter. . If the user
has specified a work area and the TRUNC
switch is not on, this routine moves the
logical record to the output area. It then
tests the truncation switch to see if the
TRUNC macro has been issued. If it was
issued, no more logical records are built
in the block. Otherwise, the current block
size and I/0 area address are updated by
the logical record size, and a test
determines if the end of the block has been
reached. If not, control returns to the
problem program.

If the block is full, or the truncation
switch has been set, the module determines
whether the block will fit on the track.

If the entire block cannot be written in
the space remaining on the track, the
module updates the search argument and
writes the block as the first record on the
next track. If the extent upper limit is
exceeded, end of file has not been reached,
and there is no partial block to be
written, this phase calls $$BOPEN to open
the next extent, and to write the record as
the first record on the new extent.

Control then returns to the problem
program.

This module also processes errors if the
problem program has specified error
routines. If ERROPT is specified, errors
are processed as each record is written.

If ERREXT is specified, addj:ional errors
are returned to the problem program for
processing.

N

SDMODFO With Truncation: Close Routine

Chart BQ

Objective: To write any remaining records
and/or the end-of-file record, in sequence
on a DASD file.

)

Entry: From the close B-transient,
$SBOSDC1.

Exit: To the close transient, $$BOSDC1l via
an SVC 9. -
Method: First, a test determines if there

are any logical records to be written. If
so, the routine sets a partial block switch
and branches to the PUT routine to write
the partial block on the file. Control
then returns to this routine.

The end-of-file switch is set, and
another branch-and-link is taken to the PUT
routine to set up the end-of-file record.
When this routine regains control, the data
length is set to zero in the count field
and the end-of-file record is written.

This phase then exits to $$BOSDC1 via an
SvC 9.

If the extent upper limit is exceeded
while in the PUT routine logic, the next
extent is opened and the partial block or
end-of-file record is written as the first
record of the next extent.

SDMODFO With Truncation: TRUNC Macro

Chart BQ

Objective:

To cause a truncated record to
be written.

From the TRUNC macro expansion.

e To the SDMODFO PUT logic.

® To the problem program.

Method: A test determines whether there
are any records in the output area to be
written. If none, control returns to the
problem program. Otherwise, the phase sets
a truncation switch to indicate that the
TRUNC macro instruction has been issued,
and control branches to the SDMODFOC PUT
logic to write the truncated record.

SDMODFO Without Truncation:
Charts BR-BU

PUT Macro

Objective: To write records in sequence on

a DASD file.

Entry: From the PUT macro expansion.
Exit: To the problem program.
Method: This logic module writes only

fixed-length blocked or unblocked records.
However, if the close routine turns the
partial block switch on, a truncated record
may be written, because no padding is used
to fill out the last block of recorxds.

If the user specifies a work area, this
routine moves the logical record from the
work area to the output area. It then
updates the current I/0 area address by the
logical record size, and determines if the
end of the block has been reached. If not,
control returns to the user.

When the block is full, the search
argument record number is updated and the
block address, key length, and data length
are set in the count field. Then, the
block is written on the file.

After the record is written, the search
argument is updated, and if the extent
upper limit is exceeded, $$BOPEN is called
to open the next extent. Control then
returns to the problem program.

If ERROPT is specified as a parameter,
errors are processed as each record is
written. If ERREXT is specified,
additional errors are returned to the
problem program for processing.

SDMODFO Without Truncation: Close Routine

Chart BV

Objective: To write any remaining records
and/or the end-of-file record in sequence
on a DASD file.

Entry: From the close B-transient,
4BOSDC1.
Exit: To the close B-transient, $$BOSDC1

via an SVC 9.

Method: This routine determines if there
are any logical records to be written on
the file. If so, it initializes the count
field with the data length and initializes
the Write CCW with the data length plus
eight. It also turns the partial block
switch on. This phase then branches to the
PUT routine to write the partial block on

Sequential Access DASD Files 57

the file.
routine.

Control then returns to this

The end-of-file switch is turned on and
control branches to the PUT routine again
to set up and write the end-of-file record.
This phase then exits to $$BOSDC1 via an
SvC 9.

SDMODFU With Truncation:

GET Macro Charts BW-CF

PUT Macro Chart CG

Objective: To read fixed-length blocked or
unblocked records to be updated
(optionally) by the problem program, and
rewrite the updated records on a sequential
pasD file.

Entry:
e From the. GET macro expansion.
e From the PUT macro expansion.

Exit: To the problem program.

Method: This logic module reads
fixed-length blocked or unblocked records,
that are to be updated optionally by the
problem program, and rewrites the blocked
or unblocked records in sequence if the
problem program has issued a PUT macro
instruction. Because records are not
removed from or added to the file, a GET
macro instruction must precede a PUT macro
instruction. Only one PUT macro
instruction can be issued for a record. If
a work area is specified, the module moves
the logical record to and from the work
area.

If blocked records are being processed,
and the TRUNCS=YES parameter has been
specified, truncated records may be
included in the file. The module must use
the data length from each count field to
determine the length of record to be read
or written. The first GET macro issued to
the file results in two separate read
operations. The first operation reads the
count information to determine the address
and length of the data area of the record.
The search argument is initialized with the
count identifier field (CCHHR), and the
byte count field of the Read/Write Data CCW
is initialized with the data length.

The second read operation reads the data
area of the record, and then the count
field of the next consecutive record in the
file. Subsequent GET macros read the data
area of a record and the count field of the
next consecutive record.

58 DOS LIOCS Volume 3 SAM and DAM for DASD

If unblocked records are being
processed, or the TRUNCS=YES parameter has
not been specified, only one read operation
is performed at a time, and only the data
area of the record is read.

When a PUT macro is issued to the file,
SDMODFU sets a switch in the DTF table to
indicate that the PUT command has been
issued. If a work area is specified, it
moves the logical record to the output
area. Control then returns to the problem
program. The routines that write the
record are incorporated within the GET
macro logic.

The GET routine reads each record, and
stores the address and length of the record
for use by the output routine. If track
hold has been specified, every read
operation (except the first read count)
reads a record and holds a track.

After the initial entry to the module, a
test determines whether another record is
needed. If not, the next logical record is
made available to the problem program in a
work area, if specified, and control
returns to the problem program.

If another record is needed, the module
determines whether a record must be written
out first. If the PUT-issued switch is on,
the problem program has issued a PUT macro,
and the record in the output area is
written before reading the next record. If
the PUT-issued switch is not on, the module
reads the next record without performing a
write operation. In either case, if the
track hold option has been specified, the
module issues an SVC 36 to free the held
track before reading the next record. If
ERROPT is specified as a parameter, errors
are processed as each record is read. If
ERREXT is specified, additional errors are
returned to the problem program for
processing.

If the extent upper limit is reached,
the module writes any remaining records for
the extent, if necessary, and then issues
an SVC 2 to fetch $$BOPEN to open the next
extent for the file.

If ERROPT is specified and the problem
program has specified error routines,
errors are processed.

When end of file is reached, the module
writes any remaining records and frees any
tracks that have been held because the
track hold option was specified. The
module then fetches $$BOPEN to exit to the.
problem program's end-of-file routine.

SDMODFU Without Truncation:

GET Macro Charts CH-CR

PUT Macro Chart CS

Objective: To read fixed-length blocked or
unblocked records to be updated
(optionally) by the problem program, and
rewrite the records on a sequential DASD
file.

Entry:
e From the GET macro expansion.
e From the PUT macro expansion.

Exit: To the problem program.

Method: This logic module reads
fixed-length blocked or unblocked records
and rewrites the records in sequence if the
problem program has issued a PUT macro
instruction. Because records are not
removed from or added to the file, a GET
macro instruction must precede a PUT macro
instruction. Only one PUT macro
instruction can be issued for a record. 1If
a work area is specified, the module moves
the logical record to and from the work
area.

If ERROPT is specified as a parameter,
the module tests for errors as each record
is read. If ERREXT is specified,
additional errors are returned to the
problem program for processing. If a
wrong-length record error occurs, the
residual count is tested. If the residual
count is zero, a genuine wrong length
record error exists. Otherwise, the
residual count is decreased by the logical
record size until the result is zero or
negative. If negative, a genuine
wrong-length record error exists. If zero,
the record is a valid short record, and is
processed as a normal record.

When a PUT macro is issued to the file,
the module sets a switch in the DTF table
to indicate that a PUT command has been
issued. If the problem program has
specified a work area, the module moves the
logical record to the output area. Control
then returns to the problem program.

Because.the routine that writes the
record is incorporated within the GET macro
logic, a GET macro or a CLOSE macro must be
issued to actually write the record. After
the initial entry to the module, a test
determines whether another record is
needed. If not, the module moves the
logical record to a work area, if specified
by the problem program, and control returns
to the problem program. If the track hold

operation has been specified, every read
operation reads a record and holds the
track.

If another record is needed, the module
determines whether a record must be written
out first. If the PUT-issued switch is on,
the problem program has issued a PUT macro
and the record in the output area is
written before reading the next record. If
the PUT-issued switch is off, the module
ignores that record in the output area and
reads the next record. In either case, if

‘the track hold option has been specified,

the module issues an SVC 36 to free the
held track before reading the next record.

If the extent upper limit is reached,
the module writes the remaining records for
the extent, if necessary, and then issues
an SVC 2 to fetch $$BOPEN to open the next
extent for the file.

When end of file is reached, the module
writes any remaining records and frees any
tracks that have been held (if the track
hold option is specified). The module then
fetches $$BOPEN to exit to the problem
program's end-of-file routine.

SDMODFU: Close Routine:

With Truncation Charts BW-CF

Without Truncation Charts CH-CR

Objective: To write any remaining records
in sequence on a DASD file.

Entry: From the close B-transient,
$3BOSDC1.

Exit: To the close B-transient, $$BOSDCl.
Method: The close routine uses the GET
macro logic of its respective module, and

has the same entry point to the module as
the GET macro.

The routine determines whether there are
any remaining records to be written. If
so, the remaining records are written and
control returns.to the close B-transient,
$$BOSDC1l, via an SVC 9.

CNTRL Macro, Fixed-Length Records Chart CT

Objective: To perform a nondata operation.

Entry: From the CNTRL macro expansion.

Sequential Access DASD Files 59

Exit: To the problem program.

Method: The CNTRL macro instruction causes
a seek operation on a 2311, 2314, 2319 and
2321 or a restore operation on a 2321. The
routine waits for the completion of any
previous I/O operation. It then
initializes the control CCB with the
symbolic unit address for the file, moves
the control command code into the control
CCW, and loads the address of the CCB into
register 1. The routine issues an SVC 0 to
perform the control operation and returns
control to the problem program.

RELSE Macro, Fixed-Length Records Chart CT

Objective: To cause a physical read
operation to be performed when the next GET
macro is issued by the problem program.

Entry: From the RELSE macro expansion.
Exit: To the problem program.

Method: This routine, used only in
conjunction with blocked input records,
causes the remaining records in an input
block to be bypassed. It sets the current
pointer to the end of the input area, so
that the next GET macro instruction causes
a new physical record to be read into the
input area. The first logical record of
that block is made available to the problem
program.

VARIABLE-LENGTH RECORD MODULES

The basic modules for accessing variable
length records are:

e SDMODVI - Variable-length input
records.

e SDMODVO - Variable-length output
records.

e SDMODVU - Variable-length input records
for update.

Each module provides logical
data-handling routines that work with one
or more unique DTF tables to perform its
specified functions. Each module can
function using:

e A work area (required for spanned
processing).

e 1 or 2 I/0 areas.

60 DOS LIOCS Volume 3 SAM and DAM for DASD

e Error options (if specified at module
generation time).

e ERET macro (if ERREXT is specified at
module generation time).

e Blocked or unblocked (spanned or
unspanned) variable-length records.

e CNTRL macro--control function (if
specified at module generation time).

e Update function (input files).

e RDONLY option (if specified at module
generation time).

e Track hold function, if specified at
module generation time (only for input
files with update function).

