EilegNo. 5360-36
order_No. GY28-6773-1

| Program Logic

IBM System/ 360 Operating System:
Time Sharing Option
Command Processor Program Logic Manual

Volume 3
EDIT
Program Number 360S-UT-506

This publication describes the internal logic of the
EDIT Command Processor program (program number
360S-UT-506). Included in this manual are discussions
of the organization and method of operation of the
program, a microfiche directory, tables of data layouts,
flowcharts, and a glossary.

The EDIT program processes the EDIT command and
subcommands, which are a part of the TSO command
language. The EDIT command and its subcommands create
and modify data sets. The subcommands are:

BOTTOM INPUT RUN
CHANGE INSERT SAVE
DELETE Insert/Replace/Delete SCAN
DOWN LIST "TABSET
END MERGE TOP
FIND PROFILE 18]
FORMAT RENUM VERIFY
HELP

This manual is intended for use by persons maintaining
the EDIT Command Processor program, Qr by systems
programmers who are altering the program design. It is
not intended, nor is it needed for normal operation of
the program.)

IBM System/360 Operating System: Time Sharing Option,
Terminal Monitor Program and Service Routines Program
Logic Manual (GY28-6770) contains prerequisite
Information.

Second Edition (March, 1972)

This edition applies to Release 21 of IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical
Newsletters. Changes are continually made to the
information herein; before using this publication in
connection with the operation of IBM systems, consult
the latest System/360 and System/370 SRL Newsletter,
GN20-0360, for the editions that are applicable and
current.

This edition, GY28-6773-1, is a major revision of,
and obsoletes GY28-6773-0,

Changes or additions to the text and illustrations
are indicated by a vertical line to the left of the
. change.

Requests for copies of IBM publications should be
made to your IBM representative or to the IBM branch
office serving your locality.

A form for readers' comments is provided at the back
of this publication. If the form has been removed,
comments ‘may be addressed to IBM Laboratory,
Publications Dept., P.0.Box 24, Uithoorn, The
Netherlands. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1971, 1972

This publication provides IBM customer
engineers and other technical personnel
with a description of the internal logic
and organization of the IBM System/360
Operating System Time Sharing Option EDIT
Command Processor,

The publication IBM_System/360_Operating
System: Time_Sharing Option, Terminal
Monitor Program_and_Service_ Routines
Program Logic Manual (GY¥28-6770) contains
prerequisite information. Co-requisite
publications are:

IBM_System/360_Operating System: _Time
Sharing, Option:

Command_Language Reference (GC28-6732)
explains the use of TSO commands.

Command_Processor_ Program_ Logic_Manual
VYolume_ 4 (GY28-6774) describes the

internal logic of the TSO HELP command.

Command_Processor_ Program_Logic_Manual

internal logic of the TSO PROFILE and
RUN commands.

The following co-requisite publications are
only required if the installation has TSO
Data Utilities Program Product 5734-UT1:

TSO_Data_ Utilities_ Copy, Format, List,
Merge User's _Guide_and_Reference_Manual
(sC28-6765) (Program Product
publication) explains the use of the TSO
FORMAT and MERGE commands.

TSO_Data_Utilities_Copy, Format, List,
Merge Program_Logic_Manual (LY28-6766)

(Licensed Program Product publication)

describes the internal logic of the TSO
FORMAT and MERGE commands.

Specific additional information is
available in:

IBM _System/360_Operating System:

Supervisor_ Services_and_Macro
Instructions (GC26-6646) describes

P2 S S22 41

linkage conventions for subtasks.

Preface

System Programmer's_Guide (GC28-6550)
contains a description of the ABEND work

area.

This manual comprises the following
seven sections:

Section 1: Introduction - a discussion of
the purpose and function of the EDIT
Command Processor.

Section 2: Method of Operation - a
functionally oriented description of the
vay in which the EDIT Command Processor
handles the EDIT command and subcommands
and error conditions. Method of operation
diagrams are on foldout pages at the back
of the manual.

Section 3: Program Organization - a
description of specific program components
(modules and Csects) and flowcharts.

Section 4: Directory - tabular aids for
the reader to find sections of code in the
microfiche and lists of assembly modules
and control sections.

Section 5: Data Areas - detailed
descriptions of the various tables, work
areas, and parameter lists used by the EDIT
Command Processor.

Section 6: Diagnostic Aids - a compilation
of information designed to facilitate
diagnosis of EDIT program errors.

Section 7: Appendix - formats of the EDIT
command and subcommands.

Glossary: A compilation of terms unique to
TSO and to the EDIT Command Processor.

More detailed information about the EDIT

Command Processor may be found in the
associated microfiche listing.

Preface 3

SUMMARY OF AMENDMENTS (RELEASE 21)
GY28-6773-1 & ¢ v ¢ ¢ ¢ ¢ o« o« o o o =«

SUMMARY OF AMENDMENTS (RELEASE 20.1)
GY28-6773-0) ¢ &« v ¢ ¢ ¢ v o o o o o &

SECTION 1: INTRODUCTION . .« . « « .+
The TSO Environment . « ¢« o« o o« « o« &
Starting TSO o & o o o o o o o o o
Logging ON « & « o o o o o o o o o« =
Processing TSO Commands . «. .+ « « &
TSO Service Routines . « « « « « « .
The EDIT Command ProCeSSOL « « « « o «

SECTION 2: METHOD OF OPERATION . . .
Input Processed by the EDIT Progran
The Current Line Pointer
Output Created by EDIT Program . . .
Termination or Suspension of EDIT

Program Operation « . . .
Suspension of EDIT Progranm
Operation . . « . ¢ ¢ & ¢« « « o .
Normal Termination of EDIT Progranm
Operation e e e e e e .
Error Termination of EDIT Program
Operation « o« o o o o o o o o o &

Syntax Checking . . . e e e e e
Use of IPLI and BAQIC Qyntax
Checkers « « ¢ ¢ ¢ ¢ ¢ o o o o o =«

Initialization « « « & & & « ¢ « & o &
Processing EDIT Operands
Prompting User for Data Set Type .
Obtaining Processor-Defpendent
Information ¢« ¢« .+ & . .
Termination Processing . « « « o+ .

Controller . . o o v ¢ ¢ ¢ o o o o« o =«
Controller Processing . . « « o

Error and Attention Handling
Abnormal End Exit Routine
Attention Exit Routine

EDIT Service Routines . . .
Invoking TSO Commands (IKJEBECI) .
Initial Copying (IKJEBECO)
Allocating and Freeing Data Sets
(IKJEBEDA) ¢ o « o o o o o o o o @
Final Copying (IKJEBEFC)
Line Editing (IKJEBELE) e e e e .
Translating (IKJEBEMR) . . « . .
Selecting EDIT Messages (IKJEBEMS)
Processor Data Table Searching
(IKJEBEPS) « « o+ & e« o o e o o
BASIC Renumbering (IKJEBERN) « e e
String Searching (IKJEBESE) . e e

BOTTOM Subcommand Processing
BOTTOM Processing . « o« o o o o &

CHANGE Subcommand Processing
Interpreting Operand Comblnatlons
Processing CHANGE Operands

DELETE Subcommand Processing
Processing DELETE Operands
Updating the Current Line Pointer
Invoking the Syntax Checker . . .

Contents

DOWN Subcommand Processing . . « « « o o 712
DOWN Processing .« .« « & o « o « o o 12
END Subcommand Processing . « . « « « . T4
FIND Subcommand Processing . « « « « « . 716
FIND Processing . . « « « & « « « . 16
FORMAT Subcommand Processing .« <« « . 80
Processing FORMAT Operands « ¢ « « . 80
HELP Subcommand Processing . . . « . . . 83
INPUT Subcommand Processing . . « . . . 85
INPUT Processing . . « « « « « « . . 86
INSERT Subcommand Processing 93
Processing INSERT Operands 93
Line Insert/Replace/Delete Processing . 96
Processing Line
Insert/Replace/Delete Operands . . . 96
Updating the Current Line Pointer . 98
LIST Subcommand Processing . . . « « . . 98
Processing LIST Operands 98
MERGE Subcommand Processing102
Processing MERGE Operands102
PROFILE Subcommand Processing 106
RENUM Subcommand Processing109
Processing RENUM Operands109
RUN Subcommand Processing < <112
RUN Processing for Particular Data
Set Types . . . B)
GOFORT Data Set Type P B
SAVE Subcommand Processing . « . « « . 116
Processing the SAVE Subcommand . . .116
SCAN Subcommand Processing . . « « « « 119
Processing SCAN Operands119

TABSET Subcommand Processing125
Processing TABSET Operands125
TOP Subcommand Processing128

TOP Processing . « « « ¢« « « « « . .128

UP Subcommand Processing 130
UP Processing . « « « « « « « « » o130
VERIFY Subcommand Processing . . . « « o132
Processing VERIFY Operands132
EDIT Access Method . . . « . «135
Structure . . . e+ e 4 o « s+ « o 4135
Initialization and Final Processing . 142
Interface . ¢ ¢ ¢« ¢« ¢« ¢ ¢ o o o« . o142
Read, Write, and Delete Operations . .142
Access Method Service Routines . . . 143

SECTION 3: PROGRAM ORGANIZATION . . . 145
Module and Csect Operation Tables . . .154
IKJEBEAA ¢ o ¢ ¢ ¢ o o o o o o o o« . 154
IKJEBEAD (Csect of IKJEBERAA)155

IKJEBEAE (Csect of IKJEBEMA)156
IKJEBEAS (Csect of IKJEBEAR) . . . 157
IKJEBEAT (Csect of IKJEBEMA)158
IKJEBEBO + « &« « o « o« o o o o o « o o159
IKJEBECG « « «¢ « o « o« o o o « o « « o160
IKJEBECH v o ¢ o + o o o o o o o « o o161
IKJEBECI +¢ &« ¢ o o o o o o o o o « « o162
IKJEBECN . & ¢ o « ¢ o« o o o « « « o o164
IKJEBECO o v « ¢ « « o o o o o« « o o« o165

IKJEBEDA . ¢ « « « o o« o o o « « « « 2166
IKJEBEDE ¢« ¢« ¢ o o o o ¢ ¢ o o o o . 167
IKJEBEDL (Csect of IKJEBEAA)168

IKJEBEDO
IKJEBEDR
IKJEBEDS
IKJEBEDU
IKJEBEEN
IKJEBEEX
IKJEBEFC
IKJEBEFI
IKJEBEFO
IKJEBEHE
IKJEBEIA
IKJEBEIM
IKJEBEIN
IKJEBEIP
IKJEBEIS
IKJEBELE
IKJEBELI
IKJEBELO
IKJEBELT
IKJEBEMA
IKJEBEMA
IKJEBEME
IKJEBEMR
IKJEBEMS
IKJEBENV
IKJEBEPD
IKJEBEPS
IKJEBEPS
IKJEBERB
IKJEBERE
IKJEBERN
IKJEBERR
IKJEBERU
IKJEBESA
IKJEBESA
IKJEBESC
IKJEBESE
IKJEBESN
IKJEBETA
IKJEBETO
IKJEBEUI
IKJEBEUP
IKJEBEUT
IKJEBEVE
IKJEBEWA
IKJEBEWB
IKJEBEWR
IKJEBMA1
IKJEBMA2
IKJEBMAS
IKJEBMAS
IKJEBSA9
Flowcharts

SECTION 4:

SECTION 5:

(Csect of
(Csect of
(Csect of

(Csect of

(CSECT OF

(Csect of
(Csect of
(Csect of
(Csect of

(Csect of

(Csect of

(Csect
(Csect
(Csect
(Csect

e o o o
.
.
.
.

DIRECTORY

DATA AREAS

IKJEBEAA)
IKJEBEAA)
IKJEBEAA)

.
e o o o o
.

.

.

IKJEBEAA)

e e o

IKJEBEMA)

IKJEBEAA)
IKJEBEPS)
IKJEBEPS)
IKJEBEAA)

IKJEBEAAR)
IKJEBESA)

s e . o

e o o o
.
.
e o o o
a o o o

IKJEBEAA)
IKJEBEAA)

IKJEBEAA)
IKJEBEMA)

Q

e o o o 8 o

EDIT Communication Area (IKJEBECA)
Processor Data Table

(IKJEBEPD)

IBM- and User-Supplied Tables of
Subcommands
EDIT Access Method Work Area (UTILWORK)

e o o o o o

.169
. 170
171
<172
.173
174
. 175
. 176
177
.178
. 179
.180
. 181
.182
. 184
. 185
. 186
. 187
.188
. 189
.190
.192
.193
. 194
. 195
. 196
. 197
.198
. 199
.200
.202
.203
.204
. 205
.206
. 207
.208
. 209
.210
<211
.212
.213
.214
.215
.216
. 217
.218
.219
. 220
.221
.222
.223
.225

.353
. 357
. 357
. 371

.376
377

EDIT Access Method Control Blocks . .
Data Blocks . . . e e e e e e e
Directory Blocks and Lower-level
Directory Blocks « « . .
Buffers . . e+ e « o o « « 2380

Command Buffer (CBUF) e e e e . . .380

Command Processor Parameter List (CPPL) 381

Command Scan Parameter List (CSPL) . . .381

Command Scan Output Area (CSOA)382

DAIR Parameter Block (DAPBOS8) « « « o 4383

DAIR Parameter Block (DAPB18) « o « « 2386

GETLINE Parameter Block (GTPB) . . . 388

PUTGET Parameter Block (PGPB) « « .+ . 389

. 379
. 379

.379

PARSE Parameter List (PPL) 390
PUTLINE Parameter Block (PTPB) . . 391
Syntax Checker Control Blocks392
Buffer e ¢ + o « « 4392
Command Interface (DELETE Subcommand) 392
Command Interface (RUN Subcommand) . .392
Syntax Checker Communication Area . .393
Option Word . « ¢« « ¢ ¢ ¢« « o« « o« . 394

SECTION 6: DIAGNOSTIC AIDS .« « « «
Message Cross-Reference Table
Using the TEST Command to Diagnose
Errors in the EDIT Program . . « o« « &
EDIT MeSSageS o o o o o o o o o o o o
Module Cross-Reference Table
CSECT Cross-Reference Table (Module
IKJEBEAR) e e s e e e & s o o & o e o 407
Error and Execptional Conditions Tables 408
Register Usage Table . . « « « . +« « . LU453

. 397
. 397

. 400
401
. 405

SECTION 7: APPENDIX o e o

Formats of the EDIT Command and

Subcommands . .« . ¢ ¢ o e e e e e
EDIT Command . + « « o o o o o« o«
BOTTOM Subcommand .
CHANGE Subcommand .
DELETE Subcommand .
DOWN Subcommand . .
END Subcommand . . .
FIND Subcommand . .
FORMAT Subcommand .
HELP Subcommand . « « « « o « o o @
INPUT Subcommand . « « o o o o« o o &
INSERT Subcommand . . -
Insert/Replace/Delete Subcommand . .
LIST Subcommand
MERGE Subcommand
PROFILE Subcommand
RENUM Subcommand .
RUN Subcommand . .
SAVE Subcommand .
SCAN Subcommand .
TABSET Subcommand
TOP Subcommand . .
UP Subcommand . .
VERIFY Subcommand .« « « « o o o «

457

. 458
. 458
. 459
. 459
. 459
. 459
. 459
. 459
. 460
. 460
. 460
. 460
460
460
461
461
U461
461
462
462
462
462
462
462

s e o o o o
e o o o s o

. e

.« .

. .

. .

. .

« o s

.
.
.
.
.
.
.
.

o o o

.« o
.
. .

e o o o o o
. .
. .
. .

.

GLOSSARY ¢ ¢« « « o« o o o o o o o « « o« JU63

INDEX &« o o o o o o o o o o o o o o o JHU67

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

AA.
AB.
AC.
AD.
AE.
AF.
AG.
AH.
AI.
Ad.
AK.
AL.
AM.
AN.
A0.
AP.
AQ.
AR.
AS.
AT,
AU.
AV,
AW.
AX.
AY.
AZ.
BA.
BB.
BC.
BD.
BE.
BF.
BG.
BH.
BI.
BdJ.
BK.
BL.
BM.
BN.
BO.
BP.
BQ.
BR.
BS.
BT.
BU.
BV.
BW.
BX.
BY.
BZ.
CA.
CB.
ccC.
CD.
CE.
CF.
CG.
CH.
CI.
CdJd.

IKJEBEAD
IKJEBEAE
IKJEBEAS
IKJEBEAT
IKJEBEBO
IKJEBECG
IKJEBECG
IKJEBECG
IKJEBECG
IKJEBECG
IKJEBECG
IKJEBECH
IKJEBECH
IKJEBECH
IKJEBECI
IKJEBECI
IKJEBECN
IKJEBECN
IKJEBECN
IKJEBECN
IKJEBECO
IKJEBECO
IKJEBECO
IKJEBEDA
IKJEBEDE
IKJEBEDE
IKJEBEDE
IKJEBEDL
IKJEBEDL
IKJEBEDL
IKJEBEDO
IKJEBEDO
IKJEBEDR
IKJEBEDS
IKJEBEDS
IKJEBEDS
IKJEBEDU
IKJEBEDU
IKJEBEDU
IKJEBEDU
IKJEBEDU
IKJEBEEN
IKJEBEEX
IKJEBEFC
IKJEBEFC
IKJEBEFI
IKJEBEFO
IKJEBEFO
IKJEBEHE
IKJEBEINM
IKJEBEIM
IKJEBEIM
IKJEBEIM
IKJEBEIM
IKJEBEIN
IKJEBEIN
IKJEBEIN
IKJEBEIN
IKJEBEIN
IKJEBEIN
IKJEBEIN
IKJEBEIN

® o o e o o & o s e s s a s s s o & o & o =

@ & 8 6 e & 8 e & o s & e e 8 e e 8 8 ° 8 s ° o e e 6 o & o & & o s e s s o s s o o =

@ o o o o o o & o + o s & & o & s = »

s ® e o © o o o & o o s 8 e s s o s

© o o e o & o 8 s 8 & e s 8 o & & s = e o

@ & @ o © e 8 o 6 & 8 e 8 e o e s 8 e 8 e e e 5 ® e e e & & 8 & 8 o 8 8 & e 8 e e s &6 e & 8 8 " s ® & ° e v ° e 6 o o s s o

e o o © & ® s e o & 8 & e e ® e e s & e o s s s s o

© 8 o & o o & 6 o s e 8 o & & e & " e 8 ° e 9 e & e e & e o 8 & & e & & 8 e 8 & e " e 8 s+ s & & s a2 8 8 & ® s 2 e o o o s

@ & © @ & & s e e 5 8 s e s o e o 8 s o & s O 8 & 8 2 e e & ° o e o e o % e e ° 3 5 s * s 6 ° e o o & s 8 8 8 e s s e o o o

@ o © @ o © 4 & & s e e & 5 © e 6 6 o ° 8 e o o © & @ 8 o & ° & 8 s 5 & 8 8 e ° e © & 6 o 8 o o & 5 e & o e ° o o o s & o o

@ & 8 8 e © 82 & & 5 s e 8 8 ° 6 s+ 8 a2 e 8 8 s e 3 e s s e s o

. 225
.226
. 227
.228
.229
.230
.231
.232
.233
.234
.235
.236
.237
.238
.239
.240
. 241
.242
. 243
. 204
.245
. 246
. 247
.248
.249
.250
.251
.252
.253
.254
.255
.256
.257
.258
.259
.260
. 261
.262
.263
.264
«265
. 266
«267
.268
.269
.270
.271
272
.273
274
.275
.276
.2717
.278
.279
.280
.281
.282
.283
.284
.285
.286

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

CK.
CL.
CcM.
CN.
Co.
CP.
CQ.
CR.
Cs.
CT.
Cu.
Cv.
CW.
CX.
CYy.
Cz.
DA.
DB.
DC.
DD.
DH.
DI.
DJ.
DK.
DL.
DM.
DN.
Do.
DP.
DQ.
DR.
DS.
DT.
DU.
DV.
DW.
DX.
DY.
Dz.
EA.
EB.
EC.
ED.
EE.
EF.
EG.
EH.
EI.
EJd.
EK.
EL.
ENM.
EN.
EO.
EP.
EQ.
ER.
ES.
ET.
EU.
EV.
EW.

IKJEBEIP
IKJEBEIP
IKJEBEIS
IKJEBEIS
IKJEBELE
IKJEBELI
IKJEBELI
IKJEBELO
IKJEBELO
IKJEBELT
IKJEBELT
IKJEBELT
IKJEBEMA
IKJEBEMA
IKJEBEMA
IKJEBEME
IKJEBEME
IKJEBEMR
IKJEBEMS
IKJEBEMV
IKJEBEPS
IKJEBERB
IKJEBERE
IKJEBERE
IKJEBERE
IKJEBERE
IKJEBERN
IKJEBERR
IKJEBERU
IKJEBERU
IKJEBESA
IKJEBESA
IKJEBESA
IKJEBESA
IKJEBESA
IKJEBESA
IKJEBESA
IKJEBESA
IKJEBESA
IKJEBESA
IKJEBESA
IKJEBESC
IKJEBESC
IKJEBESC
IKJEBESC
IKJEBESC
IKJEBESE
IKJEBESN
IKJEBESN
IKJEBESN
IKJEBESN
IKJEBESN
IKJEBESN
IKJEBETA
IKJEBETO
IKJEBEUI
IKJEBEUP
IKJEBEUP
IKJEBEUT
IKJEBEVE
IKJEBEWA
IKJEBEWB

@ e o ¢ s e o 8 o © 8 8 e 8 o 8 & * e 9 0 s e 8 e e & s ° o s s & = ° 8 8 8 s & e e o o & e o & & e o o s ° 8 e s e o s s

e o 8 & 8 8 & o 8 & & & e o e & o e s = =

.

e 3 s o 8 o ° e s s e o

s s & o o o o

e © & ¢ 8 8 e 8 & & e ° ° e 6 e & & e & & 5 s o s & s s e o o s & o

® o 8 8 o e 8 s e e s s e s o s & s s s =

* e o o o o & s o o

e o 8 & 3 e 8 e o e e e o o s e+ s o o

e o o o o s s s s s o

o o

« o o

s & o o o o 8 e o o

* s e & 8 8 o s »

e o o s o o s ® s s e o @

e o o & & o & & s o s o s e o

Charts

. 287
. 288
. 289
. 290
. 291
. 292
. .293
. 294
. 295
. 296
. 297
.298
. 299
. 300
. 301
. 302
.303
. 304
. 305
. 306
. 307
. 308
. .309
. .31C
. <311
. 312

.313
. 314
. 315
. <316
. 317
.318
. 319
. 320
. 321
. 322
. 323
. 324
. 325
. 326
. 327
. 328
. 329
. 330
. 331
.332
. 333
. 334
. 335
. 336
. 337
. 338
. 339
. 340
. 341
. 342
. 343"
. 344
. 345
. 346
. 347
. 348

Chart EX. IKJEBEWR
Chart EY. IKJEBEWR
Chart EZ. IKJEBEWR
Chart FA. IKJEBEWR
Diagrams

Method of Operation

Diagram 1., Initialization . .
Method of Operation

Diagram 2. Controller
Method of Operation

Diagram 3.
ProcesSing « « o o s o o s o o
Method of Operation

Diagram U4,
Method of Operation
Diagram 5. BOTTOM
Method of Operation
Diagram 6. CHANGE
Method of Operation
Diagram 7. DELETE
Method of Operation
Diagram 8. DOWN Subcommand . .
Method of Operation

Diagram 9. FIND Subcommand . .
Method of Operation

Diagram 10. FORMAT Subcommand .
Method of Operation

Diagram 11. HELP Subcommand . .
Method of Operation

Diagram 12, INPUT Subcommand .
Method of Operation

Diagram 13. INSERT Subcommand .
Method of Operation Diagram 14.

Insert/Replace/Delete Subcommand
Method of Operation

Diagram 15. LIST Subcommand . .
Method of Operation

Diagram 16. MERGE Subcommand .
Method of Operation

Diagram 17. PROFILE Subcommand

Method of Operation

Diagram 18. RENUM Subcommand .
Method of Operation

Diagram 19. RUN Subcommand . .
Method of Operation

Diagram 20. SAVE Subcommand . .
Method of Operation

Diagram 21. SCAN Subcommand . .
Method of Operation

Diagram 22. TABSET Subcommand .
Method of Operation

Diagram 23. TOP Subcommand . .

Subcommand .
Subcommand .

Subcommand .

* o e

EDIT Program STAE/STAI

¢« o e

EDIT Attention Handling .

* o o

. 349
.350
.351
.352

. 475

. 477

. 479
. 481
. 483
. 485
. 487
. 489
. 491
. 493
. 495
. 497
. 499
.501
.503
. 505
.507
.509
.511
.513
.515
517

.519

Method of Operation

Diagram 24, UP Subcommand «521
Method of Operation

Diagram 25. VERIFY Subcommand523
Method of Operation

Diagram 26. EDIT Access Method
Initialization and Final Processing
(IKJEBEUI and IKJEBEEX) e o s o s« e o o525
Method of Operation :
Diagram 27. EDIT Access Method

Interface {IKJEBEUT) « « « « « =« « « o +527
Method of Operation

Diagram 28. EDIT Access Method Write
Operation (IKJEBEWR) « « « « « ¢ « « « .529
Method of Operation

Diagram 29. EDIT Access Method Read
Operation (IKJEBERR) « « « « o« « « « « +531
Method of Operation

Diagram 30. EDIT Access Method Delete
Operation (IKJEBEDR) . « « o« « + « o « +533
Method of Operation

Diagram 31. EDIT Access Method Record
Locate (IKJEBELO) e e o o o s e o s « +535
Method of Operation

Diagram 32. EDIT Access Method Record
Delete (IKJEBEDL) e o o o o o s o o+ e« 537
Method of Operation

Diagram 33, EDIT Access Method TTR
Assignment (IKJEBEAD) « e o o s s « « 4539
Method of Operation

Diagram 34. EDIT Access Method

Directory Update (IKJEBEDU) e+ e+ . 45041
Method of Operation

Diagram 35. EDIT Access Method Write

Block (IKJEBEWB) « « o o o o ¢ o o« ¢ o« o543
Method of Operation

Diagram 36. EDIT Access Method Buffer
Assignment (IKJEBEAS) . . « « « « « .« 545
Method of Operation

Diagram 37. EDIT Access Method

Directory Search (IKJEBEDS) « 547
Method of Operation

Diagram 38. EDIT Access Method Read

Block (IKJEBERB) « « o o « « o« « s o « +5U49

Method of Operation
Diagram 39. EDIT Access Method Wait

(IKJEBEWA) « o o o o o o o o o« s o « o« «551

Table 1. EDIT Subcommand Functions
(Part 1 of 2) e s e o o o e e e o e & o 23
Table 2. Position of Current Line
Pointer After Subcommand Operation . . . 25

Table 3. Syntax Checker Usage 31
Table 4. Membername Processing 35
Table 5. Summary of Initialization
Operations (Part 1 of 7) . . . « .« « « . U1
Table 6. Summary of BOTTOM Operations 63
Table 7. Summary of CHANGE

Operations (Part 1o0of 2) . . « .« . « . . 67
Table 8. Summary of DELETE Operations 71
Table 9. Summary of DOWN Operations . 73
Table 10. Summary of END Operations . . 75
Table 11. Summary of FIND Operations

(Part 1 0f 2) . ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o« o« o 178

Table 12. Summary of FORMAT Operations 82
Table 13. Summary of HELP Operations . 84
Table 14. Summary of INPUT Operations

(Part T0of 5) .« ¢« ¢« ¢ ¢ ¢« ¢ ¢ « « « . . 88
Table 15. Summary of INSERT Operations 95
Table 16. Summary of Line

Insert/Replace/Delete Operations 97

Table 17. Summary of LIST Operations

(part 1 of 2) e s e s e e e e e o o « <100
Table 18. Summary of MERGE Operations
(Part 1 of 2) e e e e o o e e s o o « 104
Table 19. Summary of PROFILE

Operations (Part 1of 2)107
Table 20. Summary of RENUM Operations .111
Table 21. Summary of RUN Operations

(Part 1 of 2) e e s o e o e o o o o o <114
Table 22. Summary of SAVE Operations .118
Table 23. Summary of SCAN Operations
(part 1 of 4) .« . . e e o e s o
Table 24.

. 121
summary of TABSET Operations 127

Table 25. Summary of TOP Operations . .129
Table 26. Summary of UP Operations . .131
Table 27. Summary of VERIFY Operations 133
Table 28. Initialization Routine

Program Organization . . . « +« &« + « o o145
Table 29. Mainline Routines (resident) 146
Table 30. Service Routines

(non-resident) .« « « « o & e e e e e o147
Table 31. Message Text Loads e LY
Table 32. Subcommand Processors
Program Organization (Part 1 of 2) . .
Table 33. Field Values for Data Set
Types (1 of 4)
Table 34. Field Values for Data Set
Types Not Used With EDIT (1 of 4) . .
Table 35. Explanation of CADSCODE
Field Values . « « « & . « e o e
Table 36. Explanation of CADSATTR and
CADSATR2 Field Values . . « o o o
Table 37. Explanation of CARECFMD
Field Values . . « .« . . « e e e e
Table 38. IKJEBEIN Error and
Exceptional Conditions (Part 1 of 5) .
Table 39. IKJEBEMA Error and
Exceptional Conditions « . « + & & & &

. 148
.372
. 374
.375
.375
.375
.408

413

Tables

Table 40. IKJEBEAE Error and
Exceptional Conditions . . . A I
Table 41. IKJEBEAT Error and
Exceptional Conditions U414
Table 42, TIKJEBECI Error and
Exceptional Conditions (Part 1 of 3) . .414
Table 43, IKJEBECO Error and
Exceptional Conditions . . e+« . . JU476

Table 44. IKJEBEDA Error and
Exceptional Conditions « . . U417
Table 45. IKJEBEFC Error and
Exceptional Conditions . . e+« . . U418

Table 46, IKJEBEMR Error and

Exceptional ConditionsU418
Table 47. IKJEBERN Error and

Exceptional ConditionsU419
Table 48, IKJEBESE Error and

Exceptional Conditions . . e)
Table 49. IKJEBEBO Error and

Exceptional Conditions . . . e+ . . W19
Table 50. IKJEBECH, IKJEBECG

IKJEBECN Error and Exceptlonal

Conditions (Part 1 o0f 2) « . U420
Table 51. TIKJEBEDE Error and

Exceptional Conditions (Part 1 of 2) . .422
Table 52, IKJEBEDO Error and

Exceptional Conditions . . e o o o . o423
Table 53. TIKJEBEEN Error and

Exceptional Conditionsu424
Table 54. TIKJEBEFI Error and

Exceptional ConditionsU25
Table 55. IKJEBEFO Error and

Exceptional Conditions (Part 1 of 2) . .U426
Table 56. IKJEBEIP and IKJEBEIM Error

and Exceptional Conditions (Part 1 of

2) v e e e e e e e e e e e e e e e & . JU27
Table 57. IKJEBEIS Error and

Exceptional ConditionsU429
Table 58, IKJEBELI Error and

Exceptional Conditions . . . « . « . . .U30
Table 59. IKJEBELT Error and

Exceptional Conditions (Part 1 of 2) . .431
Table 60. IKJEBEME Error and

Exceptional Conditions (Part 1 of 2) . .432
Table 61. IKJEBERE Error and

Exceptional ConditionsU34
Table 62. IKJEBERU Error and .
Exceptional Conditions (Part 1 of 2) . .435
Table 63. IKJEBESA Error and

Exceptional Conditions (Part 1 of 5) . .Uu437
Table 64. IKJEBESC, IKJEBESN Error

and Exceptional Conditions (Part 1 of

1 T (1 ¥
Table 65. IKJEBETA Error and

Exceptional ConditionsU4U5
Table 66., IKJEBETO Error and

Exceptional Conditions o .UlU5
Table 67. IKJEBEUP Error and

Exceptional Conditions . . e« « « . Jlus6
Table 68. TIKJEBEVE Error and

Exceptional ConditionsUUG6

Table 69. IKJEBEUI Error and
Exceptional Conditions . . « « « « o« .
Table 70. IKJEBEEX Error and
Exceptional Conditions « . . « ¢« « . .
Table 71. IKJEBEUT Error and
Exceptional Conditions . . « « « « o« &
Table 72. IKJEBEWR Error and
Exceptional Conditions . . e e e e
Table 73. IKJEBERR Error and
Exceptional Conditions . .+ « « « « o+ .
Table 74, IKJEBEDR Error and
Exceptional Conditions . « « « « « o
Table 75. IKJEBELO Error and
Exceptional Conditions « « « « &« « o« .

Figures

Figure 1. Relationship of TSO

Commands to TSO Processing « e e e e
Figure 2. Main Storage after TSO has
Been Started e e o o e s o e o e e

Figure 3.
after a TSO
Figure 4.
After a TSO

Section of Main Storage
User has been Logged On .
Section of Main Storage
User has Entered an EDIT

subcqmmand e e e e e e o o s e e e
Figure 5. Symbols Used in Method of
Operation Diagrams e o e e o« e .

