File No. S360-36 (0S)
Order No. GY27-7128-7

Prugi'am Logic

IBM System/360 Operating System:
Job Management With MFT,

Program Logic Manual

Program Number 360S-CI-505

0S Release 21

This publication describes the internal logic of
the MFT level of job management, its functions,
and the control flow among its routines, as MFT
job management differs from MVT job management.
Included are discussions of system initialization,
input stream processing, job initiation and
termination, system output processing, command
scheduling and execution, and work gueue
management.

Knowledge of the information in the following
publications is required for a full understanding
of this manual:

IBM System/360 Operating System: MFT Guide,
GC27-6939

IBM System/360 Operating System: MVT Jop
Management, PLM, GY28-6660

This manual is intended for persons involved in
program maintenance, and system programmers who
are altering the program design. Program logic
information is not necessary for use and operation
of the program.

| Eighth Edition (March, 1972)

This is a major revision of, and obsoletes, GY27-7128-6 and
Technical Newsletter GN28-2468. The text and illustrations
have been modified to reflect the changes described in the
"Summary of Amendments."

Changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change.

| This edition applies to release 21, of the IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
and System/370 SRL Newsletter, Order No. GN20-0360, for the
editions that are applicable and current. ‘

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1967,1968,1969,1970,1971,1972

The title of this publication, formerly
Control Program with MFT, Program Logic
Manual, has been changed to Job Management
with MPFT, Program Logic Manual, to reflect

the fact that the document now describes

the MFT level of job management only. The
information formerly contained in the
"Introduction"™ and the "Initialization of
the Operating System" sections of this
publication may now be found in the M¥l
Guide, GCz7-6939. The information formerly
contained in the "Supervisor" section of
this puplication may new be found in the
MFT Supervisor, PLM, GY27-6736.

This publication describes the internal
logic of the M#T level of job management,
its functions, and the control flow among
its routines, as MFT job management differs
from MVT job management. It presents a
brief description of each element of job
management logic and then indicates if that
logic is the same as the corresponding
logic in MVT job management. If it is the
same, the reader is directed to the
publication that contains a detailed
description of the MVT logic. Elements of
job management logic that are unique to the
MFT configuration of the control program
are described in detail in this
publication.

The manual is divided into five major
parts. The "Introduction" briefly
describes MFT job management in terms of
the various elements used to perform the
system initialization, job processing, and
command processing functions. It also
includes a discussion of job management
control flow. Parts 1-4 contain a
description of these functions and the
common elements of job management. They
indicate the areas of logic that are common

Preface

to MFT and MVT, and describe the processing
unique to MFT.

Appendix A contains descriptions of the
major tables and work areas used by MFT job
management. Appendix 2 contains
descriptions of the modules used by MFT
management and includes a table of modules
that are unique to MFT, a series of tables
listing the modules used by MF1l according
to major component, and a module cross
reference listing. Appendix C contains MFT
job management flowcharts. Appendix D
contains the acronyms used in the text of
the publication.

Readers should have a thorough knowledge
of IEM System/360 programming and should be
familiar with the basic operation of job
management for the MVT configuration of the
control program. Knowledge of the
information in the following publications
is required for a full understanding of
this manual:

IBM System/360 Operating System:

MFT Guid?, GC27-6939

MVT Job Management, PLM, GY28-6660

This publication makes reference to the
following publications:

IBM System/360 Operating System:

IPL/NIP, PLM, GY28-6661

MFT Supervisor, PLM, GY27-7Z36

Operator's Reference, GC28-6691

System Control Blocks, GC28-6628

N

Job Management with MFT (Release 21)

SUMMARY OF AMENDMENTS FOR GYZ27-7128-7 -
RELEASE 21 ¢ v ¢ ¢ & ¢ o« ¢ o« o o o o =

AMENDMENTS FOR GY27-7128-6
BY GN28-2468 - OS RELEASE

SUMMARY OF
AS UPDATED

7
SUMMARY OF AMENDMENTS FOR GY27-7128-6
— 0S RELEASE 20 ¢ 4 ¢ ¢ ¢ o o o o o «
INTRODUCTION o o o o o o o o o o o s
System Initialization
JOb Processing « « « « o o o o o o o
Command Processing . .« « « « « « « o« &
Job Management Control Flow

Entry to Job Management After
Initial Program Loading . . .
Entry to Job Management After Step
Execution . < <« ¢« & ¢ 4 ¢ ¢ o o .

PART 1: INITIALIZATION AND RESTART .
System Imitialization
System Restart . <« . . ¢« « ¢ ¢ ¢ < o .

PART 2: JOB PROCESSING . . « « « o«
Reader/Interpreter« . . o .
Resident Readers . . « . « ¢« « « . .
Transient Readers . « ¢« ¢« « o « o« &
Reader Control Flow
Transient Reader Suspend Routine
(IEFSD530) < ¢« & ¢ ¢ ¢ o « o .
Transient Reader Restore Routine
(IEFSD531) . « o o ¢ o « « « o .
Initiator/Terminator (Scheduler) .« e .
Job Selection (IEFSD510)
Command Processing Services . . .
Small Partition Scheduling
Initiating a Problem Program . . .
Initiating a System Task
Terminating the Small Partition .
Small Partition Module (IEFSD599)
Initiator/Terminator Control Flow .
Problem Program Initialization
Routine (IEFPPGM) . . .
Job Initiation Routine (IEFSDSll)
Data Set Integrity Routine
(IEFSD541) « o e
Step Initiation Routine (IEFSDSl2)
SMF User Initiation Exit Routine
(IEFSMFIE) v 4 ¢ ¢ o o « o o o o =«
Problem Program Interface Routine
(IEFSD513) .
SMF TCTIOT Constructlon Routine
(IEFSMFAT) ¢ o« ¢ o o o o o o = .
Step Deletion Routine: (IEFSD515) .
ENQ/DEQ Purge Routine (IEFSD598) .
Alternate Step Deletion Routine
(IEFSD516) o & & o o o o o =« « .
Job Deletion Routine (IErSDSl?) .
Partition Recovery Routine
(IEFSD518) . & ¢ o o« o o « o o o «

10

13
13
i3
13
15

15

16

21

21
21
22
23
23
24
24
25

217

27

27

28
28

29
30
31
32
33
33

33

Contents

Dequeue by Jobname Interface
Routine (IEFSD519) . . « « « « « « &
System Output Writers
Resident Writers . . .« ¢ ¢« o ¢ o « o «
Nonresident Writers . . c e e e
System Output Writer Modules . o« o .
Data Set Writer Linkage Routlne
(IEFSDO70) v ¢ & o ¢ o o o o o o o =
Linkage to Queue Manager Delete
Routine (IEFSDO79) . ¢« « « o o « « «
Wait Routine (IEFSDO84)
DSB Handler Routine (IEFSD085) . . .
Standard Writer Routine (IEFSD087) .
Direct System Output Processing

PART 3: COMMAND PROCESSING .« « o « « =«
SVC 34 Routines . . e e e e e o
DEFINE and MOUNT Routlne (IEESD571)
CANCEL Command Routine (IEE2803D) .
STOP INIT and START Commands
Processing Routines (IEESD561 and
1EE3903D) & @ &« ¢ o o o o o o o o
Master Scheduler Resident Command
ProCeSSOY =« o o o o o o o o o a o o o =
Master Scheduler Router Routine . . .
Queue Alter rRoutine « e e
Syntax Check Routine (IEESD562) .« .
Queue Search Setup Routine
(IEESD563) - e . - .
Queue Search Routlne (IEESDSGH) o« .
Service Routine (IEESD565)
Queue Scratch Setup Routine
(IEESD575) . o o o o o o « o o o o =
Queue Alter Delete Routine
(IEESD576) . v ¢ o « o o o o o o o
Queue Restart Enqueue Routine
(IEESD577) 2 o o o o o o o o o o « =
Queue Message Class Setup Routine
(IEESD578) e e . e e e e
Queue SMB Routine (IEESD579) o o o =
Message Routine (IEESD580)
Queue Scratch Routine (IEESD581) . .
ECB/IOB Construction Routine
(IEESD582) ¢ & o o o« o o o o o o o «
Queue Search Return Routine
(IEESD583) v ¢« ¢ ¢ o o o o o o o o «
DQ/DN Message Setup Routine
(IEESD58U4) . & o o o o o o o o o o «
Define Command ProcCessor . . « « « o« «
DEFINE Command Initialization
Routine (IEEDFIN1) o o .
Syntax Check Routine (IELDFINZ) o« .
Validity Check Routine --
Processor Storage (IEEDFIN3)
Validity Check Routine -- Core
Storage (IEEDFINC) . . . « o o o
Listing Routine (IEEDFINM) e o o o @
Message Routine (IEEDFIN5)
Time-Slice Syntax Check Routine
(IEEDFIN6) . ¢« ¢« o « o o o =« o« o
Keyword Scan Routine (IEEDFIN7) . .

Contents

42
43

u5
45
45

45

5

System Reinitialization Routine 1
(IEEDFIN8) e e e e o
Command Final Procebsor Routine

(IEEDFIN9) . & & 4 ¢ o o o 2 « « =«
MFT Storage Configuration Record

Creation Routine (IEEDFINA) . . .
System Reinitialization Routine 2
(IEEDFINB) . . . e s e e = e

System Task Control (STC) « o o o o .

PART U4:

START Command Processing . . . « . .

START Commands Issued for System

TASKS ¢« ¢ o o o o o o o o o o o =
START Commands Issued for Problem
Programs e e e e e e
The System Task Control Routines .

COMMON ELEMENTS OF JOB

MANAGEMENT ¢« ¢ o o « o o o o o o o o
WOrk QUEeUES .+ v o o o 2 o o o o o o

System Management Facility .
Comparison of SMF in MFT and MVT . .

Queue Management . . . ¢ . ¢
Job Queue Initialization
Queue Manager Modules

e o o o

Assign/Start Routine (IEFQAGbT) .
Assign Routine (IEFPASGQ)
Interpreter/pueue Manager
Interlock Routine (1EFSD572) . . .
Queue Manager Enqueue Routine
(IEFOMNQQ) . . . « o e .
Dequeue Routine (IEFQMDQQ) o o o
Delete Routine (IEFQDELQ)
Figure Breakup Routine (IEFSD514)
Transient Queue Manager Routines
(IEFXQMO00, IEFXCMO1l, and IEFXQM02)

SMF Initialization
The SMF Writer Routine (ILESMFNT)

Write-To-Programmer Facility

6

Job Management with MFT (Release 21)

46
46
46
46
bo
47
47

u8
48

APPENDIX A:

APPENDIX C:

APPENDIX D:
ABBREVIATIONS . ¢ ¢ & ¢ o o o o o o =

TABLES AND WORK AREAS . .
Command Scheduling Control Block

(CSCB) 4 4 4« o o o o o o o » e o o
Data Set Engueue Table (DSLNQ) e e .
Interpreter Work Area (IWA)
Job Control Table (JCT)
Job File Control Block (JFCB) and

Extension (JFCBX) « & « o o o o o =«
Life-of-Task (LOT) Block . . . « « .
Linkage Control Table (LCT)
Master Scheduler Resident Data Area
Partition Information Block
Small Partition Information List

(SPIL) v o o« o o o o « a e s o o =
Step Control Table (oCT) e e e e o @
Step Inputs/Output Table (SIOT) . . .
Task Input/Output Table (T10T) . . .
Write-to-Programmer Control Block

(WTPCB) & & & e o & o o & & o o o

APPENDIX B: MFT MODULES « .« .
Unique MFT Modules . . . « « « « . . .
Major Component Modules
Module Cross Referemce
Module Descriptions .« .« « « « « < . .