The options listed must be defined by the
DTFSD macro statement.

. SDMODVI: GET Macro Charts DA-DE

Objective: To read variable-length blocked
or unblocked (spanned or unspanned) records
from a sequential DASD file.

Entry: From a GET macro expansion.
Exit: To the problem program.
Method: For unspanned records, the first

GET macro issued to the file results in two
separate input operations. The module
performs a read count operation to obtain
the length of the first block of data. It,
initializes the Read Data CCW with the
block length, and performs a second input
operation to read the data area of the
first record and the count field of the
next sequential record in the file.
Subsequent GET macros issued to the file
read the data area and then the count field
of the next sequential record.

After each physical record is read, the
module determines if the problem program
has specified two I/O areas, or a work area
with unblocked records being processed. If
either of these conditions exists, the
module performs another input operation to
read the data area of the next sequential
record before returning control to the
problem program.

As each GET macro is issued (other than
the first), the module updates the input
area address by the logical record size.

If the end of the block has not been
reached, the logical record data is moved
to a work area if one is specified. If the
end of the block is reached, the module

v

performs another read operation, unless two
I/0 areas or a work area with unblocked
records have been specified. In this case,
the next record for processing has already
been read.

Spanned processing is similar to
unspanned processing except that spanned
record segments are assembled into logical
records in the user's work area. The user
need not fill in the length field because
either the module passes the length of the
logical record through the register
specified under RECSIZE in the DTF table,
or (if no specification has been given) the
module issues a current MNOTE and register
2 is assumed. Null segments are recognized
but not assembled into logical records.

If end of file is reached, the module
fetches $$BOPEN to exit to the problem
program's end-of-file routine. This module
also processes errors as each record.is
read, if the problem program has specified
ERROPT as a parameter. If ERREXT is
specified, additional errors are returned
to the problem program.

If spanned processing is specified and
ERROPT=SKIP, the entire spanned record or
block of spanned records is skipped.
Conversely, if ERROPT=IGNORE, the entire
spanned record in which the error occurred
is not skipped.

SDMODVI: RELSE Macro Chart DE

Objective: To cause a physical read
operation to be performed when the next GET
macro is issued by the problem program.

Entry: From the RELSE macro expansion.
Exit: To the problem program.
Method: This routine, used only in

conjunction with blocked input records,
causes the remaining records in an input
block to be bypassed. It sets the current
pointer to the end of the input area, so
the next GET macro instruction causes a new
physical record to be read into the input
area, and makes the first logical record of
that block available to the problem
program. If spanned records are being
processed, the entire block of logical
spanned records is bypassed. ‘

SDMODVO: PUT Macro Charts DG-DP

Objective: To write variable-length
blocked or unblocked records in sequence on
a DASD file.

Entry: From the PUT macro expansion.
Exit: To the problem program.

Method: Because variable-length records
are written, this module must keep track of
the number of bytes remaining on the track
for each reccrd processed (if all records
are unspanned), and must calculate the
number of bytes remaining in the output
area for the problem program.

For each record to be written, this
routine increases the output area address
and accumulated data length by the current
record size. A test then determines if the
record fits on the track. If the record
fits, a test determines whether the output
area is full. If not full, the record is
moved to the output area (if a work area is
specified), addresses are updated and the
amount of space remaining in the output
area is calculated. Control returns to the
problem program.

If the output area is full, but not
exceeded, the module moves the record to
the output area (if a work area is
specified) and calculates the remaining
track capacity. It then writes the record
on the file.

If the record does not fit on the track,
or the output block has been exceeded, a
test determines if any records have been
previously processed and moved into the
output area. If so, the record(s) already
in the output area is written as a
truncated record and as the last record on
the track. The record that did not fit is
moved to the first part of the output area.

If records have not been previously
placed in the output area, and the current
record does not fit on the track, the
module updates the DASD address to the next
track, and writes the record as the first
record on that track. If the extent upper
limit is reached, it fetches $$BOPEN to
open the next extent.

If spanned processing is specified, a
logical record in the user's work area of
the length specified in the RECSIZE
register is divided by LIOCS into segments
to make full use of the space available in
each physical record and device track.
Processing proceeds for each segment in a
manner similar to unspanned records. In
addition to the bytes of data, each segment
contains a segment descriptor word)
indicating its sequence as the only, first,
middle, or last segment in the construction
of the logical record.

A spanned record does not span volumes
P d

on output. If there is not enough space on
the current volume to complete a spanned

Sequential Access DASD Files 61

laét block
and
the last

record, the module rereads the
of the previous spanned record
truncates it, if necessary, to
segment. The remainder of the track is
then erased. An 8-byte record consisting
of a four-byte block descriptor word and a
four-byte null segment is written on each
remaining track to the end of the extent(s)
on the current volume. Finally, an attempt
is made to put the entire spanned record on
the next volume.

In rereading the last block of the
previously spanned record, a reopening of
one or more previous extents may be
necessary. If so, the module interfaces
with the OPEN transients by setting
indicators in the DTF to show that a
preceding extent on the current or previous
volume is to be reopened.

The module also processes errors if
ERROPT is specified as an SDMODVO parameter
and the problem program has specified error
routines. If ERREXT is specified,
additional errors are returned to the
problem program for processing. If spanned
processing is specified and
ERROPT=[SKIP,IGNORE], the physical record
on which the error occurred is ignored.

The remaining spanned record segments, if
any, are written.

SDMODVO: Close Routine Chart DT

Objective: To write any remaining records
and/or the end-of-file record in sequence
on a DASD file. '

Entry: From the close transient, $$BOSDC1.
Exit: To the close transient, $$BOSDC1.

Method: If the problem program (with or
without a work area) has specified two I/0
areas, the close routine waits for the
completion of the last write operation.
determines whether a record is to be
written. If not, it sets the data length
to zero and writes the end-of-file record.
If there is a record to be written and
blocking has been specified, this routine
branches to the PUT macro logic to write
the truncated record. Control returns to
this routine which then writes the
end-of-file record. The close routine
exits to the close transient, $$BOSDC1.

It

62 DOS LIOCS Volume 3 SAM and DAM for DASD

SDMODVO: TRUNC Macro Chart DU

Objective: To cause a truncated record to

be written.

Entry: From the TRUNC macro expansion.
Exit: To the SDMODVO PUT logic.

Method: This routine sets the truncation
switch to indicate that a TRUNC macro .
instruction has been issued. It stores the
problem program registers, and branches to
the SDMODVO PUT logic to write the
truncated record. {

SDMODVU: GET Macrxo Charts DV-EF

Obijective: To read variable-length blocked
or unblocked records (spanned or unspanned)
from a sequential DASD file that are to be
updated optionally by the problem program.

Entry: From the GET macro expansion.
Exit: To the problem program.

Method: This logic module reads
variable-length blocked or unblocked
records (spanned or unspanned), and makes
the logical record available to the problem
program in a work area, if specified.

The first GET macro issued to the file
results in two separate read operations.
The first operation reads the count field

" to determine the length of the block to be

read. The module initializes the Read Data
CCW with the length, and initializes the
search argument with the address of the
block. The second operation then reads the
data area of the first record and the count
field of the next sequential record on the
file. Subsequent GET macros then read the
data portion of a record and the count
field of the next sequential record.

If specified, the module stores the
count field of each physical record in the
DTF table to be used by a subsequent PUT
macro if the record has been updated by the
problem program.

As each GET macro is issued, the input
area address is updated by the logical
record size. If the end of the block has
not been reached, the logical record is
moved to a work area, if one is specified.
A test determines whether there are two 1I/0
areas. If so, the module tests to
determine whether it is necessary to read

another record. If it is necessary, the
module performs another read operation.
Control then returns to the problem
program. If track hold is specified, each
read data operation reads a record and
holds the track via an SvC 35.

If ERROPT is specified as a parameter,
errors are processed as each record is
read. If ERREXT is specified, additional
errors are returned to the problem program
for processing.

When the end of the block is reached,
the routine determines if the track hold
option has been specified, and if it is
necessary to free a track. If so, an SVC
36 is issued to free the held track. The
routine then tests for two I/0 areas. If
there is only one I/0O area, no overlap is
possible, and the routine reads another
record. If there are two I/0 areas, the
routine determines whether the next record
has already been read. If not, it reads
the record and performs a wait operation.
Processing then continues on this record.

Spanned processing is similar to
unspanned processing except that spanned
record segments are assembled into logical
records in the user's work area. Null
segments are recognized, but not assembled.
On each GET macro instruction, the pointer
to the physical record in which the logical
record begins is stored in the DTF table to
be used for repositioning the device by a
subsequent PUT instruction if the record is
updated. The extent sequence number is
also stored in the DTF table in case the
logical record spans extents.

If the extent upper limit is reached,
the routine processes all records or
segments pertaining to that extent before
fetching $$BOPEN to open the next extent.
When end of file is reached, any records
that have already been read are processed,
and $$BOPEN is fetched to exit to the
problem program's end-of-file routine.

SDMODVU: PUT Macro Charts EG-EM

Objective: To write variable-length
blocked or unblocked records (spanned or
unspanned) that were updated optionally by
the problem program on a sequential DASD
file. The records are returned to the same
location from which they were Fead.

Entry: From the PUT macro expansion.

Exit:

e To the problem program.

Method:

o To the close B-transient, $$BOSDCl.

For unspanned record, this routine
first moves the logical record from a work
area to the output area, if a work area has
been specified by the problem program.

The I/0 area address is then updated by
the logical record length, and the routine
determines whether the end of the block has
been reached. If it has not been reached,
an update switch is set, and control
returns to the problem program.

If the end of the block has been
reached, the routine determines whether a
second read operation has been performed.
If so, tests are made to ensure that the
I/0 operation has been completed.

This routine then initializes the search
argument with the address of the record to
be written, and the Read/Write CCW with the
length of the record. It modifies the
Read/Write CCW to write data, and issues an
SVC 0 to write the record. When I/0 is
completed, the routine determines whether
the track hold option has been specified.
If so, the track of the record just written
is freed via an SVC 36.

Spanned record processing proceeds for
each segment in a fashion similar to
unspanned records. The device is initially
repositioned to the first block of the
logical record by using the pointer stored
in the DTF table. If the logical record
spans several extents, the DTF is reset by
decrementing the extent sequence number by
1 and by using an AND (X'44') to the open
communications byte. The extent where the
logical record begins can now be reopened
by fetching $$BOPEN. The physical record
blocks are then updated from the logical
record in the user's work area. Null
segments are recognized, but not assembled.

The routine next tests to see if entry
to the module was from the close routine.
If so, control returns to the close
B-transient, $$BOSDCl. If end of file has
not been reached, control returns to the
GET macro logic (if specified), or to the
problem program. If end of file has been
reached, control returns to the problem
program, after setting the end-of-file bit
on in the CCB.

If ERROPT has been specified as a
SDMODVU parameter, and if the problem
program has specified error routines, the
module also processes errors. If ERREXT is
specified, additional errors are returned
to the problem program for processing.

Sequential Access DASD Files 63

SDMODVU: Close Routine Chart EN
Objective: To write any remaining records

in sequence on a DASD file.

Entry: From the close B-transient,
$$BOSDC1.
Exit: To the close B-transient, $$BOSDCl.

Method: This routine sets the current
pointer to the end of the I/0 area, and
then determines whether there are any
records in the output area to be written.
If not, control returns to the close
B-transient, $$BOSDC1 via an SVC 9.

If any records are to be written,
control branches to the PUT macro logic to
write the remaining records and return to
the close routine.

SDMODVU: RELSE Macro Chart EN

Objective: To cause a physical read
operation to be performed when the next GET
macro is issued by the problem program.

Entry: From the RELSE macro expansion.
Exit: To the problem program.

