
IBM System/360 Operating System

Input/Output Support (OPEN/CLOSE/EOV)

Program Logic Manual

Program Number 360S-DM-50B

This publication describes the internal logic of IBM
System/360 Operating System input/output support. The
discussion includes the relation of I/O support rou­
tines to other portions of the control program.
Detailed descriptions of the open, close, and EOV
routines provide the basis for the discussions of the
other I/O support routines openJ, RDJFCB, Tclose, and
FEOV.

Program Logic Manuals are intended for use by IBM
customer engineers involved in program rraintenance, and
by system programmers involved in altering the program
design. Program logic information is not necessary for
prograrr operation and use; therefore, distribution of
this manual is limited to persons with program mainten­
ance or modification responsibilities.

Restricted Distribution

Y28-6609-1.

Program Logic

PREFACE

IBM System/360 Operating System: Con-
cepts and Facilities, C28-6535

This publication des crites the functions
and organization of the input/output (I/O)
support portion of System/360 Operating
Systerr. It also describes the relationship
of I/O support to other portions of the
operating system.

IB~ System/360 Operatinq system: Data
Managerrent, C28-6537

The publication is divided into sections
that describe each of the major corrponents
of I/O support. Each section refers to
flowcharts that show the sequence in which
the functions are performed. Appendixes
are included to show the formats of work
areas and tables used by I/O support.

PREREQUISITE PUBLICATIONS

The reader of this publicaticn nust be
familiar with the concepts described in the
following publications:

Second Edition (Fetruary 1967)

IB~ System/360 Operating System: Intro­
duction to Control Program Logic, Pro­
gram Logic Manual, Y28-6605

SUGGESTED READING

Inforrration related to that provided in
this publication is supplied throughout the
following publications:

IB~ System/360 Operating System: Contro~
Prograrr services, C28-6541

IBM System/360 Operating System: Job
Contrcl Language, C28-6539

This publication is a major revision of F·orrr Y28-6609-0 and obsoletes
it. In addition to incorpcrating information released in Technical
Newsletter Y28-2125, significant changes have been made to describe the
password-protection feature in the open and EOV routines.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or.Technical
Newsletters. •

This publication was prepared for production using an IBM computer to
~pdate .the text and to control the page and line format. Page
1mpress1ons for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests. for copies of IBM publications should be made to your IBM
representat1ve or to the IBM branch office serving your locality.

A form is provided at the back of this pUblication for reader's
comments. I~ the form has been removed, comments may be addressed to
IBM Corporat10n, Programming Systems publications, Department D58,
PO Box 390, Poughkeepsie, N. Y. 12602

INTRODUCTION • • • • • • • •
Opening a Data Control Block •
Closing a Data Control Block •
Processing End-of-Volume

5
5
5

Conditicns. • • • • • • 5

OPENING A DATA CONTROL BLOCK • 6

The Open Routine • • • • • • • • • • • •
Basic Initialization. • • • • • • • •
Voluroe Mounting and Verification.

6
7
8
8 General Mounting • • • •

Parallel Mounting ••••
Merging of Control Block

Information. • • • • • • •
Forward Merge. • • • • •
Reverse Merge. • • • • •

Access Method Determination •

The OpenJ Routine.

The RDJFCB Routine

CLOSING A DATA CONTROL BLOCK •

The Close Routine. • •
Basic Initialization ••
Output Label Processing •

Tape • • • • • •
Direct-Access. •

Volurre Disposition.

11

• 12
13

• • 13
• • 13

• • 14

• • • 14

16

• • • 16
• • • 16

• • 17
17

• • 17
• • 18

CONTENTS

Data Ccntrol Block Restoration. • • • 18
Terrrination. • • • • • • • • • • • 18

The Tclose Routine • • • 18

END-OF-VOLUME PROCESSING • • • 20

Initial Processing • • 20

Concatenation. • •

EOV on Magnetic Tape •
EOV on Output Data Sets •
EOV on Input Data Sets ••

EOV on Direct-Access Devices
EOV for Output Data Sets. • • • •
EOV for Input Data Sets •
Force End-of-Volume • • • • •

CHARTS •

• 20

• • 21
• • 21

21

• • 21
• • 22

22
• 22

• • 23

APPENDIX A: I/O SUPPORT WORK AREA ••• 36

APPENBIX E: THE TRANSFER CONTROL
(XCTL) TABLE. • • • • • • •

APPENDIX C: THE WHERE-TO-GO (WTG)
TABLE •

INDEX ••

• • • 37

• 38

• • 39

ILLUSTRj.\TIONS

FIGURES

Figure 1. Where-To-Go (WTG) Tatle. • 7
Figure 2. Multi-Volume, Multi-Data
Set Aggregate • • • • 10

Figure 3. OPEN, CLOSE, and EOV Work
Area •••••••••••••••••• 36

Figure 4. XCTL Table • • • • • • • • • • 37
Figure 5. Where-To-Go (WTG) Tatle for

OPEN and CLOSE Routines • • • • • • • • 38

CHARTS ----

Chart 10. The OPEN Routine, Input --
Tape and Direct-Access. · · · · · · · 24

Chart 11- The OPEN Routine, Input --
Tape and Direct-Access. · · · · · · · 25

Chart 12. The OPEN Routine, Output --

Tape and Direct-Access. · · · · · · . · 26
Chart 13. The OPEN Routine, Output --

Tape and Direct-Access. · · · · · · · 27
Chart 14. The RDJFCB Routine · . · 28
Chart 20. The CLOSE Routine, Tape. · 29

TABLES

Tatle 1. I/O Support
Macro-Instructions, SVC Numbers and
Routines. • • • • • • • • • • •

Chart 21- The CLOSE Routine,
Direct-Access . · · · · · · · · · · Chart 22. The CLOSE (TYPE=T) Routine

Chart 30. The EOV Routine,
Initialization. · · · · · · Chart 31- The EOV Routine,
Initialization. · · · · · · · · · · Chart 32. The EOV Routine, Tape.

Chart 33. The EOV Routine,
Direct-Access . · · · · · · · · · ·

5

30
. 31

32

33
34

35

The I/O support routines are nonresiden~
SVC routines; they reside in the SVC
library , (SYS1. SVCLIB) on the system resi­
dence volume, and operate from the SVC
transient area iu main storage. Processing
prograrrs normally specify use of I/O sup­
port via a macro-instruction whose expan­
sion includes an SVC instruction. Execu­
tion of this SVC instruction causes CPU
control to be passed through the SVC inter­
ruption handler to the appropriate SVC
routine. There are seven I/O support
macro-instructions each having an SVC rou­
tine that performs the I/O support func­
tion. The I/O support macro-instructions,
their associated SVC numbers, and the I/O
support SVC routines are listed in Table 1.

Table 1. I/O Support Macro-Instructions,
SVC Numbers and Routines

r--------------T------------T-------------,
I Macro- I SVC I svc I
I Instruction I Number I Routine I
~--------------+------------+-------------~
10PEN I 19 I Open I
10PEN (TYPE=J) I 22 I OpenJ I
IRDJFCB I 64 I RDJFCB I
I CLOSE I 20 I Close I
ICLOSE (TYPE=T)I 23 I Tclose I
I EOV I 55 I EOV I
IFEOV I 31 I FEOV I L ______________ i ____________ i _____________ J

All these routines except RDJFCB are
type 4 SVC routines; RDJFCB is type 3. A
discussion of the types of SVC routines is
given in the publication IBM System/360
Operating System: Introduction to Control
Prograrr Logic, Program Logic Manual.

Because type 4 SVC routines are broken
down into load modules of 1024 bytes or
less, functions required by more than one
I/O support routine are actually performed
by common load modules. For example, the
open and the openJ routines are separate
SVC routines, but functions common to both
are performed by the same load modules.

TO save time, the user can open or close
more than one DCB via a single rracro­
instruction. If an OPEN macro-instruction
specifies three DCB's, the initiai load
module is executed three times (once for
each DCB) before the next load module is
executed. Before a load module is
replaced, it is executed as many times as
is needed to open the specified data con­
trol blocks.

Input/output (I/O) support routines per­
form three functions associated with I/O
operaticns. These functions are:

INTRODUCTION

• Opening a data control block, which is
initialization required before a data
set can te read or written.

• Closing a data control block, which is
final processing on a data set after it
has been read or written.

• Processing end-of-volume conditions,
which is the processing required when
an end-of-volume or end-of-data set
ccndition occurs during an I/O opera­
tion.

Opening a Data Control Block

Before any information can be read from
or written into a data set, the data
control block for that data set must be
opened. When a processing program issues
an OPEN rr·acro-instruction, the open routine
of the control program performs the open
processing.

Open processing consists of completing
control tlocks that contain the charac­
teristics of the data set to be read or
written, and of bringing into main storage
the access method routines that will oper­
ate on this data set.

Closing a Data Control Block

After reading or writing a data set is
completed, the processing program should
issue a CLOSE macro-instruction to complete
the processing of that data set. The close
routine releases main storage that was
acquired for the I/O operations when the
data control block was opened. The close
routine also performs final label process­
ing for the data set, and sets indicators
so that the data set is properly disposed
of when the jot step terminates.

Processing End-of-Volume Conditions

When an end-of-volume or end-of-data set
condition occurs, the end-of-volume (EOV)
routine processes labelS and determines
whether process1ng is to'continue on some
ether volume or data set. When an EOV
condition occurs, the load modules entered
are part of the sequential access method
(SAM) and are described in the publication
IEM System /360 Operating System: Seguen­
tial Access Methods, Program Logic Manual,
Y28-6604. These SAM modules are the first
cnes entered: one for EOV and the other for
FEOV.

Introduction 5

OPENING A DATA CONTROL BLOCK

The DCB associated with a data set must
be opened before any transfer of data
between main and auxiliary storage can
occur. The data control block is created
when the processing program is asse~bled,
but it rray not be completed at that time.

opening includes completing the DCB from
information in the job file control block
(JFCB) and the data set label or DSCB, and
selecting the executor routine that brings
appropriate access method routines into
main storage. Executors are load rrodules
that are entered from an I/O support rou­
tine but perform fUnctions for a specific
access method. The operation of executcrs
is described in the program logic manuals
for the access methods.

The user may specify either of two
routines to open a DCB: the open routine or
the openJ routine. Both are type 4 SVC
routines. The difference between the two
is that the open routine reads the JFCB
from the job queue, but the openJ routine
moves the JFCB from the dynamic area of
storage to the openJ work area. The JFCB
must be in main storage before openJ
receives control.

Opening a DCB using the open routine
requires only the execution of an OPEN
macro-instruction that does not have a TYPE
specification of J. Execution of the OPEN
macro-instruction causes an SVC interrup­
tion (SVC 19). The SVC interruption han­
dler passes CPU control to the open rou­
tine.

The openJ routine receives control from
the SVC interruption handler when an OPEN
macro-instruction with a TYPE specification
of J (SVC 22) is executed. However, open­
ing a DCB using the openJ routine requires
that the JFCB be in main storage prior to
execution of openJ. When the JFCB is on
auxiliary storage, it may be read into rrain
storage using the RDJFCB macro-instruction.
This allows the user to rrodify the JFCB
before the DCB is opened.

THE OPEN ROUTINE

When an OFEN macro-instruction is exe­
cuted, the open routine gains control from
the SVC interruption handler after prograrr
fetch has read the first load module into
the SVC transient area.

The first module, and all successive
open modules, retain the address of the

6

OPEN macro-instruction's parameter list in
a general register. The parameter list
specifies the DCB's that are to be opened.
Also maintained in a general register is
the address of the DCB that is being opened
since each open load module processes each
DCB to be opened before passing control to
the next load module.

Throughout open processing, a DCB must
have its LOCK tit off (off is 1 for the
LOCK bit) and its BUSY bit on (on is 1 for
the BUSY bit). These bits are in the
DCBOFLGS field of the DCB. If a DCB
specifies otherwise, it is not processed.
The LOCK bit is set on by I/O support
routines preceding a user exit; thus, other
I/O suppcrt routines cannot process or
change the DCB until the I/O support rou­
tine that set the bit regains control and
resets it. The BUSY bit is set on by the
open routine to indicate that the DCB is in
the process of being opened. When the BUSY
bit is not on for successive open func­
tions, that DCB is not being opened and
will not be processed. The BUSY bit is
turned off and the OPEN bit turned on when
all open functions have been performed and
the DCB is considered open.

Charts 10 through 13 show the fUnctions
and operation of open. A symbolic name is
indicated above the blocks that describe
each function. These names, and names of
the actual open load modules that contain
the functions, make up a table that resides
in the first load module of open~ This
table enables cross-referencing between the
charts and the open load modules.

The four main functions that the open
routine performs are:

• Basic initialization.

• Volurre mounting and volume verifica­
tion.

• ~Erging of control block information.

• Deterrrination of access method rou­
tines.

The null or durrmy data set is treated as
a special case by the I/O support routines.
No device is allocated t6 a null data set;
thus, no volume positioning, label process­
ing, or VOlUITE mounting is performed. The
open routine recognizes a null data set by
finding the characters NULLFIIE in the
DSNA~E field in the JFCB associated with
the DCB being opened. Information concern-

ing the dummy data set is given in the
publication IB~ Svstem/360 Operating Sys­
tem: seguential Access Methods, Prcqraw
Logic ~anual.

BASIC INITIALIZATION

The open routine performs basic initial­
ization functions for all DCB's in the
parameter list. These functions are:

• Obtaining main storage for a work area
for each DCB to be opened.

• Determining the size of the where-to-go
(WTG) table.

• Obtaining storage for and setting up
the WTG table.

• Reading the JFCB for each DCB to be
opened.

Upon receiving control, the open routine
inspects each DCB in the parameter list and
counts each DCB as an entry for the vari­
able section of the WTG table. The open
routine turns on the BUSY bit in each DCB.
(A DCB that is already OPEN at inspection,
i.e., has its OPEN bit on, is not processed
and is not "busy"; however, an entry for it
is counted to maintain the parallel struc­
ture cf the WTG table and the parameter
list.)

For each DCB to be opened, open cbtains
main storage by use of the GETMAIN macro­
instruction. This storage is used as a
work area, the address of which is stored
temporarily in the DEB address field of the
DCB. After the WTG table has been built,
the wcrk area address is transferred from
the DCB to the corresponding DCB entry in
the WTG table. The work area is used for
setting up control blocks and channel
prograrrs that are required for reading and
writing header and trailer labels and
DSeB's, and for tape positioning. (The
work area for each DeB is described in
Appendix A.)

After open has determined how many DCB's
are in the parameter list, storage for the
WTG table is obtained via a GETMAIN rracro­
instruction. The number of bytes requested
is 32+8(n+1), where n is the nurrber of
DCB's specified in the parameter list. The
total number of bytes required is in the
WTG table size counter.