1EECIR50: Master Scheduler --
Resident WAIT Routine
IEECIR51: Master Scheduler --
Command Analyzer «

FLOWCHARTS « « « « o «

DICTIONARY OF

INDEX « @ ¢ o o o o o o o o o o o o«

.193

.195

Figures

Figure 1. Response to Commands After
Initial Processing (Part 1 of 2) .- .
Figure 2. Joo Management Data Flow
Figure 3. Scheduling a Problem
pProgram Entered Through the Input
Stream in a Large Partition
Figure 4. Scheduling a Problem
Program kEntered Through the Input

Stream in a Small Partition . . .
Figure 5. Scheduling a System Task
in a Small Partition e e e e e e e @
Figure 6. Allocate/Terminate
Parameter uList e e e e s e e e a s

Figure 7. User's Parameter List . .
Figure 8. START Command Proccessing
Flow e e e e o e e e s o @ o o e o
Figure 9. DEFINE Command Processing
Fliow e o o s o o o e o o e e e o e
Figure 10. The Differences getween
System Tasks and Problem Programs
Started from tihe Console « e e e e e
Figure 11. Scheduling a System Task
in a Large Partition e e e e e e e
Figure 12. Scheduling a Problem
Program Started from the Console in a
Large Partition ¢« «
Figure 13. START Descriptor Figure
(sDT) e« e o e s s s e e e e s o = o =
Figure 14.
(Master QCR) Format
Figure 15. Job Dueue Control Record
(QCR) . «
Figure 16. Logical Track Header (LTH)
Record Format . « « o« o o « o o o o
Figure 17. Sample Job Queue
(SYS1.SYSJOBQE) Format After
Initialization e e e e e e e e e e
Figure 18. Input and Output yueue
ENtries .« o o v o ¢ o« e o e e 4 e e

Figure 19. Figure Breakup Parameter
List e e e e e e e e e e e e e e e
Figure 20. SMF Initialization

Processing Flow . « ¢ ¢ o o« o o o o« &

Master Queue Control Record

38

uy

47

48

48

49

53

54
55

56

57

59

61

IHlustrations

Figure 21. Command Scheduling Control
Block (CSCB) (Part 1 of 2) e e« « . . 67
Figure 22. Data Set Enqueue Table

(D3ENQ) e e e e s e e e e e e o o o « . 69
Figure 23. Interpreter Work Area

(INA) (Part 1 of 4) e« e« .« o T4
Figure 24. Job Control Flgure (Jct) . 79
Figure 25. Job File Control Block

(JFCB) and Extension (JFCBX) 81
Figure 26. Life-of-Task (LOT) Block . 82
Figure 27. Linkage Control Taule

(LCT) e e e e e e o e = o o o o o & o o 83

Figure 28. Master Scheduler Resicent
Data Area (Part 1 of 2) « e « « « « . 86
Figure 29. Partition Information

Block (P1B) . . « « ¢« ¢« o « « <« « « « . 89
Figure 30. Small Partition

Information List (SPIL) . . - . 90
Figure 31. Step Control Table (SCT) . 92
Figure 32. Step Input/Output lable

(S1I0T) e e e e s e e s e e e e e e o & 95
Figure 33. Ilask Input/Output Table

(T101) “ e e e e e s = e e e e o « o o 96
Figure 34. Write-to-Programmer

Control Block (WIPCB) . « « « « « « « . 96

Figure 35. MPFI' Modules . . . « e . . 97
Figure 36. Direct System Output
Modules e e e e e e e « 99

Figure 37. Initiator Modules « e« o« < 99
Figure 38. I/0 Device Allocation
Modules (Part 1 of 2) e e e e e e e e 99

Figure 39. Interpreter Modules100
Figure 40. Master Scheduler Modules . .101
Figure 41. Queue Management Modules . .101
Figure 42. SVC 34 Modules (Part 1 of

) T
Figure 43. System Output Writer

Modules . . + ¢ ¢ ¢ ¢ o o o« o « « - - 2102
Figure Uu4b4. System Restart Modules . .103
Figure 45. System Task Control Modules 103
Figure U46. Termination Modules104
Figqgure 38. 1/0 Device Allocation

Modules (Part 1 of 2)199

Illustrations 7

Charts

Chart 1A. Small Partition Routine
(Part 1 of U4) & ¢ & 4 o o o o o o o »
Chart 1B. Small Partition Routine
(Part 2 of 4) e o e o & o s e o o o
Chart iC. Small Partition Routine
(Part 3 of 4) e o o e e = o e e s s s
Chart 1D. Small Partition Routine
(Part 4 of U4) . & o & v o o o o o o =«
Chart 2. Master Scheduler Task . . .
Chart 3A. Queue Alter Express Cancel
(Part 1 of 2) . +& & ¢ v o o ¢ o o &
Chart 3B. Queue Alter/fxpress Cancel
(Part 2 of 2) e e e e e e s o o o o
Chart 4. Jueue Manager Table Breakup

Routine . ¢ o o o o o o o = o o o o
Chart 5. Master Scheduler Resident
Command ProCessOr .« + « « « « o o o =

Chart 6A. SVC 34 Command Processing
(Part 1 of 4) . . . v ¢ o v @« o o o .
Chart 6B. SVC 34 Command Processing
(Part 2 0of 4) . ¢ . ¢« ¢ ¢ v v @ o o .
Chart 6C. SVC 34 Command Processing
(Part 3 of 4) . . . ¢ ¢ ¢ ¢ 4
Chart 6D. SVC 34 Command Processing
(Part 4 of 4) . & . ¢ ¢« ¢ v o« o o o .
Chart 7. IEFSD518 -- Partition

Recovery Routine « . .« « « o« .

8 Job Management with MFT (Release 21)

.163
.16k
.165

.166
.167

.168
.169
.170
.171
172
.173
174
.175

176

Chart 8.

Chart 9A.

1 0of 5) .
Chart 9B.

2 of 5) .
Chart 9cC.

3 of 5) .
Chart 9D.

4 of 5) .
Chart 9E.

5 of 5) .
Chart 10A.
of 3) . .
Chart 108.
of 3) . .
Chart 10cC.
of 3)
Chart
Chart 12.

Chart 13.
Routine .
Chart 14.
Routine .
Chart 15.

11.

Control FlOW . ¢ & o o o o o o o o « «

Chart 16.
Chart 17.

Initiator Control Flow . . .

.177
Job Selection Routine
Job Selection Routine (Part
Job Selection Routine (Part
Job Selection Routine (Part
Job Selection Routine (Part
.Réaée;/inée;p;eée; EPéré i
"Reader/Interpreter (Part 2

keader Interpreter (Part 3

.178
.179
.180
.181
.182
.183
.184

e o o o e e e e o e o o « o 185
JCL Statement Processor . . .186
Job and Step Enqueue Routine 187
Iransient Reader Suspend

e e a e o e e o s e e « « . 188
Transient Reader Restore

e e @ © o ® e @ e e e e e =

System Output Writer

.189

.190
.191
.192

System Output Writer . . .
System Task Control

NEWN PROGRAMMING FEATURES

Status Display Support
The following task-creating commands
have been added to the COMMAND
PROCESSING section: DISPLAY PFK,
DISPLAY C,K; MONITOR A.

The following existing-task commands
have been added to the COMMAND
PROCESSING section: MSGRT; STOPMN;
CONTROL. 1he operands in the following
list have been moved from the STOP
command to the STOPMN command: DSNAME,
SPACE, JOBNAMES, STATUS, SESS. Note:
For release 21, the system will
continue to recognize these operands as
valid for use with the STOP command as
well as for the STOPMN command.

Summary of Amendments
for GY27-7128-7
OS Release 21

Console Dump Command
A new SVCLIB module has been added to
provide for dumping of main storage to
a pre-allocated data set, SYS1.DUMP.

Display SOA Command
A new SVC 34 command has been added to
display the system queue area.

Master Scheduler Initialization Routine
Sections of this routine have been
rewritten.

rReply Processor for Non-MCS
An SVC 34 routine for non/MCS
environments has peen added.

Summary of Amendments
for GY27-7128-6
as updated by GN28-2468
0S Release 20.1

_—

i._.___

T
T |Area of Publication Affected
| | (Areas Correspond to Entries
| Name of Item | Description |in Table of Contents)
1 4 ——
L) T .)
| MODE Command |Modification to SVC 34 |Appendix B
| routine to provide MODE |IGF29701
|

|Command for Model 145.

|

|Miscellaneous changes to |Modifications to SVC 34 and |Appendix B
jexisting publication | System Task Control routines|IEEVRC

| | (routines commonly used by |IEFWSMSG

| | MFT and MVT Control | IEFWSYP3

| |Programs) to provide TSO | .

| | support. |Appendix c

| | |Charts 10 and 11.
b 1 L

Summary of Amendments

[RN S W ——

Summary of Amendments
for GY27-7128-6
OS Release 20

r T T - 1
| | |Area of Publication Affected

| | | (Areas Correspond to Entries |
| Name of Item |Description |in the Table of Contents)
— T — } 1
| MFT Support for Starting | System task control routines|Part 2 |
| Problem Programs from the |have been modified and an |Initiator/Terminator |
| Console |initiator routine (IEFPPGM) | (Scheduler)--Job Selection

	has been added to provide	(IEFSD510)
	the capability of starting	
	any problem program	Initiator/Terminator
	(e.g., TCAM) from the	(sScheduler)--Job Selection

| |console via a START command.| (IEFSD510) : |
| | |Command Processing Services |
| I I
		Initiator/Terminator
		(scheduler)--sSsmall Partition
]	Scheduling:	
		Small Partition Module
		(IEFSD599)
		I
		Initiator/Terminator
		(scheduler) --
		Initiator/Terminator Control
		Flow:
		Problem Program Initialization]
		Routine (IEFPPGM), Step

| | |Initiation Routine (IEFSD512) |
| I I |
| | |part 3 |
| | |System Task Control (STC) |
| | | (entire section revised)

pmmmmmm oo P - 1
| CSCB Ssize Reduction |The size of the CSCB for the|Appendix A |
| | MVT configuration of the | Command Scheduling Control

Jcontrol program has been	Block (CSCB)	
	reduced. The fields of the	
	MFT CSCB have therefore	
	been reorganized to	
	correspond with those in	
I	the MVT CSCB.	
t - —--- -~ -- :		
Sseparation of a Module of	Periodic STOP command hand-	Appendix B
the sSVC 34 Routine	ler routine IEE4503D has	Module Descriptions
	peen split into two	
	separate modules. IEE4503D	
	processes periodic STOP	
	commands in a non-MCS	
	environment and IEE5503D	
	processes periodic STOP	
	commands in an MCS en-	
	vironment.	
t i — + O i		
The MONITOR Command	IEE3503D has been modified	Introduction
	to process the MONITOR	Command Processing
	(DSNAME , JOBNAMES , SPACE,	
	STATUS) commands.	part 3
		SVC 34 Routine
L N 4 3]

10 Job Management with MFT (Release 21)

r
|
|
| Name of Item
t

| Separation of a Module of
| the System Task Control
| Routine

| Background Reader Queue

————— —

e ——— — —— s e . e e .

|ASCII Control Program
| Support

Py ————

|Models 155 and 165 Recovery|The SVC 34 MODE command

| Management Support

— ___+__ -

T T T T 1
| |aArea of Publication Affected |
| | (Areas Correspond to Fntries) |
| Description |in the Table of Contents)
— - 1
| Reader control routine |Part 3
IEEVRCTL has been split	System Task Control (STC)--
into two separate modules:	START Command Processing:
reader/interpreter control	The System Task Control
routine IEEVRCTL and	Routines
interpreter exit routine	
IEEVRC.	
e t :	
The queue alter routines,	Part 3
common to both MFT and MVT,	Master Scheduler Resident
have been modified to	Command Processor--
support the background	Cueue Alter Routine:
reader queue, a new subqueue	Queue Alter Delete Routine
of the job queue. The	(IEESD576), Message Routine
backgrouné reader queue,	(IEESD580)
however, is used only by	
MVT, not MFT.	Part 4
	Wwork Queues
I	
	Work Queues--
	Cueue Management
t-— - t-—— 1	
The Job File Control Block	Appendix A
and the 3tep Input/Output	Job File Control Block (JFCB)
Table have been modified	Step Input/Output Table
to provide the facility	(s101)
for accepting and creating	
magnetic tapes recorded in	
ASCI1 (American National	
standard Code for	
Information Interchange).	
+ — :
|appendix B |
| processing routines have |Module Descriptions |
| been modified to provide |
| recovery management support |
| for System/370 Models 155 | |
|and 165. IGF2603D is now |
|the router of all of the | |
| MODE commands. IGF08501 |
|and IGF08502 replace the |
| former IGF2603D and IGF2703D|
|as the MODE command pro- | |
|cessors for the System/360 | |
| Model 85. IGF29601 pro- | |
|cesses the MODE command for |
| the Model 155 and IGF55301 | |
| processes the MODE command | |
| for the Model 165. | |
+ t i
| Two new modules: SET Time- |Appendix B |
|0f-Day clock routine |Module Descriptions |
{IEE6503D and TOD clock TQE |
| update routine IEE6503D | |
|have been added to the sSvC |
| 34 command processing rou- | |
| tines to support the TOD |
|Clock. | |
L i 1
Summary of Amendments 11

|Additional changes have also been made to Appendixes A, B, and C to support the items
| described above.

|Appendix D: Dictionary of Abbreviations is new for this revision of the publication.
L

12 Job Management with MFT (Release 21)

r -T T 1
| | |Area of Publication Affected |
| | | (Areas Correspond to Entries |
| Name of Item |Description J]in the Table of Contents)
b + —- + - 1
Delayed Volume Verification	Modifications have been made	Appendix B
jto the I/0 device allocation	Module Descriptions	
	routines to provide the	
	capability of delaying the	
	verification of volumes	
	with old data sets until the	
	end of allocation.	
k L L - 1		
I
1

The primary job management function is to
prepare job steps for execution and, when
they have been executed, to direct the
disposition of data sets created during
execution. Prior to step execution, job
management :

e Reads control statements from the input
job stream

e Places information contained in the
statements into a series of tables.

e Analyzes input/output requirements.

e Assigns input/ouatput devices.

e Passes control to the joo step.
¥Following step execution, job management:

e Releases main storage space occupied by
the tables.

e Frees input/output devices assigned to
the step.

e Disposes of data sets referred to or
created during execution.

Job management also performs system
initialization functions and the processing
rejuired for communication between the
operator and the control program. Job
management functions may be divided into
three major categories: system
initialization, job processing and command
processing.

System Initialization

The master scheduler task, which performs
the system initialization function, is
established by the nucleus initialization
program (NIP). (See the IPL/NIP PLM) The
master scheduler initialization routine
receives control after the nucleus
initialization program completes the
definition of the fixed area of main
storage. It passes control to the routines
that initialize console communications, the
optional system log, the job queue, and the
optional system management facility, and
define the partitions in the dynamic area
of main storage.