Figure 6. QSAM and EDIT Access
Method Record Formats .« . « « « « o &
Figure 7. Formats of Records Passed
to Syntax Checkers . . o« .
Figure 8. 1Interface Between EDIT
Program and Syntax Checkers
Figure 9. Expansion of Syntax

Checker Interface . « « « ¢ « .+ & .
Figure 10. IKJEBECI Output Parameter
List o« o e e o s s s o s e o & e
Figure 11. IKJEBELE Input Parameter

List e o e e o o o e o s e o o o o o

L uu7

U447

.uu8

.uus8

.uu8

. 449

449

14
15

16

20
21
22
29
30
32
55

57

Table 76. IKJEBEDL Error and
Exceptional Conditions
Table 77. IKJEBEAD Error and
Exceptional Conditions . . e o o e e
Table 78. IKJEBEDU Error and
Exceptional Conditions « . « .
Table 79, IKJEBEWB Error and
Exceptional Conditions
Table 80. IKJEBEDS Error and
Exceptional Conditions . . N
Table 81. IKJEBERB Error and
Exceptional Conditions
Table 82. IKJEBEWA Error and
Exceptional Conditions

Figure 12. IKJEBEMS Input Parameters
Figure 13. Format of Insertion Lists
Passed to IKJEBEMS o o
Figure 14. Message Module Format and
Message Selection o« e e e
Figure 15. IKJEBEMS Output Parameter
List . e c e e o =
Figure 16. IKJEBESE Input Parameter
List e e % ® a4 s s o s s s e o + = o
Figure 17. EDIT Access Method Data
Blocks « o o o o s e s s s o o o o =
Figure 18. EDIT Access Method Buffers
Figure 19. EDIT Access MNethod

Directory Blocks . e e . e e e

Figure 20. Block Spllttlng Technlque
Figure 21. EDIT Initialization
Program Organization e e+ s e e s e
Figure 22. EDIT Main Line Program
Organization e e e e e e e e e e e
Figure 23. EDIT Access Method Program
Organization e o 4 e s e s s e e e
Figure 24. IKJEBEAA Progranm

Organization e o o o s s s s s e o @

. 450

. 450

. 450

. 451

451

. 452

. 452

58
59
59
60
61

136
137

139
141

150
151
152

153

The changes in this revision include a
clarification of minor technical
inaccuracies and editorial changes.

TERMINATION PROCEDURES
Clearing of input queue and deleting of
input stack for termination of EDIT in
a command procedure.

FORT DATA_SET TYPE_KEYWORD
Keyword deleted.

SUMMARY_OF_ AMENDMENTS
{RELEASE_21)
6Y28-6773-1

SUMMARY OF AMENDMENTS
(RELEASE_20.1)

CTLX_KEYWORD_FOR_PROFILE_SUBCOMMAND

Keyword added.

EDIT_MESSAGES

Messages added and changed.

Summary of Amendments 11

Section 1: Introduction

The EDIT Command Processor program is a part of the Time Sharing Option
(TsO) of the MVT configuration of the control program. The EDIT Command
Processor program (hereinafter called the EDIT program) performs the
functions of the EDIT command and subcommands. Formats of the EDIT

command and subcommands and acceptable operands are discussed in Section
7.

The TSO Environment

To better understand the environment in which the EDIT Command Processor
operates, we should review the operations required before the EDIT
program can be used. There are three primary operations that must be
performed:

1. The console operator must issue a START TS command to prepare the
entire system for the operation of TSO.

2. The terminal user must issue a LOGON command to notify the system
that he is going to use TSO, and to define some of the systen
resources that he will need.

3. The terminal user must issue the EDIT command to initiate EDIT
processing.

Figure 1 is a general diagram showing the routines that perform these
operations.

Section 1: Introduction 13

MVT Control Program

START « « - .

(See Figure 2 One Per System One Per Foreground Region

For Description of ATTACH
Main Storage)

ATTACH

Time Sharing d Region
Control Task Control Task

LOGON >

(See Figure 3 One Per User One Per U
For Description of ne Fer User
Main Storage) ATTACH
LOGON/ ATTACH Terminal
LOGOFF Monitor
Scheduler Program
EDIT. ... :>
(See Figure 4
For Description of One Per Command
Main Storage) ATTACH
EDIT
Command

Processor

Figure 1. Relationship of TSO Commands to TSO Processing

STARTING TSO

The console operator enables the computing system to perform TSO
processing by issuing the START TS command. The MVT control program, in
processing this command attaches the Time Sharing Control (TSC) Task.
The TSC initialization routine obtains a TSC region and in it, builds
the control blocks and buffers that TSO will need. The TSC task
attaches a Region Control Task (RCT) for each foreground region that was
specified in a cataloged procedure named in the START TS command, and
the regions for each RCT are assigned.

The routines of each RCT control the TSO jobs that operate from its
region. This control consists primarily of the swapping of jobs in and
out of the region when several jobs are competjng for space in that
region. The RCT routines operate from the TSC region, not from the
region that they control. After the RCTs are attached, the systenm is
ready to perform TSO processing. Main storage, in general, is as shown
in Figure 2.

14 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

e TCAM
e Message Control Program

e Buffers

Time Sharing Control Region

TSC Routines

RCT Routines

Control Blocks and Buffers
TSO Driver

Extended Link Pack Area

e Foreground Regions (See Figure 3)

r TSO and TCAM Regions

e Local System Queue Area

Dynamic Area ﬁ

Figure 2. Main Storage after TSO has Been Started

LOGGING ON

After TSO has been "started", a terminal user obtains access to its
facilities by logging his terminal onto the system via the LOGON
command. This is the start of his terminal_session in which he may use
the TSO command language to perform his data processing from that
terminal. (The session ends when a LOGOFF or another LOGON command is

issued from that terminal.)

In processing the LOGON command, the TSC routines assign this session
to one of the RCTs. The LOGON/LOGOFF scheduler is invoked by and loaded
into the region of that RCT. All processing for this session will occur
in this region. The LOGON routines validate the user's password,
identify his User Attribute Data Set, and read in the user's profile.
The LOGON routine causes the Terminal Monitor Program (TMP) to be
attached by constructing JCL statements from information in the LOGON
commands and previously-defined catalogue procedures. The JCL defines
the TMP as a job step and the MVT initiator attaches it. The TMP is
brought into the foreground region assigned to this session.

Section 1: Introduction 15

The TMP processes information specified in the JCL statements, issues
a READY message to the terminal and looks for input by invoking the
PUTGET service routine. Since at this point, no input (other than
LOGON) has yet been entered during this session, the PUTGET routine will
find nothing and issue a WAIT macro instruction. Figure 3 shows a
typical configuration of the TSO portion of main storage after a user
has been logged on.

[

o LOGON Routines

e Terminal Monitor Program

TSO and TCAM Regions o TSO Service Routines
(See Figure 2) <

o Rest of User's Region
- TSO User's Region
(See Figure 4)

Figure 3. Section of Main Storage after a TSO User has been Logged On

PROCESSING TSO COMMANDS

When a user enters something from his terminal, it is stored in a buffer
that is related to his session's TMP. The GETLINE service routine moves
this line of input to a TMP buffer and returns control to the TMP.
Terminal Monitor Progranm

The TMP controls processing during a session; it:

e Requests commands from the terminal when a session is started or
when a previously entered command has been processed.

16 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

e Has the command checked for validity.
e Invokes the command processor for that command.
e Receives control after a command processor has completed.

e Controls processing when a command processor is terminated because
of an error.

e Processes attention interruptions.

e Initiates LOGOFF processing caused when an operator issues a STOP TS
command during a session.

When the PUTGET routine returns a line of input, the TMP invokes the
Command Scan service routine to see if this input is a syntactically
valid TSO command. If it is not a command, the TMP causes a message to
be issued to the terminal and waits for more input. If the input is a
valid command, the TMP attaches the appropriate command processors.

When a command processor completes or is terminated by an error, CPU
control is returned to the TMP. A more detailed description of the
operation of the TMP can be found in the publication, IBM_System/360
Operating System:_ _Time_ Sharing Option Terminal Monitor Program_and
Service_Routines Program_Logic_Manual.

TSO SERVICE ROUTINES

There are seven service routines used during TSO processing. They
are normally invoked by the TMP, command processors, and each other.
They can be invoked by any processing program. The service routines
are:

e GETLINE - obtains a line of input from an area defined as its source
of input. Normally this area contains input from the terminal.

e PUTLINE - sends a line of output to the terminal.

e PUTGET - sends a line of output to the terminal, and waits for a
line of input as response.

e STACK - places pointers to lines of input into areas (stacks) from
which the GETLINE and PUTGET routine obtain data.

e Command Scan - checks the syntax of an input buffer to see if it
contains a valid TSO command nanme.

e PARSE - checks syntax of parameters of TSO commands.
e Dynamic Allocation Interface Routine (DAIR) - provides information

to the MVT dynamic allocation routines which allocate, free and
concatenate data sets that relate to a session.

Monitor Program_and Service Routines Program_ Logic Manual.

Section 1: Introduction 17

The EDIT Command Processor

The EDIT program resides on SYS1.CMDLIB until it is invoked by the user.
When the user enters the EDIT command and operands (see Section 7 for
external specifications of the EDIT command) a copy of the EDIT progranm
is loaded into the user's region. The Edit data set may be a new data
set or an o0ld existing Edit data set; in either case, the name of the
data set is that specified on the EDIT command.

The EDIT command enables a TSO user to create data sets and to modify
them by adding, replacing, and deleting records within the data sets. A
data set can consist of only printable characters in EBCDIC
representation. It can contain text or programming language source
statements., The user performs work on his data set thru either the

In Input mode the user enters successive lines of data. One line of
input becomes one record in the data set. Services available in the
Input mode include translation of tabulation characters to blanks,
interpretation of character and line delete characters, and translation
of lower-case characters to upper case. Programming language syntax
checkers can be requested to process source statements as they are
entered.

In Edit mode the user enters subcommands to point to particular
records of the data set, to modify or renumber records, to add and
delete records, to control editing of input, or to compile and execute a
program. While in the Edit mode, the EDIT program keeps track of the
user's position in the data set by means of the current_line pointer.
Subcommands are provided to enable the user to move the current line
pointer within his data set. Once the current line pointer is
positioned at a particular record, the user can then request a
particular function be performed by issuing the appropriate subcommand.
Following is a list of the EDIT subcommands and their associated
functions:

BOTTOM
moves the line pointer to the last line of the data set.

CHANGE
nodifies record text.

DELETE
removes records from the data set.

DOWN
moves the line pointer toward the end of the data set.

END
terminates the EDIT command.

FIND
locates a character string.

FORMAT
prints out a data set or a portion of a data set in a particular
format. Requires IBM COPY, FORMAT, LIST, MERGE Program Product.

HELP
explains use of EDIT subcommands.

INPUT
accepts new lines of data from the terminal.

18 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

INSERT
inserts records into the data set.

Insert/Replace/Delete
inserts, replaces, or deletes a line of data.

LIST
prints out specific lines of data or the entire data set.
MERGE
merges data sets or parts of data sets into the Edit utility data set.
Requires IBM COPY, FORMAT, LIST, MERGE Program Product.
PROFILE
specifies 'delete!' characters.
RENUM
numbers or renumbers lines of data.
RUN
compiles, loads, and executes the data set.
SAVE
retains data sets.
SCAN
controls syntax checking.
TABSET
sets the tab positions for editing.
TOP
moves the line pointer to line zero, if line zero exists, otherwise
the pointer moves in front of the first line of the data set.
UP
moves the line pointer toward the beginning of the data set.
VERIFY

displays the line referred to by the current line pointer after
modification by a subcommand or after movement of the current line
pointer.

Main storage after a TSO user has entered an EDIT subcommand is
depicted in Figure 4.

Section 1: Introduction 19

TSO User's Region \ EDIT Mainline Routine
(See Figure 3) |

EDIT Access Method

EDIT Subcommand Processor

EDIT Command Processor

Figure 4. Section of Main Storage After a TSO User has Entered an EDIT
subcommand

20 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Section 2: Method of Operation

This section describes the method of operation of the EDIT program; it
is divided into six major areas, each of which describes a functional
group of routines. These major areas are:

Initialization Routine

Controller Routine

Error and Attention Exit Routines
EDIT Service Routines

EDIT Subcommand Processors

EDIT Access Method Routines

Each area contains functional descriptions, and, where applicable,
summary of operation tables, and method of operation diagrams. The
method of operation diagrams are on foldout pages at the back of the
manual. Figure 5 explains the meaning of the symbols used in these
diagrams.

SYMBOL MEANING

Initial entry point

4
) Daa flow
—

Control flow

Pointer

N

— — — —»= Data reference

Figure 5. Symbols Used in Method of Operation Diagrams

INPUT PROCESSED BY THE EDIT PROGRAM
The input processed by the EDIT program consists of:
e The EDIT command operands - processed by the initialization routine.

e EDIT subcommands and operands - processed by the controller routine
and the subcommand processors.

e Data - processed by the subcommand processors, the service routines,
the EDIT Access Method, and Language Processors.

EDIT subcommands are entered during the Edit mode of operation.
During Edit mode, the controller routine treats any input as a possible
subcommand. Data may be entered during the Input mode of operation.
The INPUT subcommand processor handles incoming data. The operating
mode of EDIT is switched from Edit to Input when:

Section 2: Method of Operation 21

The

|
lin
rec
spe
for
the
con
and

dat
rec

A null line is entered.
The INPUT subcommand is entered.
The INSERT subcommand is entered with no operands.

operating mode of EDIT is switched from Input to Edit when:

A null line is entered.

An attention interrupt is entered.

A syntactically incorrect line is entered while syntax checking is
in effect.

An exceptional condition occurs during input processing.

The EDIT program assigns a unique key (a binary number) to each input

e and treats the key and the data as a record. All accessing of

ords in the EDIT program is done by record key. If the user has

cified that his data set be line-numbered, the EDIT program generates
each new record a line number which is the printable equivalent of
record's key, and if the user specifies unnumbered, the records will

tain only a key and data. When a record is displayed, only the data
the line number, if present, will be printed.

The EDIT program converts the format of each record from old QSAN
a sets into EDIT Access Method format. Figure 6 shows these two
ord formats.

QSAM Data Set EDIT Access Method

(Fixed Numbered)

DATA NUMBER KEY LL 00 DATA NUMBER

(Fixed Unnumbered)

DATA KEY LL 00 DATA

(Variable Numbered)

LL

00 NUMBER DATA KEY LL 00 NUMBER DATA

(Variable Unnumbered)

Fig

LL 00 DATA KEY LL 00 DATA
Field Length Contents
KEY 4 - Key value of record in binary,
LL 2 ~ Length of record; this includes length field, the DATA field,

and NUMBER field, if present,
The length value is contained in the first two bytes of this field,

00 2 - Binary zeros.

NUMBER 1-8 = Sequence or line number of record; this is the first eight bytes if
the record is variable - length and the last eight bytes if the record
is fixed - length,

Exceptions:

COBOL =~ First six bytes,
ASM -~ Variable length within last eight bytes,

DATA variable - User's information; length is dependent on the Edit data set type
and user definition of record length.

ure 6. QSAM and EDIT Access Method Record Formats

Most EDIT subcommands refer to or manipulate a record or a portion of

a record as part of their operation. Table 1 lists the EDIT subcommands
and indicates which portion of a record they refer to or manipulate
during their operation.

22

EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 1. EDIT Subcommand Functions (Part 1 of 2)

L) Ll]
| Subcommand} Key Record |Line number

1
L}

BOTTOM | Reads last record in data
|set; sets current line
|pointer to key of last
|record.

L
+

CHANGE |Reads records by key | Modifies data with
luntil record to be changed|in a record;
|is located; creates new |creates new record
|keys for overflow lines |to contain overflow
| (TEXT NONUM) ; sets current|lines.
|line pointer to key of |
|last record changed. |
1 1
h) L]

DELETE |Uses key to find record or|Deletes record.
|records to be deleted; |
| sets current line pointer |
|to key of record preceding]
|deleted records, or to
|zero if first record is
|deleted.

i

=
=

d——— — g —
=
=g

=
2]

=
L

o
(@]
=
=
=
o

|
|
|
+ }
|Reads records sequentially|Na
|by key (toward end of datal
|set) until the specified |
| number has been read; sets|
|current line pointer to |
|

|key of last record read.
1. 1

]
H
=z
o

T Ll

| Reads records until record|Searches record for
|is found which contains la particular
|specified character |character string.
|string; sets current line |

|pointer to key of record

|containing character

|string.

FORMAT

=
o

|
|
|
+
Reads records by key to |Writes records into
locate records selected | Format data set.
for formatting. |

_}

|

4

Ll

-]
=
[
el
=
4

NA

e e e e e —
=
=g

+ = ———t

INPUT |Reads records by key to | Writes new records |[Creates
|determine range of keys linto data set; |new line
lavailable for creation of |deletes o0ld |numbers.
|new records; uses keys to |records.
|create, replace and delete|
|records; sets current line|
|pointer to last record

|
|written into data set. |
L 4

Creates
nevw line
number.

Li Ll
INSERT |Uses key to locate line of|Writes new record

|the data set after which ajinto data set.
|record is to be written; |

|reads key of record to |

|determine end of available|

|space in data set for new |

|records; sets current line]

| pointer to last record

|
|written into data set. |
L. L

[P o e e o o = o o My = = — = Y Y —— — T — o — . — — — — — — . —— . —— —— T —— ———— —— oy —= — — —
=
L

b e e e o o — —— ki —— — — — o—— — b — i —— ki . —— — —— ——— b —— — e e —— — s e e — . —— b —

P————— e —— e —— — — —

Section 2: Method of Operation 23

Table 1.

EDIT Subcommand Functions (Part 2 of 2)

r T T T 1
| Subcommand | Key | Record |Line number |
1 4 1 1 d4
r Ll 1 T 1
Insert/	Uses key to locate line	Writes new record	[Creates
Replace/	into which a record is to	into data set;	new line
Delete	be written, or from which	deletes o0ld record.	number.
l]a record is to be deleted;			
	sets current line pointer		
	to key of record written		
	or to key of record		
	preceding record deleted,		

| |or to zero if the first | | |
| |record is deleted. | | |
t { + + 1
|LIST |Uses key to find the |Reads records from |Writes out |
| |records or records to be |the data set; ' |1line numbers]
| |written to the terminal; |writes them to the |to the |
| |sets current line pointer |terminal. |terminal.

| |to last record written. | | |
F + + + 1
| MERGE |Uses keys to locate |Writes records into|Changes line]|
| |records selected for | Merge data set. |numbers.

	merging; sets current		
	line pointer to last		
	record in data set.		
l + + + 4			
PROFILE	NA	NA	NA
¢ + + : !			
RENUM	Uses key to locate records	Writes entire data	Changes or
	which are to have new line	set with renumbered	creates line]
]	numbers; changes record lkeys to second data	numbers as	
	keys to conform to new	set.	specified.
	line numbers.		
. + t t 1			
RUN	Uses keys to locate all	irites records into	NA
	records of the data set.	the Run data set.	
[1 4 1 4			
r T Ll L} 1			
SAVE	Uses keys to locate all	Writes records into	NA
	records of the data set.	the Save data set.	
L 1 4 4 J			
r T T] 1			
SCAN	Uses keys to locate	Reads records into	NA

| |specified records of the |[storage. | |
| |data set; sets current | | |
] |line pointer to last | | |
| |record scanned. | | |
t + + + q
| TABSET | NA |NA |NA |
t t + t |
| TOP |Reads first record in data|NA |NA |
1 |set; sets current line | | |
| |pointer to =zero. | 1 |
F + + + 9
UP	Reads keys of records		NA
	(toward beginning of data		
	set) until the specified		
	number has been read; sets		
	current line pointer to		
	key of last record found.		
t + } t 1			
VERIFY	NA	NA	NA
L L 1 L J
24 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

THE CURRENT LINE POINTER

The current line pointer is a device which enables the user and the EDIT
program to refer to a particular record in the data set. The current
line pointer (a field in the EDIT Communication Area) contains a value
which is equal to the value of a particular key. The record associated
with this key is the current line, or current record. Many subcommands
make use of the current line pointer during their operation. Table 2
lists the EDIT subcommands and indicates which subcommands manipulate
the current line pointer.

Table 2. Position of Current Line Pointer After Subcommand Operation

r T 1
| Ssubcommand |Current Line Pointer Position |
L L 1
T 1 L
|BOTTOM |Last line of data set or zero if data set is |
| lempty. |
t + i
| CHANGE |Last line changed. |
L L 4
L T 1
| DELETE |Line preceding deleted line, if any, or else, |
| |zero. |
F + 1
| DOWN |Last line referred to. |
L 1 4
I T 1
|END | No change. |
F } 1
|FIND | Line containing character sequence, |
| |if any, or else, no change. |
L 1 4
r L] 1
| FORMAT | No change. |
t + 1
|HELP |No change. |
F + |
| INPUT |Last line entered. |
1 il 4
r T 1
| INSERT |Last line entered. |
L N 3
L} 1 1
|Line Insert/Replace/|Line inserted or replaced, or line preceding line]
|Delete |deleted, if any, or else, zero. |
1 41 4
L 1 1
|LIST |Last line listed. |
I L 4
L] T 1
| MERGE |Last line of data set. |
L N 4
1] T 1
| PROFILE | No change. |
L 1 1
L} T 1
|RENUM | Same relative record. |
L 1 4
LN L] 1
|RUN | No change. |
L 1 |
L T 1
| SAVE |No change. |
L 1 3
F T)
| SCAN |Last line scanned, if any. |
L L 1
I L 1
| TABSET | No change. |
t + !
| TOP | Zero. |
1 L 4
r T 1
|uP |Last line referred to. |
} + 1
| VERIFY |No change. |
L L J

Section 2: Method of Operation 25

OUTPUT CREATED BY EDIT PROGRAM

During the operation of EDIT, the user can create a new data set or
modify an existing one. The utility data set is a work file used by the
EDIT program (specifically, the EDIT Access Method) during EDIT
operation. New records entered by the user are inserted into this data
set; existing records are modified in this data set. The records in the
utility data set are in EDIT Access Method format. The Edit data set,
which is the data set the user specified when he entered the EDIT
command, is QSAM-formatted. It contains records which have been
modified or added during a previous EDIT session. The EDIT progranm
transfers records from the Edit data set into the utility data set
(changing their formats during the transferral) when the EDIT session
begins. When the user enters the SAVE subcommand, the modified records
in the utility data set are transferred into the Edit data set, or
another user-specified data set, thus creating an updated Edit data set.

Other data sets created during EDIT operation are:

e The Save data set - created when the user specifies that the results
of his EDIT session are to be retained in a data set different from
the Edit data set.

e The Run data set - created for execution of the user's data set.

e The Merge data set - created for the MERGE Program Product.

e The Format data set - created for operation of the FORMAT Progran
Product.

e The Renum data set - created to contain the renumbered records after
a RENUM subcommand operation; replaces the utility data set.

e The reverse Polish-notated data set - an in-storage data set created
when the data set type is either BASIC or IPLI; created by the BASIC
and IPLI language processor.

The EDIT program displays the following types of messages:

e Mode messages - indicate either Input or Edit mode of operation.

e Informational messages (first- and second-level) - inform the user
of conditions within the EDIT program; second-level messages, which
contain more detailed information, are displayed when the user
enters a "2?".

e Verify messages - display the current record if the value of the
current line pointer has changed or the text of the record has been
modified during operation of an EDIT subcommand processor.

Other messages displayed during EDIT program operation are:

e Prompting messages - displayed by the EDIT program or by the PARSE
service routine to request more information from the user.

e Syntax checker messages - displayed by the EDIT program or by a
syntax checker to inform the user of an error found in a source

statement.
e Terminal error messages - displayed by the EDIT abnormal end exit
routine or the TMP after an abnormal termination (ABEND) of the

EDIT program.

26 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

TERMINATION OR SUSPENSION OF EDIT PROGRAM OPERATION

The operation of the EDIT program or of a portion of the program (a
subcommand processor, for instance) is suspended or terminated in
accordance with what the user has specified or with conditions within
the EDIT program.

Termination of an EDIT subcommand processor does not necessarily
require the termination of the entire EDIT program. If the termination
is normal, the controller regains control and awaits the entry of
another subcommand by the user. (See the discussions for each
subcommand processor for further information about normal termination of
subcommand processors.) Error termination of a subcommand processor
does not require termination of the EDIT program if the source of the
subcommand was the terminal. The source of input to the EDIT progran,
however, can be an in-storage command list, or command procedure. A
command procedure is a sequence of TSO commands, subcommands, and data.
Usually it is stored in a data set that has been created by means of the
EDIT command with the CLIST data set descriptive qualifier. If the
subcommand which is terminating due to error is from a command
procedure, the entire operation of the EDIT program is terminated.

The CAINPROC field of the EDIT Communication Area (IKJEBECA) records
the source of current input to the EDIT program. If the setting of
CAINPROC is B'0', the terminal is the current source of input; if the
setting is B'1', a command list is the current source of input. The
EDIT controller updates this field after every return from the PUTGET
Service Routine as follows:

e for a return code of 0 from PUTGET, CAINPROC is set to B'0',

e for a return code of 4 from PUTGET, CAINPROC is set to B'1'.

Suspension_of_ EDIT Program_Operation

When the user causes an attention interruption by striking the ATTN key,
the operation of the EDIT program is suspended and the terminal input
queue is cleared (with the TCLEARQ macro instruction). EDIT operation
continues according to what the user enters next. See the topic,
"Attention Exit Routine" for a more detailed description of attention
interruption handling.

Normal Termination of EDIT Program_Operation

The EDIT program is terminated normally when the user enters the END
subcommand. The operation of the EDIT program is terminated as follows:

e The source of current input to the EDIT program is determined.

e If the current source is the terminal, the user is reminded to save
his data set, the terminal input queue is cleared (with the TCLEARQ
macro instruction), the input stack is flushed (via the STACK
Service Routine), and control is returned to the Terminal Monitor
Program with a return code of zero.

e If the current source of input is an in-storage command list, the
terminal input queue is cleared, the input stack is flushed, and
control is returned to the Terminal Monitor Program with a return
code of zero; the user is unable to save his data set.

See the topic, "END Subcommand Processing" for a more detailed
description of normal termination.

Section 2: Method of Operation 27

Error Termination of EDIT Program Operation

When the initialization routine of EDIT terminates due to error, or when
a critical command system error or utility I/O error is encountered, the
EDIT program is terminated as follows:

e The terminal input queue is cleared (with the TCLEARQ macro
instruction).

e The input stack is flushed (via the STACK Service Routine).

e The END subcommand processor is invoked to free resources obtained
by the EDIT progran.

e Control is returned to the Terminal Monitor program with a return
code of 12.

When an EDIT subcommand processor terminates due to error, and the
current source of input is an in-storage command procedure, the EDIT
program is terminated as described above.

If the current source of input is the terminal, only the input gueue
is cleared and EDIT processing continues. (Until the first EDIT
subcommand is obtained via the PUTGET Service Routine, terminal input is
assumed.)

28 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

SYNTAX CHECKING

Syntax checking of FORTRAN (E, G, G1, H), IPLI, BASIC, GOFORT, PL/I and
PL/I (F) source statements is available while in EDIT program operation.
The user can request that each line he enters from the terminal in Input
mode be immediately scanned for syntax errors by specifying SCAN on the
EDIT command or ON on the SCAN subcommand. Before the record is scanned
it is put into the user's data set. If a syntax error is found in a
record just entered by the user, an error message is displayed and EDIT
switches from Input to Edit mode to enable the user to correct the
nistake.

Lines entered by the user which end in a hyphen are not immediately
scanned by the syntax checker; they are transferred to the utility data
set as entered. If the user's data set tyre is GOFORT (FREE), the
hyphen remains as data. The hyphen is removed for all other data set
types.

By specifying the SCAN subcommand with no operands or with 1line
number operands, the user requests that his existing data set be either

entirely scanned or partially scanned for syntax errors. Figure 7
describes the formats of records passed to the syntax checkers.

f Data /— Line Number /— Data Line Number
/ / / / Fixed - Length
(Numbered)

8 Bytes 8 Bytes

L Record j
Record Length Line Number Data Record Line Number

N/ [[[

A Y% '/ / Variable - Length

/ 00 / / 00 X (Numbered)

2 2 8 2 2 8 2 2

L Bytes) Bytes Bytes
Data

Record

Figure 7. Formats of Records Passed to Syntax Checkers

The syntax checkers operate as separate components of TSO. They
perform single-statement syntax checking as opposed to inter-statement
checking; that is, a statement is considered valid if it satisfies its
category definitions irrespective of preceding statements which may
impose restrictions on the statement composition.

Use_of IPLI and_BASIC Syntax_ Checkers

The syntax checkers are not only used to scan source statements for
proper syntax. If the user's data set type is IPLI or BASIC, the syntax
checker or LANGPRCR (the syntax checkers available while in EDIT
operation) is also used to delete, to add and to update records in a
reverse Polish-notated data set. This data set is required for
execution under IPLI or BASIC and is maintained along with the EDIT
utility data set as the user performs editing operations. Since the
reverse Polish-notated data set must be constantly updated, it is kept
in storage; the syntax checker which maintains the data set is loaded
into storage regardless of whether syntax checking is requested by the
user. The syntax checker is also used when the data set is executed via
the RUN subcommand.

Section 2: Method of Operation 29

To summarize, syntax checkers are invoked by EDIT to scan source
statements, to delete, add, and update records from the reverse
Polish-notated data set, and to enable program execution of BASIC or
IPLI data sets. Statements can be scanned one at a time or several at a
time.

The syntax checkers (LANGPRCR) available while in EDIT operation are:

PLISCAN (for PL/I).

PLIFSCAN (for PL/IF).

IPDSNEXC (for FORT E, G, GI, H, and GOFORT).
IKJNC211 (for BASIC and PL/IF).

The modules of EDIT which invoke syntax checkers are:

e TIKJEBESC -- SCAN subcommand

e IKJEBESN -- SCAN subcommand

e TKJEBECG -- CHANGE subcommand

e IKJEBECN -- CHANGE subcommand

e TKJEBEIM -- INPUT subcommand

e TKJEBEIS -- INSERT subcommand

e IKJEBELI -- Insert/Replace/Delete implicit subcommand
e IKJEBERU -- RUN subcommand

e TKJEBEDE -- DELETE subcommand

e TKJEBEMR -- Translation service routine

A standard interface (shown in Figure 8) is provided to enable the
EDIT modules to invoke any available syntax checker, Figure 9 shows an
I expansion of this interface. Detailed information on syntax checker
control blocks is given in Section 5: Data Areas.

EDIT Module Standard Interface Syntax Checker
Common Module Syntax Che‘fke" Data Set Module
Name Name Parameter List Type Name
SCAN - IKJEBESC 00 |4 Buffer -
PLI - PLISCAN
SCAN - IKJEBESN Reg 1 00 T Syntax Checker
CHANGE - [IKJEBECG 2 Communication Area PLI-F - PLIFSCAN
- 80 |4 Option Word
CHANGE IKJEBECN ' FORTE - IPDSNEXC
INPUT - IKJEBEIM LINK
TRANSLATION _
2 K JEBEMR FORTH - IPDSNEXC
Insert/Replace/Delete FORTGI - IPDSNEXC
- IKJEBELI GOFORT - IPDSNEXC
RUN - IKJEBERU
DELETE - IKJEBEDE BASIC - IKJNC211
IPLI - IKJNC211

Figure 8. 1Interface Between EDIT Program and Syntax Checkers

30 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

User Exit Routine

If a user exit routine has been supplied at system generation time for

a particular user data set type, the user may enter subfield information
with this data set type keyword. This subfield information may contain
any alphameric data defined as valid, not exceeding 256 characters in
length and not containing any blanks, tabulation characters, or commas.
This information is passed to the user exit routine to be interpreted
and encoded into bytes 0 and 1 of the Option Word in the standard syntax
checker interface parameter list.

The user exit routine is passed the address of a three word parameter
list in register 1. The contents of this parameter list is as follows:

Word 1 Address of the subfield parameter descriptor element (PDE)
returned to the initialization routine by IKJPARS.

Word 2 Address of bytes 0 and 1 of the syntax checker Option Word.

Word 3 Address of command processor parameter list passed to the EDIT
Command Processor. This information is used to access the ECT
and UPT, if the exit routine wants to use IKJPARS or any of
the TMP Service Routines.

(See also Table 63).

Syntax checkers can be invoked by several EDIT modules to perform
several different functions. Table 3 summarizes the usage of the syntax
checkers.

Table 3. Syntax Checker Usage

I
|EDIT Module Function Performed

L] 1

| |

t + i

| SCAN | Loads syntax checker for initialization. |

1 L 3

L L] 1

| SCAN |Deletes syntax checker for termination. |

L 1 4

1) L] 1

| SCAN | Passes records from the utility data set for initial |

| |translation into reverse Polish notation. |

L 1 4

Ll L] 1
|SCAN | Passes records from the utility data set for syntax |

| |checking. I

t + 4

| SCAN | Passes single record from utility data set for syntax |

| |checking. I

F + i

| CHANGE | Passes single record to be scanned and/or translated |

I | (ITF only) land added to reverse Polish-notated data set. |
1 1 3

1 1 1

| INPUT | Passes single record to be scanned and/or translated |

| J]and added to reverse Polish-notated data set. |

L 1 3

] 1 1

| INSERT | Passes single record to be scanned and/or translated |

| | (ITF only) |and added to reverse Polish-notated data set. |
L 1 3

L 1 1
|Insert/Replace/|Passes single record to be added or deleted from |
|Delete |reverse Polish-notated data set. |

| 1 (XTF only) [|
F + 4
|Translation |After successful renumber or merge operation, deletes |

l | (ITF only)]old Polish-notated data set and passes records to be |
1 |translated and inserted into reverse Polish-notated |

| |data set. |

F t |
|RUN (ITF only) |Passes pointer to RUN command. |

L L 3

v 1 1
|DELETE | Passes control to delete records from reverse |

l I (ITF only) |Polish-notated data set. |
L i J
Section 2: Method of Operation 31

If the IPL1 or Basic Syntax
Checker is Called by Either
the DELETE or the RUN
Subcommand
Syntax Checker

Parameter List Command Interface

00
00

\

o)

3 Words
Syntax Checker
Option Word Communication Area Buffer
Syntax Checker
T Work Area t Next Buffer

1 Word
or T Ist-Level Msg Record {

Tan-Level Msg

Reserved

4 Words

Figure 9. Expansion of Syntax Checker Interface

32 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Initialization

The initialization routine (IKJEBEIN) receives control from the Terminal
Monitor Program (IKJEFT02) whenever a valid EDIT command is issued. The
initialization routine acquires and initializes work areas used by the
EDIT program, processes the operands and keywords specified with the
EDIT command, and passes control to the EDIT controller for subsequent
subcommand processing.

