Systems

GY30-20290

IBM System/360
Operating System
Telecommunications
Access Method (TCAM)
Program Logic Manual

Program Number 360S - CQ - 548

The IBM System/360 Telecommunication Access Method
(TCAM) allows high-level, device-independent communi-
cation with telecommunications equipment. This program
provides a flexible message control language that can be
used to achieve installation-oriented message control.

This publication describes the internal logic of TCAM. It
identifies and discusses the parts of the program that
perform specific functions and relates these parts to the
program listing. It is directed to the IBM customer
engineers and system engineers, who need information on
the internal organization and logic of TCAM in order to
provide program maintenance. '

In order to understand the logic of TCAM, the reader must
have a general understanding of IBM System/360 operating
system. In addition, the following are prerequisite publi-
cations: :

® IBM System/360 OS TCAM Concepts and Facilities,

GC30-2022, to gain familiarity with the overall concepts
and structure of TCAM.

® IBM System/360 OS TCAM Programmer’s Guide,
GC30-2024, to learn how to construct and modify a
TCAM message control program and a TCAM-
compatible application program.

In addition, the IBM System/360 OS System Control
Blocks publication, GC28-6628, provides co-requisite infor-
mation on system control blocks used by TCAM.

® The information relating to the Time Sharing Option
(TSO) in this manual is preliminary and should be used
accordingly.

JBIM

PREFACE

The Organization and Use of the TCAM Program Logic Manual section of
this bcok defines the audience for which this program logic manual was
intended, explains hcw +the book is organized, and suggests how the
reader might best familiarize himself with its contents. In order to
understand the 1logic of TCAM, the reader must have a general
understanding of System/360 OS. In addition, the following
rrerequisite publicaticns are applicable:

e IBM System/360 OS TCAM Concepts and Facilities, Order No. GC30-
2022, to gain familiarity with the overall concepts and structure
of TCAM.

e IBM system/3€0 0S5 TCAM Erogrammer's Guide, Order No. GC30-2024, to
learn how to ccnstruct and modify a TCAM MCP and a TCAM-compatible
aprlication progranm.

The IBM System/360 O0S System Control Blocks publication, Order No.
GC28-6628, provides corequisite information on system control blocks
that are used by TCANM

?he information relating to the Time Sharing Option (TSO) in this manual
1s preliminary and should be used accordinalv.

First Edition (January 1971)

This edition applies to release 20.0 of IBM System/360
Operating Systen.

The contents co¢f this publication are subject ot change from
time to time. Changes will be reflected in periodically
updated editions. Before using this publication, consult the
latest Systems360 SRL-Newsletter, GN20-0360, for the editions
that are applicable and current.

Requests for «copies of 1IBM publications should be made to
vour IBM representative or to the IBM branch office serving
vour locality.

A form is provided at the back of this publication for your
comments. If the form is missing, comments may be addressed
to IBM Corporation, Publications Center, Dept. EO1, P. O. Box
12275, Research Trianqgle Park, North Carolina 27709.

© Copyright International Business Machines Corporation 1971

CONTENTS

Organization and Use of the TCAM Program Logic Manual xxiii
SECTION 1: INTRODUCTION 25
Purvose of TCAM 25
System Structure 25
System Generation 27
TCAM Macro Definitions 27

TCAM Resident Modules 27

TCAM Support Modules ‘ 27

TCAM Transient Modules ; 27

svstem Nucleus Modules 28

The Message Control Program in the System 28
Assembling and Linkage Fditing a Message Control Program 28
Execution of a Message Control Proaram 28

The Applicaticn Program in the Svstem 20
Assembling and Linkage Rditing an Application Program 30
Execution of an Application Program 30
Relationship of the 0S Dispatcher to TCAM 31

The TCRM Dispatcher 32
Tlements, Oueues, and Subtasks 32

The Readv OQueue 36
Principle of Tpost and Twait 37

TCAM Control Areas 37
TCAM Address Vector Table 38
Tnvitation Tist 38
Termname Table 41
Terminal Table 42
Single Entry . 43

Group Entrvy 4y
Distribution Fntry 44
Cascade Fntry us5
Process Entry 45
TLogtype Entry 46

Line Entry . 46

Option Table 46
Option Characteristics Table 47
Device Characteristics Table 47
Special Characters Table 47
Translation Tables 49
Resource Control Rlock 50
Subtask Control Rlock 51
Oueue Control Rlock 52
Tine Contrcl Block 52
Station Control Rlock 52
~hannel Program RBRlock 53
Element Request Rlock 53
Process Control Rlock ' 54
Operator Control Rddress Vector Table 54

Selected Options
Nperator Control
Application Program Processing
Line QOueuing Options
Message Oueuing Options
Logaing
rheckpoint/Restart
TCAM as a Startable Procedure
Error Recovery Procedures
Subtask Trace
Cross Reference Table v
TCAM in a Multiprocessing Fnvironment
Time Sharing Option
Module Attributes

SECTTON 2: METHOD OF OPERATTON
Togic of TCAM
mhe Disk Message Queue Tnitializer
Tnitialization of a Message Control Progranm
Functions of TWTRO
Tunctions of the Open Routines
Preparation of Communications Lines for Transmission
Functions of READY
Svstem Control
Tunctions of the TCAM Dispatcher
Functions of the AQCTI, SVC 102 Routine
Message Wandling in a Message Control Progran
Line Management
A Receive Operation
2 Send Operation
Buffer Management
Ruffer Requestinag and Allocating
Functions of Puffer Association
Deallocating Ruffers
Functions of Ruffer PReturn
Message Handlinag Routines
Functions of the User Interface Routine
Functions of STAPTMH
Functions of the Tncoming Group of a Message Handler
Functions of the Outgoing Grouvp of a Message Handler
Queue Management
Nonreusable Disk Oueuing
Reusable Disk Oueuing
Main Storage Oueuing
Main Storage Oueuing with Disk Backup
Special OQueuing Considerations
Oueuning Management Routines
Disk TI/0 Management Routines
Multiple Arm Support
Special Message Handling Functions
Hold Function ;
Cancel Message Function
Tock Function
Tnitiate Function
Summary of Messaage Flow

iv

54
55
55
55
56
56
57
57
57
58
58
58
59
59

61
61
62
62
63
63
64
64
64
6L
69
73
74
T4
76
77

8’0

83
8u
84
L
85
85
86
37
29
89
101
1004
104
104
105
108
112
112
112
112
114
115

116

Closedown of a Messade Control Program 116
Functions of the MCP Closedown Processina and Closedown

Completion Routines 116
Close Routines 117
Application Program Processing 117
Application Program Initialization and Termination 118
tpplication Program - Initialization Functions 118
Message Control Program - Tnitialization Functions 118
Application Program - Termination Functions 120
Message Control Proaram - Termination Functions 120
Application Program Tnput/Output Functions 120
Input Functions of an Apovlication ®rogran 120

Output Functions of an Application Program ' 120
Messade Retrieval 121
Compatible QTAM 125
Compatible QOTAM GET/PUT Support 125
Compatible QTAM Message Retrieval Support 125
Functions of the Network Control Facilities 128
Interface with Operator Control 128
Network Control with an Application Program 128
Operator Control 128
Processing Standard Overator Control Commands 129
Processing System Console Commands 130
Processing Special Application Proaram Commands 131
Operator Control/Checkpoint Tnterface 132
Operator Ccntrol Processing Routines 132
Checkpoint 132
Function of the Checkpoint Executor 133

The ®nvironment Checkpoint Routines 134

The Tncident Checkvoint Routines 136

The CKREO Checkvpoint Routines 139
Brror Recovery Procedures 1309
Message Handling with Time Sharing Option Support 141
- ™SO Tine Management Support 141
TSO Ruffer Marnagement Support 142

TSO Queue Manadement Support 143

TSO MCP Closedown Processing Support 144
SECTION 3: PROGRAM ORGANIZATTION 145
System Service Routine ‘ 145
Disk Message Queue Tnitializer 145
Tnitialization Routines 148
T.ink Routine 148

WTOR Tnterpreter Routine 149

INTRO GFTMAIN Routine 151
Termname Table Sort Routine 152

Attach Poutine ; 153

Disk Message Oueues 0Open Routines 153
Checkpoint Open FRoutine : 155
Checkpoint Disk Allocation Routine 157
Checkpoint Disk Initialization Routine 158
Checkpoint/Restart from Environment Record Routine 159
Checkpoint/Restart from Incident and CKREQ Records Routine 160
.Checkpoint Continuation Restart Routine 161

Checkpoint Continuation Restart Subroutine
Line Group Open Poutines

Open Error Handler

Start-up Message Routine

Readvy Routine

System Control Routines

TCAM Dispatcher

TCAM Dispatcher with Subtask Trace
AQCTL SVC 102 Routine

Post Pending Routine

Message Handling - Iine Management Routines

L.eased Receive Scheduler

Dial receive Scheduler

I.ocal Receive Scheduler

Send Scheduler :

Send Scheduler for Leased Lines and Yo TSO
Send Scheduler with Yo TSO

Buffered Terminal Scheduler

Activate-I/0 Generator Subtask

Activate-I/0 Generator Subtask for BSC lines
Activate-T/0 Generator Subtask for Start/Stop Lines
Activate-~T/0 Generator Subtask for lLeased and Start/Stop

Lines and No TSO

Activate-T/0 Generator Subtask for a QTAM Compatible System

Tine ®nd Appendage ,
Tine End Appendage for BSC lines
TL.ine End Appendage for Start/Stop Lines

T.ine End Appendage for Leased and Start/Stop Lines

and No TSO

Tine End Avppendage for a OTAM Compatible Systemnm

Attenticn Routine

Attention HWandler

Line I/C Interrupt Trace Routine
Time NDelay Subtask

System Delav Subtask

Stop Line I/0 Subtask

Message Handling - Puffer Manacement Modules

Buffer Management Module

Transparent Transmission CCW Building Routine

PCT Appendage

Message Handling - Control Routines

Nser Interface Routine
Return Interface Routine
STARTMH Subtask

Tncoming/0Outgoing Message Delimiter Routine

Message Wandling - Functional Routines

vi

Date and Time Provision Rountine

Ooutput Sequence Number Provision Routine
Locate Option Field Address Routine
Messaqge Limit Routine

Input Sequence Number Insertion Routine
Skip Forward and Scan Routine

Skip to Character Set Routine

Line Control Yunsertion Routine

Address Finder Routine

163
164
167
168
170
171
171
178
178

182

183
183
184
186
187
188
189
189
191
192
193

193
194
195
197
197

198
199
199

200
200

201

204

206
207
207
209
210
211

211

212
212
215
219
219
220
221
222
223
225
230
232
236

Origin Rcutine ,
¥ultiple Insert/Remove Routine
Tnit Reguest Interface Routine
Remove at 0Offset Routine
NOperator Control Tnterface Routine
Cutoff Message Transmission Routine
Lookup Terminal Entrv Routine
Translate ®uffer Routine
Screen Routine
Skip Backward Routine
Insert at 0Offset Routine
Line Control Initialization Routine
Counter Routine
Multiple Insert at Offset Routine
Checkpoint Reaquest Routine
ENB/ETR Handling Subtask
Tnit Request Routine
T0g Segment RPoutine

Message Wandling - Functional Subroutines
Tnsert Data Routine
rPuffer Step Routine
Binarv Search Routine
Termname Table Code

Message Handlinag - Buffer Disposition Modules

Ruffer Disposition Subtask

Cancel Messadge Routine

Nperator Awareness Messade Router
Hold/Release Terminal Poutine

Create an Frror Message Routine and Subtask

Redirect a Message Routine

Messaade Generation Routine

T.og Message Routine

T.og Scheduler

Multiple Pouting Subtask

Tock Routine

Tnlock Routine

Distribution 1List Subtask

Cascade Tist Subtask
Message Handlina - Queue Management Routines

Destination Scheduler

Destination Scheduler - Main Storage Queuing Only

Destination Scheduler - Disk Oueuinag Only
Cpmr Tnitialization

CPR Tnitialization - Main Storade Queuing Only

CPR TInitialization - Disk Queuing Only
EXCP Driver
FYCP Driver for a Single CPR
Disk Tnd 2rpperdage
Nisk End apperdage for a Single CPB
Reusability-Copvy Subtask

Message Control Program Termination Poutines
Resident Closedown Completion
Vonresident Closedown Completion Routine
MCP Closedown Processing Poutine
Line Group Close Routines
Checkpoint Close Routine

237
238
242
2u3
246
246
248
249
251
25
254
260
262
263
265
266
267
267
268
268
271
272
273
273
273
274
275
276
277
278
279
280

280

281
283
283
284
284
285
285
287
288
290
292
2913
295

296

297
298
2908
302
302
302
303
304
306

[N

e

Message Queues Close Routine
Application Program ITnitialization and Termination Routines
GET/PUT and READ/WPITE Open Executor
GET/PUT and READ/WRTITE Close Executor
Open/Close Subtask
Appolication Program I/0 Routines
et Scheduler
GET/READ Routine
Check Routine
Get Scheduler FIF0O Routine
DPIUT/WRTTE Routine
Put Scheduler
Application Program Messade Retrieval - Point Routing
Point Routine
Application Program Compatible QTAM Routines
GET Compatible Routine
PNT Compatible Routine
Retrieve Service Routine
Petrieve Scheduler
Application Program ¥etwork Control Poutines
Nperator Control/Application Program Tnterface Routine
TCOPY Service Routine
QCOPY Service Routine
TCHNG Service Routine
TCOPY Service Routine
Password Scrambler Poutine
Operator Control Routines
Resident Operator Control Module

Operator Control Control Module - Toad 0
Overator Control Control ™Module - lLoad 1
Nnperator Control Control Module - T.oad 2
Operator Control Control Module - load 3
Operator Control Control Module - Toad &4
Nvera*tor Control Control ™Module - TLoad 5

TCAM Command Scheduler - SVC 34

Modifv Options PRoutine

Copv Line Information Poutine

Copv TMerminal Tnformation Routine
Copy T.CB Information Routine

Copy OCR Information Routine

Copv Held Terminals Routine

Copy Tnvitation Tist ®ntry Routine
Copy NOperator Control Terminal Routine
Change Control Terminal Routine

Change Terminal Routine

Alter Trace Status Routine
Stop/Resume Terminal Transmission Routine
Start line Poutine

Stop Tine Routine

Modify Poll Poutine

Modify Intense Poutine

Change Interval Type Routine

MCP. Closedown Processing Poutine

ICHNG Processing Routine

viii

306
307
307
309
310
312
312
313
315
316
316
317
318
318
319
319
320
321
322
323
323
325
325
326
327
328
328
328
329
330
331
332
333
333
334
335
337
338
339
341
342
343
345
346
347
349
350
352
354
357
358
360
362
362

On-Line Test Interface Routine 3604

Copv Invitation Iist Status Routine 365
Nperator Ccntrol Work Rrea CSECT 367
DEBUG Service RAid Router 367
Checkpoint Poutines 369
Checkpoint Fxecutor 369
Envircnment Checkpoint Routine 371
Checkvoint Oueue Manager 372
Checkvoint Disk T/0 Routine 372
Checkpoint Wotification and Disvosition Routine 373
Checkroint Disk Fnd Appendage 374
Ruild Incident Record for MH Routine 375
Application Program/Checkpoint Tnterface Routine 275
Build Incident Record for TCHWG Routine 377
Tncident Checkpoint for Operator Control Routine 378
Build CXREQ Disk Record Routine 379
Checkpoint - No Available Core Routine 379
Checkvpoint - Wo Incident Records Routine 380
Brror RPecoverv Procedure Routines 381
Start-Stop ERP Control Module 381
Read/Write Unit Check and Unit Exception ERP Module 383
Non-overational Control ©Unit ERP Module 28y
Tnit Check for Yon-read, Non-write, and Non-poll
CCWs ERP Module 384
Aunto Poll and Read Response to Poll Unit Check and Unit
Fxcevption ®RP Module 385
Error Post and Second Level CCW Return Module 385
Mnit Check and Unit Exception on Read/Write CCWs for Audio
and 2260 Local Devices ERP Module - 386
Start-Stop Channel Check ERP Module 387
Closedown Terminal Statistics Recording Module 388
BSC ERP Control Module - 388
BSC Pead/¥Write Ecuipment Check, Lost Data, Intervention
Required, and "nit Exception ®RP Module 390
BSC Read/Write Data Check, Overrun, and Command Redject
FRP Module 391
BSC Second level CCW Return Module 392
BSC Error Post Module 393
BSC Channel Check ERY Module 393
Time Sharing Cption Poutines : 394
TSO Attention Routine 394
TSO Carriage Subroutine 396
Time Sharing NDestination Scheduler 397
TSO TTOC Fdit Routine 398
TSO TOWALT Routine 399
- TS0 Wandgqup Routine 400
TSINPUT Routine 402
TR0 Logon Routine 404
TSO Message Generation Routine 407
TSONTPUT Routine 408
STARTMH Subtask for TCAM-TSO Mixed 412
TSO Simulated Attention Routine 415
TSO Abend Interface Routine 417

TSO TINMSG/CUTMSG linker 318

TSO Asynchronous Time Delay Removal Routine : Y T R

Time Sharing Scheduler 429
TCAM Flowcharts : . : 427
SECTION Q¢ MTCROFICHE DTRECTORY : 897
SECTION K DATA AREA TLAYOUTS 911
TCAM Control Rlock T.inkages 911
LTinkages from a TCAM Buffer Prefix ' 913
Address Vector Table 915
Terminal Tatle 940
Termname Table 945
Nption Table 946
Nption Characteristics Table au7
NDevice Characteristics Table 94 8
Special Characters Table 949
Resource Control Rlock 951
Oueue Control Rlock 951
Subtask Control BRlock 956
~Rlement Request Rlock 957
Tine Control Flock : 957
Station Control Rlock 96 L
Channel Program Rlock ‘ 9469
Data Control Rlock 973
Data Extent Block 9R2
Data Event Control Rlock g8%
0S T/0 Device Characteristics Table , , 986
Buffer Prefix 987
Nisk Data Area 991 .
Application Proaram Data Areas 992
Process Control Rlock 992
Data Extent Rlock for Application Programs 995
Access Method Work Area 996
pProcess Entrv Work Area 1000
Nperator Control Data Areas 1003
Operator Control 2ddress Vector Table 1003
Command Input Buffer 1007
Checkpoint Data RAreas ~ , 1008
Checkpoint Flements 1008
Checkpoirt Work Area 1009
Checkpoint Disk Pecords 1015
Parameter Lists for the Message Handling Macro Fxpansions 1037
SECTION 6: DIAGNOSTIC AIDS 1039
SCB Error Word TUsage by Module 1039

LCB Status Ryte Usage by Module 1047

Tormatted TCAM Dump 1045

Trace Tables 1077

Subtask Trace Table 1077

Line Tnput/Output Tnterrupt Trace Table 1078

Format of the Subtask Trace Table Control BRlock 1077

Format of a Subtask Trace Table Entrv . 1078

Cross Reference Table 1079

mable of Message Origins ‘ 1080

Table of Cross~References Between TCAM Modules 1088

TCAM lLinkages Between Macro Expansion and Modules
Table of Register TUsage by Module

Appendix
Appendix
Appendix
Appendix

GT.0SSARY

TNDEX

A
B:
C:
D:

list of TCAM Modules by Library
List of TCAM Queues and QOCBs
IList of Relative Priorities in TCaAM

TCAM Channel Programs and TP Operation Codes-

ALPHABETIC LISTING OF TCAM MODULES BY CSECT NAME

IEDAYA
TEDAYC
IEDAYD
TEDAYE
TEDAYF
IEDAYH
TEDAYT
TEDAYL
TEDAYM
IEDAYO
TEDAYR
TEDAYS
IEDAVT
TEDAYX
TEDAYY
TEDAYZ
TEDOAA
TEDOAC
TEDQAD
TEDQAE
IEDOAF
TEDOAG
IEDOAH
TEDOAT
TEDQAJ
IEDOAK
TEDQAL
TEDOAN
IEDOAN
TEDQAO
TEDQAP
TEDQAQ
TEDOAR
IEDOAS
TEDQAT
TEDQATTN
IEDOAY
TEDQAV

TSO Attention Routine

TSO Carriage Subroutine

Time Sharing Destination Scheduler

TSO TIOC Edit Routine

TSO IOHALT Routine

TSO Hangup Routine

TSINPUT Routine

TSO Logon Routine

TSO Message Generation Routine

TSOUTPUT Routine

STARTMH Subtask for TCAM-TSO Mixed

TSO Simulated Attention Routine

TS0 Abend Interface Routine

TSO INMSG/OQOUTMSG-lLinker _
TSO Asychronous Time Delay Removal Routine
Time Sharing Scheduler

STARTMH Subtask

Date and Time Provision Routine

Output Sequence Number Provision Routine
lLocate Option Field Address Routine
Insert Data Routine

Message Limit Routine

Input Sequence Number Insertion Routine
Skip Forward and Scan Routine

Skip to Character Set Routine

Iine Control Insertion Routine

Address Finder Routine

Origin Routine

Multiple Insert/Remove Routine

Unit Request Interface Routine

Remove at Offset Routine

Operator Control Interface Routine
Cancel Message Routine

Hold/Release Terminal Routine

Create an Frror Message Routine and Subtask
Attention Routine

Cutoff Message Transmission Routine and Subtask

Lookup Terminal Fntry Routine

1108
1115

1171
1187
1195
1199

1307

1323

394
396
397
398
399
400
402
404
407
408
412
415
417
418
419
420
212
219
220
221
268
222
223
225
230
232
236
237
238
242
243
246
274
276
277
199
246
248

TEDOAW
IEDOAX
IEDOAY
IEDOAZ
IEDQAO
IEDOA1
TEDOA2
IEDQA3
TEDQAY
TEDOQAS
TEDOQOAG
TEDOAY
IEDQAS
TEDOBA
TEDORB
IEDQRC
TEDORD
TEDQRE
IEDOBF
TEDQRG
IEDOBL
TEDQRT
TEDQOBW
I®DQBY
TEDOBY
TEDQBZ
TEDQCA
TEDQCF
TEDQCG
TEDQCH
TEDOQCI
IEDOCJ
TEDOCK
TEDOQCL
TEDQCM
TEDQCN
TEDQCO

TEDQCP

TEDQOCO
TEDOCU
IEDQCYV
TEDQCW
IEDQCX
I®DQCY
IEDQCO
IEDOC1
IEDOC?2
IEDQC3
TEDQCS
TEDQCH
IEDQEC
TEDQ®S
IEDQET

TEDQEU

xii

Translate Buffer Routine

Buffer Step Routine

Screen Routine

Redirect a Message Routine

Skip Backward Routine

Binary Search Routine

Insert at Offset Routine

Dynamic Translation Routine
Incoming/Outqgoing Message Delimiter Routlne
Forward Routine

Line Control Inltlallzatlon Routine
Counter Routine

Multiple Insert at Offset Routlne
Multiple Routing Subtask :
Checkpoint Request Routine
Distribution List Subtask

Buffer Disposition Subtask

Lock Routine

Unlock Routine

Cascade List Subtask

Message Generation Routine
EOB/ETB Handling Subtask

Unit Request Routine

Log Segment Routine

Log Messade Routine

Log Scheduler Routine

Resident Operator Control Module
Modify Options Routine

Copy Line Information Routine

-Copy Terminal Information Routine

Copy LCB Information Routine

Copy OCB Information Routine

Copy Held Terminals Routine

Copy Invitation List Entry Routine
Copy Operator Control Terminal Routine
Change Control Terminal Routine
Change Terminal Routine

Alter Trace Status Routine
Stop/Resume Terminal Transmission Routlne
Start Line Routine

Stop Line Routine

Modify Poll Routine

Modify Intense Routine

Change Interval Type Routine

MCP Closedown Processing Routine
ICHNG Processing Routine

On-line Test Interface Routine

Copy Invitation List Status Routine
Operator Control Work Area CSECT
DEBUG Service Aid Router

Put Scheduler

Retrieve Service Routine

Operator Control/nppllcatlon Progranm Interface

Routine
Open/Close Subtask

249
271

251
278

253

272
254
256
215
257

260

262
263
281
265
284
273
283
283
284
279
266
267
267

- 280

280
328

- 335

337
338
339
341
342
343
345
346
347

349

350
352
354
357
358
360
362
362
364
365
367
367
317
321

323
310

TEDQEW
IEDORZ
TEDOR1
IEDOE2
TEDOE3
TEDOEG
IEDO®6
TEDQET
IEDQFA
IEDQFA1
~ TEDQFA2
IEDOGA
TEDQGT
TEDOHG
TEDQHI
TEDOHK
IEDOHM
IEDQHM1
TEDQHM?2
TEDOKA
TEDOKR
IEDQKC
IEDQKD

IEDQKE

TEDOLM
TEDQNA
IEDQNA2
TEDONB
IEDQND
TIEDONF
TEDONG
TEDONH
TEDQNJ
TEDQNK
TEDQNM
TEDQONO
TEDONP
IEDQNQ
TEDOQNR
IEDQNS
IEDONX
IEDQOA
IEDQOB
TEDQOG
TEDQOM
TEDQOS -
TEDQTNT
IEDOUI
TEDOXA
IGCO010D
IGCO0110D
IGC0210D
IGC0310D

Get Scheduler

Get Scheduler FIFO Routine

TCOPY Service Routine

QCOPY Service Routine

TCHNG Service Routine

JCOPY Service Routine

Password Scrambler Routine

Retrieve Scheduler

CPB Initialization Module :

CPB Initialization - Main Storage Only Queuing
CPB Initialization - Disk Only Queuing

Buffer Management Module

Transparent Transmission CCW Building Routlne
Time Delay Subtask

System Delay Subtask

Stop Line I/0 Subtask

Destination Scheduler

Destination Scheduler - Main Storage Only Queuing
Destination Scheduler - Disk Only Queulnq
Activate-I/0 Generator Subtask

Activate-I/0 Generator Subtask for BSC Lines

Activate-I/0 Generator Subtask for Start/Stop Lines

Activate-I/0 Generator Subtask for Leased and
Start/Stop Lines and No TSO -
Activate-I/0 Generator Subtask for a QTAM-
Compatible Systen :

Return Interface Routine

Resident Closedown Completion Module
Nonresident Closedown Completion Module
Application Program/Checkpoint Interface Routine
Ready Routine

Checkpoint Executor Routine

Build Incident Record for MF Routine

Build Incident Record for TCHNG Routine
Incident Checkpoint for Operator Control Routine
Environment Checkpoint Routine

Build CKREQ Disk Record Routine

Checkpoint Queue Manager

Checkpoint Disk I/O Routine "
Checkpoint Notification and Dlsp051t10n Routine
Checkpoint - No Available Core Routine
Checkpoint - No Incident Records Routine
Operator Avareness Message Router

Link Routine

WTOR Interpreter Routine

INTRO GETMAIN Routine

Termname Table Sort Routine

Attach Routine

Termname Table Code

User Interface Routine

Disk Message Queue Initializer

Operator Control Control Module - Load 0 - SVC 104

Operator Control Control Module - Load 1
Operator Control Control Module - Load 2
- Load 3

Operator Control Control Module

312
316
325
325

- 326

327
328
322
290
292
293
207
209
201
204
206
284
287
288
191
192
193

193

194
212
302
302
375
170
369
375
377
378
371
379
372
372
273
379
380

- 275

148
149
151
152
153
273
211
145
329
330
331
332

”
P-
e

IGCO410D Operator Control Control‘Module - Load 4 333

IGC0510D Operator Control Control Module - Load 5 333
I6C102 AQCTI SVC 102 Routine , 178
IGC1303D TCAM Command Scheduler - SVC 34 ‘ 334
IGEQ004G Start/Stop ERP Control Module 381
IGE0104G Read/Write Unit Check and Unit Exception ERP Module 383
IGEO204G Non-operational Control Unit ERP Module 384
IGE0304G Unit Check for Non-read, Non-write, and Non-poll

CCWs ERP Module 384
IGEOU4OULUG Auto Poll and Read Response to Poll Unit Check and

Unit Exception ERP Module 385
IGEQOS504G Error Post and Second Level CCW Return Module 385 -
IGE0604G Unit Check and Unit Exception on Read/Write CCWs for

Audio and 2260 Local Devices ERP Module 384
TGEQ804G Start/Stop Channel Check ERP Module 387
IGEO90ULG Closedown Terminal Statistics Recording Module 388
IGEQOOOQOUH BSC ERP Control Module 388
IGEO104H BSC Read/Write Equipment Check, Lost Data, Intervention

Required, and Unit Exception ERP Module 390
IGEQ204H BSC Read/Write Data Check, Overrun, and Command Reject

ERP Module ,) 391
TGEO40U4H BSC Second Level CCW Return Module 392
IGEO504H BSC Error Post Module : 393
IGEOSOQOU4H BSC Channel Check ERP Module 393
IGG0190Q0 Line I/0O Interrupt Trace Routine 200
IGG01901 Local Receive Scheduler 186
166019902 Line End Appendage for BSC Lines 197
IGG01992 Line End Appendage for Start/Stop Lines 197
IGG01904 Line End Appendage for Leased and Start/Stop Lines

and No TSO / 198
IGG019Q5 Line End Appendage for a QTAM-Compatible System 199
IGG0190Q6 Send Scheduler for Leased Lines and No TSO 188
¥3G6019Q7 Send Scheduler with No TSO , 189
IGG01908 Checkpoint Continuation Restart Subroutine 163
IGGO19RA Checkpoint Disk End Appendage 374
IGGO019RB TCAM Dispatcher 171
IGGO19RC EXCP Driver 295
IGGO19RD Buffered Terminal Scheduler 189
IGGO19RF EXCP Driver for a Single CPB 296
IGGO19RG GET/READ Routine 313
IGGO19RH GET Compatible Routine 319
IGGO19RT PUT/WRITE Routine 316
IGGO19RJ PUT Compatible Routine 320
IGGO19RK Disk End Appendage for a Single CPB 298
IGGO019RL Check Routine 315
IGGO019RM Point Routine 318
IGGO19RN PCI Appendage 210
IGG019RO TCAM Dispatcher with Subtask Trace 178
IGGO19RP Reusability—~Copy Subtask 298
IGGO19RO Post Pending Routine 182
IGGO19RO Line End Appendage 195
IGGO19R1 Dial Receive Scheduler 184
IGGO19R2 Disk ‘End Appendage 297
IGGO19R2 Leased Receive Scheduler 183
IGGO19RY Send Scheduler 187

xiv

TIGGO19R5
IGGO19R6
TIGG01930
IGG01931
TG6019323
TGG01934
TGG01935
IGG01936
IGG01937
16601938
IGG01939
IGG01940
TGG01941
IGG01942
IGG01943
IGG01944

TGG01945
IGG019u6
IGG01947
IG6G01948

IGG01949

16602020
IGG02035
I6602036
IGG02041
IGGC02046
IGGO02

Attention Handler

Start-up Message Routine
Disk Message Queues Open Routine - Load 1
Disk Message Queues Open

Open Error Handler

Disk Message Queues Open

Line Group
Line Group
Line Group
Line Group
Line Group
Line Group
Checkpoint
Checkpoint

Checkpoint/Restart from Fnvironment Record Routine
Checkpoint/Restart from Incident and CKREQ Records

Routine

Checkpoint Continuation Restart Routine
GET/PUT and READ/WRITE Open Executor - Load 1
GET/PUT and READ/WRITE Open Executor - Load 2

Open
Open
Open
Open
Open
Open
Open
Disk

Routine - Load 2

Routine - Load 3

Routine - Load
Routine - lLoad
Routine - load
Routine - Load
Routine - Load
Routine - Load
Routine

Initialization

NN EWN -

Routine

Line Group Open Routine - Load 7
Checkpoint Disk Allocation Routine
Disk Message Queues Close Routine
Line Group Close Routine - YLoad 1
Line Group Close Routine - Load 2

Checkpoint Close Routine
GET/PUT and READ/WRITE Close Executor - Load 1
GET/PUT and READ/WRITE Close Executor - Load 2

200

168
153
154
167
154
164
165
165
166
166
166
155
158
159

160
161
307
307
166
157
307
304
305
306
309
310

Xv

PLOWCHARTS

AA.
AC.
AD,
pE.
AF,
AG.
AH.
AT,
AJ.
A%,
AT.
AM,
AN,
a0.
AP.
20.
A®,
AS.
AT,
AT,
Av,
AW,
Ay,
AY.
A7,
AO.
A1.
A2,
A3,
AL,
A5,
AR,
A7,
A8.
RA.
BB.
RC.
RD.
RE,
BRF,
BG.
RL.
BT,
BY,
BX.
BY.
R7.
Ca.
cw,
ch.
cw,
CcT.

xvi

STAPTMH Subtask

NDate and Time Provision Routine

Nnutput Sequence Number Provision Routine
Locate Option Field Address Routine
Tnsert Data Routine

Message Timit Routine

Input Seguence Vumber Tnsertion Routine
Skip Forward and Scan Routine

Skip to Character Set Routine

T.ine Control Insertion Routine

Address Finder Poutine

Origin Routine

Multiple Tnsert/Femove Routine

"nit Request Interface Routine

Remove at Cffset Routine

Nperator Control Interface Routine
Cancel Messaqge Routine

Hold/Release Terminal Routine

Create an Error Message Routine and Subtask
cutoff Message Transmission Routine
Lookupr Terminal FEntrv Routine

Translate Buffer Routine

ruffer Step Routine

Screen Routine

Redirect a Message Routine

Skip Backward Routine

Rinary Search Routine

Tnsert at Cffset Routine

Dvnamic Translation Routine
Tncoming/Outqgoing Message Delimiter Routine
Forward Routine

Tine rontrol Tnitialization Routine
Counter Routine

Multiple Tnsert at Offset Routine
Multiple Routing Subtask

Checkpoint Request Routine
Distribution Tist Subtask

Ruffer Disposition Subtask

T0ck Routine

"nlock Routine

Cascade List Subtask

Message Generation Routine
ENB/ETR Handling Subtask

"nit Request Poutine

Log Segment Routine-

Log Message Routine

Log Scheduler Routine

Pesident Operator Control Module
Modifvy Options Routine

Copvy Line Information Routine
Copvy Terminal Information Routine
Copv LCB Information Routine

427
430
431
432
433
435
436
437
)
49
o
445
HY6
B8
549
451
452
453
458
459
460
461
462
463
B6Y
465
566
467
468
469
470
471
473
474
475
476
477
478
480
481
482
483
48y
488
489
490
491
493
49y
497
498
499

(oh 8
CK.
CL.
CM.
cw.
co.
cp.
co.
cu.
cv.
cw,
CX.
c7Z.
co.
c1.
c2.
c3.
Ch.
ER.
EC.
TS.
ET.
rU.
mW.
r7.
E1.
®2.
E3.
Ty,
Rh.
E7.
FA.
FA1.
FA2.
GA.
GT.

HG.
HI.
HK,
AM.
M1,

M2,

JD.

Copv OCR Information Routine

Copv Held Terminals Routine

Copy Tnvitation list Entrv Routine

Copy Nperator Control Terminal Routine

Change Control Terminal Routine

Change Terminal Routine

Alter Trace Status Routine

Stop/Resume Terminal Transmission Routine

Start Iine Routine '

Stop Line Routine

Modify Poll Routine

Modify Intense Routine

Change Interval Tvype Routine

MCP Closedown Processing Routine

ICHNG Processing Routirne

On-Line Test Interface Routine

Copy Invitation list Status Routine

DEBUG Service Aid- Router

AOCTI. SVC 102 Routine (IGC10?2)

Put Scheduler

Retrieve Service Routine

Overator Control/Application Program Interface Routine

Open/Close Subtask

Get Scheduler

Get Scheduler FIFO Routine

TCOPY Service Routine

QCOPY Service Routine

TCHNG Service Routine

TCOPY Service Poutine

Password Scrambler Routine

Retrieve Scheduler

CPR Tnitialization

CPB Tnitialization - Main Storadae Oueuing Only

CPB Tnitialization - Disk Queuing Only

Buffer Management Module v

Transparent Transmission CCW Ruilding Routine

Time Delay Subtask

Svstem Delay Subtask

Stop Line T/0 Subtask

Destination Scheduler)

Destination Scheduler - Main Storage Queuning Only

Destination Scheduler - Disk Queuinag Only
Start/Stop ERP Control Module (IGENOOLG)
Read/Write Unit Check and Unit Exception ERP
Module (TGEO1NLG)

Non-operational Control Mnit ERP Module (IGE0204G)

Tnit Check for Non-read, Non-write, and Non-poll
CCWs FRP Module (IGEO304G)

Auto Poll and Read Response to Poll Unit Check and Unit

rxXxception ERP Module (IGEOLOLG)

Rrror Post and Second level CCW Return Module (IGEO504G)

Mnit Check and Unit Exception on Read/Write CCWs for
Audio and 2260 Local Devices ERP Module (IGEO60UG)
Start/Stop Channel Check ERP Module (TYGEO0804G)

500
501
502
504
505
506
509
511
512
516
518
519
521
522
5214
527
529
530
532
533
534
535
536
537
540
541
542
543
541
545
546
547
571
586

, 608

614
617
620
622
623
633
641
648

650
652

653

654
655

656
657

xvii

JK.
JL.
']M.

0.
Jo
Jo.
KA.
LA.
LRB.
T.C.
LD.
LE.
CLF.
1G5,
LH.
LT.
1J.
TK.
M.
1.
T4,
LS.
1.6.
17.
1.8.
1.9.
1.10.
MA,
MB.
ME.

MG.

MJ.
MM,
NR.
NA 2.
NR,
ND.
NF.
NG,
¥YH.
NJ.
VK.
NM.
NO.
yP.
vO.
NR.
Nvs.
NT.

xviii

Closedown Terminal Statistics Recording Module (IGE0904G)

BSC FRP Control Module (IGROOO4W)

BSC Read/Write Fouipment Check, TLost Data, Intervention

Required, and Unit Exception ERP Module (IGEO104Fm)

BSC Read/Write Data Check, Overrun, and Command
Reject ERP Module (IGE0204W)

BSC Second lLevel CCW Return Module (IGEOLOQUW)
BSC Error Post Module (IGEOSO4H)

BSC Channel Check ERPD Module (TGEO804F)
Activate-T/0 Generator Subtask

Open ®rror Handler (IGG01933)

Disk Message Queues Open Routine-~load 1 (IGG01930)
Disk Message Queues Open Routine-Toad 2 (IGG01931)
Disk Message Queues Oven Poutine-Toad 3 (IGG01934)
Line Grcup Open PRoutine-load 1 (IGG0OT1935)

Line Group Opren Routine-Toad 2 (IGG0193¢6)

Line Group Open Routine-Toad 3 (IGGO1937)

Line Group Open Routine-Load 84 (IGG01938)

Line Grcup Open Routine-TLoad 5 (IGG01939)

Line frcup Open Poutine-Load 6 (IGGO1940)

Line Group Open Routine-T.oad 7 (IGGO1948)

Return Interface Routine

Disk Message Queues Close Poutine (IGG02030)
TLine Group Close Routine-toad 1 (IGG0203%)
Tine Grcup Close Routine-locad 2 (TGG02036)
Checkpoint Close Poutine (IGG02041)Y

GRT/PUT and RFAD/WRITE Open Executor-Toad 1 (IGG01946)
GET/PNT and READ/WRITE Open Executor-Load 2 (IGG01947)
GFT/PNT and READ/WRPITE Close Executor-lLoad 1 (IGGDN2046)
GET/PUT and READ/WRITE Close Executor-T.oad 2 (TGG02047y

Checkpoint Open PRoutine (IGG01941)

Checkpoint Disk Tnitialization Routine (IGG01942)

Checkpoint/Restart from EFnvironment Record
Routine (IGG01943)

Checkvoint/Restart from Tncident and CKREQ Records Routine

(IGGO194n)

Checkpoint Continuation Pestart Routine (ITGG01945)

Checkpoint Disk 2llocation Routine (IGG01949)
Resident Closedown Completion Routine
Nonresident Closedown Completion Routine
Application Program/Checkpoint Tnterface Routine
Ready Routine

Checkpoint Executor Routine

Ruild Incident Pecord for MW Routine

Build Incident Record for TCHNG Routine

Tncident Checkpoint for Operator Control Routine
Fnvironment Checkpoint Routine

Build CKREQ Disk Record Routine

Checkpoint Queue Manager Routine

Checkpoint Disk T/0 Routine

Checkpoint Notification and Disposition Routine
Checkpoint - No Available Core Routine
Checkpoint - No Tncident Records Poutine
Termname Table Code

Ny,
NZ.
o,
ORr,
nG.
oM.
0S.
00n.
01.
02.
n13.
ou.

0%.
0h.
07.
08.
PA.
RB.
rC.
RD.
RF,
RG.
RH.,
RT.
RY.
RK.
RY..
RM.
RN,
RO.
rP,
RO.
RO.
1,
R2.
r3,
RO,
r5,
RA,
mw,
gT.
YA.
Y.,
YC.
YD.
Y®.
YF.
- YH,
YI.
YLi.
™.
YO.
YR.

Operator Avareness Messadge Router

TCAM Command Scheduler - SVC 34 (TGC1303M)

Tink Routine

WTOR TInterpreter Routine

INTRO GETMATIN Routine

Termname Table Sort Routine

Attach Routine

Line I/0 Tnterrupt Trace Routine (IGG0190Q0)

Local Receive Scheduler (IGG01901)

Line End Appendage for BSC Tines (IGG0190?)

Line End Appendage for Start/Stop Lines (IGG01903)

Line End Appendage for leased and Start/Stop Lines and
Yo TSO (IGGO01904)

Line End Apvpendage for a OTAM-Compatible System (IGG019Q5)
Send Scheduler for lLeased Lines and Yo TS0 (IGG01906)
Send Scheduler with No TSO (IGG01907)
Checkpoint Continuation Restart Subroutine (IGG01908)
Checkpoint Disk End Appendage (IGGO19R13)

mCAM Dispatcher (IGGOT19RR)

EXCP Driver (IGGO19RC)

Ruffered Terminal Scheduler (IGG019RD)

EXCP? Driver for a Sinale CPB (IGGO19RW)
GET/RRAD Routine (IGGO19RG)H

Set Compatible Routine (IGGO19RH)

PUT/WRTITE Routine (TGGO19RT)

Put Compatible Routine (IGGO19RIY

Disk End Avppendage for.a Single CPR (IGGO19RK)
Check Poutine (IGGO19RT)

Point Routine (IGGO19RM)

PCT Appendage (IGGO19RN)

TCAM Dispatcher with Subtask Trace (IGG019R0)

Reusability-Copy Subtask (IGG019RDP)

Post Pendina RPoutine (IGGO19R0)

Line ®nd Avppendage (IGG019R0)

Dial Receive Scheduler (IGGO019R1)

Disk End Appendage (IGGO19R2)

Teased Receive Scheduler (IGGO19R3)

Send Scheduler (IGGO19RWY

Attention Handling Routine (TIGGN19R5)

Start—-up Message RPoutine (IGGO19RA)

Attention Routine

Nser Tnterface Routine

Disk Message QOueue Tnitializer

TS0 Attention Routine

TSO Carriage Subroutine ,

Time Sharing Destination Scheduler

TSO TIOC Tdit Routine

TSO TOBALT Routine

TSO Fangup Routine

TSINPUT Routine

™SO0 Togon Routine

TSO Messadge Generation Routine

TSOUTPUT™ Routine

STARTMH Suttask for TCAM-TSC Mixed

729
731
732
733
738
739
740
741
742
743
156

765

779
780
782
783
784
786
792
795
796
800
803
804
805
806
307
808
810
812
823
824
238
840
341
842
844
845
848
349
850
852
854 -
857
858
862
863
86U
866
868

871

874

7S.
YT,
Y.
Yy.
V7.
71.
%22,
7,
74,
75.
Z6.