Introduction

Job Processing

Job processing is performed by the
reader/interpreter, the
initiator/terminator, the system output
writer, and direct system output (DSO)
processor. The functions of the
reader/interpreter are similar to those of
the MVT reader; additional information can
be found in the MVT Job Management PLM.

After all control statements for a job
have been processed, all initiators that
are waiting for that job class are posted
and the initiator residing in the highest
priority partition is given control. The
MFT initiator is described in the "Jobo
Processina®™ section of this publication;
for information on allocation and
termination, refer to the MVT Job
Management PLM.

When the job step has been executed,
control is returned to the
initiator/terminator which performs data
set dispositions and releases input/output
(I/0) resources. If the entire job is to
be terminated and DSO was not used, the
terminator enqueues all data sets on the
appropriate system output (SYSOUT) dueues.

When the system output writer receives
control, it dequeues a job from an output
queue, and transcribes the data sets to the
user-specified output device. (See the MVT
Job Management PLM for further information
on the system output writer.)

Command Processing

Command processing is performed by the SVC
34 command scheduler routines, the master
scheduler resident command processor
routines, and the system task control
routines. The SVC 34 command scheduler
routines process all commands initially.
The job queue manipulation and partition
definitions, which are not fully processed
by svVC 34, are passed to the master
scheduler resident command processor.
START commands are processed by the system
task control routines. Figure 1 lists the
commands used in MFT and indicates the
routine which responds to the commands
after initial processing.

Introduction 13

i Command 1 Responder }
[CANCEL (active jobs) o) T Initiator o 1
[CANCEL (job in gqueue) o o -_*I Master Scheduler T
erONTROL K]I DIDOCS {
F e R —- {
{DEFINE | Master Scheduler |
iDISPLAY A,C,K,N,Q,U,jobname, CONSOLES, ng—jﬁ_‘ Master Scheduler o f
rDISPLAY R o i Master Scheduler T
iDISPLAY SQA o o B [Master Scheduler o 1
{DISPLAY T B T Timer_Maintenance Rou;;;;_* T
F ——mmmee " -~ 1
[DUMP . l Master Scheduler |
EHALT T Master Scheduler i
;HOLD I Master Scheaaler T
|zoc T System Les + 1
p=——= - : 1
{MODE . l—__ Master Scheduler |
{MODIFY B T Task Being Modified 1
[N 4

[MONITOR A I Master Scheduler 1
[MONITOR STATUS, JOBNAMES, DSNAME i Initiator o +[
[MONITOR SPACE ? o I/0 Device Allocation—— T
[MOUNT j Master Scheduler T
[MSGRT (MR)) I MSGRT Handler (SVC 34) +|
ERELEASE) I Master Scheduler o T
EREPLY - i_-_ Master Scheduler o 1
iRESET ______ I Master Scheduler 1
{SET CLOCK, DATE o - i Master Sch;aaler and 1
{ 1 Timer Maintenance Routine * }
iSET PROC, Q, AUTO I Master Scheduler |
{;;;RT/STOP i Task Being Started or Stopped 1
iSTOPMN (PM) I pIpocs 1
oo J
{SWAP] Master Scheduler 1
ESWITCH - I o Master Scheduler 1
Figure 1. Response to Commands After Ini;;al Processing (Part 1 of 2)

14 Job Management with MFT (Release 21)

i,

Command

Responder

UNLOAD

VARY UNIT

VARY CH, CPU, PATH, STOR

Initiator

Initiator

Master scheduler

WRITELOG

System Log¥

*See the MFT Supervisor PLM, GY27-7236

r
|
F
|
F
I
l. —_ —— —_
I
k
I
k
|
L

e e sy v ey — by — v —— —)

Figure 1.

Job Management Control Flow

Figure 2 shows the major components of job
management and the general flow of control.

Control is passed to job management
whenever the supervisor finds that there
are no program request pblocks in the
request block queue. This can occar for
two reasons: either the initial program
loading (IPL) procedure has just been
completed, or a job step has just been
executed.

Response to Commands After Initial

Processing (Part 2 of 2)

Entry to Job Management After Initial
Program Loading

After IPL, certain actions must be taken by
the operator before job processing can
begin. Therefore, control passes to the
communications task which issues a message
to the operator instructing him to enter
commands, or to redefine the system. If he
chooses to redefine the system, control
passes to the master scheduler task to
handle the redefinitions. If not, the
initialization commands (START reader,
START writer, and START INIT) are issued
either automatically by the master
scheduler task or by the operator
performing the IPL (see the "Initialization
and Restart" section), and job processing
begins.

Introduction 15

S

OPERATOR'S
CONSOLE
SVC 34
COMMAND RETURN TO
C d
?ESAQMUNICATIONS cren Eﬁgm'ﬁﬁe > EXECUTION CALLER OF COMMAND PROCESSING
ROUTINES ROUTINES SVC 34
OPERATOR'S |—

CONSOLE l T

WTOs and WTORs
Indicating Errors

DATA
QUEUES

SVC 34 Commands See
Table 1.
WORK
Input Job QUEUES System Output Job Description JOB PROCESSING
Description
WRITING
TASKS
INITIATING
TASKS
JCL, Commands,
and Data PRINTER
\ READING e
TAPE TASKS Initiate
]
Terminate
PROCESSING
PROGRAM
CARD Yes TAPE
READER
PROCEDURE -
LIBRARY System Input CARD
Data Sets PUNCH

System Output Data Sets

Figure 2. Job Management Data Flow

Entry to Job Management After Step passed to the job termination routine of

Execution the initiator/terminator. Both routines
are described in the topic

After step execution, control is passed to "Initiator/Terminator"™ of the "Job

the step termination routine of the Processing” section in this publication.

initiator/terminator. If no further job
steps are to be processed, control is also

16 Job Management with MFT (Release 21)

When the operating system is loaded, it
must be initialized to conform to the
locations and extents of the system data
sets, and to the requirements of the
installation. This process, which includes
formatting the work queue data set, is
called system initialization. If the work
gqueue data set is already in the proper
format, special processing must be
performed to purge the work queues of
incomplete and inappropriate entries; in
this case, the processing is called system
restart.

System lInitialization

There are some major differences in the
system initialization processing performed
for MFT and MVT configurations of the
control program. In MFT, the master
scheduler initialization routine
(IEFSD569), operating under control of the
master scheduler TCB, initializes the
dynamic area of main storage. In MVT, this
is accomplished by the nucleus
initialization program (NIP). 1In MFT, it
is done by the master scheduler to
facilitate the redefinition of main
storage.

The master scheduler initialization
routine (IEFSD569) described below is
unigque to the MFT configuration of the
control program. (For a discussion of the
initialization processing performed before
the master scheduler initialization routine
receives control, see: the IPL/NIP PLM and
the MFT Guide.)

The master scheduler initialization
routine (Chart 05) first passes control to
the communications task initialization
routine (IEECVCTI) via a LINK macro
instruction. (See the MFT Supervisor PLM.)
After the communications task is
initialized, the master scheduler
initialization routine passes control to
the definition routine, IEEDFIN1, via a
LINK macro instruction. IEEDFIN1
communicates with the operator, or prepares
the partition as it was described at system
generation. IEFSD569 then issues the READY
message, and if the system log was
requested, passes control to IEEVLIN to
initialize the system log. (See the MFT
Supervisor PLM.) It then types the
automatic commands, and issues a WAIT macro
instruction.

PART 1:

INITIALIZATION AND RESTART

When the operator presses the REQUEST
key, control is given to the supervisor,
which recognizes the interruption and
passes control to the input/output
supervisor. The input/output supervisor
determines that the interruption is an
attention signal and passes control to
communications task console attention
interrupt routine. The interrupt routine
posts the communications task attention ECB
to request reading of the console. The
operator enters a SET command. SVC 34
posts the WAIT and places the parameters of
the SET command in the master scheduler
resident data area. The master scheduler
initialization routine then regains control
to continue processing. Control blocks for
the jop queue and procedure library are
created. To format the job queue, the
routine passes control to queue
initialization routine IEFSD055 via a LINK
macro instruction which, places a queue
control record (QCR) in the nucleus after
the DCB and DEB. Control then passes to
queue manager formatting routine IEFORMAT,
which formats the job queue ana returns
control to the queue initialization
routine. (For a discussion of these two
modules, see the topic "Work Queues.")
After return from the queue manager
initialization routine, the master
scheduler initialization module passes
control to IEEVPRES for the initialization
of volume attributes for all tape and
direct access devices. The master
scheduler initialization routine then
displays and processes any automatic
commands .

If the system management facility is
specified, the routine stores the SMF
options in the first byte of the CVTSMCA
field of the CVT. It then passes control
via a LINK macro instruction to SMF
initialization routine IEESMFIT to
initialize the system management facility.
(See the "SMF Initialization" topic in the
"Common Elements of Job Management" section
in this publication.)

The master scheduler initialization
routine then establishes partitions based
on information in the TCBs. It constructs
an RB in each partition, with an XCTL macro
instruction addressing job selection module
IEFSD510 (for large partitions), or small
partition module IEFSD599 (for small
partitions). The master scheduler
initialization routine then returns control
to the dispatcher. The dispatcher returns

Part 1: Initialization and Restart 17

control to the master scheduler task, but
the TCB now points to master scheduler
resident command processor routine IEECIR50
in the nucleus.

System Restart

The system restart functions may be
reguested at any time that a system restart
becomes necessary; e.g., end-of-day,
end-of-shift, when a system malfunction

18 Job Management with MFT (Release 21)

occurs, or when power fails. This feature
provides a means of preserving a maximum
amount of information concerning input work
queues, output work queues, and jobs in
interpretation, initiation, execution, or
termination. System restart permits
reinitialization, rather than a complete
reformatting, of the job queue data set
(SYS1.SYSJOBQE) .

MFT uses the MVT system restart modules.
For a complete description of these
modules, and how they function, see the MVT
Job Management PLM.

Job processing is accomplished by three
types of tasks:

e Reading tasks, which control the
reading of input job streams and the
interpreting of control statements in
these input streams.

e Injitiating tasks, which control the
initiating of job steps whose control
statements have been read and
interpreted. (Terminating procedures
are also part of initiating tasks.)

e Writing tasks, which control the
transferring of system messages and
user data sets from direct-access
volumes on which they were written
initially to some other external
storage medium.

These tasks are created in response to
START commands entered for readers,
initiators, and writers. Whenever a START
reader or writer command is entered, the
resulting command processing brings a
reader or writer into the associated
partition. Initiators are brought into all
scheduler-size partitions at system
initialization, and after a START INIT
command has been issued following partition
redefinition. An initiator is also brought
into a partition that is specified in a
START command issued for a problem program.
See the "System Task Control" section of
this publication for a description of START
commands issued for problem programs.

There may be more than one of each of
the job processing tasks so long as the
total does not exceed 52. Input job
streams may be read simultaneously from
three input devices by issuing a START
reader command for each input stream.
System messages or Jdata sets may be written
by system output writers to as many as 36
output devices by issuing a START command
for each device. Up to 15 initiating tasks
can exist concurrently. Each initiating
task is created in response to a START INIT
command issued for a specific partition, or
a START INIT.ALL command. In addition,
each problem program may use direct system
output (DSO) processing. DSO is started by
entering a START DSO command for a
partition naming a system output class and
a device. DSO processing is limited only
by the number of available devices. (See
the Operator's Reference, GC28-6691).

PART 2: JOB PROCESSING

Reader /Interpreter

MFT uses the MVT reader/interpreter
(reader). However, because of job class,
possible MFT interlocks, and the capability
of using transient readers, some
modifications have been made to the MVT
modules, and six new modules have been
added. These modifications and additions
are described opelow.

MFT allows as many as three input
readers to execute concurrently with
problem programs and writers. Resident
readers operate in previously defined
reader partitions, and transient readers
operate in problem program partitions large
enough to accommodate them. Input stream
data for the step being read is transcribed
onto direct-access storage where it is held
until execution of the associated job
begins. Problem programs retrieve this
data directly from the storage device.

In MFT there are three types of system
input readers:

e Resident reader.
e User-assigned transient reader.
e System-assigned transient reader.

Resident and transient readers may operate
in the same system, provided no more than
one system-assigned reader is specified,
and the total number of readers does not
exceed three. The primary difference
between the user-assigned and
system-assigned transient readers is the
manner in which the transient reader
resumes operation after it is suspended.

RESIDENT READERS

A resident reader operates in a partition
designated as such at system generation (by
replacing the job class identifier with R),
or during system initialization or
partition definition (by specifying RDR for
the job class identifier). A resident
reader reads its input stream, enqueuing
jobs until the input stream reaches
end-of-file or until it is terminated by a
STOP command entered for that partition.

Note: The STOP command does not take

effect until the current job is completely
read.

Part 2: Job Processing 19

TRANSIENi READERS

A transient reader operates in a problem
program partition large enough to
accommodate it. A transient reader can be
terminated by issuing a STOP command or by
reaching end-of-file, as can the resident
reader. In addition, a transient reader is
suspended when a job is enqueued either for
the partition occupied by the reader, or
for a small partition. (Note that this is
possible only when a reader completes
reading an entire job.)

