
IBM System/360 Operating System

FORTRAN IV (H) Compiler

Program Logic Manual

Program Number 360S-FO-500

File No. S360-25(OS)
Form Y28-6642-3

Program Logic

This publication describes the internal design of
the IBM System/360 Operating System FORTRAN IV (H) com­
piler program, which transforms source modules written
in the FORTRAN IV language into object modules that are
suitable for input to the linkage editor for subsequent
execution on System/360. At the user's option, the
compiler produces optimized object modules (modules
that can be executed with improved efficiency).

This program logic manual is directed to the IBM
customer engineer who is responsible for program main­
tenance. It can be used to locate specific areas of
the program and it enables the reader to relate these
areas to the corresponding program listings. Because
program logic information is not necessary for program
operation and use, distribution of this manual is
restricted to persons with program-maintenance
responsibilities.

This revision reflects Version II of the FORTRAN IV
(H) compiler program. A number of table formats and
intermediate text formats have been changed. The over­
all operation of the compiler has not changed signifi­
cantly, but some routines within the program have been
changed, new routines have been added, and some rou­
tines have been deleted or combined with other
routines.

Restricted Distribution

Fourth Edition (November 1 968)

This publication corresponds to Release 17. It is a major revision of,
and makes obsolete, Form Y28-6642-2. The description about the process­
ing of BACKSPACE statements, which appears in "Appendix E: Object-Time
Library Subprograms," has been changed to reflect the improvements made
in the FORTRAN object-time library. In addition, miscellaneous clarifi­
cations and corrections have been made throughout the publication. New
or modified material is indicated by a vertical line in the left-hand
margin. The symbol • to the left of a caption indicates a revision to
the illustration.

Changes are continually made to the specifications herein,
changes will be reported in subsequent revisions or
Newsletters.

any such
Technical

Comments concerning this publication may be addressed to IBM Corporation,
Progr~nming Publications, 1271 Avenue of the Americas, New York,
New York 10020

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and operation of the FORTRAN
IV (H) compiler. It is part of an inte­
grated library of IBM System/360 Operating
System Program Logic Manuals. Other publi­
cations required for an understanding of
the FORTRAN IV (H) compiler are:

IBM System/360: Principles of operation,
Form A22-6821

IBM System/360 Operating System:

Introduction to Control Program Logic,
Program Logic Manual, Form Y28-6605

Fog!~~_!Y_i~_~llg_tlL_PrQg~~mm~~~~_~~ig~,
Form C28-6811

Although not required, the following
publications are related to this publica­
tion and should be consulted:

seguential Access Methods~ogram Logic
Manual, Form Y28-6604

Concepts and Facilities, Form C28-6535

§~E~fY!2Q~_~~g_~~~~_~~D~g~men~_~~£~Q
!ll~i~~£~!Qll2' Form C28-6641

Linkage Editor, Program Logic Manual,
Form Y28-6610

system Generation, Form C28-6554

This manual consists of two sections.

Section 1 is an introduction that
describes the FORTRAN IV (H) compilE!r as a

PREFAC~

whole, including its relationship to the
operating system. The major components of
the compiler and the relationships among
them are also described.

Section 2 consists of a discussion of
the major components. Each component is
discussed in terms of its functions; the
level of detail provided is sufficient to
enable the reader to understand the general
operation of the component. In the discus­
sion of each function of a component, the
routines that implement that function are
identified by name. The inclusion of a
compound form of the routine names provides
a frame of reference for the comments and
coding supplied in the program listing.
The program listing for each identified
routine appears on the microfiche card hav­
ing the second portion of the compound name
of that routine in its heading. For
example, the routine referred to in this
manual as STALL-IEKGST is listed on the
microfiche card headed IEKGST. This sec­
tion also discusses common data, such as
tables, blocks, and work areas, but only to
the extent required to understand the logic
of the components. Flowcharts and routine
directories are included at the end of this
section.

Fol~owing Section 2 are a number of
appendixes, which contain descriptions of
tables used by the compiler, intermediate
text formats, a section on object-time
library subprograms, the overlay structure
of the compiler, and other reference
material.

If more detailed information is
required, the reader should refer to the
comments and coding in the FORTRAN IV (H)
program listing.

SECTION 1: INTRODUCTION •••••••• 13
Purpose of the Compiler • • • • • II • • 13
The Compiler and Operating System/360 • 13
Input/Output Data Flow • • • • • 13
Compiler Organization • • • • 13

FORTRAN System Director • • 14
Phase 10 • • • 14
Phase 15 • • • • • • 14
Phase 20 • • • .' • • 15
Phase 25 • • 15
Phase 30 • • 15

structure of the Compiler 15

SECTION 2: DISCUSSION OF MAJOR
COMPONENTS • • • • • • • • • 16
FORTRAN System Director • • • • •• 16

Compiler Initialization • • D • • 16
Parameter Processing • • • 16
Data Field Initialization • 16

Phase Loading • • • • • • 17
Storage Distribution (Chart 02) 17

Phase 10 Storage. • • • • • • • 17
Phase 15 Storage ••••••• D 17
Phase 20 Storage • • • • • • • • • • 18

Input/Output Request Processing • 18
Request Format • • • • • • 18
Request Processing • • • • • • 18

Generation of Initialization
Instructions • • • • • • •

Entry Coding for a Main Program
Entry Coding for Subprograms with

18
18

No Secondary Entry Points •• ti •• 19
Main Entry Coding for Subprograms
with Secondary Entry Points
SUbprogram Secondary Entry Coding

Deletion of a Compilation
Compiler Termination • • • • •

Phase 10 • • • • • • • • • • • •

• 19
• 20

20
20

• • 20
21 Source Statement Processing

Dispatcher Subroutine
Preparatory Subroutine •
Keyword Subroutine(s)
Arithmetic SubroutineCs)
utility Subroutine(s)

• II • • 22
22

• .. • • 23
23

Subroutine STALL-IEKGST (Chart 04) •
24
25
28 constructing a Cross Reference • •

Phase 10 Preparation for XREF
Processing • • • • • • •
XREF Processing

Phase 15 • • • • • • • • • • • •

• • 28
29

• • 29
PHAZ15 Processing • .. • • 30

Text Blocking • .. • • 30
Arithmetic Translation •
Gathering Constant/variable Usage
Information • • • • • • • • •
Gathering Forward-Connection
Information • • • • • •
Reordering the Statement Number
Chain • • • • • • • • • • • • ..
Gathering Backward-Connection
Information

CORAL Processing • • • • • • • • e

31

36

37

38

39
41

Translation of Data Text • • • • 42
Relative Address Assignment • 42
Rechaining Data Text • • • • • 45
DEFINE FILE Statement Processing • • 45
NAMELIST Statement Processing • 45
Initial Value Assignment •••••• 46
Reserving Space in the Adcon Table • 46
Creating Relocation Dictionary
Entries • • • • • • • • •
Creating External Symbol

• 46

Dictionary Entries • • • • • • • 46
Phase 20 • • • • • • • • • • • 47

Control Flow • • • • • • • • • 48
Register Assignment • • • • • 48

Basic Register Assignment -- OPT=O • 49
Full Register Assignment -- OPT=l
(Chart 14) ••••••••••

Branching Optimization -- OPT=l
Reserved Registers • • • • • • • •
Reserved Register Addresses

• 51
• 55
• 56
• 56

Block Determination and Subsequent
Processing • • • • • • • • • • • • • 56

Structural Determination • • • • • • • 57
Determination of Back Dominators • • 58
Determination of Back Targets and
Depth Numbers • • • • •
Identifying and Ordering Loops for

• 59

Processing • • • • • • • • 60
Busy-On-Exit Information • • 61
Structured Source Program Listing • • 62
Loop Selection • • • • • • • • • • • • 63

Pointer to Back Target • • • • • • • 63
Pointers to First and Last Blocks • 63
Loop Composite Matrixes •••••• 64

Text Optimization -- OPT=2 • 64
Common Expression Elimination --
OPT=2 • • • • • • • • • • • • • 65
Backward Movement -- OPT=2 • • • • • 66
Strength Reduction -- OPT=2 67

Full Register Assignment -- OPT=2
(Chart 14) •••••••••••
Branching Optimization -- OPT=2

Phase 25 • • • • •• •••• •
Text Information • • • • • •

Address Constant Reservation •
Text Conversion • • • • • • •
Storage Map Production • • • •
Prologue and Epilogue Generation •

Phase 30 • • • • • • •
Message Processing • • •

• 68
• 69
• 69
• 70
• 70
• 71
• 75
• 75
• 76
• 76

APPENDIX A: TABLES. • • • • .115
Communication Table (NPTR) .115
Classification Tables .115
NADCON Table. • • • • • • .118
Information Table • • • • .119

Information Table Chains. .119
Chain Construction. • • • • • • .119
Operation of Information Table Chains 120

Dictionary Chain Operation. .120
Statement Number Chain Operation •• 121
Common Chain Operation ••••••• 121

Equivalence Chain Operation .122
Literal Constant Chain Operation •• 122
Branch Table Chain operation •• 123

Information Table Components. .123
Dictionary. • • • • • • .123
statement Number/Array Table •• 127
COMMON Table. • • .131
Literal Table •• 133
Branch Tables •• 133

Function Table. • • • • • • • .135
Text Optimization Bit Tables •• 135
Register Assignment Tables •• 138

Register Use Table. • • • .138
NAMELIST Dictionaries •• 140
Diagnostic Message Tables •••• 141

Error Table • • • • • • • • • • .141
Message Pointer Table .141

APPENDIX B: INTERMEDIATE TEXT •
Phase 10 Intermediate Text

Intermediate Text Chains • •
Format of Intermediate Text Entry
Examples of Phase 10 Intermediate

• .142
.142

• .142
.143

Text •••••••••••••••• 145
Phase 15/Phase 20 Intermediate Text
Modifications • • • • • • • • • • • • .149

Phase 15 Intermediate Text
Modifications • • •

Unchanged Text • • • •
Phase 15 Data Text • • • • • • •
Statement Number Text

Phase 20 Intermediate Text

• .149
• .149
• .149
• .150

Modification • • • • • • • • • • • • .155
Standard Text Formats Resulting From
Phases 15 and 20 Processing ••••• 156

APPENDIX C: ARRAYS •••••••••• 165

APPENDIX D: TEXT OPTIMIZATION EXAMPLES 172
Example 1: Common Expression
Elimination •••••••••••• 172
Example 2: Backward Movement •••• 173
Example 3: Simple-Store Elimination 174
Example 4: Strength Reduction a •• 175

APPENDIX E: OBJECT-TIME LIBRARY
SUBPROGRAMS • • • • • •
IHCFCOMH • • • • • • • • • • • • • •

READ/WRITE Routines • • • • •
READ/WRITE Statements Not Using

• .177
• .178
• .179

NAMELIST •••••••••••••• 179
Examples of the IHCFCOMH Subprogram
READ/WRITE Statement Processing
Processing ••••••••••••• 183
READ/WRITE Statement Using NAMELIST 186
Input/Output Device Manipulation
Routines • • • • • • • • • •
Write-to-Operator Routines •
Utility Routines • • • • • •

Conversion Routines (IHCFCVTH) •
IHCFIOSH • • • • • • • •

Blocks and Tables Used • • • • • •
Unit Blocks • • • • • • • •

• .186
• .187
• .187
• .188
• .188
• .189

.189

Unit Assignment Table • • • •
Buffering • • • • • 8 • • • •

Communication With the Control
Program • • • • • • • •
Operation • • • •

Initialization ••
Read • • • • • •
Write • • • • •
Device Manipulation • • e • •

Closing • • • • • • • •
IHCDIOSE • • • • • • • • • • G • •

Blocks and Table Used
Unit Blocks • • • • •
Unit Assignment Table ••••

Buffering • • • •
Communication With the Control
Program • • • • •
Operation • • • • •••• •

File Definition Section
File Initialization Section
Read section • •
Write Section • • • • • • ••
Error Processing • • • •
Termination Section • • • • •

IHCIBERH • • • • • • • • • • •
IHCTRCH • • • •
IHCFINTH • • • • • • • • • •
IHCERRM • • • • • • • •

Alter Option Table Routine
(IHCFOPT) • • • • •

APPENDIX F: ADDRESS COMPUTATION FOR
ARRAY ELEMENTS • • • • • • • •

Absorption of Constants in
Subscript Expressions
Arrays as Parameters • • •

APPENDIX G: COMPILER STRUCTURE

APPENDIX H: DIAGNOSTIC MESSAGES

APPENDIX I:
FACILITIES •

Trace
Dump ••

THE TRACE AND DUMP

APPENDIX J: FACILITIES USED BY THE
COMPILER • • • • • •
Structure Statement
Built-in Functions •

LAND • • • • • • • • •
LOR • • • • •
LX OR •
LCOMPL •
SHFTL and SHFTR
TBIT • • • • • •
MOD 24 • • • • •

Bit-Setting Facilities
BITON
BITOFF
BITFLP ••

APPENDIX K: MICROFICHE DIRECTORY

INDEX

.191

.192

.192

.192

.192

.193

.194

.194

.195

.195

.195

.195

.197

.198

.198

.198

.198

.199

.200

.200

.201

.201

.201

.202

.202

.203

.204

.221

.221

.222

.223

.228

.233

.233

.234

.235

.235

.236

.236

.236

.237

.237

.237

.238

.238

.238

.238

.239

.239

.240

.248

FIGURES

Figure 1. Input/Output Data Flow 14
Figure 2. Format of Prepared
Source Statement ••••••• 22
Figure 3. Text Blocking 32
Figure 4. Text Reordering via
the Pushdown Table •••••• 34
Figure 5. Forward-Connection
Information • • • • • • • • • • 39
Figure 6. Backward-Connection
Information • • • • • • 41
Figure 7. Back dominators 58
Figure 8. Back Targets and Depth
Numbers • • • • • • • • • • 58
Figure 9. Storage Layout for
Text In=ormation Construction 71
Figure 10. Information Table
Chains •••••••••••••• 119
Figure 11. Dictionary Chain ., •• 121
Figure 12. Format of Dictionary
Entry for Variable •••• • .123
Figure 13. Function of Each
Subfield in the Byte A Usage Field
of a Dictionary Entry for a
Variable or Constant .124
Figure 14. Function of Each
Subfield in the Byte B Usage Field
of a Dictionary Entry for a
Variable. • • • • • • • • • • .124
Figure 15. Format of Dictionary
Entry for Variable After
CSORN-IEKCCR Processing for XREF .125
Figure 16. Format of Dictionary
Entry for Variable After
Rechaining •••••• u •• 126
Figure 17. Format of Dictionary
Entry for Variable After Coordinate
Assignment • • • • • • tl • .126
Figure 18. Format of Dictionary
Entry for Variable After COMMON
Block Processing •••••• ~ •• 126
Figure 19. Format of Dictionary
Entry for a Variable After Relative
Address Assignment ••••• '. • • 126
Figure 20. Format of Dictionary
Entry for Constant •••••••• 127
Figure 21. Format of a Statement
Number Ent ry • • • • • 127
Figure 22. FUnction of Each
Subfield in the Byte A Usage Field
of a Statement Number Entry .128
Figure 23. Function of Each
Subfield in the Byte B Usage Field
of a Statement Number Entry .128
Figure 24. Format of a Dictionary
Entry for Statement Number After
Subroutine LABTLU-IEKCLT Proc-
essing for XREF •••••••••• 128
Figure 25. Format of Statement
Number Entry After the Processing
of Phases 15, 20, and 25 ••••• 129
Figure 26. Function of Each
Subfield in the Block Status Field 129

ILLUSTRATIONS

Figure 27. Format of Dimension
Entry • • • • • • • • • • .130
Figure 28. Format of a COMMON
Block Name Entry •••••• .131
Figure 29. Format of COMMON Block
Name Entry After COMMON Block
Processing •••••• .131
Figure 30. Format of an
Equivalence Group Entry .132
Figure 31. Format of Equivalence
Group Entry After Equivalence
Processing • • • • • • • • .132
Figure 32. Format of Equivalence
Variable Entry •••••••••• 132
Figure 33. Format of Equivalence
Variable Entry After Equivalence
Processing • • • • • • .133
Figure 34. Format of Literal
Constant Entry ••••••• .133
Figure 35. Format of Literal
Constant Entry After Literal
Processing ••••••••• .133
Figure 36. Format of Literal Data
Entry • • • • • • • • • • .133
Figure 37. Format of Initial
Branch Table Entry •••••••• 134
Figure 38. Format of Initial
Branch Table Entry After Phase 25
Processing • • • • • • .134
Figure 39. Format of Standard
Branch Table Entry After Phase 25
Processing • • • • • • .134
Figure 40. Format of Namelist
Name Entry • • • • • • .140
Figure 41. Format of Namelist
Variable Entry •••••••••• 140
Figure 42. Format of Namelist
Array Entry .140
Figure 43. Intermediate Text
Entry Format • • • • • .143
Figure 44. Phase 10 Normal Text •• 145
Figure 45. Phase 10 Data Text •• 146
Figure 46. Phase 10 Namelist Text 147
Figure 47. Phase 10 Define File
Text ••••••••••••• 148
Figure 48. Phase 10 Format Text .148
Figure 49. Phase 10 SF Skeleton
Text • • • • • • • • • • .149
Figure 50. Format of Phase 15
Data Text Entry • • • • • • • .150
Figure 51. Function of Each
Subfield in Indicator Field of
Phase 15 Data Text Entry .150
Figure 52. Format of statement
Number Text Entry • • • • • • • • .150
Figure 53. Function of Each
Subfield in Indicator Field of
Statement Number Text Entry. .151
Figure 54. Format of a Standard
Text Entry • • • • • • • • • • • 154
Figure 55. Format of Phase 20
Text Entry • • • • • • .155

Figure 56. Relationship Between
IHCli'COMH and Input/Output Data
Management Interfaces •• 178
Figure 57. Format of a Unit Block
for a Sequential Access Data Set •• 189
Figure 58. Unit Assignment Table
Format •••••••••••••• 191

Figure 59. CTLBLK Format ••••• 193
Figure 60. Format of a Unit Block
for a Direct Access Data Set .196
Figure 61. unit Assignment Table
Entry for a Direct Access Data Set 198
Figure 62. Compiler Overlay
Structure • • • • • • • • • • .223

Table 1. FORMAT statement
Translation • • • • • • • • 26
Table 2. Operators and Forcing
strengths ••• • • • • • • • • 33
Table 3. Item Types and Registers -
Assigned ~n Basic Register
Assignment • • • • • • • • • • • • • 49
Table 4. Text Entry Types • • • • 65
Table 5. Operand Characteristics
That Permit Simple-Store
Elimination • • • • • • • • 67
Table 6. FSD Subroutine
Directory (Part 1 of 2) 80
Table 7. Phase 10 Source
Statement Processing • • • • 84
Table 8. Phase 10 Subroutine
Directory (Part 1 of 3) 85
Table 8. Phase 10 Subroutine
Directory (Part 2 of 3) •••••• 86
Table 8. Phase 10 Subroutine
Directory (Part 3 of 3) •••• 87
Table 9. Phase 15 Subroutine
Directory (Part 1 of 2) •••• 93
Table 9. Phase 15 Subroutine
Directory (Part 2 of 2) •••• 94
Table 10 Phase 15 COMMON Areas • • 95
Table 11. Criteria for Text
Optimization •••••••••••• 106
Table 12. Phase 20 Subroutine
Directory (Part 1 of 2) •••••• 107
Table 12. Phase 20 Subroutine
Directory (Part 2 of 2)
Table 13. Phase 20 Utility

• .108

Subroutines •••••••••••• 109
Table 14. Phase 25 Subroutine
Directory (Part 1 of 2)112
Table 14. Phase 25 Subroutine
Directory (Part 2 of 2) •••••• 113
Table 15. Phase 30 Subroutine
Directory ••••••••••••• 113
Table 16. Communication Table
[NPTR (2, 35)] (Part 1 of 3) • • • • • 115
Table 16. Communication Table
[NPTR(2,35)] (Part 2 of 3) ••••• 116
Table 16. Communication Table
[NPTR(2,35)] (Part 3 of 3) ••••• 116
Table 17. Keyword Pointer Table •• 117
Table 18. Keyword Table (Part 1
of 2) • • • • • ••••• 117
Table 18. Keyword Table (Part 2
of 2) • • • • • .118
Table 19. NADCON Table • .118
Table 20. Operand Modes • 125
Table 21. Operand Types • 125

IEKLFT Table 22. Function Table -­
(12, 128) •••••••••
Table 23. Text optimization Bit
Tables • •
Table 24.
Table 25.
Table 26.

• .135

• • • • • • • • • • .137
Local Assignment Tables .138
BVA Table. • • • .139
Global Assignment Tables 139

TABLES

Table 27. Adjective Codes (Part 1
of 3) • • • • • • • • •
Table 27. Adjective Codes (Part 2
of 3) • • • • • • • • •
Table 27. Adjective Codes (Part 3
of 3) • • • •
Table 28. Phase 15/20 Operators
(Part 1 of 5) ••••••••••
Table 28. Phase 15/20 Operators
(Part 2 of 5) ••••••••••
Table 28. Phase 15/20 Operators
(Part 3 of 5) ••••••••••
Table 28. Phase 15/20 Operators
(Part 4 of 5) ••••••••••
Table 28. Phase 15/20 Operator
(Part 5 of 5) ••••••••••
Table 29. Meanings of Bits in
Mode Field of Standard Text Entry
Status Mode Word • • •
Table 30. Status Field Bits and
Their Meanings • • • • • • • • •
Table 31. The IHCFCOMH Subprogram
FORMAT Code Processing • • • •
Table 32. IHCFCOMH Processing for
a READ Requiring a Format
Table 33. IHCFCOMH Processing for
a WRITE Requiring a Format • •
Table 34. IHCFCOMH Processing for
a READ Not Requiring a Format
Table 35. IHCFCOMH Processing for
a WRITE Not Requiring a Format • •
Table 36. Description of Option
Table Entry • • • • • • • • • • •
Table 37. Description of Option
Table • • • • • • • • • •
Table 38. IHCFCOMH Subroutine
Directory • • • • • • • • • • • •
Table 39. IHCFCVTH Subroutine
Directory
Table 40.
Directory
Table 41.
Directory
Table 42.
Segments •
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51 •
Table 52.
Table 53.
Table 54.
Table 55.
Values and
Table 56.
(Part 1 of

IHCFIOSH Routine

IHCDIOSE Routine

Phases and Their

Segment 1 Composition.
Segment 2 Composition.
segment 4 Composition •
Segment 5 Composition •
Segment 6 Composition •
Segment 7 Composition •
Segment 8 Composition •
Segment 9 Composition •
Segment 10 Composition
segment 11 Composition
Segment 12 Composition
Segment 13 Composition
Basic TRACE Keyword
Output Produced • • • •
Microfiche Directory
8) ••••••••••

• 143

• 144

.144

.152

.152

.153

.153

.154

.155

.156

.180

.184

.184

.185

.185

• 205

.205

.209

.209

.214

.214

.224

.224

.224

.225

.225
• 225
.225
.226
.226
.226
.226
.227
.227

.233

.240

Table 56. Microfiche Directory Table 56. Microfiche Directory
(Part 2 of 8) · · · • · · · · · · .241 (Part 5 of 8) · · · · · · · .. · · .244
Table 56. Microfiche Directory Table 56. Microfiche Directory
(Part 3 of 8) · · · · · · · · · · .242 (Part 6 of 8) · · · 0 · · · .. · · .245
Table 56. Microfiche Directory Table 56. Microfiche Directory
(Part 4 of 8) · · · · · · · · · · .243 (Part 7 of 8) · · · · · · · . · · .246

Table 56. Microfiche Directory
(Part 8 of 8) · · · · · · · " · · .247

Chart 00.
Chart 01.
Chart 02.
Chart 03.
Chart 04.
Chart 05.
Chart 06.
Chart 07.

Compiler Control Flow • • 77
FSD Overall Logic • • • • 78
FSD Storage Distribution 79
Phase 10 Overall Logic • 82
Subroutine STALL-IEKGST • 83
Phase 15 Overall Logic • 88
PHAZ15 Overall Logic 89
ALTRAN-IEKJAL Control

Flow • • • • • • • • • • • • • • 90
Chart 08. GENER-IEKLGN Text
Generation • • • • • • • • 91
Chart 09. CORAL Overall Logic ••• 92
Chart 10. Phase 20 Overall Logic • 96
Chart 11. Common Expression
Elimination (XPELIM-IEKQXM) 97
Chart 12. Backward Movement
(BACMOV-IEKQBM) •••••••••• 98
Chart 13. Strength Reduction
(REDUCE-IEKQSR) •••••••••• 99
Chart 14. Full Register
Assignment (REGAS-IEKRRG) •• 100
Chart 15. Table Building
(FWDPAS-IEKRFP) •••••• .101
Chart 16. Local Assignment
(BKPAS-IEKRBP) ••••••••••• 102
Chart 17. Global Assignment
(GLOBAS-IEKRGB) •••• • .103
Chart 18. Text Updating
(STXTR-IEKRSX) • • • • • • • • .104
Chart 19. Text Updating
(STXTR-IEKRSX) (Continued) ••••• 105

CHARTS

Chart 20. Phase 25 Processing ••• 110
Chart 21. Subroutine END-IEKUEN •• 111
Chart 22. Phase 30 (IEKP30)
Overall Logic • • • • • • • • • • .114
Chart 23. IHCFCOMH Overall Logic
and Utility Routines ••• 0 •••• 206
Chart 24. Implementation of
READ/WRITE/FIND Source Statements .201
Chart 25. Device Manipulation,
Write-to-operator, and READ/WRITE
USing NAMELIST Routines •••••• 208
Chart 26. IHCFIOSH Overall Logic .210
Chart 21. Execution-Time
Input/Output Recovery Procedure •• 211
Chart 28. IHCDIOSE Overall Logic
-- File Definition Section ••••• 212
Chart 29. IHCDIOSE Overall Logic
- File Initialization, READ,
WRITE, and Termination Sections •• 213
Chart 30. IHCIBERH Overall Logic .215
Chart 31. Error Monitor Overall
Logic •••••••••• 216
Chart 32. Error Monitor Overall
Logic (cont.) ••••• .217
Chart 33. Alter Option Table
Routine Overall Logic • • • • .218
Chart 34. Alter Option Table
Routine Overall Logic (cont.) .219
Chart 35. Alter Option Table
Routine Overall Logic (cont.) .220

This section contains general informa­
tion describing the purpose of the FORTRAN
IV (H) compiler, its relationship to the
operating system, its input/output data
flow, its organization, and its overlay
structure.

The IBM System/360 operating System
FORTRAN IV (H) compiler transforms source
modules written in the FORTRAN IV language
into object modules that are suitable for
input to the linkage editor for subsequent
execution on the System/360. At the user's
option, the compiler produces optimized
object modules (modules that can be
executed with improved efficiency».

THE COMPILER AND OPERATING SYSTEM/360

The FORTRAN IV (H) compiler is a proc­
essing program that communicates with the
System/360 Operating System control program
for input/output and other services. A
general description of the control program
is given in the publication IBM System/360
Q~~ating System: Introduction to Control
Program Logic, Program Logic Manual, Form
Y28-6605.

A compilation, or a batch of compila­
tions, is requested using the job statement
(JOB), the execute statement (EXEC), and
data definition statements (DO). Cataloged
procedures may also be used. A discussion
of ~ORTRAN IV compilation and the available
cataloged procedures is given in the publi-
cation IB~_§Y2:t.~!!!~1§'Q_Q12.~E~!:i!!~§y2:t.~!!!.!._
EOR!~-lY-l~~!!~_gL_~£Qgra!!!!!!~~2_~~~i~,
Form C28-6817.

The compiler receives control from the
calling program (e.g., job scheduler or
another program that calls, links to, or
connects the compiler). Once the compiler
receives control, it communicates with the
cont~ol program through the FORTRAN system
~ir~£:t.QE' a part of the compiler that con­
trols compiler processing. After compiler
processing is completed, control is
returned to the calling program.

SECTION 1: INTRODUCTION

INPUT/OUTPUT DATA FLOW

The source modules to be compiled are
read in from the SYSIN data set. Compiler
output is placed on the SYSLIN, SYSPRINT,
SYSPUNCH, SYSUT1, or SYSUT2 data set,
depending on the options specified by the
FORTRAN programmer. (The SYSPRINT data set
is always required for compilation.>

The overall data flow and the data sets
used for the compilation are illustrated in
Figure 1.

The IBM System/360 Operating System
FORTRAN IV (H) compiler consists of the
FORTRAN system director, four logical proc-­
essing phases (phases 10, 15, 20, and 25),
and an error-handling phase (phase 30).

Control is passed among the phases of
the compiler via the FORTRAN system direc­
tor. After each phase has been executed,
the FORTRAN system director determines the
next phase to be executed, and calls that
phase. The flow of control within the com­
piler is illustrated in Chart 00. (Charts
are located at the end of Section 2.>

The components of the compiler operating
together produce an object module from a
FORTRAN source module. The object module
is acceptable as input to the linkage edi­
tor, which prepares object modules for
relocatable loading and execution.

The object module consists of control
dictionaries (external symbol dictionary
and relocation dictionary), text (repre­
senting the actual machine instructions and
data), and an END statement. The external
symbol dictionary (ESD) contains the
external symbols that have been defined or
referred to in the source module. The
relocation dictionary (RLD) contains infor­
mation about address constants in the
object module.

The functions of the components of the
compiler are described in the following
paragraphs.

section 1: Introduction 13

SYSIN

SOURCE EDIT MAP LOAD
Option Option Option Option

J 1 1 1
Source Intermediate Object Module

Module Output for Storage (ESD, TXT,

listing EDIT Map RLD, and END
card images)

SYSPRINT SYSUTl SYSPRINT SYSLIN

1
Structured
Source
listing

SYSPRINT

Figure 1. Input/Output Data Flow

FORTRAN SYSTEM DIRECTOR

The FORTRAN system director (FSD) con­
trols compiler processing. It initializes
compiler operation, calls the phases for
execution, and distributes and keeps track
of the main storage used during the compi­
lation. In addition, the FSD receives the
various input/output requests of the com­
piler phases and submits them to the con­
trol program.

PHASE 10

Phase 10 accepts as input (from the
SYSIN data set) the individual source
statements of the source module. If a
source module listing is requested, the
source statements are recorded on the SYS­
PRINT data set. If the XREF option is
selected, a two-part cross reference is re­
corded on the SYSPRINT data set immediately
following the source listing. If the EDIT
option is selected, the source statements
are recorded on the SYSUTl data set, which
phase 20 uses as input to produce a struc­
tured source listing. If the ID option is
selected, calls and function references are

14

1
DECK LIST or Option

1
Object Module Object
(ESD, TXT, Program
RLD, and END listing
card images)

SYSPUNCH SYSPRINT

XREF

I ntermed i ate
Output for
XREF

SYSUT2

1
Cross-
Reference
listing

SYSPRINT

For ALL

Error and
Warning
Messages
(if Any)

SYSPRINT

assigned an internal statement number
(ISN) •

Phase 10 converts each source statement
into a form usable as input by succeeding
phases. This usable input consists of an
intermediate text representation (in
operator-operand pair format) of each
source statement. In addition, phase 10
makes entries in an information table for
the variables, constants, literals, state­
ment numbers, etc., that appear in the
source statements. Phase 10 also places
data about COMMON and EQUIVALENCE state­
ments in the information table so that main
storage space can be allocated correctly in
the object module. During this conversion
process, phase 10 also analyzes the source
statements for syntactical errors. If
errors are encountered, phase 10 passes to
phase 30 (by making entries in an error
table) the information needed to print the
appropriate error messages.

PHASE 15

Phase 15 gathers additional information
about the source module and modifies some
intermediate text entries to facilitate

optimization by phase 20 and instruction
generation by phase 25. Phase 15 is
divided into two segments that perform the
following functions:

• The first segment translates phase 10
intermediate text entries (in operator­
operand pair format) representing
arithmetic operations into a four-part
format, which is needed for optimiza­
tion by phase 20 and instruction­
generation by phase 25. This part of
phase 15 also gathers information about
the source module that is needed for
optimization by phase 20.

• The second segment of phase 15 assigns
relative addresses and, where neces­
sary, address constants to the named
variables and constants in the source
module. This segment also converts
phase 10 intermediate text (in
operator-operand pair format) repre­
senting DATA statements to a variable­
initial value format, which makes later
assignment of a constant value to a
variable easier.

Phase 15 also passes to phase 30 the
information needed to print appropriate
messages for any errors detected during
phase 15 processing. (This is done by mak­
ing entries in the error table.)

PHASE 20

Phase 20 processing depends on whether
or not optimization has been requested and,
if so, the optimization level desired.

If no optimization is specified, phase
20 assigns registers for use during execu­
tion of the object module. However, phase
20 does not take full advantage of all
registers and makes no effort to keep fre­
quently used quantities in registers to
eliminate the need for some machine
instructions.

If the first level of optimization is
specified, phase 20 uses all available
registers and keeps frequently used quanti­
ties in registers wherever possible. Phase
20 takes other measures to reduce the size
of the object module, and provides informa­
tion about operands to phase 25.

If the second level of optimization is
specified, phase 20 uses other techniques
to make a more efficient object module.
The net result of these procedures is to
eliminate unnecessary instructions and to
eliminate needless execution of
instructions.

If both the EDIT option and the second
level of optimization are selected, phase
20 produces a structured source program
listing on the SYSPRINT data set.

PHASE 25

Phase 25 produces an object module from
the combined output of the preceding phases
of the compiler.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine language format. It
may contain unresolved external symbolic
cross references (i.e., references to sym­
bols that do not appear in the source
module). The external symbol dictionary
contains the information required by the
linkage editor to resolve external symbolic
cross references, and the relocation dic­
tionary contains the information needed by
the linkage editor to relocate the absolute
text information.

Phase 25 places the object module
resulting from the compilation on the
SYSLIN data set if the LOAD option is spe­
cified, and on the SYSPUNCH data set if the
DECK option is specified. Phase 25 pro­
duces an object module listing on the
SYSPRINT data set if the LIST option is
specified. In addition, phase 25 produces
a storage map if the MAP option is
specified.

PHASE 30

Phase 30 is called after phase 25
processing is completed only if errors are
detected by previous phases. Phase 30
records messages describing the detected
errors on the SYSPRINT data set.

STRUCTURE OF THE COMPILER

The FORTRAN IV (H) compiler is struc­
tured in a planned overlay fashion, which
consists of 13 segments. One of these seg­
ments constitutes the FORTRAN system direc­
tor and is the root segment of the planned
overlay structure. Each of the remaining
12 segments constitutes a phase or a logic­
al portion of a phase. A detailed discus­
sion of the compiler's planned overlay
structure is given in Appendix G.

Section 1: Introduction 15

SECTION 2: DISCUSSION OF MAJOR COMPONENTS

The following paragraphs and associated
flowcharts at the end of this section
describe the major components of the FOR­
TRAN IV (H) compiler. Each component is
described to the extent necessary to
explain its function(s) and its general
operation.

FORTRAN SYSTEM DIRECTOR

The FORTRAN system director (FSD) con­
trols compiler processing; its overall
logic is illustrated in Chart 01. (For a
complete list of FSD subroutines, see Table
6.) The FSD receives control from the job
scheduler if the compilation is defined as
a job step in an EXEC statement. The FSD
may also receive control from another pro­
gram through use of one of the system macro
instructions (CALL, LINK, or ATTACH).

The FSD:

• Initializes the compiler.
• Loads the compiler phases.
• Distributes storage to the phases.
• Processes input/output requests.
• Generates entry code (initialization

instructions) for main programs, sub­
programs, and subprogram secondary
entries.

• Deletes compilation.
• 'l~erminates compilation.

COMPILER INITIALIZATION

The initialization of compiler proces­
sing by the FSD consists of two steps:

• Parameter processing.
• Data field initialization.

Parameter Processing

When the FSD is given control, the
address of a parameter list is contained in
a general register. If the compiler
receives control as a result of either an
EXEC statement in a job step or an ATTACH
or CALL macro instruction in anothe.r pro­
gram, the parameter list has a single
entry, which is a pointer to the main
storage area containing an image of the

16

options (e.g., SOURCE, MAP) specified for
the compilation. If the compiler receives
control as a result of a LINK macro
instruction in another program, the parame­
ter list may have a second entry, which is
a pointer to the main storage area contain­
ing substitute ddnames (i.e., ddnames that
the user wishes to substitute for the
standard ones of SYSIN, SYSPRINT, SYSPUNCH,
SYSLIN, SYSUT1, and SYSUT2.

COMPILER OPTIONS: To determine the options
specified for the compilation and to inform
the various compiler phases of these
options, the FSD scans and analyzes the
storage area containing their images and
sets indicators to reflect the ones speci­
fied. These ~ndicators are placed into the
communication table -- IEKAAA (see Appendix
A, "Communication Table") during data field
initialization. The various compiler
phases have access to the communication
table and, from the indicators contained in
it, can determine which options have been
selected for the compilation.

SUBSTITUTE DDNAMES: If the user wishes to
substitute ddnames for the standard ones,
the FSD must establish a correspondence
between the DD statements having the sub­
stitute ddnames and the DCBs (Data Control
Blocks) associated with the ddnames to be
replaced. To establish this necessary
correspondence, the FSD scans the storage
area containing the substitute ddnames, and
enters each such ddname into the DCBDDNM
field of the DCB associated with the
standard ddname it is to replace.

Data Field Initialization

Data field initialization affects the
communication table, which is a central
gathering area used to communicate informa­
tion among the phases of the compiler. The
table contains information such as:

• User specified options.

• Pointers indicating the next available
locations within the various storage
areas.

• Pointers to the initial entries in the
various types of chains (see Appendix
A, "Information Table" and "Appendix B,
Intermediate Text").

• Name of the source module being
compiled.

• An indication of the phase currently in
control.

The various fields of the communication
table, which are filled during a compila­
tion, must be initialized before the next
compilation. To initialize this region,
the FSD clears it and places the option
indicators into the fields reserved for
them.

PHASE LOADING

The FSD loads and passes control to each
phase of the compiler by means of a
standard calling sequence. The execution
of the call causes control to be passed to
the overlay supervisor, which calls program
fetch to read in the phase. Control is
then returned to the overlay sup~rvisor,
which branches to the phase. The phases
are called for execution in the following
sequence: phase 10, phase 15, phase 20,
and phase 25. However, if errors are
dete:cted by previous phases, phase 30 is
called after the completion of phase 25
processing.

STORAGE DISTRIBUTION (CHART 02)

Phases 10, 15, and 20 require main
storage space in which to construct the
information table (see Appendix A, "Infor­
mati:on Table") and to collect inte'rmediate
text entries. These phases obtain this
storage space by submitting requests to the
FSD (at entry point IEKAGC), which allo­
cates the required space, if available, and
returns to the requesting phase pointers to
both the beginning and end of the allocated
storage space.

Phase 10 Storage

Phase 10 can use all of the avail,able
storage space for building the information
table and for collecting text entries. At
each phase 10 request for main storage in
which to collect text entries or build the
information table, the FSD reallocates a
portion (i.e., a subblock) of the storage
for text collection, and returns to phase
10 either via the communication table or
the storage area Pl0A-IEKCAA (depending
upon the type of text to be collected in
the subblock; see Appendix B, "Phase 10

Intermediate Text") pOinters to both the
beginning and end of the allocated storage
space. If the subblock is allocated for
phase 10 normal text or for the information
table, the pointers are returned in the
communication table~ If the subblock is
allocated for a phase 10 text type other
than normal text, the pointers are returned
via the storage area Pl0A-IEKCAA. After
the storage has been allocated, the FSD
adjusts the end of the information table
downward by the size of the allocated sub­
block. This process is repeated for each
phase 10 request for main storage space.

Subblocks to contain phase 10 text or
dictionary entries are allocated in the
order in which requests for main storage
are received. (When phase 10 completely
fills one subblock with text entries, it
requests another.) A request for a sub­
block to contain a particular type of entry
may immediately follow a request for a sub­
block to contain another type of entry.
Consequently, subblocks allocated to con­
tain the same type of entries may be scat­
tered throughout main storage. The FSD
must keep track of the subblocks so that,
at the completion of phase 10 processing,
unused or unnecessary storage may be allo­
cated to phase 15.

Phase 15, in collecting the text or dic­
tionary entries that it creates, can use
only those portions of main storage that
are (1) unused by phase 10, or (2) occupied
by phase 10 normal text entries that have
been processed by phase 15. The FSD first
allocates all unused storage (if necessary)
to phase 15. If this is not sufficient,
the FSD then allocates the storage occupied
by phase 10 normal text entries that have
undergone phase 15 processing. If either
of these methods of storage allocation
fails to provide enough storage for phase
15, the compilation is terminated.

Pointers to both the beginning and end
of the allocated subblock portion are
passed to phase 15 via the communication
table. If an additional request is
received after the last subblock portion is
allocated, the FSD determines the last
phase 10 normal text entry that was
processed by phase 15. The FSD then frees
and allocates to phase 15 the portion of
storage occupied by phase 10 normal text
entries between the first such text entry
and the last entry processed by phase 15.

Phase 15 Storage Inventory: After the pro­
cessing of PHAZ15, the first segment of
phase 15, is completed, the FSD recovers

Section 2: Discussion of Major Components 17

the subblocks that were allocated to phase
10 normal text. These subblocks are
chained as extensions to the storage space
available at the completion of PHAZ15 pro­
cessing. The chain, which begins in the
FSD pointer table, connecting the various
available portions of storage is scanned
and when a zero pointer field is encoun­
tered, a pointer to the first subblock
allocated to phase 10 normal text is placed
into that field. The chain connecting the
various subblocks allocated to phase 10
normal text is then scanned and when a zero
pointer field is encountered, a pointer to
the first subblock allocated to SF skeleton
text is placed into that field. Once the
subblocks are chained in this manner, they
are available for allocation to CORAL, the
second segment of phase 15, and to phase
20.

After the processing of CORAL is com­
pleted, the FSD likewise recovers the sub­
blocks allocated for phase 10 special text.
The chain connecting the various portions
of available storage space is scanned and
when a zero pointer field is encountered, a
pointer to the first subblock allocated for
phase 10 special text is placed into that
field. After the subblocks allocated for
phase 10 special text are linked into the
chain as described above, they, as well as
all other portions of storage space in the
chain, are available for allocation to
phase 20.

Phase 20 Storage

Each phase 20 request for storage space
is satisfied with a portion of storage
available at the completion of CORAL pro­
cessing. The portions of storage are allo­
cated to phase 20 in the order in which
they are chained. Pointers to both the
beginning and end of the storage allocated
to phase 20 for each request are placed
into the communication table.

INPUT/OUTPUT REQUEST PROCESSING

'I~he FSD routine IEKFCOMH receives the
input/output requests of the compiler
phases and submits them to QSAM (Queued
Sequential Access Method) for implementa­
tion (see the publication !~~~£te~L1~Q
Q~~~tigq_2Y£t~~~ __ 2~g~~nti~!_~££~££
~ethQQ£L-~£29E~~_~Qgi£_~anu~!, Form
Y28-6604).

18

Phase requests for input/output services
are made in the form of READ/WRITE state­
ments requiring a FORMAT statement. The
format codes that can appear in the FORMAT
statement associated with such READ/WRITE
requests are a subset of those available in
the FORTRAN IV language. The subset con­
sists of the following codes: I~ (output
only), T~, A~, ~X, ~H, and Z~ (output
only) •

g~uest Processing

To process input/output requests from
the compiler phases, the FSD performs a
series of operations, which are a subset of
those carried out by the IEKFCOMH/IEKFIOCS
combination (see Appendix E) to implement
sequential READ/WRITE statements requiring
a format.

GENERATION OF INITIALIZATION INSTRUCTIONS

The FSD subroutine IEKTLOAD works with
STALL to generate the machine instructions
for entry into a program. These instruc­
tions are referred to as initialization
instructions and are divided into three
catagories:

• Entry coding for a main program.

• Entry coding for subprograms with no
secondary entry points.

• Main entry coding for subprograms with
secondary entry points.

Once generated, these instructions are
entered into TXT records (see "Phase 25,
Text Information" for a discussion of TXT
records) •

Entry Coding for a Main Program

The initialization instructions
generated by subroutine IEKTLOAD for a main
program perform the following functions:

• Branch past the eight-byte name field
to the store multiple instruction.

• Save the contents of registers 14
through 12 in the save area of the
calling program.

• Load the address of the prologue into
register 2 and the address of the save
area into register 3.

• Store the location of the called pro­
gram's save area into the third word of
the calling program's save area.

• Store the location of the calling pro­
gram's save area into the second word
of the called program's save area.

• Branch to the prologue. (For an
explanation of prologue and epilogue,
see "Phase 25, Prologue and Epilogue
Generation.")

The prologue instructions perform the
following functions:

• Load register 12, if register 12 is
used.

• Load register 15 for the following call
to IBCOM.

• Call IBCOM for main program
initialization.

• Load register 13 with the address of
the called program's save area o

• Branch to the first instruction in the
body of the program.

The initialization instructions
generated by subroutine IEKTLOAD for the
entry points into a subprogram with no
secondary entry points perform the follow­
ing functions:

• Branch past the eight-byte name field
to the store multiple instruction.

• Save the contents of general registers
14 through 12 in the save area of the
calling program.

• Load the address of the calling pro­
gram's save area into register 4.

• Load the address of the prologue into
register 12 and the address of the save
area into register 13.

• Store the location of the calling pro­
gram's save area into the second word
of the called program's save area.

• Store the location of the called pro­
gram's save area into the third word of
the calling program's save area.

• Branch to the prologue. (For an
explanation of prologue and epilogue,
see "Phase 25, Prologue and Epilogue
Generation.")

The prologue instructions perform the
following functions:

• Initialize call by value arguments (if
any) and also initialize adcons for
call by name arguments (if any).

• Branch to the first instruction in the
body of the called program.

Main EntrY_~2di~ for subprQgrams with
Se£2nd~!y En!£LEoint2.

The initialization instructions
generated by subroutine IEKTLOAD for the
main entry point into a subprogram with
secondary entry points perform the follow­
ing functions:

• Branch past the eight-byte name field
to the store multiple instruction.

• Save the contents of registers 14
through 12 in the save area of the
calling program.

• Load the address of the prologue into
register 2 and the address of the epi­
logue into register 3.

• Load the location of the calling pro­
gram's save area into register 4.

• Load the location of the called pro­
gram's save area into register 13.

• Store the address of the epilogue into
the first word of the called program's
save area and the location of the
calling program's save area into the
second word of the called program's
save area.

• Store the location of the called pro­
gram's save area into the third word of
the calling program's save area.

• Branch to the prologue.

The main entry prologue instructions
(generated by phase 25) perform the same
functions described previously under "Entry

section 2: Discussion of Major Components 19

Coding for Subprograms with No Secondary
Entry Points."

Subprogram Secondary Entry Coding

This coding is generated entirely by
phase 25 but is mentioned here for
completeness. The requirements of second­
ary entry coding are essentially the same
as main entry coding. For this reason many
of the main entry instructions are used by
phase 25 through an unconditional branch
into that section of code. Main entry
instructions that precede and include the
instruction which loads the prologue and
epilogue addresses cannot be used, since
each secondary entry point has its own
associated prologue and epilogue~ There­
fore, secondary entry instructions perform
the following functions:

• Branch past the eight-byte name field
to the store multiple instruction.

• Save the contents of registers 14
through 12 in the save area of the
calling program.

• Load the address of the prologue into
register 2 and the address of the epi­
logue into register 3.

• Load register 15 with the address of
the instruction in the main entry cod­
ing that loads register 4.

• Branch into the main entry coding.

The secondary entry prologue instruc­
tions (generated by phase 25) perform the
same functions described previously for
subprogram main entry coding, excep·t that
the branch is directed to the desired entry
point in the body of the called program
rather than the first instruction.

Subprogram secondary entry coding does
not occupy storage within the "Initializa­
tion Instructions" section of text informa­
tion. That section is reserved for:

• Main program entry coding, if the
source module being compiled is a main
program.

• subprogram main entry coding, if a sub­
program is being compiled.

The secondary entry coding is generated for
each occurrence of an ENTRY statement, fol­
lowed immediately by its associated prolo­
gue and epilogue. Secondary entry coding
follows the main prologue and epilogue
which, in turn, follow the main body of the
program. For each additional secondary

20

entry point, equivalent instructions will
be generated.

DELETION OF A COMPILATION

The FSD deletes a compilation if an
error of error level code 16 (see the pub­
lication ~System/36~operating System:
FOgTRAN IV (G and H) ProQEammer's Guide,
Form C28-6817) is detected during the
execution of a processing phase.

The phase detecting the error passes
control to the FSD at entry point SYSDIR­
IEKAA9. If the error was detected by phase
10, the FSD del&t:.es the compilation by hav­
ing phase 10 read records (without process­
ing them) until the END statement is
encountered. If the error was encountered
in a phase other than phase 10, the FSD
simply deletes the compilation.

COMPILER TERMINATION

The FSD terminates compiler processing
when an end-of-file is encountered in the
input data stream or when a permanent
input/output error is encountered. If,
after the deletion of a compi!ation or
after a source module has been completely
compiled, the first record read by the FSD
from the SYSIN data set contains an end-of­
file indicator, contro! is passed to the
FSD (at the entry point ENDFILE), which
terminates compiler processing by returning
control to the operating system. If a per­
manent error is encountered during the
servicing of an input/output request of a
phase, contro! is passed to the FSD (at
entry point IBCOMRTN), which writes a mes­
sage stating that both the compilation and
job step are deleted. The FSD then returns
control to the operating system. In either
of the above cases, the FSD passes to the
operating system as a condition code the
value of the highest error level code
encountered during compiler processing.
The value of the code is used to determine
whether or not the next job step is to be
performed.

PHASE 10

The FSD reads the first record of the
source module and passes its address to
phase 10 via the communication table.
Phase 10 converts each FORTRAN source
statement into usable input to subsequent
phases of the compiler; its overall logic

is illustrated in Chart 03. Phase 10
conversion produces an intermediate text
representation of the source statement and/
or detailed information describing the
variables, constants, literals, statement
numbers, data set reference numbers, etc.,
appearing in the source statement. During
conversion, the source statement is ana­
lyzed for syntactical errors.

The intermediate text is a strictly
defined internal representation (i~e.,
internal to the compiler) of a source
statement. It is developed by scanning the
source statement from left to right and by
constructing operator-operand pairs. In
this context, operator refers to such ele­
ments as commas, parentheses, and slashes,
as well as to arithmetic, relational, and
logical operators. Operand refers to such
elements as variables, constants, literals,
statement numbers, and data set reference
numbers. An operator-operand pair is a
text entry, and all text entries for the
operator-operand pairs of a source state­
ment are the intermediate text representa­
tion of that statement.

The following six types of intermediate
text are developed by phase 10:

• Normal text is the intermediate text
representation of source statements
other than DATA, NAMELIST, DEFINE FILE,
FORMAT, and statement functions.

• Data text is the intermediate text
representation of DATA statements and
initialization values in type
statements.

• Namelist text is the intermediate text
representation of NAMELIST statements.

• 2efin~_file_~ex~ is the intermediate
text representation of DEFINE FILE
statements.

• Format text is the intermediate text
representation of FORMAT statements.

• SF skeleton text is the intermediate
text representation of statement func­
tions using sequence numbers as
operands of the intermediate text
entries. The sequence numbers replace
the dummy arguments of the statement
functions. This type of text is, in
effect, a "skeleton" macro instruction.

The various text types are discussed in
detail in Appendix B, "Intermediate Text."

The detailed information describing
operands includes such facts as whether a
variable is dimensioned (i.e., an array)
and whether the elements of an array are

real, integer, etc. Such information is
entered into the information table.

The information table consists of five
components, as follows:

• The dictionary contains information
describing the constants and variables
of the source module.

• The §ta~~men~_n~QerL~~~~ tabl~ con­
tains information describing the state­
ment numbers and arrays of the source
module.

• The common table contains information
describing COMMON and EQUIVALENCE
declarations.

• The literal table contains information
describing the literals of the source
module.

• The branch table contains information
describing statement numbers that
appear in computed GO TO statements.

A detailed discussion of the information
table is given in Appendix A, "Information
Table."

The intermediate text and the informa­
tion table complement each other in the
actual code generation by the subsequent
phases. The intermediate text indicates
what operations are to be carried out on
specific operands; the information table
provides the detailed information describ­
ing the operands that are to be processed.

SOURCE STATEMENT PROCESSING

To process source statements, each rec­
ord (one card image) of the source module
is first read into an input buffer by a
preparatory subroutine (GETCD-IEKCGC). If
a source module listing is requested, the
record is recorded on an output data set
(SYSPRINT). If both the EDIT option and
the second level of optimization (OPT=2)
are selected, the record and some control
information used by phase 20 to produce a
structured source listing are recorded on
the SYSUTl data set. Records are moved to
an intermediate buffer until a complete
source statement resides in that buffer.
Unnecessary blanks are eliminated from the
source statement, and the statement is
assigned a classification code. A dis­
patcher subroutine (DSPTCH-IEKCDP) deter­
mines from the code which subroutine is to
continue processing the source statement.
Control is then passed to that subroutine,

Section 2: Discussion of Major Components 21

which converts the source statement to its
intermediate text representation and/or
constructs information table entries
describing its operands (see Table 7 for a
list of the subroutines that process each
type of statement). After the entire
source statement has been processed, the
next statement is read and processed as
described above. The recognition of the
END statement causes phase 10 to complete
its processing and return control to the
FSD, which then calls phase 15 for
execution.

The functions of phase 10 are performed
by six groups of subroutines:

• Dispatcher subroutine

• Preparatory subroutine

• Keyword subroutine(s)

• Arithmetic subroutine(s)

• Utility subroutine(s)

• STALL-IEKGST subroutine

The dispatcher subroutine (DSPTCH­
IEKCDP) controls phase 10 processing. Upon
receiving control from the FSD, the DSPTCH­
IEKCDP subroutine initializes phase 10
processing and then calls the preparatory
subroutine (GETCD-IEKCGC) to read and pre­
pare the first source statement. After the
statement is prepared, control is returned
to DSPTCH-IEKCDP, which determines whether
or not a statement number is associated
with the source statement being processed.
If there is a statement number, the DSPTCH­
IEKCDP subroutine constructs a statement
number entry (see Appendix A, "Information
Table") for the statement number. A text
entry for the statement number is also
created. The DSPTCH-IEKCDP subroutine then
determines, from the classification code
assigned to the source statement (see "Pre­
paratory Subroutine"), which subroutine
(either keyword or arithmetic) is to con­
tinue the processing of the statement, and
passes control to that subroutine. When
the source statement is completely proc­
essed, control is returned to the DSPTCH­
IEKCDP subroutine, which calls the prepara­
tory subroutine to read and prepare the
next source statement.

22

The preparatory subroutine (GETCD­
IEKCGC) reads each source statement, re­
cords it on the SYSPRINT data set if the
SOURCE option is selected, and on the
SYSUT1 data set if the EDIT option and the
second level of optimization are selected,
packs and classifies it, and assigns it an
internal statement number (ISN)1. Packing
eliminates unnecessary blanks, which may
precede the first character, follow the
last character, or be imbedded within the

r---,
I NCARD I
I I
IPointer to first character of (1 word) I
Ipacked source statement beyond I
Ikeyword1 I
~---~
IInternal statement number (1 word) I
.---i
IStatement number indicator (*0 (1 word) I
lif present; 0 if not present) I
.---i
~Classification code (1 word) I L ___ J

r---,
I NCDIN I
I I
IStatement number (5 bytes),

.---i
'Packed source statement (n bytes) I
~---~
IGroup mark 2 (1 byte),
.---i 11For arithmetic statements and statement,
!functions, this field pOints to the firstl
Icharacter of the packed statement. I
12 End of statement marker. I L ___ J

Figure 2. Format of Prepared Source
Statement

source statement. Classifying assigns a
code to each type of source statement. The
code indicates to the DSPTCH-IEKCDP subrou­
tine which subroutine is to continue proc­
essing the source statement. A description
of the classifying process, along with
figures illustrating the two tables (the
keyword pointer table and the keyword
table) used in this process, is given in
Appendix A, "Classification Tables." The
ISN assigned to the source statement is an
internal sequence number used to identify
the source statement. The source statement

land classification information about the
source statement reside in the storage

1Logical IF statements are assigned two
internal statement numbers. The IF part
is given the first number and the "trail­
ing" statement is given the next.

I, areas, NCDIN and NCARD of the phase 10 com­
mon area" as illustrated in Figure 2.

Keyword Subroutine(s)

A keyword subroutine exists for each
keyword source statement. A keyword source
statement is any permissible FORTRAN source
statement other than an arithmetic state­
ment or a statement function. The function
of each keyword subroutine is to convert
its associated keyword source statement (in
NCDIN) into input usable by subsequent
phases of the compiler. These subroutines
make use of the utility subroutines and, at
time~, the arithmetic subroutines in per­
form~ng their functions. To simplify the
discussion of these subroutines, they are
divided into two groups:

1. Those that construct only information
table entries.

2. Those that construct information table
entries and develop intermediate text
representations.

Table Entry Subroutines: Only one keyword
subroutine belongs to this group (see Table
8). It is associated with a COMMON, DIMEN­
SION, EQUIVALENCE, or EXTERNAL keyword
statement.

Tnis subroutine scans its associated
statement (in NCDIN) from left to right and
cons~ructs appropriate information table
entries for each of the operands of the
statement. The types of information table
entries that can be constructed by these
subroutines are:

• Dictionary entries for variables and
external names.

• Common block name entries for cornmon
block names.

• Equivalence group entries for equiva­
lence groups.

• Equivalence variable entries for the
variables in an equivalence group.

• Dimension entries for arrays.

The formats of these entries are given
in Appendix A, "Information Table."

Table Entry and Text Subroutines: The key­
word subroutines, other than the table
entry subroutine, belong to this group (see
Table 8). Each of these subroutines con­
verts its associated statement by develop­
ing an intermediate text representation of
the statement, which consists of text
entries in operator-operand pair format,

and constructing information table entries
for the operands of the statement. The
processing performed by these subroutines
is similar and is described in the follow­
ing paragraphs.

Upon receiving control from the DSPTCH­
IEKCDP subroutine, the keyword subroutine
associated with the keyword statement being
processed places a special operator into
the text area. This operator is referred
to as a primary adjective code and defines
the type (e.g., DO, ASSIGN) of the state­
ment. A left-to-right scan of the source
statement is then initiated. The first
operand is obtained, an information table
entry is constructed for the operand and
entered into the information table (only if
that operand was not previously entered),
and a pointer to the entry's location in
that table is placed into the text area.
The mode (e.g., integer, real) and type
(e.g., negative constant, array) of the
operand are then placed into text.

Scanning is resumed and the next opera­
tor is obtained and placed into the text
area. The next operand is then obtained,
an information table entry is constructed
for the operand and entered into the infor­
mation table (again, only if that operand
was not previously entered), and a pOinter
to the entry's location is placed into the
text entry work area. The mode and type of
the operand are placed into the work area.
The text entry is then placed into the next
available location in the subblock allo­
cated for text entries of the type being
created.

This process is terminated upon recogni­
tion of the end of the statement, which is
marked by a special text entry. The spe­
cial text entry contains an end mark opera­
tor and the ISN of the source statement as
an operand.

~: Certain keyword subroutines in this
group, namely those that process statements
that can contain an arithmetic expression
(e.g., IF and CALL statements) and those
that process statements that contain I/O
list items (e.g., READ/WRITE statements>,
pass control to the arithmetic subroutines
to complete the processing of their asso­
ciated keyword statements.

Arithmetic Subroutine(s)

The arithmetic subroutine or subroutines
(see Table 8) receive control from the
DSPTCH-IEKCDP subroutine, or from various
keyword subroutines. These subroutines
make use of the utility subroutines in per­
forming their functions, which are to:

Section 2: Discussion of Major Components 23

• Process arithmetic statements.

• Process statement functions.

• Complete the processing of certain key­
word statements (READ, WRITE, CALL, and
IF).

Arithmetic subroutines are processed
according to their functions, as follows:

~ri!hm~!!£-Sta!em~!_~~Qce§.§.illil: In pro­
cessing an arithmetic statement,the arith­
metic subroutines develop an intermediate
text representation of the statement, and
construct information table entries for its
operands. These subroutines accomplish
this by following a procedure similar to
that described for keyword (table entry and
text) subroutines.

If one operator is adjacent to another,
the first operator does not have an asso­
ciated operand. In the example A=B(I)+C,
the operator + has variable C as its asso­
ciated operand, whereas the operator) has
no associated operand. If an operator has
no associated operand, it is assumed that
the operand is a zero (null).

Statement Function Processing: In convert­
ing a statement function to usable input to
subsequent phases of the compiler, the
arithmetic subroutines develop an interme­
diate text representation of the statement
function using sequence numbers as replace­
ments for dummy arguments. These subrou­
tines also construct information table
entries for those operands that appear to
the right of the equal sign and that do not
correspond to dummy arguments. The follow­
ing paragraphs describe the processing of a
statement function by the arithmetic
subroutines.

When processing a statement function,
the arithmetic subroutines:

24

c! Scan the portion of the statement func­
tion to the left of the equal sign,
obtain each dummy argument, assign each
dummy argument a sequence number (in
ascending order), and save the dummy
arguments and their associated sequence
numbers for subsequent use.

• Scan the portion of the statement func­
tion to the right of the equal sign and
obtain the first (or next) operand.

c' Determine whether or not the operand
corresponds to a dummy argument. If it
does correspond, its associated
sequence number is placed into the text
area. If it does not correspond, a
dictionary entry for the operand is
constructed and entered into the infor­
mation table, and a pointer to the

entry's location is placed into the
text area. (An opening parenthesis is
used as the operator of the first text
entry developed for each statement
function and a closing parenthesis is
used as the operator of the last text
entry developed for each statement
function.)

• Resume scanning, obtain the next opera­
tor, and place it into the text area.

• Obtain the operand to the right of this
operator and process it as described
above.

Keyword-2tat~!!!~!}!.-£Q!!!!2!~!iQ!}: In addition
to processing arithmetic statements and
statement functions, the arithmetic subrou­
tines also complete the processing of key­
word statements that may contain arithmetic
expressions or that contain I/O list items.
The keyword subroutine associated with each
such keyword statement performs the initial
processing of the statement, but passes
control to the arithmetic subroutines at
the first possible occurrence of an arith­
metic expression or an I/O list item. (For
example, the keyword subroutine that proc­
esses CALL statements passes control to the
arithmetic subroutines after it has pro­
cessed the first opening parenthesis of the
CALL statement, because the argument that
follows this parenthesis may be in the form
of an arithmetic expression.) The arith­
metic subroutines complete the processing
of these keyword statements in the normal
manner. That is, they develop text entries
for the remaining operator-operand pairs
and construct information table entries for
the remaining operands.

The utility subroutines (see Table 8)
aid the keyword, arithmetic, and DSPTCH­
IEKCDP subroutines in performing their
functions. The utility subroutines are
divided into the following groups:

• Entry placement subroutines.
• Text generation subroutines.
• Collection subroutines.
• Conversion subroutines.

Entry Placement Subroutines: The utility
subroutines in this group place the various
types of entries constructed by the key­
word, arithmetic, and DSPTCH-IEKCDP subrou­
tines into the tables or text areas (i.e.,
subblocks) reserved for them.

Text Generation Subroutines: The utility
subroutines in this group generate text
entries (supplementary to those developed

by the keyword and arithmetic subroutines)
that:

• Control the execution of implied DOs
appearing in input/output statements.

• Increment DO indexes and test them
against their maximum values.

• Signify the end of a source statement.

Collection Subroutines: These utility sub­
routines perform such functions as gather­
ing the next group of characters (i.e., a
string of characters bounded by delimiters>
in the source statement being processed,
and aligning variable names on a word
boundary for comparison to other variable
names.

£ony~siQ!!~!!Q!:Q!!ti!!~§.: These utility sub­
routines convert integer, real, and complex
constants to their binary equivalents.

Subroutine STALL-IEKGST (Chart 04)

The STALL~IEKGST subroutine completes
phase 10 processing by:

• Generating entry code for the object
module.

• Translating phase 10 format text into
object code for the object module and
freeing space formerly occupied by the
format text.

• Checking to see if any literal data
text exists and, if it does, generating
object code for the literal data text.

• Processing any equivalence entries that
were equivalenced before being
dimensioned.

• Setting aside space in the object
module for the problem program save
area and for computed GO TO statement
branch tables created by phase 10.

• Checking the statement number section
of the information table for undefined
statement numbers.

• Rechaining variables in the dictionary
by sorting alphabetically the entries
in each chain.

• Assigning coordinates based on the
usage count set by phase 10 when the
OPT option is greater than zero.

• Processing common entries in .the infor­
mation table by computing the displace­
ment of each variable in the common
block from the start of the common
block.

• Processing equivalence entries in the
information table.

~~tin~g~T_Cod~: If the source
module contains READ/WRITE statements
requiring FORMAT statements, the associated
phase 10 format text must be put into a
form recognizable by IHCFCOMH. The STALL­
IEKGST subroutine calls subroutine FORMAT­
IEKTFM which develops the necessary format
by obtaining the phase 10 intermediate text
representation of each FORMAT statement,
and translating each element (e.g., H for­
mat code and field count) of the statement
according to Table 1. The FORMAT-IEKTFM
subroutine enters the translated statement
along with its relative address into TXT
records. It also inserts the relative
address of the translated statement into
the address constant for the statement num­
ber associated with the FORMAT statement.

Se,ction 2: Discussion of Major Components 25

Tab.te 1. FORMAT Statement Translation
r-------------------T----------------------------T--------------------------------------,
I I I Translated Format (in hexadecimal) I
I FORMAT I ~------------T------------T------------~
I Specification I Description list byte I 2nd byte I 3rd byte I
r-------------------f----------------------------+------------+------------f------------~

beginning of statement 02
n(group count 04 n
n field count 06 n
nP
Fw.d
Ew.d

scaling factor 08 n*
w F-conversion OA d

d
d

E-conversion oc w
Dw.d
Iw

D-conversion OE w
I-conversion 10 w

Tn
Aw
Lw

column set 12 n
A-conversion 14 w
L-conversion 16 w

nX
nHtext

skip or blank 18 n

or literal data lA n text
, text'
) group end lC
/
Gw.d

record end lE
G-conversion 20 w d
end of statement 22

Zw Hexadecimal conversion 24 w
~---.----------------~----------------------------~------------~------------~------------~
I*The first hexadecimal bit of the byte indicates the scale factor sign (0 if positive, I
I 1 if negative). The next seven bits contain the scale factor magnitude. I L ___ J

Processinq Equivalence Entrie2: The STALL­
IEKGST subroutine completes the processing
of any equivalence entries in the informa­
tion table that were not completed by prior
routines in phase 10. These equivalence
entries are the ones that were equivalenced
before being dimensioned. The STALL-IEKGST
subroutine computes displacements for each
variable in the equivalence group.

Processi~~it~ral_£2nstant2~ed a2~rgu=
ments: The STALL-IEKGST subroutine checks a pointer in the communication table (NPTR
(1,27» to see whether or not there are
literal constants to process. If there
are, the STALL-IEKGST subroutine calls IEK­
TLOAD and passes to it the location and
length of the literal string that is used
by the IEKTLOAD subroutine to generate lit­
eral text in the object module. All liter­
al constants used as arguments are put on a
double word boundary.

The STALL-IEKGST subroutine follows the
chain in the literal constant dictionary
entry and continues to call subroutine IEK­
TLOAD to process this text. After all the
literal data text has been generated, the
STALL-IEKGST subroutine adjusts the loca­
tion counter by the amount of text
generated. Literals used in DATA state-

26

Iments are not chained, and are not pro­
cessed until CORAL is invoked.

I

Reserving space for the Save Area: The
STALL-IEKGST subroutine sets aside 76 bytes
for the save area of the program being
compiled.

Space in the object module for branch
tables created by phase 10 for computed GO
TO statements is also reserved by the
STALL-IEKGST subroutine.

Checking for Undefined Statement Numbers:
The STALL-IEKGST subroutine performs a dic­
tionary scan for undefined statement num­
bers. This action is taken to ensure that
every statement number that is referred to
is also defined. The STALL-IEKGST subrou­
tine scans the chain of statement number
entries in the information table (see
Appendix A: "Statement Number/Array
Table") and examines a bit in the byte A
usage field of each such entry. This bit
is set by phase 10 to indicate whether or
not it encountered a definition of that
statement number. If the bit indicates
that the statement number is not defined,
the STALL-IEKGST subroutine places an entry
in the error table for later processing by
phase 30.

Rechaining Entries for_yari~Q!~: The
STALL-IEKGST subroutine scans dictionary
entries for variables. Previously executed
routines in phase 10 sorted each variable
chain alphabetically and left the pointer
at the mid-item of the chain (for dic­
tionary search speed). The STALL-IEKGST
subroutine resets the pointer to the first
(alphabetically lowest) item in the chain.
The rechaining frees storage in each entry
for later use by CORAL in phase 15. It
then sets the adcon field of each dic­
tionary entry for a variable to zero. The
STALL-IEKGST subroutine also constructs
dictionary entries for the imaginary parts
of complex variables and constants.

Assigning Coordinates: The STALL-IEKGST
subroutine calls subroutine IEKKOS which
assigns coordinates to variables and con­
stants in the following manner:

• The first 59 unique variables and/or
constants that appear in the text
created by phase 10 are assigned coor­
dinates 2 through 60, respectively.1
The coordinates are assigned in order
of increasing coordinate number8 (A
coordinate between 2 and 60 may be
assigned to a base variable if fewer
than 59 unique variables and constants
appear in the text.)

• The next 20 unique variables are
assigned coordinates 61 through 80,
respectively. The coordinates are
assigned in order of increasing coor­
dinate number. (If constants are
encountered after coordinate 60 has
been assigned, they are not assigned
coordinates.)

• The coordinates 81 through 128 are
reserved for assignment to base
variables (see "Adcon and Base Variable
Assignment" under "CORAL Processing").

Subroutine IEKKOS assigns to the first
variable or constant in phase 10 text a
coordinate number of 2, which indicates
that the usage information for that vari­
able or constant, regardless of the block
in which it appears, is to be recorded in
bit position 2 of the MVS, MVF, and MVX
fields. The IEKKOS subroutine assigns to
the second variable or constant a coordin­
ate number of 3 and records its usage
information in bit position 3 of the three
fields. Subroutine IEKKOS continues this

1The coordinate 1 is assigned to items such
as unit numbers (i.e., data set reference
numbers), complex variables in COMMON,
arrays that are equivalenced, variables
that are equivalenced to arrays, and
variables that are equivalenced to
variables of different modes.

process until coordinate 60 has been
assigned to a variable or constant. When
coordinate number 60 has been assigned, the
IEKKOS subroutine only assigns coordinates
to the next 20 unique variables. Subrou­
tine IEKKOS does not assign coordinates to
or gather usage information for unique con­
stants encountered after coordinate number
60 has been assigned. It assigns these
variables coordinates 61 through 80,
respectively. It records the usage infor­
mation for each variable at the assigned
bit location in the three fields. The IEK­
KOS subroutine does not assign coordinates
to or gather usage information for unique
variables encountered after coordinate num­
ber 80 has been assigned.

Subroutine IEKKOS uses a combination of
the MCOORD vector, the MVD table, and the
byte-C usage fields of the dictionary
entries (see Appendix A, "Dictionary") to
assign, keep track of, and record coordin­
ate numbers. The MCOORD vector contains
the number of the last coordinate assigned.
The MVD table is composed of 128 entries,
with each entry containing a pointer to the
dictionary entry for the variable or con­
stant to which the corresponding coordinate
number is assigned or to the information
table entry for the base variable to which
the corresponding coordinate is assigned.
The coordinate number assigned to a vari­
able or constant is recorded in the byte-c
usage field of the dictionary entry for
that variable or constant.

Subroutine IEKKOS does not assign coor­
dinates to or record usage information for
unique constants encountered in text after
coordinate number 60 has been assigned and
unique variables encountered in text after
coordinate number 80 has been assigned. If
subroutine IEKKOS encounters a new constant
after coordinate 60 has been assigned or a
new variable after coordinate 80 has been
assigned, it records a zero in the byte-c
usage field of its associated dictionary
entry. Phase 20 optimization deals only
with those constants and variables that
have been assigned coordinate numbers
greater than or equal to 2 and less than or
equal to 80.

PrQce~inSL£2mmon_EntEie~!.!L!J}£_Inform~::
i!'Qll~ebl£: The STALL-IEKGST subroutine
processes common entries in the information
table. It computes the displacements of
variables and arrays from the start of the
common block that contains them and calcu­
lates the total size in bytes of each com­
mon block. Subroutine STALL-IEKGST records
the displacements in the dictionary entries
for the variables and the block size in the
common table entry for the name of the com­
mon block. The displacements are used
later to assign relative addresses to com­
mon variables. The block size is used by

Section 2: Discussion of Major Components 27

phase 25 to generate a control section for
the common block (see Appendix A: nCommon
Table n). The STALL-IEKGST subroutine also
places a pointer to the common table entry
for the block name in the dictionary entry
for each variable or array in that common
block.

Pro~ing~uivalence Entries in the
Information Table: Subroutine STALL-IEKGST
gathers additional information about equi­
valence groups and the variables in them.
It computes a group head1 and the displace­
ment) of each variable in the group from
this head. It records this information in
the common table entries for the group and
for the variables, respectively (see Appen­
dix A: nCommon Table n). SUbroutine STALL­
IEKGST identifies and flags in their dic­
tionary entries variables and arrays put
into common via the EQUIVALENCE statement.
It also checks the variables and arrays for
errors to verify that the associated common
block has not been improperly extended
because of the EQUIVALENCE declaration. If
a common block is legitimately enlarged by
an equivalence operation, the STALL-IEKGST
subroutine recomputes the size of the com­
mon block and enters the size into the com­
mon table entry for the name of the common
block.

If the name of a variable or array
appears in more than one equivalence group,
subroutine STALL-IEKGST recognizes the com­
bination of groups and modifies the dic­
tionary entries for the variables to indic­
ate the equivalence operations. The STALL­
IEKGST subroutine checks arrays that appear
in more than one equivalence group to veri­
fy that conflicting relationships have not
been established for the array elements.

During the processing of both common and
equivalence information, a check is made to
ensure that variables and arrays fallon
boundaries appropriate to their defined
types. If a variable or array is improper­
ly aligned, subroutine STALL-IEKGST places
an entry in the error table for processing
by phase 30.

CONSTRUCTING A CROSS REFERENCE

If the XREF option is selected, a two­
part cross reference is constructed and
written on the SYSPRINT data set immediate­
ly following the source listing. The first
part of the cross reference is a lis~ of

1The head of an equivalence group is that
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.

28

all symbols used by the program and the
ISNs of the statements in which each symbol
appears. The symbols are written in alpha­
betic order and grouped by character
length, first one-character symbols in
alphabetic order, then two-character sym­
bols in alphabetic order, etc. The second
part of the cross reference is a sequential
list of the statement numbers used on the
program each followed by the ISN of the
statement in which the statement number is
defined and also by a list of the ISNs of
statements that refer to the statement
number.

XREF processing occurs during phase 10
and in a small separate overlay segment
between phases 10 and 15. This segment,
XREF-IEKXRF, is called only if the XREF
option is selected.

If the XREF option is chosen, phase 10
subroutines LABTLU-IEKCLT and CSORN-IEKCCR
perform additional processing for statement
numbers and symbols. Also, phase 10 sub­
routine IEKXRS, which is not used unless
the XREF option is chosen, is called.

The LABTLU-IEKCLT subroutine fills the
adcon table, which is used as an XREF buff­
er, with XREF entries for statement number
definitions and statement number
references. The format of an XREF entry
for statement numbers and symbols is:

<----------------4 bytes------------------>
r-------------------T---------------------,
IPointer to nex~ I I
IXREF entry* I ISN I L ___________________ ~ _____________________ J

* Relative to the beginning of the buffer.

Each time the buffer is full, the
LABTLU-IEKCLT subroutine calls IEKXRS to
write the buffer on SYSUT2. (The contents
of SYSUT2 is later read in by subroutine
XREF-IEKXRF and processed to produce a
cross reference.) A count of the number of
times the buffer is written out is kept in
the communication table NPTR (2,20). Each
time it finishes writing the buffer on SYS­
UT2, subroutine IEKXRS returns control to
the LABTLU-IEKCLT subroutine.

Subroutine LABTLU-IEKCLT uses parts of
the dictionary entries for statement num­
bers as pointers to keep track of its
processing. It also adds a word (word 9)
to each statement number dictionary entry
to be used as a sequence chain field so

that subroutine XREF-IEKXRF can create a
sequential list of statement numbers used
in the pr00ram.

The words used by the LABTLU-IEKCLT sub­
routine in dictionary entries for statement
numbers are:

Word 5 - A pointer to the most recent
statement number entry in the
adcon table (XREF buffer) if the
statement number reference being
processed by subroutine LABTLU­
IEKCLT is not a definition of a
statement number. Word 5 is not
used for statement number entries
that correspond to definitions of
statement numbers.

Word 6 - Bytes 1 and 2 -- The number of
times the XREF buffer has been
written on SYSUT2 at the time the
statement number entry is proc­
essed by subroutine LABTLU-IEKCLT.

Bytes 3 and 4 -- A pointer to the
first XREF buffer entry for the
statement number.

Word 7 - Contains an ISN if the reference
is to a definition of a statement
number; contains -1 if the state­
ment number has been previously
defined.

Word 9 - statement number sequence chain
field.

The CSORN-IEKCCR subroutine processes
symbols for XREF much the same way as sub­
routine LABTLU-IEKCLT processes statement
numbers. However, for symbols, no
processing is required for definitions and
there is no sequencing.

The CSORN-IEKCCR subroutine adds one
word to the dictionary entries for
variables making a total of ten words in
each entry. Word 10 for a variable entry
is used in the same way as word 6 for a
statement number entry. The first half of
word 10 indicates the number of times the
buffer has been written on SYSUT2 at the
time the variable entry is processed by
subroutine CSORN-IEKCCR. The second half
of word 10 contains a pointer to the first
XREF buffer entry for the symbol. The
first half of word 8 is used as a pointer
to the last (most recent) XREF buffer entry
for the symbol.

Subroutine IEKXRS is also used during
symbol processing to write the XREF buffer
out on SYSUT2 whenever the buffer becomes
full.

XREF Processillil

If the XREF option is selected, the FSD
calls the XREF-IEKXRF subroutine after the
completion of subroutine STALL-IEKGST
processing and before phase 15. The XREF­
IEKXRF subroutine is a separate overlay
segment that overlays phase 10 and is over­
laid by phase 15.

Subroutine XREF-IEKXRF reads from SYSUT2
all buffers that were written out by IEKXRS
during subroutine LABTLU-IEKCLT and subrou­
tine CSORN-IEKCCR processing. It then sets
up linkage between buffers for the symbol
or statement number to create one sequen­
tial chain of ISNs and writes out the sym­
bol or statement number with its ISNs on
SYSPRINT. This process continues until all
symbols and statement numbers with their
ISNs are written on SYSPRINT. Control is
then returned to the FSD that calls phase
15.

PHASE 15

Before phase 15 gains control, phase 10
has read the source statements, built the
information table, and restructured the
source statements into operator-operand
pairs. When given control, phase 15 trans­
lates the text of arithmetic expressions,
gathers information about branches and
variables, converts phase 10 data text to a
new text format, assigns relative addresses
to constants and variables, and generates
address constants when needed, to serve as
address references. Thus, phase 15 modi­
fies and adds to the information table and
translates phase 10 normal and data text to
their phase 15 formats.

Phase 15 is divided into two overlay
segments, PHAZ15, and CORAL. Chart 05
shows the overall logic of the phase.
Table 9 is a directory of all the subrou­
tines used by phase 15.

PHAZ15 translates and reorders the text
entries for arithmetic expressions from the
operator-operand format of phase 10 to a
four-part format suitable for phase 20
processing. The new order permits phase 25
to generate machine instructions in the
correct sequence. PHAZ15 blocks the text
and collects information describing the
blocks. The information, needed during
phase 20 optimization, includes tables on
branching locations and on constant and
variable usage.

CORAL, the second overlay segment of
phase 15, performs a number of functions.
It first converts phase 10 data text to a

Section 2: Discussion of Major Components 29

form more easily evaluated by subroutine
DATOUT-IEKTDT. CORAL then assigns relative
addresses to all variables, constants, and
arrays. During one phase of relative
address assignment, CORAL rechains phase 15
data text in order to simplify the genera­
tion of text card images by subroutine
DATOUT-IEKTDT. CORAL also assigns address
constants, when needed, to serve as address
references for all operands.

PHAZ15 PROCESSING

The functions of PHAZ15 are text block­
ing, arithmetic translation, information
gathering, and reordering of the statement
number chain. Information gathering occurs
only if optimization (either intermediate
or complete) has been selected; it takes
place concurrently with text blocking and
arithmetic translation during the same scan
of intermediate text. Reordering of the
statement number chain occurs after PHAZ15
has completed the blocking, arithmetic
translation, and information gathering.

PHAZ15 divides intermediate text into
blocks for convenience in obtaining infor­
mation from the text. Each block begins
with a statement number definition and ends
with the text entry just preceding the next
statement number definition. An attempt is
made to limit blocks to less than 80 text
items as an aid to register routines in
phase 20. PHAZ15 records information
describing a text block in a statement
number text entry and in an information
table statement number entry.

During the same scan of text in which
blocking occurs~ PHAZ15 translates arith­
metic expressions. The conversion is from
the operation-operand pairs of phase 10 to
a four-part format (phase 15 text). The
new format follows the sequence in which
algebraic operations are performed. In
general, phase 15 text is in the same order
in which phase 25 will generate machine
instructions. 1 PHAZ15 copies, unchanged
into the text area, phase 10 text that does
not require arithmetic translation or other
special handling.

During the building of phase 15 text for
a given block (if optimization has been
selected), PHAZ15 constructs tables of
information on the use of constants and
variables in that text block. It stores
information on variables and constants that
are used within a block, and variables that
are defined within a block. If complete

1If optimization is selected, phase 20 may
further manipulate the phase 15 text.

30

optimization has been selected, PHAZ15 also
gathers information on variables not first
used and then defined. The foregoing usage
information is recorded in the statement
number text for each block for later use by
phase 20.

Concurrently with text blocking, arith­
metic translation, and gathering of
constant/variable usage information, PHAZ15
discovers branching text entries and
records the branching or connection infor­
mation. This information, consisting ini­
tially of a table of branches from each
text block (forward connections), is stored
in a special array. Branching (connection)
information is used during phase 20
optimization.

After PHAZ15 has completed the previous­
ly mentioned processing, it reorders the
statement number chain of the information
table. The original sequence of statement
numbers, as phase 10 recorded them, was in
the order of their occurrence in source
statements as either definitions 2 or
operands. Phase 15 reorders the statement
numbers in the same sequence as they
appeared as definitions in the source pro­
gram. The new sequencing is established to
facilitate phase 20 processing.

Last, PHAZ15 acquires a table of back­
ward connection information consisting of
branches into each statement number or text
block. PHAZ15 derives this information
from the forward connection information it
previously obtained. Thus, connection
information is of two types, forward and
backward. PHAZ15 records a table of
branches from each text block and a table
of branches into each text block. Connec­
tion information of both types is used dur­
ing phase 20 optimization.

Charts 06, 07, and 08 depict the flow of
control during PHAZ15 execution. Table 10
lists the COMMON areas of phase 15.

During its scan and conversion of phase
10 text, PHAZ15 sections the module into
text blocks, which are the basic units upon
which the optimization and register assign­
ment processes of phase 20 operate. A text
block is a series of text entries that
begins with the text entry for a statement
number and ends with the text entry that
immediately precedes the text entry for the

2A statement number occurs as a definition
when that statement number appears to the
left of a source statement.

next statement number. (The statement
number may be either programmer defined or
compiler generated.) When PHAZ15 encoun­
ters a statement number definition (i.e.,
the phase 10 text entry for a statement
number), it begins a text block. It does
this by constructing a statement number
text entry (refer to Appendix B, "Phase 15
Intermediate Text Modifications"). PHAZ15
also places a pointer to the statement
number text entry into the statement number
entry (information table) for the asso­
ciated statement number.

PHAZ15 resumes its scan and converts the
phase 10 text entries following the state­
ment number definition to their phase 15
formats. After each phase 15 text entry is
formed and chained into text, PHAZ15 places
a pointer to that text entry into the
BLKEND field of the previously constructed
statement number text entry. This field
is, thereby, continually updated to point
to the last phase 15 text entry.

When the next statement number defini­
tion is encountered, PHAZ15 begins the next
text block in the previously described
manner. A pOinter to the text entry that
ends the preceding block has already been
recorded in the BLKEND field of the state­
ment number text entry that begins that
block. Thus, the boundaries of a text
block are recorded in two places: the
beginning of the block is recorded in the
associated statement number entry (informa­
tion table); the end of the block is re­
corded in the BLKEND field of the asso­
ciated statement number text entry. All
text blocks in the module are identified in
this manner.

Note: For each ENTRY statement in the
source module, phase 10 generates a state­
ment number text entry and places it into
text preceding the text for the ENTRY
statement. Phase 10 also ensures that the
statement following an ENTRY statement has
a statement number; if a statement number

is not provided by the programmer, phase 10
generates one. Thus, the text entries for
each ENTRY statement form a separate text
block, which is referred to as an entry
block.

Figure 3 illustrates the concept of text
blocking. In the illustration, two text
blocks are shown: one beginning with
statement number 10; the other with state­
ment number 20. The statement number entry
for statement number 10 contains a pointer
to the statement number text entry for
statement number 10, which contains a
pointer to the text entry that immediately
precedes the statement number text entry
for statement number 20. Similar pointers
exist for the text block starting with
statement number 20.

Arithmetic translation is the reordering
of arithmetic expressions in phase 10 text
format to agree with the sequence in which
algebraic operations are performed. Arith­
metic expressions may exist in IF, CALL,
and ASSIGN statements and input/output
data-lists, as well as in arithmetic state­
ments and statement functions.

When PHAZ15 detects a primary adjective
code for a statement that needs arithmetic
translation, it passes control to the
arithmetic translator (ALTRAN-IEKJAL). If
the phase 10 text for the statement does
not require any type of special handling,
ALTRAN-IEKJAL reorders it into a series of
phase 15 text entries that reflect the
sequence in which arithmetic operations are
to be carried out. During the reordering
process, ALTRAN-IEKJAL calls various sup­
porting routines that perform checking and
resolution (e.g., the resolution of opera­
tions involving operands of different
modes) functions.

Section 2: Discussion of Major Components 31

Statement Number Entry for
Statement Number 20

Statement Number Entry for
Statement Number 10

* lDF is the mnemonic for the statement number operator

Figure 3. Text Blocking

Throughout the reordering process,
ALTRAN-IEKJAL is checking for text that
requires special handling before it can be
placed into the phase 15 text area. [Spe­
cial handling is required for complex
expressions, terms involving unary minuses
(e.g., A=-B) , subscript expressions, state­
ment function references, etc.] If
special text processing is required,
ALTRAN-IEKJAL calls one or more subroutines
to perform the required processing.

During reordering and, if required, spe­
cial handling, subroutine GENER-IEKLGN 1S
called to format the phase 15 text entries
and to place them into the text area.

REORDERING ARITHMETIC EXPRESSIONS: The
reordering-o~arithmetic-expressIons is
done by means of a pushdown table. This
table is a last-in, first-out list. After
the table is initialized (i.e., the first
operator-operand pair of an arithmetic
expression is placed into the table), the
arithmetic translator (ALTRAN-IEKJAL) com­
pares the operator of the next operator­
operand pair (term) in text with the opera­
tor of the pair at the top of the pushdown
table. As a result of each comparison,
either a term is transferred from phase 10
text to the table, or an operator and two
operands (triplet) are brought from the
table to the phase 15 text area, eliminat­
ing the top term in the pushdown ·table.

The comparison made to determine whether
a term is to be placed into the pushdown
table or whether a triplet is to be taken
from the pushdown table is always between

32

PHASE 15 TEXT

LDF* I I I
I ~ 10

~

LDF* I 1 I
1-+ 20

L.....-.

LDF* I I I --

the operator of a term in phase 10 text and
the operator of the top term in the table.
Each comparison is made on the basis of
relative forcing strength. A forcing
strength is a value assigned to an operator
that determines when that operator and its
associated operands are to be placed in
phase 15 text. The relative values of
forcing strengths reflect the hierarchy of
algebraic operations. The forcing
strengths for the various operators appear
in Table 2.

When the arithmetic translator (ALTRAN­
IEKJAL) encounters the first operator­
operand pair (phase 10 text entry) of a
statement, the pushdown table is empty.
Since the translator cannot yet make a com­
parison between text entry and table ele­
ment, it enters the first text entry in the
top position of the table. The translator
then compares the forcing strength of the
operator of the next text entry with that
of the table element. If the'strength of
the text operator is greater than that of
the top (and only) table element, the text
entry (operator-operand pair) becomes the
top element of the table. The original top
element is effectively "pushed down" to the
next lower position. In Figure 4, the
number-l section of the drawing shows the
pushdown table at this time.

The operator of the next text entry
(operator C--operand C at section 2) is
compared with the top table element (opera­
tor B--operand B at section 1) in a similar
manner.

Table 2. Operators and Forcing Strengths
r----------------------------T------------,
I I Forcing I
I Operator I Strength I
~----------------------------+------------1
End Mark 1

,
.OR.
• AND.
.NOT.
• EQ.,
.GT. ,
• GE.,
+, -,
*, /

1**

.NE.,
• LT.,
.LE •
minus (

I(f --left parenthesis after
~ a function name
I (s --left parenthesis after
1 an array name

2
3
6
7
8
9

10

11
12
13
14

15

I(16 L ____________________________ ~ ____________ J

When a comparison of forcing strengths
indicates that the strength of the text
operator (operator C, section 2), is less
than or equal to that of the top table ele­
ment (operator B), the table element is
said to be "forced." The forced operator
(operator B) is placed in the new phase-15
text .entry (section 3 of the illustration)
with its operand (operand B) and the
operand of the next lower table entry
(operand A). Note that subroutine ALTRAN­
IEKJAL has generated a new operand ~ (see
section 3) called a "temporary." A tem­
porary is a compiler-generated operand in
which a preliminary result may be held dur­
ing object-module execution.~ With operator
B, operand B, and operand A (a triplet)
removed from the pushdown table, the pre­
viously entered operator-operand pair
(operator A, section 1) now becomes the top
element of the table (section 4). The
ALTRAN-IEKJAL subroutine assigns the pre­
viously generated temporary 1 as the
operand of this pair. This temporary
represents the previous operation (operator
B--operand A--operand B).

Comparisons and text-to-table exchanges
continue, a higher strength text operator

~A given temporary may be eliminated by
phase 20 during optimization.

"pushing" a phase 10 text entry into the
table and a lower strength text operator
"forcing" the top table operator and its
operands (triplet) from the table. In each
case, the forced table items become the new
phase 15 text entry. An exception to the
general rule is a left parenthesis, which
has the highest forcing strength. Opera­
tors following the left parenthesis can be
forced from the table only by a right
parenthesis, although the intervening
operators (between the parentheses) are of
lower forcing value. When the translator
reaches an end mark in text, its forcing
strength of 1 forces all remaining elements
from the table.

SPECIAL PROCESSING OF ARITHMETIC EXPRES­
SIONS: As stated before, arithmetic trans­
lation involves reordering a group of phase
10 text entries to produce a new group of
phase 15 text entries representing the same
source statement. Certain types of
entries, however, need special handling
(for example, subscripts and functions).
When it has been determined that special
handling is needed, control is passed to
one or more other subroutines (see Chart
07) that perform the desired processing.

The following expressions and terms need
special handling before they are placed in
phase 15 text: complex expressions, terms
involving a unary minus, terms involving
exponentiation, commutative expressions,
subscript expressions, subroutine or func­
tion subprogram references, statement func­
tion references, and expressions involved
in logical IF statements.

Complex E~re~sion~: A complex expression
is converted into two expressions, a real
expression and an imaginary one. For real
elements in the expression, complex tem­
poraries are generated with zero in the
imaginary part and the real element in the
real part. For example, the complex
expression B + C + 25. is treated as:

r---,
I B + C + 25. I
1 real real real I
~---i
I B + C + o. 1
~ imag imag imag 1 L ___ J

Section 2: Discussion of Major Components 33

1. Text in Pushdown Table 2. Phase 10 Text Entries

Operator Operand Operator Operand

Top Element OpB Oprnd B OpC Oprnd C Current phase 10 text entry

OpA Oprnd A Op D Oprnd D Next phase 10 text entry

!
4. New Top Element of Pushdown 3. New Phase 15 Text Entry

Op A OpB Oprnd A Oprnd B

Operator Operand 1 OperGmd 2 Operand 3

NOTE: A phase 15 text entry having an arithmetic operator may be envisioned as
operand 1 = operand 2 - operator - operand 3, where the equal sign is implied.

Figure 4. Text Reordering via the Pushdown Table

An expression is not treated as complex
if the "result" operand (left of the equal
sign in the source statement) is real. In
this case, the translator places only the
real part of the expression in phase 15
text.. But if a complex multiplication,
division, or exponentiation is involved in
the expression, the real and imaginary
parts will appear in phase 15 text, but
only the real part of the result will be
used at execution time.

Terrn:s containing a Unary Mi!!~: In terms
that contain unary minuses, the unary
minuses are' combined with additive opera­
tors (+, -) to reduce the number of opera­
tors. This combining, done by subroutine
UNARY-IEKKUN, may result in reversed opera­
tors or operands or both in phase 15 text.
For example, -(B-C) becomes C-B, and A+(-B)
beco:mes A-B. This process reduces the
number of machine instructions that phase
25 must generate.

Operations Involving Powers: Several kinds
of· special handling are provided by subrou­
tine UNARY-IEKKUN for operations involving
powers. Multiplications by powers of two
are converted to left shift operations. A
constant integer power of two raised to a
constant integer power is converted to the
equivalent left shift operation. Last, a
constant or variable raised to a constant
integer power is converted to a series of
multiplications (and a division operation
into 1, if the power is negative). This
conversion is a function of the level of
optimization selected. This handling
requires less execution time than using an
exponentiation subroutine.

commutative Operations: If an operation is
commutative (either operand can be operated
upon, such as in addinq or multiplying), the

34

two operands are reordered to agree with
their absolute locations in the dictionary.

