IBM System/360 Operating System
Input/Output Support (OPEN/CLOSE/EQV)

Program Logic Manual

Program Number 3605-DM-508

This puklication descrikes the internal logic of IBM
System/360 Operating System input/output support. The
discussion includes the relation of I/0 support rou-
tines to other portions of the control program.
Detailed descriptions of the open, close, and EOV
routines provide the bkasis for the discussions of the
other I/O support routines opend, RDJFCB, Tclcse, and
FEOV.

Program Logic Manuals are intended for wuse by IBM
customer engineers involved in program maintenance, and
by system programmers involved in altering the prograrm
design. Program logic information is not necessary for
program operation and use; therefore, distrikuticn of
this manual is limited to persons with program mainten-
ance or modification responsibilities.

Restricted Distribution

Y28-6609-1.

Program Logic

PREFACE

This puklication descrikes the functions
and organization of the input/output (I/0)
support porticn c¢f System/360 Operating
Systemr. It also descrikes the relationship
of I/0 support tc other portions of the
operating system.

The publication is divided into sections
that descrike each cf the major components
of I/C support. Each section refers to
flowcharts that show the sequence in which
the functions are performed. Appendixes
are included tc show the formats of work
areas and tables used by I/O support.

PRERECQUISITE PUBLICATIONS

The reader of this puklicaticn nust ke
familiar with the ccncepts described in the
following publications:

Second Edition (Fekruary 1967)

This publication is a major revision of Form Y28-6609-0
it. In addition to incorpcrating

IBM System/360 Operating System: Con-

certs _and Facilities, C28-6535

IBM System/360 Operating System: Data
Management, C28-6537

IBN System/360 Operating System: Intro-
ducticn to Control Program Logic, Pro-
gram ILcgic Manual, Y28-6605

SUGGESTED READING

Informaticn related to that provided in
this puklication is supplied throughout the
following puklications:

IBM System/360 Operating System: Control
Prcgramr Services, C28-6541

IBM System/360 Operéting System: Job
Ccntrcl Language, C28-6539

obsoletes

informaticn released in Technical

Newsletter Y¥28-2125, significant changes have been made to descrike the

password-protecticn feature in the open and EOV routines.

Specifications contained herein are subject to change from time to time.

Any such change
Newsletters.

will be reported

in subsequent revisions

or.Technical
-

This publication was prepared for production using an IBM computer to

update the text
impressions for
Printer using a special print chain.

and to control the page and line

Requests for copies of IBM publications

C) format. Page
photo-offset printing were obtained from an IBM 1403

should be made to your IBM

representative or to the IBM branch office serving your locality.

A form is provided at the back of this
comments. If the form has been removed,
IBM Corporation, Programming Systems

Publications,
PO Box 390, Poughkeepsie, N. Y. 12602

publication

for reader's
comments may be addressed to
Department D58,

INTRODUCTION . . <o o o « o o o = o «
Opening a Data Control Block .
Closing a Data Control Block .
Processing End-of-Volume

Conditicns. . « .« « <« « . . .

OPENING A DATA CONTROL BLOCK

The Open Rcoutine
Basic Initialization.
Volure Mounting and Verification.

General Nounting
Parallel Mounting.
Merging of Control Block
Information.
Forward Merge. . .« « « « « o .
Reverse Merge. « . .
Access Methcd Determination . . .

e e e e e o o e e o

The Opend Routine.
The RDJFCB Routine . . . « o« « « « .
CLOSING A DATA CONTROL BLOCK

The Clcse Routine. . . .« . « « « . .
Basic Initialization.
Output Label Processing

TAPE 4 o« o o o o o o o o o o @
Direct-ACCESSe o « o o o « « =
Volurme Disposition.

Lo,

Data Ccntrol Block Restoration.
Terxination. . . « « « .+ . .

The Tclose Routine
END-OF-VCLUME PROCESSING . . + .« &
Initial Processing « . . .
Concatenaticn.
EOV cn Magnetic Tape

ECV on Output Data Sets
EOV on Input Data Sets.

ECV on Direct-Access Devices . . .'

EOV for Output Data Sets. . . .
EOV fcr Input Data Sets
Force End-of-volume
CHARTS ¢ o ¢ o o o o o o o o o « =«
APPENDIX A: I/0 SUPPORT WORK AREA

APPENLCIX B: THE TRANSFER CONTROL
(XCTL) TABLE. . « o « « « « « « &

APPENDIX C: THE WHERE-TO-GC (WTG)
TABIE . ¢ o o o o o o o o o o o @

INDEXe « o o « o o o « o o o o « =

CONTENTS

ILLUSTRATIONS

FIGURES

Figure 1. Where-To-Go (WTG) Takle.

Figure

2.

Multi-Volume, Multi-Data

Set Aggregate o« o

Figure 3. OPEN, CIOSE, and EOV Work

Area.

e @ e e o o e

Figure 4. XCTI Takle

Figure 5. Where-To-Go (WTG) Table for

OPEN and CLOSE Routines . .

CHARTS

Chart
Tape
Chart
Tape
Chart
Tape
Chart
Tape
Chart
Chart

10.
and
11.
and
12.
and
13.
and
14.
20.

The OPEN Routine,
Direct-Access. . .
The OPEN Routine,
Direct-Access. . .
The OPEN Routine,
Direct-Access. . .
The OPEN Routine,
Direct-Access. . .
The RDJFCB Routine
The CLOSE Routine,

e e o

Output --

Output --

Tape.

Input --

Input --

-

7

10

36
37

38

24

25

26

27

29

TABLES

Takle 1. I/O Support

Macro-Instructions, SVC Numkers and

Routines.

Chart 21. The CLOSE Routine,

Direct-Access« .

Chart 22. The CLOSE (TYPE—T) Routlne

Chart 30. The EOV Routine,
Initialization.
Chart 31. The EOV Routine,
Initialization.
Chart 32. The EOV Routine,
Chart 33. The EOV Routine,
Direct-AccessS . <« « « .« .

5

30
31

32

33
34

35

The I/0 support routines are nonresideng
SVC routines; they reside in the sSvC
library (SYS1.SVCLIB) on the systenmr resi-
dence volume, and operate from +the SVC
transient area in main storage. Processing

prograns normally specify use of I/0 sup-
port via a macro-instruction whose expan-
sion includes an SVC instruction. Execu-

tion of this SVC instruction causes CPU
control to be passed through the SVC inter-
rupticn handler to the appropriate SVC
routine. There are seven I/0 support
macro-instructions each having an SVC rou-
tine that performs the I/O support func-
ticn. The I/C support macro-instructions,
their associated SVC numkers, and the I/0
support SVC routines are listed in Takle 1.

Table 1. I/0 Suppocrt Macro-Instructions,
SVC Numbers and Routines

r T T - -
| Macro- | svC | svC [
| Instruction | Nurmber | Routine |
[- __+_ —_— 1 —_———— 4d
L] T 1
OPEN	19	Open
OPEN (TYPE=J)	22	Opend
RDJFCB	6U	RDJFCB
CLOSE	20	Close
CLOSE (TYPE=T)	23	Tclose
EOV	55 I EOV	
FEOV	31	FEOV I
L 1 L 4

All these routines except RDJFCB are

type 4 SVC routines; RDJFCB is type 3. A
discussion of the types of SVC rcutines is
given in the ©puklication IBM Systen/360
Operating System: Introduction to Control
Prograr Logic, Program Iogic Manual.

Because type 4 SVC routines are broken
down into 1locad modules of 1024 bytes or
less, functions required by more than one
I/0 support routine are actually performed
by common load modules. For example, the
open and the opend routines are separate
SVC routines, kut functions common to both
are performed ky the same load modules.

To save time, the user can open or close

more than one DCB via a single nracro-
instruction. If an OPEN macro-instruction
specifies three DCB's, the initial load
module is executed three times (once for
each DCB) before the next lcad module is
executed. Before a load mcdule is

replaced, it is executed as many times as
is needed to open the specified data con-
trol klocks.

Input/output (I/0) support routines per-
form three functions associated with I/0
operaticns. These functions are:

INTRODUCTION

a data control klock, which is
data

e Opening
initialization required kefore a
set can ke read or written.

e Closing a data control klock, which is
final processing on a data set after it
has keen read or written.

e Processing end-of-volume conditions,
which is the processing required when
an end-cf-volume c¢r end-of-data set
ccndition occurs during an I/0 opera-
tion.

Opening a Data Control Block

Before any information can be read from
or written into a data set, the data
contrel rlock for that data set must be
opened. When a processing program issues
an OPEN racro-instructicn, the open routine
cf +the control program performs the open
prccessing.

Open processing consists of completing
centrol Eklocks that contain the charac-
teristics of the data set to ke read or
written, and of bringing into main storage
the access method routines that will oper-
ate on this data set.

Closing a Data Control Block

After reading or writing a data set is
completed, the processing program should
issue a CLOSE macro-instruction to complete
the processing of that data set. The close
routine releases main storage that was
acquired for the I/O operations when the
data control block was opened. The close
rcutine also performs final label process-
ing for the data set, and sets indicators
so that the data set is properly disposed
of when the jok step terminates.

Processing End-of-Volume Conditions

When an end-of-volume or end-of-data set
condition occurs, the end-of-volume (EOV)
routine processes lakels and determines
whether rprocessing is to continue on some
cther volume or data set. When an EOV
condition occurs, the load modules entered
are part of the sequential access method
(SsAM) and are described in the publication
IBEM System /360 Operating System: Sequen-

tial Access Methods, Program Logic Manual,

Y28-6604. These SAM modules are the first
cnes entered: one for EOV and the other for
FEOV.

Introduction 5

OPENING A DATA CONTROL BLOCK

The DCB associated with a data set must
be opened before any transfer c¢f data
between main and auxiliary storage can
occur. The data control klock 1is created
when the proccessing program is assenrkled,
but it may not be completed at that time.

Opening includes completing the DCB from
information in the job file control Ekleck
(JFCB) and the data set labkel or DSCB, and
selecting the executor routine that brings
appropriate access method routines into
main storage. Executors are 1load wnodules
that are entered from an I/0 support rou-
tine kut perform functions for a specific
access method. The operation of executcrs
is descriked in the program logic manuals
for the access methcds.

The user mway specify either of two
routines to oren a DCB: the open routine or
the opend routine. Both are +type 4 SVC
routines. The difference between the two
is that the open routine reads the JFCB
from the jok queue, kut the openJd routine

moves the JFCRBR from the dynamic area of
storage to the openJ work area. The JFCB
must be in main storage Lkefore openJd
receives contrel.

Opening a DCB using the open routine
requires only the execution of an OPEN

macro-instruction that does not have a TYPE
specification of J. Execution of the OPEN
macro-instruction causes an SVC interrup-
tion (SVC 19). The SVC interruption han-
dler rasses CPU control to the open rou-
tine.

The cpend routine receives contrcl from
the SVC interruption handler when an OPEN
macro-instruction with a TYPE specification
of J (SVC 22) is executed. However, open-
ing a DCB using the openJ routine requires
that the JFCB ke in main storage prior tc
execution of opend. When the JFCB is on
auxiliary storage, it may ke read into main
storage using the RDJFCB macro-instruction.
This allows the user to wmodify the JFCB
before the DCB is opened.

THE_OPEN RCUTINE

When an OFEN macro-instruction is exe-
cuted, the open routine gains control from
the SVC interruption handler after prcgrar
fetch has read the first load module into
the SVC transient area.

all successive
address of the

The first module, and
open mcdules, retain the

OPEN macro-instruction's parameter list in
a general register. The parameter 1list
specifies the DCB's that are to be opened.
Also maintained in a general register is
the address of the DCB that is being opened
since each open load module processes each
DCB to ke opened Lbefore passing control to
the next load module.

Throughout open prccessing, a DCB must
have its LOCK kit off (off is 1 for the
LOCK bit) and its BUSY bit on (on is 1 for
the BUSY bLit). These bits are 1in the
DCBOFLGS field of the DCB. If a DCB
specifies otherwise, it is not processed.
The IOCK kit 1is set on by I/O support
routines preceding a user exit; thus, other
I/0 suppcrt routines cannot process or
change the DCB until the I/O support rou-
tine that set the bit regains control and
resets it. The BUSY kit is set on by the
open routine to indicate that the DCB is in
the process of being opened. When the BUSY
kit is not on for successive open func-
tions, that DCB is not being opened and
will not ke processed. The BUSY bit is
turned o¢ff and the OPEN bit turned on when
all oren functions have been performed and
the DCB is ccnsidered open.

Charts 10 through 13 show the functions
and cperation cf open. A symkolic name - is
indicated akove the klocks that describe
each function. These names, and names of
the actual open load modules that contain
the functions, make up a takle that resides
in the first lcad module of open. This
takle enakles cross-referencing ketween the
charts and the open load modules.

The fcur main functions that the open
routine performs are:

e Basic initialization.

e Volurme mounting and volume verifica-

tion.
e Merging of control klock information.

e Determination of method

tines.

access rou-

The null or durmmy data set is treated as
a special case Ly the I/0 support routines.
No device is allocated té a null data set;
thus, no volume positioning, label process-
ing, or volure mounting is performed. The
oren routine recognizes a null data set by
finding the characters NULLFILE in the
DSNAME field in the JFCB associated with
the DCB being opened. Information concern-

ing the dummy data set is given in the
publication IBM System/360 Operating Sys-
tem: Sequential Access Methods, Prcgram

Logic_Manual.

BASIC INITIALIZATION

The open routine performs basic initial-
ization functions for all DCB's in the
parameter list. These functions are:

¢ Oktaining main storage for a work area
for each DCB to be opened.

¢ Determining the size of the where-to-go
(WIG) table.

e Obtaining storage for
the WTIG takle.

and setting up

¢ Reading the JFCB for each DCB tc be

opened.

Upon receiving control, the open routine.

inspects each DCB in the parameter list and
counts each DCB as an entry for the vari-
able section of the WTG table. The open
routine turns on the BUSY kit in each DCB.
(A DCR that is already OPEN at inspection,
i.e., has its OPEN kit on, is not prccessed
and is not "busy"; however, an entry for it
is counted to maintain the parallel struc-
ture c¢f the WTG takle and the parameter
list.)

For each DCB to be opened, open cktains

main storage by use of the GETMAIN macro-
instruction. This storage is wused as a
work area, the address of which is stored

temporarily in the DEB address field of the
DCB. After the WTG takle has been kLkuilt,
the wcrk area address is transferred from
the DCB to the corresponding DCB entry in
the WTG takle. The work area is used for
setting up control klocks and channel
prograrns that are required for reading and
writing header and trailer 1labels and
DSCB's, and for tape positioning. (The
work area for each DCB 1is descriked in
Appendix A.)

After open has determined how many DCB's
are in the parameter list, storage for the
WTG takle is obtained via a GETMAIN racro-
instruction. The number of bytes requested
is 32+8(n+1l), where n is the nurker of
DCB's specified in the parameter list. The
total number of bytes required is in the
WTG takle size counter.

The WTG table is a communicaticn area
for the modules of open. Figure 1
illustrates the table, and Appendix C pro-
vides a detailed description. The tatle
has two parts: a thirty-two byte Lkasic
section of standard format and a variakle
number (n+l) of eight-byte entries.