If a transient reader is started in a
specific partition by including the
partition assignment in the START command,
it always resumes operation in that same
partition, and only when that partition be-
comes free. This type of transient reader
is referred to as user-assigned. If 'S' is
substituted for the partition number in the
START command, the system assigns the
reader to any available large problem
program partition. This type of transient
reader is called system—assigned.

READER CONTROL FLOW

After a START command is entered to
activate a reader, the master scheduler
resident command processor routine IEECIR50
determines if the size of the requested
partition is large enough, and posts the
partition. Job selection routine IEFSD510
determines that a START command has been
entered, and passes control to system task
control (STC). The STC syntax check
routine validates the syntax of the START
command, builds job control language
tables, and retrieves the reader cataloged
procedure specified in the START command.
Bach reader is assigned to an input device
specified in the START command. Control is
then passed to interface routine IEFSD533
which sets up an interpreter entrance list
(NEL) for a reader. It also allocates job
queue space for a transient reader by
issuing a dummy WRITE macro instruction.
Control is then passed to linkage routine
IEFSD537 which issues a LINK macro
instruction to reader initialization
routine IEFVH1 to begin reading the input
job stream (Chart 10).

When reader initialization routine
IEFVH1 receives control, it reads its input
stream using QSAM, and translates job
processing information into convenient form
for subsequent processing by an initiator
and system output writer. Each job read in
by the readers is converted into tables
that are placed in the appropriate job
class input work queue specified by the
CLASS parameter on the JOB statement. One
input work queue exists for each of the

20 Job Management with MFT (Release 21)

fifteen problem program job classes (A
throuch 0).

For systems that include Multiple
Console support (MCS), the PARM field on an
EXEC statement includes a command authority
code. This code is included in the option
list created by interface routine IEFSD533,
and placed in the interpreter work area
(IWA) by reader initialization routine
IEFVHl1. This code is passed by the reader
when it issues an SVC 34 due to a command
read in the input streamn.

After the reader has completed reading a
jop, control passes to queue manager
enqueue routine IEFQMNGQO which enqueues the
job on the appropriate input work queue
according to the PRTY parameter on the JOB
statement (see "Queue Management" in this
section).

Note: If the reader is being used as a
subroutine by a problem program, it does
not enqueue the job on the input work
queue, but returns control to the problem
program passing the addresses of the JCT
constructed for that job, and the QMPA
associated with that input queue entry.

If data is encountered in the input
stream, control is passed to interpreter
CPO routine IEFVHG to transcribe the data
onto direct-access storage for later
retrieval by the problem program. If there
is no space for the data, control passes to
interpreter operator message routine
I&FSD536 to issue a DISPLAY active command
and a WTOR message. The operator replies
with either "WAIT' or 'CANCEL'. If "WAIT'
is specified, the reader waits for space to
become available. If 'CANCEL' is
specified, the reader is canceled and a
READER CLOSED message is issued. IEFSD536
then sets indicators which cause cleanup of
the current job, and control to be passed
to interpreter termination routine IEFVHN
to terminate the reader.

After a reader enqueues each job,
control passes to transient-reader suspend
tests routine IEFSD532. This routine
decides whether to 1) terminate the reader,
2) suspend the reader, or 3) have the
reader continue reading the job stream.
(The decision to suspend the reader would
never be made if the reader is resident.)
If the reader is to be terminated, control
passes to termination routine IEFVHN. If
the reader is to be suspended, control
passes to transient reader suspend routine
IEFSD530. Otherwise, control returns to
job and step enqueue routine IEFVHH to
continue reading the job stream.

Transient Reader Suspend Routine (IEFSD530)

When a transient reader is suspended,
transient reader suspend routine IEESD530
(Chart 13) writes the tables and work areas
used by the reader onto the work queue data
set (SYS1.SYSJOBQE).

The routine closes the reader and
procedure library. Data needed to restore
the reader is temporarily saved in the
interpreter work area (LWA). The IWA is
then written to the work queue data set.
When a user-assigned transient reader is
suspended, the address of the reader space
on the work queue is placed in the
partition information block (PIB).
system-assigned transient reader is
suspended, the address of the IWA is placed
in the master scheduler resident data area
(IEESD568). (See Appendix A for the format
of the master scheduler resident data
area.) The work gueue data set is later
used by transient reader restore routine
IEESDS31 to restore the reader when the
assigned partition becomes available after
job termination. "No work" ECBs for
problem program partitions are posted (see
"Job selection"), and the JCTIMR field of
the JCT is tested to determine if SMF is
supported. If this field contains zeroes,
there is no job management record (JMR) and
SMF is not supported. If SMF is supported,
the user's SMF exit routine IEFUJV (whose
address is contained in the JMRUJVP field
of the JMR) is deleted if it is present in
main storage. Storage for the JMR is also
freed via the FREEMAIN macro instruction.

When a

The transient reader suspend routine
then returns control to system task
control.

Note: See the MVT Job Management PLM for
the format and description of the JMR.

Transient Reader Restore Routine (IEFSD531)

Once a partition is again free for the
reader, transient reader restore routine
IEFSD531 (Chart 14) receives control and
issues a GETMAIN for the IWA, Local Work
Area (LWA), reader DCB, and procedure
library DCB. The direct-access device
address of the IWA is retrieved from the
PIB if a user-assigned reader is to be
restored, or from the master scheduler
resident data area, if a system-assigned
reader is to be restored. The IWA is then
read in from the job queue. The TIOT is
read into storage and the TCB pointer is
updated; other tables and work areas
necessary to restore the reader are reset
from the information saved in the IWA.

If SMF is in the system and if SMF
options are specified, a GETMAIN macro
instruction is issued to obtain main

storage for the job management record
(JMR). The JMR is then initialized with
the SMF options and the RDR device type and
name. If SMF exits are specified, the name
of SMF user exit routine IEFUJV is placed
in the interpreter entrance list (NEL).

The routine is then loaded and its address
is placed in the JMRUJVP field of the JMR.
The reader and procedure library DCBs are
opened and the reader resumes operation to
start reading at the point in the job
stream where it was suspended. Control is
then passed to interpreter routine IEFVHCB
to continue reading the job stream.

Initiator /Terminator (Scheduler)

To provide independent scheduling,
schedulers operate in any problem program
partition of sufficient size. A partition
large enough to accommodate the scheduler
is referred to as a "large partition." A
partition not large enough to accommodate
the scheduler is referred to as a "small
partition". Within a given large
partition, a scheduler operates
independently of schedulers in other large
partitions. Because small partitions
cannot accommodate the scheduler, they rely
on large partitions to perform their
initiation, allocation, and termination
operations. Scheduling for small
partitions is described in "Small Partition
Scheduling" in this section.

An MFT initiator (Chart 8) dequeues a
job (entry) for its partition based on a
job class designated for the partition.
Once dequeued, the job is scheduled
according to the information contained in
the entry.

During allocation and termination of
each job step, the allocation and
termination routines place messages and
output data set pointer blocks in a
specified output queue. The queue entry is
created by the reader/interpreter. (The
output queue entry becomes input to an
output writer when the job is completed.)

An initiator functions as a control
program for the scheduling process, using
the allocation and termination functions as
closed subroutines. (See Figure 3 for an
illustration of the scheduling process in a
large partition.) The MFT initiator is
composed of the following routines:

Job Selection
Small Partition
Job Initiation
Data Set Integrity

Part 2: Job Processing 21

Step Initiation

Problem Program Interface
Step Deletion

ENQ/DEQ Purge Routine
Alternate Step Deletion
Job Deletion

START
INIT

JoB

SELECTION ALLOCATION

ALLOCATION/

PROBLEM e
PROGRAM
INTERFACE

Allocation Error |

CANCEL

TIOT
PROBLEM LOT
PROGRAM

P .‘ -

STEP/

ABEND JoB
DELETE

TERMINATION

Step Deletion

Job Deletion

Figure 3. Scheduling a Problem Program
Entered Through the Input

Stream in a Large Partition

JOB SELECTION (IEFSD510)

-The job selection routine (Chart 9)acts as
the control routine for the MFT initiator.
The routine is brought into all large
problem program partitions by the master
scheduler at system initialization, by the
job deletion routine when a job has
terminated, or by system task control when
a system task has been scheduled for a
small partition or a system task has been
suspended.

Job selection first waits on a "no work"
ECB in the PIB. This ECB is posted
complete by the command processing
routines, the job deletion routine, system
task control, or the small partition module
when a small partition needs scheduler
services.

22 Job Management with MFT (Release 21)

When the "no work" ECB has been posted
complete, the job selection routine checks
the PIB to determine if a life-of-task
(LOT) block exists (see Appendix A for a
description of the LOT block). If not, it
creates one for the task.

Job selection then checks the PIB for a
small partition information list (SPIL)
pointer (see Appendix A for a description
of SPIL). 1If one exists, scheduling is
performed for the small partition by
passing control to IEFSD599. 1If no SPIL
pointer exists, the PIB is checked for any
pending STOP DSO or MODIFY DSO commands.
These are processed by passing control to
stop and modify command processing routine
IEFDSOSM.

Upon return from IEFDSOSM, the PIB is
checked to determine if the partition is
involved in partition redefinition; if the
partition is to be changed, the PIB is
checked further.. If a job is queued on the
checkpoint/restart internal queue it is
processed; if a restart reader is pending,
it is started. If neither exists, any DSO
processing is stopped, no further
scheduling is allowed in the partition and
the partition can be redefined. (See "The
Master Scheduler Resident Command
Processor.")

If the partition in which the initiator
is operating is not part of a partition
redefinition, a test is made for a pending
Restart Reader command. If no command is
pending, a test is made to determine if a
system task is to be started. If a restart
reader or a system task is to be started,
control passes to system task control. If
a restart reader is being started, and a
user-assigned reader had been rolled out of
the partition, the PIB is marked
accordingly.

If no small partition is requesting
service, no system task is to be started,
and the partition is not part of a
redefinition operation, a final check is
made to determine if a START INIT command
has been issued; if so, job selection
attempts to dequeue work from the input
work queue. If a STOP INIT command has
been issued, the attempt to dequeue a job
is bypassed.

A threshold check is then made to
determine if enough logical tracks are
available on SYS1.SYSJOBQE to start the
initiator. If not, message IEF427I COMD
REJECTED FOR INITIATOR ‘ident' -
INSUFFICIENT QUEUE SPACE is sent to the
operator and job selection again waits on
the "no work"™ ECB.

The job selection routine obtains
storage for the job control table (JCT)

andchecks to determine if a job is gueued
on the checkpoint/restart internal queue.
If a job exists, dequeue by jobname routine
(IEFLOCDQ) is used to remove it from the
hold queue for processing. If no job is on
the internal queue, the routine then uses
the queue manager dequeue routine
(IEFQMDQU) to obtain work from one of the
input job gueues according to the job class
assignment of the partition. If work is
found, IEFQMDQ) constructs a CSCB for the
job and an IOB to be used when reading or
writing the input queue. The CSCB is
constructed in the system queue area and
the address of the CSCB is placed in the
LCT. The address of the IOB is placed in
the queue manager parameter area (QMPA).
When a user accounting routine is supplied,
the job selection routine sets all four
fields of the timer work area in the LCT to
zero. These fields are used in calculating
the execution time of a job step. Job
selection then branches to job initiation
routine IEFSD511.

If the search for work for the partition
is unsuccessful (i.e., no work has been
engueued for any of the job classes
assigned to the partition) tests are made
to determine if a transient reader is to be
restored in the partition or if a STAKRT
command has been entered for a
system-assigned transient reader. If so,
system task control is called. If a reader
is to be restored in the partition, job
selection passes control to system task
control linkage routine IEFSD588.

Command Processing Services

In response to commands entered in the
input stream or from a console, the command

processing routines request a service by

storing information in the PIB of the
affected partition or in the master
scheduler resident data area for START and
STOP commands issued for system-assigned
transient readers and writers. The job
selection routine recognizes these requests
and takes one of the following actions:

e Inhibits further job scheduling for the
partition in preparation for the
processing of a DEFINE command. (The
DEFINE command can be entered only from
a console.)

e Prevents execution of problem programs
in largé& partitions in response to
either a STOP INIT command specifying a
particular partition or a STOP INIT.ALL
command.

e Passes control to system task control
(STC) in response any START command
other than a START INIT command.

e Schedules problem program execution in
response to either a START INIT command
or a START command issued for a problem
program in that partition.

SMALL PARTITION SCHEDULING

A partition is defined as "small" when its
size is at least 8K bytes but less than the
job scheduler generated for the system.
Small partition scheduling is performed- by
an initiator in a scheduler-size partitcion
at the request of small partition module
IEFSD599 (IEFSD599 is described later in
the topic "Small Partition Module"). The
small partition is therefore temporarily
dependent on a large partition while
scheduler services are being performed.
Scheduling for a small partition is
independent of scheduling for other small
partitions in the system.

The small partition module interfaces
with job selection module IEFSD510 to
schedule a problem program or to establish
an interface with system task control for
the scheduling of a system task in a small
partition. Communication between the small
partition module and IEFSD510 or system
task control is maintained through a small
partition information list (SPIL). (The
format of a SPIL is shown in Appendix A.)