Xx

TSO Simulated Attention Routine
TS0 Abend Interface Routine

TSO TNMSG/ONTMSG Linker
m™SO0 Asynchrorous Time Delay Removal Routine
Time Sharing Scheduler

Nperator
Operator
Nperator
Operator
Operator
Operator

control
Control
Control
Control
Control
Control

Control
Control
Control
Control
Control

control-

Module
Module
Module
Module
Module
Module

Load
L.oad
To0ad
Load
Load
T.oad

ANAEWN 2O

(IGCO0010D)
(IGCO110D)

(TGC0210D)
(TGC0310D)

(TGCOU10D)
(T6C0510D)

879

- 881

382
883
884
]889
891
892
892
894
895

WIGURES

D I NNE BN -
.

o

1.
12.
13.
14,
15.
16.
17.
18.
109.
20.
21.
22.
23.
24,
25.
26.
27.

28.
29.
0.
31.
32.
33.
34.
35.

36.
37.

38.

Physical Organization of TCAM
TCAM OCB 1inkage
priority of Subtasks on a QCB

‘Passing Flements to a OCR
. TCAM Dispatcher Mnalogy

Pointers from an Invitation 1ist to the Termname Table
Pointers from the Termname Table to the Terminal Table
Relationships among the AVT, the mTermname Table,
the Terminal Table, and the DCT
Example of a Special Characters Mable Entry
Relationships-among the LCB, DCB, SCT, and
Translation Tables
Resource Control Rlock
Format of a Full STCR
General Format of a OCR
Format of an ERR
Linkage from the Ready Queue to Subtask Code
Pointers during a Readv Queue Tpdate
Linkage from Register 1 when a Subtask Gains Control
Formats for Different Types of STCBs
Format of a Cross-Partition Data Movement Parameter List
Formats of an ECR POST Parameter List
Format of a Parameter Yist to Flaag the TCR of a TSO Progran
A Receive Scheduler STCB in an ILCB on the Ready Oueue
Mnit Contrel RArea
Buffer Units Chained to Form logical Ruffers
Effect of an ERB on Ruffer Tnit Linkage
Buffers Prepared to Receive Data
Assignment of Disk Message Queues NData Set Relative
Record Numbers Across Three Volumes
Disk OQueuing a Three-Unit Ruffer
Disk Queuing an Eight-"Tnit Ruffer
Disk Oueuinag the Second Ruffer of a Message
Disk Queuing a One-"nit Message
Disk Queuing Pointers
Example of Two Queue-Rack Chains
Disk Queuing - FIF0 and FEFN Pointers
7ones for Servicing and Updating a Reusable Disk
Message Queues Data Set
Format of an LCR and a Destination OCR after Tine Open Time
Format of a Send Priority LCR and Destination QCR®
after a Full Message Has Been Received
T.inkage among Storage Areas in the MCP and an Application
Program after Tnitialization

26
33
32
24
35
43
4u

48
49

49
50
51
52
53
65
66
A7
69
71
71
73
75
78
79
81
82

Q0
a3
9y
95
96
97
99
102
103
106

107

119

xxi

FNLDOUT CHARTS

TCOD AN AT N -

-
Qe
. 8

12‘

-
98)
.

14,
1=,

16,
17.
18.
19.
20.
21.
22.

?3.

24,
25.
26.
27.
28.
29.
30.

Tnitialization of a Message Control Program
Functions of Open Disk Message Oueues Data Set
*unctions of Checkpoint Open

‘Functions of line Group Open

Functions of the READY Macro Expansion and Routine

Summary of the Dispatching Functions of the TCAM Dispatcher

Summary of the Nueuing Functions of the TCAM Dispatcher
TCAM Message Flow

Tunctional Flow in a Receive Cperation

Functional Flow in a Send Operation

Functions of an Initial Buffer Request in a Receive Operation
Tunctions of an Initial Buffer Redquest in a Send Operation

Functions cf BRuffer Return

¥low of Buffers through a Message Handler

Nonreusable Disk Queuing Functions of the Destination
Scheduler Poutine

Functional Flow when Peceiving from a Iine

*unctional Flow when Sendinag to a Line _

runctional Flow for MCPCLOSEF and Closedown Completion

Functional Flow of the DCB Closedown Procedure
Initialization Functions in an Application Program

Termination Functions in an Aprlication Program

Functional Flow of Fow Data is Passed from the MCP to an
Applicaticn Procoram

Tunctional Flow of Wow Data is Passed from an Application
Program to the MCP

Application Program Tnterface with Operator Control

Application Proagram Network Control Facilities
Functional Flow of Operator Control

Functional Flow of the Checkpoint Routines

Control Flow of the Fnvironment Checkvoint Routines

T.inkage among the Start-Stop ERP Modules

T.inkage among the BSC FRP Modules

xxii

1237
1239
1241
1243
1245
1247

1249
1251
1253
1255
1257
1259
1263
1265

1267
1269
1277
1283
1285
1287
1289

1291

1293
1295
1297
1299
1301
1303
1305
13058

Organization and Use of the TCANM Program logic Manual

This seven-part publication covers +the internal logic of the IBM
System/360 0S Telecommunications Access Method (TCAM). The TCAM PLM
is directed to the IBM customer engineers and system engineers who
provide program maintenance and who need information on the internal
organization and logic of TCAM.

Section 1 is +the Introduction +to the TCAM systen. The general
information presented in the Introduction is basic to an understanding
of TCAM. This information places TCAM in the proper perspective to
the Operating System (0S) and points out the special concepts and
control areas used by TCAM in order to operate as a component of OS.

Section 2, the Method of Operation section, describes the functional
flow of each operation in a TCAM systen. When possible, the
operations are discussed in sequential order by time of occurrence as
a message is being vprocessed by TCAM. Fach discussion is accompanied

by Method of Oreration diagrams, which depict the operation, (These
diagrams are foldout charts and are located between Appendix D and the
Glossary at +the back of this manual.) The main-line processing

operations are discussed in the following order:

1. Disk messaqge gueue initialization

2. Tnitialization of a Message Ccntrol Program (MCP)

3. Message handling in an MCP

4, Closedown of an MCP

The other functional operations occur intermittently with +the main-
line processing and except for system control, are discussed after the
mMce sections. Systen control is discussed after the MCP
initialization section. These operations include:

1. System control

2. Applicaticn proqram processing

3. Operator Ccntrol processing

4., Checkpoint processing

5. Error reccvery procedures

6. Time Sharing Option interface

Section 3 covers the ©prcgram organization and operation, both in
textual descriptions and in flowcharts. Fach TCAM module is described
within 1its functional area of operation. The functional areas are

organized exactly as in the Method of Operation section and thus allow
the reader to relate actual modules to general functions. When a

xxiii-

module name ends in-two letters or in one or two letters followed by
"a number, the flowchart identification is the same as those
characters. When multiple flowcharts are necessary for a module,
these two or three characters are followed bty a dash and then a number
(HM1~1). When a module name ends in +twc numbers, +the flowchart
identification is arbitrarily assigned.

The informaticn on a TCAM~TSO mixed environment is located in two
places in Secticn 3. When a TCAM module contains logic necessary to
identify +that TSO 1is in operation and +to activate special TSO
routines, that module description and flowchart describe the tests.
The special TSO routines that operate under the TCAM Dispatcher, but
that perform TSO-only functions, are described in a section devoted
solely to TSO routines. There is also a general discussion of the
mMCAM-TSO interface in Section 2.

Section 4 is the TCAM Microfiche Directory. This directory is a 1list
of -all TCAM modules. Each entry contains the correspcnding entry
point or entry roints, its qeneric name, its flowchart identification,
and its CSECT name. .

Section 5 is a composite of the data areas that are used by TCAN.
Bach data area is described in terms of purpose, internal references,
allocation, and dinitialization. Both a visual and a tabular
description of +the DSECT for each area are also given, vwhere
aprplicable. :

Section € contains tables of information +to aid in debugging and
analvzing the activity of TCAM.

The seventh section consists of information to aid in the use of TCAM.
This information is in four appendixes: a list of TCAM queues and
OCBs, a list of TCAM modules by litrary, a 1list of TCAM relative
priorities, and the TCAM channel progranms.

Txxiv .

SECTION 1: TINTFODUCTION

This section provides general informaticn describing the purpose,
organization, and internal operation of the Telecommunications Access
Method (TCAM), and its relationshir to the operating systen.

PURPCSE OF TCAM

TCAM is a compcnent of the 1IBM System/360 Operating Systen. The
" primary purpose of TCAM is to provide a high-level access method to
communicate with telecommunications eguipment while maintaining the
greatest possible amount of device independence. In addition to
supporting the transfer of data (messages) between both 1local and
remote terminals and the system, TCAM provides a high-level, flexible
message contrcl lanquaqge that can be used tc direct the processing of
the data. By using the TCAM macro instructions, installaticn-oriented
message control is achieved.

SYSTEM STRUCTURE

TCAM operates under O©0S MFT or MVT in System/360 Model 40 or above
processors. The minimum main storage requirement is 128K bytes. In
addition to the system timer and normal 0S requirements, TCAM requires
a 2701, 2702, or 2703 on a multiplexer channel (unless cnly the 7770C
or 2260 local terminals are used, in which case the 7770 or 2848 1is
attached to the channel). Secondary storage for libraries and main or
secondary storaqe for .queuing are also required. '

This section describes the various parts of TCAM and explains what
they are, where they come from, how they get into the system, their
relationships to each other, and how they pass control back and forth.

Figure 1 shows the steps necessary to tegin processing in the TCAM
environment. ’

Introduction 25

Application
Source Program

Assembler

System Generation
Macro Instructions

-
0S/360 Starter System

|

SYS1. MACLIB

Linkage Editor

Includes all TCAM

System Residence

Message Control
Source Program

Macro Definitions

SYS1. TELCMLIB

User Code and
GET /PUT Linkages

Status Changing
Resident Routines

Job Scheduler

Figure 1.

26

All TCAM Resident Modules

Assembler

to be Linked with User
Object Modules

SYSt. SVCLIB

‘Includes all TCAM Support

Modules Loaded by OPEN,

and all OPEN,CLOSE,and:
ERP Modules

SYSI. LINKLIB

Includes TCAM Transient

Linkage Editor

Macro Linkage
and User Code

MH Resident Routines

\'M‘Jles

— 7

~

|

“OP

Job Scheduler

\}n

Main Storage ";L
Supervisor Nucleus
l/\'—tf;%rrkﬁfﬁe_‘
IAQCTL _SVC Modul¢]
Partition J |, L
N T 7
Application Program 2
Partition or other Programs
2
GET/PUT Modules
Partition Application Program 1
1 GET/PUT Modules
Partition Message Control Program
0 Any Attached Subtasks

Physical Organization of TCAM

SYSTEM GENERATION

When TCAM is called for during a system generation procedure (via the
ASCMETH operand in the DATAMGT system generation macro instruction),
the TCAM modules are included 1in four 1libraries: SYS1.MACLIB,
SYS1.TELCMLIB, SYS1.SVCLIB, and SYS1.LINKLIB. An Attention routine
and a Tvype I SVC module (the AQCTL SVC 102 routine) are incorporated
in the Superviscr ©Nucleus (SYSV1.NUCLEUS)Y. Using these modules, the
user can assemble, linkage edit, and execute TCAM message ccntrol and
application programs.

TCAM Macro Definitions

The operating system macrc definition litrary (SYS1.MACLIRB) includes
the macro definitions necessary for the assembly of TCAM message
control and application rrogranms.

TCAM Resident Mcdules

When performing a system generation to include TCAM, the user must
define a special 1library area named SYS1.TELCMLIB. During the
generation run, modules that can later be linkage edited with message
control and arplication cbiect modules are copied from SYS1.CQ548 into
SYS1.TELCMLIB. TIn this publication, these modules are defined as the
TCAM resident modules. Appendix A contains a list of the modules in
SYST.TELCMLIB.

TCAM Support Modules

During the system generation run, all modules that are loaded into
main storage Yy the various system open executors and the TCAM open
and close executors are copied from SYS1.CQOEU48 into SYS1.SVCLIR, The
TCAM Dispatcher, the Command Scheduler, the Type IV SVC modules, and
the Frror Recovery Procedure routines are also placed in SY¥S1.SVCLIB.
In this ©publication, these modules are defined as TCAM support
modules. Appendix A contains a list of the TCAM support modules 1in
SYS1.SVCLTIB.

The EFError Recovery Frocedure routines and the TCAM open and close
routines can, at the option of the wuser at system generation, be
resident or transient during program execution. In either case, these
routines reside in SYS1.SVCLIB.

TCAM Transient Modules

At system deneration time, modules that <can be called into main
storage for a limited length of time during the execution of a TCAHM
message ccntrcl cr application program are copied from SYS1.CQ548 into
SYS1.LINKLIR. In this publication, these modules are defined as TCAM
transient modules. Appendix A contains a 1list of the modules in
SYS1.IINKLIE.

7 The Operator Control, Checkpoint, and On-line Test routines stored
in SYS1.LINKIIB can ortionally be srecified to be resident during

Introduction 27

program execution. However, in this publication they are defined as
transient modules.

System Nucleus Modules

At system generation time, the Attention routine and the AQCTL SVC 102
routine (a Type I SVC) are copied from SYS1.CQ548 into SYS1.NUCLEUS.
Tn this publication these +two mcdules are defined as the systenm
nucleus modules.

THE‘MESSAGE CONTRCL PROGRAM TN THE SYSTEM

Assembling and linkage Fditing a Message Ccntrol Program

The wuser codes +the TCAM macro instructions necessary to design a
messaqge ccntrcl program. When these instructions are entered for
assembly, the output of this assembly includes: several tables and
control blocks, 1linkages +to TCAM resident and surport routines,
message handler (MH) macro instruction expansions, and any user-
written routines that were included.

The assembled object module is then linkage edited to include the
referenced resident routines from SYS1.TELCMLIB, These resident
routines are the MCP routines used to process header information, to
translate from one transmission code to another, to direct messages to
the proper lines and queues, to manage system resources, etc.

The resulting load module is stored in a system library to be
loaded for execution.

Execution of a Message Ccntrol Progranm

The TCAM message ccntrol program (MCP) is normally executed as the
highest ©priority task in the highest priority partition or region in
the system. The 0S Initiator/Terminator routine loads and transfers
control to the MCF. The first TCAM macro instruction executed must bte
TNTRO. The initial functions o¢f INTRC are to establish the TCAM
Address Vector Tatle (AVT), addressability and entry linkages for the
MCp, the Cross-Reference Table, the Channel Program Block (CPB) pool,
the buffer unit pool, and main storage gqueues. INTRO also attaches
the Operator Control, FE Common Write, and On-line Test tasks and
provides override of some TNTRO parameters via the Write +to Operator
with Reply (WTOR) Interpreter routine. These functions are discussed
in detail under Functions of INTRO in the Method of Operation section
of this publication.

The MCP runs under the control of the 0S task management routines.
Tt is scheduled and dispatched according tc the priorities included in
the Task Control Block (TCB) in the partition in which it is being
executed. The MCP includes:

1. The object module output from the assemblv of the user's code.
2. The resident routines linkage e€dited with the assembly output.

28

In order to understand the operation of an MCP, it is necessary to
become acquainted with the use of save areas in the MCP and the way in
which control is rassed from one level of oreration to ancther. Tive
save areas are located at the beginning of the AVT, which is assembled
at the beginning of the MCP. The MCP is that portion of the user's
CSECT that contains the INTRO, OPEN, REATLY, and CLOS® macros, the MH
routines and macrc expansions, and constant areas.

Save area manaqgement cccurs when a subroutine returns to the
routine that called it. A save area "bhelongs" to a routine when that
routine sets register 13 to point to the save area. 1A subroutine of
the routine can then store the registers of the routine in the
specified save area. If a rcutine does nct call a subroutine, it does
not have a save area, since it dJdoes not modify the contents of
register 13.

TCAM maintains four 18-word save areas and one 10-word save area
in the AVT. After the standard entry linkage of a routine that uses
'save area management, certain words of the save area contain specific
addresses:

L The second word of the save area points tc the address of the save
area for the calling routine.

® The third word of the save area for the calling routine has the
address of the save area for the called routine,

° Register 13 has the address of +the save area for the called
routine.

During the standard exit linkage of a routine that uses save area
management, the save area address for the calling routine is restored
from the seccnd word of the save area for the called routine. The
registers of the calling routine are also restored from this area, and
the calling routine can regain control.

As stated previously, when 0S Job Management initiates an MCP, the
MCP gains control at the INTRO macrc expansion, In performing
standard entry linkages, the INTRO macro expansion sets register 13 to
point to the first field of the AVT, AVTSAVE1, which is the save area
that belongs to the MCP. When the functicns of the READY macro are
executed, the MNCP <calls the TCAM Dispatcher. The TCAM Dispatcher
perfcrms standard entry linkage, saving the ~Tegisters of READY in
AVTSAVE1 and setting register 13 to point to the Dispatcher save area,
AVTSAVE2. '

Routines, subroutines, and suktasks use the AVTSAVE3 and AVTSAVEU
save areas 1f they need to rerform save area management.

When a disabled routine, an arpendage, gains ccntrcl, it uses

AVTSAVEX, the ten-word save area, to store the TI/0 Supervisor
registers.

Introduction 29

THE APPLICATION FRCGRAM IN THE SYSTEM

Assembling and lLinkage Editing an Apvlicaticn Program

A TCAM application program rrccesses messages obtained from a TCAM
MCP. The aprlication program can run in a partition or region
Adifferent from the MCP, or it can run as an attached task in the sane
partition or regicn.

An applicaticn program needs only the OPEN, CLOSE, GFET, and PUT
macro instructions and some data set Adefinition macro instructions.
When this is the case, no resident routines need to be linkage edited
with the obdject module. However, the wuser may wish to write
application programs . that use the following macro instructions to
examine and modify the status of the MCP:

® CHECK
° CKREO
° TCcoprY

° MCPCLCSE

® MRELEASE

° POINT
. 0COPY
o TCHNG
° TCOPY

When any of these macro instructions are used, the linkage editor
includes the corresponding resident modules in the load module. The
load module is stcred 1n a system library from which it is loaded for
execution. :

Execution of an Application Program

It is wvpossible to run an MCP with no application program, but there
may bhe one or mcre application proqrams being executed asynchronously
with the MCP.

Tn most cases an application program 1is loaded into the next
highest priority rartiticn to the MCP. However, application programs
may also be executed 1in the same partition as the MCP after being
brought in by the system ATTACH facility.

Applicaticn programs, like the MCP, run under the control of the
0S task management routines. They are scheduled and dispatched
according to the priorities indicated in +the Task Control Blocks
(TCBs) for the partitions in which they are being run.

30

An application program includes:
1. The obiject module output from the assembly of the user's code.
2. 1Any resident routines linkage edited with the assembly output.
3., The CHECK, FOINT, GFT/READ, and PUT/WRITE routines.

The primary difference between a TCAM applicatidn program and any
other processing program is the regquirement for and the implementation
of inter-partiticr communication.

The various macro instructions that can be used in an aprlication
proaram are handled as follows:

1. TCOPY, ICQOrY, and QCCPY. The corresponding resident routine for
each of these macro instructicns copies the requested information
from the MCF partition, using address pcinters stored in +the AVT
and in the Terminal Table. These tables are located via the
Communicaticns Vector Table (CVT).

2. All other macro instructions. The 7routines invoked by the
remaining macro instructions cause SVC TYPE I interruptions to the
supervisorv routines. A module within a partition can move data

or contrcl information from another wpartition into its own
partition:; however, that module must use an SVC either to move
data from its own partition into another partition or toc move data
within ancther partition.

RELATIONSHYP OF THE OS DISPATCHER TO TCAM

The Operating System (0S) gains ccntrol frem the TCAM task when the
TCAM Dispatcher finds no elements on its ready queue and subsequently
issues an 0S WARIT macro. This indicates that the MCP has no work to
perform. When O0S gains control, it examines all the ready tasks in
the system and passes ccontrecl to the cne with the highest pricrity.

When a TCAM appendage has work for the MCP, it invokes the 0OS Post
routine via a tranch entry point to post the MCP Event Control Block
(ECB)Y. This indicates to the 0S Dispatcher that the MCP now has work
to do and is vyving for control of the system. O0S can pass control to
the TCAM task when it is the highest priority task that is ready to be
activated. TCAM resumes execution at the instruction following the
WAIT that gave control tc OS.

TCAM posts the FECBs for its attached tasks when they are to be

activated. When TCAM subsequently issues a WAIT, the attached tasks
can vie to gain ccntrol frcm 0OS.

Introduction 31

THE TCAM DISPATCHER

The following sections describe the tools and mechanisms by which the
TCAM Dispatcher, or ccntrol -mcdule, allccates and schedules systen
resources, that is, CPU rrocessing time, main storage, I/C paths, and
elements (primarily buffers and lines). The key to the mechanism is
the ready- -gueue, through which a resource is allocated to a subtask.

The mechanisms of allocation are the "twait" and "tpost" functions
performed by +the TCAM subtasks. A twait schedules a subtask to be
activated when a specific resource is available; a tpost passes an
available rescurce to the ready queue. The actual implementation of
twait and tpost are not exclusive functions of the subtasks; rather,
the subtasks return to srecific entry points in the TCAM Dispatcher to
indicate the status of the resource. Dispatching -is the process of
providing a routine with an element and giving the routine control to
handle the elerent.

A detailed discussion of the TCAM Dispatcher is included under
System Control in the Method of Operation section of this publication.

Tlements, Queues, and Suktasks

The physical resources of the system are composed of elements (for
examrle, the ‘tuffer pcol, a resource, 1is broken into individual
buffers, the elements) with each element represented by a resource
control block (RCB)Y. An RCR is an 8-byte prefix to an element. The
first four bytes are a pointer to the queue control blcck (QCB) that
the element is to be associated with: the last four bytes contain a
priority byte and a link field.

RCB Buffer

There is at least one suktask that wcrks with every +type of

element in the systen. These subtasks are represented by subtask
control blocks (STCBs).

The elements, and the subtasks that operate on these elements, are
associated with one another by a third control block, the queue
controcl blcck (QCBY. Thus, a OQCB has a pointer to the chain of
elements under its contrcl and a rcinter tc the chain of STCBs for
subtasks waiting to operate on these elements, The chains are
referred to as gueues. Fiqure 2 illustrates the. linkage of these
gueues to a OCE. ‘

32

Elements
QCB

STCBs

[——

Figure 2. TCAM CCB linkage

When a subtask needs an element, it can regquest one from the QCB
that handles that particular element by trcsting a regquest element to
that OCB or it can insert its STCB into the STCB chain of the QCB to
twait for the element. When the element is available, the suktask is
dispatched.

Yhen a suttask has finished using an element, it gives (tposts)
the element to the appropriate OCB. The TCAM Dispatcher gives this
element to the first (highest priority) subtask in the STCB chain of
the QCB. In this case, Subtask A in Figure 3 1is dispatched. The
subtask associated with STCB B in Figure 3 can be dispatched if
Subtask A indicates to the TCAM Dispatcher that it does not need to
process the element. The STCB chain ends with a permanent STCB. STCB
C in Figure 3 remains the last STCB in the chain. STCB C might point
to a routine that does nothing more than chain elements into +the OQCB
element chain. Subtask C has a lower priority than any other subtask
that might use the element and, therefore, is dispatched only if each
of the higher priority subtasks bypasses processing.

No elements available

Qcs
STCB A
, STCB B
, PRI=3 ‘:1____1
F———— 12 STCB C
| PRI=2 r — PRI=1
| W |

Fiqure 3. Pricrity of Subtasks on a QOCB

Introduction 33

Figqure 4 demonstrates the 1linkage when an element processed by
Subtask ¥ is trosted to the QCB and placed on the element chain by
Subtask C. Suttask C can place the elemert in the QCB element chain
only if Subtask A and Subtask B do not need the element and pass it
down the chain to Subtask C.

! [
1 Element used
Subtask X i by X {
b e e —
Qe k Tpost
- TT A
Element Element used :
Chain ; L X |
e J
{
S
\f NS
STCB A <
PRI=3 STCB B

PRI=2 STCB C
PRI=1

Tigure 4. Passing Flements to a OCB

~ To illustrate the basic sequence of events involved when the TCAM
Dispatcher processes an element, the procedure can be compared to a
postal service system. The people that mail and receive letters are
subtasks. Fach letter is an element, the address on a letter is 1its
OCB, the wpost Yox 1is +the ready queune, and the mail box at the
destination is the appropriate STCB. When a letter 1is mailed
({tposted), it becomes the ©property of +the post office (the TCAM
Dispatcher). The post office examines the. address (the 0CB) and
directs it tc its destination (the S1ICR). When the 1letter is
delivered (disratched), the person represented by the address (the
subtask) can examine it. Figqure 5 illustrates this analogy.

34

TCAM Dispatcher

Bl

C-_l>

Dispatchil
spatching Subtask

FTigure 5. TCAM Tispatcher Analogy

Introduction 35

The Readv Queue

The previous discussion roints out that subtasks Qain control from the
TCAM Dispatcher depending on: : :

1. The availability of elements, and
7. fThe priority of the STCE for the suttask.

The TCAM message control program is responsible for allocating CPU
processing time +to the various tasks wunder its ccntrol. The
mechanism it uses is called the ready gueue (as discussed later, there
are actually twc ready queues).

The ready queue is a chain of elements that represent all the work
to ke done in the TCAM system. The work to be done is represented by
t+he various elements (RCRs) that appear on the ready queue in priority
order. The purpcse of the ready queue is to ensure that all elements
are processed and dispatched with full respect to priority and without
one impacting the resources of another.

To support dispatching while enabled for interruption, TCAM uses
two ready queues. One is designated to be used by disabled appendages
or by the disatled AQCTL SVC 102 routine for tposting elements, while
the other is used by enabled routines. Althcugh the two ready queues
are not managed by the same technique, each is a ready queue because
it contains elements (RCBs) to be processed by the various subtasks.

TCAM manages the disabled ready queue by the first-in-first-out

(FIFO) technique. The gueue itself consists of twc words: a one-word
pointer to the first and a one-word pointer to the last element on the
queue. Disatled appendages place an element (RCB) on the disabled

ready gqueue by linking the new element to the element pointed to by
the second wcrd of the queue and by then updating the second word to
point to the new element.

TCAM manages the enabled ready gueue by the priority-FIFO
technique. The TCAM Disratcher has the resronsibility for merging the
disabled into the enatled ready queue <ust prior to dispatching.
Dispatching is alwavs handled from the enabled ready queue, and unless
specified otherwise, this is the cne referred to as the ready queue.

The TCAM T[ispatcher manages the ready gueue by attempting to
execute the subtask associated with the highest priority element on
its chain. Since the element has an RCB ag its prefix, the Dispatcher
can refer +to the correct OCB in order to pass control to the first
subtask represented in the STCB <chain <¢f the OQCB. The subtask
processes the element and then returns control to the TCAM Dispatcher,
which can +then examine +the next element c¢n the ready queue. A
discussion of the way the TCAM Dispatcher manages the ready dqueue 1is
included under System Ccntrol in the Method of Operation section of
this publication. ‘

36

Principle of Trost and Twait

The technigue fcr passing an element from cne queue to another gqueune
is «called tposting. When the sultask that an STCE points to finishes
processing an element and wishes to allow another routine to process
that same element, the sutrtask trosts +the element to the second
routine. The subtask achieves the tpost by placing in the RCB of the
element a pointer to +the OQCB that ccntrols the STCB for the new
routine, and by then returning +to +the TCAM Dispatcher with an
indication that the element is to be rlaced cn the ready queue.

The second technique for handling resources is called twaiting.
When a subtask needs elements to process, it returns control to the
TCAM Dispatcher indicating that it has finished the processing that it
can do at this time. The twait is imrlemented by the TCAM Dispatcher.
The Disvatcher places the STCR for this suktask in the STCB chain of
the OCB to which the resource that +the subtask needs +tc complete
processing will be +tpcsted. When an STCB is in the STCR chain of a
OCB and the subtask for that STCB does not have control, the subtask
is twaiting.

When an arplication program needs either to place an element on
the disabled ready gueue, to post an Fvent Control Block (ECB)
comnplete, c¢r tc move data from one rartiticn to another, a special
technique is used. This technique is performed by the AQCTL SVC 102
routine, which uses pointers in the AVT to refer to the disabled ready
gueue. Since AQCTL is a resident Type I SVC, the actual processing
occurs in the 0$ Supervisor, out of the control of either the
application ©prcgram or the MCP. A detailed discussion cf the AQCTL
SVC 102 routine is included under System Ccntrol in the Method of
Operation secticn of this publication.

TCAM CONTROL AREAS

AR TCAM control area is a storage area through which a particular type
of informaticn required for control of the TCAM system is communicated
among its parts. There are several principal control areas used by
mTCAM: :

> TCAM Address Vector Table

. Invitation list

o Termname Table

QV Terminal Tatle

. Cption Table

. Option Characteristics Table
. Device Characteristics Table

. Special Characters Table

Introduction 37

. Translation Tables

L Resource Ccntrol Block
. Subtask Ccntrcl Bleck
. Queue Control Block

o Line Contrcl Rlock

) Station Ccntrcl Blcck
. Channel Prcgram Rlcck
. Element Request Bleck
° Process Controcl Rlock

. Operator Control Address Vector Table

TCAM ADDRESS VECTCR TARBLF

The TCAM Address Vector Table (AVT) is a local constant area assembled
in the MCP. When the functions of the INTRO macro expansion are
executed , the AVT is initialized and fcrmatted, At message queues
open time, a rcinter to the word that contains the address of the AVT
is placed in the system Communication Vector Table (CVT). The first
entries in the AVT are initialized from the rarameters of INTRO, and
other entries are made during the assembly of other macros coded by
the user. :

The AVT provides work areas in which TCAM rcutines can store
variables. The AVT also contains constant areas shared by more than
one macro expansicn or TCAM subroutine. The AVT contains five save
areas - one for the MCP, one for each level cf control in the MCP, and
one for disatkled code. (The 1levels c¢f control 4in the MCP are
discussed under System Structure in the Introduction section of this
publication.) For efficient internal ccntrol, the AVT also contains
module addresses, special elements, contrcl bytes/tits, and the two
ready queues.

The format of the AVT is in the Data Area Layouts section of this
publication.

TNVITATTON 1ITIST

The INVLIST=(name of list,...) operand of a DCB macrc specifies the
names of the invitation 1lists for the 1lines of the line group
represented by the DCB. There is one invitation list for each line in
a line group, and the DCR contains a pointer tc the 'ccntrol word of
each of its invitation lists. An INVLIST macro specifies the actual
entries in each invitation 1list.

38

An invitation 1list 1is a 1list of +the invitation (rolling)
characters for terminals that may generate messages tc¢ the CPU on the
same line. The order in which the invitation characters of the
terminals are listed determines the crder in which the terminals on
the line are pclled.

Tnvitation lists may contain both active and inactive entries.
Active entries are those invited +to enter a message on each pass
through the list; an X'FE!' follows the last active entry. An inactive
entry is one that is not currently being invited to enter messages.
Inactive entries in +the list are located after the X'FE' indicator.
The methods of establishing and altering the status of the entries in
the invitation list are discussed in the section on Invitation in the
System/3€0 0SS -TCAM Programmer's Guide, Order No. GC30-2024,

The general fcrmat of an invitation list is eight bytes of control
information, fcllowed by an invitation 1list entry for each active
terminal on the 1line, followed by an end-cf-1list indicator (X'FEY),
followed by an entry for each inactive terminal on the line.

An invitation list with 'n' active entries has the following
format:

-4 -2 0 +4 +8

Control CPU
Word ID

~.
~~
.~
-~

3

Invchars 1 Invchars 2 X 'FE'

Reln see Rel 2 Rel 1

-~
-~
-~

Rell-Reln- are the +two-byte relative rcsiticns in the Termname Table
for the entries represented by the invitation characters. There
is one +two-kyte field for each entry in the invitation list, in
reverse order.

Control Word is a field defining the status of the invitation 1list.
({See format belcw.)

CPU.-ID, for dial terminals, is the address of a field that contains
the ID sequence assigned to the computer. The referenced field
contains a length byte, which specifies the number of bytes in the
ID seguence, followed by the ID sequence itself, TFor buffered
terminals, the CPU ID field in an dinvitation 1list has the

following format:

Offset +4 +5 46 +7

Active UCB R d Terminal
Count Status eserve - Count

Introduction 39

Active- Count is the number of active terminals on the line to
which TCAM is currently sending. This field is initialized to
Zzero at line open time.

UCB. Status is set to X'01' at line oren time if the UCB for the

line indicates Autc Poll. Otherwise, +this field contains
X'00°".

Terminal Ccunt is the total number cf terminals on this line.
This field is initialized at line open time,

Invchars are the invitation or polling characters to be used for the

terminal. The one-byte index following "Invchars" points to the
corresponding relative position field that precedes the control
word,

X!'FE' is the end-of-list indicator, which is used to separate active
and inactive entries. An EOT character precedes the X'FE' as an
end of +transmission character in an invitation list for BSC Auto
Poll terminals.

The contrcl werd of an invitaticn list has the following format:

Offse. 0 +1 +2 +3

Total Active
Entries Enfries

Width Status

Total entries indicates the number of active and inactive entries in
the list (if this byte is equal to =zero, the 1list is for an
output-only line; there is no message traffic from the terminals).

Active entries indicates the number <c¢cf entries currently being
invited. TIf tyte 1 is equal tc zero, all the entries in the 1list
are inactive.

Width indicates the size of each entry in the list (the size includes
the one-byte index that follows the invitation characters).

Status indicates whether the list is active or inactive and whether it
is being autorolled.

40

Status tits Meaning

0 ON - 'EOT=' was specified on the
INVLIST macro.
OFF - 'EOT=' was not specified on the
INVLIST macro

1 ON - Offsets to the Termname Table
entries have been sorted
OFF - Offsets to the Termname Talle
entries have not been sorted

2-4 Reserved
5 Indicates whether the list has been
processed by Checkroint/Restart
6 ON - Active 1list
OFF - Inactive list
7 ON - List is being autopolled

OFF - Programmed rcll is in effect

The invitation list entries have +the same format whether the
terminals are under control of the Auto Poll facility, the programmed
poll facilityv, cr otherwvise (e.g., contenticn). The width of each
entry is indicated in byte 2 of the control word.

The format cf each entrvy in an invitaticn list is:

Invitation K
Characters .

The invitation characters (polling characters) are in the
hexadecimal fcrm ¢f the transmissicn code. K is the one-byte index
field used to indicate the relative position of the entry in the list
and to find the two-byte pointer tc the corresponding entry in the
Termname Table.

TERMNAME TABLE

The Termname Table contains the names cf all the terminals in the
system in collating segquence.

The table is generated at assembly time from +the names of the
Terminal ™able entries in the TFRMINAI macros in the order in which
they are named. The names of gqueues for applicaticn programs, of
queues for 1lcgging mwmedia, and of certain 1lists of terminals are
included, in addition +to the names of terminals and terminal
components, See the publication System/360 OS TCAM Programmer's

Introduction 41

Guide, Order Nc. GC30-2024, for informaticn about specifying the names
of the terminals, terminal components, etc. : :

During the execution of the functions of the INTRC macro expansion
at MCP initialization time, the names in the Termname Table are sorted
into c¢ollating sequence to permit Dbinary searches for 1locating
terminal names and for finding terminal-dependent information.

The beginning of +the Termname Table contains code (the Termname
Table Code - IEDQTINT) that is used to ccnvert the invitation 1list
relative position field to the address of the corresponding entry in
the Terminal Takle. After the code there are two bytes of control
information for +the BRinary Search routine. The next fields in the
Termname Table contain the number of bytes in the name of an entry,
the address of the middle entry in the table, and the total number of
entries in the talkle. Fach entrv consists ¢f the terminal name and
the three-bvte address of the Terminal Talkle entry for that terminal.
The lenath of the field for the terminal name 1is determined by the
longest terminal name; each terminal name field is as long as the
longast name (the names are padded with tlanks on the right, if
needed).

From the address field of a Termname Table entry, TCAM can locate
the ccerresponding Ternminal Table entry, which consists of blocks of
information about each terminal.

Figure ¢ shows the relationship of rointers from an invitation
list to the Termname Table. The format of the Termname Table is shown
in the Data Area lavyouts section of this putlication.

TERMINAL TARBLE

The Terminal Tatle consists of blocks of device~dependent information
about each terminal in the TCAM system; each such tlock is called a
terminal entry. There are six types of terminal entries, each of
which is discuscsed later in this section,

The size, structure, and contents of the Terminal Table are based
on informaticn rrcvided by the user thrcugh the TTABLE, OPTION,
TERMINAL, TLIST, TPROCFSS, and LOGTYPE macro instructions. TTABLE is
specified once and defines the limits of the table, Cne TERMINAL
macro 1is 1issued to create each single cr group entry. OPTICN macros
and data supplied by TERMINAL and TPROCESS operands cause stcrage to
be allocated for any ortion fields to be included in the Ortion Table
for a Terminal Table entry. The option fields can contain information
needed to perfcrm varicus optional functicne provided by TCAM or the
user. The initial contents of each opticn field are specified by the
TERMINAL or TPRCCFSS macro that defines the entry, TLIST defines a
distribution or cascade entry (defined below). TPROCESS creates an
entry for an application progranm. LOGTYPE creates an entry for
logging messaqges.

Each entry in the Terminal Takle begins on a fullword'houndarv.

42

The formats of the various types of terminal entries, with notes
concerning Option Table implicaticns, are included in the Data Area
Layouts section of this publication.

There is one terminal entry for each terminal in the system, and
each Terminal Table entry is referred +tc via 'a pointer from the
Termname Table. Fiqure 7 shows the relaticnship between the Termname
Tatle and the Terminal Table.

Invitation List

N

06 Control 1 CPU
08 0 0z Word 1D

-
-

Invchars 1 Invchars 2 Invchars 3 X 'FE'-

N
-

Termname Table

0
Code and Control
Information
+82 -
BOSTON 1 address
CHIbbbb address
DETbbbb address
NYCbbbb address
RIPbbbb address
WASH bbb address

Tigure 6. Pointers from an Invitation list to the Termname Table.

Single Entry

A single-entry in the Terminal Table dJdefines a single terminal or
component. A single entry must be defined for each terminal or
component that can enter only, accept only, or btoth enter and accept
messages (except for a terminal in a group entry, defined below). 1If
a terminal comrpcnent is to be selected individually, the component
must have a separate single entry.

The format of a single entry is the same as the general Terminal
Table format defined in the Data Area layouts section of this
publication. Bits O +through 2 of byte 0 of the control information
field are set to tinary 000 to indicate a single (or grour) entry. If

Introduction 43

there is no option area for an entry, the offset and count fields are
omitted. The reguired selection sequence field contains the selection
characters for the terminal and, if it is a switched terminal, its
telephone number and the number of dial digits.

A single entry in the Terminal Table 1is defined by a TERMINAL
macro. :

Termname Table

Code and Control

Information Terminal Table

Entry for CHI

BOSTON 1 address ' Entry for RTP

CHIbbbb address

DETbbbb address Entry for DET

NYCbbbb | address

RTPbbbb address

>
WASH bbb | address \ |
Entry for WASH

Piqure 7. Pointers from the Termname Table to the Terminal Table

Group Entry

A group entry represents a prespecified groupr of terminals on a line
that has special egquiprent tc permit simultaneous transmission of a
message to the group. A single set of unique addressing characters is
used to <contact the group. Several ccmbinations of prespecified
terminals can te qgrouped for this purvose. EFach group has a group
terminal name and a corresponding group entry in the Terminal Table.
A group entry in the Terminal Tabhle has the same format as a single
entry, except that, since the entry is for output transmissions only,
the input sequence counter field is not used.

A group entry is defined by a TERMINAI macro,

NDistribution Entry

A distribution entry-contains a list of rcinters to single, process,
or group entries. The rprointers are grcuped under the entry name.
"hen a message contains a distribution entry name as its destination
code, TCAM sends +the message via separate transmissions to all
Aestinations indicated by the list. ©Each terminal on the 1list must

4y

have a corresponding single or group entry in the Terminal Table. The
TCAM MCP can only send messages through the distribution list method.

The format of a distribution entry in the Terminal Table is the
same as that for a single entry, except that the setting of the status
bits 1is Dbinary 010, and the input sequence number field (bytes 4 and
5) contains a ccunt of the entries in the list. Two-byte pointers to
the sinale or group entries that make ur the list follow this count
field.

For distribution and cascade entries, bytes 1 to 3 contain the
address of a distributicn cr cascade Destinaticn (QCB.

A distrituticn entry in the Terminal Table is defined by a TLIST
macro.

Cascade Entry

A cascade-entry is identical in arrearance to a distribution entry,
except for the status byte, but is handled differently. The message
is gueued for the availatle terminal that has the fewest messages
gueued for it in the 1list. An availalle terminal is one that is
currently capatle of accepting a messaqe. The terminal must not be
held. To be available, a dial terminal must not be involved in a time
delavy. If more +than one of the availatle terminals have the same
number of messaqges gueued and that number is +the fewest number of
messages queued, the messaqge is sent to the first of these terminals.
If the message cannot be sent to any terminal at this time, it is
gqueued for the first terminal in the list. The TCAM MCP can only send
messadges through a cascade 1list.

The format of a cascade entry is the same as that for a single
entry, except that the setting of the status bits is binary 010 and
the input seguence number field ccntains a count of the entries in the
list. Two-byte pointers to the single or group entries that make up
the list follcw this count field.

A cascade entry in the Terminal Table is defined by a TLIST macro.

Process Fntry

A process entry in the Terminal Tatle represents a queue of messages
for an applicaticn prcgram. There must te a process entry for each
gueue to which an application progqram can issue a GFT or READ macro
and at 1least one for all +the PUT or WRITE macrcs from the same
application vrogram. The format for a process entry in the Terminal
Table is the same as that for a single entry, excert that the setting
of the status bits is binarv 001. Also, fecr a GFT/READ operation,
bytes 1 to 3 contain the address of the Destination QCB,

A process entry is defined by a TPROCFSS macro.

Introduction 45

Logtype Entry

A logtype entry in the Terminal Table represents a queue of messages
for a loaging medium. The setting of the status bits for a log entry
is binary 011.

A logtype entry is defined by a LOGTYPE macro,
Line Entry

A line entry in the Terminal Table defines a switched line that is
used for inrut orerations. A line entry contains the device
characteristics for staticns that call in on a switched line before
supplyinag identification and for staticns that <call in and never
supply identification data.

The format of a line entry is the same as for a single cr group
entry except that the setting of the status bits is binary 100.

A line entry is defined by the UTERM operand on a TERMINAL macro.

OPTION TAELF

The user may specify an area to correspond to any entry in the
Terminal Tatle for use by the COUNTFR, FRRCRMSG, FORWARD, MSGLIMIT,
INSERT, PATH, TREDIRECT, STARTMH, and cther MH delimiter macro
instructions issued in a message handler. The fields are generated by
OPTION macros, which must be issued before the TERMINAL and TPROCESS
macros that define the Terminal Tatle. One-byte offsets to these
fields are rlaced in the terminal entry beginning at the TRMOPT label.
The routine for the LOCOPT macro uses these offsets +to 1locate the
option field.