<«——— 4 Bytes ———>»

OPEN BLDL B T

Parameter List asu:,

List Section
(32 Bytes)

| Size | Flag Bytes /

Variable
Section
(8n + 8 Bytes)
Return
14
Figure 1. Where-To-Go (WTG) Table
The basic section of the takle contains

a twenty-nine kyte list equivalent to that
produced by the BLDL macro-instruction.
This 1is fcllowed by one Lkyte which gives
the doukle-word size of the entire WTG
table, and by two bytes which serve as flag
kytes (the WIGPATH).

The kits of the WTGPATH are set on or
off to indicate the path through the open
modules. Each open mocdule determines the
next cpen module ky testing the kits of the
WIGPATH. The path is controlled Lky the
fcllowing:

e Device type (tape, direct-access, etc.)
upon which the volume for the data set
currently keing initialized resides.

e ILabeling characteristics.

e Type cf processing required.

e Number cf volumes specified Ly the
JECB. (If there are nwmwore than five

volumwes indicated, JFCB extensions must
ke read into main storage.)

Each eight-kyte entry of the variakle
length secticn contains the IDTTR of the
required access method executcr in the
first five Lytes and the address of the

work' area associated with a particular DCB
in the reraining three bytes. When a DCB
is not being opened at this time, its entry
ccntains kinary zeros. The last eight-byte
entry is always the IDTTR of the open load
rodule which is to regain control from the
access method executors after their pro-
cessing is ccmplete.

Cpening a Data Control Block 7

To read the JFCB from the jcb queue to
the wcrk area, the cpen routine wmwust con-
struct control Lklocks (DCB, DEB, ECB, and
IOB) and a channel program within the work
area. Thus, the work area contains the
inforration necessary tc read the JFCBR Ly

use of the EXCP macro-instruction.

staterent with an OPEN for OUTPUT or OUTIN,
the first volume to ke processed will have
its volure serial nurber specified last in
the JFCB. Otherwise, the volume needed is
the first one indicated by the JFCB.

When deferred mounting is specified, the
jck scheduler performs no mounting for the

If an I/O error occurs, the ABEND rou- data set during job stepr initiation. The
tine (SVC 13) 1is entered. (The ABEND oren routine issues the initial mounting
routine is descriked in the puklication rmessages. Deferred mounting is descriked
IBM Syster/360 Operating Systenm: Fixed-Task in IBM System/360 Operating System: Con-
Supervisor, Program Logic Manual, cepts and Facilities.

Y28-6612.)
Whether mounting has been deferred or

JFCR extension klocks are read into the not, open determines whether the correct
work area when (1) there are more than five vclures are mounted. If correct mounting
volumwe serial numkers and a user is opening is not found, open issues mount messages

for RDBACK, or (2) there are more than five
volume serial numkers, MOD is specified and
the user is opening for OUTPUT or OUTIN.?®

address of each JFCB
from the task input/output takble (TIOT).
The address cktained is a relative track
address (ITR) and must be converted to the
full device address (MBBCCHHR). The con-
vert routine that performs this conversicn
is described in the publication IBM
System/360 Operating System: Sequential
Access Methods, Prcgram Logic Manual.

Open obtains the

VOLUME NMOUNTING AND VERIFICATION

After basic initialization, open's next
functicn is vclume mounting. During mount-
ing cpen determines whether required
volumes are mcocunted on devices allocated to
a data set. Open requests mounting of the
required volumes and then checks therm by
examining volurme lakels.

The mcount functicn is divided into gen-
eral rmounting for all DCB's to ke cpened
and parallel mounting for DCB's which spec-
ify either the bLasic direct or indexed
sequential access methods.

General Mounting

Open's actions during mounting depend
initially on the tyre of volumes needed Ly
the prccessing program. If specific
volumes are needed, open uses the vclune
serial nurkers specified in the data set's
JFCB tc check for correct volume mcunting.
(Serial nurkers are required when INPUT,
INOUT, or RDBACK is specified.)

Open performs general mounting only for
the first volume c¢f a data set tc be
processed. If the user's parameters speci-

fy RDBACK or if MOD is specified in the DD

1711 JFCB's and DSCR's are read for
tenated BPAM data sets.

conca-

and rechecks for correct mounting.

After cpen has deterrined that mounting
is ccrrect, the routine locates the proper
data set cn the volume. For tape, open
pcsitions the volume; for direct-access,
cpen locates the data set control Lklock
(CSCB) and reads it into main storage.

During mounting, open uses the SRTEDMCT
field of the wunit control bklocks (UCB)
associated with a data set. The high order

bit of this one-kyte field serves as a
rount switch and is set on when a mount
message 1is issued concerning the unit.
When the switch is on, no further mount

messages are issued for that unit until the
mounted volume has been checked. The
switch is reset to 0 when the proper volume
has keen mounted.

The 1low-crder seven bits (the data man-
agerent ccunt) are the binary number of

DCB's which are open for data sets on the
mounted volume. For direct access, the
count 1is incremented by 1 when open ascer-

tains that the mounted volume 1is the one
srecified in the JFCB. For tape, an
atterrt tc kegin processing a second data
set on a volume results in abnormal termi-
naticn cf the job step. Thus, data manage-
ment counts for tape devices will be either
0 cr 1.

DEFERRED MOUNTING: Open checks all the
UCB's allocated to the data set for the
serial nurmker of the first volume to ke
processed. When the volume serial number
is in the UCB, the job scheduler has
ipitiated mounting, and only volume check-
ing is required. When the serial number is
not found and the wmwount switches in the
allccated UCB's are off, the wuser has
requested deferred mounting. Open checks
these same UCB's for one whose data manage-
ment count is 0 and which does not specify
a volume that is reserved, public, perma-
nently resident, or used for system resi-
dence. Should none of the allocated de-

vices ke available, the jok step is akncr-

mally terminated.

When open has found a suitakle unit, the
routine issues a mount message to the
operatcr designating the volume serial nur-
ber specified in the JFCB. When the JFCB
does not indicate a volume serial nurxker
(e.g., for OUTPUT or OUTIN data sets),
open's mount message specifies a scratch
volume.

Open sets the mount switch in the asso-
ciated UCB tc indicate that a mount has
been requested and that volumwe checking is
required.

VOLUME VERIFICATION: Whether a mount mes-
sage has been issued by open or by the job
scheduler, open checks the mounted vclure.
When volume serial numkers are required,
the serial number from the JFCB is compared
with the serial number from the latel.
When jok scheduler has initiated the mount,
the volume serial number is found in the
UCB.* When the mount was initiated ky open,
open nust read in the volume 1lakel to
okbtain the serial numker. When the volume
has bLeen recognized as the correct volure,

open inserts the volume serial number into
the UCB. For tape volumes, open also
inserts the file sequence number into the

UCB.

Volume checking has the following varia-
tions:

¢ For volumes with standard labels, open
oktains the volume serial number from
the 1label. If this number is the same
as the nurnker specified in the JFCB,
the required volume has been mounted.
Open sets the mount switch off and
increments the data management count by
one. When the two serial numbers are
not the same, open reissues a mount
message to the operator and checks the
new volume.

e For volumes with nonstandard 1latels,
open ascertains that standard lakels do
not exist for the volume. Open passes
control to the user's nonstandard label

processing routines. When the user
returns control, he indicates whether
the volume is correct. If the vclume

is not correct, open reissues mounting
messages and again asks for checking Ly
the user rcutines. After the correct
volume is mounted, open sets the rount
switch off and increments the data
ranagement count.

i1Wwhen SYSIN cr SYSOUT 1is specified, the
volumes are not processed Ly open except
for incrementing the data management count.

¢ When unlakeled volumes are specified,
cren ascertains that standard labels do
nct exist for the volure. The mcunt
switch is set off, and the data manage-
wrent count is incremented.

When CUTPUT or OUTIN tape volumes are
specified, the open routine <checks the
mounted volume for the specified density

(when dual density devices are wused) and
lakel characteristics. When the label type
and/or density of the volume does not agree
with the user's specifications, control is
transferred to a lakel editor module. The
user may either wutilize the IBM-supplied
routine or surply an editor module.2 The
standard routine requests replacement of
the current volume with a volume containing
the specified label type and sets the mount
switch on. Control is returned to the
mount-verification module for volume check-
ing.

When an OUTPUT, OUTIN, or INOUT tape
volume has been verified, the open routine
reads the sense Lytes to check for file
protecticn. When the sense bytes do not
show file protection, the open routine
proceeds to its next function. When the
volure 1is protected and the mode is OUTPUT
or OUTIN, the routine issues a message to
the operator requesting the insertion of a
file protect ring. When the mode is INOUT,
the message issued gives the operator the
ortion of inserting a protect ring.

TAPE POSITICNING: After tape volumes have
been verified, the open routine positions
the volures at the data set specified by
the user and, when possible, verifies data
set labels.* (The user's nonstandard lakel
routines position tapes Lefore returning
control to the mount-verificaticn module.)
Open positions tape using the data set
sequence numbers supplied by the user.
These sequence numbers are available as
counters in the UCB -- SRTEFSCT and
SRTEFSEQ. The physical sequence (SRTEFSCT)
is the relative position of the data set on
its resident volume. The lcgical sequence
(SRTEFSEQ) is the sequence of a data set in
a group of related data sets. When the
data sets are contained on a single volume,
these two numbers are equal. For multi-
volume, rulti-data set aggregates, they may
differ.

Figure 2 shows the physical and 1logical
sequences of the data sets residing on a
multi-volume, multi-data set aggregate.
This aggregate consists of four data sets
contained on two tape volumes.

2Information on writing volume label editor
routines is given in the puklication IBM
Syster/360 Operating System: System

Prograrmer's Guide.

Opening a Data Control Block 9

r L] T 1
Tape 1 | A | B | C |
L 1 L 4
r T 1
Tape 2 | C | D |
L L]
L} T T T 1
		Tape 1 --	Tape 2 --
Data Set	Logical	Physical	Physical
	Sequence	Sequence	Sequence
I —_—— 4 1 4 __.{			
r T T T			
B O			
B	2	2	-
c	3	3 1 1	
D	T 2		
L 4 L 4 J
Figure 2. Multi-Volume, Multi-Data Set
Aggregate

Unlakeled Tare Pcsitioning: The open rou-
tine positions unlakeled tapes by comparing
the physical sequence numker in the UCE to
the 1lcgical sequence numker in the JFCB.
For output data sets if the physical
sequence number does not equal the 1logical
sequence number, the data set sequence
number in the JFCB is replaced Ly the
physical sequence number (this is required
only for rulti-volume, multi-data set
aggregates).

For RDBACK, the tape is
akove and in addition, for:

positioned as

e One vclume - forward space files fol-
lcwed by a Lkackward space file is
issued to position the tape at the end
of the aprropriate data set.

¢ More than cne volume - the last volume
specified in the JFCB is positioned as
if the data set sequence number in the
JFCB were a 1. The sequence numker

fror the JFCB replaces the 1lcgical
sequence number in the UCB.
Input Standard lLakeled Tape Processing:

Lakeled tape positioning is the same as for

unlakeled except that the HDR1 (Data Set
Lakel 1) is read and the sequence numker
from the label is inserted into the UCB.

This nunker
in the JFCB.

is checked against the numker

After tape positioning, the tape is left
positioned in front of the HDRI1. Hcwever,
for RCBACK and for OUTPUT with MOD speci-
fied, the tape is left in front of the tape
mark preceding the trailer latel.

For all DCR's in the parameter list with
mounted tape volumes that have standard
lakels, the open routine determines whether
the 1lakels sgpecify the correct data set

name. (For open to verify labels, the OPEN
parameters must specify INPUT, INCUT, or
RDBACK.) Open then fills in the =zero

fields in the associated JFCB's with fields

10

specified in the laktels;
tions the tapes at the
record.

open also posi-
first data set

To verify that the tape is correct for
the data set, open inspects HDRl. Open
uses the least significant nonblank charac-
ters (with a maximum of 17) of HDR1 to
deternmine the data set name. The label
data set name is then compared with the
data set name in the JFCB. If the names do
not agree, control is passed to the ABEND
routine. When they do agree, HDR2 is read
into the work area.

(If the DCB is keing opened for INOUT,
the retenticn date is checked to make
certain that a current data set is not
destrcyed. If the date has passed, open
processing continues. If not, a message is
written to the operator, and if the tape is
nct verified ky him, the task is terminat-
ed.)

After the open routine verifies the data
set, cpen checks HDR1l for specification of
a password-protected data set. When the
data set is protected, control is passed to
the cpen security module. This routine
estaklishes its work area and then searches
the SYSRES VTOC for the DSCB of the pass-
word data set. If the search is unsuccess-
ful, an aknormal job step termination is
requested. When the password DSCB is
fcund, the routine initializes a counter
used to limit to two the numker of attempts
tc oktain the correct password from the
operator; it then passes control to the
passwcrd reader routine. (The latter may
be installation supplied.)

The password reader increments the coun-
ter Ly cne and then prepares the operator
message tc request the data set password.
The wmessage identifies the data set by
giving the jok and step names and the
DDNAME. These names are oktained from the
data set TIOT entry. When the routine has
issued the message, it returns control to
the security module.

The security module searches the pass-
word data set for the one supplied by the
orerator. When the correct password is
submitted, the security module reads in the
data porticn of the password entry. The
routine ccmpares the mode kyte of the entry
tc the specified method of cpening for - the
data set. When modes agree, the user count
from the data portion of the password entry
is incremented by one. If the modes are
nct the same, the job step is abnormally
terrinated.

When the password sukmitted by the oper-
ator is not found, the open security rou-
tine determines whether one or two attempts
have been made. When cne attempt was made,

the security module passes control to the
password reader routine to initiate a sec-
ond request. When the operator has given
two incorrect passwords, the jok step is
abnormally terminated.

When the open security routine has suc-
cessfully verified all security-protected
data sets to be opened, it releases the
work area and passes control to the next
open module.

HDR2 follows HDR1 and contains data set
characteristics. This header 1is wmerged
with the JFCB. The zero fields in the JFCB
that may be filled in by fields from the
HDR2 are converted from the BCD (7 track)
or EBCDIC (9 track) form of the HDR2 to the

binary form of the JFCB. The tape is then
positicned (forward space file) +to the
first data reccrd (if RDBACK is specified,

a kackspace file operation is performed.)

Output Standard ILakeled Tape Processing:
When the tape is positioned to receive a
new data set, the open routine checks the
tape for a header label. If no 1label is
found, one is created for the data set. If
a header label is found (indicating that a
data set is already on that part of the

tape), it 1is checked to determine whether
it may Le overlaid. The open routine
checks for wunexpired and for security-
protected data sets. If the expiration

date of the data set on the volume has not
passed, the open routine issues a wmwessage
to the operator. If the operator replies
that the tape is not to be wused, he nmay
mount a scratch volume.

When the exriration date has passed, the
open routine checks for data set security.
If the header label indicates security, a
check is made for the correct data set name
as for input tape, and then ccntrcel is
passed to the security routine. If the
correct password is given, the new lakel is
prepared.

The new header label is constructed from
the informaticn in the JFCB. The HDR1 and
HDR2 fields are determined, and where
necessary, binary fields specified in the

JFCB are translated to the character forms
of the 1latel. A tape mark is written
following the label.