Prior to validating the command operands and data set attributes
specified by the user, the initialization routine:

e Obtains the EDIT Communication Area (IKJEBECA).
e Loads the resident message selection routine (IKJEBEMS).

e Invokes TSO service routine (IKJPARS) to check syntax of EDIT
command.

e Performs data set name processing, and updates the EDIT
Communication Area.

e Acquires data set type information for inclusion in the EDIT
Communication Area. (This information is based on data set type, if
entered; if data set type is not entered it is obtained from the
descriptive gqualifier.)

e Performs NEW/OLD keyword processing, if the data set is specified,
or assumed, to be OLD.

e Invokes TSO service routine (IKJDAIR) to dynamically allocate a data
set specified by user, if data set is OLD.

After operands have been checked, the initialization routine:

e Initializes the EDIT Access Method (hereafter called the Access
Method) by invoking the Access Method initialization routine
(IKJEBEUI), if the data set is either new or old and empty, or if a
member is to be created for a partitioned data set.

e Loads the Access Method Interface routine (IKJEBEUT) and invokes the
initial copy service routine (IKJEBECO) to copy the Edit data set or
member into a utility data set, if the data set or member specified
by the user contains records.

e Invokes the Controller routine (IKJEBEMA) via the XCTL macro
instruction.

NOTE: When the controller routine is invoked, the CAEDMEM flag (for
Partitioned data sets) and the CAEDDISP flag (for sequential data
sets) in the EDIT Communication Area (IKJEBECA) will indicate
whether Input mode or Edit mode should be established. If the data
set specified on the EDIT command is either new or old and empty or
if the specified member does not exist, the initialization routine
indicates that the Input mode should be entered by setting CAEDMEM
or CAEDDISP to 0. If the data set is 0ld and not empty or if the
specified member exists, CAEDMEM or CAEDDISP is set to 1, indicating
that Edit mode is to be entered.

Processing EDIT_Operands

This topic describes the way in which the initialization routine handles
particular operands and keywords. Table 5, which follows this topic,
summarizes the operations of the initialization routine.

Section 2: Method of Operation 33

Data_Set Name_Operand

L)

|User entered OLD or neither OLD
|nor NEW on the EDIT command;
|user specified a member nanme,

| (EDIT'engbw.parts.data’

| (nemname)old ...)

r Ll K
| User Specification | Action of Initialization Routine|
L il |
r T 1
|User entered fully-qualified data |The fully-qualified data set name |
|set name and data set type, land the data set type are indicated]
(EDIT'engbw.parts.data'...ASN)	in the EDIT Communication Area.
	(See Obtaining Processor Dependent
	Information.)
L [l Jd	
r] 1	
User entered fully-qualified data	The user is prompted thru IKJPARS
set name and no data set type	to supply the data set type. When
(EDIT'engbw.parts.data'cecess)	this information is provided, the
	fully-qualified data set name and
	the data set type are indicated in
	the EDIT Communication Area.
L 1 1	
r	1
User entered a partially-qualified	The data set name is fully-
data set name and the data set	qualified thru IKJDFLT and
type, (EDIT parts...ASHN) l	indicated with the data set type in
	the EDIT Communication Area.
L [J	
LE 1	
User entered a partially-qualified	The user is prompted thru IKJPARS
data set name (rightmost qualifier	to supply the data set type. The
is not a data set descriptive	data set name is fully-qualified
qualifier) and no data set type,	thru IKJDFLT. The fully-qualified
(EDIT engbw.parts.nov....)	data set name and the data set type
J]are indicated in the EDIT	
i ICommunication Area. I	
1 1 4	
L B L 1	
User entered a partially-qualified	The data set name is fully-
data set name (rightmost qualifier	qualified thru IKJDFLT. The fully-
is a data set descriptive	qualified data set name and the
qualifier) and no data set type,	data set type are indicated in the
(EDIT parts.data..eese.)	EDIT Communication Area.
L iR J	
NEW/OLD_Keyword	
1 L 1	
User Specification	Action of Initialization Routine
1 i 1	
¥ T 1	
User entered NEW on the EDIT	EDIT assumes a new data set;
command, (EDIT'engbw.parts.data!'	IKJEBEIN does not allocate new data]
new...)	sets of the name specified by the
Juser; the allocation of data set	
	'engbw.parts.data' is deferred
Juntil the user enters the SAVE	
	subcommand.
F 1	
User entered OLD or neither OLD	Indicates o0ld sequential data set
nor NEW on the EDIT command;	in the Communication Area; invokes
user specified no member name,	IKJDAIR to allocate a data set as
(EDIT'engbw.parts.data'...)	OLD,KEEP,KEEP.
L 1 d	
1	
' |

1

| Processes Membername (See Table U)
|indicates o0ld data set in the
|communication area; invokes IKJDAI
|to allocate a data set as SHR,KEEP
|KEEP.

L

~

34 EDIT TSO Command

Processor PLM - Vol.

3 (Release 21)

Table 4. Membername Processing

User Specification

Ll
|Action of Initialization Routine
L

- —-

|Membername not specified on EDIT
|Command and data set is
|partitioned

L.

+
|"TEMPNAME" is used as the member
|name.

N

L |

| Menber specified and member
|found in data set, or member
| TEMPNAME defaulted and member
| TEMPNAME found in data set.

-, ——— ————— —— —— ——

T

|After successful validation of
|operands and attributes, invokes
|initial copy routine (IKJEBECO) to
|create utility work file and checks
|results as follows:

if an error has occurred (return
code from IKJEBECO = 8), returns
control to the TMP.

if the member is empty (return
code = 4), indicates that the
Input mode is to be entered.

if the member is found (return
code = 0), indicates that the
Edit mode is to be entered.

|Membername specified as OLD
|and member not found in data set.
| (BLDL return code = 4).

Informs user that member is not OLD
and returns control to the TWNP.

o e ——— e e —

Membername specified as NEW.

|Indicates that the Input mode is to
|be entered; sets CAEDMEM to 0.
1

(return code = 8).

+
Error has occurred in BLDL process|Informs user of error and returns

|control to the TMP.
L

appropriate error message;

[—— - —— e ———— ———_—

NOTE: If the user did not specify OLD or NEW and the data set is not
successfully allocated by IKJDAIR, the initialization routine
prompts the user thru IKJPARS to enter OLD or NEW. If the user
enters OLD, the EDIT program terminates after issuing the

is deferred until the user enters SAVE.

if the user enters NEW, allocation

e o e e e o e de e e cd e e e e e e ——— e

Section 2: Method of Operation 35

PLI or PLIF Source Margins

L] LB 1
| User Specification |Action of Initialization Routine |
L 1 4
r L} 1
|Source margins specified; left |Inform user that specified margins |
|margin greater than right margin, |are invalid and default to 2 and |
Jor right margin exceeds data 172. |
|length of records. | |
1 4) |
1)) 1
|Source margins specified; left |Initialize margins with values |
|margin less than right margin; |specified. |
|right margin less than or equal to] |
|data length (LRECL less sequence | |
|number length) of records in data | |
|set. | |
t L .|
INOTE: If CHAR60 is specified for any of the above, a sixty-character |
| character set is indicated by setting the CACHAR60 bit of |
| IKJEBECA to 1. If CHAR48 is specified, CACHARU8 is set to 1. |
| The default is CHARG60. |
L J
SCAN/NOSCAN Keyword

r T 1
| User Specification |Action of Initialization Routine

L 1 Jd
v T 1
|User entered SCAN; syntax checker |Sets CASCANON to 1. |
|is available, and data set type | |
lallows scanning. | |
t + 4
User entered SCAN; syntax checker	Informs user that syntax checker
is not available in systen.	is not available in systen.
	Terminates EDIT with return code of]
112.	
User entered SCAN; syntax checking	Informs user that SCAN is invalid
is not applicable to data set	for data set type; terminates EDIT
type.	with return code of 12.
L L J

LINE Keyword and Keyword Value

The value entered for the LINE keyword is used as the logical record
length (LRECL) for a new data set. This value may be entered by the
user only when creating a new data set or editing an old and empty data
set. The keyword value or the LRECL from the DS1LRECL field of the DSCB
is checked against values obtained from the processor data table
(IKJEBEPD) for the particular data set type. If the DS1RECFM field
indicates a record format of V or V blocked, and variable format records
are not compatible with the data set type, the user is informed and EDIT
is terminated.

36 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

r T t
| User Specification |Action of Initialization Routine |
L 1 Jd
] 1 1
|Data set is NEW, user did not |Initializes CALRECL to default]
lenter the LINE keyword; the |value for LRECL and sets CARECFM |
|default for RECFM is V. Jto 0. |
L 1 1
Ll 1 1
Data set is NEW, user did not	Initializes CALRECL to default
enter the LINE keyword; the	value for LRECL and sets CARECFM
default for RECFM is F.	to 1.
L 1 1	
L 1 1	
Data set is NEW, user entered	Initializes CALRECL to value
LINE keyword; RECFM = F default	supplied by user and sets CARECFM
is required; LINE value is	to 1.
lequal to default value.	
L 4 1	
1]) 1	
Data set is NEW, user entered	Initializes CALRECL to value
LINE keyword; RECFM = F default is	supplied by user and sets CARECFM
not required; LINE value is	to 1.
lequal to or less than the maximum	
value.	
t ' 3	
Data set is NEW, user entered	Informs user that LINE value
ILINE keyword; LINE value is not	supplied by him is invalid;
lequal to default value and default	initializes CALRECL and CARECFM to
value is required.	proper values according to defaults}
	for the record format. (See
	O0btaining Processor Dependent
	Information in this section.)
L L o	
L] T 1	
Data set is NEW, user entered	Informs user that LINE value
ILINE keyword; RECFM = F default is	supplied by him is invalid;
not required; LINE value is	initializes CALRECL and CARECFM
greater than maximum value.	to proper values according to
	defaults for the record format.
L 41 .	
L B Ll 1	
[Data set is OLD, user did not	Initializes CALRECL to value of 1
enter the LINE keyword; RECFM = F	DS1LRECL and CARECFM to value of
ldefault is required; DS1LRECL	DS1RECFM. (Terminates if DS1RECFM
value is equal to default LRECL.	other than F or F blocked.)
1 1 1	
] 1 1	
Data set is OLD, user did not	Initializes CALRECL to value of
lenter the LINE keyword; RECFM = F	DS1LRECL and CARECFM to value of
ldefault is not required; DS1LRECL	DS1RECFM, if record format is F,
value is less than or equal to	F blocked, V or V blocked.
default LRECL.	
Data set is OLD, user entered	Initializes CALRECL to value of
ILINE keyword; RECFM = F default is	DS1LRECL and CARECFM according to
required and DS1LRECL value is	the value of DS1RECFM, if RECFM is
lequal to default LRECL, or RECFM	F or F blocked; informs user that
= F default is not required and	LINE keyword is ignored for OLD
IDS1LRECL value is less than or	data sets.
]equal to default LRECL.	
L 1 3	
¥ T 1	
Data set is OLD; RECFM = F default	Informs user that DS1LRECL is
is required; DS1LRECL value is not	invalid for data set type and
lequal to default LRECL, or RECFM	terminate EDIT.
= F default is not required, and	
IDS1LRECL value is greater than	
maximum LRECL.	
L L J

Section 2: Method of Operation 37

BLOCK Keyword and Keyword Value

The value entered for the BLOCK keyword is used as the block size
(BLKSIZE) for a new data set. This keyword is invalid for an old data
set; if a value is entered for BLOCK and the data set is OLD and not
empty, the user is informed that the value will be ignored. Checking of
the BLOCK keyword assures compatibility of the values specified for LINE
and BLOCK.

-
User Specification |Action of Initialization Routine
1
+
User did not enter the BLOCK |Uses CABLKS field of the processor
keyword. |data table as follows: for

| fixed-format data sets, sets CABLKS
|to the greatest possible integer
|multiple of LRECL that produces a

| BLKSIZE less than or equal to the

| Sysgen maximum, i.e.

| CABLKS=[CABLKS/CALRECL]X CALRECL

| (For record format V data default
|CABLKS is used.)

oy — — — — —— — — . ——

Initializes CABLKS to value
supplied by user.

1
L
|User entered BLOCK keyword; |
|RECFM = F and BLOCK/LINE is an I
linteger, or RECFM is not F and
IBLOCK is at least U4 greater than |
|LINE, but less than or equal to |
|Sysgen maximum. |
L L
B

1]

|User entered BLOCK keyword; |Inform user that BLOCK value
|RECFM = F and BLOCK/LINE is not an|supplied by him is invalid; uses
linteger, or RECFM is not F and | Sysgen value as default.

|BLOCK is either less than LINE+4 |

lor greater than Sysgen maximum.
L

e et e e — e d —— . — e e ek — — — — — —— — — — — b —]

po o=

For old data sets, the device-dependent information needed to compute
the number of records in the data set is obtained by issuing the DEVTYPE
macro instruction. The number of records in the data set is computed
according to the following formulae:

T (# of tracks in o0ld data set)=TT(from DS1LSTAR) +1

LB (last block on track)=DS1BLKL-(device overhead for last
block) - (device overhead for non-keyed records)

B (other than last block)=[((DS1BLKL*device tolerance
factor) /512)]+ (device overhead for other than last block) -(device
overhead for non-keyed records)

N (# of blocks/track)=1+[(track size - LB)/B]

R (# of records)=T* (DS1BLKL/DS1LRECL) *N for RECFM=F, or
=T* (DS 1BLKL/30) *N for RECFM=V.

When computed, the number of records (R) in the OLD data set is saved in
CAUTILNO. The Utility Data Set Initialization Routine (IKJEBEUI) will
use this value in determining the size of the utility data set to be
allocated.

38 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

NUM/NONUM Keyword

r T

l User Specification |Action of Initialization Routine

L 1

) T

| NONUM Keyword is specified and |Inform user that data set must be
|data set must be numbered. Inumbered and ignore NONUM keyword.
L 1

L L}

|NONUM keyword is specified and |Indicate that data set is not to

|data set need not be numbered.

e

lcontain sequence numbers.
| (CANONUM is set to 1)
1

INUM keyword specified, data set

ltype is ASM, and sequence numbers |starting position and length are
|do not begin between positions 73 |invalid and default to starting
land 80, or NUM operand specified,
|data set type is ASM, and sequence|length of 8.

|number length is invalid, i.e.,
lgreater than 8, or NUM operand
|specified, data set type is ASH,
land sequence number starting
|[position and length are invalid.
L

]
|Inform user that sequence number

|position of column 73 and number

|
|
|
|
1
Ll

]

INUM keyword specified, data set
|type is ASM, and sequence number
|starting position and length are

|valid.
1

|Initialize sequence number starting
|position and length with values
jobtained from NUM keyword.

|

L

e e e e e —— e e o — e e e

CAPS/ASIS _Keyword

User Specification

+
|Action of Initialization Routine
1
L]

User did not enter CAPS or ASIS
keyword.

|Sets CACAPS field in the EDIT
|Communication Area to default for
|data set type.

1

User entered CAPS.

]
| Sets CACAPS field to 1.
1

User entered ASIS.

[- e —— . — —— —— —

+
|Checks acceptability of ASIS in
|data set type; if ASIS is
|acceptable, sets CACAPS field to 0,]
|if not acceptable, (data set type |
|requires CAPS) informs the user and]
|set CACAPS to 1. (See Obtaining |
|Processor-Dependent Information.) |
|]

— ke —— e ——— — ko

Section 2: Method of Operation 39

GOFORT_Data_Set Type FREE/FIXED Keyword

This keyword specifies the format of input statements.

T
User Specification |Action of Initialization Routine

1
1

User entered FREE, | Ensures that RECFM=V for old data
|sets and sets CAFREE field in the
|EDIT Communication Area to 1; if
| RECFM=F, informs user of error and
|terminates.
1
1

User entered FIXED. |Determines if LRECL = 80 and the
|IRECFM = F; if not and data set is
|new, informs the user and uses
|default values; if not, and data
|set is 0l1ld, informs the user and
Jterminates; if LRECL=80 and
| RECFM=F, sets CAFREE to 0.

1

L}
User did not enter FREE or FIXED. |Defaults to FREE.
L

o e o ——— oy ————— o —
s I S e

User-Generated Data Set Type Keyword

This keyword describes the action taken for user-generated data set type
subfields.

o e L e e
: User Specification |Actlon of Initialization Routine
bser entered data set type with 'Verlfy that user exit routine is in
§ubfield parameters. .the system; if not,; inform user and ;

| jterminate. If in system, invoke
1 Iex1t routine to encode the
! lparameters into the CACHKOPT field.

hser entered data set type l

Mlthout subfield parameters. lsame as above.
___________________________________ e o e ————————————————— ———
bote: If no user exit routines were specified at system generation

i time, this operation is not defined in the initialization

.
1
|

.
1
]
|
|
1
1
|
aQ
|
|
1
-l
|
|
1
I routine. :
-t

40 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 5.

Summary of Initialization Operations (Part 1 of 7)

r

T

| Command or|
| Subcommand | Operand
L 4

Reyword

T

Keyword
Value

T
I

| Involved |

Modules

in

Processing| Function Descripticn
4

r
I
I

MO
ID

Ihaty A 1

| |
|Flow |
|Chart|
| ID

1)
| EDIT
|

|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
I
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
L

+
|data

| set

| name

| (fully-
|quali-
| fied)

o e o e e o S e e . e e e e e . s o . s e

T
|
|
|
|
‘TL
|
|
|
|
I
|
|
|
I
|
|
[
|
I
|
|
|
I
|
I
|
|
|
I
|
I
I
|
I
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I
|
|
|
|
I
|
4L

o e e e e e e e e e e e e ——— e ——— e e — | — e s e T g o " . = e = . e, e i e,

=z
[e]
=]
o

|
A
)

Terminal
Monitor
Program

T

| Invokes command scan TSO
| sexvice routine (IKJSCAN)
|to determine if EDIT is
|a valid TSO command;
|locates EDIT command
|pxrccessor program (IKJE-|
| BEIN) in SYS1.CMDLIE; |
|casses control tc the EDIT|
| program via ATTACH.
4

—_——————e

-+ —

IKJEEEIN

+
| Puilds and initializes|
| EDIT communication areal
| (IKTERECA) ; invokes the|
| PARSE TSO Service routine|
| (IKJPARS) to syntax check|
|the ELCIT command; invokes|
|the Parse TSO service rou-|
| tine (IKJPARS) to prompt]|
|the user for the data set|
| type; invokes the proces-—|
| sor data table search rou-|
|tine (IKJEBEPS) tc oktain|
| data set type information]|
|for inclusion in the Edit|
|Communication Area;|
|invckes the Access Method|
|initialization routine|
| (IKJTEREUI) to 1lcad the|
|Access Method (IKJEBEAR) |
|and to allocate a utility|
|data set; indicates that]|
|the Input mode is to ke in|
| effect; passes control to|
| the controller rcutine|
| (IKJEBEMA) via XCTL.
i

01

— e e e —— e —

IKJEBEFS

|
+ t
|Searches the processor|
|data table (IKJEBEPD) for|
|the data set type speci-|
| fied by the wuser; finds]|
| the processor-dependent|
| information for the parti-|
|cular data set tyre|
| (default blocksize, 1linej|
| number starting column, |
| syntax checker name, etc.)|
|and returns its address to|
| the IKJEBEIN.
4

P e e e ———— e — . ———— ———————————————— o ———— e —

IKJERBEUI

+—

s
|Loads the Access Method|
| (IKJEBEAA) 1into storage;|
|invckes the TSO data set]
|allocation service routine|
| (IKJCAIR) to allccate the|
|utility data set. |
L

26

N o o s e o s R S s S s T s S e, .) . i, T e, e, . T e, S s, . e, . S . G, i, e, .

Section 2: Method of Operation 41

Table 5. Summary of Initializaticn Operations (Part 2 cf 7)

r =T
|
|

|Command or|
| Subcommand | Operand
L 4

T

Keyword

Keyword Value

Modules
Involved
in

T
|
I

|

MO
ID

Flow
Chart

-
lw)

v
| EDIT
| Continued

T
|
|
|
]
t
|
|
|
|
|
|
]
|
[
%

+
+
4
L)

e . . o . s S e e, o]

IKJEEENMA

r
|
|
|

Processing|Function Description |

. 4 +
|

¢
| Invokes the INPUT

| subcommand processor |
| (IKJEREIP) which will{
|write subseguent lines of|
|terminal input via the|
| Access Method into the|
Jutility data set; (See|
| INPUT Subcommand |

| Frocessing).
<4

02

(9]
=
|
N
<

EDIT |data | OLD None
| set | (empty

| name | sequen-
| (fully- {ial data
lquali | set) -

|fied)

!
|
|
|
n
|
|
|
|
|
|
|
|
|
|
l
|
|
|
!
|
|
|
!
|
|
|
!
|
|
|
!
|
!
|
|
|
|
|
|
|
|
n
|

[o T — . . WM . S . S . S S, S . W e, S . B . S g S . S S S . S S .] S e, O, e, o, G S

|
|
|
|
|
|
I
!
|
|
|
|
|
|
|
l
|
|
|
|
|
|
|
|
|
|
|
!

[e e o o o e . e e s . S S S S8 i S . S S S i S S i St

Terminal
Monitor
Program

+
| Same function as above.

I
+
+

]
|

[}
[}

IKJEEEIN

|

+

|
| |

|

+
|Builds and initializes |
|EDIT communication areal
| (IKTEEBECA) ; invokes the|
| Parse TSO service routinel
| (IKJPARS) to prompt thej
|user for the data set |
|tyre; invokes the proces-|
| sor data table search rou-|
|tine (IKJEREPS) to cktain|
|data set type information|
|for inclusion in the Edit]
|Communication Area; |
|invckes IKJDAIR to alloc-|
|ate data set; invokes the|
|Access Method initializa-|
|[tion routine (IKJEBEUI) to]|
|load the Access Method and|
|to allocate a utility datal
|set; indicates that the|
|Input mode 1is to be in|
|effect; passes control toj
| the controller routine|
| (IKJEREMA) via XCTL.
4

c1

IKJEBEPS

T
| same function as above.
4

O
(]
]
(9]
(&)
—_——— e e ———— e e —

IKJEBEUI

+
|same function as akove.
4

N
o

s i S e s e, T e, S e, T e, — i, T e, " e, S~ . T e,

[53] o
Lo} m:

P o e i e — e —— —_ —— — e —_ e e e e = s " o i T e T e = s T . o = e e o]

IKJEBEMA

o e e e e e e

14
| same function as above.
L

02

CwW-

0
=

o o e e e o i e e s s e e e e s e S et S . T e, o o e, s . . e, T o, S . S e, e . i, S e,
|
[}

N

(Part 2 of 7)

42 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 5.

Summary of Initialization Operations (Part 3 of 7)

r
|
|

| Command or|
| Subcommand | Operand
4

T

Keyword

T
|

Modules
Involved
in

Processing|Function Description
4

T
|
I
|

MO
ID

Flow
Chart

=]
o

T

|data
|set
|name

| (par-
|tially
|quali-
|fied)

CLD

I
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|

|
I
|
|
%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
|
!

A

o e e s e e e e e — e —— e o T~ — e o — o — e — e — e —— — e e e —— — e — e —— — e s o e e e o e e o o]

I
+
+
|

Terminal
Monitor
Program

+
|Same function as akove.

|
|
4

IKJEBEIN

} -
|Builds and initializes
|ECIT ccmmunicaticn area
| (IKJEBECA) ; invokes the|
| IKJPARS routine to syntax|
|check the ELCIT command;|
|invokes the Parse TSO ser-|
|vice routine (IKJPARS) to]
|exrcmpt the wuser fcr the|
|data set type; invokes the|
|TsO default service rou-|
| tine (IKJDFLT) to fully-|
|qualify the data set name; |
|invokes the processor 3data|
| takle search rcutine|
| (IKJEBEPS) to obtain datal
|set tyré information for|
|inclusion in the Edit Com-|
|runication Area; invokes]|
| the Tso data set alloca-|
|ticn service routine (IKJ-|
|DAIR) to allocate the Edit|
|data set identified in|
| 'dataset name"' ; loads|
| IKJEREUT; invokes the ini-|
|tial copy routine (IKJEBE-|
|cO) +tc copy the contents]|
|of the Edit data set into|
| the utility data set; |
| deletes IKJEBEUT indicates|
|that the Edit mode is to|
|be in effect; passes con-|
|trel to the centroller|
| routine (LKJEBEMA) via|
|XCTL.
4

. . . . i e . e, S e, *

01

IKJEBEPS

v
| same function as above.

—_—_———t e ——

Q
(@]
|
(@]
Q

[e B S Y e e e e —— e e e e, e — e, e e —, " e, —

IKJEBEUI

same function as akove.

IKJEBECO

‘e —

S

|Invokes the Access Method|
|initialization rcutine|
| (IKJEBEUI) to allocate aj
Jutility data set; reads|
|into storage every record|
|frem the Edit data set;|
| transforms the format of]
|the records to that used|
|by the Access Method; |
|invokes the IKJEREUT to]
|write the reformatted|
|records into the utility|
| data set.
IR

o o e W e e, e, — e, e, e, —

IKJEEENA

|
t +
| Indicates that the Edit]|
|mode is in effect by issu-|
ling the "EJit" mode|

| message. |
L L

Q
=
|
Q
%3

(Part

of

~
N e e e e e i e s s e T e, e e, S i . D D . T . e, T . " e, T e, T e, T s . e, T e, T s, T . W e, T e, T e, " e, S e, T i . T . s T e, . e, =

Section 2: Method of Operation 43

Table

5.

Summary of Initializaticn Operations (Part 4 cf 7)

r

T

l
|

Command or|

| Subcommand

| Operand
4

T
|
I
I
| Keyword
4
T

T

|
4
+

| Keyword
Value

T
I

| Involved |

Modules

in

Processing|Functicn Descripticn
4

T
I

MO |[Chart|]
ID | ID |

[o . — e S e S S o, s S . o, . S S, S s, T i, S i S . S S, — . S . — S s, W e, S e, S s S . S S P, o . €

EDIT

4
|data

| set

| name

| (fully~-
|quali-
|fied)

o e e e . . e . . v . S —— —— —————— ——— — — —— —— — . . . e S, i S, e . S, S,

| OLD | None
| BASIC | None
|oxr |

| IPLI |None
| NCSCAN | None

|
|
I
I
|
|
|
|
I
!
I
|
I
I
|
|
I
I
[
|
I
I
I
|
|
I
|
|
|
I
|
|
I
|
|
!
I
|
|
I
|
!

I e e T . P s e e e —— e e e = e, " o, " . . e T . " e " e = . T e, . " e, P

Terminal
Monitor
Program

v
| Same function as above.

|
1
+

+———

[
I
4
T
I
|
|
1
L]
|

I
|
|
I
|
I
I
|
|
|
|
|
I
|
|
I
|

IKJEBEIN

|Puilds and initializes
|EDIT communication areal
| (IKTEEBECA) ; invokes the]
| FARSE TSO Service routine|
| (IKJPARS) to syntax check|
| the ELCIT command; invokes|
|the fprocessor data table|
| search routine (IKJEBEPS) |
|to cktain data set tyre|
|information for inclusion|
|in the Edit Corrunication|
|Area; invokess the TSO data|
| set allocation service|
|routine (IKJDAIR) to|
|allccate the Edit data set|
|identified in 'dataset|
|name'; checks if language|
| processor is available in|
| systen; loads IKJEBEUT; |
|invokes the initial copy|
| routine (IKJERECQ) tc cory|
|the contents of the Edit|
|data set into the wutility|
|data set; deletes IKJE-|
| EEUT; indicates that the|
|Edit mode is to be in|
|effect; passes ccntrcl to]
| the controller routine|
| (IKJEEEMA) via XCTL.

c1

IKJEBEPS

Same function as above.

e e e e ———_——————— e e i e e

+—

IKJEEEUI

same function as akove.

IKJEBECO

e —

| Same function as above.
4

[p—

e e e e e T e Y . " " e " . " e

IKJEEENA

-+ ——t e ———t

+
|Loads 1language processor|
|and indicates its address|
|in CAPTCHIC field; invokes]|
| IKJEBESC to initialize|
| language processing; indi-|
|cates that Edit mode is in|

|effect. |
4 4

Ly

EDIT

—— e, o e, o e, e

—d e d

(Part 4 of 7)

TSO Command Processor PLM - Vol. 3 (Release 21)

Table 5.

Summary of Initializaticn Operations (Part 5 cf 7)

r

|Command or
| Subcommand

T

|Operand
4

+————

T

|
Keyword |
%

Keyword
Value

T
|
|
|

Modules
Involved
in

1
|
I
|

Processing|Function Description
L

MO
ID

Flow
Chart

=
o
)
]

o e o — . . . (o s . . S . o i, S . — . — . S o S s, B e S — e S ot — i S . — i, e e, S i, S

4
| dataset
| name

| (fully-
|quali-
| fied)

=

|0LD | None
| ASM | None
|or |
|CCBOL | None
|ox

| FCRTGI | None
|or |

| TEXT | None
|oxr |

| DATA |None
|ox |
|CLIST |None
| ox

|CNTL |Ncne
| ASIS | None

e o e e e e e s e — e, e e, T e, e . — e, e o,

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|

Terminal
Monitor
Progran

1
|same function as akove.

. —— T — . T e, T e e, T s, T e " s " s, S s, " . . " s " . T . " . " G . T e e

IKJEBEIN

Ll

|Builds and initializes

| ECIT ccrmmunicaticn area

| (IKJEBECA); invokes the
|PARSE TSO Service routine
| (IKIJPARS) to syntax check
|the EDIT command; invokes
| the processor data table
|search routine (IKJEBEPS)
| to obtain data set type
|information for inclusion
|in Edit Comrunicaticn]|
|Area; invokes the TSO data]
|set allocation service|
| routine (IKJDAIR) to|
|allccate the Edit data set|
|identified in 'dataset|
|name'; determines whether|
|ASIS is acceptable for the|
|data set type ky checking]|
| the processor-dependent |
|information inserted in|
| the communication area by|
|the prccessor data table]
| search routine; if ASIS is|
|accertable, sets CACAPS to|
| zero; loads IKJEBEUT; |
|invckes the initial cogy|
|routine (IKJEBECO) to copy|
|the ccntents of the Edit|
| data set into the utility|
|data set; deletes IKJE-|
|BEUT; indicates that the|
|Edit nrode 1is in effect; |
|passes control to the con-|
|txcllexr routine (IKJEREMA) |
|via XCTL.

T
|
|
|
|
+
|
|
|

1 —_—
T
|
|
|
|
|
|
|
|
|
|

01

F———t———
H
O

s e e i —————, ——, =)

|cc-cT|

IKJEBEES

same function as akove.

IKJEBEUI

Same function as above.

— - —
-+

i e s s B — e — e s e ——— ——— ————, —— . T . — s e S e, e, —— s, . g, —

o e i o e . s S e i, S e, e = . = . o, T e, T e e, S o, T e, . e, S

L]
IKJEBECC |Same function as akove.
4

b —— ey ——

IKJEBEMA

1
| same function as above.
L

02

Part 5 of 7)

Section 2: Method of Ofperation 45

Table 5. Summary of Initialization Operations (Part 6 of 7)
r T
| I
| |

T
I
|
| Command or| |
| Subcommand |Operand |Keyword
4 +_

T

| Modules |

| Involved |

Keyword | in]

Value |Processing|Function Description
L

L]
None | Terminal |Same function as akove.
integerl| Monitor |
integer2| Program |
[} 4

t +

| EDIT | dataset |CLD
| name | PLI

| (fully- |
|quali- |CHARU48
| fied)

r
|
|
|
|

+
|
|
|
F 1 1
| IKJEBEIN |Builds and initializes| 01 |
| ECIT communicaticn areaj |
| (IKJEBECA); invokes PARSE| |
|TSO Service routine (IKJ-| |
| PARS) to syntax check thej |
[EDIT command; invckes the	
processor data table	
search routine (IKJEBEPS)	
to obtain data set tyrel	
information for inclusion	
lin Edit Communicaticn]	
Area; invokes the TSO datal	
set allocation service	
routine (IKJDAIR) to	
allccate the data set	
identified in ‘'data set	
nare'; determines if the	
values specified for 1left	
and right margins are	
valid, that is, the 1left	
rargin value is smaller	
than the right margin	
value, and the right mar-	
gin does not exceed the]	
data length, less the	
sequence number length;	
sets CACHARU48 in the com-	
munication area to indic-	
ate that the 48-character	
character set 1is to Dbe	
used; loads IKJEBEUT;	
invokes the initial copy	
routine (IKJERECO) tc cory	
the contents of the EJit	
data set into the wutility	
data set; deletes IKJE-	
EEUT; indicates that the	
EAit mode is in effect;	
casses control tc the con-	
troller routine (IKJEBEMA)	
jvia XCTL. | |
SR S i —"

Same function as above. | -- DH

IKJEBEPS

|
|
I
|
|
|
I
|
[
|
|
I
|
b
|
I
[
|
I
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
I
|
|
|
|
[
|
|
I
I
|
|
|

IKJEREUI |Ssame function as akove. 26 EQ

IKJEBECO

>
=
i e e s i e i e e e e e e e e e e e e e e e e e " e . s e e

IKJEREMA |Same function as akove. c2 W-

o e e e ——— e e e . o " e s T e = s T e, =t e . T e e [. . e i, . s . s, e . e, . e, . e . e]
@]
<

o e B S Y e e T e T e T e T T e, T e S e, T e s . T e, T e, " e, ", T, T e o e, S, e, e,

|
|
|
|
[
|
I
|
[
|
|
|
|
|
|
I
|
!
|
I
|
|
|
|
[
|
|
I
|
|
|
|
[
|
|
I
|
|
|
I
!
|
|
|
[
|
|
I
|
4

o e . . e e e . e . . i e . St S S . S . S . . S s . S S B S S . B G, S e, S e S e, e i . S S e, e

e A — e e = —

—-—d

|
L 4
T Ll
| |
4 4
. T T
Same function as above. | -- |AU
-t
| Ic
4 4
(

Part 6 of 7)

46 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 5.