An OPTION macro defines each field in the Option Table. The macro
names +the option field and defines the type and length of the field.
The OPTION macro generates a CSECT to contain the actual option data
and another CSECT to contain the field name and characteristics.

Initial values for the ortion fields are specified via parameters
of the TFRMINAL or TPROCESS macros.

Tach option field requires one OPTION macro. The order of the
fields within the Option Table is determined by the order in which the
OPTION macro instructions are specified. The first opticn field is
generated on a doubleword boundary. The maximum size of the option
fields for a given terminal is 254 bytes, including required boundary
alignment. :

For each CPTICN specified, space for a cne-byte offset is reserved
in the offsets field of the Terminal Table entry. When +the TERMINAL.
or TPROCESS macro that initializes the fields of the Opticn Table is
issued, a two-byte offset is generated tc the cption table for this.
entry. TIf initial data is supplied, the opticn field is generated for

46

the terminal «c¢r process entry; if a comma is coded, the option field
is not generated. If the field is generated, its offset is placed in
the offset field cf the terminal entry; if the field is not generategd,
the offset field contains X'F¥!' to indicate that there is no field.

®wach single, d4group, or process entry in the Terminal Table
contains a one-tvyte offset in the offset field for each OFTION macro
issued. The space needed for the Option Table depends on the number
of fields initialized by the TERMINAL or TPROCESS macros, and on the
size of the fields as specified by the OPTICN macros.

All OPTION names are kept in a table with their numeric values.
This table enables an crtion field named in an Operator Control
messadge to be lccated.

OPTION CHARACTERISTICS TABLE

The Opticn Characteristics Table is a variable length table that
contains one entry for each OPTYON macro issued by the MCP. The table
allows TCAM routines to use the assembled name for an OPTION macro to
locate the data for a specific terminal in the Option Table. Each
entry in the Option Characteristics Table contains the length of the
corresponding Cption Tatle entry, the tyre of opticn field specified,
and the user-specified name of the OPTION macro.

3 field in the AVT contains the address of the Option Table, and
the second word of the Opticn Table contains the address of the Option
Characteristics Table. Storage 1is allocated for and the table is
initialized at assembly time.

DEVICE CHARACTERISTICS TABLE

The Device Characteristics Table (DCT) consists of entries that
describe the characteristics of +the terminals in the system. A
pointer in the AVT and a one-byte index in the Terminal Table entry
are used to gain access to the entries in the DCT. A single four-byte
entry is generated for all terminals that have identical
characteristics.

The DCT is generated by the specificaticns of the TERMINAL macros.
Figure 8 shows the relationships amcng the AVT, the Termname Table,
the Terminal Table, and the DCT. ’

SPECIAL CHAPACTERS TABLFE

A svecial characters table (SCT) consists of entries that contain the
special characters required for device I/0 for a specific line group.
The SCT for a line aroup is located via a three-byte address 1in the
DCB for that 1line group. The DCB for the line group is located
through a rointer in the LCB.

Introduction 47

Termname Table

Code and Control
Information
BOSTON'1 address
CHibbbb address
DETbbbb address
NYC bbbb address
RTPbbbb address
AVT WASHbb b address
Termname Table Terminal Table Entry
. Device Lo
BT Characteristics Index

Device Characteristics Table

Characteristics List

Characteristics List

Characteristics List

Characteristics List

Characteristics List

Figure 8. RPelationships among +the AVT, the Termname Table, the
Terminal Tabkle, and the TLCT) ’

'An SCT is variable in length since the special characters needed
by each terminal type vary.

The beginnina of an SCT consists of 28 one-byte offsets, each of
which when added to the SCT rcinter in the ICRB, points to a one-byte
length field followed by a special characters entry. There are as
many entries in an SCT as there are different sets of special
characters needed. If a function is not defined for the associated
line group, the one-byte offset field ccntains X'00°.

Pigure 9 provides an example of a special characters table entry.

Figqure 10 describes +the relationship among an LCB, a DCB, the
Translation Takles, and an SCT.

48

Offset 0 +28

/ A J A

1C 20 22 00 32 34 36 00\\00 03 I IWF 1F Ol 16 OF DF DF 01 76 01 76 01 40

R L I S S B |

Offset to EOT Sequence

Offset to EOA Sequence

Offset to Pad Characters

Offset to Idle Characters

Offset to Even ACK

Offset to Odd ACK

Offset to NAK

Functions not defined for this table

Count and EOT Sequence

Count and EOQA Sequence

Count and 15 Pad Characters

Count and Even ACK Sequence

Count and Odd ACK Sequence

Count and NAK Sequence

Figqure 9. Fxample of a Special Characters Taltle Fntry

TRANSIATION TAELES

The Translaticn Tables ccnsist of entries that give +the transmission
codes for incoming and cutgoing messages. The Translation Tables are
found through a three-byte address in the TCR for the line group.

LCB
Dcs Special
Characters
Table

§ scr
- Translation Tables

/ - I
* Translation Tables < ‘Incoming

Outgoing

FPigure 10. Relationshir amcng the LCB, SCT, DCB, and fTranslation
Tables ’

" Introduction 49

PESOURCE CONTRCL ELOCK

Fach element in the TCAM system is represented by a resource control
block (RCB). An RCB is actually a two-word prefix to an element. The
first word is a rcinter to +the O(QCB +that the element is +to be
associated with; the second word is a 1link field that, when the
element is on a chain, points to the next item on the <chain. Figure
11 shows the general format of an RCB.

Offset +
0 Reserved QCB Address
+4 Priority Link Address

OCB address is a pointer to the QOCR to which the element has been
tposted.

Priority is of the element represented.

Link -address is a pointer to the next element in the chain.

Tigure 11. Rescurce Control Block

There are two types of permanent RCRs:
1. Puffer RCBs
2. Communicaticn line RCBs

Buffers are areas of main storage used to contain message data
and/or control information. The first 8 bytes of each buffer comprise
an RCB. As with all TCAM elements, the identity of a buffer depends
solely upon the queue that its representative RCB is chained to at a
particular +time. The buffer itself is always physically identifiable
as a fixed numkter of bytes of main storagqe. TIf the RCE representing
the buffer is chained into a Destination QCR, the tuffer is full; that
is, it contains a message segment to be transmitted to a destination.
When the same RCB is subsequently chained into the element chain of
the Buffer Pequest OCPR, the element involved is an availatle buffer,
even though there has been no change in the rhysical storage location
of the buffer.

A line ccntrol block (LCB) represents communication lines to the
TCAM MCP. There is an LCB for each 1line in the systen. When a
subtask has ccntrol of an LCB, it has control of the line; therefore,
the LCB itself is treated as the rescurce element. The RCB is
contained within the first two words of the I1CB.

50

There are tvwo special types of RCBs:

1. Oueue contrcl block RCEs
2. Tlement request block RCBs

When a queue control block (QCR) appears on the ready dqueue, it
may Trepresent a special case in which the QCB is trosted to itself.
The QCB is acting as a special element rather than as a systenm
resource, in that the first subtask on the STCB chain of the QCB gains
control withocut an element to rprocess. The subtask must be self-
contained and atle to locate any data it needs for execution. If
there are no elements to ©process, the OCPB has gained the systen
resource, time.

An element request block (ERB) on the ready queue can act as a
request for a rescurce or as an actual element itself.

SUBTASK CCNTRCI PFIOCK

sSubtask control klocks (STCBs) represent the modules that perform the
work of the TCAM system. The purrcse of an STCB is to cause a module
to be executed. The format cf a full STCR is shown in Figure 12.

Offset +1
Activation
0 Key
+4 Priority Link Address

Figure 12. Format of a Full STC®B

When +the TCAM Dispatcher examines the QCB associated with the
element on the tor of the readvy queue, the +third word of the OQCB
points to the highest-priority STCB on the STCB chain of the QCB. The
TCAM Dispatcher uses the activation key of the STCB to determine the
type of STCR present. The way of determining the actual address of
the subtask varies according to the type of STCB., When the address is
available, +the 1TCAM Disrvratcher exits tc the routine itself. More
details concerning the actual dispatching of a routine are presented
under System Ccntrol in the Methed <c¢f Operation section of this
publication.

The four types of STCBs are discussed under Functions of the TCAM
Dispatcher in the Method of Operation secticn of this publication.

Introduction 51

QUEUE CONTROL BIOCK

A ~queue contrecl klock (QCB) is used to regqulate the sequential use of
elements among requesting tasks. =~ Every gueue, or item, that is
waiting for service in the system is associated with a QCE. Figure 13
gives the general format of a QCB.

Offset +1
0 Key E|emenf Chain Pointer
+4 Priority | - Link Address
+8 STCB Chain Pointer

Fiqure 13. General Format of a 0CB

A OCB has three primary fields: a rointer to the element chain,
a link address, and a rointer to the STCB chain. The element chain
consists of any elements, other than the reguesting resource on the
readv gqueue, that the sulttask represented by the STCB chain might need
to process. If this is the Buffer Request OCB, the element chain
consists of buffers (actually the buffer unit rool), The link field
is used to point to another item when a QCB is on a higher queue. For
example, if a QCR is on the ready gueue, the link field pcints to the
next item on the ready queue. The STCB chain consists of pointers to
the routines that are associated with the CCB.

For each attached task {Orerator Control, On-Line Test,
Checkroint, and TFE Commcn Write) there is a special QCR that has an
ECB in the second word. The TCAM Dispatcher posts the ECB when the
attached task is to vie for ccntrol of the system. An element that is
tg .be passed to the attached task is chained into the QCR element
chain.

There is a detailed list of +the OQCBs in the TCAM system in
Appendix B.

LINE CONTROL RICCK

There 1is one 1line ccntrol block (LCB) fcr each line in the TCAM
system. An LCB ccntains all the informaticn pertaining to the status
of the communications line that it represents. The format of an LCB
is given in the Data Area Layouts section cf this publication.

STATION CCNTRCI BIOCK

Ther? is at least one station control block (SCB) associated with each
LCB in the TCAM system. With buffered terminals there is one SCB per

52

terminal on a line. A buffered terminal =ends a blcck or a part of an
entire transmission at a time. While that terminal is preparing to
send a subseguent block, TCAM examines the SCBs and sends to and
receives from cther terminals on the same line. TCAM uses the SCB for
a terminal +tc¢ keep track of one +transmission from that buffered
terminal on the line.

Tf the terminals on a line are not tuffered, one terminal at a
time completes 1its +trancsmission. There is no need to keep track of
many transmiscsions in parallel, thus one SCR is sufficient for the
entire line.

CHANNEL PRCGRABM ELOCK

A channel program block (CPB) contains a disk I/0 channel program that
contains a rfcinter to the buffer to be rrocessed. 1In disk queuing,
CPBs are used to read to or write from the destination gueues. If
disk queuing is utilized, the pool of CPBs is created by a nonresident
routine called ty the INTRO macroc expansicn. The user specifies the
number of CPBs to be built to handle the message queues buffers in the
CrB=integer orerand of the INTRO macrc. Fach CPB is "'built - in main
storage and is allocated a work area equal in size to one buffer unit
(including the 12-byte unit ccntrocl area).

ELEMENT REOUEST BLOCK

TCAM uses an element request block (¥RB) +tc¢ request buffers for a
line. There 1is one FRB in each ILICB. An ERPR is trosted to the
appropriate OCB to obtain filled tuffers fcr a send operaticn or empty
buffers for a receive operation. The format of an ERBR is shown in
Figure 14, :

Offset , +

0 Key QCB Pointer
+4 Priority Link Address
+8 Status) Chain Pointer
+12 Count 1 Count 2

Fiqure 14, Format of an ERB

Introduction 53

The OCR pcinter refers to the queue ccntrcl blcck to which the ERB
is tposted. The link address points to the next element on the gqueue
that contains the ERBR. The status field indicates the status of the
RRBR (for examrle, tposted for a buffer, available, etc.). The chain
field contains a rointer to the first buffer in a chain of buffers to
be used in the operation. Tf the buffer unit poocl is empty (all
buffer units are in use), the ERB is placed in a chain of ERBs waiting
for buffers and remains there until a buffer is returned and assigned
. to it. The two count fields indicate the number of buffers requested
for an operation. 1Two fields are needed because a disabled routine
may need to increment the count and an enatled routine tc decrement
the ccunt. '

DPROCESS CONTRCI EIOCK

A process control block (PCBY 1is a control area in an MCP that
provides an interface hetween the MCP and an application rrogram. The
PCB contains information needed for communication between the two
programs.

A PCB macro instruction in the MCP defines a PCB., There must be
one PCB, hence one PCB macro, for each active application program to
be used with the MCP.

OPERATOR CCNTEKOL ADDRESS VECTIOR TAELE

The Operator Ccntrol Address Vector Table is a constant area assembled
at the beginning cf the Resident Orerator Ccntrol module, This table
is used by the Resident Operator Contrcl module, by the operator
control processing modules, and by the checkroint/restart mecdules.

SELFCTED OPTIONS

TCAM has certain optional features availatle. These features are
optional in cne of three possible ways:

1. Some of the functicns of the feature are ortional.
2. The presence or absence of the feature itself is optional.
3. The feature may be either resident or transient.

The following sections discuss each of the optional featues of
TCAM.

54

OPERATOR CCNTRCI

The TCAM Operatcr Control facility ©provides a way for the user to
dvnamically examine or alter the status of his telecommunications
network. A detailed description cf the functions of this facility is
included in the Orerator Ccntrol Facility section of the System/360 0OS
TCAM Programmer's Guide, Order No. GC30-202u.

The TCAM user specifies at SYSGEN time whether he wants the
Operator Control facility in his system to te supported by resident or
transient routines. The ccntrcl module of +the Operator Control
facility is always resident. TIf the user indicates that he wants the
operator contrcl suppcrt routines to be transient, these routines are
called in whenever they are needed. If the routines are specified to
be resident, they are all present in the system at all times.

APPLICATICN PRCGEAM PROCESSING

The application program services of TCAM enable a rrogrammer to
process messages from a telecommunications network with the same macro
instructions that he uses for local input/output devices. Because the
TCAM MCP performs the I/0 operations, a completely device-independent
application ©program can be written. The programmer need not be
concerned with +the time and device-dependent asrtects of the
telecommunicaticns envircnment.

A TCAM MWCF can operate in the System/360 without an application
program or programs. However, if the wuser wishes to examine and
process the data coming in frcm his terminals to a greater extent than
is allowed by the macro instructions of the MCP, he must use one or
more avplicaticn programs. The macrcs scspecific to application
programs are discussed in detail in +the System/360 0SS TCAM
Programmer's Guide, Order No. GC30-2024.

LINE QUEUING CPTIONS

The TCAM user has the option of gueuing either by line or by terminal,
as specified in the TERMINAL macro for each terminal or group of
terminals. The only exceptions are in the cases of buffered terminals
and of dial 1lines, where aqueuing by terminal is required. Since
gueuing by terminal requires one Destinaticn QCB per terminal rather
than one per line group, this method requires more main storage space.

Introduction 55

MESSAGE OUEUING OPTIQNS

There are three types of queuing fcr messages:
. ﬁain storaqge queuihq

. Reuéable disk queuing

. Nonreusable disk aueuing

The messade gueues may be maintained by any c¢ne of +the three
methods or by a conmbtination of main storage queu1nq with backup on
either reusable cr nonreusable disk.

Tn an MCP there are at most +twc message dqueues data sets:
reusable disk with or without main storage gueues, and nonreusable
disk with or withcut main storage queues. The user specifies the type
of queuing for a given data set by coding srecified keyword operands
of the macros that Ytuild the Terminal Table. The way in which the
tvpes of aqueuing are specified 1is discussed in detail in the
System/360 0S TCAM Programmer's Guide, Crder No. GC30-2024. The wvay
that the varicus gueuina types functicn is discussed wunder Queue
Management in the Method of Operation secticn of this publication.

LOGGING

The logging option allows the user to maintain a record of incoming or
outagcing message traffic cn a sequential medium. Message seqments or
full messages, as determined by the placement of LOG macros in an MH,
are placed on an output device. The various types of logs, and the
corresponding MH subaroups in which a LOG macro appears, are:

1. Incoming header segments cnly (Inheader)
2. All incoming segments (Intuffer)

3. Ccmplete incoming messages (Inmessage)

4. Outgoing header segments only (Outheader)
5. A1l outgoing seqgments (Outbuffer)

€. Complete outgoing messages (Outmessage)

When segments of messages are logged serarately, they are logged
in the sequence in which they are handled by the message handlers.
Segments of Aifferent multi-segment messages handled about the same
time are 1likely to bte intermixed on the logging medium. When the
first seaqment cf a message is logged, the TCAM header ©prefix (except
the first twelve bytes) and the segment itself are recorded in that
order on the logging device. %ach sulsequent message sedgment logged

is vpreceded by all except the Ffirst twelve bytes of the TCAM
subsequent~-huffer rrefix for that segment.

56

CHECKPOINT/FESTART

Checkpoint/Restart is provided as an opticnal facility for the TCAM
MCP at user-specified intervals (every 30 seconds to €5,53% seconds).
By using the TCAM Checkrcint/Restart facility fcr the MCP and other
TCAM facilities, such as sedguence numbers, an effective restart can be
accomplished in an application progran.

The checkpoint routines store tables and other control information
necessary for a restart subsequent to a system failure or normal
closedown. Restart of +the TCAM -+Hob after a system failure 1is
accomplished bty initial program loading (IPL) the system again, and
loading the TCAM MCP. TCAM reinitializes the tables and pcinters fromn
the latest checkpoint record on the disk, unless "CY" is specified on
the STARTUP rarameter of the TINTRO macrc to suppress continuation
start-up. After a svstem failure, the STARTUP=C or STARTUP=W operand
on the TNTRO macro causes TCAM tc vrerform a continuaticn restart with
a scan of the message queues. If STARTUP=WY is specified, a
continuation restart with nc message gqueues scan is performed.

After a normal closedown, TCAM can either reccnstruct the
environment that existed before closedown (a warm restart) or it «can
reinitialize the system (a cold restart). A warm restart is specified
by STARTUP=W on INTRO; a cold restart is specified ty STARTUP=C.

To include the Checkpoint/Restart facility in an MCP, the user has
only to specify an OPFN for the checkrcint data set. As a result of
this, the Checkproint Executor is attached in the same region as the
MCP. The other checkpoint modules. can be either resident or
transient, dependent on what the user specifies at SYSGEN time.

TCAM AS A STARTARIF PROCEDURE

The user has the option of starting a TCA¥ ¥CE or arplication progran
either wvia JCL in the system input device or via the START operator
command at the system conscle. Tf the START command is to be used,
the JCL for the MCP and the different TCAM problem programs must be
cataloged on SYST1.PROCLTIE under individual rrocedure names. The user
may then tvre START and the "procname" for the procgram he wants, and
job management immediately fetches the JCL at "rrocname" and
subsequently starts the rrogranm. ' ~

ERROR RECOVFRY ERCCEDURFS

The Frror Recovery Procedure (®RF) routines are designed to diagnose
and recover, 1if —vpossible, €from 1line errors occurring during a
telecommunications operation. The error routines provide the
following basic functions: ‘ : ‘

. Automatic retry of all errors not involving data transfer. Data
transfer is handled by the FOR/ETR Handling suttask.

Introduction 57

) Automatic retry of text errors during a receive operation when the
data is still available; that 1is, the ©PCI Appendage has not
tposted the buffers containing the data following the last good

FOB/ETR.
) Statistical recording of all terminal errors.
. Bwrror messages to the primary TCAM c¢perator console for all

permanent errcrs.

mhe FRP routines are optional in that they may be either resident
or transient. The user specifies this option at SYSGEN time.

SUBTASK TRACE

The Subtask Trace facility maintains a time-sequential table of the
dispatching activity of the TCAM Tlispatcher. EFEach time the Dispatcher
activates a subtask, it completes an entry in the Subtask Trace Table.

The presence of the Subtask Trace facility in the TCAM systen is
determined by the DTRACF operand of the INTFO macro in the MCP. If
the operand is coded DTRACE=0, the facility is not included. If the
operand is coded with a numerical value, that value determines the
number of four-word entries reserved for the Subtask Trace Table.

CROSS REFFRFNCE TABLIF

The TCAM Cross Reference Table is formatted if the CROSSRF=integer

operand of the INTRO macro is assembled with a nonzero value. The
numerical value of integer determines the numter of four-word entries
reserved for this table. Fach time that a 1line is successfully

opened, the 1Iine Group Open routine (IGGC1940) completes an entry in
the table.

TCAM IN A MULTIFRCCESSING ENVIRONMENT

TCAM operating in a multiprocessing envircnment increases throughput,
availability, and flexitility. All TCAM arpendages and SVC 102 cause
the TCAM task tc become not eligitle to be dispatched in order to
prevent TCAM disabled code from modifying TCAM control blocks while
enabled TCAM ccde is executing. . These modules set a flag in the TCAM
TCB to 1indicate that the task is not eligilkle to be dispatched and
then call the CS Task Removal routine. - When the Task Removal routine
issues an external interrupt to the other CPU, the other CPU loops on
t+he supervisor lock. When the TCAM module ccmpletes its functions, it
resets the TCR flag and zeros the superviscr lock before exiting. The
other CPU then ottains the lock and dispatches the task of the highest
priority on its ready queue.

58

To prevent two enabled tasks from attemrting to engueues/dequeue on
+the same resource at the same time, each task issues a test-and-set
instruction on a specific byte in the QCP before referring to the
gueue. The byte must be equal to zero befcre the task can update the
agueue, and the task must reset the byte tc zero after completing the

update.

TIME SHARING CPTICN

TCAM provides terminal support for the Time Sharing Option (TSO) under
MYT when this crticn is requested on +the TINTRO macrc. There are
special macros to dgenerate an MCP with MH routines to handle TSO
messages. TCAM also supports applicaticn programs that are run under
TSO in the fcereground region. TIf the TS0 crtion is specified, TCAM
provides a conversational approach to terminal support - this includes
support of the transmit and receive interrurt features, modifications
to the scheduling of I/0 orerations, and editing of the data in TSO
messages to make the data compatitkle with disk or tavpe,

TCAM and the TSO control ©program run 1in different partitions.
Smaller buffer prefixes and a modified message flow allow TCAM to
route the messages to the TSO regiocn.

TCAM support for TSO also includes the ability to use 1050s and
2741s on the same dial 1line, the atility +to simulate receive
interrupts when they are not a feature of +the hardware, and the
ability to have the transmission code dynamically determined.

MODULY ATTRIBUTES

TCAM modules are designed to possess certain defined attributes
concerning structure, content, and logical format, These attributes
determine how a module is to te loaded, what it contains, if it is
executable, whether it is executable more than once without reloading,
and if it can be executed by concurrent tasks.

The attritutes are included in the descrirtion of each module in
the Proaram Crganization section of this rublication. The attributes
applicable to TCAM modules are:

® Reentrant. A reentrant module can be executed ty more than one
task concurrently and cannot be modified by itself or by any other
module Aduring execution:; that 1is, a task may begin executing a
reentrant mcdule before the previous task has finished executing
it.

) Refreshable. 1A refreshable module cannot be modified by itself or
by any other module during execution; that 1is, a refreshable
module can be replaced by a new copy during execution by a
recovery management routine without chancing either +the sequence

Introduction 59

60

or the results of processing. (See IBM System/360 0S Concepts and
Facilities, Order VNo. GC28-6536, for an explanation cf recovery
manacement routines.) : ‘

Serially Reusable. A serially reusable module can be executed by
only one task at a time. The mcdule either initializes itself
and/or it restcres any instructions or any data in the module that
was altered during its execution.

Enabled. An enabled module can be interrupted at any time by an
appendage c¢r external event. When the interruption occurs, the
enabled module waits for the arpendage to complete its processing
and then continues as though the interruption had never occurred.
The interrurticn has no effect on the execution of the enabled
module.

Qiggblgg. A disabled module cannot Lte interrupted during its

execution. Tt must execute from beginning to end cnce it has
dained ccntrol.

Resident. A resident module resides in main storage of the TCAM

" system at all times. . '

Transient. A transient module is a nonresident module that
resides in a system library c¢n some tyre of storage device until
it is called into the TCAM system for a 1limited 1length of time

during the execution of a problem progranm.

Problem Prcgram Mode. A module that operates in rroblem program
mode is orerating under contrcl of the message control or appli-
cation wvrcgram, rather +than under the contrcl of the 0s

supervisor.

Supervisor Mode. A module that is operating in surervisor mode is
operating under the control of the system supervisor.

SECTION 2: METHOL OF OPERATION

This section contains an introduction to the logic of TCAM. The flow
0f messadges and ccntrol informaticn through the buffers and tables and
the detailed functional descripticns of the modules are enphasized.

LOGTIC OF TCAM

TCAM can be functionally divided into four major phases:
) Disk messaqe queue initialization
e TInitialization of an MCP
. Message handling in an MCP
. Closedown of an MCP

Tn additicn tc the fcur phases 1listed above, there are other
phases that are functionally inderendent, vet necessary to complete a
discussion of the logic of TCAM:
. System control
) Applicaticn proqram rrocessing
) Operator ccntrol processing
. Checkpoint prccessing
. Error recovery procedures
. Time Sharing Cption interface

This section of the TCAM PLM presents the above phases of the
program in -the order as thev would logically occur in a TCAM systenm.
Since the apvlication prcgram, Operator Ccntrol, Checkpoint, error
recovery, and Time Sharing phases have no clear rlace in this time-
frame organization, they are presented as separate discussions at the
end of the section.

The foldcut operation diagrams asscciated with this section
illustrate the functional oreraticn of TCAM. The foldout diaqrams are

located after Appendix D and are accompanied by a description in the
text of this section.

Method of Operation 61

THE DISK MESSAGE QUEUE INITIALIZER

The Disk Messaqge OQueue Initializer is a utility routine that is used
to pre-format the data sets for the disk message queues for a TCAM
MCP. This routine is run before executing the TCAM MCP Sob.

A TCAM MCEF can uce either reusable cr nonreusable disk message
qgueues data sets, or both. If both are used, each one must reside on
a separate data set. The Disk Message Queue Initializer must be
executed for each data set.

The variakles used tc define the disk data set are. entered as Job
Control Lanaguage (JCL) parameters. In the JCL the user defines the
size of each extent, the number of extents, the volumes to contain the
dAata set, the tvype of disk used, and the =<size of each fixed-length
record. In this data set there is one extent per volume, and all the
records on a vclume must be contiqucus. There is nc difference in the
creation of a reusable or nonreusalkle data set.

The data set fcrmatted by the TCisk Messagqe Queue TInitializer is
fixed 1length and vhysically sequential. Fach record has a key and
data field initialized to zero. The size of the data field is fixed
at six bytes; the size cf the key field is specified by the user in
the "KEYLEN=mm" parameter of the IEDQODATA -jcb contrcl statement. The
key field must te less than or equal to 255 bvtes, but greater than or
aqual to 33 bytes (three plus the size of the prefix of the first
buffer). At the end of writing each extent c¢f records, the Disk
Message Oueue Tnitializer liste on the system conscle typewriter a
.statement that contains the total record count from the beginning of
the data set through the volume just completed. If an ‘error condition
is encountered in writing the records, the initializer sends an error
messagde *o the system console and then terminates.

INITIALIZATION CF A MESSAGE CONTROI PROGRAM

Upon receiving control from System/3€0 0S Jcb Management, the TCAM MCP
performs certain initialization functicrs in preparation for
subsequent processing. The initial processing operations include:

. Allowing the user to alter the contents of certain AVT Jdata fields
that were initialized and formatted at assembly tinme.

° Initializing and allocating stcrage fcr truffers, tables, control
blocks, and werk areas.

° Sorting the Termname Talkle.

° Opening data sets, initializing LCBs, and modifying DCBs.
. Preparing the communications lines fcr transmission.
. Attaching any required tasks in the TCAFM partition.

62

The TINTRO, OPEN, and RFADY macro expansion instructions in the MCP
initiate the initialization <functions <cf TCAM. Foldout Charts 1
through 5 show +the flow of control during the initialization of an

FUNCTIONS OF INTRC

The INTRO macrc is the first instruction ccded by the user in 'a TCAM
MCP. When O0S Job Management is alerted to the presence of a TCAM MCP
in the svstem, the INTRO macrc expansicn, as a subroutine of Sob
management, is called to execute its specific initialization
functions.. Foldout Chart 1 presents a sumrmary of these functions.

FUNCTIONS OF THE OPEN RCUTINES

After the initialization functions of the INTRO macro expansion have
heen completed, +the functions of any O0S or TCAM macros can be
executed. However, in an MCP, the user must open various data sets
before he can begin processing any data. He must open these data sets
in a <certain crder: first, the message gueues data sets (optional),
then the checkgrcint data set (optional), and then the data sets for
the line grours.

Foldout Charts 2 through 5 illustrate the flow cf ccntrol during
the openinq of each of these data sets, respectively.

The following qenerallpoints arprly to each of the figures:

1. When an OFEN macro is issued in an MCP, the 0S Cpen routine gains
control. Tt, in turn, issues an XCTL command to bring in the
first load of the arrrorriate open module. The first routine,
upon comrletion of its functicns, issues an XCTL to the
appropriate subsequent routine.

2. When anvy agiven routine is to load a module, it activates 0S, which
checks the CS Contents Tirectory to determine whether that module
has already been loaded. If there is an entry for the module in
the directcry, 0S adds one to the directory usage count. If there
is no entry in the directory, 0S makes a two-byte entry in the
directory, adds one to the usage count, and loads the module.

3. Tf the user issues an OPEN macro for multirle message gueues or
line grour data sets, each individual routine performs 1its
functions fcr each data set before issuing an XCTL +to the next
routine. However, if there is a separate OPEN for each data set,
each routine is loaded individually fcr each data set.

Method of Operation 63

PRPEPARATION OF COMMUNICATIONS LINFS FCR TRANSMISSION

The initial channel programs to enatle the lines in the TCAM network
are built by the Line Grcup Open rcutines. The content of each
channel program depends on the type of ccntrol wunit used with the
devices on the line.

Control Unit- Line Channel Progranm

2702 Leased DISABLE, SAD, ENABLE
2702 bial DISABLE, SAD

2701 or 2703 Leased BSC DISABLE, SETMOLE, ENABLE
2701 or 2703 Dial BSC DISABLY, SETMODE

2701 or 2703 Dial DISABLE

2701 with TIRM Type ITI Adapter DISABLE

2701 or 2703 Teased DISABLE, ENABLE

7770 Dial NOP

28u8 leased NOP

FUNCTIONS OF RFADY

The READY macro instruction must £ be +the 1last instruction in the
initialization section of an MCP. After the functions of FEBRDY have
been executed, the system is ready to handle message traffic. The
expansion of this macro ends with an instruction +to branch to the
routine (the TCAM Disratcher) in the MCP where arrival cf the first
element on the ready gueue is awaited. When the first message enters
the system, ccntrcl is transferred to the MH section of the MCP.

When the user codes a RFADY macro in his MCF, he has the cption of
svecifying the addresses of routines +tc handle "Good Morning" and
"Restart in Prcgress" messages. The assembly of +the READY macro
places these addresses in the AVT.

voldout Cchart 5 ©presents a functicnal flow for the READY macro
expansion and routine. '

SYSTEM CONTROL

Two primary routines maintain contrcl amcng the parts of TCAM:
. The TCAM Dispatcher

) The AQCTI SVC 102 routine

FUNCTIONS OF THE TCAM DISPATCHEP

The TCAM Dispatcher is the ccntrol module of the TCAM systen. The
primary - purpose of this module 1is to allccate and schedule systen
resources. The section on the TCAM Dispatcher in the Introduction to
+his publication contains a Aiscussion cf the tcols and mechanisms
used by the Dispatcher to perform its functions.

64

®Tach gueue in the TCAM system is represented ty a queue control
block (0CB), which is +the connecting link between elements and the
subtasks waiting for the elements. A QCB consists of a pointer to a
chain of elements and a pointer to a chain of STCBs. Flements and
STCBs are inserted in their respective chains on the QCB in ©priority-
FIFO order, that is, first-in-first-out within priority class.

A subtask control block (STCB) represents each waiting subtask to
the Dispatcher. An STCP ccntains the data necessary tc activate the
subtask it rerresents. A full STCB consists of a suktask entry code
or activation key (MCPL), a priority field, and a link field for STCR
chaining. (There is a complete discussion of the four fermats of
STCBs later in this section.)

A resource control block (RCB) represents each element to the
Dispatcher. An RCB contains three fields: the address of the QCB to
which the element is or is to be trosted, a priority field, and a link
field to be used for element chaining. When elements are on the ready
gueue, they are maintained in vpriority-FIFO order, The TCAM
Dispatcher activates a subtask for the element on the tcp of the ready
queue. The RCB for the element points to a QCB, and the activated
subtask is represented by the highest pricrity STCB on the STCB chain
of the QCB.

Figure 15 illustrates the chain of linkage from the ready queue to
a subtask when an element is on the ready gueue.

Ready Queue QCB
Element ¢ Element Chain W Elements
Priority Link '
STCB *
STCB A
MCPL
Element A pe :
- -
A - .
Key QCB P Priority
-
e
Priority Link - -
7
”~
-
”~
-
- .
e MCPL
Element B " 1
Key QcCs 4\ N o " Priority Link
Subtask Code

Priority Link

Tiqure 15. Linkaqe frem the Ready Queue tc Subtask Code

Method of Operation 65

When the Dispatcher examines the highest rriority element on the
ready queue, it removes that element from the ready gqueue by placing
the address of the element in register 1. The Dispatcher then inserts
the 1link field of the element in the ready gqueue, so that the next
element can be examined. When there are no elements for the ready
queue, it pcints to the "dummy last element" in the AVT (AVTDELEN).
This element has a prioritv of =zero. Fiqure 16 demonstrates the
change in 1linkage between the ready gqueue and its elements during an
update of the ready queue by the Dispatcher.

Register 1

Element F—=~
- Ve
-~
-
-
~
~
~
Ready Queve -
P ~
Element ’I‘ <‘L_ =
~ -
7~
~
-~
~
Element A
Key Qcs
N
N Priority Link
AN
N
AN
LEGEND AN
AN Element B
AN
————» Original Linkage >
e s SNl T o Ker Qce A

:-———:D Data movement to update the ready queue

— — — P Linkage after ready queue update

Priority Link

Fiqure 16. Pcinters during a Ready Queue Urdate

After the ready gqueue has been updated, +the TCAM Dispatcher
examines the element pointed to by register 1. There are three
situations that can exist:

) If the elerent pecints to a QCR that has an STCB with a MCPL field
of zero, the element indicates to the Disrvratcher that there are no
real elements currently tposted to the ready queue. This is a
"dummy" elerent that causes the Dispatcher to issue a system WAIT
command. The activity of +the Dispatcher resumes when an I/O0
routine or an application program trosts an element tc the ready
gueue and causes an interruption in the operating systen.

66

] If the element is tposted to a QCB that represents an attached
TCAM +task (Cperatcr Control, Checkpcint, On-line Test, or FE
Common Write), the MCPL field of the STCR is eqgual to X'02'. This

causes the Dispatcher to link the element to the element chain
the OQOCB and to vpost complete the event control blcck (ECB,
second word of the QOCB)Y of the attached task, This allows

of

the
the

attached task the opportunity to vie for contrcl of the systen

when TCAM issues a system WATT command.

L Tf neither cf the abcve situations exists, the Dispatcher computes

the entrv rcint for the highest priority subtask represented

on

the STCR chain of the OCB referred to by the RCB of the element.

The Dispatcher then branches tc that suttask.

The TCAM Dispatcher calculates the subtask entry pcint according
to the value of the MCPL field in the STCB. If the MCPL field is
equal to X'C4', the subtask entry point immediately follows a two-
byte STCB., If the MCPFL value is X'0€', the surtask entry point
immediately follows a four-byte STCB: and an MCPIL value of X'08!

indicates a six-bvyte STCB. An MCPL value of X'0A' indicates

subtask entry point immediately following an eight-byte STCB.

a
1f

the MCPL value 1is dgreater than X'0OA', the TCAM Dispatcher
activates the associated subtask by using the MCPL field as an
index into the AVT branch table at AVTDISP. The following values
of MCPL cause the Dispatcher to activate the associated subtasks:

¥'0C' - TYeased Peceive Scheduler
X'0E!' - Send Scheduler

X*10' - Get Scheduler

X*'12* - Put Scheduler

X'14t' - Get FIFO Scheduler

¥*16' - 1log Scheduler

Xt18' -~ Dial Receive Scheduler
X'1A' - Buffered Terminal Scheduler
X*'1Ct - TFetrieve Scheduler

X'1R' - 1Icocal Receive Scheduler

Figure 17 chows +the linkage from register 1 to the highest

priority STCR when the Disrtratcher is examining an element.

Register 1

Element 4\

(Element QCB
QCs /P FQ_/' Element Chain

Priority Link § Priority Link

STCB

stes M < o] MmcpL

Priority Link

Figure 17. Linkage from Register 1 when a Subtask Gains Control

Introduction

67

Note: Tf a subtask is activated without an element to process, its
STCB is tposted to the ready queue, as if it was an RCB, with the MCPL
field containing the correct entry code fcr the subtask and +the next
three bytes containing the address of AVTRFADY-S8.

There are four possible formats for STCBs. The way the subtask
entry point is calculated depends cn the tyre cf STCB, and the MNCPL
field indicates the tyre. Fach type of SICR has a different length. -

A two-byte STCB is used when its OCB is 1lccated in the AVT or
elsewhere 1in rain storage, the STCB is the cnly one that ever appears
in the STCB chain of the QOCB, and the STCB is never placed in the STCB
chain of any other OCB. The Dispatcher examines the QCB to find the
STCR pointer. The MCPL field of the STCP contains the value X'04°',
and the Dispatcher adds 2 bytes to the address of the STCR to find the
"suttask entrv pcint. The seccnd tyte of +tke STCB is unused. The
format of a two-byte STCPE is shown in Figqure 18.

A four-bvte STCB has an MCPL value of X'0€' and is used when it is
convenient to have the OCR as a part of the suttask cocde. The QCB and
STCR are combined by making the STCB the third word of the QCB. The
STCB must be the cnly one for this 0CB, and the STCB must never be
transferred tc¢ the STCB chain of ancther (QCB. The Dispatcher
calculates the suttask entry point by adding four bytes to the STCB
address. The fcrmat of a four-byte STCR is shcwn in Figure 18.

A six-byte STCR tras an MCPL value cf X'08' and is used when an
STCB always aprears as the last STCB in the STCB chain of a OQCB. In
this situation, the priority field, but not the link field, is needed.
The Disvatcher calculates the suktask entry point by adding six bytes
to the STCB address. The format cf a six-tyte STCR is shcwn in Figure
18.

An eight-byte STCB is used when an STCE can appear in any position
in the STCR chain of a (QCEBR. When the MCFL field 1is X'0A', the
Dispatcher calculates the subtask entry point ty adding eight bytes to
the STCR address. If the MCPL value is greater than X'0A', the STCB
is for one of the TCAM schedulers, for each of which the Dispatcher
uses the MCPL field as an offset intc the AVTIDISP table of addresses.
The format of an eight-byte STCB, which is a full STCB, 1is shown in
Figure 18.

Foldout Chart € presents a summary of the dispatching functions of
the TCAM Disvpatcher.

The T™CAM Tisvatcher also functicne as a queue manager. The
Dispatcher performs gueue management functicns when a subtask branches
to a particular entry point in an entry pecint table in the Dispatcher.
The function performed by the Dispatcher 'depends on which 1label a
subtask branches tc.

Fntry point labels that d0 not end in "R" result in loss of
control by the tranching suttask. Fntry roint latels that end in "Rr"
result in an immediate return of ccntrcl to the branching subtask
after the gueue management functicn has been performed. '

68

Format: Attributes:

Two-byte STCB ® QCB located in the AVT or assembled in main storage
MCPL ® QCB has only one STCB
04 00 ® STCB is never chained to any other QC8
Subtask entry point ‘\J}
Four-byte STCB ® QCB is part of the subtask code
MCPL ® QCB and STCB are combined ~ the STCB is the third word of the QCB
06 QCB's STCB chain pointer ® QCB has only one STCB
Subtask entry point ® STCB is never chained to any other QC8
Six-—Byfe STCB ® STCB is always the last STCB in the STCB chain of o QCB
MCPL
08
Priority 00

'y Subtask entry point

® STCB can appear in any position-of the STCB chain of a QCB
Eight-byte (Full) STCB ' :
MCPL

Priority Link address

Subtask entry point

Tiqure 18. TFormats for Tifferent Tyres of STCBs

The gueue ranagement functions cf the varicus entry point 1labels
are described in foldout Chart 7.

There are actually two TCAM Dispatchers availatle for a TCAM MCP.
They are the same except that IGGO19RO performs the additional
function of ruildina a Suktask Trace Table. If the DTRACF keyword of
the INTRO macrc is coded with a ncnzero numerical value, the 3IGGO019RO
TCAM Dispatcher is loaded into the MCP. Ctherwise, the IGGO19RB TCAM
Dispatcher is used.

FUNCTIONS OF THE AQCTL SVC 102 ROUTINE

The AOCTL SVC 102 routine is a multirurpose systen service routine
that performs the following functions:

° Cross-partition data movement tetween the MCP and aprlication
progranms.

Method of Opetation 69

) Posting ECBs for attached tasks and arplicaticn programs.

L) Tposting elements frcm attached tasks and arplication programs to
the disabled ready queue in the MCP.-

° Flagaing the Task Centrol Block (TCB) that represents a Time
Sharing Cpticn (TS0) application prcgram as either available or
not availatle for swap. '

. Flaagging the TCR that represents an arrlication program as either
eligible cr nct eligible fcr rcllcut.

The AQCTL SVC 102 routine is a Type I SVC resident in the
Operatinag System nucleus. It gains control when an SVC 102 <call is
issued from any task in the systen.

When +the AOCTL SVC 102 routine is called by a routine anywhere in
the system, register 1 nmust point to a variable 1length standard
parameter list. The AQCTL SVC 102 routine examines the first byte
(byte 0) of this list to determine which of the possible functions is
to be performed. The contents of the parameter list vary according to
the action code setting in tyte 0.

Tf more than one bhit in the acticn code byte is turned on, the
AQCTL SVYC 102 routine performs the acticns <specified for each bit.
The combinaticns of bits used, however, must be compatible so that the
parameter list satisfies all the regquirements.

When +the AQCTL SVC 102 routine relinguiches ccntrol, it stores a
return code in register 15. For a successful operaticn, the return
code is binary zero. If the SVC is issued when there is nct an active
MCP in the system, the requested acticn is not perfcrmed and the
return code is tinary four.

The following raragraphs discuss the method used by calling
routines to effect the functions cf the RAQCTL SVC 102 routine.

Cross-partition Data Movement: When a rcutine needs to move data
across a partition boundary, it turns on action code bit 4 in byte O
of the parameter list being built for the ACCTL SVC 102 rcutine.

To effect cross-partition data movement, the <calling routine
provides a three-word parameter list. The first word contains the
address of the data to be moved. The seccnd word contains the address
of the place the data is to be moved to (the target field), and the
third word points tc¢ a halfword that contains the length in bytes of
the data field. Figure 19 defines this particular parameter list
format.