DIRECT-ACCESS VOLUME SEARCHING: When a

direct-access volume is mounted, the volume
label for that volume points to the volume

table of contents (VTOC) which contains a
DSCB for each c¢f the data sets on that
volume. To locate the correct DSCB's for

the data sets associated with the DCB's in
the parameter 1list, cpen searches on key
equal with DSNAME from the JFCB. When the
search 1is equal, the correct DSCB for the
data set is found. Open then reads the

data portion of the DSCB (96 Lbytes). If
the DSCB is not successfully read, the job
step is terminated.

When the DCB specifies that the data set
is not to be NEW, the expiration date in
the DSCB is checked; if the date has not
expired, a message 1is transmitted to the
orerator. If the operator indicates that
the data set cannot ke modified, the job
step is terminated so current data sets
will not ke destroyed.

If the DsSCB (format 1 klock) specifies
security, the open security module receives
contrcl. The security routine operates as
for tape except that the specification of
BPAM concatenation requires checking each
mexmber that 1is a security-protected data
set.

Parallel NMounting

Parallel mounting is similar to general
mounting but handles the specific require-
ments of prccessing programs using ISAM or

BDAM. These access wmethcds require that
all volumes of a data set be mounted
concurrently.

During 3jok step initiation, the job

scheduler will initiate mounting not only
of the first volume of a data set but also
of all the vcolumes required for ISAM or
BDAM. Hcwever, the scheduler will only
allocate units to handle all the volumes if
the processing program specifies deferred
mounting.

For parallel mounting, open checks all
DCB's for those that specify use of ISAM or
BDAM. When one is recognized, open exam-
ines the associated data set's task I/0
takle (TIOT) entry. Since the TIOT 1lists
all the UCB's for devices which have keen
allocated to a data set, open can determine
whether multiple volumes are required by a
DCB's asscciated data set.

When the TIOT does not indicate more
than cne UCB, no parallel mounting takes
place since the first volume of every data
set has keen checked for correct mounting
by the general mount.

For those DCB's requiring parallel
mounting, open uses the serial numbers
given in the JFCB. Since a data set may

reside c¢n more than five volumes, open may
require JFCB extension klocks to obtain the
complete 1list of serial numkers. Open
oktains the extension klock from auxiliary
storage.

To perform I/0, the parallel mount uses

its own GETMAIN areas: one large encugh to
receive a JFCB or a JFCB extension block,

Opening a Data Control Block 11

the other large enough to receive a volume
lakel.

In mcst respects, the parallel mount
procedure 1is the same for BDAM and ISAM.
The difference arises from the possikility
of wusing more than one DD staterent in
defining an indexed sequential data set.

BDAM Parallel Mounting: When the examina-
tion of the TIOT indicates additional UCBR's
for a data set, open checks.the associated
JFCB fcr the next volume serial nunber.
When five serial nurbers have keen oktained
from a JFCB, it is necessary tc read the
extensicn klock intc the GETMAIN area.

When the serial number has keen oktained
from the JFCB or from the extension kLklock,
open ascertains that the nurmber is non-
blank. The recognition of a kLklank serial
number field results in aknormal termina-
ticn of the jok step.

Open examines the UCB for the presence
of the volume serial number. When the
number is in the UCB, the volure has bLeen
mounted Lky the job scheduler. Open need
only increment the data management count
and set the mount switch off. When the
volume is not mounted, open sets the rnount
switch on and issues a mount message. The
open routine reads the volume lakel into
the GETNMAIN area for checking.

verification is the samre as for
the general wmcunting. When the correct
volume has been rmrounted, open gets the
volume takle c¢f contents (VTOC) address
from the 1label. The address is ccnverted
to the relative track form. The converted
VTOC address and the volume serial numker
are placed intc the UCB.

Volurme

Open sets the mount switch c¢ff and
increments the data management count as in
the general mounting. Unlike the general
mount when this would complete mounting for
a DCB, the parallel mount must check the
TIOT fcr specification of further UCB's for
this data set. Only when the TIOT entry
lists nc other UCB's does parallel rounting
for ancther DCR begin.

ISAM Parallel Mounting: The parallel mount
procedure for ISAM is the same as for BDANM
with one exception. When open examines the
TIOT entry for a data set, the specifi-
cation of no additicnal UCB's does nct mean

that all the volumes of the data set are
mounted. Since the data set wmway require
more than one DD statement to define it,

there may be mcre than one TIOT
the data set.

entry for

When this occurs, the additicnal TIOT
entries have their DDNAME fields blank, as
for concatenation. Therefore, when the

12

TIOT entry indicates no
oren exarines the next entry.
entry has a klank DDNAME field,
another JFCB for the data set. Open reads
the associated JFCB into the area. From
this point, the prccedure is the same as
fcr BDAM.

additional UCB's,
If the next
there is

When the examination of the next TIOT
entry dces not result in a blank DDNAME
field, all the volumes associated with the
data set have keen mounted. Open frees any
GETMAIN areas that were acquired and con-
tinues parallel mounting for any other
DCB's that specify ISAM or BDAM.

Reading Additional DSCB's: After all

volures have Leen mounted for BDAM and
ISAM, open reads in the associated DSCB's.
Open uses the VTOC address from the UCB
specified in the data set's TIOT entry to
address the DSCB. In main storage, open
sequentially chains a data set's DSCB's,
beginning with the DSCB of the first volume
tc ke prccessed. The open routine read the
first DSCB fcllowing the general mounting.

For 1IsAM, the possikility exists of
duplicating the reading of DSCB's since the

same volume may be specified in more than
one TIOT entry for a data set. To avoid
this, oren <checks all format 1 blocks

already read for one with a UCB pointer
equal tc the UCB pointer of the present
DSCB. When the routine recognizes equal
pointers, it proceeds tc the next volume if
one exists. The open routine places the
UCB pcinter in the sukallocation field of
format 1 klocks. (ISAM allccaticn does not
use this field.) Open also checks for a
fcrmat 2 klcck on the first volume of the
data set. If this block is aksent, the jokt
step is aknormally terminated.

For BDAM, the open routine places the
number of extents of the data set
(excluding the first volume) into the DCB.
The BDAM executor uses this count to deter-
mine when it has constructed all extents in
the DEB.

Open determines
program has

whether the processing
specified the same volume
sequence as the sequence of the original
allocaticn. The sequence is correct when
successive sequence numkers in the TIOT are
in ascending order. When the sequences do
nct agree, the job step is aknormally
terminated. The open routine makes this
check for koth BDAM and ISAM.

MERGING OF CCNTROL BLOCK INFORMATION

The numker of completed fields in the
DCB kefore it is opened varies with the
type and nurnber of parameters specified in
the DCB rwacro-instruction. At execution

time, additicnal attributes may be intro-
duced intc the DCB from the DD statement.
Job management routines place these attri-
butes into the JFCB, and the open routines
transfer them to the DCB. The open rou-
tines use a merging process.

The user may add to cr modify informa-
tion in the DCR during opening ky including
an active DCB exit in his exit list. (The
DCB exit is descriked in IBM System/360
Operating System: Data Managerent.) When
requested, open takes this user exit after

the informaticn merge to the DCB is com-
plete.
There are two types of merging with

respect to the DCB:

information from the
JFCB to

e Forward; merging
DSCB or data set lakel to the
the DCB.

¢ Reverse; merging information from the
DCR to the JFCB to the DSCB.

Forward Mexge

The forward merge from the data set
label to the JFCB completes zero fields in
the JFCB.

The merge is the same for tape lakels as
for DSCB's except that different JFCB
fields may be filled from the twc 1lakel
types. From DSCB's, the following JFCB
fields may be completed:

JFCRECFM - record format.

JFCOPTCD - option codes.

JFCKEYLE - direct access key length.
JFCDSORG - data set organization.
JFCBLKSI - block size.

JFCLRECL - logical record length.

For tape, the these

fields:

merge may corplete

¢ JFCRECFM - record format, carriage con-
trcl character, and machine code.

¢ JFCIRECL - logical record length.

e JFCIRTCH - tape recording technique.

The forward merge from the JFCB to the

DCB takes place for all DCB's to be opened..

This merge
fields into

places information from JFCB
corresponding DCB fields that

are zerc. The fields which may be merged
are listed in the three merge takles.
These are:

e DCB merge table, which contains dis-

placements for the fields in the DCB

that are to be merged.

e JFCB merge table, which contains dis-
placements for the fields in the JFCB
that are tc be merged.

e Field length takle, which contains the
lengths of the fields to be merged.

Each takle contains an access method depen-
dent section, which contains the DCB fields
that are present only for a particular
access methcd and a section that .contains
DCR fields that are always present, regard-
less of the access wmwethod. The access
nethod executor to receive control from
open 1is determined at this time and indi-
cated in the WTG table.

During the JFCB to DCB merge, modifica-
tion of a field is noted by setting the

field's associated bit. The set of DCB
rodification Lits make up a mask that is
placed in the DEB after its construction.

The <close routine uses the mask to reset
the DCB tc its pre-open status.

Reverse Merxge

In the reverse merge from DCB to JFCB
for cutput, the DCB fields override exist-
ing JFCB fields excert the DSORG field.

These JFCB fields specified ky the merge
takles (see JFCB to DCR merge) are made
equal to corresponding DCB fields. For an

output DSORG field and for input, the merge
only occurs when the JFCB fields were
previously zero.

The reverse merge from JFCB to DSCB
takes rlace only for DCB's specifying
direct access output. DSCB fields except
the DSORG field (see DSCB to JFCB merge)
are made equal to corresponding JFCB

fields. Already existing fields are over-
ridden. The DSORG field in the DSCB is
made equal only if it has been previocusly

Zero.
an indicator is set to show that the
has keen rmodified.

When the JFCB to DSCB merge occurs,
DSCB

ACCESS METHOD DETERMINATION

During the merge process, open uses the
DSORG and MACR fields to determine the type
of DCB keing opened. From this, open
ascertains which access wmwethod executors
are required to process the DCB. Open
finds the addresses of the executors in the
XCTL takle. Appendix B gives information
akout XCTL takles.

Open transfers the IDTTR and lcad length
of the required executor from the XCTL
table tc the associated DCB's entry in the
WTG table. The IDTTRs are placed 1in the
table only for those DCB's keing opened at
this time. Otherwise, zeros are entered in
rlace of the executor IDTTR.

Tc pass control to an access method

executor, open moves the IDTITR field of the
first nonzero entry in the variakle section

Opening a Data Control Block 13

to the apprcrriate fields in the standard
section of the WTG takle. While the execu-
tor has control, it determines whether
another executor is needed to continue
processing. If another executor is
required, the executor overlays the IDTTR
in the associated entry in the variakle
section with the IDTTR of the required
executcr. When no other executor is needed
for a DCB, the ID of its entry is set tc
zero.

When an executor has overlaid cr zeroced
its ID, it examines the immediately fcllow-

ing DCB's entry to ascertain whether that
entry's ID is equal to its own ID. If they
are equal, the same executor must bke

entered for the next DCB. Therefore, the
executcr Lranches to its starting address.
If the 1ID's are wunequal, the executor
determines whether the new ID is the last
in the table by comparing it with the ID of
the final open load module. If takle end
has not been reached, the executor contin-
ues its examination of following entries,
until table end is recognized.

When the end of takle has keen reached,
the takle pointer is reinitialized tc the
first entry, a search is made for the first
nonzeroc entry, and control is passed tc the
indicated module. Open progresses through
all entries in the WTG takle in this mwanner
until the only nonzero entry is the final
open mcdule. Control is then passed to the
final cpen module.

If +the DSCR has been modified, as indi-
cated ky the kit set during the merging, it
is written back onto its associated vclume
in modified form. If not modified, no
rewrite is necessary. When the cpen func-
tions are corplete, the WIG table and the
work area are no longer necessary, sc the
FREEMAIN macro-instruction is issued.

The DCB's are indicated as cpen; the
OPEN kit is turned on and the BUSY kit is
turned off. BAn SVC 03 (EXIT) is issued tc
return CPU control to the supervisor.

THE OPENJ ROUTINE

The opend rcutine receives contrcl frorx
the SVC interrupticn handler after the OPEN
macro-instruction with a TYPE specification
of J (SvVC 22) is issued.

The opend routine, with one exception,
operates and has the sare functions as the

open routine. (Refer to Charts 10 through
13.) The exception is that the JFCB is
read frcm the Jjok queue in the open rcu-

tine, kut must ke in main storage when the

openJ routine 1is entered. The orend rcu-
tine mcves the JFCB into the opend work
area.

14

Tc 1lccate the JFCB, the openJ routine

checks for a DCB foundation extension that
specifies the wuser's exit list. The exit
list shculd contain an active exit

(hexadecimral 07) that indicates the address
cf the JFCB in the dynamic area. If the
extension, exit 1list, or JFCB address is
nct present, the ABEND routine is entered.

THE RDJFCBE RCUTINE

The RDJFCB routine receives control from

the SVC interruption handler when the
RDJFCB mwacro-instructicn (svc 6U4) is
issued. The RDJFCB routine reads the
JFCB's associated with the DCB's in the

pararneter list into the dynamic area. (No
JFCB extension blocks can ke read.) Execu-
ticn of the RDJFCB load module is repeated
as required for each DCB in the parameter
list kefcre control 1is returned to the
interruption handler. The RDJFCB routine,
therefore, maintains the address of the
current DCB keing processed as well as the
starting address of the parameter list.

The RDJFCB routine orerates with opened
and wunorened DCB's. No processing is per-
forred on an uncpened DCB if the DDNAME in
the TIOT does not match the DDNAME field in
the DCB.

Chart 14 shows the functions and opera-
tion c¢f the RDJFCB routine. A symkolic
nare 1is indicated akove the klocks that
describe each function. These names, and
nares of the RDJFCB load module are con-
tained in a takle in the 1listing of the
RDJFCB rcutine. This takle enakles cross
referencing bLetween the charts and the
listing. Since the RDJFCB rcutine is a
type 3 SVC routine, it has only one 1load
module.

The RDJFCB routine first inspects the
LOCK kit in the DCB. The LOCK bit, if set
tc 0, indicates that another I/O support
routine is currently processing that DCB
and the DCB should not be altered. If the
ICCK kit is zero, the user regains control
with no processing on that DCB. The next
DCB is inspected.

An errcr exit 1is taken to the ABEND
routine if the wuser has not specified an
active exit ky means of the hexadecimal
value 07 in the high order Lyte cf an entry
in his exit 1list. The exit 1list is
addressed Ly the DCB tc be processed. The
entry indicates the address in proklen
program storage into which the JFCB is to
ke read. If the address is invalid, the
ABENLC routine is entered.

When the user has specified an active
exit and the problem rrogram address is
valid, the RDJFCB routine obtains a work

area (see Appendix A) by means of GETMAIN
macro-instruction, sets up the work area to
receive the JFCB for the DCB, constructs
the ccntrcl Lklocks necessary to read the

JFCB ky means of the EXCP macro-
instruction, and constructs the channel
prograr.

The convert routine is used to change
the address of the JFCB from the relative
track address (TTR) to the actual track
address (MBECCHHR) . This rcutine is
discussed in the puklication IBM Systen/360
Operating System: Sequential Access Meth-
ods, Program Icgic Manual.

