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information describing the internal organi-
zation and operation of the FORTRAN IV (H)
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PREFACE

This manual consists of two parts:

1. An Introduction, describing the FOR-
TRAN IV (H) compiler as a whole,
including its relationship to the
operating system. The major compo-
nents of the compiler and the rela-
tionships among them are also de-
scribed.

2. A Body, containing a description of
each component. Each component is
discussed in terms of the functions it
performs and the level of detail pro-
vided is sufficient to enable the
reader to understand the general oper-
ation of +the component. In the dis-
cussion of each function of a compo-
nent, the routines that implement that
function are identified by name. The

inclusion of the routine names pro-
vides a frame of reference for the
comments and coding supplied in the

program 1listing. The program listing
for each identified routine appears on
the microfiche card having the name of
that routine in its heading. This
section also discusses common data,
such as tables, Dblocks, and work
areas, but only to the extent required
to understand the logic of the compo-
nents. Flowcharts and routine direc-
tories are included at the end of this
section.

Following the second part are a number
of appendixes, which contain reference
material.

If more detailed information is

required, the reader should refer to the
comments, remarks, and coding in the FOR-
TRAN IV (H) program listing.
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This section contains general informa-
tion describing the purpose of the FORTRAN
IV (H) compiler, its relationship to the
operating system, its input/output data
flow, its organization, and its structure.

PURPOSE OF THE COMPILER

The IBM System/360 Operating System FOR-
TRAN IV (H) compiler transforms source
modules written in the FORTRAN IV language
into object modules that are suitable for
input to the linkage editor for subsequent
execution on the System/360. At the user's
option, the compiler produces optimized
object modules (modules that can be execut-
ed with improved efficiency).

THE COMPILER AND OPERATING SYSTEM/360

The FORTRAN IV (H) compiler is a proc-
essing program which communicates with the
System/360 Operating System control program
for inputs/output and other services. A
general description of the control program
is given in the publication IBM_ System/360
Operating System: Introduction to Control
Program Logic, Program Logic Manual.

A compilation, or a batch of compila-
tions, is requested using the job statement
(JOB), the execute statement (EXEC), and
data definition statements (DD). Alterna-
tively, cataloged procedures may be used.
A discussion of FORTRAN IV compilation and
the available cataloged procedures is given
in the publication IBM System/360 Operating
System: FORTRAN IV Programmer's Guide.

The compiler receives control from the
calling program (e.g., Jjob scheduler or
another program that calls, links to, or
attaches the compiler). Once the compiler
receives control, it communicates with the
control program through the FORTRAN system
director, a part of the compiler that
controls compiler processing. After com-
piler processing is completed, control is
returned to the operating system.

INPUT/OUTPUT DATA FLOW

The source modules to be compiled are
read in from the SYSIN data set. Compiler
output is placed on the SYSLIN, SYSPRINT,
SYSPUNCH, or SYSUT1 data set, depending on
the options specified by the FORTRAN pro-

SECTION 1: INTRODUCTION

grammer. (The SYSPRINT data set is always
required for compilation.)

The overall data flow and the data sets

used for the compilation are illustrated in
Figure 1.

COMPILER ORGANIZATION

The IBM System/360 Operating System FOR-
TRAN IV (H) compiler consists of the FOR-
TRAN system director, four logical process-
ing phases (phases 10, 15, 20, and 25), and
an error-handling phase (phase30).

Control is passed among the phases of

the compiler via the FORTRAN system direc-
tor. After each phase has been executed,
the FORTRAN system director determines the

next phase to be executed, and calls that
phase. The flow of control within the
compiler is illustrated in Chart 00.

The components of the compiler operating

together produce an cobject module from a
FORTRAN source module. The object module
is acceptable as input to the linkage

editor, which prepares object modules for
relocatable loading and execution.

The object module consists of control
dictionaries (external symbol dictionary
and relocation dictionary), text
(representing the actual machine instruc-
tions and data), and an END statement. The
external symbol dictionary (ESD) contains
the external symbols that have been defined
or referred to in the source module. The
relocation dictionary (RLD) contains infor-
mation about address constants in the
object module.

The functions
compiler are
paragraphs.

of the components of the
described in the following

FORTRAN SYSTEM DIRECTOR

The FORTRAN system director (FSD) con-
trols compiler processing. It initializes
compiler operation, calls the phases for
execution, and distributes and keeps track
of the main storage used during the compi-
lation. In addition, the FSD receives the
various input/output requests of the com-
piler phases and submits them to the con-
trol program.

Section 1: Introduction 11
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Figure 1. Input/Output Data Flow
PHASE 10 ed into three segments that perform the
following functions:
Phase 10 accepts as input (from the
SYSIN data set) the individual source e The first segment adds data to the
statements of the source module. If a information table about COMMON and
source module 1listing is requested, the EQUIVALENCE statements so that main

source statements are recorded on the
SYSPRINT data set. If the EDIT option is
selected, the source statements are record-
ed on the SYSUT1 data set, which phase 20
uses as input to produce a structured
source 1listing. Phase 10 converts each
source statement into a form wusable as
input by succeeding phases. This usable
input consists of an intermediate text
representation (in operator-operand pair
format) of each source statement. In addi-
tion, phase 10 makes entries in an informa-

tion table for the variables, constants,
literals, statement numbers, etc., that
appear in the source statements. During

this conversion process, phase 10 also
analyzes the source statements for syntac-
tical errors. If errors are encountered,
phase 10 passes to phase 30 (by making
entries in the error table) the information
needed to print the appropriate error mes-
sages.

PHASE 15

Phase 15 gathers additional information

about the source module and modifies some
intermediate text entries to facilitate
optimization by phase 20 and instruction

generation by phase 25. Phase 15 is divid-
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storage space can be allocated correct-
ly in the object module.

e The next segment translates text
entries (in operator-operand pair
format) representing arithmetic opera-

tions into a four-part form, which is
needed for optimization by phase 20 and
instruction-generation by phase 25.
This part of phase 15 also gathers
information about the source module
that is mneeded for optimization by
phase 20.

¢ The last segment of phase 15 assigns
relative addresses, and where neces-
sary, address constants to the named

variables and constants in the source
module. This segment also converts
intermediate text (in operator-operand

pair format) representing DATA state-
ments to a variable-initial value form,
which facilitates later assignment of a
constant value to a variable. In addi-
tion, this segment produces a storage
map if the MAP option is specified.

Phase 15 also passes to phase 30 the
information needed to print the appropriate
messages for the errors detected during
phase 15 processing. (This 1is done by
making entries in the error table.)



PHASE 20

Phase 20 processing depends on whether
or not optimization has been requested and,
if so, the degree of optimization desired.

If optimization has not been specified,
phase 20 assigns registers for use during
execution of the object module. However,
phase 20 does not take full advantage of
all registers and makes no effort to keep
frequently used quantities in registers to
eliminate the need for some machine
instructions.

If a moderate amount of optimization is
specified, phase 20 wuses all available
registers and keeps frequently used quanti-
ties in registers wherever possible. Phase
20 takes other measures to reduce the size
of the object module, and provides informa-
tion about operands to phase 25.

If complete optimization has been speci-
fied, phase 20 uses other techniques to
make a more efficient object module. The
net result of these procedures is to elimi-
nate unnecessary instructions and to elimi-
nate needless execution of instructions.

During processing, phase 20 records
directly on the SYSPRINT data set messages
describing any errors it detects and, if
both the EDIT option and complete optimiza-
tion are selected, produces, on the SYS-
PRINT data set, a structured source program
listing.

PHASE 25
Phase 25 produces an object module from
the combined output of the preceding phases

of the compiler.

The text information (instructions and
data resulting from the compilation) is in

a relocatable machine language form. it
may contain unresolved external symbolic
cross references (i.e., references to sym-
bols that do not appear in the source
module). The external symbol dictionary
contains the information required by the
linkage editor to resolve external symbolic
cross references, and the relocation dic-
tionary contains the information needed by
the linkage editor to relocate the text
information.

Phase 25 places the object mcdule
resulting from the compilation on the SYS-
LIN data set if the LOAD option is speci-
fied, and on the SYSPUNCH data set if the
DECK option is specified. Phase 25 also
produces an object module listing on the
SYSPRINT data set if the LIST option is
specified. Messages for any errors detect-
ed during phase 25 processing are also
recorded directly on SYSPRINT.

PHASE 30

Phase 30 is called after phase 15 proc-
essing 1is completed only if errors are
detected by phases 10 or 15. Phase 30
records on the SYSPRINT data set messages
describing the detected errors.

STRUCTURE OF THE COMPILER

The FORTRAN IV (H)
tured in

compiler 1is struc-
a planned overlay fashion, which

consists of 20 segments. Two of these
segments constitute the FORTRAN systemn
director. The 1largest of these two seg-

ments is the root segment of the planned
overlay structure. Each of the remaining
18 segments constitutes a phase or a logi-
cal portion of a phase. A detailed discus-
sion of the compiler's planned overlay
structure is given in Appendix G.

Section 1: Introduction 13



SECTION 2: DISCUSSION OF MAJOR COMPONENTS

The following paragraphs and associated
flowcharts at the end of this section
describe the major components of the FOR-
TRAN IV (H) compiler. Each component is
described to the extent necessary to
explain its function(s) and general opera-
tion.

FORTRAN SYSTEM DIRECTOR

The FORTRAN System Director (FSD) con-
trols compiler processing; its overall
logic is illustrated in Chart 01. The FSD
receives control from the job scheduler if
the compilation is defined as a job step in
an EXEC statement. The FSD may also
receive control from another program
through use of one of the system macro-
instructions (CALL, LINK, or ATTACH).

The FSD performs compiler initial-
ization, phase loading, storage
distribution (including storage inventory),
input/output request processing, compila-
tion deletion, and compiler termination.

COMPILER INITIALIZATION

The initialization of compiler process-
ing by the FSD consists of two steps:

e Parameter processing.
¢ Data field initialization.

Parameter Processing

When the FSD is given control, the
address of a parameter list is contained in
a general register. If the compiler
receives control as a result of either an
EXEC statement 1in a job step or an ATTACH
or CALL macro-instruction in another pro-
gram, the parameter 1list has a single
entry, which is a pointer to the main
storage area containing an image of the
options (e.g., SOURCE, MAP) specified for
the compilation. If the compiler receives
control as a result of a LINK macro-
instruction in another program, the param-
eter list may have a second entry, which is
a pointer to the main storage area contain-
ing substitute ddnames (i.e., ddnames that
the user wishes to substitute for the
standard ones of SYSIN, SYSPRINT, SYSPUNCH,
SYSLIN, and SYSUT1).

COMPILER OPTIONS: To determine the options
specified for the compilation and to inform
the various compiler phases of these
options, the FSD scans and analyzes the
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storage area containing their images and
sets indicators to reflect the ones speci-
fied. These indicators are placed into the
communication table (refer to Appendix A,
"Communication Table") during data field
initialization. The various compiler phas-
es have access to the communication table,
and, from the indicators contained in it,
can determine which options have been
selected for the compilation.

SUBSTITUTE DDNAMES: If the user wishes to
substitute ddnames for the standard ones,
the FSD must establish a correspondence
between the DD statements having the sub-
stitute ddnames and the DCBs (Data Control
Blocks) associated with the ddnames to be
replaced. To establish this necessary cor-
respondence, the FSD scans the storage area
containing the substitute ddnames, and
enters each such ddname into the DCBDDNM
field of the DCB associated with the stan-
dard ddname it is to replace.

Data Field Initjialization

Data field initialization is concerned
with the communication table, which is a
central gathering area used to communicate
information among the phases of the compil-
er. It contains information such as:

e User specified options.
e Pointers indicating the next available
locations within the various storage

areas.

e Pointers to the initial entries in the

various types of chains (refer to
Appendix A, "Information Table" and
Appendix B, "Intermediate Text").

e Name of the source module being com-

piled.

¢ An indication of the phase currently in
control.

The various fields of the communication
table, which are filled during a compila-
tion, must be initialized before the next
compilation. To initialize this region,
the FSD clears it and places the option
indicators into the fields reserved for
them.

PHASE LOADING

The FSD loads and passes control to each
phase of the compiler by means of a stan-



dard calling seguence. The execution of
the call causes control to be passed to the
overlay supervisor, which calls program
fetch to read in the phase. Control is
then returned to the overlay supervisor,
which branches to the phase. The phases
are called for execution in the following
sequence: phase 10, phase 15, phase 20, and
phase 25. However, if errors are detected
by phase 10 or phase 15, phase 30 is called
after the completion of phase 15 process-
ing. .

STORAGE DISTRIBUTION

Phases 10, 15, and 20 require main
storage space in which to construct the
information table (refer to Appendix A,
"Information Table") and to collect inter-
mediate text entries. These phases obtain
this storage space by submitting reguests
to the FSD (at entry point GETCOR), which
allocates the required space, if available,
and returns to the requesting phase point-
ers to both the beginning and end of the
allocated storage space. If main storage
space is not available, the FSD deletes the
compilation.

The main storage space available for
building the information table or for col-
lecting text entries is assembled into the
FSD in the form of define storage (DS)
statements. The distribution of the avail-
able storage by the FSD depends upon the
phase requesting the storage. For this
reason, the remainder of this discussion is
divided into three parts: the first relat-
ing to phase 10, the second to phase 15,
and the third to phase 20.

Phase 10 Storage

Phase 10 can use all of the available
storage space for building the information
table and for collecting text entries. At
first, the FSD presents the entire block of
available main storage space to phase 10
for use in building the information table.
At each phase 10 request for main storage
in which to collect text entries, the FSD
reallocates a portion (i.e., a sub-block)
of the storage (first allocated to the
information table) for text collection, and
returns to phase 10 either via the communi-
cation table or the storage area P10A
(depending upon the type of text to be
collected in the sub-block; refer to Appen-
dix B, "Phase 10 Intermediate Text") point-
ers to both the beginning and end of the
allocated storage space. If the sub-block
is allocated for phase 10 normal text, the
pointers are returned in the communication
table. If the sub-block is allocated for a
phase 10 text type other than normal text,
the pointers are returned via the storage
area P1l0A. After the storage has been
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allocated, the FSD adjusts the end of the
information table downward by the size of
the allocated sub-block. This process is
repeated for each phase 10 request for main
storage space in which to collect text
entries. (If the 1last information table
entry and the sub-block to be allocated for
text collection would overlap, the avail-
able storage is split, with one part being
allocated for building the information
table and the other for collecting text
entries.)

The size of each sub-block allocated for
the collection of phase 10 text entries

depends upon the type of the text entries
that are to be placed into the sub-block.
All sub-blocks allocated to contain the

same type of phase 10 text entries are of

the same size.

Sub-blocks to contain phase 10 text
entries are allocated in the order in which
requests for main storage are received.
(When phase 10 completely fills one sub-
block with text entries, it requests
another.) A request for a sub-block to
contain a particular type of text entries
may immediately follow a request for a
sub-block to contain another type of text
entries. Consequently, sub-blocks allocat-
ed to contain the same type of text entries
may be scattered throughout main storage.

The FSD must keep track of the sub-blocks
so that, at the completion of phase 10
processing, unused Or unnecessary storage

may be allocated to phase 15. The manner
in which the FSD keeps track of sub-bliocks
allocated to phase 10 is described in the
following paragraph.

Phase 10 Storage Inventory: The FSD
employs a pointer table and chains (see
Figure 2) to keep track of the sub-blocks
allocated for phase 10 text entries. If
the sub-block allocated is the first to be
used for the collection of a particular
type of phase 10 text, the FSD places a
pointer to that sub-block into the pointer
table. After the initial 1link is estab-
lished, the size of the sub-block is placed
into the sub-block itself. If a second
sub-block is allocated for the same pur-
pose, the FSD places a pointer to it into
the first word of the first sub-block
allocated for that purpose. The size of
the sub-block is then placed into the
sub-block itself. 1If a third sub-block is
allocated for the same—purpose;— the --same
procedure is followed, with a pointer to
the third sub-block being placed into the
first word of the second sub-block. Figure
2 idllustrates this concept as applied to
sub-blocks allocated to contain phase 10
normal, SF skeleton, and data text. (The
pointer field of the last sub-block of each
type is always zero.)
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FSD Pointer Table

Pointer

Pointer

Pointer

<+— End

Pointer ' Size

for normal text entries

First sub=block allocated

<

Pointer l Size

First sub-block allocated
for SF skeleton text entries

Pointer l Size

for data text entries

First sub-block allocated

for normal text entries

Pointer Size

Second sub-block allocated

Pointer Size

Second sub-block allocated
for SF skeleton text entries

for normal text entries

Pointer Size

Third sub-block allocated

Available Storage
(initially ali allocated

Pointer [ Size l

for data text entries

Second sub-block allocated

to information table)

Last sub-block allocated

0 Size

for SF skeleton text entries

Last sub-block allocated
for data text entries

0 Size

Last sub-block allocated
for normal text entries

. 0 l Size

Current Storage
Available for
Information Table

Start

*

10 for text collection.

Current end of information table storage, which may
float downward if additional storage is required by phase

Figure 2.

Phase 15 Storage

Phase 15, in collecting the text entries
that it creates, can use only those por-
tions of main storage that are (1) unused
by phase 10, and (2) occupied by phase 10
normal text entries that have been proc-
essed by phase 15. The FSD first allocates
all unused storage (if necessary) to phase

15. If this is not sufficient, the FSD
then allocates the storage occupied by
phase 10 normal text entries that have

undergone phase 15 processing.

The main storage not used by phase 10
consists of:

e The portion between the last sub-block
allocated to phase 10 for text collec-
tion and the end of the information
table.

¢ Those portions of the sub-blocks allo-
cated to phase 10 that do not contain
text entries. (The 1last sub-block
allocated to each type of phase 10 text
may not be completely filled.)

After phase 10 processing is complete,
the FSD splits the storage area between the
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Storage Inventory for Phase 10 Normal, SF Skeleton,

and Data Text

last sub-block allocated to phase 10 and
the last information table entry, allocates
one part to the information table, and
treats the other part as an unused text
storage area. The individual portions of
unused storage, excluding the portion allo-

cated to the information table, are then
chained together (see Figure 3). The first
phase 15 request for storage for text

collection is satisfied with the unused
portion between the last sub-block allocat-
ed to phase 10 and the end of the informa-
tion table. Pointers to both the beginning
and end of the storage are passed to phase
15 via the communication table. Each sub-
sequent phase 15 request for text area
storage is satisfied with an unused portion
of a phase 10 sub-block. (Sub-block por-
tions are allocated in the order in which
they are chained.) Pointers to both the
beginning and end of the allocated sub-
block portion are passed to phase 15 via
the communication table. If an additional
request is received after the last sub-
block portion is allocated, the FSD
determines the last phase 10 normal text
entry that was processed by phase 15. The
FSD then frees and allocates to phase 15
the portion of storage occupied by phase 10
normal text entries between the first such
text entry and the last entry processed by
phase 15.



Phase 15 Storage Inventory: After the
processing of PHAZ15, the second segment of
phase 15, is completed, the FSD recovers
the sub-blocks that were allocated to phase
10 normal and SF skeleton text. These
sub-blocks are chained as extensions to the
storage space
of PHAZ15 processing. The chain, which
begins in the FSD pointer table, connecting
the various available portions of storage
is scanned and when a zero pointer field is
encountered, a pointer to the first sub-
block allocated to phase 10 normal text is
placed into that field. The chain
connecting the various sub-blocks allocated
to phase 10 normal text is then scanned and
when a zero pointer field is encountered, a
pointer to the first sub-block allocated to
SF skeleton text is placed into that field.
Once the sub-blocks are chained
manner, they are available for allocation
to CORAL, the third segment of phase 15,
and to phase 20.

After the processing of CORAL is com-
pleted, the FSD likewise recovers the sub-
blocks allocated for phase 10 data text.
The chain connecting the various portions
of available storage space is scanned and
when a zero pointer field is encountered, a
pointer to the first sub-block allocated
for phase 10 data text is placed into that
field. After the sub-blocks allocated for
phase 10 data text are 1linked into the
chain as described above, they, as well as
all other portions of storage space in the

available at the completion -

in this

Phase 20 Storage

Each phase 20 request for storage space

is satisfied with a portion of storage
available at the completion of CORAL
processing. The portions of storage are

allocated to phase 20 in the order in which
they are chained. Pointers to both the
beginning and end to the storage allocated
to phase 20 for each request are placed
into the communication table.

INPUT/0OUTPUT REQUEST PROCESSING

The FSD routine IEKFCOMH receives the
input/output requests of the compiler phas-
es and submits them to BSAM (Basic Sequen-
tial Access Method) for implementation
(refer to IBM System/360 Operating System:
Sequential Access Methods, Program Logic
Manual.)

Request Format

Phase requests for input/output services
are made in the form of READ/WRITE state-
ments requiring a FORMAT statement. The
format codes that can appear in the FORMAT
statement associated with such READ/WRITE
requests are a subset of those available in
the FORTRAN IV language. The subset con-
sists of the following codes: 1Iw (output
only), Tw, Aw, wX, wH, and Zw (output
only).

End

End of information table.

chain, are available for allocation to
phase 20.
Completely Filled with Phase 10 Text Entries
I Unused Portion of Sub-block
i 0
E Unused Portion
of Sub-block
I - Pointer
| Unused Porfion of Sub-block
1 Pointer .
T
X : Unused Portion of Last Phase
Available Storage 110 Sub-block (first sub-block
: portion allocated to phase 15)
—», __Pointer
FSD first allocates this portion of unused storage to
phase 15. Sub-block portions are then allocated
in the order in which they are chained together.
Pointer ]
Information Table
Start —»

(Fixed after phase 10 processing.)

Figure 3. Chaining of Unused Text Area Main Storage
©
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Request Processing

To process input/output requests from
the compiler phases, the FSD performs a
series of operations, which are a subset of
those carried out by the IHCFCOMH/IHCFIOSH
combination (refer to Appendix E) to imple-
ment sequential READ/WRITE statements
requiring a format.

DELETION OF A COMPILATION

The FSD deletes a compilation if either
of the following occurs:

e An erxror of error level code 16 (refer
to the publication IBM System/360 Oper-—
ating System: FORTRAN IV Programmer's
Guide) is detected during the execution
of a processing phase.

» The value of the error 1level code
returned from phase 30 is 8 and the
LOAD option has not been specified.

In the former case, the phase
the error passes control to the FSD at
entry point SYSDIR. If the error was
detected by phase 10, the FSD deletes the
compilation by reading records (without
processing them) until the END statement is
encountered. It then initializes the com-
piler for the next compilation. If the
error was encountered in a phase other than
phase 10, the FSD simply initializes the
compiler for the next compilation.

detecting

In the latter case, phase 30 returns
control to the FSD at the next sequential
instruction. If the error 1level code
passed to the FSD is 8 and the LOAD option
has not been specified, the FSD initializes
the compiler for the next compilation.

Note: Phase 25 returns an error level code
of 8 to the FSD if errors are detected
during the translation of FORMAT state-
ments. However, in this case, the FSD does
not delete the compilation if the LOAD
option has not been specified.

COMPILER TERMINATION

The FSD terminates compiler processing
when an end-of-file is encountered in the

input data stream or when a permanent
input/output error 1is encountered. 1f,
after the deletion of a compilation or

after a source module has been completely
compiled, the first record read by phase 10
from the SYSIN data set contains an end-of-
file indicator, control is passed to the
FSD (at the entry point ENDFILE), which
terminates compiler processing by returning
control to the operating system. If a
permanent error 1is encountered during the
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servicing of an input/output request of a

phase, control is passed to the FsSD (at
entry point IBCOMRTN), which writes a
message stating that both the compilation
and job step are deleted. The FSD then
returns control to the operating system.
In either of the above cases, the FSD

passes to the operating system as a condi-

tion code the value of the highest error
level code encountered during compiler
processing. The value of the code is used

to determine whether
step is to be performed.

or not the next job

PHASE 10

Phase 10 converts each FORTRAN source
statement into usable input to subsequent
phases of the compiler; its overall 1logic
is illustrated in Chart 03. Phase 10
conversion produces an intermediate text
representation of the source statement
and/or detailed information describing the
variables, constants, 1literals, statement
numbers, data set reference numbers, etc.,
appearing in the source statement. During
conversion, the source statement is ana-
lyzed for syntactical errors.
intermediate text is a
internal representation (i.e.,
internal to the compiler) of a source
statement. It is developed by scanning the
source statement from left to right and by
constructing operator-operand pairs. In
this context, operator refers to such ele-
ments as commas, parentheses, and slashes,
as well as to arithmetic, relational, and
logical operators. Operand refers to such
elements as variables, constants, literals,
statement numbers, and data set reference
numbers. An operator-operand pair 1is a
text entry, and all text entries for the
operator-operand pairs of a source state-
ment are the intermediate text representa-
tion of that statement.

The
defined

strictly

of intermediate
They are:
and state-

There are five types
text developed by phase 10.
normal, data, namelist, format,
ment function (SF) skeleton.

e Normal text is the intermediate text
representation of source statements
other than DATA, NAMELIST, FORMAT, and
statement functions.

e Data text 1is the intermediate text
representation of DATA statements and
initialization values in type state-
ments.

e Namelist text is the intermediate text
representation of NAMELIST statements.

e Format text is the intermediate text
representation of FORMAT statements.



¢ SF skeleton text is the intermediate
text representation of statement func-
tions using sequence numbers as oper-—
ands of the intermediate text entries.
The sequence numbers replace the dummy
arguments of the statement functions.
This type of text is, 1in effect, a
"skeleton" macro.

The various text types are discussed in
detail in Appendix B, "Intermediate Text."

The detailed information describing
operands includes such facts as whether a
variable is dimensioned (i.e., an array)
and whether the elements of an array are
real, integer, etc. Such information is
entered into the information table.

The information table consists of five
components : dictionary, statement
number/array table, common table, literal
table, and branch table.

e The dictionary contains information
describing the constants and variables
of the source module.

e The statement number/array table con-
tains information describing the state-
ment numbers and arrays of the source
module.

s The common table contains information
describing COMMON and EQUIVALENCE dec-
larations.

e The 1literal table contains information
describing the literals of the - source
module.

¢ The branch_ _table contains information
describing statement numbers appearing
in computed GO TO statements.

A detailed discussion of the information
table is given in Appendix A, "Information
Table."

informa-
other in the

The intermediate text and the
tion table complement each
actual code generation by the subsequent
phases. The intermediate text indicates
what operations are to be carried out on
what operands; the information table pro-
vides the detailed information describing
the operands that are to be processed.

SOURCE STATEMENT PROCESSING

To process source statements, each
record (one card image) of the source
module is first read into an input buffer
by a preparatory subroutine (GETCD). If a
source module 1listing is requested, the
record 1is recorded on an output data set
(SYSPRINT). If both the EDIT option and
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complete optimization are selected, the
record and some control information used by
phase 20 to produce a structured source
listing are recorded on the SYSUT1 data
set. Records are moved to an intermediate
buffer until a complete source statement
resides in that buffer. Unnecessary blanks
are eliminated from the source statement,
and the statement is assigned a classifica-
tion code. A dispatcher subroutine
(DSPTCH) determines from the code which
subroutine is to continue processing the
source statement. Control is then passed
to that L subroutine, which converts the
source statement to its intermediate text
representation and/or constructs informa-
tion table entries describing its operands.
After the entire source statement has been
processed, the next is read and processed
as described above. The recognition of the
END statement causes phase 10 to complete
its processing and return control to the
FSD, which calls phase 15 for execution.

The functions of phase 10 are performed
by five groups of subroutines:

Dispatcher subroutine
Preparatory subroutine
Keyword subroutines
Arithmetic subroutines
Utility subroutines

Dispatcher Subroutine

The dispatcher subroutine (DSPTCH) con-
trols phase 10 processing. Upon receiving
control from the FSD, the DSPTCH subroutine
initializes phase 10 processing and then
calls the preparatory subroutine (GETCD) to
read and prepare the first source state-
ment. After the statement 1s prepared,
control is returned to DSPTCH, which deter-
mines if a statement number is associated
with the source statement being processed.
If there is a statement number, the DSPTCH
subroutine constructs a statement number
entry (refer to Appendix A, "Information
Table") for the statement number. A text
entry for the statement number is also
created. The DSPTCH subroutine then deter-
mines, from the code assigned to the source
statement (refer to "Preparatory
Subroutine"), which subroutine (either key-

word or arithmetic) is to continue the
processing of the statement, and passes
control to that subroutine. When the

source statement is completely processed,
control is returned to the DSPTCH subrou-
tine, which calls the preparatory subrou-
tine to read and prepare the next source
statement.

Preparatory Subroutine

The preparatory subroutine (GETCD) reads
each source statement, records it on the
SYSPRINT data set if the SOURCE option is
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selected, and on the SYSUT1 data set if the
EDIT option and complete optimization are
selected, packs and classifies it, and
assigns it an intermal statement number
(ISN) 2, Packing eliminates unnecessary
blanks, which may precede the first charac-
ter, follow the 1last character, or be
imbedded within the source statement.
Classifying assigns a code to each type of
source statement. The code indicates to
the DSPTCH subroutine which subroutine is
to continue processing the source state-
ment. A description of the c¢lassifying
process, along with figures illustrating
the two tables (the keyword pointer table
and the keyword table) used in this proc-
ess, is given in Appendix A,
"Classification Tables." The ISN assigned
to the source statement is an internal
sequence number used to identify the source
statement. The source statement, after
being prepared, resides in the storage area
NCDIN in the format illustrated in Figure
4,

I 1
|Pointer to first character of (1 word) |
|packed source statement beyond |
| keyword® |
[ 5|
r 1
| Internal statement number (1 word) |
L i ]
¥ 1
| Statement number indicator (#0 (1 word) |
|if present; 0 if not present) {
[N 1
T 1
|Classification code (1 word) |
t 4
{ 1
| statement number (5 words) |
I8 4
r K]
| Packed source statement (n words) |
I8 4
L} 1
|Group mark2 (1 word)|
[R J
L} 1
|1For arithmetic statements and statement|
| functions, this field points to the first|
|character of the packed statement. |
|2End of statement marker. |
Lt J

Figure 4. Format of Prepared Source State-

ment

Keyword Subroutines

A keyword subroutine exists for each
keyword source statement. A keyword source
statement is any permissible FORTRAN source
statement other than an arithmetic state-
ment or a statement function. The function
of each keyword subroutine is to convert
its associated keyword source statement (in
NCDIN) into input wusable by subsequent

ilogical IF statements are assigned two
internal statement numbers. The IF part is
given the first number and the "trailing"®
statement is given the next.
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phases of the compiler. These subroutines
make use of the utility subroutines and, at

times, the arithmetic subroutines in per-
forming their functions. To simplify the
discussion of these subroutines, they are

divided into two groups:

1. Those that construct only information
table entries.

2. Those that construct information table
entries and develop intermediate text
representations.

Note: One keyword subroutine, namely that
which processes the IMPLICIT statement, is
not assigned to either of the above stated
groups. The processing performed by this
subroutine (XIMPC) is somewhat specialized.
The function of this subroutine is defined
in Table 8.