Method: This routine, used only in
conjunction with blocked input records,
causes the remaining records in an input
block to be bypassed. It sets the current
pointer to the end of the input area, so
the next GET macro instruction causes a new
physical record to be read into the input
area, and makes the first logical record of
that block available to the problem
program. If spanned records are being
processed, the entire block of logical
spanned records is bypassed.

CNTRL Macro, Variable Length Records
Chart EP

Objective: To perform a nondata operation.

Entry: From the CNTRL macro expansion.
Exit: To the problem program.

Method: The CNTRL macro instruction causes
a seek operation on a 2311, 2314, 2319, and
2321, or a restore operation on a 2321.

The routine waits for the completion of any

64 DOS LIOCS Volume 3 SAM and DAM for DASD

previous I/O operation. It initializes the
control CCB with the symbolic unit address
for the file, moves the control command
code into the control CCW, and loads the
address of the CCB into register 1. The
routine issues an SVC 0 to perform the
control operation and exits to the problem
program.

UNDEFINED LENGTH RECORD MODULES

‘The basic modules for accessing undefined

records are:

e SDMODUI - Undefined length input
: records.

e SDMODUO - Undefined length output
records.

e SDMODUU - Undefined length input
records for update.

Each module provides logical data-handling

routines that work with one or more unique

DTF tables to perform its specified

functions. Each module can function using:
e A work area (optional).

e 1 or 2 I/0 areas.

e Error options (if specified at module
generation time).

e ERET macro (if specified at module
generation time).

e Unblocked records only.

o CNTRL macro--control function (if
specified at module generation time).

e Update function (input files).

e RDONLY option (if specified at module
generation time).

e Track hold function, if specified at
module generation time, (only for input
files with update function).

The options listed must be defined by the
DTFSD macro statement.

SDMODUI: GET Macro Charts EQ-EU
Objective: To read undefined length

records from a sequential DASD file.

Entry: From the GET macro expansion.

Exit: To the problem program.

Method: This logic module reads undefined
length, unblocked records and makes the
logical record available to the user in a
work area, if one is specified.

The first time the module is entered, a
first-time switch is turned on and the DTF
is initialized. On each subsequent entry,
the module determines if two I/O areas or a
work area is specified. If either is
specified, the module issues an SVC 7
(WAIT) to ensure that the previous GET
operation is complete. If neither, it
performs a read operation.

The read operation determines the
address and length of the data area of the
record. It compares the data length of the
record to the defined block size in the DTF
table. If the data length is less than the
block size and the first record is being
processed, a Read Count CCW is executed,
and a test determines if the record length
is correct. If the length is incorrect,
the module initializes the Read Data CCW
with the block size and sets the incorrect
length indicator in the CCB. The second
and subsequent GET macros read the data
area of the record and then the count field
of the next consecutive record.

If the extent upper limit is exceeded,
this module issues an SVC 2 to fetch
$$BOPEN, which opens the next extent for
the file. If end of file is found, $$BOPEN
is fetched to give control to the user's
end-of-file routine. Errors are processed
if ERROPT is specified as a parameter and
the user specifies an address of an error
routine. If ERREXT is specified,
additional errors are returned to the
problem program for processing.

Finally, the module determines if two
I/0 areas, or a work area is specified. If
either is specified, the module executes
the Read Data CCW and returns control to
the problem program. If neither is
specified, control returns to the problem
program.

SDMODUO: PUT Macro Charts EV-EZ

Objective: To write records on a DASD file
in sequential order.

Entry: From the PUT macro expansion.
Exit: To the problem program.

The routine determines if this is
If it is , the first-time
If it is not, a test

Method:
the first entry.
switch is turned on.

determines if two I/0O areas or a work area
are specified in the DTF statement. If
either is specified, the module issues an
SVC 7 (wait for completion of I/0). If
neither is specified, the wait loop is
bypassed. !

Next, a test determines if the record
fits on the track. If the record fits, the
module calculates the space remaining on
the track after the record is written and
posts that information in the DTF table.
Then, it modifies the I/0 area address in
the Write CCW and issues an SVC 0 to write
the record.

If ERROPT is specified as a parameter,
errors are processed as each record is
written. If ERREXT is specified,
additional errors are returned to the
problem program for processing.

If the record does not fit, a test
determines if the extent upper limit has
been reached. If so, the routine fetches
$$BOPEN to open a new extent. If not, the
routine updates the address to the next
available track, initializes the record
capacity bucket, and sets the record number
to 0. In either case, after the write
operation, the routine returns control to
the problem program after an I/0 wait (if
two I/0 areas are specified or if a work
area is not specified).

SDMODUO: CLOSE Routine Chart FA

Objective: To write an EOF record.

Entry: From the close transient, $$BOSCC1.
Exit: To the close transient, $$BOSDC1l or

SDMODUO PUT logic.

Method: The routine waits for I/O
completion if two I/0 areas or a work area
is specified. A test determines if there
is enough room left on the track to write
an EOF record. If not, the SDMODUO -PUT
undefined record routine is entered, and
the search address is updated to the next
available track in the current extent. If
another track is not available, $$BOPEN is
called in to open a new extent.

When control returns to this routine,
the proper I/0 area is selected, the record
data length is set to 0, and the EOF record
is written. After a wait for I/0
completion, control returns to the close
transient, $$BOSDC1 via an SVC 9.

Sequential Access DASD Files 65

SDMODUU :

GET Macro Charts FB-FC

PUT Macro Chart FD

Objectives: To read a physical record from
a DASD file, and to rewrite the record in
the same location if the record requires
updating.

Entry:

¢ From the GET macro expansion.
e From the PUT macro expansion.

Exit: To the problem program.

Method - GET Logic: This module reads
undefined length unblocked records and
makes them available to the user in a work
area, if one is specified. If track hold
is specified, each read operation reads a
record and holds a track.

The first time through the module, a
switch is turned on, the count field and
data area of the first record are read, and
the count field of the next record is read.
On each subsequent entry, the data area is
read and the count field of the next
sequential record is read. A test
determines if the track hold option is
specified. If so, the track is freed so
that the data can be read. A test also
determines if two I/0 areas or a work area
is specified, so that another GET operation
can be initiated.

In either case, control returns to the
problem program so that the record can be
updated.

If ERROPT is specified as a parameter,
errors are processed as each record is
read. If ERREXT is specified, additional
errors are returned to the problem program
for processing.

Method - PUT Logic: This module writes the
records (updated optionally) on the DASD
file and returns control to the problem
program. When end of file is reached, the
module processes the last record before
returning control to the problem program.

If ERROPT is specified as a parameter,
errors are processed as each record is
written. If ERREXT is specified,
additional errors are returned to the
problem program for processing.

66 DOS LIOCS Volume 3 SAM and DAM for DASD

CNTRL Macro, Undefined-Length Records
Chart GA

Objective: To perform a nondata operation.

Entry: From a CNTRL macro expansion.
Exit: To the problem program.

Method: This routine is used for nondata
operations on the file. For a 2311, 2314,
2319, and 2321, the control operation seeks
to the address specified in the DTF table.
For the 2321 data cell, the operation also
returns a strip to the subcell.

The routine puts the symbolic device
address in the control CCB, moves the seek
address to the CCW, performs the control
operation, and branches back to the problem
program.

WORK FILE MODULE

v

Logical IOCS macros READ, WRITE, CHECK,
NOTE, POINTS, POINTR, and POINTW access the
work file module. A work file can be used
for input, output, or both.

The CHECK macro must be issued after a
READ or WRITE macro to ensure completion of
the operation before issuing another
instruction. The NOTE macro is used with
the POINTR or POINTW macros to position the
file at a predetermined record. The POINTS
macro positions the file to the beginning
of the file.

GET and PUT macros are not used with the
work file module. The work file module
does not support blocking and deblocking,
or automatic I/0 area switching.

The work file module provides routines
that work with one or more unique DTF
tables to perform the spe01f1ed functlons.
The module can function using:

¢ CNTRL macro--control function (if
specified at module generation time).

e Error options (if spec1f1ed at module
generation time).

¢ ERET macro (if specified at module
generation time).

* Fixed-length unblocked records or
undefined length records.

e Update function.

¢ Verify option.

¢ RDONLY option (if specified at module
generation time).

e Track hold function (if specified at
module generation time).

The options listed must be defined by
the DTFSD macro statement.

SDMODW: READ Macro Chart GB

Objective: To read all or part of a
physical record from a sequential DASD work
file.

Entry: From a READ macro expansion.
Exit: To the WRITE macro.
Method: The READ macro provides the user

with the ability to access data on a work
file. This macro requires the user to
specify the area that the record is to be

read into, and also allows the user to read

only a portion of the record. Record
deblocking is not handled by the READ
macro, but is the responsibility of the
problem program.

For undefined records, the first READ
macro issued to the file results in two
separate input operations. The module
performs a READ COUNT to obtain the length
of the first block of data. It initializes
the READ DATA CCW with the block length and
performs a second input operation to read
the data of the first record and the count
field of the next sequential record.
Subsequent READ macros issued to the file
will first read the data area and then read
the count field of the next sequential
record.

For FIXUNB records this routine
initializes the Read CCW chain to perform a
read data operation followed by a read
count operation, in order to obtain the
count field ID of the next sequential
record on the file. If a POINTS macro has
been issued before the READ macro, this
routine reinitializes to read the first
record on the file. If the problem program
has specified both the track hold option
and update option, the routine issues an
SVC 35 to read the record and hold the
track. Otherwise, this routine issues an
SVC 0 to read the record. i

If the letter 'S' is specified in the
operand of the READ macro, the entire
record is read. Otherwise, the actual
length, as stated in the operand, is read.
This parameter is only present in the case
of records of undefined format.

This routine updates track and cylinder
addresses, when all records of a track or
cylinder have been read. If the extent
upper limit is reached, $$BOPEN is fetched
to open the next extent.

SDMODW: WRITE Macro Chart GC

Objective: To write a record on a DASD

work file.

Entry: From the WRITE macro expansion.
Exit: To the problem program.

Method: Two types of write operations may
be specified by the problem program (SQ and
Update). If SQ is specified in the operand
of the WRITE macro, a sequential format
write (write count, key, and data) is
performed. If UPDATE is specified in the
operand, a nonformat write (write data) is
executed. A WRITE UPDATE should always be
preceded by a READ macro instruction.

This macro causes a record to be written
from the area defined by the WRITE macro to
the file. The length of the record to be
written is specified in the operand of the
WRITE macro instruction only if records of
undefined format are being written. If
fixed-length unblocked records are being
written, the record length is defined in
the DTF table. Record blocking is not
handled by the WRITE macro because it is a
responsibility of the problem program.

This routine initializes the CCW chain
to write count, key and data, and write
data. It also initializes a verify CCW if
the update option has been specified. If a
WRITE UPDATE macro is issued, this routine
reinitializes the CCW chain to write data,
and sets the verify CCW to read data. This
read data operation is followed by a read
count operation in order to obtain the
count field ID of the next sequential
record. It then issues an SVC 0 to write
the record.

If a WRITE SQ macro has been issued, the
routine determines whether the current
record fits on the track, or if the track
limit has been reached on a previous read
operation. If either condition exists,
control branches to a routine to update the
search address. ' The routine determines
whether the end of the extent has been
reached. If so, it fetches $$BOPEN to open
a new extent. An SVC 0 is then issued to
write the record. The track capacity is
decreased by the effective length of the
record just written. If the routine has
been-entered from the close routine,
control passes to the check routine to

Sequential Access DASD Files 67

determine if the input/output operation has
been completed. Otherwise, control passes
to the problem program.

SDMODW: Close Routine Chart GE

Objective: To write any remaining records
on a DASD work file.

Entry: From the close B-transient,
3BOSDC1.
Exit: To the close B-transient, $$BOSDC1,

via an SVC 9.

Method: This routine performs a
branch-and-link operation to the WRITE
macro routine to write any records
remaining in the output area, and check the
write operation. Upon return from the
CHECK macro routine, this routine issues an
SVC 9 to return to the close B-transient,
$$BOSDC1.