The RDJFCB routine issues the EXCP
macro-instruction to read a JFCB. The JFCB
is 1read into the work area, and, if there
are nc I/0 errxcrs, the RDJFCB routine moves
it to the dynamic storage area specified in
the exit list. 1I/0 errors cause the job
step to ke terminated.

The mrain storage into which the JFCB is
read is released Ly means of the FREEMAIN
macro-instruction, and the next DCB to ke
processed is oktained, and the processing
is repeated. When all of the required
JFCB's are read, the RDJFCB routine returns
ccentrcl tc the superviscr.

Opening a Data Ccntrol Block 15

CIOSING A DATA CONTROL BLOCK

The DCB asscciated with a data set rmust
ke closed after completion of all data
transfer operaticns between wmwain stcrage

and auxiliary storage. The control program
will pass control to the close routine if a
DCE is still cpen when a task is terminat-
ed.

Closing a DCB includes restoring the DCB
to its original condition, processing
lakels, determining volume dispcsition,
removing the DEB from the DEB chain, and
releasing access method sukroutines.

Closing a LCB requires the execution of
a CLOSE macro-instruction that dces not
have a type specification of T. Execution
of the CLOSE rmacro-instructicn causes an
SVC interruption (SVC 20). The SVC inter-
ruption handler passes CPU control tc the
close rcutine.

A DCB can also ke temporarily closed if
the kasic sequential access method is used.
Temporary closing requires executicn cf a
CLOSE rmacro-instruction that has a type
specification c¢f T. This macro-instruction
causes an SVC 23 interruption. The SvVC
interruption handler passes ccntrol tc the
Tclose routine.

The Tclose rcoutine differs frcr the
close rocutine in that Tclose does not
restore the DCB or release the DEB ox
sukroutines. Tclose rperforms only lakel
processing and repositioning. Therefore,
when the Tclose routine closes a DCB, data
set processing can ke resured without re-
cpening this DCB.

THE CICSE ROUTINE

The close routine 1is a type 4 SvC
routine. It is entered from the SVC inter-
ruption handler after the issuance cf a
CLOSE racrc-instruction (SVC 20).

The first module to ke executed gains
contrcl from program fetch after fetch has

read it intc the SVC transient area. All
subsequent mocdules are loaded and gain
control Lty wmeans of the XCTL racro-

instruction.

The close routine maintains the address
of the parameter list of DCB's that are to
be closed and the address of the DCB keing

closed. This facilitates the prccedure of
executing one load module for every DCB
requiring it before passing control to

another module.

16

In order fcr a DCB to ke closed, it must
have its LIOCK bit o¢ff (coff is 1 for the
LOCK kit) and its OPEN kit on (on is 1 for
the OPEN bit). These kits are within the
CCRBOF1IGS field. The LOCK Lkit, when off,
indicates that no other I/0 support routine
has kegun operations upon that DCB. If the
LOCK bit is on, the close routine does nc
processing upon that DCB and goes on tc the
next DCB. The OPEN bit, when on, indicates
that the DCB has been cpened and may Le
closed. If the OPEN kit is off, the close
rcutine goces on to the next DCB.

Upcon entry into the first module of
close, the BUSY bkit is set on (to 1) to
indicate that the DCB is in the process of
keing closed. This kit remains on until
the DCB is closed.

routine encounters a
condition that requires aknormal
terrinaticn of a task, the routine first
checks the ABREND bit in the TCB to deter-
rine whether the task is already undergoing

When the close

terminaticn. If the kit is on, the close
routine dces not issue the ABEND macro-
instructicn, but ignores the error
condition and continues «clcsing the DCB.

If +the ABEND kit is off, the close routine
passes ccntrol to the ABEND routine for
aknormal termination of the task.

This 1logic gives the ABEND routine the
facility to clcse each DCB related to a TCB
through a DEB, when the asscciated task is
being aknormally terminated. The ABEND
routine sets the ABEND kit to indicate to
the close routine that the error condition
shculd ke igncred and that the DCB should
ke clcsed as normally as possible.

Charts 20 and 21 shcw the functions and
oreration of close. A symkolic name is

indicated akove the Lklocks that descrike
each functicn. These names and the names
of the actual close 1load modules that

perform the functions are contained in a
takle in the first load module of close.
This takle enables cross-referencing
between the charts and the listings of the

close load modules.

BASIC INITIAIIZATION

The close routine, like the open rou-
tine, uses main storage for a work area and
fcr a WTG takle. A work area is obtained
for each DCB in the parameter 1list. The
size of the WTG takle is determined (kasic
secticn and numker of entries for the

variakle section). Storage for the wcrk
area and WTG takle 1is acquired via a
GETMAIN macro-instruction.

close rou-

During initialization, the

tine:
e Ascertains task-data set relaticnship.
e Purges queued and active I/0 requests

associated with data sets that are
being operated upon on the EXCP level.

e Constructs control klocks fecr reading
JFCB's and DSCB's into the work areas.

e Determines and indicates on the WTG
takle (WTGPATH bytes) the access method
executors and close modules necessary
for closing each DCB.

Task-Data Set Relationship: To prevent a
probler program from closing a data set
that was opened under a different task from
itself, the close routine checks family
ID's. The family ID of the task keing
processed must ke the same as the farily ID
in the DEB addressed by the DCB that is to

be closed. If the family 1ID's dc not
agree, <close does not process the DCB
unless the ABEND routine has issued the
CLOSE.

Purge: When a data set is closed, mno 1I/0
requests may ke executed for it. Thus,

when the close routine gets
queued I/0 requests, and
actively being executed, are purged. The
close routine issues the PURGE macro-
instructicn (SvVC 16) for each DCB to remove
I/0 requests for data sets that are
operated upon cn the EXCP level. The purge
routine is descriked in the puklication IEM

control, the
any that are

System/360 Orerating System: Input/Output
Supervisor, Program ILogic Manual, Form
Y28-6616.

Control Blocks: In the work area, the
close routine constructs the control blocks
necessary to perform I/0 operations.

WTGPATH: The close routine determines the
device type, whether a JFCB or a DSCB
should be read for each DCB, the access

method executors necessary for the DCB if
the access methods are ‘used, and if the
device is tape, whether it has standard or
nonstandard lakels cr is unlabeled.

The WTGPATH Lytes in the WTG takle are
set, as in the open routine, to indicate
the following:

Tape cr direct-access output.

Output tape trailer label preparation.
Tape positioning.

Direct-access output and disposition.

The close routine determines from the
XCTL takle +the ID and TTR of the access
wmethod executors required for clecsing each
DCB. Clcse 1loads them intc the variakle
secticn of the WTG takle.

OUTPUT LABEL PROCESSING

When a write was the last operation that
cccurred kefore closing (for CUTPUT, OUTIN,
or INCUT), the close routine processes data
set labels. For tape, the trailer 1lakels
are constructed from information contained
in the JFCB's. For direct-access devices,
the DSCB's are read, and the last-block-

written field and the track-balance field
are updated.
Tare

The close routine indicated during
previcus initialization that a JFCB is
necessary for the DCB's specifying tape

outrut data sets. Close constructs the
channel programs and reads the JFCB's.

The ccnvert routine is used to convert
the relative address cf the required JFCB
for each DCB tc the actual track address of
MEBCCHHR. The contrcl blocks were pre-
viously constructed so the EXCP macro-
instructicn need only to be issued for
reading the JFCB into main storage. If an
I/0 error occurs during the reading of a
JECB, the task is aknormally terminated
unless the ABEND bit of the TCB is on. If
cperation is not on an EXCP level, the
access method executors are executed. Upon
return to close, trailer 1labels are
constructed.

Before construction cf a trailer 1laktel,
the close routine inspects the WRITE kit
within the DCBOFLGS field. If off, no
output has been written and a trailer is
unnecessary. Wwhen on, the close routine
writes a tape mark after the data. Then
close constructs trailer lakels, EOF1 and
ECF2, from the inforration in the JFCB, the
DCB, TIOT, and UCB, and writes these labels
on the tape. After lakels are written for
each DCB specifying standard cutput tapes,
nonstandard lakel routines are entered if
required ky other DCB's.

Direct-Access

The clcse routine reads the DSCB by
means of the EXCP macro-instruction using
the DSCB address which is saved in the DEB
prefix section by the open routine. When
the DSCB is in the work area, the last-
tlock-written field and track-balance field
are updated.

For DCB's that do not have the WRITE bit
set, the close routine need not update the

Closing a Data Control Block 17

DSCB, ncr does it update the DSCB when the
last Eklock written is not in a sequential
or partitioned organization data set.

The full device address is converted by
means of the convert routine, and the
relative device address is placed into the
DSCB last block written field.

When the DEB (DEBOFLIGS field) specifies
that unused external storage is tc ke
released and the WRITE kit is on in the DCB
(storage is not released when the ABENL kit
is c¢n), control is passed to the DADSM
release routine.

The release routine updates the DSCB's
of Lcth the data set and the availakle
storage on the volume to show that the
unused tracks are nc longer assigned tc the

data set. The wupdated DSCB's are then
written kack into the VTOC.
The close routine writes a file rwmark

after each output data set that specifies
physical sequential data set organization
and READ/WRITE, GET/PUT, or EXCP macro-
instruction reference. A data set that is
not terminated Ly a file mark kecause of

extent limits reaches end-of-data on input
Ly coming to end-of-extent. Centrcl is
passed to the ABEND routine if a permanent

I/0 error is
file mark.

encountered while writing a

The file mark'is written on the next
track of the data set's extent. Fcr fixed
standard reccrds, a file mark is alsc

written in the present track (if ancther
record will fit). A file mark is written
on the first track if no WRITE was issued.

VOLUME DISPOSITION

Fcr tape or direct-access volumes,
paranmeters in the CLOSE macrc-instruction
may indicate the volume positicning

required after closing. If LEAVE or REREAD
is not specified in the macro-instructicn,
the clcse routine examines the TIOT for the
KEEP or DELETE dispositions provided in the
DD control statement. If no disposition is
specified in either the macrc-instructicn
or the DD statement, the close routine
assumes the LEAVE disposition.

For an output tape data set, the WRITE
(trailer switch) kit is on, indicating that
a write has taken place and a tape mark
must ke written. The close routine writes
two tape marks and then positions the tape
according to the disposition specified.

If the LEAVE disposition 1is specified,
the «clcse routine positions the current
volures after the file mark if unlakeled,

or after the file mark following the trail-

18

er 1label if 1labeled. The close routine
then increments the logical and sequential
data set sequence numbers in the UCB Ly 1.
If the REREAD disposition is specified, the

close routine positions the current volume
tc process the data set again. No tape or
volure positioning is performed for SYSIN,

SYSOUT or for null data sets.

If the KEEP disposition is specified and
the vclure:

is private,

is nct permanently resident,

is nct used for SYSRES, and

has its user and data management counts
equal to one,

close issues a message to the operator to
disrount and keep the volume. To effect
the KEEP disposition, a rewind unload com-

wrand is idissued for a tape volume; for
direct-access, the not-ready kit is set in
the UCB. If the DELETE disposition is

specified, a rewind command is issued for a
tape device. If DELETE is specified for
direct-access, no action is taken.

DATA CONTROL BIOCK RESTORATION

To festore the DCB, the clcse routine
uses twc takles: a takle of DCB displace-
ments and a takle of DCB field lengths. By
using a wmask in the DEB which is set by the
open routine, close zeros the fields that
were nmerged tc the DCB from the JFCB.

Texminaticn

After restoring the DCB, the close rou-
tine releases the wmwain storage used for
sukrcutines, appendages, the DEB, and the

wCcrk area. The DEB is remcved from the DEB
chain; remraining DEB's are rechained. The

data managerent count in the UCB is decre-
mented by one for each DCB which 1is Leing
closed for tape or direct-access. Close
then checks for concatenation of data sets

with wunlike attributes. In this case, the
close routine transfers ccntrol to the oren
routine. Otherwise, the close routine
returns ccntrol to the supervisor.

THE TCIOSE ROUTINE

Chart 22 shows the operation and func-
tions performed by the Tclose routine. A
symbclic name is indicated akove the Llocks
that descrike each function. These names
and the names of the actual Tclose load
rodules that perform the functions are
contained in a takle in the first load
module cf Tclose. This takle enakles
crcss-referencing between the charts and
the listings of the Tclose load modules.

The Tclose routine provides volume posi-
tioning. It assumes the IEAVE disposition
if no disposition 1is specified in the
macro-instruction (without checking the
TIOT).

For direct access, the Tclose routine
resets pointers in the DCB either after the
last data record or before the first.

Tclose also processes lakels if
required.
The Tclose routine differs from the

close since it does not restore the DCB or
release any main storage other than that
acquired for its work area.

Closing a Data Control Block 19

END-OF-VOLUME PROCESSING

The end-of-volume (EOV) routine process-
es end-of-volure and end-of-data set ccndi-
tions for data sets having sequential
organization. This routine is entered when
one of the following conditions occurs:

Tape mark read cn tape.
File mark read con direct-access device.
End of last extent recognized on
direct-access volume.

e End of file indicated after last record
on unit record equipment.

e End of reel encountered.
FECV macro-instruction issued.

The EOV routine receives control via an
SVC instructicn. EOV perforrs final prc-
cessing on the data set lakels cn the
volure and specifies additional volumes
needed tc continue rprocessing the data set.
This specification of additional volures
consists of verifying the mounting cf the
proper vclume, and either checking the data
set lakel if the data set is input, or
building the data set label if the data set
is output.

The EOV routine is invoked either from a
processing prograr when the user wishes tc
force an end-cf-volume condition, or from
the contrcl program when an end-of-vclume
or end-cf-data set conditicn is encountered
by a sequential access method routine. The
user causes entry to the EOV routine by
issuing an FEOV rmacrc-instructicn in his
processing program. The expansion of this
macro-instruction includes an SvC 31
instruction. When either the CHECK routine
of the Lkasic sequential access method
(BSAM) or a synchronizing routine cf the
queued sequential access method (QSAM)
finds that a channel program encountered
either a perranent error or an end-of-
volume conditicn, the routine issues an SVC
55 instruction.

When either an SVC 31 or SvC 55
instruction is executed, the resulting
interrurticn causes control to ke given to
the SVC interruption handler. This routine
analyzes the interruption, krings the first
load mcdule of the EOV routine into the SVC
transient area, and passes control to it.

The first module 1loaded into the SVC
transient area for an SVC 31 instructicn is
the FECV executor; for an SVC 55 instruc-
tion, the first wmwodule 1loaded is the
SYNAD/EQOV executor.

of the EOV
the EOV/new

Upon completion
control is given to

routine,
volume

20

executor. These executors perform func-
ticns for the sequential access methods and
are descriked in the puklication IBM
Systen/360 Operating System: Sequential

Access Methods, Progranm Logic Manual.

Charts 30 through 33 show the functions
and cperation of EOV. A symbolic name is
indicated akove the Lklocks that descrike
each function. These names and the names
of the actual EOV load modules that perform
the functions are contained in a table in
EOV module IGG(0550%Z. This takle enakles
cross-referencing between the charts and
the listings of the EOV load modules.

