
(

•
'I ,
" i .

(

, ..

Systems Reference Library

IBM System/36D Model 44

Programming System

Guide to System Use

File No. S360-36 44PS
Form C28-68l2-l

This publication contains detailed in£ormation for
preparing programs to be executed under the IBM
System/360 Model 44 Programming System. It discusses
and illustrates the system's requirements, its capabil­
ities, and the control statements and supervisor calls
that are used with it.

A prerequisite publication is:

IBM System/360 Model 44 programming System: Concepts
and Facilities. Form C28-6810

PREFACE

The emphasis in this publication is not
on programming but on executing programs.
It is possible to write a program without
knowing any of this information, with the
possible exception of the material on
supervisor calls, but such a program could
not be executed under the programming
system's control.

This publications's main purpose is to
describe the control statements and the
considerations that are necessary to use
the programming system. It does not try to
tell how the system functions except when a
programmer needs such information to be
able to make decisions.

Most of
directed to
Portions of
programmers
the text.

the contents of publication is.
assembler language proqrammers.
it., however, apply to FORTRAN
as well, and this is noted in

The first section contains a general
discussion of the Model 44 Programming
System's capabilities and requirements. It
also is intended to serve as a guide to the
rest of the publication.

The second section covers data set crea­
tion and maintenance, symbolic units, and
the phase and module libraries. The sec­
tions on job control, linkage editing, and
utilities discuss these facilities and the
control statements required for their use.

Input/output is described in the first
of two sections about the system's supervi­
sor calls. The section about system output
illustrates the various types of output
produced by the system routines., the dump

Second Edition

program, messages, and the program history.
Messages are listed and described indivi­
dually in the section about error messages.

The stand-alone loader. which can be
used to load and begin executing programs
to be run without Model 44 programming
system control., is discussed in the next
section. The final section is about
labels.

In addition to the publication cited on
the cover, a programmer should be familiar
with:

IBM system/360 : system Summary, Form
A22-6810

IBM System/360: Principles of Operation,
Form A22-6821

IBM Systew/360 ~odel 44: Functional
Characteristics, Form A22-6875

Assembler language programmers should be
familiar with:

IBM System/360 Model 44 Programming Sys­
tem: Assembler Language, Form C28-6811

FORTRAN p~ogrammers should be familiar
with:

IBM System/360 Model 44 Programming Sys­
tem, Guide to system Use for FORTRAN
Programmers, Form C28-6813.

Publications about related topics, such
as input/output devices, are listed in IBM
System/360 Bibliography, Form A22-6822.

This publication is a major revision of" and makes obsolete., the
publication IBM systeml360 Model 4~ Programming System: Supervisor Call
(SVC) Functions., Form C28-6812-0. Major portions of that publication
are included in this publication in the sections entitled "Input/OutputR

and "Other Supervisor Calls."

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters·.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM office serving your locality.

A form is provided at the back of this publication for reader'S
comments. If the form has been removed" comments may be addressed to
IBM corporation" Programming Publications., 1271 Avenue of the Americas"
New York., N.. Y. 10020.

@International Business Machines Corporation 1966, 1967

---~ - ~- ----

•

•

(

(

(

INTRODUCTION AND GENERAL INFORMATION
Language Processors •
Linkage Editor. • • •
Utilities.....
Absolute Loader • • •
System Conventions. • • • •
Other Features. • •
Supervisor Calls. • •

SYSTEM CONVENTIONS • • • • • • • • •

Data Set Creation and Maintenance.
Data Sets_ • • • • • ,. •
Volumes. '. '. •
system catalog

System Data Sets.

7
7
7
8
8
8
8
8

9

9
9
9

• 11
• 11

Symbolic Units • • • • • • • • • 12
Standard System Units •

Special system Data sets •
Replacing System Data Sets •
Early Unit Assignments •

Phase Library • • • •
Module Library. • • • • • • •
Register Conventions.

JOB CONTROL. • • • .• ••
Job Control Statements ••
Control Statement Format.
Continuation Statements •
Comments in Control Statements.
Location. • • • • • •
Format Descriptions.. • • • •

• 13
• 15

• • • 15
• • 15

• 15
• • 16

• 17

• 18
• 18
• 19
• 19
• 20
• 20

21

statement Formats. .. • • • _ •••• 21
Job Definition Statements • 21

JOB Statement. • • • • • • • • 21
EXEC Statement • • • • • 22
End-of-Job Statement • • 2ij
STOP Statement • • • • • 25
End of Data Statement. • • • • • '. 25

Data Set Definition statements. • • • 25
ALLOC statement. • • • • • • 25
creating Data Sets With /* • • 31
ACCESS Statement • • •• • • • • • 32
LABEL Statement. • • • • • 35

Symbolic Unit Maintenance
Statements • • • • • • • • • • 39

RESET Statement. • • • • • • • •
LISTIO Statement • • •

• 39
39

Data Set Maintenance Statements
DELETE statement •
CONDENSE Statement •
RENAME Statement •
CATLG Statement. •
UNCATLG Statement. • • • • • •

Miscellaneous Statements. •

• ijO
40

• 41
• • 41

• 41
• • 42

• 42
PAUSE Statement. • • • • • • • • • 42
comments Statement
REWIND Statement •
UNLOAD statement •

· 42
• 43

• • • .. • 43

LANGUAGE PROCESSORS.

Assembler Program. •
Assembler EXEC Parameters ,.

Output Option Parameters '.
Update Parameters. • _ •
Update Listing • .. •• _
Magnetic Tape Operations •
Options '.

CONTENTS

• 45

• 45
• • • 45

• • • • 45
• • 46

.• • • 47
• 47

• • 47
Space Allocation Parameters. • • • 48

Control Statement Example •
supervisor Calls. •

FORTRAN Compiler • •

• 49
• 49

• • 50

LINKAGE EDITOR • • • • • 52
Sources of Input. • • 52
Linkage Editor Output • • 53
Control sections_ •• .•••••• 54

Unnamed Control Sections • • • 54
Entry points. • • • • 55
Common. • • •• • • • • '. • • • • • • 55
External References • • • • • • 56
EXEC Statement Parameters • • • • 57

Control Statements • • • • • .. •
MODULE Statement •
PHASE Statement. •
INCLUDE Statement. • • • •
ENTRY Statement. • •
Linkage Editor Examples..

INPUT/OUTPUT • • • • • •

Read/Write Operations. •
Control Characters. •
Blocking. • • • • • •
Attention Interruptions •

• 57
• 58

• • 58
• • 60

• • • 61
• 61

• • 64

• • 65
• 67
• 67

.. . • 68

Label Processing Supervisor Calls. ,. • • 69
OPEN - SVC 2 • • • • • • • 69
CLOSE - SVC 3. • • • • • • • • •• 71

Read/Write Level supervisor Calls •••.• 74
READ - SVC 4 • • • • • .. • • • 74
WRITE - SVC 5. • '. '. .. • • • • 75
CHECK - SVC 6. • • • '. • • 76
NOTE - SVC 7 • • • • • 77
POINT - SVC 8. • • • •• • • 77

Extended Tape Volume Supervisor
Calls. • • • • • • .. • • 78

WEF - SVC 9. • •••• 78
REWIND - SVC 10. • • • • 78
UNLOAD - SVC 11. • • 78

OTHER SUPERVISOR CALLS •

Flow Control Supervisor Calls.
FETCH - SVC 12 • • • •
LOAD - SVC 13. •

Termination Supervisor Calls •

• • 79

• • 79
• • 79

• 81

• • 82

EOJS - SVC lq. •
CANCEL - svc 15. •

• • 82
• 82

Communication Region Supervisor Calls. • 82

User Communication Region. • • • • • 82
INSERT - SVC 17. • • • • • • • 8q
EXTRACT - SVC 18 • • • • • • • • • 8q
UPSAND - SVC 19 and UPSOR - SVC

20. • • • • .• • • • • • • • .• • .• 8 q

Conditional interruption Supervisor
Calls • • • • • _ • • • • • • • • 85

Save Areas. • • • • • • • 85
Program Check • • .•• • • 86

STXIPC - SVC 21. • • • • • • • 86
RTXIPC - SVC 2q. • • 86

Timer services. • • • • • 87
GETIME - SVC 16. . •••• 87
SETIME - SVC 23. 87
STXITC - SVC 22. • ••• 87
RTXITC - SVC 25. • • • • 87

Time of Day • • • • • 87
Interval Timer. • • 87

UTILITIES. • • • • • • 89

DATA SET UTILITIES •• • '. • •.• '. 89
sequential Data Set Statements. • • • 89
Directoried Data Set Statements • 90
General _ • • • • • _ • • 90
Utilities Options • • • • • 91

Control Characters • • • 91
Control options. • • • • 91
Open and Close Options • 93
Delimiter Options. • .• • 94
Size Options • • • • • ••• 95
Record Manipulation Options. • 95
Output Format Options.. • • • 98
Member Selection Options. .100

VOLUME UTILITIES • • ••
INITIAL Statement .•
SQUEEZE Statement.
MAP Statement. • •

STAND-ALONE DISK INITIALIZATION.
Initialization. • • • • • • •
A.lternate Track Assignment ••
Control Statements. • • • • •

Statement Format •

SYSTEM OUTPUT. • •

Dump Facilities. •
Dump Routine.

Assembler Language
Dump Format Codes.

Coding. •

•• 101
.102
.103
.10q

.105
• 105
.105
.105

••• 106

.107

.107

.107
,.107
.108

• .111 Sample Listings. • • • • • •
Assembler Listing •• • •
Linkage Editor Listing. •

•••••• 111
• • • " • .117

MESSAGES • • • • • • • • • • • • • •
Assembler Error Indications •

Assembler Diagnostic Process •
Error Flags and severity • • .•
Assembler Flags Summary Table.
Flags and Their Meanings •

supervisor Messages • • • • .• •
Job Control t·~essages. • .• • •
Linkage Editor Messages •• •

Warning Messages, severity Code
4 . • • • • • • . • • . •

• .121
.121

• .121
• .122

.122
• .123

.132

.132

.136

Severe Errors, Severity Code 12.
Termination Messages, Severity

Code 16 • • • • • • •

.137

.137

.139

.140

.141

.141

Text Messages. • • •
Assembler System Errors
Utilities Messages.

LABELS

Direct Access Labels •

• .147

• •• 147

• .148
•••• 148

Magnetic Tape Labels
Unlabeled Tapes. •
Labeled Tapes. • • • • • • • .148

Label Formats. • • - • • • •• .1Q9
Volume Labels. • • • .149
Direct Access Data Set Label,

Format 1. • • • • • • • • • .150
Direct Access Space Management

Label. Format 5 • • .• • .154
Tape Data Set Labels • • ,.155

ABSOLUTE LOADER. • • • .• • • .157

APPENDIX A. INPUT/OUTPUT CONTROL
BLOCK FORMATS • • • • • •• .• • '. .158

Request Control Block. • •••• 158

File Control Blocks. • •• 159

Unit Control Block • .159

APPENDIX B. LANGUAGE PROCESSOR CARD
FORMATS • • •

ESD Card
TXT Card
RLD card
END Cord
REP Card

• .161
• .161
• .161

.161
• .161
• .166

APPENDIX C. SYSTEM PROGRAM PHASE NAMES .167

INDEX. '. .169

)
~/

f

(

• 10 Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Direct Access Volume. •
JOB Statement • •
EXEC Statement. • '. • •
ALLOC Statement • • •
Volume Field Format and

• 21
• • • 22

26

Parameters. • • ~ • .• • • • •
Figure 6. ACCESS Statement.
Figure 7. LABEL Statement ••
Figure 8. RENAME Statement,.
Figure 9. SAMPLE Job Deck. • •
Figure 10. INITIAL Statement ••
Figure 11. Stand-alone Disk Program

• 27
• 33
• 36
• 41
• 44
• 102

INITIAL statement ••••••••••• 106
Figure 12. sample Calling Sequence
for Module Library Dump Routine •••• 109

Figure 13. Sample Dump Listings •••• 110

TABLES

Table 1. Standard Symbolic Unit and
Data Set Assignments. · · · · · · · · · 12

Table 2,. Job Control Statements · 18
Table 3. Volume Options · · · · '. 28
Table 4. Type Field Entries · · · · 29
Table 5. Assembler EXEC Parameters. '. · 45
Table 6. Update Parameters. · · · · · · 48
Table 7. Input/Output Supervisor
Calls · · · ' . · · · 64

Table 8. symbolic Unit (SYSUNI) Index
Values. · · · ' . · · 65

:Figure 14.
Figure 15.
Figure 16.
Figure 17.

Format ••
Figure 18.

Format ••
Figure 19.

Management
Figure 20.

Header and
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

ILLUSTRATIONS

Assembler Listing. • • .112
Linkage Editor Listing ••• 118
Volume Label Format ••••• 149
Direct Access Data Set

VTOC Definition Label

Direct Access space
Label Format • •• •
Standard Tape Data Set
Trailer Label Format •
ESD Card Format.

• .150

.152

.154

• •• 155
• .162

TXT Card Format. • • • • • .163
RLD Card Format,. • .164

.165 END Card Format,. •
Alternate END Card Format.
REP Card Format. • • • • •

.165

.166

Table 9. Input/Output Return Codes. · · 66
Table 10. ASA codes. . . · · · · · · · · 67
Table 11. Incorrect Length Conditions · 74
Table 12. Non Input/Output supervisor
Calls · · · · · · 80

Table 13. Input/Output Units. · · · 90
Table 14. Utilities Options. · · · · · 92
Table 15. Assembler Error Summary · · .128
Table 16. UpbATE Errors · · · · · · · .130

(

•

The Model 44 programming System has two
main purposes:

1. To make it easier for a programmer to
use the computing system.

2. To help the computing system operate
at its most efficient level.

Easing the job of the programmer is best
illustrated in the area of input/output
operations. Instead of having to write
literally hundreds of assembler language
instructions, a programmer indicates what
type of operation is to be done. He
supplies a few items of variable informa­
tion., and turns the rest of the job over to
the system,. The system executes the
request and returns a code that tells the
programmer how things went.

Efficiency is provided in many ways,.
One easily visible example is the way the
system terminates one job and starts the
other without delay. No manual operator
intervention is required.

The heart of the system is a supervisor
program that runs the entire system at all
times. In a sense, all other programs are
subroutines to this master program.

The supervisory programs prepare the
system for each job, load the program to be
executed" and stand by during execution to
supply special services. The program being
executed may be a user" s problem program or
one of the system's processing proqrams.

Loading and execution of any program is
accomplished in a job step,. There are one
or more job steps in single job.

The system has five major processor
programs. These are an assembler, a FOR­
TRAN IV compiler, a linkage editor, a
utilities program, and a job control proc­
essor,. The job control processor is unique
in that a programmer doesn't call it
directly and its execution doesn't rep­
resent a job step. It is used solely by
the system.

A problem program may be assembled in
one job step, linkage edited in the second,
and executed in the third. Actually, three
separate programs are executed in this
typical job: the system·s assembler and
linkage editor programs and the user's
problem program. To the control program,
there is no difference among them.

INTRODUCTION AND GENERAL-INFORMATION

LANGUAGE PROCESSORS

The language processors are the assem­
bler program and the FORTRAN IV compiler.
These programs convert a programmer's coded
input into a form suitable for processing
by the linkage editor.

This publication discusses the assembler
and FORTRAN compiler programs as programs
to be executed. Details of assembler lan­
guage coding are covered in the publication
IBM System/360 Model 44 Programming system:
Assembler Language, Form C28-6811.

FORTRAN IV programming for the Model 44
is explained in the publication IBM
System/360 FORTRAN IV Language, Form
C28-6515. Another publication, IBM
System/360 Model 44 programmin9- System:
Guide to System Use for FORTRAN IV Program­
~, Form C28-6813, discusses the compil­
ing, linkage editing, and execution of
FORTRAN jobs .•

An assembly or compilation job step,
like any other job step, requires certain
job control statements. These statements
apply to all programs and are discussed in
detail in the Job Control section of this
publication. These statements provide for
specification of certain parameters that
apply only to the language processors.

For example, when the parameter LINK is
specified in the EXEC job control state­
ment, it informs the system that the lan­
guage processor output is to be linkage
edited later in the same job. The system
then places this output where it will be
readily available when execution of the
linkage editor program starts •

These parameters and other information
about the language processor programs are
discussed in the Language Processors sec­
tion of this publication.

LINKAGE EDITOR

The linkage editor program converts
assembler and compiler output into a form
suitable for loading and execution. All
programs to be executed under control of
the programming system must first be proc­
essed by the linkage editor.

Introduction And General Information 7

Job control statements are used to ini­
tiate the linkage editor job step. Then
there are four linkage editor control
statements that are used to outline special
requirements.. In many cases., programmers
will not need to use these statements since
some programs require no more than a cer­
tain amount of standard processing.

The capabilities and requirements of the
linkage editor are discussed in the Linkage
Editor section of this publication.

UTILITIES

The system's utility routines handle
many of the routine tasks that are common
to all computer installations. These
include initialization of disks and magnet­
ic tapes, listing the contents of storage
volumes" and transferring data from one
type of storage to another, sucn as from
cards to tape.

Job control statements initiate a utili­
ties job step., and utilities control state­
ments specify the job to be done. These
statements can be used, for example, to
indicate certain alterations that can be
made to data as ,it is being copied from one
place to another.

The Utilities section of this publica­
tion contains detailed information on the
capabilities and requirements of the utili­
ties program .•

ABSOLUTE LOADER

An absolute loader program is supplied
with the system. but it does not operate
under system control. This program is used
to load and initiate execution of installa­
tion programs that are not meant to operate
under the programming system's control. It
is described in the Absolute Loader section
of this publication.

SYSTEM CONVENTIONS

As a
ies, the

8

member of the IBM System/360 ser­
Model 44 follows many of the

conventions and standards that apply to
other IBM System/360 models and programming
systems. This provides a considerable
degree of compatibility between the ~odel
44 and other other IBM System/360 models.

The key basic elements of the program­
ming system are discussed in the next
section, System conventions. This section
covers data set creation and maintenance,
symbolic units., the phase and module
libraries, and register conventions.

It is assumed that many programmers are
unfamiliar with this IBM system/360 termi­
nology. The section attempts, therefore,
to explain each concept as well as provide
detailed information on how it applies to
the Model 44 system. This is basic infor­
mation for anyone using the programming
system.

OTHER FEATURES

The Error Messages section of this pub­
lication lists the messages that the system
writes to a programmer or operator. These
messages indicate the status of a job at
various points during its execution. They
also attempt to explain the reason for
premature termination of a job, when this
is necessary., or indicate why a job cannot
be run as requested by a programmer.

The system includes dump facilities that
provide listings of the general and float­
ing point registers and the contents of
main storage. The System Output section
indicates how a programmer requests these
listings.

SUPERVISOR CALLS

The system provides many services for a
program during execution. An assembler
language programmer requests these services
with supervisor calls. The compiler pro­
vides them for FORTRAN programmers. All
input/output .• for example, can be requested
with supervisor calls. These services are
discussed in two sections of this publica­
tion, one about input/output and the other
about non input/output supervisor calls .•

.'

•

(

•

..

('

This section discusses data set creation
and maintenance. use of symbolic units for
input/output operations, the phase and
module libraries, and register conventions.

DATA SET CREATION AND MAINTENANCE

All input and output under the program­
ming system is to and from data sets. A
data set is defined as a named collection
of data.

A data set on a direct access device may
be thought of as a box. It is created by
an ALLOC job control statement, and" once
created., its size is fixed. At any time.
it may be empty. full, or partially full.
The information in it can be deleted,
changed, or augmented at any time, but its
size cannot be changed. If it is not big
enough for a program's purpose, a new data
set must be created with another ALLOC
statement.

A magnetic tape or unit record data set
differs in that its size may be changed.
It is manipulated in essentially the same
ways as a direct access data set.

There are two types of data sets,
sequential and directoried.

A sequential data set is the familiar
structure in which blocks of records are
written. one after the other., from the
beginning of a storage area to its end.
One record is read or written., and then the
next sequential record is read or written
until the program runs out of records or
reaches the end of the data set.

Despite this definition, it is also
possible to read and write direct access
data sets non-sequentially. When a new
data set is being created, the programming
system can go through it and mark the
starting point of each data block.. Then
the programmer can write a block of data
anywhere in the data set and skip backward
or forward to write the next block. This
non-sequential processing of sequential
data sets is discussed in more detail in
the description of the ALLOC control state­
ment later in this publication.

SYSTEM CONVENTIONS

Each data set is named at the time that
it is created. When a programmer wants to
use a data set" he cites it by name in a
control statement and assigns a symbolic
unit name to it. The system ensures that
all input/output operations referring to
this unit are executed on the data set.

A directoried data set is a single data
set that contains one or more independent
members and a directory that indicates the
name and location of each member.

If any data set can be thought of as a
box., then a directoried data set is a box
containing several compartments,. The com­
partments differ in content and size. Old
compartments can be removed at any time and
new compartments can be added as long as
there is room for them. The first compart­
ment has a special purpose; it contains the
name and location of each of the other
compartments.

To process a directoried data set mem­
ber., the data set name and the member name
are specified in an ACCESS job control
statement. The program then processes the
data in the same manner as it does with a
sequential data set.

Directoried data sets can be written
only on direct access storage. Like
sequential data sets, they can be prefor­
matted for non-sequential reading and writ­
ing.

A directoried data set member can have
more than one name. Each name is listed in
the directory. This facility can be used,
for example, for a subroutine that performs
both sine and cosine evaluation. If it is
listed in the directory under both SIN and
COS, a programmer can call for it by a name
that is meaningful in the context of his
program .•

Volumes

Data sets reside in volumes.. A volume
may be a reel of magnetic tape, a disk, or
a stack of cards in the card reader.

A tape volume cannot contain more than
one data set. A disk may hold many, both
sequential and directoried. The card read­
er" in a sense, contains an endless number.
A printer that is used regularly for mes­
sages between the system and the operator

System Conventions 9

may be considered as holding an endless
output data set.

Every disk volume must have a volume
label. This label contains a volume serial
number that the system uses in determining
the location of a data set.

A magnetic tape may
volume label and data set
er labels,. This depends
at a given installation.

also contain a
header and trail­
upon the standard

A disk volume contains a volume table of
contents that identifies the name and loca~
tion of each data set on it. It serves the
same function as a directory does for
directoried data sets.

Figure 1 illustrates the possible con­
tents of a direct access volume.

The volume table of contents consists of
the labels of the data sets in the volume.
Every direct access data set must be
labeled. A programmer supplies label
information in a LABEL job control state­
ment following the ALLOC statement that
creates the data set.

All record blocks in a direct access
data set must be the same length, although
the lengths may differ among data sets.
For a directoried data set, the block size
must be the same for all members.

Data sets and directoried data set
bers can be eliminated at any time.
DELETE job control statement removes
sets or members without disturbing the
of the volume.

mem­
The

data
rest

When one or more members have been
deleted from' a directoried data set" other
members can be shifted to fill the gaps.
This is done with the CONDENSE job control
statement. This moves all rema~n~ng mem­
bers toward the beginning of the data set.
All vacant space is gathered at the end and
may be used for new members. The SQUEEZE
utilities program performs the same func­
tion for data sets on a volume. All
remaining data sets are shifted toward the
beginning of the volume" and new data sets
may be added at the end.

10

r---,
IVolume Label ,
~---~
IVolume Table of Contents ,
I r---------------------------------~--i
, ,Data Set A Label I
, ~------------------------------------i
, IData Set B Label ,
, ~------------------------------------i
I IData Set C Label ,

I ~------------------------------------i
\ \ Unused \
~----~------------------------------------~
IData Set A , , , , , , ,
r---i
,Data set B Directory ,
\ r------------------------------------i
I \ System control entry I

\ ~------------------------------------i I \Member 1 Entry ,
\ ~------------------------------------i
I IMember 2 Entry 1 I
I ~----~-------------------------------i
\ IMember 2 Entry 2 ,
I ~------------------------------------i
I IMember 3 Entry ,
I ~------------------~-----------------~
I I Unused ,
t-~-~------------------------------------i

,Member 1 I
, I , , , ,
, I
~--------------------------------------i
,Member 2 , , , , \ , , , \
~--------------------------------------i
,Member 3 , , ,
I , , , , ,
~---------------~----------------------i
,Unused , , , , , , , , ,

~--~--------------------------------------i
IData Set C , , ,
I , , ,
, I
~---i I ,
I ,
, I L _______________________________________ --J

Figure 1. Direct Access Volume

•

•

(1f .

'4.j

(

(

The system catalog contains a list of
data sets by name and volume. Its function
is similar to that of the volume table of
contents and a directoried data set direct­
ory.

A programmer creating a data set with an
ALLoe statement can use an option in that
statement to have its name entered in the
system catalog. If it is not done at this
time., a CATLG statement may be used for the
same purpose. (There is also an UNCATLG
statement to remove names from the
catalog.)

A cataloged data set can be referred to
subsequently solely by name. The program­
mer need not specify its location.

For example, a programmer uses the fol­
lowing job control statement:

//SYS002 ACCESS TESTDATA

This statement tells the system that the
program needs a data set named TESTDATA and
that symbolic unit SYS002 is to be assigned
to it. This statement does not identify
the location of the data set, either by
vol ume serial number, type of device., or
device address. The system gets as much of
this information as it needs from the
catalog.

No further action is necessary if the
desired data set is on the system residence
volume or if it was used earlier in the
same job. Otherwise, the system writes a
message telling the operator what volume is
needed and where to mount it.

The system examines the volume table of
contents to find out where the TESTDATA
data set is on the disk. It also gets the
addresses of the first and last data blocks
that have been written in the data set.
When the program begins its input/output
operations, the unit is positioned to read
or rewrite the first record in the data
set. Had the optional parameter EXT been
specified in the ACCESS statement, the unit
would be positioned to write a new record
after the last block written in the data
set.

SYSTEM DATA SETS

The programming system uses several data
sets for its routine operations. These are
listed in Table 1.

Some of these data sets exist in fact;
others are little more than names that are
required for administrative purposes.

SDSABS, for example, contains the phase
library. This library consists of programs
that are ready for execution. When an EXEC
job control statement names a program to be
executed., the system expects to find it in
this library. The program cannot be loaded
for execution if it is not in this data set
or if the system cannot find this data set.

SDSLOG is an example of a data set that
may exist solely for administrative rea­
sons. When system programs write messages
to the operator they use symbolic unit
SYSLOG for the output device. But a sym­
bolic unit cannot be assigned directly to
an output device -- in this case, a console
printer.. It must be assigned to a data
set. So it is assigned to data set SDSLOG.,
and the address of the printer is given as
this data set's location. Unlike SDSABS,
any other data set name could be used. The
key elements are the symbolic unit name and
the printer address.

Table 1 lists the symbolic units, the
data sets that serve as their standard
assignments, the type of device that may be
used, and the function of the data set.

The permissible devices column indicates
what type of device can be used for each
system data set. Some data sets must use
the device indicated. When the system
residence disk rs mentioned, it is the only
acceptable nevice. For most other system
data sets, the devices listed are recom­
mended but are not necessarily the only
ones that can be used. For example, the
column lists. a printer and magnetic tape
unit as devices for SDSOPT, the system
output data set. In practice, disk also
could be used but only with serious loss of
efficiency.

Reassignment of symbolic units is dis­
cussed in more detail later in this sec­
tion.

System Conventions 11

Table 1. standard Symbolic Unit and Data Set Assignments
r---------T--------T----------------T---,
I symboliclData I Permissible I I
I Unit I Set I Devices I Function I
~---------+--------+----------------+---~

SYSAB1 SDSABS ISystem Phase Library, a directoried data set
I Residence
IDisk
I

SYSAB2 SDSABS I System Required by the system's linkage editor program

SYSREL SDSREL

SYSLOG SDSLOG

SYSRDR SDSRDR

SYSIPT SDSIPT
I
I

SYSLST ISDSLST
I
I

SYSOPT ISDSOPT
I
I

SYSPCH ISDSPCH

I Residence
Disk

Disk

Console
Printer­
Keyboard

Card Reader
Magnetic Tape

Card reader
Magnetic Tape

Printer
Magnetic Tape

Printer
Magnetic Tape

Punch
'Magnetic Tape

Module library" a directoried data set

Communication with the operator

Job control input

System input unit; may be same device as SYSRDR

system and diagnostic print output; communication
with the programmer

Main output unit; may be assigned to same device as
SYSLST

Punch output

SYSUAS SDSUAS system Job Control unit assignment spill '''-..>''

Residence
Disk , ,

SYSPSD SDSPSD Disk IProvides directory for assembler and compiler ,
'output on SYSOOO which is input for linkage editor' , ,

SDSCAT System ,system catalog ,
Residence , ,
Disk , , , ,

SDSIPL ,system IInitial program load routine ,
I Residence I I
IDisk I I

I I I ,
SYSOOO ISDSOOO IDisk IAssembler and compiler output; input for linkage I •

I IMagnetic Tape I editor ,
I I' I

~i~gg~ l~~~gg~ 11~!=~etiC Tape IGeneral system work I
SYS003 ISDS003 I Any device , I
SYS004 I None 'I I
SYS005 I None I I I _________ ~ ________ ~ ________________ ~ ___ J

SYMBOLIC UNITS

Assembler language programmers use sym­
bolic unit names to refer to data sets on
external storage.. Use of these names per-

12

mits greater efficiency and flexibility in
programming.

FORTRAN programmers use data set ref­
erence numbers that the compiler associates
with symbolic units.

/(-',

'0

•

•

(~

The first column of Table 1 contains a
list of the symbolic names that are used by
this programming system. This list ends at
SYS005. Additional names in ascending
numerical sequence are available at some
installations. The highest possible is
SYS240.

An assembler language programmer selects
a sym~olic unit and uses it in coding his
input/output operations. When the program
is ready for execution, he uses an ALLOC or
ACCESS statement to assign the name to a
data set.

For example" his program may have to
read data from a data set named TESTDATA.
The programmer used SYS002 in coding input
operations for this data set. For the
execution job step, the programmer includes
the following control statement:

//SYS002 ACCESS TESTDATA

Other parameters in this statement can
indicate the physical location of the data
set. It does not matter whether it is on
disk, magnetic tape., or unit record. The
system treats all operations for SYS002 as
referring to the physical unit containing
the TESTDATA data set.

A data set can be transferred from one
storage medium to another., such as from
cards to disk, without changing the pro­
gram.. Only the ACCESS statement has to be
altered to reflect the new location of the
data set. The program still refers to it
by using the name SYS002. Similarly., one
data set can be substituted for another
wi thout changing the program .•

Some symbolic units must be assigned to
particular data sets for the programming
system to operate properly. The system
data set SDSREL, for example, contains the
module library. Whenever the programming
system needs a routine from this library.
it has a read operation for symbolic unit
SYSREL. If unit SYSREL is not assigned to
data set SDSREL.. the system is unable to .
find the routine it needs. Therefore.. the
standard assignment for SYSREL is to
SDSREL. Symbolic units with such standard
assignments are called system units.

Assignments of system units to standard
system data sets are made by the installa­
tion operators. These assignments remain
in effect for all programs. A problem
program may use these symbolic names to
refer to the system data sets without
assigning them with an ACCESS or ALLOC
statement.

The assignment of any symbolic unit can
be changed by an ACCESS or ALLOC statement.
If SYS002 is assigned to data set TESTDATA

for one job step,. it can be reassigned to
data set FORMA with an ACCESS statement for
the next job step. System units can be
reassigned in this way. but such action
must be done with care. Some system units
should not be reassigned. and certain oth­
ers should be reaSSigned only during cer­
tain job steps. Units are discussed indi­
vidually later in this section.

All system units revert to their stand­
ard assignments at the end of each job. A
unit can be returned to its standard
assignment during a job by execution of a
RESET job control statement.

For example. the standard assignment of
SYSPCH may be to a card punch data set. A
programmer may be using a utility program
to copy a data set that should be written
in punch format but is not to be punched
into cards at this time. He invokes. a
utility function that writes its output in
punch format on SYSPCH. but he reaSSigns
SYSPCH to a magnetic tape data set. The
utility program writes its output on
SYSPCH,. but it goes onto tape instead of
punched cards. The programmer can change
this assignment himself for the next job
step. or the system will return SYSPCH to
its card punch assignment at the end of the
job.

Any number of symbolic units can be
assigned to a single data set. but no
symbolic unit can be assigned to more than
one data set at a time.

The assignment of a symbolic unit to a
direct access data set or data set member
is not affected by the presence of other
data sets on the same volume. When the
program starts reading or writing.. it
begins with the first block in the data set
or member. An exception to this is when
the programmer indicates on an ACCESS
statement that the unit is to be positioned
after the last block written in the data
set so that new material can be added to
it.

STANDARD SYSTEM UNITS

The system units and the standard system
data sets associated with them are as
follows:

SYSAB1: The standard assignment for this
unit is to system data set SDSABS on the
system residence disk volume. SDSABS is
the phase library, a directoried data set.
that contains all programs that are to be
executed under system control. This unit
and data set are used by all system pro­
grams. If the assignment of SYSAB1 is

System Conventions 13

altered, the system is unable to function
properly.

SYSAB2: This unit is also assigned to data
set SDSABS. The unit and data set are used
by the system's linkage editor proqram, and
this standard assignment must be in effect
during any linkage editing job step if the
edited program is to be executed in the
same job. otherwise, the linkaqe editor
attempts to write its output phases in
whatever data set SYSAB2 is assigned to,.
This is successful only when the data set
is a formatted directoried data set, as
discussed later with block lengths of 720
bytes,.

2!2B~~~ The standard assignment of SYSREL
is to system data set SDSREL, the module
library. This directoried data set usually
is in the system residence volume. The
module library contains the FORTRAN mathe­
matical and service routines, the dump
routine. and may also contain relocatable
installation routines. This unit and data
set are used by the linkage editor.

2YSLOG~ SYSLOG" s standard assignment is to
the SDSLOG console printer-keyboard data
set. All system programs use this unit for
communication with the operator. It is
expected to be assigned to a console
printer-keyboard data set since messages
calling for operator response may be writ­
ten at any time.

SYSROR: The standard assignment for this
unit is to system data set SDSRDR. This is
expected to be either a card reader or a
magnetic tape containing card images. The
system uses this unit to read job control
statements. SDSROR is, in a sense, an
endless data set that may contain any
number of cards. This unit may be used to
read any card input in addition to control
statements, or its assignment may be
altered by an ALLOC or ACCESS control
statement if subsequent control statements
for the job are in another data set.

2!SI~T: The standard SYSIPT assignment is
to system data set SOSIPT. system programs
using SYSIPT expect input to be in the form
of cards from the card reader or card
images from magnetic tape. This assignment
may be altered, however" to another data
set on any type of device. All system
programs require, at times indicated in
this publication, that SYSIPT be assigned
to data sets containing certain categories
of input.

SYSLST: This unit's standard assiqnment is
to the-SDSLST data set, which usually is on
a printer or magnetic tape. This unit is
used for communication with the programmer .•
It may be assigned to any other data set
that will be used for the same purpose,.

14

Output on SYSLST is written in
format. The system may use this
write a message at any time during
tion of a job. A problem program
it similarly.

printer
unit to
execu­

may use

SYSOPT: The standard assignment of SYSOPT
is to system data set SOSOPT. Output on
SYSOPT is written in printer format. It is
expected that SDSOPT is a printer data set
or a magnetic tape that will be printed
later. The unit, however, may be assigned
to any type of data set. The language
processors and utility programs use this
unit for certain types of output, and
reassignment to a non-printer data set may
be desired.

SYSPCH: This unit's standard assignment is
to the SDSPCH system data set. System
output on SYSPCH is in punched card format.
It is expected that SDSPCH will be a card
punch data set or on a magnetic tape that
may be processed through a card punch at
some time. The language processors and
utility programs use this unit for punched
card output, and it may be used similarly
by problem programs. It also may be
assigned to any other type of data set when
there is no punched card output involved.

SYSUAS: The standard assignment of _SYSUAS
is to system data set SDSUAS. This unit
and data set may be required by the system
at any time., so the as.signment should not
be altered. SDSUAS is used by the job
control processor for storing input/output
unit assignment information '

SYSPSD: System unit SYSPSD's standard
assignment is to system data set SDSPSO.
This unit and data set are used by the
language processors and the linkage editor
program. The standard assignment must be
in effect during any linkage editing job
step and during the assembly or compilation
of any program that is to be linkage edited
later in the same job.

SYSOOO: The standard assignment of SYSOOO
is to system data set SOSOOO. The language
processors write their output modules in
this data set when assembling or compiling
a program that is to be linkage edited
later in the same job. This standard
assignment must be in effect during such
language proceSSing job steps and during
any linkage editor job step.

SYS0011 SYS002, and SYS003: These are
general assignment units for use by system
and problem programs. They have nominal
standard assignments to system data sets
SOSOOl, SOS002, and SDS003. These assign­
ments may be altered freely. The language
processors and utility programs use these
units for certain operations. Linkage edi­
tor uses SYS001.

•

•

"

(

•

(

•

SYS004 and SYS005: These are general
assignment units available for unrestricted
use. They are not used by the system
programs.

SYS006 through SYS240: These symbolic unit
names can be used only by installations
that modify the system programs distributed
by IBM. For further information about this
subject., see IBM System/360 Model 44 Pro­
gramming System: Systems PrQgrammer" s
Guide., Form C28-6814.

Unit name SYSDMY is used by certain
system programs but is not available for
use by problem programs.

§2ecial System Data Sets

The system data sets SDSCAT and SDSIPL
are also resident in the system residence
volume.. They are used only by systems
programs, and their use does not affect the
assignments of symbolic units.. SDSCAT con­
tains the system catalog, and SDSIPL con­
tains the initial program loading routines.

B~21acing System Data Sets

An installation can replace any system
data set for a single run or permanently.
It must ensure, however, that required
material remains available to the system.

If., for example, an installation wants
to add new routines to the module library,
SDSREL, but this data set is full. another
can be created. The installation can allo­
cate a larger data set, copy the old
contents of SDSREL into it, add new rou­
tines. and assign SYSREL to it.

Similarly, an individual programmer can
create a data set that will function as
SDSREL for a single job only. He creates
his data set and assigns system unit SYSREL
to it. Whenever his program or a system
program wants a routine from the module
library. it reads from system unit SYSREL
and, therefore., from the programmer's spe­
cial data set. It does not matter what
name has been assigned to this special data
set.

In a situation such as this, the pro­
grammer risks the possibility that the
system will require a module library rou­
tine that he has not included in his
special data set. In any case, at the end
of the job, the system reassigns SYSREL to
the SDSREL system data set.

Early Unit Assignments

Changes in symbolic unit assignments are
indicated in ACCESS and ALLOC statements.,
but the system usually does not actually
set up these new assignments until it
processes an EXEC statement. (Set up of
pending assignments also takes place when a
DELETE, RENAME, or CONDENSE statement is
processed, but these are special cases.)

Because of this., unit assignments are
not actually altered until all control
statements for the first job step of a job
have been read. The /* end of data job
control statement can be used to force an
earlier set up.

For example, if SYSLST were normally
assigned to a printer, and a programmer
wanted to switch it to a tape, the follow­
ing statements could be used:

// JOB

//SYSLST ALLOC TAPE,2400=FRESH

/*

(The ALLOC statement parameters are
explained later in this publication .•)

The JOB, ALLOC, and /* statements would
be written on the printer, but all subse­
quent job control statements and messages
would be written on the tape.

SYSLST would revert to the printer at
the start of the next job when the job
control processor resets all system units
to their standard assignments. Special
action by the operator is necessary if an
assignment must be altered before the JOB
statement is processed.

PHASE LIBRARY

The phase library is the source
programs and program segments
under system control.

of all
executed

Processing
requires three
need not all be
assembling or
and execution.

of a new problem program
job steps, although they
in the same job. These are
compi! ing, 1 inkage editing.,

Output from the linkage editor job step
is placed in the phase library automat­
ically by the system. It can be kept here
temporarily or permanently. When execution
is to start, the system searches the phase
library for the program named in the EXEC
job control statement that initiates the

System Conventions 15

job step. This program., or the first
portion of it.. is loaded into main storage,
and execution of it commences.

Program segments in the phase library
are called phases. Each phase represents a
segment of code that is to be loaded into
ma~n storage at one time. It may be an
entire problem program or part of a multi­
phase program. Each phase has been edite.d
into absolute form by the linkage editor.
All preliminary work has been completed.
and it is ready for execution.

The IBM-supplied processors and
transient supervisor functions reside per­
manently in this library. User-written
programs may reside in it permanently or
only for the duration of a single iob.. All
additions to the library, permanent or
temporary, are made through the linkage
editor.

The library is a directoried data set.
The directory contains an entry for each
resident phase. Each entry contains an
eight-character name for the phase it iden­
tifies,. (Names of fewer than eight charac­
ters are padded on the right with blanks.)
Directory entries also include information
about where the phase is located in the
library., its main storage loading address"
and its main entry point. The system uses
this information to find, load, and enter a
phase unless the programmer provides an
alternate load address. (An alternate load
address can be specified with the LOAD
supervisor call.)

A program is initially'loaded for execu­
tion by specifying its name in an EXEC
statement. If the programmer has arranged
his program in several phases., all phases
after the first are loaded by execution of
FETCH or LOAD supervisor calls.

The one or more phases constituting a
problem program can be kept in the phase
library permanently by specifying the KEEP
parameter in the EXEC statement initiating
the linkage editor job step. Otherwise.
the phases are eliminated at the end of the
next job step or at the end of the job,
whichever .occurs first. Normally. there­
fore, the execution job step should immedi­
ately follow the linkage editing job step
when KEEP is not specified.

One or more phases from the phase
library can also be copied onto magnetic
tape or punched into cards. This is done
with the PCHABS utilities statement for
directoried data sets.

16

The control statements. supervisor
calls. and job step functions are discussed
in detail in appropriate sections later in
this publication.

The name of the phase library director­
ied data set is SDSABS. System units
SYSABl and SYSAB2 usually are assigned to
it.. This library must reside on the system
residence disk volume.

MODULE LIBRARY

The module library contains relocatable
program modules, which have been assembled
or compiled., and are available for incorpo­
ration into any program.

Such modules as specialized mathematical
subroutines are designed for residence in
this library. Considerable pr~gramming
time can often be saved by us~ng this
library for permanent storage of various
routines and subroutines that are used
frequently by one or more installation
programs,.

These modules are incorporated into a
program by the linkage editor. This can be
done automatically or by specifically indi­
cating in a linkage editor control state­
ment that a certain module is to be includ­
ed.

The module library is a directoried data
set, named SDSREL. Systero unit SYSREL is
assigned to it. New modules can be added
to this library and old modules deleted in
the same way that members are added to and
deleted frOm any directoried data set.

In practice., any data set can be used as
a module library by assigning SYSREL to it.
When a substitute module library is used,
however. it must contain all the routines
the system will require during execution of
the job. The system's module library uses
a block length of 360 bytes with five
logical records per block.

The directory of the module library
contains the name of each routine in the
library. For the IB~ supplied routines,
the names of all entry points in a routine
are also listed in the directory. This
enables the system to find the proper
routine when only its entry point is
define~ as an external symbol in the using
program.

•

.,

(

•

(

The folloW'ing
assembler language
to incorporate a
into a program and

is an example of the
coding that can be used

module library routine
enter it.

EXTRN ROUTINE

L 12,ARTNE

BALR 14,12

ARTNE DC A(ROUTINE)

During linkage editing, the module
library routine W'ould be incorporated into
the program. The linkage editor would
supply the address of the entry point
ROUTINE as the value of the address con­
stant ARTNE. The program is then able
during execution to load that address into
a register and branch to it.

The compiler supplies the coding to
obtain these routines for FORTRAN programs.
In both cases, however, additional coding
may be necessary to supply parameters con­
taining information for the routine to
process.

For information about routines in the
module library and their required paramet­
ers, see the publication IBM System/360
QEg~~~i~~ystem. FORTRAN IV Libiary Sub­
E~Qg~~~, Form C28-6596.

REGISTER CONVENTIONS

Certain register conventions Should be
observed when preparing programs for execu­
tion under the Model 44 Programminq System.

This publication specifically states
when a system routine expects to find
certain information in a particular general
register and when it uses a register to
pass information to a program. These
situations occur most often when supervisor
calls are executed, but other instances
occur frequently.

The system adheres to the following
conventions:

Registers 0 and 1 are used to pass
information between the system routines and
a problem program •

Registers 2 through 12 can be used
freely by a problem program. Any system
routine that uses them always saves and
restores their contents before returning'
control to a problem program.

Register 13 is used, where specified, to
inform the system of the address of an area
where the contents of the general registers
are to be saved while a system routine is
being executed.

Register 14 is used to indicate a return
address. When a program branches to a
subroutine, for example, it can store the
return address in this register and branch
to this address when the subroutine is
completed.

Register 15 is used for return codes.
Its contents are destroyed by execution of
any supervisor call. When control returns
to a problem program after execution of a
supervisor call, this register usually con­
tains a code indicating whether the system
was able to execute the requested operation
properly •

System Conventions 17

JOB CONTROL

The system's
loaded before
step. It reads
program's job
vides requested

job control processor is
each job and after each job
and interprets the problem
control statements and pro­
services and facilities.

The statements, in general, describe the
machine and system resources that will be
required to execute the program. They
indicate which optional system features
will be desired, and they specify adminis­
trative functions that should be performed.

When the job control processor finishes
processing control statements., it causes
loading of the required program into main
storage from the phase library and ini­
tiates execution of the job step.

At the end of the job, the job control
processor provides requested end-of-job
services and restores the system to its
status as of the beginning of the iob. It
then begins processing control statements
for the next job.

JOB CONTROL STATEMENTS

Some control statements, such as JOB.,
are required for all jobs executed under
the Model 44 Programming System. Most are
optional, with their use depending upon
which system services, above the minimum~
the program wishes to use.

'The statements are divided into groups.,
as follows:

1. JOB, EXEC, end of job, STOP, 'and end
of data are the job definition state­
ments.

2.. The ALLOC" ACCESS, and LABEL state­
ments are used to create new data sets
and use old ones.

3. LISTIO and RESET are used with system
unit assignments.

4. DELETE, CONDENSE, RENAME, CATLG, and
UNCA.TLG are the data set maintenance
statements.

5. There are four miscellaneous state­
ments: PAUSE, REWIND, UNLOAD. and the
comments statement.

The statements are shown in Table 2, and

18

each is discussed in detail in this sec­
tion.

Table 2. Job control Statements
r------------T----------------------------,
I Statement I Function I
~------------L----------------------------~
I Job Definition I
~---i
1/./ JOB . I Defines the start of a job. I
1// EXEC IDefines the start of a jobl
I I step execution and the I
I I program to be executed. I
1/& IDelimits the end of a job. I
1// STOP IDelimits the end of a series I
I I of jobs. I
1/* I Delimits the end of data inl
I I the input stream. I
~------------L----------------------------i
I Symbolic Unit Assignment I
~---i
1// ALLOC IAllocates space for a newl
I I data set. I
1// ACCESS I permits access to an exist-I
I I ing data set. I
1/1 LABEL IDefines characteristics of al
I I data set. I
~------------L---------------------------~i
I Symbolic unit Maintenance I
~---i
1// RESET IRestores unit assignments tol
I I status at start of job. I
1/1 LISTIO ILists data set and device I
I I assignments on system log. I
~------------L----------------------------i
I Data set Maintenance I
~---i
// DELETE Deletes a data set from a

volume or a member from a
directoried data set .•

// CONDENSE Condenses a directoried data
set,.

// RENAME Renames a data set or a
member of a directoried
data set.

// CATLG Enters a data set name into
the catalog.

// UNCATLG Removes a data set name from
the catalog.

~------------L----------------------------i
I Miscellaneous I
~---i 1// PAUSE I Allows pause for operator I
I I action. I
1* (comments)IAllows logging of comments I
I I to system log. I
1// REWIND IRewinds a tape volume; repo-I
I I sitions a data set on al
I I direct access volume tol
I I beginning. I
1// UNLOAD IRewinds and unloads a tape. I L ____________ L ____________________________ J

•

(

f

(.-
. "

CONTROL STATEMENT FORMAT

Job control statements are designed for
an SO-column punched card format. Although
certain restrictions must be observed, the
statements have several free form charac­
teristics. Information must start in
column 1 and cannot extend past column 71.
and most fields must be entered in a
specific order. But there is no require­
ment, for example, that an operation or
operand field must start in a particular
column.

If the length of a statement exceeds 71
characters, it may be continued on addi­
tional cards, as described later in this
section.

Each statement contains from one to five
fields.

1. The first field consists of two char­
acters" such as //. that identify a
job control statement.

2. A NAME field is permitted on JOB,
EXEC, ALLOC, and ACCESS statements.
This field may be used to assign a
name to a program or program segment
or to assign a symbolic unit to a data
set.

3. An OPERATION field, such as JOB or
CONDENSE, identifies the type of
statement and the action required. It
is required in all except the end of
job, end of data, and comments state­
ments where the initial characters
perform these functions.

4. An OPERAND field contains the
statement's required and optional par­
ameters. A programmer uses these par­
ameters to provide detailed informa­
tion and, in many cases, to indicate
which of several possible actions he
wants to take.

A COMMENTS field .•
cribed in detail
tion.

This field is des­
later in this sec-

The first two columns of any job control
statement must contain the identifying
characters. These are /& for the end of
job statement" /* for the end of data
statement, * followed by a blank for the
comments statement, and // for all other
job con.trol statements.

If a name field is used in those state­
ments which are permitted to have one, it
must start in column 3. If the name field
is not used, the third column must be
blank.

In all other statements" except com­
ments, the third column must be blank.

The operation field
column after column 3,
preceded and followed
blank.

may
but

by

start in any
it must be

at least one

Similarly, the operand field may start
in any column, but it must be preceded by
at least one blank, and it must be followed
by at least one blank.

Parameters within the operand field are
separated by commas and parentheses.
Blanks may be used only where this publica­
tion specifically states that they are
permitted. In most cases, when the system
detects a blank in the operand field, it
assumes it has reached the end of the
field. Any characters following the blank
are treated as comments unless the state­
ment is continued on another card, as
described below. Column 72 is used to
indicate whether the statement is contin­
ued.

Columns 73 through SO are ignored by the
system and may be used for any purpose.

A JOB statement could
following forms. The
PARAM2 simulate the
entered by a programmer.

take
words
actual

any of the
PARAM1 and
parameters

//SAMPLE JOB PARAMI,PARAM2

// JOB PARAM1,PARAM2

// JOB

The /& end-of-job, /* end-of-data. and *
comments statements are special purpose
statements that do not have name, opera­
tion, and operand fields. They require
only the classification characters in
columns 1 and 2.

CONTINUATION STATEMENTS

Any statement can be continued on anoth­
er card if the information does not all fit
on one card. Any non-blank character in
column 72 indicates that the following card
is a continuation of the statement. This
character is not considered part of the
statement.

The name and operation fields of a
statement cannot be continued. They must
be specified entirely in the first card of
a statement. The operand field must start
in the first card. After its first param­
eter is entered, it may be continued on as
many additional cards as necessary.

Job Control 19

A statement can be interrupted only
after a comma. For instance" a parameter.
such as PARAM6,. cannot be split so that PAR
appears on one card and AM6" appears on the
continuation card.

The last operand field parameter in the
card must be followed by the comma that
would normally fall in that position. The
rest of the card may then contain comments,.
with the operand field resuming in column
16 of the next card.

It is not necessary to fill a card
before continuing it,. The text may stop in
any column" and be followed bya comma, a
blank" and additional blanks or comments
through column 71. A non-blank character
is entered in column 72.

A parameter field that consists of sev­
eral entries enclosed in parentheses, such
as (PARAMl,PARAM2,PARAM3).PARAMX, may be
interrupted after any of the commas.

The continuation card must be the next
card. The first two columns must contain
the characters // and the continued operand
field must start in column 16.

There is no limit on the number of
continuation cards that may be used for a
single statement. There must be a non­
blank character in column 72 of each.
except the last.. The first two col umns
must contain the // entries, and the text
must start in column 16.

If column 16 of any continuation card is
blank, the text on it and any subsequent
continuation card for the same statement is
treated as comments.

The /& end of job, /* end of data, and *
comments statements cannot be continued,.
There can, however, be any number of
consecutive * comments statements.

COMMENTS IN CONTROL STATEMENTS

Comments may be included in job control
statements. They are entered following the
operand field and must be separated from
the last parameter by at least one blank.
Blanks may be included within the comments.
Comments are written on SYSLST.

Comments on continuation cards may start
after the end of the operand field and be
continued on additional continuation cards~
or each card may contain a portion of the
operand field and comments. When the lat­
ter technique is used" a comma and at least
one blank must separate the last entry for
the operand field on each card from the

20

comments on that card. The operand field
resumes in column 16 of the next card.

Comments are permitted in statements
that do not have an operand field, such as
the end-of-job and end-of-data statements,
as long as the comments are preceded by at
least one blank. Comments on the /* end of
data statement, however, are not printed.
For statements in which an operand field is
permitted but is not being used, the
absence of the field must be indicated by a
comma and at least one blank before the
start of any comments.

Following are several sample control
statements containing comments:

1
1
6

/ /NAME JOB PARAM1, PARAM2 COMMENTS

/ /NAME JOB , COl'o'lMENTS

7
2

//STEPNAME EXEC PARAM1, PARAM2(PARAM3, X
/ / PARAM4) , PARAM5 COMMENTS X
// COMMENTS

//STEPNAME EXEC PARAM1"PARAM2, COMMENTS X
// (PARAM3"PARAM4) I COMMENTS X
// PARAM5 COMMENTS

* COlVlMENTS

/& COMMENTS

Character Set

Statements may contain any of the 39
alphameric characters recognized by the
system. The term "alphameric characters"
refers to both alphabetic and numeric char­
acters,.

Alphabetic characters are defined for
the system as the 26 regular alphabetic
characters, A-Z, plus three special charac­
ters $ # iii.