Small partition module IEFSD599 requests
the scheduling function by placing the
address of a SPIL in the partition
information block (PIB) of each
scheduler-size partition in the system.
Each time that job selection module
IEFSD510 is entered between jobs, it checks
the PIB for a nonzero SPIL address. If the
PIB contains a valid SPIL address, IEFSD510
performs one of the following services for
the small partition:

e It tests to determine if there is work
for the small partition and if so,
IEFSD510 passes control to job
initiation routine IEFSD511. If not,
it notifies the small partition
accordingly.

e If the small partition is waiting for
termination services, IEFSD510 passes
control to step deletion routine
IEFSD515.

e If a START command has been entered on
the console specifying a system task or
a problem program in a small partition,
IEFSD510 passes control to system task
control.

These routines perform the requested
service in the large partition and use the
SPIL to indicate their action to IEFSD599.
When the requested sexvice has been
performed, these routines return to
IEFSD510.

Part 2: Job Processing 23

Initiating a Problem Program

As shown in Figure 4, initiation of a
problem program in a small partition is
performed by a large partition. If a small
partition is waiting for work, job
selection module IEFSD510 dequeues a job
from an input work queue that the small
partition is assigned to service. The
large partition posts a completion code in
field ECBA of the SPIL when initiation
services have been performed.

A completion code of one indicates that
no work was found for the small partition.
The small partition then waits on the ECB
list in the SPIL. The posting of any of
the listed ECBs causes the small partition
to request initiation services.

A completion code of zero indicates that
initiation services have been performed and
the problem program job step is ready to be
executed. The small partition, using the
allocate parameter list (APL), moves the
task inputs/output table (TIOT) and
life-of-task (LOT) block from the large

partition, opens required DCBs, and
establishes problem program mode. (1If the
system has the storage protection feature,
the protection key is set.) If the job has
not been canceled, control passes to the
problem program, thus freeing the large -
partition to continue processing.

Initiating a System Task

As shown in Figure 5, if a system task is
to be started in the small partition, small
partition module IEFSD599 requests the
services of job selection module IEFSD510
for initiation of the system task.

IEFSD510 responds to the request by
bringing the first system task control
(STC) module into the large partition. STC
performs the initiation functions up to the
point of passing control to the system
task. STC write TIOT routine 1EFSD590 then
posts the ECBA in the SPIL with a
completion code of zero to indicate to
IEFSD599 that initiation services have been
performed, and that the system task is
ready to be executed. The small partition
module then uses the link parameter list

OPERATOR'S
CONSOLE AL
PARTITION
START INIT
Allocation Error
PROBLEM
L PROGRAM
SMALL PARTITION
MO?ULE CANCEL
| ABEND
[
JOB SELECT LARGE
MODULE PARTITION
y
INITIATION/ I —]
ALLOCATION TERMINATION

Figure 4. Scheduling a Problem Program Entered Through the Input Stream in a Small Partition”

24 Job Management with MFT (Release 21)

RN

(LPL) to move the TIOT from the large
partition to the small partition. It posts
the ECBC in the SPIL, thus freeing the
large partition to continue normal
processing. IEFSD599 then frees the main
storage occupied by the SPIL and passes
control to the system task via linkage
modules IEF589SP, IEFSD584, and IEFSD591.
(see Chart 17).

Terminating the Small Partition

When the job step is completed, or a writer
is stopped, small partition module IEFSD599
is brought back into the partition and
entered at special entry point SMALLGO. A
check is made to determine whether a
scheduler ABEND occurred. If it did, a
message is issued to the operator with a
completion code, and all CSCBs associated
with that job are removed from the CSCB
chain. Control then passes to the normal
entry point of IEFSD599. If no scheduler
ABEND occurred, IEFSD599 determines if job
step timing is being performed by testing
the high-order bit in the job step timing
status bits field of the PIB. If the bit
is on, the TQE is being used for job step
timing and the routine issues a TTIMER
macro instruction to stop the timing and to
obtain the step time remaining for use in
updating the SPIL. It then turns off the
bit and saves the step time remaining in a
register until the SPIL is created. When
the SPIL is created, the routine updates it
with the step time remaining and sets the
status bit indicating that termination
services are requested. The small
partition module then begins a search for a
large partition to perform the job
termination required.

After an initiator in a large partition
has performed the termination services,
ECBA in the SPIL is posted with a
completion code of two to indicate that job
termination has taken place. A check is
made to determine if the small partition is
involved in a redefinition operation. If
it is, the small partition is made
quiescent. If the small partition is not
associated with a redefinition operation,
it requests additional services from an
initiator in a large partition.

Note: If the initiator in a large
partition performs step termination instead
of job termination, the next step of the
job in the small partition is scheduled
before the initiator schedules a job into
its partition, or before it performs
scheduling services for another small
partition.

Small Partition Module (IEFSD599)

Small partition module IEFSD599 (Chart 1)
is entered from the redefinition routines

at system initialization or when a DEFINE
command is issued or from the master
scheduler. The module is entered at
special entry point SMALLGO from the ABEND
routines when a step has completed
execution. IEFSD599 first waits on a "no
work"™ ECB located in the partition's PIB.
When this ECB is posted complete, the PIB
is checked to determine if a SPIL has peen
created. If not, one is created and an
indicator is set in the PIB. The PIB is
then checked for pending STOP DSO or MODIFY
DSO commands. IEFSD599 passes control to
stop and modify command processing routine
IEFDSOSM to process any such pending DSO
commands .

Upon return from IEFDSOSM, IEFSD599
checks the PIB to determine if the
partition is involved in a redefinition
operation. If a redefinition is pending,
the internal job queue of
checkpoint/restart jobs is checked and any
jopns on the queue are processed before the
partition redefinition. If there is
nothing on the internal job queue and
redefinition is pending, assigned tracks
are deleted, the SPIL is freed, any DSO
processing is stopped, and pending CSCBs
are freed. The 'DEFINE' EC3 in the PIB is
posted to indicate that the partition has
been made quiescent, and a return is made
to wait on the "no work" ECB.

If no redefinition operation is pending,
the PIB is checked to determine if a system
task is to be started in the partition. If
so, an indicator is set in the SPIL,
assigned tracks are deleted, and a request
for scheduling is made to a large partition
(described below). If a system task is not
to be started, the STOP INIT bit in the PIB
is checked. If this bit is on, assigned
tracks are deleted, the SPIL is freed, and
a return is made to wait on the 'no work'
ECB. If the STOP INIT bit is not on, the
PIB is checked for track assignment. If
needed, tracks are assigned and indicated
in the PIB. The SPIL is updated to
indicate a request for initiation of a
problem program.

A request is made for a large partition
to service the small partition based on the
contents of the SPIL. First, an exclusive
ENQ macro instruction is issued to prevent
concurrent service requests by small
partitions. Interruptions are disabled to
prevent interference with the address of
the SPIL in the large partition's PIB.
IEFSD599 then searches for a scheduler-size
partition. The TCBs are tested for problem
program status; when a scheduler-size
partition is found, a determination is made
of whether the small partition is involved
in a DEFINE operation.

Part 2: Job Processing 25

OPERATOR'S

SMALL
E
CONSOL PARTITION
START Writer
Allocation Error
OUTPUT
WRITER
' |
|
SMALL PARTITION
MO%UE
| ABEND
A
____._____4_.._._________________H_.__p_,._r_____________
Y
JOB SELECT
MODULE LARGE
| PARTITION
SYSTEM L]
TASK TERMINATION
CONTROL

Figure 5.

If the small partition is involved in a
DEFINE operation, the test for the large
partition involved in a DEFINE operation is
bypassed. If the small partition is not
involved in a DEFINE operation, the large
partition is tested to determine if it is
involved in a DEFINE operation. If so, the
large partition is bypassed and the TCB
search is continued.

The address of the SPIL is stored in the
PIB of the large partition, thus
constituting a request. An indication is
made when storing occurs. If a large
partition is waiting on its 'no work' ECB
(in its PIB), the large partition is posted
and the large partition routine clears the
SPIL addresses in the other large partition
PIBs. When a large partition is posted, or
all applicable TCBs are checked,
interruptions are enabled.

If no SPIL pointers were stored during
the search, a DEQ macro instruction is
issued (to allow other small partitions to
make requests), and a WAIT macro
instruction is issued on a 'dormant' ECB in

26 Job Management with MFT (Release 21)

Scheduling a System Task in a Small Partition

the small partition's PIB. (When later
posted by the command processing routines,
the small partition module will repeat its
search). If at least one SPIL pointer was
stored, a WAIT macro instruction is issued
on ECBB in the SPIL. This allows a large
partition, immediately upon recognition of
the request, to post the ECB complete. The
small partition module may then issue a DEQ
macro instruction to release the SPIL
pointer field so other small partitions may
make requests.

Next, a WAIT macro instruction is issued
on ECBA (in the SPIL) to delay the small
partition until the requested service has
been performed. When ECBA is posted
complete by the large partition, the
completion code is tested to determine the
action which occurred. If the completion
code is two, job termination occurred and
return is made to the point of determining
the DEFINE status of the small partition.
If the completion code is one, 'no work'
was found for the small partition and a
return is made to WAIT on the ECB list in
the SPIL. If the completion code is zero,

the large partition is at the point of
calling either the problem program or a
system task. The large partition is
waiting on ECBC (in the SPIL) to allow
transfer of information into the small
partition by the small partition module.

If a problem program is to be initiated,
IEFSD599 uses the allocate parameter list
(APL) to move the TIOT and user parameter
area into the small partition. It then
posts ECBC (freeing the large partition),
and opens Fetch and/or JOBLIB DCBs if
regquired. To process write-to-programmer
messages during problem program execution,
IEFSD599 puts the address of the sSYsouUT
QMPA into the WTPCB, which is located in
the CSCB.

The routine then determines if job step
timing will be performed by testing the
step time limit in the timer work area of
the LOT block. If this value is equal to
24 hours, the job step will not be timed.
If the job step is to be timed, IEFSD599
issues the STIMER macro instruction to set
up the step time interval. The routine
then sets bit zero of the job step timing
status bits field of the PIB to one
indicate that the job step TCE is being
used by the Initiator. It also sets bit
one to one to indicate to step deletion
routine IEFSDS15 that the STIMER macro
instruction was issued specifying the TQE
addressed in the PIB.

The small partition routine establishes
the partition in the problem program
protection mode and frees the SPIL. If the
program to be initiated is the DSDR
processing step of a checkpoint restart,
IEFSD599 uses the APL to move the TIOT and
user parameter area into the small
partition, and posts ECBC. The routine
moves the job DMPA and the SYSOUT QOMPA from
the LOT to the CSCB, and bypasses opening
the JOBLIB and FETCH DCBs. The routine
also bypasses setting the storage
protection key but frees the SPIL.

A check is made to determine if the job
has been canceled. If so, an ABEND macro
instruction is issued. If the job has not
been canceled, an XCTL macro instruction is
issued to call the problem program into the
small partition (the problem program passes
control to ABEND at completion of its
execution).

ABEND recalls the small partition
routine and enters at special entry point
SMALLGO. The routine changes the small
partition protection key to zero. If job
step timing is being performed, it issues
the TTIMER macro instruction to stop the
timing and to obtain the step time
remaining for use in updating the SPIL. It
sets bit zero of the job step timing status

bits field in the PIB to zero to indicate
that the job step TQE is no longer active.
After it it creates the SPIL, the routine
updates it with the step time remaining and
turns on the status bit indicating that
termination services are requested.
IEFSD599 then begins the search for a large
partition to service the request.

INITIATOR/TERMINATOR CONTROL FLOW

There are no terminator routines that are
unique to MFT; the modules used in MFT task
termination are described in the MVT Job
Management PLM.

In addition to IEFSD510 and IEFSD599,
several other initiator routines are unique
to MFT. These are described in the
following paragraphs. Descriptions of the
MVT allocation and step initiation routines
that have not been modified by MFT can be
found in the MVT Job Management PLM.

Problem Program Initialization Routine
(IEFPPGM)

Problem program initialization routine
IEFPPGM receives control from system task
control linkage routine IEFSD589 for START
commands issued for problem programs. It
obtains main storage for a LOT block, if
one does not exist, and initializes it. It
also reinitializes fields in the CSCB, the
PIB, and, for small partitions, the SPIL.

The routine then tests the CHSPA field
of the CSCB to determine if any internal
JCL or I/0 errors occurred during
reader/interpreter processing. If either
of these types of errors occurred, the
problem program initialization routine
cancels the starting task and issues an
appropriate message to the operator.

IEFPPGM then makes a threshold check to
determine if enough logical tracks are
available on SYS1.SYSJOBQE to start an
initiator. If not, it cancels the job and
issues a message to the operator indicating
this action.

Finally, the problem program
initialization routine passes control to
job initiation routine IEFSD511 via an XCTL
macro instruction.

Job Initiation Routine (IEFSD511)

Job initiation routine IEFSD511 issues a
GETMAIN specifying subpool 0 to obtain
space for the system output class directory
(SCD). The SCD is then read into the area
and the contents of the SCD are used to
initialize QMGR2 in the LOT block. (QMGR2
is the queue manager parameter area which
is used for referencing the output data

Part 2: Job Processing 27

set.) After QMGR2 has been initialized,
the storage obtained for the SCD is freed.
A GETMAIN is then issued to obtain storage
for I0BZ, the IOB used in conjunction with
QMGRZ. A GETMAIN is issued (specifying
subpool 253) to obtain space for the step
control table (SCT). The SCT is read into
the area thus obtained. Job initiation
then branches to data set integrity routine
IEFSD541.