The AQCTI SVC 102 routine, upon finding bit 4 cf byte 0 set to 1,
moves the data toc the svecified lccation.

70

Offset +1

0 ({Action code ECB address
+4 X'00! TSO Job ldentifier address
+8 X'80! TCB address
Tigure . 19. Fcrmat of a Cross-Partition Data Movement Parameter List

Post an FCR of a Different Tacsk: When a routine needs to issue an 0S
POST on the ECB of ancther task, either bit 1 or bit 2 of the action
code byte is set to 1. Bit 1 is turned on if the ECB of a task that
is eligible fecr rtollout (RORI) is to be posted conmrplete: bit 2 is
turned on if the ECR of a standard (ECB always in main storage) or
Time Sharing Crtion (TSC) task is to be posted complete.

Depending c¢n the type of ECB to te posted, the parameter list
huilt for the AQCTL SVC 102 routine is either two or three words long.
The parameter list for a standard or TS0 tacsk is two words 1long; the
parameter 1list fcr a RORI task is three words long, The fcrmats of
these two parameter lists are shown in Figure 20.

TSO or Standard Task:

Offset +1
0 X'20°* ECB address
+4 X'80' TSO Job Identifier address

Rollout/Rollin Task:

Offset +
0 X'40" ECB address
+4 | X'00' TCB address
+8 X‘BO' DEB address

Tigure 20. Tcrmats of an ECB Post Parameter list

Method of Operation 71

To effect an ECB post, the AQCTL SVC 102 routine interfaces with
the O0S Post routine (IEAQSY50) at a special entry point (IEAOPTO1)
that perfcrms nc validity checking. The address of this entry point
is in the CVT. The AQCTL SVC 102 routine supplies input to the 0S
Post routine in the follcwing general registers:

° Register 15 - the address of the branch entry, TEAOPTO1.
) Register 14 ~ the return address.

. Register 13 - in the low-order 16.bits, the TSC Jcb Tdentifier for
the ECB to be rosted (for standard FCBs, this £field 4is binary
zeros).

. Register 11 - the ECB address, with the lcw-order bit set to one.
. Register 10 - the completion code (always zero).

If the task to be posted is currently rclled out, the AQCTL SVC
102 routine =sets a . b»it in +the TCB (TCRFLTRN) to designate to the
Pollout/Rollin routine at rollin time that there is a POST pending for
this task, ‘

If the ECE to be posted is for a TSO task, the AQCTL SVC 102
routine branches to the Time Sharing Interface program in the nucleus
task to be flagged either eligible or not eligible for swar. The
interface is accorplished via the TSEVENT macrc.

Tpost An Flement to the Disabled Ready Queue: When a routine needs to
tpost an element to the disabled ready queue in the MCP, bit 5 of the
acticn code byte is set to 1.

The calling routine builds the same format three-wcrd vparameter
list used for «cross-partition data movement (see Figure 19). The
address of the tarqget field, in this case, 1is the address of - the
disabled ready queue in the AVT. There is no actual data movement,
hecause both the data field and the target field are elements - only
the pointers are changed.

The AQCTL SVC 102 routine chains the element onto the disabled
readv gueue and pcsts the ECB for the MCP ccmrlete,

Flag the TCB for a TSO Program: When a routine needs to flag the TCB
of a TSO application rrogram either eligible cor not eligible for swap,
bit 3 or bit 6 of the acticn code byte is ucsed.

If bit 3 is equal to one, the AQCTL SVC 102 routine flags the TCR
of the TSO program not eligible for swap; if kit € is equal to one,
the TCB of the rrcgram is flagged eligible for swap.

The three-word parameter 1list created by the calling routine is
illustrated in Fiqure 21,

72

Offset +

0 |Action code ECB address
+4 X'00! TSO Job Identifier address
+8 X'80" TCB address

Figure 21. TFormat of a Parameter list +to Flag +the TCR of a TSO
Program

Flag the TCR fcr a RORY Program: When a routine needs to flag the TCR
of an RORYI application program as eligible or not eligible for
rollout, bit 0 cr bit 7 of the acticn ccde ryte is used.

Tf bit 0 is equal to one, the AQCTL SVC 102 routine flags the TCEP
of the task as not eligible for rollout; if bit 7 is equal to one, the
TCB is flagged as eligible for rollout.

The three-word parameter list created by the calling routine has

the same format as the parameter list for rcsting the FCB of an RORT
task (see Figure 20).

MESSAGE HANDLING IN A MESSAGE CONTROL PRCGRAM .

Data enters the TCAM system randomly in the form of messaqges from
remote terminals ‘or ©proarams that generate messages. Data is
ultimately delivered to one or more terminals or programs that process
the data. The MCP ccntrcls the routing cf the messages as well as a
limited amount of processing. These functicns of an MCP are referred
to as "message handling" functions.

In order to present an overview of the way an MCP performs its

message handling (MH) functions, this secticn contains discussions of
the functional areas involved:

e Lline management
. Buffer management
o Message handling routines
. Cueue management
Foldodt Chart 8 illustrates message flow through a TCAM systen.

Note the area of influence for each cf the functional garts to be
discussed.

Method of Operation 73

LINE MANAGEMENT

TCAM schedules line orerations to allow data to travel over a line in
a single direction at any one point in time. A line can be used for
both sending and receiving, and in order +to schedule +this two-way
activity TCAM 'uses two mechanisms. The first of these, a receive
scheduler, allcws data to be received frcm a remote station; ‘the
other, a send scheduler, allows data to be sent to a remote station.

Fach line in a TCAM system is represented ty an ILCB, and at 1line
open time, each LCB (except a send-only line) has a receive scheduler
STCB built in it. This STCB can be for the Leased Receive Scheduler,
the ©Dial Receive Scheduler, the Local Receive Scheduler, or the
Buffered Terminal Scheduler, depending on the characteristics of the
line.

At assembly time each Destinaticn OCP in a TCAM system has an STCB
starting in its third word. This STCB can represent either the Send
Scheduler or the Buffered Terminal Scheduler and is used to schedule
sending orerations.

The priorities of the receive and send scheduler STCBs are
determined when the user specifies whether he wants receive, equal, or
send prioritv fcr a line. As the address c¢cf an STCE is moved from the
STCB chain of the ICR to the STCPR chain of +the Destination OQCB and
back, that STCER is inserted in the resrective STCB chains by FIFO-
priority. ‘

An LCR is tposted to the ready gqueue when the 1line that it
represents 1isg free to either receive or send data. The STCB that has
the highest pricrity in the STCB chain of the LCB has its subtask
dispatched.

A Receive Cperaticn

At open time, either a Leased Receive Scheduler STCB, a lLocal Receive
Scheduler STCR, a Buffered Terminal Scheduler STCB, or a Iial Receive
Scheduler STCE is built in each ICBE. Since there is cne LCB for each
line in the system, there is also che receive scheduler STCR for each
line that «can receive data in the system. If a line is intended for
sending only, there is no receive scheduler STCB and the only STCB in
t+he STCB chain for the line points to the CFVENT routine, which frees.
the LCB instead of attempting to initiate a receive operation. (The
OFVENT routine is part of the Receive Scheduler CSFECT.)

The 'receive scheduler in «ccntrol inspects a line tc deternmine
whether a receive operation is possible. B message can enter the TCAM
system only after the receive scheduler for a line has recognized that
the line is available so that a receive operatieon can be started. The
scheduler is activated by the Dispatcher when its STCB is the next
STCB in the STCB chain of an LCB at the tor ¢f the ready queue. (See
Figure 22.)

T4

Ready Queue

Element 1\

Priority Link

MCPL Receive

Scheduler
STCB

Priority

Figure 22. A Peceive Scheduler STCE in an ICRBR on the Ready Queue

The primary function of each <c¢f the receive schedulers is to
solicit data from the terminals on a line. For contention lines this
is done by preraring the line to receive; fcr multipcint lines this is
done by polling the terminals on the 1line.. The point at which a

receive scheduler releases a line is generally when the end of an
~invitation list is reached, although it can be after receirt of a
messade or, in the absence of the Auto Poll feature, when a negative
responcse is received.

Fach receive scheduler, in order to solicit a message, requests
buffers +to ccntain the message by tposting the ERB for the LCB to the
Ruffer Request CCB. The Buffer Request routine (IELQGR) gets the
requested numkter of buffers from the buffer unit rcol, and chains the
units from the chain field of the ERB. Ruffer Request branches +to
Buffer Association, which builds in the btuffers a channel program that
is arpropriate to the characteristics of the line, Buffer Association
rTeturns to PBuffer Reqguest, which trosts the ERB tc the Activate QCB.
As a result, the TCAM Dispatcher dispatches the Activate-I/C Generator
subhtask (IFTOKA, TEDOKB, IFDQKC, IEDQXD, cr IEDQOKF).

The Activate-TI/0 Generator suttask builds the initial ccntrol CCW
seguence. This subtask then issues an FXCP to accept a message and
relinquishes ccntrol to IOS.

After I0S has accepted the FEXCP redguest, the subsequent I/0
interrupt with device ending status causes the TCAM Line End RAppendage
to gain control. If there is a message ready to be rrocessed, Line
End Appendage trosts the tuffers +to +the STARTMH QCR for message
handling. If there is no message available, line End Appendage tposts
the ILCB +to Puffer Disvosition where the tuffers are returned to the
buffer unit pcol and the line is freed (the LCR tposted to itself and
placed on the ready queue).

Method of Operation 75

- Foldout Chart 9 illustrates the general flow c¢f ccntrol during a
receive operaticn. Foldcut Chart 16 shows how a receive scheduler
operates in a ccmrlete receive operation.

The speCific functions of < each of the receive schedulers are
described in the Proagram Organization sectien of this publication.

A Send Operaticn

There is a send scheduler STCPR assembled in every Destination QCB in
TCAM. (Tf t+he Destination QOCB is for an arrlication program, the Get
Scheduler STCR assembled for it is the equivalent of sending +to an
application prcgram,) The purpose of a send scheduler is to attempt
to find a line for sending when a message is trosted to a Destination
0oCB and +to initiate sending of the messaqges on the QCR. The line is
initialized for sending when the send scheduler is dispatched as a
subtask of the LCE.

A send scheduler is activated by the Dispatcher when its STCB has
top priority in tte STCR chain of a Destinaticn QCB or an ICB. This
send scheduler can te either the Send Scheduler or the Buffered
Terminal Scheduler.

The numkter of send schedulers that can contend for a 1line is
determined by the type cf queuing requested in the TERMINAL macro for
the line. If gueuing by line is specified, one send scheduler STCB is
generated for the 1line. However, 1if gqueuing by terminal or by
component 1is specified, there is one send scheduler STCB for each
terminal. The relative rricrity of the send schedulers is established
at assembly time bty the CPRI operand of the line grour DCE.

A send scheduler, in order to prepare to read a message from a
message gueues data set and to direct the message to the aprropriate
terminal, tposts the ERB in the LCB to the LCisk I/0 QCB. The Disk I/0
OCB has the CPR Initialization STCB in its STCR chain. When the
tposted ERE gets to the top of the ready queue, the TCAM Dispatcher
activates CPB Initialization. This routine starts reading a message
for the line and gets enouah full buffers to satisfy the ERB request.
CPB Initialization chains the buffers off the EPB and tposts the ERB
to the Activate QOCB. As a result, the TCAM Dispatcher disratches the
Activate-I/C Generator subtask.

The Activate-I/O Generator subtask tuilds the selection CCW
sequence and a send channel rrogram +that 1is aprrorriate to the
characteristics of the device to receive the message, This module
then issues an EXCP to address the termwinal and relinguishes control
to IO0S.

After TOS has addressed the terminal and received a resronse to
addressing, the resulting T/0 interrurt activates the TCAM line End
Appendagqge. The Line ¥Fnd Appendage exarines the response to
addressing; and if the response is positive, the appendage trosts the
buffers to the STARTMH QOCR for outgoing message handling and restarts

76

I/0 on the Write 1Idles 1loop. For terminals that do not have a
selection seguence (cannot be addressed by TCAM), +the Activate-I/C
Generator suktask trosts the cutgcing Yuffers directly tc MH. If
reserve (idle) characters exist for the device, 1line End Appendage
restarts the channel program on the Write Idles loop: otherwise Buffer
Association (IEDQGD) issues the EXCP ccmmand. If the response to
addressing is neqgative, the appendage trosts a tuffer with an error
indicator to MH in order to route ccntrcl to the outmessage subgroup
for user consideration via optional OUTMSG macros. Also, 1if the
negative response to addressing is due to a hardware error, Line FEnd
Appendage activates the error recoverv procedure.

The ageneral flcw of control during a send operation is illustrated
in foldout Chart 10. Toldout Chart 17 shovs how a send scheduler
operates in a comrlete send operation,

The specific functions of the Send Scheduler and of the Buffered
Terminal Scheduler are discussed in the Prcgram Crganizaticn section
of this publication.

BUFFER MANAGEMENT

The TCAM network has one buffer unit rocl that contains buffer units
of one size. These buffer units are the tasic building blocks from
which logical buffers are ccenstructed. Henceforth, in this
publication unit refers to a buffer unit and Dbuffer refers to a
logical buffer.

Messages entering a TCAM network are placed in buffers, which are
user-defined areas of main storaage used for handling, gueuing, and
transferring message seqments between all lines and queuing media. (A
message seqgment is that portion of a message contained in cne buffer.)
A buffer has two vrarts, one that ccntains control infcrmation (the
buffer prefix) and the other that contains all or part of the message.
Buffers wust te at least 33 bytes long, and may be no 1longer than
65,535 bytes.

The size of a unit is specified in the KEYLEN operand of the INTRO
macrc of an MCPF, and the number of units in the truffer unit rool is
equal to the sum ¢f the numbers svecified by the LNUNITS and MSOUNITS
~operands of TINTEO. For internal management purposes, TCAM adds 12
bytes as a prefix to the user-specified unit size. These 12 tytes are
called a unit ccntrol area. Thus, if a user defines a unit size of 60
bytes (KEYLEN=60), the size of the unit is actually 72 bytes.

The size of a buffer for a line group is specified by the BUFSIZE
operand of the DCB macrc for a line grour data set. All buffers used
by a given line group are the same size, tut each 1line group may
utilize Dbuffers that differ in size from those assigned to other 1line
groups. (The tuffer size can be cverridden cn a terminal 'basis for
send operaticns by using the BUFSIZE operand of the TERMINAL macro.)

‘Method of Operation 77

TCAM constructs buffers by linking together the number of units
necessary to <create a buffer that contains a number of usable bytes
egual to or greater than that specified by the BUFSIZE operand of the
DCR macro for a given line group. (The 12 bytes added to each unit by
TCAM are not considered in defining BUFSYZE; the user should consider
only the number of byvtes he srecified in the KEYLEN operand of INTRO).
Tor example, if KEYLEN=60 in the INTRO macrc and BUFSIZE=120 in a line
grouv DCB macrc are specified, TCAM 1links together +two units in
building each tuffer for that line group.

There are twc types of tuffers - header buffers and text buffers.
A header buffer ccntains all or any part of a message header. A text
buffer contains message text cnly.

A buffer prefix is a control area contained within each buffer of
the system. The user nust allow room fcr the buffer prefix in
defining his ‘tuffers. TCAM fills the ruffer prefix area with buffer
control informaticn.

There are two kinds of buffer prefix. The first buffer prefix is
30 Dbytes long and is ccntained within the first buffer of a message.
Any subsequent truffer prefix is 23 bytes lcng and is ccntained within
all buffers after the first.

Thus, there are two %inds of «control areas associated with
buffers:s the twelve-byte unit ccntrol area associated with each
buffer unit and assianed automatically by TCAM, and the 30-byte or 23-
byte buffer rrefix assigned to each buffer by TCAM in an area allowed
for ty the user. PFach unit must te big enough tc¢ <ccntain a header
prefix ©plus three bytes of message text (33 bytes) and may be no

larger than 255 bytes. 1A subseguent buffer contains more bytes of

actual message than the first buffer, since a subsequent buffer prefix
is 7 ktytes sheorter than the first tuffer prefix.

The twelve-byte wunit control area that TCAM assigns to each unit
is used to manage multi-unit buffers. This cecntrol area has different
functions dependent on the status cf its ruffer - it may contain
pointers, be used as an RCEB, or he used to generate a channel progranm.
The initial fcrmat of this 12-byte area is defined in Figure 23.

Offset
0. 1 4 8

Address of the first Address of the next
Qcs unit of the next unit of this buffer
Key address logical buffer that
is assigned

Pigure 23. Unit Control Area

78

Figure 24 shows how two buffers assigned to a line grcur look on
an initial request if the user specifies the following:

TNTRO KEYLEN=€0
DCR RUFSIZF=100,BUFIN=2
Buffer 1
RCB
N

12 Bytes ————rie@—————— 30 Bytes ———————prla——————— 30 Bytes —————————

Unit Control Area 30-byte Prefix Message Header and/or Text

Next
Buffer

Next
Unit

lg————— 12 Bytes »la 40 Bytes >lg 20 Bytes ————»]
Unit Control Area Message Header and/or Text Unused
Buffer 2
RCB
r—.—_/_..._—_-\
¢———— 12 Bytes ——— o f——————— 23 Bytes > 37 Bytes >
Unit Control Area 23-byte Prefix Message Header and/of Text

Next
Unit

K

40 Bytes — B l¢————— 20 Bytes ——P>)

\ 4
A

[————— 12 Bytes

Unit Control Area Message Header and/or Text Unused

|

Tiqure 24. Buffer Units Chained to Form lLogical Buffers.

In Figure 24, each buffer consists of two units linked together by
the rointer in the third word of the twelve-byte unit ccntrol area.
The two buffers are linked together by the second word of the twelve-
byte unit contrcl area. WNote that in this situation the first eight
bytes of +the unit control area of the first unit in each buffer is
functioninag as an RCE.

When the user's program requests and cttains buffers, they 1look
like the ones in Figqure 24. However, when a line is ready to read or
write, the functicn of the twelve-byte ccntrol. drea changes. TCAM
then uses the area to contain the channel rrogram that operates on the
unit. The Buffer Association routine places a CCW in each RCB field,
and the pointer in the third word becomes a TIC to the next unit. The
30-byte prefix contains a count of the number of units in a logical
buffer; this indicates where one truffer stors and another starts.

Method of Operation 79

To tpost a buffer, TCAM places only the first unit of that buffer
on the ready queue. All other units can te located through the chain
created in the TIC field of the unit controcl area.

Buffer Requesting and Allocating

TCAM uses an e€lement request block (ERB) to make requests for buffers
for a line grour. A descrirtion cf the physical characteristics of an
m"RB is included under Control Areas in the Introduction section of
this publicaticn. '

Initial requests for buffers for a line are made when a scheduler
trosts its FRE, which contains the number cf tuffers requested, to the
Ruffer Request QCP for a receive operaticn, or to the Disk I/0 QCB for
a send operaticn.

Subsequent requests for buffers are handled by the TCAM Progranm-
Controlled Tnterruption (PCI) Appendage. %®hen the PCI orerand of the
DCB for a 1line agqgrour 1is coded to allow program~controlled
interruption, a PCI may occur during the filling or emrtying of the
first and each subsequent buffer assigned tc that 1l1line group. When
the PCI is received, the PCT Appendage gains ccntrol. '

When ©PCI=A 1is coded on the TCR macrc and the first interruption
occurs, PCI Arrendage assigns to the line grour a number of buffers
equal to the difference between the maximum numker assigned to the
line group (specified by the BUFMAX operand of the DCB) and the numter
initially assigned to the line grcur (specified by the BUFIN operand
of the 1line grcup DCB for a receiving operaticn and by the BUFOUT
operand for a sending operation). On subsequent PCIs, the appendage
deallocates the buffer immediately vrreceding the one being filled or
emptied and requests a new buffer in order to keep the number of
buffers assianed to the line qroup equal tc that specified by BUFMAX.
(For a sending cperation, the buffer units are returned via the Buffer
Peturn OCB to the tuffer unit pool - the element chain of the Buffer
RPequest OCRBR: for a receiving operaticn, the kuffer is sent to the
message handler for the line grour for that DCB.) ’

When PCI=F is coded, the appendage deallocates the previous buffer
when the second and subsequent PCIs occur, but makes no requests for
additional buffers. Jf rrogram-controlled interruptions are not
permitted (PCI=N) or additional allocation is not allowed (PCI=R), the
number of huffers assigred must be sufficient to handle the entire
transmission, since no new buffers - are allocated wuntil the
transmissicn is ccmplete. Tf PCI=N, there 3is no deallccation of
buffers until the transmission is complete.

) Initial Request - Receive Operation

When a line qrcup in the TCAM system needs a buffer or tuffers for a
receive operation, a receive scheduler must trost an FRB that contains
the number of tuffers requested to the Ruffer Request QCE. Foldout
Chart 11 shows the complete flow of control for an initial buffer
request in a receive operation.

80

Figqure 2% =shows the result cf an ERB with a count of three being
tposted to the RBuffer Request QCRB. The FRPR chain of the LCB points to
the first buffer. This fiqure demonstrates the change in 1linkaaqge
after wunits have been transferred from the buffer unit pccl to form a
buffer chain cff the reqguesting FRB. The physical 1lccaticn of the
units in main <storagqe does not <change - the various rointers are
changed to reflect the new organization.

Tiqure 26 <cshows the «contents of the tuffers after Buffer
Association has teen executed.

If the initial request for buffers cannct be satisfied, the ERB is
chained by priority into the element chain of the Ruffer Return QCB.
This FRB has a high prioritv; therefore, as soon as the buffers are
available, +the initial request 1is satisfied and the line can start
receivinag messagecs.

Buffer Request QCB Unit Buffer Unit Pool

Key 4\ Element Chain Control Areo
N 12 bytes

Priority Link N u L7

A $1CB Chain

Buffer Request STCB

MCPL

ERB

Key ¢ QcCB
Priori fy Link ~
-
a— - -
Status IP Chain e —
03 03

LEGEND

———» Linkage before ERB is serviced
— — —p» Linkage after ERB is serviced

Figure 25. %wffec: of an EREB on Buffer Unit Linkadge

Method of Operation 81

Buffer
1

Buffer
2

82

Unit Control Area
e,

60-byte Unit
.

r

Y2

«— 8 Byfes—*— 4

Read CCW

Bytes
TiC

l@———— 30 Bytes

30-~byte Prefix

- 30 Bytes

Data to be Received

j€¢— 8 Bytes ———D}d—— 4 —pg——————— 40 Bytes o ———— 20 Bytes ————P»]
Bytes
[ed
Read CCW : TIC Data to be Received Unused
|
| 1
Unit Control Area 60-byte Unit
r — ™ 7 ™
|)
8 Bytes ——>i—4 —p1————— 23 Bytes ———————Po1——————— 37 Bytes -
| Bytes
Read CCW : TIC 23-byte Prefix Data to be Received
|
| 1
QU
[4— 8 Bytes —I— 4 —1@———— 40 Bytes < 20 Bytes ———»f
| Bytes
Read CCW : TIC Data to be Received Unused
to
1 : X'02

Invalid TIC

Buffers Prepared to Receive Data

) Initial Request - Send Operation

When a line grcur in the TCAM system needs a buffer or buffers for a
send operation, the Send Scheduler must trost an FRE for the number of
buffers requested initially to the Disk I/0 OCB. The CPR
Tnitialization STCB recsides in the STCB chain c¢f +the Disk TI/0 QCB.
Yhen the +tposted ERR gets +to the top of the ready gueue, the CPB
Tnitialization routine gains contrcl.

For a send operation, when the CPB Initializaticn routine acauires
enouagh buffers to fill the FRB request, the buffers are already full
and allocated tc¢ a line. However, they have to go through message
handling (MH)Y before I/0 can occur. CPB Initialization tposts the
TRR, with 1its full tuffers, to the Activate QCB. This activates the
Bctivate subtask (TEDOKRA), which builds initial ccntact CCWs and
issues EXCP. At this pcint, allocation cf the buffers is complete.
Upcn completion of the addressing seaduence, lLine End Appendage trosts
the buffers tc MBE for outqoing prccessing.

Toldout Chart 12 shows +the flow cf ccntrol for initial buffer
request and allccation during a send operation.

. Subsequent Regquests - Receive Cperaticn
As discussed earlier in this section, all subsequent regquests for
buffers are handled wvwhen PCIs occur. ¥hen a PCI for a receive

operation occurs, an ERPR for additicnal buffers is +tposted +to the
Ruffer Request OCE and the buffers are assigned.

. Subsequent Requests - Send Operation
When a PCI for a send operaticn oc¢urs, an ERB is trosted to the Disk

I/0 0CB and the buffers are allocated.

Punctions of Buffer Association

The Ruffer Association routine in the Ruffer Management module builds
the CCWs in the units of buffers. To do this, the routine builds a
CCW in the first buffer to be read or written, fills the subsequent
buffers with CCWs, and places an invalid TIC in the 1last unit. As
other buffers are assigned, the invalid TIC is changed to TIC to a new
buffer and the invalid TIC is placed in the last unit of the new
buffer. If a channel program check occurs ¢cn the invalid TIC, the
channel program check portion of Iine End Appendage causes the channel
to execute the Write 7TIdles/Read Skir lcor. When a tuffer becomes
available, Buffer Association links the buffer into this loop, as well
as into the buffer chain. (See FTigure 26.)

Buffer Association is called at different times during receive and
send orerations:

Method of Operation 83

) Receive operation - Buffer Request calls Buffer Association to
handle all initial buffers +ust prior to going to Activate to
build the dinitial ccntact channel crrogranm, When subsequent
buffers are obtained, the PRuffer Return subtask calls Buffer
Associaticn as socn as a buffer is available,

. Send operation - as soon as MH has processed each buffer, it calls
Buffer Association.

Buffer Associaticn exits to the TCAM Tispatcher with the CCWs
completed.

Deallocating Buffers

Buffers are deallocated, released froem use by a line group, in
different ways for receive and send oreraticns.

Receive Operation: When a PCI or the 1line End Appendage takes a
buffer from a channel vprogram and sends it to MH, the buffer is
Aeallocated frcm the channel program, but it is not free. The buffer
is completely deallocated only after it has been queued.

Send Operaticn: When a buffer has been sent out to a line group, it
is deallocated tv virtue of being tposted tc the Buffer Return QCB.

Functions of Buffer Return

When a buffer is tposted to the Buffer Return QCB, the action taken
depends on whether there is an FRB waiting for that tuffer, TFoldout’
Chart 13 shows the conditicns under which the Buffer Return routine
gains control and the functions that the routine performs,

MESSAGE HANDLING ROUTINES

In TCAM, a message is a seguence of characters entered at or sent to
a terminal, and terminated by an ending character (EOT, ETB, ETX, or
T0B). A message may consist of twc porticns, a header portion and a
text portion, each of which may occupy more than one buffer. A
message may have a header only, text cnly, cr both,

The discussion of Buffer Management wearlier in this section
describes header buffers, text buffers, a 30-byte buffer prefix, and
a 23-byte buffer prefix. It is necessary tc understand these terms
before avpproaching the subject of message handling.

Before message characters are vplaced in the first buffer, TCAM
reserves the number of reserve characters srecified by the user for
the 1line group. TCAM reserves space for these characters at byte 30
in the first tuffer and at byte 23 in each subsequent buffer. These
reserve characters save room in the buffer for later insertion of the
date, time, and sequence number for the message. As messages enter
the CPU and are placed in buffers, characters start filling each
buffer just after the reserved space.

84

}s soon as a tuffer is filled with the first segment of a messagqe,
the appendage in control trcsts that tuffer to the QCB for the message
handler (MH) desiagnated for the particular line group that the message
is for or fron. (The appendadge is able tc designate the proper MH by
examining DCRMH in the ECRBR of the line group.) The tpecsting of the
buffer chains it onto the Adisatled ready queue. When the TCAM
Dispatcher gains control, the disabled ready gueue is merged by FIFO-
prioritv order onto the enabled ready gueue, and the buffer waits its
turn to he dispatched to its MH.

A messade handler is a set of message handling routines designed
t0 n©vprocess messages for a particular line group or for several line
‘grouvs with similar characteristics. Tach MH dis identified by a
STARTMH macro and may consist of an incoming group and an outgoing
aroun, which are designed to handle incoming and c¢cutgoing messages
respectively. The functions of these groups and their subgroups are
Aiscussed in the following sections. ¥Foldout Chart 14 illustrates the
proagress of a buffer throuah an MH.

Tunctions of the User Interface Routine

2+ assemhly +time many of the user-coded MH macros generate one or more
fixed-length rarameter 1lists, some executable code, and branch
instructions +to the User 1Interface routine (IEDOUI). At execution
time the User Interface routine uses the parameter list frecm a macro
to gain access to the spvecific functional routine needed for
processing. After it has finished executing, the functional routine
branches to the Return Interface routine (IEDQLM), which, in turn,
returns to the next sequential instruction in the MH vporticon of +the
MCD, The next instruction mwmight be a branch tack to the User
Tnterface routine with a new parameter list +to0o be ©processed. This
procass of branching to functional routines thrcugh the User Interface
routine continues until the functions of all the user-ccded macros for
the specific MH have béen executed.

Tuynctions of STARTMH

A STARTMH macro identifies +the Dbeqinning of an MH and must be the
first instructicn coded in every MH. When a buffer is tpcsted to the
STAPTMH OCB of an MF and no block checking is srecified, the functions
of the STARTMH sultask are performed. When a tuffer is trosted to the
STARTMH OCR and block <checking 1is specified, the FOB/ETRB Handling
subtask is activated. The FOB/ETR Handling subtask checks for the
occurrence of hardware errors during message transmission and can
handle user-detected 1logical errors. After T®OB/ETB Handling has
procaessed +the tuffer (or if it has no processing tc perform), it uses
the bypass functicn of the Dispatcher to activate the STARTMH subtask.

The bloék labeled STARTMH in foldout Chart 14 summarizes the
spvecific functicns of the STARPTMH subtask.

Method of Operation 85

H For a ncn-TSO TCAM system, the STARTMH subtask is IEDQAA:; when
SO is in the system, the IEDAYR versicn of the subtask is used.

Functions of the Incoming Group of a Message Handler

The incoming grcur of an MH handles messages arriving from a station
with which +the MH is associated. When a tuffer containing a message
segment is passed to the incoming group c¢f an MH, user-specified
functions such as source checking, insertion of the time the message
was received, input sequence-number checking, etc., are performed.
The MH scans and processes buffer header fields in accordance with the
order 1indicated by the relative rositicns of the individual MH macro
instructions. ‘

The incoming group has three prossible types of subgroups:

° The inheader subgroup, which handles only inceming header
segments, '
L The inbuffer subgroup, which handles all incoming message

segments, and

e The inmessage subgroup, which is executed after a comrlete message
has entered the CPU.

Functions of an ITnheader Subgrour: The first macro coded in an
inheader subgrcur is +the INHDR macro. The first function of INHDR
macro-generated code 1is to determine whether +the buffer to be
processed is a header buffer or a recalled buffer, If it is not a
header buffer cr if it is a recalled buffer, control is transferred to
the next delimiter macro expansion.

Tf the buffer to be processed is a header Luffer and a PATH
operand was coded for the INHDR macro, the locate Ortion Field Address
routine 1is given <ccntrol +to find the address of the cpticn field.
Upon return to the macro-generated code, a test determines whether an
option field address was found. If it was not, control rasses to the
next delimiter macro expansion. If there is an option field address,
but there 'are no matching path switches, control is also transferred
to the next delimiter macro expansion. Otherwise, control falls
through to the next sequential MH instruction.

After the INHDR macro-generated code is executed, the expansions
of the other user-coded macrcs prccess the buffer, There are two
levels of vprocessing used at this time: functional routines and
functional subroutines.

A functional routine is associated with a specific MH macro. When
the macro is coded, the assembler generates either the necessary
parameter list(s) and a branch instructicn to the User Interface
routine or a branch to the associated routine, if one is needeqd. At
execution time, the User Interface routine branches to the functional
routine, as described previcusly. The functicnal routine uses the
assembly-generated vparameter list to gain access to the control areas
and data needed fcr processing the buffer. The functional routine

86

returns to the Return Interface routine, and from there to the next
seauential MY instruction.

3 functional subroutine gains contrcl from either +the User
Tnterface routine or directly from a functional routine. The same
functional subroutine can be used by any number of functional
routines. 3 functional subroutine returns to the functional routine
that called it,

Some TCAM MW routines function as both functional routines and
subroutines.

Tunctions of an TInbuffer Subgroup: The first macro coded in an
inbuffer subarcup is the INRUF macro. The first functions of TINBUF
macrc-generated code are to perform the same multiple-buffer-header
and PA™H operand tests that are rerformed by INHDR macro-generated
coda. The results of the tests are the same as described above.

processing cf the buffer continues through this inbuffer subgroup
accordina to the MY macros specified by the user. Functional routines
and subroutines actually perform the processing, as described in the
“unctions of an Tnheader Subgroup secticn.

Tunctions. of an Tnmessade Subgrour: The macro instructions coded in an
inmessadge suharoup are executed only after a complete message has
sntered the TCAM systenm.

T"he first wracro coded in an inmessage sukgroup is the INMSG macro.
The TNMSGE macro-denerated code tests for the PATH operand and executes
accordinalv, as described in the Functions of an Tnheader Subgroup
section.

Jhen an inmessage subgroup maintains control (the path switch
setting matches), control is passed, via the User Interface routine,
to the Tncoming/Cutgoing Messade Delimiter routine. If the buffer is
the last buffer of a messaqge, it is trosted to the Buffer Disposition
OCR: if it is not the last buffer, it is tposted to the appropriate
Negtination OCE.

vhen the last buffer of a wmessage 1is trosted to the Buffer
Nisposition OCR, the TCAM Dispatcher activates the Buffer Disposition
suttask to supervise execution of the macros in the subgroup. The
messagqe handling functions of the Buffer Disposition subtask are
illustrated on foldout Chart 4.

Functions of the Outgoing Grcup of a Messaqge Handler

The outgoing grcur of an MH handles messages as they are prepared for
sending +to the destination with which the MH is associated. As the
message is brouaght in frcm its queue (e.q., in a message dqueues data
set), it is placed in buffers, as for an inccming message.

Hhen a Ytuffer that contains a message segment is passed to the
outaoina grour of an MH, that grour processes the buffer according to
the functions stecified by the user-coded MH macros.

Method of Operation 87

The outgoing group has three possible types of subgroups:

° The outheader subgrour , which handles only cutgoing header
segments,

. The outbuffer subgroup, which handles all outgoing message
' segments, and

. The outmessage subgroup, which 1is executed after a complete
message has been sent.

Functions of an Outheader Subgroup: The first macro coded in an
outheader subgroup is the OUTHDR macro. The functiocns of the OUTHDR
macro—-generated <code are +the same as for the INHDR macro-generated
code.

Functions of an Outbuffer Subgroup: The first macro coded in an
outbuffer subgroup is the OUTBUF macro. The functions of the OUTBUF
macro-generated code are the same as for +the INBUF macro-generated
code. .

Functions. of an Outmessage Subgroup: The MH macros in an outmessage
subgroup are executed after an entire message has been sent,

The first macro coded in an outmessage subgroup is +the OUTMSG
macro. The OUTMSG macro-generated code tests for the PATH operand and
executes acccrdingly, as described in the Functions of an Inheader
Subgroup section. '

When an outmessage subgroup maintains control (the path switch
setting matches), the macro expansion passes control, via the User
Tnterface routine, to either the Incoming/Outgoing Message Delimiter
routine or the Line Control Insertion routine, If the MSGFORM macro
is specified in the outgoing subgroup, the Line Ccntrcl Insertion
routine gains control to add the necessary line control characters to
the message. This routine then exits to the Incoming/Outgoing Message
NDelimiter routine. : :

The Incoming ,/Outgoing Message Delimiter routine conditionally
tposts the buffer to an aprlicaticn program, exits to the Transparent
CCW Building rcutine, or exits to the Buffer Association routine.

The 1Incoming/Outgoing Message Telimiter routine examines the
destination key (PRFDEST) of the buffer prefix and links to the
Termname Table Code (IEDQTNT) to obtain the address of the Terminal
Table entry for the destinaticn. If the status field indicates a
process entry, the routine gets the address of the Read-ahead QCB from
the terminal entry and trosts the buffer to that QCE,

Tf the destination is nct a BSC device in transparent mode, the
ITncoming/Outaoing Message Delimiter ~rTcutine exits .- to Buffer
Association, which builds WRITE CCWs and TICs in the control area of
the buffer units. Otherwise, the exit is to the Transparent CCW
Building routine for the same purrose. '

88

QURUE MANAGFMENT

The incoming grocup of an MH performs user-specified functions in a
ruffer +that ccntains a message seqment. After these functions are
completed, +the seagment is +tposted +to its Destinaticn OQCB. A
NTestination OCR can represent a line, a terminal, or an aprlication
program.

Tach Destination OCRBR in a TCRAM MCP is assigned to one or more
spacific message aqueues data sets. When a ruffer is tposted to its
Destination 0CB, it is placed on the apprcrriate message queue in the
associated message queues data set to wait its turn to be sent to the
specified Aestination.

The message gueues data set to which the message segment is to be.
directed mav be in main storage or on a direct-access storage device.
Tach messadge gqueue within a given data set contains segments that are
t0 be transmitted on a certain line or to a certain terminal, or that
are to be processed in a spvecific applicaticn progranm,

TCAM supvports five types of queuing to a message gueues data set:

» Nonreusable disk gueuing

° Reusable disk gueuing

s Main storage queuing

. Main storage queuing with nonreusable disk backup
s Main storage dqueuing with reusable disk backup

The following sections discuss the functicns of these +types of
gueuing.

Nonreusable Disk OQueuing

Nueuing a message on a direct-access storage device is referred to in
this publication as disk queuing. The term address refers to the
first Aisk relative record number that can be used to queue a unit of
a message sedgment. All values of address previous to the current
value are either used or preassianed for use. The fields AVTNADDR and
AVTRANDDR in +the AVT contain the address value for nonreusable and
reusable disk relative record numbers, respectively, The Testination
issianment routine uses the correct value for the type of queuing
svecified for a line. 1In this discussion, address refers tc¢ either
fielAd. : '

Tn nonreusable disk queuing, the Destination Scheduler initiates
a closedown when a user-specified percentage of the disk message
queuss data set has been filled with messaqges, If, before the
closedown can te completed, there are alreadvy more messades in the
system than the data set has room to accommodate, TCAM issues an
ABENT,

Method of Operation 89

The NDestination Scheduler assigns disk relative addresses across
the volumes of a multi-volume disk message queues data set in such a
way that the next relative record address after the last record on a
track is on a different volume. The routine numbers all the records
for a given track consecutively before assigning address values on a
track of a Aifferent volume. In additicn, the routine numbers all the
tracks of a cylinder before assigning address values on a different
cvlinder. Figure 27 illustrates the disk record numbering scheme for
a data set that tas fcur records rer track cn three vclunmes.

Volume 1 Volume 2 Volume 3

/ g \\
/ AN
Cylinder Track Relative Record Number Relative Record Number

0 0 0 1 2 3 4 5 6 7 8 9 10 1
il 12 13 14 15 16 17 18 19 20 21 2 23
2 24 25 2% 27 28 29 30 a | 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79 g0 8l 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 9 97 98 99 | 100 101 102 103 | 104 105 106 107
9 108 109 110 111 [112 M3 14 15 [M6 17 118 119
1 0 120 121 122 128 | 124 125 126 127 | 128 129 130 131

1 132...

Tigure 27. Assignment of Disk Message Queues Tata Set Relative Record
Numbers Across Three Volumes

90

At MCP assemtly or restart time, each TCestination QCB .is assigned
A unique address value for the first buffer segment trosted to it. As
a result, when the first message enters the TCAM system, the AVT value
of address is one greater than the total numbker of Destination QCBs.

The Destination Scheduler stores the address value to be used for
+he first unit of the first buffer of the next message received in the
OCBDNHDR field of the Destination OCB - this is referred +to as the
next-mesgage location. The routine stcres the address value for the
first unit of the next buffer of the current message in the SCBNTXT
field of the SCR - this is referred to as the next-tuffer location.

The oprinciple of assigning next-message and next-btuffer address
values allows gueuing ahead on the disk. Records for kuffer units are
assianed before the buffer is received.

"0ldout Chart 15 ©presents a summary of +he nonreusable disk
aueuing procedure of the Destination Scheduler.

Tn the example in Tigure 28, there are five possible destinations.
¥or each of these, the MCP assenmnbly has rreassigned reccrd addresses
(marked A through F) with relative record addresses zero to four. The
applicable externals for this examrle are:

INTEC KEYLEN=100
LTVEA DCB BUFSTZE=300,°CT=(A, 1)
LTINFC DCR RUFSTIZE=800,PCI=(A,R)
Three messages arrive in the following crder:
1. 5070 characters - from Line B to line D
2. 3000 characters - from Line C to line R
. 130 characters - from Line A tc Line R

Figure 28 cshows the situation in which TCAM reads a Ltuffer (the
first buffer cf the first message) from line A. The 30-byte prefix
contains the information that this message is to be sent +to 1line D.
The message segment ccnsists of three units (since BUFSIZE=300 and
KEYLEN=100) and does not contain an end-of-messadge (EOMY indicator.
The Destination Scheduler assigns the first unit of this header buffer
to the preassigned 1location for destination ©DT, rtecord 3. The
scheduler then rreassigns the next-message location for destination D
to the nrext available disk location at record 5, and places a pointer
to record 5 in the prefix of the buffer that will start in disk record
3. The scheduler then assigns two additicnal ‘units +to +the next
available disk locatiocns at records € and 7. The scheduler inserts a
vointer to the first of these reccrds in the rrefix of the buffer that
will start in disk record 3.

Method of Operation 91

fince the 3(C0-byte buffer does not contain an ECM indicator, the
Negtination Scheduler preassigns a record number (8) for the first
1nit of the next ruffer to arrive for this message. The scheduler
nlacas 'a pointer to record 8 in the prefix of the buffer that will
start in disk record 3. The records are actually written after the
threes pointers are 1included in the prefix of record 3. Figqure 28
shows the records and pointers after thev are written on disk.

Tn +his aqueuing scheme +the additicnal records are always
~ontiguous, and the first unit of a subsequent buffer of a message is
alwavs contiguous to the last unit cf the previous buffer,

Tn Tigure 29 the first buffer of the 3000-byte message frcm line
C for 1line B is agueued. The ruffer consists of eight units since
PNMPSTZR for line C is 800 bytes. The Destination Scheduler places the
first unit of the messaae in the rreassigned slot for destination line
R, The scheduler then preassians a location for the first unit of the
naxt messadge for line R to record 9, the next available disk locationmn.
m"he scheduler rlaces the additional records (units) for the <current
magsage seament in Aisk lccations 10 thrcugh 1€. Since this buffer
doss not contain an FOM indicator, the scheduler preassigns the next-~-
huffar locaticn tc record 17.

*n Tigure 30, the second tuffer of the messaqe for line D is
aneued, This is a three-unit huffer with an FOM character in the last
unit. The Destination Scheduler places the first wunit in 1line Dt's
neyt-hu“fer slot at record 8 and rlaces the two additional records in
t+he rewxt available disk locations, records 18 and 19. No
or=assianment for the next-buffer locaticn is made because of the EOM
character in this buffer. The scheduler preassiqned the next-message
s)lo+ for line D to record 5 when the first buffer of this message was
oneu=2d (see Tiqure 28).