The numeric characters are 0-9.

The following special characters also
may be used in job control statements:

* asterisk
" comma
= equals sign
() parentheses

single quote
/ slash

LOCATION

The
control

job control processor reads its job
statements from symbolic unit

t

f

.'

(

SYSRDR. The standard assignment for this
unit is to system data set SDSRDR on a card
reader.

SYSRDR may be assigned to the same data
set as SYSIPT. This may be a standard
assignment or one for a single job. In
such cases, job control statements and data
may be combined in a single data set. A /*
end of data statement must follow any data
that is followed by control statements in
the same data set.

FORMAT DESCRIPTIONS

The following conventions are used in
this publication when describing the for­
mats of control statements .•

1. Upper case letters and punctuation
marks" except as indicated below., rep­
resent information that must be coded
in a statement exactly as shown.

2. Lower case letters and words are gen­
eric terms that represent fields for
which information must or may be sup­
plied. The programmer is expected to
determine the exact characters that
should be entered.

3. Brackets [] are used to represent an
option that may be included or exclud­
ed" depending upon program require­
ments.

4. Braces {} are used to enclose fields
where one of two or more alternatives
must be chosen.

5. An ellipsis indicates that a
field may be repeated a variaole num­
ber of times. For example. (name, •••)
indicates that the program may specify
any number of names in the field,
subject to any limitations mentioned
in the text., and that they are sepa­
rated by commas.

When a comma or another punctuation mark
appears within parentheses or brackets with
a parameter, it is an integral part of that
parameter. For example, the format 9f a
control statement might be illustrated in
this publication as follows:

/ / LABEL [PARAMll [, PARAM2]

Use of this format means that both
are optional. They may be
the statement.. but they are not
The statement could be punched

parameters
included in
required.
in any of the following formats:

/ / LABEL PARAMl, PARAM2
// LABEL PARAM1
/ / LABEL ., PARAM2

It should not be punched as follows:

/ / LABEL PARAM2

In this example, if PARAM2 is used, it
must include the comma, regardless of
whether PARA~l also is used. If a paramet­
er is not used, neither is any punctuation
mark associated with it.

Except where stated otherwise, paramet­
ers should be punched in the same order as
they are shown in the statement format.

STATE~£NT FORMATS

Following are the descriptions and for­
mats of the job control statements. A
sample deck of job control statements is
shown in Figure 9 at the end of this
section.

JOB DEFINITION STATEMENTS

JOB Statement

The JOB statement defines the start of a
job.

One JOB statement is required as the
first statement in each job. It may be
used to assign a name to the job, request a
dump of main storage and the general reg­
isters if the job terminates abnormally,
and to pass information to an installation
accounting routine.

The JOB statement's format is shown in
Figure 2.

r---,
I//(jobname] JOB /DUMP 1 [,accounting information] I
I ~~~ I L ___ J

Figure 2. JOB Statement

Job Control 21

The parameters are as follows:

jobname
This field specifies the name of the
job. If used, the name must consist
of one to eight alphameric characters.,
the first of which must be alphabetic.

This name identifies
stored in bytes 24
user communication
duration of the joh.

DUMP
NODUMP

the job. It is
through 31 of the
region for the

-----This field is used to indicate whether
a dump is wanted if the job terminates
abnormally..

The DUMP keyword causes a dump of the
general registers and all of main
storage onto SYSLST if the program
terminates abnormally. The dump is in
hexadecimal notation.

The dump program and the available
listing formats are discussed in the
system Output section of this publica­
tion.

The NODUMP keyword suppresses all
dumping for the job.

If neither keyword
NODUMP is assumed.

accounting information

is specified,

This field may consist of up to 16
alphameric characters to be passed to
an installation accounting routine.
The first character cannot be a left
parenthesis or a blank. otherwise"
blanks may be included among the 16
characters.

The contents and format of the field
are determined by the installation.

If the installation has an accounting
routine., these characters are stored
in bytes 128 through 143 of the user
communication region. They replace
anything placed in these bytes by a
previous JOB or EXEC statement.

Example:

//STATRUN JOB DUMP,137596

where

// are the required job control state­
ment identification characters.

STATRUN is the name the programmer is
assigning to the joh.

JOB identifies the operation.

DUMP requests a listing of the general
registers and the problem program portion
of main storage if the program is cancelled
before its planned end.

137596 is an illustration of a code the
installation might require for its account­
ing routine.

EXEC Statement

The EXEC statement defines the end of
job control information for a job step. It
causes the system to load a program or
program segment from the phase library and
to commence executing it.

One EXEC statement is required for each
job step. It must be the last statement
processed before execution of the job step
is to begin.

The EXEC statement names the program to
be executed. This may be a system program,
such as the linkage editor, or it may be
the user's problem program.

The program to be executed must be
resident in the phase library when the EXEC
statement is processed. Any system program
may be considered permanently resident in
this library.

If the system is unable to find the
program in the phase library and load it
properly, the job is cancelled.

An EXEC statement may contain parameters
to be passed to the problem program. It
also may assign a name to the job step.,
specify settings for the user program and
variable precis~on switches, and pass
information to an installation accounting
routine.

The format of the EXEC statement is
shown in Figure 3.

r---,

/ .""",

I//[stepname] EXEC [progname] [(parameter list)] [,(switch options») [,accounting I L ___ ~~:~~~~~~~~!:_J C
Figure 3. EXEC Statement

22

(

(

.1

(

The parameters are as follows:

stepname
This
job
one
the

field specifies the name of the
step.. If used, the name must be
to eight alphameric characters.

first of which is alphabetic.

A job step name is stored in bytes 32
through 39 of the user communication
region while the job step is being
executed. If the job terminates
abnormally, this informatio~ can be
used to help determine the point of
termination.

when the EXEC statement is used to
initiate an assembly or compilation
job step. the name in this field is
assigned to the output module. This
name is then used when referring to
the module in the linkage editing job
step .•

progname
This tield specifies the name of the
program to be executed. The name must
be one to eight alphameric characters,
the first of which must be. alphabetic.

When a system program is to be execut­
ed. its name is given in this field.
For example, EXEC LNKEDT causes the
system to load and begin executing the
linkage editor program. The names of
other system programs are FORTRAN for
the FORTRAN IV language processor,
ASSEMBLE for the assembler language
processor. and UTILS for the system's
utilities program.

The name of a problem program is
specified in this field to initiate an
execution job step. It is not neces­
sary to specify a name, however, if
the problem program was linkaqe edited
in the immediately preceding job step
and execution is to begin with its.
first phase.

Otherwise. this field must specify a
phase name that was assigned during
linkage editing. If the programmer
did not supply a phase name at that
time., the linkage edi tor gave the
phase the same name as the first
language processor output module that
it processed. (The module received
its name from the stepname field of
the EXEC statement that initiated the
assembly or compilation job step.)

For a multi-phase program, this field
specifies the name of the phase that
is to be executed first.

The program named must reside in the
phase library. If the system is una-

ble to find the program and load it
properly., the job is cancelled. Sys­
tem programs are permanently resident
in this library .•

Appendix C contains a list of phase
names used by system programs. Dupli­
cation is not permitted. A problem
programmer must not use any of these
names for his program or as phase
names.

parameter list
This field may specify up to six
parameters to be used by the program
that is about to be executed. If., for
example, the linkage editor is to be
executed, this field could be used to
pass the parameter KEEP" which indi­
cates that a program is to be kept in
the phase library until specifically
deleted.

Each pa~ameter is discussed in more
detail in the section concerning the
program to which it applies. An
installation may define additional
parameters. During execution of the
job step, these parameters are saved
in bytes 56 through 103 of the user
communication region. A programmer
can use them to establish his own
execution-time options.

Parameters in the field are separated
by commas, and the entire field is
enclosed in parentheses. Each param­
eter may consist of up to eight
alphameric characters.

switch options
This field is used to specify settings
for the variable precision switch on
the operator's console and for the
user program switch in the user com­
munication region.

Either or both switch options may be
specified. If both are given, they
are separated by a comma. The entire
field must be enclosed in parentheses.
No cornma is needed if only one option
is specified.

The variable precision switch speci­
fies the precision required for float­
ing point operations. Precision may
be 8, 10, 12, or 14 bits. 1 In general,
the highest precision provides great­
est accuracy and the lowest precision
provides greatest speed.

1Performance statistics given for mathemat­
ical subroutines in the module library are
based on a VPS setting of 14. See IBM
§ystem/360 Operatin9:-~~tem, FORTRAN Iv
Library subprogr~, Form C28-6596.

Job Control 23

The switch must be set manually by the
operator. This field is used to
ensure that his setting is correct.
If it is not correct., a message is
written giving the proper setting, as
indicated by this field,.

The field is written as VPSxx, where
xx may be 08, 10" 12" or 14.

The system tests the operator's set­
ting. If it is correct" the system
proceeds with normal processing. If
it is not" the setting specifed in
this statement is written, and the
system pauses until the operator indi­
cates that he has reset the switch.
The system tests it again and proceeds
if it is correct or pauses until the
operator resets it again. This proc­
ess continues until the setting is
correct. The default setting is 14.
This value is set each time a JOB card
is read.

The user program switch is byte 40
the user communication region. It
be used by the problem program
communication between job steps.

in
may
for

The EXEC statement may specify an
initial setting for the switch.
Assembler language coding and supervi­
sor calls are required to reset or
read the switch. The switch is reset
to zeros at the beginning of each job.

This field in the EXEC statement con­
tains up to eight characters. Each
character corresponds with a bit in
the switch byte. Each character in
the statement must be either 0, 1, or
X. A 0 in the statement causes its
corresponding bit to be set to O. A 1
results in a 1 bit, and an X indicates
that the corresponding bit is to be
left as it is. If fewer than eight
characters are given, the r{ghtmost
positions are assumed to be X's.

accounting information

24

This field may consist of up to 16
alphameric characters to be passed to
an installation accounting routine.
The first character cannot be a left
parenthesis or a blank. Otherwise,
blanks may be included among the 16
characters.

These characters are stored in bytes
128 through 143 of the user communi­
cation region. They replace anything
placed in these bytes by a previous
JOB or EXEC statement.

The format and contents of this field
are specified by the installation .•

Example:

//RUNl EXEC PHASE1(201"ON), (VPS14,,00001111)

where

// are the required job control state­
ment identification characters.

RUNl is the name the programmer is
assigning to the job step.

EXEC identifies the type of operation.

PHASEl is the name of the program or
program phase in the phase library that is
to be loaded and executed.

201 and ON are illustrations of parame­
ters to be stored in the user corr~unication
region for use by the problem program.

VPS14 specifies
switch setting of
operations.

a variable precision
14 for floating point

00001111 sets the first four bits of the
user program switch to zeros and the last
four bits to ones.

This example does not include an instal­
lation accounting routine code. One could
follow the switch settings, ~recededby a
comma. It would replace any accounting
routine code specified by a previous EXEC
or JOB statement.

Example:

// EXEC PHASEl

This statement causes the system to load
and enter the same program phase as in the
previous example. It is a valid statement
that makes use of none of the optional
parameters. Even the PHASE1 parameter
could be omitted if this is the name of the
first phase of a program that was linkage
edited in the immediately preceding job
step.

End-of-Job statemen~

The /& end-of-job statement indicates
the end of a job. It must be the last
statement in each program deck.

(A job step is terminated
of an EOJS supervisor call.
the final step of the job.)

by execution
This includes

This statement causes the system's job
control processor to terminate the job and
to prepare for the next one. This includes
returning system units to their standard

' -.-, ... -/

..

('f-~',

i,~

(

assignments., performing any cataloging
operations that were requested during the
joh. and reinitializing system records.

If a job is canceled before it reaches
its normal end. the system skips all
remaining control and program statements
until it detects a /& statement.

The statement's format is:

r---,
1/& 1 L ___ J

The rest of the statement is blank,
unless comments are desired and are entered
according to the previously specified
rules.

The STOP statement is used to denote the
end of a job input stream. It is for use
more by the system operator than by a
problem programmer.

This statement may be used after a
series of one or more jobs.. It causes the
system to enter the installation accounting
routine., if there is one., and then close
all system files.

The system waits for input. The opera­
tor may initiate another job or stop the
system. If the system is stopped, an
initial program load procedure is required
to resume system operations.

The statement's format is:

r---,
1// STOP 1 L ___ J

The rest of the statement is blank.,
unless comments are desired.

End of Data Statement

The /* end-of-data statement denotes the
end of input data in the job input stream.

This statement is used to separate pro­
gram data and instructions from subsequent
control statements. It is required after
any data set on the system input unit,
SYSIPT, when that unit is the same as the
system reader, SYSRDR.

The statement also indicates the end of
input to the linkage editor and language

processor program~. When input and control
statements are ~n separate data sets, it
goes in the input data set.

All program must recognize the /* state­
ment or an equivalent. The requirement is
to ensure that no problem program inadver­
tantly reads a control statement that is
requ~red for the next job step or job or
for the proper termination of the current
job.

The statement also has specialized uses
that are discussed with other topics in
this publication.

The statement's format is:

r---,
1/* 1 L ___ J

The rest of the statement is blank,.
unless comments are wanted.

DATA SET DEFINITION STATEMENTS

The data set definition statements are
ALLOC, ACCESS, and LAEEL.. ALLOC is used to
create and name a data set. ACCESS is used
to identify an existing data set that will
be used by a program and to assign a
symbolic unit to it. LABEL provides addi­
tional information about the data set for
use by the system in preparing optional and
required labels and control blocks for
input/output operations.

ALLOC Statement

The ALLOC statement is used to create
and name a data set.

An ALLOC statement is required to create
a new data set in a direct access volume.
Its use is optional but recommended for
creating other types of data sets. It also
is used to assign symbolic units to data
sets or ensure that they are properly
assigned.

Although ALLOC is used to create direc­
toried data sets, ACCESS statements are
required to create members.

For direct access and labeled magnetic
tape data sets, an ALLOC statement must be
followed immediately by a LABEL statement
which provides additional information about
the data set. Once a direct access data
set is created, its size cannot be changed.
It is not necessary, however, to make any

Job Control 25

use of a data set in the job or job step in
which it is created.

The ALLOC statement also may be used to
assign a symbolic unit to a data set, enter
the data set's name and location in the
system catalog., and format the area allo­
cated for a direct access data set so that
it may be used for random access process­
ing.

The possible formats of the ALLOC state­
ment and brief descriptions of its fields
are shown in Figure 4. The parameters of
the ALLOC statement are as follows:

SYSxxx
This field assigns a symbolic unit to
the data set.

This field is not required if no
input/output operations will be per­
formed on the data set during the job.
It should be left blank if a symbolic
unit will be assigned by an ACCESS
statement later in the job.

This field assigns a symbolic unit to
an entire data set, beginning at its
first block.. Since the first block of
a directoried data set is the start of
its directory, an ACCESS statement is
used to make an assignment to a mem­
ber,. This applies whether the member
already exists or will be created by
the job.

r---~---,
I Formats I
~---~
IFor direct access data sets: I
I I
1//[SYSxxx] ALLOC dsname[.,volume].,data length[,directory length] [.,ROUND] [,FMT] [,CATLG] I
I I
~---1
IFor magnetic tape and unit record data sets: I
I I
1//[SYSxxx] ALLOC dsname[.volume] [,CATLGl I
I I
~---~
IFields in brief I
~----------T--~
1// I Required. Identifies job control statement. I
~----------+--~
ISYSxxx I Assigns symbolic unit to the data set. Not required if no data will bel
I I read from or written into the data set during the job step. I
~----------+--~
IALLOC I Required. Identifies type of statement. Must be preceded and followed byl
I I at least one blank. I
~----------+--~
Idsname I Required. Assigns name to the data set being created. I
~----------+--~
I volume I Identifies type of data set (direct access, magnetic tape, or unit record) I
I I and its location. Required except when the data set is to be created onl
I I the system residence disk volume. I
~----------+--~
I data I Required to indicate how much disk space should be reserved for a direct I
I length I access data set. I
~----------+--~
Idirectory I Required for directoried data sets only. Indicates number of entries inl
I length I directory so system can reserve enough space within the data set for al
I I directory. I
~----------+--~
I ROUND I Indicates that allocation of space for a direct access data set is tol
I I begin and end on a cylinder boundary. I
~----------+--~
IFMT I Formats entire area of disk data set to permit immediate nonsequential I
I I reading and writing of data blocks. I
r----------+--~
ICATLG I Enters name of data set in system catalog. i L __________ ~ __ J

Figure 4. ALLOC Statement

26

(

(

dsname
This field specifies the name of the
data set. The name may be one to
eight alphameric characters, the first
of which must be alphabetic.

volume
This field identifies the volume and
device on which the data set is to be
created. Figure 5 shows the field's
format and parameters.

When this field is omitted, the data
set is created on the system residence
disk volume.

The field consists of one of the
following sets of entries:

r-------------------------------------,
I SAME[(OPtionS)]={dsname I
I SYSxxx I
I I
I type }[(OPtionS}]=[.VOlid'] I
I devadr FRESH I l _____________________________________ J

The right side of the field need not
be specified for unit record and prin­
ter data sets.

The series beginning with SAME is used
when the new data set is to be created
on the same volume as a known existing
data set.

The series beginning with type is used
when the chief consideration is the
type of device that is to hold the
data set.

The devadr series tells the system to
create the data set on whatever device
is at a specific address.

If both the type and devadr methods
are used within the same job step, the
devadr request should be made first if
both refer to the same type of device.
Otherwise., the system, in processing
the type request, might select the
device intended for use in the devadr
request.

The devadr method also should be used
when more than one device of a given
type exists on the system and a user
wants to mount a volume before start­
ing the job. When type is specified,
the system selects a device and
instructs the operator to mount the

volume on it. It can be difficult to
predict which of several possible
devices will be selected.

r---,
ISAME[(OPtionS)]={dsname I
I SYSxxx I
~---~
Itype }[(OPtionS)]=['VOlid'] I
Idevadr FRESH I
~---~
IFields in brief I
~------~---------------------------------~
I SAME 1 Indicates that the volume is thel
1 1 same as one used previously inl
I I the same job. I
~-------+---------------------------------~
10ptionsiUsed to request special features I
I 1 for input/output. See Table 3.1
~-------+---------------------------------~
Idsname IName of a data set on the samel
I I volume that was used earlier inl
I . I the job. I
~-------+---------------------------------~
ISYSxxx IName of symbolic unit assigned tol
I I data set used earlier in the I
I I job. I
~-------+---------------------------------~
I type IType of device to be used. Seel
I I Table 4. I
~-------+---------------------------------~
Idevadr IAddress of device to be used. I
~-------+---------------------------------~
l'volid'lIdentification number of volume I
I I to be used. I
~-------+---------------------------------~
I FRESH I Requests volume containing nol
1 I active data sets. I L _______ ~ _________________________________ J

Figure 5. Volume Field Format and Parame­
ters

SAME
The SAME keyword indicates that the
new data set is to be created on the
same volume as an existing data set.
since the system can determine the
location of the exiting data set, it
needs no further information about
where the new one should go. If
necessary, the console operator is
instructed to mount the volume con­
taining the indicated data set .•

The other data set must be one of the
system data sets for which an ALLOC or
ACCESS statement was processed pre­
viously in the job or a cataloged data
set. It may be identified by name or
by the name of a symbolic unit that is
currently assigned to it.

Job Control 27

Table 3. Volume Options
r------------------T----------T-------------T---,
1 1 1 Entry in 1 I
1 Device 1 Option IOption Field1.1 Explanation I
~------------------+----------+-------------+---~
17 track tape I density;! 1200 1200 bytes/inch I
I (with or without I 1556 1556 bytes/inch I
Iconvert Feature) 1 I~QQ 1800 bytes/inch I
1 .----------+-------------+---~
1 1 parity 12 1 Odd I
I 1 IE I Even I
I .----------+-------------+---~
I ITranslate IT ITranslate ON I
I 1 Feature INT ITranslate OFF I
~------------------+----------+-------------+---~
17 track tape 1 Convert J £. 1 Convert ON 1
1 (with Convert 1 Feature 1 NC 1 convert OFF I
1 Feature) 1 1 1 I
~------------------+----------+-------------+---~
19 track tape 1 density;! I ~OO 1800 bytes/inch 1
I (with dual 1 11600 /1600 bytes/inch I
Idensity feature) I 1 1 I
.------------------+----------+-------------+---~
IDisk I Write IWRCHK IWrite check ON I
1 1 Check 1 NOWRCHK 1 No Write Check I
I 1 I I Default condition is as 1
1 1 1 I specified in label. 1
.------------------~----------~-------------~---~
I1.Underlined entries are default options. I
I I
I;!On dual density tapes, the density specified for the volume label, if any, overrides 1
I any subsequent density specificaton. When another density is specified for reading orl
1 writing data sets or other labels on the volume" it is ignored. For other types of I
I tape, a data set must be read in the same density as it was written, or an error code I
1 is returned when the data set is opened. I L ___ J

dsname
This field specifies the name of an
existing data set on the same volume
that is to contain the new data set.
This field is used with the SAME
keyword to indicate the location of
the new data set. The name specified
may be that of a data set for which an
ALLOC or ACCESS statement was proc­
essed earlier in the job, a system
data set,. or of a cataloged data set.

SYSxxx
This field identifies a symbolic unit
that is currently assigned to a data
set on the same volume that is to
contain the new data set.

options

28

The possible entries for this field
are shown in Table 3. The choice of
those to be used varies according to
whether the device involved is unit

record, direct access storage, or mag­
netic tape. If nothing is specified,
the default options are assumed where
applicable.

For an IBM 2400 series magnetic tape
unit with a 7-track read/write head,
up to four options may be specified.
These specify tape density and parity
and indicate whether the translate or
convert features are to be used .•

The translate feature is used to
switch data between 7-track and 9-
track tapes. The convert feature is
used to read and write binary data on
7-track tapes. If the convert option
is ON, the system assumes odd parity
and the translate feature OFF.

For a 9-track tape with the dual
density feature, density may be speci­
fied.

(1''--'''''',

\ J

(

..

Table 4. Type Field Entries
r------~---,
I Entry I Explanation I
~-------+---i
ISDSD ISingle Disk storage Drive (2315 Disk Cartridge) I
I I I
11316 IIBM 1316 Disk Pack mounted on a 2311 Disk storage Drive I
I I I
12400 IIBM 2400 Magnetic Tape Unit with 9-track read/write head; £00 bpi only I
I I I
12400H IIBM 2400 Magnetic Tape Unit with 9-track read/write head; 1600 bpi only I
I I I
12400D IIBM 2400 Magnetic Tape Unit with 9-track read/write head; dual density , , , ,
12400T7 IIBM 2400 Magnetic Tape Unit with 7-track read/write head ,
, I ,
I 2400T7C IBM 2400 Magnetic Tape Unit with 7-track read/write head and the Convert,
I Feature ,
I I
11052 IBM 1052 Console Printer-keyboard ,
I I
11442 IBM 1442 Model N1 Card Read-Punch I
I I
11442P IBM 1442 Model N2 Card Punch I

I
2520 IBM.2520 Card Read-Punch I

2520P

2501

2540

IBM 2520 Model B2 or B3 Card Punch

IBM 2501 Card Reader

IIBM 2540 Card Read-Punch (Reader side)
I

2540P IIBM 2540 Card Read-Punch (Punch side> ,
1403 IIBM 1403 Printer, Model 2, 3, or N1 (132 characters)

I
1403M7 IIBM 1403 Printer, Model 7 (120 characters)

11443
I

I
IIBM 1443 Printer, Model N1 (120 characters)
I

11443S IIBM 1443 Printer, Model N1 (144 characters) (Special Feature) L _______ ~ __ _

For a disk volume, only one option,
write validity checking, may be speci­
fied. When this is specified, the
system reads back each data block that
is written. No data is transferred in
this read-back procedure, but the sys­
tem checks for an error indication.
Standard recovery procedures are ini­
tiated if any error is detected. This
operation requires an additional disk
revolution for each data block that is
written. This field overrides the
WRCHK field of the data set's LABEL
statement for the job. If write
checking is not requested here or in
the LABEL statement, the system
assumes it is not wanted.

Options may be specified in any order.
The enti~e field is enclosed in paren­
theses, and if there is more than one
entry, they are separated by commas.

type
This field
device that
created on..
in Table 4.

specifies the type of
the data set is to be

Possible types are shown

The system selects a device that meets
the type specification. It writes a
message telling the operator to mount
the volume on the selected device.

'volid'
The 'volid' field specifies the one­
to-six character serial number of a
disk or magnetic tape that is to
contain the new data set. For a unit
record device or unlabeled tape, this
field may be omitted.

The entry must be enclosed in single
quotes, as indicated.

The volume serial number is created

Job control 29

FRESH

when an installation initializes a
volume using the system utility
programs. This number can be obtained
from the volume label, a listing of
volume contents" and" in some cases,
from a listing of symbolic unit
assignments,. In most installations, a
volume is labeled externally with its
identification number.

When this field is not specified, the
system assumes the volume serial num­
ber consists of six blanks.

The LISTIO statement, which lists the
current assignments o£ all . system
units, also provides a listing of
volume serial numbers.

The FRESH keyword indicates that an
empty direct access or magnetic ta~e
volume is to be used. The volume 1S
empty in the sense that it contains no
other data sets. It must have been
initialized by the system volume ini­
tialization utility routines.

When a FRESH volume is requested, the
system writes a message instructing
the operator to mount an empty volume
and to suspend processing until he
indicates this has been done. If the
volume is labeled, the system checks
to ensure that it does not contain an
active data set. The message to the
operator indicates which unit the
FRESH volume should be mounted on.

The system does not recognize the volume
identification code of a FRESH volume until
the end of the job step. Therefore" if it
is necessary to refer to such a volume in a
subsequent job control statement, the ref­
erence must be to a data set on the volume"
as in the £ollowing example:

/ / ALLOC DATAONE, OC1=FRESH, 25

// LABEL 720

// ALLOC DATATWO,SAME=DATAONE,50

// LABEL 360

The first ALLOC statement creates a data
set on a FRESH direct access volume. To
create another data set on the same volume,
the programmer identifies the volume by
citing the name of the first data set.

The same technique would be used to create
a directoried data set on a FRESH volume
and then write a member in it in the same
job step. The data set is created by an
ALLOC statement, and then a member is
created by using an ACCESS statement that

30

cites the data set name in its volume
identification £ield.

devadr
This field speci£ies the address of a
device that is to contain the new data
set,.

The address is stated in hexadecimal
as cuu, where c is the channel address
and uu is the address of a device
attached to that channel.

c = 0 for the standard multiplex
channel

c = 1 or 2 for one of the optional
high speed multiplex channels

uu = 00 to FE (0 to 254 in
hexadecimal> •

data length
This field specifies the total number
of blocks to be allocated for a direct
access data set.

The maximum amount of space depends"
of course, upon the amount of availa­
ble space remaining in the volume. In
no case, however, can more than 65,535
blocks be allocated for a Single data
set,.

The total specified in this field does
not include the number of blocks
required for the directory of a direc­
toried data set. (The block length is
specified in the LABEL statement that
accompanies an ALLOC statement when a
direct access data set is created.)

directory length

ROUND

This field specifies the number of
entries that will be made for a direc­
toried data set. The total includes
entries for additional names, if any.

The system determines the amount of
space that will be required for the
directory based on the number of
entries stated. It uses one addition­
al entry for control purposes. The
total amount of space is rounded up to
an integral number of blocks. Each
entry requires 24 bytes.

The maximum number of entries that can
be requested is 65,534.

The ROUND keyword indicates that allo­
cation of space for a direct access
data set is to begin and end on a
cylinder boundary. The amount of
space allocated will be at least equal
to the amount requested in this state­
ment.

•

..

(

(

FMT

CATLG

The FMT format keyword causes the
system to write sequential blocks con­
taining zeros throughout the area re­
served for a direct access data set.

The blocks are the size specified in
the LABEL statement for the data set.
If the data set is directoried, both
the directory and the data area are
formatted.

This facility enables a program to
write or read any data block within
the data set at any time; thereby
making non-sequential processing pos­
sible.

Assembler language programmers may use
the POINT supervisor call to go
directly to the proper position for
writing or reading any block.

The CATLG keyword specifies that an
entry for the new data set is to be
made in the system catalog at the end
of the job. The system will make a
catalog entry containing all the
information needed for it to find and
use the data set when it is referred
to in future jobs. The data set may
be located thereafter simply by citing
its name in an ACCESS statement.

A data set is not cataloged if the job
is canceled.

1
IISYS002
II

1
6

ALLOC CHARLEY,
1316(NOWRCHK)='PON573',
240,FMT .

7
2
X
X

II

II are the required job control state­
ment identification characters.

SYS002 assigns symbolic unit SYS002 to
the data set that is being created.

ALLOC identifies the operation .•

CHARLEY is the name the programmer is
assigning to the data set .•

1316 indicates that the data set is to
be created on a 1316 Disk Pack mounted on a
2311 Disk Storage Drive.

NOWRCHK means that write validity check­
ing is not wanted. (In practice, it is not
necessary to specify this unless the
default options in the IBM distributed
system have been changed. The field could

have been written 1316='PON573' with ident­
ical effect.)

'PON573' is the identification number of
the 1316 disk volume that is to contain the
new data set.

240 is the number of blocks to be
reserved for the data set. (The size of.
the blocks is given in a LABEL statement.)

FMT instructs the system to format the
disk for non-sequential processing.

Example:

IISYSPCH ALLOC OUTPUT,2400=FRESH

II are the required job control state­
ment ioentification characters.

SYSPCH is the name of the symbolic unit
to be assigned to the new data set. (In
this example. a system unit is being reas­
signed from its standard card punch assign­
ment to a magnetic tape.)

ALLOC identifies the type of operation.

OUTPUT is the name the programmer is
assigning to the new data set.

2400=FRESH indicates that the system is
to write the data set on any 2400 magnetic
tape volume that does not contain an active
data set.

Example:

IISYSPCH ALLOC OUTPUT,1442=

where all fields are the same as in the
above example except that the 1442= param­
eter assigns SYSPCH to a card read-punch.

creating Data sets With 1*

The 1* statement can be used to
one or more data sets on disk
executing a full program. This is
trated in the following example:

II JOB

II ALLOC DS,SDSD='VOL1',10

II LABEL 726

1*

1&

create
without
illus-

These statements cause the system to
create a data set, named DS, on disk volume
VOL1. Enough space is reserved for a ten
block data set with 726 bytes per block.

Job Control 31

ACCESS Statement

An ACCESS statement
following: I

is used for the

1. To identify an existing data set for
use in a program.

2. To add new members to an existing
directoried data set.

3. To assign a symbolic unit to a data
set or directoried data set member.

4. To effect a dummy symbolic
assignment for program testing.

unit

No ACCESS statement is needed to use a
standard system data set unless reassign­
ment of a symbolic unit is required. Also,
none is needed to use a data set that was
used previously in the same job if a
symbolic unit is still assigned to it.

When the IGN parameter is specified in
the operand field, the symbolic unit is not
physically assigned to an actual data set.
The unit's index number may be used, howev­
er, in a program's input/output coding to
determine, for example, whether the
requests are properly coded.

It is not necessary to use an ACCESS
statement to refer to a system data set
unless the standard assignment of the sym­
bolic unit assigned to it has been or must
be altered. For example, symbolic unit
SYSIPT is usually assigned to the system
data set SDSIPT. This can be altered by an
ALLOC or ACCESS statement that assigns
SYSIPT to another data set. The unit can
be reassigned by another ALLOC or ACCESS
statement or returned to its standard
assignment by a RESET statement. Or a
programmer can use another ALLOC or ACCESS
statement to assign another unit to the
SDSIPT data set temporarily. In any case,
all system units revert to their standard
assignments at the end of the job.

The possible formats of the
statement and brief descriptions
fields are shown in Figure 6.

ACCESS
of its

The parameters are as follows:

SYSxxx

32

Use of this field assigns a symbolic
unit to the data set or member whose
name is given later in the statement.
A symbolic unit name, such as SYSOPT
or SYS002, is indicated. Input/output

operations on
are initiated
unit in the
operations.

the data set or member
by referring to this

coding that requests the

This field is not required if the data
set will be referred to only in the
Job Control maintenance statements,
DELETE, CONDENSE, and RENAME.

More than one symbolic unit may be
assigned to a single data set through
the use of additional ACCESS state­
ments. This might be done if the
program refers to more than one member
of a single directoried data set.

System units that are specially
assigned in this way revert to their
standard system assignments at the end
of the job or when they are cited in a
RESET statement, whichever comes ear­
lier. They also can be reassigned by
subsequent ACCESS and ALLOC state­
ments.

dsname
This field specifies the name of the
desired data set.

No further identification is needed
for system data sets, such as SDSPCH~
cataloged data sets; or those for
which an ALLOC or ACCESS statement was
processed previously in the program.
For others, the location must be spec­
ified in the volume field.

The ACCESS statement
up to 44 characters
created under other
grammingsystems.

member name
This field specifies:

accepts names of
for data sets
System/360 pro-

1. A name of an existing member of
the directoried data set whose
na~e was cited in the dSname
field, or

2. The name or names that are to be
assigned to a new member that
will be written during this job
step.

When the name of an existing member is
cited, all input/output operations for
the symbolic unit assigned to this
data set are treated as references to
the named member. The member cannot
be enlarged, but data within it can be
manipulated freely or replaced.

•

..

..

..

f

(

r---,
,Formats ,
~---~
,For direct access data sets: ,
, I
,//[SYSxxx] ACCESS dsname[(member name[,member name, •.••])]{,volume][,EXT] ,
, NEW ,
I ,
~---~
,For magnetic tape or unit record data sets: I
I I
, / /SYSxxx ACCESS dsname [, volume] [., EXT] I
I I
~---~
IFor program testing: I
I ,
'//SYSxxx ACCESS IGN I
I I
~---~
,Fields in brief I
~----------T--~
1// I Required. Identifies job control statement. I
~----------+--~
ISYSxxx I Assigns symbolic unit to the data set or member. Not required for certain I
I I maintenance functions. I
~----------+--~ I ACCESS ,Required. Identifies type of statement. Must be preceded and followed byl
I I at least one blank. I
~----------+--i
,dsname I Identifies a data set that is to be used in the program.. ,
~----------+--~
I member ,Identifies an existing directoried data set member that is to be used in al
I name ,program. Alternatively., this field is used to create and name a newl
I I member in an existing directoried data set. I
~----------+---~------------------------~
I volume I Indicates location of the desired data set. Not required for system datal
I I sets (listed in Table 1) or for data sets with entries in the system I
I I catalog. Also not required if location was specified in previous ALLOC orl
I I ACCESS statement in the same job. ,
~----------+--~ I EXT I To position an input data set after its last block. I
~----------+-------------~--~
I NEW I For directoried data sets only. Indicates that a new member is being I
I , created. I
~----------+--~
IIGN 1 Indicates that no physical input/output operations are to be performed byl
I , the unit specified in the SYSxxx field. Permits testing programs without I
, I actually reading or writing data. I L __________ ~ __ J

Figure 6. ACCESS Statement

If a new member is being added to the
directoried data set" the NEW parame­
ter must be specified elsewhere in the
ACCESS statement. only one new member
may be added to any given directoried
data set during a single job step.
The new member cannot be added if it
would increase the allocated size of
the data set or if the directory is
full.

The system assumes that anything writ­
ten during the job step on the symbol­
ic unit assigned to this data set is
part of the new member. Once written,
the size of a member cannot be

changed; that is, its size is fixed at
the end of the job step.

An entry is made in the directory for
each name. Multiple entries for a
member are identical except for the
name. The member may then be referred
to by any of the names with identical
effect. Any of the names may be
changed or deleted later without
affecting the member as long as at
least one entry for the member remains
in the directory.

Additional names, if any, must be
specified at the time the member is

Job Control 33

created.. They cannot be added later.
A name cannot duplicate any other name
in the directory.

The only limit to the number of names
a member may have is that the total
number of entries in the directory may
not exceed the number specified in the
ALLOC statement that created the
directoried data set.

volume

EXT

34

This field specifies the location of
the volume or physical input/output
device containing the data set.

This field is not
set is entered in
if it has been
previous ALLOC or
the job, or if
set.

required if the data
the system catalog,
referred to in a

ACCESS statement in
it is a system data

The format of this field is:

r------------------------------------,
I I
ISAME[(OPtionS)]={dsname I
I SYSxxx I
I I
IdeVadr}[(OptionS)]=[IVOlid'] I
I type I l ____________________________________ J

The parameters have the same meaning
and are specified in the same way as
for the ALLOC statement. An exception
is that the FRESH option does not
apply to ACCESS.

Volume information retrieved from the
system catalog is treated as a type
request. The system selects a device
and tells the operator to mount the
required volume on it.

The EXT parameter positions an input
data set immediately after its last
block of data.

When this parameter is not specified,
a data set is positioned just before
its first data block when the system
passes control to the problem program.
EXT may be used to save time reposi­
tioning a data set for updating.

EXT cannot be used with a directoried
data set .•

The action of EXT is equivalent to
positioning at the end of a data set
when it is used with a magne~ic tape
or with a direct access data set that
is full or has been formatted with the
FMT parameter.

NEW

IGN

When used with a 2315 disk cartridge
data set" positioning is immediately
before an end of file mark.

No action is taken for an EXT parame­
ter until a data set is opened. If
EXT has been specified, the data set
is then positioned accordingly.

EXT should not be used with an empty
data set. If specified for an empty
tape, for example, the system is una­
ble to find a block of data and the
result is a runaway tape.

The NEW keyword indicates that a new
member is being added to a directoried
data set.

This keyword mllst be used whenever a
new member is being created.

The IGN keyword indicates that no
physical input/output operations are
to be performed on the symbolic unit.

This facility is designed for use in
testing new programs.

Write requests referring to the sym­
bolic unit cited in the name field of
this ACCESS statement are ignored.
Read requests generate an end-of-file
condition.

Example:

The purpose of this example is to add
data to an existing direct access data set.

//SYS002 ACCESS SET1,OA2='TRW749',EXT

SYS002 is the symbolic
assigned to the data set.

unit

SET1 is the name of the data set.

being

OA2 is the physical address of the
direct access device on which the volume
containing the data set is to be mounted.

TRW749 is the identification number of
the volume containing the data set.

EXT instructs the system to position the
data set after the last block of data
currently in it.

(

('

The purpose of this example is to add a
new member to a directoried data set.

1
//SYSQOl
//

1
6

ACCESS SET4(MEMBERA,MEMBERB),
OA2='TRW749",NEW

7
2
X

SYSOOl is the symbolic unit to be
assigned to the data set.

SET4 is the name of the directoried data
set in which the new member is to be
written.

MEMBERA and MEMBERB are two names that
are to be assigned to the new member.

OA2=TRW749 identifies the volume and
location., as in the previous example.

NEW indicates that a new n,ember is being
created.

The purpose is to assign a symbolic unit
to a magnetic tape data set.

//SYS002 ACCESS SET6,2400=

SYS002 is the symbolic unit to
assigned to the data set.

SET6 is the name of the data set.

be

2400 indicates a nine track tape with
density of 800 bits per inch.

It is assumed that the tape contains no
labels. Since no location is specified,
the system will select a tape unit from its
list of those available and instruct the
operator where to mount the tape containing
data set SET6.

LABEL Statement

The LABEL statement is used with the
ALLOC and ACCESS statements to provide
additional information about a data set.

A LABEL statement is required:

--Immediately after an ALLOC statement
for a direct access data set.

--Immediately after an ALLOC or an
ACCESS statement for a magnetic tape data
set when the tape contains volume and data
set labels and the installation standard is
to label tape data sets.

--To indicate that control characters
are being used in unit record operations~

A LABEL statement must not be used:

--After an ACCESS statement for a direct
access data set.

--For an unlabeled magnetic tape data
set in an installation where the standard
is to label tape data sets.

Use of a LABEL statement after an ALLOC
or ACCESS statement is optional at other
times. Its effect in such cases is to
provide information that is inserted in a
data set's file control block. The system
uses file control blocks in handling its
input/output operations. The system fills
in those portions of the blocks that it
requires for these operations. A problem
programmer can ignore the existence of file
control blocks, but he can refer to the
information in them if he wishes. The
formats for these blocks are shown in
Appendix A.

certain fields of the LABEL statement
are not used by the ~odel 44 Programming
System. They are included to make data
sets compatible with the operating systems
for other System/360 models. Such fields
are identified in the text.

The possible formats of the LABEL state­
ment and brief descriptions of its fields
are shown in Figure 7.

The fields of the LABEL statement are as
follows:

block length
This field specifies the block length
in bytes.

The maximum value
device being used.
exceed 65,535 bytes.

depends upon the
In no case can it

The maximum block size for FORTRAN
programs is 360 bytes except for
direct access data sets. For these,
the block length should be the same as
the record length specified for the
data set in the program's DEFINE FILE
statement.

All blocks within a direct access data
set must be the same size,. Block
lengths may differ between different
data sets. The maximum block length
for a directoried data set is 726
bytes. The minimum is 24 bytes.

Job Control 35

r---,
I Formats 1
~---~
IFor direct access data sets: I
I 1
1// LABEL block lengthL,expiration date] t, "ds type l] [,CTLCHRJ [,WRCHK] [,RECLEN=n] I
I CTLASA NOWRCHK I
I 1
I [" KEYLEN=n] [, KEYLOC=n] I
I I
~----~-----~--~
IFor magnetic tape and unit record data sets: I
I I
1// LABEL [block length] [, expiration date] r. CTLCHR] [, RECLEN=n] I
I LCTLASA 1
I I
~---~ ,
IWhen information is the same as that for another data set in same job: 1
I 1
1// LABEL SAME={dsname} I
J SYSxxx I
I I
~---i
J Fields in brief I
~----------T--i 1// 1 Required. Identifies job control statement. 1
~----------+--~
I LABEL 1 Required. Identifies type of statement. Must be preceded and followed byl
I I at least one blank. I
~~---------+--~ I block I Specifies number of bytes in each data block. For variable length blocks I
1 length 1 on magnetic tape, specifies number of bytes in largest block. I
~----------+--i I expiration I Indicates when data set may be deleted. If not specified, current date I
I date I is assumed. I
~----------+--~
Ids type I Indicates organization of data set. If not specified, sequential organi-I
I 1 zation is assumed. See text for code numbers. I
~----------+--i
ICTLCHR I Indicates first byte of each record block contains special channel command I
I I code character. I
~----------+--i
ICTLASA 1 Indicates first byte of each record block contains ASA character fori
I I manipulating printer or unit record device. I
~----------+--i
IWRCHK I Indicates whether write validity checking is wanted. If neither is spec-I
1 NOWRCHK I ified, NOWRCHK is assumed. I
~----------+--~
IRECLEN=n I specifies size of logical. records. For variable length records, specifies 1
I I size of largest logical record. I
~----------+--i
IKEYLEN=n I Specifies number of bytes in key field of direct access data blocks. I
~----------+--i
IKEYLOC=n I Specifies location of first byte of key field within each block. I
~----------+--i
I SAME I Indicates that label information for this data set is the same as that fori
I I another data set for which an ALLOC or ACCESS statement was processed I
I I previously in the same job. 1
~----------+--~
Idsname I specifies name of data set that has label information that may be copied I
I I for this data set. I
~----------+------------------~--~------i
ISYSxxx I Specifies a symbolic unit that has been assigned to a data set that has I
I I label information that may be copied for this data set. I L __________ i __ J

Figure 7. LABEL statement

36

.(r~~

"---"

This
data
set,
data

field must be specified for disk
sets. If specified for any data
the information is entered in the
set's file control block.

For variable length blocks on magnetic
tape, the field should indicate the
size of the largest block.

For compatibility with other
Systern/360 operating systems, the
block length must be an integral mul­
tiple of the logical record length for
fixed-length records. For variable
length records, which produce variable
length blocks, the maximum block size
should be specified.

expiration date
This field indicates the year and day
when the data set may be deleted.

This date is specified as yyddd, where
yy is the year (00 through 99) and ddd
is the day (001 through 366).

If this field is omitted" the current
date is used.

The system's utility programs can be
used to obtain a listing of all
expired data sets in a volume. These
data sets can then be eliminated from
the volume., or their contents can be
written into new data sets with new
expiration dates.

The system examines expiration dates
when a direct access volume is proc­
essed by the SQUEEZE utility routine.
The space occupied by expired data
sets is treated as vacant.

ds type
This field specifies the data set type
for inclusion in the format I direct
access label.

This field is included for compat­
ibility with other Systern/360 program­
ming systems only and is not used by
the Model 44 Programming System., which
supports only sequential organization.

One of the following entries may be
used:

Hexa-
decimal

Code
'2000'
'4000'
, 8000"

'0200'
, 0000'

Description
Direct access organization
sequential organization
Indexed sequential organiza-

tion
Library organization
Organization not defined

If this field is omitted, '4000' for
sequential organization is assumed .•

CTLCHR
This parameter indicates that the
first byte of each block of records is
an input/output control character.

If this parameter is specified, the
system uses the first byte of each
block when writing unit record or
printer data sets. The control char­
acter is treated as data when written
in disk or tape data sets and when
this parameter is not specified. If
specified when writing in disk or
tape, the presence of a control char­
acter is noted in the data set label.

CTLASA
The CTLASA parameter indicates that
the first byte of each block of
records contains an ASA control char­
acter for physical manipulation of
printers and unit record devices.

The control character must be
those listed in Table 10
input/output section of this
tion.

one of
in the
publica-

When a data set is being written on a
printer or unit record device, the
control character is used to control
the printer or for stacker selection.
When the data set is being written on
disk, the presence of a control char­
acter is noted in its label.

The control character is treated as
data except when the data set is being
written on a printer or unit record
device and the CTLASA parameter has
been specified.

WRCHK
NOWRCHK

The WRCHK keyword specifies that write
validity checking is to be performed
on the data set as it is written.

When write validity checking is
requested, the system reads back each
block that is written in a data set.
No data is transferred" but the system
checks for errors,. Standard error
recovery procedures are executed when
necessary. Use of this facility
requires an extra disk revolution for
each block that is written.

This field is used only with data sets
that are to be written on a disk
volume.

Job Control 37

NOWRCHK indicates that no write valid­
ity checking is desired.'

When either WRCHK or NOWRCHK is speci­
fied in a LABEL statement, it governs
all subsequent writing operations for
the data set,. A programmer can over­
ride this LABEL option for a single
run by using the WRCHK-NOWRCHK option
in the ALLOC or ACCESS statement for
the data set.

If this option is not specified in a
LABEL, ACCESS, or ALLOC statement" the
system default option, NOWRCHK, is
assumed.

RECLEN=n
This field specifies the size of the
data set's logical records.

The maximum record length is 65,.535
bytes.

For data sets with fixed-length
records in fixed-length blocks, n
states the number of bytes in each
logical record.

For variable-length tape records, n
states the number of bytes in the
largest logical record.

This information is entered into the
format 1 direct access label and into
the file control block used for
input/output operations. A program
may obtain the n value from the file
control block for use in blocking and
unblocking.

If this field is
system assumes
block length.

not specified, the
record length equals

KEYLEN=n

38

This field specifies the size of the
key field for blocks written on direct
access volumes. The size is given as
n bytes, where n cannot exceed 255.

A programmer may select any portion of
a block for use as a key. This field
and the KEYLOC=n field indicate the
location and length of this key infor­
mation.

The specified bytes are written as the
key field in the direct access record
block.

If this field is used, the key length
is entered in the format I direct
access label. The Model 44 Program­
ming System uses this field only when
a data set is being written on a 1316
disk pack. For keys to be written,

this field must be followed by a
KEYLOC field with n equal to O.

KEYLOC=n
This field specifies the location
the key field within each block.

of

The value of n is the index of the
first byte of the key field. That is,
if the key field starts with the 25th
byte" KEYLOC=25 is specified,. The
value of n cannot exceed 65,535.

If n equals 0 and the KEYLEN field
specifies a non-zero value., keys are
written for data sets on a 1316 Disk
Pack. In any case, the KEYLOC value
is entered in the format I direct
access label.

SAME= ~dsnamet
lsYsxxxf
Use of this field indicates that label
information for this data set is the
same as for another data set. This
instructs the system to fill the LABEL
statement fields for this data set
with information from the other data
set's label,.

This can be done only if an ALLOC or
ACCESS statement for the other data
set was processed previously in the ----.
same job or the other data set is a'e~j
system data set. In the case of tape.,
the referenced ALLOC or ACCESS state-
ment must have been followed by a
LABEL statement.

The other data set may be identified
either by name or by the name of the
symbolic unit, S11Ch as SYS002, that is
currently assigned to it.

The purpose is to provide maximum label
information for a new direct access data
set.

1
// LABEL
//
//

1
6

240,67334,'4000',CTLASA,
NOWRCH1<,RECLEN=80.
KEYLEN=10., KEYLOC=O

7
2
X
X

240 is the number of bytes in each
record block.

67334 is the expiration date, the 334th
day of 1967.

. '4000' indicates a sequential data set.

CTLASA signifies that the first charac­
ter in each record block is an ASA control
character for manipulation of printers or

f

(

(-

unit. record devices when the data set is
written.

NOWRCHK means that write validity check­
ing of data written in the data set is not
wanted.

RECLEN=80 specifies a logical
length of 80 bytes,. There are three
cal records in each data block.

record
logi-

KEYLEN=lO instructs the system to write
a lO-byte key field when writing each data
block.

KEYLOC=O indicates that the key field
starts at the beginning of each data block.

The purpose is to provide minimum label
information for a direct access data set.

// LABEL 240

where 240 is the number of bytes in each
block of data,.

Example:

The purpose is to indicate that the
first byte of each block in a data set that
is to be written on a unit record device or
printer contains a control character,.

// LABEL,CTLASA

SYMBOLIC UNIT MAINTENANCE STATEMENTS

The symbolic unit maintenance statements
are LISTIO and RESET. They are used in
conjunction with the data set definition
statements which may alter the assignments
of system units. LISTIO provides a listing
of current assignments. RESET restores
system units to their standard assignments
if their assignments have been changed by
ALLOC or ACCESS statements,.

The RESET statement is used to restore
one or more symbolic units to their stand­
ard assignments.

The statement
has been altered
statement in a
statement applies
ed in Table 1,.

is used when an assignment
by an ALLOC or ACCESS
previous job step. This
only to those units list-

One RESET statement may be
restore all system units or just
more than one is to be restored"
alL, a separate RESET statement is
for each unit.

used to
one. If
but not
required

The standard assignment is the one that
was specified when the system was generated
or one made by the operator. A listing of
these assignments can be obtained with the
LISTIO statement.

Regardless of whether RESET statements
are used, all system units are restored to
their standard assignments at the end of
the job.

The RESET statement's format is:

r---, 1// RESET [SYSxxx] I L ____________ ~ ____________________________ J

SYSxxx
This field specifies the system unit
that is to be restored to its standard
assignment.

If this field is left blank, all
system units are restored to their
standard assignments.

The statement is ignored if this field
specifies a system unit currently per­
forming its standard assignment.

LISTIO Statement

The LISTIO statement is used to obtain a
listing of current symbolic unit assign­
ments .•

Three types of listings may be obtained.
The first reports the current assignment of
a single unit. The second lists all
aSSignments made or altered in the current
job. The third provides a listing for all
system units that have assignments.

The listing is written on SYSLOG and
SYSLST. It includes the symbolic unit's
name, its current channel and unit address,
the volume identification serial number of
the volume it is assigned to, and the name
of the data set to which the symbolic unit
is assigned.

Job Control 39

The statement's format is:

r---, 1/" LISTIO rPROG 1 I
I ~YSxx~ I l ___ l

If neither PROG nor SYSxxx is specified"
the current assignments of all system units
are listed,.

PROG
The PROG key~ord causes a listing of
all symbolic unit assignments made
through execution of ALLOC and ACCESS
statements in the current job.

This listing does not include those
units that have been restored to their
standard assignments by RESET state­
ments or those ~hose status has not
been altered.

SYSxxx
This field
name. It
particular

specifies a system unit
requests a listing for that
unit.

DATA SET MAINTENANCE STATEMENTS

The five data set maintenance state­
ments, DELETE, CONDENSE, RENAME, CATLG, and
UNCATLG, specify actions to be taken on or
for a data set,.

DELETE and CONDENSE are used to elimi­
nate data sets and directoried data set
members that are no longer needed. RENAME
changes the name of a data set or member.
CATLG and UNCATLG are used to make and
remove entries in the system catalog.

Any data set referred to in DELETE,
CONDENSE" or RENAME statements must have
been cited in ALLOC or ACCESS statements
previously in the job.

DELETE Statement

A DELETE statement is used to
a data set or a directoried
member,.

eliminate
data set

When a directoried data set member has
more ,than one entry in the directory, this
statement can be used to remove one or more
of the entries. The member remains active
as long as it is represented by at least
one entry in the directory.

When an entire data set is deleted" the
system removes its entry from the volume

40

table of contents, updates the volume'S
format 5 space management label to reflect
the removal" and, if applicable" removes
the data set·s entry from the system catal­
og.

The data set is not physically altered
at this point. It cannot be referred to"
however" and the system treats the space it
occupies as vacant. The same applies to a
directoried data set member when all its
entries have been removed from the direct­
ory.

The space occupied by a deleted data set
can be assigned to a new data set. Eventu­
ally" however, the free space tends to
become fragmented into many small areas.
When this happens, the volume should be
processed by the SQUEEZE utility routine if
it is a 2315 disk. This routine shifts all
active data sets toward the beginning of
the volume" filling any gaps left by delet­
ed data sets. The space at the end of the
volume is then available for reassignment.

The space occupied by a deleted member
within a directoried data set cannot be
reassigned. The CONDENSE job control
statement is used to shift active members
toward the beginning of a directoried data
set. Ne~ members can then be added at the
end,.

An ALLOC or ACCESS statement must have
been processed previously in the job for
any data set cited in a DELETE statement.
An exception is that entire system data
sets, but not individual members, can be
deleted at any time.