SDMODW: CHECK Macro Charts GF-GK

Objective: To ensure that a previously
issued READ or WRITE macro has been
satisfactorily completed.

Entry: From the CHECK macro expansion.

Exit:
e To the problem program.

e To the problem program's end-of-file
routine.

Method: This routine waits for the
completion of the input/output operation
started by a READ or WRITE macro
instruction. If the problem program has
specified ERROPT as a parameter, this
routine checks for read or write errors.
If no error has occurred, this routine
checks for a write update operation. If
so, and the track hold option has been
specified, the routine issues an SVC 36 to
free the held track. Control then returns
to the problem program.

If a read or a write error has occurred,
and the problem program has specified an
error routine, control branches to the
user's error routine to process the error.
Upon return, if a read error routine has

68 DOS LIOCS Volume 3 SAM and DAM for DASD

been specified, the count field of the next
record is read. If the ignore option has
not been specified, the routine returns to
the READ macro routine to read the next
record. If the ignore option has been
specified, control returns to the problem
program.

SDMODW: NOTE Macro Chart GL

Objective: To pass identification of the
last physical record that was read or
written to the problem program.

Entry: From the NOTE macro expansion.
Exit: To the problem program.

Method: The NOTE macro instruction obtains
the identification of the last physical
record that was read or written in the
specified file. The problem program must
issue a CHECK macro before the NOTE macro
to ensure that the last operation was
completed satisfactorily.

The NOTE macro routine saves the current
search address, which is loaded into
register 1 just before returning to the
problem program. If the NOTE macro was
issued after a WRITE macro or the initial
OPEN macro, this routine returns the
remaining track capacity in register 0 to
the problem program. After loading
register 1, control returns to the problem
program.

The identification in register 1 is
returned in the form Ochr, where 0 = eight
binary zeros, ¢ = cylinder number, h =
track number, and r = record number within
the track; c,h, and r are binary numbers.
The remaining track capacity returned in
register 0 is in the binary form, 00nn.

SDMODW: POINTR Macro Chart GL

Objective: To reposition a file in order
to read a record previously identified by a
NOTE macro instruction.

Entry: From the POINTR macro expansion.

Exit: To the problem program.

Method: This routine expands the record
identification, previously supplied by the
NOTE macro, to a search address. If the
record identification does not fall within
the current extent limits, the routine
fetches $$BOPEN to open a new extent.
initializes the count field ID with the
search address, and returns control to the
problem program.

It

SDMODW: POINTW Macro Chart GL

Objective: To reposition a file in order
to write a record following one previously
identified by a NOTE macro instruction.

Entry: From the POINTW macro expansion.
Exit: To the problem program.
Method: This routine uses the record

identification supplied by
macro to position the file
write a record immediately
one identified by the NOTE

a previous NOTE
in order to
following the
macro.

The routine expands the Ochr
identification to a DASD search address.
If the identification does not fall within
the current extent limits, $$BOPEN is
fetched to open the next extent. The
routine updates the count field ID and
initializes the remaining track capacity
field in the DTF table with the value
supplied by the NOTE macro. (This value is
available only if the NOTE macro followed a
WRITE macro.) Control then returns to the
problem program.

The POINTW macro may be followed by a
WRITE macro only if the space remaining on
the track is available.

SDMODW: POINTS Macro Chart GM

Objective: To reposition a file to the
beginning of the file for the next read or
write operation.

Entry: From the POINTS macro expansion.
Exit: To the problem program.

This routine reinitializes the
count field ID to
first extent
Control then
program.

Method:
search address and the
the lower 1limit of the
supplied for the file.
returns to the problem

SDMODW: FREE Macro Chart GM
Objective: To free a track if the track

hold option has been specified.

Entry: From the FREE macro expansion.
Exit: To the problem program.
Method: This routine determines whether

the track hold option has been specified.
If so, it obtains the address and length of
the record on the held track and
initializes the CCW chain with that
information. The routine then issues an
SVC 36 to free the track. Control returns-
to the problem program.

SDMODW: CNTRL Macro Chart GM

Objective: To perform a nondata operation.

Entry: From the CNTRL macro expansion.
Exit: To the problem program.
Method: The CNTRL macro instruction causes

a seek operation on a 2311, 2314, and 2319.
This routine isolates the Seek CCW in the
CCW chain by setting off the command
chaining bit, and issues an SVC 0 to
perform a control seek. When the I/0
operation is completed, the routine turns
the command chaining bit on and control
returns to the problem program.

SDMOD: FEOVD Macro Chart GN

Objectiﬁe: To force end of volume in
sequential disk processing.

Entry: From $$BOSDEV. |
Exit: To $$BOSDEV to close the current

volume and open a new one.

Method: The FEOVD macro instruction causes
and end of volume condition to occur before
physical end of volume has been reached.

If forced end of volume is specified,
$$BOSDEV is fetched to close the current
volume and open a new volume.

Sequential Access DASD Files 69

INITIALIZATION AND TERMINATION PROCEDURES

When sequential access DASD files (DTFSD)
are opened, and the file is on more than
one volume, only one extent is processed at
a' time, so only one volume need be on-line
at a time.

Job control accepts label information
supplied by VOL, DLAB, and XTENT
statements, as well as information on the
simplified DLBL and EXTENT statements
provided by Version 3. Job control stores
this DASD label information on the SYSRES
DASD label information cylinder. The open
monitor logical transient, $$BOPEN prepares
to read the label information from the
SYSRES label information cylinder into the
logical transient area, and then fetches
$$BOSDO00.

The sequential DASD open logical
transients read the DASD label information
from SYSRES into main storage. Figure 2
illustrates the format of the SYSRES DASD
label information. If the file is an input
file, the open transients compare the file
label information with the SYSRES DASD
label information to determine if the

70 DOS LIOCS Volume 3 sAM and DAM for DASD

logical file is correct, if the serial
numbers are equal, and if the label extent
limits are equal to or greater than the
limits of the incoming extent. The extent
limits are posted in the DTF.

If the logical file is an output file,
the open logical transients create file
labels and write them in their appropriate
location and sequence. Extent limits are
checked to ensure that no extent overlaps
the Volume Table of Contents (VTOC) limits,
or overlaps an already existing file that
is still active.

Disk work files are supported as
single-volume, single-pack files and are
always opened as output file.

When a file is closed, the close logical
transient determines whether a block of
data remains to be processed. If so, the
logic module is reentered to complete the
processing. Upon return, file labels are
deleted if so specified. Otherwise, the
file labels are updated and rewritten if
the file is an output file or a work file.
Control returns to the close monitor or the
problem programe.

Chart 01. Sequential Access DASD Open, General Flow

Entry From
$$BOPEN

$$BOSD00 HA

Determine type of
file and name of
B -transient which
opens file.

YES
already open

$$BOSDW3

unit and one
other than

$$BOSDO1 HB

1.Read DLBL information.

2.Convert extents to DASD
addresses and write the
modified record in place
of the original .

3.After all extents are con -
verted, reread first extent
record and save address.

Input Output Workfile
03
B1
$$BOSDIT $$BOSDOI1 $$BOSDWI

Sequential Access DASD Files 71

Chart 02. Sequential Access DASD Open, Input Files

01
F3

$$BOSDI1 HC -HE

1.Read DLBL extent record .
2 .Read VOLI label to ensure
proper pack is mounted.
3.Read Format 4 label to get

VTOC limits.

System
file other than
SYSLNK
opened

Put extent
information from
DIB into DTF
table

More files
to open

End of File

SVC 2 fetch
$$BOPEN

Need to
process user
trailer labels

SVC 11 retum to
problem program

YES

NO

Next extent on

new volume

Need to process
trailer labels

YES

dequeve old
volume exten

NO

$$BODQUE _ LE

Dequeve file
protected extents

$$BOSDI2 HF - HH

1 .Read Format 1 label and
compare against DLBL
record.

2 .Determine that extent
limits are valid.

3.Post extent limits in
DTF table.

$$BOSDI3 HJ-HK

Process user
trailer labels

SVC 2 fetch
$$BOPEN

72 DOS LIOCS Volume 3 SAM and DAM for DASD

User header
labels to be

processed

YES

YES

Extent to be

$$BOFLPT _AA-AD|

Provide file

file protected

Another file
to open

protection
for extents

SVC 11 retum to
roblem program

'

Chart 03.
&)

01-F3

04-D2

$$BOSDO1

JA-JD

1.Read DLBL extent record .

2.Set up controls for sequence
of processing and determine
next phase to fetch.

yste
unit other
than SYSLNK and
already
open

NO

Use Disk
Information
Block (DIB) to
complete DTF

More files
to open

SVC 11 retum to
problem program

YES

SVC 2 fetch
$$BOPEN

System
file and already’
opened

©

Extents YES

Need to
dequeuve
extents

NO

Sequential Access DASD Open, Output Files (Section 1 of 2)

$$BODQUE

LE

YES
Dequevue file

protected
extents

04
Bl

$$BOSDO2

$$80>007

JS

entered
from 1052

NO

File open
and no more
extents

Next
extent on
new volume

$$BOSIGN JE

Check COBOL
open ignore
function

Need to
process user
railer labels,

$$BOSDOS JQ-JR

Process user
trailer labels

04
Bl

$$8OSDO2

Enter extent
information
from console

End of

specified

Sequential Access DASD Files

extent routine

SVC 11 return to
problem program

04
B1

$$BOSDO2

NO

Chart 04. Sequential Access DASD Open, Output Files (Section 2 of 2)

Al .
03-J3, B4, D4

*Al

$$BOSDO2 JF

1 .Read and verify volume
label and Format 4 label . $$BOSDO4 JL - JM
2 .Save VTOC limits and

$$BOSDOS5 JN - IQ

Format 1° Insert extent into

check for VTOC overlap. Write label label. Build
Format 1 created format 3 label
label if required

$$BOSDOG JQ-JR

Issue

File

VIOC overlap message " User labels protect
- Noviedld
$SBOFLPT AA-AD
$$80SDO1 NO

File protect File protect

File protect extents

YES

. $$BOFLPT AA-AD

Label
clearing
required

NO

4
Dequeue NO
old exfy

L YES

File protect extents

$$BOSDO8 KA

$$BODQUE LE

More files
to open

SVC 2 fetch
$$BOPEN

Delete
duplicate labels

Dequeue file
protected extents

$$BOSDO3 JG - JK

Check extent
overlap of
existing files

SVC 11 retumn to
problem program

74 DOS LIOCS Volume 3 SAM and DAM for DASD

Chart 05.

01
F3

Sequential Access DASD Open, Work Files

$$BOSDW1 KD -KF

Read and verify
VTOC label

Last extent
processed

Need
to check for
duplicate
labels

NO

Another file
fo open

SVC 11 return to
problem program

$$BOSDO8 KA

Delete
duplicate
labels

$$BOSDO3 JG - JK

Check extent
overlap on
existing files

$$BOSDW2 KG-KH

Write
workfile
labels

File
protect
specified

YES

$$BOFLPT AA-AD

File
protect
extents

SVC 2 fetch
$$BOPEN

&

$$BOSDW3 KJ -KK

Put extent
information

into DTF table

$$BOSDCI LA -LC

Entered
from
CLOSE

CLOSE
workfile

NO

Another file
to close

SVC 11 return to
problem program

SVC 2 fetch
$$BCLOSE

Sequential Access DASD Files 75

Chart 06.

Entry from
$$BCLOSE

CP or SYSLNK Workfile

Qutput on

Sequential Access DASD Close, All Files

Input

DTFPH

|

To LIOCS module
and return if
nccessary to write
last record

To LIOCS module
and retum if
necessary to
update last record

Output
1.Update lower limit address
and store in COMREG . Delete file
2.Read, update and rewrite labels from
labels . VTOC
2 .