. ITn Tiqure 31, the 30-bvte message from line A to line B is queued.
Since this message is contained within a single unit, only +that unit
has +0 he written on disk. The Destinaticn Scheduler rlaces this unit
in +he preassigned next-message location for destination B, record 9.
Vo naxt-huffer lccation needs to be rreassigned, but the scheduler
chanages +he next-message location for line B to disk record 20. The
next available disk location is now record 21.

Tiqures 22 throuah 31 Ado not illustrate all the disk record
pointers. Hcwever, Fiqure 32 shcws the rcinters mentioned above, as
well as the pointers from each subsequent tuffer of a message to the
first buffer of the message. These r¢inters are the base for the
gueu=e~hack chain to be discussed next.

92

Line A

Unit Unit Unit
3 {
Control P?;fBiz € Data Control Data Control Data
Area Area Area
Relative Record 3 [7
VOLUME !
Relative: Record
Message 1
0-3 B C D Buffer 1
Unit 1
12-15
A"
24 - 27 PRENHDR .y
/ &
: .
VOLUME 2
Relative Record
Preassigned Message 1 / Message 1
4-7 D Next D Buffer 1 D Buffer 1
Message Unit 2 Unit-3
16 - 19
?REN‘)G /
28 - 31
VOLUME 3

Relative Record

8-1

20-23

32-35

"igqure 2R.

Preassigned
Next
Message

Disk Cueuing a Three-Unit Buffer

Method of Operation

Line C

~igure 29,

94

Unit 30-Byte Unit Unit Unit
Control >y Data Control Data Control Data Control Data
Prefix
Area Area / Area \// Area
Unit Unit Unit Unit
Control Data Control Data Control .Data Control Data
Area Area \—/ Area / Area
VOLUME 1
Relative Record
Message 1 Message 1
0-3 A B Buffer 1 C D Buffer 1
Unit 1 Unit 1
11\
Message 1 Message 1 Message | Message 1
12-15 B Buffer 1 B Buffer 1 B Buffer 1 8 Buffer 1
Unit 4 Unit 5 Unit 6 Unit 7
24 - 27
VOLUME 2
Relative Record
Preassigned Message 1 Message 1
4-7 E D Next D Buffer 1 D Buffer 1
\ Message Unit 2 Unit 3
Message 1 \ Preassigned
16 - 19 B Buffer 1 B Next
Unit 8 Buffer
28 - 31
VOLUME 3
Relative Record
Preassigned Preassigned Message 1 Message 1
8-11 D Next Next B Buffer 1 B Buffer 1
Buffer Messsage Unit 2 Unit 3

20~ 23

32-35

Disk OQueuing an Fight-Unit Ruffer

Tigqure 30.

Line A - second buffer

Unit
Control
Area

23-Byte
Prefix

Relative Record

VOLUME 1

Relative Record

0-3

12-15

24 - 27

VOLUME 2

Relative Record

4-7

16 -19

28 -31

VOLUME 3

Relative Record

8- 11

20-23

32-35

Unit Unit
Data Control Data Control Data
Area Area
8 18 19
Message 1 Message 1
A Buffer 1 C D Buffer 1
Unit 1 Unit 1
/
Message 1 Message 1 Message 1 Message 1
B Buffer 1 Buffer 1 B Buffer 1 B Buffer 1
Unit 4 Unit 5 Unit 6 / Unit 7
v
Preassigned Message 1 Message 1
E Next D Buffer 1 D Buffer 1
Message Unit 2 Unit 3
Message 1 Preassigned Message 1 Message 1
B Buffer 1 Next D Buffer 2 D Buffer 2
Unit 8 Message Unit 2 Unit 3
o
Message 1 Preassigned Message 1 Message 1
D Buffer 2 Next B Buffer 1 B Buffer 1
Unit 1 Message Unit 2 Unit 3

NDisk Cueuing the Second Ruffer

of a Message

Method of Operation

95

Line A

Unit ' E Unit Unit
Control 30-Byte |Data O Control Empty Control Empty
Area Prefix M Area Area
A
Relative Record 9
VOLUME 1
Relative Record
Message 1 ‘Meésage 1
0-3 A B Buffer 1 C D Buffer 1.
Unit1 Unit 1
L1\
Messagel Message 1 Message 1 Message '1
12-15 B Buffer 1 B Buffer 1 B Buffer 1 B Buffer 1
Unit 4 Unit § Unit 6 Unit 7
24 - 27 {
VOLUME 2
Relative Record
Preassigned | Preassigned Message 1 Message 1
4~7 E Next D Next D Buffer 1 D Buffer 1
Buffer Message \ Unit 2 Unit 3
Message 1 \ Preassigned Message 1 Message 1
16 -19 B Buffer 1 B Next D Buffer 2 D Buffer 2
Unit 8 Buffer Unif 2 Unit 3
28 - 31
VOLUME 3
Relative Record
) Message 1 Message 2 Message 1 Message 1
8-1 D Buffer 2 B Buffer 1 B Buffer 1 B Buffer 1
Unit 1 Unit 1 Unit 2 Unit 3
//
‘ Preassigned
20 - 23 B Next
Message
32-35

Tiagure 31,

96

Nisk Cueuing a One-Nnit Message

Queve-Back Destination
| — —

30-Byte 23-Byte 23-Byte
e Q_/ e - / ‘Prefix pete
\ Queue-Back Source

Additional Records for Buffer 2

Additional Records for Buffer 1

Data Contiquous

Contiquous

Data Additional Records for Buffer 3

Next Message Contiquous

ZOm

LEGEND

BUFFSIZE = 300
KEYLEN =100

Tigqure 32. Disk Cueuing Pointers

Queuzs-back Chain: A dgueue-back chain is a time~-sequential record of
the sending and receiving message traffic for the terminal or
terminals of a specific Destinaticn OCB. TCAM maintains this chain
for the message retrieval function of application progqrams. A message
that has already been sent can te retrieved by source (input) or by
destination (cutput) sequence numkter.

Yhen the first buffer of a message is trosted to its Destination
NCRB, +the Destination Scheduler moves the current queue~back chain
pointer (OCBORACK) from the Destination QOCB to the PRFHQRCK field in
the buffer vprefix and then stcres the disk relative record numker
(address) assignment of the first unit of the tuffer in the queue-back
chain field of that Destination QOCB (QCBOEBACK)Y. The ©presence of an
address for the first truffer of a message in the queue-back chain of
the TNestination OCB indicates that the messadge is to be queued for the
terminal or terminals of the Destination QCE.

When the last buffer of a messaqe is tpcsted to its Destination
NCR, +t+he Destination Scheduler uses the scurce destination offset in
the huffer prefix (PRFSPCE) %o gain access to the asscciated terminal
entryv. The 1lccation of the Destination QCB for the sending (source)
terminal is in this terminal entry. The scheduler +then rlaces the
current Destination OCP gueue-kack <chain rointer (QCBQRACK) in the
text queue-back field in the buffer prefix (PRFTQRCK) and places the
disk relative record number (address) of the first unit of the last

Method of Operation 97

buffer in the gqueue-btack chain of the Destination QCB (CCBCBACK) for
the source terminal. The presence cf an address for the last buffer
of a message in the aueue-back chain of the Destination QCB indicates
that +the message was sent from the terminal or terminals rerresented
hy that Destinaticn QCB.

An examination of the queue-back chain of a specific Destination
OCB indicates exactly which messages were sent from or received by the
related terminal or terminals. If the address value in the chain is
for the first tuffer of a message, the message was received by this
terminal: if the address value is for the last buffer of a message,
the message was sent by this terminal. Since the prefix c¢f a first
buffer vpoints to 1its subsequent buffer segment (PRFNTXT) and the
vprefix of a sutsequent huffer seqgment. pcints to 1its first buffer
(PRTCHDR), the entire message is available from the queue-back chain
pointers. '

Note that if a message is only one tuffer 1long, 1its address
location goes in both gueue-back chains.

"igure 33 1illustrates the queue~back chains for two Destination
NCRs. T™he follcwing message sequence applies to this examrle:

Message 1 - sent from Station A to Station B
Message 2 - sent from Station B to Station A
Messaqge 3 - sent from Station A to Station B

Nuplicate-Header Messages: When a message is identical to a message
sent previously (as 1in multiple routing), it is called a duplicate-
o __-header messadge. This ccndition is indicated by a flag in
hit 4 of +the status field (PRFSTAT1) of the 30-tyte buffer prefix.
The Nestination Scheduler handles a duplicate~header message -just like
any other message except that no additional record 1locations and no
next-huffer lccation are assigned. The first unit of the first
segment of a duplicate-header message contains the same pcinters that
are in +the first unit of the first seagment cf the original message.
TCAM modules use these pointers to obtain any additional wunits and
huffers in the messaqge,

RPN Queuing: TFEFO (first-ended-first-out) queuing is used in sending
messages fromrm the message gqueues dJdata sets to destinations. This
agueuing allows TCAM to send the messages that end (EOT received)
~first, rather than the messages that begin transmission first.

Since the segments of a message cannot be kept in main storage
until the message completes, they must be queued (placed on the disk)
as +*hey are received. This results in a FIFO (first-in-first-out)
message gueue.

98

Destination QCB Destination QCB
for Station A for Station B

QCBQBACK "~ QCBQBACK

_-
/ ’23-Byte Prefix
H‘ PRFTQBCK IMesscge 3~ Subsequent B;|

-

Indicates a message sent-from Station A

—
-
Ve
/
/ 30-Byte Prefix
{ PRFHQBCK [Message 3 = First Buffer Indicates a message sent to Station B
\
\ 23-Byte Prefix
\ N PRFTQBCK |Message 2 = Subsequent Bfr Indicates a message sent from Station B
AN
. 30-Byte Prefix
\‘fPRFHQBCK—[Messuge 2= First Buffer j Indicates a message. sent to Station A
I : ‘
/
| 23-Byte Prefix
\
4 Message 1 - Subsequent Bfr Indicates a message sent from Station A
30~Byte Prefix
Message 1 = First Buffer Indicates a message sent to Station B
LEGEND:

—— — 4 Queue-back chain for Station A

~———=P Queuve=back chain for Sf&rion B

Tigure 22, Exanmple of Two Queue-Back Chains

To create a chain of messages in FEFO order, the message with the
orevious FEO™ received for a Destination QCE must chain tc the message
with the current FOT, regardless of which message tegan transmission
first. This <chaining pointer cannot be written until after the
currant TOT is received. When the current EOT is received, one
regssage is ccmpletelv on disk and the other is on disk except for the
last seament. A temporary chain of first-buffer prefixes is all that
is required: therefore, the FEFO pointer can be written in the data
field (at DATFET0O) of the record that ccntains the €first-buffer (30~
hvte) vorefix c¢f the message already on disk at the same time the EOT
segment of the current message is written.

when the first-ended message is to be sent and its first seqment
is read from disk, the FEFO pointer is read from the data field of the

Method of Operation 99

record and vlaced in the FFFO field of the SCB. When the first buffer
is mnassed +to the outgoinag MH, the STARTMH subtask updates the FEFO
field in the Destination QCRBR. The "message serviced" flag (X'40') 1is
written in the disk data field along with the FEFO pointer when the
vom is successfully sent.

™he Nestination OCR contains twc FEFO pcinters: the disk record
address of the first FEFC message to send to the destination
(OCR®FEFD) and the disk record address cf the last message completely
received (QCRLFFFOQ). :

"igure 34 illustrates FEFQC queuing for five messages routed to the
same Aestinaticn. Megssages 1, 3, and O require two buffers, and
messages 2 and 5 recuire one Dbuffer. The first buffers of the
megssades arrive in the crder in which the messages are numbered. The
messages complete transmission in the fcllowing order: 2, 4, 3, 1, 5.

*n this example, assume that the first tuffers of messages 1, 2,
R, and U are already written on disk, message 2 is comrlete, and the
first huffer of message 5 is currently being transmitted. The FEFO
cueuing activity rroceeds as follows: :

° Messade 2 is written out on the 1line. No FEFOC pointers were
written when message 2 completed because it was the first message
for the destinration.

- Megsage 4 completes being received. Message 2 is still sending.
OCR¥PEFN and OCBLFEFO are urdated to rcirt tc disk address 8 and
no Aisk pointers are written for FEFC queuing.

- Message 3 completes being received. A FFFO pointer to message 3
is writtern in the disk data field of the first unit of the first
huffer of message U, The Destinaticn QCB field QCBLFEFO is
updated to voint to disk address 7.

- Message 2 completes being sent. Message 4 is to be sent out.
7hen the first buffer of message 4 is sent to MH, its disk data
field is used to update the OCRBFFEFO field of the Destination (QCB
to point tc disk record 7.

» Message 1 completes teina received. A FEFO pointer to message 1
is written in the disk data field c¢f thke first buffer of message
3. M™he Nestination QCR field QCBLFFFO if updated to point to disk
address 1, the location of the first buffer of message 1.

- Message 5 completes teing received. A FEFC pointer to message 5
is writtenr in the disk data field of the first buffer of the last
messade received, message 1. The QCBLFEFO field dis wupdated to
disk address 10, the 1location of the first unit of the first
tuffer of message 5.

» Messadge U comrletes teina sent. Message 3 is the next message to
he sent. When the first buffer of messaqge 3 is sent to MH, its
Aisk data field is ucsed to update QCRFFEFO to point to message 1
in Aisk lccation 1, the next message tc be sent.

100

] Messade 3 comrletes being sent. Message 1 is the next message to
be sent. When the first buffer of message 1 is sent to MH, its
Aisk data field is used to update QCBFFEFO to pcint to message 5
in Aisk location 10, the next message to be sent. .

. Message 1 is completed and message 5 is sent out, The OQCBFFFFO
vointer is cleared.

Note that +the TFEFO chain is, in many cases, incomplete. In the
example there is no ¥EFQ pointer from message 2 +to message 4. If
messages for a destination are always conmrletely received after the
previous messade has been sent out, no FEFC chain is built,

"0ld Oueues: When the FOLD macro is issued in the cutgcing section of
an MH, a special hold gueue is built for multidrop terminals on a line
that is gueued by line.

When gueuing multidrop terminals by line, the messages for the
different terminals are intermixed on the destinaticn gqueue., The Send
Scheduler uses the FEFC chain to read one "first buffer of a message"
after another. When a message for a held terminal is reached, it is
placed in the hcld queue chain.

A vointer to the first held message is placed in the QCBINTFF
field of the Destination OQCB. When +the next held mressage 1is
~ encountered, its address is placed in the data field of the first unit
of the first buffer of +the previous held message, This pointer
overlays the FEFO pointer and is used when the messages are being
released. '

This gqueuing continues wuntil a REL¥ASE command occurs. The
messaces are then sent in FEFO order by fcllowing the chain that was
built for +the hold aueune, The hold gqueue is merged into the FEFO
chain by making the first held message for +the OQCE the first FEFO
messade and ty making the last held messaqge roint to the message that
was the first FEFC messagqe.

Nueuing by terminal must be specified for dial lines, and messages
are not intermixed cn a message gueue. In this case, only cne message
is in the hold queue, because the Send Scheduler determines +that the
terminal is held and does not reaguest any mcre mescages.

Peysable Disk Cueuing

Peusable disk queuing uses a wrapped message queues data set, on which
serviced messades are overlaid by new messages entering the systen.

The DNestination Scheduler activates the Reusalkility-~Cecpyvy subtask
t0o keep the data set "cleaned up" to avoid losing messages that have
not heen serviced. Message units are queued until 3/8 of the data set
is full. At this point, the Reusability-Copy subtask examines the
next-messade field in each Destination QCR for this data set. TIf any
next-message field has a location value that falls within the scope of
+he first gquarter of the data set, the suktask writes a dummy cancel
message record at the specified next-messaqe address and wurdates the

Method of Operation 101

Message .1 - First Buffer

30-Byte Message Data D'isk Data
Field

Prefix
I
I
|
\
\
\
\
Message 2 - First Buffer
30-Byte Disk Data
Prefix Message‘ Data Field
[
]
|
\
\
\
\
Message 3 - First Buffer
30-Byte Disk Data
Prefix Message Data 1. 14
T
|
]
{
\
\
\
Message 4 - First Buffer
30-Byte Disk Data
Prefix | Messoge Data gy
T
I
|
\
\
\
\
Message 5 = First Buffer
30-Byte Disk Data
Prefix Message Data Field
LEGEND

-« g Next First-Buffer FIFO Chain

———1pp FEFO Chain

*igure 34,

102

‘Disk Relative Record Address

1

Nisk Cueuing - FT¥0 and FFFO Pointers

next-message field in the QOCB to the current address value at AVTRADDR
in the AVT. This keeps new messages in fairly close proximity on the
data set.

The Reusability-Copy subtask vperforms the next-message update
process each gquarter of the way through the data set from this point
on. TFor example, after 5/8 of the data set has been assigned +to
units, the Reusability-Copy subtask compares the address values in the
second quarter to the next-message location specified in each
Nestination OCB for this data set.

The Peusability-Copy suttask sends to the specified alternate
destination any unserviced messages located in the gquarter that
vrecedes the part of the data set that is getting dummy cancel record
messades. The subktask does this ty reading the o0l1d message from its
current location and enqueuing the message to its alternate
dAestination, thus <causing the —©®message tc be written in the currcent
zone of the data set.

If a dﬁplicate—header message is more than a quarter of the data
set away from +the first wunit cf the first seqment of the original
massage, the Peusability-Copv subtask copies the entire message.

The Reusability-Copy suttask gains control each time the address
value reaches a <zone boundary (the middle of a quarter) of the data
set. The only exception is that the first time throuqh the data set,
it 1is not activated until the address value is 3/8 of the way through
+he data set.

Figqure 35 illustrates the part of the disk message queues data set
+hat is issued cancel messages and the part in which messages are sent
to alternate destinations when the address value is at a specific zone
boundarvy.

Message Queves Data Set Message Queues Data Set

0 0

—\Dummy Cancel Messages \Send Messages to Alternate Destination
3/4 1/4 3/4 1/4
_Jummy Cancel Messages
2/4 Zone Boundary = Current Value of Address 2/4

Zone Boundary = Current Value of Address

Figure 3%. “ones for Servicing and Updating a Reusable Disk Message
Queues Data Set

Method of Operation 103

Main Storage Oueuing

Main storadge queuing chains the actual main storage addresses of
'message units, rather than wusing relative record numbers. Once an
aptire messaage is queued, all the fields in the buffer prefix look the
same as in disk agueuing, except that the Destination Scheduler nuses
the additional units field (PRFXTRA) of the tuffer prefix to hold the
main storade address of this unit and the current record field
(PRFCPCD) to hold the disk address 1if disk backup is used. The
scheduler uses the TIC field of the twelve-byte unit control area that
nrecedes each unit to chain units together.

Main storage queuina does not assign locations ahead; rather, the
Nestination OQCB contains the address of the previous first-buffer
seament and the SCRBR contains the address of the vprevious subsequent-
huffer seament. When the first seament of a message is received, the
address of the ©previous first-buffer segment 1is 3inserted in the
Tagtination OCB in the previous first-buffer field (QCBCPBRHD). When
A message seaqment other than the first-buffer segment is received, its
3A4dress is placed in the previous subsequent-buffer field of the SCB.

"he Destination Scheduler does not build a gueue-back chain for a
main storage message gqueues data set.

Main Storage Queuing with Disk Backup

Tf the user specifies main storage queuing with backur on either
reusable or ncnreusable disk, the message segments are first queued as
descrihed under '"Main Storage OQueuing" and then the data is copied
into buffers for the disk message gqueues data set and queued as
Adescribhed in the secticne on disk gueuing.

T¥ +he Destination Scheduler finds that the main storage message
gueu~s data set does not contain enough free units to gueue a message,
the scheduler gueues the message cn disk cnly. Main storage gueuing
resumes as soon as space is availatle. The CPB Initialization routine
retrieves the messages queued on disk <qust as if they were placed in
the main storage data set.

Special Oueuing Ccnsiderations

Dunlicate-Header Messaqge that Spans Oueue-Type: A duplicate header
message that srans gueue-type is one that is tvosted to a Destination
OCR +hat is to te gueued in a manner other than that of the original
message. Tor example, the original message is directed to a
Destination OCP that uses reusable disk gqueuing and the duplicate-
header message is directed to a NDestinaticn OCEB that uses main storage
gueuing with no disk hackur.

Tf +the entire message does not have tc be copied, the Destination
Scheduler moves the Send Scheduler STCB to the STCB chain of the 1ICB
(if i+ 1is not already there) to service the message, If the message
has +o he copied, the Reusability-Copy subtask is activated.

104

Nestination OCP for Main Storage Queuing with Disk Backup: In this
situation all recalls are from disk; therefore, the duplicate-header
messadge is written on the disk data set only.

Main Storage Queuing when Units Pun Out: If a main storage message
agueues Aata set fills up with data and there is a message segment unit
+0 Ye gueued, the Destination Scheduler acts according to the type of
unit being processed. TIf the unit is not the first unit of the first
seqmant of a messade, the scheduler gets the first segment of the
message, flaas the messade lost, and frees all the queued units except
the first one.

Tf the unit to be queued is the first unit of the first segment of
a message and one unit is available in the data =set, <the scheduler
gueues the unit and flags the message lost via a flag in that unit.
Tf no unit is availahle or if the count of units in the main storage
aqueue exceeds or equals MSMAX (strecified cn the INTRO macro) in the
data set, the scheduler queues the btuffer unit that contains the first
unit of the message into the data set, does not return a unit to the
buffer wunit rool in its place, and sets a flag to stop receiving
activity. ©PReceiving is resumed when enough messages have been sent to
remove enough units frcm the message gqueues data set to lower the
number of units used to or below MSMIN (strecified on the INTRO macro).

Ouneuing Managdement Routines

The disk and main storage gueuing functions -§just described are
verformed by the Destination Scheduler. The receive schedulers and
the send - schedulers handle the messages before and after the queuing
is performed. The TCAM Dispatcher activates each of these routines
when its STCR has top priority in the STCR chain of an LCB. 1A send
scheduler may also be activated frcm the STCB chain of a Destination
OC®, :

3t 1line open time, each LCE has an STCB for a receive scheduler
built in it. This receive scheduler STCR starts in the third word of
the LCR., This wcrd is also the STCR pointer field. (See Figure 36€.)
The high-crder byte of the third word of the LCR is the activation key
0of the STCR,

Fverv Nestination OCB has the same format regardless of whether it
represents an arplication program or a terminal. If +the user
indicates qgueuing by line, there is cne Destination QCB per line; if
gueuing by terminal is specified, there is one Destination OQCB per
terminal.

Rvery Destination OCB has an STCB pointer in its third word, and
after oven time it voints to the send scheduler STCR that starts in
that same word. The 1link field of the send scheduler STCB is
assembled to point to the STCR for the Destination Scheduler routine.

Fiqure 3¢ shows the pointers in an LCB and a Destination QCB after
line open time.

Method of Operation 105

LCB Destination QCB

Key QCs 4\ ~ Key QCB 4‘
Priority Link Priority Link
N Activati
Receive Aﬁ‘;’:""” STCB 4‘ Send CKI:: jon STCB 4\
Scheduler y Scheduler - -
sTCB Priority STCB Priority Link

Destination Scheduler STCB

Activation
Key
Priority . 00
Tiqure 36. Format of an LCR and a Destination CCPR after Line Open

m™ime

The priorities of the receive scheduler STCB and of the send
scheduler STCRB are determined when the user srecifies whether he wants
gsend oOr receive priority fcor a line. When the send scheduler STCB is
moved from the STCR chain of the Destinaticn QCR to the STCB chain of
the ICR, it is inserted in that chain by priority.

“Then a buffer is tposted to a Destinaticn QCB, the TCAM Dispatcher
activates +the subtask of the first STCB in the STCP chain, The first
ST™CB may be the one for the Send Scheduler or the <cne for the
Nestination Scheduler. If +the Send Scheduler is in the chain, it
bypasses contrcl to the Pestinaticn Scheduler.

The send scheduler STCB is removed frcm the STCB chain of a
Destination OCRB when either an initiate mode message or the last
huffer of a message 1is tposted +to the Destination (QCB. The
Destination Scheduler gains control , tests for the conditions djust
mentioned, and activates a subroutine of the first scheduler that
appears in the chain. This subroutine branches to the TCAM Dispatcher
requesting that - its STCB be removed from the STCB chain of the
Destination OCP and placed by pricrity on the STCB chain of the LCB
for the 1line. This action indicates that the send scheduler has a
message to send. When its STCB is twaiting in the STCB <chain of a
Destination OCRB, it is waiting for a comrlete message to ke tposted.

*igure 37 shows the rointers in an ILCB and a Destination QCB with.
send prioritv after a full message has been received. :

An LCB is tposted to the ready queue when the line is free after
an T/0 operation has been comrleted. The OCB rointer in the first
word of the TCB is set to point to the LCB itself, so that when the
LCR 1is tposted to the ready queue, it functions as an RCE, a QCB, and
an LCPR,

106

LCB Destination QCB

Key QCB 4‘ Key acs A
Priority Link Priority Link
Receive Activation STCB /f\ Ac::vufion STCB IP
Scheduler Key ey
sTCB . Send
Priority Scheduler Priority Link
STCB

Destination Scheduler STCB
u Activation
Key

Priority 00

Pigqure 37. TFormat of a Send Priority ILCB and DNestination CCPR after a
*ull Messade Has Feen Receiveqd

™e Send Scheduler gets centrcl of a free line when it is the
highest priority STCR in the STCB chain of an LCB trosted to the ready
aqueue. The Send Scheduler initializes the LCB for sending and tposts
an WRR for the necessary huffers to the Disk I/0 QCB. After the
messade has Peen sent, the LCR is tposted free again and put on the
ready gueusa. Since the Send Scheduler did not remove its STCB from
+ha ST™CR chain of +the LCP, it regains ccntrol to determine whether
ther= is another message to send. If there is ancther message, the
functions are the same as above. If there is not another message, the
Send Scheduler +trosts the 1line free and returns to the Dispatcher
requesting that its STCE be removed and placed in +the STCB of 1its
Nestination OCPR to await another ccmplete cr initiate mode message.

The MNestination Scheduler SICR is always the last member of the
Sm™CR chain of a Destination QCRB. Whenever a tuffer is +tposted to a
Nestination OCB, the Destination Scheduler eventually gains control to
agueue the buffer into the specified message gqueues data set.

The purpose of the Destination Scheduler is threefold:

- To chain the segments of a message together,

) To chain messages related to a specific Destinaticn QCB together,

. To build a dgueue-back chain, where applicable, tc allow the
retrieve function tc be rperformed. (There is no queue-back chain
for main storaage gueuing.) :
These functions can ke performed with the message segments gqueued

in main storage, on a direct-access storage device (disk), or in main
storage with kackup on reusable or nonreusakle disk.

Method of Operation 107

nisk I/0 Managerment Routines

The Destination Scheduler trosts the units of a buffer to the
nisk T/0 OCB after each unit has been assigned an address value for
t+he 4isk message queues data set. When a full buffer is tposted to
+he Nisk I/0 0CB, the disk I/0 management rcutines are activated.

Tunctions. . of CPR Tnitialization: CPB Tnitialization 1is +the only
subtask pointed tc by the STCR chain of the Disk I/0 QCB. This module
@ains control when full buffers or ERBs are trosted to the Disk I/0
NCR? or when the CPB Cleanup routine branches tc it, (The CPB Cleanup
routine is actually a part of the CPB Tnitialization module.)

The primary function of CPB Tnitialization is to ktuild a CPB for
+he element that was tposted to the Disk I/0 QCB. Partial CCWs are
huilt for the CPR and the CPR is added in FIFO order +to +the input
cueue for the EXCP Driver routine. The CPB Initialization routine
then branches toc the EXCP Criver routine,

Then CPP Tnitialization cains ccntrol, it queues the element from
the ready aqueue ontc its no-CPR queue in FIFC order. TIf the request
is to flag +the messaqge serviced, the element 1is placed at the
heginnina of +the no-CPB gueue. This is the queue of elements to be
processed by this routine. CPB Initialization then proceeds to
procass the first element on the nc-CPR gueue. The routine rrocesses
each element on the acgueue, in turn, until it either processes all the
alements on the cgueue or uses all the CPRs available from the CPB free
vponl. Tf, during the vrocessing of a buffer, the routine runs out of
available CPRBs, it returns the unprocessed rart of the buffer to the
first of the no-CPB gueue and puts the processed portion on the EXCP
Drivar input gueue. 7ITf the element being rrocessed 1is an FRB, the
above holds true only if no CPB 1is available. If one CPB is
available, the routine rrocesses that CPR, rlaces the CPB that refers
to the FRB c¢n the EXCP Driver input gqueue, and removes the ERB fronm
the no-CPR gueue.

When the CPR Cleanup rcutine tranches to CPB Initialization, it
processes the nc-CPB qgueue as described atove and continues to place
~P3s on the TXCP Driver input gqueue. When entered from the
nigpatcher, the elemert <can be either a Ybuffer or an ERR. This
2lemant must te placed in FI¥0 order on the no-CPB gqgueue so that
processing can start from the beginning cf this queue.

4 buffer cn the no-CPR aueue always causes the CPR TInitialization
routine to build a CCW tc read or write key and data for the unit, or
t+o build a CCW to read or write data for the FE¥O pointer, and to fill
in +he address value representing the reccrd this unit of the buffer
is to be associated with. T™he other activities of the routine depend
on the characteristics of the buffer itself.

e A bhuffer to be put on disk. CPB Initialization chains each buffer
unit to a CPR and tposts th2 unit of the CPR to the Buffer Return
NCR +0 be put in the buffer unit pool. The routine then places
the CPBs - one for each tuffer unit - in FIFO crder on the EXCP
Driver invut aueue. Tf +this buffer is the last segment of the
messade, the routine builds +the TFEFC rointer and places the

108

address of the first unit of the first tuffer of the message in
the FEFO chain.

. A buffer of a canceled message. 7Tf the message is disk or disk-
backup aueued, the CPB Tnitialization routine sets the cancel bit
to be written in the data field of the record that contains the
first ‘tuffer of the message cn disk, and places the CPBs for the
data field and the buffer on the EXCP Driver input queue.

) A _buffer fcr a serviced last seqment. If the message main storage
gqueued and not a duplicate-header message, the CPB Initialization
routine trosts all the units of the message to the Buffer Return
OCR. Tf the message 1s main storage queued and nct the 1last
duplicate-header message, the routine trosts the first unit to the
Buffer Return OCB and subtracts one frcm the count of duplicate-
header messages. The FEFO pointer in +the Destination OQCB was
uvdated when the first buffer started through MH. If the message
is disk queued, CPB Initialization sets the serviced bit to be
written on disk.

) A _duplicate-header buffer. The CPB TInitializaticn routine puts
the CPB for the first unit on the EXCP Driver input queue and
tposts the ruffer to the QOCB specified in its LCB.

Tf an TFTRB avppears c¢n the no-CPB dueue, the SCB has been
initialized with the address of the record to te read. If the ERB is
an initial request, only one record can Lte read, If an initial
request TFRR is for a main storadge queued record, CPR Tnitialization
determines whether the record is available and, if it is, branches to
t+ha (CPB Cleanur routine (there is no I/0 tc be executed), Otherwise,
the routine builds CPBs for as many disk records as the pointers in
the last-read buffer allcow, or until the requested buffers will be
filled.

‘Once the CPR TInitialization routine has prccessed all the elements
on the no-CPR cgueue or has used all the CPRs availatle from the CPER
free pool, it branches to the EXCP Driver routine,.

"unctions of the FXCP Driver Routine: The functions of the FEXCP Driver
routine are to complete the building c¢f the CPBs, to chain them
together, and tc issue FXCP commands to perform all disk I/C functions
concerning the disk message qgueues.

Nn the FXCP Driver input queue, each CFB contains +the read or
write CCW, the record number (address), a chaining pointer to the next
c®B, and a unit (filled in for a write only). BRefore an I/C operation
can occur, the disk extent and cvylinder identification must be filled
in and converted to MBBCCHHR format. The TXCP Driver routine issues
a BAT to its MBPCCHHP Convert subrocutine, which uses values set during
the open of this message dgueues data set and the address value to
calculate the MBBCCHHR value. The "M" or extent ID is an index to the
hlcck of consecutive IORs, which, when multirlied by the size of an
T08 and added to the address of the first 1I0B, points to the
appropriate TOB and its gqueues. There 1is c¢cne IOR per volume {or
extent) .

Method of Operation 1C9

For a disk message gueues data set, the IOB for each extent is
extended to include an FXCP busy flag, a "lcck door" flag, a "cc"
identifier, a rTetrv gueue, and a new queue. An EXCP gueue is located
in the reqular TOP at TORSTAPT.

> The FXCP tusy flag (IOBBUSYN) is set while T/0 is being executed
for its ICE. ’

) The "lock door" flag (IOBXLOCK) is set while enabled code 1is
~oputting CPBs cn the retry queue. '

. The "cc" identifier (IOBYCC) is the cyvlinder number of the 1last
grour of CPRPs put on the retry queue. This is the top priority
cvlinder fcr rew CPRs being put on the rew queue,

) The RXCP gueue (TOBSTART) is tte chain cf CPBs for the cylinder
currently ready for I/0 to be executed.

. The retry queue (TOBXRETO) is the chain of CPEs for the <cylinder
that 1is tc have I/0 executed after the CPBs on the EXCP queue are
processed. If I/0 is beinqg executed for the CPBs on the EXCP
nmueue and a CPB arrives for the cylinder being read, the CPB is
put at the end of the new queue.

» The new qgueue (ICBXNEWQ) is the chain of CPBs for all +the other
cvlinders, 1in order from the next available cylinder after the
retry queue tc the end of the data set, then starting with the
cylinder at the beginning of the data set again.

The TFYCP Driver routine processes the CPBs on its input queue one
at a time in FIFO order. When a CPB is placed on its rproper 1IOB
dueua, the chaining flags are set and the seek/search CCWs are built
in the CPR as appropriate. If there 1is nct a channel ©program in
proaress for this 7TOBR, ©EXCP Driver issues an EXCP command to start
one. :

Af+ter FYCP Triver has inserted all the CPBs on its input queue
into an TOR aueune, it scans all the TOBs tc rerform two functions:

- Tf there is nct a channel program in rrcaress for an IOB that has
CPBs +0 be processed, this module issues an EXCP command for that
TCR,

. Tf there are no CPBs on the retry queue and there are CPBs on the

new agueue, this module transfers the CPRs on the first cylinder to
the rtetrv queue.

After all +the above functions are completed, the EXCP Driver
routine branches to the TCAM Dispatcher :

ctions of Tisk FEnd Appendage: When the channel finishes executing

I/0 for a CCW chain, a Disk End Interrupt causes the Disk Fnd
pendadge to gain control. The function cf Disk End Aprendaqge is to
spose of the chain of CPBs just processed.

h
e

u
+h
D
i

o> o+ o

110

Disk ¥nd Appendage enqueues the CPBs that are on the EXCP queue of
t+he TOB onto the disk end queue. The arrendage then tpcsts the CPER
Cleanup OCB to itself and puts it on the disatled ready queue (if it
is not already tposted and on the ready gqueue). This causes the CPB
Cleanup routine to be activated to nrocess the CPBs on +the disk end
gueue.

Disk End Appendage then 0S posts the TCAM ECB complete to indicate
the completion of I/0 activity.

Disk F¥nd BAppendage examines the retry queue cf the I0OB. If the
"lock door" flaag is set or if there are nc CPBs on the queue, the
apvrendage returns to IOS with channel activity storped, If there are
CPRs on the retry gueue, they are chained tc the EXCP gueue; and the
apoendade returns to T0S to restart on the rew CCWs,

Functions of CPR Cleanup: When the CPB Cleanup QCB that was tposted to
itself by the Disk End Avpendage gets toc the top of the ready queue,
the TCAM Digsratcher .activates the CPB Cleanup routine in +the CPB
Tnitialization module. The CPB Cleanup routine can also be activated
vhen a buffer from the Ruffer Return subtacsk is tposted +to the CPB
Cleanup OCEB or by a branch from the CPB Initialization routine when a
read overation was requested for a record that is queuved in main
storage,

The function of the CPB Cleanup routine is to free the CPBs for an
T/0 overation that has been completed. TIf the routine is activated by
+he CPR Cleanup OCRE tposted to itself, there are CPBs tc be handled
from the disk end queue. The CPR Cleanup rcutine rrocesses these CPBs
As descrited telcw.

Tf the CPR Cleanup routine is activated by a buffer on the ready
agueue, +there 1is a CPB(s) associated with the same ERB as this buffer
on the no-huffer queue. The CPB(s) is found, rput on the disk end
gueue, and then processed normally. ,

The CPB Cleanur routine processes the CPBs from the disk end queue
one at a time in FIFO order. If the CPR is from a write operation,
the routine returns the CPB to the CPB free pool. If the CPB is from
a read operation, its unit ccntains good data that has to be
incorvorated into a buffer. If a buffer is available from the buffer
unit pool, the CPB Cleanup routine either chains the buffer off the
chain field <c¢f the FRR that was vpreviously tprosted to CPB
Tnitialization, or gives the buffer unit to the CPB and chains the CPB
unit to the ERB. The routine transfers the data from the CPB to the
proper unit of the buffer and returns the CPB to the CPB free pool.
Tf a buffer 1is not available, the routine rlaces the CPB on the no-
buffer gqueue anéd rlaces the FRB in the waiting ERBR chain of the Buffer
Return QCR.

After all the CPBs on the disk end gqueue have been processed, the
CPB Cleanup rcutine branches to CPB 1Initialization. This branch
encsures that EYCP Driver will get control again to process CPBs that
may still be waiting on the retry gueue. It also ensures that
slements (FRRs cr buffers) that are waiting for CPBs have another

chance to be processed. :
Method of Operation 111

Multiple Arm Surpcrt

Multivle arm support for a disk message gqueues data set ensures a
spread of messaaqe traffic over more than cne veclume of the data set.
This suvvport arises from the wav the T0Bs and EXCPs are configured and
+he way the records are numbered. (See Disk Queuing earlier in this
section for a discussion of record numbering.)

“hen the data set is opened, an I0B is built for each volume,
("here 1is. one extent fcr each volume.) This allows TCAM to issue
several EXCPs, one per IOR or extent. Performance increases when I0S
has sevaeral TXCPs to work on.

Tf all tte volumes of the data set are on one channel, maximum
activity is not achieved, because when two requests for I/0 are
outstanding, cnly one can be honored. There can only ke an overlap of
seek time. If the records are on different volumes that are on
di fferent channels, the I/0 requests can be executed concurrently.

Record numbering on the disk data set is by cylinders, A1l the
records of a given track are numbered consecutively before gcing to a
Aiffercont volume. Also, all the tracks for a cyvlinder on a volume are
numbered before going to a different cylinder; therefore, all the I/O
for a agiven cvylinder can te accomplished befcre entering the appendage
to +ell the I/C Supervisor (I0S) to seek another cylinder, At this
point, a retry for other records for the same cylinder is executed if
+he CPBs on the retry aqueue are for this cylinder. This prevents
moving the disk arm. The channel enters as though there is a fresh
wvCcp, If a change of cylinders is necessary, the channel lets another
request for I/C take ccntrol while the arm is moving.

Once a track of a cylinder on a given volume has been assigned
record numhers, a track of a cvlinder on ancther volume 1is numbered
with +the next consecutive values of address. As a result, traffic is
distributed across the volumes.

igure 27 illustrates the record numbering scheme for a data set
t+hat has four 7records per cvlinder <¢n three volumes. Tf three
additional records of a message fall together in record numbers 4, 5,
and & of +the volumes in Fiqure 27, they can be retrieved with one
search and three reads. If the first unit is in record number 3, the
searches for the entire message can be overlapped.

Mul+iple arm support is designed to gain access to the data with

3 sweep of the disk arm from +the outside cvlinder inward. This
eliminates time-ccnsuming disk arm movement.

SPECIAL MFSSAGEF HANDLING FUNCTIONS

7013 Function

The hold functicn may be activated by a HCLD macro in an outmessage
suhgroupr; a terminal may be selected to be held if an attempt to

112

transmit a message +to it fails. Terminals using main-storage-only
gueuing cannot te held. Buffer Dispositicn activates the Hold/Release
Toerminal routine, which sets the "hcld" bit in the aprrorriate entry
in the Terminal Table. This prevents messages from being sent to the
terminal. The messade in errcr for the terminal 4is placed on the
held-FRFO chain in the Priority QCBR.

A terminal «can be held at any time by Operator Control. 1In this
case, no messade is placed in the held-FFFO chain, but the terminal is
marked as held in the Terminal Tatle.

Tf messages are being queued ty terminal, the Destination OCB is
marked as held. The Send Scheduler does nct attempt to send messages
to the specified destinaticn, even though messages are placed on the
destination aueue.

Tf messages are Yheing aqueued by line, the appropriate terminal
entrvy is marked as held by the Hold/Release Terminal rcutine or by
Nperator Control. The Send Scheduler attempts to send messages as
usual, since it does not recogqnize that there is a held terminal on
+he 1line. When the Send Scheduler requests a message destined for a
held terminal, CPB Initialization removes the message frcm the TFEFO
chain of messages and places it on the held-FEFO chain.

"hen the +terminal is released at the end of the specified time
interval or by Cperator Control, the Hold/Release Terrwrinal routine
takes the held messages from the held-FEFO chain and places them at
the head of the destination-FEFO chain, on a Priority QCB basis, and
turns off the appropriate terminal entry "hold" bit. The Send
Scheduler mav then transmit these messages normally.

Cancel Messade Function

‘The cancel messadge function allcws the user to cause immediate
cancellation of a message if anv of the errors specified in the error
mask operand of a CANCELMG macro should occur. If the error mask 1is
omitted or 1is specified as all zeros, the message 1is canceled
unconditionally.

The error mask is examined in the inmessage subqgroup. If the
nessage 1is tc Yte canceled, Buffer Disrcsition activates the Cancel
Message routine, which sets a flag in the buffer prefix to notify the
NDestination Scheduler and the CPB Initialization routine to cancel the
message currently being received.

Tf the inceming message is placed cn the disk message queue, it is
not placed in the TEFO chain of messages. No attempt is made to send
the message. CPB Initialization cancels the message by setting the
"canceled" bit in the data portion of the header field in the message.

If main-storage-only daqueuing is teing wused, +the Testination
Scheduler places the messaqge, flagged as canceled, on the FEFO chain
of messages. No attempt is made to send the message when it comes to
the top of the gueue. ‘ '

Method of Operation 113

Lock Tunction

mhe lock functicn allows the user to hold the line connection between
a station and an application program. No incoming messages are
accepted from any cther staticn on the line while the station is in
lock mode, and no messages other than the response messaqge from the
application prcaram are sent to any staticn on the line.

TLock mode is entered either unconditicnally or when a message
header containing a control character (or <character string) is
processed by a LOCK macro specifying that character. LOCK is not
executed if the message destination is not an application progran.
(The Aestination is specified either in the message header c¢cr by a
FTORWARD macro.)

Yhen a message is received from a terminal requesting lcck mode,
the inheader sutaroup examines the header tc determine whether or not
LOC¥ 1is to be executed. When the Lock routine gets control, it sets
a switch in the SCB and turns on the "lock" bit in the PRFSTAT1 -field
of +he buffer prefix to indicate that the message is in lock mode.
The message buffer is then tposted normally to the application program
Nestination OCR. When the last message segment 1is received, it is
processed through the MH, and the end-of-message tuffer is tposted to
the Buffer Disrcsition QCB.