If direct system output (DSO) processing
is available in the partition, job
initiation uses the SCD to build a table of
all classes of SYSOUT, including the
message class, contained in the job stream.
Job initiation uses this table to determine
if DSO is available for the job; if so, it
selects DSOCBs for the job. Selection of a
DSOCB is indicated by placing the problem
program's protection key into the DSOCB and
flagging the job's JCT.

Data Set Integrity Routine (IEFSD541)

The data set integrity routine is entered
only once per job, from job initiation
routine IEFSD511. It first determines
whether data set integrity processing is
reguired.

If the JCT indicates a 'failed' job or
if there are no explicit data sets (DSNAME
parameter in a DD statement) for the job,
processing is bypassed and exit is made to
step initiation routine IEFSD512. If data
set integrity processing is required, the
DSENQ table records are read from the job's
entry in the input job queue
(SYS1.SYSJOBQE). Duplicate DSNAMEs are
eliminated from the table and each unique
DSNAME is placed in a minor name list. The
most restrictive attribute (exclusive or
share) is chosen for each DSNAME placed in
the minor name list. After this processing
is complete, an ENQ supervisor list is
constructed which contains an entry for
each DSNAME in the minor name list. Each
entry is initialized with the following:

¢ RET=TEST option of ENQ.

e SYSTEM option of ENQ.

e Attribute (E/S) of the corresponding
DSNAME. :

e Address of the common. major name
' SYSDSN'.

e Address of the corresponding DSNAME
(considered the minor name) in the
minor name list.

The DSNAME (minor name) length is contained
in the first byte of each DSNAME field in
the minor name list.

When the EN)Q supervisor list is
constructed, the system is disabled and an
ENQ supervisor call is issued against the
list to test the availability of the

28 Job Management with MFT (Release 21)

DSNAMEs. If the DSNAMEs are available, the
ENQ supervisor list is updated so that each
entry reflects the RET=NONE option of ENQ.
A second ENQ supervisor call is issued
against the list to reserve DSNAMEs for the
job. The system is enabled and exit is
made to step initiation routine IEFSD512.

If the DSNAMEs are unavailable for the
job (already reserved with conflicting
attributes by other task(s) in the system),
the operator is notified of the condition.
In notifying the operator, the return code
field of each entry in the ENQ supervisor
list is tested for a nonzero setting. If
the setting is nonzero, the associated
DSNAME (minor name) is identified to the
operator as unavailable. The operator is
given the following reply options:

e RETRY, in case the resources have been
freed by the other task(s) (processing
is delayed until the operator replies).

¢ CANCEL the job.

If RETRY is entered by the operator,
processing continues at the initial ENg
supervisor call to again test the
availability of the DSNAMEs. The operator
is again notified, and he can reply either
RETRY or CANCEL. If the job is canceled by
the operator, the 'job fail' bit in the JCT
is set and exit is made to step initiation
routine IEFSD512.

Step Initiation Routine (IEFSD512)

Step initiation routine IEFSD512 first
issues a GETMAIN macro instruction to
obtain storage for a 72-byte register save
area for SMF user initiation exit routine
IEFSMFIE and branches to IEFSMFIE. Upon
return, it frees the register save area and
tests to determine if job step timing will
be performed. If the job time limit in the
JCT is equal to 24 hours, the job step will
not be timed. 1In this case the step
initiation routine moves the 24 hour limit
to the timer work area in the life-of-task
(LOT) block, and bypasses the procedure for
setting up the step time limit.

If the job time limit in the JCT is
equal to any value other than 24 hours,
IEFSD512 determines the value to be used as
the step time limit in the timer work area
of the LOT block. For each step of the
job, the routine determines if allowing the
step to use the full amount of time
specified for it would cause the job time
limit to be exceeded: IEFSD512 calculates
the amount of job time remaining by
subtracting the job time used from the job
time limit and compares this figure with
the step time limit. It establishes the
step time limit by placing the smaller of
the two figures in the step time limit
field of the timer work area. If the

i

smaller of the two figures is the job time
remaining, the routine turns on the high
order bit in the step time remaining field
of the timer work area to indicate that the
job time remaining is being used as the
step time limit.

IEFSD512 then issues a GETMAIN
specifying subpool 253 to obtain storage
for an allocate register save area (ARSA)
and an allocate parameter list (APL). The
APL (Figure 6) is initialized containing
addresses of the LOT, JCT, and SCT, and two
words of zeros.

Address of the LCT

Address of the JCT

Address of the SCT

12 (C) 7
Address of the TIOT List

16 (10) 2

Zeros

20 (14)

Figure 6. Allocate/Terminate Parameter
List

The step initiation routine checks the
current step to determine if it is either
the checkpoint/restart data set descriptor
record (DSDR) processing step or the
restart step. If the step is a DSDR
processing step being scheduled for a small
partition containing less than 12K bytes,
the PIB of the partition containing the
step initiation routine will be tagged to
indicate that the DSDR step is to execute
in that partition. The step initiation
routine will place the address of its TCB
and PIB in the LOT and pass control to
allocation via an XCTL macro instruction.
If the DSDR step is to be processed in a
large partition, normal processing is
continued.

If the step is the restart step, the
step initiation routine will pass control
to partition recovery routine IEFSD518 via
a LINK macro instruction. If the return
code from IEFSD518 is a zero, normal
processing is continued; if the return code
from IEFSD518 is a four, the address of the
LOT is placed in register 1 and control is
passed to job selection IEFSD510 via an
XCTL macro instruction.

If the job is using DSO, a message to
that effect is placed in the first SMB.
Step initiation then passes control to
Allocation via an XCTL macro instruction.
Allocation returns to IEFSD512 at entry
point IEFALRET via an XCTL macro
instruction and returns the addresses of a
task input/output table (TIOT) list (which
points to the TIOT) in the first word of
zexos in the APL. On return from
Allocation, the return code is tested to
determine if allocation was successful. If
not, step initiation moves the TIOT to
subpool 253 and passes control to alternate
step deletion routine IEFSD516 via an XCTL
macro instruction.

If allocation was successful, the TIOT
is moved to subpool zeor, the ARSA is
freed, and the "step started" bit in the
SCT is turned on. The address of the job's
CSCB is stored in the APL (in the last word
of the list). If the job is using DSO, and
if job separator and/or system message
processing is required, step initiation
links to system message and job separator
writer routine IEFDSOWR. If IEFDSOWR is
unable to process due to a job queue I/0
error, the initiator will ABEND with an
error code of 0BO; if IEFDSOWR is unable to
process due to I/0 errors, step initiation
will set the job failed bit.

The step initiation routine then frees
the ARSA and updates the LCT with the TTR
of the JCT and the TTR of the SCT. It
scans the program properties table
(IEFSDPPT) to determine if the program to
be executed is to be non-cancellable during
its execution. If so, it turns off the
cancellable bit in the CSCB. IEFSD512 then
uses table breakup routine IEFSD514 to
write the TIOT and the LCT on the job
queue. Upon return from IEFSD514, the step
initiation routine updates the JCT with the
TTR of the TIOT. It then uses the queue
manager to write the JCT and the SCT back
on the job queue, and to read the user
parameters into main storage. Finally, it
tests to determine if the step is a DSDR
processing step and if not, IEFSD512 frees
the ECB/IOBs used by the queue manager. It
then passes control to problem program
interface routine IEFSD513.

Note: For a description of the program
properties table, see the MVT Job
Management PLM.

SMF User Initiation Exit Routine (IEFSMFIE)

SMF user initiation exit routine IEFSMFIE
receives control from step initiation
routine IEFSD512. It first determines if
SMF is supported by testing the JCTIMROP
field of the JCT for a zero value. A zero
value indicates that SMF is not supported.
In this case the routine immediately

Part 2: Job Processing 29

returns control to the caller (IEFSD512).
If SMF is supported, the SMF user
initiation exit routine performs the
following functions:

e It initializes and updates the timing
control table (TCT).

e It updates the job log portion of the
job management record (JMR).

e It passes control to the user's job
initjation exit routine, IEFUJI, or
step initiation exit routine, IEFUSI.

e It constructs the SMF Job Commencement
Record (type 20).

When it is entered, IEFSMFIE issues the
TIME BIN macro instruction and stores the
job initiation start time and date in the
JCT. It then determines if the step being
initated is the first step of the job. If
so, it issues a GETMAIN macro instruction
specifying the system queue area to obtain
main storage for the TCT and for the first
40 bytes of the JMR. The routine
initializes the TCT and stores its address
in the TCBTCT field of the TCB. It then
uses the Queue Management Read/Write
routine to bring the JMR into main storage.
‘It copies the first 40 bytes of the JMR
into the area reserved for it and updates
it with the job initiation start time and
date. If user exits are specified, the
routine brings the job account control
table (ACT) into main storage and then
passes control to user job initiation exit
routine IEFUJI.

If the step being initated is not the
first step of the job, the TCT and JMR are
already in main storage. IEFSMFIE stores
the step initiation start time and date in
the JMR. If user exits are specified, the
routine brings the job ACT into main
storage and then passes control to user
step initiation routine IEFUSI.

Upon return from the user exit routine,
IEFSMFIE inspects the return code. If the
return code specifies that the job is to be
canceled, the routine sets the job-failed
pit in the JCT.

For each job, the SMF user initiation
exit routine also determines if the data
set accounting option is specified by
testing the SMCAOPT field in the SMCA. If
the option is not specified, or if the job
was cancelled, the routine bypasses
construction of a Job Commencement Record
(type 20). Otherwise, IEFSMFIE builds the
record using the accounting information in
the job ACT and issues an SVC 83 to have
the record transferred to the SMF buffer.

When processing is complete, IEFSMFIE
returns control to the caller (IEFSD512).

30 Job Management with MFT (Release 21)

~Note:

For the format and description of
the JMR and TCT, see "Appendix A" in the
MVT Job Management PLM.

Problem Program Interface Routine
(IEFSD513)

The problem program interface routine
prepares the partition for execution of the
job step. It first passes control to SMF
TCTIOT construction routine IEFSMFAT. Upon
return the routine determines if SMF is
supported by testing register 15. A zero
value indicates that SMF is not supported
and in this case IEFSD513 bypasses the
procedures for updating the TCT with the
job wait time limit.

If SMF is supported, register 15
contains the address of the TCT and
register 0 contains the job wait time limit
obtained from the system management control
area (SMCA) by IEFSMFAT. In this case
IEFSD513 places the job wait time limit in
the TCTWLMT field of the TCT. It also
initializes bit zero of the TCTSW field to
correspond with the bit set in the time
remaining field of the timer work area by
IEFSD512 indicating whether the job time

remaining or the step time limit was

established as the time limit for the step
about to receive control.

The problem program interface routine
then tests to determine if scheduling was
performed for a small partition. If so,
this routine tests its partition's PIB to
determine whether a checkpoint/restart data
set descriptor record (DSDR) is to be
processed. If the DSDR step is to be
processed, the SPIL pointer in the LOT is
ignored; otherwise the address of the APL
is placed in the SPIL, ECBA in the SPIL is
posted to indicate that scheduling is
complete, and a WAIT is issued on ECBC.
This WAIT allows the small partition module
to copy tables and work areas into the
small partition. When the tables have been
copied, ECBC is posted complete, and the
interface routine frees all storage
obtained for tables and work areas except
for the LOT block, which is retained. The
address of the LOT block is placed in
register 1 and this routine passes control
to job selection, IEFSD510, via an XCTL
macro instruction.

If scheduling was not performed for a
small partition, a test is made to
determine if the job has been canceled. If
so, exit is made by issuing an ABEND macro
instruction.

If the job has not been canceled, the
job OMPA and the SYSOUT QOMPA are moved from
the LOT to the CSCB, the TIOT is moved to
the lowest possible location (subpool 0) in
the partition, and a GETMAIN macro

=

instruction specifying subpool 253 is
issued for the user's parameter list (UPL).
The UPL (Figure 7) is initialized from the
SCT. Another GETMAIN macro instruction
(subpool 253) is issued to create a
register save area for the user's problem
program. If STEPLIB, JOBLIB, and/or FETCH
have been specified, their DCBs are created
(but not opened) in subpool 253. The JCT,
SCT, and APL are now freed, the STEPLIB or
JOBLIB and FETCH DCBs are opened, and the
TIOT is then moved to subpool 253. A
single DCB is used for STEPLIB or JOBLIB,
with STEPLIB overriding JOBLIB if both are
present.

Reserved Address of length field

Length of PARM values

PARM values
-~ (from EXEC statement)

J)
A9

(Maximum length = 100 bytes)

Figure 7. User's Parameter List

If the job being started in the
partition is a checkpoint/restart data set
descriptor record (DSDR) processing job,
the routine bypasses opening the STEPLIB,
JOBLIB, and FETCH DCBs and also bypasses
setting the storage protection key.