Subscripts: Suhroutines SUBMU:LT-IEKKSM and
SUBADD-IEKKSA perform subscript processing.
Subscripted items are processed one at a
time throughout the subscript. If the sub­
script itself is an expression, it is first
processed via the translator. Text entries
are then generated to multiply the sub­
script variable by the dimension factor and
length. Each subscript item is handled in
a similar manner. When all subscript items
have been processed, phase 15 text entries
are generated to add all subscript values
together to produce a Single subscript
value.

In general, during compilation, con­
stants in subscript expressions are com­
bined, and their composite value is placed
in the displacement field of the phase 15
text entry for the subscript item (see
Appendix B, "Phase 15/Phase 20 Intermediate
Text Modifications"). Phase 25 uses the
value in the displacement field to gener­
ate, in the resultant object instructions,
the displacement for referring to the ele­
ments in the array. This combining of con­
stants reduces the number of instructions
needed during execution to compute the sub­
script value.

Expressions Referr~to In-Line Routines
or Subprogram2: Expressions containing
references to in-line routines or subpro­
grams are processed by the following sub­
routines: FUNDRY-IEKJFU, BLTNFN-IEKJBF,
and DFUNCT-IEKJDF.

Arguments that are expressions are
reduced by the translator to a single tem­
porary, which is used as the argument. If
an argument is a subscripted variable, sub-

script processing (previously discussed)
reduces the subscript to a single sub­
scripted item. Either subroutine DFUNCT­
IEKJDF (for references to library routines)
or subroutine BLTNFN-IEKJBF (for references
to in-line routines) then conducts a series
of tests on the argument and performs the
processing determined by the results of the
tests.

If a function is not external and is in
the function table (IEKLFT) (see Appendix
A, "Function Table"), it is determined if
the required routine is in-line. If the
function is in-line and its mode (or the
mode of its arguments) is not as expected,
it is assumed that the function is extern­
al. If there are no error conditions, sub­
routine BLTNFN-IEKJBF either generates text
or substitutes a special operator (such as
those for ABS or FLOAT) in the phase 15
text so that phase 25 can later expand the
function. Phase 15 provides some in-line
routines itself. 1 Instead of placing a spe­
cial operator in text, phase 15 inserts a
regular operator, such as the operator for
AND or STORE.

If the mode of arguments in a library
function is not as expected, another test
is performed. The test determines whether
or not a previous reference was made
correctly for these arguments. If the pre­
vious reference was as expected, it is
assumed that an error exists. Otherwise,
the function is assumed to be external.

If a function is assumed to be external
(either used in an EXTERNAL statement or
does not appear in the function table),
text is generated to load the addresses of
any arguments that are subscripted
variables into a parameter list. (If none
of the arguments are subscripted variables,
the load address items are not required.)
A text entry for a subroutine or a function
call is then generated. The operator of
the text entry is for an external function
or subroutine reference. The entry points
to the dictionary entry for the name. The
text representation of the argument list is
then generated and placed into the phase 15
text chain.

If a function is in the function table,
but does not represent an in-line routine,
text is generated to load the addresses of
any arguments that are subscripted

1BLTNFN-IEKJBF expands the following func­
tions: TBIT, LAND, LOR, LXOR, SNGL, REAL,
AlMAG, DCMPLX, DCONJG, and CONJG.

variables into a parameter list. (Load
address items are not required if none of
the arguments are subscripted variables.)
A text entry having a library function
operator is generated. This entry points
to the dictionary entry for the function.
The text representation of the argument
list is then generated and placed into the
phase 15 text chain.

E~r~~i~r_~is~_QE~i~i~~tion: Subroutine
DFUNCT-IEKJDF performs parameter list opti-
mization. If two or more parameter lists
are identical, all but one can be eli­
minated. Likely candidates for optimiza­
tion are those parameter lists with (1) the
same number of parameters and (2) the same
nonzero parameters. When two such lists
are found, individual parameters are cow­
pared to determine whether the lists are
actually identical or merely of the same
format.

To make the comparison easier, the Pa­
rameter List Optimization Table is formed.
Its format is:

r----------T----------T---------T---------,
I I I I Pointer I
I I I Ito Next I
I I I IEntry of I
I INumber of IPointer I Like I
JNumber of INonzero Ito NADCONIFormat I
IParameters)ParameterslTable lin This I
lin List lin List I Entry ITable I
~----------~----------~---------~---------~
I 1 byte I 1 byte I 1 byte I 1 byte I L __________ ~ __________ ~ _________ ~ _________ J

For each unique parameter list, an entry is
made in the table describing the number of
parameters in the list, the number of n0n
zero parameters in the list, a pointer to
the adcon table (see Appendix A: "NADCON
Table") and a pointer to the next parameter
list optimization table entry that contains
a like parameter list format, but unlike
individual parameters. When a new parame­
ter list is generated, the parameter list
optimization table is scanned for a
possible identical list. If one is found,
the parameters in the new list are compared
with the parameters in the old list. If
the lists are identical, a pointer to the
old list is used as the new list's pointer.
If the lists are not identical, an entry
for the new list is made in the table and
chained to the last like (in format) entry.
For example:

Section 2: Discussion of Major Components 35

r-----------T----------T-------T-----------,
I I I IPointer to I
I INumber of INADCON I Next Entry I
I Number of INonzero I Table lof Like I
I Parameters I Parameters I Pointer I Pormat I
~----------+----------+-------+-----------~

I t--~~~-----t----~~----t-------t-----------1 I
~----------+----------+-------+-----------
I 10 I 7 I I
~----------+----------+-------+-----------i
I 30 I 25 I I
~------- ---------- ------- -----------'
~20 I 16 I I

20 I 16 I I -----. I

:-----r----l-----I----l-------1-----[-----1 ~------- _____ ~___ _ __ ~-- _____ 1 ____ _
t...t---+ 30 I 25 I I I l __________ ~ __________ ~ _______ ~ ___________ J

Parameter list optimization is limited
to (1) 100 entries in the parameter list
optimization table or (2) 255 entries in
the adcon table. No further parameter list
optimization is attempted if either limit
is exceeded.

Expressions Containing Statement Function
References: For expressions containing
statement function references, the argu­
ments of the statement function text are
reduced to single operands (if necessary).
These arguments and their mode are stored
in an argument save table (NARGSV), which
serves as a dictionary for the statement
function skeleton pointed to by the dic­
tionary entry for the statement function
name. The argument save table is used in
conjunction with the usual pushdown proce­
dure to generate phase 15 text items for
the statement function reference. When the
translator encounters an operand that is a
durr~y argument, the actual argument corre­
sponding to the dummy is picked up from the
argument save table and replaces the dummy
argument.

~Qgica!~~E~iQg~: Subroutines ALTRAN­
IEKJAL, ANDOR-IEKJAN, and RELOPS-IEKKRE
perform a special process, called anchor
point, on logical expressions containing
relational operators, ANDs, ORs, and NOTs,
so that, at object time, unnecessary
logical tests are eliminated. With anchor­
point "optimization," only the minimum
number of object-time logical tests are
made before a branch or fall-through
occurs. For example, with anchor-point

36

handling, the statement IF{A.AND.B.AND.C)
GO TO 500 will produce (at object time) a
branch to the next statement if A is false,
because Band C need not be tested. Thus,
only a minimum number of operands will be
tested. Without anchor-point handling of
the expression during compilation, all
operands would be tested at object time.
Similar special handling occurs for text
containing logical ORs.

When a primary adjective code for a
logical IF statement or an end-of-DO IF is
placed in the pushdown table, a scan of
phase-l0 text determines whether or not the
associated statement can receive anchor­
point handling. The statement can receive
anchor-point handling if two conditions are
met. There must not be a mixture of ANDs
and ORs in the statement. A logical ex­
pression, if it is in parentheses, must not
be negated by the NOT operator. If these
two conditions are not met, special hand­
ling of the logical expression does not
occur.

Gathering Constant/Variable U~~~
Information

During the conversion of the phase 10
text entries that follow the beginning of a
text block (i.e., the text entries that
follow a statement number definition) to
phase 15 format, the PHAZ15 subroutine
MATE-IEKLMA gathers usage information for
the variables and constants in that block.
This information is required during the
processing of the optimizer path through
phase 20 (see "Phase 20"). If optimizer
processing is not selected, this informa­
tion is not compiled. Subroutine MATE­
IEKLMA records the usage information in
three fields (MVS, MVF, and MVX) , each 128
bits long, of the statement number text
entry for the block (see Appendix B, "Phase
15 Intermediate Text Modifications"). The
MVS field indicates which variables are
defined (i.e., appear in the operand 1
position of a text entry) within the text
of the block. The MVF field indicates
which variables, constants, and base
variables (see "Adcon and Base Variable
ASSignment" under "CORAL Processing") are
used (i.e., appear in either the operand 2
or operand 3 position of a text entry)
within the text of the block. The MVX
field indicates which variables are defined
but not first used (not busy-on-entry)
within the text of the block. The MVX
information is gathered for the second
level of optimization only.

Subroutine MATE-IEKLMA records the usage
information for a variable or constant at a
specific bit location within the three
fields. (Base variables are processed dur­
ing CORAL processing.) The bit location at
which the usage information is recorded is
determined from the coordinate assigned to
the variable or constant by subroutine
IEKKOS.

After a phase 15 text entry has been
formed, subroutine MATE-IEKLMA is given
control to determine and record the usage
information for the text entry. It
examines the text entry operands in the
order: operand 2, operand 3, operand 1.
If operand 2 has not been assigned a coor­
dinate, subroutine MATE-IEKLMA assigns it
the next coordinate, enters the coordinate
number into the dictionary entry for the
operand, and places a pointer to that dic­
tionary entry into the MVD table entry
associated with the assigned coordinate
number. After NATE-IEKLMA has assigned the
coordinate, or if the operand was previous­
ly assigned a coordinate, it records the
usage information for the operand. The
operand's associated coordinate bit in the
MVF field (of the statement number text
entry for the ,block containing the text
entry under consideration) is set to on,
indicating that the operand is used in the
block. Subroutine MATE-IEKLMA executes a
similar procedure to process operand 3 of
the text entry.

If operand 1 of the text entry has not
been assigned a coordinate, the MATE-IEKLMA
subroutine assigns the next coordinate to
it and records the following usage informa­
tion for operand 1:

• Its associated coordinate bit in the
MVX field is set to on only if the
associated coordinate bit in the MVF
field is not on. (If the associated
MVF bit is on, operand 1 of the text
entry was previously used in the block
and, therefore, is got not busy-on­
entry.)

• Its associated coordinate bit in the
MVS field is set to on, indicating that
it is defined within the block4

This process is repeated for all of the
phase 15 text entries that are formed fol­
lowing the construction of a statement
number text entry and preceding the con­
struction of the next statement number text
entry. 'When the next statement number text
entry is constructed, all of the usage
information for the preceding block has
been recorded in the statement number text
entry that begins that block. The same
procedure is followed to gather the usage
information for the next text block.

An integral part of the processing of
PHAZ15 is the gathering of forward­
connection information, which indicates the
specific text blocks that pass control to
other specified text blocks. Forward­
connection information is used during phase
20 optimization.

Forward-connection information is
recorded in a table called RMAJOR. Each
RMAJOR entry is a pointer to the statement
number entry associated with a statement
number that is the object of a branch or a
fall-through. Because each statement numb­
er entry contains a pointer to the text
block beginning with its associated state­
ment number (see "Text Blocking"), each
RMAJOR entry points indirectly to a text
block.

For each new text block, PHAZ15 places a
pointer to the next available entry in
RMAJOR into the forward-connection field of
the associated statement number entry (see
Appendix A, "Statement Number/Array
Table"). Thus, the statement number entry
associated with the text block points to
the first entry in RMAJOR in which the
forward-connection information for that
block is to be recorded.

After starting a text block, PHAZ15 con­
verts the phase 10 text following the
statement number definition to phase 15
text. As each phase 15 text entry is
formed, it is analyzed to determine whether
it is a GO TO or compiler generated branch.
If it is either, a pointer to the statement
number entry for each statement number to
which a branch may be made as a result of
the execution of the GO TO or generated
branch is recorded in the next available
entry in RMAJOR. (If two or more branches
to the same statement number appear in the
block only one entry is made in RMAJOR for
the statement number to which a branch is
to be made.)

When PHAZ15 encounters the next state­
ment number definition, it starts a new
block. If the new block is an entry block,
PHAZ15 saves a pointer to its associated
statement number entry for subsequent use
and processes the text for the block.

If the new block is neither an entry
block nor an entry point (i.e., a block
immediately following an entry block),
PHAZ15 records the fall-through connection
information (if any) for the previous

Section 2: Discussion of Major Components 37

block. If the previous block is terminated
by an unconditional branch, it does not
fall-through to the new block. If the pre­
vious block can fall-through to the new
block, PHAZ15 records a pointer to the
stat:ement number entry for the new block in
the next location of RMAJOR. It then flags
this as the last forward connection for the
previous block.

Tf the new block is an entry point
(i. E!., a block immediately following an
entry block), PHAZ15 records the fall­
through connection (if any) for the pre­
vious non-entry block. It does this in the
manner described in the previous paragraph.
It then records the forward-connection
information for all intervening entry
blocks (i.e., entry blocks between the pre­
vious non-entry block and the new block).
(PHAZ15 has saved pointers to the statement
number entries for all intervening entry
blocks.) Each such entry block passes con­
trol directly to the new block and there­
fore has only one forward connection. To
record the forward connection information
for the intervening entry blocks, PHAZ15
places a pointer to the next available
entry in RMAJOR into the forward connection
field of the statement number entry for the
first intervening entry block. In this
RMAJOR entry, PHAZ15 records a pointer to
the statement number entry for the new
block. It flags this entry as the last,
and only, RMAJOR entry for the entry block.
PHAZ15 repeats this procedure for the
remaining intervening entry blocks (if
any). PHAZ15 then proceeds to process the
new text block.

When all the connection information for
a block has been gathered, each ru~JOR
entry for the block, the first of which is
pointed to by the statement number entry
for the block and the last of which is
flagged as such, points indirectly to a
block to which that block may pass control.

Figure 5 illustrates the end result of
gathering forward-connection information
for sample text blocks. Only the forward­
connection information for the blocks
beginning with statement numbers 10 and 20

38

is shown. In the illustration, it is
assumed that:

• The block started by statement number
10 may branch to the blocks started by
statement numbers 30 and 40 and will
fall-through to the block started by
statement number 20 if neither of the
branches is executed.

• The block started by statement number
20 may branch to the blocks started by
statement numbers 40 and 50 and will
fall-through to the block started by
statement number 30 if neither of the
branches is executed.

Reordering the Statement_~~mb§£ Chain

After text blocking, arithmetic transla­
tion, and if complete optimization has been
specified, the gathering of constant/
variable usage information, been completed,
subroutine PHAZ15-IEKJA reorders the state­
ment number chain of the information table
(see Appendix A, "Information Table"). The
original sequence of the entries in this
chain, as recorded by phase 10, was in the
order of the occurrence of their associated
statement numbers as either definitions or
operands. The new sequence of the entries
after reordering is made according to the
occurrence of their associated statement
numbers as definitions only.

Although the actual reordering takes
place after the scan of the phase 10 text,
preparation for it takes place during the
scan. As each statement number definition
is encountered, a pointer to the related
statement number entry is recorded. Thus,.
during the course of processing, a table of
pointers to statement number entries, which
reflects the sequence in which statement
numbers are defined in the module, is
built. The order of the entries in this
table also reflects the sequence of the
text blocks of the module.

PHASE 15 TEXT

LDF 1 I 1_ 10

-

-L
Statement Number Entry for 10

1 I
-

I I
1 1 I 1

10
I

LDF I -20
--

I I J
--L Statement Number Entry for 20 --

1 1- 30 LDF I I I

1 1 II 20 J I I I
--

Statement Number Entry for 30
~

~~ I I I I I 30 I 1_ 40-LDF 1 I --
RMAJOR J

.-
~ _30 ...--- Statement Number Entry for 40

---- -
_40 J

I I I I I 40 I * -20 - :1
I .--

~ _40
-

-50 ~

I
-

* -30
Statement Number Entry for 50

LDF I I_50 J I 1

Figure 5. Forward-Connection Information

After the scan, subroutine PHAZ15-IEKJA
uses this table to reorder the statement
number entries. It places the first table
pointer into the appropriate field of the
communication table (see Appendix A, "Com­
munication Table"); it places the second
table pOinter into the chain field of the
statement number entry that is pOinted to
by the pointer in the communication table;
it places the third table pointer into the
chain field of the statement number entry
that is pointed to by the chain field ot
the statement number entry that is pointed
to by the pointer in the communicat~ion
table; etc. When subroutine PHAZ15-IEKJA
has performed this process for all pointers
in the table, the entries in the statement
number chain are arranged in the sequence
in which their associated statement numbers
are defined in the module. The new order
of the chain also reflects the sequence of
the text blocks of the module.

After the statement number chain has
been reordered, and if optimization has
been specified, subroutine PHAZ15-IEKJA

I I I I 50 I j I
J

L

~

gathers backward-connection information.
This information indicates the specified
text blocks that receive control from spe­
cific other text blocks. Backward­
connection information is used extensively
throughout phase 20 optimization.

Subroutine PHAZ15-IEKJA uses the reor­
dered statement number chain and the infor­
mation in the forward connection table
(RMAJOR) to determine the backward connec­
tions. It records backward-connection
information in a table called CMAJOR in
subroutine C1520-IEKJA2. Each CMAJOR entry
made by subroutine PHAZ15-IEKJA for a par­
ticular text block (block I) is a pointer
to the statement number entry for a block
from which block I may receive control.
Because each statement number entry con­
tains a pointer to its associated text
block (see "Text Blocking"), each CMAJOR
entry for block I points indirectly to a
block from which block I may receive
control.

Subroutine PHAZ15-IEKJA gathers
backward-connection information for the
text blocks according to the order of the
statement number chain. It first deter­
mines and records the backward-connections
for the text block associated with the ini-

section 2: Discussion of Major Components 39

tial entry in the statement number chain,
then gathers the backward-connection infor­
mation for the block associated with the
second entry in the chain; etc.

For each text block, subroutine PHAZ15-
IEKJA initially records a pointer to the
next available entry in CMAJOR in the
backward-connection field (JLEAD) of the
associated statement number entry (see
Appendix A, "Statement Number/Array
Table"). Thus, the statement number entry
points to the first entry in CMAJOR in
which the backward-connection information
for the block is to be recorded.

Then, to determine the backward­
connection information for the block (block
I), subroutine PHAZ15-IEKJA obtains, in
turn, each entry in the statement number
chain. (The entries are obtained in the
sequence in which they are chained.) After
the PHAZ15-IEKJA subroutine has obtained an
entry, it picks up the forward-connection
field (ILEAD) of that entry. This field
points to the initial RMAJOR entry for the
text block associated with the obtained
statement number entry. (Note: RMAJOR
entries for a block indicate the blocks to
which that block may pass control.) Sub­
routine PHAZ15-IEKJA searches all RMAJOR
entries for the block associated with the
obtained entry for a pOinter to the state­
ment number entry for block I. If such a
pointer exists, the text block associated
with the obtained statement number entry
may pass control to block I. Therefore,
block I may receive control from that block
and subroutine PHAZ15-IEKJA records a
pointer to its associated statement number
entry in the next available entry in CMAJOR.
Subroutine PHAZ15-IEKJA repeats this
procedure for each entry in the statement
number chain. Thus, it searches all RMAJOR
entries for pointers to the statement
number entry for block I and records in
CMAJOR a pointer to the statement number

40

entry for each text block from which block
I may receive control. The PHAZ15-IEKJA
subroutine flags the last entry in CMAJOR
for block I. When the statement number
chain has been completely searched, subrou­
tine PHAZ15-IEKJA has gathered all the
backward-connection information for block
I. Each entry that the PHAZ15-IEKJA sub­
routine has made for block I, the first of
which is pointed to by the statement number
entry for block I and the last of which is
flagged, points indirectly to a block from
which block I may receive control.

Subroutine PHAZ15-IEKJA gathers the
backward-connection information for all
blocks in the aforementioned manner. When
all of this information has been gathered,
control is returned to the FSD, which calls
CORAL, the second segment of phase 15.

Figure 6 illustrates the end result of
the gathering of backward-connection infor­
mation for sample text blocks. Only the
backward-connections for the blocks begin­
ning with statement numbers 40 and 50 are
shown. In the illustration, it is assumed
that:

• The block started by statement number
40 may receive control from the execu­
tion of branch instructions that reside
in the blocks started by s"tatement num­
bers 10 and 20 and that it may receive
control as a result of a fall-through
from the block started by statement
number 30.

• The block started by statement number
50 may receive control from the execu­
tion of a branch instruction that
resides in the block started by state­
ment number 20 and that it may receive
control as a result of a fall-through
from the block started by statement
number 40.

PHASE 15 TEXT

Statement Number Entry for 10 LDF I I - 10
I I ----

I
I I I

I
I 10 I L ---- - ----

1 --

LDF
Statement Number Entry for 20 j I I I~~~~o=

I L ----
J

I I 1 I I 20 I ----- --

rl
I I

----- ----

LDF - 30
I --

CMAJOR I
--- - 10 Statement Number Entry for 30 I

I -
20 - _I

I I l I
I 30 J

* - 30
I

L-.,
--

I I - r--- - 20 LDF
I - 40

* - 40 J

-
Statement Number Entry for 40 I --

I

-1 I l I
I

I
40

1

-

---- r-:-~o-LDF I Statement Number Entry for 50 I I
I

I I I
I I

• Figure 6. Backward-Connection Information

CORAL PROCESSING

CORAL, the second segment of phase 15,
performs the following functions:

• Data text conversion

• Relative address assignment

• Data text rechaining

• Namelist statement processing

• Define file text processing

• Initial value assignment

• Adcon table space reservation

CORAL consists of a main subroutine,
CORAL-IEKGCR, which controls the flow of
space allocation for variables, constants,
and any adcons necessary for local
variables, COMMON, EQUIVALENCE, and EXTER­
NAL references. Embedded in subroutine
CORAL-IEKGCR are the routines that process
constants, local variables, and external
references. The CORAL-IEKGCR subroutin~
calls other routines in phase 15 to

I

I
I

-

I 50
1

--
---- -

--
~

accomplish various functions. These rou­
tines are:

• IEKGCZ, which keeps track of space
being allocated; generates adcons
needed for address computation in the
object module; rechains data text in
the sequence of variable assignment;
generates adcons necessary for COMMON,
EQUIVALENCE, and EXTERNAL references;
and sets up error table entries to be
used by phase 30 if errors occur.

• NDATA-IEKGDA, which processes phase 10
data text.

• EQVAR-IEKGEV, which handles COMMON and
EQUIVALENCE space allocation.

• NLIST-IEKTNL, which processes name list
text.

• DFILE-IEKTDF, which processes define
file text.

• DATOUT-IEKTDT, which processes data
text.

Chart 09 shows the overall logic flow ot
CORAL.

Section 2: Discussion of Major Components 41

~nslation of Data Text

The first section of CORAL, subroutine
NDATA-IEKGDA, translates data text entries
from their phase 10 format to a form more
easily processed by another CORAL subrou­
tine, DATOUT-IEKTDT. Each phase 10 data
text entry (except for initial housekeeping
entries) contains a pointer to a variable
or constant in the information table. Each
variable in the series of entries is to be
assigned to a constant appearing in another
entry. Placed in separate entries, vari­
able and constant appear to be unrelated.
In each phase 15 data text entry, after
translation, each related variable and con­
stant are paired (they appear in adjacent
fields of the same entry).

The following example shows how a series
of phase 10 data text entries are trans­
lated by the NDATA-IEKGDA subroutine to
yield a smaller number of phase 15 text
entries, with each related constant and
variable paired. Assume a statement
appearing in the source module as DATA
A,B/2*0/. The resulting phase 10 text
entries appear as follows (ignoring the
chain, mode, and type fields, and the ini­
tial housekeeping entry):

r--------------------T--------------------,
I Adjective I I
I Code for: I Pointer ~

~--------------------+--------------------i
I 0 I Pointer to A I
I I in dictionary I
~--------------------+--------------------i
I I Pointer to B I
I ~ in dictionary I
~--------------------+--------------------i
I / I 2 I
~--------------------t--------------------~
I * I Pointer to 0 I
I I in dictionary I
t--------------------t--------------------i
I / I 0 ! L ____________________ ~ ____________________ J

Note that the variables A and B and the
constant value 0 appear in separate text
entries. The NDATA-IEKGDA subroutine tran­
slation of the above phase 10 entries
(ignoring the contents of the indicator and
chain fields, and two optional fields
needed for special cases) appears as
follows:

42

r---------T---------T----------T----------,
~Indicatorl Chain IPl Field IP2 Field I
r---------t---------t----------t----------i
I I I pointer I pointer I
I I Ito A in Ito 0 in I
J I Idictionaryldictionaryl
~---------t---------+----------t----------i
I I I pointer I pointer I
I I Ito B in Ito 0 in I
I I I dictionary I dictionary I L _________ ~ _________ ~ __________ ~ __________ J

In this case, each variable and its speci­
fied constant value appear in adjacent
fields of the same phase 15 text entry.
For the detailed format of the phase 15
data text entry and the use of the special
fields not discussed, see Appendix B,
"Phase 15/20 Intermediate Text
Modification" •

Relative Address Assignment

The chief function of CORAL is to assign
relative addresses to the operands (con­
stants and variables) of the source module~
The addresses indicate the locations, rela­
tive to zero, at which the operands will
reside in the object module resulting from
the compilation. The relative address
assigned to an operand consists of an
address constant and a displacement. These
two elements, when added together, form the
relative address of the operand. The
address constant for an operand is the base
address value used to refer to that operand
in main storage. Address constants are
recorded in the adcon table (NADCON) and
are the elements to which the relocation
factor is added to relocate the object
module for execution. The displacement for
an operand indicates the number of bytes
that the operand is displaced from its
associated address constant. Displacements
are in the range of 0 to 4095 bytes. The
relative address assigned to an operand is
recorded in the information table entry for
that operand in the form of:

1. A numeric displacement from its asso­
ciated address constant.

2. A pointer to an information table
entry that contains a pointer to the
associated address constant in the
adcon table.

Relative addresses are assigned through
use of a location counter. This counter is

I continually updated by the size (in bytes)
of the operand to which an address is
assigned. The value of the location count­
er is used to:

• Compute the displacement to be assigned
to the next operand.

• Determine when the next address con­
stant is to be established. (If the
displacement reaches a value in excess
of 4095, a new address constant is
established.)

CORAL assigns addresses to source module
operands in the following order:

• Constants.

• Variables.

• Arrays.

• Equivalenced variables and arrays.

• COMMON variables and arrays, including
variables and arrays made common using
the EQUIVALENCE statement.

The manner in which addresses are assigned
to each of these operand types is described
in the following paragraphs. Because con­
stants and variables are processed in the
same manner, they are described together.

Constants and Variables: Subroutine CORAL­
IEKGCR-firstassigns-relative addresses to
the constants of the module. As each con­
stant is assigned a relative address, sub­
routine CORAL-IEKGCR calls the FSD subrou­
tine, IEKTLOAD, to place the constant in
the object module in the form of TXT
records. Addresses are then assigned to
variables. (In the subsequent discussion,
constants and variables are referred to
collectively as operands.) The first
operand is assigned a displacement of zero
plus the length of the save area, parameter
list, and branch table. Operands that are
assigned locations within the first 4096
bytes of the range of base register 13 are
not explicitly assigned an address con­
stant. such operands use the base address
value loaded into reserved register 13 as
their addre~s constant. The displacement
is recorded in the information table entry
for that operand. The location counter is
then updated by the size in bytes of the
operand.

The next operand is assigned a displace­
ment equal to the current value of the
location counter minus the base address
value in register 13. The displacement is
recorded in ,the information table entry for
that operand. The location counter is then
updated, and the value of the displacement
is tested to see whether or not it exceeds
4095. If it does not, the next operand is
processed as described above. '

If sufficient operands exist to cause
the displacement to achieve a value in
excess of 4095, the first address constant
is established. The value of this address
constant equals the location counter value
that caused its establishment. This
address constant becomes the current
address constant and is saved for subse­
quently assigned relative addresses. The
displacement value is then reset to zero
and the next operand is considered.

After the first address constant is
established, it is used as the address con­
stant portion of the relative addresses
assigned to subsequent operands.

When the value of the displacement again
reaches a value in excess of 4095, another
address constant is established. Its value
is equal to the current address constant
plus the displacement that caused the esta­
blishment of the new address constant.
This new address constant then becomes cur­
rent and is used as the address constant
for subsequent operands. The displacement
is then reset to zero and the next operand
is processed. This overall process is
repeated until all operands (constants and
variables) are processed. Source module
arrays are then considered for relative
address assignment.

Arrays: Subroutine CORAL-IEKGCR then
assigns to each array of the source module
that is not in COMMON 'a relative address
that is less than (by the span of the
array) the relative address at which the
array will reside in the object module.
(The concept of span is discussed in Appen­
dix F.) The actual relative address at
which an array will reside in the object
module is derived from the sum of address
constant and displacement that are current
at the time the array is considered for
relative address assignment. The array
span is subtracted from the relative
address to facilitate subscript
calculations.

Subroutine CORAL-IEKGCR subtracts the
span in one of two ways. If the span is
less than the current displacement, it sub­
tracts the span from that displacement, and
assigns the result as the displacement por­
tion of the relative address for the array.
In this case, the address constant assigned
to the array is the current address con­
stant. If the span is greater than the
current displacement, the CORAL-IEKGCR sub­
routine subtracts the span from the sum of
the current address constant and displace­
ment. The result of this operation is a
new address constant, which does not become
the current address constant. Subroutine
CORAL-IEKGCR assigns the new address con­
stant and a displacement of zero to the
array. It then adds the total size of the

Section 2: Discussion of Major Components 43

array to the location counter, obtains the

I
next array, and tests the value of the dis­
placement. If the value of the displace­
ment does not exceed 4095, the CORAL-IEKGCR
subroutine does not take any additional
action before it processes the next array_
If the displacement value exceeds 4095, the
COR1~-IEKGCR subroutine establishes a new
address constant, resets the displacement
value and processes the next array. After
all arrays have relative addresses, subrou­
tine CORAL-IEKGCR calls subroutine EQVAR­
IEKGEV to assign address to equivalence
variables and arrays that are not in
COMrvION.

~SD:!~_valence Variables and Arrays Not in
COMMON: In assigning relative addresses to
equivalence variables and arrays, subrou­
tine EQVAR-IEKGEV attempts to minimize the
number of required address constants by
using, if possible, previously established
address constants as the base addresses for
equivalence elements. subroutine EQVAR­
IEKGEV processes equivalence information on
a group-by-group basis, and assigns a rela­
tive address, in turn, to each element of
the group. Prior to processing, subroutine
EQVAR-IEKGEV determines the base value for
the group. The base value is the relative
address of the head1 of the group. The
base value equals the sum of the current
address constant and displacement (location
counter value). After the EQVAR-IEKGEV
subroutine has determined the base value,
it obtains the first (or next) element of
the group and computes its relative
address. The relative address for an ele­
ment equals the sum of the base value for
the group and the displacement of the ele­
ment. The displacement for an element is
the number of bytes that the element is
displaced from the head of the group (see
"COMMON and EQUIVALENCE Processing"). The
EQVAR-IEKGEV subroutine then compares the
computed relative address to the previously
established address constants. If an
address constant is such that the dif­
ference between the computed relative
address and the address constant is less
than 4095, the EQVAR-IEKGEV subroutine
assigns that address constant to the equi­
valence element under consideration. The
displacement assigned in this case is the
difference between the computed relative
address of the element and the address con­
stan-t. Subroutine EQVAR-IEKGEV then pro­
cessles the next element of the group.

If the desired address constant does not
exist, subroutine EQVAR-IEKGEV establishes
a new address constant and assigns it to

1The head of an equivalence group is the
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.

44

the element. The value of the new address
constant is the relative address of the
element. The EQVAR-IEKGEV subroutine then
assigns the element a displacement of zero,
and processes the next element of the
group. When all elements of the group are
processed, subroutine EQVAR-IEKGEV computes
the base value for the next group, if any.
This base value is equal to the base value
of the group just processed plus the size
of that group. The next group is then
processed.

f.OM!1Qt:L Va!.:iabl~~_~nd_Arr~~: Subroutine
EQVAR-IEKGEV considers each COMMON block of
the source module, in turn, for relative
address assignment. For each COMMON block,
subroutine EQVAR-IEKGEV assigns relative
addresses to (1) the variables and arrays
of that block, and (2) the variables and
arrays equivalenced into that COMMON block.
(The processing of variables and arrays
equivalenced into COMMON is described in a
later paragraph.)

Because COMMON blocks are considered
separate control sections, the EQVAR-IEKGEV
subroutine assigns each COMMON block of the
source module a relocatable origin of zero.
It achieves the origin of zero by assigning
to the first element of a CO~~ON block a
relative address consisting of an address
constant and a displacement whose sum is
zero. For example, both the address con­
stant and the displacement for the first
element in a block can be zero. Also, the
address constant can be -16 and the
displacement +16. Note that the address
constant in the latter case is negative.
Negative address constants are permitted,
and may be a by-product of the assignment
of addresses to COMMON variables and
arrays. They evolve from the manner in
which the relative addresses are assigned
to arrays. A relative address assigned to
an array is equal to its actual relative
address minus the span of that array. The
actual relative address of each array in a
common block is equal to the displacement
computed for it during COMMON and EQUIVA­
LENCE processing. From the displacement of
each array in the COMMON block under consi­
deration, subroutine EQVAR-IEKGEV subtracts
the span of that array. The result then
replaces the previously computed displace­
ment for the array. If the result of one
or more of these computations yields a
negative value, the EQVAR-IEKGEV subroutine
uses the most negative as the initial
address constant for the COMMON block. It
then assigns each element (variable or
array) in the COMMON block a relative
address. This address consists of the
negative address constant and a displace­
ment equal to the absolute value of the
address constant plus the displacement of
the element.

If the computations that subtract spans
from displacements do not yield a negative
value, subroutine EQVAR-IEKGEV establishes
an address constant with a value of zero as
the initial address constant for the COMMON
block. It then assigns each element in the
block a relative address consisting of the
address constant (with zero value) and a
displacement equal to the displacement of
the element.

If at any time the displacement to be
assigned to an element exceeds 4095, the
EQVAR-IEKGEV subroutine establishes a new
address constant. This address constant
then becomes the current address constant
and is saved for inclusion in subsequently
assigned addresses. After the new address
constant is established, the relative
address assigned to each subsequent element
consists of the current address constant
and a displacement equal to the displace­
ment of that element minus the value of the
current address constant. After the entire
common block is processed, variables and
arrays that are equivalenced into ·that com­
mon block are assigned relative addresses.

yariabl~~~gg_~rrays_~g~iv~1~g£~g_!g~2_£2~~
mon: Subroutine EQVAR-IEKGEV processes
variables and arrays that are equivalenced
into common in much the same manner as
those that are equivalenced, but not into
common. How'ever, in this case, the base
value for th~ group is zero. Only those
address constants established for the com­
mon block into which the variables and
arrays are equivalenced are acceptable as
address constants for those variables and
arrays.

Adcon and Base. Variable Assigg!!!~g~: As
CORAL establishes a new address constant
and enters it into the adcon table, it also
places an entry in the information table.
This speciaL entry, called an "adcon vari­
able," points to the new address constant.
All operands that have been assigned rela­
tive addresses will have pointers to the
adcon variable for their address constant.
The adcon variables generated for operands
are assigned coordinates, via the MCOORD
vector and the MVD table. Coordinates 81
through 128 are reserved for base
variables; however, some base variables may
be assigned coordinates less than 81 if
less than 80 coordinates are assigned dur­
ing the gathering of variable and constant
usage information (see PHAZ15, "Gathering
Constant/ Variable Usage Information").
Having been assigned coordinates, the adcon
variables are now called base variables.
Only those operands receiving coordinate
assignments are available for full register
assignment during phase 20.

Rechaining Data Text

During the assignment of relative
addresses to variables, subroutine IEKGCZ
rechains the data text entries. Their pre­
vious chaining (set by phase 10) was
according to their sequence in the source
program. The IEKGCZ subroutine now chains
the data text entries according to the
sequence of relative addresses it assigns
to variables. Thus, data text entries are
now chained in the same relative sequence
in which the variables will appear in the
object module. This sequence simplifies
the generation of text card images by phase
25.

DEFINE FILE Statement Processing

If the source module contains DEFINE
FILE statements, subroutine DFILE-IEKTDF
converts phase 10 define file text to
object-time parameters. These parameters
provide IHCFDIOSE with the information
required to implement direct access READ,
WRITE, and FIND statements.

A parameter entry is made for each unit
specified in a DEFINE FILE statement. This
entry contains the unit number, the rela­
tive address of the number of records, a
character ('L', 'E', or lUi) indicating the
type of formatting to be used, the relative
address of the maximum record size, an
indicator for the size (four bytes or two
bytes) of the associated variable, and the
relative address of the associated
variable.

Subroutine DFILE-IEKTDF places the
parameter entries along with their relative
addresses into TXT records. It also places
the relative address of the first define
file entry into the communication table for
later use by phase 25.

If the source module contains READ/WRITE
statements using NAMELIST statements, sub­
routine NLIST-IEKTNL converts phase 10
namelist text to object-time namelist dic­
tionaries. The object-time namelist dic­
tionaries provide IHCFCOMH with the infor­
mation required to implement READ/WRITE
statements using namelists (see Appendix A,
"Namelist Dictionaries"). The dictionary
developed for each list in a NAMELIST sta­
tement contains the following:

Section 2: Discussion of Major Components 45

Q An entry for the namelist name.

~ Entries for the variables and arrays
associated with the namelist name.

• An end mark of zeros terminating the
list.

Each entry for a variable contains the
name, mode (e.g., integer*2 or real*4), and
relative address of the variable. Both the
address and the mode are obtained from the
dictionary entry for the variable.

Each entry for an array contains the
name of the array, the mode of its ele­
ments, the relat~ve address of its first
element, and the information needed to
locate a particular element of the array.
Subroutine NLIST-IEKTNL obtains the forego­
ing information from the information table.

The NLIST-IEKTNL subroutine places the
entries of the namelist dictionary along
with their relative addresses into TXT
records. It also places the relative
address of the beginning of the namelist
dictionary into the address constant for
the namelist name.

Initial Value Assignment

CORAL assigns the initial values speci­
fied for variables and arrays in phase 15
data text in the following manner:

1. The relative address of the variable
or array to be assigned an initial
value(s) is obtained and placed into
the address field of a TXT record.

2. Each constant (one per variable) that
has been specified as an initial value
for the variable or array is then
obtained and entered into a TXT re­
cord. (A number of TXT records may be
required if an array is being
processed.)

Such action effectively assigns the ini­
tial value, because the relative address of
the initial value has been set to equal the
relative address of its associated variable
or array element.

After relative address assignment is
completed, subroutine CORAL-IEKGCR calls
the IEKTLOAD subroutine (via IEKGCZ) to
place an adcon in the object module for
special references. Subroutine CORAL-

46

IEKGCR scans the operands of the informa­
tion table to detect any of these
references: call-by-name variables, names
of library routines, namelist names, and
external references. The byte-A and byte-B
usage fields of each information table
entry informs subroutine CORAL-IEKGCR
whether or not a particular reference
belongs to one of these categories. For
each special reference that the CORAL­
IEKGCR subroutine detects, subroutine
IEKGCZ calls subroutine IEKTLOAD to place
the needed address constants in the
reserved spaces of the object module.

Creating Relocation Dictionary Entries

The relocation dictionary is composed of
entries for the address constants of the
object module. One relocation dictionary
entry (an RLD record) is constructed by
subroutine CORAL-IEKGCR for each address it
encounters. If the address constant is for
an external symbol, the RLD record identi­
fies the address constant by indicating:

• The control section to which the
address constant belongs.

• The location of the address constant
within the control section.

• The symbol in the external symbol dic­
tionary whose value is to be used in
the computation of the address
constant.

If the address constant is for a local
symbol (i.e., a symbol that is located in
the same control section as the address
constant), the RLD record identifies the
address constant by indicating the control
section to which the address constant
belongs and its location within that
section.

For a more detailed discussion of the
use and format of an RLD record, refer to
the publication IBM System/360 Operating
System: Linkage Editor, Program Logic
Manual, Form Y28-6610.

The external symbol dictionary contains
entries for external symbols that are
defined or referred to within the module.
An external symbol is one that is defined
in one module and referred to in another.
One external symbol dictionary entry (an
ESD record) is constructed by subroutine
IEKGCZ for each external symbol it encoun-

terse The entry identifies the symbol by
indicating its type and location within the
module. The ESD records constructed by
subroutine IEKGCZ are:

• ESD-O -- This is a section definition
record and an entry point definition
record for the source module being
compiled.

• ESD-2 -- This record is generated for
an external subprogram name.

• ESD-5 -- This record is a section
definition record for a common block
(either named or blank).

For a more complete discussion of the
use and the format of these records, refer
to the publication !~~_~~~§~Ll&Q-2Eera~irrg
§~~§~~ __ ~!nkag~_~g!~QfL PrQgfam_Logi£
~an!!~!.

PHASE 20

The primary function of phase 20 is to
produce a more efficient object module
(perform optimization). However, even if
the applications programmer has specified
no optimization, phase 20 assigns registers
for use during execution of the object
module.

For a given compilation, the applica­
tions programmer may specify OPT=O (no
optimization), or either of the following
levels of optimization: OPT=l or OPT=2.
Thus, the functions performed by phase 20
depend on the optimization specified for
the compilation.

• If no optimization (OPT=O) has been
specified, phase 20 assigns to interme­
diate text entry operands the registers
they will require during object module
execution (this is called bas~c regis­
ter assignment). As part of this func­
tion, phase 20 also provides informa­
tion about the operands needed by phase
25 to generate machine instructions.
Both functions are implemented in a
single, block-by-block, top-to-bottom
(i.e., according to the order of the
statement number chain), pass over the
phase 15 text output. The end result
of this processing is that the register
and status fields of the phase 15 text
entries are filled in with the informa­
tion required by phase 25 to convert
the text entries to machine language
form (see Appendix B, "Phase 20 Inter­
mediate Text Modifications"). Basic
register assignment does not take full
advantage of the available general and
floating-point registers, and it does

not specify the generation of machine
instructions that keep operand values
in registers (wherever possible) for
use in subsequent operations involving
them.

• If the OPT=l level of optimization has
been specified, two processes are car­
ried out:

1. The first process, called full
register assignment, performs-the
same two functions as basic regis­
ter assignment. However, full
register assignment takes greater
advantage of available registers
and provides information that
enables machine instructions to be
generated that keep operand values
in registers for subsequent opera­
tions. An attempt is also made to
keep the most frequently used
operands in registers throughout
the execution of the object
module. Full register assignment
requires a number of passes over
the phase 15 text. The basic unit
operated upon is the text block
(see Phase 15, "Text Blocking").
The end result of full register
assignment, like that of basic
register assignment, is that the
register and status fields of the
phase 15 text entries are filled
in with the information required
by phase 25.

2. The second process, called ~f~nch
Q2~i~iz~tiQn, generates RX-format
branch instructions in place of
RR-format branch instructions
wherever possible. The use of
RX-format branches eliminates the
need for an instruction to load
the branch address into a general
register. However, branch optimi­
zation first requires that the
sizes of all text blocks in the
module be determined so that the
branch address can be found.

• If the OPT=2 level of optimization has
been specified, optimization is per­
formed on a "loop-by-Ioop" basis.
Therefore, before processing can be
initiated, phase 20 must determine the
structure of the source module in terms
of the loops within it and the rela­
tionships (nesting) among the loops.
Then phase 20 determines the order in
which loops are processed, beginning
with the innermost (most frequently
executed) loop and proceeding outward.
The second level of optimization
involves three general procedures:

1. The first, called text optimiza­
~iQn, eliminates unnecessary text

Section 2: Discussion of Major Components 47

entries from the loop being
processed. For example, redundant
text entries are removed and,
wherever possible, text entries
are moved to outer loops, where
they will be executed less often.

2. The second procedure is full reg­
ister assignment, which is essen­
tially the same as in the first
level of optimization, but is more
effective, because it is done on a
loop-by-Ioop basis.

3. The final procedure is branching
optimization, which is the same as
in the OPT=l path.

CONTROL FLOW

In phase 20, control flow may take one
of three possible paths, depending on the
level of optimization chosen (see Chart
10). Phase 20 consists of a control rou­
tine (LPSEL-IEKPLS) and six routine groups.
(Table 12 is a directory of the subroutines
used by these six groups. In addition,
Table 13 contains the list of utility rou­
tines called by the subroutines in the
various groups.) The control routine'con­
troIs execution of the phase. All paths
begin and end with the control routine.
The first group of routines performs basic
register assignment. This group is
executed only in the control path for non­
optimized processing. The second group
performs full register assignment. Control
passes through this group in the paths for
both levels of optimization. The third
group of routines performs branch optimiza­
tion and is also used in the paths for both
levels of optimization. The fourth group
determines the structure of the source
module and is used only in the path for
OPT=2 optimization. The fifth group per­
forms loop selection and again is only
executed in OPT=2 optimization. The final
group performs text optimization and is
used only in OPT=2 optimization.

The control routine governs the sequence
of processing through phase 20. The proc­
essing sequence to be followed is deter­
mined from the optimization level specified
by the FORTRAN programmer. If no optimiza­
tion is specified, the basic register
assignment routines are brought into play.
The unit of processing in this path is the
text block. When all blocks are processed,
the control routine passes control to the
FSD, which calls phase 25.

When OPT=l optimization is specified,
the control routine passes the entire
module to the full register assignment rou-

48

tines and then to the routine that computes
the size of each text block and sets up the
displacements required for branching opti­
mization. Control is then passed to the
FSD.

When the control path for OPT=2 optimi~
zation is selected, the unit of processing
is a loop, rather than a block. In this
case, the control routines initially pass
control to the routines of phase 20 that
determine the structure of the module.
When the structure is determined, control
is passed to the loop selection routines,
to select the first (innermost) loop to be
processed. The control routines then pass
control to the text-optimization routines
to process the loop. When text optimiza­
tion for a loop is completed, the control
routine marks each block in the loop as
completed. This action is taken to ensure
that the blocks are not reprocessed when a
subsequent (outer) loop is processed. The
control routine again passes control to the
loop selection routines to select the next
loop for text optimization. This process
is repeated until text optimization has
processed each loop in the module. (The
entire module is the last loop.)

After text optimization has processed
the entire module, the control routine
removes the block-completed marks and con­
trol is passed to the loop selection rou­
tines to reselect the first loop. Control
is then passed to the full register assign­
ment routines. When full register assign­
ment for the loop is complete, the control
routine marks each block in the loop as
completed and passes control to the loop
selection routines to select the next loop.
This process is repeated for each loop in
the module. (The entire module is the last
loop.) When all loops are processed, the
control routine passes control to the rou­
tine that computes the size of each text
block and sets up the displacements
required for branching optimization. Con­
trol is then passed to the FSD.

REGISTER ASSIGNMENT

Two types of register assignment can be
performed by phase 20: basic and full.
Before describing either type, the concept
of ~ta~~~, which is integrally connected
with both types of assignment, is
discussed.

Each text entry has associated operand
and base address status information that is
set up by phase 20 in the status field of
that text entry (see Appendix B, "Phase 20
Intermediate Text Modification"). The sta­
tus information for an operand or base
address indicates such things as whether or

not it is ina register and whether or not
it is to be retained in a register for sub­
sequent use; this information indicates to
phase 25 the machine instructions that must
be generated for text entries.

The relationship of status to phase 25
processing i~ illustrated in the following
example. Consider a phase 15 text entry of
the form A = B + C. To evaluate the text
entry, the operands Band C must be added
and then stored into A. However, a number
of machine instruction sequences could be
used to evaluate the expression. If
operand B is in a register, the result can
be achieved by performing an RX-format add
of C to the register containing B, provided
that the base, address of C is in a regis­
ter. (If'the base address of C is not in a
register, it must be. loaded before the add
takes place.) The result can then be
stored into A, again, provided that the
base address of A is in a register.

If both B apd C are in registers, the
result can b~ evaluated by executing an
RR-format add instruction. The result can
then be stored into A. Thus, for phase 25
to generate code for the text entry, it
must have the status of operands and base
addresses of the text entry.

The following facts about status should
be kept in mind throughout the discussions
of basic and full register assignment:

1. Phase 20. indicates to phase 25 when it
is to generate code that loads
operands and base addresses into reg­
isters, whether or not it is to gener­
ate code that retains operands and
base addresses in registers, and
whether or not operand 1 is to be
stored.

2. Phase 20 notes the operands and base
addresses that are retained in regis­
ters and are available for subsequent
use.

Basic register assignment involves two
functions: assigning registers to the
operands of the phase 15 text entries and
indicating the machine instructions to be
generated for the text entries. In per­
forming these functions, basic register
assignment does not use all of the avail­
able registers, and it restricts the
assignment of those that it does use to
special types: of items (i.e., operands and
base addresses). The registers assigned
during basic register assignment and the
item(s) to which each is assigned are out­
lined in Table 3.

Basic register assignment essentially
treats System/360 as though it had a single
branch register, a single base register,
and a single accumulator. Thus, operands
that are branch addresses are assigned the
branch register, base addresses are
assigned the base register, and arithmetic
operations are performed using a single
accumulator. (The accumulator used depends
upon the mode of the operands to be
operated upon.)

The fact that basic register assignment
uses a single accumulator and a single base
register is the key to understanding how
t~xt entries having an arithmetic operator
are processed. To evaluate the arithmetic
interaction of two operands using a single
accumulator, one of the operands must be in
the accumulator. The specified operation
can then be performed by using an RX-format
instruction. The result of the operation
is formed in the accumulator and is avail­
able for subsequent use. Note that in
operations of this type, neither of the
interacting operands remains in a register.

Table 3. Item Types and Registers
Assigned in Basic Register
Assignment

r---------------T-------------------------,
IRegister lItem Type I
~---------------f-------------------------~
lFloating-Point I
~ 0 IArithmetic text entry
I loperands that are real.
I I
~ 2 IImaginary part of the
I Iresult of a complex
1 lfunction.
I I
1General Purpose I
I 0-1 IArithmetic text entry
J Joperands that are inte-
1 Iger, or logical operands.
1 I
I 5 IBranch addresses and
I Iselected logical
I I operands.
I I
I 6 JOperands that represent
I index values.
]

7

14

Base addresses.

1. Used for computed GO
TO operations.

2. Logical result of
comparison opera­
tions.

15 Used for computed GO TO
operations. _______________ ~ _________________________ J

Section 2: Discussion of Major Components 49

Applying this concept to the processing
of text entries that are arithmetic in
nature, consider that a phase 15 text entry
representing the expression A = B + C is
the first of the source module. For this
text entry to be evaluated using a single
accumulator and base register, basic regis­
ter assignment must tell phase 25 to gener­
ate machine code that:

• Loads the base address of B into the
base register.

• Loads B into the accumulator.

• Loads the base address of C into the
base register. (This instruction is
not necessary if C is assigned the same
base address as B.)

• Adds C to the accumulator (RX-format
add) •

• Loads the base address of A into the
base register (if necessary).

• Stores the accumulated result in A.

If this coding sequence were executed,
two items would remain in registers: the
last base address loaded and the accumu­
lated result. These items are available
for subsequent use.

Now consider that a text entry of the
form D = A + F immediately follows the
above text entry. In this case, A, which
corresponds to the result operand of the
previous text entry, is in the accumulator.
Thus, for this text entry, basic register
assignment specifies code that:

• Loads the base address of F into the
base register. (If the base address of
F corresponds to the last loaded base
address, this instruction is not
necessary.)

• Adds F to the accumulator (RX-format
add) •

• Loads the base address of D into the
base register (if necessary).

• stores the accumulated result in D.

The foregoing coding sequences are the
basic ones specified by basic register
assignment for arithmetic operations. The
first is specified for text entries in
which neither operand 2 nor operand 3 (see
Table 3) corresponds to the result operand

50

(operand 1) of the preceding text entry.
The second is specified for text entries in
which either operand 2 or operand 3 corres­
ponds to the result operand. If operand 3
corresponds to the result operand, the two
operands exchange roles, except for divi­
sion. In the case of division, operand 3
is always in main storage.

If both operands 2 and 3 correspond to
the result operand of the previous text
entry, an RR-format operation is specified
to evaluate the interactions of the
operands.

In the actual process of basic register
assignment, a single pass is made over the
phase 15 text output. The basic unit
operated upon is the text block. As the
processing of each block is completed, the
next block is processed. When all blocks
are processed, control is returned to the
FSD.

Text blocks are processed in a top-to­
bottom manner, beginning with the first
text entry in the block. When all text
entries in a block are processed, the next
text block is processed Similarly.

For any text entry, the machine code to
be generated is first specified by setting
up the status field of the text entry.
Registers are then assigned to the operands
and base addresses by filling in the
register fields of the text entry.

Status Sett'ing: Subroutine SSTAT-IEKRSS
sets the operand and base address status
information for a text entry in the follow­
ing order: operand 2, operand 2 base
address, operand 3, operand 3 base address,
operand 1, and operand 1 base address.

To set the status of operand 2, subrou­
tine SSTAT-IEKRSS determines the relation­
ship of that operand to the result operand
(operand 1) of the previous text entry. If
operand 2 is the same as the result
operand, the SSTAT-IEKRSS subroutine sets
the status of operand 2 to indicate that it
is in a register and, therefore, need not
be loaded; otherwise, it sets the status to
indicate that it is in main storage. Sub­
routine SSTAT-IEKRSS uses a similar proce­
dure to set the status of operand 3.

To set the status of the base address of
operand 2, subroutine SSTAT-IEKRSS deter­
mines the relationship of that base address
to the current base address (see note). If

they correspond, the SSTAT-IEKRSS subrou­
tine sets the status of the base address of
operand 2 to indicate that it is in a
register and, therefore, need not be
loaded; otherwise, it sets the status to
indicate that'it is in main storage.

Subroutine SSTAT-IEKRSS sets the sta­
tuses of the base addresses of operands 3
and 1 in a similar manner.

Note: The current base address is the last base address loaded for the purpose of re­
ferring to an operand. This base address
remains current until a subsequent operand
that has a different base address is
encountered. When this occurs, the base
address of the subsequent operand must be
loaded. That base address then becomes the
current base address, etc.

The SSTAT-IEKRSS subroutine sets status
of operand 1 ~o indicate whether or not the
result of the interaction of operands 2 and
3 is to be stored into operand 1. If
operand 1 is either an actual operand (a
variable defined by the programmer) or a
temporary that is not used in the subse­
quent text entry, it sets the status of
operand 1 to indicate that the store opera­
tion is to be performed; otherwise, it sets
the status to indicate that a store into
operand 1 is unnecessary.

Register Assignment: After the status
field of the,text entry is completed, sub­
routine SPLRA-IEKRSL assigns registers to
the operands of the text entry and their
associated base addresses in the same order
in which statuses were set for them.

The assignment of registers depends upon
the statuses: of the operands of the text
entry. To assign a register to operand 2,
subroutine SPLRA-IEKRSL examines the status
of that operand, and, if necessary, of
operand 3. If the status of operand 2
indicates th~t it is in a register or if
the statusei of operands 2 and 3 indicate
that neithei is a register, subroutine
SPLRA-IEKRSL assigns operand 2 to a
register. It selects the register accord­
ing to the type of operand (see Table 3),
and places the number of that register into
the R2 field of the text entry.

To assign a register to the base address
of operand 2, subroutine SPLRA-IEKRSL
determines the status of operand 2. If the
status of that operand indicates that it is
not in a register, it assigns a register to
the base address of operand 2. The appro-

priate register is selected as shown in
Table 3, and the register number is placed
into the B2 field of the text entry. If
the status of operand 2 indicates that it
is in a register, subroutine SPLRA-IEKRSL
does not assign a register to the base
address of operand 2. The SPLRA-IEKRSL
subroutine uses a similar procedure in
assigning a register to the base address of
operand 3.

If the status of operand 3 indicates
that it is in a register, subroutine SPLRA­
IEKRSL assigns the appropriate register
(see Table 3) to that operand, and enters
the number of that register into the R3
field.

Operand 1 is always assigned a register.
Subroutine SPLRA-IEKRSL selects the regis­
ter according to the type of operand 1 (see
Table 3), and places the number of that
register into the Rl field.

The base address of operand 1 is
assigned a register only if the status of
operand 1 indicates the result is to be
stored into operand 1. If such is the
case, subroutine SPLRA-IEKRSL selects the
appropriate register, and records the
number of that register in the Bl field.
If the status of operand 1 indicates that
the result is not to be stored into operand
1, subroutine SPLRA-IEKRSL does not assign
a register to the base address of operand
1.

When all the operands of the text entry
and their associated base addresses are
assigned registers, the next text entry is
obtained, and the status setting and regis­
ter assignment processes are repeated.
After all text entries in the block are
processed, control is returned to the con­
trol routine of phase 20, which then makes
the next block available to the basic reg­
ister assignment routines. When the
processing of all blocks is completed, con­
trol is passed to the FSD.

K~l!.-B.~~ster A,ssignment -- OPT=l <Chart
142..

During full register assignment (also
refer to "Full Register Assignment -­
OPT=2"), as during basic register assign­
ment, registers are assigned to the text
entry operands and their associated base
addresses, and the machine code to be
generated for the text entries is speci­
fied. To improve object module efficiency,

Section 2: Discussion of Major Components ~J

these functions are performed in a manner
that reduces the number of instructions
required to load base addresses and
opE~rands. This process reduces the number
of required load instructions by taking
greater advantage of all available regis­
ters, by assigning the registers as needed
to both base addresses and operands, by
keeping as many operands and base addresses
as possible in registers and available for
subsequent use, and by keeping the most
active base addresses and operands in reg­
isters where they are available for use
throughout execution of the entire object
module.

During full register assignment, regis­
ters are assigned at two levels: "locally"
and "globally." Lo£~!_~§§.!g!!!!!en:!::. is per­
formed on a block-by-block basis. ~!QQ~!'
assignment is performed on the basis of the
entire module (if intermediate optimization
has been specified).

For local assignment, an attempt is made
to keep operands whose values are defined
within a block in registers and available
for use throughout execution of that block.
This is done by assigning an available reg­
ister to an operand at the point at which
its value is defined. (The value of an
operand is defined when that operand
appears in the operand 1 position of a text
entry.) The same register is assigned to
subsequent uses (i.e., operand 2 or operand
3 appearances) of that operand within the
block, thereby ensuring that the value of
the operand will be in the assigned regis­
ter and available for use. However, if
more than one subsequent use of the defined
operand occurs in the block, additional
steps must be taken to ensure that the
value of that operand is not destroyed
between uses. Thus, when the text entries
in which the defined operand is used are
processed, the code specified for them must
not destroy the contents of the register
containing the defined operand.

Because all available registers are used
during full register assignment, a number
of operands whose values are defined within
the block can be retained in registers at
the same time.

Applying the above concept to an
example, consider the following sequence of
phase 15 text entries;

52

A X + y
C A + Z
F A + C

A register is assigned to A at the point at
which its value is defined, namely in the
text entry A = X + Y. The same register is
assigned to the subsequent uses of A. The
value of A will be accumulated in the
assigned register and can be used in the
subsequent text entry C = A + Z. However,
because A is also used in the text entry
F = A + C, the contents of the register
containing A cannot be destroyed by the
code generated for the text entry
C = A + Z. Thus, when the text entry
C = A + Z is processed, instructions are
specified for that text entry that use the
register containing A, but that do not
destroy the contents of that register.

In the example, C is also defined and
subsequently used. To that defined operand
and its subsequent uses, a register is
assigned. The assigned register is dif­
ferent from that assigned to A. The value
of C will be accumulated in the assigned
register and can be used in the next text
entry. The text entry F = A + C can then
be evaluated without the need of any load
operand instructions, because both the
interacting operands (A and C) are in
registers.

This type of processing typifies that
performed during local assignment for each
block. When all blocks are processed,
global assignment for the source module is
carried out.

Global assignment increases the effi­
ciency of the object module as a whole by
ass1gning registers to the most active
operands and base addresses. The activi­
ties of all operands and base addresses are
computed during local assignment prior to
global assignment. The first register
available for global assignment is assigned
to the most active operand or base address;
the next available register is assigned to
the next most active operand or base
address; etc. As each such operand or base
address is processed, a text entry, the
function of which is to load the operand or
base address into the assigned register, is
generated and placed into the entry
block(s) of the module. When the supply of
operands and base addresses, or the supply
of available registers, is exhausted, the
process is terminated.

All global assignments are recorded for
us~ in a subsequent text scan, which incor­
porates global assignments into the text
entries, and completes the processing of
operands that have neither been locally nor
globally assigned to registers (e.g., an

infrequently used operand that is used in a
block but not defined in that block».

The full register assignment process is
divided into five areas of operation: con­
trol <subroutine REGAS-IEKRRG), table
building <subroutine FWDPAS-IEKRFP)1 local
assignment (subroutine BKPAS-IEKRBP), glob­
al assignment (subroutine GLOBAS-IEKRGB),
and text updating (subroutine STXTR­
IEKRSX). The control routine of phase 20
(LPSEL-IEKPLS) passes control to subroutine
REGAS-IEKRRG that directs the flow of con­
trol among the other full register assign­
ment routines.

The actual assignment of registers is
implemented through the use of tables built
by the table-building routine, with assis­
tance from the control routine. Tables are
built using the set of coordinate numbers
and associated dictionary pointers created
by phase 15 (the MCOORD vector and MVD) for
indexing. The table-building routine con­
structs two sets of parallel tables. One
set, used by the local assignment routine,
contains information about a text block;
the second set, used by the global assign­
ment routines, contains information about
the entire module. (The local assignment
and global assignment tables are detailed
in Appendix A, "Register Assignment.
Tables. ")

The flow of control through the full
register assignment routines is, as
follows:

1. The control routine (REGAS-IEKRRG)
makes a pass over the MVD table and
the dictionary entries for the
variables and constants in the loop
passed to it, and constructs the
eminence table (EMIN) for the module,
which indicates the availability of
the variables for global assignment.
Then the REGAS-IEKRRG subroutine calls
the table building routine to process
the blocks in the loop (the complete
module for OPT=l).

2. The table-building routine (FWDPAS­
IEKRFP) builds the required set of
local assignment tables and adds
information to the global assignment
tables under construction. Subroutine
FWDPAS·-IEKRFP selects the first block
of the loop and builds the tables for
that block. It then passes control to
the local assignment routine to
process the block and the tables (see
Chart 15).

3. The local assignment routine (BKPAS­
IEKRBP) uses the tables supplied for
the block to perform local register
assignment, and returns control to
subroutine FWDPAS-IEKRFP when its
processing is completed (see Chart
16) •

4. The FWDPAS-IEKRFP subroutine selects
the next block of the loop and again
builds tables. This process continues
until all blocks of the loop have been
processed. Control is then returned
to the REGAS-IEKRRG subroutine.

5. Subroutine REGAS-IEKRRG passes control
to the global assignment routine
GLOBAS-IEKRGB, which performs global
assignment for the module (see Chart
11) •

6. When global assignment is complete,
the control routine calls the text
updating routine, STXTR-IEKRSX, to
complete register assignment by enter­
ing the results of global assignment
into the text entries for the module.
control is then returned to the LPSEL­
IEKPLS subroutine.

Table Building for Register Assignment
<Chart 15): The table-building routine,
FWDPAS-IEKRFP, performs a forward scan of
the intermediate text entries for the block
under consideration and enters information
about each text entry into the local and
global tables (see Appendix A, "Register
Assignment Tables"). The local assignment
tables can accommodate information for 100

I text entries. If, however, a block con­
tains more than 100 text entries, the
table-building routine builds the local
tables for the first 100 text entries and
passes this set of tables to the local
assignment routine. The local assignment
routine processes the text entries repre­
sented in the set of local tables. The
table-building routine then creates the
local tables for the next 100 text entries
in the block and passes them to the local
assignment routine. When the table­
building routine encounters the last text
entry for the block, it passes control to
the local assignment routine, although
there may be fewer than 100 entries in the
local tables.

The global tables contain information
relating to variables and constants
referred to within the module, rather than
to text entries. The global tables can
accommodate information for 126 variables

section 2: Discussion of Major Components 53

and constants in a given module. Variables
and constants in excess of this number
within the module are not processed by the
global assignment routine.

!!ocal_Ass!.g!!me!!t_lgJ:!.~;:t_161.: Local assign­
ment is implemented via a backward pass
over the text items for the block (or por­
tion of a block) under consideration. The
text items are referred to by using the
local assignment tables, which supply pOin­
ters to the text items.

'rhe local assignment routine, BKPAS­
IEKRBP, examines each operand in the text
for a block and determines (from the local
assignment tables) whether or not the
operand is eligible for local assignment.
To be eligible, an operand must be defined
and used (in that order) within a block.
Because local assignment is performed via a
backward pass over the text, an eligible
operand will be encountered when it is used
(i.e., in the operand 2 or 3 position)
before it is defined.

When an operand of a text entry is
examined, the local assignment routine
(BKPAS-IEKRBP) consults the local assign­
ment tables to determine that operand's
eligibility. If the operand is eligible,
subroutine BKPAS-IEKRBP assigns a register
to it. The register assigned is determined
by consulting the ;:~g!~!er_~~~~_!~Ql~_f2;:
loc~l~ss!.g!!~en! (TRUSE). TRUSE is a work
table that contains an entry for every
register that may be used by the local
assignment routine. A zero entry for a
particular register indicates that the
register is available for local assignment.
A nonzero entry indicates that the register
is unavailable and identifies the variable
to which the register is assigned. The
register usage table is modified each time
a register is assigned or freed. The first
time a register is assigned, a correspond­
ing entry in the ;:~gi~!~;:_£~~g~_t~Ql~_f2£
glo~al~~~!g!!~~!!! (RUSE) is set. This
entry implies that the register is unavail­
able for global assignment.

Subroutine BKPAS-IEKRBP records the
register assigned to the used operand in
the local assignment tables and in the text
item containing the used operand. It sets
the status of the operand in the text entry
to indicate that it is in a register. If
subsequent uses of the operand are encoun­
tered prior to the definition of the
operand, the BKPAS-IEKRBP subroutine uses
the register assigned to the first use, and
records its identity in the text item. It
then sets the status bits for the operand
to indicate that it is in a register and is
to be retained in that register.

54

When a definition of the operand is
encountered, subroutine BKPAS-IEKRBP enters
the register assigned to the operand into
the text item and sets the status for the
operand to indicate its residence in a
register. Once the register is assigned to
the operand at its definition point, the
BKPAS-IEKRBP subroutine frees the register
by setting the entry in the register usage
table to zero, making the register avail­
able for assignment to another operand.

If the block being processed contains a
CALL statement ~r a reference to a function
subprogram, common variables, arguments,
and real operands cannot be assigned to
registers across that reference. The local
assignment routine assumes that:

1. All mathematical functions return the
result in general register ° or
floating-point register 0, according
to the mode of the function.

2. The imaginary portion of a complex
result is returned in floating-point
register 2.

If no register is available for assign­
ment to an eligible operand, an overflow
condition exists. In this case, subroutine
BKPAS-IEKRBP must free a previously
assigned register for assignment to the
current operand. It scans the local as­
signment tables and selects a register. It
then modifies the local assignment tables,
text entries for the block, and register
usage table to negate the previous assign­
ment of the selected register. The
required register is now available, and
processing continues in the normal fashion.

~loQ~l_~~~!gnment (Chart 17): The global
assignment routine (GLOBAS-IEKRGB), unlike
the local assignment routine, does not pro­
cess any of the text entries for the
module. The global assignment routine
operates only through the set of global
tables. The results of global assignments
are entered into the appropriate text
entries by the text updating routine.

Before assigning registers, the global
assignment routine modifies the global as­
signment tables to produce a single activ­
ity table for all operands and base
addresses in the module.

Global assignment is then performed
based on the activity of the eligible
operands and base addresses.

The GLOBAS-IEKRGB routine determines the
eligibility of an operand or base address
by consulting the appropriate entry in the
global assignment tables. Eligible

operands are divided into two categories:
floating point and fixed point. The two
categories a~e processed separately, with
floating-point quantities processed first.

The register 'usage table for global as­
signment (RUSE) is of the same type as
described unqer local assignment (TRUSE).
F~r each category of operands, the GL9BAS­
IEKRGB routine selects the eligible operand
with the highest total activity and assigns
it the first 'available register of the same
mode. It records the assignment in the
register usage table and in."the global as­
signment tables. The GLOBAS-IEKRGB routine
then selects the eligible operand with the
next highest activity and treats it in the
same manner. Processing for each group
continues until the supply of eiigible
operands or the supply of available regis­
ters is exhausted.

If the module contains any CALL state­
ments or function subprogram references,
arguments and real and common variables are
ineligible for global assignment. In other
words, if a module contains either a
reference to a subroutine or to a function
subprogram, global assignment is restricted
to integer and logical operands that are
not in common or in the parameter list.

~ext~at!~9-1fh~~i~_1~~Q£_12L: The text
updating routine (STXTR-IEKRSX) completes
full register assignment. It scans each
text entry within the series of blocks com­
prising the module, lookinq at operands 2,
3, and 1, in~that order, within each text
entry. As each operand is processed, subrou­
tine' STXTR-IEKRSX interrogates the completed
global assiqnmemt table to determine whether
or not a global assignment has been made for
the operand. If it has, subroutine STXTR­
IFKRR~ enters the reqister assiqned into the
text entry ahd sets the operand status bits
to indicate that the operand is in a regis­
ter and is to be retained in that register.

If both a'local and a global assignment
have been made for an operand, the global
assignment supersedes the local assignment
and the STXTR-IEKRSX subroutine records the
globally assigned register in the text
items pertaining to that operand. It also
sets the status bits for such an operand to
indicate that it is in a register and is to
be retained in that register.

If a register has not been assigned
either locally or globally for an operand,
subroutine STXTR-IEKRSX determines and
records in the text entry the required base
register ,for the base address of that
operand. If the base address corresponds
to one that has been assigned to a register
during global assignment, the STXTR-IEKRSX
subroutine assigns the same register as the
base register for the operand. If a

register has not been assigned to the base
address of the operand during global as­
signment, it assigns a spill register
(register 15) as the base register of the
operand. Subroutine STXTR-IEKRSX sets the
operand's base status bits to indicate
whether or not the base address is in a
register. (The base address will be in a
register if one was assigned to it during
global assignment.) It then assigns the
operand itself a spill register (general
register 0 or 1 or floating-point register
0, depending upon its mode).

As part of its text updating function,
subroutine STXTR-IEKRSX allocates temporary
storage where needed for temporaries that
have not been assigned to a register, keeps
track of the allocated temporary storage,
and completes the register fields of text
entries to ensure compatibility with phase
25. On exit from the text updating rou­
tine, all text items in the module are
fully formed and ready for processing by
phase 25. The text updating routine
returns control to subroutine REGAS-IEKRRG
upon completion of its functions. The
REGAS-IEKRRG subroutine, in turn, returns
control to subroutine LPSEL-IEKPLS.

BRANCHING OPTIMIZATION -- OPT=l

This portion of phase 20 optimizes
branching within the object module. The
optimization is achieved by generating RX­
format branch instructions in place of RR­
format branch instructions wherever
possible.

The use of RX-format branches eliminates
the need for an instruction to load the
branch address into a general register pre­
ceding each branching instruction. Thus,
branching optimization decreases the s~ze
of the object module by one instruction for
each RR-format branch instruction in the
object module that can be replaced by an
RX-format branch instr~ction. It also
decreases the number of address constants
required for branching.

Phase 20 optimizes branching instruc­
tions by calculating the size of each text
block (number of bytes of object code to be
generated for that block) and by determin­
ing those blocks that can be branched to
via RX-format branch instructions.

Subroutine BLS-IEKSBS calculates the
sizes of all text blocks after full regis­
ter assignment for the module is completed.
It then uses the gathered block size infor­
mation to determine the blocks to which a
branch can be made by means of RX-format
branch instructions. The BLS-IEKSBS sub-

section 2: Discussion of Major Components 55

routine calculates the number of bytes of
object code by:

1. Examining each text item operation
code and the status of the operands
(i.e., in registers or not).

2. Determining, from a reference table,
the number of bytes of code that is to
be generated for that text item.

The BLS-IEKSBS subroutine accumulates these
values for each block in the module. In
addition, it increments the block size
count by the appropriate number of bytes
for each reference to an in-line routine
that it encounters.

Next, subroutine B~S-IEKSBS computes all
block sizes and determines those text
blocks to which a branch can be made via
RX-format branch instructions. Once con­
verted to machine code, a branch can be
made to a text block via an RX-format
branch instruction if the relative address
of the beginning of that block is displaced
less than 4096 bytes from an address that
is loaded into a reserved register~

The following text discusses reserved
registers, the addresses loaded into them,
and the processing performed by subroutine
BLS-IEKSBS to determine the source module
blocks to which a branch can be made via
RX-format branch instructions.

Reserved Registers

Reserved registers are allocated to con­
tain the starting address of the adcon
table and subsequent 4096-byte blocks of
the object module. The criterion used by
phase 20 in reserving registers for this
purpose is the number of text entries that
result from phase 15 processing. (Phase
15counts the number of text entries that
result from its processing and passes the
information to phase 20.) For small source
modules (up to 880 text entries), phase 20
reserves only one register in addition to
register 13. For large source modules
(more than 1760 text entries), a maximum of
four additional registers is reserved. The
registers are reserved, as needed, in the
following order: register 13, 12, 11, 10,
and 9.

56

Reserved Register Addresses

The addresses placed into the reserved
registers as a result of the execution of
the initialization instructions (see
"Generation of Initialization Instructions"
under "FORTRAN System Director") are:

• Register 13 -- address of the save
area.

• Register 12 (if reserved) -- address of
the save area plus 4096 or address of
the first adcon for the program.

• Register 11 (if reserved) -- address of
the register 12 plus 4096.

• Register 10 (if reserved) -- address of
the register 12 plus 2(4096).

• Register 9 (if reserved) -- address of
the register 12 plus 3(4096).

Block Determination and SUbseguent
Processing

Because the instructions resulting from
the compilation are entered into text
information immediately after the "B" block
labels (see Figure 9), certain text blocks
are displaced less than 4096 bytes from an
address in a reserved register. A branch
can be made to such blocks by RX-format
branch instructions that use the address in
a reserved register as the base address for,
the branch.

To determine the blocks to which a
branch can be made via RX-format branch
instructions, subroutine BLS-IEKSBS com­
putes the displacement (using the block
size information) of each block from the
address in the appropriate reserved regis­
ter. The first reserved register address
considered is that in register 13. For
each block that has a displacement of less
than 4096 bytes from that address, subrou­
tine BLS-IEKSBS enters the displacement
into the statement number entry for that
block. It also places in that statement
number entry an indication that a transfer
can be made to the block via an RX-format
branch instruction, and records the number
of the reserved register to be used in that
branch instruction.

When subroutine BLS-IEKSBS has processed
all blocks displaced less than 4096 bytes
from the address in register 13, it proc-

esses those that are displaced less than
4096 bytes from the addresses in registers
12, 11, 10, and 9 (if reserved) in a simi­
lar manner.

The information placed in the statement
number entries is used during code genera­
tion, a phase 25 process, to generate RX­
format branch instructions.

STRUCTURAL DETERMINATION

To achieve OPT=2 optimization, the
structural determination routines of phase
20 (TOPO-IEKPO and BAKT-IEKPB) identify
module loops and specify the sequence in
which they are to be processed. Loops are
identified by analyzing the block connec­
tion information gathered by phase 15 and
recorded in the forward-connection (RMAJOR)
and backward-connection (CMAJOR) tables.
The connection information indicates the
flow of control within the module and,
therefore, reflects which blocks pass con­
trol among themselves in a cyclical
fashion.

Loops are ordered for processing start­
ing with the innermost, or most often
executed, loop and" working toward the out­
ermo~t. The inner-to-outer loop sequence
is sp~cifed sp that:

• Text entries will not be relocated into
loops that have already been
processed. 1

• The full register capabilities of
System/360 can first be applied to the
most frequently executed (innermost)
loop.

Loop identification is a sequential
process, which requires that a back domi­
nator be determined for each text block.
The-back dominator of a text block (block
I) is defined as the block nearest to block
I through which control must pass before
block I receives control for the first
time. The back dominators of' all text
blocks must b~ determined before loop ~den­
tification can be continued. After all
back dominators have been determined, a

1The text optimization process relocates
text entries from within an inner loop to
an outer loop. Thus, if an outer loop
were processed first, text entries from an
inner loop might be relocated to the outer
loop, thereby requiring that the outer
loop be reprocessed.

chain of back dominators is effectively
established for each block. This chain
consists of the back dominator of the
block, the back dominator of the back domi­
nator of the block, etc.

Figure 7 illustrates the concept of back
dominators. Each block in the illustration
represents a text block. The blocks are
identified by single letter names. The
back dominator of each block is identified
and recorded above the upper right-hand
corner of that block.

When all back dominators are identified,
a Q~£~_t~Eg~~ and a ~~2th_~~mQ~E for each
text block is determined. A block (block
I) has a back target (block J) if:

• There exists a path from block I to
itself that does not pass through block
J.

• Block J is the nearest block in the
chain of back dominators of block I
that has only one forward connection.

The text blocks constituting a loop are
identifiable because they have a common
back target, known as the back target of
the loop.

The depth number for a block indicates
the degree to which that block is nested
within loops. For example, if a block is
an element of a loop that is contained
within a loop with a depth number of one,
that block has a depth number of two. All
blocks constituting the same loop (i.e.,
all blocks having a common target) have the
same depth number.

The depth numbers computed for the
blocks that comprise the various loops are
used to determine the sequence in which the
loops are to be processed.

Figure 8 illustrates the concepts of
back targets and depth numbers. Again each
block in the illustration represents a text
block, which is identified by a single
letter name. In this illustration, the
back target of each block is identified and
recorded above the upper right-hand corner
of that block. The depth number for the
block is recorded above the upper left-hand
corner of the block. Note that blocks thdt
pass control among themselves in a looping
fashion have a common back target and the
same depth number. Also note that the
blocks of the two inner loops have the same
depth numbers, although they have different
back targets.

Section 2: Discussion of Major Components ~7

Entry
o

r-----l~t+------.--

~
Exit

Figure 7. Back Dominators

Entry
o 0

r-----lffit-----

A

Exit

Figure 8. Back Targets and Depth Numbers

58

When the back target and depth number of
each text block has been determined, loops
are identified and the sequence in which
they are to be processed is specified. The
loops are sequenced according to the depth
number of their blocks. The loop whose
blocks have the highest depth number is
specified as the first to be processed, the
loop whose blocks have the next highest
depth number is specified as the second to
be processed, etc. When the processing
sequence of all loops has been established,
the innermost loop is selected for
processing.

The following paragraphs describe the
processing performed by the structural
determination routines to:

• Determine the back dominator of each
text block.

• Determine the back target and depth
number of each text block.

• Identify and sequence loops for
processing.

Subroutine TOPO-IEKPO determines the
back dominator of each text block by
examining the connection information for
that block. The first block processed by
subroutine TOPO-IEKPO is the first block
(entry block) of the module. Blocks on the
first level (i.e., blocks that receive con­
trol from the entry block) are processed
next. Second-level blocks (i~e., blocks
that receive control from ·first-Ievel
blocks) are then processed, etc.

The TOPO-IEKPO subroutine assigns to the
entry block a back dominator of zero,
because it has no back dominator; it re­
cords the zero in the back dominator field
of the statement number entry for that
block (see Appendix A, "Statement Number/
Array Table"). The TOPO-IEKPO subroutine
assigns each block on the first level eith­
er its actual back dominator or a provi­
sional back dominator. If a first-level
block receives control from only one block,
that block must be the entry block and is
the back dominator for the first-level
block. Subroutine TOPO-IEKPO records a
pointer to the'etatement number entry fo~
the entry block in the back dominator field
of the statement number entry for the
first-level block. If a first-level block
receives control from more than one block,
subroutine TOPO-IEKPO assigns to it a pro­
visional back dominator, which is the entry
block of the module. All blocks on the
first level are processed in this manner.

Subroutine TOPO-IEKPO also assigns each
block on the second level either its actual
back dominator or a provisional back
dominator. If a second-level block
receives control from only one block, its
back dominator is the first-level block
from which it receives control. The TOPO­
IEKPO subroutine records a pointer to the
statement number entry for the first-level
block in the ,back dominator field of the
statement number entry for the second-level
block. If more than one block passes con­
trol to a second-level block, subroutine
TOPO-IEKPO assigns to that block a provi­
sional back dominator. The provisional
back dominator assigned is a first-level
block that passes control to the second­
level block under consideration. Process­
ing of this type is performed at each level
until the last, or exit, block of the
module is processed. Subroutine TOPO-IEKPO
then determines the actual back dominators
of blocks that were assigned provisional
back dominators.

For each block assigned a provis~onal
back dominator, subroutine TOPO-IEKPO makes
a backward trace over each path leading to
the block (using CMAJOR). The blocks at
which two or more of the paths converge are
flagged as possible candidates for the back
dominator of the block. When all paths
have been treated, the relationship of each
possible candidate to the other possible
candidates is examined. The TOPO-IEKPO
subroPtine assigns the candidate at the
highest level' (i.e., closest to the entry
block of the module) as the back dominator
of the block under consideration; it re­
cords a pOinter to the statement number
entry for the assigned back dominator in
the back dominator field of the statement
number entry for the block under considera­
tion. After the back dominators of all
text blocks are identified, subroutine
BAKT-IEKPB determines the back target and
depth number of each text block.

Determination'of Back Targets and Depth
Numbers

SubroutineBAKT-IEKPB determines the
back target of each text block through an
analysis of the backward connection infor­
mation (in CMAJOR) for that block. Block J
is the back target of block I if:

1. A path exists from block I to itself,
and block J is the nearest block, in
the chain of back dominators of block
I, not on that path.

2. Block J has only one forward
connection.

If a block J exists that satisfies con­
dition 1 but not condition 2, then the back
target of block J is also the back target
of block I.

If a block J satisfying condition 1 does
not exist, then the back target of block I
is zero.

When the back target of a block is iden­
tified, that block is also assigned a depth
number.

Back targets and depth numbers are
determined for text blocks in the same
sequence as back dominators are determined
for them. The first block of the module is
the first processed, first-level blocks are
considered next, etc.

The BAKT-IEKPB subroutine assigns the
first or entry block both a back target and
depth number of zero, because it does not
have a back target and is not in a loop.
It records the depth number (zero) in the
loop number field of the statement number
entry for the entry block (see Appendix A,
"statement Number/Array Table").

The processing performed by subroutine
BAKT-IEKPB for each of the other blocks
depends upon whether one or more than one
block passes control to that block. If
more than one block passes control to the
block under consideration, subroutine BAKT­
IEKPB makes a backward trace over all paths
leading to that block to locate its priwary
p~th. The primary path of a block (if one
exists) is a path that starts at that block
and converges on that block without passing
through any block in the chain of back
dominators of that block.

If such a path exists, subroutine BAKT­
IEKPB obtains and examines the nearest
block in the chain of back dominators of
the block under consideration. If the
obtained block has a single forward connec­
tion, subroutine BAKT-IEKPB assigns that
block as the back target of the block under
consideration. The BAKT-IEKPB subroutine
then assigns a depth number to the block.
The number is one greater than that of its
back target, because the block is in a
loop, which must be nested within the loop
containing the back target. Subroutine
BAKT-IEKPB records the depth number in the
loop number field of the statement number
entry for the block.

If the obtained block has more than one
forward connection, subroutine BAKT-IEKPB
assigns its back target as the back target
of the block under consideration. The
BAKT-IEKPB subroutine then records in the
statement number entry for the block a
depth number one greater than that of its
back target.

Section 2: Discussion of Major Components 59

If a block that receives control from
two or more blocks does not have an asso­
ciated primary path, that block, if it is
in a loop at all, is in the same loop as
one of the blocks in its chain of back
dominators. To identify the loop contain­
ing the block (block I), subroutine BAKT­
IEKPB obtains and examines the nearest
block to block I in its chain of back
dominators that has two or more forward
connections. The BAKT-IEKPB subroutine
makes a backward trace over all paths lead­
ing to the obtained block to determine
whether or not block I is an element of
such a path. If block I is an element of
such a path, it is in the same loop as the
obt.ained block, and subroutine BAKT-IEKPB,
therefore, assigns block I the same back
target and depth number as the obtained
block; it records the depth number in the
statement number entry for block I.

If block I is not an element of any path
leading to the obtained block, subroutine
BAKT-IEKPB obtains the next nearest block
to block I in its chain of back dominators
that has two or more forward connections
and repeats the process. If block I is not
an element of any path leading to any block
in its chain of back dominators, block I is
not in a loop, and the BAKT-IEKPB subrou­
tine assigns it both a back target and
depth number of zero.

A block that receives control from only
one block, if it is in a loop at all, is in
the same loop as one of the blocks in its
chain of back dominators. To identify the
loop containing a block (block I) that
receives control from only one block, sub­
routine BAKT-IEKPB obtains and examines the
nearest block to block I in its chain of
back dominators that receives control from
two or more blocks. The BAKT-IEKPB subrou­
tine makes a backward trace over all paths
leading to the obtained block to locate its
primary path (if any). If the obtained
block has a primary path, subroutine BAKT­
IEKPB retraces it to determine whether or
not: block I is an element of the path. If
it is, block I is in the same loop as the
obtained block, and, BAKT-IEKPB therefore
assigns block I the same back target and
depth number as the obtained block; BAKT­
IEKPB then records the depth number in the
statement number entry for block I.

If the obtained block does not have a
primary path, or if it does have a primary
pa1:h, which, however, does not have block I
as an element, the BAKT-IEKPB subroutine
considers the next nearest block to block I
in its chain of back dominators that
receives control from two or more blocks.
The process is repeated until a primary
path containing block I is located (if any
such path exists). If block I is not in
the primary path of any block in its chain

60

of back dominators, block I is not in a
loop and subroutine BAKT-IEKPB assigns it
both a back target and depth number of
zero.

!g~tifYi~s-and Ordering LOOps for
Processing

Subroutine BAKT-IEKPB orders blocks for
processing on the basis of the determined
back target and depth number information.
Blocks that have a common back target and
the same depth number constitute a loop.
The BAKT-IEKPB subroutine flags the loop
with the highest depth number (therefore,
the most deeply nested loop) as the first
loop to be processed. It assigns the
blocks constituting that loop a loop number
of one, indicating that they form the
innermost loop, which is the first to un­
dergo optimization. (Subroutine BAKT-IEKPB
records the value 1 in the loop number
field of the statement number entry for
each block in that loop.) The BAKT-IEKPB
subroutine flags the loop with the next
highest depth number as the second loop to
be processed. It assigns the blocks in
that loop a loop number of two, indicating
that they form the second (or next outer­
most) loop to be processed. (A value of 2
is recorded in the loop number field of the
statement number entry for each block in
that loop.) Subroutine BAKT-IEKPB repeats
this procedure until the loop with a depth
number of one is processed. It then
assigns the highest loop number to the
blocks with a depth number of zero, indi­
cating that they do not form a loop.

If at any time, groups of blocks with
the same depth number but different back
targets are found, each group is in a dif­
ferent loop. Therefore, each such loop is,
in turn, processed before blocks having a
lesser depth number are considered. Thus,
if the blocks of two loops have the same
depth number, subroutine BAKT-IEKPB assigns
the blocks of the first loop the next loop
numberG It assigns the blocks of the
second loop a loop number one greater than
that assigned to the blocks of the first
loop.

When loop numbers are assi.gned to the
blocks of all module loops, the sequence in
which the loops are to be processed has
been specified. control is passed to the
routine that determines the busy-on-exit
information and then to the loop selection
routine to select the first (innermost)
loop to be operated upon. This loop con­
sists of all blocks having a loop number of
one.

BUSY-ON-EXIT INFORMATION

Before the module can be processed on a
loop-by-Ioop basis, the variables in each
block must be classified as either busy-on­
exit from the block or not busy-on-exit
from the block. A variable is busy immedi­
ately preceding a use of that variable, but
is not busy immediately preceding a defini­
tion of that variable. Thus, a variable is
busy-on-exit from the blocks that are along
all paths connecting a use and a prior
definition of that variable. This means
that in subsequent blocks the variable can
be used before it is defined. The busy-on­
exit condition for a variable assures that
its proper value exists in main storage or
in a register along each path in which it
is subsequently used.

Information about the regions in which a
variable is busy or not busy determines
whether or not a definition of that vari­
able can be moved out of a loop. For
example, if a variable is busy-on-exit from
the back target of a loop, text optimiza­
tion (see "Text Optimization") would not
attempt to move to the back target a
redefinition of that variable, because, if
moved, the value of the variable, as it is
processed along various paths from the back
target, might not be the desired value.
Conversely, if the variable is not busy-on­
exit, the redefinition can be moved without
affecting the desired value of the vari­
able. Thus, text optimization respects the
redefinitions of variables that are bUsy­
on-exit from the back target of a loop.

The information about regions in which a
variable is busy or not busy also deter­
mines whether or not load and store opera­
tions of a register assigned to the vari­
able are requ~red. For example, in full
register assignment (see "Full Register
Assignment--OPT=2"), variables that are
assigned registers during global assignment
and that are busy-on-exit from the back
target of the loop must have an initializ­
ing load of the register placed into the
back target. The load is required because
the variable may be used before its value
is defined. Conversely, if the globally
assigned variable is not busy-on-exit from
the back target, an initializing load is
unnecessary.

Phase 15 provides phase 20 with not
busy-cn-entry information for each operand
that is assigned a coordinate (an MVD table
entry). The not busy-on-entry information
is recorded in the MVX field of the state­
ment number text entry for each text block
(see Phase 15, "Gathering Constant/Variable
Usage Information"). An operand is not
busy-cn-entry to a block, if in that block
that operand is defined but not used or

defined before it is used. Phase 20 con­
verts the not busy-on-entry information to
busy-on-entry information. An operand is
busy-on-entry to a block, if in that block
that operand is used but not defined or
used before it is defined. Finally, phase
20 converts the busy-on-entry information
to busy-on-exit information. The backward­
connection information in CMAJOR is used to
make the final conversion.

The routine that performs the conver­
sions is BIZX-IEKPZ. This routine deter­
mines busy-on-exit information for each
constant, variable, and base variable hav­
ing an associated MVD table entry or coor­
dinate. However, because only constants
and base variables are used, they are bUsy­
on-exit throughout the entire module.
Therefore, the remainder of this discussion
deals with the determination of busy-on­
exit information for variables.

Because RETURN statements (exit blocks>
and references to subprograms not supplied
by IBM constitute implicit uses of
variables in common, all common variables
and arguments to such subprograms are first
marked as busy-on-entry to exit blocks and
blocks containing the references. The com­
mon variables and arguments are found by
examining the information table entries for
all variables in the MVD table. The module
is then searched for blocks that are exit
blocks and that contain references to sub­
programs not supplied by IBM. The coordin­
ate bit for each previously mentioned vari­
able is set to on in the MVF field of the
statement number text entry for each such
block, while the same coordinate bit in the
MVX field is set to off. This defines the
variable to be busy-on-entry to such a
block. During this process, a table, con­
sisting of pointers to exit blocks, is
built for subsequent use.

After the previously discussed blocks
have been appropriately marked for common
variables and arguments, subroutine BIZX­
IEKPZ, working with the coordinate assigned
to a variable, converts the not busy-on­
entry information for the variable to a
table of pointers to blocks to which the
variable is busy-on-entry. (The not busy­
on-entry information for the variable is
contained in the MVX fields of the state­
ment number text entries for the various
text blocks.) At the same time, the varia­
ble's coordinate bit in each MVX field is
set to off. The busy-on-entry table and
CMAJOR are then used to set to on the MVX
coordinate bit in the statement number text
entry for each.block from which the vari­
able is busy-on-exit. This procedure is
repeated until all variables have been
processed. Control is then returned to the
LPSEL-IEKPLS subroutine.

Section 2: Discussion of Major Components 61

'ro convert not busy-on-entry information
to busy-on-entry information, subroutine
BIZX-IEKPZ starts with the second MVD table
entry, which contains a pointer to the
variable assigned coordinate number two,
and works down the chain of text blocks.
The associated MVX coordinate bit in the
statement number text entry for each block
is examined. If the coordinate bit is off,
the corresponding MVF coordinate bit is
inspected. If the MVF coordinate bit is
on, a pointer to the associated text block
is placed into the busy-on-entry table.
This defines the variable to be busy-on­
entry to the block <i.e., the variable is
used in the block before it is defined).
If the associated MVX coordinate bit is on,
indicating that the variable is not busy­
on-entry, subroutine BIZX-IEKPZ sets the
bit to off and proceeds to the next block.
This process is repeated until the last
text block has been processed.

After the BIZX-IEKPZ subroutine has set
to off the MVX coordinate bit <associated
with the variable under consideration) in
each statement number text entry and built
a table of pointers to blocks to which the
variable is busy-on-entry, it determines
the blocks from which the variable is
busy-on-exit.

Starting with the first entry in the
busy-on-entry table, subroutine BIZX-IEKPZ
obtains <from CMAJOR) pointers to all
blocks that are backward connection paths
of that entry. Each backward-connecting
block is examined to determine whether or
not it meets one of three criteria, as
follows:

• The block contains a definition of the
variable (i.e., the variable's MVS
coordinate bit is on).

• The variable has already been marked as
busy-on-exit from the block.

• The block corresponds to the busy-on­
entry table entry being processed.

If the block meets one of these cri­
teria, the variable is busy-on-exit from
the block and its associated MVX coordinate
bit is set to on. (The backward connection
paths of that block are not explored.)

If the backward-connecting block does
not meet anyone of these criteria, the
variable is marked as busy-on-exit from
that block and that block's backward con­
nection paths are, in turn, explored. The
same criteria are then applied to the
backward-connecting blocks. The backward
connection paths are explored in this man­
ner until a block in every path satisfies
one of the criteria.

62

If, during the examination of the back­
ward connection paths, an entry~lock
(i.e., a block lacking backward connection
paths) is encountered, the blocks in the
table of exit blocks, which was previously
built by subroutine BIZX-IEKPZ are used as
the backward connection paths for the entry
block. Processing then continues in the
normal fashion.

When blocks in all backward connection
paths have satisfied one of the criteria,
the BIZX-IEKPZ subroutine obtains the next
entry in the busy-on-entry table and re­
peats the process. This continues until
the busy-on-entry table has been exhausted.

When the busy-on-entry table has been
exhausted, the procedure of building the
busy-on-entry table and converting it to
busy-on-exit information is repeated for
the next MVD table entry. When all MVD
table entries have been processed, subrou­
tine BIZX-IEKPZ passes control to the
LPSEL-IEKPLS subroutine, which calls the
loop selection routines.