The Ruffer Disrosition subtask performs ncrmally, except that it
does not free the 1line (does not tpost the ICB to itself) until a
response has fteen issued.

When the application program issues a GET macro for the message,
the Get Scheduler examines the header prefix in the first buffer and
finds the "lock" bit on. This causes the Get Scheduler to set flags
that cause the Put Scheduler to treat the first messaqe sent from the
application program to the locked terminal as the resronse message.

The Put Scheduler conmpletes the setting of the lock resronse flags
and sends the message to the terminal destination dgueue when the
application program issues a PUT macro to send the response. '

When the Testination Scheduler gets control with the end-of-
message buffer, it examines the destinaticn 1LCB to see if it <can be
tvosted: if sc, it trosts the LCB to itself; if not, this indicates
that the Buffer Disposition subtask is still processing, and that
ryffer Disposition will +tpost the ICB to itself. The Destination
Scheduler then rlaces the Send Scheduler STCB in the STCB chain of the
destination LCR, whether or not it tposted the ICB to itself.

If main-storage-only queuing 1is keing used, the Testination
Scheduler places the address of the message header in the lock
relative record number (QOCBLKRRN) field of the Destination QCB. The
message is not rlaced on the QCB-FFFO chain.

Tf disk aqueuing is being used, the Destination Scheduler tposts‘
the snd-of-message buffer to CPB Initialization, which ©places the
header address in the QCBLKRRN field of the Destination QCE,

114

®ither the Receive Scheduler or the Send Scheduler gets control
when the ILCPR ccmes to the top of the ready cueue. The scheduler thus
getting contrcl examines the 1I1CB to determine whether receiving or
sending occurred most recently. The scheduler that was active most
recently defers control to the other. In this case, the Send
Scheduler will get control, since the most recent operation was a
receive., The Send Scheduler will then send the message ncrmally.

After the message is completely sent, the end-of-message buffer is
tposted to the Buffer Disposition OCB. If this was a message lock
function, all indications c¢f the 1lock have been removed by the
NDestination Scheduler, and the line is handled normally. If this was
an extended lock function, Ruffer Disposition recognizes that 1lock
mode is still in effect and that a message was <ust sent, and tposts
the LCR to itself.

The Send Scheduler then redains control and passes control to {he
Peceive Scheduler, which vpolls only the 1locked terminal. If the
response is pceitive, the station is assumed to be in lock mode and
message processing begins for the new messaqe, No FORWARD macro is
reguired for succeeding messages, and the station remains in lock mode
until an UNTIOCK macro is issued.

Tnitiate Function

The initiate function is activated during inheader subgroup processing
of a message. An INITIATE macro coded in the MH «can select either
conditional or wunconditional execution by examination of a character
strinag in the message header. 1If the control character string in the
messade header matches the character string specified in the INITIATE
macro, or if the character string is not coded in the INITIATE nmacro,
the initiate function is executed.

The first tuffer of the messaqe is prccessed through the MH to its
Aestination gqueue, and the INITIATE macro is executed. The buffer is
then tposted to the Destinaticn QOCB, and the .Destination Scheduler
gets control and queues the buffer normally. When the first tuffer is
received, the scurce LCB is placed on the Destination QCB in-source
{OCRBTNSRC) chain. (The in-source chain is a chain of all scurce LCBs
currently sending initiate mode messages to the destination terminal.)

When the Send Scheduler starts to send the message, it recognizes
the vpresence of initiate mode messages by tte presence cf a source LCB
in the Destination OCB in-source chain. The scheduler removes the
source LCB from the Testinaticn QCB in-source chain and places the
address of the destination LCB in the in-source chain pecinter in the
" source LCB. If the source LCB is still in the Destination QCB when
the end-of-message buffer is received by the Destination Scheduler,
the Destination Scheduler removes the LCB and causes the message to be
placed in +the OQCB-FEFO <chain c¢f the highest-rriority ¢CB. If
transmission has already bequn, the message is not rlaced in the FEFO
chain. '

When the 1I1CB has been placed in the Destination QCE in~source
"chain and the destination 1line has become available, the Send

Method of Operation 115

Scheduler gqets +the source LCB frecm the in-source chain, finds the
source SCR (via the pointer in the 1LCB), gets the address of the
header, and initializes the destination SCER to send the message. The
Send Scheduler begins a normal sending operation and requests the
number of buffers specified in the DCBRUFOU field in the destination
line DCR for the mressage by tposting the FRR to the Disk I/0 QCB to
activate CPR Initialization.

TF CPR TInitialization has to wait for buffers at any point, it
sets flags in the destination LCB indicating that it 1is waiting for
the next buffer of the message. When the next buffer comes in from
the source, the Destination Scheduler determines whether CPB
Tnitialization is waitinag for tuffers; if so, the ERB for the
Aestination 1line 1is tposted to the Disk 1I/0 QCE. When CPB
Tnit+ialization has all +the buffers it requires, it continues with
normal processing.

No error checking is performed on input data in 1initiate mode;
thus, the first error encountered will te the end of the message. The
source station must enter a new messadgde tc correct any errors.

SUMMARY OF MTSSAGFE FLOW

This section contains twe charts that present an overview ot the flow
of control for a message passing through a TCAM systen.

Foldout Cchart 1€ is for a receive cperation. When a message is
entered at a terminal or frcm an arrlicaticn rrogram, it is' received,
processed bv the incoming group of the prorer MH, and queued onto the
message agueues data set.

Foldout Chart 17 is for a send oreration, When a 1line or
application program is free to receive a message, the message is
retrieved from the message dgueues data set, processed by the outgoing
aroupr of the prcper MH, and sent to its destination,

Netails c¢n each ster of these two operations are included under

the appropriate heading in the rrevious rarts of this Method of
Operation section.

CLCSEDOWN OF A MESSAGE CONTROI PRCGRAM

FUNCTIONS OF THE MCP CLOSEDOWN PROCESSING AND CLOSEDOWN CCMPLETION
RPOUTINES

Closedown of the TCAM network is initialized in one of four ways:
1. An operatcr ccntrol HALT command issued from the system console.

2. An operator control HALT command issued from a terminal.

116

3. An MCPCLOSF macro issued in an aprlicaticn rrogranm.
4. A nonreusable disk threshold reached (flush clecsedown).

In each of the four cases, the effect of the command is the saume.
The only difference is in the scurce from which the Operator Control
task gains controcl to load the MCP Closedown Processing routine. If
the command dis issued from the system console, the operating systen
posts the ECB fcr Operatcr Control. W™MH posts +the ®CB for Operator
Control if +the command is from a terminal. The avpplication program
tposts a CIB to the ready queue to cause the Dispatcher +to rtost the
TCB when an MCECLCSE macro is issued. If the EXCP Driver (IGGO19RC)
recognizes a ncnreusatle disk threshcld, it passes a dummy CIB
(defined at AVTHRESE) +to the Operator Control task using the same
interface as an application progranm. TIf TSO is active, the EXCP
Driver first tranches to the TSO Abend Interface routine (IEDAYT) to
allow TSO to end before closedown.

Operator Ccntrol loads the MCP Closedcwn Processing routine, which
performs as descriked on foldout Chart 18.

CLCSET ROUTINES

When all message traffic and TCAM disk «crerations have ccmpleted,
control in the MCP returns to the first instructicn follcwinag the
READY macro. This must be the first instruction of a user-written
routine +to deactivate the MCP, and this deactivation section must
issue CLOSE macro instructions for each of the data sets opened in the
MCP. The data sets must be closed in the reverse order frcm which
they were opened: first the line group data sets, then the checkpoint
data set, and last the message gueues data sets.

Foldout Chart 19 illustrates the DCB closedown procedure.

APPLICATION PRCGRAM PRCCESSING

A TCAM applicaticn program is concerned with rrocessing the text
portions of messages passing through a TCAM network. Aprlication
programs are written by the user to suit the needs of his particular
application.

Application programs run asynchronously with the MCP, wusually in
a different partition or region.

Method of Operation 117

APPLICA?ION PFOGRAM INITIYALIZATION AND TERMINATION

Application Prcqram ~ Initialization Functicns

Message transfer from a Destination QOCB in the MCP tc an aprlication
program is controlled by a data ccntrol block (DCB) assembled in the
application rrcqram .area. If response messages are ¢generated,
transfer from the appnlication program to a Destination QCE in the MCP
is handled by a different DCB. The user defines, opens, and closes
these DCBs in the application progranm.

In an applicaticn procqgram, a separate DCRBR is specified for each
Destination C¢CB defined by a TPROCESS macro in +the MCP. A DT
statement must also be provided for each DCPR tc associate the DCB with
the arprorriate Destination QCB.

When an aprlication rrogram is assembled, a DCEB macrc causes
allocation of main storage space for a DCB. Parameters are included
based on the srecificaticns of the cperands of the macro.

Activation of the interface between an application rrcgram and an
MCP is accomplished when the applicaticn rrogram issues an OFEN macro
for each destiraticn queuve. The Oren Executor issues GETMAIN macros
for Dboth a DFB and an access method (ACSMETH) work area for each DCB
in the applicaticn program area. The OPEN macro expansion activates
first Load 1 (IGGO1946) and then Load 2 (IGGO01947) of the GET/PUT and

READ/WRTITE Open Executor. The functicns <c¢f these modules are
summarized in fcldout Chart 20.

Message Ccntrol Program - Initialization Functions

Information necessary for communicaticn between the MCP and an
application prcqram is assembled in a contrcl area, a process control
block (PCBY, defined by a PCB macro in the MCP. There must be one
process control block for every active arrlication program in the
systen.

TEROCESS macros issued in the MCP define the Destination QCBs for
applicaticn prcqrams. At assembly time each TPROCESS macro creates a
process Terminal Table entry for a gqueue associated with an
application prcgram. An orerand of a TPRCCESS macrc specifies the PCB
to be used with this particular queue.

When the DCBs are opened in an arplication program, +the Open
Executor trosts a special element (RCB) tc the ready queue in the MCP.
This causes the Open/Close subtask to establish a process entry work
area in the MCP. This area contains the Read-ahead QCR and the STCE
for the Get Scheduler. The functions of the Open/Close suttask are
summarized in fcldout Chart 20.

Tigqure 38 illustrates the linkage among the various ‘écntrol blocks
and work areas after the initialization of the MCP and an aprlication
program. _ :

118

Application Program Message Control Program

Task Control Block Process Control Block Line Control Block

20 (14) TPCBMH 4 mu 52 (34)] LCBDCBPT * PCB

8(®)| Tcaoes ADEB queue

32 (20) PCBLCBAD f Lce

40 28) pcercBaD 4 TC8

Data Extent Block

0 (0)

DEBTCBAD + icB

DEBEBAD } next DEB

88 DEBPCBAD 4 PCB

12 (C)| DEBTAMOS Termname

Table offset for)
this process entry Process En'|ty Work Area

32 (20)
pepceAD - fpca

16 (10) | DEBQCBAD 4ggg-uhead
DEBTAMWA jAccess Method
96 (60)

20 (14) work area

A » 'PERAQCB Read-chead QCB

24 (1g)] - pEBDCBAD 4DCB

120 (78)] PEWADEB f DEB

.

Process entry in the
132 (84)‘ PEWAPROC Terminal Table |

Access Method Work Area

4 (4) | PWAPEWA Process Entry Destination QCB
' work area
2 @0 acsocsap 4 rcs
168 (AB) | {OBSRCE - Termname Table
offset
Termname Table
. Code and Control Information
Terminal Toble Entry
Terminal
Srmine’ name | address ‘ 0@ TRMDESTQ A Destination QCB
Terminal name address
Data Control Block 12 (C)] TRMSTAT ‘Process Entry work area
: etc,

4429 pcepesap 4 DE

Tigure 38. Linkage among Storage Areas in the MCP and an
Application Program after Initialization

Method of Operation 119

Application Prcqtam - Termination Functions

A CLOSE DCB macro issued in an aprlication frcgram causes the
application prcogram Close Executor to gain control, The function of
this module is tc remove the data transfer communication link between
an application prcgram and the MCE,

.Foldout Chart 21 illustrates thke applicaticn program termination
functions.

Message Ccntrcl Program - Termination Functions

™he deallocation of application program areas and routines in the MCP
is performed by the Open/Close sulktask when it is activated by the
tposting of an element »y the Close F¥xecutor in an aprlication
proagram. The close functions of +this rcutine are summarized in
foldout Chart 21.

APPLICATICN PFRCGFARM INPUT,/OUTPUT FUNCTIONS

Input Functions of an Aprlication Program

The Get Scheduler routine perfcrms a read-ahead function from the
message dueue in the MCP in anticipation of GET/READ requests from an
aprlication pnrcgran.

The TCAM Tispatcher in the MCP passes ccntrol to the Get Scheduler
when the STCB for the Get Scheduler is chained c¢cn either the Read-
ahead OCB or the Destination QCR for the application progranm. When
the Get Scheduler STCB is waiting in the STCB chain of the Read-ahead
0CB, the application program has lteen receiving messages and is either
ready to receive more full buffers or is ready to pass emrty buffers
back to the tuffer unit pool. When the Get Scheduler STCB is waiting
in the STCR chain of a Destination QCB, it 1is waiting for a full
message to te tprosted to the applicaticn program, so that it can
prepare to pass the buffers of that message to the application
prodgram.

Foldout Chart 22 summarizes the flow of control of the. Get
Scheduler and the GET/RFAD routine as data is transferred from the MCP
to an applicaticn rrogranm.

Output Functions of an Application Progranm

The PUT/WRITE routine in an application program initializes the access
methcd work area with parameters sc that the Put Scheduler in the MCP
can actually move the data from the user aprlication program work area
to the MCE.

120

For a PUT oreration, the PUT/WRITFE routine refers to the DCB for
parameter data; fcr a WRITE oreration, the L¥CB and DCR are used. If
locate mode is teing used, the address of the work area is stored in
the DEB; otherwise, it is srecified by the user as an orerand of the
PUT or WRITE macro.

After initializing the access method work area, the PUT/WRITE
routine activates the Put Scheduler by gpcsting a special element that
contains the address of data in the user work area to the QCB for the
Put Scheduler in the MCP and by posting the ECB for the MCP complete.

If the application prcgram is eligible for a swap (TSO), the
PUT/WRITE routine requests the AQCTL SVC 102 routine to cause the
application prcgram task to be flagaed not eligible fcor swap at this
time.

If the application program is eligible for rollout (Rollout/Rollin
feature), the PUT/WRITF routine requests the AQCTL SVC 102 rocutine to
cause the apvlication program to be flagged not eligible fcr rollout
at this time.

In the situation in which the user specifies PUT cor WRITE record
without a control byte and with end-of-message indicated by issuing a
CLOSE macro, the Open routine for this particular line sets a flag to
indicate this condition in the access methcd werk area, After testing
this flaa during every PUT operation, the Put Scheduler is directed to
save the last-filled buffer in the process entry work area, instead of
tposting it to the MH. When the next PUT oreration is activated, this
saved buffer is the first one to be tposted to MH and a new last-
filled buffer is saved. The CLOSE macro causes the saved tuffer to be
tposted to MH as a part of the cleanup procedures,

Foldout Chart 23 demcnstrates the functional flow of the PUT/WRITF
and the Put Scheduler routines.

MESSAGE RETRIFVAL

TCAM uses a conmnbination of +the POINT and +the GET or RFAD macro
instructions to support retrieval of messages from a disk nessage
gueues data set.

Refore issuing a POINT macro in an aprlication rrogram, the user
must build an eleven-tyte field that contains the following
information:

. Bytes 0 - 7¢: the name of the terminal (left-adjusted and padded
with blanks) for which the message to te retrieved is gueued.

. Bytes 8 - 9: the two-byte input or outrut sequence number of the
message to te retrieved.

Method of Operation 121

. Byte 10: a character, I or 0, designating an input or output
message that is queued bty source (I) or by destination (0).

After this data field 1is built, the user issues the FOINT and the
message fcrm cf the GET cr READ macros; and the Point rcutine, the
GET/READ routine, and the Get Scheduler perfcrm the retrieval
procedure. '

When a POINT macro is in an aprlicaticn prcgram, at assembly time
an eight-byte retrieve ccntrol block is tuilt at GWARTVE in the access
method work area. The format of this ccntrcl block is:

Offset +1 +3
0 Message Sequence Message
Reserved Number Type(l or O)
+4 Terminal Entry Address

At program executicn time, the PCINT macro expansion calls the
Point routine, which starts the retrieval rrocess by obtaining the
data necessary to complete the fields cf the retrieve control block.
The Point routine gets the message sequence number and tyre from the
data field surrlied by the user. The rovutine then scans the Termname
Table for the same name as that in the data field - this provides the
address of the ccrresronding Terminal Tatle entry. The Point routine
also sets a flag (X'04') in GWAOPTCD in the access method work area to
indicate that the application program is in retrieve mode.

Tf, when the Point rcutine gains ccntrol, the first character of
the wuser-supplied data field 1is a blank, there is no message to be
rTetrieved. In this case, the routine turns off the "retrieve" bit in
GWAOPTCD.

When a GET or READ macro is 1issued after a POINT macro, the
GET/READ routine tests the "retrieve" bit (GWAOPICD) +to determine
whether the program is in retrieve mode. (This test is performed only
if the routine is at the end of processing a comrlete message.) If
the program is in retrieve mode, the GET/READ routine builds a special
retrieve element to be trosted to the Get Scheduler in the MCP. The
format of this element is:

Offset : +] .
0
Key Read-Ahead QCB Address
+4
Priorit . .
X I'O5CI)'Y Link Field
+8
Message Sequence Message |Termname
12 Number Type (I or O){Table Offset
Termname |Terminal Entry Address of the source or
Table Offset |destination of the message tobe retrieved

122

The GFT/RFAD routine uses AQCTL SVC 102 to place this element on
the ready qgueue in the MCP, and then issues a WAIT to allow time for
the specified message buffer to be retrieved.

The Get Scheduler gains control when the special retrieve element
has the highest prioritv of the elements <¢r the ready gqueue. The
element is identified to the Get Scheduler as a retrieve element by
the extremely lcw X'50' pricrity.

If the ERBBUSY bit (X'80') is on in the process entry wcrk area
f£ield PEWAFLG, the ERB for the Get Scheduler is currently tposted and
therefore not available to obtain a tuffer for the message to be
retieved. In this <case, the Get Scheduler sets a flag (X'01') in
PEWAFLG to indicate that a retrieve <element is waiting to be
processed. The scheduler then branches to the DSPDISP entry point of
the TCAM Dispatcher to allow time for the ERB to ke serviced.

When the Get Scheduler regains control, it turns off the ERBBUSY
bit, ©processes the FRB, and then tests the PFWAFLG field for retrieve
mode (X'01'). If retrieve mode ics indicated, the Get Scheduler turns
off the flag -just tested and continues processing at the same point at
which processing tegins when the ERB is nct busy.

After the ERB is serviced and btack ¢cn the Read-ahead QCB, or if
the ®RB was not busy in the first rlace, the Get Scheduler moves +the
current read data from the SCB to the process entry work area in order
to set up to read +the gueue-kack <chain of tuffers from the disk
message dgueues data set. The scheduler gets the aprropriate
Destination QCB from the terminal entry pcinted to by the third word
of the retrieve ccntrol bleock in the application program access method
‘work area. The Get Scheduler then moves the gueue-back pointer from
the Destination OQCB (QCRBOBACK) to the SCB to identify the first disk -
record to re read.

In the retrieve situation, the ERB in the rrocess entry wecrk area
is serving as a "dummy" or partial ICB. The Get Scheduler sets the
"recall" bit in the FRB (LCBRCLNN), initializes the LCBERBCT field to
one to indicate that one buffer is to te read, and moves any buffers
currently on the element chain of the BRead-ahead OCB +to the 1link
address <chain of that OCB. At this roint the SCB is set ur to recall
a buffer, and the FRB/LCR is partially conmrlete.

The Get Scheduler completes the ERB/LCE by moving in the Read-
ahead OCB address, the GET/READ ERB pricrity of X'DO', and the SCB
address. The scheduler then sets the ERBRUSY flag, and tposts the
FRB/LCE to the Disk I/0 QCB for the message buffer to be read from the
message gqueues data set.

When the nmessage buffer pcinted to by the gqueue-tack chain in the

Destination OCPR has been read from disk, its ERB is tposted to the
Read-ahead OCE to reactivate the Get Scheduler.

Method of Operation 123

When +the Get Scheduler qgains ccntrcl, it tests the "recall" bit
(LCBRCLNN) in the FRB to determine whether this is a buffer of +the
message designated to be retrieved for the requesting aprlication
program. - At this point, the Get Scheduler tests the message type
field in the special retrieve element for I or 0, an input or an
output message.

If an inrut messaqge 1is being retrieved, the Get Scheduler
determines whether the buffer jJust read is the first buffer of a
message by exarining the PRFSTAT1.field cf the tuffer prefix, If this
field is equal tc X'01', it is the 1last buffer of a message;
otherwise, it is the first buffer. The activity of the Get Scheduler,
at this point, derends on the status of this tkuffer,

o Tnput message retrieval - first buffer of a message,

The Get Scheduler compares the inrut sequence number (PRFISEQ) in
the buffer to the sequence number in the srecial retrieve element. TIf
a match 1is fcund, the scheduler tposts the tuffer to the Read-ahead
OCR, and trosts the avpplicaticn prcgram GET/READ ERR tack to the Read-
ahead QCB to get the rest of the buffers c¢f the message. When the
last buffer of the message is read, the "recall'" bit at ICBRCLNN is
turned off, the SCB is restored to its pre-retrieve status, the Read-
ahead OCB is restoered, and the scheduler resumes its reqular
prccessing. ’

Tf the sequence numhers do not match, the Get Scheduler moves the
text queue-ktack <chain rointer of the tuffer to the SCP (SCRLEOB) and
tposts an ERB to read the next message buffer on the input gqueue-back
chain. Tf this is the first bhuffer read in the gqueue-tack chain, the
scheduler gets the text chain pointer from +the buffer prefix field
PRFTORCK. After that, PRFTQBCK is obtained from the rreccess entry
work area at FFSAVE + 12.

. Input messaqge retrieval - last tuffer of a message

If this is the last tuffer of a messaqe, the Get Scheduler must
get the first tuffer of the message in order to compare the input
seguence numbers, (The inrut sequence number for a message is stored
only in +the vprefix of the first buffer of the message.) The Get
Scheduler first saves the text queue-tack chain pointer (FRFTQORCK) at
PESAVE + 12 so that the chain can be searched in crder if this is not
the correct message. The routine places the first-buffer vpointer
(PRFCHDR) in SCRBDFOB and trcsts an ERB to read the first buffer of the
current messagqge. The Get Scheduler then exits to the DSEDISP entry
point of the TCAM Dispatcher.

The Get Scheduler regains control when the first buffer of the
message has been read and continues processing ty testing the LCBRCLNN
bit and by exarining the buffers as described in the preceding
paragraphs. This loop continues until the specified messaqge is found.

If an output message is being retrieved, the Get Scheduler reads
the PRFHQBCK chain until a tuffer is found that has the ccrresponding
output sequence number (PRFOSFQ). When the specified buffer is found,

124

the Get Scheduler tpoéts the buffer to the Read-ahead QCR, posts the
application vproagram GET/READ FCB complete, and tposts the ERE back to
the Read-ahead CCE to get the rest of the buffers of this message.

When the last buffer of the mescage is read, the Get Scheduler
performs the same functions as described under Retrieval of an Input
Messagqe.

When the ECB cf the applicaticn program GFT/READ routine is posted
complete, the arvplication program regains control at the first
instruction after which the WAIT macro was issued. At this point the
GET/READ routine tests the return ccde in register 15. If the return
code has a mncnzero value, the message was not retrieved. TIf the
return code is equal to X'00', the message has been retrieved. The
application program uses regular GET/REAT logic to oktain the rest of
the buffers of the message. After all +the tuffers are read, the
program turns cff the "retrieve" bit at GWAOPTCD in the access method
vork area.

COMPATIBLE QTAM

Compatible QTAM GET/PUT Support

When an applicaticn program was originally assembled +to run with a
QTAM MCP and has been reassembled to run with a TCAM MCP, special GET
and PUT routines are used. These compratitkility versicns c¢f GET and
PUT ‘contain the internal differences required to process QTAM DCEs.
The basic logic of the routine is the same as for the regular GET and
. PUT routines.

Ttems that the compatible GET and PUT routines must suprort are:
* A buffer, cor mressage segment, is a wcrk unit.
) The user must provide the work area prefix.
) The name cf the destination must be prcvided for the user.

A different format DCR is used.

Compatible QTAM Message FRetrieval Support

The Retrieve Service rocutine and the Retrieve Scheduler ©provide
compatible OTAM support for message retrieval, TIf there is a QTAM
application prcgram operating in the system, +the Cpens/Close subtask
loads the Retrieve Scheduler in the MCP. The Retrieve Service routine
is called by a FETRIEVE macro expansion in the application rprogran.

Method of Operation 125

The primary difference between message retrieval in TCAM and in
compatible OTAM is that in compatikle QTAM cnly one buffer at a time
is requested. Cne RETRIFVE macro must te issued for each buffer of
the message, and the Retrieve Service routine .reads the buffer
information from the <element chain of the Retrieve Scheduler QCB in
the MCP.

The RETRIEVE macro expansion puts certain message retrieval data
in inrut registers for the Retrieve Service routine:

e Register 0 - the address of the user work area, which contains the
terminal name of the message destinaticn.

. Register 1 - for initial buffer retrieval, the output sequence
number for destination retrieval or the input sequence number for
source retrieval; for subsecuent tuffer retrieval, the disk
relative record address. :

The PRetrieve Service routine uses a special non-register saving
entry point of the User Interface rcutine (IEDQUI) to call the Binary
Search routine (IFDOA1) to obtain the Termname Talle entry offset for
the destination terminal. The Retrieve Service routine then uses this
data and the input register data to build a special retrieve element
to be tposted to the Retrieve Scheduler QCP in the MCE. The format of
this elemernt is:

Offset +1
0

Key Retrieve Scheduler QCB Address

+4
l)’(n'o [;2.)' Link Address

+8 - —

Terminal Entry Address(Initial Request)

Element or Relative Record Address

+12 Type 1,0,0 | (Subsequent Request)

Message Sequence Termname Table
Number Offset

If the tuffer tc te retrieved is the initial buffer of an input
message, the Retrieve Service routine places the character I at offset
+ 8. TIf the tuffer is the initial buffer of an output message, the
routine places the character O at that offset. The value X'00' in
that field is fcr a subsequent buffer request.

Once the special retrieve element is built, the Retrieve Service
routine uses AQCTL SVC 102 +to tpost the element to the Retrieve
Scheduler QOCB in the PCB of the MCP. The Retrieve Service routine
then 1issues a WAIT macro to allow time for the buffer to be retrieved
from the message queues data set. '

When‘the special retrieve element gets to the tcp of the MCP ready

queue, the Disratcher activates the Retrieve Scheduler. The Retrieve
Scheduler reccanizes the srtecial retrieve element by its X'D4!

126

priority. If the element type field (offset +8) is equal to zero, I,
or 0, the scheduler issues a GFTMAIN macro for main stcrage for a
special LCB and SCRBR to handle the retrieve functicn. Failure of the
GETMAIN results in a return code of X'04' in the PCB (PCEORC), an ECB
post complete, and an exit to the TCAM Disratcher.

If the GETMAIN is successful, the activity of the Retrieve
Scheduler devpends on the element type:

. T or O - The Retrieve Scheduler obtains the QCRQOBACK rcinter from
the Destination QCRBR and places it in tte SCB. The scheduler then
tposts the FRPE in the LCB to the Disk I/O QCB to read the buffer
and exits tc the TCAM Disrpatcher.

. 7ero - If the buffer to be retrieved is a subsequent buffer, the
next-text rvointer, the current segment address, and the header
tuffer address are already in the PCB. The Retrieve Scheduler, at
this point, sets a subsequent retrieve flag in the PCE (PCBRETVN)
and tposts an ERR for the next buffer of the message.

After the FRB redquest has been satisfied by the disk I/0 routines,
it 1is +tposted tack +to the PRetrieve Scheduler QCB. The scheduler
recoqnizes the EFRB by its X'DO' priority and kXnows +that it now has
either « an error conditicn or a retrieved buffer to process. En error
condition is handled as in reqular TCAM processing.

Tf the retrieved buffer is for an initial request, +the Retrieve
Scheduler rtrrccesses it just as the Get Scheduler processes a reqular
TCAM retrieved tuffer. The only difference is that the buffer for a

compatible OTAM application program is placed on the element chain of
the Retrieve Scheduler, not the Read-ahead, QCE.

However, if the “subseaquent retrieve" flag (PCBRETVN) is set, the
Retrieve Scheduler 1is handling a subsequent buffer retrieval and
verforms different functions. It places the next-text pointer of the
buffer in the PCB, sets a completicn code of X'00', puts the buffer on
the element chain of the Retrieve Scheduler QOCB, rosts the aprlication
program Retrieve ECB comrlete, issues a FREEMAIN feor the LCB and SCB,
and exits to the TCAM Disvatcher. .

When the Retrieve ECB is posted complete, the Retrieve Service
routine in the arrlicaticn rrogram regains control, At this point the
routine tests +the return code at PCBCEC. A nonzero return code
indicates an error and is passed c¢cn to the wuser's code. Othervwise,
the Retrieve Service routine uses the retrieved buffer to build a QTAM
formatted tuffer in the wuser wcrk area. The routine then places a
value of X'01' in the element type field of the special element and
tposts the element back to the Retrieve Scheduler QCE for buffer
return processing.

The Retrieve Scheduler, uron finding the X'01' element type value,

tposts the processed buffer to the Buffer Return QCE. The scheduler
then exits to the TCAM Dispatcher.

Method of Operation 127

FUNCTIONS OF THE NETWORK CCNTROL FACILITIES

ITnterface with Operator Contrcl

The Operator Control/Application Program Interface routine allows the
user to perform a subset of the TCAM operatcr control functicns from
an applicaticn proagram without actually issuing a PUT for an operator
ccntrol message.

Foldout Chart 24 illustrates the wavy that this interface
functions.

Network Control with an Application Progran

By using the macro instructions TCOPY, ICCPY, or CCOFY, the user can
examine the contents of a Terminal Tatle entry, an invitaticn list, or
a Destinaticn QCB, respectively. Using the macros TCHNG or ICHNG, he
can modify the contents of a Terminal Table entry or an invitation
list, respectively.

The routines for TCOPY, TCHNG, and CCCEY find the specified entry
by locating and scanning the Termname Takle. The routine for ICOPY
must find the TIOT and DCB to locate ¢the TIDNAME for the specified
invitation 1list. An operator control rcutine (IELCQC1) handles the
TCHNG function when the TDNAME and relative line number are supplied
by the applicaticn rrogranm.

If +the wuser wishes to examine the srecified entry, the network
control rcutines read the entry directly intc the application program
work area. However, to write in the MCP partition to change an entry,
t+he AQCTL SVC 1C2 routine (IGC102) must ke used.

Foldout Chart 25 1illustrates the functicnal flow of application
program network ccntrol. ’

OPEFRATOR CCNTECL

The Operator Ccntrol facility provides a wide variety o¢f functions
that allow the user to alter or exarine the status of the
telecommunicaticns network. Operator contrcl commands can be entered
frem an Operator Control terminal, an application prcgram, or the
system console, and each operator control message must ke contained
within a single buffer.

Tnitialization for using the Operator Control facility is
accomplished through the operands of the INTFO, TERMINAL, and TPROCFSS
macros. INTRC specifies the contrcl characters to be used to identify
a control messaqge and the specific terminal to be used as the vprimary
control terminal. The TERMINAI and TPRCCESS macros associated with

128

the terminals selected as Operator Control terminals have orerands to
indicate 1initial specification as secondary control terminals. The
TPROCESS macro also specifies an alternate destination, because
messages cannct be returned tc an applicaticn grogram. The values are
stored in the AVT.

The Operator Control task is attached in the same rartition as the
MCP by the Attach routine (IEDQOS) dAuring the execution of the INTRO
initialization functions. The Resident Operator Control module
(TEDOCAY 1is the only mcdule that is attached as a resident routine,
unless the user specifies that some or all of +the Operatcr Control
processing routines are to be resident. The Otrerator Control task has
the lowest pricrity of the tasks in the MCFE partition.

The Resident Operator Control module loads and activates lLoad 0 of
the Operator Control control module (IGCCO010D)Y. There are six loads
(IGC0010D, IGCO110D, IGCO210D, IGCO310D, IGCO410D, and IGCOS10D) of
this control module. ©Each of these lcads is transient, and all except
Load 0 are 1loaded by cther loads of the control rodule as needed to
continue decoding or processing an cperatcr ccntrol command. Load O
can be activated ty 0S, by IEDQCA, or by cne of the other loads of the
control module.

The Cperatcr Contrcl task, in the form cf Ioad 0 of the control
module, is activated when cne of its two FCRBRs is posted. This allows
Operator Contrcl +to vie with cther tasks to be activated by 0S Job
Management. One FECB is defined in the TCAM AVT and the other in . the
0S Communications Parameter List. The Operator Control ECR is posted
whenever an orerator ccntrcl command (message) is issued. There are
three basic types of operator control commands to be handled:

. A standard operator command frcm an Operator Control +terminal or
an applicaticn rrogram,

. An operator control command from the system console,

° A STARTLN, STCPIN, MRELFASE, RELEASEM, ICHNG, MCPCICSF, or CLOSEMC
command frcm an applicaticn prcgranm.

Fach of these three situations is handled differently by the Operator
Centrol task.

Foldout Chart 26 depicts the functional flow for rrccessing an
operator command.

Processing Standard Operatcr Contrcl Commands

When an operator control command is entered frcm an Operator Control
terminal or from an application program, it is handled just like any
other incoming message until it reaches the CODE macro expansion in
the INHDR subgroup. The CODE macro expansion first activates the
Translate Buffer routine (IEDQOAW) to translate the message to EBCDIC.
It +then activates the Operator Control Interface routine (IEDQRQ),
which compares the acceptable operator ccntrcl characters in the AVT
with the data field referred +tc by the scan pointer in the input

Method of Operation 129

buffer. TIf the fields do not match, the buffer does not contain an
operator contrcl command, o it is returned tc the next instruction in
the MH. Tf +the characters match, the Operator Control Interface
routine tposts the buffer to the Orerator Ccntrol ¢QCR (AVTOPCOB) by
exiting to the DSPPOST entrvy point of the TCAM Dispatcher,

The interface routine also checks to be sure that the ccmmand is
complete in one ruffer and that the ccmmand was entered by a valid
secondarv terminal.

When the element (buffer) gets to the top of the ready queue, the
TCAM Cispatcher reccgnizes that it is trosted to a QCR that represents
an attached task (the MCFL field of the STCR is equal to X'02'). The
TCAM VUVispatcher, as a result, issues an CS FCST to the ECB for that
task. This ECP resides in the seccnd word of the OQCBR. The element
that was on the ready gqueue, in this case the operator control
command, remains cn the element chain of the Oreratcr Centrel QCB, and
the Operator Ccntrol task can begin vying for control c¢f the systen.

When +the Cperator Control task gains control, 1Icad 0 of the
Operator Contrcl contrcl module is activated. The Operater Control
control module first ©processes any commands that are waiting on a
special CIB chain (see the following secticns on Processing Systen
Commands and Processing Special Applicaticn Program Commands). After
these commands have been processed, the ccntrcl module examines the
Operator Contrcl OQCRB. 1If there is a command on the element chain of
the 0CB, the ccntrecl module links tc the arrropriate Operatcr Control
routine to rrocess that command. Upcn the completion of the
processing routine, it returns to the <contrcl module, The control
module builds the resronse message to overlay the original command,
and returns the buffer tc the MH. The Dbuffer 1is trosted to the
Destination OQCB for the source of the command, unless it is a process
entry, in which case the control mcdule +trosts the bLbuffer to the
Destination OCR fcr the alternate destinaticn.

The controcl module then reexamines the special CIB chain and, if
no commands have arrived, checks for ancther command cn the Operator
Control o0oCB., If there is another command present, it is processed as
just described. When all of the commands have been prccessed, the
Operator Contrcl contrcl module issues a multiple WAIT on its two ECBs
to relinguish ccntrol to the operating system. If the closedown
switch in the AVT for the MCP is on after all of +the <ccmmands have
heen processed, the ccntrcl module issues a RETURN to 0S, rather than
issuing a WAIT command. A RETURN terminates processing by this task.

Processing System Console Commands

System console cperator control commands are placed in a Command Input
Buffer (CIBR) and the CIB is <chained off the seccnd word of the
Communications Parameter List, which is pointed to from the AVT. When
a command is issued at the system console, the TCAM Command Scheduler
(SVC 3 places it in the CIB and rosts the Operator Cecntrol ECB,
wvhich is pointed to by the first word of the Communications Parameter
List. The Communicaticns Parameter List is a two-word field in the 0S
Control Scheduling Control Block, and it has the following format:

130

Offset
0

Address of Communications ECB

+4)
Address of First CIB in the CIB Chain

When the Cperator Control centrol module is activated by 0S, it
examines the secord word of the Communicaticns Parameter 1List +to
determine whether a system console command is present. If a command
is present and if the MCP closedown switch is ¢cn or the command 1is
invalid, the ccntrol module issues a WTO reijecting the command, issues
a OEDIT macrc to free and dechain the CIR, and branches back to
examine the CIP chain for another command. If the command dis wvalid,
the control module links to the acvrpropriate cperatcr control
processing routine. Upon completion of the ©processing routine, the
control module sends a WTO response message, issues a QFDIT macro to
dechain and free the CIB, and branches tack +to <check for another
command.

After all the commands on the CIB chain and on the element chain
of the Operatcr Ccntrol OCB have Lkeen processed, the control module
issues a multirle WATT on its two ECBs. However, if the MCPE closedown
switch is on, the control module dces not issue a WAIT, but terminates
processing of this task by issuing a RETURN directly tc the operating
systen.

Processing Specia1 Application Program Commands

The operator ccntrol commands STARTLN, STCPLN, MRELFASF, RELEASEMN,
TCHNG, MCPCLCSE, and CLOSEMC, which are issued frcm ar aprlication
prcqgram, are processed in a slightly different way than other operator
control commands. When cne of these commands is issued, the COperator
Control/Application Program. Interface routine in the application
prodram dains ccntrol. This rcutine tuilds a "dummy"™ CIB that
contains the tyre of command issued and other pertinent data. The
Tnterface routine uses the AQCTL SVC 102 routine to trost this CIB to
the Operator Control QCB. A WAIT is then issued to rlace the
application prcgram in a wait state and to allow the MCP +to beqgin
processing.

When the CIB tposted to the Operator Control QCB reaches the top
of the MCP ready queue, the TCAM Dispatcher recognizes it as an
element for an attached task. The TCAM Dispatcher acts exactly as it
does when a standard command is on the ready queue: it posts the ECB
for +the attached +task so that the task can vie for ccntrcl of the
system in order to process its element.

When the Crerator Control task gains ccntrol, it frrocesses the CIB
exactly as it does a reqular message c¢n the Operator Ccntrol QCB,
except that +the response message built consists of the CIB with a
return code added. Since the CIB is from an application rrogram, the
control module also posts the ECB for the application program
complete.

Method of Gperation 131

Operator Contrcl/Checkpoint Tnter face

Fach time an operator control command causes any change in +the AavT,
merminal Table, Option Table, LCE, or invitation lists, the Operator
control task determines whether a checkrcint shculd be taken. If it
should, the Crerator Control ccntrol module tposts the "operator
control checkpcint request" element to the Checkpoint CCBE and issues
a WATT on the Cperator Control ECE in the AVT. A checkpcint needs to
te taken if the checkpcint data set was <c¢cpened (ncnzero value in
AVTCKGET) . A checkpoint is needed for a change in invitation lists
only if "I" was specified on the INTRO STARTUP operand.

When the Checkpoint Fxecutor gains control, it loads the Incident
Checkpoint for Orerator Ccntrol routine. The Incident Checkpcint for
Operator Control routine moves control infcrmation for the <command
from the operator control work area to the incident checkpoint record.
After the record is written on disk, the Checkpcint Executor posts the
Operator Contrcl ECB comrlete.

At restart time the abcve process is reversed - the
Checkpoint/Pestart from Incident and CKRFQ Reccrds routine (IGG01944)
moves the contrcl data from the incident record (except start/stop
line records) tc the operatcr controcl work area, posts the Operator
Control ©FCB, and issues a WAIT macro. Operator Control examines the
"ready complete™ tit in the AVT, recognizes +the restart situation,
reprocesses the orerator ccntrol ccmmand, and posts the Checkpoint FCB
complete.

Operator Contrcl Frocessing Routines

The functions of the operator contrcl —rprocessing routines are
explained under the description of each routine in the Progranm
NDrganizaticn section of this publication.

CHFECKPOINT

The TCAM Checkpoint facility provides for records to be taken of the
MCP environment from which restart can e made in the case of
closedown or system failure. Records c¢f individual data paths are
maintained to preserve the inteqgrity and ccntinuity of message flow to
and from a terminal (cr comronent). Only the. last message entered
from or accepted at a buffered terminal may need to be resent to make
sure no message is lost (fcr ncnbuffered terminals, at most one
message per line may need to be resent). Checkroint records are
maintained for all main stcrage queues that have full copies on disk
(if main-storage-only queues are used, no checkpoints are taken of
message gueues). ‘

There are four types of checkrcint records: the contrcl record,
environment records, incident records, and CKREQ records. The control
record contains information concerning the format of the checkpoint
data set. Fnvironment records are concerned with checkpcints for the

132

total overating environment; incident records and CKREQ records are
concerned with checkpoints of specific incidents during operation.
The TCAM restart procedure uses the incident and CKREQ records to
update the TCAM environment from the time that it was recorded by the
most recent complete environment <rTecord tc the time of systen
closedown or failure.

The Checkrcint Executor manages the routines that write checkpoint
records. The Checkroint Executor gains c¢cntrel when a checkpoint
request element is pvlaced on the ready queue in the MCP,

The TCAM Tispatcher, upon finding a checkroint request element on
the ready queue, chains. the element off +the element chain of +the
Checkpoint QCB in the AVT. The ECEB for the Checkpoint subttask is then
posted complete, and when an 0S WAIT command is issued, the Checkpoint
Fxecutor can gain control.

FUNCTION COF THE CHECKPCINT EXECUTCR

The Checkpoint Executor causes all of the checkrpcint request elements
chained off the element chain of the Checkpcint OCB in the AVT to be
processed. This routine continues processing until all the elements
are processed cr until a task with a higher ©priority seizes control
after an interrcvption.

The Checkpcint Executor first examines the ECB for the Checkroint
Disk I/0 routine to determine whether an I/0 operation has been
completed. If an T/0 operaticn has been completed, the Executor
transfers control to +the Checkpcint ©Notification and Disposition
routine.

If an TI/C operaticn has not been completed, the Checkpoint
Executor examines the checkpoint disk I/0 queue to see if there is a
record ready tc te written. If there is a reccrd ready to be written,
the Executor transfers control to the Checkroint Disk I/O0 routine.