Note: The use of subpools, and the order
in which control blocks and tables are
created, moved, or deleted, follows a
particular sequence even though this
handling occurs within different modules.
This is done to prevent fragmenting main
storage within the partition.

The routine then sets the PSW to the
problem program mode. IEFSD513 then tests
to determine if job step timing will be
performed. If the step time limit in the
timer work area of the LOT block is equal
to 24 hours, the job step will not be
timed. I#- the step time limit is equal to
any value other than a 24 hours, the
problem program interface routine issues
the STIMER macro instruction to set up the
step time interval. It then sets bit zero
of the job step timing status bits field in
the PIB to one to indicate that the job
step TQE is being used by the Initiator.
It also sets bit one to one to indicate to

step deletion routine IEFSDS15 that the
STIMER macro instruction was issued
specifying the TQE addressed in the PIB.

Whether or not job step timing is
performed, IEFSD513 frees main storage for
the LOT block, moves the TIOT to the
highest available position within the
partition, updates the TCB, and passes
control to the problem program via an XCTL
macro instruction.

SMF TCTIOT Construction Routine (IEFSMFAT)

If SMF is in the system and if the user
accounting option is specified, the SMF
TCTIOT construction routine IEFSMFAT builds
and initializes a timing control task
input/output table (TCTICT). The routine
first determines if SMF is supported by
testing the TCBTCT field of the TCB for a
zero value. A zero value indicates that
SMF is not supported. In this case the
routine places a return code of zero in
register 15 and returns control to the
caller (IEFSD513).

If SMF is in the system, the TCBTCT
field contains the address of a TCT built
by SMF user initiation exit routine
IEFSMFIE. In this case the routine obtains
the job wait time 1limit from the system
management control area (SMCA) for return
in register 0 to IEFSD513 for updating the
TCT. If user exits are specified, IEFSMFAT
places the address of SMF user time limit
expiration routine IEFUTL in the TCT.

The routine next determines if the user
step option is specified by testing the
SMCA options field for a X'40'. For any
other value the option is not specified and
the TCTIOT construction is bypassed. If
the user step option is specified, IEFSMFAT
constructs a TCTIOT to contain the
information necessary for the SMF
termination record. The routine issues a
GETMAIN macro instruction specifying the
system queue area to obtain storage for the
TCTIOT and initializes the TCT EXCP counter
lookup table.

Whether or not the routine constructed a
TCTIOT, it initializes the TCT core map for
both hierarchies (0 and 1). It utilizes
the boundary box describing the partition
to determine the lowest addresses allocated
at the high end of hierarchies 0 and 1, and
the highest addresses allocated at the low
end of hierarchies 0 and 1. It then
calculates the amount of storage unused and
stores these figures in the TCT.

IEFSMFAT issues a TIME macro instruction
to obtain a time stamp to indicate the time
the problem program started loading. The
time stamp is stored in the TCT.

Part 2: Job Processing 31

Finally, IEFSMFAT places the TCT address
in register 15 and returns control to the
caller (IEFSD513).

Note: For the format and description of
the SMCA and the TCTIOT, see "Appendix A"
in the MVT Job Management PLM.

Step Deletion Routine (IEFSD515)

Step deletion routine IEFSD515 is entered
at the end of step execution to prepare the
partition for continued execution of the
job, to interface with the termination
subroutine, to prepare for the initiation
of the next step, or to branch to job
deletion if there are no more steps in the
current job.

When step deletion is entered, a check
is made to determine whether the routine
was entered due to an ABEND with the
scheduler in control. If so, a message
stating that the scheduler has ABENDed is
issued to the operator and all CSCBs are
removed from the CSCB chain. DSO
processing, if any, in the partition is
marked for stopping. Control passes to job
selection routine IEFSD510 which passes
control to DSO stop and modify command
processing routine IEFDSOSM.

If the scheduler ABENDs again while
trying to stop DSO, the DSOCB will be
marked as being no longer available for
selection. The DSOCB I/0 device will
remain allocated to DSO, and the device
will not be available until the system is
reinitialized.

If an ABEND did not occur, the step
deletion routine prepares to calculate the
amount of time used by the step and the job
when the last step completed execution. It
determines if job step timing is being
performed by testing the high-order bit in
the job step timing status bits field of
the PIB. If the bit is off, the following
processing is bypassed. If it is on, the
TOE is being used for job step timing and
IEFSD515 issues a TTIMER macro instruction
to stop the timing started by problem
program interface routine IEFSD513. It
also obtains the step time remaining for
use in updating the timer work area when
the LOT block is read back in. It then
turns off the high-order bit in the job
step timing status bits field of the PIB.

Whether or not job step timing is beiung
performed, the step deletion routine
branches to ENQ/DEQ purge routine IEFSD598
via a BALR instruction to remove any
control blocks which were enqueued, but not
degueued, by the problem program step.

Step deletion then issues a series of
GETMAIN requests to obtain storage for

32 Job Management with MFT (Release 21)

queue manager 10Bs (IOB1 and IOB2), a

temporary OMPA, and a register save area

and parameter list for the table breakup \
routine. These blocks and tables are A
initialized and step deletion branches to

queue manager table breakup routine

IEFSD514, to read in the TIOT and LOT

blocks for the job step.

IEFSD515 updates the step time remaining
field of the timer work area in the LOT
block with the step time remaining value
obtained from the TTIMER macro instruction.
It restores the addresses in the TIOT and
LOT blocks, and frees the temporary work
areas.

It returns the job OMPA and the SYSOUT
OMPA to the LOT block from the CSCB to
reflect any activity that occurred during
problem program execution.

A GETMAIN (subpool 253) is issued to
obtain storage for the SCT and JCT. The
SCT is read into storage from the job
queue, the JCT from its temporary area.
The JCT is updated with the address of the
next SCT and written back on the job queue.

A test is made to determine if job step
timing is being performed. If the step
time limit in the timer work area is equal
to 24 hours and if bit one of the job step
timing status bits field in the PIB is set
to zero, neither the job nor the step has
been timed and the routine bypasses the ~
following processing and obtains storage
for the terminate register save area and
parameter list. If the step has been
timed, the values in the timer work area
must be updated to reflect the time used by
the step that just completed execution. If
SMF is supported (determined by a nonzero
value in ‘the TCBTCT field of the TCB), the
time extension specified is calculated and
added to the step time limit.

The information in the timer work area
is then used to calculate the new values
for job time used, job time remaining, step
time used, and step time remaining, and the
timer work area is updated with these
calculations.

The Queue Management Read/Write routine
is used to read in the job and step ACTs.
They are updated with the new values for
the job and step time, and then written
back out.

Storage is obtained for a terminate
register save area and a terminate
parameter list. The terminate parameter
list is initialized with addresses of
control blocks (LOT, JCT, SCT, and TIOT
list) and the step deletion routine /7
branches to the termination subroutine via \)
a BALR instruction. When termination -

i

s

returns control, step deletion frees the
terminate register save area and terminate
parameter list and then reinitializes the
WTPCB for the next step of the job or the
next job. If the partition was executing
the DSDR step for a small partition, step
deletion places the addresses of the small
partition's TCB and PIB into the LOT block.
Step deletion then checks the return code
from termination.

If the return code indicates that the
job is to be suspended, step deletion loads
the address of the LOT block in register 1.
In MFT systems with the 44K scheduler, step
deletion then passes control to IEFSD168
via a BALR instruction. In MFT systems
with a 30K scheduler, however, step
deletion branches to linkage routine
IEFSD167 to pass control to IEFSD168 via an
XCTL macro instruction. If the return code
indicates that job termination was entered,
step deletion branches to job deletion
routine IEFSD517 and, in MFT systems with
the 44K scheduler, receives control again.
In MFT systems with the 30K scheduler,
however, control does not return to step
deletion. It is passed immediately to
IEFSD517. If job termination was not
entered, the SCT for the next step of the
job is read from the job queue, and step
deletion passes control to IEFSD512 via an
XCTL macro instruction.

Note: If a small partition is requesting
termination, entry to the step deletion
routine is made at special entry point
SMALTERM. When the routine is entered at
this point, it performs the following
functions before invoking ENQ/DEQ purge
routine IEFSD598. It obtains the step time
remaining for the step which executed in
the small partition from the SPIL and saves
this value for updating the step time
remaining field of the timer work area in
the LOT block, when the block is read back
in. IEFSD515 also establishes pointers to
the SPIL and the small partition's TCB.

ENQ/DEQ Purge Routine (IEFSD598)

At job termination, this routine purges all
ENQ/DEQ control blocks associated with the
TCB address passed in Register 4 by the
caller. If step termination was completed
instead, this routine purges all ENQ/DEQ
control blocks except the data set
integrity blocks associated with the major
name SYSDSN.

When a given resource is dequeued for
the subject TCB, a task switch may occur
for a higher priority requestor whose wait
count becomes zero, due to availability of
the resource. (This purge routine operates
in a disabled state to prevent concurrent
updating of the ENQ/DEQ control blocks.)

Alternate Step Deletion Routine (IEFSD516)

Alternate step deletion routine IEFSD516 is
entered from step initiation routine
1IEFSD512 when allocation for a step has not
been successful. Using the APL and ARSA
(created by the step initiation routine) as
the terminate parameter list and terminate
register save area, this routine branches
to termination subroutine IEFSD22Q via a
BALR macro instruction. When control is
returned from termination, the storage used
for the parameter list and register save
area is freed and a test is made to
determine if job termination was entered.
If so, this routine branches to job
deletion routine IEFSD517. If job
termination was not entered, the SCT for
the next job step is read from the job
queue and this routine branches to step
initiation routine IEFSD512.

Job Deletion Routine (IEFSD517)

The job deletion routine is called at job
termination to delete the job from the
input queue and to prepare the partition
for initiation of the next job. The
routine sets the high-order byte of the
ICTTCBAD field of the LCT to '80'
(hexadecimal) to indicate to the ENQ/DEQ
purge routine that it is job termination
instead of step termination. The routine
then branches to ENQ/DEQ purge routine
IEFSD598 to purge the control blocks. On
return from the purge routine, the
high-order byte is reset to '00'.

The job deletion routine then deletes
the job from the input queue, using queue
manager delete routine IEFQDELQ. All areas
of storage in the partition which were used
for the job (except the LOT block) are
freed, and the job's CSCB is freed by
issuing an SVC 34. The PIB fields used for
the disk address of the TIOT and the LOT
block are set to zero. If termination was
for a small partition, ECBA in the SPIL is
posted with a code of two (indicating job
termination for the small partition). If
termination was for a large partition (or
after ECBA has been posted) the "no work"
ECB in the PIB is posted and the job
deletion routine branches to job selection
routine IEFSD510.

Partition Recovery Routine (IEFSD518)

Partition recovery routine IEFSD518
determines the location of main storage
required for a checkpoint restart. If the
partition being scheduled for the job to be
restarted contains the required main
storage, the JCT is checked to determine if
the job used DSO. If it did, the job's
SIOTs are checked to determine which types
of I/0 devices were used. If any needed
type is not available, a message informing

Part 2: Job Processing 33

the operator of the missing devices is sent
and the job is placed on the hold queue.
If all devices are available, the routine
returns to the step initiation routine for
normal processing. If the nucleus has
expanded past the lower boundary of the
partition containing the required main
storage, the routine sets the job fail bit
in the JCT, issues a message stating that
main storage is not available for the job,
and returns to the step initiation routine
IEFSD512 with a return code of zero.

If the partition being scheduled does
not contain the required main storage, the
routine places the job on the hold gqueue,
updates the SCD and places the SCD back on
the job queue. The job's CSCB is unchained
and the space containing the CSCB and the
ECB/IOBs is freed. If the job used DSO,
the routine links to release DSOCB routine
IEFDSOFB to release any DSO processor
allocated to the job. The routine then
branches to ENQ/DEQ purge routine IEFSD598.

Upon return from ENQ/DEQ purge routine,
if a problem program partition exists that
contains the required main storage, this
routine will create an internal queue
element and chain it to the partition's
PIB. The partition's "no work" ECB will be
posted and a message will be issued stating
that the job will start in the partition.
If an existing partition contains the
required main storage and is defined as a
reader or writer partition, this routine
issues a message indicating that the
partition must be redefined to accept the
desired jobclass. If no partition contains
the required main storage or the partition
that contains the required main storage is
about to be redefined, this routine issues
a message stating the length and
displacement of the required main storage.
If the partition being scheduled was a
large partition its no-work ECB is posted;
if it was a small partition, the SPIL is
posted indicating job termination. The
partition recovery routine frees the JCT
and SCT areas of the partition and returns
control to step initiation routine IEFSD512
with a return code of four.

Degqueue by Jobname Interface Routine
(IEFSD519)

Degueue by jobname interface routine
(IEFSD519) builds a parameter list used by
dequeue by jobname routine IEFLOCDQ. to
locate a job named on the
checkpoint/restart internal job queue.
When a checkpoint/restart job is indicated
by an entry in the internal job queue
pointer in the PIB being processed by job
selection routine IEFSD510, job selection
branches to IEFSD519 which builds the
seven-word parameter list required by

34 Job Management with MFT (Release 21)

IEFLOCDQ. When the job is dequeued,
IEFLOCDQ returns control to IEFSD519.