STRUCTURED SOURCE PROGRAM LISTING

If both the EDIT option and OPT=2 opti­
mization are selected, after subroutine
BIZX-IEKPZ has compiled the busy-on-exit
information, control is passed to subrou­
tine SRPRIZ-IEKQAA, which records on the
SYSPRINT data set a structured source pro­
gram listing. This listing indicates the
loop structure and logical continuity of
the source program. (A complete descrip­
tion of the structured source listing is
given in the publication IBM System/360
Operating system: FORTRAN IV (G and H)
Programmer's Guide, Form C28-6817.)

To produce the listing, subroutine
SRPRIZ-IEKQAA reads the SYSUT1 data set
prepared by phase 10 and associates, by
means of statement numbers, the individual
source statements with the text blocks
formed from them. By analysis of the loop
number information gathered for the text
blocks, the SRPRIZ-IEKQAA subroutine then
identifies the source statements that make
up a particular loop and flags them on the
listing by corresponding loop number. Sub­
routine routine SRPRIZ-IEKQAA also uses the
previously gathered back dominator informa­
tion to compute listing indentions for the
statements. The indentions show dominance
relationships; that is, subroutine SRPRIZ­
IEKQAA indents the statements that form a
text block from the statements that forro
the back dominator of that block.

LOOP SELECTION

The phase 20 loop selection routine
(TARGET-IEKPT) selects the loop to be proc­
essed and provides the text optimization
and full register assignment routines with
the information required to process the
loop.

The loop to be processed is selected
according to the value of a loop number
parameter, which is passed to the loop
selection routine. The phase 20 control
routine (LPSEL-IEKPLS) sets this parameter
to one after the process of strnctural
determination is complete. The TARGET­
IEKPT routine is called to select the loop
whose blocks have a corresponding loop
number. The selected loop is then passed
to the text optimization routines. When
text optimization for the loop is com­
pleted, the control routine increments the
parameter by one, sets the loop number of
the blocks in the loop just processed to
that of their back target, and marks those
blocks as completed. The LPSEL-IEKPLS rou­
tine again calls the TARGET-IEKPT routine,
which selects:the loop whose blocks corre­
spond to the new value of the parameter.
The selected loop is then passed to the
text optimization routines. This process
is repeated until the outermost loop has
been text-optimized.

After text.optimization has processed
the entire module (i.e., the last loop),
the control routine removes the block com­
pletion marks, initializes the loop number
parameter to 1, and passes control to the
TARGET-IEKPT routine to reselect the' first
loop. Control is then passed to the full
register assignment routines. When full
register assignment for the loop is com­
pleted, the control routine marks the
blocks of the loop as completed. It then
increments the parameter by 1 and passes
control to th~ TARGET-IEKPT routine to
select the next loop. Full register as­
signment is thEm carried out on the loop.
This process is repeated until the outer­
most loop has undergone full register as­
signment. (When full register assignment
has been carried out on the outermost loop,
the LPSEL-IEKPLS routine passes control to
the routine that computes the size of each
text block and also the displacements
required for branching optimization.)

The TARGET-lEKPT routine uses the value
of the loop number parameter as a basis for
selecting the loop to be processed. The
TARGET-IEKPT routine compares the loop
number assigned to each text block to the
parameter. It marks each block having a
loop number corresponding to the value of
the parameter as an element of the loop to
be processed. It does this by setting on a

bit in the block status field of the state­
ment number entry for the block (see Appen­
dix A, "Statement Number/Array Table").
When all such blocks are marked, the loop
has been selected.

The information required by the text
optimization and full register assignment
routines to process the loop consists of
the following:

• A pointer to the back target of the
loop (if any).

• Pointers to both the first and last
blocks of the loop.

• The loop composite matrixes.

After the loop has been selected, this
required information is gathered.

Pointer to Back Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the back
target of the loop. Although the back tar­
get of the loop was previously identified
during structural deter~ination, it was not
saved. Therefore, its identity must be
determined again.

The TARGET-IEKPT routine determines thE~
back target of the loop by obtaining the
first block of the selected loop. It then
analyzes the blocks in the chain of back
dominators of the first block to locate the
nearest block in the chain that is outside
the loop and that passed control to only
one block. That block is the back target
of the loop, and the TARGET-IEKPT routine
saves a pointer to it for use in the subse­
quent processing of the loop.

Pointers to First and Last Blocks

The pointers to the first and last
blocks of the selected loop indicate to the
text optimization and full register as­
signment routines where they are to initi­
ate and terminate their processing. To
make these pointers available, the TARGET­
IEKPT routine merely determines the first
and last blocks of the selected loop and
saves pointers to them for use in the sub­
sequent processing of the loop. To deter­
mine the first and last blocks, the TARGET­
IEKPT routine searches the statement number
chain for the first and last entries haviny
the current loop number. The blocks asso­
ciated with those entries are the first and
last in the loop.

Section 2: Discussion of Major Components 63

The loop composite matrixes, LMVS, LMVF,
and LMVX, provide the text optimization and
full register assignment routines with a
summary of which operands are defined
within the selected loop, which operands
are used within that loop, and which
operands are busy-on-exit from that loop.
(An operand is busy-on-exit from the loop
if it is used before it is defined in any
path along which control flows from the
loop.)

The LMVS matrix indicates which operands
are defined within the loop. The TARGET­
IEKPT routine forms LMVS by combining, via
an OR operation, the individual MVS fields
in the statement number text entry of every
block in the selected loop.

The LMVF matrix indicates which operands
are used within the loop. The TARGET-IEKPT
routine forms it by combining, via an OR
operation, the individual MVF fields in the
statement number text entry of every block
in the selected lOop.

The LMVX matrix indicates which operands
are busy-on-exit from the selected loop.
LMVX is formed by the TARGET-IEKPT routine.
It examines the text entries of each block
that is not in the selected loop and that
receives control from a block in that loop.
Any operand in the text entries of such a
block that is either used but not defined
in the block or used before it is defined
is busy-on-exit from the loop. The TARGET­
IEKPT routine sets to on the bit in the
LMVX matrix that corresponds to the coor­
dinate aSSigned to each such operand to
reflect that it (i.e., the operand) is
busy-on-exit from the loop.

TEXT OPTIMIZATION -- OPT=2

The text optimization process of phase
20 detects text entries within the loop
under consideration that do not contribute
to the loop's successful execution. These
non-essential text entries are either com­
pletely eliminated or are relocated to a
block outside of the current loop. Because
the most deeply nested loops are presented
for optimization first, the numbE!r of text

64

entries in the most strategic sections of
the object module will approach a minimum.

The processing of text optimization is
divided into three logical sections:

• Common expression elimination optimizes
the execution of·a loop by eliminating
unnecessary recomputations of identical
arithmetic expressions.

• Backward movement optimizes the execu­
tion of a loop by relocating to the
back target computations essential to
the module but not essential to the
current loop.

• Strength reduction optimizes the incre­
mentation of DO indexes and the compu­
tation of subscripts within the current
loop. Modification of the DO increment
may allow multiplications to be relo­
cated into the back target. If the DO
increment is not busy-on-exit from the
loop, it may be completely replaced by
a new DO increment that becomes both a
subscript value and a test value at the
bottom of the DO loop.

The first two of the foregoing sections
are similar in that they examine text en­
tries in strict order of occurrence within
the loop.

The last section does not examine indi­
vidual text entries within the loop;
instead, the TYPES table, constructed prior
to their execution, is consulted for opti­
mization possibilities. Furthermore, an
interaction of entries in the TYPES table
must-exist-before processinq can proceed.
The TYPES table contains pOlnters to type
3, 5, 6, and 7 text entries. The various
types, their definitions, and the section(s)
of text optimization that process them
are outlined ln Table 4. Pointers to type
1 and type 2 text entries are not entered
into the TYPES table. The reason is that
such types have already been processed dur­
ing backward movement.

The following text describes the
processing performed by each of the sec­
tions of the text optimization. Table 11
summarizes the criteria for performing text
optimization in each section. An example
illustrating the type of processing of each
section is given in Appendix D. These
examples should be referred to when reading
the text describing the processing of the
sections.

• Table 4. Text Entry Types
r--------T---T--------------------------------, I Type I Definition I Processed by I
~--------+---+--------------------------------~
I Type 1 I A text entry having an absolute constant~ I I
I I in both the operand 2 and operand 3 I Backward Movement (elimination) I
I I position. I I
r--------t---+--------------------------------~
~ Type 2 i A text entry having stored constants2 in I Backward Movement (movement) I
) I both the operand 2 and operand 3 positions. I I
~--------+---+--------------------------------~
J Type 3 I An inert text entry (i.e., a text entry I I
I I that is a function of itself and an addi- I Strength Reduction I
~ I tive constant~ e.g., J=J+l). I I
~--------+--------------------------------~------------+--------------------------------~
I Type 5 I A text entry whose operand 1 (a temporary) I j
~ I is a function of a variable (or temporary) I Strength Reduction I
I I and a constant, and whose operator is I I
~ I multiplicative <* or i). I I
r--------+---+--------------------------------~
I Type 6 I A text entry whose operand 1 (a temporary) I I
I I is a function of a variable (or temporary) I Strength Reduction I
I I and a constant, and whose operator is I I
] I additive (+ or -). I I
~--------+-------------------------.--------------------+--------------------------------~
I Type 7 I A branch text entry I Strength Reduction I
t--------~--~--~--------------------------------~
!~Absolute constants are those that agree with the definition of numerical constants as I
~ stated in the publication IBM System/360 Operating System: FORTRAN IV Language, Form I
I C28-6515. I
12A stored constant is a variable that is not defined within a loop and, thus, its I
I value remains constant throughout execution of that loop. I L ___ J

Common Expression Elimination -- OPT=2

The object of common expression elimina­
tion, which is carried out by subroutine
XPELIM-IEKQXM, is to get rid of any unnec­
essary arithmetic expressions. This is
accomplished by eliminating text en"tries,
one at a time, until the entire expression
disappears. An arithmetic text entry is
unnecessary if it represents a value (cal­
culated elsewhere in the loop) that may be
used without modification. A value may be
used without modification if, between
appearances of the same computation,
operands 2 and 3 of the text entry are not
redefined. The following paragraphs dis­
cuss the processing that occurs during com­
mon expression elimination.

within the current loop, subroutine
XPELIM-IEKQXM examines each uncompleted
block <i.e., a block that is not part of an
inner loop) for text entries that are can­
didates for elimination. A text entry is a
candidate if It contains an arithmetic,
binary, logical, or subscript operator.
Once a candidate is found, the XPELIM­
IEKQXM subroutine attempts to locate a
matching text entry. A text entry matches
the candidate if operand 2, operand 3, and
the operator of that text entry are ident­
ical to those of the candidate. If either

operand 2 or 3 of the matching text entry
is redefined between that text entry and
the candidate, the match is not accepted.
The search for the matching text entry
takes place in the following locations:

• In the same block as the candidate,
between the first text entry and the
candidate.

• In a back dominator (see note) of the
block in which the candidate resides.

No~~: Only back dominators that are
not elements of previously processed
loops and that are within the confines
of the current loop are considered.
The first back dominator considered is
the one nearest to the block being
processed. The next considered is the
back dominator of the nearest back
dominator, etc.

When a matching text entry is found,
subroutine XPELIM-IEKQXM performs elimina­
tion in the following way:

• If operand 1 of the matching text entry
is not redefined between that text
entry and the candidate, subroutine
XPELIM-IEKQXM substitutes that operand
for operand 2 of the candidate and con­
verts the operator to a store.

section 2: Discussion of Major Components 65

• If, however, operand 1 is redefined,
subroutine XPELIM-IEKQXM generates a
text entry to save the value of operand
1 in a temporary and inserts this text
entry into text immediately after the
matching text entry. It then replaces
operand 2 of the candidate with this
temporary, and converts the operator to
a store.

• Finally, if operand 1 of the candidate
is a temporary generated by phase 15,
the XPELIM-IEKQXM subroutine replaces
all uses of the temporary with the new
operand 2 of the candidate and deletes
the candidate. Thus, the value of the
matching text entry is propagated for­
ward for a possible match with another
candidate. This provides the link to
the next text item of the complete com­
mon expression.

All text entries in the block under con­
sideration are processed in the previously
described manner. When the entire block is
processed, the next uncompleted block in
the loop is selected and its text entries
undE~rgo common expression elimination.
When all uncompleted blocks in the loop are
processed, control is returned to the phase
20 control routine, which passes control to
the portion of phase 20 that continues text
optimization through backward movement.

~rhe overall logic of common expression
elimination is illustrated in Chart 11. An
example of common expression elimination is
given in Appendix D.

Backward movement, which is performed by
subroutine BACMOV-IEKQBM, moves text
entries from a loop to an area that is
executed less often, the back target of the
loop. During backward movement, each
uncompleted block in the loop being proc­
essed is examined for text entries that are
candidates for backward movement. To be a
candidate for backward movement, a text
entry must be type 2. Therefore, it must:

• Contain an arithmetic or logical
operator.

• Have operands 2 and 3 that are not
defined within the loop.

When a candidate is found, subroutine
BACMOV-IEKQBM carries out backward movement
of that candidate in one of two ways:

66

• If operand 1 of the candidate is not
busy-on-exit from the back target of
the loop and if operand 1 of the candi­
date is not defined elsewhere in the
loop, the BACMOV-IEKQBM subroutine
moves the entire candidate to the back
target of the loop. (An operand is not
busy-on-exit from the back target if
that operand is defined in the loop
before it is used.)

• If operand 1 of the candidate is bUsy­
on-exit from the back target of the
loop or if it is defined elsewhere in
the loop, subroutine BACMOV-IEKQBM
generates a text entry to perform the
computation of the expression in the
candidate and store the result in a new
temporary. It moves this text entry to
the end of the back target of the loop
and then replaces the expression in the
candidate with operand 1, the new tem­
porary. of the generated text entry.

All the text entries in the block under
consideration are processed in the pre­
viously described manner. When the entire
block is processed, the next uncompleted
block in the loop is selected and its text
entries undergo backward movement. When
all uncompleted blocks in the loop are
processed, control is returned to the phase
20 control routine, which passes control to
the portion of phase 20 that continues text
optimization through strength reduction.

The overall logic of backward movement
is illustrated in Chart 12. An example of
backward movement is given in Appendix D.

Two additional optimization processes
are performed concurrently wi-th backward
movement. They are the elimination of
simple stores and of arithmetic expressions
that appear in text entries and are func­
tions of constants.

Elimination of Simple Stores: The BACMOV­
IEKQBM subroutine effects the removal of
unnecessary simple stores (i.e., text
entries of the form "operand 1 = operand
2") from the block that is currently un­
dergoing backward movement. The following
paragraph describes the processing.

Subroutine BACMOV-IEKQBM selects as can­
didates for elimination any simple store in
which operand 1 is a nonsubscripted vari­
able. Pointers to the candidates are
passed to the SUBSUM-IEKQSM subroutine,
which determines if elimination is indeed
possible according to the conditions illus­
trated in Table 5. At the same time, sub­
routine SUBSUM-IEKQSM replaces all uses of
operand 1 of the candidate with operand 2
of the candidate in text entries between
either:

• The can~idate and the first redefini­
tion of either operand.

• The candidate and the end of the block.

The BACMOV-IEKQBM subroutine then deletes
those candidates so marked by subroutine
SUBSUM-IEI<QSM. An example of simple-store
elimination 'is illustrated in Appendix D.

Table 5. Operand Characteristics That
Permit Simple-store Elimination

r---------T-~-------T----------T----------,
] I IOperand 2 I J
IOperand 110perand llRedefined IOperand 1 I
!Busy-on- IRedefinedlBefore IUsed Afterl
IExit fromlLater in IOperand 1 IOperand 2 I
I Block lB~ock IRedefined IRedefined J

~---------+-~-------+----------+----------~
I No I' No I No I X I
~---------+-~-------+----------+----------~
I No I No I Yes I No ~

~---------+-~-------+----------+----------~
I No I, Yes I No I X I
~---------+-~-------+----------+----------i
I No I Yes I Yes I No I
~---------+---------+----------+----------i
I Yes I Yes 'NO I X I
~---------+---------+----------+----------~
I Yes I Yes I Yes I No I
~---------~-~-------~----------~----------i IX = condition cannot exist because of 1
~previous characteristics of operands. I l ___________ ~ _____________________________ J

~limin~~!2n_of !~~~_§n~rY_E~2£~S$!2n~
!!!yo1 V!ng In~~g~_fQn2~~!ll§_!~1!..: Dur­
ing the scan of a block for text entries to
be moved to the back target, subroutine
BACMOV-IEKQBM also checks for text entries
whose operators are arithmetic and whose
operands 2 and 3 are both integer con­
stants. When such a text entry is found,
the BACMOV-IEKQBM subroutine eliminates the
arithmetic expression in the text entry by:

• Calculating the result of the
expression.

• Creating: a new dictionary entry for the
result, which is a constant.

• Replacing the arithmetic expression
with the resuit.

The text entry is thereby reduced to a
simple store, which may be eliminated by
simple-store'elimination.

strength Reduction -- OPT=2

Strength reduction, which is performed
by subroutine REDUCE-IEKQSR, optimizes
loops that are controlled by logical IF
statements. (DO loops are converted to
loops controlled by logical IF statements
during phase 10 processing.) such loops
are optimized by modifying the expression
(e.g., J ~ 20) in the IF statement; this
enables certain text entries to be moved
from the loop to the back target of the
loop, an area executed less frequently.
Strength reduction processing is divided
into two sections:

• Elimination of multiplicative text.

• Elimination of additive text.

Both of these sections perform strength
reduction, but each has a separate set of
criteria for considering a loop as a candi­
date for reduction. However, the manner in
which each section implements reduction
essentially is the same.

El!min~t!Q!LQL~~!~;i2!!~~~iy~_!~xt : To
eliminate multiplicative text, subroutine
REDUCE-IEKQSR examines the loop being proc­
essed to determine whether or not it is a
candidate for strength reduction. The loop
is a candidate if:

• The loop contains an inert text entry
(type 3).

• Operand 1 of the inert text entry is
used in another text entry (in the
loop) whose operator indicates mUlti­
plication and whose other used operand
is a constant1 (type 5).

• Operand 1 of the inert text entry is
the variable appearing in the expres­
sion of the logical IF statement that
controls the loop.

If the loop is a candidate, subroutine
REDUCE-IEKQSR implements strength reduction
in one of two ways:

1. If the constants in the inert text
entry and the multiplicative text
entry are both absolute constants, the
REDUCE-IEKQSR subroutine:

a. Calculates a new constant (K)
equal to the product of the abso-
1 ute constants.

1This other text entry is referred to as a
multiplicative text entry.

Section 2: Discussion of Major Components 67

b. Generates another inert text e~try
and inserts it into the loop imme­
diately after the original inert
text entry. The additive constant
in this text entry is K.

c. Modifies the expression in the
logical IF statement by:

(1) Replacing the branch variable
(see note) with operand 1 of
the generated inert text
entry.

(2) Replacing the branch constant
(see note) with a constant
equal to the product of the
branch constant and the abso­
lute constant in the multipli­
cative text entry.

d. Deletes the original inert text
entry if operand 1 of that text
entry is not busy-on-exit from the
loop.

e. Moves the multiplicative text
entry to the back target of the
loop.

f. Replaces operand 1 of the multi­
plicative text entry with operand
1 of the generated inert text
entry.

g. Replaces the uses of operand 1 of
the multiplicative text entry that
remain in the loop with operand 1
of the generated inert text entry.

Note: The branch variable is the
variable in the expression of the
logical IF statement that is
tested to determine whether or not
the loop is to be re-executed, .
The branch constant is the con­
stant with which the branch vari­
able is compared. For example, in
IF (J ~ 3) where J is the branch
variable and 3 is the branch
constant.

2. If either of the constants in the
inert text entry or the multiplicative
text entry is a stored constant, the
REDUCE-IEKQSR subroutine performs
similar processing to that described
above. However, prior to generating
the inert text entry, it generates an
additional text entry and places it
into the back target of the loop.

68

This text entry multiplies the two
constants. Operand 1 of this text
entry becomes the additive constant in
the generated inert text entry. In
the case where the constant in the
multiplicative text entry is a stored
constant, a second additional text

entry is generated and placed into the
back target of the loop. This second
text entry multiplies the branch con­
stant by the constant in the multipli­
cative text entry. Operand 1 of the
second text entry becomes the new
branch constant of the logical IF.

If additional multiplicative text
entries exist within the loop, the forego­
ing process is repeated. Repetitive proc­
essing of this type results in a number of
generated inert text entries, which may be
eliminated from the loop by the processing
of the second section of strength
reduction.

Elimination of Additive Text: To eliminate
additive-text;-subroutine-REDUCE-IEKQSR
examines the loop being processed to deter­
mine whether or not it is a candidate for
strength reduction. The loop is a candi­
date if:

• The loop contains an inert text entry
(type 3).

• Operand 1 of the inert text entry is
used in the loop in another text entry
whose operator indicates addition1
(type 6).

If the loop is a candidate, the proc­
essing performed by subroutine REDUCE­
IEKQSR to eliminate the additive text entry
is essentially the same as that performed
to eliminate a multiplicative text entry.

The overall logic of strength reduction
is illustrated in Chart 13. An example
showing both methods of strength reduction
is given in Appendix D~

FULL REGISTER ASSIGNMENT -- OPT=2 <CHART
14)

During OPT=2 optimization, full register
assignment is carried out on module loops,
rather than on the entire module, as is the
case for OPT=l optimization. Regardless of
whether a loop or the entire module is
being processed, the full register assign­
ment routines operate essentially in the
same manner. However, the optimization
effect ~f full register assignment, when
carried out on a loop-by-loop basis, is
more pronounced. Because the most deeply
nested loops are presented for full regis­
ter assignment first, the number of regis­
ter loads in the most strategic sections of

1This text entry is referred to as an addi­
tive text entry.

the object module approaches a minimum.
The processing of a loop by full register
assignment differs from the processing of
the entire module only in the area of glob­
al assignment. An understanding of the
processing performed on a loop, other than
global assignment, can be derived from the
previous discussion of full register
assignment (see IIFul1 Register Assignment

OPT=1 11
). Global assignment for a loop

is described in the following text.

When processing a loop, the global
assignment routine (GLOBAS-IEKRGB) in­
corporates into the current loop, wherever
possible, the global assignments made to
items (i.e., operands and base addresses)
in previously processed loops. It does
this to ensure that the same register is
assigned in both loops if an item eligible
for global assignment in the current loop
was globally assigned in a previously proc­
essed loop.

Before the global assignment routine
assigns ah available register to the most
active item of the current loop, it deter­
mines whether that item was globally
assigned in a previously processed loop.
(As global assignment is carried out on
each loop, all global assignments for that
loop are recorded and saved for use when
the next loop is considered.) If the item
was not globally assigned in a previously
processed loop, the GLOBAS-IEKRGB routine
assigns it the first available register.
If the item was globally assigned in a pre­
viously processed loop, the global assign­
ment routine then determines whether or not
the register assigned to the item in the
previously processed loop is currently
available. If that register is available,
the GLOBAS-IEKRGB routine also globally
assigns it to the same item in the current
loop. If the register is not available,
the global assignment of that item in the
previously processed loop cannot be in­
corporated into the current loop. The
GLOBAS-IEKRGB routine, therefore, assigns
the item an available register different
from that assigned to it in the previously
processed loop. The GLOBAS-IEKRGB routine
selects the eligible item with the next
highest activity in the current loop and
treats it in the same manner. Processing
continues in this fashion until the supply
of eligible items or the supply of avail­
able registers is exhausted.

As each global assignment is made to an
active item, the GLOBAS-IEKRGB routine
checks to determine whether or not that
item is busy-cn-exit from the back target
of the loop. If the item is busy-on-exit,
the GLOBAS-IEKRGB routine generates a text
entry to load that item into the assigned
register and inserts it into the back tar­
get of the loop. The load is required to

guarantee that the item is in a register
and available for subsequent use during
loop execution. If the item is not busy­
on-exit, the text item is not required to
be loaded. If any globally assigned item
is defined within the loop and is also
busy-on-exit from the loop, the GLOBAS­
IEKRGB routine generates a text entry to
store that item on exit from the loop. The
generated store is needed to preserve the
value of such an operand for use when it is
required during the execution of an outer
loop.

The GLOBAS-IEKRGB routine records all
global assignments made for the current
loop for use in the subsequent updating
scan (see "Full Register Assignment -­
OPT=1 11

) and also for incorporation, wherev­
er possible, into subsequently processed
loops.

BRANCHING OPTIMIZATION -- OPT=2

During OPT=2 optimization, branching
optimization is carried out in the same
manner as during OPT=1 optimization. After
all loops have undergone full register
assignment, subroutine BLS-IEKSBS is given
control to calculate the size of each
block. When the sizes of all blocks have
been calculated, the BLS-IEKSBS subroutine
uses the block size information to deter­
mine the blocks to which a branch can be
made by means of RX-format branch
instructions.

PHASE 25

Phase 25 completes the production of an
object module from the combined output of
the preceding phases of the compiler. An
object module consists of four elements:

• Text information.
• External symbol dictionary.
• Relocation dictionary.
• Loader END record.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine language format. It
may contain unresolved external symbolic
cross references (i.e., references to sym­
bols that do not appear in the object
module). The external symbol dictionary
contains the information needed to resolve
the external symbolic cross references that
appear in the text information. The relo­
cation dictionary contains the information
needed to relocate the text information for

Section 2: Discussion of Major Components 69

execution. The END record informs the
linkage editor of the length of the object
module and the address of its main entry
point.

An object module resulting from a compi­
lation consists of a single control sec­
tion, unless common blocks are associated
with the module. An additional control
section is included in the module for each
common block.

The object module produced by phase 25
is recorded on the SYSLIN data set if the
LOAD option is specified by the FORTRAN
programmer, and on the SYSPUNCH data set if
the DECK option is specified. If the LIST
option is specified, phase 25 develops and
records on the SYSRINT data set a pseudo­
assembler language listing of the instruc­
tions and data of the object module. If
the MAP option is specified, phase 25 also
produces a storage map. If the ID option
is specified, phase 25 inserts information
into the object module which is used by the
object-time traceback routine (see Appendix
E: object-Time Library Subprograms).

TEXT INFORMATION

Text information consists of the machine
language instructions and data resulting
from the compilation. Each text informa­
tion entry (a TXT record) constructed by
phase 25 can contain up to 56 bytes of
instructions and data, the address of the
instructions and data relative to the
beginning of the control section, and an
indication of the control section that con­
tains t~em. A more detailed discussion of
the use and format of TXT records is given
in the publication IBM System/360 0E~E~tin~
~~tem: Linka~~_~~!tQ~L~EQ~E~~_Lo~i£
~an~b, Form Y28-66i0.

The major portion of phase 25 processing
is concerned with text information con­
struction. In building text information,
phase 25 obtains each item that is to be
placed into text information, converts the
item to machine language format wherever
necessary, enters the item into a TXT rec­
ord, and places the relative address of the
item into the TXT record.

Phase 25 assigns relative addresses by
means of a location counter, which is con­
tinually updated to reflect the location at
which the next item is to be placed into
text information. Whenever phase 25 begins
the construction of a new TXT record, it
inserts the current value of the location
counter into the address field of the TXT

70

record. Thus, the address field of the TXT
record indicates the relative address of
the instructions and data that are placed
into the record.

Figure 9 shows the layout of storage
that phase 25 assumes in setting up text
information.

Phase 25 constructs text information by:

• Reserving address constants for the
referenced statement numbers of the
module.

• Completing the processing of the adcon
table entries and entering the result­
ant entries into TXT reco:rds.

• Generating the prologue and epilogue
instructions and entering these
instructions into TXT records.

• Converting phase is/phase 20 text into
System/360 machine code and entering
the code into TXT records.

Chart 20 shows the overall logic of
phase 25 processing.

Address Constant Reservation

Before it constructs text information,
subroutine MAINGN-IEKTA reserves address
constants for the referenced statement num­
bers of the module and for the statement
numbers appearing in computed GO TO state­
ments. The address constants are reserved
so that the relative addresses of the
statements associated with such statement
numbers can be recorded and, subsequently,
obtained during execution of the object
module, when branches to those statements
are required.

To reserve address constants for state­
ment numbers, subroutine MAINGN-IEKTA scans
the chain of statement number entries in
the statement number/array table. For each
encountered statement number to which
reference is made, subroutine MAINGN-IEKTA
inserts a base and displacement into the
associated statement number entry. When
the text representation of that statement
number is encountered, a relative address
is placed in the statement number entry.

Not~: If branching optimization is being
implemented, subroutine MAINGN-IEKTA does
not perform the processing described in the
previous paragraph.

Entry Code

Format Text and Literal Constants
Register 13_

Save Area

Adcon for Register 12

Branch T obi es

Parameter Lists

Register 12 Constants, Variables, Arrays

(if needed)* -
Adcons

Namelist Dictionories

Phase 20 Temporaries

'B' Block Label Adcons

Object Program Instructions

Epilogue

Prologue

Entry Code for Secondary Entry Point**

Epilogue for Secondary Entry Point**

Prologue for Secondary Entl'y Point**

Phase which
allocates space

STALL-I E KG ST
phase 10

STALL-IEKGST
phase 10

STALL-IEKGST
phase 10

STALL-IEKGST
phase 10

STALL-I E KGST
phase 10

phase 15

CORAL
phase 15

CORAL
phase 15

CORAL
phase 15

phase 20

phase 25

phase 25

phase 25

phase 25

phase 25

phase 25

phase 25

Phase which
uses space

STALL-I EKGST
and phase 25

"-
STALL-IEKGST
phase 10

phase 25

--
phase 25

--
phase 25

"-
phase 25

--
CORAL
phase 15

CORAL
phase 15

CORAL
phase 15

-

phase 25

-
phase 25

"-
phase 25

--
phase 25

phase 25

-
phase 25

----- -

phase 25

phase 25

*See "Relative Address Assignment" under "CORAL Processing."
**See last paragraph of "Generation of Initialization Instructions" under "FORTRAN System Director."

• Figure 9. storage Layout for Text Information Construction

After all statement numbers are proc­
essed, bases: and displacements are likewise
assigned to adcons for the statement num­
bers appearing in computed GO TO
statements. The MAINGN-IEKTA subroutine
scans the branch table chain (see Appendix
A, "Branch Tables"), and assigns a base and
displacement for each branch table. Sub­
routine MAINGN-IEKTA does not record poin­
ters to the address constants set aside for
the actual statement numbers of the com­
puted GO TO statements in their associated
standard branch table entries. The values
to be placed into the address constants for
statement numbers in computed GO TO
statements are also determined during text
conversion.

Text Conversion

Phase 25 converts intermediate text into
System/360 machine code. (The text conver-

sion process is controlled by subroutine
MAINGN-IEKTA.) In converting the text,
phase 25 obtains each text entry and,
depending upon the nature of the operator
in the text entry, passes control to one of
six processing paths to convert the text
entry.

The six processing paths are:

• statement Number Processing.
• Input/output Statement Processing.
• CALL Statement Processing.
• Code Generation.
• RETURN Statement Processing.
• END Statement Processing.

See Table 14 for the complete list of
subroutines called by phase 25.

STATEMENT NUMBER PROCESSING: When the
operator-of-the-text~entry-indicates a
statement number, subroutine MAINGN-IEKTA
passes control to subroutine LABEL-IEKTLB.
The LABEL-IEKTLB subroutine then inserts

Section 2: Discussion of Major Components 71

the current value of the location counter,
which is the relative address of the state­
ment associated with the stat~ment number,
into the statement number entry. All
branches to that statement are made through
the use of the relative address for that
statement number.

Note: If branching optimization is being
implemented, only statement numbers to
which a branch cannot be made via RX-format
branch instructions (i.e., statement num­
bers that are not within the range of
registers 13, 12, 11, 10, and 9) are proc­
essed as described above.

After the relative address has been
placed into the statement number entry,
subroutine LABEL-IEKTLB determines whether
or not that statement number appears in a
computed GO TO statement. If it does, sub­
routine LABEL-IEKTLB also inserts the rela­
tive address into the appropriate field of
the branch table entry, or entries, for
that statement number. 'The relative
address recorded in the branch table entry
is placed into the storage reserved for it
within t~xt information (see "END Statement
Processing") when the text representation
of the END statement is encountered.

INPUT/OUTPUT STATEMENT PROCESSING: When
the-operator-of-the-textentryindicates an
input/output statement, an I/O list item,
or the end of an I/O list, the MAINGN-IEKTA
subroutine passes control to subroutine
IOSUB-IEKTIS, which generates an appropri­
ate calling sequence to IHCFCOMH to per­
form, at object-time, the indicated
operation.

The calling sequence generated for an
input/output statement depends on the type
of the statement (e.g., READ, BACKSPACE).
The calling sequence generated for an I/O
list item depends on the input/output
statement type with which the list item is
associated and on the nature of the list
item, i.e., whether the item is a variable
or an array. The calling sequence
generated for an end of an I/O list depends
on whether the end I/O list operator
signals:

• The end of an I/O list associated with
a READ/WRITE that requires a FORMAT
statement.

• The end of an I/O list associated with
a READ/WRITE that does not require a
FORMAT statement.

Once the calling sequence is generated,
subroutine IOSUB-IEKTIS enters it into TXT
records.

12

CALL STATEMENT PROCESSING: When the opera­
tor of the text entry indicates a CALL
statement, subroutine MAINGN-IEKTA passes
control to subroutine FNCALL-IEKVFN to gen­
erate a standard direct-linkage calling
sequence, which uses general register 1 as
the argument register. The argument list
is located in the adcon table in the form
of address constants. Each address con­
stant for an argument contains the relative
address of the argument. The FNCALL-IEKVFN
subroutine enters the calling sequence into
TXT records.

CODE GENERATION: Code generation converts
te~t entries having operators other than
those for statement numbers, ENTRY, CALL,
RETURN, END, and input/output statements
into system/360 machine code. To convert
the text entry, code generation uses four
arrays and the information in the text
entry. The four arrays are:

• Register array. This array is reserved
for register and displacement
information.

• Directory array. This array contains
pointers to the skeleton arrays and the
bit-strip arrays associated with opera­
tors in text entries that undergo code
generation.

• Skeleton array. A skeleton array
exists for each type of operator in an
intermediate text entry that is to be
processed by code generation. The
skeleton array for a particular opera­
tor consists of all the machine code
instructions, in skeieton form and in
proper sequence, needed to convert the
text entry containing the operator into
machine code. These instructions are
used in various combinations to produce
the desired object code. (The skeleton
arrays are shown in Appendix C.)

• Bit-strip array. A bit-strip array
exists for each type of operator in a
text entry that is to undergo code
generation. One strip is selected for
each conversion involving the operator.
The bits in each strip are preset
(either on or off) in such a fashion
that when the strip is matched against
the skeleton array, the strip indicates
the combination of instructions that is
to be used to convert the text entry.
(The bit strip arrays are shown with
their associated skeleton arrays in
Appendix C.)

In code generation, the actual base
registers and operational registers (i.e.,
registers in which calculations are to be
performed), assigned by phase 20 to the
operands of the text entry to be converted
to machine code, are obtained from the text

entry and placed into the register array.
Any displacements needed to load the base
addresses of the operands are also placed
into the register array. The displacements
referred to in this context are the dis­
placements of the base addresses of the
operands from the start of the adcon table
tha~ contains the base addresses. These
displacements are obtained from the infor­
mation table entries for the operands.
This action is taken to facilitate subse­
quent processing.

The operator of the text entry to be
converted is used as an index to the direc­
tor~ array. The entry in this directory
array, which is pointed to by the operator
index, contains pointers to the skeleton
array and t~e bit-strip array associated
with the operator.

The proper bit strip is then selected
from the bit-strip array. The selection
depends on the status of operand 2 and
operand 3 of the text entry. This status
is set up by phase 20 and is indicated in
the text entry by four bits (see Appendix
A, "Phase 20 Intermediate Text Modifica­
tions"): the first two bits indicate the
status of operand 2; the second two bits
indicate the status of operand 3.

The stattis of operand 2 and/or operand 3
can be one of the following:

00 The dperand is in main storage and
is td remain there after the present
code generation. Therefore, if the
operand is loaded into a register
during the present code generation,
the cdntents of the register can be
destroyed without concern for the
operand.

01 The operand is in main storage and
is to' be loaded into a register.
The operand is to remain in that
register for a subsequent code
generation; therefore, the contents
of the register are not to be
destroyed.

10 The operand is in a register as a
result of a previous code genera­
tion. After the register is used in
the present code generation process,
its contents can be destroyed.

11 The operand is in a register and is
to remain in that register for a
subsequent code generation. The
contents of the register arE~ not to
be destroyed.

This four-bit status field is used as an
index to select a bit strip from the bit­
strip array associated with the operator.
The combination of instructions indicated

in the bit strip conforms to the operand
status requirements: i.e., if the status
of operand 2 is 11, the generated instruc­
tions make use of the register containing
operand 2 and do not destroy its contents.
The combination, however, excludes base
load instructions and the store into
operand 1.

Once the bit strip is selected, it is
moved to a work area. The strip is modi­
fied to include any required base load
instructions. That is, bits are set to on
in the appropriate positions of the bit
strip in such a way that, when the strip is
matched to the skeleton array, the appro­
priate instructions for loading base
addresses are included in the object code.
The skeletons for these load instructions
are part of the skeleton array.

The code generation process determines
whether or not the base address of operand
2 and/or operand 3 must be loaded into a
register by examining the status of these
base addresses in the text entry. Such
status is indicated by four bits: the
first two bits indicate the status of the
base address of operand 2; the second two
bits indicate the status of the base
address of operand 3. If this status field
indicates that a base address is to be
loaded, the appropriate bit in the bit
strip is set to on. (The bit to be
operated upon is known, because the format
of the skeleton array for the operator is
known.)

Before the actual match of the bit strip
to the skeleton array takes place, the code
generation process determines:

• If the base address of operand 1 must
be loaded into a register.

• If the result produced by the actual
machine code for the text entry is to
be stored into operand 1.

This information is again indicated in the
text entry by four bits: the first two
bits indicate the status of the base
address of operand 1; the second two bits
indicate whether or not a store into
operand 1 is to be included as part of the
object code. If the base address of
operand 1 is to be loaded and/or if operand
1 is to be stored into, the appropriate
bites) in the bit strip is set to on.

The bit strip is then matched against
the skeleton array. Each skeleton instruc­
tion corresponding to a bit that is set to
on in the bit strip is obtained and con­
verted to actual machine code. The opera­
tion code of the skeleton instruction is
modified, if necessary, to agree with the

Section 2: Discussion of Major Components 73

mode of the operand of the instruction.
The mode of the operand is indicated in the
text entry. The symbolic base, index, and
operational registers of the skeleton
inst~ructions are replaced by actual regis­
ters. The base and operational registers
to be used are contained in the register
array. If an operand is to be indexed, the
index register to be used is obtained.
(The index register is saved during the
processing of the text entry whose third
operand represents the actual index value
to be used.) The displacement of the
operand from its base address, if needed,
is obtained from the information table
entry for the operand. (The contents of
the displacement field of the text entry
are added to this displacement if a sub­
script text entry is being processed.>
These elements are then combined into a
machine instruction, which is entered into
a TXT record. (If the skeleton instruction
that is being converted to machine code is
a base load instruction, the base address
of the operand is obtained from the object­
time adcon t~ble. The register (12) con­
taining the address of the adcon table and
the displacement of the operand's base
address from the beginning of the adcon
table are contained in the register array.)

Branch Processing: The code generation
portion of phase 25 generates the machine
code instructions to complete branching
optimization. The processing performed by
code generation, if branching optimization
is being implemented, is essentially the
same as that performed to produce an object
module in which branching is not optimized.
However, before a skeleton instruction
(corresponding to an on bit in the selected
and modified bit strip> is assembled into a
machine code instruction, code generation
determines whether or not that instruction:

• Loads into a register the address of an
instruction to which a branch is to be
made and which is displaced less than
4096 bytes from the address in a re­
served register. 1

• Is an RR-format branch instruct~on that
branches to an instruction that is dis­
placed less than 4096 bytes from the
address in a reserved register. 2

Note: A load candidate usually immedi­
ately precedes a branch candidate in
the skeleton array.

1This type of text entry is subsequently
referred to as a load candidate.

2This type of text entry is subsequently
referred to as a branch candidate.

74

Code generation determines whether or
not the instruction to which a branch is to
be made is displaced less than 4096 bytes
from an address in a reserved register by
interrogating an indicator in the statement
number entry for the statement number asso­
ciated with the block containing the
instruction to which a branch must be made.
This indicator is set by phase 20 to
reflect whether or not that block is dis­
placed less than 4096 bytes from an address
in a reserved register.

The completion of branching optimization
proceeds in the following manner. If a
skeleton instruction corresponding to an on
bit in the bit strip is a load condidate,
it is not included as part of the instruc­
tion sequence generated for the text entry
under consideration. If a skeleton
instruction corresponding to an on bit in
the bit strip is a branch candidate, it is
converted to an RX-format branch instruc­
tion. The conversion is accomplished by
replacing operand 2 (a register) of the
branch candidate with an actual storage
address of the foimat Q (O,B~). Q repre­
sents the displacement of the instruction
(to which a branch is to be made) from the
address that is in the appropriate reserved
register (Br).

If the instruction to which a branch is
to be made is the first in the text block,
both the displacement and the reserved
register to be used for the RX-format
branch are obtained from the statement
number entry associated with the block con­
taining the instruction. (This information
is placed into the statement number entry
during phase 20 processing.)

If the instruction to which a branch is
to be made is one that is sUbsequently to
be included as part of the instruction
sequence generated for the text entry under
consideration,3 the displacement of the
instruction from the address in the appro­
priate reserved register is computed and
used as the displacement of the RX-format
branch instruction. The reserved register
used in such a case is the one indicated in
the statement number entry associated with
the block containing the text entry cur­
rently being processed by code generation.

RETURN STATEMENT PROCESSING: When the
operator of the text entry-indicates a
RETURN statement, subroutine MAINGN-IEKTA
passes control to subroutine RETURN-IEKTRN,
which generates a branch to the epilogue.

3Skeleton arrays for certain operators con­
tain RR format branch instructions that
transfer control to other instructions of
that skeleton.

The epilogue address is obtained from the
save area. The address of the epilogue is
placed into the save area during the execu­
tion of eithe~ the subprogram main entry
coding or the subprogram secondary entry
coding. The address of the epilogue is
placed into the save area during the~ compi­
lation of a main program or subprogram with
no secondary entry points (refer to the
section "Initialization Instructions").

END STATEMENT PROCESSING (CHART 21): When
the-operator-of-the-text-entry-indicates an
END statement, subroutine MAINGN-IEKTA
passes control to subroutine END-IEKUEN,
which completes the processing of the
module by entering the address constants
(i.e., relative addresses) for statement
numbers and statement numbers appearing in
computed GO TO statements into text infor­
mation and by generating the END record.

Subroutine END-IEKUEN calls the ENTRY­
IEKTEN subroutine to determine whether or
not the program being compiled is a main
program or a subprogram and to take the
appropriate action. If it is a subprogram,
the ENTRY-IEKTEN subroutine calls subrou­
tine EPILOG-IEKTEP and PROLOG-IEKTPR (see
"Prologue and:Epilogue Generation"). If it
is a main program, subroutine ENTRY-IEKTEN
generates code to call IHCFCOMH and
generates a branch to the appropriate place
in text. If there are secondary entry
points, text is scanned to determine where
they are located. An epilogue and prologue
are generated for each entry point with a
branch to the corresponding point in the
object code. Subroutine ENTRY-IEKTEN
returns control to the END-IEKUEN
subroutine.

SubroutineEND-IEKUEN places TXT and RLD
records in the object module for the foI-

I
lowing: adcori for the save area, adcon for
the prologue,adcon for the epilogue, adcon
for register 12 (if needed), adcons for
branch tables~ adcons for parameter lists,
and adcons for 'B' block labels. The END­
IEKUEN subroutine ge~erates TXT information
for each temp6rary. Subroutine END-IEKUEN
calls lEND (FSD entry point) to generate
the loader ENb record that must be the last
record of the object module. Its functions
are to signal the end of the object module
and to inform the linkage editor of the
size (in bytes) of the control section and
the address of the main entry point of the
control section. The END-IEKUEN subroutine
then returns control to the FSD throuqh
subroutine MAINGN-IEKTA. -

As a user option, subroutine IEKGMP pro­
duces a storage map of the symbols used in
the source program. The map contains the
following information:

~amg
Tag

Type

Add.

F

A

C

~~I2!~natiQ!!
The variable appeared to the
left of an equal sign in the
source program. (stored
into)

The variable appeared to the
right of an equal sign in the
source program. (fetched)

The variable was used as an
argument.

The variable appeared in a
COMMON statement.

E The variable appeared in an
EQUIVALENCE statement.

XR The variable is a call-by­
name parameter to the source
program.

XF The variable is a subroutine
or function name.

ASF The variable is the name of
an arithmetic statement
function.

Identifies the type of variable
Type * length -- in bytes.

Is the relative address of the
variable within the object module
(in hexadecimal).

The total size of the object module is
also given.

A map of each COMMON block is generated
to give the relative location of each vari­
able in that COMMON block. A map of
variables equivalenced into common is also
provided.

In addition, subroutine TENTXT-IEKVTN
generates a map of statement numbers.

Phase 25 generates the machine code:
(1) to transmit parameters to a subprogram,
and (2) to return control to the callinq
routine after execution of the subprogram.
Parameters are transmitted to the subpro­
gram by means of a prologue. Return is

Section 2: Discussion of Major Components 7~

made to the calling routine by means of an
epilogue. Prologues and epilogues are pro­
vided for subprogram secondary entry points
as well as for the main entry point.

~LqlQg~~: A prologue (generated by subrou­
tine PROLOG-IEKTPR) is a series of load and
store instructions that transmit the values
of "call by value" parameters and the
addresses of ncall by name" parameters to
the subprogram. (These parameters are
explained in the publication I~~_§Y~~~~~l&Q
~rating S~l~~~ __ ~Q~~~~~_Iy_~~gg~~g~,
Form C28-6515.)

When subroutine PROLOG-IEKTPR generates
a prologue, it enters the prologue into TXT
records and inserts its relative address
into the address constant reserved for the
prologue address during the generation of
initialization instructions.

~Llogue: An epilogue (generated by sub­
routine EPILOG-IEKTEP) is a series of
instructions that (1) return to the calling
routine the values of "call by value"
parameters (if they are stored into or used
as arguments), (2) restore the registers of
the calling routine, and (3) return control
to the calling routine. (If ncall by
value" parameters do not exist, an epilogue
consists of only those instructions
required to restore the registers and to
re1:urn control.)

When subroutine EPILOG-IEKTEP generates
an epilogue, it enters the epilogue into
TXT records and inserts its relative
address into the address constant reserved
for the epilogue address during the genera­
tion of initialization instructions. (When
phase 25 encounters the text representation
of a RETURN statement, a branch to the epi­
logue is generated.)

PHASE 30

Phase 30 records appropriate messages
(on the SYSPRINT data set) for syntactical
errors.encountered during the processing of
previous phases; its overall logic is illu­
strated in Chart 22. (Table 15 shows the
subroutines called by phase 30.) As errors
are encountered by these phases, error
table entries are created and placed into
an error table. Each such entry consists
of two parts: the first part contains
eit:her an internal statement number if the
entry is for a statement that is in error,
a dictionary pointer to a variable if the
entry is for a variable that is in error,
or an actual statement number if the entry
is for an undefined statement number; the
second part contains a message number. (If
the error cannot be localized to a particu-

76

lar statement, no internal statement number
is entered in the error table entry. Phase
30 simulates the internal statement number
with a zero.)

Using the message number in the error
table entry multiplied by four, phase 30
locates, within the message pointer table
(see Appendix A, "Diagnostic Message
Tables"), the entry corresponding to the
message number. This message pointer table
entry contains (1) the length of the mes­
sage associated with the message number,
and (2) a pointer to the text of the mes­
sage associated with the message number.
After phase 30 obtains the pointer to the
message text, it constructs a parameter
list, which consists of:

• Either the internal statement number,
dictionary pointer, or statement number
appearing in the error table entry.

• A pointer to the message text asso­
ciated with the message number.

• The length of the message.

• The message number.

• The error level.

Having constructed the parameter list,
phase 30 calls subroutine MSGWRT-IEKP31,
which writes the message on the SYSPRINT
data set. After the message is written,
the next error table entry is obtained and
processed as described above.

As each error table entry is being
processed, the error level code (either 4,
8, or 16) associated with the message numb­
er is obtained from the error code table
(GRAVERR) by using the message number in
the error table entry as an index. The
error level code indicates the seriousness
of the encounter error. (For explanations
of all the messages the compiler generates,
see the publication IBr-.1 System/360 Q£§.~at::.
ing system: FORTRAN IV (G and H) ProgE~~::'
mer's Guide, Form C28-6817.) The obtained
error-level code is saved for subsequent
use only if it is greater than the error
level codes associated with message numbers
appearing in previously processed error
table entries. Thus, after all error table
entries have been processed, the highest
error level code (either 4, 8, or 16) has
been saved. The saved error level code is
passed to the FSD when phase 30 processing
is completed. This code is used as a
return code by the scheduler to determine
whether or not succeeding steps are to be
executed.

chart 00. Compiler Control Flow

* * * A2 *
* * ****

IEKAAOO 1
* ** **A2* * * * * * ** * *

****Al********* *FSD 01A2*
• FROM· *-.-*-*-*-*-*-*-*

CALJ.ING *-------->* INITIALI ZE. *
Pl<OGRAl>: * * CALL *

•• ****.******** * PHASE 10 *
* * * ** ** * * ** ** * * * *

j
* * * **B2 * * * * * * * ***
PH10 03A2
*- *-* -*-* -*-* -*-*
*CONVERT SOURCE *
*TO INFOR~:ATION *
*TABLE AND 'lEX'I *
***** .. ** .. ********

1
* * * **C2 * * * * ** * * * *
FSD 01A2
*- *- *- *- *- *- *-*- *
* CALL *
* PHASE 15 *
* * ************ .. ** .. *

1
* * ... **[;2"'''' * ... *'" * ** *
PIT15 05A3
.-*-"'-*-.- *- "'- "'- '"
* CONVI;;RT PHASE '"
*10 TEXT. ASSIGN '"
* JI.DDHESS1:.S •
* ** ** * * ** * * ** *** *

1
* * * ** E2* * * * * * ** ** * * * * *E 3* * * ** * ** * * ** ** *1:.4 * * •• ** ** ** * * *E5 .** * * * *** *
FSD 01A2 *PH20 10Cl* *FSD 01A2* *PH25 20Al*
--* -*-* -* -*- *- * *- *- *- *- *- *-*-*- * * -*-* -*-*-* -* -*-* *- *- *- *- *- *- *- *- *
* *-------->* ASSIGN REGIS- *-------->* CALL *-------->* BUILD * * CALL PHASE 20 * * TERS .OPTIMIZE * * PtiASE 25 * * OBJECT •

!***********.* •• ! :*!r*~~~~t¥If~**! !***.***********! !****~~~~~~*****!

NOTE ~
OPERA'I'IONS
WITHIN DOTTED LII~ES
ARE PERFORMED BY FSD.

Section 2:

* * ***F4* ** *** *** *
PH30 22B3
-- *-*- *-*-*-*-*
* OUTPUT *
*1:.RROR MESSAGES •
* * * * * * * * ** ***** * ... **

!

1
*****F5**********
FSD 01A2
--*-*-*-*-*-*-*
* IF ERRORS *
* CALL *
* PHASE 30 *
* "'* *** * * ** ** ** ***

I
NO
ERRORS

------------------------> V
. *.

HS * .
. * *.

* * NO.* LAST *.
* A2 *<----*. COMPILATION .•
* * *. .*

**** *.. *
* .. *

rEO
··J5·*·**** * TO •

• OPERATING *
• SYSTEM *

* * * •• *. ** *. *. *.

Discussion of Major Components 77

Chart 01. FSD Overall Logic
..** · .

• A3 * ·
IE.KAAOO

1<------------------------------------
AGAIN V 03A2

* *. ** A2 •• * * * >to * *** * * **.A 3. ••• •••••• • •• + +A4++ ••• + •• ++
****Al********* * * '" '" + DSPTCH-IEKCDP •

• Fl<.OM * * PROCESS * '" INITIALIZE * .-*-*-.-.-.-*-*-.
• CALLING *-------->* PARAMETERS *-------->"'FOR COMPILATION.-------->.BUILD TEXT AND •
.• Pt<0GRAr'- * * • '" •• INFORMATION •

*************** * * '" *. TABLE *
* ** ** ... ** * ** * * *. * * •••• ** * ** *....... • ••••••••••••••••

SEl:. TAcLt. 6 FOi{ A
tHUl:.F DJ:;SCRIP'I ION
OF J:;ACrl SUBROUTINE'
UF Trli: FSD.

r--~;:;----------------j

U,KAP,9

78

• ·***01********* ENTRY POINT FOR
., F'ROM * PHASE 10
* CALLING * SUBROU'lINE OR
., PHASE * FOR SERIOUS

.************** ERROR (LEVEL 16)

IBCOMRTN

** •• F2 *. * * ** ... * *
r,NTRY POINT * *
FOR I/O * FRml IBCOM •
ERROR * *

** ** * * * * ** * * ***

:~~;* *->1 * * • ***
QUIT

* ****G2* * ** * * * * **

• * * WRITE •
----------------> * ERROR MESSAGI: *

: WITH CODE :

* **** *** * ** ** *** *

1
. *.

H2 *. . * * ..
•• EOF *. YES

*. SWITCH • *---1
. SET .

*. ...
* ... *

*1 NO * *
* E5 *
'" * *.**

V
** •• *J 2 * * * * * *** * * · READ TO lENDl •
• CARD IF •
• NECESSARY • · . •• *.*.* * *. * •• ***.

1
*.**

* A3 * • *
**.*

·····B3···.······
• STALL-IEKGST • . -.-.-.-.-.-.-.-.
*PROCESS COMMON •
• AND EQUIVAL- •
• ENCE •
•• ** •• * .* •• * ••• **

1
.* .

C3 ••
•• BLOCK ••

•• DATA •• YES
•• SUBPROGRM-J •• ---.. ..

*. . +:
r

o

·***·D3·····*····
.PHAZ15 06B2 •
.-*-.-.-.-*-.-.-.

PROCESS •
PHASE 10 •

* TEXT •
• * *. -'''. * * •• *.* ••••

<----------

*****F3** •••• *... .* ••• F4 ••••• * ••••
*CORAL 09Al. • REASSIGN AREA •
--*-*-.-*-.-.-. *PREV. USED FOR.

RELATIVE *-------->. PH10 SPECIAL •
ADDRESS. • AND NORMAL •

ASSIGNMENT. * TEXT • * *......... * •••••••
: .::* :->1 ·

. *.
G4 ••

... BLOCK ••
YES.. DATA ••
---.. SUBPROGRAM ••
GO ON 1'0

·····H4 ••••••••••
* LPSEL-IEKPLS • .-.-.-.-.-.-.-.-.
• ASSIGN REGS. •
• OPTIMIZE IF •
: ••• ~~~~~~I~~ ••• :

---------->1 10Cl

·.···J4 ••••••••• •
• MAINGN-IEKTA • .-.-.-.-.-*-.-.-*
• BUILT •
• OBJECT •
• NODULE

1 ...
K4 ••

•• ERROR·.
• • OR WARNING ••

•• MESSAGES ••
• NO

t
* G4 • • * ••• *

ENTRY POINT
FOR END-OF-FILE
ENCOUNTER

ENDFILE

····BS
... .
• FROM PHASE 10 *
• OR 01A3 • • •••••• * •••••••

...
os ••

. * IS ••
YES •• END FILE ••

r
--.. MISPLACED '" *

:.:;.: j" NO

• * .. *.
OUT

··*·ES •••• ••
.. RETUR~ TO •

r
->. CALLING •

• PROGRAM • •••••••••••• *.*
••• * •

• ES .. • •

• ••• ·KS.······ •••
.IEKP30 22B3 • .-.-.-.-.-.-.-.-.
.. WRITE •
• MESSAGES • · ... • ••••• * ••••••••••

-------------j

Chart 02. FSD storage Distribution

ENTRY POINT
FOR MAIN
STORAGE
REQUEST

IEKAGC

'" * * *B3 '" "'''' '" '" "''''''' '" '" FROM *
* REQUESTING *
'" PHASE * 1"

. *. . *.
C2 *. C3 * •

. * *. . * *.
NO • '" MAIN "'. YES • * IS FREE *.

l
--*. STORAGE • *<--------*. BLOCK • '"

.AVAILABLE. *.AVAILABLE.*
*. . * * It • * *. . * * .. *

***** '" YES * NO

:~:;: 1 l ______________ .., __________ ~
OVERRITE • *.

*****02********** 04 *.
* * • * *. * DETERMINE • * PHASE 20 *. YES
* TYPE AND *. CALLING • *---1
* AMOUNT *. .*
* * *, . *
********1********* *'l*'~o !6i*!

* * ***E2 * * * '" * ** ** * * * * * *E3* ** * * ** * * * * * ** *E4 * ** * * * * * '" *
* * * CONVERT MAIN * * DETERMINE *
* CHAIN ONTO * *STORAGE LIMITS * '" AMOUNT OF *
* BLOCKS TO *--------->* TO SUBSCRIPTS *<-- * PHASE 10 TEXT *
* RECOVER * * AND STORE * * PROCESSED *
* LATER * * * * '"
*"'*************** *·******1 ·.... 1 .. ·

F4 *.
****F3********* • * *.

* G2*
* * *

* ZERO BLOCK * YES.* MAIN *. NO
* AND RETURN * -----*. STORAGE '*---1
* * *. AVAILABLE. *
*************** *.. * * .. *

Section 2:

* *****
*01 *
* G2*

'" * *

Discussion of Major Components 79

• Table 6. FSD Subroutine Directory (Part 1 of 2)
r-------------T---,
I Subroutine I Function I
~-------------+---~
I ADCON- I Internal adcon table.
J IEKAAD I
I J
I AFIXPI- I Performs exponentiation of integers.
J IEKAFP I
1 (AFIXPI)* I
I (FIXPI)* I
I (FIXPI#) * I
I I
I DCLIST- I Prints out assembly listing of source program.
I IEKTDC I
I I
I ERCOM- I Error message table.
I IEKAER I
I !
I IEKAAA I Communication table.
I I
I IE:KAAOO ~ Initializes compiler processing and calls the phases for execution.
I (ENDFILE)* 1 Entry pOint for compiler.
I (IEKAA9)* I
I I
I (IEKAGC)* l IEKAA9 deletes compilation if requested.
I I
I (IEKIORTN)* J IEKAGC allocates and keeps track of main storage used in the construc-
1 1 tion of the information table and for collecting text entries.
I I
I IEKAAOl ~ Defines default options, DDNAMES for compiler, and page heading.
) (PAGEHEAD) * I
~ ~
J IEKATB I Provides diagnostic dumps of internal text and tables.
~ I
I IEKATM I Timing routine.
I (PHASB) * 1
I (PHASS) * I

(PHAZSS)* I
(TIMERC)* I
(TOUT) * I
(TSP)* I
(TST)* I

IEKFCOMH
(IBCOM)*
(IBCOM#)*

IEKFIOCS
(FIOCS)*

I
I Controls formatted compile-time input/output.
I IHCFCOMH; see Appendix E.)
I
I
] Interface between compiler, IEKFCOMH, and QShl1.
I

(Corresponds to

(FIOCS#)* I I
~-------------~---~
I *Secondary entry point I l ___ J

80

• Table 6. FSD Subroutine Directory (Part 2 of 2)

r-------------T---, I Subroutine I Function I
r-------------f---~ I IEKTLOADl Builds ESD, TXT, RLD, and loader END records.
1 (ESD)* J
I (IEKUND)* I
I (lEKURL) * I
I (lEKUSD) * ~
I (lEKTXT)* I
] (lEND) * I
I (RLD) * I
I (TXT) * I
I I
I PUTOUT- U Maximizing service routine for inte<Jers a.nd reills, diagnostic trace
I IEKAPT] routine; bypasses lEKFCOMH for some error messages.
1 (PUTOUT)* J
~-------------~-------------------------------------~-----------------------------------~ I *secondary entry point I l _____ - ______ ~ ________________________________ ~~-_~_~ ____ ~ ____ ~ __ ~_~~ __ ~~ __ ~ ______ ~-____ J

section 2: Discussion of Major Components 81

Chart 03. Phase 10 Overall Logic

82

ENTRY IS TO
DISPATCHER
(ILKCIN) •

IJ;;KCIN
••••• A2.............. NO'IE: •

""" .. Al......... • • DISPATCHER <DISPTCH-IEKCDP). SEE TABLE 8 FOR A
DESCRIPTION OF THE
SUBROUTINES OF
PHASE 10 •

• FROM • •• • IS WITHIN DOTTED LINES.
• FSD .----.--->. INITIALIZE • DSP'ICH-IEKCDP CALLS THE
• •• • PREPARATORY SUBROUTINE ... **........... .

45

.................
: .::. =->1 · B2.......... B3 ••••••••••
• GLTCD-IEKCGC • • XCLASS-IEKDCL .. . -.-.-.-.-.-.-.-. .-.-.-.-.-.-.. - .. - ..
:~~~~1.~~S§6u~~r :-------->:PR~f&¥SN~~~t~- :
• ST+TEMENO" .. (IF PRESENT) '"

1 ·· ... ··C3·········'" • DETERMINE ...
• ROUTE FROM ...
·CLASSIFICATION •
• CODE ... · ... •••••• ot< ••••••••• '"

I "1"

·····D3·········* • '" SEE TABLE 7
• PROCESS ...
• SOURCE '"
• STATEMENT '" · '"

1 ...
E3 ...
.... ····E4········· •• END •• YES • TO PHASE 15 •

•• STATEMENT • *-------->. VIA FSD •
•••• • ••••••••••••• f

• NO

l '" ->. B2 • . ~

Chart 04. Subroutine STALL-IEKGST

****A2*********
* FROM FSD *

CHART 01 *
* ***************

V
*****B2**********
* IEKTLOAD *
*- *- *- *- *- * -*- *-*
* GE~ERATE *
* ENTRY CODE *
* * *****************

1
. *.

C2 *.~****c3**"*******
• * ANY .. • * IEKTLOAD *

.* LITE~AL *. YES *-*-*-*-*-*-*-*-*
*. CO"lSTANTS • *-------->* GENERATE TEXT *

. . ~ FOR CONSTANTS ..
*. . * * *

"i:~:--------------::::::::j"""" v
. *.

*****D1********** 02 *. *****D3**********
* SET * • * ANY *. * *
* UP SP"CE FOR" NO • *UNFIiHSilED *. YES *COl'JPUTE OFF-SET*
.. SAIiI:: r,qEA AND *<--------*. EQUIVALENCE • *-------->* FOR Ui-lFIN. *
* St{ANCtl TABLES * 1\ * • • * * EQUIV ENTRIES *
* .. l *..* * * [........ _________ ::::: _______________ ::::::::r

-------------------------v
l"JICTIONAi{Y SEARCH • *.

*****E1********** 1<:2 *. *****E3**********
* * .* *. * *
*RESFT POI:~TERS * :'>10 • * ANY *. YES * SET

-->*FOR EACH CHAIl' *<--------*. UNDEFINED • *-------->* UP ERROR
* OF TABL['" ... STMT. NOS." .. MESSAGE
* ~:NTRIES * *.. .. * * .. · T .. ·....

· *. Fl *. *****F2**********
• * ANY *. .. GENERATE ..

• * CO"lPLEX *. YES .. A!J!) CHl>.IN ..
. ItEMS .-------->* IMAGI~ARY * *. IN CHAIN • * * PORTIONS INTO *

.. .. TARLE ..

.. j:~:--------------::::::::j
V

· *. . *.
G1 *. G2 *. *****G3**********

.* ALL *. .* *. * IEKKOS *
,,0 • * TABLE *. YES • * *. YES *-*-*-*-*-*-*-*-*

---*. CHAINS .*-------->*. OPT=2 .*-------->* ASSIGN *
*. PROCESSED. * *. .* * COORDINATES *
.. *..* *BASED ON USAGE *

..... ··l:~:--------------::::::::j········
· *. . *.

H1 *. i:I2 *. *****H3**********
.* *. .* *. * CO~PUTE *

NO • '" ANY *. ,>10 • * *. YES '" DISPLACEME.NT *
___ to l:.QUIVALENCE .*<--------*. ANY COMMON .*-------->*AND ENTRY BLOCK*

. . 1\ *. .* * POIiJTERS *
.. l *..* * *

+ •• * * .. * ***************** i "'" ___________ : _______________________ J
v

*****Jl**********
* >I<

'" CONFUTE
* OFF-SETS AND
* (;qOUp HEADS

'" *****************

---------->

V
****Kl*********

* RETU'l.N '"
* TO FSD '"
'" CHART 01 *
****"'**********

Section 2: Discussion of Major Components 83

Table 7. Phase 10 Source Statement Processing
r------------------T-------------------T--,
I J Main Processing I I
! Statement Type I Subroutine I Subroutines Used I
r------------------f-------------------f--~
I ARITHMETIC I XARITH-IEKCAR I IEKCCR, IEKCDP, IEKCGW, IEKCPX, IEKCS1, I
I I I IEKCS2 I
r------------------f-------------------f--~
I STATEMENT I DSPTCH-IEKCDP I IEKCCR, IEKCDP, IEKCGW, IEKCPX, IEKCS1, I
I FUNCTION I XARITH-IEKCAR I IEKCS2 I
~------------------f-------------------f--~
1 DIMENSION, I XSPECS-IEKCSP I IEKCCR, IEKCDP, IEKCGW, IEKCLC, IEKCS1, IEKCS2, I
I EQUIVALENCE, I I IEKCS3 I
] COMMON I I I
~------------------+-------------------+--~
I EXTERNAL I DSPTCH-IEKCDP I IEKCGW, IEKCS3 I
r--·----------------f-------------------f--~
1 TYPE, DATA I XDATA-IEKCDT I IEKCGW, IEKCLC, IEKCDP, IEKCCR, IEKCPX, I
I I I IEKCS3, IEKCSP, IEKCS2 I
~--·----------------f-------------------t--~
1 DO I XDO-IEKCDO I IEKCGW, IEKCDP, IEKCLT, IEKCS3, IEKCCR, I
I I I IEKCS2, IEKCPX I

r------------------f-------------------f--~
I SUBROUTINE, CALL) XSUBPG-IEKCSR 1 IEKCGW, IEKCDP, IEKCS3, IEKCLC, IEKCLT I

1 ENTRY, FUNCTION I I IEKCPX I
~------------------f-------------------f--~
1 READ, WRITE, I XIOOP-IEKCIO I IEKCAR, IEKCCS, IEKCDP, IEKCGW, IEKCLT, I

I PRINT, PUNCH, I I IEKCPX, IEKCS1, IEKCS2, IEKCS3 I

1 FIND I I I
r-------------------+-------------------+--~
I DEFINE, I I I
1 DEFINE FILE, I XTNDED-IEKCTN I IEKCGW, IEKCDP, IEKCCR, IEKCS1, IEKCLC, I
I IMPLICIT, I I IEKCS2, IEKCPX, IEKCS3 I

I STRUCTURE, I I I
I NAME LIST I I I

~-------------------f-------------------f--~
I BACKSPACE, I I I
I REWIND, I XIOPST-IEKDIO I IEKCGW, IEKCDP, IEKCPX, IEKCCR, IEKCLT, I

I END FILE, I I IEKCS2, IEKCS3 I
I RETURN, ASSIGN,. J I I
1 FORMAT, PAUSE, I I I
I STOP, END I I I
r------------------f-------------------f--~
I IF, CONTINUE, 1 DSPTCH-IEKCDP I IEKCPX I
I BLOCK DATA I I I
r-------------------t-------------------f--~
I GO TO I XGO-IEKCGO I IEKCDP, IEKCGW, IEKCLT, IEKCPX, IEKCS3 I L __________________ ~ ___________________ ~ ___________________________________ • _____________ J

84

.Table 8. Phase 10 Subroutine Directory (Part 1 of 3)
r-------------T--------------------------------T--,
I Subroutine j Type I Function I
~----------~--+--------------------------------+--1
CSORN-IEKCCR JUtility (collection, conversion, I Secondary entry point IEKCCR directs thel
(IEKCLC)*]entry placement) lentering of variables and constants intol
(IEKCS1)* J linformation table I
(IEKCS2) * l I i
(IEKCS3)* I I Secondary entry point IEKCLC converts I

1 I integer, real, and complex constants to I
I Itheir binary equivalents. I
I I I
1 ISecondary entry point IEKCS1 places
l Ivariable names on full word boundaries
I Ifor comparison to other variable names.
J I
1 ISecondary entry point IEKCS2 places dic-
1 Itionary entries constructed for
I Ivariables and constants of the source
J module into. the information table.
J
J
1
~

I I
1 DSPTCH-IEKCDPl Dispatcher, Keyword, and
I (IEKCIN>* iUtility (entry placement)
I l
I I
I I
I I
, i
I I
I ~
I I
I '1
I I
1 J
II

J ~
I I
I I

secondary entry point IEKCS3 combines
the functions of entries IEKCS1 and
IEKCS2 (above> for variable names.

Controls phase 10 processing, passes
control to the preparatory subroutine to
prepare the source statement, determines
from the code assigned to the statement
which subroutine is to continue process­
ing the statement, and passes control to
that subroutine.

Develops intermediate text representa­
tions of the BLOCK DATA, CONTINUE,
EXTERNAL, and IF statements and that
portion of a statement function to the
left of the equal sign; builds informa­
tion table entries for the operands of
these statements; and analyzes these
statements for syntactical errors.

I
I
I
I
I

I]
I ~
I J

Builds error table entries for the syn- I
tactical errors detected by phase 10 and
places them in the error table.

I
1 ,
* I

FORMAT-IEKTFMIMiscellaneous

GETCD-IEKCGC Preparatory
(IEKAREAD)*

GETWD-IEKCGW Utility (collection)

IEKCIN is the initial entry point to
IEKCDP.

Generates format text from phase 10
intermediate text.

Reads, lists (if requested), packs, and
classifies each source statement.

IEKAREAD is a secondary entry point to
IEKCGC.

Obtains the next group of characters in
the source statement being processed.

IEKKOS Utility (table entry> Assigns coordinates based on usage count
to variables and constants.

~-------------~--------------------------------~--~
~*Secondary entry point I L ___ J

section 2: Discussion of Major Components 85

• Table 8. Phase 10 Subroutine Directory (Part 2 of 3)
r-------------T--------------------------------T--, I Subroutine I Type I Function I
~-------------+--------------------------------+--------------------.--------------------~
IIEKXRS I Miscellaneous Writes XREF buffer on SYSUT2.
II
ILABTLU-IEKCLTIUtility (entry placement)
I I
I I
IPH10-IEKCAA IUtility (common data area)
I I
~PUTX-IEKCPX IUtility (entry placement)
I I
I J

I
I
]

STALL-IEKGST IUtility <table entry and text
I generation)
J
I
I
~
J
l
]
!
I
I
I
I

XARITH-IEKCARIArithmetic
I
I
I
J
I
I
I
I
I

I I
IXCLASS-IEKDCLIUtility <text generation)
I 1
I I
, 1
I I
I 1
I I
I J
IXDATYP-IEKCDTIKeyword (table entry and text
1 J generation)
I I
) I
I I
I I
I I
IXDO-IEKCDO IKeyword <table entry and text
I t generation)
I I
I I

Places statement number entries into the
information table.

Phase 10 COMMON area.

Places text entries into the appropriate
subblocks, obtains the next operator
from the source statement, and places
·the operator in the text entry work
area.

Generates entry code for object module,
calls IEKTFM to translate format text to
object code, generates object code for
literal data text, processes equivalence
entries (those that were equivalenced
before being dimensioned), sets aside
space in the object module for the pro­
blem program save area and for computed
GO TO branch tables, checks for unde­
fined statement numbers, ~rechains
variables, assigns coordinates based on
usage count, processes COMMON entries,
and processes EQUIVALENCE entries.

Controls the processing of arithmetic
statements, CALL arguments, expressions
in IF statements, I/O list items, the
expression portion of a statement func­
tion, and the branch tables of an arith­
metic IF statement. Builds information
table entries for the operands of the
previously mentioned statements, and
analyzes the statements for syntactical
errors.

Controls the processing of source and
compiler-generated statement numbers,
generates the intermediate text required
to increment a DO index and to compare
the index with its maximum value, and
processes CALL arguments of the form
&label.

Develops intermediate text representa­
tions of DATA and TYPE statements,
information table entries for the
operands of DATA and TYPE statements,
and analyzes these statements for syn­
tactical errors.

Develops the intermediate text and
information table entries for the DO
statement and implied DOs appearing in
input/output statements and analyzes

I I them for syntactical errors. l _____________ L ________________________________ ~ _______________________________________ _

86

• Table 8. Phase 10 Subroutine Directory (Part 3 of 3)
r-------------T--------------------------------T--,
I Subroutine I Type I Function I
~-------------+--------------------------------+--~
IXGO-IEKCGO !Keyword (table entry and text I Develops intermediate text representa-
I I generation) Itions of the GO TO (unconditional,
I I lassigned, and computed) statements, con-
I I Istructs information table entries for
I I Ithe operands of these statements, and
I I lanalyzes these statements for syntactic-
I I lal errors.
1 ~ I
IXIOOP-IEKCIO Keyword (table entry and text IDevelops intermediate text representa-
I generation) tions of input/output statements, con-
I structs information table entries for
I their operands, and analyzes input/
I output statements for syntactical
J errors. (I/O list items are processed
I by subroutine XARITH-IEKCAR.)
I
IXREF-IEKXRF
~
I
I

Miscellaneous

IXSPECS-IEKCSPIKeyword (table entry)
1 I

I
I
I
I

XSUBPG-IEKCSRIKeyword (table entry and text
I generation)
I
I
I
J
I
I
I
I

XTNDED-IEKCTNUKeyword (table entry and text
I generation)

Reads in XREF buffer from SYSUT2.
Prints out a cross-reference listing
directly after the source listing.

constructs information table entries for
variables and arrays appearing in COM­
MON, DIMENSION, and EQUIVALENCE state­
ments and analyzes these statements for
syntactical errors.

Develops intermediate text representa­
tions of CALL, SUBROUTINE, ENTRY, and
FUNCTION statements; constructs informa­
tion table entries for the operands of
these statements; and analyzes these
statements for syntactical errors.
(This subroutine passes control to sub­
routine XARITH-IEKCAR to process the
arguments appearing in CALL statements.)

Develops intermediate text for NAMELIST
and DEFINE FILE statements; constructs
information table entries for variables
and arrays appearing in the NAMELIST,

I
I
I
I
I

~
~
I
I
I
I
I
I

DEFINE FILE, and STRUCTURE statements; I

XIOPST-IEKDIOIKeyword (table entry and text
~ generation)
I
I
I
J
J
~
I

resets the implicit mode table according I
to the specification of the IMPLICIT I
statement; and analyzes these statements
for syntactical errors.

lDevelops intermediate text representa­
Itions of ASSIGN, RETURN, FORMAT, PAUSE,
I BACKSPACE, REWIND, END FILE, STOP, and
lEND statements; constructs information
Itable entries for the operands of the
IASSIGN, BACKSPACE, REWIND, and END FILE
I statements; and for the operands (if
lany) of the RETURN, PAUSE, and STOP
I statements; and analyzes all of these

I I Istatements for syntactical errors. l _____________ L ________________________________ ~ _______________________________________ _

Section 2: Discussion of Major Components 87

Chart 05. Phase 15 Overall Logic

88

····A3··· ··
• FROM FSD *
• CHArtT 00 • · 1 .. · .. ·
.·.··B3·,.,·.······ .PHAZ15 06B2.
*- *- *- *- *-., - *- *-.
• PrluCi:::SS •
• PHASE 10 •
• TEXT •
••••••• *>1< ••••••••

1 ···.·C3·········· *CORAL 09A1 • . -.-.-.-.-.-.-.-.
• RELATIVE •
• ADDRESS •
• ASSIGNMENT •

1 ····D3 ...•.... '"
• TO PHASE •
'" 20 VIA FSD • ·

SEE TABLE 9 FOR A
BRIEF DESCRIPTIO,.
OF THE SUBROUTINES
OF PHASE 15 •

Chart 06. PHAZ15 Overall Logic

PHAZ15

"'···A2 ••••••• "'''' * FROM FSD *
'" CHART 01 • · · .. ·1· .. · ..
• ·.··B2"'·."' ••• ·.'"
'" . · '" '" INITIALIZE '"

'" '" • •
12o • .. T · ..

•• ·**C2·.···.··.'" ... "'. .
'" '" • GET A PHASE • * C2 *---->. 10 TEXT •
• • • ENTRY • •• * ••••••••••••••

1
,., 20 08B2

D2 ., ••••• D3 •• *....... "'Dlj ••••• "' ••••
,.STATE- ., * INDICATE IF • • GENER-IEKLGN •

,.MENT NUMBER., YES • STATEMENT '" .-"'-.-*-.-.-*-+-*
, T!1:XT ENTRY ,.--------> NUMBER IS *-------->. CREATE NEW *

"', • * .FOR EN'l'll.Y POINT. * TEXT BLOCK * *. .• • •• • • , '.. .."' •• "''''''''''*''' •••• '''* "'** •••• *"''''** •••••

1· NO .L. . '"
100 08B2 .*. '" C2 '"

••••• El.* ••••• "'** E2 •• '" •
'" GENER-IEKLGN '" ..., •••• • -.-*-.-.-.-*-.-* YES "", IS .,
• OUTPUT .<---~----.. OPERATOR •• * END. •• END ••
• STATEMENT • ." • • * •• "' ••••••• "'**.. • .. *

.. ,
Gl ••

. * *.
NO • * * ..

---.,OPTIMIZATION ••
"'.SELECTED .'"

*. . * *. . *

101 1 m

···Hl· .. " .. •••••• ... · . · ... • BUILD ...
• CMAJOR * '" ...

---=:::::: 1"'
"' •• ·Jl"''''''' -.".' * TO CORAL • * VIA FSD ... · '" *.*****.*** ••• '"

23

(
••• 07

F2 "', "' •• "'.F3"''''*'''''' •••••
,. "', • ALTRAN-IEKJAL • .."' •

•• ARITHMETIC •• YES "'-*-.- ... -*-.-.-.-. * •
*. TRAi~SLATION •• -------->'" PERFORM *---->* C2 •

*, NEEDED • • * ARITHMETIC. • •
•• •• '" TRANSLATION. • "'."'''' ''' .. .

1'0
, .,

G2 •. ."' ••• G3*"'*** •••• * •• •. • * , * PROC- "'. YES • PROCESS •
*, ESSING , *-------->* TEXT *

>1<. NEEDED • • • ENTRY •
"I'~O OBB2 ········1····::::

•••• "'H2 ••••••• "'.. "' •••• H3 •• ** •• *."'*
• GENER-IEKLGN • • GENER-IEKLGN '"
'" -.-.-. -.-. -.- "'-. .-.-*- "'-.-.-.-.-.
• PASS ON '" • COMPLETE TEXT '"
• PHASE 10. • ENTRY OUTPUT *
• TEXT ENTRY * • TEXT ENTRY '" "''''.'''''' * '' .. *'''.... "'''' * I < _______________ . ________ J

v
'" * • C2 •

* '" * •• '"

Section 2: Discussion of Major Components 89

• Chart 07. ALTRAN-IEKJAL Control Flow

ALTRAN - IEKJAL

!

Pl"imary
Adiec~ive Code

!
Function
References

!
Arithmetic
Operators

Subscript
Operators

Relational
Operators

!
Logical
Operators

!

90

IEKJFI

~
IEKLOK

IEKJDF

(IEK 1'0) <

IEKJBF

IEKKUN
(IEKJEX)*

IEKJCP

(IEKJMO)*
.~

!
IEKKPA IEKKSA

IEKKST

~

IEKLGN

IEKKRE

IEKKSM

T
IEKJGR

IEKJAN
(lEKKNO)*

*Secondary entry point of routine immediately above

NOTE: The logic and flow of the arithmetic translator is too complex to be represented on one or two conventional flowcharts. Chart 07 indicates
the relationship between the arithmetic translator (subroutine ALTRAN) and its lower-level subroutines. An arrow flowing between two
subroutines indicates that the subroutine at the origin of the arrow may, in the course of its processing, call the subroutine indicated by
the arrowhead. In some cases, a subroutine called by ALTRAN may, in turn, call one or more subroutines to assist in the performance of
its function. The level and sequence of subroutines is indicated by the lines and arrowheads.

In reality, all of the pathways shown connecting subroutines are two-way; however, to simplify the chart, only forward flow has been
indicated by the arrowheads . .All of the subroutines return control to the subroutine that called them when they complete their processing.
(If a subroutine detects an error serious enough to warrant the deletion of the compilation, the subroutine passes control to the FSD, rather
than return control to the subroutine that called it.)

The specific functions of each of the subroutines associated with the arithmetic translator are given in the subroutine directory following
the charts for phase 15.

Chart 08. GENER-IEKLGN Text Generation

Gf.NER- IEKLGN

····A2····>I-····
• F'RO~ •
• CALLING * * ROUTINE •

• **.**.********

1
* ** ** £2 * * * * * * * * * * * >l-· . • INITIALIZE >I-
... *
• * •• * •••• * ••••••• *.

'00' 1

20

·····C2··**·····*

• * • GET STORAGE •
• FOR NEW •
• TEXT EN'l'RY • · 1'...... '99 90" : '1::':

D2 •• .* ... D3 •• **...... • •••• D4
• * IS *. • • * S~T TEXT * •••• D5 •••••••••

•• OPERATOR *. NO • PASS ON * • CHAIN BLOCK • • RETURN •
•• *. PH~~~M15 •••• -------->: Tt~~S~N~gY :-------->: ~t5h ~~g :-------->: CAi£ER !

•. .• • • • •• * * ••••• •. . * * •• *** ••••••••• *. • ••••••••••••••••
('

••• 10
E2 *. **.**E3.*******.. .TXTLAB-IEKLAB RECORDS

• * *. * TXTLAB- IERLAB • ** ** .fALL-THROUGH CONNECTIONS
•• STA'IEMENT "'. YES *-*-.-*-.-.-.-.-. • • AND SETS UP STATBMENT

•• Nm';BER •• --------.>. RECORD .---->* D5. NUI~BER TEXT ENTRIES.
•• TEXT.. • CONNl:;CTION. * •
...* • INFORMATION * • ***. * .. * * •••••• ****.* ••••

1"0
··F2*****··
• TXTREG-IEKLxG •
--*-*-*-*->1--*-* * PROCESS * * REGULAR >I-
* TEXT ENTHY ** *

1
****·G2··········
• SET TEXT •
... CHAIN, BLOCK •

: ~t~~f< ~~g
...

1
****

• D5 •

* *

Section 2: Discussion of Major Components 91

chart 09. CORAL Overall Logic

................................ ..
CORAL-IEKGCR

* OPERATIONS WITHIN
DOTTED LINES ARE
PERFORMED BY
CORAL-IEKGCR ****A1*********

* FROM FSD *
* CHAKT 01 *
* * ** ** * * ** * * *****

1
· *.

B1 *. * ** **82 ** ** * * * .. * *
. * * • * NDATA-IEKGDA ..

.* *. YES. *-*-*-*-*-*-*-*-*
' ANY DATA .*---.---->* PROCESS PHASr. *

.* * 10 DATA TEXT *
*.. .. * * *

* .. * .. *****************
* NO. J

l,---------~-~~~~~~~~~~~~·········:~~
*****C1********** •• *****C2**********
* ASSIGN * * IEKTLOAD ...
* RELATIVE * •• *-*-*-*-*-*-*-*-*
* ADDl<BSSES TO *<------->*GENERATE TEXT/ *
* CONSTANTS * * ADCONS FOR *

: ••••••• ** ••• *.*: :***~~~'*~~~****: 1 : 1" :
* ** **D1 * * **** ** .. * * * .. D2* * ** '" * * * **
* ASSIGN * * IEKGCZ *
* RELATIVE *. *-*-*-*-*-*-*-*-*
... ADDRESSES TO *<------->* COMPUTE BASE * <---­
LOCAL VARIABLES * AND DISPLACE- * * ME NT ...
***************** *****************

1 '
.'. 1

E1 *. *"***E2***"***"**
• * ANY *. • * EQVAR- IEKGEV *

.* COMMON OR *. YES. *-*-*-*-*-*-*-*-*
*. f:QUIVALENCE • *---.---->*ASSIGN REL ADDR*

* • • * *TO COr-;MON/ EQU IV*
.. * VARIABLES *

··i~~:--------~-----:::·:::]········
* ** **F1 '" ** *"'*** **
* * * PROCESS '" •

R~~n~~~~S :<-----------------------------
* '" * ** ** * * * *** **** .. *

1
· *. G1 ... *** G2**** .. *****

.* *. • * NLIST-IEKTNL ..
• * ANY *. YES. *-*-*-*-*-*-*-*-*

. NAMELIST .---.---->* PROCESS NAME *<--
... .* *LIST AND GENER-*

*. • * *ATE DICTIONARY *

··I~~:--------l-----:·::::::j········
· *. H1 *. *****H2*"********. *****H3*"********

.* *. • * DATOUT-IEKTD'I * -.-->* IEKTLOAD *
.* ANY *. YES. *-*-*-*-*-*-*-*-* • *-*-*-*-"'-*-*-*-*

. DATA .---.---->* PROCESS DATA *<-.------>* PLACE TEXT *
. . '" AND GENERATi '" • * IN OBJ MOD *
"'..* * CONSTANTS * -.-->* *

FSD

'. I ~~:-------~-----::::::::r....... :::::: :::: ::::::: ...
· *. J1 *. *****J2**********

.* *. • * DFILE-IEKTDF ..
• * ANY *. YES. *-*-*-*-*-*-*-"'-*

"'. ;)EF INE FILE • *---.---->* PROCF"SS DEF *<.--
"'. . * * FILE AND *

*. • * * GENERATE 'IEX'I ,.

··l~~:--------~-----::::::::j········
** ** Kl * * *** **** * TO FSD *

: CHhHT 01 :

92

• Table 9. Phase 15 Subroutine Directory (Part 1 of 2)
r--------------T----------T---,
I I Associated I I
I IPhase 15 I I
I Subroutine I Segment I Function I
~--------------+----------+---~
ALTRAN-IEKJAL PHAZ15 lControls the arithmetic translation process.

ANDOR-IEKJAN
(IEKKNO)*

BLTNFN-IEKJBF

CNSTCV-IEKKCN

CORAL-IEKGCR

CMSIZE-IEKGCZ

CPLTST-IEKJCP
(IEKJMO)*

DATOUT-IEKTDT

DFILE- IEKTDF .

DFUNCT-IEKJDF
I (IEKKPR) *

DUMP15-IEKLER

EQVAR-IEKGEV

(5) I
I

PHAZ15 IChecks the mode of the arguments passed to it, decomposes IF
(5) \ statements, and generates text entries for AND and OR

I operations.
I

PHAZ15 IGenerates phase 15 text for in-line functions by either
(5) lexpanding the function or creating a phase 15 text item

J (which is expanded by phase 25).
I

PHAZ15 IPerforms compile time conversion of constants.
(5) I

CORAL
(6)

CORAL
(6)

PHAZ15
(5)

CORAL
(6)

CORAL
(6)

PHAZ15
(5)

I
Icontrols the flow of space allocation for variables,
Jconstants, and adcons necessary for local variables, COMMON,
EQUIVALENCE, and external references; processes constants,
local variables, and external references.

Keeps track of space being allocated; generates adcons for
address computation; rechains data text, generates adcons for
COMMON, EQUIVALENCE, and external references; and sets up
error table entries for phase 30.

Checks the mode of the operands in an arithmetic triplet mak­
ing adjustments where necessary and controls text generation
for the triplet.

Puts phase 15 data text into object module.

Processes define file text.

Determines if a reference is to an in~line, library, or ex­
Iternal function, and determines the validity df arguments to
Ithe subprogram; inserts the appropriate function operator
I into phas,e 15 text and builds the parameter list in the adcon
Itable and in text for the subprogram referred to; performs
Iparameter list optimization.
I

PHAZ15 IRecords errors detected during PHAZ15 processing.
(5) I

CORAL
(6)

I
IHandles COMMON and EQUIVALENCE space allocation.
I
I

FINISH-IEKJFI PHAZ15 ICompletes the processing required for a statement when its
I (5) Iprimary adjective code is forced from the pushdown table.
I I
I FUNRDY-IEKJFU PHAZ15 lCreates pushdown entries for references to implicit library
I (5) I functions.
I I
IGENER-IEKLGN PHAZ15 IGenerates phase 15 text consisting of unchanged phase 10
I (5) I text, phase 15 standard text, and phase 15 statement number
I I text.
I I
IGENRTN-IEKJGR PHAZ15 lBUilds appropriate phase 15 text entries for simple items
I (5) Iforced from the pushdown table.
~--------------~----------~---~
I*secondary entry point I L ___ J

Section 2: Discussion of Major Components 93

• Table 9. Phase 15 Subroutine Directory (Part 2 of 2)
r--'------------T----------T--r,----------,
I I Associatedl \
I IPhase 15 I 1
\ Subroutine I Segment I Function \
~--,------------+----------t---~
LOOKER-IEKLOK PHAZ15 Searches the function table (IEKLTB) to determine if a given

(5) function is FORTRAN supplied.

MATE-IEKLMA

NDATA-IEKGDA

NI.I ST- IEKTNL

,
OP1CHK-IEKKOP
(IEKKNG)*

PlmFN- IEKKPA

PHAZ15-IEKJA

RELOPS-IEKKRE

STTEST-IEKKST

SlJBADD-IEKKSA

SUBMLT-IEKKSM

t
I
I

PHAZ15
(5)

CORAL
(6)

CORAL
(6)

PHAZ15
(5)

PHAZ15
(5)

PHAZ15
(5)

PHAZ15
(5)

" PHAZ15
(5)

PHAZ15
(5)

PHAZ15
(5)

TXTLAB-IEKLAB I PHAZ15
I (5)

I
TXTREG-IEKLRG I PHAZ15

I (5)
I

UNARY-IEKKUN I PHAZ15
(IEKKSW)* I (5)
(IEKJEX)* I

Records usage information in the MVS, MVF, and MVX f~elds if
one of the optimizer paths through phase 20 is se1ected.

Converts phase 10 data text to phase 15 data text.

Processes name list text.

Determines whether or not operand 1 should be a temporary
and checks for negative arguments.

Removes the (or -(from the pushdown table when the corre­
sponding) is encountered.

Controlling routine of PHAZ15. Determines if the phase 10
text for a statement needs arithmetic translation. If so,
ALTRAN-IEKJAL is called. Otherwise GENER-IEKLGN is called to
put out unchanged phase 10 text. Builds CMAJOR if OPT=2.

Calls subroutine GENER-IEKLGN to generate text entries for
relational operators. (Output may be either a relational or

Ibranch operation.)

Builds text for replacement statements [e.g., A=B, A=B(I),
A(I)=B, A(I)=B(I) 1.

Generates text to add the terms in a subscript computation,
determines if a subscript text entry in the pushdown table
should be entered into phase 15 text, and calls subroutine
GENER-IEKLGN to generate the text entry when appropriate.

Generates the text to multiply the first term of a subscript
computation by its associated length factor, or, in the case
of variable dimension, to multiply the ~th dimension by
length. .

Processes statement number text entries for subroutine
GENER-IEKLGN and creates entries in RMAJOR.

Processes standard phase 15 text entries for subroutine
GENER-IEKLGN and makes RMAJOR entries.

Optimizes arithmetic t,riplets and processes the exponentia­
tion operator.

~-.-------------~----------~---~
I*Secondary entry points. \ L ___ J

94

• Table 10. Phase 15 COMMON Areas
r---------------T---,
I Name I Function I
r---------------+------------------·---~
I IEKGAl 1 CORAL COMMON data area.
I
I PH15-IEKJAl Phase 15 COMMON data area.
I
I CMAJOR-IEKJA2 Backward connection table.
I
I IEKJA3 Function information tables.
I
I RMAJOR-IEKJA4 Forward connection table.
I
I IEKLTB Function table COMMON area. L_______________ _ ___ _

section 2: Discussion of Major Components 95

• Chart 10. Phase 20 Overall Logic

I,PSi:;L-IEKPLS

96

• ... • ... 1'.1 ... • ... •••••• • FROl·. FSD •
• CHADI 01 • · * ••••••••

SEE TABLE 12 FOR A ERlEF
DESCRIPTION OF TH~ ~AJOR
SUBROUTINES OF PHASj, 20.

.
• •

C1· •••• l~~~i::::::::::::::::---------::::::~::::::::::--------------::].:~ 901~ ... ~:. :--1
• * *. ... •• SSTAT-IEKRSS • •••• ..**cs."'* •••• **

•• •• YES • OBTAIN FIRST • .-.-.-.-.-*-.-*-. •• LAST •• YES. •
•• OPT=O •• -------->* (NEXT) ELOCK .---.~---->. SET STATUS *-------->*. BLOCK •• -------->. TO FSD •

•• •• • • * AND ASSIGN • •• •• • CHART 01 ..
•••• • •• REGISTERS • •••• ."'.* •••• *.* ••••

* •• * *. *................ • •••

1'" ·
.•.

•• D1 •••• : .. ;;~~~~;~;; ... : : .. ;~~f~HK;; ••• :
•• •• YES .-.-.-.-.-*-.-.-. .-.-.-*-.-.-.-.-.

•• OPT=2 •• -------->. DETERMINE .<------->.DETERMINE BACK.
•• •• .BACK DOMINATORS. .TARGET AND LOOP.

•• • • • FOR BLOCKS. .NUNBR FOR BLKS •* "" I NO j
••• *.E1.......... • •••• E2.......... • •••• E3 ••••••••••
• •• BIZX-IEKPZ·. •
.INITIALIZE FOR. .-.-.-.-.-*-.-.-. • SET LOOP •
• OPTU~IZE;D. • DETERMINE .-------->. NUMBER •
• REGISTER. • BUSY-ON-EXIT ... • PARAMETER •
• ASSIGNMENT. • DATA • • TO 1 •

1 : .;:. L>1
• • • •••
• J3 • 2
'" • • •••• F3··· •• ••••• ••• * • TARGET-IEKPT • . -.-.-.-.-.-.-.-.