The WTG table is a corrmunicaticn area
for the modules of open. Figure 1
illustrates the table, and Appendix C pro­
vides a detailed description. The table
has two parts: a thirty-two byte basic
section of standard format and a variable
number (n+1) of eight-byte entries .•

... ,,1---- 4 Bytes ---••

OPEN BLDL i
Parameter List

Basic

List Section
(32 Bytes) -

~
I Size I Flag Bytes

n
Varial>le
Section
(Bn + B Bytes)

Return

Figure 1. Where-To-Go (WTG) Table

The basic section of the table contains
a twenty-nine byte list equivalent to that
produced by the BLDL macro-instruction.
This is followed by one byte which gives
the double-word size of the entire WTG
table, and by two bytes which serve as flag
bytes (the WTGPATH).

The bits of the WTGPATH are set on or
off to indicate the path through the open
modules. Each open module determines the
next open module by testing the bits of the
WTGPATH. The path is controlled by the
following:

• Device type (tape, direct-access, etc.)
upon which the volume for the data set
currently being initialized resides.

• Labeling characteristics.

• Type of processing required.

• Number
JFCB.
volumes
be read

of volumes specified by the
(If there are more than five
indicated, JFCB extensions must
into main storage.)

Each eight-byte entry of the variable
length section contains the IDTTR of the
required access method executor in the
first five bytes and the address of the
work area associated with a particular DeB
in the rerraining three bytes. When a DeB
is not being opened at this time, its entry
ccntains binary zeros. The last eight-byte
entry is always the IDTTR of the open load
module which is to regain control from the
access method executors after their pro­
cessing is complete.

Opening a Data Control Block 7

To read the JFCB from the job queue to
the work area, the open routine must oon­
struot control blocks (DCB, DEB, ECB, and
lOB) and a channel program within the work
area. Thus, the work area contains the
inforIl'ation necessary to read the JFCE by
use of the EXCP macro-instruction.

If an I/O error occurs, the AEEND rou­
tine (SVC 13) is entered. (The ABEND
routine is described in the publication
IBM Systerr/360 Operating Systerr: Fixed-Task
Supervisor, Program Loqic Manual,
Y28-6612.)

JFCB extension blocks are read into the
work area when (1) there are more than five
voluIl'e serial numbers and a user is opening
for RDEACK, or (2) there are Il'ore than five
volume serial numbers, MOD is specified and
the user is opening for OUTPUT or OUTIN.1

Open obtains the address of each JFCB
from the task input/output table (TIOT).
The address cbtained is a relative track
address (~TR) and must be converted to the
full device address (MBBCCHHR). The con­
vert routine that performs this conversion
is described in the publication IBM
System/360 Operating System: sequentIal
Access Methods, Program Logic Manual.

VOLUME ~OUNTING AND VERIFICATION

After basic initialization, open's next
functicn is volume mounting. During mount­
ing open determines whether required
volumes are mounted on devices allocated to
a data set. Open requests Il'ounting of the
required volurres and then checks theIl', by
examining volurre labels.

The rrount function is divided into gen­
eral Il'ounting for all DCB's to be cpened
and parallel mounting for DCB's which spec­
ify either the basic direct or indexed
sequential access Il'ethods.

General Mounting

Open's actions during mounting depend
initially on the type of volumes needed by
the precessing program. If specific
volumes are needed, open uses the vclurr:e
serial nurrbers specified in the data set's
JFCB te check for correct volume rrounting.
(Serial numbers are required when INPUT,
INOUT, or RDBACK is specified.)

Open performs general mounting only for
the first volume of a data set to be
pI'ocessed. If the user's parameters speci­
fy RDEACK or if MOD is specified in the DD

1AII JFCB's and DSCE's are read for conca­
tenated BPAM data sets.

8

staterrent with an OPEN for OUTPUT or OUTIN,
the first volume to be processed will have
its volurre serial nurrber specified last in
the JFCB. Otherwise, the volume needed is
the first one indicated by the JFCB.

When deferred mounting is specified, the
job scheduler performs no mounting for the
data set during job step initiation. The
open routine issues the initial mounting
messages. Deferred mounting is described
in IEM System/360 Operating System: Con­
cepts and Facilities.

Whether mounting has been deferred or
not, open determines whether the correct
volurres are Il'ounted. If correct mounting
is not found, open issues Il'ount messages
and recheckS for correct mounting.

After open has deterIl'ined that mounting
is ccrrect, the routine locates the proper
data set on the volume. For tape, open
positions the volume; for direct-access,
open locates the data set control block
(DSCE) and reads it into main storage.

During mounting, open uses the SRTEDMCT
field of the unit control blocks (UCB)
associated with a data set. The high order
bit of this one-byte field serves as a
rrount switch and is set on when a mount
Il'essage is issued concerning the unit.
When the switch is on, no further mount
messages are issued for that unit until the
mounted volume has been checked. The
switch is reset to 0 when the proper volume
has teen rrounted.

The low-order seven bits (the data man­
agerrent ccunt) are the binary number of
DCB's which are open for data sets on the
mounted volume. For direct access, the
count is incremented by 1 when open ascer­
tains that the mounted volume is the one
specified in the JFCB. For tape, an
atterrpt to begin processing a second data
set on a volume results in abnormal termi­
nation of the job step. Thus, data manage­
ment counts for tape devices will be either
o or 1.

DEFERRED MOUNTING: Open checks all the
UCE's allocated to the data set for the
serial number of the first volume to be
processed. When the volume serial number
1S 1n the UCB, the job scheduler has
initiated mounting, and only volume check­
ing is required. When the serial number is
not found and the mount switches in the
allocated UCB's are off, the user has
requested deferred mounting. Open checks
these sarr,e UCB' s for one whose data manage­
ment count is 0 and which does not specify
a volume that is reserved, public, perma­
nently resident, or used for system resi­
dence. Should none of the allocated de-

vices be available, the job step is abnor­
mally terminated.

When open has found a suitable unit, the
routine issues a mount message to the
operator designating the volume serial nurr­
ber specified in the JFCB. When the JFCB
does not indicate a volume serial number
(e.g., for OUTPUT or OUTIN data sets),
open's mount message specifies a scratch
volume.

Open sets the mount switch in the asso­
ciated UCB to indicate that a mount has
been requested and that volurre checking is
required.

VOLUME VERIFICATION: Whether a mount mes­
sage has been issued by open or by the job
scheduler, open checks the mounted volurre.
When volume serial numbers are required,
the serial number from the JFCB is compared
with the serial number from the label.
When job scheduler has initiated the mount,
the volume serial number is found in the
UCB.1 When the mount was initiated by open,
open rrust read in the volume label to
obtain the serial number. When the volume
has been recognized as the correct volume,
open inserts the volume serial number into
the UCB. For tape volumes, open also
inserts the file sequence number into the
UCB.

Volume checking has the following varia­
tions:

• For volumes with standard labels, open
obtains the volume serial number from
the label. If this number is the same
as the nurrber specified in the JFCB,
the required volume has been mounted.
Open sets the mount switch off and
increments the data management count by
one. When the two serial nurrbers are
not the same, open reissues a mount
message to the operator and checks the
new volume.

• For volumes with nonstandard labels,
open ascertains that standard labels do
not exist for the volume. Open passes
control to the user's nonstandard label
processing routines. When the user
returns control, he indicates whether
the volume is correct. If the vclume
is not correct, open reissues mounting
messages and again asks for checking by
the user rcutines. After the correct
volume is mounted, open sets the rrount
switch off and increments the data
management count.

1When SYSIN or SYSOUT is specified, the
volumes are not processed by open except
for incrementing the data management count.

• When unlabeled volumes are specified,
cpen ascertains that standard labels do
not exist for the volurre. The mount
switch is set off, and the data manage­
ment count is increrrented.

When OUTPUT or OUTIN tape volumes are
specified, the open routine checks the
mounted volume for the specified density
(when dual density devices are used) and
label characteristics. When the label type
and/or density of the volume does not agree
with the user's specifications, control is
transferred to a label editor module. The
user may either utilize the IBM-supplied
routine or supply an editor module. 2 The
standard routine requests replacement of
the current volume with a volume containing
the specified label type and sets the mount
switch on. Control is returned to the
mount-verification module for volume check­
ing.

When an OUTPUT, OUTIN, or INOUT tape
volume has been verified~ the open routine
reads the sense bytes to check for file
protection. When the sense bytes do not
show file protection, the open routine
proceeds to its next function. When the
volurre is protected and the mode is OUTPUT
or OUTIN, the routine issues a message to
the operator requesting the insertion of a
file protect ring. When the mode is INOUT,
the message issued gives the operator the
option of inserting a protect ring.

TAPE POSITIONING: After tape volumes have
been verified, the open routine positions
the volumes at the data set specified by
the user and, when possible, verifies data
set labels. 1 (The user's nonstandard label
routines position tapes before returning
control to the mount-verification module.)
Open positions tape using the data set
sequence numbers supplied by the user.
These sequence numbers are available as
counters in the UCB SRTEFSCT and
SRTEFSEQ. The physical sequence (SRTEFSCT)
is the relative position of the data set on
its resident volume. The logical sequence
(SRTEFSEQ> is the sequence of a data set in
a group of related data sets. When the
data sets are contained on a single volume,
these two numbers are equal. For multi­
volume, multi-data set aggregates, they may
differ.

Figure 2 shows the physical and logical
sequences of the data sets residing on a
multi-volume, multi-data set aggregate.
This aggregate consists of four data sets
contained on two tape volumes.

2Information on writing volume label editor
routines is given in the publication IBM
System/360 Operating System: System
Programmer's Guide.

Opening a Data Control Block 9

r-------T--------------T-------,
Tape 1 1 AlB 1 C 1

~-------~---T----------~-------i
Tape 2 1 C 1 D 1 L ___________ ~ __________________ J

r----------T----------T---------T---------,
1 1 ITape 1 --ITape 2 --I
1 Data set 1 Logical IPhysical IPhysical 1
1 1 Sequence ISequence Isequence 1
~----------+----------+---------+---------i
1 All 1 1 1 1
1 B 1 2 1 2 1 1
1 C 1 3 1 3 1 1 1
1 D 1 4 1 1 2 1 L __________ ~ __________ ~ _________ ~ _________ J

Figure 2. Multi-Volume, Multi-Data set
Aggregate

Unlabeled Tape Positioning: The open rou­
tine positions unlabeled tapes by comparing
the physical sequence number in the UCE to
the lcgical sequence number in the JFCB.
For output data sets if the physical
sequence number does not equal the logical
sequence number, the data set sequence
number in the JFCB is replaced by the
physical sequence number (this is required
only for wulti-volume, multi-data set
aggregates) •

For RDBACK, the tape is positioned as
above and in addition, for:

• One volume - forward space files fol­
lowed by a backward space file is
issued to position the tape at the end
of the appropriate data set.

• More than one volume - the last volume
specified in the JFCB is positioned as
if the data set sequence number in the
JFCB were a 1. The sequence number
frorr the JFCB replaces the logical
sequence number in the UCB.

Input Standard Labeled Tape Processing:
Labeled tape positioning is the same as for
unlabeled except that the HDRl (Data Set
Labell) is read and the sequence number
from the label is inserted into the UCB.
This number is checked against the nuwber
in the JFCB.

After tape positioning, the tape is left
positioned in front of the HDR1. However,
for RtEACK and for OUTPUT with MOD speci­
fied, the tape is left in front of the tape
mark preceding the trailer label.

For all DCB's in the parameter list with
mounted tape volumes that have standard
labels, the open routine determines whether
the labels specify the correct data set
name. (For open to verify labels, the OPEN
parameters must specify INPUT, INCUT, or
RDBACK.) Open then fills in the zero
fields in the associated JFCB's with fields

10

specified in the labels~ open also posi­
tions the tapes at the first data set
record.

To verify that the tape is correct for
the data set, open inspects HDR1. Open
uses the least significant nonblank charac­
ters (with a maximum of 17) of HDRl to
deterrrine the data set name. The label
data set narr.e is then compared with the
data set name in the JFCB. If the names do
not agree, control is passed to the ABEND
routine. When they do agree, HDR2 is read
into the work area.

(If the DCB is being opened for INOUT,
the retention date is checked to make
certain that a current data set is not
destroyed. If the date has passed, open
processing continues. If not, a message is
written to the operator, and if the tape is
nct verified by him, the task is terminat­
ed.)

After the open routine verifies the data
set, cpen checks HDRl for specification of
a password-protected data set. When the
data set is protected, control is passed to
the open security module. This routine
establishes its work area and then searches
the SYSRES VTOC for the DSCB of the pass­
word data set. If the search is unsuccess­
ful, an abnormal job step termination is
requested. When the password DSCB is
found, the routine initializes a counter
used to limit to two the number of attempts
tc obtain the correct password from the
operator; it then passes control to the
password reader routine. (The latter may
be installation supplied.)

The password reader increments the coun­
ter by cne and then prepares the operator
message to request the data set password.
The rressage identifies the data set by
giving the job and step names and the
DDNAME. These names are obtained from the
data set 'nOT entry. When the routine has
issued the message, it returns control to
the security module.

The security module searches the pass­
word data set for the one supplied by the
operator. When the correct password is
submitted, the security module reads in the
data portion of the password entry. The
routine compares the mode byte of the entry
to the specified method of opening for . the
data set. When modes agree, the user count
from the data portion of the password entry
is increrrented by one. If the modes are
not the same, the job step is abnormally
terrrinated.

When the password submitted by the oper­
ator is not found, the open security rou­
tine determines whether one or two attempts
have been made. When one attempt was made,

the security module passes control to the
password reader routine to initiate a sec­
ond request. When the operator has given
two incorrect passwords, the job step is
abnormally terminated.

When the open security routine has suc­
cessfully verified all security-protected
data sets to be opened, it releases the
work area and passes control to the next
open module.

HDR2 follows HDR1 and contains data set
characteristics. This header is merged
with the JFCB. The zero fields in the JFCB
that may be filled in by fields from the
HDR2 are converted from the BCD (7 track)
or EBCDIC (9 track) form of the HDR2 to the
binary form of the JFCB. The tape is then
positioned (forward space file) to the
first data record (if RDBACK is specified,
a backspace file operation is performed.)

output Standard Labeled Tape Processing:
When the tape is positioned to receive a
new data set, the open routine checks the
tape for a header label. If no label is
found, one is created for the data set. If
a header label is found (indicating that a
data set is already on that part of the
tape), it is checked to determine whether
it may be overlaid. The open routine
checks for unexpired and for security­
protected data sets. If the expiration
date of the data set on the volume has not
passed, the open routine issues a roessage
to the operator. If the operator replies
that the tape is not to be used, he may
mount a scratch volume.