Summary of Initializaticn Operations (Part 7 cf 7)

r T T

|Command or|
| Subcommand|Operand |Keyword

T

| Keyword

T

| Modules
| Invclved
| in

Processing |Functicn Descriptiocn
4

T
|
|
|

MO
ID

-4--
|dataset
| name
| (Eully-
|quali-
|fied)

-+___-
|oLD
| GCFORT
[scan
| NUM

=
o
-
L]

(. e (. . S o . s i . . i, S . . . S . S . S . S . S . S e, S e, S . S e, W . . S e, . e, . e, e, . . O .

|
|
|
|
|
I
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
I
|
|
|
|
|
|
|
4

o e e o o e e v e s e e . e e i i S S S e e (S . . . S . e . S S S, . ot S . D e S, G e o i i i, e S

b e e e e e ———— e e e e e e e e s e = = . T e = e e T s e T e = e = e = s e = e e

Terminal
Monitor

Same function as above.

e s e . e

-+ ——

IKJEBEIN |Euilds

|
+
|
|
| Program
t
|
|
|

and initializes]|
| EDIT Communication Area|
| (IKJERECA) ; invokes PARSE|
| TSC Service routine (IKJ-|
|PARS) to syntax check the|
| ECIT command; invokes the|
| exccessor data table|
| search routine (IKJEREPS) |
| to cktain data set typej|
|information for inclusicn|
|in the Edit Communication|
|2xea; invokes the TSO datal
| set allocation service|
| routine (IKJDAIR) to|
|allocate the data set]|
|identified in "data set|
|name"; determines if syn-|
|tax checker is availakle; |
|if syntax checker is|
Javailakle, indicates the|
| fact by setting CASCANON|
|to 1; initializes sequence|
| number starting position|
|and length with default|
| values for NUM keyword;|
| 1loads IKJEBEUT; invokes|
| the initial copy routine]
| (IKJEEECO) to ccpy thej
| contents of the EJdit datal
|set into the utility data]
| set; deletes IKJEBEUT; |
|indicates that the Edit|
|mode is in effect; passes|
|contrcl to the centroller|
| routine (IKJEBEMA) via|
|XCTL.
4

c1

(@]
0
|
¢l
(]

IKJEBEPS

}
| Same function as above.
4L

IKJEEEUI

T
|Ssame function as akove.

IKJEBECO

Same function as above.

e e e e e e —— e ————— e ——————————————— e ——

|AU-AW|
L |

——— T e T e e — e — e — e e e —— — e e e e e e e " e e

IKJEEENA

b ——— ——

-+ —
—_——— e

|Lcads the appropriate syn-
| tax checker; invokes the|
| SCAN Subcommand processor|
|to initialize it; indi-|
|cates that the Edit mode|
|is in effect by issning|

|the "ELIT" mode message. |
i 4

Section 2:

T)
|CcW-CY |
|

B U |

Method of Operation 47

Prompting User_for_ Data_Set Type

When it is necessary to prompt the user for a data set type, the
initialization routine invokes IKJPTGT to prompt the user for a data
set type. The response is passed to IKJPARS to be validated. If the
response is not a valid data set type, the prompt response buffer is
freed and the above processing is repeated until either an attention
is issued or a valid data set type is entered. If the response is
valid, the initialization routine invokes the processor data table
search routine (IKJEBEPS) to obtain the processor-dependent
information. The information returned by IKJPARS is saved so that
any subfield information associated with the data set type entered
may be later processed by the initialization routine.

Obtaining Processor-Dependent Information

The initialization routine invokes the processor data table search
routine (IKJEBEPS) via the LOAD and CALL macro instructions. IKJEBEPS
searches the processor data table (IKJEBEPD) for an entry corresponding
to the data set type, which was passed to IKJEBEPS by the initialization
routine. When a matching entry is found, the search routine returns a
pointer to the entry back to the initialization routine. The
initialization routine, in turn, moves the table entry for the data set
type into the CADSTYPE field of the EDIT Communication Area (IKJEBECA)
and deletes IKJEBEPS. If the processor-dependent information is
unavailable, the initialization routine informs the user prior to
deleting IKJEBEPS.

Termination Processing

If an unrecoverable error has occurred during EDIT program
initialization, the initialization routine issues the TCLEARQ macro to
clear the input queues, invokes the TSO stack service routine (IKJSTCK)
to delete all elements but the terminal from the input stack, deletes
the service routines, frees the storage used by the EDIT Communication
Area (IKJEBECA) and the IKJPARS PDL and returns to the Terminal Monitor
Progranm.

48 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Controller

The controller routine (IKJEBEMA) receives control from the
initialization routine (IKJEBEIN) after the operands and keywords
specified with the EDIT command have been processed. The controller
directs the operation of the EDIT program in accordance with user
specifications and requests and with conditions arising within the EDIT
program by:

e Invoking the appropriate subcommand processor, when the user enters
a subcommand.

e Handling the attention interruption (via the attention exit routine,
IKJEBEAT) , if the user depresses the ATTN key.

e Invoking the SCAN subcommand processor (IKJEBESC) to call the
language processor for initial entry and to send lines, one by one,
for translation (if the data set type is BASIC or IPLI), if the user
specified the SCAN keyword on the EDIT command.

e Providing for the updating of the reverse Polish-notated data set,
if the data set type is either BASIC or IPLI.

Note: See the topic, "Syntax Checking" for a discussion of the
reverse Polish-notated data set.

e Establishing either the Input or the Edit mode of operation,
depending upon whether the user's data set is empty or not.

e Handling message verification for all EDIT subcommands except
CHANGE.

e Handling error conditions which result in termination of the EDIT
program (via the abnormal end exit routine, IKJEBEAE).

e Returning control to the Terminal Monitor Program upon the normal
completion of END subcommand processing.

Controller Processing

This topic describes the way in which the controller routine directs the
operation of the EDIT program. The operations of the controller routine
which relate to normal subcommand processing are summarized in the
tables found in the descriptions of the subcommand processors.

Abnormal End and Attention_ Exits

The controller routine establishes the abnormal end and attention exits
by means of the STAE and STAX macro instructions. If the exits cannot
be established, the EDIT program is terminated and the controller
returns control to the TMP. See the topic, "Error and Attention
Handling" for a description of the error and attention exit routines.

SCAN Processing

If the user has specified a BASIC or IPLI data set type, the controller
loads the appropriate syntax checker into storage. The controller
invokes the SCAN subcommand processor (IKJEBESC) to initialize the
checker. If the data set type is other than BASIC or IPLI, the
controller routine determines if the appropriate syntax checker is to be
loaded by checking if CASCANON is set to 1. If it is, the controller
loads the syntax checker and invokes the SCAN subcommand processor to
initialize the syntax checker. See the topics "Syntax Checking"™ and
"SCAN Subcommand Processing" for more information about syntax checking.

3ection 2: Method of Operation 49

Establishing Mode_ of EDIT oOperation

Depending upon the organization of the data set the controller routine
checks the status of either the CAEDMEM or the CAEDDISP field in the
EDIT Communication Area (IKJEBECA) to determine if Input or Edit mode
should be entered.

The Edit mode is indicated if the data set organization is sequential
and CAEDDISP=1, or if the data set organization is partitioned and
CAEDMENM=1. The controller prompts the user to enter a subcommand by
issuing the Edit mode message thru the PUTGET service rotuine (IKJPTGT).

The Input mode is indicated if the data set organization is
sequential and CAEDDISP=0, or if the data set organization is
partitioned and CAEDMEM=0. The controller invokes the INPUT subcommand
processor (IKJEBEIP). Input received from the terminal is considered to
be data; it will be written into the utility data set with no
intervention on the part of the controller until the Edit mode is
established.

Note: The CAEDMEM field refers to partitioned data set organization,
and indicates whether the member exists or is to be created. The
CAEDDISP field refers to the disposition of the data set, i.e., the
field = 0 for new, or old and empty data sets, or the field = 1 for old
(not-empty) data sets.

Obtaining_an_EDIT_ Subcommand

After invoking the PUTGET service routine to obtain a subcommand, the
controller routine tests the return codes from PUTGET to determine what
action to take.

r T

| Condition | Action of Controller Routine
L L

r T

|Input entered from terminal; |Sets CANINPROC bit to zero;
|PUTGET return code = 0. Ivalidates subcommand. (See

| |"Validating an EDIT subcommand".)
L L

r T

|Input is from an in-storage list |Sets CAINPROC bit to one: validates
|created by a command procedure; |subcommand. (See "Validating an
|PUTGET return code = 4. |EDIT subcommand".)

L 1

) LB

|Attention interruption occurred; |Process as attention after
|PUTGET return code = 8. |subcommand termination. See the
| |topic, "Error and Attention

| |Handling".

L 1

v T

|Input could not be obtained from |Delete second-level messages and
|terminal; PUTGET return linvoke PUTGET again.

|code = 12.

1

r

|NOWAIT specified for TPUT; PUTGET |Issues message IKJ52313I
|return code = 16. land terminates EDIT progranm.
[l 1

L T

INOWAIT specified for TGET; PUTGET |Issues message IKJ52313I
|return code = 20. land terminates EDIT program.
L Il

T T

|Invalid parameters; PUTGET return |Issues message IKJd52313I

|code = 24, land terminates EDIT progranm.
| 1

-+ —

r RE
|INo main storage available; PUTGET |Issues message IKJ52312I

|]return code = 28. |land terminates EDIT progran.
L '}

e e e e e e ad - - i — o hn s — e e — —— e — e — e

50 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

If the input entered is a null line (that is, a carriage return), the
controller invokes the INPUT subcommand processor (IKJEBEIP), thereby
estaklishing the Input mode.

Validating_an_EDIT_ Subcommand

The validation of EDIT subcommands is performed in two steps: (1)
scanning the subcommand buffer by the TSO service routine, IKJSCAN, and
(2) verifying the subcommand by locating it in a subcommand takle, by
the controller routine. IKJSCAN determines that what was entered is a
valid EDIT subcommand candidate or a null line.

r T !
| Condition | Action Taken by IKJSCAN 1
| | and Controller |
L [J
r Ll]
|Question mark entered by user. |IKJSCAN sets CSOAQM (in CSOAFLG) to}
	1; since all question marks should
	have been handled by PUTGET, a
	question mark at this point is an
lerror - controller informs user	
	that an invalid subcommand was
	entered.
t + 1	
Invalid subcommand, that is, what	IKJSCAN sets CSOABAD (in CSOAFLG)
was entered by the user is not a	to 1; controller informs user that
[valid EDIT subcommand candidate. lan invalid subcommand was entered.	
L]]	
r T 1	
Empty line entered by user.	IKJSCAN sets CSOANOL (in CSOAFLG)
(An "empty" line is a line	to 1; controller processes as a
lcontaining separator characters	normal return from a subcommand
lonly).	processor. (See the following
	topic.)
: % 1	
A valid subcommand with or without]	IKJSCAN sets CSOAVWP or CSOAVNP
operands was entered by the user.	(in CSOAFLG) to 1; controller
	verifies the subcommand and sets
	CAOPERND (in IKJEBECA) to 1 if
	operands are present.
L L J

The controller verifies that the valid subcommand entered by the user is
a valid EDIT subcommand by checking the IBM-supplied table of
subcommands and the user-specified table of subcommands. The subcommand

tables are defined as (IKJEBMA 8,9) CSECTs of the EDIT controller load
module (IKJEBEMA) .

Subcommand found in subcommand
table.

Invokes appropriate subcommand
processor. (See next topic.)

b —— 4 — 4

r 1 !
| Condition | Action Taken by Controller |
1 1 i
L 3 T 1
|Subcommand cannot be found in IBM |Informs user that subcommand is |
|lor user subcommand table. |invalid by issuing message |
|]IKJ523661. l
L 4
r 1
|An empty line was entered by user.|Prompts user for new subcommand. |
L 1
] 1
| |
| |
L J

Invoking an EDIT Subcommand

The controller routine invokes an EDIT subcommand processor to perform
the function requested by the user. The controller invokes the
subcommand processor via the LINK macro instruction and checks the
return code when the subcommand processor relinquishes control.

Section 2: Method of Operation 51

Condition Action Taken by Controller

L}
|
L.
L)

l|and invokes the SCAN subcommand
|processor (IKJEBESC); if syntax
|checker recovery is in progress and|
lhas failed, indicates that syntax |
|checker clean-up is to be performed|
|by setting CASCRC20 to 0 and |
linvokes IKJEBESC.
L

T 1
| |
+ 1
| Successful completion of |0btains the next subcommand from
|subcommand processing; subkcommand |the current source of input. |
|return code = 0. | |
L [1
r 1 1
|Return code of 4 returned by |Invokes the INPUT subcommand |
|INSERT subcommand processor |processor (IKJEBEIP) to establish
| (IKJEBEIS) . Ithe Input mode. |
L 1 4
r T 1
|Subcommand termination errors | Issues TCLEARQ macro for input if |
| (subcommand return code 8) or |the current source of input is the |
linvalid subcommand. |terminal; obtains another |
| |subcommand. Starts error |
| | termination of EDIT program, if |
| |current source of input is an |
| |in-storage procedure. |
t + |
|Permanent I/0 error in utility |Terminates the EDIT program. |
|data set; subcommand return | |
|code = 12. | |
|Syntax checker cannot be |If syntax checker recovery is not |
|initialized; subcommand return |in progress, indicates that]
|code = 16. |cecovery should be attempted by |
|setting CASCRC20 (in CACFLAGU4) to 1]
|
|

(o ———— — —— —

|
]

Handling_an_Attention Interrupt

Whenever the return code from a subcommand processor indicates that a
new subcommand is to be obtained, that is, the subcommand processor has
finished its operation, the controller routine determines if an
attention interrupt has occurred during subcommand processing. If an
attention interrupt has occurred, the attention exit routine (IKJEBEAT)
has updated the CAPTIBFR field of the EDIT Communication Area (IKJEBECA)
to point to the attention kuffer. The controller deletes any queued
second-level messages and obtains the subcommand which is in the
attention buffer. See the topic, "Error and Attention Handling" for a
description of the attention exit routine.

Verify Message Handling

The verify message is a display of the line number and record pointed to
by the current line pointer after the value of the current line pointer
has been changed. The user, by means of the VERIFY subcommand, -
indicates that he wants a display of the record pointed to by the
current line pointer if the value of the current line pointer is
changed; the subcommand processor updates CALNTOVF (in CACFLAG1) to
indicate that the value of the current line pointer has changed during
operation of the subcommand and stores current line beginning at
CATEMPBF+12. The controller routine determines if the user wants a
verify message and whether a verify message is warranted. If a verify
message is to be displayed, the controller invokes the message selection
service routine (IKJEBENS).

52 EDIT TSO Command Processor PLM - Vol., 3 (Release 21)

Termination_Processing

The controller routine terminates the EDIT program when an unrecoverable
error has occurred in the EDIT program by:

e Deleting the Input Stack (via the STACK service routine).

e Clearing the input queues (via the TCLEARQ macro).

e Invoking the END subcommand processor at entry point IKJEBEXT to
free system resources used by EDIT.

When the END subcommand processor returns control, the controller frees
the storage used by the EDIT Communication Area (IKJEBECA) and returns
to the Terminal Monitor Program with return code 12. The communication
area is not freed subsequent to an abnormal end (ABEND). This allows
proper closing of any open data sets allocated to EDIT.

Error and Attention Handling

The abnormal end exit routine (IKJEBEAE) intercepts Abend conditions
occurring at the EDIT program (task) level. The attention exit routine
(IKJEBEAT) handles attention interrupts.

Abnormal End Exit Routine

The abnormal end exit routine:

Stops automatic line prompting.

Frees PARSE PDL and input buffer storage.
Issues diagnostic message IKJ52422T,
Requests scheduling of a retry routine.

e & o O

The ABEND completion code is placed in the ECT (ECTRTCD) and the
Abend-in-progress flag (the high-order but of EDTRCDF in ECT) is set to
1. IKJEBEAE issues the SPAUTOPT macro to stop automatic line prompting.
If EDIT has obtained an input buffer and PARSE PDL storage through a
GETMAIN macro instruction, the storage is returned to the system. The
abnormal end exit routine then invokes the message selection service
routine (IKJEBEMS) to display a two-level message containing the Abend
completion code which has been converted into printable hexadecimal.
After the message has been displayed, the abnormal end exit routine
returns to the caller with the address of the STAE retry routine
(CAPTRTRY) in register 0 and a return code of 4 in register 15. If the
ECTATRM bit (in the ECT) is set to 1, no message is issued and the retry
routine is bypassed, as indicated by a return code of zero to the
STAE/ABEND interface routine. Method of Operation Diagram 3 (foldout)
shows the relationship between the EDIT program and STAE/STAI
processing.

Attention Exit_Routine

The attention exit routine receives control after the user has caused an
attention interrupt and has entered a line of input. Upon receiving
control, the attention exit routine issues the STATUS STOP macro
instruction to stop any dispatchable subtasks that the EDIT program has
attached. It then examines the input line by invoking the IKJSCAN
service routine.

Section 2: Method of Operation 53

T
Condition |Action Taken by the Attention Exit
1

—t —

+

User entered a null line. | Re-starts dispatchable subtasks and|
|returns control to the TIOC routinej]
|which invoked the attention exit
| routine.
L
L]

User entered a "?2", |Invokes the PUTLINE service routine
| (IKJPUTL) to display any queued
| second-level messages and the Edit
| node message; invokes the GETLINE
|service routine (IKJGETL) to obtain
la new line from the terminal.
4
1

User entered neither a null line |Treats the input line as a

nor a "?2", |subcommand; issues POST for the
lattention ECB (CAATTN) ; invokes the
| LANGPRCR module via LINK if BASIC
lor IPLI language processing is in
|effect; issues the STATUS macro to
|restart dispatchable subtasks;
|returns control to the systen.
| (See the topic, "Handling an
|Attention Interrupt" in the

|discussion of the "Controller".)
4

(o o e - — . —— —— — — o —— —————)
e e e o ———— — e —— —— e e ——

See Method of Operation Diagram 4 (foldout) for a description of the
operation of the attention exit routine.

EDIT Service Routines

The EDIT service routines perform certain operations required by various
modules of the EDIT program. These service routines and the functions
they perform are:

e TKJEBECI (Command Invoker) - This routine invokes the TSO command
processors for the FORMAT, HELP, MERGE, PROFILE, and RUN subcommands
of EDIT. It also invokes any TSO command processors placed in the
input stack by the TSO RUN command.

e IKJEBECO (Initial Copy) - This routine writes the contents of the
Edit data set or an intermediate utility data set into the utility
data set.

e IKJEBEDA (Data Set Allocation/Free) - This routine generates a
dsname and allocates a data set for a requesting routine by invoking
the dynamic allocation service routine (IKJDAIR); when requested,
IKJEBEDA frees the data set by invoking IKJDAIR.

e IKJEBEFC (Final Copy) - This routine writes the contents of the
utility data set into the Edit data set, the Run data set, the Merge
data set, the Format data set, or the Save data set.

e IKJEBELE (Line Edit) - This routine converts lower-case characters
to upper-case, translates tabulation characters to the required
number of blanks and formats data into records.

e IMJEBEMR (Translation) - This routine calls the BASIC or IPLI

language processor to delete an old reverse Polish-notated data set
and builds a new reverse Polish-notated data set.

54 EDIT TSO Ccommand Processor PLM - Vol. 3 (Release 21)

e IKJEBEMS (Message Selection) - This routine selects EDIT progranm
messages requested by EDIT modules and writes them out by invoking
the PUTLINE service routine (IKJPUTL).

e IKJEBEPS (Processor Data Table Search) - This routine searches the
processor data table (IKJEBEPD) to obtain data set type attributes.

e IKJEBERN (BASIC Renumbering) - Renumbers BASIC data sets and changes
line numbers which appear within the records.

e IKJEBESE (String Search) - This routine scans records for a

particular character string and returns a pointer to found text to
the calling module.

Invoking TSO Commands_ (IKJEBECI)

This routine invokes the following TSO command equivalents of the EDIT
subcommands; FORMAT (a Program Product), HELP, MERGE (a Program
Product) , PROFILE, and RUN. While operating under RUN, the command
invoker also invokes the compiler associated with the data set type, and
the loader to execute the user's problem progranm.

The command invoker receives as input a pointer to a parameter list
containing a pointer to the EDIT Communication Area and a pointer to a
buffer in which the caller has placed the model command. The command
invoker builds a parameter list (shown in Figure 10) and passes control
to the specified TSO command by issuing the ATTACH macro instruction
with the STAI exit option.

Parameter List Command Buffer

RUN Dataset Name «sevees j

Reg 1 T User Profile Table

T Protected Step Control Block

Model Command
15WMmmmmmH®h Command Built by the RUN Subcommand
Processor (IKJEBERU),

Figure 10. IKJEBECI Output Parameter List

If the subtask ends abnormally, control is passed to the command invoker
STAI exit. The command invoker terminates the subtask by issuing the
DETACH macro instruction, informs the user that the subcommand has ended
abnormally, and returns control with return code of 8 in register 15.
The command invoker invokes the TSO data set allocation/free service
routine (IKJDAIR) to mark any data sets allocated by the subtask as not
in use and issues the DETACH macro instruction to terminate the subtask.
The command invoker then returns control with a zero return code, if
there is no error.

If the subtask returning normally to the command invoker is the TSO
RUN command, the command invoker reads the in-storage commands built by
RUN. The command invoker, through a series of ATTACH macro
instructions, invokes those programs specified by RUN to compile, load
and execute the user's program. If RUN ends normally, the command
invoker terminates the subtask by issuing the DETACH macro instruction
and invokes IKJDAIR to mark any allocated data sets as not in use. If a
subtask completes abnormally, prior to returning control to its caller
the command invoker invokes the TSO STACK service routine (IKJSTCK) to
delete the pointer to the in-storage command list.

Section 2: Method of Operation 55

Initial Copying_ (IKJEBECO)

This routine is used whenever a utility data set must be created from an
old, existing data set or member of a partitioned data set which may be
accessed by QSAM. The initial copy routine reads the QSAM-formatted data
set and transforms the format of the records into the format used by the
EDIT Access Method. It then writes the records into the utility data set
using either the line number (if the data set is line numbered) or a
generated number (if the data set is not line numbered) as the key.

The initial copy routine receives a pointer to the EDIT communication
area, which contains the fully-qualified name and the ddname of the data
set from which the records are to be copied. The initial copy routine
initializes a DCB for the QSAM data set and opens the data set. If the
data set is successfully opened, the first read flag (CORDFLAG in the
EDIT communication area) is set to 1. The initial copy routine then
invokes the Access Method initialization routine (IKJEBEUI) to allocate
the utility data set and to initialize the EDIT Access Method. If the
Access Method initialization completes normally, the initial copy
routine selects the appropriate utility data set record format
(fixed-length, numbered or unnumbered, or variable-length, numbered or
unnumbered) to be used. The initial copy routine issues a GET macro
instruction for each record in the QSAM-formatted data set and changes
the record format to that used by the Access Method. After the record's
format has been changed, the initial copy routine invokes the Access
Method interface routine (IKJEBEUT) to write the record into the utility
data set. When all the records from the old QSAM data set have been
written into the utility data set, the initial copy routine closes the
QSAM data set and returns control to the caller.

Allocating_and Freeing Data_Sets (IKJEBEDA)

The data set allocating/freeing routine receives control from the FORMAT
subcommand processor (IKJEBEFO), the RUN subcommand processor
(IKJEBERU), or the MERGE subcommand processor (IKJEBEME) with a pointer
to the Communication Area which contains the CASAFLAG field and the name
of the subcommand. The CASAFLAG field is set to X'00' if allocation of
a new data set is desired, to X'12' for freeing of an allocated data
set, to X'10' for marking a DSE not in use, to X'02' for allocation of
an old data set. For allocation of a new data set, the allocation
routine (IKJEBEDA) builds a DSNAME in the form:
'USERID.SUBCOMMANDNAME.Dyyddd.Tttttttt .DESCRIPTIVEQUALIFIER'.

USERID is a 1- to 7-byte qualifier obtained from the Protected Step
Control Block (PSCB). SUBCOMMANDNAME (the name of the subcommand which
invoked IKJEBEDA) is obtained from the Communication Area. Dyyddd (a
6-byte qualifier) is the date obtained when IKJEBEDA issues the TIME
macro instruction. Tttttttt (an 8-byte qualifier) is the time obtained
when IKJEBEDA issues the TIME macro instruction. DESCRIPTIVE CUALIFIER
is obtained from the Processor Data Table.

After the DSNAME is built, IKJEBEDA inserts it into the DADSN8 field,
which is pointed to by an entry in the DAIR parameter block, and invokes
the TSO data set allocation service routine (IKJDAIR). IKJDAIR
allocates the data set with a disposition of NEW, DELETE, DELETE, or
NEW, CATLG, DELETE for the MERGE subcommand. (The first term of the
disposition refers to the status of the data set. The second ternm
refers to the disposition of the data set after its use. The third ternm
refers to the disposition of the data set if the job step abnormally
terminates.) If the allocation is successful, IKJEBEDA saves the
DDNAME, DSNAME and length in the Communication Area, sets a return code
of 0 in register 15, and returns control to the caller. If the
allocation is unsuccessful, IKJEBEDA issues a message to the terminal
via the message selection routine (IKJEBEMS) and returns control to the
caller with a return code of 8 in register 15.

56 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

IKJEBEDA also frees an existing data set for the RUN, FORMAT, or
MERGE subcommand processor by invoking IKJDAIR; IKJDAIR frees the data
set with a disposition of DELETE. If IKJDAIR is successful, IKJEBEDA
returns a code of 0 and control returns to the caller; if IKJDAIR is
unsuccessful, IKJEBEDA issues a message and returns control to the
caller with a return code of 8.

"SECTION 5: DATA AREAS" contains the format of the parameters passed to
IKJDAIR.

Final Copying (IKJEBEFC)

This routine is used whenever the data being edited is to be used or
processed outside of the EDIT program. The data being edited is
contained on the utility data set in a record format which is unique to
EDIT. In order for the data to be usable outside of EDIT, its record
format is changed to QSAM format. The re-formatted records are then
written into a QSAM- format data set which has been allocated Ly the
caller of this routine.

The final copy routine determines the name of the data set into which
records from the utility data set are to be written, initializes a DCB
for the data set, and opens the data set for QSAM output. The final
copy routine invokes the Access lMethod interface routine (IKJEBEUT) to
read the records one at a time from the utility data set into storage.
After each record is read into storage, its format is changed from that
used in the utility data set to QSAM format. After it is re-formatted,
the record is written into the QSAM data set by the final copy routine.
When all the records of the utility data set have been written, the
final copy routine closes the QSAM data set and returns control to the
caller.

Line Editing_ (IKJEBELE)

The line edit routine receives a pointer to the two-word parameter list
(shown in Figure 11) as input.

Reg 1 Parameter List

-1 Code T Text to be Edited

T EDIT Comm Area

Code: X'00' Text is not a Delimited String.
X'80' Text is a Delimited String.

Figure 11. IKJEBELE Input Parameter List

If CAPS were specified on the EDIT command (CACAPS in the
Communication area is set to one), the line edit routine converts the
text to upper case characters. If the text is not a delimited string
and if tabulation settings are in effect (CATABS in the Communication
Area is set to X'FF') the line edit routine inserts the required number
of blanks and formats the text line accordingly. If text overflow
occurs, a pointer to the superfluous text is placed in the first word of
the parameter list which is returned to the caller.

If the text is a delimited string or if tabulation settings are not
in effect (CATABS is set to X'00'), the line edit routine changes each
tabulation character in the text line to a single blank. If the text is
not a delimited string, the data is formatted into a record for the EDIT
Access Method.

Section 2: Method of Operation 57

When the text has been edited the line edit routine returns control
to the caller with either a 0 or a 4 in register 15. Both return codes
indicate a successful line editing operation. A return code of 4 also
indicates that an overflow has occurred and that word 1 of the parameter
list points to the overflow text.

Translating_ (IKJEBEMR)

After a successful renumber or merge operation, the reverse

Polish-notated data set (an in-storage equivalent of the utility data
set which is needed for BASIC or IPLI) must be updated to reflect the
changes in the utility data set. IKJEBEMR accomplishes this updating
(or translating) by invoking the syntax checker for BASIC and IPLI to
delete the 0ld reverse Polish-notated data set and to build a new one.

Upon receiving control from either the RENUM subcommand processor
(IKJEBERE) or the MERGE subcommand processor (IKJEBEME), the translating
routine invokes the BASIC and IPLI syntax checker to delete the old
reverse Polish-notated data set. When the syntax checker returns
control, the translating routine invokes the Access Method interface
routine (IKJEBEUT) to read each record of the utility data set. The
syntax checker is then called to build a new reverse Polish-notated data
set using the records from the utility data set as input. After the
syntax checker has built the new in-storage data set, it returns control
to the translating routine. The translating routine returns control to
its caller. See the topic: Syntax Checking for a discussion of the
parameters passed by the translating routine to the BASIC and IPLI
syntax checker,

Selecting EDIT Messages (IKJEBEMS)

This routine selects an EDIT message (a first-level message,
second-level message or current line display) requested by an EDIT
module and invokes the TSO PUTLINE service routine (IKJPUTL) to write
the message to the terminal. The input to the message selection routine
is shown in Figure 12.

IKJEBECA Parameter List
Message First - Second -
Reg 0 CACFLAGY Reg 1 Module Level Level
’ Indicator Rel Msg Rel Msg

f First Insertion Text List for First -
Level Message, or, 4 Buffer
CATPUTVE Bit Containing Verify Message, or 0

On: Verify Message
(Record with Key =
Current Line Pointer
Valve to be Displayed) e T U

] of: Single or Multi-
Level Message,
Indicated by Caller,
to be Displayed.

1' First Insertion Text List for
Second - Level Message, or 0

Verify Buffer (If Current Record is to be Displayed)

Reserved for Binary Key of 22 | oo Text (Line
Format Operations Record Number Optional)

12 4 2 2 Variable Length
I (255-Byte Maximum)
Record Length + One Word

Figure 12. IKJEBEMS Input Parameters

58 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

EDIT messages are contained in the message modules IKJEBEM1 thru
IKJEBEM7. The messages are arranged in message number sequence with
second-level messages immediately following the associated first-level
message. Text to be inserted into an EDIT message is generated by the
module requesting message output. The text is passed to the message
selection routine in an insertion list. (See Figure 13.)

Insertion Text List for
First- or Second - Level Messages

Second or Third Word of . .
IKJEBEMS Input Parameter List T Next Insertion List, or 0

Length of Text Offset of Text
+ One Word into Basic Message

Insertion Text (Variable Length) /{

Figure 13. Format of Insertion Lists Passed to IKJEBEMNS

The relationship of insertion text to the basic message is in the
form: IKJ52303I DATA SET xxxxxx NOT ALLOCATED, REQUIRED VOLUME NOT
MOUNTED where: xxxxxx is the insertion text to be supplied by the
requesting module, and DATA SET ... NOT MOUNTED is the basic message.

First-and second-level messages are arranged in relative message
number sequence in message modules. Figure 14 shows the format of a

message module and the way in which a particular message is requested by

the message selection input parameter list.

Parameter
List Message Module

T First Relative Message

W/_,_/W“‘/M T Second Relative Message

T Second - Level Message, or 0

Vs — (O()ffsie’r'f a
Length of Basic Msg Text > Bos,ic Msg)

+ One Word
Basic Message ;

Figure 14. Message Module Format and Message Selection

When the message selection routine receives control, it determines if a
verify message or contents of the record pointed to by the current line
pointer is to bhe displayed. If a verify message is to be displayed, the
CATPUTVF bit in CACFLAGYH in the EDIT Communication Area has a value of 1

and the second word of the parameter list points to a verify buffer
containing the current record and line number, if the data set is
line-numbered.

The message selection routine formats the line and invokes the
PUTLINE service routine to write the verify message to the terminal.
(Figure 14 is a description of the message selection routine output
parameter list.)

Section 2: Method of Operation

59

If a verify message is not to be displayed (CATPUTVF has a value of
0) , the input parameter list indicates which message is to be displayed
and points to insertion text, if there is any. The message selection
routine loads the message module containing the requested message into
storage, finds the message, and formats the output parameter list. When
the output parameter list has been formatted, the message selection
routine invokes the PUTLINE service routine to write the requested
message to the terminal. (See Figure 15 for a description of the
message selection output parameter list.)