INITIAL PROCESSING

After the SYNAD/EOV executor has com-
pleted its processing, the first module of
the 1I/0 support portion of the EOV routine
is brcught into the SVC transient area.
After kuilding a data extent klock (DEB),
data centrecl block (DCB), input/output
klock (IOB), and event control klcck (ECB)
fcr its own I/O processing, the EOV routine

reads a JFCB intc a work area that was
acquired in the dynamic storage by the
SYNAD/EOV executor. This is the JFCB of

the data set keing read or written when the
EQV ccndition occurred (EOV data set); the
lccation on auxiliary storage cf the JFCB
was fcund in the task input/output takle
(TIOT).

The wunit control blcck (UCB) is checked
to determine the type of device on which
the EOV occurred. Fcr magnetic tape, the
tape processing portion of the EOV routine
is entered. For a direct-access device,
the direct-access portion of the EOV rou-
tine is entered. When the device is nei-
ther tape nor direct-access, it is assumed
tc ke unit record.

CCNCATENATION

If the EOV condition occurred because of
an end-cf-data set o¢n an input data set,

the ECV routine determines whether this
data set 1is concatenated to another data
set. A data set is concatenated if, in the

TIOT, the next DDNAME field entry is blank.
If the data set is not concatenated, the
EOV routine passes control through the
supervisor to a wuser-written end-of-data
set rcutine that is in the dynamic area.

When data
not have the

sets are concatenated but do
same attrikutes, the EOV

routine terminates by having the first
module of the close routine krcught intc
the SVC transient area to close the EOV

data set. After clcose completes its pro-
cessing, it ©passes control to the open
routine. When the concatenated data sets

have the same attributes, the volure type
on which the new data set resides is
determined, and the EOV routine performs
the processing for that volume before
returning control to the supervisor.

EOV_ON NMAGNETIC TAPE

Processing EOV
tape consists prirarily
constructing lakels.
processing 1is performed Ly
routines that are brcught
transient area from the
(SYS1.SVCLIB).

conditions on magnetic

of verifying and
Nonstandard 1lakel
installation
into the SVC
SVC likrary

EOV ON OUTPUT DATA SETS

When an output data set has standard
labels, the EOV routine generates trailer
lakels and writes them on the tape. If the
data set has ncnstandard 1lakels, the
installaticn programrmer must provide a rou-

tine tc generate and write trailer 1lakels.
This routine is incorporated into
SYS1.SVCLIB.

If necessary, the EOV routine issues

instructions for either a sreci-
fied cr a scratch volume to continue writ-
ing the data set. The 1lakel charac-
teristics and density (for dual density
devices only) of the volure are ccrpared
with wuser specifications. If either does
not agree, the volume editcr routine
receives control as for open. When a
volume with correct label characteristics
is mounted, the EOV routine determines Ly
reading the sense Lytes whether the tape
volume is file-protected. If the ncde is
OUTPUT or OUTIN and the tape is file-
protected, a message is issued to the
operator to insert a file protect ring. If
the mode is INOUT and the volumre is file

mounting

protected, the message will require the
operator to determine whether a file
protect ring 1is necessary. This is the

case when no writing has yet been done on
the data set. Otherwise, the message is
the sare as for the OUTPUT or OUTIN modes.

When standard 1labels are present, the
EOV routine checks the header lakel of the
first data set on the tape. If the expira-
tion date of the first data set on the new
volume has not passed, the EOV routine
transrits a wnressage to the operatcr. If
the operator replies that the tape is still
to be used, header labels for the EOV data
set are written; if the operator replies

JFCB also

that the tape is not to be used, a new tape
ray ke mcunted.

The EOV rcutine also checks +the lakel
for +the password protection indication.
When the label indicates password protec-
ticn, the routine checks the JFCB. If the
specifies passwcrd protection,
the label ID must be the same as the DSNAME
or the volume is dismcunted and a scratch
volure is mcunted.

When the EOV routine has verified that
the tape may ke used to continue writing a
data set, the routine overlays the 1labels
already on the tape with new header lakels.

If an 1I/0 device is availakle, the EOV
routine requests mounting of an additional
velure that 1is to receive portions of the
data set.

When a sequential access methcd is keing
used, the EOV routine has itself replaced
by a sequential access method executor in
the SVC transient area. If no access
method is Leing used, the EOV routine
releases its work area and returns CPU
centrol tc the superviscr.

EOV ON INPUT DATA SETS
When an input data set has standard
lakels, the EOV routine checks the block
count in the trailer lakel tc determine
whether all the records have keen read; if
not the jok step is terminated. If this
data set does not continue on some other
volure, the TIOT is checked to see whether
the data set 1is concatenated. When a
concatenated data set is security-
protected, ccntrol is passed to the EOV

security routine to obtain the password.
When the data set ccntinues o©on another
vclure that 1is not yet mounted, the EOV

routine issues mounting instructions.

Lakel processing is rerformed to verify
that the rproper volume has keen mounted.
If the devices are availakle, the EOV
rcutine requests that cther volumes
ccntaining unprocessed portions of this
data set be mounted. If a sequential
access method is being used, CPU control is
passed to a sequential access method execu-
tcr that is brought into the SVC transient

area. Otherwise, the EOV routine releases
its work area and returns control tc the
supervisor.

ECV_CN DIRECT-ACCESS DEVICES

Chart 33 shows the flow of CPU control
thrcugh the EOV routine for an end-of-
volume ccndition on a direct-access device.

End-of-Volume Processing 21

EOV FOR OUTPUT DATA SETS

An EOV condition for an output data set
being written on a direct-access vclume
indicates that the auxiliary storage srace
assigned tc that data set, when the job
step was initiated, has been filled. The
EOV rcutine wuses a DADSM (direct access
device space managenent) routine to
allocate more space on the same volume on
which the EOV cccurred. The space request-
ed is that amount specified in the secon-
dary quantity field of the JFCB. If no
seccndary quantity was specified, the job
step is terminated.

If the additional space cannot ke allo-
cated c¢n the same volume, the EOV routine
requests that another volume be mounted on
an available device, and the DADSM rcutine

is requested to allocate space on that
volure.

The volume-mounting request is fcr a
scratch volume unless the user has sreci-
fied vclumes for this data set. If no

devices are availakle for this vclume the

jok step is terminated.

Once additional space has keen allocat-
ed, the EOV routine builds a new DEB that
reflects the newly acquired storage. Part
of the old DEBR is saved and the stcrage
that it occuries is released. The data set
control block (DSCB) of the EOV data set is
read from the device where the EOV
occurred. Information from this DSCB and
from the o0ld DEB is used to build the new
DEB. The DSCB and JFCB are checked for
security violations before processing is
continued.

If a sequential access method is keing
used tc operate on the data set, the EOV
module replaces itself in the SVC transient
area with an executor routine of the
sequential access method. If an access
methed has not keen used, the EOV routine

22

releases 1its work area and returns CPU

ccntrcl tc the supervisor.

EOV FOR INPUT DATA SETS

When an EOV condition occurs for an
input data set, the EOV routine determines
whether the data set continues on any other
volures. If not, the TIOT is checked to
see whether the data set is concatenated to
other data sets. The correct password for
a security-protected data set must ke
cktained kefore the concatenated data set
ray ke read. When the data set continues
on ancther volume, the EOV routine deter-
mines whether this next volume was pre-
viously mcunted; if not, mounting instruc-
ticns are issued. The DSCB of the data set
is read from this new volume, and portions
of the old DEB are saved. The old DEB is
replaced with a new DEB Lkuilt from the
saved portion of the old DEB and the DSCB.

device is availakle for an addi-
tional vclume that contains unprocessed
pcrticns of this data set, mounting
instructicns are issued. If a sequential
access method is keing used, CPU control is
passed to an executor mcdule of that access
rethcd. Otherwise, the work area is
released and ccntrol passed to the supervi-
scr.

If a

FORCE END-OF-VOLUME

Issuing cf a force end-of-volume during
the generaticn of a data set causes the EOV
routine to 1read the DSCB, to change its
extent indications tc reflect the auxiliary
storage cccupied Lty the data set, and to
rewrite the DSCB on the volume.

When FEOV is 1issued for an input data
set, the EOV routine issues mounting mes-
sages and checks for concatenation and
security. No DSCB processing is performed.

The following charts are designed to be used with the listings of the
I/0 surport routines. Each chart functicnal klcck has keen given a name
of the form PLMRTXXX, where RT is symkolic cf the routine name and XXX
is a decimal number identifying the functicn.

The 1listings provide takles which associate these names with the
actual module names, enakling cross-referencing ketween the listings and
the PLM charts. These takles reside in the following modules:

IGC00019 - oren
IGC00022 - orend
IGC00064 - RDJFCER
IGC00020 - close
IGC00023 - Tclose
IGG0550Z - ECV
IGG0550Z - FEOV

CHARTS

Charts 23

Chart 10.

ENTRY WHEN
OPEN (SvC 19)
IS ISSUED

PLMOPO10 PLMOJO10

ER 22 VSRS TS S s W AD W W NN RN
* * * *
* GET CORE FOR #* * GET CORE FOR *
* WORK AREA FOR ¥ * WORK AREA FOR *
* EACH DCB * * EACH DCB *
* * * *

L 23

ENTRY WHEN

OPEN TYPE =J

(svc 22) 1s
1

PLMOP020 v
B1

PLMOJO20 v

READ *
JFCB FOR EACH
* bce *

IR RHNRR RN

I
PLMOP030 Vv

B2
*MOVE JFCB FROM *
*
* PROGRAM TO *
*
*
*

* FOR EACH DCB
L T

I
PLMOJ030 vV

Cc1
GET CORE -

2
GET CORE -

SSUED

The OPEN Routine, Input -- Tape and Direct-Access

* * * *
* 40 BYTES PLUS * * 40 BYTES PLUS *
* 8 BYTES PER * * 8 BYTES PER *
* DCB _FOR WTG * * DCB _FOR WTG *
* TABLE * * TABLE *
|
|
PLMOP040 V PLMOJ040 V
D1 02
* * * *
* SET UP PATH * * SET UP PATH *
*FOR OPEN LOADS * *FOR OPEN LOADS *
* IN WTG TABLE * * IN WTG TABLE *
* * * *
% *
v v
PLMOPOSO0 <%, ke PLMOPO70 PLMOP080
E1 %, E2 *. E3 E4
* *. o* *. * 1SSUE *
<% OPEN *. NO o *. YES * MOUNTING * * *
<FOR RDBACK OR.: >%.DIRECT ACCESS.* >* MESSAGES AND % > READ DSCB(S)
*. MOD % *o o * VERIFY VOLUME * * *
. o *. o * LABELS *
*q * *g o 33 33 3 3 I3 IR ER 2 2 222 S g2
* YES * NO
! | i
I < |
v v
PLMOP090 %, PLMOP100_ o%.
F .
¥ *g ¥ * g
% _ MORE *. NO NO
*. THAN FIVE *. TAPE *————y
*. VOLUMES o% . . v
*g ¥ * g ¥ R
¥y o ¥y ¥ *12 *
* YES * YES * AL
* *
*
PLMOP110 V PLMOP120 V
G G2
* READ JFCB * * *
* EXTENSION TO * * 1SSUE *
*OBTAIN CORRECT * * MOUNTING *
* VOLUME * * MESSAGE *
* INFORMATION * * *
R 2 2
*
* H2 *—>
* *
X ER
PLMOP122

24

v
HHRHRHDHH R IR R
* *

VERIFY THAT
PROPER TAPES
ARE MOUNTED

*
HEEEEIH IR R E R

*kok
*ok Kk

v
PLMOP124 o%.
*o
< *PROPER %o
«*LABEL TAPE *. NO
*. FOR OUTPUT
*e

—_
¥ 1
*g ¥ l
* g *
i YES !
|
l |
v i
PLMOP125 %, PLMOP126 V
K2 *q HERRFKTEERRR R RN
«*IF DUAL*. * OMODVOL1 *
«DENSITY DEVess NO i o i
CORRECT DENSITY >*MOUNT OR CREATE*
. o . * PROPER TAPE *
*OUTPUT o * * LABEL *
H, ¥ E2 222222 2222222 223
* YES
v v
R 2 223 LR 223
*11 * * *
* ALl* * H2 *
* * * *
* R

Chart 11.

The OPEN Routine,

Input -- Tape and Direct-Access

R NE
%11 *
* AL®
* *
*
v
PLMOP127 o%, PLMOP128
A *e EEERXEADRKXE R KRR
o* *o RNk
o® FILE *+ NO * WRITE * * *
#*«PROTECT RING % > MESSAGE TO >% Al *
*q ON . * OPERATOR * * *
*oq ¥ HHKR
X o¥ I RIIRERR XN
* YES
v
PLMOP130 %,
B *o
¥ *o
NONSTD *e¢ NO
LABELS AND %
*INPUT OR %
*o INOUT o *
*e oF
* YES
I
>
PLMOP160 V
HHHNEC] HERNHRRERH
* NSLOHDR1 *
B e
#* NON-STD LBL *
*INPUT VERIFIC. *
* + POSITIONING #
R T T e
I
v v
PLMOP210 o%*, PLMOP140 W%, PLMOP150 e%a
D *o D2 *o D3 *e
o *e ¥ *, o *o
o* ANY *. NO ¥ *e NO ¥ *o4 NO
*e VOLUME o ¥ %, NO LABELS o K> ¥ STANDARD o ¥
*oREJECTED <% *o o A *o LABELS % v
*e . *, . o XXERR
*e o¥ i *o o% *12 *
* YES * YES * AL®
| | I * *
I ' '
l i l
PLMOP200 v PLMOP170 v PLMOP180 v
EERERE] HHRERRHERR P EREEKEIHRERRRRXXN
* ISSUE * * * | * *
* MOUNTING * * POSITION * * POSITION *
* MESSAGES AND * *UNLABELED TAPE *——J * LABELED TAPE ¥
* VERIFY PROPER * * * * *
* TAPE MOUNTED * * * * *
KRR ER RN RN NI R AR e e e e Y
I
|
v
PLMOP220 ¥,
F3 *o
o
o NPUT *o NO
*o OR INOUT - ¥——————y
. - v
a o XX
*, o %12 *
* YES * Al*
* ®
*
v
PLMOP222 o%, PLMOP224
63 *, HEEEHRGH XHHH XX HERH
ok . * *
o* DATA *o YES * REQUEST *
*¢SET SECURITY ———D PASSWORD *
*q ok * *
q o * *
Xe oX R e
* NO
*RER |
* *
% H3 *—>
R

PLMOP190 v
HRERFHTH RN R LR K
* *

* VERIFY *
*DATA SET LABEL *
* 1 *

* *
LR e e

PLMOP230 v
HREEEKJIEAREXRERER
* *

* DATA SET *
L_ABEL 2 TO JFCB
* MERGE *

* *
L T
EEERRE

*12 *
* ALl¥

*
A
I
PLMOP226 «*.
G5 *.
o *e
o *.
>%o PASSWORD OK o
*e .
x. ox
*g ¥
* NO

PLMOP228
HEHRHSHERRERRER
*
* ABEND
*

HEEEEREERRERRRR

*

*
*
*

Charts

25

e Chart 12.

*HEEE
%12 *
®* Al*

v
PLMOP240 .%o
Al .