A separate DELETE statement is required
for each data set to be deleted. Any
number of directoried data set members can
be deleted with a single DELE'I'E statement
as long as all are members of the same
directoried data set.

The statement's format is:

r---, I / / DELETE dsname [(member name, •• '.)] I l ___ J

dsname
This field specifies the name of a
data set that is to be deleted or of a
directoried data set that contains one
or more members that are to be delet­
ed.

member name
This field specifies a name or alter­
nate name of a directoried data set
member. The name is deleted from the
directory. Other entries for the same
member are not disturbed unless they
also are listed in this statement.

I
"

(

Any number of names may be listed. but
all must apply to members of the same
data set. If the list includes a name
that is not in the directory, a warn­
ing message is written on SYSLST and
the name is otherwise ignored.

CONDENSE Statement

The CONDENSE statement is used to shift
the contents of a directoried data set to
fill space occupied by members and direct­
ory entries that have been deleted.

The space occupied by deleted members
and entries is treated as though it were
empty. Other members and entries are
shifted toward the beginning of the data
set to fill this space. The total size of
the data set or directory is not changed.
Also. there is no change in the order in
which the remaining members and entries
appear.

After the condensing, all empty space is
at the end of the directory and at the end
of the data set. New members may be added.
and new entries may be made in the direct­
ory.

Any data set cited in a CONDENSE state­
ment must have been referred to in an ALLOC
or ACCESS statement previously in the pro­
gram.

The statement's format is:

r---,
1// CONDENSE dsname I L ___ J

dsname
This field specifies
directoried data set
condensed.

RENAME Statement

the name of a
that is to be

The RENAME statement is used to change
the name of a data set or directoried data
set member.

When a data set is renamed" the name is
changed in the volume table of contents
and, if applicable, in the system catalog.

The name of a directoried data
member is changed in the directory,.
names. if any,. are not affected.

set
Other

If the new name duplicates an existing
name in the system catalog, volume table of
contents, or data set directory., the opera­
tion is not performed, and an error message
is written on SYSLST.

An ACCESS or ALLOC statement for this
data set must have been executed previously
in the job.

The statement's format is shown in Fig­
ure 8.

The parameters are:

old dsname
This field specifies a data set name
that is to be changed .•

This field may contain up to 44 char­
acters. It can be used to change the
names of data sets created under other
System/360 programming systems to
names of eight characters or less for
use with the Model 44 system.

new dsname
This field specifies the new name for
the data set.

dsname

old

This field specifies the name of a
directoried data set containing a mem­
ber whose name is to be changed .•

member name
This field
data set
changed.

specifies the directoried
member name that is to be

new member name
This field specifies the new name for
the directoried data set member.

CATLG Sta tement

The CATLG statement is used to make an
entry fqr a data set in the system catalog.

r---, I / / RENAME jold dsname. new dsname l I
I Idsname(old member name.new member name)f I L ___ J

Figure 8. RENAME Statement

Job Control 41

A cataloged data set may be referred to
in most cases just by name, without any
need for stating its location. catalog
entries are retained until specifically
deleted by an UNCATLG statement or until
the data set is deleted.

Catalog entries also may be made through
use of the CATLG field of the ALLOC state­
ment that creates a data set.

If the data set name specified in a
CATLG statement duplicates a name already
in the catalog, the operation is rejected
and a message is written on SYSLST.

The statement's format is:

r---,
1// CATLG dsname[,type[(options)]='volid']I L ___ J

dsname
This field specifies the data set name
that is to be entered in the system
catalog.

type(options)='volid'
This field identifies the volume on
which the data set is located.

This field may be omitted if an ALLOC
or A.CCESS statement for the data set
has been processed previously in the
job.

Entries in this field are specified in
the same way as for the type
[(options)]='volid' subfield of the
volume field of the ALLOC and ACCESS
statements.

UNCATLG statement

The UNCATLG statement is used to delete
a data set entry from the system catalog.

Removal of the catalog entry does not
change the data set itself or the volume
containing it. Its entry in the volume
table of contents also is not affected.

The statement's format is:

r---,
1// UNCATLG dsname 1 L ___ J

dsname
This
data
from

42

field specifies the name of the
set whose entry is to be removed

the catalog.

MISCELLANEOUS STATEMENTS

There are four miscellaneous statements:
PAUSE~ comments, REWIND, and UNLOAD.

PAUSE Statement

The PAUSE statement is used
steps to suspend processing
statements until the operator
action.

between job
of control
takes some

The statement has an optional comments
field that may be used to write a message
to the operator. This message is printed
on SYSLOG, which usually is the Console
Printer-Keyboard, and processing is sus­
pended. When ~he operator is ready to
resume processing., he types a code on the
Console printer-Keyboard.

The opera.tor may use this time for
various manual actions, such as mounting or
switching volumes, or" possibly, cancelling
a job.

The statement's format is:

r----------------------------~------------, 1// PAUSE [comments] 1 l ___ J

comments
Any entry in this field is printed as
a message to the operator on SYSLOG
just before the system suspends proc­
essing.

Comments statement

The comments statement is used for com­
munication with the operator.

The statement starts with an asterisk *
in its first position. The second position
must be blank. The remainder of the state­
ment, up to column 72" may contain any
characters, including blanks.

When such statements are included among
control statements, they are written on
SYSLOG as they are encountered. They have
no effect on the processing of control
statements or execution of the program.

The statement's format is:

r---,
1* [any comments] 1 l ___ J

The REWIND statement is used to rewind a
magnetic tape to its load point or to reset
the block count of a direct access or unit
record data set to zero.

The direct access block count indicates
the current position of the data set. For
a unit record data set, this record indi­
cates the number of blocks that have been
read or written for that data set up to
that pOint in the program.

If REWIND is requested for a symbolic
unit assigned to a data set that has not
been closed, job control attempts to close
the data set before executing the REWIND.

The statement's format is:

r---,
1// REWIND SYSxxx 1 L ___ J

SYSxxx
This field specifies the symbolic unit
on which the REWIND function is to be
performed.

UNLOAD Statement

The UNLOAD statement is used to rewind
and unload a magnetic tape volume. It also
can be used with direct access and unit
record data sets to reset their block
counts to zero and to logically disconnect
the symbolic units assigned to them.

Direct access and unit record data sets
are disconnected in the sense that the
system refuses to accept input/output oper­
ations for the symbolic units assigned to
them for the rest of the job.

If UNLOAD is requested for a symbolic
unit assigned to a data set that has not
been closed" job control attempts to close
the data set before executing the UNLOAD.

The statement's format is:

r---,
1// UNLOAD SYSxxx 1 L ___ J

SYSxxx
This field specifies the symbolic unit
for which the UNLOAD function is to be
performed.

Job Control 43

r---,
1 1 7 I

6 2 I
I

/ /JOBl JOB " DEFINE START OF JOB I
I

//MODULE EXEC ASSEMBLE (LINK) ASSEMBLE MODULE AND ASSIGN THE X I
/,/ NAME "MODULE" TO IT I

I
assembler input statements I

I
,/* I

I
// EXEC LNKEDT LINKAGE EDIT THE MODULE THAT WAS X
// JUST ASSEMBLED

linkage editor control statements., if any

/*

,/,/SYSOOl ALLOC DATAONE.1316='VOL83S 4 ,lOO CREATE A NEW DATA SET

// LABEL 360 DEFINE BLOCK LENGTH OF NEW DATA SET

//SYS002 ACCESS DATATWO{MEMBER), ACCESS OLD DATA SET SO NEW MEMBER X
/,/ SAME=SYS001,NEW CAN BE ADDED

// EXEC EXECUTE THE PROBLEM PROGRAM

/& L ____________________________ ~ ___ _

Figure 9. Sample Job Deck

44

(

(

c

The Model 44 Programming System includes
two language processors: an assembler pro­
gram for assembler language coding and a
compiler for FORTRAN IV coding. Detailed
information about writing programs in these
languages is provided in the previously
cited language publications. This section
deals with additional information required
to assemble or compile programs that have
already been written.

The assembler language portion of this
section discusses the job control state­
ments required to initiate an assembly job
step" the assembler's updating capabili­
ties" and the EXEC statement parameters
that may be invoked for an assembly job
step.

The FORTRAN portion covers EXEC state­
ment parameters for a compilation job step.
Detailed information about the FORTRAN com­
piler is available in the Guide to System
Use for FORTRAN Programmers, cited in the
Preface. It covers source program diag­
nostics,. compiler limitations. special con­
siderations for constructing multiphase
programs. linking to assembler language
routines. etc.

ASSEMBLER PROGRAM

The system's assembler program is loaded
and entered with an EXEC ASSEMBLE state­
ment. as follows:

//NAMEl EXEC ASSEMBLE[(parameter list)]
[accounting information]

// identifies it as a job control state­
ment.

NAMEl is the name to be assigned to the
assembled module.

ASSEMBLE is the name of the program
phase to be loaded and entered.

Parameter list represents a series of
parameters that may be specified. The
parameters that can be used are disClusse,d
individually later in this section.

The module name,. NAMEl in this example,
is used to refer to the assembled module.
if necessary,. after it is assembled. This
name is entered in the SDSPSD data set,
which serves as a directory to SDSDOO
during linkage editing. This name is used

LANGUAGE PROCESSORS

to refer to this assembled module in a
linkage editor control statement.

ASSEMBLER EXEC PARAMETERS

There are three groups of parameters
that can be specified in the parameter list
field of an EXEC statement initiating an
assembly job step. They are listed in
Table 5 and discussed in the following
text. Up to six may be used.

These parameters indicate options that
the programmer wants to invoke for the
assembly. Some apply only when the update
feature is being qsed. Others can apply to
any assembly.

In this list, default options
lined. These are options that
assumes when no other option in
category is specified,.

are und,er­
the system
the same

Table 5. Assembler EXEC Parameters
r--------------T-----------T--------------,
I I I Space I
I Output Optionl Update t Allocation I
I Parameters I Parameters I Parameters I
~--------------+-----------+--------------~
I I
I LINK NOLIN~I ASS~~~LE SYMBMAX
I I
I DECK NODECKI UPDASMBl SYMBMIN
I I
I LIST NOLISTI UPDASMB2 SYMBn
I LISTC I
I I
I XREF NOXRF:FI UPDASMB3
I I
I LNCTn I UPDATEl
I I
I , UPDATE2
L ______________ L ______ ~----L--------------

Output Option Parameters

The following parameters apply to any
assembly. regardless of whether updating is
involved. Generally. they indicate which
types of assembler output are wanted.

Language Processors 45

LINK
NOLINK

Use of this parameter indicates wheth­
er the assembler output is to be
linkage edited later in the same job.

LINK causes the system to write assem­
bler output on SYSOOO for linkage
editing later in the same job. When
NOLINK is specified, no linkage data
set is created.

If neither LINK nor NOLINK is speci­
fied~ NOLINK is assumed.

In any case, NOLINK is assumed if the
assembler program detects errors that
would prohibit successful execution.
If LINK is specified and the name
field of the EXEC ASSEMBLE statement
is blank,. the linkage editor rejects
the assembled module.

All programs must be processed by the
linkage editor before they can be
executed.

QECK
NODECK

This parameter specifies whether
assembler output should be written on
SYSPCH for punching into cards.

DECK causes the system to write a copy
of the assembled output module on
SYSPCH, which may be assigned to eith­
er a magnetic tape or card punch data
set. The deck can be used subsequent­
ly as input for the linkage editor.

If neither DECK nor NODECK is speci­
fied., DECK is assumed.

!!i§.!
NOLIST
LISTC

. ~ggr

This parameter indicates whether a
listing of the assembly is wanted.

LIST causes the system to write a
listing of the assembled output module
on SYSOPT. Error flags, if any, are
printed to the left of the statements
causing them.

LISTC provides the same type of list-.
ing as LIST, but source input state­
ments that are conditionally not
assembled are listed as comments.

LIST is assumed when neither LIST.
NOLIST, nor LISTC is specified.

NOXREF

46

This parameter specifies
listing of symbolic cross
is wanted.

whether a
references

LNCTn

This listing contains all normal sym­
bolic names used in a source program
and identifies all points in the pro­
gram where the symbols appear. The
listing excludes variable symbols and
sequence symbols.

If XREF is specified, this cross ref­
erence listing is written on SYSOPT.
If NOXREF is specified, no cross ref­
erence listing is provided.

If neither parameter is specified,
XREF is assumed.

This option specifies the maximum num­
ber of text lines to be printed on
each page of an assembly listing. The
range is from 1 to 99. If nothing is
specified as n, 61 is assumed.

As an example of using the output option
parameters, consider a job in which a
program is to be assembled, linkage edited,
and executed in three successive job steps.
The EXEC statement for the assembly job
step could read as follows:

//NAME1 EXEC ASSEMBLE(LINK,NODECK)

This statement causes the system to load
and to begin executing the assembler pro­
gram. This program reads the programmer's
assembler language input statements from
SYSIPT and produces an assembled output
module. The module is named NAME1, and it
may be referred to by this name in linkage
editor control statements, if any are need­
ed.

Since the LINK parameter is specified,
the assembled output module is written on
SYSOOO where it will be readily available
for the linkage editor in the next job
step.. The LIST and XREF parameters are not
specified but are assumed, so a listing and
a symbolic cross reference directory are
written on SYSOPT. No deck is punched.

Update Parameters

The assembler's update feature enables
it to modify a source program and to
assemble it during the same job step. It
can accept a source language data set and
an edit data set as input and produce an
assembled module and a copy of the updated
source data set •

The assembler language publication con­
tains information about the update state­
ments and how they are used to modify a
program.

The update parameters instruct the
assembler about updating required and what
is to be done with the updated program.
These may be specified in addition to the
output option parameters. described pre­
viously. which instruct the system about
how to treat the assembler output.

When a source program data set is to be
updated and assembled, the assembler pro­
gram first performs the required updating.
It then assembles the updated program.

During an update operation. the assem­
bler produces a listing on SYSLST showing
the results of its processing. All control
statements are listed as they are proc­
essed. Any errors that are detected are
indicated.. Finally. all symbolic state­
ments that are inserted into or deleted
from the source program deck are listed
with a notation that they were inserted.
replaced. or deleted.

~gnetic Tape Operations

When magnetic tape data sets are being
used in an updating operation, the old
source program data set on SYS002 and the
updated source program data set on SYS003
are not rewound. At the end of each
updating job step., a tape mark is written
on the SYS003 output data set and the data
set is repositioned to a point just preced­
ing this tape mark. A subsequent updating
writes over·this mark. In this way. an
updated program data set created in mUlti­
ple job steps contains only one tape mark.

When updating is completed. these units
can be rewound with the job control state­
ments REWIND and/or UNLOAD.

One of six update parameters can be
specified in an EXEC statement. The
parameters are ASSEMBLE for an assembly
with no updating: UPDASMB1, UPDASMB2, and

UPDASMB3 for updating and assembling; and
UPDATEl and UPDATE2 for updating with no
assembling. If none of these is specified,
ASSEMBLE is assumed.

The update parameters may be used to
reserialize a program deck even when no
other editing is wanted.

Table 6 illustrates the symbolic units
that are used for each parameter .•

Individually, the parameters are as fol­
lows:

ASSEMBLE
---This parameter is used for a regular

assembly. No updating is performed.
The source program data set must be on
SYSIPT. This parameter is assumed
when none of the other update and
assemble parameters is specified.

UPDASMBl
An updating operation is performed
with an old source program data set on
SYS002 and an edit data set on SYSIPT.
The updated program is assembled. An
updated source program data set is
written on SYS003.

UPDASMB2
input, a

on SYSIPT.
This operation has only one
source program data set
The program is assembled.
the source program data
ized, if requested, 'is
SYS003.

A copy of
set. serial­
written on

UPDASMB3
An updating operation is performed
with an old source program data set on
SYS002 and an edit data set on SYSIPT.
The updated program is assembled. The
only difference between this and the
UPDASMBl operation is that the assem­
bler does not provide a copy of the
updated source program.

UPDATEl
An updating operation is performed
with an old source program data set on
SYS002 and an edit data set on SYSIPT.
An updated source program data set is
written on SYS003. The program is not
assembled.

UPDATE 2
When this parameter is specified, an
input source program data set on
SYSIPT is written on SYS003. The
program is not assembled. This
parameter may be used to copy a pro­
gram data set and to serialize it.

Language Processors 47

Table 6. Update Parameters
r---------------T--------------------T---------------T--------------T-----------------1 \",>/
I I SYSIPT I SYS002 I 1 SYS003 I
I Option I Contains I Contains I Assembly 1 Contains I
~---------------+---------------------+----------------+--------------+-----------------~

ASSEMBLE I Source I (Not used) I Yes (Not used) I
I program I I I
I I I I

UPDASMB! Edit Old Yes New I
data set data set data set I

I
UPDASMB2 Old (Not used) Yes New

data set data set

UPDASMB3 Edit
data set

Old
data set

Yes (Not used)

UPDATE! Old No Edit
data set data set I

I
I

New
data set

UPDATE 2 Old (Not used) No New
data set I I data set _______________ ~ _____________________ ~ ________________ ~ ______________ L_ _______________ _

For example, to update, duplicate, and
assemble a program that is to be linkage
edited later in the same job, the following
EXEC statement could be used:

//NAMEl EXEC ASSEMBLE(LINK,NODECK,UPDASMB1}

Wi th this statement, the original pro-'
gram deck would be read and updated by the
edit statements. An updated source program
deck would be written on SYS003, and an
assembled program module would be written
on SYSOOO. An assembly listing and cross
reference listing would be written on
SYSOPT.

22ace Allocation Parameters

The space allocation parameters enable a
programmer to specify priorities for allo­
cation of main storage space during an
assembly.

In a sense, there are three contenders
for available main storage space during an
assembly,. They are:

1,. The update program.

2. The assembler·s symbol table.

3. Input/output buffers.

Each of these requires a certain minimum
amount of main storage space. If the
requirement for anyone of them can be
reduced or eliminated, the others can use
the additional space advantageously. If,
for example, no updating is required during

48

the assembly, space
program can be used to
the symbol table or to
input/output buffers.

used by the update
increase the size of
establish additional

UPDATE PROGRAM: The update
loaded into main storage as
assembler program when one of
parameters is specified in an
.ment.

program is
part of the
the update
EXEC state-

Main storage space is required for the
update program itself and for the addition­
al data sets that are used in an updating
operation. In addition to an input/output
buffer, the program requires an 88 byte
parameter list for each data set.

When no updating is requested, this
space is made available for other uses.

INPUT/OUTPUT BUFFERS: At least one
input/output buffer is established for each
data set involved in an updating and/or
assembly process. The size of a buffer
varies according to the block sizes in the
data set.

When additional space is available, it
is used to establish extra buffers for the
data sets. This generally reduces the time
required for an assembly.

SYMBOL TABLE: The symbol table contains
entries for the symbols and literals in the
source program.

One entry is required for each unique
normal symbol. each unique variable symbol
that appears as the name of a SETA instruc­
tion, and each unique literal of eight
characters or less. For longer literals,

If""
\~

(

an additional entry is required for each
additional eight characters or portion
thereof. (The length of a l'iteral includes
the = character at its beginning and the
closing quote mark or right parenthesis.)

In addition. the assembler uses two
entries for its location counter, one for a
dummy variable symbol, and one for each
unnamed START, CSECT, or COM in the pro­
gram.

The amount of s~ace available for the
symbol table var1es according to the
requirements for updating., parameter lists"
and input/output buffers. In some cases,
the assembler also takes space from the
cross reference table, so that this table
may appear truncated in listings for pro­
grams with an exceptionally large number of
symbols and literals. If the assembler
runs out of space" it continues, but the
output module is unacceptable for linkage
editing and execution.

PARAMETERS: The following three EXEC
statement parameters enable a programmer to
indicate his program's symbol table
requirements. If none of these is speci­
fied, SYMBMIN is assumed.

SYMBMIN
-----When this parameter is specified or

assumed, the assembler assigns double
buffers to all data sets to obtain
optimum assembly speed. storage space
is allocated for buffers and updating.,
if necessary, and the remaining avail­
able space is used for the symbol
table. This parameter is assumed when
none of these three is specified.

SYMBMAX

SYMBn

This parameter is used for programs
with a large number of symnols and
literals. Only one input/output buf­
fer is established for each data set.
If no updating parameters are speci­
fied, this provides the largest possi­
ble amount of space for the symbol
table.

In this parameter, n is the number of
entries in the symbol table. It can­
not exceed 9999. The programmer esti­
mates the requirements" and the system
reserves enough space for a symbol
table with the specified number of
entries. As much of the remaining
space as possible is used for
input/output buffers.

For internal efficiency, n should be
five to ten per cent larger than the
number of symbol table entries whenev­
er possible. If n is so large that
there is not enough room for essential

buffers, it is disregarded and SYMBMAX
is assumed.

CONTROL STATENENT EXAMPLE

The task in this example is to update a
source program and assemble it. The assem­
bled module is to be linkage edited in the
next job step,.

The old source
tape volume WES132.
are in punched cards.

//PROGl JOB

program is on magnetic
The edit statements

//SYS002 ACCESS ORIGINAL,2400='WES132'

//SYS003 ALLOC NEWSORCE,2400=FRESH

//MODl EXEC 1\SSEMBLE(LINK,NODECK,UPDASNBl)

(When SYSRDR and SYSIPT are assigned to the
same data set, the edit statements immedi­
ately follow the EXEC statements. The edit
statements are followed by a /* end of data
statement and the control statements for
the next job step.)

PROGl is the name of the job.

ORIGINAL is the name of the old source
program data set.

2400="WES132' identifies a magnetic tape
with the identification number WESl32.

NEWSORCE .is the name being assigned to
the updated source data set.

2400=FRESH indicates that the new source
data set should be written on any empty
magnetic tape volume ..

This example assumes that the standard
assignment of SYSIPT is to the card reader
containing the edit statements. It further
assumes that the installation does not use
data set labels on magnetic tapes. Other­
wise. a LABEL statement might be required
for the NEWSORCE data set.

It produces an updated program data set
on SYS003, an assembled module on SYSOOO.
and a listing and cross reference directory
on SYSOPT.

SUPERVISOR CALLS

A supervisor call is a request by a
problem program for the system to provide a
specific service. The Model 44 Programming

Language Processors 49

System provides several different types of
services that are available for use by a
problem program in this manner.

Assembler language programmers call
these functions directly. They are sup­
plied by the compiler for FORTRAN program­
mers.

The system's routines will. for example.
perform all input/output services for a
program. They may be used to load other
programs or program segments from the phase
library. store information in the user
communication region, or provide special
program routines that are entered only when
and if certain conditions develop.

The program requests one of these servi­
ces by executing a superv~sor call (SVC)
instruction. The assembler instruction SVC
4 causes the system to read a block of data
from an input data set. For program clari­
ty. this instruction may be written

SVC READ

if. elsewhere in the program, there is the
assembler instruction

READ EQU 4

The examples in this publication follow
this format,.

Execution of an SVC instruction causes
an interruption. The system stops execut­
ing the problem program and branches to a
supervisor routine that examines the SVC
operand to determine which service is being
requested. It then branches again to one
of its specialized routines designed to
provide the requested service.

The system retains control until the
request is satisfied, except for
input/output operations. In the latter
case. control returns to the problem pro­
gram" unless the program . has specified
otherwise, so that it can continue process­
ing while the input/output operation is in
progress. The system automatically regains
control when an input/output interruption
needs to be processed.

The program, in a sense, never knows
that 'it was interrupted. It picks up
exactly where it left off when the inter­
ruption occurred, except where specified
otherwise in the discussions of the indivi­
dual supervisor calls elsewhere in this
publication. These discussions specify the
information the program must provide to
enable the system to satisfy the request
and they note the changes that are made in
the contents of the general registers and
in main storage as a result.

50

The names of the supervisor calls, such
as READ, UPSAND, STXITC" are used for ('"
reference only. They have no special mean- \"." .. /
ing to the assembler or the system. They
have meaning only when equated to a numeric
value and used in a supervisor call, as
indicated previously.

FORTRAN COMPILER

The following parameters may be speci­
fied in the parameter list field of an EXEC
job control statement initiating a FORTRAN
compilation job step. They are similar to
the output option parameters that can be
specified by an assembler language program­
mer., but in some cases the default options
differ.

In the following list, the default
options are underlined. The system assumes
these default options apply when no parame­
ter for the function is specified.

Parameters may be written in any order.
They are separated by commas.

DECK
NODECK

This option is used to have a copy of
the compiler output punched into
cards.

When DECK is specified, compiler out­
put is written in card format on
symbolic unit SYSPCH. This unit may
be assigned to a card punch or magnet­
ic tape data set. This data set may
be used subsequently as input for the
linkage editor.

If neither DECK nor NODECK is speci­
fied, NODECK is assumed.

SOURCE
NOSOURCE

This option may be used to obtain or
suppress a listing of the source pro­
gram.

If SOURCE is specified, the compiler
writes a listing of the source program
on SYSOPT.

If NOSOURCE is given, no source lan­
guage listing is provided.

If neither is specified, SOURCE is
assumed.

LINK
NOLINK

This option indicates whether the pro­
gram is to be linkage edited later in
the same job.

(

(

..

All programs must be linkage edited
before they can be executed. When
LINK is specified, the compiler writes
its output module in system data set
SDSOOO, where it is available as input
for the linkage editor proqram in a
subsequent job step.

If neither LINK nor NOLINK is used.
LINK is assumed.

If both LINK and SOURCE are specified.
explicitly or by default. the
compiler's output module is written on
SYSOOO and a listing of the source
program is written on SYSOPT.

If LINK is specified and the name
field of the EXEC FORTRAN statement is
blank, the linkage editor rejects the
assembled module.

BCD
EBCDIC
-----This option identifies the card code

used in preparing the source program.
program.

MAP

The BCD parameter must be specified
when the BCDIC code has been used.

If neither is specified., EBCDIC is
assumed.

NOMAP
-----This option indicates whether a com­

storage map is wanted. piler

The map lists all variables defined in
the source program. This includes
local and COMMON variables, their
associated attributes., and the rela­
tive locations assigned to referenced
source labels, stored alphameric text,
and the start of constant and tempora­
ry pools.

If MAP is specified, a storage map is
written on SYSOPT. This listing is
suppressed when NOMAP is given.

If neither is specified, NOMAP is
assumed.

For example, the following EXEC state­
ment could be used to initiate a compila­
tion job step for a program that is to be
linkage edited and executed later in the
same job.

//NAME1 EXEC FORTRAN(NODECK)

This statement causes the compiler to
write the compiled output module on SYSOOO
for input to the linkage editor.

In addition, the compiler writes a list­
ing of the source program, any error indi­
cations, and a storage map on SYSOPT.

The compiler assigns the name NAMEl to
the output module. It may be referred to
by this name in linkage editor control
statements.

If the program contains severe errors,
the linkage editor will not accept it.

Language Processors 51

LINKAGE EDITOR

The system's linkage editor program con­
verts assembler and compiler output modules
into a form suitable for loading and execu­
tion. All programs to be executed under
system control must first be processed by
the linkage editor.

A problem program may consist of one
language processor output module. Or it·
may be made up of several modules. includ­
ing some from previously executed jobs.,
that must be combined with new modules. A
module may be independent and self­
contained, or there may be numerous cross­
references between modules and between
control sections within modules.

In processing a problem proqram., the
linkage editor converts input modules into
one or more phases.. A phase is a segment
of machine-language code that is loaded
into main storage by a single FETCH or LOAD
supervisor call. It may contain one or
more of the modules that were input to the
linkage editor. Its size and composition
are determined by the programmer.

More than one phase may be resident in
main storage at a time, and a program may
be designed so that one phase is not loaded
until execution of another phase in the
same program has been completed.

To produce phases, the linkage editor:

1. supplies main storage addresses. It
determines where each module will be
loaded and it replaces the relative
addresses supplied by the language
processors with actual main storage
addresses.

2. Completes linkage. Cross-references
between modules and control sections
are resolved. When. for example.
module A contains an address constant
for an entry point in module B, the
linkage editor determines the main
storage address for the entry point in
B. It then supplies this address as
the value of the address constant in
A.

3. Incorporates module library routines.

52

An assembler-language programmer can
use the linkage editor to incorporate
a routine from the module library into
his program simply by defining the
name of the routine as an EXTRN
symbol in one of his modules. Or he
can specifically instruct the linkage
editor to include such a routine by

naming it in the linkage editor
INCLUDE control statement.. For FOR­
TRAN programmers. the compiler recog­
nizes the external requirement and
produces the necessary coding.

4,. Places output phases in the phase
library. From there" they. can be
loaded for execution or copied onto
magnetic tape or punched cards. They
can be kept indefinitely in this
library or deleted after the next job
step.

Linkage editing is performed as a separ­
ate job step. It might come.. for example.
as the second step 1n an assemble linkage
edit-execute procedure.

The linkage editor program is called and
entered by an EXEC LNKEDT job control
statement. This statement causes the sys­
tem to load and begin executing the linkage
editor program, which starts by reading the
linkage editor control statements discussed
later in this section.

For problem programs requ1r1ng only a
minimum of the linkage editor's services; a
/* end-of-data statement immediately after
the EXEC statement is all that is required.

The rest of this section discusses the
functions of the linkage editor and the
facilities it offers. It contains detailed
information about how to use these facili­
ties to gain greater flexibility in pro­
gramming,.

SOURCES OF INPUT

The linkage editor has four sources of
input:

SDSIPT: The system input data set that
contains the linkage editor control state­
ments. This may also contain modules that
were assembled or compiled in previous jobs
and are not resident in the module library
but must be incorporated into the current
program.

SDSOOO: This system data set contains
modules from two sources. The language
processors' output modules are stored here
if the EXEC statement that initiates the
assembly or compilation job step contains
the LINK parameter. This parameter speci­
fies that the language processor output is

(

..

to be placed in 8D8000 for linkage editing
later in the same job.

The SD8000 data set also contains
modules that are being incorporated into
the problem program through use of linkage
editor MODULE statements. These are
modules that were assembled or compiled in
previous jobs. They are placed in SDSOOO
after being read in from the 8D8IPT data
set.

SDSP8D: This data set contains a directory for-the modules in the 8D8000 data set. In
effect, the contents of 8DSP5D and SD5000
constitute a single directoried data set.
All member names are deleted from this
directory at the end of a job.

§Q§g~~l The SDSREL data set is the module
library. This library contains the FORTRAN
input/output, mathematical and service rou­
tines, dump routines., and any other reloca­
table modules that an installation wishes
to include. These routines are available
for incor~oration into any problem program.

This listing of input sources assumes
that standard system assignments are in
effect. When, for example, the linkage
editor needs a module library routine, it
reads from system unit SY8REL. The linkage
editor has no way of determining whether
SYSREL actually is assigned to data set
SDSREL. Maintaining such assignments or
making substitute assignments is a function
of the installation operator, as described
in the second section of this publication,.

A programmer can assign SYSREL to anoth­
er data set that would serve as the module
library data set for a single job step or
job, but anyone doing this must ensure that
the substitute data set contains all the
routines that will be required by system
programs as well as the problem program,
and that blocking factors are the same.

LINKAGE EDITOR OUTPUT

Input to the linkage editor is in units
of modules. Output is in units of phases.

A phase is that portion of a program
that can be loaded into main storage by a
single FETCH or LOAD supervisor call. The
program specifies in linkage editor control
statements which modules should be included
in a phase. A program may require only one
phase, or it may use several. In practice,
the maximum size of a phase is limited only
by the size of the problem program portion
of main storage. The maximum size that the
linkage editor can produce is 92,160 words
(368,640 bytes.)

The linkage editor provides an overlay
facility for multiphase programs.. Basical­
ly" this permits loading and execution of
one phase, followed by loading of the next
phase into the same area and execution of
it.

More than one phase of a multiphase
program may be present in main storage at
one time. Usually, one phase is designated
as a ROOT phase that will be resident
throughout execution of the entire program.
It can be used to control the loading and
execution of other phases.

output phases from the linkage editor
are stored in the phase library. They are
deleted from this library at the end of the
next job step unless the KEEP parameter was
specified in the EXEC LNKEDT job control
statement.

While in the phase library, phases can
be loaded for execution or, with the
system's utilities routines, copied into
another data set. If the PCHABS utility
statement is used for such copying, phases
are copied in a format suitable for loading
with the absolute loader program or for
return to the phase library by the linkage
editor. (Note that if a programmer changes
the origin of a phase" address constants in
it and in other phases referring to it must
be adjusted for the relocation.)

The phase library is system data set
SDSABS. The linkage editor uses system
unit SYSAB2 to enter phases into this
library. If SYSAB2 is assigned to another
data set, the linkage editor attempts to
use it, but it is successful only if the
other data set is directoried, was format­
ted by use of the ALLOC statement's FMT
parameter, and is set up for a block length
of 720 bytes.

At execution time, any phase or group of
phases in the phase library can be loaded
and executed as part of a single program ..
That is, phases that were linkage edited in
different jobs can be used together as long
as there are no cross references between
them.

For example, a ROOT phase can use the
FETCH supervisor call to load and enter a
second phase that was linkage edited in
another job. This second phase can use
another FETCH supervisor call to load and
enter a third phase. If the third phase
was linkage edited at the same time as the
ROOT phase, it and the ROOT phase may refer
to each other, but neither can refer
directly to anything within the second
phase.

The first phase of a multiphase program
is loaded and entered through use of an

Linkage Editor 53

EXEC job control statement that specifies
the name of the phase when initiating the
execution job step. Ther,eafter, the prob­
lem program controls loading and execution
of phases through its use of FETCH and LOAD
supervisor calls.

CONTROL SECTIONS

A control section is a block of coding
that can be relocated without affecting the
operating logic of the rest of a program.
An assembler language programmer defines a
control section with a CSECT instruction.

Any language processor output module may
contain one or more control sections. Each
of these may contain references to points
in other control sections in the same
language processor output module and to
control sections in other modules. The
language processors supply addresses for
referenced points for all control sections
within each module. The linkaqe editor
must resolve references between different
modules.

The following rules governing the lin­
kage editor's processing of control sec­
tions apply principally to duplication of
control sections. This duplication can
happen with large programs that combine
several modules" especially when some of
the input modules are from the module
library. A basic assumption is that con­
trol sections with the same name are ident­
ical. The linkage editor attempts to con­
serve main storage space by eliminating
unnecessary duplication. At the same time,
it attempts to permit duplication when this
is the programmer's intention.

1. If the name of a control section in a
non-ROOT phase matches the name of a
ROOT phase control section, the con­
trol section in the non-ROOT phase is
ignored. All external references to
the name are treated as referring to
the ROOT phase control section.

2. If two or more control sections in the
same phase have the same name, only
the first is actually incorporated
into the phase. All references to the
name are treated as referrinq to this
control section.

3. If a control section name in a non­
ROOT phase matches the name of a
control section in another non-ROOT
phase, a warning message is written,
but the linkage editor accepts the
duplication. All subsequent refer­
ences to the name, however, are
treated as referring to the one that
was most recently processed.

54

4.

5.

No warning message is written if
the duplication was caused by the
automatic incorporation of a module
library routine. Some of these
modules may be incorporated into sev­
eral different phases to satisfy a
programmer's requirements. Any ref­
erence to such a control section is
resolved to the one in the current
phase. References are resolved to
control sections in previous non-root
phases only when the NOAUTO option has
been specified for the current phase
or for the job step. If searching the
module library does not resolve a
reference, it may be resolved in a
subsequent phase.

control section duplication from
the module library can be avoided by
specifically including frequently used
routines in a ROOT phase. This can be
done with a linkage editor INcr,UDE
statement, as discussed later in this
section.

A control section should not have
same name as an entry point.
exception to this rule is when
names are in the same module and
the same address .•

the
An

both
have

If a control section has the same name
as a COMMON control section, it is
incorporated into the current phase.
All references to the name are treated
as referring to the regular control
section, and no space is reserved for
the COMMON control section.

If the two control sections differ
in length, the amount of space re­
served depends upon which is processed
first. If the regular control section
appears first, the amount of space is
determined solely by its length. If
the COMJI.10N control section appears
first, enough space is reserved for
the larger of the two sections, and a
warning message is written.

Unnamed Control Sections

An unnamed control section is not treat­
ed in the same way as a named control
section. When a module contains one or
more unnamed control sections, they all are
incorporated into the phase. There is no
search for matching names. A blank COMMON
is never resolved ~o this type of entry,
and, since entry points and external refer­
ences are always named, they also are never
resolved to this type of entry.

«

(

..

ENTRY POINTS

An entry point is a named point within a
program module that will be referred to
during execution by another module.

For example, a programmer writing module
A wants to branch to an instruction named
ALPHA in module B. Module A defines ALPHA
as an external symbol and includes an
address constant for it. The other module
defines ALPHA as an entry point. The two
modules are assembled or compiled separate­
ly, so the language processors are unable
to resolve the cross reference. This must
be done by the linkage editor when the
modules are con~ined into a phase. In
practice, it supplies the address of ALPHA
as the value of the address constant in
module A. The program is then able to load
this address into a register and branch to
it.

The following rules apply to the defini­
tion and naming of entry points.

1. An entry point name must not duplicate
another entry point name in the same
program. This does not apply_ howev­
er, when the duplication is caused by
using a module in more than one phase.

2.. An entry point name must not duplicate
a control section name unless both are
in the same module and are assigned to
the same main storage address,.

3. An entry point must not have the sawe
name as a COMMON control section under
any circumstances.

In addition, it is advantageous to have
all entry points in a module library rou­
tine listed as additional names for the
routine in the module library directory.
When this is done, the program needs to
define the entry point as an external
symbol. It is not necessary to list both
the entry point name and the routine name
as external symbols in order to have the
routine incorporated into the phase auto­
matically. The module library routines
supplied by IBM follow this practice.

COMMON

A programmer may use one or more COMMON
control sections to contain material that
must be present in main storage throughout
the execution of his entire program. This
material can then be inserted, referred to,
or retrieved by any phase.

A COMMON control section can be named or
unnamed. Both assembler language and FOR­
TRAN programmers can specify the length of
a COMMON control section and the names and
lengths of fields within it.

Assembler language programmers can
insert data into a COMMON control section
only during execution. This restriction
does not apply to FORTRAN programmers.
They can provide the data for a COMMON
control section with a BLOCK DATA state­
ment. In this case, the block data is
compiled as a separate module. When a
control section within it has the same name
as a COMMON section in another module, the
linkage editor treats references to the
COMMON section as applying to the block
data module.

The same effect can be obtained by
assembler language programmers by defining
a regular control section with the required
data in it. The programmer must ensure
that such a control section is in a phase
that is resident in main storage when
references are made to it.

COMMON control sections are assigned
addresses at the beginning of the problem
program area of main storage. The linkage
editor determines, near the end of the job
step, how much space is required for COMMON
and reserves this amount. Then, in assign­
ing addresses for phase origins, it guards
against overlaying any part of a COMMON
control section. The linkage editor cannot
ensure this protection, however, when the
programmer provides a specific main storage
address or displacement for a phase origin.
(See the discussion of the PHASE statement
later in this section.)

To refer to a COMMON control section, an
assembler language programmer must include
an address constant in his main program for
the name of the COMMON control section. If
CO~10N is unnamed, there must be an address
constant for its first field. The address
that is supplied may then be used as a base
register value for references to COMMON.
The register that is used must be defined
as a base register, with a USING statement,
for the COMMON control section .

This procedure must be followed for each
COMMON control section in an assembler
language program.

The linkage editor observes·the follow­
ing rules in processing COMMON control
sections.

1. If a program defines two or more
COMMON control sections with the same
name, space is reserved for only one.
If different lengths are indicated for
each, the longest length is used.

Linkage Editor 55

2.. If a COMMON control section and a
regular control section have the same
name, they are treated as a single
regular control section.

The resulting control section is
incorporated into the phase in which
the regular control section appears.
If their lengths differ., the linkage
editor's action depends upon which is
processed first.

If the regular control section
appears first in the input stream, its
length is used. If the COMMON section
appears first, enough space is re­
served for whichever is longer, and a
warning message is written if their
lengths differ. This applies even
when the regular control section is
brought in from the module library.

3. A COMMON control section must not have
the same name as an entry pOint in the
same program.

4.. Any external references in the program
that match names of COMMON entries are
resolved to the COMMON entry.

EXTERNAL REFERENCES

Cross references between input modules
are said to be external. Any module may
contain a reference to an entry point or
control section name in another module.
The symbols referred to must be defined as
external in the module making the reference
and as entry points in the module contain­
ing the named items. It is not necessary
to define a control section name as an
entry point.

In assembler language, an external ref­
erence might appear as follows:

EXTRN THETA

L 12,ATHETA

ATHETA DC A (THETA)

where THETA is an entry point in another
module, and ATHETA is an address constant.
The linkage editor determines the main
storage address of THETA and supplies it as
the value of the address constant. During
execution, the program can load this
address into a register and branch to it or
use it as a base address for references to
other points within the other module.

56

(If, for any reason, the programmer
subsequently changes the loading address of
the phase cont~ining THETA, he must also
change the value of any address constants
referring to points within that phase.)

The linkage editor resolves external
references as they appear in the input
stream. In doing so, it considers the
phases in which the reference and the
matching name appear.

In general, if the linkage editor
encounters a reference to a control section
or entry point in the current phase or a
ROOT phase, it can be resolved immediately.
For references to other parts of the pro­
gram, it must determine whether the NO~UTO

option has been specified.

The NOAUTO option suppresses the linkage
editor's automatic search of the module
library. This search is done at the end of
any phase in which there are external
references that haven't been resolved. If
the module library directory contains a
name that matches the reference, the module
library routine is incorporated into the
phase and the reference is resolved to it.
This facility enables a programmer to bring
module library routines into his program
without having to provide INCLUDE state­
ments for each one that is wanted.

The linkage editor also assumes that a
programmer may want to use the same module
library routine in more than one phase.
Therefore, unless the NOAUTO option has
been specified, the linkage editor never
resolves an external reference to a name in
a previous non-ROOT phase.

The NOAUTO option may be specified in an
EXEC LNKEDT statement for the entire job
step or in a PHASE statement for the
processing of a single phase.

In summary, the linkage editor goes
through the following process when it
encounters an external reference:

1. It examines its list of control sec­
tion and entry point names. If it
finds a matching name in the current
or ROOT phase, the reference is
resolved. If it finds a matching name
in a previous non-ROOT phase, the
reference is resolved only if the
NOAUTO option is in effect for the
current phase.

If it finds two or more matching
names, the reference is resolved to
the one most recently processed.
(This could happen when a module is
incl uded. in more than one phase.)

---_._------_._-- -----

..

i'f"
'~.

(

(

If no acceptable matching name
found, it continues processing
current phase.

is
the

2. If a matching name is found subse­
quently in the current phase, the
external reference is resolved to it.

3. If the reference is not resolved by
the end of the phase and the NOAUTO
option has not been specifi ed" the
linkage editor examines the module
library directory. If the reference
matches the name or alternate name of
any module library routine, this rou­
tine is incorporated into the phase
and the reference is resolved to it.

This procedure continues until all
unresolved references have been
checked against the module library
directory.

Finally, a control section or
point in a subsequent phase
resolve the reference.

entry
may

If any address constants remain
unresolved at the end of the iob step.
the linkage editor issues an error
severity message such that the program
cannot be executed. A list of unre­
solved symbols is written if the MAP
option has been specified in the EXEC
LNKEDT statement. A message is writ­
ten indicating the number of unre­
solved address constants regardless of
whether MAP is specified.

EXEC STATEMENT PARAMETERS

Certain linkage editor parameters may be
specified in the optional parameter list
field of the EXEC LNKEDT job control state­
ment. These are KEEP, NOKEEP, MAP, NOMAP,
and NOAUTO.

KEEP
NOKEEP

MAP
NOMAP

The KEEP keyword is used to indicate
that the output of the linkaqe editor
is to be kept permanently in the phase
library. The NOKEEP keyword indicates
that the linkage editor output may be
eliminated from the phase library at
the end of the next job step. If
neither keyword is specified, NOKEEP
is assumed.

The MAP keyword indicates that a stor­
age map and certain warning messages
are to be produced at the end of the
job step. NOMAP indicates that the

map and these warning messages are not
needed,. If neither is specified, MAP
is assumed.

For a phase, the map provides the
address of its initial entry point,
the addresses of the first and last
bytes it occupies, and the block num­
ber in the phase library where the
text of the phase starts. The map
provides the name, loading address,
and relocation factor for each control
section and the name and loading
address of each entry point. It also
indicates any entry points that are
not referred to by the program by
placing an * next to the entry name
and lists any unresolved external
references. It prints the name, load
address, and length of any COMMON
control sections., regardless of which
option is in effect.

NOAUTO
The NOAUTO keyword suppresses automat­
ic searching of the module library for
names matching unresolved external
references for the entire linkage
editing job step. When this search is
not suppressed, module names that
match unresolved references are incor­
porated into the program. This search
can be suppressed for a single phase
by use of the NOAUTO option in the
PHASE statement.

CONTROL STATEMENTS

There are four linkage
statements; MODULE, PHASE,
ENTRY.

editor control
INCLUDE, and

These statements provide required infor­
mation for the linkage editor and enable a
program to invoke certain optional facili­
ties. Other options may be exercised by
use of parameters in the EXEC job control
statement that initiates the linkage editor
job step.

A program requiring only the minimum
linkage editing need not use any of these
statements. A /* end of data job control
statement immediately following the EXEC
LNKEDT statement indicates that the program
contains no linkage editor control state­
ments, and only the minimum services are
required. A /* statement can also be
placed after any module statements and
their associated modules with the same
effect.

The linkage editor control statements
are also required if the program is to be
divided into phases.

Linkage Editor 57

The MODQLE statement places language
processor output modules from previous jobs
onto SYSOOO so they. can be incorporated
into the current program.

The PHASE statement defines tne begin­
ning of a phase, assigns it a name l and
indicates where it is to be loaded .•

The INCLUDE
modules or parts
included in the
statement.

statement indicates which
of modules are to be
phase defined bv a PHASE

The ENTRY statement defines the end of
the linkage editor input and may indicate
the initial entry point for execution.

Each of these statements contains an
operation field and an operand field. The
operation field, identifying the statement
type, must be preceded and followed by at
least one blank. No blanks are permitted
in the operand field.

comments may be written in linkage edi­
tor control statements in the same manner
as in job control statements. Thev must be
separated from the last entry of the oper­
and field by at least one blank. and they
cannot extend beyond column 71. No con­
tinuation cards are permitted. The only
job control statement that is permitted is
the /* end-of-data statement. No comments
are allowed in an ENTRY statement that does
not contain an operand field.

MODULE statement

The MODULE statement identifies a module
that was assembled or compiled in a pre­
vious job and is to be incorporated into
the current program.

The statement instructs the linkage edi­
tor to place the module that follows it on
SYSOOO and to make a directory entry for it
on SYSPSD. Once entered, these modules are
treated in control statements and by the
linkage editor in the same manner as
modules created by the language processors
earlier in the job.

MODULE statements and their associated
modules must precede any PHASE" INCLUDE,
and ENTRY statements on the system input
unit, SYSIPT.

The module following a MODULE statement
should contain all the ESD, TXT, RLD, and
END cards (or card images) produced by the
assembler" as well as any REP patch cards
added by the programmer. The formats of
these cards are shown in Appendix B.

58

The
order:
module
and an

cards should
ESD, TXT.

must contain
END card.

be in the following
RLD, REP, and END. A
at least one ESD card

The format of the MODULE statement is:

r---,
I MODULE module name I L ___ J

module name
This field assigns a name to the
module. The name must be one to eight
alphameric characters, the first of
which is alphabetic.

This name is used to refer to the
module in INCLUDE statements.

PHASE Sta tement

The PHASE statement defines the start of
a phase, assigns a name to it, and indi­
cates where it should be loaded. It also
may be used to designate a ROOT phase.

A PHASE statement should be the first
linkage editor control statement when a
program consists entirely of modules assem­
bled earlier in the same job and modules
from the module library. If the program
also includes modules assembled in previous
jobs. a PHASE statement follows these
modules and their associated MODULE state­
ments.

When the first statement after an EXEC
LNKEDT job control statement is a /* end­
of-data statement. the linkage editor
creates a dummy phase. The dummy phase
contains all modules currently resident on
SYSOOO and any module library routines that
are referred to by the program. Its name
is the same as that of the first module in
505000. Loading of such a phase starts at
the first double word-boundary location in
the problem program portion of main stor­
age, or, if the program contains one or
more COMMON control sections, at the first
double-word boundary location after the end
of COMMON.

The format of the PHASE statement is:

r---,
I PHASE name.originf.NOAUTOJ I L ___ J

name
This field specifies the name of the
phase.

(

(

The name must be one to eight alpham­
eric characters, the first of which is
alphabetic.

This name identifies the phase in the
phase library. It is the name used in
an EXEC job control statement or in a
FETCH or LOAD supervisor call to load
the phase into main storage for execu­
tion.

origin
This field indicates where the phase
should be loaded.

A programmer selects one of five pos­
sible entries for this field.

No matter which entry is chosen, load­
ing of a phase always starts at a
location a-ligned on a double-word
boundary. If the program specifies an
origin that is not so aligned, the
linkage editor adjusts the origin to
the next location that is aligned.

The most common origin for tne first
phase of a program is at the first
double-word boundary location in the
problem program area. If, however,
the program includes a COMMON control
section, the origin is adjusted to the
first double-word boundary location
after the end of the COMMON control
section.

When specifying an or~g~n for any
phase, the programmer should ensure
that it is within the problem program
area.

The formats for the possible origin
entries are:

symbol[(phase)] [~relocation]
* [+relocation]
S [+relocationJ
+ dis placement
ROOT

symbol[(phase)][~relocation]

The symbol portion of this field spe­
cifies a symbolic address within the
program. It must be the name of a
phase. control section or entry point
that has already been processed by the
linkage editor.

If the symbol is the name of a phase
and there is a control section or
entry point with the same name, the
address of the last entered name is
used as the origin address.

The (phase) portion of this field is
used when the symbol is the name of a
control section or entry point that

appears in more than one
such cases, this field
name of the proper phase.
name must be enclosed in
as indicated.

phase. In
contains the

The phase
parentheses"

The +relocation portion of this field
is used to indicate a displacement
from the address of the symbol. The
address is either increased or
decreased by the number of bytes spec­
ified in this field. If. for example,
the name cited in the symbol subfield
has been assigned to location 10,,000
and a relocation factor of 100 is
given, loading of the phase will start
at location 10.100 or the first
double-word boundary location thereaf­
ter. The relocation factor may be
expressed as a decimal value of one to
eight digits or as a hexadecimal value
of one to six digits. If hexadecimal.
it must take the form X'hhhhhh' where
hhhhhh represents the field of digits.

When specifying a relocation factor.
the programmer should ensure that the
adjusted address is within the problem
program area.

* [+relocation]
- The * notation indicates that loading

is to start at the next double word
location counter available to the
linkage editor location counter.

This notation might be used
phase that is to be resident
storage at the same time as
viously processed phase.

If this is the first phase
program, loading starts at the
double word boundary location
problem program area (assuming
is no COMMON control section.)

for a
in main
a pre-

in a
first

in the
there

Relocation, if used, is expressed in
the same way as for the
symbol[(phase)] [~relocation] field.

S [+relocation]
- The S notation indicates that ,loading

of the phase is to start at the first
double-word boundary location in the
problem program area.

The effect is the same as using the *
notation for the first phase.

Relocation, if used, is expressed in
the same way as for the
symbol[(phase)][±relocation] field.

+Displacement
This field is used
absolute main storage
loading is to start.

to specify an
address where

Linkage Editor 59

ROOT

This address- is given relative to
location O. It may be expressed as a
hexadecimal value of one to six digits
or as a decimal value of one to eight
digits. If hexadecimal, the field is
written as X'hhhhhh' where:hhhhhh rep­
resents the hexadecimal digits .•

If the address specified is not on a
double-word boundary. loadinq starts
at the next following address that is
properly aligned. This address may be
further adjusted by the linkaqe editor
if the program contains one or more
COMMON control sections. In this
case. it is increased by the length of
the COMMON control sections.

Use of this keyword identifies a phase
as a ROOT phase.

The linkage editor assumes that any
phase identified as ROOT is to be
present in main storage throughout
execution of the entire program. Only
the first phase may be designated as a
ROOT phase.

Loading of a
first double
the problem
there are no

ROOT phase starts at the
word boundary location in

program area (assuming
COMMON control sections.)

If a ROOT phase contains a control
section or entry point name that also
appears in other phases" all refer­
ences to that name are treated as
referring to the control section or
entry point in the root phase.

Unless the NOMAP option is specified
in the EXEC LNKEDT statement, a warn­
ing message is written on SYSLST at
the end of the job step if any phase
has specified an origin that would
overlay any part of a ROOT phase
during execution.

NOAUTO

60

The NOAUTO keyword suppresses automat­
ic searching of the module library for
names that match unresolved external
references appearing in the phase.

suppression of the automatic module
library search applies only to the
current phase. It can be suppressed
for the entire job step by specifying
the NOAUTO option in the EXEC LNKEDT
job control statement.

Use of this option does not affect the
incorporation of any library modules
specifically cited in an INCLUDE
statement.

INCLUD~ Statement

The INCLUDE statement identifies a
module that is to be included in a particu­
lar phase.

This
indicate
from a
phase.

statement also may be used to
that only certain control sections
module are to be included in the

This statement follows a PHASE state­
ment. It names the modules from the module
library and SYSOOO that are to be combined
in the phase. Modules that are put on
SYSOOO by MODULE statements are treated in
the same way as those put on SYSOOO by the
assembler or compiler earlier in the job.

The statement has three operands, the
first two of which are required. The first
gives the name of the module. and the
second identifies its location. The third
may be used to indicate which control
sections should be included.