The interface routine marks the job as
ready and returns to job selection with a
code of zero in register 15, indicating
that the job has been found, and a pointer
to the LOT in register 1. If the job is
not found by IEFLOCDQ, a return code of
four is returned in register 15 to job
selection. (For a description of IEFLOCDQ
see the MVT Job Management PLM.)

System Output Writers

MFT uses the MVT system output writer
(Charts 15-16) with minor changes to five
of the modules. As in MVT, the user may
have up to 36 system output writers
operating concurrently in the system.
output writer can handle eight output
classes; output classes may be shared by
writers. However, in MFT, system output
writers are classified as either resident
or nonresident. A resident writer operates
in its own partition. A nonresident writer
operates in any problem program partition
large enough to accommodate it.

Each

RESIDENT WRITERS

Resident output writer partitions are
designated in the TCB by a setting of '10'
in the first two bits of the pointer to the
partition information block (PIB). This
designation is made at system generation by
assigning W to the partition in place of
the job class or by redefining a partition
and assigning WTR to it.

A resident writer is activated by
issuing a START command specifying a
partition designated previously as a writer
partition. A resident writer can be
terminated only by issuing a STOP command
specifying the device assigned to that
writer.

NONRESIDENT WRITERS

A nonresident system output writer may be
started in a problem program partition
large enough to hold the writer by issuing
a START command specifying either that
partition or by replacing the partition
number with an 'S' to specify a
system-assigned nonresident writer.

When the writer has started, it executes
in the same way as a resident writer and
must be terminated by a STOP command to
allow processing of problem programs to be
resumed in the partition.

SYSTEM OUTPUT WRITER MODULES

1he following five MVT system output writer
modules are modified for MFT.

e IEFSD070 - Data set Writer Linkage
Routine.
e IEFSD079 - Linkage to Queue Manager

Delete Routine.

e IEFSDO84

Wait Routine.

e IEFSD085 - Data Set Block (DSB) Handler
Routine.
e IEFSD087 - Standard Writer Routine.

Descriptions of all other system output
writer modules can be found in the MVT Job
Management PLM.

Data Set Writer Linkage Routine (IEFSD070)

This routine passes control to the
appropriate writer routine via a LINK macro
instruction. The normal linkage is to the
standard writer, IEFSD087. If a special
user-written output writer routine is
requested, this routine passes control to
that writer. Upon return from either
writer, the routine passes control to data
set delete routine IEFSD171 via an XCTL
macro instruction which deletes the output
data sets from the output gueue.

Linkage to Queue Manager Delete Routine
(IEFSD079)

Upon completion of a job, linkage module
IEFSD079 passes control to gqueue manager
delete routine IEFQDELQ via an XCTL macro
instruction to delete all control blocks
and SMBs associated with the output job
from the job queue. Following deletion,
the routine then posts all reader ECBs that
are waiting for space to indicate that
space is now available. (The reader ECB
chain address is obtained from the master
scheduler resident data area.) When all
ECBs have been posted, control is returned
to main logic routine IEFSDO082.

Wait Routine (IEFSDOS84)

This routine serves as a multiple WAIT when
there is no work in any of the output
classes associated with the writer. It
issues a WAIT macro instruction on the ECB
list created by class name setup routine
IEFSD081. When the system output writer
enters a wait state, the wait routine
issues a message informing the operator
that the writer is waiting for work. Any
posting (such as a command, or work for the
writer) causes control to be given to
IEFSD082.

DSB Handler Routine (IERFSD085)

DSB handler routine IEFSD085 is the setup
module for printinog data sets. It issues a
GETMAIN macro instruction for the input DCB
if it was not obtained before, and
constructs a new I'IOT containing an entry
for the input date set. It also sets up
any user-written output writer program. A
check is then made to determine if a pause
is required between data sets or only at
forms change. If a special form is to be
used, the routine writes a message to the
operator telling him what form to put in
the output device. The form change only
occurs if the output device is unit record.
This routine then passes control to linkage
routine IEFSD070 via an XCTL macro
instruction.

Standard Writer Routine (IEFSD087)

This routine first issues an OPEN macro
instruction to open the output data set.
1f the data set was not opened by the
problem program, no attempt is made to
process the data set. After OPEN, a test
is made to check for machine control
characters. A switch is set that is
interrogated by PUT routine IEFSD089. The
writer then passes control to transition
routine IEFSD088 which creates header and
trailer records. Upon return from
IEFSD088, the writer routine checks the
CANCEL ECB in the CSCB to determine if a
CANCEL command has been issued for this
writer. If the CANCEL ECB has been posted
complete, control passes to transition
routine IEFSD088 to create a trailer
record. When control is returned from
IEFSD088, the writer is closed. Control is
then returned to linkage routine IEFSD078
via a RETURN macro instruction.

If the writer is not to be canceled, the
writer routine issues a GET macro
instruction to read a record and checks for
a control character. If no control
character exists, the writer puts one in
which causes the printer to skip one line
or the punch to feed into the normal
pocket. If the printer has overflowed, a
skip is made to the next page.

The writer then adjusts the pointer to
the record so that it points to the first
data character (instead of control
character) and passes control to transition
routine IEFSD088 for trailer records. It
then issues a CLOSE macro instruction to
close the input data set, a FREEPOOL macro
instruction to free the buffers, and
returns control to linkage module IEFSDO078
via a RETURN macro instruction.

Part 2: Job Processing 35

Direct System Output Processing

Direct system output (DSO) processing
operates in MFT in the same manner as in
MVT. The main difference between DSO in

36 Job Management with MFT (Release 21)

MFT and MVT is that DSO started in an MFT
partition can only process output from jobs
within that partition whereas DSO started
in an MVT system is not restricted by
partition boundary.

&

Operator commands control system operation
and modify system tasks. Command
processing in MFT is handled by the SVC 34
command scheduler routines, the master
scheduler resident command processor
routines, and the system task control
routines. With the exception of DEFINE,
HALT, MODE, and SWAP, commands can be
entered into the system through the console
or the input job stream. The DEFINE, HALT,
MODE, and SWAP commands can be entered only
through the console. Commands entered
through the console are read by the
communications task and routed to the
master scheduler. When a command is
encountered in the input stream, the
readers/interpreter passes control to SVC 34
to process the command. SVC 34 processes
most commands completely and returns
control to the interrupted routine.

The commands accepted and processed by
MFT are the following:

CANCEL
CONTROL
DEFINE
DISPLAY
DUMP
HALT
HOLD
LOG
MODE
MODIFY
MONITOR
MOUNT
MSGRT
RELEASE
REPLY
RESET
SET
START
STOP
STOPMN
SWAP
SWITCH
UNLOAD
VARY
WRITELOG

The format and syntax of these commands can
be found in the Operator's Reference
manual.

SVC 34 processes all commands completely
except CANCEL, DEFINE, DISPLAY (A,
CONSOLES, jobname, N, Q, U), HOLD, LOG,
RELEASE, RESET, START and WRITELOG. SVC 34
does preliminary processing of these
commands and passes control to the master
scheduler resident command processor, to
complete the processing of all but the

PART 3: COMMAND PROCESSING

START, WRITELOG, and LOG commands. If the
master scheduler resident command processor
is processing a DEFINE command, SVC 34
queues all commands until the DEFINE
command has been completely processed.

When a WRITELOG command is found, SVC 34
stores it and posts the System Log task
ECB. (See the MFT Supervisor PLM.) When a
START command is found, SVC 34 builds and
chains a CSCB, places the address of the
CSCB in the partition's PIB, and posts the
partition. The system task control
routines further process the START command.
When a LOG command is found, SVC 34 issues
a WTL macro instruction (SVC 36) to have
the LOG command processed in a manner
similar to a write-to-log macro instruction
issued by a problem program.

When processing commands, interruptions
are disabled so that command processing may
be completed before any other interruptions
are serviced. Although commands are
processed when issued, the command may not
take effect immediately. An example of
this is the STOP writer command. The
master scheduler marks a command scheduling
control block (CSCB) which is checked by
the writer between jobs. The command does
not take effect until the writer completes
the job it was processing when the command
was issued.

SVC 34 Routines

SVC 34 (Chart 6) is called to process all
commands. As previously noted, it
processes some of these commands completely
and calls the resident command processor or
system task control to process the
remaining commands. The commands processed
completely by SVC 34 are:

CANCEL (active jobs only)

CONTROL

DISPLAY (R, SQA, T)

HALT

MODE

MODIFY

MONITOR (DSNAME, JOBNAMES, SPACE,
STATUS)

MOUNT

REPLY

STOP

STOPMN

SWAP

SWITCH

UNLOAD

VARY

Part 3: Command Processing 37

The SWAP command is accepted and processed
only if Dynamic Device Reconfiguration
(DDR) is in the system.

There are four SVC 34 routines that are
unigue to the MFT configuration of the
control program. These routines include
the DEFINE and MOUNT Commands routine
(IEESD571), the CANCEL command routine
(IEE2803D), and the STOP INIT and START
commands processing routines (IEESD561 and
IEE3903D). These routines are described
below.

Other SVC 34 routines are described in
the MVT Job Management PLM. Two major
differences between SVC 34 processing in
MFT and MVT should be noted:

e TSO commands are processed by the MVI
SVC 34 routines. TSO is not supported
by the MFT configuration of the control
program.

e A STAE environment is established for
the MVT SVC 34 routines, but not for
the MFT SVC 34 routines. Therefore,
MVT, the first SVC 34 routine to be
executed creates the STAE environment.
This routine precedes chain
manipulation routine IEE0303D, which is
the same in both systems, and is the
first SVC 34 routine to be executed in
MFT.

in

DEFINE and MOUNT Routine (IEESD571)

This routine processes the DEFINE command
by setting the necessary indicators in the
master scheduler resident data area. It
then posts the ECB for the master scheduler
resident command processor IEECIR50.

This routine processes the MOUNT command
as that command is processed in PCP. It
builds a parameter list for, and issues an
XCTL macro instruction to, the PCP master
command EXCP routine IGCO0103D.

CANCEL Command Routine (IEE2803D)

This routine processes the CANCEL command
by scanning the CSCBs for the job name
given in the CANCEL command. If the job
name is found, indicating that the job is
active, and if the command did not have an
IN or OUT parameter, the CSCB is checked to
determine if it is cancelable, that is, if
it represents a . problem program. If it
does, IEE2803D issues a BALR to ABTERM,
passing the address of the job's TCB and
indicating a completion code of 222 if no
dump is to be taken, or 122 if a dump is to
be taken.

If the CSCB is not cancelable, that is,

if it represents a system task, the CSCB is
marked canceled and is posted.

38 Job Management with MFT (Release 21)

If the job is represented on the CSCB
chain, but the command specified IN or OUT,
the "Job Selected" message is written to
the operator and control is returned to the
caller.

If the job is not represented on the
CSCB, indicating that the job is either in
the input or output queue(s) or that it
does not exist, IEE2803D passes control via
an XCTL macro instruction to CSCB creation
routine IEEO803D to build a CSCB for the
CANCEL command. (See the MVT Job
Management PLM for a description of
IEE0803D.)

STOP INIT and START Commands Processing
Routines (IEESD561 and IEE3903D)

These routines perform the initial
processing for all the START commands and
the STOP INIT command. When a START
command is received, STOP INIT and START
command syntax scan routine IEESD561
examines the command parameters. If
anything other than a system reader or
writer is to be started, the routine
determines the number and status of the
partition named in the command. If the
command is a STOP INIT command, IEESD561
determines which partition contains the
initiator to be stopped. The routine then
passes control via an XCTL macro instruc-
tion to STOP INIT and START Command Pro-

cessor routine, IEE3903D. (See Figure 8.)
START Command START f°'"’;‘°“d
at Console in Inpu
Stream
SVC 34
Check
Communication |(SVC 34) Command Route (SVC 34)] Reader/
Task Processing and Interpreter
Authority
Build and
Chain CSCB
Put CSCB
in PIB, Post
"No Work" ECB

(Return to IOS '

Figure 8. START Command Processing Flow

If the command is a START command,
command processor routine IEE3903D builds
and chains a CsSCB, places the address of
the CSCB8 in the partition's »IB, and posts
the partition. If a system reader is to be
started, the routine searches for a
scheduler-size problem program partition
which is inactive; if a system writer is to
be started, the routine searches for any
inactive problem program partition. If a
partition is located, the routine builds
and processes a CSCB as stated above. If a
partition cannot be found, the routine
issues a message to the operator stating
that the command has failed. If the
command is a STOP IN1T command, the routine
verifies that the partition contains an
initiator and sets the STOP INI%? indicator
in the partition's P1iB.

The section "System Task Control"
describes the further processing of the
START command CSCB. The processing of a
STOP INIT indicator is completed by the
Initiator/Terminator.

Master Scheduler Resident Command Processor

In MFT systems, SVC 34 does preliminary
processing for the commands CANCEL, DEFINE,
DISPLAY (A, CONSOLES, jobname, N, PFK,
(C,K),y U), DUMP, HOLD, MONITOR A, RELEASE
and RESET, and passes control to the master
scheduler resident command processor,
IEECIR50, to complete the processing.
IEECIR50 in turn passes control via a LINK
macro instruction to the Command Analyzer
routine, IEECIR51. IEECIR51 analyzes the
command and passes control to the Queue
Alter routine, to the DEFINE command
processor, or returns con