
Systems Reference Library

IBM System/3S0 Model 44

Programming System

Assembler Language

File No. 5360-21
Form C28-68ll-1

This publication contains specifications for the IBM
System/360 Nodel 44 Programming System Assembler Lan­
guage.

This assembler language is used to write programs
for the Model 44. The IBM System/360 Model 44 Program­
ming System Assembler program processes the lanquage
and provides auxiliary functions useful in the prepara­
tion and documentation of a program.

44PS

PREFACE

This publication is a reference manual
for the programmer using the assembler
language and its features.

basic courses of instruction in
areas.

these

This publication presents information
common to all parts of the language, fol­
lowed by specific information concerning
the symbolic machine instruction codes and
the assembler program functions provided
for the programmer's use.

The publications most closely supplemen­
tal to this one are:

IBM System/360: Principles of Operation,
Form A22-6821

IBM System/360: System Summary, Form
A22-6810 Appendixes A through F present such

items as a summary chart for constants,
instruction listings, character set rep­
resentations, and other aids to program­
ming. Appendix G is a features comparison
chart of system/360 assemblers.

IBM System/360 Model 44: Functional
Characteristics, Form A22-6875

Knowledge of IBM System/360 machine
operations, particularly storage address­
ing, data formats, and machine instruction
formats and functions, is prerequisite to
using this publication. It is assumed that
the reader has experience with programming
concepts and techniques or has completed

Second Edition

IBM System/360 Model 44 Programming Sys­
tem: Concepts and Facilities, Form
C28-6810

IBM System/360 Model 44 programming Sys­
tem: Guide to System Use, Form C28-6812

Data Acguisition Special Features for
IBM System/360 Model 44, Form A22-6900

This is a major rev~s~on of, and makes obsolete, C28-6811-0. section 7,
"Update Feature," has been substantially revised to include additional
information and examples of update operations. Appendix G, "Features
Comparison Checklists," has been rewritten to define more specifically
the relationship between the IBM systeml360 Model 44 programming system
Assembler Language and the other system/360 programming support system
assembler languages. Because of a change in specifications, all
references to the length attribute of a symbol have been deleted.
Changes to the text other than these are indicated by a vertical line to
the left of the change.

specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM corporation, Programming Publications, 1271 Avenue of the Americas,
New York, N.Y., 10020.

~ 1966 by International Business Machines Corporation

2

SECTION 1: INTRODUCTION. • 7

Compatibility. •• • • • 7

The Assembler Language
Machine Operation Codes. • • • • •
Assembler Operation Codes. • •

7
7
7

The Assembler Program.
Basic Functions ••

Programmer Aids. •

Programming System Relationships

SECTION 2: GENERAL INFORMATION •

7
8

8

8

9

9
9

• 10

Assembler Language Coding Conventions. •
Coding Form. • • • • • • • • •
St4tement Format • • • • • • • •
Summary of statement Format. • •
Identification-Sequence Field. •

• 11
• 11

Character Set. • • • •

Assembler Language Structure •

Terms And Expressions. •
Terms • . • • • •

Symbols. • . • • •
Self-Defining Terms •
Location Counter Reference •
Literals • • • • • • • • •

EXPRESSIONS • • • • • • • • • •
Evaluation of Expressions.
Absolute and Relocatable
Expressions • • • . • • •

SECTION 3: ADDRESSING -- PROGRAM
SECTIONING AND 'LINKING. • • • •

• 11

11

• 12
• 12

• • 12
• 12
• 14
• 15
• 16
• 16

17

• 19

Addressing • • • • • • • • • • • • • 19
Addresses -- Explicit and Implied 19
Base Register Instructions. • 19

USING -- Use Base Address
Register. • • • • • • • • • • • • 19

DROP -- Drop Base Register . • 20
Programming with the Using
Instruction. • • • •

Relative Addressing • • •••

Program sectioning and Linking
Control sections. • • • • .

control Section Location

• 20
· 21

• 21
• 22

• 22 Assignment. • • • • • •
START -- Start Assembly ••
CSECT -- Identify Control

• • 22

Section • • • . • • • • • •
Unnamed Control Section. • •
DSECT -- Identify Dummy Section.

COM -- Define Common Control
Section. • • • • • • • •

Symbolic Linkages • • • • . . •

• 23
• 23
• 23

25
· 25

CONTENTS

ENTRY -- Identify Entry-Point
Symbol • • • • • • • • • • •

EXTRN -- Identify External Symbol •
Addressing External Control
sections. • • • • • • • •

SECTION 4: MACHINE INSTRUCTIONS •.

Machine Instruction statements .
Instruction Alignment and
Checking. • • • • . . • .

Operand Fields and Subfields. •

Machine-Instruction Mnemonic Codes
Machine-Instruction Examples.

RR Format. • • • •
RS Format. • • • • • • • • •
RX Format. • • • •
SI Format.

Extended Mnemonic Codes.

SECTION 5. ASSEMBLER INSTRUCTION
STATEMENTS. • • • • • • • • •

Symbol Definition Instruction.
EQU -- EQUATE SYMBOL. • •

• 26
• 26

• 26

• 28

• 28

• 28
• 28

• 29
• 30

30
• 30
· 30
· 30

· 30

32

• 32
· 32

Data definition Instructions • • • • • • 33
DC -- Define Constant • • • • • • • • 33

Operand Subfield 1: Duplication
Factor. • • • • . • • • • 34

Operand Subfield 2: Type ••••• 34
Operand Subfield 3: Length ••.• 34
Operand Subfield 4: Constant • 35

OS -- Define Storage. • • • • • • • • 38
Special Uses of the Duplication
Factor. • • • • • • • • • • 39

CCW -- Define Channel Command Word. • 40

Listing Control Instructions • • 40
TITLE Identify Assembly Output 40
EJECT Start New Page 41
SPACE Space Listing. 41
PRINT Print Optional Data. 42

Program Control Instructions •• •• 42
ICTL -- Input Format Control. •• 43
REPRO -- Reproduce Following Card • • 43
ORG -- Set Location Counter . . 43
LTORG -- Begin Literal Pool .••.• 44

Duplicate Literals • • • • 44
CNOP -- Conditional No Operation. • • 44
END -- End Assembly • • • •. .• 45

SECTION 6: CONDITIONAL ASSEMBLY
INSTRUCTIONS. • · 46

Variable Symbols . • 46

SETA -- Set Arithmetic 46

3

Evaluation of Arithmetic
Expressions •

Logical Expressions.

Sequence symbols • •

AIF Conditional Branch.

AGO Unconditional Branch.

ANOP -- Assembly No Operation.

Using Conditional Assembly
Instructions. • • • • • • •

SECTION 7: UPDATE FEATURE ••

Input/Output Considerations ••

Update Operation • • • • • •
Procedure • • • • • • • •
Insertion and Replacement • •
Update Instructions •

• 46

• 47

• 47

48

48

• 48

• 48

• 50

• 50

• • 50
• 50
• 51
· 51
• 51 NUM Instruction. •

OMIT Instruction • • • • • 52

4

SKPTO Instruction. •
CPYTO Instruction.
REWND Instruction.
ENDUP Instruction.

Sequence Checking.

Examples of Update Operation

APPENDIX A: CHARACTER CODES.

• 52
• • 53

• 53
• • 53

· 54

54

• • 57

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER
CONVERSION TABLE. • • • • • • • • • . • 62

APPENDIX C: MACHINE-INSTRUCTION FORMAT • 67

APPENDIX D: MACHINE-INSTRUCTION
OPERATION CODES . • • • . • • . · 68

APPENDIX E: ASSEMBLER INSTRUCTIONS. • 71

APPENDIX F: SU~~ARY OF CONSTANTS • . • . 72

APPENDIX G: ASSEMBLER
LANGUAGES--FEATURES COMPARISON
CHECKLISTS. • • • • • • • • • • • • • • 73

FIGURES

Figure 1. Coding Form. • • • • • • • 9
Figure 2. Assembler Language
structure -- Machine and Assembler
Instructions. • • • • • • • • • • • • • 13

Figure 3. Extended Mnemonic Codes . . . 31
Figure 4. Type Codes for Constants ••• 35
Figure 5. CNOP Alignment • • • • • • • • 44

TABLES

Table 1. Details of Address
Specification • • • •• • • 29

Table 2. Channel Command Word •• • 40

ILLUSTRATIONS

5

computer programs may be expressed in
machine language, i.e., language interpret­
ed directly by the computer, or in a
symbolic language, which is much more mean­
ingful to the prograromer: The syro~olic
language, however, must be translated into
machine language before the computer can
execute the program. This function is
accomplished by a processing program.

Of the various symbolic progr~~ing lan­
guages, assembler languages are closest to
machine language in form and content. The
assembler language discussed in this publi­
cation is a symbolic programming language
for the IBM System/360 Model 44. It ena­
bles the programmer to use IBM System/360
machine functions as though he were coding
in System/360 Model 44 machine language.

The assembler program that processes the
language translates symbolic instructions
into machine-language instructions, assigns
storage locations, and performs auxiliary
functions necessary to produce an executa­
ble machine-language program.

COMPATIBILITY

The IBM System/360 Model 44 Programming
System Assembler Language 1S a selected
subset of the language available in the IBM
System/360 programming support systems
designed for the Models 30, 40, 50, 65., and
75 -- specifically:

• System/360 Operating System (OS/360)

• System/360 ·Disk
(DOS/360)

• System/360
(TOS/360)

Tape

Operating System

Operating System

Thus, source programs written in the Model
44 assembler language can be assembled by
the appropriate assembler, OS/360, DOS/360,
or TOS/360, provided that (1) any source
statements involving subroutine linkages or
supervisory functions are modified to the
format specified for the applicable system,
(2) there are no statements using instruc­
tions peculiar to the Model 44 or the Model
44 assembler program, and (3) all SETA
variable symbols are defined using the LeLA
or GBLA statements as specified in the
appropriate language. Appendix G describes
more specifically the relationship between
the Model 44 Programming System Assembler

SECTION 1: INTRODUCTION

Language and the other System/360 program­
ming support system assembler languages.

THE ASSEMBLER LANGUAGE

The basis of the assembler language is a
collection of mnemonic symbols that rep­
resent:

1. System/360 machine-language operation
codes.

2. Operations (auxiliary functions) to be
performed by th~ assembler program.

The language is augmented by other sym­
bols, supplied by the programmer, and used
to represent storage addresses or data.
Symbols are easier to remember and to code
than are their machine-language equiva­
lents. Use of symbols greatly reduces
programming effort and error.

Machine Operation Codes

The assembler language provides mnemonic
machine-instruction operation codes for all
machine instructions that can be processed
by the Model 44 source programs and extend­
ed mnemonic operation codes for the condi­
tional branch instruction~ Appendix D
lists the acceptable machine -operation
codes for Model 44 source programs.

Assembler Operation Codes

The assembler language also contains
mnemonic assembler-instruction operation
codes, used to specify auxiliary functions
to be performed by the assembler. These
are instructions to the assembler program
itself and, with a few exceptions, do not
result in the generation of machine­
language code by the assembler program.

THE ASSEMBLER PROGRAM

The assembler program, also referred to
as the "assembler," processes the source
statements written in the assembler
language.

Introduction 7

Basic Functions

Processing a source program involves the
translation of source statements into
machine language, the assignment of storage
locations to instructions and other ele­
ments of the program, and the performance
of the auxiliary assembler functions desig­
nated by the programmer. The output of the
assembler program is the relocatable
module, a machine-language translation of
the source program. The assembler furnish­
es a printed listing of the source state­
ments and object program statements and
additional information useful to the pro­
grammer in analyzing his program, such as
error indications. The object program is
in the format required by the linkage
editor component of the System/360 Model 44
Programming System.

PROGRAMMER AIDS

The assembler provides auxiliary func­
tions that assist the programmer in check­
ing and documenting programs, in control­
ling address assignments, in segmenting a
program, in data and symbol definition, and
in controlling the assembler itself. Mne­
monic operation codes for these functions
are provided in the language.

Variety in Data Representation: Decimal,
hexadecimal, or character representation of
machine-language binary values may be emp­
loyed by the programmer in writing source
statements. The programmer selects the
representation best suited to his purpose.

Base Register Address calculation: As dis­
cussed in the publication IBM System/360:
Principles of Operation, Form A22-6821, the
System/360 addressing scheme requires the
designation of a base register (containing
a base address value) and a displacement
value in specifying a storage location.
The assembler assumes the clerical burden
of calculating storage addresses in these
terms for the symbolic addresses used by
the programmer. The programmer retains
control of base register usage and the
values entered there.

Relocatability: The object programs pro­
duced by the assembler are in a format
enabling relocation from the originally
assigned storage area to any other suitable
area.

8

Sectioning and Linking: The assembler lan­
guage and program provide facilities for
partitioning an assembly into one or more
parts called control sections. Control
sections may be added or deleted when
linkage editing the object program.
Because control sections do not have to be
loaded contiguously in storage, a sectioned
program may be loaded and executed even
though a continuous block of storage, large
enough to accommodate the entire program,
may not be available.

The assembler allows symbols to be
defined in one assembly and referred to in
another, thus effecting a link between
separately assembled programs. This per­
mits reference to data and transfer of
control between programs. A detailed dis­
cussion of program sectioning and linking
is contained in Section 3.

Program Listings: A listing of the source
program statements and the resulting object
program statements may be produced by the
assembler for each source program it assem­
bles. The programmer can control the form
and content of the listing to some degree.

An alphabetical listing of all the sym­
bols used in the program, together with
cross references to the statements that use
each symbol, can also be produced.

Error Indications: As a source program is
assembled, it is analyzed for actual or
potential errors in the use of the assem­
bler language. Detected errors are indi­
cated in the program listing, as described
in the publication IBM System/360 Model 44
Programming System: Guide to System Use,
Form C28-6812.

PROGRAMMING SYSTEM RELATIONSHIPS

The assembler is a component of the IBM
System/360 Model 44 Programming System and,
as such, functions under control of the
programming system. The programming system
provides the assembler with input/output
and other services needed in assembling a
source program. In a like manner, the
object program produced by the assembler
will normally operate under control of the
programming system and· depend on it for
input/output and other services. In writ­
ing the source program, the programmer uses
the supervisor Call (SVC) instruction to
invoke the facilities of the programming
system supervisor. The programming system
supervisor is discussed in the publication
IBM System/360 Model 44 Programming System:
Concepts and Facilities, Form C28-6810.

This section presents information about
assembler language coding conventions, as­
sembler source statement structure, and
addressing.

ASSEMBLER LANGUAGE CODING CONVENTIONS

This subsection discusses the general
coding conventions associated with use of
the assembler language.

Coding Form

A source program is a sequence of source
statements that are punched into cards.
These statements may be written on the
standard coding form, X28-6509 (shown in
Figure 1), provided by IBM. One line of

SECTION 2: GENERAL INFORMATION

coding on the form is punched into one
card. The vertical columns on the form
correspond to card columns. Space is pro­
vided on the form for program identifi­
cation and instructions to keypunch opera­
tors. None of this information is punched
into a card.

The body of the form (Figure 1) is
composed of two fields: first, the state­
ment field, columns 1.-11., and then the
identification-sequence field, columns
73-80. The identification-sequence field
is not part of a statement and is discussed
following "Summary of Statement Format" in
this section.

The entries (i.e., coding), composing a
statement, occupy columns 1-71 of a line.
Therefore, column 1 is referred to as the
"begin" column and column 71 is referred to
as the "end" column. The "begin" statement
boundary may be altered by use of the Input
Format Control (ICTL) assembler instruction

IBM IBM Syotom/3&O "-em r CadiJlf Form
.......... u.s.A.

fPlOGIAM
"'"""CHeNG I GIA'HtC I I I I I I'AGE Of

I PlQGlAMMU
INSTlUCTlONS I Pt.NCH I I I I I I CAIO ElleTlO NUMI(I

STATEMENT
..... ilicoti.-

",",",leo ~ --. I. 71 13

1 I I
, : ! " I ! I' I I I, !

I I I I i I ' J ' ; i i I ' ! , I Ii
I I ~ I

t
• I I ! I i I i I : I I I ! I I I I

i
1

I I , i I ! I ! I! i I ; ! i i i I II I I I ' ,

II II ! I [I I I I I iii : 1 : I I [: 11

1 ! I! I ! : i ' I
: , Tl I!

i I I ' i I i iii ' ,
: I I I ' ,

I
: Iii ! '

I T I I I , ! :
I : i I I ' I i I : I ' I

1 !

I 1
i ! i I· I i i ,

! I i I : I I :-
: i I

I i ! i I I , :
1 ,

I
'1 I ! ' ! , I i I I :

! i i i I I I I I I ! I I i! I I
! !

i ,
I , I

I i I i ! i it Il , ! : ! ' , i i ; I i I !
I I ' I I : ! i I Ii 1 I I T i I I I I] [

i i I : ! I, : I ; I I I I I
i 1\ I , i ! : : , I : I

I I ! ! I , I I I i I ! I i I

I! ' I I
, I ! i : I! ; ! ! I i i I ! : I I

I I
I , i I l ' i I i I I i I i iii I ' i I

I i I I I I Ii I i ; : '1 I , i i ! 11 ,

I i I :
I i ' ~ I : I 1 I, I', : I ; i

I i! ! I I I : ! !
I

: ! ' I i I I ! I i i j ; I I

i I j i
I i I I : I I I ! ' : i

!

,

I i • i i
1

i !
i

~ , : I

'i I I ~ ! i t i i I :i ,

i I I Ii i , I ii I : !
t : ; I i:

Figure 1. Coding Form

General Information 9

(discussed later) to designate an alternate
begin column.

Statement Format

A statement can be either a comment or
an instruction.

A statement may be used for a comment by
placing an asterisk in the begin column.
Extensive comments entries may be written
by using a series of lines with an asterisk
in the begin column of each line.

Instructions may consist of one to four
entries in the statement field. They are,
from left to right: a name entry, an
operation entry, an operand entry, and a
comments entry. These entries must be
separated by one or more blanks, and must
be written in the order stated.

Only one statement is allowed per line;
a statement cannot be continued on addi­
tional lines~ Column 72 must be blank.
Columns 73 through 80 may contain a serial
number, as discussed in Section 7, "Update
Feature."

The coding form (Figure 1) is vertically
ruled to provide an 8-character name field,
a 5-character operation field, and a
56-character operand and/or comments field.

If desired, the programmer may disregard
these column boundaries and write the name,
operation, operand, and comments entries in
other positions, subject to the following
rules:

1. The entries must not extend beyond the
"begin" and "end" statement boundaries
(either the conventional boundaries,
or the altered boundaries).

2. The entries must be in
sequence, as stated above.

proper

3. The entries must be separated by one
or more blanks.

4. If used, a name entry must start in
the begin column.

A description of the name, operation,
operand, and comments entries follows:

Name Entries: The name entry is a symbol
created by the programmer to identify a
statement. A name entry usually is option­
al. The symbol must consist of eight
characters or less, and be entered with the
first character appearing in the begin
column. If the begin column is blank, the
assembler program assumes no name has been

10

entered. No blanks may appear in the name
entry.

Operation Entries: The operation entry is
the mnemonic operation code specifying the
machine operation or assembler operation
desired. An operation entry is mandatory
and must start at least one position to the
right of the begin column. Valid mnemonic
operation codes for machine and assembler
operations are contained in Appendixes D
and E of this publication. Valid operation
codes consist of five characters or fewer
for machine or assembler-instruction opera­
tion codes. No blanks may appear within
the operation entry.

Operand Entries: The operand entry is the
coding that identifies and describes data
to be acted upon by the instruction, by
indicating such things as storage loca­
tions, masks, storage-area lengths, or
types of data.

Depending on the particular instruction,
an operand entry may consist of one or more
operands. Operands are required for all
machine instructions but not for all as­
sembler instructions.

Operands must be separated by commas,
and no blanks may intervene between oper­
ands and the commas that separate them.

The operands may not contain embedded
blanks, except as follows:

If character representation is
used to specify a constant, a
literal, or immediate data in an
operand, the character string may
contain embedded blanks, e.g.,
C· A 0'.

Comments Entries: Comments are descriptive
items of information about the program that
are to be inserted in the program listing.
All 256 valid characters (see "Character
set" in this section), including blanks,
may be used in writing a comment. The
entry must be separated from the operand
entry by a blank. The con@ents entry
cannot extend beyond column 71.

In statements where an optional operand
entry is omitted but a comments entry is
desired, the absence of the operand entry
must be indicated by a comma preceded and
followed by one or more blanks, as follows:

r-------T----------T----------------------,
I Name IOperation IOperand I
~-------+----------+----------------------~
I I END I, COMMENT I L _______ ~ __________ ~ ______________________ J

Statement Example: The following example
illustrates the use of name, operation,
operand, and comments entries. A compare
instruction has been named by the symbol
COMP; tne operation entry <CR) is the
mnemonic operation code for a register-to­
register compare operation, and the two
operands (5,6) designate the two general
registers whose contents are to be
compared. The comments entry reminds the
programmer that he is comparing "new sum"
to "old" with this instruction.

r------T-----------T----------------------,
I Name I Operation I Operand 1
~------+-----------+----------------------~
ICOMP ICR 15,6 NEW SUM TO OLD I L ______ i-__________ ~ ______________________ J

Summary of Statement Format

The entries in an instruction must
always be in the following order: name,
operation, operand(s), comment.

Every instruction requires an operation
entry. comments entries are optional.
Name entries are required for certain
instructions and are optional in all other
cases. Operand entries are required for
all machine instructions and most assembler
instructions.

The name and operation entries must not
contain embedded blanks. Operands must not
have blanks preceding or following the
commas that separate them.

All entries must be contained within the
designated statement boundaries.

Identification-Sequence Field

The identification-sequence field of the
coding form (columns 73-80) is used to
enter program identification and/or state­
ment sequence characters. The entry is
optional. If the field, or a portion of
it, is used for program identification, the
identification is punched in the source
cards and reproduced in the program list­
ing.

Character Set

Source statements are written using the
following characters:

Letters A through Z, and $, #, @

Digits o through 9

Special
Characters + - , = • * () • / & blank

These characters are represented by the
card-punch combinations and internal bit
configurations listed in Appendix A. In
addition~ any of the 256 punch combinations
may be designated anywhere that characters
are used in comments and between paired
single quotes.

ASSEMBLER LANGUAGE STRUCTURE

The basic structure of the language can
be stated as follows.

A source statement is composed of:

• A name entry (usually optional).

• An operation entry (required).

• An operand entry (usually required).

• Comments entry (optional).

A name entry is:

• A symbol.

An operation entry is:

• A mnemonic operation code represent­
ing a machine or assembler instruc­
tion.

An operand entry is:

• One or more operands, each composed
of one or more expressions. An
expression is composed of a term or
an arithmetic combination of terms.

Operands of machine instructions gener­
ally represent such things as storage loca­
tions, general registers, immediate data,
or constant values. Operands of assembler
instructions provide the information needed
by the assembler program to perform the
designated operation.

Figure 2 depicts this structure. Terms
shown in Figure 2 are classed as absolute
or relocatable. Terms are absolute or
relocatable, depending on the effect of
program relocation upon them. Program
relocation is the loading of the object
program into storage locations other than
those originally assigned by the assembler.
A term is absolute if its value does not
change upon relocation. A term is reloca­
table if its value changes upon relocation.

General Information 11

The following subsection "Terms and
Expressions" discusses these items as out­
lined in Figure 2.

TERMS AND EXPRESSIONS

TERMS

A term is a character or combination of
characters that represents a value. This
value may be assigned by the assembler
(symbols, location counter reference> or
may be inherent in the term itself
(self-defining term, literal>.

An arithmetic combination of terms is
reduced to a single value by the assembler.

The following material discusses each
type of term and the rules for its use.

Symbols

A symbol is a character or combination
of characters used to represent addresses
or arbitrary values.

Symbols, through their use as names and
in operands, provide the programmer with an
efficient way to name and refer to a
program element. A symbol, created by the
programmer for use as a name entry and/or
an operand, must conform to these rules:

1. The symbol must not consist of more
than eight characters.

2. The first character must be a letter.

3.

The other characters may be letters,
digits, or a combination of the two.

A symbol may not contain
characters, including blanks.

The following are valid symbols:

READER
A23456
X4F2

LOOP 2
N
S4

@B4
$A1
#56

special

The following symbols are invalid, for
the reasons noted:

256B (first character is not a
letter>

RECORDAREA2 (more than eight
characters>

BCD*34 (contains the special
character *>

IN AREA (contains a blank>

12

DEFINING SYMBOLS: The assembler assigns a
value to each symbol appearing as a name
entry in a source statement. The value
assigned to a symbol naming a storage area,
an instruction, a constant, or a control
section is the address of the leftmost byte
of the storage field containing the named
item. Since the address of such an item
may change upon program relocation, the
symbol naming it is considered a relocata­
ble term.

A symbol used as a name entry in the
Equate Symbol (EQU> assembler instruction
is assigned the value designated in the
operand entry of the instruction. Since
the operand entry may represent a relocata­
ble value or an absolute (i.e.,
nonchanging> value, the symbol is consid­
ered a relocatable term or an absolute
term, depending upon the value to which it
is equated.

The value of a symbol may not be nega­
tive and may not exceed 22~-1.

A symbol is said to be defined when it
appears as the name of a source statement.
(A special case of symbol definition
involving external references is discussed
in Section 3, under "Program Sectioning and
Linking.">

A symbol may be defined only once in an
assembly. That is, each symbol used as the
name of a statement must be unique within
that assembly.

PREVIOUSLY DEFINED SYMBOLS: Some instruc­
tions require that a symbol appearing in
the operand entry be previously defined.
This simply means that the symbol, before
its use in an operand, must have appeared
as a name entry in a prior statement.

Self-Defining Terms

A self-defining term is one whose value
is inherent in the term. It is not
assigned a value by the assembler. For
example, the decimal self-defining term 15
represents a value of 15.

is a symbol
which is an:

T
I ,

ary
I

Ordin
Symbo
(AT 0 rRT)

ble Varia
Symbo I

nce Seque
Symbo I

I

I

I
A Symbol
e.g., BETA
(AT or RT)

I
Decimal
e.g.,15

I

1

I

is a Mnemonic
Operation Code

, ,

Term

which may be
anyone of
the following;

I

,

I
A Location

A Self- Counter Refer-
defining ence i.e., * Term (AT) (RT)

I
... 1..:-1.. __ " 1.._ I

'1

I
I l

Hexadecimal Character
e.g.,X'C4' e.g.,C'AB9'

Exp

I
A Literal
e .g.,=F '1259'
(RT)

,

One or more
operands that
are composed
of on:

1:,,_fAT\
LAI"'V'''\.I J

,

Exp = Expression

Of

I

I

Arithmetic
Combination
of Terms

AT = Absolute Term

RT= Relocatable Term

Exp (AT ,AT)

I

Figure 2. Assembler Language structure -- Machine and Assembler Instructions

General Information 13

There are three types of self-defining
terms: decimal. hexadecimal, and character.
Use of these terms is spoken of as decimal,
hexadecimal, or character representation of
a machine-language binary value or bit
configuration.

Self-defining terms are classed as abso­
lute terms. since the values they represent
do not change upon program relocation.

USING SELF-DEFINING TERMS: Self-defining
terms are the means of specifying machine
values or bit configurations without equat­
ing the values to symbols and using the
symbols.

Self-defining terms may be used to spec­
ify such program elements as immediate
data, masks, registers, addresses, and
address increments. The type of term
selected (decimal, hexadecimal, or
character) will depend on what is being
specified.

The use of a self-defining term is quite
distinct from the use of data constants or
literals. When a self-defining term is
used in a machine-instruction statement.
its value is assembled into the instruc­
tion~en a data constant is referred to
or a literal is specified in the operand of
an instruction. its address is assembled
into the instruction-.--self-defining terms
are always right-justified; truncation or
padding with zeros, if necessary, occurs on
the left.

Decimal Self-Defining Term: A decimal
self-defining term is simply an unsigned
decimal number written as a sequence of
decimal digits. High-order zeros may be
used (e.g., 009). Limitations on the value
of the term depend on its use. For exam­
ple, a decimal term that designates a
general register should have a value
between a and 15; one that represents an
address should not exceed the size of
storage. In any case, a decimal term may
not consist of more than eight digits; to
be exact, it may not exceed 16777215
(224-1). A decimal self-defining term is
assembled as its binary equivalent. Some
examples of decimal self-defining terms
are: 8, 147, 409~, and 00021.

Hexadecimal Self-Defining Term: A hexa­
decimal self-defining term is an unsigned
hexadecimal number (written as a sequence

lof one to six hexadecimal digits) enclosed
in single quotes and preceded by the letter
X: X'C49'.

Each hexadecimal digit is assembled as
its 4-bit binary equivalent. Thus. a hexa­
decimal term used to represent an 8-bit
mask would include two hexadecimal digits.

The maximum value of a hexadecimal term is
FFFFFF.