• SELECT LOOP. *
• GET BACK TAR- •
• GET OF LOOP •

1 1181 12.,
* G3 * "", ."'*.*GS*'~*** •• "'**
• XPELIM-IEKQXM '" • BACMOV-IEKQBM '"
.-*-.-.-.-.-.-.-. *- ... -*-.-*-*-.-*-*
* COMMON .---------------------------------->* BACKWARD
* EXPRESSION • • MOVEMENT
• ELIMINATION • • •
••• * •••• * •••• * •• * * ,~* *.** · .
.. H3 .--t

SOO •••
••••• H1.......... • •••• H2.......... 130 H3 •• * *b4

: INCREMENT: : MARK BLOCKS: NO •••• LAST •••• :-~~~~;~;~~~S~L:
• LOOP NUMBER .<--------. IN LOOP .<--------.... LOOP <--------. STRENGTH .<----------------
... PARAMETER'" ... COfl'PLF.TED. •• • ... • R~DUCTION ... • •• • *... • *
······· ... 1········· :·;;·:~:l .. ·yES

....
..... 2000 20S • •.• • ••

J1 •• • •••• J2.............. J3 •• J4 •• ·"'''' •• JS ••••••••••
•• PRO- •• ... BLS-IEKSBS • •••• '" ...

•• C:t:;SSING REG t._ ... _._._._._ ... _._. YES •• REGISTER •• NO •• COMPLETE- •• YES • SET LOOP '"
.... TEXT OR •• "'--1 • COMPUTE BLOCK .<--------•• ASSIGNMENT •• -------->.. OPTIMIZED -------->'* NUMBER •

•••• :KEGS....... ~ : SI~iANgNis RX: •• ;~MPLET~~.. • ••• PATH •••• : PA~~MfTER :

•• j·;EXT • ••••.• •• ·····t .. ·::::· '. .. j~~ $+** ... ::::** .. 1·······*
{, : KS : _>! cs : L>: KS : : KS !_> •• "'* • '" •• · . *... ,,!., •••• • •••

... F3 • 14B2 230 V
• ... • •••• K3.............. .."' •• KS."' ••••••••
•••• • REGAS-IEKRRG • • TARGET-IEKPT • . -.-.-.- ... -.~.-.-. .-.-.-"'-.-"'-.-.-.

• FULL .<----------------------------------. SELECT LOOP. •
• REGISTER • • GET BACK TAR- •
• ASSIGNMENT • • GET OF LOOP • • *

l · "' ... · ->. H3 • • •

Chart 11. Common Expression Elimination (XPELIM-IEKQXM)

XPELIM-IEKQXM

····Al."'·.""I<·"'· * FROM •
• LPSEL-IEKPLS •
• CHART 10 •

V 100 0 l--
••••• 81 ••••••••• * * •••• B2 •• **.* •••• ·
• GET ... • G~T FIRST ...
* FIRST +-------->* TEXT ENTRY I~ •
• BLOCK'" • BLOCK • '"

------------------------>1 NO
••• 9800

5100 c2 •• • •••• C3............ C4 ••
•••• • • •• END •• • ••• CS

• • •• YES • GET :mXT'" • ... OF *. YES ... TO •
"'. END OF BLOCK •• -------->. TEXT BLOCK ... -------->.... CURRENT •• --------> ... LPSEL-IEKPLS ...

"'. • • •• LOOP • • ... CHART 10 • • ,.* * .. *, ,. • •••••••••••••• **..............." I NO •

5000 2000 •• SEE TABLE 11 1900 "''''''''''.Dl''' D2 •• ."' ••• D3 ••• "'''' •• '''.''' · .. .".. . ..
• GET ... NO •• BASIC •• YES • SCAN FOR ...

r
->*NEXT TEXT ENTRY.<--------.. CRITERIA •• -------->. LOCAL COMMON •

... ... •• MET.. ... TEXT ENTRY • *,..
: ... D: ... ~····· ~·· ·· ... · :·:;"'::~1··· ·· ... ···1·········

*....... •• * ...
4800 ••• 4000

•• "' •• E2 ••• "'''' •••• ''' E3 "'. • •••• E4 ••• "'''''''''' •• ''' • .. .*.,
... GET FIRST. NO •• •• YES .. ELIMINATE •
• (NEXT) BACK .<--------•• ENTRY FOUND •• -------->. EXPRESSION ·ON .---1
• DOMINATOR • •• •• • TEXT ENTRY • * .. ·······"'1·····"''''··•..• ~ : .;;.:

••• 3100
F2 •• .."'."'F3 •• "''''*'''.* ••

• '" •• • GET ...
YES .'" END •• NO ... FIRST TEXT ...

----------------- •• CURRENT LOOP •• -------->. ENTRY IN BACK •
"'. •• ... DOMINATOR • "'.

· . · . · ----------::::::::r
. ..

G3 •• . " ..
NO •• OPERANDS ••

---.2+3 USED ELSE- ••
•• WHERE IN ••

3200

•• LOOP. * !,"S
•• SEE TABLE 11 2100

YES

H3 •• 64 "' •
. " *.

• • PRIMARY •• YES •• SECONDARY "' •

..... *

• 1< • CRITERIA •• -------->., CRITERIA •• SEE TABLE 11
., MET ,. ., MET ,.

... . " *. ."

::,:------>1 <:: ___________________ J NO

0>.· J3 *.···· ... · '" . 0> GET NEXT TEXT •
'" ENTRY IN BACK • * DOMINATOR •
'" .
········1········

, .,
K3 "' • . " .,

NO •• END BACK "', YES
-----------.. DOMINATOR •• ---1 ., ,*" ., ..

... · . • E2 • ·

Section 2: Discussion of Major Components 97

• Chart 12. Backward Movement (BACMOV-IEKQBM)

1000
••••• A2 "' •••• "'...... • "'A3·' .. 10 "' •• "''''''' ••

BAChOV- If:.KQBM

... ···Al·· ... ••• ... •• • ••),'ROM. • GET • • GET FIRST •

'. LPSBL-IEKPLS .-------->. FIRST .-------->. TEXT E:-lTR'X' IN "'<----------------1 '. CHART 10. • BLOCK'" ... BLOCK • . "' '" '" '" '" .
........ :::::::::_-------_::::::::j

v YES
• III. • III.

5100 R2 "'. B3 •• B4 •• .. "'. ...0 B5."'."' •••••
• '" •• YES •• PROCESSING "'. NO •• IS THERE •• NO "'TO LPSEL-IEKPtS'" ---------------->* .f;NO OF BLOCK •• -------->.0 LIBRARY • "'-------->.. ANOTHER 0 *-------->. CHART 10 '"
•• •• "'.FUNCTION .'" "'. BLOCK .* * •
"'..... ·.ARGS.'" *..'" ••• "'."''''.''' ... ''' ••• *. .• •. .• *. . *

(:;. :->1* NO 1* YES •
5000 ••• • "' •

••••• Cl. •••••••• 2000 C2 8100 C3 •• · . 0.·. . '" ..
• GI:;T NE.X'I. • .PRocESSING •• YES •• ARGUMENT •• YES
* TLXT EN'rRY IN • •• LIBRARY •• -------->.. PROCESSING • • ---1
• BLGCK. ..FUNCTION •• ..FINISHED ••
'" • ·.ARGS .* •..• "' ... NOTE:

Aj 1· NO ·l N~ :.::.: <-. cl • ->. E2 •• •
9100 1500 2200

••••• Dl. •••••••• • •••• 02.......... • •••• 03 ••••••••••
• •• KORAN-IEKQKO • • KORAN-IEKQKO. • ...
• AT'l'U'.PT TO. YFS.-.-.-.-01<-.-.-.-.NO >I<-.-.-.-.-.-.-.-.NO."
• PkGr.JOTr. SPLIT .<--1<----. VALID .-------->. VALID BACK- .---->. Cl '"
• rEl~PORARII::S • • BRANCH. • WARD MOVE. • '"
• •• ITEM • • CANDIDATE. •

• •• lYES ·
• 01·· • • •
• •• E2 .--~ -). El ••. 0·.

:1400 El •• 3000 E2 •• • •••• E3 •••••••••• . * •• •••. • • . * •. NO • • LIBRARY •• 'X'ES '" SAVE ...

• • • • A • • • • • EN'IRY • ".

FOR OPTIMIZATION CRITERIA
FOR BACKWARD MOVEMENT,
SEE TABLE 11.

r
->·. o'l'O.ttl:: ITI::~l •• -------->.. FUNCTION • ·-------->.POINTEi< '10 TEXT·---

1
:*1:;:1': 1· YES 1· NO :*::.:
'" '" . . ••• 1' ••••

8200 3100 ••• • ••
••••• FI.......... • •••• F2.......... F3 •• 9000 F4 •• ···0
• 'l'RY TO. • OPERANDS. PRIMARY •• NO •• PROCJ:;SSING •• YES
• E LIMINATr-;'" ... 2 P.NO 3 *-------->.. CRITERIA •• -------->.. LIBRARY 0.---1
• SIl<;PLL STOKE • • CO!t.BINED. •• MET o >to •• FUNCTION ••
• • •••• • .ARGS •• *.....0 ..

I 1
· YES L:; .::.: : .~;"':

v ••••
••• 0 ••

Gl •• 4000 G3 ••
. * •• .• •.

•• S'l'ORE •• NO •• LIBRARY •• YES
•• l:,LnnNAT~O •• ----- •• FUNCTION •• ---1

•• •• • .ARGUMENT • '"
• YES • NO ••••

l l ... "'. ·
'" • • •• Cl ..

->. Cl • ->. HI •• •
•• *. • •••

4200 ••• • ••
HI.. • •••• H2............ H3 •. • ri4 •••••••• "' •

. * *. • * ... *. * ..
•• SECONDARY •• NO .TRY 'fO PERFOW: • • ... LIBRARY "'. YES .MOVE ARGUMENTS •

• ~~T.. .IN BACK TARGET. '" •• ... BACK TARGET • *. .'" • • •..• II> • r
-·>·· CRL'!'!: itIA •• -------->. COMPUTATION .-------->"'. FUNCTION •• -------->'" TO "'---1

H: j* YES ·l N~..... :.:;.:
-). El • • •

3BOO •••

98

* .. **JI *.... J2.......... J3 ..
'" •• LORAN-IEKQLO • ."'.. • •••
'" MOV]:; TEXT. .-.-.-.-.-.-.-.-. •• LIBRARY •• YES. •

t:N'l'RY TO *-------->. UPDATE VECTOR .-------->.. FUNCTION •• ---->'" C2 •
• !;lAC!' TARGr.T • • FIELDS FOR • •• •• ••
• •• TEXT BLOCKS • •••• • ••• • *** ••• * ••• *.***. * .. *

... NO

!
• •
'" Cl •

• Chart 13.

REDUCE- IEKQSR

strength Reduction (REDUCE-IE~QSR)

... 9000
A2 ••

. ... · . • A3 • · .
·1·::---------

.•.• Al......... .••. • ••• A3 .••••••••
• FROM" • • DOES •• NO • TO •
• LPSEL-IEKPLS .-------->*. BACK •• -------->. LPSEL-IEKPLS •

• ••• i~~n.12 • .'. :~~~§t.·· fl· ... ~~~~I.12 • r .•.
B2 ••

•• ANY·.
•• INERT •• NO

•••• Ei¥~lES •• ' .-----

LEGEND

ADD
MULT

== ADDITIVE == MULTIPLICATIVE

•. .* •••• • •••
: .::. :->1· YES : ·r!·: : ·r:· :
.... v ~

SEJ;: TABLE 11 1000... 3000... 3500... 6100
••••• Cl.......... C2 •• C3 •• C4 •• • •••• CS ••••••••••

:-i!~.;~;!f~i!t-: YES ••• ~NY MULT * .•. NO • * ~ ADD~~¥VE * .•. NO •• - ·5~ ~g~T •••• YES : CALCULATE :
• INVESTIGATE .<--------•. Tli:XT EN'l'RIES •• --------> •• TEXT ENTRIES •• --- •• CONSTANT •• -------->. NEW (BRANCH)
: c~~~~~I: •••• (.,/) •••• • ••• (+,-) •••• fI •••• ABS •• '. : CONSTANT • .. · T ·.. ;" ~

. '. """ " 1 '200 j D1 •• • •••• D3.......... • •••• D4 ••••••••••

•••• PRIMARy·· •• NO • • :-I~~~~~;!~~~!t-:: ~~~¥R~&¥ ~~~ :
•• CRITERIA ••• --->. c:! • • INVESTIGATE • .NEW BR CON AND •

• • MET • • •• • PRIMARY. • PLACE IN BACK •
•• •• • CRITERIA. • TARGET •

'1;" r· · j.::::=::------------
••• 7100 •••

El "'. .. •••• E2.......... E3 • •••• E4 ••••••••••
•• ARE •• • • ,... • • •• CONSTANTS •• YES • CALCULATE. •• PRIMARY •• NO • REPLACE •

•••• ~~T~~~~ •• ' .-------.>:NEWc6~g~~nVE) : ··i~ITERIA ME:. ··---fI :~n~I~~~ ~~ gg~:
•• ABS •• • • •••• • •

noo ··r 60.: · .. 1"'· TABU<" 'f" ",: .. · .. ·T ·
••••• Fl.......... • •••• F2.......... F3 •• • •••• F4 ••••••••••
• GENERATE NEW •• • DELETE •
• TEXT ENl'RY. • GENIRATE • YEf: •• !:lECONDARY •• NO • ORIGINAL •
: A~g ~~~E :-------->:NEW I~N~iYTEXT :<--------•. ;~ITERIA MS:.' .--- : ~~~~T :
• TARGET.. • "... • ENTRY • · · .. r· · ··1·········

2700 ••• 9900
NOTE:
~~~8A~ 1 
NEW 
(ADDITIVE) 
CONSTANT 

G2 •• • •••• G4 •••••••••• 

•••• 3~RB~ •••• NO :R~~~nfT?PNSRl : 
•• ORIGINAL , "'--------------,-------------------->. .!lDD TEXT • 

"'. INERT VAR.. fI .ENTRY WITH NEW • 
•• •• • INERT VAR • 

':r~ ....... 1' ...... 
H2 •• • •••• H4 •••••••••• 

7000 

•• IS •• • MOVE • 
• • BRANCH •• YES .MULTIPLICATIVE • 

•• VARIABLE •• ------------------------------- • TEXT ENTRY TO • 
... • BUSY-ON- •• • BACK TARGET • 

•• EXtT •• • • .... :. .. .. · .. T ...... · 
1 .' . ..... J2............ J4 .. 

.... ••. wAS •• 

(ALL OTHER USES 
OF OPND 1, WHICH 
REMAIN IN THE 

~~o~EP~I~~D~tSO 

:ORIG¥~KtA~j VAR: .:EN~~~-~~f~TOi:.~~~:::>: C2 : 
.WITH NEW INERT '" "'. ADD •• •• 
• VAR • ..... • ••• ................. . .. . 1 .~ 

· ..... 1 
• CII • • •• 
• • K4 •• •••• •• WAS •• 

•• BRANCH •• NO 
• • VARIABLE •• ---1 ·.REPLACED •• 

•. .* * ..• 
... YES •••• 

I : C3 ! 
~ .. .... . ... . . • A3 . ... . 

*.*. 

section 2: Discussion of Major Components 99 



• Chart 14. 

100 

Full Register Assignment (REGAS-IEKRRG) 

REGAS-IEKRRG 

****1'.2********* * FROM * 
* LPSEL-IEKPLS * 
* CHART 10 * .. · .. ·1 .. · .. · 
* *'" ** B2* * * '" *** * * * 
* * * PUILD * 
* l:.MIN ARRAY * 
* FOR LOOP • 

* '" *.*"'***"'*"'** •• *** 

1 
* ** **C2 "'. "'* ** *** * 
* * DETERMINE 

RESERVED 
REGISTERS 

.. ** ...... ** ** .. *' .. *. ** 

1 
'" ** ** 02 * * * *. * *"'* * 
* * '" SET FOl'llTERS '" 
'" TO START OF '" 
• FIRS').' BLOCK 
* .. ** ** ..... * *** *** .. * 

151'.1 
* '" * ** F2"''''*''' *"''''* * * 
* FWDPAS-IEKRFP '" 
*-*-*-*-*-*-*-*-* 
*BUILD REGISTJ::R "'-----
* ASSIGNMENT * 
* TABLES * 
* ** ** "'+ *. * * ** * ** * 

I 
*****G2**** * **. * * 
* BKPAS-IEKRBP • 
*-*-*-*-*-*-*-*-* 
* PERFORI)<] * 
* LOCAL * 
• ASSIGNMENT * 
•••••• ***.****"'** 

-----------v 
so • *. 

B3 *. 
. * *. .* CALL *. NO 

*. OR FUNCTION • *--­
*. IN LOOP. * 

•. . * •.. * 

I''' 
* •• ··C3 "'. * "'.* * * ** 
* ~AKE COMMON * 
* VARIABLES IN- * 
* ELIGIBLE FOR • 
• GL03AL • 
• ASSIGNMENT • 
• ** *.*. * *. * ** * * * • 

,5 l<--~:::---
**** *03** *. **** *. 
* GLOBAS-IEKRGB • 
*-.-*-*-.-.-*-.-. 
* PERFORM • 
• GLOBAL * 
* ASSIGNMENT * ........ 1" ...... 
• ****E 3** * * *'" '" * ** 

• * * SET POINTER * 
TO S'!AR'! OF • 
FIRST BLOCK * 

* * .*** •• * •••• "'.*.** 

1 1882 
* ** "'*F3 '" ** *** *'" *. 
* STXTR-IEKRSX * 
*-*-.-*-*-*-.-*-* 
'" PERFORM *<----------------
'" 'lEX'! UP- • 
'" DATING * 
"'*"'. ** '" "''''''' '" *"'**** 

. *. 
H3 * . 

. '" * . 
• '" END *. NO 

··**"'G4* ******** 
* * '" SE'!' POINTER * 
* TO START OF * 
'" NEXT BLOCK * 
* * .**************** 

1\ 

'" • OF •• ---------,--------
*. LOOP •• 

*. . * * .. '" 

l''' 
*"'**J3"'*******'" 

• TO * '" LPSEL-IEKPLS * 
* CHART 10 * 

."'*."'*.******** 



Chart 15. Table Building (FWDPAS-IEKRFP) 

FWDPAS-IEKRFP 

... ...... * 
* * * A2 * ... ... 

**** 

1 . *. 
*****A2****""".*** .*.**A3**.******* A4 *. 

*.* ... A1 ... ******...... * *... ... •••• *** ... A5."''''*.** ...... 
'" FR0I1 * * *. INITIALIZE * • *PROCESSING •• YES * TO * 
* REGAS-IEKRRG .-------->* INITIALIZE *-------->*FOR PROCESSING *-------->*. COMPLLTE .*-------->* REGAS-IEKRRG • 
* CrlART 14. * *. TEXT BLOCK * *. .... * CHART 14 * 

...... *+***.***.......... ... * * ... *.. * ***** •• **"'**."'* 
*.*************** .*** ...... *** ......... **"'*. * •• * II 

[ _____________________________________________________________________________ j NO 

V 
700 .*. 11 1690 

81 *. *****s2***"'*+**** *"'*"''''B3********** * ..... *B4***.* ... **** .* IS *. * '" * * * ... 
• *BLOCK BACK *. YES * * * INITIALIZE'" '" ... 

*TARG. OF INNER. *-------->* UPDATE RUSE *-------->* 'I'RUSE TABLE *-------->'" INITIALIZE WJ * 
*. LOOP.. * TABLE * II * * * TABLE • 
*..* * '" J * .. * * 

*·l~:~ ______________ :::::::::::::::::___ * ....... "'******"'''' •• ** ··****·*1*** ...... * ... * ... 

. "'. 
C2 *. * ""'''''*C3 * "' •• '" ** "''''. *.***C4."'*****.** .... • * CAN *. * FWDPS1-IEKRF1 * * * 

• * YES •• NEXT BLK OF*. *-.-.-*-*-"'-*-"'-* * GET FIRST * 
'" A2 *<----*. LOOP BB PUT. *<--------* BUILD LOCAL *<--------* \ NEXT) TEXT * 
• * *.IN TABLES.. "'ASSGNMT TABLES'" .ENTRY IN BLOCK * 
.. ** ••• * '" FOR TdE BLOCK *. '" 

"' •• * * •• *******.***""1",, .*.* .... ** ....... * ..... 
'" NO 

----------------------------------------~~~--------t 16A 2 

"' ..... • ... £4***"'· ...... *·* 
* BKPAS-IEKRBP * 

Section 2: 

*- *- ... - *- *- <t<-"'- "'- * * PERFORM * 
* LOCAL * 
'" ASSIGNMENT • 
... *"'**.** •• ****.** 

1 .<t<. 
F4 .... 

.• * . 
• * END *. YES 

"'. OF •• -----------------
*. LOOP • * *. .• 

* .. * r NO 

... *"'* * * * A2 ... 
* * *"'** 

Discussion of Major Components 101 



Chart 16. Local Assignment (BKPAS-IEKRBP) 

IOKl'l-.S-IEKRCP . *. 
*****A2********** A3 *. *****A5*.******** 

****Al********* * * • * *. * PREVENT * 
* FROI~ * * GE'r * • * EXTERNAL *. YES * LOCAL * 
• FwDPI';;-IEKf'FP *-------->* aLOCK TO BE *--------->*. CALL IN BLOCK. *---------------------------------->*ASSIGNMENT FOR * 
* C1IJh(T 1') * * pqOCE.sSED * •• • * * EXTERNAL * 

*************** * * *..* * VARIABLES * 

................. ··[~:----------------------------------------::::::::i::::::':---
V 

10 • *. 
*****:21********** B5 *. 
+: +: .'" *. 
• GET FIRST * NO • * ALL * • 
* ("';';XT) TEXT *<--------------------------------------------------------------------------------------*. TEXT ENTRIES • * 
*E"ITqy III BLOCK * *.PROCESSED.* 
* '* **** * .. * 
*********1******** : C3 : *'*I'~ES 

**** 
t 

V .*. 20 .*. .*. 
****.Cl********** c2 *. C3 *. C4 *. V 
* * . * *. . * *. . * *. ****C5********* 

rHTIALIZE * • * OP<:RAtlD 1 •• NO • * OPE,{AND 2 •• NO •• OPERAND 3 *. NO * TO * 
;COP TEXT *-------->*. OF I~lTEREST • *-------->*. OF INTEREST • *-------->*. OF INTE-REST • *----- * FWDPAS-IEKRFP * 

l>JTR f * *. • * *. • * .... • * * CHART 15 * 
'* ... *.. * :te.. * *.. * *************** 
***************** * .. * * .. '" * .. * * YES * YES ... YES 

{; _________________________ ~ __________ . _______________ ~ _________________________ J 

22 . *. . .... 120 
D1 *. D2 *. *****D3********** * * ** *95* * * * * ** * * * 

.* IS *. .* IS *. * RECORD * * * • * OPERA;'lD *. NO • * OPERA'm 1'_ *. 110 * iJEFINITION * * ACCOUNT * 
*. Z,':'{O .*-------->*. Ti::MPO>{IIRY .*-------->* POI;:ITOF ... -->* FOx SPECIAL * 

*. • ,. •• • * * 'l'EMPORARY * * CASES * 
-le..* *..* * * * * 

:+: • • '" :to:. .... ***************** ***************** 
* YES * YES I 

l **** l **** *' * * *' ->* C3 • ->* C3 ... 

99930 ••• • *. . *. 1 *.**.. • • V j-------------~ 
*****F1********** £2 *. E3 *. E4 *. *****E5********** 

* UPDATE TEXT * 
* ENTRY WITH * 

... ;-}cT OPl OF ... .* *. .* *. .* *. 
* SUl',SC,<'. ITEtJ! * YES • * CASE 2 *. NO • *PROC.ESSING *. YES NO. * OPERA:m 1 *. 
* A;m CUR2.ENT *<--------.. SUBSCRIPT • *<--------*. OPERAdD 1 • *--- j---*' USED IN BLOCK. * 
... ui':SRA.ND 'TO * .... • * .... .'" *. . * 
... Z,-,~RO * *..* *..* *..* 
****.************ * .. * *. ,. * .. * )'" I "0 ~_____________. YEO 

* REGISTER AND *--­
* STATUS * 
* INFORMATION * 
* * ** * * * * * * * * *** * * 

: C3 : 34 22'*'+. 3~**+*F3********** 
.* *. * PREVENT * 

.* UEFINI- •• NO * LOCAL * 
*. TIO'~ POIi~T It" •• -------->*ASSIGNMENT FOR * 

*. BLOCK • * * TEl>lPORARY * 
::+:. • * * * 

* .. * ***************** 

V

*I YES l_>~*::*~ 
**** 40 • *. 

*****G2********** G4 *. *****G5********** 
*f'LAG !)EFINITI()N* • * *. * IEKRP1 * 
*POINT FOt{ TE~lP. * • *PROCESSING *. YES *-*-*-*-*-*-*-*-* 
* USELl *----.------------------------------>*. OPERAl'oJD 1 • *--------->* ASSIGN * 
* 1:1 BLOCK * *. • * * REGISTER TO * 
* * *..* * OPERAND * 
***************** * .. * ***************** 

J
* NO l * **** * 

->* C3 * 
{,----------------------------------------------------------------------------- * * * * * * 

100 .*. 130 300 .*. 
III *. *****tI2********** H3 *. *****H4********** *****H5********** 

.* *. • * .* ()P1 *. * TRY TO ASSIGN * * * 
•• PREVIOUS *. YES * P,ECOIW * • * ASSIG:,ED *. YES * TO CURRENT * * RECORD * 

*. ASSIGm'.ENT IN. *-------->* REGISTE" -->*. FIXED-POINT • *-------->*OPRND THt; SANE *-------->* ASSIGNMENT * 
*. EFFECT • * * ASSIGi,r1FNT *. t(EGISTER • * * REG. AS * * INFORMATION * 
*..* * » *..* * OPERAND 1 * * * 

+:. +:. ~o *********l******** *. *' ~o ***************** ********j******** 

I ->:*:~*: I t 
* +: **** 

V * * . *. 320 V 351 * C3 * 
,Jl *. *****J3********** *****J4********** * * .* *. * SEARCH * * * **** **** 

• * FLOATI"G *. NO * FOR AVAILABLE * * RECORD * * * 
*. POINT • *------------------------------.- * RC:G. FREE ONE *-------->* ASSIGNMENT *---->* C3 * 

*. MhDE • * * IF HJ:,CESSAHY * * INFOFM),TIOl' * * * 
*. . '" +: * * +: **** 

:+:: • • ,.. *****::t:*********** ***************** * YES 

l-------------------------v 
140 .*. 130 

*****Yl********** K2 *. *****K3********** *****K4********** * SEARCH * .* ~AS *. * TRY TO * * * 
* i'll,' [,VAILAPLE * ilO • * ()PSRAlID 1 *. YES * ASSIGN TO * * RECORD * * * 
* j(J:.(;. F,{EE ONt: *<--------*. ASSIGNED h • *-------->* CURRElJT OPRND *-------->* ASSIGNNENT *---->* C3 * 
• If' NECE:S:>I,;{y * *. '<-EG •• * * THE SAME REG. * /I * I NFORW,TI ON * * * 
* * *..* * Ac> OPE-RAND 1 * J * * **** 

***·****I:::::::: _______________ :~:~: _______________ :::::::::::::::::___ ***************** 

102 



Chart 17. Global Assignment (GLOBAS-IEKRGB) 

GLOBAS-IEK«GB 8000 500 
.'" ***11.2*"'. * .** ••• •• * *.11.3.. •••••••• .*"' •• 11.4. "' •••• '" * *. • •••• 11.5 •••••• "'. *. 

*"'**11.1**.****** '" • * * .COMPUTE NUMBER • * • 
'" FROM >1<. •• Cot1PUTE. • OF OPERANDS • • CALCULATE • 
• REGAS- IEKR.RG *-------->. INITIAt.I ZE .-------->. REGISTEi< .-------->. 'l't!A'l' ARE .-------->. BASE REGIS'l'ER * 
• CHAR'l' 14. * *. AVAILABILI'l'Y • *CANDIDA'l'ES FOR • • ACTIVITY • ....... *....... '" . * • * ASSIGNMENT.· '" 

•••••••••••• *.+.* ••••••••• ** •• **.. .* ••••• **........ • ................. . 

r-----------------------------------------------------_____ " ____________________________________________ J 
v 900. +. 25 

•••• *B1**.*...... p.2 •• ..***83*.* •• * •••• 
• PRE:VENT GLObAL. •• IS *. >I< DOWNGRADE ALL >I< 

• ASSIGNMENT TO • • • '1',115 AN *. YES .VA . .lUABLES THA'l' * 
• BUSY-OU-EXIT, *-------->.. OUTERMOST •• -------->'" 1'.«£ STOHED IN '" 
* STORED. *. LOOP.* *THIS OUTERMOS'l' '" 
* VARIABLES * '" , • • * LOOP * 

·········:::::::: _______________ ::I·~o ········1········ 

***··£1* * ••••• ", .• · . * l!PDATE TEXT * 
'" TO REFLECT '" 
* ASSIGNMENT '" ... ... 
••••••• *.**.* •••.• 

A 

10 •• , 27. *. 
c2 *. C3 •• 48 

•• ANY.. • * l"NY ". • •• *C4 ••• ** •••• 
• "~LOATING PT.. NO • * FIXED PTS •• NO • 'IO • 

• RE:GS AND ELIGI-.-------->.. REGS AND • *-------->* REGAS-IEKRRG • 
•• BLE VARS .* A •• ELIGIBLE •• • CHART 14 • 

•• •• +. YAKS •• • ............ * ••• 
*. . * ••• III " 

11 1'" I YES 

••••• D2.** •••• *.. * •••• D3 •••• "' ...... 
• *. SEARCH-IEKRS • 
• SEARCH FOR + *-+-+-.-*-.-+-.-* 
.CAl~DI1)ATE WITH • '" GET Ci\J'lDIDATE • 
+ dIGHEST. • FOR BXH OR + 
... ACTIVI'l'Y. • aXLE INST. • 

··*··*·"'1···*··*·· . ;:;;:;::'1 "' .. ** ..... 

.... 
••• 11 V 

;';2 +. • •••• E3+* •••••••• 
II * •. * * •• VA'HABLE. •• NO • SEARCH FOR * 

"'. OR COL~STAL~T •• ----> .CA"DIDATE WITH '" 
•• FOU~D .* • HIGHEST • 

•• • * • hCTIVITY • 
•• •• ..**.* •• *.**.** •• 

" rES 
*····F2····*····* · . • SEA ,(CH FOR • 
• AVI'I.ILADLF. • 
• REGISTER '" 
... '" 
•••• ** ••• * •• ***** 

1 v 
.+. 34 ••• 46 

***.*G1. * •• *.... G2 *. G3 •• *.+ •• G4 •••• ** •• * * .. .• *. . * *. • .. 
* ... YES .* *. NO •• •• ~O .IF BXH OR BXLE,. 
+ASSIGN 'l.EGISTgi(*<--------.. m;GISTE>{ • *----- •• Fou.m • *-------->* DO FIl~AL .<----------------
+ .. "'. }'Qu.m • '" •• , • • PROCESSING * 
* *' *..* .,.* * • 
**.+++++++ •• **... * •• * •• •• .** •• "'**"' •• "' •••• * 

[ _________________________ : _________________________ 1 YES 

V 
••• ••• 35 ••• 

d1 •• .12 *. .**.+H3* ••• * •••• '" 114 •• H5 

NO .. . . •• REG •• , •• IS •• * TRY TO. •••• •• 
•• ASSIGNED •• NO •• ITE~ •• YES ... ASSIGN THE 3 • •• •• YES •• MORE * • 

• , '1'0 ITEM IN •• ~-------> •. H1CR.EME,~T FOR. "'-------->*REGS NECESSARY "'-------->*. ASSIGNt1ENT •• -------->"'. CA!'lDIDATES • '" 
*. I'~llF.:K. .* *.BXLE,flXH •• "'FOi{ BXLE OR BXt!* •• SUCCESS- .+ A +, .'" 

•• LOOP •• *.. • * • •• FUL •• ••• • 
* •• * * .• * * •• **** ••• ******. * •• * * •. * 

I_::: ____________________ J_:: _______________________________________________ > *1 NO j. ~ES . . 
43 V • E3 • 

Section 2: 

"'····J4"'······"'·· . . '" ... * ••• 
*ASSIGN VARIABLE • 
• OR CONSTANT TO • 
.. REGISTER ... · ... •••••• * ••••••• *"'''' 

1 
*····K4"' •••• ••••• 
• * ... UPDATF: TEXT • 

TO REFLECT .-----
ASSIGNt'lENT • 

• * ••••••••••••• * ••• 

Discussion of Major Components 103 



Chart 18. Text Updating <STXTR-IEKRSX> 

STXTR-IEKttSX 

••• *A2* •••••• *· 
• FROM • 
• REGAS-IEKRRG * 
* C~ART 1ij • 

• *.* •••••••• **. 

V 
*····32**.······. · . • INITIALIZE • 
• GET FIRST Tl;XT • 
• ENTrlY • · . *.* ••• * ••• ****.*. 

------------------------,1 
10 ••• 

C2 *. ..., .*··C3··· •. · •• • •• ., YES • TO • 
•• END OF BLOCK •• -------->. REGAS-IEKRrlG • 

•• •• • CHART 1L1 • 
*, ." .*.* ••••••• **.* ... ." 

30 r 
.·.··02·.·.·.···· 
• GET ANY • 
• CO~PLETED • 
• ASSIGNME~~TS FOR. 
• TEXT E;~TRY • · . .............. ... 

" 35 1 : •••• E1 •••••••• : : •••• E2 ••••• " ••• : 

* GET • .IllITIALIZE FOR • 
• NEXT TEXT ENTRY. • PROCESSING • 
• •• ACCORDING TO • 
* •• OPERATOi~ • ................. . ............... . 

~l ~~i;:·->l<----------------------------------------------------------------------------1 .... . 

538 •••• *Fl. *** •• *** 130 F2···.. • ••• *F3.......... • •••• FS •••• * •••• 
'" • •• IS •• • * •• 
• STORE. •• OPRC'lD 2 •• YES.. • UPDATE TEXT '" 
'" RESULTS INTO '" •• TO "3E PROC- • *-------->*INITIALIZE FOR *----- *TO SHO,.] GLOBAL * 
* TEXT * •• ESSED .* • OPERAND 2 • • ASSIGNMENT • 
.. * *.... .... .. .. 
*.** •• **......... •• •• • ••• * ••••••• *.... • ••• ***.* •••.••• *. 

~l fa .'. 1" 
••• *.Gl* •••••••• G2 •• • •••• G3.......... 220 GLI •• G5 •• 
• • • • IS •• • • • • IS •• • • OP. • • 
• SAVE INFO.. •• O?RND 3 •• YES. • .'" OPERAND A •• :~O • * GL03ALLY •• 
• RELATING TO '" •• TO BE PROC- • "'-------->.INITIALIZE FOR .-------->"'. TEMPORARY •• -------->"'. ASSIGNED •• 
"'NEXT TEXT ENTRY* *. ESSED .* • OPl;RAND 3. A *. •• *. .* 
.. .. *..* .. .. *,.* *..* 
.*** •••• *-.*- •••• *. *. .• • ••••••• **.**.... * .. " * .. " 

~ • NO • YES • NO 

j I .. t. *J .. v .19 * *19 • . *. * B3. • B3. 
****.1"11 ••• *..... H2 •• • .... * ... H3**........ • ... ... * 
... PERFORM FINAL'" .* IS •• • ... • • 
• PROCESSING FOR. NO .'" OPRNO 1 *. YES" ... 
... SPECIAL ... <--------•. TO BE PROC- • *-------->.IiUTIALIZE FOR *-----
~ C~SES'" •• ESSED .* • OPE~A~D 1 • .. • .... * • * 
****.****........ •• •• • ................. ... 

* 

104 



Chart 19. Text Updating <STXTR-IEKRSX) <Continued) 

300 

*** .... 
*19 • 
• B3'" ...... 

* t ... 
B3 "' • . * Wi:lICH *. 

2 .*OPRND BEING .... 3 
-------------------------------------------*. PROCESS~D .*-------------------------------------------

v .. . 
C1 *. 

.... (,liS .... 
•• OPRND 2 .... YES 

*. ASSIGNED BY • "'---1 
"'. BKPAS • * *. . lit 

*. . * 
... NO * .... "'* 

1 
:1~2: 
• * . .. . 

D1 .... .."' •• 02 •• "'*"' •• "' •• 
• * IS •• '" USE ... 

• '" OPRND = "'. YES • SAME REG. AS • 
*. OPHND 1 OF .*-------->*OP1 OF PREVIOUS* 

"'. PREVIOUS •• * TEXT ENTRY '" *. ENTRy.... • • 

··.·~o .. • .... T ...... · 
. *. 

E2 *. .. .. 
YES • * •• 

<----------------.. REG. 0 •• •. . * •. • * .. .. 
**** 

* * 
1 NO 

* Fl *-> . ... •••• * 
*18 * 
* F2* 

325 

** .... ... 
F1 *. 

•• IS *. 
•• BASE ., YES 

* * * 
*. REGISTER OK '*---1 *. .• 

*. . * 
* .• * ... NO * ..... * 

1 
:1~2: .... 

* .•. 
10325 Gl *. .* ... **G2 ..... * ... *.*.* 

.* IS *. • RECO~-IEKRRL * 
• * OPRNO "'. YES "'-"'-.- ... - ... -*-*- ... -* 

*. A TEMPORARY • "'-------->. FREE STORAGJ.:: '" 
*. •• '" FOR TEMPORAKY • 
*..* ... IF POSSIBLE ... 

*. . * *. . * *. . * 

l' 
:310 • * . 

C3 "'. . * WAS *. 
•• OPRND 1 *. NO 

,~. ASSIGN~D BY • *-----------------
*. BKPAS • * .... .'" * ..• I YE' 

. "' . 
D3 "'. 

• '" MUST * • 
• *OPRND 1 BE *. l~O 

.... STORED ''''---1 *. . * *. . * *. . * 

1
* YES :!j;: 

'" * 
10330 ... 10350 • *. 

**** ... E3** .... ****.* E4 •• * ... • ... MUST .... 
* SET STATUS * YES •• OPRND 1 .... 
• '1'0 GENERATE .<--------*. BE STORED • * 
• STORE * *. • • * * *, .• 
.......... * ....... ***** * •• * 

1 · '0 

.'. 10370 1 
F3 *. ****"'FlI .... "''''.* •• * ... 

.... IS .... ... ... 
• ... OPERAND .... NO ... SET STATUS ... 

.... A T.E:;MPORARY .... --- * TO PREVENT * 
"'. • * * STORE * 

•. • * * * 
*'1* ~ES ** ... *"''''**1** ...... ** ...... 

...... *** 
*18 * 
* F2* 

• •• **G3* ... *······· * * ... • * 
• ALLOCATE • 
• STORAGE FOR • 
• TEI'JPORARY * ... . 

v 
330 . *. c5 .... 

• * WAS "' • 
YES.* OPR~D 3 * . 

1
--*. ASS IGNED BY • * 

•• BKPAS • * 
*. . .. 

* .... 
* ... *** * NO 

:1~2: I * ... 
'" v ... 

05 *. 
.'" IS * . 

NO • * OPfl.NO = '" • 

[
--'" , OPRND 1 OF .* 

*.PREVIOUS .* 
"'. ENTRY. '" 

v * .. * :*;:*: 1* YES 

* ... 
**** 

*"''''·'''E5.··***'''*** * USE * 
* SAME REG. AS * 
*oPl OF PR8VIOUS. 
• TEXT ENTRY * 
... * ...... ·1 ...... · 

90330 .*. 
F5 •• 

. * *. 
NO .* *. 

J
--.. REG. 0 • * 

*. . III 

*. . * 
* .. * 

:"';:*: i YES 

* * -& •••• **** • 
*18 * * F2* 
* * * 

··C~-------------~~~~~~J:::::::--------::::::::i::::::::---
360 v 

*·.··H3*· ... * ......... •• ... ... ... 
... FIND BASE ... 
... REG. FOR ... 
* OPERAND ... 
... * 
*** .... **.** ........... ** 

1 
.*··*J3 ... •••• ... •• ... * * RECORD * 
* BASE INFO. • 
• FOR • 
* APPROPRIATE * 
* OPERAND * 
'" * ** •• '.,,* * * * ... * •• * '" 

! 
** •• * 
·18 * 
• F2· 
* • ... 

Section 2: Discussion of Major Components 105 



• Table 11. Criteria for Text optimization 
r------------------T----------------------T----------------------T----------------------, 
I Process I Basic I Primary I Secondary I 
~--.----------------+----------------------+----------------------+----------------------~ I Common ISubscript, arithmetic,IMatching operand 2, JMatching operand 2, I 
I Expression I logical, or loperand 3, and loperand 3, and I 
I Elimination Ibinary operator Joperator loperator with I 
I I I I no intervening I 
I I I I redefinitions I 
~------------------+----------------------+----------------------+~-------------~-------~ I Backward IArithmetic or logical JOperand 2 and IOperand 1 not busy I 
I Movement I operator loperand 3 undefined Ion exit from target; I 
I I iin the loop loperand 1 undefined I 
I I I ~elsewhere in the loop I 
~------------------+----------------------.----------.------------+----------------------~ I Strength IAdditive operator; ~Interaction of inert IFunction of absolute i 
I Reduction linert variable tvariable with additive~constants or stored I 
I I lor multiplicative I constants I 
I I I operator I I L __________________ ~ ______________________ ~ ______________________ ~ ______________________ J 

106 



• Table 12. Phase 20 Subroutine Directory (Part 1 of 2) 
r----------------T--------------------------------------------------------T-------------, 
I Subroutine I Function / Type / 
~----------------f--------------------------------------------------------+-------------~ 
IBACMOV-IEKQBM Controls backward movement, produces new inert text Text I 
/ entries for strength reduction, builds type tables for optimization I 
I strength reduction, and performs compile-time mode I 
I conversions. I 
I I 
IBAKT-IEKPB computes the loop number of each module block. Structural I 
I determination I 
/ I 
lBIZX-IEKPZ Computes the proper MVX setting for each variable in Structural I 
/ each block of the module. determination 
/ 
IBKDMP-IEKRBK 
] 
/ 
IBKPAS-IEKRBP 
I 
I 
/BLS-IEKSBS 
I 

CXlMAG-IEKRCI 

FCLT50-IEKRFL 
(TNSFM-IEKRTF)* 
(RELCOR-IEKRRL)* 

FREE-IEKRFR 

FWDPAS-IEKRFP 

FWDPS1-IEKRFl 
J 
I 
lGLOBAS-IEKRGB 
/ 
I 

Produces TRACE for full register assignment. 

Controls local register assignment. 

Register 
assignment 

Register 
assignment 

Computes the total size of each block in the module and Branching 
determines which module blocks can be reached via RX- optimization 
format branch instructions. 

Processes imaginary parts of complex functions during 
local register assignment. 

Performs special checks on text items whose function 
codes are less than 50. 

secondary entry point TNSFM-IEKRTF performs special 
checks on text items whose function codes are in the 
range of 50 to 55 inclusive. 

Secondary entry pOint RELCOR-IEKRRL releases temporary 
main storage so it can be reused. 

Releases busy registers during overflow conditions 
(local assignment). 

Table-building routine for full register assignment. 

Determines whether or not text operands are register 
candidates prior to local register assignment. 

Assigns most active variables to registers across the 
loop. 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

Register 
assignment 

IIEKPBL COMMON data area for structural determination. Structural 
I determination I 
/ / 
I LOC-IEKRL1 BLOCK DATA subroutine for register assignment. Register I 
/ assignment / 
/ I 
/LPSEL-IEKPLS Controls sequencing of loops and passes control to text Control I 
/ optimization and register assignment routines routine I 
/ / 
IREDUCE-IEKQSR Controls strength reduction. Text I 
/ I optimization I 
t----------------i--------------------------------------------------------~-------------~ 
I*Secondary entry point I L ___________________________________ - ___________________________________________________ J 

section 2: Discussion of Major Components 107 



• Table 12. Phase 20 Subroutine Directory (Part 2 of 2) 
r----------------T---------------'-----------------------------------------T-------------, I Subroutine I Function I Type I 
~----------------+--------------------------------------------------------+-------------i IREGAS-IEKRRG Controls full register assignment. Register 
I assignment 
I 
ISEARCH-IEKRS 
I 
I 
ISPLRA-IEKRSL 
J 
I 
ISSTAT-IEKRSS 

STXTR-IEKRSX 

TALL-IEKRLL 

TARGET-IEKPT 

] TOPO-IEKPO 
I 
I 

Provides register loads upon entering the module. 

Assigns registers during basic register assignment. 

Register 
assignment 

Register 
assignment 

sets status information for operands and base addresses Register 
of text entries. optimization 

Controls text updating. 

Assigns storage for temporaries. 

Identifies the members of a loop and its back target. 

Computes the immediate back dominator of each block in 
the module. 

Register 
assignment 

Register 
assignment 

Text 
optimization 

structural 
determination 

I XP:ELIM-IEKQXM Controls common expression elimination. Text 
I I optimization 
~--.--------------~--------------------------------------------------------~-------------~ 
I*Secondary entry point I l __ . _____________________________________________________________________________________ J 

108 



• Table 13. Phase 20 Utility subroutines 
r----------------T--------------------------------------~-------------------------------i 
I subroutine I Function I 
~----------------+------------------------~---------------------------------------------~ 
ICIRCLE-IEKQCL I 
I(FOLLOW-IEKQF>* IExamines composite vectors, or each local vector if necessary. 
I I . 
ICLASIF-IEKQCF lClassifies operands of the current text entry, changes parameter list 
I (PARFIX-IEKQPX>*lto correspond to text replacements, and adjusts text entry for 
I (MODFIX-IEKQMF)*]possible mode change. 
I I 
IGETDIK-IEKPGK IFillstext space according to the arguments, gets space for tem-
I (FILTEX-IEKPFT>*lporaries, gets space for constants, and obtains previous text entry. 
I (GETDIC-IEKPGC) * I 
I (INVERT-IEKPIV> * I 

( -IEKPOV) * 1 
] 

IEKARW ~Calls FIOCS# to rewind the required data set. 
I 

IEKPOP 1Common data area for phase 20. 
1 

KORAN-IEKQKO Performs bit manipulation for text optimization, updates composite 
(LORAN-IEKQLO>* LMVS and LMVF matrixes. 

MOVTEX-IEKQMT Moves text entries, deletes current text entry by rechaining, and 
(DELTEX-IEKQDT)* updates MVS and MVF vectors. 

PERFOR-IEKQPF Performs combination of constants at compile time. 

SRPRIZ-IEKQAA Records structured source program listing on the SYSPRINT data set. 
( -IEKQAB> * 

ISUBSUM-IEKQSM IReplaces operands with equivalent values and, if possible, operand 
I Ivalues with equivalent values. 
I I 
I TYPLOC-IEKQTL ILocates interaction of text entries for strength reduction. 
I I 
IWRITEX-IEKQWT IPrints diagnostic trace information when text optimization and TRACE 
I 1option are specified. 
I I 
IXSCAN-IEKQXS IPerforms local block scan for backward movement, for common expression 
I (YSCAN-IEKQYS)* I elimination, and for strength reduction. 
I (ZSCAN-IEKQZS> * I 
~----------------~------------------------------------------~---------------------------~ 
I*Secondary entry point I L _______________________________________________________________________________________ J 

Section 2: Discussion of Major Components 109 



• Chart 20. Phase 25 Processing 

UKTA .* . 
il2 *. *****A3***+*+***+ 

****Al********* .* *. .. • 
... 1",<01' l'SO * • * ANY "'. YES * ASSIGN EASE * 

Crip.i<T 01 *-------->*.' E' BLOCK • *-------->* AND DISP. ... 
* • *. LABELS .* * TO'S' BLOCK * 

*************** *..* '" LABEL ADCONS * 

: ';;. h'" C-----------::::::J .... · .. 
** .t· V V 

.. *.. • .... 
21 *. B2 *. *****B3**.+*** •• * 

*' *.. .* *. .. • 
•• Ll'S'l *. "10 • * ANY *. YES * ASSIGN EASE • 

+. lLX'1 • *-----1 *. BRANCH • *-------.->. AND DISP. * *. 1 :'Til.Y .'" *. TABU'S • * • TO BRANCH * 
...* "'..* * TABLeS • 

* * * * ****** •• *****.**. 

"i"Y" ----------~I:::-------------------J 
c' *****C2******* ••• 

~l<***Cl********* * • 
• 10 F~O * • GET FIRST • 
... C;,HtT 01 ("IEXTl TLXT • 
* ... ENTRY· 
*************** .. 

***************** 

j 
· *. 02 *. *+* •• D3*.* ••••• *. 

•• RETURN *. * T~NTXT-IEKVTN ... 
• * I/O, ENL, *. YES .-.-*-*-.-*-*-.-* 

NOTl:.: SUBROUTINE 
MAINGN-IEKTA 
CONTROLS 'rEXT 
CCNVr:~SION 

*. S'IMT. • *-------->* DETM EN'I' 'l'YP~ *<---------------------------> 

110 

*. NO. • * *PRODUCE LBL MAP. 
*.* *IF END OF TEXT * 

* •• '" *****.*.* ••• *>t<*.>t< 

1
* 1m L>:*::*: 

* • .... 
****·E2··******** 
* * * SE''I UP * 
* REGIS'IER 
* ARRAY 
* • 
****************. 

I 
* **. * F2* * * *. * * * * * 
* * * SELECT * * BIT • 

STRIP : 

.. ** * .. * .. *** .. ** .... +: .. 

I 
**** * G2 ** * * ... * * * * * 
* * * MODIFY STRIP * 
* FO~ BASE • * LOADS AND • 
* STeRBS * 
***************** 

j 
· *. H2 *. *.***H3"' •• *.** •• * 

• * *. * FNCALL- IEKVFN * . * ... YES *-*-.-*-*-*-*-*-* 
"'. CALL • *-------->* GENERATE • 

* • ... • CALLING • 

*.* .. *.* :* ... *~!i~~~~~ •••• : 
*1 NO l *.+* ->: B1 : 

... + 
** •• 

· *. J2 *. "".*.J3***."'* •• * • 
• *.. • SUBGEN-IEVSU • 

. * I/O •• YES .-.-*-*-••• -*-.-. 
*. LIST •• -------->. GENtRATJ:. 

"'. ITEl" * • TEXT FOi{ 
*. • .. • LIST IT~M • 

* •• * * •• * •••• * •••••• ** 

V

"'I NO l ..... . 
->. B1 ... . . 

•••• .... *. *K2 "' ... * '" "' ....... 
... '" *. PERFORMED BY APPROPRIATE 
*-"'-*-*-.-.-.-*-. CODE GENERATION SUBROUTINE. 
... GEN~RATE * 
* INS'IHUCTIONS • 
• FROM SKELETON • 
***************** 

l ·****· ->* 81 • . . 
**** 

·····BS··.······· '" RETURN-IEKTRN • .-. -.-.-... -~ -"'-. 
<--->* GENERATE • 

• BRANCH TO * :* .. :~HZ~~~** .. : 

••• ... *C5*···*····· * IOSUB-IEKTIS • 
• -+ •••••• -"'-$ •• -* 

<~-->.GENERATE BRANCH. 
... TO IHCFCOMH • · . ................... 

"'····05· .. ··*·.·· • LABEt-IEKTI,B • ••••• -.- * .••••• -. 
<--->. E~TER LOC. * 

• CTR. IN • 
'" LABEL ENTRY • .* ••••••••••••• *. 

•• ···F5 .* •••••••• 
*IEKGMP • .. *-.-*-......... . 

<--.>. PROOUCE '" 
... STORAGE * 
'" MAP * ............... ,~ ... 



• Chart 21. Subroutine END-IEKUEN 

*****/1'1********** *****1'.3********** 
****hl*****~*** * FNTRY-I~K1EN * * EPILOG-IEKTEP * 

* FhO~~ * *-*-*-*-*-*-*-*-* *-*-*-*-*-.-*-*-* 
* ~;MINGN-IF:KTA *-------->*GI:TEHr-'INE TYPl *<--------* GENl!.RATl!; 
* C;~Aln 20 * * OF PROLOGUE *" * EPILOGUE. 

*************** *l:.PILOGUE TO GEN* * * .. · .. ··T ...... · ...... ·T ...... · 
*** ** B2**** * *'" '" *'" * "'** *B3 '" *'" * * * '" * * * 
* OUTPUT ACCONS '" '" PROLOG-IEKTPR * 
* FOR PROLOGUE, * *-*-"'-*-*-*-*-*-* 
* SAVE AREA, * -----* GENI:;RATE '" 
* EPILOGUE * * PROLOGUE * 

'" * '" * '" * * ** * * * * '" * '" * * "'''' * *** * ** * * * * '" "''''* * '" * 

1 
· *. C2 ... "'**"'*C3***"****** 

· * *. * * .* ANY *. YES * OUTPUT ADCONS * 
*. ERANCH • "'-------->* FOR BRANCH 

*. TABLES .* * TABLES 
*. .'" '" * 

··i:~:--------------:::::]········ v 
02'*' *. *****03********** 

• * *. * * .* ANY *. YES * OUTPUT AOCONS • 
*. PARAMETER • *-------->'" FOR PARAMETER • 

"'. LISTS .* '" LISTS * 
"'. . * * '" 

··l:~:--------------::::::]········ 
· *. E2 *. **+**E3********** 

· '" *. * * .* *. YES * OUTPUT * 
*.ANY P20 TEMP •• "'----_._-->* P20 TEMP. * ... . * * .. 

'" . * * * 

··i:~:-------------::::::::j········ v 
· *. F2 *. **"'''''''F3'''+******** · * *. ",' * • * ANY +. YES * OUTPUT + 

*. • p.' PLOCK • +-------->"'ADCONS FOR • B' * 
*. LAPELS .* * BLOCK LABELS '" 

*. . * * * 

··I:~:--------------::::::::j········ 
* '" * * *<32 * '" '" * * * ** .. * 
'" * * OUT'PUT END * 
* CARD FOR ORJ. * 
* ~OOULE * 
'" + 
***************** 

1 
** **il2* >I< ** * '" ** * 

* TO * * MAINGN-IFKTA * 
* CHART 20 * 

*************** 

Section 2: Discussion of Major Components 111 



• Table 14. Phase 25 Subroutine Directory (Part 1 of 2) 

r---·-------------T-----------------------------~----------------------------------------, I Su.broutine 1 Function I 
~----------------+----------------.------------------------------------------------------i 

ADMDGN-IEKVAD1 Generates instructions for the AMOD, DMOD, ABS, lABS, DABS, AND, OR, 

I 
I 
I 

BITNFP-IEKVFp1 

BRLGL-IEKVBL1 

CGEN-IEKWCN 

END-IEKUEN 

ENTRY-IEKTEN 

EPILOG-IEKTEP 

FAZ25-IEKP25 

FNCALL-IEKVFN 

GOTOKK-IEKWKK 

IOSUB-IEKTIS/ 
IOSUB2-IEKTIO 

LABEL-IEKTLB 

LISTER-IEKTLS 

MAINGN-IEKTA/ 
MAINGN2-IEKVM2 

PACKER-IEKTPK 

PLSGEN-IEKVPL1. 

I PROLOG-IEKTPR 
I 
I 
~ RETURN-IEKTRN 
I 
I 

COMPL, LCOMPL, and DBLE in-line functions. 

Generates instructions for the following text entries: BITON, 
BITOFF, BITFLP, TBIT, MOD24, SHFTR, and SHFTL in-line functions. 

Generates instructions for the following text entries: Operator is 
a relational operator operating upon two operands or upon one 
operand and zero, assigned GO TO operators, computed GO TO opera­
tors, unconditional branching, branch true and branch false opera­
tions, and ASSIGN statement. 

Common data area in which the arrays used during code generation are 
initialized. 

Performs final processing of the object module. 

Calls routines PROLOG-IEKTPR and EPILOG-IEKTEP to generate prologues 
and epilogues for subroutines and secondary entry points. Generates 
prologues and epilogues for the main program. 

Generates the epilogues associated with a subprogram and its second­
ary entry points (if any). 

Common data area used by phase 25. 

Generates calling sequences for CALL statements <other than those to 
IHCFCOMH) and function references. Generates the instructions to 
store the result returned by a function subprogram. 

Used by subroutine MAINGN-IEKTA to branch to the code generation 
subroutines. 

Generates calling sequences for calls to IHCFCOMH. 

Processes statement numbers by entering the current value of the 
location counter into the statement number entry in the dictionary. 

Produces a listing of the final compiler-generated instructions. 

Assign base and displacement for 'B' block label adcons and branch 
tables. Control the text conversion process of phase 25. 

Packs the various parts of each instruction produced during code 
generation into a TXT record. 

Generates the instructions for the following text entries: real 
multiplication and division operations, addition and sUbtraction 
operations, half- and full-word integer multiplication, half- and 
full-word integer division, and MOD in-line function. 

Generates prologues for subroutines and secondary entry points (if 
any) • 

Processes the RETURN statement by generating a branch to the 
epilogue. 

I STOPPR-IEKTSR Generates character strin95 in calls to IHCFCOMH for STOP and PAUSE 
I I statements. 
~---.-------------~----------------------------------------------------------------------i 
11Code generation subroutines. I l _______________________________________________________________________________________ J 

112 



• Table 14. Phase 25 Subroutine Directory (Part 2 of 2) 
r----------------T----------------------------------------------------------------------, I Subroutine I Function I 
~----------------t----------------------------------------------------------------------i 
J SUBGEN-IEKVSU1 1 Generates instructions for the following text entries: subscript 
I I operations, right and left shift operations, store operations, and 
I I list item operations. 
I I 
I TENTXT-IEKVTN I controls the processing of END, RETURN, and input/output statements, 
J I statement numbers, and end of I/O list indicators. Produces label 
I I map. 
I I 
I TSTSET-IEKVTS1 I Generates the instructions to (1) compare two operands across a 
1 I relational operator, and (2) set operand 1 to either true or false 
I I depending upon the outcome of the comparison. Generates the follow-
I ~ ing in-line functions: FLOAT, DFLOAT, INT, IDINT, IFIX, HFIX, DIM, 
I I IDIM, SIGN, ISIGN, DSIGN, MAX2, and MIN2. 
~ I 
I UNRGEN-IEKVUN1 1 Generates the instructions for the following text entries: unary 
I I minus operations (e.g., A=-B), logical NOT operations, load byte 
, I operations, load address operations, AND, OR, and XOR operations. 
I I 
I IEKGMP I Produces a storage map. 

~----------------~----------------------------------------------------------------------~ I 1Code generation subroutines. I l _______________________________________________________________________________________ J 

Table 15. Phase 30 Subroutine Directory 

r----------T----------------------------------------------------------------------------, I Subroutine, Function I 
~----------+----------------------------------------------------------------------------i I IEKP30 ,Controls phase 30 processing. I 
, I I 
'MSGWRT- I writes the error messages using the FSD. I 
I IEKP31 I I l __________ ~ ____________________________________________________________________________ J 

Section 2: Discussion of Major Components 113 



Chart 22. 

illl 

Phase 30 (IEKP30) Overall Logic 

IEKP30 

****A3********* 
• FROM • 
'" FSD * CHART 01 
*************** 

V 
**·**83***·*****· 
* * . 

INITIALIZE * 
* * 

** **** ******** ** * 

1 
* * * * *c 3" ** * * * * '" * * 
*OBTAI l~ i-lAXIMUM '" 
* ENTRIES AND * 
*ACTUAL ENTRIES '" 
* FRot1 COMl10N * 
* * ***************** 

1 . "'. 

SEE TABLE 15 
FOR A BRIEF 

DESCRIPTION OF 
EACH SUBROUTINE 

OF PHASE 30. 

D3 *. *****D4********** 
.*ACTUAL *. * SET UP ERROR * 

.*NO. GREATER*. YES * MESSAGE * 
*. THAN THAT • *--------> * AND *-----------------

*. ALLOWED • * '" LENGTH • 
*. . * +: +: 

••• * .*.*.****** •• **** 

:*:;*:->1* l~O 
'" * **** 

I"DERCOM 
** * * *E3 *** * * *'" * * * 
* * * OBTAIN FIRST * 
* (NEXT) ERROR * 
* TABLE ENTRY '" 
* * ********* •••• *.** 

1 

*** * 
* * * FS *-> 
* * **** 

• * • STRESS1 OFFSET V 
F3 *. **.**F4*.*****.** *****FS.********* 

• *~lESSAGE*. * SET UP * * MSGWRT-IEKP31 • 
• * Nut1BER *. NO * ADDRESS * .-*-*-*-*-*-*-*-* 

*. L/T 1000 AND • *-------->* FOR ERROR *-------->* WRITE * 
*. G/T 0 .* * MESSAGE * * ERROR 

*. • * * * * MESSAGE 
* •• * ***************** ***************** 

I'" J 
****.G3.* •• ****** G5 *. 
• OBTAIN * • * LAST *. 
* ERROR LEVEL • NO • * ERROR *. 
• CODE FROM * l--.' TABLE •• * GRAVERR * •• ENTRY •• 
* TABLE * •• •• 
***************** * .. * 

J :':::: r' 
H3 •• *****H4*.*.****** *****HS***"*.*** • 

• * ERROR *. * SAVE • • PASS SAVED * 
• *LEVEI. CODE *. YES * ERROR * ERROR * 

*. G/T PREVIOUS • *-------->* LEVEL * LEVEL * 
*. ONES.* * CODE * '" CODE * 
*..* * * +: * 

+: •• +: ***************** ***************** 

""" 1 ,:O ___________________ J 1 
* * * * *J3 ** * ** ** * * * 
* GET * ****JS********* 
* ASSOCIATED * * TO * 
• MESSAGE * * FSD * 
* POINTER TABLE * * CHART 01 * 
* EdTrl.Y * **.***.***.**.* 
** +: +*+ +: * * ** +: ** * * * 

1 
***··K3********** 
* * * BUILD * 
* PARAMETER *---1 
* LIST * 

* '" ** +: +: +: +: +: +: ** * +: +: +: * +: * 
.*** '" ,. 

* F'5 '" . ,. 
**** 



This appendix contains text and figures 
that describe and illustrate the major 
tables used and/or generated by the FORTRAN 
System Director and the compiler phases. 
The tables are discussed in the order in 
which they are generated or first used. In 
addi~ion, table modifications resulting 
from the compilation process are explained, 
where appropriate, after the initial for­
mats of the tables have been explained. 

COMMUNICATION TABLE (NPTR) 

The communication table (referred to as 
the NPTR table in the program listing), as 
a portion of the FORTRAN System Director, 
resides in main storage throughout the com­
pilation. It is a central gathering area 
used to communicate necessary information 
among the various phases of the compiler. 

Various fields in the communication 
table are examined by the phases of the 
compiler. The status of these fields 
determines: 

• Options specified by the source 
programmer. 

• Specific action to be taken by a phase. 

If the field in question is nUll v the 
option has not been specified or the action 
is not to be taken. If the field is not 
null, the option has been specified or the 
action is to be taken. Table 16 illus­
trates the organization of the communica­
tion table. 

Classifying, a function of the prepara­
tory subroutine (GETCD-IEKCGC) of phase 10, 
involves the assignment of a code to each 
type of source statement. This code indi­
cates to the DSPTCH-IEKCDP subroutine which 
subroutine (either keyword or arithmetic) 
is to continue the processing of that 
source statement. The following paragraph 
describes the processing that occurs during 
classifying. The tables used i~ the class­
ifying process are the keyword pointer 
table and the keyword table. They are 
illustrated in Tables 17 and 18, 
respectively. 

If the source statement has not been 
signaled as arithmetic during source state­
ment packing (see note), the classifying 
process determines the type of the source 
statement by comparing the first character 
of the packed source statement with each 
character in the keyword pointer table. If 
that first character corresponds to the 
initial character of any keyword, the key­
word pointer table is then used to obtain a 
pointer to a location in the keyword table. 
This location is the first entry in the 
keyword table for the group of keywords 
beginning with the matched character. All 
characters of the source statement, up to 
the first delimiter, are then compared with 
that group of keywords. If a match results, 
the classification code associated with the 
matched entry is assigned to the source 
statement. If a match does not result, or 
if the first character of the source state­
ment does not correspond to the first 
character of any of the keywords, the 
source statement is classified as an inval­
id statement. 

Note: The packing process, which precedes 
classifying, marks a source statement as 
arithmetic if, in that statement, an equal 
sign that is not bounded by parentheses is 
encountered. If the source statement has 
been marked as arithmetic, it is classified 
accordingly by the classification process. 

eTable 16. Communication Table [NPTR(2,35)] 
(Part 1 of 3) 

r------------------T-------------------, 
I 1 121 

r--~------------------~-------------------J 
I llPointer to tempo- IPointer to l-char- I 
I Irary for FLOAT/FIXlacter symbol chain I 
~-~f------------------f-------------------~ 
I 21 Previous classifi-IPointer to 2-char- I 
I Ication code (phaselacter symbol chain I 
I 110 ) I I 
~--f------------------f-------------------~ 
I 3 I Options: DUMP, XL, I Pointer to 3-char- I 
I IXREF, ID, EDIT, lacter symbol chain I 
I I MAP, LOAD, DECK, I I 
I ILIST, BCD, SOURCE I I 
~--f------------------f-------------------~ 
~ 41Pointer to most IPointer to 4-char- I 
I Irecently generatedlacter symbol chain I 
I IEQUIVALENCE group I I 
I I entry (phase 10); I I 
I lRelative location I I 
I lof first temporary I I 
I I (phase 20) I I l __ ~ __________________ ~ ___________________ J 

Appendix A: Tables 115 



• Table 16. Communication Table [NPTR(2,3S)] • Table 16. Communication Table [NPTR(2,3S)] 
(Part 2 of 3) (Part 3 of 3) 

r------------------T-------------------, 
I 1 I 2 I 

r--~------------------+-------------------J I SINADCON index for IPointer to S-char- I 
I Ifirst temporary ~acter symbol chain I 
I I (phase 20) I I 
t--f------------------+-------------------~ 
I 61Maximum line countiPointer to 6-char- I 
I I 1acter symbol chain I 
r--+------------------+-------------------~ 
I 71NADCON index for IPointer to last I 
I \last statement Idictionary entry I 
I I number ~in stmt number I 
I I Ichain (XREF--phase I 
I ! ~10); Number of reg-I 
I I listers reserved fori 
I I IRX branches (phasesJ 
I I ~ 20 and 2 S) I 
~--+------------------+-------------------~ 
I 81Type of text J I 
~ I (phase 10);Pointerl I 
I I to next phase 10 I I 
I Itext item (phase I I 
I liS); Pointer to I I 
I I·QXX temporary I I 
1 I chain (phase 20) I I 
t--+------------------+-------------------~ 
J 91Pointer to next IPointer to last I 
I lavailable phase 101available phase 10 I 
] Itext entry Itext entry I 
r--f------------------~-------------------~ 
1101 Name of routine I 
] \ (subprogram/main program) I 
t--+------------------T-------------------~ 
1111Phase in control ITrace switch; opti-I 
I I indicator Imization downgrade I 
I I I switch I 
t--+------------------+-------------------~ 
~12lMaximum no. of er-I I 
~ Iror table entries I I 
t--+------------------+-------------------~ 
1131END card indicatorlPointer to first I 
I I (phase 10) Icard of source pgm I 
~--+------------------+-------------------~ 
114 1Pointer to IPointer to 4-byte I 
~ I parameters Iconstant chain t 
t--+------------------+-------------------~ 
11SINADCON index for IPointer to 8-byte I 
I Ifirst parameter Iconstant chain I 
I Ilist I I 
~--+------------------+-------------------~ 
1161Page count IPointer to 16-byte I 
I I Iconstant chain I 
~--+------------------+-------------------~ 
1171Current line countlPointer to state- I 
I I Iment number chain I 
~--+------------------+-------------------~ 
118\Relative location INumber of branch I 
1 Ifor register 13 Itable entries; rel-I 
~ I lative location of I 
I I Iregister 12 I 
~--+------------------+-------------------~ 
1191Active register: INADCON index for I 
I Izero for reg 13, Istatement number I 
I Inonzero for reg 121adcons I L __ ~ __________________ ~ ___________________ J 

116 

r------------------T-------------------, 
I 1 I 2 I 

r--~------------------+-------------------J 
120lSecondary entry INumber of times I 
I Ipoints if nonzero IXREF buffer has I 
I I Ibeen written out I 
I I I (phase 10) I 
~--+------------------+-------------------~ 
121JLocation counter, INADCON index for I 
I I Ifirst COMMON area I 
.--+------------------+-------------------~ 
]22lPointer to dic- IActual number of I 
1 Itionary entry for lerror table entries I 
I IIBCOM I I 
t--+------------------+-------------------~ 
I 23 I External function IPointer to end of I 
I land/or CALL indi- Istatement number I 
I Icator Ichain I 
.--+------------------+-------------------~ 
I 24 I Program uses IOptimization level I 
t IFLOAT/FIX or MOD I I 
t Ifunction if non- I I 
~ Izero; arithmetic I I 
I linterrupt indica- I I 
I Itor I I 
.--+------------------+-------------------~ 
12SIPointer to first IPointer to COMMON I 
1 Id'ictionary entry Ichain I 
r--+·------------------+-------------------~ 
1261Pointer to DEFINE IPointer to EQUIVA- I 
I IFILE text ILENCE chain I 
.-~+------------------+-------------------~ 
1271Pointer to literallPointer to data I 
J Iconstant chain Itext chain I 
~--+------------------+-------------------~ 
1281Pointer to DIOCS IPointer to normal I 
1 I entry Itext chain I 
t--+------------------+-------------------~ 
1291 Pointer to branch IPointer to next I 
I Itable chain lavailable informa- I 
I I Ition table entry I 
~--+------------------+-------------------~ 
130lBLOCK DATA sub- IPointer to end of I 
I Iprogram switch linformation table I 
.--+------------------+-------------------~ 
1311FUNCTION SUB- ISUBROUTINE SUB- I 
I IPROGRAM switch IPROGRAM switch I 
r--+------------------+-------------------~ 
1321Pointer to name- IPointer to format I 
I Ilist text chain Itext chain I 
r--+------------------+-------------------~ 
1331size of constants ISize of variables I 
.--+------------------+-------------------~ 
134 1Current displace- IAdcon entry number I 
~ Iment from active I I 
I Iregister (phase I I 
I 120 ) I I 
.--+------------------+-------------------~ 
J3SIRelative location IDelete/error switch I 
1 lof adcon for firstl I 
J Istatement number I I L_~ _________________ ~ ___________________ J 



Table 17. Keyword Pointer Table 
r------------T-----------T----------------, 
I Character I Number1 I Displacement 2 I 
I (1 byte) ~ (1 byte) I (2 bytes) I 
~------------+-----------+----------------~ 
I A I 2 0 J 

I I I 
I I J 
I B I 2 12 ~ 
I I I 
I I J 
I C I 5 34· I 
] I I 

I I 
DI 8 84 I 

I I 
E I 5 175 1 

I I 
F I 3 220 1 

I 1 
Gil 244 I 

I I 
H I 0 01 I 

I I 
I I 3 2501 I 

I I 
J I 0 01 I 

I I 
K I 0 01 I 

I I 
L I 2 286 I 

I I 
Mil 312 I 

I I 
N 2 318 I 

1 
o 0 01 1 

I 
P 3 336 I 

I 
Q 0 0 I 

I 
R 5 357 I 

I 
S 3 399 J 

I 
T 2 428 ~ 

I 
u 0 0 I 

I 
V 0 0 I 

I 
W 1 447 ~ 

I 
X 0 0 I 

I 
Y 0 0] 

I 
I Z I 0 I 0 I 
~------------L-----------~----------------i 
11This field contains the number of key- I 
I words beginning with the associated I 
I character. I 
12Th1s field contains the displacement I 
I from the beginning of the keyword table I 
~ for the group of keywords associated I 
~ with the character. I l _________________________________________ J 

Table 18. Keyword Table (Part 1 of 2) 
r----------T-----------------------T------, 
J Length-l1 1 Key Word2 ICode3 I 
~----------t-----------------------+------~ 

5 IASSIGN 1 
I 

1 IAT 9 
I 

8 I BACKSPACE 2 
I 

8 IBLOCKDATA 3 
I 

7 I CONTINUE 5 
I 

5 I COMMON 7 
I 

3 I CALL 8 
I 

14 ICOMPLEXFUNCTION 4 
l 

6 lCOMPLEX 6 
I 

8 I DIMENSION 14 
I 

3 I DATA 17 

22 DOUBLEPRECISIONFUNCTION 10 

14 DOUBLEPRECISION 11 

1 DO 18 

9 DEFINEFILE 13 

6 DISPLAY 15 

4 DEBUG 16 

10 I EQUIVALENCE 19 
I 

6 IENDFILE 21 
I 

3 lEND (group mark) * 23 
I 

4 I ENTRY 22 
I 

7 I EXTERNAL 20 
I 

! 5 I FORMAT 25 
.----------~-----------------------~------~ 
11This part of the entry for each keyword I 
I is one byte in length and contains a I 
I value equal to the number of characters I 
I in that keyword minus one. I 
12This part of the entry for each keyword I 
~ contains an image of that keyword at one I 
J byte per character. I 
13 This part of the entry for each keyword I 
I is one byte in length and contains the I 
I classification code for that keyword. I 
~*Represented in hexadecimal as 'C5D5C44F'1 l _______________ ~ _________________________ J 

Appendix A: Tables 117 



Table 18. Keyword Table (Part 2 of 2) 
r----------T-----------------------T------, 
I Length-l1 I Key Word2 ICode 3 I 
t----------+-----------------------+------~ 
I 7 FUNCTION 24 ~ 

I ! 
I I 

3 FIND 12 I 
~ 
I 

3 GOTO 27 I 
I 
J 

7 IMPLICIT 29 1 
~ 

14 INTEGERFUNCTION 28 I 
~ 

6 INTEGER 30 I , 
14 LOGICAL FUNCTION 33 

6 LOGICAL 35 

3 MOVE 34 

7 NAMELIST 36 
I 

5 NORMAL 37 

4 PAUSE 38 

4 PRINT 39 

4 PUNCH 40 

3 READ 44 

5 RETURN 43 

5 REWIND 42 

11 REALFUNCTION 41 

3 REAL 45 

3 STOP 48 

9 SUBROUTINE 46 

8 STRUCTURE 47 

7 TRACEOFF 49 J 
I 

6 TRACEON 50 I 
I 

4 WRITE 51 I 
• ----------~--------------~--------~------i 
11This part of the entry for each keyword I 
I is one byte in length and contains a I 
I value equal to the number of characters I 
I in that keyword minus one. I 
12This part of the entry for each keyword I 
I contains an image of that keyword at onel 
I byte per character. I 
13 This part of the entry for each keyword I 
I is one byte in length and contains the I 
I classification code for that keyword. I l _________________________________________ J 

118 

The NADCON table, built by PHAZ15 and 
CORAL and partially overwritten by phase 
20, contains: 

1. Parameter list pointers. 

2. Adcons for local variables and 
constants. 

3. Adcons for variables in COMMON and for 
those equivalenced into COMMON. 

4. Adcons for external references. 

The information in the table is used by 
CORAL and phase 25,. Each table entry is 
one word in length; the format of the table 
is shown in Table 19. 

Table 19. NADCON Table 
r-----------------------------------------, 
IParameter list pointer entries (one word I 
Jper entry) I 
.-----------------------------------------~ 
IAdcon entries for local variables and I 
Iconstants (one word per entry) I 
~-----------------------------------------~ 
IAdcon entries for variables in COMMON andl 
~those equivalenced into COMMON (one word I 
Iper entry) I 
~-----------------------------------------~ 
JAdcon entries for external references I 
I (one word per entry) I L _________________________________________ J 

Parameter entries are created by PHAZ15. 
Each entry is a pointer to the dictionary 
entry for the parameter. Indicators denote 
ends of parameter lists and also parameters 
shared by more than one function or subrou­
tine call. 

Adcon entries are created by CORAL and 
then inserted by CORAL into the adcon por­
tion of the object module (see Figure 9) • 
Pointers to temporaries are created by 
phase 20 and placed in the portion of the 
table used previously by CORAL. 

Phase 25 inserts the parameters and tem­
poraries into the object module. The 
right-hand portion of Figure 9 indicates 
the sequence in which storage is assigned 
in the object module and the data which is 
entered into that' storage. 



The information table (referred to as 
NDICT or NDICTX) is constructed by Phase 10 
and modified by subsequent phases. This 
table contains entries that describe the 
operands of the source module. The infor­
mation table consists of five components: 
dictionary, statement number/array table, 
common table, literal table, and branch 
table. 

INFORMATION TABLE CHAINS 

The information table is arranged as a 
number of chains. A chain is a group of 
related entries, each of which contains a 
pointer to another entry in the group. 
Each chain is associated with a component 
of the information table. 

The information table can contain the 
following chains: 

• A maximum of nine dictionary chains: 
one for each allowable FORTRAN variable 
length (1 through 6 characters) and one 
for each allowable FORTRAN constant 
size (4, 8, or 16 bytes). Each dic­
tionary chain for variables contains 
entries that describe variables of the 
same length. Each dictionary chain for 
constants contains entries that de­
scribe constants of the same size. 

• One statement number/array chain for 
entries that describe statement 
numbers. 

• Two common table chains: one for 
entries describing common blocks and 
their associated variables, and one for 
entries describing equivalence groups 
and their associated variables. 

• One literal table chain for entries 
that describe literal constants used as 
arguments in CALL statements. 

• One branch table chain composed of 
entries for statement numbers appearing 
in computed GO TO statements. 

Entries describing the various operands 
of the source module are developed by Phase 
10 and placed into the information table in 
the order in which the operands are encoun­
tered during the processing of the source 
module. For this reason, a particular 
chain's entries may be scattered throughout 
the information table and entries describ­
ing different types of operands may occupy 
contiguous locations within the information 
table. Figure 10 illustrates this concept. 

CHAIN CONSTRUCTION 

The construction of a chain requires: 
(1) initialization of the chain, and (2) 
pointer manipulation. Chain initialization 
is a two-step process: 

1. The first entry of a particular type 
(e.g., an entry describing a variable 
of length one) is placed into the 
information table at the next avail­
able location. 

2. A pointer to this first entry is 
placed into the communication table 
entry (see "Comminication Table") 
reserved for the chain of which this 
first entry is a member. 

Subsequent entries are linked into the 
chain via pointer manipulation, as de­
scribed in the following paragraphs. 

The communication table entry containing 
the pointer to the initial entry in the 

r---------------------------------------------------------------------------------------, 

_______________________________________________________________________________________ J 

Figure 10. Information Table Chains 

Appendix A: Tables 119 



chain is examined and the first entry in 
the chain is obtained. The item that is to 
be entered is compared to the initial 
entry. If the two are equal, the item is 
not re-entered; if they are unequal, the 
first entry in the chain is checked to see 
if it is also the last. (An entry is the 
last in a chain if its "chain" field is 
zero.) 

If the chain entry under consideration 
is the last in the chain, the new item is 
entered into the information table at the 
next available location, and a pointer to 
its location is placed into the chain field 
of the last chain entry. The new entry is 
thereby linked into the chain and becomes 
its last member. 

If the entry under consideration is not 
the last in the chain, the next entry is 
obtained by using its chain field. The 
item to be entered is compared to the entry 
that was obtained. If the two are equal, 
the item is not re-entered; if they are 
unequal, the entry under consideration is 
checked to see if it is the last in the 
chain; etc. 

This process is continued until a com­
parable entry is found or the end of the 
chain is found. If a comparable entry is 
found, the item is not reentered. If the 
new item is not found in the chain, it is 
then linked into the chain. 

OPERATION OF INFORMATION TABLE CHAINS 

The following paragraphs describe the 
operation of the various chains in the 
information table. 

Dictionary Chain Operation 

The operation of a dictionary chain is 
based upon "balanced tree" notation. This 
notation provides two chains, high and low 
(with a common midpoint), for the entries 
describing variables of the same length or 
constants of the same size. The initial 
midpoint is the first entry placed into the 
information table for a variable of a par­
ticular length or a constant of a particu­
lar size. When two entries have been made 
on the high side of the midpoint, the first 
ent:ry on the current midpoint" s high-chain 
becomes the new midpoint. Similarly, when 
two entries have been made on the low side 
of the midpoint, the first entry on the 
CU1:-rent midpoint's low-chain becomes the 
new midpoint. 

120 

A change of midpoint for a variable of a 
particular length or a constant of a parti­
cular size causes a pointer to the new mid­
point to be recorded in the communication 
table. The following example illustrates 
the manner in which phase 10 employs the 
balanced tree notation to construct a dic­
tionary chain. 

Assume that the following variables 
appear in the source module in the order 
presented. 

D C E F A B 

When phase 10 encounters the variable n, 
it constructs a dictionary entry for it 
(see "Dictionary"), places this entry at 
the next available location in the informa­
tion table, and records a pointer to that 
entry into the appropriate field of the 
communication table (see "Communication 
Table"). The entry for D is the initial 
midpoint for the chain of entries describ­
ing variables of length one. (When a dic­
tionary entry is placed into the informa­
tion table, both the high- and low-chain 
fields of that entry are zero.) 

When phase 10 encounters the variable C, 
it constructs a dictionary entry for it. 
Phase 10 then obtains the dictionary entry 
that is the initial midpoint and compares C 
to the variable in that entry. If the two 
are unequal, phase 10 determines whether or 
not the variable to be entered is greater 
than or less than the variable in the 
obtained entry. In this case, C is less 
than D in the collating sequence, and, 
therefore, phase 10 examines the low-chain 
field of the obtained entry, which is that 
for D. This field is zero, and the end of 
the chain has been reached. Phase 10 
places the entry for C into the next avail­
able location in the information table and 
records a pointer to that entry in the low­
chain field of the dictionary entry for D. 
The entry for C is thereby linked into the 
chain. 

When the variable E is encountered, 
phase 10 carries out essentially the same 
procedure;' however, because E is greater 
than D, phase 10 examines the high-chain 
field of the entry for D. It is zero, 
which denotes the end of the chain. There­
fore, phase 10 places the dictionary entry 
for E into the next available location in 
the information table and records a pointer 
to that entry in the high-chain field of 
the dictionary entry for D. 

When the variable F is encountered, 
phase 10 constructs a dictionary entry for 
it and compares it to the variable in the 
entry that is the common starting pOint for 
the chain. Because F is greater than D, 
phase 10 examines the high-chain field of 



the entry for D. This field is not zero 
and, hence, the end of the chain has not 
yet been reached. . Phase 10 obtains the 
entry (for E) at the location pointed to by 
the nonzero chain field (of the entry for 
D) and compares F to the variable in the 
obtained entry. The variable F is greater 
than the variable E. Therefore, phase 10 
examines the high-chain field of the entry 
for E. This field is zero and the end of 
the chain has been reached. Phase 10 
places the entry for F into the next avail­
able location in the information table and 
records a pointer to that entry in the 
high-chain field of the entry for E. Since 
two entries have now been made on the high 
side of the current midpoint, the first 
variable on D's high-chain becomes the new 
midpoint. 

Phase 10 carries out similar procedures 
to link the entries for the variables A and 
B into the chain. 

(If one of the comparisons made between 
a variable to be entered into the dic­
tionary and a variable in an entry already 
in the dictionary results in a match, the 
variable has previously been entered and is 
not reentered.) 

Figure 11 illustrates the manner in 
which the entries for the variables are 
chained after the entry for B has been 
linked into the chain. 

r---------------------------~-------------, 
I I 
I I 
I I 
I I 
I I 
11st I 
13rd mid- I 
Ipoints I 
I I 
I I 
~-----------------------------------------~ 
I Note: High and low chains are main1:ained I 
Ifor all entries. Ahen the entry for F isl 
Imade, the mid-point shifts from D to E. I 
IWhen the entry for A is made, the mid- I 
Ipoint shifts from E to D. I L _________________________________________ J 

Figure 11. Dictionary Chain 

Statement Number Chain Operation 

The statement number chain constructed 
by phase 10 is linear; that is, each state­
ment number entry (see "Statement Number/ 
Array Table") is pointed to by the chain 
field of the previously constructed state­
ment number entry. The first statement 
number entry is pointed to by a pointer in 
the communication table. 

To construct the statement number chain, 
phase 10 places the statement number entry 
constructed for the first statement number 
in the module into the next available loca­
tion in the information table. It records 
a pointer to that entry in the appropriate 
field of the communication table. (When a 
statement number entry is placed into the 
information table, its chain field is 
zero.) Phase 10 links all other statement 
number entries into the chain by scanning 
the previously constructed statement number 
entries (in the sequence in which they are 
chained) until the last entry is found. 
The last entry is denoted by a zero chain 
field. Phase 10 then places the new entry 
at the next available location in the 
information table and records a pointer to 
that entry in the zero chain field of the 
last entry in the chain. The new entry is 
thereby linked into the chain and becomes 
its last member. (Throughout the construc­
tion of the statement number chain, phase 
10 makes comparisons to insure that a 
statement number is entered only once. ) 

Common Chain O~!~tiQg 

The chain constructed by phase 10 due to 
COMMON statements appearing in the source 
module is bi-linear; that is, phase 10 
links together: 

1. The individual COMMON block name 
entries (see "COMMON Table") that it 
develops for the COMMON block names 
appearing in the module. 

2. The dictionary entries (see "Dic­
tionary") that it develops for the 
variables appearing in a particular 
common block. (The dictionary entry 
for the first variable appearing in a 
COMMON block is also pointed to by the 
COMMON block name entry for the COMMON 
block containing the variable.) 

Appendix A: Tables 121 



'ro construct the COMMON chain, phase 10 
places the COMMON block name entry that it 
constructs for the first COMMON block name 
appearing in the module at the next avail­
able location in the information table. It 
records a pointer to this entry in the 
appropriate field of the communication 
table. Phase 10 then obtains the first 
variable in the COMMON block, constructs a 
dic"tionary entry for it, places the entry 
at the next available location in the 
information table, and records a pointer to 
that entry in the Pi and P2 field of the 
COMMON block name entry for the COMMON 
block containing the variable. Phase 10 
obtains the next variable in the common 
block, constructs a "dictionary entry for 
it, places the entry in the information 
table, records a pointer to that entry in 
the COMMON chain field of the dictionary 
entry constructed for the variable encoun­
tered immediately prior to the variable 
under consideration (this entry location is 
obtained from the P2 field of the COMMON 
block name entry), and records a pointer to 
the information table for the new COMMON 
variable in the P2 field. Thus, the P2 
field of the COMMON block name entry always 
contains a pointer to the information table 
entry for the last variable of a given COM­
MON block. Phase 10 obtains the next vari­
able in the COMMON block, etc. 

When phase 10 encounters a second unique 
COMMON block name, it constructs a COMMON 
block name entry for it, places the entry 
in the information table, and records a 
pointer to that entry in the chain field of 
the last COMMON block name entry, which is 
found by scanning the chain of such entries 
until a zero chain field is detected. 
Phase 10 then links the dictionary entries 
that it constructs for the variables 
appearing in the second COMMON block into 
the chain in the previously described 
manner. 

If a COMMON block name is repeated in 
the source module a number of times, phase 
10 constructs a COMMON block name entry 
only for the first appearance. However, it 
does include as members of the COMMON block 
the variables associated with the second 
and subsequent mentions of the COMMON block 
name. Phase 10 constructs a dictionary 
entry for the first variable associated 
with the second mention of the COMMON block 
name and places it into the information 
table. It then records a pointer to the 
dictionary entry for the new variable in 
the COMMON chain field of the last variable 
associated with the first mention of the 
COMMON block name. Phase 10 links the dic­
tionary entry it constructs for the second 

122 

variable associated with the second mention 
of a COMMON block name to the dictionary 
entry for the first variable associated 
with the second mention of that name; etc. 

If a third mention of a particular COM­
MON block name is encountered, phase 10 
processes the associated variables in a 
similar manner. It links the dictionary 
entries constructed for these variables as 
extensions to the dictionary entries devel­
oped for the variables associated with the 
second mention of the COMMON block name. 

~guivalence Chain Operation 

'

The chain constructed by phase 10 due to 
EQUIVALENCE statements appearing in the 
source module is also bi-linear. Phase 10 
links together: 

1. The individual equivalence group 
entries (see "COMMON Table") that it 
constructs for the equivalence groups 
appearing in the module. 

2. The equivalence variable entries (see 
"COMMON Table") that it constructs for 
the variables appearing in a particu­
lar equivalence group. (The equiva­
lence variable entry for the first 
variable appearing in an eqUivalence 
group is pointed to by the equivalence 
group entry for the group containing 
the variable.) 

The construction of the equivalence 
chain by phase 10 parallels its construc­
tion of the COMMON chain. It links the 
equivalence group entries in the same man­
ner as it does COMMON block name entries, 
and links equivalence variable entries in 
the same manner as the dictionary entries 
for the variables in a COMMON block. (The 
location of the last EQUIVALENCE group 
entry generated is recorded in the appro­
priate field of the communication table; 
the location of the last EQUIVALENCE vari­
able entry generated is recorded locally in 
the keyword subroutine that processes the 
EQUIVALENCE statement). 

Literal Constant Chain Operation 

The chain constructed by phase 10 for 
the literal constant information appearing 



in the source module is linear. The liter­
al constants are chained in reverse order 
of occurrence. Phase 10 records a pointer 
to the most recent literal constant entry 
generated. As each new entry is made, it 
is chained to the previous entry and it, in 
turn, is recorded as the most recent. 

The phase 10 construction of the branch 
table chain parallels that of the statement 
number chain. It records a pointer to the 
first branch table entry (see "Branch 
Table") that is placed into the information 
table in the appropriate field of the com­
munication table. In the chain field of 
the previously developed branch table 
entry, phase 10 records a pointer to the 
location in the information table for any 
new branch table entry. Unlike statement 
number entry processing, no label compari­
son is necessary. Thus, scanning the chain 
is avoided by recording the location of the 
last branch table entry in the P2 field of 
the first Initial Branch Table entry. 

INFORMATION TABLE COMPONENTS 

The fOllowing text describes the con­
tents of each component of the information 
table and presents illustrations of phase 
10 formats of the entries for each com­
ponent. Modifications made to these 
entries by subsequent phases of the compil­
er are also illustrated. 

Dictionary 

The dictionary contains entries that 
describe the variables and constants of the 
source module. The information. gathered 
for ea~h variable or constant is derived 
from an analysis of the context in which 
the variable or constant is used in the 
source module. 

VARIABLE ENTRY FORMAT: The format of the 
dictionary entries constructed by phase 10 
for the variables of the source module is 
illustrated in Figure 12. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, I i High-chain field I 
.-----------T-----------T-----------------~ 
IByte A IByte B I I 
lusage fieldlusage fieldlDIS field I 
.--~--------~-----------~-----------------~ 
~ Low-chain field I 
~-----------------------~-----------------~ 
]Mode field lType field I 
t-----------T-----------~-----------------~ 
IUsed by I I 
]subroutine I I 
I STALL- I I 
IIEKGST IPl field I 
r-----------~-----------------------------~ 
~COMMON displacement field I 
.-----------T-----------------------------~ 
]SF field lCOMMON chain field I 

t~~~d-;~~r~;~;----------T;~~~-;i~id-------1 
Iprocessibg I I 
t-----------------------~-----------------~ 
~ Name field I 
~-----------------------------------------~ 
~Note: This field exists only if the XREFI 
,----- option is used (See figure 15). , L _________________________________________ J 

• Figure 12. Format of Dictionary Entry for 
Variable 

High-Chain Field: The high-chain field is 
used to maintain linkage between the 
various entries in the chain. It contains 
either a pOinter to an entry that collates 
higher in the collating sequence or an 
indicator (zero), which indicates that 
entries in the chain that collate higher 
than itself have not yet been encountered. 

Byte A Usage Field: This field is con­
tained in the first byte of the second 
word. This field indicates a portion of 
the characteristics of the variable for 
which the dictionaty entry was created. 
The byte A usage is divided into eight sub­
fields, each of which is one bit long. The 
bits are numbered from 0 through 7. Figure 
13 indicates the function of each subfield 
in the byte A usage field. 

~te_~_Q§~~_~!elg: The byte B usage field 
is contained in the second byte of the 
second word. This field indicates addi­
tional characteristics of the variable 
entered into the dictionary. It is divided 
into eight subfields, each of which is one 
bit long. The bits are numbered from 0 
through 7. Figure 14 illustrates the func­
tion of each subfield in the byte B usage 
field. 

Appendix A: Tables 123 



r------------T----------------------------, 
I Subfield I Function I 
~------------+----------------------------~ 
I Bit 0 'on' I variable is structured , 
~------------t----------------------------i I Bit 1 'on' I symbol referred to , 
~------------+----------------------------i I Bit 2 'on' I variable is in COMMON I 
~------------.----------------------------i I Bit 3 'on' I not used , 
~------------+----------------------------i 
~ Bit 4 'on' 1 variable is equated I 
.------------t----------------------------i 1 Bit 5 'on' ~ variable has appeared in ani 
I I equivalence group that has 1 
J I been processed by subrou- I 
I I tine STALL-IEKGST (used by J 
I , phase 15) I 
~------------+----------------------------~ 
~ Bit 6 'on' ~ variable is an external I 
I I function name I 
~----~------~-t .... ---------------------------i 
I Bit 7 'on' 1 variable appears in type I 
I , statement I L ___________ .... L ____________________________ J 

Figure 13. Function of Each Subfield in 
the Byte A Usage Field of a 
Dictionary Entry for a Variable 
or Constant 

r------------T----------------------------, 
,Subfield I Function I 
.------------t----------------------------i I B~t 0 'on' I variable is "call by value", 
1 , parameter I 
.------------t----------------------------i 
I Bit 1 'on' I variable is "call by name" I 
1 I parameter , 
t------------+----------------------------~ 
J Bit 2 'on' 1 variable is used as an , 
, , argument , 

r------------+----------------------------i I Bit 3 'on' ~ variable has appeared in a I 
I I previous DATA statement 1 
I I (phase 15) I 
~------------t----------------------------i I Bit 4 'on' I not used , 
.------------+----------------------------i t Bit 5 'on' I variable is used as a , 
I 1 subscript , 
r------------+----------------------------i 1 Bit 6 'on' I variable is in COMMON, or I 
I I in an equivalence group and 1 
I 1 has been assigned a rela- I 
I , tive address (phase 15) I 
.------------+----------------------------i 1 Bit 7 'on' I variable appears in DATA , 
J I statement I L ____________ L ____________________________ J 

Figure 14. Function of Each Subfield in 
the Byte B Usage Field of a 
Dictionary Entry for a Variable 

121~ 

DIS Field: The DIS field contains either 
the-displacement of a structured variable 
from the head of its structure group or the 
number of dummy arguments for a statement 
function name. If the variable is neither 
structured nor a statement function name, 
this field contains a count of the number 
of times the variable appears in the source 
program .. 

Low-Chain Field: The low-chain field is 
used to maintain linkage between the 
various entries in the chain. It contains 
either a pointer to an entry that collates 
lower in the collating sequence or an indi­
cator (zero), which indicates that entries 
in the chain that collate lower than itself 
have not yet been encountered. 

Mode/Type Field: The mode/type field is 
divided into two subfields, each two bytes 
long. The first two bytes (mode subfield) 
are used to indicate the mode of the vari­
able (e.g., integer, real); the second two 
bytes (type subfield) are used to indicate 
the type of the variable (e.g., array, 
external function). Both the mode and type 
are numeric quantities and correspond to 
the values stated in the mode and type 
tables (see Tables 20 and 21). 

Pi Field: The Pi field contains either a 
pointer to the dimension information in the 
statement number/array table if the entry 
is for an array (i.e., a dimensioned vari­
able), or a pointer to the text generated 
for the statement function (SF) if the 
entry is for an SF name. If the entry is 
neither for the name of an array nor the 
name of a statement function, the field is 
zero. 

COMMQ~_Q!2pl~~~~t_I!~lg: The displace­
ment of the variable, if it is in COMMON, 
is placed in this field by Phase 10. This 
information will be moved to the DIS field 
by CORAL and replaced with a pointer to the 
dictionary entry for its COMMON block. 

SF Field: The SF field contains STORE­
FETCH information for the variable. If the 
variable is stored into, bit 0=1; if the 
variable is fetched, bit 1=1. 



Table 20. Operand Modes 
r---------------------T-------------------, 
1 1 Intetnal I 
1 I Representation J 
1 Mode of Operand I (in hexadecimal) 1 

~---------------------+-------------------~ 
~ ~ogical*l I 2 I 
] Logical*4 1 3 1 
1 Integer*2 ! 4 f 
t Integer I 5 I 
1 Real*8 1 6 1 
1 Real*4 I 7 1 
I ~omplex*16 I 8 I 
I Complex*8 I 9 1 
I Literal I A 1 
] Statement number I B 1 
I Hexadecimal 1 C I 
I Namelist I D 1 
1 Repeat constant I F 1 L _____________________ ~ ___________________ J 

Table 21. Operand Types 
r---------------------T-------------------, I l Internal I 
1 1 Representation 1 
IType of Operand I (in hexadecimal) I 
~---------------------f-------------------~ 
1 Scalar 1 0 J 
IDummy scalar I 1 I 
1 Array I 2 1 
IDummy array I 3 I 
IExternal function I 4 I 
1 Constant I 5 J 
IStatement function I 6 I 
INegative scalar ~ 8 I 
INegative dummy scalarl 9 I 
]Negative array J A I 
INegative dummy array I B J 
INegative external I C 1 
I function J I 
I~egative constant 1 D 1 
INegative statement I E I 
I function I I 
IQXX temporary I F I 
I (created by text I , 
Joptimization) I l L _____________________ ~ ___________________ J 

COMMON Chain Field: This field is used to 
maintain linkages between the variables in 
a COMMON block. It contains a pointer to 
the dictionary entry for the next var.iable 
in the COMMON block. (If the variable for 
which a dictionary entry is constructed is 
not in COMMON, . this field is not used.) 

Name Field: This field contains the name 
of the'variable (right-justified) for which 
the dictionary entry was created. 

MODIFICATIONS TO DICTIONARY ENTRIES FOR 
VARIABLES~--DurIng-CornpIlatIon;_certarn 
fields-of the dictionary entries for 

variables may be modified. The following 
examples illustrate the formats of dic­
tionary entries for variables at various 
stages of phase 10 and phase 15 processing. 
Only changes are indicated; * stands for 
unchanged. 

Di~iQB~Ey~~g~£Y for Variable After Prep­
aration for XREF Processing: The format of 
a dictionary entry for a variable after 
subroutine CSORN-IEKCCR processing is 
illustrated in Figure 15. 

~~E_g:!:!ff§'E_EQ!g~~E-=- L~§.t~g~£Y: This 
field contains a pointer to the most recent 
XREF buffer entry for the symbol. 

~~E_g:!:!ff~E_£ount: This field contains a 
count of the number of times the XREF buff­
er has been written out on SYSUT2 at the 
time that this dictionary entry is modified 
by subroutine CSORN-IEKCCR. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
1* 1 
~----------T---------T--------------------~ 
1 * 1 * 1 * 1 
~----------~---------~--------------------i 
1 * 1 
~--------------------T--------------------~ 
1* 1* I 
~----------T---------~--------------------i 
1 * 1 * I 
~----------~------------------------------~ 
I * I 
~----------T------------------------------i 
1 * 1 * 1 
~----------~---------T--------------------~ 
lXREF buffer pointer-I* I 
Ilast entry 1 1 
~--------------------i--------------------~ 
1·* 1 
.--------------------T--------------------i 
IXREF buffer count IXREF buffer pOinter-I 
I Ifirst entry I L ____________________ ~ ____________________ J 

• Figure 15. Format of Dictionary Entry for 
Variable After CSORN-IEKCCR 
Processing for XREF 

XREF Buffer Pointer -- First Entry: This 
field contains a pOinter to the first XREF 
buffer entry for this symbol. 

Dictionary Entry for Vari~Ql~_~ft~~Q!£= 
tionary-Eech~!ging: The format of a dic­
tionary entry for a variable after the dic­
tionary has been rechained during subrou­
tine STALL-IEKGST is illustrated in Figure 
16. 

Appendix A: Tables 125 



<--.---------------4 bytes-----------------> 
r-----------------------------------------, 
I New chain field I 
t----------T----------T-------------------~ 
1* 1* 1* ~ 
~----------L----------L-------------------~ 
1 * 1 
~---------------------T-------------------~ 
I * 1* 1 
~----------T----------L-------------------~ 
1 * 1 * 1 
~----------L------------------------------~ 
I * I 
~-----------------------------------------i 
1 * 1 
~-----------------------------------------~ 
1 * ] 
~-----------------------------------------~ 
1 * 1 l _________________________________________ J 

- Figure 16. Format of Dictionary Entry for 
Variable After Rechaining 

~i~tionary_~ntEY_KQE_y~Eiabb~_~fi~E_£Q~ 
Qrqig~i~_~ssign~~ni: The format of a dic­
tionary entry for a variable after co­
ordinate assignment by the STALL-IEKGST 
subroutine is illustrated in Figure 17. 

<--.--------------- 4 bytes-----------------> 
r-----------------------------------------, 
1 * i 
~----------T----------T-------------------~ 
1* 1* 1* 1 
~----------L----------L-------------------~ 
I * I 
~---------------------T-------------------~ 
1* t* I 
~----------T----------L-------------------~ 
1 coordinate I * 1 
1 number for I 1 
I variable I 1 
~----------L------------------------------i 
1* 1 
r-----------------------------------------~ 
I * I 
~-----------------------------------------i 
I * I 
~-----------------------------------------~ 
1 * I L _________________________________________ J 

- Figure 17. Format of Dictionary Entry for 
Variable After Coordinate 
Assignment 

Dictionary Entry for Variable After COMMON 
Block Processing: The format of a dic­
tionary entry for a variable after COMMON 
block processing is illustrated in Fig­
ure 18. 

126 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I * I 
~----------T----------T-------------------i 
1* ~* IDisplacement from I 
I 1 Istart of COMMON I 
1 1 1 block I 
~----------L----------L-------------------~ 
1* I 
.---------------------T-------------------~ 
~ * 1* 1 
r----------T----------L-------------------i 
1 * I * I • __________ L ______________________________ ~ 

~COMMON block pOinter I 
~-----------------------------------------i 
1 * I 
.-----------------------------------------~ 
1* I 
r-----------------------------------------i 
1 * I L _________________________________________ J 

-Figure 18. Format of Dictionary Entry for 
Variable After COMMON Block 
Processing 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I * ~ 
.----------T----------T-------------------~ 
I I IDisplacement from I 
~ I Ibase register I • __________ ~ __________ L ___________________ ~ 

~ Pointer to entry containing I 
~ pointer to address constant I 
I for variable I 
r---------------------T-------------------i 
J * I * I 
.----------T----------~-------------------i 
J* 1* I 
t----------~------------------------------i 
~* I r-----------------------------------------i 
J * I 
J-----------------------------------------~ 
I * I 
.-----------------------------------------~ 
1* I L _________________________________________ J 

- Figure 19. Format of Dictionary Entry for 
a Variable After Relative 
Address Assignment 

~i£iion~Ey~ntry_fQE_y~Ei~Qb~_~ft~E_g~!~~ 
iiye Agdrg~2_~~~igg~ggt: The format of a 
dictionary entry for a variable after rela­
tive address assignment is illustrated in 
Figure 19. 

CONSTANT ENTRY FORMAT: The format of the 
dictionary entries constructed by phase 10 
for the constants of the source module is 
illustrated in Figure 20. 



The format of a dictionary entry for a 
constant is the same as for a variable. 
The changes the entry undergoes during 
processing are the same except that bytes 3 
and 4 of word two contain a displacement 
from an associated address constant and a 
constant does not undergo XREF processing. 
Also, for constants referred to implicitly, 
PHAZ15 sets a referenced bit to on. (Bit 1 
in the byte A usage field; see Figure 13.) 

<----------------- 4 bytes------------------> 
r---------------~-------------------------, 
I Backward chain field l 
~-----------T-----------T-----------------~ 
'Byte A 'Byte B J , 
Jusage field,Usage fieldlUsed by phase 15 ] 
~----------~-----------~-----~-----------i 
, Forward chai~ field , 
.-----------------------T-----------------i 
I Mode field ~Type field ! 
~-----------T-----------~-----------------~ 
'Used by I , 
Isubroutine , zero I 
,STALL- , , 
IIEKGST I l 
~-----------~-----------------------------i 
, constant field I 
~-----------------------------------------~ 
, Constant field ] 
~-----------------------------------------i 
J Constant field , 
~-----------------------------------------i 
I Constant field , L _____________________ ~ ___________________ J 

• Figure 20. Format of Dictionary Entry for 
Constant 

The statement number/array table con­
tains statement number entries, which 
describe the statement numbers of the 
source module, and dimension entries, which 
describe the arrays of the source module. 

STA~EM§!':!~_:trQMB§g_§NTRY FORMAT: The format 
of the statement number entries constructed 
by phase 10 is illustrated in Figure 21. 

Chain Field: The chain field is used to 
maintain linkage between the various 
entries in the chain. It contains either a 
pointer to the next statement number entry 
in the chain or an indicator (zero), which 
indicates the end of the statement number 
chain. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, I , Chain Field I 
t--------T--------T----------T------------~ 
J Byte A , Byte B I Used by 'Used by I 
J Usage 'Usage ~ phase 20 , phase 20 I 
~--------~--------~----------~------------~ I J Pointer field I 
r-----------------------------------------i 
J Image field I 
~-----------------------------------------~ 
J Used for XREF processing , 
~-----------------------------------------i 
J Used for XREF processing I 
~-----------------------------------------~ 
J Used for XREF processing , 
t-----------------------------------------~ 
~ Used by phase 20 I 
r-----------------------------------------i 
J Note: This field exists only if the XREFI 
I --- option is used <See figure 24). I L _________________________________________ J 

.Figure 21. Format of a Statement Number 
Entry 

g~~_~_Q2~g~_[i~!~: This field is con­
tained in the first byte of the second 
word. This field indicates a portion of 
the characteristics of the statement nurober 
for which the entry was created. The byte 
A usage field is divided into eight sub­
fields, each of which is one bit long. The 
bits are numbered from 0 through 7. Figure 
22 indicates the function of each subfield 
of this field. 

gYi~~_Q2~g~_[i~!~: This field is con­
tained in the second byte of the second 
word. The byte B usage field indicates 
additional characteristics of the statement 
number for which the entry was constructed. 
The byte B usage field is divided into 
eight subfields, each of which is one bit 
long. The bits are numbered 0 through 7. 
Figure 23 indicates the function of each 
subfield in the byte B usage field. 

Pointer Field: If the entry is for the 
first statement number, this field contains 
a pointer to the last statement number 
entry. Otherwise, the field contains 
zeroes. 

!~~~~i~!~: This field contains the 
binary representation of the statement num­
ber for which the entry was created. 

Appendix A: Tables 127 



r------------T----------------------------, I Subfield I Function I 
.------------f----------------------------i 
I Bit 0 'on' I statement number defined I 
~------------+----------------------------i I Bit 1 'on' I statement number referred I 
I I to I 
~------------+----------------------------~ 
, Bit 2 'on' I referred to in an ASSIGN 1 
1 I statement I 
~------------t----------------------------i 
I Bit 3 I not used I 
~------------+----------------------------~ I Bit 4 'on' I statement number of a FOR- I 
I I MAT statement 1 
.------------t------------------------~---~ 
1 Bit 5 'on' I statement number of a GO I 
I I TO, PAUSE, RETURN, STOP, or) 
~ I DO statement I 
~------------+----------------------------i I Bit 6 'on' I statement number used as ani 
I I argument I 
.------------+----------------------------~ I Bit 7 'on' I statement number is the I 
1 1 object of a branch I L_~ __________ L ____________________________ J 

Figure 22. Function of Each Subfield in 
the Byte A Usage Field of a 
Statement Number Entry 

MODIFICATIONS TO STATEMENT NUMBER ENTRIES: 
During the processing of subroutines 
LABTLU-IEKCLT and STALL-IEKGST in phase 10, 
phases 15, 20, and 25, each statement num­
ber entry created by phase 10 is updated 
with information that describes the text 
block associated with the statement number. 
During phase 10, if the XREF option is 
selected, subroutine LABTLU-IEKCLT makes 
changes in statement number dictionary 
entries for later use by sUbroutine XREF­
IEKXRF (see Figure 24). 

r------------T----------------------------, 
,subfield I Function I 
~------------+----------------------------~ 
I Bit 0 'on' I statement number is within I 
, I a DO loop and is trans- I 
I I ferred to from outside the I 
I , range of the DO loop I 
~------------t----------------------------i 
I Bit 1 'on' I compiler generated state- 1 
I I ment number I 
~------------t----------------------------i 
I Bits 2-5 I not used 1 

~------------+----------------------------~ I Bit 6 'on' I statement number appears in} 
I I END or ERR parameter of I 
I , READ statement I 
~------------+----------------------------i I Bit 7 'on' I statement number is used inl 
I I a computed GO TO statement I L ____________ L ____________________________ J 

Figure 23. Function of Each Subfield in 
the Byte B Usage Field of a 
Statement Number Entry 

128 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I * I 
r---------7---------7---------7-----------~ 
1* 1 * 1* 1* I 
r---------i---------i---------i-----------i 
I * I 
.-----------------------------------------~ 
1* I 
.-----------------------------------------~ 
IXREF buffer pOinter -- last entry I 
r-------------------T---------------------i 
lXREF buffer count IXREF buffer pointer--I 
I Ifirst entry I • ___________________ i _____________________ ~ 

IDefinition field I 
.-----------------------------------------~ 
I'" I 
r-----------------------------------------i 
ISequence chain field I L _________________________________________ J 

eFigure 24. Format of a Dictionary Entry 
for Statement Number After Sub­
routine LABTLU-IEKCLT Proc­
eSSing for XREF 

!!g~[~~!.!.~f_EQ!!!!;;~L=- Last Entry: This 
field contains a pointer to the most recent 
XREF buffer entry for this statement num­
ber, unless this dictionary entry is a 
definition of a statement number. If this 
dict10nary entry is a definition of a sta­
tement number, this field is not used. 

XREF Buffer Count: This field contains a 
count of the number of times the XREF buff­
er has been written out on SYSUT2 at the 
time this dictionary entry is mOdified by 
subroutine LABTLU-IEKCLT. 

XREF Buffer Pointer -- First Entry: This 
field contains a pointer to the first XREF 
buffer entry for this statement number. 

Definition Field: This field contains an 
y~if-thIs-statement number dictionary 
entry corresponds to a definition of a 
statement numcer. The field contains -1 if 
the statement number has been previously 
defined. 

§~g~~£~Cha!~_E!~lg: This field chains 
the statement numbers in numerical order. 



Figure 25 illustrates the format of a 
statement number entry after the processing 
of the STALL-IEKGST subroutine and phases 
15, 20, and 25. Only changes are indi­
cated; * stands for unchanged. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I New Chain field I 
~----------T~--------T----------T---------i 
1* 1* I Block I Loop I 
I I I Status I number I 
I I I Field I I 
r----------L---------L----------~---------~ 
~ Address constant pointer field I 
r------------~----------------------------i 
I * I r----------T------------------------------i 
I Loop IText pointer field I 
inumber 1 J 
Isave area I I 
~----------~------------------------------i 
IForward connection field (ILEAD) I 
~------------~----------------------------~ 
IBackward connection field (JLEAD) J 

~-----------------------------------------~ 
IBlock size field (BSZ) I 
r-----------------------------------------i 
1* J L ____________________________________ ~----J 

• Figure 25. Format of Statement Number 
Entry After the Processing of 
Phases 15, 20, and 25 

New Chain Field: The new chain field con­
tainsa'pointer to the entry for the state­
ment number that is defined in the source 
module immediately after the statement 
number for which the statement number entry 
under consideration was constructed. (The 
STALL- IEKGST subroutine modifies thE~ phase 
10 chain pointer when it rechains the 
statement number entries to correspond to 
the· order in which statement numbers: are 
defined in the source module.) This: field 
is not modified by subsequent phases. 

Block Status Field: The block status field 
Indicates-the-8tatus of the text block 
associated with the statement number entry 
under consideration. The block status 
field is divided into eight subfields, each 
of which is one bit long. The bits are 
numbered 0 through 7. Figure 26 indicates 
the function of each subfield in the block 
status field. 

~ooQ_~~lli~~E_~i~!g: The loop number field 
contains the number of the loop to which 
the text block (associated with the state­
ment number entry under consideration) 
belongs. This field is set up and used by 
phase 20. Just before the loop number is 

assigned, this field contains a depth 
number. 

Back Dominator Field: The back dominator 
field contains a .pointer to the statement 
number entry associated with the back 
dominator of the text block associated with 
the statement number entry under considera­
tion. This field, set up and used by phase 
20, occupies the address constant pointer 
field. 

r-------------T---------------------------, 
I Subfield I Function I 
t-------------t--------------------~------i 
I Bit 0 I Used for various reasons I 
I I by the routines that I 
I I explore connections (e.g., I 
I I the associated block has I 
I I previously been considered, 
I Bit 1 , in the search for the backl 
I I dominator of the block) , 
r-------------t---------------------------i 
I Bit 2 ~on' I the associated block exits' 
] I from a loop , 
}-------------t---------------------------i 
1 Bit 3 'on' ,the associated block is a I 
I I fork (i.e., it has two or I 
J , more forward connections) , 
.-------------t---------------------------i 
1 Bit 4 I same as bits 0 and 1 I 
.-------------t---------------------------i 
t Bit 5 'on' I the associated block is inl 
~ , the current loop I 
r-------------t---------------------------i 
I Bit 6 ~on' I the associated block has I 
~ I been completely processed I 
1 I along the OPT=2 path I 
r-------------t---------------------------i 
~ Bit 7 'on~ I the associated block is ani 
1 I entry block I L _____________ ~ ___________________________ J 

Figure 26. FUnction of Each Subfield in 
the Block Status Field 

Address Constant Pointer Field: The 
address constant P9inter field (after phase 
25 processing) contains either of the 
following: 

• An indication of a reserved register 
and a displacement, if branching opti­
mization is being implemented and if a 
branch can be made to the text block 
(associated with the statement number 
entry under consideration) via an RX­
format branch instruction (see the 
phase 20, "Branching Optimization"). 

• A pointer to the address constant re­
served for the statement number (see 
Phase 25, "ADCON Table Entry 
Reservation"). 

Appendix A: Tables 129 



Text Pointer Field: The text pointer field 
contains a pointer to the phase 15 text 
entry for the statement number with which 
the statement number entry under considera­
tion is associated. This field is not used 
by phase 10; it is filled in by phase 15, 
and is unchanged by subsequent phases. 

Forward Connection Field (ILEAD): The for­
ward connectIon-¥iela-contains-a pointer to 
the initial RMAJOR entry for the blocks to 
which the text block associated with the 
statement number entry under consideration 
connects. This field is set up by. phase 15 
and used by phase 20. A relative address 
of the block is stored in this field by 
phase 20. 

Backward Connection Field (JLEAD): The 
backward connectron~reld-Contains a point­
er to the initial CMAJOR entry for the 
blocks that connect to the text block asso­
ciated with the statement number entry 
under consideration. This field is set up 
by phase 15 and used by phase 20. During 
phase 25 a relative location is stored in 
the field. 

DIMENSION ENTRY FORMAT: The format of the 
dimension entries constructed by phase 10 
is illustrated in Figure 27. 

~f!~Y_~i~~_Kielg: The array size field 
contains either the total size of the asso­
ciated array or zero, if the array has 
variable dimensions. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I Array size field 1 
~-------------------T---------------------~ 
IDi.mension number IElement length field I 
I fi.eld I J 

~-------------------~---------------------~ 1 First subscript pointer field l 
~-----------------------------------------~ I Second subscript pointer field 1 
~-----------------------------------------i 
I Third subscript pointer field I 
~-----------------------------------------i I Fourth subscript pointer field I 
~-----------------------------------------i I Fifth subscript pointer field I 
t-------------~---------------------------~ I Sixth subscript pointer field I 
~-----------------------------------------~ 
I used only for variable I 
I dimensions 1 L _________________________________________ J 

• Figure 27. Format of Dimension Entry 

Dimension Number Field: The dimension 
rrwnber-field-Contains-the number of dimen­
sions (1 through 7) of the associated 
array. 

130 

EI~m~i_1~ng~h_Ki~!g: The element length 
field contains the length of each element 
(first dimension factor) in the associated 
array. 

Fi~~~Q~£!:iE~_Eoint~LKielg: The field 
contains either a pointer to the dictionary 
entry for the second dimension factor, 
which has a value of Dl*L (see "Appendix F: 
Address Computation for Array Elements"), 
or a pointer to the dictionary entry for 
the first subscript parameter used to 
dimension the associated array if that 

I 
array has variable dimensions,. This field 
is not used if the associated array has a 
single non-variable dimension. 

Second Subscript Pointer Field: This field 
contains either a pOinter to the dictionary 
entry for the third dimension factor, which 
has a value of Dl*D2*L, or a pointer to the 
second subscript parameter used to dimen­
sion the associated array if that array has 
variable dimensions. This field is not 

I 
used if the associated array has a single 
dimension, or has two non-variable 
dimensions. 

Third Subscript Pointer Field: This field 
contains either a pointer to the dictionary 
entry for the fourth dimension factor, 
which has a value of Dl*D2*D3*L, or a 
pointer to the third subscript parameter 
used to dimension the associated array if 
that array has variable dimensions. This 
field is not used if the associated array 
has fewer than three dimensions, or has 
three non-variable dimensions. 

Fourth Subscript Pointer Field: This field 
contains either a pOinter to the dictionary 
entry for the fifth dimension factor, which 
has a value of Dl*D2*D3*D4*L, or a pointer 
to the dictionary entry for the fourth sub­
script parameter used to dimension the 
associated array if that array has variable 
dimensions. This field is not used if the 
associated array has fewer than four dimen­
sions, or has four non-variable dimensions. 

Fifth Subscript Pointer Field: This field 
contains either a pointer to the dictionary 
entry for the sixth dimension factor, which 
has a value of Dl*D2*D3*D4*D5*L, or a 
pOinter to the dictionary entry for the 
fifth subscript parameter used to dimension 
the associated array if that array has 
variable dimensions. This field is not 
used if the associated array has fewer than 
five dimensions, or has five non-variable 
dimensions. 

Sixth Subscript Pointer Field: This field 
contains either a pointer to the dictionary 
entry for the seventh dimension factor, 
which has a value of Dl*D2*D3*D4*D5*D6*L, 
or a pointer to the dictionary entry for 
the sixth subscript parameter used to 



dimension the associated array if that 
array has variable dimensions. This field 
is not used if the associated array has 
fewer than six dimensions, or has six non­
variable dimensions. 

Pointer to Last Subscript Parameter: This 
field contains a pointer to the dictionary 
entry for the seventh subscript parameter 
used to dimension the associated array if 
that array has variable dimensions. This 
field is not used if the associated array 
has fewer than seven dimensions, or has 
seven non-variable dimensions. 

The COMMON table contains: (1) COMMON 
block name entries, which describe COMMON 
blocks: (2) equivalence group entries, 
which describe equivalence groups; and (3) 
equivalence variable entries, which 
describe equivalence variables. 

COMMON BLOCK NAME ENTRY FORMAT: ThE~ format 
of the COMMON block name entries con­
structed by phase 10 is illustrated in 
Figure 28. 

Chain Field: The chain field is used to 
maintain linkage between the various common 
block name entries. It contains either a 
pointer to the next COMMON block name entry 
or an indicator (zero), which indicates 
that additional common blocks have Ilot yet 
been encountered. 

E1-Fi~!9: The P1 field contains a pointer 
to the dictionary entry for the first vari­
able in this COMMON block. 

P2 Field: The P2 field contains a pointer 
to the dictionary entry for the last vari­
able in this COMMON block. 

Name Field: The name field contains the 
riame(right-ju.stified) of the COMMON block 
for which this COMMON block name en-try was 
constructed. 

Character Number Field: The character 
number field contains-the number of charac­
ters in the COMMON block name. 

ISN F:ield: The ISN field contains the ISN 
assigned to the statement in which this 
COMMON' block name first occurs. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I Chain field I 
~-----------------------------------------~ 
q P1 field I 
~-----------------------------------------~ 
I P2 field I 
~-----------------------------------------~ 
J Name field I 
.-----------------------------------------~ I Name field I 
.--------------------T--------------------~ 
ICharacter Number IISN field I 
Ifield I I L ____________________ ~ ____________________ J 

• Figure 28. Format of a COMMON Block Name 
Entry 

MODIFICATIONS TO COMMON BLOCK NAME ENTRIES: 
During-compilation~-Certain-fierds-of-COM~ 
MON block name entries may be modified. 
Figure 29 illustrates the format of a COM­
MON block name entry after COMMON block 
proceSSing by subroutine STALL-IEKGST. 
Only changes are indicated: * stands for 
unchanged. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I * I 
.-----------------------------------------~ 
I * I 
~-----------------------------------------~ 
1 Total size of COMMON block I 

~-----------------------------------------~ 
1* I 
.-----------------------------------------~ 
I * I 
.--------------------T--------------------~ 
1 * I * I L ____________________ ~ ____________________ J 

• Figure 29. Format of COMMON Block Name 
Entry After COMMON Block 
Processing 

EQUIVALENCE GROUP ENTRY FORMAT: The format 
of the equivalence group entries con­
structed by phase 10 is illustrated in 
Figure 30. 

Indicator Field: The indicator field is 
nonzero if a variable in this group is sub­
scripted and its dimension statement has 
not been processed. 

Chain Field: The chain field is used to 
maintain-linkage between the various equiv­
alence groups. It contains a pointer to 
the next equivalence group entry. 

Appendix A: Tables 131 



<-----------------4 bytes-----------------> 
r----------T------------------------------, 
IIndicator I Chain field I 
J field , J 

~-_--------i------------------------------~ 
J Pi field I 
~-----------------------------------------i 
I Used by phase 15 I 
.-----------------------------------------~ 
, ISN field I L _________________________________________ J 

Figure 30. Format of an Equivalence Group 
Entry 

Pi Field: The Pi field contains a pointer 
to the equivalence variable entry for the 
first variable in the equivalence group or 
for the first variable in the COMMON block. 

!SN_Fi~!3: The ISN field contains the ISN 
assigned to the statement in which any name 
of the EQUIVALENCE group first occurs. 

~OD!~!£~!IO~~!Q_~QQ!Y~1EN£~_§gQQ~~~!g!~~: 
During compilation, certain fields of 
equivalence group entries may be modified. 
Figure 31 illustrates the format of an 
equivalence group entry after equivalence 
processing by subroutine STALL-IEKGST. 
Only changes are indicated; * stands for 
unchanged. 

<-----------------4 bytes-----------------> 
r----------T------------------------------, 
I * I * I .----------i------------------------------i 
'* I t-----------------------------------------~ 
lPointer to the "head" of the equivalence, 
'group , 
~-----------------------------------------i 

'* , L _________________________________________ J 

• Figure 31. Format of Equivalence Group 
Entry After Equivalence 
Processing 

~2!!!y~~~~CE VAE!~BL~_~!'!!RY_FOR~!: The 
format of the equivalence variable entries 
constructed by phase 10 is illustrated in 
Figure 32. 

Indicator Field: The indicator field is 
nonzero-I¥-the-equivalence variable is sub­
scripted prior to being dimensioned. 

Pi Field: The Pi field contains a pointer 
to-the-dictionary entry for this equiva­
lence variable. 

132 

Number of Subscripts Field: The number of 
subscripts field contains the total number 
of subscripts used by a variable being 
equivalenced, with subscripts, prior to 
being dimensioned. 

<-----------------4 bytes-----------------> 
r----------T------------------------------, 
IIndicator I Pi field , 
Ifield I I 
~----------+------------------------------i 
,Number of I Chain field , 
I subscripts I , 
.----------i------------------------------i 
I Offset field , 
r-----------------------------------------i 
, Subscript field , 

~-----------------------------------------i 
I I , , 
J I 
.-----------------------------------------i I Subscript field , L _________________________________________ J 

Figure 32. Format of Equivalence Variable 
Entry 

Chain Field: The chain field is used to 
maintain-linkage between the various 
variables in the equivalence group. It 
contains a pointer to the equivalence vari­
able entry for the next variable in the 
equivalence group. 

Offset Field: The offset field contains 
the-displacement of this variable from the 
first element in the equivalence group. 

Subscript Field: The subscript field(s) 
contains the actual subscript(s) specified 
for a variable being equivalenced, with 
subscripts, prior to being dimensioned. 

MODIFICATIONS TO EQUIVALENCE VARIABLE 
ENTRIES: During compilation, certain 
fields of equivalence variable entries may 
be modified. Figure 33 illustrates the 
format of an equivalence variable entry 
after equivalence processing by the STALL­
IEKGST subroutine. Only changes are indi­
cated; * stands for unchanged. 



<-----------------4 bytes-----------------> 
r----------T------------------------------, 
I * I * I 
t----------+------------------------------~ 
I * 1* J 

~----------i------------------------------~ 
~Displacement of variable from group head I 
~-----------------------------------------~ 
I * I t-----------------------------------------1 
I I 
] I 
I I 
t-----------------------------------------~ 
1 * I L _________________________________________ J 

• Figure 33. Format of Equivalence Variable 
Entry After Equivalence 
Processing 

The literal table contains literal con­
stant entries, which describe literal con­
stants used as arguments in CALL sta'te­
ments, and literal data entries. which 
describe the literal data appearing in DATA 
statements. (Entries for literal data 
appearing in DATA statements are not 
chained. They are pointed to from data 
text. ) 

LITERAL CONSTANT ENTRY FORMAT: The format 
of the literal constant entries constructed 
by phase 10 is illustrated in Figure 34. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I Chain field J 

t----------T--~---------------------------~ 
I Length IUsed by STALL-IEKGST I 
Ifield I I 
t----------i------------------------------~ 
I Literal constant field I 
I (variable length) I L _________________________________________ J 

• Figure 34. Format of Literal Constant 
Entry 

Chain Field: The chain field is used to 
maintaIn-lInkage between the various liter­
al constant entries. It contains a pointer 
to the previous literal constant entry. 

~eng~h_f!~!g: The length field contains 
the length (in bytes) of the literal 
constant. 

Literal Constant Field: The literal con­
stant field contains the actual literal 
constant for which the entry was con­
structed. The field ranges from 1 to 255 
bytes (1 character/byte, left-justified) 
depending on the size of the literal 
constant. 

MODIFICATIONS TO LITERAL CONSTANT ENTRIES: 
During compilation, certain fields of lit­
eral constant entries may be modified. 
Figure 35 illustrates the format of a lit-

I eral constant entry after literal process­
ing by STALL-IEKGST. Only changes are 
indicated; * stands for unchanged. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
I * I 
~----------T------------------------------~ 
l* IDisplacement from I 
I lassociated address I 
I I constant I 
t----------i------------------------------~ 
I * I L _________________________________________ J 

.Figure 35. Format of Literal Constant 
Entry After Literal Processing 

LITERAL DATA ENTRY FORMAT: The format of 
the-rIteral-data-entrIes-constructed by 
phase 10 is illustrated in Figure 36. 

r-----------------------------------------, 
I Length field (1 byte) I 
t-----------------------------------------~ 
I Literal data field (1-255 bytes) I L _________________________________________ J 

Figure 36. Format of Literal Data Entry 

Length Field: The length field contains 
the length (in bytes) of the literal data 
for which the entry was constructed. 

Literal Data Field: The literal data field 
contains-the-actual literal data. The 
field ranges from 1 to 255 bytes (1 
character/byte, left-justified) depending 
on the size of the literal data. 

I Branch Tables 

The branch tables contain initial branch 
table entries and standard branch table 
entries. An initial branch table entry is 

Appendix A: Tables 133 



constructed by phase 10 as it encounters 
each computed GO TO statement of the source 
module. Standard branch table entries are 
constructed by phase 10 for each statement 
number appearing in the computed GO TO 
statement. 

INITIAL BRANCH TABLE ENTRY FORMAT: The 
format of the initial branch table entries 
constructed by phase 10 is illustrated in 
Fi9ure 31. 

<------------------4 bytes-----------------> 
r----------T------------------------------, 
IIndicator IChain field I 
~field I I 
~----------~------------------------------~ 
I Pi field I 
~-----------------------------------------~ I Used by phase 25 I 
~-----------------------------------------~ 
I Used by phase 25 I l _________________________________________ J 

Figure 31. Format of Initial Branch Table 
Entry 

Indicator Field: The indicator field is 
nml~ero-for_an-initial branch table entry. 
This indicates that the entry is for 
compiler-generated statement number for the 
nfall-throughn statement. (The fall­
through statement is executed if the value 
of the control variable is equal to zero or 
larger than the number of statement numbers 
in the c0mputed GO TO statement.) 

Chain Field: The chain field is used to 
maintain linkage between the various branch 
table entries. It contains a pointer to 
the next branch table entry. 

Pi Field: The Pi field contains a pointer 
to-the-statement number/array table entry 
for the compiler-generated statement number 
for the fall-through statement. 

MODIFICATIONS TO INITIAL BRANCH TABLE 
ENrRIEs:--ourlng-compllation; certain 
fil~lds of initial branch table entries may 
be modified. Figure 38 illustrates the 
format of an initial branch table entry 
after phase 25 processing is complete. 
Only changes are indicated; * stands for 
unchanged. 

<-----------------4 bytes-----------------> 
r----------T------------------------------, 
I * I * I 
.----------~------------------------------~ 
I * I 
~-----------------------------------------~ 
IRelative address of statement associated I 
Iwith fall-through statement .nurnber I 
~-----------------------------------------~ 
lPointer to address constant reserved for I 
Ifall-through statement number I l _________________________________________ J 

Figure 38. Format of Initial Branch Table 
Entry After Phase 25 
Processing 

STANDARD BRANCH TABLE ENTRY FORMAT: The 
format-of-the-standard~ranch-table entries 
constructed by phase 10 is the same as the 
format for initial branch table entries. 

Indicator Field: This field is zero for 
standar~branch table entries. 

Chain Field: This field is used to main­
tain-linkage between the various branch 
table entries. It contains a pointer to 
the next branch table entry. 

Pi Field: The Pi field contains a pointer 
to the statement number/array table entLy 
for the statement number (appearing in a 
computed GO TO statement) for which the 
standard branch table entry was 
constructed. 

MobIFICATION~TO_§TA~Q~8Q_~8~~£g_~~~~~ 
~t::!:!:R!.~§: During compilation, ce.rtain 
fields of standard branch table entries may 
be modified. Figure 39 illustrates the 
format of a standard branch table entry 
after the processing of phase 25 is com­
plete. Only changes are indicated; * 
stands for unchanged. 

<-----------------4 bytes-----------------> 
r----------T------------------------------, 
I * I * I 
~----------~------------------------------~ 
] * I 
.-----------------------------------------~ 
JRelative address of statement associated I 
lwith this statement number I L _________________________________________ J 

Figure 39. Format of Standard Branch Table 
Entry After Phase 25 
Processing 



FUNCTION TABLE 

The function table (IEKLFT) contains 
entries for the IBM supplied function sub­
programs and in-line routines. The subpro­
grams reside on the FORTRAN system li­
brary (SYS1.FORTLIB), while the in-line 
routines are expanded at compile time. The 
function table is used by phase 15 to 
determine the validity of the arguments to 
the function subprogram. 

Each entry in the function table (see 
Table 22) contains two fields: an index 
field (2 bytes) and a function name field 
(6 bytes). 

Function Name Field: Thir field contains 
the names of all library and in-line func­
tions. It is searched in ascending order 
beginning with field 1 and then with field 
2. Field 1 contains the four low-order 
characters of the name; field twq contains 
the two high-order characters of the name. 

Table 22. Function Table -- IEKLFT 
(12, 128) 

2 bytes - .. 10+1--.----- 6 bytes --------"'"' .. 1 
Field 1 

Index 
Functi on Name 

I 
I 

Field 2 

Index Field: This field contains a pointer 
to entries in the following tables: 

FUNTB1(128) -- This table contains 128 
i-byte entries pointing back 
to the function table. 

FUNTB2(128) -- This table contains 128 
i-byte entries which give 
the mode of the arguments 
for all library and in-line 
functions. 

FUNTB3(128) -- This table contains 60 
i-byte entries which give 
the mode of the result for 
all in-line functions. The 
first 68 bytes of the table 
are not used. 

FUNTB4(68) -- This table contains 68 
4-byte locations reserved 
for dictionary pOinters to 
library routines. 

There are nine major bit tables used 
extensively throughout text optimization. 
These tables (each four words or 128 bits 
in length) contain bits that are preset. 
Only the first 86 bit positions in each 
table are meaningful and each of these is 
associated with a particular text entry 
operator. The settings (on or off) given 
to these bits indicate either the validity 
of operand positions in a text entry with a 
particular operator or the candidacy of a 
text entry with a particular operator for 
text optimization procedures. 

Three of these tables, MVW, MVU, and MVV 
are tested by subroutine KORAN-IEKQKO and 
indicate the validity of the operand posi­
tions in a text entry with a given opera­
tor. The MVW table indicates the validity 
of the operand 1 position; the MVU table 
indicates the validity of the operand 2 
position; and the MVV table indicates the 
validity of the operand 3 position. For 
example, if the bit in MVW that corresponds 
to a particular operator is set to on, then 
the operand 1 position of a text entry hav­
ing that operator contaLns a valid or actu­
al operand. If the bit is set to off, the 
operand 1 position of the text entry does 
not contain an actual operand. (In the 
latter case, the operand 1 position may 
still contain information that is pertinent 
to the text entry; however, it does not 
contain an actual operand.) 

Appendix A: Tables 135 



The remaining six tables, MBM, MSGM, 
MGM, MXM, MSM, and MBR are also tested by 
subroutine KORAN-IEKQKO and indicate the 
candidacy of a text entry with a particular 
operator for text optimization procedures. 
The MBM table indicates whether or not text 
entries with a particular operator are to 
be considered for backward movement: the 
MXM table indicates whether or not text 
entries with a particular operator are to 
be considered for common expression elimi­
nation; the MSM table indicates whether or 
not text entries with a particular operator 
are to be considered for strength reduc-

136 

tion; and the MBR table indicates whether 
or not the operator is a branch. 

The text optimization bit tables are 
illustrated in Table 23. In this table, 
the operator associated with each bit posi­
tion in the bit tables is identified. The 
bits settings for each operator as they 
appear in the bit tables is also shown. An 
x signifies that the bit is on; a blank 
signifies that the bit is off. 



• Table 23. Text Optimization Bit Tables 

Bit Tables Bit Tables 

Bit Operator Bit Operator 

MVW MVU MVV MSGM MBM MXM MSM MBR MGM MVW MVU MVV MSGM MBM MXM MSM MBR MGM 

1 'NOT' X X X X 44 L1BF X X X 

2 UNARY MINUS X X X X 45 RS X X X X X X 

3 46 LS X X X X X X 

4 'AND' X X X X X 47 BXHLE 

5 ) 48 

6 ·OR· X X X X X .49 

7 • XOR' X X X X X X 50 ·LE· X X X X X 

8 ST X X X 51 .GE· X X X X X 

9 I (ARG) X X X X 52 ·EQ· X X X X X 

10 + X X X X X X X X 53 'LT' X X X X X 

11 - X X X X X X X X 54 'GT' X X X X X 

12 * X X X X X X X 55 ·NE· X X X X X 

13 / X X X X X X X 56 MAX2 X ,x X X X 

14 LA X X X X 57 MIN2 X (X X X X 

15 EXT X 58 DIM X X X X X 

16 BG X X X X X 59 IDIM X X X X X 

17 BL X X X X X 60 DMOD X X X X X 

18 BNE X X X 61 MOD X X X X X 

19 BGE X X X X X 62 AMOD X X X X X 

20 BLE X X X X X 63 DSIGN X X X X X 

21 BE X X X 64 SIGN X X X X X 

22 SC X X X X X X X 65 ISIGN X X X X X 

23 I/O LIST X X X 66 DABS X X X X 

24 BCOMP X X 67 ABS X X X X 

25 ( 68 lABS X X X X 

26 EM 69 IDINT X X X X 

27 B 70 

28 BA X X 71 INT X X X X 

29 BBT X X X 72 HFIX X X X X 

30 BBF X X X 73 IFIX X X X X 

31 LBIT X X X X X 74 DFLT X X X X 

32 BGZ X X 75 FLT X X X X 

33 BLZ X X 76 DBLE X X X X 

34 BNEZ X X 77 BITON X X 

35 BGEZ X X 78 BITOFF X X 

36 BLEZ X X 79 BITFLP X X 

37 BEZ X X 80 ANDF X X X X X 

38 81 ORF X X X X X 

39 NMLST X X 82 COMPL X X X X 

40 83 MOD24 X X X X 

41 BF X X 84 LCOMPL X X X X 

42 BT X X 85 SHFTR X X X X X 

43 LDB X X X 86 SHFTL X X X X X 

Appendix A: Tables 137 



REGISTER ASSIGNMENT TABLES 

The register assignment tables are a set 
of one-dimensional arrays used by the full 
register assignment routines of phase 20. 
There are three types of tables: local 
assignment tables (see Table 24), global 
assignment tables (see Table 26), and 
register usage tables. The register usage 
tables are work tables used by the local 
and global assignment routines in the proc­
ess of full register assignment. 

Reqister Use Table 

The format of the register use tables, 
TRUSE and RUSE, are the same for the local 
and global assignment routines. Each table 
is 16 words long. Words 1 through 11 
represent general registers 1 through 11, 
words 12, 14, and 16 represent floating­
point registers 2, 4, and 6, and words 13 
and 15 are unused. 

138 

Table 24. Local Assignment Tables 

r----T----------------------------T-------, 
INamel Function IOrigin1 1 

.----+----------------------------+-------~ 
IJ IServes as index to TXP~ BVP, FWDPAS-
I IBVRA, BVA. IEKRFP 
I I 
JTXP IGives the storage location FWDPAS-
I lof the text item associated IEKRFP 
I Jwith each value of J. 
I I 
IBVP IContains the MCOORD value FWDPAS-
I lassociated with operand 1 of IEKRFP 
J Ithe text item represented by 
I I J. 
I I 
IBVRAIIndicates the register 
I Ilocally assigned to the 
I Iquantity represented by J. 
I J 
IBVA Represents the activity 
J within the block of the 
I quantity represented by J; 
J also contains indicator bits 
J describing the quantity (see 
J Table 25). 

BKPAS­
IEKRBP 

FWDPAS­
IEKRFP 

I 
!WJ2 Indicates whether a variable FWDPAS-
J 
J 
1 

is eligible for local IEKRFP 
assignment. Indexed via the 
MCOORD values obtained from 

I BVP • . ----~----------------------------~-------~ 
11This column indicates the name of the I 
I register assignment routine that ini- I 
I tially creates the particular table. I 
12Although WJ is distinctly a local I 
I assignment table, it is indexed by the I 
I quantity MCOORD (which is used to index I 
I the global assignment tables) rather I 
J than by the local assignment table I 
J index, J. I L _________________________________________ J 



Table 25. BVA Table 
r---T-------------------------------------, 
I Bit I Meaning I 
.---+-------------------------------------i 
I 0 I Not used. 
J 1 
I 1 Text item is candidate for forward 
l 
I 

movement. 

I 2 Not used~ 
I 
I 3 Inhibit -inter-block' register 
I assignment for text item. 
I 
I 4 Text item is candidate for 'inter-
~ block' register assignment. 
I 
I 5 Text item is candidate 
J point downgrading if a 

for floating- 1 
CALL statement 1 

~ is found. 
I 
I 6 Text item is candidate for register 
I classification. 
I 
I 7 Pl is the result of an integer mod 
~ function. 

8 The operand has been encountered 
before. 

9 Text item is the imaginary result of 
a complex function. 

10 The operand is defined by a function 
call. 

11 Pl is floating point. 

12 Pl is the result of an integer mul­
l tiply or divide. 
J 
113 Zero length temporary indicator. 
I 
114 
I 
1 
115 

I • 
I · 
I • 

ICase II subscript indicator 
Ichanged to a Case II. 
I 
I 
l 
IBVA - Local Activity. 
I 

is 

I 
I 
I 
I 

131 I I 
~---~-------------------------------------~ 
~The BVA table consists of a fullword for I 
leach text in the block. I L _________________________________________ J 

If the contents of TRUSECi) and RUSECi) 
is equal to zero, then register i is avail­
able for assignment. If the value con­
tained in TRUSECi) or RUSECi) is between 2 
and 128, inclusive, then the register i is 
assigned to the variable whose MCOORD value 
is equal to the contents of TRUSECi) or 
RUSECi). If the contents of TRUSECi) or 
RUSE(i) has a value between 252 and 255, 
register i is unavailable for assignment 

Table 26. Global Assignment Tables 
r------T-------------------------T--------, 
JName ~ Function IOrigin I 
.------+-------------------------+--------~ 
IMCOORD Serves as an index to Phase lSI 
J MVD, EMIN, RA, RAL, WABP, I 
J WA and WJ. I 
'J I 
I I 
JMVD Gives the location of the Phase 15 
J dictionary entry for the 
J variable associated with 
I the given value of 
J MCOORD. 
I 
! 
IEMIN 
~ 
J 
I 
~ 
J 
I 
~RA 

1 
~ 
~ 
J 
J 
i 
I 
J 
I 
IRAL 
J 
~ 
J 
J 
I 
IWA 
I 
I 
I 
~ 
] 
1 
I 
I 
I 
~ 
I 
lWABP 
1 
I 
~ 

Indicates whether the 
variable associated with 

la particular MCOORD value 
lis eligible for global 
I assignment. 
I 
I 
IIndicates the number of 
Ithe first register glob­
lally assigned to the 
Ivariable represented by 
,the MCOORD value; pro-
vides continuity in glob­
al assignment from inner 
to outer loops. 

Indicates the register 
globally assigned to the 
variable represented by 
the MCOORD value. 

Indicates the total 
activity for the variable 
represented by the MCOORD 
value. Calculated by 
adding 4. to the value 
each time a definition of 
the variable is encoun­
tered and adding 3. to 
the value for a use of 
the variable. 

REGAS­
IEKRRG 

GLOBAS­
IEKRGB 

GLOBAS­
IEKRGB 

FWDPAS­
IEKRFP 

Indicates the activity of FWDPAS­
base variables. Calcu- IEKRFP 
lated in the same manner 
as the WA table. L ______ ~ _________________________ ~ ________ J 

and is reserved for special use (see next 
paragraph) • 

Register Use Considerations: Registers 15 
and 14 are not available for use by 
register assignment. They are reserved, 
and used for branching during the execution 
of the object module resulting from the 
compilation. 

Appendix A: Tables 139 



Register 13 is not available for use by 
register assignment. It is reserved, and 
used during the execution of the object 
module to contain the address of the save 
area set aside for the object module (refer 
to Fortran System Director, "Generation of 
Initialization Instructions"). Register 13 
is also used to refer to: 

• Branch tables for computed GO TO 
Rtatements. 

• Parameter list for external references. 
• Local constants, variables and arrays. 
• Adcons for external references. 

If the above items exceed 4096 bytes, 
the adcons are referred to by reqister 12. 

Register 12 is not available for use by 
register assignment. It is set aside to 
contain the starting address of the "Con­
stants" portion.of text information. 

Registers 11, 10, and 9 mayor may not 
be available for use by register assign­
ment. Their use depends upon the number of 
required reserved registers (see Phase 20, 
"Branching Optimization"). 

Namelist dictionaries are developed by 
CORAL for the NAMELIST statements appearing 
in the source module. These dictionaries 
provide IHCNAMEL with the information 
required to implement READ/WRITE statements 
using NAMELISTs. The namelist dictionary 
constructed by CORAL from the phase 10 
namelist text representation of each NAME­
LIST statement contains an entry for the 
namelist name and entries for the variables 
and arrays associated with that name. 

NAMELIST NAME ENTRY FORMAT: The format of 
the entry constructed for the namelist name 
is illustrated in Figure 40. 

r-----------------------------------------, 
I Name field (2 words) I l _________________________________________ J 

Figure 40. Format of Namelist Name Entry 

Name Field: The name field contains the 
namelrst-name, right-justified, with lead­
ing blanks. 

NAMELIST VARIABLE ENTRY FORMAT: The format 
of-the-entry-constructed~or-a variable 
appearing in a NAMELIST statement is illus­
trated in Figure 41. 

140 

r-----------------------------------------, 
I Name field (2 words) I 
~-----------------------------------------~ 
I Address field (1 word) I 
~-----------T----------T------------------~ 
I Item Type I Mode I Not used I 
J field I field I (2 bytes) I 
I (1 byte) I (1 byte) I I l ___________ ~ __________ ~ __________________ J 

Figure 41. Format of Namelist Variable 
Entry 

Name Field: The name field contains the 
name-of~he variable, right-justified, with 
leading blanks. 

Address Field: The address field contains 
the relative address of the variable. 

Ii~~_TYE~_~i~b£: This field is zero for a 
variable. 

Mode Field: The mode field contains the 
mode of-the variable. 

NAMELIST ARRAY ENTRY FORMAT: The format of 
the entry constructed for an array appear­
ing in a NAMELIST statement is illustrated 
in Figure 42. 

r-----------------------------------------, 
1 Name field (2 words) I 
~-----------------------------------------~ 
I Address field (1 word) I 
~----------T---------T-----------T--------~ 
I Item Type I Mode I Number of IElement I 
1 field I field I dimensions I length I 
1 I I field Ifield I 
I (1 byte) I (1 byte) I (1 byte) I (1 byte) I 
.----------+---------~-----------~--------~ 
1 Indicator I First dimension I 
I field I factor field I 
I (1 byte) I (3 bytes) I 
.----------+------------------------------~ 
I Not used I Second dimension I 
I I factor field I 
I (1 byte) I (3 bytes) I 
~----------+------------------------------~ 
I Not used I Third dimension I 
I I factor field I 
I (1 byte) I (3 bytes) I 
.----------~------------------------------~ I Etc. (refer to "Dimension Entry Format") I l _________________________________________ J 

Figure 42. Format of Namelist Array Entry 

Name Field: The name field contains the 
name-ai-the array, right-justified, with 
leading blanks. 



Address Field: The address field contains 
the-relative-address of the beginning of 
the array. 

Ite~!YE£-K!£!g: This field is nonzero for 
an array. 

Mode Field: This field contains the mode 
of the elements of the array. 

Number of Dimensions Field: This field 
contaInS-the-number-of-dimensions (l 
through 7) of the associated array. 

Element Length Field: The element length 
field contains the length of each element 
in the associated array. 

Indicator Field: This field is zero if the 
associated-array has variable dimensions; 
otherwise, it is nonzero. 

First Dimension Factor Field: If the asso­
ciated array does not have variable dimen­
sions, this field contains the total size 
of the array. If the array has variable 
dimensions, this field contains the rela­
tive address of first subscript parameter 
used to dimension the array. 

Second Dimension Factor Field: If the 
associated array does not have variable 
dimensions, this field contains the loca­
tion of the second dimension factor (Dl*L). 
If the array has variable dimensions, this 
field contains the relative address of the 
second subscript parameter used to dimen­
sion the array. 

Third Dimension Factor Field: If the asso­
ciated-array-does-not-have-variabl~~ dimen-
sions, this field contains the location of 
the third dimension factor (Dl*D2*L). If 
the array has variable dimensions, this 
field contains the relative address of the 
third subscript parameter used to dimension 
the array. 

DIAGNOSTIC MESSAGE TABLES 

There are two major diagnostic tables 
associated with error message processing by 
phase 30: the error table and the message 
pointer table. 

ERROR TABLE 

The error table is constructed by phases 
10 and 15. As source statement errors are 
encountered by these phases, corresponding 
entries are made in the error table. Each 
error table entry consists of 2 one-word 
fields. The first field contains either an 
internal statement number, if the entry is 
for a statement that is in error, a dic­
tionary pointer, if the entry is for a sym­
bol that is in error {e.g., a variable that 
is incorrectly used in an EQUIVALENCE 
statement>, or a statement number, if the 
entry is for an undefined statement number; 
the second field contains the message num­
ber associated with the particular error. 
The message numbers that can appear in the 
error table are those associated with mes­
sages of error code levels 4 and 8 {refer 
to the publication I~~_§ystem/360 Operating 
System: FORTRAN IV (G and H) programmer's 
Guide) • 

MESSAGE POINTER TABLE 

The message pointer table contains an 
entry for each message number that may 
appear in an error table entry. Each entry 
in the message pointer table consists of a 
single word. The high-order byte of the 
word contains the length of the message 
associated with the message number. The 
three low-order bytes contain a pointer to 
the text for the message associated with 
the message number. 

Appendix A: Tables 141 



APPENDIX B: INTERMEDIATE TEXT 

Intermediate text is an internal repre­
sentation of the source module from which 
the machine instructions of the object 
module are generated. The conversion from 
intermediate text to machine instructions 
requires information about variables, con­
stants, arrays, statement numbers, in-line 
functions, and subscripts. This informa­
tion, derived from the source statements, 
is contained in the information table, and 
is referred to by the intermediate text. 
The information table supplements the 
intermediate text in the generation of 
machine instructions by phase 25. 

PHASE 10 INTERMEDIATE TEXT 

Phase 10 creates intermediate text (in 
operator-operand pair format) for use as 
input to subsequent phases of the compiler. 
There are six types of intermediate text 
produced by phase 10: 

• Normal text -- the operator-operand 
pair representations of source state­
ments other than DATA, NAMELIST, DEFINE 
FILE, FORMAT, and statement Functions 
(SF). 

• Data text -- the operator - operand 
pair representations of DATA statements 
and the initialization constants in 
explicit type statements. 

• Namelist text -- the operator-operand 
pair representations of NAMELIST 
statements. 

• Define file text -- the operator­
operand pair representation of DEFINE 
FILE statements. 

• Format text -- the internal representa­
tions of FORMAT statements. 

• SF skeleton text -- the operator­
operand pair representations of state­
ment functions using sequence numbers 
as operands of the intermediate text 
entries. The sequence numbers replace 
the dummy arguments of the statement 
functions. This type of text is, in 
effect, a "skeleton" macro. 

Note: Intermediate text representations 
~ for subblock allocation, divided into 
only two main types: special (DATA, NAME­
LIST_ DEFINE FILE, FORMAT, and SF skeleton 
text), and normal (text other than special 

142 

text). The intermediate text representa­
tions are comprised of individual text 
entries. Each intermediate main text type 
is allocated unique subblocks of main 
storage. The subblocks that constitute an 
intermediate text area are obtained by 
phase 10, as needed, via requests to the 
FSD (see "Storage Distribution" under "FOR­
TRAN System Director"). 

Intermediate Text Chains 

Each intermediate text area (i.e., the 
subblocks allocated to a particular type of 
text) is arranged as a chain that links 
together (1) the text entries that are 
developed and placed into that area, and 
(2) in some cases, the intermediate text 
representation for individual statements. 

The g2f~!_!~!_£hain is a linear chain 
of normal text entries~ that is, each 
normal text entry is pointed to by the pre­
viously developed normal text entry. 

The data text chain in bi-linear. This 
means that:-----------

1. The text entries that constitute the 
intermediate text representation of a 
DATA statement are linked by means of 
pointers. Each text entry for the 
statement is pointed to by the pre­
viously developed text entry for the 
statement. 

2. The intermediate text representations 
of individual DATA statements are 
linked by means of pointers, each 
representation being pointed to by the 
previously developed representation. 
(A special chain address field within 
the first text entry developed for 
each DATA statement is reserved for 
this purpose.) 

The name list text chain operates in the 
same manner-aS-the-data-text chain. 

The define file text chain is a linear 
chain of define file text entries, each 
define file text entry is pointed to by a 
previously developed define file text 
entry. A zero chain signals the end of all 
define file text for a program~ 

The format text chain consists of link­
ages between-the-individual intermediate 
text representations of FORMAT statements. 



The pointer field of the second text~ entry 
in the intermediate representation of a 
FORMAT statement points to the intermediate 
text representation of the next FORMAT 
statement. (The individual text entries 
that make up the intermediate text repre­
sentation of a FORMAT statement are not 
chained. ) 

The SF skeleton text chain is linear 
only in that each text entry developed for 
an operator-operand pair within a particu­
lar statement function is pointed to by the 
previous text entry developed for that same 
statement function. The intermediat.e text 
representations for separate statement 
functions are not chained together. Howev­
er, a skeletori can readily be obtained by 
means of the pointer contained in the dic­
tionary entry for the name of the statement 
function. 

Those statements that undergo conversion 
from source representation to intermediate 
text representation are divided into 
operator-operand pairs, or text entries. 
Figure 43 illustrates the format of an 
intermediate text entry constructed by 
phase 10. 

<-----------------4 bytes-----------------> 
r----------T~-----------------------------, 
IAdjective I I 
)code field\Chain field I 
I (operator) I I 
r----------~----------T-------------------~ 
IMode field . lType field I 
r----------T----------L-------------------~ 
10 IPointer field (operand) J L __________ L~ _____________________________ J 

Figure 43. Intermediate Text Entry Format 

~£i~£~!Y~_£2de_E!elg: The adjective code 
field corresponds to the operator of the 
operator-operand pair. Operators are not 
entered into text entries in source form; 
they are converted to a numeric value as 
specified in the adjective code table (see 
Table 21). it is the numeric representa­
tion of the source operator that actually 
is inserted into the text entry. Primary 
adjective codes (operators that define the 
nature of source statements) also have nu­
meric values. 

Chain Field: The chain field is used to 
maintain-linkage between intermediate text 
entries. It contains a pointer to the next 
text entry. 

Mode and Type Fields: The mode and type 
fields contain the mode and type of the 
operand of the text entry. Both items 
appear as numeric quantities in a text 
entry and are obtained from the mode and 
type table (see Tables 20 and 21). 

Pointer Field: The pointer field contains 
a pointer to the information table entry 
for the operand of the operator-operand 
pair. However, if the operand is a dummy 
argument of a statement function, the 
pointer field contains a sequence number, 
which indicates the relative position of 
the argument in the argument list. 

Note: The text entries for FORMAT state­
ments are not formatted as described in the 
foregoing. FORMAT text entries consist of 
the characters of the FORMAT statement in 
source format packed into successive text 
entries. 

Table 21. Adjective Codes (Part 1 of 3) 
r--------T-----------T--------------------, 
I I Mnemonic I I 
tCode (inl (where I I 
Idecimal) I applicable) I Meaning I 
~--------+-----------~--------------------~ 
I 1 • NOT. I NOT I 
I I I 
I 4 • AND. lAND I 
I I I 
1 5 IRight arithmetic I 
I I parenthesis I 
J I I 
I 6 .OR. lOR I 
I I I 
I 1 .XOR. IExclusive OR I 
1 I I 
I 8 I Equal sign I 
I I 
I 9 Comma I 
1 I 
I 10 + Plus I 
I I 
t 11 Minus I 
I I 
I 12 * Multiply I 
I I 
I 13 / Divide I 
I I 
I 
I 
I 
I 
] 
I 
I 
1 
I 
I 
I 

14 

15 

16 

11 

18 

** 
(f 

• LE. 

• GE. 

• EQ. 

Exponentiation 

Function parenthesis 

Less than or equal 

Greater than or 
equal 

IEqual 
I 

I 19 .LT. ILess than L ________ ~ ___________ ~ ____________________ J 

Appendix B: Intermediate Text 143 



Table 27. Adjective Codes (Part 2 of 3) 
r--------T-----------T--------------------, 
I I Mnemonic J I 
ICode (inl (where I I 
I decimal) I applicable) I Meaning J 

~--------+-----------+--------------------i 
,20 .GT. ,Greater than , 
I I I 
I 21 .NE. INot equal I 

22 (s 

25 

26 

71 

193 

205 

208 

209 

210 

211 

212 

213 

214 

215 

216 

I I 
ILeft subscript i 
I parenthesis I 
I , 
ILeft arithmetic I 
,parenthesis I 
I ~ 
lEnd mark ] , 

GO TO, and implied , 
branches I 

BLOCK DATA 

DATA 

, 
I 
I , 
I 

SUBROUTINE, , 
FUNCTION, or ENTRY , 

FORMAT (text) 

End of I/O list 

CONTINUE 

I 
I 
I 
I 
I 
I 

JRelative record 
I number 

I 
I 
I 

I 
object time 
variable 

BACKSPACE 

REWIND 

END FILE 

1 
format I , , , , 

I 
I 
I , 

217 WRITE unformatted I 
, I 
I 218 READ unformatted I , , 
I 219 WRITE formatted I 
, I 
~ 220 READ formatted I 
I I 
I 221 Beginning of I/O I 
, list I 
I I 
I 222 LDF Statement number I 
I definition I L ________ ~ ___________ ~ ____________________ J 

144 

Table 27. Adjective Codes (Part 3 of 3) 
r--------T-----------T--------------------, 
~ I Mnemonic I I 
'Code (inl (where , , 
Idecimal) ,applicable) I Meaning I 
~--------+-----------+--------------------~ 
I 223 I GLDF Generated statement 
~ I number definition 
I , 
I 225 I WRITE using NAMELIST 
I I 
t 226 I READ using NAMELIST 

I 
227 I FIND , 
230 I I/O end-of-file 

I parameter 

231 I/O error parameter 

232 BLANK 

233 RET RETURN 

234 STOP STOP 

235 PAUSE 
1 
I 238 ASSIGN 
I 
I 240 Beginning of DO 
I 
I 241 Arithmetic 
I assignment statement 
I 
I 242 NDOIF End of DO IIF' 
I 
I 243 Arithmetic IF 
I 
) 244 Relational IF 
I 
I 246 CALL 
I 
I 247 LIST I/O or NAMELIST list 
I item , 
I 248 NAMELIST , 
I 249 END END 
I 
] 250 Computed GO TO 
I 
I 251 I/O unit number , 
1 252 FORMAT (statement 
, numbers) 
I 
, 253 NAMELIST name L ________ ~ ___________ ~ ___________________ _ 



Examples of Phase 10 Intermediate Te.xt 

An example of each type of phase 10 text 
(normal, data, namelist, define file for­
mat, and SF skeleton> is presented below. 
For each type, a source language statement 
is first given. This is followed by the 
phase 10 text representation of that 
statement. 

The phase 10 normal text representation 
of the arithmetic-statement 

100 A B + C * D / E 

is illustrated in Figure 44. 

r-----------------T-----------------r-----------------T-----------T----T----------------, 
I Ad j ecti ve I I I I I I 
I Code I Chain I Mode I Type I 0 I Pointer I 
~-----------------+-----------------+-----------------+-----------+----+----------------~ 
I Statement I I 1 I 1 I 
1 number 1 I Statement I 1 1 I 

I definition I 1 number I 0 I I ~ 100 I 

c:r---~~i~~~~~i~----t-----------------t------~~~l-------t---;~~1~~~-t----t~-~----------1 
c:r---:-------------t-----------------t------~~~l-------t---;~~1~~~-t----t~-~----------1 
L:t---:-------------t-----------------t------;~~l-------t---;~~1~~~-t----t~-~----------1 
~~-----------------+-----------------+-----------------+-----------+----+----------------~ 
~ * I I Real 1 Scalar 1l I 1----- D I 
L:t---~-------------t-----------------t------;~~l-------t---;~~1~~~-t----t~-;----------1 
L:t-----------------t-;~-~~~~-~~~~~l--t-----------------t-----------t----t----------------1 

1 End mark2 1 text entry 1 0 1 0 I I ISN3 I 

~-----------------±-----------------±-----------------+-----------+----+----------------~ 
~ 1 I I I I 1 I I 

I 1 byte 1 3 bytes I 2 bytes 1 2 bytes Ibytel 3 bytes I 
~-----------------i-----------------i-----------------i ___________ i ____ L ________________ ~ 

I 1 Nonsubscripted variable. 1 
I 20perator of the special text entry that signals the end of the text representation I 
I of a source statement. I 
I 3Compiler generated sequence nuruber used to identify each source statement. I L ___________ ~ ___________________________________________________________________________ J 

Figure 44. Phase 10 Normal Text 

Appendix B: Intermediate Text 145 



The phase 10 data text representation of 
the DATA statement-------

DATA A,B/2.1,3HABC/,C,D/1.,1./ 

is illustrated in Figure 45. 

r-----------------T-----------------T-----------------T-----------T----T----------------, 
I Adjective I I I I I I 
I Code I Chain I Mode I Type I 0 I Pointer I 
~------------------+-----------------+-----------------+-----------+----+--------------~-~ 
I I I 'I I To text for , 
, , I I' , - .. next DATA h 
I DATA I I 0 I ISN , I statement I I 

~------------------+-----------------+-----------------+-----------+----+----------------~ I 

c:F=----~-----------t-----------------t------;~~~-------t---~~~~~~--t----t~~-----------1 + 
~·---~-----------t-----------------t------~~~l-------t---~~~~~~~~t----t==::;~1---------1 
~---~----- ---- t-----------------t------~i~~~~l----t---~~~~~~~~t----t==::3~~;~-------1 
~.---~----- ---- t-----------------t------~~~l-------t---~~~l~~--t----t~-;~-----------1 

~---~-----------t-----------------t------~~~l-------t---~~~1~~--t----t~~~-----------1 
~---~-----------t-----------------t------~~~l-------t---~~~~~~~~t----t==::1~----------1 
~', t -----o----------t------~~~l-------t---~~~~~~~~t----t~l~----------1 

~--.---------------+-----------------+-----------------+-----------+----+----------------~ 
I I , ,,1 I , 
I 1 byte I 3 bytes , 2 bytes I 2 bytes ,byte, 3 bytes , L __ . _______________ ~ _________________ ~ _________________ ~ ___________ ~ ____ ~ ________________ J 

Figure 45. Phase 10 Data Text 

146 



The phase 10 namelist text representa­
tion of the NAMELIST statement 

N~-MELIST /NAME1/A,H,C/NAME2/D,E,F/NAME3/G 

where A and F are arr~ys is illustrated in 
Figure 46. 

r-----------------T--------------T-----------------T-----------T----T-------------------, 
1 Adjective 1 1 1 1 1 1 
1 Code 1 Chain 1 Mode 1 Type 1 0 1 Pointer 1 
r-----------------f--------------+-----------------+-----------f----+-------------------~ 
1 NAMELIST 1 1 NAf.'JELIST 1 0 1 1--- NAME 1 1 

~t-----------------+--------------+------------------+-----------+----+-------------------~ 
L.,f / 1 1 0 1 0 liTO text for 1 

1 1 1 1 1 1----. next NAMELIST h 
1 1 1 1 1 1 block 1 

L:t---~~;;----------t--------------t-------~~~l-------t---~~~~~---t----t==::~--------------1 I 
q LIS1' t t-------~~~1-------t---;~~i~~--t----t==::~--------------1 

L:t- LIST t---o----------t-------;~~l-------t---;~~l~~--t----t==::~--------------1 
c:t - t t-----------------t-----------t----t-------------------~ I 

L:t---;~~:~~~:------t--------------t----~~~:~~~:-----t---~-------t----t~~~~~~~-f;~----iJ 
1 1 1 1 1 1----.. next NAMELIST 1 
1 1 1 1 1 1 block 

L:t---~~;;----------t--------------t-------~~~l-------t---;~:1~~--t----t==::~--------------1 

c:t---~~~~,----------t--------------t-------~~~l-------t---~~~1~~--t----t=:;;--------------1 
~~-----------------+--------------+-----------------+-----------+----+-------------------~ 
I-.j LIST 1 0 1 Real 1 Array 1 1--- F 1 

q NAlvlbLIST t t--·--~~~~~~~;-----t---o-------t----t~~~~;3----------1 
~~-----------------f--------------+--.-------------__ + ___________ +----+-------------------~ 
Lt.i / 1 1 0 1 0 1 1 '10 text for 

1 1 1 1 1 I---next NAMELIST 1 
1 1 1 1 1 1 statement h 

Q---~~~~,----------t---o----------t------~~~l-------t---~~~1~~--t----t==::~--------------1 : 
t-----------------t--------------t---------------~~t-----------t-~--t-------------------1 ~ 

1 1 byte 1 3 bytes 1 2 bytes 1 2 bytes Ibytel 3 bytes 1 L _________________ ~ ______________ ~ _________________ ~ ___________ ~ ____ ~ ___________________ J 

Figure 46. Phase 10 Namelist Text 

Appendix B: Intermediate Text 147 



The phase 10 define file text represen­
tation of the DEFINE FILE statement 

where a1 is the input/output unit number, 
m1 is the number of records, r1 is the 
maximum record length, f1 is the format 
code, and V1 is the associated variable, is 
illustrated in Figure 47. 

r------------------T-----------------T-----------------T-----------T----T----------------, 
I Adjective I I I I I I 
I Code I Chain I ~ode I Type I 0 I Pointer I 
~------------------+-----------------+-----------------+-----------+----+----------------~ 
I I/O unit number I I Integer I Constant I I ... a 1 I 

r-F==---------------f-----------------+-----------------+-----------+----+----------------~ 
L+j , I I Integer I Constant I I ... m1 I 
~---------------+-----------------+-----------------+-----------+----+----------------~ 
L-i , I I Integer I Constant I I ... r 1 I 

q==Eormdt code (f1) t pointer to next t----~~~~~~~------t--~~~l~~---t----t-----~--~~------1 
I I define file text I I I I I 
I I entry I I I I I 

~---------------f-----------------+-----------------+-----------+----+----------------~ 
I I I I I 1 I I 
I 1 byte I 3 bytes I 2 bytes I 2 bytes I byte I 3 bytes I l _________________ ~ _________________ ~ _________________ ~ ___________ ~ ____ ~ ________________ J 

Figure 47. Phase 10 Define File Text 

The phase 10 format text representation 
of the FORMAT statement 

5 FORMAT (2HOA,A6//5X,3 
(14, E12. 5, 3F12. 3,' ABC' » 

is illustrated in Figure 48. 

r-----------------T-----------------T-----------------T-----------T----T----------------, 
I Pointer I I I I I I 
I Code I Chain I Mode I TYfe I 0 I Pointer I 
~-----------------+-----------------+-----------------+-----------+----+----------------~ 
I Statement I I I I I I 
I number I I Statement I I I I 
I definition I I number I 0 I I 5 I 

c::-----------------t-----------------t-----------------t-----------t----t-;~-~~;~-f~~----1 
I I I I I I next FORMAT n 
I FORMAT I I 0 I 0 I I st,atement I 
-----------------f-----------------+-----------------+-----------+----+----------------~ I 

I I I I I 1 I I I 
I 1 byte I 3 bytes I 2 bytes I 2 bytes I byte I 3 bytes I t 
~------------------+-----------------+-----------------+-----------+----+----------------~ 
I I I I I . I I 
I I I I I • I I 
I I I I I . I I 
~------------------+-----------------+-----------------+-----------+----+----------------~ 

(2HO 2 I A,A6 2 I //5X 2 1,3 (I 2 I I 4,E1 2 I 
~--.---------------+-----------------+-----------------+-----------+----+----------------~ 
I 2.5, 2 I 3F122 I .3,'2 I ABC' 2 I I ))t 1 I 
~------------------~---------~-------~-----------------~-----------~----~----------------~ 
1 1Group mark. I 

1 2 0ne character per byte. I l ___________________________________ ~ ____________________________________________________ J 

Figure 48. Phase 10 Format Text 

148 



The phase 10 SF skeleton text represen­
tation of the statement function 

ASF (A,B,C) = A+D*B*E/C 

is illustrated in Figure 49. 

r-----------------T-----------------T-----------------T-----------T----T----------------, 
I Adjective I I I I I I 
I Code I Chain , Mode I Type I 0 I Pointer I 
~-----------------+-----------------+-----------------+-----------f----+----------------~ 
I (I ,0 I 0 ,,1 I 

Q + t --------------'--t------~~~l-------t---~~~l~~--t----t=::~-----------1 
~r-----------------+-----------------+-----------------+-----------+----f----------------~ 
L+j * I I 0 ,0 I' 2 I 
Q-----:-----------1---------------'--t------~~~1-------t---~~~1~~--t----t==::;-----------1 
~r + ----------------+-----------------f-----------f----+----------------~ 
4i /' ,0 I 0 I' 3 I 
~r + ----------------+-----------------+-----------+----+----------------~ 
~ , ,0 I 0 I I I 
~~r-----E-·'n-d--~-a-~-~-----~t------o----------t------o----------t---o-------t----t----o-----------1 

~-----------------f-----------------+-----------------+-----------+----+----------------~ 
, , I I I 1 , I 
I 1 byte I 3 bytes , 2 bytes I 2 bytes ,by tel 3 bytes I L _________________ ~ _________________ ~ _________________ ~ ___________ ~ ____ ~ ________________ J 

Figure 49. Phase 10 SF Skeleton Text 

PHASE 15/PHASE 20 INTERMEDIATE TEXT 
MODIFICATIONS 

During phase 15 and phase 20 text 
processing, the intermediate text entries 
are modified to a format more suitable for 
optimization and object-code generation. 
The intermediate text modifications made by 
each phase are discussed separately in the 
following paragraphs. 

PHASE 15 INTERMEDIATE TEXT MODIFICATIONS 

The intermediate text input to phase 15 
is the intermediate text created by phase 
10. The intermediate text output of phase 
15 is an expanded version of phase 10 
intermediate text. The intermediate text 
output of phase 15 is divided into four 
categories: 

• Unchanged text 

• Phase 15 data text 

• Sta~~ement number text 

• Standard text 

Unchanged Text 

The unchanged text is the phase 10 
normal text that is not changed but rear­
ranged in format by phase 15 (see figure 
43). Unchanged text is passed on to subse­
quent phases with these modifications: 

1. The mode and type fields are each 
expanded to a fullword. 

2. A new word is inserted between the 
chain field and the mode field. 

3. The adjective code is moved from the 
first byte of the chain field to the 
third byte of this new word. 

To facilitate the assignment of initial 
data values to their associated variables, 
phase 15 converts the phase 10 data text 
for DATA statements to phase 15 data text, 
which is in variable-constant format. The 
format of the phase 15 data text entries is 
illustrated in Figure 50. 

Appendix B: Intermediate Text 149 



Indicator Field: The indicator field indi­
cates-the-characteristics of the initial 
data value (constant) to be assigned to the 
associated variable. This field is one 
byte in length. The indicator field is 
divided into eight subfields, each of which 
is one bit long. The bits are numbered 
from 0 through 1. Figure 51 indicates the 
function of each subfield in the indicator 
field. 

<-----------------4 bytes-----------------> 
r----------T------------------------------, 
,Indicator, Chain field I 
Ifield I I 
~----------~------------------------------~ 
IP1 field , 
~-----------------------------------------~ 
JP2 field I 
~-----------------------------------------~ 
'Offset field , 
t-----------------------------------------~ 
!Number field J L _________________________________________ J 

Figure 50. Format of Phase 15 Data Text 
Entry 

r------------y----------------------------, 
I Subfield I Function I 
~------------~----------------------------~ 
, Bit 0 I not used , 
~------------+----------------------------~ 
, Bit 1 I not used I 
~------------~----------------------------~ 
, Bit 2 ) not used I 
~------------+----------------------------~ 
I Bit 3 ~ not used 1 
~------------t----------------------------~ 
I Bit 4 'on' I initial data value is nega-, 
I ~ tive constant I 
~------------.----------------------------i 
I Bit 5 'on' J initial data value is a , 
, J literal constant J 

~------------t----------------------------~ 
I Bit 6 'on' I initial data value is in , 
I I hexadecimal form I 
~------------t----------------------------~ 
I Bit 1 'on' ~ data table entry is six I 
I I words long (variable is an I 
J ~ array element). I L ____________ ~ ____________________________ J 

- Figure 51. Function of Each Subfield in 
Indicator Field of Phase 15 
Data Text Entry 

Chain Field: The chain field is used to 
maintaIn-lInkage between the various phase 
15 data text entries. It contains a point­
er to the next such entry. 

150 

P1 Field: The P1 field contains a pointer 
to the dictionary entry for the variable to 
which the initial data value is to be 
assigned. 

P2 Field: The P2 field contains a pointer 
to the dictionary entry for the initial 
data value (constant) which is to be 
assigned to the associated variable. 

Offset Field: The offset field contains 
the-dIsplacement of the subscripted vari­
able from the first element in the array 
containing that variable. If the variable 
to which the initial data value is to be 
assigned is not subscripted, this field 
does not exist. 

Number Field: The number field contains an 
indication of the number of successive 
items to which the initial data value is to 
be assigned. If the initial data value is 
not to be assigned to more than one item, 
this field does not exist. 

statement Number Text 

The statement number text is an expanded 
version of the phase 10 intermediate text 
created for statement numbers. It is 
expanded to provide additional fields in 
which statistical information about the 
text block associated with the statement 
number is stored. The format of statement 
number text entries is illustrated in 
Figure 52. 

<-----------------4 bytes-----------------> 
r-----------------------------------------, 
IChain field I 
t-------------------T----------T----------~ 
lNot used I Operator IIndicator I 
~ Ifield Ifield I 
.-------------------~----------~----------~ 
JP1 field I 
.-----------------------------------------~ 
JBLKEND field I 
.-----------------------------------------~ 
IUse vector field (MVF) (4 words), 
~-----------------------------------------~ 
JDefinition vector field (MVS) (4 words> I 
.-----------------------------------------~ 
I Busy-on-exit (4 words) I 
lvector field (MVX) I L _________________________________________ J 

-Figure 52. Format of Statement Number Text 
Entry 



Chai.n Field: The chain field is used to 
maintaIn-the linkage between the various 
intermediate text entries. It contains a 
pointer to the next text entry. 

2ggra~2E_E!~ld: The operator field con­
tains an internal operation code (numeric) 
for a statement number definition (see 
Table 28). 

!ndi£~~2E_Ei~1s!_iABf!::!!.: The indicator 
field is one byte long. This field indi­
cates some of the characteristics of the 
text entries in the associated block. The 
indicator field contains eight subfields, 
each of which is one bit long. The sub­
fields are numbered ° through 7. Figure 53 
indicates the function of each subfield in 
the indicator field. 

r-------------T---------------------------, 
~ Subfield I Function I 
~-------------+---------------------------~ 
I Bits 0-3 l not used I 
~-------------+---------------------------~ 
t Bit 4 'on' J associated block contains I 
I I an input/output operation I 
~-------------+---------------------------~ 
~ Bit 5 'on' I associated block contains I 
I I a reference to a library I 
I I function I 
~-------------+---------------------------~ 
I Bit 6 I not used J 

~-------------+---------------------------~ I Bit 7 'on' J associated block contains I 
I ~ an abnormal function ~ 
I I reference I l _____________ ~ ___________________________ J 

Figure 53. Function of Each Subfield in 
Indicator Field of Statement 
Number Text Entry 

Pi Field: The Pi field contains a pointer 
to the statement number/array table entry 
for the statement number. 

BLK~ND Field: The BLKEND field contains a 
pointer to the last interroediate text entry 
within the block. 

Use Vector Field (MVF): The use vector 
Iield-is-used-to-indicate which variables 
and constants are used in the associateo 
block. Variables and constants, as they 
are encountered in the module by subroutine 
STALL-IEKGST are assigned a unique co­
ordinate (1 bit) in this vector field. In 
general, if the ith bit is set to on (1), 
the variable or constant assigned to the 
ith co-ordinate is used in the associated 
block. 

Definition Vector Field (MVS): The defini­
tion-vector-Ileld-IS-used-to-indicate which 
variables are defined in a block. 
Variables and constants, as they are 
encountered by subroutine STALL-IEKGST are 
assigned a unique co-ordinate (1 bit) in 
this vector field. In general, if the ith 
bit is set to on (1), the variable assigned 
to the ith co-ordinate is defined in the 
associated block. 