The format of the INCLUDE statement is:

r---,
I INCLUDE module name, {R}L, (csname .••••)] I
I L I L ___ J

module name

R

L

This field specifies the name of the
module. For modules assembled earlier
in the job, this name is the same as
the name specified in the stepname
field of the EXEC ASSEMBLE (LINK) job
control statement. For modules resi­
dent in the module library, this name
is the same as appears in the library
directory. For modules placed on
SYSOOO with MODULE statements, this
name is the name cited in the operand
field of the MODULE statement.

The R notation indicates that the
module is located in the module
library. With it, a module can be
incorporated regardless of whether the
NOAUTO option is in effect.

The L notation indicates that the
module is on SYSOOO.

csname
This field specifies the names of up
to five control sections within the
module that are to be included in the
phase.

Control sections are incorporated into
a phase in the same order as they

«
appear in a module. The order in
which they are listed in this state­
ment is not significant. If control
sections must be incorporated in a
specific order" they should be cited
in separate INCLUDE statements.

Portions of the module that are not
included in this list may be cited in
INCLUDE statements later in the same
phase" in other phases, or disregard­
ed. Usually, a control section that
is used by more than one phase would
be included in a ROOT phase.

If more than one name is specified"
they are separated by commas. The
entire field is enclosed in parenthe­
ses.

The ENTRY statement identifies the end
of a program and may be used to specify the
program's initial entry point.

This should be the last control state­
ment processed by the linkage editor. The
linkage editor, at this point, should have
all the control information and input
modules that it needs to create all the
program's output phases.

This statement may be omitted if there
is a /* end-of-data statement after the
last linkage editor control statement. The
system assumes the initial entry point is
the first location in the first phase or
the first transfer address, if any. on an
END card in the first phase.

The format of the ENTRY statement is:

r---l I ENTRY [name] I L ___ J

name
This field identifies the program's
initial entry point,. When the system
is ready to pass control to the prob­
lem program for execution in a subse­
quent job step, it enters the program
at this point.

Any symbol in this field must have
been defined in the program as a
control section name or entry point.
If the name appears in more than one
phase, it is assumed to refer to the
most recently processed phase.

If this field is omitted, the initial
entry pOint is assumed to be the first
transfer point specified in an END
statement of the ~odules in the first
phase. If control sections within the
first module have been split between
two or more phases, and the END state­
ment refers to an entry point in
another phase, the system assigns the
transfer on the END card to the phase
in which the control section contain­
ing the entry point is placed. Other
phases are assigned their origin as
the transfer address.

Otherwise, the initial entry point is
assumed to be the first location in
the first phase.

Linkage Editor Examples

Example 1: Single module. single phase.

The purpose is to assemble. linkage
edit, and execute a single, self-contained
module.

//SAMPLE1 JOB DUMP,137596

//PROG1 EXEC ASSEMBLE(LINK)

(Source program statements go here if
SYSIPT is assigned to same data set as
SYSRDR.)

/*

// EXEC LNKEDT

(Additional job control statements, such as
ACCESS, ALLOC, and LABEL. may go here if
required for the problem program.)

// EXEC

/&

Linkage Editor 61

Example 2: Single module, multiple phase.

The purpose is to assemble and linkage
edit a single module that contains three
control sections, named CSECTA, CSECTB, and
CSECTC. The module is to be divided into
three phases for execution. The first
phase is present throughout execution. The
third phase overlays the second.

//SAMPLE2 JOB DUMP,137596

//PROG2 EXEC ASSEMBLE(LINK)

(Source program statements if SYSIPT
assigned to same data set as SYSRDR.)

/*

// EXEC LNKEDT

PHASE PH1,S

INCLUDE PROG2,L.(CSECTA)

PHASE PH2" *
INCLUDE PROG2, L, (CSECTB)

PHASE PH3.,PH2

INCLUDE PROG2,L,(CSECTC)

ENTRY

{Additional
needed.>

// EXEC

/&

job control statements, if

~~ample 3: Multiple module, single phase.

The purpose is to combine two previously
assembled modules for execution as a single
phase. Execution is to start with a con­
trol section named CSECTD.

62

//SAMPLE3 JOB DUMP,137596

// EXEC LNKEDT

MODULE PROG3

(Assembled module statements)

MODULE PROG4

(Assembled module statements)

PHASE PROGX,S,NOAUTO

INCLUDE PROG3,L

INCLUDE PROG4,L

ENTRY CSECTD

(Additional
needed.)

job control statements, if

// EXEC

/&

Example 4: Multiple module, multiple
phase.

The purpose is to combine four modules
containing several control sections into a
three phase program. Two modules have not
been assembled. One was assembled pre­
viously, and the other is in the module
library. They are as follows:

Control
Module Sections status
LIBMOD LM1, LM2 Module library

NEWA A, Al, A2 To be assembled

NEWB Bl, E2 To be assembled

OLDMOD OLM1, OLM2 Previously assembled

(

These modules and control sections are
to be arranged in phases, as follows:

Phase Contents Origin PHI-- A" AL, LIBMOD After supervisor

PH2 OLM2, A2" Bl After PHi

PH3 OLM1,. B2 After PHi

sample statements are as follows:

//SAMPLE~ JOB DUMP.137596

//NEWA EXEC ASSEMBLE(LINK)

(Source statements for module NEWA)

)/NEWB EXEC ASSEMBLE(LINK)

(Source statements for module NEWB)

/*

// EXEC LNKEDT

MODULE OLDMOn

(Assembled statements for module OLDMOD)

/*

PHASE PHi, ROOT

INCLUDE NEWA .• L, (A, Ai)

INCLUDE LIB~OD., R

PHASE PH2,*

INCLUDE OLDMOD,L, (OLM2)

INCLUDE NEWA, L, (A2)

INCLUDE NEWB,L,(Bl)

PHASE PH3,PH2

INCLUDE OLDMOD.L., (OLM1)

INCLUDE NEWB.L,(B2)

ENTRY

// EXEC

/&

Linkage Editor 63

!NPUT/OUTPUT

There are two levels of input/output
operations. The first is the read/write
level in which a problem program invokes
system routines to perform all input/output
operations. The system sets up the needed
instructions, executes the operation, and
applies standard interruption analysis and
error recovery techniques. This level pro­
vides device independence in that the same
problem program coding is used regardless
of whether the device is a magnetic tape
unit., direct access storage device, card
read/punch" or printer.

The second level is the execute channel
program (EXCP) level in which the problem
program provides its own input/output rou­
tines. The EXCP level can be used with
devices not supported by the system or to

Table 7. Input/Output Supervisor Calls

manipulate devices in a manner not provided
by the read/write level routines. Device
routines written and tested at the EXCP
level may subsequently be incorporated into
the read/write level through reassembly of
the supervisor.

Both levels may be used within a single
program.

This publication deals in detail with
the read/write functions. The EXCP level
is discussed in the publication IBM
System/360, Model 44 Programming system,
Systems Programmers Guide, Form C28-6814.

A summary of the input/output supervisor
calls appears in Table 7.

r---------T--------T--,
I Mnemonic I Code I Description . I
r---------t--------t--1
I EXCP svc 0 EXCP (Execute Channel Program) is used by programs that provide I
I their own input/output routines. I
I I
I WAIT SVC 1 WAIT is used to delay further execution of a program until an EXCPI
I operation has been completed. I
I I
I OPEN SVC 2 OPEN is used for tape label processing and repositioning of datal
I sets before the data sets are used in a program. I
I I
I CLOSE SVC 3 CLOSE is used for label processing of data sets after they have I
I been used in a program~
I
I READ ISVC 4 READ is used to transmit a block of data from an input data set

an area of main storage.
to

I
I
I WRITE SVC 5 WRITE is used to transmit a block of data from an area of main

storage to an output data set. I
I

CHECK SVC 6

NOTE SVC 7

CHECK is used to delay further execution
input/output operation, other than
been completed.

of a program until an
one initiated by EXCP, has

NOTE is used to determine the current position of a data set.
I

POINT SVC 8 POINT is used to reposition a data set. I
I

WEF SVC 9 WEF (Write End-of-File mark) is used to write an end-of-file mark I
I in an output data set on magnetic tape. I
I I

REWIND ISVC 10 REWIND is used to repOSition a magnetic tape to its load point. I
I I

I UNLOAD \SVC 11 UNLOAD is used to rewind and unload a magnetic tape volume. I L _________ .L ________ .1. __ J /"f"

~

64

(

READ/WRITE OPERATIONS

The read/~rite level supervisor calls
are READ, WRITE, NOTE, POINT, CHECK, WEF,
REWIND, and UNLOAD. A program requiring an
input/output operation issues one of thes,e
supervisor calls and provides certain
information in parameters and control
blocks so that system routines can execute
the operation.

The
blocks.

system uses three types of control
They are:

• Request control blocks, which contain
general reference information relevant
to an individual input/output request.

• File control blocks, which contain
information pertaining to a particular
data set and the volume in which it
resides.

• Unit control blocks,
information about a
output device.

which
specific

contain
input/

The formats for these blocks are shown
in Appendix A. A problem program at the
read/write level may refer to the informa­
tion in any of them, but the request
control block is the only one that it must
define. The file and unit control blocks
are in the supervisor portion of main
storage.

The problem program defines a 40-byte
request control block for each data set
referred to by its input/output requests.
The program also must provide one item of
information within the block, the SYSUNI
index value for the system unit being used
in the operation. This value can be
obtained from Table 8. The program fills
the rest of the block with hexadecimal
zeros.. The system obtains all other infor­
mation required for the block from various
sources and handles the block's remaining
construction and maintenance.

One of the parameters accompanying each
input/output request in a program is the
address of a request control block. The
system then uses the information in this
and other blocks to prepare channel com­
mands. schedule and execute the requested
operation, analyze the results for errors
or abnormal conditions, such as end of
file, and post a return code so the program
can determine how the operation turned out.

Table 8. Symbolic Unit (SYSUNI) Index
Values

r------------T---------------T------------,
I Symbolic 1 Hexadecimal I Decimal I
I Unit I Code I Code I
~------------+---------------+------------~

I
I
I

SYSABl I 01 1 I
I I

SYSAB2 1 02 2 I
1 I

SYSREL I 03 3 I
I I

SYSLOG I 04 4 I
I I

SYSRDR I 05 5

SYSIPT 06 6

SYSLST 07 7

SYSOPT 08 8

SYSPCH 09 9

SYSPSD OA 10

SYSDMY OB 11

SYSUAS OC 12

r 13

OE 111

OF 15

reserved

SYSOOO 10 16

SYSOOl 11 17

SYS002 12 18

SYS009 19 25

SYS010 1A 26

I SYS015 1F 31
I
I SYS016 20 32
I
I SYS017 21 33
I
I
I
I SYS200 08 216 L ____________ ~ _______________ ~ ____________ J

A return code is saved in the request
control block until the next time the
program requests an input/output operation
using the same block.. The system examines
the code to see how the previous operation
terminated. If the termination was abnor­
mal. the system places the code in register

Input/Output 65

15. resets the code area of the request
control block to 00" and returns control to
the problem program. The new request is
ignored,. but since the control block' s
return code area has been cleared, the
request may be reissued.

It is up to the problem program to
decide what to do about the abnormal termi­
nation. Such conditions are noted when the
system detects a permanent transmission
error" an end-of-file or end-of-extent
indication. or an apparently valid request
that could not be executed, such as READ
for a printer. Table 9 contains a list of
the possible return codes and their mean­
ings.

Table 9,. Input/output Return Codes
r-----------T-----------------------------,
I Hexadecimal I I
, Code ,Description ,
~-----------+-----------------------------~

00 I Normal return I
, I

O~ IOperation dependent: I
I 'I
,1. An end-of-file mark was I
I detected during the lastl
, READ or POINT operation.,
I I

2. An end-of-extent condi-,
tion was detected during I
the last WRITE opera-I
tion. The data set isl
pOSitioned just prior tol
the block that causes I
the overwri te. The I
WRITE request has not I
been fulfilled. I

I
08 A permanent transmission,

error occurred during the I
last operation. The datal
set is pOSitioned just past I
the block containing thel
error. ,

I
I OC The last operation was termi-I
, nated without transmitting I
I all the data. The pOsition I
, of the data set is not I
I known. I
I I
I 10 The last operation was termi-I
I nated because of an invalid I
I request, such as a READ'
I request for a printer. I
I I
,14 The last operation was termi-I
, nated with an incorrect,
, length condition. Thisl
I applies only to a READ orl

, I WRITE that does not invoke I
I incorrect length suppres-I
I sion. I L ___________ ~ _____________________________ J

66

A program should not attempt to deter­
mine how an operation turned out by looking
into the control block to examine the code.
The operation may still be in progress, and
the code would not have been set. A
program that must know how an operation
turned out before it resumes processing can
invoke the CHECK function.

When CHECK is invoked, control does not
return to the problem program until the
operation has been completed and a return
code is posted in register 15. The control
block return code area is cleared, and the
next request is accepted regardless of
whether the previous operation terminated
abnormally.

The following text explains which con­
siderations are necessary when a program
makes an input/output request.

When the supervisor call is issued, the
system examines register 1 for the address
of a parameter list. This list contains
the address ofa request control block and
it may also contain, depending on the type
of operation, the address of an
input/output buffer and the address of a
count of the number of bytes to be trans­
mitted.

The system examines the request control
block to determine how the last operation
associated with it terminated.

• If the last operation terminated nor­
mally (or was followed by a CHECK), the
system proceeds with processing the new
request.

• If the last operation still is in
progress, the system waits until it
terminates and has been analyzed before
proceeding with the new request.

• If the last operation terminated abnor­
mally (and this condition was not
detected by a CHECK), the new request
is ignored. The system places the
abnormal termination code in register
15, resets the control block return
code area to 00, and returns control to
the problem program. It is up to the
problem program to act on the abnormal
termination condition and determine
whether the new request should be reis­
sued.

An abnormal condition code in one
request control block does not affect oper­
ations using other request control blocks.
The system treats each block independently,
even if two or more blocks refer to the
same data set.

If the last operation terminated normal­
ly or the request is reissued, the system

{

determines whether the required channel and
device facilities are available. It also
examines the new request and its parameters
for errors.

If the required facilities are free, the
system continues processing the request.
If they are in use" the system queues the
new request and returns control to the
problem program. The system will automat­
ically resume processing the request when
the facilities are available for it.

If the system discovers errors in the
parameters of the new request, it posts an
error code in the request control block and
returns to the problem program. This code
is detected by the CHECK or by the next
request using the same block.

When the required facilities are free
and the request has reached the top of the
queue., the system constructs the required
channel program and starts the operation.
This channel queue method is designed to
permit maximum use of all available channel
facilities while providing the greatest
amount of overlapped processing .•

Termination of an operation causes an
input/output interruption that is analyzed
by the system. Standard error recovery
methods are applied, when necessary, and a
return code is posted in the request con­
trol block.

CONTROL CHARACTERS

A programmer may specify
statement for a data set
byte of each record block
control character.

in the LABEL
that the first
is an output

The LABEL statement parameter CTLASA
indicates that the control byte is for
physical manipUlation of printers or unit
record devices. This permits a programmer
to specify his own carriage spacing or
stacker selection requirements. The con­
trol byte must contain the bit configu­
ration for the American standards Associa­
tion code for the desired operation.. The
characters .that produce the proper bit
configuration are shown in Table 10.

The LABEL statement parameter CTLCHR
indicates that the control character is not
necessarily an ASA character but is one
recognized by System/360. The programming
system can use this character when writing
unit record and printer data sets.

A control character is treated as data
when blocks containing it are written on a
device to which it does not apply. At such

times, specifying the CTLASA or CTLCHR
parameter causes the system to note the
presence of control characters in the data
set's label. Even though this is noted in
a label, the parameter must be specified
again if the data set is subsequently
written on a printer or unit record device
and the control character is to be used.

Table 10. ASA Codes
r---------~-------------------------------,
I Code I Definition I
~---------+-------------------------------i
IPrinters I
~---------i
Ib (blank)
I
10

+

1

2

3

4

5

6

7

8

9

A

IB
I
IC
~--------i
I Unit I
I Record I
~---------~
IV I
I I

Space one line before printing

Space two lines before
ing

Space three lines
printing

Suppress space before

Skip to channel 1

Skip to channel 2

Skip to channel 3

Skip to channel 4

Skip to channel 5

Skip to channel 6

Skip to channel 7

Skip to channel 8

Skip to channel 9

Skip to channel 10

Skip to channel 11

Skip to channel 12

Select card pocket 1

print-

before

printing

I
I
I
I
I
I
I
I
I
I
I
I
I

IW I Select card pocket 2 I L _________ ~ _______________________________ J

BLOCKING

A program must handle its own buffering,
blocking, and unblocking. All blocks with­
in a data set must be the same length. The
system's read/write routines transmit one
block at a time, although a program, when

Input/Output 67

reading, may elect to have only a partial
block put into its buffers. These capabil­
ities are covered in more detail in the
discussions of each individual supervisor
call.

Programs using a 2315 Disk cartridge
obtain greatest efficiency by writing
blocks that are either one, two" four, or
eight sectors in length. Calculations of
block sizes also should note that the
system uses the first five bytes of each
sector, when blocks are one sector or less
in length, for the addresses of the track
and any alternate track. When blocks are
more than one sector long, these five-byte
address fields are written only in the
first sector for the block.

ATTENTION INTERRUPTIONS

An attention interruption occurs when
the operator presses the request key on the

68

Console Printer Keyboard. This attention
condition is recognized immediately. and
the system executes any input/output opera­
tion that it requires. The interruption is
processed without destroying any problem
program information.

When an attention interruption is recog­
nized., the system examines word 2 of the
appropriate unit control block for the
address of a special attention input/output
block permanently resident in main storage.
This address is moved to word 3 of the unit
control block, and the system branches to
the device routine address given in the
attention input/output block to read the
message typed on the keyboard.

I
'"

(

LABEL PROCESSING SUPERVISOR CALLS

The OPEN and CLOSE supervisor calls are
used to prepare data sets for processing
and to ensure their proper disposition when
processing is completed.

All direct access data sets must be
labeled.. Unit record data sets do not have
labels., but OPEN and CLOSE can be used with
them for purposes other than label process­
ing.

The programming system. as distributed
by IBM, assumes that magnetic tapes will be
unlabeled. They will not contain volume or
data set header and trailer labels. An
installation can modify the system supervi­
sor, however. to get full label processing
of tapes. The actions of OPEN and CLOSE on
tapes depends on which standard the instal­
lation has adopted. This is discussed in
detail in this section.

It is not necessary to open or close
system data sets" such as SDSIPT or SDSREL"
as long as standard system unit assignments
are in effect. This function is handled by
the system.

The system's language processors., link­
age editor, and utilities programs open and
close any data sets they use on symbolic
units SYSOOO and up. system unit data sets
are opened and closed by job control.

The system also attempts to close any
problem program output data sets on symbol­
ic units SYSOOO and higher that have not
been closed at the end of a job. This is
done before the system resets all system
units to their standard assignments, if any
have been altered by the program.

Open and close must be used when adding
new members to directoried data sets and
when increasing the amount of data in any
disk data set if the new material is to be
preserved after the end of the job. This
is because close causes the system to
update its block count information and,
when applicable, make directory entries for
new members. If this record keeping is not
done, a programmer is unable to refer to
the new material in future jobs. Director­
ied data set members are opened and closed
in the same manner as data sets.

The system routines for executing OPEN
and CLOSE are present in main storage only
when needed. They are loaded each time an
OPEN or CLOSE supervisor call is issued.
Processing time can be saved by using the
system's ability to open or close more than
one data set with a single supervisor call.

The applicable codes are:

OPEN - SVC 2

CLOSE - SVC 3

OPEN - SVC 2

The OPEN supervisor call is used to
reposition direct access, unit record, and
magnetic tape data sets and, when applica­
ble, verify or create magnetic tape labels.

Use of OPEN also ensures that a data set
is closed at the end of the job. If the
program does not close it, the closing is
handled by the job control processor.

OPEN'S actions and use vary according to
the type of data set, as follows:

Direct access data sets. The system
creates or verifies direct access volume
and data set labels when it processes ALLOC
and ACCESS statements. An OPEN supervisor
call for a direct access data set does not
involve any label processing, but it can be
used to repostion a data set.

A data set that is to be preserved after
the end of the job must be opened and
closed if new material is added to it.
closing causes the job control processor to
update its block count information for the
data set. If this count is not updated, a
programmer cannot refer to the new blocks
in future jobs.

A direct access data set can be in one
of two positions when the system first
turns control over to the problem program.
It can be positioned just prior to the
first data block of the data set or data
set member, or it can be positioned just
after its last block of data. This second
position is obtained by specifying the EXT
parameter in an ACCESB statement.

A directoried data set is pOSitioned
just prior to the first block of the
desired member. The EXT parameter does not
apply.

If., however, the data set was opened for
input, used, and closed without reposition­
ing earlier in the job, it may be posi­
tioned anywhere. The repositioning request
is made by a code in the supervisor call's
parameters.

If a direct access data set is being
opened for the first time in a job, the .EXT
parameter in an ACCESS statement overrides
any request for repositioning,. "The data
set remains positioned after its last data
block.

Input/output 69

If repositioning is not requested, the
data set is not disturbed during execution
of the supervisor call.

Unit record data sets.
processing is involved" but
or printer data set can
repositioning.

Again, no label
a unit record

be opened for

A request for repositioning causes the
block count field of the data set's file
control block to be reset to zero. The
block count is a record of the number of
blocks that have been read or written by
the program.

Magnetic tape data sets. The first con­
sideration here is whether the installation
standard is to use volume and data set
labels on tapes.

In an unlabeled shop, the system treats
all tapes as unlabeled, regardless of
whether they actually do contain labels. A
LABEL statement ~an be used to provide
information for a data set's file control
block, but there is no label processing.

Use of OPEN ensures that
volume is mounted and enables a
to request repositioning.

a required
programmer

If repositioning is requested, the sys­
tem rewinds the volume and positions it
just before its first data record. If the
tape is empty, it is positioned just after
its load point. Specifying the EXT parame­
ter on an ACCESS statement overrides any
repositioning request the first time the
data set is opened in a job, and it is
positioned after its last data block. (EXT
should be specified only for input data
sets. If specified for an output data set,
the results are unpredictable.)

If repositioning is not requested, the
data set is not disturbed unless it was
used earlier in the job and is positioned
after an end-of-file mark. In such a case,
it is backed up to a point between the data
set's last record and the end of file mark.

In a labeled tape shop, OPEN can be used
with labeled and unlabeled volumes. If the
volume is not labeled, it and the data set
are treated as unlabeled.

1. Labeled volume with labeled data set.

70

Any ALLOe or ACCESS statement refer­
ring to a labeled data set on a
labeled volume must be followed by a
LABEL statement.

OPEN reads the volume label
ensure that the correct volume
been mounted. It then reads the
set header label. For an inout
set, it ensures that the data set

to
has

data
data
name

2.

in the header label is the correct
one. For an output data set, it
examines the expiration date to make
certain the tape does not contain an
active data set. If the date has
expired, a new header label is writ­
ten.

An output data
for the writing of
block.

set is positioned
the first data

Repositioning of an input tape data
set and the effect of the EXT parame­
ter are the same as for tapes in an
unlabeled shop.

Unlabeled tape volume with unlabeled
data sets. No LABEL statement can be
used with an ALLOC or ACCESS statement
for an unlabeled data set on an unla­
beled volume.

OPEN checks for a volume label. If
it finds one on an output OPEN, it
checks for a header label expiration
date to ensure that the volume does
not contain an active data set. The
volume label is erased when the first
record of the data set is written.

If no volume label is found, the
tape is treated in the same manner as
an unlabeled tape in an unlabeled
shop.

When OPEN is executed, register 1 must
contain the address of a parameter list.
This list consists of one full-word entry
for each data set to be opened. Each entry
is aligned on a full-word boundary and
contains the address of a 4-byte control
information area. The first byte of the
last entry in the parameter list must
contain the hexadecimal code 80, indicating
the end of the list.

The four bytes of control information
are specified in hexadecimal as follows:

uu

rr

pp

cc

CONTRL DC XL4'uurrpp cc'

is the SYSUNI index value
symbolic unit containing
set. This value can be
from Table 8.

of the
the data
obtained

00 if the data set is not to be
repositioned.

= 01 if repositioning is wanted.

= 00 if an input data set is being
opened.
01 if an output data set is being
opened.

is a byte reserved for use by the

(
system if a return code is needed
to notify the program of errors.

After OPEN has been executed, control
returns to the instruction following the
SVC. The low-order byte of register 15
contains the hexadecimal code 00 if there
were no errors. If register 15 contains
04. indicating errors, the cc field for the
applicable system unit contains one of the
following codes:

Hexa­
decimal
-~Q~~--

01

02

Description
The system cannot find the data

set. The problem may be that
the data set is not properly
defined. an incorrect SYSUNI
code was used. the volume is
mounted on a device that is
disconnected or not operating.
an error occurred in positioning
the data set, or. in a labeled
shop. the operator instructed
the system to treat the data set
as a dummy file. If the problem
is a positioning error. the vol­
ume is unloaded and treated as a
dummy file. The data set is not
opened.

This code applies only to labeled
tape shops. For input, it indi­
cates that either a volume or
header label is missing~ but a
LABEL statement was used. The
absence of a label is noted, so
no attempt will be made to veri­
fy a trailer label when CLOSE is
given. For an output data set,
this code signifies the absence
of both a volume label and head­
er label. In either case. the
data set is opened.

After returning the error code, the
system takes no further notice of these
conditions.

If a more serious error occurs in a
labeled shop. the system writes a message
on SYSLOG requesting operator intervention.
These conditions include input/output
errors while processing a supervisor call,
mounting a wrong volume. detection of the
wrong data set name in a header label, or
detection of an active data set on a tape
that is supposed to have expired.

The operator has three alternatives. He
can instruct the system to resume process­
ing and use the data set anyway. to resume
processing and treat the data set as a
dummy. or to cancel the job. If he elects
to treat it as a dummy. the cc field of the
return code parameter is set to 01, the
volume is rewound and unloaded. and all

references to the symbolic unit assigned to
it are treated as though it had been cited
in an ACCESS IGN statement.

Following is an example of the use of
the OPEN supervisor call.

This example assumes three data sets are
to be opened, two input data sets on SYSIPT
and SYSOOl and an output data set on
SYSOPT. The names of the data sets or data
set members needed for the program have
been specified in control statements.
Repositioning of SYSOOl and SYSOPT is
desired.

OPEN EQU 2

LA 1,PARAM

SVC OPEN

BAL 14,ANALYS

DS OF

PARAM DC A(CTLIPT)

DC A(CTLOOl)

DC X'SO'

DC AL3 (CTLOPT)

CTLIPT DC XL4'06000000'

CTLOOl DC XL4'11010000'

CTLOPT DC XL4'OSOlO100'

In this example, the Branch and Link
(BAL) instruction is given to branch to an
analysis routine as soon as the system has
finished executing OPEN. ANALYS is not a
system routine. It represents a routine
that should be included in a problem pro­
gram. It examines the return codes, takes
any necessary action, and returns to the
main program by branching to the address in
register 14.

CLOSE - SVC 3

The CLOSE supervisor call is used to
ensure proper disposition of data sets.

With CLOSE, a program can:

• Reposition a tape volume, unit record,
or direct access data set.

Input/Output 71

• Disconnect a symbolic unit to protect
the contents of its data set.

• Verify or create standard trailer
labels in magnetic tape data sets.

• Cause the system to create a directory
entry for a new directoried data set
member.

As with OPEN,. the actions and use of
CLOSE vary according to the type of data
set and whether the installation standard
is to use labels on magnetic tapes,.

Direct Access Data Sets. For an output
direct access data set, CLOSE writes an
end-of-file mark.

A data set that is to be preserved after
the end of the job must be opened and
closed if new material is added to it.
Closing causes the job control processor to
update its block count information for the
data set at the end of a job step. If this
count is not updated, a programmer cannot
refer to the new blocks in future iobs.

A new directoried data set member must
be closed for output. This causes the
system to create a directory entry for the
new member at the end of the job step. If
this is not done, the system is unable to
find the new member in the future, and it
is erased the next time another new member
is added to the data set.

CLOSE for an input data set or for a
data set that is to be left "as is" does
not disturb the data set's position.

A repositioning code of 01 for a direct
access data set causes the block count in
the data set's file control block to be set
to zero. The block count is the record of
the number of blocks read or written by the
program. A repositioning code of 02 zeroS
the block count and disconnects the data
sets. It is disconnected in the sense that
no further input/output operations will be
accepted for the symbolic unit assigned to
the data set until it is reassigned or
reset.

A new
be closed
system to
new member

directoried data set member must
for output. This causes the
create a directory entry for the
at the end of the job step.

The system does not write end-of-file
marks after members in formatted director­
ied data sets. These are data sets in
which the ALLOC statement's FMT option was
specified when they were created. The
system uses other means to determine the
end of a formatted directoried data set
member. The effect is the same as though
the end-of-file mark had been written.

72

Unit, record data sets. CLOSE can be
the
the

used for unit record data sets to zero
data set's block count and disconnect
symbolic unit assigned to it.

A reposition code of 01 zeros the block
count in the data set's file control block.
A code of 02 zeros the block count and
disconnects the symbolic unit.

Magnetic tape data sets. The action of
CLOSE depends on whether the installation
standard is to use labels.

In an unlabeled tape shop, CLOSE can be
used to write end-of-file marks and to
rewind or rewind and unload a volume.

For an output data set, CLOSE writes two
end-of-file marks and backspaces over the
last one.

For an
to the data
requested.

input data set, nothing is done
set unless repositioning is

Repositioning codes can be used to indi­
cate that the tape should be rewound to its
load point or rewound and unloaded.

In a labeled
used to write and
'write end-of-file
set. or rewind and

tape shop, CLOSE can be
verify trailer labels"
marks, reposition a ,data
unload a volume.

For an output data set, CLOSE writes an
end-of-file mark and a standard trailer
label. It then writes two end of file
marks and backspaces over the last one.

For an input tape data set, CLOSE reads
the trailer label and verifies it against
the header label and control statement
information. If there is any discrepancy
between the data set name in the trailer
label and the name in its file control
block, it is indicated in a return code.
The data set is positioned after the end­
of-file mark following the trailer label.

A labeled tape also can be closed "as
is" with no label processing and without
disturbing the data set unless
repositioning is requested. If requested.
the volume can be rewound or rewound and
unloaded.

When CLOSE is executed, register 1 must
contain the address of a parameter list.
This list consists of one full-word entry,
aligned on a full-word boundary, for each
system unit to be closed. Each entry
contains the address of a four-byte control
information area. The first byte of the
last entry contains hexadecimal 80, signi­
fying the end of the parameter list.

(-

The control information for each system
unit is specified in hexadecimal as fol­
lows:

uu

rr

pp

cc

CONTRL DC XL4'uurrppcc'

is the SYSUNI index of the system
unit to be closed.

= 00 if the data set is not to be
repositioned.

= 01 if the block counts of direct
access and unit record data sets
are to be reset to 0 or a magnetic
tape is to be rewound to load
point.

= 02 if the system unit is to be
magnetic tape
unloaded.

disconnected. A
also is rewound and

= 00 to close
to verify
on magnetic

= 01 to close
update a
write an
create a
label.

an input data set and
an input trailer label
tape.
an output data set and
direct access label,
end-of-file mark, or

magnetic tape trailer

= 02 if no end-of-file mark is to be
written, and no label processing
is desired.

is a byte reserved for
system if a code
identify errors.

use by the
is needed to

To facilitate device independence., the
system ignores control codes that do not
apply to the device being used.

After CLOSE has been executed" control
returns to the instruction following the
SVC. The low-order byte of register 15
contains the hexadecimal code 00 if there

were no errors. This code is 04 if any of
the designated system units could not be
closed, and the cc field of its control
word contains one of the following codes:

Hexa­
decimal
.s.ode

01

02

04

08

Description
The system cannot find the data

set. The problem may be that an
incorrect SYSUNI index was used.,
the symbolic unit is disconnect­
ed, the device is down" or the
operator elected to treat the
data set as a dummy because of a
serious error condition. The
position of the data set is
unpredictable. It is flagged
closed, if possible.

Reserved.

This code applies only to labeled
tape shops. An input tape con­
tained a standard header label
but does not contain a standard
trailer label. The data set is
closed.

This code applies only to labeled
tape shops. The data set name
in an input tape differs from
the data set name in its file
control block. The data set is
closed.

If a serious input/output error occurs
during execution of a CLOSE supervisor
call, a message requesting operator inter­
vention is written on SYSLOG. The operator
can instruct the system to use the data set
anyway,. treat it as a dummy, or cancel the
job. If desired, the data set can be
disconnected.

Input/Output 13

B~~QL~BITE LEVEL SUPERVISOR CALLS

The five primary input/output supervisor
calls at the read/write level are READ.
WRITE. CHECK.. NOTE, and POINT. These
supervisor calls enable a program to read
and write data,. to reposition a data set.
and to ensure that a data transmission
terminated satisfactorily. A general dis­
cussion of their functioning was given at
the beginning of this input/output section.

The applicable SVC codes are:

READ - SVC 4

WRITE - SVC 5

CHECK - SVC 6

NOTE - SVC 7

POINT - SVC 8

The parameters for each of these super­
visor calls must include the address of a
request control block. Each request con­
trol block referred to in a program must be
defined by the program as a 40-bvte area.
The program also must provide the SYSUNI
index for the system unit involved. The
SYSUNI index must be the first byte of the
block. The rest of the block must be
filled with zeros. This is illustrated in
the examples accompanying the discussion of
the individual supervisor calls.

READ - SVC 4

The READ supervisor call is used to
transmit one block of data from an input
data set to an area of main storage.

When READ is executed,. register 1 must
contain the address of a parameter list.
This list consists of three full words,
each aligned on a full-word boundary. The
first word contains the address of a
request control block. The second word
contains the address of the area in main
storage where the input data is to go. The
third word contains the address of a four­
byte count field., which also must be
aligned on a full-word boundary.

The count field has the format xxOOyyyy.
where xx is an incorrect length suppression

74

code and yyyy is a count of the number of
bytes to be transmitted. When the read
request is executed. yyyy bytes are read
from the input data set into the area
specified by the second word in the parame­
ter list.

The incorrect length condition occurs
when the count field specifies a byte count
that differs from the block size of the
input records.. The system reads one block
at a time. If the program specifies a
count smaller than the block size., only the
number of bytes specified by the program
are transmitted. If the count is larger
than the block size, only one block is
transmitted. In either case. an incorrect
length condition occurs. This condition is
ignored if the xx byte of the count field
is hexadecimal 20. If the first byte is
00., an incorrect length code is posted in
the request block. This causes an abnormal
condition return the next time an
input/output request uses this block.

Specif~ca11y. the conditions that cause
an incorrect length return code are shown
in Table 11.

Table 11. Incorrect Length Conditions
r-------T---------------------------------,
IType ofl I
IQ.§Yice IConditi2!! I
Tape For reading, the requested byte I

2315
Disk

2311
Disk

I
I
I
I
I
I

count does not equal the number I
of bytes in a record. Fori
writing, this code is never I
set. I

I
For reading or writing, the re-I

quested byte count does not I
equal the block size stated
when the data set was created.

For reading, the requested byte
count does not equal the block
size of the records. For
writing, the requested byte
count does not equal the block
size stated when the data set
was created.

PrinterlThe requested byte count does not
I equal the size of the printer's
I buffer.
I

Cards IThe requested byte count does not
I equal the size of the cardl
I image.. I L _______ ~ _________________________________ J

(

The following sample coding could be used
to read a 360-byte block from an input data
set on system unit SYS004. Any incorrect
length condition is suppressed.

READ EQU 4

SYS004 EQU 20

OS OF

RCBOl DC ALl (SYS004)

DC 39X'OO'

IOBUFF OS 90F

LA l,PARAM

SVC READ

BAL 14,ANALYS

ANALYS BC 15,CKCOD(15)

CKCOD BC 15,0(14)

BC 15,EOF

BC 15, ERROR

BC 15. NODTMT

BC 15.IRQST

OS OF

PARAM DC A(RCBOl>

DC A (IOBUFF)

DC A(COUNT)

COUNT DC X'2000'

DC a' 360'

At the opening of this example, SYS004
is equated with 20, its SYSUNI index value
that goes into the first byte of the
request control block, and the word READ is
equated with its proper SVC code 4. This
is done solely for ease in programming. In
either case., the actual numeric value could
be used at the required places in the
subsequent coding.

The following steps set up a request
control block and define an input buffer.
The addresses of these two areas are the
first two entries in the parameter list

PARAM at the bottom of the example. The
count field is set up to read 360 bytes and
a 20 prefix to suppress any incorrect
length condition.

The first of the executable instructions
loads the address of the parameter list
into register 1. The READ supervisor call
follows. When the system returns control
to the problem program, it will branch to
the ANALYS routine to analyze the return
code in register 15 to determine how the
previous input/output operation on the same
request control block turned out. The
Branch and Link instruction puts a return
address in register 14 to facilitate a
return to this point when the ANALYS rou­
tine is finished.

ANALYS is not a system routine. It
represents the sort of error-checking a
problem program should do.

The ANALYS routine uses the return code
in register 15 as an index for another
branch. If the code is 00, the branch is
to the next instruction which returns con­
trol to the main program. Otherwise, the
branch is to one of the specialized rou­
tines provided elsewhere in the program to
handle each of the four abnormal condi­
tions.

When the abnormal condition routines are
entered, register 1 still contains the
address of the parameter list which con­
tains the address of the request control
block involved in the abnormally terminated
operation. The routine may examine this
and the file control block to determine
what should be done.

WRITE - SVC 5

The WRITE supervisor call is used to
transmit a block of data from an area of
main storage to an output data set.

When WRITE is executed, register 1 must
contain the address of a parameter list.
This list consists of three words aligned
on full-word boundaries. The first word
contains the address of a request control
block. The second word contains the
address in main storage of the block of
data to be written. The third word con­
tains the address of a 4-byte count field
which must be aligned on a full-word bound­
ary.

The count field has the format xxOOyyyy,
where xx represents an incorrect length
suppression code, as for READ, and yyyy
represents, in hexadecimal, the number of
bytes to be written.

Input/Output 75

The incorrect length code applies when
the program is working with a device that
has defined physical limitations. An
incorrect length condition is created, for
example" by an attempt to write a block
larger or smaller than 80 bytes on a card
punch. This condition also can be caused
by an attempt to write a block larger or
smaller than other blocks in the data set.

A program may not write outside the
previously defined limits of a direct
access data set or data set member. An
attempt to do this causes an end-of-extent
abnormal return condition.

In other respects, WRITE functions and
is programmed in the same general manner as
a READ supervisor call.

CHECK - SVC 6

The CHECK supervisor call is used to
delay further execution of a problem pro­
gram until a requested read/write level
operation has been completed.

CHECK may be issued at any time follow­
ing any other read/write level supervisor
call. It has no effect, however" after
OPEN or CLOSE. Its parameters include the
address of the request control block used
in the requested operation. Control does
not return to the user until all pending
operations involving the block have been
completed. Before returning, the system
posts the return code for the last complet­
ed operation in register 15 and resets the
return code area of the request control
block to 00 so that another operation
request can be accepted immediatelv.

When CHECK is executed, register 1 must
contain the address of a parameter list.
This list consists of one word, aligned on
a full-word boundary, containing the
address of a request control block. The
parameter list may be the same list used
for the operation to which the CHECK
applies.

Control returns to the instruction fol­
lowing the CHECK SVC. Register 15 contains
00 if no abnormal conditions were detected
in the operation. A 00 return code also
appears if the request control block has
not been used or if it was examined pre­
viously by, CHECK and there has been no
intervening operation. If the current
operation terminates abnormally., register
15 contains one of the non-zero return
codes shown in Table 6.

76

CHECK may be used as follows:

SYS003

WRITE

CHECK

RCBOl

IOBUFF

ANALYS

PARAM

COUNT

EQU 19

EQU 5

EQU 6

DS OF

DC ALl (SYS003)

DC 39X'OO'

DS 90F

LA 1,PARAM

SVC WRITE

SVC CHECK

BAL 14,ANALYS

BC 15,CKCOD(15)

DS OF

DC A(RCB01)

DC A(IODUFF)

DC A(COUNT)

DC X'2000'

DC H'360'

This example calls for writing a block
of 360 bytes in the data set on system unit
SYS003. The incorrect length condition is
suppressed. The WRITE supervisor call is
followed immediately by a CHECK. This
combination causes the system to delay
further execution of the program until the
write operation has been completed and
analyzed and a return code has been posted
in register 15. The abnormal return code
section of the request control block has
been reset to 00, and the block is ready to
accept another request.

This example uses the branch to the
ANALYS routine to examine the return code
in register 15, as did the READ example.

A combination of operations that would
result in an error code not being examined
should be avoided. If, for example, the
three operations, WRITE, WRITE" and CHECK,
all use the same request control bloCk" and
the first WRITE terminates abnormally, the

,- -,-_._,,-,-,-- ------ ---,,-----,---,------_._-----

~' "
.~

rr. -" , ,:~,

~

(
second WRITE is rejected. An error code is
placed in register 15, and the error sec­
tion of the request control block is
cleared. When CHECK is issued, the system
finds no operation in progress and no error
code in the request control block. so it
resets register 15 to zero and returns to
the main program with no indication of the
abnormal termination. This condition could
be avoided by using CHECK after each WRITE
or by entering an analysis routine between
the second WRITE and CHECK.

The NOTE supervisor
determine the current
set.

call is used to
position of a data

NOTE generally is used with the POINT
supervisor call. SVC 8, for nonsequential
processing of data sets. NOTE causes the
system t~ provide the number of the next
block within a data set. The number given
is based on the position of the block
within the data set or data set member and
not on the number of blocks that have been
read or written by the program.

When NOTE is executed. register 1 must
contain the address of a parameter list.
This list consists of two full words
aligned on full-word boundaries. The first
word contains the address of a request
control block. The second word contains
the address of a four-byte area where the
system is to place the block count. This
area also must be aligned on a full-word
boundary. The count is stored in it as a
hexadecimal value. Control returns to the
instruction following the SVC.

The system determines the block count
after all pending input/output operations
for the ,data set have been completed.
Control returns to the instruction follow­
ing the SVC.'

Register 15 contains the hexadecimal
code 00 if no abnormal conditions were
detected in the request control block. If
the previous operation terminated abnormal­
ly and was not checked, the NOTE request is
ignored and register 15 contains a non-zero
return code.

The POINT supervisor call is used to
reposition a data set to a specified block.

POINT generally is used with the NOTE
supervisor call. SVC 7, for nonsequential
processing of data sets. POINT causes the
system to reposition a data set to a place
immediately following a specified block.
If. for example,. a block count of 3 is
given, the data set is positioned so that
the next block that would be read by a READ
request is the fourth block.

When POINT is executed, register 1 must
contain the address of a parameter list.
This list consists of two full words
aligned on full-word boundaries. The first
word contains the address of a request
control block. The second word contains
the address of a 4-byte area which also is
aligned on a full-word boundary. This area
contains the desired block count, expressed
in hexadecimal.

To reposition a data set so that the.
next block to be read is the fourth block
within the data set (or data set member).
the following sample coding might be used:

SYS003

POINT

RCB02

PARAM

BLKCT

EQU 19

EQU 8

OS OF

DC ALl (SYS003)

DC 39X'00'

LA 1.PARAM

SVC POINT

BAL 14, ANALYS

DC A(RCB02)

DC A(BLKCT)

DC F'3'

The data set is repositioned to a point
between its third and fourth blocks. Con­
trol returns to the instruction following
the SVC. Register 15 contains the hexa­
decimal code 00 if no abnormal conditions
were noted in the request control block.
If the previous operation terminated abnor­
mally and was not checked. the POINT
request is ignored and register 15 contains
a non-zero return code.

As an example of using NOTE and POINT
together. a program may issue a NOTE super­
visor call to determine the current posi­
tion of a data set. The program then

Input/Output 77

determines the number of blocks to be
skipped or backspaced. modifies tile block
count parameter (BLKCT in the previous
example) accordingly. and issues a POINT
supervisor call that uses the same parame­
ter list as the NOTE.

EXTENDED TAPE VOLUME SUPERVISOR CALLS

The WEF,. UNLOAD. and REWIND supervisor
calls are used by the system's OPEN and
CLOSE routines. All three are available
for general use. but problem prog:ams
should use the OPEN and CLOSE superv~sor
calls to obtain the same results. Use of
these functions instead of OPEN or CLOSE
may cause accidental loss of data or mal­
functioning of system routines in later
operations on the same data sets. They
should not be used for direct access
volumes.

The applicable codes are:

WEF - SVC 9

REWIND - SVC 10

UNLOAD - SVC 11

WEF - SVC 9

The WEF supervisor call is used to write
an end-of-file mark on magnetic tape
volumes.

An end-of-file mark indicates the end of
a data set. When a program subsequently

78

reads this data set and detects this mark.
an abnormal return condition is recorded in
the request control block.

When WEF is executed. register 1 must
contain the address of a parameter list.
This list consists of one word. aligned on
a full word boundary, containing the
address of a request control block.

Control returns to the instruction fol­
lowing the SVC. The low-order byte of
register 15 contains the hexadecimal code
00 if no abnormal conditions were noted in
the request control block. If the previous
operation terminated abnormally and was not
checked, register 15 contains a non-zero
return code and the ~~F request is ignored.

REWIND - SVC 10

The REWIND supervisor
reposition a magnetic tape
load point,.

call is used to
volume to its

Parameter specifications and
codes are the same as for WEF.

return

UNLOAD - SVC 11

The UNLOAD supervisor call is used to
rewind and unload a magnetic tape volume.

Parameter specifications and return
codes are the same as for WEF.

(

(

The system includes 14 supervisor calls
for services not related to input/output.
They are shown in Table 12.

These supervisor calls are used to fetch
or load program phases from the phase
library, terminate a job step or job,
manipulate information in the user communi­
cation region, and provide for special
program check and timer interruption rou­
tines.

FLOW CONTROL SUPERVISOR CALLS

The flow control supervisor calls are
FETCH and LOAD. They are used to load
programs and program- segments from the
phase library.

The applicable codes are:

FETCH - SVC 12

LOAD - SVC 13

The FETCH
load a program
phase li brary
fer control to

supervisor call is used to
or program segment from the
into main storage and trans­
it.

The system uses FETCH to load and enter
a user program. This user program may then
invoke FETCH to load and enter phases of a
program. FETCH is designed so that the
calling routine can pass one full word of
information such as the address of a
parameter list, to the called routine.

A phase called by FETCH must be loaded
and entered at the addresses specified in
its phase library directory entry. If
another load point is desired, the LOAD
supervisor call should be used.

When the FETCH supervisor call is exe­
cuted_, register 1 must contain the address
of a parameter list. This list consists of
either one or two full words, aligned on
full-word boundaries. If there are two
words, the system assumes the second word
is a parameter to be passed to the new
phase. Before the system transfers control

OTHER SUPERVISOR CALLS

to this new phase, it places the contents
of this second word into register 1.

The first byte of the first word in the
parameter list is a hexadecimal code, eith­
er 00 or SO. The 00 code tells the system
the list consists of two words, and the
second word is to be put into register 1
for use by the new phase. The SO code
indicates that the list consists of only­
one word and there is no information to be
passed.

The remaining three bytes of this word
contain the address of an S-byte location
aligned on a full-word boundary elsewhere
in main storage. This location must con­
tain the name of the desired phase in
EBCDIC characters. If the name is fewer
than eight characters, it must be padded on
the right with blanks.

To load and enter a phase named PROG­
NAME, the following coding could be used.

FETCH EQU 12

LA 1.PARAM

SVC FETCH

DS OF

PARAM DC X'SO'

DC AL3(LOC)

LOC DC C'PROGNAME'

The system searches the phase library
for an entry named PROGNAME. lo~ds it at
the address specified in its directory
entry, and enters it at the address speci­
fied in its directory entry. On entry to
the phase, register 1 contains binary zeros
since there was no parameter to be passed.
Register 15 contains the address of the
entry point. Other registers are
unchanged.

If the system is unable to find and load
the phase correctly, the job is cancelled.

Other supervisor Calls 79

Table 12. Non-Input/Output supervisor Calls
r---------T--------T--,
IMnemonic ICode I Description I
~---------+--------+--~
FETCH ISVC 12 I FETCH is used to load a program or program segment into mainl

I I storage from the phase library and transfer control to it. I
I I I

LOAD ISVC 13 I LOAD is used to load a program or program segment into main storage I
I I from the phase library. I
I I I

EOJS ISVC 14 I EOJS (End-of-Job-step) is used to terminate a job step. I
I I I

CANCEL ISVC 15 I CANCEL is used to terminate a job. I
I I I

GETIME ISVC 16 GETIME (Get Time) is used to obtain the time of day from the system I
I timer. I
I I

INSERT ISVC 17 INSERT is used to store information in the system's user communi-I
I cation region. I
I I

EXTRACT ISVC 18 EXTRACT is used to obtain the location of the user communication I
I region. I
I I

UPSAND ISVC 19 UPS AND (User Program Switch AND) is used to obtain the logical I
I product (AND) of the user program switch byte and the low-order I
I byte of register 1. I

I I .I
UPSOR ISVC 20 UPSOR (User Program switch OR) is used to obtain the logical suml

I (OR) of the user program switch byte and the low-order byte ofl
I register 1. I
I I

STXIPC ISVC 21 STXIPC (Set Exit for Program Check Interruption) is used to notify I
I the system that the program contains a special routine to bel
I entered when certain types of program check interruptions occur. I
I I

STXITC ISVC 22 STXITC (Set Exit for Timer Interruption) is used to notify thel
I system that the program contains a special routine to be entered I
I when a timer interruption occurs. I
I I

SETIME ISVC 23 SETIME (Set Interval Timer) is used to set a value in the system's I
I interval timer. I
I I

RTXIPC !SVC 24 RTXIPC (Program Check Interruption Return) is used at the end of al
I program check interruption routine to return control to the I
I interrupted main program. I
I I

IRTXITC ISVC 25 RTXITC (Timer Interruption Return) is used at the end of a timer I
I I interruption routine to return control to the interrupted mainl
I I program. I L _________ ~ ________ ~ __ J

80

(

To load and enter the same phase as in
the previous example and pass to it the
address of a parameter list, the following
coding could be used:

FETCH

PARAM

LOC

LIST

EQU12

LA l,PARAM

SVCFETCH

DS OF

DC A(LOC)

DC A(LIST)

DC C'PROGNAME'

(list of parameters or other
information)

Since the first byte of the first word
in this parameter list is 00, the system
loads the phase as before, but changes the
contents of register 1 before entering it.
On entry" register 1 contains the address
of LIST" since this was the second word in
the parameter list. The values in register
15 are the same as in the previous example.
Other registers are unchanged.

The LOAD supervisor call is used to load
a program segment from the phase library
into main storage.

LOAD causes the system to search the
phase library directory for an entry for
the desired phase. Upon findinq it" the
system loads the phase into main storage,
places the address of its main entry point
in register 1,. and returns control to the
calling routine. The phase is loaded ei­
ther at the address specified in its direc­
tory entry or at an alternate address
specified in the parameters accompanying
the supervisor call. The entry point
address that is placed in register 1 is
obtained from the directory entry and is
modified, if necessary" to reflect any
change in loading address.

When the LOAD supervisor call is execut­
ed, register 1 must contain the address of
a parameter list. This list consists of
ei ther one or two full words" aligned on
full-word boundaries. If there is a second
word" the system assumes that the phase is

to be loaded at an address other than the
one specified in the phase's directory
entry. The alternate address must be with­
in the problem program area.

The first byte of the first word in the
parameter list is a hexadecimal code" ei­
ther 00 or 80. The 00 code tells the
system the list consists of·two words; the
second word contains the address of another
full-word" aligned on a full word boundary,
that contains the loading address. The 80
code indicates that the list consists of
only one word and the phase is to be loaded
at the load address in its directory entry.

The remaining three bytes of the first
word contain the address of an a-byte
location elsewhere in main storage. This
location must be aligned on a full-word
boundary and must contain the name of the
desired phase in EBCDIC characters. If the
name is less than eight characters" it must
be padded on the right with blanks.

For example, to load
SBRUTINE, the following
used.

LOAD EQU 13

LA 1.,PARAM

SVC LOAD

DS OF

PARAM DC

DC AL3(LOC)

LOC DC C'SBRUTINE'

a phase named
coding could be

The system finds SBRUTINE, loads it at
the address specified in its directory
entry, and returns control to the instruc­
tion following the SVC. On return., reg­
ister 1 contains the address of the phase's
main entry point. The low-order byte of
register 15 contains the hexadecimal code
00" indicating no errors. If the system is
unable to find the name of the desired
phase in the phase library directory" reg­
ister 15, on return, contains the code 04.
Other registers are unchanged.

The same phase could be loaded at a
different location by use of the following
coding:

Other Supervisor Calls 81

LOAD EQU 13

LA l",PARAM

SVC LOAD

PARAM DC AlLOC>

DC A(ALP)

LOC DC C" SBRUTINE I

ALP DC A(loading address>

This sample coding causes the system to
find the desired phase and load it at the
alternate address specified at location
ALP. Control returns, as before, to the
instruction following th~ SVC with the
address of the phase's main entry point in
register 1. The return codes in register
.15 are the same as in the previous example.
Other registers are unchanged.

Some precautions are necessary when
changing the load point of a phase. If,
for example, any other phase contains
address constants referring to points in a
relocated phase, the address constants must
be adjusted to reflect the change in the
loading address. The values of inter-phase
address constants are determined during
linkage editingQ

TERMINATION SUPERVISOR CALLS

The termination supervisor calls
EOJS and CANCEL. They can be used
either n'ormal or abnormal termination
programs and program segments.

The applicable codes are:

EOJS - SVC 14

CANCEL - SVC 15

are
for
of

The EOJS supervisor call is used to
terminate a job step.

EOJS instructs the system to load the
job control processor to read control
statements and commence execution of the

82

next job step. The next job step may be
part of the same program or the first job
step in a new program.