The hexadecimal digits and their bit
patterns are as follows:

0- 0000 4- 0100 8- 1000 C- 1100
1- 0001 S- alOl 9- 1001 D- 1101
2- 0010 6- 0110 A- 1010 E- 1110
3- 0011 7- 0111 B- 1011 F- 1111

A table for converting from hexadec ima I
representation to decimal representation is
provided in Appendix B.

Character Self-refining Term: A character
self-defining term consists of one to three
characters enclosed by single quotes and
preceded by the letter C. All letters,
decimal digits, and special characters may
be used in a character term. In addition,
any of the remainder of the 256 punch
combinations may be designated in a charac­
ter self-defining term. Examples of char­
acter self-defining terms are as follows:

C'/'
C'ABC'

C' (blank)
C'13'

Because of the use of single quotes and
ampersands as syntactic characters
(ampersands are used as syntactic charac­
ters in variable symbols, which are dis­
cussed in Section 6), the following rule
must be observed when using these charac­
ters in a character term:

For each single quote or ampersand
desired in a character self-defining
term, two single quotes or amper­
sands must be written. For example,
the character values to the left are
specified as indicated to the right:

A'#
B&B

, & '

C'A" #'
C'B&&B'
C'" •••
C"'&&'"

Each character in the character sequence
is assembled as its 8-bit code equivalent
(see Appendix A). The two single quotes or
ampersands that must be used to represent a
single quote or ampersand within the char­
acter sequence are assembled as one single
quote or ampersand.

Location counter Reference

The location counter reference enables
the programmer to refer to the current
value of the location counter. The loca­
tion counter is used to assign storage
addresses to program statements. It is the

assembler's equivalent of the instruction
counter in the computer. As each machine
instruction or data area is assembled, the
location counter is first adjusted to the
proper boundary for the item, if adjustment
is necessary, and after the statement has
been processed, incremented by the length
of the assembled item. Thus, after a
statement has been processed, it points to
the next available location. If the state­
ment is named by a symbol. the value
attribute of the symbol is the value of the
location counter after boundary adjustment,
but before addition of the length.

For each successively declared control
section, the location counter assigns loca­
tions in consecutively higher areas of
storage. The first location of each con­
trol section is aligned to a double-word
boundary. (Control sections are discussed
further in section 3, "Program Sectioning
and Linking.")

The location counter setting can be
controlled by using the ST~~T and ORG
assembler instructions, which are described
in sections 3 and 5. The maximum value for
the location counter is 224-1.

The programmer may refer to the current
value of the location counter at any place
in a program by using an asterisk as a term
in an operand. The asterisk represents the
location of the first byte of currently
available storage (i.e., after any required
boundary adjustment). Using an asterisk as
the operand in a machine-instruction state­
ment is the same as placing a symbol in the
name field of the statement and then using
that symbol as an operand of the statement.

A reference to the location counter may
be made in an address constant literal
(i.e., the asterisk may be used in an
address constant specified in literal
form). The address of the instruction
containing the literal is used for the
value of the location counter. A location
counter reference may not be used in a
statement that requires the use of a prede­
fined symbol, with the exception of the EQU
and ORG assembler instructions.

Literals

A literal may be used to introduce data
into a program. It is simply a DC operand
preceded by an equal sign (=).

A literal represents data rather than a
reference to data. The appearance of a
literal in a statement causes the assembler
program to assemble the data specified by
the literal, store this data in a "literal

pool," and place the address of the storage
field containing the data in the operand
field of the assembled statement.

Literals provide a means of entering
constants (such as numbers for calculation,
addresses, indexing factors, or words or
phrases for printing out a message) into a
program by specifying the constant in the
operand of the instruction in which it is
used. Specifying a literal is in contrast
to using the DC assembler instruction to
enter the data into the program and then
specifying the name of the DC instruction
in the operand. Only one literal is
allowed in a machine-inST-rnction statement.

A literal may not be combined with any
other terms.

A literal may not be used as the receiv­
ing field of an instruction that modifies
storage.

A literal may not be specified in an
address constant (see Section 5,
"DC--Define Constant").

The instruction coded below shows one
use of a literal.

r-------T-----------T---------------------,
IName I Operation I Operand I
~-------+-----------+---------------------1
I GAMMA I L 110 , = F' 274' I L _______ ~ ___________ L-____________________ J

The statement GAMMA is a load
instruction using a literal as the second
operand. When assembled, the second oper­
and of the instruction will be the address
at which the value F'274' is stored.

A literal may be used as an operand
wherever a storage address is specified in
a machine instruction or in a CCW assembler
instruction operand. Literals are consid­
ered relocatable because the address of the
literal, rather than the literal itself,
will be assembled in the statement that
employs a literal. The assembler generates
the literals, collects them, and places
them in a specific area of storage, as
explained in the subsection "The Literal
Pool." A literal is not to be confused
with the immediate data in an SI instruc­
tion. Immediate data is assembled into the
instruction.

Literal Format: The assembler requires a
description of the type of literal being
specified as well as the literal data
itself. The descriptive portion of the
literal must indicate the format of the
constant.

General Information 15

The method of describing and specifying
a constant as a literal is nearly identical
to the method of specifying it in the
operand of a OC assembler instruction. The
major difference is that the literal must
start with an equal sign (=), which indi­
cates to the assembler that a literal
follows. The reader is referred to the
discussion of the DC ass~mbler instruction
operand format (Section 5) for the means of
specifying a literal. The type of literal
designated in an instruction is not checked
for correspondence with the operation code
of the instruction.

Some examples of literals are:

=A(BETA)
=F'1234'

=C'ABC'

address constant literal
a fixed-point number with

a length of four bytes
a character literal

The Literal Pool: The literals processed
by the assembler are collected and placed
in a special area called the literal pool,
and the location of the literal, rather
than the literal itself, is assembled in
the statement employing a literal. The
positioning of the literal pool must be
assigned by the programmer within the con­
trol section in which the literal is used.

The programmer may also specify that
multiple literal pools be created. Howev­
er, the sequence in which literals are
ordered within the pool is controlled by
the assembler. Further information on
positioning the literal pool(s) is in Sec­
tion 5 under "LTORG--Begin Literal Pool."

EXPRESSIONS

This subsection discusses the expres­
sions used in coding operand entries for
source statements. Two types of expres­
sions, absolute and relocatable, are pre­
sented along with the rules for determining
these attributes of an expression.

As shown in Figure 2, an expression is
composed of a single term or an arithmetic
combination of terms. The arithmetic oper­
ators that may be used to combine the terms
of an expression are + (addition),
(subtraction), * (multiplication), and /
(division).

The following are examples of valid

lexpressions (provided that BETA, LAMBDA,
GAMMA, TEN, and TWO are absolute) :

16

1.

2.

AREA1+X' 20'
*+32
N-25
FIELD
=F'1234'

BETA*10
C'ABC'
29
LAMBOA+GAMHA
TEN/TWO

The rules for coding expressions are:

An expression may not start with an
arithmetic operator. Therefore, the
expression -A+BETA is invalid. Howev­
er, the expression O-A+BETA is valid.

An expression may not contain two
terms or two operators in succession.

3. An expression may not consist of more
than three terms.

4. An expression may not have more than
one level of parentheses (i.e., a
parenthetical express10n may not
appear within a parenthetical
expression) •

5. A multiterm expression may not contain
a literal.

A parenthesized expression may not
contain a literal.

Evaluation of Expressions

A single term expression, e.g.,
BETA, *, takes on the value of the
involved.

29,
term

A multiterm expression, e.g., BETA+10,
ENTRY-EXIT, 25*10+A, is reduced to a single
value, as follows:

1. Each term is given its value.

2. Every expression is computed to 32
bits.

3. Arithmetic operations are performed
left to right. Multiplication and
division are done before addition and
subtraction, e.g., A+B*C is evaluated
as A+(B*C), not (A+B)*C. The computed
result is the value of the expression.

4. Division always yields an integer
result; any fractional portion of the
result is dropped. For example,
1/2*10 yields a zero result, whereas
10*1/2 yields 5.

5. Division by zero is valid and yields a
zero result.

A parenthesized multiterrn expression
used in an expression is processed before
the rest of the terms in the expression,
e.g., in the expression BETA*(CON-10), the

term CON-l0 is evaluated first and the
resulting value is used in computing the
final value of the expression.

Negative values are carried in two's
complement form. Final values of expres­
sions are the truncated rightmost 24 bits
of the results. The value of an expression
before truncation must be in the range _22~
through 22~-1. A negative result is con­
sidered to be a 3-byte positive value.

I Intermediate results
through 23~-1.

have a range of _23~

Absolute and Relocatable Expressions

An expression is called absolute if its
value is unaffected by program relocation.

An expression is called relocatable if
its value changes upon program relocation.

The two types of expressions, absolute
and relocatable, take on these charac­
teristics from the term(s} composing them.

ABSOLUTE EXPRESSION: An absolute expres­
sion may be an absolute term or any arith­
metic combination of absolute terms. An
absolute term may be an absolute symbol, or
any of the self-defining terms. All arith­
metic operations are permitted between
absolute terms.

An absolute expression may contain relo­
catable terms (RT) -- alone or in combina­
tion with absolute terms (AT) -- under the
following conditions:

1. There must be an even nu~her of relo-
catable terms in the expression.

2. The relocatable terms must be paired.
Each pair of terms must have the same
relocatability attribute, i.e., they
appear in the same control section in
this assembly (see section 3, "Program
Sectioning and Linking"). Each pair
must consist of terms with opposite
signs. The paired terms do not have
to be contiguous, e.g., RT+AT-RT.

3. No relocatable term may enter into a
multiply or divide operation. Thus,
RT-RT*10 is invalid. However,
(RT-RT}*10 is valid.

The pairing of relocatable terms (with
opposite signs and the same relocatability
attribute) cancels the effect of reloca­
tion. Therefore, the value represented by
the paired terms remains constant, regard­
less of program relocation. For example,
in the absolute expression A-Y+X, A is an
absolute term, and X and Yare relocatable

terms with
bute. If A
equals 10,
would be 35.

the same relocatability attri­
equals 50, Y equals 25, and X
the value of the expression
If X and Yare relocated by a

factor of 100 i their values would then be
125 and 110. However, the value of the
expression would still be 35
(50-125+110=35). An absolute expression
reduces to a single absolute value.

The following examples illustrate abso­
lute expressions. A is an absolute term; X
and Yare relocatable terms with the same
relocatability attribute.

A-Y+X
A
A*A
X-Y+A
*-Y (a reference to the location
counter must be paired with another
relocatable term from the same control
section. i.e., with the same relocata­
bility attribute)

RELOCATABLE EXPRESSION: A relocatable
expression is one whose value would change
by n if the program in which it appears is
relocated g bytes away from its originally
assigned area of storage. All relocatable
expressions must have a positive value.

A relocatable expression
catable term. A relocatable
contain relocatable terms -­
combination with absolute
the following conditions:

may be a relo­
expression may
alone or in

terms -- under

1. There must be an odd number of reloca­
table terms.

2. All relocatable terms but one must be
~~;yoA
~~~.~~. 

preceding 
Pairing is described in the 

discussion of absolute 
expressions. 

3. The unpaired term must not be directly 
preceded by a minus sign. 

4. No relocatable term may enter into a 
multiply or divide operation. 

A relocatable expression reduces to a 
single relocatable value. This value is 
the value of the odd relocatable term, 
adjusted by the values represented by the 
absolute terms and/or paired relocatable 
terms associated with it. The relocatabil­
ity attribute is that of the odd relocata­
ble term. 

For example, in the expression W-X+w, 
the terms Wand X are relocatable terms 
with the same relocatability attribute. 
If, initially, W equals 10 and X equals 15, 
the value of the expression is 5. However, 
upon relocation, this value will change. 
If a relocation factor of 100 is applied, 

General Information 17 



the value of the expression is 105. Note 
that the value of the paired terms, w-x, 
remains constant at -5 regardless of relo­
cation. Thus, the new value of the expres­
sion, 105, is the result of the value of 
the odd term (W) adjusted by the values of 
w-x. 

The 
eatable 

18 

following examples illustrate relo­
expressions. A is an absolute 

term, Wand X are relocatable terms with 
the same relocatability attribute, Y is a 
relocatable term with a different relocata­
bility attribute. 

Y-32*A 
W-X+Y 
w-x+* 
* (reference to 

location counter) 

=F'1234' (literal) 
A*A+W 
W-X+W 
Y 



SECTION 3: 

ADDRESSING 

The IBM System/360 addressing technique 
requires the use of a base register, which 
contains the base address, and a displace­
ment, which is added to the contents of the 
base register. The programmer may specify 
a symbolic address and request the as­
sembler to determine its storage address 
composed of a base register and a displace­
ment. The programmer may rely on the 
assembler to perform this service for him 
by indicating which general registers are 
available for assignment and what values 
the assembler may assume each contains. 
The programmer may use as many or as few 
registers for this purpose as he desires. 
The only requirement is that, at the point 
of reference, a register containing an 
address from the sane control section is 
available, and that this address is less 
than or equal to the address of the item to 
which the reference is being made. The 
difference between the two addresses may 
not exceed 4095 bytes. 

ADDRESSES -- EXPLICIT AND IMPLIED 

An address is composed of a displacement 
plus the contents of a base register. (In 
the case of RX instructions, the contents 
of an index register are also used to 
derive the address in the machine.) 

The programmer writes an explicit 
address by specifying the displacement and 
the base register number. In designating 
explicit addresses, a base register may not 
be combined with a relocatable symbol. 

The programmer writes an implied address 
by specifying an absolute or relocatable 
address. The assemble.r has the facility to 
select a base register and compute a dis­
placement, thereby generating an explicit 
address from an implied address, provided 
that it has been informed as to (1) what 
base registers are available to it and (2) 
what each contains. The programmer conveys 
this information to the assembler through 
the USING and DROP assembler instructions. 

ADDRESSING -- PROGRAM SECTIONING AND LINKING 

BASE REGISTER INSTRUCTIONS 

The USING and DROP assembler instruc­
tions enable programmers to use expressions 
represe.nt.ing ilTlplied addresses as operands 
of machine-instruction statements, leaving 
the assignment of base registers and the 
calculation of displacements to the as­
sembler. 

In order to use symbols in the operand 
field of machine-instruction statements, 
the programmer must (1) indicate to the 
assembler, by means of USING statements, 
which general registers are available for 
use as base registers, (2) specify, by 
means of the USING statement, what value 
each base register contains, and (3) load 
each base register with the value he has 
specified for it. 

A program must have at least one USING 
statement for each control section that 
contains implicit addressing. 

Having the assembler determine base reg­
isters and displacements relieves the pro­
grammer of separating each address into a 
displacement value and a base address 
value. This feature of the assembler will 
eliminate a likely source of programming 
errors, thus reducing the time required to 
check out programs: To take advantage of 
this feature, the programmer uses the USING 
and DROP instructions described in this 
subsection. The principal discussion of 
this feature follows the description of 
both instructions. 

USING -- Use Base Address Register 

The USING instruction specifies a gener­
al register that is available for use as a 
base register. This instruction also 
states the base address value that the 
assembler may assume will be in the reg­
ister at object time. Note that a USING 
instruction does not load the register 
specified. It is the programmer's 
responsibility to make sure that the speci­
fied base address value is placed into the 
register. Suggested loading methods are 
described in the subsection "Programming 
with the USING Instruction." 

Addressing -- Program Sectioning and Linking 19 



The format of the USING instruction 
statement is: 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
I Blank I USING ITWO expressions 1 
I I lof the form v,r I L _______ ~ __________ ~ _____________________ J 

Operand ~ must be an absolute or reloca­
table expression. Literals are not permit­
ted. Operand y specifies a value that the 
assembler can use as a base address. The 
operand r must be an absolute term. It 
specifies the general register that the 
assembler assumes will contain the base 
address represented by operand y. The 
value of ~ must be in the range from 0 to 
15. 

For example, the following USING state­
ment tells the assembler it may assume that 
the current value of the location counter 
will be in general register 12 at execution 
time. 

r-------T-----------T---------------------, 
1 Name I Operation I Operand I 

~-------+-----------+---------------------~ 
1 I USING 1*,12 I L _______ ~ ___________ ~ _____________________ J 

If the programmer changes the value in a 
base register currently being used, and 
wishes the assembler to compute displace­
ment from this value, the assembler must be 
told the new value by means of another 
USING statement. In the following sequence 
the assembler first assumes that the value 
of ALPHA is in register 9. The second 
statement then causes the assembler to 
assume that ALPHA+l000 is the value in 
register 9. 

r-------T-----------T---------------------, 
1 Name I Operation 1 Operand I 
~-------+--~--------+---------------------~ 
I I USING I ALPHA, 9 I 
I I • I 1 
I 1 • I I 
I I USING IALPHA+l000,9 I L _______ ~ ___________ ~ _____________________ J 

A USING statement may specify general 
register 0 as a base register if operand v 
is a relocatable expression from any con­
trol section in the program or has an 
absolute value of zero. If general reg­
ister 0 is specified, the assembler assumes 
that register 0 contains the value zero. 

20 

Note: If register 0 is made available by a 
USING instruction, the program is not relo­
catable, despite the fact that the value 
specified by operand v must be relocatable. 
However, the programmer is able to make the 
program relocatable at some future time by: 

1. Replacing register 0 with an alternate 
register in the USING statement. 

2. Inserting an instruction that loads 
the alternate register with a reloca­
table value. 

3. Reassembling the program. 

DROP -- Drop Base Register 

The DROP instruction specifies a pre­
viously available register that may no 
longer be used as a base register. The 
format of the DROP instruction statement is 
as follows: 

r------~-----------T---------------------, 
I Name 1 Operation I Operand I 

~-------+-----------+---------------------~ 
I Blank I DROP lOne absolute term 1 L _______ ~ ___________ ~-____________________ J 

The absolute term indicates a general 
register previously named in a USING state­
ment that is now unavailable for base 
addressing. The following statement, for 
example, prevents the assembler from using 
register 7: 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
I I DROP 17 I L _______ ~ ___________ ~ _____________________ J 

It is not necessary to use a DROP 
statement when the base address being used 
is changed by a USING statement; nor are 
DROP statements needed at the end of the 
source program. 

A register made unavailable by a DROP 
instruction can be made available again by 
a subsequent USING instruction. 

PROGRAMMING WITH THE USING INSTRUCTION 

The USING (and DROP) instructions may be 
used anywhere in a program, as often as 
needed, to indicate the general registers 
that are available for use as base reg­
isters and the base address values that the 
assembler may assume each contains at exe-



cut ion time. Whenever an address is speci­
fied in a machine-instruction statement, 
the assembler determines whether there is 
an available register containing a suitable 
base address. A register is considered 
available for a relocatable address if it 
was specified in a USING instruction to 
have a relocatable value. A register with 
an absolute value is available only for 
absolute addresses. In either case, the 
base address is considered suitable only if 
it is less than or equal to the address of 
the item to which the reference is made. 
The difference between the two addresses 
may not exceed 4095 bytes. In calculating 
the base register to be used, the assembler 
will always use the available register 
giving the smallest displacement. If there 
are two registers with the same value, the 
highest numbered register will be used. 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
IBEGIN IBALR 12,0 I 
I I USI NG I * , 2 I 
I FIRST I • I I 
I I • I I 
I I . I I 
I LAST I· I I 
I lEND I BEGIN I L _______ ~ __________ ~ _____________________ J 

In the preceding sequence, the BALR 
instruction loads register 2 with the 
address of the immediately following stor­
age location. In this case, it is the 
address of the instruction named FIRST. 
The USING instruction indicates to the 
assembler that register 2 contains this 
location. When employing this method, the 
USING instruction must immediately follow 
the BALR instruction. No other USING or 
load instructions are required if the loca­
tion named LAST is within 4095 bytes of 
FIRST. 

In the following sequence, the BALR and 
L instructions load registers 2 through 5. 
The USING instructions indicate to the 
assembler that these registers are availa­
ble as base registers for addressing a 
maximum of 16,384 consecutive bytes of 
storage, beginning with the location named 
HERE. The number of addressable bytes may 
be increased or decreased by changing the 
number of registers designated by the USING 
and L instructions and the number of 
address constants specified in the DC 
instruction. 

r----------T----------~------------------, 

1 Name I Operation I Operand I 
~----------+-----------+------~-----------1 
I BEGIN BALR 2,0 I 
I USING HERE, 2 I 
I USING HERE+4096,3 I 
I USING HERE+8192,4 I 

USING HERE+12288,5 I 
HERE L 3,BASEAD I 

L 4,BASEAD+4 i 
L 5,BASEAD+8 I 
B FIRST I 

BASEAD DC A(HERE+4096) I 
DC A(HERE+8192) J 
DC A(HERE+12288) I 

FIRST I 
I 
I 

LAST I 
END BEGIN I L __________ ~ __________ ~ __________________ J 

RELATIVE ADDRESSING 

Relative addressing is the technique of 
addressing instructions and data areas by 
designating their location in relation to 
the location counter or to some symbolic 
location. This type of addressing is 
always in bytes, never in bits, words, or 
instructions. Thus, the expression *+4 
specifies an address that is four bytes 
greater than the current value of the 
location counter. In the sequence of 
instructions shown in the following exam­
ple, the location of the CR machine 
instruction can be expressed in two ways, 
ALPHA+2 or BETA-4, because all of the 
mnemonics in the example are for 2-byte 
instructions in the RR format. 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
I ALPHA ILR 13,4 I 
1 I CR 14 ,6 I 
I I BCR 11 , 14 I 
I BETA I AR I 2 , 3 I L _______ ~ ___________ ~ _____________________ J 

PROGRAM SECTIONING AND LINKING 

It is often convenient, or necessary, to 
write a program in sections. The sections 
may be assembled separately, then combined 

Addressing -- Program Sectioning and Linking 21 



via the linkage editor into one or more 
executable phases. The assembler provides 
facilities for creating multisectioned pro­
grams and symbolically linking separately 
assembled programs or program sections. 
The combined number of control sections and 
dummy sections plus the number of unique 
symbols in EXTRN statements may not exceed 
255. 

sectioning a program is optional, and 
many programs can best be written without 
sectioning. The programmer writing an 
unsectioned program need not concern him­
self with the subsequent discussion of 
program sections, which are called control 
sections. He need not employ the CSECT 
instruction, which is used to identify the 
control sections of a multisection program. 
Similarly, he need not concern himself with 
the discussion of symbolic linkages if his 
program neither requires a linkage to nor 
receives a linkage from another program. 
He may, however, wish to identify the 
program and/or specify a tentative starting 
location for it, both of which may be done 
by using the START instruction. He may 
also want to employ the dummy section 
feature obtained by using the DSECT 
instruction. 

Note: Program sectioning and linking is 
closely related to the specification of 
base registers for each control section. 
sectioning and linking examples are provid­
ed under the heading "Addressing External 
control sections." 

CONTROL SECTIONS 

The concept of program sectioning should 
be taken into consideration at coding time, 
assembly time, and load time. To the 
programmer, a program is a logical unit. 
He may want to divide it into sections 
called control sections; if so, he writes 
it in such a way that control passes 
properly from one section to another 
regardless of the relative physical posi­
tion of the sections in storage. A control 
section is a block of coding that can be 
relocated independently (i.e., without 
affecting the location of other coding), at 
load time, without altering or impairing 
the operating logic of the program. It is 
normally identified by the CSECT instruc­
tion. However, if it is desired to specify 
a tentative starting location, the START 
instruction may be used to identify the 
first control section. 

To the assembler, there is no such thing 
as a program; instead, there is an assem­
bly, which consists of one or more control 
sections. (However, the terms assembly and 

22 

program are often used interchangeably.) 
An unsectioned program is treated as a 
single control section. To the linkage 
editor, there are no programs, only control 
sections that must be fashioned into an 
object program. 

The assembler output consists of the 
assembled control sections and a control 
dictionary. The control dictionary con­
tains information the linkage editor needs 
to complete cross-referencing between con­
trol sections as they are combined into an 
object program. The linkage editor can 
combine control sections from various 
assemblies with the help of the correspond­
ing control dictionaries. Successful com­
bination of separately assembled control 
sections depends on the techniques used to 
provide symbolic linkages between the con­
trol sections. Whether the programmer 
writes an unsectioned program, a multisec­
tioned program, or part of a multisectioned 
program, he still knows what eventually 
will be entered into storage because he has 
described storage symbolically. He may not 
know where each section appears in storage, 
but he does know what storage contains. 
There is no constant relationship between 
control sections. Thus, knowing the loca­
tion of one control section does not make 
another control section addressable by 
relative addressing techniques. 

control Section Location Assignment 

Locations are assigned to control sec­
tions as if the sections are placed in 
storage consecutively, in the same order as 
they first occur in the program. Each 
control section subsequent to the first 
begins at the next available double-word 
boundary. 

START -- Start Assembly 

The START instruction may be used to 
give a name to the first (or only) control 
section of a program. It may also be used 
to specify an initial location counter 
value for the program. The format of the 
STfu~T instruction statement is as follows: 

r----------T-----------T------------------, 
I Name I Operation I Operand I 
~----------+-----------+------------------~ 
IA symbol I START IA self-defining I 
lor blank I I term, or blank I l __________ L ___________ L __________________ J 



If a symbol names the START instruction, 
the symbol is established as the name of 
the control section. otherwise, the con­
trol seC~lon is considered to be unnamed. 
All subsequent statements are assembled as 
part of that control section. This contin­
ues until an instruction identifying a 
different control section (CSECT, DSECT, or 
COM) is encountered. 

The symbol in the name field is a valid 
relocatable symbol whose value represents 
the address of the first byte of the 
control section. 

The assembler uses the self-definina 
term specified by the operand as the ini: 
tial location counter value of the program. 
This value should be divisible by eight. 
For example, either of the following state­
ments could be used to assign the name 
PROG2 to the first control section and to 
indicate an initial assembly location of 
2040. 

r-------T-----------T---------------------, 
1 Name I Operation I Operand I 
~-------+-----------+---------------------~ 
IPROG2 I START 12040 I 
IPROG2 I START IX'7FS' I L _______ i ___________ i _____________________ J 

If the operand is omitted, the assembler 
sets the initial location counter value of 
the program at zero. The location counter 
is set at the next double-word boundary 
when the value of the START operand is not 
divisible by eight. 

Note: The START instruction may not be 
preceded by any type of assembler language 
statement that may either affect or depend 
upon the setting of the location counter. 

CSECT -- Identify Control section 

The CSECT instruction identifies the 
beginning of a control section. The format 
of the CSECT instruction statement is as 
follows: 

r----------T----------~------------------, 
I Name I Operation I Operand I 
~----------+-----------+------------------~ 
IA symbol ICSECT IMust be blank I 
I or blank I I I L __________ i ___________ i-_________________ J 

If a symbol names the CSECT instruction, 
the symbol is established as the name of 
the control section; otherwise, the section 
is considered to be unnamed. Multiple 
CSECT instructions must have unique names. 

I
The name of a CSECT may be blank, provided 
that no other CSECT or START instruction 
has a blank name. 

The symbol in the name field is a valid 
relocatable symbol whose value represents 
the address of the first byte of the 
control section. 

The occurrence of a CSECT instruction 
terminates the previous control section. 

Unnamed Control section 

If it is desired to write a program that 
is unsectioned, the program does not need 
to contain a CSECT or START instruction. 
In this case, the assembl,er will generate 
an unnamed START statement for the first 
assembler language statement that may eith­
er affect or depend upon the setting of the 
location counter. 

CSECT -- Identify Dummy Section 

A dummy section represents a control 
section that is assembled but is not part 
of the object program. A dummy section is 
a convenient means of describing the layout 
of an area of storage without actually 
reserving the storage. (It is assumed that 
the storage is reserved either by some 
other part of this assembly or else by 
another assembly.) The DSECT instruction 
identifies the beginning of a dummy sec­
tion. More than one dummy section may be 
defined per assembly, but each must be 
named. The format of the DSECT instruction 
statement is as follows: 

r----------T-----------T------------------, 
I Name I Operation I Operand I 
~----------+-----------+------------------i 
IA symbol I DSECT IMust be blank I L __________ ~ ___________ i __________________ J 

The symbol in the name field is a valid 
relocatable symbol whose value represents 
the first byte of the section. 

All statements following the DSECT 
instruction are assembled as part of that 
control section until a statement identify­
ing a different control section is encoun­
tered (i.e., another DSECT, CSECT, or COM 
instruction). All assembler language 
instructions may occur within dummy sec­
tions. 

Addressing -- Program sectioning and Linking 23 



symbols that name statements in a dummy 
section may be used in USING instr~ctions. 
Therefore, they may be used in program 
elements (e.g., machine-instructions and 
data definitions) that specify storage 
addresses. An example illustrating the use 
of a dummy section appears subsequently 
under "Addressing Dummy Sections." 

The occurrence of a DSECT instruction 
terminates the previous control section. A 
DSECT cannot be resumed. 

Note: A symbol that names a statement in a 
dummy section may be used in an A-type 
address constant only if it is paired with 
another symbol (with the opposite sign) 
from the same dummy section. 

DUM}1Y SECTION LOCATION ASSIGN~ffiNT: A loca­
tion counter is used to determine the 
relative locations of named program ele­
ments in a dummy section. The location 
counter is always set to zero at the 
beginning of the dummy section, and the 
location values assigned to symbols that 
name statements in the dummy section are 
relative to the initial statement in the 
section. 

ADDRESSING DUMMY SECTIONS: The programmer 
may wish to describe the format of an area 
whose storage location will not be deter­
mined until the program is executed. He 
can describe the format of the area in a 
dummy section, and he can use symbols 
defined in the dummy section as the oper­
ands of machine instructions. To effect 
references to the storage area, he does the 
following: 

1. Provides a USING statement specifying 
both a general register that the as­
sembler can assign to the machine­
instructions as a base register and a 
value from the dummy section that the 
assembler may assume the register 
contains. 

24 

2. Ensures that the same register is 
loaded with the actual address of the 
storage area. 

The values assigned to symbols defined 
in a dummy section are relative to the 
initial statement of the section. Thus, 
all machine instructions which refer to 
names defined in the dummy section will, at 
execution time, refer to storage locations 
relative to the address loaded into the 
register. 

r---------T-----------~------------------, 
I Name I Operation I Operand I 
~---------+-----------+-------------------~ 
I ASMBL2 ICSECT I 
I BEGIN IBALR 12,0 
I I USING 1*,2 
I I . I 
I I • I 
I I • I 
I I USING IINAREA,3 
I ICLI IINCODE,C'A' 
I IBE IATYPE 
I I . ~ 
I I . I 
I I . I 
IATYPE ILA 5,0 
liLA 6,5 
I IL 7,INPUTA(S) 
I 1ST 7,WORKA(S) 
I ILA 5,4(5) 
I IBCT 6,*-12 
I LA 5,0 
I LA 6,9 
I LH 7,INPUTB(S) 

WORKA 
WORKB 

INAREA 
INCODE 
INPUTA 
INPUTB 

STH 7,WORKB(S) 
LA 5,2(5) 
BCT 6,*-12 

DS 
DS 

DSECT 
DS 

IDS 
IDS 
I • 
I . 
I • 

SF 
9H 

ICLl 
ISF 
19H 
I 
I 
I 

lEND I L _________ ~ ___________ ~ __________________ _ 



An example of addressing dummy sections 
is shown in the foregoing coding. Assume 
that two independent assemblies (Assembly 1 
and Assembly 2i have been loaded and are to 
be executed as a single overall program. 
Assembly 1 is an input routine that places 
a record in a specified area of storage, 
places the address of the input area con­
taining the record in general register 3, 
and branches to Assembly 2. Assembly 2 
processes the record. The coding shown in 
the example is from Assembly 2. 

The input area is described in Assembly 
2 by the DSECT control section INAREA. 
Portions of the input area (i.e., record) 
that the programmer wishes to work with are 
named in the DSECT control section as 
shown. The assembler instruction USING 
INAREA,3 designates general register 3 as 
the base register to be used in addressing 
the DSECT control section, and it is 
assumed that general register 3 contains 
the address of INAREA. 

Assembly 1, during execution, loads the 
actual beginning address of the input area 
in general register 3. Because the symbols 
used in the DSECT section are defined 
relative to the initial statement in the 
section, the address values they represent 
will, at the time of program execution, be 
the actual storage locations of the input 
area. 

I COM -- DEFINE COMMON CONTROL SECTION 

The COM assembier instruction identifies 
and reserves a common area of storage that 
may be referred to by independent assem­
blies that have been linked and loaded for 
execution as one overall program. The 
format is: 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
ISymbol ICOM IMust be blank I 
lor I I I 
I blank I I I L _______ i ___________ i _____________________ J 

Only one common control section can be 
designated in an assembly. 

When several assemblies, each designat­
ing a common control section of the same 
name, are linkage edited, the amount of 
storage reserved for this name is equal to 
the longest of these common control sec­
tions. (In this context, a blank common 
control section is considered to be unique­
ly named.) 

The common area may be broken up into 
subfields through use of the DS and DC 
assembler instructions. Names of subfields 
are aerlned relative to the beginning of 
the common section, as in the DSECT control 
section. 

I 
Instructions or constants that appear in 

a common control section are not assembled, 
i.e., no machine language code is generated 
for them. As much storage is reserved as 
would be required for the instructions or 
constants if they were assembled. Data can 
be placed in a common control section only 

I through execution of the program. 

If the assignment of common storage is 
done in the same manner by each independent 
assembly, reference to a location in common 
by any assembly results in the same loca­
tion being referenced. When assembled, 
common location assignment starts at zero. 

The occurrence of a COM instruction 
terminates the previous control section= 

r--------T-----------T--------------------, 
I Name I Operation I Operand I 
~--------+-----------+--------------------~ 
I ICOM I I 
I AREAl I DC I 5 F • 0 • I 
\ AREA2 I DS I 9 H I 
\ MASK I LA 16,AREA2 \ L ________ i __________ -i ____________________ J 

The above statements reserve a common 
area of storage that is 42 bytes long. The 
common area contains three subfields: AREAl 
occupies five fullwords (20 bytes), AREA2 
occupies nine halfwords (18 bytes), and 
MASK occupies 4 bytes. No machine language 
code is generated. 

SYMBOLIC LINKAGES 

Symbols may be defined in one program 
and referred to in another, thus effecting 
symbolic linkages between independently 
assembled programs. The linkages can be 
effected only if the assembler is able to 
provide information about the linkage sym­
bols to the linkage editor, which resolves 
these linkage references during a subse­
quent phase of processing. The assembler 
places the necessary information in the 
control dictionary on the basis of the 
linkage symbols identified by the ENTRY and 
EXTRN instructions. Note that these sym­
bolic linkages are described as linkages 
between independent assemblies; more speci­
fically, they are linkages between indepen­
dently assembled control sections. 

In the program where the linkage symbol 
is defined (i.e., used as a name), it must 

Addressing -- Program Sectioning and Linking 25 



also be identified to the assembler by 
means of the ENTRY assembler instruction. 
It is identified as a symbol that names an 
entry point, which means that another pro­
gram may use that symbol in order to effect 
a branch operation or a data reference. 
The assembler places this information in 
the control dictionary. 

Similarly, the program that uses a sym­
bol defined in some other program must 
identify it by the EXTRN assembler instruc­
tion. It is identified as an externally 
defined symbol (i.e., defined in another 
program) that is used to effect linkage to 
the point of definition. The assembler 
places this information in the control 
dictionary. 

ENTRY -- IDENTIFY ENTRY-POINT SYMBOL 

The ENTRY instruction identifies linkage 
symbols that are defined in this program 
but may be used by some other program. The 
format of the entry instruction statement 
is as follows: 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------i 
I Blank I ENTRY lOne symbol that also I 
I I lappears as a state- I 
I I Iment name I L _______ ~ ___________ ~ _____________________ J 

A program 
ENTRY symbols. 
defined (i.e., 
ment names), 
count toward 
symbols. 

may contain a maximum of 100 
ENTRY symbols that are not 

that do not appear as state­
although invalid, will also 

this maximum of 100 ENTRY 

The symbol in the ENTRY operand field 
may be used as an operand by another 
program. An ENTRY statement operand may 
not contain a symbol defined in a dummy 
section or cornmon. The following example 
identifies the statement named SINE as an 
entry point to the program. 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
I I ENTRY ISINE I L _______ ~ ___________ ~ _____________________ J 

Note: The name of a control section does 
not have to be identified by an ENTRY 
instruction when another program uses it as 
an entry point. The assembler automat­
ically places information on control sec­
tion names in the control dictionary. 

26 

EXTRN -- IDENTIFY EXTERNAL SYMBOL 

The EXTRN instruction identifies linkage 
symbols that are used by this program but 
defined in some other program. Each exter­
nal symbol must be identified; this 
includes symbols that name control sec­
tions. The format of the EXTRN instruction 
statement is as follows: 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
I Blank I EXTRN lOne symbol I L _______ ~ ___________ ~ _____________________ J 

The symbol in the operand field may not 
appear as a name of a statement in this 
program. It may not be used in expressions 
requiring that all symbols be previously 
defined. Thus, an EXTRN symbol may not be 
used in the operand of an EQU assembler 
instruction. 

The following example identifies two 
external symbols that have been used as 
operands in this program but are defined in 
some other program. 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
I I EXTRN I RATEBL I 
I I EXTRN I WITHCA I L _______ ~ ___________ ~ _____________________ J 

An example that employs the EXTRN 
instruction appears subsequently under 
"Addressing External Control Sections." 

Note: When external symbols are used in an 
expression, they may not be paired. Each 
external symbol must be considered as hav­
ing a unique relocatability attribute. 

Addressing External Control Sections 

One way in which a program is linked to 
an external control section is to have the 
program: 

1. Identify the external symbol with the 
EXTRN instruction and create an 
address constant from the symbol. 

2. Load the address constant into a gen­
eral register and branch to the con­
trol section via the register. 



r----------T-----------.------------------, 
I Name I Operation I Operand I 
t----------+-----------+------------------~ 

EXTRN ISINE 
~AINPR CSECT I 
BEGIN BALR 12,0 

USING *,2 

ACON 

L 
BMR 

DC 
E~ 

3,ACON 
1,3 

A(SINE) 
BEGIN l __________ i ___________ i _________________ _ 

For example, to 
section named SINE, 
might be used. 

link to the control 
the preceding coding 

An external symbol n~~ing data may be 
referred to as follows: 

1. Identify the external symbol with the 
EXTRN instruction, and create an 
address constant from the symbol. 