If no TI/0 operation has been completed and there is neot a record
on the checkpcinrt disk I/O0 gueue, the Checkrcint Executcr examines the
key field of the first “checkpoint request" element on the element
chain of the Checkpoint OCB. The value of this key field determines
wvhich of the fcllcowing checkpoint routines will be loaded +to ©process
the element.

] The Environment Checkpoint routine

. The Incident Checkpoint for MH routine

. The Incident Checkpoint for TCHNG routine

. The Tncident Checkpcint for Operator Ccntrcl routine

) The Build CKREQ Disk Record routine

Method of Operationm 133

After a checkpoint rcutine has comnpleted its ©prccessing, it
returns to the Checkpoint Executor in one of two ways. The returning
routine can indicate that the Checkpoint Executor is tc¢ continue
processing as normal, or it can indicate that the Checkrcint Executor
is to immediately load and activate the rcutine indicated by an offset
value returned in register 15.

The Checkpoint Executor determines the name of the routine to be
loaded by wusing an offset intc a table of names stored in the
Checkpoint Executcr module.

Foldout Chart 27 illustrates the functicnal flow cof the checkpoint
routines. The function of the Checkpoint Fxecutor 1is not included
since it is prirmarily a control module for the routines that build and
write the checkrcint disk records.

THE ENVIRONMENT CHECKECINT ROUTINES

EFnvironment checkroint records include disk queuing pointers, sequence
numbers, terminal status, invitation list status (if specified), DCB
information, 1line status, and Terminal Table cpticn fields.,
Checkpoints are taken on all informaticn that <can be altered by
Operator Ccntrcl commands cr application grcgram macros.

Environment checkpoint records are taken at specific recints during
the execution cf the MCP:

° At the beginning of execution (frcm RFATY).
‘. When the incident chleckpcint area is full.
. At zone change-overs when using any reusable queues.

) After a user-specified time interval. When any total checkpoint
is taken, the interval is reset for the time interval checkpoint.

) During any MCP closedown.

There are at least two environment records on disk:; the number is
provided by the user in an operand of INTRO. The records are used
alternately and the control record contains an indicaticn of the nmost
recent environment record.

The Environment Checkpoint routine gains ccntrol from the
Checkpoint Executcr when tlhe checkpcint request element was issued
either by REALY, by the Reusability-Copy subtask, by the Time Delay
subtask, by an MCECLOSE macro in an applicaticn program, or by a HALT
command from the system console or a terminal.

The Fnvironment Checkpoint routine first issues a GETMAIN macro to

obtain main storage space in which tc build an environment checkpoint
record. The routine builds one segment of the record in this area and

134

then returns tc the Checkpecint Executor with the offset of the
Checkpoint Oueue Manager in register 15. This causes the Checkroint
Executor to immediately activate the Checkrcint Queue Manager.

Tf the GETMAIN issued by the FEnvircnment Checkpoint routine is not
satisfied , +the TFEnvironment Checkpoint routine returns to the
Checkpoint Executor with the offset of the Checkpoint - No Available
Core routine in register 15. The ©No Available Core rcutine first
tests to determine whether any previous GETMAIN has been issued that
is not vet free. If there is <c¢cne, the routine returns +to the
Checkpoint Fxecutor to allow time for that area to te freed. If there
is not an outstanding GETMAIN area, the No Available Ccre routine
issues a WTO error messade to indicate the situation and turns on the
high-order bit of the "last element for which a disk record was built"
field in the checkrcint work area. The Nc¢ Available Ccre routine then
returns to the Checkpcint Executor with the offset for the Checkroint
Motificaticn and Dispcsiticn rcutine in register 15. In this
situation, the Checkpoint Notification and Tisposition routine removes
this unsatisfied checkroint request element from the Checkpcint QCB.

The Checkpoint Oueue Manager is activated after an initial disk
record has been built. This routine places a pcinter to the record on
the checkpoint disk TI/0 queue. TIf the reccrd put on the checkpoint
disk I/0 queue is an environment checkpoint record, +the Checkpoint
Oueue Manager frees any incident reccrds already cn the checkpoint
disk I/0 queue and +turns on the "incident overflow" bit in any
incident checkroint request element c¢cn the Checkyoint QCE, (When the
last record of an environment checkpoint has been written cn disk, the
Checkpoint Notificaticn and Dispositicn rcutine removes any element
with its "incident overflow" bit cn from the Checkpoint QCRB, since its
requast was satisfied by the last envircnment checkpoint record.) The
Checkpoint Queue Manager then returns to the Checkpcint Fxecutor.

Yhen the Checkpoint Executor regains ccntrol, it begins execution
by examining the ECB of the Checkrcint Disk I/0 routine. If a disk
I/0 operation has not been completed and there is a record on the
checkpoint disk I/O cueue, control is passed to the Checkpoint Disk
I/0 routine. This routine takes the record off the checkpoint disk
T/0 gueue, builds CCWs and an IOR, and issues an EXCP +tc¢c write +the
record on disk. The main storaqe address of the record is rlaced in
the current-EXCTt field in the checkroint wcrk area, The Checkpoint
Disk TI/0 routine then returns to tlte Checkrcint Executor.

Yhen the <channel has finished writing a record on disk, an I/0
interruption gives contrcl to the Checkrcint Disk End Appendaage. The
Checkpoint Disk ®nd Appendage examines the key field of the record
just written (found via the write CCW) and if the record was the 1last
segment. of an environment checkpoint, rewrites the checkrcint control
record. The checkroint contrcl record indicates the 1last complete
environment checkpoint taken. An updated copy of the control record
is in the checkroint work area. The Checkrcint Disk End BAppendage
returns contrcl tc the orerating systen.

Method of Operation 135

1f, wupon regaining ccntrcl, the Checkpcint Executor finds that a
disk I/0 operation has teen completed, it rasses control to the
Checkpoint Notification and Dispositicn routine. ~This routine
examnines the key field of the disk record -just written (found via the
current-EXCP field of +the <checkpoint work area). If the key field
indicates that the record was the 1last 7reccrd of an environment
checkpoint operation, the routine frees the record area (via a
FPREEMAIN macro), zeros the current-EXCP field, and turns off the
checkpoint recquest bits in the AVT. If the envircnment checkpoint
request is from the MCP Closedown Processing routine, +the Checkpoint
Notification and Dispositicn routine trosts the "closedown completion
request" element +to the ready oaqueue; ctherwise, the Checkpoint

Notificaticn and Disposition routine removes the "environment
checkpoint request" element from the Checkrcint QCB and trosts it to
the time delay gueue. If the checkroint was not complete (not the

last record), the Checkpoint Notificaticn and Dispositicn routine
returns to the Checkpoint Fxecutor with the offset for the Fnvironment
Checkpoint routine in register 15.

When the Fnvironment Checkpoint routine tuilds a disk record, it
saves data necessary to build subsequent records for the sane
checkpoint 1in +the <checkpoint work area. As a result, when the
Notification and Disposition routine instructs the Checkpoint Executor
to return control to the Environment Checkrcint rcutine, this routine
can rTesume building the next reccrd. The address of the first record
built is stored in the current-EXCP field of the cheéckpoint work area.
The Envircnment Checkproint routine obtains this address and builds the
new disk record over the 014 one. If +the new record 4is the last
seagment o©f +tte checkpcint, the key field indicator is set to X'1C!'.
If the new record is a continued segment, the key field indicator is
set to X'20°7, This rcutine then returns to the Checkpoint Executor
with the offset of the Checkrocint Disk I/0 routine in register 15.

Note that after the Environment Checkroint routine builds the
initial record of a checkpoint, it indicates that control is to be
passed to the Checkpoint Queue Manager to have the record placed on
the checkpoint disk T,/0 queue. Since each subsequent record of a
checkpoint is built in the same main storage area as the first record,
and since this main storage address is saved in the current-EXCP field
of the checkpcint work area, the Cteckpoint Disk I/O routine has all
the informaticn it needs to immediately issue an EXCP for a record.
Subsequent records do not need to be placed on the checkroint disk I/0
queue.

Foldout Chart 28 illustrates the flcw of <control among the
checkpoint routines as an environment checkrcint is taken.

THF INCIDENT CHECEKPCINT ROUTINES
Incident checkpoint records are taken as a result of MH macro

instructions, arrlication rrecgram macros, and operator control modules
that effect changes in the MCP environment. The records contain only

136

the data for that change. Incident checkpoints record changes in
terminal status, invitation 1lists (if specified), Terminal Table
option fields, vpolling intervals, the ©primary Operator Control
terminal, and the TCAM Trace facility.

There are three incident checkpoint rcutines. Each one gains
control as a result of a specific macro or command having been issued
in the TCAM system:

. Tncident Checkpoint for MH routine - gains ccntrol when functions
of the CHECKPT macrio are executed in an MCP.

o Tncident Checkpoint for TCHNG rcutine - gains ccntrol when a TCHNG
macro is issued in an applicaticn proaranm.

. Incident Checkpoint for Operator Contrcl routine - gains control
when a VARY, MODIFY, HOLD, or RELEASE command is issued from the
system conscle or frcm a terminal; or when an TICHNG or MRELEASE
macro is issued in an application progran.

A count cf the number of available incident checkpoint records on
the disk is kert in the checkroint work area. Each time <cne of the
incident checkpoint routines builds a record, it subtracts one from
the available incident disk records count. TIf the count is equal to
zero when the incident routine is ready to decrement it, the incident
routine immediately returns to the Checkyroint Executor with the offset
to the Checkpoint - No Incident Records routine in register 15.

The function of the No Incident Records routine 1is to <cause an
environment checkpoint +tc be taken so that the incident records area
on the disk can be reused. The No Incident Records routine determines
the status of +the "environment checkroint request"™ element by
-~ examining its key field in the AVT. If the element is already on the
Checkpoint QOCB, it is moved +to the '"next reguest element to be
serviced" position on the element chain of the CCB (a field in the
checkpoint work area points to the 1last element for which a disk
record has been built on the Checkpoint QCB), TIf the "environment
checkpoint request" element is nct on the Checkpoint QCB, it is
removed from the Time Delay OCB and placed in the "next element to be
serviced" position in the element chain of tke Checkpoint QCB. The No
Incident Records routine then returns to the Checkpoint Executor so
that it can, in normal processing procedures, give ccntrcl to the
Environment Checkpoint routine to service the element -just placed on
the Checkrecint CCE.

An LCB serves as a "checkpoint request" eclement for the MH. The
LCB is placed on the ready queue ty the PRuffer Disposition subtask.
The address of the Checkroint QCB is in the last three bytes of the
first word of the LCB, sc the TCAM Dispatcher places the LCB, acting
as an "MH checkpoint request" element, cn the element chain of the
Checkpoint OCE.

An "applicaticn program checkpoint request" element is vphysically
located in the PCB for that application yrrcgram. The TCAM Dispatcher
places a pointer to this checkpoint request element on the element

Method of Operation 137

chain of +the Checkpoint OCB after the Dispatcher gains ccntrol from
the Applicaticn Prcgram/Checkpoint Interface routine. A code for the
specific macro requesting the checkroint is in the key field of the
element.

An "operatcr control checkpcint request" element is physically
located in the AVT. The TCAM Dispatcher places a pointer to this
checkpoint request element on the element chain of the Checkpcint QCB
after it ogains control from an operator control routine. The key
field of the element indicates whether the checkpoint was requested by
an operator ccntrcl command. :

Incident Checkrcint for MH: The Incident Checkpoint fcr MH routine
builds an incident checkpoint reccrd in the tuffer -just processed by
-the MH routines. The incident checkpoint record is then prccessed as
described in The Fnvironment Checkpoint Routines section with two
exceptions:

. The Checkroint Disk I/0 routine obtains the actual disk address
for the record by examining a field in the checkrcint work area
that contains the track and record number of the 1last incident
checkpoint record written on disk.

» The Checkpcint Notification and Disrositicn routine frees the ICB
by tposting it to the Buffer Disgrcsition OCB for the Chain
routine,

Tncident Checkrcint for TCHNG: The Incident Checkpcint for TCHNG
routine issues a GETMAIN macrc for an area in which to build an
incident checkpoint record. The incident checkpoint record is then
processed as described in The Environment Checkpoint Routines section,
with two exceptions:

» The Checkpcint Disk I/0 routine obtains the actual disk address
for the reccrd tv examining a field in the checkroint work area
that contains the track and record number of the 1last incident
checkpoint reccrd written con disk.

. The Checkpoint Notification and Disrositicn routine must post the
application program ECB complete.

Tncident Checkpcint for Operator Ccntrol: The Incident Checkpoint for
Operator Control routine issues a GETMAIN macro for an area in which
to build an incident checkpcint record. The incident checkpoint
record is then processed ag described in The Envircnment Checkpoint
RPoutines section, with two excepticns:

. The Checkrcint Disk I/O0 routine obtains the actual disk address
for the reccrd by examining a field in the checkroint work area
that contains the track and record number of the 1last incident
checkpoint record written on disk.

. The Checkpoint Notification and Dispositicn routine must rost the
opverator control task FCR complete.

138

THE CKREO CHECKEOINT ROUTINES

CXREO checkpoint records are taken as a result of a CKREQ macro issued
in an applicaticn program. There is cne record built for each open
Destination OCB associated with +the application ©program that is
issuing +the CKREQ nmacro. The restart procedure uses each record
during a restart to update the environment checkpcint reccrds.

The Build CKREQ Disk Record routine issues a GETIMAIN macrc for an
area in which +to build a CKRFQ record. The CKREQ record is then
processed as described in The Environment Checkpoint Routines section,
with three excertions:

) The Checkroint Disk I/0 routine obtains the actual disk address
for the record by using from the checkroint work area the table
name offset that associates terminal name offsets with +track and
record number addresses. (There is cne CKRFQ record on disk for
each destination asscciated with the arrlicaticn program issuing
a CKREQ macro.)

. If this checkpoint requires more than one disk record, the
Notification and Disrcsiticn routine returns to the Checkpoint
Executor with the offset of the Build CKREQ Disk Record routine,
rather than the offset of the Environment Checkpoint routine, in
register 15.

L The Checkpoint Notification and Distosition routine must post the
applicaticn proaram FCB complete.

TRROR_RECOVFRY ERCCEDURES

The TCAM error recovery procedures (ERPs) consist of fifteen modules
that operate in the nucleus error transient area under the supervisor
protection kev. If the TCAM Line End Arpendage (IGGC19%R0, IGGO19¢Q2,
IG6G01903, TIGGO19Q4 or IGG019Q5) detects an error status on a
telecommunications device, it returns to the I/0 Supervisor indicating
that control 1is to be passed to FRP. The I/0 Supervisor (ICS) gives
control to either the Start/Stop FRP Control module (IGEOCOU4G) or the
BSC ERP Contrcl module (TIGEOOOU4H)Y. The ERP control modules analyze
the 2rror and transfer ccntrol to another mcdule tc handle the error.

The Start/Stop ERP Contrcl module can link to any of the following

ERP processing modules:
IGEO010UG Read/Write Unit Check and Unit Exception FRE Module
IGE0204LG Non-Operational Ccntrol Unit ERP Module
IGEO304G Unit Check for Non-read, Ncn-write, and Non-poll CCWs
ERP Module
IGEOLOUG Auto Poll and Read Respcnse tc Poll Unit Check and

Unit Exception ERP Module

Method of Operation 139

IGEO50U4G

IGEOEOUG

IGEO804G

IGE0Q04G

The BSC EPP Ccntrol

Frror Post and Second Level CCW Return Module

follow1nq FRP rrocessing mcdules:

BSC

IGEO10U4H
TGEQ0204H

IGROUO04H
IGEO504H
TGEO8O0OUH
TIGE0204G

TGEO304G

TGEO4O0UC

IGEO90UG

Unit Check and Unit Excepticn on Read/Write CCWs for
Audio and 2260 Local Devices FERP Mcdule
Start/Stcp Channel Check ERF Module
Closedown Terminal Statistics Recording Mcdule

module <can directly activate any of the
BSC Read/Write Equipment Check, Icst Data,
Intervention Required, and Unit Exception ERP Module
BSC Read/Write Data Check, Cverrun, and Ccmmand Reject
ERP Module ’
BSC Second Level CCW Return Module

BPSC Frror Fost Module

BRSC Channel Check FRP Module

Ncn-operational Ccntrol Unit ERP Module

Unit Check for Non-read, Non-write, and Ncn-pcll CCWs
FRP Module
Auto Poll and Read Respcnse tc¢c Poll Unit Check and

Unit Exception ERP Module

Closedown Terminal Statistics Recording Mcdule

The Start/Stop Error Post and CCW Return module (IGEQ0504G) and the

Error

Post

module (IGEOS50U4H) are activated by certain ERP

processing modules

20,

In

sSvC 15
SvC 3

When the SVC
LCBFLAG1:

Tn TCAM,
point to IGGO19RO,

140

X124 -

X104r -
X'OO' -

addition
each module

both the normal and abnormal

foldout Charts 29 and
sequence:

to the linkages illustrated in
may exit using the following SVC

Error EXCP
Return - free the transient area
15 J0S acts accordinag tc setting in

is issued, the flag

Retry by I0S and return control directly to ERP after the
interrupt

Transfer control to the abnormal line end aprendage
Transfer ccntrcl to the normal line end arpendage

line end appendage

addresses
or IGG019Q4. ‘

IGG01902, IGGD1903,

Linkage tetween the mcdules is performed ty I0S through the XCTL
routine with a trranch on register 14. The last four digits of +the
module name are placed 1in register 13, and the address cf the XCTL
routine is placed in register 14. The linkage between the start-stop
modules is shown in foldout Chart 29 and linkage between the BSC
modules is shcwr in foldcut Chart 30.

There is a description of each of the FFP modules in the Programn
Organization section of +this publicaticn. The descripticns explain
the action taken according to the different types cf commands.

Generally, if there has been no text transfer, the channel program
is retried. 1If there is an error after two retries for start-stop or
six retries for BSC, the error is considered permanent. In the case
of a permanent error, a message is either written to the systen
console or scheduled to te sent to the Cperator Ccntrol ternrinal.

For conditions that should not havpen, the "should not occur" bit
{(bit 7) is set in the SCB. This <ccnditicn 1is considered to be a
permanent errcr.

When there has been an error cn a Read Response to Auto Poll, the
invitation list address and entry size are cttained. The dinvitation
list 1is searched for an equal comparison on the index byte. If no
match is found, the channel program is restarted with the existing
Poll CC¥. If +there is an equal ccwparison, the address of the
matching entry is used, and the count is set tc the new ccunt plus the
initial address minus the address ¢f the matching entry.

When there is an errcr on the Poll CCW, the polling 1list address
and entry size are obtained. The count is =set to the residual count

plus the width of the poll characters. The data address is the ©poll
list address and original ccunt minus the new count,

MESSAGE HANDLING WITH TIME SHARING CPTICN SUPPORT

TSO ILine Management Suppcrt

In order +to imrlement line management in TSO support, TCAM uses its
Receive and Send Schedulers. When a scheduler is dealing with a
terminal +that is dedicated to a time sharing session, the scheduler
branches to a TSO routine (the Time Sharing Scheduler), which performs
special checking functicns.

If a receive interrurt has <Hust occurred c¢n input, the Time
Sharing Scheduler tposts the ICEB to the TSO Attention routine. VNo
input operation is initiated if there are insufficient TSC buffers or
when there is cutput to send. If the terminal in questicn does not
have the transmit interrupt feature, no read channel prcgram is built
until after a GET has been issued from the TSO foreqrcund program;
othervwise, the Receive Scheduler performs a read-ahead operation. If

Method of Operation 141

no input operation is to be initiated, the scheduler determines
whether to start a simulated attention channel program or to rlace the
OCR in the time delay gqueue for a simulated attention by time
interval. If no other I/0 is to Le started on the line and the
terminal has the receive interrupt feature, the scheduler places a
prepare on the line to mcnitor for receive interrupts (attentions).

The Send Scheduler is activated and an output coperation is
initiated when the TPUT SVC trosts the Destination CCE to itself on
the disabled ready dqueue. The Send Scheduler tranches to the Time
Sharing Scheduler, which determines whether a TPUT -with +the break
option 1is requested. If so and if an input operation is in progress
on a terminal with the transmit interruprt feature, the Time Sharing
Scheduler halts the TI/0 operation. When the interrupt cccurs, the
Line End RAppendage builds a break CCW to stcp terminal transmission.
Then the Send Scheduler is dispatched from the ICR, the Time Sharing
Scheduler determines whether a simulaticn attention or a read
operation has pricrity over output. If so, the Time Sharing Scheduler
takes steps +tc initiate the arprcpriate operaticn, For a send
operation, the Send Scheduler tposts the EFRB to the TSOUTPUT routine,
which moves the data from the TSO ruffer in the TSO partition into the
TCAM buffers in the TCAM region.

When the TCAM Activate subtask gains ccntrecl, it also kranches to
the Time Sharing Scheduler. This module, in turn, determines whether
a receive interrupt has occurred or an output operation has been
requested. If a receive interrupt has cccurred, the Time Sharing
Scheduler frees the buffers that were acquired for input, trosts the
LCB to the TSC Attention routine, and exits to the Dispatcher. If an
output operation has been requested, the Time Sharing Scheduler frees
the buffers, trcsts the LCE to itself, and exits to the Dispatcher.
Tf there is a prepare on the line to mcnitcr for a receive interrurt,
the Time Sharing Scheduler issues a TCAM BALT I/0. The scheduler then
returns to Activate.

The TCAM Iine End Appendage suprorts recognizing receive
interrupts, issuing transmit interrupts, recognizing hangups on a dial
line, and identifying 2741s and 1050s on the same line. The Line End
Appendage handles a negative poll respcnse on a leacsed 1line by
branching to the Time Sharing Scheduler. ‘

When a line that is dedicated to a time-sharing session is to be
freed, the QEVENT routine tranches to the Time Sharing Scheduler to
place a prerare c¢n the 1line +tc mcnitor for receive interrupts to
terminals with the receive interrurt feature.

TSO BUFFER MANAGEMENT SUPPORT

Each TSO buffer has a 21-byte buffer prefix. 1ine buffering is the
same as in TCAM, except that for a send operation the Send Scheduler
tposts the ERB to the TSOUTPUT routine, not to CPB TInitialization.
The TSCUTPUT routine builds TCAM buffers and moves data from the TSO
buffers in the TSO regicn into the TCAM Ytuffers in the TCAM region.

142

There is a special STARTMH subtask for TSC support in TCAM. This
subtask performs the same types of furctions as the regular TCAM
STARTMH subtask. In addition, it does nct set aside any reserve
characters 1in buffers supporting time-sharing sessicns, 1If a buffer
with data for a main storage or disk message queues data set is routed
to a TSO MH, the STARTMH subtask routes the message to a different MH,
if one is specified: otherwise, the subtacsk cancels the message.

The TSO Logcn routine, as called from the INHDR subgrour of a TSO
MH, scans the first tYtuffer for a time-sharing sessicn tc determine
whether to initialize for the session. TIf not, the buffer is routed
to another MH, if specified, or canceled.

The TSSO Carriage routine, as called frcem the INBUF subgroup of a
TSO MH, keeps track of the carriaqge positicr of the entering terminal
and removes line <ccntrol characters from the incoming message. The
TSO Simulated Attention routine scans the 1input buffers for a
simulated character string, if this functicn is requested.

ITn the INMSG and CUTMSG subgroups of a« TSO MH, the TSC Attention
routine rrocesses Teceive interrupts. The TSO Hangup routine
determines acticns bhased on hardware errors.

The Buffer Disposition subtask trosts incoming TSO buffers to the
OCR of the TSINPUT routine, as oprcsed to the Disk I/0 QCE.

TSO QUEUF MANAGEMENT SUFEORT

In a TCAM MCP, the TSO queuing and destinaticn assignment functions
are handled by the TSINPUT and TSOUTPUT rcutines, For an incoming
message, Buffer Disposition tposts the line buffers +to +the TSINPUT
routine. The TSINPUT routine uses the QTIP SVC to move data from TCAM
buffers din the TCAM region +to TSO buffers in the TSO region. The
routine then frees the TCAM buffers by tposting +them +to the Buffer
Return OCB. When +the TSINPUT™ routine gets the last buffer of a
message, it flags complete all the TSO buffers associated with this
messadge. If a CANCELMG macro has been executed, the TSO tuffers are
freed. ‘

When a TSC foreground program issues a GET macro, the TGET SVC
moves data into the prcgram wcrk area. An intut editing routine
performs any data editing that is requested on operands of the GET
macro.

For an cutgcing messadge, the TSO fcreqrcund program issues a PUT
macro, which causes the TPUT SVC to move data from the ©prcgram work
area 1into TSC buffers. If no cutrut oreration to the terminal is in
progress, the TPUT routine also disables itself and tpcsts the
Destination OQCP to itself on the disabled ready queue. When the Send
Scheduler is ultimately dispatched off the 1CB, it tposts the ERB to
the TSOUTPUT routine. The TSOUTPUT routine obtains TCAM buffers and
moves the data from the TSO buffers in the TSO region into +the TCAM
buffers in the TCAM region. The Send Scheduler uses the TSO TIOC EQdit
routine to verform any editing functions requested by operands of the

Method of Operation 143

DUT macro in the TSO foreground prcgram. When the last buffer of the
message has been sent, Buffer Disposition tposts the buffer back to

the TSOUTPUT rcutine, which frees the asscciated TSO buffers.

TSO MCP CLCSEDCWN PROCESSING SUPPORT

If a TSO program is using TCAM for terminal support, all TCAM requests
for closedown are ignored until TSO is nc 1lconger operating in the
systen. This is done because TSO is not dJdesigned to continue

processing after TCAM is clcsed down.

144

SECTION 3. PROGRAM ORGANIZATION

SYSTEM SERVICE ROUTINE

Disk Message Cueue Initializer (Chart XBR)

Module Name: TETCXA

“ntry Point: TEDOXA

Function: This routine is a utility program used to build a formatted
disk data set. The data set can then be used by a TCAM MCP tc contain
either a reusable or nonreusable disk message queues data set. Before
a TCAM MCP 1is 1loaded 1into the system, the Disk Message OQueue
Initializer must be run as a separate -ol ster for every disk message
gueues data set specified in the MCP,

Input to this routine is supplied by the Job Ccntrcl Language
(JCL) vparameters for executing the dob ster. Sample JCL for the Disk
Message Queue Initializer is as follows:

//joktname JOB
//stepname EXEC PCM=TIEDOXA
//SYSPRINT DD SYSCUT=A,SPACE=(TRK, (1,1))

//TEDODATA TD CSNAME=anyname,DISP=(,CATLIG), *
// SPACE=(CYL, (n,n),,CCNTIG), %
// UNIT=(23xX,V7), *
// VOLUMF=SER=(aaaaaa, ttbbbb,...), *
// DCB=(,KEYLEN=mm)

The variakles are defined as fcllows:

anyname - the user selects a name for the data set.

‘ This same name is used in the JCL for a TCAM -ob
to define the use of this data set.

n - the number of cyvlinders must ke the same for
all extents. Primary and seccndary alloca-
ticns must be identical, and allocation must
Ye ty cyvlinders.

Xx - 117 or 14. Anv one data set must have all extents
on one type of disk.

v - 1 to 1€. The total number of volume serial numters
listed in the "VOLUME" parameter.

aaaaaa,bbbbbb,... - each volume serial number of each vclume.

to contain an extent of the data set. There is
one extent per volume, with a maximum of 1€
volumes.

Program Organization 145

mm -~ the size of the key portion of the disk data reccrds
' to be written. The maximum key size is 255 bytes;
the minimum is 33. "mm" is the same value as the
"unit" size specified in the "KEYLEN" keyword of
an MCP INTRO macro. The data field length is an
internally fixed constant of 6 bytes. This is
added to the "KEYLEN" value to obtain "BLKSIZE".

~ The two required DD cards define the two output data =sets. The
SYSPRINT data set contains a copy of typewriter messaqges, and has the
attributes of DCB=(RECFM=U,BLKSIZF=80). This data set may be
suppressed bv srecifying //SYSPRINT DD DUMMY.

The TEDODATA data set is the new data set to te created as a TCAM
message gueue. The required keywords are shown in the sample JCL
above.

The execution of +the Disk Message Cueue Initializer is in two
phases: the oren and verification rhase, and the formatting phase.

During the cpen and verification phase, the Disk Message = Queue
Tnitializer <checks the JCL variables to determine whether they are
defined accordirg to specifications. Tf any excertion is found, the
routine terminates with a diagnostic statement defining the problen.
Messages that can be generated for the SYSFRINT data set and the
system console are as follows:

. "IEDOEETI UNABIF TO OFEN SYSPRINT" - Return code 20. A SYSPRINT DD
carA must te rresent. (Console only.)

. "TEDOG67I TCAM INITTALIZATION BEGUN" - The SYSPRINT data set is
opened. Processing continues.

° "TEDOESI UNABIE TO OPEN TEDODATA" - Retuvrn code 20. An TFDQDATA
DD card must te present.

L] "TEDCGA69T INVALID KEYLEN FOR IF¥DQDATA" - Return code 8, The KEYLEN
parameter is either missing or not within acceptable limits.

) "IEDO70T IEDOTATR DOES NOT SPECIFY CCNTIG SEACE IN CYLINLCERS" -
Return code 16. SPACF must specify CYI and CONTIG.

L] "TFDO71I UNFQUAL PRIMARY AND SECCNDARY EXTENTS CN TIEDQLATA" -
Return code 16. Primary and seccndary extents sizes must be

identical.

Tn the formatting phase of the routine +there 1is a 1loop built
around a WRITF macro that writes a zero-filled record on the disk.
Fach formatted record contains count, key, and data fields. The count
field has a CCHHR absolute address; the key and data fields are areas
.t0 receive TCAM mescaqge lteader and text information.

146

After the routine fills the extent of a volume with records, it
checks the field that indicates the number of specified volumes to
determine if that was tte last volume to be filled, If it is not the
last volume, the routine issues an TFEOV macro ¢to cause secondary
allocation +tc be made from the next volume in the list; in this way,
each volume has only one extent. After the routine formats the 1last
volume, it issues a successful return to 0S Job Management.

At the end of each volume the initializer issues a statement to
the SYSPRINT data set and to the system console. This statement
contains the total record count frcm the beginning of the data set
through the volume -ust completed. The numkter of these statements is
the number of extents (or vclumes) successfully formatted.

Messages that can be generated during +the second rhase of
execution are as foecllows:

L "IRDO072T I/C ERROR ON IFDQODATA" - TReturn code 12. Unable to
recover frcm a disk I/O0 error cn the disk message gqueues data set.

. "IEDO73T I/C ERROR ON SYSPRINT" - Return code 4. (Conscle only.)
Unable to recover from an I/0O error on the SYSPRINT data set.

L] "TEDO74T TCAM INITIALIZATION COMPLETE" - Return code 0.
Successful completion.

. "TEDO75T END OF EXTENT. RFCORD COUNT IS number" - The total
record count wup through +the <current extent. This statement
appears at the end of fcrmatting each vclume. The final count is
for the entire data set.

External Routines:

) SVC 64 - reads JF¥CB of the IEDQDATA data set for JCL verification.

. BSAM - writes dummy records to the disk using WRITE, CHECK, OPEN,
CLOSE, and TCE macros. -

. 0S WTO routine (SVC 35) - handles output to the system console.

. 0S Getmain routine (SVC 4) - cbtains main storage fcr a buffer
work area.

) 0S Freemain routine (SVC 5) - frees mair storage.
. SVC 31 - chifts from one volume to anotter.

Tables/Work Areas: The JFCB is read into a local constant area. The
output buffer is a GETMAIN area initialized tc zero.

Attributes: Reusable.

Prdqram Organization 147

TNITIALIZATICN FOUTINES

Link Routine (Chart OA)

Module Name: TEDCCA

Tntry Point: TIEDCOA - called by the INTRO racro expansion.

Function: This routine controls the transient routines that perform
initialization processing at INTRO executicn time.

The Link rcutine issues a LTNK to load and activate first the WTOR
Interpreter routine, then the Password Scrambler routine, then the
INTRO GFTMAIN routine, then the Termname Table Sort rcocutine, and last
the Attach routine. Upon return from the WTOR Interpreter, the INTRO
GETMAIN routine, anrd the Sort routine, the Iink routine examines a
return code in reqgister 15 to determine whether the returning routine
was successfully ccmpleted. If the return code is equal to zero, the
Link routine links to the next initializaticn rocutine or, if all five
routines have been executed, it returns tc the INTRO macro expansion.
If the return code is nonzero, the link rcutine passes it tc INTRO in
register 15 and sends a diagnostic message to the system console.
The format of this message is as fcllcws:

"TEDO6ST INITIALIZATION ERROR xxxX", where xxxx is the value that
INTRO passes in register 15.

wxternal Routines:

e 0S Link routine (SVC 6) - to activate the following mcdules:

TEDOOR - WTOR Interpreter routine - +to alter certain INTRO
rarameters. : ‘

TEDOE6 - TFassword Scrambler routine - +to scramble the MCP
rassword.

TEDOOG - INTRC GETMRAIN routine - to acquire main storage for
tuffers and tables.

IEDQOM - Termname Table Sort routine - to sort the Termname Table.

TEDQOS - BAttach routine - to attach Cn-Iine Test, FE Ccmmon Write,
and Operator Contrcl.

° 0S WTO routine (SVC 35y - to send a message to the systemn
operator.

Tables/Work Areas: This routine passes the address of the AVT to each
external routine.

Attributes: Reusable, transient, rroblem program mcde.

148

WTOR Interpreter Foutine (Chart OFE)

Module Name: TEDQOR

Eﬁtrv Point: IFDOOB - called through a LINK SVC by the Link routine
(TEDOOR) . ~

Functions: This routine permits systen redefinition without
reassembly. The system console operator can enter new values to
replace values specified on srtrecific keyword rarameters of the INTRO
macro at assembly time.

Tf the INTEC macro is assembled with the KEYLEN, CPB (or DISK=NO),
STARTUP, and LNUNITS rarameters properly syecified, the cperator is
not given the crportunity to modify any INTFO operands at exXecution
time, and when the WTOR Interrreter is Yrrought into the system, it
does not issue the WTOR command. Tc make execution = time
modifications, at least cne of the above crerands must be onmitted from
the INTRO assenrtbly.

The Link routine (IEDCOA) issues a LIFK SVC to load and activate
the WTOR Interrreter routine from SYS1.LINKITB. When WTOR Interpreter
gains control, it sends the following message to the system operator:

L "TEDOO1I TCAM JOBR -qolname, stepname, rrocstepname, ADDRESS OF AVT
address" - where Jjokname is the -ct nare, stepname is the step
name, procstername is the procedure step name, and address is the
AVT address.

The WTOR Interpreter then checks the TCAM wcrd in the CVT. 1If
this word contains a nonzero value, there is a TCAM MCP already active
in the system. The Interpreter, in this case, displays the following
message and returns to the Link routine with an error code of X'04°'.

. "IEDO14TI TCAM ALREADY TN SYSTEM"

If the TCAM word in the CVT is equal to <zero, the WTOR 1Interpreter
checks the INTRO vparameter 1list to determine whether any of the
required operands are missing. If one c¢cr more of the required
operands is missing, the WTCR Interpreter sends the fcllowing message.

. "TEDOO2A SPECIFY TCAM PARAMETEERSY

After sending this message, the system waits for an operator
response., The response, in the form of keywords (either full or
atbreviated) serarated ty commas, is limited to 41 characters. The

routine examines the response field from left to right, An error in
one keyword prevents examination cf other keywords to its right.
(These keywords may be placed in ancther resronse.) The WTOR
Interpreter rereats the request for input until the orerator indicates
that he has finisted entering keywcrds btv coding "O" as the 1last
keyword. . '

Program Organization 149

Tf the WTOR Interpreter finds an error in a keyword entered by the

operator,

it sends the following messages

® WTEDOO3A INVAILID KEYWORD xxxXX" - xxxXX is the first four characters

of the undefined kevyword.

A1l keywords to the right of this are

ignored. A11 keywords to the left of the errcr have been
interpreted.

[3 "TEDOOUA REQUIRED PARAMETER MISSING. SFFCIFY xx" - after the user
codes "U" indicating he is through entering rarameters, this
statement ‘reminds him of a required parameter he has yvet to code.
XX is the keyword needed. The wuser should reply with the
indicated keyword (or keywords) and again indicate that he has

finished responding by coding "g",

The required keywerds that may

be called fcr are:

S= WSTARTUP" - co0ld or warm start

B= "LNUNITS" - number of line tuffers

K= "KEYLEN" - size of each buffer unit

D= "CPB" - number of CPBs =~ reguired cnly if disk is

L] "TEDOOSA
RESPONSE"
of main storagde message gqueue records, tut

not specified

legal only if main storage gueuing (INTFQO MSUNITS=YES or

was

being used.
MSUNTITS (M) SPECIFICATICN NCT PERMITTED. CONTINUE
- the user has coded the "M=" keyword to set the number
main storage queuing

The "M=" response is
integer)

at INTRO assembly time.

is specified at assenbly time.

the

U"TEDOOG6R
keyword

keywords
keywords

The WTOR
keyword

INVALID OPERANL ON KEYWORD.
is the keyword that contains
to the right of +the 1illegal one are
before this keyword have been interpreted.

RESPECIFY keyword" - where
the illegal value. 1All
ignored. All

Interpreter routine modifies the AVT entry that is set by
being examined. The fields in the AVT with the related

kevyword and resronse are as follows:

INTRO Keyword Pesronse Keywerd AVT Field Field length
STARTUP S AVTBIT3 3 tits
LNUNTITS B AVTNOLBF 2 kytes
MSUNITS M AVTTOTNC 4 tytes
RESTART N AVTCKRST 1 byte
KEYLEN K BAVTKEYLE 2 rytes
UNITSZ K _AVTKEYLE 2 bytes
CPINTVL v AVTCXELV 2 bytes
CONTROL L AVTCTLCH 8 chars
PRIMARY P AVTDOURX 8 chars
INTVAL I AVTINTLYV 2 bytes
PASSWRD W AVTPASWD 8 chars

150

CKREQS R AVTNCKPR 1 byte
CPB D AVTCPENO 2 kytes
CPRCDS E AVICPRCD 1 kyte
CROSSPRF F AVTCRSRT 4 bytes
COMWRTE G AVTCWFL1 1 tit
TRACE T AVTRACE 4 kytes
DTRACE A AVTDTSTR 4 bytes
CTI® C AVTCIB 1 byte
MSMIN Y AVICMIN 4 bytes
MSMAX X AVTCMAX 4 trytes
DLO 0 AVTDLOX 8 bytes
OLTEST o AVTOLTST 1 byte
TOPMSG H AVTRBIT2 1 rit

Other kevwords cannot be modified.

Once the operator has entered the reduired keywords and <the "g©
response, WTCR Interpreter returns to the Link routine with a X'00!
return code in reaister 15.

External Routines:

. 0S WTO routine (SVC 35) - to write a message to the orperator.
] 0S Wait routine (SVC 1) - to wait for an operatcr respcnse.

Tables/Work Areas: AVT, CVT, TCB.

Attributes: Transient, nonreusable, nonrefreshable, enabled, problen
prcgram mode.

INTRO GETMAIN Routine (Chart 0QG)

Module Name: TIEDCOG

" ¥ntry DPoint: TEDQOG - called through a IINK SVC ty the Link routine
(TEDOOR) .

Functions: This routine uses the 0S GETMAIN macro +to obtain main
storage for and initialize line buffers, a main storage message gueues
data set (if requested), channel rrogram tlccks, and any trace tables
or cross reference tables requested by the user.

If the INTEC GETMAIN routine is atle tc satisfy all the required
GETMATIN requests, 1t returns to the Link routine with the successful
return code X'00' in register 15. The value X'08' in register 15
indicates that sufficient main storage was not available to satisfy a
GETMAIN request.

External Routine: O0S Getmain routine (SVC U) - to obtain main storage
space. |

Program Organization 151

Tables/Work Areas: AVT.

Attributes: Transient, reusable, refreshatble, problem prcgram mode.

Termname Table Sort Routine (Chart OM)

Module Name: TEDCOM

Fntry Point: TEDOOM - called through a IINK SVC by the Link routine
(IEDOOA).

Functions: This module sorts the Termname Talkle entries into
alphatetical sequence. After the sort 1is finished, this routine

recalculates the Termname Table offsets fcr any distribution 1lists,
cascade lists, and invitation lists that refer to specific entries in
the Termname Table. This routine also recalculates the offsets for
alternate destinations.

The Termname Table Sort routine initializes the Termname Table
fields that are necessary for the Binary Search routine, It also
checks for the trresence of a primary operator control terminal. If a
dead-letter queue is specified, this routine calculates its Termname
Table offset and places the cffset at AVTDLQX in the AvVT. If,
however, the dead-letter queue is specified to a TSO terminal, this
module proceeds as though nc dead-letter queue was specified.

Tf this routine is successfully executed, it returns to the Link
routine with a X'CO0' return code in register 15. The three error
conditions that can occur are indicated by the following return codes
in register 15:

. X'12' - main storage is not availatle to satisfy a GETMAIN
request.
o X'16' =~ +terminal definition errcr. Error message "IEDQOO7I

terminal name ILLEGAL DESTINATION" is sent to the system console
for each Terminal Tatle entry that contains an error. :

. ¥'20' - primary operatcr contrcl terminal definition error.

External Poutines:

. 0S Getmain routine (SVC 4) - to obtain main storage,
L) 0S WTO routine (SVC 35) - to send a message to the system
operator.

Tables/Work Areas: AVT, Termname Table, Terminal Table,

Attributes: Transient, reusable, refreshable, problem prcgram mode.

152

Attach Routine (Chart 0S5)

Module Name: TEDCOS

Fntry Point: IEDCOS - called through a LINK SVC by the 1Iink routine
(IEDQORNY .

Functions: This routine attaches the Operatcr Control task, the On-
Line Test module (if requested), and the ¥F Common Write routine (if
requested) as tasks in the same partition ¢cr region as the MCP. This
routine determines the need for attaching Cn-line Test and TFE Conmon
Write by testing switches in the AVT. :

The Attach routine also loads modules that depend on operands on

"the INTRO macrc. If the system delay interval in AVTINTLV 'is equal

to zero, the Attach routine loads the System Delay subtask (IEDQHI),

and places its address in the AVT. If PRIMARY is not specified as

SYSCON, the Attach routine loads the Cperatcr Awareness Message Router
(TEDONX) and places its address in the AVT. '

Tpon comrletion, +the Attach routine returns to the Tink routine.

External Routines:

. 0S Attach routine (SVC 42) - to attach the requested tasks.

) 0S Extract routine (SVC 40) - to build a communications rarameter
list.

. 0S Load routine (SVC 8) - to load TCAM modules,

Tables/Work Areas: AVT.

Attributes: Transient, reusable, refreshable, problem rprcgram mode.

Disk Message Queues Open Routines (Charts LB, IC, 1D)

- Module Names: IGGC1930, IGG01931, IGGO01934

Entry Points:

) IGG01930 - entered by an XCTL from an 3I/0 support mcdule or
another access methcd cren executor when an OPEN DCB for a message
queues data set is issued in an MNCP. IGG01930 can also be
reentered ty a loop from itself if there are multirle DCBs to
open. (Chart LB)

. 16601931 - entered by an XCTL from TIGG01930 after IGGC1930 1is

completed. IGG01931 can also be reentered by a loop from itself
if there are multiple DCBs to open. (Chart LC)

Program Organization 153

. IGG019384 - entered by an ICTL ffom IGG01931 after 1IGG01931 is
completed. IGG01934 can also be reentered by a loor from itself
if there are multiple DCBs to open. (Chart LD)

Functibns: The functions of each rcutine are defined according to
entry point.