¥ *e

¥ *o. YES
.DIRECT ACCESS.
*q ¥
*q o
*e o¥
T NO

PLMOP280 v
HHEHERB] X EEREEERR
* *

*

JFCB *
* TO DCB MERGE *<—
* *

* *
R

PLMOP320 v
HHEHRCT HERERKRRR RN
* *

SET UP WTG *
TABLE FOR *
EXECUTORS *

*
*

HRERER RN RNR RN

* K kK

PLMOP350
HERKED] R HREHN KRR EN
* USER RTN *
L e R
* DCB EXIT *
* . *

* *
LR g e T e T

PLMOP400 '
R RHE] HETRRH AR
*

* %k kK

* DCcB
* TO JFCB MERGE
*

* *
L e e e T Y

|
I

*o

*,
OUTPUT OR <%
OUTIN o

* g ¥

e o¥
* YES

v

PLMOPS510 o%e
H1 .

¥ *q
*
NONSTANDARD
#*e LABELS %

%o o¥

* NO
|

YES

. .
*, o

<

The OPEN Routine, Output -- Tape

READ ADDITIONAL
DSCB IF <
* REQUIRED *

e e

v
PLMOP330 o%.
D2 *.
o* *o
0 «% BPAM *o
* o CONCATENATION. *
*

PLMOP360 v
HEEEXEE2 XX EXRRRERRE

READ
JFCB_FOR EACH
* DATA SET *

UKW XA

*
* MOUNTING *
* MESSAGES AND %
* VERIFY VOLUME *
* *
* *

ABELS
3636 36 36 9 3 9 3 XXX

PLMOP460 v
AEEXEXG2 AR EXXERENXR

* *
READ DScCB(S)
* *

e e e e

ER 22
* *
* H2 *
* *
X]
PLMOP550
LSS EVES S 2 st st
* NSLOHDRO *
Rk et Bt e et S e et
>%* NON-STD LBL
*QUTPUT VERIFIC *
* + POSITIONING *
33 I IR

PLMOP250 o%*. PLMOP260 o %.
A2 *o A3 *o
o ¥ - *q
- *o YES «*EXPIRATION *. NO
———>%. OUTPUT OR % ——>%. DATE PASSED %
*. OUTIN % *e o*
* g ¥ * g ¥
e ¥ . ¥
T NO * YES
L >
v
PLMOP282 o¥e
.
% NOT
«% NEW AND YES
*. DATA SET
#*#oSECURITY %
*, ®
e o¥
* NO
EHEH |
* *
* C3 *—>
* *
XXX |
PLMOP290 PLMOP300 V
C3
* *

* DscCB *
* TO JFCB MERGE #*<
* *

* *
HEREEEHFERERRERRR

AR

*xwR v
PLMOPS580 o ¥e
D3 *o
o
o*
—>%.

ANY
VOLUME
*.REJECTED

*

PLMGP362
E3

¥

o *
*oFILE PROTECT
*e ON ¥
*g, o ¥
Xy oF
* NO

PLMOP412 v
EEEEKEIRFEREREERE
* *

* *
*NOTIFY OPERATOR¥
* *

* *
HREEHREREREERENRR

I

Pra—

<

v

PLMOPS520 o¥eo
J1

.
¥ *e

STANDARD
*e LABELS %
*o ¥
¥a o¥

* YES
|
|
v
XHEKE
%13 *
* A3*
* *
*

26

PLMOPS30 %o PLMCP590 o%.
J2 % J3 o ox.
¥
<% DIRECT _ *. NO
EXCP >% . ACCESS OUTPUT o ¥——
. . A . o
o o | *. o*
Ko o ¥o o
* NO ! * YES
\ | I
1 I |
PLMOP560 V IPLMOP620 v
FHRRREK D E RN R R LRSS S S 2 22 222
* * | * *
Rt Dt e e et et Bt e v
* ACCESS METHOD —

* EXECUTOR *

* *
LI T e T

*
*
* *
EE Ty s

JFCB *
TO DSCB MERGE ¥*———
*

and Direct-Access

PLMOP270
HEEEEEALERHEXREX AR

* WRITE TO *
> OPERATOR WITH
*REPLY (WTOR) *

RN RN NN

PLMOP284
FAEEEDGERRREREEEE
* *

* REQUEST
> * PASSWORD
*

* ok Kk

*
R T T

1
v
PLMOP302 o¥e
ca L
. *o
YES % *o
%o PASSWORD OK %
*

NO

*e ¥
%o o
*

PLMOP610
HRERRDL HHEER X XN XN
* ISSUE
* MOUNTING M3G
>* AND VERIFY
PROPER TAPE

* MOUNTED
LR R a2

I EEEEE]

>|
v
PLMOP364 %,
Ea

«¥* PROPER
*oLABELED TAPE

*o MOUNTED o%
.*. "
* NO
PLMOP414 v

EEERXFLEEXRERERRR
* OMODVOL 1 *
L o I Jur s B e
* NOTIFY *
* OPERATOR *

* *
e e 2 T

|

v
X E
%13 *
* AL¥

* *

*

PLMOP304

HARECSHRERERR RS
*

*
>* ABEND *
* *

HREERRREERE RN

PLMOP366 %,
ES *o
* *

*e
NONSTANDARD o %
%o LABELS ¥

e Chart 13. The

E2 2223
*13 *
* AL®
*
*
i
PLMOP390 Vv
EEZE S FSR IS 2222 2]
*

LOAD
* APPENDAGE
* ROUTINES FOR
*

LEEE X]

*
RN NN NN

PLMOP440 v
ERERREB] HHERARERERR

* WRITE BACK *
JFCB IF
* MODIFIED *

RN RN

PLMOP490 v
WERHERC] HREH A RRHRR

* WRITE BACK *
DSCB IF
* MODIFIED *
HHEE R RN RN R

PLMOPS40 v
R ERD] NIRRT N
* *

RELEASE
WORK AREA
STORAGE

IR HN

* ok %k
* ok K K

PLMOPS70
ERRERE] HEREHERRER

*

* RELEASE
* WTG TABLE
* STORAGE
*
*

HERREEERERERREREN

LR E R X1

PLMOP600 v
HREEEF] HEREREREEN
* *

* *
INDICATE DCB IS
* OPEN *
*

L e e e e

PLMOP630
FRREG] RN
*
* EXIT *
* *

IR

OPEN Routine, Output -- Tape

.

o* *o
<*EXPIRATION *. YES

PLMCP382
AG

and Direct-Access

.
*o

o*
* OLD AND *. NO

.
*. DATE PASSED % >%e DATA SET o¥——s
. o % SECURTTY o%
*, o *, oF
*e P ¥o o
* NO * YES
PLMOP370 _ V PLMOP372
illii{B3i**}*l*I*** *lﬂll’lBAlQili‘liﬁl
»* *
* WRITE TO * * Rsogsst *
r—> OPERATGR WITH * PASSWORD *
* REPLY * * *
* *
E2 S22 22 S22 sl ERREARRERRERRRR RN
|
v v
PLMOP420 <%, PLMOP422 o%.
c3 =, _ca .
o *.
*. YES
PASSWORD OK <%
*o ¥
*, o ¥
* g o
* NO
|
v I
PLMOP470 <%, pLMOP4T72 |
D3 . v
¥ * 4 HREEDL RERR R RN
NO . . * *
L—x., REPLY = M .% * ABEND *
. - * *
* g o* E2 22222222222 223
e o
* YES
v
E2 2 223
*12 *
* D3%
* *
*

PrYes

cs
EXER

rw
ok

>
PLMOP430 v -
% *lcs{*{i"{l*'l

*

* CONSTRUCT %
>#DATA SET LABEL *
* 1 *
*
*

*
FEAREAEERERERE RS

PLMOPA8BO v
RRRERDSHEE R E R HER
* *

* CONSTRUCT #
*DATA SET LABEL *
* 2 E]

* *
ERERRRETRTRRIRE N
|

v
EREER
*12 %
* g2

* %

*

Chatts

27

Chart 14. The RDJFCB

ENTRY WHEN

RDJFCB (SVC 64)
SSUED

Is 1

28

PLMRJO10
IR QD KRN NN
* *

GET STORAGE
* Fi
* WORK AREA
*
»*

S I I I E T T

* % k%

PLMRJO020 v
EEEERRB2HRERRERRRNNR

* READ *
JFCB
* *

MR RN

PLMRJO030 v

HRRERC2HEERHIENK R
* GET ADDR OF *
* DYNAMIC AREA %
* FROM DCB *
* EXIT LIST *
* *

*

RN NN

PLMRJ040 v
EE P I R
* *

* MOVE JFCB
* TO

* DYNAMIC AREA
*

IR KRR R

* %k k Xk

PLMRJOSO v
HRHHRED HHERH KR HH RN
* *

* FREE STORAGE
* OF WORK
* AREA

*
Lt ey T s

* ok ok Xk

PLMRJ060
L e
* *
* EXIT *
*

RN NN HER

Rcutine

Chart 20.

PLMCLO10
WA DWW RN R

* *

ENTRY WHEN * GET_CORE »
CLOSE (SVC 20)* 40 BYTES PLUS *
IS ISSUED *8 BYTES PER DCB¥*
* FOR WTG TABLE *
EE R T T2 2SS 2 2222 LT

PLMCLO20 v
EE R A ad-FREE L TS T T
*

GET CORE
FOR WORK AREA
FOR EACH DCB

* % k%
* %k

* *
P T e T T

PLMCLO030 v
HHHHHC2 MR RIIR NN
* *

* *
* *
* AREA *
* *
* *

I K

PLMCLO40O v
D 2 KN R
*

* SET UP WTG
* PATH_ AND
* WTG TABLE
*
*

I N I K I NNNN

LEEE 2

The CLOSE Routine, Tape

v
PLMCLO0SO ot PLMCLO060 o¥a PLMCLO70 oty PLMCLOEO
E2 *e E3 *, E4 *o B3NS KKK N
¥ - ¥
o ¥ TAPE TAPE * READ *
Dk, OR DIRECT OUTPUT
. . *e AC . * JFC3 *
e o *e
*e o *o o¥ KN RRN
* NO * NO]
| | l
< < |
v
PLMCLO90 ot PLMCL100 ¥y PLMCL110
F2 . Fa *o HHRKNHHF SRR NN
o* *, ¥ *.
YES o% *a DIRECT *e YES * READ *
%o EXCP ¥ . ACCESS o >
*o . *o QUTPUT o* * psca *
*o ¥ *o ¥
*o o¥ ¥o oF KKK RN
* NO * NO ‘
) !
v
PLMCL120 v PLMCL130 PLMCL140 ot
P e FHNXHGSH RN NI RR G4 *o
* * * * * *.
B o e ot TS S D e s S NO o% *o
* ACCESS * * ACCESS *<- EXCP o®
* METHOD * * METHOD * ¥
* EXECUTOR * * EXECUTOR * ¥
e e e) P T T e T T R *e oF
* YES
>
v
<
v
PLMCL150 <%, PLMCL160 o PLMCL170 PLMCL180
H2 *o H3 P e Y MRS HNR KRR HNR
o ¥ - * CONSTRUCT * * CONSTRUCT *
. «* STANDARD *. YES * DATA SET * * DATA SET *
*e TAPE o D% LABELS * >* TRAILER ¥ —>% TRAILER *
- - *o OUTPUT % * LABEL 1 * * LABEL 2 *
*e o *e o * * * *
*y o Xy ¥ AR IIK KRR NN HR NN KRN
NO * NO
< <
v
PLMCL200 o%*e PLMCL210
J3 * RN KK SR HIH NN
o - * NSLCTRLO *
¥ *e YES E e e e et et St e B
%o NONSTANDARD o¥* >%* NONSTANDARD *
%o LABELS % * LABELS AND *
. o® #* DISPOSITION *
e o¥ LT T T e N 2
* . NO ,
i
1 |
v v
PLMCL220 %, o¥e PLMCL240
K2 K3 * g RN W WY NN RN
«* NO *q * *
YES % «* LABELS OR *. YES * TAPE *
 o— Y INPUT ¥ *o STANDARD o > VOLUME *
v *o - %o LABELS o * DISPOSITION *
EREER *q o* *o o* * *
%21 * ®o oF *o o¥ L et T2
* E3% * NO * NO
* * |
* <
V"
(222t
*#21 *
* A2*
*

Charts

29

Chart 21.

W
*21 *
* A2%
* *
*
v
PLMCL250 o%*. PLMCL 260
A2 *, HHHNHATHRRENER RN
o* *o * *
«*FOUNDATION *, YES * UPDATE *
#EXTENDED BLOCK ¢ ¥———————>% DscB *
* o PRESENTED « % * *
*, . * *
*e ok R e
* NO

|
| -

The CLOSE Routine, Direct-Access

PLMCL280 o¥e
S84

*o

o* *e
o%* EXTERNAL #*, YES
>*¥«STORAGE TO BEe*
*eRELEASED o%

. ¥

PLMCL290
HRENRKBSHRRERRR XN
* DADSM MODULE #
R R e e e o

—>%* RELEASE *
* EXTERNAL *
* STORAGE *
LR T

PLMCL300
FRHREHCTHHTH AR INR

* WRITE *
BACK
* DscB *

KKK HIEER

PLMCL310 v
HEHHERDIHEREHHRRRNN

* WRITE *
FILE
* MARK *

e

PLMCL320 i
EEXXREIHERHERNE R

VOLUME
DISPOSITION

Xk ok kK

*
*
*
*
*
336 I I I XN
Ea 223
*21 *
* F3 %>
* *
R
PLMCL330 Vv
EE 2 St X 2 2 Ll 222
* *
* RELEASE *
* SUBROUTINES *
* *
* *
* %

L e e T T

PLMCL340 Vv
I G TN NN
* *
* *
* RESTORE *
* pcs *
* *
* *

RN R RNN

PLMCL3S50 M
HEXRRHI AR X XL R
* *

RELEASE
DEB

* kKK

*
*
*
*
*

IR IR

PLMCL360 v
HEERKE JZHEHERRRERE
* FREE WORK

*
* *
* WTG TABLE *
* STORAGE *
* *
* *

2 e A e T T 2

v
PLMCL370 PLMCL380 e*e
K3 %,

T IKE
* o CONCATENATION & *:

* *e o
IR RN *o ok
*e o¥
*

* *
* EXIT *<
*

30

o ¥UNL *o
NO +*SEQUENTIAL *, YES

PLMCL390
HRHERICHFHHRE TR R
* 16C00011 *
B e s o
>* XCTL *
* T0 *

OPEN *
ERRI AR RHEERERERN

Chart 22. The CLOSE

v
PLMTCO10 PLMTCO80 %4

FRENEB2HEREHNER RN B3 *,

* * o* *o
ENTRY WHEN * GET CORE * o* *o+ NO
CLOSE TYPE=T * 40 BYTES PLUS * *o OUTPUT o H—
(svc 23) *8 BYTES PER DCB#* *, o ¥
1s ISSUED * FOR WTG TABLE * *o ¥

LRSS ST LSS S s) He o¥

* YES
PLMTCO020 \ PLMTCO090 v

HRNRRC2HENH R ERRR HHHEEERCIHMRERE RN ENN

* *

* GET CORE * * WRITE *

* FOR_WORK * FILE

* AREA * * MARK *

* FOR EACH DCB *

T IR R RS 22 TS

PLMTCO030 v PLMTC100 v

FHEERD 2NN N NN HHIEHDIHNHN KR HHEE

* * * *

* SET UP * * UPDATE *

* WORK * * *

* AREA * * pscB *

* * * *

EEA S22 ST S22 2 S) EE S SRS S S S L 2L

PLMTC040 v PLMTC110

ERRERREDRHE RN XRRRE Er T T R TR T TR T TN

* *

e * WRITE *

* PURGE *

* 1/0 * * DSCB *

* *

B e R T T

<
PLMTCOS0 v PLMTC120

RN HEF DTN RERR EE 22 2o S 2 22 s s

* * * SET POSITION *

* SET UP * * IN DCB *

* WTG * * ACCORDING TO *

* TABLE * * DISPOSITION *

* * * *

ERS SRS RS RS 22 s] EE SRR S S R R R S RS 2l

E
v v
PLMTCO60 o%*e PLMTC130 %,
G2 *o G *o
o* *o o *.
«* DIRECT *e NO o *e YES
e ACCESS o >ke TAPE o
. o *e o¥
o *e o
. o* *o o
* YES * NO
2223]
* *
* H3 *—>
[23] * *
* * R
* A3 * PLMTC140 V
* * W H T RN NN
XN * *

(TYPE=T) Routine

R
* *
* A3 *
* *
HXER
PLMTCO70 v
AR ATH KRN H R
* READ *
* Dscs *

e T e

* FREE *
* WORK AREA *<
* *
*
*

*
IR NN

PLMTC150 V
NN J TN NN RN
* *
* FREE *
* WTG TABLE *
* *
* *
* *

TN N

PLMTC160
RN TN N NN
* *
* EXIT *
* *

L R T TR T

—

v
PLMTC170 oo
A4 *

o*
«* STANDARD

PLMTC180 v
FHRERRBL WK TN REERKE

* READ *
* JFCB *

FHRRR NN KRR

<—

PLMTC190 o%.
ca *,
o *.