Output
or workfile

Output

Workfile

$$BOSDO1 JA-JD

$$BOSDW3 KJ-KK

1.Open new extent. Call
SD phases as required.

2.Exit via $3BOSDOS5 or
$$BOSDO6.

Initialize DTF
with new extent

Read, update
and rewrite
labels

Process
trailer
labels

NO

Delete file label
from VTOC if
requested by user

Turn off open
indicators

$$BOSD0S JQ-JR

1 .Process trailer labels.

2.Exit to $$BODQUE to
dequeue file protected
extents if required.

$$BOSDC2 LD

Track
Free tracks held hold option
by file being specified
closed

More files
to close

SVC 11 return to
problem program

76 DOS LIOCS Volume 3 SAM and DAM for DASD

SVC 2 fetch
$$BCLOSE

Read, update
and rewrite
labels

®

SEQUENTIAL DASD OPEN/CLOSE LOGIC

AOgen/Close Sequential DASD Files Chart 01

When a DASD file is processed sequentially
(DTFSR or DTFSD specified), OPEN initially:

e checks the standard label(s) on the
volume, (or on the first volume of a
multivolume file),

e makes any additional labels on the
first volume available for checking,
and

e locates the first extent on the first
volume and makes it available for
processing.

Logical IOCS processes one extent at a
time in the sequence specified by the
user's job control // EXTENT cards. When
logical IOCS detects the end of the current
extent, it branches to the end-of-extent
routine. OPEN then locates the next extent
specified by the control cards and makes it
available for processing. If the next
extent is the first extent of a different
volume used by the file, OPEN checks the
standard labels on that volume and makes
any additional user labels available to the
user for checking. ’

OPEN (Input Sequential DASD) Chart 02

If the file to be opened is normal input,
the extents are read and checked as needed.
User labels are read and checked if LABADDR
is specified. The file labels are checked
against the DLBL information. The open
indicator for the file is turned on and
control returns to the user.

OPEN (Output Sequential DASD) Charts 03-04

If the file has not been previously opened,
the extents and labels are checked against
the DLBL cards. The labels for the next
extent to be opened are read and checked
for overlap. Labels are created and
written as directed by the DLBL '
information, pertinent information is
posted in the DTF table, user labels are
processed at the option of the user, and
control returns to the user.

When the file has been previously
opened, the labels and extents are checked,
the file labels are created, and the
current extents are inserted in the VTOC.

The pertinent data is posted in the DTF
table, user labels are checked, (if
specified) and control branches to the
user.

OPEN (Work File Sequential DASD) Chart 05

When WORKFILE is specified, the volume and
EXTENT labels are checked against the DLBL
information, the VTOC limits are saved, and
the extents are checked for overlap on the
VTOC. File labels that overlap are deleted
if the expiration date is passed. Format 1
and 3 labels are created as required.

Phase 1 is called in to process more
extents, if available. If not, control
returns to user.

CLOSE Sequential DASD Chart 06.

The close routine for sequential DASD work
files and output files is logically the
same. Any additional records are
processed, the file labels are updated or
deleted as required, and the file is
indicated as being closed. A compiler file
is closed in the same manner as a work file
or an output file, except that processing
of additional records is bypassed. If the
file is an input file, it is simply
indicated as being closed.

$5BOSD00: SD Open, Initialization Chart HA

Obijectives:

e To determine which B-transient phase to
fetch following $$BOSDO1.

o To bypass 5BOSD01 (if possible), by
fetching the determined phase.

e To perform other initialization

functions.
Entry: From 3BOPEN.
Exit: To $3BOSD01, $$BOsSDI1, $$BOSDO1,
$5BOSDW1, $$BOSDW3.
Method: If the specified file is a work

file and is already open, this routine goes
directly to $$BOSDW3. For system units
other than SYSLNK, it goes to $$BOSDI1,
$§$BOSDO1, or $$BOSDW1l for input, output, or
work file, respectively. For all other
files, it goes to 3BOSD01 after first
determining the maximum allowable seek
address.

Sequential Access DASD Files 77

$8BOSD01: SD Open, DLBL Extents Chart HB

Objective: To convert DLBL extents to DASD
addresses and to indicate those extents
which already exist as label information.

Entry: From $$BOSD00, and reentry from
$$BOMSG1.
Exits:

» To $$BOSDI1, $$BOSDO1, or $$BOSDW1 as
predetermined by phase $$BOSD00.

e To $$BOMSG1l for operator communication.

Method: This routine gets the address of
the DLBL information as supplied by the
open monitor, $$BOPEN. It converts each
extent to DASD addresses and writes the
converted record in place of the original.
When the last extent has been converted,
this routine rereads the first extent
record, saves its address, and exits to the
next phase.

4BOSDI1: SD Open Input, DLBL Extents
Charts HC-HE

Obijective:

e To control the sequence of operations
required for opening each file extent.

e To provide an entry to the user's
trailer label routine (if specified),
at each end-of-volume.

e To provide an entry to the user's
end-of-file routine (if specified) upon
reaching the end of the last extent.

Entry: From $3BOSD00, $$BOSD01 and reentry
from 4BOSDI2, $$BOSDI3, and $$BOMSG1.

Exits:

e To SBOSDI2 to continue OPEN
processing. .

e To $SBODQUE to dequeue old extents.

e To $3BOSDI3 to process trailer labels.

e To $SBOPEN if the last DLBL extent has

been processed and another file is to
be opened.

e To $$BOMSGl for operator communication.
Method: If a system unit other than SYSLNK
is being opened, this routine gets extent
information for the DTF from the data

information block (DIB). Otherwise, it
continues at BYPASSX.

78 DOS LIOCS Volume 3 SAM and DAM for DASD

$$BOSDI1 tests for availability of DLBL
extents. If no more are available, an exit
is made to the user's end-of-file address
if no trailer labels are to be processed.
If the file has been previously opened, the
next consecutive DLBL extent to be opened
is read, and a test determines if this
extent is for another volume.

Upon encountering a new volume, trailer
labels are processed for the previous
volume (if LABADDR was specified with a
DTFSD), by exiting to phase 3 of open
input. The volume label is read and
checked to ensure that the proper pack is
mounted. If the volume label is all right,
the Format 4 label is read and checked.
The VTOC limits from this label are saved,
and initialization is performed to fetch
the next phase. The routine exits to
$$BOSDI2.

8BOSDI2: SD Open Input,
Charts HF-HH

Extent to DTF

Objective: To obtain extent information
for the DTF table as required by an attempt
to access a record beyond the limits of the
current extent.

Entry: From $$BOSDI1, and reentry from
$$BOMSG1 and $$BODSMW.

Exits:

e To $$BOSDI1 to bypass current extent
and process the next one.

e To $$BOSDI4 to continue initialization
of the DTF table.

e To $35BODSMW to print message if data
secured file is uncountered.

e To $$BOPEN if the last DLBL extent is
processed and another file remains to
be opened.

e To $$BOMSG1l for operator communication
to display error message.

Method: The routine reads the Format 1
label for the file and ensures that no
discrepancies exist between the DLBL and
Format 1 label. The extents within the
label are scanned for one that either
matches or falls around the limits of the
incoming extent. The scanning process
continues until a proper match is found, or
until all the extents have been exhausted
by reading the labels in the chain (if any
are present). The extent limits are then
posted in the DTF table. The file is
indicated as being open, and additiomnal
initialization is performed depending on
the type of DTF being opened.

The format 1 label is checked for the
data security indicator. If it is ON and
the file has not been opened, $$BODSMW is
fetched to put out a data security message.
Otherwise, any user header labels are
processed, and control branches to $$BOSDIY
to continue initialization of the DTF
table.

$8BOSDI3: SD Open Input, User Labels
Charts HJ-HK

Objective: To read user labels and give
control to the user for processing them.
To rewrite any labels updated by the user.

Entry: From 3BOSDI1 or $$BOSDI2, and
reentry from $$BOMSG1l, $$BOFLPT, or the
user's label routine via an SVC 9.

Exits:

s To $$BOSDI1 to continue OPEN
processing.

e To the user's label routine.

e To $SBOFLPT if file protect has been
specified. . N

e To $$BCLOSE if the phase was entered
from the close routine and track hold
has not been specified.

s To $$BOSDC2 if the phase was entered
from the close routine and track hold
has been specified.

e To $$BOMSG1 for operator communication.

e To the problem program following an
end-of-file condition.

Method: This phase reads the user's labels
and passes them to the problem program for
processing. This process continues until
the maximum number of labels have been read
(and rewritten, if any labels have been
updated by the user) or the user signals
that he does not want to process any more
labels.

If this phase is entered from the close
routine, and if track hold is specified,
control passes to $$BOsSDC2. If track hold
is not specified, control passes to '
$$BCLOSE. If the routine is entered from
$$BOSDI1 or $$BOSDI2, control passes to
$$BOSDI1. «

When the maximum number of labels have
been processed, end-of-file is reached, or
the user signals that he does not want to
process any more labels, control returns to
the problem program.

' open,

$$BOSDI4: SD Open Input,
DTF Table Charts HL-HM

Initialization of

Objective: To complete initialization of
the DTF table.

Entry: From $$BOSDI2.

Exits:

e To $$BOSDI3 to process user header
labels.

e To SBOPEN to open the next parameter
or to return to the user.

e To $SBOFLPT to queue the extent for
file protection.

e To $$B0QO01 to open a QTAM file.

Method: Upper and lower extent limits are
posted in the DTF, and the DTF open switch
is set on. Switches are also set to
indicate whether the last extent has been
processed, if the next extent is on a new
volume, or if it is on a new pack and the
extents need dequeueing.

If user header labels are to be
processed, exit is made to $§$BOsSDI3. If
file protect is specified for a system file
open, $$BOFLPT is fetched. For a QTAM
$$B0Q001 is fetched. If any
parameters remain to be processed, $$BOPEN
is fetched; otherwise control returns to
the user.

4BOSDO1: SD Open Output, Control
Charts JA-JD

Objective: To control the sequence of
operations for opening each file extent,
providing for an entry of extents from the
console, and for an entry of user trailer
labels.

Entry: From $$BOSD00, $$BOsSD01, and
reentry from $$BOSDO2, $$BOMSGl, $$BOSIGN
or $$BOosDC1l. The phase is entered at least
once for each DLBL extent.

Exits:

o To $$BOSDO2 to read and verify the
volume label (VOL 1) and VTOC label
(Format 4) and prevent any extent from
overlapping the VTOC.

e To $$BOSDO6 to provide for user trailer

labels if specified and if the last
extent for the file has been processed.

Sequential Access DASD Files 79

e To $$BOSDO7 to allow the operator to
enter extents from the console
following the last DLBL extent for the
file.

® To $$BOPEN if the open processing for
the file is complete and another file
remains to be opened.

* To $$BODQUE to dequeue extents.
¢ To $5BOMSG1 for operator communication.

o To $$BOSIGN to check for device
assignment.

Method: This phase reads each extent
record from the SYSRES label cylinder,
tests for various conditions in their
appropriate order, and fetches the phase
required for further processing. If the
normal sequence is interrupted by the entry
of an extent from the console, the phase
finds the next DLBL record by using the
sequence number of the last extent
processed before the extent was entered
from the console.

The processing required for each extent
record depends on whether:

1. The file being opened is a system
file.

2. The file is already open.
3. The extent is on another volume.

4. The extent is entered from the
console.

5. The extent is the last one for the
file.

6. The extent is to be bypassed, either
for file protection or because it is a
duplicate.

7. User labels are specified.

8. File protect is specified.

$SBOSIGN:

SD Open Ignore Chart JE

Objective: To check for the COBOL Open/
Ignore function.

Entry: From $$BOSDO1.
Exits: To $$BOSDOl.
Method: This routine determines whether

the COBOL Opens/Ignore function has been
specified. If so, and the device is
unassigned or assigned IGN, the open is

80 DOS LIOCS Volume 3 SAM and DAM for DASD

bypassed. If the device is assigned, the
open is continued.