A job step is entered by a standard
linkage, so it also may be terminated by a
standard .return sequence.

A program should check before issuing
EOJS to ensure that no input/output opera­
tions are pending. Completion of an
input/output operation after EOJS has been
executed could cause malfunctioning of the
job control processor.

CANCEL - SVC 15

The CANCEL supervisor call is used to
terminate a job.

When a CANCEL supervisor call is execut­
ed, the system terminates the current job
immediately. A message for the operator is
written. and a dump is taken if a dump was
requested in the job's control statements.
The system then loads the job control
processor which reads the system input
unit, ignoring all statements until a /&
end-of-job control statement is detected.
Normal end of job processing is not per­
formed.

COMMUNICATION REGION SUPERVISOR CALLS

The communication region supervisor
calls are INSERT, EXTRACT. UPSAND. and
UPSOR. They are used for communication
between a problem program and the system's
user communication region.

The applicable codes are:

INSERT - SVC 17

EXTRACT - SVC 18

UP SAND - SVC 19

UPSOR - SVC 20

USER COMMUNICATION REGION

,
The user communication region is an area

within the system supervisor that may be
used by both system programs. such as the
assembler, and by problem programs. Pro­
grams may read information from this area .•
but must use supervisor calls to insert or
alter information to avoid accidental des­
truction of system data.

,,",
~~

\ ""'.-'''/

(

Its contents are as follows:

2 8-11

3 12-15

4 16-19

5 20-23

6,7 24-31

8,9 32-39

10 40

10 41

10 42,43

11 44-47

Description
Date, set by the operator,

in the form yyddd.

Address of the first byte of
the problem program area.

Address of the last byte
available for use by the
problem program.

Address of the highest byte
in the problem program
area filled by a phase
loaded by means of any
FETCH or LOAD supervisor
call.

Address of the last byte in
the problem proqram area
filled by the most recent
FETCH or LOAD supervisor
call.

Job name in EBCDIC charac­
ters ..

Job step name in
characters.

EBCDIC

User program switch byte.
This byte is set to zeros
whenever the system reads
a JOB control statement.

Highest assembly error sev­
erity. Reset to zero by
JOB statement.
00 - Normal. No errors.
04 - warning messages

listed. Execution
should be successful.

08 - Error messages list­
ed. Execution may
fail.

OC - Severe errors. Exe­
cution impossible.

10 - Terminal errors. Job
has been cancelled.

Not used.

User interprogram communi­
cations area. This area
may be used by one job
step to preserve informa­
tion for use by a later
job step. This area is
set to zeros whenever the
system reads a JOB control
statement.

Word Byte
12,13 48-55

14-31 56-127

Description
User intraprogram communi­

cations area. This area
may be used by one job
step phase to preserve
information for use by
another phase within the
same job step. This area
is set to zeros whenever
the system reads an EXEC
control statement initiat­
ing a new job step.

Up to six 8-byte EBCDIC
option parameters from the
job step EXEC statement
are stored here by the job
control processor. If
fewer than six parameters
are stored., the area is
padded on the right with
blanks. The area is reset
to blanks before the
beginning of the next job
step. The full 72 bytes
of this area and the
8-byte intraprogram
communication area also
are used by the system and
processor programs between
job steps for temporary
storage of certain control
statements.

32-35 128-143 Up to 16 bytes of accounting
information are stored
here for use by installa­
tion routines. This
information, in' EBCDIC
form, is obtained from JOB
and/or EXEC statements.

36-xx 144-xxx Data generated by installa­
tion accounting routines
may be stored here. The
upper limit of the area is
determined by the instal­
lation when the resid.ent
supervisor is re­
assembled. This field is
not included in the IBM
distributed system. As
distributed, the user com­
munication region occupies
36 words, bytes 0 through
143.

Other supervisor Calls 83

!1!SEBL - SVC 17

The INSERT supervisor call is used to
store information in the user communication
region .•

The system does not require a problem
program to provide any information in this
area other than that contained in control
statements. If a program does use the
area, however, it should use the INSERT
supervisor call to reduce the chances of
accidental destruction of data needed by
the system.

It is not necessary to know the location
of the region to use INSERT. To refer to
information already stored, the location
can be determined by use of the EXTRACT
supervisor call .•

be used
through

user

INSERT cannot
contents of words 0
through 43 of the
region.

to alter the
10, bytes 0
communication

INSERT cannot be used to modify the user
communica.tion region permanently. The
region is reinitialized when the initial
program load procedure is executed.

~hen the INSERT supervisor call is exe­
cuted, register 1 must contain the address
of a parameter list. This list consists of
two words aligned on full-word boundaries.
The first word contains the address in the
problem program area of the information to
be stored in the user communication region.
The second word contains the address of a
4-byte area containing control information.

The first byte of control information
must be hexadecimal 00. The second byte
gives the number of 4-byte words to be
stored in the region. The last two bytes
indicate where in the region the data is to
be stored. This last location is expressed
in terms of the word where the system is to
start storing the information, the first
word in the region being word O.

For example, to store eight bytes of
data in the intraprogram communications
area, words 12 and 13, bytes 48 through 55,
the following coding could be used:

84

INSI;:RT EQU 17

LA 1,PARAM

SVC INSERT

PARAM DC A(LOC)

DC A(CONTRL)

LOC (data to be stored)

DS OF

CONTRL DC X'OO'

DC AL1(2)

DC AL2 (12)

The system stores the eight bytes of
information at LOC in the intraprogram
communications area and returns control to
the instruction following the SVC. The low
order byte of register 15 contains the
hexadecimal code 00, indicating no errors.

If an attempt is
store information
cations region or
nothing is stored,
return, contains the

made to use INSERT to
o11tside the communi­
in words 0 through 10,
and register 15, on
hexadecimal code 04.

Other registers are unchanged.

EXTRACT - SVC 18

The EXTRACT supervisor call is used to
obtain the location of the communication
region.

EXTRACT causes the system to put the
address of byte 0 of the communication
region in register 1 and return control to
the calling program. The address of any
particular word or byte within the region
is obtained by adding the byte count to
this value.

The UP SAND and UPSOR supervisor calls
are used to set or alter the contents of
the user program switch byte in the user
communications region. This byte is used
for communication between job steps and
within a job step.

1'""
,j

(

('

When UPSAND is used. the logical product
(AND) of the user program switch byte and
the low-order byte of register 1 is stored
in the user program switch byte.

When UPSOR is used. the logical sum (OR)
of the user program switch byte and the
low-order byte of register 1 is stored in
the user program switch byte.

When the two
either UPSAND or
bit for bit.

bytes are comoined by
UPSOR, they are matched

With UPSAND. if each of the correspond­
ing bits is a 1. the result is a 1. If
either is O. the result is o.

With UPSOR. if either of the correspond­
ing bits is a 1, the result is a 1. If
both are 0, the result is o.

These combinations are illustrated by
the following:

A
1

B UPS AND !,!PSQ8
111

1 o o

o 1 o 1

o o o o

When an UPS AND or UPSOR supervisor call
is executed, register 1 must contain a mask
byte in its low-order positions. bits 24
through 31. The system alters the user
program switch byte accordingly and returns
control to the instruction following the
SVC. No error codes apply.

For example, to set the
switch byte to all l's"
coding could be used:

UPSOR EQU 20

IC 1.MASK

SVC UPSOR

MASK DC X' FF'

user program
the following

As a result of this UPSOR supe~visor
call, byte 40 of the communications region
is set to 11111111. This byte is reset to
all O's when the system reads a JOB control
statement initiating another job.

CONDITIONAL INTERRUPTION SUPERVISOR CALLS

The primary purpose of the conditional
interruption supervisor calls is to notify
the system that the problem program is
providing special routines to be executed
when certain conditions occur.

The problem program is able, for exam­
ple, to inform the system that the program
should be interrupted when a specified time
interval elapses. A supervisor call gives
the system the address of the routine that
is to be entered. When the time runs out,
the system interrupts the main program and
enters the special routine. Execution of
another supervisor call at the end of this
routine returns control to the main program
at the point where it was interrupted.

In addition to timer services, special
routines can be provided for certain types
of program check interruptions. Program
check interruptions occur when the system
detects a programming error.

These supervisor calls are in effect
only during the job step in which they are
issued.

The applicable codes are:

GETIME - SVC 16

STXIPC - SVC 21

STXITC - SVC 22

SETIME - SVC 23

RTXIPC - SVC 24

RTXITC - SVC 25

SAVE AREAS

A program that provides its own inter­
ruption routines must also provide save
areas. A save area consists of 20 words
(80 bytes) where the system can store the
contents of the interrupted program's 16
general registers and program status word
while the special routine is Qeing execut­
ed. This information is restored when
control returns to the interrupted program
through execution of another supervisor
call at the end of the special routine.

The system stores the contents of the
interrupted program's registers immediately
after the interruption occurs. When the
program's interruption rQutine is entered,
register 15 contains the address of the
interruption routine, and register 13 con-

Other supervisor Calls 85

tains the address of the save area.. Other
registers are unpredictable. The interrup­
tion routine is entered in the problem
program mode and is subject to the same
interruptions as the main problem program.

Words 0 and 2 of the save area are used
by the system for system information. The
contents of register 13 are saved in word
1. The contents of registers 14., 15, and 0
through 12 are saved, in that order, in
words 3 through 17. The last two words are
for the old PSW.

It is possible for a timer interruption
to occur, for example, while a program
check interruption routine is beinq execut­
ed. The program, therefore, must provide
separate save areas for each type of inter­
ruption that it handles. Otherwise., the
occurrence of two interruptions at approxi­
mately the same time would destroy data
needed to return to the interrupted main
program.

Save areas and interruption routines
must be located in the problem proqram area
of main storage. Each save area must be
aligned on a double-word boundary. If the
problem program specifies a save area
address or interruption routine entry point
that is not in the problem program area,
the system does not accept the operation.

PROGRAM CHECK

The STXIPC supervisor call informs the
system of the addresses of a program's
program check save area and the entry point
of its program check interruption routine.

The RTXIPC supervisor call is used at
the end of a program check interruption
routine to restore the registers and to
return control to the interrupted main
program.

A program check interruption occurs when
the system detects a programming error,
such as an incorrect operand. exceptional
results, such as fixed-point overflow, or a
violation of system or machine restric­
tions. When a program check interruption
occurs, the system takes one of three
possible actions:

1. gan2~. The job is terminated and a
message to the operator describes the
reason for termination.

86

2. Dump and Cancel. A message to the
operator is written. A listing of the
contents of all general and floating
pOint registers and of main storage is
written, and the job is terminated.
This dump must have been requested in
the job control statements.

3. Transfer to a User Routine. If an
STXIPC supervisor call has been exe­
cuted prior to the in terruption., the
system can, in many cases, transfer to
a program check interruption routine
in the problem program instead of
terminating the job. This routine is
able to analyze the cause of the
program check condition, and it also
has the ability to return to the
interrupted program.

The system does not transfer to a user's
program check routine if the interruption
is caused by one of the following condi­
tions:

• Illegal operation code

• Privileged operation in the problem
program state

• Addressing

In these cases, the system always can­
cels the job. A dump is written if it was
requested.

If the interruption was not due to one
of the foregoing conditions and an STXIPC
supervisor call has been executed success­
fully, the system stores the contents of
the 16 general registers and PSW in the
user's program check save area and enters
the user's program check interruption rou­
tine. This routine may examine the reg­
isters and PSW and correct the program
check condi t.ion, ignore it, or cancel the
job. If this routine ends with an RTXIPC
supervisor call, the system returns to the
interrupted program at the pOint of inter­
ruption.

When an STXIPC supervisor call is exe­
cuted, register 13 must contain the address
of the user's program check save area.
Register 1 must contain the address of the
entry point of his program check interrup­
tion routine. These addresses can be
changed only by execution of another
STXIPC.

If the STXIPC specifies a save area
address or an interruption routine entry
point that is not within the problem pro­
gram area, the system does not accept the
operation. Control returns to the problem
program with a hexadecimal 04 return code
in register 15. If there are no errors and

(~

the opera tion is accepted" the return code
in register 15 is 00.

If a program check condition develops
while a program check interruption routine
is being executed. the job is cancelled.

STXIPC expires at the end of the job
step. The address of the user routine or
save area can be changed during the job
step by executing another STXIPC supervisor
call. The effect of an STXIPC can be
terminated before the end of the iob step
by issuing another STXIPC in which the
address of the user routine is given as 0,.
The system will then handle all program
check interruptions instead of entering the
user routine.

RTXIPC should be used
routines that are entered
check interruption occurred
of STXIPC.

only in those
because program
after execution

When RTXIPC is executed, the system
loads the general registers with the con­

- tents of the user's program check save
area. control returns to the interrupted
program at the point of interruption~

TIMER SERVICES

§~ - SVC 16

§.~ - SVC 23

STXITC - SVC 22

RTXITC - SVC 25

The system maintains two timer services.
The first is the time of day, set by the
operator as part of the initial program
loading procedure. The second is an inter­
val timer that may be used by a problem
program to cause interruptions when a
desired time interval expires.

The time, in both cases" is expressed in
units of 1/19200 second.

TIME OF DAY

The
obtain

GETIME supervisor
the time of day.

call is used to
Execution of

GETIME causes the system
in register O. Dividing
19,200 converts it into
seconds since "midnight."

to place a value
this value by
the number of

Control returns to the instruction fol­
lowing the GETIME supervisor call.

INTERVAL TIMER

The interval timer facility is used by
the problem program to cause an interrup­
tion after a designated time period
expires. This timer occupies a 32-bit word
at location 80 in main storage.

A program inserts a value in the inter­
val timer with the SETIME supervisor call.
The value is reduced every 1/50 or 1/60 of
a second" depending on conditions at the
individual installation. When the system
is equipped with the High Resolution Timer
feature" the -value is reduced approximately
every 13 microseconds.

The interval timer requires 12 hours to
go from its maximum value to O. An exter­
nal interruption occurs when the value
changes from positive to negative. If the
proper supervisor calls have been executed"
the system enters the problem program's
timer interruption routine. Otherwise the
interruption is ignored.

A timer interruption routine is not
entered immediately if the interruption
occurs while the system is executing a
routine in which interruptions are masked
out. The system" s input/output routines,
for example, mask out all interruptions
except machine check and program check.
Other types of interruptions occuring dur­
ing such periods are accepted and processed
when the masked routine has been completed.

Other factors that may delay entry into
a timer routine are pauses" when the system
suspends processing pending some operator
action, and execution of instructions that
tie up the central processing unit for
extended periods,.

There are three supervisor calls for use
with the interval timer.

SETIME is used to insert a value into
the timer.

STXITC is used to notify the system that
a timer interruption routine should be
entered when the inserted value expires.

Other supervisor Calls 87

RTXITC is used at
interruption routine
interrupted program.

the end of a timer
to return to the

A SETIME supervisor call is ignored
unless an STXITC supervisor call has been
executed previously in the job step. The
value inserted by SETIME must be the number
of 1/19200 second intervals desired before
a timer interruption occurs.

When the SETlME supervisor call is exe­
cuted, register 1 must contain a timer
value. This value is inserted in the
interval timer. and control returns to the
instruction following the' SETIME supervisor
call. This value can be changed at any
time by means of another SETlME supervisor
call. An interruption occurs when this
value changes from positive to negative.
If the interruption occurs after the end of
the job stepw the system ignores it.

STXITC informs the system of the
addresses of a program"s timer interruption
save area and the entry point of its timer
interruption routine. These addresses can
be changed at any time during the ;ob step
by executing another STXITC. If 0 is
specified as the address of the user rou­
tine, subsequent timer interruptions a~e
processed by the system, and the user
routine is not entered,.

88

STXITC must be executed before SETIME"
or SETIME is ignored.

When an STXITC supervisor call is exe­
cuted" register 1 must contain the address
of the entry point of the user" s timer
interruption routine. Register 13 must
contain the address of the user" s timer
interruption save area. Control returns to
the instruction following the STXITC super­
visor call.

Register 15 contains the hexadecimal
code 00 if there were no errors and the
operation was accepted. A return code of
04 indicates that the program specified a
save area address or timer routine entry
point that was not within the problem
program area, and the operation was not
accepted,.

RTXITC should be used only in timer
interruption routines.

When RTXITC is executed" the system
restores the general registers from the
save area. Control returns to the point of
interruption unless the instruction address
portion of the old PSW has been changed by
the timer interruption routine.

No attempt should be made to return to
the interrupted program by means other than
this supervisor call.

(

(

(

System utility programs are available
for manipulation and maintenance of data
sets and vol urnes.

With the data set routines" all or any
part of a data set or directoried data set
member may be copied onto disk or magnetic
tape., punched into cards, printed" or both
punched and printed. Several options are
available to permit manipulation of the
material being copied and to control the
output format. These routines also facili­
tate the creation and maintenance of
libraries and other directoried data sets .•

The volume utilities routines initialize
disk and magnetic tape volumes for use by
the system. For direct access vol urnes"
they also can be used to assign alternates
for defec\:ive tracks, list the contents of
a volume" and update and condense a volume
to remove expired data sets and make room
for new ones.

The utility routines may be used as an
independent job or as a job step within a
larger job. Any number of utilities func­
tions can be performed during a single job
step" depending upon the availability of
required system units for input/output.

An EXEC UTILS job control statement is
used to call and enter. the system"s utili­
ties program. The EXEC statement should be
followed on the system input unit, SYSIPT"
by utilities control statements. There are
no applicable EXEC statement parameters.

The utilities control statements supple­
ment the job control statements. Job con­
trol statements" such as ACCESS" ALLOC, and
LABEL" define and locate the data sets and
volumes that are to be used, and utilities
control statements indicate what work is to
be done on them.

When, for example" a data set is being
copied from cards onto magnetic tape" an
ALLOC statement is needed to define the
output data set. It is not necessary to
have an ACCESS statement for the input if
SYSIPT is used and is assigned to the card
reader data set.. An EXEC UTILS job control
statement causes the system to load and
enter the utilities program, and a utili­
ties COPY statement initiates the actual
copying.

Each utility statement contains an oper­
ation field" identifying the statement
type, and an operand field" in which any
desired options are listed. The operation

UTILITIES

field must be preceded and followed by at
least one blank. No blanks are permitted
in the operand field.

Comments and continuation cards may be
used in the same way as for job control
statements" except that continuation cards
do not start with //.

When necessary., messages to the operator
are written on SYSLOG. Messages to the
programmer are written on SYSLST.

DATA SET UTILITIES

There are two sets of data set utilities
statements. The first set is used mainly
with sequential data sets. The second
applies to directoried data sets.

The sequential data set utilities state­
ments are COPY, PRINT" PUNCH, and PRTPCH.
The directoried data set statements are
CPYMEM" PRTMEM, PCHMEM" PPMEM, and PCHABS.

The sequential data set statements may
be used to copy a single member of a
directoried data set without its directory
entries. The directoried data set state­
ments must be used to copy more than one
member or to copy from one directoried data
set into another.

SEQUENTIAL DATA SET STATEMENTS

The COPY statement is used to copy a
data set. The data set that ~s being
copied may be on disk" magnetic tape" or
punched cards. Input must be on SYSIPT or
SYS002. output goes on SYS003. which may
be assigned to any type of device data set.

The PRINT statement is used to obtain a
printout of the contents of a data set.
Input must be on SYSIPT or SYS002. Output
goes on SYSOPT.

The PUNCH statement is used to have the
contents of a data set punched into cards.
Input must be on SYSIPT or SYS002. output
goes on SYSPCH.

The PRTPCH statement is used to have the
contents of a data set printed and punched
into cards. Input. must be on SYSIPT or
SYS002. output goes on SYSOPT and SYSPCH.

Utilities 89

DIRECTORIED DATA SET STATEMENTS

The CPYMEM statement is used to copy one
or more members of a directoried data set
into another directoried data set. Input
must be on SYSIPT or SYS002. output goes
on SYS003. A member is not copied if the
output directoried data set already con­
tains a member with the same name.

The PRTMEM statement is used to have one
or more members of a directoried data set
printed. Printing of each member starts on
a new page. preceded by information from
its directory entry or entries. Input must
be on SYSIPT or SYS002. Output goes on
SYSOPT.

The PCHMEM statement is used to have one
or more members of a directoried data set
punched into cards. Each member is preced­
ed by one header card (or card image) for
each of its directory entries. Each member
is followed by a /* end-of-data card unless
the ENDOUT option is used to specify a
different delimiter. The output format is
such that it can be used later on SYSIPT as
input for another copying action, if
desired. Input must be on SYSIPT or
SYS002. Output goes on SYSPCH.

The PPMEM statement causes one or more
members of a directoried data set to be
written as though both PRTMEM and PCHMEM
were specified. Input must be on SYSIPT or
SYS002. Output goes on SYSOPT and SYSPCH.

The PCHABS statement is used to copy
members of the phase library directoried
data set (SDSABS). Each member of the
phase library is an individual phase. The
whole library may be copied" or the INCL
and EXCL options can be used to designate
specific phases to be copied. The output
from PCHABS is suitable as input for system
construction and for the absolute loader.
It also may be used as input for the
linkage editor. (To copy phases from one
phase library to another" the statement
CPYMEM SIZIN=(720,720) with an appropriate
INCL or EXCL option should be used.) Input
for PCHABS is from SYSAB2. Output goes on
SYSPCH.

Allocation of input/output units is sum­
marized in Table 13.

GENERAL

ACCESS and ALLOC job control statements
are used as elsewhere to define data sets
and assign symbolic units.

90

Table 13. Input/Output Units

r------------T-------------T--------------, I Operation I Input I output I
~------------+-------------+--------------i I COpy I SYS002 I SYS003 I
I CPYMEM I I I
~------------+-------------+-----~--------~ I COPy* I SYSIPT I SYS003 I
I CPYMEM* I I I
~------------+-------------+--------------i I PRINT I SYS002 I SYSOPT I
I PRTMEM I I I
~------------+-------------+--------------i
,PRINT* I SYSIPT I SYSOPT I
I PRTMEM* I I I
~------------+--------------+--------------i I PUNCH I SYS002 I SYSPCH I
I PCHMEM I I I
~------------+-------------+--------------~ I PUNCH* I SYSIPT I SYSPCH I
I PCHMEM* I I I
~------------+-------------+--------------~ I PRTPCH I SYS002 I SYSOPT I
I PPMEM I I SYSPCH I
~------------+-------------+--------------~
, PRTPCH* I SYSIPT I SYSOPT I
I PPMEM* I I SYSPCH I
~------------+-------------+--------------i I PCHABS I SYSAB2 I SYSPCH I L ____________ ~ _____________ ~ ______________ J

No member names are cited in the ACCESS
statement when the directoried data set
utilities statements are being used. only
the name of the directoried data set is
given. The INCL and EXCL utilities options
specify which members should be copied.

The data set name and a member name are
cited in an ACCESS statement only when a
sequential data set utilities statement is
being used to copy a single member without
its directory entries. The member is then
treated as though it were a separate data
set.

The interpretation of a /* statement
depends upon when and where it is detected"
as follows:

1. When utilities control statements are
being read from SYSIPT, a /* statement
signifies the end of control statements
for an operation.

2. For an operation using the * notation"
such as COPY*" a· /* statement on SYSIPT
signifies the end of data unless the
ENDIN option has been used to specify a
different delimiter. If so" a /*
statement is treated as data.

3. For a directoried data set operation
using the asterisk notation, such as
PRTMEM*" a /* statement on SYSIPT indi­
cates the end of a member unless the
ENDIN option specifies another delimi­
ter. Therefore, the last input member

(

(-

must be followed by two delimiter
statements. one for end of member and
the other for end of data. If this is
not done" control statements following
the last input member on SYSIPT may be
treated as additional data.

UTILITIES OPTIONS

The options that may be invoked in
utilities control statements are discussed
in this section. Any number of options may
be specified in a single statement.. Table
1q shows the permissible options by state­
ment.

Options may be specified in any order.
If no options are specified, the indicated
default options are assumed.

There are two formats for the utilities
options. The first uses a keyword followed
immediately by an equal sign followed
immediately by a parameter selected by the
programmer" such as SIZIN=(SO,l). Other
options require only a single word parame­
ter. The parameter IGRED, for example,
informs the system that the redundancy
option is being exercised to indicate that
copying should continue if an irretrievable
read error is encountered,.

Control Characters

Records that are being copied may con­
tain special characters to control printers
and card punches. These characters specify
carriage spacing, page ejection, stacker
selection, etc.

The American Standards Association con­
trol characters are shown in Table 10 in
the "Input/Output Supervisor Calls" section
of this publication. One of these charac­
ters may be included as the first byte of
each logical record in a data set. When
the proper utilities options are specified"
this character is used for physical control
of the output unit.

A programmer indicates the presence of a
control character by specifying either the
CTLASA or CTLCHR parameter in a LABEL
statement. This LABEL statement must
immediately follow the ACCESS or ALLOC
statement for the output data set. If
either of these parameters is specified" it
is noted in the data set·s file control
block and the system uses the character in
its input/output operations.

For printing, the presence of a forms
control character is indicated by using the
SPACE=P option. The first byte in each
logical record is then used to control the
printer. If SPACE=P is not specified, the
character is copied as part of the data
record.

For card punching, the option SIZOUT=81
is used when input records contain a stack­
er selection character that is not truncat­
ed during copying. The system then assumes
the first character in each output record
is a control character that is not to be
punched,.

Control Options

* The * notation indicates that input is
on SYSIPT. If this notation is
used. input must be on SYS002.
notation is included as part of
operation field of the utilities
trol statement. It is written,
example" as COPy* or PCHMEM*.

not
This
the

con­
for

The asterisk notation generally is
used when input is in the form of
punched cards or card images. System
unit SYSIPT can read both the utili­
ties control statements and the data
set to be copied.

For directoried data sets, input must
be in the form produced by PCHMEM.
This means each member must be preced­
ed by one or more header cards" wi th
each card containing the information
for a directory entry. (The "System
Output" section contains an illustra­
tion of a header card.) Each member
must be followed by a /* end-of-data
statement or a delimiter defined by
the ENDIN option. If the * notation
is used,. neither the INCL option nor
the EXCL option can be used to indi­
cate which members should be copied;
the entire data set is copied.

Job control statements Option

This option instructs the system what
to do if it encounters a job control
statement other than the /* end-of­
data statement.

A job control statement" other than
/*, has no meaning to the utility
program. If a statement appears. the
program assumes it either represents
an error or it is part of the input
data set that is to be copied into the
output data set.

Utilities 91

Table 14. Utilities Options

r-------------T------r-------T-------T--------~-------T--------r--------T------T-------,
I Option I COpy I PRINT I PUNCH I PRTPCH I CPYMEM I PRTMEM I PCHMEM I PPMEMI PCHABSI
~-------------+------+-------+-------+--------+--------+--------+--------+------+-------~

I I I
• x I x x I x I x x x x

I I I
Job control X I X X 1 X I X X X X

I
Redundancy X I X X X X X X X X

I
OPENIpS. X I X X X X X X X

I
OPENOP X X

CLOSIpS. X X X X X X X X

CLOSOP X X

ENDIN X X X X X X X X

ENDOUT X X X X X X X X

SIZIN X X X X X X X X

SIZOUT X X X X X X X X

TRUNC X X X X X X X X

PAD X X X X X X X X

START X X X X X X X X

SEQIN X X X X X X X X

SEQOUT X X X X X X X X

FILL X X X X X X X X

MODE X X

SPACE X X X X

Numbering X X X X

Type X X X X X X X

HEAD X X I X X
I

LINES X X I X X
I

INCL I X X X X
I

EXCL I I I X X X X X
~-------------~------~-------~-------~--------~--------~--------L--------~------~-------i I 1This option does not apply when input is on SYSIPT. I L ___ J

92

One of the parameters IGJCL or ABJCL
is specified.

IGJCL instructs the system to copy the
job control statement from the input
to the output data set. The ABJCL
parameter instructs the system to ter­
minate the operation if a job control

statement is detected. If the state­
ment was on SYSIPT,. the job control
processor is called to act on it.

If neither parameter is specified"
IGJCL is assumed if the input data set
is on SYS002. ABJCL is assumed if the
input data set is SYSIPT.

-- ----~----

',,-j

...

I'r' "'"

\, ;.';./

(
Redundancy

This option indicates whether copying
should proceed or terminate if an
irretrievable read redundancy is
encountered.

One of the two parameters, IGRED or
ABRED" is specified,.

If IGRED is given, the block contain­
ing the read error is copied as trans­
mitted and copying of the rest of the
data set proceeds. ABRED indicates
that copying is to stop if an irre­
trievable read error is encountered.

If neither parameter is given, ABRED
is assumed.

Example:

The purpose is to copy a deck of punched
cards onto magnetic tape.

//SAMPLEl JOB

//SYS003 ALLOC SETNAME,2400=FRESH

// EXEC UTILS

COPy*

(Cards to be copied)

/*

/&

This example assumes that SYSRDR and
SYSIPT are assigned to a card reader data
set that contains the control statements
and the cards that are to be copied. It
further assumes that the output magnetic
tape data set is not to be labeled.

SETNAME is the name being assigned to
the magnetic tape data set.

2400=FRESH requests a fresh magnetic
tape. The system writes a message
instructing the operator where to mount it.

Qpen_and Close Options

The following options are used to open
and close the input and output data sets.
In' general, they enable a programmer to
specify whether a data set should be repo­
sitioned before or after a copyinq action.

These options correspond with the
options an assembler language programmer
has when he issues an OPEN or CLOSE super­
visor call.

Repositioning may be requested when
opening or closing a data set. A direct
access data set is positioned to a point
just before its first data block for either
opening or closing. A magnetic tape, when
opened, is positioned similarly, but on
closing, it is rewound or rewound and
unloaded.

In most cases, the alternative to repo­
sitioning a data set is to leave it exactly
as it is,. This might be done when a data
set is being split into two or more smaller
data sets or when two or more data sets are
being combined into a single data set. For
example, part of data set A could be copied
into data set B as one utility action.
When the copying ended, both data sets
could be closed but data set A would not be
repositioned. In a subsequent copying
action, the rest of this data set could be
copied into data set C.

OPENIP
This option specifies whether an input
data set on SYS002 is to be reposi­
tioned when opened or left as it is.

Its format is:

OPENIP=I~f

where R means that it whould be repo­
sitioned, and S means it should stay
as it is.

This option does not apply when input
is on SYSIPT.

When input
option is
assumed.

OPENOP

is on SYS002 and this
omitted, OPENIP=R is

This option specifies whether an out­
put data set on SYS003 is to be
repositioned when opened or left as it
is.

Its format is:

OPENOP=~~f

where R means the data set should be
repositioned to its or1g1n, and S
means it should stay as it is.

This option may be used only with the
COPY, COPY*, CPYMEM, and CPYMEM*
actions. If it is not specified,
OPENOP=R is assumed.

CLOSIP
This
input

option
data

indicates whether the
set on SYS002 is to be

Utilities 93

reposi tioneQ" repositioned and unload­
ed" or left as it is when closed.

Its format is:

CLOSIP=~~~
where R means that the data set should
be repositioned when closed, S means
it should stay as it is, and U means
it should be repositioned and unload­
ed.

For tape" repositioning means rewind­
ing to load point, and unloading
involves a physical disconnection.
For direct access storage, reposition­
ing means repositioning to the origin
of the data set, and unloading
involves a logical disconnection so
that no input/output operations are
accepted for the symbolic unit
assigned to the data set until it is
reassigned,.

This option does not apply when input
is on SYSIPT.

When input
option is
assumed.

is on SYS002 and this
omitted, CLOSIP=R is

CLOSOP
, This option specifies whether an out­

put data set on SYS003 is to be
repositioned, repositioned and unload­
ed~ or left as it is.

Its format is:

CLOSOp=l~t
where R means reposition, S means it
is to stay as it is, and U means it is
to be repositioned and unloaded.

If there is an output data set on
SYS003 and this option is not speci­
fied, CLOSOP=R is assumed. This
option applies with only the COPY,
COPY*, CPYMEM, and CPYMEM* operations.

Delimiter Options

The delimiter options enable a program­
mer to specify one or two characters that
will appear at the beginning of a logical
record in the input data set. When these
characters are encountered in an input
record, copying of the input data set
terminates.

94

A hexadecimal zero (a 12-0-1-8-9 punch
in extended card code) must never be used
as a delimiter character.

ENDIN
This option specifies a
character delimiter
encountered in an input
nates a copying action.

Its format is:

ENDIN='c[c],

one or two
which" when

record" termi-

where c represents a delimiter charac­
ter specified by the programmer.

The delimiter character(s) must be in
the first byte(s) of a logical record.
When they are detected, copying stops.
The last record to be copied is the
logical record preceding the record
containing the delimiter characters.

This option may be used with the open
and close options to split a data set.

When the input data set is on SYSIPT
and this option is omitted, ENDIN='/*'
is assumed.

When this option is omitted and input
is not on SYSIPT, the end of the input
stream may be specified by the START
option. Otherwise., it is the end of
the data set.

ENDOUT
This option specifies a one or two
character delimiter that is to be
inserted at the start of a logical
record at the end of the output data
set.

Its format is:

ENDOUT='c [c] ,

where c represents a delimiter charac­
ter to be inserted.

The delimiter characters are inserted
as the first byte or bytes in a dummy
logical record. The remainder of this
dummy record is filled with blanks.
This dummy record immediately follows
the last regular logical record copied
into the output data set but it pre­
cedes any fill records that would be
added through use of the FILL option.

If this option is omitted., then
ENDOUT="/*' is assumed for PCHMEM and
PCHMEM* actions. No delimiter record
is produced for other operations.

(-

The purpose is to convert a single
direct access data set into two magnetic
tape data sets,. The characters /% at the
beginning of a record indicate where the
input data set is to be split .•

//SAMPLE2 JOB

/ /SYSO 0 2 ACCESS SETA, SDSD=' J'I'R7 0 3 I

//SYS003 ALLOC SETB,2400=FRESH

// EXEC UTILS

COpy CLOSIP=S,CLOSOP=U,ENDIN='/%'

//SYS003 ALLOC SETC,2400=FRESH

// EXEC UTILS

COPY OPENIP=S

/&

SETA is the name of the direct access
data set. SETB is the name of the first
magnetic tape data set, and SETC is the
name of the second magnetic tape data set.

'I JTR703' is the identification number of
a 2315 Disk cartridge volume containing the
data set to be copied.

/% are the delimiter characters in the
direct access data set.

It is assumed that the installation does
not use labels on magnetic tapes.

Since input is on SYS002. the IGJCL
option is assumed for any job control
statements in the data set being copied.

SIZIN
This field specifies the size of input
blocks.

Its format is:

SIZIN=j ~a, n) ~
I <, n) \

where a is the size of the input block
and n is the number of logical records
per block. If n is omitted. it is
assumed to be 1. If n is used, a must
be divisible by n.

The input block size may be omitted if

the * notation is used to indicate
that input is on SYSIPT. The system
assumes a block size of so bytes.

SIZOUT

TRUNC

This option specifies the size of the
output record blocks.

Its format is:

SIZOUT= {~b' m)~
(, m)

where b is the
block, and m is
per block. If m
assumed to be 1.
must be divisible

size of the output
the number of records
is omitted, it is
If m is included, b

by m.

For COPY and CPYMEM, if this option is
omitted, the system assumes the SIZOUT
size is the same as the SIZIN size.

For all print operations, m must be 1.
If b is omitted, it is assumed to be
either equal to the number of charac­
ters resulting from the SIZIN, TRUNC,
and PAD options or 120 if MODE=D is
specified.

For PUNCH, PCHMEM, PRTPCH,
if this option is
SIZOUT=(SO,l} is assumed.
option is specified, b must
SO or S1.

The TRUNC option indicates
logical record is to be
before it is copied.

Its format is:

TRUNC= ~~i, j)t
1<.j) \

or PPMEM,
omitted,
If this

be either

that each
truncated

where i is the index of the first byte
that is to be copied in each logical
record and j is the number of bytes in
each logical record to be copied.

If i is omitted, it is assumed to be
1, indicating that copying is to start
with the first byte of each logical
record. If j is omitted, the system
assumes that byte i and all bytes
following it in the logical record are
to be copied. All bytes outside the
specified boundaries are deleted from
the output record.

Utilities 95

PAD

START

96

For example., if TRUNC=(5,50) is speci­
fied, 50 bytes of each logical record,
starting with the fifth byte, are
copied,. Any other material in the
logical record is lost.

For directoried data sets, this option
does not apply to any directory
entries that are being copied.

This option is used to indicate that
each logical record should be padded
during the copying process.

Its format is:

~ k } PAD= ([kl , u)
([kl [,u] ,'h")

where k is the number of padding
characters to be inserted at the start
of each logical record, u is the
number of padding characters to be
added to the end of each logical
record" and h is the padding character
to be used,.

If either k or u is omitted, it is
assumed to be o. If h is omitted, it
is assumed to be a blank for printed
output and a 0 (hexadecimal '00'
bytes) for all else.

The size of the logical record, after
padding" cannot exceed the size indi­
cated in the SIZOUT field, unless HEX
is specified in the TYPE option field.
That is" for CHAR format, the number
of characters being copied plus the
number of padding characters must be
equal to the size specified for 'output
logical records. When HEX format is
specified, the output record size must
be equal to the number of characters
copied multiplied by 2 plus the number
of padding characters.

For directoried data sets, this option
does not apply to any directory
entries that are being copied.

This option can
certain logical
copying process.

be used to delete
records during the

Its format is:

where x specifies the first
record in the data set that
copied and y is the number of
records to be copied.

logical
is to be
logical

If x is omitted, it is assumed to be
'L If Y is omitted, the xth logical
record and all records following it
are copied. All logical .records
preceding the xth record are deleted
from the output data set.

SEQIN

This option applies to the input data
set as a whole. Copying may start in
the middle of one block and terminate
in another. Each member or data set
is considered separately. Records are
reblocked, if necessary in the copying
process.

For directoried data sets" this option
does not apply to any directory
entries that are being copied.

The SEQIN option indicates that each
logical record contains an identifi­
cation field for sequence checking.

Its format is:

~ p f SEQIN= (p [,q])
(p, [q], , ident')

where p identifies the first ~yte of
the identification field, q ~s the
number of bytes in the field, and
'ident' is a group of one or more
fixed characters appearing in the
left-most portion of every identifi­
cation field.

The 'ident' characters are identical
in each logical record identification
field and usually would be followed by
a sequence number, such as RECOOOS,
REC0006.

A value for p must be specified. If q
is not specified, the system assumes
the field extends from the pih byte to
the end of the logical record. When
both p and an 'ident' field are speci­
fied, p designates the first byte of
the 'ident' field. When the 'ident'
field is omitted, p designates the
first byte of the sequence number.

Specifying this option causes the sys­
tem to perform sequence checking.
out-of-sequence records are reported
on SYSLST, but copying is not other­
wise affected. The identification
field is reproduced in the output
records unless it is removed or
replaced through the use of other
options.

For directoried data sets, this option
does not apply to any directory
entries that are being copied, but

(

(

numbering is expected to continue from
member to member.

SEQIN is not permitted if the MODE=D
option is specified.

SEQOUT

FILL

This option creates an identification
field for sequence checking of output
records.

Its format is:

~ r f SEQOUT= (r,s)
(r,[s],'ident'

where r indicates where the first byte
of the identification field ~s to be
inserted, s is the number of bytes in
the field, and 'ident' specifies a
series of one or more characters that
are to be inserted in the left-most
portion of the identification field in
every logical record.

An identification field is superim­
posed in the indicated position of
each output logical record. The
sequence value is incremented by 1 for
each logical record copied. The size
of the logical record ~s not changed.

If this option is used in a PCHABS
statement, r must be 73.. If s is
included, it must be 8. The 'ident'
field" if used, may contain any char­
acters. This could be written:

SEQOUT=(73,8,'PHSE1')

This causes an eight characters iden­
tification field, starting with PHSE1,
to be written in the last eight
columns of the punched card or card
image output.

For directoried data sets, this option
does not apply to any directory
entries that are being eopied, except
when PCHABS is used. Numbering con­
tinues from member to member.

SEQOUT is not permitted if the MODE=D
option is specified.

The FILL option is used to specify a
character to be used for augmenting
the final block when the number of
logical records it contains is not an
exact multiple of the blockinq factor.

Its format is:

FILL='f'

where f is the character to be used.

The programming system requires that
all blocks within a data set be the
same size. Manipulation of records
during the copying process sometimes
creates a situation where the final
block does not contain enough logical
records to make up a complete block.
In such cases, the block is filled on
the end with enough records containing
the fill character to bring it up to
the same size as other blocks.

If fill is required and this option is
omitted, the last block is padded with
binary zeros.

This option is disregarded if fill is
not needed.

Type
This option is used to indicate wheth­
er output is in character or hexadeci­
mal format.

One of the two parameters" CHAR or
HEX, is specified. CHAR indicates
character output, and HEX implies
hexadecimal.

If neither is specified, CHAR is
assumed.

Example:

The purpose is to copy part of a data
set from magnetic tape to punched cards.
The data set contains 300 logical records,
but only records 100 through 199 are to be
copied. They are to be truncated and
padded in the process.

//SAMPLE3 JOB

//SYS002 ACCESS SETD,2400='CRX545'

// EXEC UTILS

/&

PUNCH SIZIN=(240, 3). START= (100,100) ,
TRUNC=(,50),PAD=(,30)

X

SETD is the name of the data set to be
copied.

CRX545 is the identification number of
the volume containing data set SETD.

SIZIN=(240,3) indicates that the input
data set contains 240 byte blocks with
three logical records per block. Since no
SIZOUT option is specified, and the opera­
tion is PUNCH, SIZOUT=(SO,l) is assumed.

START=(100,100) indicates that copying
is to start with the 100th logical record
in the data set and 100 records are to be
copied.

utilities 97

TRUNC={,SO) indicates that only the
first 50 bytes of each logical record are
to be copied.

PAD={,30) indicates that the 30 bytes on
the end of each logical record are to be
padded with binary zeros.

As in the previous example., a data set
is to be copied from magnetic tape to
punched cards. Each input record contains
a .sequence field in its last five bytes
that is to be checked. A new sequence
field is to be written in the output
records.

//SAMPLE4 JOB

//SYS002 ACCESS SETO,2400='CRXS4S'

// EXEC UTILS

PUNCH SIZIN={240,3),START=(100,100), X
SEQIN=C76,,'ID'), X
SEQOUT= (76.,,' IO ')

/&

The job control statements and the SIZIN
and START options are the same as in the
previous example.

SEQIN=(76,,'IO') indicates that the 76th
through 80th bytes of each input record
contain an identification field that starts
with the characters IO.

SEQOUT=(76.,'IO') indicates that a simi­
lar identification field is to be written
in each output logical record. The count
starts from 1.

~~t Format options

MODE

98

The MODE option designates a format
for print output.

Its format is:

MOOE=~ ~ f

where D indicates that the jata set is
to be printed in display mode, and L
causes printing in list mode.

In display mode, each logical record
starts on a new line with its block
and record number indicated. List
mode output provides one unlabeled
line for each logical record.

SPACE

If list mode is specified and the
logical records are too long for one
print line, an error message is writ­
ten and no copying is performed.

The mode of printing of PRTPCH and
PPMEM must be list.

If this option is not used, list mode
is assumed if the output blocks are
larger than the input logical records.
Otherwise, display mode is assumed.

By using the SPACE option, single,
double, or triple spacing can be
obtained for list mode printouts.
oisplay mode records always are single
spaced with a blank line between
blocks.

The SPACE option is used to specify
spacing for list mode printouts.

Its format is:

SPACE=g}

where 1, 2, and 3 indicate single,
double, or triple spacing and P indi­
cates that the first byte in each
logical output record is a forms con­
trol character. A programmer uses
such a character to specify a non­
standard printout operation. The
character is inserted as the first
byte in the channel command used to
print the record. (See SIZOUT
option.) P may not be specified for
PRTPCH or PPMEM.

If P is specified, the NUM, LINES, and
HEAD options may not be used.

This option is permitted only for data
sets printed in the list mode. If it
is not specified, single spacing is
assumed.

Numbering
The NUM option provides page numbering
for output printing.

One of the two parameters, NUM or
NONUM, may be specified.

If NUM is given,
page 1 and an
appears at the
succeeding page.

numbering starts on
incremented number
top right of each

NONUM indicates that no page numbering
is desired. NONUM is assumed if this
option is omitted.

(

HEAD

LINES

If NONUM is specified or assumed" and
either the HEAD or LINES option, or
both., is specified, each paqe of the
printed output contains one blank line
above the heading line.

The numbering option may not be used
if the SPACE=P option is specified.

This option supplies a standard head­
ing at the top of each page of printed
output.

Its format is:

HEAD=-heading'

where 'heading' represents the text of
the desired heading. As indicated.,
the heading must be enclosed within
single quote marks, which are not
included in the printed output.

If single quote marks are wanted in
the heading., they must be specified
twice. For example:

HEAD=-' 'USER' 's REPORT"·'

This would be printed as
REPORT' •

'USER'S

only one line of heading can be used.
Its length cannot be greater than the
size of an output block. It is print­
ed, left-adjusted, on each paqe.

A special form of this option may be
used when printing directoried data
sets. It is written:

HEAD="

When this is specified., the name of
the member currently being printed is
written at the top of the page. No
other heading can be specified if this
form is used.

The HEAD option cannot be used if the
SPACE=P option has been specified.

This option specifies the number of
lines to be printed on each page with
one logical record per line.

Its format is:

LINES=n

where n indicates the number of lines
desired per page.

This option may not be used if the
SPACE=P option has been specified .•

If the HEAD and NUM options are being
exercised to obtain a heading and
numbering on each page" the heading is
counted as one line on the page, but
the page number line is not counted.
If either the HEAD or NUM option, or
both, is specified, and the LINES
option is omitted, a page length of 56
lines is assumed.

Example:

The purpose is to print a direct access
data set.

// JOB

//SYS002 ACCESS SETM,SDSD='VOL005'

PRINT SIZIN=C720,9),IGRED,NUM, X
HEAD='June Status Report·,

/&

SIZIN=(720,9) indicates that input
blocks are 720 bytes each with nine logical
records per block. SIZOUT=80 is assumed.

IGRED instructs the system to continue
copying if an irretrievable read redundancy
is encountered.

The HEAD option causes the system to
print June status Report at the top of each
page.

The system assumes list mode., single
spacing, character format" and a page depth
of 56 lines.

Output is written on SYSOPT.

Example:

The purpose is to print a directoried
data set 1n which each logical record
contains a printer control character.

// JOB

//SYS002 ACCESS SETL,SDSD='VOL14'

PRTMEM SIZIN=<120.9),SPACE=P

/&

The entire directoried data set is writ­
ten on SYSOPT. If this is assigned to a
printer data set, printing is controlled by
the control character in each logical
record. The text of each member is preced­
ed by one line for each of its member
names.

Utilities 99

Member selection Options

EXCL

INCL

100

The EXCL option is used when copying a
directoried data set to exclude one or
more members and their directory
entries.

Its format is:

EXCL=name

EXCL= (name t, name ••• 1)

where name is the name of a director­
ied data set member that is not to be
copied,.

The names cited in this field may be
those of several different members.
If a member has more than one entry in
the directory, all its names must be
cited in this list if it is not to be
copied.

A member is not copied if the direct­
ory of the output data set already
contains an entry with the same name.
This member is copied" however, if it
has one or more names in the input
directory that do not appear in the
output directory and are not listed in
this field.

Names in this option field need not be
listed in any particular order. Nev­
ertheless, members are copied in the
order in which their entries appear in
the directory of the input data set.
(The INCL option must be used if
members are to be rearranged during
copying.)

No member is copied more than once in
a CPYMEM or CPYMEM* operation. regard­
less of how many directory entries it
has,. Any directory entries that are
not listed in this field are copied
with the member they represent.

If this option is specified. the *
notation and the INCL option may not
be used. If neither the EXCL option
nor the INCL option is given, the
entire directoried data set is copied.

The INCL option is used to coPy speci­
fic members of a directoried data set
and, optionally, to rearrange their
positions in the output data set.

A programmer can list each member to
be copied individually, or he can
specify a range of names. When the
range technique is used, the program-

mer lists two names, and the system
copies all members whose directory
entries fall between the two names
specified. Both techniques may be
used in the same option.

The format for the first technique" in
which members to be copied are listed
individually, is as follows:

I NCL=name

INCL=(name t, name, ••• 1)

All members whose names appear in this
list are copied. The members are
copied in the same order as their
names appear in the list. Directory
entries also are copied and are
entered in the directory of the output
data set or are printed or punched as
header statements for each member,
depending upon the operation.

The second technique is based upon the
order in which entries appear in the
directory. A range of names is given"
and all entries and members falling
within this range are copied. If an
asterisk precedes any name in this
list" the corresponding member is not
copied unless it has another name that
is included within the range. This
format is as fOllows:

INCL=[*lnamel-[*lname2

INCL=([*lnamel-[*lname2[,[*lname3-
[*lname4, •••• 1)

Each name in such a list is the name
of a directoried data set member. The
first name in each pair must appear
before the second name in the input
directory. Except for this, names may
be listed in any order, and they are
copied in the order in which they are
listed.

For example, an input directory may
contain the following entries:

NAMEA, NAMEA1, NAMEB, NAMEC, NAMED,
NAMEE, NAMEF, NAMEG, and NAMEH.

NAMEA and NAMEAl refer to the same
member.

If INCL=(NAMED-NAMEG" *NAMEA-NAMED) is
used, the following members are copied
in the order indicated:

NAMED, NAMEE, NAMEF, NAMEG, NAMEA1,
NMi'..EB, NAMEC.

NAMEH is not copied because it falls
outside both the specified ranges.
The member represented by NAMEA and

..

(

(:.

NA¥ffiA1 is copied, but the NAMEAentry
does not appear in the output direct­
ory because it was preceded in this
list by an asterisk. NAMED appears in
the list twice, but it is copied only
once; no member is copied if the
output directory already contains a
member with the same name.

It is possible, however, to copy a
member twice using this option. This
would happen if the following option
were specified:

INCL={NAMEA,NAMEH,NAMEA1)

In the output data set, NAMEA1 would
no longer be a name for member A. but
would represent a totally independent
member which happens to duplicate
NAMEA. If INCL={NAY~A,NAMEA1,NAMEH)
had been specified, the member would
be copi~d with both its directory
entries, but it would be copied only
once. If a member is to be copied
only once. its names must be listed
consecutively or omitted.

No member or directory entry is copied
if its name is not included in this
list or is not included in a range of
names in this list.

The two methods of listing names may
be combined, as in the following:

INCL=(NAMEA,NAMEC,NAMEE-NAMEH,
NAMEB)

This would result in the copying of
members NAMEA. NAMEC, NAMEE, NAMEF,
NAMEG, NA~~H, and NAMEB in that order.

For PRTMEM, if the name of the direc­
toried data set is one of the names
cited in the INCL option, tne input
directory is printed separately as
though it were a member. The HEX
option should be used since some
directory bytes are not otherwise
printable.

When the INCL option is specified.
neither the * notation nor the EXCL
option may be used. If neither INCL
nor EXCL is given, the entire directo­
ried data set is copied.

The purpose is to print selected members
of a directoried data set.

// JOB

//SYS002 ACCESS SETM,SDSD='ZAN55'

/&

PRTMEM I NCL={NAMEA, NAMEC, NAMEE-NAMEH, X
NAMEB),SIZIN=(320,4), X
MODE=L,SPACE=2,NUM,HEAD=", X
LINES=40

SETM is the name OT the directoried data
set. It is located on direct access volume
ZANSS.

INCL= (NAMEA,NAMEC,NAMEE-NAMEH. NAMEB) in­
dicates which members are to be printed and
the order of printing.

SIZIN=(320,4) means that block sizes are
320 bytes with four logical records to a
block.

MODE=L requests list mode.

NUM requests page numbering.

HEAD=" specifies that the name of the
member being copied is to be printed as the
page heading.

LINES=40 specifies a maximum of 40 lines
per page.

VOLUME UTILITIES

The volume utilities operations fall
into two categories: volume initialization
and disk organization. The initialization
functions apply to both disks and magnetic
tapes. The disk organization functions
provide listings of the contents of disk
volumes, identification of expired data
sets, and condensation to remove deleted
and expired data sets.

There are three volume utilities control
statements.

The INITIAL statement is for initializa­
tion of disk and magnetic tape volumes.
This involves assignment of volume serial
numbers, checking a disk for defective
tracks and assigning alternates for them,
and preparation of an initial volume table
of contents.

The INITIAL statement also is used for
assigning alternate tracks when defective
tracks are detected in a previously ini­
tialized disk volume.

The SQUEEZE statement updates the con­
tents of disk volumes. Expired data sets
are eliminated, and remaining data sets are

Utilities 101

shifted to
data sets
volume.

fill
toward

any gaps left bv deleted
the beginning of the

The MAP statement provides a listing of
the contents of a disk vol,,ume,. indicating
which data sets on it have expired and
which still are active. It also updates a
disk volume" s format 5 space management
label. This utility should be executed
before using any disk volume created under
another System/360 programming system.

INITIAL statement

The INITIAL statement prepares a volume
for use by the system.

For 1316 Disk Pack volumes. the surface
is checked for defective tracks, and, if
any are found, alternate tracks are
assigned. Home addresses and track des­
criptor records are written, and a volume
label and an initial volume table of con­
tents are written.

For a 2315 Disk Cartridge, the surface
is checked for defective tracks, and alter­
nate tracks are assigned, if necessary.
Addresses are assigned to the fixed- sec­
tors., and the volume label and an initial
volume table of contents are written.

For either type of disk, this statement
may be used to assign an alternate track
for a defective track in a previously
initialized volume.

For a magnetic tape volume, an ALLOC job
control statement must be used to assign
symbolic unit SYS003 to the tape to be
initialized.. A dummy data set name may be
used. The system uses information from the
ALLOC statement to write a volume label.
The system also writes a data set header
label. Finally" end-of-file ma-rks and a

trailer label are written, where necessary,
ana the tape is rewound.