2. Load the constant into a general reg­
ister, and use the register for base 
addressing. 

For example, to use an area named 
RATETB, which is in another control sec­
tion, the following coding might be used: 

r----------T----------~------------------, 

I Name 1 Operation 1 Operand 1 
~----------+-----------+------------------~ 

EXTRN IRATETB 
MAINPR CSECT i 
BEGIN BALR 2,0 

USING *,2 

L 
USING 
A 

4, RATE AD 
RATETB,4 
3,RATETB 

IRATEAD DC A (RATETB) 
I END BEGIN 
l __________ ~-----------~------------------

The combined number of control sections 
and dummy sections plus the number of 
unique symbols in EXTRN statements may not 
exceed 255. 

Addressing -- Program sectioning and Linking 27 



SECTION 4: MACHINE INSTRUCTIONS 

This section discusses the coding of the 
machine instructions represented in the 
assembler language. The reader is reminded 
that the functions of each machine instruc­
tion are discussed in the publication IBM 
~Y§tem/360: Principles of Operation, Form 
A22-6821. 

This section should be used in conjunc­
tion with Appendix C, which describes as­
sembler operand field formats for the var­
ious machine instructions. 

MACHINE INSTRUCTION STATEMENTS 

Machine instructions may be represented 
symbolically as assembler language state­
ments. The symbolic format of each varies 
according to the actual machine instruction 
format. Four formats are acceptable to the 
assembler: RR, RX, RS, and SI. within each 
basic format, further variations are possi­
ble. 

The symbolic format of a machine 
instruction is similiar to, but does not 
duplicate, its actual format. Appendix C 
illustrates machine format for the four 
classes of instructions. A mnemonic opera­
tion code is written in the operation 
field, and one or more operands are written 
in the operand field. Comments may be 
appended to a machine instruction statement 
as previously explained in Section 1. 

Any machine instruction statement may be 
named by a symbol, which other assembler 
statements can use as an operand. The 
value of the symbol is the address of the 
leftmost byte assigned to the assembled 
instruction. 

Instruction Alignment and Checking 

All machine instructions are aligned 
automatically by the assembler on halfword 
boundaries. If any statement that causes 
information to be assembled requires align­
ment, the bytes skipped are filled with 
hexadecimal zeros. All expressions that 
specify storage addresses are checked to 
ensure that they refer to appropriate boun­
daries for the instructions in which they 
are used. Register numbers are also 
checked to make sure that they specify the 
proper registers, as follows: 

28 

1. Floating-point instructions must spec­
ify floating-point registers 0, 2, 4, 
or 6. 

2. Double-shift, fullword multiply, and 
divide instructions must specify an 
even-numbered general register in the 
first operand. 

OPERAND FIELDS AND SUBFIELDS 

Some symbolic operands are written as a 
single field, and other operands are writ­
ten as a field followed by one or two 
subfields. For example, addresses consist 
of the contents of a base register and a 
displacement. An operand that specifies a 
base and displacement is written as a 
displacement field followed by a base reg­
ister subfield, as follows: 40(5). In the 
RX format, an operand that specifies both 
an index register and a base register is 
written as follows: 40(3,5). 

Appendix C shows two types of addressing 
formats for RX, RS, and SI instructions. 
In each case, the first type shows the 
method of specifying an address explicitly, 
as a base register and displacement. The 
second type indicates how to specify an 
implied address as an expression. 

For example, an Add instruction (RX 
format) may have either of the following 
symbolic operands: 

R1,D2(X2,B2) 
R1,S2(X2) 

explicit address 
implied address 

Whereas D2 must be represented by an 
absolute expression, S2 may be represented 
by either a relocatable or an absolute 
expression. Both X2 and B2 rr.ust be abso­
lute terms. 

In order to use implied addresses, the 
following rules must be observed: 

1. The base register assembler instruc­
tions (USING and DROP) must be used. 

2. An explicit base register designation 
must not accompany the implied 
address. 

For example, assume that FIELD is a 
relocatable symbol that has been assigned a 
value of 7400. Assume also that the as­
sembler has been notified (by a USING 



instruction) that general register 12 cur­
rently contains a relocatable value of 4096 
and is available as a base register. The 
following example shows a machine instruc­
tion statement as it would be written in 
assembler language and as it would be 
assembled. Note that the value of D2 is 
the difference between 7400 and 4096 and 
that X2 is assembled as zero, since it was 
omitted. The assembled instruction is pre­
sented in hexadecimal: 

Assembler statement: 

ST 4,FIELD 

Assembled instruction: 

Op.Code R1 X2 
50 4 0 

B2 D2 
C CE8 

An address may be specified explicitly 
as a base register and displacement (and 
index register for RX instructions) by the 
formats shown in the second column of Table 
1. The address may be specified as an 
implied address by the formats shown in the 
third column. 

Table 1. Details of Address Specification 
r------T-----------------T----------------, 
I Type IExplicit Address IImplied Address I 
~------+-----------------+----------------~ 
IRX ID2(X2,B2) IS2(X2) I 
I I D2 (, B2) I S2 I 
IRS ID2(B2) IS2 I 
I SI I D1 (B1) I Sl I l ______ ~ _________________ ~ ________________ J 

A comma must separate operands. Paren­
theses must enclose a subfield or sub­
fields, and a comma must separate two 
subfields within parentheses. When paren­
theses are used to enclose one subfield, 
and the subfield is omitted, the parenthe­
ses must be omitted. In the case of two 
subfields that are separated by a comma and 
enclosed by parentheses, the following 
rules apply: 

1. If both subfields are 
separating comma and the 
must also be omitted. 

omitted, the 
parentheses 

L 
L 

2,48(4,5) 
2,FIELD (no indexing, 

implied address) 

2. If the first subfield in the sequence 
is omitted, the comma that separates 
it from the second subfield is writ­
ten. The parentheses must also be 
written. 

L 
L 

2,48(4,5) 
2,48(,5) (no indexing) 

3. If the second subfield in the sequence 
is omitted, the comma that separates 
it from the first subfield must be 
omitted. The parentheses must be 
written. 

L 
L 

2,48(4,5) 
2,FIELD(4) (implied address) 

Fields and subfields in a symbolic oper­
and may be represented either by absolute 
or by relocatable expressions, depending on 
what the field requires. (An expression 
has been defined as consisting of one term 
or a series of arithmetically combined 
terms.) Refer to Appendix C for a detailed 
description of field requirements. 

Note: Blanks may not 
unless provided by 
defining term or a 
Thus, blanks may not 
fields and the comma 
parentheses and fields, 

appear in an operand 
a character self­
character literal. 
intervene between 

separators, between 
etc. 

MACHINE-INSTRUCTION MNEMONIC CODES 

The mnemonic operation codes (shown in 
Appendix D) are designed to be easily 
remembered codes that indicate the 
functions of the instructions. The normal 
format of the code is shown below; the 
items in brackets are not necessarily pre­
sent in all codes: 

Verb [Modifier] [Data Type] [Machine Format] 

The verb, which is usually one or two 
characters, specifies the function. For 
example, A represents Add, and ST rep­
resents Store. The function may be further 
defined by a modifier. For example, the 
modifier L indicates a logical function, as 
in AL for Add Logical. 

Mnemonic codes for functions involving 
data usually indicate the data types by 
letters that correspond to those for the 
data types in the DC assembler instruction 
(see Section 5). Furthermore, letters u 
and W have been added to indicate, respec­
tively, short and long, unnormalized 
floating-point operations, and letters D 
and E have been added to indicate, respec­
tively, long and short, normalized 
floating-point operations. For example, AE 
indicates Add Normalized Short, whereas AW 
indicates Add Unnormalized Long. Where 
applicable, fullword fixed-point data is 
implied if the data type is omitted. 

The letters R and I are added to the 
codes to indicate, respectively, RR and SI 
machine instruction formats. Thus, AER 
indicates Add Normalized Short in the RR 
format. 

Machine Instructions 29 



MACHINE-INSTRUCTION EXAMPLES 

The examples that follow are grouped 
according to machine instruction format. 
They illustrate the various symbolic oper­
and formats. All symbols employed in the 
examples must be assumed to be defined 
elsewhere in the same assembly. All sym­
bols that specify register numbers and 
lengths must be assumed to be equated 
elsewhere to absolute values. 

Implied addressing, control section 
addressing, and the function of the USING 
assembler instruction are not considered 
here. For discussion of these considera­
tions and for examples of coding sequences 
that illustrate them, the reader is 
referred to Section 3, "Program Sectioning 
and Linking" and "Base Register Instruc­
tions." 

RR Format 

r--------T-----------T--------------------, 
I Name I Operation I Operand I 
r--------+-----------+--------------------~ 
I ALPHAl I LR 11, 2 I 
IALPHA2 ILR IREG1,REG2 I 
I BETA I SPM 115 I 
I GAMMAl I SVC 1250 I 
I GAMMA2 I SVC I TEN I L ________ i ___________ i ____________________ J 

The operands of ALPHA1, BETA, and GAMMAl 
are decimal self-defining values that are 
categorized as absolute expressions. The 
operands of ALPHA2 and GAMMA2 are symbols 
that are equated elsewhere to absolute 
values. 

RS Format 

r--------T-----------T--------------------, 
I Name I Operation I Operand I 
~--------+-----------+--------------------~ 
IALPHAl ISLL IREG2,15 I 
IALPHA2 ISLL IREG2,0(15) I L ________ i ___________ i ____________________ J 

ALPHAl is a shift instruction shifting 
the contents of REG2 left 15 bit positions. 
ALPHA2 is a shift instruction shifting the 
contents of REG2 left by the value con­
tained in general register 15. 

30 

RX Format 

r--------T-----------T--------------------, 
I Name I Operation I Operand I 
~--------+-----------+--------------------~ 
I ALPHAl I L 11, 39 ( 4 , 10 ) I 
IALPHA2 IL IREG1,39(4,TEN) I 
1 BE TAl 1 L I 2, ZETA ( 4) I 
IBETA2 IL IREG2,ZETA(REG4) I 
I GAMMA 1 IL 12,ZETA 1 
I GAMMA 2 IL I~EG2,ZETA 1 
1 GAMMA 3 IL 12,=F'1000' I 
I LAMBDA I L I 3 , 20 ( , 5) I l ________ ~ ___________ ~ ____________________ J 

Both ALPHA instructions specify explicit 
addresses; REGl and TEN are absolute sym­
bols. Both BETA instructions specify 
implied addresses, and both use index reg­
isters. Indexing is omitted from the GAMMA 
instructions. GAMMAl and GAMMA2 specify 
implied addresses. The second operand of 
GAMMA 3 is a literal. LAMBDA specifies no 
indexing. 

SI Format 

r--------T-----------T--------------------, 
I Name I Operation I Operand I 
~--------+-----------+--------------------~ 
I ALP HAl ICLI 140(9),X'40' I 
IALPHA2 ICLI 140(REG9),TEN I 
I BETAl I CLI I ZETA, TEN I 
IBETA2 ICLI IZETA,C'A' I 
IGAMMAl ISIO 140(9) I 
IGAMMA2 ISIO 10(9) I 
I GAMMA 3 ISIO 140(0) I 
I GAMMA4 I SIO I ZETA I L ________ ~ __________ ~ ____________________ J 

The ALPHA instructions and GAMMA 1 
through GAMMA3 instructions specify expli­
cit addresses, whereas the BETA instruc­
tions and GAMMA 4 instruction specify 
implied addresses. GAMMA2 specifies a dis­
placement of zero. GAMMA 3 specifies no 
base register. 

EXTENDED MNEMONIC CODES 

For the convenience of the programmer, 
the assembler provides extended mnemonlC 
codes, which allow conditional branches to 
be specified mnemonically as well as 
through the use of the BC machine­
instruction. These extended mnemonic codes 
specify both the machine branch instruction 
and the condition on which the branch is to 
occur. The codes are not part of the 
universal set of machine instructions, but 
are translated by the assembler into the 



r---------------------------------------------------------------------------------------, 
IExtended Code Meaning Machine-Instruction I 
~---------------------------------------------------------------------------------------~ 
IB D2(X2,B2) Branch Unconditional Be 15:D2(X2:B2} I 
jPR R2 Branch Unconditional (RR format) BCR 15,R2 I 
INOP D2(X2,B2) No Operation BC 0,D2(X2,B2) I 
I NOPR R2 No Operation (RR format) BCR 0, R2 I 
~---------------------------------------------------------------------------------------i 
I Used After Compare Instructions I 
I I 
IBH D2(X2#B2) Branch on High Be 2#D2{X2,B2) i 
IBL D2(X2,B2) Branch on Low BC 4,D2(X2,B2) I 
IBE D2(X2,B2) Branch on Equal BC 8I D2(X2,B2) I 
tBNH D2(X2,B2) Branch on Not High BC 13,D2(X2,B2) I 
IBNL D2(X2,B2) Branch on Not Low BC 11,D2(X2,B2) 
IBNE D2(X2,B2) Branch on Not Equal BC 7,D2(X2,B2) I 
~---------------------------------------~~~---------------------------------------------1 
I Used After Arithmetic Instructions I 
I I 
IBO D2(X2,B2) Branch on Overflow BC 1,D2(X2,B2) I 
IBP D2(X2,B2) Branch on Plus BC 2,D2(X2,B2) I 
IBM D2(X2,B2) Branch on Minus BC 4,D2(X2,B2) I 
IBZ D2(X2,B2) Branch on Zero BC 8,D2(X2,B2) I 
IBNP D2(X2,B2) Branch on Not Plus BC 13,D2(X2,B2) I 
IBNM D2(X2,B2) Branch on Not Minus BC 11,D2(X2,B2) I 
IBNZ D2CX2,B2) Branch on Not Zero Be 7,D2(X2,B2) I 
~---------------------------------------------------------------------------------------~ 
I Used After Test Under Mask Instructions I 
I I 
IBO D2(X2,B2} Branch if Ones BC 1,D2(X2,B2) I 
IBM D2 (X2,B2) Branch if Mixed BC 4,D2 (X2,B2) I 
IBZ D2(X2,B2} Branch if Zeros Be 8,D2(X2,B2) I 
IBNO D2(X2,B2) Branch if Not Ones BC 14,D2(X2,B2} I l _______________________________________________________________________________________ J 

Figure 3. Extended Mnemonic Codes 

corresponding 
combinations. 

operation and condition 

The allowable extended mnemonic codes 
and their operand formats are shown in 
Figure 3, together with their machine­
instruction equivalents. Unless otherwise 
noted, all extended mnemonics shown are for 
instructions in the RX format. Note that 
the only difference between the operand 
fields of the extended mnemonics and those 
of their machine instruction equivalents is 
the absence of the Rl field and the comma 
that separates it from the rest of the 
operand field. The extended mnemonic list, 
like the machine instruction list, shows 
explicit address formats only. Each 
address can also be specified as an implied 
address. 

In the following examples, which illus­
trate the use of extended mnemonics, it is 
to be assumed that the symbol GO is defined 
elsewhere in the program. 

r------r-----------T----------------------, 
I Name I Operation I Operand I 
~------+-----------+----------------------i 
1 IB 140 (3,6) I 
! IB 140 (:6) I 
1 1 BL 1 GO ( 3 ) I 
I IBL IGO I 
I IBR 14 I l ______ ~ ___________ ~ ______________________ J 

The first two instructions specify an 
unconditional branch to an explicit 
address. The address in the first case 1S 
the sum of the contents of base register 6, 
the contents of index register 3, and the 
displacement 40; the address in the second 
instruction is not indexed. The third 
instruction specifies a branch on low to 
the address implied by GO as indexed by the 
contents of index register 3; the fourth 
instruction does not specify an index reg­
ister. The last instruction is an uncondi­
tional branch to the address contained in 
register 4. 

Machine Instructions 31 



SECTION 5. ASSEMBLER INSTRUCTION STATEMENTS 

Just as machine instructions are used to 
request the computer to perform a sequence 
of operations during program execution 
time, so assembler instructions are 
requests to the assembler to perform cer­
tain operations during the assembly. 
Assembler-instruction statements, in 
contrast to machine-instruction statements, 
do not always cause machine instructions to 
be included in the assembled program. 
Some, such as OS and DC, generate no 
instructions but do cause storage areas to 
be set aside for constants and other data. 
Others, such as EQU and SPACE, are effec­
tive only at assembly time; they generate 
nothing in the assembled program and have 
no effect on the location counter. 

The following is a list of assembler 
instructions. 

Symbol Definition Instruction 
EQU -- Equate Symbol 

Data Definition Instructions 
DC Define Constant 
DS Define Storage 
CCW Define Channel Command Word 

* Program Sectioning and Linking 
Instructions 
START Start Assembly 
CSECT Identify Control section 
DSECT Identify Dummy Section 
ENTRY Identify Entry-Point Symbol 
EXTRN Identify External Symbol 
COM Identify Common Control section 

* Base Register Instructions 
USING Use Base Address Register 
DROP -- Drop Base Address Register 

Listing Control Instructions 
TITLE Identify Assembly Output 
EJECT Start New Page 
SPACE Space Listing 
PRINT Print Optional Data 

Program Control Instructions 
ICTL Input Format Control 
ORG Set Location Counter 
LTORG Begin Literal Pool 
CNOP Conditional No Operation 
END End Assembly 
REPRO Reproduce Following Card 

* Discussed in Section 3. 

32 

SYMBOL DEFINITION INSTRUCTION 

EQU -- EQUATE SYMBOL 

The EQU instruction is used to define a 
symbol by assigning to it the value and the 
relocatability attribute of an expression 
in the operand field. The format of the 
EQU instruction statement is as follows: 

r--------T---------~---------------------, 
I Name IOperation IOperand I 
~--------+----------+---------------------~ 
IA symbollEQU IAn expression I L ________ ~ __________ ~ _____________________ J 

The expression in the operand field may 
be absolute or relocatable. Any symbols 
appearing in the expression must be pre­
viously defined. 

The symbol in the name field is given 
the value and the relocatability attribute 
of the expression in the operand field. 

The EQU instruction is the means of 
equating symbols to register numbers, 
immediate data, and other arbitrary values. 
The following examples illustrate how this 
might be done: 

r-------T----------T----------------------, 
I Name IOperation IOperand I 
~-------+----------+----------------------~ 
IREG2 IEQU 12 (general register) I 
ITEST IEQU IX'3F' (immediate data> I L _______ ~ _________ ~ ______________________ J 

To reduce programming time, the program­
mer can equate symbols to frequently used 
expressions and then use the symbols as 
operands in place of the expressions. For 
example: 

r-------T----------T----------------------, 
I Name IOperation IOperand I 
~-------+----------+----------------------~ 
I AREA IEQU IALPHA-BETA+GAMMA I L _______ ~ __________ ~ ______________________ J 

The name, AREA, is defined as 
ALPHA-BETA+GAMMA and may be used in place 
of it. Note, however, that ALPHA, BETA, 
and GAMMA must all be previously defined. 



DATA DEFINITION INSTRUCTIONS 

There are three data definition instruc­
tion statements: Define Constant CDC), 
Define Storage (DS), and Define Channel 
Command Word (CCW). 

These statements are used to enter data 
constants into storage, to define and re­
serve areas of storage, or to specify the 
contents of channel command words. The 
statements may be named by symbols so that 
other program statements can refer to the 
fields generated from them. 

DC -- DEFINE CONSTANT 

The DC instruction is used to provide 
constant data in storage. A variety of 
constants may be specified: fixed-point, 
floating-point, hexadecimal, character, and 
storage addresses. (Data constants are 
generally called constants unless they are 
created from storage addresses, in which 
case they are called address constants.) 
The format of the DC instruction statement 
is as follows: 

r--------T----------T---------------------, 
!Name !Operation !Operand I 
t--------t----------t---------------------1 
IA symbollDC lOne operand in the I 
lor blank I Iformat described I 
I I I below I L ________ i __________ i _____________________ J 

The operand consists of four subfields: 
the first three describe the constant; the 
fourth provides the constant or constants. 
The first and third subfields may be omit­
ted, but the second and fourth must be 
specified. Note that more than one con­
stant may be specified in the fourth sub­
field for most types of constants. Each 
constant so specified must be of the same 
type; the descriptive subfields that pre­
cede the constants apply to all of them. 

No blanks may occur within any of the 
subfields (unless provided as characters in 
a character constant or a character self­
defining term), nor may they occur between 
the subfields of an operand. 

The subfields of the DC operand are 
written in the following sequence: 

r-----------------------------------------, 
I Subfield ! 
~--------T------T-----------T-------------~ 
I 1 121 3 141 
~--------+------+-----------+-------------~ 
I Dupli- IType ILength Iconstant(s) I 
I cation I I I I 
I Factor I I I I L ________ i ______ ~ ___________ ~~~~~ _________ J 

The symbol that names the DC instruction 
is the name of the constant (or first 
constant if the instruction specifies more 
than one). Relative addressing (e.g., 
SYMBOL+2) may be used to address the 
various constants if more than one has been 
specified, because the number of bytes 
allocated to each constant can be deter­
mined. 

The value of the symbol naming the DC 
instruction is the address of the leftmost 
byte (after aligr~ent) of the first, or 
only, constant. 

Boundary alignment varies according to 
the type of constant being specified and 
the presence of a length specification. 
Some constant types are aligned only to a 
byte boundary, but the DS instruction can 
be used to force any type of word boundary 
alignment for them. This is explained 
under "DS -- Define Storage." Other con­
stants are aligned at various word boundar­
ies (halfword, fullword, or doubleword) in 
the absence of a length specification. If 
length is specified, no boundary alignment 
occurs for such constants. 

Bytes that must be skipped in order to 
align the field at the proper boundary are 
not considered to be part of the constant. 
Thus, the location counter is incremented 
to reflect the proper boundary (if any 
incrementing is necessary) before the 
address value is established. Therefore, 
the symbol naming the constant will not 
receive a value that is the location of a 
skipped byte. 

Bytes skipped to align a DC statement 
are set to zero; bytes skipped to align a 
DS statement are not set to zero. 

Appendix F summarizes, in chart form, 
the information about constants that is 
presented in this section. 

LITERAL DEFINITIONS: Note that the des­
cription of literals in Section 2 referred 
to the following discussion of the DC 
operand in reference to the writing of a 
literal operand. All subsequent operand 
specifications are applicable to writing 
literals; the only differences are listed 
below. 

Assembler Instruction statements 33 



1. The literal is preceded by an equal 
sign. 

2. Multiple constants may not be speci­
fied. 

3. Unsigned decimal self-defining terms 
must be used to express the duplica­
tion factor and length values. 

4. The duplication factor may not be 
zero. 

5. If a reference to the location counter 
occurs in an address constant that 
specifies a duplication factor greater 
than one, the value of the location 
counter used in each duplication is 
incremented by the length of the con­
stant; if, however, the reference 
occurs in a literal address constant, 
the value remains unchanged throughout 
duplication. 

Examples of literals appear throughout 
the balance of the DC instruction discus­
sion. 

Operand Subfield 1: Duplication Factor 

The duplication factor may be omitted. 
If specified, it causes the constant(s) to 
be generated the number of times indicated 
by the factor. The factor may be specified 
either by an unsigned decimal self-defining 
term or by a positive absolute expression 
that is enclosed by parentheses. All sym­
bols in the expression must be previously 
defined. A location counter reference may 
not appear in such an expression. The 
maximum value permitted for the duplication 
factor is 65,535. 

The duplication factor is applied after 
the constant is assembled. When more than 
one constant is specified in a DC operand 
having a duplication factor, the duplica­
tion factor is applied to the constants as 
a unit, rather than individually. T~us, if 
a duplication factor of 2 is specified for 
the constants 1, 2, and 3, the constants 
are generated in the order -- 1 2 3 1 2 3 

not in the order -- 1 1 2 2, 3 3. 

34 

Note that a duplication factor of zero 
is permitted and achieves the same result 
as it would in a DS instruction. A DC 
instruction with a zero duplication factor 
will not produce control dictionary 
entries. See "Forcing Alignment" under "DS 
-- Define Storage." 

Note: If duplication is specified for an 
address constant containing a location 
counter reference, the value of the loca­
tion counter used in each duplication is 
incremented by the length of the operand. 

I 
(If the reference occurs in a literal 
address constant, however, the value 
remains unchanged.) 

Operand Subfield 2: Type 

The type subfield defines the type of 
constant being specified. From the type 
specification, the assembler determines how 
it is to interpret the constant and trans­
late it into the appropriate machine for­
mat. The type is specified by a single­
letter code as shown in Figure 4. 

Further information about these 
constants is provided in "Operand Subfield 
4: Constant" below. 

Operand Subfield 3: Length 

The length subfield may be omitted. If 
used, it indicates the length of the speci­
fied constant. This is written as Ln, 
where n is either an unsigned decimal 
self-defining term or a positive absolute 
expression enclosed by parentheses. Any 
symbols in the expression must be previous­
ly defined. A location counter reference 
may not appear in such an expression. 

The value of n represents the number of 
bytes of storage that are assembled for the 
constant. The maximum values permitted for 
the length of the various types of con­
stants are summarized in Appendix F. This 
table also indicates the implied length for 
each type of constant; the implied length 
is used unless a length subfield is pres­
ent. A length may be specified for any 
type of constant. However, no boundary 
alignment will be provided when a length is 
given. 



Form C28-6811-1, page revised 5/20/68, by TNL N33-8543 

r--~ 

I IType of 
ICodelConstant 

I 
IMachine Format 

~-~ ----------~ 
IC Character 8-bit code for each 
I character 
X Hexadecimal 4-bit code for each 

F Fixed-point 
hexadecimal digit 
Signed, fixed-point 

binary format; norm­
ally a full word 

Signed, fixed-point H Fixed-point 

E Floatinq-point 

binary format; norm­
ally a halfword 

Short floatinq=point 
format; normally a 
fullword 

D Floating-point Long floating-point 
format; normally a 
double word 

A I Address 
I 

Value of address; 
normally a full word 

---l 

Figure 4. Type Codes for Constants 

This sub field supplies the constant(s) 
described by the subfields that precede it. 
A data constant (all types except A) is 
enclosed by single quotes. An address 
constant "(type A) is enclosed by paren­
theses. To specify two or more constants 
in the subfield, the constants must be 
separated by commas and the entire sequence 
of constants must be enclosed by the appro­
priate delimiters (i.e., sinqle quotes or 
parent he ses) . 
fying the 
followinq: 

Sinale 
Constant 
'constant' 
(constant) 

Thus, the format for 
constant (s) 

Multiple 
Constants* 

is one 
speci­

of the 

'constant, ••• ,constant' 
(constant, ••. ,constant) 

Fixed-point (F and H), floatinq-point (E 
and D), and address (A) constants are 
aliqned on the proper boundary, as shown in 
Appendix F, unless a length modifier is 
specifed. In the presence of a lenqth 
modifier, no boundary alignment is per­
formed. If an operand specifies more than 
one constant, any necessary alignment app­
lies to the first constant only. Thus, for 
an operand that provides five fullword 
constants, the first would be aligned on a 
fullword boundary, and the rest would auto­
matically fallon fullword boundaries. 

* Not permitted for character and hexadeci­
mal constants. 

The total storaqe requirement of an 
operand is the product o~ the length multi­
plied by the number of constants in the 
operand, which in turn is multiplied by the 
duplication fa.ctor (if present), plus any 
bytes skipped for boundary alignment of the 
first constant. 

If an address constant contains a loca­
tion counter reference, the location count­
er value that is used is the storage 
address of the first byte the constant will 
occupy. Thus, if several address constants 
LU Lne same instruction refer to the loca­
tion counter, the value of the location 
counter varies from constant to constant. 
Similarly, if a single address constant is 
specified (and it is a location counter 
reference) with a duplication factor, the 
constant is duplicated with a varying loca­
tion counter value. 

The following text describes each of the 
constant types and provides examples. 

Ch~~~ctgK- Const~rr1_==~: Any of the valid 
256 punch combinations may be designated in 
a character constant. Only one character 
constant may be specified per operand. 
Since multiple constants within an operand 
are separated by commas, an attempt to 
specify two character constants would 
result in interpreting the comma separating 
them as a character. 

Special consideration must be given to 
representing single quotes and ampersands 
as characters. Each single quote or amper­
sand desired as a character in the constant 
must be represented by a pair of single 
quotes or ampersands. Only one single 
quote or ampersand appears in storage. 

The maximum length of a character con-
I stant is 256 bytes. No boundary alignmen~ 
is performed. Each character is translated 
into one byte. Paired single quotes or 
paired ampersands count as one character. 
If no lenqth modifier is given, the size in 
bytes of the character constant is equal to 
the number of characters in the constant. 
If a length is provided, the result varies 
as follows: 

,. If the number of characters in the 
constant exceeds the specified lenqth, 
as many rightmost bytes as are neces­
sary are dropped. 

2. If the number of characters is less 
than the specified length, the excess 
rightmost bytes are filled with 
blanks. 

In the following example, the lenqth of 
FIELD is '2: 

Assembler Instruction Statements 35 



r_-------r.-- ----r- , 
IOperation IOperand 
I I 

IName 
f­
IFIELD IDC IC'TOTAL TS 110' 

I 
--4 

I 
L-

L-________________ ~ 

However, in this next example, the 
length is 15, and three blanks appear in 
storage to the right of the zero: 

r­
IName 

1 ~ -, 

IOperation IOperand I 
t-­
IFIELD 

I -+-------------~ 
IDC ICL15'TOTAL IS 110' I 

L-___ -L-- ___ L- ___ J 

In the next example, the length of FIELD 
is ~2, although 13 characters appear in the 
operand. The two ampersands count as only 
one byte. 

• ----r------------------, 
IName IOperation IOperand I 
~-----+ +-- , 
I FIELD I DC I C 'TOTAL IS && 10' I 
L--____ ~~ _______ _ 

Note that in the next example, a lenqth 
of four has been specified, but there are 
five characters in the constant. 

• 
IOperation 

1 

IOperand IName 
I 
IFIELD 

I 
I DC 

+---
13CL4'ABCDE' 

J 

The generated constant would be: 

ABCDABCDABCD 

However, if the length had 
fied as six instead of four, 
constant would have been as 
(with the spaces between and 
grouped constants being 
character) : 

ABCDE ABCDE ABCDE 

been speci­
the generated 

shown below 
following the 
the sixth 

He~~Q~cimal ~on§tag~-==_!: A hexadecimal 
constant consists of one or more of the 
hexadecimal digits, which are 0 through 9 
and A through F. Only one hexadecimal 
constant may be specified per operand. The 
maximum length of a hexadecimal constant is 
32 bytes (64 hexadecimal digits). No boun­
dary alignment is performed. 

Constants that contain an even number of 
hexadecimal digits are translated as one 
byte per pair of digits. If an odd number 
of digits is specified, the leftmost byte 
has the leftmost four bits filled with a 
hexadecimal zero, while the other four bits 
contain the odd (first) digit. 

36 

If no lenqth modifier is given, the 
implied lenqth of the constant is half the 