If the Open/Ignore option has not been
specified, and the device is unassigned or
assigned IGN, the job is aborted.
Otherwise, the open continues.

The routine also determines whether the
assigned device is the correct device. If
not, the job is aborted. Otherwise,
control returns to $3BOSDO1 to continue
processing.

$$BOSDO2:
Chart JF

SD Open Output, Volume Label

Objective: To read and verify the standard
volume label (VOL 1) and VTOC label (Format
4), preventing any extent from overlapping
the vTOC.

Entry: From $$BOSDO1, $$BOSDOS6,
and reentry from $$BOMSG1.

$$BOSDO7,

Exits: To $$BOSDO1 if an extent overlaps .
the VTOC."

e To SBOSDO3 to continue proce531ng a
sequential file.

e To $$BOSDO4 to complete the opening of
~a compiler file.

e To $$BOSD0O8 to prevent the user from
creating identical labels in the VTOC.

e To $5BOMSG1l for operator communication.

Method: The volume and Format 4 labels are
read and verified, VTOC limits are saved,
and the extent limits are checked against
the VTOC limits for overlap. For each new
volume that is opened for the file, an exit
is made to 3BOSDO8 to prevent the user
from creating identical lakels in the VTOC.

For an opened SYSLNK file, this routine
exits to §$$BOSDO4 after getting the VTOC
limits to complete the opening of the file.
Otherwise, 3BOSDO3 of open output is
fetched to further process a sequential
file.

$4BOSD0O3: . SD Open Qutput,
Charts JG-JK

Extent Overlap

Objective: To prevent opening any extent
that overlaps an already existing file that
is still active.

Entry: From $$BOSDO2 or $$BOSDW1, and
reentry from $$BOSDO8 or SBOMSG1.

Exits:
e To $$BOSDO4 to build a file label.

e To $$BOSDOS to insert the extent in a
file label.

e To $$BOMSG1l for operator communication.

, e To $3BOSDW2 if this phase is used for
opening a work file.

e To $$BOIS03 if this phase is being used
by the Indexed Sequential File
Management System (refer to Volume 4).

Method: This routine checks the incoming
extent against all of the existing files in
the VTOC for any overlap. If overlap
occurs, the file label in the VTOC is
deleted if the expiration date has been
reached. If the expiration date has not
been reached, a message is issued and
action is taken depending on the operator's
response.

This phase is also used by the open work
file routines and the indexed sequential
file management system to check extents for
overlap and data security.

$8BOSDOL4: SD Open Output, File Label
Charts JL-JM

Objective: To build a Format 1 label,
insert the first extent into the label,
write it out, and update the DTF table.

Entry: From 3BOSDO2 (SYSLNK open) or
$$BOSDO3.
Exits:

e To $5BOSDO6 if user labels are
specified.

e To $$BOFLPT if file-protect is
specified.

e To SBOPEN if the open processing for
the file is complete and another file
remains to be processed.

e To $$BOMSG1l for operator communication.

Method: This routine builds a Format 1
label for the file, inserts the first
extent into the label, writes it out, and
posts the pertinent information into the
DTF table. Then, it tests to determine if
user header labels are to be processed. If
yes, it fetches $$BOSDO6. If no, a test

determines whether the extent is to be
file-protected. If yes, this routine
fetches $$BOFLPT. If no, it exits to
$$BOPEN to open the next file, or returns
to the problem program if no more files are
to be opened.

$$BOSDOS: SD Open Output,
Charts JN-JP

Format 3 Label

Objective: To insert each extent into its
file label, building a Format 3 label if
required, and to update the DTF table.

Entry: From $$BOSDO3.
Lntry

Exits:

e To $$BOFLPT if file-protect is
specified.

e To $$BOPEN if the open processing for
~the file is complete and another file
remains to be opened.

e To $$BOSDC1 if the open processing was
entered from $$BOSDC1.

e To $$BOMSG1l for operator communicationﬁ

Method: This routine inserts each
successive extent into its appropriate
Format 1 label. If more than three extents
are specified, it is necessary to build one
or more Format 3 labels. This routine
posts appropriate extent information in the
file DTF table.

$$BOSDO6: SD Open Output, User Labels
Charts JQ-JR

Objective: To create user header and
trailer labels.

Entry: From $$BOSDO1l or $$BOSDC1l to allow
user trailer labels, from $$BOSDO4 to allow
user header labels, reentry from $$BOMSG1,
reentry from user label routine via SVC 9.

Exits:

e To user's label routine via SVC 8.

e To $$BOSDO2 to continue processing
extents.

e To $SBOFLPT if file-protect is
specified.

e To $SBODQUE if old extents are to be
dequeued.

Sequential Access DASD Files 81

e To SBOPEN if another file is to be
opened.

e To SBCLOSE if entry was from $$BOSDCl.
e To $$BOMSG1 for operator communication.

Method: This routine determines whether
header labels or trailer labels are
required. If trailer labels, it sets an
asterisk in the DTF table for testing by
the user. This routine finds the file mark
that precedes the user label location. It
then issues an SVC 8 to ‘exit to the
user-supplied address. It writes the
user-supplied label when control returns
from the user. $$BOSDO6 allows up to eight
user labels unless the user indicates
otherwise. It writes a file mark following
the last label.

3BOSD0O7: SD Open Output, Extents from
Console Chart JS

Objective: To enter operator-provided
extent information from the console.

Entry: From $$BOSDO1, or 3BODSPW.

Exits:
e To $$BOSDO2 to process the new extent.
e To $5BODSPV to display the VTOC.

e To $$BOVDMP for a more extensive VTOC
dump.

Method: This routine initiates a no more
available extents message and reads the
operator's reply (if a 1052 has been
assigned to SYSLOG). If the operator did
not cancel the job, it is assumed that an
extent was entered, which is then checked
for validity. If the extent is valid, this
routine exits to $$BOSDO2 to process it.

$$BOSDOS8:
Chart KA

SD Open Output, Delete Label

Objective: To prevent creation of
identical file labels.

Entry: From $$BOSDO2, $$BOSDW1l, $$BODAO1,
or $5BOIS03, and reentry from $$BOMSG1.

Exits:
e To $$BODAO1 for Direct Access Method.

e To $5BOSDO3 for all other uses.

82 DOS LIOCS Volume 3 SAM and DAM for DASD

® To $$BOMSG1l for operator communication.

Method: This routine uses the U44-byte
filename from the DLBL record as a key to
search the VTOC for any identical filename.
It deletes any identical label found -if the
expiration date is passed. Otherwise, the
operator has the option of canceling the
job or deleting the identical label.

4BOSDW1: SD Open Work File, Volume Label
Charts KD-KF

Objective: To read and verify the standard
volume label (VOL 1) and VTOC label (Format
4), preventing any extent from overlapping

the VTOC (Volume Table of Contents).

Entry: From $$BOSD00, $$BOSD01, 3BOSDW2,
and return from $$BOMSG1.

Exits:

e To $$BOSDO3 to continue processing a
work file extent.

e To $3BOSDO8 to prevent duplicate file
labels.

e To SBOPEN if the last extent has been
processed and another file remains to
be opened.

e To $5BOMSGl for operator communication.

Method: This routine determines whether
the symbolic unit specified in the DLBL
statement is assigned and whether it can be
used as a work file. It reads the volume
label and, if the device is a 2311, 2314 or
2319, determines if a correct disk pack is
mounted. It reads the VTOC label and
ensures that no extent overlaps the VTOC.
If the VTOoC has not been checked for a
duplicate filename, 3BOSDO8 is fetched to
eliminate possible duplication. Subseguent
exits are to $$BOSDO3. (see $$BOSDO3 SD
Oopen Output, Extent Overlap.)

$5BOSDW2: SD Open Work File, File Label
Charts KG-KH

Objective: To create a file label (Format

1 and Format 3 labels as required).

Entry: From $3BOSDO3, and return from
$$BOMSG1.
Exits:

e To $SBOFLPT if file-protect is
specified.

e To $$BOSDW1 ‘as the normal exit.

e To $$BOMSG1l for operator communication.

Method: This routine builds a Format 1
label, inserting the first extent. This
routine puts the extent information into
the DTF and writes the label.

For each succeeding extent, this phase
inserts the new extent (three maximum) and
rewrites the label. For additional

extents, it creates and writes a Format 3
label.
$3BOSDW3: SD Open Work File, Extent to DTF

Charts KJ-KK

Objective: To get extent information for
the DTF table as requested by a POINT macro
instruction or as required by a need to
write a record beyond the limits of the
current extent.

Entry: From $$BOSD00 or $$BOSDC1l, with
reentry from $$BOMSG1.

Exits:
e To $$BOSDC1 if entered from that phase.
e To the problem program.

Method: This phase reads the file label
(Format 1) and determines whether the label
has been deleted. If this open was not
initiated by a POINTR or a POINTS macro,
this routine uses the extent sequence
number to find the next extent. If the
open was initiated by a POINTR or a POINTS
macro, a new extent low limit was put in
the DTF. This phase uses the new low limit
to find the next extent. It then enters
the extent information in the DTF.

$3BOSDC1: SD Close Charts LA-LC

Objective: To allow writing the last block
of data, provide a linkage to a user's
trailer label routine, and indicate in the
DTF table that the file is closed.

Entry: From $$BCLOSE and reentry from
$5BOSDW3, $$BOSDO5, or $$BOSDO6.

Exits:

e To the problem program upon completion
of the close.

e To $$BCLOSE if another file remains to
be closed.

e To 5BOSDO1 if an additional file
extent is required for writing the last
block of data in an output file.

e To $$BOSDW3 if an additional file
extent is required for writing the last
block of data in a work file.

e To $$BOSDO6 for processing user labels.

¢ To the LIOCS logic module if a last
data block must be written or updated.

e To $$BOMSG1 for operator communication.

Method: On the basis of file type and
usage, this routine determines whether a
last block of data must be processed. If
so, it enters the SD logic module. Upon
return, it determines whether another
extent must be opened to provide for the
actual write operation. For this, it goes
to $$BOSDW3 for a work file or to $$BOSDO1
for an output file.

After the last data block is written on
an output file, it deletes the labels, if
so specified. Otherwise, it updates and
rewrites work file or output file labels.

It also indicates in the DTF table that
the file is closed and restores the unit
exception indicator. TIf the track hold
option has been specified, it issues an SVC
2 to fetch $$BOSDC2 to free any tracks held
by the file being closed.

$$BOSDC2:
Chart LD

SD Close: Free Track Function

Objective: To free any tracks held by the
file being closed.

Entry: From $$BOSDC1.
Exits:
¢ To the close monitor, $$BCLOSE.
e To $$BCISOA for ISAM files.
e To the problem program.
Method: This routine searches the track
hold table to determine whether a track is

being held by the file being closed. If
so, an SVC 36 is issued to free the track.

Sequential Access DASD Files 83

If another SD file remains to be closed,
control returns to the close monitor,
$$BCLOSE. If ISAM files are being
processed, control returns to 3BCISOA.
Otherwise, control returns to the problem
program.

$SBODQUE: Dequeue Extent JIBs Chart LE

Objective: To find the Job Information
Block (JIB) chain for a particular logical
unit; and to clear any extent type JIBs
associated with the logical unit, and
release them to the available JIB chain.

Entry: From the sequential DASD open phase
$$BOSDO1, 3BOSDO6, or $$BOSDI1 to the
. label DEQUERTN.

Exit: To the problem program if no files
remain to be opened, or to the open
monitor, $$BOPEN, unless the name of the
phase to be returned to is supplied by the
calling phase.

Method: After storing the contents of
registers 3 through 8 and the name of the
phase that is to be returned to, if
specified, phase $$BODQUE issues an SVC 22
to seize the system; that is, to suspend
multiprogramming operation. The phase then
locates the proper 2-byte entry in the LUB
table for the logical unit specified and
examines the second byte of the LUB entry
to determine if any JIBs are chained to the
LUB.