Table Entry Subroutines: Only four keyword
subroutines belong to this group (refer to
Table 8). Each is associated with a COM-
MON, DIMENSION, EQUIVALENCE, or EXTERNAL
keyword statement.

The processing performed by these sub-
routines is similar. Each scans its asso-
ciated statement (in NCDIN) in a left-to-
right fashion and constructs appropriate
information table entries for each of the
operands of the statement. The types of
information table entries that can be
constructed by these subroutines are:

e Dictionary entries for variables and
external names.
e Common block name entries for
block names.

common

e Equivalence group
lence groups.

entries for equiva-

e Equivalence variable entries for the
variables in an equivalence group.

* Dimension entries for arrays.

The formats of these entries are given
in Appendix A, "Information Table."
Table entry and Text Subroutines: The
keyword subroutines, other than those that

are grouped as
belong to this

table entry subroutines,
group (refer to Table 8).

Each of these subroutines converts its
associated statement by developing an
intermediate text representation of the

statement, which consists of text entries
in operator-operand pair format, and con-
structing information table entries for the
operands of the statement. The processing
performed by these subroutines is similar
and is described in the following para-
graphs.



Upon receiving control from the DSPTCH
subroutine, the keyword subroutine asso-
ciated with the keyword statement being
processed places a special operator into a
text entry work area. This operator is
referred to as a primary adjective code and

defines the type (e.g., DO,ASSIGN) of the
statement. A left-to-right scan of the
source statement is then initiated. The

first operand 1is obtained, an information
table entry is constructed for the operand
and entered into the information table
(only if that operand was not previously
entered), and a pointer to the entry's
location in that table is placed into the
text entry work area. The mode (e.g.,
integer, real) and type (e.g., negative
constant, array) of the operand are then
placed into the work area. The text entry
thus developed 1is placed into the next
available location in the sub-block allo-
cated for text entries of the type being
created.

Scanning is resumed and the next opera-
tor is obtained and placed into the text
entry work area. The next operand is then
obtained, an information table entry is
constructed for the operand and entered
into the information table (again, only if
that operand was not previously entered),
and a pointer to the entry's locatiomn is
placed into the text entry work area. The
mode and type of the operand are placed
into the work area. The text entry is then
placed into the next available location in
the sub-block allocated for text entries of
the type being created.

This process is terminated upon recogni-
tion of the end of the statement, which is
marked by a special text entry. The spe-
cial text entry contains an end mark opera-
tor and the ISN of the source statement as
an operand.

Note: Certain keywork subroutines in this
group, namely those that process statements
that can contain an arithmetic expression
(e.g., IF and CALL statements) and those
that process statements that contain I/0
list items (e.g., READ/WRITE statements),
pass control to the arithmetic subroutines
to complete the processing of their asso-
ciated keyword statements.

Arithmetic Subroutines

The arithmetic subroutines (refer to
Table 8) receive control from the DSPTCH
subroutine, or from various keyword subrou-
tines, and make use of the utility subrou-
tines in performing their functions, which
are to:

Section 2:

e Process arithmetic statements.

e Process statement functions.

e Complete the processing of certain key-
word statements (READ, WRITE, CALL, and
IF.)

describe the
subroutines

The following paragraphs
processing of the arithmetic
according to their functions.

Arithmetic Statement Processing:
essing an arithmetic statement, the arith-
metic subroutines develop an intermediate
text representation of the statement, and
construct information table entries for its
operands. These subroutines accomplish
this by following a procedure similar to
that described for keyword (table entry and
text) subroutines. ‘

In proc-

If one operator is adjacent to another,
the first operator does not have an asso-
ciated operand. In the example A=B(I)+C,
the operator + has wvariable C as its
associated operand, whereas the operator )
has no associated operand. If an operator
has no associated operand, a zero (null)
operand is assumed.

Statement Function Processing: In convert-
ing a statement function to usable input to
subsequent phases of the compiler, the
arithmetic subroutines develop an inter-
mediate text representation of the state-
ment function wusing seguence numbers as
replacements for dummy arguments. These
subroutines also construct information
table entries for those operands that
appear to the right of the equal sign and
that do not correspond to dummy arguments.
The following paragraphs describe the proc-
essing of a statement function by the
arithmetic subroutines.

When processing a statement function,
the arithmetic subroutines:

* Scan the portion of the statement func-
tion to the left of the equal sign,
obtain each dummy argument, assign each
dummy argument a seguence number (in
ascending order), and save the dummy
arguments and their associated sequence
numbers for subsequent use.

¢ Scan the portion of the statement func-
tion to the right of the equal sign and
obtain the first (or next) operand.

¢ Determine if the operand corresponds to
a dummy argument. If it does corre-
spond, its associatea sequence number
is placed into the text entry work
area. If it does not correspond, a
dictionary entry for the operand is
constructed and entered into the infor-
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mation table, and a pointer to the
entry's location is placed into the
text entry work area. (An opening
parenthesis 1is used as the operator of
the first text entry developed for each
statement function and a closing paren-
thesis is used as the operator of the
last text entry developed for each
statement function.)

e Place the text entry into the next
available 1location in the sub-block
allocated for SF skeleton text.

e Resume scanning, obtain the next opera-
tor, and place it into the text entry
work area.

¢ Obtain the operand to the right of this
operator and process it as described

above.
Keyword Statement Completion: In addition
to processing arithmetic statements and

statement functions, the arithmetic subrou-
tines also complete the processing of key-
word statements that may contain arithmetic
expressions or that contain I/0 list items.
The keyword subroutine associated with each
such keyword statement performs the initial
processing of the statement, but passes
control to the arithmetic subroutines at
the first possible occurrence of an arith-
metic expression or an I/0 list item. (For
example, the keyword subroutine that proc-
esses CALL statements passes control to the
arithmetic subroutines after it has proc-
essed the first opening parenthesis of the
CALL, because the argument that follows
this parenthesis may be in the form of an
arithmetic expression.) The arithmetic
subroutines complete the processing of
these keyword statements in the normal
manner. That is, they develop text entries
for the remaining operator-operand pairs
and construct information table entries for
the remaining operands.

Utility Subroutines

The wutility subroutines (refer to Table
8) aid the keyword, arithmetic, and DSPTCH
subroutines in performing their functions.
The utility subroutines are divided into
the following groups:

Entry placement subroutines.
Text generation subroutines.
Collection subroutines.
Conversion subroutines.

Entry Placement Subroutines: The utility
subroutines in this group place the various
types of entries constructed by the key-
word, arithmetic, and DSPTCH subroutines
into the tables or text areas (i.e.,
sub-blocks) reserved for them.
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Text Generation Subroutines: The utility
subroutines in this group generate text
entries (supplementary to those developed
by the keyword and arithmetic subroutines)
that:

e Control the execution of implied DO's
appearing in I/0 statements.

e Increment DO indexes and test them

against their maximum values.
e Signify the end of a source statement.
Collection Subroutines: These utility sub-
routines perform such functions as gather-
ing the next group of characters (i.e., a
string of characters bounded by delimiters)
in the source statement being processed,
and aligning variable names on a word
boundary for comparison to other variable
names.

Conversion Subroutines: These utility sub-
routines convert integer, real, and complex
constants to their binary equivalents and,
if requested, verify that a converted con-
stant is of integer mode.

PHASE 15

Before phase 15 gains control, phase 10
has read the source statements, built the
information +table, and restructured the
source statements into operator-operand
pairs. When given control, phase 15 proc-
esses common and equivalence entries in the
common table, translates the text of arith-
metic expressions, gathers information
about branches and variables, converts
phase 10 data text to a mnew text format,
assigns relative addresses to constants and
variables, and generates address constants
when needed, to serve as address referen-
ces. Thus, phase 15 modifies and adds to
the information table and translates phase
10 normal and data text to their phase 15
formats.

Phase 15 is divided into three overlay
segments, STALL, PHAZ15, and CORAL. Chart
04 shows the overall logic of the phase.

STALL processes both common and equiva-
lence entries in the information table. It
finds the maximum size of each common
block, assigns locations to wvariables in
each common block, and plans the storing of
operands equated by EQUIVALENCE statements.

It also determines the head of arrays
referred to in EQUIVALENCE statements.
(The head is the 1lowest-valued starting

address of +two or more arrays after their
repositioning has been planned by equiva-
lence processing.) CORAL 1later uses the
head during the computation of relative
addresses for variables and arrays.



PHAZ15 translates and reorders the text
entries for arithmetic expressions from the
operator-operand format of phase 10 to a
four-part form suitable for phase 20 proc-
essing. The new order permits phase 25 to
generate machine instructions in the cor-
rect sequence. PHAZ15 blocks the text and
collects information describing the blocks.
The information, needed during phase 20
optimization, includes tables on branching
locations, and on constant and variable
usage.

CORAL, the last overlay segment of phase
15, performs five functions. It first

converts phase 10 data text to a form more
easlly evaluated by phase 25. CORAL then
assigns relative addresses to all varia-

bles, constants, and arrays. During one
phase of relative address assignment, CORAL
rechains phase 15 data text in order to
simplify the generation of text card images
by phase 25. CORAL also assigns address
constants, when needed, to serve as address
references for all operands. Lastly, as a
user option, CORAL prints a storage map of
named items (variables, arrays, and exter-
nal references) as recorded in the informa-
tion table.

STALL PROCESSING

STALL first rechains entries for varia-
bles in the dictionary by sorting alphabet-
ically the entries within each chain. The
rechaining frees storage in each entry for
later use by CORAL.

As a second function, STALL checks the
statement-number section of the information
table, noting undefined statement numbers.

STALL then processes common entries in
the information table. It computes the
offset (displacement) of each variable in a
common block from the start of the common
block. The offsets are subsequently used
to assign relative addresses to common
variables. The offsets are recorded in the
dictionary entries for the variables. The
total size of each common block is aiso
calculated. The block size is used by
phase 25 to generate a control section for
the common block.

Lastly, STALL processes equivalence
entries in the information table. The
processing plans the placing of the oper-
ands of each equivalence group at the same
location in storage. During the processing
STALL recognizes a variable that must be
made equivalent to previously processed
variables in common.

Chart 05 shows the overall processing of
STALL.

Section 2:

Rechaining Entries for Variables

The STALL subroutine DCTSRT begins by
rechaining entries for variables 1in the
information table. Each dictionary entry
created by phase 10 contains two chain
address fields (refer to Appendix A,
"Information Table Components"). DCTSRT
frees one of the chain address fields for
later use by CORAL. It does this by
sorting alphabetically within each length
grouping and then rechaining the entries.
After the entries have been rechained, the
dictionary consists of one chain for each

variable-name length. The chains of
entries describing symbols of 3 or less
characters are arranged in descending
alphabetic oxrder, while the chains of

entries describing symbols of #4 or more
characters are arranged in ascending alpha-

betic order. As an integral part of
rechaining, DCTSRT also constructs dic-
tionary entries for the imaginary parts of

complex variables and constants.

Checking for Undefined Statement Numbers

After subroutine DCTSRT has rechained
the dictionary, subroutine LABSCN checks
for undefined statement numbers. This
action is taken to insure that every state-
ment number that is referred to is also
defined. LABSCN scans the chain of state-
ment number entries in the information
table (refer to Appendix A, "Statement
Number/ Array Table") and examines a bit in
the byte A usage field of each such entry.
This bit 1is set by phase 10 to indicate
whether or not it encountered a definition
of that statement number. If the bit
indicates that the statement number is not
defined, LABSCN places an entry in the
error table for later processing by phase
30.

Processing of Common Entries in the
Information Table

After the statement numbers have been
checked, subroutine COMN processes common
entries in the information table. It com-

putes the offsets (displacements) of varia-
bles and arrays from the start of the
common block containing them and calculates
the total size in bytes of each common
block. COMN records the offsets in the
dictionary entries for the variables and
the block size in the common table entry
for the name of the common block (refer to
Appendix A, "Common Table"). It also plac-
es a pointer to the common table entry for
the block name in the dictionary entry for
each variable or array in that common
block.
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Processing of Equivalence Entries in the
Information Table

Subroutine EQU next gathers additional
information about equivalence groups and
the variables in them. It computes a group
head? and the offset (displacement) of each
variable in the group from this head. It
records this information in the common
table entries for the group and for the
variables, respectively (refer to Appendix
A, "Common Table"). EQU identifies and
flags in their dictionary entries variables
and arrays put into common via the EQUIVA-
LENCE statement. It also error-checks the
variables and arrays to verify that the
associated common block has not been im-
properly extended because of the equiva-
lence declaration. If a common block is
legitimately enlarged by an equivalence
operation, subroutine EQU recomputes the
size of the common block and enters the
size into the common table entry for the
name of the common block.

If the name of a variable or array
appears in more than one equivalence group,
BEQU recognizes the combination of groups
and modifies the dictionary entries for the
variables to indicate the equivalence oper-
ations. EQU checks arrays appearing in
more than one equivalence group to verify
that conflicting relationships have not
been established for the array elements.

During the processing of both common and
equivalence information, subroutine TESTBN
is given control to check that variables
and arrays fall on boundaries appropriate
to their defined types. If a variable or
array is improperly aligned, TESTBN places
an entry in the error table for processing
by phase 30.

PHAZ15 PROCESSING

The functions of PHAZ15 are text block-
ing, arithmetic translation, information
gathering, and reordering of the statement
number chain. Information gathering occurs
only if optimization (either intermediate
or complete) has been selected; it takes
place concurrently with text blocking and
arithmetic translation during the same scan
of intermediate text. Reordering of the
statement number chain occurs after PHAZ15
has completed the blocking, arithmetic
translation, and information gathering.

PHAZ15 divides intermediate text into
blocks for convenience in obtaining infor-

iThe head of a equivalence group is that
variable in the group from which all other
variables or arrays in the group can be
addresses by a positive displacement.
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mation from the text.

Each block begins
with a statement number definition and ends
with the text entry just preceding the next
statement number definition. PHAZ15
records information describing a text block
in a statement number text entry and in an
information table statement number entry.

During the same scan of text in which
blocking occurs, PHAZ15 translates arith-
metic expressions. The conversion is from
the operation-operand pairs of phase 10 to
a four part format (phase 15 text). The
new format follows the sequence in which
algebraic operations are performed. In
general, phase 15 text is in the same order
in which phase 25 will generate machine
instructions.=2 PHAZ15 copies, unchanged
into the text area, phase 10 text that does
not require arithmetic translation or other
special handling.

During the building of phase 15 text for
a given block (if complete optimization has
been selected), PHAZ15 constructs tables of
information on the use of constants and
variables in that text block. It stores
information on variables and constants that
are used within a block, and variables that
are defined within a block. PHAZ15 also
gathers information on variables not first
used and then defined. The foregoing usage
information is recorded in the statement
number text for each block for later use by
phase 20.

Concurrently with text blocking, arith-
metic translation, and gathering of
constant/variable usage information, PHAZ15
discovers branching text entries and
records the branching or connection infor-
mation. This information, consisting ini-
tially of a table of branches from each
text block (forward connections), is stored
in a special array. Branching (connection)
information is used during phase 20 optimi-
zation.

After PHAZ15 has completed the previous-
ly mentioned processing, it reorders the
statement number chain of the information
table. The original order of statement
numbers, as phase 10 recorded them, was in
order of their occurrence in source state-
ments as either definitions? or operands.
The new sequence after phase 15 reordering
is according to source statement occurrence
as definitions only. The new order is
established to facilitate phase 20 process-
ing.

2If optimization is selected, phase 20 may
further manipulate the phase 15 text.

3A statement number occurs as a definition
when that statement number appears to the
left of a source statement.



Lastly, PHAZ15 acquires a table of back-
ward connection information consisting of
branches into each statement number, or
text block. - PHAZ15 derives this informa-
tion from the forward connection informa-
tion it previously obtained. Thus, connec-
tion information is of two types, forward
and backward. PHAZ15 records a table of
branches from each text block and a table
of branches into each text block. Connec-
tion information of both types is used
during phase 20 optimization.

Charts 06, 07, and 08 depict the flow of
control during PHAZ15 execution.

Text Blocking

During its scan and conversion of phase
10 text, PHAZ15 sections the module into
text blocks, which are the basic unit upon
which the optimization and register assign-
ment processes of phase 20 operate. A text
block is a series of text entries that
begin with the text entry for a statement
number and end with the text entry that
immediately precedes the text entry for the
next statement number. (The statement num-
ber may be either programmer defined or
compiler generated.) When PHAZ1S encoun-
‘ters a statement number definition (i.e.,
the phase 10 text entry for a statement
number) it begins a text block. It does
this by constructing a statement number
text entry (refer to Appendix B, "Phase 15
Intermediate Text Modifications™). PHAZ15
also places a pointer to the statement
number text entry into the statement number
entry (information table) for the associat-
ed statement number.

PHAZ15 resumes its scan and converts the
phase 10 text entries following the state-
ment number definition to their phase 15
formats. After each phase 15 text entry is
formed and chained into text, PHAZ15 places
a pointer to that text entry into the
BLKEND field of the previously constructed
statement number text entry. This field is
thereby continually updated to point to the
last phase 15 text entry.

When the next statement number defini-
tion is encountered, PHAZ15 begins the next
text block in the previously described
manner. A pointer to the text entry that
ends the preceding block has already been
recorded - in the BLKEND field of the state-
ment number text entry that begins that
block. Thus, the boundaries of a text
block are recorded in two places: ‘the
beginning of the block is recorded in the
associated statement number entry
(information table); the end of the block
is recorded in the BLKEND field of the
associated statement number text entry.
All text blocks in the module are identi-
fied in this manner.

Section 2:

Note: For each ENTRY statement in the
source nmodule, phase 10 generates a state-
ment number text entry and places it into
text preceding the text for the ENTRY
statement. Phase 10 also ensures that the
statement following an ENTRY statement has
a statement number; if a statement number
is not provided by the programmer, phase 10
generates one. The text entries for each
ENTRY statement therefore form a separate
text block, which is referred to as an
entry block.

Figure 5 illustrates the concept of text
blocking. In the fiqure, two text blocks
are shown: one beginning with statement
number 10; the other with statement number
20. The statement number entry for state-
ment number 10 containg a pointer to the
statement number text entry for statement
number 10, which contains a pointer to the
text entry that immediately precedes the
statement number text entry for statement
number 20. Similar pointers exist for the
text block starting with statement number
20.

Arithmetic Translation

Arithmetic translation is the reordering
of arithmetic expressions in phase 10 text
format to agree with the order in which
algebraic operations are performed. Arith-
metic expressions may exist in IF, CALL,
ASSIGN, and GOTO statements and I/0 data-
list, as well as in arithmetic statements
and statement functions.

When PHAZ1S5 detects a primary adjective
code for a statement that needs arithmetic
translation, it passes control to the
arithmetic translator (ALTRAN). If the
phase 10 text for the statement does not
require any type of special handling,
ALTRAN reorders it into a series of phase
15 text entries that reflect the sequence
in which arithmetic operations are to be
carried out. During the reordering proc-
ess, ALTRAN calls various supporting rou-
tines that perform checking and resolution
(e.g., the resolution of operations involv-
ing operands of different modes) functions.

Throughout the reordering process,
ALTRAN 1is checking for text that requires
special handling before it can be placed
into the phase 15 text area. (Special
handling is required for complex expres-
sions, terms involving unary minuses (e.g.,
A=-B), subscript expressions, . statement
function references, etc.) I1f special text
processing is required, ALTRAN calls one or
more subroutines to perform the required
processing.

During reordering and, if required, spe-
cial handling, subroutine GENER is called
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Statement Number Entry for
Statement Number 10
| ]

L[ |

PHASE 15 TEXT

Statement Number Entry for
Statement Number 20

LDF*

- 10

[ = |

LDF*

* LDF is the mnemonic for the statement number operator

LDF*

Figure 5. Text Blocking

to format the phase 15 text entries and to
place them into the text area.

The
is

REORDERING ARITHMETIC EXPRESSIONS:
reordering of arithmetic expressions
done by means of a pushdown table. This
table is a last-in, first-out list. After
the table is initialized (i.e., the first
operator-operand pair of an arithmetic
expression is placed into the table), the
arithmetic translator (ALTRAN) compares the
operator of the next operator-operand pair
(term) in text with the operator of the
pair at the top of the pushdown table. As
a result of each comparison, either a term
is transferred from phase 10 text to the
table, or an operator and two operands
(triplet) are brought from the table to the
phase 15 text area, eliminating the top
term in the pushdown table.

The comparison made to determine whether
a term is to be placed into the pushdown or
whether a triplet is to be taken from the
pushdown is always between the operator of
a term in phase 10 text and the operator of
the top term in the table. Each comparison
is made on the basis of relative forcing
strength. A forcing strength is a value
assigned to an operator that determines
when that operator and its associatea oper-
ands are to be placed in phase 15 text.
The relative values of forcing strengths
reflect the hierarchy of algebraic opera-
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tions. The forcing strengths for the
ious operators appear in Table 1.

var-

Table 1. Operators and Forcing Strengths
r T T T 1
| | Forcing ]
| Operator | Strength |
v oo 1
|End Mark | 1 ]
I= 1 2 |
1 | 3 |
B | 6 |
| -OR. | 7 |
| -AND. | 8 |
| -NOT. | 9 ]
|.EQ., .NE., | 10 |
{.GT., .LT., | |
|-GE., .LE. i [
|+, -, minus( | 11 |
| *, 7/ i 12 ]
|+ | 13 |
| (£ —-1left parenthesis after | 14 |
| a function name | |
| | |
| (s --1left parenthesis after | 15 |
| an array name | |
I ( | 16 |
L —_— 1 1
When the arithmetic translator (ALTRAN)

encounters the first operator-operand pair
(phase 10 text entry) of a statement, the
pushdown table is empty. Since the trans-
lator cannot yet make a comparison between
text entry and table element, it enters the



first text entry in the top position of the
table. The translator then compares the
forcing strength of the operator of the
next text entry with that of the table
element. If the strength of the text
operator is greater than that of the top
(and only) table element, the text entry
(operator-operand pair) becomes the top
element of the table. The original top
element is effectively "pushed down" to the
next lower position. In Figure 6, the
number-1 section of the drawing shows the
pushdown table at this time.

The operator of the next text entry
(operator C--operand C at sectiomn 2) is
compared with the top table element

(operator B--operand B at section 1) in a
similar manner.

When a comparison of forcing strengths
indicates that the strength of the text
operator (operator CC, section 2), is less
than or equal to that of the top table
element (operator B), the table element is
said to be "forced." The forced operator
(operator B) is placed in the new phase-15
text entry (section 3 of the figure) with
its operand (operand B) and the operand of
the next lower table entry (operand BA).
Note that ALTRAN has generated a new oper-
and t (see section 3) called a "temporary."
A temporary is a compiler-generated operand
in which a preliminary result may be held
during object-module execution.® With oper-
ator B, operand B, and operand A (a
triplet) removed from the pushdown table,
the previously entered operator-cperand
pair (operator A, section 1) now becomes
the top element of the table (section 4).

1A given temporary may be eliminated by
phase 20 during optimization.

ALTRAN assigns .the previously generated
temporary t as the operand of this pair.
This temporary represents the previous
operation (operator B--operand A--operand
B).

Comparisons and text-to-table
continue, a

exchanges
higher strength text operator

"pushing" a phase 10 text entry into the
tabie and a lower strength text operator
"forcing" the top table operator and its
operands (triplet) from the table. 1In each

case, the forced table items become the new
phase 15 text entry. An exception to the
general rule is a left parenthesis, which
has the highest forcing strength. Opera-
tors following the left parenthesis can be
forced from the table only by a right
parenthesis, although the intervening oper-
ators (between the parentheses) are of
lower forcing value. When the translator
reaches an end mark in text, its forcing
strength of 1 forces all remaining elements
from the table.

SPECIAL PROCESSING OF ARITHMETIC EXPRES-
SIONS: As stated before, arithmetic trans-
lation involves reordering a group of phase
10 text entries to produce a new group of
phase 15 text entries representing the same
source statement. Certain types of
entries, however, need special handling
(for example, subscripts and functions).
When it has been determined that special
handling is needed, control is passed to
one oOr more other subroutines (refer to
Chart 07) that perform the desired process-
ing.

The following expressions and terms need
special handling before they are placed in
phase 15 text: complex expressions, terms
involving a unary minus, terms involving
powers, commutative expressions, subscript

1. Text in Pushdown Table 2. Phase 10 Text Entries
Operator Operand Operator Operand
Top Element OpB Oprnd B OpC Oprnd C Current phase 10 text entry
Op A Oprnd A Op D Oprnd D Next phase 10 text entry

4. New Top Element of Pushdown

3. 'New Phase 15 Text Entry

Op A t Op B

t Oprnd A Oprnd B

Operator

NOTE: A phase 15 text entry having an arithmetic operator may be envisioned as

Operand 1 Operand 2 Operand 3

operand 1 = operand 2 - operator - operand 3, where the equal sign is implied.

Figure 6.

Section 2:

Text Reordering Via the Pushdown Table
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expressions, routine or subprogram referen-

ces, statement function zreferences, and
expressions involved in logical IF state-
ments.

Complex Expressions: A complex expression
is converted into two expressions, a real

expression and an imaginary one. For real
elements in the expression, complex tempo-
raries are generated with zero in the
imaginary part and the real element in the
real part. For example, the complex
expression B + C + 25. is treated as:

] B + C +  25. |
| real real real |
b--- i
i B + C + 0. |
| imag imag imag |
L J

An expression is not treated as complex
if the "result" operand (left of the equal
sign in the source statement) is real. In
this case, the translator places only the
real part of the expression in phase 15
text. But if a complex multiplication,
division, or exponentiation is involved in
the expression, the real and imaginary
parts will appear in phase 15 text, but
only the real part of the result will be
used at execution time.

Terms Containing a Unary Minus: In terms
that contain unary minuses, the unary min-
uses are combined with additive operators
(+,-) to reduce the number of operators.
This combining, done by subroutines UNARY
and SWITCH, may result in reversed opera-
tors or operands or both in phase 15 text.
For example, -(B-C) becomes C-B, and A+(-B)
becomes A-B. This process reduces the
number of machine instructions that phase
25 must generate.

Operations Involving Powers: Several kinds
of special handling are provided by subrou-
tines UNARY and EXPON for operations
involving powers. Multiplications by pow-
ers of two are converted to left shift
operations. A constant integer power of
two raised to a constant integer power is
converted to the equivalent 1left shift
operation. Lastly, a constant or variable
raised to a constant integer power between
-6 and +6 1is converted to a series of
multiplications (and a division into one,
if necessary). This handling requires less
execution time than using an exponentiation
subroutine.

Commutative Operations: If an operation is
commutative (either operand can be operated
upon, such as in addition or
multiplication), the two operands are reorxr-
dered to agree with their absolute loca-
tions in the dictionary.
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Subscripts: Subroutines SBGLUT, SUBADD,
SUBMLT, and SUBSCR perform subscript proc-
essing. Subscripted items are processed
one at a time throughout the subscript. If
the subscripted item itself is an expres-
sion, it is first processed via the trans-

lator. Text entries are then generated to
multiply the subscript variable by the
dimension factor and 1length. Each sub-

script item is handled in a similar manner.
When all subscript items have been proc-
essed, phase 15 text entries are generated
to add all subscript values together to
produce a single subscript value.

In general, during compilation, con-
stants in subscript expressions are com-
bined, and their composite value is placed
in the displacement field of the phase 15
text entry for the subscript item. (Refer
to Appendix B, "Phase 15/Phase 20 Inter-
mediate Text Modifications.") Phase 25 uses
the value in the displacement field to
generate, in the resultant object instruc-
tions, the displacement for referring to
the elements in the array. This combining
of constants reduces the number of instruc-
tions needed during execution to compute
the subscript value.

Expressions Referring to In-Line Routines
or Subprograms: Expressions containing
references to in-line routines or subpro-
grams are processed by the following sub-
routines: FUNDRY, NEGCHK, XPARAM, BLTNFN,
and DFUNCT.

Arguments that are expressions are
reduced by the translator to a single
temporary, which is used as the argument.

If an argument is a subscripted wvariable,
subscript processing (previously discussed)
reduces the subscript to a single sub-
scripted item. Either subroutine DFUNCT
(for references to 1library routines) or
subroutine BLTNFN (for references to in-
line routines) then conducts a series of
tests on the argument and perform the
processing determined by the results of the
tests.

If a function is not external and is in
the IFUNTB table (refer to Appendix A,
"Subprogram Table"), the IFUNTB table is
scanned to determine if the requirea
routine is in-line. Then, the mode is
tested. If the routine is in-line and the
mode is as expected, BLTNFN either gener-
ates text or substitutes a special operator
(such as those for ABS or FLOAT) in the
phase 15 text so that phase 25 can later
expand the function. PHAZ15 provides in-
line routines itself.® Instead of placing a

1BLTNFN expands the following functions:
TBIT, LAND, LOR, LXOR, ADDR, SNGL, REAL,
AIMAG, DCMPLX, CMPLX, DCONJG, and CONJG.



special operator in text, PHAZ15 inserts a
regular operator, such as the operator for
AND or STORE.