Reg | First=Level Output
Putline Parameter Block Descriptor
t Second - Level ~N
Putline Parameter List
If Multi-Level
L, Output Message Output Number of Segments
0
0
Parm Block
If Single - Level Message Output Second-Level Output
Single - Level Parameter List Descriptor
Number of Segments Number of Segments
t Basic Msg r Basic Msg
If Verify Message t First Insertion T First Insertion
r Second Insertion t Second Insertion
. Note: Segments = Message Parts; A Message Having
Verify Buffer No Inserted Text Comprises 1 Segment ; A
Message Having Two Text Insertions Comprises
£ | oo Text (Formated) / 3 Segments.

Figure 15. IKJEBEMS Output Parameter List

When the PUTLINE service routine completes its operation, the message
selection routine returns control to the caller. SECTION 5: _Data_ Areas
contains the format of the PUTLINE Parameter List and the PUTLINE
Parameter Block.

Processor_Data Table Searching (IKJEBEPS)

The processor data table search routine receives the address of a data
set type keyword or the complemented address of a data set name
qualifier as input in register 1. It compares the input with the first
or second 8-byte field, respectively, in each table entry of the
processor data table (IKJEBEPD). The search routine returns control and
the address of the table entry, if it is found, to the caller. SECTION
5:__DATA_AREAS contains the format and the associated data set type
values of the processor data table.

60 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

BASIC Renumbering_ (IKJEBERN)

This routine renumbers statements within a BASIC data set. When this
routine receives control, Register 1 points to a two-word parameter
list, that has the following format:

Word 1 - pointer to the EDIT Communication Area (IKJEBECA).
Word 2 - pointer to a three-word parameter list, that has the following
format:

Word 1 - o0ld line number at which to begin renumbering.
Word 2 - new line number.
Word 3 - increment.

Starting at the given 0ld line number, IKJEBERN constructs a table of
0ld and corresponding new line numbers for the entire data set. Then,
starting at the line number specified, IKJEBERN renumbers each record
and changes all references to line numbers within the records to the
corresponding new numbers.

String_Searching (IKJEBESE)

The string search routine receives a pointer to the five-word parameter
list (shown in Figure 16) as input.

Parameter List

1 DCB (in IKJEBECA) Word 1
Offset Text Length Word 2
Reg 1
} Specified String Word 3
T Buffer Word 4
/ Word 5

First Line Number or = 1

Last Line Number or Count,

Figure 16. IKJEBESE Input Parameter List

If the data set type is not TEXT, the string search routine invokes
the Access Method interface routine (IKJEBEUT) to read each record of
the utility data set beginning with the record after the one pointed to
by the current line pointer; the first record to be searched has been
placed in the buffer by the calling routine. The string search routine
then begins its search at the offset into the first record read (a
number of characters from the beginning of the record) specified. If
the string is not found, the next record is searched, and each
succeeding record, until the end of the data set on the end of line
range is reached. If the end of the data set is reached and the string
has not been found, the string search routine informs the caller via a
return code. If the string is found, the record which contains it is
placed left-aligned in the buffer (pointed to by word 4 of the parameter
list), and a return code of 0 is set.

Section 2: Method of Operation 61

If the data set type is TEXT, the string search routine, in addition
to searching a single record at a time, also searches for the specified
character string across two records. If the string is found across two
records, a return code of 4 is set.

The string search routine places the second record (containing the
final portion of the string into the buffer at the midpoint. When the
specified string has been found, or when the data set has been exhausted
of records, the string search routine returns control to its caller.

BOTTOM Subcommand Processing
The BOTTOM subcommand positions the current line pointer to the end of
the utility data set.

The BOTTOM subcommand processor:

e Reads the last record in the utility data set.

e Sets the current line pointer to the value of the key of the last
record.

e Returns control to the controller routine.

BOTTOM Processing

This topic describes the way in which the BOTTOM subcommand processor
operates. Table 6, which follows this topic, summarizes the operation
of the BOTTOM subcommand processor. Upon receipt of the BOTTONM
subcommand, the controller routine (IKJEBEMA) calls the command scan
routine (IKJSCAN) to validate the subcommand. If the syntax is valid,
IKJEBEMA invokes the BOTTOM subcommand processor (IKJEBEBO). IKJEBEBO
calls the interface routine for the EDIT Access Method (IKJEREUT) to
read the last record in the data set. (Reading of the last record of
the data set is indicated by X'05' in the option code byte of the
parameter list passed to IKJEBEUT.) IKJEBEUT branches to the read
operation routine (IKJEBERR) which uses the record locate routine
(IKJEBELO) to find the last record of the data set. If the data set is
empty, indicated by a return code of 4 from IKJEEEUT, message number
IKJ52501I is selected by the message selection routine (IKJEEEMNS) and
put out by IKJPUTI. IKJEBEBO sets the current line pointer to zero. If
the data set is not empty (IKJEBEUT return code = 0), IKJEBEBO sets the
current line pointer to the key of the final record, turns the "line to
be verified switch" on, and returns control to IKJEBEHNA.

62 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table

e e s B

6.

Summary of BOTTCM Cperations

Subcommand

-T
|

|
Keyword |
Value

Operand |Keyword

Modules
Involved
in

Processing

Functional Description

g

BOTTOM

z
o
3
[}

None

=z
o
=]
(]

- e o —

IKJEBENA

-+ —— e

| Receives c2
| command
| subccnrand

| (IKJEBEBO) .
4

subcomrand from|
buffer; invokes|
processor|

Q am

Sl HEE

L1opo
R
ot

Q
<

IKJEBEUT

|
L
T
| 27

+
|Acts as interface to IKJE-
| BEAA which 1locates the|
|final record; passes key|
|of final record to|
| IKJEBEEO. |
1

o e e i e e e e e e e e o e . . . e S s s
o e e s e e e e . e e e o i, e . s, . .]
e ——— e e e e — -

o e T e e — T e ———

IKJEBEBO

4
T T
|Invokes the Access Method| 05
|to read the last record of|
{the data set; sets the|
|current 1line ©pcinter toj
|the final record in the|

|data set. |
i 4

=
L |

b e o i e e e e e e s e e o e e o s e
e e e e e i s e e e e R — s e i — s e =

Section 2:

Method of Operation

63

CHANGE Subcommand Processing

The CHANGE subcommand modifies a sequence of characters (a
character-string) in a record or a range of records in the utility data
set. IKJEBECH is the first load module of three load modules which
process the CHANGE subcommand. IKJEBECH establishes program
addressability and then calls IKJEBEUT to read the first record in the
EDIT data set that has been specified bty the user. If no character
string has been specified as an operand of the CHANGE subcommand,
IKJEBECH will issue appropriate messages until the user enters valid
operands. If operands are specified (CAOPERND IN IKJEBECA is set to
one) IKJEBECH calls IKJPARS to validate the operands. Upon return from
IKJPARS, IKJEBECH analyzes the operands to determine where the change
operation is to start, at a specified line number or at the current line
pointer. The line count, i.e., number of records to be changed, is
interpreted. Depending upon what operands the user specifies, the
CHANGE subcommand processor replaces the first reference to the o0ld
string of data with a new string in

e One record, if a line number or * were specified as an ofperand.

e A range of records, if two line numbers or * line count were
specified as operands.

Additionally, the CHANGE subcommand processor provides for subsequent

data insertion at a specified offset in a record if the user has
specified a character count or one string of data as an operand.

Interpreting Operand Combinations

The CHANGE subcommand processor interprets the combinations of operands
the user can enter as follows: If * is specified with no numerical
operands, IKJEBECH defaults the line count value to 1. If * is
specified with one numerical operand, IKJEBECH assumes the operand is a
character count and converts it to binary. If * is specified with more
than one numerical operand, IKJEBECH converts both to binary and assumes
the first numerical operand is a line count and the second is a
character count. If only a single numerical operand is specified,
IKJEBECH assumes it is a character count and defaults the line count
value to 1. If a beginning line number has been specified, IKJEBECH
converts it to binary. If two numerical operands are specified,
IKJEBECH assumes the first operand is a line number and the second
operand is a character count. If two numerical operands and a third
operand are specified, IKJEBECH assumes the first operand to be a first
line number and the second operand to ke a second line number and
executes a character count validity checking routine. IKJEBECH assunes
the third operand is a character count and converts it to binary.

After the CHANGE subcommand processor (IKJEBECH) has finished
analyzing the operands, it calls IKJEBEUT to read the first specified
record. If the specified record is not found but a range of records has
been specified, IKJEBECH calls IKJEBEUT again to read the next record
within the range. Processing continues as outlined in the section,
Processing CHANGE_Operands.

After the string has been changed, the CHANGE subcommand frocessor:

e Sets the current line pointer to the value of the key of the last
record changed.

e Returns control to the controller routine.

64 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Processing_CHANGE_Operands

This topic describes the ways in which the CHANGE subcommand processor
operates when various operands are specified. Table 7, which follows
this topic, summarizes the operations of the CHANGE subcommand
processor.

String Data_Specified

If string data is specified IKJEBECH invokes another load module of the
CHANGE subcommand processor. IKJEBECG first calls the line editing
routine IKJEBELE to translate tabulation characters to blanks and the
specified string to upper case, if necessary. If only 'string 1' has
been specified, another of the three load modules (IKJEBECN) that
process the CHANGE subcommand is invoked. If both string 1 and string 2
have been specified and "string 1" is null, the user has requested an
insertion operation and the offset at which the change is to occur is
set to position 1. The IKJEBECG manipulates the string data as follows:

e TIf the offset at which the change is to occur is not position one,
the data line up to, but not including, the specified offset is
moved into a temporary buffer to be saved.

e If 'string 2' is not null, it is the replacement or insertion data
and is moved into the temporary buffer next.

e If there is data remaining after the change has been entered, it is
moved into the temporary buffer.

IKJEBECG calculates the new length of the data and then moves the new
line back into the main buffer. IKJEBECG then calls IKJEBELE to line
edit the data into a record. When IKJEBELE returns the record to
IKJEBECG, IKJEBEUT is called to write the record into the data set. If
line overflow occurs and the data set type is not NONUM TEXT (CANONUM
bit is set to 0 or CADSCODE field is not set to CATEXT), IKJEBECG
truncates the line and notifies the user. If line overflow occurs and
the data set type is NOMUM TEXT (CANONUM bit is set to 1 and CADSCODE
field is set to CATEXT). IKJEBECG calls IKJEBELE to line edit the
overflow into a record. When the record is returned, IKJEBECG invokes
IKJEBEUT to write the record into the EDIT data set with an overflow
key. If the data set type is BASIC or IPLI (CADSCODE field is set
either to CABASIC or to CAIPLI) and the processor is in the systen
(CAPCHK field is not set to zero), IKJEBECG updates the reverse Polish
data set. The ITF entry code for input or replacement (CASXNCL2 field
is set to B'10000') for updating the data set. If the verification is
specified (CAVRFYSW bit is set to 1), the changed line and its overflow
lines, if any, are passed to IKJEBEMS (the message output routine).
IKJEBECG continues processing until all specified records have been
changed. It then sets the current line pointer to the last line changed
or its last overflow line if one exists. IKJEBECG returns control to
IKJEBEMA.

Section 2: Method of Operation 65

Character Count Specified

If a character count operation has been specified, IKJEBECN calls
IKJPUTL to print out each record until the character count is reached or
up to the string specified. After each record is printed, IKJEBECN
calls IKJGETL to obtain the user's changes for the line from the
terminal. IKJEBECN forms a new revised line by joining the IKJPUTL and
IKJGETL buffers. It invokes IKJEBELE to format the revised line as a
record. If line overflow occurs and the data set type is not NOMUM TEXT
(CANONUM bit is set to 0 or CASCODE field is not set to CATEXT),
IKJEBECN truncates the line and notifies the user. If line overflow
occurs and the data set type is NONUM TEXT (CANONUM bit is set to 1 and
CASCODE field is set to CATEXT), IKJEBECN calls IKJEBELE to line edit
the overflow into a record. When the record is returned, IKJEEBECN
invokes IKJEBEUT to write the record into the EDIT data set with an
overflow key. If the data set type is BASIC or IPLI (CASCODE field is
set either to CABASIC or CAIPLI) and the processor is in the systenm
(CAPTCHK field is not set to zero), IKJEBECN updates the reverse Polish
data set, The ITF entry code for input or replacement (CASYNCD2 field
is set to B'10000') for updating the data set. IKJEBECN continues
processing until all specified records have been changed. It then sets
the current line pointer to the last line changed or its last overflow
line if one exists. IKJEBECN returns control to IKJEBEMA.

66 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 7. Summary of CHANGE Cperations (Part 1 of 2)

--------- T T - T
| | | | Modules |
|

r
|
| | | | Invclved |
|
|

——————-— [P [S S ———

|Keyword | in |
Subcommand|Cperand |Keyword|Value |Processing |Cescrigtion
............ -4 4 R S 4 _— ————
CHANGE | l1innuml |ALL | None | IKJEBEMA |Receives subcommand from
|1innum?2 | | |corrand buffer; invokes
|stringl | | | subcommand processor
| string?2 | | (IKJEEECH) .
1

L
r
|

AM-—u—-nr-u—_n—4

|

]

]

]
.__n_—"f_"__“_4

]

|

]

|

4
IKJEBECH |Invokes the Access Method| 06 |
	te read records specified	
	as operands.	
	Issues an XCTL macro toj	
	call TIKJEBECG, the 1load	
	rcdule which processes	[
	string data.	
e t		
IKJEEECC	Calls IKJERELE to 1line	C6
edit string 1 and string]		
2.		
Calls TIKJEBESE +tc search		
for string 1 in line numb-		
er range specified. forms]		
the new line.		
Calls IKJEBELE to line		
ledit the data and any		
overflow into record		
forrat.		

| Invokes IKJEREUT to write
| the record into the data
| set.

4

B e e ———

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
- _ 4 _—
| CHANGE | linnuml IKJEBEMA |Receives subcommand from
| |corrand buffer; invokes
| | subcommand processor
|

|

|

|

|

|

|

|

|

|

|

|

)

|

|

|

I

|

|

|

|

b

|

|

|

|

|

L

| (IKJEEECH) .
1

None None

——— e ——————— — e ——

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
,IT.
|
|count2 |
| (char- |
|acter |
| count) |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

4

|
]
F +
| IKJEBECH |Invokes thes Access Method
|to read the record sreci-
| fied as an operand.
|
|Issues an XCTL macro to]
|call IKJERECN, the 1load|
| module which processes|
|character count.
4

— e e o s e e e e e

L
]
[}

} -
IKJEBECN |Calls IKJPUTL to print out| 06
|the sgecified record at|
| the terminal wuntil the|
|specified character count|
| is reached. |

|

|

|

|

|

| | |
| Invokes IKJGETL to obtain| |
|

|

|

|

|

|

|

|

|the user's data changes|
| from the terminal.
| |
| Forms a new line and calls|
| IKJEEELE to edit it. |
|
| Invckes IKJEREUT to writej|
| the record into the datal
| set. | |
4 4 N SIS |

(Part 1 of 2)

I oo e e e e e e e e e i~ e e k. e e e e e e e e e e

P o e e e — e e e e —— ——— e —————
e e s e T e S s e T e T e S e " e S s

Section 2: Method of Operation 67

Table 7.

Summary of CHANGE Cperations (Part 2 of 2)

T
|
|
|

ubcommand |
4
L

T

T
|
| Reyword

Operand |Keyword|Value
. 4 1

T
| Modules

in

Involved |-

Processing|Functional Description
1

T
|
|

MO
ID

eI

o o o e . S e . . S . i sy S, T e, T (e, S e . e . s S, o s, o e, . W] e, S e S

HANGE

$
| *

| (current | None
|line |

| pointer) |

| stringl

|
l
I
|
|
|
|
|
|
I
|
|
|
I
|
I
|
|
|
I
|
I
|
|
|
I
I
4

S —

4
o]
=]
o

e e e ———— e —————————————— ———————

IKJEBEMA

—— e —— —

T

| Receives subcommand from
|corrand buffer; invokes
| subcommand processor,

| (IKJEEECH) .

4

02

r
| IKJEBECH

B et i |

T
|Invokes the Access Method|
|tc read record srecified|
|as operand (record pointed|
|te ky current linej
| pointer). |
|
| Issues an XCTL macro toj
{call IKJEBRECG, the 1load|
| module which processes|
|string data.
4

06

l
r
| IKJEBECG

T

| Invokes IKJEBELE to tabul-
|ate characters and transl-
|ate them to upper case if
| necessary.

|
|Calls IKJEBESE tc search
| for string 1.

o . . s e e e

|Issues an XCTL macro to|
|call IKJEBECN, the 1loadj
| module which processes|

|character count.
4

| IKJEBECN

4
| Same function as above.
L

b e —

68

EDIT

TSO Command Processor PLM - Vol. 3 (Release 21)

DELETE Subcommand Processing

The DELETE subcommand removes one or more records from the utility data
set. Upon receipt of the DELETE subcommand, the controller routine
(IKJEBEMA) calls the command scan routine (IKJSCAN) to validate the
subcommand. If the syntax is valid, IKJEBEMA invokes the DELETE
subcommand processor (IKJEBEDE). IKJEBEDE determines if operands are
present by checking the status of the operand switch (CAOPERND in
IKJEBECA) . If operands are present, IKJPARS is called to scan then.
Depending upon what the user has specified, the LDELETE subcommand
processor:

® Deletes the current record only, if "*" or no operands were
specified.

e Deletes a range of records, starting with the current record, if
count were specified.

e Deletes a range of records starting and ending with two specified
line numbers, if a line number range were specified.
After the specified records have been removed, the DELETE subcommand

processor:

e Sets the current line pointer to the value of the key (line number)
of the record previous to the deleted record(s).

e Sets CALNTOVF to 1 and reads current line into location CATEMPBF+12.

e Invokes the syntax checker to update the reverse Polish-notated data
set, if the data set type is either BASIC or IPLI.

Note: The topic Syntax_Checking describes the use of the reverse
Polish-notated data set.

e Returns control to the controller routine.

Processing DELETE Operands

This topic describes the way in which the DELETE subcommand processor
operates when particular operands are specified. Table 8, which follows
this topic, summarizes the operations of the DELETE subcommand
processor.

"k" or No Operands Specified

If no operands are present or if * were entered in place of the
subcommand or operand, IKJEBEDE calls the Access Method Interface
routine (IKJEBEUT) to delete the current line. (Deleting of the current
line is indicated by X'10' in the option code byte of the parameter list
passed to IKJEBEUT.) IKJEBEUT branches to the delete operation routine
(IKJEBEDR) which uses the record locate routine (IKJEBELO) to find the
current line and the record delete routine (IKJEBEDL) to delete it.
After the current line is deleted IKJEBEDE calls IKJEBEUT again, this
time to read the previous record. (Reading of the previous record is
indicated by X'01' in the option code byte of the parameter list passed
to IKJEBEUT.)

Section 2: Method of Operation 69

"Count" sSpecified

If count were specified as the operand (for example, if DELETE * 10 was
entered) , IKJEBEDE calls IKJEBEUT to delete the current line. After the
current line is deleted IKJEBEDE calls IKJEBEUT again, this time to read
the next line. If the required number of lines has not been deleted,
this line is deleted and the next line in the data set is read. After
the required number of lines has been deleted or the end of the data set
is reached, IKJEBEDE calls IKJEBEUT again to read the previous line.

Line Number Range Specified

If a range of lines were specified (for example, if DELETE 20 40 was
entered), IKJEBEDE calls IKJEBEUT to delete the first specified line,
that is line 20. (Deleting of a particular line is indicated by X'10!
in the option code byte and a record key value in the second word of the
parameter list passed to IKJEBEUT.) After the specified line is
deleted, IKJEBEDE calls IKJEBEUT again, this time to read the next line.
The next line is then deleted. This operation, that is deleting lines
one by one, is repeated until the required number of lines are deleted.
IKJEBEUT is then called to read the previous line. The required number
of lines have been read when:

1. the last line of a specified range of lines has been deleted, or

2. a line with a key value higher than the last line of the specified
range has been read, or

3. the last line of the data set has been deleted.

Updating the Current Line Pointer

After the required number of lines have been deleted and the previous
line has been located, IKJEBEDE sets the current line pointer (CACURNUM
in IKJEBECA) to the previous line., If the search for the previous line
is unsuccessful, that is, there are no previous lines, the current line
pointer is set to zero. IKJEBEDE calls IKJEBEUT to read the first
record in the data set. (Reading of the first record of the data set is
indicated by X'04' in the option code byte of the parameter list passed
to IKJEBEUT.) If no record is found, message number IKJ52501I is issued
through IKJEBEMS. If a record is found, message IKJ52505I is issued.

Invoking the Syntax Checker

IKJEBEDE determines if the data set is BASIC/IPLI by examining the
CADSCODE field (in IKJEBECA). If the data set type is BASIC/IPLI and
the appropriate syntax checker is available, IKJEBEDE invokes the syntax
checker to delete lines from the reverse Polish data set.

70 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table

r
|
|
|
|
|.
|
|
|
|
|
|
|
|
|
|
|
|
|
k
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
L

8. Summary of DELETE Operations

Subcom

T

|
|

mand | Operand
4

eyword

T

Keyword
Value

T
|

Modules
Involved
in

Processing

Functional Description

- =2
OO

Qs
H
oo 0
R
‘-'-

DELETE

T
|linnuml
| 1innum2

one

None

IKJEEEMA

-, ——— e =

| Receives subcommand from

| command buffer; invokes
| subcorrand processor
| (IKJEBEDE) .

4

e ———— . e . S e]

o
[\S}

Q
2|}
9]
<

——— . — e e —— —

IKJEBELE

L

|Invokes the Access Method|
|to find and delete records|
|indicated by the 1line|
| number wvalues specified as|
|cperands; sets the current|
|1line pointer to the key of|
{the record previcus to|
|linnuml value.

o
~

o
=
|
o]
>

DELETE

*count

o o e e e e e e e e

T
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
4

None

b — e . —— e ———— ——

2
(o}
3
o

IKJEEENMA

Same function as akove.

Cc2

=
|

Q

]

—— e e — = s e — —

IKJEBEDE

4+t
-+ ——t—

|Invokes the Access Method|
|to find and delete the|
| current record and the|
|nurber of records fcllow-|
|ing it (indicated by coun-|
|t); sets the current line|
|pointer to the key of the|
| xrecoxd previous tc the|
| current record.
4

07

21 Q
w
w
>

o — — e o =

IKJEEEUT

$
|Acts as interface to IKJE-
| BEAA which finds and
|deletes specified records;
|passes key of record pre-
|vious to current reccrd.

1

e e o e o e o

[N}
~

=
=
——— e e i e e e e e e e e e e e i e e i e e

. e, e e, i, S e, S e, S . s, S " i S e, S i, S e, e . e, S . e, S e, S g,

——dm el

Section 2: Method of Operation 71

DOWN Subcommand Processing

The DOWN subcommand moves the current line pointer toward the end of the
data set. The number of lines the line pointer will move is governed by
the value in the operand of the DOWN subcommand; if no value is
specified, the current line pointer will be moved one line toward the
end of the data set. Upon receipt of the DOWN subcommand, the
controller routine (IKJEBEMA) calls the command scan routine (IKJSCAN)
to validate the subcommand. If the syntax is valid, IKJEBEMA invokes
the DOWN subcommand processor (IKJEBEDO). IKJEBEDO determines if
operands are present by checking the status of the operand switch
(CAOPERND in IKJEBECA). If operands are present, IKJPARS is called to
scan then.

Depending upon what the user has specified, the DOWN subcommand
processor:

e Reads records toward the end of the utility data set until the
number of records specified by "count" have been read, if an operand
were specified.

e Reads the record following the record pointed to by the current line
pointer, if no operand were specified.

After the specified number of records have been read, the DOWN
subcommand processor:

e Sets the current line pointer to the value of the record last read.
e Turns the line to be verified switch on.
e Returns control to the controller routine.

DOWN _Processing

This topic describes the way in which the DOWN subcommand processor
operates. Table 9, which follows this topic, summarizes the operation
of the DOWN subcommand processor. If no operands are present, or after
the operands have been validated, IKJEBEDO calls the interface routine
for the EDIT Access Method (IKJEBEUT) to read the last record of the
data set. (Reading of the last record of the data set is indicated by
X'05' in the option code byte of the parameter list passed to IKJEBEUT).
IKJEBEUT branches to the read operation routine (IKJEBERR) which uses
the record locate routine (IKJEBELO) to find the last record of the data
set,

If the data set is empty, indicated by a return code of 4 from
IKJEBEUT, message number IKJ52501I is selected by the message selection
routine (IKJEBEMS) and put out by IKJPUTL. IKJEBEDO sets the current
line pointer to zero and returns control to IKJEBEMA. If the data set
is not empty (IKJEBEUT return code 0), IKJEBEDO calls IKJEBEUT again,
this time to locate the record followiny the current record. (Reading
of the record following the current record is indicated by X'02' in the
option code byte of the parameter list passed to IKJEBEUT.)

IKJEBEUT branches to the read operation routine (IKJEBERR) which uses
the record locate routine (IKJEBELO) to find the next record. If the
record cannot be found, message number IKJ52500I is selected by the
message selection routine (IKJEBEMS) and put out by IKJPUTI. IKJEBEDO
sets the current line pointer to the last record referred to, turns the
line to be verified switch on, and returns control to IKJEBEMA. If the
record is found, IKJEBEDO determines if the current line pointer has
been moved down the requested number of lines. If the count operand
value has not been satisfied, IKJEBEUT is called to read the next record
in the data set. If the count has been satisfied, IKJEBEDO sets the
current line pointer to the last record referred to. If this last
record is the last record in the data set, message number IKJ52500I is
issued through IKJEBEMS.

72 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 9. Summary of DOWN Operations
T

ubcommand | Operand
L

T
| Modules
| Involved
eyword | in
Value Processing| Functional Cescription
4

—— —

Keyword ID | ID |

[S
=
o
Q
=2
[
>
o

+
IKJEBEMA |Receives subcommand from| 02
| cormand buffer; invokes]|
| subcommand pracessor |
| (IKJEREDO) .
4

Z
(o}
=}
o

S
DOWN count None

- —

|

| |
| |
| |
b 1 1
IKJEBEDO	Invokes the Access Method	08
	to determine if the datal	
	set is empty; sets the	
	current 1line pcinter to	
	the key of the record	
	which was the last speci-	
	fied by the count value.	
b t t-mmt		
IKJEREUT	Acts as the interface to	27
	IKJEBEAA which finds the	
	specified records; rasses	
	key of record 1last found]	
H

] |to IKJEBEDO. |
4 4 4

[. — s . . e o e — . — . . i, St G . s, S e, Gy
e e e e o o o . s S . e . e . e . . . e e, e @]
o o e e e e T e e, . . ey, " e, " e, e " . e

o o e e . . . e — ———— — ——— ——]

Section 2: Method of Operation 73

END Subcommand Processing

The END subcommand terminates the processing of the EDIT program. If
the utility data set has been modified, and the user has not entered
SAVE prior to entering END, the END subcommand processor issues message
IKJ52555I and prompts the user to enter SAVE or END. If any thing other
than SAVE or END is entered, the END subcommand processor returns
control to the controller (IKJEBEMA) with a return code of zero. If
SAVE is entered, the SAVE subcommand processor (IKJEBESA) is invoked.

If END is entered, or after successful completion of SAVE, the END
subcommand processor:

e Invokes the Access Method termination routine (IKJEBEEX) to delete
the Access Method (IKJEBEAA) and to free the utility data set.

e Invokes the SCAN subcommand processor (IKJEBESC) to delete the
syntax checker if it is in storage; (if the CASCANSW field in the
EDIT Communication Area is set to 1, there is a syntax checker to be
deleted) .

e Deletes the message selection (IKJEBEMS) and the line edit
(IKJEBELE) service routines.

e Cancels the abnormal end exit routine (IKJEBEAE) via the STAE macro.

/

e Cancels the attention exit routine (IKJEBEAT) via the STAX macro.
e Returns control to the EDIT controller routine (IKJEBEMA).
The controller routine, upon receiving control from the END
subcommand processor, returns to the Terminal Monitor Program by issuing

SVC 3. Table 10, which follows, summarizes the operations of the END
subcommand processor.

74 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 10. Summary of END Cperations

T T T

| | Modules |

| | Involved |

| Keyword in |
Value Processing| Functional Description

L

+

[ole]
H 5 -
oo 0

g

MO
D

2]
t

b e " e i s . s — e T s, . g, 0 e,) . e, . e, M e, = s

Subcommand |Operand |Keyword

-,

=
2
o

None None

4
[e]
=]
o

IKJEREMA |Receives subcommand from| C2
| command buffer; invokes|
| subccrrand processcr|
| (IKJEBEEN). |
4

e = e A ——
(@]
=
[}
9]
<

+
| IKJEREEN |Inforrms the user if his| --
| | data set has not been|
| |saved; if the user's data]
| | set has been saved, |
| |invckes the Access Methcdj
| termination routine (IKJE-|
	EEEX) to terminate the
	Access Method; deletes the
	Edit service routines and
	frees the resources used
	ky the Edit command pro-
	cessor; returns control toj
	the controller rcutine
I | (IKJEBEMA) .
1 L

-+—

—_—t——————— e e e e
w
o

1] T
| IKJERENA |Returns control to the| C2
| | Terminal Monitor Program|
| |via svcC 3. |
i |

- 1 4

[— e e e . o e o e A e e e e e . o e . . e)
Q
s
|
Q
<

—— ——— e e e e

r
|
|
I
I
11:
|
|
I
|
I
|
|
|
|
|
I
|
!
|
I
|
|
|
I
|
|
I
|
4

b o e e e e e s e e e e e e

- ——

Section 2: Method of Operation 75

FIND Subcommand Processing

The FIND subcommand locates a particular character string in the utility
data set. Upon receipt of the FIND subcommand, the controller routine
(IKJEBEMA) calls the command scan routine (IKJSCAN) to validate the
subcommand. If the syntax is valid, IKJEBEMA invokes the FIND
subcommand processor (IKJEBEFI). Depending upon what the user has
specified, the FIND subcommand processor:

e Locates a character string in the utility data set and returns a
pointer to it, if the character string is specified.

e Refers to a character string in the CAFIBFR field of the EDIT
Communication Area, locates the same string in the utility data set
and returns a pointer to it, if a character string is not specified
for a second use of FIND. (The character string in the CAFIBFR
field was inserted during the previous use of FIND.)

e Prompts the user (thru IKJPARS) for a character string, if a
character string is not specified for the first use of FIND.

e Locates a character string at an offset from the beginning of a
record and returns a pointer to it, if "count" and a character
string were specified.

Prior to searching for the specified string, the FIND subcommand
processor determines if this is the first use of the subcommand for this
EDIT session. (Note: The fields mentioned below are in the EDIT
Communication area.)

e If this is the first use of FIND (CAFINDIS=0) and no string was
entered (CAOPERND=0) the FIND subcommand invokes IKJPARS to prompt
the user for the character string.

e If this is the first use of FIND and a string was entered
(CAOPERND=1) , the FIND subcommand invokes IKJPARS to scan and
validate the operand, and the line edit routine (IKJEBELE) to
translate the character string.

e If this is not the first use of FIND (CAFINDIS=1) and no string was
entered, the FIND subcommand refers to the CAFIBFR field where the
string used during the previous FIND operation is stored.

After the specified string is found and saved, the FIND subcommand
processor returns control to the controller routine.

FIND Processing

This topic describes the way in which the FIND subcommand processor
operates after it determines if the user has.previously specified FIND
and a string and enters FIND with no operands. Table 11, which follows
this topic, summarizes the operations of the FIND subcommand processor.
IKJEBEFI calls the Access Method interface routine (IKJEBEUT) to read
the record following the current record. (Reading of the record after
the current record is indicated by X'02' in the option code byte of the
parameter list passed to IKJEBEUT.) IKJEBEUT branches to the read
operation routine (IKJEBERR) which uses the record locate routine
(IKJEBELO) to find the current record. If no offsets were specified by
the user IKJEBEFI invokes the string search routine (IKJEBESE) to scan
the records for the specified character string. After IKJEBESE has
scanned the current record, if the data set type is not TEXT, IKJEBESE
continues scanning the records one by one. If the data set type is
TEXT, IKJEBESE calls IKJEBEUT to read the next line. (Reading of the
next line is indicated by X'02' in the option code byte of the parameter

76 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

list passed to IKJEBEUT.) After the next line has been read IKJEBESE
scans both lines (current line and following line) for the specified
text. If the text is found across the two lines IKJEBESE returns to
IKJEBEFI with a special indication (a return code of Ou4). If the string
has not been found, IKJEBESE calls IKJEBEUT to read the next line.

After this line is read IKJEBESE scans it. IKJEBESE returns to IKJEBEFI
when the rest of the data set has been completely searched in this
manner (IKJEBEUT returns an indication that no more lines exist) or when
the specified character string has been found. When IKJEBEFI receives
control back from IKJEBESE, it notifies the user if the specified
character string was not found by issuing message IKJ52506I via the
message selection routine (IKJEBEMS). If the text was found, IKJEBEFI
updates the current line pointer to the line number of the specified
text. In all cases CAFINDIS (in IKJEBECA) is set to 1. If offset is
specified, IKJEBEFI scans each record, starting at the current record,
at the specified offset only; no search across boundaries is done for
TEXT data sets.