. I1GG01930

This routine gets main storage for and initializes a Data Extent
Block (DEB) in subpool 254 for a message dqueues DCB. IGG01930
analyzes the the device type informaticn rrcvided in the Unit Control
Block (UCB) - tc determine the type of direct access devices used for
the message gueues.

If IGGC193C finds an error condition, it sets error indicators in
the AVT and issues an XCTL to the Oren Error Handler routine
(IGG01933).

When no errcrs are fcund, TGG01930 places the address of the next
entry in the TCE parameter list in register 7 and the address of the
next entry in the system Where-to-Gc Table in register 8. The routine
updates the Disk Message Queue Open entry in the Where-to-Gc Table to
point to Load II -- IGGO01931. IGGC1930 then issues an XCTL ccmmand to
the module identified by the next ncnzero entry in the Where-to-Go
Table, specifically IGG01931. ’

. IGG01931

This routine completes the initializaticn of the DEB extents and
calculates various values required by EXCP Driver. IGG01931 also
builds and initializes all I/0 Blccks (IOBs), one per T[LEB extent,
required for disk operation.

~ If TGG01931 finds an error condition, it sets error indicators in
+he AVT and issues an XCTL +c¢ the Cpen Error Handler routine
(IGG01933).

When no error 1is found, I5G01931 places the address of the next
entry in the DCPR rarameter list in register 7 and the address of the
next entry in system Where-to-Go Table in register 8. It updates the
Disk Message Queues Open entry in the Where-to-Go Table tc identify
Load TIT -- IGGC1934. 1IGGC1931 issues an XCTIL command to the module
identified by the next nonzero entry in the Where-to-Go Table -
IGG0O1934, '

L IGG01934

This routine performs all the disabled initialization functions
that are required by TCAM. This includes lcading the TCAM Cispatcher,
EXCP Driver, Disk End Appendage, and the Reusability-Copy subtask, if
it is reguested. 1In order to load a module, IGG01934 activates 1I0S,
which checks the O0S Contents Tirectory to determine whether that

154

module has already been loaded. If there is an entry for the module
in the directory, I0S adds one to the directory usage count. If there
is not an entry for the module in the directory, IOS makes a two-byte
entry in the directory, adds one to the usage count, and 1loads the
module.

Note: IGG01934 loads the Disk End Arpendage for a Single CPB and
EXCP Driver fcr a Single CPB when CPB=1 is specified by the user.
Otherwise, TIGG01934 1loads the regular version of each of these
modules. : -

16601934 places the address of the next entry in the DCE parameter
list in register 7 and the address of the next entry in the systen
Where-to-Go Tatle in register 8. IGG01934 issues an XCTL to the
module identified by the next nonzero entry in the Where-to-Gc Table,
either IGG01941, IGG01935, cr system open.

External Routines:

° 0S Getmain routire (SVC #) - to obtain rain storage srace for the
DEBs and IOEs.

. 0S Load rcutine (SVC 8) - to locad TCAM modules.

mables/Work Areas: System Where-tc-Go Takle, DCB parameter list, Open
work area, AVT, DEB, IOB, UCB. .

Attributes: Transient, enabled, reentrant.

Checkpoint Open Rcutine (Chart MR)

Module Name: IGGO1941

Entry Point: IGGQ1941 - activated ty an XCTL from IGG01934 when the
OPEN checkpoint data set DCP is specified in an MCP.

Tunctions: This module cpens a checkpcint data set in the MCP. To
accomplish this, it performs the following activities: '

. Determines the size of the GETMAIN work area (the size varies as
a result cf the INTPRO orerands "CKREQS" and "“CPRCDS"),

. Issues a GETMAIN macro for the work area and puts the address 1in
the AVT field AVTCKGET,

. Determines the beginning of the CKREC~TIR table,

) Initializes . the TOB and the disk channel program in the checkpoint
work area,

Program Organization 155

156

Determines the type of start-up required (cold, warnm, or
continuation) by investigating the disrosition field ccded on the
OPEN macro, the start rarameters (on INTRO), and the '"normal
closedown" bit 4in +the checkpoint data set contrcl record.
Dependinag cn these results, transfers ccntrol (XCTL) to either the
Checkpoint Tisk Allocation module or the Checkpoint/Restart from
Environment Record module. The following conditicns determine the
type of start-up required and therefcre indicate the rcutine to
gain contrecl:

DISP=NEW

XCTL to the Checkpoint Disk Allccation routine

DISP=0LD, S=C, normal clcsedown

XCTL to the Checkpoint Disk Allocation routine

DISP=0LD, S=C, abnormal closedcwn

XCTL to the Checkpoint/Restart modules and scan the message queues

DISP=0LD, S=CY, normal closedown

XCTI, to the Checkroint Disk Allocaticn routine

DISP=0LD, S=CY¥, abnormal closedown

XCTIL to the Checkroint Lisk RAllccation routine

DISP=01lD, S=W, normal closedown

XCTL to the Checkrcint/Restart modules and do not scan fhe message
queues ‘

DISP=0LD, S=W, abnormal closedown

XCTL to the Checkrcint/Restart modules and scan the message queues

DISP=0LD, S=WY, normal closedown

XCTL to the Checkroint/Restart modules and do not scan the message
gqueues

DISP=0LD, S=WY, abnormal closedown

XCTL to the Checkroint/Restart modules and dc not scan the message
gueues

I1f, during execution, the Checkpoint Cpen routine determines that
there 1is insufficient main storage for the checkpcint work area or if
a disk I/0 error occurs while reading the contrcl record of the
checkpoint data set, the routine sends an errcr message to the systenm
console, sets AVTCKGET equal to zero, and passes ccntrol tc the next
module in the system Where-tc-Go Tatle.

External Routines:

. 0S Getmain routine (SVC 4) - to obtain main storage for a work
area.
. Os WTO routine (SVC 35) - to send a message to the systen

operator.
o 0S Load routine (SVC 8) - to load a checkrcint module.
° 0S EXCP routine (SVC 0) - to read a reccrd from disk,

Tables/Work Areas: CcCVT, AVT, Checkpoint DCB, Checkpcint DEB,
checkpoint work area, I/0O work area, JFCB.

Attributes: Reentrant.

Checkpoint Disk Allocaticn Routine (Chart MM)

Module Name: IGGC1949

Entry. Point: IGG01949 - called by the Checkpoint Cren rcutine when
initialization cf the checkroint data is required.

" Punctions: This module determines the size of the varicus records for
the checkroint data set. The Checkpoint Disk Allocation routine first
scans the TCAM +tables to determine the =size of an environment
checkpoint record and the number of disk reccrds necessary tc contain
it. The routine then finds the maximum numter o¢f priority level QCBs
to be used for anvy one application program Destination QCE, and uses
this number plus the length of the 1longest orption area for any
terminal entry tc calculate the length of a CKREQ record. The length
of an incident record is equal to the length of the 1longest option
area or the 1length of the operator control data area, whichever is
qreater.

The Checkpoint Disk RAllocation routine then calculates the number
of each of the tyres of checkpoint records that will fill one track of
the checkpoint data set. The routine uses the device type index (from
the UCB) and the CS I/0 Device Characteristics Table (address from the
CVT) fields +tc calculate the numter cf reccrds per track.

The Checkpoint Disk Allocation routine rlaces the numter of tracks
in the checkpcinrt data set, the size of each disk reccrd, and the
number of records per track in the checkrcint work area. This routine
also places the count and 1length of +the various records in the
checkpoint disk data set ccntrol record.

Proqram Orqanization 157

The Checkroint Disk Allocation routine exits by issuing an XCTL to
the next nonzero entry in the system Where-to-Go Table - IGG01942.

External Routines: VNone.

Tables/Work Areas: CV1I, AVT, checkpoint work area, Cption Table,
Termname Table, Terminal Table, QCE, DEB, ICB, invitation list, 0S I/O0

Device Characteristics Table.

Attributes: Reentrant, transient, refreshable, enabled, supervisor
mode. :

Checkpoint Disk Initialization Routine (Chart MB)

Module Name: IGGC1942

Entry Point: ICG01942 - called by the Checkroint Disk Allocation
routine to initialize the checkpoint data set or by the
Checkpoint/Restart from Fnvircnment Record routine to perfecrm an error
exit. '

Tunctions: The Checkroint Disk Initialization routine initializes the
disk checkpoint data set into srecific areas for a cecntrol record,
environment checkroint records, CKREQ records, and incident records.

This routine formats the checkpoint data set with dummy records.
The CPRCDS orerand of the TINTRO wmacrc specifies the number of
environment checkpoint records to be written in the disk checkpoint
data set. The CKREQS operand of INTRO indicates the number of CKREQ
records to te written in the data set. There is one control record.
The remainder cf the space that is allocated to the checkpoint data
set on the disk is used for incident checkpcint records,

If, during execution, the Checkroint Lisk Initialization routine
recognizes an error condition, it issues an error message via WTO,
sets AVTCKGET equal to zerc, and transfers ccntrcl to the next entry
in the system Where-to-Go Table. The following error conditions can
occur:

) Disk I/0 error occurs while writing.

. Insufficient disk srace for the minimum required checkpoint
records:

2 environment records,
1 control reccrd,

The number cf CKREQ records srecified in the INTRO macro + 3 extra
records, and

1 incident record.

158

If +the Checkroint Disk Initialization routine is entered from the
Checkroint/Restart from Fnvironment Record routine, the Initialization
routine issues a WTO message that indicates 'an unrecoverable disk
error, sets AVICKGET equal to zero, and transfers control to the next
entry in the system Where-to-Go Tatble.

If no errcors cccur, this routine transfers control to the next
entry in the system Where-toc-Go tatle.

External Routines:

. TIFCPCNVT - to convert the relative track address to the actual
disk < address. (This is an 0S routine, found via .a pcinter in the
CVT.) '

. 0S WTO routine (SVC 35) =~ +t¢c send a messade to the systen
operator.

) 0S ®XCP routine (SVC 0) - to start a channel precgram tc write a
checkpecint record.

° 0S Wait routine (SVC 1) - to allow time for the channel program to
complete.

Tables/Work Areas: CVT, AVT, checkpoint wcrk area, Checkpoint QCB,
Checkpoint DER, Checkpcint DCB.

Attributes: Feentrant.

Checkpoint/Restart from Environment Record Koutine (Chart MF)

Module Wame: IGG01943

Tntry Point: TIGGO1943 - activated by the Checkroint Oren rcutine when
a system restart is required.

Functions: When checkpoint restart is specified, this module uses the
environment record segments in the checkrcint data set to reconstruct
the MCP environment. The Checkpoint/Restart from Environment Record
routine places informaticn from the envircnment checkpoint record in
the MCP tables=s.

The Restart from Environment' Record Routine determines which
environment record to wuse by <subtracting the value cf the INTRO
operand "RESTART=" from the number of the mecst current environment
record. The control record (the first record on the checkpoint data
set) contains the number of the most current envirgonment record. If
the result <c¢f the subtraction is not a rcsitive value, this routine
adds the value cf the INTRO operand "“CPRCDS" (the +tctal number of
environment records) to the result.

Program Organization 159

Tf +this restart rcutine finds that the TTR of the environment
record in the ccntrcl record is equal tc zero, the environment record
has had a disk error. 1In this case, this restart routine issues a WTO
error messade and recovers by using the previous environment record.
If all the TTPs are equal to zero, the routine sets the X'08!' bit in
the first byte of the control record and then transfers control to
TGG01942, which issues a WTO error messadge. In this <case, no
checkpoints are taken for the duration of the -job.

After successful execution, this module exits to IGG01944. TIf an
error occurs during prccessing, exit is to the next module in the
system Where-tc-Gc Table.

External Routines:

) IFCPCNVT - to convert the relative track address to the actual
disk address. (This is an 0S routine, found via a pointer in the
CVT.)

- 0S FXCP routine (SVC 0) - to read a checkpoint record segment.
e 0S Wait routine (SVC 1) - to allow I/0 to complete,

° 0S WT™0 routine (SVC 35) - +to send a message to the systenm
operator.

Tables/Work Areas: CVT, AVT, checkroint work area, TCPE, Checkpoint
DEB, Checkpoint DCB, Checkpoint QCB, Termname Table, Terminal Table,
invitation list. ‘

Attributes: Reentrant.

Checkpoint/Pestart from Incident and CKREC Records Routine (Chart MG)

Module Name: IGG01944

Fntry Point: IGGO01944 - activated by the Checkpoint Open routine
after the Checkroint/Pestart frcm Envircnment Record routine has
successfully executed.

Tunctions: This nrodule reads the incident records for stcr 1line or
start line and the CKREQ records from the checkpoint data set and uses
these records tc wupdate the MCP envircnment, If STARTUP=WY is
specified as an orerand of the INTRO macrc, TCAM does not use the
incident records to update the MCP environment; otherwise, this
module performs the following functions.

The routine first compares the time in an incident record to the
time in the environment record used for the restart. If the incident
record is more recent, it is used to update the MCP tables. The key
field in an incident record indicates the tyre of infcrmaticn in the
record. Incident checkpoints are taken as a result of a CHFCKPT macro
in an MH, a TCHNG macro in an applicaticn program, or an operator
control command.

160

Note: This rcutine processes cnly the incident records for Start
Line and Stor Line operator ccntrol commands. All other commands
are processed after the lines are opened at READY time. When this
routine reccgnizes a Start or Stop Line command, it stores the
line status in the OCBLINK field of the Destination QCE for the
line. The line Oren rcutine uses this status fielgd.

CKREQO records do not contain the time at which they are written.
These records are used to synchronize the information in Terminal
Tatle process entries with an 0S Checkpoint taken in an application
program. The Checkpoint Restart from Incident and CKREQ Records
routine reads all the CKREQ records in the data =set. This routine
moves each TTR and Termname Table offset 1into the CKREQ-TTR table in
the checkroint work area. If the cffset value in a CKREC record is
not equal to zero, this routine uses the CKREQ data to update the MCP
tables that pertain to the rrccess entry.

The Checkpoint/Restart from Incident and CKREQ BRecords routine
exits to the next module in the system Where-to-Go Table - the
Checkpoint Continuation Restart mcdule (IGGC1945) if this is a restart
after an abnormal closedown, or the next open executor after a normal
closedown. Fcr a normal clcsedown, this routine also sets kit X'01!
in AVTCKELF to indicate the type c¢f restart.

External Routines:

. TECPCNVT - tc ccnvert the relative track address +to the actual
disk address. (This is an 0S routine, found via a pcinter in the

CVT.)

e IEDQTNT - Termname Takle code - +tc¢c obtain a terminal entry
address.

° 0S EXCP routine (SVC 0) - to read a checkrcint record.

) 0S Wait routine (SVC 1) - to allow I/C to complete.

. 0S WTO routine (svc 35y - to send a message to the systen
operator.

Tables/Work Areas: AVT, checkpoint work area, QCR, DCE, Terminal
Tatle, Termname Table, Crtion Table, CVT.

Attributes: Reentrant.

Checkpoint Continuation Restart Rcutine (Chart MJ)

Module Name: IGGC1945

Entry Point: IGG01945 - entered ty an XCTL from the
Checkpoint/Restart from Incident and CKREQ Records routine (IGG01944)
after an abnormal closedcwn.

Program Organization 1€1

Functions: This module performs any required processing of the
messagde queues data set at restart time. '

By coding STARTUP=WY on the INTRO macro, the user srtecifies that
after a system failure he wants a warm restart withcut a scan of the
message queues. In this case, the Ccntinuation Restart routine
locates the last messaqge placed on each FEFO gqueue in the messagqe
gueues data set before the time of the last checkpcint, This routine
then places zeros in the FEFO chain field cf any messages that were
placed on the dgueue after +the checkrcint - these messages are
subsequently lcst.

If SYNC=YES is coded on the TPRCCESS macro, the wuser has
synchronized queues for apprlicaticn programs. In this situation, the
Continuation Restart module scans the FIFC message gqueues for the
specified process entry and recreates a FEFO queue, in FIFO order,
that includes all messaqges on the FEFO queue at any time after the
last checkpoint was taken. To determine which serviced messages
should be placed on the FEFC queue, this rcutine comrares the disk
record number of the last segment of the first message on the FEFO
queue at the time of the last checkpoint with the disk record number
of the last seqment of every complete, uncanceled message cn the FIFO
gueue. If the record number of the messagqe on the FIFO gueue is
greater than the record number cf the messaqe from the FEFO queue,
this routine places the message that is on the FIFO queue on the
restart-FFFO queue.

Tf neither c¢f +the above situaticns exists, the Continuation
Restart routine scans each FIFO message queue and recreates a restart
FEFO gueue in FIFO order. This queue contains all complete,
~unserviced, uncanceled messaqges. The Ccntinuvation BRestart routine

must read and check each segment of a message for logical read errors
in order to determine whether the message is completely received. ‘

In both 0S synchronized and reqular ccntinuation restart, this
routine recreates the FEFO.chain, updates the sequence numbers, and
recreates the queue-back chain. 1The sequence number in a message is
only used to urdate its terminal entry if the number of the message is
greater +than the number already in the entry. If the queue-back
pointer in a message is higher than the gueue~back pointer in its
Destination QCB, the Continuaticn Restart routine uses the record
number of the message buffer, not the gueuve-tack field, to update the
OCE.

The Continuation Restart routine exites by issuing an XCTL to the

module indicated by the next nonzero entry in the system Where-to-Go
Table.

162

External Routines:

) IGG01908 - Checkpoint Centinuation Restart subroutine - tc examine
a terminal entry and tc activate IGGO19RC.

) 0S Load routine (SVC 8) - to load IGG(C1<Q8.

. TEDQTNT - Termname Table code - to get a terminal entry address.

Tables/Work Areas: AVT, checkpoint work area, CPB, disk data area of
the message, truffer prefix, OCB, Termname Table, Terminal Table.

Attributes: Reentrant.

Checkpoint Continuation Restart Sukroutine (Chart 08)

Module Name: IGGC1908

Entry Points:

. 16601908 - loaded by the Checkroint Ccntinuation Restart routine
(IGG01945) to check terminal entries.

) TGG01908+4 - activated by the Checkrcint Continuation Restart
routine to execute disk I/O.

° IGG01908+8 - activated by the Checkrcint Continuation Restart
routine tc update sequence numbers.

. I1GG01908+12 - activatea by the Checkrcint Continuation Restart
routine to update the AVT value of address for queuing.

e IGG01908+416 - activated by the Checkrcint Continuvation Restart
routine to initialize registers.

Functions: This module is an extension of the Checkpecint Continuation
Restart routine (IGGO01945). At the IGGO019C8 entry point, this module
examines the terminal entries to determine whether a scan should be
performed on the message queues. At the IGG019Q08+4 entry point, this
module sets ur the CPB fcr disk I/C on the message queues data set and
then activates the EXCP Driver (IGGO019RC) tc actually perform the I/0
operation. At the IGG01908+8 entry point, this module updates the
message sequence number in the terminal entry. At the IGG019Q8+12
entry point, this module examines and, 1if necessary, updates the
AVTRADDR and AVTNADDR dqueuing addresses in the AVT. At the
T1GG01908+16 entry point, this module initializes registers with values
for IGG01945.)

The Checkrcint Continuaticn Restart stbroutine always returns to
the Checkroint Continuaticn Restart rcutine.

Program Organizaticn 163

External Routines

. TGG019RC - FXCP Driver - to perform I/0 on the disk message queues
data set. :

) 0S Wait routine (SVC 1) - to allow time fecr completion of the disk
I/0 activity.

Tables/Work Areas: AVT, checkpoint work area, Terminal Table, AVT,
CPEB, QCB.

Attributes: FReentrant, transient.

Line Grour Open Rcutines (Cha;ts LE, IW; 16, LH, LI, LJ, and LK)

Module Names: 16601935, 7IG6G6C1936, 16601937, 1IGG(C1938, 1IGG01939,
IGG01940, IGGO1948.

Entry Points:

° IGG01935 - entered by -an XCTL from an I/O support module or from
another access method open executor wher an OPEN line group DCB is
issued in an MCP. It may also te reentered by a loop from itself
if there are multiple DCRBs to crpen. (Chart LE)

° IGG0193€ - entered by an XCTL from IGG01935, It may also be
reentered Yty a lcop from itself if there are multiple TCBs to
open. (Chart LF)

. TGG01937 - entered by an XCTL from IGG01936. It may also be
reentered ty a locp from itself if there are multirle DCBs to
open. (Chart 1G)

] TGG01938 - entered by an XCTL from IGG01937. It may also be
reentered ty a locp from itself if there are multiple DCBs to
open. {(Chart 1H)

° IGG01939 - entered by an XCTL from IGG01938. It wmay also be
reentered ty a lccp from itself if there are multiple DCBs to
open. {Chart LI)

. I6G01940 - entered by an XCTL from IGG01939. It may also be
reentered ty a 1loop from itself if there are multiple DCBs to
open. (Chart LJ)

. IGG01948 - entered by an XCTL from 1IGG01940, It may also be
reentered ty a locp from itself if there are multiprle DCBs to
open. (Chart LK)

Functions: The functions of each routine are defined according to
entry point.

. IGG01935

164

This routine builds and initializes a line DEB. 1IGG01935 examines
the Task I/0 Tatle (TIOT) to determine the numkter of 1lines in this
line group. It then ottains main storaqge for and initializes a line
DEB in subpool 254.

IGG01935 checks each unit control bYblock (UCB) to verify that
similar devices are attached +tc each line and that either a 2701,
2702, or 2703 control unit is being used. This routine also 1locates
a typical entry in the Device Characteristics Taktle for each line
group, sets an index into the branch table in IGG01936, and clears a
register to ccntain the Line Contrcl Blcck (LCB) size.

If IGG01¢35 finds an error conditicn, it sets error indicators in
the AVT and issues an XCTL instruction to give «control +to the Open
Error Handler rcutine (IGG01933). TIf the user has specified a TCAM
entry in his exit list, the Open Error Handler routine will return
control +to the next nonzero entry in the system Where-to-Go Table
after it has rroccessed all error conditions. :

IGG01935 exits by issuing an XCTL command to the module indicated
by +the next ncnzero entry in the system Where-to-Gc Table - IGG01936.

° IGG01936

This routine determines the size of the channel prcgrams for all
devices for the line group being crened.

IGG01936 provides +the number of channel ccmmand words (CCWs) for
a minimum program for all devices. Additional CCWs are rprovided as
determined by examining the optional feature bits in the UCE and the
typical entry for each applicable device in the Device Characteristics
Table. :

This routine issues a GETMAIN instruction to get an LCR for each
line in the line group and then places the Send Scheduler STCE in the
STCB chain of the Destination QCB.

When IGG01S36 issues an XCTL to IGG01937 (the next ncnzero entry
in the system Where-to-Go Table), it passes in reqgister 10 the total
number of CCWs required for each channel rrcgram for each device in
the line grour.

° IGG01937

This routine builds and initializes all the LCBs for this line DCB
open.

IGG01937 divides the LCB area into individual LCBs for each of the
lines and initializes each LCB. If the scheduling pricrity for this
line is send, this routine moves the Send Scheduler STCB into the STCB
chain for the LCB. '

Program Organization 1€5

IGG01937 exits by issuing an XCTL command to the module indicated
by the next ncnzero entry in the systen Where-to-Go Table - IGG01938.

e IGG01938

This routine tuilds channel programs in the 1ILine Control Blocks
(LCBs) for the lines of the line group being opened.

IGG01938 alsc tests to determine whtether the lines are to be
orened idle.

TGG01938 exits by issuing an XCTL command to the module indicated
by the next ncnzero entry in the system Where-to~Gc Table - IGG01939.

e TIGGO1939

- This routine 1loads some of the modules required for line
operation. These modules include the TCAM Tispatcher, the appropriate
receive schedulers, and the Start-ur Message routine (if requested).
Tn order to load a module, IGG01939 activates I0S, which checks the 0S
Contents Directory to determine whether that module has already been
loaded. If there 1is an entry for the module in the directory, IOS
adds one tc the directoryvy usaqge ccunt. If there is not an entry for
the module in the directory, I0S makes a two-byte entry in the
directory, adds one to the usage count, and loads the module. If TIOS
loads the TCAM Disratcher, it also places a rointer to the address of
the AVT in the CVT.

IGG01939 exits by issuing an XCTL command to the module indicated
by the next ncrzero entry in the system Where-to-Go Table - IGG01940.

L IGG01940

This module completes the loading of the modules required for 1line
operation. These modules include +the Send Scheduler, the PCI
Appendage, and the Line Fnd Arpendage. TIGGC1940 also loads the device
dependent svecial characters required for initial I/0 orerations and
starts I/0 on eacht line in the line grour.

Note: The version of Line Fnd Appendage that TIGG01940 1loads
derends on the user-coded operands cn the INTRO macro:

ENVIRCN=TCAM IGG01905
ENVIRCN=TSC or MIXELC IGG01903
LTNETYP=BISC IGG01°Q2
LINETYP=MINI IGG01904
LINETYP=BCTH IGGO19RO

IGG019U40 exits by issuing an XCTL command to IGG01948,
. TGG01948

This routine places 1line-specific infecrmation in the Cross
Reference Table. The data rlaced in this table includes the UCB nanme,
the UCB address, the LCB address, and the Destination QCP address for
each line in the line grcur.

166

Upon entry, IGG01948 issues a TIME macrc instruction toc get +the
current time of day from the operating system. The routine then tests
each 1line (each LCB)Y to determine whether it has successfully
completed its initial I/0 operations. If the initial I/0 is not
complete, IGGC1948 issues another TIME macrc and determines whether 28
seconds have elapsed. Tf 28 <seconds have not passed, the routine
continues checking for I/O completion until 28 seconds have elapsed or
until the 1CB has been marked to indicate I/O completion. At the end
of 28 seconds if the I/0 has still nct ccmpleted, IGGO1948 writes a
message on the system console to identify the 1line that was not
successfully cpened. When TI/0 operaticn has completed, the routine
goes to the next line in the line group and continues checking for I/0
completion.

IGG01948 exits by issuing an XCTL command to the module identified
by the next ncnzero entry in +the system Where-to-Go Table. This
module is the system module IGG0190S.

External Routines:

) 0S Getmain routine (SVC 4) - to otrtain main storage.

e 0S load routine (SVC 8) - to 1lcad TCAM modules,

o 0S EXCP routine (SVC 0) - to start I/C cn a line.

° 0S Time routine (SVC 11) - to get the current time of day.

o 0S WTO routine (SVC 35) - +to send a message to the systenm
operator.

Tables/Work Areas: Where-to-Go Table, DCB parémeter list, DEB, Device
Characteristics 1Table, Special Characters Table, Cross Reference
Takle, TIO0T, UCE, LCB, OQCB.

Attributes: Transient, enabled, reentrant.

Open Error Handler (Chart 1A)

Module Name: TIGG01933

Entry Point: IGGO01933 - activated by any of the TCAM open executors
when an error is detected. :

Functions: This module handles all serious errors detected during the
opening of a TCAM application proqram DCB, a message queues data set
DCB, or a line gqrcup DCB. The Open Error Handler sends an error
message to the system console. The value of xx in the message,
TEDOO8I TCAM OPEN ERROR xx, depends on the specific parameters passed
to the Open Errcr Handler by the open.executor that detected the error

condition. '

Program Organization 167

If the user does not provide a TCAM error exit, the Oren Error
Handler causes TCAM to abend with a specific abend code. If the user
does provide an error exit, the Open Errcr Handler passes control to
the routine at the address specified by the error exit, The Open
Error Handler passes an errcr code in register 0 and an option code in
register 1 to the wuser-specified errcr routine. The option code
allows the errcr routine to decipher which cf the available options to
use. The errcr routine returns a code in register 15 to dindicate
which of the fcllcwing actions the Open Frrcr Handler is to. take:

1. Abend the TCAM job (return code = 2 or greater)
2. TIgnore the data set that is in error (return code = ()
3. Continue rrocessing with limited capabilities (return code = 1)

Tf the errcr routine srecifies an opticn that is not available for
the error in question, the open executor sends the same error message
to the syster console again. This loop of sending the message and
getting a respcnse from the wuser-specified error routine continues
until +the Open Error Handler receives a valid return code in register
15.

EFxternal Routines:

) 0S WTO routine (SVC 35) - to cend an error messaqe to the systenm
orerator.

. 0S SYNCH routine (SVC 12) - to go tc a wuser-specified error
routine.

Tables/Work Areas: System Where-to-Go Tatle, DCB, AVT,

Attributes:; Transient, enakled, reentrant.

Start-up Messaqge Routine (Chart R6)

Module Name: IGGC19R6

Rntry Point: IGGOT19R6 - activated when Iine End Appendage trosts an
LCB that points tc the Start-up Message QCE to the ready queue after
receiving an cren I/0 interrurt.

~ Functions: This module obtains and queues any messages that the user
has to send to a terminal for the specified LCB at start-ur time.

; The Start-up Message routine first locates all the terminal
entries +that are associated with the srtecified ICB. It then passes
the address of each entry and the address of the opticon fields for
that entry, if ©present, ¢to the routine specified by a user exit.
There are two rossible user exit addresses specified as operands of
the READY macrc: one is given control if a cold restart is in effect;
the other, if a warm or continuation restart is in effect.

168

If the routine specified by the user exit has a message to send tc
a terminal, +the user rcutine returns to the Start-ur Message routine
with the address of the message in register 15 and the length of the
message in the first byte of the message itself. 1A zero in register
15 indicates that the user routine has no message to enter.

When there is a message to be sent to a terminal +that is main-
storage-only queued, the Start-ur Message rcutine removes buffers from
the Buffer Request 0CB, builds the message, and passes one unit of the
message at a time to the Destination Scheduler (IFDQHMO2) to te placed
on the Destination QOCBE. In the case of restart with main-storage-only
dueuing, there are no messages c¢cn the message queue; therefore, no
special measures are taken to ensure that start-up messages are queued
first.

When there is a message to be sent to a terminal that is disk
gueued, the Start-ur Message routine removes cne CPB frcm the free CPB
pool and, one unit at a time, builds the required number cf buffers in
the CPRB work area. After each unit is obtained, the Start-ur Message
routine builds the CPB and branches to the FXCP Driver routine
(IGGO19RC) to write the unit on disk. When EFXCP Driver returmns to the
Start-up Message rToutine, Start-up Message waits ocn the ECB at
AVTOSECB to allow time for I/0 to complete before tuilding another
buffer unit.

The Start-up Message routine assigns disk relative record numbers
in the conventional manner. But the routine rlaces the message at the
first of the FEFO queue by moving the QCBFFEFO field into the message
FEFO chain and placing the record number of this message in QCBFFEFO.

- After the Start-up Message routine has rrocessed all the terminals
associated with the specified LCB, it increments the count of 1lines
processed (AVISMCNT) and compares +the counter with a count of the
total number of lines cpened (AVTLNCNT). TITf +the counts are equal,
Start-up Message tposts the LCB to itself and returns control to the
TCAM Dispatcher at the DSPDLETE entry point +to have the Start-up
Message routine deleted. If the counts are not equal, Start-up
Message tposts the ILCB to itself and returns control +to the TCAM
Dispatcher at the DSPPOST entry pcint.

External Routines:

. User routines specified as user exits ir orerands of the READY
macro. :

. IGGO019RC - EXCP Driver routine - to write the units of a message

cn disk. .

. TEDOHMO02 - Destination Scheduler - to wplace tuffers on the
appropriate Destination OQCBE.

. TEDQOTNT - Termname Takle code - +to obtain a terminal entry
address.

° 0S Wait routine (SVC 35) - to allow I/0 tc complete,

Program Organization 1€9

Tables/Work Areas: AVT, LCB, Termname Tatle, Terminal Table, 0CB,
DCB, Option Talkle, buffer prefix, CPB, SCE, data area of a message.

Attributes: Reentrant, resident, rroblem program mcde.

Ready Routine (Chart ND)

Module Name: TEDCND

Entry Point: IFLCCND - activated by the REALY macrc expansion.

Functions: If +the AVICKGET field <contains a ncnzero value, which
indicates that a checkrcint DCB has been orened, +the Ready routine
reads and prccesses all incident checkrcint records that are more
recent than the environment record. If the key field <¢f a record
indicates TCHNG or CHECKPT, +this mcdule wupdates the TRMSTATF and
option fields for the associated terminal entry. If +the key field
indicates operatcr ccntrecl, but not Start cr Stop Line, this module
moves the data into the cperator control work area at CPCCKELE, posts
the ECB for Crerator Ccntrol, and issues a WAIT to allow the data to
be processed. If this mcdule enccunters a disk error, it issues a WTO
error message (IEDO85I) and ignores the incident record on which the
errcr occurred. :

After all +the incident records are prccessed, this module issues
a FREEMAIN for the I/0 buffer and then issues an ATTACH SVC to attach
+the Checkpoint Executcr in the same system partition as the MCP., The
Ready routine saves registers in AVTSAVEF2 in such a way that the TCAM
Dispatcher will +tpost the environment checkpcint request element to
the ready agueue. This routine also 1loads TIFDQNX if +the nprimary
operator contrcl terminal is not the system console and IFDQHI if the
system delay is not zero.

If On Line Test is specified as an orerand of the INTRO macro, the
Ready routine determines whether there is sufficient main storage for
On-Line Test tc¢ vperform its functions. TIf there is not enough main
storage for the minimum requirements of On-Iine Test, the MCP abends.
If there is enough main stcrage for minimum On-lLine Test requirements,
but not enough for the requested amount, the Ready routine issues a
warning WTO message (IED0O94TI).

If the Checkpoint and Cn-Line Test tasks are not attached, the
Ready routine marks complete their respective termination ECBs.

The Ready routine also checks all the terminal entries in the
Terminal Table. If CALL is specified c¢cn a TERMINAL nmacro, this
routine puts the QOCB on the time delav queue.

Upon comrletion, the Ready routine returns ccntrcl tc the READY
macrc expansion (the address in register 14).

Txternal Routines:

. 0S Attach routine (SVC 42) - tc attach the Checkpcint Executor and
On-Line Test.

170

) 0S Getmain routine (SVC 4) - to request the amcunt of main storage
that is required bty Cn-line Test.

. 0S Freemain routine (SVC 5) - to free the main storage that was
acquired bty a GETMAIN macro.

) TEDOTNT - Termname Tatrle code - tc¢ <cttain a terminal entry
address.

D) 0s EXCP routine (SVC 0) - to start an I/O operaticn.
) 0S Load routine (SVC 8) - to load a TCAM module,

. '0S Post routine (SVC 2) - to post an FECPE.

° 0S WTO routine (SVC 35) - +toc send a message to the systen
operator.
) 0S Wait routine (SVC 1) - to allow time for an event tc . conmplete.

) TIFCPCNVT - 0OS Convert routine - to convert the TTR to an MBBCCHHR
address.

Tables/Work Areas: AVTI, fTerminal Tatle entry, Termrname Table,
Operator Ccntrcl AVT.

Attributes: Peuséble, problem prcgram mode, transiént.

SYSTEFM CONTRCL EFOUTINES

TCAM Dispatcher (Chart RE)

Module Name: TGGO19RE

Entry Points: IGCGO19RB

The TCAM Disrtatcher provides scme of the service functions of a
gqueue manadger by allowing routines to branch to entry point labels in
a DSECT. This DSECT is included in an assembly by issuing +the macro
TDISPD. ‘

Entrvy point labels not ending in "R" result in lcss cof control by
the ktranching sulktask. Those endirg in "R" result in an immediate
return to the rranching subtask after the requested function has been
performed. Branch entry points to the TCAM Dispatcher in the branch
table RETTEL include the following:

Program Organization 171

- Lakel.

DSPCLETE

DSPCHAIN

DSPLIST

DSPPOST

DSPPOSTR

DSPWAIT

DSPTSTQ

172

Description.

Functions: Delete the module with entry point IGGO19R6 (the
Start-ur Message routine), and trcst a chain of RCBs.
Parameter register: 1 - the address of the first item in a
chain of items to be tposted, or X'xx000000'. The link
field c¢f +the last item in +the chain must contain
X'xx0C0000".

Exit roint: DSPDISP

Function: Tpost a chain of RCBs.

Parameter register: 1 - the address of the first item in a
chain of items .to be tposted, or X'xx000000'. The 1link
field c¢f the 1last item in +the chain must contain
X'xxC00000"'.

EFxit roint: DSPDISP

Function:; Trost a list c¢f RCBs.

Parameter register: 1 - the address of a list c¢f _addresses
of RCEs. The high-order byte of the last RCB must contain
Exit roint: DSPDISP

Function: Tpost one RCB.

Parameter register: 1 - the address of an RCE.

Exit point: DSPDISP

Function: Tpost one RCE.

Parameter register: 1 - the address of an RCB.

Fxit rcint: Address in register 14.

Function: Obtain an RCE from the element chain c¢cf a OCB,
or, if none is there, wait for an RCR to arrive.

Parameter registers:

3 - the address of the OQCR from which an RCB is to be
obtained.

7 - the address of the QCB that contains the STCR for the
subtask to receive the element.

Exit roint: DSPDISP

Function: Determine whether an STCB is twaiting on a
particular QCB, and, if it is not, chain the STCP cnto that
CCB.

DSPTSTOR

DSPUNAY

DSPUNAVR

DSPPRIO

Parameter registers:
3 - the address of the rarticular QCB.

7 - the address of the QOCB that currently has the STCB at
the top of its chain.

Fxit point: DSPDISP

Function: Determine whether an STCBR is twaiting on a
particular QCB, and if it is not, chain the STCE cnto that
OCB -

Parameter registers:

3 - the address of the particular QCEPE,

7 - the address of the QCB that currently has the STCB at
the top of its chain.

Exit rcint: Address in register 14.

Function: Remcve an STCER from cne QCB and place it into
another.

Parameter registers:
3 - the address of the QCB that is to receive the STCE.

7 - +the address of the OCB that currently has the STCB at
the top of its chain.

Exit point: DSPDISP

Function: Remove an STCR from one OCR and place it into
anotter.

Parameter registers:
3 - the address of the QCB that is to receive the STCB.

7 - the address of the OCB that currently has the STCB at
the tcp of its chain.

Exit point: Address in register 14,

Function: Place an item into a chain by priority.
Parameter reqgisters:

1 - the address of the item.

7 - the address of the chain to receive the itenm,

Exit point: DSPDISP

Program Organization 173

DSPPRIOR TFunction: ©Place an item into a chain by priority.

Parameter registers:

1 - the address of the item.

7 - the address of the chain to receive the itenm,
Exit pcint:‘ Address in register 14.

DSPLIFO Function: Place an item at the teginning of a chain.

Parameter registers:

1 - the address of the item.

7 - the address of the chain to receive the iten,
Fxit point: DSPDISP

DSPLIFOR Function: Place an item at the teginning of a chain.

Parameter registers:

1 - the address of the iten.

7 - the address of the chain to receive the itenm.
Exit point: Address in register 14.

DSPDISP Function: Activate the highest —trriority =subtask that is
waiting on the highest priority element that has been sent
to a suttask.

Parameter reqgisters: Ncne.
Exit roint: Entry point of the activated subtask.

DSPBYPAS TFunction: Activate a suktask immediately,

Parameter registers:

1 - the address of the element to pass to the subtask.
3 - the address of the STCB that ccntrols the subtask.
7 - the address of the QCBE fhat controls the STCB,
Exit roint: Entry point of the activated subtask.

Functions: The TCAM Disratcher allccates and schedules the systen

resources. The resources, or elements, wait in queues for allocation.

The activity of these queues is controlled ty the ready queue, which
contains elements tc¢ be passed from cne subtask to another.

174

Associated with each element on the ready gueue is the gueue to which
the element is directed.

Each gueue in the system is represented by a queue ccntrecl block
(0CBY, which is the connecting link between elements and the subtasks
waiting for the elements. A subtask control blcck (STCB) represents
each waiting sultask. A resource control block (RCE) prefaces each
element.

Elements and STCBs are inserted in their respective chains on the
OCB in priority-FIFO order, that is, first-in-first-out within each
pricrity class.

Offset Queue Control Block
0
ELCHN
+4
+8
STCHN

ELCHN - the address of first element controlled by this OQCE, if the
OCB contrcls any elements.

STCHN - the address of first subtask ccntrcl block to receive control
when an element is trosted to this QCB.

The TCAM Dispatcher ignores all other fields.

Resource Control Block

Offset

0
QBCA

™
PRI LINK

OBCA - the address of the OCB to which the FCR is trosted.
PRI - the ready queue and chaining prioritv of the RCB,.

LINK - the address of the next item in the chain in which +this itenm
appears. :

The TCAM Dispatcher ignores all other fields.

- Program Organization 175

Offset Subtask Control Block
0

MCPL

+4
PRI o LINK

MCPL - the subtask entry code (the key tc tell the TCAM Dispatcher how
to find the subtask code).

PRI - the opriority of the STCB, 1if it is to be compared against
cthers.

LINK - the address of the next item in the chain in which +this itenm
appears, if arvy.

The TCAM Disvpatcher ignores all other fields.

When an element reaches the top of the ready queue (AVTREADY), the
TCAM Dispatcher activates the highest pricrity subtask associated with
the OCB indicated by the first word c¢f the RCB. This element becomnes
the parameter rassed to the newly-activated suktask.

The TCAM Dispatcher removes the highest priority element from the
ready aqueue ry placing the address of the element in register 1. The
Dispatcher then places the 1link field of the RCB of the element in the
ready gqueue - this puts a new element at the top of the ready dqueue.

When there are no elements cn the ready queue, AVIRFALY contains
the address of AVTLCELEM, which has a zero rriority value. The QCB
pointer in AVTDELEM pcints to a QOCBR that has an STCB with an MCPL
field of zero. In this situation the TCAM UDispatcher activates a
special routine within itself. This rcutine issues a system WAIT
command. TCAM Dispatcher activity resumes when an I/O routine or an
application rrogram causes an 0OS interrurt to tpost an element to the
ready queue.

When an element is tposted to a QCB that represents an attached
TCAM .subtask, the TCAM Dispatcher links the element into the element
chain of the QCBR and rosts the FCB (the seccnd word of the QCB) for
the attached task complete. The Dispatcher recognizes this situation
when the MCPL field of the STCR is equal to X'02°'.

When TCAM is executing in a multiprocessing environment, the TCAM
Dispatcher examines OCBSTVTO for a zero before inserting an element in
the OCB element chain and posting the ECB fcr the attached task. If
OCBSTVTO is equal to zero, processing proceeds as just described;
otherwise, the Tispatcher loops until the tyte at QCBSTVTO is equal to
zZero.

176

When the value of the MCPL field of the STCR being examined by the
TCAM Tispatcher 1is greater than X'02' and 1less +than X'0C', the
Dispatcher calculates the entryv point of the subtask to be dispatched.
Tf the MCPL value 1is X'04', +the subtacsk entry vpcint immediately
follows 1its two-tyte STCB:; therefcre, the entry point is equal to the
address of the STCB plus two bytes. If the MCPL value is X'0€', the
Dispatcher adds four bytes to the STCB address; if the MCPL value is
X108', the Dispatcher adds six bytes to the STCB address; and if the
MCPL value 1is X'0OA', the Disratch