~~~=Q~=~~i1_Y~£i2E_E!~1s!_1~Y~!.: The bUsy­
on-exit vector field in phase 15 indicates
which variables are not first used and then
defined within the text block (not busy-on­
entry). This field is converted by phase
20 to busy-on-exit data, which identifies
those operands that are busy-on-exit from
the block. Variables and constants, as
they are encountered by subroutine STALL­
IEKGST are assigned a unique co-ordinate
(1 bit) in this vector field. In general,
during phase 15, if the ith bit is set to
on (1), the variable assigned to the co­
ordinate is not busy-on-entry to the block.
During phase 20, if the ith bit is set to
on, the variable or constant assigned to
the ith co-ordinate is busy-on-exit from
the block.

Appendix B: Intermediate Text 151

.Table 28. Phase 15/20 Operators (Part 1
of 5)

r--------T-----------T--------------------,
I I Mnemonic I I
ICode (inl(where I I
I decimal) 1 applicable) I Meaning]
~--------+-----------+--------------------~
I 1 .NOT. NOT
I
I 2 U Unary minus
I
I 4 .AND. AND
I
I 5 Right parenthesis
J

6 .OR.

7 .XOR.

8 ST

9

10 +

11

12 *
13 /

14 LA

15 EXT

16 BG

17 BL

18 BNE

19 BGE

20 BLE

21 BE

22 SUB

23 LIST

24 BC

25

26 EM
I

OR

XOR

Store

Argument

Plus

Minus

Multiply

Divide

Load address

External function or
subroutine CALL I

Branch greater than

Branch less than

Branch not equal

Branch greater than
or equal

Branch less than or
equal

Branch equal

Subscript

I/O list

Branch computed

Left parenthesis

End mark

27 I B Branch
I

28 I BA Branch assigned
I

29 I BBT Branch bit true
I

30 I BBF Branch bit false
---------~-----------~--------------------

152

.Table 28. Phase 15/20 Operators (Part 2
of 5)

r--------T-----------T--------------------,
I I Mnemonic I I
ICode (inl (where I I
I decimal) I applicable I Meaning I
~--------+-----------+--------------------~

31 LBIT Logical value of bit

32 BGZ Branch greater than
zero

33 BLZ Branch less than
zero

34 BNEZ Branch not equal to
zero

35 BGEZ Branch greater than
or equal to zero

36 BLEZ Branch less than or
equal to zero

37 BEZ Branch equal to zero

39 NNLS NAMELIST operands

41 BF I Branch false

1
I
I
I
I
I
I
I
I
I
I
I
I
I

42

43

44

45

46

47

48

50

51

52

53

54

55

56

BT

LDB

LIBF

RS

LS

BXHLE

ASSIGN

LE

GE

EQ

LT

GT

NE

MAX2

Branch true

Load byte

Library function
call

Right shift

Left shift

Branch on index

Assign

Less than or equal

.Greater than or
equal

Equal

Less than

Greater than

Not equal

MAX2 in-line routine

I 57 MIN2 IMIN2 in-line routine
I I
I 58 DIM IDIM in-line routine
I I
I 59 IDIM IIDIM in-line routine
I I
I 60 DMOD IDMOD in-line routine I l ________ ~ ___________ ~ ____________________ J

·Table 28. Phase 15/20 Operators (Part 3
of 5)

r--------T-----------T--------------------, i , Mnemonic , ,
'Code (in, (where , ,
,decimal) ,applicable) I Meaning J

~--------t-----------t--------------------~
I 61 MOD MOD in-line routine I
I I
,62 AMOD AMOD in-line routine I , ,
,63 DSIGN DSIGN in-line ,
I routine'
I ,
I 64 SIGN SIGN in-line routine I
I I
I l
I 65 ISIGN ISIGN in-line ,
I routine]
I]
I 66 DABS DABS in-line routine!
! !
I 67 ABS ABS in-line routine I
I ,
I 68 lABS lABS in-line routine I
I I
,69 IDINT IDINT in-line I
I routine'
I ,
I I
,71 INT INT in-line routine I
1 I
I 72 HFIX 1HFIX in-line routine I
, I ,
I 73 IFIX IIFIX in-line routine!
I I I
,74 DFLOAT 'DFLOAT in-line I
, 'routine'
I I I
I 75 FLOAT FLOAT in-line I
I routine' , ,
I ,
,76 DBLE DBLE in-line routine I , ,
I 77 BITON BITO~ in-line ,
, routine I
, I
,78 BITOFF BITOFF in-line I
, routine'
I I I
I 79 BITFLP IBITFLP in-line ,
I I routine I
, , I
, I I
,80 ANDF IANDF in-line routine I
I J I
,81 ORF ,ORF in-line routine'
I , ,
,82 COMPL ,COMPL in-line I
I 'routine I , , ,
I 83 MOD24 IMOD24 in-line ,
, I routine ,
, l I
,84 LCOMPL ,LCOMPL in-line ,
I I routine , l ________ ~ ___________ ~ ____________________ J

• Table 28. Phase 15/20 Operators (Part 4
of 5)

r--------T-----------,--------------------,
I ,Mnemonic, I
'Code (inl (where I I
Idecimal) 'applicable) I Meaning I
r--------t-----------t--------------------i
,85 SHFTR SHFTR in-line
, routine ,
I ,
I ,
I
I

86

, 100
I ,
I
~ 101 ,
I
I
1 102 ,
I ,
J 103 ,
I ,
1 104 ,

SHFTL

LR

RC

RR

SHFTL in-line
routine

Load register (phase
20 only>

Restore main storage
(phase 20 only)

Restore register
(phase 20 only)

Register usage
(phase 20 only)

II

STORE (phase 20
only) R13 as
operand 2

I

I 203

208

210

211

212

213

Register usage
(phase 20 only)

FUNCTION or
SUBROUTINE

END input/output

CONTINUE

Relative record
number

Object time FORMAT

214 BACKSPACE
I ,

215 I REWIND
I

216 I END FILE ,
217 IWRITE unformatted I ________ ~ ___________ ~ ____________________ J

Appendix B: Intermediate Text 153

• Table 28. Phase 15/20 Operator (Part 5 of
5)

r--------T-----------T--------------------,
I I Mnemonic I I
ICode (inl (where I I
I decimal) I applicable) I Meaning I
~--------+-----------+--------------------~
I 218 I IREAD unformatted
\ , 1
I I I
I 219 I IWRITE formatted
I I I
I I I
I 220 I lREAD formatted
I I 1
I I I
1 221 I IBegin input/output
J I 1
I I
J 222 I LDF statement number
I 1 definition 1
I I I
I I 1
I 223 GLDF Generated statement I
1 number definition 1
I I
I I
I 225 WRITE using NAMELISTI
I I
I I
I 226 READ using NAMELIST I
I I
I I
I 227 FIND I
I I
I 230 Input/output end-of-I
1 file parameter I
I \
I 231 Input/output error I
I parameter 1
I I
I 232 1 BLANK 1
I I I
I 233 RET I RETURN I
I I I
I 234 STOP I STOP \
I I \
I 235 \ PAUSE I
I I I
I 249 END lEND I
I \ I
I 251 \ Input/output unit I
I I number I
I I I
I 252 IFORMAT statement I
I I number I
I I I
I 253 1 I NAMELIST I L ________ ~ ___________ ~ ____________________ ~

St.andard Text

The standard text is an expanded and
modified form of phase 10 intermediate text
that is more suitable for optimization.
The format of standard text entries is
illustrated in Figure 54.

<----------------- 4 bytes----·------------->
r---,
I Chain field I
~---------------------T---------T---------~
Iset by phase 20 \Operator IMode I
IUsed by phase 25 Ifield Ifield I
~----------------T----~---------~---------~
ISet by phase 20 I I
~Used by phase 251pl field I
~----------------+----------~-------------~
ISet by phase 20 I I
jUsed by phase 25\P2 field. I
~----------------+------------------------~
ISet by phase 20 \ I
IUsed by phase 251P3 field I
~----------------~------------------------~
1 Displacement field I L ___ ~

Figure 54. Format of a Standard 'Text Entry

Chain Field: The chain field is used to
maintain the linkage between the various
intermediate text entries. It contains a
pointer to the next text entry.

Operator Field: The operator field con­
tains an internal operation code (numeric)
that indicates either the nature of the
statement or the operation to be performed
(see Table 28).

Pi Field: The Pi field contains either a
pointer-to the dictionary entry or state­
ment number/array table entry for operand 1
of the text entry, or zero (0) if operand 1
does not exist.

P2 Field: The P2 field contains either a
pointer to the dictionary entry for operand
2 of the text entry or zero (0) if operand
2 does not exist.

~~_Ei~!~: The P3 field contains either a
pointer to the dictionary entry for operand
3 of the text entry, a pointer to a parame­
ter list in the adcon table. an actual con­
stant (for shifting operations), or zero
(0) if operand 3 does not exist.

MO~~-Eiel£: The mode field indicates the
general mode of the expression and the mode
of the operands. The bits are set by phase
15. The mode field can be referred to only
as the fourth byte of the status mode word,
which consists of a status field (2 bytes),
an operator field (1 byte), and the mode
field (1 byte). The status portion of the
status mode word is explained later under
"Phase 20 Intermediate Text Modification."
The meanings of the bits in the mode field
are given in Table 29.

Displacement Field: The displacement field
appears only for subscript and load address
text entries; it contains a constant dis­
placement (if any) computed from constants
in the subscript expression.

• Table 29. Meanings of Bits in Mode Field of Standard Text Entry Status Mode Word
r-----------T---------T-------------'--,
1 Mode I Bits I Meaning I
~-----------+---------+---~
I general 1 26 1 1 - indica'tes to phase 20 that this text entry is part of a I
I 1 I subscript computation. I
~-----------+---------+---~
I general 1 27-28 I 00 - LOGICAL I
I I I 01 - INTEGER I
I 1 I 10 - REAL or CONPLEX I
~-----------+---------+---~
~ operand 11 29 I 0 - short mode (LOGICAL*l, INTEGER*2, REAL*4, COMPLEX*8) I
I 1 I 1 - long mode (LOGICAL*4, INTEGER*4, REAL*8, COMPLEX*16) I
~-----------+---------+-------------,--~
, operand 21 30 I 0 - short mode (LOGICAL*l, INTEGER*2, REAL*4, COMPLEX*8) 1
1 I I 1 - long mode (LOGICAL*4, INTEGER*4, REAL*8, COr-'JPLEX*16) I
~-----------+---------+-------------,--~
I operand 31 31 I 0 - short mode (LOGICAL*l, INTEGER*2, REAL*4, COMPLEX*8) I
1 1 I 1 - long mode (LOGICAL*4, INTEGER*4, REAL*8, COMPLEX*16) I L ___________ ~ _________ ~ ___ J

PHASE 20 INTERMEDIATE TEXT MODIFICAT.ION

The intermediate text input to phase 20
is the output text from phase 15. The
intermediate text output of phase 20 is of
the same format as the standard text output
of phase 15. The format of the phase 20
output text is illustrated in Figure 55.

E1L_E£L_~~g_g1_~i~!g~: The RL, R2, and R3
fields (each 4 bits long) are filled in by
phase 20 during register assignment, and
are referred to by phase 25 during the code
generation process. The assigned registers
are the operational registers for operand
1. operand 2, and operand 3, respectively.

~lL B2L~~d Bl-Fi~!g~: The Bl, B2, and B3
fields (each 4 bits long) are filled in by
phase 20 during register assignment, and
are referred to by phase 25 during the code
generation process. The assigned registers
are the base registers for operand 1,
operand 2, and operand 3, respectively.

Status Field: The status field, the first
two bytes of the status mode word, is set
by phase 20 to indicate the status of the
operands and the status of the base
addresses of the operands in a text entry.
The information in the status field is used
by phase 25 to determine the machine
instructions that are to be generated for
the text entry. The status field bits and
their meanings are illustrated in Table 30.

<--4 bytes-->
r---,
I Chain field1 1
~--T-----------------------T----------------------~
I Status field I Operator field1 1 Mode field1 1
~----------T-----------T-----------------~-----------------------~----------------------~
I Rl 1 Bl I Pl field 1 I
~----------+-~---------+------------.--~
1 R2 1 B2 I P2 field 1 I
~----------+-,----------+--~
I R3 1 B3 1 P3 field 1 I
~----------~-----------~------------,--~
1 Displacement field1 I

~---~
l1The chain field, mode field, operator field, Pl field, P2 field, P3 field, and dis- I
I placement field are as defined in a phase 15 standard text entry. (Phase 20 does not 1
I alter these fields.) I L ___________________________________ . __ J

Figure 55. Format of Phase 20 Text Entry

Appendix B: Intermediate Text 1~5

STANDARD TEXT FORMATS RESULTING FROM PHASES
15 AND 20 PROCESSING

The f.ollowing formats illustrate the
standard text entries developed by phase 15
and phase 20 for the various types of
operators. When the fields of the text

entries differ from the standard defini­
tions of the fields, the contents of the
fields are explained. In addition, notes
that explain the types of instructions
generated by phase 25 are also included to
the right of the text entry format, when
appropriate. For an explanation of the
individual operators see Table 28.