If the mode and/or number of arguments
in the function is not as expected, another
test 1is performed. The test determines if
a previous reference was made correctly for
these arguments. If the previous reference
was as expected, an error is assumed to
exist. Otherwise, the function is assumed
to be external.

If a function is external (either used
in an EXTERNAL statement or does not appear
in the IFUNTB table), text is generated to
load the addresses of any arguments that
are subscripted variables into a parameter
list in the adcon table. (If none of the
arguments are subscripted variables, the
load address items are not required.) A
text entry for a subprogram or function
call is then generated. The operator of
the text entry is for an external function
or subprogram reference. This entry points
to the dictionary entry for the name. The
text representation of the argument list is
then generated and placed into the phase 15
text chain.

If a function is not extermal, is in the
IFUNTB table, but does not represent an
in-line routine, text is generated to 1load
the addresses of any arguments that are
subscripted variables into a parameter list
in the adcon table. (If none of the
arguments are subscripted variables, the
load address items are not required.) A
text entry having a library function
operator is generated. This entry points
to the IFUNTB entry for the function. The
text representation of the argument list is
then generated and placed into the phase 15
text chain.

Expressions Containing Statement Function
References: For expressions containing
statement function references, the argu-
ments of the statement function text are
reduced to single operands (if necessary).
These arguments and their mode are stored
in an argument save table (NARGSV), which
serves as a dictionary for the statement
function skeleton pointed to by the dic-
tionary entry for the statement function
name. The argument save table is used in
conjunction with the usual pushdown proce-
dure to generate phase 15 text items for
the statement function reference. Wwhen the
translator encounters an operand that is a
dummy argument, the actual argument corre-
sponding to the dummy is picked up from the
argument save table and replaces the dummy
argument.

Logical Expressions: Subroutines ALTRAN,
ANDOR, RELOPS, and NOT perform a special
process, called anchor point, on logical
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expressions containing relational opera-
tors, ANDs, ORs, and NOTs, so that, at
object time, unnecessary logical tests are
eliminated. With anchor-point “optimiza-
tion," only the minimum number of object-
time logical tests are made before a branch
or fall-through occurs. For example, with
anchor-point handling, the statement
IF(A.AND.B.AND.C) GO TO 500 will produce
(at object time) a branch to the next
statement if A is false, because B and C
need not be tested. Thus, only a minimum
number of operands will be tested. Without
anchor-point handling of the expression
during compilation, all operands would be
tested at object time. Similar special
handling occurs for text containing logical
ORs.

When a primary adjective code for a
logical IF statement or an end-of-DO IF is
placed in the pushdown table, a scan of
phase 10 text determines if the associated
statement can receive anchor-point hand-
ling. The statement can receive anchor-
point handling if two conditions are met.
There must not be a mixture of ANDs and ORs
in the statement. A logical expression, if
it is in parentheses, must not be negated
by the NOT operator. If these two
conditions are not met, special handling of
the logical expression does not occur.

Gathering Constant/Variable Usage
Information

During the conversion of the phase 10
text entries that follow the beginning of a
text block (i.e., the text entries that
follow a statement number definition) to
phase 15 format, the PHAZ15 subroutine MATE
gathers usage -information for the variables
and constants in that block. This informa-
tion is required during the processing of
the complete-optimized path through phase
20 (refer to "Phase 20"). If complete-
optimized processing is not selected, this
information is not compiled. Subroutine
MATE records the usage information in three
fields (MVS, MVF, and MVX), each 128 bits
long, of the statement number text entry
for the block (refer to Appendix B,. "Phase
15 Intermediate Text Modifications"). The
MVS field indicates which variables are
defined (i.e., appear in the operand 1
position of a text entry) within the text

of the block. The MVF field indicates
which variables, constants, and Dbase
variables (refer to CORAL PROCESSING,

"adcon and Base Variable Assignment") are
used (i.e., appear in either the operand 2
or operand 3 position of a text entry)
within the text of the block. The MVX
field indicates which variables are defined
but not first used (not busy-on-entry)
within the text of the block.
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Subroutine MATE records the usage infor-
mation for a variable or constant at a
specific bit 1location within +the three
fields. (Base variables are processed dur-
ing CORAL PROCESSING.) The bit location at
which the usage information is recorded is
determined from the coordinate assigned to
the variable or constant when it is first
encountered in text.

Coordinates are assigned to variables
and constants in the following manner:

¢ The first 59 unique variables and/or
constants appearing in the text created
by phase 15 are assigned coordinates 2
through 60, respectively.l The coordi-
nates are assigned in order of increas-
ing coordinate number. (A coordinate
between 2 and 60 may be assigned to a
base variable if fewer than 59 wunique

variables and constants appear in the
text.)

* The next 20 unique variables are
assigned coordinates 61 through 80,

respectively. The coordinates are
assigned in order of increasing coordi-
nate number. (If constants are encoun-
tered after coordinate 60 has been
assigned, they are not assigned coordi-
nates.)

¢ The coordinates 81 through 128 are
reserved for assignment to base varia-
bles (refer to CORAL PROCESSING, "Adcon
and Base Variable Assignment").

Subroutine MATE assigns the first varia-
ble or constant in phase 15 text a coordi-
nate number of 2, which indicates that the
usage information for that variable or
constant, regardless of the block in which
it appears, is to be recorded in bit
position 2 of the MVS, MVF, and MVX fields.
MATE assigns the second variable or con-
stant a coordinate number of 3 and records
its wusage information in bit position 3 of

the three fields. MATE continues this
process until coordinate 60 has been
assigned to a variable or constant. After
‘coordinate number 60 has been assigned,

MATE only assigns coordinates to the next
20 unique variables. (MATE does not assign
coordinates to or gather usage information
for unique constants encountered after
coordinate number 60 has been assigned.)
It assigns these variables coordinates 61
through 80, respectively. It records the

1The coordinate 1 is assigned to items such

as unit numbers (i.e., data set reference
numbers), complex variables in common,
arrays that are equivalenced, variables

that are equivalenced to arrays, and varia-
bles that are equivalenced to variables of
different modes.
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usage information for each variable at the
assigned bit location in the three fields.
MATE does not assign coordinates to or
gather usage information for unique varia-
bles encountered after coordinate number 80
has been assigned.

Subroutine MATE uses a combination of
the MCOORD vector, the MVD table, and the
byte-C usage fields of the dictionary
entries (refer to Appendix A, "Dictionary")
to assign, keep track of, and record coor-
dinate numbers. MCOORD contains the number
of the last coordinate assigned. The MVD
table is composed of 128 entries, with each
entry containing a pointer to the dictiona-
ry entry for the variable or constant to
which the corresponding coordinate number
is assigned or to the information table
entry for the base variable to which the
corresponding coordinate is assigned. The
coordinate number assigned to a variable or
constant 1is recorded in the byte-C usage
field of the dictionary entry for that
variable or constant.

Subroutine MATE does not assign coordi-
nates to or record usage information for
unique constants encountered in text after
coordinate number 60 has been assigned and
unique variables encountered in text after
coordinate number 80 has been assigned. If
MATE encounters a new constant after coor-
dinate 60 has been assigned or a new
variable after coordinate 80 has been
assigned, it records a zero in the byte-C
usage fielda of its associated dictionary

entry. Phase 20 optimization deals only
with those constants and variables that
have been assigned coordinate numbers

greater than or equal to 2 and less than or
equal to 80.

After a phase 15 text entry has been
formed, subroutine MATE is given control to
determine and record the usage information
for the text entry. It examines the text
entry operands in the order: operand 2,
operand 3, operand 1. If operand 2 has not
been assigned a coordinate (indicating that
this is the first occurrence of the operand
in the module), subroutine MATE assigns it
the next coordinate, enters the coordinate
number into the byte-C usage field of the
dictionary entry for the operand, and plac-
es a pointer to that dictionary entry into
the MVD table entry associated with the
assigned coordinate number. After MATE has
assigned the coordinate, or if the operand
was previously assigned a coordinate, it
records the usage information for the oper-
and. The operand's associated coordinate
bit in the MVF field (of the statement
number text entry for the block containing
the text entry under consideration) is set
on, indicating that the operand is used in
the block. MATE executes a similar proce-



dure to process of the text

entry.

operand 3

If operand 1 of the text entry has not
been assigned a coordinate, MATE assigns it
the mnext and records the following usage
information for operand 1:

e Its associated coordinate bit in the
MVX field is set on only if the asso-
ciated coordinate bit in the MVF field
is not on. (If the associated MVF bit
is on, operand 1 of the text entry was
previously encountered in the block as
a use and therefore is not not busy-on-
entry.)

e Its associated coordinate bit in the
MVS field is set on, indicating that it
is defined within the block.

This process 1is repeated for all the
phase 15 text entries that are formed
following the construction of a statement
number text entry and preceding the
construction of the next statement number
text entry. When the next statement number
text entry is constructed, all the usage
information for the preceding block has
been recorded in the statement number text
entry that begins that block. The same
procedure is followed to gather the usage
information for the next text block.

Gathering Forward Connection Information

An integral part of the processing of

PHAZ15 is the gathering of forward connec-
tion information, which indicates which
text blocks pass control to which other

text blocks. Forward connection informa-
tion 4is used during phase 20 optimization.

Forward connection information is
recorded 1in a table called RMAJOR. Each
RMAJOR entry is a pointer to the statement
number entry associated with a statement
number that is the object of a branch or a
fall-through. Because each statement num-
ber entry contains a pointer to the text
block beginning with its associated state-
ment number (refer to "Text Blocking"),
each RMAJOR entry points indirectly to a
text block.

For each new text block, PHAZ1S5 places a
pointer to the next available entry in
RMAJOR into the forward connection field of
the associated statement number entry
(refer to Appendix A, "Statement
Number/Array Table"). The statement number
entry associated with the text block there-
fore points to the first entry in RMAJOR in
which the forward connection information
for that block is to be recorded.

After starting a text block, PHAZ15
converts the phase 10 text following the
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statement number definition to phase 15
text. As each phase 15 text entry is
formed, it is analyzed to determine if it
is a GO TO or compiler generated branch.
If it is, a pointer to the statement number
entry for each statement number that may be
branched to as a result of the execution of
the GO TO or generated branch is recorded
in the next available entry in RMAJOR. (If
two Oor more branches to the same statement
number appear in the text following a
statement number definition and before the
next, only one entry is made in RMAJOR for
the statement number to be branched to.)

When PHAZ15 encounters the
ment number definition, it starts a new
block. If the new block is an entry block,
PHAZ15 saves a pointer to its associated
statement number entry for subsequent use
and processes the text for the block.

next state-

If the new block is
block nor an

neither an entry
entry point (i.e., a block

immediately following an entry block),
PHAZ1S records the fall-through connection
information (if any) for the previous

block. If the previous block is terminated
by an unconditional branch, it does not
fall-through to the mnew block. If the
previous block can fall-through to the new
block, PHAZ15 records a pointer +to the
statement number entry for the new block in
the next location of RMAJOR. It then flags
this as the last forward connection for the
previous block.

If the new block 1is an entry point

(i.e., a Dblock immediately following an
entry block), PHAZ15 records the fall-
through connection (if any) for the

previous non-entry block. It does this in
the manner described in the previous para-
graph. It then records the forward connec-
tion information for all intervening entry

blocks (i.e., entry blocks between the
previous non-entry block and the new
block). (PHAZ15 has saved pointers to the

statement number entries for all interven-
ing entry blocks.) Each such entry block
passes control directly to the new block
and therefore has only one forward connec-
tion. To record the forward connection
information for the intervening entry
blocks, PHAZ15 places a pointer to the next
available entry in RMAJOR into the forward
connection field of the statement number

entry for the first intervening entry
block. In this RMAJOR entry, PHAZ15
records a pointer to the statement number

entry for the new block.
entry as the last, and only,

It flags this
RMAJOR entry

for the entry block. PHAZ15 repeats this
procedure for the remaining intervening
entry blocks (if any). PHAZ15 then pro-

ceeds to process the new text block.
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When all the connection information for
a block has been gathered, each RMAJOR
entry for the block, the first of which is
pointed to by the statement number entry
for the block and the 1last of which is
flagged as such, points indirectly to a
block to which that block may pass control.

Figure 7 illustrates the end result of

gathering forward connection information
for sample text blocks. Only the forward
connection information for the blocks

beginning with statement numbers 10 and 20
is shown. In the figure, it is assumed
that:

e The block started by statement number
10 may branch to the blocks started by
statement numbers 30 and 40 and will
fall-through to the block started by
statement number 20 if neither of the
branches is executed.

e The block started by statement number
20 may branch to the blocks started by
statement numbers 40 and 50 and will
fall-through to the block started by
statement number 30 if neither of the
branches is executed.

Reordering the Statement Number Chain

After text blocking, arithmetic transla-

tion, and, 1if complete optimization has
been specified, the gathering of
constant/variable usage information have

been completed, subroutine VSETUP reorders
the statement number chain of the informa-
tion table (refer to Appendix A,
"Information Table"). The original order
of the entries in this chain, as recorded
by phase 10, was 1in the orxder of the
occurrence of their associated statement
numbers as either definitions or operands.
The new sequence of the entries after
reordering is according to the occurrence
of their associated statement numbers as
definitions only.

Although the actual
place after the scan of the phase 10 text,
preparation for it takes place during the
scan. As each statement number definition
is encountered, a pointer to the related
statement number entry is recorded. Thus,
during the course of processing, a table of
pointers to statement number entries, which
reflects the crder in which statement num-
bers are defined in the module, is built.

reordering takes

PHASE 15 TEXT

LDF [ | | — 10
Statement Number Entry for 10
: LDF I 1 l -+ 20
10
Statement Number Entry for 20
LDF l l I - 30
I 20 ]
Statement Number Entry for 30
I
%0 LDF I | } 40
RMAJOR
> 30 Statement Number Entry for 40
—
— 40 1 ©
* =20 :
— 40
5 L—‘H
= %0 Statement Number Entry for 50
* —30 LDF l ( l — 50
50 i
|
| R —
R L,
Figure 7. Forward Connection Information
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The order of the entries in this table also
reflects the order of the text blocks of
the module.

After the scan, VSETUP uses this table
to reorder the statement number entries.
It places the first table pointer into the
appropriate field of the communication
table (refer to Appendix A, "Communication
Table"); it places the second table pointer
into the chain field of the statement
number entry that 1is pointed to by the
pointer in the communication table; it
places the third table pointer into the
chain field of the statement number entry
that is pointed +to by the chain field of
the statement number entry that is pointed
to by the pointer in the communication
table; etc. When VSETUP has performed this
process for all pointers in the table, the
entries in the statement number chain are
arranged in the order in which their asso-
ciated statement numbers are defined in the
module. The new order of the chain also
reflects the order of the text blocks of
the module.

Gathering Backward Connection Information

statement number chain has
and if optimization has

subroutine VSETUP gathers
information. This

After the
been reordered,
been specified,
backward connection
information indicates which text blocks
receive control from which other text
blocks. Backward connection information is
used extensively throughout phase 20 opti-
mization.

Subroutine VSETUP uses the reordered
statement number chain and the information
in the forward connection table (RMAJOR) to
determine the backward connections. It
records backward connection information in
a table called CMAJOR. Each CMAJOR entry
made by VSETUP for a particular text block
(block I) is a pointer to the statement
number entry for a block from which block I
may receive control. Because each state-
ment number entry contains a pointer to its

associated text Dblock (refer to "Text
Blocking"), each CMAJOR entry for block I
points indirectly to a block from which

block I may receive control.

Subroutine VSETUP gathers backward con-
nection information for the text blocks
according to the order of the statement
number chain; it first determines and
records the backward connections for the
text block associated with the initial
entry in the statement number chain; it
then gathers the backward connection infor-
mation for the block associated with the
second entry in the chain; etc.
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For each text block, VSETUP initially
records a pointer to the next available
entry in CMAJOR in the backward connection

field (JLEAD) of the associated statement
number entry (refer to Appendix A,
"Statement Number/Array Table"). The

statement number entry thereby points to
the first entry in CMAJOR in which the
backward connection information for the

block is to be recorded.

Then, to determine the backward connec-
tion information for the block (block I),
VSETUP obtains, in turn, each entry in the
statement number chain. (The entries are
obtained in the order in which they are

chained.) After VSETUP has obtained an
entry, it picks up the forward connection
field (ILEAD) of that entry. This field

points to the initial RMAJOR entry for the
text block associated with the obtained
statement number entry. (Recall that the
RMAJOR entries for a block indicate the-
blocks to which that block may pass con-
trol.) VSETUP searches all RMAJOR entries
for the block associated with the obtained
entry for a pointer to the statement number
entry for block I. If such a pointer
exists, the text block associated with the
obtained statement number entry may pass
control to block I. Therefore, block I may
receive control from that block and VSETUP

records a pointer to its associated state-
ment number entry 1in the next available
entry in CMAJOR. VSETUP repeats this pro-

cedure for each entry in the statement
number chain. Thus, it searches all RMAJOR
entries for pointers to the statement num-
ber entry for block I and records in CMAJOR
a pointer to the statement number entry for
each text block from which block I may
receive control. VSETUP flags the last
entry in CMAJOR for block 1I. When the
statement number chain has been completely
searched, VSETUP has gathered all the back-
ward connection information for block I.
Each entry that VSETUP has made for block
I, the first of which is pointed to by the
statement number entry for block I and the
last of which is flagged, points indirectly
to a block from which block I may receive
control.

Subroutine VSETUP gathers the backward
connection information for all blocks in
the above manner. When all of this infor-
mation has been gathered, control is
returned to the FSD, which calls CORAL, the
third segment of phase 15.

Figure 8 illustrates the end result of
the gathering of backward connection infor-
mation for sample text blocks. Only the
backward connections for the blocks begin-
ning with statement numbers 40 and 50 are
shown.  In the figure, it is assumed that:
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PHASE 15 TEXT

Statement Number Entry for 10

LDF l | |7—>IO

' 10

Statement Number Entry for 20
LDF , | J — 30

LDFI | '_.20

CMAJOR [
) 10 20 —
-» 20
* -+ 30 Statement Number Entry for 30
— 20 T >
* —>40 30 LDF r | , - 40
T
Statement Number Entry for 40
IR
-~
Statement Number Entry for 50
LDF r i r—b 50
50 i
|
| I
s

Figure 8. Backward Connection Information

e The block started by statement number
40 may receive control from the execu-
tion of branch instructions that reside
in the blocks started by statement
numbers 10 and 20 and that it may
receive control as a result of a fall-
through from the block started by
statement number 30.

e The block started by statement number
50 may receive control from the execu-
tion of a branch instruction that
resides 1in the block started by state-
ment number 20 and that it may receive
control as a result of a fall-through
from the block started by statement
number 40.

CORAL PROCESSING
CORAL, the last overlay segment of phase
15, performs five functions. It first

converts phase 10 data text to a form more
easily evaluated by phase 25. CORAL then
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assigns addresses relative to the start of
an object module to all symbolic operands
-- variables, constants, and arrays. Dur-
ing the assignment of relative addresses to
variables, CORAL rechains the data text in
order to simplify the generation of text
card images by phase 25. CORAL assigns
space in the address constant table
(NADCON) for unknown references -~ call-by-
name variables, library routines, and name-
list names. This reserved space will be
filled by later phases. Lastly, as a user
option, CORAL prints a storage map of named

items -- variables, arrays, and external
references - as recorded in the
information table. (Chart 09 shows the

overall logic flow of CORAL).

Translation of Data Text

The first section of CORAL, subroutine
NDATA, translates data text entries from
their phase 10 format to a form more easily
processed by phase 25. Each phase 10 data
text entry (except for initial housekeeping



entries) contains a pointer to a variable
or constant in the information table. Each
variable in the series of entries is to be
assigned to a constant appearing in another
entry. Placed in separate entries, varia-
ble and constant appear to be unrelated.
In each phase 15 data text entry, after
translation, each related variable and con-
stant are paired (they appear in adjacent
fields of the same entry).

The following example shows how a series
of phase 10 data text entries are translat-
ed by NDATA to yield a smaller number of
phase 15 text entries, with each related
constant and variable paired. Assume a
statement appearing in the source module as

DATA, A,B/2#%0/. The resulting phase 10
text entries appear as follows (ignoring
the chain, mode, and type fields, and the

two initial housekeeping entries):

L} T 1
| Adjective | i
| Code for: | Pointer ]
F $ 4
| ] Pointer to A |
i | in dictionary |
I“ 1 4
] j 1
| " | Pointer to B |
| | in dictionary 1
b +
| / I 2
b H ,
| * | Pointer to O |
i | in dictionary |
b + {
| / Y I
L 1 i |

Note that the variables A and B and the
constant value 0 appear in separate text
entries. The NDATA translation of the
above phase 10 entries (ignoring the con-
tents of the indicator and chain fields,
and two optional fields needed for special
cases) appears as follows:

v 3 T T 1
|Indicator| Chain |P1 Field |{P2 Field |
b § f-—— + |
| | |pointer |901nter |
| i |to A in jto 0 in ]
| | |dictionary|dictionary|
e t t 4
| | |pointer | pointer |
| | |to B in [to 0 in |
i | |dictionary|dictionary|
L 4 L L 1

In this case, each variable and its
fied constant value appear in adjacent
fields of the same phase 15 text entry.
The reader should refer to Appendix B,
"Phase 15720 Intermediate Text
Modification™ for the detailed format of
the phase 15 data text entry and the use of
the special fields not discussed.

speci-

Relative Address Assignment

The chief function of CORAL is to assign

relative addresses to the operands
(constants and variables) of the source
module. The addresses indicate the loca-

tions, relative to zero, at which the
operands will reside in the object module
resulting from the compilation. The rela-
tive address assigned to an operand con-

sists of an address constant and a dis-
placement. These two elements, when added
together, form the relative address of the
operand. The address constant for an oper-

and is the base address value used to refer
to that operand in main storage. Address
constants are recorded in the adcon table
(NADCON) and are the elements to which the
relocation factor is added to relocate the
object module for execution. The displace-
ment for an operand indicates the number of
bytes that the operand is displaced from
its associated address constant. Displace-
ments are in the range of 0 to 4095 bytes.
The relative address assigned to an operand
is recorded in the information table entry
for that operand in the form of:

1. A numeric displacement from its asso-
ciated address constant.

2. A pointer to an information table
entry that contains a pointer to the
associated address constant in the
adcon table.

Relative addresses are assigned through
use of a location counter. This counter is
initially set to zero and is continually
updated by the size (in bytes) of the
operand to which an address is assigned.
The value of the location counter is used
to:

e Contain the displacemert to be assigned
to the next operand.

e Determine when the next address con-
stant is to be established. (When the
location counter achieves a value in
excess of 4095, a new address constant
is established.)

CORAIL assigns addresses to source module
operands in the following order:
e Constants.

e Variables.

Arrays.

Hollerith characters when used as argu-
ments.

Equivalenced variables and arrays.

Section 2: Discussion of Major Components 35



e Common variables and arrays, including
variables and arrays made common using
the EQUIVALENCE statement.

The manner in which addresses are assigned
to each of these operand types is described
in the following paragraphs. Because con-
stants, variables, and Hollerith characters
are processed in the same manner, they are
described together.

Constants, Variables, and Hollerith Charac-
ter Strings Used as Arguments: Subroutine
CONST first assigns relative addresses to
the constants of the module. Then, subrou-
tine VARA assigns addresses to the varia-
bles and Hollerith character strings. (In
the subsequent discussion, constants, vari-
ables, and Hollerith character strings are
referred to collectively as operands.) The
first operand is assigned a displacement of
zero, which is the initial wvalue of the
location counter. Operands that are
assigned 1locations within the first 4096
bytes of the object module are not explic-
itly assigned an address constant. Such
operands use the base address value 1loaded
into reserved register 12 as their address
constant (refer to Phase 20, "Branching
Optimization"). The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated by the size in bytes of the oper-
and.

The next operand is assigned a displace-
ment equal to the current value of the
location counter. The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated, and tested to see if it exceeds
4095. If it does not, the next operand is
processed as described above.

If sufficient operands exist to cause
the location counter to achieve a value in
excess of 4095, the first address constant
is established. The value of this address
constant equals the location counter value
that caused its establishment. This
address constant becomes the current
address constant and is saved for subse-
quently assigned relative addresses. The
location counter is then reset to zero and
the next operand is considered.

After the first address constant is
established, it is wused as the address
constant portion of the relative addresses
assigned to subsequent operands. The dis-
placement for these operands 1is equal to
the value of the location counter at the

time they are considered for relative
address assignment.
When the location counter again reaches

a value in excess of 4095, another address
constant 1is established. Its value is
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equal to the current address constant plus
the displacement that caused the establish-
ment of the new address constant. This new
address constant then becomes current and
is wused as the address constant for subse-
quent operands. The location counter is
then reset to zero and the next operand is
processed. This overall process is repeat-
ed until all operands (constant, variables,
and Hollerith strings) are processed.
Source module arrays are then considered
for relative address assignment.

Arrays: Subroutine VARA assigns each array
of the source module that is not in common
a relative address that is 1less than (by
the span of the array) the relative address
at which the array will reside in the
object module. (The concepts of span is
discussed in Appendix F.) The actual rela-
tive address at which an array will reside
in the object module is derived from the
sum of address constant and displacement
that are current at the time the array is
considered for relative address assignment.
The array span 1is subtracted from the
relative address to facilitate subscript
calculations.

VARA subtracts the span in one of two
ways. If the span is less than the current
displacement, it subtracts +the span from
that displacement, and assigns the result
as the displacement portion of the relative
address for the array. In this case, the
address constant assigned to the array is
the current address constant. If the span
is greater than the current displacement,
VARA subtracts the span from the sum of the
current address constant and displacement.
The result of this operation is a new
address constant, which does not become the
current address constant. VARA assigns the
new address constant and a displacement of
zero to the array. It then adds the total
size of the array to the location counter,
obtains the next array, and tests the value
of the 1location counter. If the value of
the location counter does not exceed #4095,
VARA does not take any additional action
before it processes the next array. If the
location counter value exceeds #4095, VARA
establishes a new address constant, resets
the location counter, and processes the
next array. After all arrays have relative
addresses, VARA returns control to CORAL,
which calls subroutine EQVAR to assign
address to equivalence variables and arrays
that are not in common.

Equivalence Variables and Arrays Not in
Common: In assigning relative addresses to
equivalence variables and arrays, subrou-
tine EQVAR attempts to minimize the number
of required address constants by using, if
possible, previously established address
constants as the base addresses for equiva-
lence elements. EQVAR processes equiva-




lence information on a group-by-group
basis, and assigns a relative address, in
turn, to each element of the group. Prior
to processing, EQVAR determines the base
value for the group. The base value is the
relative address of the head® of the group.
The base value equals the sum of the
current address constant and displacement
(location counter value). After EQVAR has
determined the base value, it obtains the
first (or next) element of the group and
computes its relative address. The rela-
tive address for an element equals the sum

of the base value for the group and the
offset of the element. The offset for an
element is the number of bytes that the

element is displaced from the head of the
group (refer to "Common and Equivalence
Processing"). EQVAR then compares the com-
puted relative address to the previously
established address constants. If an
address constant exists such that the dif-
ference between the computed relative
address and the address constant is less
than #4095, EQVAR assigns that address con-
stant to the equivalence element under
consideration. The displacement assigned
in this cage is the difference between the
computed relative ‘address of the element
and the address constant. EQVAR then proc-
esses the next element of the group.

If the desired address constant does not
exist, EQVAR establishes a new address
constant and assigns it to the element.
The value of the new address constant is
the relative address of the element. EQVAR
then assigns the element a displacement of
zero, and processes the next element of the
group. When all elements of the group are
processed, EQVAR computes the base value
for the next group, if any. This base
value is equal to the base value of the
group just processed plus the size of that
group. The next group is then processed.

and Arrays: Subroutine
each common block of the
in turn, for relative
address assignment. For each common block,
COMVAR assigns relative addresses to (1)
the variables and arrays of that block, and
(2) the variables and arrays egquivalenced
into that common block. (The processing of
variables and arrays equivalenced into com-
mon is described in a later paragraph.)

Common Variables
COMVAR considers
source module,

Because common blocks are considered
separate control sections, COMVAR assigns
each common block of the source module a
relocatable origin of zero. It achieves
the origin of =zero by assigning to the

iThe head of an equivalence group is the
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.
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first element of a common block a relative
address consisting of an address constant
and a displacement whose sum is zero. For
example, both the address constant and the
displacement for the first element in a
block can be zero. Also, the address
constant can be -16 and the displacement
+16. Note that the address constant in the
latter case is negative. Negative address
constants are permitted, and may be a
by-product of the assignment of addresses
to common variables and arrays. They
evolve from the manner in which the rela-
tive addresses are assigned to arrays. A
relative address assigned to an array is

equal to its actual relative address minus
the span of that array. The actual rela-
tive address of each array in a common

block 1is equal to the offset computed for
it during the common and equivalence proc-
essing of the first segment of phase 15,
STALL. From the offset of each array in
the common block under consideration, COM-
VAR subtracts the span of that array. The
result then replaces the previously comput-
ed offset for the array. If the result of
one or mcre of these computations yields a
negative value, COMVAR uses the most nega-
tive as the initial address constant for
the common block. It then assigns each
element (variable or array) in the common
block a relative address. This address
consists of the negative address constant
and a displacement equal to the absolute
value of the address constant plus the
offset of the element. .

If the computations which subtract spans
from offsets do not yield a negative value,
COMVAR establishes an address constant with
a value of zero as the initial address
constant for the common block. It then
assigns each element in the block a rela-
tive address consisting of the address
constant (with zero value) and a displace-
ment equal to the offset of the element.

If at any time the displacement to be
assigned to an element exceeds 4095, COMVAR
establishes a new address constant. This
address constant then becomes the current
address constant and is saved for inclusion
in subsequently assigned addresses. After
the new address constant is established,
the relative address assigned to each sub-
sequent element consists of the current

address constant and a displacement equal
to the offset of that element minus the
value of the current address constant.

After the entire common block is processed,
variables and arrays that are equivalenced
into that common block are assigned rela-
tive addresses.