If JIBs are chained to the LUB; that is,
if the second byte of the LUB is not hex
'FF', the address of the first JIB in the
chain is calculated by adding the pointer
(byte 2 of the LUB) multiplied by 4 (the
length of a JIB entry) to the starting
address of the JIB table.

Byte 2 of the JIB entry is then examined
to determine if the JIB contains an extent.
If the JIB contains an extent, the extent
is cleared. Once the extent is cleared,
the pointer to the next JIB in the chain is
obtained from the fourth byte of the
current JIB. The current JIB is then
placed in the available JIB chain and the
pointer to the first available JIB (FAVP)
is modified accordingly. When the JIB has
been placed in the available chain, or if
the JIB does not contain an extent, the

84 DOS LIOCS Volume 3 SAM and DAM for DASD

address of the next JIB in the chain is
calculated using the pointer obtained from
the fourth byte of the current JIB. The
procedure is repeated for the next JIB.

When all the chained JIBs have been
checked, or if no JIBs are chained to the
LUB, phase $$BODQUE issues a second SVC 22
to release the system for multiprogramming
operation. Phase $$BODQUE then fetches the
calling phase or the first phase of the
open monitor, $$BOPEN, if the name of the
calling phase was not supplied and there is
another file to be opened. If the name of
the calling phase was not supplied and
there are no other files to be opened,
phase $$BODQUE returns control to the
problem program via an SVC 11.

S$BOSDEV: SD Close Charts LF-LG

Objective: When FEOVD has been specified,
$$BOSDEV closes the current volume and
opens a new volume.

Entry:

e From the FEOVD macro

e From $$BOSDO5 (phase 5 of open
sequential output)

e From LIOCS via SVC 9

Exits:
e To the open monitor $$BOPEN
e To the close phase $$BOSDC2
e To the problem program

Method: For an output file, an end of
volume marker is written and the DTF is set
up so that the next record is written on a.
new volume. The end of volume marker is a
normal end of file record.

For an input file, a check is made to
determine if update has been specified. If
it 1s necessary to rewrite any updated
records, an exit is made to the module
close routine. End of volume is posted in
the DTF, any remaining extents on the
volume are bypassed, and the first extent
on the next volume is opened.

Direct Access (DA) files refer to files
contained on IBM 2311, 2314, 2319, or 2321
DASD devices and processed by the Direct
Access Method. Note that the term Direct
Access applies to a method of processing
DASD records and not to a type of file
organization.

DIRECT ACCESS METHOD

The Direct Access Method provides a
flexible set of macro instructions for
creating and maintaining a data file on a
DASD device. This technique applies
specifically to records organized in a
random order, but it can also be used to
process records sequentially. The macro
language offered by this data management
method permits the user to load, read,
write, update, add, or replace records on a
DASD file.

The Direct Access Method is an IOCS
processing method specifically designed to
utilize the capabilities of direct access
storage devices. This method provides the
following facilities:

e Processing of records organized in a
random order.

e Processing, in physical sequence, of a
file of records stored by record key.

e Utilizing of track capacities.
o Two referencing methods:

1. Record ID (physical track and
record address),

2. Record KEY (control field of the
logical record).

e Multiple track searching beyond the
specified track for resolving the key
argument.

DIRECT ACCESS FILES

e Providing a means of supplying the user
with the Record Identifier (ID) of
either the current record or the next
record after a READ or a WRITE :
operation has been executed.

The Direct Access Method is subject to the
following restrictions:

e Only unblocked records are processed.

e No work area and only one I/0 area can
be specified for the file.

e The user must supply either a track
reference or a record identifier for
every record read or written by logical
IOCS.

DASD files processed by the Direct Access
Method must be defined for logical IOCS by
a DTFDA macro. If a DASD file is processed
by physical IOCS in a manner similar to the
Direct Access Method, the file must be
defined by a DTFPH macro.

DTFDA MACRO

Whenever a file of DASD records is
processed by the Direct Access Method, the
logical file must be defined by a DTFDA
macro. This macro generates a partial DTF
table to describe the characteristics of
the file for logical IOCS as shown in
Figure 25. The DTF table is completed by
the channel program builder subroutine in
the DA logic module. This subroutine
builds, and inserts into the DTF table, the
channel program CCWs needed to process the
file. The number and specific nature of
the CCWs varies with the imperative macros
used with the file. Figure 36 summarizes
the CCW chains needed to accomplish the
function of a particular imperative macro.

Direct Access Files 85

r T 1] T T 1
| DTF Assembly| Module | | | |
| Label | DSECT Label|Bytes |[Bits| Function |
1 1 L 4 L N
r 1 T) T 1
.| éFilename | IgJICCB | 0-15 | | Command Control Block (CCB). |
		(0-F)			
	ZTJIMOD	16	0	1 = Trailer labels	
		(10)	1	Used by FREE macro	
] 2	1 = COBOL Open/Ignore option		
			3 1 = Track hold option 'specified		
			4 1 = DTF relocated by OPENR		
			5	[Not used
			6	1 = SPNUNB	
			7 Used by CNTRL macro		
			[
	117-19	Address of logic module.			
		(11-13)			
		20		DTF type for OPEN/CLOSE (X'22' = direct access	
		(aw)		files).	
	ITISWI	21	0	1 = Output; 0 = Input.	
		(15)	1	1 = Verify option specified.	
			2	1 = Search multiple track (SRCHM) spec1f1ed.	
		.	3	1 = WRITE AFTER or WRITE RZERO macro used.	
]	4	1 = IDLOC specified.		
			5	1 = Undefined; 0 = FIXUNB, VARUNB, or SPNUNB	
			6	1 = RELTYPE = DEC	
			7	1 = End of file.	
IJIFNM 122-28		Filename (DTF Name).			
	[(16-10)		[
	ITIDVTP	29		Device Type.	
		(AD)		x*00' = 2311, X'01* = 2314, 2319, X'02' = 2321.	
IJIUNT 130-31		Starting logical unit address of the first volume			
	(1E-1F)		containing the data file. This value is supplied		
				by the OPEN from EXTENT cards (can be initially	
				zero) .	
		i			
	ITTIULB 132-35		Address of user's label routine.		
		(20-23)			
	ITIUXT	36-39		Address of user's routine for processing EXTENT	
		(24-27)		information.	
	-				
	ITIRELPT	4o		Pointer to relative address area:	
i		28)		&Filename.P - §Filename	
				2	
	ITIERC	41-43		Address of a 2-byte field in which IOCS can store	
		(29-2B)		the error condition or status codes.	
	IOITST	4u-45		[Macro code switch for internal use:	
		(2c-2D)		X*0000' = READ ID	
				X'0001' = READ KEY	
			X'0002" = WRITE ID		
			X'0003*' = WRITE KEY		
			X*'0004°' = WRITE RZERO		
			X'0005' = WRITE AFTER		
IJIBPT	46-47		Pointer to channel program build area		
		(2E-2F)		(§Filename.B) minus 32.	
IJICB2	48-63		Control seek CCB		
		(30-3F)			
L L L L L [
Figure 25. DTFDA Table (Part 1 of 6)

86 DOS LIOCS Volume 3 SAM and DAM for DASD

r T A) Al AJ)|
| DTF Assembly|Module | | | |
Label DSECT Label|Bytes Bits Function
| Y
L 1 L 1 il i |
3) L] T T Al
Filename.Z	IJICCW	eu-71		Control Seek CCW for overlap seek routine.
		(40-47)		
	ITIXMD	172-75		Channel program builder instruction:
	j (48-4B)		XI 36(2),Cc*'0"	
				/
	ITIMSZ 176=77		Maximum data length for FIXUNB or UNDEF records;	
		(4C-4D)		BLKSIZE for VARUNB or SPNUNB records.
		i		
	ITISPT 78		Pointer to READ ID string (Filename.0); X'00°' if	
	(4E)	jno READ ID issued.		
	I 79		Pointer to READ KEY string (Filename.l); X'00' if}	
		(F)y		no READ KEY issued.
	80,		Pointer to WRITE ID string (Filename.2); X'00' if]	
		(50)		no WRITE ID issued.
	81	Pointer to WRITE KEY string (Filename.3); X'00'		
		(51)		if no WRITE KEY issued.
		82		Pointer to WRITE RZERO string (Filename.4); X'00°
		(52)	if no WRITE RZERO issued.	
[:		
		83		Pointer to WRITE AFTER string (Filename.5); X'00°
		(53)	if no WRITE AFTER issued.	
	ITITRK	84-85	Track constant:	
		(54-55)]2311: X'0000* if key length = 0;		
			X*'0020* if key length # 0.	
				2314: X'0000* if key length = 0;
				X'0045' if key length # 0.
			12321: X'0000* if key length = 0;	
				X'0016' if key length # 0.
	ITIRIC 186-87	2311: X'0061"		
		(56-57)	2314: X'0101°	
]2321: X*0084"		
-				
ITILAT	88	0	Not used	
	(58)	1 1 = Wrong-length record		
		2 1 = Non data transfer error.		
		3 Not used.		
		4	1 = No room found	
		5-6	Not used	
		7	1 = Record out of extent area.	
	89 0 1 = Data check in count area.			
		(59) 1 1 = Track overrun.		
			2 1 = End of cylinder.	
			3 1 = Data check when reading key or data.	
		4 1 = No record found.		
]		5 1 = End of file.		
		6 1 = End of volume.		
			7 Not used.	
-				
"	ITILBTK [90-95	Label track address, XBCCHH, where X is the	
		(5A-5F)	volume sequence number of the device on which the	
			label track is located.	
L i L

L L

This is the end of the common DTFDA table.

Figure 25. DTFDA Table (Part 2 of 6)

Direct Access Files 87

The following section is included if UNDEF, AFTER, or RZERO is specified.

r T 1 T T 1
| DTF Assembly|Module | | |
| Label | DSECT Label|Bytes |Bits]| Function |
[l | I L [l]
r T T)] 1
6Filename.L	IJILST	96-143		Basic CCWs to build channel program
		(60-8F)		(see Figure 33)
		144-183]		Basic CCWs for undefined length or formatting
		(90-B7)		macros (see Figure 33).
			«	
	IJIVIT	184-185]	Instruction to give record length to user if	
		(B8-B9)		record length is undefined. (NOPR 0 if no
				RECSIZE specified.)
			I	
	ITIFRU 1186-187		Instruction to get record length from user if	
		(BA-BB)		record length is undefined. (NOPR 0 if no
				RECSIZE specified.)
	I]			
éFilename.F	IJIFLD	1188-192		Work area (used for RO address - CCHHO).
		(BC-CO)		
[l I .				
éFilename.K	IJICNT 1193-200]		Work area (used for RO data field).	
		(C1-C8)		
	[I _ o			
Filename.C	IJICTS	201-208]		Work area (included only for spanned or variable
		(C9-DO)		records for record count field).
L L L 1 L J

The channel program builder strings are generated following the DTFDA table, and

preceding the channel program building area.

(See Figure 32 for the channel program

builder string to be used for each macro.)

g¢Filename.0
§Filename.l
&§Filename.2
EFilename.3
§Filename.lt

§Filename.5

r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
L

o e e e e e e . . S e S . S e . e S . S e S e e]

Variable

Variable

Variable

Variable

——— —— — — ——— —— — c— ot— o ——— o}

Variable

Variable

oo e s . . o o o —— — — ——— — — — —— — — — — —]

o e e e . o e s e e

T

|Channel program builder string for READ ID macro.
|If READ ID is not specified, the string is not

| generated.

|

|Channel program builder string for READ KEY
|macro. If READ KEY is not specified, the string
|is not generated.

|

|Channel program builder string for WRITE ID
|macro. If WRITE ID is not specified, the string
|is not generated.

|

|Channel program builder string for WRITE KEY
|macro. If WRITE KEY is not specified, the string
|is not generated.

|

|Channel program builder string for WRITE RZERO
|macro. If WRITE RZERO or WRITE AFTER is not
|specified, the string is not generated.

|

|Channel program builder strings for WRITE AFTER
|macro. If WRITE RZERO or WRITE AFTER is not

| specified, the string is not generated.