number of hexadecimal diqits in the con­
stant (assuminq that a hexadecimal zero is 
added to an odd number of diqits). If a 
lenqth modifier is qiven, the constant is 
handled as follows: 

1 • If the number of hexadecimal diqit 
pairs exceeds the specified length, as 
many hexadecimal digits as necessary 
are dropped from the left. 

2. If the number of hexadecimal diqit 
pairs is less than the specified 
length, as many hexadecimal zeros as 
are necessary are added on the left. 

An 8-digit hexadecimal constant provides 
a convenient way to set the bit pattern of 
a full binary word. The constant in the 
following example would set the first and 
third bytes of a word to ones (the DS 
instruction sets the location counter to a 
fullword boundary): 

r--------r----------.--~,r---------------------~ 

I Name IOperation 10 per and I 
~I------+I----------~I-------'---------~ 
I I DS 10F I 
ITEST IDC IX'PFOOFFOO' I 
L ________ L ____________ ~~ ____ _ 

The next example uses a hexadecimal 
constant as a literal and inserts ones into 
bits 24 through 31 of register 5. 

r--------TI------------~Ir- , 
I Name IOperation IOperand I 
I I ------+-------------------~, 
I I I CIS, = X ' F F ' ,I 
~ ______ _L ____________ ~ ______________________ ~ 

In the following example, the digit A 
would be dropped, because five hexadecimal 
digits are specified for a length of two 
bytes! 

r------~.r-----------~I-

I Name IOperation IOperand 
1----+ I 
IALPHA IDC 13XL2'A6F4E' 

The resultinq constant would be 6F4E, 
which would occupy the specified 2 bytes. 
It would then be duplicated 3 times, as 
requested by the duplication factor. If it 
had merely been specified as X'A6F4E', the 
resulting constant would have had a hexa­
decimal zero in the leftmost position, as 
follows: 

OA6F4E 



Fixed-Point constants -- F and H: A fixed­
point constant is written as a signed or 
unsigned decimal self-defining term. It is 
assumed that the siqn is positive if an 
unsigned term is specified.-

The decimal value is converted to a 
binary number. If the value of the number 
exceeds the length specified or implied, 
the sign is lost, the necessary leftmost 
bits are truncated to the length of the 
field, and the value is then assembled into 
the whole field. Any duplication factor 
that is present is applied after the 
constant is assembled. A negative number 
is carried in two's complement form. 

An implied length of 4 bytes is assumed 
for a fullword (F) and 2 bytes for a 
halfword (H), and the constant is aligned 
to the proper fullword or halfword if a 
length is not specified. However, any 
length up to and including 8 bytes may be 
specified for either type of constant by a 
length modifier, in which case no boundary 
alignment occurs. 

Maximum and minimum values for fixed­
point constants are: 

Length 
8 
4 
2 
1 

Maximum 
2 63-1 
231-1 
215-1 
27-1 

Minimum 
-(2 63-1) 
-2 31 

-215 

-2 7 

A field of 3 fullwords is generated from 
the statement shown below. The value of 
CONWRD is the address of the leftmost byte 
of the first word, and the length of the 
constant is 4, the implied length for a 
fullword, fixed-point constant. The 
expression CONWRD+4 could be used to 
address the second constant (second word) 
in the fitld. 

r-------T-----------T---------------------, 
I Name I Operation I Operand 1 
~-----~-+-----------+---------------------~ 
ICONWRD IDC 13F'658474' I L _______ ~ __________ ~ _____________________ J 

A constant could be specified as a 
literal: 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
I IAH 17 ,=H' 350' I L _______ ~ __________ ~ _____________________ J 

Floating-Point Constants -- E and D: A 
floating-point constant is written as a 
decimal number, which may be followed by a 

decimal exponent, if desired. The number 
may be an integer, a fraction, or a mixed 
number <i.e., one with integral and frac­
tional portions): The format of the con­
stant is as follows: 

1. The number is written as a Signed or 
unsigned decimal value. The decimal 
point may be placed before, within, or 
after the n~ber, or it may be omit­
ted, in which case, it is assumed that 
the number is an integer. It is also 
assumed that the sign is positive if 
an unsigned number is specified. 

2. The exponent is optional. If speci­
fied, it is written immediately after 
the number as En, where ~ is a signed 
or unsigned decimal self-defining term 
specifying the exponent of the factor 
10. The exponent may be in the range 
from -78 to +75. If an unsigned 
exponent is specified, it is assumed 
that the sign is a plus. 

The floating-point constant is converted 
to a normalized hexadecimal floating-point 
constant in machine format. Truncation of 
the fraction is performed according to the 
specified or implied length, and the number 
is stored in the proper field. The result­
ing number will not differ from the exact 
value by more than one in the rightmost 
place. 

The implied length for a full word (type 
E) constant is 4 bytes; the implied length 
for a double word (type D) constant is 8 
bytes. The constant is aligned at the 
proper word or double word boundary if a 
length is not specified. However, any 
length up to and including 8 bytes may be 
specified for either type of constant by a 
length modifier, in which case no boundary 
alignment occurs. 

Any of the following statements could be 
used to specify 46.415 as a positive, full 
word, floating-point constant; the last is 
a machine instruction statement with a 
literal operand. 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
I I DC IE' 4 6 . 415 ' I 
I IDC IE'46415E-3' I 
1 IDC IE'+464.15E-l' I 
I IDC IE'+.46415E+2' I 
I IAE 16,=E'+.46415E+2' I L _______ ~ ___________ ~ _____________________ J 

Each of the following would be generated 
as double word floating-point constants. 

Assembler Instruction statements 37 



r-------T-----------T---------------------, 
I Name I Operation I Operand I 
.-------+-----------+---------------------i 
I FLOAT IDC 10 1 +46,-3.729,+473 1 I l _______ ~ __________ ~ _____________________ J 

Address constant -- A: An address constant 
is specified as an absolute or relocatable 
expression. (Note that an expression may 
be single term or multiterm.) The value of 
the expression is calculated as explained 
in section 2 with one exception: the maxi­
mum value of an absolute expression may be 
231-1. The value is then truncated on the 
left, if necessary, to the specified or 
implied length of the field and assembled 
into the rightmost bits of the field. The 
implied length of an address constant is 4 
bytes, and alignment is to a fullword 
boundary unless a length is specified, in 
which case no alignment will occur. The 
length that may be specified depends on the 
type of expression used for the constant; a 
length of 1 to 4 bytes may be used for an 
absolute expression, while a length of only 
3 or 4 may be used for a relocatable 
expression. 

Address constants are used for initial­
izing base registers to facilitate the 
addressing of storage. Furthermore, they 
provide the means of communicating between 
control sections of a multisection program. 
However, storage addressing and control 
section communication are also dependent on 
the use of the USING assembler instruction 
and the loading of the registers. Coding 
examples that illustrate these considera­
tions are provided in section 3 under the 
heading ·Programming with the USING 
InstrQction." 

In the following examples, the field 
generated from the statement named CONST 
contains a location counter reference. The 
value of the location counter will be the 
address of the first byte allocated to the 
constant. The second statement shows the 
same constant specified as a literal (i.e., 
an address constant literal). 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
t-------+-----------+---------------------~ 
ICONST IDC IA(*+4096) I 
I IL 14,=A(*+4096) I l _______ ~ __________ ~ _____________________ J 

When the location counter reference 
occurs in a literal, the value of the 
location counter is the address of the 
first byte of the instruction in which the 
literal is used. 

38 

DS -- DEFINE STORAGE 

The DS instruction is used to reserve 
areas of storage and to assign names to 
those areas. The use of this instruction 
is the preferred way of symbolically defin­
ing storage for work areas, input/output 
areas, etc. The size of a storage area 
that can be reserved by using the DS 
instruction is limited only by the maximum 
value of the location counter. 

r--------T----------T---------------------, 
I Name IOperation IOperand I 
t--------+----------+---------------------i 
IA symbollOS lOne operand in the I 
lor blank I Iformat described I 
I I I below I l ________ ~ __________ ~ _____________________ J 

The format of the DS operand is identi­
cal to that of the OC operand; exactly the 
same subfields are employed and are written 
in exactly the same sequence as they are in 
the DC operand. Although the formats are 
identical( there are two differences in the 
specification of subfields, as follows: 

1. The specification of data (subfield 4) 
is optional in a DS operand, but it is 
mandatory in a DC operand. If the 
constant is specified, it must be 
valid. 

2. The maximum length that may be speci­
fied for character (C) and hexadecimal 
(X) field types is 65,535 bytes rather 
than 256 bytes. 

If a DS operand specifies a constant in 
subfield 4, and no length is specified in 
subfield 3, the assembler determines the 
length of the data and reserves the 
appropriate amount of storage. It does not 
assemble the constant. The ability to 
specify data and have the assembler calcu­
late the storage area that would be 
required for such data is a convenience to 
the programmer. If he knows the general 
format of the data that will be placed in 
the storage area during program execution, 
all the programmer need do is show it as 
subfield 4 in a DS operand. The assembler 
then determines the correct amount of stor­
age to be reserved, thus relieving the 
programmer of length considerations. 

If the DS instruction is named by a 
symbol, its value is the location of the 
leftmost byte of the reserved area. The 
length of the field is the length (implied 
or explicit) of the type of data specified. 
Any positioning required for aligning the 
storage area to the proper type of boundary 
is done before the address value is deter-



mined. Bytes skipped for alignment are not 
set to zero. 

Each field type (e.g., hexadecimal, 
character, floating-point) is associated 
with certain characteristics (these are 
slmmarjze~ in Appendix F)~ The associated 
characteristics will determine which field­
type code the programmer selects for the DS 
operand and what other information he adds, 
notably a length specification or a dup­
lication factor. For example, the E 
floating-point field and the F fixed-point 
field both have an implied length of 4 
bytes. The leftmost byte is aligned to a 
fullword boundary. Thus, either code could 
be specified if it were desired to reserve 
4 bytes of storage aligned to a full word 
boundary. To obtain a length of S bytes, 
one could specify either the E or F field 
type with a length modifier of S. However, 
a duplication factor would have to be used 
to reserve a larger area, because the 
maximum length specification for either 
type is S bytes. Note also that specifying 
length would cancel any special boundary 
alignment. 

In contrast, character (C) and hexadeci­
mal (X) fields have an implied length of 1 
byte. Either of these codes, if used, 
would have to be accompanied by a length 
modifier, unless just 1 byte is to be 
reserved. Although no alignment occurs~ 
the use of C and X field types permits 
greater latitude in length specifications, 
the maximum for either type being 65,535 
bytes. (Note that this differs from the 
maximum for these types in a DC instruc­
tion.) Unless a field of 1 byte is 
desired, either the length must be speci­
fied for the C or X field types, or else 
the data must be specified (as subfield 4), 
so that the assembler can calculate the 
length. 

To define four 10-byte fields and one 
100-byte field, the respective DS state­
ments might be as follows: 

r-----T---------T-------------------------, 
IName IOperationlOperand I 
~-----+---------+-------------------------~ 
I FIELD I DS 14CL10 I 
I AREA I DS I CL100 I L _____ ~ _________ ~ _________________________ J 

Additional examples of DS statements are 
shown below: 

r-----T---------T-------------------------, 
IName I Operation I Operand I 
~-----+---------+-------------------------~ 
lONE IDS ICLSO (SO bytes> ! 
I TWO IDS ISOC (80 bytes) I 
ITHREEIDS 16F (six full words) I 
IFOUR IDS ID (one double word) I 
IFIVE IDS 14H (four half words) I L _____ ~ _________ ~ _________________________ J 

Note: A DS statement causes the storage 
area-to be reserved but not set to zeros. 
Assumptions should not be made as to the 
contents of the reserved area. 

Special Uses of the Duplication Factor 

FORCING ALIGNMENT: The location counter 
can be forced to a double word, fullword, 
or halfword boundary by using the appropri­
ate field type (e.g., D, F, or H) with a 
duplication factor of zero. This method 
may be used to obtain boundary alignment 
that otherwise would not be provided. For 
example, the following statements would set 
the location counter to the next double 
word boundary and then reserve storage 
space for a 128-byte field (whose leftmost 
byte would be on a double word boundary). 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
I IDS 10D I 
I TABLE IDS ICL12S I L _______ ~ ___________ ~ ____________________ J 

DEFINING FIELDS OF AN AREA: A DS instruc­
tion with a duplication factor of zero can 
be used to assign a name to an area of 
storage without actually reserving the 
area. Additional DS and/or DC instructions 
may then be used to reserve the area and 
assign names to fields within the area (and 
generate constants if DC is used). 

For example, assume that SO-character 
records are to be read into an area for 
processing and that each record has the 
following format: 

Position 
5-10 

11-30 
31-36 
47-54 
55-62 

Meaning 
Payroll Number 
Employee Name 
Date 
Gross Wages 
Withholding Tax 

The following example illustrates how DS 
instructions might be used to assign a name 
to the record area, then define the fields 

Assembler Instruction Statements 39 



of the area and allocate the storage for 
them. 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
IRDAREA DS OCL80 
I DS CL4 
IPAYNO DS CL6 
INAME DS CL20 
I DATE DS OCL6 
I DAY DS CL2 
IMONTH DS CL2 
IYEAR DS CL2 
I DS CL10 
I GROSS DS CL8 
IFEDTAX OS CL8 
I OS CL18 l _______ ~ ___________ ~ ____________________ _ 

Note that the first statement names the 
entire area by defining the symbol ROAREA; 
but does not reserve any storage. Similar­
ly, the fifth statement names a 6-byte area 
by defining the symbol DATE; the three 
subsequent statements actually define the 
fields of DATE and allocate storage for 
them. The second, ninth, and last state­
ments are used for spacing purposes and, 
therefore, are not named. 

CCW -- DEFINE CHANNEL COMMAND WORD 

The CCW instruction provides a conven­
ient way to define and generate an 8 byte 
channel command word aligned at a double­
word boundary. The internal machine format 
of a channel command word is shown in Table 
2. The format of the CCW instruction 
statement is: 

r--------T----------T---------------------, 
I Name IOperation IOperand I 
t--------+----------+---------------------~ 
IA symbollCCW IFour operands, I 
lor blank I Iseparated by commas, I 
I I I specifying the con- I 
I I Itents of the channel I 
I I I command word in the I 
I I Iformat described in I 
I I Ithe following text I l ________ ~ __________ ~ _____________________ J 

All four operands must appear. They are 
written, from left to right, as follows: 

1. An absolute term that specifies the 
command code. The value of this term 
is right-justified in byte 1. 

2. An absolute or relocatable expression 
specifying the data address. The 
value of this expression is right­
justified in bytes 2 through 4. 

40 

3. An absolute term that specifies the 
flags for bits 32 through 36 and zeros 
for bits 37 through 39. The value of 
this term is right-justified in byte 
5. (Byte 6 is set to zero.) 

4. An absolute term that specifies the 
count. The value of this term is 
right justified in bytes 7 and 8. 

The following is an example of a CCW 
statement: 

r--------T----------T---------------------, 
I Name IOperation IOperand I 
~--------+----------+---------------------~ 
I ICCW 12,READAREA,X'48',80 I l ________ ~ _________ ~ _____________________ J 

Note that the form of the third operand 
sets bits 37 through 39 to zero, as 
required. The bit pattern of this operand 
is as follows: 

32-35 
0100 

36-39 
1000 

If there is a symbol in the name field 
of the CCW instruction, it is assigned the 
address value of the leftmost byte of the 
channel command word. 

Table 2. Channel Command Word 
r-------T-----------T---------------------, 
I Byte I Bits IUsage I 
r-------+-----------+---------------------~ 
I 1 I 0-7 ICommand code I 
I 2-4 I 8-31 IData address I 
I 5 I 32-36 I Flags I 
I I 37-39 IMust be zero I 
I 6 I 40-47 ISet to zero I 
I 7-8 I 48-63 I Count I l _______ ~ ___________ ~ _____________________ J 

LISTING CONTROL INSTRUCTIONS 

The listing control instructions are 
used to identify the program listing and 
assembly output cards, to provide blank 
lines in the program listing, and to desig­
nate how much detail is to be included in 
the program listing. In no case are 
instructions or constants generated in the 
object program. Listing control statements 
with the exception of PRINT are not printed 
in the listing. 

TITLE -- IDENTIFY ASSEMBLY OUTPUT 

The TITLE instruction enables the pro­
grammer to identify the program listing and 



assembly output cards. The format of the 
TITLE instruction statement is as follows: 

r--------T-----------T--------------------, 
I Name I Operation I Operand J 

t--------+-----------+--------------------~ 
IAn ID orlTITLE IA sequence of char- I 
I blank I lacters, enclosed in I 
! I Isingle quotes I l ________ ~ ___________ ~ ____________________ J 

The name field may contain an ID field 
of from one to four alphabetic or numeric 
characters in any corr~ina tion.J.]It::! cOn­
tents of the ID field are punched into 
columns 73 through 76 of all the output 
cards for the program except those produced 
by the REPRO assembler instruction. Only 
the first TITLE statement in a program may 
make use of the ID field. The ID field of 
all Subsequent TITLE statements must be 
blank. 

The operand field may contain up to 62 
characters enclosed in single quotes. Spe­
cial consideration must be given to rep­
resenting single quotes and ampersands as 
characters. Each single quote or ampersand 
desired as a character in the constant must 
be represented by a pair of single quotes 
or ampersands. Only one single quote or 
ampersand appears in storage. The contents 
of the operand field are printed at the top 
of each page of the program listing. 

A program may contain more than one 
TITLE statement,. Each TITLE statement pro­
vides the heading for subsequent pages in 
the program listing, until another TITLE 
statement is encountered. Each TITLE 
statement causes the listing to be advanced 
to a new page (before the heading is 
printed) . 

For. example, if the following statement 
is the first TITLE statement to appear in a 
program: 

r--------T-----------T--------------------, 
I Name I Operand I Operand I 
~--------+-----------+--------------------~ 
IPGM1 I TITLE ,'FIRST HEADING' I l ________ ~-__________ ~ ____________________ J 

then PGM1 is punched into all of the output 
cards (columns 73 through 76) and FIRST 
HEADING appears at the top of each subse­
quent page. 

If the following statement occurs later 
in the same program: 

r--------T-----------T--------------------, 
I Name I Operation I operand I 
~--------+-----------+--------------------~ 
! , TITLE i 'A l'~EW HEADlr~G e I L ________ ~ ___________ ~ ___________________ J 

then, PGM1 is still punched into the output 
cards, but A NEW HEADING appears at the top 
of each subsequent page. 

Note: A title card with a non~blank name 
field must be used if the output deck will 
at any time be processed by the update 
feature of the assembler. In conjunction 
with the sequence numbers punched automat­
ically in columns 77 through 80, a 
4-character ID provides 8-digit 
serialization in columns 73 through 80, as 
required for an update operation. 

EJECT -- START NEW PAGE 

The EJECT instruction causes the next 
line of the listing to appear at the top of 
a new page. This instruction provides a 
convenient way to separate routines in the 
program listing. The format of the EJECT 
instruction statement is as follows: 

r--------T----------~--------------------l 
I Name I Operation I Operand I 
~-------~+~~~~-------+--------------------1 
I Blank I EJECT IMust be blank I L ________ ~ ___________ ~ ___________________ J 

If the line before the EJECT statement 
would have been the last line on a page 
anyway, the EJECT statement has no effect. 
Two EJECT statements may be used in succes­
sion to obtain a blank page. A TITLE 
instruction followed immediately by an 
EJECT instruction will produce a page with 
nothing but the operand entry of the TITLE 
instruction. Text following the EJECT 
instruction will begin at the top of the 
next page. 

SPACE -- SPACE LISTING 

The SPACE instruction is used to insert 
one or more blank lines in the listing. 
The format of the SPACE instruction state­
ment is as follows: 

Assembler Instruction Statements 41 



r--------T-----------T--------------------, 
\ Name I Operation I Operand I 
~--------+-----------+--------------------~ 
\ Blank \ SPACE IA decimal value I 
I I lor blank I l ________ ~ ___________ ~ ____________________ J 

A decimal value is used to specify the 
number of blank lines to be inserted in the 
program listing. A blank operand causes 
one blank line to be inserted. If the 
operand value exceeds the number of lines 
remaining on the listing page, the state­
ment will have the same effect as an EJECT 
statement. 

PRINT -- PRINT OPTIONAL DATA 

The PRINT instruction is used to control 
printing of the program listing. The for­
mat of the PRINT instruction statement is: 

r--------T-----------T--------------------, 
I Name I operation I Operand I 
~--------+-----------+--------------------~ 
I Blank I PRINT lOne or two operands \ l ________ ~ ___________ ~ ____________________ J 

One or both of the following operands 
are used: 

1.. ON - A listing is printed. 

2. 

OFF - No listing is printed. 

DATA - Constants are printed out in 
full in the listing. 

NODATA - Only the leftmost 8 bytes are 
printed in the listing. 

A program may contain any number of 
PRINT statements. The PRINT statement 
controls the printing of the program 
listing until another PRINT statement is 
encountered. 

Until the first PRINT statement (if any) 
is encountered, the following is assumed: 

r--------T-----------T--------------------, 
I Name \ Operation I Operand I 
~--------+-----------+--------------------~ 
I I PRINT ION,NODATA I l ________ ~ ___________ ~ ___________________ J 

42 

For example, if the statement: 

r--------T-----------T--------------------, 
\ Name I Operation I Operand I 
~--------+-----------+--------------------~ 
I I DC I XL256 ' 00' I l ________ i __________ -i ____________________ J 

appears in a 
are assembled. 

program, 256 bytes of zeros 
If the statement: 

r--------T-----------T--------------------, 
I Name I operation I Operand I 
~--------+-----------+--------------------~ 
1 I PRINT I DATA I l ________ i ___________ i ____________________ J 

is the last PRINT statement to appear 
before the DC statement, all 256 bytes of 
zeros are printed in the program listing. 
However, if the following statement is the 
last PRINT statement to appear before the 
DC statement, only 8 bytes of zeros are 
printed in the program listing. 

r--------T-----------.--------------------, 
I Name I Operation I Operand I 
~--------+-----------+--------------------~ 
I I PRINT I NODATA I l ________ i ___________ i ____________________ J 

Whenever an operand is omitted, it is 
assumed to be unchanged and continues 
according to its last specification. 

If the OFF operand is used, no data will 
be printed even though a DATA operand is 
specified. Thus, with the following state­
ment nothing would be printed. 

r--------T-----------T--------------------, 
I Name I Operation I Operand I 
~--------+-----------+--------------------~ 
I I PRINT \ OFF, DATA I l ________ i ___________ ~ ____________________ J 

PROGRAM CONTROL INSTRUCTIONS 

The program control instructions are 
used to specify the end of an assembly, to 
set the location counter to a value or word 
boundary, to specify the placement of 
literals in storage, to indicate statement 
format, and to punch a card. Except for 
the CNOP instruction, none of these as­
sembler instructions generate instructions 
or constants in the object program. 



ICTL -- INPUT FORMAT CONTROL 

The ICTL instruction allows the program­
mer to alter the normal format of his 
source program statements. The ICTL state­
ment must precede all other statements in 
the source program and may be used only 
once. The format of the ICTL instruction 
statement is as follows: 

r--------T-----------T--------------------, 
1 Name 1 Operation 1 Operand 1 
~~---~---+-----------+--------------------1 
1 Blank 1 ICTL IThe decimal value 1 1 
I I lor 25 I l ________ i ___________ i ____________________ J 

The operand specifies the begin column 
of the source statement. 

If no ICTL statement is used in the 
source program, the assembler assumes that 
column 1 is the begin column. 

REPRO -- REPRODUCE FOLLOWING CARD 

The REPRO assembler-instruction causes 
data on the following statement line to be 
punched into a card; the data is not 
processed. Neither a sequence number nor 
the identification is punched on the card. 
One REPRO instruction produces one punched 
card. 

A REPRO statement that occurs before all 
program sectioning and linking instructions 
and before any assembler language instruc­
tion that may either affect or depend upon 
the setting of the location counter causes 
the assembler to punch a card that precedes 
all other cards of the object deck. A 
REPRO statement that occurs after any of 
the program sectioning and linking instruc­
tions has been encountered causes the as­
sembler to punch a card that follows the 
object cards produced for all of the pro­
gram sectioning and linking instructions. 
(The program sectioning and linking 
instructions are: START, CSECT, DSECT, COM, 
ENTRY, and EXTRN.) 

The format of the REPRO instruction 
statement is: 

r--------T-----------T--------------------, 
1 Name 1 Operation I Operand I 

~--------+-----------+--------------------1 
I Blank I REPRO IMust be blank I L ________ i ___________ i ____________________ J 

The line to be reproduced may contain 
any combination of valid characters, start­
ing in column 1 and continuing through 
C01UITm I~ UI ~ne ~lne. Column 1 of the 
line corresponds to column 1 of the card to 
be punched. 

ORG -- SET LOCATION COUNTER 

The ORG instruction is used to alter the 
setting of the location counter for the 
current control section. The format of the 
ORG instruction statement is: 

r--------T----------~--------------------, 
I Name 1 Operation 1 Operand 1 
~--------+-----------+--------------------i 
I Blank IORG IA relocatable ex- 1 
1 1 Ipression or blank 1 L ________ i ___________ i ____________________ J 

Any symbols in the expression must have 
been previously defined. An unpaired relo­
catable symbol must be defined in the same 
control section in which the ORG statement 
appears. 

The location counter is set to the value 
of the expression in the operand. If the 
operand is omitted, the location counter is 
set to the next available (unused) location 
for that control section. 

An ORG statement must not be used to 
specify a location below the beginning of 
the control section in which it appears. 
FOr example, ~ne Io~~owing statement is 
invalid if it appears less than 500 bytes 
from the beginning of the current control 
section. 

r--------T-----------T--------------------, 
1 Name 1 Operation I Operand 1 
~--------+-----------+--------------------1 
I IORG 1*-500 1 l ________ i ___________ i ____________________ J 

If it is desired to reset the location 
counter to the highest location yet 
assigned (in the control section), the 
following statement would be used: 

r--------T-----------T--------------------, 
1 Name I operation 1 Operand 1 
~--------+-----------+--------------------i 
I IORG 1 1 L ________ i ___________ i ____________________ J 

If previous ORG statements have reduced 
the location counter for the purpose of 

Assembler Instruction Statements 43 



redefining a portion of the current control 
section. an ORG statement with an omitted 
operand can then be used to terminate the 
effects of such statements and restore the 
location counter to its highest setting. 

LTORG -- BEGIN LITERAL POOL 

The LTORG instruction causes all liter­
als since the previous LTORG (or start of 
the current control section) to be assem­
bled at appropriate boundaries starting at 
the first double-word boundary following 
the LTORG statement. If no such literals 
exist. alignment of the next instruction 
(which is not a LTORG instruction) will 
occur. Bytes skipped are not set to zero. 
The format of the LTORG instruction state­
ment is: 

r---------T---------T---------------------, 
I Name I Operation I Operand I 
r---------t---------t---------------------1 
IA symbol ILTORG IMust be blank I 
lor blank I I I L _________ ~ _________ ~ _____________________ J 

The symbol represents the address of the 
first byte of the literal pool. The LTORG 
statement forces all literals in a control 
section to be generated as a part of that 
control section. A LTORG statement must 
appear after the last reference to any 
literal in a control section. 

Duplicate Literals 

If duplicate literals occur within the 
range controlled by one LTORG statement, 
only one literal is stored. Literals are 
considered duplicates only if their speci­
fications are identical. A literal will be 
stored, even if it appears to duplicate 
another literal, if it is an A-type address 
constant containing any reference to the 
location counter. 

The following examples illustrate how 
the assembler stores pairs of literals, if 
the placement of each pair is controlled by 
the same LTORG statement. 

X'FO' 
Both are stored 

clOt 

XL3'0' 
Both are stored 

HL3'0' 

Both are stored 
A (*+ 4) 

X'FFFF' 
Identical; the first is stored 

X'FFFF' 

X'FF' 
Both are stored 

XL1'FF' 

CNOP -- CONDITIONAL NO OPERATION 

The CNOP instruction allows the program­
mer to align an instruction at a specific 
halfword boundary. If any bytes must be 
skipped in order to align the instruction 
properly, the assembler ensures an unbroken 
instruction flow by generating no-operation 
instructions. This facility is useful in 
creating calling sequences that consist of 
a linkage to a subroutine followed by 
parameters. 

The CNOP instruction ensures the align­
ment of the location counter setting to a 
halfword, fullword, or double word bounda­
ry. If the location counter is already 
properly aligned, the CNOP instruction has 
no effect. If the specified alignment 
requires the location counter to be incre­
mented, one to three no-operation instruc­
tions are generated, each of which uses 2 
bytes. 

r---------------------------------------------------------------------------------------, 
I Double Word I 
r-------------------------------------------T-------------------------------------------~ 
I Fullword I Fullword I 
~---------------------T---------------------t---------------------~--------------------1 
I Halfword I Halfword I Halfword I Halfword I 
t----------T----------t----------T----------t----------T----------t----------T----------1 
I Byte I Byte I Byte I Byte I Byte I Byte I Byte I Byte I 

t----------~----------~----------~----------~----------~----------~----------~----------~ 
I 0,4 2,4 0,4 2,4 I 
I 0,8 2,8 4,8 6,8 I L _______________________________________________________________________________________ J 