Variables and Arrays Equivalenced into Com-

mon: Subroutine COMVAR processes variables
and arrays that are equivalenced into com-
mon in much the same manner as EQVAR
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processes those that are equivalenced, but
not into common. However, in this case,
the base value for the group is zero. Only
those address constants established for the
common block into which the variables and

arrays are equivalenced are acceptable as
address constants for those variables and
arrays.

Adcon and Base Variable Assignment: As
CORAL establishes a new address constant
and enters it into the adcon table, it also
places an entry in the information table.
This special entry, called an "adcon varia-
ble," points to the new address constant.
All operands that have been assigned rela-
tive addresses will have pointers to the
adcon variable for their address constant.
The adcon variables generated for operands
are assigned coordinates, via MCOORD and
the MVD table. Coordinates 81 through 128
are reserved for base variables; however,
some base variables may be assigned coordi-
nates less than 81 if less than 80 coordi-
nates are assigned during the gathering of
variable and constant usage information.
(Refer to PHAZ1S5, "Gathering Constant/
Variable Usage Information.") Having been
assigned coordinates, the adcon variables
are now called base variables. Only those
operands receiving coordinate assignments
are available for full register assignment
during phase 20.

Rechaining Data Text

During the assignment of relative
addresses to variables, subroutine DATACH
rechains the data text entries. Their

previous chaining (set by phase 10) was
according to their order of appearance in
the source program. DATACH now chains the
data text entries according to the order of
relative addresses it assigns to variables.
Thus data text entries are now chained in
the same relative order in which the varia-
bles will appear in the object module.
This order simplifies the generation of
text card images by phase 25.

Reserving Space in the Adcon Table

After relative address assignment is
completed, subroutine EXTRNL reserves space
in the adcon table for certain special
references. It scans the operands of the
information table to detect any of these
references: call-by-name variables, names
of 1library routines, namelist names, and
external references. The byte-B usage
field of each information table entry
informs EXTRNL if a particular reference
belongs to one of these categories. For
each special reference that EXTRNL detects,
it reserves four bytes in the adcon table.
Phase 25 places the needed address con-
stants in the reserved spaces.
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Producing a Storage Map

Lastly, as a wuser option, subroutine
STMAP produces a storage map of named
items. These items include variables,
arrays, function or subroutine references,
and statement functions (SF). For each of
these, except function or subroutine ref-
erences, the map contains the name, loca-
tion, type, and tag. (The tag indicates
whether a variable appeared in a COMMCN or
EQUIVALENCE statement or in both. It is
set by phase 10 or by CORAL.) For a
function or subroutine reference the map
lists the name and whether the reference is
external or in IFUNTB table.

PHASE 20

The primary function of phase 20 is to
produce a more efficient object module
(perform optimization). However, even if
the applications programmer has specified
no optimization, phase 20 assigns registers
for wuse during execution ofs the object
module.

For a given compilation, the applica-

tions programmer may specify no optimiza-
tion, an intermediate amount of optimiza-
tion, or complete optimization. Thus, the

functions performed by phase 20 depend on
the optimization specified for the compila-
tion.

* If no cptimization has been specified,
phase 20 assigns to intermediate text
entry operands the registers they will
require during object module execution
(this is called basic register
assigument). As part of this function,
phase 20 also provides information
about the operands needed by phase 25
to generate machine instructions. Both
functions are implemented in a single,
block-by-block, top-to-pottom (i.e.,
according to the order of the statement
numper chain), pass over the phase 15
text output. The end result of this
processing is that the register and
status fields of the phase 15 text
entries are filled in with the informa-
tion required by phase 25 to convert
the text entries to machine language
form (refer to Appendix B, "Phase 20
Intermediate Text Modifications").
Basic register assignment does not take
full advantage of the available general

and floating-point registers, and it
does not specify the generation of
machine instructions that keep operand

values in registers (wherever possible)
for  use in subsequent operaticns
involving them.



e If an intermediate amount of optimiza-
tion has been specified, two processes
are carried out:

1.

The first process, call full reg-
ister assignment, performs the
same two functions as basic reg-
ister assignment. However, full
register assignment takes greater
advantage of available registers
and provides information that ena-
bles machine instructions to be
generated that keep operand values
in registers for subsequent opera-
tions. An attempt is also made to
keep the most frequently used
operands in registers throughout
the execution of the object
module. Full register assignment
requires a number of passes over
the phase 15 text. The basic unit
operated upon is the text block

(refer to phase 15, "Text
Blocking®). The end result of
full register assignment, like

that of basic register assignment,
is that the register and status
fields of the phase 15 text
entries are filled in with the
information required by phase 25.

The second process, called branch
optimization, generates RX-format
branch instructions in place of
RR-format branch instructions
wherever possible. The use of
RX-format branches eliminates the
need for an instruction to load
the branch address into a general
register. However, branch optimi-
zation first requires that the
sizes of all text blocks in the
module be determined so that the
branch address can be found. ’

¢ If complete optimization has been spec-

ified,
improve object-module efficiency.
plete optimization is
"loop-by-loop"
before processing can be
phase 20 must determine
of the

are taken to
Ccom-
performed on a
Therefore,
initiated,
the structure
source module in terms of the

other measures

basis.

loops within it and the relationships

(nesting)

among the loops. Then phase

20 determines the order in which loops

are processed, beginning with the
innermost (most frequently executed)
loop and proceeding outward. Complete
optimization involves three general
procedures:

1. The first, called text optimiza-

tion, eliminates unnecessary text
entries from the loop being proc-
essed. For example, redundant
text entries are removed and,
wherever possible, text entries
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are moved to outer loops, where
they will be executed less often.

2. The second procedure is full reg-
ister assignment, which is essen-~
tially the same as in intermediate
optimization, but is more effec-
tive, because it 1is done on a
loop-by-1loop basis.

3. The final procedure is branching
optimization, which is the same as
in  the intermediate-optimized
path.

CONTROL FLOW

In phase 20, control flow may take one
of three possible paths, depending on the
level of optimization chosen (refer to
Chart 10). Phase 20 consists of a control
routine (LPSEL) and six routine groups.
The control routine controls execution of
the phase. All paths begin and end with
the control routine. The first group of
routines performs basic register assign-
ment. This group is only executed in the
control path for non-optimized processing.
The second group performs full register
assignment. Control passes through this
group in the paths for both
intermediate-optimization and complete-
optimization. The third group of routines
performs branch optimization and is also
used in the paths for both
intermediate-optimization and complete-
optimization. The fourth group determines
the structure of the source module and is
used only in the path for
complete-optimization. The fifth group
performs loop selection and again is only
executed in complete-optimization. The
final group performs text optimization and
is only used in complete-optimization.

The control routine governs the sequence
of processing through phase 20. The proc-
essing sequence to be followed is deter-
mined from degree of optimization specified
by the FORTRAN programmer. If no optimiza-
tion is specified, the basic register
assignment routines are brought into play.
The wunit of processing in this path is the
text block. Each block is passed by the
control routine to the basic register
assignment routines for processing. When
all blocks are processed, the control rou-
tine passes control to the FSD, which calis
phase 25.

When intermediate-optimization is speci-
fied, the control routine passes the entire
module to the full register assignment
routines and then to the routines that
compute the size of each text block. When
all block size information is gathered, the
control routine calls the routine that
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computes, using the block size information,
the displacements required for branching

optimization. Control is then passed to
the FSD.
When the control path for complete

optimization is selected, the unit of proc-
essing is a loop, rather than a block. 1In
this case, the control routines initially
pass control to the routines of phase 20
that determine the structure of the module.
When the structure is determined, control
is passed to the loop selection routines,
to select the first (innermost) loop to be
processed. The control routines then pass
control to the text-optimization routines
to process the loop. When text optimiza-
tion for a loop is completed, the control
routine marks each block 1in the loop as
completed. This action is taken to ensure
that the blocks are not reprocessed when a
subsequent (outer) loop is processed. The
control routine again passes control to the
loop selection routines to select the next
loop for text optimization. This process
is repeated until text optimization has
processed each loop in the module. (The
entire module is the last loop.) ’

After text optimization has processed
the entire module, the control routine
removes the block completed marks and con-
trol is passed to the loop selection rou-
tines to reselect the first loop. Control
is then passed to the full register assign-
ment routines. When full register assign-
ment for the loop is complete, the control
routine marks each block in the 1loop as
completed and passes control to the loop
selection routines to select the next loop.
This process is repeated for each 1loop in
the module. (The entire module is the last
loop.) When all loops are processed, the
control routine passes control to the rou-
tines that compute the size of each text
block and then to the routine that com-
putes, using the block size information,
the displacements required for branching
optimization. Control is then passed to
the FSD.

REGISTER ASSIGNMENT

Twe types of register assignment can be
performed by phase 20: basic and full.
Before describing either type, the concept
of status, which is integrally connected
with both +types of assignment, is dis-
cussed.

Each text entry has associated operand
and base address status information that is
set up by phase 20 in the status field of
that text entry (refer to Appendix B,
"Phase 20 Intermediate Text Modification").
The status information for an operand or
base address indicates such things as
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whether or mnot it is
whether or not it is to be

in a register and
retained in a

register for subsequent use; this informa-
tion indicates to phase 25 the machine
instructions that must be generated for

text entries.

The relationship of status to phase 25
processing 1is illustrated in the following
example. Consider a phase 15 text entry of
the form A = B + C. To evaluate the text
entry, the operands B and C must be added
and then stored into A. However, a number
of machine instruction sequences could be
used to evaluate the expression. If oper-
and B is in a register, the result can be
achieved by performing an RX-format add of
C to the register containing B, provided
that the base address of C is 'in a reg-
ister. (If the base address of C is not in
a register, it must be loaded before the
add takes place.) The result can then be
stored into A, again, provided that the
base address of A is in a register.

If both B and C are 1in registers, the
result can be evaluated by executing an
RR-format add instruction. The result can
then be stored into A. Thus, for phase 25
to generate code for the text entry, it
must have the status of operands and base
addresses of the text entry.

The following facts about status should

be kept in mind throughout the following
discussions of basic and full register
assignment:

1. Phase 20 indicates to phase 25 when it
is to generate code that loads oper-
ands and base addresses into reg-
isters, whether it is to generate code
that retains operands and base
addresses 1in registers, and whether
operand 1 is to be stored.

2. Phase 20 makes note of the
and Dbase
in registers and are
subsequent use.

operands
addresses that are retained
available for

Basic Register Assignment

Basic register assignment involves two
functions: assigning registers to the cper-
ands of the phase 15 text entries anda
indicating the machine instructions to be

generated for the text entries. In per-
forming these functions, basic register
assignment does not use all of the availa-

ble registers, and it restricts the assign-
ment of +those that it does use to special
types of items (i.e., operands and base
addresses). The registers assigned during
basic register assignment and the item(s)
to which each is assigned are outlined in
Table 2.



Table 2. Item Types and Registers Assigned
in Basic Register Assignment.
T 1
|Register | Item Type I
t - 1
|Floating-Point | |
|Register | |
| | |
| 0 |Arithmetic text entry|
| | operands that are real, |
| | |
| 2 | Imaginary part of thej
| |result of a complex func-|
| tion. |
| | |
|General Purpose| |
|Register | ]
| | |
| 0-1 |Arithmetic text entry|
| |operands that are inte-|
| |ger, or logical operands: |
| | |
| 5 | Branch addresses and|
| | selected logical operands]
|
| 6 |Operands that represent]
| |index values |
i | |
| 7 | Base addresses |
| | l
| 14 ]1. Used for computed GO|
| | TO operations, |
| | |
| |]2. Logical result of |
| | comparison opera- |
| | tions |
| | |
| 15 jUsed for computed GO TOj
| | operations.
b S 31
Basic register assignment essentially
treats System/360 as if it had a single
branch register, a single base register,
and a single accumulator. Thus, operands

that are branch addresses are assigned the
branch register, base addresses are
assigned the base register, and arithmetic
operations are performed using a single
accumulator. (The accumulator used depends
upon the mode of the operands to be coperat-
ed upon.)

The fact that basic register assignment
uses a single accumulator and a single base
register 1is the key to understanding how
text entries having an arithmetic operator
are processed. To evaluate the arithmetic
interaction of two operands using a single
accumulator, one of the operands must be in
the accumulator. The specified operation
can then be performed by using an RX-format
instruction. The result of tne operation
is formed in the accumulator and is availa-
ble for subsequent use. Note that in
operations of this type, neither of the
interacting operands remains in a register.
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Applying this concept to the processing
of text entries that are arithmetic in
nature, consider that a phase 15 text entry
representing the expression A = B + C is
the first of the source module. For this

text entry to be evaluated using a single
accumulator and base register, basic reg-
ister assignment must tell phase 25 to

generate machine code that:

¢ Loads the pase address of B into the
base register. :

e Loads B intc the accumulator.

e Loads the base address of C into the
base register. (This instruction is
not necessary if C is assigned the same
base address as B.)

e Adds C to the accumulator (RX-forrat).

e Loads the base address of A into the
base register (if necessary).

* Stores the accumulated result in A.

If this coding sequence were executed,
two items would remain in registers: the
last base address locaded and the accumulat-
ed result. These items are available for
subsequent use.

Now consider that a text
form D = A + F immediately follows the
above text entry. In this case, A, which
corresponds to tne result operand of the
previous text entry, is in the accumulator.
Thus, for this text entry, basic register
assignment specifies code that:

entry of the

e Loads the base address of F into the
base register. (If the pase address of
F corresponds to the last 1loaded base
address, this instruction is not neces-
sary.)

s Adds F to
add).

the accumulator (RX-format

® Loads the base address of D into the

base register (if necessary).
e Stores the accumulated result in D.

The above coding sequences are the basic
ones specified by basic register assignment
for arithmetic operations. Tne first is
specified for text entries in which neither
operand 2 nor operand 3 (see Figure 5)
corresponds to the result operand (operand
1) of the preceding text entry. The second
is specified for text entries in which
either operand 2 or operand 3 corresponds
to the result operand. If operand 3 cor-
responds to the result operand, the two
operands exchange roles, except for divi-
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sion. In the case of division, operand 3
is always in main storage.

If both operands 2 and 3 correspond to
the result operand of the previous text
entry, an RR-format operation is specified
to evaluate the interactions of the oper-
ands.

In the actual process of basic register
assignment, a single pass is made over the
phase 15 text output. The basic unit
operated upon 1is the text block. As the
processing of each block is completed, the
next 1is processed. Wwhen all blocks are
processed, control is returned to the FSD.

Text blocks are processed in a top-to-
bottom manner, beginning with the first
text entry in the block. When all text
entries in a block are processed, the next
text block is processed similarly.

For any text entry, the machine code to
be generated is first specified by setting
up the status field of the text entry.
Registers are then assigned to the operands
and base addresses by filling in the
register fields of the text entry.

Status Setting: Subroutine SSTAT sets the
operand and base address status information
for a text entry in the following order:
operand 2, operand 2 base address, operand
3, operand 3 base address, operand 1, and
operand 1 base address.

To set the status of operand 2, SSTAT
determines the relationship of that operand
to the result operand (operand 1) of the
previous text entry. If operand 2 1is the
same as the result operand, SSTAT sets the
status of operand 2 to indicate that it is
in a register and, therefore, need not be
loaded; otherwise, it sets the status to
indicate that it is in main storage. SSTAT
uses a similar procedure to set the status
of operand 3.

To set the status of the base address of
operand 2, SSTAT determines the relation-
ship of that base address to the current
base address (see note). If they corre-
spond, SSTAT sets the status of the base
address of operand 2 to indicate that it is
in a register and, therefore, need not be
loaded; otherwise wise, it sets the status
to indicate that it is in main storage.
of the base

SSTAT sets the statuses

addresses of operands 3 and 1 in a similar
manner.
Note: The current base address is the last

base address 1loaded for the purpose of
referring to an operand. This base address
remains current until a subsequent operand
that has a different base address is
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encountered. When this occurs, the base
address of the subsequent operand must be
loaded. That base address then becomes the
current base address, etc.

SSTAT sets status of operand 1 to indi-
cate whether or not the result of the
interaction of operands 2 and 3 is to be
stored into operand 1. If operand 1 is
either an actual operand or a temporary
that is not wused in the subsequent text
entry, it sets the status of operamnd 1 to
indicate that the store is to be performed;
otherwise, it sets the status to indicate
that a store into operand 1 is unnecessary.

Register Assignment: After the status
field of the text entry is completed,
subroutine SPLRA assigns registers to the
operands of the text entry and their asso-
ciated base addresses in the same order in
which statuses were set for them.

The assignment of registers depends upon
the statuses of the operands of the text
entry. To assign a register to operand 2,
SPLRA examines the status of that operand,
and, 1if necessary, of operand 3. If the
status of operand 2 indicates that it is in
a register or if the statuses of operands 2
and 3 indicate that neither is a register,
SPLRA assigns operand 2 a register. It
selects the register according to the type
of operand (refer to Table 2), and places
the number of that register into the R2
field of the text entry.

To assign a register to the base address
of operand 2, SPLRA determines the status
of operand 2. If the status of that
operand indicates that it 1is not in a
register, it assigns a register to the base
address of operand 2. The appropriate
register 1is selected according to Table 2,
and the register number is placed into the
B2 field of the text entry. If the status
of operand 2 indicates that it is in a

register, SPLRA does not assign a register
to the base address of operand 2. SPLRA
uses a similar procedure in assigning a

register to the base address of operand 3.

If the status of operand 3 indicates
that it is in a register, SPLRA assigns the
appropriate register (refer to Table 2) to
that operand, and enters the number of that
register into the R3 field.

Operand 1 is always assigned a register.
SPLRA selects the register according to the
type of operand 1 (refer to Table 2), and
places the number of that register into the
R1 field.

The base address of operand 1 is
assigned a register only if the status of
operand 1 indicates that it is to be stored
into. If such is the case, SPLRA selects



the appropriate register, and records the
number of that register in the Bl field.
If the status of operand 1 indicates that
it is not to be stored into, SPLRA does not
assign a register to the base address of
operand 1.

When all the operands of the text entry
and their associated base addresses are
assigned registers, the next text entry is
obtained, and the status setting and reg-
ister assignment processes are repeated.
After all text entries in the block are
processed, control is returned to the con-

trol routine of phase 20, which then makes
the next block available to the basic
register assignment routines. When the
processing of all blocks 1is completed,

control is passed to the FSD.

Full Register Assignment

During full register assignment (also
refer to "Full Register Assignment During
Complete Optimization"), as during basic
register assignment, registers are assigned
to the text entry operands and their asso-
ciated base addresses, and the machine code
to be generated for the text entries is
specified. To improve object module effi-
ciency, these functions are performed in a
manner that reduces the number of instruc-
tions required to load base addresses and
operands. This process reduces the number
of required 1load instructions by taking
greater advantage of all available reg-
isters, by assigning the registers as need-
ed to both base addresses and operands, by
keeping as many operands and base addresses
as possible in registers and available for
subsequent wuse, and by keeping the most
active base addresses and operands in reg-
isters where they are available for use
throughout execution of the entire object
module.

During full register assignment, reg-
isters are assigned at two levels:
"locally" and "globally." Local assignment
is performed on a block-by-block basis.
Global assignment is performed on the basis
of the entire module (if intermediate-
optimization has been specified).

For local assignment, an attempt is made
to keep operands whose values are defined
within a block in registers and available
for use throughout execution of that block.
This is done by assigning an available
register to an operand at the point at
which its value is defined. (The value of
an operand is defined when that operand
appears in the operand 1 position of a text
entry.) The same register is assigned to
subsequent uses (i.e., operand 2 or operand
3 appearances) of that operand within the
block, thereby ensuring that the wvalue of
the operand will be in the assigned reg-
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ister and available for use. However, if
more than one subsequent use of the defined

operand occurs in the block, additional
steps must be taken to ensure that the
value of that operand is not destroyed

between uses. Thus, when the text entries
in which the defined operand is used are
processed, the code specified for them must
not destroy the contents of the register
containing the defined operand.

Because all available registers are used
during full register assignment, a number
of operands whose values are defined within
the block can be retained in registers at
the same time. '

Applying the above concept to an exam-
ple, consider the following sequence of
phase 15 text entries;

A=X+Y
C=A+ 12
F=A+C

A register is assigned to A at the point at
which its value is defined, namely in the
text entry A = X + Y. The same register is
assigned to the subsequent uses of A. The
value of A will be accumulated in the
assigned register and can be used in the
subsequent text entry C = A + Z. However,
because A is also used in the text entry
F=A+ C, the contents of the register
containing A cannot be destroyed by the

code generated for the text entry
C =A+ Z. Thus, when the text entry C = A
+ -Z 1is processed, instructions are speci-

fied for that text entry that use the
register containing A, Dbut that do not
destroy the contents of that register.

In the example, C is also defined and
supbsequently used. To that defined operand
and its subsequent uses, a register is
assigned. The assigned register is differ-
ent from that assigned to A. The value of
C will be accumulated in the assigned
register and can be used in the next text
entry. The text entry F = A + C can then
be evaluated without the need of any load
operand instructions, because both the
interacting operands (A and C) are in
registers.

This type of processing typifies that
performed during local assignment for each
block. When all blocks are processed,
global assignment for the source module is
carried out.

Global assignment increases the effi-
ciency of the object module as a whole by
assigning registers to the most active
operands and base addresses. The activi-
ties of all operands and base addresses are
computed prior to global assignment. The
first register available for global assign-
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ment is assigned to the most active operand
or base address; the next available reg-
ister is assigned to the next most active
operand or base address; etc. As each such
operand or base address is processed, a
text entry, the function of which is to
load the operand or base address into the
assigned register, is generated and placed
into the first block (i.e., entry block) of
the module. When the supply of operands
and base addresses, or the supply of avail-
able registers, is exhausted, the process
is terminated.

All global assignments are recorded for
use in a subsequent text scan, which incor-
porates global assignments into the text
entries, and completes the processing of
operands that have neither been locally or
globally assigned to registers (e.g., an
infrequently used operand that is used in a
block but not defined in that block).

The full register assignment process is
divided into five areas of operation: con-
trol (subroutine REGAS), table building
(subroutine FWDPAS) , local assignment
(subroutine BKPAS), global assignment
(subroutine GLOBAS), and text updating
(subroutine STXTR). The control routine of
phase 20 (LPSEL) passes control to the full
register assignment control routine, which
directs the flow of control among the other
full register assignment routines.

The actual assignment of registers is
implemented through the use of tables built
by the table-building routine, with assis-
tance from the control routine. Tables are
built using the set of coordinate numbers
and associated dictionary pointers created
by phase 15 (MCOORD and MVD) for indexing.
The table-building routine constructs two
sets of parallel tables. One set, used by
the local assignment routine, contains
information about a text block; the second
set, used by the global assignment rou-
tines, contains information about the
entire module. (The local assignment and
global assignment tables are outlined in
Appendix A, "Register Assignment Tables.")

The flow of control through the full
register assignment routines is as follows:

1. The control routine (REGAS) makes a
pass over the MVD table and the dic-
tionary entries for the variables and
constants in the loop passes to it,
and constructs the eminence table
(EMIN) for the module, which indicates
the availability of the variables for
global assignment. The routine then
calls the table-building routine to
process the first block in the module.

(FWDPAS)
of 1local

2. The table-building routine
builds the required set
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assignment tables for the block and,
at the same time, adds information to
the global assignment tables under
construction. It then passes control
to the 1local assignment routine to
process the block. When processing of
the block is completed, control is
returned to REGAS.

3. The local assignment routine (BKPAS)
uses the tables supplied for the block
to perform local register assignment,
and returns control to FWDPAS when its
processing is completed.

4. The control routine (REGAS) selects
the next block in the module, and
passes it to the table-building rou-
tine, which then passes control to the
local assignment routine. This proc-
ess continues until all blocks in the
module have been processed by the
table~building and 1local assignment
routines.

5. The control routine passes control to
the global assignment routine, which

performs global assignment for the
module.

6. When global assignment is complete,
the control routine calls the text
updating routine (STXTR) to complete

register assignment by entering the
results of global assignment into the
text entries for the module. Control
is then returned to the control rou-
tine of phase 20 (LPSEL).

Table Building for Register Assignment:
The table-building routine performs a for-

ward scan of the intermediate text entries
for the block under consideration and
enters information about each text entry
into the local and global tables (refer to

Appendix A, "Register Assignment Tables").
The local assignment tables can accommodate
information for 100 text entries. If a
block contains more than 100 text entries,
the table-building routine builds the local

tables for the first 100 text entries and
passes this set of tables to the 1local
assignment routine. The local assignment

routine processes the text entries rep-
resented in the set of local tables. The
table-building routine then creates the
local tables for the next 100 text entries
in the block and passes them to the local
assignment routine. When the table-
building routine encounters the last text
entry for the block, it passes control to
the local assignment routine, although
there may be fewer than 100 entries in the
local tables.

The global tables contain information
relating to variables and constants
referred to within the module, rather than



to text entries. The global tables can
accommodate information for 126 variables
and constants in a given module. Variables
and constants in excess of this number
within the module are not processed by the
global assignment routine.

Local Assignment: Local assignment is
implemented via a backward pass over the
text items for the block (or portion of a
block) under consideration. The text items
are referred to by using the local assign-
ment tables, which supply pointers to the
text items.

The local assignment routine examines
each operand in the text for a block and
determines (from the 1local assignment

tabies) if the operand is eligible for
local assignment. To be eligible, an oper-
and must be defined and used (in that
order) within a block. Because 1local
assignment is performed via a backward pass
over the text, an eligible operand will be
encountered when it is used (i.e., in the
operand 2 or 3 position) before it is
defined.

When an operand of a text entry is
examined, the local assignment routine
(BKPAS) consults the 1local assignment
tables to determine that operand's eligi-
bility. If the operand is eligible, BKPAS
assigns a register to it. The register
assigned 1is determined by consulting the
register usage table (TRUSE). TRUSE is a
work table that contains an entry for every
register that may be wused by the local
assignment routine. A zero entry for a
particular register indicates that the reg-
ister is available for local assignment. A
nonzero entry indicates that the register
is unavailable and identifies the variable
to which the register is assigned. The
register usage table is modified each time
a register is assigned or freed.

BKPAS records the register assigned to
the used operand in the 1local assignment

tables and in the text item containing the
used operand. It sets the status of the
operand in the text entry to indicate that

it is in a register. If subsequent uses of
the operand are encountered prior to the
definition of the operand, BKPAS uses the
register assigned to the first use, and
records its identity in the text item. It
then sets the status bits for the operand
to indicate that it is in a register and is
to be retained in that register.

When a definition of the operand is
encountered, BKPAS enters the register
assigned to the operand into the text item
and sets the status for the operand to
indicate its residence in a register. Once
the register is assigned to the operand at
its definition point, BKPAS frees the reg-
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ister by setting the entry in the register

usage table +to zero, making the register
available for assignment to another oper-
and.

If the block being processed contains a
CALL statement, no common variables may be
considered for local assignment and no real
operands can be assigned to registers
across that reference. 1In addition, if the
block contains a reference to a function
subprogram, no local assignment may be made
for real operands across the reference to
that function. The local assignment rou-
tine assumes that:

1. All mathematical functions return the
result in general register 0 or
floating-point register 0, according
to the mode of tne function.

2. The imaginary portion of a
result is
register 2.

complex
returned in floating-point

If no register is available for assign-
ment to an eligible operand, an overflow
condition exists. In this case, BKPAS must
free a previously assigned register for
assignment to the current operand. It
scans the local assignment tables and se-
lects a register. It then modifies the
local assignment tables, text entries for
the block, and register usage table to
negate the previous assignment of the
selected register. The required register
is now available, and processing continues
in the normal fashion. ’

Global Assignment: The global assignment
routine (GLOBAS), unlike the local assign-
ment routine, does not process any of the
text entries for the module. The global
assignment routine operates only through
the set of global tables. The results of
global assignments are entered into the
appropriate text entries by the text updat-
ing routine.

Before assigning registers, the global
assignment routine modifies the global
assignment tables to produce a single
activity table for all operands and base
addresses in the module.

Global assignment is then performed
based on the activity of the eligible

operands and base addresses.

GLOBAS determines the eligibility of an
operand or base address by consulting the
appropriate entry in the global assignment
tables. Eligible operands are divided into
two categories: floating point and fixed
point. The two categories are processed
separately, with floating-point quantities
processed first.
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A register usage table (RUSE) of the
same type as described under local assign-
ments (TRUSE) is used by the global assign-
ment routine. For each category of oper-
ands, GLOBAS selects the eligible operand
with the highest total activity and assigns
it the first available register of the same
mode. It records the assignment in the
register wusage table and in the global
assignment tables. GLOBAS then selects the
eligible operand with the next highest
activity and treats it in the same manner.
Processing faor each group continues until
the supply of eligible operands or the
supply of available registers is exhausted.

If the module contains any CALL state-
ments, real and common variables are ineli-
gible for global assignment. If the module
contains any references to function subpro-
grams no global assignment can be performed
for real quantities. In other words, if a
module contains both a reference to a
subroutine and to a function subprogram,
global assignment is restricted to integer
and 1logical operands that are not in com-
mon.

Text Updating: The text wupdating routine
(STXTR) completes full register assignment.
It scans each text entry within the series
of blocks comprising the module, looking at
operands 2, 3, and 1, in that order, within
each text entry. As each operand is proc-
essed, STXTR interrogates the completed
global assignment table to determine if a

global assignment has been made for the
operand. If it has, STXTR enters the
number of the register assigned into the

text entry and sets the operand status bits
to indicate that the operand is in a
register and is to be retained in that
register.

If both a local and a global assignment
have been made for an operand, the global
assignment supersedes the local assignment
and STXTR records the number of the global-
ly assigned xrxegister in the text items
pertaining to that operand. It also sets
the status bits for such an operand to
indicate that it is in a register and is to
be retained in that register.

If a register has not been assigned
either 1locally or globally for an operand,
STXTR determines and records in the text
entry the required base register for the
base address of that operand. If the base
address corresponds to one that has been
assigned a register during global assign-
ment, STXTR assigns the same register as
the base register for the operand. If a
register has not been assigned to the base
address of the operand during global
assignment, it assigns a spill register
(register 0 or 15) as the base register of
the operand. STXTR sets the operand's base

Lué6

status bits to indicate whether or not the
base address 1is in a register. °(The base
address will be in a register if one was
assigned to it during global assignment.)
It then assigns the operand itself a spill
register (general register 0 or 1 or
floating-point register 0, depending upon
its mode).