When the ex~iration date has passed, the
open routine checks for data set security.
If the header label indicates security, a
check is made for the correct data set name
as for input tape, and then control is
passed to the security routine. If the
correct password is given, the new label is
prepared.

The new header label is constructed from
the information in the JFCB. The HDR1 and
HDR2 fields are determined, and where
necessary, binary fields specified in the
JFCB are translated to the character forms
of the label. A tape mark is written
following the label.

DIRECT-ACCESS VOLUME SEARCHING: When a
direct-access volume is mounted, the volume
label for that volume points to the volume
table of contents (VTOC) which contains a
DSCB for each of the data sets on that
volume. To locate the correct DSCB's for
the data sets associated with the DCB's in
the parameter list, epen searches on key
equal with DSNAME from the JFCB. When the
search is equal, the correct DSCB for the
data set is found. Open then reads the

data portion of the DSCB (96 bytes). If
the DSCB is not successfully read, the job
step is terminated.

When the DCB specifies that the data set
is not to be NEW, the expiration date in
the DSCB is checked: if the date has not
expired, a message is transmitted to the
operator. If the operator indicates that
the data set cannot be modified, the job
step is terminated so current data sets
will not be destroyed.

If the DSCB (format 1 block) specifies
security, the open security module receives
contrel. The security routine operates as
for tape except that the specification of
BPAM concatenation requires checking each
member that is a security-protected data
set.

Parallel ~ounting

Parallel mounting is similar to general
mounting but handles the specific require­
ments of precessing programs using ISAM or
BDAM. These access methods require that
all volumes of a data set be mounted
concurrently.

During job step initiation, the job
scheduler will initiate mounting not only
of the first volume of a data set but also
of all the volumes required for ISAM or
BDAM. Hewever, the scheduler will only
allocate units to handle all the volumes if
the processing program specifies deferred
mounting.

For parallel mounting, open checks all
DCB's for those that specify use of ISAM or
BDAM. When one is recognized, open exam­
ines the associated data set's task I/O
table (TIOT) entry. Since the TIOT lists
all the UCB'S for devices which have been
allocated to a data set, open can determine
whether multiple volumes are required by a
DCB's associated data set.

When the TIOT does not indicate more
than one DCB, no parallel mounting takes
place since the first volume of every data
set has been checked for correct mounting
by the general mount.

For those DCB's requiring parallel
mounting, open uses the serial numbers
given in the JFCB. Since a data set may
reside on more than five volumes, open may
require JFCB extension blocks to obtain the
complete list of serial numbers. Open
obtains the extension block from auxiliary
storage.

To perform I/O, the parallel mount uses
its own GETMAIN areas: one large encugh to
receive a JFCB or a JFCB extension block,

Opening a Data Control Block 11

the other large enough to receive a volume
label.

In rrost respects, the parallel mount
procedure is the same for BDAM and ISAM.
The difference arises from the possibility
of using more than one DD statement in
defining an indexed sequential data set.

BDAM Parallel Mounting: When the exarrina­
tion of the TIOT indicates additional UCB's
for a data set, open checks, the associated
JFCB for the next volume serial nurrber.
When five serial numbers have been obtained
from a JFCB, it is necessary to read the
extension block intc the GETMAIN area.

When the serial number has been obtained
from the JFCB or from the extension block,
open ascertains that the number is non­
blank. The recognition of a blank serial
number field results in abnormal termina­
tion of the job step.

Open examines the UCB for the presence
of the voluITe serial number. When the
number is in the UCB, the voluIl'e has been
mounted by the job scheduler. Open need
only increment the data management count
and set the mount switch off. When the
volume is not mounted, open sets the rrount
switch on and issues a mount message. The
open routine reads the volume label into
the GET~AIN area for checking.

Volume verification is the same as for
the general rrount.ing. When the correct
volume has been mounted, open gets the
volume table of contents (VTOC) address
from the label. The address is converted
to the relative track form. The converted
VTOC address and the volume serial number
are placed into the UCB.

Open sets the mount switch off and
increments the data management count as in
the general mounting. Unlike the general
mount when this would complete mounting for
a DCB, the parallel mount must check the
TIOT for specification of further UCB's for
this data set. Only when the TIOT entry
lists no other UCB's does parallel ITounting
for another DCE begin.

ISAM Parallel ~ounting: The parallel rrount
procedure for ISAM is the same as for BDAM
with one exception. When open examines the
TIOT entry for.a data set, the specifi­
cation of no additional UCB's does not rrean
that all the volumes of the data set are
mounted. Since the data set may require
more than one DD statement to define it,
there rray be more than one TIOT entry for
t,he data set.

When this occurs, the additional TIOT
entries have their DDNAME fields blank, as
for concatenation. Therefore, when the

12

TIOT entry indicates no additional UCB's,
open exarrines the next entry. If the next
entry has a blank DDNAME field, there is
another JFCB for the data set. Open reads
the associated JFCB into the area. From
this point, the procedure is the same as
for BDAM.

When the examination of the next TIOT
entry does not result in a blank DDNAME
field, all the volumes associated with the
data set have been rr:ounted. Open frees any
GETMAIN areas that were acquired and con­
tinues parallel mounting for any other
DCB's that specify ISAM or BDAM.

Reading Additional DSCB's: After all
volurres have been mounted for BDAM and
ISAM, open reads in the associated DSCE's.
Open uses the VTOC address from the UCB
specified in the data set's TIOT entry to
address the DSCE. In main storage, open
sequentially chains a data set's DSCB's,
beginning with the DSCB of the first volume
to be processed. The open routine read the
first DSCB following the general mounting.

For ISAM, the possibility exists of
duplicating the reading of DSCB's since the
same volume may be specified in more than
one TIOT entry for a data set. To avoid
this, open checks all format 1 blocks
already read for one with a UCB pointer
equal to the UCB pointer of the present
DSCE. When the routine recognizes equal
pointers, it proceeds to the next volume if
one exists. The open routine places the
UCB pointer in the suballocation field of
format 1 blocks. (ISAM allocation does not
use this field.) Open also checks for a
format 2 block on the first volume of the
data set. If this block is absent, the job
step is abnormally terminated.

For BDAM, the open routine places the
number of extents of the data set
(excluding the first volume) into the DCB.
The BDAM executor uses this count to deter­
mine when it has constructed all extents in
the DEB.

Open determines whether the processing
program has specified the same volume
sequence as the sequence of the original
allocaticn. The sequence is correct when
successive sequence numbers in the TIOT are
in ascending order. When the sequences do
not agree, the job step is abnormally
terrrinated. The open routine makes this
check for both BDAM and ISAM.

MERGING OF CeNTROL BLOCK INFORMATION

The number of completed fields in the
DCB before it is opened varies with the
type and number of parameters specified in
the DCB rracro-instruction. At execution

time, additional attributes may be intro­
duced into the DCB from the DD statement.
Job management routines place these attri­
butes into the JFCB, and the open routines
transfer them to the DCB. The open rou­
tines use a merging process.

The uper may add to or modify inforrra­
tion in the DCE during opening by including
an active DCE.exit in his exit list. (The
DCB exit is described in IBM System/360
Operating System: Data Managerrent.) When
requested, open takes this user exit after
the information merge to the DCB is com­
plete.

There are two types of merging with
respect to the DCB:

• Forward; merging information from the
DSCE or data set label to the JFCB to
the DCB.

• Reverse; Il'erging information frorr the
DCE to the JFCB to the DSCB.

Forward Merge

The forward merge from the data set
label to the JFCB completes zero fields in
the JFCE.

The rrerge
for DSCB's
fields Il'ay be
types. From
fields may be

is the same for tape labels as
except that different JFCB
filled from the two label

DSCB's, the following JFCB
completed:

• JFCRECFM - record format.
• JFCOPTCD - option codes.
• JFCKEYLE - direct access key length.
• JFCDSORG - data set organization.
• JFCBLKSI - block size.
• JFCLRECL - logical record length.

For tape, the merge may complete these
fields:

• JFCRECFM - record format, carriage con­
trol character, and machine code.

• JFCLRECL - logical record length.
• JFC'IRTCH - tape recording teChnique.

The forward merge from the JFCB to the
DCB takes place for all DCB's to be opened~
This merge places information from JFCB
fields into corresponding DCB fields that
are zero. The fields which may be merged
are listed in the three merge tables.
These are:

• DCB merge table, which contains dis­
placements for the fields in the DCB
that are to be rrerged.

• JFCB merge table, which contains dis­
placements for the fields in the JFCB
that are to be merged.

• Field length table, which contains the
lengths of the fields to be merged.

Each table contains an access method depen­
dent section, which contains the DCB fields
that are present only for a particular
access method and a section that contains
DCB fields that are always present, regard­
less of the access rrethod. The access
rr,ethod executor to receive control from
open is determined at this time and indi­
cated in the WTG table.

During the JFCB to DCB merge, modifica­
tion of a field is noted by setting the
field's associated bit. The set of DCB
Il'odification bits make up a mask that is
placed in the DEB after its construction.
The close routine uses the mask to reset
the DCB tc its pre-open status.

Reverse Merge

In the reverse merge from DCB to JFCB
for output, the DCB fields override exist­
ing JFcCB fields except the DSORG field.
These JFCB fields specified by the merge
tables (see JFCB to DCB merge) are made
equal to corresponding DCB fields. For an
output DSORG field and for input, the merge
only occurs when the JFCB fields were
previously zero.

The reverse merge from JFCB to DSCB
takes place only for DCB's specifying
direct access output. DSCB fields except
the DSORG field (see DSCB to JFCB merge)
are made equal to corresponding JFCB
fields. Already existing fields are over­
ridden. The DSORG 'field in the DSCB is
made equal only if it has been previously
zero. When the JFCB to DSCB merge occurs,
an indicator is set to show that the DSCB
has been rrodified.

ACCESS ME'IHOD DETERMINATION

During the merge process, open uses the
DSORG and MACR fields to determine the type
of DCB being opened. From this, open
ascertains which access method executors
are required to process the DCB. Open
finds the addresses of the executors in the
XCTL table. Appendix B gives information
about XCTL tables.

Open transfers the IDTTR and load length
of the required executor from the XCTL
table to the associated DCB's entry in the
WTG table. The IDTTRs are placed in the
table only for those DCB's being opened at
this time. Otherwise, zeros are entered in
place of the executor IDTTR.

To pass control to an access method
executor, open moves the IDTTR field of the
first nonzero entry in the variable section

Opening a Data Control Block 13

to the approfriate fields in the standard
section of the WTG table. While the execu­
tor has control, it deter~ines whether
another executor is needed to continue
processing. If another executor is
required, the executor overlays the ID'ITR
in the associated entry in the variable
section with the IDTTR of the required
executor .. When no other executor is needed
for a DCB, the ID of its entry is set to
zero.

When an executor has overlaid or zeroed
its ID, it exa~ines the imrrediately fcllow­
ing DCB's entry to ascertain whether that
entry's ID is equal to its own ID. If they
are equal, the same executor must be
entered for the next DCB. Therefore, the
executor branches to its starting address.
If the ID's are unequal, the exeoutor
determines whether the new ID is the last
in the table by comparing it with the ID of
the final open load module. If table end
has not been reached, the executor contin­
ues its examination of following entries,
until table end is recognized.

When the end of table has been reached,
the table pointer is reinitialized to the
first entry, a search is made for the first
nonzero entry, and control is passed tc the
indicated module. Open progresses through
all entries in the WTG table in this manner
until the only nonzero entry is the final
open module. Control is then passed to the
final open module.

If the DSCE has been modified, as indi­
cated by the bit set during the merging, it
is written back onto its associated volume
in modified form. If not modified, no
rewrite is necessary. When the of en func­
tions are corrplete, the WTG table and the
work area are no longer necessary, so the
FREEMAIN macro-instruction is issued.

The DCB's are indicated as cpen; the
OPEN bit is turned on and the BUSY bit is
turned off. An SVC 03 (EXIT) is issued to
return CPU control to the supervisor.

THE OPENJ ROUTINE

The openJ routine receives contrcl from
the SVC interruption handler after the OPEN
macro-instruction with a TYPE specification
of J (SVC 22) is issued.

The openJ routine, with one exception,
operates and has the sarre functions as the
open routine. (Refer to Charts 10 through
13.) The exception is that the JFCB is
read from the job queue in the Of en rou­
tine, but rrust be in main storage when the
openJ routine is entered. The ofenJ rou­
tine mcves the JFCB into the openJ work
area.

14

To locate the JFCB, the openJ routine
checkS for a DCB foundation extension that
specifies the user's exit list. The exit
list shculd contain an active exit
(hexadecimal 07) that indicates the address
of the JFCB in the dynamic area. If the
extension, exit list, or JFCB address is
nct fresent, the ABEND routine is entered.

THE RDJFCB ROUTINE

The RDJFCB routine receives control from
the SVC interruption handler when the
RDJFCB rracro-instruction (SVC 64) is
issued. The RDJFCB routine reads the
JFCB's associated with the DCB's in the
pararreter list into the dynamic area. (No
JFCB extension blocks can be read.) Execu­
ticn of the RDJFCB load module is repeated
as required for each DCB in the parameter
list before control is returned to the
interruption handler. The RDJFCB routine,
therefore, rraintains the address of the
current DCB being processed as well as the
starting address of the parameter list.

The RDJFCB routine oferates with opened
and unopened DCB's. No processing is per­
forrred on an unopened DCB if the DDNAME in
the TIOT does not match the DDNAME field in
the DCB.

Chart 14 shows the functions and opera­
tion of the RDJFCB routine. A symbolic
name is indicated above the blocks that
describe each function. These names, and
names of the RDJFCB load module are con­
tained in a table in the listing of the
RDJFCB rcutine. This table enables cross
referencing between the charts and the
listing. Since the RDJFCB rcutine is a
type 3 SVC routine, it has only one load
module.

The RDJFCB routine first inspects the
LOCK tit in the DCB. The LOCK bit, if set
to 0, indicates that another I/O support
routine is currently processing that DCB
and the DCB should not be altered. If the
lOCK bit is zero, the user regains control
with no processing on that DCB. The next
DCE is inspected.

An errcr exit is taken to the ABEND
routine if the user has not sfecified an
active exit by means of the hexadecimal
value 07 in the high order byte cf an entry
in his exit list. The exit list is
addressed by the DCB to be processed. The
entry indicates the address in problem
program storage into which the JFCB is to
be read. If the address is invalid, the
AEEND routine is entered.