XL

bt s e o Ao c— —— — — — — — — — — — — —— t—— S—— — — — o]

Figure 25.

DTFDA Table (Part 3 of 6)

88 DOS LIOCS Volume 3 SAM and DAM for DASD

S~

The following section contains the

channel program build areas and varies in size.

r T 1 1
| DTF Assembly|Module | |
| Label | DSECT Label |Bytes Bits| Function |
F + + 1
	,			
éFilename.B 0-7	seek CCW that is generated at program assembly			
	time and used by all channel programs.			
]				
		variable]		
			Area to build seven CCWs; or a maximum of nine	
			cCWs if spanned or variable records and	
			AFTER=YES is specified.	
		Variable		
				Area to build verify CCWs; five CCWs for fixed
			and undefined records, eight CCWs if spanned or	
			variable records and AFTER=YES is specified.	
				(This area is generated only if VERIFY=YES.)
L 1 L L L]				
The following section is added for spanned records only.				
r L) L] T 1				
DTF Assembly	Module			
Label	DSECT Label	Bytes	Bits]	Function
F +	— 1			
			I]	
		8 bytes		Count save area.
		8 bytes]		SEEKADR save area.
I			[
		1 byte	0	1 = Relative addressing.
			I	
			1	1 = IJIGET switch on.
			2	1 = Ignore hold switch on.
			3	Reserved for use by DAMODV.
I		I		
			4	1 = New volume SEEKADR.
				’
			5-7	Not used. i
		1 byte		Resexved.
]		I		
		2 bytes]		Record size.
		12 bytes		Work area.
				I
		8 bytes		Control word save area.
L L L L L J
Figure 25. DTFDA Table (Part 4 of 6)

Direct Access Files 89

The following section is added to

the DTFDA table if DSKXTNT (relative addressing) is

specified.

r T T T

| DTF Assembly|Module | |

| Label | DSECT Label|Bytes | Function

.* 1 i |

| §Filename.P | |3 bytes |3X'00' for padding.

| I | |

| §Filename.I | |5 bytes]| IDLOC record area (bucket used by module).

I | I |

| éFilename.S | |8 bytes]| | SEEKADR in form:

| I |

| | | M,B1,B2,C1,C2,H1,H2,R

| | | | |

| | |4 bytes| |DC A (§SEEKADR)

| | | |
| | |4 bytes DC A(€IDLOC) |
I I | I

| | |8 bytes |Work area for RELTYPE=DEC.

I | | I I , |
| EFilename.X '| |4 bytes]| |save area for CCHH portion of actual DASD |
| | | ' |address. |
I I | |

| | |4 bytes |Alteration factor for Cl in SEERADR (see bytes

| | I [112-119):

| I] I I

| | | |2311: X'00000001°

| | | |2314, 2319: X*00000001°

| | | | |2321: X*000003ES8"

] | I [

| | |4 bytes |Alteration factor for C2 in SEEKADR (see bytes

| | | | 1112-119):

| | I | |

| | | | |2311: X'0000000A"

| | | | 12314, 2319: X'00000014°*

| | | | |2321: X'00000064°

L L 1 L1 L

—— . o —— o cnlan S a—

b o s s, e e S . S S S—

Figure 25. DTFDA Table (Part 5 of 6)

90 DOS LIOCS Volume 3 SAM and DAM for DASD

G |
DTF Assembly|Module

Label | DSECT Label|Bytes Function
L 1

w

H.

™

4]
—— e e e o]

|Alteration factor for H1 in SEEKADR (see bytes
1112-119):

4 bytes

|

}123112: X'00000001°
|2314, 2319: X*'00000001°
|2321: X'00000014°*

| DSKXTNT table composed of a variable number of
| 8-byte entries containing extent information
|in the following format:

|

|Bytes 0-2 TTT2 -cumulative number of tracks in
the DSKXTNT table entries up to
and including the current
entry.

S ——

|variable
|to end
|of DTF
| table

—— e e e o e e e e e e e e e e

3 M -volume sequence number.

4 B -bin number (0 for 2311, 2314,
or 2319)

Bytes 5-7 TTT1 -relative track number of lower
limit of this entry.

|A 2-byte end-of-table indicator containing
| X*FFFF*' follows the last entry in the DSKXTNT

r
|
|
b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |table.
L 1

o . . S — —— T — — —— ——— — — — — — ——— — — — o— — — t—o— i w— a—

o e s s . . o S o e, . . B e, S S ———— — — — — — — —— — — — o]

e e o . e o e S e i e S . . s S e

!
|
|
|
|
|
I
|
L

Numbers in parentheses are displacements in hexadecimal notation.

Figure 25. DTFDA Table (Part 6 of 6)

Direct Access Files 91

r T T |
| Bytes | Bits| Function |
b + t 1
0-15		CCB.
(0-F)		
16		X'08"' indicates DTF relocated by OPENR.
(10)		
17-19		3x'00°"
(11-13)		
20]	DTF type (X'23').	
(s)		
21		Option codes.
(@15		
	0	1 = output, 0 = Input.
	1	Not used.
	2	Not used.
	3	Not used.
	4	Not used.
	5	Not used.
	6	1 = 2321, 0 = 2311, 2314, or 2319.
	7	Not used.
22-28		Filename.
(16-1C)		‘
29		Version 3 device type code:
(1D)		
I		
		X'00' = 2311
		X*01* = 2314, 2319
		xX'02' = 2321
		Last byte of filename in previous versions.
30-31		Logical unit address of first volume containing
(1E-1F)		the file.
32-35		Address of user label routine.
(20-23)		
36-39		Address of user routine to process EXTENT
(24-27)		information.
L 1L L J

Numbers in parentheses are displacements in hexadecimal notation.

Figure 26. DTFPH Table For Direct Access

DTFPH MACRO REFERENCE METHODS AND ADDRESSING SYSTEMS
Figure 26 illustrates the DTF table Each record read or written must be
generated by the DTFPH macro when the identified by providing the logical IOCS
parameters DEVICE=2311/2314/2321 and routines of the Direct Access Method with
MOUNTED=ALL are specified in the macro two references:

operand. The table contains the

information to define a DASD file for 1. Track reference - location of the
processing by physical IOCS, in a manner track within the pack or cell.

similar to the Direct Access Method.
2. Record number (ID), or Record Key
(control information) - position of
the record on the track.

92 DOS LIOCS Volume 3 SAM and DAM for DASD

The user can specify the track reference or
record ID as either an actual physical DASD
address or as an address relative to the
start of the file. If relative addressing
is used, the address provided by the user
has been converted to either a U4-byte
hexadecimal or a 10-byte decimal address.
Actual physical addresses are supplied as
8-byte DASD addresses. Further details of
the addressing systems are presented in the
following discussion of reference methods.

TRACK REFERENCE

Before issuing a read or write instruction,
the user must supply the proper track
identification in the track reference field
in main storage. (This field is identified
by the SEEKADR= parameter specified in the
DTFDA macro.) The track identification can
be expressed in one of three formats
depending on the addressing system used.

1. Actual physical addressing - the track
identification is contained in the
first seven bytes of the 8-byte track
reference field (MBBCCHHR).

2. Relative addressing (RELTYPE=HEX) -
the track identification is contained
in the first three bytes of the u4-byte
track reference field (TTTR).

3. Relative addressing (RELTYPE=DEC) -
the track identification is contained
in the first eight zoned decimal bytes
of the 10-byte track reference field
(TTTTTTTTRR) .

The track reference selects the channel and
unit on which the referenced track is
found.

RECORD ID

Reference to a particular record can be
made by supplying a specific number in the
track reference field. This number (ID)
refers to the consecutive position of the
record on the given track; that is, the
first data record on a track is number 1,
the second is number 2, etc.

The form in which the record ID is
supplied in the track reference field also
depends on the addressing system used.

1. Actual physical addressing - the
record ID is the last byte (R-byte) in
the 8-byte track reference field
(MBBCCHHR) .

2. Relative addressing (RELTYPE=HEX) -
the record ID is the last byte
(R-byte) in the U4-byte track reference
field (TTTR).

3. Relative addressing (RELTYPE=DEC) -
the record ID is the last two zoned
decimal bytes (RR) in the 10-byte
track reference field (TTTTTTTTRR).

When a READ or WRITE macro that searches
for record ID is executed, logical IOCS
refers to the track reference field to
determine which record is requested by the
program. The number in this field is
compared with the corresponding field in
the count areas of the DASD records.

When a READ ID macro is executed, IOCS
searches the specified track for the
particular record. If the record is found,
the key area (if present and defined by the
KEYLEN= parameter in the DTFDA macro) and
the data area of the record are transferred
into the main storage I/0 area. If the
corresponding record ID (R portion of the
count area on the . .track) is not found, a no
record found indicator is placed in the
user's error status indicator. The WRITE
ID operation is the same as the READ ID
except a record is written instead of read.

RECORD KEY

If the DASD records include key areas, the
records can be identified by the control
information contained in the key. Whenever
this method of referencing is used, the
problem program must supply the key of the
desired record to logical IOCS before a
READ or WRITE macro is issued. When a READ
or WRITE macro is executed, IOCS searches
the track identified by the track reference
field for the desired key. The search is
confined to one track unless multiple track
search is specified by the user. (See
Multiple Track Search.)

If the desired key is not found on the
track, IOCS posts a no record found
indication in the user's error status
indicator. When the desired key is found,
ICCS reads the data area of the DASD record
into main storage if a READ KEY macro was
issued.

When a WRITE KEY macro is executed and
the desired key is found, IOCS transfers
the data in main storage to the data area
of the DASD record. This replaces the
information previously recorded in the data
area.

Direct Access Files 93

CONVERSION OF RELATIVE ADDRESSES

When the record address supplied by the
user in the track reference field (SEEKADR)
is in relative address form, it must be
converted to an actual DASD address (CCHHR)
before it can be handled by the routines of
the DA logic modules. The Seek Overlap
subroutine in the logic module performs the
conversion.

If the user wants to express the
relative address as a 10-byte zoned decimal
number (RELTYPE=DEC), the address is packed
and converted to binary so that it takes
the hexadecimal TTTR form before conversion
to an actual address.

Conversion to an actual DASD address
starts by comparing the TTT value given in
the user-supplied relative address with the
TTT2 value of each entry in the DSKXTNT
table. (Refer to Figure 35 and to Relative
Addressing under Initialization and
Termination in this section of the manual.)
The proper DSKXTNT entry is reached when
the TTT2 value of the entry exceeds the TTT
value in the address. The M and B2 values
from the table entry are inserted into the
seek address, MBBCCHHR (Bl is always 0).
The reconversion factor is calculated by
subtracting the TTT1 value of the current
extent entry from the TTT2 value of the
previous entry. The reconversion factor is
saved for reconversion of an actual address
to a relative address if IDLOC is
specified. L

The user's TTT value is then divided, in
turn, by the three device-dependent
alteration factors; C1, C2, and H1 (refer
to Figure 38). The quotient after each
divide operation is placed in the
respective position in the seek address.
For example; the quotient (after the TTT
value is divided by the C1l alteration
factor), is inserted in the first C-byte of
the seek address, MBBCCHHR. The remainder
after each divide operation becomes the
dividend for the next divide operation.

The remainder after the final divide
operation is the H2 value in the seek
address, MBBCCHHR. The R-byte of the
actual seek address is identical to the
R-byte (or equivalent to the RR bytes if
decimal relative addressing-'is used) in the
TTTR relative address.

If a record ID is returned to the user
in relative address form after a READ or
WRITE macro instruction is executed (IDLOC
specified), reconversion is accomplished by
reversing the conversion process. Thus,
the corresponding