*o NONSTANDARD
e LABELS
. o
L

* NO

PLMTC250
I 5NN
* NSLCTRLO *
Lo I e S B
>* EXIT TO *
* NONSTANDARD *
* LABEL RTN *
LR RS T S S S22 2 1

PLMTC200 <%
D4

o ¥

NO
LABELS

PLMTC260
HHER DS FEHH KRN N
*

UNLABELED *
A *
POSITIONING *
*

*

IR NIRRT RN

*
>*
*

v
PLMTC210 o¥o
E4 *o
o *o
«* STANDARD *. NO
* LABELS *

PLMTC220 Vv
HEEEREQ IR HRHXNK
* *
* CONSTRUCT *
* DATA SET *
* LABEL 1 *
* *
EE RS2 2 22T 22 223 2

PLMTC230 v
HRERRGH RN RRREERRR
* *
* CONSTRUCT *
* DATA SET *
* LABEL 2 *
* *
EEZ RS S22 LRSS L L

PLMTC240

v
LR AT S S
*

*

* LABELED *
* *
* POSITIONING *
* *
* *

L e e

XA

N

Charts

31

Chart 30.

EEZ VRS S22 2]
ENTRY WHEN * svc *
EOV (SVC 55) #* INTERRUPTION %
IS ISSUED * H *

R e e]

v
R KB 2 WK NA N
* *
e W B W e e W W
* SYNAD/EOV *
* MODULE OF %
* SAM *
BN RN

HRER

The EOV Routine,

Initialization

MR A TR RN NN ER
* svC * ENTRY WHEN
* INTERRUPTION * FEOV (SVC 31)
* HANDLER * 1S ISSUED

e Y L

v
e HR KD T NN RN
* *
R Tk L B B I B e
* FEOV *
* MODULE OF %
* SAM *
33 3 3 I 3% 3 3K X KK

ERXN

PLMEVO10
XK RC 2R HEH KRR EN
* INITIALIZE, *
*BUILD DEBs, DCB *
* 10Bs AND ECB *
* FOR EOV *

* ROUTINES *
R e L

PLMEVO20 v
P T T
READ JFC
* INTO *
WORK
* AREA *
*
XXX RN * ¥
%32 *
* A%
ERAKRH
A
|
v | NO
PLMEVO30 <%, PLMEV040 PLMEVOS0 «%a o ¥e
E2 AN FHHIH KRR XN E4 *q
o* IS * MOVE * ¥ WAS *eo
¥ EOVC # THREE SERIAL % EOQOV ON
*o SWITCH >% N RS FROM * MAGNETIC INPUT
*e N A * * « TAPE .
. 1 * * e o *q o
*e o | P T *o ok *e o ¥
* NO * YES
|
. |
' |
v v
¥ PLMEV060 o¥%.
F2 *e Fa .
o* 1S *o % WAS ¥,
¥ JFCB o] NO «* EOV ON *e
*o EXTENSION o i o o Ae .
*o NEEDED ¥ v *o DEVICE ¥
. ¥ *NXRW *, o¥
o o *3] * e ¥
* YES * A2% * YES
® * |
*
v
PLMEV150 v PLMEV160 ke PLMEVO70 oo
ERERRG2AREXXRHRXR G3 . G4 .
* READ JFCB * ¥ *o
* EXTENSION * « NO
* AND OBTAIN *: QUTPUT - F———————
* SERIAL * * v
* NUMBERS * XX RH
P T e *33 *
* ALX
| *
*
v
PLMEVO8O ok
H
NO
- ¥y
. . v
e o RN
*o o¥ %33 *
* YES * A4%
* *
*
v
R
v *33 *
PLMEV1IBO o*. * A2*
J3 *o * *
¥ *, *
¥ « NO
*e FEQV oF———
. . v
. o bt
*e oF %33 *
* YES * AL%
* ®
*
v
R HRR
%33 *
* A2%
* *

32

Chart 31. The EOV Routine, Initializaticn

HRERR

PLMEV250 %,
A2 *o

o* IS

*e
EQVC *o YES

PLMEV320 oo
A4 *o

o¥ NULL %*.
«* DATA SET

SWITCH -
ON ok

*o -
*e o¥
* NO
v
PLMEV260 <%, PLMEV310
B2 *g FRRERB TR HH AR
o* IS %, * RELEASE *
% NEXT TIOT *. YES * WORK *
*o ENTRY NON- o% >% AREA *
*. BLANK % * STORAGE *
*DDNAME . * * *
*g o 39 3 % I NN
* NO
PLMEV270 i

v
ERERRC2HERERE XX HR
*

SET

LERE RS

*
EOvVC *
SWITCH ON *
*
E2 22222 22222222 22

|

I
N v
PLMEV280 ¥,

D2 *o
«*UNLIKE *.

v
FHHERC IR IR ER XX
* EXIT 7O *
* USER WRITTEN *
* EOD ROUTINE %
HEEEEEREEEERENR

>%e4 OR_ UNIT .
*e RECORD %
* *

PLMEV330 V
EE S S VR L RS R R 22 L
* *
* POSITION *
* TAPE TO *
% DATA SET *
* *
EES SIS 22222223

<

PLMEV340 v
W W C QIR NN
* *
* CLEAR *
* EOVC *
* SWITCH *
* *
33 RN E N

I

|

v

PLMEV350 %,
D4

o

.
¥ *e YES
*o STANDARD ¥
*e LABELS % v
*, ¥ R ERH
Fo oF *32 *
* NO * J1¥
* *®

v
PLMEV360 %o

*e
ox MORE %
«* THAN *. YES

*o ONE UNIT o 1
*e ALLOCATED« ¥ v
*g o ¥ ERERK
*e o¥ *¥32 *
* NO * K1%
* %
*
v
PLMEV370 e¥%e
Fa *o

v
HHRERGLERHE RN RERE
* *

e s e e e e L
* SEQUENTIAL *
* ACCESS METHOD #*
* EXECUTOR *
L e e

v
HEERHLREREXRRRE
* EXIT TO *
* SUPERVISOR *
* *

e e

«*ATTRIBUTES *. NO
*4 OR NON-STD o ¥ ——y
*o LABELS % v
- ¥ WX
¥, ¥ *30 *
* YES * C2%
* *
*
PLMEV290 v
R D IR RN
* RELEASE *
* WORK *
* AREA *
* STORAGE *
* *
36 I NI WX
PLMEV300 PLMEV380
XN J NN
XD M X NN * RELEASE *
* EXIT TO * ORK *
* CLOSE * * AREA * L
* ROUTINE * * STORAGE *
E2 2223 63 I I NN * *
*31 * EE S 2SS 22 S22t st
* G1¥
* *
*
|
PLMEV19OG o¥g PLMEV230 %, PLMEV390 I
. G2 *o
o«* IS * o® *, HRREGIRHXEX XK XX
o* THE *o NO «* STANDARD * EXIT TO *
%o DATA SET e¥———————>%. LABELS o* # SUPERVISOR *
e INPUT .% *.SPECIFIED.* * *
- - - ¥ EES 2222 S E]
%, o¥ *e ok v
* YES * NO ERERE
*32 *
* A4¥
* *
*
v v
PLMEV200 ¥, PLMEV240 %,
H1 - H2 *o
o% IS *e ¥ *e
o ¥ EOVC *o YES ¥ NON *o YES
SWITCH oWy *o STANDARD - *
*o ON ¥ *e LABELS o% v
. o *e o* HRXER
e o¥ v *e o *32 *
* NO XTI e * N * B3%
*31 * . * *
* A2%* I *
* * v
* LR 222
v *32 *
PLMEV210 %, * Cax
1 *g * ®
o *o *
e* LABELED *. NO
*e TAPE o Fe——y
*o - v
- ¥ LR L2 2
*e o %32 *
* YES * E1%
* *
| *
v
PLMEV220 o#%,
K1 *o
o* *e
«%* STANDARD #*. NO
LABELS o ¥————y
* v
LA 2 2
*32 *
* C2%
* ¥
*
v
EEEER
*#32 *
* D1#
* *

Charts

33

Chart 32. The

EOV Routine, Tape

ERERRE
%32 #
* A2%
* ®
*
v
PLMEV110 o¥e PLMEVS00
A2 . **#}lAA&!*****l‘*
¥ *o
STANDARD YES * PREPARE i
. LABELS o >* TRAILER *
.SPECIFIED. A LABEL 1 *
EREEN *o ¥ ERRER * *
%32 * *y oW *32 * I HHEERERRE XX RN RN
* B1¥ * NO * B3* *
*] * % * ¥
* * %32 *
| | * ALx
] ’ EREHR
v v
PLMEV130 L%, PLMEV120 % v - PLMEVS510 v
B1 *, B2 . HERERDIHERE RN RN ERERRBLERRERN RN R
¥ * ot *o * NSLETRLO * * . *
NO <% LABELS *o NON *o YES bbbttt tutaimied * PREPARE *
——%, SPECIFIED % STANDARD >* INSTALLATION * * TRAILER *
. o LABELS ¥ * TRAILER LABEL * * LABEL 2 *
*o ¥ . . * ROUT INE * * *
L ¥o o¥ *
* YES * NO I I
v
|
v v
PLMEV140 o%, PLMEV520 e%.
c1 . FWARJCD R KRN XN Cca4
o* * NSLETRLI * «* WERE
* STANDARD #*, NO it utaint .¥* VOLUME *q
BE o* >% INSTALLATION * >*¥SERIAL NUMBERS < *
#¢SPECIFIED.# A % TRAILER LABEL * l * o SPECIFIED %
o o * ROUT INE * EEER *e o
*e ¥ L e e T e * * | *e oF
* YES * * D3 * * * YES
XX 1 x * * * * *
*32 * %32 * *RRR *32 #
* D1 *—> * C2% * Ca*
RN ERERN
XXXR | v
PLMEV400 v PLMEV470 o¥e PLMEVS540 v
PR TR 2 TR T D03 *. T e
* READ AND ¥ *e * MOUNT *
* PROCESS YES o% EXCP *o * XT *
*TRAILER LABELS. ————%qe SPECIFIED % * INDICATED *
(HEADER 1F READ . o * UM *
BACKWARD) *e o * *
}{i{i{lllli}&** . o* NN RN NN NH
* NO
>
<
v
PLMEV410 <%, PLMEV480 v PLMEVS50
*, EREEREDNNRERHERRN E3 E4
«% MORE *. * RELEASE * * * * EMODVOL1 *
o* VOLUMES * WORK * I Lt St s s e T T L T T e *
—>%. FOR THIS * AREA *< * SEQUENTIAL * —>%* VOLUME *
l *#,DATA SET o* i * STORAGE * * ACCESS METHOD * | = LABEL *
A o* * * * EXECUTOR * | = EDITOR *
1 *, o ¥ v NN NN] * %
* * YES L2 2223 EE T
* * %31 * * *
%32 * * A2 * E4 *
* E1% I * * * *
EEERR * < kR r
v
PLMEV420 PLMEVA490 PLMEVS60 o ¥
HARNE | RN RN F4 *o
* MOUNT NEXT * ERERFDEEERNNIRS - %,
* VOLUME AND * EXIT TO * : YES % NON *q
* VERIFY IF * * SUPERVISOR * %o STANDARD ¥
* NOT ALREADY * * * *e LABELS %
* DONE * ERERERRERERREER . -
RERREREREREERERES *o o¥
* NO
I
v
PLMEVA430 %, v
G1 *, FEEREGIERRRREKEFR
* . ErEn * NSLEHDRO *
LABELS *. NO * * L e B e
SPECIFIED % >% K1 * * INSTALLATION *
. * HEADER LABEL i
*, ¥ EEE EHER ROUTINE
*, % * * i*’{i*li****ii‘l’
* YES * K1 *
* *
. EREE
A
| <
PLMEV440 , PLMEV600 v PLMEV590
H1 - ERRENH2 NN R RTRTR i*l**a3**'{*’*i** XERERHE R XA RN XRXH
o® *o * NSLEHDRI *® * MOUNT NEXT * b
* STANDARD *, NO W NN NN * VOLUME FOR * CONSTRUCT *
q LABELS ¥ >% INSTALLATION ¥ * OUTPUT IF *(* NEW HEADER
#eSPECIFIED. * HEADER LABEL ¥ * DEVICE IS * * LABELS *
*o o¥ * INE » * AVAILABLE * * *
%, o ¥ B e e *%
* YES l
EEXR
*32 *
* g1 *=> 1
* r
(3223
PLMEVASO v PLMEV610 <%, PLMEV620 PLMEV630
ERREN Y] ERREER AR J *, HERER YRR RERENEER
* READ AND * . * * ERRRJARERERN RN
* CHECK THE * -' *o YES * RELEASE * * EXIT TO *
*HEADER LABELS. * *. SPECIFIED o¥ >% WORK AREA * >% SUPERVISOR *
* (TRAILER, IF _* . * STORAGE * * *
*READ BACKWARD) # “x. ¥ * * EEERREERETRRRR
L e *e o P e
NO

EEER
PLMEV460
EEEERK] HERRRRER R
* MOUNT AHEAD
* IF DEVICE IS
[—>* AVAI ABLE AND

*
>
H
=
I
mr
b
<
<)
r
<
=
m

L]

v
QllllKZlIllll!!i*

l—l—l—l—&—i—l—l—l
* SEQUENTIAL *
* ACCESS METHOD *
* EXECUTOR *
EERERRTRERERERRER

TN
* XIT TO *
SUPERVISOR *
*

e e

>*
*

*<

NO

PLMEVS30
HHREACSHRE KRR RE
* *

* MOUNT *
>* SCRATCH *
* VOLUME *

*
*

*
NN N RN

|
v
PLMEVS50 +%.
DS .
.* *q

YES

)*.CURRECT LABEL-*———
*e TYPE *

1
|
I
I

* NO

1 R 1

PLMEVS70 oy
ES

* o |

STANDARD
LABELS
, o
*oe o

* YES

*, ¥

P L—

PLMEVS575 ¥
*o
*eo
*o
ok

*
CORRECT
DENSITY

.
NO o%
—¥%.