Figure 5. CNOP Alignment 

44 



The format of the CNOP instruction 
statement is as follows: 

r-------T-----------T---------------------, 
I Name I Operation I Operand I 
~-------+-----------+---------------------~ 
IBlank ICNOP ITwo absolute 1 
I I lexpressions of I 
I I Ithe form b,w I l _______ i ___________ i _____________________ J 

Any symbols used in the expressions in 
the operand field must previously have been 
defined. A location counter reference may 
not appear in such an expression. 

Operand ~ specifies at which byte in a 
full word or double word the location coun­
ter is to be set; b can be 0, 2, 4, or 6. 
Operand ~ specifies whether byte ~ is in a 
fullword (w = 4) or double word (w = 8). 
The following pairs of Q and ~ are valid: 

b,w Specifies 
0,4 Beginning of a fullword 
2,4 Middle of a fullword 
0,8 Beginning of a double word 
2,8 Second halfword of a double word 
4,8 Middle (third halfword) of a 

double word 
6,8 Fourth halfword of a double word 

Figure 5 shows the position in a double 
word that each of these pairs specifies. 
Note that both 0,4 and 2,4 specify two 
locations in a double word. 

Assume that the location counter is 
currently aligned at a double word bounda­
ry. Then the CNOP instruction in the 
following sequence has no effect; it is 
merely printed in the assembly listing: 

r------T-----------T----------------------, 
I Name I Operation I Operand 1 
r------+-----------+----------------------~ 
I I CNOP 1 0, 8 1 
1 I BALR 1 2 , 14 1 l ______ i ___________ i ______________________ J 

However, the following sequence: 

r------T-----------T----------------------, 
I Name 1 Operation 1 Operand 1 
~------+-----------+----------------------~ 
1 I CNOP 16 , 8 I 
1 IBALR 12,14 I l ______ i-__________ i ______________________ J 

causes three branch-on-conditions 
(no-operations) to be generated, thus 
aligning the BALR instruction at the last 
halfword in a doubleword, as follows: 

r------T-----------T----------------------, 
1 Name 1 Operation 1 Operand I 
t------+-----------+----------------------i 
I I BCR 10,0 I 
I IBCR 10,0 1 
I IBCR 10 ,0 I 
I 1 BALR I 2, 14 1 l ______ ~ __________ _i ______________________ J 

After the BALR instruction is generated, 
~ne location counter is at a double word 
boundary, thereby ensuring an unbroken 
instruction flow. 

END -- END ASSEMBLY 

The END instruction terminates the 
assembly of a program. It may also desig­
nate a point ln the program or in a 
separately assembled program to which con­
trol may be transferred after the program 
is loaded. The END instruction must always 
be the last statement in the source pro­
gram. A literal may not be used. 

The typical form of the END instruction 
statement is as follows: 

r-------T-----------T---------------------, 
jName jOperation jOperand j 
r-------+-----------+---------------------~ 
I Blank lEND IA relocatable ex- 1 
I I Ipression or blank 1 l _______ ~ ___________ ~ _____________________ J 

The operand specifies the point to which 
control may be transferred when loading is 
complete. This point is usually the first 
machine instruction in the program, as 
shown in the following sequence. If the 
operand field is blank, control is automat­
ically transferred to the first byte of the 
first control section in the assembly. 

r-------T-----------T---------------------, 
1 Name I Operation 1 Operand 1 
r-------+-----------+---------------------~ 
1 NAME I CSECT I 1 
1 AREA 1 DS 150F 1 
1 BEG IN 1 BALR 1 2, 0 I 
1 I USING 1 *,2 1 
1 1 . 1 I 
I 1 • I 1 
I 1 • 1 I 
I 1 END I BBGIN I l _______ ~ ___________ ~ _____________________ J 

Assembler Instruction Statements 45 



SECTION 6: CONDITIONAL ASSEMBLY INSTRUCTIONS 

The conditional assembly instructions 
allow the programmer to bypass source 
statements during an assembly, depending on 
the values assigned to variable symbols. 

There are 
instructions: 

SETA AIF 

4 conditional assembly 

AGO ANOP 

Note: Other Systern/360 programming support 
system assembler languages employ an addi­
tional conditional assembly instruction 
(the LCLA instruction) for the definition 
of variable symbols. Since the Model 44 
Programming System Assembler Language does 
not require explicit definition of variable 
symbols beyond their appearance in the name 
field of a SETA instruction, LCLA state­
ments are not required in the language. To 
enable an additional degree of compat­
ibility, however, LCLA statements are 
treated as comments by this assembler. 

The SETA instruction is used to define a 
variable symbol and assign an arithmetic 
value to it. 

The AIF, AGO, and ANOP instructions are 
used (in conjunction with sequence symbols) 
to indicate which statements are to be 
processed by the assembler. The programmer 
can test the values assigned to variable 
symbols, thereby determining which state­
ments are to be processed. 

An example illustrating the use of con­
ditional assembly instructions is included 
at the end of this section. 

VARIABLE SYMBOLS 

A variable symbol is a type of symbol 
that is assigned different values by the 
programmer. A variable symbol is written 
as an ampersand followed by from one to 
seven letters and/or digits, the first of 

I
WhiCh must be a letter. A variable symbol 
may be used in any operand where a self­
defining term is allowed. 

SETA -- SET ARITHMETIC 

The SETA instruction is used to assign 
an arithmetic value to a variable symbol. 
A variable symbol is defined when it 

46 

appears in 
instruction. 
tion is: 

the 
The 

name field of a SETA 
format of this instruc-

r-----------T-----------T-----------------, 
I Name I Operation I Operand I 
t-----------+-----------+-----------------~ 
IA variable I SETA I An arithmetic I 
I symbol I I expression I l ___________ ~ ___________ ~ _________________ J 

The expression in the operand field is 
evaluated as a signed 24-bit arithmetic 
value which is assigned to the variable 
symbol in the name field. The minimum and 
maximum allowable values of the expression 

I are -2 23 and +2 23-1, respectively. 

The expression may consist of one term 
or an arithmetic combination of up to three 
terms. The terms may be either self­
defining terms or variable symbols. 
(Self-defining terms are described in 
Section 1 of this publication.) 

The arithmetic operators that may be 
used to combine the terms of an expression 
are + (addition), (subtraction), * 
(multiplication), and / (division). 

An expression may not contain two terms 
or two operators in succession, nor may it 
begin with an operator. 

The following are valid operand fields 
of SETA instructions: 

&AREA+X'2D' 
&BETA*10 

&HERE-&EXIT 
29 

The following are invalid operand fields 
of SETA instructions: 

&AREAX'C' 
&FIELD+-3 

-&DELTA*2 
*+32 

NAME/25 

(two terms in succession) 
(two operators in 

succession) 
(begins with an operator) 
(begins with an operator; 

two operators in 
succession) 

(NN1E is not a valid term) 

Evaluation of Arithmetic Expressions 

The procedure used to evaluate the 
arithmetic expression in the operand field 
of a SETA instruction is the same as that 
used to evaluate arithmetic expressions in 
assembler language statements. The only 



difference between the two types of arith­
metic expressions is the terms that are 
allowed in each expression. 

The following 
used: 

evaluation procedure is 

1. Each term 
value. 

is given its numerical 

2. 

3. 

4. 

If a variable 
arithmetic value 
substituted. If 

symbol is used, the 
assigned to it is 

no arithmetic value 
has been assigned to 
symbol, it is assumed 
zero. 

the variable 
the value is 

The arithmetic operations are per­
formed moving from left to right. 
However, multiplication and/or divi­
sion are performed before addition and 
subtraction. 

The computed result is the value 
assigned to the variable symbol in the 
name field. 

One level of parentheses may be used in 
a SETA operand. Each term enclosed by 
parentheses counts toward the maximum of 
three terms. 

The following are examples of SETA 
instruction operand fields that contain 
parenthesized terms: 

(&HERE+32)*29 
&EXIT/ (&ENTRY- 4) 
&BETA+(&ENTRY*2) 

The parenthesized portion of an arith­
metic expression is evaluated before the 
other term in the expression is evaluated. 

LOGICAL EXPRESSIONS 

Logical expressions enable the program­
mer to test the values assigned to variable 
symbols. A logical expression is used in 
the operand field of an AIF instruction and 
is evaluated to determine if it is true or 
false. 

A logical expression consists of an 
arithmetic relation enclosed by parenthe­
ses. No blanks should appear between the 
enclosing parentheses and the first or last 
character of the arithmetic relation. 

An arithmetic relation consists of two 
arithmetic expressions connected by a rela­
tional operator. The relational operator 
must be immediately preceded and followed 
by at least one blank. The relational 
operators are EQ (equal), NE (not equal), 

LT (less than), GT (greater than), LE (less 
than or equal), and GE (greater than or 
equal) • 

The arithmetic expressions that may be 
used in an arithmetic relation are limited 
to those expressions that are valid in the 
operand field of a SETA instruction. 

The following are valid logical expres­
sions: 

(7*(&ALPHA+6) EQ & GAMMA) 
(&AREA+2 GT 29) 
(&XYZ NE &P12*(&A+6» 

The following are invalid logical 
expressions: 

&B EQ &A (not enclosed in 
parentheses) 

(&P EQ &B 6) 
( &A EQ 5 ) 

(two terms in succession) 
(blank following left 

parenthesis and preced­
ing right parenthesis) 

SEQUENCE SYMBOLS 

Sequence symbols provide the programmer 
with the ability to vary the sequence in 
which statements are processed by the as­
sembler. 

A sequence symool may be used in the 
name field of any statement (except an ICTL 
statement) that does not require an ordi­
nary symbol. 

A sequence symbol is used in the operand 
field of an AIF or AGO statement to refer 
to the statement named by the sequence 
symbol. 

A sequence symbol consists of a period 
followed by one to seven letters and/or 
digits, the first of which must be a 
letter. 

The following are valid sequence sym­
bols: 

• READER 
.LOOP2 
.N 

.A23456 

.X4F2 

.S4 

The following are invalid sequence 
boIs: 

CARDAREA (first character is not 
a period) 

.456B (first character after 

sym-

period is not a letter) 
.AREA2456 (more than seven characters 

after period) 

conditional Assembly Instructions 47 



.BCD%84 (contains a special 
character other than 
initial period) 

.IN AREA <contains a special 
character, i.e., blank, 
other than initial period) 

AIF -- CONDITIONAL BRANCH 

The AIF instruction is used to condi­
tionally alter the sequence in which source 
program statements are processed by the 
assembler. The assembler assigns a maximum 
count of 4096 AIF and AGO branches that may 
be executed in the source program. The 
format of this instruction is: 

r----------T---------T--------------------, 
I Name I Operation I Operand I 
~----------+---------+----~---------------~ 
IA sequencelAIF IA logical expression I 
I symbol or I limmediately followed I 
I blank I Iby a sequence symbol I l __________ ~ _________ ~ ____________________ J 

Any logical expression may be used in 
the operand field of an AIF instruction. 
The sequence symbol in the operand field 
must immediately follow the closing paren­
thesis of the logical expression. 

The logical expression in the operand 
field is evaluated to determine if it is 
true or false. If the expression is false, 
the next sequential statement is processed 
by the assembler. If the expression is 
true, the statement named by the sequence 
symbol in the operand field is the next 
statement processed by the assembler. This 
statement must not precede the AIF instruc­
tion. 

The following are valid operand fields 
of AIF instructions: 

(&AREA+X'2D' GT 29).READER 
«32-&HERE)*4 GT 48).THERE 

The following are invalid operand fields 
of AIF instructions: 

(&HERE NE 6) 
.X4F2 
(&N+4 GT &L) 

(no sequence symbol) 
(no logical expression) 

.PASS (blanks between logical 
expression and sequence 
symbol) 

AGO -- UNCONDITIONAL BRANCH 

The AGO instruction is used to uncondi­
tionally alter the sequence in which source 

48 

program statements are processed by the 
assembler. The assembler assigns a maximum 
count of 4096 AIF and AGO branches that may 
be executed in the source program. The 
format of this instruction is: 

r----------T---------T--------------------, 
I Name I Operation I Operand I 
~----------+---------+--------------------~ 
IA sequencelAGO IA sequence symbol I 
Isymbol or I I I 
I blank I I I l __________ ~ ________ ~ ____________________ J 

The statement named by the sequence 
symbol in the operand field is the next 
statement processed by the assembler. This 
statement must not precede the AGO instruc­
tion. 

ANOP -- ASSEMBLY NO OPERATION 

The ANOP instruction facilitates condi­
tional and unconditional branching to 
statements named by symbols or:' variable 
symbols. The format of this instruction 
is: 

r----------T---------T--------------------, 
I Name I Operation I Operand I 
t----------+---------+--------------------~ 
IA sequencelANOP I Blank I 
I symbol I I I l __________ ~ _________ ~ ____________________ J 

If the programmer wants to use an AIF or 
AGO instruction to branch to another state­
ment, he must place a sequence symbol in 
the name field of the statement to which he 
wants to branch. However, if the program­
mer has already entered a symbol or varia­
ble symbol in the name field of that 
statement, he cannot place a sequence sym­
bol in the name field. Instead, the pro­
grammer must place an ANOP instruction 
before the statement and then branch to the 
ANOP instruction. This has the same effect 
as branching to the statement immediately 
after the ANOP instruction. 

USING CONDITIONAL ASSEMBLY INSTRUCTIONS 

The following coding is an example of 
the use of conditional assembly instruc­
tions within a program. 



r------T----------T----------------------, 
I Name IOperation IOperand I 
t------+----------+----------------------i 

&ALPHAISETA 
&BETA ISETA 

I . 
I . 
I . 
IAIF 

liLA 
2 IAR 
3 I AGO 
4 .SKIP IANOP 
5 HERE jLA 
6 IAR 
7 I • OTHER I SR 

I I . 
I I . 
I I . 

3 
4 

(&ALPHA EQ &BETA).SKIP 
5,4 
5,3 
• OTHER 

5,7 
5,4 
6,5 

l ______ ~ __________ ~ _____________________ _ 

The SETA instructions define the varia­
ble symbols &ALPHA and &BETA and assign to 
them the arithmetic values 3 and 4, respec­
tively. The AlF instruction tests these 
values to determine the next statement to 
be processed by the assembler. The logical 

expression (&ALPHA EQ &BETA) is evaluated 
and found to be false: &ALPHA is not equal 
in value to &BETA. Therefore, the as­
sembler continues with the next sequential 
statement. Statements 1 and 2 are proc­
essed. The AGO instruction then causes the 
assembler unconditionally to bypass state­
ments until it encounters a statement with 
the sequence symbol . OTHER in the name 
field. Thus, statements 4, 5, and 6 are 
bypassed; statement 7 is the next statement 
processed. 

For a subsequent assembly, the SETA 
instructions can hp rpplaced so that the 
values of &ALPHA and &BETA are equal. 
Under these circumstances the logical 
expression in the AIF instruction is true 
and the next statement to be processed is 
the statement with the sequence symbol 
.SKIP in the name field. Thus, the as­
sembler bypasses statements 1, 2, and 3 and 
processes statement 4. This is an ANOP 
instruction, required only because the 
statement following it has an ordinary 
symbol in the name field. Statements 5, 6, 
and 7 are then processed by the assembler. 

conditional Assembly Instructions 49 



SECTION 7: UPDATE FEATURE 

The assembler has an update feature 
which allows the user to update a serial­
ized, card-image data set by inserting, 
replacing, or deleting one or more records. 
The update feature can also be used to 
serialize a data set for use in subsequent 
update operations, or to serialize while 
updating. If the data set consists of 
source language statements written in as­
sembler language, the assembler may be 
instructed to assemble the updated source 
data set concurrently with the update proc­
ess. 

INPUT/OUTPUT CONSIDERATIONS 

The update feature may be used to modify 
any EBCDIC data set that consists of cards 
or card images. either blocked or 
unblocked, provided columns 73 through 80 
of each card image are available for or 
contain a valid serial number. A valid 
serial number consists of 8 alphameric, 
non-blank characters. It usually contains 
a low-order, numeric field sufficient to 
accommodate numerical sequencing (in incre­
ments of 10) of the entire data set. 

An object deck produced by the assembler 
can be updated only if produced during an 
assembly that used a TITLE instruction with 
a non-blank name field. The 4-character 
name field of the TITLE instruction is 
reproduced in columns 73 through 76 of the 
object program output and, in conjunction 
with sequence numbers punched automatically 
in columns 77 through 80, provides a valid 
serial number for a subsequent update oper­
ation. 

The update input generally consists of 
two data sets: an old data set, and an edit 
data set. Updating of the old data set 
proceeds under the control of the edit data 
set. 

The old data set consists of card images 
in sequence by serial number. The edit 
data set consists of additional card-image 
data and control statements, and must also 
be in sequence by serial number, except as 
noted below. Certain update modes of oper­
ation do not require an old data set. 

The update output consists of an updated 
data set and an update listing. 
(Production of the updated data set is 
optional for an update-and-assemble run.) 
The update listing is separate from the 

50 

program listing produced by the assembler. 
It describes the results of the update 
operation, and includes diagnostic error 
messages for any errors encountered while 
updating. 

The user specifies a mode of operation 
appropriate to his input/output require­
ments in a control card supplied at as­
sembler execution time. The various 
options and associated input/output assign­
ments are discussed in the publication IBM 
System/360 Model 44 Programming System: 
Guide to System Use, Form C28-6812. 

UPDATE OPERATION 

PROCEDURE 

The update feature uses the EBCDIC col­
lating sequence to compare the serial num­
bers of the current records of the old data 
set and the edit data set. As long as the 
edit serial is greater, card images are 
passed from the old data set to the output 
data set. As soon as the edit serial is 
equal to or less than the old serial, the 
edit record is acted upon, as follows: 

1. If the edit record is an update 
instruction, the instruction is per­
formed. The specific actions relating 
to each update instruction are des­
cribed under "Update Instructions," 
below. Generally, their performance 
involves a repositioning of the old 
data set, subsequent to which the edit 
data set is advanced to the next 
record, and a new comparison is ini­
tiated as above. 

2. If the edit record is not an update 
instruction, the edit card image is 
inserted into the output data set and 
the edit data set is advanced to the 
next record. If the comparison yield­
ed an equality, the old data set is 
also advanced to the next record, thus 
effecting replacement of the old 
record with the corresponding edit 
record. A new comparison is then 
initiated, and processing continues as 
above. 

unserialized card images (columns 73 
through 80 are all blank) may appear in 
either data set at any time. They are 
considered to have the lowest value, and 



are processed immediately upon being 
encountered. If, however, blank serializa-
tion occurs simultaneously ,~ both data 
sets, the edit record is acted upon. 

Note: The following considerations apply 
during an update-and-assemble operation in 
which both an old data set and an edit data 
set are employed. Because the assemo~er 
immediately processes an end-of-data (/*) 
statement with blank serialization encoun­
tered in the edit data set, it will not 
process records remaining in the old data 
set. To enable processing of the old data 
set in its entirety, it is necessary to 
either: (1) serialize the end-of-data 
statement in such a way that its serial 
number is greater than the serial number of 
the last record in the old data set, or (2) 
ensure that the record immediately preced­
ing the end-of-data statement in the edit 
data set acts, as required, upon or through 
the last record in the old set. During an 
update-only operation, in which job defini­
tion statements are not recognized as such, 
the only requirement is that the end-of­
data statement follow the special control 
statement (the ENDUP instruction) required 
to terminate an update-only operation. 
(For a complete discussion of the end-of­
data statement, see the publication, IBt-l 
system/360 Model 44 Programming System: 
Guide to System Use, Form C28-6812.) 

INSERTION A~ID P~PLACEM~~T 

Card images may be inserted or replaced 
without using update instructions. New 
card images are placed in the edit data set 
and processed as follows: 

• A serialized card image in the edit 
data set replaces a card image with 
matching serialization in the old data 
set. 

• A card image with unmatching 
serialization is inserted in sequence. 

• Unserialized card images are inserted 
immediately upon being encountered. 

If only the first of a group of cards in 
the edit data set contains a serial number, 
the entire group is inserted. 

Card images inserted or replaced are 
noted as such in the update listing. 

UPDATE INSTRUCTIONS 

Functions other than insertion and 
replacement are specified by update 
instructions inserted by the user in the 
edit data set. The OMIT and CPYTO instruc­
tions allow a specified segment of the old 
data set to be omitted from or copied to 
the new data set. The SKPTO and REWND 
instructions enable a specified reposition­
ing of the old data set, either forward to 
a specified serial number, or backward to 
the first record. 

Two additional instructions may be used. 
The NUM instruction causes reserialization 
of the new data set. The ENDUP instruction 
terminates an update-only operation. 

A detailed description of each update 
instruction follows. The following consid­
erations apply: 

1. Update instructions in the edit data 
set function as control statements to 
the update feature. They are not 
inserted into the new data set, which 
may, subsequently or concurrently, be 
processed by the language translation 
facility of the assembler. (If, how­
ever, an update instruction appears in 
the old data set, it will not be 
recognized as such, will not affect 
the update process, and will be 
inserted into the new data set unless 
replaced or deleted by the edit data 
set.) Update instructions are invalid 
as input during an assemble-only run. 

2. The Or-UT, SKPTO, \..J:':n.v, a.nd .K~Wl'HJ 

instructions refer to an old data set. 
If encountered during a run in which 
an old data set is not used, they are 
flagged as invalid in the update list­
ing and ignored. 

3. The NUM and ENDUP instructions may use 
the serial field to refer to an old 
data set. Hence, the serial field 
should be blank when these instruc­
tions are used during a run in which 
an old data set is not used. If, 
during such a run, a NUM or an ENDUP 
instruction with a nonblank serial 
field is encountered, the serial num­
ber is ignored, and the instruction is 
acted upon at once. 

NUM Instruction 

The NUM instruction is used to reserial­
ize columns 73 through 80 of the records in 
the new data· set. The format of the 
instruction is: 

Update Feature 51 



r-------T---------T--------T--------------, 
I Name IOperationlOperand ISerial I 
~-------+---------+--------+--------------~ 
I IgnoredlNUM IA serialtA serial I 
I I I number I number I 
I I lor blanklor blank I l _______ ~ ________ ~ ________ ~ ______________ J 

The operand field contains 8 characters 
that specify the starting value of the new 
serial number. The number in the serial 
field identifies the record in the old data 
set at which reserialization is to begin. 

When a NUM instruction is encountered, 
records are read from the old data set and 
written into the new data set until a 
serial number is encountered that matches 
the serial number of the instruction. The 
operation is then initiated, and continues 
until a new NUM instruction is encountered 
or until the last record has been numbered. 
A NUM instruction with a blank operand 
field may be used to terminate reserializa­
tion of the new data set. 

If the serial field of a NUM instruction 
is blank, reserialization is initiated or 
terminated immediately. 

Reserialization from record to record is 
done in increments of ten. The rightmost 
portion of the serial number specified in 
the operand field must contain enough 
numeric positions to prevent incrementation 
from affecting a non-numeric character. 

As an example, consider the following 
statement: 

r----T~--------T--------T-----------------, 

INamelOperationloperand ISerial I 
~----+---------+--------+-----------------~ 
I INUM IIJKOOOOOIABC24710 I 
I I I I I l ____ ~ _________ ~ ________ ~ _________________ J 

starting with the record in the old data 
that has serial number ABC24710, records in 
the new data set will be serialized 
IJKOOOOO, IJK00010, IJK00020, etc. 

OMIT Instruction 

The OMIT instruction causes deletion of 
one or more records appearing in the old 
data set. Deleted records are noted as 
such in the update listing. The format of 
the OMIT instruction is: 

52 

r-------T--------~--------T--------------, 

I Name IOperationlOperand ISerial I 
~-------+---------+--------+--------------~ 
I Ignored I OMIT IA seriallA serial I 
I I I number I number I 
I I lor blankl I l _______ ~ _________ ~ ________ ~ ______________ J 

The serial field contains the serial 
number at which deletion begins. The oper­
and field contains the serial number at 
which deletion ends. Those records that 
have serial numbers that are equal to or 
between these two serial numbers will be 
deleted. 

When an OMIT instruction is encountered, 
records are read from the old data set into 
the new data set until a serial number is 
encountered that is greater than or equal 
to the serial number of the instruction. 
The operation is then initiated, and con­
tinues until a serial number is encountered 
that is greater than or equal to the 
operand field of the instruction. 

If the operand field is blank, the 
operation is terminated subsequent to the 
deletion of the single record specified. 

If the serial field is blank, the state­
ment is flagged as erroneous in the update 
listing and ignored. 

SKPTO Instruction 

The SKPTO instruction causes the bypass­
ing of one or more records that appear in 
the old data set. Bypassed records do not 
appear in the new data set, are not assem­
bled, and do not appear in the update 
listing. 

The format of the SKPTO instruction is: 

r-------T---------T--------T--------------, 
I Name IOperationlOperand Iserial I 
~-------+---------+--------+--------------~ 
I IgnoredlSKPTO IA seriallA serial I 
I I I number I number I 
I I I lor blank I l _______ ~ _________ ~ ________ ~ ______________ J 

The serial field contains the serial 
number of the record immediately preceding 
the first record to be bypassed. The 
operand field contains the serial number of 
the record immediately following the last 
record to be bypassed. Note that the 
records whose serial numbers are specified 
are not themselves bypassed. 

When a SKPTO instruction is encountered, 
records are read from the old data set and 
written into the new data set until a 



serial number is encountered that matches 
the serial number of the instruction. The 
operation is then initiated, and continues 
until a serial nlliT~er ~c encountered that 
matches the operand field of the instruc-
tion. 

If the serial field is blank, the opera­
tion is initiated immediately. 

CPYTO Instruction 

The CPYTO instruction causes one or more 
records to be copied from the old data set 
into the new data set. Copied records are 
not assembled and do not appear in the 
update listing. The format of the CPYTO 
instruction is: 

r-------T---------T--------T--------------, 
I Name IOperationloperand ISerial I 
~-------+---------+--------+--------------~ 
I IgnoredlCPYTO IA seriallA serial I 
I I I number I number I 
I I I I or blank I l _______ ~ ________ ~ ________ ~ ______________ J 

The serial field contains the serial 
number of the record immediately preceding 
the first record to be copied. The operand 
field contains the serial number of the 
record immediately following the last 
record to be copied. Note that the records 
whose serial numbers are specified are not 

When a CPYTO instruction is encountered, 
records are read from the old data set and 
written into the new data set until a 
serial number is encountered that matches 
the serial number of the instruction. The 
operation is then initiated, and continues 
until a serial number is encountered that 
matches the operand field of the instruc­
tion. 

If the serial field is blank, the opera­
tion is initiated immediately. 

REWND Instruction 

The REWND instruction causes the unit 
holding the old data set to be repositioned 
to the first record in the data set. In 
conjunction with the SKPTO instruction, it 
allows the user to rearrange major segments 
of the old data set. 

The format of the REWND instruction is: 

r-------T---------T-------T---------------, 
jName I Operation I OperandI Serial I 
~-------+---------+-------+---------------~ 
I IgnoredlREWND I Blank IA serial I 
I I I I number I 
I I I lor blank I l _______ ~ _________ ~ _______ ~ _______________ J 

When a REWND instruction is encountered, 
records are read from the old data set and 
written into the new data set until a 
serial number is encountered that matches 
the serial number of the instruction. The 
corresponding record is then inserted into 
the new data set, subsequent to which the 
repositioning of the old data set is per­
formed. 

If the serial field of the instruction 
is blank, repositioning takes place immedi­
ately. 

ENDUP Instruction 

The ENDUP instruction is required to 
terminate an update-only operation. ENDUP 
should not be issued when the data set is 
being both updated and assembled. The 
format of the ENDUP instruction is: 

r-------T---------T-------T---------------, 
I Name I Operation I Operandi Serial I 
~-------+--~~~~~~~+~~~~~~~+-~-~-----------~ 
I Ignored I ENDUP I Blank IA serial I 
I I I I n umber I 
I I I lor blank I l _______ ~ _________ ~ _______ ~ _______________ J 

When an ENDUP instruction is encoun­
tered, records are read from the old data 
set and written into the new data set until 
a serial number is encountered that matches 
the serial number of the instruction. The 
corresponding record is then inserted into 
the new data set, subsequent to which the 
update operation is terminated. 

If the serial field of the instruction 
is blank, updating is terminated immediate­
ly. 

Note: An ENDUP instruction must appear in 
the edit data set during an update-only 
run. It is the only input that delimits 
the edit data set. If the assembler does 
not encounter an ENDUP instruction, it will 
continue to process the edit data set until 
it encounters end-of-file. 

Update Feature 53 



SEQUENCE CHECKING 

During an update operation that employs 
both an old data set and an edit data set, 
the serialization of the edit data set is 
checked for proper sequencing. In general, 
a nonblank serial number must be higher 
than the preceding nonblank serial number 
in the edit data set. Blank serialization 
may, however, occur at any time, and does 
not constitute a sequence error. 

Two exceptions apply. The serial number 
of a NUM instruction may be equal to (but 
not greater than) the serial number of the 
next record in the edit data set. The 
serial number of the edit record following 
a REWND instruction may assume any value. 

An additional requirement applies to 
those update instructions (viz., OMIT, 
SKPTO, and CPYTO) that specify a range of 
operation by using the serial field and the 
operand field, respectively, to identify 
the initial and terminal extents of the 
range. For such instructions, a nonblank 