As part of its text wupdating function,
STXTR allocates temporary storage where
needed for temporaries that have mnot been
assigned to a register, keeps track of the
allocated temporary storage, and completes
the register fields of text entries to
ensure compatibility with phase 25. Oon
exit from the text updating routine, all
text items in the module are fully formed
and ready for processing by phase 25. The
text updating routine returns control to
the full register assignment control rou-
tine (REGAS) upon completion of its func-
tions. REGAS, in turn, returns control to
the control routine of the phase (LPSEL).

BRANCHING OPTIMIZATION

This portion of phase 20 optimizes
branching within the object module. The
optimization is achieved by generating RX-
format branch instructions in place of
RR-format branch instructions wherever
possible.

The use of RX-format branches eliminates
the need for an instruction to load the
branch address into a general register
preceding each branching instruction.
Thus, branching optimization decreases the
size of the object module by one instruc-
tion for each RR-format branch instruction
in the object module that can be replaced
by an RX-format branch instruction. It
also decreases the number of address con-
stants required for branching.

Phase 20 optimizes branching instruc-
tions by calculating the size of each text
block (number of bytes of object code to be
generated for that block) and by determin-
ing those blocks that can be branched to
via RX-format branch instructions.

Subroutine BLS calculates the sizes of
all text blocks after full register assign-
ment for the module is completed. Subrou-
tine LYT then uses the gathered block size
information to detexrmine the blocks that
can be Dbranched to by means of RX-format
branch instructions. BLS calculates the
number of bytes of object code by:

1. Examining each text item operation
code and the status of the operands
(i.e., in registers or not).



2. Determining, from a reference table,
the number of bytes of code that is to
be generated for that text item.

BLS accumulates these values for each block
in the module. In addition, it increments
the block size count by the appropriate
number of bytes for each encountered ref-
erence to an in-line routine and for each
required prologue and epilogue, if a sub-
program program is being compiled (refer to

Phase 25, "Prologue and Epilogue
Generation").
After BLS computes all block sizes,

subroutine LYT determines those text blocks
that can be branched +to via RX-format
branch instructions. A text block, once
converted to machine code, can be branched
to via an RX-format branch instruction if
the relative address of the beginning of
that block is displaced 1less than 4096
bytes from an address that is loaded into a
reserved register.

The following text discusses reserved
registers, the addresses loaded into them,
and the processing performed by LYT to
determine the source module blocks that can
be branched to via RX-format branch
instructions.

Reserved Registers

Reserved registers are allocated to con-
tain the starting address of the adcon
table and subsequent 4096-byte blocks of
the object module. The criterion wused by
phase 20 1in reserving registers for this
purpose is the number of text entries that
result from phase 15 processing. (Phase 15
counts the number of text entries that
result from its processing and passes the
information to phase 20.) For relatively
small source modules (approximately 70
source statements), phase 20 reserves only
one register. For sufficiently large
source modules (approximately 280 source
statements), a maximum of four is reserved.
The registers are reserved, as needed, in
the following order: register 13, 11, 10,
and 9.

Note: Phase 20 also reserves register 12
to contain the relative address of the
"constants" portion of text information

(see Figure 11). It is used to refer to
the constants and/or variables that occupy
locations within the first 4096 bytes of
the text information portion of the object
module.

Reserved Register Addresses

The addresses placed into the reserved
registers as a result of the execution of
the initialization instructions (refer to
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Phase 25,
are:

"Initialization Instruction")

e Register 13 - address of main prcgram
(or subprogram) save area.?

® Register 11 (if reserved) - address of
the save area plus 4096.

» Register 10 (if reserved) - address of
the save area plus 2(4096).

¢ Register 9 (if reserved) - address of

the save area plus 3(4096).

Block Determination and Subsequent
Processing

Because the instructions resulting from

the compilation are entered into text
information immediately after the adcon
table (see Figure 11), certain text blocks

are displaced less than 4096 bytes from an
address 1in a reserved register. Such
blocks can be ‘branched to by RX-format
branch instructions that use the address in
a reserved register as the base address for
the branch.

To determine the Dblocks that can be
branched to via RX-format branch instruc-

tions, subroutine LYT computes the dis-
placement (using the block size
information) of each biock from the address
in the appropriate reserxrved register. The
first reserved register address considered
is that in register 13. If a block dis-
placed 1less than 4096 bytes from that

address exists, LYT enters the displacement
of that block (from the address) into the
statement number entry for the statement
number associated with the beginning of
that Dblock. It also places in that state-
ment number entry an indication that the
block can be transferred to via an RX-
format branch instruction, and records the
number of the reserved register to be used
in that branch instruction.

When LYT has processed all blocks
displaced less than 4096 bytes from the
address in register 13, it processes those
displaced less than 4096 Dbytes from the
addresses in registers 11, 10, and 9 (if
reserved) in a similar manner.

The information placed in the statement
number entries is used during code genera-
tion, a phase 25 process, to generate
RX-format branch instructions.

1Register 13 is used to refer to the adcon
table, which resides in text information
jmmediately after the initialization

instructions (see Figure 11).
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STRUCTURAL DETERMINATION

To achieve complete optimization, the
structural determination routines of phase
20 (TOPO and BAKT) identify module loops
and specify the order in which they are to
be processed. Loops are identified by
analyzing the block connection information
gathered by phase 15 and recorded in the
forward connection (RMAJOR) and backward
connection (CMAJOR) tables. The connection
information indicates the flow of control
within the module and, therefore, reflects
which blocks pass control among themselves
in a cyclical fashion.

Loops are ordered for processing start-
ing with the innermost, or most often
executed, loop and working outward. The
inner-to-outer loop sequence is specifed so
that:

e Text entries will not be relocated into
loops that have already been
processed.?

e The full register “capabilities of
Systems/360 can first be applied to the
most frequently executed (innermost)
loop.

Loop identification 1is a sequential

process, which first requires that a back
dominator be determined for each text
block. The back dominator of a text block

(block 1I) 1is defined as the block nearest
to block I through which control must pass
before block I receives control for the
first time. The back dominators of all
text Dblocks must be determined before loop
identification can be continued. After all
back dominators have been determined, a

chain of back dominators is effectively
established for each block. This chain
consists of the back dominator of the

block, the back dominator of the Dback

dominator of the block, etc.

Figure 9 illustrates the concept of back
dominators. Each block in the figure rep-
resents a text Dblock. The blocks are
identified by single 1letter names. The
back dominator of each block is identified
and recorded above the upper right-hand
corner of that block.

When all back dominators are identified,
a back target and a depth number for each

1The text optimization process relocates
text entries from within a loop to an outer
loop. Thus, if an outer loop were proc-
essed first, text entries from an inner
loop might be relocated to the outer loop,
thereby requiring that the outer 1loop be
reprocessed.
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text block are determined. A block (block
I) has a back target (block J) if:

e There exists a path from block I to
itself that does not pass through block
J.

e Block J 1is the nearest block in the
chain of back dominators of block I
that has only one forward comnnection.

The text blocks constituting a loop are
identifiable because they have a common
back target, known as the back target of
the loop.

The depth number for a Dblock indicates
the degree to which that block is nested
within loops. For example, if a block is
an element of a 1loop that is contained
within a loop with a depth number of one,
that block has a depth numper of two. All
blocks constituting the same 1loop (i.e.,
all blocks having a common target) have the
same depth number. guyy
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Figure 9. Back Dominators

The depth numbers computed for the
blocks that comprise the various loops are
used to determine the order in which the
loops are to be processed.

Figure 10 illustrates the concepts of
back targets and depth numbers. Again each
block in the figure represents a text
block, which is identified by a single
letter name. In this figure, the back
target of each block 1is identified and



recorded above the upper right-hand corner
of that block. The depth number for the
block is recorded above the upper left-hand
corner of the block. Note that blocks that
pass control among themselves in a looping
fashion have a common back target and the
same depth number. Also note that .the
blocks of the two inner loops have the same
depth numbers, although they have different
back targets.

When the back target and depth number of
each text block has been determined, loops
are identified and the order in which they
are to be processed 1is specified. The
loops are ordered according to the depth
number of their blocks. The loop whose
blocks have the highest depth number is
specified as the first to be processed; the
loop whose blocks have the next highest
depth number is specified as the second to
be processed; etc. When the processing
order of all loops has been established,
the innermost loop is selected for process-
ing.

The following paragraphs describe the
processing performed by the structural
determination routines to:
e Determine the back dominator of each
text block.

e Determine the back target and depth
number of each text block.

e Identify and order loops for process-
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Figure 10. Back Targets and Depth Numbers
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Determination of Back Dominators

Subroutine TOPO determines the back dom-
inator of each text block by examining the
connection information for that block. The
first block processed by TOPO is the first
block (entry block) of the module. Blocks
on the first level (i.e., Dblocks that
receive control from the entry block) are
processed next. Second-level blocks (i.e.,
blocks that receive control from first-
level blocks) are then processed, etc.

TOPO assigns the entry block
dominator of zero, because it has no back
dominator; it records the zero in the back
dominator field of the statement number
entry for that block (refer to Appendix A,
"Statement Number/Array Table"). TOPO
assigns each block on the first level
either its actual back dominator or a
provisional back dominator. If a first-
level block receives control from only one
block, that block must be the entry block
and 1is the back dominator for the first-
level block. TOPO records a pointer to the
statement number entry for the entry block
in the back dominator field of the
statement number entry for the first level-
block. If a first-level block receives
control from more than one block, TOPO
assigns it a provisional back dominator,
which is the entry block of the module.
All blocks on the first level are processed
in this manner.

a back

TOPO also assigns each block on the
second level either its actual back
dominator or a provisional back dominator.
If a second-level block receives control
from only one block, its back dominator is
the first-level block from which it
receives control. TOPO records a pointer
to the statement number entry for the
first-level Dblock in the back dominator
field of the statement number entry for the
second-level block. If more than one block
passes control to a second-level block,
TOPO assigns that block a provisional back
dominator. The provisional back dominator
assigned is a first-level block that passes
control to the second-level block under
consideration. Processing cf this type is
performed at each level until the last, or
exit, block of the module is processed.
TOPO then determines the actual back domi-
nators of blocks that were assigned provi-
sional back dominators.

For each block assigned a provisional
back dominator, subroutine TOPO makes a
backward trace over each path leading to
the block (using CMAJOR). The Dblocks at
which two or more of the paths converge are
flagged as possible candidates for the back
dominator of the block. When ail paths
have been treated, the relationship of each
possible candidate to the other possible
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candidates is examined. TOPO assigns the
candidate at the highest level (i.e., clos-
est to the entry block of the module) as
the back dominator of the block under
consideration; it records a pointer to the
statement number entry for the assigned
back dominator in the back dominator field
of the statement number entry for the block
under consideration. After the back domi-
nators of all text blocks are identified,
subroutine BAKT determines the back target
and depth number of each text block.

Determination of Back Targets and Depth
Numbers

Subroutine BAKT determines the back tar-
get of each text block through an analysis
of the backward connection information (in
CMAJOR) for that block. Block J 1is the
back target of block I if:

1. Block J is the nearest block in the
chain of back dominators of block I.

2. Block J has only one forward connec-
tion.

3. There exists a path from block I to
itself that does not pass through
block J.

If a block J exists that satisfies all

the above conditions except the second,
then the back target of block J is also the
back target of block I.

If a block J satisfying conditions 1 and
3 does not exist, then the back target of
block I is zero.

When the
identified,
depth number.

back target of a block is
that block is also assigned a

Back targets and depth numbers are de-
termined for text blocks in the same order
as back dominators are determined for them.
The first block of the module is the first
processed; first-level Dblocks are consid-
ered next; etc.

BAKT assigns the first or entry block
both a back target and depth number of
zero, because it does not have a back
target and is not in a loop. It records
the depth number (zero) in the loop number
field of the statement number entry for the
entry block (refer to Appendix a,
"Statement Number/Array Table").

The processing performed by BAKT for
each other block depends upon whether one
or more than one block passes control to
that block. If more than one block passes
control to the block under consideration,
BAKT makes a backward trace over all paths
leading to that block to locate its primary
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path. The primary path of a block (if one
exists) is a path that starts at that block
and converges on that block without passing
through any block in the chain of back
dominators of that block.

If such a path exists, BAKT obtains and
examines the nearest block in the chain of
back dominators of the block under consid-
eration. If the obtained block has a
single forward connection, BAKT assigns
that block as the back target of the block
under consideration. BAKT then assigns a
depth number to the block. The number is
one greater than that of its back target,
because the block is in a loop, which must
be nested within the loop containing the
back target. BAKT records the depth number
in the loop number field of the statement
number entry for the block.

If the obtained block has more than one
forward connection, BAKT assigns its back
target as the back target of the block
under consideration. BAKT then records in
the statement number entry for the block a
depth number one greater than that of its
back target.

If a Dblock that receives control from
two or more blocks does not have an asso-
ciated primary path, that block, if it is
in a loop at all, is in the same 1loop as

one of the blocks in its chain of back
dominators. To identify the loop contain-
ing the block (block I), BAKT obtains and

examines the nearest block to block I in
its «chain of back dominators that has two
or more forward connections. BAKT makes a
backward trace over all paths leading to
the optained block to determine whether or
not block I is an element of such a path.
If block I is an element of such a path, it
is in the same loop as the obtained block,
and BAKT therefore assigns block I the sane
back target and depth number as the
obtained block; it records the depth number
in the statement number entry for block I.

If block I is not an element of any path
leading to the obtained block, BAKT obtains
the next nearest block to bliock I in its
chain of back dominators that has two or
more forward connections and repeats the

process. If Dblock I is not an element of
any path leading to any block in its chain
of back dominators, block I is not in a
loop, and BAKT assigns it both a back

target and depth number of zero.

A Dblock that receives control from only
one block, if it is in a loop at all, is in
the same loop as one of the blocks in its
chain of back dominators. To identify the
loop containing a block (block I) that
receives control from only one block, BAKT
obtains and examines the nearest block to
block I in its <chain of back dominators



that receives control from two or more
blocks. BAKT makes a backward trace over
all paths leading to the obtained block to
locate its primary path (if any). If the
obtained block has a primary path, BAKT
retraces it to determine if block I is an
element of the path. If it is, block I is
in the same 1loop as the obtained block,
and, BAKT therefore assigns block I the
same back target and depth number as the
obtained block; it records the depth number
in the statement number entry for block I.

If the obtained block does not have a
primary path, or if it does have a primary
path, which, however, does not have block I
as an element, BAKT considers the next
nearest block to block I in its chain of
back dominators that receives control from
two or more blocks. The process is repeat-
ed until a primary path containing block I
is located (if any such path exists). If
block I is not in the primary path of any
block in its <chain of back dominators,
block I is not in a loop and BAKT assigns
it both a back target and depth number of
zero.

Identifying and Ordering Loops for
Processing

Subroutine BAKT orders blocks for proc-
essing on the basis of the determined back
target and deptn number information.

Blocks that have a common back target and
the same depth number constitute a loop.
BAKT flags the loop with the highest depth
number (therefore, the most deeply nested
loop) as the first loop to be processed.
It assigns the blocks constituting that
loop a loop number of one, indicating that
they form the innermocst loop, which is the
first to wundergo complete optimization.
(BAKT records the value 1 in the loop
number field of the statement number entry
for each block in that loop.) BAKT flags
the loop with the next highest depth number
as the second loop to be processed. It
assigns the blocks in that 1loop a loop
number of two, indicating that they form
the second (or next outermost) loop to be
processed. (A value of 2 1is recorded in
the loop number field of the statement
number entry for each block in that loop.)
BAKT repeats this procedure until the loop
with a depth number of one 1is processed.
It then assigns the highest loop number to
the blocks with a depth number of =zero,
indicating that they do not form a loop.

If at any time, groups of blocks with
the same depth number but different back
targets are found, each group is in a

different loop. Therefore, each such loop
is, in turn, processed before blocks having
a lesser depth number are considered.
Thus, if the blocks of two loops have the
same depth number, BAKT assigns the blocks
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of the first loop the next loop number. It
assigns the blocks of the second loop a
loop number one greater than that assigned
to the blocks of the first loop.

When 1loop numbers are assigned to the
blocks of all module loops, the order in
which the 1loops are to be processed has
been specified. Control is passed to the
routine that ‘determines the busy-on-exit
information and then to the loop selection
routine to select the first (innermost)
loop to be cperated upon. This loop con-
sists of all blocks having a loop number of
one.

BUSY-ON-EXIT INFORMATION

Before the module can be prccessed on a
loop-by-loop basis, information indicating
which variables are busy-on-exit from which
text blocks must be gathered. A variable
is busy immediately preceding a use of that
variable, but is not bpusy immediately
preceaing a definition of that variable.
Thus, & variable is busy-on-exit from the
blocks which are along alli paths connecting
a use and a prior definition of that
variable. This means that in subsequent
blocks the variable can be used before it
is defined. The busy-on-exit condition for
a variable assures that its proper value
exists in main storage or in a Tregister
along each path in which it is subsequently
used.

Information about the regions in which a
variable 1is busy or not busy determines
whether or not a definition of that varia-
ble can be wmoved out of a loop. For
example, if a variable is busy-on-exit from
the back target of a loop, text optimiza-
tion (see "Text Optimization") would not
attempt to move to the back target a
redefinition of that variable, because, if
moved, the value of the variable, as it is
processed along various paths from the back
target, might not be the desired one.
Conversely, if the variable is not busy-on-
exit, the redefinition can be moved without
affecting the desired value of the
variable. Thus, text optimization respects
the redefinitions of variables that are
busy-on-exit from the back target of a
loop.

The information about regions in which a
variable is busy or not busy also deter-
mines whether or not loads and stores of a
register assigned to the variable are
required. For example, in full register
assignment (see "Full Register Assignment
During Complete Optimization™), variables
that are assigned registers during global
assignment and that are busy-on-exit from
the back target of the loop must have an
initializing load of the register placed
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into the back target. The load is required
because the variable may be used before its
value is defined. Conversely, if the glob-
ally assigned variable is not busy-on-exit
from the back target, an initializing 1load
is unnecessary.

Phase 15 provides phase 20 with not
busy-on-entry information for each operand
that is assigned a coordinate (an MVD table
entry). The not busy-on-entry information
is recorded in the MVX field of the state-
ment number text entry for each text block
(see phase 15, "Gathering Constant/Variable
Usage Information"). An operand is not
busy-on-entry to a block, if in that block
that operand is only defined or defined
before it is used. Phase 20 converts the
not busy-on-entry information to busy-on-
entry information. BAn operand is busy-on-
entry to a block, if in that block that
operand is only used or used before it is

defined. Finally, phase 20 converts the
busy-on-entry information to busy-on-exit
information. The backward connection

information in CMAJOR is used to make the

final conversion.

The routine that performs the conver-
sions is BIZX. This routine determines
busy-on-exit information for each constant,
variable, and base variable having an asso-
ciated MVD table entry or coordinate. How-
ever, because constants and base variables
are only used, they are busy-on-exit
throughout the entire module. Therefore,
the remainder of this discussion deals with
the determination of busy-on-exit informa-
tion for variables.

Because RETURN statements (exit blocks)
and references to subprograms not supplied
by IBM constitute implicit uses of varia-
bles in common, all common variables and
arguments to such subprograms are first
marked as busy-on-entry to exit blocks and
blocks containing the references. The com-
mon variables and arguments are found by
examining the information table entries for
all variables in the MVD table. The module
is then searched for blocks that are exit
blocks and that contain references to sub-
programs not supplied by IBM. The coordi-
nate bit for each previously mentioned
variable is set on in the MVF field of the
statement number text entry for each such
block, while the same coordinate bit in the

MVX field is set off. This defines the
variable to be busy-on-entry to such a
block. During this process, a table, con-

sisting of pointers to exit blocks, is

built for subsequent use.

After the blocks discussed above have
been appropriately marked for common varia-
bles and arguments, BIZX, working with the
coordinate assigned to a variable, converts
the not busy-on-entry information for the
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variable to a table of pointers to blocks
to which the variable 1is busy-on-entry.
(The not busy-on-entry information for the
variable is contained in the MVX fields of
the statement number text entries for the
various text blocks.) At the same time,
the variable's coordinate bit in each MVX
field is set off. The busy-on-exit table
and CMAJOR are then used to set on the MVX
coordinate bit in the statement number text
entry for each block from which the varia-
ble is busy-on-exit. This procedure is
repeated until all variables have been
processed. Control is then passed to the
control routine of phase 20 (LPSEL).

To convert not busy-on-entry information
to busy-on-entry information, BIZX starts
with the second MVD table entry, which
contains a pointer to the variable assigned
coordinate number two, and works down the
chain of text blocks. The associated MVX
coordinate bit in the statement number text

entry for each block is examined. If the
coordinate bit 1is off, the corresponding
MVF coordinate bit is inspected. If the

MVF coordinate bit is on, a pointer to the
associated text block is placed into the
busy-on-entry table. This defines the

variable to be busy-on-entry to the block
(i.e., the variable is used in the block
before it 1is defined). If the associated
MVX coordinate bit is on, indicating that
the variable is not busy-on-entry, BIZX
sets the bit off and proceeds to the next
block. This process is repeated until the
last text block has been processed.

After BIZX has set off the MVX coordi-
nate bit (associated with the variable
under consideration) in each statement num-
ber text entry and built a table of point-
ers to Dblocks to which the variable is
busy-on-entry, it determines the blocks
from which the variable is busy-on-exit.

Starting with the
busy-on-entry table,
CMAJOR) pointers to
backward connections of that entry. Each
backward connecting block 1is examined to
determine whether or not it meets one of
three criteria, which are:

first entry in the
BIZX obtains (from
all blocks that are

e The block contains a definition of the
variable (i.e., the variable's MVS
coordinate bit is on).

* The variable has already been marked as
busy-on-exit from the block.

¢ The block corresponds to the busy-on-
entry table entry being processed.

If the block meets one of these
criteria, the variable is busy-on-exit from
the block and its associated MVX coordinate



bit is set on. (The backward connections
of that block are not explored.)

If the backward connecting block does
not meet any one of these criteria, the
variable is marked as busy-on-exit from
that block and that block's backward con-
nections are, in turn, explored. The same
criteria are then applied to the backward
connecting blocks. The backward connection
paths are explored in this manner until a
block in every path satisfies one of the
criteria.

If, during the examination of the back-
ward connections, an entry block (i.e., a
block lacking backward connections) is
encountered, the blocks in the table of
exit blocks, which was previously built by
BIZX, are used as the backward connections
for the entry block. Processing then con-
tinues in the normal fashion.

When blocks in all backward connecting
paths have satisfied one of the criteria,
BIZX obtains the next entry in the busy-on-
entry table and repeats the process. This
continues until the busy-on-entry table has
been exhausted.

When the busy-on-entry table has been
exhausted, the procedure of building the
busy-on-entry table and converting it to
busy-on-exit information is repeated for
the next MVD table entry. When all MVD
table entries have been processed, BIZX
passes control to LPSEL, which calls the
loop selection routines.

STRUCTURED SOURCE PROGRAM LISTING

If both the EDIT option and complete
optimization are selected, after subroutine
BIZX has compiled the busy-on-exit
information, control is passed to subrou-
tine SRPRIZ, which records on the SYSPRINT
data set a structured source program list-
ing. This 1listing indicates the loop
structure and logical continuity of the
source program. (A complete description of
the structured source listing is given in
the publication IBM _System/360 Operating
System: FORTRAN IV (H) Programmer's Guide.)

To produce the listing, SRPRIZ reads the
SYSUT1 data set prepared by phase 10 and
associates, by means of statement numbers,
the individual source statements with the
text blocks formed from them. By analysis
of the loop number information gathered for
the text blocks, SRPRIZ then identifies the
source statements that make up a particular
loop and flags them on the 1listing by
corresponding loop number. SRPRIZ also
uses the previously gathered back dominator
information to compute listing indentations
for the statements. The indentations show
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dominance relationships; that is, SRPSIZ
indents the statements that form a text
block from the statements that form the
back dominator of that block.

LOOP SELECTION

The loop selection routines of phase 20
(TARGET, BASVAR, and BSYONX) select the
loop to be processed and provide the text
optimization and full register assignment
routines with the information required to
process the loop.

The 1loop to be processed is selected
according to the value of a loop number
parameter, which is passed to the loop
selection routines. The control routine of
phase 20 (LPSEL) sets this parameter to one
after the process of structural determina-
tion is complete. The loop selection rou-
tine TARGET is called to select the 1loop
whose blocks have a corresponding loop
number. The selected loop is then passed
to the text optimization routines. When
text optimization for the loop is complet-
ed, the control routine increments the
parameter by one, sets the loop number of
the blocks in the loop just processed to
that of their back target, and marks those
blocks as completed. The control routine
again calls TARGET, which selects the 1loop
whose blocks correspond to the new value of
the parameter. The selected loop is then
passed to the text optimization routines.
This process is repeated until the outer-
most loop has been text-optimized.

After text optimization has processed
the entire module (i.e., the last loop),
the control routine removes the block com-
pletion marks, initializes the loop number
parameter to 1, and passes control to
TARGET to reselect the first loop. Control
is then passed to the full register assign-
ment routines. When full register assign-
ment for the loop is completed, the control
routine marks the blocks of the 1loop as
completed. It then increments the parame-
ter by 1 and passes control to TARGET to
select the next 1loop. Full register
assignment is then carried out on the loop.

This process is repeated until the outer-
most loop has undergone full register
assignment. (When full register assignment

has been carried out on the outermost loop,
the control routine passes control to the
routines that compute the size of each text
block and then to the routine that computes
the displacements required for branching
optimization.)

The loop selection routine TARGET uses
the value of the loop number parameter as a
basis for selecting the loop to be proc-
essed. TARGET compares the loop number
assigned to each text block to the parame-
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ter. It marks each block having a loop
number corresponding to the value of the
parameter as an element of the loop to be
processed. It does this by setting on a
bit in the block status field of the
statement number entry for the block (refer
to Appendix A, "Statement Number/Array
Table"). When all such blocks are marked,
the loop has been selected.

The information required by the text
optimization and full register assignment
routines to process the 1loop consists of
the following:

e A pointer to the back target of the

loop.

¢ A pointer to the forward target of the
loop (if any).

e Pointers to both the first and last

blocks of the loop.
* The loop composite matrixes.

After the 1loop has been selected, this

required information is gathered.

Pointer to Back Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the back
target of the 1loop. Although the back
target of the loop was previously identi-
fied during structural determination, it
was not saved. Therefore, its identity
must be determined again.

The loop selection routine TARGET deter-
mines the back target of the 1loop by
obtaining the first block of the selected
loop. It then analyzes the blocks in the
chain of back dominators of the first block
to locate the nearest block in the chain
that is outside the loop and that passed
costrol to only one block. That block is
the back target of the 1loop, and TARGET

saves a pointer to it for wuse in the
subsequent processing of the loop.
Pointer to Forward Target

The text optimization and full register

assignment routines place Dboth relocated
and generated text entries into the forward
target of the loop. The forward target of
a loop (if it exists) is the single block
to which the loop passes control after its
execution is complete.

To locate the forward target (if any),

the loop selection routine BSYONX analyzes
the backward connection information (in
CMAJOR) for each block that is not in the

It marks all such blocks
block

selected 1loop.
that receive control directly from a
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in the selected 1loop as exit blocks. If
only one exit block exists, that block is
the forward target of the 1loop. (The
forward target must not be entered from a
block not in the 1loop.) BSYONX saves a
pointer to the forward target for use in
the subsequent processing of the loop.

If the above condition is not met, the
loop does not have a defined forward tar-
get.

Pointers to First and Last Blocks

The pointers to the first and 1last
blocks of the selected loop indicate to the
text optimization and full register assign-

ment routines where they are +to initiate
and terminate their processing. To make
these pointers available, and 1loop selec-

tion routine TARGET merely determines the
first and last blocks of the selected 1loop
and saves pointers to them for use in the
subsequent processing of the loop. To
determine the first and last blocks, TARGET
searches the statement number chain for the
first and last entries having the current
loop number. The block associated with
those entries are the first and last in the
loop.

Loop Composite Matrixes

The loop composite matrixes, LMVS, LMVF,
and LMVX, provide the text optimization and
full register assignment routines with a
summary of which operands are defined with-
in the selected loop, which operands are
used within that loop, and which operands
are busy-on-exit from that loop. (An oper-
and is busy-on-exit from the loop if it is
used before it is defined in any path along
which control flows from the loop.)

The LMVS matrix indicates which operands
are defined within the 1loop. The loop
selection routine BASVAR forms LMVS by
combining, via or OR operation, the indi-
vidual MVS fields in the statement number
text entry of every block in the selected
loop.

The LMVF matrix indicates which operands
are used within the loop. BASVAR forms it
by combining, wvia an OR operation, the
individual MVF fields 1in the statement
number text entry of every block in the
selected loop.

The LMVX matrix indicates which operands
are busy-on-exit from the selected 1loop.
BSYONX forms it during its search for the
forward target of the loop. BSYONX exam-
ines the text entries of each block that is
not in the selected loop and that receives
control from a block in that 1loop. Any
operand in the text entries of such a block
that is either omnly used in the block or



used before it is defined 1is busy-on-exit
from the 1loop. BSYONX sets on the bit in
the LMVX matrix that corresponds to the
coordinate assigned to each such operand to
reflect that it (i.e., the operand) is
busy-on-exit from the loop.

TEXT OPTIMIZATION

The text optimization process of phase
20 detects text entries within the loop
under consideration that do not contribute
to the loop's successful execution. These
non-essential text entries are either com-
pletely eliminated or are relocated to a
block outside of the current loop. Because
the most deeply-nested loops are presented
for optimization first, the number of text
entries in the most strategic sections of
the object module will approach a minimum.

The processing of text optimization is
divided into four logical sections: common
expression elimination, forward movement,
backward movement, and strength reduction.