When the
exit and the
valid, the

user has specified an active
problem frog ram address is

RDJFCB routine obtains a work

area (see Appendix A) by means of GETMAIN
macro-instruction, sets up the work area to
receive the JFCB for the DCB, constructs
the control tlocks necessary to read the
JFCB ty means of the EXCP macro­
instruction, and constructs the channel
prograrr.

The convert routine is used to change
.the address of the JFCB from the relative
track address (TTR) to the actual track
address (MBECCHHR). This routine is
discussed in the putlication IBM Systerr/360
Operating System: seguential Access ~eth­
ods, Program logic Manual.

The RDJFCB routine issues the EXCP
macro-instruction to read a JFCB. The JFCB
is read into the work area, and, if there
are nc I/O errors, the RDJFCB routine moves
it to the dynamic storage area specified in
the exit list. I/O errors cause the job
step to te terminated.

The ~ain storage into which the JFCB is
read is released by means of the FREEMAIN
macro-instruction, and the next DCB to be
processed is ottained, and the processing
is repeated. When all of the required
JFCB's are read, the RDJFCB routine returns
control tc the supervisor.

Opening a Data Control Block 15

CLOSING A DATA CONTROL ELOCK

The DCB associated with a data set Rust
be closed after completion of all data
transfer operations between Rain storage
and auxiliary storage. The control program
will pass control to the close routine if a
DCE is still open when a task is t~rminat­
ed.

Closing a DCB includes restoring the DCB
to its original condition, processing
labels, determining voluRe disposition,
removing the DEB from the DEB chain, and
releasing access method subroutines.

Closing a BCB requires the execution of
a CLOSE macro-instruction that does not
have a type speCification of T. Execution
of the CLOSE macro-instruction causes an
SVC interruption (SVC 20). The SVC inter­
ruption handler passes CPU control to the
close rcutine.

A DCB can also be temporarily closed if
the basic sequential access method is used.
Temporary closing requires execution of a
CLOSE macro-instruction that has a type
specification cf T. This Racro-instruction
causes an SVC 23 interruption. The SVC
interruption handler passes control to the
Tcldse routine.

The Tclose routine differs frcm the
close routine in that Tclose does not
restore the DCB or release the DEE or
subroutines. Tclose performs only label
processing and repositioning. Therefore,
when the Tclose routine closes a DCB, data
set processing can be resurred without re­
opening this DCB.

THE CLOSE ROUTINE

The close routine is a type
routine. It is entered from the SVC
ruption handler after the issuance
CLOSE macro-instruction (SVC 20).

4 SVC
inter­
cf a

The first module to be executed gains
control from program fetch after fetch has
read it into the SVC transient area. All
subsequent modules ?re loaded and gain
control by means of the XCTL macro­
instruction.

The close routine maintains the address
of the parameter list of DCB's that are to
be closed and the address of the DCB being
closed. This facilitates the procedure of
executing one load module for every DCB
requiring it before passing control to
another module.

16

In order for a DCB to be closed, it must
have its LOCK bit off (off is 1 for the
LOCK bit) and its OPEN bit on (on is 1 for
the OPEN bit). These bits are within the
DCEOFLGS field. The LOCK bit, when off,
indicates that no other I/O support routine
has begun operations upon that DeB. If the
LOCK bit is on, the close routine does no
processing upon that DCE and goes on to the
next DCE. The OPEN bit, when on, indicates
that the DCB has been opened and may be
closed. If the OPEN bit is off, the close
rcutine goes on to the next DCB.

Upon entry into the first module of
close, the BUSY bit is set on (to 1) to
indicate that the DCB is in the process of
being closed. This bit remains on until
the DCB is olosed.

When the close routine encounters a
condition that requires abnormal
terminaticn of a task, the routine first
checks the ABEND bit in the TCB to deter­
mine whether the task is already undergoing
termination. If the bit is on, the close
routine does not issue the ABEND maoro­
instruction, but ignores the error
condition and continues closing the DCB.
If the AEEND bit is off, the close routine
passes ccntrol to the ABEND routine for
abnormal termination of the task.

This logic gives the ABEND routine the
facility to close each DCB related to a TCB
through a DEB, when the associated task is
being abnorrr.ally terRinated. The ABEND
routine sets the ABEND bit to indicate to
the close routine that the error condition
shculd be ignored and that the DCB should
be clcsed as normally as possible.

Charts 20 and 21 show the functions and
operation of close. A symbolic name is
indicated above the blocks that descr1be
each function. These names and the names
of the actual close load modules that
perform the functions are contained in a
table in the first load module of close.
This table enables cross-referencing
between the charts and the listings of the
close load modules.

EASIC INITIALIZATION

The close routine, like the open rou­
tine, uses main storage for a work area and
fcr a WTG table. A work area is obtained
for each DCB in the parameter list. The
size of the WTG table is determined (basic
section and number of entries for the

variable section). Storage for the work
area and wTG table is acquired via a
GETMAIN macro-instruction.

During initialization, the close rou­
tine:

• Ascertains task-data set relationship.

• Purges queued and active I/O requests
associated with data sets that are
being operated upon on the EXCP level.

• constructs control blocks for reading
JFCB's and DSCB's into the work areas.

• Determines and indicates on the WTG
table (WTGPATH bytes) the access method
executors and close roodules necessary
for closing each DCB.

Task-Data Set Relationship: To prevent a
problerr program from closing a data set
that was opened under a different task frorr
itself, the close routine checks family
ID's. The family ID of the task teing
processed roust be the same as the farrily ID
in the DEB addressed by the DCB that is to
be closed. If the family ID's dc not
agree, close does not process the DCB
unless the ABEND routine has issued the
CLOSE.

Purge: When a data set is closed, no I/O
requests may be executed for it. Thus,
when the close routine gets control, the
queued I/O requests, and any that are
actively being executed, are purged. The
close routine issues the PURGE macro­
instructicn (SVC 16) for each DCB to remove
I/O requests for data sets that are
operated upon on the EXCP level. The purge
routine is described in the publication IBM
System/360 Operating System: Input/Output
Supervisor, Program Logic Manual, Form
Y28-6616.

Control Blocks: In the work area, the
close routine constructs the control blocks
necessary to perform I/O operations.

WTGPATH: The close routine determines the
device type, whether a JFCB or a DSCB
should be read for each DCB, the access
method executors necessary for the DCB if
the access methods are used, and if the
device is tape, whether it has standard or
nonstandard labels or is unlabeled.

The WTGPATH bytes in the WTG table are
set, as in the open routine, to indicate
the following:

• Tape or direct-access output.
• Output tape trailer label preparation.
• Tape positioning.
• Direct-access output and disposition.

The close routine determines from the
XCTL table the ID and TTR of the access
rrethod executors required for closing each
DCB. Close loads them into the variable
secticn of the wTG tatle.

OU'!PU'I LABEL PROCESSING

When a write was the last operation that
occurred tefore cloSing (for OUTPUT, OUTIN,
or INOUT), the close routine processes data
set labels. For tape, the trailer labels
are constructed from information contained
in the JFCB's. For direct-access devices,
the DSCB's are read, and the last-block­
written field and the track-balance field
are updated.

The close routine indicated during
previcus initialization that a JFCB is
necessary for the DCB's specifying tape
output data sets. Close constructs the
channel programs and reads the JFCB's.

The convert routine is used to convert
the relative address of the required JFCB
for each DCB to the actual track address of
MBBCCHHR. 'Ihe control blocks were pre­
viously constructed so the EXCP macro­
instructicn need only to be issued for
reading the JFCB into main storage. If an
I/O error occurs during the reading of a
JFCB., the task is abnormally terminated
unless the ABEND bit of the TCB is on. If
operation is not on an EXCP level, the
access method executors are executed. Upon
return to close, trailer labels are
constructed.

Before construction of a trailer label,
the close routine inspects the WRITE bit
within the DCBOFLGS field. If off, no
output has been written and a trailer is
unnecessary. when on, the close routine
writes a tape mark after the data. Then
close constructs trailer labels, EOF1 and
ECF2,from the inforrration in the JFCB, the
DCB, TIOT, and UCB, and writes these labels
on the tape. After labels are written for
each DCB specifying standard cutput tapes,
nonstandard label routines are entered if
required by other DCB's.

Direct-Access

The clcse routine reads the DSCB by
means of the EXCP macro-instruction using
the DSCB address which is saved in the DEB
prefix section by the open routine. When
the DSCB is in the work area, the last­
tlock-written field and track-balance field
are updated.

For DCB's that do not have the WRITE bit
set, the close routine need not update the

Closing a Data Control Block 17

DSCB, ncr does it update the DSCB when the
last block written is not in a sequential
or partitioned organization data set.

The full device address is converted by
means of the convert routine, and the
relative device address is placed into the
DSCB last block written field.

When the DEB (DEBOFLGS field) specifies
that unused external storage is tc be
released and the WRITE bit is on in the DCB
(storage is not released when the ABEND bit
is cn), control is passed to the DADSM
release routine.

The release routine updates the DSCB's
of both the data set and the available
storage on the volume to show that the
unused tracks are no longer assigned tc the
data set. The updated DSCB's are then
written back into the VTOC.

The close routine writes a file rrark
after each output data set that specifies
physical sequential data set organization
and READ/WRITE, GET/PUT, or EXCP macro­
instruction reference. A data set that is
not terminated by a file mark because of
extent limits reaches end-of-data on input
by coming to end-of-extent. Ccntrcl is
passed to the ABEND routine if a permanent
I/O error is encountered while writing a
file mark.

The file mark is written on the next
track of the data set's extent. Fcr fixed
standard records, a file mark is also
written in the present track (if ancther
record will fit). A file mark is written
on the first track if no WRITE was issued.

VOLUME DISPOSITION

Fcr tape or direct-access volumes,
parameters in the CLOSE macro-instruction
may indicate the volume positioning
required after closing. If LEAVE or REREAD
is not specified in the macro-instruction,
the clcse routine examines the TIOT for the
KEEP or DELETE dispositions provided in the
DD control statement. If no disposition is
specified in either the macrc-instructicn
or the DD statement, the close routine
assurres the LEAVE disposition.

For an output tape data set, the WRITE
(trailer switch) bit is on, indicating that
a write has taken place and a tape rrark
must be written. The close routine writes
two tape marks and then positions the tape
according to the disposition specified.

If the LEAVE disposition is specified,
the close routine positions the current
volurres after the file rrark if unlabeled,
or after the file mark following the trail-

18

er label if labeled. The close routine
then increments the logical and sequential
data set sequence numbers in the UCB by 1.
If the REREAD disposition is specified, the
close routine pOSitions the current volume
tc process the data set again. No tape or
volurre positioning is performed for SYSIN,
SYSOUT or for null data sets.

If the KEEP disposition is specified and
the vclurre:

• is private,
• is net permanently resident,
• is nct used for SYSRES, and
• has its user and data management counts

equal to one,

close issues a message to the operator to
disrrount and keep the volume. To effect
the KEEP disposition, a rewind unload com­
mand is issued for a tape volume; for
direct-access, the not-ready bit is set in
the UCB. If the DELETE disposition is
specified, a rewind comrrand is issued for a
tape device. If DELETE is specified for
direct-access, no action is taken.

DATA CO~TROL BLOCK RESTORATION
J

To iestore the DCB, the close routine
uses two tables: a table of DCB displace­
ments and a table of DCB field lengths. By
using a rrask in the DEB which is set by the
open routine, close zeros the fields that
were rrerged to the DCB from the JFCB.

Terrrinaticn

After restoring the DCB, the close rou­
tine releases the rrain storage used ~or
subrcutines, appendages, the DEB, and the
work area. The DEB is removed from the DEB
chain; rerraining DEB's are rechained. The
data management count in the UCB is decre­
mented by one for each DCB which is being
closed for tape or direct-access. Close
then checks for concatenation of data sets
with unlike attributes. In this case, the
close routine transfers control to the open
routine. otherwise, the close routine
returns ccntrol to the supervisor.

THE TCLOSE ROUTINE

Chart 22 shows the operation and func­
tions performed by the Tclose routine. A
symbclic narre is indicated above the blocks
that describe each function. These names
and the narres of the actual Tclose load
rrodules that perform the functions are
contained in a table in the first load
rrodule cf Tclose. This table enables
cross-referencing between the charts and
the listings of the Tclose load modules.

The Tclose routine provides volume posi­
tioning. It assumes the LEAVE disposition
if no disposition is specified in the
macro-instruction (without checking the
TIOT).

For direct access, the Tclose routine
resets pointers in the DCB either after the
last data record or before the first.

Tclose
required.

also processes labels if

The Tclose routine differs from the
close since it does not restore the DCB or
release any main storage other than that
acquired for its work area.

Closing a Data Control Block 19

END-OF-VOLUME PROCESSING

The end-of-volume (EOV) routine process­
es end-of-volume and end-of-data set ccndi­
tions for data sets having sequential
organization. This routine is entered when
one of the following conditions occurs:

• Tape mark read cn tape.
• File mark read on direct-access device.
• End of last extent recognized on

direct-access volume.
• End of file indicated after last record

on unit record equipment.
• End of reel encountered.
• FECV macro-instruction issued.

The EOV routine receives control via an
SVC instruction. EOV performs final pro­
cessing on the data set labels cn the
volume and specifies additional volumes
needed to continue processing the data set.
This specification of additional volumes
consists of verif"ying the mounting of the
proper voluroe, and either checking the data
set label if the data set is input, or
building the data set label if the data set
is output.

The EOV routine is invoked either froro a
processing program when the user wishes to
force an end-of-volume condition, or from
the control program when an end-of-volume
or end-of-data set condition is encountered
by a sequential access method routine. The
user c"auses entry to the EOV routine by
issuing an FEOV macro-instruction in his
processing program. The expansion of this
macro-instruction includes an SVC 31
instruction. When either the CHECK routine
of the basic sequential access method
(BSAM) or a synchronizing routine of the
queued sequential access method (QSAM)
finds that a channel program encountered
either a permanent error or an end-of­
volume condition, the routine issues an SVC
55 instruction.

When either an SVC 31 or SVC 55
instruction is executed, the resulting
interrUption causes control to be given to
the SVC interruption handler. This routine
analyzes the interruption, brings the first
load module of the EOV routine into the SVC
transient area, and passes control to it.

The first module loaded into the SVC
transient area for an SVC 31 instructicn is
tne FECV executor; for an SVC 55 instruc­
tion, the first module loaded is the
SYNAD/EOV executor.

upon completion
control is given to

20

of the
the

EOV routine,
EOV/new volume

executor. These executors perform func­
tions for the sequential access methods and
are described in the publication IBM
System/360 Operating System: seguentIal
Access Methods, Program Logic Manual.