PLMEVS80 Vv
W H S KRN
* READ AND *
* CHECK HEADER %
* LABELS ON THE *
* NEWLY MOUNTED *
* TAPE *

3363 3 3 I 3 I3 I I K XK

Chart 33. The EOV Routine, Direct-Access

RN EREER EXRRR
%33 » %33 * *33 *
* ALR * A% * A4%
* * * * * *
* * *
v 1
PLMEV640 o%. PLMEV810 v v
Al *. HEREREAZHEERRRRNTNR EEEERALEERHEEREXE
o* *o *DADSM *
* ARE * WRITE * e et e e s L
*o THERE MORE FILE * GET SECONDARY *
*o VOLUMES o% * MARK * * STORAGE ON *
*e ¥ *#CURRENT VOLUME *
He ok v IR RN EEEEARERREEERRENE
* YES *%%*#CONCAT— |
*31 *ENATION
* A2*TEST |
* * ‘
} i
1 v
PLMEV650 v PLMEV820 v PLMEV730 %,
B B2 * Ba *
* MOUNT NEXT * ¥
* VOLUME AND * * READ * WAS
* VERIFY IF NOT * DscB *o SPACE
* ALREADY DONE % * * *o AVAILABLE %
* * *, o*
EREEEREREREERERRR EXEEERRERERRS *o oF
*
, I
|
| |
| ->
PLMEV660 v PLMEV830 v PLMEV740
HEEERCLHIEEER RN RN ERRRECO AR RENENRER EERAKCLEERERRRENN
#* MOUNT AHEAD * * * * MOUNT NEXT *
#IF MORE VOLUMES# * UPDATE * * VOLUME AND *
* INDICATED AND * * * * VERIFY IF *
* DEVICE * * DscB * * NOT ALREADY *
* AVAILABLE * * * * *
B P e e e e 2 EEEEARERREXRRERRR
PLMEV670 v PLMEV840 v v
D1 D2 EREREDLGERE RN RRE
* READ DSCB * *DADSM *
* SAVE PART * * WRITE * B s o T S
* OF OLD * DscB > * GET SPACE *
* DEB * * * * ON NEW *
* * * VOLUME *
B s s TR ST L s FHEHHIEERHREERR R
I
| v
PLMEV680 v PLMEV750 ¥
R RRE] RN N X Ea .
* * o* *o
* BUILD * NO o*% WAS *o
* NEW * % SPACE o
* DEB * *e AVAILABLE«*
* * *. o*
FHRHK I NN KRN HRRR *e o¥
* YES
|
< '
PLMEV690 v PLMEV760 v
HHRREE] RHRHEREE R FRERRFARRRERERRRR
* * * *
* CLEAR * * READ DSCB *
* EOVC * * SAVE PART *
* SWITCH * * OF OLD DEB *
* * * *
F e EEREEAEERRRRRRRRR
v
PLMEV700 ¥ PLMEV770 v
*. EXREFRGLAREXRRRERN
o *, * *
+* EXCP *o YES * BUILD *
*q SPECIFIED . * NEW *
*o ¥ * DEB *
*o o * *
*. o¥ R e
* NO
. I
I |
v PLMEV710
R HRH LRI RN BB R IERN RN N
- * * RELEASE *
L R e e B g * WORK *
* SEQUENTIAL * * AREA *
* ACCESS METHOD * * STORAGE *
* EXECUTOR * * *
HEREEEREIREHERERE HEREREERERHRRERRR
v
PLMEV720 PLMEV780 %, PLMEV790
v v S S NET TS 20 Ja EREREJSEERERERERE
EEENJLRERERRERR XK JD NI IR TR * * o¥ *, * RELEASE *
XIT TO * * EXIT TO * Ho kRl NN — RNk NO EXCP *. YES * WORK *
* SUPERVISOR * * SUPERVISOR * * SEQUENTIAL *< SPECIFIED > % AREA *
* * * * * ACCESS METHOD * *q L * STORAGE *
P T e NN IIER R * EXECUTOR * *o ok * *
e e a T e R *e ok EAEEERHERRERRER RS
*
] PLMEV800 |
v
HRERKIHERRRRRER EEEEKSHEEHEEEER
* EXIT TO * * EXIT TO *
* SUPERVISOR * #* SUPERVISOR *
* * * *
P S T T AEXERERRRRRRERR

Charts 35

APPENDIX A:

I/0

SUPPORT WCRK AREA

The contents of the work area shown in The first U464 Lytes are used by the
Figure 3 are used for the OPEN, OPEN OPEN, CLCSE, and EOV routines. The next 38
(TYPE=J), CLOSE, CLOSE (TYPE=T), and EOV kytes are used only by the EOV routine.
routines. The numbers in parentheses are The next 24 bytes are used by the OPEN and
the nurber c¢f bytes of storage fcr a EOV rcutines. EOV uses an additional 10
particular section. bytes along with the preceding section.

r - T - -~ 1
| Bytes | Ccntents |
1 4
- T - 1
| OPEN, CLOSE,EOV| one of the following: |
l[+ - -T T - T T T T {
| | volume | file | file | DSCB | DSCB | DSCB | |
| | lakel | label | lakel |data portion|key rortion|data portion|message |
| | | #1 | #2 | format 1 |fcrmat 3 |format 3 |area |
| | bytes | kytes | bytes | kytes | kytes | kytes | (variable|
| 100 | (80) | (80) | (80) | (96) | uy) | (96) | size) |
'. _____ + 1 | L R L 1 _JI
| 176 | Job File Contrcl Block (JFCR) |
- t - -— 1
| 4 | Event Control Block (ECB) |
[—_— 1 - ———— 4
r T 1
| 40 | Input/Output Blocck (IOB) |
p——- T -- 4
| 4y | Data Extent Block (DEB) |
b 1 J
v - T - - - 1
| 4y | Data Ccntrol Block (DCB) |
L iR J
r - T - - a1
i 96 | Channel Cormand Words (CCWs) |
I ——— 1 ——— ————— e e e —_— 4
v 1 1
| 37 | XCTL Work Area (EOV only) |
b B —_— 4
r T 1
| 1 | Switch (EOV only) |
8 1 |
1} - - T 1
| 24 | Work Area for Volume Serial Nurkers (OPEN and EOV only) |
N ——— B —_——— —_—— 4
r T 1
| 10 | Additional Work Area for Volume Serial Numbers (EOV cnly) |
L 1 —_— e e e e e e e e o e e e e e e e e J
Figure 3. OPEN, CICSE, and EOV Work Area

36

The XCTL table is wused tc¢ transfer
control between loads and Lketween a 1lcad
and an access methcd executor. The format
of the XCTL takle is shown in Figure 4.
There is a takle starting on a double-word

APPENDIX B:

THE TRANSFER CONTROL (XCTL) TABLE

(ITR) and the 1length c¢f the 1load. The
TTR's are inserted ky the IEHIOSUP utility
program when the system is generated. The

last fcur Lkytes

supervisor-call (svC)

of the load consist of a
pointing to the

boundary in each load. The takle ccnsists keginning of the XCTL table. The pointer
of the other load ID's to which this load is expressed in double words from the
can transfer control. Each entry consists teginning of the load.
of the 1lcad ID, its relative disk address
T T == - =
| | I
| Load | Program |
|] |
L - i ————— —_— 4
H H . T 1
	Relative disk	Length of
Load ID,	address (TTR)	lcad expressed in doukle words
(2 bytes)	(3 bytes)	(1 byte)
% ¥ 1- 1		
Load ID,	TTR cf locad	Length
p——- rmm $- - 1		
Load ID,	TTR of load	Length
fromne- 1 1- 1		
Lcad ID's		
continue		
L 1 - - 4		
v T 1		
Lcad IDp	TTR of load	Length
[— 4 1 4		
r T 4		
00		
(end of table)		
b ! I		
(Program continues)		
r , T - . e		
	SVC code	Pcinter to the first ID, relative
		tc 0 and expressed in double words
L - —_— 1 L ——— J

G R last 4 bytes of load --——---—---------—- >
Figure 4. XCTL Takle

Appendix B: The Transfer Control Control (XCTL) Table 37

APPENDIX C: THE WHERE-TO-GO (WTG) TABLE

Both the open and close routines set up
a WTG takle tc indicate which load modules

and routines are necessary for processing.
Figure 5 shcws the WTG table format. The
first twenty-nine Lbytes (0-28) forr a ra-

rameter for the directory entry porticn cf
the XCTL and LOAD macro-instructions.
Bytes 30 and 31 indicate by bit setting the
required path through the open or close
load mcdules. Bit assignments in the first
byte are for:

Direct-access device.

Standard label tape positioning.
Unlabeled tape positioning.

Input 1lakel prccessing (verificaticn).
Ncnstandard input tape.

Nonstandard output tape.

Vclume lakel editing.

Data set security.

Bit assignments in the second byte are for:

e Cutput lakel processing (verification).

e Mcre than five volumes specified by the
JFCB.

e Volure lakel editcr processing.

The rest of the WTG table indicates the
access method executors required to process
each DCB. Open and close effect this
indicaticn ky providing each DCB with an
asscciated entry when the table is built.
Open and close transfer, from the XCTL
takle to the DCB's entry, the identifi-
caticn (ID) and relative disk address (TTR)
of the first access method executor
required to prccess the DCB. The first
five kytes of each eight-byte entry is used
for this purpose. The last three bytes of
each entry ccntain the address of the work
area assigned to the DCB. The last entry
in the variakle section is the IDTTR of the
open or close load mcdule to which the
access method routines return control.

Byte

- q
0 | Name |
 — - - —r-- . i
8 | Relative Disk Address (1ITR) | Concatenation |
| cf First Reccrd | Number |
"——— T T - --i 1I
12 | Zero | (see note)? | TITR of First Text |
| | | |
t - + + -- 1

16 | Reccrd | Zexro | TTR of NOTE List or Scatter List
| | | |
F I et 1
20 | Translation | 2erc or Numker cf | Attributes |
| Takle | Entries NOTE List | |
S £ L T |
24 | Total Contigucus Main Storage | Length of First |
| Required for Module | |
L i 4
r T - T 1
28 | Text Record | Length WIG Takle | Path Through Loads of Routine |
| | (in doukle-wcrds) | |
t = L T - 1
32 | IDTTR of Executor for First DCB | Work Area Address |
| | for First DCB |
t -4 1
| Takle of IDITR's (8 bytes) |
I ——— 1
v T 1
| IDTITR cf Executcr for nth DCB | Work Area Address |
| | for nth DCB |
t == i
32+n(8) | IDTTR of Load to Which Control Returns | Not Used |
L _ L J
1plias indicator and user data field descriptcr. An alias indicator is one bit,

the numker of TTR's in the user data field is two Lits.
Figure 5. Where-Tc-Go (WTG) Takle for OPEN and CLOSE Routines

38

ABEND bit 16,17
ABEND macro-instruction 16
Access method executors 6,7,12-14,17,21,22
Access methods
BDAM 11,12
IsaMm 11,12
BSAM 16,20
QSAaM 20

BLDL macro-instruction 7
BUSY bit 6,7,15,17
CLOSE macro-instruction 5,16-18
Concatenation
BPAVM 8,11
EOV processing of 20-22
with like attrikutes 21
with unlike attributes 19,21
Data management count 8,9,12,18
Data set ccntrol klock (DSCB)
information merge of 13
reading of 8,11,12,17
updating of 14,17,18,22
Data set name determination 10
Data set sequence numbers 9,10
DCB macro-instruction 13
DD statement 12,13,18
DEB 12,13,16-18,20,22
Dual density devices
Dummy data set 6,7

9,21

EXCP macro-instruction 8,15,18
Expiration date 10,11,21
FEOV racro-instruction 20,22
File protecticn 9,21
FREEMAIN macro-instruction 14,15

GETMAIN macro-instruction 7,15,17
Job file contrcl blcck (JFCB)
corrleting DCB from 6,13
data set sequence specification in 10
infcrmation merge to 11,13
label constructicen from 11,13,17
modification switch cf 13,14
reading of 8,12,14,15,17,20
security indication in 21,22
volumre specification in 8,9,11

INDEX

LOCK kit 6,14-16
Icgical sequence numkber 9

Merge takles 13

Mount switch 8,9,12

Multi-volume, multi-data set aggregate
9,10

Nonstandard lakel routines 9,18,21
Null data set 6,7,18

OPEN kit 6,7,14,16

OPEN racrc-instruction 5,6,8,10,14

OUTIN 9,21
OUTPUT 9,21

Passwcrd data set 10
Passwcrd entry
user ccunt 10
reading of 10,11
Password protection 10,11,21,22
PURGE macro-instruction 17

RDBACK 8,10,11
RDJFCR macrc-instruction 6,14
Security protection (password protection)
10,11,21,22
Standard laktels
prccessing of 10,11,21
verification of volumes with 9
SYSIN 9,18
sysouT 9,18
Tape sequence numbers 9,10
Unlakeled tape positioning 9
User exit 6,13

Vclure disposition 18,19

Volure editcr routine 10,21
Vclure mcunting 8,9,11,12,21,22
Volure serial numker 8,9,12

Where-to-Go (WTG) takle
WRITE bit 17,18

7,14,17,38

XCTL table 13,14,16,17,37

Index 39

Y28-6609-1

TIBIM

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

LUL ALVUING LAaNL

READER'S COMMENTS

Title: IBM System/360 Operating System Form: Y28-6609-1
Input/Cutput Support (OPEN/CLOSE/EOV)
Program Logic Manual

Is the material: Yes No

Easy to Read? — _—

Well organized? . -

Complete? S _

Well illustrated? I -

Accurate? _ -

Suitable for its intended audience? —_ —
How did you use this publication?

___As an introduction to the subject ___ For additional knowledge

Other fold

Please check the items that describe your position:

—— Customer personnel ——Operator ___Sales Representative

— IBM personnel — Programmer —__Systems Engineer

— Manager —_Customer Engineer —_Trainee

—— Systems Analyst —Instructor Other

Please check specific criticism(s), give page number(s),and explain below:
—Clarification on page(s)
— Addition on page(s)
—Deletion on page(s)
— Error on page(s)

Explanation:

fold

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

¥28-6609-1
st
{
fold
r I 1
| FIRST CLASS |
| PERMIT NO. 81 |
I I
| POUGHKEEPSIE, N.Y. |
L 4
r - - - 1
| BUSINESS REPLY MAIL |
| NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. |
t -— RERRN
{
RN '
POSTAGE WILL BE PAID BY
(NN
IBM CORPORATION
P.O. BOX 390 Ty
POUGHKEEPSIE, N. Y. 12602
NRERN
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS BERRR
DEPT. D58 o
NRRNN i
)
=4
—_— — _ o -
fold {
-
]
a
0
~ B
=
N
[o2]
1
(o))
(<)}
o
(to]
1
BV
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]
IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017 sta

[International]

lp26H 634