¢ Common expression elimination optimizes
the execution of a loop by eliminating
unnecessary re-computations of identi-
cal arithmetic expressions.

* Forward movement optimizes the execu-
tion of a loop by relocating to the
forward target computations essential
to the module but not essential to the
current loop.

e Backward movement optimizes the execu-
tion of a 1loop by relocating to the
back target computations essential to
the module but not essential to the
current loop.

s Strength reduction
incrementation of DO indexes and the
computation of subscripts within the
current loop. Modification of the DO
increment may allow multiplications to
be relocated into the back target. If
the DO increment is not busy-on-exit
from the 1loop, it may be completely
replaced by a new DO increment that
becomes Dboth a subscript value and a
test value at the bottom of the DO.

optimizes the

The first three of the above sections
are similar in that they examine text
entries in strict order of occurrence with-
in the loop.

The last section does not examine indi-
vidual text entries within the loop;
instead, the TYPES table, constructed prior
to its execution, is consulted for optimi-
zation possibilities. Furthermore, an
interaction of entries in the TYPES table
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must exist Dbefore processing can proceed.
The TYPES table contains pointers to type
3, 4, 5, 6, and 7 text entries. The
various types, their definitions, and the
section(s) of text optimization that proc-
ess them are outlined in Table 3. Pointers
to type 1 and type 2 text entries are not
entered into the TYPES table. The reason
is that such types have already been proc-
essed during backward movement. (Although
type 4 text entries are included in the
table, they are not optimized by this
version of the compiler.)

The following text describes the proc-
essing performed by each of the sections of
the text optimization. An example illus-
trating the type of processing of each
section 1is given in Appendix D. These
examples should be referred to when reading
the text describing the processing of the
sections.

Common Expression Elimination

The object of common expression elimina-
tion, which is carried out by subroutine
XPELIM, is to eliminate any unnecessary
arithmetic expressions. This is accom—
plished by eliminating text entries, one at
a time, until the entire expression disap-
pears. An arithmetic text entry is unnec-
essary if it represents a value (calculated
elsewhere in the loop) that may be used
without modification. A value may be used.
without modification if, between appearan-
ces of the same computation, operands 2 and
3 of the text entry are not redefined. The
following paragraphs discuss the processing
that occurs during common expression elimi-
nation.

Within the current loop, XPELIM examines
each uncompleted block (i.e., a block that
is not part of an inner 1loop) for text
entries that are candidates for elimina-
tion. A text entry is a candidate if it
contains an arithmetic, logical, or sub-
sScript operator. Once a candidate is
found, XPELIM attempts to locate a matching
text entry. A text entry matches the
candidate if operand 2, operand 3, and the
operator of that text entry are identical
to those of the candidate. If either
operand 2 or 3 of the matching text entry
is redefined between that text entry and
the candidate, the match is not accepted.
The search for the matching text entry
takes place in the following locations:

s In the same
between the
candidate.

block as the candidate,
first text entry and the

e In a back dominator (see note) of the
block in which the candidate resides.
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Table 3. Text Entry Types

T 1 1
| TYPE | DEFINITION | PROCESSED BY ]
pom—m——t - p— — -1
| Type 1 | A text entry having an absolute constant? | |
| | in either the operand 2 or operand 3 | Backward Movement |
| | position. | |
t + -~ - S —mm—f
| Type 2 | A text entry having stored constants2 in | Backward Movement |
| | both the operand 2 and operand 3 positions. | |
L 4 - —_— 1 - e e e e e e e e e e e e e e e e e e _'
T T T
| Type 3 | An inert text entry (i.e., a text entry | |
] | that is a function of itself and an addi- | Strength Reduction
| | tive constant; e.g., J=J+1) |
p=mmmmmt . t 1
| Type 4 | A subscript text entry | |
8 4 1 ———— 4
L} T T 1
| Type 5 | A text entry whose operand 1 (a temporary) |
| | is a function of a variable (or temporary) | Strength Reduction |
| | and a constant, and whose operator is |
| | multiplicative (¥, /, or +). | |
L 1l 1
T N T ‘—_"
| Type 6 | A text entry whose operand 1 (a temporary) | ]
| | is a function of a variable (or temporary) | Strength Reduction
| | and a constant, and whose operator is | |
| | additive (+, -, or <). |
| $ {
| Type 7 | A branch text entry | Strength Reduction |
L L —_— 4
r 1
|*Absolute constants are those that agree with the definition of numerical constants as |
| stated in the publication IBM System/360 Operating System: FORTRAN IV. |
I I
|2A stored constant is a variable that is not defined within a loop, and thus its value |
| remains constant throughout execution of that loop.

L _ _—

Note: Only back dominators that are not
elements of previously processed loops and
that are within the confines of the current
loop are considered. The first back domi-
nator considered is the one nearest to the
block being processed. The next considered
is the back dominator of the nearest back
dominator, etc.

When a
XPELIM performs elimination in the
ing way:

matching text entry is found,
follow-

e If operand 1 of the matching text entry
is not redefined between that text
entry and the candidate, XPELIM substi-
tutes that operand for operand 2 of the
candidate and converts the operator to
a store.

e If, on the other hand, operand 1 is
redefined, XPELIM generates a text
entry to save the value of operand 1 in
a temporary and inserts this text entry
into text immediately after the match-
ing text entry. It then replaces oper-
and 2 of the candidate with this tem-
porary, and converts the operator to a
store.
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e Finally, if operand 1 of the candidate
is a temporary generated by phase 15,
XPELIM replaces all uses of the tem-
porary with the new operand 2 of the
candidate and deletes the candidate.
Thus, the value of the matching text
entry 1is propagated forward for possi-
ble participation in another candidate.
This provides the 1link to the next text
item of the complete common expression.

in the block under
consideration are processed in the pre-
viously described manner. When the entire
block is processed, the next uncompleted
block in the loop is selected and its text
entries undergo common expression elimina-
tion. When all uncompleted blocks in the
loop are processed, control is returned to
the control routine of phase 20, which
passes control to the portion of phase 20
that continues text optimization through
forward movement.

All text entries

The overall 1logic of common expression
elimination is illustrated in Chart 11. An
example of common expression elimination is
given in Appendix D.



Forward Movement

Forward movement, which is carried out
by subroutine FORMOV, optimizes a loop by

moving text entries from the 1loop to the
forward target of the loop, an area where
they are executed less often. If the 1loop

does not have a defined forward target,
forward movement is bypassed and backward
movement is initiated. Only text entries
that are not required in the loop are moved
during forward movement. An example of
such a text entry is one whose operand 1 is
not needed elsewhere 1in the 1loop. The
following paragraphs describe the process-
ing that occurs during forward movement.

Within the 1loop currently being opti-
mized, FORMOV examines each uncompleted
block in the chain of back dominators of

the forward target (starting with the near-
est back dominator of the forward target
and proceeding as described in common
expression elimination) for text entries
that are candidates for forward movement.
(The block 1is examined in a bottom-to-top
fashion.) A text entry is a candidate for
forward movement if:

e The text entry contains an arithmetic
or logical operator.

e Operand 1 of the text entry is not used
in another text entry in the loop.

When a candidate is found, FORMOV per-
forms forward movement of the candidate in
one of two ways:

e If the operands of the candidate are
not defined in the text entries between
candidate and the forward target, FOR-
MOV moves the entire candidate to the
beginning of the forward target.

e If an operand of the candidate is
defined and if the expression (i.e.,
operand 2-operator-operand 3) in the
candidate contains a variable and tem-
porary, joined by a commutative opera-
tor, FORMOV generates a text entry to
store the variable in a new temporary.
It then replaces the candidate with
this text entry, moves the candidate to
the forward target, and replaces the
variable with a reference to the new
temporary.

All the text entries in the block under
consideration are processed in the pre-
viously described manner. When the entire
block is processed, the next uncompleted
block in the 1loop that is also a back
dominator of the forward target is selected
and its text entries undergo forward move-
ment. When all uncompleted blocks that are
back dominators of the forward target and
within the confines of the loop are proc-
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essed, control is returned to the control
routine of phase 20, which passes control
to the portion of phase 20 that continues
text optimization through backward move-
ment.

The overall logic of forward movement is

illustrated in Chart 12. An example of
forward movement is given in Appendix D.

Backward Movement

Backward movement, which is performed by
subroutine BACMOV, moves text entries from
a loop to an area that is executed less
often, the back target of the loop. During
backward movement, each uncompletea block
in the loop being processed is examined for
text entries that are candidates for back-
ward movement. To be a candidate for
backward movement, a text entry must:

e Contain an arithmetic or logical opera-
tor.

¢ Have operands 2 and 3 that are not

defined within the loop.

When a candidate is found, BACMOV car-
ries out backward movement of that candi-
date in one of two ways:

e If operand 1 of the candidate is not
busy-on-exit from the back target of
the 1loop and if operand 1 of the

candidate 1is not defined elsewhere in
the loop, BACMOV moves the entire can-
didate to the back target of the loop.
(An operand is not busy-on-exit from
the back target if that operand is
defined in the loop before it is used.)

e If operand 1 of the candidate is busy-
on-exit from the back target of the
loop or if it is defined elsewhere in
the loop, BACMOV generates a text entry
to perform the computation of the
expression 1in the candidate and store
the result in a new temporary. It
moves this text entry to the end of the
back target of the loop and then repla-
ces the expression in the candidate
with operand 1, the new temporary, of
the generated text entry.

All the text entries in the block under
consideration are processed in the pre-
viously described manner. When the entire
block is processed, the next uncompleted
block in the loop is selected and its text
entries undergo backward movement. When
all uncompleted blocks in the 1loop are
processed, control is returned to the con-
trol routine of phase 20, which passes
control to the portion of phase 20 that
continues text optimization through
strength reduction.
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The overall logic of backward movement
is illustrated in Chart 13. An example of
backward movement is given in Appendix D.

Two additional optimization processes
are performed concurrently with backward
movement . They are the elimination of
simple stores and of arithmetic expressions
that appear in text entries and are func-
tions of integer constants.

Elimination of Simple Stores: BACMOV
removes unnecessary simple stores (i.e.,
text entries of the form "operand 1 =

operand 2") from the block that is current-
ly undergoing backward movement. The fol-
lowing paragraphs describe the processing
that occurs during simple-store elimina-
tion.

During the scan of each uncompleted
block for text entries to be moved to the
back target, BACMOV checks for simple
stores that are candidates for elimination.
A simple store is a candidate for elimina-
tion if its operand 1 is a variable.

When a candidate is found, BACMOV exam-
ines the characteristics of its operands to
determine if the candidate can be eliminat-
ed. The various combinations of operand
characteristics that permit a candidate to
be eliminated are given in Table 4. If the

characteristics of the operands of the
candidate conform to any one of these ten
combinations, BACMOV eliminates the candi-
date.

It does this by replacing the uses of
operand 1 (of the candidate to be
eliminated) with operand 2 of the candidate
in text entries between either:

e The candidate and the first redefini-
tion of either operand.

e The candidate and the end of the
(i.e., 1if a redefinition of
operand does not occur).

block
either

candidate. An
elimination is

BACMOV then deletes the
example of simple-store
illustrated in Appendix D.

Elimination of Text Entry Expressions
Involving Integer Constants: During the
scan of a block for text entries to be
moved to the back target, BACMOV also

checks for text entries whose operators are
arithmetic and whose operands 2 and 3 are
both integer constants. When such a text
entry is found, BACMOV eliminates the
arithmetic expression in the text entry by:

* Calculating the result of the
sion.

expres-

Table 4. Operand Characteristics That Permit Simple-Store Elimination

r T T T—=""" T T - —
|Operand 1 |Operand 1|Operand 2|Operand 1 used|Operand 1 re-|Operand 1 redefined be-|
|busy-on-exit |refined |redefined{in block below|defined below|low between redefini- |
| from block |below in |below in |redefinition |before redef-|tion of operand 2 and |
| | block | block |of operand 2 |inition of |first use of operand 1 |
| | | | | operand 2 |that follows redefini- |
| | | | | |tion of operand 2 |
p + + t 1 —1 -- -
|11. No | No | No | X | X | X ]
I8 —_— 4 1 1 —— 1 + ._____'
13 k) T T T T

12. No | Yes | No | X | X | X |
t . } t - - — 1
13. Yes | Yes | No | X ] X | X

I 4 1 1 1 1 — __.__4'
L} T T T T T

ja. No | No ] Yes | No | X | X

e ¥ t t fommm e oo 1
|5. No | Yes | Yes | No | Z | X

o + $ 1 1 t -- 4
}6. No | Yes | Yes | Yes | Yes | X |
F t t 4 1 R —
|17. No | Yes | Yes | Yes | No | Yes

- -1- } } ¥ t -—- —
|8. Yes | Yes | Yes | No | Z | X ]
% ——1- ¥ 1 1 + —
19. Yes | Yes | Yes ] Yes i Yes | X |
. + ¥ 1 e o -
j10. Yes | Yes | Yes | Yes | No | Yes |
I____ 1 1 i ] L ‘JI
|X = condition cannot exist because of previous characteristics of operands. |
|2 = characteristic is irrelevant.

L _—— -3




e Creating a new dictionary entry for the
result, which is a constant.

e Replacing the arithmetic
with the result.

expression

The text entry is thereby reduced to a
simple store, which may be eliminated by
simple-store elimination.

Strength Reduction

Strength reduction, which is performed
by subroutine REDUCE, optimizes loops that
are controlled by logical IF statements.
(DO loops are converted to loops controlled
by logical IF statements during Phase 10
processing.) Such loops are optimized by
modifying the expression (e.g., J<20) in
the IF statement; this enables certain text
entries to be moved from the loop to the
back target of the loop, an area of lower
frequency of execution. The processing of
strength reduction is divided into two
sections:

e Elimination of multiplicative text.
e Elimination of additive text.

Both of these sections perform strength
reduction, but each has a separate set of
criteria for considering a loop as a candi-
date for reduction. However, the manners
in which these sections implement reduction
are essentially the same.

Elimination of Multiplicative Text: To
eliminate maltiplicative text, REDUCE exam-
ines the loop being processed to determine
if it is a candidate for strength reduc-
tion. The loop is a candidate if:

e The 1loop contains an inert text entry
(a type 3 text entry).

e Operand 1 of the inert text
used in another text entry (in the
loop) whose operator indicates multi-
plication and whose other used operand
is a constant! (a type 5 entry).

entry is

¢ Operand 1 of the inert text entry is
the variable appearing in the expres-
sion of the 1logic IF statement that
controls the loop.

If the 1loop is a candidate, REDUCE
implements strength reduction in one of two
ways:

1. 1If the
entry
entry are
REDUCE:

in the inert text
multiplicative text
absolute constants,

constants
and the
both

1This other text entry is referred to as a
multiplicative text entry.
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a. Calculates a new constant (K)
equal to the product of the abso-
lute constants.

b. Generates another inert text entry

and inserts it into the 1loop
immediately after the original
inert text entry. The additive

constant in this text entry is K.

c. Modifies the in the

logical IF by:

expression

1. Replacing the branch variable
(see note) with operand 1 of
the generated inert text
entry.

2. Replacing the branch constant
(see note) with a constant
equal to the proauct of the
branch constant and K.

d. Deletes the original inert text
entry if operand 1 of that text
entry is not busy-on-exit from the
loop.

e. Moves the multiplicative text
entry to the back target of the
loop.

f. Replaces operand 1 of the multi-
plicative text entry with operand
1 of the generated inert text
entry.

g. Replaces the uses of operand 1 of
the multiplicative text entry that
remain in the loop with operand 1
of the generated inert text entry.

Note: The branch variable is the
variable in the expression of the
logical IF that is tested +to
determine if the 1loop is to be
reexecuted. The branch constant
is the constant to which the
branch variable is compared. For
example, IF (J<3) where J is the
branch variable and 3 1is the
branch constant.

If either of the constants in the
inert text entry or the multiplicative
text entry 1is a stored constant,
REDUCE performs similar processing to
that described above. However, prior
to generating the inert text entry, it
generates two additional text entries
and places them into the back target
of the 1loop. The first text entry
multiplies the two constants. Operand
1 of this text entry becomes the
additive constant in the generated
inert text entry. The second text
entry multiplies operand 1 of the
first generated text entry by the
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branch constant. Operand 1 of the
second text entry becomes the new
branch constant of the logical IF.

If additional multiplicative text
entries exist within the loop, the above
process is repeated. Repetitive processing
of this type results in a number of gener-
ated 1inert text entries, which may be
eliminated from the loop by the processing
of the second section of strength reduc-
tion.

Elimination of Additive Text: To eliminate
additive text, REDUCE examines the loop
being processed to determine if it is a
candidate for strength reduction. The loop
is a candidate if:

* The loop contains an inert text entry
(type 3).

e Operand 1 of the inert text entry is

used in the loop in another text entry
whose operator indicates addition?
(type 6).

If the loop is a candidate, the process-
ing performed by REDUCE to eliminate the
additive text entry is essentially the same
as that performed to eliminate a multi-
plicative text entry.

The overall logic of strength reduction
is illustrated in Chart 14. An example
showing both methods of strength reduction
is given in Appendix D.

FULL REGISTER ASSIGNMENT DURING COMPLETE
OPTIMIZATION

During complete optimization, full reg-
ister assignment is carried out on module
loops, rather than on the entire module, as
is the case for intermediate optimization.
Regardless of whether a loop or the entire
module is being processed, the full reg-
ister assignment routines operate essen-
tially in the same manner. However, the
optimization effect of full register
assignment, when carried out on a loop-by-
loop basis, is more pronounced. Because
the most deeply-nested loops are presented
for full register assignment first, the
number of register 1loads in the most
strategic sections of the object module
will approach a minimum. The processing of
a loop by full register assignment differs
from its processing of the entire module
only in the area of global assignment. An
understanding of the processing performed
on a loop, other than global assignment,
can be derived from the previous discussion

i1This text entry is
additive text entry.

referred to as an
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of full register assignment (refer to "Full
Register Assignment"). Global assignment
for a loop is described in the following
text.

When processing a loop, the global
assignment routine (GLOBAS) incorporates
into the current loop, wherever possible,
the global assignments made to items (i.e.,
operands and base addresses) in previously
processed loops. It does this to ensure
that the same register is assigned in both
loops if an item eligible for global
assignment in the current loop was globally
assigned in a previously processed loop.

Before the global assignment routine
assigns an available register to the most
active item of the current loop, it deter-
mines whether that item was globally
assigned in a previously processed loop.
(As global assignment is carried out on
each 1loop, all global assignments for that

loop are recorded and saved for wuse when
the next loop is considered.) 1If the item
was not globally assigned in a previously

processed loop, GLOBAS assigns it the first
available register. If the item was glob-
ally assigned in a previously processed
loop, the global assignment routine then
determines whether the register assigned to
the item in the previously processed 1loop
is currently available. If that register
is available, GLOBAS also globally assigns
it to the same item in the current loop.
If the register 1is not available, the
global assignment of that item in the
previously processed loop cannot be incor-
porated into the current loop. GLOBAS
therefore assigns the item an available
register different from that assigned to it
in the previously processed loop. GLOBAS
selects the eligible item with the next
highest activity in the current loop and
treats it in the same manner. Processing
continues 1in this fashion until the supply
of eligible items or the supply of availa-
ble registers is exhausted.

As each global assignment is made to an
active item, GLOBAS checks to determine
whether or not that item is busy-on-exit
from the back target of the loop. If the
item 1is busy-on-exit, GLOBAS generates a
text entry to load that item into the
assigned register and inserts it into the
back target of the 1loop. The load is
required to guarantee that the item is in a
register and available for subsequent use
during loop execution. If the item is
not-busy-on-exit, the load text item is not
required. If any globally assigned item is
defined within the loop and is also busy-
on-exit from the loop, GLOBAS generates a
text entry to store that item on exit from
the loop. The generated store is needed to
preserve the value of such an operand for



use when it is required
execution of an outer loop.

during the

GLOBAS records all global assignments
made for the current loop for use in the
subsequent wupdating scan (see "Full Reg-
ister Assignment") and also for incorpora-
tion, wherever possible, into subsequently
processed loops.

BRANCHING OPTIMIZATION DURING COMPLETE
OPTIMIZATION

During complete optimization, branching
optimization is carried out in the same
manner as during intermediate optimization.
After all loops have undergone full reg-
ister assignment, BLS is given control to
calculate the size of each block. When the
sizes of all blocks have been calculated,
subroutine LYT uses the block size informa-
tion to determine the blocks that can be
branched to by means of RX-format branch
instructions.

PHASE 25

Phase 25 produces an object module from
the compined output of the preceding phases
of the compiler. An object module consists
of four elements:

Text information.

External symbol dictionary.
Relocation dictionary.
Loader END record.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine 1language forrm. It
may contain unresolved external symbolic
cross references (i.e., references to sym-
bols that do not appear in the object
module). The external symbol dictionary
contains the information needed to resolve
the external symbolic cross references
appearing in the text information. The
relocation dictionary contains the informa-
tion needed to relocate the text informa-
tion for execution. The END record informs
the linkage editor of the 1length of the
object module and the address of its main
entry point.

An object module resulting from a compi-
lation consists of a single control sec-
tion, unless common blocks are associated
with the module. An additional control
section is included in the module for each
common block.

The object module produced by Phase 25
is recorded on the SYSLIN data set if the
LOAD option is specified by the FORTRAN
programmexr, and on the SYSPUNCH data set if
the DECK option is specified. If the LIST
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option is specified, Phase 25 develops and
records on the SYSPRINT data set an assem-
bler language listing of the instructions
and data of the object module. Error
messages produced during phase 25 (if any)
are also recoraed on the SYSPRINT aata set.

TEXT INFORMATION

Text information consists of the maéhine
language instructions and data resulting
from the compilation. Each text informa-
tion entry (a TXT record) constructed by
phase 25 can contain up to 56 Dbytes of
instructions and data, the address of the
instructions and data relative to the
beginning of the control section, and an
indication of the contrcl section that
contains them. A more detaileda discussion
of the wuse and format of TXT recoxds is
given in the publication IBM System/360
Operating System: Linkage Editor, Program

Logic Manual.

The major portion of phase 25 processing
is concernea with text information con-
struction. In building text information,
phase 25 optains each item that is to be
placed into text information, converts the
item to machine 1language form wherever
necessary, enters the item into a TXT
record, and places the relative address of
the item into the TXT record.

Phase 25 assigns relative addresses by
means of a liocation counter, which is
continually updated to reflect the location
at which the next item is to be placed into
text information. Whenever phase 25 begins
the construction of a new TXT record, it
inserts the current value of the 1location

counter into the address field of the TXT
record. The address - field of the TXT
record thereby indicates the relative
address of the instructions and data that

are placed into the record.

Figure 11 shows the
that Phase 25
information.

layout of storage
assumes in setting up text

Phase 25 constructs text information by:

¢ Reserving adcon table entries for the
referenced statement numbers of the
module.

e Entering the constants of the source

module. into TXT records. ‘

¢ Reserving storage within text informa-

tion for the variables and arrays of
the module.

e Translating FORMAT statements (i.e.,
phase 10 format text) to a form recog-

nizable by IHCFCOMH and entering the
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translated statements into TXT records.
(IHCFCOMH, a member of +the operating
system library (SYS1.FORTLIB), performs
object-time implementation of 170
statements. IHCFCOMH is explained in
Appendix E.)

Converting NAMELIST statements (i.e.,
phase 10 namelist text) to object-time
namelist dictionaries, which are used
by IHCFCOMH to implement READ-WRITE
statements using NAMELIST statements.

Generating the main program or
gram initialization instructions
entering them into TXT records.

subpro-
and

Completing the processing of the adcon
table entries and entering the resul-
tant entries into TXT records.

Assigning the initial values, as
fied, to the variables and
appearing in phase 15 data text.

speci-
arrays

prologue and epilogue
for a subprogram and
instructions into TXT

Generating the
instructions
entering these
records.

Converting phase 15720 standard text
into System/360 machine code and enter-
ing the code into TXT records.

Address
Registers

12
Constants
Variable and Arrays
Translated FORMAT statements
and object-time name list
dictionaries
For main program or
Initialization Instructions subprogram main
ent oint
13 . Y P!
Save Area
A Address Constants L
a (Adcons) T
4096 F .
Bytes Prologue For main entry
- point into
Epilogue subprogram only
1 > Instructions .
T (resul ting from text conversion) ""‘
4096 Subprogram Secondary Entry Coding For secondary
Bytes entry point into
Prologue a subprogram
Epilogue
10
4096 L | . J..,
Bytes T~ . nstructions -
4 (resulting from text conversion) F
Q>
Figure 11. Storage Layout for Text Infor-
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mation Construction

~the statements associated with such

Chart 21 shows the logic of phase 25
processing, down to, but not including,
conversion of text to machine code.

Adcon Table Entry Reservation

Prior to beginning its construction of
text information, subroutine LYT1 reserves
address constants for the referenced state-
ment numbers of the module and for the
statement numbers appearing in computed GO
TO statements. The address constants are
reserved so that the relative addresses of
state-
ment numbers can be recorded, and subse-
quently obtained during execution of the
object module, when branches to those
statements are required.

To reserve address constants for state-

ment numbers, subroutine LYT1 scans the
chain of statement number entries in the
statement number/array table. For each
encountered statement number that is ref-
erenced, LYT1 inserts into the appropriate
field of the associated statement number
entry a pointer to the next available entry
in the adcon table. The actual value to be
placed into the address constant set aside
for a statement number is determined during
text conversion (a subsequent phase 25
process), when the text representation of
that statement number is encountered.
Note: If branching optimization is being
implemented, LYT1 only reserves address
constants for statement numbers that are
associated with text blocks that can not be
branched to via RX-format branch instruc-
tions.

After all statement numbers are proc-
essed, address constants are likewise re-
served for the statement numbers appearing
in computed GO TO statements. LYT1 scans
the branch table chain (refer to Appendix
A, "Branch Table"), and sets aside an entry
in the ADCON table for each statement
number for which a branch table entry was
constructed. It also records a pointer to
the address constant reserved for each fall
through statement number in the initial
branch table entry for that statement num-
ber. LYT1 does not record pointers to the
address constants set aside for the actual
statement numbers of the computed GO TO
statements in their associated standard
branch table entries. The values to be
placed into the address constants for
statement numbers in computed GO TO state-
ments are also determined during text con-
version.

Constant Processing

Subroutine INITIL obtains the constants
of the source module from their information
table entries and places them into text



"information via TXT records. The address
field of each such record specifies rela-
tive addresses for the constants that cor-
respond to the relative addresses assigned
‘to them by CORAL in Phase 15.

Variable and Array Processing

Subroutine INITIL reserves storage with-
in text information for the variables and
arrays of the module between the last
constant and the first translated FORMAT
statement, or the first object-time name-
list dictionary, if FORMAT statements do
not exist in the module. To accomplish
this, INITIL assigns to the first trans-
lated FORMAT statement (or object-time
namelist dictionary) &a relative address
equal to the number of bytes occupied by
the constants, variables, and arrays of the
module.

FORMAT Statement Processing

If the source module contains READ/WRITE
statements requiring FORMAT statements, the
associate phase 10 format text must be put
into a form recognizable by IHCFCOMH. Sub-
routine FORMAT develops the necessary form
by obtaining the phase 10 intermediate text
representation of each FORMAT statement,
and translating each element (e.g., H for-
mat code and field count) of the statement
according to Table 5. FORMAT enters the

inserts the relative address of the
lated statement into the address constant
for the statement number associated with
the FORMAT statement.

trans-

NAMELIST Statement Processing

If the source module contains READ/WRITE
statements using NAMELIST statements, sub-
routine NLIST converts phase 10 namelist
text to object-time namelist dictionaries.
The object-time namelist dictionaries pro-
vide IHCFCOMH with the information required
to implement READ/WRITE statements using

namelists (refer to Appendix A, "Namelist
Dictionaries"). The dictionary developed
for each 1list in a NAMELIST statement

contains the following:
¢ An entry for the namelist name.

e Entries for the variables and arrays
associated with the namelist name.

e An end mark of zeros terminating the
list.
Each entry for a variable contains the

name, mode (e.g., integer*2 or real*il4), and
relative address of the variable. Both the
address and the mode are obtained from the
dictionary entry for the variable.

Each

entry for an array contains the

translated statement along with its rela- name of the array, the mode of its ele-
tive address into TXT records. It also ments, the relative address of its first
Table 5. FORMAT Statement Translation

r T T 1
| | | Translated Form (in hexadecimal) |
| FORMAT | b T T {
| Specification | Description | 1st byte | 2nd byte | 3rd byte |
- 1 } + t {
i | beginning of statement | 02 | | |
I n( | group count | ou | n | |
| n | field count | 06 | n | i
| nP | scaling factor | 08 | n* | i
| Fw.d | F-conversion | 0A | w | a |
| Ew.d | E-conversion | oC | w | d |
| Dw.d ] D-conversion | OE | w | d |
| Iw i I-conversion | 10 | w | |
| Tn | column set ] 12 | n | |
| Aw | A-conversion | 14 | W | |
| Lw | L-conversion | 16 | w | |
| nX | skip or blank | 18 | n | |
| nHtext | | | | |
| or | literal data | 1a | n | text |
| "text! | | | i |
| ) | group end | 1c | ] |
| / | record end | 1E | | i
| Gw.d | G-conversion | 20 | w | d i
| | end of statement ] 22 | | i
} 7w | Hexadecimal conversion ] 24 | w | |
% L —— 4 1 i gl
| *The first hexadecimal bit of the byte indicates the scale factor sign (0 if positive, |
|1 if negative). The next seven bits contain the scale factor magnitude. |
[ 1
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element, and the information needed to
locate a particular element of the array.
NLIST obtains the above 1information,

excluding the array name, from the informa-

tion table.

NLIST places the entries of the namelist
dictionary along with their relative
addresses into TXT records. It also places
the relative address of the beginning of
the namelist dictionary into the address
constant for the namelist name.

Initialization Instructions

Phase 25 generates the machine instruc-
tions for entry into a main program, a
subprogram, or a subprogram secondary entry
point. These instructions are referred to
as initialization instructions and are
divided into three catagories:

e Main program entry coding, which is
generated by subroutine ATTACH.

e Subprogram main entry coding, which is
generated by subroutine SUBR.