Section 2: Method of Operation 77

Table 11. Summary of FIND Cperations (Part 1 of 2)

T T T T L
| | | Modules |
| | Involved

3
|

| |

| Keyword | in | Functional |

Subcommand | Cperand | |
4 1 1

)

=

Keyword |Value |Processing Descripticn
$ 1 -
|

o
D | ID
2

T 1
FIND |string IKJEBEMA |Receives subcommand from| 0

Z
(¢]
=]
(0]
4
[e]
=]
o

| | cormand buffer; invokes|
| subcommand processor |
| (IKJEREFI).
4

.,-__.__
- —

|
|
|
|
t +
IKJEBEFI |Invokes the Access Method| 09 |
J]to read the current reco-| |

|rd; invokes IKJEBESE to} |

|£find the string; IKJEBEFI] |
|notifies the user when the| |
|string is found Ly setting]| |

|the current 1line pointer| |

|to the value of the key of| |
|record which contains the] |

|

Y — ——— s — e — —

|string.
4

— ——— . — . 1 S— . o . T . . o e, . S Qo . T g S)

T

IKJEBELE |Translates 1lower case to| -- |
urprercase, 1if necessary,	
and substitutes single	
clanks for tak characters.	
1

I
|
I
|
1
I
|
I
|
|
|
[
|
|
|
1
|
|
[
|
U SRDUtut Sl |
|
|
[
|
I
|
|
{
|
|
|
I
|
|
|
|
|
|
|

+

IKJEBEUT |Acts as interface to IKJE-| 27 | ET
|BEAR which reads the cur-|
|rent record and each suc-|
|ceeding record wuntil the|
| specified string is found|
|cxr the data set has bLeen|
| completely searched. |
4

B S S——

$

IKJERESE |Invckes the Access Methcd| -- | EH
to read each record in the	
data set, starting at the	
record €following the cur-	
jrent 1line, scans each	
record read by the Access	
Methcd for the srecified]	
address of string; passes	
string and key cf record	
containing string to]	
IKJEREFI.	
4

FIND string None None IKJEBEMA

|
+
Same function as above. | 02 CW-CY
count '

“+ —

|
%
IKJEREFI |Invckes the Access Methecd| C9 |
| to read each record in the| |

data set, starting at the	
current 1line, wuntil the	
specified string is found;	

| searches for the string at]| |

|a srecified offset (count) | |
|within each record; IKJE-| |

|EEFI notifies the user| |

|when the string is found| |
|

|

|

I

i

+

|

4

T

I

i

e e e e e e e e e —— e ————— e ———————_—————————————

|ty setting the current|
|1line pointer to the key of|
|the record which contains|
| the string.
i

+
IKJERELE |Same function as akove.
4

27

e e e e i i i, i e, — i . " . s . o e T . " e, " . " e, T s, s T, T e, S e, e i, O e, S T e, iy s " o, " e T — i,

= e o et e s e e o o e . S . S s e S e e S e e B e e e S e o S . e . . o e e e e
b o o e Sy e e e e e e e ey e e y —— e e e

|
%
|
I
|
I
|
|
|
|
|
|
|
|
|
I
,_II
|
1
|
1

oo e s e s s s o i . . . s

4
IKJEBEUT |same function as above.
4L

|
+
b
|
4
T
|
L
(

Part 1 of 2)

78 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 11. Summary of FIND Operations (Part 2 cf 2)

r T T Ll T) T N A 1
I [e
nvolve Flow
| | | Keyword | in | Functional | MO |Chart|
| Subcommand | Operand |Keyword |Value |Processing | Descripticn | ID | ID |
k + + + + + - + ===
| FIND | None | None | None | IKJEBEMA |Same function as above. | 02 |CW-CY]|
| | | | t + t + 4
				IKJEREFI	If first use of FIND, pro-	€9	BT
					mpts for operands; if not		
					first use, determines str-		
					ing to be found and count		
					value from CAFIBFR; pro-		
					ceeds as -above, starting]		
				lat record follcwing thej			
					current record.		
			t + . pomm e pmmm e				
				IKJEREUT	Same function as akove.	27	ET
			b % . s				
				IKJEBESE	same function as above.	—-	EH
L — 4L L L L L L J

Section 2: Method of Operation 79

FORMAT Subcommand Processing

The FORMAT subcommand lists the utility data set, or any part of the
data set, in a user-defined format. Upon receipt of the FORMAT
subcommand, the controller routine (IKJEBEMA) calls the command scan
routine (IKJSCAN) to validate the subcommand. If the subcommand is
valid, IKJEBEMA invokes the FORMAT subcommand processor (IKJEBEFO).
IKJEBEFO determines if operands are present by checking the status of
the operand switch (CAOPERND in IKJEBECA). If operands are present,
IKJEBEFO calls IKJPARS to scan them. The FORMAT subcommand processor
invokes the FORMAT command (a Program Product) through the command
invoker (IKJEBECI). The FORMAT command processor interprets the format
control words in the text entered by the user and performs the required
formatting operation. See the Program Product publication, IBM
System/360 Operating System Time_Sharing Option: _TSO_ Data_Utilities:
Copy, Format, List, Merge User's_Guide_and_ Reference_ Manual for a
description of the use and function of the format control words.
Depending upon what the user has specified, the FORMAT subcommand
processor invokes the TSO FORMAT command processor to:

e Format a range of records, if an "*" or a line number were
specified.

e Format the entire data set, if no operands were specified.
When the TSO FORMAT command processor has completed processing, it
returns control to IKJEBECI, which then returns control to the FORMNAT
subcommand processor. The FORMAT subcommand processor:

e Frees the Format data set.

e Returns control to the controller routine.

Processing FORMAT Operands

This topic describes the way in which the FORMAT subcommand processor
operates when operands are specified. (The Program Product publication,
TSO_Data_ Utilities: _Copy, Format, List, Merge User's_Guide_and
Reference Manual describes the particulars of the FORMAT subcommand
operands; the licensed Program Product publication, TSO_Data Utilities:
Copy, Format, List, Merge Program_Logic_Manual describes the internal
logic of the TSO FORMAT command processor.) Table 12, which follows
this topic, summarizes the operations of the FORMAT subcommand
processor.

Line Number Specified

After the operands have been validated, IKJEBEFO checks if the first
operand is *. If the first operand is a line number and not *, IKJEBEFO
builds a model FORMAT command (including the range of data set lines
specified as operands of the FORMAT subcommand) and calls the data set
allocation routine (IKJEBEDA). IKJEBEDA builds a DSNAME and invokes
IKJDAIR to allocate a data set with a disposition of NEW/DELETE/DELETE.
When the data set has been allocated, IKJEBEDA returns to IKJEBEFO.
IKJEBEFO calls the final copy routine (IKJEBEFC) to write the contents
of the utility data set into the allocated data set. After the copy
operation is completed, IKJEBEFO calls IKJEBEDA via LINK to mark the DSE
as not in use and calls the command invoker (IKJEBECI) via LINK. The
command invoker, in turn, passes control to the TSO FORMAT command via
ATTACH. The FORMAT command formats the lines specified in the command
model. Upon return from IKJEBECI, IKJEBEDA is invoked to free the data
set.

80 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

"k" Specified; Unnumbered Data_Set

If the first operand is * and the data set is not line numbered,
IKJEBEFO calls IKJEBEUT to read the first record of the data set and
each succeeding line until the current line (*) is read. By assigning a
value to each line, IKJEBEFO is able to give the current line a relative
line number. IKJEBEFO builds the FORMAT command model, inserting the
relative line values. IKJEBEFO then calls IKJEBEDA to allocate a data
set, IKJEBEFC to copy the utility data set into the new data set,
IKJEBEDA to mark the DSE as not in use, and IKJEBECI to invoke the TSO
FORMAT command. The FORMAT command formats the lines specified in the
command model. Upon return from IKJEBECI, the data set is freed.

"k Specified; Numbered Data_Set

If the first operand is * and the data set is line numbered, IKJEBEFO
calls IKJEBEUT to read the current line and each succeeding line until
the count (FORMAT * 10) has been satisfied. The number of the last line
read by IKJEBEUT is inserted by IKJEBEFO into the command model.
IKJEBEFO then calls IKJEBEDA to allocate a data set, IKJEBEFC to copy
the utility data set into the new data set, IKJEBEDA to mark the DSE as
not in use, and IKJEBECI to invoke the TSO FORMAT command. The FORMAT
command formats the lines specified in the command model. Upon return
from IKJEBECI, the data set is freed.

No_Operand Specified

If no operands are present, IKJEBEFO builds the FORMAT command model,
specifying that the entire data set is to be formatted. IKJEBEFO then
calls IKJEBEDA to allocate a data set, IKJEBEFC to copy the utility data
set into the new data set, IKJEBEDA to mark the DSE as not in use, and
IKJEBECI to invoke the TSO FORMAT command. The FORMAT command formats
the lines specified (the entire data set) in the command model. Upon
return from IKJEBECI, the data set is freed.

Section 2: Method of Operation 81

Table 12. Summary of FORMAT Operations

T T T T
I I | |
| I | |

| | Keyword|
Subcommand | Operand {Keyword vValue
4 1

Modules
Involved
in

Processing |
4

i
!
|

X
oo
Q=
H O
°F2
ﬂ's |
—_——

Functional Cescription

T

(Refer to the
Program Product
|publication,

FORMAT

— e

|Utilities: COPY,

IKJEBEMA

o
N

4
| Receives subcommand from
|corrand buffer, invokes
| subcommand processor

| (IKJEEEFO) .
4

(@]
=
[]
ol
<
—_——

| FORMAT, LIST,

|particulars.

IKJEBEFO

- B, RSN TP

T

|Creates relative line num-
|kexrs fcr unnunmkered data
|sets; invokes the EDIT|
|data set allocation/free]
| service routine (IKJEBEDA) |
|to cktain a Format datal
| set; invokes the final|
|ccpy ELIT service rcutine|
| (IKJEBEFC) to copy the|
|contents of the wutility]
| data set into the Format|
|data set; invokes IKJEBELA|
|to mark the DSE as not in|
|use; kuilds a model FORMAT |
|command and invokes the]
|cormrand invoker (IKJERECI) |
| to pass control to the TSO|
| FORMAT command processor|
| (a program product) ; |
|invockes IKJEBREDA tc free|
| the Format Jata set.
L

o o e e o e e
[vs]
<
-
[s)
<

IKJEEELRA

|
t t
| BEuilds a DSNAME and|
|invokes the TSO data set]|
|allccation service rcutine]
| (IKJDAIR) to allocate andj|
|tc free the Fcrmat datal
| set and to mark the DSE as|
|not in use.
4

>
fad
e e e —————

e e

IKJEBEFC

)

| Invokes the Access Method]
|to find and to read into]|
| storage every record inj|
|the data set; transforms|
| the records into QSAM for-|
|rat; invokes the Access]
| Method to write the reco-|
|xds into the Format datal
| set.
L

BR, BS

“+—

IKJEEECI

$
| Fasses control to the TSO|
| FORMAT command processor|
|via Attach with model com-|
| mand as input; returns|
|contrcl to IKJEEEFO when|
| the FORMAT command proces-|
|sox has ccmpleted|
| processing. |
L

e e e e e e e e s e S et e S e . s, . e, o . e, St e, . . S e . e, S e, . e . e, e s, i . e . e, . s, e o, e, . s, e]
o
[e]
-
>
o

—— e ——— e e . T e T e, e, e

[e S s i . i o e . e S s e S s, S, S, . i, S, S e, i, i i, i, S s, St o, B e, e B . . S e . e, . S, . . . e S . S S e, . e, Yo e e, . e
e S e e e e e o g o " i o e, e, e, e s T i, T o, i, o i T e, " e, e, " e, S S o, s, e, s, = e, " s e

|
I
I
|
I
I
I
!
I
I
I
|
I
I
|
|
|
!
|
I
I
|
1
I
|
I
I
|
I
|
I
|
I
|
|
I
I
|
|
I
!
I
I
|
|
|
|
|
!

b —

TSC
FORMAT
Conmand

b et
| Formats records in the | -
| Format data set, as |
|specified 1in the model |

| command. ; |
L L

b s e i M S e —— — e, s e o s . i S e,

|
|
L

82 EDIT

TSO Command Processor PLM - Vol.

3 (Release 21)

HELP Subcommand Processing

The HELP subcommand provides explanations of the use of the EDIT
subcommands. Upon receipt of the HELP subcommand, the controller
routine (IKJEBEMA) invokes the HELP/PROFILE subcommand processor
(IKJEBEHE) . IKJEBEHE sets the third and fourth bytes of the subcommand
buffer (the offset field) to zero so that IKJSCAN can be invoked to scan
the buffer. IKJEBEHE builds a two-word parameter list which contains
pointers to the EDIT Communication Area (IKJEBECA) and to the subcommand
buffer. IKJEBEHE passes control (via XCTL) to the command invoker
(IKJEBECI). The command invoker, in turn, passes control to the TSO
HELP command via ATTACH. (See the publication IBM_System/360 Operating
System_Time_ Sharing Option_Command_ Processor_ Program_Logic_Manual Volume
IV for a description of the internal logic of the HELP command
processor.) When the system HELP command has completed processing,
IKJEBECI receives control and returns to IKJEBEMA. Table 13, which
follows, summarizes the operations of the HELP subcommand processor.

Section 2: Method of Operation 83

Table 13.

Summary of HELP Operations

T

Subcommand | Operand
IR

T

Keyword

Keyword Value

T
|

Modules
Involved
in

Ll
|
I

|

Processing| Functional Description
4

H =2

QM
H &5 -
°]
g

O
o]
ct

HELP

+
| EDIT
| Sub-
| command

o —— e o]

|

|

I

1L_

| FUNCTICN| None

|or |

| SYNTAX |

|or I

| OFERANELS |

| (List) |
I
|
I
|
I
|
|

IKJEEENA

+
| Receives subcommand from
| command buffer; invokes
| subcerrand prccesscr

| (IKJEBEHE) .

'R

+———— e —

(NN =N}

(=]

(9]
=
|
Q
<

———————————

IKJEEEEE

$
|Builds a parameter 1list|

|and invokes the Command

|Invoker to attach the TSO|

| HELP commangi.
4

11

03]
3

IKJEEECI

+
|Attaches the HELP cormand.
4

TSO HELP
Cormwand

T

| Describes the function,
|syntax, or operands appl-
|icable to the specified
| subcorrrand.

iy —— s e i s s e s i . s =

AQ,AP|

——t——— e — e —

|
|
t
|
]
—

s
o
-
i)

None

e T G . . s . S . S — — —— —— —

None None

IKJEBEMA

same function as above.

o
(V]

IKJEEERE

same function as akove.

-
[y

IKJEBECI

Same function as above.

+—— et —

TSC HELP
Command

|Cisglays a list cf all
| the EDIT subcommands.
i

-’—
]
|
|
|
|

A —
g
1
(@]
e

|AQ, AP

[o o e e " . S S e, e S S S . S e, . e S . e, . . o, S i, e, e, e, . e . .

HELP

| EDIT
| sub-
| command

|
|
I
I
|
I
I
L

None

T e e e el P

e o T e, T e e, —— ey, Y . o S e, e, = s, e " e,

IKJEEENA

}
|same function as akove.
[l

o
N

Q
=
|
Q
<

IKJEBEHE

1}
| Same function as above.
i

[
-

o]
=

IKJEEECI

+
|same function as akove.
4

pod
O
-

>
o]

—— e e e e Y e . = o e e e

TSO HELP
Corrrand

T

| Describes the function,
|syntax, and operands appl-
|icable to the specified
| subcerrand.

4

o e e e e e o e e . e e s e e i e e e e e e e e e

]
!

e e e e e e i S e e i — e, i i e il — s e e

o e e e ey = e i e e

84

EDIT

TSO Command Processor PLM - Vol. 3 (Release 21)

INPUT Subcommand Processing

The INPUT subcommand establishes the Input mode for the EDIT progranm;
the INPUT subcommand processor writes subsequent terminal input into the
utility data set. The controller routine (IKJEBEMA) invokes the INPUT
subcommand processor (IKJEBEIP and IKJEBEIM) under the following
conditions:

1.

The user entered the INPUT subcommand.
The user entered the INSERT subcommand with no operands.
The user entered a null line while in Edit mode.

The Input mode was initially entered because the data set was new,
or old and empty.

Depending upon what the user has specified, the INPUT subcommand
processor:

Writes records into the utility data set beginning at the first
line, if the data set is new, or old and empty.

Writes records into the utility data set beginning at the line
specified, if the INPUT subcommand and an operand were entered.

Writes records into the utility data set beginning at the line
following the one pointed to by the current line pointer, if the
INSERT subcommand with no operands were specified.

Writes records into the utility data set beginning at the line
following where the previous Input mode operation ceased, if a null
line were entered while in Edit mode.

Writes records into the utility data set beginning at the line
following the last existing record in the data set, if the INPUT
subcommand and no operands were specified.

After the INPUT subcommand processor determines which line is to receive

the

input record, it checks to see if there is room for the new record.

If there is no room for the new record and the data set is
line-numbered, IKJEBEIM issues message IKJ52400I via the message
selection routine (IKJEBEMS) and returns control to IKJEBEMA.

If there is no room for the new record and the data set is not
line-numbered, IKJEBEIM rewrites all displaced lines with their
original keys incremented by 1.

Prior to inserting the new record, the INPUT subcommand processor
determines whether the appropriate syntax checker is available, if the
input is to be scanned for syntax errors (the CASCANSW field in the Edit
Communication Area is set to 1).

If the data set is PLI, BASIC, IPLI, FORTRAN (E,G,H,GI) or GOFORT,
IKJEBEIM invokes the appropriate syntax checker which scans the
input records.

If a syntax checker detects an error in an input record, the record
is inserted into the data set. IKJEBEIM notifies the user by
issuing an error message, and returns control to the controller
routine. (The controller will then invoke the Edit mode, thereby
allowing the user to correct the syntax error by altering the
statement just entered.)

Section 2: Method of Operation 85

After all input records have been inserted, the INPUT subcommand
processor:

e Sets the current line pointer to the value of the key of the last
record written into the utility data set.

e Returns control to the controller routine.

INPUT Processing

This topic describes the way in which the INPUT subcommand processor
operates after it is invoked by the controller routine. Table 14, which
follows this topic, summarizes the operations of the INPUT subcommand
processor.

INPUT_Subcommand_and Operands_Specified

If the INPUT subcommand were entered, IKJEBEIP determines if operands
are present by checking the status of CAOPRND (in IKJEBECA). If
operands are present, IKJEBEIP calls IKJPARS to scan them. If no
operands are present the defaults are used. After the operands have
been validated, IKJEBEIP invokes the second load of Input (IKJEBEINM) via
the XCTL macro instruction. IKJEBEIM invokes the access method
interface routine (IKJEBEUT) to write each input record into the data
set beginning at the line specified. (Writing of a record is indicated
by X'20' in the option code byte and a pointer to the line in the data
in the second word of the parameter bit passed to IKJEBEUT.) IKJEBEUT
branches to the write operation routine (IKJEBEWR) which uses the record
locate routine (IKJEBELO) to find the specified line and the move
routine (IKJEBEMV) to insert the new record into the found line. If R
were specified as an operand for the INPUT subcommand, IKJEBEWR also
uses the record delete routine (IKJEBEDL) to delete any records found in
lines specified for new records.

INPUT_Subcommand and No_ Operands_Specified

If the INPUT subcommand were entered and no operands were specified,
IKJEBEIP invokes IKJEBEUT to obtain the last line in the data set.
(Reading of the last line in the data set is indicated by X'05' in the
option code byte of the parameter list passed to IKJEBEUT.) IKJEBEUT
branches to the read operation routine (IKJEBERR) which uses IKJEBELO to
locate the line. After the last line of the data set has been found,
IKJEBEIP invokes the second load of INPUT (IKJEBEIM) via the XCTL macro
instruction. IKJEBEIM calls IKJEBEUT to write the input records into
the data set beginning at the line following the last line. If the data
set is line-numbered, the line number assigned to the first new record
will be that of the last record plus the increment specified in the
INPUT subcommand on the default value.

~

INSERT _Subcommand and No Operands_Specified

If the INSERT subcommand with no operands were entered, IKJEBEIP invokes
the second load of INPUT (IKJEBEIM) via the XCTL macro instruction.
IKJEBEIM invokes IKJEBEUT to insert the new record into the line
following the current line, If the data set is line-numbered, the new
record will be given a line number 1 greater than the current line.

86 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Null Line Entered in Edit_ Mode

If a null line was entered while in Edit mode, IKJEBEMA invokes the
Input mode. Records will be entered into the data set beginning at the
line following where the previous Input mode operation ceased. IKJEBEIP
determines the last line number generated by the previous Input mode
operation by checking CAIMLLNO (in IKJEBECA), and invokes the second
load of INPUT (IKJEBEIM) via the XCTL macro instruction. IKJEREIM
invokes the access method to write the input records into the data set.
If Input mode were not previously used, the first new record will be
inserted at the last line of the data set plus the last used increment.

Empty Data_ Set (Data Set_is_New, or 0ld _and Empty)

If the data set is empty, IKJEBEMA establishes the Input mode by calling
IKJEBEIP, which invokes the second load of INPUT (IKJEBEIM) via the XCTL
macro instruction. IKJEBEIM invokes the access method to insert the new
records. The first record inserted will have a line number of 10; each
succeeding line number will be incremented by 10.

Section 2: Method of Operation 87

Table 14. Summary of INPUT Operations (Part 1 of 5)

T

Subcommand | Operand
<4

LB T Ll

| | Modules |

| | Involved |

}Keyword | in

value Processing | Functicnal Descripticn
<4

Keyword iD | ID |

4
INPUT |linnum 02

|incre

|
+ +
R None | IKJEBEMA |Receives subcommand from
| |buffer, invokes the suk-
| |command processor (IKJE-
| |BEIP); treats suksequent

| terminal input as data.
L

e e e . e e

|

|

|

|

I

t +
IKJEBEIP |Frocesses orperands to| 12 |
determine starting 1line	
for data inserticn; speci-	
fies that new records will	
have line numbers incre-	
mented by value in	
"incre"; invokes Access	
Method to locate the line	
in the data set with a	
line number value of "lin-	
nur"; invokes seccnd load	
of INPUT (IKJEBEIM).	
+ t
|

I

I

|

|

|

|

I
t +
IKJEBEIM |Invokes Access Metheod to| 12
|replace any record exist-|
|ing in line; invokes the|
| Access Method to write|
|intc the line the subse-|
| quent terminal input;
| returns to IKJEBREMA.
<4 .

— e e e e W e e e ——— — e — ey —

I

|

1 e 1
IKJEBEUT |Acts as interface to IKJE-| 27 |

BEAA which is invcked to]	
replace delete and add	
records to the utility	
data set.	
L L L

(Part 1 of 5)

[o S e S e . S e, S e, S e S S e, S e T e . S . s, S, e, e, o e, S, . S S, g . s, e Wy

L s
I
|
I
| |
+ +
| |
| |
I |
| |
I |
! I
| |
I l
[|
| l
I |
I |
| |
I |
I |
I |
| |
| |
| |
| |
I |
| |
I I
| |
| |
| |
[|
I |
I |
I |
| |
| !
L L

o e e s s e i e . . . o — ——— ————————— — — — — — — —

o —— . — —

88 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 14. Summary of INPUT Cperations (Part 2 of 5)
T T T T
	Modules	
	Invclved	
Keyword	in	

Keyword | Value Processing |Functicnal Descripticn |
4 4 %

|

(SR

Subcommand | O(perand

NI oo

*

INPUT

2
(e}
=]
(0]
o

B}
IKJEBEMA |Same function as above.
4

o

RCMPT

-+

t

IKJEEEIF |Frccesses operands to| 12
| determine starting line|
|for data inserticn; speci-|
| fies that new records will]
|have 1line numkers incre-|
|mented by the last incre-|
|kent used and that thej
|terminal will display aj
|erermpting character keforej
|each input 1line; invokes|
|the Access Method to 1loc-|
|ate the current 1line;|
{invckes the second lcad cfj|
| INPUT (IKJEBEIM).
4

— e e s e e e e ™ e e
o e s . e e e e e e o

I

t t
IKJEBEIM |Invckes the Access Methcd| 12

|to insert the subsequent|

|data into the line, if it|

| |is empty, or after the|

| |1line, if it is nct empty;|

| |returns to IKJEBEMA. |

| L

+

o
<
|
O
[os]

|
'l
ll'
|
!

+
| IKJEBEUT |Acts as interface to IKJE-| 27
| | BEAA which reads the cur-|

| | rent record to lccate the|

| |position in the data set|
|at which new records arej
|to be added; writes new|
|reccrds into the data set.|
4

e — s s e s — e — e
=
=

INPUT

=z
[e]
=}
(0]
4
[e]
=}
o

02

Q
=
[}
@]
<

T
None IKJEBEMA |Save function as above.
i

-+ —

|
4
T
|
1
r
|

+

IKJEREIF |LCetermines that the 1last| 12
|record in the data set is|
|to be located; invckes the|
|Access Method to 1locate]
|the 1last record in thej|
|data set; invokes the|
| seccend load cf INPUT |
| (IKJEBEIM). |
4

Q
=
-

0
[l

o
<
|
(]
[s4]

IKJEBEIM Ylnvckes the Access Methcd| 12
|to write into the data set|
|the subsequent data from|
|the terminal; returns toj
| IKJEEEMA.
4

—_———,— e —— —
e e e e e i e e s e e e i e e s e s i e —— e i e e e . e e e i . e . e e &

|
|
|
L
r
| 27

|
t 1
IKJEBEUT |Acts as interface to IKJE-| |
| |BEAA which reads the last| |
|record in the data set;| |

| |writes new reccrds intoj |
| | the data set. | |
L 4 4L
2

e e e e e e e e e e e e e e oy e = e o . T o . e e S S e T e . . o . . e S e o e S, . o, G e o e e
e o e o e e e o e e e e S e . . . e S . . . s, s s, . S e . e
o o e e e e e e e e e e e e S e e o o . T . T e o . S . o S . . s S e S . S i S . S s, . s, e e, s . e e . s e]

b e ———— e —— e —_————————e—— e ——_———,—————————, e ——_—————— e —

L

(Part

Section 2: Method of Operation 89

Table 14. Summary of INPUT Cperations (Part 3 of 5)

T

Subcommand | Operand
-

| Input not |None

|entered; |

|data set

|is NEW or

| OLD and

|empty.

T T
| Modules |
| Involved |
Keyword | in |

value Processing|Functional Description
1

Flow
Chart

HZ
O o
L)
o

Keyword

e — e S

o
[\S)
Q
=
|
(9}
=

+
IKJERENA |Receives indicaticn from
|initialization (IKJEREIN)
|that data set is NEW cr
| CLLC and empty; sets the
|INPUT mode by invoking
| the INPUT subcommand pro-|
|cesscxr (IKJEBEIP). |
4

2
[e]
3
®

None

—— . . e e e e, e e]

- — e — e

T

IKJEBEIF |LCetermines that the first| 12
|1ine in the empty data set|
|is tc ke 1located, speci-|
|fies 10 as the first line]|
|pukkexr and 10 as the|
| increment for each suc-|
| ceeding line nunker; |
| invokes the second load of|
| INPUT (IKJEBEIM). |
}

4

Q
=
-

0
=

o e — e s e s o P e e e S e e e s S e,]
e e e e e e i . . e . e, . e S e, e e, =

T T
IKJEBEIM |Invokes the Access Method| 12

|to mncve subsequent datal

| from the terminal into the|

|first 1line of the data]

| set; returns to IKJEBEMA. |

4

L
T
|

+
IKJEREUT |Acts as interface to IKJE-| 27
| BEAA which writes new|
|reccrds into the wutility]

| data set.

L 4L L

(Part 3 of 5

|
|
|
|
|
|
|
I
I
[
|
|
|
|
|
|
|
[
|
I
|
|
!
|
I
|
|
!
|
I
[
!

o e e e e — i e T e T e, T ey, S s, T s T e, T ey, Y . e, T e]

|
I
I
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
!

b e e e e —— e — e —— — e —

|
|
I
|
[
|
|
|
[
|
|
|
|
!
|
|
[
|
|
|
|
|

-——

=
H
o e — — ——— —

90 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 14. Summary of INPUT Cperations (Part 4 of 5)

T

Subcommand | Operand
4

Keyword

T

T

L

Modules |

Involved |

in |
ProcessingFunctional Description

L

HZ
O o

Flow
Chart

)
o

e ——— —

|entered; aj
|null line |
|is entered|
|while in
| Edit mode

|
|
|
|
|
|
!
I
|
|
|
[
|
|
I
|
|
|
|
|
|
|
|
|
|
I
!
I
|
I
!

[o — — — o S s . — . S— e, — . — — —— — — — . o e, W . —

L)
| INPUT not |None

None

|
I
|
|
%_
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
[
|
|
I
|
|
|
|
[
I
I
|
l
|
|
!
|

b —

o e o i e e e e e e, e " o e, e, e, e = s, e . — e, S e o g,

+
IKJEEEMNR |Sets the
| Input mode by invoking
| the INPUT subconrrand

| processor (IKJEBREIP).
4

o
N

- ——— e e

+
IKJEBREIP |LCetermines that the last|
|record is to be located, |
|1if INPUT has nct Leen|
|entered before in this|
| ECIT session; determines|
| that the record following|
|the last record entered|
| during the previous Input|
|rode cperation 1is to ke|
|located, if Input has been|
|entered before; sgecifies|
|that the line increment be|
|the default value, cr thej
| value last used 1if 1Input]
|rode were used previously|
|in this EDIT session; |
|invckes the Access Method]
|to 1locate the specified]
|reccrd; invokes the second]

[load of INPUT (IKJEBEIM). |
4 L

[y
[\S}

Q
=
]
0
=<
—— e — e — &

(9]
=
-

@]
=

$

IKJEREIM |Invckes the Access Methcd{
jto write the subsequent|]
|data into the data set;
|returns to IKJEBEMA.

12

o
0
Q
v e}

b o e e e T e T e e T e T e T e T e T e T e T e T e T e T e B T e T i e

|
|
t t
IKJEREUT |Acts as interface to IKJE-|
| BEAA which reads and|
|writes records intc the]

futility data set.
L L

217

o e s e S e e e T — T S s S s S . T s e S e, S e, o . i, S e, . . s . e =
=
=]

(Part 4 of

N e e B e e i e e e . —— s

(6]

Section 2: Method of Operation 91

Table 14.

Summary of INPUT Operations (Part 5 cf 5)

T

Subcommand | Operand

e B

L

T

| Keyword
| Value

T
|
I
|

Modules
Involved
in

Processing |Functicnal Descripticn
4

)
|
1

- X
oo

|
|
|
|
|
-

Q =
(=R
Ugg

s

| INPUT not
| entered;
| INSERT
|with no

| operands
| entered.

| None

|
|
|
|
|
I
|
I
|
I
I
|
I
|
|
I
!

T
I
I
I
|
+
I
I
I
I
I
|
I
|
I
I
[
|
|
|
I
I
I
I
|
!
I
I
|
!
|
|
I
|
|
|
I
|
4

[—— — e — . e, S e, S e, S o s S o —— . S— . e S, —

S

o e T e . e —— e e T e e e, T e e, e, e, . e, e, e, " e, o

=4
o
=]
o

I
i
T
I

IKJEBEMA

T

| Receives subcommand from

| INSERT subcommand

| processor (IKJEREIS)
|invckes the INPUT

| subcommand processor

| (IKJEBEIP); treats sukse-
|quent terminal ingput as
| data.

+

o
N

Q
=
]
(@]
<

IKJEBEIF

e e e —— e e S s S s, . . e, e]

T

|Ceterrines that the cur-|
|rent record is to be|
|located; specifies that|
| the new record will have a|
|1ine number of 1 greater|
|than the current record;|
|invckes the Access Methcd|
| to locate the current|
| reccrd; invokes the second|

|load of INPUT (IKJEBEIM). |
L 4

[ary
N

2]
=
-

¢!
[

IKJEBEIM

T Ll
| Invckes the Access Method|
|to write a new record|
|imwediately after the cur-|
|rent record; returns to|
| IKJEREMA.
4

12

s}
=<
[}
0
o

IKJEBEUT

|
1 T
|Acts as interface to IKJE-|
| EERA which 1lccates the|
| current line and moves|
| subsequent data into a new|
|line following the current|
{1ink. |
4

4.

27

e e e ———————————— e ———}
tx
H

et e s T e s e e e, = .) — e, T e, T e, T e, T ., e . e . . = i, " i . W s, S—

92 EDIT

TSO Command Processor PLM - Vol.

3 (Release 21)

INSERT Subcommand Processing

The INSERT subcommand writes one or more records into the utility data
set immediately following the record pointed to by the current line
pointer. Upon receipt of the INSERT subcommand, the controller routine
(IKJEBEMA) calls the command scan routine (IKJSCAN) to validate the
subcommand. If the syntax is valid, IKJEBEMA invokes the INSERT
subcommand processor (IKJEBEIS). Depending upon what the user has
specified, the INSERT subcommand processor:

e Returns control to the controller routine, which invokes the INPUT
subcommand, if no operands were specified.

e Writes data into the record following the current record, if "text"
were specified.
If the data set is line-numbered, the INSERT subcommand processor
either:

e Creates a new record using the next key value, or

e Terminates if the next key value already exists.

If the data set is unnumbered, the INSERT subcommand processor:

e If necessary, "pushes down" record keys following the current record
to make room for the record to be inserted.

e Creates a new record with a key of one greater than the current
record.
After the text has been inserted, the INSERT subcommand processor:

e Sets the current line pointer to the value of the key of the last
record inserted.

e Returns control to the controller routine.

Processing INSERT Operands

This topic describes the way in which the INSERT subcommand processor
operates when operands are specified or not specified. Table 15, which
follows this topic, summarizes the operations of the INSERT subcommand
processor.