Charts 30 through 33 show the functions
and cperation of EOV. A symbolic name is
indicated above the blocks that describe
each function. These names and the names
of the actual EOV load modules that perform
the functions are contained in a table in
EOV module IGG0550Z. This table enables
cross-referencing between the charts and
the listings of the EOV load modules.

INITIAL PROCESSING

After the SYNAD/EOV executor has com­
pleted its processing, the first module of
the I/O support portion of the EOV routine
is brought into the SVC transient area.
After building a data extent block (DEB),
data control block (DCB), input/output
block (lOB), and event control block (ECB)
fcr its own I/O processing, the EOV routine
reads a JFCB into a work area that was
acquired in the dynamic storage by the
SYNAD/EOV executor. This is the JFCB of
the data set being read or written when the
EOV condition occurred (EOV data set); the
location on auxiliary storage of the JFCB
was found in the task input/output table
(TIOT).

The unit control block (UCB) is checked
to determine the type of device on which
the EOV occurred. For magnetic tape, the
tape processing portion of the EOV routine
is entered. For a direct-access device,
the direct-access portion of the EOV rou­
tine is entered. When the device is nei­
ther tape nor direct-access, it is assumed
to be unit record.

CONCATENATION

If the EOV condition oocurred because of
an end-of-data set on an input data set,
the ECV routine determines whether this
data set is concatenated to another data
set. A data set is concatenated if, in the
TIOT, the next DDNAME field entry is blank.
If the data set is not concatenated, the
EOV routine passes control through the
supervisor to a user-written end-of-data
set routine that is in the dynamic area.

not
When data

have the
sets are concatenated but do

same attributes, the EOV

routine terminates by having the first
module of the close routine brought intc
the SVC transient area to close the EOV
data set. After clcse completes its pro­
cessing, it passes ccntrol to the open
routine. When the concatenated data sets
have the sarr,e attributes, the volurre type
on which the new data set resides is
determined, and the EOV routine performs
the processing fcr that volume before
returning control to the supervisor.

EOV ON ~AGNETIC TAPE

Processing EOV conditions on magnetic
tape consists prirrarily of verifying and
constructing labels. Nonstandard label
processing is performed by installation
routines that are brought into the SVC
transient area from the SVC library
(SYSl. SVCLIB) .

EOV ON OUTPUT ~ATA SETS

When an output data set has standard
labels, the EOV routine generates trailer
labels and writes them on the tape. If the
data set has nonstandard labels, the
installation prograrrmer must provide a rou­
tine tc generate and write trailer labels.
This routine is incorporated into
SYS1.SVCLIB.

If necessary, the EOV routine issues
mounting instructions for either a speci­
fied cr a scratch volume to continue writ­
ing the data set. The label charac­
teristics and density (for dual density
devices only) of the volurre are ccwpared
with user specifications. If either does
not agree, the volume editcr routine
receives control as for open. When a
volume with correct label characteristics
is mounted, the EOV routine determines by
reading the sense bytes whether the tape
volume is file-protected. If the rrcde is
OUTPUT or OUTIN and the tape is file­
protected, a message is issued to the
operator to insert a file protect ring. If
the mode is INOUT and the volume is file
protected, the message will require the
operator to deterrrine whether a file
protect ring is necessary. This is the
case when no writing has yet been done on
the data set. Otherwise, the message is
the sarre as for the OUTPUT or OUTIN modes.

When standard labels are present, the
EOV routine checks the header label of the
first data set on the tape. If the expira­
tion date of the first data set on the new
volume has not passed, the EOV routine
transmits a rressage to the operatcr. If
the operator replies that the tape is still
to be used, header labels for the EOV data
set are written; if the operator replies

that the tape is not to be used, a new tape
rray te rr,cunted.

The EOV routine also checks the latel
for the password protection indication.
When the label indicates password protec­
tion, the routine checks the JFCB. If the
JFCB also specifies password protection,
the label ID must be the same as the DSNAME
or the volume is dismounted and a scratch
volurre is mounted.

When the EOV routine has verified that
the tape may be used to continue writing a
data set, the routine overlays the labels
already on the tape with new header labels.

If an I/O device is available, the EOV
routine requests mounting of an additional
volurre that is to receive portions of the
data set.

When a sequential access method is being
used, the EOV routine has itself replaced
by a sequential access method executor in
the SVC transient area. If no access
method is being used, the EOV routine
releases its work area and returns CPU
control to the supervisor.

EOV ON INPUT DATA SETS

When an input data set has standard
labels, the EOV routine checks the block
count in the trailer label to determine
whether all the records have been read; if
not the job step is terminated. If this
data set does not continue on some other
volurre, the TIOT is checked to see whether
the data set is concatenated. When a
concatenated data set is security­
protected, centrol is passed to the EOV
security routine to obtain the password.
When the data set ccntinues on ancther
volurre that is not yet mounted, the EOV
routine issues mounting instructions.

Label processing is performed to verify
that the proper volume has been mount€d.
If the devices are available, the EOV
rcutine requests that other volumes
ccntaining unprocessed portions of this
data set be mounted. If a sequential
access method is being used, CPU control is
passed to a sequential access method execu­
ter that is brought into the SVC transient
area. Otherwise, the EOV routine releases
its work area and returns control to the
supervisor.

EOV ON DIRECT-ACCESS DEVICES

Chart 33 shows the flow of CPU control
thrcugh the EOV routine for an end-of­
volurr,e condition on a direct-access device.

End-of-Volume Processing 21

EOV FOR OUTPUT DATA SETS

An EOV condition for an output data set
being written on a direct-access vclume
indicates that the auxiliary storage space
assigned to that data set, when the job
step was initiated, has been filled. The
EOV routine uses a DADSM (direct access
device space management) routine to
allocate more space on the same volume on
which the EOV occurred. The space request­
ed is that amount specified in the secon­
dary quantity field of the JFCB. If no
secondary quantity was specified, the job
step is terminated.

If the additional space cannot be allo­
cated on the same volume, the EOV routine
requests that another volume be mounted on
an available device, and the DADSM routine
is requested to allocate space on that
volum,e.

The volume-mounting request is for a
scratch volume unless the user has speci­
fied volumes for this data set. If no
devices are available for this volume the
job step is terminated.

Once additional space has been allocat­
ed. the EOV routine builds a new DEB that
reflects the newly acquired storage. Part
of the old DEE is saved and the stcrage
that it occupies is released. The data set
control block (DSCB) of the EOV data set is
read from, the device where the EOV
occurred. Inform,ation from this DSCB and
from the old DEB is used to build the new
DEE. The DSCB and JFCB are checked for
security violations before processing is
continued.

If a sequential access method is being
used to operate on the data set, the EOV
module replaces itself in the SVC transient
area with an executor routine of the
sequential access method. If an access
method has not been used. the EOV routine

22

releases its work area and returns CPU
control to the supervisor.

EOV FOR INPUT DATA SETS

When an EOV condition occurs for an
input data set, the EOV routine determines
whether the data set continues on any other
volumes. If not, the TIOT is checked to
see whether the data set is concatenated to
other data sets. The correct password for
a security-protected data set must be
obtained before the concatenated data set
may l::e read. When the data set continues
on another volume. the EOV routine deter­
mines whether this next volume was pre­
viously mcunted; if not, mounting instruc­
ticns are issued. The DSCB of the data set
is read from this new volume, and portions
of the old DEB are saved. The old DEB is
replaced with a new DEB l::uilt from the
saved portion of the old DEB and the DSCB.

If a device is availal::le for an addi­
tional volume that contains unprocessed
pcrtions of this data set, mounting
instructicns are issued. If a sequential
access method is being used, CPU control is
passed to an executor module of that access
method. Otherwise, the work area is
released and control passed to the supervi­
Sor.

FORCE END-OF-VOLUME

Issuing of a force end-of-volume during
the generation of a data set oauses the EOV
routine to read the DSCB, to change its
extent indications to reflect the auxiliary
storage occupied by the data set, and to
rewrite the DSCB on the volume.

When FEOV is issued for an input data
set, the EOV routine issues mounting mes­
sages and checks for concatenation and
security. No DSCB processing is performed.

The following charts are designed to be used with the listings of the
I/O support routines. Each chart functicnal blcck has been given a name
of the form PLMRTXXX, where RT is symcolic of the routine name and XXX
is a decimal nurober identifying the functicn.

The listings provide tables which associate these names with the
actual module names, enabling cross-referencing tetween the listings and
the PL~ charts. These tacles reside in the following modules:

IGC00019 - open
IGC00022 - cpenJ
IGC00064 - RDJFCE
IGC00020 - close
IGC00023 - Tclose
IGG0550Z - EOV
IGG0550Z - FEOV

CHARTS

Charts 23

Chart 10. The OPEN Routine, Input -- Tape and Direct-Access

PLMOPOIO

ENTRY WHEN
OPEN (SVC 19)
IS ISSUED

*****Al **********
* * * GET CORE FOR *
* WORK AREA FOR *
* EACH DCB *

* *****************

I
PLMOP020 V

******81***********

READ
JFCB FOR EACH

* DCB *

I
PLMOP030 V

*****C1**********
* GET CORE - *
* 40 BYTES PLUS *
* 8 BYTES PER *

DCB FOR WTG
* TABLE *

I
PLMOP040 V

*****01**********
* * * SET UP PATH *
*FOR OPEN LOADS *
* IN WTG TABLE *

ENTRY WHEN
OPEN TYPE =J
(SVC 22) IS

PLMOJ010 ISSUED
*****A2**********
* * * GET CORE FOR *
* WORK AREA FOR *
* EACH DCB *
* *****************

I
PLMOJ020 V

*****82********-If-*
*MOVE JFC8 FROM *

PROCESSING
PROGRAM TO

WORK AREA
* FOR EACH DCB

I
PLMOJ030 V

*****C2**********
* GET CORE - *
* 40 BYTES PLUS *
* 8 BYTES PER *

DCB FOR WTG
* TABLE *
*********-If-*******

I
PLMOJ040 V

*****02**********
* • * SET UP PATH *
*FOR OPEN LOADS *
* IN WTG TABLE *
* * ***************** *****************

I I
v V

PLMOP050 .*. .*. PLMOPQ70
£1 *. E2 *. *****E3**********

.* *. .* *. * ISSUE *
.* OPEN *. NO .* *. YES * MOUNTING

PLMOP080
******E4 *****-If-*****

.FOR ROBACK OR.------->*.DIRECT ACCESS.*------->* MESSAGES AND *-------> * READ Dsca(5)
. MOD. A *. .* * VERIFY VOLUME *

.-.- .• -- I *-*. _.-- :****~:~~~~*****: *************

rES I i NO
1 1 1<-- J

PLMOP090 .~. IPLMOPIOO .~.
Fl *. F2 * •

•• -- MORE *-*. NO I _.-- *-*. NO
. THAN FIVE .--> I *. TAPE .*--,

. VOLUMES . *. .* v
.. *..* ***** * •• * * •• * *12 *

rES I rES * Ai*
PLMOPIIO V iPLMOP120 V

*****Gl********** *****G2********** * READ JFCB * * *

24

:o~~!i~s~g~R~gT:~ * MaG~~~~G *
* VOLUME * MESSAGE
* INFORMATION *
***************** *****************

I
* **** * I

* H2 *->1
* * ****

PLMOP122 V
*****H2**********
* * VERIFY THAT
* PROPER TAPES
-If- ARE MOUNTED

-If-**********

I
v

PLMOP124 .*.
J2 * •

• *PROPER * •
• *LABEL TAPE *. NO

. FOR OUTPUT .----------------,
. . *. .*

-If- •• *
* YES

I
V

PLMOP125 .*. PLMOP126
K2 *. *****K3**********

.*IF DUAL*. * OMODVOL1 *
• DENSITY DEV.,. NO *-*-*-*-*-*-*-*-*

*CORRECT DENSITY-If-------->*MOUNT OR CREATE*
. FOR. * PROPER TAPE *

OUTPUT. LABEL
-If- •• * *****************

* YES

I
V

*11 *
* A1*
* *

* * * H2 * * •

Chart 11. The OPEN Routine, Input -- Tape and Direct-Access

*11 * * AI* * * * I

V
PLMOP127 .*.

Al * •
PLMOP128

******A2***********
• * *. .* FILE *. NO *

*.PROTECT RING ••• ------->
. ON .

. . * •• * * YES

I
V

PLMOP130 • *.
81 * •

• * * .

WRITE
MESSAGE TO

OPERATOR

• * NONSTD *. NO
. LABELS AND ..~--------------,

.INPUT OR .
.INOUT.

* •• * * YES
I

I PLMOP160 >1
*****Cl********** * NSLOHDRI *
--*-*-*-*-*-*-* * NON-STD LBL *
*INPUT VERIFIC. *
* + POSITIONING *
********j******** I

v V

* * * -->* Al *

* *

PLMOP210 .*. PLMQP140 .*. PLMOP150 .*.
01 *. 02 *. 03 * •

• * *. .* *. .* * • • * ANY *. NO .* *. NO .* *. NO

~
>. >.:~:?: -------». >.:: > ~i:;;: .> ·>-----1--»· >. :~:F: .> .> :~;;

PLMOP200 v PLMQP170 V I PLMOP180 V
*****El********** *****E2********** *****E3**********
* ISSUE * * *~ * MOUNTING * * POSITION * POSITION * MESSAGES AND * *UNLABELED TAPE * * LABELED TAPE *
* VERIFY PROPER * * * * * * TAPE MOUNTED * * *
************* ** ***************** *****************

I
V

PLMOP220 • *.
F3 * • • * • * INPUT *. NO *. OR INOUT .*---.

. . v
.. *****

* •• * *12 *
**** * • * H3 * . .

A

*1 YES *.A!*

tins
PLMOP222 .*. PLMOP224 PLMOP226 .*.

G3 *****G4********** G5 * •
• * *. * * .* * • • * DATA *. YES * REQUEST * .* *.

.SET SECURITY .------->* PASSWORD *------->*. PASSWORD OK .*
. . * * *. .* *. .* *. .*

* •• * *************** ... * * •• *
.~ *~

: *::* :-> II I'

PLMOP190 V PLMOP228
"'*H3******* V
* * ****HS*********
* VERIFY * * *
*OATA SET LABEL * ABE NO *
* 1 *

I
PLMOP230 V

*****J3**********
* * * DATA SET ...
LABEL 2 TO JFCB
* MERGE *

I
v

*12 * * Al*
* * *

Charts 25

• Chart 12. The OPEN Routine, Output -- Tape and Direct-Access

*12 *
* A1*
• *
*
I
V

PLMOP240 .*. PLMOP250 .*.
A 1 *. A2 * ..