operand field participates in the sequence 
check, and must conform to one of the 
following two requirements: 

• A nonblank operand of an OMIT instruc­
tion must be greater than the serial 
number of the instruction and smaller 
than the serial number of the next 
record in the edit data set. 

• The operand field of a SKPTO or CPYTO 
instruction must be greater than the 
serial number of the instruction and 
smaller than or equal to the serial 
number of the next record in the edit 
data set. 

If a serialization error is encountered, 
an error message is written in the update 
listing. Further action depends on the 
type of statement being processed, as fol­
lows: 

• If the record is not an update instruc­
tion, it is inserted immediately into 
the new data set. 

• If the record is an OMIT instruction, 
the instruction is ignored. 

• If the record is any other update 
instruction, records are read from the 
old data set and written into the new 
data set until a matching serial number 
is found. 

Note that update does not recognize 
sequence errors in the old data set. Their 
occurrence may cause unpredictable results. 

54 

EXAMPLES OF UPDATE OPERATION 

Each of the following examples desribes 
an update operation by specifying two input 
data sets and the resulting output data 
set. 

Example 1: The old data set is as follows: 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
t---------------------------+-------------~ 
IOld Data 1 IEX1000l0 
IOld Data 2 IEX100020 
IOld Data 3 IEX100030 
IOld Data 4 IEX100040 
IOld Data 5 IEX100050 
IOld Data 6 IEX100060 
IOld Data 7 IEX100070 
IOld Data 8 IEX100080 
IOld Data 9 IEX100090 
IOld Data 10 IEX100l00 
laId Data 11 IEX100110 L ___________________________ ~ ____________ _ 

The user wishes to insert Edit Data 1 
between Old Data 2 and Old Data 3; to 
delete Old Data 5 and replace it with Edit 
Data 2, 3, and 4; to omit Old Data 7, 8, 
and 9; and to insert Edit Data 5 between 
Old Data 10 and Old Data 11. The following 
edit data set will perform these modifica­
tions, during an update-only run: 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
~---------------------------+-------------~ 
IEdit Data 1 IEX100025 I 
IEdit Data 2 IEX100050 I 
IEdit Data 3 I (Blank) I 
IEdit Data 4 I (Blank) I 
I OMIT EX100090 IEX100070 I 
IEdit Data 5 IEX100l05 I 
I ENDUP IEX100ll0 I L ___________________________ ~ _____________ J 

The new data set resulting from this 
operation is as follows: 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
t---------------------------+-------------~ 
laId Data 1 EX100010 I 
laId Data 2 EX100020 I 
IEdit Data 1 EX100025 I 
IOld Data 3 EX100030 I 
IOld Data 4 EX100040 I 
IEdit Data 2 EX100050 I 
IEdit Data 3 (Blank) I 
IEdit Data 4 (Blank) I 
IOld Data 6 EX100060 I 
IOld Data 10 EX100100 I 
IEdit Data 5 EX100105 I 
laId Data 11 EX100ll0 I L ___________________________ ~ _____________ J 



Example 2: The user wishes to rearrange 
and reserialize the following old data set: 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
~---------------------------+-------------1 
laId Data I EX2A0010 
laId Data 2 EX2A0020 
IOld Data 3 EX2A0030 
laId Data 8 EX2A0040 
laId Data 9 EX2A0050 
laId Data 10 EX2A0060 
laId Data 7 EX2A0070 
laId Data 4 EX2A0080 
IOld Data 5 EX2A0090 
laId Data 6 I EX2A0100 
laId Data 11 IEX2AOll0 l ___________________________ i ____________ _ 

In order to accomplish this, the follow­
ing edit data set is employed, during an 
update-only run. 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
~---------------------------+-------------1 
I NUH EX2BOOlO I (Blank) I 
I SKPTO EX2A0080 IEX2A0030 I 
I REWND IEX2A0100 I 
I SKPTO EX2A0070 I (Blank) I 
I REWND IEX2A0070 I 
I SKPTO EX2A0040 I (Blank) I 
I SKPTO EX2AOll0 I EX2A0060 I 
I ENDUP IEX2AOll0 I l ___________________________ i _____________ J 

The resulting new data set is as fol­
lows: 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
~---------------------------+-------------1 
laId Data 1 IEX2B0010 
laId Data 2 IEX2B0020 
laId Data 3 IEX2B0030 
laId Data 4 IEX2B0040 
laId Data 5 IEX2B0050 
laId Data 6 IEX2B0060 
laId Data 7 I EX2B0070 
laId Data 8 IEX2B0080 
laId Data 9 IEX2B0090 
laId Data 10 IEX2B0100 
laId Data 11 IEX2BOll0 l ___________________________ i ____________ _ 

Note the significance of the serial 
numbers on the second REWND instruction and 
the ENDUP instruction. These serial num­
bers are required to inhibit the effects of 
an immediate action that would result in 
the loss of Old Data 7 and Old Data 11 in 
the new data set. This distinction is 
illustrated by use of the following edit 
data set, in which the above-mentioned 
serialization does not appear: 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
~---------------------------+------------~~ i NUM EX2BOOlO i (Blank) i 
I SKPTO EX2A0080 IEX2A0030 I 
I REWND I EX2A0100 I 
I SKPTO EX2A0070 I (Blank) I 
I REWND I (Blank) I 
I SKPTO EX2A0040 I (Blank) I 
I ~vnmA ~v~~n11A l~v~~AA£A 
I Unr4V ~~L=V~~V I~~L=VVUV 

I ENDUP I (Blank) l ___________________________ i _____________ J 

The following new data set is produced: 

r---------------------------T-------------, 
JColumns 1-72 IColumns 73-801 
t---------------------------+-------------~ 
laId Data 1 IEX2B0010 I 
laId Data 2 IEX2B0020 I 
IOld Data 3 IEX2B0030 I 
IOld Data 4 IEX2B0040 I 
laId Data 5 I EX2B0050 I 
IOld Data 6 IEX2B0060 I 
iOld Data 8 iEX2B0070 I 
IOld Data 9 IEX2B0080 I 
IOld Data 10 IEX2B0090 I l ___________________________ i _____________ J 

Example 3: The user wishes to update and 
assemble one segment of an old data set, 
and to create a new data set which contains 
the updated version of this segment. The 
user wishes to assemble another segment of 
the old data set without modification. The 
new data set must include this segment, as 
well 2S those segments of the old data set 
which the user does not wish to assemble, 
with the exception of one such segment, 
which he wishes to delete. The old data 
set is as follows: 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
t------------------------~--+-------------~ 
IOld Data 1 CPY100l0 I 
IOld Data 2 CPY10020 I 
IOld Data 3 CPY10030 
Old Data 4 DEL00010 
Old Data 5 DEL00020 
Old Data 6 DEL00030 
Old Data 7 ASM100l0 
Old Data 8 ASM10020 
Old Data 9 ASM10030 
Old Data 10 CPY20010 
Old Data 11 CPY20020 
Old Data 12 CPY20030 
Old Data 13 ASM20010 
Old Data 14 ASM20020 
Old Data 15 ASM20030 
Old Data 16 ASM20040 
Old Data 17 ASM20050 
Old Data 18 ASM20060 
Old Data 19 ASM20070 
Old Data 20 CPY30010 
Old Data 21 CPY30020 

laId Data 22 CPY30030 l ___________________________ i ____________ _ 

Update Feature 55 



The user specifies an update-and­
assemble operation under the control of the 
the following edit data set: 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
~---------------------------+-------------~ 
I CPYTO DEL00010 I (Blank) I 
I SKPTO ASM100l0 I (Blank) I 
I CPYTO ASM20010 IASM10030 I 
I NUM ASM20010 I (Blank) I 
IEdit Data 1 IASM20025 I 
IEdit Data 2 I (Blank) 1 
IEdit Data 3 IASM20050 1 
I NUM ICPY30010 1 
I CPYTO 99999999 I (Blank) 1 l ___________________________ ~ _____________ J 

A new data set is produced as shown 
below; records marked with an asterisk have 
been assembled. 

Note that Example 3 will result in the 
production of a warning message. The 
operand of the last instruction in the edit 
data set does not correspond to a serial 
number in the old data set. It is speci-

56 

r---------------------------T-------------, 
IColumns 1-72 IColumns 73-801 
~---------------------------+-------------~ 
Old Data 1 CPY100l0 
Old Data 2 CPY10020 
Old Data 3 CPY10030 
Old Data 7* ASM10010 
Old Data 8* ASM10020 
Old Data 9* ASM10030 
Old Data 10 CPY20010 
Old Data 11 CPY20020 
Old Data 12 CPY20030 
Old Data 13* ASM20010 
Old Data 14* ASM20020 
Edit Data 1* ASM20030 
Edit Data 2* ASM20040 
Old Data 15* ASM20050 
Old Data 16* ASM20060 
Edit Data 3* ASM20070 
Old Data 18* ASM20080 
Old Data 19* ASM20090 
Old Data 20 CPY30010 
Old Data 21 CPY30020 

IOld Data 22 CPY30030 l ___________________________ ~ _____________ J 

f~ed, however, so that the CPYTO operation 
w111 act through the last record in the old 
data set. A warning message will appear in 
the update listing. 



APPENDIX A: CHARACTER CODES 

r------------T-----------------T---------T---------T-----------------, 
I 8-Bit I Character Set I I I I 
I BCD I Punch I I Hexa- I Printer I 
I Code I Combination I Decimal I decimal I Graphics I 
~------------+-----------------+---------+---------+-----------------~ 

00000000 
00000001 
00000010 
00000011 
00000100 
00000101 
00000110 
00000111 
00001000 
00001001 
00001010 
00001011 
00001100 
00001101 
00001110 
00001111 
00010000 
00010001 
00010010 
00010011 
00010100 
00010101 
00010110 
00010111 
00011000 
00011001 
00011010 
00011011 
00011100 
00011101 
00011110 
00011111 

12,0,9,8,1 
12,9,1 
12,9,2 
12,9,3 
12,9,4 
12,9,5 
12,9,6 
12,9,7 
12,9,8 
12,9,8,1 
12,9,8,2 
12,9,8,3 
12,9,8,4 
12,9,8,5 
12,9,8,6 
12,9,8,7 
12,11,9,8,1 
11,9,1 
11,9,2 
11,9,3 
11,9,4 
11,9,5 
11,9,6 
11,9,7 
11,9,8 
11,9,8,1 
11,9,8,2 
11,9,8,3 
11,9,8,4 
11,9,8,5 
11,9,8,6 
11,9,8,7 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
OD 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
lA 
lB 
lC 
lD 
lE 
lF 

00100000 11,0,9,8,i 32 20 
00100001 0,9,1 33 21 
00100010 0,9,2 34 22 
00100011 0,9,3 35 23 
00100100 0,9,4 36 24 
00100101 0,9,5 37 25 
00100110 0,9,6 38 26 
00100111 0,9,7 39 27 
00101000 0,9,8 40 28 
00101001 0,9,8,1 41 29 
00101010 0,9,8,2 42 2A 
00101011 0,9,8,3 43 2B 
00101100 0,9,8,4 44 2C 
00101101 0,9,8,5 45 2D 
00101110 0,9,8,6 46 2E 
00101111 0,9,8,7 47 2F 
00110000 12,11,0,9,8,1 48 30 
00110001 9,1 49 31 
00110010 9,2 50 32 I I ____________ i _________________ L-________ i _________ i _______ ---_______ J 

Appendix A 57 



r------------T-----------------T---------T---------T-----------------, 
I 8-Bit I Character Set I I I I 
I BCD I Punch I I Hexa- I Printer I 

I Code I Combination I Decimal I decimal I Graphics I 

~-----------+-----------------+---------+---------+-----------------~ 
00110011 I 9,3 51 33 I 
00110100 I 9,4 52 34 I 
00110101 I 9,5 53 35 I 
00110110 I 9,6 54 36 I 
00110111 I 9,7 55 37 I 
00111000 I 9,8 56 38 I 
00111001 9,8,1 57 39 I 
00111010 9,8,2 58 3A I 
00111011 9,8,3 59 3B I 
00111100 9,8,4 60 3C I 
00111101 9,8,5 61 3D I 
00111110 9,8,6 62 3E I 
00111111 9,8,7 63 3F I 
01000000 64 40 blank I 
01000001 12,0,9,1 65 41 I 
01000010 12,0,9,2 66 42 I 
01000011 12,0,9,3 67 43 I 
01000100 12,0,9,4 68 44 I 
01000101 12,0,9,5 69 45 I 
01000110 12,0,9,6 70 46 I 
01000111 12,0,9,7 71 47 I 
01001000 12,0,9.8 72 48 I 
01001001 12,8,1 73 49 I 
01001010 12,8,2 74 4A I 
010 0 1011 12 , 8 , 3 7 5 4 B . ( pe r i ad ) I 
01001100 12,8,4 76 4C < I 
01001101 12,8,5 77 4D ( 
01001110 12,8,6 78 4E + 
01001111 12,8,7 79 4F 
01010000 12 80 50 & 
01010001 12,11,9,1 81 51 
01010010 12,11,9 t 2 82 52 
01010011 12,11,9,3 83 53 
01010100 12,11,9,4 84 54 
01010101 12,11,9,5 85 55 
01010110 12,11,9,6 86 56 
01010111 12,11,9,7 87 57 
01011000 12,11,9,8 88 58 
01011001 11,8,1 89 59 
01011010 11,8,2 90 5A 
01011011 11,8,3 91 5B $ 
01011100 11,8,4 92 5C * 
01011101 11,8,5 93 5D 
01011110 11,8,6 94 5E 
01011111 11,8,7 I 95 5F 
01100000 11 I 96 60 
01100001 0,1 I 97 61 / 
01100010 11,0,9,2 I 98 62 
01100011 11,0,9.3 I 99 63 
01100100 11,0,9,4 I 100 64 
01100101 11.0,9,5 I 101 65 
01100110 11,0,9,6 I 102 66 
01100111 11,0,9,7 I 103 67 
01101000 11,0,9,8 I 104 68 
01101001 0,8,1 I 105 69 
01101010 12,11 I 106 6A 
01101011 I 0,8,3 I 107 6B , (comma) 

------------~-----------------~---------~---------~-----------------

58 



r------------T----------------~---------T---------T-----------------, 

I 8-Bit I Character set I I I I 
I BCD I Punch I ! Hexa- ! Prinrer ! 
i Code i Combination i Decimal i decimal i Graphics i 
r------------+-----------------+---------+---------+-----------------~ 

01101100 0,8,4 108 I 6C % 
01101101 0,8,5 109 6D 
01101110 0,8,6 110 6E 
01101111 0,8,7 111 6F 
01110000 12,11,0 112 70 
01110001 12,11,0,9,1 113 71 
01110010 12,11,0,9,2 114 72 
01110011 12,11,0,9,3 115 73 
01110100 12,11,0,9,4 116 74 
01110101 12,11,0,9,5 117 75 
01110110 12,11,0,9,6 118 76 
01110111 12,11,0,9,7 119 77 
01111000 12,11,0,9,8 120 78 
01111001 8,1 121 79 
01111010 8,2 122 7A 
01111011 8,3 123 7B # 
01111100 8,4 124 7C @ 
01111101 8,5 125 7D ' (single quote) 
01111110 8,6 126 7E 
01111111 8,7 127 7F 
10000000 12,0,8,1 128 80 
10000001 12,0,1 129 81 
10000010 12,0,2 130 82 
10000011 12,0,3 131 83 
10000100 12,0,4 132 84 
10000101 12,0,5 133 85 
10000110 12,0,6 134 86 
10000111 12,0,7 135 87 
10001000 12,0,8 136 88 
10001001 12,0,9 137 89 
10001010 12,0,8,2 138 8A 
10001011 12,0,8,3 139 8B 
10001100 12,0,8,4 140 8C 
10001101 12,0,8,5 141 8D 
10001110 12,0,8,6 142 8E 
10001111 12,0,8,7 143 8F 
10010000 12,11,8,1 144 90 
10010001 12,11,1 145 91 
10010010 12,11,2 146 92 
10010011 12,11,3 147 93 
10010100 12,11,4 148 94 
10010101 12,11,5 149 95 
10010110 12,11,6 150 96 
10010111 12,11,7 151 97 
10011000 12,11,8 152 98 
10011001 12,11,9 153 99 
10011010 12,11,8,2 154 9A 
10011011 12,11,8,3 155 9B 
10011100 12,11,8,4 156 9C 
10011101 12,11,8,5 157 9D 
10011110 12,11,8,6 158 9E 
10011111 12,11,8,7 159 9F 
10100000 11,0,8,1 160 AO 
10100001 11,0,1 161 A1 
10100010 11,0,2 162 A2 
10100011 11,0,3 163 A3 
10100100 11,0,4 164 A4 I 

l ____________ ~ _________________ ~ _________ ~ _________ ~ __ ---------------

Appendix A 59 



r------------T-----------------~---------T---------T-----------------, 

I 8-Bit I Character Set I I I I 

I BCD I Punch I I Hexa- I Printer I 

I Code I Combination I Decimal I decimal I Graphics I 

~------------+-----------------+---------+---------+-----------------1 
10100101 11,0,5 165 A5 I 
10100110 11,0,6 166 A6 I 
10100111 11,0,7 167 A7 I 
10101000 11,0,8 168 A8 I 
10101001 11,0,9 169 A9 I 
10101010 11,0,8,2 170 AA I 
10101011 11,0,8,3 171 AB I 
10101100 11,0,8,4 172 AC I 
10101101 11,0,8,5 173 AD I 
10101110 11,0,8,6 174 AE I 
10101111 11,0,8,7 175 AF I 
10110000 12,11,0,8,1 176 BO I 
10110001 12,11,0,1 177 Bl 
10110010 12,11,0,2 178 B2 
10110011 12,11,0,3 179 B3 
10110100 12,11,0,4 180 B4 
10110101 12,11,0,5 181 B5 
10110110 12,11,0,6 182 B6 
10110111 12,11,0,7 183 B7 
10111000 12,11,0,8 184 B8 
10111001 12,11,0,9 185 B9 
10111010 12,11,0,8,2 186 BA 
10111011 12,11,0,8,3 187 BB 
10111100 12,11,0,8,4 188 BC 
10111101 12,11,0,8,5 189 BD 
10111110 12,11,0,8,6 190 BE 
10111111 12,11,0,8,7 191 BF 
11000000 12,0 192 CO 
11000001 12,1 193 Cl A 
11000010 12,2 194 C2 B 
11000011 12,3 195 C3 C 
11000100 12,4 196 C4 D 
11000101 12,5 197 C5 E 
11000110 12,6 198 C6 F 
11000111 12,7 199 C7 G 
11001000 12,8 200 C8 H 
11001001 12,9 201 C9 I 
11001010 12,0,9,8,2 202 CA 
11001011 12,0,9,8,3 203 CB 
11001100 12,0,9,8,4 204 CC 
11001101 12,0,9,8,5 205 CD 
11001110 12,0,9,8,6 206 CE 
11001111 12,0,9,8,7 207 CF 
11010000 11,0 208 DO 
11010001 11,1 209 Dl J 
11010010 11,2 210 D2 K 
11010011 11,3 211 D3 L 
11010100 11,4 212 D4 M 
11010101 11,5 213 D5 N 
11010110 11,6 214 D6 0 
11010111 11,7 215 D7 P 
11011000 11,8 216 D8 Q 
11011001 11,9 217 D9 R 
11011010 12,11,9,8,2 218 DA 
11011011 12,11,9,8,3 219 DB 
11011100 12,11,9,8,4 220 DC 
11011101 12,11,9,8,5 221 DD I L ____________ L _________________ L _________ ~ _________ L _________________ J 

60 



r------------T-----------------T---------T---------T-----------------, 
I 8-Bit I Character Set I I I I 
i BCD i Punch i I Hexa- i Printer i 
I Code I Combination I Decimal I decimal I Graphics I 
t------------+-----------------+---------+---------+-----------------~ 
I 11011110 12,11,9,8,6 I 222 DE 
I 11011111 12,11,9,8,7 I 223 DF 
I 11100000 0,8,2 I 224 EO 
I 11100001 11,0,9,1 225 El 
I 11100010 0,2 226 E2 S 
I 11100011 0,3 227 E3 T 
I 11100100 0,4 228 E4 U 
I 11100101 0,5 229 E5 V 
i 11100110 0,6 230 E6 w 
,11100111 0,7 231 E7 X 

11101000 0,8 232 E8 Y 
11101001 0,9 233 E9 Z 
11101010 11,0,9,8,2 234 EA 
11101011 11,0,9,8,3 235 EB 
11101100 11,0,9,8,4 236 EC 
11101101 11,0,9,8,5 237 ED 
11101110 11,0,9,8,6 238 EE 
11101111 11,0,9,8,7 239 EF 
11110000 a 240 Fa a 
11110001 1 241 Fl 1 
11110010 2 242 F2 2 
11110011 3 243 F3 3 
11110100 4 244 F4 4 
11110101 5 245 F5 5 
11110110 6 246 F6 6 
11110111 7 247 F7 7 
11111000 8 248 F8 8 
11111001 9 249 F9 9 
11111010 12,11,0,9,8,2 250 FA 
11111011 12,11,0,9,8,3 251 FB 
11111100 12,11,0,9,8,4 252 FC 
11111101 12,11,0,9,8,5 253 FD 
11111110 12,11,0,9,8,6 254 FE 
11111111 12,11,0,9,8,7 255 FF I ____________ ~ _________________ ~ _________ ~ _________ ~ _________________ J 

Appendix A 61 



APPENDIX B: HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE 

The table provides direct conversion of 
decimal and hexadecimal numbers in the 
following ranges: 

r--------------T---------------, 
I Hexadecimal I Decimal I 
~--------------+---------------~ 
I 000 to FFF I 0000 to 4095 I L ______________ ~ _______________ J 

2ecimal numbers (0000-4095) are given with­
in the table. The first two characters 
(high-order) of hexadecimal numbers 
(OOO-FFF) are given in the left-hand column 
of the table; the third character (x) is 
arranged across the top of each part of the 
table. 

To find the decimal equivalent of the 
hexadecimal number OC9, look for oc in the 
left-hand column, and across that row under 
the column for x = 9. The decimal number 
is 0201. 

To convert from decimal to hexadecimal, 
look up the decimal number within the table 
and read the hexadecimal number by a combi­
nation of the hexadecimal characters in the 
left-hand column, and the value for x at 

62 

the top of the column containing the deci­
mal number. For example, the decimal num­
ber 123 has the hexadecimal equivalent of 
07B; the decimal number 1478 has the hexa­
decimal equivalent of 5C6. 

For numbers 
table, add the 
table. 

outside the range of the 
following values to the 

r--------------.------------, 
I Hexadecimal I Decimal I 
~--------------+------------~ 

1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 
AOOO 
BOOO 
COOO 
DOOO 
EOOO 
FOOO 

4096 
8192 

12288 
16384 
20480 
24576 
28672 
32768 
36864 
40960 
45056 
49152 
53248 
57344 
61440 L _____________ ~ ___________ _ 



OOx I x 

01x 
02x 
03x 

04x 
05x 
06x 
07x 

08x 
09x 
OAx 
OBx 

OCx I 
OOx 
vEx 
OFx 

lOx 
llx 
12x 
13x 

14x 
15x 
16x 
17x 

18x 
19x 
lAx 
lBx 

lCx 
lOx 
lEx 
lFx 

20x 
21x 
22x 
23x 

24x 
25x 
26x 
27x 

28x 
29x 
2Ax 
2Bx 

2Cx 
20x 
2Ex 
2Fx 

30x 
31x 
32x 
33x 

34x 
35x 
36x 
37x 

38x 
39x 
3Ax 
3Bx 

3Cx 
30x 
3Ex 
3Fx 

o 

0000 
0016 
0032 
0048 

0064 
0080 
0096 
0112 

0128 
0144 
0160' 
0176 

0192 
0208 
0224 
0240 

0256 
0272 
0288 
0304 

0320 
0336 
0352 
0368 

0384 
0400 
0416 
0432 

0448 
0464 
0480 
0496 

0512 
0528 
0544 
0560 

0516 
0592 
0608 
0624 

0640 
0656 
0672 
0688 

0104 
0120 
0136 
0152 

0168 
0184 
0800 
0816 

0832 
0848 
0864 
0880 

0896 
0912 
0928 
0944 

0960 
0916 
0992 
1008 

OOOi 
0017 
0033 
0049 

0065 
0081 
0097 
0113 

0129 
0145 
0161 
0177 

0193 
0209 
0225 
0241 

0257 
0213 
0289 
0305 

0321 
0337 
0353 
0369 

0385 
0401 
0417 
0433 

0449 
0465 
0481 
0491 

0513 
0529 
0545 
0561 

0577 
0593 
0609 
0625 

0641 
0651 
0613 
0689 

0105 
0121 
0131 
0153 

0769 
0785 
0801 
0817 

0833 
0849 
0865 
0881 

0891 
0913 
0929 
0945 

0961 
0977 
0993 
1009 

2 

0002 
0018 
0034 
0050 

0066 
0082 
0098 
0114 

0130 
0146 
0162 
0178 

0194 
0210 
0226 
0242 

0258 
0274 
0290 
0306 

0322 
0338 
0354 
0370 

0386 
0402 
0418 
0434 

0450 
0466 
0482 
0498 

0514 
0530 
0546 
0562 

0578 
0594 
0610 
0626 

0642 
0658 
0674 
0690 

0106 
0722 
0138 
0154 

0770 
0186 
0802 
0818 

0834 
0850 
0866 
0882 

0898 
0914 
0930 
0946 

0962 
0978 
0994 
1010 

3 

0003 
0019 
0035 
0051 

0067 
0083 
0099 
0115 

0131 
0141 
0163 
0179 

0195 
0211 
0227 
0243 

0259 
0275 
0291 
0307 

0323 
0339 
0355 
0371 

0387 
0403 
041 0 

0435 

0451 
0461 
0483 
0499 

0515 
0531 
0541 
0563 

0519 
0595 
0611 
0621 

0643 
0659 
0675 
0691 

0101 
0123 
0139 
0155 

0111 
0181 
0803 
0819 

0835 
0851 
0861 
0883 

0899 
0915 
0931 
0941 

0963 
0919 
0995 
1011 

4 

0004 
0020 
0036 
0052 

0068 
0084 
0100 
0116 

0132 
0148 
0164 
0180 

0196 
0212 
0228 
0244 

0260 
0276 
0292 
0308 

0324 
0340 
0356 
0372 

0388 
0404 
0420 
0436 

0452 
0468 
0484 
0500 

0516 
0532 
0548 
0564 

0580 
0596 
0612 
0628 

0644 
0660 
0616 
0692 

0708 
0724 
0740 
0756 

0772 
0788 
0804 
0820 

0836 
0852 
0868 
0884 

0900 
0916 
0932 
0948 

0964 
0980 
0996 
1012 

5 

0005 
0021 
0037 
0053 

0069 
0085 
0101 
0117 

0133 
0149 
0165 
0181 

0197 
0213 
0229 
0245 

0261 
0277 
0293 
0309 

0325 
0341 
0357 
0373 

0389 
0405 
0421 
0437 

0453 
0469 
0485 
0501 

0517 
0533 
0549 
0565 

0581 
0597 
0613 
0629 

0645 
0661 
0677 
0693 

0709 
0125 
0741 
0757 

0773 
0789 
0805 
0821 

0837 
0853 
0869 
0885 

0901 
0917 
0933 
0949 

0965 
0981 
0997 
1013 

6 

0006 
0022 
0038 
0054 

0070 
0086 
0102 
0118 

0134 
0150 
0166 
0182 

0198 
0214 
0230 
0246 

0262 
0278 
0294 
0310 

0326 
0342 
0358 
0374 

0390 
0406 
0422 
0438 

0454 
0470 
0486 
0502 

0518 
0534 
0550 
0566 

0582 
0598 
0614 
0630 

0646 
0662 
0678 
0694 

0710 
0726 
0742 
0758 

0774 
0790 
0806 
0822 

0838 
0854 
0870 
0886 

0902 
0918 
0934 
0950 

0966 
0982 
0998 
1014 

7 

0007 
0023 
0039 
0055 

0071 
0087 
0103 
0119 

0135 
0151 
0167 
0183 

0199 
0215 
0231 
0247 

0263 
0279 
0295 
0311 

0327 
0343 
0359 
0375 

0391 
0407 
0423 
0439 

0455 
0471 
0487 
0503 

0519 
0535 
0551 
0567 

0583 
0599 
0615 
0631 

0647 
0663 
0679 
0695 

0711 
0727 
0743 
0759 

0775 
0791 
0807 
0823 

0839 
0855 
0871 
0887 

0903 
0919 
0935 
0951 

0967 
0983 
0999 
1015 

0008 
0024 
0040 
0056 

0072 
0088 
0104 
0120 

0136 
0152 
0168 
0184 

0200 
0216 
0232 
0248 

0264 
0280 
0296 
0312 

0328 
0344 
0360 
0376 

0392 
0408 
0424 
0440 

0456 
')472 
0488 
0504 

0520 
0536 
0552 
0568 

05l.i4 
0600 
0616 
0632 

0648 
0664 
0680 
0696 

0712 
0728 
0744 
0760 

07 76 
0792 
0808 
0824 

0840 
0856 
0872 
0888 

0904 
0920 
0936 
0952 

0968 
0984 
1000 
1016 

9 

0009 
0025 
0041 
0057 

0073 
0089 
0105 
0121 

0137 
0153 
0169 
0185 

0201 
0217 
0233 
0249 

0265 
0281 
0297 
0313 

0329 
0345 
0361 
0377 

0393 
0409 
0425 
0441 

0457 
0473 
0489 
0505 

0521 
0537 
0553 
0569 

0585 
0601 
0617 
0633 

0649 
0665 
0681 
0697 

0713 
0729 
0745 
0761 

0777 
0793 
0809 
0825 

0841 
0857 
0873 
0889 

0905 
0921 
0931 
0953 

0969 
0985 
1001 
1017 

A 

OOiO 
0026 
0042 
0058 

0074 
0090 
0106 
0122 

0138 
0154 
0170 
0186 

0202 
0218 
0234 
0250 

0266 
0282 
0298 
0314 

0330 
0346 
0362 
0378 

0394 
0410 
0426 
0442 

0458 
0474 
0490 
0506 

0522 
0538 
0554 
0570 

0586 
0602 
0618 
0634 

0650 
0666 
0682 
0698 

0714 
0730 
0746 
0762 

0778 
0794 
0810 
0826 

0842 
0858 
0874 
0890 

0906 
0922 
0938 
0954 

0970 
0986 
1002 
1018 

B 

0011 
0027 
0043 
0059 

0075 
0091 
0107 
0123 

0139 
0155 
0171 
0187 

0203 
0219 
0235 
0251 

0267 
0283 
0299 
0315 

0331 
0347 
0363 
0379 

0395 
0411 
0427 
0443 

0459 
0475 
0491 
0507 

0523 
0539 
0555 
0571 

0587 
0603 
0619 
0635 

0651 
0667 
0683 
0699 

0715 
0731 
0747 
0763 

0719 
0795 
0811 
0827 

0843 
0859 
0875 
0891 

0907 
0923 
0939 
0955 

0971 
0987 
1003 
1019 

C 

0012 
0028 
0044 
0060 

0076 
0092 
0108 
0124 

0140 
0156 
0172 
0188 

0204 
0220 
0236 
0252 

0268 
0284 
0300 
0316 

0332 
0348 
0364 
0380 

0396 
0412 
0428 
0444 

0460 
0476 
0492 
0508 

0524 
0540 
0556 
0572 

0588 
0604 
0620 
0636 

0652 
0668 
0684 
0700 

0716 
0732 
0748 
0764 

0780 
0196 
0812 
0828 

0844 
0860 
0876 
0892 

0908 
0924 
0940 
0956 

0972 
0988 
1004 
1020 

o 

0013 
0029 
0045 
0061 

0071 
0093 
0109 
0125 

0141 
0157 
0173 
0189 

0205 
0221 
0237 
0253 

0269 
0285 
0301 
0317 

0333 
0349 
0365 
0381 

0397 
0413 
C429 
0445 

0461 
0477 
0493 
0509 

0525 
0541 
0557 
0573 

0589 
0605 
0621 
0637 

0653 
0669 
0685 
0701 

0717 
0733 
0749 
0765 

0781 
0797 
0813 
0829 

0845 
0861 
0877 
0893 

0909 
0925 
0941 
0957 

0973 
0989 
1005 
1021 

E 

00i4 
0030 
0046 
0062 

0078 
0094 
0110 
0126 

0142 
0158 
0174 
0190 

0206 
0222 
0238 
0254 

0270 
0286 
0302 
0318 

0334 
0350 
0366 
0382 

0398 
0414 
0430 
0446 

0462 
0478 
0494 
0')10 

0526 
0542 
0558 
0574 

0590 
0606 
0622 
0638 

0654 
0670 
0686 
0702 

0718 
0734 
0750 
0766 

0782 
0798 
0814 
0830 

0846 
0862 
0878 
0894 

0910 
0926 
0942 
0958 

0974 
0990 
1006 
1022 

OOi~ 
0031 
000.7 
000, 

007'-
00% 
0111 
012 7 

0143 
015) 
0175 
0191 

0207 
0223 
0239 
0255 

0271 
0287 
0303 
0319 

0335 
0351 
0367 
0383 

0399 
0415 
0431 
0447 

OLJP 
0 1,7'1 
04~~ 

0511 

0527 
0543 
0559 
0575 

0591 
0607 
0623 
0639 

0655 
0671 
0687 
0703 

0719 
0735 
0751 
0767 

0783 
0799 
0815 
0831 

0847 
0863 
0879 
0895 

0911 
0927 
0943 
0959 

0975 
0991 
1007 
1023 

Appendix B 63 



x = 0 1 2 3 4 5 6 7 8 9 A B C D E F 

40x 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
41x 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
42x 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43x 1072 1013 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 10b6 1087 

44x 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
45x 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 ll1i 1117 1118 1119 
46x 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
/f7x 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

48x 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
49x 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4Ax 118/f 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
/fBx 1200 1201 1202 1203 120/f 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4Cx 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
40x 1232 1233 1234 1235 1236 1237 1238 1239 1240 12/fl 1242 1243 12/f4 1245 1246 1247 
4Ex 1248 1249 1250 1251 1252 1253 125/f 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4Fx 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

SOx 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
51x 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
52x 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
53x 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 13/fl 1342 1343 

54x 134/f 13/f5 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
S5x 1360 1361 1362 1363 136/f 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
S6x 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
S7x 1392 1393 139/f 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

58x 1408 1409 1410 1/f 11 1412 1/f 13 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
59x 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5Ax 1/f40 14/fl '''''2 1443 1444 14/f5 1446 1/f47 1448 14/f9 1450 1/f51 1/f52 1453 1454 1455 
5Bx 1456 1457 1458 1459 1460 1/f61 1462 1/f63 1464 1465 1466 1467 1468 1469 1470 1471 

5ex 1472 1413 1474 1/f 75 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
SOx 1488 1489 1490 1491 1492 1493 1/f9/f 1495 1496 1497 1498 1499 1500 1501 1502 1503 
SEx 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5Fx 1520 1521 1522 1523 152/f 1525 1526 1527 1528 1529 1530 1531 1532 1533 153/f 1535 

60x 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 i~~l 
61x 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
62x 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63x 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

64x 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65x 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66x 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
67x 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

68x 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
69x 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6Ax 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6Bx 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6Cx 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6Dx 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6Ex 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6Fx 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

70x 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
71x 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
72x 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
73x 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 lb55 

74x 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
75x 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 18tl6 1887 
76x 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
77x 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

78x 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
79x 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7Ax 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
7Bx 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7Cx 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7Dx 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7Ex 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7Fx 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

64 



x = \) 1 2 3 4 5 6 7 8 9 A B C D E F 

80x 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82x 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
83x 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

84x 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
87x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

88x 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8Ax 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8Bx 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 "''''~II ~~~~ 2236 2237 2238 2239 "oJ" 

8Cx 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8Dx 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8Ex 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8Fx 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

90x I 2304 2305 2306 2307 2308 2309 2310 2311 2312 23i3 2314 2315 231b 2317 2318 2319 
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92x 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

94x 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96x 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
97x 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

98x 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99x 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9Ax 2464 2465 2466 2467 2468 2469 2470 2471 2472 2413 2474 2475 2476 2477 2478 2479 
9Bx 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9Cx 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9Dx 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9Ex 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9Fx 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

AOx 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
Alx 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2b05 2606 2607 
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A4x 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A5x 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A6x 2656 2657 2658 2659 2660 2661 2662 2663 26M 2665 2666 2667 2668 2669 2670 2671 
A7x 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 26R4 2685 2686 2687 

A8x 2688 2689 26~0 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 271h 2717 2718 ")'1n 

L'13 

AAx 2720 2721 2722 2723 ", .. 2725 2726 2127 2728 2729 2730 2731 2732 2733 2734 2735 
ABx 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 276" "765 2766 2767 
ADx 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 27&3 
AEx 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFx 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2&15 

BOx 2816 281 7 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
Blx 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B2x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2b79 

B4x 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B5x 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B6x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
B7x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B8x 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B9x 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2970 2975 
BAx 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBx 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCx 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 302 •. 3023 
BDx 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3(J37 3038 3039 
BEx 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFx 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

Appendix B 65 