No Operands Specified

If no operands are present, IKJEBEIS returns control to IKJEBEMA with a
return code of 4. IKJEBEMA then calls the INPUT subcommand processor
(IKJEBEIP and IKJEBEINM) to write the lines of input into the data set.
Writing into the data set begins at the line following the current line.
IKJEBEIM returns control to IKJEBEMA. (See the topic "INPUT Subcommand
Processing" for a description of subsequent processing.)

Section 2: Method of Operation 93

Operands_Specified

If an operand is specified (INSERT text) IKJEBEIS calls the Access
Method interface routine (IKJEBEUT) to read the next line. (Reading of
the next line is indicated by X'02' in the option code byte of the
parameter list passed to IKJEBEUT.) IKJEBEUT branches to the read
operation routine. (IKJEBERR) which uses the record locate (IKJEBELO)
to find the next line in the data set. After the next line has been
located, IKJEBEIS determines if it is empty by checking the return code
from IKJEBEUT. (A return code of 4 indicates an empty line.) If the
next line in the data set is empty IKJEBEIS calls IKJEBEUT again, this
time to write the input record (text) into the data set. Writing of the
record is indicated by X'20' in the option code byte and a pointer to
the line in the data set (the line following the current line) in the
second word of the parameter list passed to IKJEBEUT. IKJEBEUT branches
to the write operation routine (IKJEBEWR) which uses the move routine
(IKJEBEMV) to insert the new record into the data set. IKJEBEIS sets
the current line pointer to the record inserted. If the next line in
the data set is not empty and the data set is not line-numbered,
IKJEBEIS calls IKJEBEUT to write the input record into the data set.
IKJEBEUT branches to IKJEBEWR which uses IKJEBEMV to insert the new
record into the data set. Prior to writing of the new record, records
with higher keys are displaced to make room for the record to be
inserted.

94 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 15.

Summary of INSERT COperations

Subcommand | Cperand
1

T

Keyword

Keyword
Value

T
|
|
|

Involved

T
Modules |
|
in |

Processing| Functional Cescription
. L

e —— e —]
=2
(e}

e e s B et |

INSERT

Z
[e]
o]
(1]

None

None

|
4
Ll
|
|
|

v
IKJEBEMA |Receives subcommand from| 02

| cormand buffer; invokes|
| INSERT subcommand proces-|
|sor (IKJEREIS).
1

T
IKJEBEIS |Returns to IKJEBEMA. (See| 13

| INPUT

| processing).
i

sukccmmand|

+

|
|
|
| |
4

CW-CY|

INSERT

o o e e e e e s e s s g — — . . i . S . S G — — — — . — — . s s Gt o s s

data

None

S S S ——

=z
[e]
e}
o

e e e e e —— s — e — e ——— —— e e ——— —— e e e e i e i o

T T
IKJEBEMRA |Receives subcommand from| C2

| command buffer; invokes]|

| INSERT subcommand proces-|

| sor (IKJEBEIS).
4

- v
IKJEREIS |Invckes the Access Methcd| 13
|to locate the line follow-|
|ing the one pointed to «Ly|
|the current 1line pointer|
and tc move the data into|

lit.
L

-+—

+ ,

IKJEBEUT |Acts as interface to IKJE-| 27
| BEAA which 1locates the|
|1line fcllowing the current|

|line and moves

the input]

|data (indicated Ly the|

|operand ‘data')

|found line.

into the|
|

| |
| IKJERERA which lccates the]

| current line

and moves|

| suktsequent data into a new|
|1line following the current|

| line.
1

4

e e e e e e e e e s e i e e — e i e o e e e e e

Section 2:

Method of Operation 95

Line Insert/Replace/Delete Processing

The Line Insert/Replace/Delete function is an implicit subcommand
function which inserts, replaces, and deletes particular records in the
utility data set. (Note: This subcommand is invoked when the required
operand is entered. There is no subcommand name or designation to be
entered by the user.) Upon receipt of a number or * as the first
character of input while in the Edit mode, the controller routine
(IKJEBEMA) invokes the Line Insert/Replace/Delete processor (IKJEBELI).
Depending upon what the user has specified, the Insert/Replace/Delete
subcommand processor:

e Deletes a single record, if an "*" or a line number were entered.

e Inserts a single record, if a line number, followed by text, is
specified, and if the existing record on the utility data set is
empty.

e Replaces an existing record with a new record, if a line nunmber,
followed by text (the new record), is specified, and if the existing
record on the utility data set is not empty.

After the specified record has been deleted, or after the specified line
has received the new record, the Line Insert/Replace/Delete subcommand
processor:

e Sets the current line pointer.

e Returns control to the controller routine.

Processing _Line_Insert/Replace/Delete_Operands

This topic describes the way in which the Line Insert/Replace/Delete
subcommand processor operates when particular operands are specified.
Table 16, which follows this topic, summarizes the operations of the
Line Insert/Replace/Delete subcommand processor.

"k" or Line_ Number Specified

If only a required operand is entered, the specified line is deleted.
IKJEBELI calls the Access Method interface routine (IKJEBEUT) to delete
the record. (Deleting of a record is indicated by X'10' in the option
code byte and a pointer to the particular record in the second word of
the parameter list passed to IKJEBEUT). IKJEBEUT branches to the delete
operation routine (IKJEBEDR) which uses the record locate routine
(IKJEBELO) to find the record and the record delete routine (IKJEBEDL)
to delete it.

Line Number_and_Text Specified

If a required operand is followed by text (e.g. * t'data' or 10 'data'),
IKJEBELI calls the line edit routine (IKJEBELE) which converts the text
to be inserted (data) to uppercase, if CAPS were specified in the EDIT
command or defaulted and converts tabs to the specified number of
blanks. IKJEBELI calls IKJEBEUT to write the text into the specified
line. (Writing is indicated by X'20' in the option code byte and a
pointer to the line in the data set in the second word of the parameter
list passed to IKJEBEUT.) IKJEBEUT branches to the write operation
routine (IKJEBEWR) which uses the record locate routine (IKJEBELO) to
find the particular line in the data set. If a record exists in the
line which IKJEBELO has found, the record delete routine (IKJEBEDL) is
called to delete it. After the record is deleted, or if no record
exists in the found line, IKJEBEWR branches to the move routine
(IKJEBEMV) to insert the new record into the data set. (If the data set
type is either IPLI or BASIC, the new record is also passed to the
syntax checker which updates the reverse Polish-notated data set.)

96 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 16. Summary of Iine Insert/Replace/Lelete Operations

T T =TT =" T
| | | Modules |
| | Involved |
Keyword | in |
ubcommand | Operand Value |Processing|Functional Description
- +

|linnum

e —— ——

2 4]
HX
OO

Keyword

o
[\S}

+
| IKJEREMA |Receives implicit sukcon-
| |mand buffer; invokes the
| | Insert/Replace/Celete
|
1

one None None

| function.
4
r T

| IKJEBELI |Invckes the Access Methcd|
| |to £find the record indi-|

+——— e ——

14

| delete it.
4

|cated by 1linnur and

| IKJEREUT

+
|Acts as interface to IKJE-

|
4
T
| 27
| BEAA which 1locates the|
|reccrd with a key equal toj

|linnum and deletes the|
| record. |
4

S Rt e

Same function as above. | 02 |CW-CY|

14

—_———————— e — —

4
[e]
=]
o
2
[¢]
=]
o

“+—

+
the Access Methcd|

I
1l
+
| IKJEBEMA
I
| IKJEBELI

| Invckes
| |to £ind the current record|
| |and tc delete it.
1 4

27

|
r T "%
| IKJEBEUT |Acts as interface to IKJE-|
| | BERA which 1lccates the]|
|current record and deletes]|
lit.
I

None 02

4
[e]
o]
o

=4
o]
=]
[}
-+ ——t
[}
1
]
|
1
|
|
e

linnum
s

4
| Same function as above.
tring +

14

|

1

T

| IKJEBEMA
l.-

| IKJERELI

| Invckes the Access Methcd|
| {to £ind the record indi-|
| |cated by 1linnur and

| |replace it with ‘string’'.
L

¢ t --
| |2cts as interface to IKJE-| 27
| | BEAA which creates a reco-
	xrd if no key ccrresrondsj
	to 'linnum', or replaces a
	record having a ccrres-
	ponding key.

L

L

IKJEEEUT

|
|
|
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-+
* | None
|
|
|
|
|
|
|
|
l
|
|
|
|
|
| |
| t
| |
| |
|
|
|
l

o o S o A e o S e S e S . e o S . o e e . . S T . o . e T . S . e, . e S, S e S . i
o e e e e e e e e e e e e e e e e —— . e e e e e e — e ——

|
|
|
!
[
|
|
|
|
|
|
|
|
|
..+__
|
|
|
|
|
|
|
|
|
|
|
|
|

=
L]
S S —

|
i N

Section 2: Method of Operation 97

Updating the Current Line_ Pointer

If no text were specified, after the record is deleted, the Line
Insert/Replace/Delete subcommand processor sets the current line pointer
to the value of the key of the record preceding the deleted record. If
a line number and text were specified, after the new record is inserted
or after the old record is replaced, the Line Insert/Replace/Delete
subcommand processor sets the current line pointer to the key of the new
record.

LIST Subcommand Processing

The LIST subcommand prints out specific records from the utility data
set., Upon receipt of the LIST subcommand, the controller routine
(IKJEBEMA) calls the command scan routine (IKJSCAN) to validate the
subcommand. If the syntax is valid, IKJEBEMA invokes the LIST
subcommand processor (IKJEBELT). IKJEBELT determines if operands are
present by checking the status of the operand switch (CAOPERND in
IKJEBECA) . If operands are present, IKJPARS is called to scan then.
Depending upon what the user has specified, the LIST subcommand
processor:

e Displays the entire utility data set, if no operands were specified.

e Displays a range of records starting and ending with two specified
line numbers, if a line number range were specified.

e Displays a single record, if a single line number, or "*" yere
specified.

The records displayed will contain line numbers if the data set is
line numbered and the user has not specified the SNUM keyword. The LIST
subcommand processor:

e Displays unnumbered records with no line numbers.

e Displays numbered records with line numbers, if SNUM were not
specified.

e Displays numbered records with no line numbers, if SNUM were
specified.

The LIST subcommand processor returns control to the controller routine.

Processing LIST Operands

This topic describes the way in which the LIST subcommand processor
operates when particular operands are specified. Table 17, which
follows this topic, summarizes the operations of the LIST subcommand
processor.

No Operands_Specified

If no operands are present (for example, if LIST was entered), IKJEBELT
calls the Access Method interface routine (IKJEBEUT) to read the first
record of the data set. (Reading of the first record is indicated by
X'04' in the option code byte of the parameter list passed to IKJEBEUT.)
IKJEBEUT branches to the read operation routine (IKJEBERR) which uses
the record locate routine (IKJEBELO) to find the first record. IKJEBELT
calls IKJEBEUT again, this time to read the next record in the data set.
(Reading of the next record is indicated by X'02' in the option code
byte of the parameter list passed to IKJEBEUT.) IKJEBELT calls IKJEBEUT
after each succeeding record is read until the end of the data set is
reached.

98 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Line Number Range_ Specified

If a range of lines were specified as operands (e.g. LIST 10 20 or LIST
* 20 was entered) , IKJEBELT calls IKJEBEUT to read the record
represented by the first operand. After this record is read IKJEBELT
continues to call IKJEBEUT to read records until the record represented
by the second operand is read.

"x" or Single_ Line Number Specified

If a single line were specified as an operand (e.g. LIST 10 or LIST *
was entered), IKJEBELT calls IKJEBEUT to read the particular record.

Unnumbered_Data_Set

If the data set is not line-numbered, IKJEBELT calls IKJPUTL to write
out the record.

Line-numbered Data_Set, SNUM not Specified

If the data set is line numbered and SNUM was not specified, IKJEBELT
formats the output lines by affixing line numbers to their respective
records (separated by one blank from the data) with up to three leading
zeros truncated. After the output lines have been formatted, IKJEBELT
calls IKJPUTL to write out the records.

Line-numbered Data Set, SNUM Specified

If the data set is line-numbered and SNUM was specified, IKJEBELT
formats the output lines by blanking out the line numbers for
fixed-length records or by left-justifying the text for variable-length
records and for fixed-length records with line numbers starting in the
first byte (COBOL). After the output lines have been formatted,
IKJEBELT calls IKJPUTL to write out the records.

Section 2: Method of Operation 99

Table 17. Summary of I1IST Cperations (Part 1 of 2)

T

T T

| | Modules
| | Involved
| Keyword | in
Value Operaticn

MO |Chart|

Subcommand | Cperand iD

—4-—-
LIST | 1innuml
|1innum2

Keyword Functional Cescription

- —

None IKJEBEMA |Receives subcommand from 02
| corrand buffer; invokes
| subcommand processor

| (IKJEBELT) .
4

e ™ e = e e
-, ——— e e ——]

| |
} +
| |
| |
| |
| |
| + +
IKJEBELT	Invokes the Access Method	15
	to £find the record with a	
	key equal to linnuml and	
	to read it and each suc-	
	ceeding record until the	
i	reccrd with a key greater	
than or egual to linnum2		

|has keen found and read;| |

|obtain records from IKJE-| |

| EEUT and invokes PUTLINE| |

| to display them one at aj |

| time. | |

4 o4

4

|

|

|

|

4

|

|

Q
=
|
Q
]
e s o o s e e o e e o e e e e e e —— — e —— e e —

|

|

|

|

|

|

|

|

|

|

|

|

'r T %
| IKJEBEUT |Acts as interface to IKJE-| 27 ET
| |BEAA which 1lccates thel|
| | records with keys from|
| |1innurl to linnur2.
4 4

|

|
F

|

|

|

|

I

|

I

|

L
|

IKJERENMNA |same function as akove.
4

ount SNUM

Q *

Ncone c2

e ——— e

T

IKJEBELT |Invokes the Access Method| 15
|[to find the current recc-|
|rd, or the first record if|
|*¥ has a zero value, and to|
|read it and each succeed-|
Jing record until ‘count'|

—n, — ——— —— e s e e — s e e —

|

|

|

|

|

| records have been read;| |

|disglays records via| |

| | PUTLINE. | |
t + + +
| IKJEREUT |Acts as interface to IKJE-| 27 |
| | BEAA which locates the| |
{ |
| I
|

|

+

|

4

=
L=}

|reccxd with the current|
|key and the number of |

| | reccxds (indicated ky|
| ‘count') which follow.
i

linnum None c2

e

I
t t
None | IKJERENA |Same function as akove.
% 4
|

L

IKJEBELT |Invokes the Access Method| 15
|to find the reccrd with aj
|key egual to linnum and to]
|read it; displays the|
|record via PUTLINE.
4+

|
s
!
| 27

+

IKJEBEUT |Acts as interface to IKJE-
| BEAA which 1locates the]
|record with a key equal to|
|linnum. |
L

e T S T a——

[e e o o e e s e e . o . o o o S o e . o e o e e e . S e e . . e . . e s . e . e e e . . o . . . e e o .

b e e e e e " o e e =

Nt e e s s i s e

100 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 17. Summary of LIST Operaticns (Part 2 cf 2)

[mo==TTeTes T T T T T s T 1
| | | | | Modules | | | 1
				Involved			Flow
			Keyword	in		MO	Chart]
Subcommand	Operand	Keyword	Value	Operation	Functional Description	ID	ID
b + e t							
LIST	None	NUM	None	IKJEBEMA	Same function as akove.	€C2	CwW-CY
			k 1 + —				
				IKJEBELT	Invokes the Access Method	15	CT-CV
					tc read all the records in		
I				the data set; displays the			
					reccrds via PUTLINE.		
			k 1 4 SR 1				
				IKJEBEUT	Acts as interface to IKJE-	27	ET
1				EERA which locates the	I		
	I		first record of the Jatal				
					set and each record		
					thereafter until the end		
			[cE the data set is			
					reached.		
L ——t—— L L L L L L 3

Section 2: Method of Operation 101

MERGE Subcommand Processing

The MERGE subcommand copies all or part of a data set into a specified
area within the data set being edited. Upon receipt of the MERGE
subcommand, the controller routine (IKJEBEMA) calls the command scan
routine (IKJSCAN) to validate the subcommand. If the subcommand is
valid, IKJEBEMA invokes the MERGE subcommand processor (IKJEBEME).
IKJEBEME determines if operands are present by checking the status of
the operand switch (CAOPERND in IKJEBECA). If no operands are present
IKJEBEME issues an error message. If operands are present, IKJPARS is
called to validate them. IKJEBEME invokes IKJEBEDA to allocate a (CSAM
data set for use by the Final Copy routine (IKJEBEFC). When the data
set has been allocated, IKJEBEDA returns to IKJEBEME. IKJEBEME calls
IKJEBEFC to copy the utility data set into the QSAM data set. When copy
processing has been completed, IKJEBEFC returns to IKJEBEME. IKJEREME
again calls IKJEBEDA, this time to mark the DSE (Data Set Entry) for the
QSAM data set as 'not-in-use.' IKJEBEME builds a command buffer in
which it sets up a model MERGE command to be used by TSO MERGE command
processor. IKJEBEME calls the command invoker, (IKJEBECI), which in
turn invokes the TSO MERGE command processor.

When the TSO MERGE command processor has completed processing, it
returns control to IKJEBECI which returns control to IKJEBEME. IKJEBEME
again invokes IKJEBEDA to allocate the QSAM data set which now contains
the output from the system MERGE command processor. When the data set
has been allocated, IKJEBEDA returns control to IKJEBEME. IKJEBEME
calls the copy routine, IKJEBECO to copy the new QSAlM data set to a new
utility data set. When copy processing has completed, IKJEBECO returns
control to IKJEBEME. IKJEBEME saves the current line pointer which now
points to the end of the data set. IKJEBEME invokes IKJEBEDA a final
time to free the QSAM data set. IKJEBEDA returns control to IKJEBEME.
If the data set is IPLI or BASIC, IKJEBEME calls IKJEBEMR for
re-translation of the reverse Polish-notated data set. IKJEBEME calls
IKJEBEEX in every case to delete the 0ld utility data set. When
IKJEBEME receives control at the completion of MERGE command processing,
it returns to the controller routine.

The MERGE subcommand processor invokes the MERGE command (a Program
Product) . The MERGE command processor combines the specified data sets
or portions of data sets. See the Program Product publication, IBM
System/360_Operating System Time_ Sharing Option: _TSO Data Utilities:
Copy, Format, List, Merge User's_Guide_and Reference_Manual for a
description of the use and function of the MERGE control words.

Processing MERGE_Operands

This topic describes the way in which the MERGE subcommand processor
operates when particular operands are specified. (The Program Product
publication TSO_Data Utilities: _Copy, Format, List, Merge_ User's_Guide
and_Reference_ Manual describes the particulars of the MERGE subcommand
operands; the licensed Program Product publication, ISO_Data_Utilities:
Copy, Format, List, Merge_ Program_Logic_Manual describes the internal
logic of the TSO MERGE command processor.) Table 18, which follows this
topic, summarizes the operations of the MERGE subcommand processor.

"k Oonly Specified

If the dsname is specified as '*', IKJEBEME uses the QSAM data set name
obtained from IKJEBEDA as the first operand of the model MERGE command.
The second dsname operand of the model command is the name of the (CSAM
data set.

102 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

DSNAME Specified

If a dsname is specified, IKJEBEME uses it as the first operand of the
model MERGE command. The second dsname operand of the model command is
the name of the QSAM data set.

Linenumber_ 1_and Linenumber 2_Specified

If linenum 1 and linenum 2 are specified by the user as operands of the
subcommand, IKJEBEME moves them into the model MERGE command buffer as
operands of the MERGE TSO command.

Linenumber 3 and RENUM Keyword Specified

If the user specified data set is line-numbered and the merge point is
'*1', TKJEBEME places the current line pointer in the linenum 3 operand
position of the model MERGE command. It then moves the keyword operand
RENUM into the model command.

Linenumber 3 and NONUM Keyword Specified

If the user specified data set is not line-numbered and the merge point
is '*', IKJEBEME calls IKJEBEUT to read the data set backwards from the
current line pointer to the beginning to obtain a relative record
number. If the user did not specify line number 3 IKJEBEME defaults the
value to '*', It then moves the keyword operand NONUM into the model
command.

Section 2: ‘Method of Operation 103

| Table 1s.

Summary of MERGE Operations (Part 1 cf 2)

]
|
|
I

| MERGE

[o P e e s i i, B e, o e, S e, S e, S . ., . g, S e S O, e, o

104

EDIT

T T T

T
|

| Inveclved |

Modules

in

Processing| Functional Cescription
4

T
I
|

MO
1D

| (Refer to the

| Program Product
|publication, TSO
|Data Utilities:
{COPY, FORMAT,

| LIST, MERGE

|for particulars.)

[e e s e e — e, e e, T e, T i, = . " s T e = s, s, e . e, e, S e, o e, e, W e

o e e e s . e e i b e S . e i S o i . A o S o e S s e et e

|
<4
L
I
|
|

I

IKJEBEMA

L

| Receives subcommand from
|corrand buffer; invokes
| subcommand processor

{ (IKJEBEME) .

1

e e s e o e o e e]

02

(9]
=
[}
Q
<

———

IKJEEENE

T

| Invokes IKJEBELCA to alloc-|

|ate a CSAM Jata set to be|

|used Lky the Final Copy|

|zoutine (IKJEREFCQ). {
|

|

|Calls IKJERBREFC tc cory the|
Jutility data set into the|
|CSAM data set. |

|Euilds a command kuffer in|
|which it sets up a model]
|MERGE command to Le wused|
| by TSO MERGE command |
|cxrccessor. |
| I
| For EASIC or IPLI, invokes|
| IKJEBEMR to update the|
| reverse Polish-nctated|
| data set; invokes IKJEBEEX]|
|to unallocate the cld uti-|

|1lity data set. |
4 +

16

IKJEEECI

T T
| Fasses control to the|
| MERGE command processor |
|via ATTACH with model com-|
|mand as input; returns |
jcontrcl to IKJEREME when|
| the MERGE command proces-|
|soxr has ccmpleted|
| processing. |
L

TSO Command Processor PLM - Vol. 3 (Release 21)

N b e e e e R e e — s e —— e — e . " . = . o, . . e, e ol

0]
Hh
N

Table 18.

Summary of MERGE Operations (Part 2 cf 2)

—— e

| Subcommand | Cperand

-1--

|
|

| Keyword |
|Processing | Functicnal Descripticn
4

-
|

| Invclved |

_____ R

I
I
I
|
I
I
I
I
|
I
I
I
I
I
I
I
I
I
*
|
I
[
I
b
I
|
4

!
|
|
[
|
|
I
|
I
I
|
|
|

4 -_
| IKJEBEDA |Allocates the (QSAM data| --

| set which contains|

|output from the MERGE com-|

rand processor.
IR

|set tc a new utility dataj|

| set.
4

——— e Y e —

| set into

4
IKJEBEEX |Unallocates o014
|data set

|operation.
i

1
IKJEEEFC |Cories o01d wutility data] --
an intermediate|
|cSAM data set.
4

utility]| 26
merge |

in-|

and to|

t —fm]
IKJEEENR |Calls ITF language proces-| --

|sor to delete
|stcrage data
|create a new data set.
}

oo e e e e e e g —

+
IKJEECI |FPuilds a parameter list|

IR
+

[
N

|and invokes the Command toj|

|attach the
| command.
4

TSO PROFILE |

b e oy e = s e e o e

4

IKJEEECI |2ttaches
| command.
L

PROFILE

——t—

>
(@]
-~
>
o)
b o s it o e —

F——t————t

Section 2:

Method of Operation 105

PROFILE Subcommand Processing

The PROFILE subcommand redefines the set of options which control the
flow of information to and from the terminal. Once defined, the options
specified become part of the user profile, entered in the User Profile
Table., The user profile remains in effect until it is redefined by the
user. When User Profile Table entries are redefined, any options not
specifically defined by operands on the PROFILE subcommand remain
unchanged.

Upon receipt of the PROFILE subcommand, the controller routine
(IKJEBEMA) invokes the HELP/PROFILE subcommand processor (IKJEBEHE).
IKJEBEHE builds a two-word parameter list which contains pointers to the
EDIT Communication Area (IKJEBECA) and to the subcommand buffer.
IKJEBEHE insures that the third and fourth bytes of the subcommand
buffer contain zeros. The contents of the buffer begin with a header
word, which is a fullword, of the form "LLOO", where LL is the entire
length of the buffer, including this header word. Zeros in the third
and fourth bytes are necessary to enable IKJSCAN to scan the buffer.
IKJEBEHE passes control (via XCTL) to the command invoker routine
(IKJEBECI). The command invoker routine invokes the TSO PROFILE command
processor (via ATTACH). (See the publication IBM_System/360 Operating -
System:_ _Time_Sharing Option Command Processor_ Program_Logic_Manual

processor.) When the PROFILE command has completed processing, IKJEBECI
receives control and returns to IKJEBEMA. Table 19 summarizes the
operations of the PROFILE subcommand processor.

106 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 19. Summary of PROFILE Operations (Part 1 of 2)
r =T T T T T T hubuty Anahahaiay h}
| | | | | Modules | | | |
| | | | | Involved | | |Flow |
| | | | Keyword | in | | MO |Chart]
| Subcommand|Operand |Keyword | Value |Processing| Functional Cescription | ID | ID |
t -—-% + + 1 + t-———t-————yq
PROFILE	None	NOLINE	None	IKJEBEMA	Receives subcommand from	02	CW-CY
		CHAR	(char)		corrand buffer; invokes		
		or	(BS)		HELP/PROFILE subcommand		
bl	CHAR			pxccessor (IKJEBEHE).			
			k + + 4-—---1				
				IKJEBEHE	Builds a parameter 1list	11	BW
				land invokes the Ccrmand			
					Invoker to attach the TSO		
					PROFILE command.		
			k + -4t				
				IKJEBECI	Attaches the PROFILE	--	AO, AP
					corrrand.		
			b } T S 1				
				Tso	Nullifies existing line f —	-	
				PROFILE	delete characters; sreci-		
				command	fies a keyboard character		
			i	("char') or the keykoardj			
					backspace ('BS char') as		
					the character delete		
	[indicator. I			
t ¥ ¢ t t t PR s							
PROFILE	None			IKJEBRENA	Same function as akove.	C2	CW-CY
	(char)						
			t t t t 1				
				IKJEBEEE	Puilds a parameter 1list	11	B4
					and invokes the Command		
				Invcker to attach the TSO			
‘					PROFILE command.		
			t t t t 1				
				IKJEEECI	Attaches the PROFILE	--	AQ,AP
					command.		
			t + t -+-—-- 4				
		NCCHAR	None	Tso	Specifies a keykcard	— 1 --	
		LINE	(char)	PROFILE	character ('char'), the		
		ox	(ATTN)	cormrand	keybcard attenticn		
i		LINE			(*ATTN') or the X and CTLX		
		or			keys cn a teletyge		
		LINE	(CTLX		terminal as the line indi-		
					catcr; nullifies existing]		
					character-delete		
					indicators.		
t + + + + + + + 1							
PROFILE	None	NOPROMPT	PR	IKJEBEMA	Same function as above.	02	CwW-CY
4			t t t + 1				
				IKJEBEEE	Euilds a parameter 1list	11	B4
					and invokes the Command		
					Invcker to attach the TSO		
				PROFILE command.			
		t + t t 1					
				IKJEEECI	Attaches the PROFILE	--	AQ,AP
					command.		
			t + t + 1				
				TSo	Specifies that the user	-	-
				PROFILE	is not to be prompted		
				comrand	for required information.		
L 4 4 4 4 1 4 4 —-=J
(Part 1 of 2)

Section 2: Method of Operation 107

Table 19.

Summary of PROFILE Cperations (Part 2 of 2)

r T T T T T T T 1
I | | | | Modules | | | |
| | | | | Involved | | | Flow |
| | | Keyword | in | | MO |Chart|
] Subcommand | Operand |Keyword | Value |Processing| Functional Cescription | ID | ID |
L 4 4 L 1 4 4 +_ f
T T T T T T Ll
PROFILE		INTERCOM	None	IKJEBEMA	same function as above.	02	CW-CY
	I	t	---+ t :				
				IKJEREBE	Euilds a parameter 1list	11	BAd
					and invokes the Command		
					Invcker to attach the TSO		
					PROFILE command.		
			t + t t 1				
				IKJEEECI	Attaches the PROFILE	--	AQ,AP
					command.		
			i F——m- + + i				
				TSC	Specifies that the user	- 1	—
				PROFILE	will accept messages		
				Cormand	fror cther terminal users.		
3 + + + + + - + 4-—-—- 1							
PROFILE		PAUSE	None	IKJEBEMA	Same function as above.	02	CW-CY
[[t - -+ + i					
				IKJEREEE	Puilds a parameter 1list	11	BAd
					and invokes the Command		
					Inveker to attach the TSO		
}				PROFILE command.			
			t t t t+ 1				
				IKJEEECI	Attaches the PROFILE	--	AQ,AP
					command.		
			¢ S B ma				
			4 Tso	Specifies that the user	=—-	--	
[PROFILE	will receive any available		
				Comrand	second-level messages		
					issued during execution of		
					a corrand procedures.		
8 L L L 4 4 - 4. —_—d
(Part 2 of 2)
108 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

RENUM Subcommand Processing

The RENUMBER subcommand assigns line numbers to each record of an
unnumnbered data set or renumbers each record of a numbered data set.
Upon receipt of the renumber subcommand, the controller routine
(IKJEBEMA) calls the command scan routine (IKJSCAN) to validate the
subcommand. If the subcommand is valid, IKJEBEMA invokes the RENUMBER
subcommand processor (IKJERERE). IKJEBERE determines if operands are
present by checking the status of the operand switch. If operands are
present (CAOPERND in IKJEBECA is set to 1) IKJEBERE calls IKJPARS to
validate the operands. Depending upon what the user has specified, the
RENUM subcommand processor:

e Renumbers an entire utility data set from the first record if no
operands are specified or if an "old line number" is specified which
is equal to the first record.

e Renumbers a range of records from a specified record to the end of
the data set if an "old line number" is specified.

The RENUM subcommand processor assigns line number values and an
increment value:

e Based on the last increment used by INPUT or RENUM, if no operands
are specified. (An increment of 10 is used if this is the first use
of either subcommand.)

e Based on values specified as "new line number" operand and
"increment" operand.

After the records have been renumbered, the RENUM subcommand processor
updates the following fields in IKJEBECA:

e CANONUM bit set to 0 if the data set was previously unnumbered.

e CACURNUM, the current line pointer, set to the same relative record
that it pointed to before RENUM processing.

e CAIMLLNO, the last input line number.
e CAIMLINC, the increment used to renumber the data set.
e CASTNUM, the starting line number.

e CADSMODS bit in CACFLAG2, set to 1 to indicate that the data has
been modified.

e CAIMPT bit in CACFLAG3, set to 1 to indicate that Input mode is to
prompt with line numbers.

The RENUM subcommand processor (IKJEBERE) then returns control to the
controller routine.

Processing RENUM Operands

This topic describes the way in which the RENUM subcommand processor
operates when various operands are specified. Table 20, which follows
this topic, summarizes the operations of the RENUM subcommand processor.

Section 2: Method of Operation 109

No Operands_ Specified

If no operands are specified IKJEBERE calls IKJEBEUI to allocate a new
output utility data set. If the data set type is BASIC, IKJEBERE calls
IKJEBERN and IKJEBEMR to renumber the utility and reverse Polish-notated
data sets respectively. If the data set type is IPLI, IKJEBERE
renumbers the utility data set and invokes IKJEBEMR to update the run
time data set. IKJEBERE invokes the Access Method (IKJEBEAA) via
IKJEBEUT, the interface routine, to read the first specified record. If
the data set is not already numbered IKJEBERE examines the record and if
necessary, formats it. IKJEBERE calls IKJEBEUT to write each updated
record into the utility data set. Processing continues as if operands
had been specified. See Continued Processing below.

"0ld Line_Number" Specified

If an old line number has been entered as an operand, it must be
validated. IKJEBEUT reads the record specified by old line number. If
the new line number is greater than or equal to the old line number
(i.e., the record key) processing passes to a copying loop in IKJEBERE.
However, if the new line number is less than the 0ld line number
IKJEBERE calls IKJEBEUT to read the record preceding the one just read.
If the record read is greater than or equal to the new line number, a
message is issued and RENUM terminates., Since the data set is already
numbered IKJEBERE updates the record keys by adding the user specified
increment to the first new key and numbers succeeding lines by the
increment., IKJEBERE calls IKJEBEUT to write each updated record into
the new utility data set and continues processing.

Continued_ Processing

e If the record format is fixed and non-blanks are in the area needed
for the line number (bit CACRECFM in CACFLAC2 is set to 1), IKJEBERE
updates the key and indicates that a truncation message must be
issued (ISSTRUNK bit in REMYFLAC is set to 1).

e If the record format is variable (bit CACRECFM in CACFLAC2 is set to
0) , IKJEBERE shifts the data to the right to make room for the line
number to be entered. If this causes data overflow of non-blank
characters and the data set is not "TEXT" type the ISSTRUNK bit in
REMYFLAC is set to 1 indicating truncation. If the data set is
'TEXT' type, IKJEBERE breaks the record, builds a new record using
the overflow and sets the ISSTRUNK bit to 1.

e IKJEBERE calls IKJEBEEX to close and unallocate the old utility DCB
if renumbering is successful.

e IKJEBERE moves the current DCB pointer (CAPTCDCB in IKJEBECA) to the

previous DCB pointer field (CAPTPDCB). It then resets the CAPTCDCB
field to the address of the new utility DCB and returns to IKJEBEMA.