• Table 30. Status Field Bits and Their Meanings
r--------------------T-----------T--,
I operand/ I I I
I Base Address I Bit I Meaning I
~--.------------------+-----------+--~
I I 0 I not used I

I I 1 I 1 - text item contains inert variable I
I I 2 I 0 - base address in storage I
I Operand 2 I I 1 - base address in register I
I base address I I I
I status I 3 I 0 - do not retain base address in register I
I I I 1 - retain base address in register I
~--------------------+-----------+--~
I I 4 I 0 - base address in storage I
I Operand 3 I I 1 - base address in register I
I base address I I I
I status J 5 I 0 - do not retain base address in register I
I I I 1 - retain base address in register I
~--------------------+-----------+--~
I I 6 I 0 - operand in storage I

I Operand 2 I I 1 - operand in register I
I status I I I
I I 7 I 0 - do not retain operand in register I
I I I 1 - retain operand in register I
~--------------------+-----------+--~
I I 8 I 0 - operand in storage I
J Operand 3 I I 1 - operand in register I
I status I I I
I I 9 I 0 - do not retain operand in register I
I I I 1 - retain operand in register I
~--.------------------+-----------+--~
I I 10 I 0 - base address in stvrage I
I Operand 1 I I 1 - base address in register I
I base address 1 I I
I status I 11 I 0 - do not retain base address in register I
I l I 1 - retain base address in register I
~--------------------t-----------+--~
I Operand 1 I 12 I 0 - generate store into operand 1 I
I status I I 1 - do not generate store into operand 1 I
~--------------------+-----------+---------------------------------.---------------------~
I I 13 I not used I

I I 14 I 1 - div~de item actually MOD function. If FC=44 I
I I I or 15, load addresses precede. I
I I 15 I 1 - .QXX temporary created for this item I L ____________________ ~ ___________ ~ __ J

156

Branch Operator (B)

<-----------------4 bytes------------------>
r---,
I Chain 1
~--------------------T----------T---------i
I Status I Branch I Mode I
I I operator , I
~-----T-----T--------~----------i---------i
I Ri, ~Pi I
~-----+-----+-----------------------------~
, I I I
~-----+-----+-----------------------------~
I I 1 I
~-----i-----i-----------------------------~
I I L ___ J

Logical Branch. Operators (BT, BF)

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------i
1 Status I Logical 1 Mode J
I ,branch"
~ I operator I I
~-----T-----T--------L----------i---------~
'Ri I IPl I
~-----+-----+-----------------------------~
I R2 IB2 IP2 I
~-----+-----+-----------------------------i
I I I I L _____ ~ _____ i _____________________________ J

Binary Operators (+, -, *, /, OR, and AND)

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------~
1 Status I Binary I Mode I
I I operator I I
t-----T-----T--------~----------~---------i
I Rl IBi IP1 1
.-----+-----+-----------------------------~
I R2 IB2 IP2 I
~-----+-----+-----------------------------i
I R3 IB3 IP3 I L _____ i _____ i _____________________________ J

Pi: The Pi field contains a pointer to the
statement number/array table entry for the
statement number to which a branch was
made.

Note: Phase 25 decides whether an RR or an
RX-branch instruction should be generated.

Pi: The Pi field contains a pointer to the
statement number/array table entry for the
statement number to which a branch is being
made.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

Note: The test of the logical variable
wrll be done with a BXH or BXLE for BT and
BF, respectively.

Appendix B: Intermediate Text 157

Test and Set Operators (GT, LT, GE, LE, EQ,
and NE)

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------i
I Status ITest and I Mode I
I Iset I I
I I operator I I
~-----T-----T--------L----------L---------i
I Rl IBl IPl I
~-----+-----+-----------------------------i
I R2 I B2 I P2 I
~-----+-----+-----------------------------i
I R3 I B3 I P3 I L _____ L _____ L _____________________________ J

In-line Functions (MAX2, MIN2, DIM, IDIM,
DMOD, MOD, AMOD, DSIGN, SIGN, ISIGN, LAND,
LOR, LCOMPL, IDIM, BITON, BITOFF, AND, OR,
COMPL, MOD24, SHFTR, and SHFTL)

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------i
I Status I Function I Mode I
I I operator I I
~-----T-----T--------~----------L---------i
I Rl IBl IPl I
~-----+-----+-----------------------------i
I R2 IB2 IP2 I
~-----+-----+-----------------------------i
I R3 I B3 I P3 I
~-----+-----+-----------------------------i
I I I I L _____ L _____ L _____________________________ J

Testing a Byte Logical Variable (LDB)

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------i
I Status ILDB I Mode I
I I operator I I
~-----T-----T--------~----------~---------i
I Rl IBl I I
~---r-+-----+---------------·--------------i
I R2 IB2 I I
~-----+-----+-----------------------------i
I R3 IB3 I I L _____ ~ _____ L _____________________________ J

158

Note: The LDB operator is used to load a
register with a byte logical variable.

Branch on Index Low or Equal, or Branch on
Index High

<-------------4 bytes------------->
r---------------------------------,
I Chain I
~----------------T--------T-------~
I status IAdd I Mode I
1 I operator I I
~-----T-----T----~--------~-------~
I Rl I Bl I Pi I
~-----+-----+---------------------~
I R2 1 B2 I P2 j Text
~-----+-----+---------------------~ Entry 1
I R3 I B3 I P3 I L _____ L _____ ~ _____________________ J

<-------------4 bytes------------->
r---------------------------------,
I Chain I
~----------------T--------T-------~
I Status) Branch I Mode I
I I operator \ I
~-----T-----T----L--------L-------~
I Rl I I Pi I
t-----+-----+---------------------~
I R2 I B2 I P2 I Text
r-----+-----t---------------------~ Entry 2
I R3 I B3 I P3 I L _____ L _____ ~ _____________________ J

Computed GO TO Operator

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------~
I Status I Computed I Mode I
I IGO TO I I
I I operator 1 I
~-----T-----T--------L----------i---------~
I Rl I IPl I
~-----+-----+-----------------------------~
I I lP2 I
~-----+-----+-----------------------------~
I R3 I Ip3 I L _____ ~ _____ L _____________________________ J

Note: A BXHLE instruction will be
generated by phase 25 when an add operator
is followed by a branch operator.

Pi and P2 of text entry 1 equals P2 of
text entry 2.

Pi: The Pi field of text entry 2 contains
a-pointer to the statement number/array
table entry for the statement number to
which a branch is being made.

Pi: Pi contains the number of items in the
branch table that are associated with the
computed GO TO operator.

P2: P2 contains a pointer to the informa­
tion table entry for the branch table.

£1: P3 contains a pointer to the indexing
value for the computed GO TO statement.

Appendix B: Intermediate Text 159

Branch Operators (BL, BLE, BE, BNE, BGE,
BG, BLZ, BLEZ, BEZ, BNEZ, BGEZ, and BGZ)

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------~
t Statues I Branch) Mode I
~-----T-----T--------~----------~---------~
I Rl IBl IPl I
t-----+-----+-----------------------------~
~ R2 I B2 I P2 I
~-----+-----+-----------------------------~
I R3 IE3 IP3 I l _____ ~ _____ ~ _____________________________ J

Binary Shift Operators (RS, LS>

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------~
I Status 1 Binary I Mode I
I I shift I I
I I operator I I
~-----T-----T--------~----------~---------~
I Rl IBl IPl I
~-----+-----+-----------------------------~
I R2 I B2 I P2 I
~-----+-----+-----------------------------~
I I IShift quantity I l _____ ~ _____ ~ _____________________________ J

Load Address Operator (LA)

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------~
I Status I Load I Mode I
I I address I I
1 I operator I I
~-----T-----T--------~----------~---------~
I Rl IBl IPl I
~-----+-----+-----------------------------~
I R2 I B2 I Pi 1
~-----+-----+-----------------------------~
I R3 I B3 I P3 I
t-----~-----~-----------------------------~
I Displacement 1 L ___ J

160

Pi: The Pi field contains a pointer to the
statement number/array table entry for the
statement number to which a branch is being
made.

Note: Operands 2 and 3 must be compared
before the branch. For the BLZ, BLEZ, BEZ,
BNEZ, BGEZ, and BGZ operators, operand 3 is
zero and a test on zero is generated.

Note: The purpose of the load address
operator is to store an address of an ele­
ment of an array in a parameter list. If
bit 7 of the status field is 1, the LA
stores the last argument into the parameter
list.

The Pi field points to a dictionary
entry which points to the adcon table.

LA (14) is always followed by CALL (15)
or a library function (44).

Subscript Text Entry -- Case 1

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------~
I Status ISubscript IMode I
I I operator I I
~-----T-----T--------~----------~---------~
I Rl IBl IPl I
~-----+-----+-----------------------------~
I R2 IB2 IP2 I
~-----+-----+-----------------------------i
I R3 IB3 IP3 1
~-----~-----~-----------------------------~
I Displacement I L ___ J

Subscript Text Entry -- Case 2

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------~
1 Status ISubscript 1Mode 1
I I operator I ~

t-----T-----T--------~----------~---------·~
I I IPl I
~-----+-----+-----------------------------~
I R2 IB2 IP2 I
t-----+-----+-----------------------------~
J R3 IB3 IP3]
~-----~-----~-----------------------------~
I Displacement I L ___ J

In-line Routines (DABS, ABS, lABS, IDINT,
INT, HFIX, DFLOAT, FLOAT, DBLE)

<----------------4 bytes------------------>
r---,
I Chain I
t--------------------T----------T---------i I Status) Operator I Mode 1
~-----T-----T--------~----------~---------~
I Rl IBl IPl I
~-----+-----+-----------------------------~
1 R2 I B2 I P2 I
~-----+-----t-----------------------------~
I I INot used I L _____ L _____ ~ _____________________________ J

P2: The P2 field contains a pointer to the
dictionary entry for the variable being
indexed.

P3: The P3 field contains a pointer to the
dictionary entry for the indexing value
unless the indexing value is a constant;
then P3 * 0 and the displacement field con­
tains a displacement.

Note: For Case 2 subscript text entries,
the-subscript text entry is combined with
the next text entry to form a single RX
instruction. <Case 2 will be formed by
phase 15 only when the second text entry
has the store operator. Phase 20 will
change Case 1 text entries to Case 2 text
entries when appropriate.)

Pl is zero and either P2 or P3 of the
next text entry will be zero.

If the operator of the next text entry
is a store, the subscript applies to Pl.
If the next operator is not a store, the
subscript applies to operand = O.

If the next operator is a 'LIST,' the
subscript applies to Pl for READ or to P2
for WRITE.

Appendix B: Intermediate Text 161

EXT and LIBF Operators

<----------------4 bytes------------------>
r---,
I Chain I
~---------------------T----------T---------~
I status I Operator IMode I
~----T------T--------~----------~---------i
I Hi I Bl I Pi I
~----+------+-----------------------------i
I R2 I B2 IP2 I
~----f------+-----------------------------i
I R3 I B3 IP3 I L ____ ~ ______ ~ _____________________________ j

Arguments for Functions and Calls

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------i
I Status JArgument I Mode I
I I operator I I
r-----T-----T--------~----------~---------i
I I IPl I
~-----+-----+-----------------------------~
I I IP2 J

~-----+-----+-----------------------------i
I I I P3 (for complex) I L _____ ~ _____ ~ __ - __________________________ J

Special Argument Text Entry for Complex
Statements

<----------------4 bytes------------------>
r---,
I Chain i
~--------------------T----------T---------~
I Status I Argument I Mode J
! I operator I J

~-----T-----T--------~------~---~---------~
J Rl IBl IPl I
~-----+-----+-----------------------------i
I J I J

~-----+-----+-----------------------------i
I I I I L _____ ~ _____ ~ _____________________________ J

162

Pi: Pi is zero for the EXT operator of a
subroutine call.

P2: The P2 field contains either a pointer
to the dictionary entry for an external
function or a subroutine name, or a pointer
to the IFUNTB entry for a library fUnction.

P3: The P3 field contains either zero or a
symbolic register number and a displacement
that points to the object-time parameter
list of the external function, library
function, or subroutine.

~2~~: No registers are needed for this
type of text entry.

For calls and ABNORMAL functions, Pi =
P2. For NORMAL functions and library func­
tions, Pi = O.

See the next text entry for the case of
complex statements.

Note: For complex statements, the first
text entry of the argument list contains
the register information for the imaginary
part of the complex result.

Assigned GO TO Operator (BA)

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---'------~
1 Status lAssigned I Mode I
1 IGO TO I I
I loperator I I
~-----T-----T--------~----------~---------i
I I I I
~-----t-----+-----------------------------i I R2 lB2)P2 I
~-----+-----+-----------------------------~
I I I I L _____ ~ _____ ~ _____________________________ J

READ Operator for I/O List

<----------------4 bytes------------------>
r---, I Chain I
~--------------------T----------T---------i
I I READ I I
I I operator I I
~-----~-----T--------~----------~---------i
I Rl IBl IPl I
~-----+-----t-----------------------------i
I I I I
~-----+-----+-----------------------------i
I I IP3 I L _____ L _____ L _____________________________ J

WRITE Operator for I/O List

<----------------4 bytes------------------>
r---, I Chain I
~--------------------T----------T---------~
I Status I WRITE I Mode I
I I operator I I
~-----T-----T--------~----------~---------~
I Rl IBl I I
~-----t-----t-----------------------------~
I I IP2 I
~-----+-----+-----------------------------i
I I IP3 I L _____ ~ _____ L _____________________________ J

P2: The P2 field contains a pointer to the
variable being used in the assigned GO TO
statement.

Pi: The Pi field contains a pointer to the
I/O list for the READ statement. If this
is an indexed READ, Rl is the register to
be used.

Note: If the P3 field contains a zero, an
entire array is being read. This causes a
different instruction sequence to be
generated.

E£: The P2 field contains a pointer to the
I/O list for the WRITE statement. Rl and
Bl are the index and base registers to be
used for the WRITE.

NO!~: If the P3 field contains a zero, an
entire array is being written. This causes
a different instruction sequence to be
generated.

Appendix B: Intermediate Text 163

Logical Branch Operators (BBT, BBF)

<----------------- 4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------~
I Status I Logical I Mode I
I I Branch I I
I I operator I I
~-----T-----T--------~----------~---------~
I Rl I IPl I
~-----+-----+-----------------------------i
I I B2 1 P2 l
.-----+-----+-----------------------------i
I I IP3 I L _____ ~ _____ ~ _____________________________ J

LBIT Operator

<----------------4 bytes------------------>
r---,
I Chain I
~--------------------T----------T---------i
I ,status ILBIT I Mode 1
I I operator I 1
~-----T-----T--------~----------~---------~
I Rl IBl ~Pl ~

~-·----+-----T_----------------------------i
I IB2 IP2 I
~-----+-----+-----------------------------~
I I IP3 I L _____ ~ _____ ~ _____________________________ J

164

Pi: The Pi field contains a pOinter to the
statement number/array table entry for the
statement number to which a branch is being
made.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

The major arrays of the compiler are the
bit-strip and skeleton arrays, which are
used by phase 25 during code generation.
The following illustrations detail the bit­
strip and skeleton arrays associated with
the operators of text entries that lmdergo
code generation. The skeleton array for
each operator is illustrated by a series of
assembly language instructions, consisting
of a basic operation code, which is modi­
fied to suit the mode of the operands, and
by operands, which are in coded form. The
operand codes and their meanings are, as
follows:

Bn--base register for operand n

BD--base register used for loading an
operand's base address

Rn--operational register for operand n

X--index register when necessary

To the right of the skeleton array for
an operator is the bit-strip array for the
operator. Each bit strip in the bit~-strip
array consists of a vertical string of O's,
l's, and X's. A particular strip is:
selected according to the status informa­
tion, which is shown above that strip. For
example, if the combined status of operands
2 and 3 is 1010 (reading downward), the bit
strip under that status is to be used dur­
ing code generation. (The status of
operand 2 is indicated in the first two
vertical positions, reading downward; the
status of operand 3 is indicated in the
second two vertical positions, reading
downward1). The meanings of the various
bit settings in each bit strip are, as
follows:

O--The associated skeleton array
instruction is not to be included as
part of the machine code sequence.
If a horizontal line containing all
zeros appears after an instruction in
a skeleton, the zero may be changed
to a one to perform the desired func­
tion. This usually happens for base
register loads and result stores.

1--The associated skeleton array
instruction is to be included as part
of the machine code sequence.

1In some cases, operand 3 does not exist
and only the status of operand 2 is
indicated.

X--The associated skeleton instruction
mayor may not be included as part of
the machine code sequence, depending
upon whether or not the associated
base address is to be loaded, or
whether or not a store into operand 1
is to be performed.

IEKVPL: Used for All Subtract Operations
r-----T------------------T----------------,
I I Skeleton I ,
IIndex' Instructions' Status ,
.-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,D(0,BD) XXXXXXXXOOOOOOOO
2 LH R2,D(0,B2) 0000111100000000
3 LH R1,D(X,B2) 1100000000000000
4 L B3,D(0,BD) XXOOXXOOXXOOXXOO
5 LCR R3,R3 0010001000000010
6 LR R1,R2 0000110100001101
7 LH R3,D(0,B3) 0100010001000100
8 LCR R1,R3 0001000000000000
9 SH R1,D(X,B3) 1000100010001000

10 SR Rl,R3 0100010101110101
11 AH R3,D(X,B2) 0010000000000000
12 AH R1,D(X,B2) 0001000000000000
13 AR R3,R2 0000001000000010
14 L B1,D(0,BD) XXXXXXXXXXXXXXXX
15 STH R1,D(0,B1) XXXXXXXXXXXXXXXX, _____ ~ __________________ ~ ________________ J

IEKVTS: Used for the INT, IDINT, IFIX, and
HFIX In-Line Routines

r-----T------------------T----------------,
" , INT, ,
" I IFIX, I
, I Skeleton , HFIX IDINTI
IIndexl Instructions ,Status Status I
.-----+------------------+----------------~
I 0011 0011
I 0101 0101 ,
I 1 SDR 0,0 1111 0000
I 2 L B2,D(0,BD) XXOO XXOO
I 3 LD R2,D(0,B2) 0100 0100
, 4 LD 0,D(0,B2) 1000 1000
I 5 LDR 0,R2 0111 0111
1 6 AW 0,60(0,12) 1111 1111
I 7 STD 0,64(0,13) 1111 1111
I 8 L R1,68(0,13) 1111 1111
I 9 BALR 15,0 1111 1111
I 10 BC 10,6(0,15) 1111 1111
I 11 LNR R1,R1 1111 1111
I 12 L B1,D(0,BD) XXXX XXXX
I 13 8TH R1,D(0,B1) XXXX XXX X L _____ ~ _________________ ~ _______________ _

Appendix C: Arrays 165

IEKVAO: Used for the ABS, lABS and OABS
In-Line Routines

r---------T--------------------T----------,
1 1 Skeleton 1 1
I Index 1 Instructions 1 Status I
~---.------+--------------------+----------~
1 1 1 0011 1
I 1 1 0101 1
1 1 1 1
, 1 ,L B2,D(0,BO) I xxoo I
1 2 I LH R2,D(0,B2), 1100 I
I 3 I LPR Rl,R2 ,1111 1
I 4 I L Bl,D(O,BD) 1 XXXX I
, 5 ,STH Rl,D(O,Bl) I XXXX I L _________ ~ ____________________ ~ __________ J

IEKVFP: Used for the MOD24 In-Line Routine
r---------T--------------------T----------,
I I Skeleton' I
I Index I Instructions ,Status I
~--------+--------------------+----------i
I' 1 0011 1
I 1 , 0101 1
'I I 1
1 1 1 L B2,D(O,BO) I XXOO 1
I 2 1 L R2,D(X,B2) 1 1100 1
, 3 I LA Rl,O(O,R2) 1 1111 1
1 4 'L Bl,D(O,BO), XXXX ,
, 5 I ST Rl, D (0, Bl) I XXXX I L _________ ~ ____________________ ~ __________ J

IEKVTS: Used for the MAX2 and MIN2 In-Line
Routines

r-----T------------------T----------------,
, I Skeleton 1 1
I Indexl Instructions I Status 1
~-----+------------------+----------------i

00000000111111111
00001111000011111
00110011001100111
0101010101010101

1 L B2,D(0,BO) XXXXXXXXOOOOOOOO
2 LH R2,D(O,B2) 0000111100000000
3 LH Rl,D(O,B2) 1100000000000000
4 CR Rl,R2 0000001000000010
5 CH R3,D(O,B2) 0001000000000000
6 CH Rl,O(O,B2) 0010000000000000
7 L B3,D(0,BD) XXOOXXOOXXOOXXOO
8 LH R3,D(O,B3) 0100010001000100
9 CR R2,R3 0100010101110101

10 CH R2,D(0,B3) 0000100000001000
11 CH Rl~D(0,B3) 1000000010000000
1.2 LR Rl,R2 0000110100001101
13 LR Rl,R3 0001000000000000
14 BALR 15,0 1111111111111111
15 lBC N,6(0,15)1 1111111111111111
16 I LR Rl, R2 0000001000000010
17 ILR Rl,R3 0100010101110101
18 I LH Rl, D(0, B2) 0011000000000000
19 ILH Rl,D(0,B3) 1000100010001000
20 IL Bl,D(O,BO) XXXXXXXXXXXXXXXX
21 ISTH Rl,D(O,Bl) XXXXXXXXXXXXXXXX

~------~------------------~----------------i
111i'or MAX2, N=2; for MIN2, N=4. 1 L ___ J

166

IEKVFP: Used for the SHFTR and SHFTL In-
Line Routines

r-----T------------------T----------------,
1 I Skeleton 1 1
IIndexl Instructions 1 Status 1
.-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,0(0,BD) XXXXXXXXOOOOOOOO
2 L R2,02(X,B2) 1111111100000000
3 LR Rl,R2 0000111100001111
4 L B3,D(0,BD) XXOOXXOOXXOOXXOO
5 LH R3,D3(X,B3) 1100110011001100
6 SRL Rl,0(0,R3) 1111111111111111
7 L Bl,D(O,BD) XXXXXXXXXXXXXXXX
8 ST Rl,O(O,Bl) XXXXXXXXXXXXXXXX L _____ ~ __________________ ~ ________________ J

IEKVAD: Used for the OBLE In-Line Routines
r---------T--------------------T----------,
1 1 Skeleton 1 1
I Index 1 Instructions 1 status 1
.---------+--------------------+----------~

0011
0101

1 L B2,D(0,BD) XXOO
2 SDR Rl,Rl 1111
3 LER 0,R2 0010
4 LE Rl,0(0,B2) 1100
5 LER R2,Rl 0100
6 LDR Rl,O 0010
7 LER Rl,R2 0001
8 L Bl,O(O,BD) XXXX
9 STD Rl,D(O,Bl) XXXX _________ i-___________________ ~ _________ _

IEKVTS: Used for DIM and IDIM In-Line
Routines

r-----T------------------7----------------, , I Skeleton 1 1
,Indexl Instructions 1 Status 1
~-----t------------------t----------------~

1 10000000011111111
1 10000 111100001111
1 10011001100110011
1 10101 010101010101
1 1

1 IL B2,D(0,BO) IXXXXXXXXOOOOOOOO
2 ILH R2,0(0,B2) 10000111100000000
3 ILH Rl,D(0,B2) 11101000000000000
4 ILCR Rl,R3 10010001000000010
5 AH Rl,O(O,B2) 0010000000000000
6 L B3,O(O,BO) XXOOXXOOXXOOXXOO
7 LH R3,D(0,B3) 0100010001000100
8 LR Rl,R2 0000110100001101
9 SH R1,D(0,B3) 1000100010001000

10 AR Rl,R2 0000001000000010
11 8R Rl,R3 0101010101110101
12 BALR 15,0 1111111111111111
13 BC 10,6(0,15) 1111111111111111
14 8R Rl,Rl 1111111111111111
15 L Bl,D(O,BD) XXXXXXXXXXXXXXXX
16 8TH Rl,O(O,Bl) XXXXXXXXXXXXXXXXI L ____ ~ __________________ ~ ________________ J

IEKVTS: Used for SIGN, ISIGN, and DSIGN
In-Line Routines

r-----T------------------T----------------,
I I skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------i

0000000011111111 1
00001111000011111
0011001100110011 1
01010101010101011

I
1 L B2,DCO,BD) XXXXXXXXOOOOOOOOI
2 LH R2,DCO,B2) 00001111000000001
3 LTR R3., R3 00100010001000101
4 LH Rl,DCO,B2) 11110000000000001
5 L B3,DCO,BD) XXOOXXOOXXOOXXOO
6 LH R3,DCO,B3) 0100010001000100
1 LR Rl,R2 0000001000000010
8 LPR Rl,R2 0000110100001101
9 LPR Rl,Rl 1101000011010000

10 LTR R3,R3 0101010101010101
11 TM 128,DCO,B3) 1000100010001000
12 BALR 15,0 1111111111111111
13 BC 14,6CO,15) 1000100010001000
14 BC 10,6CO,15) 0111011101110111
15 LNR Rl,Rl 1111111111111111
16 BC 15,12CO,15) 0010001000100010
11 LPR Rl~Rl 0010001000100010
18 L Bl,DCO,BD) XXXXXXXXXXXXXXXXI
19 STH Rl,DCO,Bl) XXXXXXXXXXXXXXXXI _____ ..L __________________ ..L __________ . ______ J

IEKVAD: Used for DMOD and AMOD In-I.ine
Routines

r-----T------------------T----------------,
I I Skeleton I I
IIndexl Instructions I Status 1
~-----+------------------+----------------~
1 00000000111111111
I 00001111000011111
1 00110011001100111
I 01010101010101011
I I
IlL B2~D(0,BD) XXXXXXXXOOOOOOOOI
1 2 LD R2,D(0,B2) 0000111100'0000001
I 3 LD R1JD(0~B2) 1111000000000000
I STD Rl,Temp1 done by IE.KVAD
I 4 L B3,D(0,BD) XXOOXXOOXXOOXXOO

5 LD R3,D(0,B3) 0100010001000100
6 LDR Rl,R2 0000111111111111
1 DDR Rl,R3 0111011101110111
8 DD Rl,D(0,B3) 1000100010001000
9 AD Rl,n(0,12) 1111111111111111

10 MDR Rl,R3 0111011101110111
11 MD Rl,D(0,B3) 1000100010001000
12 LCDR Rl., Rl 1111111111111111
13 AD Rl,D(0,B2)1 1111111100000000
14 ADR Rl,R2 0000000011111111
15 L Bl,D(O,BD) XXXXXXXXXXXXXXXX
16 STD Rl,D(O,Bl) XXXXXXXXXXXXXXXXI

~-----..L------------------..L----------------~
11When the statuses and base address stat-I
I uses of operands 2 and 3 are zero, a 1
I store of operand 2 into a temporary willi
I be done as indicated and the add will bel
I from the temporary location. I l ___ J

IEKVAD: Used for COMPL and LCOMPL In-Line
Routines

r---------T--------------------T----------,
I I Skeleton I 1
1 Index 1 Instructions I Status 1
t---------+--------------------+----------~

0011
0101
0000
0000

1 L B2,D(0,BD) XXOO
2 L R2,DeO,B2) 0100
3 LA Rl,l(O,O) 1101
4 LCR Rl,Rl 1111
5 X Rl,D2(X,B2) 1000
6 XR Rl,R2 0101
1 BCTR Rl,O 0010
8 L Bl,D(O,BD) XXXX
9 ST Rl,D(O,Bl) XXXX _________ ..L ____________________ ..L-_________ J

IEKVUN: Used for NOT Operations
r---------T--------------------T----------,
1 1 Skeleton 1 1
I Index 1 Instructions I Status 1
t---------f--------------------f----------i

0011
0101

1 L B2,D(0,BD) XXOO
2 LA Rl,l(O,O) 1101
3 BCTR Rl,O 0010
4 LCR Rl,Rl 0010
5 X Rl,DeX,B2) 1000
6 L R2,D2(0,B2) 0100
1 XR Rl,R2 0101
8 L Bl,D(O,BD) XXXX
9 ST Rl,DeO,Bl) XXXX _________ ..1 ____________________ ..1 _________ _

IEKVBL: Used for All Branch True and
Branch False Operations

r-----T-----------------T-----------------,
I 1 Skeleton 1 I
IIndexl Instructions I Status 1
~-----t-----------------t-----------------i I 1 10000000011111111 1
1 I 10000111100001111 1
'I 10011001100110011 1
1 1 10101010101010101 1
1 1 I 1
I 1 IL B2,D(0,BD) 10000000000000000 I
J 2 IL R2,D(0,B2) 11111111100000000 I
I 3 ISR R3,R3 11100110011001100 I
1 4 I L Bl, D (0, BD) 11111111111111111 I
1 5 I BXH R2, 0 (R3, Bl) 11111111111111111* I
1 6 IBXLE R2,0(R3,Bl) 11111111111111111*1
~-----..L-----------------..L-----------------i
I*One of these two instructions will be I
ladded to the bit strip by subroutine I
IMAINGN-IEKTA depending on the operation. I l ___ J

Appendix C: Arrays 167

IEKVUN: Used for All Load Address
operations

r----T------------------T----------------,
I I Skeleton I I
!Index' Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B3,DCO,BD) 0000000000000000
2 LH R3,DCO,B3) 1100110011001100
3 L B2,DCO,BD) 0000000000000000
4 LA Rl,DCR3,B2) 1111111111111111
5 L Bl,DeO,BD) 0000000000000000
6 ST Rl,DCO,Bl) 1111111111111111
7 LA 0,128CO,0) 0000000000000000

I 8 MVI 128,DCO,Bl) 00001111000000001 L _____ ~ __________________ ~ ________________ J

IEKVUN: Used for All Load Byte Operations
r-----T------------------T----------------,
1 I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~
1 I 10000000011111111!
I 1 100001111000011111
I 1 100110011001100111
I 1 101 010101010101011
1 I I I
I 1 IL B3,DCO,BD) 100 000000000000001
I 2 ISR R3,R3 111111111000000001
I 3 IIC R3,DCX,B3) 111111111111111111
I 4 IL Bl,DCO,BD) 100000000000000001
I 51ST R3,DCO,Bl) 100000000000000001 L _____ ~ __________________ L ________________ J

IEKVPL: Used for all Half-Word Integer
Division Operations and for the
MOD In-Line Routine

r-----T------------------T----------------,
I I Skeleton I I
IIndexl Instructions I Status I
~-----+------------------+----------------~

I 100000000111111111
I 100 001111000011111
I 100110011001100111
I 101010101010101011
J I I

1 IL B2,DCO,BD) 100000000000000001
2 ILH R2,DCO,B2) 100001111000000001
3]LH Rl,D(0,B2) 111110000000000001
4 IL B3,D(0,BD) 100000000000000001
5 ILH R3,D(X,B3) 111001100110011001
6 ILR Rl,R2 100001111000011111
7 ISRDA Rl,32CO,0) 111111111111111111
8 IDR Rl,R3 111111111111111111
9 ID Rl,DCX,B3) 100000000000000001

lOlL Bl,DCO,BD) 100000000000000001
11 ISTH Rl+l,D(O,Bl) 100000000000000001
12 ISTH Rl,DCO,Bl)* 100000000000000001

~-----~------------------~----------------~
1* For MOD in-line routine only. I L ___ J

168

IEKVSU: Used for Case 1 and Case 2 Sub-
script Operations

r-----T------------------T----------------,
I I Skeleton I I
IIndexl Instructions I Status I
~-----~------------------~----------------~
I Case 1 I
.-----T------------------T----------------~
I I 100000000111111111
I I 100001111000011111
i I 100110011001100111
I I 101010101010101011
~-----+------------------+----------------~
1 1 IL B3,D(0,BD) 10000 0000000000001
I 2 ILH R3,D(0,B3) 111001100000000001
I 3 IL B2,D(0,BD) 100000000000000001

II 4 ILH R2,D(R3,B2) 111111111000000001
I 5 IL Bl,D(O,BD) 10000 0000000000001
I 6 ISTH R2,D(0,B1) 100000000000000001
~-----~------------------~----------------~
I Case 2 1
~-----T------------------T----------------i
I I 100 00 0000111111111
I I 10000 1111000011111
I I 100110011001100111
I I 101010101010101011
~-----t------------------+----------------~
I 1 IL B3,D(0,BD) 100000000000000001
I 2 ILH R3,D(0,B3) 111001100110011001
J 3 IL B2,D(O,BD) 100000000000000001

I I 4 ILH R2,D(R3,B2) 100000000000000001
~ 5 IL Bl,D(O,BD) 100000000000000001
I 6 I STH R2, D (0, Bl) 10000000000000000 I L ____ ~ __________________ ~ ________________ J

IEKVUN: Used for All Unary Minus
Operations

r-----T------------------T----------------,
I I Skeleton I I
IIndexl Instructions I Status 1
.-----+------------------+----------------~
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
J I 101010101010101011
I I I 1
I 1 IL B2,D(0,BD) 100000000000000001
I 2 ILH R2,D2(X,B2) 111111111000000001
I 3 ILCR Rl,R2 111111111111111111
I 4 IL Bl,D(O,BD) 100000000000000001
I 5 ISTH Rl,Dl(X,Bl) 100000000000000001 L _____ ~ __________________ ~ ________________ J

IEKVBL: Used for All Assigned GO TO
Operations

r-----T------------------T----------------,
I I Skeleton I 1
IIndexl Instructions I Status I
~-----+------------------+----------------~
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
1 I 101010101010101011
I I I 1
1 1 IL B2,D(0,BD) 10000 0000000000001
I 2 IL R2,D(0,B2) 111111111000000001
I 3 IBCR 15,R2 111111111111111111 L _____ ~ __________________ ~ ________________ J

IEKVBL: Used for All computed GO TO
Operations

r-----T------------------T----------------,
I I skeleton I I
I Index 1 Instructions 1 Status 1
~-----+------------------+----------------i

00000000111111111
00001111000011111
0011001100110011 1
0101010101010101

1 L B3,D(0,BD) 0000000000000000
2 L R3,D3(0,B3) 1100110011001100
3 LR Rl,R3 0101010101010101
4 LA R2,Pl(0,0) 1111111111111111
5 CLR Rl,R2 1111111111111111
6 BALR R2.,0 1111111111111111
7 SLL Rl,2(0,0) 1111111111111111
8 BC 2,14(0,R2) 1111111111111111
9 L R2,D(Rl,B) 1111111111111111

10 BCR 15,R2 1111111111111111 _____ ~ __________________ ~ ________________ J

IEKV8U: Used for All store Operations
r-----T------------------T----------------,
1 I Skeleton 1 1
IIndexl Instructions 1 status 1
~-----+------------------+----------------i
1 1 100000000111111111
1 1 100001111000011111
1 1 100110011001100111
1 ~ 10101010101010101 1
1 1 I I
1 1 IL B2,D(0,BD) 100000000000000001
] 2 ILH R2,D(0,B2) 111111111000010001
1 3 IL Bl,D(O,BD) 1000000000000000 0 1
1 4 18TH R2,D(X,Bl) 100000000000000001 l _____ ~ __________________ ~ ________________ J

IEKVTS: Used for the FLOAT and DFLOAT In-
Line Routines

r---------T--------------------T----------,
1 I Skeleton I I
J Index I ' Instructions 1 Status 1
~---------+--------------------+----------i
I 1 0011 1
I 1 0101 1
1 1 1
1 1 1 L B2,D(0,BD) XXOO 1
I 2 1 LH R2,D(0,B2) 1100 I
1 3 LD Rl,60(0,12) 1111 1
1 4 STD Rl,72(0,13) 1111 I
1 5 LTR R2,R2 1111 J
1 6 BALR 15,0 1111]
1 7 BC 4,16(0,15) 1111 1
1 8 ST R2,76(0,13) 1111 I
1 9 AD Rl,72(0,13) 1111 I
I 10 BC 15,26(0,15) 1111 I
I 11 LPR 0,R2 1111 I
I 12 ST 0,76(0,13) 1111 I
I 13 SD Rl,72(0,13) 1111 I
1 14 L Bl,D(O,BD) XXXX I
1 15 STD Rl,D(O,Bl) XXXX I L _________ ~ ____________________ ~ __________ J

IEKVPL: Used for All Fixed Point Multipli-
cation operations

r-----T------------------T----------------,
I 1 Skeleton I I
IIndexl Instructions I Status I
~-----+------------------+----------------~ I 0000000011111111
I 0000111100001111
I 0011001100110011
1 0101010101010101
1
IlL B2,D(0,BD) 0000000000000000
! 2 LH R2,DCO,B2) 0000111100000000
I 3 LH Rl,D(X,B2) 1100000000000000
I 4 L B3,DCO,BD) 0000000000000000
I 5 LH R3,D(0,B3) 0100010001000100
1 6 LR Rl,R2 0000110100001101
1 7 LR Rl,R3 0001000000000000
, 8 MR Rl-l,R3 0100010101110101
I 9 MR Rl-l,R2 0000001000000010
I 10 MH Rl,DCX,B3) 1000100010001000
1 11 MH Rl,D(X,B2) 0011000000000000
1 12 L Bl,D(O,BD) 0000000000000000
,13 STH Rl,D(O,Bl) 0000000000000000 L _____ ~ __________________ ~ ________________ J

IEKVAD: Used for the AND and OR In-Line
Routines

r-----T------------------T----------------,
1 1 Skeleton I I
,Indexl Instructions I Status I
~-----+------------------+----------------~
I I 100000000111111111
I I 100001111000011111
1 I 100110011001100111
1 I 101010101010101011
I I I I
1 1 IL B2,D(0,BD) 100000000000000001
I 2 IL Rl,D(X,B2) 111111111000000001
I 3 IL B3,D(0,BD) 100000000000000001
I 4 IN Rl,D(X,B3) 111111111111111111
1 5 IL Bl,D(O,BD) 100000000000000001
I 6 1ST Rl,D(O,Bl) 1000 00000000000001 L _____ ~ __________________ ~ ________________ J

IEKVSU: Used for All Right- and Left-Shift
Operations

r-----T------------------T----------------,
I 1 Skeleton I I
IIndexl Instructions I Status I
.-----+------------------+----------------1

00000000111111111
00001111000011111
00110011001100111
01010101010101011

I
1 L B2,D(0,BD) 00000000000000001
2 LH R2,D(0,B2) 11111111000000001
3 LR Rl,R2 00001111000011111
4 SRA Rl,P3CO,0) 1111111111111111/
5 HDR Rl,R2 00000000000000001
6 L Bl,D(O,BD) 00000000000000001
7 STH Rl,D(O,Bl) 00000000000000001 _____ ~ __________________ ~ ________________ J

Appendix C: Arrays 169

IEKVPL: Used for all Full-Word Integer
Division Operations and for the
MOD In-Line Routine

r-----T------------------T----------------,
1 I Skeleton 1 I
I Index 1 Instructions 1 Status 1
~----+------------------+----------------~

00000000111111111
00001111000Qlll1 1
00110011001100111
01010101010101011

1
1 L B2,D(0,BD) 00000000000000001
2 LH R2,D(0,B2) 00001111000000001
3 LH Rl,D(0,B2) 11110000000000001
4 L B3~D(0,BD) 00000000000000001
5 LH R3,D(X,B3) 0'1000100010001001
6 LR Rl" R2 00001111000011111
7 SRDA Rl,. 32 (0,0) 11111111111111111
8 DR Rl,R3 01110111011101111
9 D Rl,D(X,B3) 10001000100010001

10 L Bl~D(O,BD) 00000000000000001
11 STH Rl+1,D(0,Bl) 00000000000000001
12 STH Rl,D(O,Bl)* 00000000000000001

~-_---L------------------L----------------~
1* For MOD in-line routine only. 1 L ___ J

IEKVTS: Used to Compare operands Across a
Relational Operator and Set the
Result to True or False

r-----T------------------T----------------,
I I Skeleton 1 1
I Index 1 Instructions 1 Status 1
~-----+------------------+----------------~

00000000111111111
00001111000011111
0011001100110011
0101010101010101

1 L B2,D(0,BD) 0000000000000000
2 LH R2,D(X,B2) 1111111100000000
3 L B3,D(0,BD) 0000000000000000
4 LH R3,D(0,B3) 0100010001000100
5 CH R2,D(X,B3) 1000100010001000
6 CR R2,R3 0111011101110111
7 LA Rl,l(O,O) 1111111111111111
8 BALR 15,0 1111111111111111
9 BC M,&(0,15) 1111111111111111

10 SR Rl,Rl 1111111111111111
11 L Bl,D(O,BD) 0000000000000000
12 ST Rl,D(O,Bl) 00000000000000001 _____ L __________________ L ________________ J

170

IEKVUN: Used for All Logical Operations
r-----T------------------7----------------,
I 1 skeleton' 1
IIndexl Instructions 1 Status 1
.-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,D(0,BD) 0000000000000000
2 L R2,D(0,B2) 0000111100000000
3 L Rl,D2(0,B2) 1101000000000000
4 L B3,D(0,BD) 0000000000000000
5 L R3,D(0,B3) 0100010001000100
6 L Rl,D3(X,B3) 0000100000001000
7 LR Rl,R2 0000010100000101
8 NR Rl,R2 0000101000001010
9 NR Rl,R3 0101010101110101

10 N Rl,D2(0,B2) 0010000000000000
11 N Rl,D3(X,B3) 1000000010000000
12 L Bl,D(O~BD) 0000000000000000
13 ST Rl,Dl(O,Bl) 00000000000000001 L _____ L __________________ L ________________ J

IEKVPL: Used for All Addition Operations
and for Real Multiplication and­
Real Division Operations

r-----T------------------T----------------,
1 1 Skeleton 1 1
IIndexl Instructions 1 Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,D(0,BD) XXXXXXXXOOOOOOOO
2 LH R2,D(0,B2) 0000111100000000
3 LH Rl,D(X,B2) 1101000000000000
4 L B3,D(0,BD) XXOOXXOOXXOOXXOO
5 LH R3,D(0,B3) 0100010001000100
6 LH Rl,D(X,B3) 0000000000000000
7 LR Rl,R2 0000110100001101
8 AR Rl,R2 0000001000000010
9 AR Rl,R3 0101010101110101

10 AH Rl,D(X,B2) 0010000000000000
11 AH R1,D(X,B3) 1000100010001000
12 L B1,D(0,BD) XXXXXXXXXXXXXXXX
13 STH Rl,D(0,B1) XXXXXXXXXXXXXXXX

~----L------------------L----------------~
I~ For real multiplication and divi- 1
Ision operations, the basic operation 1
Icodes will be replaced by the required 1
Icodes. 1 L ___ J

IEKVBL: Used for Text Entries Whose Opera­
tor is a Relational Operator
Operating on Two Nonzero Operands

r-----T------------------T----------------,
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,O(0,BO) 0000000000000000
2 LH R2,O(0,B2) 1111111100000000
3 L B3,O(0,BO) 0000000000000000
4 LH R3,O(X,B3) 0100010001000100
5 CH R2,O(X,B3) 1000100010001000
6 CR R2,R3 0111011101110111
7 LTR R2,R2 0000000000000000
8* L Rl,Pl 1111111111111111
9 BCR M,Rl 1111111111111111

~-----~------------------L----------------~

I I*IEKVBL will generate instruction 8 only I
I if Pl points to a B-block. I L ___ J

IEKVBL: Used for Text Entries Whose Opera­
tor is a Relational Operator
Operating on One Operand and Zero

r-----T------------------T----------------, I I Skeleton I I
I IndexJ Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,D(0,BD) 0000000000000000
2 LH R2,O(0,B2) 1111111100000000
3 L B3,O(0,BD) 0000000000000000
4 LH R3,D(X,B3) 0000000000000000
5 CH R2,O(X,B3) 0000000000000000
6 CR R2,R3 0000000000000000
7 LTR R2,R2 1111111111111111
8* L Rl,Pl 1111111111111111
9 BCR M,Rl 1111111111111111 • _____ L __________________ L ________________ ~

I I*IEKVBL will generate instruction 8 only I
I if Pl points to a B-block. I L ___ J

IEKVFP: Used for the LBIT, BBT, and BBF In-Line Routines
r-------T-----------------------T---------------------------T---------------------------, I I I BBT,BBF I LBIT I
) I ~--·----------T--------------t------------T--------------~ I I Skeleton I Simple I Subscripted I Simple I Subscripted I
I Index I Instructions I Variable I Variable I variable I Variable I
~------+-----------------------t------------t--------------t------------t--------------~

1 L B2,D(0,BD) X X X X
2 LA 15,D+N/8(X,B2) 0 1 0 1
3 TM M,D+N/8(B2) 1 0 1 0
4 TM M,0(15) 0 1 0 1
5 TM M,D+N/8(R2) 0 0 0 0
6 L 15,Pl 1 1 0 0
7 BCR MM, 15" 1 1 0 0
8 BALR 15,0 0 0 1 1
9 LA Rl,l(O,O) 0 0 1 1

10 BC 1,10(0,15) 0 0 1 1
11 SR Rl,Rl 0 0 1 1
12 L Bl,D(O,BD) 0 0 X X
13 ST Rl,D(O,Bl) 0 0 X X

~-------L-----------------------L------------L--------______ L ____________ L ______________ ~
, N The bit to be loaded or tested. I
I I
I M = MSKTBL(MOD(N,8)+1). MSKTBL is an array of masks used by IEKVFP. I
I I
I MM 1 FOR BBT. I
I I
I MM = 8 FOR BBF. I L ___ J

Appendix C: Arrays 171

APPENDIX D: TEXT OPTIMIZATION EXAMPLES

This appendix contains examples that illustrate the effects of text optimization on
sample text entry sequences. An example is presented for each of the four sections of
text optimization.

Example 1: Common Expression Elimination

This example illustrates the concept of common expression elimination. The text
entries in block A are to undergo common expression elimination. Block B is a back
dominator of block A. Block B contains text entries that are common to those in block A.

(1)
Block B

TI=I*4
T2 = J * 12
T3 = Tl + T2
T4 = X (5 T3
A = T4+ Y

Block A

T7 = I * 4
T8 = J * 12
T9 = T7 + T8
TlO = X (5 T9
B:: TlO + Z

B

Eliminate
T9 = TI + T2

A

Eliminate
T7=1*4

(4)

Unchanged

..

TIO = X (5 T3
B = TlO + Z

A

(2)

Unchanged

T8 = J * 12
T9 = TI + T8
TlO = X (5 T9
B = TIO + Z

Eliminate
TlO = X (s T3

NOTE: The items Ti are temporaries and (s represents a subscript operator

172

B

A

Eliminate
T8 = J * 12

(5)

Unchanged

-

B = T4 + Z

(3)

Unchanged

-
A

T9 = Tl + T2
TlO = X (5 T9
B = TlO + Z

Example 2: Backward Movement

This example illustrates both
methods of backward movement.
The text entries in block A are
to undergo backward movement.
Block B is the back target of the
loop containing block A.

(1)
Block B

E = W+ Z

A 1
X=E+U
n=A+B
T2 = n + C
E = T2 + D

(3)
B

E = W+ Z

n=A+B
T2=n+C

..
1 A

X=E+U

E=T2+D

Move
n=A+B

Move the
expression
T2 + D

A

B

~

A

(2)

E = W+ Z

n=A+B

1
X=E+U

T2=n+C
E=T2+D

(4)

E = W+ Z

Tl=A+B
T2=n+C
Tj = T2 + D

1
X=E+U

E = Tj

Move
T2=Tl+C

NOTE: The text entry X = E + U cannot be moved, because its operand 2 is
defined elsewhere in the loop. The text entry E = T2 + D cannot be
moved, because operand 1 (E) is busy-on-exit from the back target;
however, the expression T2 + D can be moved.

Appendix 0: Text Optimization Examples 173

Example 3: Simple-Store Elimination

The following example illustrates the concept of simple-store elimination, an
integral part of the processing of backward movement.

r--·---,

(1)

Z=X
A=Z+B
D = F * Z
X=2*M
Z=Y/4

N=Z+G

Eliminate Z = X

(2)

A=X+B
D = F * X
X=2*M
Z=Y/4

N=Z+G

~-.--~ I ~ote: Uses of operand 1 of the simple store that appear below the redefinition of I
I ,either operand of the simple store are not replaced. I L __ J

174

Example 4: strength Reduction

This example illustrates both me·thods of strength reduction. In the example,
strength reduction is applied to a DO loop. The evolution of the text entries that
represent the DO loop and the functions of these text entries are also shown. The for­
mats of the text entries in all cases are not exact. They are presented in this manner
to facilitate understanding.

Consider the DO loop:

1=3
DO 10 J=1,3
A=X(I,J)

10 CONTINUE

As a result of the processing of phases 10 and 15, and backward movement, the DO loop
has been converted to the following text representation.

I Back
Target

Loop

r----------------T--------------------T---, I Text Entry I Function I Evolution I
----------------+--------------------+---i

I = 3 Initializes I IStated in source module, converted to I

J = 1

Tl = I • 4

Initializes J

Multiplies first
subscript parameter
by its dimension
factor

~phase 10 text and then to phase 15 text. I
lIt resides in the back target of the loop
Ibecause of text blocking.
I
IGenerated phase 10 text entry, converted
Ito phase 15 text entry. It resides in the
Iback target of the loop because of text
I blocking.
I
IGenerated by phase 15 when it encounters
lthe subscript parameter I during its
~processing of phase 10 text. It resides
lin the back target of the loop as a
Iresult of the processing of backward
I movement.

~----------------+--------------------+---i
Y T2 = J • 12 Multiplies second IGenerated by phase 15 when it encounters

subscript parameter Ithe subscript parameter J during its
by its dimension Iprocessing of phase 10 text.
factor. I

I
T3 = Tl + T2 Computes index value I Generated by phase 15 after the last sub-

A x (s T3

J = J + 1

for the subscripted Iscript parameter in the phase 10 text
variable x. Irepresentation of the subscripted vari­

lable has been processed.
I

stores X(I,J) into A The phase 10 text entry forced and con-
verted to phase 15 text after the index
value for the subscripted variable has
been established.

Increments DO index. Generated by phase 10 and converted to
phase 15 text representation.

IF(J~3)GOTO Y Tests DO index
against its maximum
and controls branch-

Generated by phase 10 and converted to
phase 15 text representation.

ing.
~----------------~--------------------~---i
INote: The statement number Y is generated by phase 10. Also, it is assumed I
Ithat the array X is of the format X(3,3) and that its elements are real I
I (length 4). I L ___ J

Appendix D: Text Optimization Examples 175

The following illustration shows the application of strength reduction to the loop.

176

(1)

1=3
J = 1
Tl=I*4

Y T2 = J * 12
T3 = Tl + T2
A = X (s T3
J = J + 1
IF (J.$. 3) GOTOY

l

Eliminate
Multiplicative
T ex t from Loo p

(2)

· ...
· ...
· ...
· ...
1=3
J = 1
Tl=I*4
M = J * 12

•

t

Y T3 = T1 + M
A = X (s T3
M = M + 12
IF (M.$. 36) GOTOY

I

Eliminate
Additive
Text from Loo P

(3)

....

. ...
1=3
J = 1
Tl:=1*4
M==J* 12
N = 36 + T1
P=Tl +M

•

+ Ir

Y A = X (s P
P = P + 12
IF (P ~ N) GOTOY

1

This appendix describes the logic of
some of the object-time library subprograms
that may be referenced by the FORTRAN load
module. Included at the end of this appen­
dix are flowcharts that describe the logic
of the subprograms.

Each object module, compiled from a
FORTRAN source module, must be processed by
the linkage editor prior to execution on
the IBM System/360. The linkage editor
must combine certain FORTRAN library sub­
programs with the object module to form an
executable load module. The library sub­
programs exist as separate load modules on
the FORTRAN system library (SYS1.FORTLIB).
Each library subprogram to which reference
is made externally by the object module is
included in the load module by the linkage
editor. Among the library subprograms to
which references may be made are:

• IHCFCOMH (object-time input/output
source statement processor) -- entry
name IBCOM#. If the/extended error
message facility is specified, this
module is replaced by IHCECOMH.

• IHCFIOSH (object-time sequential access
input/output data management interface)
-- entry name FIOCS#. If the extended
error message facility is specified,
this module is replaced by IHCEFIOS.

• IHCNAMEL (object-time name list rou­
tines) -- entry names FRDNL# and
FWRNL#.

• IHCDIOSE (object-time direct access
input/output data management interface)
-- entry name DIOCS#. If the ex'tended
error message facility is specified,
this module is replaced by IHCEDIOS.

• IHCIBERH (object-time source sta'tement
error processor) -- entry name IBERH#.

• IHCFCVTH (object-time conversion rou­
tine) -- entry name ADCON#.

• IHCTRCH (object-time terminal error
message and diagnostic traceback rou­
tine) -- entry name IHCTRCH. If the
extended error message facility is
specified, this module is replaced by
IHCETRCH.

APPENDIX E: OBJECT-TIME LIBRARY SUBPROGRAMS

• IHCFINTH (object-time program interrupt
processor). If the extended error mes­
sage facility is specified, this module
is replaced by IHCEFNTH.

• IHCERRM (object-time error message
processor. The module monitors all
execution time errors).

• IHCADJST (object-time boundary adjust­
ment routine) -- entry name IHCADJST.

Module names used in the following dis­
cussions are those in effect when the
extended error message facility has not
been specified. However, the descriptions
apply also with the extended error message
facility, unless otherwise stated.

Subprogram IHCFCOMH receives input/
output requests from the FORTRAN load
module via compiler-generated calling
sequences. IHCFCOMH, in turn, submits
these requests to the appropriate data
management interface (IHCFIOSH or
IHCDIOSE) •

The IHCFIOSH subprogram receives sequen­
tial access input/output requests from IHC­
FCOMH and, in turn, submits those requests
to the appropriate BSAM (basic sequential
access method) routines for execution.

Subprogram IHCDIOSE receives direct
access input/output requests from IHCFCOMB
and, in turn, submits those requests to the
appropriate BDAM (basic direct access
method) routines for execution.

If source statement errors are detected
during compilation, the compiler generates
a calling sequence to the IHCIBERH subpro­
gram. The IHCIBERH subprogram processes
object-time errors resulting from improper­
ly coded source statements. Subprogram
IHCFCVTH contains the various object-time
conversion routines required by IHCFCOMH
and IHCNAMEL. The IHCTRCH subprogram proc­
esses terminal object-time error messages
and produces a diagnostic traceback for
IHCFCOMH. Subprogram IHCADJST processes
object-time specification exceptions if the
boundary alignment option is specified by
the user during system generation.

Appendix E: Object-Time Library Subprograms 177

The IHCFCOMH sUbprogram performs object­
time implementation of the following FOR­
TRAN source statements.

., READ and WRITE (for sequential
input/output).

II READ" FIND, and WRITE (for direct
access input/output).

.' BACKSPACE, REWIND, and ENDFILE (sequen­
tial input/output device manipulation).

., STOP and PAUSE (write-to-operator).

In addition, the IHCFCOMH subprogram:
(1) initializes arithmetic-type program
interruptions, and (2) terminates load
module execution.

All linkages from the load module to
subprogram IHCFCOMH are compiler generated.
Each time one of the above-mentioned source
statements is encountered during compila­
tion, the appropriate calling sequence to
IHCFCOMH is generated and is included as
part of the object module. At object-time,
these calling sequences are executed, and
control is passed to IHCFCOMH to perform
the specified operation.

~o~~: subprogram IHCFCOMH itself does not
perform the actual reading from or writing
onto data sets. It submits requests for
such operations to the appropriate input/
output data management interface (IHCFIOSH
or IHCDIOSE). The input/output interface,
in turn, interprets and submits the
requests to the appropriate access method
(BSAM or BDAM) routines for execution.
Figure 56 illustrates the relationship
between IHCFCOMH and the input/output data
management interfaces.

Charts 23, 24, and 25 illustrate the
overall logic and the relationship among
the routines of IHCFCOMH. Table 38, the
IHCFCOMH routine directory, lists the rou­
tines used in subprogram IHCFCOMH and their
functions.

The routines of the IHCFCOMH subprogram
are divided into the following categories:

• Read/write routines.

• Input/output device manipulation
routines.

• Write-to-operator routines.

" Utility routines.

178

.--------,
I FORTRAN I
I Load I
I Module I
L----'T---- J

I
I

Input/Output I
Request I

Submit
Sequential
Access
Input/Output
Request to
IHCFIOSH

I
r------~------, r----------,
I IHCFCOMH I IIHCFCVTH I
I (Determine .--~Conversionl
IRequest type) I 'Routines I
L-T---------T-J L __________ J

I I
I I
, I
I I
I I
I I
I I
I I
I I

Submit
Direct
Access
Input/Output
Request to
IHCDIOSE

r-----------~-, r-~-----------,
I IHCFIOSH I I IHCDIOSE I
I (sequential I I (Direct I
I Access I/O I , Access I/O I
I Interface) I I Interface) I
L-------T-----J L-----T-------J

'1 I
I I

Interpret I I Interpret
and submit I land submit
Request to I IRequest to
Appropriate I I Appropriate
BSAM Routinel I BSAMlBDAM

, I Routine
I I

r-----~-----l r-----~-----,
I BSAM I I BSAM/BDAM I
I Routines I I Routines I L ___________ J L ___________ J

Figure 56. Relationship Between IHCFCOMH
and Input/Output Data Manage­
ment Interfaces

The read/write routines implement both
the sequential input/output statements
(READ and WRITE) and the direct access
input/output statements (READ, FIND, and
WRITE) 0 (The direct access FIND statement
is treated as a READ statement without for­
mat and list.)

The input/output device manipulation
routines implement the BACKSPACE, REWIND,
and END FILE source statements for sequen­
tial data sets. These statements are
ignored for direct access data sets.

The write-to-operator routines implement
the STOP and PAUSE source statements.

The utility routines: (1) process
errors detected by FORTRAN library subpro­
grams, (2) process arithmetic-type program
interrupts, and (3) terminate load module
execution.

READ/WRITE ROUTINES

The READ/WRITE routines of IHCFCOMH
implement the various types of READ/WRITE
statements of the FORTRAN IV langua~e. For
simplicity" the discussion of these rou­
tines is divided into two parts:

• READ/WRITE statements ~Q~ using
NAMELIST.

• READ/WRITE statements using NAMELIST.

READ/WRITE Statements Not Using NAMELIST

For the implementation of both sequen­
tial and direct access READ and WRITE
statements, the read/write routines of IHC­
FCOMH consist of the following three
sections:

• An opening section" which initializes
data sets for reading and writing.

• An I/O list section, which transfers
data from an input buffer to the I/O
list items or from the I/O list items
to an output buffer.

• A closing section, which terminates the
I/O operation.

Within the discussion of each section, a
read/write oReration is treated in one of
two ways:

• As a read/write requiring a format.

• As a read/write not requiring a format.

Note: In the following discussion, the
term "read operation" implies both the
sequential access READ statement and the
direct access READ and FIND statements.
The term "write operation" implies both the
sequential access WRITE statement and the
direct access WRITE statement.

OPENING SECTION: The compiler generates a
calling sequence to one of four entry
points in the opening section of the
IHCFCOMH subprogram each time it encounters
a READ or WRITE statement in the FORTRAN
source module. These entry points corres­
pond to the operations of read or write,
requiring or not requiring a format.

Read/Write Requiring a Format: If the
operation is a read requiring a format, the
opening section passes control to the
appropriate input/output data management
interface to initialize the unit number
specified in the READ statement for read­
ing. (The unit number is passed, as an
argument, to the opening section via the
calling sequence.) The input/output inter­
face: (1) opens the data control block
(via the OPEN macro instruction) for the
specified data set if it was not previously
opened, and (2) reads a record (via the
READ macro instruction> containing data for
the I/O list items into an input/output
buffer that was obtained when the data con­
trol block was opened. The input/output
interface then returns control to the open­
ing section of subroutine IHCFCOMH. The
address of the buffer and the length of the
record read are passed to IHCFCOMH by the
input/output interface. These values are
saved for the I/O list section of IHCFCOMH.
The opening section then passes control to
a portion of IHCFCOMH that scans the FORMAT
statement specified in the READ statement.
(The address of the FORMAT statement is
passed, as an argument, to the opening sec­
tion via the calling sequence.> The first
format code (either a control or conversion
type) is then obtained.

For control type codes (e.g., an H for­
mat code or a group count>, an I/O list
item is not required. control passes to
the routine associated with the control
code under consideration to perform the
indicated operation. Control then returns
to the scan portion, and the next format
code is obtained. This process is repeated
until either the end of the FORMAT state­
ment or the first conversion code is
encountered.

For conversion type codes (e.g., an I
format code>, an I/O list item is required.
Upon the first encounter of a conversion
code in the scan of the FORMAT statement,
the opening section completes its process­
ing of a read requiring a format and
returns control to the next sequential
instruction within the load module.

The action taken by IHCFCOMH when the
various format codes are encountered is
illustrated in Table 31.

Appendix E: Object-Time Library Subprograms 179

Table 31. The IHCFCOMH Subprogram FORMAT Code Processing
r--'----------T--------------T----------T--,
I I I I I
IFORMAT Code IDescription I Type ICorresponding Action Upon Code by IHCFCOMH I
I I I I I
~------------+--------------+----------+--~

beginning of control Save location for possible repe'tition of the I
statement format codes; clear counters. I

I
I

n(group count control Save n and location of left parenthesis fori

n field count control

nP scaling factor control

Tn column reset control

nX skip or blank control

possible repetition of the format codes in the
group.

Save n for repetition of format code that
follows.

Save n for use by F, E, and D conversions.

Reset current position within record to ~th
column or byte.

Skip n characters of an input record or insert n
blanks in an output record.

'text' or nH literal data control Move n characters from an input record to the
FORMAT statement, or n characters from the
FORMAT statement to an output record.

Fw.d
Ew.d
Dw.d
Iw
Aw
Gw.d
Lw
Zw

1/
I
I
I
I
I
I
I
I

F-conversion
D-conversion
D-conversion
I-conversion
A-conversion
G-conversion
L-conversion
Z-conversion

group end

record end

end of
statement

conversion Exit to the load module to return control to
conversion entries FIOLF or FIOAF in subprogram IHCFCVTH.
conversion Using information passed to the I/O list
conversion section, the address and length of 'the current
conversionllist item are obtained and passed to the
conversion I proper conversion routine together with the
conversionlcurrent position in the input/output buffer, the
conversion scale factor, and the values of wand d. Upon

control

control

control

return from the conversion routine, the current
field count is tested. If it is greater than 1,
another exit is made to the load module to
obtain the address of the next list item.

Test group count. If greater than 1, repeat
format codes in group; otherwise, continue
to process FORMAT statement from current
position.

Input or output one record via the input/output
interface and READ/WRITE macro instruction.

If no I/O list items remain to be transmitted,
return control to the load module to link to the
closing section; if list items remain, input or
output one record using input/output interface
and READ/WRITE macro instruction. Repeat

1 format codes from last parenthesis. L ____________ ~ ______________ ~ __________ ~ __ J

180

If the operation is a write requiring a
format, the opening section passes control
to the input/output interface to ini'tialize
the unit number specified in the WRITE
statement for writing. (The unit number is
passed, as an argument, to the opening sec­
tion via the calling sequence.) The input/
output interface opens the data control
block (via the OPEN macro instruction) for
the specified data set if it was not pre­
viously opened. The input/output interface
then returns control to the opening section
of IHCFCOMH. The address of an inpu't/
output buffer that was obtained when the
data control block was opened is saved for
the I/O list section of IHCFCOMH. Subse­
quent opening section processing, starting
with the scan of the FORMAT statemen't, is
the same as that described for a read
requiring a format.

Read/Write Not Requiring~Forma!: If the
operation is a read or write not requiring
a format, the opening section processing
except for the scan of the FORMAT statement
is the same as that described for a read or
write requiring a format. (For a read or
write not requiring a format, there is no
FORMAT statement.)

I/O LIST SECTION: The compiler generates a
calling sequence to one of four entry
points in the I/O list section of subpro­
gram IHCFCOMH .each time it encounters an
I/O list item associated with the READ or
WRITE statement under consideration. These
entry points correspond to a variable or an
array list item for a read and write,
requiring or not requiring a format. The
I/O list section performs the actual
transfer of data from: (1) an input buffer
to the list items if a READ statemeD',t is
being implemented, or (2) the list i·tems to
an output buffer if a WRITE statement is
being implemented. In the case of a read
or write requiring a format, the data must
be converted before it is transferred.

Read/Write Reguiring a Format: In process­
ing a list item for a read requiring a for­
mat, the I/O list section passes control to
the conversion routine associated with the
conversion code for the list item. (The
appropriate conversion routine is deter­
mined by the portion of subprogram IHCFCOMH
that scans the FORMAT statement associated
with the READ statement. The selection of
the conversion routine depends on the con­
version code of the list item being
processed.)

The selected conversion routine obtains
data from an input buffer and converts the
data to the form dictated by the conversion
code. The converted data is then moved
into the main storage address assigned to
the list item.

In general, after a conversion routine
has processed a list item, the I/O list
section determines whether that routine can
be applied to the next list item or array
element (if an array is being processed).
The I/O list section examines a field count
that indicates the number of times a par­
ticular conversion code is to be applied to
successive list items or successive ele­
ments of an array.

If the conversion code is to be repeated
and if the previous list item was a vari­
able, the I/O list section returns control
to the load module. The load module again
branches to the I/O list section and
passes, as an argument, the main storage
address assigned to the next list item.

The conversion routine that processed
the previous list item is then given con­
trol. This procedure is repeated until
either the field count is exhausted or the
input data for the READ statement is
exhausted.

If the conversion code is to be repeated
and if an array is being processed, the I/O
list section computes the main storage
address of the next element in the array.
The conversion routine that processed the
previous element i~ then given control.
This procedure is repeated until either all
the array elements associated with a spe­
cific conversion code are processed or the
input data for the READ statement is
exhausted.

If the conversion code is not to be
repeated, control is passed to the scan
portion of subprogram IHCFCOMH to continue
the scan of the FORMAT statement. If the
scan portion determines that a group of
conversion codes is to be repeated, the
conversion routines corresponding to those
codes are applied to the next portion of
the input data. This procedure is repeated
until either the group count is exhausted
or the input data for the READ statement is
exhausted.

Appendix E: Object-Time Library Subprograms 181

If a group of conversion codes is not to
be repeated and if the end of the FORMAT
statement is not encountered, the next for­
mat code is obtained. For a control type
code, control is passed to the associated
control routine to perform the indicated
operation. For a conversion type code,
control is returned to the load module if
the previous list item was a variable. The
load module again branches to the I/O list
section and passes, as an argument, the
main storage address assigned to the next
list item. Control is then passed to the
conversion routine associated with the new
conversion code. The conversion routine
then processes the data for this list item.
If the data that was just converted was
placed into an element of an array and if
the entire array has not been filled, the
I/O list section computes the main storage
address of the next element in the array
and passes control to the conversion rou­
tine associated with the new conversion
code. The conversion routine then proc­
esses the data for this array element.
subsequent I/O list processing for a READ
requiring a format proceeds at the point
where the field count is examined.

If the scan portion encounters the end
of the FORMAT statement and if all the list
ibems are satisfied, control returns to the
next sequential instruction within the load
module. This instruction (part of the
calling sequence to subprogram IHCFCOMH)
branches to the closing section. If all
the list items are not satisfied, control
is passed to the input/output interface to
read (via the READ macro instruction) the
next input record. The conversion codes
starting from the last left parenthesis are
then repeated for the remaining list items.

If the operation is a write requiring a
format, the I/O list section processing is
similar to that for a read requiring a for­
mat. The main difference is that the
conversion routines obtain data from the
main storage addresses assigned to the list
items rather than from an input buffer.
The converted data is then transferred to
an output buffer. If all the list items
have not been converted and transferred
before the end of the FORMAT statement is
encountered" control is passed to the
input/output interface. The input/output
interface writes (via the WRITE macro
instruction) the contents of the current
output buffer onto the output data set.
The conversion codes starting from the last
left parenthesis are then repeated for the
remaining list items.

182

Read/Write Not Re~iring a Format: In
processing a list item for a read not
requiring a format, the I/O list section
must know the main storage address assigned
to the list item and the size of the list
item. Their values are passed, as argu­
ments, via the calling sequence to the I/O
list section. The list item may be either
a variable or an array. In either case,
the number of bytes specified by the size
of the list item is moved from the input
buffer to the main storage address assigned
to the list item. The I/O list section
then returns control to the load module.
The load module again branches to the I/O
list section and passes, as arguments, the
main storage address assigned to the next
list item and the size of the list item.
The I/O list section moves the number of
bytes specified by the size of the list
item into the main storage address assigned
to this list item. This procedure is
repeated either until all the list items
are satisfied or until the input data is
exhausted. Control is then returned to the
load module.

If the operation is a write not requir­
ing a format, the I/O list section proc­
essing is similar to that described for a
read not requiring a format. The main dif­
ference is that the data is obtained from
the main storage addresses assigned to the
list items and is then moved to an output
buffer. In addition, the segment length
(i.e., the number of bytes in the record
segment) and a code indicating the position
of this segment relative to other segments,
if any, of the logical record are inserted
in the segment control word.

CLOSING SECTION: The compiler generates a
calling sequence to one of two entry points
in the closing section of subprogram
IHCFCOMH each time it encounters the end of
a RF.AD or ~ITE statement in the FORTRAN
source module. The entry points correspond
to the operations of read and write,
requiring or not requiring a format.

Read/Write Reguiring a Format: If the
operation is a read requiring a format, the
closing section simply returns control to
the load module to continue load module
execution. If the operation is a write
requiring a format, the closing section
branches to the input/output interface.
The input/output interface writes (via the
WRITE macro instruction) the contents of
the current input/output buffer (the final
record) onto the output data set. The
input/output interface then returns control

to the closing section. The closing sec­
tion, in turn, returns control to the load
module to continue load module execution.

Read/Write Not Reguirin~Format: If the
operation is a read not requiring a format,
the closing section branches to the input/
output interface. The input/output inter­
face reads (via the READ macro instruction)
successive records until the end of the
logical record being read is encountered.
(A FORTRAN logical record consists of all
the records necessary to contain the I/O
list items for a WRITE statement not,
requiring a format.) When the input/output
interface recognizes the end-of-Iogical­
record indicator, control is returned to
the closing section. The closing section,
in turn, returns control to the load module
to continue load module execution.

If the operation is a write not r'equir­
ing a format, the closing section inserts:
(1) the segment length (i.e., the number of
bytes in the record segment) and a code
indicating that this segment is either the
last or the only segment of the logical
record into the segment control word of the
input/output buffer to be written, and (2)
an end-of-logical-record indicator into the
last record of the input/output buffer
being written. The closing section then
branches to the input/output interface.
The input/output interface writes (via the

WRITE macro instruction) the contents of
this input/output buffer onto the output
data set. The input/output interface then
returns control to the closing section.
The closing section, in turn, returns con­
trol to the load module to continue load
module execution.

Examples of the ItlCFCOMH Subprogram
READ/WRITE Statement Processing Processing

The following examples illustrate the
opening section, I/O list section, and
closing section processing performed by the
IHCFCOMH subprogram for sequential access
READ and WRITE statements, requiring or not
requiring a format.

~: Subprogram IHCFCOMH processing for
the direct access READ, FIND, and WRITE
statements is essentially the same as that
described for the sequential access READ
and WRITE statements. The main difference
is that for direct access statements, sub­
program IHCFCOMH branches to the direct
access input/output interface (IHCDIOSE)
instead of to the sequential access
input/output interface (IHCFIOSH).

Appendix E: Object-Time Library Subprograms 183

g~AD R~!lIR!NG A FO~!: The processing
performed by subprogram IHCFCOMH for the
following READ statement and FORMAT state­
ment is illustrated in Table 32.

READ (1,2) A,B,C
2 FORMAT (3F12.6)

Table 32. IHCFCOMH Processing for a READ
Requiring a Format

r--------T--------------------------------,
10pening 11. Receives control from load I
Isection I module and branches to the I
I I IHCFIOSH subprogram to I
J I initialize data set for I
I I reading. I
I I I
I 12. Passes control to scan por- I
I I tion of subprogram IHCFCOMH.I
I I I
I 13. Returns control to load I
I I module. I
~--------t--------------------------------~
I/O Listll. Receives control from load
Section I module, converts input data

[for A using subprogram
IHCFCVTH, and moves con­
verted data to A.

2. RetUrns control to load
module.

3. Receives control from load
module, converts input data
for B, and moves converted
data to B.

4. RetUrns control to load
module.

5. Receives control from load
module, converts input data
for C, and moves converted
data to C.

6. Returns control to load
module •

• --------t--------------------------------i
!Closing 11. Receives control from load I
I s€!ction I module and closes out input/ I
I I output operation. I
1 1 I
I 12. Returns control to load I
I I module to continue load I
I I module execution. I l ________ ~ ________________________________ J

184

WRIT~_B!2QIRI~G A_[QRMAT: The processing
performed by IHCFCOMH for the following
WRITE statement and FORMAT statement is
illustrated in Table 33.

WRI TE (3, 2) (D (I) " 1=1, 3)
2 FORMAT (3F12.6)

Table 33. IHCFCOMH Processing for a WRITE
Requiring a Format

r--------T--------------------------------,
10pening 11. Receives control from load 1
Isection I module and branches to sub- 1
I I program IHCFIOSH to initial-I
I I ize data set for writing. 1
I 1 I
I 12• Passes control to scan por- 1
I 1 tion of the IHCFCOMH 1
I 1 subprogram. 1
I 1 1
, 13. Returns control to load 1
I 1 module. 1
~--------+--------------------------------~
I/O List 1. Receives control from load
Section module, converts D(l), and

moves D(l) to output buffer.

2. Returns control to load
module.

3. Receives control from load
module, converts D(2), and
moves D(2) to output buffer.

4. Returns control to load
module.

5. Receives control from load
module, converts D(3), and
moves D(3) to output buffer.

6. Returns control to load
module.

.--------t--------------------------------~
IClosing 11. Receives control from load 1
lsection I module and branches to sub- 1
I 1 program IHCFIOSH to write 1
I 1 contents of output buffer. 1
I 1 1
I 12. Returns control. to load 1
I I module to continue load 1
I I module execution. 1 L ________ ~ ________________________________ J

READ NOT REQUIRING A FORMAT: The proc­
essing performed by IHCFCOMH for the fol­
lowing READ statement is illustrated in
Table 34.

READ (5) ~,Y,z

Table 34. IHCFCOMH Processing for a READ
Not Requiring a Format

r--------T--------------------------------l
IOpening 11. Receives control from load I
ISection I module and branches to sub- I
I 1 program IHCFIOSH to initial-I
1 1 ize data set for reading. I
I I I
I 12. Returns control to load I
I I module. I
I I I
~--------+----~---------------------------~
II/O List 1. Receives control from load
I Section module and moves input data
I to x.
I
I
I
I
I

2.

3.

Returns control to load
module.

Receives control from load
module and moves input -data
to Y.

4. Returns control to load
module.

5. Receives control from load
module and moves input data
to z.

6. Returns control to load
module.

~--------+--------------------------------~
IClosing 11. Receives control from load I
Isection I module and branches to sub- I
I I program IHCFIOSH to read I
I I successive records until thel
I 1 end-of-logical-record indi- I
I I cator is encountered. I
I 1 I
I 12. Returns control to load 1
I 1 module to continue load I
1 1 module execution. I L ________ ~ ________________________________ J

WRITE NOT REQUIRING A FORMAT: The proc­
essing performed by IHCFCOMH for the fol­
lowing WRITE statement is illustrated in
Table 35.

WRITE (6) (W(J) ,J=1,10)

Table 35. IHCFCOMH Processing for a WRITE
Not Requiring a Format

r--------T--------------------------------,
,Opening 11. Receives control from load 1
ISection 1 module and branches to IHC- 1
I I FIOSH to initialize data fori
I I writing. I
I I I
I 12. Returns control to load I
I I module. I
.--------+--------------------------------i
I/O List 1. Receives control from load
section module and moves W(l) to

output buffer.

I
I
I

2. Returns control to load
module.

3. Receives control from load
module and moves W(2) to
output buffer.

4. Returns control to load
module.

15. Receives control from load
I module and moves W(10) to
I output buffer.
I
16. Returns control to load
I module.

~--------+--------------------------------i
IClosing 11. Receives control from load I
Isection I module, inserts control I
I I information, and branches tol
I I subprogram IHCFIOSH to write I
I I contents of output buffer. 1
I I I
I 12• Returns control to load I
I I module to continue load 1
I I module execution. 1 L _______ ~ ________________________________ J

Appendix E: Object-Time Library Subprograms 185

RE~D/WRITE Statement Usi~NAMELIST

Included in the calling sequence to the
IHCNAMEL subprogram1 generated by the com­
piler when it detects a READ or WRITE
instruction using a NAMELIST is a pointer
to the object-time namelist dictionary
associated with the READ or WRITE. This
dictionary contains the names and addresses
of the variables and arrays into which data
is to be read or from which data is to be
written. The dictionary also contains the
information needed to select the conversion
routine that is to convert the data to be
placed into the variables or arrays, or to
be taken from the variables and arrays.

READ USING NAMELIST: The data set contain­
in~J the-aata to-be-input to the variables
or arrays is initialized and successive
records are read until the one containing
the namelist name corresponding to that in
the namelist dictionary is encountered.
The next record is then read and processed.

The record is scanned and the first name
is obtained. The name is compared to the
variable and array names in the name list
dictionary. If the name does not agree, an
erl:or is signaled and load module execution
is terminated. If the name is in the dic­
tionary, processing of the matched variable
or array is initiated.

Each initialization constant assigned to
the variable or an array element is
obtained from the input record. (One con­
stant is required for a variable. A number
of constants equal to the number of ele­
ments in the array is required for an
array. A constant may be repeated for suc­
cessive array elements if appropriately
specified in the input record.) The appro­
priate conversion routine is selected
according to the type of the variable or
array element. Control is then passed to
the conversion routine to convert the con­
stant and to enter it into its associated
variable or array element.

The process is repeated for tp.e second
and subsequent names in the input r~cord.
When an entire record has been processed,
the next record is read and processed.

Processing is terminated upon recogni­
tion of the &END record. Control is then
returned to the calling routine within the
load module.

1Subprogram IHCNAMEL is included in the
load module only if reads and writes using
NAMELISTs appear in the compiled program.
Calls are made directly to FRDNL# (for
READ) or to FWRNL# (for WRITE).

186

WRITE USING NAMELIST: The data set upon
which the variables and arrays are to be
written is initialized. The namelist name
is obtained from the name list dictionary
associated with the WRITE, moved to an
input/output buffer, and written. The
processing of the variables and arrays is
then initiated.

The first variable or array name in the
dictionary is moved to an input/output
buffer followed by an equal sign. The
appropriate conversion routine is selected
according to the type of the variable or
array elements. Control is then passed to
the conversion routine to convert the con­
tents of the variable or the first array
element and to enter it into the input/
output buffer. A comma is inserted into
the buffer following the converted quanti­
ty. If an array is being processed, the
contents of its second and subsequent ele­
ments are converted, using the same conver­
sion routine, and placed into the input/
output buffer, separated by commas. When
all of the array elements have been proc­
essed or if the item processed was a vari­
able, the next name in the dictionary is
obtained. The process is repeated for this
and subsequent variable or array names.

If, at any time, the record length is
exhausted, the current record is written
and processing resumes in the normal
fashion.

When the last variable or array has been
processed, the contents of the current
record are written, the characters &END are
moved to the buffer and written, and con­
trol is returned to the calling routine
within the load module.

Input/Output Device Manipulation Routines

The input/output device manipulation
routines of subprogram IHCFCOMH implement
the BACKSPACE, REWIND, and ENDFILE source
statements. These routines receive control
from within the load module via calling
sequences that are generated by the compil­
er when these statements are encountered.

Note: The BACKSPACE, REWIND, and ENDFILE
requests are honored only for sequential
data sets and are ignored for direct access
data sets. However, these statements are
device independent and can be used for
sequential data sets on either sequential
or direct access devices.

The implementation of BACKSPACE, REWIND,
and ENDFILE statements is straightforward.
The input/output device manipulation rou­
tines submit the appropriate control re-

quest to subprogram IHCFIOSH, the input/
output interface module. After the request
is executed, control is returned to the
calling routine within the load module.

The write-to-operator routines of sub­
program IHCFCOMH implement the STOP and
PAUSE source statements. These routines
receive control from withib the load module
via calling sequences generated by the com­
piler upon recognition of the STOP and
PAUSE statements.

§!Qf: A write-to-operator (WTO) macro
instruction is issued to display the mes­
sage associated with the STOP statement on
the console. Load module execution is then
terminated by passing control to the pro­
gram termination routine of IHCFCOMH.

PAUSE: A write-to-operator-with-reply
(WTOR) macro instruction is issued to dis­
play the message associated with the PAUSE
statement on the console and to enable the
operator's reply to be transmitted. A WAIT
macro instruction is then issued to deter­
mine when the operator's reply has been
transmitted. After the reply has been
received, control is returned to the call­
ing routine within the load module.

Utility Routines

The utility routines of subprogram
IHCFCOMH perform the following functions:

• Process arithmetic-type program
interruptions.

• Process specification interruptions.

• Terminate load module execution.

PROCESSING OF ERROR MESSAGES: The error
message processing routine (IHCERRM)
receives control from various FORTRAN
I ibrary subprograms when they detect 'ter­
minal object-time errors.

Error message processing consists of
initializing the data set upon which the
message is to be written and of writing the
message and a diagnostic traceback. After
the traceback is completed for error mes-

I sage IHC218I, control is passed to the
statement designated in the ERR parameter

of a FORTRAN READ statement if that para­
meter was specified. In all other cases,
control is transferred to a routine that
will terminate the job. Program interrupts
will cause a message to be printed, but
execution will continue. When the extended
error message facility has been specified,
execution may continue after the detection
of an error.

fBOCES2!~G O~_IN!ERRUPTIQNS: The interrupt
routine (IBFINT) of subprogram IHCFCOMH
initially receives control from within the
load module via a compiler-generated call­
ing sequence. The call is placed at the
start of the executable coding of the load
module so that the interrupt routine can
set up the program interrupt mask. Subse­
quent entries into the interrupt routine
are made through specification or
arithmetic-type interruptions.

The interrupt routine sets up the pro­
gram interrupt mask by means of a SPIE
macro instruction. This instruction speci­
fies the type of interruptions that are to
cause control to be passed to the interrupt
routine, and the location within the rou­
tine to which control is to be passed if
the specified interruptions occur. After
the mask has been set, control is returned
to the calling routine within the load
module.

In processing an interruption, the first
step taken by the interrupt routine is to
determine its type.

A. Arithmetic Interruptions: If exponen­
tial overflow or underflow has occurred,
the appropriate indicators, which are
referred to by OVERFL (a library subpro­
gram), are set. If any type of divide
check caused the interruption, the indica­
tor referred to by DVCHK (also a library
subprogram) is set.

Regardless of the type of interruption
that caused control to be given to the
interrupt routine, the old program PSW is
written out for diagnostic purposes.

After the interruption has been proc­
essed. control is returned to the inter­
rupted routine at the point of
interruption.

~2Pecification Interruption£: If an
interrupt is caused by a specification
exception and the boundary alignment option
was specified by the user during system
generation, the boundary adjustment routine
(IHCADJST) is loaded from the link library
(SYS1.LINKLIB).

This routine determines whether or not
the interruption was caused by an instruc­
tion that referred to improperly aligned

Appendix E: Object-Time Library Subprograms 187

data. If it was not" the routine causes
abnormal termination of the load module.
If it was, the routine:

1. Causes message IHC210I, which contains
the main program PSW, to be generated.

.2. Moves the misaligned data to a proper­
ly aligned boundary.

3. Re-executes the instruction that
refers to the data.

If no interruption occurs when the
instruction is re-executed, the data is
moved back to its original location. If
there is a new condition code, it is placed
in the PSW of the Program Interruption Ele­
ment (PIE). The boundary adjustment rou­
tine then returns control to the control
p:rogram, which loads the PSW of the PIE to
effect a return to the interrupted program.

If a divide check, exponential overflow
o:r underflow interruption occurs when the
instruction is re-executed, the interrup­
tion will be handled as described in
"Arithmetic Interruptions."

If a data, protection, or addressing
interruption occurs when the instruction is
re-executed, the boundary adjustment rou­
tine generates the message IHC210I. The
PSW information in this message gives the
cause of the interruption and the location
of the instruction in the main program that
caused the interruption. Then, since proc­
essing cannot continue, the routine issues
a SPIE macro instruction to remove specifi­
cation interruptions from those interrup­
tions handled by this routine and re­
executes the instruction. This causes
abnormal termination of the load module
because of the original specification
error.

PROGRAM TERMINATION: Th~ load module ter­
mination routine (IBEXIT) of the IHCFCOMH
subprogram receives control from various
library subprograms (e.g •. , DUMP and EXIT)
and from other IHCFCOMH routines (e.g., the
routine that processes the STOP statement).

This routine terminates execution of the
load module by the following means:

• Calling the appropriate input/output
interface(s) to check (via the CHECK
macro instruction) outstanding write
requests.

• Issuing a SPIE macro instruction with
no parameters indicating that the
FORTRAN object module no longer desires
to give special treatment to program
interruptions and does not want mask­
able interruptions to occur.

188

• Returning to the operating system
supervisor.

CONVERSION ROUTINES (IHCFCVTH)

The conversion routines (see Table 39)
either convert data to be placed into the
I/O list items or convert data to be taken
from the I/O list items.

These routines receive control either
from the I/O list section of subprogram
IHCFCOMH during its processing of list
items for READ/WRITE statements requiring a
format, from the routines that process
READ/WRITE statements using a NAMELIST, or
from the DUMP and PDUMP subprograms.

Each conversion routine is associated
with a conversion type format code and/or a
type. If an I/O list item for a READ/WRITE
statement requiring a format is being proc­
essed, the conversion routine is selected
according to the conversion type format
code that is to be applied to the list
item. If a list item for a READ/WRITE
using a NAMELIST is being processed, the
conversion routine is selected according to
the type of the list item.

If a READ statement is being imple­
mented, the conversion routine obtains data
from the input/output buffer, converts it
according to its associated conversion type
format code or type, and enters the con­
verted data into the list item. The proc­
ess is reversed if a WRITE statement is
being implemented.

For the DUMP and PDUMP subprograms, the
format code parameter passed to them deter-_
mines the selection of the output conver­
sion routine to be used to place the output
in the desired form.

IHCFIOSH

Subprogram IHCFIOSH, the object-time
FORTRAN sequential access input/output data
management interface, receives input/output
requests from the IHCFCOMH subprogram and
submits them to the appropriate BSAM (basic
sequential access method) routines and/or
OPEN and CLOSE routines for execution •

When the extended error message facility
has been specified at system generation
time, subprogram IHCFIOSH will include pro­
gramming to allow execution to continue
after an error occurs.

Chart 26 illustrates the overall logic
and the relationship among the routines of
the IHCFIOSH subprogram. Table 38, the
IHCFIOSH routine directory, lists the rou­
tines used in subprogram IHCFIOSH and their
functions.

BLOCKS AND TABLES USED

The IHCFIOSH subprogram uses the follow­
ing blocks and table during its processing
of sequential access input/output requests:
(1) unit blocks, and (2) unit assignment
table. The unit blocks are used to indi­
cate input/output activity for each unit
number (i.e., data set reference number)
and to indicate the type of operation
requested. In addition, the unit blocks
contain skeletons of the data event control
blocks (DECB) and the data control blocks
(DCB) that are required for input/output
operations. The unit assignment table is
used as an index to the unit blocks.

The first reference to each unit number
(data set reference number) by an input/
output operation within the FORTRAN load
module causes subprogram IHCFIOSH to con­
struct a unit block for each unit number.
The main storage for the unit blocks is

obtained by the IHCFIOSH subprogram via the
GETMAIN macro instruction. The addresses
of the unit blocks are placed in the unit
assignment table as the unit blocks are
constructed. All sUbsequent references to
the unit numbers are then made through the
unit assignment table. Figure 57 illus­
trates the format of a unit block for a
unit that is defined as a sequential access
data set.

Each unit block is divided into four
sections: a housekeeping section, two DECB
skeleton sections, and a DCB skeleton
section.

Housekeeping Section: The housekeeping
section is maintained by the IHCFIOSH sub­
program. The section is maintained by IHC­
FIOSH. The information contained in it
indicates the data set type, records input/
output buffer locations, and records
addresses internal to the input/output buf­
fers so that blocked records may be proc­
essed. The fields of this section are:

• ABYTE. This field, containing the data
set type passed to subprogram IHCFIOSH
by the IHCFCOMH following can be set to
one of the following:

FO Input data set which is
formatted.

FF Output data set which is
formatted.

r------------T------------T------------T------------T------------,
I ABYTE I BBYTE I CBYTE I DBYTE I 4 bytes I
~------------~------------~---------·---~------------t------------~
I Address of Buffer 1 I 4 bytes I
~---t------------~
I Address of Buffer 2 I 4 bytes I
r---t------------~ 1 Current buffer pointer (Note) I 4 bytes J

~-------------~-------------------------------------+------------~
I Record offset (RECPTR) (Note) I 4 bytes I
~---+------------~ 1 Address of last DECB I 4 bytes I
~---+------------~
I Mask for alternating buffers I 4 bytes I
r---+------------~
! DECB1 skeleton section I 20 bytes I
~--------------------------------------T------------+------------~
I Not used I LlVECNT1 I 4 bytes I
t--------------------------------------~------------t------------~
I DECB2 skeleton section I 20 bytes I
t------------------------~T------------T------------+------------~
I Work space I Not used I LIVECNT2 I 4 bytes I
t-------------------------~------------~------------+------------~
I DCB skeleton section I 88 bytes I L ___ ~ ____________ J

• Figure 57. Format of a Unit Block for a Sequential Access Data Set

Housekeeping
Section

Note: Used only for
variable-length
and/or blocked
records

Appendix E: Object-Time Library Subprograms 189

00

OF

Input data set which is not
formatted.
Output data set which is not
formatted.

o BBYTE. This field contains bits that
are set and examined by IHCFIOSH during
its processing. The bits and their
meanings when on are, as follows:

o exit to subroutine IHCFCOMH on
input/output error

1 input/output error occurred
2 current buffer indicator
3 not used
4 end-of-current buffer indicator
5 blocked data set indicator
6 variable record format switch
7 not used

• CBYTE. This field also contains bits
that are set and examined by subroutine
IHCFIOSH. The bits and their meanings
when on are, as follows:

0 data control block opened
1 data control block not TCLOSEd
2 data control block not previously

opened
3 buffer pool attached
4 data set not previously rewound
5 not used
6 concatenation occurring; reissue

READ
7 data set is DUMMY

I. !2BYT~. This field contains bits that
are set and examined by IHCFIOSH during
the processing of an Input/Output
operation involving a backspace re­
quest. The bits and their meanings,
when on, are as follows:

o a physical backspace has occurred
1 previous operation was BACKSPACE
2 not used
3 end-of-file routine should retain

buffers
4 not used
5 not used
6 END FILE followed by BACKSPACE
7 not used

~ Address of Buffer 1 and Address of
Buffer 2. These fields contain point­
ers to the two input/output buffers
obtained during the opening of the data
control block for this data set.

'I Current Buffer Pointer. This field
contains a pointer to the input/output
buffer currently being used.

~ Record Offset (RECPTR). This field
contains a pointer to the current

190

logical record within the current
buffer.

• Address of Last DECB. This field con­
tains-a-Pointer to~he DECB last used.

• Mask for Alternating Buffers. This
field contains the bits which enable an
Exclusive Or operation to alternate the
current buffer pointer.

DECB SKELETON SECTIONS (DECBl AND DECB2):
The DECB (data event control block) skele­
ton sections are blocks of main storage
within the unit block. They have the same
format as the DECB constructed by the con­
trol program for an L format of an s-type
READ or WRITE macro instruction (see the
publication IBM System/360 Operating Sys­
tem: Supervisor and Data Management Macro
Instructions, Form C28-6647). The various
fields of the DECB skeleton are filled in
by subprogram IHCFIOSH; the completed block
is referred to when IHCFIOSH issues a read/
write request to BSAM. The read/write
field is filled in at open time. For each
input/output operation, IHCFIOSH supplies
subprogram IHCFCOMH with: (1) an indica­
tion of the type of operation (read or
write), and (2) the length of and a pointer
to the input/output buffer to be used for
the operation.

• LlVECNTl and LIVECNT2. These fields
indicate whether any input/output
operation performed for the data set is
unchecked. (A value of 1 indicates
that a previous read or write has not
been checked; a value of 0 indicates
that all previous read and write opera­
tions for the data set have been
checked.)

• Work Space. This field is used to
align the logical record length of a
variable record segment on a full word
boundary.

DCB SKELETON SECTION: The DCB (data con­
tror-flock) skeleton section is a block of
main storage within the unit block. It is
of the same format as the DCB constructed
by the control program for a DCB macro
instruction under BSAM (see the publication
IB~~te~3£Q_Qp~!~~!gg_~~t~~~ __ Sup~rv!=
SO!_~gg_Q~ta_~~g~g~~g~~~£ro_!nstruc=
tions). The various fields of the DCB
skeleton are filled in by the control pro­
gram when the DCB for the data set is
opened (see the publication !~~~st~~36Q
OEerat!gg_~Y2~em~ __ con£~p~~_~gQ
K~cili~ie2)·

Note: Standard aefault values may also be
inserted in the DCB skeleton by the
IHCFIOSH subprogram. See "Unit Assignment
Table" for a discussion of when default
values are inserted into the DCB skeleton.

Unit A~signment Table

The unit assignment table (IHCUATBL)
resides in the FORTRAN system library
(SYS1.FORTLIB). Its size depends on the
maximum number of units that can be
referred to during execution of any FORTRAN
load module. This numper (~ 99) is speci­
fied by the user during the system genera­
tion process via the FORTLIB macro
instruction.

The unit assignment table is designed to
be used by both the IHCFIOSH and IHCDIOSE
subprograms. It is included once, by the
linkage editor, in the FORTRAN load module
as a result of an external reference to it
within IHCFIOSH and/or IHCDIOSE •

The unit assignment table contains a
16-byte entry for each of the unit numbers
that can be referred to by the user. These
entries differ in format depending on
whether the unit has been defined as a
sequential access or a direct access data
set.

Figure 58 illustrates the format of the
unit assignment table.

Because subprogram IHCFIOSH deals only
with sequential access data sets, the
remainder of the discussion on the unit
assignment table is devoted to unit assign­
ment table entries fer sequential access
data sets. If the IHCFIOSH subprogram
encounters a reference to a direct access
data set, it is considered an error, and
control is passed to the load module ter­
mination routine of the IHCFCOMH
subprogram.

The pointers to the unit blocks created
for sequential data sets are inserted into
the unit assignment table entries by sub­
program IHCFIOSH when the unit blocks are
constructed.

Note: Default values are standard values
that IHCFIOSH inserts into the appropriate
fields (e.g., BUFNO) of the DCB skeleton
section of the unit blocks if the user does
either of the following:

• Causes the load module to be executed
via a cataloged procedure.