PLMOP260 .*.
A3 * •

• * *. .* *. .* *.
PLMOP270

** **** A4 ***********

. .
* C3 * • *

?
j YES

PLMOP31D .*.
AS il.

.* • * *. YES .* *. YES .*EXPIRATION *. NO * WRITE TO
OPERATOR WITH

*REPLY (WTOR) *

* .* REP:""Y *.
.DIRECT ACCESS.--->*. OUTPUT OR .*---->*. DATE PASSED .*---->

. . *. DUTIN .* *. .*
.. *..* *..*

* •• * ro

PLMOP280 v
*****81**********
* * * JFCB
* TO DCB MERGE

*

.
*<--,
* I

* •• * * •• * *LNO i YES

------------------>1
v

PLMOP282 .*.
63 *.

'O* NOT *.
.* NEW AND *. YES

PLMOP284
*****84**********
* *

*. DATA SET • *-------> *
REQUEST

PASSWORD
. SECURITY .

. .
*.. .. * ***************** * NO I

I I * * I * C3 *-> I
• * I

I V

------>*. = 'V'. (TO .* *. USE) .*
. .

* •• *
• NO

".;:::::::1::::::::*1 II'
PLMOP290 PLMOP300 V PLMOP302 .*. PLMOP304

******C2 *********** *****C3********** C4 *.. v
* * .. * *.. ****C5*********

* SET UP WTG *READ ADDITIONAL* * aseB * YES .* *. NO * *
* TABLE FOR

EXECUTORS
oseB IF <------* TO JFCB MERGE *<-------*. PASSWORD OK .*------>* ABEND

REQUIRED * * *. .* * *

"-."",0 .. 1........ II

* USER RTN *
--*-*-*-*-*-*-*

I
V

PLMOP330 .*.
02 *.

.* *.
: DCB EXIT

* *****************

I
PLMOP4DO v

*****E1**********

* * * DCB *
* TO JFCB MERGE *
* •

• *
NO .*

I
v

* •
*.

.--*. TAPE .*
I *. .*
I *. .*
v * •• *

* * * J2 * • *

* YES

I
v .*.

Gl * •
• * *.

NO .* *.
1*· *. OU6~¥INOR.*.*
I *. .*
v * •• *

* **** * * YES

NO.* SPAN *.
<--*.CONCATENATION.*

. .
. . * •• * * YES

I
PLMOP360 V

******E2***********

READ
JFCB FOR EACH

* DATA SET

*'************

I
PLMOP410 v

*****F2**********
* ISSUE -II-
* MOUNTING
* MESSAGES AND
* VERIFY VOLUME *
* LABELS -II­

I Iii

III PLMOP46D V
******G2 ***********

~**READ DSC8(S)

: H2 :1 ** J2 ** IIII
v **** I

PLMOP510 .*. PLMOP55D V
HI *. *****H2 **********

.* *. * NSLOHDRO *

*12 *
* 03 *--,
• * I
**** V

.. ***************

PLMOP580 .*. PLMOP610
03 *. *****04**********

.* *. * ISSUE *
.* ANY *. YES * MOUNTING MSG

r---->*·*.R~~~~~~D ••• *------->: ~~gp~~Ri~~E
I * •••• *.* :****:~~~~~~***** * *

I * NO I *13 * I I :*!;!
I I A

I 'l'pLMGP362 :~. r:::::-:~. PLMQP366 .1. NO
E3 *. I E4 *. E5 *.

I I, .*.* *. *. YES I .*.* PROPER *. *. YES .*.* *. *.
.FILE PROTECT .-, *.LABELED TAPE .*------->*. NONSTANDARD .*

. ON . I I *. MOUNTED .* *. LABELS .*

I ····t· II "'r;' ··:r~:
IPLMOP412 v I IPLMOP414 V * H2 *
I *****F3********** I I *****F4********** * *

I : * I I :_*_~~~~~~i:*_*_: ****

* I OPERATOR I *NOTIFY OPERATOR* I I NOTIFY

~:=r"'''' I I !***:T :
I

: NONSTANDARD *:*~>:-*~~~~~;~*l=:~*-:--.1
. LABELS . *OUTPUT VERIFIC *
.. * + POSITIONING *

* •• * *****************
* NO

I
1<--
v

PLMOP520 .*. PLMOP530 .*. PLMOP590 .*.
J1 *. J2 * • J3 * ..

• * *. .* *. .* * •
• * *. NO .* *. YES .* DIRECT *. NO

. STANDARD .-------->*. EXCP .*------->*.AC(ESS OUTPUT.*---,

*. *~ABELS.*.* A *. *. .*.* 1 *. *. .*.* I
··~ES ! *·*·~o I *·*·~ES I

I *72*. I I I I
v * J2* ,I I II I

:;;*! ***** I I I
* * Ai* PLM~~~~~K2*~******** I PLM~~~;~K3*~******** I

* * * 1* *1 *-*-*-*-*-*-*-*-* --.J * JFCB * V
* ACCESS METHOD • * TO DSCB MERGE *---,

26

* EXECUTOR * * V

*13 *
iI- AI*

* *

• Chart 13. The OPEN Routine, Output -- Tape and Direct-Access

*** ••
*13 ...
... At·
* *
*
I

PLMDP390' V
*****Al****·*·***
... LOAD ...
... APPENDAGE ...
... ROUTINES rOR *
... EXCP

* ***********.*.***

I
PLMOP440 V

******81***********
WRITE BACK

JFCB IF
... MODIFIED

I
PLMOP490 V

******Cl***********
WRITE BACK

OSCB IF
MODIFIED

I
PLMOP540 V

*****01**********
* * ... RELEASE ...
* WORK AREA * * STORAGE *
* *****************

I
PLMOP570 V

*****El**********
* * RELEASE
* WTG TABLE * * STORAGE *

* *****************

I
PLMOP600 V

*****Fl**********
* * * * .INDICATE DCB IS*
* OPEN *
* * *** ** ... *********

PLMOP630
V

****G 1 *********
* * * *

EXIT
•• **_._ •••••• **

*
*

****.
*13 ...
.. A3*

*
I
V

PLMOP380 .*. PLMOP382 .*.
A3 *. A4

.* *. .*-. •• EXPIRATION *. yEs .* dLD AND *. NO
. DATE PAS'SED .---->*. DATA SET .*..:............

. .. •• SE;CUt:t1T .. Y ..• * I *. . .* *..* * ... *

>c,,,'" i'" >c.~,,. i'" I
******83* •• ******** *.*.*64******.* ••

WRITE TO
OPERAl'OR WITH

... REPLY ..

* *
*

... i.'
••• ********'** ••••• **.* •••••• ** ... *

L I ~ '05 *.

1 ! ::r'
PLMOP420C3 _·_.. PLMOP422a•••••• ~~~1~~C5*:* •••• * ••

.* *. -it *.
.* REPLY *. ~ES.* *. YES ... CONstRUCT ... *. = 'U- (TO .*--, *. PASSWORD OK .*->*OATA SEl LABEL ~
._ •• USE) .*.* I *.*_ .*.* : 1 :

* •• * v * •• * ******-********.*

,c~",J.:: :-::':.".,. I ~ 'c~m:".L.
.* *. ****D4*********" ..

NO*:* REPLY = M *:* : ABEND: :DAT~O~~~R~;~EL :
. . * .. * 2 *
.. *************** * •

. . *.*******.******. i YES I
v v

***** *.*
*12 * *12 ...
* 03* ... J2*
* * * •
*

C~$ 27

Chart 14. The RDJFCB Routine

PLMRJ010
·*·**A2**********
* * ENTRY WHEN ... GET STORAGE *

RDJFCB (SVC 64) * FOR *
IS IssueD WORK AREA

28

* * *****************

I
PLMRJ020 V

******B2***********
READ
JFCB

I
PLMRJ030 V

*****C2**********
... GET AD DR OF * * DYNAM I C AREA
... FROM DeB
... EXIT LIST *
* * *****************

I
PLMRJ040 V

*****02**********
* * ... MOVE JFCB *
... TO *
... DYNAMIC AREA *
• *

~ .. ".. j
*****E2**********
* * ... FREE STORAGE *
... OF WORK
... AREA

PU4RJ060
V

****F2*********
* * EXIT

Chart 20. The CLOSE Routine, Tape

ENTRY WHEN
CLOS~ (SVC
IS ISSUED

PLMCLOIO
*****A2**********
* * ... GET CORE ...

20)* 40 BYTES PLUS ...
. *8 BYTES PER DCB*

* FOR WTG TABLE *

I
PLMCL020 V

*****82*********­
* * ... GET CORE ...
... FOR WORK AREA ...
... FOR EACH DCB ...
* * *****************

I
PLMCL030 V

*****C2**********
* * ... SET UP *

WORK ...
... AREA *
* * *****************

I
PLMCL040 V

*****02*********­
* * ... SET UP WTG ...
... PATH AND
... WTG TABLE

****************.

I
V

PLMCLOSO .*. PLMCL060 .*. PLMCL070 .*.
E2 E3 E4

• * *. .* *. .* * • • * *. YES .* TAPE *. YES .* TAPE *. YES

PLMCL080
******ES**** ... ** **

. OUTPUT .----)*. OR DIRECT .*---->*. ouTPUT .*---->
REA~

JFCa *. .* *. ACCESS .* *. .*
.. *..* *..*

-•• * * •• * * •• * ************* ro i NO L_NO _________ J
V v

PLMCL090 .*. PLMCLIOO .*.
F2 *. F4 * •

• * *. .* -.
PLMC ... I10

******F5*******"'***

YES .* *. .* DIRECT *. YES * READ

DSCi3
r--* EXCP * *. ACCESS .*----> I . *. .*. *. OUTPUT .*

. . *. .* * •• * * •• *

I~ r *************

j
PLMCL120 v PLMCL130 PLMCL140 .*.

*****G2********** *****G3********** G4 *.
* * * * .* *.
--*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* NO • * *.
* ACCESS * * ACCESS *<----*. EXCP .*
* METHOD * * METHOD * *. • *

EXECUTOR * EXECUTOR * *..*

HUH*]HH**** ********1******** *. r~ES

1< .
v

PLMCL150 .*. PLMCL160 .*. PLMCL170 PLMCL180
H2 *. H3 *. *****H4********** *****H5**********

.* *. .* *. * CONSTRUCT * * CONSTRUCT * .* *. YES .* STANDARD *. YES * DATA SET * * DATA SET *
. TAPE .---->*. LABELS .*---->* TRAILER *---->* TRAILER *

. . *. OUTPUT .* .. LABEL 1 * * LABEL 2 *
.. *..'* * * *

. . '*. .* ***************** ***************** ro ro I
v V

PLMCL190 .*. PLMCL200 .*. PLMCL21P
J2 *. J3 *. *****J4**********

.* *. .* *. * NSLCTRLO *
NO.* DIRECT *. .* *. YES *.-*-*-*-*-*-*-*-*

Vro------~ •• *. ACCESS .*.* *.*~O~~~~~~AR?*.*------>: ~~~~[~N~~~D *
***** *..* *..* * DISPOSITION *
*21 * * •• * * •• * *****************

**Fi* i YES INO j
V V

PLMCL220 .*. .*. PLMCL240
K2 *. K3 *. *****K4**********

.* *. .* NO *. * *
YES .* *. .* LABELS OR *. YES * TAPE *

r-------*. INPUT.* *. STANDARD .*------>* VOLUME *
V *. .* *. LABELS .* * DISPOSITION *

***** *..* *..* *
*21 * * •• * * •• * ********** *****
* E3* * NO ... NO I * * I < ______________________ J.

v

*21 *
* A2*

* * *

Charts 29

Chart 21 • The CLOSE Routine, Direct-Access

• ****
*21 *
... A2*
* * *
I
V

PLMCL250 .*. PLMCL260
A2 *. *****A3**********

.* *. * *
.*FOUNDATION * .• YES * UPDATE *

eXTENDED BLOCK.------->* osee
-.PRESENTED.- *

. . *
. . *****************

iL--NO ~-J
V

PLMCL270 .*. PLMCL260 .*. PLMCL290
83 *. t:S4 *. *****85********* • • * *. .* *. * DADSM MODULE •

• - FROM *. NO .* EXTERNAL *. yes *-*-*-*-*-*-*-*-* *. ABEND .*------->*.STORAGE TO BE.*------->* RELEASE
. . •• RELEASED .* * EXTERNAL
.. *..* • STORAGE ...

. ******* •• ** •• ****
j<YES ! NO j

PLMCL300 V
·*·*·*C3*********··

WRITE
BACK

* oses

I
Pl.MCL310 V

******03*·*********
WRITE
FILE
MARK

* ••••• *******

::i:*.->!
* * ***.

PLMCL320 V
·****E3***··***** * DIRECT *
... ACCESS •

VOLUME *
DISPOSITION * .

*21 * 1
* F3 *->1 * * ****

PL.MCL330 V
*****F3**********
* * RELEASE *

SUBROUTI NES
* * *****************

PLMCL340 I
*****G3**********
* * * •
* *

RESTORE
DCB *

*

!
PLMCL350 V

*****H3**********
* *
*
*

RELEASE
DEB

*
* *
* *****************

I
PLMCL360 V

*****J3********** * FREE WORK *
AREA AND *

* WTG TABL.E *
* STORAGE *
* * *****************

I
V

PLMCL.370 PLMCL380 .*. PLMCL390
K3 *. *****K4**********

****K2********* .*UNL.IKE *. * IGC0001I *
* * NO .*SEQUENTIAL *. YES *-*-*-*-*-*-*-*-*

EXIT *<-------*. CQNCATENAT ION.*------->* XCTL *
* *. .* * TO

*************** *.. * * OPEN *
. . *****************

*
30

Chart 22. The CLOSE (TYPE=T) Routine

PLMTCOIO
*****B2*******··­
* *

* * * A3 *
* * ****

I
PLMTC070 V

******A3**********·

READ

osce

I
V

PLMTC080 .*.
83 *.

.* *.

,------,
V

PLMTC170 .*.
A4 * • • * *.

,.* ST~NDARO *. NO

*. *. 5~~~t~ '.* .*,
. . * •• * * YES

I
PLMTC180 V

*****"'84***********

ENTRY WHEN
CLOSE TYPE=T
(svc 23)

* GET CORE *
* 40 BYTES PLUS -
8 BYTES PER DCB

.* *. NO
. OUTPUT .-

. . *. .*

READ

JFCB
IS ISSUED * FOR WTG TABLE *

**************-**

I
PLMTC020 V

*****C2**********
* * * GET CORE· * FOR WORK
* AREA
* FOR EACH oCB *
* ... ***************

I
PLMTC030 V

*****02**********
* *
*
*

SET UP ill-
WORK *
AREA *

I
PLMTC040 V

* **E2 ***** *
* * *-*-... -*-*-*-*-*-*

*
*

PURGE -I/O •
* * ... **.************

PLMTC050 I
*****F2**·*******
* * * SET UP *

WTG
TABLE

* •• * * YES

1
PLMTC090 V

******C3***********

WRITE
FILE
MARK

I
PLMTCIOO V

*****03**********
* * *
*

UPDATE

osce
*
*
* *****************

1
PLMTCllO V

******E3***********

WRITE

osce

.**********4 ...