When re-initializing a disk, as when
changing the size of the volume table of
contents, the system checks for unexpired
dat<;l sets. If any are discovered" it
writes a message asking the operator wheth­
er to proceed with initialization or termi­
nate the job step.

An INITIAL statement would have one of
the formats shown in Figure 10.

TYPE=xxxx
This field identifies the type of
device upon which the volume is mount­
ed.

The entry must be one of the follow­
ing:

SDSD Single disk storage drive
(2315 Disk cartridge)

1316 1316 Disk Pack mounted on a
2311 Disk Storage Drive

TAPE Any magnetic tape unit sup­
ported by the system

DVADR=cuu
This field indicates the
location of the volume to be
ized.

physical
initial-

The cuu field denotes its channel and
unit address, where:

c = 0 for the
channel

standard multiplex

c = 1 or 2 for one of the optional
high speed multiplex channels

uu = 00 to FE -- the unit address in
hexadecimal

r---,
I For disk: I
I I
I INITI~_L TYPE=xxxx,DVADR=cuu, VOLID='yyyyyy', VTOC=e I
~---i
IFor assigning an alternate track ,for a defective track on a previously initialized I
Idisk: I
I I
I INITIAL TYPE=xxxx,DVADR=cuu,VOLID='yyyyyy',TRACK=t I
~---i
IFor initializing a magnetic tape volume: I
I I
I INITIAL TYPE=TAPE I
l ___ J ,.4("' ..

Figure 10. INITIAL Statement '''L/

102

VOLID='yyyyyy·
This field
number to
volume.

is used to ass~gn a
a magnetic tape

serial
or disk

For previously initialized disk
volumes, this field is used to iden­
tify the volume. This applies when
the TRACK=t option is specified to
obtain assignment of an alternate
track for a defective track.

A serial number consists of UP to six
alphameric characters. These charac­
ters are left adjusted in the volume
identification field of the volume
label and padded on the right, if
necessary, with blanks. An identifi­
cation field containing only blanks is
acceptable .•

This serial number may be used to
identify the volume in ACCESS and
ALLOC job control statements when
referring to data sets on it.

When specified in the INITIAL state­
ment, the six characters of this field
must be enclosed in single quote
marks.

VTOC=e
This field indicates the number of
entries, e, that will be in the volume
table of contents. The value of e is
written as a decimal number.

The system uses this information to
determine how much space on disk
volumes must be reserved for the table
of contents. The value of e must be
at least 2 greater than the maximum
number of data sets that will be
stored on this disk.

The system does not permit a program
to create a new data set on a disk if
there is no space for its entry in the
volume table of contents.

TRACK=t
This field is used to assign replace­
ment tracks for defective tracks on a
disk.

Detection of a defective track causes
the system to cancel a job.. Any data
written previously on the track is
lost.

Defective tracks may be discovered
during an installation's routine oper­
ations. When this happens, the system
writes a message identifyina the bad
track. The address in this message is
used as the value of ~ in this state­
ment.

When an alternate is assigned., all
references to the defective track are
treated as referring to the alternate.

No alternate is assigned if the disk's
supply of alternate tracks has been
exhausted. The defective track is
never used again.

When this option is specified, the
VOL I 0 option must cite the volume
serial number that was assigned to the
disk when it was initialized. The
serial number cannot be changed at
this time.

SQUEEZE Statement

The SQUEEZE statement eliminates expired
and deleted data sets from a disk volume
and relocates remaining data sets to fill
any gaps.

This statement may be used only for data
sets on a 2315 Disk cartridge.

When the SQUEEZE statement is executed,
the system treats the space o~cupied by
expired and deleted data sets as vacant.
Expiration is based on the expiration date
specified in a LABEL job control statement
when the data set was created.

Remaining data sets on the volume are
shifted to fill any gaps left by the
expired and deleted data sets. They are,
in a sense., left adjusted so that all
vacant space in the volume follows the last
remaining data set. The order of data sets
in the volume is not changed.

Volume table of contents entries for
deleted or expired data sets and·old format
5 space management labels are zeroed out,
but the table of contents is not otherwise
affected.

Members of directoried data sets are not
affected unless the entire directoried data
set has expired or been deleted. Members
of directoried data sets are eliminated
with the DELETE and CONDENSE job control
statements.

The format 5 label for disk space man­
agement is updated to reflect the elimina­
tion of any data sets.

The statement's format is:

r---, I SQUEEZE DVADR=cuu,VOLID='yyyyyy' I 'L __ J

utilities 103

where the DVADR and VOLID entries
specified in the same way as for
INITIAL utilities statement. In this
the VOLID entry is the serial number
viously assigned to the volume.

MAP Statement

are
the

case,
pre-

The M~P statement provides a listing of
the contents of a disk volume.

The listing identifies all data sets
resident on the volume and indicates which,
if any, have expired.. Each data set is
identified by name, and its extent informa­
tion also is provided. {Name of data
set., type, extent number, low limit of
extent, high limit of extent, and expira­
tion indication.}

104

Execution of this statement also causes
the system to update the volume"sformat 5
space management label to reflect the cur­
rent status of the disk. This should be
one of the first steps in processing a
volume that has been in use under another
System/360 programming system.

The MAP statement also is valuable in
determining whether a volume contains any
data sets that have expired.

The statement"s format is:

r---, I MAP DVADR=cuu, VOLID=' yyyyyy" I L ___ J

where the DVADR and VOLID fields are speci­
fied in the same way as for the INITIAL
utilites statement.. The VOLID entry must
be the serial number previously assigned to
the volume.

f

There are two stand-alone disk initiali­
zation programs; one for 2315 Disk cartrid­
ges and the other for 2311 Disk Packs.
These programs are used to initialize disks
for use with the Model 44 Programming
System and to assign alternates for defec­
tive disk tracks.

These are self-loading programs that do
not operate under system control. They
perform the same functions as the system's
disk initialization utilities routines.

INITIALIZATION

Initialization includes checking disk
surfaces for defective tracks and assigning
alternates, writing horne addresses and
track descriptor records. and writing a
volume label and an initial volume table of
contents.

ALTERNATE TRACK ASSIGN~~NT

When the programming system discovers a
defective disk track that does not have an
alternate, it cancels the current job and
writes a message giving the location of the
defective track. A stand alone program can
then be used to assign an alternate for the
defective track. No alternate is assigned
if the disk's supply of alternate tracks
has been exhausted.

After an alternate has been
the programming system treats
ences to the defective track as
to the alternate track. The
track is not used again, but any
had been written on it is lost.

CONTROL STATEMENTS

assigned,
all refer­
referring
defective

data that

The stand-alone programs use only one
control statement, an INITIAL statement.
It has two forms, both of which are illus­
trated in Figure 11.

The first form, which requires a con­
tinuation card, is used for initialization.
The second is is used for alternate track
assignment.

STAND-ALONE DISK INITIALIZATION

The fields are as follows:

TYPE=xxxx

This field identifies the type of disk
to be initialized. Either 1316 or SDSD
must be specified.

DVADR=cuu

This field
tion of the
provides the
where:

specifies the physical loca­
disk pack. The cuu field
channel and unit address,

c = 0 for the standard multiplex chan­
nel.

c = 1 or 2 for one of the optional high
speed multiplex channels.

uu = 00 to FE -- the unit address
hexadecimal notation.

VOLID='yyyyyy'

in

This field is used to assign an iden­
tification code to the disk volume.

An identification code may consist of up
to six characters. 'I'hese characters are
left adjusted in the volume identification
field of the volume label and padded on the
right with blanks, if necessary.

When assigning an alternate for a defec­
tive track, this identification field is
used to ensure that the correct volume has
been mounted. If the identification code
in the statement and the code in the volume
label do not agree, the operator is given
the chance to cancel the job and mount the
correct volume.

VToc=e

The field specifies the number of
entries to be made in the volume table of
contents. The value of e is written as a
decimal number.

The program uses this information to
determine how much disk space to reserve
for the volume table of contents. The
value of e must be at least 2 greater than
the maximum number of data sets that will
be stored on the disk at one time.

stand Alone Disk Initialization 105

SYSLOG=cuu

This field is used to specify the physi­
cal address of a device to be used for
communication with the operator.

The cuu field is specified in the same
manner as for DVADR=cuu.

EDATE=yyddd

This field specifies an expiration date,
where yy indicates the year and ddd the day
of the year.

If the disk already contains data sets,
their expiration dates are checked against
this date. A message is written to the
operator when the comparison indicates that
a data set has expired. He has the option
of cancelling the job or of instructing the
program to continue and destroy the expired
data set. Data sets that have not expired
are not disturbed.

TRACK=cccchhhh

This field specifies the address of a
defective track.

When the programming system discovers a
defective track, its address is included in
a message to the operator. This address is
used as the value of cccchhhh.

Statement Format

The format for the INITIAL statement is
subject the same rules as the programming
system's utility statements. The operation
code, INITIAL, must be preceded and fol­
lowed by lt least One blank. No blanks are
permitted in the operand field, except as
part of the volume identification and in
the spaces preceding column 72 when a
continuation card is being used. A non
blank character in column 72 indicates that
a continuation card is being used. The
text in a continuation card must start in
column 16.

r---, I For disk initialization: I /".
~--/ '~-. ./
I 1 7 I
11 6 2 I
I INITIAL TYPE=xxxx, DVADR=cuu, VOLID="yyyyyy'. VTOC=e, x I
I SYSLOG=cuu, EDATE=yvddd I
~---~---~ IFor alternate track assignment: I
~--------.---~----------~ I INITIAL TYPE=xxxx,DVADR=cuu.VOLID='yyyyyy'.SYSLOG=cuu,TRACK=cccchhhh I L ___ J

Figure 11. Stand-alone Disk Program INITIAL Statement

106

(

This section contains information
the system's dump facilities and how
them. It also contains examples
various forms of output listings.
reports. and card formats produced
system.

about
to use
of the
status
by the

A programmer may request a listing of
the contents of the general registers and
main storage at any time during execution
of his. program. Similar listinqs may be
obtained at the end of the program. These
listings show the status of the system and
the program at the time the dump request is
made.

Use of the DUMP parameter on the JOB job
control statement provides a listing if a
program terminates abnormally. Termination
is considered abnormal when either the
system or the problem program issues a
CANCEL supervisor call. The system takes
this action when a condition. such as a
programming error. develops that requires
termination of the job before its planned
completion.

A dump can be obtained when a job
terminates normally if the dump routine
from the module library has been included
in the problem program. With this routine.
a programmer can also call for a dump at
any time during execution of his program
without stopping execution. The name of
this routine is BOAFDUMP.

The abnormal termination dump provides a
listing of the general and floating-point
registers and all of main storaqe. The
module library dump routine permits a pro­
grammer to specify which portions of main
storage should be listed.

The abnormal termination dump is in
hexadecimal format. Programmers using the
module library routine may specify any of
ten formats. and each section of main
storage may be listed in a different for­
mat.

DUMP ROUTINE

The module library dump routine has two
entry points.. DUMP and PDUMP. When the

SYSTEM OUTPUT

DUMP entry point is used, the routine
terminates the job step after providing its
listing. Use of PDUMP enables a programmer
to return to his program after the dump
with conditions exactly as they were when
the dump was requested. Except for this,
the routine functions in the same way
regardless of which entry point was used.

The entry point names. DUIV1P and PDUMP.
m~st be defined as external symbols in any
program using the routine,. If either of
the entry points is not used by the pro­
gram. it need not be so defined.

The dump routine is incorporated into
the program automatically during linkage
editing if one of the entry point names is
defined as an EXTRN unless the linkage
editor'S NOAUTO option has been specified.
With the NOAUTO option in effect. the name
of the routine or one of its entry points
must be given in an INCLUDE linkage editor
control statement.

The module library routine permits a
programmer to specify which portions of
ma1n storage should be listed, and he may
deSignate a ~ifferent format for each por­
tion. A programmer may change these speci­
fications each time he uses PDUMP.

A FORTRAN programmer enters this routine
with a CALL DUMP or CALL PDUMP statement
followed by variables indicating the areas
to be dumped and the format for each.

Assembler language programmers must pro­
vide certain additional information and use
the calling sequence discussed in the fol­
lowing text.

Assembler Language Coding

To use the dump or any other FORTRAN
library subprogram, an assembler language
programmer supplies an entry address, a
parameter list, and a save area. The
following conventions must be observed:

1. Register 15 must contain the address
of the library routine'S entry point.
For the dump program. this is the
address of either the DUMP or PDUMP
entry point.

2. Register
address.
minates

14 must contain a return
Except for DUMP. which ter­

the job step. the library

System Output 107

3.

routine returns to the address speci­
fied in this register.

Register 13 must contain the address
of a save area.

4. Register 1 must contain the address of
a parameter list.

5.. The save area must be aSl;:lembled on a
full word boundary. Its size depends
on the subprogram, but, in general, it
should be large enough for at least 18
words. The subprograms use this area
to store the contents of the general
registers and other information until
they are ready to return control to
the calling program.

6. The parameter list also must be
aligned on a full word boundary. It
consists of a series of four-byte
address constants. The last parameter
must have a 1 in its high-order bit to
denote the end of the list.

7. If information
registers is to
contents must
library routine

in the floating point
be preserved, their

be stored before the
is entered.

For additional information about general
use of the FORTRAN library subprograms, see
IBM §yste~/360 operating system, FOgTRAN IV
~~rY §~bprograms. Form C28-6596.

For the DUMP and PDUMP routines, the
parameter list contains address of the
areas to be listed and of the format for
the listing. Any number of areas may be
specified.

The first parameter gives the starting
address of the area to be listed. The next
parameter gives the address of the last
brte of this area. The third parameter
g1ves the address of the byte specifying
the format for the listing. Multiple areas
and formats may be specified.

There are no restrictions on the size of
the area to be listed, and it is not
necessary to specify more than one. If
none is specified, all of main storage is
listed.

108

The save area is used to store the
contents of the general registers. This is

-.t.he.....fJrst a~t.iotLtaken by the dump routine.

Register 13, which at this point con­
tains the address of the save area, is not
stored. Other registers are saved in the
order 14, 15, 0, 1, and on through 12.
When the PDUMP entry is used, these reg­
isters are restored before the routine
branches back to the main program.. The
PDUMP routine returns to whatever address
is in register 14. This usually would be
the first instruction after the branch
instruction that was used to enter the dump
routine.

Figure 12 contains an example of the
coding that could be used to enter the dump
routine so that it would return to the main
program when the listing is completed.

Dump Format Codes

Following are the codes used to specify
dump formats:

0 = hexadecimal

1 = LOGICAL * 1

2 = logical * 4

3 = INTEGER * 2

4 INTEGER * 4

5 = REAL * 4

6 = REAL * 8

7 = COMPLEX * 8

8 = COMpr~EX * 16

9 = literal

Listings using these formats are shown
in Figure 13.

,1~

''<L.-/

(

C-

r---,

SAVE
APDUMP
ADUMP
PARAM

Fl

EXTRN
EXTRN

LA
LA
L
BALR

LA
LA
L
BR

DSOF
DS
DC
DC
DC
DC
DC

DC
DC
DC
DC

DC

PDUMP
DUMP

l,PARAM
13,SAVE
15,APDUMP
14,15

l,PARAM
13,SAVE
15,APDUMP
15

18F
AL4(PDUMP)
AL4 (DUMP)
AL4(FIRST)
AL4 (LAST)
AL4(F1)

AL4 (BEGIN)
AL4 (FINAL)
XL1"FF'
AL3(FX)

XL1'00'

Define external symbols

Load parameter list address
Load save area address
Load PDUMP entry point address
Branch to PDUMP routine

Prepare for end of job dump

Define save area
Adcon for PDUMP entry point
Adcon for DUMP entry point
Define first area to be listed

Address of format byte for first area

Define last area to be listed

Identify last word in parameter list
Address of format byte for last area

Request hexadecimal listing

I
IFX DC XL1'09' Request literal format listing I
J I
I I
I I
I I L __ - ________________________ J

Figure 12. Sample Calling Sequence for Module Library Dump Routine

System Output 109

CALL PDUMP WITH HEXADeCIMAL FORMAT SPECIFIED

00A3EO ~85F5£10 00000000 ~a5F5eto 10000000 ~2100000

OoGDea ~2BOOOOO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ',00000000 00000000 00000000
006DFa COOOOOOO 00000000 ~1200000 ~I 566666 OOOOOOOC ~1100000

CALL PDUMP WITH LOGICAL.I FORMAT SPECIFIED

006EIE T F \
CALL PDUMP WITH LOGICAL.~ FORMAT SPECIFIED

006EIO F T

CALL PDUMP WITH INTEGER·2 FORMAT SPECIFIED

006E18 10

OOGEIA -100

006EIC 10

CALL PDUMP WITH INTE&ER·~ FORMAT SPECIFIED

006~20 I 2 3 ~ 5 G 7 a 9 10
006E~a 11 12

CALL PDUMP WITH REAL·~ FORMAt SPECIFIED

006EOO (I.20000000E 01 0.53999996E 01

CALL PDUMP WITH REAL.a FORMAT SPECIFIED

OOGoca 0.17599999999999990 03

CALL PDUMP WITH COMPLEX.S FORMAT SPECIFIED

006DDO (3. OOOOOOO,~. 0000000) (~.ooooooo,a.oooOOOO)

CALL PDUMP WITH COMPLEX.16 FORMAT SPECIFIED

006DEO (0.9999999999999990,0.999999999999~990) (-0.9999999999999990, -0.9999999999999990)

CALL PDUMP WITH LITERAL FORMAT SPECIFIED

006E5C THIS ARRAY CONTAINS ALPHAMERIC DATA

Figure 13. Sample Dump Listings

110

I ..

(

;aMPLE LISTINGS

The re~ainder of this section
sample output listings. Figure 14
assembly listing and Figure 15
linkage editor listing.

contains
shows an
shows a

ASSEMBLER LISTING

The following text is keyed to the
listing shown in Figure 14.

1. Job Gontrol statements are listed.

2. A message indicates the time of day,
in hours" minutes, and seconds. that
execution of the job started.

3. The external symbol dictionary lists
each entry point,. control section
name, and external reference in the
module. The dictionary indicates its
type,. ESD identification number,
assembled address, and length.

4,. Error flags and their severity codes
are listed in this column. The number
at the left is the highest severity
encountered in the statement.

5. The location counter column indicates
the relative addresses assigned by the
assembler.

6. The OBJCODE and ADDR columns iist the
hexadecimal object code generated by
the assembler for each machine­
executable statement. If the
statement contains errors" portions of
these fields may be filled with zeros.

7. Program statements are numbered
cutively in the listing even
some of them do not generate
code.

conse­
though
object

8.

9.

Each statement in the source program
is listed •

These are job control comments state­
ments used" in this case,. to aid
program documentation. The source
program statements also may contain
comments that would appear on this
listing to the right of the statement.

10. This literal origin code was generated
by the assembler.

11. The relocation dictionary contains RLD
card information. This includes the
relocation and position identifiers,
the RLD card flags" and the assembled
address. This is used by the linkage
editor to identify address constants
and their positions in the module.

12. The cross reference dictionary lists
each unique symbol used in the pro­
gram. The DEFN column gives the num­
ber of the statement that defines the
symbol, and the REFERENCES column
gives the number of each statement in
which the symbol appears in the oper­
and field.

13. The following information is provided
at the end of an assembly listing:

a. The identification codes
system error conditions
tered during the job step~

of any
encoun-

b. The highest error severity report­
ed during the assembly.

c. The number of entries in the
assembler"s symbol table.

d.

e.

The number of statements receiving
error flags,.

The statement numbers of up to 15
statements that were flagged.

System output 111

I
I
i
1
~

I:

l

CD
//SAMPLE JOB DUMP f2\
IA55! 000020 ~
//MOD15 EXEC ASSEMBLECSYMBM!N/ERRO~"

Figure 14. Assembler Listing
(Part 1 of 5)

112

1" ______

/',,,. "

(

(

(-

EXTERNAL SYMBOL

SYMBOL TYPE ID ADDR LENr.TH LD ID

EOF ER 01 000000
ERR ER 02 000000
NODTMT ER 03 000000
IRQST ER 04 000000
ANALYS SD 05 000000 000060
SAVE LD 000034 05
CONTER LD 000030 05

Figure 1Q. Assembler Listing
(Part 2 of 5)

DICTIONARY CD

System Output 113

CD CD ~ CD CD
FLGS L.CTR OBJCODE ADDR STMT SOURCE STATEMENT ,r--,

0~ x THIS IS A SAMPLE OF THE COMMENTS THAT CAN BE INCLUDED IN AN ASSEMBLY ~-'/
x LISTING FOR PROGRAM DOCUMENTATION

3 x
4 x
5 ENTRY CONTER
6 ENTRY SAVE
7 EXTRN EOF
8 EXTRN ERR
9 EXTRN NODTMT

10 EXTRN IROST
000000 11 ANALYS CSECT
000000 05AO 12 BEGIN BALR 10,0 COMMENTS ALSO MAY BE 0

~
000002 13 USING ",10 INCLUDED IN INDIVIDUAL 9
000002 5050 A032 00034 14 ST 5, SAVE STATEMENTS
000006 5850 A02E 00030 15 L 5,CONTER

2 = OOOOOA 5A50 0000 00000 g A 5, =1
OOOOOE 5050 A02E 00030 ST 5,CONTER
000012 5850 A032 00034 18 L 5,SAVE
000016 50EO A032 00034 19 ST 14,SAVE

20 " 21 ~c MAIN BRANCH TABLE
22 " 00001A 47FF AOIC 0001E 23 BC 15,CKCOD(l5)

00001E 07FE 24 CKCOD BR 14
000020 47FO A036 00038 25 BC 15,BEOF
000024 47FO A040 00042 26 BC 15,BERR
000028 47FO A04A 0004C 27 BC 15,BNODTMT
00002C 47FO A054 00056 28 BC 15,BIRQST

29 :c
000030 30 CONTER OS IF
000034 31 SAVE OS IF

A 000038 58 EO A03C 0003E 32 BEOF L 14,EOFA
00003C 07FE 33 BR 14
00003E 00000000 34 EOFA DC AL4(EOF)
000042 58 EO A046 00048 35 BERR L 14,ERRA
000046 07FE 36 BR 14
000048 00000000 37 ERRA DC AL4(ERR'>

A 00004C 58EO A050 00052 38 BNODTMT L 14, NODTMTA
000050 07FE 39 BR 14
000052 00000000 40 NODTMTA DC AL4(NODTMT>
000056 58EO A05A 0005C 41 BIRQST L 14,IRQSTA
00005A 07FE 42 BR 14
00005C 00000000

®
43 IRQSTA DC ALII(IRQSn

+ 411 LTORG '.,1...,.,'-/
000000 liS END BEGIN

Figure 1l~. Assembler Listing
(Part 3 of 5)

/f'~\

'''-./

114

(

.'

(

® RELOCATION DICTIONARY

REL.ID POS .10 FLAGS ADDRESS

01 05 OC DOOD3E
02 05 DC DOOOItS
03 05 OC 000052
Dit 05 OC OODOSC

Figure 14. Assembler Listing
(Part 4 of 5)

System Output 115

CROSS~REFERENCE ~

SYMBOL DEFN REFERENCES ,'~-,

ANALYS 11
BEGIN 12
BEOF 32
BERR 35
BIRQST 41
BNODTMT 38
CKCOD 24
CONTER 30
EOF 7
EOFA 34
ERR 8
ERRA 37
IRQST 10
IRQSTA 43
NODTMT 9
NODTMTA 40
SAVE 31

::,: LAO 11 ERROR @A

45
25
26
28
27
23

5
34
32
37
35
43
41
40
38

6

15 17 .

14 18 19

@B
HIGHEST SEVERITY 12

3 STATEMENT FLAGGED IN THIS ASSEMBLY

@O 16 32 38 @E
1&

Figure lq. Assembler Listing
(Part 5 of 5)

116

',,-,J

@c
NUMBER OF SYMBOL TABLE ENTRIES 20

'.

(

(

•

(-

LINKAGE EDITOR LISTING

All modules referred to in this listing
were assembled in one or more previous
jobs. Some are resident in the module
library. MODULE statements are used to
enter the others into the SDSOOO system
data set.

The following text is keyed to the
listing shown in Figure 15.

1. Job control statements supplied by the
programmer.

2. Name of the program; taken from the
name field of the JOB statement.

3. The date.

4.. Each linkage editor control statement
supplied by the programmer is listed.

5. These REP statements are supplied by
the programmer. They are for the
module referred to by the immediately
preceding INCLUDE A.L statement. The
linkage editor alters the module as
indicated by the REP statements.

6. An error message. This one means that
there is no length in the last or only
control section in the module incorpo­
rated into the phase by the immediate­
ly preceding INCLUDE D,L statement.

7. The AUTOLINK notation is written by
the linkage editor. It identifies a
module that is being incorporated into
a phase as a result of an automatic
search of the module library.

8. This column of the linkage editor MAP
lists the phase names.

9. This column indicates the main entry
pOint of each phase •

10. - 11. These columns provide the
addresses of the first and last main
storage bytes used by the phase .•

12. This column gives the number of the
first block in the phase library where
the text for this phase is written.

13. This column identifies entry points
and control sections within the phase.
(If there were COMMON control sections
or unresolved external symbols, they
also would be indicated here.)

14. This column indicates the name the
programmer has assigned to the entry
point, control section. COMMON, or
external symbol.

15. This column provides the main storage
loading address of each entry pOint
and control section.

16. This column provides the relocation
factor for each control section. For
a COMMON entry., this column represents
the length of the COMMON control sec­
tion.

17. This notation indicates that the phase
was specified as a ROOT phase.

18. An asterisk indicates an entry point
that was defined but not referred to.

19. This message indicates the severity of
the most serious error detected during
the job step. If the severity is
greater than 4, the phases are not
retained in the phase library., and the
system will not accept them for execu­
tion.

Note: For the program that produced this
listing, the beginning of the problem pro­
gram area was set to 4FDO. This would not
apply with the version of the programming
system distributed by IBM.

system Output 117

IISAMPLE JOB
II EXECC!)LNKEDT(KEEP)

Figure 15. Linkage Editor Listing
(Part 1 of 3)

118

1
~j'

(

(

("-

67/134 CD
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST

ERROR

REP
REP
REP
REP

CD
KA04I

~lODULE A
MODULE B1 f.\
HODULE B2\V
MODULE C
MODULE D
MODULE E

CD
SAMPLE LINKAGE EDIT

PHASE TLE0013P1,ROOT,NOAUTO
INCLUDE A,L

00051A 001A066
000542 001A06A
000S6A 001A06E
000562 001ACB2

PHASE TLE013P2,*+400
INCLUDE B1,L
INCLUDE B2,L

CORRECTION 1
CORRECTION 20
CORRECTION 3
CORRECTION 4

PHASE TLE013P3,CSECT22(TLE013P2)+400,NOAUTO
INCLUDE C,L
PHASE TLE013P4,ENTRYC32 (TLE013P2)+1200
INCLUDE D,L

END

LIST
LIST
LIST
LIST
LIST

AUTOLINK CSECTC22

CD
PHASE TLE013P5,*-400
INCLUDE E,L

AUTOLINK CSECTC22

Figure 15.

ENTRY

Linkage Editor Listing
(Part 2 of 3)

System output 119

CD 0 ®
67/134 PHASE TRANSFER ADDR. LOCORE

ROOT TLE013P1 004FDO 004FDO

® TLE013P2 005E80 005E80

TLE013P3 006330 006330

TLE013P4 0064CO 006430

TLE013P5 006650 006650

LINKAGE EDITOR HIGHEST SEVERITY WAS 4@
/S

Figure 15. Linkage Editor Listing
(Part 3 of 3)

120

®
HICORE

005CEB
0064C7

006333

0067DF

006977

® ® ® ® ®
BLOCK NO. ESD TYPE LABEL LOADED REL-FACTOR

!" .',

397 CSECT CSECTC11 004FDO 004FDO
"l.../ 402 CSECT CSECTC21 005E80 005E80

ENTRY FIRSTC21 005E80
. ENTRY MIDDLC21 006010

ENTRY LASTC21 00619C

®*
ENTRY ENDC21 0061AO
ENTRY ENTRYC32 006010

CSECT CSECTC22 0061AO 005E80
ENTRY FIRSTC22 0061AO
ENTRY MIDDLC22 006330
ENTRY LASTC22 0064cO
ENTRY ENDC22 0064C4

405 CSECT 006330 006330

406 CSECT 0064CO 0064CO

CSECT CSECTC22 0064cO 0064CO * ENTRY FIRSTC41 0064CO
'" ENTRY MIDDLC41 006650
'" ENTRY LASTC41 0067DC
'" ENTRY ENDC41 0067EO

408 CSECT 006650 006650

CSECT CSECTC22 006658 006658
'" ENTRY FIRSTC41 006658
'" ENTRY MIDDLC41 0067E8
'" ENTRY LASTC41 006974
'" ENTRY ENDC41 006978

(

This section lists messages written by
system programs to the programmer. Such
messages may document the progress of a
job. indicate errors, or warn of possible
error conditions.

Each message has a five character for­
mat. The first two characters identify the
system program that is writing it. The
next two characters, both digits. indicate
which of several possible messages applies,
and the final character indicates whether
immediate action is required.

For example, in the message MA53I .• the
letters MA identify a linkage editor mes­
sage, 53 indicates which linkaqe editor
message, and the I means that the message
is for information only. When the final
character is A.. instead of I, some operator
action usually is required.. Operator mes­
sages are written on SYSLOG. Programmer
messages are written on SYSLST.

Some messages include descriptive text
in addi tion to the, code number. Some
usually are accompanied by another message
that provides additional information about
a condition..

In the case of errors. a message is
written as soon as possible after detection
of an error condition. Whenever possible,
a card image or descriptive text is provid­
ed to help locate the source of the error.
Many times a statement or action that
causes an error message would be all right
if it were not for a real error tpat
occurred earlier in the program but could
not be diagnosed as one by the system at
that time.

ASSEMBLER ERROR INDICATIONS

The assembler
an input source
violations of
rules and for
would interfere

examines each statement in
program. It checks for

the language's syntactic
gross inconsistencies that

with the assembly process.

When errors are found.. they are indicat­
ed by single-character flags in the first
column of an assembly listing. These flags
appear to the left of the statement causing
the error condition. The meaning of each
flag is explained in the following text.

At the end of an assembly listing.. there
is a count of the number of statements

flagged and the identification numbers of
up to 15 flagged statements. Another type
of assembler error message also may appear
at the end of a listing. These messages
use a five character code, such as LAOS!..
to identify system errors detected during
execution of the job step.

The discussion of errors in this section
applies only to the assembling of a pro­
gram. The assembler's UPDATE feature has
its own error messages which are shown in
Table 16 at the end of this section.

Assembler Diaqnostic Process

The assembler makes two passes over the
input program. The first pass scans the
free-format card image and transforms it
into an internal format. During this pass,.
it uncovers errors in punctuation, use of
terms" and the number of operands in a
statement.

The assembler also uses the first pass
to allocate main storage and assign loca­
tion values to symbols. For this reason,
some symbols must be self-defining or must
be defined before they are used in the
operand of a statement. For example, the
length specification and duplication fields
of a DC statement must be processed during
the first pass so that storage allocation
can be completed. Therefore, the assembler
must be able to evaluate immediately any
symbols that appear in these fields of a DC
statement.

The second pass completes the assembly
process. In this pass, the assembler
evaluates all symbolic terms and all
expressions that were not resolved during
the first pass. Errors that turn up during
this pass include undefined symbols" erro­
neous relocatability, and values that are
too large for their context.

When an error is detected in either
scan, the assembler issues a flag and stops
processing the statement. This means that
another error later in the same statement
may not be detected. Failure to process a
statement may generate new errors in other
statements. If .• for example, an error is
detected and the assembler stops processing
a statement that defines a term, all oth~r
statements using that term are considered
to contain an undefined symbol.

Messages 121

Error Flags and Severity

Error flags are shown in the first
column of an assembly listing to the left
of the statement to ,which they apply.
Occasionally" an error condition may gener­
ate more than one flag for a single state­
ment,. The first flag usually represents
the most serious condition.

Error conditions are ranked according to
severity. This represents an attempt to
evaluate the damage the error condition
represents to the program. The codes are
1" 2. 3. and 4,. One of these numbers
appears to the left of the error code or
codes for a line. It represents the
highest severity condition in the state­
ment. This could appear on a listing as
3 QN. when Q has a rating of 3 and N is
rated at 1.

A severity of 1 is a warning message.
It calls attention to a condition that
appears to be an error. Whether it is
actually an error would depend upon condi­
tions that prevail when the statement is
executed.

A severity of 2 is a more serious
condition. It usually applies to errors
that can generate other error conditions
throughout a large part of the proaram. An
assembled module containing errors of this
level will be accepted for linkage editing,
but it cannot be executed successfully
unless REP cards are inserted in the assem­
bler output module deck to correct the
errors. If the errors are not corrected
before linkage editing, the system will not
accept the edited module if an attempt is
made to execute it using an EXEC statement
with a blank program name field.

A severity of 3 is assigned to errors
that make the program impossible to exe­
cute.

A severity of 4 applies to
such as permanent input/output
affect the assembler"s ability
The job is cancelled.

conditions.
errors, that
to continue.

A message at the end of an assembly
listing notes the highest severity level
encountered during the assembly. This rat­
ing includes any of the LAxxI series of
system error messages that may have
occurred during the job step. (These mes­
sages are documented in the alphabetical
listings later in this section.) In this
message" the severity levels used for the
assembler flags are multiplied by 4 to
conform to system standards,. If the
highest severity flag is 2 and there are no
LA system errors. this message aives the
highest severity for the job step as 8.

122

Another message at the end of theassem­
bly listing gives the numbers of up to 15
flagged statements. This message is
intended to make it easier to find state­
ments containing errors. Only statements
that appear after a START instruction can
be included in this list.

Assembler Flags Summary Table

Table 15. which follows the list of
flags and their meanings. relates several
of the most serious error flags to the
requirement for each type of assembler
statement. The table is arranged by state­
ment type and. further, by operand type
within each statement.

Most of the assembler flags have a
general meaning. An F flag, for example,
means that that statement has an error in
format. such as incorrect punctuation. The
F flag columns of the table indicate the
major format requirements for each state­
ment. An erroneous statement can be
checked against this listing to locate the
cause of the error.

The nName Requirement" column indicates
whether the statement requires a name
field, whether the name field must be
blank. or whether a name is optional.

The nOperand" column indicates whether
the operand field of a statement must be a
term or an expression, must be blank, or
may. optionally. be blank.

An F or T flag is issued if an operand
is specified properly but is not one of
those indicated in the columns headed
"Types of Term Allowed." The F flag. in
this case. applies only to literals. The T
flag applies to normal symbols, self defin­
ing symbols, variable symbols. sequence
symbols, and the asterisk.

The "Leading Character" column indicates
when an operand field must start with
certain characters and it identifies the
required characters.

The nPunctuation Allowedn column indi­
cates the choice of characters that may
follow an operand. An F flag is issued if
other punctuation is used.

The "Relocation Requirement" column
indicates the permissible relocation attri­
bute for each type of operand.

The "Previously Defined Symbol Required"
column shows which operands must meet this
requirement. This means the symbol must be
defined by appearing in the name field of a

..

(

(-

statement or as the operand of an EXTRN
statement before it can be used in the
operand field of any other statement. This
is required so that the assemoler can
complete storage allocation in its first
pass.

An S or V flag is issued when the value
of an operand is greater than the limit
shown in the column "Maximum Value of
Operand." The S flag appears when the value
is required for the first pass. The V flag
appears for values required during the
second pass.

Flaqs and Their Meanings

The following text lists each error flag
and a description of the condition it
reflects. severity is indicated in paren­
theses following the description of the
error condition.

Error
Code

A

B

C

D

E

Description
An address in a machine instruc­

tion appears to have improper
boundary alignment. This is
not an error if, during execu­
tion, indexing is used to pro­
vide correct alignment. (1)

There is no base register within
the range needed to address an
operand of a machine instruc­
tion. The range of a single
base register is 4096 bytes.
(3)

A symbol contains more than 8
characters. (2)

A DROP statement refers to a
register that is not being
used. .Either the register was
dropped previously, or it was
never specified in a USING
statement. (1)

A proper register is not speci­
fied in a machine instruction.
(2)

1. A double-shift" full word
multiply or divide
instruction does not
specify an even numbered
general register.

A floating-point
tion does not
floating-point
0., 2" 4, or 6.

instruc­
specify

register

Error
Code

F
Description
A statement contains a format or

syntax error; the punctuation
following a term is erroneous"
the term cannot be classified,
or a multi-term expression is
specified incorrectly.

Term punctuation:

The punctuation following a
term is invalid for the type
of term. (2) (See summary)

An imbedded blank terminates
the operation code or operand.
(2)

Punctuation between terms is
missing. (2)

The operand is not followed by
at least one blank. (1)

Term classification:

An error exists at the start
of a term so that it cannot be
classified. (2)

A symbol starts with a numeric
character. (2)

The second character of a
variable symbol (where the
first character is &) or
sequence symbol (where the
first character is.) is not
alphabetic. (2)

Terms,. miscellaneous:

An operand, term" or expres­
sion is absent,. (2)

A term contains an error. (2)

A literal is used as an oper­
and where it is not allowed,.
(2) (See summary)

Expressions:

A multi-term expression is
used where only a single term
is allowed. (2) (See summary)

Punctuation other than + *
or / appears in an expression.
(2)

A multi-term expression con­
tains more than three terms.
(2)

Messages 123

G

H

I

Description
An expression starts with an
arithmetic operator. (2)

An expression contains two or
more operators in succession.
(2)

A multi-term or parenthetical
expression contains a literal.
(2)

Specific Instructions:

DC-DS: The type code cannot be
determined,. (2)

TITLE: The operand field does
not start with a '. (1)

The duplication or length speci­
fication field of a DC or DS
statement contains an error.

This flag is usually preceded by
another flag that identifies
the error more specifically.
(2)

1. The term or expression
specifying the length or
duplication factor is
written improperly.

2. The value of the duplica­
tion factor is greater
than 65,535.

3. The first
the length
(following
incorrect.

character of
specification
the L) is

4,. The length spec if ication
is greater than is
allowed for the indicated
type of DC or DS.

5. The length specification
is equal to zero.

The constant subfield of a DC or
DS statement contains an
error. This flag is often
preceded by another flag that
identifies the type of error
more specifically. (2)

Statement is ignored. This code
appears with another error
code that indicates the cause
of the action. (1)

Error
Code

J

K

L

M

N

Description
A statement

positioned.
(2)

is not
It is

properly
ignored.

1. ICTL: This is not
first statement of
program.

the
the

2. START: This statement
follows some other state­
ment that changes or
depends upon the setting
of the location counter.

An expression does not meet the
rules of relocatability.

1. An expression contains an
unpaired relocatable term
preceded by a minus sign.
(2)

2. An expression contains
more than one unpaired
relocatable term. (2)

3. A multiply or divide
operation involves a
relocatable term,. (2)

4. DC address constant: A
symbol in the constant is
defined within a DSECT.
(3)

5. ENTRY: The operand symbol
is the name of a state­
ment within a COM or
DSECT or is absolute.
(3)

A name field is present in a
statement that does not allow
one. The name field is
ignored. (1)

A symbol is multiply defined.
The symbol has been defined
elsewhere in the program as
the name of an assembler
statement or as the operand of
an EXTRN. (2)

The name field is erroneous. A
blank name is assumed. (1)

1. A name is not followed by
a blank.

2. A name contains an impro­
per character.

..

it" , /

Error
£QQ~

o

Q

R

(

Description
3. A name contains too many

characters.

4. A name starts with an
invalid character.

5. A name is composed of an
invalid term.

6. TITLE: A name field con­
tains more than four
characters~ some charac­
ters are not alphameric.

For CSECT or START. the sever­
ity for an erroneous name
field is 2 rather than 1.

The operation code is erroneous.
(2)

1. The operation code is
misspelled or unrecogni­
zable.

2. The operation code is not
followed by a blank.

3. The name field contains
an embedded ·blank or
starts after the Begin
column.

A statement that requires a cor­
rect name field does not have
one. Either the statement
does not have a name. or the
name was blanked out or
ignored because of an error.
(3)

1. CSECT or S'I'ART:
gram contains
one unnamed
START.

'.che pro­
more than
CSECT or

2. SETA or ANOP: The name
field does not contain a
correct symbol. (2)

An expression or term has an
incorrect relocation attri­
bute. (2) (See summary)

USING: A statement specifying
register 0 does not have a
relocatable address expres­
sion .•

Error
Code

S

Description
DC-OS A Type: A relocatable
expression is specified when
the length specification is 1
or 2.

The value of an expression is
out of range and is not used.
(2)

1. An expression has an
intermediate value great­
er than 231-1

2. An expression has a final
value greater than the
maximum allowed~ 22~-1
generally. or 223_i in
SETA and AIF operand
expressions.

3. A self-defining term has
a value greater than
216-1 when the operand is
required to be a single
term.

4. A self-defining term has
a value greater than
2 32-1 when the operand
can be an expression.

T The operand contains an invalid

U

term. (2) (See summary)

1. An operand is composed of
an improper type of term.

2. An error within a term
causes it to be misclas­
sified as another type of
term.

A statement contains
fined symbol. (2)

an unde-

1. The symbol does not
appear ~s the name of an
instruction or as the
operand of an EXTRN.

2. A statement that requires
previously defined sym­
bols contains a symbol
that has not appeared as
the name of an instruc­
tion or as the operand of
an EXTRN. (See summary)

For ENTRY, the severity is 1.

Messages 125

126

Error
Code

V

1

2

3

1

Description
The value of an expression or

term is too large. It has
been truncated. (2) (See
summary)

The value of a relocatable
expression is negative. (2)

Only one statement of this type
is allowed per assembly. (3)

A statement contains an improper
operand. (2)

1. CNOP: The w field is
neither 4 nor 8; or if w
is 4, b is neither 0 nor
2; or if w is 8" b is not
0., 2, 4, or 6.

2,. ICTL: The operand is
neither 1 nor 25.

The operand of an ORG statement
contains an error. (3)

1. The value of the operand
is absolute.

2 .• The value
refers to
different
tion.

of the 'operand
a location in a
control sec-

3. The value of the operand
is less than the original
address value of the con­
trol section.

DC-DS: The statement specifies a
constant value that is too
large or too small. (2)

There is an error at right end
of statement card.

1. Column 12 is not blank.
(1)

2.. The operand field is not
terminated correctly.
(2)

Mask bits 31 - 39 of a channel
command word are not zeros.
(2)

There
error
(2~

is a
within

parenthesization
an expression.

Error
Code

+

*

Description
1. An expression

more than one
parentheses.

contains
level of

2. A parenthetical expres­
sion has not been closed
with a matching right
parenthesis.

The program contains too many
statements of this type. (3)

1. ENTRY: The maximum
100.

is

2. For control sections" the
maximum is 255. including
CSECT, DSECT, COM, START"
and EXTRN.

A self-defining constant or
character string is incorrect.
(2)

1. A hexadecimal se1f-
defining term is longer
than six characters.

2. A character self-defining
term is longer than three
characters.

3. A self-defining term or
constant contains no
characters.

4.A character self-defining
term, DC constant, or a
TITLE character string
does not contain a clos­
ing or it contains an
unpaired &.

5. A hexadecimal se1f-'
defining term or constant
contains a non­
hexadecimal character.

The program contains too many
symbol table entries. (3)

1. The assembler's symbol
table is full. To
correct, use the symbol
table parameter on the
EXEC statement to request
a larger symbol table and
then reassemble; or
divide the program into
several assemblies.

(

(

(-

Error
£Qg~ Description

=

)

2. The symbol table was
found to be full while
processing a literal.

A literal is not properly speci­
fied. (2)

The program or one of its con­
trol sections is too oig. (3)

1. The assembler's location

Error
£Qg~ Description

2.

3.

counter
16,777,215.

exceeds

CSECT, COM, DSECT: The
length of the previous
control section exceeds
65,535 bytes.

END: The length of the
current control section
exceeds 65,535 bytes.

Messages 127

Table 15. Assembler Error Summary
(Part 1 of 2)

tatement type/
operand type

achine instructions
R1 and R2 fields

GO

IF

I and I2 fields

01 and 02 fields i'

S1 and S2 fields!

(X,B) subfield set

First arithmetic
expression

Relational operatQr

Second arithmetic
expression

Sequence symbol

OP

CCW
Command code
operand

Data address
operand

Flag operand

Count operand

CNOP
Byte operand

Word operand

COM

CSECT

DC/OS .
Duplication factor 9

128

Type code

Length speci­
fication 91

Address constantS

Other constants S

L, N, or Q Flag

Self

Flag

N

Name
Requirement

Norm Def Var
Operand Symb Symb Symb

N

N

Q

N

L

N

N

-~;~i~~~lrii--
Term NS

Expr NS

Expr NS

Expr NS

Term!! NS

Opt sequence Term
symbol

Opt sequence
symbol

Expr

Term

Expr

Term

Req sequence Blank
symbol

Optional

Blank

Optional

Optional

Term

Expr

Term

Term

Expr

Expr

Blank

NS

NS

NS

NS

NS

NS

lTerm!!
or
Expr ll NS

Term

lTerm!!
or
Expr!! NS

Expr NS

See manual"

SO

SO

SO

SO

SO

SO

SO

SO

SD

SO

SO

SD

SD

Dec
int

SO

Dec
int

SD

SD

VS

VS

VS

VS

VS

VS

VS

VS

VS

VS

VS

VS

VS

VS

VS

VS

Seq
• Symb Lit

•
*
*

55

55

* Lit

*

•

R
Flag

Lead Punct.
Char Allowed

Reloc
Rqmnt

L

L(

Blank or , Abs

Blank Abs

Blank or, Aba

Blank or , Aba or
reI

, or)

Blank

Blank

Blank

Blank

Blank

Blank

, or

or '

Aba

Abs

Abs or
·rel

Abs

Abs

Abs

Abs

Abs

Abs

Abso
reI

U
Flag V or S Flag 8

Prey
Def
Symb
Rqd

Yes

Yes

Yes

Yea

Maximum
Value of

Flag Operand

V 15

v

V

V

V

S

S

V

V

V

V

2

2

S

S

S

S

V

X'FF'

15

X'FF'

X'Fa'

6

a

65,535

65,535

See manual"

See manual"

22"_1

--------- ------ --- --- ---------------

«

Table 15,. Assembler Error Summary
(part 2 of 2)

L, N, or Q Flag F Flag ~~~~~~~~;~~;;;~~~~~~~~~I~~~-~~~~~:;;~~~~~~~ R
Flag

U
Flag V or S Flag

T'pes of Term Allowed

Self
statement typel

operand type
Name

Flag Requirement
Norm Def Var

Operand Symb Symb Symb

DROP L

DSECT Q

EJECT L

END L

ENTRY L

EQU Q

EXTERN L

ICTL L

LTORG N

ORG L

PRINT L

REPRO L

-----------------~~-----SETA Q

SPACE L

START N

TITLE

USING L
Address operand

Register operand

Footnotes:

Blank Term

Normal symbol Blank

Blank

Blank

Blank

Blank

Expr II

Term

Normal symbol Expr

Blank Term

Blank Term

Optional Blank

NS

NS

NS

NS

NS

Blank Expr I I NS

Blank Term

Blank Blank

Variable Expr
symbol

Blank Term I I

Optional 6 Term I I

Optional Char
(see manual)4 string

Blank
Expr NS

Term NS

SD

SD

SD

1 or
25

SD

SD

Dec
int

SO

So

So

VS

VS

VS

VS

VS

VS

VS

VS

VS

Seq
* Symb Lit

*

*

*

*

Lead
Char

-...:---

Punct.
Allowed

Blank

Blank

Blank

Blank

Blank

Blank

Blank

Blank or

Reloc
Rqmnt

Abs

ReI

ReI

Prev
Oef
Symb
Rqd

Abs or Yes
reI

ReI

ReI Yes

Maximum
Value of

Flag Operand

V 15

V

s

2 25

s

Blank S _2 23 to

+ (2 2 3_1)

Blank

Blank

Blank

Abs or
reI

Abs

-224:'1--------

S

V

V 15

1. For this type of operand the (index ,base) subfield set is optional. When it is present, 'the "punctuation allowed" column
refers to the character following the right parenthesis.

2. A literal does not allow the (index,base) subfield set.

3. These symbols are limited to specific ones required by the statement.

4. ~ System/360 ~ ~ Programming System, Assembler Language, Form C28-6811.

5. Most errors related to this operand will issue an H flag.

6. Optional, but there may be only one unnamed CSECT or START in an assembly.

7. If the type code cannot be determined, an F flag is issued.

8. Several, more specific flags may be issued for this error.

9. Most errors related to this operand will issue a G flag.

10. Any statement that allows an optional name field or requires that it be blank allows a sequence symbol in that field.

11. May be omitted. When the entire operand is optionally blank, comments must be preceded by a comma. If this is omitted,
the first word of the comments is treated as an operand.

Messages 129

Table 16. UPDATE Errors
(Part 1 of 2)

r-------------T-----------T-----------T-------------------------~----------------------,
I I Applicable I I I I
I I UPDATE I I I I
I Error Message I Instruction I Mode of Run I Meaning I Action I
~-------------+-----------+_----------t-------------------------t-----------------------i
INVALID INST IOMIT IUPDASMB1 IAn end-of-file was Istatement is ignored. I

I CPYTO I UPDASMB3 I encountered previously I I
I SKPTO I UPDATE2 I in the source input data I I
I I I set. I I
I ~----------t-------------------------t-----------------------~
I IUPDASMB2 IInstruction is invalid IStatement is ignored. I
I I UPDATE2 I for mode of run I I
I I I specified. I I
~-----------t-----------t-------------------------t-----------------------i
IREWND IUPDASMB2 IInstruction is invalid IStatement is ignored. I
I I UPDATE2 I for mode of run I I
I I I specified. I I
~-----------t-----------t-------------------------t-----------------------i
I ENDUP I.UPDASMB1 I Instruction is inva lid I An END card is I
I IUPDASMB2 I for mode of run I generated if one is I
I IUPDASMB3 I specified. Inot encountered. I

~-------------t-----------+_----------t-------------------------t-----------------------~
INVALID OPND ,NUM IUPDASMB1 IOperand is not a valid Istatement is ignored. ,

, I UPDASMB2 I serial number or is not , I
, I UPDASMB3 J blank. I I
I IUPDATE1, I I
I I UPDATE 2 I I I
~-----------t-----------t-------------------------t-----------------------i I OMIT I UPDASI'4B1 IOperand is not a valid I statement is ignored. I
I IUPDASMB3 ,serial number or is not I I
I I UPDATE1 I blank. I I
I I ~-------------------------t-----------------------i
, I IAn end-of-file was IUpdating terminates. I
I I I encountered in the source, I
I I 'input data set before thel I
I , I serial number was found. , I

~-----------+-----------t-------------------------t-----------------------~ CPYTO UPDASMB1 IOperand is not a valid Istatement is ignored. I
SKPTO UPDASMB3 I serial number. I I

UPDATE1 ~-------------------------t-----------------------~
IOperand is blank. Istatement is ignored. I
~-------------------------t-----------------------1
IOperand is equal to Istatement is ignored. I
I serial field. I I
~-------------------------t-----------------------1
IAn end-of-file was IUpdating terminates. I

..
lencountered in the source I I
linput data set. There is I I
'no statement with a ser- I I
I ial number that matches I I
I the operand of the UPDATE, I
, instruction. I I _____________ ~ ___________ L ___________ L _________________________ L _______________________ J

130

Table 16. UPDATE Errors
(Part 2 of 2)

r-------------T-----------T-----------T-------------------------~----------------------,
I I Applicable " I I
I , UPDATE I I I I
IError MessagelInstructionlMode of RunlMeaning I Action I
~-------------t-----------+_----------t-------------------------t-----------------------~
INVLD SERFLD INOM 'UPDASMB1 IAn end-of-file was Istatement is ignored. I

I I UPDASMB3 I encountered in source I I
I I UPDATEl ,data set, but there is nol I
I I Imatching serial number. I I
I ~-----------t-------------------------t-----------------------~
I IUPDASMB2 ISpecifying a serial IStatement is acted I
I IUPDATE2 Inumber is meaningless fori upon when encountered. I
I I I this mode of run. I I
~-----------t-----------t-------------------------t-----------------------~
I OMIT IUPDASMB1 Iserial field is blank. Istatement is ignored. I
I I UPDASMB3 I I I
I I UPDATE1 I I I
~-----------t-----------t-------------------------t-----------------------~
ICPYTO IUPDASMB1 IAn end-of-file was Istatement is ignored. I
I SKPTO I UPDASMB3 I encountered in source I I
'REWND I UPDATEl I data set., but no matching I I
I I Iserial number was found. I I
~-----------t-----------t-------------------------t-----------------------~
IENDUP ,UPDATEl IAn end-of-file was IUpdating terminates. I
, I I encountered in source , I
, , Idata set, but no matching I I
, I Iserial number was found. I I
I ~----------t-------------------------t-----------------------~
I I UPDATE 2 ISpecifying a serial Istatement is acted I
I I Inumber is meaningless fori upon when encounterea. I
I I I this mode of run. I I

~-------------t-----------+-----------t-------------------------t-----------------------i
ISEQUENCE ERR IOMIT IUPDASMBl IOperand is less than IStatement is ignored. I
I I 'UPDASt-C.J33 I serial field., I
I I I ~-------------------------t-----------------------~
I , , ,serial number is less ,Statement is processed I
I , I Ithan previous edit serial,but action depends ,
, , 'Inumber. lupon current serial in I
I I l ' I the source data set. I
I ~----------+-----------+-------------------------t-----------------------~
, ICPYTO IUPDASMBl IOperand is less than IStatement is I
I ISKPTO IUPDASMB3 Iserial field or serial I processed, seeking a I
I , IUPDATEl Inumber is less than Imatching serial I
, 1 I Iprevious edit serial. I number. I
I .-----------+-----------+---------------------...:---t-----------------------~
I I NUM I UPDASMBl I Serial number is less I statement is I
I 1 REWND I UPDASMB3 ,than previous edit I processed, seeking a I
I I IUPDATEl Iserial number. Imatching serial. I
, ~-----------t-----------+-------------------------+-----------------------~
I IENDUP IUPDATE1 ISerial number is less IStatement is processed I

I I Ithan previous edit seriallseeking a matching I
I I I number.. I serial number.. I
~-----------+_----------+-------------------------+-----------------------i
IEdit IUPDASMBl Iserial number is less IStatement is accepted I
Istatements IUPDASMB3 Ithan previous edit seriallas current edit input I
Ithat are IUPDATEl I number. ,statement. Action ,
I not UPDATE " 'depends upon the ,
, instruc- I' I current serial number ,
Itions I I lin source data set. I
I ~-----------t-------------------------t-----------------------~
I IUPDASMB2 ,Serial number is less IStatement is inserted ,
I IUPDATE2 Ithan previous edit seriallwhen encountered. ,
I I I number. I I _____________ ~ ___________ ~ ___________ ~ _________________________ L-______________________ J

Messages 131

SUPERVISOR MESSAGES

Supervisor messages ~ay appear at any
time during execution. They are written by
the systemWs supervisor.