* Subprogram secondary entry coding,

which is generated by subroutine ENTRY.

Once generated, these instructions are
entered into TXT records.

Main Program Entry Coding: The initializa-
tion instructions generated by subroutine
ATTACH for a main program perform the
following functions:

e Save the contents of general registers
14 through 12.

® Load the reserved registers with their
associated addresses. (The address
loaded into register 13 is that of the
save area. The address loaded into
register 11, if reserved, is that of
the save area plus #4096 bytes. The
address 1loaded into register 10, if
reserved, is that of the save area plus
8192 bytes. The address loaded into
register 9, if reserved, is that of the
save area plus 12288 bytes.)

e L,oad the address of the main program
save area into register 4, and store
register 4 into the save area of the
calling program.

¢ Save register 13 in the new save area.

¢ Load register 15 with the address of

IHCFCOMH.

e Branch and link to subroutine IBFINT
(arithmetic interruption subroutine of
IHCFCOMH) so that it can set the inter-
ruption mask.
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e Load register 13 from register 4.
e Branch to apparent entry point.

e Load register 15 with the address of

IHCFCOMH.

¢ Branch and link to STOP entry point in
TIHCFCOMH.

e Constant for STOP 0.
¢ Set up a save area tnat receives the
contents of the main program registers,

if a subprogram is called.

e Set up the address constants to be
loaded into the reserved registers.

Note: At execution time, subroutine IBFINT
is given control to set the interruption
mask.

Subprogram Main Entry Coding: The initial-
ization instructions generated by subrou-
tine SUBR for the main entry point into a
suoprogram perform the following functions:

® Save the contents of general registers
14 through 12.

* Load the addresses of the prologue and
epilogue of the subprogram into reg-
isters. (For an explanation of pro-
logue and epilcque, refer to "Prologue
and Epilogue Generation.")

¢ Load the reserved registers with their
associated addresses.

e Load the address of the save area of
the subprogram into register 13.

¢ Save the address of the save area of
the calling routine and the address of
the epilogue of the subprogram in the
save area of the subprogram.

e Branch to the prologue.

¢ Set up a save area in which the con-
tents of the registers wused by the

subprogram are saved, should that sub-
program, in turn, call another subpro-
gram.

¢ Set up address constants in which the

addresses of the prologue and epilogue
of the subprogram and the addresses to
be placed into the reserved registers
are inserted.

Subprogram Secondary Entry Coding: The
initialization instructions for a subpro-
gram secondary entry point are essentially
the same as those required for the main
entry point. For this reason, phase 25
makes use of a number of the initiaiization




instructions for the main entry point in
processing secondary entry points.

Main entry point initialization imstruc-
tions that precede and include the instruc-
tion that 1loads the prologue and epilogue
addresses cannot be used, because each
secondary entry point has its own associat-
ed prologue and epilogue. Therefore, for
secondary entry points, subroutine ENTRY
generates initialization instructions that
perform the following functions:

e Save the contents of general
14 through 12.

registers

» Load the addresses of the prologue and
epilogue of the secondary entry point
into registers.

e Branch to the subprogram main entry
point initialization instruction that
loads the reserved registers with their
associated addresses.

e Set up address constants in which the
addresses of the prologue and epilogue

of the secondary entry point are
placed.

Subprogram secondary entry coding does
not occupy storage within the
"Initialization Instructions" section of
text information (see Figure 11). That
section is reserved for:

* Main program entry coding, if the

‘source module being compiled is a main

program.

e Subprogram main entry coding, if a
subprogram is being compiled.

The initialization instructions for sec-
ondary entry points are generated by sub-
routine ENTRY when the text representation
of an ENTRY statement is encountered during
the processing of intermediate text. . These
instructions reside in the "Instructions"
section of text information.

Adcon Table Processing

Entries in the compile-time adcon table
consist of the true address constants (base
addresses) assigned by CORAL for 1local
constants and variables and for common
variables, pointers to information table
entries for arguments and external ref-
erence address constants, temporaries and
constants generated by phase 20, and re-
served address constants, which are set
aside for statement numbers. The output
that the phase 25 subroutine NADOUT gener-
ates for the object-time adcon table con-
sists of TXT records and RLD records in the
case of true address constants. The RILD
records provide the information needed to

Section 2:

relocate the true address constants. (a
type 5 ESD is output for each common
block.) For argument address constants,
NADOUT obtains the relative addresses of

the arguments from their information table
entries and places them into TXT records.
It also includes RLD records for them. For
an external reference address constant,
NADOUT also includes a type 2 ESD record in
addition to the TXT and RLD records.
NADOUT outputs temporaries and generated
constants in TXT records. It does not
accompany them with RLD records.

NADOUT does not process address con-
stants for statement numbers and for state-
ment numbers appearing in computed GO TO
statements at this time. However, it re-
serves storage for them within the "address
constants" section of text information. It
does this by incrementing the location
counter by the number of address constants
set aside for such items times four. The
value of the updated location counter is
then assigned as the relative address of
the "prologue" if a subprogram is being
compiled or of the "instructions" if a main
program is being compiled.

As previously stated, the values to be
placed into the address constants for
statement numbers and statement numbers in
computed GO TO statements are determined
during text conversion, when that process
encounters the END statement.

Phase 15 Data Text Processing

The phase 25 subroutine DATOUT assigns
the initial values specified for variables
and arrays in phase 15 data text in the
following manner:

1. The relative address of the variable
or array to be assigned an initial
value or values is obtained and placed

into the address field of a TXT
record.
2. Each constant (one per variable) that

has been specified as an initial value
for the variable or array is then
obtained and entered 1into the TXT
record. (A number of TXT records may
be required if an array is being
processed.)

Such action effectively assigns the ini-
tial value, because the relative address of
the initial value has been set to equal the
relative address of its associated variable
or array element.

Proloque and Epilogue Generation

Phase 25 generates the machine code: (1)
to transmit parameters to a subprogram, and
(2) to return control to the calling rou-
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tine after execution of the subprogram.
Parameters are transmitted to the subpro-
gram by means of a prologue. Return is
made to the calling routine by means of an
epilogue. Prologues and epilogues are pro-
vided for subprogram secondary entry points
as well as for the main entry point.

Proloque: A prologue (generated by subrou-
tine PROLOG) is a series of load and store
instructions that transmit the values of
"call by value" parameters and the address-
es of "call by name" parameters to the
subprogram. (These parameters are
explained in the publication IBM System/360
Operating System: FORTRAN 1IV.)

When subroutine PROLOG generates a pro-
logue, it enters the prologue into TXT
records and inserts its relative address
into the address constant reserved for the
prologue address during the generation of

initialization instructions.

Epiloque: An epilogue (generated by sub-
routine EPILOG) is a series of instructions
that (1) return to the calling routine the
values of "call by value" parameters (if
any), (2) restore the registers of the
calling routine, and (3) return control to
the calling routine. (If "call by value"
parameters do not exist, an epilogue con-

sists of only those instructions required
to restore the registers and to return
control.)

When subroutine EPILOG generates an epi-
logue, it enters the epilogue into TXT
records and inserts its relative address
into the address constant reserved for the
epilogue address during the generation of
initialization instructions. (When phase
25 encounters the text representation of a
RETURN statement, a branch to the epilogue
is generated.)

Residence of Prologues and Epilogues: The
prologues and epilogues for secondary entry
points do not reside in the "Prologue and
Epilogue” section of text information (see
Figure 11). This section is reserved for
the prologue and epilogue of the main entry
point. The prologue and epilogue for a
secondary entry point into a subprogram are
generated immediately after the secondary
entry coding for the secondary entry point,
and reside in the "Instructions" section of
the text information following the secon-
dary entry coding.

Text Conversion

The final function of phase 25 is the
conversion of intermediate text into Oper-
ating System/360 machine code. (The text
conversion process is controlled by subrou-
tine MAINGN.) In converting the text,
phase 25 obtains each text entry and,
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depending upon the nature of the operator
in the text entry, passes control to one of
seven processing paths to convert the text
entry.

The seven processing paths are:

Statement Number Processing.
ENTRY Statement Processing.
I/0 Statement Processing.
CALL Statement Processing.
Code Generation.

RETURN Statement Processing.
END Statement Processing.

The logic of text conversion is illus-

trated in Chart 22.

STATEMENT NUMBER PROCESSING: When the
operator of the text entry 1indicates a
statement number, MAINGN passes control to
subroutine LABEL. LABEL then inserts the
current value of the location counter,
which is the relative address of the state-
ment associated with the statement number,
into the address constant for the statement
number. When the associated statement is
converted to machine code and placed into
text information, it resides at an address
equal to the value placed into the address
constant. All branches to that statement
are effected through the use of the address
constant.

If branching optimization is being
implemented, only statement number that can
not be branched to wvia RX format branch
instructions (i.e., statement numbers that
are not within the range of registers 13,

Note:

11, 10, and 9) are processed as described
above.

After the relative address has been
placed into the address constant for the

statement number, subroutine LABEL deter-
mines if that statement number appears in a

computed GO TO statement. If it does,
LABEL also inserts the relative address
into the appropriate field of the branch

table entry, or entries, for that statement
number. The relative address recorded in
the branch table entry is placed into the
storage reserved for it within text infor-
mation (refer to "Adcon Table Processing")
when the text representation of the END
statement is encountered.

ENTRY STATEMENT PROCESSING: When the oper-
ator of an intermediate text entry indi-
cates an ENTRY statement, subroutine MAINGN
passes control to subroutines ENTRY, PRO-
LOG, and EPILOG. These subroutines gener-
ate the following for the subprogram secon-
dary entry point:

secondary
section

entry coding
"Initialization

e Subprogram
(refer to the
Instructions").



¢ Prologue and epilogue (refer to
"Prologue and Epilogue Generation").

The machine code instructions that con-
stitute the above are entered into TXT
records.

I/0 STATEMENT PROCESSING: When the opera-
tor of the text entry indicates an I/0

statement, an I/0 list item, or the end of
an Is/O 1list, MAINGN passes control to
subroutine IOSUB, which generates an

appropriate calling sequence to IHCFCOMH to
perform, at object-time, the indicated
operation.

The calling sequence generated for an
I/0 statement depends on the type of the
statement (e.g., READ, BACKSPACE). The
calling sequence generated for an I/0 1list
item depends on the I/0 statement type with
which the 1list item is associated and on
the nature of the list item, i.e., whether
the item 1is a variable or an array. The
calling sequence generated for an end of an
I/0 1list depends on whether the end 1I/0
list operator signals:

e The end of an I/0 list associated with
a READ/WRITE requiring a FORMAT state-—
ment.

s The end of an I/0 list associated with

a READ/WRITE not requiring a FORMAT
statement.
Once the calling sequence is generated,
subroutine IOSUB enters it into TXT
records.

CALL STATEMENT PROCESSING: When the opera-
tor of the text entry indicates a CALL
statement, MAINGN passes control to subrou-
tine CALLER to generate a standard direct-
linkage calling sequence, which uses
general register 1 as the argument reg-
ister. The argument list is located in the
adcon table in the form of address con-
stants. Each address constant for an argu-
ment contains the relative address of the
argument. CALLER enters the calling
sequence into TXT records.

CODE GENERATION: Code generation converts
text entries having operators other than
those for statement numbers and ENTRY,
CALL, I/0, RETURN, and END statements into
System/360 machine code. To convert the
text entry, code generation uses four
arrays and the information in the text
entry. The four arrays are:

e Register array. This array is reserved
for register and displacement informa-
tion.

e Directory array. This array contains
pointers to the skeleton arrays and the

Section 2:

bit strip arrays associated with opera-
tors in text entries that undergo code
generation.

e Skeleton array. A skeleton array
exists for each type of operator in an
intermediate text entry that is to be
processed by code generation. The
skeleton array for a particular opera-
tor consists of all the machine code
instructions, in skeleton form and 1in
proper sequence, needed to convert the
text entry containing the operator into
machine code. These instructions are
used in various combinations to produce
the desired object code. (The skeleton
arrays are shown in Appendix C.)

e Bit strip array. A Dbit strip array
exists for each type of operator in a
text entry that is to undergo code
generation. The bit strip array for a
particular operator contains strips of
bits. One strip is selected for each
conversion involving the operator. The
bits in each strip are preset (either
on or off) in such a fashion that when
the strip is matched against the skele-
ton array, the strip indicates the
combination of instructions that is to
be used to convert the text entry.
(The bit strip arrays are shown with
their associated skeleton arrays in
Appendix C.)

In code generation, the actual base
registers and operational registers (i.e.,
registers in which calculations are to be
performed), assigned by phase 20 to the
operands of the text entry to be converted
to machine code, are obtained from the text
entry and placed into the register array.
Any displacements needed to load the base
addresses of the operands are also placed
into the register array. The displacements
referred to in this context are the dis-
placements of the base addresses of the
operands from the start of the adcon table
that contains the base addresses. These
displacements are obtained from the infor-
mation table entries for the operands.
This action is taken to facilitate subse-
quent processing.

The operator of the text entry to be
converted 1is wused as an 1index to the
directory array. The entry in this direc-
tory array, which is pointed to by the
operator index, contains pointers to the
skeleton array and the bit strip array
associated with the operator.

The proper bit strip is then selected

from the bit strip array. The selection
depends on the status of operand 2 and
operand 3 of the text entry. This status

is set wup by phase 20 and is indicated in
the text entry by four bits (see Appendix
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A, "Phase 20 Intermediate Text
Modifications"): the first two bits indi-
cate the status of operand 2; the second
two bits indicate the status of operand 3.

The status of operand 2 and/or operand 3
can be one of the following:

00 The operand is in main storage and
is to remain there after the present
code generation. Therefore, if the
operand is loaded 3into a register
during the present code generation,
the contents of the register can be

destroyed without concern for the
operand.

01 The operand is in main storage and
is to be 1loaded into a register.
The operand is to remain in that

register for a subsequent code gen-

eration; therefore, the contents of
the register are not to be de-
stroyed.

10 The operand is in a register as a
result of a previous code genera-
tion. After the register is used in
the present code generation process,
its contents can be destroyed.

11 The operand is in a register and is
to remain in that register for a
subseguent code generation. The
contents of the register are not to
be destroyed.

This four bit status field is used as an
index to select a bit strip from the bit
strip array associated with the operator.
The combination of instructions indicated
in the bit strip conforms to the operand
status requirements: i.e., if the status of
operand 2 is 11, the generated instructions
make use of the register containing operand
2 and do not destroy its contents. The
combination, however, excludes base 1load
instructions and the store into operand 1.

Once the bit strip is selected, it is
moved to a work area. The strip is modi-
fied to include any required base 1load
instructions. That is, bits are set on in
the appropriate positions of the bit strip
such that, when the strip is matched to the
skeleton array, the appropriate instruc-
tions for loading base addresses are
included in the object code. The skeletons
for these load instructions are part of the
skeleton array.

The code generation process determines
if the base address of operand 2 and/or
operand 3 must be loaded into a register by
examining the status of these base address-
es in the text entry. Such status is
indicated by four bits: the first two bits
indicate the status of the base address of
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operand 2; the second two bits indicate the
status of the base address of operand 3.
If this status field indicates that a base
address is to be loaded, the appropriate
bit in the bit strip is set on. (The bit
to be operated upon is known, because the
format of the skeleton array for the opera-
tor is known.)

Before the actual match of the bit strip
to the skeleton array takes rlace, the code
generation process determines:

e If the base address of operand 1 must
be loaded into a register.

e If the result producea by the actual
machine code for the text entry is to
be stored into operand 1.

This information is again indicated in the
text entry by four bits: the first two bits
indicate the status of the base address of
operand 1; the second two bits indicate
whether or not a store into operand 1 is to
be included as part of the object code. If
the base address of operand 1 1is to be
loaded and/or if operand 1 is to be stored
into, the appropriate bit(s) in the bit
strip is set on.

The bit strip is then matched against
the skeleton array. Each skeleton instruc-
tion corresponding to a bit that is set on
in the bit strip is obtained and convertead
to actual machine code. The operation code
of the skeleton instruction is modified, if
necessary, to agree with the mode of the
operand of the instruction. The mode of
the operand is indicated in the text entry.
The symbolic base, index, and operational
registers of the skeleton instructiomns are
replaced by actual registers. The base and
operational registers to be used are con-
tained 1in the register array. If an oper-
and is to be indexed, the index register to
be used is obtained. (The index register
is saved during the processing of the text
entry whose operand 1 represents the actual
index value to be used.) The displacement
of the operand from its base address, if
needed, is obtained from the information
table entry for the operand. (The contents
of the displacement field are added to this
displacement if a subscript text entry is
being processed.) These elements are then
combined into a machine instruction, which
is entered into a TXT reccrd. (If the
skeleton instruction that is being convert-
ed to machine code is a base load instruc-
tion, the base address of the operand is
obtained from the object-time adcon table.
The register (13) containing the address of
the adcon table and the displacement of the
operand's base address from the beginning
of the adcon table are contained in the
register array.)



Branch Processing: The code generation
portion of phase 25 generates the machine
code instructions to complete branching
optimization. The processing performed by
code generation, if branching optimization
is being implemented, 1is essentially the
same as that performed to produce an object
module in which branching is not optimized.
However, before a skeleton instruction
(corresponding to an on bit in the selected
and modified bit strip) is assembled into a
machine code instruction, code genreration
determines if that instruction either:

e Loads into a register the address of an
instruction to which a branch is to be
made and which is displaced 1less than
4096 bytes from the address in a re-
served register?t.

e Is an RR-format branch instruction that
pranchés to an instruction that is
displaced less than 4096 bytes from the
address in a reserved register2.

Note: A load candidate usually immediately
precedes a branch candidate in the skeleton
array.

Code generation determines if the
instruction to be branched to is displaced
less than 4096 bytes from an address in a
reserved register by interrogating an indi-
cator in the statement number entry for the
statement number associated with the block
containing the instruction to be branched
to. This indicator is set by phase 20 to
reflect whether or not that block is dis-
placed less than 4096 bytes from an address
in a reserved register.

The completion of branching optimization
proceeds in the following manner. If a
skeleton instruction corresponding to an on
bit in the bit strip is a load condidate,
it is not included as part of the instruc-
tion sequence generated for the text entry
under consideration. If a skeleton
instruction corresponding to an on bit in
the bit strip is a branch candidate, it is
converted to an RX-format branch instruc-
tion. The conversion is accomplished by
replacing operand 2 (a register) of the
branch candidate with an actual storage
address of the form D (0,Br). D represents
the displacement of the instruction (to be
branched to) from the address that is in
the appropriate reserved register (Br).

If the instruction to be branched to is
the first in the text block, both the
displacement and the reserved register to

1This type of text entry is subsequently
referred to as a load candidate.

2This type of text entry is subsequently
referred to as a branch candidate.
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be used for the RX-format bpranch are
obtained from the statement number entry
associated with the Dblock containing the
instruction. (This information is placed
into the statement number entry during
phase 20 processing.)

If the instruction to be branched to is
one that is subseqguently to be included as
part of the instruction sequence generated
for the text entry under consideration3,
the displacement of the instruction from
the address in the appropriate reserved
register is computed and used as the dis-
placement of the RX-format branch instruc-
tion. The reserved register used in such a
case is the one indicated in the statement
number entry associated with the block
containing the text entry currently being
processed by code generation.

RETURN STATEMENT PROCESSING: When the
operator of the text entry indicates a
RETURN statement, MAINGN passes control to
subroutine RETURN, which generates a branch
to the epilogue. The epilogue address is
obtained from the subprogram save area.
The address of the epilogue is placed into
the save area during the execution of
either the subprogram main entry coding ox
the subprogram secondary entry coding
(refer to the section "Initialization
Instructions").

END STATEMENT PROCESSING: When the opera-
tor of the text entry indicates an END
statement, MAINGN passes control to subrou-
tine END, which completes the processing of

the module by entering the address con-
stants (i.e., relative addresses) for
statement numbers and statement numbers

appearing in computed GO TO statements into
text information and by generating loader
END loader record.

Subroutine END enters the address con-
stant (i.e., relative address) for each
statement number and for each statement
number in a computed GO TO statement into a
TXT record. The address inserted into each
such record places the address constant
into the storage reserved for it during
ADCON table processing.

The loader END record must be the last
record of the object module. Its functions
are to signal the end of the object module
and to inform the 1linkage editor of the
size (in bytes) of the control section and
the address of the main entry point of the
control section.

3skeleton arrays for certain operators con-
tain RR format branch instructions that
transfer control to other instructions of
that skeleton.
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EXTERNAL SYMBOL DICTIONARY

The external symbol dictionary contains
entries for external symbols that are
defined or referred to within the module.
An external symbol is one that is defined
in one module and referred to in another.
One external symbol dictionary entry (an
ESD record) is constructed by phase 25 for
each external symbol it encounters. The
entry identifies the symbol by indicating

its type and location within the module.

The ESD records constructed by phase 25

are:

e ESD-0 This is a section definition
record for the source module being
compiled.

¢ ESD-1 This record defines an entry point
for the source module being com-
piled.

¢ ESD-2 This record is generated for an
external subprogram name.

e ESD-5 This 1is a section definition

record for a common block (either
named or blank).

For a more complete discussion of the
use and the format of these records, refer
to the publication IBM System/360 Operating

For a more detailed discussicn of the
use and format of an RLD record, refer to

the publication IBM System/360 Operating
System: Linkage Editor, Program Logic Manu-
al.

PHASE 30

Phase 30 records (on the SYSPRINT data
set) appropriate messages for syntactical
errors encountered during the processing of
phases 10 and 15; its overall 1logic is
illustrated in Chart 23. As errors are
encountered by these phases, error table
entries are created and placed into an
error table. Each such entry consists of
two parts: the first part contains either
an internal statement number, if the entry
is for a statement that is in error, a
dictionary pointer to a variable, if the
entry is for a variable that is in error,
or an actual statement number, if the entry
is for a non-defined statement number; the
second part contains a message number. (If
the error cannot be localized to a particu-
lar statement, no internal statement number
is entered in the error table entry. Phase
30 simulates the internal statement number
with a zero.)

Message Processing

System: Linkage Editor, Program Logic Manu-
al.

RELOCATION DICTIONARY

The relocation dictionary is composed of
entries for the address constants of the
object module. One relocation dictionary
entry (an RLD record) 1is constructed by
phase 25 for each address constant it
encounters. If the address constant is for
an external symbol, the RLD record iden-
tifies the address constant by indicating:

e The control section to which the
address constant belongs.

e The location of the address constant
within the control section.

* The symbol in the external symbol dic-
tionary whose value is to be used in

the computation of the address con-
stant.
If the address constant is for a local

symbol (i.e., a symbol that is located in
the same control section as the address
constant), the RLD record identifies the
address constant by indicating the control
section to which the address constant
belongs and its location within that con-
trol section.
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Using the message number in the error
table entry multiplied by four, phase 30
locates, within the message pointer table
(refer to Appendix A, "Diagnostic Message
Tables"), the entry corresponding to the
message number. This message pointer table

entry contains (1) the length of the mes-
sage associated with the message number,
and (2) a pointer to the text of the

message associated with the message number.
After phase 30 obtains the pointer to the
message text, it constructs a parameter
list, which consists of:

e Either the internal statement number,
dictionary pointer, or statement number
appearing in the error table entry.

¢ A pointer to the message text associat-
ed with the message number.

e The length of the message.
* The message number.

Having constructed the parameter list,
phase 30 calls subroutine MSGWRT, which
writes the message on the SYSPRINT data
set. After the message 1is written, the
next error table entry is obtained and
processed as described above.

As each error table entry is being
processed, the error level code (either 4



or 8) associated with the message number is
obtained from the error code table
(GRAVERR) by using the message number in
the error table entry as an index. The
error level code indicates the seriousness
of the encountered error. (See the publi-
cation IBM System/360 Operating System:
FORTRAN IV Programmer's Guide for explana-
tions of all the messages capable of being
generated by the compiler.) The obtained
error level code is saved for subsequent
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use only if it is greater than the error
level codes associated with message numbers
appearing in previously processed error
table entries. Thus, after all error table
entries have been processed, the highest
error level code (either 4 or 8) has been
saved. The saved error 1level code is
passed to the FSD when phase 30 processing
is completed. This code is used by the FSD
to determine whether or not the compilation
is to be deleted.

Discussion of Major Components 71



Chart 00.

LR R}

Compiler Control

v
EARREAZRERERERRRS

EEENALFEERRR RN *FSD O1A2%
FROM » T e

CALL ING * >%  INITIALIZE *
PROGRAM * b CALL *

EI 2T T YY)

72

PHASE 10 »
FRR AR R AR RRRR

ARRERBIRERERERERR
*PH10 03A2%
e = — RN R
#CONVERT SOURCE #
*T0 INFORMATION *
#TABLE AND TEXT #*
ERRERNR R RREREENN

>

ERRBRC2HEIERRHRER
*FSD O1A2%
Lt el T Bt I s et B
* CALL *
* PHASE 15 *

* *
EXREREEREERRERERF

ERERAD2EEREREXEXR
*PH1S 04B3*
e e R W W Foe e T
#* CONVERT PHASE *
%10 TEXTLASSIGN *
* ADDRESSES *
HXRE R TR ENE R RN

HRERRED R R RN EREE
*FSD 01A2%*
Pt T St Sy VY.
*#IF ERRORSsCALL #*

%230« NO ERRORS. *ERROR

* CALL PHASE 20 *
HEERAREERRENEARRS

ERROR

Flow

ERR

* Kk
m
o

ok

HRRE

v
EERFREIERERERERER EERRREGRRREREXRERR EREREESEEERREEEEE

*PH20 oc1* *FSD 01A2% *PH25 21B1%
RN KR Ll et S S O e L D T e O s g
>* ASSIGN REGIS— # >* CALL e Ema— BUILD *
PHASE 25 * * OBJECT *

* TERS<OPTIMIZE * *
* IF REQUESTED * »
LI R e e e L

* MODULE *
ERREREREERRRERRER

I

v
EREE

EREREEREREREEERRN

* g% *
- *

(2223

©08000000000000000000000000000000000000000000000000s0000sc0cccccscsscsansssccas

. .
' .
ERERRG2RERRHRRERR - G3 *o Ge - RRRRRCGSERRERRRERER .
*PH30 23B3% - o *, - e » * .
RN RN . ot ANY *. YES ¥ LOAD *o NO » DELETE * .
* QUTPUT R gD - >4 .2 CPTION ———=——w->% COMPILATION * .
* ERROR * . *e LEVEL 8 % ®oSPECIFIED.* * .
*  MESSAGES * . *. o e =y * * .
P T I T - A, @ *, oW RRRBEERERRREREE R .
. * NO * YES .
.
. .
. I( .
- | .
. v v .
- RIS ki 22 2222 HRERR SN XN REEEN .
- * * * * -
. * CALL * #* TO READ TO * -
* PHASE 20 * * END CAR *

* * *(IF NECESSARY) * .
- * * * * -
. EE 22222 R 22 T 3363 3 R -
. .
. EXER -
- * * -
. v * Js5 #—>| .
. > e * * .

- * * R v

* E3 »

. * * .
- *REE .
. .
. .
. .
. .
. .
.
.
.
.
.
v .
OPERATIONS HEERKSHRR LR ERNR .
WITHIN DOTTED * TO * -
LINES ARE * OPERATING * -
PERFORMED 3Y * SYSTEM * -
- FSD. HR TN KR RRR .
. .
. .
eeeeecesectecectstrtssteatcscsteantestcsestotetcececsttetecctcsacconconnasanne



Chart 01.