I 1<:-----1
IPLMTC190 .~. PLMTC250

C4 ... *****C5*********. I *. ... NSLCTRLO ...
•• - *. YES *-*-*-*-*-*-*-*-* *. NONSTANDARD .*---->* EXIT TO ...
. LABELS NONSTANDARD ...
.. ... LABEL RTN ...

* •• * *****************

1:0 I
v

PLMTC200 .*. PLMTC260

I _.04 *_.. :****05*********:
.* NO *. YES ... UNLABELED ...

. LABELS .---->* TAPE *. .* ... POSITIONING
.. *.

. . *****************

i<NO j II
v

PLMTC210 .*.
E4 *.

.* *. .* STANDARD *. NO
. LABELS .-->* H3 ... *. .*

. .
**** ... ******** * •• *

1< j YES

PLMTC120 V PLMTC220 V
*****F3********** .****F4**********
... SET POSITION
.. IN DCB'" ... CONSTRUCT ...
... AceO,RDING TO DATA SET
... DISPOSITION .. LABEL 1

!**************.! : ••••••••••••••• : I ! **********!

1 1 I I
PLMTC06D .*. PLMTC130 .*. JPLMTC230 V

G2 *. G3 *. *****G4********* •
• * *. .* *. * ...

• * DIRECT *. NO .* *. YES * CONSTRUCT ...
. ACCESS .------->*. TAPE.* * DATA SET ...

. . *. .* ... LABEL 2 *
.. *..* * * *. .* *. .* **************-**

i YES * **** * *1 NO I
v * H3 *->

**** * *
* * ****
* A3 * PLMTC140 V PLMTC240 V
* * *****H3********** *****H4**********

* * * •
• FREE * ... LABELED *
• WORK AREA *< TAPE *
* * POSITIONING

* *****************

I
PLMTCISO V

*****~3**********

* * * FREE
* WTG TABLE
* * * *****************

PLMTC160 I
V

****K3*********
* *
* *

EXIT *
*

* *****************

Charts 31

Chart 30. The EOV Routine, Initialization

****A2********* ****A3*********
ENTRY WHEN
EOV (SVC 55)
IS ISSUED

.. svc * * INTERRUPTION
* HANDLER ..

* 5VC * ENTRY WHEN
.. INTERRUPTIoN * FEOV (SVC 31)
* HANDLER * IS ISSUED

32

*it**.*****_**** ***************

I
v V

*****82********** *****B3**********
* * * * *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* * SYNAD/EOV .. FEOV * * MODULE OF .. MODULE OF * * SAM" .. SAM ..
.**********-* *****************

:;g: * *->1 I * * <----------------------~. itititit

PLMEY010 V
*****C2********** * INITIALIZE, ..
*aUILD DEB. DCB ..
.. lOB, AND ~CB *
.. FOR EOV
.. ROUTINES *
*************-***

I
PLMEV020 V

******02***********
READ JFCB

INTO
WORK
AREA

************* I *32 *
* A2*
~

V I~
PLMEV030 .it. PLMEV040 PLMEV050 .*. PLMEV090 ,_,

E2 *. **"*_E3**it_****** Ell- *. E5 * •
• * IS *. * MOVE * .* WAS *. .* * •

• * EOVC *. YES * THREE SERIAL * .* EOV ON *. YES.* *.
. SWITCH .------->* NUMBERS FROM *------->*. MAGNETIC .*------->*. INPUT !.~ ... J' :.--:::: : ::j::;... ·····T;;;··

.*. PLMEV060 .*. PLMEVI00 .*.
F2 *. F4 *. F5 * •

• * IS *. .* WAS *. .* * • • * JFCB *. NO NO.* EOV ON *. NO.* Eove *. *. EXTENSION .* .--*. O. A. .* 1*. SWITCH .* *. NEEDED .* V *. DEVICE .* *. ON .*
. . ***** *..* *.. *

* •• * *31 * * •• * V * •• *

*1 YES * * A:* *1 YES :;;*! i YES
* 61* I
* * v

* *****
V *31 *

PLMEV150 V PLMEV160 .*. PLMEV070 .*. * A2*
*****G2********** G3 *. G4 *. * *
* READ JFCB * .* *. .* *.

EXtENSION .* D. A. *. TAPE.* *. NO
* AND OBTAIN *------->*. OR .*-, *. OUTPUT .*--.

: ~~:~~~S! *.*.TAPE .*.* I *.*. .*.* **~**
***************** * •• * V * •• * *33 *

1 D.A. :;~: */ YES ***A!*
* Gl*
* *
* v V

PLMEV170 .*. PLMEV080 .*.
H3 *. H4 * •

• * *. .* * • • * *. NO .* *. NO
. OUTPUT ., *. FEOV .*--.

. . *. .* v
.. *..* *****

* •• * V * •• * *33 *
* YES ***** * YES .. A4* I :3:1: I * *

* * v
.. *****

V *33 *
PLMEV180 .*. * A2*

J3 *. * * .* * • • * *. NO *. FEOV .*----,
. . v
.. *****

. . *33 *
* YES * A4*

: * *
v

*33 ..
.. A2*

* *

Chart 31. The EOV Routine, Initialization

****.
*31 •
* A2*

I
y

PLMEV250 .*. PLMEV320 .*.
A2 *. A4 * • • * IS *. .* NULL * • • * Eave *. YES .* DATA SET *. YES *. SWITCH .*----------------:>*. OR UNIT .*-, *. ON .* *. RECORD.* I

. . *. .* * •• * * •• *

I~ I~
PLMEV260 .*. PLMEV310 PLMEV330 V

82 *. ~****B3********** *****84**********
.* IS *. * RELEASE * * *

.* NEXT TIOT *. YES * WORK * * POSITION * I *. ENTRY NON- .*---->* AREA * * TAPE TO
. BLANK . * STORAGE * * DATA SET

D~~A~;. !***************: ! •••..••••.•...• :

~."''' i"" I 'C.,"'" j , ____ J
*****C2********** v *****C4**********
* * ****C3********* * *

SET * * EXIT TO * * CLEAR *
Eave * USER WRITTEN * Eove * * SWITCH ON * EOO ROUTINE * SWITCH *

* *************** * *****************

I
V

PLMEV280 .*.
02 -.

• *UNLIKE *.
• -ATTRIBUTES *. NO

. OR NON-STD .---,
. LABELS . V
.. *****

. . *30 * i YES :~ ..

PLMEV290 v
*****E2********-*
* RELEASE *
* WORK
* AREA

STORAGE

PLMEV300
y

****F2*********

.. ..

* EXIT TO *

PLMEV380
*****F3********** * RELEASE * * WORK

**************-**

I
y

PLMEV350 •••
04 * •

.* * • .* *. YES
. STANDARD .~

. LABELS . V
.. *****

* •• * *32 * i NO '*~!'

V
PLMEV360 .*.

E4 *.
.* MORE *.

.* THAN -. YES
. ONE UNIT .---,

.ALLOCATED. V
.. *****

. . *32 *
* NO * Kl* I ...
I
V

PLMEV370 .*.
F4 *.

.* *.
YES.* EXCP *.

... CLOSE * AREA
STORAGE

.. <---*. SPECIFIED .*
* ROUTINE * * *. .*

*31 * * Gl*
!

**********.****

PLMEV190 .*. PLMEV230 .*.
Gl *. G2 *. .* IS *. .* * •

• * THE *. NO .* STANDARD *. YES
. DATA SET .---->*. LABELS .',

. INPUT . *.SPECIFIED.*
.. *..*

* •• * * •• * v i YES i NO ::~;:
v v

PLMEV200 .*. PLMEV240 .*.
HI *. H2 *.

.* IS *. .* *.
.* EOVC *. YES .* NON *. YES

PLMEV390 I
V

****G3*********
* EXIT TO *
* SUPERVISOR ..

. SWITCH .--, *. STANDARD .*---,

.. ON .*.* I *.*:ABELS.*.* **~**
. . v *. .* *32 *

* NO ***** * NO * 83* I "31 .. I
* A2* v

I * *****
V *32 -

PLMEV210 .*. * C4*
Jl *. * * /

.* * •
• * LABELED *. NO

*. TAPE .~
. . v
.. ***** * •• * *32 * I YES E!"

Y
PLMEV220 .*.

Kl * •
• * * •

• * STANDARD *. NO
. LABELS .---,

. . v
.. *****

- •• * *32 * * YES * C2*

I * **
y

'** •••
·32 * * 01*

•

. . * •• * ro

y
-G4**********
.. *
--*-*-*-*-*-*-*
* SEQUENTIAL *
• ACCESS METHOD -
- EXECUTOR *

V
****H4********* * EXIT TO *

SUPERVISOR

Charts 33

Chart 32. The EOV Routine, Tape

*
*32,·
.. A2*
* *
* I
y

PLMEVI10 .*.
A2 *.

.* ••
.* STANOARD *. YES

PLMEV500
*****A4********"'*

* * *. LABELS .*---------------->*
PREPARE
TRAILER
LABEL 1

. . •• SPECIFIED.- A ..

:;;*: *. * •••• * :;:*: I :***** ••• *****.*.

**r~· I NO **l~* :;;:: I
PLMEV130 ••• PLMEV120 .*. V PLMEV510 V

Bt *. 82 *. ." ••• 93 ••••• *.**. *****84*********_ .* *. .* *. .. NSLETRLQ"" ..
NO.* LABELS *. .* NON *. YES *-*-*-*-*-*-*-*-* .. PREPARE ..

r----*. SPECIFIED .* *. STANDARD .*---->* INSTALLA'TION '. .. TR~ILER
. . *. LABELS .* .. TRAILER LABEL .. LA8E~ 2 *..* *..* .. ROUT INE ..

.OJ-;ES ··*I·~O ********j******** ********j*******'

,---~~_v ___ >1
v v

PLMEV140 .*. PLMEV520 .*. PLMEV530
Cl *. ****iI"C2*****.**** C4 *. .*.**cs* •• "'.***** .* *. .. ~SLETRLI .. • .. WERE *. .. II

.* STANDARD *. NO *-*-*-*-*-*-*-*-* .* VOLUME *. NO .. MOUNT *. LABELS .*---->. INSTALLATION * ,->*SERIAL NUMdE.RS.*---->* SCRATCH
.SPECIFIED. A * TRAILER LABEL * I *.SPEC1FIED.* * VOLUME

*. * •• *.* I :****~~~!!~;****: * * *. * •• *.* *****************
**.* *, YES * * * I : 03 : * * YES I
:3~1:*_> ::~~: I *j*' ::~;: II vi

**** I v
PLMEV400 V PLMEV470 .*. PLMEV540 V PLMEV550 .*.

*****01*****.**** 03 *. *****04********** 05 *.
* READ AND , .* *. * MOUNT * .* *.
* PROCESS ..yES.* EXCP *. NEXT"'.* *. YES
*TRAILER LABELS. *. SP.ECIFIED .* INDICATED *---->*.CORRECT LABEL.*--,
(HEADER IF READ *..* VOLUME * A *. TYPE • * I
* BACKWARD) * *. .* I if..* I
*********1****·*** *·*I·~O * •••• **.......... J ··i·~~.**.. I

L--------->v< ______________________ ~ I' l_>:.::.:
PLMEV410 .*. PLMEV480 V PLMEV550 PLMEV570 .*.

El *. *****E2**.******* *****E3********** *****E4********** E5 * •
• * MORE *. * RELEASE * * * * EMODVOLI * .* * •

• * VOLUMES *. NO ... WORK - *-*-*---*-*-*-*-* .-*-*-*-*-*-*-*-* NO .* •• J r>*- FOR THIS .*---, • AREA *< * SEQUENTIAL· r->* VOLUME * r--*. STANDARD .*<--
.~:TA SE!.* I STORAGE: : AC~i~~u~6~HOD : I: E~~~6~ * I *.*~ABELS.*.*

* *. *. ;ES **~** -**************** ***************** *:'E1*,' ::*******-r·-·-·-*-·-*-·-·-. jl *. *,1· ;E5
;2- , :3!2: .1

* El* - * _
***** I * <----------------------~ ~ V

PLMEV420 V PLMEV490 PLMEV560 .*. PLMEV575 .*.
*****Fl***.****** V F4 *. F5 *.
* MOUNT NEXT * ****F2"'******** .* *. .* *.
• VOLUME AND * * EXIT TO * YES.* NON *. NO.* CORRECT *.

VERIFY IF * SUPERVISOR ~--------*. STANDARD.* ,--*. DENSITY .*
* NOTD~~~EADY : ****._*.******* jl *.*:ABELS.*.* I *.*. .*.*

·······T-···.. I 'f"'" "
PLMEV430 .~. v : *::*: *,1 YES

Gl *. *****G3****.*****
.* *. * NSLEHDRO *

.* LABELS *. ~o *-.-*-*-*-*-*-*-*
. SPECIFIED .-->* Kl * * INSTALLATION ...

*. • * *... * HEADER LABEL
.. .**- * ROUTINE *

~ . * * .**.************* i YES : *::. : I I

PLMEV440 .~. r PLMEV600 v < PLMEV590 .J PLMEVSBO 1
HI *. *****H2*.**.***** *****H3*****-**** *****H.********** *****H5**********

.* *. * NSLEHORI * • MOUNT NEXT * * * * READ AND *
•• STANDARD *. NO *-*-*-*-*-*-.-*-* 4 VOLUME FaA * * CONSTRUCT * * CHECK HEADER *

.... LABELS •• ----.--->* INSTALLATION * OUTPUT IF *<-------* NEW HEADER *<-------* LABELS ON THE *
*.SPECIFIED.. * HEADER LABEL * DEVICE IS LABELS * * NEWLY MOUNTED *
...* - ROUTINE * * AVAILABLE * * * TAPE *

. . *****.*********** ***************** ***.************* *****************

:;;: * *-> *1 YES I
:**** vr----------------------~

PLMEV450 V PLMEV610 .*. PLM~V620 PI,..MEV630
*****Jl*.** ••••• * J~ ~. * •• **J3~*********
* READ AND * •• *. * 'II" ****J4*********
* CHECK THE * .* EXCP *. YES * RELEASE * * EXIT TO *
.HEADER LAPELS. * *. SPECIFIED .*------->* WORK AREA *------->* SUPERVISOR
* (TRAILEA~ IF * *. .* * STORAGE ~ *
*READ BACKWARD) * *..* * ***************
***************** ••• * *****************

~;~::_>I *1 NO

*.**
PLMEV460 V V

.Kl*******~** .****K2*****.****
* MOUNT AHEAD * * • ****K3*********
* IF OEVI CE IS * *-*-*-*-*-*-*-*-* * EX I T TO ... r>* AVAILABLE AND ... * SEQUENTIAL *------->* SUPERVISOR *
*ANOTHER VOLUME * * ACCESS METHOD * *
• INDICATED * * EXECUTOR * ***************
******* ***** ... ** ***.*** •• ****

* •• * I * * * Kl *
* * v

34

* * .. 03 •

Chart 33. The EOV Routine, Direct-Access

*33 *
.. AI·

* * *
1
v

PLMEV64Q •••
Al *.