F~OCI - ERR LDING MESS WRTR

An input/output
the system was
writer routine.

error occurred while
loading its message
The job is cancelled.

F~ODI - cuu NOT OPERATIONAL

where cuu is -the physical address of
an input/output device. An
input/output operation was requested
for a data set on a device that is not
operational. The job is cancelled.

F~OEI - cuu SNSE UN CHK

where cuu is the physical address of
an input/output device. A unit check
interruption occurred in response to a
sense operation on a device. The job
is cancelled.

FAOFI - cuu I/O PROG CHK

where cuu is the physical address of
an input/output unit. A program check
occurred during execution of an
input/output operation. This may be
the result of a zero count in a data
transmission request or an invalid
data address. The job is cancelled.

FA10I - xxxx CAN"T BE LOADED

where xxxx is the name of a system
routine. The routine is needed by a
system program. but it cannot be found
or it cannot be loaded because of an
input/output error on SYSAB1. The job
is cancelled.

FBOBI - OPRTR CNCLD

A job was cancelled by the operator.

FBllI - CNCL IN CNCL RTN

~ CANCEL was requested by the operator
while the system was executing a CAN­
CEL routine.

G~061 - PD LST FULL
LAST SVC PSW xxxxxxxx

132

where xxxxxxxx is the new program
status word for the last supervisor
interruption. Too many supervisor
calls have been issued in too short a
time. The job is cancelled.

GA071 - ILLEG CODE - SVC x

where x is an invalid code that was
used in a supervisor call. The job is
cancelled.

GA081 - xxxxxx CAN"T BE FTCHD

~here xxxxxx was used as the name of a
phase. The system cannot find any
phase with this name in the phase
library. The job is cancelied.

PROG CHK INT CODE x
HA021 - IN USER PROG CHK RTN

A program check developed during exe­
cution of a user's program check
interruption routine. x is the inter­
ruption code. The job is cancelled.

PROG CHK INT CODE x
HA031 - USER RTN NOT APPLICABLE

where x is the program check interrup­
tion code. On interruption codes 1
through 5, no user program check rou­
tine is entered. The job is can­
celled.

PROG CHK INT CODE x
H~041 - NO USER RTN SPECIFIED

Where x is the program check interrup­
tion code. There is no user program
check routine specified to handle this
type of program check. The job is
cancelled.

PROG CHK INT CODE x
HA051 - PSW xxxxxxxx IN SPVSR STATE

where x is the program check code and
xxxxxxxx represents a program status
word. A program check occurred in the
supervisor state. The PSW is the last
problem program PSW. Parameters in an
input/output list are not properly
aligned. The job is cancelled.

JAOAI - JOB CANCELLED

A job has been cancelled. An SVC 15
has been issued, either by the system
or by the problem program. If by the
system, another message usually
appears giving the reason for the
cancellation.

JOB CONTROL MESSAGES

Messages written by the system's job
control processor are distinguished by the
initial characters IA.

•

(

•

These messages are written on SYSLST.
In the following text. they are g~ouped by
type. Each group shares a common text
message. but the identification code dif­
fers to indicate the source of the error
condition.

When an error condition causes cancella­
tion of a job.. a dump of the general
registers and main storage is provided if
the DUMP parameter is specified in the JOB
statement.

The messages are as follows:

IAxxx - STMNT FMT ERR

This message indicates an error
of a job control statement. The
tion identifies the problem
specifically. as follows:

in the text
xxx por-

area more

IA011 - Control field. The first two
colums do not contain the proper char­
acters for a job control statement.
The job is cancelled.

IA02I - Name field. An invalid name has
been specified,. It may not be
appropriate for the statement. as when
something other than a symbolic unit
name is specified in the name field of
an ALLOC or ACCESS statement. The job
is cancelled.

IA031 - Operation field. The system does
not recognize the operation specified.
The job is cancelled.

IA041 - Operand field. Either no operand
field appears in a statement that
requires one,. or a required parameter
is missing,. The job is cancelled,.

IAOSI - Operand delimiter. An
character has been used as a
ter. The job is cancelled.

IA06I - Field size or count. A
is too long" or specifies an
table size, or there are
characters within a set of
sese The job is cancelled.

improper
delimi-

parameter
unaccep-
too many

parenthe-

IA07I - Operand field. The, operand field
contains a parameter that cannot be
recognized or that should not be used
in this statement. The job is can­
celled,.

IA08I - continuation error. The first two
columns of a continuation statement do
not contain the // characters, infor­
mation starts before column 16. or a
continuation statement is required but
column 72 is not punched. The job is
cancelled.

IA091 - VPS field. The VPS field of an
EXEC statement contains an invalid
entry. or a VPS setting has been
specified for a system that is not
equipped with this facility. The job
continues. but the parameter is
ignored.

IAxxx - STMNT SEQ ERR

This message indicates improper use of a
job control statement. The xxx portion
identifes the specific problem, as follows:

IA111 - A LABEL statement was misused. For
a tape or unit record data set, it did
not follow an ALLOC or ACCESS state­
ment. For a disk data set,. it did not
follow an ALLOC statement. Otherwise.
it appeared at an improper place in
the input stream. The job is can­
celled.

IA12I - An ALLOC statement for a direct
access data set was not followed by a
LABEL statement. The job is can­
celled.

IA13I - The system read a // statement that
is not a JOB statement and was not
preceded by a JOB statement. The job
is cancelled.

IA14I - The program name field of an EXEC
statement is blank and the job step
does not immediately follow a success­
ful linkage editor job step. or the
linkage editor reported an error sev­
erity level greater than 4. The job
is cancelled.

IA1SI - A DELETE. CONDENSE. or RENAME
statement refers to a data set that
was not cited in an ACCESS or ALLOC
statement previously in the job. The
statement is ignored.

IA16I - A data set or symbolic unit
referred to in the SAME=parameter
field of a LABEL statement was not
defined previously in the job and is
not a system data set. The job is
cancelled.

IA17I - An invalid statement appears among
the job control statements. or an EXEC
statement is missing. The job is not
cancelled.

IAxxx - VOL REQ ERR

The following messages apply to volumes
requested in ALLOC or ACCESS statements.

IA211 - The system has no record
volume or device referred to.
is cancelled.

of the
The job

Messages 133

IA22I - A request for
device cannot
enough devices of
able. The job is

a particular type of
be satisfied. Not
this type are avail­
cancelled.

IA23I - The volume field of an ACCESS or
ALLOC statement contains an entry that
cannot be resolved. The jOb is can­
celed.

IA25I - An attempt has been made to
the system residence volume.
is cancelled.

remove
The job

IA26I - A statement has requested assign­
ment of a device that is down. The
job is cancelled.

IA27I - The volume field of an ACCESS or
ALLOC statement specifies the address
of a device that was aSSigned to
another data set previously in the
same job step. The job is cancelled.

IA28I - A job control maintenance statement
has been detected for a data set on a
volume that is not mounted. The
statement is ignored.

IAxxx - DSNAME ERR xxxxxxxx

These messages apply to the names of data
sets and members. The name causing the
condition is printed with the message.

IA31I - The required data set cannot be
found in the volume specified,. The
job is cancelled.

IA32I - The required member cannot be found
in the data set specified. The job is
cancelled.

IA33I - The data set named cannot be found
in the system catalog. The condition
is ignored.

IA34I - The name specified for a data
duplicates the name of a data set
is already in the same volume.
job is cancelled.

set
that

The

IA35I - The name of directoried data set
member duplicates another name already
in the directory. The job is can­
celled.

IA36I - A data set name duplicates
name in the system catalog.
is cancelled.

another
The job

IA37I - The block length requested for the
data set is too large for the device.
The job is cancelled.

IA38I - An attempt has been made to close a
new directoried data set member that

134

was never
deleted.

written.

IA41I - INSUFF SP xxxxxx

The member is

where xxxxxx is a volume identifi­
cation number. This message indicates
there is not enough room on a disk
volume to permit a requested opera­
tion. The job is cancelled.

IA42I - INSUFF SP xxxxxx

where the x's represent a volume iden­
tification. The volume table of con­
tents of a direct access storage vol­
ume is full. No new data sets can be
added to the volume until some of
those already on it are deleted or, if
there is vacant space on the disk, the
volume table of contents is enlarged
through reinitialization. The job is
cancelled.

IA43I - INSUFF SP xxxxxxxx

where the x· 5 represent the name of a­
directoried data set. The directory
of a directoried data set is full. No
new members can be added until some
directory entries are deleted.. The
job is cancelled.

IA44I - INSUFF SP xxxxxxxx

where the x's represent the name of a
directoried data set. There is not
enough room in a directoried data set
to add another member, or there is not
enough room in a data set of any type
to write another block of data. The
job is cancelled.

IA45I - INSUFF SP CATLG

There is not enough space in the
system catalog to add another entry.
The job is cancelled.

IA46I - INSUFF SP JOBTABLE

The job control processor's working
space is full. The job is cancelled.
Either the size of the job must be
reduced or the size of the system's
SDSUAS data set must be increased
before the next run.

IA47I - INSUFF SP FCB

The system does not have enough space
in main storage to construct a file
control block for the symbolic unit
cited in an ALLOC or ACCESS statement.
The symbolic unit number may exceed
the number that can be handled at the
installation. The job is cancelled.

•

(

(

•

IASOI - ABN EOJ

The job did not include a /& end-of­
job statement. The job is cancelled.

lASSI - hhmmss

This message, appearing
statement, gives the
execution of the
expressed in hours,
onds.

after a JOB
time that the

job started,
minutes and sec-

IASSI - CUU RW RR RN PW PR PN

IAS9l - xxx x x x x x x

These messages report the number of
input/output errors detected during
the job. The count is listed in
columns by device. The cuu column
gives the device address: RW is the
number of recovered writinq errors:
RR, recovered reading errors: RN.
recovered non-data transmit errors;
PW" permanent frlriting errors: PR, per­
manent reading errors; and PN. perman­
ent non-data transmit errors.

IA611 - NEW NAME NOT CAT

A renamed data set cannot be catal­
oged. The name has been changed, as
specified in a RENAME statement, but
the new name cannot be entered in the
system catalog.

IA621 - SYSERR

An unrecoverable system
occurred.. The operator
tiate the initial program
cedure.

IA70I - DA FMT ERR xxxxxx

error has
must reini­

loading pro-

where xxxxxx is a volume identifi­
cation. A volume label is unreadable
or in an improper format. The volume
cannot be used by the system until it
is initialized by the Model 44 pro­
gramming system's utilities program.
The job is cancelled.

IA71I - DA FMT ERR xxxxxx

where xxx xxx is a
cation. A volume
changed during the
cancelled.

IA721 - DA FMT ERR xxxxxx

volume
label

job.

identifi­
has been
The job is

frlhere xxxxxx is a volume identifi­
cation. The volume table of contents
is not in the proper format. The
volume can not be used until it is
initialized by the Model 44 Program-.

ming System's utili ties program. The
job is cancelled.

IA73I - DA FMT ERR xxxxxxxx

where xxxxxxxx is the name of a data
set. A directoried data set request
has been made for a sequential data
set. The job is cancelled.

IA7SI - DISK I/O ERR

The system's standard error recovery
procedure has failed.. The system is
unable to write on a disk volume
during an access or allocate opera­
tion, either in handling the volume
table of contents or a data set. The
job is cancelled.

IA76I - DISK I/O ERR

The system" s standard error recovery
procedure failed while attempting to
recover an input/output error during a
DELETE operation. The job is can­
celled.

IA791 - NO CATLG

A cataloging request has been made but
cannot be executed because the system
does not have a catalog.

lA82I - JC INIT DONE

The system has just completed an ini­
t'ial program loading procedure.

IA861 - CAUTION JOB TBL FULL

The job control processor's working
space is full. This is only a warning
message. Any additional job control
statement will overlay a previous
entry. If this happens, some refer­
ences to data sets or symbolic units
mentioned in previous statements may
not be acceptable, and some symbolic
unit assignments may not be made. The
size of the job should be reduced, or
the size of system data set SDSUAS
should be increased.

IA.881 - SYSxxx cuu dsname volid

where SYSxxx is a symbolic unit name"
cuu is the unit's physical address,
dsname is the data set to which the
unit is assigned, and volid identifies
the volume containing the data set.
This format is used by the system in
responding to a LISTIO request.

IA89l - M cuu volid

frlhere M is an abbreviation for Mount"
cuu is a device address, and volid is

Messages 135

a volume identification code. A disk
device has just been assigned to a new
volume. . The operator can mount the
volume to prepare for the IA90A mes­
sage.

IA90A - M ALL REQ DISKS

This message instructs the operator to
mount all disk volumes requested by
preceding IA89I messages. When this
is done., he signals the system to
continue processing.

IA91D - VOL xxxxxx UNREADABLE

where xxxxxx represents a volume iden­
tification code. This message appears
after an IA90A M ALL REQ DISKS mes­
sage. It indicates that the system is
unable to read the volume label of a
disk that has been mounted. The oper­
ator can mount another volume.
instruct the system to ignore the
volume but continue operating. or can­
cel the job.

IA92I - JCT OFLOW

A LABEL statement uses the SAME
parameter, but the reference cannot be
resolved because the job control
processor's working space was filled
earlier in the program. This message
follows an IA86I CAUTION JOB TABLE
FULL message. The job is cancelled.

IA93I - OPEN ERR SYSxxx

where SYSxxx identifies a system unit.
An error was detected while job con­
trol was opening a data set on the
specified system unit. The data set
is not opened., but processing contin­
ues.

IA94I - CLOSE ERR SYSxxx

where SYSxxx identifies a system unit.
An error was detected while job con­
trol was closing a data set on the
specified system unit. The data set
is not closed, but processing contin­
ues.

LINKAGE EDITOR MESSAGES

Linkage editor error messages are writ­
ten on SYSLST during the linkage editing
job step. These messages apply to the ESD.
TXT. REP" RLD. and END statements produced
by the language processors and the linkage
editor control statements.

136

In most cases., an error message is
accompanied by a listing of the statement
containing or causing the error. The
"System Output" section of this publication
contains a sample of these listings.

Some of the statements reproduced in an
error listing do not correspond exactly to
the actual input statement. This is
because the linkage editor does some proc­
essing of the statements in the statement
input area, and some fields have been
altered by the time an error is detected.
This applies mainly to the byte count,
length, and type fields of the ESD state­
ment. In no case, however" should there be
any problem identifying the statement.

For TXT and RLD cards, only the first 36
columns of the variable field are printed.
For a REP card error., other than a sequence
error, the error code is printed immediate­
ly after the REP card listing. The nota­
tion FOR REP CARD is printed next to the
error code.

Error messages fall into three categor­
ies:

1. Warning Messages. These are produced
to call a programmer's attention to a
condition that mayor may not rep­
resent an error. They do not affect
continuation of the job step.

2. Severe Errors. These messages are
written when the linkage editor
detects errors that would prohibit
successful execution of the program.
Linkage editing continues, but its
output is flagged so that it will not
be accepted for execution.

3. Termination Messages. These messages
are written when conditions develop
that require immediate termination of
the job. Most of these are not the
fault of the program, but represent an
inability of the system to continue
functioning properly.

Most of these messages are written in
the format KAxxI, where KA identifies a
linkage editor error message, xx represents
a numeric code identifying a particular
message, and I means the message is for
information. A few messages are written
out" as discussed in the following list of
numeric codes and their corresponding mes­
sages.

The last line of any linkage editor
listing contains the message LINKAGE EDITOR
HIGHEST SEVERITY WAS xx, where xx indicates
the severity level., as follows:

o indicates no significant errors, and
execution of the job may continue.

(

(-

4

12

16

indicates that one or more warning
messages have been printed, but
execution may continue.

indicates that the program contains
errors that prevent its execution..
The phase or phases beinq linkage
edited are not entered in the
phase library.