T1EKAA0O
ERERA | RBERREERE
FROM *
CALL ING *-

PROGRAM
HEXERRRRERRTRRS

' xn

SEE TABLE 6 FOR A
BRIEF DESCRIPTION
OF EACH SUBROUTINE
OF THE FSDe

ENTRY POINT FOR
PHASE 10
SUBROUTINE OR
FOR SERIOU
ERROR (LEVEL 16)

SYSDIR
HRERD] R RS R
* FROM *
* CALLING *
» *

HERRAEERERRERER

v

ot
F1 *e
* *

«* PHASE 10 *, YES

*. SUBROUTINE <%
*. o
*. o

*e o
* NO

FSD Overall Logic

ann
- -
* A3
. -
ane
AGAIN v
FREERAZRERARERERR EERRRATES Ad
* - - - ®DSPTCH 03A2%
- PROCESS * *  INITIALIZE - KBttt akat
->*  PARAMETERS -, COMPILATIOI ILD TEXT AND #
* bl * - ®  INFORMATION *
* * * - - ABLE -
RTNPH10

v
HERARD2ERERENARTR
* =

X RHRRBI AR TR R
*STALL 05B83%
*

ENTRY PODINT
FOR END-OF-FILE
ENCOUNTER

ENDFILE

EURUDSEE R REEERE

= RECOVER * Rt it St Tt e e e et * *
—>* UNUSED TEXT # >*PROCESS COMMON * * FROM PHASE 10 *
* AREA * * AND EQUIVAL- * * *
* * * ENCE * RREERBEXRRRAE RS
v
.
€3,
o* BLOCK *o
«*  DATA *. YES
*. SUBPROGRAM o %——
g ®
®. o
Ee o%
* NO
1 v
v ¥
FRRRRDIHE SR RELN DS
*PHAZ15 06B2x % 1S
L e =) * END FILE
* PROCESS * MISPLACED _.*
*  PHASE 10 * . N
TEXT *. o
EREEEEREESLRERE RN %o o
* NO
|
- i
v ouT ‘
EARRREIHERRERRE RN
* * EERRESHR RS EEE
* RECOVER * *  RETURN TO  * .
*  UNUSED TEXT * >* CALLING *
* AREA * * PROGRAM x
ENTRY POINT * * l— ERRERRREFERIRRR
FOR [/0 EREEREERREREAERER
P2
* »
* ES *
- -
(222
OMRTN v
EAREXFIAREEERERRR RBRBEFLARARRRA2RR
RRRRE2RRERRRRES *CORAL 09B2% » »
- * L R s O =y * RECOVER -
* FROM 18COM§ * *  RELATIVE * >%  UNUSED TEXT &
* * * ADDRESS * » AREA .
SRNRERBRBRR RN %  ASSIGNMENT - » '3
- -
* G e=>
. e
asse
aurt .
*e0eeG2eeestnrae Ga . LareRsLantanarnen
. . o® ERROR #. *1EKP30 2303
. weyTE . +*0R WARNING *. YES SRR
> ERNOR NESSAGE ¢ ., t13 . WRITE *
* witu COOE - ., o * MESSAGES *
LTS o » -
PYYTYYYYYRY YTV YY T LN FRRERRERRRRRRRALR
2 ND
v
at, ot ¥
LA HA &, HS  *,
33 * o® BLOCK #, ok *a
.t W *o YES YES o#  DATA "o NO % DELETE  *.
LIV $ﬂ o ~——%os SUBPROGRAM _<¥< ~——%o COMPILATION .¥
*.  SE o . o* *o o
. %, o *, ox
e ot H e @ e o%
L] .l L ND 'I. YES
. €8 ¢ \l/
tete R
* *
G0 ON * A3 ®
RERNB Q0000000004 HREBR JERRE L RREE * *
. * #LPSEL 10C1* ruEw
* READ TO ENO* ¢ f e DS
- CARD 1F . *  ASSIGN REG. ¥
*  NECESSARY & * DPTIMIZE IF *
- - * REQUESTED  *
e EEEEREEERERREEREN
|
>
*Rue
» -
* A3 » v
* - EREREKGRE RN R REEER
- *INITIL 21B1%
Ll Dl Sl B et et et e
* BUILD *
* 0BJECT *

Section 2:

* DUL. *
HERREREFRRTRRRRRN

v
Ennx

*wn
>
w

xx

Xaw

Discussion of Major Components

73



Chart 02.
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Table 6. FSD Subroutine Directory

{subroutinei Function j
{ AFIXPI I Exponentiation of integers by integers. o o ]
= AFRXPT : Exponentiation of reals by integers. ‘
= GETCOR } Allocates and keeps track of main storage used in the construction of the l
i | information table and for collecting text entries. |
: IEKAAQO l Initializes compiler processing and calls the phases for execution. :
‘ IEKAREAD 1 Works in conjunction with SYSDIR to delete a compilation. It reads {
| | records (without processing them) until an END statement is encountered. |
{ IEKFCOMH l Controls compile-time I/O. (Corresponds to IHCFCOMH; refer to Appendix :
| | EJ - |
: IEKFIOCS { Interface between IEKFCOMH and BSAM. (Corresponds to IHCFIOSH; refer to }
| | Appendix E.) |
= IEKUATPT ! Unit assignment table for IEKFIOCS. :
; IHCFMAXT : Maximizing service routine for integers. :
= IHCFMAXR } Maximizing service routine for reals. {
= SYSDIR : Deletes compilation if requested. %
g SYSTAB I Dumps internal text and tables. %
i SYSTRC i Diagnostic trace routine. i
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Chart 03. Phase 10 Overall Logic
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Table 7.

Phase 10 Source Statement Processing

r T . T 1
] | Main Processing | |
| Statement Type | Subroutine | Subroutines Used |
I8 iR 1 4
L 3 T T 1
| ARITHMETIC | XARITH | COMAST, GRPKEQ, MINSLS, PRELOG, RTPRQT, TXTBLD?|
L 1 1 —_—— - 4
v T T 1
| STATEMENT | XASF/XASF2 | GETWD, ERROR, PUTX, CSORN, SYMTLU |
| FUNCTION | | |
k t + ‘ 1
| DIMENSION | XDIM | GETWD, CSORN, ERROR, SYMTLU |
 — t : t ———= - i
| EQUIVALENCE | XEQUI | GETWD, SYMTLU, ERROR, LITCON |
| 1 t 1
| COMMON | XCOMON | GETWD, SYMTLU, ERROR
i 4 i —_—— ¥
T T 1
| EXTERNAL | XEXT | GETWD, ERROR, SYMTLU |
b= 1 + i
| TYPE (INTEGER, | XTYPE | GETWD, ERROR, SYMTLU, PUTX i
| REAL, ETC.) | | ]
t + + - -1
| DO | XDO | GETWD, ERROR, LITCON, SYMTLU, PUTX, CDOPAR |
L 1 —_ I 4
L 3 T T 1
| SUBROUTINE, CALL| XSUBPG | GETWD, ERROR, SYMTLU, PUTX |
| ENTRY, FUNCTION | | |
t ! $ -
| READ, WRITE, | XIOOoP | GETWD, ERROR, CSORN, PUTX, LITCON |
| PRINT, PUNCH | | |
t -t B 1
| NAMELIST | XNMLST | GETWD, SYMTLU, PUTX, ERROR |
¢ t t -
| BACKSPACE, | | i
| REWIND, | XBCKRW | GETWD, SYMTLU, PUTX, ERROR |
| END FILE | | |
F + + !
| RETURN | XRETN | GETWD, CSORN, ERROR, PUTX |
F + t -
| IF | XIF | PUTX, ERROR i
b $ ¥ - i
| ASSIGN | XASGN | GETWD, LITCON, ERROR, SYMTLU, PUTX |
t ] ] 4
[} T v 1
| BLOCK DATA | XBLOK | PUTX, ERROR 1
8 1 1 4
1) T Ll 1
| FORMAT | XFMT | CSORN, PUTX
8 4 ] 4
r T T 1
| CONTINUE | XCONT | ERROR, PUTX
i I 4 4
r T T 1
] GO TO | XGO | GETWD, ERROR, SYMTLU, LITCON, PUTX |
[ ER 4 4
1] T T 1
| DATA | XDATA | GETWD, CSORN, ERROR, PUTX
; + + 1
| sTOoP | XSTOP | PUTX
b —+- + 1
| PAUSE | XPUSE | GETWD, ERROR, CSORN, PUTX |
t 1 1 1
| END | XEND | ERROR, PUTX |
[l L L 4
r 1
| 2The subroutines used by subroutine XARITH employ the following utility subrou- |
| tines: GETWD, CSORN, PUTX, COMPAT, ERROR, and SYMTLU. |
L 4
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Ta

ble 8.

Phase 10 Subroutine Directory

r T
| Subroutinej Type

|
|
]
|
|
|
|
|
|
|
I
|
|
I
|
!
|
|
|
|
|
|
|
I
|
I
|
|
I
|
|
|
|
|
|
|
I
|
|
I
|
I
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
I
|
|
L

Function

CDOPAR

COMAST

COMPAT

CLOSE

CSORN

DSPTCH

ERROR

GENDO

GETCD

GETWD

GRPKEQ

INTCON

LABTLU

LITCON

MINSLS

Utility (entry placement)

Arithmetic

Utility (collection)

Utility (text generation)

Utility (entry placement)

Dispatcher

Utility (entry placement)

Utility (text generation)

Preparatory

Utility (collection)

Arithmetic

Utility (conversion)

Utility (entry placement)

Utility (conversion)

Arithmetic

o o s s e s e o S s o e S S G G . it S — T S, T T S S ! . . S S S . . . B G S S —— — — —— —— — {— T To— {— o St (. St o S et s

}__._..._....___..._.—_..._————-—.—-—————-_—_—.-—————-—-—-——-————-——————-——-—————————-—————.-——_—.—._0_—-‘

Constructs information table entries and
pushdown table entries for the index ini-
tial value, 1index increment, and 1index
maximum value appearing in DO statements.

Develops intermediate text and builds
information table entries for variables
and constants connected by a comma or an
asterisk delimiter.

Places variable names on word opoundaries
for comparison to other variable names.

Generates the text entry that signifies
the end of the intermediate text represen-
tation of a source statement.

Directs the entering of variables ana
constants into the information table.

Control phase 10 processing, passes con-
trol to the preparatory subroutine to
prepare the source statement, determines
from the code assigned to the statement
which subroutine is to continue processing
the statement and passes control to that
subroutine.

Builds error table entries for the syntac-
tical errors detected by phase 10 and
places them into the error table.

Generates the intermediate text required
to increment a DO index and to test the
index against its maximum.

Reads, 1lists (if requested), packs, and
classifies each source statement.

Obtains the next group of characters in
the source statement being processed.

Develops intermediate text and  builds
information table entries for variables
and constants connected by an equal sign
or a group mark (end of statement symbol).

Calls subroutine LITCON to convert a con-
stant and then verifies that the converted
constant is of integer mode.

Places statement number entries into the
information table.

Converts integer, real, and complex con-
stants to their binary equivalents.

Develops intermediate text and builds
information table entries for variables
and constants connected by a minus or
slash delimiter.

|
i
I
|
I
|
!
I
I
|
I
I
I
|
|
|
I
I
|
I
I
I
I
|
!
|
|
I
|
|
I
|
|
|
|
I
|
I
|
|
I
I
!
|
I
|
|
|
|
|
l
I
I
|
I
|
I
|
I
|
|
|
|
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Table 8.

Phase 10 Subroutine Directory (Continued)

r
| Subroutine
L

T
|

Type

Function

[ . o — — — o — —— ——— — —p— S — —- ERAT it S N— —— — U — —- —— —— —— . — — — —. S T——— T—-. S—" S {— T oo Yo W G s —— S - — T St i B it S S

PERLOG

PH10
PH10A

PUTX

RTPRQT

SYMTLU

TXTBLD

XARITH

XASF

XASF2

XASGN

Arithmetic

Utility (common data area)

a

tility (common data area)

(=]

tility (entry placement)

Arithmetic

Utility (entry placement)

Arithmetic

Arithmetic

Arithmetic

Arithmetic

Key Word (table entry and text)

[ e e e e e i o o S i S S e (A Yo Ml ok s i S o SRS AR o A T o oA e e . 1 A i o o S s i S S S Pt B s e G s o ]

[ e e . s e . s e s o o ——" S —— S — — —— —— {—— —T— — — —_ {— " —— — o, — . o . S S o S G e i T B i S, st . S e S

Develops intermediate text and builds
information table entries for variables
and constants connected by a period delim-
iter.

Phase 10 COMMON area.
Phase 10 COMMON area.

Places text entries into the appropriate
sub-blocks, obtains the next operator of
the source statement, and places the oper-
ator into the text entry work area.

Develops intermediate text and builds
information table entries for variables
and constants connected by a right paren-
thesis or a quote delimiter.

Places the dictionary entries constructed
for the variables and constants of the
source module into the information table.

Develops intermediate text and builds
information table entries for variables
and constants connected by a left paren-
thesis, or for complex constants.

Controls the processing of arithmetic
statements, CALL arguments, expressions
appearing in IF statements, I/0 list
items, simple variable and array names
appearing in NAMELIST statements, complex
literals appearing in DATA statements, and
arithmetic expressions appearing in state-
ment functions. Subroutine XARITH scans
the expression and passes control to one
of the following supporting subroutines,
depending on the nature of the delimiter
recognized: COMAST, GRPKEQ, MINSLS, PER-
LOG, RTPRQT, and TXTBLD.

Scans the portion of a statement function
to the 1left of the equal sign, obtains
each dummy argument, and assigns it a
sequence number.

Insures that all dummy arguments appearing
in the argument list of a statement func-
tion are used in the expression to the
right of the equal sign in that statement
function.

Develops an intermediate text representa-
tion of the ASSIGN statement, constructs
information table entries for its oper-
ands, and analyzes the ASSIGN statement
for syntactical errors.

hee et e s St o S —— —— — ———— — — — - —— — — T — — A —— — G—— T———— ———— T—" S———— — —— — —T—— Gt — —— " — — {— ——— ——— T— q—— . agpo, W e sk e ]

(Continued)
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Function

Develops intermediate text representations
of the BACKSPACE, REWIND, and END FILE
statements, builds information table
entries for the operands cf these state-
ments, and analyzes these statements for
syntactical errors.

Develops an intermediate text representa-
tion of the BLOCK DATA statement, set a
switch in the communication table to indi-
cate that a BLOCK DATA subprogram is being
compiled, and analyzes the BLOCK DATA
statement for syntactical errors.

Generates intermediate text for statement
numbers.

Constructs information table entries for
block names, variables, and arrays appear-
ing in COMMON statements, chains common
block name entries and associated varia-
bles and arrays together, and analyzes
COMMON statements for syntactical errors.

Develops and intermediate text representa-
tion of the CONTINUE statement, and veri-
fies that there 1is a statement number
associated with it.

Develops an intermediate text representa-
tion of the DATA statement, constructs
information table entries for the operandas
of the DATA statement, processes the data
specifications in TYPE statements, and
analyzes DATA statements for syntactical
errors.

Constructs information table entries for
the arrays appearing in DIMENSION, COMMON;
and TYPE statements, and analyzes arrays
for syntactical errors.

Develops, with the aid of subroutines
CDOPAR and GENDO, the intermediate text
required to control a DO loop.

Develops an intermediate text representa-
tion of the END statement and analyzes the
END statement for syntactical errors.

Builds information table entries for
equivalence groups and their associated
variables, chains equivalence groups and
associated variables together, and ana-
lyzes EQUIVALENCE statements for syntacti-
cal errors.

Constructs information table entries for
the subprogram names appearing in the
EXTERNAL statement, signals the subpro-
grams as external, and analyzes the EXTER-
NAL statement for syntactical errors.

Table 8. Phase 10 Subroutine Directory (Continued)
r T T
| Subroutine| Type |
t -+ +
| XBCKRW | Key Word (table entry and text)|
i i |
| i |
| | |
| | I
| | |
| | |
| XBLOK | Key Word (table entry and text)|
| | i
| | |
| | |
| | |
| | |
| | |
} XCLASS |Utility (text generation) |
I | |
| | |
| XCOMON |Key Word (table entry) |
| | |
| | |
| | |
| I |
| | |
| | i |
| XCONT |Key Word (table entry and text) |
| | |
| | |
] | |
| | |
| XDATA |Key Word (table entry and text)|
| | |
| | |
| | I
i | |
| I |
| I |
| | |
| XDIM |Key Word (table entry) |
| | |
| | |
| | |
| | |
| XDO |Key Word (table entry and text)|
| | |
i | |
| I |
| XEND |Key Word (table entry and text) |
| | |
| i |
| | |
| XEQUI |Key Word (table entry) |
| | |
| | |
| | |
| | |
| | |
| | |
| XEXT |[Key Word (table entry) |
| | |
| | |
| | |
i | |
L L L
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- Table 8.

Phase

10 Subroutine Directory (Continued)

r . T
|Subroutine|
+

Type

T

Function

k
I
|
I
|
i
|
|
|
|
|
I
|
|
I
l
|
|
|
|
I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
|
|
|
I
I
|
|
|
!
I
|
|
|
|
|
I
|
|
I
!
I
L

XFMT

XGO

XIF

XIMPC

XIMPD

XI00P

XNMLST

XPUSE

XRETN

XSTOP

XSTRUC

— e ]
= =
1 0}
~ S

Key Word

Key Word

Key Word

Key Word

Key Word

[ o i e e s i . e . S G o . S o S B . S Bt S S S S S M (e i S ¥t S e e, s i, S B S (e e . B e i, S e S . S o W e o

(table

(table

(table

(table

(table

Key Word (special)

entry

entry

entry

entry

entry

Word (table entry and

Word (table entry and

Key Word (table entry and

Utiltiy (text generation)

and

and

and

and

and

text

text

text

text

text

text

text

text

_Jr
)
|
|
)|
|
I
|
|
|
|
|
|
|
|
I
|
!
I
|
|
|
I
I
I
|
|
I
I
)
I
I
|
I
!
I
)
|
|
|
|
I
!
)
|
]
I
I
|
)
|
|
|
I
|
|
|
|
|
|
1

Develops an intermediate text representa-
tion of the FORMAT statement.

Develops intermediate text representations
of the GO TO (unconditional, assigned, and
computed) statements, constructs informa-
tion table entries for the operands of
these statements, and analyzes these
statements for syntactical errors.

Develops an intermediate text representa-
tion of that portion of IF statements
which precedes the opening parenthesis and
passes control to subroutine XARITH to
complete the processing of these state-
ments.

Sets the type of the variables beginning
with the characters stated in the IMPLICIT
statement according to the type specifi-
cations stated in the IMPLICIT statement,
and analyzes the IMPLICIT statement for
syntactical errors.

Develops intermediate text representations
of implied DO's appearing in I/0 state-
ments.

Develops intermediate text representations
of I/0 statements, constructs information
table entries for their operands, and
analyzes 1/0 statements for syntactical
errors. (I/0 list items are processed by
subroutine XARITH.)

Develops an intermediate text representa-
tion of the NAMELIST statement and con-
structs information table entries for its
operands . (Passes control to subroutine
XARITH to process the simple variable of
array names.)

Develops an intermediate text representa-
tion of the PAUSE statement, constructs
information table entries for its operands
(if any), and analyzes the PAUSE statement
for syntactical errors.

Develops an intermediate text representa-
tion of the RETURN statement, constructs
information table entries for its operands
(if any), and analyzes the RETURN state-
ment for syntactical errors.

Develops an intermediate text representa-
tion of the STOP statement and analyzes
that statement for syntactical errors.

Dummy key word subroutine.
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Table 8.

T T

| Subroutinej Type |
- + $
| XSUBPG |Key Word (table entry and text) |
| | ]
| | |
| | |
| | i
I | |
| | |
| i |
| | |
| | I
| XTYPE |Key Word (table entry and text) |
i I |
i | |
| | |
| | |
L 1 i

Phase 10 Subroutine Directory (Continued)

Function

Develops intermediate text representations
of CALL, SUBROUTINE, ENTRY, and FUNCTION
statements, constructs information table
entries for the operands of these state-
ments, and analyzes these statements for
syntactical errors. (This subroutine
passes control to subroutine XARITH to
process the arguments appearing in CALL
statements.)

Develops intermediate text representations
of TYPE statements, constructs information
table entries for their operands, and
analyzes the TYPE statements for syntacti-
cal errors.
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Chart 0O4. Phase 15 Overall Logic
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Chart 05.
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Chart 06.
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chart 07. ALTRAN Control Flow
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» PAREN
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NOTE: The logic and flow of the arithmetic translator is too complex to be represented on one or two conventional
flowcharts. Chart 07 indicates the relationship between the arithmetic translator (subroutine ALTRAN) and its lower-
level subroutines. An arrow flowing between two subroutines indicates that the subroutine at the origin of the
arrow may, in the course of its processing, call the subroutine indicated by the arrowhead. In some cases, a sub-
routine called by ALTRAN may, in turn, call one or more subroutines to assist in the performance of its function.
The level and sequence of subroutines is indicated by the lines and arrowheads.

In reality, all of the pathways shown connecting subroutines are two-way; however, to simplify the chart, only
forward flow has been indicated by the arrowheads. All of the subroutines return control to the subroutine that
called them when they complete their processing. (If a subroutine detects an error serious enough to warrant the
deletion of the compilation, the subroutine passes control to the FSD, rather than return control to the sub-
routine that called it.)

The specific functions of each of the subroutines associated with the arithmetic translator are given in the sub-
routine directory following the charts for phase 15.
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Chart 08.
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Chart 09. CORAL Overall Logic

CORAL

88

ERERADEERRET NN
* *
* FROM FSD *
* *

HEERE RN RRXNERN

EERRRB2RRREREEERR RERRRBIHEEERRER R
* NDATA * * CONST *
Fm K RN R W K m R L e s ot S O 3
* PROCESS * >*ASSIGN RELATIVE#*
* DATA * * ADDRESSES *
* STATEMENTS * * TO CONSTANTS *
EEEEREERREERRRRER EREEEEERENAERHNRR

v
EEREACTHERERIER LR
* VARA *
Lt Bl Et S Ot St T e
*ASSIGN RELATIVE#*
* ADDRESSES *
* TO VARIABLES *
EAE 22 S 2 22 sl s

EEEREDIHEREERER XS
* EQVAR *
e et Dt T R 2
*ASSIGN ADDRESS—*
*ES TO EQUIVAL— *
*ENCE VARIABLES *
REXEREEERERERHRRR

v
R R TR X RN RN
* COMVAR *
Lt LSS B St 2t Dt T 3
*ASSIGN ADDRESS—¥
* ES TO COMMON *
* " VARJABLES  *
TN NN XN RN

v
NIRRT ZH TR NEEKR

* EXTRNL *
KR N K R KKK
* COMPLETE REL- *

e T P T

* MAP
*o OPTION o ¥——
*2SPECIFIED*

*, o*

*, o¥
* YES

)

v
EREREJIREERLREENR
* STMAP *
E e T o A
* GENERATE *
* STORAGE *

* M *
ERAREEERKEERRRRRN

<—

v
EERAKTHERRR XX R
* *
* TO FSD *
* *

EREKEERXRRET KRR




Table 9.

Phase 15 Subroutine Directory

r T N T 1
| Associated| |

| Subroutine|Phase 15 | Function |
| | Segment | |
- et 1
| ADSCAN | CORAL | Scans the adcon table for an address constant that references |
| | | the relative address computed for a variable. |
| | | |
| ALTRAN® | PHAZ15 | Controls the arithmetic translation process. |
| I | |
| ANDORZ | PHAZ15 | Checks the mode of the arguments passed tc it, decomposes IF |
| | | statements, and generates text entries for AND and OR opera- |
| | | tionms. |
[ | P _ , |
| ARIF | PHAZ15 | Optimizes the coding derived from the branching portion of an |
| ] | arithmetic IF statement. |
| | | |
| BLTNFN* | PHAZ15 | Determines whether or not a given name represents a valid |
| | | in-line function, and generates phase 15 text for the ref- |
| | | erenced in-line function. |
| | | |
| BSIZE | STALL | Computes the size (in bytes) of a variable or array based on |
| | | its mode and dimensions (if any). |
| | | |
| c1520 | | Common data area used by phases 15 and 20. ]
| | | i
| CMSIZE | CORAL | Checks the displacement computed by subroutine SPAN to see if |
| | | it lies within the range of 0 to 4096 bytes. ]
| | | |
| COMMD* | PHAZ15 | Generates the text required for complex multiplication or |
| | | division (i.e., a call to a library routine). |
| | | |
| COMN | STALL | Processes the common table entries constructed by phase 10 for |
| | | the operands appearing in COMMON statements. |
| | | |
| COMVAR | CORAL | Assigns relative addresses to common variables and variables |
| | | equivalenced into common. |
| | | |
| CONST | CORAL | Assigns relative addresses to all constants in the dictionary. |
| | | |
| CORAL | CORAL | Controls the relative address assignment function of phase 15. |
| | | |
| CPLTSTT | PHAZ15 | Checks triplets for complex operands and controls text genera- |
| | | tion for the same. |
| | ’ { |
| DATACH | CORAL | Chains the data text created by subroutine NDATA in the order |
| | | in which it will be processed by phase 25. |
| | | |
| DCTSRT | STALL | Sorts the dictionary constructed by phase 10. ]
| | | |
| DFUNCT* | PHAZ15 | Determires if a reference is to an in-line, 1library, or |
| ] | external function, and performs mode checking and automatic |
| | | typing for library functioms. |
| | | |
| DUMP15 | PHAZ15 | Records exrrors detected during PHAZ15 processing. i
| | | |
| EQU | STALL | Establishes a "head" for each equivalence group and computes |
| | | the displacement of each variable in the group from the group |
| | | head. |
| | o , , _ |
| EQVAR | CORAL | Assigns relative addresses to equivalence variables except |
| | | those that are equivalenced into common. |
L L iR 4
(Continued)
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Phase 15 Subroutine Directory (Continued)
—————————- L IR e - Rt -

|
l}
|

-

Table 9.

| |Associated|
| Subroutine|Phase 15 |
| | Segment |
S $ommme

| ERDATA | CORAL |
| I I
! I |
| EXPCN2 | PHAZ1S |
I I |
| EXTRNL | CORAL |
| I |
| | I
| I I
| FINISH* | PHAZ15 |
| | I
| | |
| FUNRDYY | PHAZ1S |
| I |
| | |
| GENER | PHAZ1S5 |
| i |
I | |
| GENRTN® | PHAZ15 |
| I |
| | |
| GETEXT | PHAZ1S5 |
| | |
| I ]
| GMAT | PHAZ15 |
I | |
I | |
| IFUNTB | |
I I |
| I |
| LABSCN | STALL |
| | |
I I I
| LOOKER® | ©PHAZ15 |
| | |
| MATE | PHAZ15 |
| ! |
! ! |
| MODIFY* | PHAZ15 |
I I |
| MODTST* | PHAZ15 |
I | |
| NDATA | CORAL |
[ | I
| NEGCHK* | PHAZ15 |
| I |
| I I
| NSTRNG?® | PHAZ15 |
| | |
| OP1CHK®* | PHAZ1S5

| I |
I | |
| PARENZ2 | PHAZ1S

I I |
| | I
| PH15 | |
| | I
| PHAZ15 | PHAZ15 |
L 1 1

Places entries into the error table for errors detected during
the processing of common blocks and equivalence groups.

Generates the text required for exponentiation operations.
Completes the relative address assignment process by reserving
address constants for guantities not previously assigned

addresses.

Completes the processing required for a statement when its
primary adjective code is forced from the pushdown table.

Creates pushdown entries for references to implicit 1ibrary
functions.

Outputs phase 15 text consisting of unchanged phase 10 text,
phase 15 standard text, and phase 15 statement number text.

Builds appropriate phase 15 text entries for simple items
forced from the pushdown table.

Provides suproutine GENER with the main storage needed for a
text entry.

Creates an abbreviated one-word dictionary entry for temporar-
ies.

Common data area, which is the FORTRAN supplied subprogram
table.

Scans the statement number entxry chain for statement numbers
that are referenced, but not defined.

Looks up names in the IFUNTB (subprogram) table.

Records usage information in the MVS, MVF, and MVX fields if
the complete-optimized path through phase 20 is selected.

Changes modes for logical expressions.
Checks for mixed-mode conditions in the triplet supplied to it.
Converts phase 10 data text to phase 15 data text.

Checks for negative operands in the argument list of a function
or in arithmetic IF statements.

Determines the forcing strength of operators.

Determines if operand 1 is to be an actual operand or a
temporary.

Removes the ( or -( from the pushdown table when the corre-
sponding ) is encountered.

Common data area used by phase 15.

Controlling subroutine of PHAZ15 processing.

b s o s U i S S e o — — — — — — T— — {— — ———————— —— — — ————— — — — o——— —" _—— — T— o——— — T— — —— ——_—— — ———— = o, oims s S St so. e mhn
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Table 9.

Phase 15 Subroutine Directory (Continued)

) T T s - )
| . | Associated] . |
| Subroutine|Phase 15 | Function |
| | Segment 1 }
L + — -
T T
| PHSTAL | | Common data area used during relative address assignment. |
| | | |
| POWER2Y* | PHAZ15 | Determines whether or not the argument passed to it is an |
| | | integral power of two. |
| - | |
PRTEXT CORAL Prints out phase 15 data text.
| | | ? |
| RDTST2 | PHAZ15 | Builds text for replacement statements (e.g., A=B, A=B(I), |
| | | 2a(I)=B, A(I)=B(I)). |
| | | |
| RELOPS* | PHAZ15 | Calls suproutine GENER to output text entries for relational |
| { | operators. (Output may be either a relational or branch |
| | | operation.) |
| | | |
| SBEROR | STALL | Places entries into the error table for errors detected during |
| | | the processing of COMMON and EQUIVALENCE declarations. |
| | | |
| SBGLUT* | PHAZ15 | Optimizes subscript computations by evaluating subscript con- |
i | | stants. |
| | | |
| SIZE | CORAL | Computes the total size (in bytes) of a variable or constant. |
| | | |
| SPAN | CORAL | Computes the span of an array. |
| | | |
| STALL | STALL | Controlling subroutine of STALL processing. |
| | | |
| STMAP2 | CORAL | Writes a storage map if the MAP option is specified. |
| | | |
| STTEST* | PHAZ15 | Calls RDTST to process replacement statements. |
| | | |
| SUBADDT | PHAZ15 | Generates the text to add the terms in a suoscript computation. |
| ( | : |
| SUBMLT* | PHAZ15 | Generates the text to multiply the first term in a subscript |
| | | computation by its associated length factor, or, in the case of |
| | | variable dimension, to multiply the nth dimension by length. ]
| | | |
| SUBSCR* | PHAZ15 | Determines 1if a subscript text entry in the pushdown table |
| I | should be entered into phase 15 text, and calls subroutine |
| | | GENER to output the text entry when appropriate. |
| | | |
| SWITCH* | PHAZ15 | Inverts the order of the operands supplied to it. i
| | | |
| TESTBN | STALL | Tests the mode and displacement of a variable to determine |
| | | whether or not a boundary violation exists. |
| | | |
TESTWD CORAL Determines whether or not a given variable is to be processed
. g
| | | by subroutine VARA. |
| | | |
| TXTLAB | PHAZ15 | Processes statement number text entries for subroutine GENER; |
| | | creates entries in RMAJOR. i
| | | |
| TXTREG | PHAZ15 | Processes standard phase 15 text entries for subroutine GENER |
| | | and makes RMAJOR entries. |
| | | |
| UNARYZ { PHAZ15 | Checks for negativeness in the triplet supplied to it, and |
| | | modifies the triplet (if negativeness is present) to optimize |
| | | subsequent code generation. Also detects multiplication opera- |
| | | tions and attempts to implement them by ¢generating shift |
| | | operatioms. — |
L A1 1 3
(Continued)
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Table 9. Phase 15 Subroutine Directory (Continued)

r T . T

|Associated|
| Subroutine|Phase 15 | Function
| | Segment |

—_— + T ——

| VARA | CORAL | Assigns relative addresses to all variables in the dictionary
| | | except for variables in COMMCN and/or EQUIVALENCE statements,
| | | external functions, namelist names, and variables called by
| | | name and not ky value.
| | |
| XPARAM®! | PHAZ15 | Inserts the appropriate function operator into phase 15 text
| | | and builds the parameter list for the referenced subprogram in
| | | the adcon table and in text.
| 1 —_— L
r
| 1This subroutine is used during arithmetic translation.
L
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Chart 10.
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Chart 11.
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Chart 16. Table
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