.* *.

*33 * * 10.2-

* * *
I

PLMEV810 V
.*****A2 ********«-**

.* ARE *. NO WRITE
FILE
MARK

. THERE MORE .--.
. VOLUMES .

1 *. .*
* •• * * YES

I
PLMEV650 V

*****61 ********** * MOUNT NEXT *
* VOLUME AND *
.. VERIFY IF NOT *
* ALREADY DONE *
* *****************

I
PLMEV660 V

*****Cl ********** * MOUNT AHEAD *
IF MORE VOLUMES
* INDICATED AND *
.. DEVICE *
* AVAILABLE *

I

1

I
PLMEV670 V

*****01 ********** * READ oseB *
.. SAVE PART
.. OF OLD

DEB
*

I
PLMEV680 V

*****E 1 **********
* * BUILD

NEW *
DEB *

I
PLMEV690 V

*****F 1 **********
* * CLEAR *

Eave
SWITCH

* *****************

I
V

PLMEV700 •••
G! *.

• *

v *************
*****CONCAT­
*31 *ENATION
* A2*TEST I * *

PLMEV820 V
******82***********

READ
DSCB

I
PLMEV830 V

*****C2**********
* * UPDATE
* * OSCS
* •

!
PLMEV840 V

******02 ***********

WRITE
osee

.* EXCP *. YES
. SPECIFIED .----------------,

. .
. .

* •• * * NO

I
v

*****Hl **********
* •
--*-*-*-*-*-*-*
* SEQUENTIAL *
* ACCESS METHOD *
* EXECUTOR *

V
****J 1 *********

* EXIT TO *
SUPERVISOR

PLMEV710
*****H2**********
* RELEASE *

PLMEV720

WORK *
AREA

STORAGE

V
****J2*********

* EXIT TO *
SUPERVISOR

*33 *
* A4*
* *
*

I
V

*****A4**********
*DADSM *
--*-*-*-*-*-*-*
* GET SECONDARY *
* STORAGE ON *
*CURRENT VOLUME *

I
V

PLMEV730 .*.
1:34 *.

.* *. .* WAS *. YES
. SPACE .-,

.AVAILABLE. I
. .

* •• * * NO

I
1----->1
I PLM;~~!~C4*~********
I * ~g~~~E N~~6 *
I * VERIFY IF I * NOT ALREADY

* DONE *

I I
I I
I v I :~:~;~4*********:
I *-*-*-*-*-4-*-*-*

> I * GET SPACE *
I ON NEW *
I * VOLUME *
I *****************

I I
I PLMEV750 • L
I NO .4·*E4 WAS *_*·*.

~*. SPACE .*
.AVAILABLE.

. . * •• * * YES
I 1<---
1

PLMEV760 V
*****F4*********4
* * READ DSCB *

SAVE PART *
OF OLD DEB

I
PLMEV770 V

*****G4 **********
* •
* BUILD *

NEW *
DEB *

* *****************

V
PLMEV780 .*.

*iI"**iI"J3*****iI"**** J4 *.
* * .* *.
--*-*-*-*-*-*-* NO.* EXCP *. YES

PLMEV790
*****J5**********
... RELEASE ...

* SEaUENTIAL *<-------*. SPECIFIED .*------->*
WORK
AREA

STORAGE * ACCESS METHOD * *. • * *
* EXECUTOR * *..*

I
V

****K3*********
* EXIT TO *

SUPERVISOR *

*

PLMEV800 I
V

****K5*********
* EXI T TO *

SUPERVISOR

Charts 35

APPENDIX A: I/O SUPPORT WORK AREA

The contents of the work area shown in
Figure 3 are used for the OPEN, OPEN
(TYPE=J), CLOSE, CLOSE (TYPE=T), and EOV
routines. The numbers in parentheses are
the nuwber of bytes of storage fcr a
particular section.

The first 464 bytes are used by the
OPEN, CLOSE, and EOV routines. The next 38
bytes are used only by the EOV routine.
The next 24 bytes are used by the OPEN and
EOV routines. EOV uses an additional 10
bytes along with the preceding section.

r--------------T--,
I Bytes I Contents I
~--------------+--1
10PEN,CLOSE,EOVI one of the following: I
~--------------+--------T-------T-------T------------T-----------T------------T---------1
I I volume I file I file I DSCB I DSCB I DSCB I I
I I label I label I label Idata portionlkey portionldata portionlmessage I
I I I #1 I #2 I fomat 1 I format 3 I forroat 3 I area I
I I bytes I bytes I bytes I l:ytes I bytes I bytes I (variable I
I 100 I (80) I (80) I (80) I (96) I (44) I (96) I size) I
~--------------+--------i-------i-------i------------i-----------i------------i---------1
I 176 I Job File Control Block (JFCE) I
~--------------+--1
I 4 I Event Control Block (ECE) I
~--------------+--1
I 40 I Input/Output Block (IOB) I
~--------------+--1
I 44 I Data Extent Block (DEB) . I
~--------------+--1
I 4 I Data Control Block (DCB) I
~--------------+--1
I 96 I Channel Corrrrand Words (CCWs) I
~--------------+--1
I 37 I XCTL Work Area (EOV only) I
~--------------+--1
I 1 I Switch (EOV only) I
~--------------+--1
I 24 I Work Area for Volurre Serial Nurrbers (OPEN and EOV only) I
~--------------+--1
I 10 I Additional Work Area for Voluwe Serial Nurrbers (EOV only) I L ______________ i __ J

Figure 3. OPEN, CLOSE, and EOV Work Area

36

The XCTL table is used to transfer
control between loads and between a lead
and an access method executor. The format
of the XCTL tatle is shown in Figure 4.
There is a tatle starting on a double-word
boundary in each load. The tatle consists
of the other load ID's to which this load
can transfer control. Each entry consists
of the load ID, its relative disk address

APPENDIX B: THE TRANSFER CONTROL (XCTL) TABLE

(TTR) and the length of the load. The
TTR's are inserted ty the IEHIOSUP utility
program when the system is generated. The
last feur tytes of the load consist of a
supervisor-call (SVC) pointing to the
teginning of the XCTL table. The pointer
is expressed in double words from the
teginning of the load.

r----------------------T--,
I I I
I Load I Program I
I I I
~----------------------+-------------------------T--------------------------------------~
I I Relative disk I Length of I
I Load ID1 I address (TTR) I load expressed in double words I
I (2 bytes) I (3 bytes) I (1 byte) I
~----------------------+-------------------------+--------------------------------------~
I Load ID;a I TTR of lead I length I
~----------------------+-------------------------+-------------------------------------~~ I Load IDs I TTR of load I Length I
~----------------------+-------------------------+--------------------------------------~
I Load ID' s I I I
I continue I I I
~----------------------+-------------------------+--------------~-----------------------i
I Lead IDn I TTR of load I Length I
~----------------------+-------------------------~--------------------------------------i
I 00 I I
I (end of table) I I
~----------------------J I
I (Program continues) I
I I
I r------------'-------------T--------------------------------------i
I I SVC code I Pointer to the first ID1 relative I
I I I tc 0 and expressed in double words I L ______________________ L-________________________ ~ ______________________________________ J

<-------------------- last 4 bytes of load -------------------->
Figure 4. XCTL Tatle

Appendix B: The Transfer Control Control (XCTL) Table 37

APPENDIX C: THE WHERE-TO-GO (WTG) TABLE

Both the open and close routines set up
a WTG table to indicate which load modules
and routines are necessary for processing.
Figure 5 shows the WTG table format. The
first twenty-nine bytes (0-28) forrr a pa­
rameter for the directory entry portien of
the XCTL and LOAD macro-instructions.
Bytes 30 and 31 indicate by bit-setting the
required path through the open or close
load modules. Bit assignments in the first
byte are for:

• Output label processing (verification).
• Mere than five volurres specified by the

JFCB.
• Volurre label editor processing.

The rest of the WTG table indicates the
access method executors required to process
each DCB. Open and close effect this
indication by providing each DCB with an
associated entry when the table is built.
Open and close transfer, frOID the XCTL
table to the DCB's entry, the identifi­
cation (ID) and relative disk address (TTR)
of the first acoess method executor
required to process the DCB. The first
five bytes of each eight-byte entry is used
for this purpose. The last three bytes of
eaoh entry oontain the address of the work
area assigned to the DCB. The last entry
in the variable section is the IDTTR of the
open or close load module to which the
aooess method routines return control.

• Direct-access device.
• Standard label tape positioning.
• Unlabeled tape positioning.
• Input label processing (verification).
• Nonstandard input tape.
• Nonstandard output tape.
• Volume latel editing.
• Data set security.

Bit assignments in the second byte are for:

Byte r---,
o I Name I

~---T-------------------i
8 I Relative Disk Address (~TR) I Concatenation I

I of First Record I Number I

~-------------------T-------------------T-------------------~-------------------i
12 I Zero I (see note)1 I ~TR of First Text I

I I I I
~-------------------t-------------------t---------------------------------------i

16 I Record I Zero I TTR of NOTE List or Scatter List I
I I I I
~-------------------t-------------------t---------------------------------------i

20 I Translation I Zero or Nurrber of I Attributes I
I Table I Entries NOTE List I I

~-------------------~-------------------~-------------------T-------------------i
24 I Total Contiguous Main Storage I Length of First I

I Required for Module I I

~-------------------T-------------------T-------------------~-------------------i
28 I Text Record I Length W~G Table I Path Through Loads of Routine I

I I (in double-words) I I

~-------------------~-------------------~-------------------T-------------------i
32 I IDTTR of Executor for First DCB I Work Area Address I

I I for First DCB I

~---~-------------------i
I Table of IDTTR's (8 bytes) I
~---T-------------------i
I IDTTR of Executor for nth DCB I Work Area Address I
I I for nth DCB I

~---t-------------------i
32+n(8) I IDTTR of Load to Which Control Returns I Not Used I L ___ ~ ___________________ J

1Alias indicator and user data field descriptor. An alias indieator is one bit,
the number of TTR'S in the user data field is two bits.

Figure 5. Where-To-Go (WTG) Table for OPEN and CLOSE Routines

38

ABEND bit 16,17
ABEND macro-instruction
Access roethod executors
Access methods

BDAM 11,12
ISAM 11,12
BSAM 16,20
QSAM 20

BLDL macro-instruction 7
BUSY bit 6,7,15,17

16
6,7,12-14,17,21,22

CLOSE macro-instruction 5,16-18
Concatenation

BPA~ 8,11
EOV processing of 20~22
with like attributes 21
with unlike attributes 19,21

Data management count 8,9,12,18
Data set control block (DSCB)

information merge of 13
reading of 8,11,12,17
updating of 14,17,18,22

Data set name determination 10
Data set sequence numbers 9,10
DCB macro-instruction 13
DD statement 12,13,18
DEB 12,13,16-18,20,22
Dual density devices 9,21
Dummy data set 6,7

EXCP macro-instruction 8,15,18
Expiration date 10,11,21

FEOV macro-instruction 20,22
File protection 9,21
FREEMAIN macro~instruction 14,15

GETMAIN macro-instruction 7,15,17

Job file control block (JFCB)
completing DCB from 6,13
data set sequence specification in 10
information merge to 11,13
label construction from 11,13,17
modification switch of 13,14
reading of 8,12,14,15,17,20
security indication in 21,22
voluree specification in 8,9,11

LOCK bit 6,14-16
logical sequence number 9

13
8,9,12

Merge tables
Mount switch
Multi-volume, multi-data set aggregate

9,10

Nonstandard latel routines 9,18,21
Null data set 6,7,18

OPEN bit 6,7,14,16
OPEN macro-instruction 5,6,8,10,14
OUT IN 9,21
OUTPUT 9,21

Password data set 10
Password entry

user count 10
reading of 10,11

Password protection 10,11,21,22
PURGE macro-instruction 17

RDBACK 8,10,11
RDJFCB macro-instruction 6,14

Seourity protection (password protection)
10,11,21,22

Standard labels
processing of 10,11,21
verification of volumes with 9

SYSIN 9,18
SYSOUT 9,18

Tape sequence numbers 9,10

Unlabeled tape positioning 9
User exit 6,13

Volurre disposition 18,19
Volurre editor routine 10,21
Volurre mounting 8,9,11,12,21,22
Volurre serial number 8,9,12

Where-to-Go (WTG) table 7,14,17,38
WRITE bit 17,18

XCTL table 13,14,16,17,37

Index 39

Y28-6609-1

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.lOBOl
[U5AOnlyl

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International I

READER'S COMMENTS

Title: IBM System/360 Operating System
Input/Output Support (OPEN/CLOSE/EOV)
Program Logic Manual

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?

Yes No

Form: Y28-6609-1

___ As an introduction to the subject _ For additional knowledge
Other ________________ _

Please check the items that describe your position:
_ Customer personnel _Operator
_ IBM personnel _ Programmer
_ Manager _Customer Engineer
_ Systems Analyst _ Instructor

fold

___ Sales Representative
_ Systems Engineer
_Trainee

Other ____________ _

Please check specific criticism(s) I give page number(s) ,and explain below:
_ Clarification on page (s)
_ Addition on page (s)

l - Deletion on page (s)
~ I - Error on page (s)

~ I , Explana tion :

~
..
:>
)

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold

Y28-6609-1

fold

fold

r--,
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I l __ J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPT. D58

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.IOSOI
[USAOnlyl

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[Internationall

st

r--------------------,
I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I l ____________________ J

IIIIII

IIIIII

111111

111111

I 11111

111111

111111
'tI
Ii ... -
::I
rT
ro
0.

... -
::I

c:
CIl
~

t<
t-v
(Xl

I

'" '" 0
\0
I

f

sta