indicates that a termination condi­
tion exists, and the linkage edit
has not been completed. No phases
have been entered in the phase
library. The job is canceled.

~~~!~g Messages, severity Code 4 

The following messages are designed 
solely to call a programmer's attention to 
an unusual condition. 

Error 
Code 
KAOlI 

Condition 
A COMMON control section has the 

same name as a regular control 
section, but their lenqths dif­
fer. Space has been reserved 
for the longer. 

KA021 Two or more control sections in 
different phases have the same 
name. The current one was not 
brought in by the automatic 
search of the phase liorary. 

KA031 The previous control section had 
a length of O. If this condi­
tion is not intentional, it 
could have been caused by an 
error of the languaqe proc­
essor. 

KA041 An END card that should indicate 
the length of a control section 
does not do so. The length of 
the last or only control sec­
tion in the ESD dictionary is 
o. This does not represent an 
actual error if the control 
section contains only instruc­
tions to the language processor 
that do not require any main 
storage space. 

KAO,51 A control section name in a CSECT 
list on an INCLUDE card is 
duplicated. 

The following messages 
that prohibit execution 
Linkage editing continues. 

document errors 
of the program. 

Error 
Code 
KAllI 

KA121 

KAl31 

Condition 
The type field of an ESD state­

ment contains an invalid entry. 
This usually represents a lan­
guage processor error. 

A COMMON control section has the 
same name as an entry point. 

A label definition type entry in 
an ESD statement does not point 
to a section definition or pri­
vate code type entry. This 
usually represents a language 
processor error. 

KAl41 An origin for a control section 
that should be aligned on a 
double-word boundary is not so 
aligned. This usually rep­
resents a language processor 
error. 

KA151 An ESD statement indicates that a 
private code section is named. 
A private code section cannot 
be named. This usually rep­
resents a language processor 
error. 

KA161 An SO, LD, or ER type entry with 
a blank name field is invalid. 
This usually represents a lan­
guage processor error. 

KAl81 An entry point name improperly 
duplicates another entry point 
or control section name. 

KA191 Two or more ESD statements in the 
same input module have the same 
identification number. This 
usually represents a language 
processor error. 

KA351 System unit SYSOOO or SYSREL con­
tains a statement that is 
invalid or is out of order. 
Module cards must be in the 
order ESD, TXT, RLD" REP, and 
END. 

KA361 A MODULE statement was not fol­
lowed by a statement with the 
12-2-9 loader identification 
punch in its first column. 

KA37I The linkage editor has read bey­
ond the last block of an input 
module. The input deck is out 
of sequence, or an END card is 
missing. 

Messages 137 



138 

Error 
~QQ~ 
KA381 

KA391 

KAijOI 

KM1I 

KM21 

Condition 
A statement on SYSIPT is invalid 

or out of sequence .• 

A job control statement other 
than the /* end-of-data state­
ment has been read. The /* 
statement is the only job con­
trol statement that should be 
read by the linkage editor. 

A hexadecimal field in a PHASE or 
REP card contains an invalid 
character. 

An object module contains an ESD 
identification number of 0 or 
greater than 255. Except for 
REP cards" this usually rep­
resents a language processor 
error. 

A TXT" REP, RLD, or END statement 
contains an ESD identification 
number that is not in the 
module's ESD dictionary. 
Except for a REP card, it may 
represent a language processor 
error. For a TXT or REP card, 
it also may mean that the ESD 
number does not point to a 
control section. This message 
is written only for the first 
TXT or REP card containing the 
error even though the following 
cards may contain the same 
erroneous number. 

KAij31 The operand field of a control 
statement extends beyond column 
71~ the variable field of a REP 
card extends beyond column 71~ 
or the last field in a REP card 
contains a number of characters 
that is not divisible by ij. 

KAij41 An entry point in the ESD dic­
tionary has an ESD number that 
should point to a control sec­
tion, but the control section 
that it points to is not in the 
ESD dictionary. This may rep­
resent the loss of cards or a 
language processor error. This 
error is detected when an END 
card is processed, so the mes­
sage is listed with the END 
card. 

.. ~---.----

Error 
Code 
KA451 

KM61 

KM7I 

KM81 

Condition 
The CSECT name list of an INCLUDE 

statement includes one or more 
control section names that are 
not in the module. This code 
is printed with the END card 
since the error cannot be 
detected earlier. In some 
cases, this message is given 
because the control section in 
the ESD dictionary was not 
processed because of another 
error condition, usually made 
by a language processor. In 
this case, the ESD card con­
taining the control section's 
entry has been printed with 
another error code. When the 
other error condition has been 
corrected, this condition will 
be eliminated. If a MAP has 
been printed, the control sec­
tions which were included from 
the INCLUDE card are listed. 

An RLD statement contains a posi­
tion pointer to an ESO number 
in the ESD dictionary that is 
not of the SO or PC type.. This 
usually represents a language 
processor error. 

An entry in the operand field of 
a control statement contains 
too many characters. 

A required entry is missing from 
the operand field of a control 
statement. 

KA491 A control statement contains an 
invalid delimiter, or a 
required delimiter is missing. 

KA501 A decimal field in a PHASE state­
ment contains a non-decimal 
character. 

KA511 The third entry in the operand 
field of a PHASE statement is 
invalid. Only NOAUTO can be 
specified in this field. 

KA521 A name in a PHASE or MODULE 
statement contains an invalid 
character. 

KA531 Two or more phases in the program 
have the same name. 



( 

Error 
Code 
KA541 

KA551 

KA561 

KA57I 

Condition 
A PHASE statement with an * or S 

origin also has a phase quali­
fier. This is permitted only 
when a control section or entry 
point is specified as the orig­
in. 

A symbol specified in a PHASE 
statement for the origin of the 
phase was not defined previous­
ly. 

A PHASE statement specifies a 
negative origin. 

The END statement for the pre­
vious phase contains an invalid 
entry in its transfer address 
field,. 

KA581 The previous phase contained no 
text. This may occur when the 
linkage editor is unable to 
find the modules named in an 
INCLUDE statement. 

KA591 The entry point specified in an 
ENTR~ statement is not the name 
of a properly defined entry 
point or control section,. 

KA601 A TXT or REP statement contains a 
load address outside the limits 
of the current phase. This 
usually represents a language 
processor error" when it is in 
a TXT statement 

KA611 

KA621 

KA631 

KA641 

The program calls 
size greater 
bytes. 

for 
than 

a phase 
368,,640 

The cs name field of an INCLUDE 
statement c,ontains the names of 
more than five control sec­
tions. 

An entry other 
been specified 
operand of an 
mente 

than R or L has 
as the second 

INCLUDE state-

A module named in an INCLUDE 
statement cannot be found in 
the directory indicated by the 
R or L specification. 

Error 
Code 
KA651 

KA661 

Condition 
The linkage editor has read a job 

control statement for the next 
job step and is unable to save 
it in the user communication 
region. When the linkage edi­
tor reads a job control state­
ment at tpe end of the job 
step, it attempts to save it 
for the job control processor. 
This message is written when 
the attempt to store it in the 
user communication region 
results in an error return. 

A PHASE 
phase 
fies a 
cation 

statement identifies a 
as ROOT but also speci-' 
phase qualifier or relo­
factor. 

Termination Messages, severity Code 16 

The following messages indicate error 
conditions so severe that the linkage edi­
tor cancels the job immediately. In addi­
tion to the error code, the message LINKAGE 
EDITOR CANNOT CONTINUE is printed. 

Error 
Code 
KA801 

Condition 
End of extent was detected during 

a write operation. The output 
data set is not large enough. 

KA811 A permanent transmission error 

KA821 

KA831 

KA841 

KA861 

was detected during an 
input/output operation .. 

An input/output operation termi­
nated without transmitting any 
data. 

An input/output operation 
nated because of an 
Input 

termi­
invalid 

An input/output operation termi­
nated with an incorrect length 
condition. 

There is no room ~eft in the 
SYSPSD directory to list the 
module specified in a MODULE 
statement: or an illegal end of 
extent was detected reading the 
last block of the directory. 
This means a module cannot be 
inserted on SYSOOO with other 
modules for inclusion in a pro­
gram. 

Messages 139 



Error 
Code 
KA871 

KAS81 

KA901 

KA91I 

KA921 

Condition 
An illegal end of extent condi­
tion was detected while reading 
SYSAB2 or the directories on 
SYSPSD or SYSREL .• 

No phase can be created because 
there are no entries in the 
SYSPSD directory. This message 
also appears when the name 
field of an entry contains 
blanks. The EXEC statement 
name field was blank when the 
module was assembled or com­
piled. 

The linkage editor's control dic­
tionary and linkage table are 
full. The program probably 
contains too many control sec­
tions and entry points. A max­
imum of 2047 control dictionary 
entries is permitted. If there 
is no ROOT phase, the maximum 
is 2048. 

The program specifies a phase 
name that duplicates the name 
of a phase already resident in 
the phase library .• 

There is not enough room in the 
phase library directory for all 
the phases in this proqram .• 

KA931 The system is unable to open the 
SDSOOO or SDSOOl data sets .• 
The volumes containing these 
data sets may not be mounted., 
symbolic unit SYSOOO or SYSOOl 
may have been reassigned, or an 
error condition may have devel­
oped during opening. 

KA941 The system is unable to close 
SYSOOO or SYS001. This indi­
cates that a system error con­
dition developed durinq the job 
step. 

KA9S1 SYSOOl is assigned to a seven­
track tape without the data 
convert feature on~ or SYSOOO 
and SYSOOl are assigned to the 
same data set. 

The following messages are written out 
by the linkage editor. In some cases, as 
indicated, the program is flagged so that 
it cannot be executed. but linkage editing 
is not interrupted. 

140 

xxxx ILLEGAL OPTION FOR LINKAGE EDITOR 

This message appears when 
LNKEDT statement contains an 
or invalid parameter. The 
parameter is written at the 
the message. 

xxxx UNRESOLVED ADDRESS CONSTANTS 

the EXEC 
illegal 

incorrect 
start of 

This message appears if a control 
section contains an address constant 
for an external symbol in another 
module, and the linkage editor is 
unable to supply an address. The 
number of such unresolved external 
references in the program is written 
at the start of the message. If MAP 
is specified., a list of unresolved 
symbols is written. The program is 
flagged so it cannot be executed. 

xxxx ADDRESS CONSTANTS OUTSIDE LIMITS OF 
PHASE 

This message is written when the 
program contains address constants 
referring to pOints outside the phase 
that contains the address constant. 
This condition usually represents a 
language processor error. The program 
is flagged so it cannot be executed. 

The following messages are written only 
if the MAP option has been specified in the 
EXEC LNKEDT statement. They are warning 
messages and do not prevent linkage editing 
or execution. 

ROOT PHASE OVERLAID BY ANOTHER PHASE 

The program specifies a phase origin 
that would overlay all or part of a 
phase that has been deSignated a ROOT 
phase. The phase that causes the 
overlay condition is marked by the 
word OVEROOT in the listing .• 

POSSIBLE INVALID ENTRY POINT DUPLICATION IN 
INPUT 

The input contains possible duplica­
tion of entry point names. This may 
occur when control sections from a 
single module are being split among 
different phases, in which case the 
message can be ignored. When this 
message appears, one or more entry 
points in the input have been ignored. 
The MAP shows whether an entry pOint 
for a certain control section is miss­
ing. If so, any reference to the 
entry point has been resolved to the 
wrong location. 

• 

.-.. 
IV 



f 

( 

ASSEMBLER SYSTEM ERRORS 

The following error codes apply to con­
ditions that may develop during an assembly 
job step. These codes appear at the end of 
an assembly listing. They are ranked 
according to severity and are included in 
any determination of severity levels in the 
assembler's severity level message at the 
end of the listing. In the following list, 
the severity appears in parentheses at the 
end of each message description. 

**LA01I ERROR 

The EXEC ASSEMBLE statement contains a 
misspelled parameter. The assembly 
continues, but the module is flagged 
to prevent execution. (12) 

**LA02I ERROR 

The SYMBn option has been specified 
with a value for n that is too large 
for the space available. The option 
is changed to SYMBMAX. (4) 

**LA03I ERROR 

There is not enough 
available for the 
pass to get started. 
terminated. (12) 

main storage space 
assembler's first 

The job step is 

**LA04I ERROR 

There is not enough main storage space 
available for the assembler's second 
pass to get started. The job step is 
terminated. (12) 

**LA05I ERROR 

The LINK option was specified, but 
there was 
input/output 
is assumed. 

**LA06I ERROR 

an unrecoverable 
error on SYSOOO. NOLINK 
(12) 

The DECK option was specified, but 
there was 
input/output 
is assumed. 

**LA07I ERROR 

an unrecoverable 
error on SYSPCH. NODECK 
(8) 

The XREF option was specified, but 
there is not enough main storage space 
to compile a cross reference listing. 
NOXREF is assumed. (4) 

**LA08I ERROR 

The XREF option was specified, but 
there is not enough main storage space 
for a complete listing. A listing is 

provided, but some symbols are not 
cross-referenced. (4) 

**LA09I ERROR 

Logical records in a data set are 
larger than the block size specified 
for the data set. The job step is 
terminated. (12) 

**LA10I ERROR 

An unrecoverable input/output 
was detected on SYSIPT. The job 
is terminated. (12) 

* * LAllI ERROR 

An unrecoverable input/output 
was detected on SYS002. The job 
is terminated. (12) 

**LA12I ERROR 

An unrecoverable input/output 
was detected on SYS003. The job 
is terminated. (12) 

**LA13I ERROR 

error 
step 

error 
step 

error 
step 

An unrecoverable input/output error 
was detected in the assembler" s inter­
mediate text data set on SYS001. The 
job step is terminated. (12) 

**LA14I ERROR 

An error was detected while opening a 
data set during the assembler's first 
pass. The job step is terminated. 
(12) 

**LA15I ERROR 

An error was detected while closing a 
data set during the assembler's first 
pass. The job step is terminated. 
(12) 

UTILITIES MESSAGES 

The messages in this section are written 
by the system's utilities routines. They 
are distinguished by the initial characters 
MA. 

The action taken by the 
detection of an error varies 
the severity of the condition. 
four possibilities: 

1. Cancellation of the job. 

system upon 
according to 

There are 

2. Cancellation of the job step. 

Messages 141 



3,. cancellation of the utili ties opera­
tion containing the error condition. 
The system moves on to the next opera­
tion" if any" in the job step. 

4. No action. The message is considered 
a warning or notification of a possi­
ble error condition. 

Utilities messages are written 
SYSLST. The messages are as follows: 

on 

MAOOI - UTILITIES UNSUCCESSFUL 

This message is written on SYSLST and 
SYSLOG at the end of a utility job 
step if any of the utility operations 
within the job step was cancelled. 

MA04I - I/O ERROR CODE xx ON SYSxxx 

where xx is one of the input/output 
error codes shown in Table 9 and 
SYSxxx is a symbolic unit. An 
input/output operation on SYSxxx has 
terminated abnormally,. The error code 
indicates the cause of termination. 
If the error occurred while reading a 
member of a directoried data set, the 
next member is processed. In all 
other cases, the operation is can­
celled. 

MAOSI - JOB CONTROL CARD AMONG UTI~ITY 
INPUT 

A job control statement, other than 
the /* end-of-data statement or the • 
comments statement, has been detected 
in the input stream. This constitutes 
an error condition only when the ABJCL 
parameter has been specified in a 
utilities control statement or assumed 
through default. If the job control 
statement was part of an input data 
set on SYS002" the operation is can­
celled. If it was part of an input 
data set on SYSIPT or was among the 
utilities control statements~ the job 
step is cancelled. 

MA06I - ILLEGAL UTILITY VERB 

The operations field of a utilities 
control statement, or of a card that 
is supposed to be a utilities control 
statement, contains an invalid parame­
ter. This field specifies the type of 
operation, such as COpy, COPY., 
PRTPCH, etc. The operation is can­
celled. 

MA07I - ILLEGAL OPTION NEAR COLUMN xx 

142 

A control statement 
that does not apply 
requested. The xx 
sage identifies the 

contains an option 
to the operation 
field in this mes-

approximate card 

column of the invalid option in the 
control statement. The operation is 
cancelled. 

MAOSI - ILLEGAL SYNTAX OR OPTION ARGUMENT 
CLOSE NEAR COLUMN xx 

A control statement contains an 
option with an invalid specification, 
such as specifying an output record 
size of XYZi or blanks are not used 
properly in a control statement. The 
operation is cancelled. 

MA09I - CORE SIZE EXCEEDED 

There is not enough main storage 
space for the requested operation. 
Block sizes in the input data set may 
be too large. The operation is can­
celled. 

MAlAI - OPERATION CONTINUES 

An input/output error occurred, 
but the utility operation continues if 
the condition was one of the follow­
ing: 

a. Incorrect length on reading. 
This is reported only the first 
time an incorrect length condi­
tion appears. Thereafter" the 
utilities program suppresses 
incorrect length when reading. 
The effective data length for 
copying purposes is the number 
of characters read" truncated" 
if necessary, to the nearest 
multiple of the logical record 
size. 

b. Read redundancy. If the IGRED 
option has been specified, read 
errors do not cause termination 
of the utilities. 

c. Print data check. When this 
condition develops, the utili­
ties program attempts to write 
a blank line on SYSOPT. If it 
is able to do so without get­
ting an error return code" the 
operation continues. 

MAlDI - SEQUENCE ERROR l ~ ~ 
The SEQIN option has been specified" 
and a sequence error has been detect­
ed. L indicates that the error is in 
the literal portion of the sequence 
field. N means it is in the numeric 
portion. In the latter case, the 
numeric control field is reset to the 
input numeric field. In both cases, 
the operation continues. 

'",,-.J 



( 

• 

MA1EI - SYS003's DIRECTORY FULL 

A directoried data set 
copied, but the directory 
put data set is not large 
all the required entries. 
tion is cancelled. 

is being 
of the out­
enough for 

The opera-

MAllI - ILLEGAL OR UNSPECIFIED BLOCK SIZE 

An invalid block size is specified. 
The operation is cancelled. 

a. An input block size other than 
80 is specified for an * opera­
tion. 

b. 

c. 

d. 

An input block size other than 
720 is specified for PCHABS. 

An output block size other than 
80 or 81 is specified for a 
punch operation. 

An output block size 
than 144 is specified 
print operation. 

larger 
for a 

MA12I - BLOCKING 
BLOCK SIZE 

FACTOR DOESN'T DIVIDE 

This applies to either the SIZIN or 
SIZOUT option. A block size has been 
specified that cannot be divided even­
ly by the value specified as the 
number of logical records per block. 
The operation is cancelled. 

MA13I - ILLEGAL SPACING SPECIFICATION 

An invalid SPACE option is specified. 
The operation is cancelled. 

a. SPACE=P is specified for a 
print-punch operation. 

b. A SPACE option is specified for 
a non-print operation. 

c. Both a SPACE option and the 
MODE=D option are specified. 

d. A spacing character other than 
1, 2, 3, or P is specified. 

e. SPACE=P is specified with a 
HEAD, NUM, and/or LINES option. 

MA14I - ILLEGAL MODE SPECIFICATION 

An invalid MODE option is specified. 
The operation is cancelled. 

a. MODE=D is specified for 
print-punch operation. 

a 

b. A mode option is specified for 
a non-print operation. 

c. A mode character other than D 
or L is specified. 

MA1SI - LOGICAL RECORD IMAGE EXCEEDS PRINT 
LINE 

In printing. an output record exceeds 
the size specified in the SIZOUT 
option. The operation is cancelled. 

MA16I - LOGICAL RECORD IMAGE DOESN'T EQUAL 
LOGICAL OUTPUT RECORD 

An option requests action that is not 
consistent with the defined size of 
logical records. The operation is 
cancelled. 

a. The value of 
first byte to 
specified as 
option. 

i (index of the 
be copied) is 

o in a TRUNC 

b. The value specified for i in a 
TRONC option is greater than 
the size of a logical record, 
as defined, explicitly or by 
default, in a SIZIN option. 

c. A TRUNC option defines a field 
for copying that is too large 
for the logical record size" as 
defined in a SIZIN option. 

d. For non-print o~eratio~s, the 
logical record 1mage 1S not 
equal to the size specified in 
a SIZOUT option. The logical 
record image is defined as the 
number of characters to be 
copied from an input logical 
record (multiplied by 2 if the 
HEX option is specified) plus 
the number of padding charac­
ters to be added. 

MA17I - ILLEGAL OPEN OR CLOSE PARAMETER 

An invalid open 
specified. The 
celled. 

or close 
operation 

option is 
is can-

a. A character other than R or S 
is specified in an open option. 

b. A, character other than R" S, or 
U is specified in a close 
option. 

MA18I - ILLEGAL SEQUENCE OPTION 

A SEQIN or SEQOUT option is not pro­
perly specified. The operation is 
cancelled. 

Messages 143 



a. A sequence index value 
than 73· is specified 
SEQOUT option for a 
operation. 

other 
in a 
PCHABS 

b. The sequence index exceeds the 
logical record size. 

c. The sequence index plus 
sequence length exceeds 
logical record size. 

the 
the 

MA19I - ILLEGAL HEADING 

An invalid heading is specified. The 
operation is cancelled. 

a. A HEAD, LINES,. and/or NUM 
option is specified for a non­
print operation. 

b. The number of characters in a 
heading exceeds 144. 

c. A HEAD=" option is specified in 
a sequential data get 
statement. 

MAILI - NEW MEMBER NAMES 

This message is written after the data 
has been copied in a CPYMEM or CPYMEM* 
operation. It is followed by a list 
of the member names that are being 
added to the destination data set. 
The operation terminates normally. 

MAI01 - SYSxxx INVALID DIRECTORY ENTRY [1] 

An error has been detected in an 
operation on a directoried data set. 
SYSxxx identifies the symbolic unit 
assigned to the data set in question. 
The operation is cancelled. 

a. If a 1 appears at the end of 
the message. the first direct­
ory entry is invalid. This 
usually means that SYSxxx .is 
not assigned to a directoried 
data set. 

b. If there is no 1 at the end of 
the message. a directory entry 
other than the first is inval­
id. 

MAIMI - TOO MANY MEM NAMES 

144 

A header card contains an invalid 
number of directoried data set member 
names,. This usually indicates an 
invalid header card. The data for 
this member is bypassed. and the oper­
ation continues. 

MAINI - PACHABS PHASE MISSING 

A PCHABS operation has been requested. 
but the system cannot locate utilities 
phase BMUTPCHA in the phase library. 
The operation is cancelled. 

MAIRI - ILLEGAL RANGE SPECIFIED 

An INCL option specifies a range for a 
directoried data set that does not 
accurately reflect the order of member 
names in the directory of the source 
data set. The operation is cancelled. 

MA1TI - {OPEN }ERROR CODE xx -- SYSxxx 
CLOSE 

where xx is an OPEN or CLOSE supervi­
sor call error code. and SYSxxx is the 
name of a symbolic unit. An error has 
been detected while trying to open or 
close a data set on SYSxxx. The code 
indicates the type of error. The 
operation is cancelled. 

The following messages apply to the 
volume utilities routines. 

MA20I - DVADR OPTION MISSING 

The required DVADR device address 
parameter is missing in a SQUEEZE or 
MAP control statement. The operation 
is cancelled. 

MA21I - VOLID OPTION MISSING 

The required VOLID volume identifi­
cation option is missing in a SQUEEZE 
or MAP control statement. The opera­
tion is cancelled. 

MA22I - INCORRECT OR MISSING FOR~~T 4 LABEL 

The system cannot find a volume table 
of contents definition label,. a format 
4 label. on a direct access volume,. or 
the label is incorrectly written. 
This message appears for SQUEEZE and 
MAP operations. The operation is can­
celled. 

MA23I - DEVICE NEITHER 2311 NOR 2315 

A SQUEEZE or MAP operation has been 
requested. but the device is neither a 
2311 nor 2315 Direct Access Storage 
Device. The operation is cancelled. 

MA24I - VTOC CONTAINS AN INVALID LABEL 

The volume table of contents for a 
direct access volume contains an 
invalid label. The system is unable 
to process the label. The operation 
is cancelled. 

.. 

rf'" 
\l.J 



MA25I - SQUEEZE SPECIFIED FOR 2311 

An invalid SQUEEZE operation has been 
requested,. SQUEEZE can be executed 
only for 2315 Disk Storage volumes. 
The operation is cancelled. 

MA26I - FORMAT 2 OR 3 LABEL POINTS INCOR­
RECTLY 

A format 2 or 3 label on a direct 
access volume is not properly written .• 
This applies only to volumes prepared 
under other system/360 programming 
systems. The Model 44 system does not 
use these labels. The operation is 
cancelled. 

• M~27I - MISSING FORMAT 5 LABEL 

( 

The system is unable to find a format 
5 space management label on a direct 
access volume. This label should be 
part of the volume table of contents. 
The operation is cancelled. 

MA29I - INCORRECT TYPE OPTION 

The type field of an INITIAL statement 
contains an invalid entry. Only SDSD 
or 1316 is permitted for a SQUEEZE or 
MAP operation. The operation is can­
celled,. 

M~2AI - UTILITY ABORTED 

The system has detected an error of 
such severity that it cannot continue. 
The operation is cancelled. This mes­
sage usually appears with another mes­
sage indicating the cause of the can­
cellation. 

MA2BI - DISK UNAVAILABLE 
FOR FUTURE ALLOCATES 

Input/output operations on a disk have 
resulted in errors of such severity 
that no further allocations should be 
attempted. 

MA2CI - FOLLOWING DATA SETS ARE LOST 

The system is unable to find certain 
data sets listed in the volume table 
of contents. The names of these data 
sets are listed. 

MA2DI - READ ERROR BLOCK xxxx OF VTOC 

The system detected an irretrievable 
read error in the volume table of 
contents. 
the block 
detected. 

The xxxx field identifies 
in which the error was 

The operation is cancelled. 

MA31A - PERM I/O ERROR. ABEND 

An unrecoverable input/output error 
occurred. The operation is cancelled. 

MA33I - I/O ERROR READING VTOC OR VOL I.BL. 
ABEND 

The volume label or table of contents 
cannot be read or updated. The opera­
tion is cancelled. 

MA36I - NO ALTERNATE TRJl.CKS FREE. ABEND 

No alternate tracks are available for 
assignment. The operation is can­
celled. 

MA37I - IPL 
ABEND 

RECORD CANNOT BE WRITTEN. 

An unrecoverable error occurred while 
writing the'initial program loading 
record. The operation is cancelled. 

MA38I - Cxxx,. HX. WRITE HA or RO ERR. 
ABEND 

A home address or record 0 cannot be 
written on a disk. cxxx and Hx iden­
tifythe cylinder and track involved. 
The operation is cancelled. 

MA39I - cxxx. Hx, SEEK ERR. Cxxx, Hx 
REACHED. ABEND 

A seek error occurred during a disk 
surface analysis. Cxxx and Hx iden­
tify the cylinder and head involved. 
The operation is cancelled. 

MA3AI - Cxxx. HX. RO or HA READ ERROR. 
ABEND 

Record 0 and a home address disagree 
as written. Cxxx and Hx identify the 
cylinder and head involved. The oper­
ation is cancelled. 

MA3BI - cxxx,. Hx" TRK DESCRIPTOR, REC BAD. 
ABEND 

Record 0 written and record 0 read 
disagree. The operation.is cancelled. 
Cxxx and Hx identify the cylinder and 
head involved. 

MA3CI - Cxxx, HX. ALT PERM ERROR. CONTINU­
ING 

An alternate track was found to be bad 
during disk surface analysis.. Cxxx 
and Hx identify the cylinder and head 
involved. The operation continues. 

Messages 145 



MA3DI - Cxxx" Hx. PRIM PERM ERR. CON­
TINUING 

A primary track was found to be bad 
during disk surface analysis. The 
operation continues. 

MA3EI .,. Cxxx. Hx,. ALT ASSIGNED. CONTINUING 

An alternate track at the cylinder and 
head address specified in this message· 
has been assigned for the bad primary 
track referred to in a previous MA3DI 
message. The operation continues. 

MA3FI - ERR WRITING VTOC. ABEND 

146 

The utilities program is unable to 
write proper format 4 and format 5 
records. The operation is cancelled. 

MA3GI - UNEXPECTED ERR. ABEND 

An input/output error occurred. 
operation is cancelled. 

The 

MA3II - DISK SUCCESSFULLY FORMATTED. EOJ 

A disk has been formatted successful­
ly. The operation is completed. 

MA3KI - I/O ERR WHILE INITIALIZING TAPE. 
ABEND 

An input/output error occurred during 
tape initialization. The operation is 
cancelled. 

• 



( 

• 

( 

(-

All direct access volumes used with 
programming system must be labelled. 
use of labels on magnetic tape volumes 
optional with each installation. 

the 
The 
is 

An installation determines at the time 
that its system is constructed whether 
magnetic tapes will contain data set and 
volume labels,. If it decides to use 
labels, all tapes must contain standard 
labels. If it decides against labels, 
tapes may contain volume labels but no 
check is made for data set labels. 

The programming system uses label infor­
mation to improve its operating efficiency 
and to save programmers the time and trou­
ble of providing certain data every time a 
program is run. Direct access data set 
labels, for example, are grouped together 
to form a volume table of contents. When a 
programmer needs to use a data set, he 
identifies it by name and volume. The 
system can then check its label to deter­
mine its exact track and cylinder address. 
other information in the label includes the 
date the data set was created. the date it 
can be eliminated, the size of each record 
block" the number of blocks written, and 
whether there is room for more data blocks 
to be written. 

The programming system writes direct 
access and magnetic tape data set labels 
with information supplied by programmers in 
ALLOC, ACCESS, and LABEL job control state­
ments. The system's volume initialization 
utility routines write volume labels, using 
information from INITIAL control state­
ments. 

The system itself supplies some of the 
information that goes into these labels. 
The first field of a volume label~ for 
example, must contain the entry VOL, which 
identifies a volume label. It is not 
necessary for a programmer to specify 
entries for fields such as this. 

The supplying of label information is 
further simplified with the use of default 
options. In these cases, the system deter­
mines which of several possible entries 
will go into a label field unless a pro­
grammer specifically indicates that a dif­
ferent entry is wanted. The expiration 
date field of the data set label illus­
trates this type of operation. This field 
indicates when the data set may be elimi­
nated. If a programmer does not provide an 
entry for this field, the system inserts 
the current date. 

LABELS 

The descriptions of the ACCESS, ALLOC~ 
LABEL, and INITIAL statements elsewhere in 
this publication indicate what information 
a programmer must supply and what default 
options, if any" apply to each field. 

Some of the label information is not 
used by the Model 44 Programming System. 
such fields are identified in the discus­
sions of the statements. It is not neces­
sary to supply information for these 
fields. They may be used" however, to make 
model 44 volumes and data sets compatible 
with the operating systems for other 
System/360 models. In most cases" this 
permits the interchange of data sets and 
volumes written under the control of the 
Model 44 Programming system with those 
written on other models. 

A programmer also may use the label 
information fields of the job control 
statements to make certain information 
available to his program. Regardless of 
whether a data set label is written, the 
information from some of these fields is 
stored in a data set's file control block 
during execution. The system uses this 
information for its input/output opera­
tions. but the problem program also has 
access to it. This applies to data sets on 
any type of input/output device. 

In addition to volume and data set 
labels, direct access volumes contain two 
other types of labels written and used 
solely by the programming system. One of 
these describes the size and address of the 
volume table of contents. The other is 
used to keep track of vacant space on the 
disk. Both are included as part of the 
volume table of contents. 

A magnetic tape volume contains only a 
volume label in unlabeled installations. 
In other cases, data set header and trailer 
labels also are written. 

DIRECT ACCESS LABELS 

A direct access volume contains four 
types of labels. 

1. A volume label. This is an SO-byte 
label that is written as the third 
record on cylinder 0" track 0 of a 
direct access volume. This label con­
tains a volume identification serial 
number supplied by the installation 

Labels 147 



and indicates the address of the vol­
ume table of contents. The label is 
illustrated in Figure 16, and its 
fields are described later in this 
section. 

2. Data set labels. One 140-bvte label 
is written for each data set in the 
volume. It is included in the volume 
table of contents and is known as a 
format 1 label. It contains the name 
of the data set and other information 
necessary to identify" locate. and use 
the data set. It is illustrated in 
Figure 17 and described in detail 
later in this section. 

3,. A VTOC definition label. This 
140-byte label is the first label in 
the volume table of contents. It 
describes the volume table of contents 
and the device upon which the volume 
is mounted. It is known as a format 4 
label. Each direct access volume 
contains one of these labels. It is 
illustrated in Figure 18 and described 
later in this section. 

4. A space management label. This is a 
140-byte label that is included in the 
volume table of contents. The system 
uses it to keep track of vacant space 
that can be assigned to new data sets 
when an ALLOC statement is processed. 
Its contents are updated whenever a 
data set is created or deleted or the 
volume is condensed. It is known as a 
format 5 label and is illustrated in 
Figure 19. There is at least one on 
each direct access volume. 

The volume, VTOC definition, and space 
management labels are created when a disk 
is processed by the system's volume ~n~­
tialization routines. Data set labels are 
written by the system whenever a new data 
set is added to the volume. 

The Model 44 Programming System does not 
recognize or use format 2 and format 3 
labels. These labels are used by other 
System/360 programming systems for indexed­
sequential data sets and multiple extents. 

Labels are updated at the end of the job 
in which changes are made. If, for 
example, additional blocks are written in a 
data set" the data set label is updated to 
reflect the additional material as part of 
the end-of-job processing by the system. 
This label also is updated at the end of 
any job step in which a CLOSE supervisor 
call has been executed for the data set. 

148 

MAGNETIC TAPE LABELS 

Each installation determines whether its 
magnetic tape data sets will be labeled. 
If the installation standard is to use 
labels" each tape should contain a volume 
label and data set header and trailer 
labels. 

Unlabeled Ta~.§ 

The system does no label processing on 
magnetic tapes when the installation stand­
ard is not to use labels. Any labels on a 
tape are treated as data,. If a labeled 
tape is used for output, the labels will be 
written over unless the problem program 
positions them to avoid this. 

Labeled Tapes 

When the installation standard is to 
label tapes" the system checks each magnet­
ic tape for a volume label. If there is 
none" it treats the tape as unlabeled. A 
warning message is written when the tape is 
opened for input/output 'operations" but no 
further attempt is made to read, write, or 
check labels. 

The system's volume utilities program 
can be used to initialize a labeled tape. 
This program writes a volume label and 
dummy data set header and trailer labels. 

Each of these labels requires 80 bytes. 
They are as follows: 

1. A volume label. This is the first 
label on any magnetic tape volume. It 
contains a volume identification seri­
al number specified by the installa­
tion when the volume was initialized. 
It is essentially the same as the 
direct access volume label and is 
shown in Figure 16. 

2. A header label. This follows the 
volume label. It contains the name of 
the data set, its creation and expira­
tion dates, and other data for system 
use. It is illustrated in Figure 20. 

3. A trailer label. This label is simi­
lar to the header label. It also 
indicates the number of blocks written 
in the data set. It is illustrated in 
Figure 20. 

• 



This section contains illustrations of 
the label formats and descriptions of the 
individual fields. Most of the labels 
contain one or more reserved fields. These 
fields are being kept available for future 
use by the programming system and should be 
recorded as blanks. At present, these 
fields are ignored by the programming sys­
tem. 

Volume 
Label 

In the illustrations, each field is 
numbered for identification in its upper 
right corner. A running count along the 
bottom indicates the number of bytes in 
each field and their relative position in 
the label. 

The fields are described by number fol­
lowing the illustration. 

• field Number 

( 

(. 

Label 
Identifier 

Volume 
Serial 
Number 

34 

Volume 
Security 

Data Set 
Directory 
(Disk Only) 

Reserved For Future Expansion 

5 

Figure 16. Volume Label Format 

2 

3 

4 

5 

6-7 

8 

9 

~~!!!~nd_!!ength 
Label Indentifier, 
3 bytes 

Volume Label Number, 
1 byte 

Volume Serial Number., 
6 bytes 

Volume Security, 
1 byte 

Data set Directory, 
10 bytes 

Reserved, 20 bytes 

Owner Name and 
Address Code, 
10 bytes 

Reserved. 29 bytes 

6 

Reserved 

9 

~~scription 
Contains VOL. 

Reserved 

7 8 

Owner Name 
and Address Cade 

position of this label in a group of 
volume labelS. For the Model 44 
system, this field must be 1. 

Identification code assigned to this 
volume by the installation .• 

security status of a volume~ not used 
by the Model 44 system. 

On direct access volumes, the address 
of the VTOC~ on tapes, recorded as 
blanks. 

Reserved. 

A specific user, installation, and/or 
system to which the volume belongs. 

Reserved. 

Labels 149 



Field 

I 2 3 
Data Set 

Data Set Name Serial 

Creation 
Date 

4 

Reserved 

+ 

8 
Reserved 

System Cade 

9 

Option Record Key 

Number 

Format 
Identifier 

Cades Length Location 

17 18 

Fannat 

Last 
19 20 Fi rst Exte nt Additiona I Extent Additional Extent 33 

Record 2122 
Lower 

23 U 2425 2829 32 Painter pper 
Painter Limit Limit 

~I I I I§ ~I~ 8t::; - -~ II::: =1 I I~;: llJ II l;:l~ I I I I I 11:! ~I I I I~ 
,j L~xtent 

Extent Type Sequence 
Indicator Number 

Figure 17. Direct Access Data set Label, Format 1 

Field '1----

2 

3 

4 

5 

150 

Name and Length 
Data Set Name. 
44 bytes. EBCDIC 

Format Identifier. 
1 byte. EBCDIC 

Data Set Serial Number, 
6 bytes., EBCDIC 

Volume Sequence Number. 
2 bytes., binary 

Creation Date, 3 bytes. 
discontinuous binary 

Q~scription 
Each data set on the volume must have 

a unique name. Names are left­
justified in the field and the 
remaining bytes are recorded as 
blanks. In the Model 44 system, 
data set names are restricted to 
eight characters. 

1 = Format 1. 

Identifies a data set-volume relation­
ship; it is identical to the volume 
serial number. 

'rhe order 
the first 
resides. 
this field 

of this volume relative to 
on which the data set 
For the Model 44 system.. 
must be 1. 

The date on which the data set was 
created 

.. 

• 



( 

( 

• 

Field 6"--

7A 

7B 

7C 

8 

9 

10 

11 

12 

13 

15 

16 

17 

Name and Length 
Expiration Date, 
3 bytes .. 
discontinuous binary 

Extent code" 1 byte 

Bytes Used in Last 
Block of Directory, 
1 byte" binary 

Reserved, 1 byte 

system Code, 13 bytes 

Reserved., 7 bytes 

Data set Type., 2 bytes 

Record Format, 1 byte 

option codes, 1 byte 

Block Length, 2 bytes, 
binary 

Record Length, 
2 bytes.. binary 

Key Length, 1 byte, 
binary 

Key Location" 
2 bytes" binary 

Data Set Indicators 
1 byte 

!2~scription 
The date on which the data set may be 

deleted. 

The number of extents for this data 
set on this volume. For the Model 
44 system, must be 1. 

Used for directoried data sets. 

Reserved. 

Identifies the programming system. 

i{eserved. 

Identifies the type of data set. 

Identifies type of records in the data 
set: record length, track overflow 
(not used by the Model 44 system), 
record blocking, record truncation., 
control character, and record keys. 

One-bit switches indicating options 
used in building data set. Bit 0 
indicates whether data set was 
created using write validity check. 
Bits 1-7 are reserved. 

Block length used in data set.· 

Record length used in data set. 

Length of keys on data records in data 
set. 

High-order position of the embedded 
key in the data record. 

One-bit flags., with the on position 
indicating: 

o The last volume on which data set 
resides. For the Model 44, this bit 
is always on. 

1 This data 
the same 
volume. In 
this bit is 

set must always reside in 
absolute location on the 

the Model 44 system, 
always off. 

2 The block length must always be a 
multiple of 8 bytes. Not used by 
the Model 44 system. 

3 This data set is security-protected 
and requires a password for access. 
Not used by the Model 44 system. 

4-7 Reserved. 

Labels 151 



Field 18---

19 

20 

21 

22 

23 

24 

25-32 

33 

Field 

Available 
D t S t a a e 

Name and Length 
Secondary Allocation, 
4 bytes.. binary 

Last Record Pointer, 
5 bytes, discontinuous. 
binary 

Reserved, 2 bytes 

Extent Type Indicator, 
1 byte 

Extent Sequence Number, 
1 byte, binary 

Lower Limit; 4 bytes, 
discontinuous binary 

Upper Limit., 4 bytes., 
discontinuous binary 

Additional Extents, 
20 bytes 

Pointer., 5 bytes., 
discontinuous binary 

VTOC N b f Ex tents 
Label Records + r: um ero 

Indicators 1 rReserved 

Description 
Indicates amount 

requested for 
end-of-extent. 
Model 44 system .• 

of 
this 

Not 

storage to 
data set 
used by 

be 
at 

the 

Points to the last record written in a 
sequential or directoried data set. 

Reserved. 

Indicates the type of extent. 
used by the Model 44 system. 

Indicates the extent sequence 
multi-extent data set. For 
Model 44 system, must be 1. 

Not 

in a 
the 

starting address of this extent compo­
nent. 

Ending address of this extent compo­
nent. 

Not used by the Model 44 system. 

Pointer to next data set label within 
this label set. Not used by the 
Model 44 system. 

2 3 4 5 6 7 a all Device Constants 9 

last Active 
Highest 

Fonnat 1 
Alternate Device 

-'<-= I t -o 
I .. .. Reserved 

!! ~ .. --'< 
Track Size u '" ~ 8 o c u ~ 0 

c.!! _~ .=~ ~ol! - 0 ..9 iii u. ... 

10 

~~I I II~ ,If" lril I l;g "llf" 0-0 ,\'" ~I \ \:8 ~I~ ~I Ir:: ~J:!I~ ~~ ~\ I \ I I I I \ I I \ I 1\ \ I I \ \ \ \ \ \ \ \ \ I I~ "'''' "'''' ",-0 -0-0 

t LNumberof 
Format 10 Alternate Tracks 

VTOC Extent 15 

11 14 
Reserved 

Figure 18. VTOC Definition Label, Format 4 

152 

• 



( 

( 

Field 1----

2 

3 

4 

5 

6 

7 

8A 

8B 

9 

10 

11-14 

15 

Name and Length 
Key Field, 44 bytes" 
binary 

Format Identifier" 
1 byte, EBCDIC numeric 

Last Active Format 1,. 
5 bytes 

Available Data Set 
Label Records. 2 bytes, 
binary 

Description 
Each byte contains the hexadecimal 

code 04. 

4 = Format 4 .• 

Address of the last active format 1 
label: used to stop a search on a 
data set name. 

The number of unused records in the 
VTOC. 

Highest Alternate Track,. The highest address of a block of 
4 bytes tracks set aside as alternates for 

bad tracks. 

Number of Alternate 
Tracks.. 2 bytes" binary 

VTOC Indica tors. 
1 byte 

Number of Extents, 
1 byte 

Reserved. 2 bytes 

Device Constants. 
14 bytes 

Reserved, 29 bytes 

VTOC Extent, 10 bytes 

Reserved. 25 bytes 

The number of alternate tracks 
able. 

avail-

Bi to" if on. indicates format 5 label 
does not reflect true status 
of volume. 

Contains the hexadecimal constant 01 
to indicate one extent in the VTOC. 

aeserved. 

contains constants describing the 
device on which the VTOC was creat­
ed, including device size, track 
length. record overhead, flags, tol­
erance, labels per track, and 
directory blocks per track. 

Reserved. 

The extent of the VTOC; identical in 
format to fields 21-24 of the format 
1 label. 

Reserved. 

Labels 153 



Field 

t 
Key 
Identificatian 

23 

Available Extents in Key 

9 10 

t 
Format 
Identifier 

1
111 Available Extents I 

~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I II I I I I IIII I I I II I Ig? 

28 29 
Pointer 

Avai lable Extents ta Next 
Farmat 5 

Figure 19. Direct Access Space Management Label, Format 5 

Field 1----

2 

3-9 

10 

11-28 

29 

~!!me and Length 
Key Identification., 
4 bytes 

Available Extent, 
5 bytes 

Available Extents in 
Key., 35 bytes 

Format Identifier" 
1 byte. EBCDIC 

Available Extents, 
90 bytes 

Pointer to Next 
Format 5 

!2~§Q!:iption 
Each byte contains the hexadecimal 

code 05. 

Indicates an extent available for 
allocation to a data set. The first 
two bytes are the relative track 
address; the next two are the number 
of full cylinders in the extent. 
The last is the number of tracks in 
addition to the cylinders. 

These fields, identical to field 2, 
are in relative track address 
sequence. 

5 = Format 5. 

These fields are the same 
There are altogether 
11-28) 26 extent fields 
mat 5 label. 

as field 2. 
(fields 2-9, 
in the for-

Contains the address of the next for­
mat 5 label on the volume. 



( 

Data Set 
Label 

Field Number 

Label 
Identifier 

11 

Block 
Count 

• Data Set 
.Security 

Data Set Identifier 

12 

System Code 

3 

13 

Reserved 

456 
Volume Data Set 
Sequence Sequence 
Number Number 

14 

7 8 

Version 
Number of 
Generation 

9 10 

Expiration 
Date 

Figure 20. Standard Tape Data set Header and Trailer Label Format 

Field i----

2 

3 

4 

5 

6 

7 

8 

9 

(- 10 

Name and Length 
Label Identifier., 
3 bytes., EBCDIC 

Data Set Label Number, 
1 byte" EBCDIC 

Data Set Identifier, 
17 bytes, EBCDIC 

Data set serial 
Number" 6 bytes 
EBCDIC 

Volume Sequence 
Number, 4 bytes 

Data Set Sequence 
Number., 4 bytes 

Generation Number., 
4 bytes 

Version Number of 
Generation, 2 bytes 

Creation Date., 6 bytes 

Expiration Date, 
6 bytes 

Description 
hDR = Header Label -- beginning of a 

data set 
EOF = End of File -- end of a data set 
EOV = End of Volume -- end of a volume 

in a multivolume data set. Treated 
as EOF by the Model 44 system. 

Always a 1. 

The data set name, left-justified, 
with remaining bytes written as 
blanks.. In the Model 44 system, 
data set names are restricted to 
eight characters. 

Identifies a data set-volume relation­
ship~ it is identical to the volume 
serial number. 

Indicates the order of a volume in a 
data set. For the Model 44 system, 
must be 1. 

Assigns numeric sequence to a data set 
on the volume. For the Model 44 
system, must be 1. 

Not used by the Model 44 system.. 

Not used by the Model 44 system. 

The date the data set was created. 

The date the data set may be deleted. 

Labels 155 



Field 
U-

12 

13 

14 

156 

Name and Length 
Data set security" 
1 byte 

Block Count" 6 bytes 

System code., 13 bytes 

Reserved" 7 bytes 

Description 
Indicates whether 

ity protection. 
Model 44 system,. 

data set has secur­
Not .used by the 

Used for trailer labels only. Indi­
cates the number of blocks written 
in the data set from the header 
label to the trailer label, exclu­
sive of tape marks. 

Identifies the programming system. 

Reserved; should 
blanks. 

be recorded as 

.. 

• 



( 

( 

• 

An absolute loader is distributed with 
the programming system. It can be used to 
load and execute installation programs that 
are not meant to operate under control of 
the Model 44 Programming system. 

The loader consists of six punched 
cards,. These cards are self-loading from a 
card reader. They should be followed by 
the text of the program to be executed. 
The loader loads the program and transfers 
control to it. The loader has no further 
function. 

The program cards must be in the format 
produced by the programming system's link­
age editor. This can be obtained oy link­
age editing a program and copyinq it from 
the phase library with the PCHABS utilities 
function. 

The loader clears up to 64,000 bytes of 
main storage and loads the program at the 
addresses supplied by the linkage editor. 
Loading terminates when the loader detects 

ABSOLUTE LOADER 

an END card. The END card must specify an 
entry point. The loader transfers control 
to this entry point. 

Any ESD cards in the input deck are 
ignored. REP cards may be included any­
where before the END card. A REP card must 
not precede the text card that it is 
correcting. 

Formats of the ESD, RLD, REP" END, and 
TXT cards are shown in Appendix B. 

The END card format shown in Figure 24 
is the type used by the absolute loader, 
except that any length given in columns 29 
through 32 is ignored. 

The REP card format for the absolute 
loader differs slightly from that shown in 
Figure 26. Any address specified in 
columns 7 through 12 must be aligned on a 
half word boundary. Also, for columns 17 
through 71, each field must consist of 
exactly four characters. 

Absolute Loader 157 



~f~X A. .INPUT/OUTPUT CONTROL BLOCK FORMATS 

This section contains the formats of the 
control blocks used by the system's 
input/output routines at the read/write 
level. 

At the read/write level., the file and 
unit control blocks are constructed and 
maintained by the system. The problem 
program must reserve space for the request 
control block and provide the SYSUNI index 
for its first byte. 

~QUEST CONTROL BLOCK 

The fields of the request control block 
are defined as follows: 

Word Byte 
o 0 

o 1-3 

1 4 

1 5-7 

2 8 

9-15 

4 16-19 

5 20-23 

158 .. 

Description 
SYSUNI index number of the 

system unit to be used in 
the input/output operation .• 
This value can be deter­
mined from Table 2. 

Address of the device depen­
dent routine to be used to 
set up the channel commands 
and analyze interruptions. 

Post request flag indicating 
whether the block currently 
is active: 
00 = No operation pending 
01 = Operation in progress 

Address of the first channel 
command required to execute 
the operation. 

Used by the system, when a 
permanent input/output 
error occurs, to pass an 
error code between system 
components .• 

Last seven bytes of Channel 
Status Word, stored when an 
operation is started and 
when an interruption 
occurs. 

Sense information, stored 
when unit check condition 
occurs. 

Name of program to be loaded 
from the phase library when 
necessary for interruption 
analysis •. 

Word 
-6-

6 

7 

7 

8 

8 

9* 

9* 

Byte 
24 

25-27 

28 

29-31 

32 

33-35 

36 

37-39 

*Following 
operation., 

. Description 
Error recovery internal 

identifying a type 
error. 

code· 
of 

Counters used to keep track 
of number of attempts made 
to recover an error. The 
first two bytes keep track 
of the number of retries. 
The third byte is an opera­
tion counter used during 
multi-step operations. 

Return code 
00 = Operation completed 
04 = End-of-file or end-of­

volume 
08 = Permanent transmission 

error 
OC = No data transmitted 
10 = Invalid request 
14 = Incorrect length 

Address of file control block 
being used for operation. 

Request code identifying the 
type of operation to be set 
up by a device routine. 
01 = Write 

02 = Read 

03 = Data transmission 

07 = Rewind 

OF = Rewind and unload 

iF = Write end of file 

3F = Point 

Address of buffer to be used 
-for transmission. 

Incorrect length control byte 
20 = Suppress incorrect 

length indication 
00 = Check for incorrect 

length 

Number of bytes to be trans­
mitted. 

.completion of an input/output 
the contents of word 9 are 

replaced by the updated data set position 
block count. For a point operation, the 
block count is specified. 

• 

(I" " 
'V 



OJ 

• 

~!~E CO~ROL BLOCKS 

The address of the file control block 
for a data set can be obtained from bytes 
29 through 31 of the request control block 
that is being used for input/output opera­
tions on the data set. 

The file control block for disk units is 
set up as follows: 

Word ~ 
0- 0 

o 

o 

o 

1 

2 

2 

3 

5 

6 

7 

8 

1 

2 

3 

4-7 

8.,9 

10,11 

12-15 

16 

17 

18,,19 

20-23 

24-27 

28-31 

32-35 

Description 
Flag Byte 

01 = opened 
02 = Disconnected 
04 = EXT specified 
08 = Header checked 
10 = Labeled 
20 = Update VTOC 
40 = Fresh data set 
80 Standard unit 

byte 
= Control character 

Flag 
80 
40 
20 
10 

= ASA control characters 
= Write check 

Ignore (dummy 
set) 

08 = Data set deleted 
04 = Opened for output 
02 = Formatted data set 

Reserved 

data 

Number of blocks pe+ track 

Current block count 

Logical record length 

Not used 

Seek and search address for 
the current operation 

Number of block being proc­
essed 

Number of bytes in key area 
(2311 only) 

Maximum number of ~ytes per 
block 

Block number of first block 
of member in a directoried 
data set 

Address of the first record 
in the data set 

Number of the last 
written 

block 

Number of blocks reserved for 
this data set. 

Fields in the file control block for 
tape units are the same as for direct 
access devices" except as follows: 

Word ~ 
-0- 3 

2,3 

5 

5,6 

7,8 

10-15 

16 

17 

20.,21 

22-27 

28-35 

Description 
Mode of tape operation com­

puted by job control 

Expiration date of data set 

Current record number 

Not used 

Current tape mark count 

Volume identification 
EBCDIC 

Data set name in EBCDIC 

in 

Fields for the file control block for 
other units are the same as for tape except 
that bytes 28 through 35 are not used. 

UNIT CONTROL BLOCK 

Fields in the unit control block 
defined as follows: 

are 

Word Byte 
-0-- 0,1 

o 2 

o 3 

Descriptio!! 
Physical device address 

Device mode 
01 = Burst mode 
02 = Overrunable byte 
03 = Non-overrunable 

mode 

of unit 

mode 
byte 

Type 
10 = 1052 Console Printer­

Keyboard 
20 
21 
22 
23 
28 
29 
2A 
30 
31 
32 

= 2501 card reader 
= 2540 card reader 

2520 read-punch 
= 1442 read-punch 
= 2520P card punch 
= 2540P card punch 
= 1442P card punch 
= 1403 printer 
= 1403M7 printer 
= 1443 . printer, 

characters 
33 = 1443S printer~ 

characters 
40 = 2400 magnetic 

800 bpi 

120 

144 
( 

tape, 

41 = 2400H magnetic ta.pe, 
1600 bpi 

42 = 2400D magnetic tape, 
dual density 

48 = 2400T7 magnetic tape 
49 = 2400T7C magnetic tape 
50 = Single disk storage 

drive 
51 = 2311 disk 

Appendix A. Input/Output Control Block Formats 159 



1 5 

1 6 

1 7 

2 8"""11 

160 

Description 
Eelative chain pointer (e. g. " 

activity, event chain). 

Channel Scheduler flags 
01 = Device busy 
02 = Event requested 
04 Attention siqnal has 

been detected 
08 = Device not ready 
10 = Retry in progress 
20 = Device end signal 

received 
40 Channel end signal 

expected 
80 Give control to a 

device routine for an 
intervention-required 
condition 

Job control flags 
80 = Device inoperative 
40 System standard 

assignment 
20 = Job control assigned 
10 = Programmer assigned 
08 = Assigned by lob con­

trol 

Read/Write flags 
80 = Multiple 

required 
recovery 

operation 
for error 

40 = Error message request 

20 
has been made 
End of volume detected 
for tape 

10 = system request opera­
tion requested 

08 = Multiple operation 
requested by user 

04 = Not used 
02 Volume label present 

for tape 
01 = Required volume has 

been mounted 

Address of input/output block 
used when an attention 
interruption occurs. 
(Applicable only to 
those devices that can 
signal attention.) 

Word 
-3-

3 

4 

5 

6 

7 

Byte 
12 

13-15 

16-19 

20-23 

24 

25 

26 

27 

28 

29 

30 

31 

Description 
Request flag for device rou­

tine 
00 = Setup requested 
04 Device end interrup­

tion routine requested 
08 = Attention interruption 

occurred 
OC = Program controlled 

interruption occurred 

Input/output block address 
associated with this opera­
tion 

Current physical position of 
the device in terms of the 
cylinder and head positions 
for direct access devices 
and block count for sequen­
tial devices. 

Address of 
word area 
the device 

channel command 
associated with 

Number of permanent no-data­
transmitted errors that 
have occurred 

Number of permanent read 
errors that have occurred 

Number of permament write 
errors that have occurred 

Number of entries in the 
alternate track procedure 

Number of no-data-transmitted 
errors corrected by recov­
ery procedures 

Number of 
rected by 
dures 

Number of 
rected by 
dures 

Not used 

read errors cor­
recovery proce-

write errors cor­
recovery proce-

( 

II 



• 

This section contains the formats of 
four types of cards (or card images) pro­
duced by the language processors. These 
are the external symbol dictionary. reloca­
tion dictionary, text, and module end 
cards. It also contains the format of the 
replace (REP) card used for patching a 
module that is being linkage edited. 

Several fields in these cards are 
punched in extended card format. For 
information about the format codes. see IBM 
system/360 Reference Data, Form X20-1703-.--

Each language processor output module 
contains one or more external symbol dic­
tionary cards. They are used for the 
following: 

• To define the names of a module and any 
control sections within it. 

• To define entry points within a module 
that may be referred to by other 
modules. 

• To define symbols within a module that 
refer to other modules or to entry 
points in other modules. 

• To define COMMON sections included in a 
program. 

This information is used by the linkage 
editor. 

The format of the ESD card is shown in 
Figure 21. 

A text card contains the instructions 
and constants that make up a proqram. It 

APPENDIX B. LANGUAGE PROCESSOR CARD FORMATS 

also contains the address at which the 
first byte of the card's text is to be 
loaded. A card contains up to 56 bytes of 
text in extended card code. 

The TXT card format is shown in Figure 
22. 

RLD Card 

A relocation list dictionary card is 
produced when a language processor encoun­
ters a DC instruction or the second operand 
of a CCw instruction that defines an 
address as a relocatable symbol or expres­
sion. The address may be an internal 
symbol that occurs only within the same 
module" or it may be an external reference 
to another module. 

An RLD card lists the address of up to 
13 such symbols. If there are more than 
13, additional RLD cards are produced. 

The format of the RLD card is shown in 
Figure 23. 

END Card 

An END card indicates the end of all 
cards pertaining to a module. It may 
specify a location at which execution is to 
start • 

Either of two similar formats may be 
used. They are shown in Figures 24 and 25. 

Appendix B. Language Processor Card Formats 1.61 



r--------T------~-----------------------------------------------------------------------, I Column I contents I /'-""' 
~--------+----"------------------------------------------------------------------------~ '''-..../ I 1 I Loader identification (12-2-9 punch); identifies this as a card acceptable to 

I the loader. 
I I 
I 2-4 I ESD -- identifies the card type. 
I 
I 5-10 Blank 

11-12 

13 

14-16 

17 

17-24 

25 

26-28 

29 

30-32 

33-48 

49-64 

65-72 

Number of bytes in variable field of -the card, written in extended card code. 

Blank 

External symbol dictionary identification of the first section definition, 
external reference" pri vate code., or COMMON in the card. This is written 
in extended card code. If all items on the card are label definitions, 
this field is blank. 

Beginning of variable field, which runs through column 64. 

Name of control 'section, entry point~ external symbol, or COMMON, to which 
the ESD entry applies. 

ESD type; one digit in extended card code. 

Hexadecimal 
IYE.~ Digit 

Section Definition (SO) 00 
Label Definition (LD) 01 
External Reference (ER) 02 
Private Code (PC) 04 
COMMON (CM) 05 

I 

coqe 00 identifies a control section. Its name., assembled origin, and length I 
are given in other fields of the card_. I 

Code 01 identifies a label that may be used as an entry point. Other fields I 
of the card identify its assembled address and the control section in which I 
it appears. I 

Code 02 identifies control sections and entry points that appear in other I 
modules. I 

Code 04, private code, is used for an unnamed control section. Other fields I 
of the carq indicate its address and length. 

Code 05 is used for a COMMON entry. Another field indicates its length. 

This field specifies the address of a control section or entry point. The 
address is written in extended card code. This field is filled with zeros 
if the card is for an external reference or COMMON control section. 

Blank 

This field specifies., in extended card code, the number of bytes in a control 
section or COMMON, or for an entry point, the identification number of the 
control section containing it. This field is blank in external reference 
cards. 

The format of this' field is the same as for columns 17-32 if there is a 
second ESD entry on the card. 

The format of this field is the same as for columns 17-32 if there is a third 
ESD entry on the card. 

Blank 

73-80 Deck sequence field. ____ ~ ___ ~ _________________________________________________________________________ ~ ____ J 

Figure 21. ESD Card Format 

162 

• 



( 

• 

, 

( 

r--------T------------------------------------------------------------------------------, , Column , contents , 
~--------+------------------------------------------------------------------------------~ 1 Loader identification (12-2-9); identifies this as a card acceptable to the 

I 

2-4 

5 

6-8 

9-10 

11-12 

, 13-14 , 
, 15-16 
I 
I 
I 17-72 
I 

loader. 

TXT--identifies card type. 

Blank 

Assembled address. punched in extended card code, where first byte of text 
from the card is to be loaded. 

Blank 

Number of bytes of text in this card, punched in extended card code. 

Blank 

ESD identification number of control section to which the text in 
belongs. 

this 

Up to 56 bytes of assembled program text., written in extended card code. 

card, , , 
I , 

, 73-80 Deck sequence field. , L ________ ~ ______________________________________________________________________________ J 

Figure 22,. TXT Card Format 

Appendix B. Language Processor Card Formats 163 



r--------T------------------------------------------------------------------------------, 
\ Column \ Contents I 
~--------t------------------------------------------------------------------------------~ ~J 

1 Loader identification {12-2-9}: identifies this as a card acceptable to the 

2-4 

5-10 

11-12 

13-16 

17-72 

loader. 

RLD--Identifies card type. 

Blank 

Number of bytes of information in the variable field., columns 17-72, of this 
card. This is written in extended card code,. 

Blank 

The variable field, written in extended card code.. Each entry contains the 
following subfields" except that the relocation and position identifiers 
may be omitted in certain cases., as described under "Flags." 

Relocation identifier: two columns containing a code for the ESO entry that 
determines the relocation factor of the address constant. 

I 
Position identifier: two columns containing a code for the ESD entry that \ 

describes the control section .in which the address constant occurs. I 
. I 

Flags: one byte" encoded as OOOxnnsc, the fourth bi t of the flag byte \ 
indicates the type of load constant,. If it is 0" it is a non-branch type \ 
of load constant. If the bit is 1, it is a branch type load constant. I 
(This bit is not checked by the Model 44 linkage editor.) I 

I 
The fifth and sixt;h bits, nn". indicate the length of the load constant. codel 

00 means that the load constant is one byte., 01 indicates two bytes, 10 I 
means three bytes, and 11 represents a length of four bytes. The seventh I 
bit" s., indicates the sign of the relocation factor. Code 0 means that thel -,\ 
relocation factor is to be added" and 1 means it is to be subtracted. 'I'he I ,~J 
final bit, c, is the continuation flag. This bit is 1 if this entry I 
contains one of a series of addresses with the same relocation and position I 
identifiers. It is 0 if the entry represents the only address to bel 
adjusted or if it is the last in a series of adjustments with the same I 
relocation and position identifiers. I 

I 
Address: three columns containing the address of the load constant inl 
--extended card code. I 

I 
73-80 Deck sequence field. I ________ ~ ______________________________________________________________________________ J 

Figure 23. RLD Card Format 

164 



( 

.. 

• 

r--------T------------------------------------------------------------------------------, 
, Column , contents , 
~--------+------------------------------------------------------------------------------~ 
I 1 Loader identification (12-2-9); identifies this as a card acceptable to the 
I loader. 

2-4 

5 

6-8 

9-14 

15-16 

17-28 

29-32 

33-72 

END--identifies the card type. 

Blank 

Optional field. May contain address to which control should be transferred 
at the end of the loading process, written in extended card code. 

Blank 

ESD identification numner for the control section containing the entry point 
referred to in columns 6-8. (Must be blank if columns 6-8 not used.> 

Blank 

Length of last or only control section in ESD dictionary if 
not specified in its ESD card. 

its length was' , 
Blank 

, , 
I 

73-80 Deck sequence field. I ________ ~ ______________________________________________________________________________ J 

Figure 24. END Card Format 

r--------T------------------------------------------------------------------------------, 
, Column , contents I 
~--------+------------------------------------------------------------------------------~ 

1 I Loader identification (12-2-9 punch); identifies this as a card acceptable tol 
, the loader. I 
, I 

2-4 END -- identifies the card type. I 
I 

5-16 Blank I , 
17-24 Symbolic transfer label supplied to assembler if label not defined within the, 

assembly. , , 
25-28 Blank I , 
29-32 Length of control section if its length was not specified in its ESD card. , 

I 
33-72 Blank I , 
73-80 Deck sequence field. I ________ ~ ______________________________________________________________________________ J 

Figure 25. Alternate END Card Format 

Appendix B. Language Processor Card Formats 165 



Replace 
programmer 
that has 
piled,. 

cards may be supplied by a 
to change portions of a program 
already been assembled or com-

A REP card specifies the address of one 
or more bytes to be changed and supplies 
the substitute text. Any text can. be 
changed, and ne~ text can be added. The 
replacement text overlays whatever is at 
the specified address. 

When instructions are being changed, the 
replacements must occupy the same number of 

bytes. Conditional no-:,operation instruc­
tions can be used to fill gaps. 

For the linkage editor, REP cards must 
follow the module's TXT and RLD cards and 
precede its END card. If a REP card is 
used to change an address constant" the 
text should not reflect the value to be 
added to the assembled text. REP cards are 
processed before the value in the symbol 
referred to by the address constant is 
added to the text containing the address 
constant. 

REP cards must be written in hexadecimal 
notation. The format is shown in Figure 
26. 

r--------T------------------------------------------------------------------------------, I Column I Contents I 
~--------+------------------------------------------------------------------------------i 

1 Loader identification (12-2-9): identifies this as a card acceptable to the 

2-4 

5-6 

7-12 

13 

14-16 

loader. 

REP -- identifies the card type. 

Blank 

Assembled address, in hexadecimal, of first byte of text to be replaced Must 
be right justified, with leading zeros., if necessary, to fill the field. 

Blank 

ESD identification number of the control section into which the text is to be 
inserted. This number., obtained from the language processor output 
listing, must be punched in hexadecimal, and right justified with leading 
zeros, if necessary to fill the field. 

17-71 Up to eleven fields of replacement text. Loading of these fields starts at 
the address specified in columns 7-12. The fields are written in 
hexadecimal characters. The number of characters in each field must be 
divisible by four. The fields are separated by commas. If the last field, 
terminates before column 71, it must be followed by at least one blank. , , 

72 Blank I , 
I 73-80 Deck sequence field. I L ________ ~ _______________________________________________________________ ~ ______________ J 

Figure 26. REP Card Format 

166 



f 

# 

I 

This section contains a listing of phase 
names used by system programs. These phas­
es are permanently resident in the phase 
library. The system does not permit dupli­
cation of names in this library, so user 
programs should not attempt to assign these 
names to phases. 

In this list, the names ASSEMBLE, FOR­
TRAN, LNKEDT, and UTILS are included 
although they are not actually the names of 
phases. They can be cited in an EXEC 
statement, and the system converts them 
into the appropriate name of the first 
phase of the corresponding program. If., 
for example, EXEC ASSEMBLE is cited, the 
system converts this into EXEC BLAST and 
loads the first phase of the assembler 
program. • Therefore, ASSEMBLE cannot be 
assigned to any user program. 

Phase System 
Nam~ Component 

ASSEMBLE Assembler Phase 1 

BAAIN15 2315 Disk Initialization 

BABINll 2311 Disk Initialization 

BACDPRS Dump/Restore 

BADPRPU Print/Punch 

BBLDR1 Absolute Loader 

BBLDR2 Absolute Loader 

BCASC15 System Construction 

BOAIP15 IPL Phase 1 

BFSUPVSR System supervisor 

BGOl Disk ERP Phase 1 

BG02 Disk ERP Phase 2 

BGT1 Tape ERP Phase 1 

BGT2 Tape ERP Phase 2 

BGCD Card ERP 

BGPR Printer ERP 

BGMG Error Message Writer 

BHOPEN1 OPEN Phase 1 

BHOPEN2 OPEN Phase 2 

APPENDIX C. SYSTEM PROGRAM PHASE NAMES 

Phase 
Name 

BHOPEN3 

BHOPEN4 

System 
comPQnent 

OPEN Phase 3 

OPEN Phase 4 

BHCLOSE1 CLOSE Phase 1 

BHCLOSE2 CLOSE Phase 2 

BHMCHCHK Machine Check (32K) 

BHCNCEL1 CANCEL Phase 1 

BHCNCEL2 CANCEL Phase 2 

BHDUMP1 Dump Phase 1 

BHDUMP2 Dump Phase 2 

BIAJBBAS Job Control Basic Phase 

BIBJBPH1 Job control Phase 1 

BICJBPH2 Job Control Phase 2 

BIDJBPH3 Job Control Phase 3 

BIEJBPH4 Job Control Phase 4 

BIFJBPH5 Job Control Phase 5 

BKLNKEDT Linkage Editor 

BKLNKEDl Linkage Editor 

BKLNKED2 Linkage Editor 

BLAST Assembler Phase 1 

BLAZE Assembler Phase 2 

BMUTILS Utilities ROOT Phase 

BMUTCOPY Utilities Data set Copy 

BMUTPCHA Utilities Data Set Copy 

BMUTSQMP Utilities SQUEEZE/MAP 

BMUTINIT utilities INITIAL Basic 

BMUTINTP Utilities INITIAL Tape 

BMUTIN11 Utilities INITIAL 2311 

BMUTIN15 Utilities INITIAL 2315 

BNAFORT FORTRAN Phase 1 

BNAALL FORTRAN Phase 2 

Appendix C. System Program Phase Names 167 



Phase System 
Nam~ ComEonent 

" 

,(f-----. 

BNAGEN FORTRAN Phase 3 
~j 

BNAEXT FORTRAN Phase 4 

BNAADJST FORTRAN Object Fix Up 

BNAXPND FORTRAN POPS Expander 

FORTRAN FORTRAN Compiler 

LNKEDT Linkage Editor 

UTILS Utilities Program 

.. 

.. 

168 



f 

) 

( 

* comments statement 18,20,q2 
* utilities option 91 
/* statement see: end-of-data statement 
/& statement 18,2IJ,,135 
// statements see: job control statements 

ABJCL option 92 
abnormal termination 

input/output 66 
program 22.82 

ABRED option 93 
absolute library see: phase library 
absolute loader 157 
ACCESS job control statement 

described 32 
discussed 9,18 
errors 133-135 
unit assignments 13,,15 

accounting information 22-25,83 
additional names 9,32 
address constants 53.57,82,157,166 
ALLOC job control statement 

described 25 
discussed 9.18 
errors 133-135 
unit assignments 13,15 

alphabetic characters 20 
alphameric characters 20 
alternate entry points 81 
alternate loading address 81 
alternate tracks 102,105,153 
AND, logical 84 
ASA control characters 37,67,91,159 
ASSEMBLE parameter q7,,130 
assembler diagnostic process 121 
assembler language coding 45 
assembler options 45 
assembler output modules IJ6,58 
assembly listing 46 
asterisk utilities option 91 
attention interruptions 68 
AUTOLINK 56,117 
automatic module library search 56 

BCD 51 
blank COMMON 54 
block numbers 57,117 
block count 69,74,77 
block sizes 10,30,35,,68 
blocking 67 
branching conventions 108 
buffers., input/output 48,67,74 

cancellation, job 22,82 
CANCEL supervisor call 80.82 
card cOde 51,160 
card punching 14,37.,46,50,89-101 
card reading llJ,157 
carriage spacing 37,67,91,98 
catalog, system 11,31,42 
CATLG job control statement 11"18,,Q2 
CATLG parameter 11,31 

channel queue 67 
channel scheduler flags 160 
channel status word 158 
character set 20 
CHAR option 97 
CHECK supervisor call 64,76 
CLOSE supervisor call 64,69,71 
closing data sets 71 
CLOSIP utilities option 94 
CLOSOP utilities option 94 
comments 20,42 
comments statement 18,20,42 
COMMON control sections 5Q,55 
communications 

region 82 
with operator 14"Q2 
~ith programmer lQ 

compiler, FORTRAN Q5 
CONDENSE job control statement 10,18,Q1 
condensing data sets 41 
conditional interruptions 85,88 
console printer-keyboard 14,42,68 
continuation statements 

defined 19 
job control 19 
linkage editor 57 
stand alone disk initialization 105 
utilities 89 

control characters 37.,67,91.159 
control sections 54,60 
control statements 

general format 19 
job control 25-43 
linkage editor 57 
stand alone disk initialization 105 
utilities 89.,90.,102 

conventions 
branching 108 
publications 21 
register 17 
system 9 

convert feature for tape 28 
COpy utilities statement 89 
copy utility 89 
CPYMEM utilities statement 90 
CPYTO instruction 130 
creating data sets 25 
cross reference dictionary 111 
cross reference listing 46,127 
CTLASA parameter 36.,67,91 
CTLCHR parameter 36,67,91 
cylinder boundaries, disk 30 

data sets 
blocking 35,67 
cataloging 11,31.Q2 
closing 71-73 
combining 93.,9IJ 
condensing 41 
copying R9 
creating 25,32 
creating with /* 31 

Index 169 



defined 9 
deleting qO.l03 
directoried 9,,32,41,69 
dummy 32,71,73 
editing 47 
eliminating qO,103 
expired QO,103 
formatting 31 
identifying 32 
labels lQ7,149 
namiI,lg 27,32,41 
open long 69-71 
positioning' 34,47,,70,73,,77,93 
printing 37,75.89 
punching 37.89 
reading 7Q.89 
renaming Ql 
repositioning Q7,70,73.77,93 
splitting 93,94 
squeezing Ql,103 
system 11,15 
truncating 95 
unit record 27,37 
writing 75 

DECK parameter Q6,,50 
deck serialization 47 
defective tracks 102,105 
DELETE job control statement 10,18,40' 
deleting data sets QO,103 
delimiter utilities options 94 
densi ty,. tape 28 
devadr field 27.30 
device independence 64 
device initialization 102,105 
disconnecting units 72,,94 
disk 

blocking 35,,67 
condensing Ql,103 
initialization 102,105 
labels 69.,72,102,147 
mapping 39,10Q 
opening and closing 69.72 
options 28.29 
organization 10 
sectors 68,,102 
squeezing 103 
volumes 10 

distributed system 13,69,83 
directoried data sets 

adding new members 32,69 
condensing 41 
copying 90-101 
creating 25 
deleting members 40 
directory length 30 
opening and closing 69-73 
printing 90-101 
punching 90-101 

displacement, phase 59 
display mode 98 
double buffers 48 
dual density feature 28 
dummy assignments 32,34,71,,73 
dump and cancel 86 
dump facilities 22,107 
dump formats 108 
DUMP parameter 21,,22,107 

170 

DUMP routine 107 
DVADR utilities parameter 102,104.,105 

early unit assignments 15 
EBCDIC 51 
EDATE utilities parameter 106 
edit data sets 47 
eliminating data sets 40,103 
eliminating members 40 
END cards 61,137,,157.,161 
end-of-data statement u*) 

creating data sets 31 
described 25 
discussed 18 
early unit aSSignments 15 
use with linkage editor 52,57 
use with utilities 90,91 

end of extent 34,66,70,77 
end of file marks 

disk 34,66,70~73,102,105 
tape 34,66,70-73,79 

end of job statement U&) 18.,24,135 
ENDIN utilities option 94 
ENDOUT utilities option 94 
END UP instruction 130 
ENTRY linkage editor statement 57,61 
entry points 

absolute loader 157 
intert"uption routine 86,87 
phase 16,55,61,80-82 

EOJS supervisor call 80,82 
error flags 111,122 
error codes 66,71,73 
error counters 158,160 
error severity 

assembler 83,122 
linkage editor 136 

ESD cards 137~157.161 
EXCL utilities option 100 
exclude members 100 
EXCP supervisor call 64 
EXCP input/output level 64 
EXEC job control statement 

described 21 
discussed 18 
use with assembler 45~49 
use with FORTRAN 45,50 ' 
uSe with linkage editor 52,57 
use with utilities 89 

execute channel program 64 
expiration dates 37,10,106,148 
expired data sets 103 
external references 56 
EXT parameter 34,70 
external symbol dictionary 56,137,156,160· 
EXTRACT supervisor call 80,,82,84 

FETCH supervisor call 19,80 
file control block 35,65,68,148,159 
FILL utilities option 97 
fixed point overflow 86 
FMT parameter 30 
format 1 label 37,149 
format 4 label 152 
format 5 label 40,103,104;154 
forms control characters 37,,67,.91,98 
FORTRAN 

EXEC statement parameters 50 

, 



( 

mathematics and service routines 16,108 
maximum block size 35 
publications 7 
source program 45 

FRESH parameter 27,30 

general assignment units 14,15 
GETIME supervisor call 80,85.,87 

HEAD utilities option 99 
header cards 91 
header labels 70.102,147 
HEX option 97 
High Resolution Timer 88 
home addresses 102,105 

identification code, disk 10,29,103,105 
identification field 96,97 
IGJCL option 92 
IGN parameter 34 
IGRED option 93,141 
INCL utilities option 100 
INCLUDE linkage editor statement 57,60 
incorrect length condition 66,74,141 
index 169 
initialization, volume 102,105 
initial entry point 61 
initial program loading 84~87 
INITIAL utilities statement 101,102 
INITIAL stand alone utilities 105 
input/output 

abnormal termination 66 
buffers 48 
control blocks 65,158 
error codes 66 
execute channel program 64 
maximum efficiency 68 
operations 74-78 
read/write level 64-78 

INSERT supervisor call 80,82.,84 
interprogram communications area 83,84 
interruptions 

68 attention 
conditional 
input/output 
program check 
timer 87 

85 
66,75 

86 

interruption routines 
input/output 66,75 
user 76,85 

interval timer 87 
intraprogram communciations area 83,84 
invalid request 66 

job control flags 160 
job control processor 

described 18 
use of SYSUAS 14,134 
closing data sets 69 

job control statements 
ACCESS 32 
ALLOC 25 
CATLG 42 
comments (*> 42 
CONDENSE 41 
DELETE 40 
end-of-data (/*> 25 
end-of-job (/&) 24 

EXEC 22 
JOB 21 
LABEL 35 
LISTIO 39 
PAUSE 42 
RENAME 41 
RESET 39 
REWIND 43 
STOP 25 
UNCATLG 42 
UNLOAD 43 

job control utilities option 91 
JOB job control statement 18,21 
jobname 22 
job steps 7,23,82 

KEEP parameter 57 
key field 38,154 
KEYLEN parameter 38 
KEYLOC parameter 38 

LABEL job control statement 
described 35 
discussed 10~18,67,147 
errors 133-135 

label processing 69-73,147 
labels 

data set 35,147 
discussed 147 
disk space management 148 
header 70,147,155 
trailer 69-72,147,155 
volume 35,147 
VTOC 148 

language processors 
assembler 45 
FORTRAN 45 
output modules 14,52,58 
use of symbolic units 14 

lines per page 46,99 
LINES utilities option 99 
LINK parameter 46,50 
linkage editor 

control statements 57 
described 52-62 
error messages 136 
input 46.50,52 
location counter 59 
output 53 
use of symbolic units 13 

list mode 98 
LIST parameter 46 
LISTC parameter 46 
LISTIO job control statement 39 
literals 48 .. 126 
LNCTn parameter 46 
load address 81 
loading address 81 
loading phases 21,79-81 
load point 70.,72,78,93 
LOAD supervisor call 79-81 
logical AND, OR 84 
logical records 

copying 94-98 
deleting 96 
printing 94-98 
punching 94-98 

Index 171 



magnetic tape 
convert feature 28 
initialization 102 
labels 69-72,102,147,155 
options 28 
translate feature 28 

main entry point 61,79-81 
main storage allocation 

assembly parameters 48 
problem program area 55,59,83 

manipulating records 95 
MAP parameter 51,57 
mapping 

disk 104 
storage 57 

MAP utilities statement 104 
members 

adding 32 
copying 90-101 
names 9,32 
input/output 69-71 
opening and closing 69 u 72 
rearranging 100 

messages 
error 121-11.16 
to operator 14,,1.12 
to programmer 14,1.12,,121 

MODE utilities option 98 
module library 

branching conventions 108 
defined 16 
dump routines 107 
FORTRAN routines 107 
use by linkage editor 53 
searching 56 

MODULE linkage editor statement 57,58 
multiphase programs 52 
multiple names 32 
multiplex channels 102 

names 
control sections 54 
data set 27,.32 
member 32 
multiple 9,32 
phase 58,,19,167 
program 23 
44 character 41 

NEW parameter 34 
NOAUTO parameter 51,60,,107 
NODECK parameter 46,50 
NO DUMP parameter 21,,22 
NOKEEP parameter 57 
NOLINK parameter 1.16,50 
NOLIST parameter 46 
NOMAP parameter 51,51 
non data transmit 66 
non sequential data sets 9,34 
non sequential processing 9,31,17 
NONUM option 98 
NOSOURCE parameter 50 
NOTE supervisor call 64,17 
NOWRCHK option 28.38 
NOXREF parameter 46 
numeric characters 20 
NUM instruction '130,131 
NUM option 98 

172 

OMIT instruction 130 
open and close utilities options 93 
opening data sets 69 
OPEN supervisor call 61.1,69 
OPENIP utilities option 93 
OPENOP utilities option 93 
operator messages 14,42 
OR, logical 84 
output format options 98 
output option parameters 45 
overlay capability 52 

padding records 96 
PAD utilities option 96 
page ejection 31~61.91 
page numbering 98 
parameter lists 19,23,61,107 
parity~ tape 28 
patch cards 58,131.161 
PAUSE job control statement 18,42 
pauses 42 
PCHABS utilities statement 90 
PCHMEM utilities statement 90 
PDUMP routine 101 ' 
permanent input/output errors 66,93 
phase library 

block numbers 57,117 
copying 90 
defined 15 
entering phases 53 
fetching from 13,52,,79 
loading from 13,,81 
punching 90 

PHASE linkage editor statement 57,58 
phase names 58,,79,,161 
phases 

copying 90 
entry point 61,79-81 
linkage editing 52-63 
loading 59,80 
origin 53,58 
relocation 53,81 

POINT supervisor call 64,77 
positioning ,data sets 34,70,73,17 
post request flag 157 
PPMEM utilities statement 90 
printing format 98 
printer manipulation 37,67,91 
PRINT utilities statement 89 
privileged state 86 
problem program area 55.59,,83 
progname field 23 
program check interruptions 86 
programming error routines 86 
program status word 86 
program testing 32.34 
PRTMEM utilities statement 90 
PRTPCH utilities statement 89 
pseudo directory 14,53 
PUNCH utilities statement 89 

queues 
input/output 67 
interruption 87 

READ supervisor call 64.14 
reassignment, unit 13,39 
RECLEN parameter 38 

-------"--~- -,_ .. _.-

() 



, 

( 

I 

t 

record blocks 10.30,35 
record sizes 35.38 
records, logical 94-98 
redundancy utilities option 93 
register conventions 17.,108 
relocatable library see: module library 
relocatable modules 52,58.107 
relocation dictionary 111 
relocation loader cards 137,157,161 
RENAME job control statement 18,41 
REP cards 58,137,,157,166 
replace cards 581137~157.166 
repositioning 70-73,77 
request control block 

format 158 
use for input/output 65,74-78 

reserialization 47 
RESET job control statement 39 
restoring symbolic units 39 
return address register 17,108 
return code register 17,66 
return codes 17,65,66 
REWIND job control statement 43 
REWIND supervisor call 64,,78 
REWND instruction 130,131 
RLD caras 137 .. 157,161 
ROOT parameter 53,59,60 
ROUND parameter 30 
RTXIPC supervisor call 80,85.,86 
RTXITC supervisor call 80,85,,87 

SAME parameter 27,34,38 
save area register 17.,85 
save areas 85,108 
SDSABS data set 

described 13.,14 
phase library 15,79,81.,167 
use by linkage editor 53 

SOSCAT data set 15 
SDSD 102 
SDSIPL data set 15 
SDSIPT data set 14,53 
SDSLOG data set 14 
SDSLST data set 14 
SDSOPT data set 14 
SDSPCH data set 14 
SDSPSD data set 

described 14 
use by language processors 45 
use by linkage editor 53 

SDSREL data set 
altering 17 
described 
module library 17,107 
use by linkage editor 53 

SDSRDR data set 14 
SDSUAS data set 14 
SDSOOO data set 

described 14 
use by language processors 45 
use by linkage editor 52 

sectors, disk 68,102 
self-defining symbols 121 
sense data 158 
SEQIN utilities option 96 
SEQOUT utilities option 97 
sequence checking 96,142 
sequential data sets see: data sets 

serialization., deck 47 
serial numbers" volume 10,29,103 
SETIME supervisor call 80,85,87 
shifting data sets 103 
SIZIN utilities option 95 
SIZOUT utilities option 95 
SKPTO instruction 130,131 
source language listing 467 50 
SOURCE parameter 50 
space allocation parameters 48 
space management labels 40,,103,104,154 
spacing" printer 98 
SPACE utilities option 98 
special characters 20 
SQUEEZE utilities statement 103 
squeezing volumes 103 
standard heading 99 
standard labels 147 
standard unit assignments 13 
START utilities option 96 
stepname field 23 
STOP job control statement 25 
storage allocation 49,83 
storage map 51,57 
STXIPC supervisor call 80,85,86 
STXITC supervisor call 80,85,87 
supervisor, system 7,,82 
supervisor calls 49,64-89 
switches 

user program 24,83~85 

variable precision 23 
switch options 23 
SYMBMAX parameter 49 
SYMBMIN parameter 49 
SYMBn parameter 49 
symbolic units 

assigning 25,32 
defined 12 
disconnecting 72 
index 65 
listed 12-15 
listing assignments 39 
reassignment 13,25,32 
restoring 13,39 
standard assignments 13,39 

symbol table, assembler 48,111,,126 
SYSAB1 

described 12,13 
erro:!;,s 132 

SYSAB2 
described 14 
reassignment 53 
use by linkage editor 53,140 
use by utilities 90 

SYSDMY 15 
SYSIPT 

described 14 
discussed 12.,21 
use by linkage editor 52,,53,58 
use by update 47 
use by utilities 89-94 

SYSLOG 
described 14 
discussed 12,71,105,121 

SYSLOG parameter 106 
SYSLST 

described 14 
discussed 12,,20,121 

Index 173 

I, 
i'.i 

Ii 

I 



use by update 47 
SYSOPT 

described 14 
use by assembler 46 
use by FORTRAN 50,51 
use by utilities 89.,90 

SYSPCH 
described 14 
use by assembler 46 
use by FORTRAN 50 
use by utilities 89,90 

SYSPSD 
described 14 
use by language processors 45 
use by linkage editor 53,58,139 

SYSRDR 
described 14 
discussed 12,21,25 

SYSREL 
described 14 
errors 137,142 
module library 17,107 
use by linkage editor 53 

system data sets 11 
system generation 105 
system residence volume 12,134 
system units 13,32,65 
SYSUAS 14 . 
SYSUNI index 65 
SYSOOO 

described 14 
errors 137,140 
use by assembler 45,46 
use by FORTRAN 51 
use by linkage editor 52,58,,59 

SYS001 111,140 
SYS002 47,89-94 
SYS003 47,89-94,102 
SYSOOl-240 13-15~69 

table of contents. volume 10,,40,102,105,147 
tape 

convert feature 28 
data sets 25,70,72 
density 28 
expiration date 37,70,106 
initialization 102 
labels 69-72,,102,,147 
options 28 
parity 28 
pOSitioning 34,47 
rewinding 43,47,78 
translate feature 28 
unloading 43,73 

text cards 137,157,161 
timer interruptions 87 
timer services 87 

174 

track descriptor records 102,105 
TRACK parameter 103.,106 
tracks, alternate 102,105,153 
tracks, defective 102,105 
trailer labels 69,72,102,147 
transfer point 61 
translate feature 28 
transmissionerrors 66 
transient routines 16 
TRUNC utilities option 95 
type, device 27,29,159 
type utilities option 97 
TXT cards 137,157,161 

UNCATLG job control statement 11,18,42 
unit control block 65.,68,159 
unit record data sets 22,67,91 
units, symbolic see: symbolic units 
UNLOAD job control statement 43 
UNLOAD supervisor call 64,78 
unnamed control sections 54 
unresolved external references 57 
UPDASMBl parameter 47,130 
UPDASMB2 parameter 47,,130 
UPDASMB3 parameter 47,130 
update parameters 47 
update program 46,47 
updating capabilities 46 
UPDATEl parameter 47,,130 
UPDATE2 parameter 47,130 
UPS AND supervisor call 80~82.84 
UPSOR supervisor call 80,,82,85 
user communications region 82 
user program switch 24,83,85 

variable preCision switch 23 
VOLID parameter 103,105 
volumes 

control statement field 27 
defined 9 
disk 10,67 
labels 69-73,102,147 
listing contents of 39,103 
serial number 10,29,103 
table of contents 10,40,102,105,147 
tape 10 

VTOC definition label 102,105,147 

WAIT supervisor call 64 
warning messages 57,122,,136 
WEF supervisor call 64,78 
WRCHK option 28,,38 
WRITE supervisor call 64,75 
write validity checking 29,37 

XREF parameter 46 

" 



, ( 

I 

l 



f 



( 

f 

.. 

, 



C28-6812-1 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 106m 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International J 

'tI 
t1 .... 
::s 
rT 
CD 
P. 
.... 
::s 
c:: · 1 
til · )I · , 
(') 
I\) 
(Xl 

I 

'" (Xl 

I-' 
I\) 

I 
I-' 



( 

t 

• 

Title: IBM System/360 Nodel 44 
Programming System 
Guide to System Use 

READER • S COMMENTS 

Form: C28-68l2-l 

Your comments assist us in improving the usefulness of our publications; they are a major 
part of the input used for technical newsletters and revisions. 

Please do not use this form for technical questions about the system; it only delays the 
response. Instead, direct your technical questions to your local IBM representative. 

Corrections or clarifications needed: 

If you wish a reply, please include your name and address below: 



C28-6812-1 

fold fold 
., ....................................................................................................................... . 

Attention: PUBLICATIONS 

BUSINESS REPLY MAil 
NO POSTAGE NECESSARY IF MAILi:D IN THE UNITED STAreS 

POSTAGE WILL BE PAID BY ••• 

IBM CORPORATION 

1271 AVENUE OF THE AMERICAS 
NEW YORK, N.Y. 10020 

FIRST CLASS 
PERMIT NO. 33504 
NEW YORK, N.Y. 

........................................................... " ............. ~ ............................................. : 
fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. tOGOt 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York to Ot 7 
[International] 

fold 

• 

'tI 
11 
1-" 
::s 
IT 
(l) 

0. 

1-" 
::s 
c:: t · til · ~ · r • 
() 
IV 
co 
I 

0'\ 
co ..... 
IV 
I ..... 