• Fails, in stating his own procedure for
execution, to include in the DCB param­
eter of his DD statements those sub­
parameters (e.g., BUFNO) that he is

r----------------------~----------T-------,
IUnit number (DSRN) 1 1. 1 I
Ibeing used for current I I I
1 operation 1 n x 16 14 bytes I
~--------~-------T-----i-~--------t-------~
I ERRMSG 1 READ 1 PRINT 1 PUNCH 1 I
I DSRN2 1 DSRN3 1 DSRN~ 1 DSRN5 14 bytes I
~--------~-------i-------~--------t-------~
IUBLOCK01 field 14 bytes I
.---------------------------------t-------~
IDSRN01 default values 18 bytes I
~---------------------------------t-------~
JLIST01 field 14 bytes I
~---------------------------------t-------~
I 1 I
I I I
I 1 I
I I I
I 1 I
~---------------------------------t-------~
IUBLOCKn field 6 14 bytes I
~---------------------------------t-------~
IDSRNn default values7 18 bytes I
.---------------------------------t-------~
ILISTn field 8 14 bytes I
~---------------------------------t-------~
1.n is the maximum number of units that I
can be referred to by the FORTRAN load I
module. The size of the unit table is I
equal to (8 + n x 16) bytes. I

2unit number (DSRN) of error output I
device. I

3unit number (DSR~) of input device for al
read of the form: READ Q,list. I
~Unit number (DSRN) of output device for I

a print operation of the form: PRINT I
Q,list.

5Unit number (DSRN) of output device for
a punch operation of the form: PUNCH
b,list.

6The UBLOCKn field contains either a
pointer to the unit block constructed
for unit number n if the unit is being
used at object time, or a value of 1 if
the unit is not being used.

7The default values for the various unit
numbers are specified by the user and
are assembled into the unit assignment
table entries during the system genera­
tion process. The default values are
used only by subprogram IHCFIOSHi they
are ignored by the IHCDIOSE subprogram.

18 If the unit is defined as a direct
I access data set, the LISTn field con-
I tains a pointer to the parameter list I
I that defines the direct access data set. I
1 otherwise, this field contains a value I
1 of 1. I L ___ J

Figure 58. Unit Assignment Table Format

permitted to include (see the publication
, IBM System/360 Operating System: FORTRAN

IV (G and H) Programmer's Guide).

Appendix E: Object-Time Library subprograms 191

Control is returned to subprogram IHC­
FlOSH during data control block opening so
that it can determine whether or not the
user has included the subparameters in the
DeB parameter of his DD statements. Sub­
program to IHCFIOSH examines the DCB skele­
ton fields corresponding to user-permitted
subparameters and, upon encountering a null
field (indicating that the user has not
specified the subparameter), inserts the
standard value (i.e., the default value)
for the subparameter into the DCB skeleton.
(If the user has included these subparame­
ters in his DD statement, the control pro­
gram routine performing data control block
opening inserts the subparameter values,
before transferring control to the IHC­
FlOSH, sUbprogram into the DCB skeleton
fields reserved for those values.)

BUFFERING

All input/output operations are double
buffered. (The double buffering scheme can
be overridden by the user if he specifies
in a DD statement: BUFNO=1.) This implies
that during data control block opening, two
buffers will be obtained. The addresses of
these buffers are given alternately to the
IHCFCOMH subprogram as pointers to:

• Buffers to be filled (in the case of
output) •

• Information that has been read in and
is to be processed (in the case of
input) •

COMMUNICATION WITH THE CONTROL PROGRAM

In requesting services of the co~trol
program, subprogram IHCFIOSH uses Land E
forms of S-type macro instructions (see the
publication IBM System/360 Operating Sys­
tem: Supervisor and Data Management Macro
Instructions).

OPERATION

The processing of subprogram IHCFIOSH is
divided into five sections: initializa­
tion, read, write, device manipulation, and
closing. When called by the IHCFCOMH sub­
program, a section of subprogram IHCFIOSH
performs its function and then returns con­
trol to IHCFCOMH.

192

Initialization

The initialization action taken by sub­
program IHCFIOSH depends upon the nature of
the previous input/output operation
requested for the data set. The previous
operation possibilities are:

• No previous operation.

• Previous operation read or write.

• Previous operation backspace.

• Previous operation write end-of-data
set.

• Previous operation rewind.

NO PREVIOUS OPERATION: If no previous
operation has been performed on the unit
specified in the input/output request, the
initialization section generates a unit
block for the unit number. The data set to
be created is then opened (if the current
operation is not rewind or backspace) via
the OPEN macro instruction. The addresses
of the input/output buffers, which are
obtained during the opening process and
placed into the DCB skeleton, are placed
into the appropriate fields of the house­
keeping section of the unit block. The
DECB skeleton is then set to reflect the
nature of the operation (read or write),
the format of the records to be read or
written, and the address of the input/
output buffer to be used in the operation.

If the requested operation is a write, a
pointer to the buffer position, at which
subprogram IHCFCOMH is to place the record
to be written, and the block size or logic­
al record length (to accommodate blocked
logical records) are placed into registers,
and control is returned to the IHCFCOMH
subprogram.

If the requested operation is a read, a
record is read, via a READ macro instruc­
tion, into the input/output buffer, and the
operation is checked for completion via the
CHECK macro instruction. A pointer to the
location of the record within the buffer,
along with the number of bytes read or the
logical record length, are placed into
registers, and control is returned to the
IHCFCOMH subprogram.

Note: During the' opening process, control
is returned to the IHCDCBXE routine in sub­
program IHCFIOSH. This routine determines
whether or not the data set being opened is
a 1403 printer. If it is, the RECFM field
in the DCB for the data set is altered to
machine car:t:iage control (FM). In addi­
tion, a pointer to the unit block generated
for the printer, and the physical address

of the printer are placed into a control
block area (CTLBLK) for the printer within
the IHCFIOSH subprogram. The CTLBLK also
contains a third print buffer. This buffer
is used in conjunction with the two buffers
already obtained for the printer.

Figure 59 illustrates the format of the
CTLBLK.

r-------------------------T---------,
CTLBLKla(BUF 3) I 4 bytes I

~-------------------------+---------~
la(unit block) 1 4 bytes;
~-----------T-------------+---------i
la(printer) Irecord length 1 4 bytes I
~-----------~-------------+---------~
IFTOO~ 1 4 bytesl
~-------------------------+---------~
IF001~ 1 4 bytes I L _________________________ ~ _________ J

BUF3 Ithird print buffer 1144 bytes I
r-----L-------------------------L---------~
I~Used in the task input/output table I
I (TIOT) search. I L _______________________________ ~---------J

Figure 59. CTLBLK Format

PREVIOUS OPERATION READ OR WRITE: If the
previous operation performed-on-the unit
specified in the present input/output re­
quest was either a read or write, the
initialization section determines the
nature of the present input/output request.
If it is a write, a pOinter to the buffer
position, at which subprogram IHCFCOMH is
to place the record to be written, and the
block size or logical record length are
placed into registers, and control is
returned to the IHCFCOMH sUbprogram.

If the operation to be performed is a
read, a poiriter to the buffer location of
the record to be processed, along with the
number of bytes read or logical record
length, are placed into registers, and con­
trol is returned to subprogram IHCFCOMH.

PREVIOUS OPERATION BACKSPACE: If the pre­
vIOuS-operation-Perforrned on the unit spe­
cified in the present input/output request
was a backspace~ the initialization section
determines the type of the present opera­
tion (read or write) and modifies the DECB
skeleton, if necessary, to reflect the
operation type. (If the operation type is
the same as that of the operation that pre­
ceded the backspace request, the DECB
skeleton need not be modified.) Subsequent
processing steps are the same as those
described for "No Previous Operation,"
starting at the point after t~e DECB skele­
ton is set to reflect operation type:.

PREVIOUS OPERATION WRITE END-OF-DATA SET:
yr-the-previoUS-operation performed on the
unit specified in the present input/output
request was a write end-of-data set, a new
data set using the same unit number is to
be created. In this case, the initializa­
tion section closes the data set. Then, in
order to establish a correspondence between
the new data set and the DD statement
describing that data set, subprogram IHC­
FIOSH increments the unit sequence number
of the ddname. (The ddname is placed into
the appropriate field of the DCB skeleton
prior to the opening of the initial data
set associated with the unit number.) Dur­
ing the opening of the data set, the ddname
will be used to merge with the appropriate
DD statement. The data set is then opened.
Subsequent processing steps are the same as
those described for "No Previous Opera­
tion," starting at the point after the data
set is opened.

PREVIOU§_QPEgATIQ!:LREWINQ: If the previous
operation performed on the unit specified
in the present input/output request was a
rewind, the ddname is initialized (set to
FTxxF001) in order to establish a corres­
pondence between the initial data set asso­
ciated with the unit number and the DD
statement describing that data set. The
data set is then opened. Subsequent
processing steps are the same as those
described for "NO Previous Operation,"
starting at the point after the data set is
opened.

The read section of subprogram IHCFIOSH
performs two functions: (1) reads physical
records into the buffers obtained during
data set opening, and (2) makes the con­
tents of these buffers available to the
IHCFCOMH subprogram for processing.

If the records being processed are
blocked, the read section does not read a
physical record each time it is given con­
trol. Subprogram IHCFIOSH only reads a
physical record when all of the logical
records of the blocked record under consid­
eration have been processed by the IHCFCOMH
subprogram. However, if the records being
processed are either unblocked or of U­
format, the read section of subprogram IHC­
FIOSH issues a READ macro instruction each
time it receives control.

The reading of records by this section
is overlapped. That is, while the contents
of one buffer are being processed, a physi­
cal record is being read into the other
buffer. When the contents of one buffer
have been processed, the read into the

Appendix E: Object-Time Library Subprograms 193

other buffer is checked for campletian.
Upon campletian af the read aperation,
pracessing af that buffer's cantents is
initiated. In additian, a read into. the
secand buffer is initiated.

Each time the read sectian is given can­
tral, it makes the next recard available to.
subprogram IHCFCOMH far pracessing. (In
the case af blacked recards, the recard
presented to. IHCFCOMH is lagical.) The
read sectian af IHCFIOSH places: (1) a
painter to. the recard's lacatian in the
current input/autput buffer and (2) the
number af bytes read ar lagical recard
length into. registers, and then returns
cantral to. the IHCFCOMH subpragram.

The write sectian af subpragram IHCFIOSH
perfarms twa functians: (1) writes physi­
cal recards and (2) pravides IHCFCOMH with
buffer space in which to. place the recards
to. be written.

If the recards being written are
blocked, the write sectian daes nat write a
physical recard each time it is given can­
trol. Subprogram IHCFIOSH anly writes a
physical recard when all af the lagical
recards that make up the blacked recard
under cansideratian have been placed into.
the input/autput buffer by the IHCFCOMH
subpragram. Hawever, if the recards being
written are either unblacked ar af subpra­
gram U-farmat, the write sectian af subpra­
gram IHCFIOSH issues a WRITE macro. instruc­
tion each time it receives cantral.

The writing af recards by this sectian
is averlapped. That is, while subpragram
IHCFCOMH is filling ane buffer, the can­
tents af the ather buffer are being writ­
ten. When an entire buffer has been
filled, the write fram the ather buffer is
checked far campletian. Upan campletion af
the write aperatian, subpragram IHCFCOMH
starts placing recards into. that buffer.
In additian, a write fram the secand buffer
is initiated.

Each time cantral is transferred to. the
write sectian, it pravides subpragram IHCF­
COMB with buffer space in which to place
the record to. be written. The IHCFIOSH
subprogram places: (1) a painter'to the
lacatian within the current buffer at which
IHCFCOMH is to place the record, and (2)
the block size ar lagical recard length
into. registers, and then returns control to
IHCFCOMH.

~~: The write section checks to see
whether ar nat the data set being written
on is a 1403 printer. If it is, the car-

19L~

riage cantral character is changed to
machine code, and three buffers, instead of
the narmal twa, are used when writing an
the printer.

ERROR PROCESSING WITHOUT EXTENDED ERROR
MESSAGE FACILITY: An error number is put
into. a parameter list and register 13 is
set up to. point to. a save area in IBCOM.
The user's save area is linked to. this save
area. The error monitar is then called to
print a message on the object error unit.

ERROR PROCESSING WITH EXTENDED ERROR MES­
SAGE FACILITY: A cammon subroutine is
called to. prepare far a call to the errar
manitor. The carnman subroutine:

1. converts the data set reference and
puts it into. the last faur bytes af
the message

2. links save areas as described when no
errar message facility has been
specified

3. calls the errar manitor (IHCERRM)

The error manitor may return to. cantinue
execution.

For error canditians 214, 217, 218, 219,
220, and 231 if user carrective action is
taken, and far error 214 if the operatian
was input, the remainder of the I/O list is
ignored upon return from the comman subrau­
tine. For errar candition 214 under any
other candition, the recard farmat is
changed to V and execution continues.

Far any error conditian except 214 and
217, upan return from the error monitor,
IHCFIOSH returns an indication that an
error has accurred to. the caller.

In the case af an end-of-data set, sub­
pragram IHCFIOSH simply passes control to
the end-af-data set routine of the IHCFCOMH
subpragram.

Chart 27 illustrates the execution-time
input/autput recavery procedure for any
input/autput errars detected by the input/
output supervisar.

Device ManipulatiQ~

The device manipulation sectian of sub­
program IHCFIOSH processes backspace,
rewind, and write end-of-data set requests.

BACKSPACE: IHCFIOSH processes the back­
space request by issuing the appropriate
number af BSP <physical backspace) macro

instructions (0, 1, 2 or 3) and adjusting
the RECPTR in the unit block to point to
the preceding logical record. The number
of BSP's issued will depend on the number
of buffers used, the previous Input/Output
operation, and the position of RECPTR prior
to the backspace.

For unformatted records, the processing
of a backspace request also includes
examining the SDW (Segment Descriptor Word)
of each record segment in order to locate
the first segment of a spanned record
(i.e., a logical record which causes more
than one physical Input/Output operation to
be performed). Control is then returned to
IHCFCOMH.

REWIND: Subprogram IHCFIOSH processes the
rewind request by issuing a CLOSE macro
instruction, using the REREAD optionu This
option has the same effect as a rewind.
Control is then returned to IHCFCOMHu

WRITE END-OF-DATA SET: Subprogram IHCFIOSH
processes this request by issuing a CLOSE
macro instruction, type = T. It then frees
the input/output buffers by issuing a FREE­
POOL macro instruction, and returns control
to the IHCFCOMH subprogram.

Closing

The closing section of subprogram IHC­
FIOSH examines the entries in the unit
assignment table to determine which data
control blocks are open. In addition, this
section ensures that all write opera'tions
for a data set are completed before -the
data control block for that data set is
closed. This is done by issuing a CHECK
macro instruction for all double-buffered
output data sets. Control is then returned
to the IHCFCOMH subprogram.

Note: If a 1403 printer is being uS1ed, a
write from the last print buffer is issued
to insure that the last line of output is
written.

IHCDIOSE

Subprogram IHCDIOSE , the object-time
FORTRAN direct access input/output data
management interface, receives input/output
requests from the IHCFCOMH subprogram and
submits them to the appropriate BDAM (basic
direct access method) routines and/or open
and close routines for execution. (For the
first input/output request involving a non­
existent data set, the appropriate BSAM
routines must be executed prior to linking

to the BDAM routines. The BSAM routines
format and create a new data set consisting
of blank records.)

The IHCDIOSE subprogram receives control
from: (1) the initialization section of
the FORTRAN load module if a DEFINE FILE
statement is included in the source module,
and (2) IHCFCOMH whenever a READ, WRITE, or
FIND direct access statement is encountered
in the load module.

Charts 28 and 29 illustrate the overall
logic and the relationship among the rou­
tines of the IHCDIOSE subprogram. Table
39, the IHCDIOSE routine directory, lists
the routines used in IHCDIOSE and their
functions.

BLOCKS AND TABLE USED

Subprogram IHCDIOSE uses the following
blocks and table during its processing of
direct access input/output requests:
(1) unit blocks, and (2) unit assignment
table. The unit blocks are used to ind­
icate input/output activity for each unit
number (i.e., data set reference number)
and to indicate the type o"f operation
requested. In addition, each unit block
contains skeletons of the data event con­
trol blocks (DECB) and the data control
block (DCB) that are required for input/
output operations. The unit assignment
table is used as an index to the unit
blocks.

Unit Blocks

The first reference to each unit number
(i.e., data set reference number) by a
direct access input/output operation within
the FORTRAN load module causes subprogram
IHCDIOSE to construct a unit block for each
of the referenced unit numbers. The main
storage for the unit blocks is obtained by
the IHCDIOSE subprogram via the GETMAIN
macro instruction. The addresses of the
unit blocks are inserted into the corres­
ponding unit assignment table entries as
the unit blocks are constructed. Subse­
quent references to the unit numbers are
then made through the unit assignment
table.

Figure 60 illustrates the format of a
unit block for a unit that has been defined
as a direct access data set.

Appendix E: Object-Time Library Subprograms 195

r-------y-------T------T------T-----------,
I I I not I not I I
IIOTYPE ISTATUSUI used I used I 4 bytes I
~-------~-------~------~------+-----------~ I RECNUM I 4 bytes ~

~-------T---------------------+-----------~
ISTATUSAI CURBUF I 4 bytes I
~-------~---------------------t-----------~
I BLKREFA I 4 bytes ,
~-------y---------------------+-----------~
ISTATUSBI NXTBUF I 4 bytes I
~-------~--------------------t-----------~
~ BLKREFB I 4 bytes l
~-----------------------------+-----------i
I DECBA I 28 bytes I
~-----------------------------t-----------~ I DECBB I 28 bytes I
~-----------------------------+-----------~ I DCB I 104 bytes I l _____________________________ ~ ___________ J

Figure 60. Format of a Unit Block for a
Direct Access Data Set

The meanings of the various unit block
fields are outlined below.

IOTYPE: This field, containing the data
set type passed to subprogram IHCDIOSE by
the IHCFCOMH subprogram, can be set to one
of the following:

FO input data set requiring a format

FF output data set requiring a
format

00 -- input data set not requiring a
format

OF -- output data set not requiring a
format

§T~TU§Q: This field specifies the status
of the associated unit number. The bits
and their meanings when on are, as follows:

o -- data control block for data set
is open for BSAM

1 error occurred

2 two buffers are being used

3 data control block for data set
is open for BDAM

4-5 -- 10 - U format specified in DEFINE
FILE statement

196

01 - E format specified in DEFINE
FILE statement

11 - L format specified in DEFINE
FILE statement

6-7 not used

Note: Subprogram IHCDIOSE refers only to
bits 1, 2, and 3.

RECNU~: This field contains the number of
records in the data set as specified in the
parameter list for the data set in a DEFINE
FILE statement. It is filled in by the
file initialization section after the data
control block for the data set is opened.

§TATUS~: This field specifies the status
of the buffer currently being used. The
bits and their meanings when on are, as
follows:

o -- READ macro instruction has been
issued

1 -- WRITE macro instruction has been
issued

2 -- CHECK macro instruction has been
issued

3-7 -- Not used

CURBUF: This field contains the address of
the DECB skeleton currently being used. It
is initialized to contain the address of
the DECBA skeleton by the file initializa­
tion section of IHCDIOSE after the data
control block for the data set is opened.

BLKBEF~: This field contains an integer
that indicates either the relative position
within the data set of the record to be
read, or the relative position within the
data set at which the record is to be writ­
ten. It is filled in by either the read or
write section of subprogram IHCDIOSE prior
to any reading or writing. In addition,
the address of this field is inserted into
the DECBA skeleton by the file initializa­
tion section of IHCDIOSE after the data
control block for the data set is opened.

ST~TUSB: This field specifies the status
of the next buffer to be used if two buf­
fers are obtained for this data set during
data control block opening. The bits and
their meanings are the same as described
for the STATUSA field. However, if only
one buffer is obtained during data control
block opening, this field is not used.

~TBUf: This field contains the address of
the DECB skeleton to be used next if two
buffers are obtained during data control
block opening. It is initialized to con­
tain the address of the DECBB skeleton by
the file initialization section of subpro­
gram IHCDIOSE after the data control block
for the data set is opened. However, if
only one buffer is obtained during data
control block opening, this field is not
used.

BLKREFB: The contents of this field are
the same as described for the BLKREFA
field. It is filled in either by the read
or the write section of subprogram IHCDIOSE
prior to any reading or writing. In addi­
tion, the address of this field is inserted
into the DECBB skeleton by the file initia­
lization section of IHCDIOSE after the data
control block for the data set is opened.
However, if only one buffer is obtained
during data control block opening, this
field is not used.

DECBA SKELETON: This field contains the
DECB (data event control block) skeleton to
be used when reading into or writing from
the current buffer. It is of the same form
as the DECB constructed by the control pro­
gram for an L form of an S-type READ or
WRITE macro instruction under BDAM (see the
publication IB~_Sys!~~~1~QEera!in~2Y2=
tern: SUEervisor and Data Manag~~~g!~~rQ
!Q§!r~tiQg2)·

The various fields of the DECBA skeleton
are filled in by the file initialization
section of subprogram IHCDIOSE after the
data control block for the data set is
opened. The completed DECB is referred to
when IHCDIOSE issues a read or a write
request to BDAM. For each input/output
operation, IHCDIOSE supplies IHCFCOMH with
the address of and the size of the buffer
to be used for the operation.

DECBB SKELETON: The DECBB skeleton is used
when reading into or writing from the next
buffer. Its contents are the same as
described for the DECBA skeleton. The
DECBB skeleton is completed in the same
manner as described for the DECBA skeleton.
However, if only one buffer is obtained
during data control block opening, this
field is not used.

DCB SKELETON: This field contains the DCB
(data control block) skeleton for the asso­
ciated data set. It is of the same format
as the DCB constructed by the control pro­
gram for a DCB macro instruction under BDAM
(see the publication IBM System/360 0Eerat-

in~stem: SUEervisor and Data Management
Macro Instructions).

The various fields of the DCB skeleton
are filled in by the control program when
the DCB for the data set is opened (see the
publication IBM System/3~eratin~Sys­
tern: Conc~ts and Facilities).

Unit Assignment Table

The unit assignment table (IHCUATBL)
resides on the FORTRAN system library
(SYS1.FORTLIB). Its size depends on the
maximum number of units that can be
referred to during execution of any FORTRAN
load module. This number (~99) is speci­
fied by the user during the system genera­
tion process via the FORTLIB macro
instruction.

The unit assignment table is designed to
be used by both the IHCFIOSH and IHCDIOSE
subprograms. It is included once, by the
linkage editor, in the FORTRAN load module
as a result of an external reference to it
within IHCFIOSH and/or IHCDIOSE •

The unit assignment table contains a
16-byte entry for each of the unit numbers
that can be referred to by either subpro­
gram IHCDIOSE or IHCFIOSH. These entries
differ in format depending on whether the
unit has been defined as a direct access or
as a sequential access data set. Because
subprogram IHCDIOSE deals only with direct
access data sets, only the entry for a
direct access unit is shown here. (For the
format of the unit assignment table as a
whole, see "Table and Blocks Used" under
"IHCFIOSH"). If subprogram IHCDIOSE
encounters a reference to a sequential
access data set, it is considered an error,
and control is passed to the load module
termination routine of the IHCFCOMH
subprogram.

Figure 61 illustrates the unit assign­
ment table entry format for a direct access
data set.

The pointers to the unit blocks are
inserted into the unit assignment table
entries by subprogram IHCDIOSE when the
unit blocks are constructed.

The pointers to the unit blocks are
inserted into the unit assignment table
entries by subprogram IHCDIOSE when the
unit blocks are constructed.

Appendix E: Object-Time Library Subprograms 197

r----------------------------------T-------,
I Pointer to unit block xx 14 bytes I
I (UBLOCKxx) I I
~--.-------------------------------+--------t
I Default values for DSRNxx (ap- 18 bytes I
I plies only to sequential access I I
I data sets -- not used by sub- I I
I program IHCDIOSE) I I
~--·-------------------------------+-------i
I Pointer to parameter list xx 14 bytes I
I (LISTxx) I I
~-_.-------------------------------.L-------~
I UBLOCKxx is the unit block generated I
I tor unit number xx. I
I I
I DSRNxx is the unit number for the I
I direct access data set (xx~99). I
I I
I LISTxx is the parameter list that I
I defines the direct access data set I
I associated with unit number xx. I L ___ J

Figure 61. Unit Assignment Table Entry for
a Direct Access Data Set

The pointers to the parameter lists are
inserted into the unit assignment table
ent.ries by subprogram IHCDIOSE when it
receives control from the initialization
section of the FORTRAN load module being
executed.

BUFFERING

All direct access input/output opera­
tions are double buffered. (The double
buffering scheme may be overridden by the
user if he specifies in his DD statements:
BUFNO=l.) This implies that during data
control block opening, two buffers will be
obtained for each data set. The addresses
of these buffers are given alternately to
subroutine IHCFCOMH as pointers to:

• Buffers to be filled in the case of
output.

• Data that has been read in and is to be
processed in the case of input.

Each buffer has its own DECB. This
increases input/output efficiency by over­
lapping of input/output operations.

COMMUNICATION WITH THE CONTROL PROGRAM

In requesting services of the control
program BSAM and BDAM routines, the IHC­
DIOSE subprogram uses Land E forms of S-

198

type macro instructions (see the publica­
tion IBM System/360 Operating System:
Supervisor and Data Management Macro
Instruct!QM) •

OPERATION

The processing of subprogram IHCDIOSE is
divided into five sections: file defini­
tion, file initialization, read, write, and
termination. When a section receives con­
trol, it performs its functions and then
returns control to the caller <either the
FORTRAN load module or IHCFCOMH).

File Definition Section

The file definition section is entered
from the FORTRAN load module, via a
compiler-generated calling sequence, if a
DEFINE FILE statement is included in the
FORTRAN source module. The file definition
section performs the following functions:

• Checks for the redefinition of each
direct access unit number.

• Enters the address of each direct
access unit number's parameter list
into the appropriate unit assignment
table entry.

• Establishes addressability for subpro­
gram IHCDIOSE within the IHCFCOMH
subprogram.

Each direct access unit number appearing
in a DEFINE FILE st=3.tement is checked to
see if it has been defined previously. If
it has been defined previously, the current
definition is ignored. If it has not been
defined previously, the address of its
parameter list <i.e., the definition of the
unit number) is inserted into the proper
entry in the unit assignment table. The
next unit number, if any, is then obtained.

When the last unit number has been proc­
essed in the above manner, the file defini­
tion section stores the address of IHCDIOSE
into the FDIOCS field within IHCFCOMH.
This enables subprogram IHCFCOMH to link to
IHCDIOSE when IHCFCOMH encounters a direct
access input/output statement. Control is
then returned to the FORTRAN load module to
continue normal processing.

Ei~e Initialization Section

The file initialization section receives
control from the IHCFCOMH subprogram
whenever input or output is requested for a
direct access data set. The processing
performed by the initialization section
depends on whether or not an input/output
operation was previously requested for the
data set.

NO PREVIOUS OPERATION: If no operation was
previously requested for the data set spec­
ified in the current input/output request,
the file initialization section first con­
structs a unit block for the data set.
(The GETMAIN macro instruction is used to
obtain the main storage for the unit
block.) The address of the unit block is
inserted into the appropriate entry in the
unit assignment table.

The file initialization section then
reads the JFCB (job file control block) via
the RDJFCB macro instruction. The value in
the BUFNO field of the JFCB is inserted
into the DCB skeleton in the unit block.
This value indicates the number of buffers
that are obtained for this data set. when
its data control block is opened. If the
BUFNO field is null (i.e., if the user did
not include the BUFNO subpa:r:ameter in the
PD statement'for this data set), or other
than 1 or 2, the file initialization sec­
tion inserts a value of two into the DCB
skeleton.

The file initialization section next
examines the JFCBIND2 field in the JFCB to
determine if the data set specified in the
current input/output request exists. If
the JFCBIND2 field indicates that the spec­
ified data set does not exist, and if the
current request is a write, a new data set
is created. (If the current request is a
read, an error is indicated and control is
returned to subprogram IHCFCOMH wbich may
terminate load module execution. If the
current request is a find, the request is
ignored, and control is returned to the
IHCFCOMH subprogram.) If the JFCBIND2
field indicates that the specified data set
already exists, a new data set is not
created for BDAM use.

If the specified data set is already
opened when the file initialization section
is entered, the following checks are made:
(1) If the data set is already opened for
BDAM, the appropriate branch is taken to
perform a READ or WRITE operation. (2) If
the specified data set has been opened for
BSAM, then the data set is closed, since an
input/output error must have occurred dur­
ing the formatting of the data set.. The
data set is then reopened to provide a .

fresh start. The file initialization sec­
tion processing for a data set to be
created, and for a data set that already
exists is discussed in the following
paragraphs.

Data Set To Be Created: The data control
block for the new data set is first opened
for the BSAM·, load mode, WRITE macro
instruction. The BSAM WRITE macro instruc­
tion is used to create a new data set
according to the format specified in the
parameter list for the data set in a DEFINE
FILE statement. The data control block is
then closed. Subsequent file initializa­
tion section processing after creating the
new data set is the same as that described
for a data set that already exists (see
"Data Set Already Exists").

Da~et Al~~Exists: The data control
block for the data set is opened for direct
access processing by the BDAM routines.
After the data control block is opened, the
file initialization section fills in
various fields in the unit block:

• The number of records in the data set
is inserted into the RECNUM field.

• The address of the DECB skeletons
(DECBA and DECBB) are inserted into the
CURBUF and the NXTBUF fields,
respectively.

• The addresses of the input/output buf­
fers obtained during data control block
opening are inserted into the appropri­
ate DECB skeletons.

• The address of the BLKREFA and the
BLKREFB fields in the unit block are
inserted into the appropriate DECB
skeletons.

Note: If the user specifies BUFNO=l in the
DD statement for this data set, only one
input/output buffer is obtained during data
control block opening. In this case, the
NXTBUF field, the BLKREFB field, and the
DECBB skeleton are not used.

subsequent file initialization section
processing for the case of no previous
operation depends upon the nature of the
input/output request (FIND, READ, or
WRITE). This processing is the same as
that described for the case of a previous
operation (see "Previous Operation").

PREVIOUS OPERATION: If an operation was
previously requested for the data set spe­
cified' in the current input/output request,
the file initialization section processing
depends upon the nature of the current
input/output request.

Appendix E: Object-Time Library Subprograms 199

If the current request is either a find
or a read, control is passed to the read
section.

If the current request is a write, con­
trol is passed to the secondary entry in
the write section.

Read section

The read section of subprogram IHCDIOSE
processes read and find requests. The read
section may be entered either from the file
initialization section of IHCDIOSE , or
from IHCFCOMH subprogram. In either case,
the processing performed is the same. In
processing read and find requests, the read
section performs the following functions:

• Reads physical records into the
buffer(s) obtained during data control
block opening.

• Makes the contents of these buffers
available to the IHCFCOMH subprogram
for processing.

• Updates the associated variable that is
defined in the DEFINE FILE statement
for the data set.

'rhe read section, upon receiving con­
trol, first checks to see if the record to
be found or read is already in an input/
output buffer. Subsequent read section
processing depends upon whether the record
is in the buffer.

RECORD IN BUFFER: If a record is in the
buffer, the read section determines whether
the current request is a find or a read.

If the current request is a find, the
associated variable for the data set is
updated so that it points to the relative
position within the direct access data set
of the record that is in the buffer. Con­
trol is then returned to the IHCFCOMH
subprogram.

If the current request is a read, the
read operation that read the record into
the buffer is checked for completion. The
read section then places the address of the
buffer and the size of the buffer into
registers for use by subprogram IHCFCOMH.
The associated variable for the data set is
updated so that it points to the relative
position within the direct access data set
of t.he record following the record just
read. Con·trol is then returned to the IHC­
FCOMH subprogram.

200

RECORD NOT IN BUFFER: If a record is not
in tfie-buffer;-tfie-read section first
obtains the address of the buffer to be
used for the current request. The relative
record number of the record to be read is
then inserted into the appropriate BLKREF
field in the unit block (i.e., BLKREFA or
BLKREFB). The proper record is then read
from the specified data set into the buff­
er. subsequent read section processing for
the case of a record not in the buffer is
the same as that described for a record in
the buffer (see "Record in Buffer").

Note 1: Record retrieval can proceed con­
currently with CPU processing only if the
user alternates FIND statements with READ
statements in his program.

Note 2: If an input/output error occurs
during reading, the control program returns
control to the synChronous exit routine
(SYNADR) within subprogram IHCDIOSE. The
SYNADR routine sets a switch to indicate
that an input/output error has occurred,
and then returns control to the control
program. The control program completes its
processing and returns control to the IHC­
DIOSE subprogram. The IHCDIOSE subprogram
interrogates the switch, finds it to be
set, and passes control to the input/output
error routine of subprogram IHCFCOMH (see
"Error Processing").

Write Section

The write section of subprogram IHCDIOSE
processes write requests. The write sec­
tion may be entered either from the file
initialization section of IHCDIOSE , or
from IHCFCOMH. The processing performed by
the write section depends upon where it is
entered from.

PROCESSING IF ENTERED FROM FILE INITIALIZA­
TION SECTION: If the write section is
entered~rom the file initialization sec­
tion of the IHCDIOSE subprogram, no writing
is performed. The write section only pro­
vides subprogram IHCFCOMH with buffer space
in which to place the record to be written.
The relative record number of the record to
be written is inserted into the appropriate
BLKREF field (i.e., BLKREFA or BLKREFB).
(The record is written the next time the
write section is entered.) For a formatted
write, the buffer is filled with blanks.
For an unformatted write, the buffer is
filled with zeros. The write section then
places the address of the buffer and the
size of the buffer into registers for use
by subprogram IHCFCOMH. Control is then
returned to the IHCFCOMH subprogram.

PROCESSING IF ENTERED FROM IHCFCOMH: Each
time the write section is entered from IHC­
FCOMH, it writes the contents of the buffer
onto the specified data set. Subsequent
write section processing for entrances from
IHCFCOMH is the same as that described for
entrances from the file initialization sec­
tion of IHCDIOSE (see "Processing If
Entered from File Initialization Section").
In addition, the associated variable is
modified prior to returning to IHCFCOMH.
The associated variable for the data set is
updated so that it points to the relative
position within the direct access data set
of the record following the record just
written.

Note 1: The writing of physical records by
this section is overlapped. That is, while
subprogram IHCFCOMH is filling buffer A,
buffer B is being written onto the output
data set. When buffer A has been filled,
the write from buffer B is checked for com­
pletion. Upon completion of the write
operation, the IHCFCOMH subprogram starts
placing data into buffer B. In addition, a
write from buffer A is initiated.

Note 2: If an input/output error occurs
during writing, the control program returns
control to the synchronous exit routine
(SYNADR) within the IHCDIOSE subprogram.
The SYNADR routine sets a switch to indic­
ate that an input/output error has
occurred, and then returns control to the
control program. The control program com­
pletes its processing and returns control
to the IHCDIOSE subprogram. Subprogram
IHCDIOSE interrogates the switch, finds it
to be set, and passes control to the input/
output error routine of subprogram IHCFCOMH
(see "Error Processing").

The way in which errors are processed is
dependent upon whether or not the extended
error message facility was specified at
system generation time.

WITHOUT EXTENDED ERROR MESSAGE FACILITY:
An error number is put into a parameter
list and register 13 is set up to pOint to
a save area in IBCOM. The user's save area
is linked to this save area. The error
monitor is then called.

WITH EXTENDER ERROR MESSAGE FACILITY: A
two-part common subroutine is called to
prepare for a call to the error monitor.
The first part of the subroutine links save
areas as described when no error message
facility has been specified. It is used
only when an error occurs in the portion of
subprogram IHCDIOSE which was called

directly from the problem program -- i.e.,
for error conditions 234 and 235. The
second part of the common subroutine is
used for those errors as well as for errors
detected in that portion of subprogram IHC­
DIOSE called from the IHCFCOMH subprogram
-- i.e., error conditions 231-233 and 236-
237. It puts the data set reference number
into the last four bytes of the error mes­
sage and links to the error monitor.

For error condition 232, the number of
the record requested is placed in the
parameter list before calling the common
subroutine. For error conditions 218 and
237, the DCB address is placed in the
parameter list.

Termination Section

The termination section of the IHCDIOSE
subprogram receives control from the load
module termination routine of the IHCFCOMH
subprogram. The function of this section
is to terminate any pending input/output
operations involving direct access data
sets. The unit blocks associated with the
direct access data sets are examined by
IHCDIOSE to determine if any input/output
is pending. The CHECK macro instructions
are issued for all pending input/output
operations to ensure their completion.

The data control blocks for the direct
access data sets are closed, and the main
storage occupied by the unit blocks is
freed via the FREEMAIN macro instruction.
Control is then returned to the load module
termination routine of IHCFCOMH to complete
the termination process.

Subprogram IHCIBERH, a member of the
FORTRAN system library (SYS1.FORTLIB),
processes object-time source statement
errors. The IHCIBERH SUbprogram is entered
when an internal statement number (ISN)
cannot be executed because of a source
statement error.

The ISN of the invalid source statement
is obtained (from information in the call­
ing sequence) and is then converted to
decimal form. The IHCIBERH subprogram then
links to subprogram IHCFCOMH to implement
the writing of the following error message:

IHC230I - SOURCE ERROR AT ISN
XXXX - EXECUTION FAILED AT SUB­
ROUTINE (xxxx)

Appendix E: Object-Time Library Subprograms 201

After the error message is written on
the user-designated error output data set,
subprogram IHCIBERH passes control to the
IBEXIT routine of subprogram IHCFCOMH to
terminate execution.

Chart 30 illustrates the overall logic
of the IHCIBERR subprogram.

Subprogram IHCTRCH, a member of the
FORTRAN system library (SYS1.FORTLIB),
processes terminal errors detected by
FORTRAN library subroutines at object time.
The IHCTRCH subprogram is entered when an
error is detected in order to print a
traceback map. After this is accomplished,
the job is terminated unless the extended
error message facility has been requested.

Subprogram IHCTRCH issues the following
message:

IHCxxxI
TRACEBACK FOLLOWS ROUTINE
REG. 15 REG. 0 REG. 1

where:

ISN REG. 14

xxx is the error code (in decimal
form) that it obtains from the calling
sequence.

If the error occurred in subprogram IHC­
FCOMH, IHCFCVTH, IHCNAMEL, IHCDIOSE , or
IHCFIOSH, the IHCTRCH subprogram sets up an
area that can be processed as a standard
save area for the first traceback line.

For each traceback line, subprogram
IHCTRCH gets the name of the called rou­
tine, the internal statement number, if
any, of the call within the calling rou­
tine, and the contents of register 14, 15,
0, and 1 in hexadecimal.

After printing each line, subprogram
IHCTRCH checks to ascertain whether or not
the called routine was the main FORTRAN
routine. If it was tne entry point is
printed, in hexadecimal and a branch is
made, to IBEXIT. If it was not, a traceback
loop-check routine is entered, which builds
and checks a table of save area addresses.
If the table is full or if a loop is
detected, IHCTRCH prints TRACEBACK TER­
MINATED and then prints the main FORTRAN
routine entry point and branches to IBEXIT.

Subprogram IHCTRCH uses the IHCFCVTH
subprogram to convert to printable hexade­
cimal format and it subroutine IHCFIOSH for
printing.

202

Further information about traceback,
including an example of output, is con­
tained in the publication IBM System/360
Operating System: FORTRAN IV (Gand H)
Programmer's Guide, Form C28-6817.

IHCFINTH

The module IHCFINTH processes asyn­
ch~onous program interrupts. Every FORTRAN
main program notifies the system" s first
level interrupt handler (via a SPIE macro
instruction) to transfer to the entry point
ARITH# in module IHCFINTH in -the event of a
program interrupt.

FORTRAN requests interrupt service for
the program interrupts listed below. All
others cause job termination by the system.
(For a description of program interrupts,
see the publication IBM System/360: Prin­
ciples of Operation, Form A22-6821.)

Code
-9-

11
12
13
15

Description
Fixed-point divide
Decimal divide
Exponent overflow
Exponent underflow
Floating-point divide

Codes 8 and 14 are masked so that no
interrupt occurs.

If boundary alignment adjustments were
requested when the system was created, then
interrupt 6 specification is also re­
quested. The processing for specification
interrupts is handled by the module
IHCADJST, however.

The services performed by the interrupt
processing routine IHCFINTH are as follows:

1. A message is printed that identifies
the interrupt .•

2.

3.

Switches are set for exponent over­
flow" exponent underflow, and divide
check for the FORTRAN subprograms CALL
OVERFL(J) and CALL DVCHK(J).

Result registers are altered for
exponent overflow and underflow as
follows:

Overflow

Underflow

maximum floating-point
number

zero

In addition, if the operation was an
add or subtract and exponent underflow
occurred, then the condition code is
set to O.

When the extended error message :facility
has been requested, then the module IHC­
FINTH has the. ability to accept a user exit
and control the printing of messages and
the number of. occurrences of the various
interrupts. The user exit may provide an
alternate value to be placed in the result
register for underflow and overflow before
execution continues.

IHCERRM

The IHCERRM subprogram is the execution
error monitor. Each FORTRAN library pro­
gram that detects an error calls the
IHCERRM module for error message service.
The service available is dependent upon
which of two options -- basic message fa­
cility or extended error message facility
-- was selected at system generation.

When the basic facility is requested,
each error causes job termination and a
traceback map is produced. The messages
printed on the object error unit will con­
tain a description of the error situation
if the error was detected by the ma'themat­
ical library. For other error situations,
only an error code is printed. For a full
description of these error codes, see the
publication IBM System/360 Operating Sys­
tem: FORTRAN (G and H) Programmer's Guide,
Form C28-6817.

When the extended error message facility
is present, the error monitor is directed
by the option table to perform one or more
of the following actions:

• Print a message

• Terminate the job

• Call a user-written routine for
corrective action. Upon return from
the user-written routine, the return is
made to the caller of the error
monitor.

• Return to the caller of the error mon­
itor an indication that standard
corrective action is required. The
routine that called the error monitor
has the programming to provide ,the
standard corrective action.

To enable dynamic control of error
occurrences and printing suppression, rou­
tines can be called from the FORTRAN source
language.

Because error message printing can be
suppressed, a summary of error occurrences
is given before return to the system.

The FORTRAN library provides the error
message facility through the following
services:

1. Each module that detects an error
calls the error monitor. The module
can accept a return from the error
monitor and supply a standard correct­
ive action.

2. An error monitor is supplied.

3. Routines to change the option table
are supplied.

4. An option table is supplied.

5. The exit code of the FORTRAN library
provides for the printing of an error
summary.

The following is a description of the
error monitor:

The error monitor on initial entry will
set a switch. If entered again before the
switch is set to off, a recursive situation
is detected and the job is terminated.

The error monitor then retrieves the
error entry from the option table and makes
the following actions and tests in the
order listed:

1. Updates the current count of errors
encountered.

2. Does the current count of errors
exceed the number of allowable errors,
indicating that the job should be
terminated?

3. Does the current count of messages
printed exceed the number of messages
to be printed, indicating that message
printing is to be suppressed?

4. Should a traceback map be printed?

5. Is a user exit specified? If it is,
the exit routine, which must return to
the error monitor, is called.

6. Return to caller of the error monitor
after turning off the switch that
indicates that the error monitor has
been entered.

Charts 31 and 32 show the overall logic
of the error monitor.

Appendix E: Object-Time Library Subprograms 203

Alter option Table Routine (IHCFOPT)

The IHCFOPT routine allows the user to
alt~er the option table, thereby achieving
dynamic control over error occurrence has
three entry points: ERRSTR, ERRSAV, and
ERRSET.

The option table consists of an entry
for each error number and a preface of 8
bytes. An option table entry for an error
number is described in Table 36.

If the extended error message facility
has not been specified at system generation
time, the option table is reduced to the
preface alone. The option table preface is
described in Table 37.

To obtain an entry from the option
table, the source program calls subroutine
IHCFOPT through its entry name ERRSAV.
When the requested entry is located in the
option table, it is placed in the address
passed in the call to ERRSAV. If the
requested entry is not in the option table,
a message is printed.

204

To store an entry in the option table,
the source program calls subroutine IHCFOPT
through its entry name ERRSTR. If the
requested entry exists in the option table,
it is checked to see whether or not that
entry can be modified. If it can be modi­
fied, the entry passed to ERRSAV is placed
in the option table to replace the previous
entry. If the existing entry is unrnodifi­
able, a message so stating is printed.

To change individual fields in the
option table, the source program calls IHC­
FOPT through its entry name ERRSET. If the
requested entry exists in the option table,
each field of the entry for which an
alteration is requested is checked to see
whether or not it contains a value of zero.
(The IRANGE field for error IHC212I is an
exception.) If it does, that field will
not be altered. If it does not, the field
is replaced with the new field passed in
the call to ERRSET. As parameters are
processed, a check is made for an early end
to the parameter list.

Charts 33, 34, and 35 show the overall
logic of the routine to alter the option
table.

Table 36. Description of Option Table Entry
r-----T-------T---------T--,
I I I Default I I
IField~Length ISettings~IDescription I
~-----+-------t---------+---~

1 1 byte ~ 102 Contains a count. When the count in this field matches field I

2

3

4

5

1 3, the job is terminated. The maximum count is 255. A count
J of zero means unlimited number of occurrences. 3 Any count
J greater than 255 supplied ERRSET will set this field to zero.
I

1 byte] 5&t
J
1
I

1 byte;, 0
,I
t

1 byte I
I

bit 01 0
I

11 1
I

21 0
31 (See

I Note 6)
41 0
51 0

I
61 1
I

71 0
I

A count of the number of messages to be printed; message print­
ing is suppressed after the count is exceeded. A count of
zero means no messages are to be printed.

Count of nl~ber of errors that have occurred, where 0 means no
errors have occurred.

8 option bits defined as follows:

Control character indicator
o = none, 1 = single space

Table entry modifiable
o = no, 1 = yes (See Note 5)

Extension of count of errors that have occurred
Buffer contents to be printed

o = no, 1 = yes
Unused (reserved)
Unlimited number of messages allowed

o = no, 1 = yes
Traceback required

o = no, 1 = yes
Unused (reserved)

4 bytes \ 1 Address of user's exit routine. If the value of the entry is
I odd, standard corrective action is indicated.

~-----L-----_-~---------~-----------------------------__________________________________ ~
I~The default values shown apply to all error numbers unless excepted by a footnote. I
12 Errors 208, 210, and 215 are set as unlimited, and errors 217 and 230 are set to 1. I
13 When the user sets the count of allowed errors as unlimited, the FORTRAN job may loop \
I endlessly unless the operator intervenes. I
I&tError 210 is set to 10, and errors 217 and 230 are set to 1. I
15 The entry for error 230 is not modifiable. I
16 This entry is set to 0 except for error numbers 212, 215, 218, 221, 222, 223, 224, andl
1 225. I l ____________ - _____________________ . ___ J

Table 37. Description of Option Table
r-----T-------T-------T---,
IFieldlLength I Default I Description I
~-----+-------+-------+---~ I 1 ,4 bytes 95 I contains the count of the number of entries in the Option Table
I I I
I 2 11 byte l=Bit 1
I I
I I
I I
I 3 11 byte 0
I I
I 1
I I
I I
I 4 11 byte 0
J I
I 1

Boundary alignment switch
l=ALIGN, O=NOALIGN
Bit 1 of this byte contains the switch

Error message handling selected
FF=no, OO=yes

For no error message facility, the default will be FF.

For no error message facility, boundary align count is kept
here. Default is then 10.

I 5 11 byte 0 Not used (reserved). I l _____ ~ _______ L _______ ~ ___ J

Appendix E: Object-Time Library Subprograms 205

Chart 23. IHCFCOMH Overall Logic and Utility Routines

IBEXIT

206

****G1·**···*·*
'" FROM •
"'FS'IOP OR IBFERR'" ,. *

*.*******.*****

1
*****Hl**********
* IBEXIT •
--*-*-*-*-*-*-*
* CLOSE DATA •
5E1:'8 (TERMINATE
* EX£CUTION) *
* ** ** * * * ** * ** ** * *

1
** **Jl· ** *.* **.

* TO * * OPERATING •
* SYS1:'EM * * ••••••• * ••••••

~EF TARLE 38 FOR A BRIEF
DISCUSSION OF EACH f<OUTINE
OF IHCFCOMH.

*···A3***··**·*
* LOAD * *

MODULE •

* ***************

1
•• * .*B 3* *. * ** * *
* * * DE'lERMINE *
: REQUES1: 1:YPE

* •
******* ••• ** •••• *

j

*THE LOAD MODULE ENTERS
IHCFCOJ.1H VIA A COMPILER­
GENERA1:ED CALlING SEQUENCE.

REQUEST TYPE CHART MAJOR PROCESSING
ROUTINES

SUBROUTINES CALLED

SEQUENTIAL AND 24A2 FRDWF, FWRWF, FIOLF,
DIRECT ACCESS FIOAF, FENDF
READ/WRITE
REQUIRING A FORMAT

SEQUENTIAL ACCESS 24F2 FRDNF,FWRNF,FIOLN,
AND DIRECT ACCESS FIOAN, FENDN
READ/WRITE NOT
REQUIRING A FORMAT

READ USING
NAMFLIST

25E1 FRNDL ~gsn~~~h~~~cS~~~~~~li'~ ROUTINES
FCVGI, FCVCI, FCVI I, FCVFI

WRITE USING
NAMELIST

25£5 E'WuNL ~~~~6~~~VD~~~C~~~~~~eig~ ROUTINES
FCVGO, FCVCO, FCVIO, FCVFO

DEVICE
I'ANIPUIATION

WRITE TO
OPERATOR

2 S£ 3 FBKSP, FRWND, FEOF~j

2SG3 FSTOP, FPAUS

IHCFIOSH

NONE

DIRECT ACCESS
FIND

24F2 FRDNF,FENDN IHCDIOSE

ERRMON

****G2····· ... •• ...
... FROM MODULE *
• DETECTING ERROR.

• * ••• **.** •• ***.*

1
··**·H2··········
• IHCERRI' •
--*-*-*-*-*-*-*
• CALL * * ERROR MON ITOR • · . •• ** •••••••••• *

1
·** ... J2· ... *******

• * * TO IBEXIT •
* ... • ** •• * •• *.***~*
IF EXECUTION
IS 1:'0 CONTINUE
RETURN TO CALLER

-- UTILITY ROUTINES --

EXCEPT

* ***G3 *** *.* *.* · . • FROM IHCFIOSH •
* • ****.***** *

1
... ***·H3* ** •• * •• * .•
• EXCEPT * .- .-.- *-.-.-*-.-*
• DETERMINE IF •
• END PARAMETER '"
• SPECIFIED • *.

j
............ J3· ····* ... TO LOAD •

• NODULE IF ...
• SPECIFIED • * *
IF PARAMETER NO 1:'
SPECIFIED, EXIT IS
1:0 ERRi·jOi'i

IBFINT

** ""'G4" * .. "'* *
'" FROM •
... LOAD MODULE ..

'" * "'*

1 * ri4 ** .. .
• IEFINT ... * -* -* -* -*-* -* -*- *
.. PROCESS ...
• ARITHMETIC '"
• INTBRRUPTION • • **

1
...... • .. J4.· .. * .. • · .. • '1'0 LOAD MODULE • · ** .. *

FERROR

"'''''·GS''·''*''·''·.
* FROM ..
.. IHCFIOSH OF ..
.. IHCDIOSE

v • ... * *ciS""'" ""~"",,,.,,
.. FERROR *
*- *-.- *- *- *- *- *- +:
.. DETERMINE IF ..
• ERR PARAMETER .. * SPECIFIED ..
.*.**************

1
... • .. *Js • ... *·· .. • .. TO LOAD ..

• MODULE IF ..
... SPECIFIED ..
• * .. '" * ... '" "'''' "' "'

IF PARAMETER NOT
SPECIFIED, EXIT IS
TO ERRMO~

Chart 24. Implementation of READ/WRITE/FIND Source Statements

IHCFCOMH

FRDWF/FWRWF
*****A2**********
* PERFO~11 OPENING*
*OPERATIONS FOR *

->* READ/WRITE *
* A FORMAT *
***************** .

FORTRAN
LOAD MODULE

I * REQUIRING *

::;;:"O"'FJ~;----------------------:-------------------------t
... * * * *82 * * * * * ** * * * * * ** *B4 * ** ** '" * ***
* PERFORM I/O * *GET LIST ITEM. *
* LIST SECTION * • * CALL I/O LIST *
* UPEqATIONS *<---------------- .-----------------* SECTION OF *<--
* ON LIST ITEM * * IrlCFCOMH *
* * * *

........ L:::::-----------------l---------------::::::::: .. · .. · ..
. *.

C4 * •
• * * .

• * LAST *. NO
*. LIST • *---

*. ITEM • *
*. . * *. . *

FE"OF I '"
* * * * *D2 * * * * *** ** * *** * *D4 * * ** * * * * * *
* * * * * CLOSE OUT * . * CALL CLOSING *
* I/O *<----------------.-----------------* SECTION OF *
* OPERATION * * IHCFCOMH '"

* * * '" I:::::: _________________ ; _________________ ::::::::~

IHCFCOMH

FRDNF/FWRNF
* * "'* "'F2 '" * ... * * * * ***
PERFO~M OPENING
*OPERATIONS FCIR '" •

I
->*READ/HRITE/FIND* •

* NOT ~EQUIRING *
* A FORMAT '"
**********"'****"'*

*'" ** *E4 * * * * * * * * * *
* * * CONTINUE WITH *
* LOAD MODULE *
* EXECUTION *

* * ** **** ** ** * * ** * * *

FORTRAN
LOAD MODULE

* * l .
:~ r~: FIOLN/FIO::----------------------- ~ -------------------------!

** * * *G2 * * * * * * * ** * * * ** *G4* * * * * * * * * *
* PERFORM I/O * *GET LIST ITEM. *
'" LIST SECTION * • * CALL I/O LIST *
* OPERATIONS *<---------------- .-----------------* SECTION OF *<--
* ON LIST ITEr'. * * IHCFCOMH *
* * * *

.... · .. ·L~:::----------------l-----------------~::::::: .. ·
. *.

H4 * .
. * * .

• * LAST *. NO
*. LIST • *---

*. ITEM • *
*. . * *. . *

_00 r-
* * * * *J2 * '" * * ** * * * * "'*** *J 4* ** ** * * * ... *
* * * *
* CLOSE OUT * • * CALL CLOSING *
* I/O *<----------------.-----------------* SECTION OF *
* OPE~ATIONS * * IHCFCOMH *
* * * *

········i:::::::: _________________ ~-----.----------:::::::::
* * "'**K4 * ** * '" * '" * '" *
* '" * CONTINUE WITH *
* LOAD MODULE '"
'" EXECU'l'ION '"

'" '"
* '" *'" * * "'* "'''' '" * '" '" * '" '"

THIS CALL IS
GENERATED BY
COMPILER WHEN
I/O LIST ITEM
IS ENCOUNTERED •

THIS CALL IS
GENERATED BY
COMPILER WHEN
ALL I/O LIST ITEMS
ARE PROCESSED.

THIS CALL IS
GENERATED BY
COMPILER WHEN
I/O LIST ITEM
IS ENCOUNTERED.

THIS CALL IS
GENERATED BY
COMPILER WHEN
ALL I/O LIST ITEMS
ARE PROCESSED.

Appendix E: Object-Time Library Subprograms 207

Chart 25. Device Manipulation, Write-to-Operator, and READ/WRITE Using NAMELIST Routines

Rj:AD USING
Ni;.~ELIST

**** *
*2~ * * ;:;:1*
* * *

FRf):JL 1

208

** ** *F,l* ** ** ***** • *
IL'iPLF)1EClT *

r'GAD USING *
t: NAlVit:LIST :

Ie.***************

v
****F1*********

* TO *
LOl',D *

1109ULE *

[\l\CKSPACE

FBKSP V
* * * * *D2 * * * * * * * * '" * * I~PLEi"iEln * * BACKSPl'.Ch * SOURCE * STATEi~ENT

* " *****************

DEVICE MAfJI?ULATIOtl
** ***
*2~ *
* * B:;*

*

1
·FJ3********·* * DETLRMINE *
• TYPE OF •
* DEVICE • * MANIPULATION *
* * .****************

~EWIND

FRW8D V
*****03********** * IMPLEMENT ..
* RE~IND * * SOURCE * * STATEMENT ..
* ..

V
****E3*********

* TO *

END FILE

FEOFM
** ** *D4 * * * * * * * * * * * IMPLEMENT * * END FILE
" SOURCE * STATEMENT

* " *****************

----------------->* LOAD *<----------------
'" IVlODULE *

HHITE TO OPERATOR
***** *25 * * (.;3*
* ..

'"

1
****"G3**********
'" DETERMINE *
'" TYPE OF *

-----------------: ~~gKT6~ :-----------------1
'" * ***************** PAUSE

FSTOP V FPAUS

STOP

*****H2********** *****H4****,,***** * IMPLEMENT * * IMPLEMENT *
.. STOP * PAUSE *

SOURCE SOURCE *
STl\TEMENT STATEMENT *

* '" "" * ***:+ "" ** "':+ ** **:+

1
****J2*********

* TO * * IBEXIT *
* * ***************

* * *****************

1
* '" * *J4 * * * * * * * * * * TO * * LOAD * * MODULE *
****"'**********

WRITE USING
NAME LIST

*25 *
* E5*
* * *

FWRNL 1
** * * *E5 * * * *'" ** * * *
'" * * IMPLEMENT *
'" WRITE USING '" * NAMELIS'l' *
* '" ·1·

*"''''*F5*********
* TO * * LOAD * * MODULE *

Table 38. IHCFCOMH Subroutine Directory
r----------T--1
I Subroutine I Function I
~----------+--~

EXCEPT Checks for presence of END= parameter, and passes control to the load module

FENDF
FENDN
FEOFM
FERROR

FIOAF
FIOAN
FIOLF
FIOLN

if present.
Closing section for a READ or WRITE requiring a format.
Closing section for a READ or WRITE not requiring a format.
Implements the END FILE source statement.
Checks for the presence of the ERR= parameter, and passes control to the

load module if present.
I/O list section for list array of a
I/O list section for list array of a
I/O list section for a list variable
I/O list section for a list variable

format.

READ or WRITE requiring a format.
READ or WRITE not requiring a format.
of a READ or WRITE requiring a format.
of a READ or WRITE not requiring a

FPAUS Implements the PAUSE source statement.
FRDNF opening section of a READ not requiring a format.
FRDWF Opening section of a READ requiring a format.
FRWND Implements the REWIND source statement.
FSTOP Implements the STOP source statement.
FWRNF Opening section for WRI'rE not requiring a format.
FWRWF opening section for WRITE requiring a format.
IBEXIT Closes all data sets and terminates execution.
IBFERR Calls IHCTRCH to process terminal object-time errors.
IBFINT Processes program interruptions.
FBKSP Implements the BACKSPACE source statement. __________ L ___ _

Table 39. IHCFCVTH Subroutine Directory
r----------T--1
I Subroutine I Function I
~----------+--~

FCVAI IReads alphameric data. I
FCVAO IWrites alphameric data. I
FCVCI IReads complex data. I
FCVCO IWrites complex data. I
FCVDI fReads double precision data with an external exponent. I
FCVDO Writes double precision data with an external exponent. I
FCVEI Reads real data with an external exponent. I
FCVEO Writes real data with an external exponent. I
FCVFI Reads real data without. an external exponent. I
FCVFO Writes real data without an external exponent. I
FCVGI Reads general type data.. I
FCVGO Writes general type data. I
FCVII Reads integer data. I
FCVIO Writes integer data. I
FCVLI Reads logical data. I
FCVLO Writes logical data. I
FCVZI Reads hexadecimal data. I

I FCVZO writes hexadecimal data. I L __________ L __ J

Appendix E: Object-Time Library Subprograms 209

Chart 26. IHCFIOSH Overall Logic

1" [OCS

****A3********* * ..
F'c{O!"I

IlICFCOMH

v
:****B3*********:

DETr;RMINE
UPERATION

TYP;:: . ..

SEE TABLE 40 FOR A BtHEF
DESCRIPTION UF THE FUNCTION
OF EACH IHCFIOSH ROUTli~E.

I NITIl',LIZATIOC'l REA:::J 't1RIT£ MANIPULATION CLOSE

-- --1

DEVICE

l"INIT t FREAD. t. FRITE. y. FC[~TL ~ FCLOS ~
*****Cl********** c2 *. C3 *. *****C4********** *****c5**********
~ * .* ANY *. .* *. >I< +: * *
; DECODE DSi<N * • * ~OqE RCDS *. YF.S • * OUTPUT *. ~~O * CHECK * * CHECK ANY *
;·AND BUILD. UNIT *<--1 *. THIS 3LOCK TO. *---1 *. SUFFER • *---1 * STATUS OF *---1 OUTSTANDING *<--
;. i3LOCK (IF * *. BE Pr{Q-.. *. FULL .* * UNIT * INPUT OR *
;. i<ECESSARY) * *. CESS • * ••• * • * * OUTPUT *
~:* *' * * * ** ** ** ***** +:. • *' v+:. . +: v ** *** * ** ** * * ** **+ v **** ** **** *+*+ ** ..

I
~*c:*~ 1* NO ~*::*~ *1 YES ;*:: .. ~ :*::*:--1 ~*::*~ 1

**** **** **** .. +:
**** v V CTLRTN. .. • • * •

*****Dl********** *****D2********** *****D3********** D4 *. :::J5 *.
* OPEN DATA CON- * * R.EA:J * *WRITE CO.~TENTS * • * *. • * * •
;TROL BLOCK FOR * *NEXT BLOCK 1"TO* * OF TIiIS BUF- * EOF.* DETER- *. l{EW .* LAST *. NO
;DATA SET IF NOT* * THIS BUFFER. * * FER. SWITCH ---*. MINE OP- • *----- *. DSRN • *---
• Pt,EVIOUSLY * * SWITC;i 3UFFE" BUFFER *. E;l.ATION • * *. • *
'" OPENED * * POI .. lTcRS * * POINTERS *. TYPE • * *.. *
***************** ***************** *******:t***:t***** * .. * * .. *

J 1 1 "" 1 "" """0 L:Pl; :-
E1. •• *****E2********** *****E3********** *****E4********** *****E5********** .*.. * * * .. * ISSUE * * *

• * DCB *. [;0 * CrlECK R"SULT * * CdECK RESULT * * BACKSPACE. * * ISSUE
. OPENED .----- * OF READ INTO *--- * OF WRITE FROM * * INDICATE * -->* CLOSE

*. PROPERLY • * * OTHER BUFFEl< * 1 * OTHER BUFFER * * DATA· SET * * WITH REREAD
*. • * * * * * * TYPE * * OPTION *

* .. >I< ***************** V ********.******** *.*************** ******** ******'***
>I< YES * * * * >I< l l l
1

*27 * **** **** ****
B~* _>:2~2 _>:2~2** _>:2~2**

.. >I< * * >I< * >I<

**** **** *.+:** 3ETU3 YTE V EOFM
:****Fl*********: :****F2*********: :****F4*********:
* DETERMINE" * ISSUL * * ISSUE CLOSE *
• RECORD FORMAT * -->* MESSAGE *---1 -->* (TYPE~T) *
: AND BLOCKING ! : I;.!C219C : t : WI6~Ttt~VE :

········1········ :~~;: ········1*********

. *.
L~l *. *****G4********** . * IS *. * ..

• * CURRE,H *. YES * FkEE I/O *
*. OP. PEVICE • *---1 *' BUFFERS *

*. MA,HP. • * * FOR THIS *
*. • * * DATA SET *

* .. >I< V *****************

l'iO :::*: l :;;*'.
* * ->* 1J2 ..

**** >I< *
Ii

OPEN~W . *.
HI * .

. * *.
: R3~D *.*~~~TE

*. WRITE ." *'. . >I<
>1<. • *

i·"'"
CR2 V

:+: ** ** *.Jl >I< ** ** ** ****
READ

A
BLOCK

"*** I : Kl :-> <----------

* * >1<***
FIUR],T V

210

*****Kl**********
* PASS CURRENT *
*rmCORD POINTER *
• AND LOGICAL *---1
* RECORD LENGTH *
* TO IHCFCOMH •
***************** *****

*27 •
**n~*

*

Chart 27. Execution-Time Input/Output Recovery Procedure

NOTE --

THE I/O SUPERVISOR IS ENTERED
VIA DATA MANAGEMEN'I' ROUTINE
WHEN IHFIOSH OR IijCDIOSE
ISSUES A MACRO INSTRUCTION

*27 *
* B2* * * *
t

.* .
B2 *. *****B3**********

. * *. * * .* HAS AN *. YES * ISSUE *
*. EOF BEEN • *-------->* MESSAGE *---1

. READ. * IHC2171 *
*. • * * *

*. • * *****************

1
* NO :*;;*:

* * ****

. *. . *.
*****C1********** C2 *. *****C3********** C4 *.
* * • * *. *DATA MANAGEMENT* • * *.
* * NO.* I/O *. YES * RETRY * .* I/O *. YES
* RETURN TO *<--1<----* • ERROR IN • *-----.--->* APPROPRIA'IE *-------->*. ERROR BEEN • *---1
... IHCFCOMH * * lOS • * * NUMBER * *. CORRECTED. *
* * *..* * OF TIMES * *..*

********] •••••••••• :~::l "1';0 1';;'1

*** **D 3**** **** ** * '" * ** D4* ** *** ** **
****D1********* * IHCFCOMH * * *

* FORTRAN * * DETERMINES * * HETURN *
* LOAD * * IF AN INVALID *<--------* ABORT CODE
* MODULE * * BUFFER HAS * * TO HICFCOMH

*************** * BEEN READ * * *
CONTINUES ***************** *****************

NORMAL !
PROCESSING < _________ _

.* .
*****E2********** E3 *.
* * . * *. * ISSUE * YES.* HAS *.
* MESSAGE *<---.-----*. BUFFER BEEN • *
* IHC2181 * *.READ YE'I .*
* * *..*
***************** * •• *

~~;;>_>j 1* NO

**** . *.
*****F2********** F3 *. * * .* RE- *.
* PASS * .* WIND OR *. NO
* ABORT CODE * *. BACKSPACE • *---
* TO SCHEDULER * *.BEEN IS- .*
* * *.SUED .*
***************** * •• *

1 ",.l.~::
****G2********* * *

* * * VOID *
* TO * * ABORT CODE *
* SCHEDULER * * IN IHCFCOMH *

*************** * *
* ***** * * * * * ** ** **

ISSUES AEEND
MESSAGE AND
THEN CONTINUES
NORMAL PROC­
ESSING j

****H3*********
* FORTRAN *
* LOAD *
* MODULE *

CONTINUES
NORMAL
PROCESSING

Appendix E: Object-Time Library Subprograms 211

• Chart 28. IHCDIOSE Overall Logic -- File Definition section

NOTE:
TH}, FILE DEFINITION
SECTION IS ENTERED
FROM 'fliE FORTRAN
L01m ~IODULE VIA A
COt1PILER-GENl!;RATED
CA1~LING SEQUhNCE.

212

*** *A 3**'" **** **
* FORTRAN LOAD .~
* MODULE ..
* ..

*******+*+++++*

1
**** *B3* *+ .**** * ...
• GET FIRST ...
* UNIT NUMBER ...
• (DSRN) FROM ...
*PARAMETER LIST *
* ...
.. ***** + •• +** •••

SEE TABLE 41 FOR A
BRIEF DESCRIPTION OF THE
FUNCTION OF EACH IHCDIOSE
ROUTINE.

1,----------------------
··· ... CJ···*****+
• INSERT UNIT *
• NUMBER'S ...
• PARAMETER LIST ...
ADDRESS IN UNIT
+ASSIGNMENT TBL *
•••• * *.*+**

1
. *.

D3 *. *****D4* .* ... *****
• * * • * GET NEXT *

• * LAST UNIT *. NO • UNIT NUMBER *
*. NUMBER IN • *-------->. (DSRN) FROM *

•• PARAMETER. + *PARAMETER LIST *
*.LIST .+ * *

••• * *.************.**
* YES

DELMT I
* •• ··E3* •• ·**·**·
* ESTABLISH *
"'LINKAGE BETWEEN*
'" IHCDIOSE AND +
* IHCFCOMH '"
* +
*+** *+. +*. ** +* + ••

I
·***F3*·***·*··

* FORTRAN ...
... LOAD *
... MODULE *

******** •• *.***

CONTINUE NORMAL
PROCESSING

Chart 29. IHCDIOSE Overall Logic - File Initialization, READ, WRITE, and Termination
Sections

FILE INITIALIZATION
SECTION

IBCENTKY DASTRA . *.
A3 *.

****A2********* . * *.
* * • * DETERMINE *.
* IilCFCOMH *-------->*. OPERATION .*
* * *. TYPE • *

'l.EAD
SECTION

''t'*'* WRITE SECTION
IPRIMARY ENTRY
FROM IHCFCOMH)

TERMINATION
SECTION

DASINI'l'

--1
. t DASREAD • t DASWIUTE t DASTERM • V.

Bl *. B2 *. *****B3********** ***"'**B4*********** B5 * •
. * *. .* *. * * .* *.

YES • * PREVIOUS *. • * IS *. NO * OBTAIN * WRITE • * "NY *. NO

r
--*· OPERATION • '" r->*' RECORD HI • *-------->* ADDRESS OF * A *. PENDING I/O • *---

*. •• *. BUFFER • * * It,PUT BUFFER * RECORD *OPERATIO!:'lS. *
.. *..* * * *. .*

V * •• * * •• * ****.************ ******.******* * •• '"
**** * NO * ** * YES I 1 * YES

~*::*~ 1 B2 1<---------- i:~~:~-> ~=~g~DARY I
RDINBUF • *. V WROBTNB V

*****Cl********** C2 *. *****C3*****'''''*** *****C4********** *****c5**********
*CO:,STRUCT UNIT * • * *. *INSERT RELATIVE* * OBTAIN NEXT * * *
* BLOCK. INSERT * YES • * IS THIS *. *RCD NO. OF RCD * *OUTPUT BUFFER, * * WAIT
* ADDR OF UNIT * ---*. A FIi~D • * *TO BE KEAD INTO* * BLANK OR ZE~~O * * FOR I/O
BLOCK INTO UNIT *. REQUEST .* * BLKREFA OR * * DEPENDING ON * * COMPLE:TION *
*ASSIGNMENT TBL * *.. * * BLKREFB FIELD * *DATI'. SET FORMAT* * *

********V

r
.. ·.... "vro .. • ·1********* ********1 • F::::::---

TERMB v
** ** *Dl* **** **"'* * * *** *D2 ** * **** *** * ** ***D3******** *** *****D4***** ** ** * **** *D5 ***** ** * ... *
* READ JOB FILE * * * *INSERT RELATIVE* * *
* CONTROL BLOCK * * CHECK * READ *RCD NO. OF RCD * *CLOSE DCBS FOR *
* (.JFCB). INSERT * '" FOR I/O * A RECORD * TO BE WRITTEN * '" DIRECT ACCESS '"
* BUFl\lO VALUE * * COMPLETION * *INTO BLKREFA OR* '" DATA SETS *
* INTO DCB '" * * * BLKREFB FIELD * * '"
** ** *"'*oOvi' ·.. • '1** * ****oO* * *** *oO** ****'" ********.1**. ******* *** *****1**** ** * * *

DASEND
*****El********** *****E2********** *****E3********** E4 *. *****E5**********
'" * * PLACE * * * • * * • * FREE MAl lol *
* EXMlINE * *RUFFER. POINTEH * * PLACE BUFFER * IrlCFCOMH • * DETERMINE *. * STORAGE *
*JFCRIND2 FIELD * *AND BUFFER SIZE* j-----* POINTER AND *<--------*. ENTRANCE • * * OCCUPIED BY *
* IN JFCB * * IN qP'GISTERS *BUFFER SIZE IN * *. .* * UNIT BLOCKS *
* * * * REGISTERS * * •• * * *
***************** ************"'**** ************"'**** * •• * ****"'************

I
1

*FILE !.'HTIlILIZATION j
l

SECTION OF IHCDIOSE

V ----------> <---------- -------------fi---------->

Fl·*·*. *oO"'**F2****"'***** F3·*·*. UPD~~~¥*F4*****"'**** NSRETURN
.* *. *GET ASSOCIATED * .* *. ... UPDATE * ****F5*****"'***

.'" NEW DATA "'. NO * VA"IABLE'S * .* IS TI1IS *. YES *ASSOCIATED VAR '" '" '"
*. SET TO BE • *---1 * ADDR.ESS. AND. *-------->*. A FIND • *-------->* SO THAT IT "'----> * IHCFCOMH *

. CREATED . * CURRENT * *. REQUEST .* * POINTS TO RCD * * *
*. • * * RECOql) :.~UMBER * *..* * JUST READ'" *"'*******"'****'"

* .. * ***************** * .. * *****************

I "e : ::::: L::---------------------1
. *. v CREATE

Gl *. *****G2"'********* *"'***G3"'*"'******'" **"'**G4**********
• .. *. * * * I NSERT RECORD * '" UPDA1'E. *

• '" "'. YES * OPE,~ * ... NUMBER INTO * *ASSOCIATED VAR *
*. WRITE REQUEST. *-------->* DCB FOR NEW * -->* RECNUM FIELD * * SO THA1' IT *-----

*. • * * DATA SET * * OF UNIT * *POINTS TO NEXT ...
*. ." '" * * BLOCK * *RCD IN DATA SET* '1:0 ·T·...... · T ·..

Hl *. ****"'H2**"'***"'*** **"'*"'H3********** *****H4**********
.* *. * CREATE * *INSERT ADDR OF * *INSERT ADDR OF *

FIND • * READ *. *AND FORMAT NEW * *DECBA SKELETION* * BLKREFA INTO * ---*. OR FIND • '" *DATA SET USING * * INTO CURBUF * -->*DECBA SKELETION*
*. REQm:ST ." * BSAM WRITE * * FIELD OF * * IN UNIT *

*. • * * MAC 1.0 '" * UNIT BLOCK '" * BLOCK * '1;"° · .. T · 1"...... ..· T · ..
* * * * *Jl * '" '" ** * * * * * * * "'''' *J2 * * * '" * ** '" * * '" ** '" *J3'" * * ** ** * '" * "'* ** *J4 * * ** '" '" * ** *
* * '" * "'INSERT AD DR OF ... *INSERT ADDR OF '"
'" INDICATE * '" CLOSE' * "'DECHB SKELETON * '" BI,KREFB INTO *
* E:RROR * '" DCB FOR DATA * * INTO NXTBUF * *DECBB SKELETON *
* * * SET * ... FIELD OF UNIT * * IN UNIT BLOCK '"
'" '" * * * BLK IF 2 BFRS * * IF TWO BFRS *
"'**"'*******"'***"'* *****"'****"'****** ************"'**** ***********>1<**>1<**

----------> ~*:;*~->1 1 i*::*~->l
**** ****

NSRETURN OPEN .*.
V *****K2********** *"'**>I<K3********** K4 *.

"'Kl*"''''*** '" '" *INSERT ADDR OF * • * *. ****
* '" * OPEN DCB FOR '" * I/O BFRS * • '" WRITE *. YES * *
* IHCFCOMH * * DATA SET FOR *----- '" INTO DECB *----- *. HEQUEST • *---->'" C4 '"
'" * * DIRBCT ACCESS * *SKELETONIS) IN * *. .* * *

********"'****"'''' * PROCESSING * '" UNIT BLOCK * *..* *"'**
***************** ***************** * .. *

Appendix E:

* NO

t

'" * * B2 *
* *

Object-Time Library Subprograms 213

• Table 40. IHCFIOSH Routine Directory
r----------T--, I Routine I Function ,
~----------+--i
,FCLOS IChecks double-buffered output data sets. ,
, I ,
,FCNTL ,services device manipulation requests. ,
I , ,
IFINIT 'Initializes unit and data set. ,
I I ,
I FREAD 'Services read requests. ,
I I ,
,FRITE 'Services write requests. , L __________ ~ __ J

Table 41. IHCDIOSE Routine Directory

r----------T--, I Routine I Function ,
~-.---------+--i
DASDEF Processes DEFINE FILE statements: enters address of parameter lists into

DASINIT

DASREAD

DASTERM

DASTRA

unit assignment table, checks for redefinition of direct access unit num­
bers, and establishes addressability for subprogram IHCDIOSE within the IHC­
FCOMH subprogram.

constructs unit blocks for nonopened direct access data sets, creates and
formats new direct access data sets, and opens data control blocks for
direct access data sets.

Reads physical records, passes buffer pointers and buffer size to IHCFCOMH,
and updates the associated variable.

Checks pending input/output operations, closes direct access data sets, and
frees main storage occupied by unit blocks.

Determines operation type and transfers control to appropriate routine.

,DASWRITE Writes physical records, provides subprogram IHCFCOMH with buffer space, and
I updates the associated variable. L __________ ~ __ J

214

• Chart 36. IHCIBERH Overall Logic

• ... ·.A3 ... • ... ····**
'" FORTRAN '" * LOAD • * MODULE * 1"

'" **B3* . *** ... **
4' *
OBTAIN INTERNAL
!SEQUE~i~N~UMBER:

* * 1"
>I****C3"'·***·**"'* .~ *

CONVERT ISN *
TO DECIMAL *

FORMAT * >I * · .. T·
*****D3******·*·· * BRANCH TO •
'" IHCFCOMH 'IO * * HANDLE THE * * WRITING OF * * ERROR MESSAGE • .. · 1 ·

"'* "'*E3**'" *** ** * * IBEXIT R'IN *
* OF * * IHCFCOMH ...
************"'

Appendix E: Object-Time Library Subprograms 215

• Chart 31. Error Monitor Overall Logic

..** ****
'" +: .. *
* A3 * * A5 *
• * * *

**** ****

llICERRE 1 1
... ** **Al ****** ** **
* INDICATE *

ENTRY FOR *
SU~~ARY *

* *
:+: ** ** * * "" ******** *

• *** *A3**"" * •• * * * •• * .. "A5 * ** * *** * **
* PRIN'I • * *
TERMINATION DUE * GET ADDRESS •
• TO DUPLICA'I'E • • OF LAST ENTRY •
* ENTRY • * IN TABLE *
* MESSAGE * • *
* •• ** ••••••• * ••• * ********.*****.**

EHROR 1 MON<TOR

Pi:: ·->1 1 .* ••

216

* ** **Bl * .** ** ** * *
... *
*SAVE REGISTERS *
... AND LINK *
* SAVE AREAS *
* •

1
• ** **Cl * * **.*****
* MAKE INITIAL *
* CALL TO FIOCS •
* (GET BUFFER *

ADDRESS) *
* *****************

j
· *.

01 *.
. * *.

.* I:.NTRY *. YES * ...
*. FOR • *----> * A5 *

. SUMMARY . * *
.. **** * .. * r

* ** **El * ** *** * *
* * * GET ERROR ...
! NUMBER

*.**.B3***....... *.*.*B5**** •• *.**
+: '" +: '"
• PRIN'I • * GET
• MESSAGE FOR • * NUMBER OF
* THIS ERROR * * ENTRIES
*. * '" ** +: ** ** "'. ****. +: +: ** '" +: +: +: +: '" +: '" ** +: +: ** '"

I (~;·:->I
**** v V

** •• *C3"'****** •• * .**.*C5**.****.*. * *
• * GET NUMBER •

GIVJ:: • * OF ERRORS FOR *
TRACEBACK * * THIS ENTRY * *. * * .* •• * **.... .*****"**********

1 j
"*. . *.

03 *. *****04********** 05 *. . * +:. +: +: • '" * .
.* FREE *. YES * ISSUE .* ANY *. NO

. BUFFER AREA .-------->* FREl:.MAIN *. ERRORS OF • *---
. . * *.THIS TYPE.*
.. .. * *..*

* "1' :~: ______________ :::::J"""" · . I·;"
. *.

*****E4*********. E5 *.
··**E3 .. **······ * * .* *.

* TERMINATE JOB * .. PRINT * NO • * HAS *.
* VIA IBEX IT ... • liEADING *<--------*. HEADING BEEN • *
* * * *. PRINTED .*

+: *.............. '" *.. +:

"'***"'******.***.* ***************** "' .. +:

1
I * YES

· '. . '. L ______________________ , j
E'I *. *****F2*******.** F3 *. "****F4**.******* *****F5*""!<****.**

.* *. • * .* *. '" INDICATE * • PUT ERROR ..
• * I/O *. YES * GET EXIT * • * •• YES * BUF'FE.R AREA * * NUMBER AND *

*. ERROR • *-------->* ADDRESS IF *-------->*. I/O ERROR • *-------->'" FOl< MESSAGE .. * ERROR COUNT *
. (218) . * SPECIFIED. *. (218) .* * I~UST BE * * IN ~JESSAGE *

* • '" * * •••• * FREED *.. *

'. I :~:--------------:::::::::::::::::-------------}~:----__________ ::::::::i '1* * *. * * * * *

· *.
Gl *. *****G5******.***

. * *. '" '"
• .to *. YES * • " *

*. DUPLICATE • *---->* A3 * PRINT LINE *
*. ENTRY • * • * *
.. *"'.* * '"

* •• * .********** •••• **

I NO 1<----------
* ** **Hl **** ** **** *****H 5*" * *******
* SET * * ..
* ENTRY SWITCH * * DECREMENT *
AND STORE ENTRY * TO NEXT ENTRY *
• NUMBER • * *
• • * • • ** ** ************ ** *** * * .. ** •• **.*.

j j
· *. . "'.

Jl *. *.***J2*.*.*****. J5 * •
• * *. * PRINT MESSAGE. .*** •• * •

• * ERROR *. NO * THAT ERROR • * • YES. * "'.
*. *. NU~nfEIN. *' *-------->: N~N fXB~W !-------V : C5 !<----*. ~?RE ENTRIE~ *' *

.. * * ***** •• ** *...
*. •• • ••• ** •••••••••• * *32 * * •• *

..... KJ~~~.... · -:1' I NO
* GET TABLE * .**.K5 ••••• **.*
* ENTRY FOR * * *

TH~~M~~~OR :-------V : RETURN :

* .*.*. *************** *****.******.**** *32 •
• 111*

... *
*

Chart 32. Error Monitor Overall Logic (cont.)

*32 *
* Al*
* * *
~

· *. Ai *. *****A2**********
.* I/O *. * * ****

.* bRROR *. YES * SET * * *
*. EXIT ADDR . *-------->* SPECIAL EXIT *---->* Cl *

. GIVEN . * SWITCH * * *
*. . * * * ** .. *

* •. " ********** .. ****** r
· *. 81 *. *****82**********

•• *. * PRINT *
. * CONTINUE. *. NO * EXECUTION *

*. *. (~M~~S?N ••• *-------->:~~R~~~~~I~gu£¥E:-------~
.. * MESSAGE * *****

* .• * ***************** *31 * * YES * B3*
**** 1 * * * * cl *-> .. *
**.*

· *. Cl *. *****C2********** *****C3*+***.*** •
• * PRINT *. * * * *

NO . * MESSAGE *. :'fES * GET ADDRESS * * PRINT MESSAGE *
---+. (BASbD ON .*-------->* AND LENGTH OF *-------->*AND SET MESSAGE*

. COUNTS) . * MESSAGE * * PRINTED *
*. .• * * * INDICATION *

'.:~:---------------:::::::::::::::::---------:::::]" V
· *. D1 *. *****D2********** *****D3**********

.* *. * * * *
.* PRINT *. YES * GET AI:DR AND * * *

* DUFFl;R • ot< ________ >* LENGTH OF *-------->* PRINT BUFFER *
* .CONTI-NTS • * *CURREN'!' BUFFER * *
.. * * *

··l~~:--------------·::::::::::::::::---------:::::]··
· *. El *. *****E2********** *****E3********** *****E4**********

.* *. * * * * * *
.* TRACEBACK "'. YES * REMOVE ONE * *-*-*-*-*-*-*-*-* * RESTCRE '"

*. REQUESTi>;D . *-------->*SAVE AREA FRO~ *-------->* *-------->* ONE SAVE *
. . * CHAIN * * CALL TRACE * * AREA TO CHAIN *
.. * * * * * *

* •• * ***************** ***************** *****************

-------->1 NO 1
· *.

Pi *. *****F2********** *****F4**********
.* *. * * * * ****

• * USER *. NO * SET * * * * *

r
->*· J::XIT . *-------->*RETURN CODE TO *---1 * REINI'l'IALIZE *---->* Fl *

.HEQUbSTE'O. * 0 * * Flecs * * *
*. . '" * * * *.* ** * .• * ***************** ** .. ************.*

p: *1 YES :;;** :.~:*: .****.

* G2 *--t *. * G4 ·--t * * **** * *
**** **.*

V .*. . *.
*****(,1********** G2 *. *****G3********** G4 *.
* * .* *. * * .* *. ****
* SET" . * FHEE *. YES * * • * MESSAGE *. NO * *
*RETURN CODE TC * *. BUFFER AREA .*-------->*ISSUE FREEMAIN * *. PRINTED .*---->* G2 *
* 1'" *. . * * * *. .* * *
* ,., *.. * * * *.. * ** **

........ j........ ··I<~:--------------::::::::i········ ··1·;E'
v • *. . *.

*.***Hl********** H2 *. *****H3********** H4 *. *****H5**********
* * • * *. * * • * *. * PRINT *
--*-*-*-*-*-*-* . * TAKE *. YES .. RESTORE USERS * • * USER *. YES * MESSAGE *
* * *. SPECIAL EXIT . *-------->* REGISTERS AND * *. EXIT TAKEN • *-------->*INDICATING USER*
*CALL USER EXIT * *. . * "TURN OFF ENTRY ... * . • * * FI XUP *
* * *.. * * SWITCH * *.. * * *
*********l**:::::: *'j *·~o "*******1********* *. *' ~o ********j********

->* G4 * 1 ~
• * : :*:;*:

*****J2********** *****J4*!I<******** * •
* * ****J3********* * PRINT * ****
* TURN * • EXIT * * MESSAGE *
* QI,'F ENTRY * ,~ TO SPECIFIED * * INDICATING *
* SWITCH. .~ POINT * *STANDARD FIXUP *
* * ********* •• **** * *
* * * * * ** * * * * * * * * * * * ** * * ** * ***** ** * *

1 "~'"
* G2 *
* * ****K2********* ****

* * * RETURN *
* * ***************

Appendix E: Object-Time Library Subprograms 217

Chart 33. Alter Option Table Routine Overall Logic · . • A2 • ·
!

EF:RS:E.T

·····Al··········
...

A2 •• • •••• A3 •••••••••• · . - . -SAVE ilEGISTERS • · . · "'j
···.·Bl········· ... · . • GET ERROR •
.NUMBER AND SAVE.
• IT • ·

·

.••• * :+
•• NO. OF ". NO • SET ENTRY •

•• MESSAGES TO •• -------->. TO PRIN'I NO •
•• ~~IN6 E~... : MESSAGES : "'

L~~~ ______ , _____________ > l "' "
->. CLI •

:·::·:->1
R':XT

·····Cl··········
• FI NDENTRY • . -*-.-.-.-.-*-.-.
• GET ADDRESS •
• OF ENTRY FOR •
• THIS ERROR NO. • •

1
·3L1 • • E2·
... "'~.'"

1 YES
Dl···.. IGNORITE~2···.. D3· •••

•• TABLE •• •••• ••••
• • ENTRY •• NO • • FIRST •• YES • • ERROR ••

••• ~ODIFIABLE. ", •• --------> •. 1:M~s~~~g2G~ •• "'-------->. ·i~NDITION 2~; .•
•••• •• ON) •• ••••'"

j. YES • r: I NO

• H5 • . •. ••••• El.......... • • E3 ••
• GETENTRY • •••• • • • •
• -"'-.-.-.-.-.-.-. NO.. SIX ••
• GET NO. • --•• PARAMA'IERS ••
• OF ERRORS • r ·.SUPPLIED.·
• ALLOWED • • • •• ••••••••••••••• *. *. . ..

j
"'.... . YES
·3Li • t * E2*

*34 •
••• • Bl·

Fl·. • •
'fES •• • •
. --- •• ~~A~~T~~ 5: •.•

1"0
·····Gl·········· · . • STORE NO. OF •
• ~RRORS ALLOWED •
• IN TABLE ENI'RY • ·

1 ...
Hi •• • •••• 32 ••••••••••

•••• • SET •
• • NO. •• YES .ERROR COUNT TO •

• .~~~gw~g ~~6~~· .-------->: Ark£~o~OAtERO :
•• •• • ERRORS) •

-------:~I:~:--------------:::::J········

218

·····Jl·········· • GET ENTRY • . -.-.-.-.-.-.-.-.
• GET NUMBER OF •
• MESSAGES TO •
• PRINT •

j
. *.

Kl ••
.* NO. •• • •••

•• MESSAGES TO •• YES. •
•• PRINT LT OR •• ---->. A2 •

•• EQ TO 0 •• •• •. . * ••••
• NO

J .* •• · ..
• A4 • ·

. ... · .
• All • ·
1 ·····AlI*.·*·.··.· · . • S'IORE NO. OF •

.. MESSAGES TO •

.PRINT IN TABLE •
• ENTRY •

j
. .. BlI• **B5 .•. ** ". . .

•• NUI'lBER •• YES • INDICATE •
•• GT OR EQ TO •• -------->. PRINT ALL

•• 256 •• • MESSAGES
1'~:: '::1' :~:--------------:::::::'j'
···**CLl·.····· · • GETENTRY • .-*-.-*-*-.-. -.-. * GET • * TRACEBACK •
• INDICATION •

j
· .. DlI •.

•• •• YES * . CODE LT OR EQ. *---1 •• TO 0 .* .. .'"
1
. NO : .::. :

• *
· ..

Eli •• * •••• E5 ••••••••••
GT •• •• = • INDICATE •

1
--.. CODE 2 •• -------->. TRACEBACK •

•• •• • REQUESTED • •. .• • •••••••• * •••••••
:.::.: j. LT

• •
·····FLi········ .. · · . • INDICATE •
• NO 'I"RACEBACK • · . ·
: .::. :->1<------------------------....
·····GlI·········· • GETENTRY * · -. -. -. -.-. -. -.-.
• GJ::T USER •
• ADDRESS • ·

1 · ..
rill *.

YES.· ••
---.. ZERO ••

*. .•
>1<. .'" r

·····JLI·········· · . • STORE ADDRESS •
• IN TABLE •
• ENTRY •

--------->1 ... KLi •.
•• FIRST .,

... TIME •• NO
•• 'IHROUGH •• ---1 •• SWITCH ON ••

***** *33 •
• as·

'"

1
• .. ···H5.*.· •• •• ••
'" UPDATE ERR ...
• NO. BY ONE •
• (TURN FIRST •
• TIME THROUGH •
• SWITCH ON) • *"'.* ••••

j ...
J5 •.

•• ERROR ••
NO .* NUMBER GT ••

r-.. MAXIMUM TO BE.'"
•• CHANGED.·

* .• * •••• • YES
..... ~ • Cl

"'3Li •
... E2· . .

...

i YES :.::.:

~
*34 •
• Ai· · . .

Chart 34 • Alter Option Table Routine Overall Logic (cant.)

•••• *
·34 •
• A1*
* * .
t

. *.
A1 *. .***.A2***.*.** ••

•••• • GETENTRY •
•• *. YES *-.-.-.-.-.-.-.-*

•• ERROR 212 •• -------->. GET CONTROL •
•• • • * CHARACTER •

•• • • • INDICATION •

i;~;<:1·· ~o ········1*····*···

••• *
* •••• B1* ** * ... * ** *. ***B2* .*. * ** ***
• GETENTRY * * INDICATE NO * .-*-.-.-.-.-.-.-* . CONTROL •
• GET UPPER. .CHARACTER TO BE*
RANGE OF NO. T.o • SUPPLIED •
• BE CHANGED *. * 1"'..... J
.** •• C1 •••• * •• *** C2 ••
* TURN ON >Ii • * *.
* SWITCH * NO • * EgUALS *.
* INDICATING'" r--*' C DE=l .*
* FIRST TIME" *. • *
* THROUGH'" ... • • *

··*·····1········· :.:;*: *·1··~ES

•• * •• D1 ••••• *. "'.. • •••• 02. * * ••••• * *
* • * INDICATE •
• STORE UPPER • * CONTROL •
• RANGE AS'" .CHARACTER TO BE.
* MAXIMUM TO BE • * SUPPLIED *
* CHANGED * * •

·····*··1········ i~i;::::l·*····*··

..* * *
*33 • **.*
• HS. FINISHED

'" * .****E2*** •• * ••••
* * • * TURN OFF *

• SWITCHES *

• * * * · 1 · ..
*.**F2**.* •• *.* • •

• RETURN •

• * * * * *.* ** *** ** **

ERRSAV
• •• ··A3**** •• * •• *
* • '" . *SAVE REGISTERS *
* •
• * · .. · .. ··1 .. · ·
* •• **B3*.* ••• * •••

• * * GET *
• ERROR NUMBER *

• * * * 1'

•••• *C3*···*·*·*·
• FINDENTRY *
--*-*-.-.-*-*-*
• GET * * ADDRESS OF *
• TABLE ENTRY *
** **** ***. ** '" * * * *

1
** ***D3* .** * ** •• * ... * * GET ADDRESS ...
'" OF WHERE TO '"
... SAVE ENTRY •
... · .. T · ..
... * * * *E3·** * * ** * ••
* * .~ MOVE '" * TABLE ENTRY *
* * * '" ~*******"' ••••••• *

l .. *'" '" . ->* E2 •
* •

Appendix E:

ERRSTR
."'."'*A4***** ••• *.
* • · '" *SAVE REGISTERS *

* '" * * · .. T·· ·
* '" ***B4 * * ••• **.* *
* * * GET •
* ERROR NUMBER •
'" .
• * ········1········

•• **·C4"'.*.·*··**
• FINDENTRY *
-.-"'-.--*-.-*-*
* GET *
* ADDRESS OF * * TABLE ENTRY *

········1········

. *.
D4 * . • * *. .* ENTRY *. NO

*. MODIFIABLE • *---1
*. . * *. . * * •• *

1

* YES * * ••• *

* E2 • . .
***.

**** *E4· **. *. * * ••
* GET •
• ADDRESS OF *
* WHERE TO *
* RESTORE TABLE *
• ENTRY FROM • 1'

""1- •• *F4*. * *. *. * *.

* '" * * * RESTORE TABLE •
* ENTRY *
* *
•• *. * ... ** *l***:::: *

* * ->* E2 *
* * **.*

Object-Time Library Subprograms 219

Ch,art 35. Alter Option Table Routine Overall Logic (cont.)