110 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 20. Summary of RENUM Cperations

T T T

| | |

| Keyword |

Subcommand|Operand |Keyword |Value |
4

Modules

Involved in
Processing| Functional Description
4

T
|

MO
ID

Flow
[Chart
| ID

J----- 1
I

_____ -4--

+
RENUM | None None | None |

———— ——————— —{——— ——

Jp— — — —— -— — —_ — — — ———

IKJEBENA

-+ ———

+
| Receives subcomrand from|
| command buffer; invokes
| subccnrand precesscr.

4

c2

IKJEBERE

- —

T

| Invokes the Access Method|
|to find and read eachj
| record of the data set;|
|gives the first record a|
|line number of 10 and|
|renurkers the succeeding]
| records, each with an|
|increment of 10 until the|
|data set has been renum-|
|tered; after each record|
|is renumbered, invokes the|
| Access Method to write thej
|record into a new utility|
|data set (Renum data set).|
4

18

e e i — e, —

IKJEBEUT

4
T T
|Acts as interface to IKJE-|
| EEAA which, Leginning at|
|the first record of the|
|data set, reads the reco-|
| xds into storage and |
|writes them into the Renum|
| data set.
4

27

IKJEREUI

T
|Acquires the Renum data
| set.

26

" IKJEREEX

Clcses and frees data set.

26

RENUM New None

linenum
incre

old
linenum

|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
!
|
|
]
|
|
!
|
|
|
I
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

o o e T e " e, . T i, " e . " o, " e " s, T s e . o s, . e s e, e e s, T i, o . i, e o, . = e, . . = s, . T e,
Z
[e]
=]
(0]

e e e e e e e e e e e e e —————— e ——————— e

[o e . . . e .t S T . ke S S . T, T e, Wt G, . o e — . Y e
o e e ———— e e e e ——— e e = e e

IKJEBEMA

Same function as above.

G+ =t

02

IKJEEERE

| Invckes the Access Method
|to £ind and read the

| reccxrd with a key equal
|to 'old linenum'; gives
|this record a new 1line|
| number egqual to 'new|
|linenun’'; invokes the|
|Access Method to read the|
|rerainder of the data set]|
|into storage one by one;|
| renurkers the succeeding]|
|records with an increment|
|cE ‘'incre'; invckes the|
| Access Method to write]
|renunkered records into aj
|new utility data set |
| (Renunr data set).
4

s S o, e e e, e, s o st . e

-

18

IKJEBEUT

T

|Beginning at the recori|
|with a key equal tc 'old|
|linenum', reads the reco-|
|xds into storage and|
|writes them into the Renum|
|data set.
1

27

IKJEBEUI

T
| Same function as above.
N

26

ET

-—————

IKJEEEEX

o e i e

1
|same function as akove.
4

26

e e o o e e e e e e e e

Section 2: Method of Operation 111

RUN Subcommand Processing

The RUN subcommand compiles, loads, and executes ASM, BASIC, COBOL,
FORTGI, IPLI, PLI, and GOFORT data sets, Upon receipt of the RUN
subcommand, the controller routine (IKJEBEMA) calls the command scan
routine (IKJSCAN) to validate the subcommand. If the subcommand is
valid, IKJEBEMA invokes the RUN subcommand processor (IKJEBERU). If the
data set is not an executable one, i.e., not ASM, BASIC, COBOL, FORTGI,
PL/I, PL/I(F), IPLI or GOFORT or any other user-specified types that

are non-executable, IKJEBERU returns control to IKJEBEMA. IKJEBERU
determines if the data set type is BASIC or IPLI. If the data set type
is either BASIC or IPLI, IKJEBERU calls the appropriate syntax checker
which runs the data set. For all other data set types, IKJEBERU
determines if operands are present by checking the status of the

operand switch. (CAOPERND in IKJEBECA). If operands are present, IKJPARS
is called to scan them. If no operands are present, or after operands
have been validated, depending upon the data set type, the RUN subcommand
processor performs the following functions:

e For data set types that can accept in-storage data sets (i.e., the
CARUNDS bit is on in IKJEBECA), reads records from the utility data
set into storage or allocates a new data set if the utility data set
is too large to be contained in a 4K in-storage data set.

e For all other data set types, allocates a new data set.

For the data set types that required an allocated data set, the RUN
subcommand processor:

e Invokes the final copy routine (IKJEBEFC) to write a copy of the
original data set in QSAM format into the newly allocated data set.

e Invokes the allocating routine (IKJEBEDA) to mark the DSE entry not
in use.

e Invokes TSO RUN command processor, for an OBJ-generating data set
(i.e., CAOBJGEN bit is on in IKJEBECA). (See the IBM System/360
Operating System Time Sharing Option Command Processor Program Logic
Manual Volume VI publication for a description of the internal logic
of the RUN command processor).

e Invokes the appropriate prompter whose name is obtained from the
CAPRNAME field in (IKJEBECA) or a non-OBJ-generating data set,

For data set types that can accept in-storage data sets, the appropriate-
prompter whose name is obtained from the CAPRNAME field in (IKJEBECA)
is invoked.

When TSO RUN command processing has been completed, the RUN subcommand
processor:

¢ Returns command to the controller routine.

RUN Processing for Particular Data Set Types

This topic describes the way in which the RUN subcommand processor
operates when particular data set types are specified. Table 21, which
follows this topic, summarizes the operations of the RUN subcommand
processor.

112 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

GOFORT Data Set Type

If the data set type accepts in-storage data sets, IKJEBERU attempts to
build a copy of the utility data set in storage. A GETMAIN is issued for
4K of buffer storage and records are read using IKJEBEUT. Each record is
moved into the buffer (with the record key removed) until all records in
the utility data set have been read, or until the buffer storage is
exhausted.

If the buffer storage is exhausted before the data set can be built,
IKJEBERU invokes IKJEBEDA to allocate the run-time data set, and
IKJEBEFC to copy the utility data set into a sequential (run-time) data
set.

When the data set is copied into the run-time data set or into
storage, IKJEBERU builds a model command and invokes the appropriate
prompter via IKJEBECI. The run-time data set is unallocated via IKJEBECA,
if data set was allocated.

For any OBJ-generating data set, IKJEBERU invokes IKJEBEDA to allocate an
intermediate sequential (run-time) data set and IKJEBEFC to copy the utility
data set into the run-time data set. A model RUN command is built and the
system RUN command processor is invoked via IKJEBECI. Upon return from
IKJEBECI, IKJEBERU invokes IKJEBEDA to unallocate the run-time data set, and
the corresponding OBJ data set.

BASIC or IPLI Data Set Type

IKJEBERU invokes the appropriate language processor which is resident in
storage while EDIT is being executed.

For any other executable data set type, IKJEBERU invokes IKJEBEDA to allocate
an intermediate sequential (run-time) data set and IKJEBEFC to copy the
utility data set into the run-time data set. A command is built and its
appropriate prompter (whose name is extracted from the CAPRNAME field of
IKJEBECA) is invoked via IKJEBECI. Upon return from IKJE BECI, IKJEBERU
invokes IKJEBEDA to unallocate the run-time data set.

Note: Execution of source data sets other than IPLI, BASIC, or GOFORT is
accomplished through the system Loader. If the 'parameters' operand is
specified on the EDIT RUN subcommand, the Loader will pass the specified
parameters in accordance with the standard Operating System linkage
conventions, See the topic "Program Management Services" in the
publication IBM System/360 Operating System: Supervisor Services,
GC28-6646 for information about these conventions.

Section 2: Method of Operation 113

| Table 21.

Summary of RUN

Operations (Part 1 of 2)

Subcommand

Operand

Keyword

Keyword
Value

Modules

Involved
in

Processing

Functional Description

MO
ID

Flow
Chart
ID

RUN

para-
meters'

None

IKJEBEMA

Receives subcommand from
command buffer; invokes
subcommand processor
(IKJEBERU) .

02

CwW-CY

IKJEBERU

Invokes IKJEBEDA to
acquire a Run data set and
the Final Copy Routine
(IKJEBECF) to read the
records from the utility
data set into the new Run
data set; builds TSO RUN
command; invokes the
command invoker which
attaches the TSO RUN
command, for OBJ-
generating data sets;
otherwise it attaches the
approproate prompter.

19

DP,DQ

IKJEBEDA

Is invoked to:
1. Allocate a QSAM data
set.
2. Mark DSE entry not in
use.
3. Unallocate the QSAM
data set.
4, Unallocate the OBJ
data set, if one was
generated.

AX-.

IKJEBEFC

Invokes the Access Method
to find and read each
record from the utility
data set into the Run data
set.

BR,BS

IKJEBECI

For an OBJ-generating data
set invokes the TSO RUN
command; otherwise invokes
the appropriate prompter;
in both cases passes the
command buffer built by
IKJEBERU. (RUN subcommand
parameters are included) .
It also invokes the
commands in the procedure
built by the RUN command,
if the data set type was
OBJ-generating.

AO,AP

TSO RUN
Command

Builds a command procedure
required to cause
compilation and execution
of the RUN data set, for
OBJ-generating data set
types.

0s0s

RUN

None

LMSG
SPREC

None

IKJEBEMA

Same function as above.

02

CW-CY

IKJEBERU

BASIC data set - IKJEBERU
invokes LANGPRCR to
execute data.

19

DP,DQ

LANGPRCR

Executes user's data set.

114 EDIT

TSO Command

Processor PLM -

Vol.

3 (Release 21)

ITable 21. sSummary of RUN

Operations (Part 2 of 2)

Subcommand

Operand

Keyword

Keyword
Value

Modules

Involved
in

Processing

Functional Description

MO
ID

Flow
Chart
ID

RUN

None

None

None

IKJEBEMA

command buffer;

Receives subcommand from
invokes
subcommand processor
(IKJEBERU) .

02

CW-CY

IKJEBERU

For data set types
accepting in-storage data
sets invokes IKJEBEUT to
read the data set into a
4K in-storage buffer;
invokes STACK to put the
in-storage data set on the
input stack; invokes
IKJEBECI to attach the
appropriate prompter.

For other data set types
(excluding BASIC or IPLI),
or for data sets over UK
that were acceptable in-
storage invokes IKJEBEDA
to allocate a run-time
data set; invokes IKJEBEFC
to copy the utility data
set into the run-time data
set and invokes IKJEBECI
to attach either system
RUN or the appropriate
prompter,

19

DP,DQ

IKJEBEUT

Reads records into the 4K
in-storage buffer via
IKJEBEAA, in the storage
of a data set type
accepting on in-storage
data set

27

ET

IKJEBEDA

Is invoked to:
1. Allogate a QSAM data
set.
2. Mark DSE entry not in
use.
3. Unallocate the QSAM
data set.
Unallocate the OBJ
data set, if one was
generated.

4.

AX

IKJEBEFC

Copies the utility data
set into the sequential
run-time data set.

BR,BS

IKJEBECI

For an OBJ-generating data
set invokes the TSO RUN
command; otherwise invokes
the appropriate prompter;
in both cases passes the
command buffer built by
IKJEBERU. (RUN subcommand
parameters are included).
It also invokes the
commands in the procedure
built by the RUN command,
if the data set type was
obj-generating.

AO,AP

TSO RUN
Command

Builds a command procedure
required to cause
compilation and execution
of the RUN data set.

Section 2:

Method of Operation

115

SAVE Subcommand Processing

The SAVE subcommand retains the copy of the Edit data set to which
changes have been made. Upon receipt of the SAVE subcommand, the
controller routine (IKJEBEMA) calls the command scan routine (IKJSCAN)
to validate the subcommand. If the subcommand is valid, IKJEBEMA
invokes the SAVE subcommand processor (IKJEBESA). - IKJEBESA determines
if operands are present by checking the status of the operand switch
(CAOPERND in IKJEBECA). If operands are present, IKJPARS is called to
scan then.

Depending on whether or not the user has specified a data set name as
an operand, the SAVE subcommand processor:

e Saves only the updated version, if one exists, of an Edit data set
if the user has not specified an operand.

e Saves the updated version of the Edit data set and retains the
original version, if one exists. The updated version is given the
data set name specified by the user as operand.

e Returns control to the controller routine.

Processing_the SAVE_Subcommand

This topic describes the way in which the SAVE subcommand processor
operates when operands are specified or not specified. Table 22, which
follows this topic, summarizes the operation of the SAVE subcommand
pProcessor.

DSNAME Specified

If a data set name is present and not enclosed in quotes, IKJEBESA
invokes IKJDFLT to qualify the name. IKJDFLT places the user
identification as the left qualifier (if it is not present) and the data
set type qualifier as the right qualifier (if it is not present, or if
only one index level is specified). If the data set type is present as
the right qualifier, IKJEBESA removes it and invokes IKJDFLT to place it
back again. If the data set name is enclosed in quotes and has more
than one index level, IKJEBESA removes the rightmost qualifier and
invokes IKJDFLT to place it back again.

If only a member name is present and a member name was specified on
the EDIT command, the Edit data set name is used and is treated as if it
were enclosed in quotes. If only a member name is present and no member
name was specified on the EDIT command, IKJEBESA invokes IKJDFLT to
concatenate the user identification and data set type qualifier.

IKJDFLT also determines if the fully-qualified data set name is
cataloged.

After the data set name is fully-qualified, IKJEBESA compares it with
the fully-qualified Edit data set name. If the names are the sanme,
processing continues as if no operands were present. If the names
differ, then the updated Edit data set will be retained with the Save
data set name. If the data set name is not cataloged, IKJEBESA calls
the data set allocation routine (IKJDAIR) to allocate a new data set
with a disposition of NEW, CATLG. If IKJDAIR is unable to allocate a
data set with this disposition because a data set already exists with
this name, or if the name is cataloged, further processing depends on
the data set organization.

116 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

If the data set is sequential, IKJEBESA issues a warning message to
the user, who may then enter a different data set name to begin
processing over again, or a carriage return to continue processing.
IKJDAIR is then called to retry allocation of the data set.

If the data set is partitioned and the specified member exists,
IKJEBESA issues a warning message to the user, who may then enter a
different member name or a carriage return to use the specified member.

When the data set has been allocated, IKJEBESA calls the final copy
routine (IKJEBEFC). Processing continues with IKJEBEFC calling IKJEBEUT
which reads records from the utility data set, and writes them into the
Save data set. Thus the data set with changes is retained with the Save
data set name, and the original Edit data set, if any, is undisturbed.
IKJEBESA returns control to IKJEBEMA, after calling IKJDAIR to
unallocate the data set.

No Operands Specified

If no operands are present, the changed version of the Edit data set
that is on the utility data set is to replace the original Edit data
set. If the Edit data set is already allocated, IKJEBESA can call the
final copy routine (IKJEBEFC) to write the contents of the utility data
set into the Edit data set. If the Edit data set is not already
allocated (that is, for the first allocation of a NEW data set), the
Edit data set name is treated as described under "Dsname Specified." If
the IKJDFLT service routine finds that the Edit data set is cataloged
when the user specified NEW on the Edit command, the user is warned and
prompted to: (1) re-use the data set or (2) specify an alternate data
set name., If the Edit data set exists and is partitioned, and if the
member name specified exists (NEW was specified on the command), the
user is warned and prompted to: (1) to re-use the member or (2) to
specify a new member name. Once the Edit data set has been allocated,
IKJEBEFC is invoked to copy records from the utility data set into the
Edit data set.

Section 2: Method of Operation 117

Table 22. Summary of SAVE Cperations

T L)

I |
I |

T

| Keyword
Subcommand |Operand |Keyword |Value
4 ‘4 L

T
|
I

|

Modules
Involved
in

Processing

T
|

I

l . -

| Functional Description
i

$

| name |
| (not the|
|same as |
the Edit|
data set|
| name)

—— ————— — —— ——— —

N

— 4+

T T
SAVE |dataset |None

+

2
[e]
3
0]

-———— e —

IKJEEENA

| Receives subcomrmand from
| command buffer; invokes
| subcerrand processcr

| (IKJEBESA).

L

s e e]

———

r
|

IKJEEESA

+
| Invckes TSO service
|routine IKJDFLT to fully
|qualify data set name;
|invokes TSO service rou-
jtine IKJIDAIR to allocate a}
| save data set; invokes the|
|final copy routine (IKJE-|
| BEFC) to write the con-|
|tents cf the utility datal]
| set into the sSave Jatal
| set.
4

l
|
|
!
|
|
|
|

ol —

20

L
r
|

IKJEBEFC

T

| Invokes the Access Method|
|to find and 1read each]
{record of the utility datal
|set; writes the records inj|
| to the Save data set.
4

o
o
]
=
w

i e s e, s, . . e e, e e,

- T
SAVE | None or |None
|data- |
|set name|
| (same
|name as
|Edit
|data
| set)

[o e e, e . S S o, . o, W e, S e, . i, . S, o s, . S, WY . S e S S S, S . S . . . S . . e, S . e, T S, S, WY e, S . o)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
l
|
|
!

[o e e e e e . g e o, . s, . .

None

e e e s e e e e e e e e e e o T e o . e, S e s o e e e

IKJEEENA

i _ .
|Same function as atkove.
4

c2

r
I

IKJEBESA

L

| Invokes the TSO service
|routine IKJDFLT to fully
|qualify data set name, if
|data set name is

| specified; determines
|that data set name speci-
|fied and Edit data set]|
|name are the same; invokes]|
| the final copy routine |
| (IKJEEEFC) to write the|
|contents of the utility]
|data set into the Edit]|
| data set.
4

———— e i e o e

20

$

I
|
4

IKJEEEEC

e —

}
| Invckes the Access Methcd|
| to find and read each]
|record of the utility data]
| set; converts each record|
|to ¢SAM data set format|
|and writes the records|
|intc the Edit data set. |
4

g

o]
)
-

o
[47]

118 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

o s S, S s, " s B T e, S e B e, s, " e, " e

1
i

SCAN Subcommand Processing

The SCAN subcommand performs syntax checking for statements that will be
processed by the PL/I(F), FORTRAN(E), FORTRAN(G) or FORTRAN(H) compiler
or by the Code and Go FORTRAN, FORTRAN IV (G1), ITF: BASIC or ITF: PL/I
Program Product. ©Upon receipt of the SCAN subcommand, the controller
routine (IKJEBEMA) calls the command scan routine (IKJSCAN) to validate
the subcommand. If the syntax is valid, IKJEBEMA invokes the first load
of the SCAN subcommand processor (IKJEBESC). IKJEBESC determines if the
data set type specified by the user is an invalid type for scanning
(CASCAN switch in IKJEBECA is set to zero). If so, IKJEBESC invokes the
message service routine to issue an error message and returns control to
the caller.

Depending upon what the user has specified, the SCAN subcommand
processor:

e Loads and initializes the required syntax checker, if the ON keyword
were specified.

e Deletes the syntax checker, if the OFF keyword were specified.

e Passes records from the utility data set to the syntax checker in
storage, if the line number or "count" operands were specified.

e Passes all the records from the utility data set to the syntax
checker in storage, if no operands were specified.

Note: The BASIC and IPLI syntax checkers are used to update the
reverse Polish-notated data set and to scan source statements for
syntax errors. The topic Syntax Checking describes the use of the
reverse Polish-notated data set.

The SCAN subcommand processor is also invoked by the controller
routine when the SCAN keyword of the EDIT command is specified, or when
the data set type is BASIC or IPLI.

After the specified records have been syntax checked, the SCAN
subcommand processor returns control to the controller routine.

Processing SCAN Operands

This topic describes the way in which the SCAN subcommand processor
operates when particular operands are specified. Table 23, which
follows this topic, summarizes the operations of the SCAN subcommand
processor.

Line Numbers or Count Specified

If either of these operands are present (CAOPERND switch in IKJEBECA is
not zero) IKJEBESC calls IKJPARS to check the validity of the operands.
IKJEBESC checks the availability of the appropriate syntax checker. If
the syntax checker is available in the system (CASYNAME field in
IKJEBECA is not equal to 0), IKJEBESC invokes IKJEBESN, the second load
module of the SCAN subcommand processor. IKJEBESN loads and initializes
the checker if it is not in storage (CAPTCHK field of IKJEBECA=0), and
invokes IKJEBEAA, the Access Method to read into storage the range of
records specified by the user as operands of the SCAN subcommand. If
the data set type is BASIC or IPLI, the syntax checker is already in
storage. The module IKJEBEUT acts as an interface between IKJEBESN and
IKJEBEAR which locates the record keys corresponding to the user
specified keys.

Section 2: Method of Operation 119

IKJEBEUT informs IKJEBESN if the user specified data set is empty.
IKJEBESN calls the appropriate syntax checker for the data set type and
informs the user of any syntax errors.

No_Operands_specified

If no operands are present (CAOPERND switch in IKJEBECA is zero)
IKJEBESC calls IRJEBESN, the second load module of the SCAN subcommand
processor. IKJEBESN loads and initializes the syntax checker, if
necessary, and invokes the Access Method IKJEBEAA, using the module
IKJEBEUT as an interface. IKJEBEAA locates and reads the first record
and every record following until the entire data set has been read into
storage.

No_Operands_and ON_Keyword Specified

If no operands are specified and the keyword ON is specified each line
of input from the user terminal is to be syntax checked as it is
entered. IKJEBESC checks the availability of the syntax checker; if the
data set type is other than ITF, IKJEBESC loads and initializes the
appropriate syntax checker. IKJEBESC turns on the CASCANSW switch in
IKJEBECA. From this time on, the INPUT subcommand processor (IKJEBEIP)
will pass input records from the terminal to the syntax checker for
verification.

No_Operands_and OFF Keyword Specified

If no operands are specified and the keyword OFF is specified IKJEBESC
deletes the syntax checker unless the data set type is BASIC or IPLI.
IKJEBESC turns off the CASCANSW switch in IKJEBECA.

120 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

Table 23. Summary of SCAN Operaticns (Part 1 cf 4)

T

Subcommand | Operand
IR

LD T T
| Modules | |
| Involved | |
|
I

——

| Keyword | in |
Keyword |Value | Processing| Functional Description
4

-, e . e oy

¥ —f--- + -- t
| SCAN |linnuml None | IKJEBEMA |Receives subcommand from | C2
| (NOSCAN | 1innum2 |
| specified |
|on EDIT |
{ command)

None
| command buffer; invokes
| subconrand processcr

| (IKJEBESC).

N

——— — —

t e B S|
IKJEBESC	Checks availability cf	{ 21	EC-EG
	syntax checker; if syntax]		
	checker is availakle,		
	invokes the second load of		
	the SCAN subcomrand prc-		
	cessor (IKJEBESN) to per-		
	form the syntax checking]		
of the specified records.			
t -+			
IKJERESN	If data set type 1is not	21	
	BASIC or IPLI, loads and		
	[initializes syntax check-		
	er, if it is not inj		
	stcrage (if data set tyrpe		
	is BASIC or IPLI, the]		
	checker is already in		
storage) ; invokes the			
	Access Method to locate]		
	and to read into storage		
	the range cf records		
	beginning with the record		
	with a key equal tc 'lin-		
	numl®' and ending with the		
	reccxrd with a key equal to		
	'linnum2*; invokes the		
	aprrecrriate syntax checker		
	to perform its function on		
	the records which were		
	read into storage; informs		
	the user of any syntax]		
errors.			
4

|
1
[]
| EI-EN

21

t=
=]

| |
! t +
| IKJEBEUT |Acts as interface to IKJE-|
| BEAA which 1locates the]
|record with a key equal to]
|{"linnuml® and reads it and|
| the succeeding records|
| tending with record 'lin-|
|num2* key value) into|
| storage; informs IKJEBESN|

T
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
}
| |if the data set is empty.|
L 4

!
|
|
|
!
|
|
|
!
|
|
|
[
|
|
|
|
|
|
[
|
|
|
|
[
!
|
|
[
|
|
|
I
|
|
|
[
|
|
!
|
|
|
|

b e e ————————— e —————
— T — s, T e, s e i e, T S e, — e, e, T e, T e, . S . . . S s,) T e, S e, S,

1

I o e e e e e e e e e e e e —— e s " e e e " i, " e, S e . s, e = e, S s

[o e . . . S . S . o S . S . W i, S . S— i, — i . — i, — o — T T — e, T, —— . o cn, S

— e e — e —

—-—d

(Part 1 of 4)

Section 2: Method of Operation 121

Table 23.

Summary of SCAN Cperations

(Part 2 of 4)

T

]
l

Subcommand | Operand
4

T

|
|
| Keyword

Keyword |Value
$

] T
| Modules |
Involved |
in |

Processing|Functional Description
4

MO
ID

Y e A e, .y

| SCAN
| (SCAN

| specified

|on EDIT
} command)

o o — e . . . S, . e . e, . i, S i, S— . S, W o S o — — — —

Sy p——_

Q *

+
|

Z
(o}
=}
o

o e s T . T . = o s T s T e, T s T e, S e, S e, S o, S, S o e, s

—— e — —

IKJEBEMA |Same function as above.

- — —

02

1

[3 T -

| IKJERESC |same function as akove.
i

21

o e e e e e

L
L)
|

|
IKJEBESN |Invokes the Access Method| 21

|to lccate and to read into|
| storage the range of reco-|

|xrds Lkeginning with

the|

| current record and ending|
|when the number cf records|
|read into storage is equal|

|to the value specified

in|
the|

|approrriate syntax checker|
| (which has already been|

|loaded into stcrage)

to|

|perform its function on]|
| the records which were|
|read into storage; informs|
|the wuser of any syntax|

|
|
|
|
|
I
!
| | *count’; invokes
|
I
I
|
|
|
|
I

| errors.
*____ 4

+—

+ .
| IKJEBEUT |Acts as interface to IRJE-| 27

| | BEAA which locates

the|

| jrecord with the current|
	key and reads it and the
	succeeding records into
	storage until the value

| |specified in ‘'ccunt'

has|

| | been satisfied; informs|

| | IKJERESN if the data
{ |is empty.
L

set|

=
=

122

EDIT

TSO Command Processor PLM - Vol. 3 (Release 21)

e e e e e e ——— e e e e e e it s e i e e o

of

F~3

Table 23. Summary of SCAN Cperations (Part 3 of 4)
- T T T Ll
| | Modules | |
Involved | |
|
|

|
| Keyword | in |

Keyword |value Processing|Functional Description
i 4

- ————a

!
+
| SCAN |
| (NOSCAN
| specified
|on EDIT
| command)

+
None None IKJEREMA |Same function as akove. | C2 |Ccw-CY|
4

Rt P

4
IKJEBESC |same function as above. | 21 |EC-EG|
4

T
}
|
|
Subcommand |{Operand
-+
|
|
|

—-_————

	BASIC or IPLI, loads and	
	initializes syntax checker	
	(if data set type is BASIC	
	cr IPLI, checker is alrea-	
]dy in storage); invokes	
	the Access Method to 1loc-	
	ate every record in the]	
	data set and tc read them	
	into storage; invokes the	
	apprcpriate syntax checker	
	to perform its function on}	
	the records which were	
J]read into the data sets;		
	inforns the wuser of any	
	syntax errors.	
i 4 _‘_

|

I foome
IKJEBEUT |Acts as interface to IKJE-|

| BEAA which 1locates the|
|first record in the datal

| set and reads it and every|

| record thereafter untilf

|the entire data set has]|
|teen read intc stcrage.
4

g i — s i . S g S . S (. S e S e — . . e .

| sCAN

| (NCSCAN

| specified
|on EDIT

| command)

None None

e e s " s " e oy

T
IKJEBEMA |Same function as above.
4

|

|

|

I

|

|

|

4

|

t t
IKJEEESC |Checks availakility cf |
| syntax checker; if the |

|data set type 1is other| |

| than BASIC or IPLI, and if| |
]

|

|

|

|

|

|

|

|

|

|

|

|

|

|

AL

—_———

|"SCAN ON" has nct Leen|
| issued previously, loads|
J]and initializes the apprc-|
Ilpriate syntax checker (if]|
|the data set type is BASIC|
Jor IPLI the syntax checker|
lis already lcaded andj
|initialized); input reco-|
|xds from the terminall
|received by EDIT during|
‘| Inrut mode from this point|
lon will be passed to the|
|syntax checker; turns cnj
| CASCANSW switch in|

T
|
|
|
|

{
|
|
|
|
|
|
|
|
|
!
|
[
I
|
|
I
|
|
|
[
I
|
|
|
|
|
|
|
%
|
|
[
I
|
|
|
|
|
|
[
|
|
|
|
I
|
|
|
|
| | IKITEEECA. |
4 i

o e o e e S e e e G e s e . e o S e e e e S e o . —— — — . T~ o —— —— — . o oo, T S .
o i T e e e e e e e T e e " e s T e e, = . e " e " s = e T s T e, o e, = e, " e e, e o e, =]

,__._._.__._.__._.__.__._._
o e e e e —— e ————_———

(Part 3 of 4)

Section 2: Method of Operation 123

Table 23. Summary of SCAN Cperations (Part 4 of 4)

r Ll T L} T T T X}
[[| [| Modules | a |
	}		Involved			Flow
		Keyword	in		MO	Chart}
Subcommand	Operand	Keyword [Value	Processing	Functicnal Descripticn	ID	ID
b } + 1 1 } e						
SCAN	None	OFF	None	IKJEBEMA	Same function as above.	02
(SCAN			t t t + 1			
specified		b	IKJEEESC	If the data set tyre is	21	EC-EG
on EDIT					other than BASIC or IPLI,	
command)					deletes the syntax checker	
					if it is in storage (the	
					syntax checker is nct]	
					deleted if the Jdata set]	
					tyre is BASIC or IPLI).	
					Turns off CASCANSW switch.	
t t -+ t t t SO S						
EDIT		SCAN	None	IKJEREIN	LCetermines if syntax	€1
(scaN					checker is available; if	
subcommand					syntax checker is	
not					available, indicates the	
specified)					fact ky setting CASCANON	
					to 1 and not setting]	
					CASYNAME to 000000CO. {	
l		b + e St 1				
				IKJEBEMA	Loads the appropriate syn-	02
					tax checker; invokes the	
					SCAN subcommand processor	
\					(IKJEBESC) to initialize	
				lit.		
			¢ t ot S			
				IKJEBESC {Initializes the syntax	21	EC-EG
					checker which was loaded	
					intc storage.	
b 4 1 1 e St						
END		None	None	IKJEBEEN	Invokes the SCAN	=-
(SCAN					subccrrand processcr	
subcommand					(IKJEBESC) to delete the	
not				syntax checker, if it is		
specified)					in storage.	
			¢ + PR St			
				IKJEBESC	LCeletes the syntax checker	21
[in storage.	
b -4-- + + + + % t-—med						
EDIT		NCSCAN	None	IKJERBEIN	If the syntax checker is	(€1
(SCAN		BASIC			available, indicates the	
subcommand		or			fact Ly not setting	
not		IPLI			CASYNAME to 00000000.	
specified)						
			b 1 $-—--- :			
[IKJEBEMA	Loads the BASIC or IPLI	02
					LANGPRCR; invckes the SCAN	
					subcommand processor	
					(IKJEEESC) to initialize	
				lit. [
		I t t+ t t 1				
				IKJEBESC	Initializes the LANGPRCR	21
					which was loaded into})	
					stcrage.	
L 'y 4 4 4 1 4 4 -d
124 EDIT TSO Command Processor PLM - Vol. 3 (Release 21)

TABSET Subcommand Processing

The TABSET subcommand establishes or changes tabulation settings or
nullifies any existing tabulation settings. Upon receipt of the TABSET
subcommand, the controller routine (IKJEBEMA) calls the command scan
routine (IKJSCAN) to validate the subcommand. If the subcommand is
valid, IKJEBEMA invokes the TABSET subcommand processor (IKJEBTA).
IKJEBETA determines if operands are present by checking the status of
the operand switch (CAOPERND) in IKJEBECA. If operands are present,
IKJEBETA calls IKJPARS to validate thenm.

The TABSET subcommand processor indicates whether tabulation
characters are to be translated into blanks and sets new values for
tabulation characters (specifies column locations for tabs) by updating
a table in the EDIT Communication Area. The Line Edit routine
(IKJEBELE) refers to this table when it is invoked to translate
tabulation characters into blanks. Depending upon what the user has
specified, the TABSET subcommand processor:

e Indicates that tabulation translation is to be performed, if no
operands or if the ON keyword were specified.

e Indicates that tabulation translation is not to be performed, if the
OFF keyword were specified.

e Sets new values for tabulation characters, if either the ON keyword
and a tab list were specified, or if the IMAGE keyword and an input
line of tabs were entered.

Note: CATABS, a 12-byte area in IKJEBECA, is used as the tabulation
switch and as a table of the tab character values. The first byte is
the tabulation switch. The second thru the eleventh bytes contain up to
10 tab character values. The 12th byte contains X'00°'.

The TABSET subcommand processor returns control to the controller
routine.

Processing TABSET_Operands

This topic describes the way in which the TABSET subcommand processor
operates when particular operands are specified. Table 24, which
follows this topic, summarizes the operations of the TABSET subcommand
processor.

No Operands Specified

If no operands are present, IKJEBETA turns on the tabulation switch
(CATABS in IKJEBECA) which indicates that translation of the tabulation
settings into blanks is to be performed. The tabulation settings will
take on the default values specified at Sysgen time on the values
specified during a previous TABSET subcommand operation in the current
EDIT session.

ON_or OFF_Keywords_ Specified

If the ON or OFF keyword were specified, IKJEBETA sets the tabulation
switch to perform or not to perform translation of the tabulation
settings.

Section 2: Method of Operation 125

ON_Keyword_and_Integer List Specified

If ON and an integer list were specified, e.g., TAB ON (2 8 72),
IKJEBETA stores values in ascending order in the tabulation tatle
(CATABS) and turns the tabulation switch on.

IMAGE Keyword and Input Line of Tabs Specified

TAB IMAGE i