x = 0 1 2 3 4 5 6 1 8 9 A B C D E F 

COx 3012 3013 3014 3015 3016 3011 3018 3019 3080 3081 3082 3083 3084 Juu!> 3086 3081 
Clx 3088 3089 3090 3091 3092 3093 3094 3095 3096 3091 3098 3099 3100 3101 3102 3103 
C2x 3104 3105 3106 3101 3108 3109 3110 3111 3112 3113 3114 3115 3116 3111 3118 3119 
C3x 3120 3121 3122 3123 3124 3125 3126 3121 3128 3129 3130 3131 3132 3133 3134 3135 

C4x 3136 3131 3138 3139 3140 3141 3142 3143 3144 3145 3146 3141 3148 3149 3150 3151 
C5x ~152 3153 3154 3155 3156 3151 3158 3159 3160 3161 3162 3163 3164 3165 3166 3161 
C6x 3168 3169 3110 3111 3172 3173 3114 3175 3116 3111 3118 3119 3180 3181 3182 3183 
C7x 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3191 3198 3199 

C8x 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C9x 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAx 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBx 3248 3249 3250 3251 3252 3253 3254 3255 3256 3251 3258 3259 3260 3261 3262 3263 

CCx 3264 3265 3266 3261 3268 3269 3270 3271 3272 3273 3274 3275 3276 3211 3218 3279 
CDx 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEx 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFx 3312 3313 3314 3315 3316 3311 3318 3319 3320 3321 3322 3323 3324 3325 3326 3321 

DOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3331 3338 3339 3340 3341 3342 3343 
Dlx 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3351 3358 3359 
D2x 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3314 3375 
D3x 3316 3377 3318 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

D4x 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D5x 3408 3409 3410 3411 3412 3413 3414 3415 3416 3411 3418 3419 3420 3421 3422 3423 
D6x 3424 3425 3426 3421 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D7x 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

D8x 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3410 3471 
D9x 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3481 
DAx 3488 3489 3490 3491 3492 3493 3494 3495 3496 3491 3498 3499 3500 3501 3502 3503 
DBx 3504 3505 3506 3501 3508 3509 3510 3511 3512 3513 3514 3515 3516 3511 3518 3519 

DCx 3520 3521 3522 3523 3524 3525 3526 3521 3528 3529 3530 3531 3532 3533 3534 3535 
DDx 3536 3531 3538 3539 3540 3541 3542 3543 3544 3545 3546 3541 3548 3549 3550 3551 
DEx 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3561 
DFx 3568 3569 3510 3511 3512 3513 3574 3515 3516 3511 3518 3519 3580 3581 3582 3583 

EOx 3584 3585 3586 3581 3588 3589 3590 3591 3592 3593 3594 3595 3596 3591 3598 3599 
Elx 3600 3601 3602 3603 3604 3605 3606 3601 3608 3609 3610 3611 3612 3613 3614 3615 
E2x 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3621 3628 3629 3630 3631 
E3x 3632 3633 3634 3635 3636 3631 3638 3639 3640 3641 3642 3643 3644 3645 3646 3641 

E4x 3648 3649 3650 3651 3652 3653 3654 3655 3656 3651 3658 3659 3660 3661 3662 3663 
E5x 3664 3665 3666 3661 3668 3669 3610 3611 3672 3613 3614 3615 3616 3611 3618 3619 
E6x 3680 3681 3682 3683 3684 3685 3686 3681 3688 3689 3690 3691 3692 3693 3694 3695 
E1x 3696 3691 3698 3699 3100 3701 3102 3103 3104 3105 3106 3101 3108 310Q 3110 3111 

E8x 3112 3113 3114 3115 3116 3111 3118 3119 3120 3121 3722 3123 3724 3725 J"f~b 3727 
E9x 3128 3729 3130 3131 3132 3133 3134 3135 3136 3131 3138 3139 3140 3141 3142 3143 
EAx 3144 3145 3146 3141 3148 3149 3150 3151 3152 3153 3154 3155 31"6 3151 3758 3159 
EBx 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3110 3771 3112 3113 3174 3715 

ECx 3116 3177 3778 3119 3180 3181 3182 3183 3184 3185 3186 3181 3188 3189 3190 3191 
EDx 3192 3193 3194 3795 3196 3191 3798 3199 3800 3801 3802 3803 3804 3805 3806 3b01 
EEx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3811 3818 3819 3820 3821 3822 3823 
EFx 3824 3825 3826 3821 3828 3829 3830 3831 3832 3833 3834 3835 3836 3831 3838 3b39 

FOx 3840 3841 3842 3843 3844 3845 3846 3841 3848 3849 3850 3851 3852 3853 3854 3855 
Flx 3856 3851 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3&71 
F2x 3872 3813 3814 3815 3816 3811 3878 -3879 3880 3881 3882 3883 3884 3885 3866 3661 
F3x 3888 3889 3890 3891 3892 3893 3894 3895 3896 3891 3898 3899 3900 3901 3902 3903 

F4x 3904 3905 3906 3901 3908 3905 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F5x 3920 3921 3922 3923 3924 3925 3926 3921 3928 3929 3930 3931 3932 3933 3934 3935 
F6x 3936 3931 3938 3939 3940 3941 3942 3943 3944 3945 3946 3941 3948 3949 3950 3951 
F1x 3952 3953 3954 3955 3956 3951 3958 3959 3960 3961 3962 3963 3964 3965 3966 3961 

F8x 3968 3969 3910 3911 3912 3913 3914 3915 3916 3911 3978 3919 3980 3981 39&2 3983 
F9x 3984 3985 3986 3981 3988 3989 3990 3991 3992 3993 3994 3995 3996 3991 3998 3999 
FAx 4000 4001 4002 4003 4004 4005 4006 4001 4008 4009 4010 4011 4012 4013 4014 4015 
FBx 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4021 4028 4029 4030 4031 

FCx 4032 4033 4034 4035 4036 4031 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDx 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEx 4064 4065 4066 4061 4068 4069 4010 4011 4072 4013 4014 4015 4076 4011 4078 4019 
FFx 4080 4081 4082 4083 4084 4085 4086 4081 4088 4089 4090 4091 4092 4093 4094 4095 

66 



Basic ftachine Format 

8 4 

Form C28-6811-', page revised 5/20/68, by TIL 133-8543 

APPENDIX C: ftACHIIE-INSTROCTION FORBAT 

Assembler Operand 
Field Forma t. 

R 1, R2 

Applicable 
Instructions 

All RR instructions 
except SP!! and SVC 

IRR 
I 

Operation 
Code 

R' SP!! 
Rl 

I 
I 8 8 
I Operation I SVC 
I Code I 
I 
I (See notes 1, 5, and 7) 
I 
I 
IRX 

8 
Operation 

4 4 4 '2 
R1,D2 (X2,B2) 
R1,S2 (X2) 

All RX instructions 
I 
I 
I 
I 
I 
I 
I 
RS 

SI 

Code R1 

8 4 
Operation 

Code R' 

8 4 
Operation 

Code Rl 

8 
Operation ,.._;J_ 

\...uut: 

8 
Operation 

Code 

X2 B2 D2 

4 4 12 

R3 B2 D2 

4 

B2 D2 

(See notes 1 through 4, and 6) 

Rl,R3,D2(B2) 
Rl,R3,S2 

R1,D2 (B2) 
R',S2 

BXH,BXLE,LM,ST!! 

All Shift instructions 

(See notes 1 through 3, 6, and 7) 

D1 (Bl) ,12 
Si,I2 

All SI instructions 
except CHP!!,LPSW,LPSX, 
SSM,HIO,SIO,TIO,TCH,TS 

CHPM,LPSW,LPSX,SSM,HIO, 
SIO,TIO,TCH,TS 

(See notes 2, 3, and 5 through 7) L-____________________ _ 

Notes for Appendix C: 
1. Rl, R2, and R3 are absolute terms that specify general or floating-point registers. 

The general register numbers are 0 through 15; floating-point register numbers are 
0, 2, 4, and 6. In BC and BCR machine instructions, R~ specifies a 4-bit mask. 

2. D. and D2 are absolute expressions that specify displacements. A value of 0 through 
4095 may be specified. 

3. B1 and B2 are absolute terms that specify base registers. Register numbers are 0 
through 15. 

4. X2 is an absolute te~m that specifies an index ~egister. Register numbers are 0 
through 15. 

5. I and 12 are absolute expressions that provide immediate data. The value of the 
expression may be 0 through 255. 

6. S1 and S2 are absolute or relocatable expressions that specify an address. 
7. RR, RS, and SI instruction fields that are crossed out in the machine formats are 

not examined during instruction execution. The fields are not written in the 
symbolic operand, but are assembled as binary zeros. 

Appendix C 67 



Form C28-6811-1, paqe revised 5/20/68, by TNL N3~-8543 

This appendix contains an alphabetical 
listing of the mnemonic operation codes Of 
all the machine instructions that can be 
represented in assembler lanquage. The 
column headinqs in the list and the infor­
mation each column provides are as follows: 

Mnemonic Code: This column gives the mne­
monIC---operation code for the machine 
instruction. 

Instruction: This column contains the name 
of -the- instruction associated with the 
mnemonic. 

,--

Machine Code: This column 
hexadecimal equivalent of 
.achine operation code. 

contains the 
the actual 

Basic Machine Format: 
the basic machine format 
tion: RR, RX, RS, or SI. 

This column qives 
of the instruc-

Operand Field Format: This column shows 
the symbolic format of the operand field 
for the particular mnemonic. 

, 
Basic Operand I I I 

I Mnemonic I Machine Machine Field , 
I Code , 
J-- I 

A 
AD 
AOR 
AE 
AER 
AH 
At 
ALR 
AR 
AU 
AUR 
AW 
AWR 

BAL 
BALR 
BC 
BCR 
BCT 
BCTR 
BXH 
BXLE 

C 
CO 
CDR 
CE 
CER 
CP. 
CHPM 
CL 
CLI 
CLR 
CR 

D 
DD 
DDR 
DE 
DER 
DR 

L-

68 

Instruction 

Add 
Add Normalized, Long 
Add Normalized, Lonq 
Add Normalized, Short 
Add Normalized, Short 
Add Halfword 
Add Logical 
Add Logical 
Add 
Add Unnorma~ized, Short 
Add Unnormalized, Short 
Add Unnormalized, Long 
Add Unnormalized, Long 

Branch and Link 
Branch and Link 
Branch on Condition 
Branch on Condition 
Branch on Count 
Branch on Count 
Branch on Index High 
Branch on Index Low or 

Compare 
Compare, Long 
Compare, Long 
Compare, Short 
Compare, Short 
Compare Halfword 
Change Priority Mask 
Compare Logical 

Equal 

Compare toglcal Immediate 
Compare Logical 
Compare Algebraic 

Divide 
Divide, Long 
Divide, Long 
Divide, Short 
Divide, Short 
Divide 

Code Format Format I 
--f 

SA RX R1,D2(X2,B2) 
6A RX R 1, D2 (X2, B2) 
2A RR R.,R2 
7A RX R 1, D2 (X2, B2) 
3A RR R1,R2 
4A RX R1,D2(X2,B2) 
5E RX R1,D2(X2,B2) 
'E RR R~,R2 
1A RR R.,R2 
7E RX R 1, D2 (X2, B2) 
3E RR Rl,R2 
6E RX R 1, D2 (X2, B2) 
2E RR R 1, R2 

45 RX R 1, D2 (X2, B2) 
05 RR R 1, R2 
47 RX M 1, D2 (X2, B2) 
07 RR Ml,R2 
46 RX Rl,D2(X2,B2) 
06 RR Rl,R2 
86 RS Rl,R3,D2(B2) 
87 RS Rl,R3,D2(B2) 

59 RX R 1,D2 (X2,B2) 
69 RX R 1, D2 (X2, B2) 
29 RR R 1, R 2 
79 RX Rl,D2(X2,B2) 
39 RR R1,R2 
49 RX R1,D2(X2,B2) 
B3 SI D1(B1),I2 
55 RX Rl,D2(X2,B2) 
95 SI 01(B1),I2 
15 RR R1,R2 
19 RR R',R2 

5D RX Rl,D2(X2,B2) 
6D RX R',D2(X2,B2) 
2D RR Rl,R2 
7D RX R',D2(X2,B2) 
3D RR Rl,R2 
lD RR Rl,R2 

-'---



Form ~28-6a •• -., page revised 5/20/68, by TNL N33-8543 

I 

I Basic Operand 
Mnemonicl Machine Machine Field 
Code Instruction I""~.:I~ foriiat Foriiat. '""'vu.::: 

EX Execute 44 RI R', D2 (12, B2) 

HDR Hal ve, Long 24 RR R',R2 
FER Halve, Short 34 RR Rl,R2 
HIO Halt I/O 9E SI D 1 (B 1) 

IC Insert Character 43 RX R1,D2(X2,B2) 
IST{ Insert Storage Key 09 RR R1,R2 

T Load 58 RX R1,D2(X2,B2) 
LA Load Address 41 RX R1iD2(X2,B2) 
[CDR Load COllplement, Long 23 RR R1,R2 
LCER Load Complement, Short 33 RR R', R2 
[CR Load Complement 13 RR R',R2 
LD Load, Long 68 RX Rl,D2(X2,B2) 
[DR I.oad, Long 28 RR R. ,R2 
LE Load, Short 78 RX R 1, 0.2 (X2, B2) 
T,ER Load, Short 38 RR R 1, R2 
LH Load Halfword 48 RX R', D2 (X2, B2) 
tM Load Multiple 98 RS R 1, R 3, D2 (B2) 
LNDR Load Negative, Long 2. RR R 1, R2 
LNER Load Negative, Short 31 RR R1,R2 
TNR Load Negative • 1 RR R1,R2 
LPDR Load Positive, Long 20 RR R',R2 
LPER Load Positive, Short 30 RR R1,R2 
LPR Load Positive .0 RR R', R2 
I.PSi Load PSi 82 SI D 1 (B ') 
LPSX Load PSi Special B2 SI D 1 (B 1) 
LR Load .8 RR R1,R2 
ITDR Load and Test, Long 22 RR R1,R2 
I,TER Load and Test, Short 32 RR R1,R2 
LTR Load and Test .2 RR R1,R2 

M Multiply 5C RX R1,D2(X2,B2) 
MD Multiply, Long 6C RX R 1,D2 (X2, B2) 
MDR Multiply, Long 2C RR R1,R2 
Ill:' Multiply, 

ret... __ .L 

7e RI R~,D2{X2,B2) U.u ,,')!lUl. L 

MER Mul tiply, Short 3C RR R1,R2 
MH Multiply Halfword 4C RX R1,D2(X2,B2) 
MR Multiply 1C RR R',R2 
MVI Move Immediate 92 SI D 1 (B 1) , 12 

N AND Logical 54 RX R 1, D2 (X2, B2) 
NI AND Immediate 94 SI D1(B1),I2 
NR AND Logical 14 RR R 1, R2 

0 OR Logical 56 RX R1,D2(X2,B2) 
OI OR Immediate 96 SI D1(B1),I2 
OR OR Logical '6 RR R 1, R2 

RDDi Read Direct Word B5 SI D1(B1),I2 

S Subtract 5B RX R 1, D2 (12, B2) 
SD Subtract Normalized, Long 6B RX R 1,D2(12,B2) 
SDR Subtract Normalized, Long 2B RR Rl,R2 
SE Subtract Normalized, Short 7B RX R1,D2(X2,B2) 
SER Subtract Normalized, Short 3B RR R 1, R 2 
SH Subtract Halfword 4B RX R 1, D2 (X2, B2) 
SIO Start I/O 9C SI D 1 (B') 
SL Subtract Logical 5F RX R 1, D2 (X2, B2) 

L --L-

Appendix D 69 



Form C28-6·811-1, paoe revised 5/20/68, by 'rNL N33-8543 

r--------,-- -,---------------, 
I I , Basic , Operand t 
I Mnemonic, Machine I Machine I Field , 
I Code I Instruction Code , Format J Format , 
l- I +-- +- ~ 

SIA Shift Left Single Algebraic 8B J RS Rl,D2(B2) 
SLDA Shift Left Double Algebraic 8F RS Rl,D2(B2) 
SLDL Shift Left Double Logical 8D RS Rl,D2(B2} 
SLL Shift Left Sinqle Logi~al 89 RS R 1, D2 (B2) 
SLR Subtract Loqical 1F RR R 1, R 2 
SPM Set Program Mask 04 RR R1 
SR Subtract 1B RR R1,R2 
SRA Shift Riqht sinqle Alqebraic 8A RS Rl,D2(B2) 
SRDA Shift Riqht Double Alqebraic 8E RS R1,D2(B2) 
SRDL Shift Riqht Double Logical 8e RS R.,D2(B2) 
SRL Shift Riqht Single Logical 88 RS R1,D2(B2) 
SST< Set Storaqe Key 08 RR R1,R2 
SSM Set System Mask 80 SI Dl(B') 
ST Store 50 RX Rl,D2(X2,B2) 
STC Store Character 42 RX Rl,D2(X2,B2) 
STD Store, Lonq 60 RX R 1, D2 (X2, B2) 
STE Store, Short 70 RX Rl,D2(X2,B2) 
STH Store Halfword 40 RX R1,D2(X2,B2} 
STM Store Multiple 90 RS Rl,R3,D2(B2) 
SU Subtract Unnormalized, Short 7F RX Rl,D2(X2,B2} 
SUR Subtract Unnormalized, Short 3F RR R1,R2 
SVC Supervisor Call OA RR I 
SW Subtract Unnormali zed, Lonq 6F RX R.,D2(X2,B2) 
SWR Subtract Unnormalized, Long 2F RR Rl,R2 

TCfl Test Channel 9F SI D1(B') 
TID Test I/O 9D SI Dl (Bl) 
TM Test Under Mask 9' SI D.(B.},I2 
TS Test and set 93 SI D1(B.} 

WRDW Write Direct Word B4 SI D 1 (B 1) , I~ 

X Exclusive OR 57 RX R., D2 (X2, B2) 
XI Exclusive OR Immediate 97 SI D1 (Bl) ,I2 
XR Exclusive OR 17 RR Rl,R2 

L 

70 



APPENDIX E: ASSEMBLER INSTRUCTIONS 

r-----------T-----------------------------------T---------------------------------------, 
I Operation I I I 

I Entry I Name Field I Operand Field I 

~-----------t-----------------------------------t---------------------------------------1 
I AGO I Sequence symbol optional I A sequence symbol I 

r-----------t-----------------------------------t---------------------------------------~ 
I AIF I Sequence symbol optional I A loqical eXDression immediatelv fol-I 
I I - - - i lowed by a s~quence symbol ... i 
~-----------t-----------------------------------t---------------------------------------~ 
I ANOP I Sequence symbol required I Must be blank I 
r-----------t-----------------------------------t---------------------------------------~ 
i CCW I Symbol optional I Four operands I 
~-----------+-----------------------------------+---------------------------------~~----~ 
I CNOP I Must be blank I Two absolute expressions, separated byl 
I I I a comma I 
~-----------+-----------------------------------t---------------------------------------~ 
I COM I Symbol optional I Must be blank I 
~-----------t-----------------------------------t---------------------------------------1 

'I CSECT I Symbol optional1 I Must be blank I 
r-----------t-----------------------------------t---------------------------------------1 
I DC I Symbol optional lOne operand I 
~-----------+-----------------------------------t---------------------------------------~ 
I DROP I Must be blank lOne operand I 
r-----------t-----------------------------------t---------------------------------------1 
I DS I symbol optional lOne operand I 

r-----------t-----------------------------------t---------------------------------------~ 
I DSECT I Symbol required I Must be blank I 

~-----------t-----------------------------------t---------------------------------------1 
I EJECT I Nust be blank I Must be blank I 
r-----------t-----------------------------------t---------------------------------------~ 
I END I Must be blank I A relocatable expression or blank I 

~-----------t-----------------------------------t---------------------------------------~ 
I ENTRY I Must be blank lOne operand I 
t-----------t-----------------------------------t---------------------------------------~ 
I EQU I Symbol required I An absolute or relocatable expression I 
r-----------t-----------------------------------t---------------------------------------~ 
I EXTRN I Must be blank lOne operand I 
~-----------t-----------------------------------t---------------------------------------1 
I ICTL I Must be blank I The decimal value 1 or 25 I 
r-----------t-----------------------------------t---------------------------------------1 
I LTORG I Symbol optional I Must be blank I 
~-----------t-----------------------------------t---------------------------------------1 
I ORG I Must be blank I A relocatable expression or blank I 
~-----------t-----------------------------------t---------------------------------------1 
I PRINT I Must be blank lOne or two operands I 
r-----------t-----------------------------------t---------------------------------------1 
I REPRO I Must be blank I Must be blank I 
~-----------t-----------------------------------+---------------------------------------~ 
I SETA I Variable symbol required I An arithmetic expression I 
r-----------t-----------------------------------t---------------------------------------1 
I SPACE I Must be blank I A decimal self-defining term or blank I 
r-----------t-----------------------------------t---------------------------------------~ 
I START I Symbol optional I A self-defining term or blank I 
~-----------t-----------------------------------t---------------------------------------1 
I TITLE2 I A special symbol (1 to 4 charac- lOne to 62 characters, enclosed in I 
I I ters) or not present I single quotes I 
~-----------t-----------------------------------t---------------------------------------~ 
I USING I Must be blank I An absolute or relocatable expression I 
I I I followed by an absolute term I 
~-----------~-----------------------------------~---------------------------------------~ 

I I 1A symbol is required if an unnamed START or CSECT instruction has already been usedl 
I during this assembly. I 
I 2See section 5 for the description of the name entry. I L _______________________________________________________________________________________ J 

Appendix E 71 



APPENDIX F: SUMMARY OF CONSTANTS 

r----T---------T---------T-------------T-----------T-----------~---------------, 

I I IMPLIED I I LENGTH I I NUMBER OF I I 
I I LENGTH I I SPECIFICATION I SPECIFIED I CONSTANTS ITRUNCATION/ I 
ITYPEI (BYTES) I ALIGNMENT I RANGE I BY IPER OPERANDI PADDING SIDE I 
~----+---------+---------+-------------+-----------+-----------+----------------~ 
IC las neededlbyte 11 to 256 1 Icharacters lone I right I 
~----+---------+---------+-------------+-----------+-----------+----------------~ 
IX las neededlbyte 11 to 256 1 I hexadecimal lone Ileft I 
I I I I I digits I I I 
~----+---------+---------+-------------+-----------+-----------+----------------~ 
IF 14 Ifullword 11 to 8 I decimal I multiple Ileft I 
I I I I I digi ts I I I 
~----+---------+---------+-------------+-----------+-----------+----------------~ 
IH 12 Ihalfword 11 to 8 I decimal I multiple Ileft I 
I I I I I digits I I I 
~----+---------+---------+-------------+-----------+-----------+----------------~ 
IE 14 Ifullword 11 to 8 Idecimal I multiple I right I 
I I I I I digits I I I 
~----+---------+---------+-------------+-----------+-----------+----------------~ 
ID 18 I double 11 to 8 I decimal I multiple I right I 
I I Iword I Idigits I I I 
r----+---------+---------+-------------+-----------+-----------+----------------~ 
IA 14 Ifullword 11 to 42 Ian I mUltiple Ileft I 
I I I I I expression I I I 
~----~---------~---------~-------------~-----------~--_________ i ________________ ~ 

11 In a DS assembler instruction C and X type constants may have length I 
I specification to 65,535. I 
12 Absolute expressions may have 1 to 4 bytes. Relocatable expressions may have I 
I 3 or 4 bytes. I l _________________________________________________ - _____________________________ J 

72 



Form S28-6~11-1, page revised 5/20/68, by TNL N33-8543 

APPENDIX G: ASSEMBLER LANGUAGES--FEATURES COMPARISON CHECKLISTS 

With certain exceptions, the IBM System/ 
360 Model 44 Proqramminq System Assembler 
Language is a selected subset of the lan­
guages available in the IBM System/360 
proqramminq support systems designed for 
the Models 30, 40, 50, 65, and 75-­
specifically, System/360 Operating System 
(OS/360), System/360 Disk Operating System 
(DOS/360), and System/360 Tape Operatinq 
System (TOS/360). This appendix uses three 
lists to describe this subset. The first 
of these lists comprises those features of 
the Model 44 Programminq System Assembler 
Lanquage that are not within the subset 
(i.e., those features peculiar to the Model 
44 Assembler). The second and third lists 
comprise, respectively, those features of 
the other System/360 assembler languaqes 
that are not included in the Model 44 
Programminq System Assembler Language, 
those that are included subject to 
limitations noted. 

and 
the 

1. Features of the IBM System/360 Model 
44 Programminq System Assembler Lan­
guaqe that are not supported by the 
other System/360 assembler languaqes 
are, as follows: 

a. Update instructions 

b. Named common control sections 

c. Implicit 
symbols 

definition of SETA 

d. Mnemonic operation codes for the 
following machine instructions: 

(1) Chanqe Priority Mask (CHPM) 

(2) Load PSW Special (LPSX) 

(3) Bead Direct Word (RDDW) 

(4) Write Direct Word (WRDW) 

2. Features of the IBM System/360 Opetat­
inq System Assembler Language (and, in 
some cases, of some or all of the 
other System/360 programminq support 
system assembler languages) that are 
not supported by the Model 44 Proqram­
minq System Assembler Languaqe are, as 
follows: 

a. Binary self-defining termS 

b. Continuation cards 

c. COpy instruction 

d. ISEQ instruction 

e. Macro instructions 

f. Mnemonic operation codes for 
machine instructions in the 
storage-to-storaqe (SS) format, or 
for any of the following machine 
instructions: 

(1) Convert to Binary (CVB) 

(2) Convert to Decimal (CVD) 

(3) Read Direct (RDD) 

(4) Write Direct (WRD) 

g. PUNCH instruction 

3. Features of the IBM System/360 Operat­
ing System Assembler Languaqe (and, in 
some cases, of some or allof.the 
other System/360 programming support 
system assembler lanquaqes) only 
selected subsets of which are sup­
ported by the Model 44 Programming 
System Assembler Languaqe are, as 
follows: 

Appendix G 73 



~ ---------~ , ,r---------------~ 

I FEATURE I LIMITATIONS I I FEATURE I LIMITATIONS I 
r- ------f- ~ 1~----------------4I~- ~ 
I CCW instruction IOperands , , 3, and 41 IICTL instruction lOne operand only (thel 
I Imust be sp~cified asJ I Ibegin column specifi-I 
I labsolute terms. I I Ication); operand mustl 
..-- ----+- I I I assume a value of 1 or I 
IConditional IA limited subset isl I 125. I 
I assembly lemployed; Section 6 ofl J-- .------+ ---l 
I instructions I this manu al ("Condi-I ILiteral pool IThe positioninq of theJ 
I I tional Assembly In-I I Iliteral pool must be I 
I I structions") describes I I lassiqned by the pro-I 
I Ithis subset in detail. I Iqrammer, and a literall 
I -+- ~ I IPool must be assiqnedl 
ICSECT instructionlMultiple CSECT instruc-I I Ifollowinq the lastl 
I Itions must have uniquel I loccurrence of a literall 
I Inames (i.e., a control I I lin any qiven controll 
I I section, once ter- I I I section. I 
I Iminated, cannot bel r- ---------+___ , 
I I resumed) • I IMachine IOperands R1, R2, B1, I 
I I I I instruction I B2, and X2 (see I 
IDC and DS lOne operand only; nol I operands IAppendix C) must bel 
I instructions Ibit-length specifi-I I Iwritten as absolutel 
I I cation; no scale or I I Iter ms; multi term abso-I 
I lexponent modifier; onlYI I Ilute expressions areJ 
I Iconstants of types C,I I Inot permitted for thesel 
I I X, F, H, E, D, an d A. I I I operands. I 
r- I I ~ ---------+1 ~ 
IDROP instruction lOne operand only, mustl IPRINT instructionlTwo operands only (thel 
I Ibe an absolute term. I J IGEN/NOGEN option is notl 
r- I , I I supported) • I 
IDSECT instructionlMultiple DSECT instruc-I I I ~ 
I Itions must have uniqueJ IREPRO instructionlColumns throuqh 721 
I Inames (Le., a dummyl I lonly are reproduced. I 
I I sec ti on, once ter- I I ~ ~ 
I I minat ed, cannot be I ITITLE instructionlMaximum of 62 charac-I 
I I resumed) • I I Iters in operand fieldl 
..-- I , I I (exclusive of delimit-I 
jENTRY instructionlOne operand only. I I ling single quotes). I 
• I 1 ~ I • 
IEQU instruction IOperand may not containl IUSING instructionlOperand ~ must be ani 
I Ian external symbol. I I labsolute term; only one I 
r- I ~ I lope ran d £. ( i • e ., 0 n I y I 
IExpressions IMaximum of three terms; I I J one general register) I 
I lonly one level ofl I Imay be specified in al 
I Jparentheses; no complexl I Isingle USINGI 
I Irelocatability. I I I instruction. I 
I I , ,~----------------~ 
IEXTRN instructionlOne operand only. I , , , 

74 



absolute expressions 17 
in CCW instructions 40 
in CNOP instructions 45 
in EQU instructions 32 
in machine-instructions 28 
in USING instructions 20 

absolute terms 11,17 
address constants ~~ 

3daress specification 29 
addressing 

aummy sections 24 
explicit 19,28 
external control sections 26 
implied 19,28 
relative 21 

AGO instruction 
example of 49 
format of 48 

~~IF instruction 
example of 49 
format of 48 

alignment, boundary 
CNOP instruction for 44 
machine-instruction 28 

3mpersands in variable symbols 46 
ANOP instruction 

example of 49 
format of 48 

arithmetic expressions 46 
in arithmetic relations 47 
in SETA instructions 46 

arithmetic relations 47 
assembler instructions 

statements 32-45 
taO.le of 7i 

assembler language 7 
comparison checklists 73-74 
statement format 10 
structiure 11 

assembler program 
basic functions 8 
output 8,22,41 

assembly, terminating an 45 

base registers 
address calculation 8,29 
DROP instruction 20 
loading of 19,21 
USING instruction 19 

begin column 9,10,43 
blanks in logical expressions 47 

CCw instruction 40 
channel command word, defining 40 
character codes 57-61 
character constants 35 
character self-defining term 14 
character set 11,57-61 
CNOP instruction 44 
coding form 9 
COM instruction 25 
comments entries 10 

comments statements 10 
common control section 25 
comparison checklists 73-74 
compatibility 

assembler language 7 
conditional assembly instructions 46-49 

use of 48 
conditional branch instruction 30 

operand formats 31 
constants 

defining (see DC instruction> 
summary of 72 

control dictionary 22 
control section location assignment 22 
control sections 

blank common 25 
CSECT instruction 23 
defined 22 
DSECT instruction 23 
START instruction 22 
unnamed 23 

CPYTO instruction 
examples of 56 
format of 53 

CSECT instruction 23 

data definition instructions 32,33 
channel command words 40 
constants 33 
storage 38 

DC instruction 33 
constant operand subfield 35 

address constants 38 
character constants 35 
fixed-point constants ~I 
floating-point constants 37 
hexadecimal constants 36 
type codes for 35 

duplication factor operand subfield 34 
length operand subfield 34 
type operand subfield 34 

decimal self-defining terms 14 
defining constants (see DC instruction> 
defining fields of an area 39 
defining storage (see DS instruction> 
defining symbols 12 
displacements 28,29 
DROP instruction 20 
DS instruction 38 
DSECT instruction 23 
dummy control sections 23 
dummy section location assignment 24 
duplication factor 34 

special uses 39 

EJECT instruction 41 
end column 9,10 
END instruction 45 
ENDUP instruction 

examples of 54,55 
format of 53 

ENTRY instruction 26 

Index 75 



entry point symbol, identifying 26 
EQU instruction 32 
error indications 8 
explicit addressing 19,28 
expressions 16 

absolute (see absolute expressions) 
evaluation of 16 
relocatable (see relocatable 

expressions) 
extended mnemonic codes 30 

operand formats 31 
external control sections, addressing 
of 26 

external symbol, identifying 26 
EXTRN instruction 26 

fixed-point constants 37 
values, minimum and maximum 37 

floating-point constants 37 
alignment 37 
format 37 

forcing alignment 44 

general register zero, base register 
usage 20 

hexadecimal constants 36 
hexadecimal-decimal conversion chart 62-66 
hexadecimal self-defining terws 1ij 

ICTL instruction 43 
identification sequence field 11 
implied addressing 19,28 
instruction alignment and checking 28 

linkage symbols 25 
entry pOint symbol 26 
external symbol 26 
used by linkage editor 25 

listing control instructions 32,40-42 
literal pools 

beginning 44 
multiple 16 

literals 15 
definitions 33 
duplicate 44 
format 15 

location counter 14,32,35,38 
references to 14 
setting of 43 

logical expressions 47 
in AIF instructions 48 

LTORG instruction 44 

machine-instruction formats 28 
summary table 67 

machine-instruction mnemonic codes 29 
alphabetical listing 68-70 

machine-instructions 28-31 
alignment and checking 28 
examples 30 
limits on literals in 15 
symbolic operand formats 30 

mnemonic operation codes 
extended 30 
machine-instruction 29 

name entries 13 

76 

NUM instruction 
examples of 52,55,56 
format of 51-52 

OMIT instruction 
example of 54 
format of 52 

operands 
entries 10 
fields and subfield 28 
symbolic 30 

operation entries 10 
operation field 28 
ORG instruction 43 

parentheses in 
arithmetic expressions 47 
logical expressions 47 
operand fields 29 

period in sequence symbols 47 
previously defined syrr~ols 12 
PRINT instru6tion 42 
program control instructions 32,42-45 
program listings 8,50 
program sectioning and linking 21 

relational operators 47 
relocatability 8 

attributes 17,18,26 
program 20 

relocatable expressions 17 
in CCW instructions 40 
in END instrucntions 45 
in EQU instructions 32 
in machine-instructions 28 
in ORG instructions 43 
in USING instructions 20 

relocatable terms 11,17 
pairing of 17 

relative addressing 21 
REPRO instruction 43 
REWND instruction 

examples of 55 
format of 53 

RR machine-instruction format 28,67 
symbolic operands 30 

RS machine-instruction format 28,67 
address specification 29 
symbolic operands 30 

RX machine-instruction format 28,67 
address specification 29 
symbolic operands 30 

self-defining terms 12 
sequence symbols 47 

in AGO instruction 48 
in AIF instruction 48 
in ANOP instruction 48 

SErA instruction 
examples of 49 
format of 46 

SI machine-instruction format 28,67 
address specification 29 
symbolic operands 30 

SKPTO instruction 
examples of 55,56 
format of 52 

SPACE instruction 41 



i 
~c..J. START instruction 22 

positioning of 23 
unnamed control sections 23 

statements 10 
boundaries 10 
examples 11 

storage, defining (see DS instruction) 
symbol definition, EQU instruction 12,32 
symbolic linkages 25 
symbolic operand formats 30 
symbols 12 

previously defined 12 
value attributes 15,28 

terms 12 
expressions composed of 16 
pairing of 17 

TITLE instruction 40 

unnamed control section 23 
update feature 50-56 

examples using 54-56 
input JV 

instructions 51-53 
operation of 50-51 
output 50 
sequence checking 54 

USING instruction 19 

variable symbols 
assigning values to 47 
defined 47 
uSed in aritfuTt€tic expressions 47 

Index 77 



Technical Newsletter File No. S360-21 

Re: Form No. C28-68l1-1 

This Newsietter No. N33-8543 

Date: May 20, 1968 

Previous Newsletter Nos. none 

This Technical Newsletter amends the Systems Reference Library 
publication IBM System/360 Model 44, Programming System, Assembler 
Language 
Form C28-6811-1 

This Technical Newsletter reflects the addition to the Assembler 
Language of the BXH; BXLE; LM j STM, and EX instructions and makes 
certain minor corrections to the publication. 
Substitute the following pages for the pages currently in your 
copy of the pUblication: 

35 and 36 
67 and 68 
69 and 70 
73 and 74 

All changes and additions are indicated by a vertical line to 
the left of the affected portion of the text. Figures that were 
changed have a bullet (e) to the left of the figure caption. 

File this cover letter at the back of the publication. It will 
then serve as a record of the changes received and incorporated. 

IBM Laboratory, Publications Dept., Uithoorn Netherlands 

PlIIITED .. U.S.A. 



C28· C28-6811-1 

Intern 
Data P 
112 Ea 
[USA[ 

IBMW 
821 UI 
[Interr 

fold fold 
........................................................................................................................ 

Attention: PUBLICATIONS 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITEQ STATES 

POSTAGE WILL BE PAID BY ••• 

IBM CORPORATION 

1271 AVENUE OF THE AMERICAS 
NEW YORK, N.Y. 10020 

FIRST CLASS 
PERMIT NO. 33504 
NEW YORK, N.Y. 

......................................................................... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. : 
fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

fold 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79