FINDENTR • *.
A1 *. *****A2*+********

.* ERROR *. * *
.* NO. LT OR *. YES * SET

.... EQ TO FIRST • *-------->* UP FOR ERROR
. TABLE. A * NO. 902

*. ENTRY. * '" *
'J~O '1"

B1 *. *****B2**********
• * *. * WRITE *

.*ERR NO. GT *. YES .-*-*-*r*-*-*-*-*
". NO. OF TABLE • *----- * *

*. ENTRIES • * * WRITE MESSAGE *
*. • * * 902 *

*. *·~O ********j********

I **¥**
*34 *

V * E2*
*****e1***.**"'*** * •
If' * *

GET *
TABLE ENTRY *

ADDR *
'" * "****************

j
. *.

D1 *.
.* TABLE *. ****D2*********

.'" ENTRY *. YES * *
'". MODIFIABLE • "'-------->* RETURN *

. . A * *
*. • * ***************

*. 'I"
1'0

. *.
E1 *.

,,:+ * • . * *. YES
H. IS IT ERRSAV • * ____ _

!fI" ,,*
*. . * *. . *

1"0
:* ** ·F1 * ** ** ** * *:

"SET UP FOR ERR ...
<10 NO. 903 *

* " * <l<****************

1
WRITE • *.

G1 *. "'****G2********** . * *. .. *
• * Floes *. NO '" MAKE '"

'. INITIALIZED • *-------->*INITIALIZATION *
. . * CALL TO FIOCS '"

.. " ,,+- * +-
*. ,," *****************

* YES J

1<-----------------------­
·oI<***H1********** '. . '. PUT ERROR •
" NO. INTO *
" MESSAGE * · . • * **.* *<t< ** *<t< **.<t< *

1
•• * * *J1*.* ** **. * *

• * • WRITE *
'. MESSAGE VIA *
" Floes *

'. * .* ** *. ** ****. *,. * *

1
****K1****** •• *

'. . :: RETURN :

•• ** •• ** ••• ****

220

GETENTRY •••
A3 *.

,," *" .* LAST *. YES
..P~~~&ER.*·*-------v

*. ". ***** * •• * *34 * I NO • .:l·
** * **B3 * *'" *'" ** * * ..
* * * UPDATE *
'" TO NEXT *
* PARAMETER •
* * ** *** '" * *** ** ** * * *

1
*****C3****"''''****
* * * GET *
"'NEXT PARAMETER '"
* * * * * '" * * * * * * *'" * * ** * * *

V
****D3*"'''''''*****

* * '" RETURN *
* * ********"'** •• **

Data references in the form of sub­
scripted variable expressions in FORTRAN
are converted into object code that
includes address arithmetic and indexed
references to main storage addresses.
Since the conversion involves all phases of
the compiler, a summary of the method is
given here.

Consider an array A of n dimensions
whose element length is L, and whose dimen­
sions are D1, D2, D3, ••• ,Dn. If such an
array is assigned main storage starting at
the address Pl1, then the element A(J1, J2,
J3, ••• ,Jn) is located at:

P = P11 + (J1-1)*L + (J2-1)*D1*L +
(J3-1)*D1*D2*L + ••• + (In-1)*D1*D2*D3*
••• *D(n-1)*L

This may be expressed as:

P = POO + J1*L + J2*(D1*L) + J3*(D1*D2*L)
+ ••• + In*(D1*D2*D3* ••• *D(n-1)*L)

where:

POO P11 - (L+D1*L + D1*D2*L + ••• +
Dl*D2* ••• *D(n-1)*L)

For fixed dimensioned arrays, the quan­
tities D1*L, D1*D2*L, D1*D2*D3*L, ••• ,
which are referred to as dimension factors,
are computed at compile time. The sum of
these quantities, which is referred to as
the span of the array, is also computed at
compile time. (Phase 15 assigns to an
array a relative address equal to its actu­
al relative address minus the span of the
array.)

In the object code, P is finally formed
as the sum of a base register, an index
register, and a displacement. The phase 15
segment CORAL associates an address con­
stant with each fixed dimensioned array
such that Pa~POO~Pa+4095, where Pa is the
address inserted into the address constant
at program fetch time. The effective
address is then formed using a base regis­
ter containing the address constant, a dis­
placement equal to POO - Pa, and an index
register, which contains the result of a
computation of the form:

L 2,J1

SLL 2,log2L

L 1,J2

M O,L*D1

AR 2,1

L 1,J3

M O,D1*D2*L

AR 2,1

L 1,Jn

M O,D1*D2* ••• *D(n-1)

AR 2,1

Absorption of Constants in Subscript
Expressions

Subscript expressions may include con­
stant parts whose contribution to the final
effective address is computed at compile
time. For example,

B(I-2,J+4,3*5-(L+1)-6)

would usually be treated in such a way that
the effect of the 2, the 4, and the 6 would
be absorbed into the displacement at com­
pile time.

Consider an example of the form

A(Jl+K1,J2+K2, ••• ,In+Kn),

where:

A is a fixed dimensioned array
Kl, K2, ••• , Kn are integer constants

Appendix F: Address Computation for Array Elements 221

Phase 15 will insert the quantity

Kl*L + K2*C01*L) + K3*C01*02*L) +
+ KnC01*02* ••• *OCn-l)*L)

into the displacement COP) field of the
corresponding subscript or load address
text entry. The constants will not other­
wise be included in the subscript expres­
sion. When phase 25 generates machine
code, the contents of the OP field are
added to the displacement. To ensure that
the resultant expression lies within the
range of 0 to 4095, phase 20 performs a
check. If the result is not within the
range, a dictionary entry is reserved for
the result of the addition, and a suitable

222

add text entry is inserted to alter the
index register immediately before the
reference.

Arrays as Parameters

When an array is used as an argument,
the location of its first element, Pll, is
passed in the parameter list. The prologue
of the called subroutine contains machine
code to compute the corresponding POO loca­
tion. When an array has variable dimen­
sions, no constant absorption takes place
and the dimension factors are computed for
each reference to the array.

The FORTRAN (H) compiler is structured
in a planned overlay fashion. A planned
overlay structure is a single load module,
created by the linkage editor in response
to overlay control statements. These
statements, a description of the planned
overlay structure, and instructions in
specifying such a program structure are
presented in the publication IBM System/360
operating System: Linkage Editor. The
processing performed by the linkage editor
in response to overlay control statements
is described in the publication IBM System/
~~Operating System: Linkage Editor, Pro­
gram Logic Manual.

The compiler's planned overlay structure
consists of 13 segments, one of which is
the root. The root segment contains the
FSD and includes the processing units
(e.g., the compile-time input/outpu·t rou­
tines) and data areas (e.g., communication
region) that are used by two or more
phases. The root segment remains in main

·~
u..

I

~ , r (18.6)*

4 - 15/20
r (6.1)
,

:::::;
~
0
~

~
Q)

13
..I:
0..

u..
I W

'" -0 r (20.9) X ,
I

C") (30.2)

"
0
N

Q)

0
..I:
0..

I

co

n (23.4) 0
N

~
C

..I:
;;:;- 0..

I

N ()-.

«
" (33.8) :r:

e:-
~

Q)

13
..I:
0..

I

10

" (62.4) " (56.2)

• The number in parentheses times 1,000 e uals the a q pp roximate se ment length. g

• Figure 62. Compiler Overlay Structure

storage throughout the execution of the
compiler.

Each of the remaining 12 segments con­
stitutes a phase or a major portion of a
phase. Phase segments are overlaid as com­
piler processing requires the services of
another segment.

Figure 62 illustrates the compiler's
planned overlay structure. In the illus­
tration, each segment is identified by a
number. Segments that originate from the
same horizontal line overlay each other as
needed. The illustration also indicates
the approximate size (in bytes) of each
segment.

The longest path~ of this structure is

~A path consists of a segment, all segments
between it and the root segment, plus the
root segment.

0
N

Q)

13
..I: (9.7) 0..

~ ,r
0
C")

0 Q)
N 13

Q) ..I:
13 0..

..I: (9.9) I
0..

N

~ " r (21.5) ,

10
N

~
c

..I:
o..

I

C")
~

"
(56.2)

0
N

~
c

..I:
0..

I

~ , r (53.7)

Appendix G: Compiler Structure 223

formed by segments 1, 4, 7, and 10 because,
when they are in main storage, the compiler
requires approximately 81,000 bytes. Thus,
the minimum main storage requirement for
the compiler is approximately 89,000 bytes.

The linkage editor assigns the relocat­
able origin of the root segment (the origin
of the compiler) at O. The relocatable
origin of each segment is determined by
summing the length of all segments in the
path. For example, the origin of segment
10 is equal to the length of segment 1 plus
the length of segment 4 plus the length of
segment 7.

The segments that constitute each phase
of the compiler are outlined in Table 42.
The remainder of this appendix is devoted
to a discussion of the segments of the com­
piler's planned overlay structure.

Table 42. Phases and Their Segments
r--------y--------------------------------,
I Phase ISegment(s) constituting Phase I
~-.-------.. --------------------------------~
IPhase lOISegment 2 I
IXREF ISegment 3 I
IPhase 151 Segments 4, 5, 6 I
IPhase 20lSegments 4, 7, 8, 9, 10, 11 I
IPhase 251Segment 13 I
IPhase 30lSegment 12 I
~--------~--------------------------------i
I Note: Segment 4 is loaded whenever I
Iphases 15, 20, or 30 are loaded. It con-I
Itains data areas used by 15 and 20. I l ___ J

segment 1: This segment is the root seg­
ment of the compiler's planned overlay
structure. Segment 1 is the FSD. It has a
relocatable origin at 0 and is not overlaid
by other compiler phases. The composition
of segment 1 is illustrated in Table 43.

seqment-1: This segment is phase 10. The
origin of the segment is immediately fol­
lowing segment 1. At the completion of
phase 10 operation, segment 2 is overlaid
by segment 3 if the XREF option was chosen
or by segment 4 if the option was not cho­
sen. The composition of segment 2 is
illustrated in Table 44.

224

• Table 43. Segment 1 Composition
r---------------T-------------------------,
IControl SectionlEntry Point(s) I
f---------------t-------------------------i
IIEKATB IEKATB
I IEKAAOl PAG.EHEAD
IADCON-IEKAAD
IPUTOUT-IEKAPT
IIEKATM
I
I DCLIST-IEKTDC
IAFIXPI-IEKAFP
IIEKAAOO
I
IIEKFIOCS
IIEKFCOMH
IIEKTLOAD
I
IERCOM-IEKAER
IIEKAAA

PUTOUT
PHAZSS,PHASB,TST,PHASS,

TSP,TOUT,TIMERC
IEKTDC
FIXPI,AFIXPI,FIXPI#
IEKAGC,ENDFILE,IEKAA9,

IEKIORTN
FIOCS#,FIOCS
IBCOM#,IBCOM
IEKUSD,ESD,TXT,IEKTXT,

RLD,IEKURL,IEND,IEKUND

L _______________ ~ _________________________ J

• Table 44. Segment 2 Composition
r---------------T-------------------------,
IControl SectionlEntry Point(s) I
f---------------f-------------------------i
STALL-IEKGST IIEKGST
XSUBPG-IEKCSR IIEKCSR
LABTLU-IEKCLT IIEKCLT
XARITH-IEKCAR IIEKCAR
DSPTCH-IEKCDP IIEKCDP,IEKCIN
XIOPST-IEKDIO IIEKDIO
GETCD-IEKCGC IIEKAREAD
CSORN-IEKCCR IIEKCCR,IEKCS3,IEKCS1,

XTNDED-IEKCTN
IEKKOS
XIOOP-IEKCIO
PUTX-IEKCPX
XDATYP-IEKCDT
GETWD-IEKCGW
XCLASS-IEKDCL
FORMAT-IEKTFM
XSPECS-IEKCSP
XGO-IEKCGO
XDO-IEKCDO
PH10-IEKCAA

I IEKCS2,IEKCLC
IIEKCTN
IIEKKOS
IIEKCIO
tIEKCPX
IIEKCDT
I
IIEKDCL
IIEKTFM
IIEKCSP
IIEKCGO
IIEKCDO
I

IIEKXRS I L _______________ ~ _________________________ J

segment 3: This segment contains subrou­
tine XREF-IEKXRF. Its origin is immediate­
ly following segment 1. If the XREF option
is chosen, segment 3 overlays segment 2.
If the XREF option is not selected, segment
3 is not used and segment 2 is overlaid by
segment 4.

Segment 4: This segment is considered a
portion of both phases 15 and 20. It con­
tains data areas used by both phases. The
origin of segment 4 is immediately follow­
ing segment 1. Segment 4 is overlaid by
segment 13. The composition of segment 4
is illustrated in Table 45.

Table 45. Segment 4 Composition
r---------------T-------------------------,
IContro1 SectionlEntry Point(s) I

~--------------+-------------------------~
ICMAJOR-IEKJA2 I I
I RMAJOR-IEKJA4 I I L _______________ ~ _________________________ J

segment 5: This segment is a portion of
phase 15. It contains subroutines that
implement the PHAZ15 functions of that
phase which are arithmetic translation,
text blocking, and information gathering.
The origin of segment 5 is immediately fol­
lowing segment 4. Segment 5 is overlaid by
segment 6. The composition of segment 5 is
illustrated in Table 46.

• Table 46. Segment 5 Composition
r---------------T-------------------------,
IContro1 SectionlEntry Point(s) I
~--------------+-------------------------~
IIEKLTB
I LOOKER-IEKLOK
IGENRTN-IEKJGR
I FUNRDY-IEKJFU

I I CNSTCV- IEKKCN
IOP1CHK-IEKKOP
ISUBMULT-IEKKSM
IPHAZ15-IEKJA
IBLT~FN-IEKJBF

STTEST-IEKKST
REL0PS-IEKKRE
FINISH-IEKJFI
DFUNCT-IEKJOF
MATE-IEKLMA
ANDOR-IEKJAN
CPLTST-IEKJCP
UNARY-IEKKUN
DUMP15-IEKLER
PAREN-IEKKPA
GENER-IEKLGN
ALTRAN-IEKJAL

I TXTLAB- IEKLAB
I TXTREG-IEKLRG
ISUBADD-IEKKSA

, I PH15-IEKJAl
IIEKJA3

IEKJGR
IEKJFU
IEKKCN
IEKKOP,IEKKNG
IEKKSM
IEKJA
IEKJBF
IEKKST
IEKKRE
IEKJFI
IEKJDF,IEKKPR
IEKLMA
IEKJAN,IEKKNO
IEKJCP,IEKJMO
IEKKUN,IEKKSW,IEKJEX
IEKLER
IEKKPA
IEKLGN
IEKJAL
IEKLAB
IEKLRG
IEKKSA

L _______________ ~ _________________________ J

Segment 6: This segment is a portion of
phase 15. It contains the subroutines that
implement the CORAL functions of the phase.
The origin of segment 6 is immediately fol­
lowing segment 4. Segment 6 overlays seg-

I ment 5 and is overlaid by segment 7. The
composition of segment 6 is illustrated in
Table 47.

• Table 47. Segment 6 Composition

r---------------T-------------------------,
Icontro1 sectionlEntry Point(s) I
.---------------+-------------------------~
IDFILE-IEKTDF IIEKTDF I
INLIST-IEKTNL IIEKTNL I
ICORAL-IEKGCR IIEKGCR I
t NDATA- IEKGDA I IEKGDA I
IEQVAR-IEKGEV IIEKGEV I
ICMSIZE-IEKGC2 IIEKGCZ I
IDATOUT-IEKTDT IIEKTDT I
IIEKGAl I I L ______________ ~ _________________________ J

Segment 7: This segment is a portion of
phase 20. It contains the controlling sub­
routine of that phase, the loop selection
routine, and a number of frequently used
utility subroutines. The origin of segment
7 is immediately following segment 4. Seg-

I ment 7 overlays segment 6. The composition
of segment 7 is illustrated in Table 48.

• Table 48. Segment 7 Composition
r---------------T-------------------------,
Icontro1 SectionlEntry Point(s) I
.---------------+-------------------------~
I LPSEL-IEKPLS IIEKPLS I
IIEKARW I I
ITARGET-IEKPT IIEKPT I
IGETDIK-IEKPGK IIEKPGK,IEKPGC,IEKPIV, I
I IIEKPFT,IEKPOV I
IIEKPOP I I L _______________ ~ _________________________ J

Segment 8: This segment is a portion of
phase 20. It consists of the subroutines
that determine (1) the back dominator, back
target, and loop number of each source
module block, and (2) the busy-on-exit
data. Segment 8 is executed only if the
OPT=2 path through phase 20 is followed.
The segment is executed only once and is

Appendix G: Compiler Structure 225

overlaid by segment 9. The or1g1n of seg­
ment 8 is immediately following segment 7.
The composition of segment 8 is illustrated
in Table 49.

• Table 49. Segment 8 Composition
r---------------T-------------------------,
IControl SectionlEntry Point(s) I
~---------------+-------------------------i
ISRPRIZ-IEKQAA IIEKQAA,IEKQAB I
I TOPO-IEKPO IIEKPO I
J BAKT-IEKPB IIEKPB I
IBIZX-IEKPZ IIEKPZ I
IIEKPBL I I L _______________ ~ _________________________ J

~~ent_2.: This segmem:. is a portion of
phase 20. It contains subroutines that
perform common expression elimination and
strength reduction as well as the major
por1tion of the utility subroutines used
during text optimization. Segment 9 is
executed only if the OPT=2 path through
phase 20 is specified. The origin of seg­
ment 9 is immediately following segment 7.
During the course of optimization, segment
9 overlays segment 8 and is overlaid by
se~nent 10 after all module loops have been
text-optimized. The composition of segment
9 is illustrated in Table 50.

• Table 50. Segment 9 Composition
r----------------T-------------------------,
IControl sectionlEntry Point(s) I

~---------------+-------------------------~ KORAN-IEKQKO IEKQLO
WRITEX-IEKQWT IEKQWT
CIRCLE-IEKQCL IEKQCL,IEKQF
PERFOR-IEKQPF IEKQPF
TYPLOC-IEKQTL IEKQTL
XSCAN-IEKQXS IEKQXS,IEKQYS,IEKQZS
XPELIM-IEKQXM IEKQXM
MOVTEX-IEKQMT IEKQMT,IEKQDT
CLASIF-IEKQCF IEKQCF,IEKQPX,IEKQMF
BACMOV-IEKQBM IEKQBM
REDUCE-IEKQSR IEKQSR
SUBSUM-IEKQSM IEKQSM L----___________ ~ _________________________ J

~eqm~t 10: This segment is a portion of
phase 20. It contains full register
assignment SUbroutines, the utility subrou-

226

tines used by them, and the subroutine that
calculates the size of each text block and
determines which text blocks can be
branched to via RX-format branch instruc­
tions. Segment 10 is executed in the opti­
mized paths through phase 20. The origin
of segment 10 is immediately following seg­
ment 7. The composition of segment 10 is
illustrated in Table 51 •

Table 51. Segment 10 Composition
r---------------T-------------------------,
IControl SectionlEntry Point(s) I
f---------------+-------------------------~
BLS-IEKSBS IEKSBS
CXIMAG-IEKRCI IEKRCI
BKPAS-IEKRBP IEKRBP
GLOBAS-IEKRGB IEKRGB
FWDPS1-IEKRFl IEKRFl
LOC-IEKRLl
FCLT50-IEKRFL IEKRFL,IEKRRL,IEKRTF
STXTR-IEKRSX IEKRSX
FWDPAS-IEKRFP IEKRFP
SEARCH-IEKRS IEKRS
REGAS-IEKRRG IEKRRG
FREE-IEKRFR IEKRFR

IBKDMP-IEKRBK IEKRBK L _______________ ~ ________________________ _

Segment 11: This segment is a portion of
phase 20. It consists of the subroutines
that perform basic register assignment.
Segment 11 is executed only in the OPT=O
path through phase 20. The origin of seg­
ment 11 is immediately following segment 7.
Segment 11 does not overlay any other seg­
ment in phase 20, nor is it overlaid by
another segment in phase 20. The composi­
tion of segment 11 is illustrated in Table
52.

Table 52. Segment 11 Composition
r---------------T-------------------------,
IControl SectionlEntry PointCs) I
.---------------+-------------------------~
ISSTAT-IEKRSS IIEKRSS I
ITALL-IEKRLL IIEKRLL I
ISPLRA-IEKRSL IIEKRSL I L _______________ ~ _________________________ J

segment 12: This segment is phase 30 •. The
origin of se9ment 12 is immediately follow­
ing segment 4. Segments 4 and 12 overlay
segment 13, if errors are encountered dur­
ing the processing of previous phases. The
composition of segment 12 is illustrated in
Table 53.

Table 53. segment 12 Composition
.--------------T-------------------------,
IControl SectionlEntry Point(s) 1
~---------------+-------------------------i
I MSGWRT-IEKP31 IIEKP31 I
IIEKP30-IEKP30 I I L _______________ L _________________________ J

segment 13: This segment is phase 25. The
origin of segment 13 is immediately follow­
ing segment 1. Segment 13 overlays segment
4. The composition of segment 13 is illus­
trated in Table 54.

~Table 54. Segment 13 Composition
r---------------T-------------------------,
Icontrol Section I Entry Point(s) I
.---------------t-------------------------~

, MAINGN2-IEKVM2 IEKVM2
PACKER-IEKTPK IEKTPK
LABEL-IEKTLB IEKTLB
RETURN-IEKTRN IEKTRN
FNCALL-IEKVFN IEKVFN
GOTOKK-IEKWKK IEKWKK
LISTER-IEKTLS IEKTLS
STOPPR-IEKTSR IEKTSR
ENTRY-IEKTEN IEKTEN
CGEN-IEKWCN
BRLGL-IEKVBL
IOSUB-IEKTIS
PROLOG-IEKTPR

IMAINGN-IEKTA
ITENTXT-IEKVTN
I IOSUB2-IEKTIO
IEND-IEKUEN
I EPILOG-IEKTEP
IIEKGMP
IADMDGN-IEKVAD
I TSTSET-IEKVTS
IPLSGEN-IEKVPL
ISUBGEN-IEKVSU
IUNRGEN-IEKVUN
IBITNFP-IEKVFP
]FAZ25-IEKP25

IEKVBL
IEKTIS
IEKTPR
IEKTA
IEKVTN
IEKTIO
IEKUEN
IEKTEP

IEKVAD
IEKVTS
IEKVPL
IEKVSU
IEKVUN
IEKVFP

L _______________ ~ ________________________ _

Appendix G: Compiler structure 227

AP~ENDIX H: DIAGNOSTIC MESSAGES

The messages produced by the compiler

I
are explained in the publication IBM
System/360 Operating-2Y§.tem: FORTRAN !Y (G
and H) Programmer's Guide. Each message is
identified by an associated number. The
following table associates a message number
with the phase and subroutine in which the
corresponding message is generated •

• -·-------T----------------T--------------,
I IRoutine in WhichlPhase in Which I
I Message IMessage Number IMessage Number I
I Number lIs Generated lIs Generated I
~--------+----------------+--------------i
I IEK002I XCLASS-IEKDCL
I
I IEK003I XARITH-IEKCAR
I
I IEK005I XARITH-IEKCAR
I
I IEK006I XARITH-IEKCAR,

LABTLU-IEKCLT,
DSPTCH-IEKCDP,
XIOOP-IEKCIO,
XCLASS-IEKDCL

I
I
I
I

IEK007I XARITH-IEKCAR

IEKOO8I CSORN-IEKCCR

IEKOO9I CSORN-IEKCCR

Il~K010I CSORN-IEKCCR

IF~K011I XARITH-IEKCAR

IEK012I CSORN-IEKCCR#

IEK013I XARITH-IEKCAR,
PUTX-IEKCPX,
CSORN-IEKCCR,
XCLASS-IEKDCL

IEK014I XDATYP-IEKCDT,
XSPECS-IEKCSP

IEK016I XGO-IEKCGO

IEK017I XGO-IEKCGO

IEK019I XGO-IEKCGO

IEK020I XGO-IEKCGO

IEK021I XGO-IEKCGO

IEK022I XGO-IEKCGO

IEK023I XTNDED-IEKCTN

PHASE 10

___ . ______ .L ________________ J.. _____________ _

228

As part of its processing of errors,
whenever the compiler encounters an error
that is serious enough to cause deletion of
a compilation, it prints out: COMPILATION
DELETED. (For a more detailed explanation,
refer to Appendix D of the aforementioned
publication.)

r---------T----------------T--------------,
I IRoutine in WhichlPhase in Which I
I Message IMessage Number IMessage Number I
I Number lIS Generated lIs Generated I
.---------t----------------t--------------i

IEK024I IXTNDED-IEKCTN
I

IEK025I IXTNDED-IEKCTN
I

IEK026I IXTNDED-IEKCTN
I

IEK027I IXIOPST-IEKDIO
I

IEK028I IXIOPST-IEKDIO
I

IEK030I IXDO-IEKCDO
I

IEK031I IXDO-IEKCDO
I

IEK034I IDSPTCH-IEKCDP
I

IEK0351 DSPTCH-IEKCDP

IEK0361 DSPTCH-IEKCDP
PHASE 10

IEK0391 XTNDED-IEKCTN

IEK040I XCLASS-IEKDCL

IEK0461 XSPECS-IEKCSP

IEK047I XARITH-IEKCAR,
XDATYP-IEKCDT

IEK050I XARITH-IEKCAR

IEK052I DSPTCH-IEKCDP

IEK0531 XARITH-IEKCAR,
DSPTCH-IEKCDP

IEK056I XSUBPG-IEKCSR

IEK057I XSUBPG-IEKCSR

IEK058I XSUBPG-IEKCSR

IEK059I XSUBPG-IEKCSR L-________ J.. ________________ J.. _____________ _

r---------T----------------T--------------, I IRoutine in WhichlPhase in Which I
, Message ,Message Number 'Message Number I
I Number lIs Generated lIs Generated I
~---------+----------------+--------------~
I IEK060I XARITH-IEKCAR,
I DSPTCH-IEKCDP
I
I IEK062I XSPECS-IEKCSP
I STALL-IEKGST
I
, IEK064I XTNDED-IEKCTN
I

IEK065I XTNDED-IEKCTN

IEK066I XTNDED-IEKCTN

IEK067I XTNDED-IEKCTN

IEK069I XSPECS-IEKCSP

IEK070I XSPECS-IEKCSP

IEK072I XSPECS-IEKCSP

IEK073I XSPECS-IEKCSP

IEK074I XSPECS-IEKCSP

IEK075I XSPECS-IEKCSP

IEK076I XTNDED-IEKCTN

IEK077I XTNDED-IEKCTN

IEK078I XTNDED-IEKCTN

IEK079I XTNDED-IEKCTN

IEK080I XTNDED-IEKCTN

IEK081I XTNDED-IEKCTN

IEK082I XTNDED-IEKCTN

IEK083I XTNDED-IEKCTN

IEK084I XTNDED-IEKCTN

IEK086I tXSPECS-IEKCSP
\

IEK087I IXSPECS-IEKCSP
\

IEK090I \DSPTCH-IEKCDP
\

IEK091I IDSPTCH-IEKCDP
I

IEK092I IXDATYP-IEKCDT
I

IEK093I IXDATYP-IEKCTN ,
IEK094I \XDATYP-IEKCTN

\
IEK095I IXDATYP-IEKCTN

I
IEK096I IXDATYP-IEKCTN

PHASE 10

_________ L ________________ L _____________ _

r---------T----------------T--------------, I IRoutine in WhichlPhase in Which I
I Message IMessage Number IMessage Number I
I Number lIS Generated lIs Generated \
~---------f----------------f--------------~

IEK097I XTNDED-IEKCTN

IEK098I XTNDED-IEKCTN

IEK099I XTNDED-IEKCTN

IEK100I XTNDED-IEKCTN

IEK101I XDO-IEKCDO

IEK102I XIOPST-IEKDIO

IEK104I XIOPST-IEKDIO

IEK109I XIOPST-IEKDIO

IEK110I XIOPST-IEKDIO

IEK1111 XIOPST-IEKDIO

IEKl12I XGO-IEKCGO,
XSPECS-IEKCSP

IEKl13I XIOPST-IEKDIO

IEKl15I XIOPST-IEKDIO

IEKl16I XDO-IEKCDO

IEKl17I DSPTCH-IEKCDP

IEK1201 DSPTCH-IEKCDP

IEK121I XDATYP-IEKCDT

IEK122I XDATYP-IEKCDT

IEK1231 XDATYP-IEKCDT

IEK1241 XDATYP-IEKCDP

IEK125I XDATYP-IEKCDP

IEK129I XDATYP-IEKCDT

IEK132I XDATYP-IEKCDT

IEK133I XDO-IEKCDO

IEK134I XDO-IEKCDO

IEK135I XDO-IEKCDO

IEK136I XDO-IEKCDO

IEK137I XDO-IEKCDO

IEK1381 XDO-IEKCDO

PHASE 10

_________ ~ ________________ ~ ______________ J

Appendix H: Diagnostic Messages 229

r---------T----------------T--------------, I IRoutine in WhichlPhase in Which I
I Message IMessage Number IMessage Number I
I Number lIs Generated lIs Generated I
~-,--------+----------------+--------------i

IEK139I DSPTCH-IEKCDP, I
XSPECS-IEKCSP, I
XDATYP-IEKCDT, I
XTNDED-IEKCTN ,

IEK140I DSPTCH-IEKCDP,
XIOPST-IEKDIO

IEK141I XIOPST-IEKDIO

IEK143I DSPTCH-IEKCDP

IEK144I DSPTCH-IEKCDP

IEK145I DSPTCH-IEKCDP

IEK146I DSPTCH-IEKCDP

IEK147I DSPTCH-IEKCDP

IEK148I XSPECS-IEKCSP

IEK149I XIOPST-IEKDIO

IEK150I XSPECS-IEKCSP

IEK151I XSPECS-IEKCSP

IEK152I XSUBPG-IEKCSR

IEK153I XARITH-IEKCAR

IEK1S6I XIOOP-IEKCIO

IEK157I XARITH-IEKCAR

IEK158I XDO-IEKCDO

IEK159I XIOPST-IEKDIO

IEK160I XIOOP- IEKCIO,
XDO-IEKCDO

IEK161I XIOOP-IEKCIO

IEK163I XDO-IEKCDO

IEK165I XIOOP-IEKCIO

IEK166I XIOOP-IEKCIO

IEK167I XARITH-IEKCAR,
XSPECS-IEKCSP,
XIOPST-IEKDIO,
DSPTCH-IEKCDP,
XSUBPG-IEKCSR,
XDO-IEKCDO

IEK168I XSUBPG~IEKCSR

IEK169I XIOOP-IEKCIO

PHASE 10

,, _______ L ________________ .L _____________ _

230

I

r---------T----------------T--------------, I IRoutine in Which I Phase in Which/
I Message IMessage Number IMessage Number I
I Number lIS Generated lIs Generated I
.---------+----------------+'--------------~

IEK170I XIOOP-IEKCIO

IEK171I XSUBPG-IEKCSR

IEK176I XDO-IEKCDO

IEK192I XGO-IEKCGO,
XCLASS-IEKDCL

IEK193I XCLASS-IEKDCL

IEK194I XDATYP-IEKCDT

IEK197I XIOPST-IEKDIO

IEK199I XSUBPG-IEKCSR

IEK200I XARITH-IEKCAR

IEK202I XDATYP-IEKCDT,
XSPECS-IEKCSP

IEK204I XIOPST-IEKDIO

IEK205I XGO-IEKCGO

IEK206I XARITH-IEKCAR

IEK207I DSPTCH-IEKCDP

IEK208I DSPTCH-IEKCDP

IEK209I XDATYP-IEKCDT

IEK211I CSORN-IEKCCR

IEK212I XIOPST-IEKDIO

IEK224I XCLASS-IEKDCL,
DSPTCH-IEKCDP

IEK225I DSPTCH-IEKCDP

IEK226I CSORN-IEKCCR

IEK229I XARITH-IEKCAR

PHASE 10

.---------+----------------+--------------~
IEK302I STALL-IEKGST I

I
IEK303I STALL-IEKGST I

PHASE 10 I
IEK3041 STALL-IEKGST <STALL-IEKGST) I

and I
IEK306I STALL-IEKGST PHASE 15 I

(CORAL) I
IEK3071 CORAL-IEKGCR I

I
IEK308I STALL-IEKGST I

I
IEK310I STALL-IEKGST I l _________ i ________________ .L ______________ J

r---------T----------------T--------------, I lRoutine in WhichlPhase in Whichl
I Message IMessage Number IMessage Number I
I Number lIs Generated lIs Generated I
~---------+----------------+--------------~

IEK3121 STALL-IEKGST PHASE 10 I
(STALL-IEKGST)I

IEK3141 STALL-IEKGST and. I
PHASE: 15 I

IEK3151 STALL-IEKGST (CORAL) I
I

IEK3171 STALL-IEKGST I
I

IEK3181 NDATA-IEKGDA I
I

IEK3191 NDATA-IEKGDA I
I

IEK3201 NDATA-IEKGDA

IEK3221 STALL-IEKGST

IEK3231 STALL-IEKGST

IEK3321 STALL-IEKGST

IEK3341 STALL-IEKGST

IEK3501 NDATA-IEKGDA

IEK3521 NDATA-IEKGDA

IEK3531 CORAL-IEKGCR

IEK3551 CMSIZE-IEKGCZ

IEK3561 STALL-IEKGST
~---------+----------------+--------------~ I IEK5001 BLTNFN-IEKJBF 1

DFUNCT-IEKJDF

IEK5011 DFUNCT- IEKJDF,
UNARY-IEKKUN
(EXPON)

IEK5021 UNARY-IEKKUN PHASE 15
(EXPON) (PHAZ15)

IEK5031 ALTRAN-IEKJAL

IEK5041 UNARY-IEKKUN

IEK5051 PHAZ15-IEKJA

IEK5061 ALTRAN-IEKJAL

IEK5071 BLTNFN-IEKJBF

IEK5081 BLTNFN-IEKJBF

IEK5091 PHAZ15-IEKJA

IEK5101 ANDOR-IEKJAN

IEK5121 FINISH-IEKJFI l _________ ~ ________________ ~ _____________ _

r---------T----------------~--------------, I IRoutine in WhichlPhase in Which I
I Message IMessage Number IMessage Number I
I Number lIs Generated lIs Generated I
.---------+----------------+--------------~

IEK5151 RELOPS-IEKKRE

IEK5161 FINISH-IEKJFI

IEK5201 ALTRAN-IEKJAL

IEK5211 ALTRAN-IEKJAL

IEK5221 ALTRAN-IEKJAL

IEK5231 ALTRAN-IEKJAL

IEK5241 ALTRAN-IEKJAL

IEK5251 ALTRAN-IEKJAL
RELOPS-IEKKRE

IEK5291 DFUNCT-IEKJDF
(IEKKPR)

IEK5301 SUBADD-IEKKSA

IEK5311 ALTRAN-IEKJAL

IEK5411 DFUNCT-IEKJDF

IEK5421 ALTRAN-IEKJAL

IEK5501 ALTRAN-IEKJAL,
DFUNCT-IEKJDF
(IEKKPR)

IEK5521 DFUNCT-IEKJDF

IEK5701 GENER-IEKLGN,
TXTLAB-IEKLAB,
TXTREG-IEKLRG

IEK5801 ALTRAN-IEKJAL,
SUBMLT-IEKKSM,
PHAZ15-IEKJA,
MATE-IEKLMA,
FINISH-IEKJFI

PHASE 15
(PHAZ15)

.---------+----------------+--------------~
IEK6001 TOPO-IEKPO I

I
IEK6101 TOPO-IEKPO I

I
IEK6201 TOPO-IEKPO I

I
IEK6301 TOPO-IEKPO I

I
IEK6401 GETDIK-IEKPGK I

I PHASE 20
IEK6501 GETDIK-IEKPGK I

I
IEK6601 RELCOR-IEKRFL I ,
IEK6701 BAKT-IEKPB I L ________ ~ ________________ ~ ______________ J

Appendix H: Diagnostic Messages 231

r---------T----------------T--------------, I IRoutine in WhichlPhase in Whichl
, Message IMessage Number IMessage Number'
I Number lIS Generated lIs Generated I
~---------+----------------+--------------i
I IEK671I IBIZX-IEKPZ I PHASE 20 ,
~---------+----------------+--------------~

IEK710I IEKTFM

IEK7201 IEKTFM

IEK7301 IEKTFM
PHASE 10

IEK740I IEKTFM

IEK750I IEKTFM

IEK7601 IEKTFM

IEK770I IEKTFM
~---------+----------------+--------------~
I IEK800I IMAINGN-IEKTA, I PHASE 25 ,
I I TSTSET-IEKVTS I I
~---------+----------------+--------------i
, IEK999I IIEKP30 I I
I I I PHASE 30 I
I IEK0011 IIEKP30 I , L _________ L ________________ ~ ______________ J

232

Included in the FORTRAN IV (H) compiler
are two optional facilities which provide
output that can be used to analyze compiler
operation and to diagnose compiler malfunc­
tion. These two facilities are TRACE and
DUMP.

TRACE

The TRACE facility can be used to trace
the creation of and the modifications made
to the information table and intermediate
text, and to provide various other types of
diagnostic information. This facility is
activated by the inclusion of the TRACE
keyword parameter in the PARM field of the
EXEC statement used to invoke the compiler.
The format of this parameter is:

TRACE=value

where:

value may be either: (1) anyone of
the basic keyword values that appear
in Table 55, or (2) any value that is
formed by adding two or more of these
basic keyword values.

The type of diagnostic information to be
provided by the compiler for a given compi­
lation or batch of compilations is deter­
mined according to the value specified for
the TRACE keyword. Table 55 defines the
type of diagnostic information produced for
each of the basic keyword values for the
TRACE keyword. If one of these values is
specified, the corresponding information is
provided by the compiler. For example, if
the basic keyword value of 4 is specified,
the compiler generates PHAZ15 diagnostic
information.

If the value given to the TRACE keyword
is the sum of two or more basic keyword
values, then the compiler will produce the
type of information that corresponds to
each basic keyword value that was added to
form that value. For example, if the value
20 (the sum of basic keyword values 4 and
16) is specified, the compiler will gener­
ate both PHAZ15 diagnostic information and
Phase 20 diagnostic information.

APPENDIX I: THE TRACE AND DUMP FACILITIES

-Table 55. Basic TRACE Keyword Values and
output Produced

r-------T---------------------------------,
IBasic I I
I Keyword I Output Produced I
IValues I I
.-------t---------------------------------i
I 1 IPhase 10 diagnostic information I
.-------t---------------------------------i I 4 IPHAZ15 diagnostic information I
.-------t---------------------------------i I 16 IPhase 20 diagnostic information I
.-------t---------------------------------i

64 Printout of: I

1. Information table and inter­
mediate text as they appear
before the execution of
STALL in Phase 10.

2. Information table as it
appears after the execution
of STALL in Phase 10.

3. Intermediate text as it
appears after the execution
of PHAZ15 in Phase 15.

4. Information table as it
appears after the execution
of CORAL in Phase 15.

5. Information table and inter­
mediate text as it appears
after the execution of Phase
20.

I

r-------t---------------------------------i I 128 IBlock size information for each I
I Itext block (Phase 20) I
.-------t---------------------------------i
I 256 1Diagnostic information from the I
\ Iregister assignment routines I
I I (Phase 20) I
.-------t---------------------------------i
I 512 \Diagnostic information from the \
I Itext optimization routines (Phase I
I ! 20) I
.-------t---------------------------------i I 1024 I Busy-on-exit information for eachl
I I text block (Phase 20) I
t-------t---------------------------------i I 2048 IAdditional diagnostic information I
I Ifrom the register assignment rou-I
I Itines (Phase 20) I
t-------f---------------------------------i I 4096 IPrintout of intermediate text andl
I linformation table before and I
I lafter the execution of Phase 20 I L _______ ~ _________________________________ J

Appendix I: The Trace and Dump Facilities 233

DUMP

The dump facility, if activated, will
cause abnormal termination of compiler
processing if a program interrupt occurs
during compilation. It will also cause the
main storage areas occupied by the com­
piler, as well as any associated data and
system control blocks to be recorded on an
external storage device. The dump facility
is activated by including in the compile
step of the job: (1) the word DUMP as a

234

parameter in the PARM field of the EXEC
statement, and (2) a SYSABEND data defini­
tion (DD) statement.

~ote: If the DUMP parameter is specified
but the SYSABEND DD statement is omitted,
abnormal termination, accompanied by an
indicative dump, will occur if a program
interrupt is encountered. If a program
interrupt occurs and the DUMP parameter is
not specified, the current compilation will
be deleted and the next compilation will be
attempted.

APPENDIX J: FACILITIES USED BY THE COMPILER

The following statement, built-in functions and bit-setting facili­
ties are used by the compiler to produce more efficient object code and
more efficient use of storage when compiling the compiler. To invoke
those routines within the compiler which implement the facilities
requires the inclusion of an additional option to the compiler. The
option as specified below~ is coded:

PARM.procstep=(••• ,XL, •••)

(Note: The XL subparameter is not positional.)

Failure to pass the XL option to the compiler will result in its failure
to process these features as documented below. The STRUCTURE statement
will be unrecognized and the remaining extensions will be considered as
external functions.

r--,
IGENERAL FORM I
~--~
ISTRUCTURE//V11,V12,V13, ••• //V21,V22,V23, ••• //Vn1"Vn2,Vn3, ••• Vnm I
IWHERE: V11, V12, V13, ••• V211' V22 , V23 •••• Vnm I
I I
I represent names of variables that will be equated to displace-I
I ment values. If these variables are declared in a type state-I
I ment, this statE~ment must precede the STRUCTURE statement. I
~--~
INote: The // immediately following the word STRUCTURE may be omitted. I L __ J

The variables may be implicitly or explicitly declared as any type or
length. They must not be dimensioned and must not appear in COMMON or
EQUIVALENCE statements. A varialbe may appear more than once in
STRUCTURE statements within a single program or subprogram providetl it
is given the same displacement by each program.

If D is the name of a structured variable, it must always appear in
an executable statement with a single subscript, e.g., DU). An expres­
sion such as D(I) refers to a variable of the type specified for D which
is located in main storage at the base address specified by the value of
the subscript expression, I, plus a displacement equal to the total
number of bytes in the l'~mgth specification of all the variables preced­
ing D in the STRUCTURE s'tatement in which it appears. For the object
program to execute successfully, it is essential that the value of the
subscript plus the displacement always be an integral multiple of the
length of the referenced field. Displacements may not exceed 255. The
subscript expression must be declared as integer or logical.

EXAMPLE:

LOGICAL·l
INTEGER
STRUCTURE

ADJ, MT
CH, PTR
CH, PTR//ADJ//CH, MT

Appendix J: Facilities Used By The compiler 235

Here the STRUCTURE statement is used to define a two-word structure
where the high-order byte of each word is overlapped by a one-byte
field.

r---~-----------------------------T----~-------------------------.. ----,
I I I I I
I 1 I I I L-__ ~ _____________________________ ~ ____ ~ ______________________________ J

'-v-'

MT

---------------~----------------------------~----------------cr nR

If J contains a pOinter to such a structure, its fields may be
referenced as ADJ(J), CH(J), MT(J), and PTR(J).

If a structured variable is used incorrectly the compiler may issue a
diagnostic message. A complete list of the FORTRAN IV (H) compiler mes­
sages appears in the publication IBM System/360 Operating System Mes­
sages and Codes, Form C28-663i.

BUILT-IN FUNCTIONS

r---, I GENERAL FORM I
~---.--------------------------i
I I
1··.= •• ·LAND(a,b)... I
I I
IWHERE: a, b mar be any i-byte or 4-byte logical or integer I
I express1on. I L __ J

The value of LAND is obtained by adding the individual bits of the
arguments. The resulting value will be considered to be Logical*4 but
may be used as an integer.

r---, I GENERAL FORM I
~---i
I I
I ••• = ••• LOR (a, b)... I
I I
IWHERE: a, b mar be any i-byte or 4-byte logical or integer I
I express1on. I L-__ ~ ____________ J

The value of LOR is obtained by oring the individual bits of the
arguments. The resulting value will be considered to be Logical*4 but
may be used as an integer.

236

r--,
IGENERAL FORM I
~--~
I I
1 ••• = ••• LXOR(a, b)... I
I I
I WHERE: a, b mar be any 1-byte or 4-byte logical or integer I
I express1on. I L __ J

The value of LXOR is obtained by exclusive oring the individual bits
of the arguments. The resulting value will be considered to be
Logical*4 but may be used as an integer.

LCOMPL

r--,
IGENERAL FORM I
~---~
I I
1· •• =· •• LCOMPL(a) I
I I
IWHERE: a may be any 1-byte or 4-byte logical or integer expression. I L __ J

The value of LCOMPL is obtained by complementing the individual bits
of the argument. The resulting value will be considered to be Logical*4
but may be used as an integer.

r--,
IGENERAL FORM I
~--~
I ••• = .•. SHFTL(J.K) ••• ; .~.= ... SHFTR(J,K)... I
I I
I I
IWHERE: J is a 4-byte variable. I
I K is the actual number of bits to be shifted. I L-___ J

The values of SHFTL and SHFTR are obtained by shifting the first
argument left or right the number of bits specified by K. The resulting
value will be considered to be Logical*4 but may be used as an integer.

Appendix J: Facilities Used By The Compiler 237

r--,
IGENERAL FORM I
~--~ I···TBIT(A,K)... I
I I
I WHERE: A is any variable 4-bytes or less in length I
I K is the number assigned to the bit to be tested. I L __ J

The value of TBIT is .TRUE. or .FALSE. depending on whether bit
position K of the variable A is on or off. Bit 0 is the leftmost bit of
variable A. The resulting value will be declared as Logical*4.

MOD24

r--'------------,
IGENERAL FORM I
~--~---~ I ••• = ••• MOD 24 (A) I
I I
I WHERE: A must be a 4-byte integer variable. I L __ J

The value of MOD24 is the same as its argument except that the high­
order byte is set to zero.. The resulting value will be declared
Integer*4.

r--,
IGENERAL FORM I
~--~
IV = BITON(V,K) I
I I
IWHERE: V must be a single v~riable; it may be subscripted. I
I K is the number assigned to the bit to be set. I L __ J

This facility sets the bit at position K in the variable V "on". Bit
o is the leftmost bit of variable V.

238

r--,
IGENERAL FORM ,

~--~
,V=BITOFF(V,K) ,
] ,
'WHERE: V must be a single variable; it may be subscripted. ,
, K is the number assigned to the bit to be set. , L __ J

This facility sets the bit at position K in the variable V "off."
Bit 0 is the leftmost bit of variable V.

BITFLP

r--,
IGENERAL FORM ,

~--~
IV=BITFLP(V,K) ,
, I
IWHERE: V must be a single variable; it may be subscripted. ,
, K is the number assigned to the bit to be set. , L ____________________________ ~ ___ J

This facility sets the bit at position K in the variable V to its
inverse. Bi t 0 is the IE!ftmost bit of variable V.

In all of the bit-setting facilities K is restricted to integer
values from 0 to 63 (O~K$63). If V is subscripted, the value of the
subscript must be the same in both uses, to insure that only a single
variable is referenced.

Appendix J: Facilities Used By The Compiler 239

APPENDIX K: MICROFICHE DIRECTORY

The microfiche directory (Table 56) is designed to help find named areas of code in
the program listing, which is contained on microfiche cards at installation. Microfiche
cards are filed in alphameric order by object module name. If a control section, entry
point, or table is to be located on microfiche, find the name in column one and note the
associated object module name. You can then find the item on microfiche, via the object
module name; for example, object module IEKOBJTl is on card IEKOBJT1-l.

The other columns provide a description of the item, its phase, its overlay segment,
its flowchart ID (where applicable), and its subroutine directory table number.

-Table 56. Microfiche Directory (Part 1 of 8)
r--------------T-----------------------------T--------T-----T-------T---------T---------,
I I I I I I Chart I I
I I IObject I I lID I Sub- I
I I I Module I I .---------iroutine J
I I IName andl I 1* - Only 1 Directory I
I 1 ICSECT I IOverlaYIMentionedlTable I
ISymbolic Name IDescription I Name IPhaselSegmentlin Chart INumber I
.--------------+-----------------------------+--------+-----+-------i---------+---------i
ADMDGN-IEKVAD Code generation routine IEKVAD# 25 13 Table 14

AFIXPI Entry point

AFIXPI-IEKAFP Exponentiation Routine

ALTRAN-IEKJAL Arithmetic translation
routine

ANDOR-IEKJAN Text generation routine for
logical operators

Bl~CMOV-IEKQBM Text optimization routine

B~T-IEKPB structural determination
routine

Bl:TNFP-IEKVFP Code generation routine

BIZX-IEKPZ

BKDMP-IEKRBK

MVX routine

TRACE routine for full
register assignment

BKPAS-IEKRBP Local register assignment
routine

BLS-IEKSBS Branching optimization
routine

BLTNFN-IEKJBF In-line function routine

BRLGL-IEKVBL Code generation routine

CGEN-IEKWCN Array initialization area

IEKAFP FSD

IEKAFP FSD

IEKJAL# 15

IEKJAN# 15

IEKQBM# 20

IEKPB# 20

IEKVFP# 25

IEKPZ# 20

IEKRBK# 20

IEKRBP# 20

IEKSBS# 20

IEKJBF# 15

IEKVBL# 25

IEKWCN 25

1

1

5

5

9

8

13

8

10

10

10

5

13

13

Table 6

Table 6

07 Table 9

07* Table 9

12 Table 12

10* Table 12

Table 14

10* Table 12

Table 12

16 Table 12

10* Table 12

07* Table 9

Table 14

Table 14

CIRCLE-IEKQCL utility subroutine IEKQCL# 20 9 Table 13
I

ICLASIF-IEKQCF lutility subroutine IEKQCF# 20 9 Table 13 L ______________ ~ _____________________________ ~ ________ ~ _____ L_ ______ L_ ________ L_ _______ _

240

-Table 56. Microfiche Directory (Part 2 of 8)
r--------------T--------------------·---------T--------T-----T-------T---------T---------,
I I I I , I Chart, ,
I I 'Object I I I ID I Sub- ,
'I ,Module, I ~---------~routine I
'I IName andl , 1* - Only I Directory I
I I ICSECT, IOverlaYIMentionedlTable I
ISymbolic Name IDescription I Name IPhaselSegmentlin Chart INumber I
t--------------f--------------------·---------f--------f-----f-------f---------f---------~
ICMAJOR-IEKJA2 IBackward connection table IIEKJA2 115/20 4 ITable 10
I I I I I
ICMSIZE-IEKGCZ IBase and displacement routine IEKGCZ# 115 6 09* ITable 9
I I I I
ICNSTCV-IEKKCN IConstant conversion routine IEKKCN# 115 5 I Table 9
I I I
tCORAL-IEKGCR IControl routine for CORAL IEKGCR# 15 6 09 ITable 9

I

Isegment of phase 15. 1
I

CPLTST-IEKJCP Arithmetic triplet routine IEKJCP# 15 5 07* Table 9

CSORN-IEKCCR

CXIMAG-IEKRCI

DATOUT-IEKTDT

DCLIST-IEKTDC

DELTEX-IEKQDT

DFILE-IEKTDF

DFUNCT-IEKJDF

DSPTCH-IEKCDP

DUMP15-IEKLER

ENDFILE

END-IEKUEN

ENTRY-IEKTEN

EPILOG-IEKTEP

EQVAR-IEKGEV

ESD

FAZ25-IEKP25

FCLT50-IEKRFL

collection, conversion, and
entry placement routine

Local register assi9nment
routine

DATA statement processing
routine

Listing routine

Entry point

DEFINE FILE statement routine

In-line, external subprogram,
and library function routine

Dispatcher, key word, and
utility routine

Error recording routine

Entry point

object module completion
routine

Epilogue and prologue
generating routine

Subprogram epilogue generat-
ing routine

COMMON and EQUIVALENCE
processing routine

Entry point

COMMON data area

Text checking routine

IEKCCR# 10 2 Table 8

IEKRCI# 20 10 Table 12

IEKTDT# 15 6 09* Table 9

IEKTDC# FSD 1 ITable 6
I

IEKQMT# 20 9 ITable 13
I

IEKTDF# 15 6 09* ITable 9
I

IEKJDF# 15 5 07* ITable 9
I

IEKCDP# 10 2 03 Table 8

IEKLER# 15 5 Table 9

IEKAAOO IFSD 1 01 Table 6

IEKUEN# 25 13 21 Table 14

IEKTEN# 25 13 21* Table 14

IEKTEP# 25 13 21* Table 14

I
IIEKGEV# 15 6 09* Table 9

I
I
I IEKTLOADI FSD 1 Table 6

I I
IIEKP25 125 13 Table 14
, I
IIEKRFL# 120 10 Table 12
I I

IFILTEX-IEKPFT Entry point IIEKPGK# 120 7 Table 13 L ______________ ~ ___________________ • __________ ~ ________ ~ _____ ~ _______ ~ _________ ~ ________ -J

Appendix K: Microfiche Dictionary 241

• Table 56. Microfiche Directory (Part 3 of 8)
r'-------------T-----------------------------T--------T-----T-------~-----·----T---------l
I I I I I I Chart I I
I I I Object I I lID I Sub- I
I I I Module I I I---------~ routine I
I I I Name and I I 1* - Only I Directory I
I I I CSECT I I Overlay I Mentioned I Table I
!Symbolic Name IDescription I Name IPhaselSegmentlin Chart INumber I
~--------------+-----------------------------+--------+-----+-------+---------+---------i
FINISH-IEKJFI statement completion routine IEKJFI# 115 5 07* Table 9

I
FIOCS, FIOCS# Entry points IEKFIOCS FSD 1 Table 6

FIXPI, FIXPI# Entry points

FNCALL-IEKVEN Calling sequence generating
routine

FOLLOW-IEKQF Entry point

FORMAT-IEKTFM Generates format text for
object module

FREE-IEKRFR Local register assignment
routine

FUNRDY-IEKJFU Implicit library function
reference routine

FWDPAS-IEKRFP Table building routine

FWDPS1-IEKRFl Local register assignment
routine

GENER-IEKLGN Text output routine

GENRTN-IEKJGR Text entry routine

GETCD-IEKCGC Preparatory subroutine

GETDIC-IEKPGC Entry point

GETDIK-IEKPGK utility subroutine

GETWD-IEKCGW utility subroutine

GI.OBAS- IEKRGB Global register assignment
routine

GOTOKK-IEKWKK Branching routine

IBCOM, IBCOM# Entry points

IEKAFP FSD

IEKVFN# 25

IEKQCL# 20

IEKTFM# 10

IEKRFR# 20

I
IEKJFU# 15

IEKRFR# 20

IEKRF1# 20

IEKLGN# 15

IEKJGRIt 15

IEKCGC 10

IEKPGK# 20

IEKPGK# 20

IEKCGW 10

IEKRGB# 20

IEKWKK# 25

IEKFCOMH FSD

1 Table 6

13 20* Table 14

9 Table 13

2 Table 8

10 Table 12

5 Table 9

10 15 Table 12

10 Table 12

5 08 Table 9

5 Table 9

2 03* Table 8

7 Table 13

7 Table 13

2 Table 8

10 17 Table 12

13 Table 14

1 Table 6

IEKAAOO Compiler initialization IEKAAOO FSD 1 01 Table 6
routine J

I
IEKAAOl Default options, &DDNAMES forlIEKAAOl FSD 1 Table 6

compiler I
I

IEKAA9 Entry point IIEKAAOO FSD 1 01* Table 6
I

IEKAGC Entry point IIEKAAOO FSD 1 02* Table 6
I

IEKAREAD Entry point IIEKCGC 10 2 Table 8
I

IEKARW utility subroutine IIEKARW 20 7 Table 13 L __ , ____________ ~ ____________________________ ~ _______ ~ _____ ~ ______ ~ ________ ~ ________ J

242

• Table 56. Microfiche Directory (Part 4 of 8)
r--------------T-----------------------------T--------T-----T-------T---------T---------,
I I I I I I Chart I I
I I I Object I I lID I Sub- I
I I I Module I I I---------~ routine I
I I IName andl 1 1* - Only I Directory I
I I ICSECT I I Overlay I Mentioned ITable I
ISymbolic Name IDescription .1 Name IPhaselSegmentlin Chart INumber I
~--------------+-----------------------------+--------+-----+-------+---------+---------i

I

I

IEKATB IDiagnostic trace routine IEKATB# IFSD 1 Table 6
I 1

IEKATM ITiming routine IEKATM IFSD
I I

IEKCIN IEntry point IEKCDP# 110
I I

IEKCLC IEntry point IEKCCR# 110
I I

IEKCS1, IEntry points IEKCCR# 110
IEKCS2, IEKCS3 I

IEKFCOMH

IEKFIOCS

IEKGAl

IEKGMP

IEKIORTN

IEKJA2

IEKJA3

IEKJA4

IEKJEX

IEKJMO

IEKKNG

IEKKNO

IEKKOS

IEKKPR

IEKKSW

Formatted compile-time I/O
routine

Interface between compiler,
IEKFCOMH and QSAM

COMMON data area for CORAL

Storage map routine

Entry point

Backward connection table

Function information tables

Forward connection table

Ehtry point

Entry pOint

Entry point

Entry point

Coordinate assignment routine

Entry point

Entry point

I

I
IEKFCOMHIFSD

I
I

IEKFIOCS FSD

IEKGAl 15

IEKGMP 25

IEKAAOO FSD

IEKJA2 15/20

IEKJA3 15

IEKJA4 15/20

IIEKKUN# 15
I
IIEKJCP# 15

IEKKOP# 15

IEKJAN# 15

IEKKOS 10

IEKJDF# 15

IEKKUN# 15

1

2

2

2

1

1

6

13

1

4

5

4

5

5

5

5

2

5

5

03*

20*

07*

07*

07*

Table

Table

Table

Table

Table

I
ITable
I
I

6

8

8

8

6

6

ITable 10
I
ITable 14
I
ITable 6

I
Table 10

Table 1

Table 10

04* Table 8

07*

IEKLTB Function table IEKLTB 15 5 Table 10

tIEKPOV Entry point IEKPGK# 20 7 ITable 13
I I
IIEKP30 Controlling routine IEKP30 30 12 22 ITable 15
I I
IIEKQAB Entry point IEKQAA# 20 8 ITable 13 L ______________ ~ _____________________________ ~ ________ ~ _____ ~ _______ ~ ________ ~ ________ J

Appendix K: Microfiche Dictionary 243

• Table 56. Microfiche Directory (Part 5 of 8)
r---------------T-----------------------------T--------T-----T-------T---------T---------,
J I I I I I Chart I I
I I I Object I I lID I Sub- I
I I I Module I I J---------~ routine I
1 1 IName andl I 1* - Only I Directory I
I I ICSECT I IOverlaYIMentionedlTable I
ISymbolic Name IDescription I Name IPhaselsegmentlin Chart INumber I
~---------------+-----------------------------+--------+-----+-------+---------+---------~
IIEKTLOAD IESD, TXT, RLD, and loader ENDllEKTLOADIFSD ~. 09* Table 6
I Irecord building routine I I
1 I r I
IlEKTXT IEntry point lEKTLOADIFSD 1 Table 6
I I I
Il~KUND J Entry point lEKTLOAD I FSD 1 Table 6

I
lEKURL Entry point lEKTLOADIFSD 1 Table 6

I
lEKUSD Entry point lEKTLOADIFSD 1 Table 6

I
lEKXRS utility routine for XREF lEKXRS 110 2 Table 8

I
lEND Entry point lEKTLOAD FSD 1 Table 6

lNVERT-lEKPlV Entry point lEKPGK# 20 7 Table 13

lOSUB-lEKTlS Calling sequence generating lEKTlS# 25 13 20* Table 14
routine

lOSUB2-IEKTlO Calling sequence generating IEKTlO# 25 13 Table 14
routine

KORAN-lEKQKO utility subroutine lEKQKO# 20 9 12* ITable 13

LABEL-lEKTLB statement number routine lEKTLB# 25 13 20* Table 14

LABTLU-lEKCLT Statement number utility lEKCLT# 10 2 Table 8
routine

LlSTER-lEKTLS JListing routine lEKTLS# 25 13 Table 14

LOC-lEKRLl Register assignment data area lEKRLl 20 10 Table 12
J
LOOKER-lEKLOK Subprogram table look up IEKLOK 15 5 07* Table 9

routine

LORAN-IEKQLO Entry point IEKQKO# 20 9 12* Table 13

LPSEL-lEKPLS Control routine lEKPLS# 20 7 10 Table 12

MAINGN-lEKTA Control routine IEKTA# 25 13 20 Table 14

MAINGN2-lEKVM2 Control routine lEKVM2# 25 13 Table 14

MATE-lEKLMA MVS, MVF, and MVX routine lEKLMA# 115 5 Table 9
I

MODFlX-lEKQMF Entry point lEKQCF# 120 9 Table 13
I

MOVTEX-lEKQMT utility subroutine lEKQMT# 120 9 Table 13 L __ • ____________ ~ _____________________________ ~ ________ ~ _____ ~ _______ ~ _________ ~ _________ J

244

• Table 56. Microfiche Directory (Part 6 of 8)
r--------------T-----------------------------T--------T-----T-------~---------T---------l
I I I I I I Chart I I
I I I Object I I lID I Sub- I
I I I Module I I 1---------.. routine I
I I IName andl I 1* - Only I Directory I
I I ICSECT I I Overlay I Mentioned I Table I
ISymbolic Name IDescription 1 Name IPhaselSegmentlin Chart INumber I
~--------------+-----------------------------+--------+-----+-------+---------+---------~
IMSGWRT-IEKP31 IError message writing routine IEKP31# 30 12 22* ITable 15 I
J I I I
NDATA-IEKGDA IData text routine IEKGDA# 15 6 09* I Table 9 I

I 1
OP1CHK-IEKKOP IOperand one routine IEKKOP# 15 5 I Table 9

I I
NLIST-IEKTNL INAMELIST statement routine IEKTNL# 15 6 09* ITable 9

1 I
PACKER-IEKTPK ITXT record packing routine IEKTPK# 25 13 ITable 14

PAGEHEAD
I I .
lEntry point IEKAAOl FSD 1 I Table 6

I
PAREN-IEKKPA Parenthesis routine IEKKPA# 15 5 01* ITable 9

I
PARFIX-IEKQPX

I
PERFOR-IEKQPF

Entry point

Constant routine

IEKQCF#

IEKQPF#

20 9 ITable 13
I

20 9 ITable 13
I

PHASB Entry point IEKATM FSD 1 Table 6

PHASS Entry point IEKATM FSD 1 Table 6

PHAZSS Entry point IEKATM FSD 1 Table 6

PHAZ15-IEKJA Control routine for PHAZ15 \IEKJA# 15 5 06 Table 9
segment of phase 15 I

I
PH10-IEKCAA COMMON data area IIEKCAA 10 2 Table 8

I
PH15-IEKJAl COMMON data area IIEKJAl 15 5 Table 1

I
PLSGEN-IEKVPL Code generation rou1:ine JIEKVPL# 25 13 Table 14

I
PROLOG-IEKTPR Subprogram prologue generat- IIEKTPR# 25 13 21* Table 14

ling routine I
J

PUTOUT Entry point IEKAPT FSD 1 Table 6

PUTOUT-IEKAPT Service routine IEKAPT FSD 1 Table 6

lPUTX-IEKCPX Entry placement utility IEKCPX# 10 2 Table 8
I routine
I
IREDUCE-IEKQSR strength reduction routine IEKQSR# 20 9 13 Table 12
I
IREGAS-IEKRRG Full register assignment IEKRRG# 20 10 14 Table 12
I routine
I
IRELCOR-IEKRRL Entry point IEKRFL# 20 10 19* Table 12
1
IRELOPS-IEKKRE IRelational operator routine IEKKRE# 15 5 01* Table 9
I ~ I
IRETURN-IEKTRN IRETURN statement routine IIEKTRN# 25 13 20* Table 14
I I J
JRLD 1Entry point IIEKTLOAD FSD 1 Table 6 L ______________ ~ _____________________________ ~ ________ ~-----~-------~--------~--------

Appendix K: Microfiche Dictionary 245

• Table 56. Microfiche Directory (Part 7 of 8)
r--------------T-----------------------------T--------T-----T-------T---------T---------,
I I I J I I Chart I I
I I IObject I I lID ISub- I
I I I Module I I ~---------~routine I
I I IName andl I 1* - Only I Directory I
I I ICSECT I I Overlay I Mentioned ITable I
ISymbolic Name IDescription I Name I Phase I Segment I in Chart INumber I
r---------------+-----------------------------f--------+-----+-------f---------+---------~
ru1AJOR-IEKJA4 Forward connection table IEKJA4 15/20 4 ITable 10

SEARCH-IEKRS

SPLRA-IEKRSL

SHPRIZ-IEKQAA

SSTAT-IEKRSS

STALL-IEKGST

S,]~OPPR- IEKTSR

STTEST-IEKKST

Register loading routine

Basic register assignment
routine

structured source program
listing routine

Status setting routine

COMMON and EQUIVALENCE state-
ment processing routine

STOP and PAUSE statement
routine

Replacement statement routine

~STXTR-IEKRSX Text updating routine
I
1StJBADD-IEKKSA Subscript computation routine

StJBGEN-IEKVSU Icode generation routine

StJBMLT-IEKKSM Subscript computation routine

SUBSUM-IEKQSM Operand and operand value
replacement routine

TALL-IEKRLL Assigns storage for
temporaries

IEKRS# 20

IEKRSL# 20

IEKQAA# 20

IEKRSS# 20

IEKGST# 10

IEKTSR# 25

IEKKST# 15

IEKRSX# 20

IEKKSA# 15

IEKVSU# 25

IEKKSM# 15

IEKQSM# 20

IEKRLL# 20

TARGET-IEKPT Loop and back target routine IEKPT# 20

TENTXT-IEKVTN Statement number processing IEKVTN# 25
and label map routine

TIMERC

TNSFM-IEKRTF

TOPO-IEKPO

TOUT
I
ITSP
I
ITST
I
I TSTSET-IEKVTS
I

Entry point

Entry point

Back dominator routine

Entry point

Entry point

Entry point

Code generation routine

IEKATM FSD

IEKRFL# 20

IEKPO# 20

IEKATM FSD

IEKATM FSD

IEKATM FSD

IEKVTS# 25

10 17*

11

8

11 10*

2 04

13

5 07*

10 18

5 07*

13 20*

5 01*

9

11

7 10*

13 20*

1

10

8 10*

1

1

1

13

I
ITable 12
I
ITable 12
1

I
Table 13

Table 12

Table 8

Table 14

Table 9

Table 12

Table 9

Table 14

Table 9

Table 13

Table 12

Table 12

Table 14

Table 6

Table 12

Table 12

ITable 6
I
ITable 6
I
ITable 6
I
ITable 14
I

J TXT Entry point IEKTLOAD FSD 1 I Table 6 l ______________ ~ _____________________________ ~ ________ ~ _____ ~ ______ ~ ________ ~ _______ _

246

• Table 56. Microfiche Directory (Part 8 of 8)
r--------------T-----------------------------T--------T-----T-------T---------T---------,
" 'I , ,Chart 1 I
t I 10bject I I lID I Sub- I
1 1 I Module I 1 ~---------~routine 1
I I IName andl 1 1* - Only 1 Directory I
I I ICSECT I 1 Overlay 1 Mentioned ITable I
ISymbolic Name IDescription I Name IPhaselsegmentlin Chart INumber I
~--------------+-----------------------------+--------+-----+-------+---------+---------~
TXTLAB-IEKLAB

TXTREG-IEKLRG

TYPLOC-IEKQTL

UNARY-IEKKUN

statement number processing

standard text processing
routine

Strength reduction routine

Arithmetic triplet and
exponentiation operator
routine

UNRGEN-IEKVUN Code generation routine

WRITEX-IEKQWT Diagnostic trace printing
J routine

XARITH-IEKCAR Arithmetic routine

I I
IEKLAB# 115 5 08* Table 9 I

I I
IEKLRG# 115 5 08* Table 9 I

I I
I I

IEKQTL# 120 9 13* Table 13 I
I I

IEKKUN# 115 5 07* Table 9

IEKVUN# 25 13 Table 14

IEKQWT# 20 9 Table 13

IEKCAR# 10 Table 8

XCLASS-IEKDCL Text generation utility
routine

IIEKDCL# 10

2

2 03* Table 8

XDATYP-IEKCDT DATA and TYPE keyword routine IEKCDT# 10

XDO-IEKCDO

XGO-IEKCGO

XIOOP-IEKCIO

DO keyword routine

GO TO keyword routine

Input/output statement
routine

IEKCDO# 10

IEKCGO# 10

IEKCIO# 10

XIOPST-IEKDIO ASSIGN, RETURN, FORMAT, IEKD10# 10
PAUSE, BACKSPACE, REWIND, END)
FILE, STOP, and END table I
entry routine I

I
XPELIM-IEKQXM Common expression elimination IEKQXM# 20

routine

XREF-IEKXRF

XSCAN-IEKQXS
1
XSPECS-IEKCSP

XREF routine

Local block scan routine

COMMON, DIMENSION, and EQUI­
VALENCE table entry routine

IEKXRF

IEKQXS#

IEKCSP#

10

20

10

XSUBPG-IEKCSR CALL, SUBROUTINE, ENTRY, and IEKCSR# 10
FUNCTION table entry routine

XTNDED-IEKCTN DEFINE FILE, NAMELIST, IMPLI- IEKCTN# 10
CIT, and STRUCTURE table entry
routine

2 Table 8

2 Table 8

2 Table 8

2 Table 8

2 Table 8

9 11 Table 12

3 Table 8

9 Table 13

2 Table 8

2 Table 8

2 Table 8

YSCAN-IEKQYS Entry point IEKQXS# 20 9 Table 13
1

!ZSCAN POINT Entry point IIEKQXS# 20 9 Table 13 L ____ - _________ ~ _____________________________ ~ ________ ~ _____ ~ _______ i_ ________ i_ _______ _

Appendix K: Microfiche Dictionary 247

ABS 34
Absolute constant 65
Activity table, global register

assignment 54
Adcon table 42 1 74,118

space reservation 41,46
starting address of 56
in XREF processing 28

ADCON-IEKAAD 80
Adcon variable 45
Addition, skeleton instructions 170
Additive text, elimination of 68
Address

computation for array elements 221
constant 13,15,43-44

reservation of 70
field of TXT record 70
relative 41

assignment of 15
Adjective codes 143-144
ADMDGN-IEKVAD 112,240
AFIXPI-IEKAFP 80,240
AFIXPI 80,240
AIMAG 35
Alte~ option table routine 204

tables 205
ALTRAN-IEKJAL 31,36~90,93,240

Anchor point 36
AND 34,36
ANDOR-IEKJAN 36,93,240
Argument save table 36
Arithmetic

expressions
elimination of 65-66
reordering 32-33
special processing 33

interruptions 187
operations, basic register assignment

49-50
statements, processing 24
subroutines 23-24
translation 29,31-32,42

Array 21
elements, address computation 222
relative address for 43

Arrays 165
bit strip 72-73
as parameters 222

ASSIGN statement 23,31
Assigned GO TO operator 163

Back dominators 57,219
determination of 57,58
in common expression elimination 65

Back targets 57,58,225
determination of 59-60
pointer to 63

BACKSPACE processing 194

BACKSPACE statement 72,178,186
Backward connections 30,39-40

field 40
table 41,54

Backwardmovement 66-67,106
example of 173

BACMOV-IEKQBM 66,67,107,240
BAKT-lEKPB 57,59,60,lQ7,240
Balanced tree notation 120
Base value of equivalence group 44
Base variables 45
Basic register assignment 49,226
Binary

operators 157
shift operation 160

Bit-setting facilities 238
Bit strip arrays 72
BITFLP 239
BlTNFP-IEKVFP 112,240
BlTOFF 239
BlTON 238
BlZX-lEKPZ 61,107,240
BKDMP-lEKRBK 107,240
BKPAS-IEKRBP 53,54,107,240
Blanks, in source statements 21
BLKEND field 31,150,151
Block determination for branching
optimization 56-57

BLS-IEKSBS 55,69,107,240
BLTNFN-lEKJBF 34,35,93,240
Boundary alignment option (lHCADJST)

177,187
Branch

candidate 74
constant 68
instruction optimization 55
operator (B) 157
operator (other) 160
optimization 48

OPT=l 55-56
OPT=2 69

processing, phase 25 74
table 133-134

entry 72
text entry 65

INDEX

true or false skeleton instructions 167
variable 68

Branch on index high, low, or equal 159
Branching optimization 47

block determination for 56-57
OPT=l 55-56
OPT=2 69

BRLGL-lEKVBL 112,240
Buffering 192

IHCDlOSE 198
Built-in functions 236
Busy-on-entry 61

table 61-62
Busy-on-exit

criteria 61
data 225
full register assignment OPT=2 68-69

Index 249

table 61-62
vector field 151

EVA. table 139
Byte A usage field

for statement numbers 127,128
for variables 124

Byte E usage table field
for statement numbers 127,128
for variables 124

Call 23,24,31
in global register assignment 55
in local register assignment 54
phase 25 processing of 72

Call arguments 162
Call-by-name

parameters 75
variables 46

Calling sequence 12
cataloged procedures 13
CGEN-IEKWCN 112,2.0
CIRCLE-IEKQCL 109,240
CLASIF-IEKQCF 109,240
Classification

code 22
tables 115-117

CMAJOR 40,57,59,61,62,225
CMAJOR-IEKJAZ 95,241
CMSIZE-IEKGCZ 93,241
CNSTCV-IEKKCN 93,241
Code generation, phase 25 72-74
Collection subroutines 25
Common 14,21,23,75

areas table 95
block

name 23
size 27

displacement field 124
entries 25,27
expression elimination 65-66,106

example of 112
-table 131

Communication table 16,17,80
contents of 16,115-116

Commutative operations 34
Compiler

initialization 16-17
I/O flow 13-15
generated branch 37
organization of 13
purpose of 13
structure of 15
"termination 20

Complex
(2xpressions 33
variables 27

Computed GO TO
operators 159
skeleton instructions 169

CON.JG 35
Constant

complex 27
dictionary entry 127
relative addresses for 43

Constant/variable usage information 36-37
phase 15 29

250

Constructing text information 69-70
Control flow, phase 20 48
Conversion

code 181
routines 188
subroutines 25

Coordinates 27
assignment of 25,27

CORAL 18,41-47,225
CORAL-IEKGCR 41,43,44,46,93,241
CPLTST-IEKJCP 93,241
Cross reference 14
CSORN-IEKCCR 85,241

in XREF 29
CTLBLK format 193
Current base address, in register

assignment 49
CXIMAG-IEKRCI 107,241
C1520-IEKJA2 39

Data definition statements 13
DATA statement 15,21,26,142
Data text

phase 10 21
format 146

phase 15 format 150
rechaining 41,45
translation 42

DATOUT-IEKTDT 41,42,93,241
DCB 16
DCBDDNM field 16
DCLIST-IEKTDC 80,241
DCMPLX 35
DCONJG 35
DECB skeleton section of IHCFIOSH 190
DECK option 14,15,70
DEFINE FILE

statement 21,42;142
phase 10 21
format 148

text 21
Definition vector field 150
Deletion

of compilation 20
before phase 20 15

DELTEX-IEKQDT 109,241
Depth numbers 57

determination of 59
DFILE-IEKTDF 41,45,93,241
DFUNCT-IEKJDF 34,35,93,229,241
Diagnostic message 228-232

tables
error table 80,141
message pointer 141

Diagnostic traceback 187
DIMENSION statement 23
Direct-linkage calling sequence 72
Directory array 72
Dispatcher subroutine 22
Displacement for adcon 42
Division skeleton instruction 170
DO 25

implied 25
in strength reduction 67

Double buffering 192
DSPTCH-IEKCDP 22,23,85,241

Dummy argunments 24
DUMP 188
Dump 234
DUMP15-~EKLER 93,241

EDIT option 14,15,21,22
EMIN table 53
Eminence table 53
End mark operator 23
End of DO IF 36
End of file 20
END statement 13,20

phase 25 processing of 75
ENDFILE entry point 80,241
ENDFILE statement 20,178,241
END-IEKUEN 112.241
Entry block 31,37,58
Entry coding

main program 18
subprogram main 19
subprogram secondary 20

Entry placement subroutine 24
ENTRY statement 20,31
ENTRY-IEKTEN 112,241
EPILOG-IEKTEP 75,76,112,241
Epilogue 19,20,70,75
Equivalence 26,28

group 23
head 28

variable 23
EQUIVALENCE statement

14,21,23.28,43,75,122
EQVAR-IEKGEV 41,44,45,93,241
ERCOM-IEKAER 80
Error

code table 76
levels 20,76
message processing 187
object-time 177
phase 10 response to 14
phase 15 response to 15
source statement, object-time 201
table 14,76,80

ESD entry point 81,241
ESD record 46
Execute statement 13,16
Exit block 59,61
EXIT library subprogram 188
EXT operator 162
Extended error message facility 194,201
EXTERNAL statement 23,35
External symbol dictionary 13,15,46,69

FAZ25-IEKP25 112,241
FCLT50-IEKRFL 107,241
Field count 26
FILTEX-IEKPFT 109,241
FIND statement 178
FINISH-IEKJFI 93,242
FIOCS,FIOCS# 80,242
Fixed point multiplication skeleton
instructions 169

FIXPI,FIXPI# 80,242
FLOAT 34

FNCALL-IEKVFN 72,112,242
FOLLOW-IEKQF 109,242
Forcing strength 32-33

definition of 32
table 33

Format
codes with READ/WRITE 18
of source statement after phase 10 22
text 142

phase 10 21
format 148
translation 26

FORMAT statement 18,21,25,26,142
FORMAT-IEKTFM 25,85,242
FORTRAN system director 13,16-20
Forward

connection 30,37-38,39
table 39,57

target 64
FREE-IEKRFR 107,242
FSD 224

pointer table (see NPTR)
Full register assignment 47,226

control 53
global 51,52-55
local 52-54
OPT=l 51-55
OPT=2 68-69
table buiiding 53
text updating 53,55

Full-word integer division skeleton
instructions 170

Function arguments 162
Function table 35,135
FUNRDY-IEKJFU 34,93,242
FUNTBl 135
FUNTB2 135
FUNTB3 135
FUNTB4 135
FWDPAS-IEKRFP 53,107,242
FWDPS1-IEKRFl 107,242

GENER-IEKLGN 32,93,242
GENRTN-IEKJGR 93,242
GETCD-IEKCGC 21,85,242
GETDIC-IEKPGC 109,242
GETDIK-IEKPGK 109,242
GETWD-IEKCGW 85,242
GLOBAS-IEKRGB 53,54,55,69,107,242
Global assignment 52-55

full register assignment OPT=2 68-69
tables 139

GO TO statement
computed 21,70,134
in gathering forward connection

information 37
GOTOKK-IEKWKK 112,242
GRAVERR 76

H format code 25
Half-word integer division skeleton
instructions 168

Head of equivalence group 44
Housekeeping section of IHCFIOSH 189-190

Index 251

IBCOM,IBCOM# 80,242
IBCOMRTN 20
IBFINT 187
ID option 70,115
IEKAAA 16,80
IEKAAD 80
IEKAAOO 80,242
IEKAAOl 80,242
IEKAA9 20,80,242
IEKAER 80
IEKAGC 17,80,242
IEKAPT 81
IEKAREAD 85,242
IEKARW 109,242
IEKATB 80,243
IEKATM 80,243
IEKCAA 17
IEKCDP 22
IEKCIN 85,243
IEKCLC 85,243
IEKCS1, CS2, CS3 85,243
IEKFCOMH 18,80,243
IEKFIOCS 18,80,243
IEKGAl 95,243
IEKGCZ 41,45,46,93
IE:KGMP 75, 113, 243
IEKIORTN 80,243
IEKJA2 243
IEKJA3 95,243
IEKJA4 243
IEKJEX 94,243
IEKJMO 93,243
IEKKNG 94,243
IEKKNO 93,243
IEKKOS 27,85,243
IEKKPR 93,243
IEKKSW 94,243
IEKLFT 35,135
IEKLTB 95,243
IEKPBL 107
IEKPOP 109
IEKPOV 109,243
IEKP30 113,243
IEKP31 113
IEKQAB 109,243
IEKTDC 80
IEKTFM 86
IEKTLOAD 18,19,81,244

generating literal data text 26
in relative address assignment 43
space reservation 46

IEKTXT 81,244
IEKUND 81,244
IEKURL 81,244
IEKUSD 81,244
IEKVLB 171
IEKXRS 28,86,244
lEND 75,81,244
INVERT-IEKPIV 109,244
IF statement 23,24,31
IHCADJST 177,187
IHCDIOSE 177,195

252

buffering 198
communication with the control program

198
file definition section 198
file initialization section 199

operation 198-201

read section 200
routine directory 214
termination section 201
write section 200

IHCERRM 177,194,203
IHCFCOMH 45,72,177

format code processing 179
subroutine directory 209

IHCFCVTH 177,188,209
IHCFINTH 177,202
IHCFIOSH 177,188

closing section 195
communication with the control program

192
device manipulation section 194
initialization section 192-193
read section 193-194
routine directory 214
write section 194

IHCFOPT 204
IHCIBERH 177,201
IHCTRCH 177,202
IHCUATBL 191
ILEAD 40,130
Implied DO 25
INCNAMEL 177
Index register 74
Inert text entry 65,67
Information table 14,17

chains 119
construction of 119
operation of

branch table 123
common 121
dictionary 120
equivalence 122
literal constant 122
statement number 27,28,29,121

components 21
branch table 21,133-134
common table 21,27,131-133
dictionary 21,123-127
literal table 21,133

entries constructed by phase 10 23
Initial value assignment 41,45
Initialization

of compiler 16-17
of data fields 16-17
of IHCFIOSH 192-193
instructions, generation of 18-20

In-line routine 34-35,161
in branching optimization 56
functions 158
skeleton instructions 165-167,169-171

Integer constants, elimination of 67
Intermediate text 14,21,142-164

chains 143-144
phase 20 modifications 155

Intermediate text entry
format of 143
modifications by phases 15 and 20

149-164
Internal statement number 14,22

in phase 30 76
Interruption

processing 187-188

Interruptions
arithmetic 187
specification 187-188

IOSUB-IEKTIS 72,112,244
IOSUB2-IEKTIO 112,244
I/O data list 31
Input/Output device manipulation routines
186-187

I/O list items 24,181
conversion routines 188

Input/Output recovery procedure,
execution-time 211

Input/Output requests
processing of 18
request format 18

Input/Output statement 24.
phase 25 processing of 71-72

INVERT-IEKPIV 109
ISN 14,22

JLEAD 40,130
Job statement 13

Keyword
pointer table 117
source statement 23
subroutines 23

table entry 23
table entry and text 23

table 117-118
KORAN-IEKQKO 109,135,244

LABEL-IEKTLB
LABTLU-IEKCLT

in XREF 28
LAND 35,236
LBIT operator
LCOMPL 237

71,112,244
86,244

164

LIBF operator 162
Library function 35

subprograms 177
Linkage editor 13,15
LISTER-IEKTLS 112,244
LIST option 14,15,70
Listing, structured source program 62
Literal

data text 26
table 133

LMVF 64
LMVS 64
LMVX 64
Load address

operator 160
skeleton instructions 168

Load byte skeleton instructions 168
Load candidate 74
LOAD option 14,15
Loader END record 69,75
Local

assignment tables 138
register aSSignment 52,54
symbol 46

Location counter 43,76
in relative address assignment 42

LOC-IEKRL1 107,244
Logical

branch operations 157,164
expressions 36
IF statements 22,36

in strength reduction 67
skeleton instructions 170

LOOKER-IEKLOK 94,244
Loop 225

composit matrixes 64
identification 57
number 60

field 60
parameter 63

selection 63-64
Loops

depth numbers of 60
identifying and reordering 60
module 57

LOR 35,236
LORAN-IEKQLO 109,244
LPSEL-IEKPLS 48,53,55,62,107,244
LXOR 35,237

Main storage, requests for
phase 10 17
phase 15 17-18
phase 20 17

MAINGN-IEKTA 71-72,74,75,112,244
MAINGN2-IEKVM2 112,244
MAP option 15,70
Map, storage 15,75
MATE~IEKLMA 36,37,94,244
MBM 136
MBR 136
MCOORD vector 27,45,53,138
Message

number 76,141,228-232
processing 76
tables 141

Messages, error
after phase 25 15
phase 30 processing of 76

MGM 136
Microfiche directory 240-247
Mid-point of dictionary chain 120
Mode 23
Mode field in status mode word 155
MODFIX-IEKQMF 109,244
MOD24 238
MOVTEX-IEKQMT 109,244
MSGM 136
MSGWRT-IEKP31 76,113,245
MSM 136
Multiplicative text, elimination of 67
MVD table 27,45,53

in busy-on-exit 61
entry 37

MVF 27,36,37,151
field 61

MVS 27,36,37,151
MVU 135
MVV 135
MVW 135
MVX 27,36,37,151

field in busy-on-exit 61
MXM 136

Index 253

NADCON table 39,42,118
use in parameter list optimization 35

Namelist
dictionaries 45,140-141

entry 46
text 45,142
phase 10 21

format 147
NAMELIST statement 21,45,142
NARGSV 36
NCARD/NCDIN 22,23
NDATA-IEKGDA 41,42,94,245
Negative address constants 44
NLIST-IEKTNL 41,45,94,245
Normal text 17,142

phase 10 21
format 145

NOT 36
operations, skeleton instructions 167

Not busy on entry, definition of 36
NPTR 26,28,115-116
Null operand 24

Object module
definition of 13
elements of 69-70
generation of entry code 25

Operand 21
modes 125
status for code generation 73
types 125

Operator-operand pair 21
Operators 21

phases 15 ana 20 152-154
OPT=O 47
OPT=l 47
OPT=2 21

structural determination 57-60
Optimization 15

first level 15
levels 47
nOne 15
second level 15,21

option tables 205
Options

boundary alignment 177
DECK 14,15,70
determining 16
EDIT 14,15,21,22
ID 70,115
LIST 14,15,70
LOAD 14,15
MAP 15,70
SOURCE 22
XREF 14,28

OP1CHK-IEKKOP 94,245
OR 36
Overlay 223-227

supervisor 17

PACKER-IEKTPK 112,245
Packing 22
PAGEHEAC 80,245
Parameter list

254

optimization 35-36
table 35

processing of 16
PAREN-IEKKPA 94,245
PARFIX-IEKQPX 109,245
PAUSE statement 172,187
PERFOR-IEKQPF 109,245
Permanent I/O error 20
PHASB 80,245
Phase loading 17
Phase 10 14

constructing a cross-reference 28-29
control 22
initialization 22
intermediate text 21

Phase 15 15-16
CORAL processing 16,41-47
intermediate text 29
PHAZ15 processing 14,29-40

Phase 20 15
Branching optimization

OPT=l 55-57
OPT=2 69

busy-on-exit information 61-62
control flow 48
loop selection 63-64
register assignment

basic OPT=O 49-51
full OPT=l 51-55
full OPT=2 68-69

structural determination 57-60
structured source program listing 62
text optimization OPT=2 64-69

Phase 25 15,69
address constant reservation 70-71
prologue and epilogue generation 75-76
storage map production 75
text conversion 71~75

Phase 30 15,76
PHASS 80,245
PHAZSS 80,245
PHAZ15 17,225
PHAZ15-IEKJA 38,94,245
PH10-IEKCAA 17,86,245
PH15-IE~JAl 95,245
Planned overlay structure 223
PLSGEN-IEKVPL t12,245
Powers 34
Preparatory subroutine 21,22
Primary adjective code 2~,31
Primary path 59,60
Problem program save area 26
Program

fetch 17
interruption mask 187
termination 188

Prologue 19,20,70,75-76
PROLOG-IEKTPR 75,112,245
Pushdown table 32
PUTOUT 81,245
PUTOUT-IEKAPT 81,245
PUTX-IEKCPX 86,245

QSAM 16

Read
not requiring format 185
requiring format 184

READ statement 118-186
READ/WRITE

operator for I/O lists 163
routines 119-187

examples of statement processing
183-185

statement 18,23,25,45~12
using namelist 186

REAL 35
Real multiplication skeleton instructions

170
REDUCE-IEKQSR 67-68,101,245
REGAS-IEKRRG 53,55,108,245
Register

array 72
assignment

basic OPT=O 49-51
full OPT=l 51-55
full OPT=2 68-69
phase 20 47-57,68-69

tables 138-139
usage 139-140

table 53-54
Registers,

reserved 18-19
saving at main program entry 18-19
saving at subprogram program entry 19

Relational operators 36
Relative address assignment 15,41,42-45
Relocation

dictionary 13,15,46,69-70
factor 42
of text entries for structural

determination 51
RELCOR-IEKRRL 107,245
RELOPS-IEKKRE 36,94,245
Reserved registers 56
RETURN statement 61

phase 25 processing of 74
RETURN-IEKTRN 14,112,245
Rewind processing 195
REWIND statement 178
RLD

entry pOint 81,245
record 46

RMAJOR table 31,40,57
RMAJOR-IEKJA4 95,246
Root segment 15,223
RUSE table 54,138

Save areas 18-20
Scale factor 26
SEARCH-IEKRS 108,246
Secondary entry point 19
Sequence numbers 24
SF skeleton text 18,142

phase 10 21
format 149

Shift skeleton instructions 169
SHFTL 231
SHFTR 237
Simple stores

elimination of 66
example of 174

Skeleton
array 12
instructions 73-74

SNGL 35
SOURCE option 22
Source

module, listing of 14
program, structured listing of 62
statement errors, object-time 201
statement processing table 84

Space
allocation, phase 15 41
reservation of adcon table 46

Span 43,221
Special argument text 162
Special text 142
Spill register 55
SPLRA-IEKRSL 51,108,246
SRPRIZ-IEKQAA 62,109,246
SSTAT-IEKRSS 50-51,108,246
STALL-IEKGST 22,86,133,246

functions of 25-28
Standard text, phase 15 format of 156
Statement

functions 31,32,142
processing of 24
skeleton 36

number
chain reordering 30,38-39
as a definition 30
phase 15 format 150
phase 25 processing of 71-12
processing for XREF 28

Statement number/array table 70,121-131
block status field 129
dimension entry format 130
entry format 127

after XREF 128
after phases 15, 20, and 25 129

Status
field in status mode word 155-156
information 48
mode word 50
of operands for code generation 13
in register assignment 51

STOP statement 178,187
STOPPR-IEKTSR 112,246
Storage distribution

phase 10 11
phase 15 11
phase 20 18

Storage map
contents of 15
production of 75

Store skeleton instructions 169
Stored constant 68
Store-fetch information 124
strength reduction 67-68,106

example of 175-176
STRUCTURE statement 235
Structured source listing 14,15,21-22
STTEST-IEKKST 94,246
STXTR-IEKRSX 51,53,55,108,246
SUBADD-IEKKSA 34,94,246
SUBGEN-IEKVSU 113,246
SUBMLT-IEKKSM 34,94,246
Subprograms 19-20,34

not supplied by IBM 61

Index 255

Subroutine directory
FSD 80-81
phase 10 85-87
phase 15 93-94
phase 20 107-108
phase 25 112-113
phase 30 113

subscript
expressions 33-34

absorption of constants in 221-222
operators, skeleton instructions 168
text entry 65,161

Substitute ddnames 16
SUBSUM-IEKQSM 66,109,246
Subtract operations, skeleton instructions

for 165
Symbol entry for X~EF 28
Symbols, processing for XREF 28
SYNADR routine 201
SYSDIR-IEKAA9 20
SYSIN data set 13-14,20
SYSLIN data set 13-14,15
SYSPRINT data set 13-14,15,21,28,29,62
SYSPUNCH data set 13-14,15
SYSUTl data set 13-14,21,62
SYSUT2 data set 13-14,28,29

Table entry subroutines 23
Tables used by IHCFIOSH 189
TALL-IEKRLL 108,246
TARGET-IEKPT 63-64 4 108,246
TBIT 35,238
TENTXT-IEKVTN 75,113,246
Temporary 33

in coromon expression elimination 65
storage allocation in register

assignment 55
Terminal errors, object-time 202
Termination of compiler 16,20-21
Test and set operators 158
Testing a byte logical variable 158
Text

additive text, elimination of 68
block, definition of 31-32
blocking 30
conversion, phase 25 71-72
data 21
define file 21
entry

phase 20 format 155
types 66

format 21
generation subroutines 24-25
information, phase 25 70
intermediate 21
namelist 21
normal~ phase 10 17,21
optimization 41,64-70

bit tables 135-137
criteria for (table) 106

SF skeleton 18,21
special, phase 10 18

TH1ERC 80, 246
TNSFM-IEKRTF 107,246
TOPO-IEKTPO 57-59,107,246
TOUT 80,246

256

TRACE 233
T:taceback 202
Translation of data text 42
Tree notation, balanced 120
Triplet 32
TRUSE table 54,133,138-139
TSP 80,246
TST 80,246
TSTSET-IEKVTS 113,246
TXT entry point 81,246
TXT records 25,70,81
TXTLAB-IEKLAB 94,247
TXTREG-IEKLRG 94,247
TYPES table 64
TYPLOC-IEKQTL 109,247

Unary minus 32,34
skeleton instructions 168

UNARY-IEKKUN 34,94,247
Undefined statement numbers 26
Unit

assignment table 189,191-192
in IHCDIOSE 197

blocks 189
in IHCDIOSE 195

UNRGEN-IEKVUN 113,247
Usage count 25
Use vector field 151
Utility

routines 187
subroutines 24-25

list of 109

Variable,
adcon 45
base 45
dictionary entry 123

after COffmon block processing 126
after coordinate assignment 126
after dictionary rechaining 125
after relative address assignment 126
after XREF 125

equivalence 28,122
Variables

rechaining 27
relative addresses for 42-45

WRITE statement 178-186
Write

not requiring format 181,183
requiring format 179,181
section of IHCDIOSE 200
to operator routines 187
using NAMELIST 179

WRITEX-IEKQWT 109,247
WTO 187
WTOR 187

XARITH-IEKCAR
XCLASS-IEKDCL
XDATYP-IEKCDT

84,86,247
86,247
86,247

XDO-IEKCDO 86,241
XGO-IEKCGO 87,247
XIOOP-IEKCIO 87~2q7
XIOPST-IEKDIO 87,247
XPELIM-IEKQXM 65-66,97,108,247
XREF

buffer 28,87
option 14,28-29~123,127
phase 10 preparation for 28
processing 28-29,125-128

XREF-IEKXRF 28-29,87,224,247
XSCAN-IEKQXS 109,247

XSPECS-IEKCSP
XSUBPG-IEKCSR
XTNDED-IEKCTN

YSCAN-IEKQYS

ZSCAN-IEKQZS

87,247
87,247
87,247

109,247

109,247

Index 257

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257

